ABSTRACT

The determination of the structure of $Xe(C_6F_5)_2$ from X-ray powder diffraction data leads to the first direct proof of a xenon-compound with two xenon-carbon-bounds.

Fluoride catalyzed reaction of Xenondifluorid with Trimethylarylsilanes yields the hitherto unknown and not described xenon-compounds of the types $Xe(Ar_F)_2$ and Ar_FXeF ($Ar_F = (2,3,5,6-F_4C_6H)$, (2,3,4,6-F_4C_6H), (2,3,4,5-F_4C_6H), (2,4,6-F_3C_6H_2), (2,6-F_2C_6H_3)), which are characterized on basis of ¹²⁹Xe- and ¹⁹F-NMR-spectroscopy. Because of the deactivation of the silane with lower number of fluorine atoms at the aromate, this route gives the 2,6-Difluorphenyl-xenon-compound in low yield and is not suitable for synthesis of the Monofluorine- and Phenyl-xenon-compounds.

The Fluoride catalyzed reaction of Xenondifluoride with 1,4-Bis(trimethylsilyl)(2,3,5,6-tetrafluorbenzene) gives evidence for the formation of new xenon-compounds with $(Xe-C_6F_4-Xe)_n$ -groups. However it is not possible to influence the composition of the different products in a sufficient way for further analysis.

The exemplary investigation of the reaction of $(CH_3)_3Si(2,3,5,6-F_4C_6H)$ and $[(CH_3)_4N]F$ with the aim to proof the existence of an silicate as the postulated reactive intermediate for the arylation gives indirect proof of $[(CH_3)_4N][(CH_3)_3Si(F)(2,3,5,6-F_4C_6H)]$.

The survey of the reaction of $F_3SiC_6H_5$ and Xenondifluoride gives NMR-spectroscopic evidence for the formation of a new non-fluorinated xenon-species, whose properties indicate the formation of $[(C_6H_5)Xe]^+$.

By reaction of $[(2,6-F_2C_6H_3)Xe][BF_4]$ with $[(CH_3)_4N]F$ the new xenon-compound (2,6- $F_2C_6H_3$)XeF can be synthesized, which is characterized by its NMR-spectroscopic and chemical properties. It is shown, that $(2,6-F_2C_6H_3)XeF$ reacts with silanes by exchange of the terminal fluorine atom to form new xenon-compounds of the type $(2,6-F_2C_6H_3)XeX$ (X = OCOCF₃, Cl, Br, NCO, CN, C₆F₅, (2,3,5,6-F₄C₆H), (2,6-F₂C₆H₃)).

(2,6-Difluorphenyl)xenonbromine represents the first stable xenon(II)-bromine-compound, $(2,6-F_2C_6H_3)$ XeNCO the first xenonisocyanate and $(2,6-F_2C_6H_3)$ Xe (C_6F_5) the first assymetrical substituted xenon-aryl-compound.

Analyzing the products of the reactions of (2,6-Difluorphenyl)xenonfluoride with $(CH_3)_3SiI$ and $(CH_3)_3SiN_3$ gives evidence for postulating $(2,6-F_2C_6H_3)XeI$ and $(2,6-F_2C_6H_3)XeN_3$ as reaction intermediates.

The results of the NMR-spectroscopic investigations of the reaction of 1,4-Bis(trimethylsilyl)(2,3,5,6-tetrafluorbenzene) (2,6-Difluorphenyl)xenonfluoride and indicate the formation of 1,4-Bis(2,6-difluorphenyl)xenon)(2,3,5,6-tetrafluorbenzene). The formation of 1,3-F₂-2-(CF₃)C₆H₃ as a product of the reaction of (2,6-F₂C₆H₃)XeF and explained the intermediate formation $(CH_3)_3SiCF_3$ can be by of (2,6-Difluorphenyl)trifluormethylxenon. Reaction of $[(CH_3)_4N][F_5Si(C_6H_5)]$ and (2,6-Difluorphenyl)trifluormethylxenon. Difluorphenyl)xenonfluoride leads to the NMR-spectroscopic observation of a xenoncompound, whose properties allow to draw the conclusion that $(2,6-F_2C_6H_3)Xe(C_6H_5)$ is formed.

By comparison of calculated structure data of $Xe(C_6F_5)_2$ with those determined by X-ray powder diffraction it is shown that on level of density functional theory (B3LYP) together witch the correlation consistent quasirelativistic *triple-* ζ basis set SDB-cc-pVTZ it is possible to determine minimal structures of xenon-compounds.

By quantum mechanical calculations predictions of structural, thermodynamic an electronic properties of carbon-xenon-compounds are made which are in good agreement with experimental results.

The calculations of electron localization function carried out for the first time on the class of xenon-carbon-compounds show to be helpful for gaining a deeper understanding of the characteristics of xenon-element-bonding.