Molekulare Charakterisierung der Gro1 Region in Kartoffel, die Resistenz gegen den Nematoden Globodera rostochiensis vermittelt.

Inauguraldissertation zur Erlangung des Doktorgrades der Mathematisch–Naturwissenschaftlichen Fakultät der Universität zu Köln

> vorgelegt von Jürgen Michael Paal aus München

Köln, im Februar 2002

Die vorliegende Arbeit wurde am Max-Planck-Institut für Züchtungsforschung in Köln/ Abteilung Pflanzenzüchtung und Ertragsphysiologie (Prof. Dr. F. Salamini) in der Arbeitsgruppe von PD Dr. habil. Christiane Gebhardt angefertigt.

Berichterstatter:

PD Dr. habil. Christiane Gebhardt Max-Planck-Institut für Züchtungsforschung

Prof. Dr. Martin Hülskamp Institut für Botanik, Universität zu Köln

Tag der mündlichen Prüfung:

13. Mai 2002

Inhaltsverzeichnis

		S	eite
1.	Einle	itung	
	1.1	Die Kartoffel	1
	1.2	Globodera rostochiensis	3
	1.3	Pflanzliche Strategien zur Abwehr von Pathogenbefall	7
	1.4	Strategien zur Klonierung von Resistenzgenen	12
	1.5	Das Gro1-Projekt / Ziele der vorliegenden Arbeit	14
2.	Mate	rial und Methoden	
	2.1	Chemikalien, Enzyme, Oligonukleotide und sonstige Materialien	16
	2.2	Molekularbiologische Standardmethoden	16
	2.3	Pflanzenmaterial	16
	2.4	Nematodenzysten und Infektion der Kartoffelwurzeln	18
	2.5	Bakterienstämme	18
	2.6	Medien	18
	2.7	BAC-Bibliothek	19
	2.8	Vektoren für die Pflanzentransformation	19
	2.9	DNA-Sequenzierungen	20
	2.10	Sequenzanalyse und Datenbankrecherche	21
	2.11	Kompetente Zellen und Transformation	22
	2.12	DNA-Präparation	22
	2.13	RNA-Präparation aus Kartoffel	23
	2.14	RFLP-Analyse mit der St332-Sonde	23
	2.15	Kartoffeltransformation via Agrobacterium	24
	2.16	Kartoffeltransformation via Genkanone (Particle Bombardment)	24
	2.17	Standard-PCR (u. Kolonie-PCR)	24
	2.18	cDNA-Synthese, RACE- und RT-PCR	25
	2.19	Klonierung und Sequenzierung von PCR-Produkten	25
	2.20	Screening der BAC-Bibliothek und Herstellung der Kontigs in d. Gro1 Region	26
	2.21	Subklonierung von Genen zur Sequenzierung und Pflanzentransformation /	
		Bestimmung von Insertgrößen	28

3. Ergebnisse

4.

5.

6.

7.

8.

9.

3.1	Identifizierung und Charakterisierung von BAC- und Lambda-Klonen, die	
	mit dem klonierten, NBS-kodierenden PCR-Produkt St332 hybridisieren	30
3.2	Kartierung der TaqI-Restriktionsfragmente 8 und 16	33
3.3	Zuordnung der TaqI-Fragmente 2, 3, 4, 10, 11 und 14 zu P40 oder P41	38
3.4	Subklonierung von Genen aus der Gro1 Region	42
3.5	Sequenzanalyse der St332/334-Genfamilie	44
3.6	Expression der Mitglieder der St332/334-Genfamilie	52
3.7	Konstruktion des Kontigs	54
3.8	Gesamtsequenzierung des Inserts von BAC 98P9	64
3.9	Rezeptor-ähnliche Kinasen	66
3.10	Funktionelle Komplementation	73
Disku 	ission	79
Zusal Engli	sh Abstract	101
Liter	atur	102
Abkü	rzungsverzeichnis	113
Anha	ng	
9.1	Sequenzen der verwendeten Oligonukleotide	114
9.2	St332/334-Genfamilie – genomische Sequenzen und RACE-Produkte	117
9.3	StRLK1 im Vergleich mit homologen Sequenzen	125
9.4	Eidesstattliche Erklärung	128
9.5	Danksagung	129
9.6	Lebenslauf	130

EINLEITUNG

1. Einleitung

1.1. Die Kartoffel

Die Kartoffel hat ihren Ursprung in Südamerika und wurde bereits von der indianischen Bevölkerung in der Anden-Region kultiviert. Bei archaeologischen Ausgrabungen in den Anden wurden Reste von Kartoffelpflanzen gefunden, die sich bis zu siebentausend Jahre zurückdatieren lassen. Die Bedeutung der Kartoffel läßt sich an Keramikfunden ermessen, die bis in die Anfänge der christlichen Zeitrechnung zurückdatieren. Im späten sechszehnten Jahrhundert, zeitlich nach der Eroberung Perus durch Francisco Pizarro, wurde die Kartoffel nach Europa gebracht und zunächst als Zierpflanze in Gärten angebaut. Gegen Ende des achtzehnten Jahrhunderts gewinnt sie in Europa ökonomische Bedeutung (in Deutschland durch Friedrich II. von Preußen, der "Alte Fritz"). Zusammen mit Weizen, Mais und Reis zählt die Kartoffel heute zu den wichtigsten Kulturpflanzen und wird weltweit angebaut. Bisher kennt man zweihundertdreißig bis zweihundertvierzig Kartoffelarten. Damit steht für die Kartoffelzüchtung eine viel größere Vielfalt an genetischen Variationen zur Verfügung, als für irgendeine andere Kulturpflanze. Weniger als zehn Kartoffelarten werden kultiviert. Die restlichen existieren als Wildformen unter denen sich ein breites Spektrum an Resistenzen gegen Parasiten, extreme Temperaturen und Trockenheit findet. Manche Arten bilden Knollen, andere nicht. Blütenform und -farbe variieren (Hawkes, 1990).

Dem ökonomischen Potential der Kartoffel, vor allem für die Entwicklungsländer, wurde mit der Gründung des Centro Internacional de la Papa (CIP) 1971 in La Molina/Peru bei Lima Rechnung getragen.

Verschiedene Kartoffelarten unterscheiden sich in ihren genomischen Ploidiegraden. In den somatischen Zellen können bis zu sechs allelische Kopien der zwölf Chromosomen vorliegen. Dreiviertel aller Arten haben einen diploiden Chromosomensatz. Die im Anbau dominierende europäische Kulturform *Solanum tuberosum* ssp. *tuberosum*, aber auch die südamerikanische Kulturform *Solanum tuberosum* ssp. *andigena*, sind tetraploid. Die diploiden Arten sind fast ausschließlich selbstinkompatibel (gametophytische Selbstinkompatibilität). Die tetraploiden und hexaploiden Arten hingegen sind selbstkompatibel. Triploide und pentaploide Arten sind steril (Hawkes, 1990).

Tetraploide Genome sind für die Kartierung und Isolierung von Genen aufgrund ihrer Komplexität eher ungeeignet. Sie lassen sich aber durch Induktion der parthenogenetischen Entwicklung von weiblichen Gameten oder durch Regeneration von männlichen Gameten (Antheren-, Mikrosporenkultur) auf den diploiden Satz reduzieren. Die Resistenzgene Rx1 (Bendahmane et al., 1999) und Rx2 (Bendahmane et al., 2000) gegen das Kartoffelvirus X wurden allerdings aus einer tetraploiden Sorte isoliert. Aufgrund des hohen Heterozygotiegrades der diploiden Parentallinien für Kartierungspopulationen, ist die erste Filialgeneration bereits die spaltende Generation (segregierende Marker). Die Kartoffel hat als genetisches System einige Nachteile, die die Klonierung von Genen sehr zeitaufwendig gestalten. Für die Isolierung von Genen, die eine bestimmte Krankheit hervorrufen, oder Resistenz gegen diese verleihen, wäre eine möglichst homogene genetische Population wünschenswert (geringe allelische Unterschiede Variation). Durch Marker gefundene genetische zwischen kranken/anfälligen und gesunden/resistenten Organismen wären dann mit höherer Wahrscheinlichkeit direkt mit dem Phänotyp gekoppelt. Aus heterozygoten Kartoffeln können aber, anders als bei der sehr nahe verwandten Tomate, keine homogenen Inzuchtlinien erzeugt werden (inbreeding depression nach wiederholten Runden der Selbstbefruchtung). Außerdem addiert sich der haploide Chromosomensatz auf schätzungsweise Tausendmillionen Basen (1000 Mb). Das haploide Genom ist also etwa siebenmal größer als jenes von Arabidopsis thaliana (ca. 140 Mb). Ein Großteil der genetischen Information ist redundant (mittel- und hochrepetitive Sequenzen, Retroelemente, Genfamilien). Durch herkömmliche klassische Züchtung ist die Einkreuzung von vorteilhaften genetischen Eigenschaften in die kultivierten Kartoffelarten aus Wildformen erschwert. Viele Kreuzungsschritte sind erforderlich, um die von der Wildform stammenden ökonomisch unvorteilhaften Merkmale wieder herauszukreuzen. Die gewonnenen Erkenntnisse über die physikalischen und genetischen Eigenschaften des Kartoffelgenoms erlauben aber bereits eine beschleunigte Züchtung neuer Kultursorten (Marker Assisted Breeding). Agrobakterium-vermittelte Übertragung spezieller ausgewählter Gene ist heute bei der Kartoffel Standard und ermöglicht eine gezielte Veränderung bestehender Kulturformen (obige Gesamtdarstellung zur Kartoffelgenetik wurde Gebhardt und Valkonen, 2001, Hawkes, 1990 und Ross, 1986 entnommen).

EINLEITUNG

1.2. Globodera rostochiensis

Der gelbe Kartoffelzystennematode *Globodera rostochiensis* ist ein im Boden lebender Fadenwurm von kaum mehr als einem Millimeter Länge und bildet als Dauerstadium braune Zysten, die einen Durchmesser von 0.5 mm haben (Hoffmann und Schmutterer, 1983). Unter den Nematoden ist *Globodera rostochiensis* der bedeutendste Kartoffelschädling. Daneben gewinnt der weiße Kartoffelzystennematode *Globodera pallida* mit den Pathotypen Pa1-3 immer mehr an Bedeutung (Putz, 1989).

Wie alle Nematoden, die auf Pflanzen parasitieren, so ist auch *G. rostochiensis* ein obligater (biotropher) Parasit, der sich nur von lebenden Pflanzenzellen ernähren kann. Im Gegensatz zu ektoparasitischen Nematoden dringen Larven der endoparasitischen Kartoffelzystennematoden in das Pflanzengewebe (die Wurzeln) ein, um dort durch Nahrungsaufnahme zur Geschlechtsreife zu kommen (Jones, 1965).

Namensgebung: Zystenbildende Nematoden (Älchen, *eelworms*) wurden zunächst kollektiv unter dem Namen *Heterodera schachtii* geführt. 1923 gliederte Wollenweber (Ref.) die zystenbildenden Nematoden der Kartoffel aus und benannte sie *Heterodera rostochiensis*. Der Name *Heterodera schachtii* wird seither nur noch für die zystenbildenden Nematoden der Rübe eingesetzt. Im Jahre 1973 veröffentlichte Stone (Ref.) seine Entdeckung, daß es unter den zystenbildenden Nematoden der Kartoffel nicht nur eine Population gibt, in der die Weibchen bei der Bildung der Zysten nach dem weißgefärbten (cremefarbenen) Stadium ein Gelbstadium durchlaufen – daher der Name Gelber Kartoffelnematode – sondern auch eine Population, bei der das Gelbstadium der Entwicklung fehlt. Stone gab dieser Form den Namen *Heterodera pallida*. Behrens erhob dann 1975 (Ref.) die Untergattungsbezeichnung *Globodera* zum Gattungsnamen mit den Arten *Globodera rostochiensis* und *Globodera pallida*. Namensgebend ist die charakteristische runde Form der Zysten als Bestimmungsmerkmal.

Klassifikation: Klasse: *Nematodea*, Ordnung: *Tylenchida*, Superfamilie: *Heteroderoidea*, Familie: *Heteroderidae*, Unterfamilie: *Heteroderinae*, Gattung: *Globodera* (Hooper, 1978).

Wirtspflanzen: Sowohl Globodera rostochiensis als auch Globodera pallida sind zur Vollendung ihres Lebenszyklus' auf die Familie der Nachtschattengewächse (Solanaceae) spezialisiert. Unter den europäischen Kulturpflanzen werden besonders Kartoffeln (Solanum tuberosum) und Tomaten (Lycopersicon esculentum), aber auch Auberginen (Solanum melongena) befallen. Unter den Wildpflanzen werden

Kartoffelzystennematoden z.B. an Bittersüß (*Solanum dulcamara*), Schwarzem Nachtschatten (*Solanum nigrum*) und Geflügeltem Nachtschatten (*Solanum miniatum*) beobachtet (Southey, 1965). Im Rahmen einer Untersuchung wurde getestet, für welche ökonomisch wichtigen zystenbildenden und wurzelgallenbildenden Nematoden *Arabidopsis thaliana* als Modellsystem für pflanzenparasitische Nematoden dienen kann. Eine Vermehrung von *G. rostochiensis* war nicht möglich, obwohl z.B. *Heterodera schachtii* Zysten an den Wurzeln von *A. thalinana* bilden konnte (Sijmons, 1991).

Geografische Verbreitung: *Globodera rostochiensis* ist weltweit verbreitet. Ein Hauptverbreitungsgebiet sind die gemäßigten Länder Europas. Weitere Verbreitungsgebiete liegen in Kanada, den U.S.A., Mittelamerika (Costa Rica, Mexico), Asien (Indien, Japan, Naher Osten mit Israel und Libanon), Afrika (Algerien, Tunesien, Südafrika), Neuseeland und Ozeanien. In den tropischen bzw. subtropischen Ländern ist *G. rostochiensis* nur in den höheren Lagen verbreitet. Die Entdeckung von zystenbildenden Nematoden in der Andenregion Südamerikas (Peru, Bolivien) läßt vermuten, daß die Karoffelzystennematoden wie ihr Wirt ihren Ursprung in dieser Region haben (Williams, 1978; Brodie, 1998).

Entwicklungszyklus: Die braunen Zysten, das Dauerstadium der zystenbildenden Nematoden, enthalten durchschnittlich 200-300 Eier. Wenn keine Schlupfaktivierung erfolgt, können sie zehn bis zwanzig Jahre lebensfähig bleiben. Nach der Befruchtung entwickelt sich der Embryo bereits durch Längenwachstum in die Larve des ersten Stadiums, dann nach der ersten Häutung in die schlupfbereite und in der Zyste ruhende Larve des zweiten Stadiums (second stage infective juvenile: J₂). Ausgelöst wird das Schlüpfen der Larven hauptsächlich in Frühjahr und Sommer durch Substanzen (Wurzeldiffusat: Gase und gelöste Moleküle), die von den jungen Wurzeln der wachsenden Kartoffel wenige Millimeter hinter der Wurzelspitze in die Umgebung abgegeben werden. Daneben spielen Bodenfaktoren wie Temperatur und, abhäging von der Bodenpartikelgröße, Feuchtigkeit und Sauerstoffgehalt eine wichtige Rolle beim Schlüpfen. Mit dem Mundstachel (Stylet) durchbrechen die Larven die Eihülle und verlassen die Zyste. Angelockt durch das Wurzeldiffusat wandern sie über die Wurzeloberfläche und dringen mit Hilfe ihres Mundstachels und unter Sekretion von Speichel durch die Wurzelrinde (Cortex) zum Zentralzylinder mit den Leitbahnen vor. Substanzen im Mundspeichel induzieren die Bildung einer vielkernigen (polyenergiden) Riesenzelle unter Fusion von Nachbarzellen (Syncytium). Eine Woche nach Befall

häuten sich die Larven ein zweites Mal. Abhängig von der Ernährungssituation, also ob die Bildung eines leistungsstarken Syncytiums erfolgreich ist, oder nicht, setzt die geschlechtsspezifische Entwicklung ein (drittes Larvenstadium). An großen Syncytien entwickeln sich bewegungsinaktive Weibchen. Nach der dritten und vierten Häutung sind die geschlechtsreifen Weibchen herangewachsen und durchbrechen mit ihrem hinteren Ende die Wurzel nach außen. Männliche Nematoden entwickeln sich in ungünstigen Wurzelregionen, in denen nicht genug Nährstoffe zur Verfügung stehen (z. B. in dünnen Wurzeln). Im Wurzelsystem resistenter Pflanzen ist die Bildung von Syncytien allgemein unterdrückt. Es entstehen nur Männchen und eine Vermehrung findet nicht statt. Nach der vierten Häutung werden die männlichen Nematoden wieder bewegungsaktiv, wandern angezogen durch Sexuallockstoffe (Pheromone) zu den Weibchen und befruchten sie. In den Weibchen beginnt daraufhin die Eiproduktion. Der Körper schwillt sphärisch an und wird als weiße (cremefarbene) Kugel an den Wurzeln sitzend sichtbar. Es erfolgt eine Verfärbung von gold-gelb nach braun, bis schließlich die Zystenbildung mit dem Tod des weiblichen Muttertiers abgeschlossen ist. Eine zweite Generation im selben Jahr wird in Mitteleuropa nicht ausgebildet. Unter kontrollierten Bedingungen können im Labor aber bis zu drei Generationen herangezogen werden. Die Vermehrungsrate ist dann allerdings bedeutend geringer, da die Zysten keiner mehrmonatigen Ruhephase unterliegen (Gesamtdarstellung wurde Sanft, 1986 und Williams, 1978 entnommen).

Schadsymptome: Ein Befall der Kartoffel mit Kartoffelzystennematoden macht sich im Feld durch einen nesterweisen Kümmerwuchs bemerkbar. Die Wurzeln der Pflanzen sind verkürzt und stark verzweigt (Wurzelbart). Es werden nur wenige kleine Triebe gebildet, an denen sich vergilbende und absterbende Blätter befinden (Hoffmann und Schmutterer, 1983).

Veränderungen der Zellstruktur bei Befall: Direkt nach dem Eindringen der J₂-Larven in die Wurzelrinde lösen mechanische Verletzungen in der anfälligen Kartoffelsorte Désirée die Freisetzung von oxidierenden Substanzen in zur Nematodenlarve benachbarten Zellen aus. Die Larven bewegen sich intrazellulär bis zum inneren Cortex, durchstechen mit ihrem Stylet die vor ihnen liegende Zelle und geben Speichelsubstanzen in die Zelle ab, die die Bildung eines Syncytiums einleiten. Bereits zwei Tage nach der Inokulation der Wurzeln mit den Larven wird die Bildung eines Syncytiums durch den Zusammenbruch von Zellwänden und die Bildung vieler kleiner Vakuolen unter Verschwinden der Zentralvakuole sichtbar. Betroffen sind Zellen der Endodermis, des Perizykels und des vaskulären (Leitbündel-) Parenchyms. Das stark elektronendichte Cytoplasma enthält vergrößerte Zellkerne. Nach sieben Tagen hat sich das Syncytium durch Inkorporation von Zellen aus dem Cortex und dem Leitbündelparenchym bis zum verholzten Xylem in die Stele ausgedehnt. An verdickten Stellen der Zellwand des Syncytiums entstehen, angrenzend an das verholzte Xylem, membranumgebene Auswüchse in das Syncytium hinein, die wahrscheinlich den Transport von gelösten Stoffen aus dem Xylem zum Nematoden erleichtern (Transferzelle). In der gegen *Globodera rostochiensis* Pathotyp Ro1 resistenten Kartoffelsorte Maris Piper stimulieren die Nematodenlarven ebenfalls die Bildung eines Syncytiums unter Abbau von Zellwänden und Inkorporation von Zellen. Allerdings sterben Zellen am Rande des Syncytiums durch Nekrose ab und die cytoplasmatischen Bestandteile des Syncytiums degradieren. Es entsteht keine Transferzelle und, vermutlich aufgrund von Nährstoffmangel, unterbleibt die Entwicklung geschlechtsreifer Weibchen (Rice *et al.*, 1985 und 1987).

Spezielle Enzymausstattung für den Parasitismus: Zystenbildende Nematoden sind ebenso wie phytopathogene Bakterien und Pilze mit Enzymen ausgestattet, um Pflanzenzellwände zu depolymerisieren. Diese Enzyme werden in den Speicheldrüsen der Larven gebildet und durch den Hohlraum im Mundstachel in das Pflanzengewebe sezerniert. Erst kürzlich gelang die Isolation einer Pektinase aufgrund von EST-Sequenzendaten zu den Speicheldrüsen von *G. rostochiensis* J₂-Larven (Popeijus *et al.* 2000). In den Speicheldrüsen von *G. rostochiensis* werden auch β -1,4-Endoglucanasen exprimiert, die dem Abbau von Zellulose und Xyloglucan in der Pflanzenzellwand dienen (Smant *et al.*, 1998).

Auf der Oberfläche von infektiösen Larven im J₂-Stadium ist eine Peroxidase lokalisiert. Im biochemischen Assay katalysiert dieses Enzym den Abbau von Wasserstoffperoxid (H_2O_2). Es wird vermutet, daß sich *G. rostochiensis* so vor den *Reactive Oxygen Species* (ROS) schützt, die im Rahmen der pflanzlichen Abwehrreaktion freigesetzt werden (Robertson *et al.*, 2000).

Resistenzzüchtung gegen *Globodera rostochiensis*: Unter den pflanzenparasitischen Nematoden ist *G. rostochiensis* in Deutschland der bedeutendste Schädling der Kartoffel (Ross, 1986) und hat bereits fünf Pathotypen entwickelt (Ro1-Ro5, Klassifikation der Pathotypen s. Kort *et al.*, 1978). Der Kartoffelertrag kann durch den Befall von nicht

resistenten Pflanzen mit Kartoffelzystennematoden besonders bei frühen und mittelfrühen Sorten bis zu 80% zurückgehen. Damit zählen sie zu den wichtigsten Schädlingen des Kartoffelanbaus (Hoffmann und Schmutterer, 1983).

Resistenz gegen *G. rostochiensis* wurde aus verschiedenen Wildformen in die kultivierte Kartoffel *Solanum tuberosum ssp. tuberosum* eingekreuzt. Der *Gro1* Locus auf Chromosom VII stammt höchstwahrscheinlich aus *Solanum spegazzinii* und könnte dem *Fb*-Gen entsprechen, das von Ross 1962 (Ref.) aus *S. spegazzinii* (syn. *Solanum famatinae*) beschrieben wurde. Pflanzen mit dem *Gro1* Locus sind gegen alle fünf Pathotypen (Ro1-Ro5) resistent. Auf Chromosom V kartieren die Loci *H1* und *GroV1*. Beide verleihen Resistenz gegen Pathotyp Ro1. Der *H1* Locus stammt von *S. tuberosum ssp. andigena (Accession CPC 1673)*, der *GroV1* Locus von *Solanum vernei*. Neben diesen einzelnen dominanten Loci wurden auch QTLs (*Quantitative Trait Loci*) kartiert. So tragen die Loci *Gro1.2* (Chr. X), *Gro1.3* (Chr. XI) und *Gro1.4* (Chr. III) zur quantitativen Resistenz gegen *G. rostochiensis* bei. (Ross, 1986, Gebhardt und Valkonen, 2001). Bisher wurde noch kein Resistenzgen gegen *G. rostochiensis* kloniert.

1.3. Pflanzliche Strategien zur Abwehr von Pathogenbefall

Neben Fraßschäden, die an Pflanzen durch Herbivoren, wie dem Kartoffelkäfer *Leptinotarsa decemlineata* verursacht werden, gibt es eine Großzahl an Organismen, die Pflanzen durch Hervorrufung von Pflanzenkrankheiten schädigen. In solchen Fällen spricht man von phytopathogenen Organismen. Sie nutzen den Stoffwechsel der Pflanze zur Versorgung mit Nährstoffen und zur eigenen Reproduktion. Phytopathogene Organismen finden sich unter den Nematoden, Pilzen und Bakterien. Es gibt aber auch eine Vielzahl phytopathogener Viren und Viroide.

Als Begründer der Forschung an phytopathogenen Organismen gilt Anton de Bary. Er konnte als Erster belegen, daß die Kraut- und Knollenfäule der Kartoffel durch den Oomyceten *Phytophthora infestans* als Infektionsagens, also durch einen anderen Organismus, hervorgerufen wird (Scheffer, 1997).

Besonders unsere Kulturpflanzen, die auf hohe Erträge selektiert wurden, zeigen gegenüber ihren verwandten Wildformen eine erhöhte Anfälligkeit. Monokulturen begünstigen eine rasche Ausbreitung und Anpassung von Schädlingen. Durch Schadbefall wird die Pflanze in Wachstum und Entwicklung gehemmt, und sowohl der

Ertrag als auch die Qualität vermindert. Bei einem Schädling wie dem Mutterkornpilz *Claviceps purpurea*, der vorwiegend auf Roggen- und Triticale-Ähren vorkommt, kann es sogar zur Produktion von Alkaloiden kommen, die für den Menschen toxisch sind und zur Kribbelkrankheit führen (Sitte, Ziegler, Ehrendorfer und Bresinsky, 1998).

Das Extrembeispiel für eine ertragsmindernde Pflanzenkrankheit ist die genannte Krautund Knollenfäule. Sie verursachte in den vierziger Jahren des neunzehnten Jahrhunderts in Irland eine Hungerkatastrophe, durch die Millionen von Menschen starben oder auswanderten, weil die Gesamternte der fast ausschließlich angebauten Kartoffel betroffen war (Scheffer, 1997).

Eine qualitätsmindernde Krankheit ist z.B. der Apfelschorf – die bedeutendste Krankheit im Apfelbau. Als Schorf bezeichnet man oberflächennahe rissig-rauhe Wundstellen. Der Apfelschorf wird durch Befall mit dem Pilz *Venturia inaequalis* hervorgerufen und mindert den Marktwert des Apfels (Schweizer und Métraux, 1996).

Präformierte Barrieren: Gegen das Eindringen und die Ausbreitung von Schädlingen besitzt die Pflanze präformierte, also bereits vor Schadbefall vorhandene Barrieren. Zellwände bilden einen mechanischen Schutz. Sie bestehen aus Zellulosefasern, die in eine Matrix aus weiteren Polysacchariden wie Pektinen und Hemizellulosen und Proteinen eingebettet sind. Darüber liegt die wasserabweisende Kuticula. Zellwandabbauende Enzyme wie Zellulasen, Pektinasen, Hemizellulasen oder Kutinasen phytophatogener Organismen zersetzen allerdings diese Barriere. Daneben ermöglichen pflanzensaugende Insekten, wie Blattläuse (bei Kartoffel, Ackerbohne und Rüben z.B. die Grüne Pfirsichblattlaus Myzus persicae), aber auch Zikaden oder Wanzen. durch Verletzungen das Eindringen von Phytopathogenen durch die Zellwand. Neben der Abwehr durch strukturelle Barrieren existieren in der Pflanze präformierte antimikrobielle Verbindungen (Phytoanticipine), die dem Sekundärmetabolismus der Pflanze entstammen. Dazu zählen z.B. cyanogene Glycoside, die nach Verletzung der Zelle freigesetzt und durch eine Glycosidase in das Atmungsgift Cyanwasserstoff (Blausäure) umgewandelt werden. In einer unbeschädigten Zelle liegen cyanogene Glycoside und ihre Glycosidasen in verschiedenen Kompartimenten vor (Prinzip des Zweikomponenten-Giftes). Das bekannteste Cyanoglycosid ist Amygdalin, das für die Giftigkeit bitterer Mandeln verantwortlich ist. Die zu den Terpenoiden gehörenden Saponine, wie z.B. das α -Tomatin, bilden mit Membransterinen von phytopathogenen Pilzen Komplexe, wodurch die selektive Membranpermeabilität zerstört wird (obige

Gesamtdarstellung wurde Knogge, 1996, Osbourn, 1996, Schweizer und Métraux, 1996 und Schlösser, 1997 entnommen).

Die Resistenzreaktion auf molekularer Ebene: Einer der effektivsten Abwehrmechanismen wird durch pflanzliche Resistenz (R)-Gene vermittelt. In den vierziger Jahren postulierte Flor im Rahmen seiner Arbeiten mit Flachs und dem Flachsrostpilz Melampsora lini die Gen-für-Gen Hypothese. Danach tritt ein Gen des Parasiten, das sogenannte Avirulenz (Avr)-Gen, spezifisch mit einem R-Gen der Pflanze in Wechselwirkung. Es kommt zur Resistenzantwort der Pflanze und der Parasit kann sich nicht vermehren (inkompatible Wechselwirkung). Findet keine spezifische Wechselwirkung statt, z.B. weil es sich um eine andere Rasse des Parasiten mit einem veränderten AVR-Protein handelt, oder einfacher, weil das AVR-Protein im Parasiten bzw. das R-Genprodukt in der Pflanze fehlt, dann kommt es zu keiner spezifischen Resistenzreaktion. Der Parasit kann sich vermehren. Man spricht hier von einer kompatiblen Wechselwirkung zwischen Parasit und Wirt (Flor, 1971, Person et al., 1962). Gen-für-Gen Interaktionen aktivieren Kinasen, Phosphatasen, G-Proteine und Ionenflüsse. Durch eine Signaltransduktionskette wird die Transkriptionsaktivität im Zellkern zur Expression von Abwehrgenen umprogrammiert. Häufig kommt es zu einer Abwehrreaktion, bei der nekrotische Areale mit abgestorbenen Zellen im Bereich der Infektionsstelle entstehen, um die Ausbreitung von Pathogenen zu verhindern. Man spricht dabei von der Hypersensitive Response (HR). Auslöser für die hypersensitive Antwort könnten Reactive Oxygen Species (ROS), wie Wasserstoffperoxid (H₂O₂), Hydroxid-Radikale (OH) und Superoxid-Anionen (O₂) sein, die oft unmittelbar nach der Infektion nachweisbar sind (Oxidative Burst). Zur Verstärkung der Zellwände während der Abwehrreaktion werden Kallose-Ablagerungen produziert. Auch tritt eine erhöhte Lignifizierung ein. Kallose blockiert zusätzlich die Plasmodesmata und verhindert die Verbreitung von Viren in die Nachbarzellen. Bilden sich Kalloseund Ligninablagerungen direkt unterhalb des pilzlichen Penetrationsorgans (Appressorium), so spricht man von Papillenbildung. Die Expression von Hydroxyprolin-reichen Proteinen wird ebenfalls mit der Verstärkung der Zellwände in Verbindung gebracht. Bei Pathogenbefall wird auch die Anhäufung antimikrobieller Verbindungen (Phytoalexine) induziert. Es handelt sich hierbei, ebenso wie bei den Phytoanticipinen, um niedermolekulare Verbindungen aus dem Sekundärstoffwechsel. Dazu gehören z.B. das Terpenoid Rishitin aus der Kartoffel oder das Polyacetylen

Falcarindiol aus der Tomate. Mit der steigenden Konzentration an Phytoalexinen geht die Hochregulation der Transkription wichtiger Enzyme in der Biosynthese von Sekundärmetaboliten (und Lignin), wie beispielsweise PAL (Phenylalanin-Ammonium-Lyase) einher. Die pflanzliche Abwehrreaktion schließt auch die Akkumulation von Proteinen mit antimikrobieller Aktivität ein. Dazu zählen u.a. Chitinasen, Glucanasen, Osmotine und Thionine, die kollektiv als Pathogenesis Related (PR) Proteine bezeichnet werden. HR und andere nekrotische Reaktionen sind wahrscheinlich die Auslöser für eine nachfolgende Reaktion, die als Systemic Acquired Resistance (SAR) bezeichnet wird. Dabei steigt die Konzentration von Salicylsäure in der ganzen Pflanze und es kommt auch fernab der Infektionsstelle zur Akkumulation von PR- und anderen Proteinen. Dadurch baut die ganze Pflanze vorsorglich einen Schutz vor einem weiteren Pathogenbefall auf. Neben der Salicylsäure sind auch Jasmonsäure und Ethylen wichtige Komponenten in der systemischen Resistenz gegen Pathogene. Sie spielen z.B. eine Rolle bei einer von Salicylsäure unabhängigen Abwehrreaktion, die als Induced Systemic Resistance (ISR) beschrieben wird. Sie wird bei A. thaliana durch verschiedene Wurzelassoziierte nicht pathogene Bakterien ausgelöst und erhöht die Resistenz der Pflanze gegen bestimmte Pilze. Die Akkumulation von Jasmonsäure und Ethylen wird auch bei der Verwundung von Tomatenblättern durch Herbivoren ausgelöst. Es kommt zur systemischen Akkumulation von Proteinase-Inhibitor(PIN)-Proteinen in der ganzen Pflanze, die weiteren Insektenfraß reduziert. Die hier isoliert betrachteten Einzelreaktionen der Pflanze auf Pathogenbefall sind in Wirklichkeit Bestandteil eines bisher wenig charakterisierten, komplexen Signaltransduktionsnetzwerks (obige Gesamtdarstellung zu den molekularen Aspekten der Resistenzreaktion wurde den Reviews von Hammond-Kosack und Jones, 1996, Glazebrook, 1999, Somssich und Hahlbrock, 1998, Pieterse und van Loon, 1999, Feys und Parker, 2000 entnommen).

Auf struktureller Ebene findet sich bei den Resistenzgenprodukten bisher nur ein begrenztes Repertoire an Sequenzmotiven. Darunter finden sich putative Proteininteraktions/-erkennungs-Domänen wie *Leucine-Rich Repeats* (LRR) und *Leucine Zipper* (LZ), Motive, die möglicherweise eine Rolle in der Signalweiterleitung spielen, wie die *Nucleotide Binding Site* (NBS) und Serin-Threonin-Kinase(STK)-Domänen, sowie TIR-Domänen, die Homologie zum <u>T</u>oll Protein aus *Drosophila* und dem Interleukin-1 <u>R</u>ezeptor aus Säugetieren aufweisen. Die TIR-Domäne der pflanzlichen Resistenzgenprodukte ist homolog zur intrazellulären Domäne von Toll. Das *Toll* Gen in

Drosophila ist essentiell für die Festlegung der dorso-ventral Achse der Embryonen. Überraschenderweise wurde später entdeckt, daß Toll während der Immunantwort auf Pilze auch die Expression des Peptids Drosomycin mit fungizider Wirkung kontrolliert. LRR-Domänen finden sich in vielen pflanzlichen und tierischen Proteinen. Sie bestehen aus einem sich wiederholenden Sequenzmotiv, das aus konservierten hydrophoben Leucin-Resten besteht (Kobe und Deisenhofer, 1994). Die Kristallstruktur des porcinen (vom Schwein) RNase Inhibitors, der ebenfalls eine LRR-Domäne enthält, wurde bereits bestimmt (Kobe und Deisenhofer, 1993) und ähnelt der Form eines Pferdehufs. Die Leucine-Rich Repeats sind im RNase Inhibitor aber wesentlich länger als jene aus pflanzlichen Resistenzgenprodukten. Es wird vermutet, daß die LRR-Domänen der Resistenzgenprodukte eine stabähnliche Struktur einnehmen. In einigen möglicherweise cytoplasmatischen Resistenzgenprodukten, wie R1 (Ballvora et al., 2002, in press) bzw. RPS2 (Bent et al., 1994) und RPM1 (Grant et al., 1995) aus Arabidopsis thaliana, die Resistenz gegenüber Pseudomonas syringae vermitteln (R1 s.u.), liegt die LRR-Domäne C-terminal hinter einer LZ- und einer NBS-Domäne (LZ-NBS-LRR). Andere cytoplasmatische Resistenzgenprodukte tragen anstelle der LZ-Domäne eine TIR-Domäne (TIR-NBS-LRR), wie N (Whitham et al., 1994) und L6 (Lawrence et al., 1995). L6 schützt Flachs vor Melampsora lini (N s.u.). Einige Resistenzgenprodukte wie Cf-9 aus der Tomate (Jones et al., 1994) und Hs1^{pro-1} aus der Zuckerrübe, welches Resistenz gegen den Nematoden Heterodera schachtii verleiht (Cai et al., 1997), besitzen neben der LRR-Domäne nur noch eine kurze Transmembran(TM)-Domäne. Es wird angenommen, daß die LRR-Domäne bei den letztgenannten Proteinen auf der extrazellulären Seite der Cytoplasmamembran lokalisiert ist. Das Resistenzgen Xa21 codiert neben einer LRRund einer TM-Domäne zusätzlich noch für eine Serin-Threonin-Kinase-Domäne, die auf der cytoplasmatischen Seite liegt (Song et al., 1995). Xa21 schützt die Reisplanze vor Befall mit Xanthomonas oryzae pv. oryzae. Resistenzgene müssen nicht notwendigerweise die genannten Domänen codieren. Das erste klonierte Resistenzgen Hml (Johal und Briggs, 1992) z.B. codiert für eine Reduktase, die das HC-Toxin des Pilzes Cochliobolus carbonum inaktiviert. Der Pilz befällt Mais und hemmt durch sein Toxin die Histon-Deacetylase. Bezüglich der genomischen Organisation fällt auf, daß viele Resistenzgene in Clustern mit mehreren Homologen vorliegen. Möglicherweise erleichtert diese Anordnung die Entstehung von neuen Resistenzgenspezifitäten (obige

Gesamtdarstellung zur Struktur von Resistenzgenen wurde den *Reviews* Hammond-Kosack und Jones, 1997, Takken und Joosten, 2000 entnommen).

1.4. Strategien zur Klonierung von Resistenzgenen

Die bisher erfolgreichste Strategie zur Identifizierung und Klonierung von Resistenzgenen ist die positionelle Klonierung (auch *Map Based Cloning* genannt). Dabei wird die Vererbung eines Resistenzmerkmals verfolgt, also z.B. die Resistenz der Kartoffel gegen den Nematoden Globodera rostochiensis, und das für die Resistenz verantwortliche dominante Gen (oder die verantwortlichen Gene) unter Verwendung von DNA-Markern kartiert. Die Kombination verschiedener Markertechnologien, vor allem der PCR-basierten wie AFLP-, RAPD-, SSR(Mikrosatelliten)-, SSCP- und SNP-Marker, ermöglicht die Erstellung einer hochauflösenden genetischen Karte. Ziel ist es, Marker zu finden, die möglichst eng mit dem Resistenzlocus gekoppelt sind, oder sogar mit ihm kosegregieren, damit eine rasche Isolierung von genomischen Klonen aus der resistenzvermittelnden Region ermöglicht wird. Hierzu werden genomische Bibliotheken mit großen Inserts (YAC-, BAC- und PAC-Bibliotheken) auf die am engsten gekoppelten bzw. kosegregierenden Marker untersucht. Ist die Rekombinationshäufigkeit in der resistenzvermittelnden Region hoch genug, so ist es evtl. möglich, einen Klon zu "fischen", der bereits zwei Marker enthält, die den Resistenzlocus auf beiden Seiten genetisch flankieren. In diesem Fall spricht man von Chromosome Landing. Meist müssen aber zur Abdeckung der ganzen Region, ausgehend von den terminalen Enden der bereits gefundenen Klone, weitere genomische Klone isoliert werden, die miteinander überlappen und die ganze Region abdecken. Hier spricht man von Chromosome Walking. Beispiele für Gene, die durch Map Based Cloning isoliert wurden, sind das Tomatengen Pto (Martin et al., 1993) und das RPS2 Gen aus Arabidopsis thaliana (Bent et al., 1994). Beide Gene schützen die Pflanze vor Befall mit Pseudomonas syringae. Vor dem Hintergrund der Komplexität der Pflanzengenome gibt es mehrere Schwierigkeiten, die während des Chromosome Walkings auftreten können. So kann es sein, daß um die Resistenzregion vergleichsweise selten Rekombinationen auftreten und die genetische Karte für diese Region nicht hochauflösend genug ist. Aufgrund der zu überbrückenden Distanz wird dadurch das Chromosome Walking sehr zeitaufwendig. Des Weiteren können die terminalen Enden der isolierten Klone repetitive Sequenzen enthalten

(Retroelemente, Homologen aus einer Multi-Gen-Familie etc.). Sonden zu solchen Enden detektieren eine kaum analysierbare Zahl an positiven Klonen in der genomischen Bibliothek. Außerdem kann jede genomische Bibliothek Lücken besitzen. Im schlimmsten Fall ist das Resistenzgen überhaupt nicht in der genomischen Bibliothek repräsentiert.

Zur Identifizierung von Resistenzgenen werden die isolierten Klone gegen eine cDNAoder EST-Bibliothek hybridisiert und Kandidatenklone durch Datenbankhomologien charakterisiert. Subklonierte genomische Fragmente werden dann direkt zur funktionellen Komplementation in suszeptible Pflanzen transformiert. Sequenz und Struktur des Resistenzgens werden aus dem komplementierenden Subklon abgeleitet.

Eine Strategie zur Klonierung von Resistenzgenen, die durch die Verfügbarkeit von Sequenzinformationen zu Resistenzgenen in den Datenbanken an Bedeutung gewonnen hat, ist die Homologie-basierte Klonierung. Es hat sich gezeigt, daß bestimmte Sequenzmotive unter der Mehrzahl der Resistenzgene konserviert sind. So konnten z.B. aus einem Alignment bekannter Resistenzgene degenerierte Primer zu konservierten Bereichen in der *Nucleotide Binding Site* (NBS)-kodierenden Region abgeleitet werden, mit denen es möglich ist, polymorphe PCR-Produkte vom Pflanzengenom zu generieren. Aus dem Karoffelgenom konnten so *RGAs (Resistance Gene Analogs)* amplifiziert werden, die ohne Rekombination mit dem *Gro1* Locus und dem Locus *R7*, der rassenspezifische Resistenz gegenüber *Phytophthora infestans* verleiht, gekoppelt sind (Leister *et al.*, 1996).

Eine Kombination aus positioneller und Homologie-basierter Klonierung wurde zur Isolierung des *R1* Gens aus Kartoffel erfolgreich eingesetzt (Ballvora *et al.*, 2002, in press). Es bewirkt wie der Locus *R7* rassenspezifische Resistenz gegen *Phytophthora infestans*.

Neben der positionellen Klonierung war auch das *Transposon-Tagging* zur Isolierung von Resistenzgenen in einigen Fällen erfolgreich. Beispiele hierfür sind das *Hm1* Gen aus Mais, das Resistenz gegen den Pilz *Cochliobolus carbonum* vermittelt (Johal und Briggs, 1992), das *Cf-9* Gen aus Tomate, das Resistenz gegen den Pilz *Cladosporium fulvum* verleiht (Jones *et al.*, 1994) und das *N* Gen aus Tabak, welches Resistenz gegen das Tabak Mosaik Virus (TMV) vermittelt (Whitham *et al.*, 1994). Bei der Kartoffel ist das *Transposon-Tagging* nicht etabliert. Es wurde aber bereits ein Versuch unternommen, Resistenzgene gegen *Globodera rostochiensis* und *G. pallida* mit dieser Strategie zu

isolieren (Pereira *et al.*, 1994). Die Elemente Ac-Ds und En-I aus Mais sind in der Kartoffel aktiv, scheinen aber, wie auch in anderen Pflanzen, bevorzugt in sehr nahe gelegene genomische Regionen zu transponieren.

1.5. Das Gro1-Projekt / Ziele der vorliegenden Arbeit

Mit RFLP (Restriction Fragment Length Polymorphism)-Markern wurde eine genetische Karte des Kartoffelgenoms mit rund 300 Loci erstellt (Gebhardt et al., 1989, Gebhardt et al., 1991). Darauf basierend konnte ein einzelner dominanter Locus¹, der Resistenz gegen den endoparasitischen Nematoden Globodera rostochiensis vermittelt, auf Kopplungsgruppe IX kartiert werden (Barone et al., 1990). Nach Identifikation der syntenischen Abschnitte und kolinearen Anordnung der Genome von Kartoffel und der nahe verwandten Tomate, wurde die Nummerierung der Kopplungsgruppen verändert. Kopplungsgruppe IX entspricht nun dem Chromosom VII (Gebhardt et al., 1991). Zur Eingrenzung des resistenzvermittelnden Locus wurde mittels PCR-basierter Marker eine hochauflösende genetische Karte um den Grol Locus erstellt. Die Kartierungs-population bestand aus etwa 1100 Pflanzen. Der weibliche Elter (Kartoffellinie P18) war gegenüber G. rostochiensis suszeptibel, der männliche Elter (Kartoffellinie P40) war resistent und heterozygot für das dominante Resistenzallel Gro1. Es wurden zwei AFLP-Marker identifiziert (AFLP1, 2), die den Grol Locus auf 1.4 cM eingrenzen. Der RAPD-Marker OPR10 und der RFLP-Marker CP56 kosegregieren mit Gro1 (Ballvora et al., 1995). Nach gegenwärtigen Schätzungen hat die Gro1 Region² mindestens eine Größe von 500 kb. Zwei PCR-Produkte, die untereinander auf Nukleotidebene zu 95% identisch sind (St332 und St334), kosegregieren mit Grol. Sie wurden mit degenerierten Primern zu konservierten Motiven des NBS-kodierenden Bereichs in den Resistenzgenen N aus Tabak und RPS2 aus Arabidopsis thaliana von Kartoffel-DNA amplifiziert. Auf RFLP-Gelen hybridisiert St332 zu einer ganzen Reihe von TagI-Restriktionsfragmenten des Kartoffelgenoms. Damit handelt es sich um eine Genfamilie (St332/334-Familie). Die etwa 450 bp langen PCR-Produkte sind auf ihrer ganzen Länge zu NBS-kodierenden Sequenzbereichen von Resistenzgenen in der Datenbank homolog (Leister *et al.*, 1996).

¹): Als Locus wird ein genetisch durch Rekombination eingegrenzter DNA-Bereich bezeichnet.

²): Der Begriff Region wird in Zusammenhang mit physikalischen Daten (überlappende genomische Klone (Kontig) bzw. Sequenzdaten) gebraucht.

Erste Expressionsuntersuchungen wurden von Dr. Jost Muth durchgeführt (nicht veröffentlicht). Mit Primern zu St332 und St334 stellte er 5'- und 3'-RACE-Produkte von Wurzel-cDNA der resistenten Kartoffellinie P6/210 her, die upstream vom NBSkodierenden Bereich mit TIR-Domänen und downstream vom NBS-kodierenden Bereich mit LRR-Domänen homolog sind. In dieser Arbeit sollte die Grol Region physikalisch erschlossen werden. Als Grundlage dienten zwei genomische Bibliotheken der resistenten Kartoffellinie P6/210. Eine Lambda-DASH II-Bibliothek, die von Dr. Cristina Menéndez hergestellt wurde und eine BAC-Bibliothek, die von Dr. Khalid Meksem hergestellt wurde und die uns freundlicherweise von der Lion Bioscience AG zur Verfügung gestellt wurde. Da es sich aufgrund der Sequenzhomologie zu bereits charakterisierten Resistenzgenen um potentielle Kandidaten für das Grol Resistenzgen handelt, sollten Mitglieder der St332/334-Familie subkloniert, charakterisiert und vermittelt durch Agrobacterium in die gegenüber G. rostochiensis suszeptible Kartoffelsorte Désirée zur Komplementationsanalyse transferiert werden. Die Möglichkeit, daß andere Gene in der Grol Region die Resistenz vermitteln, wird nicht ausgeschlossen. Auch sie sollten ansatzweise charakterisiert werden und zusammen mit weiteren unbekannten Genen durch ballistische Transformation mit präparierter DNA von BAC-Klonen aus dem Kontig der Grol Region in den Zellkern von Désirée geschleust werden. Dazu sollen Klone, die mit der St332-Sonde hybridisieren zusammen mit weiteren überlappenden BAC-Klonen in einem Kontig angeordnet werden, das die Grol Region abdeckt. Ziel des Gesamtprojektes ist die Klonierung des Resistenzgens gegen Globodera rostochiensis.

2. Material und Methoden

2.1 Chemikalien, Enzyme, Oligonukleotide und sonstige Materialien

Chemikalien wurden von den Firmen Sigma/Fluka/Riedel de Haën (Deisenhofen), Merck (Darmstadt), Serva (Heidelberg), DUCHEFA (Haarlem, Niederlande), Biozym (Hessisch Oldendorf), Roth (Karlsruhe) und BIOMOL (Hamburg) bezogen.

Es wurden Enzyme von Roche (Mannheim), Invitrogen/GIBCO (Karlsruhe), MBI-Fermentas (St. Leon-Rot) New England Biolabs (Frankfurt am Main) und Biozym (Hessisch Oldendorf) eingesetzt.

Komplexe organische Zusätze für Medien stammten von den Firmen Difco Lab. (Detroit, USA) und Sigma (Deisenhofen).

Oligonukleotide wurden von Metabion (Martinsried), MWG Biotech (Ebersberg) und Invitrogen/GIBCO (Karlsruhe) bezogen (Sequenzen befinden sich in Kapitel 9.1).

Radioisotope [α-³²P]dCTP mit einer spezifischen Aktivität von 3000 Ci/mmol wurden von Hartmann Analytics (Braunschweig) und Röntgenfilme von Kodak (Rochester, USA) geliefert.

2.2 Molekularbiologische Standardmethoden

Soweit nicht anders vermerkt, wurden Standardprotokolle nach Sambrook *et al.* (1989) und Sambrook und Russell (2000) durchgeführt.

2.3 Pflanzenmaterial

Grundlegend für diese Arbeit ist die Kartierungspopulation F1840 aus einer Kreuzung der diploiden Kartoffellinien P18 (H82.337/49) und P40 (H80.696/4). Mit dieser Population wurde eine genetische Karte des Kartoffelgenoms erstellt (Gebhardt *et al.*, 1991, Leister *et al.*, 1996). Die Kartierungspopulation besteht aus 1100 F1 Pflanzen. P18 ist gegenüber *Globodera rostochiensis* anfällig (suszeptibel) und P40 ist resistent. Das resistenzvermittelnde dominante *Gro1* Allel liegt in P40 heterozygot vor und segregiert somit in der Kartierungspopulation F1840.

Zur Herstellung der BAC- und Lambda-Bibliothek diente die diploide Kartoffellinie P6/210. Sie ist ein F1-Hybrid aus einer Kreuzung der Linien P41 (H79.1506/1) und P40 (s.o.) und trägt sowohl das dominante *Gro1* Allel aus P40 als auch das dominante *R1* Allel für rassenspezifische Resistenz gegen *Phytophthora infestans* aus P41. Sowohl P40 als auch P6/210 sind gegen alle fünf Pathotypen von *G. rostochiensis* (Ro1-5) resistent. Zur Kartierung wurde nur auf Ro1 getestet. Abbildung 2-1 zeigt die hochauflösende genetische Karte um den *Gro1* Locus, der die Resistenz gegen *G. rostochiensis* Pathotype Ro1 vermittelt (Ballvora *et al.*, 1995).

Abb.2-1: Rekombinanten um den *Gro1* Locus auf Chromosom VII. Rekombinanten stammen aus der Kreuzungspopulation P18xP40. *CP*: cDNA-*Probe* RFLP-Marker, *GP*: *Genomic-Probe* RFLP-Marker, *OPR*: RAPD-Marker, *AGPaseB(a)*: ADP-Glucose Phosphorylase (Untereinheit A). *CP56* und *OPR10*₇₀₀ kosegregieren mit *Gro1*.

2.4 Nematodenzysten und Infektion der Kartoffelwurzeln

Zysten von *Globodera rostochiensis* Pathotyp Ro1 wurden freundlicherweise durch Herrn Dr. Rumpenhorst von der Biologischen Bundesanstalt in Münster zur Verfügung gestellt.

Kartoffelstecklinge wurden nach dreiwöchiger Anzucht in Töpfe (Größe Nr. 8) mit ¹/₂ Einheitserde, ¹/₂ Sand und 20 Ro1 Zysten überführt. Sechs Wochen später wurde der Versuch ausgewertet und die Wurzeln der infizierten Pflanzen auf Zysten im Gelbstadium untersucht.

2.5 Bakterienstämme

DH10B (Life Technologies, U.S.A.):	F mcrA Δ (mrr-hsdRMS-mcrBC) ϕ 80dlacZ Δ M15								
	$\Delta lacX74$ deoR recA1 endA1 araD139 $\Delta (ara,$								
	leu)7697 galU galK λ ⁻ rpsL nupG								
LBA4404 (Life Technologies, U.S.A.)	enthält Ti-Plasmid pAL 4404, welches nur die								
vir Gene und die ori Region trägt.									
	Selektion: 50 mg/l Rifampicin, 100 mg/l Strepto-								
	mycin.								
COR 308 (Hamilton, 1997):	enthält Ti-Plasmid pMP90 und zusätzliche								
	Virulenzgenkopien auf dem Plasmid pCH32								
	("Supervirulenzstamm").								
	Selektion: 25 mg/l Gentamicin, 5 mg/l Tetracyclin								

2.6 Medien

YEB-Medium:	1g/l Bacto-Hefeextrakt, 5g/l Bacto-Trypton, 5g/l Saccharose,								
	5g/l Fleischextrakt, 2mM MgSO ₂ , 15g/l Agar, pH7								
LB-Medium:	5g/l Bacto-Hefeextrakt, 10g/l Bacto-Trypton, 10g/l NaCl, 15g/l Agar, pH 7								

2.7 BAC-Bibliothek

Die BAC-Bibliothek der diploiden Kartoffellinie P6/210 (Ballvora *et al.*, 2002, in press, Herstellungsprotokolle analog Meksem *et al.*, 2000) wurde freundlicherweise von der Lion Bioscience AG (Heidelberg) bereitgestellt. Dazu wurde hochmolekulare DNA partiell mit *Hind*III verdaut und in den binären T-DNA-Vektor pCLD04541 (Abb.2-2) kloniert, der auch direkt für die Transformation von Pflanzen verwendet werden kann. Die Bibliothek besteht aus 264 Mikrotiterplatten à 384 Klonen (Genetix, Oxford, UK), also insgesamt etwa 100.000 Klonen. Die durchschnittliche Insertgröße beträgt 70 kb. Da die physikalische Länge des haploiden Kartoffelgenoms auf 1000 Mb geschätzt wird, ist jede DNA Sequenz durchschnittlich dreimal in dieser Bibliothek repräsentiert. Gelagert wurden die Klone in 2YT Medium (Sambrook *et al.*, 1989) mit Gefrierpuffer (5.5 % w/v Glycin, 7 mM (NH₄)SO₄, 1.5 mM Na-Citrat, 0.3 mM MgSO₄, 13 mM KH₂PO₄, 27 mM K₂HPO₄).

2.8 Vektoren für die Pflanzentransformation

pCLD04541:

Abb.2-2: Der pCLD04541(V41)-Vektor (Abbildung wurde Bancroft *et al.*, 1997 entnommen). LB/RB : *left/right T-DNA border*, * : einzigartige Restriktionsschnittstelle, NPT: Neomycin Phosphotransferase.

Der pCLD04541-Vektor (Jones *et al.*, 1992) ist ein Derivat des bakteriellen P1-Plasmids (pRK290, 20 kb). Zusammen mit der T-DNA, welche in die *Eco*RI-Schnittstelle kloniert wurde, hat der Vektor eine Größe von 29.1 kb. Selektion auf diesen Vektor erfolgte in DH10B mit 12.5 mg/l Tetracyclin und in LBA4404 mit 5mg/l Tetracyclin auf Festmedium bzw. 2.5 mg/l in Flüssigkultur.

BIBAC2:

Abb.2-3: Physikalische Karte des BIBAC2-Vektors (Hamilton, 1997). *Bam*HI- und *Not*I-Restriktionsschnittstellen dienen zur Klonierung. KanR: Kanamycinresistenzgen, LB/RB : *left/right T-DNA border*, GUS: β -Glucuronidase, HYG: Hygromycin Phosphotransferase.

Selektiert wurde auf diesen Vektor in DH10B und COR308 mit 40 mg/l Kanamycin und 5% (w/v) Saccharose. Wenn das *sacB* Gen intakt ist, wirkt Saccharose toxisch. Das *sacB* Gen stammt aus *Bacillus amyloliquifaciens* und codiert für eine Levansucrase. Bei der Klonierung stellte sich heraus, daß die Expression dieses Gens in *E. coli* toxisch für das Bakterium ist.

2.9 DNA-Sequenzierungen

Allgemein: DNA-Sequenzierungen wurden von der Service Gruppe Automatische DNS-Isolierung und Sequenzierung (ADIS) am Max-Planck-Institut für Züchtungsforschung auf ABI Prism 377 und 3700 Sequenziergeräten von Applied Biosystems (Weiterstadt) mittels der BigDye-Terminator Methode durchgeführt. Vorgefertigte Reaktionslösungen wurden von Applied Biosystems und Primer von Metabion (Martinsried) bezogen. **Gesamtsequenzierung des** *Inserts* **aus BAC 98P9:** Die Subbibliothek von BAC 98P9 zur Gesamtsequenzierung wurde von der Firma GATC (Konstanz) hergestellt. Die Fragmentierung des BAC-Klons wurde dort mechanisch vorgenommen und Fraktionen von ca. 3 kb und > 5 kb in einen TOPO-Vektor (Invitrogen, Karlsruhe) kloniert.

Mit dem Qiagen (Hilden) Robot 9600 wurde in der ADIS Service Gruppe DNA von den einzelnen Klonen präpariert und sequenziert. Die Assemblierung der Teilsequenzen wurde von Prisca Viehhoefer (ADIS) mit dem Staden Package durchgeführt. Für das Preprocessing wurde das Unterprogramm Pregap4 und für das Assembly Phrap aus dem Unterprogramm Gap4 eingesetzt.

2.10 Sequenzanalyse und Datenbankrecherche

Analysen von DNA- und Protein-Sequenzen sowie deren Verwaltung wurde mit dem GCG-Package für UNIX, Version 10 (Genetics Computer Group, Wisconsin, USA) durchgeführt. Zur Datenbankrecherche wurden die EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/), GenBank (http://www.ncbi.nlm.nih.gov/), DDBJ (DNA Data Bank of Japan, http://www.ddbj.nig.ac.jp/) und der Expasy-Server (http://www.expasy.ch/) herangezogen. Die Analyse des komplett sequenzierten *Inserts* von BAC 98P9 wurde mit der Lasergene Software Version 5 vorgenommen (DNASTAR, Wisconsin, USA).

Primer-*Annealing***temperaturen** wurden nach Breslauer *et al.* (1986) auf der Webseite http://alces.med.umn.edu/rawtm.html berechnet.

Signalpeptidvorhersagen wurden mit dem Programm SignalP auf der Webseite http://www.cbs.dtu.dk/services/SignalP durchgeführt.

Transmembranregionen wurden mit den Programmen TMHMM Version 2.0 (http://www.cbs.dtu.dk/services/TMHMM-2.0/) und SOSUI (http://sosui.proteome .bio.tuat.ac.jp/sosuiframe0.html) vorhergesagt.

Multiple Proteinsequenz *Alignments* wurden mit MultAlin auf dem INRA Server (http://prodes.toulouse.inra.fr/multalin/multalin.html) durchgeführt. Dabei wurden Standardeinstellungen verwendet. Die Buchstabensymbole für hoch konservierte Aminosäuren sind rot und für schwach konservierte Aminosäuren sind blau gefärbt.

Symbole in der Konsenussequenz: ! für die Aminosäuren I oder V; \$ für L oder M; % für F oder Y und # für die Aminosäuren N, D, Q und E.

Sequenzmotive wurden auf dem ProfileScan Server (http://hits.isb-sib.ch/cgibin/PFSCAN) vorhergesagt. Dabei werden PROSITE- und Pfam-Daten herangezogen.

2.11 Kompetente Zellen und Transformation

Kompetente *E. coli* Zellen DH10B wurden von Invitrogen/Life Technologies (USA) bezogen und mittels Elektroporation mit einem Pulsgenerator (Gene Pulser, Biorad) nach Herstellerangaben transformiert (200 Ω , 1.7 kV, 25 μ F).

Kompetente LBA4404 oder COR308 *Agrobacterium* Zellen wurden wie von McCormac *et al.* (1998) beschrieben hergestellt und transformiert (Pulsgenerator s. o.).

2.12 DNA-Präparation

Präparation von genomischer DNA aus der Kartoffel: 0.3 - 0.4 g gefriergetrocknetes Blattmaterial wurde unter Stickstoff gemörsert und in 20 ml Lysepuffer (100 mM Tris-HCl, pH 9.5, 1.4 M NaCl, 20 mM EDTA, 2% (w/v) CTAB, 1% (w/v) Polyethylenglycol 6000 und 0.25% (v/v) β-Mercaptoethanol) aufgenommen und 20 min bei 75°C inkubiert. Die Suspension wurde mit 1 vol Chloroform/Isoamylalkohol (24:1 v/v) versetzt. Nach der Phasentrennung durch Zentrifugation wurde die wässrige Phase mit 1 M HCl auf pH 7.0 titriert und mit 400 µg/ml DNase-freier RNase behandelt. Die Aufreinigung der DNA erfolgte mittels Affinitätschromatographie über Qiagen Tip 100 Säulen (Qiagen, Hilden) nach dem Herstellerprotokoll.

Präparation von BAC-DNA (pCLD04541, BIBAC2): Es wurde das Qiagen (Hilden) Plasmid Midi Kit benutzt und DNA bis auf folgende Modifikationen nach dem Handbuch aufgereinigt: Es wurde eine 100 ml über-Nacht-Kultur für die DNA Präparation angesetzt. Das Bakterienpellet wurde mit 15 ml P1-, P2- und P3-Puffer resuspendiert, lysiert und neutralisiert. Ausgefällte Komponenten wurden abzentrifugiert und der Überstand direkt, ohne Isopropanol-Fällung, über QIAfilter Midi Cartridges (Qiagen) gefiltert und auf Qiagen-tip 100 Säulen aufgetragen. Das DNA-Pellet wurde in 50 μl EB Puffer resuspendiert. **Präparation von** *high copy* **Plasmid-DNA, wie z.B. pGEM-T**, wurde mit dem QIAprep Spin Miniprep Kit (Qiagen, Hilden) nach Herstellerangaben durchgeführt.

Maxipräparationen von Lambda-DNA wurden nach Sambrook *et al.* (1989) durchgeführt.

2.13 RNA-Präparation aus Kartoffel

Pflanzengewebe wurde mit dem Mörser unter Stickstoff zermahlen. Gesamt-RNA für RT-PCR Experimente wurde mit dem RNeasy Plant Mini Kit nach Herstellerangaben isoliert. Zusätzlich wurde nach dem Waschen der Säulen mit RW1-Puffer ein DNase-Verdau mit dem RNase-Free DNase Set (Qiagen) wie im mitgelieferten Protokoll beschrieben auf den Säulen zwischengeschaltet. Für die Aufreinigung von RNA aus den stark stärkehaltigen Knollen und Stolonen wurde das unter Stickstoff zermörserte Gewebe zunächst im Concert Cytoplasmic RNA Reagent (Invitrogen, Karlsruhe) aufgenommen und nach Herstellerangaben weiterbehandelt. Die ausgefällte RNA wurde dann wie oben beschrieben nach Resuspension mit RLT-Puffer über Qiagen Säulen aufgereinigt.

2.14 RFLP – Analyse mit der *St*332-Sonde

*Taq*I-Verdau genomischer DNA, elektrophoretische Auftrennung auf einem denaturierenden Polyacrylamidgel (4% w/v), Elektroblotting auf Nylonmembranen (Biodyne B, Pall, Irland) und Hybridisierung wurden, wie in Gebhardt *et al.* (1989) beschrieben, durchgeführt. Zur Signaldetektion wurden Phosphorscreens eingesetzt. Visualisierung und Dokumentation erfolgte mit dem Storm 860 Phosphor-Imager (Amersham Pharmacia, Freiburg).

Radioaktive Markierung der DNA-Sonden für RFLP: 100 ng der Sonden-DNA wurden mit 30 μ Ci [α -³²P]dCTP wie bei Feinberg und Vogelstein (1983, 1984) in einem Gesamtvolumen von 20 μ l mittels *Random Priming* markiert und die markierte Sonde mit dem Nucleotide Removal Kit (Qiagen, Hilden) nach Herstellerangaben aufgereinigt. Das PCR-Produkt zur Herstellung der *St*332-Sonde wurde mit den Primern 332/334s und 332/334as von der klonierten *St*332-Sequenz (GenBank *Accession* U60080) generiert.

2.15 Kartoffeltransformation via Agrobacterium

Zurechtgeschnittene Blattstücke von *S. tuberosum* cv. Désirée wurden in MS-Medium (Murashige und Skoog, 1962) wie beschrieben (Rocha-Sosa *et al.*, 1998) entweder mit dem *Agrobacterium* Stamm LBA4404 oder dem Stamm COR308 transformiert. Regeneration transgener Kalli erfolgte auf Medium mit 50 mg/l Kanamycin und 250 mg/l Claforan.

2.16 Kartoffeltransformation via Genkanone (Particle Bombardment)

Die Transformation ganzer Blätter von *S. tuberosum* cv. Désirée wurde an der Genkanone Biolistic PDS-1000/He (BIO-RAD, USA) nach Wan und Lemaux (1994) vorgenommen. Hierzu wurden Goldpartikel (Heraeus, Schweiz) mit einer Größe von 0.4-1.2 µm mit 1 µg DNA ummantelt (nach Daines, 1990) und unter einem Druck von 1100 p.s.i. im Vakuum (27 inch Hg) auf die Kartoffelblätter geschossen. Transgene Kalli wurden auf MS-Medium (s.o.) mit 50 mg/l Kanamycin regeneriert.

2.17 Standard-PCR

PCR-Reaktionen wurden in einem Volumen von 25 μ l mit dem T3 Thermocycler (Biometra, Göttingen) oder dem PTC-225 Tetrad (MJ Research, Waltham, MA, USA) durchgeführt. Zutaten pro 25 μ l Ansatz mit Stammkonzentrationen der Ausgangslösungen: 0.25 μ l BSA (100x), 0.1 μ l Primer A (100 pmol/ μ l), 0.1 μ l Primer B (100 pmol/ μ l), 0.1 μ l Taq-DNA-Polymerase (5U/ μ l), 0.7 μ l MgCl₂ (50 mM), 0.5 μ l DMSO, 0.5 μ l dNTPs (10mM), 2.5 μ l Puffer (10x), 1 μ l DNA-Probe (Kolonie oder DNA-Lösung) und 19.25 μ l dH₂O.

DNA-Amplifikationsprogramm:

- 1 Zyklus $94^{\circ}C, 4 \min$
- 40 Zyklen 92°C, 1 min 58°C*, 1 min 72°C, X min
- 1 Zyklus 72° C, 10 min

X: pro kb zu amplifizierender Sequenz wurde 1 min für die Polymerisation berechnet. *Für die Kolonie-PCR wurde die *Annealing*temperatur auf 55°C herabgesetzt.

2.18 cDNA-Synthese, RACE- und RT-PCR

1 μg Gesamt-RNA wurde jeweils für die Erststrangsynthese eingesetzt. Für 3'-RACE und RT-PCR Experimente wurde die Erststrangsynthese mit dem SMART RACE cDNA Amplification Kit (Clontech, Heidelberg) durchgeführt.

Die RT-PCR wurde mit der Advantage 2 Polymerase von Clontech nach dem Protokoll, das dem SMART RACE cDNA Amplification Kit beigefügt ist, durchgeführt. Die genspezifischen Primer wurden so gewählt, daß sie mindestens eine *Annealing*temperatur von 68°C hatten. Folgendes Programm wurde für die RT-PCR mit dem GeneAmp PCR System 9700 *Thermocycler* (Perkin Elmer, Rodgau-Jügesheim) ausgeführt:

■ 5 Zyklen	94°C, 5 s	72°C, X min	
■ 5 Zyklen	94°C, 5 s	70°C, 10 s	72°C, X min
■ 25 Zyklen	94°C, 5 s	68°C, 10 s	72°C, X min

X: pro kb zu amplifizierender Sequenz wurde 1 min für die Polymerisation berechnet.

2.19 Klonierung und Sequenzierung von PCR-Produkten

PCR-Produkte wurden entweder direkt mit dem QIAquick PCR Purification Kit (Qiagen, Hilden) aufgereinigt, oder über ein Agarosegel aufgetrennt und mit dem QIAquick Gel Extraction Kit (Qiagen, Hilden) isoliert. Zur Klonierung wurde das pGEM-T-Vektor System (Promega, Madison, USA) nach Herstellerangaben eingesetzt. Selektion der transformierten DH10B Zellen erfolgte mit 100 mg/l Ampicillin.

Sequenzierung erfolgte entweder direkt von den gereinigten PCR-Produkten oder nach der Klonierung.

2.20 Screening der BAC-Bibliothek und Herstellung der Kontigs in der Gro1 Region

Screening der BAC-Bibliothek durch Hybridisierung: Bakterien der Klone aus den Mikrotiterplatten wurden mit dem BioGRID Roboter (Oxford, UK) auf Hybond-NX Membranen (Amersham Pharmacia, UK) übertragen. Die Bakterien-Proben wurden in einem dichten 5x5 Muster auf den Membranen abgelegt (Macroarray). Zur genauen Identifikation wurde jede Bakterien-Probe zweimal abgelegt (Abb.2-3).

Abb.2-3: Die Nylonmembran hat eine Größe von 22.5 x 22.5 cm. Wird sie mit einer Dioxygenin-markierten DNA-Sonde hybridisiert, erscheinen positive Klone nach der Filmentwicklung als Doppelpunkte (a). In jedes Feld der Membran (b) können zwölf Mikrotiterplatten gespottet werden. Jeder Klon wird in einem bestimmten Winkel zweimal gespottet, so daß die Klone aus gleichen Postionen der zwölf verschiedenen Mikrotiter-Platten im 5x5 Spotting-Muster (c) voneinander zu unterscheiden sind.

Nach dem *Spotten* wurden die Membranen auf LB-Medium bei 37°C 15 h inkubiert und die DNA nach alkalischer Lyse wie für die Standard-Koloniehybridisierung beschrieben (Sambrook *et al.*, 1989) auf den Membranen fixiert. Die Herstellung der Sonden unter Verwendung von Dioxigenin mittles PCR und die Hybridisierung der Membranen erfolgte mit dem PCR ELISA DIG-Labeling, DIG-Detection System (Roche, Mannheim) nach Herstellerangaben. Zur Visualisierung wurden Röntgenfilme der Firma Kodak

(USA) eingesetzt. Von den positiven Klonen aus der Hybridisierung mit der St332-Sonde wurde DNA isoliert und über RFLP-Analyse (TagI-Verdau) bestimmt, welche TaqI-Fragmente in den einzelnen BAC-Klonen enthalten waren. Zur Assemblierung der Teilkontigs wurden BAC-Klone ansequenziert, Primer zu den Endsequenzen abgeleitet und durch Standard-PCR überprüft, mit welchen weiteren bereits gescreenten Klonen dieser BAC-Klon überlappt. Überlappung wurde durch Sequenzierung der PCR-Produkte und Sequenzidentität festgestellt. Für das Chromosome Walking, ausgehend von den mit der St332-Sonde isolierten und in Teilkontigs angeordneten BACs, wurden Dioxigeninmarkierte PCR-Produkte mit Primern zu den distalen Enden der Kontigs hergestellt und als Sonde für die Hybridisierung der Bibliothek wie oben beschrieben eingesetzt. Mit den Sonden-Primern wurden PCR-Produkte (Kolonie PCR) von den positiven Klonen generiert und sequenziert. Bei Sequenzidentität wurde DNA des entsprechenden BAC-Klons isoliert und die Enden ansequenziert. Durch PCR mit den Primern zu den neu sequenzierten Enden und Sequenzierung der PCR-Produkte (umgekehrt wurden auch die Primerkombinationen der anderen Konti-BACs auf dem neuisolierten BAC getestet und Produkte sequenziert) wurde die Lage des Klons im Kontig genau bestimmt und das freistehende Ende für die Isolierung weiterer Klone aus der Bibliothek eingesetzt.

Screening der BAC-Bibliothek durch PCR: Da einige Sonden repetitiv sind, und zu viele Klone mit dieser Sonde hybridisierten, als daß sie noch effektiv weiteruntersucht werden konnten, wurden alle Klone aus jeweils drei Mikrotiterplatten gepoolt und aus diesem Klon-Gemisch DNA isoliert. Insgesamt war die Bibliothek damit in 88 BAC-Pools repräsentiert. Diese Pools wurden mittels PCR mit spezifischen Primern untersucht und PCR-Produkte aus positiven Pools sequenziert. Bei Sequenzidentität wurden die Klone der entsprechenden Mikrotiterplatten wie oben gespottet und durch Hybridisierung der positive Klon identifiziert.

Bestimmung von *Insert***größen:** Aus der Bibliothek isolierte BAC-Klone, BAC-Subklone und Lambda-Klone wurden mit *Not*I geschnitten und der Verdau zur Größenbestimmung der *Inserts* wie unter 2.21 beschrieben durch Pulsfeldgelelektrophorese aufgetrennt. In den Lambda-Klonen schneidet *Not*I direkt neben dem *Insert*. Das *Insert* aus dem pCLD04541-Vektor enthält hingegen noch etwa 5 kb Vektorsequenz.

2.21 Subklonierung von Genen zur Sequenzierung und für die Pflanzentransformation / Bestimmung von *Insert*größen.

Subklonierung in den pCLD04541-Vektor: 500 ng BAC-DNA wurden mit 0.2, 0.6, 1, 1.4, 1.8 und 2.2 U *Tsp509*I 5 min bei 65°C partiell verdaut und nach Größe aufgetrennt. Bei Subklonierung von Fragmenten bis zu 12 kb erfolgte die Auftrennung durch Standard-Gelelektrophorese in 0.8 % *Low Melting Point* Agarose (Sea Plaque GTG Agarose, Bioproducts, Rockland, Maine, USA). Bei Subklonierung von größeren Fragmenten wurde der Verdau auf ein 1%iges *Low Melting Point* Agarose-Gel aufgetragen und mit dem CHEF-DR III Pulsfeldgelelektrophorese-System (BIO-RAD Laboratories, Hercules, USA) aufgetrennt. Bedingungen: 5 s *initial time*, 15 s *final time*, 24 h *runtime*, 6 *Volts per cm*, 120° *included angle*. Die gewünschten DNA-Fragmente wurden mit dem GELase System (Epicentre Technologies, Madison, USA) aus dem Gel isoliert und in den pCLD04541-Vektor, der zuvor mit *Eco*RI linearisiert und mit Shrimp Alkaliner Phosphatase (Roche, Mannheim) dephosophoryliert worden war, ligiert (nach Standardprotokollen)

Die Subklonierung des Gens mit *Taq*I-Fragment 2 erfolgte durch vollständigen Verdau von BAC-DNA mit *Bam*HI nach Standardprotokoll. Auftrennung der Fragmente erfolgte wie oben über Pulsfeldgelelektrophorese. Das entsprechende Fragment wurde in den *Bam*HI linearisierten und dephosphorylierten pCLD04541-Vektor ligiert.

Subklonierung aus Lambda-Klonen erfolgte durch vollständigen Verdau der Lambda-DNA mit *Not*I und Ligation der genomischen DNA aus Kartoffel in den BIBAC2-Vektor (Vektor wurde zuvor mit *Not*I geschnitten und dephosphoryliert).

Selektion von positiven Klonen: Ligationsansätze wurden in *E.coli* DH10B Zellen transformiert und BAC-DNA nach dem *Colony Lifting* (Standardprotokoll) auf Hybond-N+ Membranen (Amersham Pharmacia, UK) fixiert. Positive Klone wurden durch Hybridisierung mit radioaktiv markierten PCR-Produkten detektiert. Für die Sonde zur Isolierung von Klonen mit Homologen der *St*332/334-Genfamilie wurde das *St*332 PCR-Produkt mit den Primern 332/334s und 332/334as von der klonierten *St*332 Sequenz (GenBank *Accession* U60080) generiert. Im Falle der Rezeptor-ähnlichen Kinase *StRLK1* wurde das zu markierende PCR-Produkt mit den Primern 98T7f und 98T7r von BAC 25J5 generiert (Markierung der Sonden und Hybridisierung s. 2.14). Positive

pCLD04541-Subklone mit Fragmenten aus dem partiellen Verdau mit *Tsp509*I wurden durch Kolonie-PCR auf die Lage des Gens untersucht. In der PCR wurden jeweils der T3 oder der T7 Primer (aus der Vektorsequenz, auf beiden Seiten direkt neben dem Insert) in Kombination mit einem der Primer 332/334s, 332/334as bzw. 98T7f und 98T7r zur Amplifikation eingesetzt. Mit einer Polymerisationszeit von 2 min und 30 sec konnten Produkte von bis zu 4 kb synthetisiert werden. Von ausgesuchten Klonen wurde DNA präpariert. Zur weiteren Untersuchung wurde DNA des Subklons und DNA des Klons, von dem das subklonierte Fragment ursprünglich stammte, mit verschiedenen 6-*Cuttern* geschnitten und die Fragment-Leitern verglichen.

*Insert*größen wurden wie unter 2.20 beschrieben bestimmt. Die Sequenz aller Subklone wurde durch *Primer Walking* und im Falle der Gene mit den *Taq*I-Fragmenten 2, 5 und 11 durch Gesamtsequenzierung von BAC98P9 ermittelt.

3. Ergebnisse

3.1 Identifizierung und Charakterisierung von BAC- und Lambda-Klonen, die mit dem klonierten, NBS-kodierenden PCR-Produkt *St*332 hybridisieren.

Die PCR-Produkte St332 und St334 aus der Kartoffel sind untereinander auf Nukleotidebene 95% indentisch und kodieren, wie andere bereits charakterisierte Resistenzgene eine NBS(Nucleotide Binding Site)-Domäne (Leister et al., 1996). Wird genomische DNA der Kartoffellinien P40, P18, P41 und P6/210 mit dem Restriktionsenzym TaqI verdaut und mit radioaktiv markiertem St332 PCR-Produkt als Sonde hybridisiert, so läßt sich eine Genfamilie mit einem Bandenmuster von 18 Fragmenten unterschiedlicher Größe detektieren (Abb.3-1, St332/334-Genfamilie). Die meisten dieser Fragmente kosegregieren mit der Resistenz gegen Globodera rostochiensis Pathotyp Ro1 und kartieren auf Chromosom VII (Leister et al., 1996). Gene der St332/334-Genfamilie sind aufgrund von homologen Datenbanksequenzen, die in ihrer Funktion bereits charakterisiert sind, mögliche Kandidaten für das Grol Zur Resistenzgen. Charakterisierung dieser Gene und anschließenden Komplementationsanalyse wurden in dieser Arbeit genomische BAC-Klone isoliert, die mit der St332-Sonde hybridisieren. Die St332/334-Genfamilie muß aber nicht notwendigerweise das Resistenzgen beinhalten. Die isolierten BAC-Klone dienen daher auch als Landungspunkt (Chromosome Landing) für die Erstellung eins Kontigs über die ganze Gro1 Region.

Zur Klonierung des *Gro1* Resistenzgens wurde aus der Linie P6/210 von Dr. Cristina Menéndez bereits eine Lambda-Bibliothek (Lambda-DASH-II-Vektor, Stratagene, genomische DNA partiell mit *Mbo*I verdaut) hergestellt und mit der *St*332-Sonde hybridisiert. Die BAC-Bibliothek aus P6/210 wurde in dieser Arbeit mit der *St*332-Sonde hybridisiert. Von den positiven Lambda- und BAC-Klonen, sowie von der Kartoffellinie P6/210 wurde DNA isoliert, mit dem Restriktionsenzym *Taq*I verdaut und auf einem 4%igen Polyacrylamidgel aufgetrennt. Durch Southern-Gel-Blot-Analyse mit der *St*332-Sonde (Abb.3-2) konnten die hybridisierenden Fragmente der einzelnen Subklone

Abb.3-1: Southern-Gel-Blot-Analyse. TagIverdaute genomische DNA aus verschiedenen Kartoffellinien nach Hybridisierung mit der St332-Sonde. Die Grol Kartierungspopulation entstand aus der Kreuzung P18 (anfällig) x P40 (resistent). Aus der Kartierungspopulation ist die resistente Rekombinante R458 die einzige, die ein Rekombinationsereignis im St332/334-Gencluster enthält, und der folglich einige hybridisierende TagI-Restriktionsfragmente fehlen. Désirée ist eine anfällige Kartoffellinie und wird zur Komplementationsanalyse eingesetzt. Es wird angenommen, daß die Grol Resistenzregion aus der Wildform Solanum spegazzinii eingekreuzt worden ist. Vier Linien dieser Wildform sind gezeigt, S. spegazzinii 12 und 87 scheinen identisch zu sein. Im Bereich der TaqI-Fragmente 6 bis 9 sind Doppelbanden-Artefakte zu erkennen. Abb.3-1 und Abb.3-2 entstammen dem selben RFLP-Gel mit gleichen Laufbedingungen. In Abb.3-2 sind bei P6/210 diese Doppelbanden-Artefakte nicht vorhanden und können zum Vergleich herangezogen werden. Es sind nur die TagI-Fragmente nummeriert, die zur Kartierung der Grol Region und zur Klonierung des Grol Resistenzgens von Bedeutung sind.

	1	2	3	4	5	6	7	8b	8	9	10	11	12	12b	13	14	15	16	17	18
P40	-	+	+	+	+	+	-	+	+	-	+	+	-	-	-	+	-	+	-	-
P18	+	-	+	-	-	-	+	-	-	+	+	+	+	-	+	-	+	+	+	+
P41	+	+	+	+	-	-	+	-	-	+	+	+	+	+	+	+	+	+	-	-
P6/210	+	+	+	+	+	+	+	-	+	+	+	+	+	-	+	+	+	+	-	-
R458	-	+	-	+	+	-	+	+	-	-	-	+	-	-	+	+	-	+	+	+
Désirée	(+)	-	+	-	-	-	+	?	+	+	+	+	+	-	+	-	+	+	+	+
Speg.12	-	+	-	+	-	+	-	-	-	+	+	+	-	-	1	+	-	+	+	+
Speg.14	-	-	+	-	+	+	-	-	+	-	-	-	-	-	-	-	-	+	-	-
Speg.15	-	+	-	-	-	-	-	-	-	-	-	-	-	-	+	-	+	+	-	-

Tab.3-1: Tabellarische Zusammenfassung aus Abb.3-1. Bei Uneindeutigkeit wurden frühere Gele herangezogen.

Abb.3-2: Southern-Gel-Blot-Analyse: *TaqI*-verdaute DNA der Linie P6/210 und der BAC- und Lambda-Klone nach der Hybridisierung mit der *St332*-Sonde. Die Subklone enthalten ein bis drei Mitglieder der *St332/334*-Genfamilie. Allgemein laufen die *TaqI*-Restriktionsfragmente der genomischen Subklone etwas langsamer im Gel als die entsprechenden *TaqI*-Restriktionsfragmente der genomischen DNA der Linie P6/210.

den *Taq*I-Restriktionsfragmenten aus der Linie P6/210 zugeordnet werden (Tab.3-2). In die RFLP-Analyse wurden auch verschiedene *Solanum spegazzinii* Linien einbezogen (Abb.3-1, Tab.3-1), da angenommen wird, daß die eingekreuzte *Gro1* Region auf Chromosom VII ursprünglich aus dieser Wildkartoffelart stammt (Ross, 1962).
genomisches <i>Taq</i> I-Fragment #	P6/210 resistent (P41 x P40)	P40 resistent	enthalten in Lambda- Klon #	enthalten in BAC- Klon #
1	+	_	79, 94 [*]	107K18
2	+	+	74, 48*	60B11, 7805, 98P9, 260K12, 261J14
3	+	+	10, 110	10N22, <mark>34L19</mark> , 70K20, 81L19
4	+	+	_	26N18 , 60L16, 73N5
5	+	+	65, 113	60B11, 98P9, 260K12
6	+	+		49J20, 115B4
7	+	—		34L19, 53o21
8	+	+	36	62C17, 71o17, 78M21, 119F19,
9	+	_	_	_
10	+	+	107	107K18
11	+	+	75, 101	7805, 98P9, 261J14
12	+		33	_
13	+		50	4206, 87D4, 254K3,
14	+	+	98	26N18, 25J5
15	+	—	16	22K21, 248H17
16	+	+	-	106C14

Tabelle 3-2: Tabellarische Zusammenfassung der Screening Ergebnisse mit der St332-Sonde. Durch die Farbkodierung werden Klone hervorgehoben, die mehr als nur ein markiertes TaqI-Restriktionsfragment enthalten. Grau unterlegt sind die Fragmente, welche von der Linie P40 abstammen und mit Gro1 kosegregieren (zur Kartierung s. Leister *et al.*, 1996 und Kap.3.2). *: diese TaqI-Restriktionsfragmente sind Lambdaspezifisch, da die Klonierungsschnittstelle innerhalb des TaqI-Fragments liegt.

3.2 Kartierung der *Taq*I-Restriktionsfragmente 8 und 16

TaqI-Fragment 8 segregiert mit *Gro1*, Fragment 16 kartiert auf Chromosom IV: Zwei der *TaqI*-Restriktionsfragmente aus der Kartoffellinie P6/210, die vom resistenten, männlichen Elter P40 abstammen, konnten noch nicht kartiert werden. Es handelt sich um die *TaqI*-Fragmente 8 und 16. Sie liegen in der Linie P40 homozygot vor und segregieren in der F1-Kartierungspopulation P18xP40 (Gebhardt *et al.*, 1991, Leister *et al.*, 1996) nicht. Zur Kartierung dieser Fragmente wurden die *Inserts* von Lambda 36 (*Taq*I-Fragment 8) und BAC 106C14 (*Taq*I-Fragment 16) vom T3- und T7-Ende des Vektors her ansequenziert. Von diesen Sequenzen wurden Primer abgeleitet und PCR-Produkte generiert. Da die Primer allelspezifisch sind, spricht man hier speziell von

Abb.3-3: ASO-Marker zum T3-Ende des *Inserts* **von Lambda 36.** Das PCR-Produkt (Primer: 36T3f, 36T3r) ist physikalisch mit dem *Taq*I-Restriktionsfragment 8 auf Lambda 36 gekoppelt und segregiert mit den resistenten Rekombinanten (R162 bis R795) bzw. fehlt in den suszeptiblen Rekombinanten (S46 bis S1182) der Kartierungspopulation P18xP40. Das PCR-Produkt fehlt auch in der resistenten Rekombinanten R458, die als einzige im *St*332/334-Gencluster der *Gro1* Region rekombinant ist und auch das *Taq*I-Fragment 8 nicht enthält (siehe auch Abb.3-1).

einem ASO Marker (ASO: *Allele Specific Oligonucleotide*). Abbildung 3-3 zeigt, daß der ASO-Marker zum T3-Ende von Lambda 36 und somit auch das *Taq*I-Fragment 8 aus Lambda 36 mit dem *Gro1* Locus kosegregieren. Er ist in allen resistenten Rekombinanten um den *Gro1* Locus (außer R458, Erklärung siehe Abbildung) vorhanden und ist in den suszeptiblen Rekombinanten um den *Gro1* Locus abwesend. Obige Segregation wird beobachtet, weil der Marker im suszeptiblen Elter P18 der Kartierungspopulation P18xP40 nicht vorhanden ist und im resistenten Elter P40

heterozygot vorliegt. Die Lambda-Bibliothek wurde aus der Linie P6/210 hergestellt. Somit enthält auch P6/210 den Marker. Obwohl P41 das *Taq*I-Fragment 8 nicht enthält (Abb.3-1), ist der Marker doch vorhanden. Die Kartoffelsorte Désirée ist gegenüber *Globodera rostochiensis* suszeptibel und dient zur *Gro1*-Komplementationsanalyse. Sie enthält den ASO-Marker nicht.

Zum T7-Ende von BAC 106C14 konnte ein CAPS-Marker entwickelt werden (CAPS: *Cleaved Amplified Polymorphic Sequence*). Das PCR-Produkt konnte von allen untersuchten Genotypen generiert werden (Abb.3-4). Das Restriktionsenzym *AluI* schneidet eimal im 600 bp langen Produkt von BAC 106C14 (Abb.3-5). Es entstehen zwei Fragmente von 450 bp und 150 bp Länge. Das 450bp Fragment kommt im resistenten Elter P40 vor und fehlt im anfälligen Elter P18 der Kartierungspopulation P18xP40. Dieses Fragment segregiert unter den resistenten und suszeptiblen Rekombinanten der Kartierungspopulation uneinheitlich, ist also nicht mit *Gro1* gekoppelt. Weitere 93 Pflanzen der Kartierungspopulation P18xP40 wurden auf den CAPS-Marker zum T7-Ende von BAC 106C14 untersucht. Durch Kopplungsanalyse mit der vorhandenen RFLP-Karte wurde das T7-Ende von BAC 106C14 auf Chromosom IV zwischen die Marker *GP180(a)* und *GP511* (Marker siehe Leister *et al.*, 1996) kartiert. Auch das *Taq*I-Fragment 16 liegt somit auf Chromosom IV und scheidet als Kandidat für das *Gro1* Resistenzgen aus.

Abbildung 3-4: Das PCR-Produkt (~600bp) zum T7-Ende des *Inserts* von BAC 106C14 (Primer: 106C14T7f, 106C14T7r) läßt sich von allen genomischen DNA-Präparationen generieren. Vor dem Restriktionsverdau ist noch keine Segregation zu erkennen.

Abb.3-5: Mit dem Restriktionsenzym AluI verdaute PCR-Produkte aus Abb.3-4. Das größte Fragment des Fingerprints nach dem Verdau segregiert. Das Fragment ist allerdings nicht mit *Gro1* gekoppelt, da zwei resistente Rekombinanten (R559, R 878) das Fragment nicht enthalten und drei suszeptible Rekombinanten um den *Gro1* Locus (S701, S1089, S1182) das Fragment besitzen.

Da es möglich ist, daß in der Bibliothek chimäre BAC-Klone vorhanden sind, wurde auch ein Marker zum T3-Ende von BAC 106C14 entwickelt.

PCR-Produkte unterschiedlicher Größe wurden mit Primern zum T3-Ende von BAC 106C14 generiert (Abb.3-6). Das größte Produkt ist etwa 1.6 kb lang (DFLP: *Different Fragment Lenght Polymorphism*) und segregiert, da es in P18 nicht vorkommt und in P40 heterozygot vorliegt. Wie schon der CAPS-Marker zum T7-Ende von BAC 106C14, so segregiert auch dieser DFLP-Marker nicht mit *Gro1* und ist sowohl in einigen suszeptiblen (S701, S1089, S1182) als auch resistenten Rekombinanten (R162, R201, R736, R458) vorhanden. Auch mit diesem Marker wurden 93 Pflanzen der Kartierungspopulation P18xP40 untersucht. Das Ergebnis deckt sich mit der Kartierung

Abb.3-6: DFLP-Marker zum T3-Ende von BAC 106C14 (Primer: 106C14T3f, 106C14T3S2r). Das längste PCR-Fragment segregiert und ist nicht mit *Gro1* gekoppelt.

des T7-Endes. Das *Taq*I-Fragment 16 ist durch beide Marker flankiert und kartiert somit auf Chromosom IV zwischen die Marker *GP180(a)* und *GP511*.

Nach Ausschluß des *Taq*I-Fragments 16 durch Kartierung, der *Taq*I-Fragmente 1, 7, 9, 12, 12b, 13, 15 und 17 durch Fehlen im resistenten Elter P40 und der *Taq*I-Fragmente 8b und 10, die in der allelischen nicht resistenzvermittelden Region in P40 liegen, kommen noch acht *Taq*I-Fragmente (2, 3, 4, 5, 6, 8, 11, 14) als Kandidaten für das *Gro1* Resistenzgen in Frage (ohne Berücksichtigung der resistenten Rekombinante R458, die im *St*332/334-Gencluster rekombinant ist).

Einige der acht Fragmente aus P6/210 können sowohl von P40 als auch von P41 stammen. Jedoch ist nur von den *Taq*I-Fragmenten aus P40 durch die Kartierungspopulation P18xP40 bekannt, daß sie mit der Resistenz gegen *G. rostochiensis* segregieren. Im folgenden Kapitel werden alle acht Fragmente aus den entsprechenden Subklonen eindeutig zugeordnet.

3.3 Zuordnung der *Taq*I-Restriktionsfragmente 2, 3, 4, (10), 11 und 14 zu P40 oder P41.

Das Gen mit *Taq*I-Restriktionsfragment 2 aus der Linie P6/210 stammt von P40: Aus dem Sequenzvergleich von verschiedenen vollständig sequenzierten Genen, die jeweils eines der *Taq*I-Restriktionsfragmente enthalten (siehe Kapitel 9.2), wurden Primer abgeleitet, die spezifisch für das Gen mit *Taq*I-Fragment 2 sind. Obwohl beide Kartoffellinien das *Taq*I-Fragment 2 besitzen, kann mit diesen Primern DNA von P40, aber nicht von P41 amplifiziert werden (Abb.3-7). Alle getesteten Subklone sind positiv (auch 261J14, nicht gezeigt; Lambda 74 enthält zwar das *Taq*I-Fragment 2, das Gen ist aber am Lambda-Ende abgeschnitten und enthält nur eine Primerbindungsstelle).

Abb.3-7: ASO-Marker zu Gen mit *Taq***I-Restriktionsfragment 2.** PCR mit den genspezifischen Primern Frag2_P40spezf und Frag2_P40spezr.

P6/210 besitzt zwei Kopien des Gens mit *Taq***I-Restriktionsfragment 3. Eine Kopie stammt von der Linie P40, die andere von P41:** Die Zuordnung des *Taq*I-Fragments 3 gelang mit Primern, die von den Endsequenzen der Lambda-Klone 10 und 110 abgeleitet wurden. Die genomischen *Inserts* von Lambda 10, BAC 10N22 und BAC 70K20 stammen von P40 (Abb.3-8). Lambda 110, BAC 34L19 und BAC 81L19 stammen von P41 (Abb.3-9).

Abb.3-8: ASO-Marker, der mit *Taq*I-Restriktionsfragment 3 aus Lambda 10 gekoppelt ist. Primer: 10T3f, 10T3S2r.

Abb.3-9: ASO-Marker, der mit *Taq*I-Restriktionsfragment 3 aus Lambda 110 gekoppelt ist. Primer: 110T7f, 110T7r.

Die Gene mit den *Taq*I-Restriktionsfragmenten 4 und 14 in P6/210 stammen von P40: BAC 25J25 enthält *Taq*I-Fragment 14. Vom T3-Ende dieses BAC-Klons wurden die Primer 25J5revf und 25J5revS2r abgeleitet, die ein Fragment von etwa 1.6 kb amplifizieren. Der Sequenzvergleich (Abb.3-10) der PCR-Produkte, die von den genomischen Subklonen und den Kartoffellinien P40, P41 und P6/210 generiert und mit dem Primer 25J5revf sequenziert wurden, zeigt, daß die *Inserts* in BAC 25J5 und BAC 26N18 von P40 stammen.

		1				50	
BAC 25J5	25J5revf	TTCAAAGAAC	CCACAACCCC	CATAGAACCA	TGTTAGCCAC	CATGGGTAGA	
BAC 26N18	25J5revf	TTCAAAGAAC	CCACAACCCC	CATAGAACCA	TGTTAGCCAC	CATGGGTAGA	
P40	25J5revf	TTCAAAGAAC	CCACAACCCC	CATAGAACCA	TGTTAGCCAC	CATGGGTAGA	
P41	25J5revf	TTCAAAGAAC	CCACAGCCCC	CATAGAACCA	TGTTAGCCAC	CATGGGTAGA	
P6/210	25J5revf	TTCAAAGAAC	CCACAACCCC	CATAGAACCA	TGTTAGCCAC	CATGGGTAGA	
		51				100	
BAC 25J5	25J5revf	AAAGGATCAT	ACTTTTTAGA	TGAATCCTTT	TCAAATTAGA	CTAGTGGATC	
BAC 26N18	25J5revf	AAAGGATCAT	ACTTTTTAGA	TGAATCCTTT	TCAAATTAGA	CTAGTGGATC	
P40	25J5revf	AAAGGATCAT	ACTTTTTAGA	TGAATCCTTT	TCAAATTAGA	CTAGTGGATC	
P41	25J5revf	AAAGGATCAT	ACTTTTTAGA	TGAATCCTTT	TCA <mark>G</mark> ATTAGA	CTAGTGGATC	
P6/210	25J5revf	AAAGGATCAT	ACTTTTTAGA	TGAATCCTTT	TCAAATTAGA	CTAGTGGATC	

Abb. 3-10: Teilsequenz der PCR-Produkte, die mit Primern zum T3-Ende von BAC BAC 25J5 generiert wurden. An den rot gefärbten Positionen unterscheiden sich die Sequenzen von P40 und P41. Die Sequenzen der PCR-Produkte von P40, BAC 25J5 und BAC 26N18 sind identisch. BAC 26N18 enthält neben *TaqI*-Fragment 14 auch das *TaqI*-Fragment 4. PCR-Primer: 25J5revf, 25J5revS2r.

Das Gen mit *Taq***I-Restriktionsfragment 10 stammt von der Linie P41:** Wie im Falle des *Taq*I-Restriktionsfragments 2 konnten auch für die Gene mit den *Taq*I-Fragmenten 10 und 11 spezifische Primer aus dem Sequenzvergleich aller sequenzierten Mitglieder der *St*332/334-Genfamilie abgeleitet werden (Kapitel 9.2). Mit Primern, die spezifisch für das Gen mit *Taq*I-Fragment 10 sind, konnten PCR-Produkte von P41, dem BAC-Klon 107K18 und dem Lambda-Klon 107 generiert werden (Abb.3-11). Genomische DNA aus P40 ist mit den abgeleiteten Primern nicht amplifizierbar. Die Entwicklung eines Markers

für das Gen mit *Taq*I-Fragment 10 war wichtig, da die Kartierungsdaten, die zu Beginn dieser Arbeit für dieses Fragment aus P40 vorlagen, nicht ganz eindeutig waren. Mit dem ASO-Marker konnte nun gezeigt werden, daß das Gen mit *Taq*I-Fragment 10 in der genomischen Bibiliothek eindeutig von P41 stammt (in Kap.3.2 bereits vorausgesetzt).

Die Gene mit *Taq***I-Fragment 11 stammen von P40 und P41:** Aus dem Sequenzvergleich (Kapitel 9.2) wurden zwei Primerpaare abgeleitet, die für jeweils eines der beiden Gene mit *Taq*I-Fragment 11 spezifisch sind. Abbildung 3-12 zeigt, daß die Subklone Lambda 75, BAC 98P9 und BAC 7805 (auch BAC 261J14, nicht gezeigt), die nur eine der beiden Genkopien enthalten, von P40 stammen.

Abb.3-12: ASO-Marker zum Gen mit *Taq*I-Fragement 11 aus P40. Primer: Frag11 P40spezf, Frag11 P40spezr.

Das Gen mit *Taq*I-Fragment 11 aus Lambda 101 hingegen stammt aus P41. Die genspezifischen Primer zu diesem Gen (Frag11_P41spezf, Frag11_P41spezr) amplifizieren keine DNA von P40 und Lambda 75. Das PCR-Produkt läßt sich hingegen von P41, P6/210, P18, Désirée und Lambda 101 generieren (PCR-Daten nicht gezeigt).

3.4 Subklonierung von Genen aus der Gro1 Region

Zur Charakterisierung der genomischen Sequenzen bzw. zur Komplementationsanalyse wurden Gene aus der St332/334-Genfamilie und eine Rezeptor-ähnliche Kinase subkloniert. Je nach Subklonierungsstrategie (Verfügbarkeit von Restriktionsschnittstellen) wurden zwei verschiedene Pflanzentransformationsvektoren eingesetzt. Die von einer NotI-Restriktionsschnittstelle flankierten Inserts der Lambda-Klone wurden in die NotI-Schnittstelle des BIBAC2-Vektors (Kap.2.8, Abb.2-3) subkloniert. Zur Subklonierung von Genen aus den BAC-Klonen wurde ein partieller Verdau mit dem Restriktionsenzym Tsp509I angesetzt (Ausnahme: Gen mit TaqI-Fragment 2, BamHI). Das Enzym schneidet im A/T-reichen Genom der Kartoffel besonders häufig. Genomische Fragmente wurden dann in die kompatible Restriktionsschnittstelle des pCLD04541-Vektors (Kap.2.8, Abb.2-2) subkloniert. Mit Hilfe der Sequenzen von RACE-Produkten, die von Dr. Jost Muth zu den klonierten PCR-Produkten St332 und St334 generiert worden waren (unveröffentlicht), konnte von den Genen der St332/334-Genfamilie die benötigte Größe der genomischen Subklone abgeleitet werden; dazu wurden das längste 3'RACE-Produkt (3R27) und das längste 5'RACE-Produkt (5R08) herangezogen (RACE-Produkte siehe Kap.9.2). Die Subklone wurden so gewählt, daß möglichst 2 kb Sequenz upstream vom putativen Transkriptionsstart (St332/334-Familie) vorhanden war. Bei der Subklonierung von StRLK1 wurde das Insert so gewählt, daß mindestens 2kb Sequenz upstream vom Start-Codon im genomischen Klon enthalten war. Aus der St332/334-Genfamilie wurde das Gen mit TagI-Fragment 5 aus den Lambda-Klonen 65 und 113 in den BIBAC2-Vektor subkloniert. Da sich Transformationen der Kartoffelsorte Désirée mit dem BIBAC2-System als schwierig erwiesen, wurde das Gen mit TaqI-Restriktionsfragment 5 auch aus BAC 60B11 in den pCLD04541-Vektor subkloniert. Die Gene mit den TagI-Fragmenten 4 aus BAC 26N18 und 14 aus BAC 25J5 und die Rezeptor-ähnliche Kinase StRLK1 aus BAC 25J5 wurden wie oben beschrieben durch partiellen Verdau in den pCLD04541-Vektor subkloniert. Das Gen mit TaqI-Restriktionsfragment 2 wurde aus BAC 98P9 durch vollständigen Verdau mit BamHI in den Vektor pCLD04541 subkloniert. Informationen über die Lage der BamHI-Schnittstellen konnten aus der vollständigen Sequenz von BAC 98P9 abgeleitet werden.

ERGEBNISSE

Abb.3-13: Subklonierte Gene aus der *Gro1* Region. Die Abstandsangaben beziehen sich auf die Distanz zwischen *Insert*ende und Beginn des homologen Bereiches zu den RACE-Produkten 5R08 (kodiert die TIR-Domäne) und 3R27 (kodiert die LRR-Domäne). In Subklon b66a bricht das Gen mit *TaqI*-Fragment 14 in der Mitte der NBS-kodierenden Domäne ab. Im *StRLK1*-Subklon beziehen sich die Distanzangaben auf die Entfernung des Start- und des Stop-Codons zum *Insert*ende. 5'- und 3'-RACE-Produkte sind zu diesem Gen nicht generiert worden.

3.5 Sequenzanalyse der St332/334-Genfamilie

Die Gene mit den *Taq*I-Restriktionsfragmenten 3, 6, 8, 11 und 14 von der Linie P40 enthalten im NBS-kodierenden Sequenzbereich Stop-Mutationen.

Die Gene mit den *Taq*I-Restriktionsfragmenten 2 und 4 von der Linie P40 enthalten im ersten Intron Retroelement-Insertionen.

Es wurden alle Gene der *St*332/334-Genfamilie aus der Linie P6/210 sequenziert, die von der resistenten Linie P40 stammen. Die Gene mit den *Taq*I-Fragmenten 2, 5 und 11 sind im 100 kb großen, vollständig sequenzierten *Insert* von BAC 98P9 enthalten. Die übrigen Mitglieder der *St*332/334-Genfamilie wurden durch *Primer Walking* beginnend mit den Primern 332/334s und 332/334as aus folgenden Klonen sequenziert:

Gen mit *Taq*I-Fragment 4 aus dem pCLD04541-Subklon b07c (s. Abb.3-13, subkloniert aus BAC 26N18), *Taq*I-Fragment 3 aus Lambda 10, *Taq*I-Fragment 6 aus BAC 49J20, *Taq*I-Fragment 8 aus Lambda 36, *Taq*I-Fragment 14 aus pCLD04541-Subklon b66b (s. Abb.3-13, subkloniert aus BAC 25J5), *Taq*I-Fragment 16 aus BAC 106C14.

Zusätzlich wurden vier Gene aus P6/210 sequenziert, die von der Linie P41 stammen:

Gen mit *Taq*I-Fragment 1 aus Lambda 79, *Taq*I-Fragment 3 aus Lambda 110, *Taq*I-Fragment 10 aus Lambda 107 und *Taq*I-Fragment 11 aus Lambda 101.

Im Anhang (Kapitel 9.2) wird ein Sequenzvergleich der von P40 und P41 stammenden und sequenzierten Gene der *St*332/334-Genfamilie gezeigt. Abbildung 3-14 zeigt eine schematische Darstellung der Gene aus P40. Die Gene mit den *Taq*I-Fragmenten 2 bis 14 liegen in der *Gro1* Region von P40. Die Intron/Exon-Organisation wurde vom längsten 3'-RACE-Produkt (3R27) und vom längsten 5'-RACE-Produkt (5R08) abgeleitet (s. Kapitel 9.2). Die RACE-Produkte wurden auf Grundlage der klonierten PCR-Produkte *St*332 und *St*334 (NBS-kodierender Sequenzbereich) von Dr. Jost Muth generiert. Danach enthalten die Gene vier Exons. Exon I (~580bp) kodiert eine TIR(*Toll/Interleukin-1 Receptor*)-Domäne, Exon II (~1100bp) eine NBS(*Nucleotide Binding Site*)-Domäne und Exon III (~1340bp) eine LRR(*Leucine-Rich Repeat*)-Domäne. Exon IV (~480bp) konnte im Datenbankvergleich bzw. mit Hilfe des ProfileScan Servers keine putative Funktion zugeordnet werden. Die Längen der Introns II (~60bp) und III (~110bp) sind konserviert. Intron I ist in seiner Länge sehr heterogen. In die Gene mit den *Taq*I-Fragmenten 2 und 4

Abb.3-14: Die St332/334-Genfamilie – schematische Darstellung der genomischen Sequenzen. Gezeigt sind die Gene aus P6/210, die von P40 abstammen. Rote Punkte: Stop-Mutationen, graue Balken: Introns, TIR: *Toll/Interleukin-1 Receptor homology regions*, NBS: *Nucleotide Binding Site*, LRR: *Leucine-Rich Repeat Region*. RLK: etwa 1kb langes Sequenzstück, das zur Rezeptor-ähnlichen Kinase *StRLK1* homolog ist (allerdings in entgegengesetzter Richtung zur Transkription der TIR-NBS-LRR Gene). Die Nummerierung korrespondiert mit der Bezeichnung der *TaqI*-Fragmente.

sind Retroelemente in das erste Intron insertiert. Dadurch wird das erste Intron der Gene etwa 12kb bzw. 5.5kb groß. Schneidet man die Insertionen heraus, sind interessanterweise beide Introns gleich lang (867bp) !. Im Gen mit TaqI-Fragment 6 ist das erste Intron nur etwa 400bp lang, im Gen mit TaqI-Fragment 5 mißt es ungefähr 880bp. Aufgrund der heterogenen Länge wurde Intron I nicht in den Vergleich aller sequenzierten Gene (Kap.9.2) einbezogen. Die mit der St332-Sonde hybridisierenden Fragmente haben in diesem Intron an variierenden Positionen ihre TaqI-Schnittstelle. Dadurch entsteht die Fragmentleiter in der RFLP-Analyse (Kap.3.1, Abb.3-1 und Abb.3-2), denn die zweite, im NBS-kodierenden Sequenzbereich liegende Schnittstelle, ist konserviert. Nach der Analyse der genomischen Sequenzen stellte sich heraus, daß die Gene mit den TagI-Fragmenten 3, 6, 8, 11 und 14 im NBS-kodierenden Bereich Stop-Mutationen enthalten (s. auch Kapitel 9.2). Diese Mutationen wurden durch Doppelstrangsequenzierungen von zwei verschiedenen Klonen bestätigt (für Gen mit TagI-Fragment 6 von einem Klon). In den LRR-kodierenden Sequenzbereich des Gens mit TagI-Fragment 14 ist zusätzlich ein Inverted Repeat Element insertiert. Dieses Gen besitzt auch nur eine Hälfte des NBS-kodierenden Sequenzbereichs. Upstream davon liegt in entgegengesetzter Richtung bezüglich der Transkriptionsrichtung auf dem DNA-Strang ein Sequenzstück, das homolog zu der Rezeptor-ähnlichen Kinase StRLK1 (Kap.3.9) ist. Es wurden die weiteren Sequenzunterschiede gefunden: Das Gen mit TagI-Fragment 5 enthält in Exon IV eine Deletion (s. auch Abb.3-15). Das Gen mit TaqI-Fragment 16 von Chromosom IV enthält zwar auch die TIR-, NBS- und LRRkodierenden Bereiche, unterscheidet sich aber bezüglich der Genstruktur von den Genen aus der Grol Region. Das Gen mit TagI-Fragment 4 enthält nach dem IV Exon eine Deletion im nicht-translatierten Bereich. Diese Deletion ist auch im 3'-RACE-Produkt 3R27 vorhanden (Kapitel 9.2).

Die für die *St*332/334-Genfamilie relevanten PCR-Produkte aus Dario Leisters Doktorarbeit (Leister, 1995) wurden mit den sequenzierten Genen verglichen (Sequenzvergleich nicht gezeigt). Das *St*332 PCR-Produkt (GenBank *Accession* U60080) konnte dem Gen mit *Taq*I-Fragment 1 aus P41 und *St*334B dem Gen mit *Taq*I-Fragment 10 aus P41 zugeordnet werden (100% identisch). Die PCR-Produkte *St*334 (GenBank

Frag_5 5R08_3R27 Frag-2 Frag-4 Frag_5 5R08_3R27 Frag-2 Frag-4 Frag_5 5R08_3R27	631 631 558 701 701 701 628	MNLSHSQKLIRTPDFSVTPNLERLVLEECTSLVEINFSIENLGKLVLLNLKNCRNLKTLPKRIRLEKLEI MNLSHSQKLIRTPDFSVTPNLERLVLEECTSLVEINFSIGDLGKLVLLNLKNCRNLKTLPKRIRLEKLEI MNLSHSQKLIRTPDFSVTPNLERLVLEECTSLVEINFSIGDLGKLVLLNLKNCRNLKTLPKRIRLEKLEV MNLSHSQKLIRTPDFSVTPNLERLVLEECTSLVEINFSIGDLGKLVLLNLKNCRNLKTLPKRIRLEKLEI
Frag_5 5R08_3R27 Frag-2 Frag-4 Frag_5 5R08_3R27	631 631 631 558	MNLSHSQKLIRTPDFSVTPNLERLVLEECTSLVEINFSIENLGKLVLLNLKNCRNLKTLPKRIRLEKLEI MNLSHSQKLIRTPDFSVTPNLERLVLEECTSLVEINFSIENLGKLVLLNLKNCRNLKTLPKRIRLEKLEI MNLSHSQKLIRMPDFSVTPNLERLVLEECTSLVEINFSIGDLGKLVLLNLKNCRNLKTIPKRIRLEKLEI MNLSHSQKLIRTPDFSVTPNLERLVLEECTSLVEINFSIENLGKLVLLNLKNCRNLKTLPKRIRLEKLEI
Frag_5 5R08_3R27 Frag-2	631	MNLSHSQKLIRTPDFSVTPNLERLVLEECTSLVEINFSIENLGKLVLLNLKNCRNLKTLPKRIRLEKLEI
Frag_5	400	VPVL PVL VIVPI & CÅGE EL DE DE DVM DD MUG I E SVO DE MOL VODČI A GDVDVOVSKI I Å DMVI SVDPQVPVI
Frag-2 Frag-4	561 561 561	RLRFLKFRNAYVCQGPEFLPDELRWLDWHGYPSKSLPNSFKGDQLVGLKLKKSRIIQLWKTSKDLGKLKY RLRFLKFRNAYVCQGPEFLPDELRWLDWHGYPSKSLPNSFKGDQLVGLKLKKSRIIQLWKTSKDLGKLKY SLRFLKFRNAYVYQGPEFLPDELRWLDWHGYPSKNLPNSFKGDQLVSLKLKKSRIIQLWKTSKDLGKLKY PLPELKFRNAYVCQGPEFLDDELRWLDWHGYPSKALPNSFKGDQLVGLVLKKSRIIQLWKTSKDLGKLKY
Frag-2 Frag-4 Frag_5 5R08_3R27	491 491 491 418	IHQLIQDMGWHIVRREATDDPRMCSRLWKREDICPVLERNLGTDKNEGMSLHLTNEEEVNFGGKAFMQMT IHQLIQDMGWHIVRREATDDPRMCSRMWKREDICPVLERNLGTDKNEGMSLHLTNEEEVNFGGKAFMQMT IHQLIQEMGWHIVRREASYNPRICSRLWKREDICPVLEQNLCTDKIEGMSLHLTNEEEVNFGGKAFMQMT IHQLIQDMGWHIVRREATDDPRMCSRMWKREDICPVLERNLGTDKNEGMSLHLTNEEEVNFGGKAFMQMT
Frag-2 Frag-4 Frag_5 5R08_3R27	421 421 421 348	ENEILKKLEQSFTGLHNTEQKIFLDIACFFSGKKKDSVTRILESFHFCPVIGIKVLMEKCLITILQGRIT ENEILKKLEQSFTGLHNTEQKIFLDIACFFSGKKKDSVTRILESFHFCPVIGIKVLMEKCLITILQGRIT QNEILKKLEPSFTGLNNIEQKIFLDIACFFSGKKKDSVTRILESFHFSPVIGIKVLMEKCLITILKGRIT ENEILKKLEQSFTGLHNTEQKIFLDIACFFSGKKKDSVTRILESFHFCPVIGIKVLMEKCLITILQGRIT
Frag-2 Frag-4 Frag_5 5R08_3R27	351 351 351 278	KTLNNYESLQLFKQHAFKKNRPTKEFEDLSAQVIKHTD GLPLAL KVLGSFLYGRGLDEWISEVERLKQIP KTLNNYESLQLFKQHAFKKNRPTKEFEDLSAQVIKHTD GLPLAL KVLGSFLYGRGLDEWISEVERLKQIP GTLDKYESLQLFKQHAFKKNHSTKEFEDLSAQVIEHTGGLPLALKVLGSFLYGRGLDEWISEVERLKQIP KTLNNYESLQLFKQHAFKKNRPTKEFEDLSAQVIKHTDGLPLALKVLGSFLYGRGLDEWISEVERLKQIP
		Kinase 2 Kinase 3a
Frag-2 Frag-4 Frag_5 5R08_3R27	281 281 281 261	INNSFEGANMQKQ RLQYKKVLLVLDD VDHIDQLNALAGEREWF GDGSRIIITT KDKHLLVKYETEKIYRM INDSFEGANMQKQ RLQYKKVLLVLDD VDHIDQLNALAGEREWF GDGSRIIITT KDKHLLVKYETEKIYRM INDSFEGANMQKQ RLQYKKVLLVLDD VDHIDQLNALAGEREWF GDGSRIIITT KDKHLLVKYETEKIYRM
_		Kinase 1a, <i>P-loop motif</i>
Frag-2 Frag-4 Frag_5 5R08_3R27	211 211 211 211	IGSGGVHFLGIL GMSGVGKTT LARVIYDNIRSQFQGACFLHEVRDRSAKQGLERLQEILLSEILVVKKLR IGSGGVHFLGIL GMSGVGKTT LARVIYDNIRSQFQGACFLHEVRDRSAKQGLERLQEILLSEILVVKKLR IGSGGVRFLGIL GMSGVGKTT LARVIYDNIQSQFEGACFLHEVRDRSAKQGLEHLQEILLSEILVVKKLR IGSGGVHFLGIL GMSGVGKTT LARVIHDNIRSQFQGACFLHEVRDRSAKQ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Frag-2 Frag-4 Frag_5 5R08_3R27	141 141 141 141	KVQKWRAALEEAANISGMDLPNTSNGHEARVMEKIAEDIMARLGSQKHASNARNLVGMESHMLKVYKMLG KVQKWRAALEEAANISGWDLPNTANGHEARVMEKIAEDIMARLGSQRHASNARNLVGMESHMHKVYKMLG KVKKWRAALEEAANISGWDLPNTSNGHEARVIEKITEDIMVRLGSQRHASNARNVVGMESHMHQVYKMLG KVQKWRAALEEAANISGWDLPNTANGHEARVMEKIAEDIMARLGSQRHANNARNLVGMESHTHKVYKMLG
Ewer 2	7 4 1	TIR (Toll/Interleukin-1 Rezeptor homologe) - Domäne
Frag-2 Frag-4 Frag_5 5R08_3R27	71 71 71 71	ESRIALIIFSKNYANSTWCLDELTKIMECKNVKGQIVVPVFYDVDPSTVRKQKSIFGEAFSKHEARFQED ESRIALIIFSKNYANSTWCLDELTKIMECKNVKGQIVVPVFYDVDPSTVRKQKSIFGEAFSKHEARFQED ESRIALIIFSKNYANSTWCLDELTKIIECKNVKGQIVVPVFYDVDPSTVRRQKNIFGEAFSKHEARFEED ESRIALIIFSKNYANSTWCLDELTKIMECKNVKGQIVVPVFYDVDPSTVRRQKSIFGEAFSKHEARFQED
Deep co. O	1	MNQESSLLPSPDIIQWSYDVFLSFRGEDVRKTFVDHLHLALEQKCINTFKDDEKLEKGKFISPELVSSIE
5R08_3R27	1	MNQESSLLPSPEIIRWSYDVFLSFRGENVRKTFVDHLYLALEQKCINTFKDDEKLEKGKFISPELMSSIE

Frag-2	771	TLDVSGCSKLKNLPDDLGLLVGLEKLHCTHTAIHTIPSSMSLLKNLKRLSLRGCNALSSQVSSSSHGQKS
Frag-4	771	TLDVSGCSKLKNLPDDLGLLVGLEELHCTHTAIQTIPSSMSLLKNLKHLSLSGCNALSSQVSSSSHGQKS
Frag_5	771	TLDVSGCSKLKNLPDDLGLLVGIEKLHCTHTAIQTIPSSMSLLKNLKHLSLSGCNALSSQVSSSSHGQKS
5R08_3R27	698	TLDVSGCSKLKNLPDDLGLLVGLEELHCTHTAIQTIPSSMSLLKNLRHLSLSGCNALSSQVSSSSHGQKS
		LRR (Leucine-Rich Repeat) - Domäne
Frag-2 Frag-4 Frag_5 5R08_3R27	841 841 841 768	MGVNF.QNLSGLCSLIRLDLSDCDISDGGILRNLGFLSSLKVLLLDGNNFSNIPAASISRLTRLKSLALR MGVNF.QNLSGLCSLIMLDLSDCNISDGGILNNLGFLSSLEILILNGNNFSNIPAASISRFTRLKRLKLH MGINFFQNLSGLCSLIKLDLSDCNISDGGILSNLGLLPSLKVLILDGNNFSNIPAASISRLTRLKCLALH MGVNF.QNLSGLCSLIMLDLSDCNISDGGILNNLGFLSSLEILILNGNNFSNIPAASISRFTRLKRLKLH C====================================
Frag-2	910	GCGRLESLPELPPSITGIYAHDCTSLMSIDQLTKYPMLSDVSFRNCHQLVKNKQHTSMVDSLLKQMLEAL
Frag-4	910	GCGRLESLPELPPSIKGIFANECTSLMSIDQLTKYPMLSDATFRNCRQLVKNKQHTSMVDSLLKQMLEAL
Frag_5	911	GCTSLEILPKLPPSIKGIYANESTSLMGFDQLTEFPMLSEVSLAKCHQLVKNKLHTSMADLLLKEMLEAL
5R08_3R27	837	GCGRLESLPELPPSIKGIFANECTSLMSIDQLTKYPMLSDATFRNCRQLVKNKQHTSMVDSLLKQMLEAL
Frag-2	980	YMNVRFGLYVPGMEIPEWFTYKSWGTQSMSVVLPTNWFTPTFRGFTVCVLFDKWMPMILGPFNLHKVYGL
Frag-4	980	YMNVRFCLYVPGMEIPEWFTYKSWGTQSMSVALPTNWFTPTFRGFTVCVILDKKMLFILGRFNTHKVYGL
Frag_5	981	YMNFRFCLYVPGMEIPEWFTYKNWGTESISVALPTNWFTPTFRGFTVCVVLDKRIPFILGPFNIHIVHGL
5R08_3R27	907	YMNVRFCLYVPGMEIPEWFTYKSWGTQSTSVALPTNWFTPTFRGFTVCVILDKKMLFILGRFNTHKVYGL
Frag-2	1050	KNMIWLNLKRYDGLRQKISTSFGPIGSEKPGGLGNTLITHVAFGSSWQLEDDLDYYRNNAFQLEFSACDH
Frag-4	1050	ENMIWLNLKRYDGLRQKISTSFGPIGSEKPGGLGDTLITHIAFERSWKLENDLDYYRNNAFQLEFSACDH
Frag_5	1051	KISTSFGPIGSENPGGLGNTLITHVPFGSHWQLEDDLDYSCNNAFQLEFSACDH
5R08_3R27	977	ENMIWLNLKRYDGLRQKISTSFGPIGSEKPGGLGDTLITHIAFERSWKLENDLDYYRNNAFQLEFSACDH
Frag-2	1120	YQKDMVKGLGVRLVYEN*
Frag-4	1120	YQKDVVKGLGVRLVYEN*
Frag_5	1105	YQKDMVKGLGVRLVYEN*
5R08_3R27	1047	YQKDVVKGLGVRLVYEN*

Abb.3-15a: Putative Aminosäuresequenzen (ohne Signalpeptid) der drei Kandidaten für das *Gro1* Resistenzgen aus der Linie P40.

Frag-2	1*FPLLFQLVLLSCRQIKTIIAKMNQESSLLPSPEIIRWSYDVFLSFRGEDVRKTFVDHLYLA
Frag-4	1 MQVAVNIITNFLFHFLVLLSCRPVIVKMNQESSLLPSPDIIRWSYDVFLSFRGEDVRKTFVDHLYLA
Frag_5	1 MQVAVNIITNFHFLVLLSCRQIKTIIAKMNQESSLLPSPEIIRWSYDVFLSFRGENVRKTFVDHLYLA
5R08	1 MQVAVNIITNFLFHFLVLLSCRPVIVKMNQESSLLPSPDIIQWSYDVFLSFRGEDVRKTFVDHLHLA
	Signalpeptid

Abb.3-15b: Putative Signalpeptide; direkt im Anschluß das erste für alle drei Kandidaten gemeinsame Methionin, mit dem auch obiges *Alignment* (Abb.3-15a) beginnt.

Accession U60081) und *St*334B sind bis auf einen Basenunterschied (jeweils eine andere Base) identisch mit dem Gen aus P41, welches das *Taq*I-Fragment 3 enthält. Als Kandidaten für das *Gro1* Resistenzgen bleiben nach Analyse der Nukleotidsequenz die Gene mit den Fragmenten 2, 4 und 5 aus P40. Die Retroelementinsertionen liegen im ersten Intron und müssen die Transkription und den Spleißvorgang nicht notwendigerweise verhindern.

Die Aminosäuresequenzen der für das *Gro1* **Resistenzgen in Frage kommenden Kandidaten sind untereinander hoch konserviert.** Abb.3-15 zeigt den Vergleich der putativen Aminosäuresequenzen der drei Kandidaten für das *Gro1* Resistenzgen. Die Aminosäuresequenzen der Gene mit den *Taq*I-Fragmenten 2 und 4 sind untereinander ~95 % identisch. Das Gen mit *Taq*I-Fragment 5 hingegen ist auf Aminosäuresehen nur ~90% identisch zu den beiden anderen Kandidaten. In der NBS-Domäne finden sich die drei Motive (Kinase1a, 2, 3a), die der ATP- und GTP-Bindung in verschiedenen Proteinen dienen (Saraste *et al.*, 1990, Walker *et al.*, 1982). Diese Motive sind auch in anderen Resistenzgenprodukten, wie N, RPP1-WsA und NL27 konserviert (Abb.3-16). Daneben ist das hydrophobe NBS-Motiv GLPLAL in den putativen Proteinsequenzen der *Gro1* Resistenzgenkandidaten, als auch im N Protein (s. Abb. 3.16) und im RPS2 Protein (Bent *et al.*, 1994), sowie anderen Resistenzgenprodukten (s. Abb. 3.16) konserviert. Degenerierte Primer, mit denen die PCR-Produkte *St*332 und *St*334 hergestellt wurden, waren vom Kinase 1a -Motiv und dem GLPLAL-Motiv von N und RPS2 abgeleitet worden.

Der Proteinsequenzvergleich in Abb.3-15a startet mit dem ersten gemeinsamen Methionin. Es muß angemerkt werden, daß *upstream* auf Nukleotidsequenzebene ein weiteres Codon für Methionin existiert, daß auch noch im RACE-Produkt 5R08 enthalten ist. Im Gen mit *Taq*I-Fragment 2 befindet sich aber zwischen erstem und zweitem ATG eine Insertion von fünf Basen (Kapitel 9.2). Falls das Gen mit *Taq*I-Fragment 2 ein funktionelles Protein kodiert, dann kann die Translation nur am zweiten ATG beginnen. Interessant ist nun, daß Signal P für die Aminosäuren zwischen dem ersten und dem zweiten ATG der Kandidaten 4 und 5 ein Signalpeptid vorhersagt (Abb.3-15b).

Die putative Promotorregion weist zwei Besonderheiten auf. Im Berich der TATA-Box befindet sich ein TA-Mikrosatellit und weiter *upstream* eine poly-A Sequenz. Daneben existieren mehrere putative CAAT-Motive (Kapitel 9.2).

Frag-4	I	+ MOVAVNTTT	NFI FHFI	VI I SCRPVTV	KMNOFSSULF	SPOTTRUSYO	VEL SERGEDV	RKTEVNHI VI	AL FOKCTNTE	KNNEKI EKGK	FT
N N				ILLJONF ILY	MAS	SSSSSRAST	VFLSFRGEDT	RKTFTSHLYE	YLNDKGIKTF	QDDKRLEYGA	ITI
RPP1-HsA	MDSSF	Flylyaaat	GFFMLFRKF	RFHQDNKESN	s <mark>ssls</mark> rptaf	TSYSRNAKHO	VFPSFHGADY	RRTFLSHILE	SFRR <mark>kgidtf</mark>	IDNN-IERSK	SI
NL27				н	A <mark>ss</mark> sssfai	SQYRLRHKYD	VFLSFRGVDT	RRTFTSHLYE	GLKNRGIFTF	QDDKRLENGD	SI
Lonsensus	•••••	•••••	•••••	• • • • • • • • • • •	•\$\$•\$\$••••	.srHkyU	WEISERG.UC	KriftsHiye	•1••kg1•lF	dD#kLTF*8*	ST
	101	110	120	130	140	150	160	170	180	190	
F 4	1								+		
Frag-4	VATEE	SKIHLIIFS	KNTHNSTHU ENVATSDUC	LUELIKTHEC	KNYKGUIYY	TEYNVNPSHV	RKUKSIFUEH	FSKHEHRFUE	DKYUK	WINHLEENHN	112
RPP1-WsA	ERIKG	SKIAIVLLS	RKYASSSHC		REVLOOIVHI	IFYEVEPTDI	KKOTGEFGKA	TKTCRGK	TKEHIER	HRKALEDVAT	TA
NL27	KAIEE	SQVALIIFS	KNYATSRHC	LNEL <mark>VKIME</mark> C	KEEKGQIVI	IFYDYDPSEV	RKQTKSFAEA	FTEHESKYAN	DIEGHQKYKG	HRTALSDAAD	LK
Consensus	kalee	Sq.Al!if9	S <mark>knYAtSr</mark> HC	L#EL <mark>vkIMe</mark> C	ke.kgQiYip	IFY#Y#P <mark>s</mark> .!	rkQt.sFaeA	Ftehe.ky	d.eg.#k	HR.AL.#aA.	1k
	901	910	990	920	940	250	960	970	900	200	
	1	+	+	+	+		+	+	+		
Frag-4	NTANG	H <mark>er</mark> rymeki	AEDIMARLG	SQRHASNARN	LYGMESHMH	YYKHL-GIGS	GGYHFLGILG	ISGYGKTTLA	RVIYDNIRS-	<mark>QF</mark> QGA	CF
		TUHUCIKU	VUUISSKL-		TAGTOLHEF		NGYRINGING	HGGYGKIIIH	KHIFUILLGK	MUS <mark>SYUF</mark> UGH	
NI 27	DTSNR	TESNYTOHT	VNHTSVI	CKCCI CALKN	VGTNTHEK		SCVI TVGTUG	MPGVGKTTTA	RATENRI	SYDEFAV	
Consensus	d.s#.	.#ad.i]	vd. sl.	ck.slsy#	lYGidtH	i.s\$L.el	.gv.i.GIwG	npG!GKTTiA	Rai%#.1	syqf	cf
	301	310	320	330	340	350	360	370	380	390	
Frag-4	DRSAK	QGLERLQEI	LLSEILYYK	KLRINDSFEG	ANHQKQ <mark>rl</mark> q1	KKYLLYLDDY	DHIDQ-LNAL	AGERENFGDG	SRIIITKOK	HLLYKYETEK	IY
Ň	ENK	RGMHSLQNA	ILLSELLR-E	KANY <mark>nneedg</mark>	KHQM <mark>asrlr</mark> s	KKYLIYLDDI	DNKDHYLEYL	AGDLDAFGNG	SRIIITTROK	HLIEKNDI	IY
RPP1-HsA	CFDEY	SAQLQLQNQ	MLSQMINHK	DIMISH	LGYAQERLR	KKYFLYLDEY	DQLGQ-LDAL	AKDTRHFGPG	SRIITTEDQ	GILKAHGINH	ΥY
NL27	ENK			UNCYNNKEUG		KKYL VLDUI	DHIDQ-LUTL	HUNLDAFUNU Aa#1dUECoC	SKIIHIIKUK	HLIGKNY	Υ.
consensus	enĸ	*Sunsré#1	ΦL3#11K	uini.eug	•••• d •KLI*,	NNYL,YLU#:	DUTOA*r#Ar	u8#TAML aua	OKTITIII	IIII. KII	
	401	410	420	430	440	450	460	470	480	490	
Enarg-4		+	VENDDINE	+		I CSEL YODGI	NEUTSEVEDI	+		NTEORTEL DT	'ar
Frag-4	PDHES	TOL FKOHAF	GKEVPNENF	EKLSLEVVNY	AKGLPLALKY	HGSLLHNLRL	TEHKSATEHH	KNNSYSGTID	KLKTSYDGLE	PKOOEMELDI	AC
RPP1-HsA	SNDER	FQIFCMNAF	GQKQPYEGF	CDLAHEYKAL	AGELPLGLK	L <mark>gsal</mark> rgmsk	PENERTLPRL	rtsldgk <mark>t</mark> gg	IIQF <mark>SYD</mark> ALC	DEDKYLFLYI	AC
NL27	HDHDA	IKLFERYAF	KEQYSDKCF	KELTLEVVSH	AKGLPLALK	FGCFFHERDI	TEMRSAIKQI	KNNPNSEIVE	KLKISYDGLE	TIQQSIFLDI	AC
Consensus	•#h#a	iqlFAF	kvp.k.F	L.1#Yv.h	akgLPLaLK\	Gsflh.r	tEW.sai	knnp.seI	klkiS%dgLe	•••#q.iFLdI	AC
	501	510	520	530	540	550	560	570	580	590	
	1	+	+	+	+	+	+	+	+	+	
Frag-4	KKDSV	TRILESFH	CPYIGIKYL	MEKCLITILQ	-GRITIHQL	QDHGHHIVRR	EATDDPRMCS	RMHKRE-DIC	PYLERNL-GT	DKNEGMSLHL	.T-
N DDD1_U_0	CTTVU	CEVI ONKEI	DVCOCTUVI	TOK2LALT2E	TNUYUNHULJ CEETOMUTI I	ENECDETCO	UKUPGERS	RLALAK-EYE	EVINDATIO		-c-
NL27	RKDYY	MOILESCOF	GADIGLSYL	IDKSLYSISG	NNTIEMHDLI	ODMGKYYYKK	OKDPGERS		EVMINNT-GT	KAYEAINYP-	
Consensus	.kdy!	.q!Lesc.f	ga.iGl.!L	i#KsL!sis.	.n.!.nHdLi	##nGky.v.k	#kd pgers	r\$ <mark>wl.k.</mark> #.e	e¥\$.n#t.gt	.a.eaiwv	••
	604	610	690	620	640	CEO	660	670	600	C00	
	1	+	+	+	+	+	+	+	+		
Frag-4	NFGGK	AFHQMTRLF	FLKFRNA	YYCQGP <mark>efl</mark> -	PDELRHLD	HGYPSKSLP	NSFKGDQLVG	LKLKKSRIIQ	L h kts <mark>k</mark> dlgk	LKYMNL <mark>s</mark> hsq	KL
	RESNU		YFNMGRS		PNNLRCF	CINYPHESEP	STFELKMLVH			LRRIULSHSK	(RL
KFF1-MSH NI 27	MT2EV	ANTTHOP!	TI CTHOSN-	ALAEKLUULI CLOGSTEYL -	PNSI PUFI	MISIQNICES P	STENPERLYE	LUNSF SKLUK I DI SI SSI HH	LHEGIKQLKM	ILKANULSTSS	ITL IS
Consensus	rfs	Am.rlr	.1.i.d.n.	.1i#yL.	pn.1Rwfv	w.nYp.eslP	FepLYh	Ld\$s.ssl.h	LHtg.KhLp.	L#Ls.S.	L
										70.0	
	701	/10	720	730	/40	/50	/60	//0		/90	
Frag-4	FSYTP	NLERLYLEE	CTSLVEINF	SIENLGK <mark>ly</mark> l		TLPKRIRLEK	LEILYLTGCS	KLRTFPETEE	KMNCLAELYL	GATSLSELPA	SY
N	FTGMP	NLEYYNLYG	CSNLEEVHH	SLGCCSKYIG	LYLNDCKSL	RFPC-VNVES	LEYLGLRSCD	SLEKLPEIYG	RMKPEIQIHM	QGSGIRELPS	SI
KPP1-HsA	LSTAT		ICSSLVELPS	STEKLISLOI		ELPSEGNATK		SLEKLPPSIN			-11
NL27	ft mo	NLKTLULST NLeul I	C pl Fubb	SLOTSKELLE	LNLINCUKLI	CALE AND CONTRACT CONTRACT	LUTRULEFUS 1 ±u\$	SLEKFPIIFU slekfP i o		luLSulKELPS a sai FLPs	15 Y
consonaus	10+np			~~8					*********	StoSt+LLI S	
	801	810	820	830	840	850	860	870	880	890	
Frag-A	I TVaVa	+	SI PSST	+	SGCSKI KNI I	+	+ FI НСТИТА-Т		KNI KHI CI CC	CNAL SCUACC	50
N	HYTKI		ALPSSIC	RLKSLYSL SV	SGCSKLESL	EEIGDLDNLR	YFDASDTI -T		NKLIILMFRG	FKD	167
RPP1-Hsfl	NLHEL	NLLNCSSLI	ELPLSIGTA	RNLFLKELNI	SGCSSLYKL	SSIGDMTNLK	EFDLSNCSNL	YEL <mark>PSS</mark> IGNL	QNLCKLIMRG	C	SK
NL27	IINKF	GFRRYKDEF	PELESLLQHR	ENNDEPIEHC	IGIKRSRYD	I <mark>sehrd</mark> eascs	SSKKQRS <mark>l</mark> SD	IR-RGYASFF	RNIADIRYFA	l	
Consensus	•••• <mark>k</mark> •	.1k.l.	eLpssi	rnll	stics.l.,lp	se.gdl.	•••••• <mark>1</mark> •••	.r.pss.s.l	.nllg	•••••	••
	901	910	920	930	940	950	960	970	980	990	
	I	+	+	+	+	+		+		+	
-	MCUNE	UNLSGLCSL	LINE DESCEN	ISDGGILNNL			HHSISRFTRL	KKLKLHGCGR		IKGIFANECT	SL
Frag-4	DUOD		- · · · · · · ·			LOKUULEUL	3-31NULUHL	QJLULKULU K		.смсспүрснп	INL
Frag-4 N RPP1-4~9	PVAE-	GLH <mark>SL</mark> I KSI			FTSTHTKY		I -STHSUSPI	AFFOTSYFFS	KEEPHAEDT	TTELOLSK	٠пт
Frag-4 N RPP1-HsA NL27	PYAE- ININ-	GLHSL LKSL	DTLNLTDCS	QLKSFP	EISTHIKYLF	RLTGTAIKEYP	L-SIMSHSPL	AEFQISYFES	LKEFPHAFDI	ITELQLSK	DI
Frag-4 N RPP1-HsA NL27 Consensus	PYAE- ININ-	GLHSL LKSL 1.sl	DTLNLTDCS	QLKSFP	EISTHIKYLF	LTGTAIKEYP	L-SIMSASPL	AEFQISYFES	LKEFPHAFDI 1p	ITELQLSK	

Abb.3-16: Die abgeleitete Aminosäuresequenz des Gens mit *Taq*I-Fragment 4 aus der *St*332/334-Genfamilie im Vergleich mit verschiedenen homologen Sequenzen aus der Datenbank. N: GenBank *Protein-Accession* A54810, NL27: CAA08798, RPP1-WsA: AAC72977.

Die TIR-Domäne wurde mit ProfileScan vorhergesagt. Aufgrund der starken Homologie zum N Protein (siehe Abb.9-16), kann der Sequenzvergleich des N Proteins mit dem Toll Protein aus Drosophila und dem menschlichen Interleukin-1 Rezeptor herangezogen werden (siehe Whitham et al., 1994). Für die LRR-Domäne sagt ProfileScan 11 LRR-Module vorher. Die Module umfassen zwischen 23 und 25 Aminosäuren. Vergleicht man die Module, so läßt sich ein Konsensusmotiv ableiten: XLXXLXLXX(C/N/T)X(X)LXXXP. Dieses Konsensusmotiv ist allerdings nicht absolut konserviert. Für die Klassifizierung ist wichtig, daß an der Position 10 des Motivs die Aminosäuren Cystein, Asparagin oder Threonin vorkommen, denn dann handelt es sich wahrscheinlich, im Gegensatz zu den LRR-Domänen von Xa21 und Cf-9, um eine Domäne, die im Cytoplasma lokalisiert ist (Jones und Jones, 1997). Im ClustalW Sequenzalignment (Abb.3-16) ist das Konsensusmotiv besonders gut zwischen den Positionen 706 und 776 aliniert (entspricht den LRR-Modulen 1, 2 und 3 der Aminosäuresequenz des Gens mit Tagl-Fragment 4). Für den Protein-Sequenzvergleich in Abb.3-16 wurden nur Sequenzen ausgewählt, die bereits durch eine Veröffentlichung näher beschrieben sind. Daneben existieren viele stark homologe Proteine aus Arabidopsis thaliana, die durch automatische Genomannotation vorhergesagt wurden. Über die gesamte Länge ist das Resistenzprotein N aus Tabak (Whitham et al., 1994), welches Resistenz gegen TMV (Tabak-MosaikVirus) verleiht, unter allen Datenbanksequenzen das stärkste Homolog. Im Bereich der TIR- und NBS-Domäne zeigt auch ein weiteres, verkürztes Protein aus der Kartoffel, das Resistenzproteinhomolog NL27, ~47% Sequenzidentität. NL27 (Hehl et al., 1999) wurde aus einer Kartoffel-cDNA-Bibliothek isoliert. Zwar kartiert das Gen auf Chromosom XI sehr nahe am Locus, der Resistenz gegen den Pilz Synchytrium endobioticum verleiht, eine Funktion ist bisher aber nicht bekannt. RPP1-WsA (Botella et al., 1998) verleiht Arabidopsis thaliana Resistenz gegen Peronospora parasitica. Die Aminosäuresequenz des Gens mit TagI-Fragment 4 ist zu diesem Protein 35% identisch (TIR- und NBS-Domäne).

Ohne Modifikationen hat das putative Protein des Gens mit *Taq*I-Fragment 4 (+putatives Signalpeptid) eine molekulare Masse von 132,6 KDa.

3.6 Expression der Mitglieder der St332/334-Genfamilie

Die Mitglieder der *St332/334-Genfamilie* werden in allen untersuchten Geweben exprimiert: Auf einem Northern Blot sind keine Transkripte nachzuweisen, die mit der *St332-*Sonde hybridisieren. Für ein RT-PCR Experiment wurden zwei Primer aus Sequenzregionen abgeleitet, die bei allen sequenzierten Mitgliedern der *St332/334-Genfamilie* absolut konserviert sind (NBS3RACE1 und LRR5RACE1, siehe Kapitel 9.1 und 9.2). Die Primerbindungsstellen liegen *upstream* und *downstream* von Intron II. Die RT-PCRs wurden auf cDNA von Pflanzen durchgeführt, die nicht mit *Globodera rostochiensis* infiziert worden waren. Aus Abbildung 3-17 geht hervor, daß die Mitglieder der *St332/334-Genfamilie* in allen untersuchten Geweben der Kartoffel exprimiert werden. Das PCR-Produkt hat eine Größe von ~500 bp. Zur Kontrolle wurde auch vom genomischen *Insert* in BAC 98P9 amplifiziert.

Abb.3-17: RT-PCR auf cDNA verschiedener Kartoffelgewebe. Die Primer NBS3RACE1 und LRR5RACE1 amplifizieren ein ~560 bp genomisches Fragment mit Intron II (siehe Kapitel 9.2) von BAC 98P9 und ein ~500 bp langes Fragment ohne Intron von der cDNA.

Da die Primer nicht zwischen den einzelnen Mitgliedern der *St*332/334-Genfamilie diskriminieren, wurde das RT-PCR-Produkt von nicht infizierten Wurzeln der Kartoffellinie P6/210 kloniert. Damit sollte auch auf der Transkriptionsebene bestimmt werden, welche Mitglieder der *St*332/334-Genfamilie als Kandidat für das *Gro1* Resistenzgen in Frage kommen. In Abbildung 3-18 werden die sequenzierten Mitglieder der *St*332/334-

Abb.3-18: Baumdarstellung des Nukleotidsequenzvergleichs der Gene aus P40 und P41 (ohne Intron II) mit PCR-Produkten, nicht von **cDNA** aus Wurzeln der infizierten Linie P6/210 generiert wurden. R025-R054: **RT-PCR-Produkte** mit NBS3RACE1 Primern und 3RB2, LRR5RACE1; 3RA19, 3RB4, 3RA7 und 3R27: 3'-RACE-Produkte von Dr. Jost Muth. Das Sequenzalignment umfaßt 250 bp.

Genfamilie mit 29 RT-PCR-Produkten und 5 3'-RACE-Produkten (von Dr. Jost Muth) auf Nukleotidebene verglichen. Dazu wurde Intron II aus den genomischen Sequenzen entfernt. Für den Sequenzvergleich wurden die ersten 250 bp nach der NBS3RACE1-Primersequenz herangezogen. Abb.3-18 zeigt, daß alle sequenzierten Gene, die aus den Linien P40 und P41 stammen, in diesem 250bp Intervall unterscheidbar sind. Die *Gro1* Resistenzgenkandidaten mit den *Taq*I-Fragmenten 2, 4 und 5 werden transkribiert - das Gen mit *Taq*I-Fragment 5 scheinbar am stärksten. Obwohl das Gen mit *Taq*I-Fragment 14 auf genomischer Ebene, verglichen zu den anderen Genen der *St*332/334-Genfamilie, nicht intakt ist (siehe Abb. 3-14), wird es doch transkribiert. Auch die Gene mit den *Taq*I-Fragmenten 6 aus P40, 10 aus P41 und 11 aus P41 werden exprimiert.

ERGEBNISSE

3.7 Konstruktion des Kontigs

Im Gro1 Locus können neben den Mitgliedern der St332/334-Genfamilie weitere Gene liegen, die an der Resistenz gegen Globodera rostochiensis beteiligt sind. Es sollte deshalb ein Kontig von überlappenden Klonen gebildet werden, das die Grol Region abdeckt, um weitere Kandidatengene ausfindig zu machen. Als Ausgangspunkt dienen die mit der St332-Sonde isolierten BAC-Klone (Chromosome Landing). Es wurden nur Klone der Kartoffellinie P6/210 gewählt, die von P40 stammen, da die Segregation des Grol Resistenzgens nur von P40 bekannt ist. Das Kontig wird also nur ein allelisches Chromosom abdecken. Die terminalen Enden der Kartoffel-genomischen Inserts in den BAC-Klonen wurden sequenziert (Primer: T7, T3) und mittels PCR bestimmt, wie die Einzelklone überlappen (durch Sequenzidentität der PCR-Produkte). Die Bezeichnungen der für die PCR verwendeten Primer sind in den Tabellen 3-3 bis 3-6 angegeben. Primersequenzen werden in Kapitel 9.1 aufgeführt. Von den distalen Enden der Teilkontigs wurden Sonden generiert und weitere überlappende Klone aus der BAC-Bibliothek isoliert (Chromosome Walking). Abbildung 3-19 zeigt, daß die isolierten Klone bis jetzt vier Teilkontigs in der Grol Region bilden (Lambda-Klone sind nicht gezeigt). Die Teilkontigs überlappen nicht miteinander. Die Insertgrößen wurden durch NotI-Restriktionsverdau der BAC-Klone und Auftrennung der Fragmente mittels Pulsfeldgelelektrophorese bestimmt. Werden die Insertgrößen aus den nicht überlappenden Klonen jedes Kontigs zusammenaddiert, so ist Kontig I mindestens 220 kb, Kontig II mind. 270 kb, Kontig III mind. 215 kb und Kontig IV mindestens 90 kb groß. Alle TaqI-Fragmente und die zugehörigen Gene, die in die Grol Region kartieren und von P40 an P6/210 vererbt wurden, sind mit den vier Teilkontigs abgedeckt. Die sequenzierten Insertenden aller BAC-Klone wurden auf homologe Sequenzen in der Datenbank untersucht (Tabelle 3-3 bis 3-6). Neben der St332/334-Genfamilie existieren weitere Genfamilien in der Grol Region. Es wurden mehrere Gene einer Familie von Rezeptor-ähnlichen Kinasen und eine Familie von Cytochrom P450 Monooxygenasen gefunden. Daneben konnte ein Gen, das eine LRR-Domäne kodiert, ausfindig gemacht werden, das aber keine Homologie zur St332/334-Genfamilie oder Resistenzgenen in der Datenbank zeigt. Auch ein Trehalose Synthase Gen liegt in der Grol Region. Viele Insertenden enthalten repetitive Sequenzen, die auch im Gpa2 Locus der Kartoffel auf Chromosom XII auftreten oder weisen Homologien zu pflanzlichen Retroelementen

Abb.3-19: Die vier Teilkontigs aus der *Gro1* Region. Zahlen in den Balken korrespondieren mit der Nummerierung der *TaqI*-Fragmente, die mit der *St*332-Sonde hybridisieren (siehe Kapitel 3.1). Größenangaben beziehen sich auf die Längen der BAC-*Inserts*. Blaue Zahlen: terminale BAC-Enden, die zwar ein vollständiges *TaqI*-Fragment enthalten, der Klon bricht aber im entsprechenden Gen ab. *: BAC-Enden zu denen Marker existieren (siehe weiter unten in diesem Kapitel).

ERGEBNISSE

genomischer BAC-Klon aus Kontig I	terminales Ende	linkes oder rechtes Ende in Abb.3-19	Datenbankhomologie	abgeleitete Primer für die Konstruktion des Kontigs und zum <i>Screenen</i> der BAC-Bibliothek	
60L16	T3	1	Cytochrom P450, <i>Catharanthus</i> roseus, E-Wert: 6e-60, BlastX	60L16revf1, revS2r	
60L16	T7	r	repetitive Sequenz, <i>Gpa2</i> Locus, Chr. XII in Kartoffel (6 Wiederholungen 110-220bp 86-90% identisch auf Nukleotidebene), BlastN	60L16unif1, unir1	
73N5	T3	r	Gen mit <i>Taq</i> I-Fragment 4, siehe Kapitel 3.5 und 9.2)	73N5revf, revr	
73N5	T7	1	Cytochrom P450, <i>Catharanthus</i> <i>roseus</i> , E-Wert: 5e-41, BlastX	73N5T7f, T7S1r	
26N18	Т3	1	Homologie zu ersten 193bp der NBS- kodierenden Domäne (<i>St</i> 332/334- Genfamilie), dann repetitive Seq., <i>Gpa2</i> Locus auf Chr XII in Kartoffel (6 Wiederholungen 90-300bp 82-94% identisch auf Nukleotidebene), BlastN	26N18revf, revr	
26N18	T7	r	Cytochrom P450, <i>Catharanthus</i> <i>roseus</i> , E-Wert: 5e-58, BlastX	26N18T7S1, T7S2-2r	
25J5	T3	-	repetitive Sequenz, <i>Gpa2</i> Locus, Chr. XII in Kartoffel (6 Wiederholungen 250-1100bp 87-92% identisch auf Nukleotidebene), BlastN	25J5revf, revS2r	
25J5	T7	-	<i>StRSH11</i> (homlog zu <i>StRLK1</i> , diese Arbeit, Kapitel 3.9 und 9.3)	25J5T7f, T7S2r	
173o21	Т3	r	repetitive Sequenz, <i>Gpa2</i> Locus, Chr. XII in Kartoffel (6 Wiederholungen 490-570bp 86-94% identisch auf Nukleotidebene), BlastN	173o21T3f, T3r	
173021	T7	1	homlog zu <i>StRLK1</i> aus dieser Arbeit (Kapitel 3.9 und 9.3), kodiert extra- zelluläre Domäne, wurde aber noch nicht näher untersucht	173o21T7f, T7r	
221C8	Т3	r	repetitive Sequenz, <i>Gpa2</i> Locus, Chr. XII in Kartoffel (5 Wiederholungen >500bp 88-95% identisch auf Nukleotidebene), BlastN	221C8T3f,T3r	
221C8	T7	1	Retroelement	221C8T7f,T7r	

Tab.3-3: Sequenz-Charakterisierung der terminalen Enden der BAC-Inserts aus Kontig I.

genomischer BAC-Klon aus Kontig II	terminales Ende	<u>l</u> inkes oder <u>r</u> echtes Ende in Abb.3-19 ?	Datenbankhomologie	abgeleitete Primer für die Konstruktion des Kontigs und zum <i>Screenen</i> der BAC-Bibliothek
94A4	T3	r	-	94A4T3f, T3r
94A4	T7	1	F-Box enthaltendes Protein ORE9, <i>A. thaliana</i> , die LRR-Domäne, E-Wert: 6e-60, BlastX	94A4T7f, T7r
251D8	T3	1	-	251D8T3f, T3r
251D8	T7	r	-	251D8T7f, T7r
9A2	T3	r	-	9A2T3f, T3r
9A2	T7	1	-	9A2T7f, T7r
52016	T3	1	-	52016T3f, T3r
52016	Τ7	r	Trehalose-6-Phosphat Synthase, <i>A. thaliana</i> , E-Wert: 6e-48, weitere funktionell nicht charakterisierte Homologe in A.T. bis e-108, BlastX	52016T7f, T7r
229C2	T3	1	-	229C2T3f, T3r
229C2	T7	r	-	229C2T7f, T7r
260K12	T3	1	-	260K12T3f, T3S1r
260K12	Τ7	r	repetitive Sequenz vom <i>Gpa2</i> Locus auf Chr. XII in Kartoffel (3 Wieder- holungen 330-460 bp 91-94% identisch auf Nukleotidebene), BlastN	260K12T7f, T7r
60B11	Т3	r	Gen mit <i>Taq</i> I-Fragment 2, siehe Kapitel 3.5 und 9.2	60B11T3f, T3r
60B11	T7	1	putative Trehalose-6-Phosphat Synthase, <i>A. thaliana</i> , E-Wert: e-119, BlastX	60B11T7f, T7r
98P9	T3	1	<i>StRLK3</i> (homlog zu <i>StRLK1</i> , diese Arbeit, Kapitel 3.9 und 9.3)	98P9revf, revr
98P9	T7	r	Retroelement	98P9T7f, T7r

Tab.3-4: Sequenz-Charakterisierung der terminalen Enden der BAC-*Inserts* aus Kontig II, Fortsetzung siehe unten.

ERGEBNISSE

genomischer BAC-Klon aus Kontig II	terminales Ende	<u>l</u> inkes oder <u>r</u> echtes Ende in Abb.3-19 ?	Datenbankhomologie	abgeleitete Primer für die Konstruktion des Kontigs und zum <i>Screenen</i> der BAC-Bibliothek
7805	T3	r	<i>StRLK2</i> (homlog zu <i>StRLK1</i> , diese Arbeit, Kapitel 3.9 und 9.3), Anmerkung: Klon nicht in Abb.3-19, T3-Ende liegt zwischen den Genen mit den <i>Taq</i> I-Fragmenten 2 und 5 und überlappt mit 60B11, 98P9 und 260K12 bzw. nicht mit 261J14	7805T3f, T3r
7805	T7	1	Retroelement, Sequenz identisch mit 98P9 T7-Ende, Klon nicht in Abb.3-19	7805T7f, T7r
261J14	T3	1	repetitive Sequenz vom <i>Gpa2</i> Locus auf Chr. XII in Kartoffel (3 Wieder- holungen 100-120bp 86-90% identisch auf Nukleotidebene), BlastN	261J14T3f, T3r
261J14	T7	r	repetitive Sequenz vom <i>Gpa2</i> Locus auf Chr. XII in Kartoffel (6 Wieder- holungen 250-400bp 86-93% identisch auf Nukleotidebene), BlastN	261J14T7f, T7r
154P18	T3	r	repetitive Sequenz vom <i>Gpa2</i> Locus auf Chr. XII in Kartoffel (2 Wieder- holungen 350 u.500bp 93 u. 90% identisch auf Nukleotidebene), BlastN	154P18T3f, T3r
154P18	T7	1	Retroelement	154P18T7f, T7r

Fortsetzung Tab.3-4.

genomischer BAC-Klon aus Kontig IV	terminales Ende	linkes oder rechtes Ende in Abb.3-19 ?	Datenbankhomologie	abgeleitete Primer für die Konstruktion des Kontigs und zum <i>Screenen</i> der BAC-Bibliothek
49J20	T3	1	-	49J20T3f1, T3r1
49J20	T7	r	Retroelement	49J20T7f, T7r
115B4	T3	1	<i>StRSH7</i> (homlog zu <i>StRLK1</i> , diese Arbeit, Kapitel 3.9 und 9.3)	115B4T3f, T3r
115B4	T7	r	<i>StRSH6</i> (homlog zu <i>StRLK1</i> , diese Arbeit, Kapitel 3.9 und 9.3)	115B4T7f, T7r

Tab.3-5: Sequenz-Charakterisierung der terminalen Enden der BAC-*Inserts* aus Kontig IV.

genomischer BAC-Klon aus Kontig III	terminales Ende	<u>l</u> inkes oder <u>r</u> echtes Ende in Abb.3-19 ?	Datenbankhomologie	abgeleitete Primer für die Konstruktion des Kontigs und zum <i>Screenen</i> der BAC-Bibliothek
137E13	T3	r	Cytochrom P450, <i>Catharanthus</i> roseus, E-Wert: 7e-24, BlastX	137E13T3f, T3r
137E13	Τ7	1	repetitive Sequenz vom <i>Gpa2</i> Locus auf Chr. XII in Kartoffel (6 Wieder- holungen 370-500bp 85-89% identisch auf Nukleotidebene), BlastN	137E13T7f, T7r
10N22	T3	1	putatives Retroelement	10N22revf, revr
10N22	T7	r	<i>StRSH10</i> (homlog zu <i>StRLK1</i> , diese Arbeit, Kapitel 3.9 und 9.3)	10N22T7f, T7S1r
70K20	T3	r	putatives Retroelement	70K20T3f, T3r
70K20	T7 fehlt		Teil des Vektors mit T7-Primer- bindungsstelle fehlt, ist also nicht sequenzierbar	-
62C17	T3	r	repetitive Sequenz vom <i>Gpa2</i> Locus auf Chr. XII in Kartoffel (3 Wieder- holungen 100bp 81-94% identisch auf Nukleotidebene), BlastN	62C17T3f, T3r
62C17	Τ7	1	repetitive Sequenz vom <i>Gpa2</i> Locus auf Chr. XII in Kartoffel (3 Wieder- holungen 640bp 95-97% identisch auf Nukleotidebene), BlastN	62C17T7f, T7r
71017	T3	1	-	71017T3f1, T3r1
71017	T7	r	repetitive Sequenz vom <i>Gpa2</i> Locus auf Chr. XII in Kartoffel (7 Wieder- holungen 130-190bp 85-99% identisch auf Nukleotidebene), BlastN	-
119F19	T3	1	putatives Retroelement	119F19T3f, T3r
119F19	T7	r	putatives Retroelement	119F19T7f, T7r
78M21	T3	r	repetitive Sequenz vom <i>Gpa2</i> Locus auf Chr. XII in Kartoffel (5 Wieder- holungen 170-320bp 83-95% identisch auf Nukleotidebene), BlastN	_
78M21	T7	1	putatives Retroelement	78M21T7f, T7r

Tab.3-6: Sequenz-Charakterisierung der terminalen Enden der BAC-Inserts aus Kontig III.

Abb.3-20: Die vier Teilkontigs aus der *Gro1* Region. Zahlen in den Balken korrespondieren mit der Nummerierung der *Taq*I-Fragmente, die mit der *St*332-Sonde hybridisieren (siehe Kapitel 3.1). *StRLK2-4*: *S. tuberosum* Rezeptor-ähnliche Kinase (siehe auch Kapitel 3.9, 3.8 und 9.3). ?: Ein Sequenzfragment der *St*332/334-Genfamilie, das einen Teil der NBS-Domäne kodiert, aber nicht mit der *St*332-Sonde hybridisiert.

in der Datenbank auf. Zur Veranschaulichung zeigt Abb.3-20 den Kontiginhalt. Darin sind auch Erkenntnisse enthalten, die aus der Gesamtsequenzierung des *Inserts* von BAC 98P9 (Kapitel 3-8) und aus der Analyse der PCR-Produkte, die bei der Untersuchung des Kontigs bisher generiert wurden, resultieren.

Ein Großteil von Kontig III kann das *Gro1* **Resistenzgen nicht enthalten:** Es existiert eine resistente rekombinante Pflanze (R458) aus der Kartierungspopulation P18xP40, der einige Mitglieder der *St332/334*-Genfamilie aus der *Gro1* Region fehlen. Es handelt sich um die Gene mit den Fragmenten 3, 6 und 8. Teile der *Gro1* Region, die in R458 fehlen, können das Resistenzgen nicht enthalten. Kontig III enthält neben den Fragmenten 3 und 8 zwei Marker (in Abb. 3-19 durch ein Sternchen markiert), die ebenfalls in R458 fehlen. Abb.3-21 zeigt den CAPS-Marker zum T3-Ende von BAC 137E13 aus Kontig III (linkes Sternchen). Das PCR-Produkt von BAC137E13, das nicht vom Restriktionsenzym *Alu*I geschnitten wird, segregiert mit der Resistenz gegen *Globodera rostochiensis* (R162 bis R1/61 und R559 bis R878), ist aber nicht in R458 enthalten.

Abb.3-21: CAPS-Marker zum T3-Ende von BAC 137E13. *Alu*I-Verdau. Primer: 137E13T3f, 137E13T3r. PCR-Produkt: ~450bp, geschnitten: ~2x 225bp.

Auch das T3-Ende von BAC 62C17 in Kontig III (rechtes Sternchen in Abb. 3-19) ist nicht in R458 enthalten. Von diesem Ende konnte mit den Primern 62C17T3f und 62C17T3r ein ASO-Marker abgeleitet werden (nicht gezeigt). Die Primer amplifizieren DNA von P40 und allen resistenten Rekombinanten der Kartierungspopulation P40xP18 außer R458. Von P18 und den suszeptiblen Rekombinanten kann keine DNA amplifiziert werden. Damit kann sich das Resistenzgen nicht zwischen den T3-Enden von BAC 137E13 und BAC 62C17 befinden. Von Bedeutung ist Teilkontig III aber für die Erstellung des Gesamtkontigs über die *Gro1* Region durch *Chromosome Walking*.

Kontig II segregiert ohne Rekombination mit der Resistenz. Das T7-Ende von BAC 261J14 aus Kontig II (rechtes Sternchen in Abb. 3-19) und das T3-Ende von BAC 251D8 aus Kontig II (linkes Sternchen in Abb. 3-19) liegen mindestens 240kb voneinander entfernt. Das PCR-Produkt zum T7-Ende von BAC 261J14 (Abb.3-22) enthält eine repetitive Sequenz (Tab.3-4). Ausreichend spezifische Amplifikation wird durch

Abb.3-22: ASO-Marker zum T7-Ende von BAC 261J14. Primer: 261J14T7f, 261J14T7r. PCR-Produkt ~ 500bp.

Touchdown-PCR erreicht (Standard-PCR, aber *Annealing*temperatur von 62°C auf 58°C fallend; mit –0.1°C/Zyklus). Das spezifische Produkt läßt sich von DNA aller resistenten Rekombinanten, nicht aber von DNA suszeptibler Rekombinanten generieren.

Abb.3-23 zeigt den CAPS-Marker zum T3-Ende von BAC 251D8. Von P40-DNA lassen sich zwei allelische PCR-Produkte gleicher Größe generieren. Das Produkt, das mit der Resistenz gegen *G. rostochiensis* segregiert, läßt sich einmal mit dem Restriktionsenzym *Nla*III schneiden. Es entstehen zwei Fragmente mit Größen von etwa 350bp und knapp über 100bp (siehe Verdau des Produktes von BAC 251D8). Das Produkt, das mit Suszeptibilität gegen *G. rostochiensis* gekoppelt ist, läßt sich zweimal schneiden. Dadurch entsteht ein zusätzliches sichtbares Fragment von etwas mehr als 200bp. Dieses Fragment ist in allen suszeptiblen Rekombinanten präsent und fehlt in allen resistenten Rekombinanten. Dadurch läßt sich indirekt ableiten, daß das mit der Resistenz gekoppelte allelische PCR-Produkt von BAC 251D8 in allen resistenten Rekombinanten vorhanden ist. Damit sind alle Gene aus Kontig II potentiell Kandidaten für das *Gro1* Resistenzgen.

Abb.3-23: CAPS-Marker zum T3-Ende von BAC 251D8. *Nla*III-Verdau. Primer: 251D8T3f, 251D8T3r.

3.8 Gesamtsequenzierung des *Inserts* von BAC 98P9

Ein Teil der Rezeptor-ähnlichen Kinase ist dupliziert und liegt in entgegengesetzter Orientierung vor dem Gen. Die Gesamtsequenz aus BAC 98P9 (Abb.3-24) erlaubt einen Einblick in die genomische Organisation der *Gro1* Region. Die verschiedenen Mitglieder der drei identifizierten Genfamilien (*St*332/334-Genfamilie, Cytochrom P450 Monooxygenasen und Rezeptor-ähnliche Kinasen) liegen alternierend im Genom vor. Es läßt sich kein übergeordnetes Muster erkennen, wie die Gene relativ zueinander angeordnet sind. Überraschend ist, daß *upstream* der Rezeptor-ähnlichen Kinasen (*StRLK2,3,4*) eine Sequenz in entgegengesetzter Transkriptionsrichtung liegt, die einen Teil der extrazellulären Domäne der *RLKs* codiert (*StRSH2,3,4*, siehe Kapitel 3.9, Abb.3-27 und Anhang 9.3). Diese Anordnung erinnert an die Organisation der Gene im S(Selbstinkompatibilitäts)-Locus von *Brassica* (Nasrallah, 2000). *StRLK* ist homolog zu den S-Rezeptor Kinasen im S-Locus. Die duplizierte Region wird im S-Locus als S-

Abb.3-24: Schematische Darstellung der Gesamtsequenz des *Inserts* von BAC 98P9 (~ 99250bp). 2,5,11: Gene der *St*332/334-Familie mit den *Taq*I-Fragmenten 2,5,11. *StRLK*: *S. tuberosum* Rezeptor-ähnliche Kinase. *StRSH*: *RLK* Sequenz-Homolog. a,b,c: repetitive Sequenzen (a ~350bp, b ~400 und c ~450bp). Pfeile geben die Transkriptionsrichtung an.

Locus Glycoprotein (*SLG*) bezeichnet. *StRSH2,3,4* sind aber wesentlich kürzer als die *SLGs* in *Brassica* und enthalten nicht den Bereich, der für die konservierten Cysteine kodiert. Ein Cystein-reiches Protein, das ebenfalls im S-Locus von *Brassica* zu finden ist, konnte in der Sequenz von BAC 98P9 nicht identifiziert werden.

Die Struktur von drei Genen wird durch die Insertion eines Copia-ähnlichen Retroelements verändert. Die Gene mit den *Taq*I-Fragmenten 2 und 11 enthalten diese Insertion im ersten Intron. *StRLK4* enthält die Insertion allerdings zwischen den konservierten Cysteinen im offenen Leseraster (siehe auch Kap.3.9, Abb.3-27 und Kap. 9.3). Daneben enthalten das Gen mit *Taq*I-Fragment 11 (siehe Kap.3.5, Abb.3-14 und Kap.9.2) sowie *StRLK2* und *StRLK3* (siehe Kap.3.9, Abb.3-27 und Kap.9.3) Stop-Mutationen. Nur die Gene mit den *Taq*I-Fragmenten 2 und 5 (siehe Kap.3.5, Abb.3-14 und Kap.9.2) sowie die Cytochrom P450 Monooxygenase (Analyse nicht gezeigt) enthalten putativ intakte Leseraster.

Die BAC-Sequenz wurde auch auf interne repetitive Sequenzen untersucht (a,b,c). Die Gene mit den *Taq*I-Fragmenten 2 und 11 haben nicht nur eine Retroelement-Insertion im ersten Intron gemeinsam, sondern es befinden sich *downstream* von beiden Genen auch die repetitiven Sequenzen b und c. Dies könnte auf eine zurückliegende Duplikation hindeuten.

Das identifizierte Transposon zeigt Homologie zum TNP2 Protein (E-Wert: e-174, GenBank *Accession* CAA40555), das vom autonomen Transposon Tam1 in *Antirrhinum majus* kodiert wird (Nacken *et al.*, 1991). TNP2 zeigt seinerseits 45% Sequenzidentität mit TNPD, das vom autonomen En/Spm Element in Mais kodiert wird. Es wird vermutet, daß TNPD Transposase-Aktivität besitzt. Die autonomen Elemente kodieren ein weiteres für die Transposition notwendiges Protein (TNPA von En/Spm und TNP1 von TAM1). Das Transkript für diese Proteine besteht aus vielen kurzen Exons (Kunze *et al.*, 1997). Obwohl keine signifikanten Homologien in der Datenbank gefunden wurden, könnte das rechts zum TNP2-Homolog benachbarte offene Leseraster (Abb.3-24) Teil der kodierenden Sequenz für ein solches Protein sein.

Es existieren weitere kleine offene Leseraster, denen keine putative Funktion zugeordnet werden konnte.

3.9 Rezeptor-ähnliche Kinasen

In den partiellen Kontigs der *Gro1* Region wurde durch Sequenzanalyse eine Familie von Rezeptor-ähnlichen Kinasen (RLKs, *Receptor-like kinases*) gefunden, die vorher in der Kartoffel nicht bekannt war.

Analyse der putativen Aminosäuresequenz: Repräsentativ für diese Familie wurde das Gen *StRLK1* (*Solanum tuberosum Receptor-Like Kinase 1*) genauer untersucht. *StRLK1* wurde aus dem Subklon b66a von BAC 25J5 sequenziert (siehe Kapitel 3.4). Der Hinweis, daß in BAC 25J5 eine Kinase liegt, ergab sich aus der Endsequenz des Lambda-Klons 98, der wie BAC 25J5 das *Taq*I-Restriktionsfragment 14 enthält.

MIPEQRVYLPILLFICLHSFSSRFAFSQPSWNYNVSVLNSTTGLSNSWINMPYVRVYNSS Signalpeptid

EPSEMMPIIRSRKDSPQFLFAFYCPLLTNSTTECLLGILLYHNRPDGRLSSAPQLVWSAN RNHPVKVNATLQLGQNGNLVLTDSDGTLVWSTNTTGKSVSGLNMTEMGNLVLFDKRKKAI WQSFDH**PTD**CLLPGQKLVSGRKLIASISGSNQSFSFTVLNGSLVSSIDTNPPQYYIASSR DDAQYSPLYDFDGRTFTALQDPYTSQFIKLGPDGHLWLYQSDAYDWKHLDEVMNSYLGNC GYPMVCGRYSICTNDGQCNCPVEGNFFRPINRNPDLGCSQLTSISCNSSHYHSLIELSDT TYFAFEINFYSSSNMWFEGTKIEDCKAACLSNCSCKAAVWSKTLRKNCLLLNEVFSLKDN WSGSDKTTVFLKVQNFAKAQYQPPIVSQRKQSRPLKVIVASALAALVGMILSISAWFVLF

Transmembran-Domäne

KKRTLSVKARDLLDLAPILPGILTRFSYNELKIITQDFSR**KLGEGGFGSV**YEGTLSNGNK ATP-Bindungs-Domäne I

I**AVKRL**NGLGQVKDSFLT**E**VKIVGSIHHVN**LV**KLVGFCTEKDHRVLI**YEYMVNGSLD**RWI Phospho- Domäne III IV V transfer-Domäne II

SHENQENGLTWLMRQRIIADIAK<u>GLAYLH</u>DECSHKIIHL<u>DIKPHN</u>ILLDQNFNAKIS<u>DFG</u> VI VIb VII LSKLIEKDKSKVVTRMR<u>GTPGYLAPE</u>WLRSVITEKVDVYAFGIVLLEVLCGRKNLDWSQA VIII DEDNVHLLSVFKRKAEQDQLIDMVDKNNEDMQLHREAVTEMMSLAAWCVQGDFNKRPSMS LVVKVLEGLVSVETNLDFNFTNLTEAGAGNQOMEVPISSILPSVLSGPR*

Abb.3-25: Sequenzmotive der putativen StRLK1 Proteinsequenz.

Die Aminosäuresequenz (Abb.3-25) wurde durch Vergleich mit homologen Sequenzen in der Datenbank (Abb.3-26) abgeleitet. Die genomische Sequenz enthält keine Introns (Sequenz siehe Kap.9.3). Das hypothetische Protein ist 829 Aminosäuren lang und hat ohne Berücksichtigung von posttranslationalen Modifikationen ein Molekulargewicht von 93 kDa.

Das N-terminale Signalpeptid (Abb.3-25, Position 1-27) für den Transport in das endoplasmatische Reticulum wurde mit dem Programm SignalP (Version 2.0) für eukaryotische Daten vorhergesagt. Zwischen den Aminosäuren S und Q liegt danach wahrscheinlich die Schnittstelle zur Entfernung des Signalpeptids.

Die Transmembrandomäne wurde von den Programmen TMHMM-2.0 und SOSUI zwischen Position 457 und 480 vorhergesagt.

N-terminal von der Transmembrandomäne liegt die extrazelluläre Domäne in der sich 12 konservierte Cysteine befinden, die charakteristisch für RLKs (<u>*Recptor-Like Kinases*</u>) aus Pflanzen sind, die man der S-Domänen Klasse zuordnet (Torii und Clark 2000). Das Konsensus-Motiv lautet: $CX_5CX_5CX_7$ (in obiger Sequenz allerdings X_5) $CXCX_nCX_7CX_nCX_3CX_3CXCX_nC$ und wurde vom Selbstinkompatibilitäts-Protein SLG (<u>*S-Locus Glycoprotein*</u>) aus *Brassica oleracea* (Nasrallah *et al.*, 1988) abgeleitet.

C-terminal von der Transmembrandomäne liegt die cytoplasmatische Domäne mit den konservierten Sequenzmotiven der Serin-Threonin-Kinase (Hanks and Quinn, 1991). Die Subdomänen VIb und VIII sind spezifisch für Serin-Threonin-Kinasen und unterscheiden diese von den Tyrosin-Kinasen, die in Pflanzen bisher nicht gefunden wurden.

Im Sequenzvergleich mit charakterisierten Sequenzen aus der Datenbank (Abb.3-26) zeigt StRLK1 die stärksten Homologien mit OsPK10 aus Reis (Zhao *et al.*, 1994, 36% identisch), ZmPK1 aus Mais (Walker und Zhang, 1990, 33% identisch), SFR2 aus Raps (Pastuglia *et al.*, 1997, 31% identisch) und ARK3 aus *Arabidopsis* (Dwyer *et al.*, 1994, 30% identisch). Neben den konservierten Cysteinen gibt es in der extrazellulären Domäne weitere konservierte Bereiche. In der Region um Aminosäure 120 des multiplen *Alignments* ist das Motiv VW(S/V)AN(P/R)(D/N)XP und zwischen den Positionen 189 und 200 ist das Motiv WQSF(D/S)XPTD(C/T)(L/F)L konserviert (die sogenannte PTD Box). Am stärksten ist die Kinase Domäne (etwa ab Aminosäure 560) konserviert. Hier

	1	10	20	30	40	50	60	70	80	90	100
CEDI M4		+	+	+	+	+	+			+	
DsPK10	UTLEAK	YTLP1LLF10	MEAHGNRR-	-SSPTYLYML	AMTSVASLL1	TCRGSTOKO	VLFPGFTA <mark>a</mark> a	MDYTDNDGTF	SPQELENETU ELLSNGSVEG	GEVISNVSDN	TFYTLA
ZnPK1				MPRPLF	ALLSTACILS	SFFIALFPRA	AS <mark>S</mark> RDILPLO	SSLVVESYES	STLQSSDGT	SSGFYEYYTH	AFTF <mark>S</mark> Y
ARK3				MRGLPN	NFYH <mark>S</mark> YTFFFF	FLLILFPAY	SISANTLSAS	ESLTISSN	INTIVSPGNVF	ELGFFKPGLD	SR
Consensus					<mark>sl</mark> .	····lfp	sl.a.		tsf	lgf	3K
	101	110 +	120	130 +	140	150	160 +	170	180	190	200
StRLK1	<i>YHNRPD</i>	GRLS <mark>S</mark> APQL	/HSANRNHPY	KYN-ATLQLO	GANGNLYLTDS	DGTLYHSTN	Tt <mark>g</mark> ks <mark>y</mark> sgln	INT <mark>emGn</mark> l	VLFDKRKKA-	IHQSFDH	PTDCLL
OsPK10	VVHM	ATTTT	/HSANPNSPV	TH <mark>S-</mark> DDFFFE)KD <mark>GN</mark> AFLQSC	GGSKYGLPI	SPGRDCHLYF	TTGLHQS	VYLGKDASS	LHQSFSH	
ARK3	HYLGIN	YKAISKRTY	/WYANRDTPL	SS <mark>SIGTL</mark> KIS	SDSNLYVLDOS	DTPYNSTNL	TGG-DYRSPL	VAELLDIGNE	VLRDSKNSAF	DGYLHOSFDF	PTDTLL
SFR2	HYLGIH	YKAISKRTY	/HYANRDHPL	ST <mark>stgtlk</mark> is	SDSNLYYYDG <mark>S</mark>	DTAYNSTNL	TG <mark>G</mark> G <mark>Dy</mark> RSP\	VAELLDNGN	VLRDSNNND	DIVLHQSFDF	PTDTLL
Consensus	wy	a.st.	/HsANr#.Pv	stl	gn.vls	sdg	t.G.dv	ae\$ld.g#.	. V1.ds F	••••1HQSFd•	PTDE1L
	201	210	220	230	240	250	260	270	280	290	300
C: DI 1/4	1		+	+		+	+	+		+	
OsPK10	SGONFI	EGMTLMSP	-51505NQSF (SNTVONMTY	TLOTKSGNMJ	LYAGFETPOF	YUSAQQDSR	TTYNKNGDRI	YPANLSSAS	ISFYDOSGSLL	SOLVIANE	-NANAT
ZnPK1	PTQLIT	AATRLYPTTO	Q <mark>SRS</mark> PG <mark>N</mark> YIF	rf <mark>s</mark> dlsyl <mark>s</mark> l	IYHYPQYS <mark>D</mark>]	THPDPDQNL	YQDGR-NQYN	ISTRLGHLTDS	GYLASSDFAD)G <mark>Q</mark> ALYA <mark>S</mark> D	YGPGYK
ARK3		NDAKTGENRE	- I <mark>RS</mark> MKSPDD - I <mark>DS</mark> UKSPDD	PS <mark>S</mark> GDF <mark>S</mark> F PS <mark>SGNYS</mark> F	KLETEGFPEJ	FLANRESRM	YRSGPHNGIF YPSCPUNCTE	RF <mark>S</mark> GYPEMQPF PESCVPEMOPE	EYMVENETTS	KEEVTYSFRI	TKSDYY
Consensus	p.qkl.	kl	SLSHKOLDD	••\$••••\$	••••••••••••••••••••••••••••••••••••••	[%]	9gn	• • • • • • • • • • • • • • • • • • •	ft.	q.vs	******
	201	210	220	220	240	250	200	374	204	204	400
	301	+	320 +	330 +	34V +	+	36V +	370 +	380 +	33V +	400
StRLK1	QFIKLG	P <mark>DGHLHLY</mark> QS	SDAYDHKHLD	EYMNSYLGN	GYPHY <mark>CGRY</mark> S	SICTNDGQ	CNCPYEGNEF	RPINRNF	DL <mark>gc</mark> sqlts1	SCNSSHYHSL	IELSDİ
OsPK10			_QGGNGKSKF	SITY <mark>P-ADS(</mark> SHV <mark>OM_TOP(</mark>	DMPAYCSPY1	ICSSGTG	CQCPSALGSF	A	NCNPGYT9	ACKSNEEFPL	YQLDSG MDEVDI
ARK3	SRLSIS	SSGLLQRFT	ITETAQNHNQ	FWY <mark>AP-KD</mark> Q(DEYKECGYYC	YCDSNTSPY	CNCIKGFKPF	NPQYHGLRDO	SDGCYRKTLL	SCGGGDGFYR	
SFR2	SRLSLS	STGSLORFT	IIEAIQN <mark>h</mark> nq	FHY <mark>ap-Kdq(</mark>	DYKECGTYC	YCDSNTYPY	CNCHRGFEPF	RNPQAHGLRDO	isd <mark>gc</mark> yrk <mark>t</mark> al	.SCNGGDGFYR	LKKHK
Lonsensus	·L'1'	sdu.1%	••••••••••••••••••••••••••••••••••••••	••••ap•••d•f	.drg.98	316.s.c.p.	LULD.8L	mp	gLC	, <mark>sld.</mark> t	•••••
	401	410	420	430	440	450	460	470	480	490	500
SEDI V1		TNEYCSSNML	JEECTKTEDC	+	+	+ ×	+		ICI I I NEVESI	KUNNEGEDKI	 T_VELK
OsPK10	YGYV-G	TNFFPPAAK-	TNLTGC	KSACTGNCSC	YAYFFDQS-9	G		i	ICFLFNQIGS	QHKGGNTTRF	A-SFIK
ZnPK1	PN	TDFHGSDQQ		RDICISDCT(SCYPKAYLF	SGRTYPTSD	RTIYLKLPT	WSVSNALIPF	SDYFDSYPRR	
SFR2	PD	TAATSYDR	GIGIKEC	EEKCK <mark>S</mark> DCN(TAFANTDIR	6G-S6CYYH	TGDILDIRN-	·YAKGGQ[)LYVRLAATDL	EDTTNRNAKI	IG <mark>SCI</mark> G
Consensus	P	t.f.s.d	<mark>gC</mark>	C.s#C.O	.af		•g••••••	y.k	v.na]	.dk.	s.i.
	501	510	520	530	540	550	560	570	580	590	600
	I	+	+	+	+	+	+	+	+	+	1
StRLK1	VQNFAK	AQYQPPIYSQ GGSDSI	J <mark>RKQSR</mark> PLKY SSGKHNTTTT	IYASALAALY VTMLGTLATI	GMILSISANA GVI TYTGEUT	YLFKKRTLS	YKARDL	LDLAPILPG	LTRFSYNEL PUPETYDEI (ITTODESRKL	GEGGFG
ZnPK1	MNKSIR	EPFPDYHKT(GGESKNFYF	YGFIAAFFY	EVSFISFANF	FYLKRELRP	SELWAS	EKGYKAMTS	FRRYSYREL	KATRKFKYEL	GRGESG
ARK3	VSYLLL			ETPIYDHQLF	RSRDLLMNEY	IS-SRRHIS	RENNTC		EVAMATNNES	NANKL	GQGGFG
Consensus	VS	f	.rkg.r.i.i	QYF	····l·····	krrs	.e	d.lp.n	.vry.#1	atfL	GgGgfG
	601 	+	620 +	+	64V +	650 +	+	670 +	680 +	+	700
StRLK1	SVYEG T	LSNGNKIAY	KELNGLG-QY	KDSFLTEVK]	CYGSTHHYNL V	KLY <mark>gfcte</mark> k	DHRYLIYEY	IV <mark>NGSLD</mark> RHIS	SHENQE <mark>ngl</mark> t-	HLMRORIIAD	IAKGLA
OsPK10		LPDGSRIAY	KLEGIG-QG	KEFRSEVT	CIGSTHHIHLY	KLRGFCTEG	PHRLLAYEY)	ANGSLDKWIF		HDTRFNIALG	TAKGLA
ARK3	IVYKGK	LLDGQEMAY		TDEFKNEVKL	IARLQHINLY	RLLACCYDA	GEKHLIYEYL	ENLSLDSHLF	-DKSRNSKLN	HQMRFDIING	IARGLL
SFR2	IVYKGR		KRLSKMSVQG	TDEFKNEVKL	IARLQHINL		GEKMLIYEYL	ENLSLDSHLF	-DKTRSCKLN	HQKRFDITNG	
Lonsensus	.YTKU.	L.#81HY	(rL	KOEFEVK.	.igr1.HinLy	r1.gtL.#.	.nr.Liyet.	engsLd11	•••K•••U•11	.HKt .1g	INKULA
	701	710	720	730	740	750	760	770	780	790	800
SERIK1		SHKTTHI DT	(PHNTI I DON	ENAKTSDEGI		VVTR-HRGT	PGYLAPENI F	+ S-VTTFKVNV	YREGTVLLEV	I CGRKNI DUS	 080FD-
OsPK10	YLHQDC	DSKIYHCDI	PENYLLDDN	FIAKYSDFGL	AKLMTREQSI	IVFTT-LRGT	RGYLAPEHLI	NYAISEKSD	YSYGHYLLEI	IGGRKSYDPS	EISE
ZnPK1	YLHHEC		(PENILLDQA	FEPKITDFGL	VKLLNRGGS1	IQNYSHYRGT	LGYIAPENYS VCVHCPEVOR	SLPITAKYDY	YSYGYYLLEL	LTGTRYSELY	GGTD <mark>E</mark> ¥
SFR2	YLHODS	RFRIIHRDL	ASNYLLDKD	MTPKISDFG	1ARIFGRDETE	ANTRKYYGT	YGYHSPEYAL	DGIFSTKSD	FSFGYLLLE	ISGKRNKGFY	NSDHD-
Consensus	YLHq#c	!!H.D.H	<p.n!lld< td=""><td>f.pK!sDFG\$</td><td>aklrd.s.</td><td>ntr.vrGT</td><td>.GY.aPEw</td><td>is.KsD\</td><td>/%<mark>s%GvvLLEi</mark></td><td>i.g.rn</td><td>d.d.</td></p.n!lld<>	f.pK!sDFG\$	aklrd.s.	ntr.vrGT	.GY.aPEw	is.KsD\	/% <mark>s%GvvLLEi</mark>	i.g. rn	d.d.
	801	810	820	830	840	850	860	870	880	890	900
	I	+	+	+	+	+	+	+	+	·+	1
StRLK1	N	YHLLSYFKR	CAEQDQLIDH	YDKNNEDMQL Engri rynni	_HREAVTENNS	SLAANCYQGD	FNKRPSHSL	VON EGUCEL	/ETNLC // OPPVSSOTC	JFNFTN SVDI VANAEKS	LTEAGA
ZnPK1	HSHLRK	LYRMLSAKLE	EGEEQSHIDG	YLDSKLNRP	/NYYQARTLIN	LAYSCLEED	RSKRPTMEHF	VQTLLSADD	LOUTTOJQIC		JJLLUI
ARK3	LNL			IITDSLSST			AEDRPTMSL	ILMLGSEST1	IPQPKAPC	iYCLERSLLDT	DSSSSK
SFKZ Consensus	LML		(GRGLDIVDP	11110558511		Cal.Cv#ed	RPt Ms.v	VIIILU			
			•			•					
	901	910 +	92822								
StRLK1	GNQQHE	VPISSILPS	-LSGPR								
0sPK10	SSGMSD	YNSDALLSA	/RLSGPR								
ARK3	QRDDES	HTYNQITYS	/LDAR								
SFR2											
LONSENSUS	•••••	•••••	******								

Abb.3-26: Alignment von StRLK1 mit homologen Proteinen aus Zea mays (ZmPK1, GenBank Accession X52384), Oryza sativa (OsPK10, GenBank Accession L27821), Arabidopsis thaliana (ARK3, auf BAC T6K22, GenBank Protein_Id: CAA20203.1) und Brassica oleracea (SFR2, EMBL Accession X98520).
finden sich neben den charakteristischen Sequenzmotiven, die aus entfernt verwandten Serin-Threonin-Kinasen abgeleitet wurden, weitere konservierte Aminosäuren.

Weitere zu *StRLK1* homologe Sequenzen aus der *Gro1* Region; es handelt sich um eine Genfamilie:

Nach Analyse der Sequenz des *Inserts* von BAC 98P9 wurden die Sequenzen von drei weiteren *StRLKs* (*StRLK2, 3* und 4) gefunden (Kapitel 3.8, Abb.3-24). Auch durch die Endsequenzierungen der BAC- und Lambda-Klone aus der *Gro1* Region wurden partielle Sequenzen gefunden, die zu *StRLK1* homolog sind (Kap.3.7, Tab.3-3 bis 3-6, Abb.3-20).

Sequenzen, zu denen nur partielle Sequenzinformationen vorliegen, bzw. die Sequenzen, welche *upstream* von den *StRLKs* aus BAC 98P9 liegen, werden im Weiteren als *StRSHs* (Solanum tuberosum Receptor-Like Kinase Sequence Homologs) bezeichnet.

In Kapitel 9.3 ist ein Sequenzvergleich auf Nukleotidebene gezeigt, der alle bisher charakterisierten homologen Sequenzen zu *StRLK1* aus der *Gro1* Region enthält. Es wird deutlich, daß alle Sequenzen hoch konserviert sind. Außer *StRLK1* wurde bisher kein funktionelles Homolog indentifiziert, daß für das *Gro1* Resistenzgen in Frage kommt.

Sequenzen aus BAC 98P9: Abbildung 3-27 zeigt ein schematisches *Alignment* von *StRLK1, 2, 3* und *4* und den *upstream* Homolgen *StRSH2* (*upstream* von *StRLK2*), *StRSH3* (*upstream* von *StRLK3*) *und StRSH4* (*upstream* von *StRLK4*). Es wird deutlich, daß *StRLK2* und *StRLK3* im konservierten Bereich, der die PTD Box (WQSFDHPTDCLL) kodiert, eine Stop-Mutation besitzen. Das Codon für Glutamin (Q) ist zum Stop-Codon mutiert (siehe auch gelb markierte Codons im *Alignment* in Kapitel 9.3). Zwischen die Codons, die die konservierten Cysteine in *StRLK4* kodieren ist ein Copia-ähnliches Retroelement insertiert. Somit ist anzunehmen, daß es sich bei *StRLK2, 3* und *4* um Pseudogene handelt.

Endsequenzen der BAC- und Lambda-Klone: *StRSH9* liegt am T7-Ende in Lambda 107 (Kap.3.9) und kommt damit aus P41 (zur Kartierung siehe auch Kap.3.1, Abb.3-11). *StRSH10* (Kap.9.3) vom T7-Ende von BAC 10N22 liegt zwischen dem CAPS-Marker zum T3-Ende von BAC 137E13 und dem ASO-Marker zum T3-Ende von BAC 62C17 (Kap.3.7, Abb.3-21 und Abb.3-19 – hier Marker durch Sternchen in Kontig III repräsentiert), die beide nicht in der resistenten Rekombinante R458 enthalten sind. *StRSH11* vom T7-Ende in BAC 25J5 (Kap.3.9) enthält nach Motiv II der STK-Domäne

wahrscheinlich eine Retroelement-Insertion. Das anschließende Sequenzstück zeigt auf Nukleotidebene 97% Identität mit dem *Long Terminal Repeat* (LTR) eines Retroelements (nicht gezeigt), dessen Teilsequenz in Subklon b66a (auch aus BAC 25J5) 1.6 kb *upstream* vom putativen Translationsstart des *StRLK1* Gens liegt. Im Homolog der *St332/334*-Genfamilie, welches das *Taq*I-Restriktionsfragment 14 enthält, liegt *upstream* des zerstörten Exons II ein höchstwahrscheinlich nicht funktionelles Sequenzfragment, daß zum STK-kodierenden Abschnitt von *StRLK1* homolog ist (Kap.3.5, Abb.3-14). Am T7-Ende des *Inserts* von BAC 106C14 (nicht gezeigt) liegt eine zu *StRLK1* homologe Sequenz, die mit *Taq*I-Restriktionsfragment 16 gekoppelt ist und auf Chromosom IV kartiert (zur Kartierung siehe Kap. 3.2).

Abb.3-27: Schematisches *Alignment* der Rezeptor-ähnlichen Kinasen aus BAC 25J5 (*StRLK1*) und BAC 98P9 (*StRLK2,3,4*). Gezeigt sind auch Sequenzen, die in BAC 98P9 *upstream* in entgegengesetzter Leserichtung von den *RLKs* liegen und zum 5'-kodierenden Sequenzbereich der *RLKs* homolog sind (Kapitel 3.8 und 9.3). Kodierende Bereiche: SP, Signalpeptid; VWSAN u. PTD, Aminosäuren repräsentativ für die entsprechenden konservierten Motive; CCC, konservierte Cysteine; TM, Transmembrandomäne; S/T Kinase, Serin-Threonin-Kinase-Domäne. *StRLK, StRSH*: siehe Text.

RT-PCR - *StRLK* Homologe werden in der Blüte und in unterirdischen Geweben exprimiert: Aus dem Sequenzvergleich zwischen *StRLK1, 2, 3* und *4* wurden Primer von absolut konservierten Bereichen abgeleitet, die das extrazelluläre Motiv VWSANRNHP und den Bereich um das VIb Motiv der Serin-Threonin-Kinase-Domäne kodieren. (Primer: RLK3RACE5 und RLK5RACE2, siehe Kapitel 9.1 und 9.3).

Mit diesen Primern wurde ein RT-PCR Experiment mit cDNA aus verschiedenen Kartoffelgeweben durchgeführt (Abb. 3-28). Da das hypothetische Transkript von *StRLK1* kein Intron enthält, mußte ausgeschlossen werden, daß PCR-Produkte allein durch kontaminierende DNA der präparierten RNA zustande kamen. Hierzu wurde RNA in der Negativkontrolle eingesetzt. Eine Kontrolle (Abb.3-29) mit Aktin-Primern (Actinf1, r1) zeigt, daß die RNA-Präparationen aus allen Geweben intakte RNA enthielten.

Abb.3-28: RT-PCR mit cDNA aus verschiedenen Kartoffelgeweben mit *StRLK*-spezifischen Primern.

Abb.3-29: RT-PCR auf cDNA verschiedener Kartoffelgewebe mit Aktin-Primern. Primer wurden aus der EMBL Datenbank von einer Kartoffel-Aktin-Sequenz mit der *Accession* Nummer X55749 abgeleitet. Auf der genomischen DNA liegt zwischen den Primern ein Intron. Das 500bp Produkt kann also nicht von genomischer Kontamination in der RNA-Präparation stammen.

ERGEBNISSE

3.10 Funktionelle Komplementation

Transgene Pflanzen in welche die Gene mit den TagI-Fragmenten 5 und 14 aus der St332/334-Genfamilie, oder die Rezeptor-ähnliche Kinase StRLK1 übertragen wurde, sind nicht gegen Globodera rostochiensis (Ro1) resistent: Zur funktionellen Analyse wurde die gegenüber G. rostochiensis anfällige Kulturkartoffelsorte Désirée mit den Kandidaten für das Grol Resistenzgen transformiert. Als Kandidatengene gingen aus den Sequenz- und Expressionsanalysen die Rezeptor-ähnliche Kinase StRLK1 (Kap.3.9) und aus der St332/334-Familie die Gene mit den TagI-Restriktionsfragmenten 2, 4, 5 und 14 (Kap.3.1 bis 3.3, Kap.3.5 und 3.6) hervor. Die Kandidatengene wurden in die Pflanzentransformationsvektoren BIBAC2 und pCLD04541 subkloniert (siehe Kapitel 3.4, Abb.3-13) und mittels der Agrobacterium-Stämme COR308 und LBA4404 in übertragen. Désirée-Blattzellen Beide Transformationsvektoren enthalten den Selektionsmarker (das Kanamycin Resistenzgen) an der left border (LB, siehe Kap.2.8, Abb.2-2 und 2-3). Die Übertragung der T(Transfer)-DNA erfolgt beginnend von der right border über das subklonierte Insert zur left border. Damit sollte theoretisch gewährleistet sein, daß die mit Kanamycin selektierten transgenen Pflanzen auch das subklonierte genomische Fragment enthalten.

Die regenerierten transgenen Pflanzen wurden auf Resistenz gegenüber *G. rostochiensis* Pathotyp Ro1 getestet (Tabelle 3-7). Zur Kontrolle wurden auch die resistente Linie P40 und suszeptible, nicht-transgene Désirée-Pflanzen infiziert. Abgeschlossen sind die Untersuchungen für das Kandidatengen mit *Taq*I-Fragment 5. Keines der subklonierten genomischen Fragmente (65/5, 113/2 und b16j), die durch *Agrobacterium* (CL65/5-III, CL113/2-I und LBb16j-I) übertragen wurden, konnte den transgenen Désirée-Pflanzen Resistenz gegenüber *G. rostochiensis* Pathotyp Ro1 vermitteln (Tabelle 3-7). Auch das nicht intakte Gen mit *Taq*I-Fragment 14 aus Subklon b66b wurde auf Désirée übertragen. Es wird in P6/210 exprimiert (Kap.3.6, Abb.3-18) und sollte deswegen nicht von der Komplementationsanalyse ausgeschlossen werden. Alle durch *Agrobacterium* (LBb66b-III) transformierten Pflanzen waren allerdings anfällig (Tab.3-7). Auch die transgenen Pflanzen, auf welche die Rezeptor-ähnliche Kinase *StRLK1* (Subklon b66a) mit *Agrobacterium* (LBb66a-IV, LBb66a-IV, LBb66a-V) übertragen wurde, zeigten

Tranformationen mit Agrobacterium				
Gen mit <i>Taq</i> I- Fragment #/ RLK #	Bezeichnung der transformierten Agrobacterium Klone	Anzahl regenerierter Kalli	Anzahl der regenerierten transgenen Pflanzenlinien	Anzahl der auf Rol getesteten transgenen Pflanzen (S=suszeptibel)
2	LBb32b-I	10	21	
	LBb32b-II	5	11	
4	LBb07c-I		17	
	LBb07c-II	12		
5	CL65/5-III		17	15 S
	CL113/2-I		4	45
	LBb16j-I	5	17	16 S
14	LBb66b-II	78	19	75
	LBb66b-III	20	16	10 S
SIRLKI	LBb66a-I	35	7	6 S, 1 ?
	LBb66a-IV	66	12	58
	LBb66а-V	38	5	58
14+StRLKI	LB25J5-I	15	9	98
Vektorkontrolle (Vektor obne Insert)	L\\41-I	3	10	75
	LV41-II	3	10	38
(, , , , , , , , , , , , , , , , , , ,	LV41-III	37	5	
Ballistische Transformation mit der Genkanone				
Gen mit <i>Taq</i> I- Fragment #/ RL K#	BAC-Klon	Anzahl regenerierter Kalli	Anzahl der regenerierten transgenen Pflanzenlinien	Anzahl der auf Rol getesteten transgenen Pflanzen
2+5+11	98P9		19	14 S. 5 ?

Tabelle 3-7: Der aktuelle Stand der Désirée-Transformationen. In der Bezeichnung der *Agrobacterium*-Klone steht der erste Buchstabe für den verwendeten Stamm: L=LBA4404, C=COR308.

5

4

2

4

26N18

60L16

173o21 221C8

4+14+*StRLKI*

4

3

2

2

keine Resistenz gegenüber *Globodera rostochiensis* (Tab.3-7). Zur Kontrolle wurde auch die T-DNA des pCLD04541-Vektors ohne ein subkloniertes *Insert* mit *Agrobacterium* (LV41-I, LV41-II und LV41-III) übertragen, um auszuschließen, daß die T-DNA alleine bereits Resistenz gegen *G. rostochiensis* vermitteln kann. Keine der transgenen Pflanzen wurde resistent (Tab.3-7). Transgene Pflanzen, die die Gene aus den Subklonen b32b und b07c enthalten, befinden sich zur Zeit noch im Test.

Da in der Grol Region weitere Kandidaten für das Resistenzgen vorhanden sein können, die bis jetzt noch nicht identifiziert worden sind, wurden neben den Subklonen auch direkt die BAC-Klone aus der Bibliothek mit Inserts bis zu 120 kb in den Agrobacterium-LBA4404 transformiert (die Bibliothek wurde bereits Stamm mit dem Pflanzentransformationsvektor pCLD04541 konstruiert). Die Transformation der Agrobacterium-Zellen mit solch großen Vektoren gelang durch Präparation hoch kompetenter Zellen nach einem speziellen Protokoll von McCormac et al. (1998). Auf diese Weise gelang die Übertragung eines 40 kb Inserts von BAC 25J5 (Tab.3-7, Agrobact.-Klon LB25J5-I). BAC 25J5 enthält sowohl StRLK1 als auch das TagI-Restriktionsfragment 14. Nach der Transformation mit diesem BAC waren keine der transgenen Pflanzen resistent gegenüber G. rostochiensis (Tab.3-7). Damit wurden obige Transformationsergebnisse für die separaten Subklone mit den beiden Genen bestätigt. Die Übertragung von größeren Inserts (80 kb und 100 kb) gelang mit LBA4404 nicht. Zwar wurde für das BIBAC2-System gezeigt, daß bis zu 150 kb hochmolekularer DNA in den pflanzlichen Zellkern eingeschleust werden können (Hamilton et al., 1996), in diesem System wird aber ein "Supervirulenz"-Helferplasmid eingesetzt, daß genau wie der pCLD04541-Vektor durch Selektion mit Tetracyclin in Agrobacterium propagiert wird. Der Agrobacterium-Stamm COR308 des BIBAC2-System konnte deshalb nicht mit einem pCLD04541-Vektor transformiert werden. Als COR308 wird der Agrobacterium-Stamm UIA143 bezeichnet, wenn er neben dem eigentlichen Helferplasmid pMP90 das zusätzliche "Supervirulenz"-Helferplasmid pCH32 enthält. Auf pCH32 sind weitere Virulenzgen-Kopien untergebracht. Diese, so wird spekuliert, sollen die Übertragung hochmolekularer DNA in den Pflanzenzellkern effizienter machen (Hamilton, 1997). Ein anderes "Supervirulenz"-Helferplasmid, pCH33, enthält anstelle des Tetracyclin Resistenzmarkers einen Spectinomycin Resistenzmarker. Dieses Plasmid wurde in den

Agrobacterium-Stamm UIA143, der nur das Helferplasmid pMP90 enthielt, übertragen. Die *Agrobacterium* Zellen wurden dann mit verschiedenen BAC-Klonen aus der Bibliothek transformiert. Wie LBA4404, so war es auch mit diesem Stamm nicht möglich, transgene Pflanzen zu regenerieren. Selbst das 40 kb *Insert* von BAC 25J5 konnte auf diese Weise nicht übertragen werden.

Alternativ zur *Agrobacterium*-vermittelten Transformation wurden Versuche mit der Genkanone durchgeführt. Mit Hilfe der ballistischen Transformation gelang die Übertragung der großen BAC-*Inserts* auf Désirée. Hierzu wurden Goldpartikel mit DNA von den isolierten BAC-Klonen aus dem Kontig beschichtet und in Désirée-Blattzellen geschossen. Ergebnisse liegen bisher zu BAC 98P9 vor, der die Gene mit den *Taq*I-Fragmenten 2, 5 und 11 enthält. 5 der 19 transgenen Pflanzen haben nach wiederholten Tests wenige oder keine Zysten (Tab.3-7). Diese Testergebnisse müssen noch reproduziert werden. Weitere BAC-Klone aus den Kontigs I und II (Kap.3.7, Abb.3-19) die mit der Resistenz gegen *Globodera rostochiensis* kosegregieren, werden mittels Genkanone auf Désirée übertragen. Einige transgene Linien, die mit DNA der

Abb.3-30: Untersuchung von transgenen Pflanzen auf die Anwesenheit des Gens mit *TaqI*-Fragment 5. Die Primer Frag5_P40spez3f und Frag5_P40spez3r amplifizieren DNA von Klonen, die das *TaqI*-Fragment 5 enthalten (Lambda 65, BAC 60B11 und BAC98P9) und nicht von DNA, die dieses Fragment nicht enthält (BAC 7805, P41, P18 und Désirée). CL65/5-III-1 bis III-8: Mit Subklon 65/5 tranformierte Désirée-Linien.

BAC-Klone 26N18, 60L16, 173o21 und 221C8 beschossen wurden, sind bereits regeneriert worden (Tab.3-7).

Da die transgenen Pflanzen selektiv mit Kanamycin regeneriert worden sind, muß zusätzlich getestet werden, ob die transgenen Pflanzen auch das *Gro1* Kandidatengen enthalten, auf das während der Regeneration kein Selektionsdruck herrschte.

Genomische DNA der transgenen Pflanzen wurde hierzu mittels PCR-Analyse untersucht. Aus dem Vergleich der genomischen Sequenzen der Mitglieder der *St*332/334-Genfamilie (Kapitel 9.2) konnten zwei Primer abgeleitet werden, die spezifisch für das Gen mit *Taq*I-Fragment 5 sind und nicht von Désirée-DNA amplifizieren (Abb.3-30). Von der DNA aller untersuchten transgenen Désirée-Linien konnte das übertragene DNA-Fragment amplifiziert werden.

Zwar wurden *Agrobacterium*-Zellen bei der Regeneration der transgenen Pflanzen durch das Antibiotikum Claforan abgetötet, doch ist die PCR so sensitiv, daß auch Spuren von Kontamination nachweisbar sein könnten. Der PCR-Schnelltest wurde deshalb durch eine RFLP-Analyse ergänzt. Abbildung 3-31 zeigt die Untersuchung von transgenen Linien, die durch *Agrobacterium* mit dem Subklon b16j (enthält *Taq*I-Fragment 5, siehe Kapitel 3.4) transformiert wurden. Alle transgenen Linien (LBb16j-I-2 bis I-13) enthalten das Gen mit *Taq*I-Restriktionsfragment 5. Nach PCR-Test und RFLP-Analyse ist also davon auszugehen, daß das Gen mit *Taq*I-Restriktionsfragment 5 im BIBAC2-Subklon 65/5 und dem pCLD04541-Subklon b16j in das Genom der transgenen Désirée-Pflanzen integriert wurde. Da keine der transgenen Pflanzen resistent gegenüber *Globodera rostochiensis* Pathotyp Ro1 war, kann das Gen endgültig von den Kandidaten für das *Gro1* Resistenzgen ausgeschlossen werden.

Die mit ganzen BAC-Klonen beschossenen Pflanzen enthalten nicht alle TaqI-**Fragmente.** BAC 98P9 enthält drei Mitglieder der St332/334-Genfamilie. Es sind die Gene mit den TaqI-Fragmenten 2, 5 und 11. Ob das TaqI-Fragment 11 durch ballistische Transformation auf Désirée übertragen wurde, kann in der RFLP-Analyse (Abb.3.31) nicht bestimmt werden, da dieses Fragment, wenn es in den transgenen Pflanzen vorhanden ist, durch Désirée-eigene Fragmente überlagert wird (siehe auch Kap.3-1, Abb.3-1; ein PCR-Test auf Fragment 11 ist aber möglich, siehe Abb.3-12 in Kapitel 3.3). Die beiden anderen *TaqI*-Fragmente sind nach der Übertragung durch RFLP-Analyse nachweisbar. Die transgenen Linien 98P9-3, -8 und -9 (Abb.3-31) enthalten keines dieser beiden Fragmente. 98P9-10 enthält nur Fragment 5, 98P9-4 enthält sowohl Fragment 5 als auch Fragment 2. Der naheliegendste Grund für das Fehlen von TagI-Fragmenten in den transgenen Pflanzen ist, daß die Fragmente in BAC 98P9 (siehe Kapitel 3.8, Abb.3-24; das Kanamycin Resistenzgen liegt neben dem T3-Ende des gezeigten BAC-Inserts) im Vergleich zu den Subklonen (hier also für das *Taq*I-Fragment 5 die Subklone 65/5 und b16j, siehe Kapitel 3.4) in BAC 98P9 wesentlich weiter vom Kanamycin Resistenzgen in der T-DNA entfernt liegen, wodurch sie bei der Regeneration der transgenen Pflanzen vielleicht nicht stabil vererbt werden und schneller verlorengehen. Von den transgenen Pflanzen in der RFLP-Analyse war keine resistent gegen Globodera rostochiensis. DNA der anderen mit BAC 98P9 transformierten Pflanzen, also auch von den Pflanzen, welche wenige oder keine Zysten hatten, wird gerade untersucht.

4. Diskussion

Die *St*332/334-Genfamilie zeigt Homologie zu bekannten TIR-NBS-LRR Resistenzgenen:

Bisher wurden lediglich drei dominante Nematodenresistenzgene aus Pflanzen kloniert. Hsl^{pro-1} aus der Zuckerrübe (Cai et al., 1997), Mi-1.2 aus der Tomate (Milligan et al., 1998) und Gpa2 aus der Kartoffel (van der Vossen et al., 2000). Charakteristisch für diese drei Gene, wie auch fast alle anderen Resistenzgene, ist das Vorhandensein einer Region, die eine LRR(Leucine-Rich Repeat)-Domäne kodiert. Abgesehen vom LRRkodierenden Sequenzbereich ähnelt das Hs1^{pro-1} Gen aber keinem anderen isolierten Resistenzgen. Mi-1.2 und Gpa2 hingegen enthalten neben der LRR-Domäne außerdem eine Leucine-Zipper(LZ)- und eine NBS(Nucleotide Binding Site)-Domäne. Diese Domänenorganisation ist für eine große Untergruppe von Resistenzgenprodukten typisch. Hsl^{pro-1} verleiht gegenüber dem Zuckerrübennematoden Heterodera schachtii Resistenz. Mi-1.2 besitzt als einziges bekanntes Resistenzgenprodukt eine duale Spezifität gegen Avirulenzfaktoren verschiedener Organismengruppen. Es vermittelt in der Tomate einerseits gegen die Wurzelgallennematoden Meloidogyne javanica und Meloidogyne incognita und andererseits gegen die Kartoffelblattlaus Macrosiphum euphorbiae Resistenz. Gpa2 der Kartoffel verleiht Resistenz aus gegenüber dem Wurzelzystennematoden Globodera pallida, der mit Globodera rostochiensis nahe verwandt ist. Die Struktur der bisher klonierten Nematodenresistenzgene legt die Möglichkeit nahe, daß auch das Resistenzgen gegen Globodera rostochiensis im Grol Locus der Kartoffel auf Chromosom VII Resistenzgen-typische Domänen kodiert. Die untereinander stark homologen PCR-Produkte St332 und St334 (Leister et al., 1996) aus der Kartoffel kartieren in den Grol Locus und hybridisieren mit einer ganzen Reihe von Restriktionsfragmenten TaqI-verdauter Kartoffel-DNA (Kap.3-1, Abb.3-1). Die abgeleiteten Aminosäuresequenzen der PCR-Produkte sind zu NBS-Domänen in der Datenbank homolog (Leister et al., 1996). Damit sind die Mitglieder der St332/334-Genfamilie in der Grol Region, die durch die verschiedenen hybridisierenden Tagl-Fragmente repräsentiert werden, Kandidaten für das Gro1 Resistenzgen. Die St332/334-Familie ist hoch polymorph. Das Muster der TaqI-Restriktionsfragmente, die mit der St332-Sonde hybridisieren, ist für jeden der untersuchten Genotypen charakteristisch (Kap.3.1, Abb.3-1, Tab.3-1). Selbst wenn zwei Kartoffellinien das gleiche *Taq*I-Fragment enthalten, sind die entsprechenden Gene auf Sequenzebene ausreichend verschieden, so sie durch spezifische Primer in einer Standard-PCR ohne stringente daß Annealingtemperatur voneinander unterschieden werden können (z.B. TaqI-Fragment 2 von den Parentallinien P40 und P41, siehe Kap.3.3, Abb.3-7). Berücksichtigt man, daß die Kartoffel als allogame Pflanze, also als Fremdbestäuber, ein stark heterozygotes Genom besitzt, ist diese Beobachtung allerdings nicht ungewöhnlich. Dieser Umstand erwies sich in der vorliegenden Arbeit als vorteilhaft, denn so konnte die Grol Region mit weiteren PCR-basierten Markern angereichert werden (Kap.3.2, 3.3, 3.7). Von Bedeutung für die Klonierung des Resistenzgens gegen Globodera rostochiensis Pathotyp Ro1 (die Kartierungspopulation wurde nur auf Pathotyp Ro1 getestet) sind nur die Gene der St332/334-Genfamilie aus der resistenten Linie P40. Zwar finden sich in der genomischen Bibliothek auch Mitglieder der St332/334-Genfamilie aus der Linie P41, aber nur für die *Taq*I-Restriktionsfragmente aus P40 ist durch die Kartierungspopulation P18 (suszeptibel, grol/grol) x P40 (heterozygot resistent, Grol/grol) ableitbar, ob sie mit dem Grol Locus kosegregieren (zur Kartierungspopulation siehe Gebhardt et al., 1991, Leister et al., 1996). Entsprechend der Anzahl der TagI-Fragmente enthält die resistente Linie P40 11 Homologen der St332/334-Genfamilie (Kap.3.1, Abb.3-1 und Tab.3-1). Die TaqI-Restriktionsfragmente 8 und 16 liegen in P40 homozygot vor, sie segregieren somit in der Kartierungspopulation P18xP40 nicht (Leister *et al.*, 1996). Die Linie P40 enthält also insgesamt 13 Homologen der St332/334-Genfamilie. Bis auf das TaqI-Restriktionsfragment 16 kosegregieren alle Fragmente mit dem resistenzvermittelnden Grol Locus oder mit dem allelischen grol Locus, der mit Suszeptibilität gegenüber Globodera rostochiensis gekoppelt ist (Kap.3.2, Leister et al., 1996). Das TagI-Fragment 16 konnte in dieser Arbeit durch einen CAPS- und einen DFLP-Marker eindeutig auf Chromosom IV zwischen die Marker GP180(a) und GP511 kartiert werden (Kap.3.2, Abb.3-5 und Abb.3-6, GP Loci siehe Leister et al., 1996). Im gleichen Chromosomenbereich befindet sich ein QTL (Quantitative Trait Loci) für Resistenz (Leonards-Schippers al., 1994). gegen *Phytophthora* infestans et TaqI-Restriktionsfragment 8 konnte in dieser Arbeit an den Grol Locus auf Chromosom VII

des Elters P40 und das allelische Fragment an grol, ebenfalls von P40, kartiert werden (Kap.3.2, Abb.3-3). Mit grol segregierten auch die TagI-Restriktionsfragmente 8b und 10 (Leister et al., 1996). Damit kartieren 8 der 13 Fragmente (Gene mit den TaqI-Fragmenten 2, 3, 4, 5, 6, 8, 11, 14), die mit der St332-Sonde hybridisieren, an den resistenzvermittelnden Grol Locus. In der Kartierungspopulation, die aus 1100 Pflanzen besteht, existiert eine nematodenresistente Pflanze (R458), die im St332/334-Gencluster des Grol Locus rekombinant ist. Sie enthält nur 5 der 8 TagI-Restriktionsfragmente (Kap.3.1, Tab.3-1), die in allen anderen Pflanzen der Kartierungspopulation mit dem Grol Locus kosegregieren. Zusätzlich enthält R458 durch das Rekombinationsereignis auch Fragment 8b vom allelischen grol Locus. Als Kandidaten für das Grol Resistenzgen bleiben zunächst also die Gene der St332/334-Genfamilie, die die TaqI-Restriktionsfragmente 2, 4, 5, 11 und 14 enthalten. Die Kandidatengene, aber auch andere Homologen aus den Linien P40 und P41, wurden durch Sequenzierung näher charakterisiert, um einen Einblick in die genomische Organisation und die Verwandtschaft der Gene zu gewinnen (Kap. 3.5 und 9.2). Dazu wurden genomische Klone der Kartoffellinie P6/210 isoliert, die mit der St332-Sonde hybridisierten. Dann wurde durch TaqI-Restriktionsverdau und Southern-Gel-Blot-Analyse untersucht, welche der Restriktionsfragmente, die mit der St332-Sonde hybridisierenden, in den einzelnen genomischen Klonen enthalten sind (Kap.3.1, Abb.3-2 und Tab.3-2). Die Linie P6/210 entstammt einer Kreuzung der Linie P41 mit P40 und wurde zur Konstruktion einer BAC-Bibliothek (Dr. Khalid Meksem) und einer Lambda-Bibliothek (Dr. Cristina Menéndez) ausgewählt, da sie sowohl das R1 Gen, welches Resistenz gegen Phytophthora infestans vermittelt, als auch das Grol Resistenzgen enthält. In einigen Fällen reichten die Daten der RFLP-Analyse nicht aus, um eindeutig zu bestimmen, ob die aus P6/210 isolierten Klone von P40 oder P41 stammen, da die TagI-Fragmente 2, 3, 4, 10, 11 und 14 (Kap.3.1, Abb.3-1) sowohl von P40 als auch von P41 stammen können. Durch die Entwicklung von spezifischen Markern zu den isolierten Klonen konnten jedoch alle Fragmente eindeutig zugeordnet werden (Kap.3.3). Die Sequenzierung der Homologen erfolgte direkt aus den isolierten genomischen Klonen, oder aus Subklonen (Sequenzanalyse siehe Kap.3-5 und Kap.9.2). Das putative Transkript der genomischen Sequenzen kodiert in Transkriptionsrichtung eine TIR(Toll/ Interleukin-1 Receptor

Homology Region)-Domäne, eine NBS-Domäne, eine LRR-Domäne und eine Cterminale Domäne, zu der keine ausreichend homologe Sequenz in der Datenbank existiert (Kap. 3.5, Abb.3-14). Die abgeleitete Aminosäuresequenz zeigt zu den Aminosäuresequenzen der Resistenzgenprodukte N (Whitham et al., 1994) und RPP1-WsA (Botella et al., 1998) hoch signifikante Homologien (38% Sequenzidentität zu N und 35% zu RPP1-WsA). Damit kommen die Mitglieder der St332/334-Genfamilie nicht nur basierend auf der NBS-kodierenden Region, sondern auch nach Charakterisierung der Gesamtsequenz als Grol Resistenzgenkandidaten in Frage. Auf der Grundlage ihrer genomischen Sequenz können zwei Gene mit hoher Wahrscheinlichkeit als Kandidaten ausgeschlossen werden (Kap.3.5, Abb.3-14): Das Gen mit TaqI-Restriktionsfragment 11 enthält in dem Exon, das die NBS-Domäne kodiert, eine Stop-Mutation. Das Gen mit TaqI-Fragment 14 enthält im gleichen Exon ebenfalls eine Stop-Mutation. Außerdem ist nur die 3'-Hälfte dieses Exons vorhanden. Zusätzlich ist in die LRR-kodierende Region ein Inverted Repeat Element insertiert. Die abgeleiteten Aminosäuresequenzen der drei übrigen Kandidatengene der St332/334-Genfamilie mit den TagI-Restriktionsfragmenten 2, 4 und 5 enthalten hingegen ein intaktes offenes Leseraster (Kap.3.5, Abb.3-14, Abb.3-15a) und sind untereinander auf Aminosäureebene 90-94% identisch. Allerdings zeigen sie auch eindeutige Sequenzunterschiede. So enthält die Aminosäuresequenz des Gens mit TaqI-Fragment 5 eine Deletion in der C-terminalen Domäne (Kap.3.5, Abb.3-14, Abb.3-15a). Das Gen mit TaqI-Fragment 4 enthält in der nicht translatierten 3'-Region des putativen Transkripts eine Deletion (Kap.9.2). Die Gene mit den TaqI-Fragmenten 2 und 4 enthalten außerdem eine Retroelement-Insertion im ersten Intron (Kap.3.5, Abb.3-14). Die Lokalisierung der putativen Proteine kann auf Grundlage der genomischen Sequenz nicht eindeutig vorhergesagt werden. Allgemein wird von pflanzlichen TIR-NBS-LRR Proteinen angenommen, daß sie im Cytoplasma lokalisiert sind. Die Gene mit den TaqI-Fragmenten 2 und 4 könnten aber ein N-terminales Signalpeptid für den Transport in das endoplasmatische Reticulum kodieren (Kap.3.5, Abb.3-15b). Jedoch ist das erste ATG-Codon für das putative Signalpeptid nur 12bp vom 5'-Ende des längsten 5'-RACE-Produktes 5R08 entfernt (Kap.9.2, alle RACE-Produkte wurden von Dr. Jost Muth generiert). Für die C-terminale Domäne wird ein Myristylierungs-Motiv vorhergesagt (nicht gezeigt). Dies könnte andererseits auf eine membrangebundene

Lokalisierung hindeuten. Das Konsensusmotiv der 11 vorhergesagten LRR-Module (Kap.3.5, Abb. 3-15a) spricht ebenfalls für eine cytoplasmatische Lokalisierung. Die abgeleiteten Proteine der *St*332/334-Genfamilie sind mit mehr als 1100 Aminosäuren (Kap.3.5, Abb. 3-15a) und einem Molekulargewicht von über 130 KDa (Aminosäuresequenz des Gens mit *Taq*I-Fragment 4) sehr groß. Die Mitglieder der *St*332/334-Genfamilie, die durch die resistente Rekombinante R458 als Kandidaten für das *Gro1* Resistenzgen ausscheiden (Gene mit den *Taq*I-Restriktionsfragmenten 3, 6, 8), enthalten Stop-Mutationen (Kap.3.5, Abb.3-14 und Kap.9.2), die als zweites Ausschlußkriterium eine wichtige Rolle spielen, da mit R458 nur eine einzige Pflanze verfügbar ist, die im *Gro1* Gencluster rekombinant ist.

Nach dem Rezeptor-Elicitor-Modell (Keen, 1992) sollte das Resistenzgen bereits vor der Infektion durch einen pathogenen Organismus in der Pflanze exprimiert sein. Aus dem Vergleich der sequenzierten Mitglieder der St332/334-Genfamilie (aus den Linien P40 und P41, Kap.9.2; das Gen mit TaqI-Fragment 16 wurde zu diesem Vergleich nicht herangezogen) wurden aus zwei absolut konservierten Bereichen in Exon II (kodiert die NBS-Domäne) und Exon III (kodiert die LRR-Domäne) Primer für ein RT-PCR Experiment abgeleitet (Primer siehe Kap.9.2). Das RT-PCR-Produkt wurde kloniert und sequenziert. In Wurzeln von P6/210-Kartoffelplanzen, die nicht mit Globodera rostochiensis infiziert waren, wurden alle drei Kandidatengene aus P40 exprimiert (Kap.3.6, Abb.3-18). Das Gen mit TaqI-Fragment 5 ist scheinbar stärker exprimiert als die Gene mit den Fragmenten 2 und 4. Zwar enthalten die Gene mit den TagI-Fragmenten 6 und 14 Stop-Mutationen (Kap.3.5, Abb.3-14 und Kap.9.2), exprimiert wurden sie dennoch (Kap.3.6, Abb.3-18). Von den Mitgliedern der St332/334-Genfamilie, die von der Linie P41 an P6/210 vererbt wurden, werden mindestens die Gene mit den TaqI-Fragmenten 10 und 11 exprimiert. Die Expression der Gene aus der St332/334-Genfamilie war nicht auf die Wurzeln beschränkt (Kap.3.6, Abb.3-17), sondern war in allen untersuchten Geweben (Wurzeln, Knollen, Stolonen, Stengel, Blätter und Blüte) zu finden. Auf einem Northern Blot konnten die Transkripte der St332/334-Genfamilie mit der St332-Sonde nicht nachgewiesen werden. Sie sind also nur sehr schwach exprimiert. Das gilt sowohl für nicht infizierte Wurzeln, als auch für Wurzeln der Linie P6/210, die mit Globodera rostochiensis infiziert worden waren (Dr.

Jost Muth, nicht publiziert). Auf einem virtuellen Northern Blot (amplifizierte GesamtcDNA) können aber drei Banden wahrgenommen werden, die mit der St332-Sonde hybridisieren (Dr. Jost Muth, nicht publiziert). Die größte hybridisierende cDNA hat eine Länge von etwa 3.6 kb und entspricht einer hypothetischen cDNA zusammengesetzt aus dem längsten 5'-RACE-Produkt 5R08, der St332/334-Sequenz und dem längsten 3'-RACE-Produkt 3R27. Die beiden anderen hybridisierenden cDNAs haben eine Länge von etwa 2.3 und 1.8 kb. Das 3'-RACE-Produkt 3RB2 (nicht gezeigt) hat nur etwa die ersten 670 Basenpaare der LRR-Domäne und bricht dann ab. Kombiniert mit dem längsten 5'-RACE-Produkt 5R08 und der St332/334-Sequenz hätte das putative Transkript die Länge der 2.3 kb langen hybridisierenden cDNA (Dr. Jost Muth, nicht publiziert). Das 3'-RACE-Produkt 3RB2 enthält allerdings noch Intron II. In diesem Intron befindet sich in allen sequenzierten Mitgliedern der St332/334-Genfamilie ein konserviertes Stop-Codon. Da das 3'-RACE-Produkt 3RB2 fast identisch zum putativen Transkript des Gens mit TagI-Fragment 5 ist (nicht gezeigt) und die RACE-Produkte 5R08 und 3R27 (Kap.9.2) fast identisch mit dem putativen Transkript des Gens mit TagI-Fragment 4 sind, kann spekuliert werden, daß die verschiedenen Gene der St332/334-Genfamilie unterschiedlich gespleißt werden (Anmerkung: vielleicht enthalten die klonierten RACE-Produkte Mutationen, denn die Ähnlichkeit zu den genannten genomischen Sequenzen ist so hoch, daß die RACE-Produkte keinen anderen Mitgliedern der St332/334-Genfamilie zugeordnet werden können).

Berücksichtigt man nur die Expressionsdaten, so kommt auch das Gen mit *Taq*I-Fragment 14 als Kandidat für das *Gro1* Resistenzgen in Frage. Diese Gen ist auch in der resistenten Rekombinanten R458 enthalten. Es kann nicht ausgeschlossen werden, daß schon das Transkript, das offenbar nicht für ein intaktes Protein kodiert (Kap.3.5, Abb.3-14), Einfluß auf den Resistenzmechanismus hat.

In der *Gro1* Region existieren weitere Gene, die als Kandidaten für das Resistenzgen gegen *Globodera rostochiensis* in Betracht gezogen werden sollen:

Mit ausreichender Sicherheit kann das *Gro1* Resistenzgen nur isoliert werden, wenn ein Kontig über die ganze *Gro1* Region erstellt wird. Durch die Endsequenzierung der

genomischen Klone aus vier Teilkontigs der *Gro1* Region (Kap.3.7, Tab.3-3, 3-4, 3-5, 3-6), die bisher zusammengestellt wurden, und die Gesamtsequenzierung von BAC 98P9 (Kap.3.8, Abb.3-24), konnten zwei weitere Genfamilien mit Homologie zu Rezeptorähnlichen Kinasen und Cytochrom P450 Monooxygenasen identifiziert werden. Zusätzlich befindet sich in der *Gro1* Region ein Gen mit Homologie zu Trehalose Synthasen und ein Gen mit Homologie zu einem F-Box-kodierenden Gen in der Datenbank. Keines dieser Gene kann einer typischen Resistenzgenklasse zugeordnet werden. Dies ist aber kein Ausschlußkriterium, denn das Hm1 Resistenzgenprodukt aus Mais (Johal und Briggs, 1992) besitzt auch keine Domänen, wie sie von den anderen bisher isolierten Resistenzgenen codiert werden.

Eine Familie von Rezeptor-ähnlichen Kinasen: Am Anfang der Resistenzantwort steht die Wahrnehmung und Weiterleitung eines spezifischen Signals des Pathogens. Eine solche Funktion könnten auch Genprodukte aus der Familie der Rezeptor-ähnlichen Kinasen ausüben. Eine RFLP-Gel Analyse (nicht gezeigt) läßt vermuten, daß sich mindestens 10 Homologen im Kartoffelgenom (P6/210) befinden. Die segregierenden Fragmente lassen sich alle in den Grol Locus kartieren (Gebhardt, nicht veröffentlichte Daten). Ebenfalls gekoppelt mit dem Homolog aus der St332/334-Genfamilie, welches das TaqI-Restriktionsfragment 16 enthält, konnte am T7-Ende von BAC 106C14 eine Rezeptor-ähnliche Kinase identifiziert werden (nicht gezeigt), die auf Chromosom IV lokalisiert ist. Beispielhaft für diese Familie wurde StRLK1 aus BAC 25J5 charakterisiert (Kap.3.9, Abb.3-25). Die Eigenschaften der extrazellulären Domäne des putativen Proteins ordnen StRLK1 der S-Domänen Klasse Rezeptor-ähnlicher Kinasen in Pflanzen zu (Torii und Clark, 2000). Diese Domäne ist zum Selbstinkompatibilitäts-Locus Glycoprotein (SLG) aus Brassica oleracea (Nasrallah et al., 1988) homolog. Charakteristisch sind ein Signalpeptid, das konservierte PTD-Box Motiv und konservierte Cysteine in der extrazellulären Domäne, sowie eine Transmembrandomäne und eine intrazelluläre Serin-Threonin-Kinase(STK)-Domäne (Kap.3.9, Abb.3-25). Zur S-Domänen Klasse zählen auch die zu StRLK1 signifikant homologen Rezeptor-ähnlichen Kinasen (Kap.3.9, Abb.3-26) OsPK10 aus Reis (Zhao et al., 1994, 36% identisch auf Aminosäureebene), ZmPK1 aus Mais (Walker und Zhang, 1990, 33%), SFR2 aus Raps (Pastuglia et al., 1997, 31%) und ARK3 aus Arabidopsis thaliana (Dwyer et al., 1994,

30%). ZmPK1 war die erste Rezeptor-Protein Kinase, die aus Pflanzen isoliert wurde und führte zu der heute allgemein akzeptierten Auffassung, daß auch Pflanzen, trotz Zellwand, über Membranproteine zur Zell-Zell-Kommunikation fähig sind. OsPK10, ZmPK1 und ARK3 werden nicht mit der Resistenzantwort auf Pathogenbefall in Verbindung gebracht, biologische Funktionen konnten diesen Kinasen aber auch noch nicht zugeordnet werden. Dennoch können die Rezeptor-ähnlichen Kinasen in der Grol Region mit der Resistenzreaktion in Verbindung gebracht werden. Die Transkription von SFR2 in Brassica oleracea z.B. wird nach Verletzung und Infiltration der Rapspflanze mit Xanthomonas campestris Bakterien (ein Pathogen) und Escherichia coli (ein Saprophyt) schnell induziert (Pastuglia et al., 1997). Außerhalb der S-Rezeptor Klasse sind außerdem bereits mindestens zwei pflanzliche Resistenzgenprodukte bekannt, die eine STK-Domäne besitzen. Xa21 besitzt neben der intrazellulären STK-Domäne eine Transmembrandomäne und eine extrazelluläre LRR-Domäne und bewirkt in Reis rassenspezifische Resistenz gegen Xanthomonas oryzae (Song et al., 1995). Pto aus der Tomate besitzt nur die STK-Domäne und ist wahrscheinlich über einen Myristylanker an die Cytoplasmamembran gebunden. Das Resistenzgenprodukt verleiht gegenüber Pseudomonas syringae Resistenz (Martin et al., 1993).

Interessant ist die genomische Organisation der *StRLKs* in der Kartoffel. Die Gesamtsequenz von BAC 98P9 (Kap.3.8, Abb.3-24) zeigt, daß *upstream* von den einzelnen Kinasen *StRLK2,3,4* jeweils eine Sequenz in entgegengesetzter Orientierung liegt, die zur 5'-kodierenden Region der Kinasen homolog ist (*StRSH2,3,4*), (Kap.3.8, Abb. 3-24). Im multiallelischen Selbstinkompatibilitäts(S)-Locus von *Brassica oleracea* wird eine ähnliche Organisation von S-Rezeptor Kinasen (*SRKs*) und S-Locus Glykoproteinen beobachtet (Nasrallah, 2000). Die SRKs aus *Brassica* und die putativen StRLKs aus der Kartoffel besitzen die gleichen konservierten Motive und die gleiche Domänenorganisation. Im Gegensatz zu den *SLGs*, die zu *StRSH2,3,4* homolog sind, enthalten die *StRSHs* aber nicht den Sequenzbereich, der die konservierten Cysteine kodiert (Kap.3.9, Abb.3-27, Kap.9.3). SRK ist die weibliche Determinante der Selbstinkompatibilität (Schopfer *et al.*, 1999, Takayama *et al.*, 2000). Das *SCR* Gen liegt ebenfalls im S-Locus von *Brassica*, eine homologe Sequenz konnte in

der Gro1 Region bisher aber nicht identifiziert werden. Sowohl die Resistenzreaktion als auch die Aktivierung des Selbstinkompatibilitätsmechanismus' basieren auf einer Erkennung von Selbst und nicht-Selbst. Mit dieser Analogie kann eine Brücke zu StRLK geschlagen werden. Das Produkt von StRLK könnte einen Nematoden-spezifischen Liganden binden. In diesem Zusammenhang ist die Beobachtung von Forrest et al. (1984) von Bedeutung, daß Lektine an Larven der Kartoffelzystennematoden binden. Die Autoren äußern die Vermutung, daß die Erkennung bzw. Bindung von Zuckerresten auf der Kutikula der Nematoden eine Rolle in der Resistenzantwort spielen könnte. Um festzustellen, ob die Rezeptor-ähnlichen Kinasen in der Wurzel, also dort, wo die Nematoden in der Kartoffelpflanze parasitieren, exprimiert werden, wurden für ein RT-PCR Experiment aus dem Sequenzvergleich von StRLK1, 2, 3 und 4 zwei Primer zu konservierten Bereichen abgeleitet (Kap.9.3). Das Experiment zeigt, daß die Kinasen in der Blüte und in den unterirdischen Organen (Wurzel, Stolonen und Knolle) exprimiert werden (Kap.3.9, Abb.3-28). Damit werden auch Homologen aus der Familie der Rezeptor-ähnlichen Kinasen im Grol Locus als Kandidaten für das Grol Resistenzgen betrachtet. Aus P6/210 wurden insgesamt 9 Sequenzen mit Homologie zum STKkodierenden Sequenzbereich der StRLKs gefunden. Nur StRLK1 kommt bisher als Kandidat für das Gro1 Resistenzgen in Frage. Die anderen Rezeptor-ähnlichen Kinasen enthalten Stop-Mutationen, Insertionen, existieren nur als Teilfragment, oder stammen nicht von P40 (Kap.3.9).

Cytochrom P450 Monooxygenasen: In der Gro1 Region liegt eine dritte Genfamilie. 5 Mitglieder einer putativen Cytochrom P450 Monooxygenasen-Familie wurden bisher **BAC-Endsequenzierung** Tab.3-3. Abb.3-20) durch (Kap.3.7, Tab.3-6. und Gesamtsequenzierung von BAC 98P9 (Kap.3.8, Abb.3-24) in der Grol Region identifiziert. Die zu dieser Familie ansatzweise vorliegenden Daten (diese Arbeit) sind nicht im Ergebnisteil aufgeführt. Die höchste Datenbankhomologie zu einer bereits näher charakterisierten Sequenz zeigt die Genfamilie zu der Cytochrom P450 Monooxygenase CYP72A1 aus Catharanthus roseus (Immergrün, Madagascar periwinkle, Irmler et al., 2000). Bisher ist kein Mitglied der CYP72 Familie von Cytochrom P450 Monooxygenasen aus Kartoffel veröffentlicht. In E. coli rekombinant produziertes CYP72A1 überführt Loganin in Secologanin. Secologanin ist der Vorläufer bei der Bildung einer großen Zahl von Indol-Alkaloiden in der Pflanze. Es gibt Hinweise darauf, daß die Umwandlung von Loganin in Secologanin der Geschwindigkeits-bestimmende Schritt der Alkaloid-Synthese ist und es wird spekuliert, daß die transgene Expression von *CYP72A1* den Ertrag nutzbarer Alkaloide in der Pflanze verbessern kann (Irmler *et al.*, 2000). Von einem annotierten, aber nicht charakterisierten *Arabidopsis thaliana* Homolog (Accession NP_188087, GenBank) wurde die putative Genstruktur der Cytochrom P450 Monooxygenase in BAC 98P9 abgeleitet (zur Lage des Gens siehe Kap.3.8, Abb.3-24). Das Gen besitzt danach 5 Exons. Das putative Protein besteht aus 517 Aminosäuren. Exon IV enthält das in Prokaryoten und Eukaryoten konservierte Motiv (A/G)GX(D/E)T(T/S), das wahrscheinlich für die Sauerstoffbindung zuständig ist (Chapple, 1998). Exon V enthält das Sequenzmotiv FXXGXXXCXG, das für die Häm-Bindung verantwortlich ist (Chapple, 1998). Untereinander sind die Homologen aus der *Gro1* Region auf Aminosäureebene 76-90% identisch (Vergleich der 210 Aminosäuren von Exon IV und V).

Wegen ihrer Giftigkeit nimmt man heute an, daß Alkaloide allgemein eine Funktion bei der Abwehr von Herbivoren und Pathogenen haben. An Einzelbeispielen wurde bereits gezeigt, daß bei der Abwehrreaktion der Pflanze gegen Pathogene die Expression von Cytochrom P450 Monooxygenasen induziert wird. So induziert z.B. die Freisetzung von Benzoesäure aus einem präformierten Benzoesäure-Konjugat in Tabak als Antwort auf Nekrose-verursachende Pathogene die Enzymaktivität der löslichen Cytochrom P450 Monooxygenase BA2-H, die Benzoesäure in Salicylsäure umwandelt (León *et al.*, 1995). Die Cytochrom P450 Monooxygenase PAD3 aus Arabidopsis thaliana wird zur Produktion von Camalexin, das in vitro das Wachstum von Bakterien und Pilzen unterdrückt, benötigt (Zhou et al., 1999). Camalexin ist ein Indolderivat, wird den Phytoalexinen zugeordnet und spielt eine wichtige Rolle bei der Resistenz gegen Alternaria brassicicola. Es wurde gezeigt, daß die Expression von PAD3 durch einen anderen pathogenen Organismus, Pseudomonas syringae pv maculicola und durch die Applikation von Jasmonsäure induziert wird (Zhou et al., 1999). Aus Kartoffel wurde eine Induktion der Expression der Cytochrom P450 Monooxygenase CYP71D4 nach Infektion mit Phytophthora infestans berichtet (siehe GenBank Accession AJ296346).

Damit können, wie schon die Homologen der *St*332/334-Genfamilie und der Rezeptorähnlichen Kinasen, auch die Cytochrom P450 Monooxygenasen an der Abwehr gegen *Globodera rostochiensis* beteiligt sein. Aus konservierten Bereichen in den Exons III und IV wurden Primer für ein RT-PCR-Experiment (nicht gezeigt) abgeleitet. Mit diesen Primern konnte aber von keiner cDNA-Präparation der untersuchten Gewebe (Wurzeln, Knollen, Stolonen, Stengel, Blätter und Blüte) DNA amplifiziert werden. Sollten die identifizierten Cytochrom P450 Monooxygenasen bei der Resistenzreaktion eine Rolle spielen, dann wird die Expression möglicherweise durch Befall induziert. Diese Möglichkeit wurde bisher nicht untersucht.

Putatives F-Box-LRR-kodierendes Gen: Das T7-Ende des *Inserts* von BAC 94A4 (Kap.3.7, Tab.3-4, Abb.3-20) aus der *Gro1* Region ist mit der LRR-kodierenden Domäne von *ORE9* aus *A. thaliana* verwandt (Woo *et al.*, 2001). Proteine dieser Art findet man in Komplexen zur Ubiquitinylierung von Proteinen, welche zur Degradation bestimmt sind. Das verwandte Gen *CO11* in *Arabidopsis* kodiert für eine degenerierte F-Box und eine LRR-Domäne. Wird das *CO11* Gen mutiert, so finden keine durch Jasmonsäure gesteuerten Reaktionen in der Zelle statt. Jasmonsäure und dadurch aktivierte Zellkomponenten sind an vielen Entwicklungsprozessen in der Pflanze, wie Pollenentwicklung, Wurzelwachstum und Fruchtreifung, aber auch Reaktionen auf Verwundung und Pathogenbefall beteiligt (Xie *et al.*, 1998).

Trehalose Synthase: Über alle bisher erwähnten Gene, die in der *Grol* Region identifiziert wurden, kann anhand von Beispielen spekuliert werden, ob sie als Rezeptoren zur Wahrnehmung eines Pathogen-spezifischen Signals oder als Komponenten bei der Weiterleitung des Signals bzw. bei der Aktivierung der Abwehrreaktion eine Rolle spielen könnten. Die putative Trehalose Synthase am T7-Ende des *Inserts* von BAC 52016 (Kap.3.9, Tab.3-4) hingegen läßt sich nicht mit der Abwehr von Pathogenen in Verbindung bringen. Die Trehalose Synthase wurde dennoch weiteruntersucht, da Trehalose in Zukunft industriell eine wichtige Rolle als Stabililsator in Nahrungsmitteln und als Zusatz bei Kosmetika und Pharmazeutika spielen könnte. Trehalose hat einen stabilisierenden Effekt auf biologische Strukturen. Es schützt *E. coli* vor osmotischem Streß und *S. cerevisiae* vor Austrocknung. Außerdem hat das Zwischenprodukt Trehalose-6-Phosphat inhibierende Wirkung auf die Hexokinase und

damit Einfluß auf die Glykoloyse (*Review* zum Trehalose Metabolismus: Goddijn und van Dun, 1999). Die Trehalose Synthase (diese Arbeit, hierzu werden keine Daten gezeigt) in der *Gro1* Region kodiert eine Trehalose-6-Phosphat Synthase (TPS)- und eine Trehalose-6-Phosphat Phosphatase (TPP)-Domäne. Das Gen wird in allen untersuchten Geweben exprimiert (Wurzeln, Knollen, Stolonen, Blätter, Stengel, Blüten). Eine RFLP-Analyse zeigte, daß nur wenige Homologen in der Kartoffel existieren. Ein weiteres Homolog liegt auf dem "Nordende" von Chromosom X. Ein zweiter Marker (*CP51*) kartiert in beide Regionen. Es könnte sich also um die Duplikation eines größeren chromosomalen Fragments handeln (Gebhardt, persönl. Mitteil.).

Hypothetisches Modell für die Resistenzreaktion gegen den Nematoden *Globodera rostochiensis*:

Die TIR-NBS-LRR Homologen (St332/334-Genfamilie) und die Rezeptor-ähnlichen Kinasen in der Grol Region kommen aufgrund von Homologien zu bisher klonierten Resistenzgenen als Kandidaten für das Grol Resistenzgen am ehesten in Frage. Komponenten des Nematoden könnten entweder auf der extrazellulären Seite durch die Rezeptor-ähnliche Kinase oder im Cytoplasma durch ein TIR-NBS-LRR Protein wahrgenommen werden (Abb.6-1). Ob die Resistenzgenprodukte Komponenten der pathogenen Organismen (Avirulenzproteine) in vivo direkt binden ist allgemein noch nicht bekannt. Es konnte allerdings gezeigt werden, daß Pto und das Avirulenzprotein AvrPto von Pseudomonas syringae im Yeast Two-Hybrid System miteinander interagieren (Tang et al., 1996). Es läßt sich spekulieren, daß Rezeptor-ähnliche Kinasen und TIR-NBS-LRR Proteine gemeinsam für die Abwehrreaktion auf Globodera rostochiensis notwendig sind. Bei der Resistenzantwort der Tomate auf Pseudomonas syringae z.B. ist Prf (ein LZ-NBS-LRR Protein) für die Funktion von Pto (Serin-Threonin-Kinase) notwendig (Salmeron et al., 1994). Vergleichbar mit der Situation in der Gro1 Region sind beide Proteine in der Tomate sehr eng gekoppelt und liegen nur 24 kb voneinander entfernt in einem Gencluster (Salmeron et al., 1996). Da Kinasen bei der Resistenzreaktion beteiligt sind, ist zu vermuten, daß ein Signal, das vom Pathogen ausgelöst wird, über eine Signaltransduktionskette in der Zelle weitergeleitet wird. Die

Abb.6-1.: Hypothetisches Modell für die Resistenzreaktion gegen den Nematoden *Globodera rostochiensis.* Das Modell schlägt vor, wo die Gene der *Gro1* Region in den Reaktionen zur Resistenzantwort lokalisiert sein könnten. Es wird angenommen, daß eng gekoppelte Gene eine Funktion im gleichen Reaktionsweg ausüben können. I und II stellen alternative Wege dar.

Situation könnte vergleichbar mit der Reaktionskaskade in *Drosophila* als Antwort auf eine Pilzinfektion sein, denn auch hier sind strukturverwandte Proteine mit einer TIRund einer LRR-Domäne beziehungsweise mit einer Serin-Threonin-Kinase(STK)-Domäne beteiligt. Bei *Drosophila* wird die Produktion des gegen Pilze wirksamen Peptids Drosomycin von den Proteinen Spätzle, Toll, Tube, Pelle und Cactus kontrolliert. Der Rezeptor ist Toll. Er besteht aus einer extrazellulären LRR-Domäne und einer intrazellulären TIR-Domäne. Das Pathogensignal aktiviert im extrazellulären Raum eine proteolytische Kaskade, die zur Entstehung des aktiven Toll-Liganden Spätzle führt. Nach der Bindung von Spätzle an den Toll-Rezeptor wird das Signal intrazellulär durch die Serin-Threonin-Kinase Pelle und durch Tube (unbekannte Funktion) weitergeleitet und führt zum Abbau von Cactus (homolog zu I κ B) durch das Ubiquitin-Proteasom und zur Freisetzung des Transkriptionsfaktors Dorsal (homolog zu NF κ B). Das Gen aus der *Gro1* Region mit Homologie zu einem F-Box-LRR-kodierenden Gen könnte ein Bestandteil des Ubiquitin-Proteasoms in der Kartoffel sein. In *Drosophila* transloziert Dorsal vom Cytoplasma in den Zellkern und aktiviert die Expression von Zielgenen (für eine Gesamtdarstellung des Signalweges in *Drosophila* siehe Imler und Hoffmann, 2000). Bei der Signalweiterleitung könnte eine Autophosphorylierung der Rezeptorähnlichen Kinase eine Rolle spielen. Bei Pto wurde in vitro eine Autophosphorylierung nachgewiesen (Sessa *et al.*, 1998).

Funktionelle Komplementation:

Aus der *St*332/334-Genfamilie wurden die Resistenzgenkandidaten mit den *Taq*I-Fragmenten 2, 4, 5 und 14, sowie die Rezeptor-ähnliche Kinase *StRLK1* in die Pflanzentransformationsvektoren BIBAC2 und pCLD04541 subkloniert (Kap.3.4) und mittels *Agrobacterium tumefaciens* zur funktionellen Analyse in die gegenüber *Globodera rostochiensis* suszeptible Kulturkartoffelsorte Désirée übertragen (Kap.3.10). Mit der Subklonierung von genomischen Fragmenten sollte gewährleistet werden, daß der Gen-eigene Promotor vorhanden ist. Es hatte sich bei Komplementationsanalysen zur

Klonierung des *RPS2* Resistenzgens gezeigt, daß die ektopische Expression der *RPS2* cDNA, die hinter einen starken Promotor (Blumenkohl Mosaik Virus 35S Promotor) kloniert worden war, den Phänotyp der *rps2* Mutanten im Vergleich zum korrespondierenden genomischen Fragment nur mit einer sehr niedrigen Frequenz komplementieren konnte (Mindrinos *et al.*, 1994). In einer anderen Untersuchung bewirkte die Überexpression von *Pto* eine konstitutive Aktivierung der Resistenzreaktion mit einem Anstieg der Salicylsäurekonzentration und einer erhöhten Expression von *Pathogenesis-related* (PR) Genen. Eigentlich verleiht *Pto* spezifische Resistenz gegen *Pseudomonas syringae* pv Tomate, wenn das bakterielle Avirulenzprotein AvrPto präsent ist. Durch Überexpression wird die Pflanze aber auch unspezifisch resistent gegenüber anderen Pathogenen wie *Xanthomonas campestris* pv *vesicatoria* und *Cladosporium fulvum* (Tang *et al.*, 1999).

Sowohl die Transformationen mit dem BIBAC2-Vektor, als auch die Transformationen mit dem pCLD04541-Vektor waren erfolgreich, wie die Analyse der transgenen Désirée-Pflanzen, in die das Gen mit dem *Taq*I-Restriktionsfragment 5 aus der *St*332/334-Genfamilie übertragen worden war, belegt. In einem PCR-Assay (Kap.3-10, Abb.3-30) wurde nachgewiesen, daß alle untersuchten transgenen Pflanzen (CL65/5-III-1 bis CL65/5-III-8), die mit dem BIBAC2-Subklon 65/5 (Kap.3.4, Abb.3-13) transformiert worden waren, nun zusätzlich das Gen mit *Taq*I-Restriktionsfragment 5 enthalten. Der PCR-Assay ist sehr sensitiv. Schon Spuren einer Kontamination könnten das Ergebnis verfälschen. Deshalb wurden transgene Pflanzen auch mittels RFLP-Analyse untersucht. Alle Pflanzen, die mit dem pCLD04541-Subklon b16j (Kap.3.4, Abb.3-13) transformiert wurden (LBb16j-I-2 bis LBb16j-I-13) enthalten das *Taq*I-Restriktionsfragment 5 (Kap.3-10, Abb.3-31).

Wie oben diskutiert, befinden sich in der Gro1 Region neben der St332/334-Genfamilie weitere Gene, die eine Rolle bei der Resistenzreaktion auf ein Pathogen spielen können. Auch bisher nicht identifizierte Gene in der Grol Region können als Resistenzgenkandidaten in Frage kommen. Diese Gene können nicht alle im einzelnen untersucht werden. Deshalb wurden verschiedene Strategien getestet, um ganze BAC-Inserts (bis zu 120 kb) von den Originalklonen aus der BAC-Bibliothek auf Désirée zu übertragen (Kap.3.10). Mit Agrobacterium tumefaciens gelang der Transfer von maximal 35 kb. Erfolgreich war die ballistische Transformation mit der Genkanone, wie eine RFLP-Analyse zeigt (Kap.3.10, Abb.3-31). Allerdings ist das Insert von BAC 98P9 mit den TagI-Fragmenten 2, 5 und 11 (eine schematische Darstellung des BACs findet sich in Kap.3.8, Abb.3-24) nicht komplett in allen transgenen Pflanzen enthalten (Kap.3.10, Abb.3-31). Das TaqI-Fragment 5 – in BAC 98P9 dem T3-Ende nahe gelegen – ist in zwei von 5 Pflanzen enthalten (98P9-4 und 98P9-10). TaqI-Fragment 2 - in BAC 98P9 weiter als Fragment 5 vom T3-Ende entfernt - ist nur in einer von 5 Pflanzen (98P9-4) enthalten. Die Übertragung von TaqI-Fragment 11, konnte durch RFLP-Analyse nicht nachgewiesen werden, da auch Désirée ein Fragment vergleichbarer Größe enthält (Kap.3.1, Abb.3-1). Um zu testen, ob die Nähe zum Kanamycin Resistenzgen, das im pCLD04541-Vektor direkt neben dem T3-Ende des Vektor-Inserts liegt, für die Übertragungseffizienz in das Kartoffelgenom ausschlaggebend ist, könnte ein PCR-Test mit spezifischen Primern zum Gen mit *Taq*I-Fragment 11 (Kap.3.3, Abb.3-12) eingesetzt werden. Alle Pflanzen, die mittels Genkanone transformiert wurden, befinden sich noch im Test (Kap.3.10, Tab.3-7). Die vorläufigen Ergebnisse für BAC98P9 müssen noch reproduziert und weitere transgene Pflanzen durch RFLP-Analyse untersucht werden. Vielversprechend ist, daß 5 Pflanzen (in Kap.3.10, Tab.3-7 mit einem Fragezeichen versehen) regeneriert werden konnten, auf deren Wurzeln keine oder nur wenige Zysten nach Infektion mit *Globodera rostochiensis* Pathotyp Ro1 nachzuweisen waren.

Im Rahmen der *Agrobacterium*-vermittelten Transformation sind die Tests für die Konstrukte mit den *Taq*I-Fragmenten 5 und 14 sowie *StRLK1* abgeschlossen. Keines der Gene konnte der suszeptiblen Kulturkartoffelsorte Désirée Resistenz gegen *Globodera rostochiensis* Pathotyp Ro1 verleihen (Kap.3.10, Tab.3-7). Die transgenen Pflanzen müssen aber noch auf die Pathotypen Ro2 bis Ro5 getestet werden.

Syntenie:

Parallel zu diesem Projekt wurde auch die syntenische Region auf Chromosom VII der Tomate (*Lycopersicon esculentum*) untersucht (Hadrian und Fluhr, persönl. Mitteil.). In diese Region kartieren die Loci *II* (Sarfatti *et al.*, 1991) und *I3* (Bournival *et al.*, 1989), die der Tomate Resistenz gegenüber *Fusarium oxysporum* verleihen. 23 kb Sequenz sind aus dieser Region in Tomate bekannt. Es wurden vier Rezeptor-ähnliche Kinasen und ein TIR-NBS-LRR Homolog identifiziert. Das TIR-NBS-LRR Homolog zeigt mehr als 90% Sequenzidentität auf Nukleotidebene zu den einzelnen Mitgliedern der *St*332/334-Genfamilie und weist eine vergleichbare Exon/Intron-Organisation auf. Die Mitglieder der *St*332/334-Genfamilie aus der Kartoffel zeigen untereinander vergleichbare Homologiewerte. Das Gen aus der Tomate kann also in die *St*332/334-Genfamilie gruppiert werden. Die vier Rezeptor-ähnlichen Kinasen aus der Tomate besitzen wie *StRLK1* kein Intron und sind auf Nukleotidebene 80-90% mit *StRLK1* identisch. Damit ist die Syntenie auf Sequenz-Ebene belegt. Eine Untersuchung auf Kolinearität kann mangels ausreichender Sequenzdaten noch nicht unternommen werden.

Nach der Veröffentlichung und Annotation des Genoms von *Arabidopsis thaliana* (The Arabidopsis Genome Initiative, 2000) liegt es nahe, auch hier nach einer syntenischen Region zu suchen. Auf der MIPS Arabidopsis thaliana Group Homepage

(http://mips.gsf.de/proj/thal/) wurden die Aminosäuresequenzen der Gene aus der Gro1 Region gegen das übersetzte Arabidopsis Genom "geblastet" und das Sequenzumfeld der Homologen mit der größten Ähnlichkeit im Genom von Arabidopsis thaliana untersucht. Es wurde keine Region gefunden, in der Rezeptor-ähnliche Kinasen, TIR-NBS-LRR Homologen und Cytochrom P450 Monooxygenasen, die am stärksten mit den Genen aus der Grol Region verwandt sind, zusammen lokalisiert sind. Mit Ausnahme der Cytochrom P450 Monooxygenasen sind die jeweils stärksten Homologen zu einem Gen in der *Gro1* Region (einschließlich der Trehalose Synthasen) über die Chromosomen I, II, IV und V in Arabidopsis thaliana verteilt. Auf BAC MIE1 (EMBL Accession: AB023038) von Chromosom III hingegen sind die acht stärksten Homologen der Cytochrom P450 Monooxygenasen aus der Grol Region (E-Wert 8.1e-279 bis 1.4e-165) in einem Bereich von weniger als 30 kb geclustert. Die E-Werte weiterer Homologen liegen deutlich unter obigen Werten. Vielleicht ist dies die ursprünglich syntenische Region, die im Laufe der Evolution in der Kartoffel mit weiteren Genen angereichert wurde. Dies geschah vielleicht durch gerichtete Zusammenstellung und Vererbung von Genen, die zusammen wichtig für einen bestimmten Reaktionsweg in der Kartoffel sind (z.B. der Resistenzantwort auf Pathogenbefall).

Das Kontig; die Organisation der Gro1 Region:

Die Analyse der Teilkontigs aus der *Gro1* Region läßt darauf schließen, daß ein chromosomales Fragment von mindestens 500 kb ohne Rekombination mit der Resistenz gegen *Globodera rostochiensis* segregiert. Ursprünglich wurde die Größe der *Gro1* Region im Rahmen der Feinkartierung durch Pulsfeldgelelektrophorese und Hybridisierung mit einer spezifischen Sonde auf 140 kb (\equiv 1.4 cM) geschätzt (Ballvora *et al.*, 1995). Jedoch hat sich in dieser Arbeit gezeigt, daß schon die beiden annähernd distal positionierten, kosegregierenden Marker in Kontig II (Kap.3.7, Abb.3-19, Abb.3-22, Abb.3-23) mindestens 240 kb voneinander entfernt sind. Dazu addiert sich mindestens die Hälfte von Kontig I mit den *Taq*I-Restriktionsfragmenten 4 und 14 (Kap.3.7, Abb.3-19) und die Lücke zwischen den Kontigs I und II, die bisher noch nicht geschlossen werden konnte. Es scheint, daß in dieser Region die Rekombination unterdrückt ist. Ein Grund dafür könnte sein, daß sich die allelischen Regionen in der ersten Reifeteilung der

Meiose in der Linie P40 nicht richtig paaren können. Vielleicht steht die aus der Wildform eingekreuzte Region als zusätzliches chromosomales Stück wie eine Art Loop heraus. Diese Erklärung ist plausibel, denn das resistenzvermittelnde Chromosom enthält wesentlich mehr Gene der *St*332/334-Genfamilie (Gene mit den *Taq*I-Fragmenten 2, 3, 4, 5, 6, 8, 11, 14), als das allelische Chromosom (Gene mit den *Taq*I-Fragmenten 8, 8b, 10). Ein anderer Grund für die Unterdrückung der Rekombination könnte sein, daß die Region verhältnismäßig nahe am Centromer liegt.

Weitere mit den Teilkontigs (Kap.3.7, Abb.3-19) überlappende BAC-Klone sind bereits identifiziert worden. Unabhängig von den vier zusammengestellten Teilkontigs sind mit den kosegregierenden Markern *CP56* und *OPR10* zusätzlich weitere vier BAC-Klone isoliert worden (nicht gezeigt). Falls das *Gro1* Resistenzgen nicht zur *St*332/334-Genfamilie gehört, von der sich zur Zeit alle Kandidatengene im Test zur funktionellen Komplementation befinden, wird das Gesamtkontig die Identifizierung des *Gro1* Resistenzgens ermöglichen.

Einige resistenzvermittelnde Regionen wurden bereits über einen großen Sequenzbereich hin untersucht, weil sich herausstellte, daß mehrere Resistenzgenhomologen in der Region geclustert sind. Z.B. befinden sich im Cf-4/Cf-9 Locus der Tomate (vermittelt Resistenz gegen Cladosporium fulvum) in einem Bereich von etwa 35 kb fünf Resistenzgenhomologen (Parniske et al., 1997). Der gegen Fusarium oxysporum resistenzvermittelnde I2 Locus in der Tomate enthält 7 Resistenzgenhomologen (Simons et al., 1998) und der M Locus in Flachs (Linum usitatissimum) enthält etwa 15 Mitglieder einer Resistenzgenfamilie (Anderson et al. 1997). Es wird spekuliert, daß die Entstehung von Resistenzgenfamilien eng mit der Coevolution von Pathogenen und Pflanzen zusammenhängt. Globodera rostochiensis hat z.B. 5 bekannte Pathotypen hervorgebracht (Kort et al., 1978). Entwickelt Globodera rostochiensis einen neuen Pathotyp, so ist es vorstellbar, daß die Wirtspflanze Kartoffel darauf am schnellsten durch Variation der vorhandenen Resistenzgene und nicht durch die Entwickulung völlig neuer Gene reagieren kann. Dies erklärt vielleicht, warum die St332/334-Genfamilie, die aufgrund der Homologie der gesamten Gensequenz zu bekannten Resistenzgenen die vielversprechendsten Kandidaten für das Grol Resistenzgen enthält, so polymorph ist. Strukturell verwandte Gene aus derselben Familie können sich in der Evolution auch zur

Abwehr gegen verschiedene pathogene Organismen entwickelt haben. So liegt auf Chromosom XII der Kartoffel in einem Bereich von 115 kb ein Resistenzgencluster mit vier Homologen einer LZ-NBS-LRR Genfamilie (van der Vossen et al., 2000). Gpa2 und *Rx1* aus dieser Familie sind im Aminosäuresequenzvergleich mehr als 88% identisch. Gpa2 verleiht gegenüber Globodera pallida (van der Vossen et al., 2000) und Rx1 gegenüber dem Kartoffelvirus X (Bendahmane et al., 1999) Resistenz. Die Loci II (Sarfatti et al., 1991) und I3 (Bournival et al., 1989), die zur Grol Region wie oben beschrieben syntenisch sind, vermitteln gegenüber dem Pilz Fusarium oxysporum Resistenz. Zumal das TIR-NBS-LRR Homolog aus der Tomate auf der Nukleotidebene mehr als 90% zur St332/334-Genfamilie homolog ist, wäre es vorstellbar, daß auch aus der St332/334-Familie Gene hervorgegangen sind, die gegen verschiedene Pathogene Resistenz bewirken. Umgekehrt gibt es auch die Beobachtung, daß Gene verschiedener Resistenzgenfamilien Resistenz gegen das gleiche Pathogen bewirken können. So gehören z. B. die Gene der RPP5- und der RPP1-Familie in Arabidopsis thaliana zur Klasse der TIR-NBS-LRR Resistenzgene. Gene der RPP8-Familie hingegen gehören zur LZ-NBS-LRR Klasse. Alle drei Familien bewirken Resistenz gegen verschiedene Isolate von Peronospora parasitica (McDowell et al., 1998). Es könnte also gut möglich sein, daß die Resistenz gegen die sehr nahe verwandten Nematodenarten Globodera rostochiensis und Globodera pallida durch strukturell verschiedene Resistenzgene bewirkt wird. Das Resistenzgen gegen G. pallida gehört zur LZ-NBS-LRR Klasse (Van der Vossen et al., 2000). In der Gro1 Region finden sich Mitglieder der TIR-NBS-LRR Klasse.

Ein Hauptmechanismus zur Entstehung von Genfamilien besteht in einer Duplikation von Genen durch ungleiches Cross-Over. In der *Gro1* Region gibt es ein Indiz für eine Duplikation. In Abb. 3-24 (Kap.3.8) ist die Analyse der Sequenz aus BAC 98P9 dargestellt. Die Gene mit den *TaqI*-Fragmenten 2 und 11 liegen benachbart auf dem gleichen Chromosom im Genom vor. Beide enthalten, anders als das Gen mit *TaqI*-Fragment 5, nach der LRR-kodierenden Domäne in gleicher Anordnung zwei unterschiedliche repetitive, nicht-kodierende Sequenzen b und c (b mit etwa 400 bp und c mit etwa 450 bp).

Duplikationen von Genen können auch durch größere genomische Rearrangements entstehen. In der *Gro1* Region gibt es z.B. Hinweise auf eine Insertion. BAC 26N18 (Kap.3.7, Tab3-3) hat beginnend am T3-Ende einen Bereich, der zu den ersten 193 bp des NBS-kodierenden Exons der *St332/334*-Genfamilie homolog ist. Danach bricht die Homologie ab und es folgt eine repetitive Sequenz. Das Gen mit *Taq*I-Fragment 14 (Kap.3.5, Abb.3-14), das auch in BAC 26N18 enthalten ist, besitzt nur den Bereich des zweiten Exons, der den C-terminalen Teil der NBS-Domäne kodiert. Davor liegt ein etwa 1 kb langes Sequenzfragment, das zu *StRLK1* homolog ist. Beide Sequenzen, die jeweils einen Teil der NBS-Domäne kodieren, sind nicht überlappend. Es fehlen sogar etwa 90 bp im Vergleich zu einer Sequenz, die eine intakte NBS-Domäne kodiert. Vielleicht handelt es sich also um die Insertion eines chromosomalen Fragments in ein Gen der *St332/334*-Genfamilie. Möglich, jedoch unwahrscheinlicher, sind aber auch zwei Deletionsereignisse in verschiedenen Genen der *St332/334*-Genfamilie.

Die *Gro1* Region ist sehr komplex und enthält viele redundante Sequenzelemente, wie sie für höhere Organismen typisch sind. Es finden sich drei Genfamilien (*St*332/334-Genfamilie, RLKs und eine Familie von Cytochrom P450 Monooxygenasen), repetitive, nicht-kodierende Sequenzen von mehreren 100 bp Länge und Retrotransposons vom Ty1-copia Typ (Kap.3.7, Tab.3-3 bis 3-6, Abb.3-20). Auch ein Transposon (Kap.3.8, Abb.3-24) und ein *Inverted Repeat* Element (Kap.3.5, Abb.3-14) wurden identifiziert, die gewöhnlich in hoher Kopienzahl im Genom vorkommen.

Ausblick:

Zur Zeit befinden sich zwei der vier übriggebliebenen Kandidaten für das Resistenzgen gegen *Globodera rostochiensis* Pathotyp Ro1 aus der *St*332/334-Genfamilie (Gene mit den *Taq*I-Fragmenten 2 und 4) noch in der Komplementationsanalyse. Diese Tests werden noch einige Monate in Anspruch nehmen.

Parallel sollte durch eine genauere RFLP-Analyse überprüft werden, wieviele Homologen der Familie von Rezeptor-ähnlichen Kinasen (RLK) in der *Grol* Region neben den bereits identifizierten, vorhanden sind. Ein RT-PCR-Produkt, daß mit Primern zu konservierten Bereichen innerhalb der RLK-Familie unspezifisch von cDNA aus nicht infizierten Kartoffelwurzeln generiert wurde, ist bereits kloniert. Sequenzdaten von den Einzelklonen können (wie schon bei der *St*332/334-Genfamilie) einen Aufschluß darüber geben, welche Homologen der RLK-Familie in der Wurzel exprimiert werden.

Bisher ist nicht bekannt, ob die Expression eines der Gene in der *Gro1* Region durch Infektion mit *Globodera rostochiensis* induziert wird. Interessant ist vor allem zu überprüfen, ob die Expression der Cytochrom P450 Monooxygenasen in den Wurzeln durch Nematodenbefall induziert wird. In nicht infizierten Wurzeln konnte keine Expression nachgewiesen werden. Pflanzenmaterial von infizierten Pflanzen wurde bereits gesammelt.

Um das *Gro1* Resistenzgen letztendlich mit Sicherheit isolieren zu können, ist die Erstellung eines Konitgs über die gesamte *Gro1* Region von entscheidender Bedeutung. Weitere Kontigklone wurden bereits identifiziert. Aufgrund der repetitiven Sequenzen an den Enden der Teilkonigs (Genfamilien, repetitive, nicht-kodierende Elemente und Retroelemente) gestaltet sich das *Chromosome Walking* aber sehr zeitaufwendig. Außerdem kann nicht genau abgeschätzt werden, wie groß das Kontig letztlich ist. Jedoch ist bereits durch die Teilkontigs ein sehr großer Bereich abgedeckt und damit besteht eine gute Basis zur Vollendung des Kontigs. Durch die erfolgreiche Etablierung der ballistischen Transformation ganzer BAC-DNA in Kartoffelzellen besteht eine effektive Methode, die Klone des Kontigs durch funktionelle Komplementation auf das Resistenzgen zu untersuchen. Neben dem *Chromosome Walking* besteht auch die Alternative, den *Gro1* Locus zunächst durch Aufstockung der Kartierungspopulation mit weiteren Pflanzen enger einzugrenzen. Der Aufwand, eine ergänzende Kreuzung vorzunehmen, Samen auszubringen und die Nachkommen auf Resistenz gegen *Globodera rostochiensis* zu testen, ist aber enorm.

In dieser Arbeit wurde eine große Zahl von PCR-Markern generiert. Damit eröffnet sich auch die Möglichkeit, die *Gro1* Region einzugrenzen, indem alle Kartoffelsorten mittels PCR auf die Anwesenheit dieser Marker getestet werden, in die der *Gro1* Locus von *Solanum spegazzinii* engekreuzt wurde. Leider ist aber nicht eindeutig nachvollziehbar, ob der *Gro1* Locus tatsächlich von *Solanum spegazzinii* stammt und in welche Kartoffelsorten dieser Locus eingekreuzt wurde.

Neben Ro1 ist die Linie P40 auch gegen die Pathotypen Ro2-Ro5 resistent. Deshalb müssen alle transgenen Pflanzen auch noch auf die übrigen Pathotypen getestet werden. Vielleicht interagieren verschiedene Mitglieder der *St*332/334-Genfamilie spezifisch nur mit einem oder einem Teil der Pathotypen. Sollte sich herausstellen, daß die *St*332/334-

Genfamilie Resistenz gegenüber *Globodera rostochiensis* vermittelt, kann anhand der bereits vorliegenden Gensequenzen ergründet werden, welche Sequenzunterschiede für die Spezifität gegenüber dem Pathogen bzw. den unterschiedlichen Pathotypen verantwortlich sind.

Falls das Resistenzgen gefunden wird, muß im nächsten Schritt für eine gezielte züchterische Anwendung getestet werden, wie stabil die Funktion des Resistenzgens in den transgenen Pflanzen im Feldversuch ist.

Die Tatsache, daß Gene einer Resistenzgenfamilie spezifisch mit sehr verschiedenen Pathogenen interagieren können (*Mi-1.2, Gpa2/Rx1*), läßt darauf spekulieren, daß verwandte Gene (z.B. die Homologen der *St332/334-Genfamilie*) im syntenischen Locus der Tomate Resistenz gegen *Fusarium oxysporum* vermitteln. Die Identifikation des *Gro1* Resistenzgens könnte also die Isolierung der Resistenzgene *I1* und *I3* in der Tomate gegen *Fusarium oxysporum* erleichtern. Vielleicht ist in der *Gro1* Region aber auch eine weitere, noch nicht kartierte Resistenz (z.B. gegen *Fusarium oxysporum*) lokalisiert.

Aus der Grol Region auf Chromosom VII in der Kartoffel sind durch die Sequenzierung des Inserts von BAC98P9 100 kb, aus der Region mit den Genen Gpa2 und Rx1 auf Chromosom XII 187 kb (GenBank Accession AF265664) und aus dem R1 Locus auf Chromosom V der Kartoffel 300 kb (Ballvora, persönl. Mitteil.) Sequenz bekannt. Zum ersten Mal können somit größere genomische Bereiche in der Kartoffel auf Ebene der Nukleotidsequenz vergleichend analysiert werden. Interessant wird sein, was sich über die Organisation des Kartoffelgenoms ableiten läßt. Z.B. hat sich schon durch die BLAST-Resultate gezeigt, daß die bereits in der Datenbank abgelegte Sequenz von Chromosom XII stark homologe repetitive, nicht-kodierende Elemente von mehreren hundert Basenpaaren enthält, die auch in der Sequenz von BAC 98P9 vorhanden sind. Mit Kenntnissen über die genomische Organisation können vielleicht neue Methoden entwickelt werden. Sollte sich z.B. herausstellen, daß bestimmte Elemente, wie Retroelemente oder Inverted Repeat Elemente über alle drei Regionen verteilt vorkommen, ließen sich vielleicht neue Marker für das Kartoffelgenom ableiten. Auf der Grundlage von Inverted Repeat Sequenzen wurde z.B. die IMP(Inter-MITE Polymorphism) Marker-Technologie (Chang et al., 2001) und mit LTR(Long Terminal Repeat)-spezifischen Primern wurde die IRAP(Inverse Retrotransposon Amplified *Polymorphisms*) Marker-Technologie entwickelt (Kalendar *et al.*, 1999).

5. Zusammenfassung

Der Grol Locus verleiht der Kartoffel Resistenz gegenüber dem endoparasitischen Wurzelzystennematoden Globodera rostochiensis. Fünf Mitglieder der St332/334-Genfamilie mit Homologie zu TIR/NBS/LRR-kodierenden Resistenzgenen kosegregieren mit Gro1. Mit dem NBS-kodierenden PCR-Produkt St332 als Sonde wurden aus einer genomischen BAC-Bibliothek mit großen Insertionen Klone mit allen fünf Kandidaten isoliert, deren Sequenz charakterisiert und das Expressionsmuster analysiert. Mitglieder der St332/334-Genfamilie wurden in allen untersuchten Geweben exprimiert. Die Kandidatengene wurden in einen Pflanzentransformationsvektor subkloniert und durch Agrobacterium-vermittelte Transformation in die anfällige Kartoffelsorte Désirée übertragen. Die Analyse der transgenen Pflanzen auf funktionelle Komplementation mit zwei der Kandidatengene ist noch nicht abgeschlossen. Die übrigen Kandidatengene konnten in den transgenen Pflanzen den Resistenz-Phänotyp nicht komplementieren. Die isolierten genomischen BAC-Klone wurden als Ausgangspunkt für die Konstruktion einer physikalischen Karte genutzt, welche die Grol Region abdeckt. Es wurden vier nicht überlappende Teilkontigs erstellt, die sich zusammen über mindestens 500 kb in der Grol Region erstrecken. Die Sequenzierung der BAC-Enden und einer 100 kb BAC-Insertion, die drei Homologe der St332/334-Genfamilie enthält, zeigte, daß die Organisation der Grol Region sehr komplex ist. Eine Familie von Rezeptor-ähnlichen Kinasen mit Homologie zu S-Rezeptor Kinasen, eine Familie von Cytochrom P450 Monooxygenasen mit Homologie zur CYP72 Familie, eine Trehalose Synthase, Copiaähnliche Retroelemente, ein Inverted Repeat Element, ein Transposon mit Homologie zu Tam1 und repetitive, nicht-kodierende Elemente von mehreren 100 bp Länge wurden ebenfalls in der Grol Region identifiziert. Die Rezeptor-ähnlichen Kinasen wurden in Blüten und unterirdischen Geweben exprimiert und ebenfalls als Kandidaten für das Grol Resistenzgen betrachtet. Basierend auf Sequenzinformation wurde bisher ein Mitglied dieser Genfamilie als Kandidat identifiziert. Transgenen Pflanzen konnte dieses Kandidatengen keine Resistenz verleihen. Ballistische Transformation wurde angewandt, um ganze BAC-Insertionen in die suszeptible Kartoffelsorte Désirée zu übertragen. Damit können alle Gene im Grol Kontig auf funktionelle Komplementation getestet werden.

6. English Abstract

The Grol locus in potato confers resistance to the endoparasitic root cyst nematode Globodera rostochiensis. Five members of the St332/334 gene familiy with homology to TIR/NBS/LRR-coding resistance genes segregate without recombination with Gro1. Using the NBS-coding St332 PCR-product as probe, a genomic BAC library was screened. All five candidate genes were isolated, sequenced and the expression pattern was analyzed. Members of the $St_{332/334}$ gene familiy were expressed in all tissues examined. The candidate genes were subcloned into a plant transformation vector and transfered to the susceptible potato cultivar Désirée by Agrobacterium-mediated transformation. Analysis of transgenic plants for functional complementation with two of the candidates is in progress. The remaining candidate genes could not complement the resistance phenotype in transgenic plants. The isolated genomic clones were used as starting points for constructing a physical map covering the Gro1 region. The size of the region is estimated to be at least 500 kb. BAC end sequences and the complete sequence of a 100 kb BAC insert containing three homologues of the St332/334 gene familiy indicate that the organization of the Grol region is complex. A family of receptor-like kinases with homology to S-receptor kinases, a cytochrome P450 monooxygenase family with homology to the CYP72 family, a trehalose synthase, copia-like retroelements, an inverted repeat element, a transposon with homology to Tam1 and repetitive non-coding elements of several hundred base pairs in lenght were identified. The receptor-like kinases were expressed in flowers and underground tissues and were considered as candidates for the Grol resistance gene as well. Based on sequence information, one homologue has been identified as candidate so far. In transgenic plants it failed to confer resistance. Ballistic transformation was used to transfer whole BAC inserts into the susceptible potato cultivar Désirée to test all genes in the region for their potential to confer resistance.

7. Literatur

Anderson P. A., Lawrence G. J., Morrish B. C., Ayliffe M. A., Finnegan E. J. and Ellis J. G.: Inactivation of the flax rust resistance gene *M* associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell 9, 641-651 (1997).

Ballvora, A., Hesselbach, J., Niewöhner, J., Leister, D., Salamini, F. and Gebhardt, C.: Marker enrichment and high-resolution map of the segment of potato chromosome VII harbouring the nematode resistance gene *Grol*. Mol. Gen. Genet. 249, 82-90 (1995).

Ballvora, A., Ercolano, M. R., Weiß, J., Meksem, K., Bormann, C., Oberhagemann, P., Salamini, F. and Gebhardt, C.: The *R1* Gene for Potato Resistance to Late Blight (*Phytophtera infestans*) belongs to the Leucine Zipper/NBS/LRR Class of Plant Resistance Genes. Plant Journal, in press (2002).

Bancroft, I., Love, K., Bent, E., Sherson, S. S., Lister, C., Cobbett, C., Goodman, H. M. and Dean, C.: A strategy involving the use of high redundancy YAC subclone libraries facilitates the contiguous representation in cosmid and BAC clones of 1.7 Mb of the genome of the plant Arabidopsis thaliana. http://nasc.nott.ac.uk:8300/ Vol4ii/bancroft.html (last modified 1997).

Barone, A., Ritter, E., Schachtschnabel, U., Debener, T., Salamini, F. and Gebhardt, C.: Localization by restriction fragment length polymorphism mapping in potato of a major dominant gene conferring resistance to the potato cyst nematode *Globodera rostochiensis*. Mol. Gen. Genet. 224, 177-182 (1990).

Bendahmane, A. and Kanyuka, K. and Baulcombe, D. C.: The *Rx* gene from potato controls separate virus resistance and cell death responses. Plant Cell 11, 781-791 (1999).

Bendahmane, A., Querci, M., Kanyuka, K. and Baulcombe, D. C.: Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the *Rx2* locus in potato. Plant Journal 21, 73-81 (2000).

Bent, A. F., Kunkel, B. N., Dahlbeck, D., Brown, K. L., Schmidt, R., Giraudat, J., Leung, J. and Staskawicz, B. J.: *RPS2* of *Arabidopsis thaliana*: A Leucine-Rich Repeat Class of Plant Disease Resistance Genes. Science 265, 1856-1860 (1994).

Behrens, E.: Globodera Skarbilovich, 1959. Eine selbstständige Gattung in der Unterfamilie Heteroderinae Skarbilovich, 1947 (Nematoda: Heteroderidae). Vortragstagung zu aktuellen Problemen der Phytonematologie 2, Rostock 29. Mai, 12-26 (1975).

Botella, M. A., Parker, J. E., Frost, L. N., Bittner-Eddy, P. D., Beynon, J. L., Daniels, M. J., Holub, E. B. and Jones, J. D. G.: Three Genes of the Arabidopsis *RPP1* Complex Resistance Locus Recognize Distinct *Peronospora parasitica* Avirulence Determinants. Plant Cell 10, 1847-1860 (1998).

Bournival, B. L., Vallejos, C. E. and Scott, J. W.: An isozyme marker for resistance to race 3 of *Fusarium oxysporum* f. sp. *lycopersici* in tomato. Theor. Appl. Genet. 78, 489-494 (1989).

Breslauer, K. J., Frank, R., Blocker, H. and Marky, L. A.: Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. 83(11), 3746-50 (1986).

Brodie, B. B.: Potato. In: Plant nematode interactions. Edited by Barker, K. R., Pederson, G. A. and Windham, G. L.. American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc., Madison, Wis. Agronomy 36, 567-594 (1998).

Cai, D., Kleine, M., Kifle, S., Harloff, H.-J., Sandal, N. N., Marcker, K. A., Klein-Lankhorst, R. M., Salentijn, E. M. J., Lange, W., Stiekema, W. J., Wyss, U., Grundler, F. M. W. and Jung, C.: Positional Cloning of a Gene for Nematode Resistance in Sugar Beet. Science 275, 832-834 (1997).

Chang, R.-Y., O'Donoughue, L. S. and Bureau, T. E.: Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. Theor. Appl. Genet. 102, 773-781 (2001).

Chapple, C.: Molecular-Genetic Analysis Of Plant Cytochrome P450-Dependent Monooxygenases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 311-343 (1998).

Daines, R. J.: DeKalb researchers improve maize transformation rates. Biolistic Part. Deliv. Syst. Newslett. 1, 1, 4 (1990).

Durrant, W. E., Rowland, O., Piedras, P., Hammond-Kosack, K. E. and Jones, J. D. G.: cDNA-AFLP Reveals a Striking Overlap in RACE-Specific Resistance and Wound Response Gene Expression Profiles. Plant Cell 12, 963-977 (2000).

Dwyer, K. G., Kandasamy, M. K., Mahosky, D. I., Acciai, J., Kudish, B. I., Miller, J. E., Nasrallah, M. E. and Nasrallah, J. B.: A Superfamily of S Locus-Related Sequences in Arabidopsis: Diverse Structures and Expression Patterns. Plant Cell 6, 1829-1843 (1994).

Feinberg, A. P. and Vogelstein, B.: A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).

Feinberg, A. P. and Vogelstein, B.: A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. (Addendum) Anal. Biochem. 137, 266-267 (1984).

Feys, B. J. and Parker, J. E.: Interplay of signaling pathways in plant disease resistance. Trends Genet. 16, 449-455 (2000).

Flor, H. H.: Current status of gene-for-gene concept. Annu. Rev. Phytopathol. 9, 275-296 (1971).
Forrest, J. M. S., Robertson, W. M. and Trudgill, D. L.: Mass re-emergence of potato cyst nematode juveniles from roots of resistant potatoes – possible involvement of surface sugar moieties. In: Abstracts of Papers, Crop Protection in Evolving Agriculture. University of Reading, Association of Applied Biologists, Reading, 25-27 September (1984).

Gebhardt, C., Ritter, E., Debener, T., Schachtschabel, U., Walkemeier, B., Uhrig, H. and Salamini, F.: RFLP analysis and linkage mapping in *Solanum tuberosum*. Theor. Appl. Genet. 78, 65-75 (1989).

Gebhardt, C., Ritter, E., Barone, A., Debener, T., Walkemeier, B., Schachtschabel, U., Kaufmann, H., Thompson, R. D., Bonierbale, M. W., Ganal, M. W., Tanksley, S. D. and Salamini, F.: RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor. Appl. Genet. 83, 49-57 (1991).

Gebhardt, C. and Valkonen, J. P. T.: Organization Of Genes Controlling Disease Resistance In The Potato Genome. Annu. Rev. Phytopathol. 39, 79-102 (2001).

Glazebrook, J.: Genes controlling expression of defense responses in *Arabidopsis*. Curr. Opin. Plant Biol. 2, 280-286 (1999).

Goddijn, O. J. M. and van Dun, K.: Trehalose metabolism in plants. Trends Plant Sci. 4, 315-319 (1999).

Goverse, A., Rouppe van der Voort, J., Rouppe van der Voort, C., Kavelaars, A., Smant, G., Schots, A., Bakker, J. and Helder, J.: Naturally Induced Secretions of the Potato Cyst Nematode Co-stimulate the Proliferation of Both Tobacco Leaf Protoplasts and Human Peripheral Blood Mononuclear Cells. Molecular Plant-Microbe Interactions 12(10), 872-881 (1999).

Grant, M. R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., Innes, R. W. and Dangl, J. L.: Structure of the *Arabidopsis RPM1* gene enabling dual specificity disease resistance. Science 269, 843-846 (1995).

Hamilton, C. M., Frary, A., Lewis, C. and Tanksley, S. D.: Stable transfer of intact high molecular weight DNA into plant chromosomes. PNAS 93, 9975-9979 (1996).

Hamilton, C. M.: A binary-BAC system for plant transformation with high-molecularweight DNA. Gene 200, 107-116 (1997).

Hammond-Kosack, K. E. and Jones, J. D. G.: Resistance Gene-Dependent Plant Defense Response. Plant Cell 8, 1773-1791 (1996).

Hammond-Kosack, K. E. and Jones, J. D. G.: Plant Disease Resistance Genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 575-607 (1997).

Hanks, S. K. and Quinn, M.: Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods in Enzymology 200, 38-62 (1991).

Hawkes, J. G.: The Potato, Evolution, Biodiversity and Genetic Resources. Belhaven Press, London (1990).

Hehl, R., Faurie, E., Hesselbach, J., Salamini, F., Whitham, S., Baker, B. and Gebhardt, C.: TMV resistance gene *N* homologues are linked to Synchytrium endobioticum resistance in potato. Theor. Appl. Genet. 98, 379-386 (1999).

Hoffmann, G. M. und Schmutterer, H.: Schädlinge. In: Parasitäre Krankheiten und Schädlinge an wirtschaftlichen Kulturpflanzen. Verlag Eugen Ulmer, Stuttgart, 244-266 (1983).

Hooper, D. J.: Structure and Classification of Nematodes. In: Plant Nematology, 3rd edition. Edited by Southey, J. F.. Ministry of Agriculture, Fisheries and Food, Her Majesty's Stationery Office, HMSO Press, Edinburgh, GD1 (replaces Technical Bulletin 7), 3-45 (1978).

Imler, J. L. and Hoffmann, J. A.: Toll and Toll-like proteins: an ancient family of receptors signaling infection. Rev. Immunogenetics 2, 294-304 (2000).

Irmler, S., Schröder, G., St-Pierre, B., Crouch, N. P., Hotze, M., Schmidt, J., Strack, D., Matern, U. and Schröder, J.: Indole alkaloid biosynthesis in *Catharanthus roseus*: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant Journal 24, 797-804 (2000).

Johal, G. S. and Briggs, S. P.: Reductase activity encoded by the *HM1* disease resistance gene in maize. Science 258, 985-987 (1992).

Jones, D. A., Thomas, M. C., Hammond-Kosack, K. E., Balint-Kurti, P. J. and Jones, J. D. G.: Isolation of the Tomato *Cf-9* Gene for Resistance to *Cladosporium fulvum* by Transposon Tagging. Science 266, 789-793 (1994).

Jones, D. A. and Jones, J. D. G.: The Role of Leucine-Rich Repeat Proteins in Plant Defense. Adv. Bot. Res. 24, 89-167 (1997).

Jones, J. D. G., Shlumukov, L., Carland, F., English, J., Scofield, S. R., Bishop G. J. and Harrison K.: Transgenic Research 1, 285-297 (1992).

Jones, F. G. W.: Parasitism in Plant Nematodes. In: Plant Nematology, 2nd edition. Edited by Southey J. F.. Ministry of Agriculture, Fisheries and Food, Her Majesty's Stationery Office, Technical Bulletin 7, 30-34 (1965).

Kalendar, R., Grob, T., Regina, M., Suoniemi, A. and Schulman, A.: IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 98, 704-711 (1999).

Keen, N. T.: The molecular biology of disease resistance. Plant Mol. Biol. 19, 109-122 (1992).

Knogge, W.: Fungal Infection of Plants. Plant Cell 8, 1711-1722 (1996).

Kobe, B. and Deisenhofer, J.: Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature 366, 751-756 (1993).

Kobe, B. and Deisenhofer, J.: The leucine-rich repeat: a versatile binding motif. Trends Biochem. Sci. 19, 415-421 (1994).

Kort, J., Ross, H., Rumpenhorst, H. J. and Stone, A. R.: An international scheme for indentifying and classifying pathotypes of potato cyst-nematodes, *Globodera rostochiensis* and *G. pallida*. Nematologica 23, 333-339 (1977).

Kunze, R., Saedler, H. and Lönnig, W.-E.: Plant Transposable Elements. Adv. Bot. Res. 27, 331-470 (1997).

Lawrence, G. J., Finnegan, E. J., Ayliffe, M. A. and Ellis, J. G.: The *L6* gene for flax rust resistance is related to the *Arabidopsis* bacterial resistance gene *RPS2* and the tobacco viral resistance gene *N*. Plant Cell 7, 1195-1206 (1995).

Leister, D.: Isolierung von Genomsegmenten aus der Kartoffel, die mit den Resistenzloci *R1* und *Gro1* gekoppelt sind, mit Hilfe von positioneller Klonierung und heterologer PCR, Doktorarbeit an der Eberhard-Karls-Universität Tübingen (1995).

Leister, D., Ballvora, A., Salamini F. and Gebhardt, C.: A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics 14, 421–429 (1996).

León, J., Lawton, M. A. and Raskin, I.: Hydrogen Peroxide Stimulates Salicylic Acid Biosynthesis in Tobacco. Plant Physiol. 108, 1673-1678 (1995).

Leonards-Schippers, C., Gieffers, W., Schäfer-Pregl, R., Ritter, E., Knapp, S. J., Salamini, F. and Gebhardt, C.: Quantitative Resistance to *Phytophthera infestans* in Potato: A Case Study for QTL Mapping in an Allogamous Plantt Species. Genetics 137, 67-77 (1994).

Martin, G. B., Brommonschenkel, S. H., Chunwongse, J., Frary, A., Ganal, M. W., Spivey, R., Wu, T., Earle, E. D. and Tanksley, S. D.: Map-Based Cloning of a Protein Kinase Gene Conferring Disease Resistance in Tomato. Science 262, 1432-1436 (1993).

McCormac, A. C., Elliott, M. C. and Chen, D. F.: A Simple Method for the Production of Highly Competent Cells of *Agrobacterium* for Transformation via Electroporation. Molecular Biotechnology 9, 155-159 (1998).

McDowell, J. M., Dhandaydham, M., Long, T. A., Aarts, M. G. M., Goff, S., Holub, E. B. and Dangl, J. L.: Intragenic Recombination and Diversifying Selection Contribute to the Evolution of Downy Mildew Resistance at the *RPP8* Locus of Arabidopsis. Plant Cell, 1861-1874 (1998).

Meksem, K., Zobrist, K., Ruben, E., Hyten, D., Quanzhou, T., Zhang, H. B. and Lightfoot, D. A.: Two large-insert soybean genomic libraries constructed in a binary vector: applications in chromosome walking and genome wide physical mapping. Theor. Appl. Genet. 101, 747-755 (2000).

Milligan, S. B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P. and Williamson, V. M.: The Root Knot Nematode Resistance Gene *Mi* from Tomato Is a Member of the Leucine Zipper, Nucleotide Binding, Leucine-Rich Repeat Family of Plant Genes. Plant Cell 10, 1307-1319 (1998).

Mindrinos, M., Katagiri, F., Guo-Liang, Y. and Ausubel, F. M.: The A. thaliana Disease Resistance Gene *RPS2* Encodes a Protein Containing a Nucleotide-Binding Site and Leucine-Rich Repeats. Cell 78, 1089-1099 (1994).

Murashige, T. and Skoog, F.: Physiol. Plant. 15, 473 (1962).

Nacken, W. K. F., Piotrowiak, R., Saedler, H. and Sommer, H.: The transposable element Tam1 from *Antirrhinum majus* shows structural homology to the maize transposon En/Spm and has no sequence specificity of insertion. Mol. Gen. Genet. 228, 201-208 (1991).

Nasrallah, J. B.: Cell-cell signaling in the self-incompatibility response. Curr. Opin. Plant Biol. 3, 368-373 (2000).

Nasrallah, J. B., Yu, S.-M. and Nasrallah, M. E.: Self-incompatibility genes of *Brassica oleracea*: expression, isolation, and structure. PNAS 85, 5551-5555 (1988).

Osbourn, A. E.: Preformed Antimicrobial Compounds and Plant Defense against Fungal Attack. Plant Cell 8, 1821-1831 (1996).

Parniske, M., Hammond-Kosack, K. E., Golstein, C., Thomas, C. M., Jones, D. A., Harrison, K., Wulff, B. B. H. and Jones J. D. G.: Novel Disease Resistance Specificities Result from Sequence Exchange between Tandemly Repeated Genes at the *Cf-4/9* Locus of Tomato. Cell 91, 821-832 (1997).

Pastuglia, M., Roby, D., Dumas, C. and Cock, J. M.: Rapid Induction by Wounding and Bacterial Infection of an S Gene Family Receptor-like Kinase Gene in *Brassica oleracea*. Plant Cell 9, 49-60 (1997).

Pereira, A., Jacobs, J. M. E., Kreike, C. M., Te Lintel Hekkert, B., El Kharbotly, A., Jacobsen, E., Stiekema, W. J.: Ac-Ds and En-I transposons mapped near disease resistance loci targeted tagging in potato. Plant Genome II Conference, San Diego, 1994.

Person, C., Samborski, D. J. and Rohringer, R.: The gene-for-gene concept. Nature 194, 561-562 (1962).

Pieterse, C. M. J. and van Loon, L. C.: Salicylic acid-independent plant defense pathways. Trends Plant Sci. 4, 52-58 (1999).

Popeijus, H., Overmars, H., Jones, J., Blok, V., Goverse, A., Helder, J., Schots, A., Bakker, J. and Smant, G.: Degradation of plant cell walls by a nematode. Nature 406, 36-37 (2000).

Putz, B.: Wichtigste Krankheiten und Schädlinge der Kartoffel. In: Kartoffeln, Züchtung, Anbau und Verwertung, Behr's Verlag, Hamburg, 117-132 (1989).

Rice, S. L., Leadbeater, B. S. C. and Stone, A. R.: Changes in cell structure in roots of resistant potatoes parasitized by potato cyst-nematodes. I. Potatoes with resistance gene H_1 derived from *Solanum tuberosum* ssp. *andigena*. Physiol. Plant Pathology 27, 219-234 (1985).

Rice, S. L., Stone, A. R. and Leadbeater, B. S. C.: Changes in cell structure in roots of resistant potatoes parasitized by potato cyst-nematodes. 2. Potatoes with resistance derived from *Solanum vernei*. Physiol. Plant Pathology 31, 1-14 (1987).

Robertson, L., Robertson, W. M., Sobczak, M., Helder, J., Tetaud, E., Ariyanayagam, M. R., Ferguson, M. A. J., Fairlamb, A. and Jones, J. T.: Cloning, expression and functional characterisation of a peroxiredoxin from the potato cyst nematode *Globodera rostochiensis*. Molecular and Biochemical Parasitology 111, 41-49 (2000).

Rocha-Sosa, M., Sonnewald, U., Frommer, W., Stratmann, M., Schell, J. and Willmitzer; L.: Both developmental and metabolic signals activate the promotor of a class I patatin gene. EMBO Journal 8(1), 23-29 (1989).

Ross, H.: Über die Vererbung der Resistenz gegen den Kartoffelnematoden (*Heterodera rostochiensis* Woll.) in Kreuzungen von *Solanum famatinae* Bitt. Et Wittm. mit *Solanum tuberosum* L. und mit *S. chacoense* Bitt. Der Züchter 32, 74-80 (1962).

Ross, H.: Potato breeding: Problems and perspectives. Edited by Horn, W. and Röbbelen, G. J. Plant. Breed. Suppl. 13 (1986).

Salmeron, J. M., Barker, S. J., Carland, F. M., Mehta, A. Y. and Staskawicz, B. J.: Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition. Plant Cell 6, 511-520 (1994).

Salmeron, J. M., Oldroyd, G. E. D., Rommens, C. M. T., Scofield, S. R., Kim, H.-C., Lavelle, D. T., Dahlbeck, D. and Staskawicz, B. J.: Tomato *Prf* Is a Member of the Leucine-Rich Repeat Class of Plant Disease Resistance Genes and Lies embedded within the *Pto* Kinase Gene Cluster. Cell 86, 123-133 (1996).

Sambrook, J., Fritsch, E. F. and Maniatis, T.: Molecular cloning: A laboratory Manual, 2nd ed., Vol. 1-3, Cold Spring Harbor Laboratory Press, NY (1989).

Sambrook, J. and Russell, D. W.: Molecular cloning: A laboratory Manual, 3rd ed., Vol. 1-3, Cold Spring Harbor Laboratory Press, NY (2000).

Sanft, U.: Die Biologie der zystenbildenden Kartoffelnematoden. Der Kartoffelbau 37(1), 7-9 (1986).

Saraste, M., Sibbald, P. R. and Wittinghofer, A.: The P-loop – a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430-434 (1990).

Sarfatti, M., Abu-Abied, M., Katan, J. and Zamir, D.: RFLP mapping of *I1*, a new locus in tomato conferring resistance against *Fusarium oxysporum* f. sp. *Lycopersici* race 1. Theor. Appl. Genet. 82, 22-26 (1991).

Scheffer, R. P.: Pathogens Overtake Movement of Crop Plants. In: The Nature of Disease in Plants. Edited by Scheffer, R. P., Cambridge University Press, 124-143 (1997).

Schlösser, E.: Preformed structural and chemical barriers. In: Resistance of Crop Plants against Fungi. Edited by Hartleb, H., Heitefuss, R. and Hoppe, H.-H., Gustav Fischer Verlag, 84-99 (1997).

Schopfer, C., Nasrallah, M. and Nasrallah, J.: The male determinant of selfincompatibility in *Brassica*. Science 286, 1697-1700 (1999).

Schweizer, P. und Métraux, J. P.: Pilz-, Bakterien- und Virusbefall. In: Stress bei Pflanzen. Hrsg.: Brunold, C., Rüegsegger, A. und Brändle, R., Verlag Paul Haupt, 325-343 (1996).

Sessa, G., D'Ascenzo, M., Loh, Y. T. and Martin, G. B.: Biochemical properties of two protein kinases involved in disease resistance signaling in tomato. J. Biol. Chem. 273, 15860-15865 (1998).

Sijmons, P. C., Grundler, F. M. W., von Mende, N., Burrows, P. R. and Wyss, U.: *Arabidopsis thaliana* as a new model host for plant-parasitic nematodes. Plant Journal 1(2), 245-254 (1991).

Simons, G., Groenendijk, J., Wijbrandi, J., Reijans, M., Groenen, J., Diergaarde, P., Van der Lee, T., Bleeker, M., Onstenk, J., de Both M., Haring, M., Mes, J., Cornelissen, B., Zabeau, M. and Vos, P.: Dissection of the Fusarium *I2* Gene Cluster in Tomato Reveals Six Homologs and One Active Gene Copy. Plant Cell 10, 1055-1068 (1998).

Smant, G., Stokkermans, J. P. W. G., Yan, Y., de Boer, J. M., Baum, T. J., Wang, X., Hussey, R. S., Gommers, F. J., Henrissat, B., Davis, E. L., Helder, J., Schots, A. and Bakker, J.: Endogenous cellulases in animals: Isolation of β -1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc. Natl. Acad. Sci. U.S.A. 95, 4906-4911 (1998).

Somssich, I. E. and Hahlbrock, K.: Pathogen defense in plants – a paradigm of biological complexity. Trends Plant Sci. 3, 87-90 (1998).

Song, W.-Y., Wang, G.-L., Chen, L.-L., Kim, H.-S., Pi, L.-Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.-X., Zhu, L.-H., Fauquet, C. and Ronald, P.: A Receptor Kinase-Like Protein Encoded by the Rice Disease Resistance Gene, *Xa21*. Science 270, 1804-1806 (1995).

Southey, J. F.: Potato Root Eelworm. In: Plant Nematology, 2nd edition. Edited by Southey J. F.. Ministry of Agriculture, Fisheries and Food, Her Majesty's Stationery Office, Technical Bulletin 7, 171-188 (1965).

Stone, A. R.: *Heterodera pallida* n. sp. (Nematoda: Heteroderidae), a second species of potato cyst nematode. Nematologica 18, 591-606 (1973).

Takayama, S., Shiba, H., Iwano, M., Shimosato, H., Che, F.-S., Kai, N., Watanabe, M., Suzuki, G., Hinata, K. and Isogai, A.: The pollen determinant of self-incompatibility in *Brassica campestris*. PNAS 97, 1920-1925 (2000).

Takken, F. L. W. and Joosten, M. H. A. J.: Plant resistance genes: their structure, function and evolution. Europ. J. Plant Pathol. 106: 699-713 (2000).

Tang, X., Frederick, R. D., Zhou, J., Halterman, D. A., Jia, Y. and Martin, G. B.: Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science 274, 2060-2063 (1996).

Tang, X., Xie, M., Kim, Y. J., Zhou, J., Klessig, D. F. and Martin, G. B.: Overexpression of *Pto* Activates Defense Responses and Confers Broad Resistance. Plant Cell 11, 15-29 (1999).

The Arabidopsis Genome Initiative: The Arabidopsis genome has been sequenced and annotated. Nature 408, 796-815 (2000).

Torii, K. U. and Clark, S. E.: Receptor-Like Kinases in Plant Development. Adv. Bot. Res. 32, 225-267 (2000).

Trudgill, D. L.: Management of plant parasitic nematodes. Annual Report (1999/2000) of the Scottish Crop Research Institute, 66-82 (2000).

Van der Vossen, E. A. G., Rouppe van der Voort, J. N. A. M., Kanyuka, K., Bendahmane, A., Sandbrink, H., Baulcombe, D. C., Bakker, J., Stiekema, W. J. and Klein-Lankhorst, R. M.: Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant Journal 23(5), 567-576 (2000).

Walker, J. E., Saraste, M., Runswick, M. J. and Gay, N. J.: Distantly related sequences in the α - and β -subunits of ATP synthetase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945-951 (1982).

Walker, J. C. and Zhang, R.: Relationship of a putative receptor protein kinase from maize to the S-locus glycoprotein of *Brassica*. Nature 345, 743-746 (1990).

Wan, Y. and Lemaux, P. G.: Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104, 37-48 (1994).

Williams, T. D.: Cyst Nematodes: Biology of *Heterodera* and *Globodera*. In: Plant Nematology, 3rd edition. Edited by Southey, J. F.. Ministry of Agriculture, Fisheries and Food, Her Majesty's Stationery Office, HMSO Press, Edinburgh, GD1 (replaces Technical Bulletin 7), 156-171 (1978).

Williamson, V. M. and Hussey, R. S.: Nematode Pathogenesis and Resistance in Plants. Plant Cell 8, 1735-1745 (1996).

Whitham, S., Dinesh-Kumar, S. P., Choi, D., Hehl, R., Corr, C. und Baker, B.: The Product of the Tobacco Mosaic Virus Resistance Gene *N*: Similarity to Toll and the Interleukin-1 Receptor. Cell 78, 1101-1115 (1994).

Wollenweber, H. W.: Krankheiten und Beschädigungen der Kartoffel. Arb. FroschInst. Kartoff., Berl. 7, 1-56 (1923).

Woo, H. R., Chung, K. M., Park, J.-H., Oh, S. A., Ahn, T., Hong, S. H., Jang, S. K. and Nam, H. G.: ORE9, an F-Box Protein That Regulates Leaf Senescence in Arabidopsis. Plant Cell 13, 1779-1790 (2001).

Xie, D.-X., Feys, B. F., James, S., Nieto-Rostro, M. and Turner, J.G.: *COII*: An *Arabidopsis* gene required for jasmonate-regulated defense and fertility. Science 280, 1091-1094 (1998).

Zhao, Y., Feng, X.-H., Watson, J. C., Bottino, P. J. and Kung, S.-D.: Molecular cloning and biochemical characterization of a receptor-like serine/threonine kinase from rice. Plant Mol. Biol. 26, 791-803 (1994).

Sitte, P., Ziegler, H., Ehrendorfer, F. and Bresinsky, A.: Strasburger - Lehrbuch der Botanik für Hochschulen, 34., neu bearb. Aufl., Gustav Fischer Verlag, Stuttgart, Jena, Lübeck (1998).

Zhou, N., Tootle, T. L. and Glazebrook, J.: Arabidopsis *PAD3*, a Gene Required for Camalexin Biosynthesis, Encodes a Putative Cytochrome P450 Monooxygenase. Plant Cell 11, 2419-2428 (1999).

8. Abkürzungsverzeichnis

al	alli
Δ	Adenin
150	Allele Specific Oligonucleotide
ASU AFL P	Amplified Fragment Length Polymorphism
ATD	Adonosintrinhosnhat
	Ractorial Artificial Chromosoma
DAC	Ducierui Ariijicui Chromosome
bp	Basenpaare
BSA	Rinderserumalbumin
С	Cytosin
CAPS	Cleaved Amplified Polymorphic Sequence
cDNA	komplementäre DNA
Ci	Curie
CTAB	Cetyltrimethylammoniumbromid
dCTP	Desoxycytidintriphosphat
DFLP	Different Fragment Length Polymorphism
DIG	Dioxygenin
DNA	Desoxyribonukleinsäure
dNTP	Desoxynukleotidtrinhosnhat
DMSO	Dimethylsulfoyid
E coli	Escharichia coli
E.COU FDTA	Escherichill coll Ethylonomintotraossigsäuro
EDIA	
G	
IFIG	Isopropyi-p-D-thiogalactopyranosid
h	Stunde(n)
kb	Kilobasenpaare
kDa	Kilodalton
1	Liter
LRR	Leucine-Rich Repeat
LZ	Leucine Zipper
Μ	Mol
min	Minute(n)
ml	Milliliter
mМ	Millimol
mRNA	messenger Ribonukleinsäure
NBS	Nucleotide Rinding Site
PAC	Pl_derived Artificial Chromosome
nmol	nikomol
pinoi ny	Pathovar (Pathotyn)
PCD	Polymanase Chain Penetion
	Polymeruse Chain Reaction
	Quantitative Trait Loci
RACE	Kapia Ampiification of cDNA enas
RAPD	Randomly Amplified Polymorphic DNA
RFLP	Restriction Fragment Length Polymorphism
RLK	Receptor-Like Kinase
RNA	Ribonukleinsäure
RT-PCR	Reverse Transcription Polymerase Chain Reaction
S	Sekunde(n)
SCAR	Sequence Characterized Amplified Region
SDS	Natriumdodecylsulfat
SLG	S-Locus Glycoprotein
SNP	Single Nucleotide Polymorphism
SRK	S-Receptor Kinase
SSCP	Single Strand Conformational Polymorphism
SSR	Simple Sequence Repeat
STK	Serin-Threenin-Kinase
T	Thymin
I TID	1 IIyililli Toll Interlaukin 1 Decentor homology regions
TM	Tuanamambuan
1 IVI Twic	1 I ansniempfan Twig (bydrowymothyl) gwin gwyth
1 115	i ris-(nyuroxymetnyi)-aminometnan
U ,	Unit (Enzymaktivität)
vol	Volumen
v/v	Volumen pro Volumen
w/v	Gewicht pro Volumen
YAC	Yeast Artificial Chromosome

Alanin	Ala	A
Arginin	Arg	R
Asparagin	Asn	N
Asparaginsäure	Asp	D
Cystein	Cys	C
Glutamin	Gln	Q
Glutaminsäure	Glu	E
Glycin	Gly	G
Histidin	His	H
Isoleucin	lle	<u> </u>
Leucin	Leu	L
Lysin	Lys	ĸ
Methionin	Met	M
Phenylalanin	Phe	F
Prolin	Pro	P
Serin	Ser	S
Threonin	Thr	Т
Tryptophan	Trp	W
Tyrosin	Tyr	Y
Valin	Val	V

Die Aminosäuren; übernommen aus: http://www2.chemie.unierlangen.de/education/medprak/prak tikum/heft-neu/medprak-heft-09.html

9. Anhang

9.1 Sequenzen der verwendeten Oligonukleotide (5'→3')

9A2T3f	CAT CTC ACG CGA TGT AAG AC
9A2T3r	TCA CAC ATC CAT CGC ACT AC
9A2T7f	GGC ATG TTC AGC AAA CCG AC
9A2T7r	AGA GTA CAG TAG CTC GCG TC
10N22revf	TCT CAA TTG GAA TAT GCC AGA G
10N22revr	GTA TGT AAA TAG GTC CCA CAG G
10N22T7f	TAA GGT TAT ACC AGT CAG ATG C
10N22T7S1r	TGC ATT CAT CAT GAA GAT AAG CTA
10T3f	GGC TAC ATG GTT CTT ATG GA
10T3S2r	GCA GTT GTA TAC CGT CAA CAA A
25J5revf	GTT AAG AGA GTC TTT AAA GCT TTT AAA GAG TCG T
25J5rev82r	CCA AGT GTA TAT TAC TAA CAA AAT TG
25J5T7f	GTC CGA TGG ACA TTT ACG GGT ATA CCA AT
25J5T782r	GGA ACT CAA CAA GGA TAT AAT TTA C
26N18revf	CAC TTC ATT TAA ATC AAA TTG GGA AAG AGA AAA TTC C
26N18revr	CTT TCA AGG GTC ATA ACT CGC TTA TAC GAA CTC
26N18T7S1	GTA GGC AAG AAC CTA TAT AAA CAA G
26N18T7S2-2r	CAC TTC AAC TTG TCT CTA TTA TG
36T3f	GGT CCA CTA ATA CTA CTG G
36T3r	GGA GCA AGC AAA CCT TCA A
49J20T3f1	GAA TGA AGG ACA TGC AGA TAA TG
49J20T3r1	CCA TTT TTT AAA TAA TTA ATA AGC CAT
49J20T7f	GGG TAT GTA AAT GGA GTA AAA GG
49J20T7r	CGA CTA GAT AGA AGA TCT CAT TC
52016T3f	CTC AGT CTC CTG TCA TAG AG
52016T3r	AAT CAG TTC AAT TAA GGA CTG C
52016T7f	CAT CAA CTC CAA GCA GAA CAG
52016T7r	AGG TGC TTA ATC CTG AGG ATG
60B11T3f	GGC AGA ATA CTC TTT CAC AAT A
60B11T3r	CCT AAC AGT GGT ATC AAG AGC
60B11T7f	GGC TGT GCT TGT TCA GAT TGC
60B11T7r	GTG ATC AGC ACA AGT TCT CTC C
60L16revf1	ATG TCC ACG CGT GCA GTA AC
60L16revS2r	CTA GCA GAC TGG AAT AGG AC
60L16unif1	CTC CTA AAT CAT CTT GAG TTA GG
60L16unir1	GCA TGC AAC ACA CAG TAC ACC
62C17T3f	CCT GAG ATA GGA GTT ACG ACT
62C17T3r	CAC ACA AGA TGA GCC CAT TGA T
62C17T7f	GTC AGA ACA AGT CTT TAA GGT TTT
62C17T7r	CCT GAA CTG CCT AAT GGA TCC
70K20T3f	GAG ATA CTC TGG ACA GTT GGA G
70K20T3r	CCT AGC TGT CAG AAT TTT CAT TTG
71017T3f1	TTG GCT GGA CCA CAG ACT CG
71017T3r1	GGA TAT TGA TTC TTA GCT ACA TC

73N5revf	CTA GTG CAT TCT TCA AGA ACC AG
73N5revr	CCA AGA ATG TGT AGT AGG ATG TG
73N5T7f	CCT GCT TTC CAA ACT GAG AAG
73N5T7S1r	GAT GGG CAA GAC GAT TTA ACA G
78M21T7f	GTC TTT ATG GAG TGA ATA CAT GAG
78M21T7r	CCT TCT CAA CCT ATC ATC CAC
7805T3f	CTG AAG TGT AGT AAT ACT GAG G
7805T3r	GCA TCT TAT GAT GAT GCA GAG A
7805T7f	CCA TTT GAA TTC AGT AGC TGC AC
7805T7r	GAG CAG CTC ATA GTT ATG GTT G
94A4T3f	GTG CCT TGT GCT GTA GCT G
94A4T3r	CTA AGC TAA TAA GAT ACC ACA C
94A4T7f	CAA CGT CCG CAA TTA TCA GC
94A4T7r	TCT TCA ATT ATT GGA AGA CCA G
98P9revf	CTG TAA TAA GAA CTA TCA GCA TAG
98P9revr	CTG GAT CAA CAG GCC ATC TC
98P9T7f	GCA GTA AGG GTA TGA CCA TC
98P9T7r	GCT CGC ATA CTC GTA CAT TC
98T7f	GGG AAC AAA GAT AGA AGA TTG
98T7r	GCT TCA CAG CTA TTT TGT TG
98T7S3r	GAC ATG ATG ACT CCT TTC ATT TTA
106C14T3f	GAC AAA ACT AGA ATA ATT TAG TAG CTC TAC
106C14T3S2r	CGC TAC TTA ACA TAC TAT GTA TC
106C14T7f	CTC TCA GTT CCT CCG CGT GCA A
106C14T7r	GTA CAT TGT TAG CTG CTG AAT CAT GTT ACC
110T7f	GGA TAC TAC TGT GGA AAA CC
110T7r	TGC AAC TAA GGA CAG GCT C
115B4T3f	GTA TTG AGC TGG TGA TGT AGG
115B4T3r	CCG GAC AGC TCC TCT ACT G
115B4T7f	TGA ATT GAG GTG CTG GTC TAG
115B4T7r	ATT AGT ATG GTC TGC TAA CAG G
119F19T3f	GAG TGG CTA TTT CTA ACA AAG G
119F19T3r	GGA GTA CTC TGT AGT ACA TGT T
119F19T7f	CGT GAG TTC CTC ACA CTT AAG C
119F19T7r	CCT GAG TGG TTT CTA CCA CAC
137E13T3f	GCT GTA AGT TGA TTA GCC TCA A
137E13T3r	TAC AGG ACT GTC GAA GTT GAC
137E13T7f	TTC AGT TAA GCA TGA GTC GTA C
137E13T7r	GCC ATA AGG CAC CCT GAA TC
154P18T3f	TTA AGA AGC AAG CCA AGC AAG
154P18T3r	ATG AGC CCT AGT GGT GAT AC
154P18T7f	AAG TGG ATG ATA GTA TGT ATA GAA
154P18T7r	GGT AGC TTC TGT TTG TTC ATA G
173o21T3f	TGT GGC TCG TGT CTT ATT GC
173o21T3r	AGC GGA AAC CTA ACT CAA CAG
173o21T7f	CAG TAA AGG TTC GAC CGT CA
173o21T7r	ACA GIA CCA CAG AAT GCC TTC
221C8T3f	AAA GAA GTC AGT CAG GTT GAG
221C8T3r	AAC AGA ATA ACT TAA TGC AAT GC
221C8T7f	AAA GGA GAT GCA ATA GAC GAG

221C8T7r	AAA GAC AGC TTT CAG AAC CAG
229C2T3f	AAT TAT CTA GTA AAA TCA CGT GTC
229C2T3r	GGC CTA GAG TAC AAC CGA TC
229C2T7f	GCT TCC TTG ATT GAT CAC TAC
229C2T7r	CAT GCT CAG ACA GGA GAG C
251D8T3f	CAT TAG GAG CGA GCA GCT G
251D8T3r	CTG CAG AAT CCG TGC TTG C
251D8T7f	TGT CTC TTA TAT CCA TAG TGA TC
251D8T7r	CGA TAT TCC TCA GCA TTC ATA G
260K12T3f	CAT CCT GCT ATA CAT CCT TCG
260K12T3S1r	ACA TAG ACA TAC GGT GAC TTG T
260K12T7f	CCA TGT TTC CTC TCA AGG TCT A
260K12T7r	CAT CGT TTC CAA GTG AGT CTT T
261J14T3f	CAA CCA TAA CTG GAA ATA CTC C
261J14T3r	TTG AGG CAC ATG TTC ATA CTA C
261J14T7f	ATA TAT TGC ATA TGT CGT ATT GC
261J14T7r	AAC TTC AAA TTT CAT ATG TAC CAC
332/334s	CAC GAA GTC AGA GAC CGT TC
332/334as	GAG CTG ATA GAT CCT CGA ATT
Aktinfl	CAA TGG AAC AGG AAT GGT TAA G
Aktinr1	CGA GAC GAA GAA TGG CAT GTG
Frag2_P40spezf	AGT ATA ACA GGG ATA TAT GCT C
Frag2_P40spezr	TAG GCA TCC ATT TGT CGA AAA G
Frag5_P40spez3f	CCT TGC ATT GCA TGG TTG TAC
Frag5_P40spez3r	CTA ATT TTT AGG CCA TGG ACT A
Frag10_P41spezf	ACA AAA ATG TGA TGA ACT TGT AAC
Frag10_P41spezr	AAC ACG TTC TAA ATC TGT GCC
Frag11_P40spezf	ATG TTT GAA AAC ACT TGG TTG GT
Frag11_P40spezr	AGA TGT GCA TTC ATT AGC AAA TAT
Frag11_P41spezf	ACC TGA CTA ATG AAG AAG AAG C
Frag11_P41spezr	TCA AAG CAG TAG CAC CCA AAC
NBS3RACE1	GGA AGA AGA AAG ATT CAG TGA CCA GAA TAC TTG A
LRR5RACE1	CCT TTG AGG TTT TCC AAA GTT GTA TGA TGC G
RLK3RACE5	CTG CTA ACA GGA ACC ATC CAG TGA
RLK5RACE2	GGT TTG ATG TCC AAA TGA ATT ATC TTA TGG C
T3	AAT TAA CCC TCA CTA AAG GG
T7	GTA ATA CGA CTC ACT ATA GGG C

9.2 St332/334-Genfamilie - genomische Sequenzen und RACE - Produkte

durch Deletion verursachter Stop in Fragment-6-Gen

Frag_1_P41 Frag_3_P40 Frag_3_P41 Frag_4_P40 Frag_6_P40 Frag_6_P40 Frag_6_P40 Frag_10_P41 Frag_11_P41 Frag_11_P41 Frag_14_P40 3R27	91 91 91 91 91 91 74 91 91	АААСТТАААААТТТАССАGATG/ АААСТТААЛААТТТАССАGATG/ АЛАСТТААЛААТТТАССАGATG/ АЛАСТТААЛААТТТАССАGATG/ АЛАСТТААЛААТТТАССАGATG/ АЛАСТТААЛААТТТАССАGATG/ АЛАСТТААЛААТТТАССАGATG/ АЛАСТТААЛААТТТАССАGATG/ АЛАСТТААЛААТТАССАGATG/ АЛАСТТААЛААТТАССАGATG/ АЛАСТТААЛААТТАССАGATG/	ATTTGGACTTTG ATTTGGACTTTG ATTTGGACTTTG ATTTGGACTTTG ATTTGGACTTTG ATTTGGACTTTG ATTTGGACTTTG ATTTGGACTTTTA ATTTGGACTTTTA ATTTGGACTTTTA ATTTGGGACTTTTG	STTGGTTTAGAGA STTGGTTAGAGA STTGGTTAGAGA STTGGTTAGAGA STTGGTTAGAGA STTGGTTAGAGA STTGGTTAGAGA STTGGTTAGAGA STTGGTTAGAGA STTGGTTAGAGA STTGGTTAGAGA STTGGTTAGAGA STTGGTTAGAGA	GETCEACTGEACTE GETCEACTGEACTE GETCEACTGEACTE GETCEACTGEACTE GETCEACTGEACTE GETCEACTGEACTE GETCEACTGEACTE GETCEATGEACTE GETCEACTGEACTE GETCEACTGEACTE GETCEACTGEACTE	ACACAGCCATCCAA ACACAGCCATCCAA ACACAGCCATCCAA ACACAGCCATCCAA ACACAGCCATCCAA ACACAGCCATCCAA ACACAGCCATCCAA ACACAGCCATCCAA ACACAGCCATCCAA ACACAGCCATCCAA ACACAGCCATCCAA ACACAGCCATCCAA ACACAGCCATCCAA	ACAATTCCGTCT ACAATTCCGTCT ACAATTCCGTCT ACAATTCCGTCT ACAATTCCGTCT ACAATTCCGTCT ACAATTCCGTCT ACAATTCCGTCT ACAATTCCGTCT ACAATTCCTTCT ACAATTCCTTCT
Frag_1_P41 Frag_2_P40 Frag_3_P40 Frag_3_P41 Frag_4_P40 Frag_5_P40 Frag_6_P40 Frag_8_P40 Frag_10_P41 Frag_11_P40 Frag_14_P40 3R27	181 181 181 181 181 181 181 181 128 181 181	ТСТАТСТССТТСТТАААААСС ТСТАТСТСТТСТТАААААСС ТСТАТСТСТТСТТАААААСС ТСТАТСТСТТСТТАААААСС ТСТАТСТСТТСТТАААААСС ТСТАТСТСТТСТТАААААСС ТСТАТСТССТСТТАААААСС ТСТАТСТССТТСТТАААААСС ТСТАТСТСТТСТТАААААСС ТСТАТСТСТТСТТАААААСС ТСТАТСТСТТСТТАААААСС ТСТАТСТСТТСТТАААААСС ТСТАТСТСТТСТТАААААСС	TTAAGCCTTATCT TTAAGCCTTATCT TTAAGCCTTATCT TTAAGCCTTATCT TTAAGCCTTATCT TTAAGCCTTATCT TTAAGCCTTATCT TTAAGCCTTATCT TTAAGCCTTATCT TTATCCCTTATCT TTAAGCCTTATCT	CTCACTGACTGATGTA CTCCGTGGATGTA TTCGTGGGATGTA TCCGTGGATGTA CTCACTGGATGTA CTCACTGGATGTA CTCACTGGATGTA CTCCGTGGATGTA CTCCGTGGATGTA CTCCGTGGATGTA CTCCGTGGATGTA CTCCGTGGATGTA	NTGCTTTGAGTTCAC NTGCTTTAGTTCAC NTGCTTTGAGTTCAC NTGCTTTGAGTTCAC TGCTTTGAGTTCAC TGCTTTGAGTTCAC NTGCTTTGAGTTCAC NTGCTTTGAGTTCAC NTGCTTTGAGTTCAC NTGCTTTGAGTTCAC	AGGTAAGTAGCTCA <i>I</i> AAGTAAGTAGCTCA <i>I</i> AAGTAAGTAGCTCA <i>I</i> AAGTAAGTAGCTCA <i>I</i> AAGTAAGTAGCTCA <i>I</i> AAGTAAGTAGCTCCA <i>I</i> AAGTAAGTAGCTCCA <i>I</i> AAGTAAGTAGCTCCA <i>I</i> AAGTAAGTAGCTCA <i>I</i> AAGTAAGTAGCTCA <i>I</i> AAGTAAGTAGCTCA <i>I</i>	AGTCATGGCCAG AGTCATGGCCAG AGTCATGGCCAG AGTCATGGCCAG AGTCATGGCCAG AGTCATGGCCAG AGTCATGGCCAG AGTCATGGCCAG AGTCATGGCCAG AGTCATGGCCAG AGTCATGGCCAG AGTCATGGCCAG
Frag_1_P41 Frag_2_P40 Frag_3_P40 Frag_4_P40 Frag_6_P40 Frag_6_P40 Frag_8_P40 Frag_10_P41 Frag_11_P40 Frag_14_P40 3R27	271 271 271 271 271 265 271 271 218 271 271	AAGTCTATGGGTGTAAATTTT AAGTCTATGGGTGTAAATTTT AAGTCTATGGGTGTAAATTTT AAGTCTATGGGTGTAAATTTT AAGTCTATGGGTGTAAATTTT AAGTCTATGGGTGTAAATTTT AAGTCTATGGGTGTAAATTTT AAGTCTATGGGTGTAAATTTT AAGTCTATGGGTGTAAATTTT AAGTCTATGGGTGTAAATTTT AAGTCTATGGGTGTAAATTTT AAGTCTATGGGTGTAAATTTT AAGTCTATGGGTGTAAATTTT	CAGAATTTGTCG CAGAATTTGTCG CAGAATTTGTCG CAGAATTTGTCG CAGAATTTGTCG CAGAATTTGTCG CAGAATTTGTCG CAGAATTTGTCG CAGAATTTGTCG CAGAATTTGTCG CAGAATTTGTCG CAGAATTTGTCG CAGAATTTGTCG CAGAATTTGTCG CAGAATTTGTCG	GETETTETTETTAT GETETTETTAT GETETTATTAT GETETTATTAT GETETTETTAT GETETTETTAT GETETTETTAT GETETTETTAT GETETTETTAT GETETTETTAT GETETTETTAT GETETTETTAT	GATCATETTEGATC GATCATETTEGATC GATCATETTEGATC GATCATETTEGATC GATCATETTEGATC GATCATETTEGATC GATCATETTEGATC GATCATETTEGATC GATCATETTEGATC GATCATETTEGATC GATCATETTEGATC GATCATETTEGATC GATCATETTEGATC	ттаствастве стассаася ттаствастве стассаася	ATTTCAGATGGA ATTTCAGATGGA ATTTCAGATGGA ATTTCAGATGGA ATTTCAGATGGA ATTTCAGATGGA ATTCAGATGGA ATATCAGATGGA ATTCAGATGGA ATTTCAGATGGA ATTTCAGATGGA ATTTCAGATGGA ATTCCAGATGGA
Frag_1_P41 Frag_2_P40 Frag_3_P40 Frag_4_P40 Frag_6_P40 Frag_6_P40 Frag_8_P40 Frag_8_P40 Frag_10_P41 Frag_11_P40 Frag_14_P40 3R27	358 358 336 358 361 352 358 358 305 358 358	GGCATTTTAAGTAATCTTGGGT GGCATTTTAAGTAATCTTGGGT GGCATTTTAAGTAATCTTGGGT GGCATTTTAAGTAATCTTGGGG GGCATTTTAAGTAATCTTGGGG GGCATTTTAAGTAATCTTGGGT GGCATTTTAAGTAATCTTGGGT GGCATTTTAAGTAATCTTGGGT GGCATTTTAAGTAATCTTGGGT GGCATTTTAAGTAATCTTGGGT	ICTTACCETCTTG ICTTACCETCTTG ICTTACCETCTTG ICTTACCETCTTG ICTTACCETCTTG ICTTACCETCTTG ICTTACCETCTTG ICTTACCETCTTG ICTTACCETCTTG ICTTACCETCTTG ICTTACCETCTTG	SACACA AGGTATTCG TTC: AGGTATTCATTC: SAGGTATTCATTC: CAGGTATTCATTC: CGCSATTCATTC: AGGTATTCATTC: AGGTATTCATTC: SAGGATCATTC: SAGGATCATTC: SAGGATCATTC:	CGATGGTAACAATT CGATGGTAACAATT CGATGGTAACAATT CGATGGTAACAATT CGATGGTAACAATT CGATGGTAACAATT CGATGGTAACAATT CGATGGTAACAATT CGATGGTAACAATT CGATGGTAACAATT	TTTCCAATATTCCG TTTCCAATATTCCG TTTCCAATATTCCG TTTCCAATATTCCG TTTCCAATATTCCG TTTCCAATATTCCG TTTCCAATATTCCG TTTCCAATATTCCG TTTCCAATATTCCG TTTCCAATATTCCG TTTCCAATATTCCG	GCTGCAAGCATA GCTGCAAGCATA GCTGCAAGCATA GCTGCAAGCATA GCTGCAAGCATA GCTGCAAGCATA GCTGCAAGCATA GCTGCAAGCATA GCTGCAAGCATA GCTGCAAGCATA
Frag_1_P41 Frag_2_P40 Frag_3_P40 Frag_4_P40 Frag_6_P40 Frag_6_P40 Frag_10_P41 Frag_11_P40 Frag_14_P40 3R27	448 448 448 451 442 448 395 448 448 448	AGTCGTCTCACTCGACTTAAAA AGTCGTCTCACTCGACTTAAAA AGTCGTCTCACTCACTAAC AGTCGTCACTCACTCACTTAAAA AGTCGTCACTCGACTTAAAA AGTCGTCCACTCGACTTAAAAA AGTCGTCTCACTCGACTTAAAAA AGTCGTCTCACTCGACTTAAAAA AGTCGTCTCACTCGACTTAAAAA AGTCGTCTCACTCGACTTAAAAA AGTCGTCTCACTCGACTTAAAAAAAAAA	CCTTHATTGGTT SCTTGCATTGGT SCTTGCATTGGT SCTTGCATTGGT SCTTGCATTGGT SCTTGCATTGGT SCTTGCATTGGT SCTTGCATTGGT SCTTGCATTGGT SCTTGCATTGGT SCTTGCATTGGT SCTTGCATTGGT	Gettetteggagge Gettetteggagge Gettetteggagge Gettetteggagge Gettetteggagge Gettetteggagge Gettetteggagge Gettetteggagge Gettetteggagge Gettetteggagge Gettetteggagge	AGAGAGTTTACCGG TGAGAGTTTACCGG TGAGAGTTTACCGG TGAGAGTTTACCGG TGAGAGTTTACCGG TGAGAGTTTACCGG TGAGAGTTTACCGG TGAGAGTTTACCGG TGAGAGTTTACCGG TGAGAGTTTACCGG	AACTTCCTCCGAGT/ AACTTCCTCCGAGT/ AACTTCCTCCGAGT/ AACTTCCTCCGAGT/ AACTTCCTCCGAGT/ AACTTCCTCCGAGT/ AACTTCCTCCGAGT/ AACTTCCTCCGAGT/ AACTTCCTCCGAGT/ AACTTCCTCCGAGT/	ATAAAAGGGATA ATAAAAGGGATA ATAAAAGGGATA ATAAAAGGGATA ATAGAAAGGATA ATAGAAAGGATA ATAAAAGGATA ATAAAAGGATA ATAAAAGGGATA ATAAAAGGGATA ATAAAAGGGATA
Frag_1_P41 Frag_2_P40 Frag_3_P40 Frag_5_P40 Frag_6_P40 Frag_6_P40 Frag_10_P41 Frag_11_P40 Frag_14_P40	538 538 538 541 532 538 538 485 538	TATGCTAATGAATGCACATCTT TATGCTCATGATGCACATCTT TATGCTCATGAATGCACATCTT TATGCTCATGCAATGCA	IGATGAGTATTGAT IGATGAGTATTGAT IGATGAGTATTGAT IGATGAGTATTGAT IGATGAGTATTGAT IGATGAGATTGAT IGATGAGATTGAT IGATGAGATTGAT IGATGAGATTGAT IGATGAGATTGAT	CARCTAACCAAAT CARCTAACCAAAT CARCTAACCAAAT CARCTAACCAAAT CARCTAACCAAAT CARCTAACCAAAT CARCTAACCAAAT CARCTAACCAAAT CARCTAACCAAAT CARCTAACCAAAT	TCCAATGTTGAGTG TCCAATGTTGAGTG TCCAATGTTGAGTG TCCAATGTTGAGTG TCCAATGTTGAGTG TCCAATGTTGAGTG TCCAATGTTGAGTG TCCAATGTTGAGTG TCCAATGTTGAGTG TCCAATGTTGAGTG	ATCOTTCATTCAGAA AGGTTTCATTCAGAA AGGTTTCATTCAGAA AGGTTTCATTAGCAA AGGTTTCATTAGCAA AGGTTTCATTAGAA AGGTTTCATTCAGAA AGGTTTCATTCAGAA AGGTTTCATTCAGAA	AACTGTCGTCAA AACTGTCATCAA AAATGTCATCAA AAATGTCATCAA AAATGTCATCAA AAATGTCATCAA AAATGTCATCAA AAATGTCATCAA AAATGTCATCAA AAATGTCATCAA

Frag_1_P41 Frag 2 P40	1185 CTTGTAATAACGCCTTTCAGCTTGAATTTAGTGCCTGTGATCATTAT.CAAAAAGGATATGGT 1211 ATCGTAATAACGCCTTTCAGCTTGAATTTAGTGCCTGTGATCATTAT.CAAAAAGGATATGGT	AAAGGTTTGGGAGTGCGTCTTGTG AAAGGTTTGGGAGTGCGTCTTGTG
Frag_3_P40	$1245 \text{ ATC} \overline{\textbf{TC}} \text{AATAAC} \overline{\textbf{CT}} \overline{\textbf{CATTCAGCTTGACGTTGGTGTCGTGTGTGTGATCATTAT}. C \overline{\textbf{AT}} \textbf{AAGGATGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGG$	AAAGGTTTGGGAGTGCATCTTG <mark>C</mark> G
Frag_4_P40 Frag_5_P40	1184 ATCGTAATAACGCCTTTCAGCTTGAATTTTAGTGCCTGTGATCATTAT.CAAAAGGATGTGGTA 1166 CTTGTAATAACGCCTTTCAGCTTGAATTTTAGTGCCTGTGATCATTAT.CAAAAGGATATGGTC	AAAGGTTTGGGAGTGCGTCTTGTG AAAGGTTTGGGAGTGCGTCTTGTG
Frag_6_P40	1229 TCGAAAATGACTGCATTCAGCTTGACCTTGCTGTCTTGATCATTAC.CATAAGGATCTGGTGGTC	AAAGGTTTGGGAGTGCATCTTGTG
Frag_8_P40	1211 ATCGTAATAACGCCTTTCAGCTTGAATTTAGTGCCTGTGATCATTAT. CAAAAGGATGTGGTC	AAAGGTTTGGGAGTGCGTCTTGTG
Frag_10_P41 Frag 11 P40	0 1158 ATCGTAATAACGCCTTTCAGCTTGAGGTTGGTGGTCGTGATAATATT.CATCAGGATGTGGTGGTCGT 0 1158 ATCGTAATAACGCCTTTCAGCTTGAATTTTAGTGCCTGTGATCATTAT.CAAAAGGATGTGGTGGTC	AAAGGTTTGGGAGTGCGTCTTGTG AAAGGTTTGGGAGTGCGTCTTGTG
Frag_14_P40	0 1177 TTTTTAATCACTTCATTCAGCTTGACGTTCGTGTCCGT.ACTATCATCCTCGGATGCAGTGGTC	AAAGGTTTGGGAGTGCGTCTTGTG
3R27	1070 ATCGTAATAACGCCTTTCAGCTTGAATTTAGTGCCTGTGATCATTAT. CAAAAGGATGTGGTA	AAAGGTTTGGGAGTGCGTCTTGTG
Frag_1_P41	4051 des Gesamtalignments 1 TATGASAATTATTGTTACCCTTGGAA 1 TATGASAATGATGCCAAAGTTTTCTTACCCTTGGAA	TAAGCTGAAATGCGTATGAATCTG
Frag_3_P40 Frag_4 P40	1 TATGAGAAT <mark>TGA</mark> PGGCA	TAAGCTGAAATGCATATGAATA
Frag_5_P40	1 TATGAGAAT <mark>TGA</mark> TGGCAAGATGGAAAGAAATGATGCCAAAAGTTTTCTTACGCTTGGAA	TAAGCTGAAATGCGTATGAATCTG
Frag_6_P40	1 TATGAGAATTGATGGCAAGAGGGAAAGAAGTCCCGAAAAGTTTTCTTACACTTGGAA	TAAGCTGAAATGCATATGAATCTG
Frag_0_P40 Frag_10_P41	1 1 TATGAGAATTGATGGCA	
Frag_11_P40	0 1 TATGAGAAT <mark>TGA</mark> TGGCAAGATGGAAAGAAATGATGCCAAAAGTTTTCTTACGCTTGGAA	TAAGCTGAAATGCGTATGAATCTA
Frag_14_P40 3827	0 1 TATGAGAATTGATGGCAAGAGGGAAAGAAATGATGCCAAAAGTTTTCTTACGCTTGGAA 1 TATGAGAAATTGATGGCCA	TAAGCTGAAATGCATATGAATCTG
51127	* Transkriptionsstop	
Frag_1_P41	84 TTCAAAACTTTATTATAAGTGGATTTTGTTCTTACTGTTTCATTTATTT	TTGCTTGAT <mark>A</mark> ATCAAATTATAA <mark>TT</mark>
Frag_2_P40 Frag_3_P40	84 TTCAAAACTTTATTATAAGTGGATTCTTTCTTACTGTTTCATTTATTT	TTGCTTGATTATCAAATTATAA
Frag 4 P40		
Frag_5_P40	84 TTCAAAACTTTATTATAAGTGGATTTTGTTCTTACTGTTTCATTTATTT	TTGCTTGATTATCAAATTATAA
Frag_6_P40 Frag_8_P40	84 TTCATAACATCATTATTAGTGGATTTTGTTCTTACTGTTCCATTTATTT	TTGCTTAATTATCAAAGGTGSAGC
Frag_10_P41	1 58AAGTGGATTTTGTTCTTGTTTCATTTATTTGTTTCTTGTAAT	TTGCTTAATTATCAAATTATAA~~
Frag_11_P40	0 84 TTCAAAACTTTATTATAAGTGGATTTTGTTCTTACTGTTTCATTTATTT	TTGCTTGATTATCAAATTATAA
Frag_14_P40 3827	0 84 TTCAAAACTTTTATTTATTAAGTGGATTTTTGTTCTTTACTGTTTCATTTTATTTTGTTTCTTT T TAA T	TTGCTTAATTATCAAATTATAA
Sitz /	15	
Frag 1 P41		AACCA
Frag_2_P40	172 ACCATTTAAAAGCATGATTACGTACTATATCAATCAAAAAATATTTGATT	TTTATTATACAGATTAATTATGCA
Frag_3_P40	169 TGTTCAAACCTCACTTCTTCTCTGTGGAGCTTCATATCCTCGTTGTTTTTGTCAACCATATCC	ATCAGCTGCTCTTTTCTCCTAAAA
Frag_4_P40 Frag_5_P40	18ACCATTTAAAAGCATGATTACGTACTATATCAATCAAAAATATTTGATTGA	TTTATTATACAGATTAATTATGCA TTTATTATACAGATTA <mark>T</mark> TTATGCA
Frag_6_P40	169 TGTTCAAATCTGTTCBAACGTCACTTGTGGGGGCTTCATATCCTCGTTGTTTTGTCAACCATATCC	CTGAGCTGCACTTTTCTCCTAAAA
Frag_8_P40	174 ATAAACCATTTGAAAGCATGATTACGTACTATATCAAACCAAAAATATTTGATTGA	TTTATTATAC <mark>G</mark> GATTAATTATGCA
Frag_10_P41 Frag_11_P40	0 172 ACCATTRAAAGCATCATTACGTACTATATCAATCAATAATTTCCATTCATT	TTTATTATACAGATTAATTATGCA
Frag_14_P40	0 167 <mark>ACCATTTAA</mark> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
3R27	18 <mark>TGATTACGTACTATATCAATCAAAAATATTTGATTGATTATACATGTA</mark>	TTTATTATACAGATTAATTATGCA
Frag_1_P41	241 AAATTTATAATACATGAATTAGTTAATAATGTTGGAAGTCAACAGAATGGAAGGCA	GT <mark>G</mark> TTGGAAATCCTAGTTTATTTG
Frag_2_P40	258 AAATTTATAATACATGAATAAGTTAATAATGTTGGAAGTCAACAGAATGGAAGGCTAAAAAAATA	GTTTTGGAAATCCTAGTTTATTTG
Frag_3_P40 Frag 4 P40	200 REPUBLICATION CALCATOR CAL	AUGUICCAAAAGC®CAATUCCA AUGUICCAAAUCCUACUUTAUUUCA
Frag_5_P40	258 AAATTTATAATACATGAATTAGTTAATAATGTTGGAAGTCAACAGAATGGAAGGCTAAAAAAATA	GTGTTGGAAATCCTTGTTTATTTG
Frag_6_P40	259 ACACHAAGCAANTEGACATCTTCTTCTTCATCAECCTGTAACCGATCCAANTTCTTTCGCCCACAAAGA	ACTTTCAAGAGCACAATTCCA
Frag 11 P40	0 258 AAATTTATAATACATGAATTAGTTAATAATGTGTGGAAGTCAACAGAATGGAAGGCTAAAAAATA 0 258 AAATTTATAATACATGAATAAGTTAATAATGTTGGAAGTCAACAG <u>AATGGAAGGCTAAAAAAATA</u>	GTTTTGGAAATCCTAGTTTATTTG
3R27	90 AAATTTATAATACATGAATTAGTTAAT	~~~~~~~~~~~
Frag_1 P41	329 ACATTACCCACCCATAAATTGGTTCTTTTCAAGACTAAAAAAAGCTTACTGTTTACCTTGGTCCAG	ATAAAACTGAAGGCAGTATTGAAC
Frag_2_P40	346 ACATTACCCAACCATAAATTGGTTCTTTTCAAGACTAAAAAAAGCTTACTGTTTACCTTGGTCCAG	ATAAAACTGAAGGCAGTATTGAAC
Frag_3_P40 Frag_4_P40	346 MACCONTAIMCGTOTACTTTCTCAGTGATCACCCCACCTTTCAGGGGCTAAATACCCTGGT 0 178 ACATTACCCAACATAAATTCCTTCTTTCAACACCTAAAAAA	GUTC.TCTCATTCGAGTCACAACA GATAAAACTGAACCCAGTATTCAACA
Frag 5 P40	346 ACA	
Frag_6_P40	346 AACGCATATACGTCTACTTTCTCAGTGATCACTCACCCTCAACCTTCAGGGGCTAAATACCCTGET	CTTCCT <mark>CT</mark> CATTCG <mark>AGT</mark> CACAACA
Frag_8_P40	354 ACATTACCCAACCATAAATTGGTTCTTTTCAAGACTAAAAAAAGCTTACTGTTTACCTTGGTCCAG	ATAAAACTGAAGGCAGTATTGAAC
3R27	117	

Base des Gesamtalingnments: 4500

9.3.a Sequenzhomologe zu *StRLK1*: Bereich, der die extrazelluläre Domäne mit Signalpeptid und PTD-Box kodiert

9.3.b Sequenzhomologe zu *StRLK1*: Bereich, der die konservierten Cysteine und die Motive I-VIII der Serin-Threonin-Kinase-Domäne kodiert

StRLK1 StRLK2 StRLK4 StRSH9 StRSH10	961 973 925 1 915	CACCGCGTTC CACAGACTTC CACAGCCTTC CACCGCGTTA	TGATATATGA TAATCTATGA TTATCTATGA TCTATGA TGATCTATGA <	GTACATGGT GTTCATGGT GTACATGGT ACACATGAT GTACATGGT MOt:	AAATGGATC GAATGGATA AAATGGATC AAATGGATC AAATGGATC IVVV	ATTGGATAGA TTGGATAGG ATTGAATAGG ATTGGATAGG ATTGGATAGG > CADLK	TGGATTTC TGGATT <mark>AT</mark> TGGATT <mark>A</mark> C TGGATTT <mark>A</mark> TGGATTTC	ГСАТGАААА ССАТGАААА ССАТGАСАА ГСАТААААА ГСАТGАААА САТGАААА	tcaagaaaa itcaagaaaa itcaagaaaa it <mark>g</mark> aagaaaa ccaagaaaa RLK5	TGGGCTTAG TGGGCTTAG TGGGCTTAG TGGGCTTAG TGGGCTTAG RACE2	CATGGO <mark>TT</mark> CATGGAAC CATGGAAC ATGGCAT CATGGO <mark>T</mark> A
StRLK1	1051	Inser Atgaggcaaa	tion des f .ccataatacc	Cetroelei Cetroelei	ments in _{AAAAGGATTZ}	SIKLK4 AGCTTATCTT	'CATGATGA	ATGCAGCCA	TAAGATAAT	TCATTTGG	ACATCAAA
StRLK2 StRLK4 StRSH9	1063 1015 78	ACAAGGCAGA ACGAGGCAGA ACAAGGCAAA	IGGATAATATC IGGATAATATC IGGAT <mark>T</mark> ATA <mark>A</mark> C	AGATATCGC AGATAT <mark>C</mark> GC AGATATTGC	CAAAGGCTTZ CAAAGG <mark>C</mark> TTZ CAAAGGATTZ	AGOGTATCTA AGO <mark>G</mark> TATCTA AGCTTATCTI	CACGAGGA CATGAGGA CATGACAA	TTGTAGCCA TTGCAGCCA ATGCAGCCA	TAAGATAA'I TAAGATAA'I GAAGATAA'I	"TCATTTGG "TCATTTGG "TCATTTGG	ACATCAAA ACATCAAA ACATCAAA
StRSH10	1005	ATGAGGCAAA	TGATAATATC	GGATATTGC	a <u>aaaggatti</u> <mo1< td=""><td>agettatett tiv V</td><td>'catga<mark>tga</mark> I ></td><td>ATGCAG~~~</td><td>~~~~~~</td><td>~~~~~~~</td><td></td></mo1<>	agettatett tiv V	'catga <mark>tga</mark> I >	ATGCAG~~~	~~~~~~	~~~~~~~	
C+D1 V1	1141	CCACACAACA	TOOTOT	ምርላላላምምም	C 7 7 7 C C T 7 7 0	ZATTATC CAT	mmmaaamm	390033309	י <u>א</u> אידיייייא איזיייייי	ACACAAAAA	ገር እ እ እ ርጥጥ
StRLK2	1153	CCCCAAAAACA	TCCTTCTAGA	TCAGTATTT	CAATGCTAA	GATATCAGAT	TTTGGGTT	GCGAAGCI	AATTGAGAA	AGACAAAA	GCAAAGTT
StRSH9	168	CCACAAAACA CCACAAAA	TCCTTCTAGA	TAAAAATTT	CAATGCTAA	GATATCAGAI GATATC <mark>T</mark> GAI	TTTTGGGTT	GTCGAAGCI	GAT <mark>CGAT</mark> AA		GCAAAGTT
		> Motiv	VTh			< Mot	> iv V	тт			
		HOCIV	VID			Moe				_	
StRLK1 StRLK2	1231 1243	GT <mark>T</mark> ACTAGAA GTGACTAGAA	TGAGAGGAAC TGAGAGGAAC	ACCAGGGTA AC <mark>GGGGGT</mark> TA	TTTAGCTCC TTTAGC <mark>C</mark> CT	IGAATGGTTC IGAATGGTT	AGGTCTGT AG <mark>C</mark> TCAGT	AATAACCGA TAT <mark>T</mark> ACTGA	GAAAGTAGA GAAAGT <mark>T</mark> GA	TGTATATG TGTGTATG	CTTTGGA ATTTTGGA
StRLK4	1195 258	GTGACTAGAA	TGAGAGGAAC	ACCCCCCTA	TTTAGCCCC	IGAATGGTT	AGCTCAGT	AATCACTGA	GAAAGTTGA	TGTGTATG	TTTTGGA
Bending	250	0100000	< M	otiv	VIII	>		I MI CHCIOP		Coronardo	
StRLK1	1321	ATTGTGCTGI	TGGAACTTCT	TGTGGGCG	AAAGAATTTO	GGATTGGTC	CACGCTGA	TGAAGA <mark>T</mark> AA	TGTCCATTI	GCT <mark>T</mark> AGTG	ICTTTAAG
StRLK2 StRLK4	1333 1285	TTTGTGCTCT ATTGTGCTCT	'TGGAAATTCT 'TGGAAATTCT	CTGTGGGGCG	AAAGAATTTO	GGATTGGTCC GGATTGGTCC	CAAGCTGA	TGAAGAAGA TGAAGAGA	TGTCCATT TGTCCATT	'GCTAAGTG' 'GCTAAGTG'	ICTTTAGG IATTTAGG
StRSH9	348	ATTGTGCTCI	TGGAGCTGT	GTGTGGTCG	AAAGAATTTO	GGATCGGTCC	CAAGCTGA	TGAGGA	TGTCCATTT	GCTATGTG	ITTCGAA
StRLK1	1411	AGAAAAGCAG	AACAAGATCA	GCTCATTGA	TATGGTTGA		GAGGATAT	GCAGCTCCA	CAGGGAAG	AGTGACCG	AAATGATG
StRLK2 StRLK4	1374	AGAAAAGCGG	AACAAGAGCA	GCTCATAGI GCTCATGGA	TATGGTTGA		GAAGATAT	GCAGCICCA GCAGCTCCA	CAGGGAAGC	AGTGACT	AAATGATG
StRSH9	435	AGAAAATCGC	AACAA <mark>C</mark> AGCA	.GCT <mark>T</mark> ATGGA	TAT ^T GTTGA	CAAAAGAAA1	GAGC <mark>ATAT</mark>	GCAG <mark>ATCCA</mark>	CAAAGAAGO	AGTGACAG	AAATGATG
StRLK1	1501	AGCCTCGCAC	CGTGGTGTG	ACAAGGCGA	TTTCAACAA	GAGGCCTTCC	ATGTCATT	GGTGGTTAA	GGTACTGGA	AGGTTTGG	IGTCTGTT
StRLK2 StRLK4	1513 1464	AGCCTTGCAC AGCCTAGCTC	CATGGTGTCT CATGGTGTCT	'ACAGGGCGA 'ACAGGG <mark>T</mark> GA	TTTTTCCAA(SAGGCCTTCC SAGGCCTTCC	ATGTCATT ATG.CATT	GGTGGTTA <i>P</i> GGTGGTTA <i>P</i>	GGCATTGGA G <mark>T</mark> CATTGGA	AGGTTTGG' AGGTTTGG'	IGACIGIT IGACIGIT
StRSH9	525	AGCATTGCTG	CGTGGTGTCT	'ACAGGG <mark>A</mark> GA	TTTCACCAA0	GAGGCCTTCC	ATGTCATT	GGTGGTTAA	GGCATTGGA	AGGTTTGG	IGTCTGTT
StRLK1	1591	GAAACCAACI	'TGGATT <mark>T</mark> CAA	TTTCACAAA	CCTAACTGA	GG <mark>C</mark> TGGGGCA	GGCAACCA	ACAGAT <mark>GG</mark> A	AGTCCCTAT	CAGTTCAA	TACTGCCT
StRLK2 StRLK4	1603 1553	GAAACCAACT GAAACCAACT	"IGAATTACGA "TGGATTA <mark>T</mark> GA	TTTCACACA TTTCACACA	TGTACCTGA C <mark>GTACCTGA</mark>	GGTTGGGGC <i>I</i> GGT <mark>C</mark> GGGGC <i>I</i>	IGGCAACCA IGG <mark>A</mark> AATCA	AGAGAGGGA CAGAGGGA	AGTCATTAT AGCCATTAT	CIGTTCAA CAGTTCAA	AATTTCCT AA <mark>A</mark> TTCCT
StRSH9	615	GAAAC <mark>A</mark> AACT	TGGATTACGA	TTTCACAAG	CCTACCCGAC	GGTTGAGGAT	TGCAACCA	ACAGAGGGA	AGACACTAT	CAGTTAAT	ATTGCCGT
StRLK1	1681	TCAGTTTTAT	CTGGACCAAG	GTAA~~~~	~						
StRLK2 StRLK4	1693 1643	TCAATTTTAT TCAATTTTAT	CGGGACCAAG CAGGACCAAG	GTAA~~~~~ GTAA	~						
StRSH9	705	CAATTTTATC	TGGTCCAACG	TGAACAATA	A						

<i>StRLK1</i> Sequenz- Homologe im Alignment	von Endsequenzierung aus Klon
StRSH5	T3-Ende Lambda 36
StRSH6	T7-Ende BAC 115B4
StRSH7	T3-Ende BAC 115B4
StRSH8	identisches PCR-Produkt von BAC 78M21 und 119F19 mit Primern zu T7-Ende von BAC 115B4 (115B4T7f,r)
StRSH9	T7-Ende Lambda 107 (P41)
StRSH10	T7-Ende BAC 10N22
StRSH11	T7-Ende BAC 25J5

Mit nachfolgender Ausnahme werden alle Sequenzen im Ergebnisteil besprochen. In der Arbeit nicht näher besprochen: T7-Ende von BAC 173o21 (homolog zum Bereich, der die extrazelluläre Domäne von *StRLK1* kodiert), T7-Ende von BAC 106C14, der *TaqI*-Fragment 16 enthält und auf Chromosom IV kartiert (homolog zum Sequenzbereich, der die Kinase-Domäne von *StRLK1* codiert).

9.4 Eidesstattliche Erklärung

Ich versichere, daß ich die von mir vorgelegte Dissertation selbstständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; daß diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; daß sie – abgesehen von den unten angegebenen Teilpublikationen – noch nicht veröffentlicht worden ist sowie, daß ich eine solche Veröffentlichung vor Abschluß des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Dr. PD Christiane Gebhardt (Abteilung Pflanzenzüchtung und Ertragsphysiologie, Prof. Dr. Francesco Salamini, Max-Planck-Institut für Züchtungsforschung) betreut worden.

Ich versichere, daß ich alle Angaben wahrheitsgemäß nach bestem Wissen und Gewissen gemacht habe und verpflichte mich, jedmögliche, die obigen Angaben betreffenden Veränderungen, dem Dekanat unverzüglich mitzuteilen.

.....

.....

Datum

Unterschrift

9.5 Danksagung

Prof. Dr. Francesco Salamini danke ich für die Bereitstellung eines Arbeitsplatzes in seiner Abteilung und die finanzielle Unterstützung, die er mir für den einjährigen postgraduellen Bioinformatikkurs in Heidelberg zukommen ließ.

Bedanken möchte ich mich besonders bei PD Dr. Christiane Gebhardt für die Betreuung dieser Arbeit, ihr entgegengebrachtes Vertrauen und die nicht unerheblichen finanziellen Mittel, die sie mir zur Verfügung stellte. Sie war immer ansprechbar und hat viele wichtige Ideen in das Gro1-Projekt eingebracht.

Sehr dankbar bin ich Dr. Agim Ballvora, daß er seine unschätzbare Erfahrung in vielen Diskussionen in das Projekt einbrachte. Er hat mit großem Interesse und ehrlichem Rat den Fortgang der Experimente verfolgt und unterstützt. Viele seiner Anregungen sind in diese Arbeit eingewoben.

Prisca Viehoever und Bernd Weisshaar danke ich für ihr Engagement zur Gesamtsequenzierung des BAC-Klones.

Dr. Hans Henning Steinbiss unterstützte in seinem Labor die ballistische Transformation und stand uns mit sehr hilfreichem Rat bei der Agrobakterium-vermittelten Transformation zur Seite.

Mein großer Respekt gilt Heike Henselewski, Monique Winkler, Birgit Walkemeier, Iris Schmitz und Werner Lehmann.

Heike Henselewski leistete einen großartigen Beitrag bei der Transformation der Désirée Pflanzen und dem Test der transgenen Pflanzen auf Nematodenresistenz. Werner Lehmann hat mit viel Hingabe unsere Kartoffelpflanzen verteidigt – möge er nun im verdienten Ruhestand seinen Frieden mit den Thripsen finden.

Birgit Walkemeier danke ich für ihre große Hilfsbereitschaft im Labor und ihre Unterstützung bei den RFLP-Gelen.

Iris Schmitz und Monique Winkler gaben mir wichtige Hilfestellungen bei der Isolierung von Klonen aus der BAC-Bibliothek, die sie mit bemerkenswertem Erfolg für das Labor zugänglich machten.

Neben den genannten haben last but not least Andreas Rickert, Rosa Castillo, Andreas Heibges, Julia Weiß, Xinwei Chen, Christina Bormann, Li Li, Mara Ercolano und Jeong Hee Kim zu einer sehr freundlichen und konstruktiven Atmosphäre im Labor beigetragen.

Sibylla Franken – sie wird uns in respektvoller Erinnerung bleiben- und Esther Klepgen danke ich für ihre stets gute Laune.

Mit Dir meiner lieben Berit habe ich die schönsten Stunden in dieser Zeit verbracht-

9.6 Lebenslauf

Persönliche Daten		Jürgen Michael Paal, geb. am 31.07.1971 in München, deutsch
Schulbildung	1977-1978 1978-1982 1982-1991	Grundschule München Grundschule Düsseldorf Gymnasium Düsseldorf
Wehrdienst	1991-1992	in Düsseldorf
Studium	1991-1994	Grundstudium Biologie (Dipl.), Regensburg
	1994-1997	Hauptstudium: Biologie (Dipl.), Regensburg Schwerpunkte: Mikrobiologie, Biochemie, Genetik weitere Kurse: Pflanzenökologie, Geologie, Statistik
	1997-1998	Diplomarbeit: Charakterisierung eines niederen Eukaryoten aus einem hypersalinen See in Libyen
Stipendium	1995-1996	DAAD-Stipendium: einjähriges Auslands- studium an der University of Colorado at Boulder mit 6-monatiger genetischer Forschungsarbeit und graduate credit Kursen in Zellbiologie und Säugetierkunde
Promotion	1998-5/2002	Dissertation am Max-Planck-Institut für Züchtungsforschung, Köln: Molekulare Charakterisierung der <i>Gro1</i> Region in Kartoffel, die Resistenz gegenüber dem Nematoden <i>Globodera rostochiensis</i> vermittelt
Bioinformatikkurs	2000	12-monatige postgraduelle Weiterbildung in Heidelberg: Algorithmen, Statistik, Datenbanken, Sequenz-und Genomanalyse, Proteinstrukturanalyse, molekulare Evolution