Synthese, Strukturen und Eigenschaften von komplexen Übergangsmetalloxiden

Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von

Bettina Marianne Sobotka

aus Köln

Köln 2004

Berichterstatter: Priv.-Doz. Dr. Angela Möller Prof. Dr. Gerd Meyer

Tag der mündlichen Prüfung:07.07.2004

Die experimentellen Untersuchungen zu der vorliegenden Arbeit wurden in der Zeit von Juni 2002 bis Mai 2004 am Institut für Anorganische Chemie der Universität zu Köln unter der Anleitung von Priv.-Doz. Dr. Angela Möller durchgeführt.

Frau Priv.-Doz. Dr. Angela Möller danke ich herzlich für die tatkräftige Unterstützung dieser Arbeit.

Abstract

Neue alkalimetallreiche Oxide der 3d-Übergangsmetalle (Co, Fe, Mn) sowie Rhenate wurden dargestellt und strukturchemisch untersucht.

Es gelang die Synthese von $Na_8[CoO_3](SO_4)_2$, einem neuen Oxocobaltat(II), das Co²⁺ in trigonal-planarer Umgebung enthält. Davon isoliert liegen zwei Sulfatgruppen in der Struktur vor, von denen eine fehlgeordnet ist.

Mit Na₃FeO₃ wurde das erste ternäre Natriumferrat(III) mit Kettenstruktur gefunden: [FeO₄]-Tetraeder verknüpfen über Ecken zu unendlichen Ketten. Die Verbindung stellt das lange gesuchte strukturelle Bindeglied zwischen den bekannten Natriumferraten(III) mit isolierten Tetraederdimeren in Na₈[Fe₂O₇] und zu Bändern verknüpften [FeO₄]-Tetraedern in Na₁₄Fe₆O₁₆ dar. Es wurden systematische Untersuchungen zum Reaktionsverlauf bei der Bildung von Na₃FeO₃ im System Na₂O/ Fe/ CdO durchgeführt, dessen Darstellung aus den binären Oxiden nicht gelingt.

Das erste Natriumoxomanganat(II) mit Mn^{2+} in trigonal-aplanarer Umgebung wurde mit $Na_{10}[MnO_3][Mn_3O_6]$ dargestellt. Es ist gleichzeitig das zweite strukturell charakterisierte Natriummanganat(II). In der Struktur liegen [MnO_4]-Einheiten vor, die über eine gemeinsame Kante zu Dimeren verknüpfen. Diese wiederum verknüpfen über gemeinsame Ecken zu sternförmigen Schichten, deren Kanäle von gestaffelt angeordneten Paaren von [MnO_3] zentriert werden, deren Mn-Zentralatome aufeinander zu ausgelenkt sind. Für die Verbindung wurden Extended-Hückel-Rechnungen durchgeführt. Diese deuten auf eine Mn-Mn-Einfachbindung hin.

Es wurde eine zweite Modifikation des bereits bekannten Na_5ReO_6 dargestellt und strukturchemisch charakterisiert. Es liegt eine geordnete, verzerrte Variante des NaCl-Typs vor. Aus dieser geht in einer topotaktischen Reaktion das erste strukturell charakterisierte Alkalimetalloxorhenat(IV), Na_2ReO_3 , hervor. In dessen Struktur liegen $[Re_2O_6]^{4-}$ trigonale Prismen vor, der Re-Re Abstand deutet auf eine Dreifachbindung hin. Spektroskopische Untersuchungen und Extended-Hückel-Rechnungen bestätigen dies.

Systematische Untersuchungen zur Reaktivität der frühen Übergangsmetalle M = Sc, Ti, V, Nb, Ta, Cr und Mo in Anwesenheit von Mineralisatoren wurden im Hinblick auf die Frage durchgeführt, ob in diesen Systemen die Bildung von Verbindungen mit isoliert von Oxoanionen, (X), vorliegenden MO_x -Polyedern gemäß $Na_a[MO_b]X_c$, X = SO_4^{2-} , CO_3^{2-} , OH⁻, eintritt. Ebenso wurde der Frage nachgegangen, ob sich Verbindungen des Typs $A_a[MO_b]X_c$ auch mit anderen komplexen Anionen, (X), wie beispielsweise MnO_4^{n-} , FeO_4^{n-} , CrO_4^{2-} oder SiO_4^{4-} bilden, und welchen Einfluss eine Variation von A mit A = Li, Na, K, Rb hat.

Abstract

New alkaline-metal oxides of 3d-transition metals (Co, Fe, Mn) as well as rhenates have been synthesised and structurally characterised.

 $Na_8[CoO_3](SO_4)_2$, a new oxocobaltate(II), has been synthesised. It contains Co^{2+} in a trigonal planar oxygen-coordination. Furthermore, the structure contains two sulfate units, which are not connected to the transition metal. One of the sulfate units is statistically disordered.

 Na_3FeO_3 is the first ternary sodium-oxoferrate(III) with a chain structure: [FeO₄]-tetrahedra form chains via common corners. The compound is the long-missing structural link between known sodium-ferrates(III) with isolated dimers of [FeO₄]-tetrahedra in $Na_8[Fe_2O_7]$ and double chains of interconnected [FeO₄]-tetrahedra in $Na_{14}Fe_6O_{16}$. Systematic examinations of the reaction forming Na_3FeO_3 in the system $Na_2O/Fe/CdO$ have been conducted, as the compound has been found impossible to be formed by metathesis from the binary oxides.

The first sodium-manganate(II) containing Mn^{2+} in trigonal aplanar oxygen-coordination has been found in **Na₁₀[MnO₃][Mn₃O₆]**. It is also the second structurally characterised sodiummanganate(II). The structure contains [MnO₄]-units which connect via shared edges to form dimers. These dimers form star-shaped layers by sharing common corners containing tunnels which are centered by pairs of [MnO₃]-units, whose central Mn-atoms are dislocated from their central position towards each other. Extended-Hückel-calculations have been carried out on the compound. These indicate a Mn-Mn single bond.

A second modification of the known Na_5ReO_6 has been found and structurally characterised. It exhibits an ordered distorted superstructure of the NaCl-type. From this the first sodiumoxorhenate(IV), Na_2ReO_3 , is formed in a topotactical reaction. The structure contains $[Re_2O_6]^{4-}$ trigonal prisms in which the Re-Re distance indicates a triple bond. Spectroscopic investigations as well as Extended-Hückel-calculations confirm this.

In order to address the question whether the "early" transition metals are able to form compounds exhibiting isolated oxo-anions , (X), next to MO_x -polyhedra according to $Na_a[MO_b]X_c$, $X = SO_4^{2-}$, CO_3^{2-} , OH^- , systematic examinations concerning M = Sc, Ti, V, Nb, Ta, Cr and Mo have been carried out. Moreover the formation of compounds in the form of $A_a[MO_b]X_c$ with $X = MnO_4^{n-}$, FeO_4^{n-} , CrO_4^{2-} and SiO_4^{4-} as well as the effects of a variation of A (A = Li, Na, K, Rb) have been examined.

1		Einleitung	1
2		Allgemeiner Teil	3
	2.1	Arbeiten unter inerten Bedingungen	3
	2.2 2.2.1 2.2.1.1 2.2.1.2 2.2.1.3 2.2.2	Strukturaufklärung anhand von Beugungsmethoden Ansätze zur Strukturlösung aus Einkristallen "Direkte Methoden" Differenz-Fouriersynthese und Parameterverfeinerung Intensitätsmessungen an Einkristallen Pulverdiffraktometrie	4 6 6 7 8
	2.3 2.3.1 2.3.2 2.3.3	Überprüfung der Kristallstruktur Berechnung des Madelung-Anteils der Gitterenergie IR- und Ramanspektroskopie UV-VIS-Spektroskopie	8 9 12 13
	2.4 2.4.1	Magnetische Messungen SQUID-Magnetometer	15 15
	2.5	Untersuchungen der elektronischen Struktur	16
	2.6	Materialien und Geräte	18
3		Spezieller Teil	21
	3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6	$\begin{split} &Na_8[CoO_3](SO_4)_2\\ &Darstellung von Na_8[CoO_3](SO_4)_2\\ &Kristallstrukturbestimmung von Na_8[CoO_3](SO_4)_2\\ &Beschreibung der Kristallstruktur von Na_8[CoO_3](SO_4)_2\\ &MAPLE-Berechnung an Na_8[CoO_3](SO_4)_2\\ &Spektroskopie an Na_8[CoO_3](SO_4)_2\\ &Magnetische Untersuchungen an Na_8[CoO_3](SO_4)_2 \end{split}$	21 21 22 23 29 31 34
	3.2 3.2.1 3.2.2 3.2.3 3.2.4	Na ₃ FeO ₃ Kristallstruktur von Na ₃ FeO ₃ Beschreibung der Kristallstruktur von Na ₃ FeO ₃ MAPLE-Berechnung an Na ₃ FeO ₃ Darstellung von Na ₃ FeO ₃ / Reaktivität im System Na/ Fe/ O	35 35 36 40 40
	3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	$\begin{aligned} & \text{Na}_{10}[\text{MnO}_3][\text{Mn}_3\text{O}_6] \\ & \text{Darstellung von Na}_{10}[\text{MnO}_3][\text{Mn}_3\text{O}_6] \\ & \text{Kristallstrukturbestimmung von Na}_{10}[\text{MnO}_3][\text{Mn}_3\text{O}_6] \\ & \text{Beschreibung der Kristallstruktur von Na}_{10}[\text{MnO}_3][\text{Mn}_3\text{O}_6] \\ & \text{MAPLE-Berechnung an Na}_{10}[\text{MnO}_3][\text{Mn}_3\text{O}_6] \\ & \text{Vergleich der isotypen Verbindungen Na}_{10}[\text{MO}_3][\text{M}_3\text{O}_6] \\ & \text{mit } M = \text{Mn}, \text{Fe}, \text{Zn}, \text{mit Na}_{10}\text{Co}_4\text{O}_9 \end{aligned}$	46 46 47 50 59 63

3.4	Eine durch Re ⁴⁺ stabilisierte Modifikation von Na5ReO6	71
3.4.1	Darstellung von Na ₅ ReO ₆	72
3.4.2	Kristallstrukturbestimmung von Na5ReO6	73
3.4.3	Vergleich der Kristallstruktur der neuen Modifikation von	
	Na ₅ ReO ₆ (Fddd) mit der bekannten Modifikation von	
	$Na_5 ReO_6 (C2/m)$	76
3.4.4	Spektroskopie an Na ₅ ReO ₆ : Re ⁴⁺ (Fddd)	80
3.4.5	Topotaktische Reaktion von Na5ReO6 zu Na2ReO3 und Na3ReO5	82
3.4.6	MAPLE-Berechnung an Na ₅ ReO ₆ (Fddd)	91
3.5	Na ₂ ReO ₃	93
3.5.1	Darstellung von Na ₂ ReO ₃	94
3.5.2	Kristallstrukturbestimmung von Na ₂ ReO ₃	94
3.5.3	Beschreibung der Kristallstruktur von Na ₂ ReO ₃	100
3.5.4	Vergleich der Kristallstruktur von Na ₂ ReO ₃ mit den Strukturen	
	von MoS_2 und Na_2SO_3	104
3.5.5	Spektroskopie an Na ₂ ReO ₃	107
3.5.6	Extended-Hückel-Rechnungen für Na ₂ ReO ₃	110
3.6	Reaktivität	114
3.6.1	Untersuchungen an "frühen" Übergangsmetallen	115
3.6.2	Untersuchungen zur Modifizierung des anionischen Teils (X) _c	
	in Verbindungen des Typs $A_a[MO_b](X)_c$	119
3.6.3	Untersuchungen zur Modifikation des kationischen Teils A in	
	Verbindungen des Typs $A_a[MO_b](X)_c$	122
3.6.4	Varianten des Supertetraeders Na ₂₆ Mn ₃₉ O ₅₅ mit anderen	
	Übergangsmetallen	125
4	Zusammenfassung	128
5	Literatur	132
6	Anhang	139

1 Einleitung

Erste Untersuchungen zur Reaktivität von 3d-Übergangsmetallen mit Alkalimetalloxiden, -sulfaten und -sulfiden sind bereits von E. J. Kohlmeyer et al. [1] durchgeführt worden. Aus den Arbeiten von R. Hoppe et al. [2, 3, 4] ist eine große Zahl alkalimetallreicher Oxide der "späten" 3d- Übergangsmetalle (Fe, Co, Ni, Cu) bekannt. In den Verbindungen der Oxidationsstufen +3 bis teilweise +6 findet man hauptsächlich von Sauerstoff tetraedrisch bzw. oktaedrisch umgebene Übergangsmetallkationen, wobei die Koordinationspolyeder häufig verknüpft vorliegen. Sehr wenig untersucht sind jedoch bisher die alkalimetallreichen Oxoverbindungen der 3d- Übergangsmetalle in niedrigen Oxidationsstufen. Aus der Chemie in Lösung, beispielsweise in Wasser, ist hinreichend bekannt, dass das Übergangsmetallkation in Oxoverbindungen stets sphärisch von einer sterisch maximal möglichen Anzahl an Liganden koordiniert wird, z.B. CuSO₄·5 H₂O oder FeSO₄·7 H₂O = $[Fe(OH_2)_6](SO_4)(H_2O)$. In den alkalimetallreichen Oxiden der späten 3d- Übergangsmetalle in niedrigen Oxidationsstufen werden jedoch ungewöhnlich kleine Koordinationszahlen beobachtet. So findet man in den Verbindungen der Zusammensetzung A₃[M^IO₂] linear koordinierte [3, 5-11], und in den Verbindungen des Typs Na₄[M^{II}O₃] trigonal-planar [12, 13] umgebene Übergangsmetallkationen. Solche Verbindungen können als "koordinativ ungesättigt" bezeichnet werden. Es stellte sich die Frage, ob die Koordinationszahl des Übergangsmetallkations durch ein zusätzliches Angebot von komplexen Oxoanionen, z.B. $(SO_4)^{2-}$, $(CO_3)^{2-}$ $(OH)^{-}$, oder $(S)^{2-}$, erhöht werden kann. Die bisher auf diesem Gebiet erhaltenen Ergebnisse zeigen jedoch, dass die komplexen Oxoanionen zwar in die Struktur eingebaut werden, aber weiterhin isoliert vorliegen. Das heißt sie koordinieren nicht an das Übergangsmetallkation, dessen lineare bzw. trigonal-planare Koordination bestehen bleibt. Aus Arbeiten von A. Möller et al. sind Beispiele für den Erhalt der linearen Koordination in den Verbindungen Na₅[MO₂](X) (mit X = CO₃²⁻, SO₄²⁻ und S²⁻ und M = Co, Ni, Cu) [14] bekannt. In der vorliegenden Arbeit wurde die Fragestellung behandelt, ob auch die "frühen" Übergangsmetalle Verbindungen dieser Art ausbilden. Dazu wurden die Elemente Sc, Ti, V, Cr, Mn und Fe entsprechend umgesetzt.

Bei diesen Reaktionen bauen sich jedoch die komplexen Oxoanionen nicht in die Struktur ein, sondern das zugegebene A₂X bzw. AOH (mit A = Na und X = $CO_3^{2^-}$, $SO_4^{2^-}$ und S^{2^-}) wirkt als Mineralisator. Der Einsatz solcher Mineralisatoren ermöglicht nun den Zugang zu neuen, ternären Alkalimetalloxiden, die sich aus der direkten Umsetzung der binären Oxide nicht

darstellen lassen. Unter diesem Gesichtspunkt sollten Umsetzungen mit den Übergangsmetallen Mn und Fe untersucht werden.

Im System Na₂O/ FeO/ Fe₂O₃ wurden systematische Untersuchungen zum Reaktionsverlauf bei der Bildung von Alkalimetall-oxoferraten durchgeführt. Insbesondere sollte der Frage nachgegangen werden, nach welchem Mechanismus die Bildung des neu dargestellten Na₃FeO₃ vorgeht, da eine direkte Synthese aus den binären Oxiden, im Gegensatz zu den ebenfalls entstehenden Verbindungen Na₁₄Fe₆O₁₆ und Na₈Fe₂O₇ nicht gelingt.

Der Einsatz von Mineralisatoren verspricht auch den Zugang zu bisher nicht strukturchemisch charakterisierten reduzierten Alkalirhenaten. Ausgehend von den Arbeiten von I. und W. Noddack, W. Klemm und R. Hoppe et al. [16-19] wurden systematische Untersuchungen zur Darstellung von ternären Alkalirhenaten durchgeführt. Insbesondere wurden hier auch die Elemente Nb, Ta und Mo unter analogen Bedingungen umgesetzt.

Darüber hinaus wurde der Frage nachgegangen, ob Varianten der kürzlich von P. Amann und A. Möller dargestellten und strukturchemisch untersuchten Verbindung Na₂₆Mn₃₉O₅₅ mit anderen Übergangsmetallen dargestellt werden können.

2 Allgemeiner Teil

2.1 Arbeiten unter inerten Bedingungen

Aufgrund der Hydrolyseempfindlichkeit der eingesetzten Edukte und der entstehenden Produkte ist es notwendig, alle Arbeiten unter Argon-Schutzgas durchzuführen. Die Präparation der Proben erfolgt in einem Handschuhkasten der Firma Braun (vgl. Tab. 2.6.2), bei dem das verwendete Argon mit Hilfe von Molekularsieb und einem Kupferkatalysator vor dem Einströmen in den Handschuhkasten von Sauerstoff- und Wasserspuren befreit wird. Eine Umwälzanlage gewährleistet, dass auch das Argon im Handschuhkasten kontinuierlich getrocknet und von Sauerstoff freigehalten wird. Anhand von eingebauten Analysatoren kann die Atmosphäre im Handschuhkasten stetig kontrolliert werden. Im Regelbetrieb liegen Konzentrationen von unter 1 ppm O₂ und H₂O vor. Pulvergemenge der Edukte werden mit einer Präzisionswaage (Sartorius) im Handschuhkasten eingewogen, in Achatreibschalen innig verrieben und in verschließbare Reaktionscontainer gebracht, die je nach Umsetzung aus Silber, Eisen oder Kupfer in Eigenbau hergestellt werden. Zum Schutz vor Oxidation werden die verschlossenen Metallcontainer unter Argon oder Vakuum mit Kieselglas ummantelt. Hierfür wird eine Schutzgasapparatur verwendet, bei der die einseitig abgeschmolzenen Kieselglasrohre abwechselnd über eine Drehschieberölpumpe evakuiert oder mit Argon geflutet werden können. Das hierfür verwendete Argon wird über vier Trockentürme vorgetrocknet, die mit Silicagel, Kaliumhydroxid, Molekularsieb und Phosphorpentoxid auf Bimsstein gefüllt sind. Anschließend wird der getrocknete Argonstrom durch ein mit Titanschwamm gefülltes Kieselglasrohr geleitet, das in einen Röhrenofen eingebaut ist, der eine Temperatur von 800°C besitzt, um letzte Spuren von Wasser und Sauerstoff zu entfernen. Die Umsetzungen werden in stehenden Röhrenöfen (Eigenbau) durchgeführt, die mehrere kieselglasummantelte Metallampullen fassen. Üblicherweise wird in einem Schritt auf 250°C aufgeheizt. Dann wird die Temperatur mit einer Rate von 50°C pro Tag bis zur Endtemperatur gesteigert, dort je nach gewünschtem Temperaturprogramm gehalten und anschließend ebenfalls mit 50°C pro Tag bis 250°C, dann in einem Schritt bis auf Raumtemperatur abgesenkt. Das Öffnen der Reaktionsgefäße erfolgt wiederum im Handschuhkasten, der mit einem Polarisationsmikroskop ausgestattet ist, um geeignete Einkristalle auszuwählen.

2.2 Strukturaufklärung anhand von Beugungsmethoden

Kristalline Materialien bestehen aus sich dreidimensional periodisch wiederholenden Anordnungen von Atomen. Diese dreidimensionale Anordnung verhält sich wie ein Gitter, an dem Beugung und Interferenz auftreten, wenn Strahlung mit einer Wellenlänge auftrifft, die den interatomaren Abständen vergleichbar ist. Maximale Beugungsintensität wird erreicht, wenn die Bragg'sche Gleichung erfüllt ist:

$$n\lambda = 2d_{hkl}\sin\theta \tag{2.1}$$

mit n = Beugungsordnung $\lambda =$ eingestrahlte Wellenlänge $d_{hkl} =$ Netzebenenabstand $\theta =$ Bragg'scher Beugungswinkel

Als Grundlage der Strukturaufklärung gilt der von M. v. Laue, W. H. und W. L. Bragg aufgezeigte Zusammenhang zwischen der Intensität der beobachteten Maxima im Interferenzmuster und der Anordnung von Atomen im Kristallgitter:

$$I_0(hkl) \propto |F_0(hkl)|^2 \tag{2.2}$$

Da Röntgenstrahlen an den Elektronenwolken der Atome gebeugt werden, besteht ein enger Zusammenhang zwischen der Anzahl und Dichte der Elektronen und der Beugungsintensität. Dieser wird vom Atomformfaktor, f_i , für jedes Atom *i* beschrieben. Die gebeugten Strahlen aller Atome der Sorte *i*, die auf einer kristallographisch äquivalenten Position liegen, sind in Phase, während bei anderen kristallographischen Lagen eine Phasenverschiebung auftritt. Diese Phasenverschiebung kann in Abhängigkeit von den Koordinaten x_i , y_i und z_i des Atoms *i* beschrieben werden. Summiert man die auftretenden koordinatenabhängigen Phasenverschiebungen aller Atome, so erhält man:

$$F'(hkl) = \sum_{i} f_{i} \exp\{2\pi i (hx_{i} + ky_{i} + lz_{i})\}$$
(2.3)

mit x_i, y_i, z_i = Koordinaten des Atoms i h, k, l = Miller'sche Indices f_i = Atomformfaktor des Atoms i F'(hkl) = Strukturfaktor ohne thermische Auslenkung

Da sich die Atome im Kristallgitter in ständiger thermischer Bewegung befinden, muss auch diese thermische Schwingung im Strukturfaktor berücksichtigt werden, so dass sich mit der mittleren isotropen thermischen Auslenkung des Atoms i aus seiner Gleichgewichtslage, $U_{iso,i}$ insgesamt ergibt:

$$F(hkl) = \sum_{i} f_{i} \exp\{2\pi i (hx_{i} + ky_{i} + lz_{i})\} \exp\left(-8\pi^{2} U_{iso,i} \frac{\sin^{2} \theta}{\lambda^{2}}\right)$$
(2.4)

mit $U_{iso,i} = \overline{u_i^2}$ = mittlere Abweichung der isotropen Verschiebung von der Gleichgewichtslage des Atoms *i*

Betrachtet man die thermische Auslenkung anisotrop, so erhält man den folgenden Ausdruck, wobei der koordinatenabhängige Teil der Exponentialfunktion als "Phase", ϕ , zusammengefasst wird:

$$F(hkl) = \sum_{i} f_{i} \exp\{2\pi i (hx_{i} + ky_{i} + lz_{i})\} \exp\left(-B_{j} \frac{\sin^{2} \theta}{\lambda^{2}}\right) = \sum |F(hkl) \cdot \exp(i\phi)|$$
(2.5)

mit B_j = Debye-Waller-Temperaturfaktor des Atoms i

 θ = Bragg'scher Beugungswinkel

|F(hkl)| = Strukturamplitude

Der äquivalente thermische Verschiebungsparameter [20], U_{eq} , findet in der Röntgenatrukturanalyse häufige Verwendung und hat die Form:

$$U_{eq} = \frac{1}{3} \begin{bmatrix} U_{11}(aa^{*})^{2} + U_{22}(bb^{*})^{2} + U_{33}(cc^{*})^{2} + 2U_{12}aba^{*}b^{*}\cos\gamma \\ + 2U_{13}aca^{*}c^{*}\cos\beta + 2U_{23}bcb^{*}c^{*}\cos\alpha \end{bmatrix}$$
[20]

Bei der Umrechnung der gemessenen Intensitäten in Amplituden nach (2.1) kann nur deren Betrag ermittelt werden, so dass die Phaseninformation und somit der direkte Zugang zu den Ortsparametern verloren geht. Die so genannten "Direkten Methoden" liefern jedoch trotzdem einen möglichen Ansatz zur Strukturlösung.

2.2.1 Ansätze zur Strukturlösung aus Einkristalldaten

2.2.1.1 "Direkte Methoden"

Mit Hilfe der Fourierdarstellung können Aussagen über Phasenwinkel und Vorzeichen der Strukturamplituden aufgrund der beobachteten Reflexintensitäten getroffen werden. Hierbei wird auf statistische Gesetzmäßigkeiten zwischen Miller'schen Indizes zurückgegriffen. Vorschläge für Lageparameter werden mit Hilfe des Programms SHELXS-97 [21] erarbeitet. Im Rahmen dieses Vorschlages entsteht dann ein Lösungsansatz durch sukzessives Einlesen von Atomen, beginnend mit dem Schwersten.

2.2.1.2 Differenz-Fouriersynthese und Parameterverfeinerung

Nach der Ermittlung der Ortskoordinaten der schwersten Atome werden die Lagen weiterer Atome durch Differenz-Fouriersynthese festgelegt. Hierbei wird die berechnete Elektronendichte sukzessiv eingelesenen Atomen zugeordnet. Die Verfeinerung der Atomlagen und der Temperaturfaktoren erfolgt durch das Programm SHELXL-97 [22] nach der Methode der kleinsten Fehlerquadrate. Eine Abschätzung der Qualität eines Strukturmodells ist aufgrund von Gütefaktoren möglich. Der "R-Wert" (Residual-Wert) ist definiert durch:

$$R = \frac{\sum \|F(hkl)_{ber.}| - |F(hkl)_{beob.}\|}{\sum |F(hkl)_{beob.}|}$$
(2.6)

Ein Wichtungsfaktor, *w*, berücksichtigt die Fehler bei der experimentellen Bestimmung der Intensitäten:

$$w = \frac{k}{\sigma^2 [F(hkl)]}$$
(2.7)

Insgesamt erhält man den "gewichteten" R -Wert:

$$R_{w} = \frac{\sum \sqrt{w \|F(hkl)_{ber.}\| - |F(hkl)_{beob.}\|}}{\sum \sqrt{w |F(hkl)_{beob.}\|}}$$
(2.8)

Der "goodness-of-fit" -Parameter sollte möglichst nahe bei 1 liegen und ist definiert durch:

$$goof = \frac{\sum w(I_{beob.} - I_{ber.})^2}{m - n}$$
(2.9)

mit m =Zahl der Reflexe n =Zahl der Parameter

2.2.1.3 Intensitätsmessungen an Einkristallen

Zur Aufnahme von Intensitätsdatensätzen werden geeignete Einkristalle im Argon-Handschuhkasten unter dem Polarisationsmikroskop ausgewählt und einzeln in Glaskapillaren geeigneten Durchmessers überführt, die mit Knetgummi verschlossen werden. Außerhalb des Handschuhkastens werden diese dann abgeschmolzen. Zur Qualitätskontrolle wird von den ausgewählten Kristallen eine stehende Laue-Aufnahme angefertigt.

Intensitätsmessungen von Röntgenstrahlen, die an Einkristallen gebeugt werden, tragen zur Aufklärung unbekannter Strukturen maßgebend bei. Sie werden mit Hilfe eines Imaging Plate Diffraction Systems (IPDS, Firma STOE & Cie.) durchgeführt. Im Gegensatz zu den herkömmlichen Einkristalldiffraktometern besitzt das IPDS eine Bildplatte (imaging plate), die aus einer Schicht Bariumbromidfluorid besteht, die mit zweiwertigem Europium dotiert ist (BaBrF:Eu²⁺). Die am Einkristall gebeugten Röntgenstrahlen treffen auf diese Schicht und versetzen die Eu²⁺-Ionen in einen angeregten Zustand, in dem diese auch bleiben, bis die

Platte mit einem Helium/Neon-Laser ausgelesen wird. Der Laser regt diese Eu²⁺-Ionen zur Photoemission an. Die so erhaltenen Intensitätswerte können direkt digital gespeichert und verarbeitet werden.

2.2.1 Pulverdiffraktometrie

Die Röntgenpulverdiffraktometrie bedient sich der Tatsache, dass sich in einer mikrokristallinen Probe mit einer statistischen Orientierung der Kristallite stets genügend Individuen befinden, die zufällig so orientiert sind, dass für einige Netzebenenscharen die Bragg'sche Bedingung erfüllt ist. Im Rahmen einer Messung wird ein festgelegter Winkelbereich abgefahren, und der Detektor registriert die Intensität der Reflexe der zufällig in Reflexionsstellung befindlichen Kristallite in Form eines Peak-Profils. Bei dem Detektor kann es sich um ein Scintillationszählrohr handeln, in neuerer Zeit sind jedoch Bildplatten wie in der Einkristalldiffraktometrie (IPDS) immer gebräuchlicher geworden. Die Auswertung der aufgenommenen Diffraktogramme erfolgt mit dem Programm WinXPOW [23], mit dem ein Datenbankvergleich, Gitterkonstantenverfeinerung und Simulation von theoretischen Diffraktogrammen aus Einkristalldaten möglich ist.

Die Probenvorbereitung erfolgt im Argon-Handschuhkasten. In einer Achatreibschale wird die Probe fein verrieben und in eine Glaskapillare (Durchmesser 0,2-0,3 mm) überführt, die an einer Trägerkonstruktion (Eigenbau) befestigt ist, damit die Kapillare außerhalb des Handschuhkastens unter Schutzgas abgeschmolzen werden kann.

2.3 Überprüfung der Kristallstruktur

Ein aus Einkristalldaten bestimmtes Strukturmodell sollte stets durch entsprechende Ergebnisse weiterer Berechnungen und anderer Methoden untermauert werden, auch wenn man bei einem R_1 -Wert unter 10% den Strukturvorschlag als richtig ansehen kann. Dazu gehören:

- Überprüfung interatomarer Abstände und Winkel
- Übereinstimmung des Volumens der Elementarzelle mit dem Volumen, das aus den "Biltz'schen Volumeninkrementen" bestimmt werden kann

- Vergleich der gemessenen Pulverdaten mit einem aus Einkristalldaten simulierten Diffraktogramm
- Berechnung des Madelunganteils der Gitterenergie, Vergleich mit ähnlichen Verbindungen, insbesondere den binären Komponenten
- Infrarot- und Raman- Spektren
- UV-VIS- Spektren

2.3.1 Berechnung des Madelung-Anteils der Gitterenergie

Die Gitterenergie einer Verbindung setzt sich aus der Nullpunktenergie, E_0 , die sich aus der Quantentheorie ergibt, der anziehenen Dispersionkraft (London'sche Kraft), E_D , der Abstoßungskraft (Born'sche Abstoßungsenergie), E_A , und der elektrostatischen Coulomb-Energie, E_C , zusammen:

$$E = -N_A \sum \left(E_0 + E_D + E_A + E_C \right)$$

= $-N_A \sum \left[\left(\frac{9}{8} h v_{\max} \right) + \left(-C_{ij} r_{ij}^{-6} \right) + \left(B_{ij} \exp \left(-\alpha_{ij} r_{ij} \right) \right) + \left(\frac{q_i q_j e^2}{4\pi \varepsilon_0 r_{ij}} \right) \right]$ (2.10)

Bei ionischen Verbindungen macht aufgrund der starken elektrostatischen Wechselwirkungen die Coulomb-Energie den Hauptanteil der Gitterenergie aus. Hierbei spielt die Koordination des einzelnen Ions eine entscheidende Rolle. Sie geht in den Madelung-Faktor, MF ein, der zur Berechnung der Coulomb-Energie verwendet wird.

$$E = -N_A \sum \left(E_0 + E_A + E_D + \frac{MF \cdot f(z_i) \cdot e^2}{R_{KA} \cdot 4\pi \varepsilon_0} \right)$$
(2.11)

mit MF = Madelung-Faktor

 $f(z_i)$ = Funktion der Ladung der Ionen

 N_A = Avogadrozahl

E = Elementarladung

 \mathcal{E}_0 = Dielektrizitätskonstante

 R_{KA} = kürzester Abstand zwischen einem Kation und einem Anion

Der Madelung-Faktor kann als Summe von Teilbeträgen (**p**artielle **M**adelung-Faktoren, *PMF*), die den verschiedenen Ionen in der Elementarzelle zugeordnet werden, betrachtet werden. Es gilt dann für Verbindungen des Typs A_mB_n :

$$MF\left(A_{m}B_{n}\right) = \sum_{j=1}^{j=j} m_{j} \cdot PMF\left(A_{j}\right) + \sum_{k=1}^{k=k} n_{k} \cdot PMF\left(B_{k}\right)$$

$$(2.12)$$

mit $m_j = z_j/Z$

 $n_k = z_k/Z$; (Z = Anzahl der Formeleinheiten pro Elementarzelle) A_j = Atomsorte A auf der Lage mit der Zähligkeit z_j B_k = Atomsorte B auf der Lage mit der Zähligkeit z_k

Die Summe aller Wechselwirkungen eines einzelnen Ions mit allen anderen Ionen im Gitter ergibt den Madelunganteil der Gitterenergie. Summiert man die Madelunganteile aller Ionen, die in der Struktur vorhanden sind, so erhält man den Coulombanteil der Gitterenergie.

Die Berechnung des Madelunganteils der Gitterenergie (**Ma**delung **P**art of Lattice Energy) erfolgt mit dem Programm MAPLE v.4.0 [24]. Diesem zugrunde liegt ein von R. Hoppe entwickeltes Konzept [25] zur Berechnung der Coulomb-Wechselwirkungen der einzelnen in einer Struktur vorkommenden Ionen.

Zunächst wird ein effektiver Ionenradius (Mean Effective Ionic Radius, MEFIR) berechnet [205], der sich aus dem fiktiven Ionenradius (Fictive Ionic Radius), FIR ergibt. Der FIR ist definiert durch:

$$FIR(h \to i)_{j} = d(h \to i)_{j} \frac{R(h)}{R(h) + R(i)}$$

$$(2.13)$$

mit $d (h \rightarrow i)$ = Abstand zwischen einem Atom der Sorte *h* und einem Atom der Sorte *i* R(h) und R(i) = Ionenradien der Atome *h* und *i*, nach Shannon [26], bezogen auf r(O²⁻) = 140 pm bei 6-facher Koordination Wählt man nun die Atome der Sorte *h* willkürlich als unveränderbare Referenzpunkte, so können die Abstände d ($h \rightarrow i$) mit größer werdendem Abstand kategorisiert werden, wobei d ($h \rightarrow i$)₁ für den kürzesten Abstand steht. Anhand der Häufigkeit des jeweiligen Abstandes, $n[d (h \rightarrow i)]$ lässt sich ein gewichteter mittlerer fiktiver Ionenradius, ¹*MEFIR*, definieren [27]:

$${}^{1}MEFIR(h) = \frac{\sum_{i} \sum_{j=1}^{\infty} FIR(h \to i)_{j} \cdot n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{FIR(h \to i)_{j}}{FIR(h \to i)_{1}}\right)^{6}\right]}{\sum_{i} \sum_{j=1}^{\infty} n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{FIR(h \to i)_{j}}{FIR(h \to i)_{1}}\right)^{6}\right]}$$
(2.14)

Es zeigt sich, dass bereits bei der Berechnung der Gitterenergie einfacher Verbindungen, beispielsweise TiO₂, wo kurze O-O-Abstände vorliegen, die oben stehende Rechnung fehlerhaft ist [27]. Zur Korrektur zieht man iterative Methoden heran: Zunächst wird ¹MEFIR für den kürzesten Abstand berechnet, anschließend eine Konvergenzreihe gebildet.

$${}^{n}MEFIR(h) = \frac{\sum_{i}\sum_{j=1}^{\infty}FIR(h \to i)_{j} \cdot n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{FIR(h \to i)_{j}}{{}^{p}MEFIR(h \to i)_{1}}\right)^{6}\right]}{\sum_{i}\sum_{j=1}^{\infty}n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{FIR(h \to i)_{j}}{{}^{p}MEFIR(h \to i)_{1}}\right)^{6}\right]}$$
(2.15)

mit p = 1 n = 2ⁿMEFIR(h)- ^mMEFIR(h) $\leq 0,001$ Å n = m + 1

Entsprechend geht man bei der Bestimmung der effektiven Koordinationszahl (Effective **Co**ordination **N**umber, *ECoN*) vor. Die Summe aller Beträge für *ECoN* ergibt die effektive Koordinationszahl. Diese kann mit dieser Methode auch gebrochene Werte annehmen.

$${}^{1}ECoN(h \to i) = \sum_{i} \sum_{j=1}^{\infty} n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{FIR(h \to i)_{j}}{{}^{1}MEFIR(h \to i)}\right)^{6}\right]$$
(2.16)

$${}^{n}ECoN(h \to i) = \sum_{i} \sum_{j=1}^{\infty} n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{FIR(h \to i)_{j}}{{}^{n}MEFIR(h \to i)}\right)^{6}\right]$$
(2.17)

Ein Vergleich des so ermittelten Coulombanteils der Gitterenergie mit demjenigen Wert, der sich aus der Summe aus den binären Komponenten ergibt, erlaubt eine recht zuverlässige Überprüfung der Kristallstruktur aufgrund der energetischen Verhältnisse, da in ionischen Verbindungen der Hauptteil der Gitterenergie auf den Coulombanteil entfällt, und zusätzliche Beiträge zur Gitterenergie weitgehend vernachlässigt werden können. Die Abweichung bei ionischen Verbindungen, zum Beispiel bei Oxiden, bewegt sich im Bereich von 1-2 %. Dieses Vergleichsprinzip geht aus dem Born-Haber-Kreisprozess für die Berechnung thermodynamischer Größen hervor.

2.3.2 IR- und Ramanspektroskopie

Polarisierbarkeit ändert.

Die IR-Spektroskopie beruht auf der Anregung von Schwingungen durch elektromagnetische Strahlung im infraroten Wellenlängenbereich. Sie wird verwendet, um einzelne Baugruppen in Festkörpern nachzuweisen, wobei quantenmechanisch begründet die Auswahlregel gilt, dass nur solche Baugruppen IR-aktiv sind, die bei der Anregung ihr Dipolmoment ändern. Während bei der IR-Spektrometrie die Absorption der eingestrahlten Strahlung gemessen wird, untersucht man in der Raman-Spektroskopie Streustrahlung. Raman-aktiv sind Moleküle und Baueinheiten in Festkörpern, bei denen sich durch das eingestrahlte Licht die

Der mathematische Formalismus der Gruppentheorie ermöglicht es, die Anzahl der möglichen Schwingungen eines Moleküls zu ermitteln, sofern die vorliegende Symmetrie bekannt ist. Geht man vom isolierten Molekül zu Baugruppen im Festkörper über, so verwendet man anstelle der Auswahlregeln für das freie Molekül die der Punktlagensymmetrie (site symmetry), die aus Korrelationstabellen hervorgeht [28]. Dennoch ist es nicht möglich, das Auftreten von Banden vollständig vorherzusagen, da die auftretenden Intensitäten von Übergangswahrscheinlichkeiten bestimmt sind und außerdem Überlagerungen auftreten. Üblicherweise vergleicht man daher die gemessenen Spektren mit Spektren bekannter Verbindungen [29].

Zur Aufnahme von IR-Spektren werden im Handschuhkasten etwa 5 mg der Probensubstanz mit 3 Spatelspitzen getrocknetem Kaliumbromid in einer Achatreibschale innig verrieben und in das Presswerkzeug eingefüllt. Für Messungen an Einkristallen werden geeignete Exemplare ausgewählt und in KBr eingebettet. Mit einem Druck von 10 Tonnen wird mit einer hydraulischen Presse innerhalb von 15 Minuten ein Pressling hergestellt. Die Messungen werden in einer evakuierten Probenkammer ($< 10^{-3}$ mbar) im MIR-Wellenlängenbereich von 400 bis 7000 cm⁻¹ bei Raumtemperatur aufgenommen. Für Aufnahmen im FIR-Bereich (500 bis 10 cm⁻¹) wird die Probensubstanz mit trockenem PE verrieben und bei einem Druck von 5 Tonnen zu einem Pressling verarbeitet.

Zur Aufnahme von Raman-Spektren werden etwa 20 mg der Probe im Handschuhkasten in ein einseitig abgeschmolzenes Glasröhrchen (Innendurchmesser etwa 1,5 mm) gebracht, mit Knetgummi verschlossen und außerhalb des Handschuhkastens abgeschmolzen.

2.3.3 UV-VIS- Spektroskopie

Trifft Strahlung mit geeigneter Frequenz auf ein Molekül oder eine Baugruppe im Festkörper im Grundzustand, kann diese Strahlung absorbiert werden und das Molekül oder die Baugruppe wird in einen angeregten elektronischen Zustand versetzt. Dieser Vorgang ist von quantenmechanisch bestimmten Übergangswahrscheinlichkeiten geprägt.

Der mathematische Formalismus der Gruppentheorie ermöglicht eine Zuordnung von Banden zu elektronischen Übergängen aufgrund der Symmetrie eines Moleküls oder einer Baugruppe. Die Symmetrie einer Baugruppe bestimmt ihre Ligandenfeldaufspaltung.

Ein Beispiel hierfür sind trigonal-planare Baugruppen. Ausgehend von einer trigonal-planaren Einheit mit D3h-Symmetrie können verschiedene Verzerrungen zu einer Erniedrigung der Symmetrie dieser Baueinheit führen, die jeweils mit einer Änderung der Ligandenfeldaufspaltung einhergehen, Abb. 2.3.1. Eine Verlängerung bzw. Verkürzung der Bindungen und eine Vergrößerung bzw. Verkleinerung der Winkel führt zu C_{2v}-Symmetrie. Eine Auslenkung des Zentralatomes aus der durch die Liganden aufgespannten Ebene (in Abb. 2.3.1 durch + und - verdeutlicht) führt zu C_{3v} -Symmetrie.

So können Aussagen über die relative Stabilität von gleichartigen Baugruppen aus unterschiedlichen Atomen gemacht werden.

Abb. 2.3.1

Ligandenfeldaufspaltung für eine trigonal-planare Einheit mit D_{3h} -Symmetrie, für verzerrt trigonal-planare Varianten mit C_{2v} -Symmetrie und für eine nicht planare Variante mit C_{3v} -Symmetrie

Zur Aufnahme von Absorptionsspektren im Wellenlängenbereich von 25000 bis 4000 cm⁻¹ werden im Handschuhkasten etwa 5 mg der Probensubstanz mit 3 Spatelspitzen getrocknetem Kaliumbromid in einer Achatreibschale innig verrieben und in das Presswerkzeug eingefüllt. Für Messungen an Einkristallen werden geeignete Exemplare ausgewählt und in KBr eingebettet. Mit einem Druck von 10 Tonnen wird mit einer hydraulischen Presse innerhalb von 15 Minuten ein Pressling hergestellt, der in den Strahlengang des Spektrometers gebracht wird.

2.4 Magnetische Messungen

2.4.1 SQUID-Magnetometer

Das Superconducting Quantum Interference Device (SQUID) ist das empfindlichste Gerät zur Messung magnetischer Felder. Es enthält mehrere verschiedene supraleitende Bauelemente: Ein supraleitender Magnet erzeugt ein sehr gleichmäßiges Magnetfeld, supraleitende Detektionsschleifen koppeln induktiv mit der Probe und das Ganze wird durch einen supraleitenden Magneten abgeschirmt. Die Messungen werden durchgeführt, indem die Probe durch die Detektionsschleifen geführt wird, die mit den Verbindungsdrähten und der SQUID-input-Schleife einen supraleitenden Kreis bilden. Durch das magnetische Moment der Probe wird in den Detektionsschleifen ein Strom induziert. Jede Veränderung führt zu einer Veränderung im Kreis des Suprastromes, so dass diese mit einer Genauigkeit bis auf ein Flussquantum genau bestimmt werden kann.

Das magnetische Moment einer Probe steht mit dem angelegten homogenen Feld im Zusammenhang:

$$M = \chi H \tag{2.18}$$

mit M = molares magnetisches Moment χ = magnetische Suszeptibilität H = homogenes Magnetfeld Nach dem Curie-Gesetz gilt für einen Paramagneten die Gleichung:

$$\chi = \frac{C}{T} = \frac{Ng^2\beta^2}{3kT}S(S+1)$$
(2.19)

mit N = Avogadrozahl

 β = elektronisches Bohr-Magneton

g = g-Faktor des Elektrons

S = Spin

k = Boltzmannkonstante

Trägt man χT gegen T auf, so erhält man für einen Curie-Paramagneten eine horizontale Gerade.

Etwa 20 mg der Probe werden im Handschuhkasten in einer Achatreibschale fein verrieben und zwischen zwei Wattepfropfen mittig in einen Plastikstrohhalm gebracht, der mit einem Ansatzstück für den Probenhalter versehen wird. Mittels eines Shuttlegefäßes wird die Probe unter Argon an die Apparatur gebracht, anschließend schnell darin befestigt und die Probenkammer sofort evakuiert.

2.5 Untersuchungen der elektronischen Struktur

Bindungsverhältnisse in einem Molekül lassen sich am exaktesten mit der Molekülorbitaltheorie beschreiben. Orbitale werden mathematisch als stehende Wellen betrachtet, für die sich eine Wellenfunktion ψ formulieren lässt. Linearkombinationen der Wellenfunktionen von Atomorbitalen führen zu Wellenfunktionen von Molekülorbitalen. Zur Berechnung der Wellenfunktion für die Bindung zwischen zwei verschiedenen Atomen gehen die Funktionen der Atome mit den verschiedenen Koeffizienten c_1 und c_2 ein:

$$\psi_1 = c_1 \chi_1 + c_2 \chi_2 \tag{2.20a}$$

$$\Psi_2 = c_2 \chi_1 + c_1 \chi_2 \tag{2.20b}$$

Die Aufenthaltswahrscheinlichkeit eines Elektrons ist gegeben durch ψ^2 und muss über den gesamten Raum integriert = 1 sein.

$$1 = \int \psi_{1}^{2} dv = \int |c_{1} \chi_{1} + c_{2} \chi_{2}|^{2} dv = c_{1}^{2} + c_{2}^{2} + 2c_{1} c_{2} S_{12}$$
(2.21a)

$$1 = \int \psi_{21}^2 dv = \int |c_2 \chi_1 + c_1 \chi_2|^2 dv = c_1^2 + c_2^2 - 2c_1 c_2 S_{12}$$
(2.21b)

mit $S_{12} =$ Überlappungsintegral zwischen χ_1 und χ_2 $2c_1c_2S_{12} =$ Überlappungspopulation, Ausdruck für die Wechselwirkung zwischen den Atomen c_1 und $c_2 =$ Anteile, die den Atomen *I* und 2 zugeordnet werden können

Die Überlappungspopulation ist für ψ_1 positiv, das heißt es liegen bindende Wechselwirkungen vor. Für ψ_2 ist der Ausdruck negativ, das heißt es liegen antibindende Wechselwirkungen vor. Die Summe über alle Überlappungspopulationen, die Mulliken-Überlappungspopulation, ermöglicht Aussagen über die Bindungsstärke im Molekül.

In einem Festkörper muss die Gesamtheit der Molekülorbitale für alle beteiligten Atome betrachtet werden, was im Rahmen der Bändertheorie geschieht. Die Überlegungen beruhen auf einer Darstellung von R. Hoffmann [30] und gehen zunächst von einer linearen Kette von N+1 äquidistanten Wasserstoffatomen aus. Entsprechend der Anzahl der Atome bestehen unterschiedliche Schwingungszustände, die realisiert werden können. Hierzu trägt jedes Atom bei, und für die Wellenfunktion (Bloch-Funktion) gilt:

$$\Psi_k = \sum_{n=0}^N \chi_n \cos nka \tag{2.22}$$

mit a = Abstand zwischen den Wasserstoffatomen n = n-tes Wasserstoffatom

$$k = \frac{\pi k}{N a}$$
, wobei $k' =$ Zahl der Schwingungsnoden (Knoten in der Kette)

 χ_n = Funktion des Atoms *n*

Zu jedem ψ_k gehört ein definierter Energiebetrag. Die Differenz zwischen dem höchsten und dem niedrigsten einer Wellenfunktion zugeordneten Energiebetrag ist die Bandbreite. Je stärker die Überlappung der Atomorbitale desto größer die Bandbreite. Die Bandstruktur ist die Energie als Funktion von *k*, wobei die Energieniveaus nicht äquidistant im Band vorliegen. Die Dichte der Abfolge der Energieniveaus ist die Zustandsdichte, DOS (**d**ensity **o**f states). Für die Untersuchung von Bindungszuständen in einem Festkörper hat R. Hoffmann die Kristall-Orbital-Überlappungspopulation, COOP (**c**rystal **o**rbital **o**verlap **p**opulation), definiert. In diese gehen sämtliche Zustände über die Mulliken-Überlappungspopulation, $2c_ic_jS_{ij}$ ein. Bei der Betrachtung der Wechselwirkungen benachbarter Atomorbitale erhält man unter Berücksichtigung der zugehörigen Zustandsdichten ein COOP-Diagramm. Darin sind insgesamt bindende Überlappungspopulationen nach links (+) und insgesamt antibindende nach rechts (-) aufgetragen. Trägt man das Fermi-Niveau ein, so kann man anhand eines Vergleichs der Flächen, die von der Kurve unterhalb des Fermi-Niveaus eingeschlossen werden, Aussagen zu den Bindungsverhältnissen machen [31].

2.6 Materialien und Geräte

In den folgenden Tabellen 2.6.1, 2.6.2 und 2.6.3 sind Angaben zu den verwendeten Computerprogrammen, Geräten und Substanzen aufgelistet.

Tabelle 2.6.1	Verwendete Computerprogramme
---------------	------------------------------

Programm	Verwendung		
SHELXS-97 [21]	Kristallstrukturbestimmung, Strukturvorschlag durch		
	"Direkte Methoden"		
SHELXL-97 [22]	Kristallstrukturverfeinerung, Basis: F ² -Werte, Methode		
	der kleinsten Fehlerquadrate		
STOE WinXPOW 1.07 [23]	Auswertung von Pulverdiffraktogrammen		
	(Datenbankvergleich, Indizierung, Verfeinerung von		
	Gitterparametern, Simulation von theoretischen		
	Diffraktogrammen)		
MAPLE 4.0 [24]	Berechnung des Madelunganteils der Gitterenergie,		
	ECoN-, MEFIR- und MAPLE-Werte aus		
	Strukturparametern		
X-SHAPE [32]	Kristallgestaltoptimierung, Absorptionskorrektur		
X-RED [33]	Datenreduktion der Einkristalldiffraktometerdaten		

PLATON [34]	Darstellung von Differenzfourierkarten
Diamond 2.1c [35]	Bildliche Darstellung von Kristallstrukturen

Tabelle 2.6.2 Verwendete Geräte

Gerät	Modell und Hersteller		
Argon-Handschuhkasten	MB 200B, Fa. Braun, Garching, D		
Pulverdiffraktometer	STADI P, Fa. Stoe & Cie, Darmstadt, D;		
	Huber G670, Fa. Huber, Rimsting, D		
Einkristalldiffraktometer	IPDS I, S/N 48029, Fa. Stoe & Cie, Darmstadt, D;		
	IPDS II, S/N 49007, Fa. Stoe & Cie, Darmstadt, D		
IR-/ Raman-Spektrometer	IFS 66v/S, Fa. Bruker, Rheinstetten, D		
UV-VIS-Spektrometer	CARY 05E, Fa. Varian, Palo Alto, CA., USA		
SQUID	Fa. Cryogenic		
Präzessionskameras	I Fa. Rich-Seifert & Co. Ahrensburg, D,		
	S/N 201 127 220 V		
	II Fa. Huber, Rimsting, D;		
	S/N 201 126 220 V		

Tabelle 2.6.3 Verwendete Substanzen

Substanz	Bezugsquelle
Ni-Stab	Good Fellow, Cambridge, UK
Fe-Stab	Good Fellow, Cambridge, UK
Ag-Stab	Degussa, Hanau, D
Cu-Rohr	Dörrenhaus, Köln, D
Sc-Destillatbrocken	Lot GG/ 18, aus vorhandenen Beständen
Ti-Pulver	Fluka, Buchs, CH
Ti-Plättchen	ChemPur, Karlsruhe, D
V-Pulver	Aldrich, Milwaukee, WI, USA
Cr-Pulver	Ventron, Karlsruhe, D

Mn-Pulver	Aldrich, Milwaukee, WI, USA
Fe-Pulver	Good Fellow, Cambridge, UK
Co-Pulver	Merck, Darmstadt, D
Co-Plättchen	Good Fellow, Cambridge, UK
Ni-Pulver	Good Fellow, Cambridge, UK
Ni-Plättchen (aus Stab, s.o.)	Good Fellow, Cambridge, UK
Nb-Pulver	Starck, Goslar, D
Ta-Pulver	Johnson Matthey, Karlsruhe, D
Mo-Pulver	Riedel-de-Haën, Seelze, D
W-Pulver	Riedel-de-Haën, Seelze, D
Re-Pulver	Aldrich, Milwaukee, WI, USA
Ga	Aldrich, Milwaukee, WI, USA
CuO	Riedel-de-Haën, Seelze, D
Cu ₂ O	Aldrich, Milwaukee, WI, USA
CdO	Aldrich, Milwaukee, WI, USA
NaOH	Merck, Darmstadt, D
Na ₂ CO ₃	Merck, Darmstadt, D
Na ₂ SO ₄	Merck, Darmstadt, D
Na ₂ O	Aldrich, Milwaukee, WI, USA
Na ₂ O ₂	Riedel-de-Haën, Seelze, D
KO ₂	eigene Darstellung durch direkte Oxidation mit O ₂
K ₂ CO ₃	Merck, Darmstadt, D
K ₂ SO ₄	Merck, Darmstadt, D
KBr (FT-IR grade)	Aldrich, Milwaukee, WI, USA
КОН	Merck, Darmstadt, D
Li ₂ O	Aldrich, Milwaukee, WI, USA
Li ₂ CO ₃	Aldrich, Milwaukee, WI, USA
Rb ₂ O	Riedel-de-Haën, Seelze, D
Rb ₂ CO ₃	Riedel-de-Haën, Seelze, D
Cs ₂ O	eigene Darstellung durch direkte Oxidation mit O ₂
Cs ₂ CO ₃	Johnson Matthey, Karlsruhe, D
SiO ₂	Merck, Darmstadt, D
Argon	Linde, Hannover, D

3 Spezieller Teil

3.1 Na₈[CoO₃](SO₄)₂

Es sind zahlreiche alkalimetallreiche Oxocobaltate(II) mit trigonal-planarer Koordination am Übergangsmetallkation bekannt, beispielsweise Na₄CoO₃ [36], Na₁₀Co₄O₉ [37] oder das quaternäre Oxocobaltat(II), K₂Na₄Co₂O₅ [38]. Mit Na₈[CoO₃](SO₄)₂ ist es erstmals gelungen, ein Oxocobaltat(II)-sulfat darzustellen, das Sulfateinheiten enthält, die isoliert von einer trigonal-planaren [CoO₃]-Einheit in der Struktur vorliegen. Dies ist insofern ungewöhnlich, da die trigonal-planare Koordinationssphäre am Cobaltion als "ungesättigt" angesehen werden kann. Insbesondere von den Komplexverbindungen des Co²⁺ in wässriger Lösung kennt man zahlreiche Sulfato-Komplexe mit oktaedrischer Koordination. An Na₈[CoO₃](SO₄)₂ als erstem natriumreichem Oxocobaltat(II) mit voneinander isoliert vorliegenden [CoO₃]-Einheiten und [SO₄]-Einheiten wurden spektroskopische und magnetische Untersuchungen durchgeführt und im Rahmen des Angular-Overlap-Modells [41] diskutiert.

3.1.1 Darstellung von Na₈[CoO₃](SO₄)₂

Die oben genannte Verbindung wurde durch Oxidation von metallischem Cobalt mit CdO in getrocknetem Gegenwart von Na₂O und und entgastem Na_2SO_4 in einer kieselglasummantelten Silberampulle erhalten. Hierzu wurden die im Verhältnis 3: 2: 1: 1 eingewogenen Substanzgemenge in einer Achatreibschale im Argon-Handschuhkasten innig verrieben und in eine Silberampulle gebracht, die mit einem Deckel verschlossen wurde. Anschließend wurde die Silberampulle unter Argon mit Kieselglas ummantelt und in einem stehenden Röhrenofen in einem Schritt auf 250°C, dann mit 50°C pro Tag auf 550°C aufgeheizt. Diese Temperatur wurde 15 Tage gehalten, dann mit 50°C pro Tag auf 250°C, schließlich in einem Schritt auf Raumtemperatur abgekühlt. Es kann die folgende nichtstöchiometrische Reaktionsgleichung zugrunde gelegt werden:

 $3 \operatorname{Na_2O} + 2 \operatorname{Na_2SO_4} + CdO + Co \rightarrow \operatorname{Na_8[CoO_3](SO_4)_2} + Cd + \operatorname{Na_2SO_4}$

Hierbei wirkt CdO als Oxidationsmittel, und das entstehende elementare Cd wird durch Sublimation von den Produkten abgetrennt. $Na_8[CoO_3](SO_4)_2$ entsteht in Form von sehr feuchtigkeitsempfindlichen, roten, transparenten Einkristallen, die unter polarisiertem Licht Dichroismus nach grün zeigen.

3.1.2 Kristallstrukturbestimmung von Na₈[CoO₃](SO₄)₂

Mit Hilfe von direkten Methoden und Differenzfouriersynthesen konnte die Struktur von $Na_8[CoO_3](SO_4)_2$ sowohl für eine Messung bei Raumtemperatur als auch für eine Messung bei 170 K in der Raumgruppe Cmcm gelöst werden. Die Parameter der Röntgenstrukturanalyse sind in Tabelle 3.1.1 aufgeführt. Der Vergleich des gemessenen Pulverdiffraktogrammes mit den aus Einkristalldaten simulierten Diffraktogrammen von $Na_8[CoO_3](SO_4)_2$ und dem Edukt Na_2SO_4 [39] ist in Abb. 3.1.1 dargestellt.

Abb. 3.1.1

Vergleich des gemessenen Pulverdiffraktogramms (Cu K α -Strahlung) mit aus Einkristalldaten simulierten Diffraktogrammen von Na₈[CoO₃](SO₄)₂ und dem Edukt Na₂SO₄ [39]

	298 K	170K	
Kristallsystem	orthorhombisch	orthorhombisch	
Raumgruppe	Cmcm (Nr. 63)	Cmcm (Nr. 63)	
Gitterkonstanten / pm			
Einkristalldaten	a = 808, 8(4)	a = 806,88(9)	
(Mo Kα-Strahlung)	b = 2250,8(9)	b = 2232,1(3)	
	c = 711,4(2)	c = 705,97(9)	
Pulverdaten			
(Cu Kα-Strahlung)	a = 810,7(1)		
Č,	b = 2256,0(9)		
	c = 708,8(2)		
Formeleinheiten/Elementarzelle	4	4	
F(000)	940,0	919,6	
linearer Absorptionskoeffizient	1,96 mm ⁻¹	$3,02 \text{ mm}^{-1}$	
Kristallform,-farbe	plättchenförmig, rot-transparent		
Diffraktometer	IPDS I (Fa. Stoe & Cie)	IPDS II (Fa. Stoe & Cie)	
	$-10 \le h \le 10;$	$-10 \le h \le 10;$	
M 01 1	$-29 \le k \le 29;$	$-29 \le k \le 29;$	
Meßbereich	$-9 \le 1 \le 9;$	$-9 \le 1 \le 9;$	
	$2\theta_{\text{max}} = 55,96^{\circ}$	$2\theta_{max} = 56^{\circ}$	
symmetrieunabhängige Reflexe	896 von 7576 gemessenen	889 von 15081 gemessenen	
Programme	SHELXS-97 [21], SHELXL-97 [22], WinXPOW [23]		
Absorptionskorrektur	numerisch, X-Shape [32], X-Red [33]		
Lösungsverfahren	Direkte Methoden		
Parameterverfeinerung	full-matrix least squares		
Anzahl freier Parameter	77	78	
R(int.)	0,0866	0,0377	
R1	$0,0489$ für 637 $F_0 > 4\sigma(F_0);$	0,0436 für 773 $F_0 > 4\sigma(F_0)$;	
	0,0741 für alle Daten	0,0495 für alle Daten	
wR2	0,1274	0,1255	
GooF	1,040	1,091	

Tab. 3.1.1Kristallographische Daten für Na₈[CoO₃](SO₄)₂

3.1.3 Beschreibung der Kristallstruktur von Na₈[CoO₃](SO₄)₂

Hervorstechendes Strukturmerkmal in Na₈[CoO₃](SO₄)₂ ist die trigonal planare $[CoO_3]^{4-}$ Einheit, die isoliert von den Sulfateinheiten in der Struktur vorliegt. Eine Projektion der Kristallstruktur mit eingezeichneter Elementarzelle ist in Abb. 3.1.2 dargestellt. Es liegen zwei kristallographisch unterscheidbare Sulfateinheiten vor, von denen eine, $[S2O_4]^{2-}$, statistisch fehlgeordnet ist. In der Abbildung ist eine mögliche Anordnung gezeigt. Die Kristallstrukturbestimmung erfolgte bei Raumtemperatur und bei 170 K, wobei eine Ausordnung der Sulfateinheit durch Abkühlen nicht beobachtet werden konnte. In den Tabellen 3.1.2 und 3.1.3 sind Lageparameter und Äquivalente Temperaturkoeffizienten aufgelistet.

Abb. 3.1.2 Projektion der Kristallstruktur von Na₈[CoO₃](SO₄)₂

Tab. 3.1.2

Lageparameter und Koeffizienten der äquivalenten Temperaturfaktoren in pm² für Na₈[CoO₃](SO₄)₂ bei 170 K

Atom	Lage	Х	У	Z	U _{eq}
Со	4c	0	0,07939(3)	0,25	116(3)
01	8g	0,2179(4)	0,0609(2)	0,25	193(7)
O2	4c	0	0,1660(2)	0,25	164(9)
Na1	8e	0,2577(2)	0	0	218(5)
Na2	16h	0,2058(2)	0,15820(7)	0,0278(2)	290(4)
Na3	4c	0	0,2638(1)	0,25	527(12)
Na4	4c	0,5	0,0777(1)	0,25	202(6)
S 1	4c	0,5	0,09741(7)	0,75	146(4)
011	8f	0,5	0,0600(2)	0,9199(5)	295(8)
O12	8g	0,3518(6)	0,1363(2)	0,75	418(11)
S2	$8g^{a)}$	0,4767(14)	0,7585(1)	0,75	399(22)
O21	16h ^{a)}	0,3545(8)	0,7599(2)	0,5831(8)	325(13)
O22	$8g^{a}$	0,5425(20)	0,7027(4)	0,75	$881(54)^{c}$
O23	16h ^{b)}	0,5450(22)	0,8139(5)	0,6979(27)	$881(54)^{c)}$

Äquivalenter Temperaturfaktor, Ueq, nach [20]

^{a)} statistisch zu ¹/₂ besetzt,

^{b)} statistisch zu ¼ besetzt,
 ^{c)} gekoppelt anisotrop verfeinert

Tab. 3.1.3

Atom	Lage	Х	у	Z	U_{eq}
Со	4c	0	0,07943(5)	0,25	128(3)
O1	8g	0,2167(5)	0,0608(2)	0,25	223(9)
O2	4c	0	0,1653(3)	0,25	202(12)
Na1	8e	0,2559(4)	0	0	281(6)
Na2	16h	0,2063(3)	0,15797(9)	0,0285(3)	349(5)
Na3	4c	0	0,2629(2)	0,25	589(17)
Na4	4c	0,5	0,0759(2)	0,25	298(9)
S 1	4c	0,5	0,09705(9)	0,75	171(4)
O11	8f	0,5	0,0597(3)	0,9183(8)	403(13)
O12	8g	0,3530(9)	0,1353(3)	0,75	519(17)
S 2	$8g^{a)}$	0,479(3)	0,7585(2)	0,75	430(40)
O21	$16h^{a}$	0,357(1)	0,7593(4)	0,586(1)	430(19)
O22	$8g^{a)}$	0,545(4)	0,7035(7)	0,75	$1079(101)^{c}$
O23	$1 \mathrm{\tilde{6}h}^{\mathrm{b})}$	0,464(5)	0,8119(8)	0,695(4)	1079(101) ^{c)}

Lageparameter und Koeffizienten der äquivalenten Temperaturfaktoren in pm^2 für Na₈[CoO₃](SO₄)₂ bei 298 K

Äquivalenter Temperaturfaktor, U_{eq}, nach [20]

statistisch zu ½ besetzt,

^{b)} statistisch zu ¼ besetzt,

^{c)} gekoppelt anisotrop verfeinert

Ein zentrales Strukturmerkmal von $Na_8[CoO_3](SO_4)_2$ ist die isoliert vorliegende, verzerrt trigonal-planare $[CoO_3]^{4-}$ -Einheit, Abb.3.1.3. Die interatomaren Abstände und Winkel sind in nebenstehender Tabelle 3.1.4 aufgeführt. Auffällig ist hier, dass sich die $[CoO_3]^{4-}$ -Einheit mit zwei kurzen und einer langen Bindung, sowie einem mit 153° stark aufgeweiteten Winkel deutlich von Strukturelementen der bisher bekannten Natriumoxocobaltaten [36] unterscheidet. Ein solches Strukturelement wurde bisher nur bei verbrückenden Einheiten, beispielsweise bei K₂CoO₂ [40], beobachtet.

Tab. 3.1.4

Intera	atomare	Abstä	inde	in	pm
und	ausgew	ählte	Win	kel	in
Grad	der [Co	O ₃] ^{4−} -E	Einhe	it	

Co-O1	180,6(3) (2x)
Co-O2	193,4(4)
01-Co-O1	153,5(2)
O1-Co-O2	103,2(1) (2x)

Die weitere Koordinationssphäre der isolierten $[CoO_3]^{4-}$ -Einheit durch Natriumionen (d_{max} Na-O = 290 pm) kann als verzerrter, dreifach überkappter Würfel beschrieben werden, Abb. 3.1.4. Dadurch ergibt sich für jedes O²⁻, das an ein Cobaltkation koordiniert, eine Koordinationszahl von 6.

Abb. 3.1.4

Koordination der [CoO₃]⁴⁻-Einheit durch Natriumionen in der zweiten Koordinationssphäre

In der Struktur liegen zwei kristallographisch unterscheidbare Sulfat-Einheiten vor, $[S1O_4]^{2^-}$ und $[S2O4]^{2^-}$, von denen eine, $[S2O_4]^{2^-}$, statistisch fehlgeordnet ist, Abb. 3.1.5. Die interatomaren Abstände sowie ausgewählte Winkel für die Sulfateinheiten sind in Tabelle 3.1.5 aufgeführt.

Die beiden kristallographisch unterscheidbaren Sulfateinheiten $[S1O_4]^{2-}$ und $[S2O_4]^{2-}$ sind in zweiter Koordinationssphäre ebenso wie die $[CoO_3]^{4-}$ -Einheiten von Natriumionen in Form eines dreifach überkappten verzerrten Würfels koordiniert, Abb. 3.1.6 und 3.1.7. Die interatomaren Abstände und Winkel in der nicht fehlgeordneten $[S1O_4]^{2-}$ -Einheit sind typisch für isolierte Sulfateinheiten und weisen mit einem mittleren O-S-O-Winkel von 109,5 Grad eine nur geringe Abweichung vom idealen Tetraeder (T_d) auf. Für die $[S2O_4]^{2-}$ -Einheit treten bei den in Tabelle 3.1.5 angegebenen Werten Abweichungen von den üblichen Werten für isolierte Sulfateinheiten auf, die sicher auf die Fehlordnung zurückzuführen sind.

Abb. 3.1.6

Die weitere Koordinationssphäre der $[S1O_4]^2$ -Einheit, ein dreifach-überkappter, verzerrter Würfel aus Natriumatomen

Abb. 3.1.7 a, b

Die weitere Koordinationssphäre der zwei Anordnungsmöglichkeiten der [S2O₄]²⁻-Einheit, ein dreifach-überkappter, verzerrter Würfel aus Natriumatomen

Insgesamt lässt sich die Kristallstruktur von $Na_8[CoO_3](SO_4)_2$ als Variante des CsCl-Strukturtyps beschreiben, Abb. 3.1.8. Die Natriumionen der Sorte Na1 und Na2 (hellgrau dargestellt) bilden eine primitive Packung, deren Lücken durch die isolierten Oxoanionen (Schwefel gelb und Cobalt rot dargestellt) und die Natriumkationen der Sorte Na3 (hellgrün schraffiert) und Na4 (dunkelgrün) besetzt werden: $[Na_6][Co, \Delta, S1,S2, Na3, Na4]$. Die Leerstelle befindet sich entlang [001] zwischen den durch Co zentrierten Würfeln.

Abb. 3.1.8

Kationenstruktur von Na₈[CoO₃](SO₄)₂ als Variante der CsCl-Struktur entlang [001]. Die Leerstellen, Δ , befinden sich in den durch Co zentrierten Kanälen. Dargestellt ist eine der oben beschriebenen möglichen Besetzungen von S2.

3.1.4 MAPLE-Berechnung an Na₈[CoO₃](SO₄)₂

Zur Überprüfung der Strukturlösung wurden Berechnungen im Rahmen des MAPLE-Konzepts durchgeführt. Hierbei wurde eine Statistik für die Anordnung der $[S2O_4]^{2-}$ -Einheit zugrunde gelegt, wie sie in Abb. 3.1.6 dargestellt ist. Die für Na₈[CoO₃](SO₄)₂ erhaltenen Werte sind im Vergleich zur Summe aus CoO, 2x Na₂O und 2x Na₂SO₄ in Tabelle 3.1.5 aufgeführt.

Tab. 3.1.6

Madelung-Anteil der Gitterenergie (MAPLE) [24] in kcal/mol für Na₈[CoO₃](SO₄)₂

		MAPLE (Edukte)	MAPLE (Produkt)
Со	1 x	544,1 ^{a)}	561,7
O1	2 x	482,9 ^{b)}	438,9
O2	1 x	482,9 ^{b)}	451,0
Na1	2 x	136,6 ^{c)}	138,8
Na2	4 x	136,6 ^{c)}	127,3
Na3	1 x	136,6 ^{c)}	137,2
Na4	1 x	136,6 ^{c)}	172,4
S 1	1 x	4778,8 ^{d)}	4729,3
011	2 x	734,7 ^{e)}	749,6
012	2 x	734,7 ^{e)}	775,9
S2	1 x	4778,8 ^{d)}	4804,5
O21	2 x	734,7 ^{e)}	720,9
O22	1 x	734,7 ^{e)}	830,6
O23	1 x	734,7 ^{e)}	802,2
Σ		18520,8	18658,1
^{a)} MAPLE(Co ²⁺ (CoO))			APLE (Edukte-Produkt)
^{b)} Mittelwert aus 2MAPLE(O ²⁻ (Na ₂ O)) + MAPLE(O ²⁻ (CoO))			7,3 kcal/mol = -0,74 %
^{c)} Mittelwert aus 4MA	$PLE(Na^{+}(Na_{2}O)) + 4$	$MAPLE(Na^{+}(Na_{2}SO_{4}))$	· · · · · · · · · · · · · · · · · · ·

d) MAPLE(S⁶⁺(Na₂SO₄)

e) MAPLE(O²⁻(Na₂SO₄)

Die Übereinstimmung zwischen den Werten für die Edukte und denen für $Na_8[CoO_3](SO_4)_2$ ist gut, Δ MAPLE (Edukte - Produkt) beträgt -137,3 kcal/mol, was einer Abweichung von -0,74 % entspricht. Die mit -96 bzw. -68 kcal/mol größte Abweichung zwischen Edukten und Produkt zeigt sich zwischen MAPLE(O²⁻(Na₂SO₄) und MAPLE(O²⁻(Na₈[CoO₃](SO₄)₂). Dies ist auf die statistische Fehlordnung der [S2O₄]²⁻-Einheiten zurückzuführen, aufgrund derer die Lagen der Atome O22 und O23 nur unzureichend lokalisiert werden konnten.

3.1.5 Spektroskopie an Na₈[CoO₃](SO₄)₂

Eine Anzahl Einkristalle von Na₈[CoO₃](SO₄)₂ wurde aus dem Ansatz ausgewählt, die optisch vom Na₂SO₄ gut zu unterscheiden sind, und diese IR-spektroskopisch untersucht. Für isolierte Sulfationen mit idealer T_d-Symmetrie werden vier Schwingungsmoden erwartet, die alle Raman-aktiv sind. IR-aktiv sind jedoch lediglich v₃ (v_d(XY)) und v₄ (δ_d (YXY)), [29], Tabelle 3.1.7.

			SO ₄ ²⁻ (T _d -Symmetrie)	$Na_8[CoO_3](SO_4)_2$
ν_1	$\nu_{s}\left(XY\right)$	A_1	983	IR-inaktiv
v_2	$\delta_{d}\left(YXY\right)$	Е	450	IR-inaktiv
v_3	$\nu_{d}\left(XY\right)$	F_2	1105	1130
ν_4	$\delta_{d}\left(YXY\right)$	F_2	611	624

 Tab. 3.1.7
 Erwartete und beobachtete Banden im IR-Spektrum

Es wurden die für isolierte Sulfationen (T_d) typischen Banden beobachtet: $v_{asym} = 1130 \text{ cm}^{-1}$ und $\delta_{sym} = 624 \text{ cm}^{-1}$, vgl. Abb. 3.1.9. Es liegt also annähernd T_d -Symmetrie für die beiden Sulfat-Einheiten, auch für die fehlgeordnete [S2O₄]²⁻-Einheit, vor. Beide Gruppen weisen also der idealen Tetraederanordnung vergleichbare Abstände und Winkel auf, s. auch Tab. 3.1.4.

Abb. 3.1.9

MIR-Spektrum von Na₈[CoO₃](SO₄)₂ mit den für isolierte Sulfationen typischen Banden

Das Absorptionsspektrum von unter dem Polarisationsmikroskop ausgewählten Kristallen von $Na_8[CoO_3](SO_4)_2$, die verrieben und zu einem KBr-Pressling verarbeitet wurden, ist in Abb. 3.1.10 gezeigt. Die Verzerrung der $[CoO_3]^{2-}$ -Baueinheit führt zu einer Symmetrieerniedrigung von D_{3h} nach C_{2v} . Dies führt zu einer Bandenaufspaltung, da die zweifache Entartung der Zustände E' und E'' aufgehoben wird.

Die im Rahmen des Angular-Overlap-Modells [41] berechneten Bandenlagen sind in Tabelle 3.1.8 neben den beobachteten Bandenlagen aufgeführt. Als Grundlage für die Berechnung wurden ähnliche σ -bindende und π -antibindende Wechselwirkungen angenommen wie für das von *A. Möller* bereits untersuchte Na₄[CoO₃] [42]. Entsprechend der interatomaren Abstände wurden e_{σ} - und e_{π} -Wechselwirkungsparameter von 7200cm⁻¹ und 1700cm⁻¹ für d(Co-O2) = 180 pm und 6500 cm⁻¹ und 1500⁻¹ für d(CoO2) = 193 pm respektive verwendet. Der interelektronische Abstoßungsparameter, B, beträgt 650 cm⁻¹. Das gemessene Spektrum stimmt mit den berechneten elektronischen Übergängen gut überein, wobei von einem ⁴B₂-Grundzustand (C_{2v}) ausgegangen wird.

Abb. 3.1.10 Absorptionsspektrum von Na₈[CoO₃](SO₄)₂ mit Zuordnung der Banden

Tab. 3.1.8

beobachtet	berechnet	C_{2v}
22875	23347	${}^{4}B_{2}$
18600	18205	${}^{4}A_{2}$
13530	13287, 12727	${}^{4}A_{1}, {}^{4}B_{1}$
8370	8568	${}^{4}B_{1}$
4830	5296, 5126	${}^{4}A_{2}, {}^{4}B_{1}$
-	2470	${}^{4}\mathbf{B}_{1}$
-	1803	${}^{4}A_{2}$

Beobachtete (Gauß-Kurven-Anpassung) und berechnete Energien in cm⁻¹ und ihre Zuordnung für das Absorptionsspektrum von $Na_8[CoO_3](SO_4)_2$

Die erhaltenen Einkristalle von $Na_8[CoO_3](SO_4)_2$ zeigen beim Durchstrahlen mit polarisiertem Licht Dichroismus von rot-orange nach grün. Diese Beobachtung lässt sich anhand des Spektrums bestätigen. Geht man davon aus, dass die elektronischen Übergänge vibronisch induziert sind, so ergeben sich die folgenden Polarisationen:

$$\label{eq:B2} \begin{split} ^{4}B_{2} &\rightarrow {}^{4}A_{1} \left(y,z\right) \\ ^{4}B_{2} &\rightarrow {}^{4}B_{1} \left(x,y\right) \\ ^{4}B_{2} &\rightarrow {}^{4}B_{2} \left(x,y,z\right) \\ ^{4}B_{2} &\rightarrow {}^{4}A_{2} \left(x,z\right) \end{split}$$

Für alle Polarisationsrichtungen ist aufgrund der Übergänge ${}^{4}B_{2} \rightarrow {}^{4}A_{1}$ (y, z) und ${}^{4}B_{2} \rightarrow {}^{4}B_{1}$ (x, y) bei ca. 13000 cm⁻¹ eine Bande zu erwarten. Der Übergang ${}^{4}B_{2} \rightarrow {}^{4}A_{2}$ (x, z) bei ca. 18400 cm⁻¹ sollte in y-Richtung jedoch nicht zu beobachten sein, so dass diese Orientierung den Kristall bei polarisiertem Licht grün erscheinen lässt, vgl. Abb. 3.1.8.

3.1.6 Magnetische Untersuchungen an Na₈[CoO₃](SO₄)₂

Mit einem SQUID-Magnetometer wurden magnetische Messungen an ausgewählten Einkristallen von $Na_8[CoO_3](SO_4)_2$ durchgeführt. Die temperaturabhängigen reziproken Suszeptibilitäten und das magnetische Moment (zero-field-cooled und field-cooled) sind in Abb. 3.1.11 dargestellt.

Abb. 3.1.11

Beobachtete und gemessene magnetische Momente und Suszeptibilitäten in Abhängigkeit von der Temperatur von Na₈[CoO₃](SO₄)₂

Die Probe zeigt Curie-Weiss-Verhalten mit leichten Abweichungen, die möglicherweise auf Orientierungseffekte innerhalb der Probe zurückzuführen sind. Die Weiss'sche Konstante beträgt $\Theta = -14$ K. Das ermittelte magnetische Moment bei 300K entspricht mit $\mu \sim 4,18 \mu_B$ dem Erwartungswert für einen ⁴B₂-Grundzustand mit einem Beitrag aus der Spin-Bahn-Kopplung. Die Rechnungen wurden mit dem Programmsystem CAMMAG [43] durchgeführt. Den Rechnungen liegen die oben angegebenen Parameter aus dem Angular-Overlap-Modell zugrunde, sowie eine Spin-Bahn-Kopplungskonstante von $\lambda = -110$ cm⁻¹ und ein Bahnreduktionsfaktor von k = 0,7. Die so erhaltenen Werte für die reziproke Suszeptibilität wurden entsprechend dem vorliegenden antiferromagnetischen Verhalten korrigiert.

3.2 Na₃FeO₃

Mittlerweile ist eine Vielzahl von ternären Natriumoxoferraten synthetisiert und strukturell aufgeklärt worden. Es existieren Beispiele für Eisen in den Oxidationsstufen +6 bis +2, die weitaus meisten Natriumoxoferrate wurden jedoch mit Eisen in der Oxidationsstufe +3 dargestellt. Die Existenz von Na₃FeO₃ ist jahrzehntelang vorausgesagt und die Verbindung mehrmals in der Literatur erwähnt und als Edukt verwendet worden, ohne dass Informationen über die Kristallstruktur vorlagen [44-49].

Na₃FeO₃ ist das erste Natriumoxoferrat(III) mit Kettenstruktur. Es stellt das lange gesuchte Bindeglied zwischen bereits bekannten Oxoferraten(III) im System Na/Fe(III)/O dar: In Na₅[FeO₄] [50] liegen isolierte $[FeO_4]^{5-}$ -Einheiten, in Na₈[Fe₂O₇] [51] eckenverknüpfte Dimere, in Na₁₄Fe₆O₁₆ [52] zu Bändern verknüpfte Dimere und in Na₄Fe₂O₅ [53] über Ecken zu Schichten verknüpfte Tetraeder vor. Kettenstruktur ist bisher nur bei gemischten, quaternären Alkalioxoferraten des Typs AB₂FeO₃ [54, 55] mit A = K und B = Na oder A = Na und B = K sowie von Na₁₀Cs₂Fe₄O₁₂ [56] beschrieben worden. Die höheren Alkalimetallhomologen bevorzugen ein ganz anderes Verknüpfungsmuster; beispielsweise ist bei K₆Fe₂O₆ [57] eine Kantenverknüpfung von [FeO₄]Tetraedern zu Dimeren belegt. Es ist also davon auszugehen, dass Natrium einen strukturdirigierenden Einfluss auf die Bildung von Ketten hat.

3.2.1 Kristallstruktur von Na₃FeO₃

Die Kristallstruktur wurde mit Hilfe von Direkten Methoden und Differenzfouriersynthese in der Raumgruppe $P2_1/n$ gelöst. Die Parameter der Röntgenstrukturanayse sind in Tabelle 3.2.1 aufgeführt. Das aufgenommene Pulverdiffraktogramm wird von den Reflexen des Mineralisators Na₂CO₃[58] dominiert.

Kristallsystem	monoklin				
Raumgruppe	$P2_1/n$ (Nr. 14)				
Gitterkonstanten / pm					
Einkristalldaten (293 K)	a = 579.9(1)				
	b = 1265.9(2)				
	c = 582.8(1)				
	$\beta = 116.02(2)^{\circ}$				
Formeleinheiten/Elementarzelle	4				
F(000)	332				
linearer Absorptionskoeffizient	4.09 mm^{-1}				
Kristallform,-farbe	Derbe Würfel, cognacfarben				
Diffraktometer	IPDS I (Fa. Stoe & Cie)				
Meßbereich	$-14 \le h \le 14$: $-16 \le k \le 16$: $-7 \le l \le 7$:				
	$2\theta_{\text{max}} = 55.99^{\circ}$				
symmetrieunabhängige Reflexe	920 von 3663 gemessenen				
Programme	SHELXS-97 [21], SHELXL-97 [22],				
C	WinXPOW [23]				
Absorptionskorrektur	numerisch, X-Shape [32], X-Red [33]				
Lösungsverfahren	Direkte Methoden				
Parameterverfeinerung	full-matrix least squares				
Anzahl freier Parameter	64				
R(int.)	0,0676				
R1	0.0338 für 664 F ₀ > 4 σ (F ₀) ; 0.0576 alle Daten				
wR2	0,0721				
GooF	0,959				

Tab. 3.2.1Kristallographische Daten für Na₃FeO₃

3.2.2 Beschreibung der Kristallstruktur von Na₃FeO₃

Na₃FeO₃ ist das erste Natriumoxoferrat mit Kettenstruktur. Die Eisenatome sind verzerrt tetraedrisch von Sauerstoff umgeben. Diese [FeO₄]-Einheiten verknüpfen über Ecken zu unendlichen Zickzackketten, die isoliert voneinander vorliegen. Eine Projektion der Kristallstruktur mit eingezeichneter Elementarzelle ist in Abb. 3.2.2 dargestellt; Lageparameter und Koeffizienten der äquivalenten Temperaturfaktoren sind in Tabelle 3.2.2 aufgeführt.

Abb. 3.2.2 Projektion der Elementarzelle von Na₃FeO₃

Tab. 3.2.2Lageparameter und äquivalente Temperaturfaktoren in pm² für Na₃FeO3

Atom	Lage	Х	У	Z	U_{eq}	
Fe	4e	0,177(1)	0,33505(4)	0,2580(1)	43(2)	
Na1	4e	0,2181(3)	0,0940(1)	0,1451(4)	129(4)	
Na2	4e	0,2457(3)	0,4851(1)	0,7789(3)	104(4)	
Na3	4e	0,1435(3)	0,2224(1)	0,6979(3)	120(4)	
01	4e	0,3745(5)	0,4366(2)	0,1950(6)	88(6)	
O2	4e	0,0060(5)	0,3731(2)	0,4500(6)	87(6)	
O3	4e	0,9253(5)	0,2698(2)	0,9549(6)	92(6)	

Äquivalenter Temperaturfaktor, U_{eq} , nach [20]

Ausgewählte	interatomare	Abstände
in pm und Wi	nkel in Grad	

-	
Fe-O1	186,2(3)
Fe-O2	185,6(3)
Fe-O3	191,6(3)
Fe-O3'	192,4(3)
O1-Fe-O2	118,5(1)
O1-Fe-O3'	103,3(1)
O1-Fe-O3	113,7(1)
O2-Fe-O-O3	106,1(1)
O2-Fe-O3'	106,0(1)
O3-Fe-O3	108,70(5)
Fe-O3-Fe	156,3(2)

Es werden typische Fe^{III}-O-Abstände beobachtet, welche für terminale Sauerstoffatome zwischen 182 und 190 pm und für verbrückende Sauerstoffatome zwischen 187 und 195 pm anzusiedeln sind [50-57].

In der Kristallstruktur liegen neben den verzerrt tetraedrisch von Sauerstoffatomen umgebenen Eisenatomen drei kristallographisch unterscheidbare Natriumatome vor. Die zwei Natriumatome der Sorte Na1 sind verzerrt tetraedrisch von vier Sauerstoffatomen im Abstand von 236-240 pm umgeben. Jeweils zwei Na1 werden über zwei O1 zu einem Dimer kantenverknüpft. Ein fünftes, weiter entferntes Sauerstoffatom (d(Na1-O3) = 272 pm) verbrückt diese Dimere zu Schichten, Abb. 3.2.4. Na2 ist von vier Sauerstoffatomen verzerrt tetraedrisch umgeben und über gemeinsame Kanten zu unendlichen Strängen verknüpft, Abb. 3.2.5. Na3 wird verzerrt trigonal-bipyramidal von Sauerstoff umgeben und bildet mit seinesgleichen Ketten aus, Abb. 3.2.6.

Alle Sauerstoffatome sind verzerrt oktaedrisch von Natrium und Eisen umgeben. O1 und O2 sind von einem Eisen und fünf Natriumatomen umgeben, Abb. 3.2.6 und Abb. 3.2.7, während O3 von zwei Eisen in trans-Stellung und vier Natriumatomen koordiniert wird, Abb. 3.2.8.

Abb. 3.2.4 Sauerstoffkoordination von Na1

Tab. 3.2.4	
Ausgewählte i	nteratomare
Abstände in pr	n
$N_{2}1 \cap 1$	235.0(3)

Nal-Ol	235,9(3)	
Na1-01'	253,3(3)	
Na1-O2	243,3(3)	
Na1-O3	240,3(3)	
Na1O3'	272,2(3)	

Abb. 3.2.5 Sauerstoffkoordination von Na2

Tab. 3.2.5	Tab. 3.2.5			
Ausgewählte in	Ausgewählte interatomare			
Abstände in pm				
Na2-O1'	235,8(3)			
Na2-O1	228,6(4)			
Na2-O2	229,8(3)			
Na2-O2'	232,8(3)			

3.2.3 MAPLE-Berechnung an Na₃FeO₃

Zur Überprüfung der Strukturlösung wurden Berechnungen im Rahmen des MAPLE-Konzepts durchgeführt. Die für Na₃FeO₃ erhaltenen Werte sind im Vergleich zur Summe aus 3/2 Na₂O und 1/2 α -Fe₂O₃ in Tabelle 3.2.3 aufgeführt. Die Übereinstimmung ist mit einer Abweichung von 0,8 % gut.

	0	 8	/ L J	5 - 5

Tabelle 3.2.7 Madelung-Anteil der Gitterenergie (MAPLE) [24] in kcal/mol für Na₃FeO₃

	MAPLE (binär)	MAPLE (ternär)
Na1	121,7 ^{a)}	128,74
Na2	121,7 ^{a)}	145,57
Na3	121,7 ^{a)}	124,48
Fe	1198,3 ^{b)}	1149,71
01	512,55 ^{c)}	497,58
O2	512,55 ^{c)}	509,61
03	512,55 ^{c)}	571,51
Σ	3101,05	3127,2
^{a)} MAPLE (Na ⁺ (Na ₂ O))		∆ MAPLE (ternär-binär)
^{b)} MAPLE (Fe ³⁺ (α -Fe ₂ O ₃))		= 26.12 kcal/mol $= 0.8$ %
^{c)} MAPLE (O^{2-}) =		= 20,12 Real mol $= 0,0.70$
$1/3 [1,5 \text{ MAPLE } (O^{2-}(\alpha - Fe_2O_3))]$) + 1,5 MAPLE (O ²⁻ (Na ₂ O))]	

3.2.4 Darstellung von Na₃FeO₃/ Reaktivität im System Na/Fe/O

Die Darstellung von Na₃FeO₃ ist jahrelang nicht gelungen, eine Vielzahl anderer ternärer Oxoferrate ist jedoch strukturell aufgeklärt worden. Abb. 3.2.10 gibt eine Übersicht über die bisher strukturell bekannten ternären Oxoferrate.

In der Gruppe der Natriumoxoferrate(III) ist die direkte und phasenreine Synthese von $Na_{14}Fe_6O_{16}$ [52] und $Na_8Fe_2O_7$ [51] aus Na_2O und dem binären Oxid Fe_2O_3 möglich. Eine solche Darstellung aus den binären Komponenten gelingt mit Na_3FeO_3 nicht.

Wählt man den Weg über eine Oxidation von elementarem Eisen mit CdO in Anwesenheit von Na₂O, entstehen Einkristalle von Na₁₄Fe₆O₁₆ und Na₈Fe₂O₇ in Abhängigkeit vom Na₂O-Anteil bei Reaktionstemperaturen zwischen 480°C und 550°C.

Führt man solche Redox-Reaktionen in Anwesenheit von Mineralisatoren, beispielsweise Na_2CO_3 , Na_2SO_4 oder NaOH durch, so wird zusätzlich zum Entstehen bekannter Verbindungen wie $Na_{14}Fe_6O_{16}$ [52], $Na_8Fe_2O_7$ [51], Na_5FeO_4 [50] und Na_4FeO_3 [59] der Zugang zu neuen Verbindungen wie $Na_9Fe_2O_7$ [60] oder $Na_{10}Fe_4O_9$ [61] ermöglicht.

Abb. 3.2.10 Strukturell bekannt ternäre Natriumoxoferrate im System Na₂O/ FeO/ Fe₂O₃

Na₃FeO₃ wird durch Oxidation von metallischem Eisen aus dem Reaktionsgefäß (R. Hoppe, Reaktion mit der Wand [62, 63]) mit CdO in Gegenwart von Na₂O und getrocknetem Na₃CO₃ bei 650°C (14d) in einer kieselglasummantelten Eisenampulle erhalten. Die Eduktgemenge wurden im molaren Verhältnis Na₂O/ Na₂CO₃/ CdO von 3: 2: 1 fein verrieben und eingewogen. Es entstehen sehr feuchtigkeitsempfindliche, bernsteinfarbene Einkristalle von Na₃FeO₃. Das Röntgenpulverdiffraktogramm wird von den Reflexen des Mineralisators Na₂CO₃ bestimmt. Aus dem Ansatz wurden neben Na₃FeO₃ auch Einkristalle ausgewählt, die der Zusammensetzung Na₈Fe₂O₇ entsprachen. Ihre Gesamtmenge liegt offenbar jedoch jenseits der Messgenauigkeit des Pulverdiffraktometers. Eine gleichartige Umsetzung bei 450°C führt zu Na₄FeO₃ [59], Abb. 3.2.11.

Abb. 3.2.11

Vergleich des aufgenommenen Pulverdiffraktogramms (Cu Kα-Strahlung) der Produkte der Umsetzung bei 450°C mit aus Einkristalldaten simulierten Pulverdiffraktogrammen von Na₄FeO₃ [59] und dem Mineralisator Na₂CO₃ [58]

Führt man die Reaktion ohne Mineralisator durch und setzt entsprechend der Zielverbindung Na_3FeO_3 innige Gemenge von 3 Na_2O : 3 CdO: 1 Fe in kieselglasummantelten, argongefluteten Silberampullen um, so erhält man bei einer Umsetzung bei 650°C (14d) $Na_{14}Fe_6O_{16}$ als Hauptkomponente und Na_3FeO_3 als Nebenkomponente, sowie nicht umgesetztes CdO, Abb. 3.2.12. Eine Übersicht über die betrachteten Umsetzungen und die entstandenen Produkte ist in Tabelle 3.2.8. gegeben.

Verhältnis	Mineralisator	T/ °C	Hauptprodukt	Nebenprodukt	
Na ₂ O: CdO: Fe					
3:1 in Fe	2 Na ₂ CO ₃	450	Na ₄ FeO ₃		Na ₂ CO ₃
3:1 in Fe	2 Na ₂ CO ₃	650	Na ₃ FeO ₃	Na ₈ Fe ₂ O ₇	Na ₂ CO ₃
3: 3: 1		650	Na ₁₄ Fe ₆ O ₁₆	Na ₃ FeO ₃	CdO
	Verhältnis Na ₂ O: CdO: Fe 3: 1 in Fe 3: 1 in Fe 3: 3: 1	VerhältnisMineralisatorNa2O: CdO: Fe3:1 in Fe3:1 in Fe2 Na2CO33:1 in Fe2 Na2CO33:3:13:1	VerhältnisMineralisator $T/ °C$ Na2O: CdO: Fe $2 Na2CO_3$ 4503: 1 in Fe $2 Na2CO_3$ 6503: 3: 1 650	VerhältnisMineralisatorT/ °CHauptproduktNa2O: CdO: Fe3: 1 in Fe2 Na2CO3450Na4FeO33: 1 in Fe2 Na2CO3650Na3FeO33: 3: 1-650Na14Fe6O16	VerhältnisMineralisatorT/ °CHauptproduktNebenproduktNa2O: CdO: Fe $ -$ 3: 1 in Fe2 Na2CO3450Na4FeO3 $ -$ 3: 1 in Fe2 Na2CO3650Na3FeO3Na8Fe2O73: 3: 1 $-$ 650Na14Fe6O16Na3FeO3

Tab. 3.2.8Übersicht über Umsetzungen und Produkte

Vergleich des aufgenommenen Pulverdiffraktogrammes (Mo K α -Strahlung) der Produkte aus der Umsetzung eines stöchiometrisch in Silberampullen auf Na₃FeO₃ eingewogenen Substanzgemenges mit den aus Einkristalldaten simulierten Diffraktogrammen von Na₁₄Fe₆O₁₆ [52], Na₃FeO₃ und dem Edukt CdO [64].

Dies scheint ein Hinweis darauf zu sein, dass der erste Schritt der Oxidation gemäß (I) des unten angegebenen Verlaufs zu Natriumoxoferraten(II) verläuft, z.B. zu Na₄FeO₃. In diesem Reaktionsschritt wird 1/3 des eingesetzten CdO nicht umgesetzt. In einem zweiten Schritt, (II) könnte bei höheren Temperaturen eine Disproportionierungsreaktion, vgl. [65], zu Na₃FeO₃ eintreten. Hierbei bildet sich hoch aktives und fein verteiltes metallisches Eisen, das bei den herrschenden Temperaturen mit Na₂O zu metallischem Natrium reagieren kann [59, 66, 67]. Eine Folgereaktion zwischen dem im Reaktionsverlauf entstehenden metallischen Cd und Na zu Cd₂Na oder Cd₁₁Na₂ [68] würde diesen Ablauf begünstigen und die Konkurrenzreaktion der Oxidation des metallischen Eisens durch CdO bei diesen Temperaturen zurückdrängen.

(I)
$$6 \operatorname{Na_2O} + 3 \operatorname{CdO} + 3 \operatorname{Fe} \rightarrow 3 \operatorname{Na_4FeO_3} + 3 \operatorname{Cd}$$
 $T = 450^{\circ} \mathrm{C}$

(II)
$$3 \operatorname{Na_4FeO_3} \rightarrow 2 \operatorname{Na_3FeO_3} + \operatorname{Fe} + 3 \operatorname{Na_2O}$$
 $T > 480^{\circ} \mathrm{C}$

(III)
$$3 \operatorname{Na_2O} + \operatorname{Fe} \rightarrow \operatorname{Na_4FeO_3} + 2 \operatorname{Na}$$
 $T > 550^{\circ} \mathrm{C}$

Dieser mehrschrittige Reaktionsverlauf, in dem durch Disproportionierung und anschließende Legierungsbildung dem Reaktionsgemenge überschüssiges Natrium entzogen wird, liefert eine Erklärung dafür, dass statt Na₃FeO₃ das natriumärmere Oxoferrat(III), Na₁₄Fe₆O₁₆, als Hauptprodukt gebildet wird.

Eine höhere Konzentration an Na₂O oder alkalihaltigem Mineralisator in Eisenampullen führt einerseits zur vollständigen Oxidation durch CdO, andererseits zu einer Verschiebung der Produkte zu Na₃FeO₃ und Na₈Fe₂O₇. Diese Beobachtung spricht ebenfalls dafür, dass das im Überschuß vorhandene Na₂O nicht zur Bildung des natriumreicheren Na₅FeO₄ führt, sondern mit im Rahmen der Disproportionierung gebildetem metallischem Eisen reagiert. Zusätzliches Eisen aus der Containerwand sollte nicht zur Verfügung stehen, da man davon ausgehen kann, dass die Containerwand durch bereits gebildetes metallisches Cd passiviert ist, da ansonsten bei 600-900°C eine Komproportionierung zu Na₄FeO₃ einsetzen würde [59].

Unter der Annahme, dass die Reaktionsschritte I - III vollständig ablaufen, sollte ein Verhältnis von Na: Fe: Cd von 4: 1: 1 zur Bildung von Na₃FeO₃ (A), ein Verhältnis von Na Fe: Cd von 3,33: 1: 1 zu Na₁₄Fe₆O₁₆ (B) und ein Verhältnis von 5: 1: 1 zu Na₈Fe₂O₇ (C) führen.

- (A) $2 \operatorname{Na_2O} + \operatorname{CdO} + \operatorname{Fe} \rightarrow \operatorname{Na_3FeO_3} + \operatorname{Cd} + \operatorname{Na}$
- (B) $10 \text{ Na}_2\text{O} + 6 \text{ CdO} + 6 \text{ Fe} \rightarrow \text{Na}_{14}\text{Fe}_6\text{O}_{16} + 6 \text{ Cd} + 6 \text{ Na}$
- (C) $5 \operatorname{Na_2O} + 2 \operatorname{CdO} + 2 \operatorname{Fe} \rightarrow \operatorname{Na_8Fe_2O_7} + 2 \operatorname{Cd} + 2 \operatorname{Na}$

Die Darstellung von phasenreinen Proben war bisher nicht möglich. In Abhängigkeit von der Reaktionsführung wurden jeweils die benachbarten ternären Oxide, Na₁₄Fe₆O₁₆ und

Na₈Fe₂O₇, gebildet. Diese bevorzugte Bildung der beiden Randphasen erklärt möglicherweise auch, warum die Synthese und Züchtung von Einkristallen der Zusammensetzung Na₃FeO₃ so lange erfolglos blieb.

3.3 $Na_{10}[MnO_3][Mn_3O_6]$

Ternäre Alkalimetalloxomanganate sind mittlerweile in großer Zahl synthetisiert und strukturchemisch untersucht. Hierbei hat man Mangan in den Oxidationsstufen +2 bis +7 gefunden. Ternäre Natriumoxomanganate sind in den Oxidationsstufen +3, wie z. B. in $NaMnO_2$ [69], + 4, wie in $Na_2Mn_3O_7$ [70], und + 6, wie in Na_2MnO_4 [71], bekannt. Die Oxidationsstufe +5 konnte bisher nur in den gemischten Alkalimetalloxomanganaten des Typs AB₂MnO₄ mit A = Na und B = K [72] oder A = Li und B = Cs [73] und Li₂Na₁₀Mn₄O₁₆. [74] und $K_{11}Li(OMnO_3)_4$ [75] stabilisiert werden. Die Oxidationsstufe +2 ist in Li₂MnO₂ [76] und in den gemischten Alkalioxomanganaten des Typs $ABMnO_2$ mit A = Li, B = K [77] und A = Na und B = K [78], oder $K_2Mn_2O_3$ [79] und $Li_5Na_3Mn_3O_9$ [80] realisiert. Das erste ternäre Natriumoxomanganat(II), Na₁₄Mn₂O₉ [81], wurde 1978 strukturell charakterisiert. Mit der Darstellung von $Na_{10}[MnO_3][Mn_3O_6]$ ist es nun gelungen. das zweite Natriumoxomanganat(II) zu synthetisieren und strukturchemisch zu untersuchen. Es ist außerdem das erste Oxomanganat(II) mit Mn²⁺ in trigonal-planarer Koordination.

3.3.1 Darstellung von Na₁₀[MnO₃][Mn₃O₆]

Die oben genannte Verbindung wurde durch Oxidation von metallischem Mangan mit CdO in Gegenwart von Na₂O und getrocknetem Na₂S in einer kieselglasummantelten Silberampulle bei 650°C erhalten. Hierzu wurden im Argon-Handschuhkasten die Edukte Na₂O, Mn, CdO und Na₂S im Verhältnis 7: 2: 2: 1 eingewogen, in einer Achatreibschale innig verrieben und in einen Silbercontainer gebracht, der mit einem Deckel verschlossen wurde. Der Silbercontainer wird anschließend unter Argonatmosphäre mit Kieselglas ummantelt und in einem stehenden Röhrenofen zunächst in einem Schritt auf 250°C, dann in Schritten von 50°C pro Tag auf 650°C aufgeheizt, dort 5 Tage getempert und in Schritten 50°C pro Tag auf 250°C, dann in einem Schritt auf Raumtemperatur abgekühlt.

 $Na_{10}[MnO_3][Mn_3O_6]$ entsteht als dunkel-rotbraune, sehr feuchtigkeitsempfindliche Einkristalle.

3.3.2 Kristallstrukturbestimmung von Na₁₀[MnO₃][Mn₃O₆]

Mit Hilfe von direkten Methoden und Differenzfouriersynthesen konnte die Struktur von $Na_{10}[MnO_3][Mn_3O_6]$ in der trigonalen Raumgruppe R-3m gelöst werden. Die Parameter der Röntgenstrukturanalyse, sowie Lageparameter und thermische Verschiebungsparameter sind in den Tabellen 3.3.1, 3.3.2 und 3.3.3 aufgeführt. Der Vergleich des aufgenommenen Pulverdiffraktogramms mit aus Einkristalldaten simulierten Diffraktogrammen von $Na_{10}[MnO_3][Mn_3O_6]$, $Na_{14}Mn_2O_9$ [81] und Na_2S [82] ist in Abb. 3.3.1 dargestellt.

Tab. 3.3.1	Kristallographische I	Daten für	Na ₁₀ [MnO	$[Mn_3O_6]$
------------	-----------------------	-----------	-----------------------	-------------

Kristallsystem	trigonal
Raumgruppe	R-3m (Nr. 166)
Gitterkonstanten / pm	
Einkristalldaten (293 K)	a = b = 1101,0(2)
(Mo Kα-Strahlung)	c = 1821, 6(4)
Formeleinheiten/ Elementarzelle	6
F(000)	1692,0
linearer Absorptionskoeffizient	$4,25 \text{ mm}^{-1}$
Kristallform,-farbe	derbe Würfel, dunkel-rotbraun
Diffraktometer	IPDS I (Fa. Stoe & Cie)
Meßbereich	$-14 \le h \le 14$; $-14 \le k \le 14$; $-23 \le l \le 23$;
	$2\theta_{\text{max}} = 55,98^{\circ}$
symmetrieunabhängige Reflexe	604 von 6063 gemessenen
Programme	SHELXS-97 [21], SHELXL-97 [22],
	WinXPOW [23]
Absorptionskorrektur	numerisch, X-Shape [32], X-Red [33]
Lösungsverfahren	Direkte Methoden
Parameterverfeinerung	full-matrix least squares
Anzahl freier Parameter	54
R(int.)	0,1072
R1	$0,0623$ für 450 F ₀ > 4 σ (F ₀) ; 0,0929 alle Daten
wR2	0,1447
GooF	1,145

Abb. 3.3.1

Vergleich des gemessenen Pulverdiffraktogramms (Mo K α -Strahlung) mit aus Einkristalldaten simulierten Diffraktogrammen von Na₁₀[MnO₃][Mn₃O₆], Na₁₄Mn₂O₉ [81] und dem Edukt Na₂S [82]

Tabelle 3.3.2

Lageparameter und Koeffizienten der äquivalenten Temperaturfaktoren in pm^2 für $Na_{10}[MnO_3][Mn_3O_6]$

Atom	Lage	sof ^{a)}	Х	У	Z	U _{eq}
Mn1	18h		0,43262(6)	0,56738(6)	0,03416(6)	113(2)
011	18h		0,5353(3)	0,4647(3)	0,0750(3)	151(11)
O12	18h		0,2279(3)	0,4558(7)	0,0617(4)	318(16)
Mn2	6c		0	0	0,0821(1)	203(5)
O21	18h		0,2054(6)	0,1027(3)	0,0951(3)	164(12)
Na1	18f		0	0,2675(3)	0	253(8)
Na3	3b		0,33333	0,66667	0,16667	300(22)
Na4	18h		0,2113(3)	0,1057(2)	0,2301(2)	208(7)
Na21	18h	0,15356	0,1413(6)	0,283(1)	0,1360(5)	$133(16)^{b}$
Na22	18g	0,09095	0,633(2)	0,66667	0,16667	133(16) ^{b)}
Na23	36i	0,17771	0,609(1)	0,601(1)	0,1819(6)	$133(16)^{b}$
Na24	36i	0,15174	0,565(2)	0,522(1)	0,1913(8)	$133(16)^{b)}$

^{a)}Besetzungsfaktor bezogen auf die höchste Zähligkeit (36)

^{b)}gekoppelt anisotrop verfeinert

Äquivalenter Temperaturfaktor, U_{eq} , nach [20].

Tabelle 3.3.3

Koeffizienten der anisotropen Temperaturfaktoren in pm² für Na₁₀[MnO₃][Mn₃O₆]

							_
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	-
Mn1	121(3)	121(3)	101(5)	2(2)	-2(2)	65(4)	•
O11	258(14)	258(14)	35(21)	17(9)	-17(9)	202(18)	
O12	110(20)	227(34)	656(43)	227(31)	113(16)	113(17)	
Mn2	204(7)	204(7)	203(10)	0	0	102(4)	
O21	195(29)	184(20)	117(23)	-5(11)	-11(22)	97(14)	
Na1	273(29)	219(12)	284(16)	48(7)	95(14)	137)9)	
Na3	401(33)	401(33)	99(35)	0	0	200(16)	
Na4	191(18)	147(11)	301(16)	-7(7)	14(15)	96(9)	
Na21 ^{b)}	171(23)	177(45)	53(22)	50(31)	25(15)	88(23)	
Na22 ^{b)}	171(239	177(45)	53(22)	50(31)	25(15)	88(23)	
Na23 ^{b)}	171(23)	177(45)	53(22)	50(31)	25(15)	88(23)	
Na24 ^{b)}	171(23)	177(45)	53(22)	50(31)	25(15)	88(23)	

^{b)}gekoppelt anisotrop verfeinert

Der anisotrope Temperaturfaktor hat die Form:

 $U_{ij} = exp[2\pi i (U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{12}hka^*b^* + 2U_{13}hla^*c^* + 2U_{23}klb^*c^*)]$

3.3.3 Beschreibung der Kristallstruktur von Na₁₀[MnO₃][Mn₃O₆]

 $Na_{10}[MnO_3][Mn_3O_6]$ ist das erste ternäre Natriumoxomanganat(II) mit Mn^{2+} in trigonalplanarer Koordination. Es kristallisiert isotyp zu $Na_{10}[FeO_3][Fe_3O_6]$ [61] und $Na_{10}[ZnO_3][Zn_3O_6]$ [83]. Eine Projektion der Kristallstruktur mit eingezeichneter Elementarzelle ist in Abb. 3.3.2 abgebildet. Hierbei sind der Übersichtlichkeit halber zunächst die Natriumatome weggelassen, die teilweise fehlgeordnet sind. Die Struktur enthält tetraedrische [MnO_4]-Einheiten und isolierte, trigonale [MnO_3]-Einheiten. Drei über Ecken verknüpfte Tetraeder bilden Dreiringe, die wiederum über Kanten verknüpft Schichten ausbilden, so dass hexagonale Kanäle resultieren. Die derartig gebildeten hexagonalen Kanäle sind von Paaren von [MnO_3]-Einheiten zentriert, die gestaffelt zueinander liegen.

Abb. 3.3.2

Projektion der Mn/O Teilstruktur in Na₁₀[MnO₃][Mn₃O₆] mit eingezeichneter Elementarzelle

Hervorstechendes Merkmal der Kristallstruktur von $Na_{10}[MnO_3][Mn_3O_6]$ ist die trigonale [MnO₃]-Einheit. Die Winkel betragen alle 118,58° und die Mn-O-Abstände 197,3 pm, Abb. 3.3.3. und Tab. 3.3.4. Die Einheit ist nicht planar, das Zentralatom Mn2 ist aus der durch die drei Sauerstoffliganden aufgespannten Ebene um 23,6 pm ausgelenkt, Abb. 3.3.4.

Abb. 3.3.3 Trigonale [Mn2O₃]-Einheit.

Tabelle 3.3.4	
Interatomare Abstände	in pm und Winkel
in Grad	
Mn2-O (3 x)	197,2(5)
Mn2-O21-Mn2 (3 x)	118,59(6)

Abb. 3.3.4

Paar von trigonalen [Mn2O₃]-Einheiten parallel zur c-Achse mit aufeinander zu ausgelenkten Mn2-Zentralatomen

Die tetraedrischen [MnO₄]-Einheiten, Abb. 3.3.5, bilden kantenverknüpfte Dimere. Die interatomaren Abstände und Winkel sind in Tabelle 3.3.5 aufgeführt. Durch die Kantenverknüpfung sind die beiden Mn1-Zentralatome aufgrund von elektrostatischer Abstoßung aus dem jeweiligen Zentrum des Tetraeders herausgerückt. Aus diesem Grund kommt es auch zu einer Abweichung der Bindungswinkel vom idealen Tetraederwinkel.

Tabelle 3.3.5	
Interatomare Abstände i	n pm
und ausgewählte Winke	l in Grad
Mn1-O12 (4 x)	201,8(4)
Mn1-O11	209,4(6)
Mn1-O11'	208,0(5)
Mn1-Mn1	285,5(2)
O11-Mn1-O11'	93,7(2)
O11-Mn1-O12 (2 x)	108,9(2)
O11'-Mn1-O12 (2x)	111,5(2)
O12-Mn1-O12	119,3(4)

Abb. 3.3.5

[Mn1O₄]-Tetraedereinheit über Ecken zum Dimer verknüpft

Die [MnO₄]-Tetraederdimere sind über die vier freien Ecken zu Dreiringen verknüpft, Abb. 3.3.6. Diese wiederum bilden sternförmige Schichten, Abb. 3.3.7.

Abb. 3.3.6

Verknüpfung der [MnO₄]-Tetraederdimere über freie Ecken zu Dreiringen

Abb. 3.3.7

Verknüpfung der Dreiringe zu sternförmigen Schichten mit hexagonalen Kanälen Die Struktur wird von Natriumatomen vervollständigt, die verschiedene kristallographisch unterscheidbare Lagen besetzen. Na1, Na3 und Na4 sind vollständig besetzt, während die Natriumlagen Na21 und Na22 jeweils durch eine Splitposition (Na23 und Na24) ergänzt werden.

Die Natriumatome der Sorte Na1 sind verzerrt tetraedrisch von Sauerstoff umgeben, Abb. 3.3.8 und Tab. 3.3.6. Diese Na $1O_4$ -Tetraeder sind über gemeinsame Kanten zu Sechsringen verknüpft, die die vom Mn1O-Teilgerüst gebildeten hexagonalen Kanäle zentrieren und außerdem an die [Mn $2O_3$]-Einheiten koordinieren, Abb. 3.3.9 und 3.3.10.

Tabelle 3.3.6

Interatomare Abstände in pm		
und ausgewäh	lte Winkel in	
Grad für eine [Na1O ₄] ₂ -Einheit		
Na1-O12	258,0(6)	

Na1-O21	235,0(4)
O12-Na1-O12	143,0(2)
O12-Na1-O21	101,5(2) (2 x)
O21-Na1-O21	98,0(2) (2 x)
O21-Na1-O21	115,7(3)

Abb. 3.3.8

Zwei Na1O₄-Tetraeder über eine gemeinsame Kante verknüpft

Abb. 3.3.9 Sechsring aus Na1O₄-Tetraeder, Koordination an zwei [Mn2O₃]-Einheiten

Abb. 3.3.10 Hexagonaler Kanal in der Mn1/O-Teilstruktur zentriert durch Sechsring

Die Natriumatome der Sorte Na3 sind verzerrt oktaedrisch von Sauerstoff der Sorte O12 umgeben. Die Na-O-Bindungslängen sind mit 277,5(7) sehr lang, Abb. 3.3.11 und Tab. 3.3.7. Die $(Na3)(O12)_6$ -Oktaeder verbinden die $[Mn_3O_6]$ -Schichten der Struktur, Abb. 3.3.12.

Tabelle 3.3.7Interatomare Abstände in pm undausgewählte Winkel in Grad

Na3-O12 (6 x)	277,5(7)
O12-Na3-O12 (6 x)	102,3(2)
O12-Na3-O12 (6 x)	77,7(2)
O12-Na3-O12 (3 x)	180

Abb. 3.3.11

Oktaedrische Koordination von Na3 durch O12

Abb. 3.3.12

Zwei benachbarte $[(Mn1)_3O_6]$ -Schichten werden von $[(Na3)(O12)_6]$ -Oktaedern verbunden, links abgebildet der Blick entlang der kristallographischen c-Achse, rechts entlang a

Für Natriumatome der Sorte Na4 wird eine tetraedrische Umgebung gefunden, Abb. 3.3.13 und Tab. 3.3.8. Die [Na4O₄]-Tetraeder verknüpfen über gemeinsame Kanten zu Dimeren, die wiederum über die freien Ecken zu Dreiringen verknüpft sind und sternförmige Schichten ausbilden. Das Verknüpfungsmuster der [Na4O₄]-Tetraeder ist identisch zu dem der [(Mn1)₃O₆]-Schichten, Abb. 3.3.14. Die Anordnung der [(Mn1)₃O₆]-Schichten zu den [(Na4)₃O₆]-Schichten ist in Abb. 3.3.15 dargestellt.

Tabel	le	3.	3.8	

Interatomare Abständ	le in pm
und Winkel in Grad	
Na4-O11 (2 x)	235,7(4)
Na4-O21	238,8(6)
Na4-O21'	246,1(6)
O11-Na4-O11	134,1(3)
O11-Na4-O21 (2 x)	108,0(1)
O11-Na4-O21' (2 x)	102,2(2)
O21-Na4-O21'	94,9(2)

Abb. 3.3.13

Zwei [Na4O₄]-Tetraeder verknüpfen über eine Kante

Abb. 3.3.14 Sternförmige [(Na4)₃O₆]-Schichten

Abb. 3.3.15 Anordnung der $[(Mn1)_3O_6]$ -Schichten zu den $[(Na4)_3O_6]$ -Schichten

Die Struktur wird von Natriumatomen der Sorte Na2 vervollständigt. Für diese stehen 61 Lagen zur Verfügung, von denen jedoch nur 21 statistisch besetzt sind. Die beiden unterscheidbaren kristallographischen Lagen Na21 und Na22 werden durch jeweils eine Split-Position, Na23 und Na24, ergänzt. Während Na21 tetraedrisch von Sauerstoff umgeben ist, Abb. 3.3.16 und Tabelle 3.3.9, wird Na22 oktaedrisch von sechs Sauerstoffatomen koordiniert, Abb. 3.3.17 und Tabelle 3.3.10. Aufgrund der statistischen Besetzung sind die Na-O-Abstände teilweise stark verlängert.

Na21 (mittelgrau) verbrückt über eine Kante die trigonale $[Mn2O_3]$ -Einheit mit einer Ecke eines $[Mn1O_4]$ -Tetraeders aus der $[(Mn1)_3O_6]$ -Schicht, Abb. 3.3.18. Zwei Na22 (hellgrau) verbinden jeweils eine Ecke der trigonalen $[Mn2O_3]$ -Einheit mit derselben Ecke des $[Mn1O_4]$ -Tetraeders, an die auch Na21 koordiniert. Die Splitpositionen Na23 und Na24 sind durch Schraffierung kenntlich gemacht. Einen Gesamteindruck der Koordinationsverhältnisse hinsichtlich der teilbesetzten Natriumatome vermittelt Abb. 3.3.19.

Die interatomaren Abstände von Na21 und Na22 betragen lediglich 191,9(6) pm. Die starke abstoßende Wechselwirkung wegen dieses zu geringen Abstandes führt zu einer Verschiebung der Lagen und die zugehörigen Splitpositionen Na23 und Na24 werden unter Wahrung der Gesamtladungsneutralität teilweise besetzt, so dass die resultierenden Na-Na-Abstände typischen Kation-Kation-Abständen entsprechen.

Tetraedrische Sauerstoffkoordination von Na21

Interatomare Abstände in pm und ausgewählte Winkel in Grad für ein Na21O₄-Tetrader

Na21-O11	223,7(11)
Na21-O12	213,6(13)
Na21-O21	252,4(9)
Na21-O21	252,4(9)
O11-Na21-O12	134,2(5)
O11-Na21-O21	103,7(4)
O11-Na21-O21	103,8(4)
O12-Na21-O21	109,8(5)
O12-Na21-O21	109,7(5)
O21-Na21.O21	84,8(3)

Abb. 3.3.17

Oktaedrische Sauerstoffkoordination von Na22

Tab. 3.3.10

Interatomare Abstände in pm und ausgewählte Winkel in Grad für ein Na22O₆-Oktaeder

Na22-O11	254,9(4) (2 x)
Na22-O12	266,4(11) (2 x)
Na22-O21	283,8(13) (2 x)
O11-Na22-O11	178,4(11)
O11-Na22-O12	101,1(1) (2 x)
O11-Na22-O12	79,8(1) (2 x)
O11-Na22-O21	88,0(1)
O11-Na22-O21	90,7(1)
O12-Na22-O12	108,4(2)
O12-Na22-O21	87,8(2) (2 x)
$O_{12} N_{022} O_{21}$	161.2(2)(2.x)
012-ma22-021	101,3(2)(2X)

Abb. 3.3.18

Verbrückung der trigonalen [Mn2O₃]-Einheiten und der [Mn1O₄]-Tetraeder der [(Mn1)₃O₆]-Schichten durch Natriumatome der Sorte Na21 (mittelgrau) und Na22(hellgrau), die durch die schraffiert dargestellten Splitpositionen Na23 und Na24 ergänzt werden

Abb. 3.3.19

Die $[(Mn1)_3O_6]$ -Tetraederschichten werden über statistisch fehlgeordnete Natriumatome mit den trigonalen $[Mn2O_3]$ -Einheiten, die eine Ebene darunter angesiedelt sind, verknüpft.

MAPLE-Berechnung an Na₁₀[MnO₃][Mn₃O₆] 3.3.4

Zur Überprüfung der Strukturlösung wurden Berechnungen im Rahmen des MAPLE-Konzepts durchgeführt. Hierbei wurde eine der möglichen Anordnungen von Natriumatomen zugrunde gelegt, wie sie in den Abbildungen 3.3.20 bis 3.3.22 dargestellt ist. Die 36-zähligen Splitpositionen Na23 und Na24 wurden der Übersichtlichkeit halber nicht berücksichtigt. Die für Na₁₀[MnO₃][Mn₃O₆] erhaltenen Werte sind im Vergleich zur Summe aus 4 MnO und 5 Na₂O in Tabelle 3.3.11 aufgeführt. Tabelle 3.3.12 enthält die Koordinaten der besetzten Natrium-Lagen, die der MAPLE-Rechnung zugrunde liegen.

Tabelle 3.3.11

Madelung-Anteil der Gitterenergie (MAPLE) [24] in kcal/mol für Na₁₀[MnO₃][Mn₃O₆]

		MAPLE (binär)	MAPLE (ternär)
Na1	3 x	121,69 ^{a)}	118,51
Na3	0,5 x	121,69 ^{a)}	121,61
Na4	3 x	121,69 ^{a)}	124,97
Na21	1,5 x	121,69 ^{a)}	158,56
Na22	2 x	121,69 ^{a)}	129,89
Mn1	3 x	521,69 ^{b)}	482,02
Mn2	1 x	521,69 ^{b)}	515,29
O11	3 x	483,16 ^{c)}	508,25
O12	3 x	483,16 ^{c)}	533,84
O21	3 x	483,16 ^{c)}	463,88
Σ		7652,11	7768,14
^{a)} MAPLE(Na ⁺ (Na ₂ O))		Δ MAPLE (binär-ternär)	
^{b)} MAPLE(Mn ²⁺ (MnO))		= -116,03 kcal/mol = -1.5 %	
^{c)} MAPL $F(\Omega^{2-}) = 1/9 [5 \text{ MAPL } F((\Omega^{2-})N_{2+}\Omega)) + 4 \text{ MAPL } F((\Omega^{2-})M_{2+}\Omega))]$			0))]

 $1/9 [5 \text{ MAPLE}((O^2) \text{Na}_2 \text{O})) + 4 \text{ MAPLE}((O^2) \text{MnO}))]$

Tab. 3.3.12

Koordinaten der besetzten Lagen der statistisch fehlgeordneten Natriumatome, die der MAPLE-Rechnung zugrunde liegen. Kursiv angegeben sind die ursprünglichen Koordinaten.

	Х	У	Ζ
Na21	0.19213	0.80797	0.53067
	0.80787	0.61583	0.46933
	0.47453	0.94917	0.80267
	0.38417	0.19203	0.46933
	0.80797	0.19213	0.46933
	0.52537	0.05083	0.19733
	0.19203	0.38417	0.53067
	0.61583	0.80787	0.53067
	0.94917	0.47453	0.19733
Na22	0.63307	0.96643	0.16663
	0.33337	0.36693	0.16663
	0.33330	0.96640	0.16670
	0.63310	0.66670	0.16670
	0.96643	0.33337	0.83337
	0.36693	0.03357	0.83337
	0.66663	0.63307	0.83337
	0.03360	0.36690	0.16670
	0.66670	0.03360	0.83330
	0.36690	0.33330	0.83330
	0.03357	0.66663	0.16663
	0.96640	0.63310	0.83330

Abb. 3.3.20

Darstellung der Anordnung von Natriumatomen in Na₁₀[MnO₃][Mn₃O₆], die der MAPLE-Rechnung zugrunde liegt

Abb. 3.3.21

Verbrückung der trigonalen $[Mn2O_3]$ -Einheiten und der $[Mn1O_4]$ -Tetraeder der $[(Mn1)_3O_6]$ -Schichten durch Natriumatome der Sorte Na21 und Na22 im Rahmen des Besetzungsmodells, das den MAPLE-Rechnungen zugrunde liegt

Abb. 3.3.22

Verknüpfung der trigonalen [Mn2O₃]-Einheiten mit den [(Mn1)₃O₆]-Tetraederschichten im Rahmen des für die MAPLE-Rechnungen angewendeten Besetzungsmodells

Die Übereinstimmung zwischen den Werten für die binären Komponenten und denen für Na₁₀[MnO₃][Mn₃O₆] ist für diese Näherung gut. Die Fehlordnung trägt weiteren Permutationen Rechnung. Die regelmäßige Verknüpfung der zwei unterschiedlichen Struktureinheiten (trigonal-planare Einheiten und Tetraeder) ist aufgrund ihrer unterschiedlichen Symmetrie problematisch.
3.3.5 Vergleich der isotypen Verbindungen $Na_{10}[MO_3][M_3O_6]$ mit M = Mn, Fe, Zn mit $Na_{10}Co_4O_9$

Es werden die vier Verbindungen mit der Summenformel Na₁₀M₄O₉, mit M = Mn, Fe [61], Co [37], Zn [83] verglichen. Während die Verbindungen mit M = Mn, Fe und Zn isotyp kristallisieren, bevorzugt Na₁₀Co₄O₉ einen anderen Strukturtyp. Allen Verbindungen gemeinsam sind trigonale $[MO_3]^{4-}$ -Einheiten, deren Symmetrie und Verknüpfungsmuster jedoch unterschiedlich sind: Bei den isotypen Verbindungen Na₁₀[MO₃][M₃O₆] mit M = Mn, Fe und Zn liegen die trigonalen $[MO_3]^{4-}$ -Einheiten mit C_{3v}-Symmetrie isoliert in der Struktur vor, bilden aber Paare in gestaffelter Anordnung, Abb. 3.3.23. In Na₁₀Co₄O₉ verknüpfen trigonale $[CoO_3]$ -Einheiten mit C_{2v}- bzw. C₈-Symmetrie über Ecken und Tetramere, Abb. 3.3.24.

Es sind keine Beispiele für D_{3h} -Symmetrie bei Alkalimetalloxometallaten mit trigonalplanarer Koordination bekannt, die Betrachtung der Ligandenfeldaufspaltung für einen solchen Fall ist jedoch ein guter Ausgangspunkt für Untersuchungen an verzerrten trigonalen Einheiten, Abb. 3.3.25.

Abb. 3.3.25 Ligandenfeldaufspaltung einer [MO₃]-Einheit mit D_{3h}-Symmetrie

Bei D_{3h}-Symmetrie liegt das d_z2-Orbital energetisch über den d_{xz}- und d_{yz}-Orbitalen. Eine energetische Absenkung des d_z2-Orbitals kann jedoch durch Wechselwirkung mit dem 4s-Orbital (E_{ds}-mixing) erfolgen. Eine Verzerrung der [MO₃]-Einheit durch Verlängerung von M-O-Bindungen und ein gleichzeitiges Aufweiten bzw. Verkleinern der Winkel führt zu zwei verschiedenen Verzerrungsvarianten mit C_{2v}-Symmetrie. Bei der einen Variante ergeben sich zwei lange M-O-Abstände und ein kurzer, und zwei vergrößerte Winkel und ein verkleinerter, Abb. 3.3.26. Diese Verzerrung findet man beispielsweise bei den Verbindungen Na₄CoO₃ [36], Na₄FeO₃ [59] oder Na₅[CoO₃](OH) [84], Tab. 3.3.13.

Abb. 3.3.26

Verzerrungsvariante mit C_{2v} -Symmetrie, in der zwei lange M-O-Abstände und ein kurzer, und zwei vergrößerte Winkel und ein verkleinerter vorliegen

Tab. 3.3.13

M-O-Abstände in pm und (O-M-O)-Winkel in Grad für einige Beispiele für die Verzerrungsvariante mit C_{2v} -Symmetrie, in der zwei lange M-O-Abstände und ein kurzer, und zwei vergrößerte Winkel und ein verkleinerter vorliegen

	Na ₄ CoO ₃	Na ₄ FeO ₃	Na ₅ [CoO ₃](OH)
d (M-O)/ pm	180,9	186,0	182,9
	192,2	188,0	188,3
	186,9	189,0	188,3
Winkel (O-M-O)/ Grad	129,9	126,1	125,1
	124,8	124,8	125,1
	105,0	108,3	109,4

Die zweite Verzerrungsvariante beinhaltet zwei kürzere und einen längeren M-O-Abstand sowie zwei kleinere Winkel und einen größeren, Abb. 3.3.27. Eine solche Verzerrung findet man bei den Verbindungen Na₈[CoO₃](SO₄)₂ [85] oder Na₇Rb[CoO₃]₂ [86], Tab. 3.3.14.

Abb. 3.3.27

Verzerrungsvariante mit C_{2v} -Symmetrie, in der zwei kürzere und ein längerer M-O-Abstand sowie zwei kleinere Winkel und ein größerer vorliegen

M-O-Abstände in pm und (O-M-O)-Winkel in Grad für einige Beispiele für die Verzerrungsvariante mit C_{2v} -Symmetrie, in der zwei kürzere und ein längerer M-O-Abstand sowie zwei kleinere Winkel und ein größerer vorliegen

	$Na_8[CoO_3](SO_4)_2$	Na ₇ Rb[CoO ₃] ₂
d (M-O)/ pm	193,4	190,6
	108,6	182,3
	108,6	183,1
Winkel (O-M-O)/ Grad	103,2	111,6
	103,2	111,5
	153,5	136,88

Bei den Cobaltaten tritt aufgrund des d⁷-Systems zusätzlich eine Jahn-Teller-Verzerrung auf, und die Symmetrie der trigonalen [MO₃]-Einheit kann bis auf C_S erniedrigt werden. Ein Vergleich von Na₄FeO₃ mit Na₄CoO₃ belegt dies, Tabelle 3.3.13. Na₁₀Co₄O₉ enthält in seinen [CoO₃]-Tetrameren beide Verzerrungsvarianten, wobei durch den Jahn-Teller-Effekt bei zwei [CoO₃]-Einheiten eine Symmetrieerniedrigung auf C_S erfolgt, während die beiden anderen Einheiten in C_{2v}-Symmetrie vorliegen, Tab. 3.3.15.

Tab. 3.3.15

M-O-Abstände in pm und (O-M-O)-Winkel in Grad für die vier verschiedenen $[MO_3]$ -Einheiten im Tetramer in der Struktur von $Na_{10}Co_4O_9$

	1	2	3	4
d (M-O)/ pm	196,2	177,6	179,4	195,9
	181,1	194,0	185,8	180,1
	181,2	186,6	193,7	182,5
Winkel (O-M-O)/ Grad	106,8	131,2	123,4	106,1
	118,5	125,9	130,4	119,9
	134,4	102,4	105,9	133,7

Eine zweite Möglichkeit der Symmetrieerniedrigung besteht in der Auslenkung des Zentralteilchens aus der Sauerstoffebene (durch + und - gekennzeichnet) und Verlängerung der Metall-Sauerstoff-Bindungen (durch graue Pfeile gekennzeichnet) und somit eine Erniedrigung der Symmetrie von D_{3h} nach C_{3v} , Abb. 3.3.28. Eine Verzerrung dieser Art findet man in den Verbindungen des Typs $Na_{10}[MO_3][M_3O_6]$ mit M = Mn, Fe, und Zn.

Abb. 3.3.28 Ligandenfeldaufspaltung einer [MO₃]-Einheit mit C_{3v}-Symmetrie.

Bei den gestaffelt angeordneten trigonalen MO₃-Einheiten mit C_{3v}-Symmetrie in $Na_{10}[MO_3][M_3O_6]$ mit M = Fe, Zn sind die M-O-Abstände mit 192,4(5) und 191,5(1) pm etwa gleich lang und um 6 pm länger als in den Verbindungen mit Fe und Co mit C_{2v}-Symmetrie. Der M-M-Abstand für M = Fe, Zn beträgt 324,6(3) bzw. 319,4(2) pm, was typischen Kation-Kation-Abständen entspricht und keine M-M-Wechselwirkung erkennen lässt. Die Auslenkung der Metallzentralatome aus der durch die Sauerstoffliganden aufgespannten Ebene aufeinander zu beträgt 13,8 bzw. 12,6 pm, Tab. 3.3.10. Dagegen beobachtet man für M = Mn eine deutliche Verlängerung der Mn-O-Bindungen auf 197,2(5) pm; die Mn-Mn-Abstände sind mit 298,2(1) pm stark verkürzt. Die Auslenkung der Mn-Atome aus der Sauerstoffebene ist mit 23,5 pm um 10 pm größer als bei den Verbindungen mit M = Fe, Zn, Tab. 3.3.16. Die größere Auslenkung der Mn-Zentralatome aus der durch die Sauerstoffliganden aufgespannten Ebene und die Aufweitung der Mn-O-Abstände bei gleichzeitiger Verkürzung des M-M-Abstandes bei M = Mn im Vergleich zu M = Fe, Zn deutet darauf hin, dass die Mn-Mn-Wechselwirkung gegenüber Fe-Fe und Zn-Zn deutlich an attraktiver Qualität gewinnt. Mn-Mn-Abstände im Bereich von 290 bis 296 pm sind darüber hinaus von Mangancarbonylen, beispielsweise Mn₂(CO)₁₀ [87] bekannt, wo eine Mn-Mn-Einfachbindung vorliegt.

Es wurden vergleichende Extended-Hückel-Rechnungen für $[M_2O_6]^{8-}$ -Einheiten durchgeführt, wobei in allen Fällen ein trigonales Antiprisma als Modell zugrunde gelegt wurde (Rechnungen: A.-V. Mudring), Abb.3.3.29.

Tabelle 3.3.16

Bindungslängen und Auslenkung der Zentralatome aus der Ebene in pm für die Verbindungen mit der Summenformel $Na_{10}M_4O_9$

	Mn	Fe	Zn	Co
d(M-O)	197,2(5)	192,4(5)	191,5(1)	186 ^{a)}
d(M-(O ₃))	23,5	13,8	12,6	5 ^{b)}
d(M-M)	298,2(1)	324,6(3)	319,4(2)	288,7(1)

Trigonales Antiprisma als Grundlage des Rechenmodells

Abb. 3.3.29

^{a)} Mittelwerte allen Co-O-Abständen des Tetramers ^{b)} Mittelwert

Die Diagramme der Kristall-Orbital-Überlappungspopulationen, die auf der Grundlage eines trigonalen Antiprismas berechnet wurden, sind in Abb. 3.3.30 dargestellt. Bei der Manganverbindung, Abb. 3.3.30 links, sind hauptsächlich bindende Zustände besetzt, darüber hinaus wird aber auch eine Besetzung antibindender Zustände berechnet. Es liegt insgesamt eine anziehende Mn-Mn-Wechselwirkung bindender Art vor. Für $[Fe_2O_6]^{8-}$, Abb. 3.3.30, Mitte, ergibt sich ebenfalls eine hauptsächliche Besetzung von bindenden Zuständen, allerdings ist hier auch ein größerer Anteil antibindender Zustände populiert. Da hier die antibindenden Zustände jedoch wesentlich stärker besetzt sind, als in der isotypen Manganverbindung, kann man hier nur von einer schwächeren Fe-Fe-Wechselwirkung eher nichtbindender Natur ausgehen. Bei $[Co_2O_6]^{8-}$, Abb. 3.3.30, rechts, erhält man eine vollständige Besetzung der bindenden und antibindenden d-Zustände, so dass man davon ausgehen kann, dass hier keine anziehende Co-Co-Wechselwirkung mehr vorliegt. Ähnliches gilt auch für $[Fe_2O_6]^{8-}$ mit einem Fe-Fe-Abstand, der typisch für eine Kation-Kation-Abstoßung ist.

Die Tatsache, dass $Na_{10}Co_4O_9$ einen eigenen Strukturtyp ausbildet, ist wohl als Konsequenz des Jahn-Teller-Effektes zu verstehen, wodurch die C_{3v} -Symmetrie gebrochen wird.

Abb. 3.3.30

Kristall-Orbital-Überlappungspopulationen (COOP) für eine $[M_2O_6]^{8-}$ -Einheit mit D_{3d-} Symmetrie in $Na_{10}[MnO_3][Mn_3O_6]$ (links), $Na_{10}[FeO_3][Fe_3O_6]$ (Mitte) und für $Na_{10}Co_4O_9$ (rechts)

Auf der Grundlage eines trigonalen Antiprismas als Rechenmodell kann auch das Molekülorbitalschema für eine [MnO₃]₂⁸-Einheit berechnet werden, Abb. 3.3.31. Ein bindendes σ -Orbital ist vollständig besetzt, zwei bindende π - und zwei antibindende π^* -Orbitale ebenfalls, Abb. 3.3.31 links. Eine bindende Wechselwirkung σ -Orbitals mit den π -Orbitalen der Sauerstoffliganden führt zu einer Stärkung der o-Bindung, während sich die Wirkung der bindenden π -Orbitale und die der antibindenden π^* -Orbitale aufhebt, Abb. 3.3.31 rechts. Zusätzlich ist bei den π -Orbitalen die Wechselwirkung bezüglich der Sauerstoffliganden antibindend. Insgesamt kann also von einer bindenden Mn-Mn-Wechselwirkung ausgegangen werden, die, ausgehend der Mullikenvon Überlappungspopulation, einer Einfachbindung entspricht.

Abb. 3.3.24 Molekülorbitalschema für eine $[MnO_3]_2^{8-}$ -Einheit auf der Basis eines trigonalen Antiprismas.

Der Vergleich der Verbindungen Na₁₀Co₄O₉, Na₁₀[MO₃][M₃O₆] mit M = Fe und Zn und Na₁₀[MnO₃][Mn₃O₆] zeigt, dass für eine bindende M-M-Wechselwirkung über das d_z² eine Elektronenkonfiguration von dⁿ mit n \leq 5 Voraussetzung ist, da eine bindende Metall-Metall-Wechselwirkung in diesen Verbindungen lediglich über das σ -Orbital erfolgen kann. Das erklärt die fehlende Wechselwirkung im Fall des Fe²⁺ (d⁶), des Co²⁺ (d⁷) und sowieso des Zn²⁺ (d¹⁰).

3.4 Eine durch Re⁴⁺ stabilisierte Modifikation von Na₅ReO₆

Möchte man mehr über die Koordinationszahl 3 bei Oxometallaten sowie das Vorliegen von Metall-Metall-Wechselwirkungen erfahren, so muss man zu den höheren Gruppenhomologen des Mangan, beispielsweise zum Rhenium gehen. Bereits in den dreißiger Jahren des letzten Jahrhunderts haben I. und W. Noddack ausführliche Untersuchungen zu Sauerstoffverbindungen des Rheniums durchgeführt [15, 16]. Sie beschrieben das binäre Oxorhenat der Oxidationsstufe +7, gelbes Re₂O₇, das mit Wasser zur Perrheniumsäure, HReO₄, reagiert und deren Salze, die Perrhenate $A^{I}ReO_{4}$ mit $A^{I} = Na$, K, NH₄ Ag, und $A^{II}(ReO_4)_2$ mit A^{II} = Ba und Nd. Ebenfalls konnten sie das rote ReO₃ darstellen, das mit Wasser zur Rheniumsäure, "H₂ReO₄" reagieren und Salze der Form "A₂ReO₄" mit A = Na, K bilden soll. Rhenium in der Oxidationsstufe +IV konnte als schwarzes ReO₂ dargestellt werden, das mit Natriumhydroxid das dunkelbraune Na2ReO3 bildet, welches unter Stickstoff bis 800°C stabil sein sollte. Sämtliche Verbindungen wurden sorgfältig analytisch untersucht, allerdings lagen keinerlei Informationen über die Kristallstruktur vor. Spätere Untersuchungen von I. und W. Noddack zum Verhalten von Rhenium in der Alkalischmelze [16] machen ein kompliziertes temperaturabhängiges System von Koexistenzen verschiedener Oxidationsstufen des Rheniums in der Alkalischmelze deutlich. Magnetische Messungen an Na₂ReO₃ von W. Klemm zeigten überraschenderweise Diamagnetismus [17], der ohne Kenntnis der Kristallstruktur nicht zu erklären war. Es wurde jedoch postuliert, dass Metall-Metall-Wechselwirkungen vorliegen sollten.

Ziel war es nun, einen neuen Weg zur Synthese von Einkristallen zu erarbeiten. Die Schwierigkeit bei der Synthese von Alkalirhenaten aus Oxiden auf festkörperchemischem Weg besteht hauptsächlich auf der schon von I. und W. Noddack beschriebenen Koexistenz von Oxidationsstufen in Alkalischmelzen, die auf einem komplexen System von Disproportionierungen der Rhenate(IV), Rhenate(V) und Rhenate(VI) in metallisches Rhenium und Rhenate(VII) einerseits und ebensolcher Komproportionierungen beruhen.

3.4.1 Darstellung von Na₅ReO₆

Ein innig verriebenes Gemisch von Na₂O, CdO und Re im molaren Verhältnis 5: 2: 2 wurde in eine Silberampulle gebracht und unter Argon mit Kieselglas ummantelt. In einem stehenden Röhrenofen wurde die Probe in einem Schritt auf 250°C, dann mit 50°C pro Tag auf 600°C erhitzt. Bei dieser Temperatur wurde die Probe 5 Tage gehalten, dann in Schritten von 50°C pro Tag bis auf 250°C und schließlich in einem Schritt auf Raumtemperatur abgekühlt. Unter dem Polarisationsmikroskop wurden dunkelgrüne Einkristalle ausgewählt. Außerdem wurde ein Pulverdiffraktogramm aufgenommen, das neben der durch Einkristall-Röntgenstrukturanlyse ermittelten neuen Modifikation von Na₅ReO₆ (Fddd) die Anwesenheit von Na₂O und Re belegt, Abb. 3.4.1. Bereits Hoppe et al. konnten die Kristallstruktur einer weiteren Modifikation von Na₅ReO₆ (C2/m) belegen [19], die orangegelbe Färbung aufweist.

Abb. 3.4.1

Vergleich des aufgenommenen Pulverdiffraktogrammes (Mo K α -Strahlung) mit aus Einkristalldaten simulierten Diffraktogrammen einer neu dargestellten Modifikation von Na₅ReO₆, Na₂O [88] und elementarem Re [89]

3.4.2 Kristallstrukturbestimmung von Na₅ReO₆

Mit Hilfe von direkten Methoden und Differenzfouriersynthese konnte die Struktur einer wahrscheinlich durch Re^{4+} stabilisierten Modifikation von Na_5ReO_6 in der orthorhombischen Raumgruppe Fddd gelöst werden. Die Parameter der Röntgenstrukturanalyse sowie Lageparameter und thermische Verschiebungsparameter sind in den Tabellen 3.4.1, 3.4.2 und 3.4.3 aufgeführt. Die Temperaturfaktoren der Atome Na1 und Na2 wurden gekoppelt anisotrop verfeinert, da ohne die Kopplung eine Korrelation zwischen den gemischten Temperaturfaktoren U₁₂ der beiden Atome auftrat. Interatomare Abstände und Winkel von Na₅ReO₆ (Fddd) sind in den Tabellen 3.4.4 und 3.4.5 im Vergleich zu Na₅ReO₆ (C2/m) aufgeführt. Der Vergleich des aufgenommenen Pulverdiffraktogramms mit aus Einkristalldaten simulierten Diffraktogrammen der Modifikation von Na₅ReO₆ in der orthorhombischen Raumgruppe Fddd und elementarem Re [89] ist in Abb. 3.4.1 dargestellt. Projektion der Elementarzelle ist in Abb. 3.4.2 dargestellt. Diese neu dargestellte Modifikation von Na₅ReO₆ ist isotyp zu Na₃Ca₂TaO₆ [107]. Es handelt sich um eine geordnete, verzerrte Variante des NaCl-Typs der Form Na₅ReO₆ = 6 NaCl.

Projektion der Kristallstruktur von Na5ReO6 (Fddd) mit eingezeichneter Elementarzelle

Kristallsystem	orthorhombisch
Gitterkonstanten / pm	r add (141. 70)
Finkristalldaten (203 K)	a = 630 0(1)
Emkristandaten (295 K)	h = 033.7(2)
	c = 1054.6(5)
\mathbf{D} ulvardatan (202 \mathbf{V})	c = 1954, 0(3)
Fulverdatell (295K)	a = 040, 4(4) b = 022, 2(1)
Mo Ka-Stranlung	0 = 955,2(1)
F	c = 1951,4(9)
Formeleinneiten/Elementarzeile	8
F(000)	1423,3
linearer Absorptionskoeffizient	20,24 mm ⁻
Kristallform,-farbe	derbe Würfel, dunkelgrün
Diffraktometer	IPDS I (Fa. Stoe & Cie)
Meßbereich	$-8 \le h \le 8; -12 \le k \le 11; -25 \le l \le 25;$
	$2\theta_{\text{max}} = 56,28^{\circ}$
symmetrieunabhängige Reflexe	361 von 2585
Programme	SHELXS-97 [21], SHELXL-97 [22],
-	WinXPOW [23]
Absorptionskorrektur	sphärisch, X-Red [33]
Lösungsverfahren	Direkte Methoden
Parameterverfeinerung	full-matrix least squares
Anzahl freier Parameter	27
R(int.)	0,1244
R1	0.0363 für 296 F ₀ > 4 σ (F ₀) :0.0684 alle Daten
wR2	0.0711
GooF	0,985

Tab. 3.4.1Kristallographische Daten f ür eine neue Modifikation von Na5ReO6

Tabelle 3.4.2

Lageparameter und Koeffizienten der äquivalenten Temperaturfaktoren in pm² für Na₅ReO₆ (Fddd)

Atom	Lage	Х	у	Z	U _{eq}
Re	8a	0,125	0,125	0,125	157(3)
Nal	16g	0,875	0,875	0,2130(3)	$222(8)^{a)}$
Na2	16g	0,125	0,125	0,9590(3)	$222(8)^{a)}$
Na3	8b	0,625	0,125	0,125	370(26)
01	16f	0,125	0,9245(9)	0,125	184(21)
O2	32h	0,916(1)	0,120(1)	0,1931(3)	176(16)

Äquivalenter Temperaturfaktor, U_{eq}, nach [20]

^{a)} gekoppelt anisotrop verfeinert

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Re	154(5)	167(5)	150(4)	0	0	0
Na1 ^{a)}	241(20)	189(15)	237(17)	0	0	-37(19)
Na2 ^{a)}	241(20)	189(15)	237(17)	0	0	-37(19)
Na3	189(57)	824(78)	99(39)	0	0	0
01	178(57)	164(43)	211(47)	0	-37(69)	0
O2	170(46)	167(29)	191(32)	-10(36)	24(26)	-52(42)

Koeffizienten der anisotropen Temperaturfaktoren in pm² für Na₅ReO₆ (Fddd)

^{a)} gekoppelt anisotrop verfeinert

Der anisotrope Temperaturfaktor hat die Form: $U_{ij}=exp[2\pi i(U_{11}h^2a^{*2}+U_{22}k^2b^{*2}+U_{33}l^2c^{*2}+2U_{12}hka^*b^*+2U_{13}hla^*c^*+2U_{23}klb^*c^*)]$

Tabelle 3.4.4

Interatomare Abstände (Re-O) in pm und Winkel in Grad für Na₅ReO₆ (Fddd) und Na₅ReO₆ (C2/m) [19] im Vergleich

	Na ₅ ReO ₆	Δ		Na ₅ ReO ₆	Δ
	(Fddd)	(90°-Winkel)		(C2/m) [19]	(90°-Winkel)
Re-O1	187,2(9) (2 x)		Re-O2	187,7 (2 x)	
Re-O2	188,7(6) (4 x)		Re-O1	189,7 (4 x)	
O2-Re-O2	89,7(4) (2 x)	0,3°	O1-Re-O1	89,86 (2 x)	0,14°
O2-Re-O2	90,3 (2 x)	-0,3°	O1-Re-O1	90,14 (2 x)	-0,14°
O1-Re-O2	88,6(3) (4 x)	1,4°	O2-Re-O1	89,94 (4 x)	0,06°
O1-Re-O2	91,4(3) (4 x)	-1,4°	O2-Re-O1	90,06 (4 x)	-0,06°

Na ₅ ReO ₆ (Fddd)		Na	Na ₅ ReO ₆ (C2/m) [19]	
Na1-O1	239,4(5) (2 x)	Na1-O1	233,0 (2 x)	
Na1-O2	233,7(9) (2 x)	Na1-O1	238,9 (2 x)	
Na1-O2	261,6(8) (2 x)	Na1-O2	228,9 (2 x)	
Na2-O1	233,8(5) (2 x)	Na2-O2	277,8 (2 x)	
Na2-O2	233,6(8) (2 x)	Na2-O1	228,9 (4 x)	
Na2-O2	241,4(9) (2 x)	Na3-O1	233,7 (2 x)	
Na3-O1	279,9(9) (2 x)	Na3-O1	261,0 (2 x)	
Na3-O2	228,9(7) (4 x)	Na3-O2	237,0 (2 x)	

Interatomare Abstände (Na-O) in pm für Na_5ReO_6 (Fddd) und Na_5ReO_6 (C2/m) [19] im Vergleich

3.4.3 Vergleich der Kristallstruktur der neuen Modifikation von Na₅ReO₆ (Fddd) mit der bekannten Modifikation von Na₅ReO₆ (C2/m)

Von Na₅ReO₆ ist eine Strukturbestimmung von R. Hoppe et al. in der monoklinen Raumgruppe C2/m bekannt [19]. Diese soll nun mit der von uns neu dargestellten Modifikation in der orthorhombischen Raumgruppe Fddd verglichen werden. Bei beiden Modifikationen handelt es sich um geordnete, verzerrte NaCl-Überstrukturen. In Tabelle 3.4.4 sind die interatomaren Abstände und Winkel für beide Verbindungen im Vergleich aufgeführt. Während die Winkel im ReO₆-Oktaeder von Na₅ReO₆ (C2/m) mit Abweichungen von 0,06° und 0,14° sehr nah an 90° liegen, ist das ReO₆-Oktaeder in Na₅ReO₆ (Fddd) stärker verzerrt. Hier betragen die Abweichungen von 90° 0,3° und 1,4°. Vergleicht man die röntgenographisch bestimmten Dichten, Tabelle 3.4.6, so zeigt sich, dass die neu charakterisierte Modifikation Na₅ReO₆ (Fddd) eine geringere Dichte besitzt als Na₅ReO₆ (C2/m). Dies ist ein Hinweis darauf, dass es sich bei Na₅ReO₆ (C2/m) um eine handelt. während Tieftemperaturmodifikation Na₅ReO₆ (Fddd) eine Hochtemperaturmodifikation darstellt.

Berechnetes molares Volumen in cm³/mol und röntgenographische Dichte in g/cm³ für Na₅ReO₆ (Fddd) und Na₅ReO₆ (C2/m) [19] im Vergleich

	Na ₅ ReO ₆ (Fddd)	Na ₅ ReO ₆ (C2/m) [19]
Berechnetes molares Volumen in cm ³ /mol	87,9	87,3
Röntgenographische Dichte in g/cm ³	4,5176	4,5487

In beiden Modifikationen bilden Natrium- und Rheniumatome zusammen eine kubischdichteste Kugelpackung, Abb. 3.4.3 und 3.4.4. Grau eingefärbt sind die Schichten des Kuboakteders der kubisch-dichtesten Kugelpackung. Es liegen jeweils vier wiederkehrende Na-Re-Abstände vor. In den Abbildungen stehen gleiche Farben für gleiche Abstände. In der zweiten Koordinationssphäre des zentralen Re-Atoms treten zwischen den beiden Modifikationen Unterschiede auf. In der Raumgruppe C2/m findet man zwei verschiedene Na-Re-Abstände (blau und türkis dargestellt) mit charakteristischem Verknüpfungsmuster innerhalb der Ebene des zentralen Re-Atoms. Daneben liegen außerhalb der Ebene zwei weitere wiederkehrende Na-Re-Abstände vor (gelb und grün dargestellt), die ebenfalls ein charakteristisches Verknüpfungsmuster zeigen. In der Raumgruppe Fddd liegen ebenfalls vier wiederkehrende Na-Re-Abstände vor, die ähnliche charakteristischen Verknüpfungen zeigen, wie in der Raumgruppe C2/m. Allerdings sind in der Modifikation in der Raumgruppe Fddd zwei der Re-Atome (durch Pfeile gekennzeichnet) im Vergleich zur Modifikation in der Raumgruppe C2/m aus der Ebene des zentralen Re-Atoms in die jeweils darüber bzw. darunter gelegene Schicht ausgelenkt.

Abb. 3.4.3

Zweite Koordinationssphäre des zentralen Re-Atoms durch weitere Re-Atome in Na₅ReO₆ (C2/m, [19]). Grau eingefärbt sind die Schichten des Kuboktaeders der kubisch-dichtesten Kugelpackung der Kationen

Zweite Koordinationssphäre des zentralen Re-Atoms durch weitere Re-Atome in Na₅ReO₆ (Fddd). Grau eingefärbt sind die Schichten des Kuboktaeders der kubisch-dichtesten Kugelpackung

Während die Schichtabfolge innerhalb der dichtesten Kugelpackung in Na₅ReO₆ (C2/m) dem Muster ABC A'B'C' mit einer Translationsperiode von 1485,8 pm folgt, ist die Schichtabfolge bei Na₅ReO₆ um eine weitere Stapelvariante auf ABC A'B'C' A''B''C'' vergrößert, was zu einer Translationsperiode von 2404,6 pm führt, Abb. 3.4.5 und Abb. 3.4.6. Die einzelnen Schichten sind mit Natriumatomen sowie mit Rhenium-Atomen besetzt.

Abb. 3.4.5 Abfolge der Schichten gemäß ABC A'B'C' in Na₅ReO₆ (C2/m), Translationsperiode 1485,8 pm

Abb. 3.4.6 Abfolge der Schichten gemäß ABC A'B'C' A''B''C'' in Na₅ReO₆ (Fddd), Translationsperiode 2404,6 pm

Greift man aus der schematischen Darstellung der Kugelpackung nun die Schichten mit Orientierung A heraus, so wird der Unterschied in der Stapelfolge besonders deutlich. Rot dargestellt sind die Re-Atome, während die Na-Atome grau eingefärbt sind, Abb. 3.4.7 und Abb. 3.4.8. In der von Hoppe charakterisierten Modifikation von Na₅ReO₆ (C2/m) bestehen die Schichten aus zwei verschiedenen alternierenden Strängen, die abwechselnd vollständig aus Natriumionen oder aus Rhenium- und Natriumionen in der Folge Na-Na-Re-Na-Re bestehen, was zu einer Schichtabfolge A A' A führt, Abb. 3.4.7. In der von uns charakterisierten Modifikation (Fddd) bestehen die Schichten ebenfalls aus zwei verschiedenen alternierenden Strängen, welche jedoch einmal aus Rhenium- und Natriumionen in der Folge Re-Na-Re-Na bestehen und einmal nur aus Natriumionen. Hierbei wird jeder "gemischte" Strang innerhalb der Schicht von zwei reinen Natriumsträngen vom nächsten "gemischten" Strang getrennt, Abb. 3.4.8. Das führt dazu, dass die Schichtabfolge um eine weitere Stapelvariante auf A A' A'' A vergrößert wird.

Abb. 3.4.7 Stapelabfolge der Schichten mit Orientierung A mit eingezeichneter Elementarzelle von Na₅ReO₆ (C2/m)

Abb. 3.4.8 Stapelabfolge der Schichten mit Orientierung A mit eingezeichneter Elementarzelle von Na₅ReO₆ (Fddd)

3.4.4 Spektroskopie an Na₅ReO₆ : Re⁴⁺ (Fddd)

Die unterschiedlichen Modifikationen von Na_5ReO_6 entstehen durch unterschiedliche Reaktionsführung. Während Hoppe et al. Na_5ReO_6 (C2/m) durch Metathese aus den binären Oxiden erhielten, wurde hier der Weg über eine "milde" Oxidation mit CdO beschritten. CdO ist in der Regel nicht in der Lage, höhere Oxidationsstufen des Übergangsmetalls (Reduktionsmittel) herbeizuführen. Die Bildung von Na_5ReO_6 (Fddd) geschah also in Gegenwart von metallischem Rhenium.

Auffällig war nun, dass Na₅ReO₆ (C2/m) orangegelb und das hier vorliegende Na₅ReO₆ (Fddd) grünlich ist. Eine solche grünliche Färbung ist typisch für Rhenium in der Oxidationsstufe +4. Bereits von I. und W. Noddack [16] wurde ein grünes Alkalirhenat beschrieben, das durch Umsetzung von ReO₂ mit NaReO₄ in einer NaOH-Schmelze erhalten wurde. Diesem grünen Natriumrhenat wurde jedoch irrtümlich die Oxidationsstufe +6 zugeschrieben.

Um das Vorliegen von Re in der Oxidationsstufe +4 in Na₅ReO₆ (Fddd) zu belegen, wurde ein Absorptionsspektrum aufgenommen, Abb. 3.4.9.

Abb. 3.4.9

Absorptionsspektrum von Na_5ReO_6 : Re^{4+} (Fddd), rechts ein vergrößerter Ausschnitt mit Korrektur des Untergrunds

Re⁴⁺ hat eine 5d³-Elektronenkonfiguration. Im oktaedrischen Ligandenfeld resultiert hieraus ein ⁴A_{2g}-Grundzustand. Zu erwarten sind Übergänge in die angeregten Zustände ²T_{1g}, ²E_g, ²T_{2g}, ⁴T_{1g} und ⁴T_{2g}. In Re⁴⁺ beeinflusst das Ligandenfeld die räumlich diffusen 5d-Elektronen so stark, dass die ⁴T_{1g} und ⁴T_{2g}-Zustände weit über die hochenergetische Grenze optischer Spektroskopie hinausgehen. Die nächstniedrigeren Banden, mit Energien in absteigender Reihenfolge, sind $\Gamma_8(^2T_{2g})$, $\Gamma_7(^2T_{2g})$, $\Gamma_6(^2T_{1g})$, $\Gamma_8(^2E_g)$ und $\Gamma_8(^2T_{1g})$.

In dem von uns aufgenommen Spektrum sind nur die energetisch höchstliegenden Banden aufgelöst zu sehen, $\Gamma_8(^2T_{2g})$ bei 17250 cm⁻¹ und $\Gamma_7(^2T_{2g})$ bei 16300 cm⁻¹. Für $\Gamma_6(^2T_{1g})$, $\Gamma_8(^2E_g)$ und $\Gamma_8(^2T_{1g})$ sind die Übergänge zwischen 8000 und 11000 cm⁻¹ zu erwarten. In diesem Bereich beobachten wir eine breite, unstrukturierte Bande. Tabelle 3.4.7 zeigt einen Vergleich mit Werten aus der Literatur [90, 91].

Tab. 3.4.7

Vergleich der Bandenlagen für $\Gamma_8(^2T_{2g})$, $\Gamma_7(^2T_{2g})$ von Na₅ReO₆:Re⁴⁺(Fddd) mit Werten aus der Literatur

	Na ₅ ReO ₆ :Re ⁴⁺	Cs ₂ ReF ₆	$Cs_2GeF_6:Re^{4+}$	$Cs_2GeF_6:2\%Re^{4+}$
	(Fddd)	[90]	[90]	[91]
$\Gamma_8(^2T_{2g})$	17250 cm^{-1}	18790 cm^{-1}	18667 cm^{-1}	18653 cm^{-1}
$\Gamma_7(^2T_{2g})$	16300 cm^{-1}	17550 cm ⁻¹	17397 cm^{-1}	17383 cm ⁻¹

3.4.5 Topotaktische Reaktion von Na₅ReO₆ zu Na₂ReO₃ und Na₃ReO₅

Im System Na/ Re/ O wurden systematische Untersuchungen, auch unter Zugabe von Na₂SO₄, Na₂CO₃ oder NaOH als Mineralisatoren durchgeführt. In einem stehenden Röhrenofen wurden die Proben in einem Schritt auf 250°C, dann mit 50°C pro Tag auf die jeweilige Endtemperatur erhitzt. Bei dieser Temperatur wurden die Proben einige Tage gehalten, dann in Schritten von 50°C pro Tag bis auf 250°C und schließlich in einem Schritt auf Raumtemperatur abgekühlt.

Eine Umsetzung von Na₂O, CdO und Re im molaren Verhältnis 2,5: 1: 1 bei 600°C in Silberampullen lieferte Einkristalle der Zusammensetzung Na₅ReO₆ (Fddd). Das Pulverdiffraktogramm wird von Reflexen von nicht umgesetztem Re [89] dominiert, weitere Reflexe können nicht umgesetztem Na₂O zugeordnet werden, Abb. 3.4.10.

Setzt man Na₂O, CdO, Re und Na₂SO₄ im molaren Verhältnis 3: 1: 1: 2 in Silberampullen um, so erhält man ebenfalls Einkristalle der Zusammensetzung Na₅ReO₆ (Fddd). Diese Einkristalle zeigten Überstrukturreflexe und diffuse Streuanteile, aber es konnte immer die für Na₅ReO₆ (Fddd) charakteristische Zelle röntgenographisch bestimmt werden. Das aufgenommene Pulverdiffraktogramm zeigt weitgehende Übereinstimmung der Reflexe mit dem aus Einkristalldaten simulierten Diffraktogramm von Na₅ReO₆ (Fddd), und einige zusätzliche Reflexe, die wohl auf die Überstruktur zurückzuführen sind, Abb. 3.4.11. Es kann kein Re mehr nachgewiesen werden.

Anschließend wurde die Probe wieder verschlossen, die Silberampulle unter Argon mit Kieselglas ummantelt und in einem stehenden Röhrenofen dem oben beschriebenen Temperaturprogramm unterzogen, diesmal jedoch mit einer Maximaltemperatur von 700°C,

bei der 15 Tage getempert wurde. Mit Hilfe des Polarisationsmikroskops wurden Einkristalle der Zusammensetzung Na₃ReO₅ [18] und Na₂ReO₃ gefunden, das aufgenommene Pulverdiffraktogramm weist auf dieselben Verbindungen in einem Verhältnis von Na₃ReO₅: Na₂ReO₃ (3: 1) hin, Abb. 3.4.12.

Abb. 3.4.10

Vergleich des aufgenommenen Pulverdiffraktogrammes (Mo K α -Strahlung) der Umsetzung von Na₂O/ CdO/ Re im molaren Verhältnis 2,5: 1: 1, T = 600°C, mit den aus Einkristalldaten simulierten Diffraktogrammen von Na₅ReO₆ (Fddd), Na₂O [88] und Re [89]

Vergleich des aufgenommenen Pulverdiffraktogrammes (Mo K α -Strahlung) der Umsetzung von Na₂O, CdO, Re, Na₂SO₄ im molaren Verhältnis 3: 1: 1: 2 bei 600°C mit dem aus Einkristalldaten simulierten Diffraktogramm von Na₅ReO₆ (Fddd)

Abb. 3.4.12

Vergleich des aufgenommenen Pulverdiffraktogrammes (Mo K α -Strahlung) der Umsetzung von Na₂O/ CdO/ Re/ Na₂SO₄, molares Verhältnis 3: 1: 1: 2, T = 700°C, mit den aus Einkristalldaten simulierten Diffraktogrammen von Na₂ReO₃ und Na₃ReO₅ [18] im Verhältnis 1: 3

Die aufgenommenen Pulverdiffraktogramme geben deutliche Hinweise bezüglich des Reaktionsverlaufs. In Abb. 3.4.10 hat die Bildung von Na₅ReO₆ (Fddd) eingesetzt, aber nicht umgesetztes Re und Na₂O sind noch im Produktgemenge vorhanden. Abb. 3.4.11 zeigt, dass sich bei 600°C Na₅ReO₆ (Fddd) quantitativ gebildet hat, das Pulverdiffraktogramm belegt keine weiteren Phasen. Eine Erhöhung der Temperatur führt zum Entstehen von Na₃ReO₅ und Na₂ReO₃ im Verhältnis 3:1, während kein Na₅ReO₆ mehr nachzuweisen ist, Abb. 3.4.12. Daraus lässt sich schließen, dass Na₅ReO₆ dotiert mit Re⁴⁺ (vgl. Spektroskopie) bei der Bildung von Na₃ReO₅ und Na₂ReO₃ eine Rolle als "Precursor" zukommt, so dass die Reaktion von Na₅ReO₆ in Anwesenheit von Re zu Na₂ReO₃ und Na₃ReO₅ verläuft.

Die Bildung des "Precursors" Na₅ReO₆ (Fddd) wurde unabhängig von der Wahl des Mineralisators und auch bei Umsetzungen ohne Mineralisator beobachtet. Eine Weiterreaktion zu Na₃ReO₅ und Na₂ReO₃ bei Erhöhung der Reaktionstemperatur auf 700°C konnte jedoch nur in Anwesenheit des Mineralisators Na₂SO₄ belegt werden, Tabelle 3.4.8. Niedrigschmelzendes Na₆O(SO₄)₂ [108], dessen Bildung unter vergleichbaren Bedingungen bereits häufig beobachtet wurde, wirkt hierbei sehr wahrscheinlich als Flussmittel.

Bereits Hoppe et al. [18] berichteten davon, dass bei der Darstellung von Na₃ReO₅, ein Nebenprodukt gebildet wurde. Dieses Nebenprodukt der Umsetzung der binären Oxide bei 750°C besaß die Gitterkonstanten a = 559 pm und b = 1219 pm, ein deutlicher Hinweis auf Na₂ReO₃ (P6₃/mcm, a = b = 558,76(9), c = 1218,2(2)), vgl. Kapitel 3.5. Die Kristallstruktur dieses Nebenproduktes wurde seinerzeit aber nicht aufgeklärt.

Übersicht über die durchgeführten Umsetzungen und die erhaltenen Produkte

Minera-	Verhältnis	Τ/	Produkte			
lisator	Na ₂ O/CdO/	°C				
	Re/Mineralisator					
NaOH	3: 1: 1: 4	600	Na ₅ ReO ₆ (Fddd)	Re		
Na ₂ CO ₃	3: 1: 1: 2	600	Na ₅ ReO ₆ (Fddd)*	Re		
Na ₂ SO ₄	3: 1: 1: 2	600	Na ₅ ReO ₆ (Fddd)*	Re		•••••••••••••••••••••••••••••••••••••••
		700			Na ₂ ReO ₃ *	Na ₃ ReO ₅ *
	3: 1: 7: 3,5	700	NaReO ₄ ^{a)}	Re	Na ₂ ReO ₃ *	Na ₃ ReO ₅ *
	3,3: 1: 1: 2	700			Na ₂ ReO ₃ *	Na ₃ ReO ₅ *
ohne	2,5: 1: 1	600	Na ₅ ReO ₆ (Fddd)*	Re		
		700	Na ₅ ReO ₆ (Fddd)*	Re		

Die mit * gekennzeichneten Verbindungen wurden einkristallin erhalten.

^{a)} Hauptprodukt

Aus diesen Untersuchungen geht hervor, dass der Anteil des Mineralisators (hier besonders Na₂SO₄) für die Produktbildung unerheblich ist. In allen aufgenommenen Pulverdiffraktogrammen konnte noch Mineralisator nachgewiesen werden.

Im Gegensatz zum Anteil von Na₂SO₄ ist das Verhältnis von Na₂O zu Re jedoch von großer Bedeutung für die Produktbildung. Die alkalimetallarme Umsetzung, in der das Verhältnis von Na₂O zu Re kleiner als 2 ist (Na₂O: Re 3:7, s. Tabelle 3.4.8) führte zur Bildung von NaReO₄ als Hauptprodukt. Die Oxidation des Re ist in diesem Fall nicht vollständig, denn das Pulverdiffraktogramm belegt, dass noch metallisches Re im Produktgemenge vorliegt. Die Darstellung von Na₂ReO₃ (vgl. Kapitel 3.5) erfolgt dagegen nur über ein natriumreiches Rhenat, wobei das Verhältnis von Na₂O zu Re größer als 2 sein muss.

Abb. 3.4.13

Projektion der Packung in Na₅ReO₆ (Fddd) mit eingezeichneter Elementarzelle. Blau gekennzeichnet die Packungsteilchen, die für sich genommen Na-Lagen repräsentieren, wohingegen die grau (Na) und rot (Re) dargestellten Atome den kationischen Aufbau von Na₃ReO₅ wiedergeben.

Abb. 3.4.13 zeigt eine Projektion des kationischen Teils der kubisch-dichtesten Kugelpackung in Na₅ReO₆ (Fddd) mit eingezeichneter Elementarzelle. Entfernt man aus dieser Packung die blau gekennzeichneten Packungsteilchen, die für sich genommen durch Natriumatome besetzt sind, so erhält man das in Abb. 3.4.14 dargestellte aufgeweitete Strukturfragment, das in verdichteter Form der Struktur von Na₃ReO₅ entspricht, Abb. 3.4.15.

Teilstruktur nach Entfernen der oben blau dargestellten Packungsteilchen, (Na₅ReO₆ - Na₂O \rightarrow Na₃ReO₅)

Abb. 3.4.15 Anordnung der Kationenlagen in Na₃ReO₅[18] entsprechend dem Li₃Bi-Typ

Abb. 3.4.16 zeigt eine Projektion der aus der Struktur von Na₅ReO₆ entfernten (blauen) Packungsteilchen mit eingezeichneter Elementarzelle. Substituiert man vier Natrium-Atome durch ein Rhenium-Atom entsprechend der formalen Redoxreaktion 4 Na⁺ + Re \rightarrow Re⁴⁺ + 4 Na, Abb. 3.4.17, orange gekennzeichnet, so erhält man Na₂Re \square_3 . Diese Anordnung entspricht annähernd einer durch As stabilisierten Modifikation von Hg (Hg_{0,99}As_{0,01}) [92]. Dies wird besonders deutlich, wenn man die Anordnung entlang der b-Achse betrachtet, Abb. 3.4.18 und mit der entsprechenden Ansicht von Na₂ReO₃ vergleicht.

Der topotaktisch kontrollierte Mechanismus wird durch die Befunde, dass Na₃ReO₅ und Na₂ReO₃ im Verhältnis 3 : 1 aus Na₅ReO₆ (Fddd) entstehen, experimentell untermauert.

Vergleich der durch Substitution von 4 Na durch 1 Re und Entfernen von Na (schraffiert) erhaltenen Zelle mit der von Na₂ReO₃

Formale Rechnung:

$$3 (Na_5ReO_6) = ,,Na_{15}Re_3O_{18}"$$
Substitution 1 Re für 4 Na = ,,Na_{11}Re_4O_{18}"
Subtraktion von 3 (Na_3ReO_5) = -,,Na_9Re_3O_{15}"
Na_2ReO_3

Ein Vergleich der reduzierten Zellen bestätigt diesen Mechanismus ebenfalls. Tabelle 3.4.9 listet Kenngrößen der reduzierten Zellen der Natriumrhenate auf, Tabelle 3.4.10 stellt die im Rahmen dieses Modells berechneten Kenngrößen den experimentell bestimmten gegenüber. Den Überlegungen liegt die folgende Reaktionsgleichung zugrunde:

Tabelle 3.4.9

Reduzierte Zellen (P1), Gitterkonstanten in pm, Winkel in Grad und Volumen in 10⁻⁶ pm³

	а	b	c	α	β	γ	Ζ	V
$Na_5ReO_6 (C2/m)$	563	563	561	100	100	119	1	144,7
Na ₅ ReO ₆ (Fddd)	566	566	1028	100	100	111	2	292
	566	566	1954	90	90	111	4	584
$Na_3ReO_5(P3_1)$	554	554	1358	90	90	120	3	361
Na ₂ ReO ₃ (P6 ₃ /mcm)	558	558	1218	90	90	120	4	329

Tabelle 3.4.10

Gegenüberstellung der im Rahmen des Modells berechneten und den experimentell bestimmten Kenngrößen der reduzierten Zellen

	3 Na ₅ ReO ₆	3 Na ₃ ReO ₅	Na ₂ ReO ₃	Σ (3 Na ₃ ReO ₅ +Na ₂ ReO ₃)
Volumen/ 10 ⁻⁶ pm ³	438	361	82	443
Kationen	18	12	$3 + 3^{\text{Leerstellen}}$	18
c_{trans}/pm	1954	1358	$305 + 305^{\text{Leerstellen}}$	1967

3.4.6 MAPLE-Berechnung an Na₅ReO₆ (Fddd)

Es wurden Rechnungen im Rahmen des MAPLE-Konzepts [24] an Na₅ReO₆ (Fddd) durchgeführt. Im Vergleich mit den binären Oxiden ist die Abeichung des MAPLE-Wertes groß, was darin begründet ist, dass Re₂O₇ ein molekularer Aufbau zugrunde liegt, vgl. auch [18]. Aus diesem Grund wurden hier Vergleiche mit anderen ternären Natriumrhenaten durchgeführt. Hierzu gehört auch ein Vergleich mit MAPLE-Werten, denen die hypothetischen Reaktionsgleichungen NaReO₄ + Na₂O \rightarrow Na₃ReO₅ und NaReO₄ + 2 Na₂O \rightarrow Na₅ReO₆ zugrunde liegen. Eine Übersicht über die erhaltenen MAPLE-Werte und die Abweichungen ist in Tabelle 3.4.11 a-c gegeben.

Tabelle 3.4.11 a

Madelunganteil der Gitterenergie in kcal/ mol für Na₅ReO₆ (C2/m) [19] und Na₅ReO₆ (Fddd) im Vergleich

MAPLE Na ₅ ReO ₆	MAPLE Na ₅ ReO ₆	Δ MAPLE	Δ / %
(C2/m) [19]	(Fddd)	$(Na_5ReO_6(Fddd) - Na_5ReO_6(C2/m))$	
9840,7	9875,1	34,4	0,3

Tabelle 3.4.11 b

Madelunganteil der Gitterenergie in kcal/ mol für Na₃ReO₅ [18] und "Na₃ReO₅"^{a)} im Vergleich

MAPLE Na ₃ ReO ₅ [18]	MAPLE Na ₃ ReO ₅ ^{a)}	Δ MAPLE	Δ / %
		("Na ₃ ReO ₅ " ^{a)} -Na ₃ ReO ₅ [18])	
9064	8953,9	-110,1	-1,21
^{a)} MAP(Na ₂ ReO ₅) = MAP(Na	ReO_4 [93] + MAP(Na ₂ O)		

 $^{a'}MAP(Na_3ReO_5) = MAP(NaReO_4) [93] + MAP(Na_2O)$

Tabelle 3.4.11 c

Madelunganteil der Gitterenergie in kcal/ mol für Na₅ReO₆ (C2/m) sowie Na₅ReO₆ (Fddd) im Vergleich mit "Na₅ReO₆"^{a)}

	MAPLE	MAPLE	Δ MAPLE	Δ / %
	Na ₅ ReO ₆	Na ₅ ReO ₆ ^{a)}	("Na ₅ ReO ₆ " ^{a)} -	
			Na ₅ ReO ₆)	
(C2/m) [19]	9840,7	9649,6	-191,1	-1,94
(Fddd)	9875,1	9649,6	-225,5	-2,28

 $^{a)}$ MAP(Na₅ReO₆) = MAP(NaReO₄)[93] + 2MAP(Na₂O)

Die Übereinstimmung der MAPLE-Werte für Na₅ReO₆ (C2/m) und Na₅ReO₆ (Fddd) ist mit 0,3% sehr gut. Die Abweichung bei den übrigen Vergleichen ist mit -1,21 bis -2,28 % wesentlich größer. Hierbei ist zu beachten, dass die Koordinationssphären des Re in den jeweiligen Verbindungen unterschiedlich sind (C.N. 4 in NaReO₄, C.N. 5 in Na₃ReO₅ und C.N. 6 in Na₅ReO₆). Pro Erhöhung der Koordinationszahl beträgt Δ MAPLE etwa 100 kcal/mol, so dass die Abweichungen für Na₅ReO₆ von 2% vornehmlich hierauf zurückzuführen sind.

3.5 Na_2ReO_3

Zahlreiche ternäre Alkalimetall- und Lanthanid-Oxorhenate sind mittlerweile dargestellt und strukturchemisch charakterisiert worden. Es sind verschiedenste Sauerstoffkoordinationen und Verknüpfungsmuster der Rheniumatome gefunden worden.

In Verbindungen des Typs A¹ReO₄ mit A = Na, K, Cs, Rb [93] liegen ReO₄-Tetraeder isoliert voneinander in der Struktur vor, während Verbindungen des Typs A¹₅ReO₆ mit A¹ = Li, Na [19] isolierte ReO₆-Oktaeder ausbilden. In Na₃ReO₅ [18] werden isolierte irreguläre [ReO₅]-Einheiten gefunden, andere Vertreter dieses Verbindungstyps A¹₃ReO₅ mit A = K, Rb, Cs [94] sind bisher nur aus Pulvern bekannt. Das gemischt Alkalimetalloxorhenat Rb₂K[ReO₅] [95] ist ebenfalls nur als Pulver bekannt. Mit Rhenium in der Oxidationsstufe +6 kennt man Ca₃ReO₅ [96], Ba₂ReO₅ [93] und BaRe_{1,96}O₉ [93].

Re in niedrigeren Oxidationsstufen als +7 bildet bevorzugt Einheiten mit Re-Re-Bindung aus, wobei zwei Verknüpfungsmuster von ReO₆-Oktaedern zu unterscheiden sind: über gemeinsame Kanten zu [Re₂O₁₀]-Einheiten verknüpfte Oktaeder und über Flächen zu [Re₂O₈]-Einheiten verknüpfte Oktaeder, auch als tetragonale Prismen bezeichnet. Die kantenverknüpften [Re2O10]-Oktaederdoppel verknüpfen häufig noch über Ecken mit ihresgleichen, beispielsweise zu Ketten in Dy₅Re₂O₁₅ [97], zu Schichten in BiRe₂O₆ [98] oder zu dreidimensionalen Raumnetzen in La₄Re₆O₁₉ [99]. [Re₂O₁₀]-Einheiten können allerdings auch isoliert in der Struktur vorliegen, wie in Nd₄Re₂O₁₁ [100] oder La₃Re₂O₁₀ [101]. Die [Re₂O₈]-Einheiten dagegen liegen ausschließlich isoliert vor. Hierbei sind Verbindungen zu unterscheiden, bei denen eine quadratisch-antiprismatische Anordnung der [Re₂O₈]-Einheiten postuliert wird, und solche, bei denen sie als quadratisch- bzw. tetragonal-prismatisch bestimmt wurde. Die gestaffelte, also quadratisch-antiprismatische Konformation wurde in Verbindungen des Typs Ln_2ReO_5 mit Ln = Sm, Eu, Gd [102] gefunden, während für Ln = Laund La₃ReO₅ eine quadratisch-prismatische Anordnung bestimmt wurde. Es sind darüber hinaus Verbindungen bekannt, bei denen zwei unterschiedliche Verknüpfungsmuster in der Struktur vorkommen und isoliert voneinander sowie von ihresgleichen vorliegen. Dies ist der Fall in Sm₃Re₂O₉ [103] und La₆Re₄O₁₈ [97], gemischtvalenten Rhenaten, bei denen die $[Re^{IV}_{2}O_{8}]$ -Einheiten tetragonale Prismen bilden, während die $[Re^{V}_{2}O_{10}]$ -Einheiten kantenverknüpfte Oktaederdoppel ausbilden.

In der hier erstmals strukturchemisch untersuchten Verbindung Na₂ReO₃ liegen isolierte [Re₂O₆]-Einheiten vor, die ekliptisch angeordnet sind.

3.5.1 Darstellung von Na₂ReO₃

Na₂ReO₃ wurde durch eine Redox-Reaktion zwischen metallischem Re mit CdO in Anwesenheit von Na₂O und Na₂SO₄ bei 700°C in einer kieselglasummantelten Silberampulle erhalten. Die im molaren Verhältnis 3: 1: 1: 2 eingewogenen Edukte (Na₂O/ Re/ CdO/ Na₂SO₄) wurden im Argon-Handschuhkasten in einer Achatreibschale innig verrieben und in eine Silberampulle gefüllt. Diese wurde mit einem Deckel verschlossen und unter Argonatmosphäre in Kieselglas eingeschmolzen. In einem stehenden Röhrenofen wurde die Probe zunächst in einem Schritt auf 250°C, dann in Schritten von 50°C pro Tag auf 700°C erhitzt. Bei dieser Temperatur wurde die Probe 11 Tage gehalten, dann mit 50°C pro Tag auf 250°C, schließlich in einem Schritt auf Raumtemperatur abgekühlt. Na₂ReO₃ entsteht als orangerote, plättchenförmige Einkristalle, Abb. 3.5.1, vgl. auch Kapitel 3.4.

Abb. 3.5.1 Einkristall von Na₂ReO₃

3.5.2 Kristallstrukturbestimmung von Na₂ReO₃

Mit Hilfe von direkten Methoden und Differenzfouriersynthesen wurde die Struktur von Na₂ReO₃ zunächst in der trigonalen Raumgruppe P3 gelöst. Die Parameter der Röntgenstrukturanalyse sowie Lageparameter und thermische Verschiebungsparameter sind in den Tabellen 3.5.1, 3.5.2 und 3.5.3 aufgeführt.

Kristallsystem	trigonal
Raumgruppe	$P_{2}(N_{r}, 1/2)$
Citterbangtanten / nm	15 (141. 145)
Gitterkonstanten / pm	
Einkristalldaten (293 K)	a = b = 559,9(2)
	c = 610,5(1)
Formeleinheiten/Elementarzelle	2
F(000)	258,0
linearer Absorptionskoeffizient	36,75 mm ⁻¹
Kristallform,-farbe	Plättchen, orangerot
Diffraktometer	IPDS II (Fa. Stoe & Cie)
Meßbereich	$-7 \le h \le 7$; $-7 \le k \le 7$; $-8 \le l \le 8$;
	$2\theta_{\text{max}} = 56,04^{\circ}$
symmetrieunabhängige Reflexe	536 von 1965 gemessenen
Programme	SHELXS-97 [21], SHELXL-97 [22],
	WinXPOW [23]
Absorptionskorrektur	numerisch, X-Red [33]
Lösungsverfahren	Direkte Methoden
Parameterverfeinerung	full-matrix least squares
Anzahl freier Parameter	23
R(int.)	0,1481
R1	$0,0541$ für 486 F ₀ > 4 σ (F ₀) ;0,0598 alle Daten
wR2	0,1653
GooF	1,230

Tab. 3.5.1Kristallographische Daten für Na2ReO3 für die Lösung in der Raumgruppe P3

Tabelle 3.5.2 Lageparameter und Koeffizienten der äquivalenten Temperaturfaktoren in pm^2 für Na2ReO3 in der trigonalen Raumgruppe P3

Atom	Lage	sof ^{a)}	Х	у	Z	U _{eq}
Re1	1a	0,33333	1	0	-0,2356(2)	$55(2)^{b)}$
Re2	1a	0,33333	1	0	0,1441(2)	$55(2)^{b)}$
01	3d	0,5	1,355(6)	0,354(6)	-0,312(5)	$63(23)^{c)}$
O2	3d	0,5	1,303(5)	-0,007(7)	0,214(5)	$63(23)^{c)}$
O3	3d	0,5	0,646(6)	-0,002(7)	0,242(5)	$63(23)^{c)}$
O4	3d	0,5	1,306(6)	-0,003(7)	-0,296(4)	$63(23)^{c)}$
Nal	1c	0,33333	0,6667	0,3333	0,455(4)	$110(12)^{c}$
Na2	1b	0,33333	0,3333	-0,3333	0,455(4)	$110(12)^{c}$
Na3	1b	0,33333	1,3333	0,6667	-0,063(3)	$110(12)^{c}$
Na4	1c	0,33333	1,6667	0,3333	-0,065(3)	$110(12)^{c}$

^{a)}Besetzungsfaktor bezogen auf die höchste Zähligkeit (3)

^{b)}gekoppelt anisotrop verfeinert

^{c)}gekoppelt isotrop verfeinert

Äquivalenter Temperaturfaktor, U_{eq} , nach [20]

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Re1 ^{b)}	30(3)	30(3)	104(4)	0	0	$15(1)^{a)}$
Re2 ^{b)}	30(3)	30(3)	104(4)	0	0	$15(1)^{a}$

Tabelle 3.5.3 Koeffizienten der anisotropen Temperaturfaktoren in pm^2 für Na2ReO3 in dertrigonalen Raumgruppe P3

^{a)}gekoppelt anisotrop verfeinert

Der anisotrope Temperaturfaktor hat die Form:

 $U_{ij} = exp[2\pi i (U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{12}hka^*b^* + 2U_{13}hla^*c^* + 2U_{23}klb^*c^*)]$

Bei diesem Lösungsansatz ließen sich die Sauerstoffatome nur mit einer statistischen Besetzung verfeinern. Eine Projektion der Struktur mit eingezeichneter Elementarzelle ist in Abb. 3.5.2 dargestellt. Die verschiedenen statistisch besetzten Sauerstofflagen sind farblich gekennzeichnet. Innerhalb einer [Re₂O₆]-Einheit kann jeweils entweder O1 oder O4, bzw. entweder O2 oder O3 besetzt sein. Diese statistische Besetzung führt zu vier verschiedenen [Re₂O₆]-Polyedern, wobei je zwei Möglichkeiten einer gestaffelten und einer eclipsed-Konformation bestehen, Abb. 3.5.3 a-d. Die gestaffelt oder ekliptisch angeordneten [Re₂O₆]-Einheiten können entlang c entweder alternierend oder gleich ausgerichtet vorliegen.

Abb. 3.5.3 a Gestaffelte Konformation 1

Abb. 3.5.3 c Ekliptische Konformation 1

Abb. 3.5.3 b Gestaffelte Konformation 2

Abb. 3.5.3 d Ekliptische Konformation 2

Um die genaue Anordnung der ReO₃-Fragmente zueinander aufzuklären, wurde der Datensatz auf Überstrukturreflexe untersucht. Es ergaben sich systematische Überstrukturreflexe, die zu einer Verdopplung der c-Achse führen. Die Reflexe der größeren Zelle entsprachen nach den Auslöschungsbedingungen der hexagonalen Raumgruppe P6₃/mcm. Die Parameter dieser Röntgenstrukturanalyse sowie Lageparameter und thermische Verschiebungsparameter sind in den Tabellen 3.5.4, 3.5.5 und 3.5.6 aufgeführt. Nunmehr lässt sich ausschließlich eine ekliptische Anordnung für die Re₂O₆- Einheit finden. Der Vergleich des aufgenommenen Pulverdiffraktogramms mit aus Einkristalldaten simulierten Diffraktogrammen von Na₂ReO₃ und Na₃ReO₅ [18] ist in Abb. 3.5.4 dargestellt.

Kristallevetom	hovegonal
Riistaiisysteili	De /man (Nr 102)
Raumgruppe	PO_{3}/mcm (Nr. 193)
Gitterkonstanten / pm	
Einkristalldaten (293 K)	a = b = 558, /6(9)
	c = 1218, 2(2)
Pulverdaten (293 K)	a = b = 559,1(7)
(Mo Kα-Strahlung)	c = 1216,5(9)
Formeleinheiten/Elementarzelle	4
F(000)	484,0
linearer Absorptionskoeffizient	36,95 mm ⁻¹
Extinktionskoeffizient	0.010354
Kristallform,-farbe	Plättchen, orangerot
Diffraktometer	IPDS II (Fa. Stoe & Cie)
Meßbereich	$-7 \le h \le 7$; $-7 \le k \le 7$; $-16 \le l \le 16$;
	$2\theta_{\text{max}} = 58,25^{\circ}$
gemessene Reflexe	3091, davon beobachtet 2649
symmetrieunabhängige Reflexe	187 nach Datenreduktion
Programme	SHELXS-97 [21], SHELXL-97 [22],
5	WinXPOW [23]
Absorptionskorrektur	numerisch, X-Red [33]
Lösungsverfahren	Direkte Methoden
Parameterverfeinerung	full-matrix least squares
Anzahl freier Parameter	15
R(int.)	0,0863
R1	$0,0267$ für 159 F ₀ > 4 σ (F ₀) ;0,0299 alle Daten
wR2	0,0889
GooF	1,286

Tab. 3.5.4Kristallographische Daten für Na2ReO3 in der hexagonalen RaumgruppeP63/mcm

Tabelle 3.5.5 Lageparameter und Koeffizienten der äquivalenten Temperaturfaktoren in pm²für Na2ReO3 in der hexagonalen Raumgruppe P63/mcm

Atom	Lage	Х	у	Z	U _{eq}
Re	4e	0	0	0,15521(5)	90(3)
0	12k	0,313(2)	0,313(2)	0,1242(4)	131(12)
Na1	4d	0,33333	0,66667	0	130(11)
Na2	4c	0,66667	0,33333	0,25	135(11)

Äquivalenter Temperaturfaktor, Ueq, nach[20]
Tabelle 3.5.6	Koeffizienten	der a	nisotropen	Temperaturfaktoren	in pm	r^2 für]	Na_2ReO_3	in der
hexagonalen F	Raumgruppe P6	₃ /mcn	n					

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Re	86(4)	86(4)	101(4)	0	0	43(2)
0	111(27)	111(27)	196(22)	15(29)	15(29)	73(39)
Nal	148(18)	148(18)	112(24)	0	0	74(9)
Na2	117(17)	117(17)	155(25)	0	0	59(8)

Der anisotrope Temperaturfaktor hat die Form:

 $U_{ij} = exp[2\pi i (U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{12}hka^*b^* + 2U_{13}hla^*c^* + 2U_{23}klb^*c^*)]$

Abb. 3.5.4

Vergleich des gemessenen Pulverdiffraktogramms (Mo K α -Strahlung) mit den aus Einkristalldaten simulierten Diffraktogrammen von Na₂ReO₃ und Na₃ReO₅ [18]

3.5.3 Beschreibung der Kristallstruktur von Na₂ReO₃ in der hexagonalen Raumgruppe P6₃/mcm

Na₂ReO₃ ist das erste strukturell bekannte ternäre Natriumoxorhenat(IV). Eine Projektion der Elementarzelle ist in Abb. 3.5.5 dargestellt. Charakteristisches Strukturelement von Na₂ReO₃ ist eine trigonalen [ReO₃]-Einheit, Abb. 3.5.6. Entlang der kristallographischen c-Achse sind diese [ReO₃]-Einheiten zu Paaren angeordnet, bei denen die Sauerstoffliganden ekliptisch zueinander stehen Abb. 3.5.7. Innerhalb der trigonalen Einheiten sind alle Re-O-Bindungen mit 178,2(9) pm gleich lang und alle Winkel mit 115, 7(1)° gleich groß. Das Zentralatom ist aus der von den drei Sauerstoffliganden aufgespannten Ebene um 37,9 pm in Richtung der zweiten [ReO₃]-Einheit eines Paares ausgelenkt. Diese Auslenkung ist außergewöhnlich groß und weist auf eine Re-Re-Wechselwirkung hin. In Na₂ReO₃ kann man also von einer 3+1-Koordination am Re^{IV} sprechen.

Projektion der Kristallstruktur von Na2ReO3 mit eingezeichneter Elementarzelle

Abb. 3.5.6 Charakteristische trigonale [ReO₃]-Einheit in Na₂ReO₃ entlang der kristallographischen c-Achse

Abb. 3.5.7 Ein Paar von zwei trigonalen [ReO₃]-Einheiten, 3+1-Koordination an Re^{IV}

W. Jeitschko et al. haben mit Ln₂ReO₅, mit Ln = Eu, Gd Verbindungen mit Re^{IV} strukturell charakterisiert, in denen Re₂O₈-Einheiten tetragonale Antiprismen bilden [102]. Tabelle 3.5.7 listet Re-O-Abstände und Re-Re-Abstände der gestaffelt angeordneten Re₂O₈-Einheiten dieser Verbindungen im Vergleich zu den ekliptisch angeordneten trigonalen Re₂O₆-Prismen in Na₂ReO₃ auf.

Tabelle 3.5.7 Ausgewählte interatomare Abstände in pm und Winkel in Grad für Na_2ReO_3 und Ln_2ReO_5 mit Ln = Eu, Gd [102]

Na ₂ I	ReO ₃	Ln_2ReO_5 mit $Ln = Eu, Gd$		
Re-O	178,2(9) pm (3 x)	Re1-O	190,4 pm (4 x)	
Re-Re	232,7(1) pm	Re2-O	192,5 pm (4 x)	
O-Re-O	115,7(1)° (3 x)	Re1-Re1	225,7 pm	
d (Re-(O ₃))	37,9 pm	Re2-Re2	225,7 pm	
		O2-Re1-O2	88,8 (4 x)	
		O1-Re2-O1	88,3 (4 x)	
		d (Re1-(O ₄))	27,4 pm	
		d (Re2-(O ₄))	33,3 pm	

Die Kristallstruktur wird von zwei kristallographisch unterscheidbaren Natriumlagen vervollständigt. Die Natriumatome der Sorte Na2 sind trigonal prismatisch von Sauerstoff umgeben und verknüpfen die [Re₂O₆]-Einheiten innerhalb der Schicht, Abb. 3.5.8. Interatomare Abstände und ausgewählte Winkel für Na2O₆-Polyeder sind in Tabelle 3.5.8 wiedergegeben. Die Natriumatome der Sorte Na1 sind verzerrt oktaedrisch von Sauerstoff umgeben, Abb. 3.5.9. Die NaO₆-Oktaeder verknüpfen die Schichten, welche die Paare von [ReO₃]-Einheiten enthalten, entlang c. Die interatomaren Abstände und Winkel der Na1O₆-Oktaeder sind in Tabelle 3.5.9 aufgelistet.

Trigonal-prismatische Sauerstoffumgebung von

Tab. 3.5.8Interatomare Abstände in pm und

Tab. 3.5.9

Polyeder	
Na2-O	246,9(5)
O-Na2-O	133,95(9) (6 x)
O-Na2-O	85,3(2) (6 x)
O-Na2-O	77,1(3) (3 x)

Winkel in Grad im Na2O₆-

Interatomare Winkel in	Abstände in pm und Grad im Na1O ₆ -
Polyeder	
Na1-O	246,3(6)
O-Na1-O	175,0(4) (3 x)
O-Na1-O	85,5(2) (6 x)
O-Na1-O	91,2(4) (3 x)
O-Na1-O	98,0(2) (3 x)

Abb. 3.5.9

Abb. 3.5.8

Na2 in Na₂ReO₃

Verzerrt oktaedrische Sauerstoffumgebung von Na1 in Na₂ReO₃

Innerhalb der Kristallstruktur bilden sich alternierende Schichten von Na1O₆-Oktaedern und Na2O₆-Prismen, Abb. 3.5.10.

Abb. 3.5.10 Alternierende Schichten von Na1O₆-Oktaedern und Na2O₆-Prismen

Die Sauerstoffatome sind quadratisch-prismatisch von vier Natriumatomen (2 Na1 und 2 Na2) und einem Re umgeben, Abb. 3.5.11. Die interatomaren Abstände und Winkel sind in Tabelle 3.5.10 aufgeführt.

Abb. 3.5.11 Quadratisch-prismatische Umgebung von O in Na₂ReO₃

Tab. 3.5.10

Interatomare Abstände in pm
und Winkel in Grad im
Koordinationspolyeder von O

Re-O	178,2(9)
Na1-O	246,3(6) (2 x)
Na1-O	246,9(6) (2 x)
Re-O-Na1	123,4(3) (2 x)
Re-O-Na2	106,7(2) (2 x)
Na1-O-Na1	82,0(2)
Na2-O-Na2	81,8(2)
Na1-O-Na2	76,9(2) (2 x)
Na1-O-Na2	129,2(4) (2 x)

Im Rahmen der Röntgenstrukturanalyse wurden Überstrukturreflexe zur Lösung der Kristallstruktur in der hexagonalen Raumgruppe P3₃/mcm einbezogen, was zu dem Modell mit ekliptisch angeordneten Sauerstoffliganden in der [Re₂O₆]-Einheit führte. Einen abschließenden Beweis für das tatsächliche Vorliegen solcher ekliptischen Einheiten kann aufgrund von Röntgenstrukturanalyse nicht erbracht werden, da sie lediglich gemittelte Informationen über die Fernordnung liefert. Beispielweise können die gefundenen Überstrukturreflexe auch auf eine Verzwilligung des Kristalls zurückzuführen sein. Experimentelle Belege für das aus der Röntgenstrukturanalyse erhaltene Modell liefert die an der Verbindung durchgeführte Schwingungsspektroskopie (vgl. Kapitel 3.4.4), mit deren Hilfe lokale Umgebungen von Atomen untersucht werden können. Darüber hinaus sind Rechenmethoden geeignet, die Ergebnisse der Röntgenstrukturanalyse zu ergänzen (vgl. Kapitel 3.5.6).

3.5.4 Vergleich der Kristallstruktur von Na₂ReO₃ mit den Strukturen von MoS₂ und Na₂SO₃

Die Struktur von Na₂ReO₃ ist eng mit der von MoS₂ [104] verwandt. In beiden liegen Schichten von trigonalen Prismen vor, Abb. 3.5.12 und 3.5.13. In Na₂ReO₃ findet man die Schichtabfolge AcAbBc'Bb'. Dies stimmt mit der Abfolge in MoS₂ überein, allerdings ist in MoS₂ im Vergleich zu Na₂ReO₃ die Schicht b bzw. b' nicht besetzt, Abb. 3.5.14.

Abb. 3.5.12 Verknüpfung der Prismen mit Na2 und Re als Zentralatome in Na₂ReO₃

Abb. 3.5.14

Vergleich der Abfolge der Schichten in Na₂ReO₃ und MoS₂. Die nicht besetzten Schichten der Orientierung b in MoS₂ sind mit gestrichelten Linien kenntlich gemacht

Auch zwischen der Struktur von Na₂SO₃ [105] und Na₂ReO₃ lassen sich Ähnlichkeiten feststellen, beispielsweise sind die Gitterkonstanten der reduzierten Zellen beider Verbindungen sehr ähnlich, Tab. 3.5 11. Die Abbildungen. 3.5.15 und 3.5.16 zeigen Projektionen der Strukturen mit eingezeichneter Elementarzelle.

Tab. 3.5.11 Gitterkonstanten in pm für die reduzierten Zellen von Na₂ReO₃ und Na₂SO₃.

	Na ₂ ReO ₃	Na ₂ SO ₃
a = b	559,9	545,9
c	613,25	617,9

Abb. 3.5.15 Projektion der Elementarzelle von Na₂ReO₃ entlang der c-Achse

Abb. 3.5.16 Projektion der Elementarzelle von Na₂SO₃ entlang der c-Achse

Während in Na₂ReO₃ die trigonalen [ReO₃]-Einheiten aufgrund einer anziehenden Re-Re-Wechselwirkung direkt aufeinander liegen, Abb. 3.4.17, sind die $SO_3^{2^2}$ -Ionen versetzt zueinander angeordnet, Abb. 3.5.18 und 3.5.19. Dies ist sicherlich auf das freie Elektronenpaar der $SO_3^{2^2}$ -Gruppe zurückzuführen, das entlang der kristallographischen c-Achse in die Struktur hineinragt und eine abstoßende Wechselwirkung hervorruft, während über das 5d_{z2}-Orbital des Re eine σ -bindende Wechselwirkung entsteht.

Abb. 3.5.17 Die trigonalen [ReO₃]-Einheiten in Na₂ReO₃ sind direkt übereinander entlang der c-Achse angeordnet. Die reduzierte Zelle führt zu einer Halbierung der c-Achse Abb. 3.5.18 In Na_2SO_3 liegen die SO_3^{2-} -Einheiten versetzt entlang der c-Achse vor Abb. 3.5.19 NaO₆-Oktaeder sind in Na₂SO₃ entlang der c-Achse über gemeinsame Flächen verknüpft

3.5.5 Spektroskopie an Na₂ReO₃

Obwohl die Strukturlösung für Na₂ReO₃ mit ekliptisch angeordneten [Re₂O₆]-Einheiten zufriedenstellend ist, kann ein Beweis dieser Anordnung mittels Röntgenstrukturanalyse nicht erbracht werden. Dies ist lediglich anhand von Messungen möglich, mit denen die lokale Umgebung der Re-Atome bestimmt werden kann. Die Schwingungsspektroskopie ist eine Möglichkeit, diese lokale Umgebung näher zu untersuchen.

Es wurden Einkristalle von Na₂ReO₃ im Handschuhkasten ausgewählt, für ein Raman-Spektrum in eine Glaskapillare überführt bzw. für eine IR-Messung in trockenes KBr eingebettet und ein Pressling hergestellt. Das aufgenommene IR- und Ramanspektrum ist in Abb. 3.5.20 dargestellt. Die Unterscheidung zwischen D_{3d} und D_{3h} -Symmetrie ist möglich über die Anzahl der Raman aktiven Schwingungen. Für D_{3d} sollten die Übergänge mit gerader Parität Raman aktiv sein, während im Gegensatz dazu für D_{3h} auch die E' Moden zu erwarten sind (E_u für D_{3d} transformiert zu E' für D_{3h}). Eine Übersicht über die erwarteten und beobachteten Übergänge [29] ist in Tabelle 3.5.12 dargestellt.

Schwingung	Schwingungs- mode	Zuordnung	IR-Spektrun	n	Raman-Spektrum
v(Re-Re)	v ₃	A ₁ '			253,5
v _{sym} (ReO ₃)	v_1	A ₁ '			847,7
v _{asym} (ReO ₃)	v_5	A ₂ ''	806,0		
	v_7	E '	772,2		764,5
	v_{10}	Е"			718,8
$\delta_{sym}(\text{ReO}_3)$	v_2	A ₁ '			354,5
$\delta_{asym}(ReO_3)$	v_{11}	E' }		5	277,9
	ν_8	E'' <i>J</i>		ſ	nicht aufgelöst/ Schulter
	ν_6	A ₂ "		nicł	nt beobachtet
$\rho_r(\text{ReO}_3)$	ν_4	A ₁ "		nich	nt beobachtet
ρ(ReO ₃)	ν ₉	E'		nicł	nt beobachtet
	v ₁₂	Е"		nich	nt beobachtet

 Tab. 3.5.12
 Übersicht über die erwarteten und beobachteten Übergänge

Im Raman-Spektrum beobachtet man zwei Banden, eine bei 764,5 cm⁻¹ und eine bei 277,9 cm⁻¹, die für die gestaffelte Konformation mit D_{3d} -Symmetrie nur für das IR-Spektrum erwartet werden. Diese Banden lassen sich E_u -Übergängen zuordnen, die, im Gegensatz zur gestaffelten Anordnung mit D_{3d} -Symmetrie, in der ekliptischen Konformation mit D_{3h} -Symmetrie zusätzlich Raman-aktiv sind. Die Beobachtung dieser Banden im Raman-Spektrum belegt, dass das Strukturmodell mit der [Re₂O₆]-Gruppe in ekliptischer Anordnung vernünftig ist.

Bei 250 cm⁻¹ beobachtet man die Re-Re-Valenzschwingung. Trägt man die Lage der Valenzschwingung gegen den Re-Re-Abstand auf und vergleicht dies mit Werten von bekannten Verbindungen [29], welche Re-Re-Bindungen enthalten, so wird deutlich, dass der gefundene Wert für Na₂ReO₃ plausibel ist, Abb. 3.5.21. In einer Auftragung der Bindungsordnung gegen die Lage der Valenzschwingung und einem Vergleich mit bekannten Verbindungen mit Re-Re-Bindungen wird deutlich, dass Na₂ReO₃ im Bereich einer Re-Re-Dreifachbindung angesiedelt werden kann, Abb. 3.5.22.

Abb. 3.4.20 IR-Spektrum (schwarz) und Raman-Spektrum (blau) von Na₂ReO₃

Abb. 3.4.21

Auftragung der Lage der Re-Re-Valenzschwingung gegen den Re-Re-Abstand im Vergleich mit literaturbekannten Verbindungen [29]

Abb.3.4.22

Auftragung der Bindungsordnung gegen die Lage der Re-Re-Valenzschwingung im Vergleich mit literaturbekannten Verbindungen [29]

3.5.6 Extended-Hückel-Rechnungen für Na₂ReO₃

Neben der Schwingungsspektroskopie stellen Rechenmethoden eine weitere Möglichkeit dar, lokale Anordnungen zu untersuchen, und somit die Röntgenstrukturanalyse zu ergänzen. Es wurde die ekliptische Anordnung der [Re₂O₆]-Gruppe mit D_{3h} -Symmetrie mit der gestaffelten Anordnung mit D_{3d} -Symmetrie verglichen (Rechnungen Dr. A.-V. Mudring).

Für die ekliptische Anordnung (D_{3h}) wurde den Rechnungen ein trigonal-prismatisches Modell zugrunde gelegt, Abb. 3.5.23, für die gestaffelte Anordnung (D_{3d}) ein trigonalantiprismatisches Modell, Abb. 3.5.24. Die berechneten Kristall-Orbital-Überlappungspopulationen (COOP) sind in den Abbildungen 3.5.25 und 3.5.26 dargestellt. Es werden ausschließlich bindende Zustände besetzt. Für den ekliptischen Fall (D_{3h}) liegt das Maximum der Überlappungspopulation der besetzten Zustände bei 0,02, für den gestaffelten Fall (D_{3d}) liegt es bei 0,015. Unter Berücksichtigung der Integration der Flächen findet man eine Begünstigung der ekliptischen Anordnung, die etwa 1,5 % ausmacht. Die berechneten Molekülorbitale sind in den Abbildungen 3.5.27 und 3.5.28 dargestellt. In der ekliptischen Anordnung mit D_{3h} -Symmetrie ist das bindende σ -Orbital völlig unbeeinflusst von antibindenden Wechselwirkungen mit den Orbitalen der Liganden. Darüber hinaus ist deutlich eine bindende Wechselwirkung der π -Orbitale mit den π -Orbitalen der Sauerstoffliganden zu erkennen, die auch in der COOP (Abb. 3.5.25) bei einer Energie von etwa 10 eV zu erkennen ist. Im Fall der gestaffelten Anordnung mit D_{3d}-Symmetrie ist der Einfluss der antibindenden Wechselwirkung auf das bindende σ -Orbital massiv verstärkt, die Wechselwirkung der π -Orbitale mit den π -Orbitalen der Sauerstoffliganden ist antibindend, was auch in der COOP (Abb. 3.5.26) bei etwa 10 eV sichtbar ist.

Die Ergebnisse der Extended-Hückel-Rechnungen belegen, im Einklang mit den Ergebnissen aus der Spektroskopie, dass das aus der Kristallstrukturbestimmung erhaltene Modell mit ekliptisch angeordneten [Re₂O₆]-Gruppen gegenüber einer gestaffelten Anordnung der Sauerstoffliganden bevorzugt ist.

Abb. 3.5.23

Trigonal-prismatisches Modell mit D_{3h} -Symmetrie, das den Rechnungen für den Fall ekliptisch angeordneter Sauerstoffliganden in der [Re₂O₆]-Einheit zugrunde gelegt wurde

Abb. 3.5.24

Trigonal-antiprismatisches Modell mit D_{3d} -Symmetrie, das den Rechnungen für den Fall gestaffelt angeordneter Sauerstoffliganden in der [Re₂O₆]-Einheit zugrunde liegt

Abb. 3.5.25

COOP für die ekliptische Anordnung mit D_{3h} -Symmetrie

Abb. 3.5.26

COOP für die gestaffelte Anordnung mit D_{3d} -Symmetrie

Abb. 3.5.27

Abb. 3.5.28

Wie schon von Klemm vorhergesagt wurde, liegen in Na₂ReO₃ Re-Re-Bindungen vor, deren Bindungsordnung aufgrund der Re-Re-Abstände abgeschätzt werden kann. Als Re-Re-Bindungen kann man solche klassifizieren, die kürzer sind als der Re-Re-Abstand im Metall (276 pm [89]). Die Re-Re-Abstände von etwa 225 pm in prismatischen Einheiten, beispielsweise in Sm₃ReO₅ [103], La₂ReO₅ [102] und den [Re^{IV}₂O₈]-Einheiten der gemischtvalenten Rhenate Sm₃Re₂O₉ [102] und La₆Re₄O₁₈ [97], werden im Allgemeinen einer Dreifachbindung zugeschrieben. Die Abstände im Bereich von 240 pm in den kantenverknüpften Oktaederdoppeln, beispielsweise in Nd₄Re₂O₁₁ [100], La₄Re₆O₁₉ [99], La₃Re₂O₁₀ [101] oder den [Re^V₂O₁₀]-Einheiten der gemischtvalenten Rhenaten Sm₃Re₂O₉ [102] und La₆Re₄O₁₈ [97] werden Re-Re-Doppelbindungen zugeschrieben. Eine Verbindung ist bekannt, PbRe₂O₆ [106], bei der nicht von einer Re-Re-Bindung innerhalb der [Re₂O₁₀]-Einheit ausgegangen wird, da der Re-Re-Abstand mit 310,2 pm zu groß für eine attraktive Wechselwirkung ist.

Die ekliptische Anordnung der Sauerstoffliganden in der $[Re_2O_6]$ -Einheit, die im Rahmen der Röntgenstrukturanalyse gefunden wurde, konnte mit schwingungsspektroskopischen Untersuchungen experimentell belegt werden, auch die Ergebnisse vergleichender Extended-Hückel-Rechnungen stehen mit diesem Befund in Einklang.

3.6 Reaktivität

Erste Untersuchungen zur Reaktivität von Übergangsmetallen mit Alkalimetalloxiden, -sulfaten und -sulfiden sind bereits von Kohlmeyer et al. [1] durchgeführt worden. Aus den Arbeiten von Hoppe et al. [2, 3, 4] ist eine große Zahl alkalimetallreicher Oxide der "späten" Übergangsmetalle (Fe, Co, Ni, Cu) bekannt. Zunächst wurden Verbindungen dieser Übergangsmetalle in den Oxidationsstufen +3 bis teilweise +6 strukturchemisch charakterisiert, in denen das Übergangsmetallkation tetraedrisch oder oktaedrisch von Sauerstoff koordiniert wird, wobei die Koordinationspolyeder häufig verknüpft vorliegen. In den Alkalimetalloxiden der "späten" Übergangsmetalle in den niedrigen Oxidationsstufen +1 und +2 findet man ungewöhnlich kleine Koordinationssphären. So ist in Verbindungen der Zusammensetzung $A_3[M^1O_2]$ mit A = Alkalimetall, das Übergangsmetall, M, linear koordiniert [3, 5-11] und in den Verbindungen des Typs Na₄[M^{II}O₃] trigonal-planar umgeben [12, 13]. Verbindungen dieser Art können als "koordinativ ungesättigt" bezeichnet werden. Ein zusätzliches Angebot von komplexen Anionen, wie beispielsweise SO_4^{2-} , CO_3^{2-} oder S^{2-} führen zwar dazu, dass die komplexen Anionen in die Struktur eingebaut werden, nicht aber an das Übergangsmetallkation koordinieren. Na₅[MO₂](X) mit $X = CO_3^{2^-}$, $SO_4^{2^-}$ und S^{2^-} und $M = Co, Ni, Cu [14] oder Na_8[CoO_3](SO_4)_2 [85] als Beispiele für das isolierte Vorliegen von$ komplexen Oxoanionen koordinativ ungesättigten Übergangsmetallneben Sauerstoffpolyedern sind aus den Arbeiten von A. Möller et al. bekannt. Diese Verbindungen mit A = Na sind strukturell insofern verwandt, als dass sie alle in einer mehr oder weniger verzerrten CsCl-Überstruktur kristallisieren, s. Kapitel 3.1. Hierbei bilden die Alkalimetallkationen ein verzerrt quadratisches Raumnetz, dessen würfelförmige Einheiten von Übergangsmetallkationen, den Zentralatomen der komplexen Anionen bzw. weiteren Alkalikationen zentriert werden. Ziel dieser Arbeit war es, zu untersuchen, ob auch die "frühen" Übergangsmetalle (Sc, Ti, V, Cr, Mn und Fe) Verbindungen der Art Na_a[MO_b](X)_c mit $X = SO_4^{2-}$, CO_3^{2-} und OH⁻ ausbilden. Darüber hinaus stellt sich die Frage, ob die den bekannten Strukturen gemeinsamen würfelförmigen Einheiten der CsCl-Überstruktur auch von anderen komplexen Anionen zentriert werden könnten, beispielsweise von MnO4ⁿ⁻, FeO_4^{n-} , SiO₄⁴ oder CrO₄²⁻, was auch im Hinblick auf die magnetischen Eigenschaften solcher Verbindungen von großem Interesse ist. Dieser Teil beinhaltet die Modifizierung des anionischen Teils (X)_c, wohingegen ein zweiter Aspekt Veränderungen im kationischen Teil A betrifft, beispielsweise die Variation der Kationengröße (A = Li-Cs). Am Beispiel der Alkaliferrate wird der Einfluss der Wahl des Alkalimetallkations verdeutlicht. Na₃FeO₃ bildet

Ketten aus eckenverknüpften Tetraedern aus, s. Kapitel 3.2, während die höheren Alkalimetallhomologen andere Verknüpfungsmuster bevorzugen, beispielsweise ist für $K_6Fe_2O_6$ [57] Kantenverknüpfung von [FeO₄]-Tetraedern zu Dimeren belegt.

Da die Bildung von Verbindungen des Typs $A_a[MO_b](X)_c$ mit A = Na für die "späten" Übergangsmetalle Co, Ni und Cu bekannt ist, wurde nun der Einfluss der Alkalimetallkationen A = Li, K, und Rb auf die Bildung von neuen Verbindungen bzw. Änderungen der Kristallstruktur untersucht.

3.6.1 Untersuchungen an "frühen" Übergangsmetallen

Bei systematischen Versuchen zur Darstellung von Verbindungen des Typs $Na_{4}[MO_{b}](X)_{c}$ mit M = "frühes" Übergangsmetall (Sc, Ti, V, Cr, Mn, Fe) und X = SO_{4}^{2-} , CO_{3}^{2-} , OH oder S²⁻ stellte sich heraus, dass, entgegen den Beobachtungen bei den "späten" Übergangsmetallen, kein Einbau der komplexen Anionen in die Struktur eintritt, die zugegebenen Natriumsalze vielmehr als Mineralisatoren wirken. Eine Übersicht über die durchgeführten Umsetzungen und die erhaltenen Produkte ist in Tabelle 3.6.1 gegeben, die entsprechenden Pulverdiffraktogramme sind in Anhang A aufgeführt. Die Diffraktogramme der nur aus Pulverdaten bekannten Verbindungen (NaVO₂, γ -Na₃VO₄ und Na₃TaO₄) wurden unter Gitterkonstantenverfeinerung aus Einkristalldaten isoptyper Verbindungen simuliert, Anhang A. Die Umsetzungen der innig verriebenen Edukte Na₂O, CdO, Na₂X und das Übergangsmetall im Verhältnis 3: 1: 2: 1 fanden in Silberampullen im stehenden Röhrenofen statt.

Mit Scandiumstücken bildet sich vorzugsweise das dreiwertige NaScO₂, welches aber nur als Pulver erhalten werden konnte, wobei noch Reste des eingesetzten Scandiumstückes vorlagen Das eingesetzte Titanblech reagiert unter diesen Bedingungen zum vierwertigen Na₄TiO₄, von dem gut ausgeprägte Einkristalle erhalten wurden, allerdings werden hier ebenfalls Reste des eingesetzten Titanblechs gefunden Die Umsetzungen mit Vanadium (Pulver) und Na₂CO₃ bzw. Na₂SO₄ liefern fünfwertiges γ -Na₃VO₄, während mit NaOH als Mineralisator NaVO₂ mit der niedrigeren Oxidationsstufe +3 erhalten wird. Bei den Umsetzungen mit Chrom (Pulver) entsteht mit Na₂CO₃ und NaOH jeweils das dreiwertige NaCrO₂, während sich in Anwesenheit von Na₂SO₄ vierwertiges Na₄CrO₄ bildet. Auch bei den Umsetzungen mit Mangan (Pulver), bei denen in Anwesenheit von Na₂S bzw. ohne Mineralisator die zweiwertigen Natriummanganate Na₁₀Mn₄O₉ und Na₁₄Mn₂O₉ einkristallin gebildet werden, entstehen mit Na₂SO₄ zusätzlich Einkristalle von dreiwertige m Na₄Mn₂O₅. Dieser Trend zeigt ganz deutlich ein verändertes Redoxverhalten der Übergangsmetalle in Anwesenheit von Na₂O und Na₂SO₄. Diese bilden bei etwa 500°C die niedrig schmelzende Verbindung Na₆O(SO₄)₂ [108]. Möglich ist beispielsweise auch ein Mitreagieren von Na₂O im Verlauf der Reaktion, da häufig Verbindungen gefunden wurden, die durch alleinige Oxidation des Übergangsmetalls mit CdO nicht erhalten werden können, vgl. Kapitel 3.2. Aus dem reichen Phasendiagramm des Systems Na₂O/ FeO/ Fe₂O₃ wurden in Abhängigkeit von der Reaktionsführung verschiedene Natriumferrate erhalten, für eine detaillierte Diskussion vergleiche Kapitel 3.2.

Weitere Umsetzungen wurden vor allem mit Na₂SO₄ durchgeführt, da aufgrund des niedrigen Schmelzpunktes von intermediär gebildetem Na₆O(SO₄)₂ oftmals gut kristallisierte Produkte erhalten werden konnten, wohingegen bei den Umsetzungen ohne Na₂SO₄ mikrokristalline Produkte beobachtet wurden.

Auch die höheren Übergangsmetallhomologen, Nb, Ta und Mo, wurden mit Na₂O, CdO und Na₂SO₄ im molaren Verhältnis 3: 1: 2 umgesetzt. Eine Übersicht über die erhaltenen Ergebnisse im Vergleich mit den niedrigeren Gruppenhomologen (V und Cr) ist in Tabelle 3.6.2 gegeben. Die Gruppenhomologen des V verhielten sich ebenso wie dieses, es wurden die isotypen fünfwertigen Verbindungen Na₃NbO₄ und Na₃TaO₄, allerdings nicht einkristallin, erhalten. Aus der Umsetzung mit Molybdän konnten Einkristalle der Zusammensetzung Na₄MoO₅ in guter Qualität erhalten werden. Aus dem Pulverdiffraktogramm wurden die Gitterkonstanten verfeinert. Eine Strukturbestimmung von Na₄MoO₅ anhand von Röntgenbeugung am Pulver ist von M. Jansen et al. bekannt [109]. Neben Kristallen dieser Verbindung enthielt der Ansatz auch Kristalle mit davon abweichenden Gitterkonstanten und Winkeln. Die Lösung der Kristallstruktur dieser zweiten Verbindung erwies sich allerdings als problematisch und erfordert weitere Arbeiten. Gitterkonstanten und Winkel der gefundenen Produkte sind in Tabelle 3.6.3 im Vergleich zu den Daten der von Jansen et al. dargestellten Verbindung aufgeführt.

Tabelle 3.6.1	Übersicht ül	ber die dı	urchgeführtei	a Umsetzı	ungen mit "fi	rühen" Ü	lbergangsn	retallen i	und die erhalte	ten Prod	lukte.	
[X]	Sc (Blech)	J∘/T	Ti (Blech)	J∘/T	V (Pulver)	J∘/L	Cr (Pulver)	J° ∖T	Mn (Pulver)	T/ °C	Fe (Ampulle/Pulver)	°C V
SO4 ²⁻	NaScO ₂	600	$Na_4TiO_4^*$	600	γ -Na $_3$ VO $_4$	600	Na ₄ CrO 4	450	Na ₁₄ Mn ₂ O ₉ * Na ₄ Mn ₂ O ₅ *	650	Na_4FeO_3*	400
							Na ₄ CrO 4	700			Na ₃ FeO ₃ * Na ₁₄ Fe ₆ O ₁₆ * Na ₈ Fe ₂ O ₇ *	650
CO ₃ -		550	$\mathrm{Na_4TiO_4}^{*}$	600	γ -Na ₃ VO ₄	600	NaCrO ₂	450			Na4FeO3*	400
							NaCrO ₂	600			Na _s Fe ₂ O ₇ * Na ₃ FeO ₃ *	650
-HO	NaScO ₂	600	$Na_4TiO_4^*$	600	NaVO ₂	600	NaCrO ₂	450			$Na_{s}Fe_{2}O_{7}*$	400
							NaCrO ₂	600			Na ₁₀ Fe ₄ O ₉ * Na ₅ FeO ₄ * Na ₄ FeO ₃ *	650
S ²⁻									Na ₁₀ Mn ₄ O ₉ * Na ₁₄ Mn ₂ O ₉ *	650		
ohne Mineralisator									Na ₁₀ Mn ₄ O ₉ Na ₁₄ Mn ₂ O ₉	650	Na ₁₄ Fe ₆ O ₁₆ * Na ₃ FeO ₃ *	650
Die mit * geken	nzeichneten V	erbindung	gen wurden ein	ıkristallin (erhalten.							

Spezieller Teil

117

Tabelle 3.6.2

Übersicht über die mit Na₂SO₄ umgesetzten höheren Gruppenhomologen im Vergleich mit V und Cr.

[X]	M (Pulver)	Produkt	T/ ℃
SO_4^{2-}	V	γ-Na ₃ VO ₄	600
	Nb	Na ₃ NbO ₄	700
	Та	Na ₃ TaO ₄	700
	Cr	Na ₄ CrO ₄	700
	Мо	Na ₄ MoO ₅ *	700

Die einkristallin erhaltenen Produkte sind mit * gekennzeichnet.

Tabelle 3.6.3

Gitterkonstanten in pm und Winkel in Grad für Na₄MoO₅

Na ₄ MoO ₅ [109]	Na ₄ MoO ₅	Zweite Phase,
Röntgenpulverdaten	Röntgenpulverdaten	Einkristall
ΡĪ	ΡĪ	
999,5(1)	994,4(3)	1130,2(1)
1002,0(1)	1002,0(3)	1130,6(1)
565,1(1)	565,2(2)	1672,8(2)
96,54(1)°	96,49(3)°	90,024(8)°
96,29(1)°	96,30(3)°	89,981(8)°
113,35(1)°	113,31(2)°	107,676(8)°
	Na4MoO5 [109] Röntgenpulverdaten PĪ 999,5(1) 1002,0(1) 565,1(1) 96,54(1)° 96,29(1)° 113,35(1)°	Na4MoO5 [109] Na4MoO5 Röntgenpulverdaten Röntgenpulverdaten PĪ PĪ 999,5(1) 994,4(3) 1002,0(1) 1002,0(3) 565,1(1) 565,2(2) 96,54(1)° 96,49(3)° 96,29(1)° 113,31(2)°

3.6.2 Untersuchungen zur Modifizierung des anionischen Teils (X)_c in Verbindungen des Typs A_a[MO_b](X)_c

Es stellte sich die Frage, ob die bekannten Strukturen von $A_a[MO_b](X)_c$ mit einer verzerrten CsCI-anlogen Struktur bezüglich der Kationenlagen auch von anderen komplexen Anionen, wie beispielsweise MnO_4^{n-} , FeO_4^{n-} , CrO_4^{2-} oder SiO_4^{4-} , erhalten werden könnten. Daraufhin wurden systematische Umsetzungen von Co, von dem die Bildung unterschiedlicher Varianten von Verbindungen des Typs $A_a[MO_b](X)_c$ bekannt ist, beispielsweise $Na_5[CoO_2](SO_4)$ [14] oder $Na_8[CoO_3](SO_4)_2$ [85] (Kapitel 3.1), und jeweils einem anderen Übergangsmetall (Mn, Fe, Cr) mit CdO in Anwesenheit von Na_2O in verschiedenen molaren Verhältnissen durchgeführt. Eine Übersicht über die erhaltenen Verbindungen ist in Tabelle 3.6.4 gegeben. Außerdem wurden Umsetzungen der "späten" Übergangsmetalle Ni und Cu mit CdO in Anwesenheit von SiO_2 durchgeführt, deren Ergebnisse in Tabelle 3.6.5 zusammengefasst sind.

Aus Arbeiten von A. Möller et al. ist bekannt, dass die Verbindung $Na_{11}[CuO_4](SO_4)_3$ [110] durch Umsetzung von CuO mit Na_2O_2 und Na_2SO_4 dargestellt werden kann. Einer Variation im anionischen Teil, (X)_c, entsprechend, wurde CuO mit Na_2O_2 und Na_2CO_3 bzw. NaOH umgesetzt. Die Ergebnisse dieser Umsetzungen sind in Tabelle 3.6.6 aufgeführt. Alle aufgenommenen Pulverdiffraktogramme befinden sich in Anhang B.

Bei den Umsetzungen mit Co und Mn ist in beiden Fällen als Hauptprodukt ein Alkalimanganat(III) entstanden, daneben liegt jeweils als Nebenprodukt $Na_{14}Mn_2O_9$ [81] vor. Bei der cadmiumoxidreicheren Umsetzung bildet $NaMnO_2$ [69] die Hauptphase. In der cadmiumoxidreicheren Umsetzung war offenbar die Oxidation des Mangans gegenüber der des Cobalts stark begünstigt, da noch elementares Co im Produktgemenge gefunden wird. Aus der Umsetzung mit Co und Fe als zweitem Übergangsmetall wurden gut ausgebildete, einfache Mischkristalle der Form $Na_5(Fe/Co)O_4$ erhalten; Na_5FeO_4 [50] und Na_5CoO_4 [111] kristallisieren isotyp.

Eine Umsetzung von Co und Cr mit CdO in Anwesenheit von Na₂O und Na₂SO₄ als Mineralisator führte zur Bildung von NaCrO₂ [112] mit Cr in der Oxidationsstufe +3, sowie vierwertigem Na₄CrO₄ [113]. Bei der entsprechenden Umsetzung mit K₂SO₄ als Mineralisator bildete sich nur das vierwertige Na₄CrO₄ [113]. In beiden Fällen liefert das Pulverdiffraktogramm keinerlei Hinweise auf metallisches Cobalt. Reaktionen der "späten" Übergangsmetalle Ni mit CdO bzw. Cu₂O in Anwesenheit von Na₂O und SiO₂ führten zur Bildung von Na₂NiO₂ [114] und NaCuO [115] neben Na₄SiO₄ [116], Tabelle 3.6.5.

Die oxidative Umsetzung von Cu_2O mit Na_2O_2 in Gegenwart von Na_2CO_3 lieferte ein ternäres Natriumcuprat(III), $Na_6Cu_2O_6$ [117], in einkristalliner Form. Mit NaOH entstanden zusätzlich dazu Einkristalle der bereits bekannten Verbindung $Na_5[CuO_2](OH)_2$ [118] mit Cu in der Oxidationsstufe +1, Tab. 3.6.6.

Im Rahmen dieser Versuchsreihe konnten weder Verbindungen des Typs $A_a[MO_b](X)_c$ mit X = MnO_4^{n-} , FeO_4^{n-} oder CrO_4^{2-} , noch mit X = SiO_4^{4-} dargestellt werden. Auch eine Variation im anionischen Teil von $Na_{11}[CuO_4](X)_c$ ist nicht gelungen.

Tabelle 3.6.4 Übersicht über die Ergebnisse der Umsetzung von Co und jeweils einem weiteren Übergangsmetall mit CdO und Na₂O.

	М	molares Verhältnis Co/ Mn/ CdO/ Na ₂ O	T/ °C	Produkte
Со	Mn	2: 2: 7: 5	600	NaMnO ₂ /
				Na ₁₄ Mn ₂ O ₉
	Mn	1: 3: 4: 5	700	$Na_4Mn_2O_5$
				Na ₁₄ Mn ₂ O ₉
				Co
	Fe	2: 2: 5: 9	700	Na ₅ (Fe/Co)O ₄ *
				Na ₂ CdO ₂
	Cr	1: 1: 2: 6: 4 Na ₂ SO ₄	700	NaCrO ₂
				Na ₄ CrO ₄
	Cr	1: 1: 2: 6: 4 K ₂ SO ₄	700	Na ₄ CrO ₄

* Einkristallin erhalten, einfache Mischkristalle.

Edukte	molares Verhältnis der Edukte	T/ °C	Produkte
Na2O/ CdO/ SiO2/ Ni	7: 1: 1: 2 600	600	Na ₂ NiO ₂
11a20/ Cu0/ 510 2/ 111		000	Na ₄ SiO ₄ *
			NaCuO
$Na_2O/Cu_2O/SiO_2$	7: 1: 1	600	Na ₄ SiO ₄
			SiO ₂

Tabelle 3.6.5 Umsetzungen der "späten" Übergangsmetalle mit CdO, Na₂Ound SiO₂.

Die mit * gekennzeichnete Verbindung wurde einkristallin erhalten.

Tabelle 3.6.6 Versuche zur Variation des Anionenteils, $(X)_c$, in Na₁₁[CuO₄](X)₃.

	$A_2X/$	molares Verhältnis	T∕ °C	Produkte
	AOH	$Cu_2O/\ Na_2O/\ Na_2O_2/$		
		Na ₂ CO ₃ bzw. NaOH		
Cu ₂ O/ Na ₂ O/ Na ₂ O ₂	Na ₂ CO ₃	2: 4: 1: 6	550	Na ₆ Cu ₂ O ₆ *
	NaOH	2: 4: 1: 12	550	$Na_6Cu_2O_6*$
				Na ₅ [CuO ₂](OH) ₂ *

Die mit * gekennzeichneten Produkte wurden einkristallin erhalten.

3.6.3 Untersuchungen zur Modifikation des Kationenteils A in Verbindungen des Typs A_a[MO_b](X)_c

Der Einfluss des Alkalimetallkations auf die Struktur von Alkalimetall-Übergangsmetalloxiden ist z.B. bei Verbindungen des Typs A₃FeO₃, vgl. Kapitel 3.2, bekannt. Für die späten" Übergangsmetalle ist die Bildung von Verbindungen des Typs $A_a[MO_b](X)_c$ mit A = Na belegt. Der Einfluss der Alkalimetallkationen Li, K und Rb auf die Bildung und die Struktur der oben genannten Verbindungen ist jedoch noch sehr wenig untersucht. Im Rahmen dieser Arbeit wurden nun die "späten" Übergangsmetalle Co, Ni und Cu, mit CdO in Anwesenheit von A₂O und A₂X bzw. AOH mit A = Li, K, Rb und X = CO_3^{2-1} und SO_4^{2-} umgesetzt. Eine Übersicht über die erhaltenen Produkte, von denen kein einziges einkristallin anfiel, ist in Tabelle 3.6.7 gegeben. Die aufgenommenen Pulverdiffraktogramme befinden sich im Anhang C.

Anders als bei Umsetzungen im System Na/ Co/ O, bei denen die Bildung von Alkalimetall-Oxocobaltaten(I) beobachtet wird [14, 119], werden in Anwesenheit von Rb₂O und K₂X bzw. KOH Cobaltate in höheren Oxidationsstufen gebildet. Mit K₂SO₄ entsteht das zweiwertige K₂CoO₂ [40] neben dem Spinell Co₃O₄ [120], in dem Co²⁺ und Co³⁺ vorliegt, sowie Rb₂SO₄. Es findet also ein Kationenaustausch für das Alkalimetallsulfat statt, während sowohl ein ternäres Kaliumoxocobaltat(II) als auch ein binäres Oxocobaltat(II,III) gebildet werden. Umsetzungen mit K₂CO₃ liefern das quaternäre Rubidiumkalium-Oxocobaltat(II), Rb₂K₄Co₂O₅ [121] neben Co₃O₄ [120]. Es findet kein Kationenaustausch statt, denn man beobachtet überschüssiges K₂CO₃ im Produktgemenge. Im Ansatz mit KOH wird der Spinell, Co₃O₄, neben KOH gefunden. Bemerkenswerterweise wird hier kein ternäres Oxocobaltat beobachtet. Der Verbleib von Rb₂O ist ungewiss. Möglicherweise fungiert es im Rahmen der Reaktion als Oxidationsmittel, womit sich die formale Oxidationsstufe des Cobalts von +3 im Spinell erklären ließe, die in allen Umsetzungen in Anwesenheit von Rb₂O beobachtet wird.

Wie bei den Umsetzungen von Co findet bei der Reaktion von Ni mit CdO in Anwesenheit von Rb₂O und K₂CO₃ ein Ionenaustausch zwischen den Alkalisalzen statt. Das eingesetzte Ni reagiert zum binären Oxid NiO, Hinweise auf eine ternäre Verbindung, wie z.B. K₂NiO₂ [122] liefert das aufgenommene Pulverdiffraktogramm nicht.

Aus der Umsetzung von Cu₂O mit L $_{b}O$ und L $_{b}CO_{3}$ wurde LiCuO [123] mit Cu in der Oxidationsstufe +1 erhalten.

In keinem Fall ist es gelungen, Verbindungen des Typs $A_a[MO_b](X)_c$ mit A = Li, K oder Rb darzustellen.

Tabelle 3.6.7

Übersicht über die Produkte der Umsetzungen von Co, Ni und Cu mit CdO in Anwesenheit von A₂O und A₂X bzw. AOH mit A = Li, K, Rb und X = CO_3^{2-} und SO_4^{2-} .

	A ₂ O	A ₂ X/ AOH	molares Verhältnis M/ A ₂ O/ A ₂ X (AOH)/ CdO	T/ °C	Produkte
Co	Rb ₂ O	K_2SO_4	1: 3: 2: 1	600	K ₂ CoO ₂
					Rb_2SO_4
					Co_3O_4
		K_2CO_3	1: 3: 2: 1	600	$Rb_2K_4Co_2O_5$
					K_2CO_3
					Co ₃ O ₄
		K_2CO_3	1: 3: 2: 1	700	$Rb_2K_4Co_2O_5$
					K_2CO_3
					Co ₃ O ₄
		КОН	1: 3: 4: 1	600	Co ₃ O ₄
					КОН
Ni	Rb ₂ O	K ₂ CO ₃	2: 7: 1: 1	700	NiO
					Rb ₂ CO ₃
Cu ₂ O	Li ₂ O	Li ₂ CO ₃	1: 3: 2	700	LiCuO
					Li ₂ CO ₃

Ausgehend von Arbeiten von A. Möller et al., in denen gezeigt wird, dass die Verbindung $Na_{11}[CuO_4](SO_4)_3$ durch Umsetzung von CuO mit Na_2O_2 und Na_2SO_4 dargestellt werden kann, wurde, einer Variation im kationischen Teil entsprechend, CuO mit KO₂ und Na_2CO_3 bzw. NaOH in Anwesenheit von Na_2O umgesetzt. Die erhaltenen Produkte sind in Tabelle 3.6.8 aufgelistet.

Neben dem dreiwertigen ternären Natriumoxocuprat(II), Na₆Cu₂O₆ [117], wurden verschiedene ternäre Silberverbindungen gefunden, die aus einer Reaktion mit der Gefäßwand herrühren.

Eine Variation des kationischen Teils der Zielverbindung durch Einbau von Kalium ist in beiden Fällen nicht gelungen.

Tabelle 3.6.8

Übersicht über die Produkte der Umsetzungen mit dem "späten" Übergangsmetall Cu und KO₂.

	A ₂ X/ AOH	molares Verhältnis CuO/ Na ₂ O/ KO ₂ / A ₂ X bzw AOH	T/ °C	Produkte
CuO/ Na ₂ O/ KO ₂	Na ₂ CO ₃	3: 8: 3: 9	550	$Na_6Cu_2O_6*$
	NaOH	3: 8: 3: 18	550	Na ₃ AgO ₂ * Na ₆ Cu ₂ O ₆ *
				Na ₃ AgO ₂ * NaAgO

Die mit * gekennzeichneten Produkte wurden einkristallin erhalten.

Die durchgeführten Untersuchungen belegen, dass bei der gleichzeitigen Umsetzung von zwei Übergangsmetallen mit CdO eine selektive Oxidation eintritt: Stets wird zuerst das unedlere Metall oxidiert. Bei vergleichbarer Edelkeit der Übergangsmetalle, wie im Beispiel von Co und Fe, tritt zwar Oxidation beider Übergangsmetalle ein, aber es werden separate Phasen gebildet.

3.6.4 Varianten des Supertetraeders Na₂₆Mn₃₉O₅₅ mit anderen Übergangsmetallen

 $Na_{26}Mn_{39}O_{55}$ [124] kristallisiert in der kubischen Raumgruppe Fd $\overline{3}m$ (Nr. 227). In dieser Verbindung bilden 35 [MnO₄]-Tetraeder über Ecken verknüpft Supertetraeder mit einer Kantenlänge von fünf [MnO₄]-Einheiten aus. Es liegen innerhalb dieser Supertetraeder sowohl Mn^{2+} als auch Mn^{3+} gemäß der Summenformel $Na_{26}[Mn^{II}_{29}Mn^{III}_{6}]O_{55}$ vor.

Im Rahmen dieser Arbeit sollten Varianten dieser Verbindung mit anderen Übergangsmetallkationen untersucht werden.

Auf dem Weg einer Erhöhung der Konzentration der Alkalimetallkationen im Vergleich zur von A. Möller et al. [124] beschriebenen Darstellungsmethode für Na₂₆Mn₃₉O₅₅ sollte eine Verknüpfung der Supertetraeder verhindert werden. Bei der Einwaage wurde das Verhältnis Mn: M so gewählt, dass Mn die M^{II}-Lagen einnehmen sollte und das andere Übergangsmetall die M^{III}-Lagen. Eine Umkehr der Besetzung der M^{II}- und M^{III}- Lagen im Supertetraeder mit dem Ziel einer Verbindung der Form "Na₂₆[M^{II}₂₉Mn^{III}₆]O₅₅" sollte im Rahmen einer relativ natriumarmen Umsetzung erreicht werden. Eine Übersicht ist in Tabelle 3.6.9 gegeben. Die aufgenommenen Pulverdiffraktogramme sind in Anhang D abgebildet.

Bei den natriumarmen Umsetzungen entstand ausnahmslos NaMnO₂ neben überschüssigem CdO. Während das eingesetzte Chrom unverändert im Produktgemisch vorlag, bildete sich mit Scandium Sc₂O₃. Die natriumarmen Umsetzungen mit Eisen lieferten Produkte, deren Reflexe im Pulverdiffraktogramm denen des nicht einkristallin bekannten Spinells "MnFe2O4" und MnO zuzuordnen sind. Dessen Pulverdiffraktogramm wurde auf der Grundlage der Spinellverbindungen Fe₃O₄ [125] und $CdFe_2O_4$ [126] unter Gitterkonstantenverfeinerung simuliert.Das eingesetzte Gallium ist offenbar trotz aller Vorsichtsmaßnahmen aus den Ansätzen entwichen.

In den natriumreichen Umsetzungen hat sich jedes Mal die bekannte Verbindung $Na_{26}Mn_{39}O_{55}$ in einkristalliner Form gebildet.

Tabelle 3.6.9

Übersicht über die durchgeführten Umsetzungen und ihre Ergebnisse.

Übergangsmetall, M	Verhältnis	T/ °C	Produkte			
	Na ₂ O/ CdO/ M/ Mn					
Fe	18: 38: 6: 29	700	Na ₂₆ Mn ₃₉ O ₅₅ *			
			NaMnO ₂			
			MnO			
	7: 99: 58: 12	700	"MnFe ₂ O ₃ " ^{a)}			
			MnO			
Cr	18: 38: 6: 29	700	Na ₂₆ Mn ₃₉ O ₅₅ *			
			NaMnO ₂			
			Cr			
	7: 99: 58: 12	700	NaMnO ₂			
			CdO			
			Cr			
Sc	18: 38: 6: 29	700	Na ₂₆ Mn ₃₉ O ₅₅ *			
			NaMnO ₂			
			NaScO ₂			
	7: 99: 58: 12	700	NaMnO ₂			
			CdO			
			Sc_2O_3			
Ga	18: 38: 6: 29	550	Na ₂₆ Mn ₃₉ O ₅₅ *			
			NaMnO ₂			
			MnO			
	7: 99: 58: 12	550	NaMnO ₂			
			CdO			

^{a)} nicht einkristallin bekannt, Pulverdiffraktogramm auf der Grundlage der Spinellverbindungen Fe₃O₄ [125] und CdFe₂O₄ [126] simuliert

* als Einkristalle erhalten

An den erhaltenen Einkristallen von Na₂₆Mn₃₉O₅₅ wurden EDX-Messungen durchgeführt. Es konnte außer Mn kein weiteres Übergangsmetall nachgewiesen werden. Auch hier hat sich bestätigt, dass bei gleichzeitiger Umsetzung von verschiedenen Übergangsmetallen selektive Oxidation eintritt und das unedlere Übergangsmetall zuerst oxidiert wird. Im Fall der Umsetzung mit Fe oder mit Sc haben sich ternäre Natriumoxometallate gebildet. Hier findet also eine Phasenseparation statt, so dass davon auszugehen ist, keine einfachen Substitutionen oder Mischkristalle auf diesem Weg zu erhalten. Nach der Umsetzung von Mn und Cr liegt das Cr allerdings völlig unverändert im Produktgemenge vor, möglicherweise aufgrund einer Passivierung. Lohnend wäre demnach die Umsetzung eines Übergangsmetalls, von dem bekannt ist, dass sowohl die Oxidationsstufe +2 als auch +3 in Natriumoxoverbindungen stabilisiert werden kann. Hier sollte man nochmals z.B. gezielt das System Na₂O/ Fe untersuchen, da hier tetraedrische Umgebungen sowohl für Fe²⁺ als auch für Fe³⁺ gefunden werden. Möglicherweise kann so die selektive Oxidation und die Phasenseparation vermieden werden und neue Varianten von Supertetraedern dargestellt werden.

4 Zusammenfassung

Im Rahmen dieser Arbeit sollte untersucht werden, ob die "frühen" Übergangsmetalle Verbindungen des Typs $A_a[MO_b](X)_c$ bilden, mit A = Alkalimetall, M = Übergangsmetall und X = komplexes Oxoanion, wie man sie von den "späten" Übergangsmetallen kennt. Hierzu wurden Untersuchungen mit M = Sc, Ti, V, Cr, Mn, Fe, Co, A = Li, Na, K, Rb und X = SO₄²⁻, CO₃²⁻, OH⁻, SO₃²⁻, SiO₄⁴⁻, MnO₄ⁿ⁻, FeO₄ⁿ⁻, CrO₄²⁻ durchgeführt. Für M = Co konnte mit Na₈[CoO₃](SO₄)₂ eine neue Verbindung des Typs A_a[MO_b](X)_c

dargestellt werden. Von dieser wurden IR-, und UV-VIS Spektren aufgenommen. Die magnetischen Eigenschaften wurden mittels eines SQUID-Magnetometers bestimmt. Außerdem wurde der Madelunganteil der Gitterenergie berechnet.

Bei den Elementen links von Co im Periodensystem erfolgte kein Einbau von komplexen Natriumoxoanionen in die Struktur, vielmehr wirkten diese als Mineralisatoren, die den Zugang zu neuen terrären Verbindungen ermöglichten.

Mit Na₃FeO₃ konnte das erste ternäre Natriumoxoferrat(III) mit Kettenstruktur dargestellt werden, eine Verbindung die in direkter Umsetzung der binären Komponenten nicht einkristallin und phasenrein zu erhalten ist. Es wurden systematische Untersuchungen zur Bildung von Na₃FeO₃ und zur Reaktivität im System Na/ Fe/ O durchgeführt. Für Na₃FeO₃ wurde der Madelunganteil der Gitterenergie berechnet.

Das in Anwesenheit von Mineralisatoren erstmals dargestellte $Na_{10}[MnO_3][Mn_3O_6]$ ist das zweite ternäre Natriumoxomanganat(II) und die erste Oxoverbindung des Mn mit Mn²⁺ in trigonaler Sauerstoffkoordination. Die Zentralatome der [MnO₃]-Einheiten sind paarweise aufeinander zu ausgelenkt. Extended-Hückel-Rechnungen weisen auf eine Mn-Mn-Einfachbindung hin. Ein Vergleich von Na₁₀[MnO₃][Mn₃O₆] mit den isotypen Verbindungen Na₁₀[FeO₃][Fe₃O₆] und Na₁₀[ZnO₃][Zn₃O₆] und mit Na₁₀Co₄O₉, welches einen anderen Strukturtyp bevorzugt, belegt, dass ein Strukturmodell mit einer Mn-Mn-Einfachbindung für Na₁₀[MnO₃][Mn₃O₆] sinnvoll ist. Für die Verbindung wurde darüber hinaus der Madelunganteil der Gitterenergie berechnet.

Der Einsatz von Mineralisatoren ermöglichte auch den Zugang zu neuen reduzierten Alkalirhenaten. Es gelang die Darstellung von Na₂ReO₃, dem ersten Alkalimetalloxorhenat(IV). In der Kristallstruktur liegen trigonal-prismatische [Re₂O₆]⁴⁻Einheiten vor. Anhand von IR-, Raman-, und UV-VIS-Spektroskopie sowie Extended-Hückel-Rechnungen konnte belegt werden, dass dieses Strukturmotiv gegenüber ebenfalls möglichen trigonalantiprismatischen [Re₂O₆]-Einheiten bevorzugt ist. Es ergibt sich außerdem eine bindende Wechselwirkung zwischen den Rheniumatomen jeder [Re₂O₆]⁴⁻Einheit, die einer Dreifachbindung entspricht. Systematische Untersuchungen zur Reaktivität im System Na/ Re/ O zeigten, dass Na₂ReO₃ in topotaktischer Reaktion aus Na₅ReO₆ entsteht, von dem eine neue Modifikation strukturchemisch charakterisiert werden konnte. Das Absorptionsspektrum des grün gefärbten Na₅ReO₆(Fddd) zeigt die Anwesenheit von Re⁴⁺ in der Verbindung. Außerdem wurde der Madelunganteil der Gitterenergie für die neue Modifikation von Na₅ReO₆ bestimmt und mit bekannten Werten für andere ternäre Natriumrhenate verglichen.

Versuche zur Modifizierung des kationischen Teils A mit A = Li, Na. K, Rb oder des anionischen Teils (X)_c mit X = MnO_4^{n-} , FeO_4^{n-} , CrO_4^{2-} oder SiO_4⁴⁻ von Verbindungen des Typs A_a[MO_b](X)_c führten nicht zur Bildung der gewünschten Verbindungen. Man beobachtete stets selektive Oxidation, was auch dazu führt, dass auf diesem Weg keine Supertetraederverbindungen erhalten werden können. Bei den Umsetzungen von Übergangsmetallen M = Sc, Ti, V, Cr mit CdO und Na₂O in Anwesenheit von Mineralisatoren wurden höhere Oxidationsstufen gebildet als von entsprechenden Umsetzungen mit den "späten" Übergangsmetallen bekannt ist. Beispielsweise wurden Einkristalle von Na₄TiO₄ und Na₄MoO₅ erhalten, obwohl die in diesen Verbindungen vorliegenden Oxidationsstufen der Übergangsmetalle mit der eingewogenen Menge CdO nicht zu erreichen sind. Hierbei hat offensichtlich Na₂O einen Einfluss auf den Oxidationsprozess, eine Beobachtung, die auch aus den entsprechenden Systemen mit Fe belegt ist.

5 Literatur

- [1] E.G. Bunzel, E.J. Kohlmeyer, Z. Anorg. Allg. Chem., **1947**, 254, 1.
- [2] R. Hoppe, J. Birx, Z. Anorg. Allg. Chem., 1988, 557, 171;
- [3] W. Burow, J. Birx, F. Bernhardt, R. Hoppe, Z. Anorg. Allg. Chem., 1993, 619, 932
- [4] F. Bernhardt, R. Hoppe, Z. Anorg. Allg. Chem., **1993**, 619, 923.
- [5] W. Carl, R. Hoppe, Z. Anorg. Allg. Chem., **1989**, 514, 79.
- [6] R. Hoppe, W. Losert, Z. Anorg. Allg. Chem., **1985**, 521, 69.
- [7] W. Losert, R. Hoppe, Z. Anorg. Allg. Chem., **1984**, 515, 87.
- [8] F. Schenk, R. Hoppe, *Naturwissenschaften*, **1969**, *56*, 414.
- [9] H. Klassen, R. Hoppe, Z. Anorg. Allg. Chem., **1982**,485, 92.
- [10] B. Darriet, M. Devalette, B. Lecart, Rev. Chim. Min., 1977, 14, 423.
- [11] G. Wagner, R. Hoppe, Z. Anorg. Allg. Chem., 1987, 549, 26.
- [12] H. Rieck, R. Hoppe, *Naturwissenschaften*, **1998**, *61*, 126.
- [13] A. Möller, *Chem. Mater.*, **1998**, *10*, 3196.
- [14] P. Amann, A. Möller, Z. Anorg. Allg. Chem., 2003,629, 1643.
- [15] I. und W. Noddack, Z. Anorg. Allg. Chem., **1929**, 181, 1.
- [16] I. und W. Noddack, Z. Anorg. Allg. Chem., 1933, 215, 129.
- [17] W. Klemm, G. Frischmuth, Z. Anorg. Allg. Chem., 1937, 230, 220.
- [18] E. Vielhaber, R. Hoppe, Z. Anorg. Allg. Chem., **1992**, 610, 7.
- [19] T. Betz, R. Hoppe, Z. Anorg. Allg. Chem., **1984**, 512, 19.
- [20] R. X. Fischer, Z. Krist., **1969**, 130, 185.
- [21] G. M. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures, Göttingen 1997.
- [22] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, Göttingen, **1997**.
- [23] STOE & Cie GmbH, WinXPOW Vers. 1.07, Darmstadt 2000.
- [24] R. Hübenthal, MAPLE 4.0, Gießen **1993**.
- [25] R. Hoppe, Angew. Chem., 1966, 78, 52; Angew. Chem. Int. Ed., 1966, 5, 95; Angew.
 Chem. Int. Ed., 1970, 9, 25; Adv. Fluorine Chem., 1970, 6, 387; Izvj. Jugosl. Centr.
 Krist., 1973, 8, 21; Crystal Structure and Chemical Bonding in Inorganic Chemistry,
 Amsterdam, 1975, S. 127.

- [26] R. D. Shannon, C. T. Prewitt, *Acta Cryst. B*, **1969**, *25*, 925; R.D. Shannon, *Acta Cryst. A*, **1976**, *32*, 751
- [27] R. Hoppe, Z. Krist., **1979**, 150, 23.
- [28] J. Weidlein, U. Müller, K. Dehnike, *Schwingungsspektroskopie*,
 2. überarbeitete Auflage, Georg Thieme Verlage, Stuttgart, New York, **1988**.
- [29] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Third Edition, Wiley Interscience, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 1978.
- [30] R. Hoffmann, *Solids and Surfaces. A Chemist's View of Bonding in Extended Structures*, VCH Weinheim, **1988**.
- [31] U. Müller, Anorganische Strukturchemie, Teubner Studienbücher, Stuttgart 1993.
- [32] STOE & Cie GmbH, X-SHAPE Vers. 1-02, Crystal Optimisation for Numerical Absorption Correction, Darmstadt 1993.
- [33] STOE & Cie GmbH, X-RED Vers. 1.08a, STOE Data Reduction Program, Darmstadt 1996.
- [34] A. L. Spek, PLATON for Windows, Utrecht University, Netherlands 2000.
- [35] K. Brandenburg, Diamond Vers. 2.1c, © 1996-1999 Crystal Impact GbR 1999.
- [36] R. Hoppe, W. Burow, Z. Anorg. Allg. Chem., 1979, 459, 59;
 M. G. Barker, G. A. Fairhall, J. Chem. Research (S), 1979, 371.
- [37] M. G. Barker, G. A. Fairhall, J. Chem. Research (S), 1979, 371;
 R. Hoppe, W. Burow, Z. Anorg. Allg. Chem., 1980, 467, 158.
- [38] R Hoppe, J. Birx, Z. Anorg. Allg. Chem., **1988**, 557, 171.
- [39] S.E. Rasmussen, J.-E. Jorgensen, B. Lundtoft, *Journal of Applied Crystallography*, 1996, 29, 42.
- [40] F. Bernhardt, R. Hoppe, Z. Anorg. Allg. Chem., **1994**, 620, 586.
- [41] C. E. Schäffer, C. K. Jørgensen, *Mol. Phys.*, **1965**, *9*, 401;
 D. E. Richardson, *J. Chem. Educ.*, **1993**, *70*, 372.
- [42] A. Möller, *Chem. Mater.*,**1998**, *10*, 3196.
- [43] D. A. Kruse, J. E. Davis, M. Gerloch, J. H. Harding, D. J. Mackey, R. F.
 McMeeking, CAMMAG, FORTRAN computing package, University Chemical Laboratory: Cambridge, England, 1979.
- [44] R. Scholder, Bull. Soc. Chim. Fr., **1964**, 7, 1112.
- [45] G. Brachtel, R. Hoppe, *Angew. Chem.*, **1977**, *89*, 45.
- [46] H. Kessler, L. Son, Rev. Chim. Miner., **1980**, 17, 541.

- [47] H. Kessler, L. Son, J. Solid .State. Chem., 1981, 39,22.
- [48] C. Jeannot, B. Malaman, R. Gérardin, B. Oulladiaf, J. Solid .State. Chem., 2002, 165, 266.
- [49] A. Tschudy, H. Kessler, C. R. Acad. Sc. Paris, **1971**, 273C 1435.
- [50] G. Brachtel, R. Hoppe, Z. Anorg. Allg. Chem., 1978, 446, 77.
- [51] G. Brachtel, R. Hoppe, Z. Anorg. Allg. Chem., 1978, 446, 87.
- [52] G. Brachtel, R. Hoppe, Angew. Chem. German Ed., 1977, 89, 45.
- [53] G. Brachtel, R. Hoppe, *Naturwissenschaften*, **1977**, 64, 271;
 G. Brachtel, R. Hoppe, *Z. Anorg. Allg. Chem.*, **1978**, 446, 97.
- [54] K. Mader, R. Hoppe, Z. Anorg. Allg. Chem., **1991**, 602, 155.
- [55] R. Luge, R. Hoppe, *Naturwissenschaften*, **1984**, *71*, 264-265.
- [56] R. Luge, R. Hoppe, *Rev. Chim. Miner*, **1986**, *23*, 201.
- [57] H. Rieck, R. Hoppe, Angew. Chem. German Ed., 1973, 85, 589.
- [58] W. van Aalst, J. den Hollander, W. J. A. M. Peterse, P. M. de Wolff. *Acta Cryst. B*, 1976, 32, 47.
- [59] R. Hoppe, H. Rieck, Z. Anorg. Allg. Chem., **1977**, 437, 95.
- [60] P. Amann, A. Möller, Z. Anorg. Allg. Chem., 2002, 628, 917.
- [61] P. Amann, *Dissertation*, Köln 2001.
- [62] F. Bernhardt, R. Hoppe, Z. Anorg. Allg. Chem., 1992, 618, 63.
- [63] F. Bernhardt, R. Hoppe, Z. Anorg. Allg. Chem., **1993**, 619, 969.
- [64] A. Cimino, M. Marezio, J. of Physics and Chemistry of Solids, 1969, 7, 725.
- [65] H. Rieck, R. Hoppe, Z. Anorg. Allg. Chem., 1974, 408, 151.
- [66] E. G. Bunzel, E. J. Kohlmeyer, Z. Anorg. Allg. Chem., **1947**, 254, 1.
- [67] H.-P. Müller, R. Hoppe, Z. Anorg. Allg. Chem., **1989**, 569, 16.
- [68] T. B. Massalski, *Binary Alloy Phase Diagrams*, American Society for Metals, 1986, S. 667.
- [69] R. Hoppe, G. Brachtel, M. Jansen, Z. Anorg. Allg. Chem., 1975, 417, 1;
 J. P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier, P. Hagenmüller, J. Solid State Chem., 1971, 3, 1;
 - M. Jansen, R. Hoppe, Z. Anorg. Allg. Chem., 1973, 399, 163.
- [70] F. Chang, M. Jansen, Z. Anorg. Allg. Chem., **1985**, 531, 177.
- [71] N. S. Kopelev, M. D. Val'kovskii, A. I. Popov, N.A. Chumaevskii, *Zhurnal Neogarnicheskoi Khimi*, **1991**, *36*, 2210.
- [72] D. Fischer, R. Hoppe, J. Alloys Compd., **1992**, 183, 187.
- [73] D. Fischer, R. Hoppe, Z. Anorg. Allg. Chem., **1992**, 618, 59.
- [74] D. Fischer, R. Hoppe, Z. Anorg. Allg. Chem., 1990, 590, 7;
 D. Fischer, R. Hoppe, Angew. Chem. (German Ed.), 1990, 102, 835.
- [75] D. Fischer, R. Hoppe, Z. Anorg. Allg. Chem., **1990**, 586, 106.
- [76] W. I. F. David, J. B. Goodenough, M. M. Thackeray, M. G. S. R. Thomas, *Rev. Chim. Miner.*, **1983**, 20, 636.
- [77] R. Hoppe, E. Seipp, Z. Anorg. Allg. Chem., **1985**, 522, 33.
- [78] E. Seipp, R. Hoppe, J. Less-Common Metals, **1985**, 108, 279.
- [79] E. Seipp, R. Hoppe, Z. Anorg. Allg. Chem., **1985**, 530, 117.
- [80] E. Seipp, R. Hoppe, Z. Anorg. Allg. Chem., **1986**, 538, 123.
- [81] G. Brachtel, R, Hoppe, Z. Anorg. Allg. Chem., **1978**, 438, 97.
- [82] E. Zintl, A. Harder, B. Dauth, Zeitschrift für Elektrochemie, 1934, 40, 588; Z. Anorg.
 Allg. Chem., 1939, 241, 281.
- [83] D. Trinschek, M Jansen, Z. Anorg. Allg. Chem., 1996, 622, 245.
- [84] P Amann, A. Möller, Z. Anorg. Allg. Chem., 2002, 628, 1756.
- [85] A. Möller, B. M. Sobotka, J. Baier, A. Freimuth, Z. Anorg. Allg. Chem., 2002, 628, 2705.
- [86] J. Birx, R. Hoppe, Z. Anorg. Allg. Chem., **1990**, 588, 7
- [87] M. R. Churchill, K. N. Amoh, H. J. Wassermann, *Inorg. Chem.*, **1981**, *20*, 1609.
- [88] E. Zintl, A. Harder, B. Dauth, *Zeitschrift für Elektrochemie*, **1934**, 40, 588; Z. Anorg.
 Allg. Chem., **1931**, 198, 88.
- [89] V. M. Goldschmidt, *Naturwissenschaften*, 1929, 17, 134;
 C. T. Sims, C. M. Craighead, R. I. Jaffee, *Naturwissenschaften*, 1931, 19, 575;
 R. J. Wasilewski, *Transactions of the Metallurgical Society of Aime*, 1961, 221, 1081.
- [90] J. Lomenzo, H. Patterson, S. Strobridge, H. Engstrom, *Mol- Phys.*, **1980**, *40*, 1401.
- [91] M. Wermuth, H. U. Güdel, J. Phys,: Condens. Matter, 2001, 13, 9583.
- [92] M. Puselj, J. Bau, J. Less-Common Met., **1974**, 37, 213.
- [93] R. Scholder, K. L. Huppert, P. P. Pfeiffer, *Angew. Chem.*, **1963**, *75*, 375;
 R. Scholder, P. P. Pfeiffer, *Angew. Chem.*, **1963**, *75*, 376;
 A. Atzesdorfer, K.-J. Range, *Zeitschrift für Naturforschung B*, **1995**, *50*, 1417.
- [94] A. Chrétien, G. Duquenoy, C. R. Acad. Sc. Paris, **1969**, C 268, 509.
- [95] M. Trömel, H. Dolling, Z. Anorg. Allg. Chem., 1975, 411, 41.

- [96] A. Chrétien, A. Deschanvres, W. Freundlich, *Bull. Soc. Chim. de France*, 1960, S. 482.
- [97] G. Baud, J.-P. Besse, R. Chevalier, M. Gasperin, *Mater. Chem. Phys.*, 1983, 8, 93.
- [98] A. R. P. A. Smith, A. K. Cheetham, J. Solid State Chem., 1979, 30, 345.
- [99] J. M. Longo, A. W. Sleight, *Inorg. Chem.*, **1968**, *7*, 108.
 N. L. Morrow, L. Katz, *Acta Cryst. B*, **1968**, *24*, 1466.
- [100] K. A. Wilhelmi, E. Lagervall, R. Muller, Acta Chem. Scand., 1970, 8, 3406.
- [101] C. C. Torardi, A. W. Sleight, J. Less-Common Met., 1986, 116, 293.
- [102] W. Jeitschko, D. H. Heumannskämper, M. S. Schriewer-Pöttgen, U. Ch. Rodewald, J. Solid State Chem., 1999, 147, 218.
- [103] G. Weltschek, H. Paulus, H. Ehrenberg, H. Fuess, J. Solid State Chem., 1997, 132, 196.
- [104] K. D. Bronsema, J. L. de Boer, F. Jellinek, Z. Anorg. Allg. Chem., 1986, 540, 15.
- [105] L. O. Larsson, P. Kierkegaard, *Acta Chemica Scandinavica*, **1969**, *23*, 2253.
- [106] I. Wentzell, H. Fuess, J. W. Bats, A. K. Cheetham, Z. Anorg. Allg. Chem., 1985, 528, 48.
- [107] H. Yamane, H. Takahashi, T. Kajiwara, M. Shimada, Acta Cryst. B, 2000, 56, 1177.
- [108] H. Haas, M. Jansen, Z. Anorg. Allg. Chem., 2001, 627, 1949.
- [109] H. Haas, M. Jansen, Z. Anorg. Allg. Chem., 2001, 627, 755.
- [110] P. Amann, Dissertation, Köln 2001.
- [111] W. Burow, R. Hoppe, *Naturwissenschaften*, **1980**, 67, 192.
- [112] W. Ruedorff, H. Becker, Zeitschrift für Naturfoschung, B, 1954, 9, 614.
- [113] M. Jansen, Z. Anorg. Allg. Chem., 1975, 417, 35.
- [114] H. Zentgraf, R. Hoppe, Z. Anorg. Allg. Chem., 1980, 462, 71.
- [115] R. Hoppe, K. Hestermann, F. Schenk, Z. Anorg. Allg. Chem., 1969, 367, 275.
- [116] W. Baur, E. Halwax, H. Voellenkle, *Monatshefte für Chemie und verwandte Teile* anderer Wissenschaften, **1986**, 117, 793.
- [117] N. Bukovec, I. Leban, R. Hoppe, Z. Anorg. Allg. Chem., **1988**, 563, 79.
- [118] P. Amann, A. Möller, Z. Anorg. Allg. Chem., 2001, 627, 2571.
- [119] P. Amann, A. Möller, Z. Anorg. Allg. Chem., 2003, 629, 1643.
- [120] X. Liu, C. T. Prewitt, *Physics and Chemistry of Minerals*, **1990**, *17*, 168.
- [121] J. Birx, R. Hoppe, Z. Anorg. Allg. Chem., **1990**, 591, 67.
- [122] H. Rieck, R. Hoppe, Z. Anorg. Allg. Chem., **1973**, 400, 311.
- [123] W. Losert, R. Hoppe, Z. Anorg. Allg. Chem., 1985, 524, 7.

- [124] A. Möller, P. Amann, V. Kataev, N. Schittner, *Publikation in Vorbereitung*.
- [125] B. A. Wechsler, D. H. Lindsey, C. T. Prewitt, American Mineralogist, 1984, 69, 754.
- [126] C. O. Areau, E. G. Diaz, J. M. R. Gonzales, M. A. V. Garcia, *J. Solid State Chem.*, 1988, 77, 275.
- [127] E. Zintl, A. Harder, B. Dauth, *Zeitschrift für Elektrochemie*, **1934**, 40, 588; Z. Anorg.
 Allg. Chem., **1931**, 198, 88.
- [128] R. Hoppe, B. Schepers, H. J. Roehrborn, E. Vielhaber, ; Z. Anorg. Allg. Chem. 1965, 339, 130.
- [129] J. Kissel, R. Hoppe, Z. Anorg. Allg. Chem., **1990**, 582, 103.
- [130] H. Seki, N. Ishizawa, N. Mizutami, M. Kato, Yogyo Kyokai Shi (= Journal of the Ceramic Assoc. Of Japan), 1984, 92, 219.
- [131] A. A. Belik, A. B. Bykov, I. A. Verin, A. M. Golubev, A. K. Ivanov-Shits, A. V. Nistyuk, *Kristallografiya*, 2000, 45, 982.
- [132] E. A. Owen, G. I. Williams, *Journal of Scientific Instruments*, **1954**, *31*, 49.
- [133] J. Darriet, J. Galy, *Bulletin de la Societe Francaise de Mineralogie et de Cristallographie*, **1974**, 97, 3.
- [134] R. Kohlhaas, P. Duenner, N. Schmitz-Pranghe, Z. für Angew. Phys., 1967, 23, 245.
- [135] G. Brachtel, R. Hoppe, *Naturwissenschaften*, **1977**, *64*, 272.
- [136] E. Vielhaber, R. Hoppe, *Rev. Chim. Miner.*, **1969**, *6*, 169.
- [137] M. Jansen, R. Hoppe, Z. Anorg. Allg. Chem., **1974**, 408, 104.
- [138] R. Hoppe, E. Scheld, Z. Anorg. Allg. Chem., 1987, 546, 137.
- [139] K. Ojima, Y. Nishihata, A. Sawada, Acta Cryst. B, 1995, 51, 287.
- [140] H. E. Swanson, E. Tatge, *Acta Cryst.*, **1954**, *7*, 464.
- [141] H. Jacobs, J. Kuckelkorn, T. Tacke, Z. Anorg. Allg. Chem., 1985, 531, 119.
- [142] F. Bernhardt, R. Hoppe, Z. Anorg. Allg. Chem., 1994, 620, 586.
- [143] H. J. Weber, M. Schulz, S. Schmitz, J. Granzin, H. Siegert, *Journal of Physics: Condensed Matter*, **1989**, *1*, 8543.
- [144] Y. Idemoto, J. W. jr. Ricardson, N. Koura, S. Kohara, C.-K- Loong, *Journal of Physics and Chemistry of Solids*, **1998**, *59*, 363.
- [145] H. Jacobs, J. Kuckelkorn, T. Tacke, Z. Anorg. Allg. Chem., 1985, 531, 119.
- [146] H. Taguchi, *Solid State Communications*, **1998**, *108*(9), 635.
- [147] H. Erhardt, H. Schweer, H. Seidel, Z. Anorg. Allg. Chem., 1980, 462, 185.
- [148] H. Klassen, R. Hoppe, Z. Anorg. Allg. Chem., 1982, 485, 92.
- [149] W. Losert, R. Hoppe, Z. Anorg. Allg. Chem., 1985, 524, 7.

- [150] S. Sasaki, K. Fujino, Y. Takeuchi, R. Sadanaga, Acta Cryst. A, **1980**, *36*, 904.
- [151] H. E. Swanson, N. T. Gilfrich, G. M. Ugrinic, US National Bureau of Standards Circular, 1955, 539, 5.
- [152] A. Bartos, K. P. Loeb, M. Uhrmacher, D. Wiarda, Acta Cryst. B, **1993**, 49, 165.

Abb. A1 Vergleich des aufgenommenen Pulverdiffraktogramms (Cu K α -Strahlung) der Umsetzung Na₂O/CdO/Na₂SO₄/Sc, molares Verhältnis 3: 1: 2: Sc-Stücke, T = 600°C, mit den aus Einkristalldaten simulierten Diffraktogrammen von Na₂O [127], NaScO₂ [128], Na₆O(SO₄)₂ [108] und Na₂SO₄ [39].

Abb. A2 Vergleich des gemessenen Pulverdiffraktogramms (Cu K α -Strahlung) der Umsetzung Na₂O/ CdO/ Na₂CO₃/ Sc, molares Verhältnis 3: 1: 2: Sc-Stücke, T = 550°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₂O [127] und Na₂CO₃ [58].

Abb. A3 Vergleich des aufgenommenen Pulverdiffraktogrammes (Cu K α -Strahlung) der Umsetzung Na₂O/ CdO/ NaOH/ Sc, molares Verhältnis 3: 1: 4: Sc-Stücke, T = 600°C mit den aus Einkristalldaten simulierten Diffraktogrammen von NaScO₂ [128] und CdO [64].

Abb. A4 Gemessenenes Pulverdiffraktogramm (Cu K α -Strahlung) der Produkte von Na₂O/ CdO/ Na₂SO₄/ Ti, molares Verhältnis 3: 1: 2: Ti-Blech, T = 600°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₄TiO₄ [129], TiO₂ [130] und Na₂SO₄ [39].

Abb. A5 Vergleich des gemessenen Pulverdiffraktogrammes (Cu K α -Strahlung) der Produkte aus Na₂O/ CdO/ Na₂CO₃/ Ti, molares Verhältnis 3: 1: 2: Ti-Blech, T = 600°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₄TiO₄ [129] und Na₂CO₃ [58].

Abb. A6 Vergleich des aufgenommenen Pulverdiffraktogrammes (Cu K α -Strahlung) der Produkte der Umsetzung Na₂O/ CdO/ NaOH/ Ti, molares Verhältnis 3: 1: 4/ Ti-Blech, T = 600°C, mit dem aus Einkristalldaten simulierten Diffraktogramm von Na₄TiO₄ [129].

2 θ/ Grad

Abb. A7 Vergleich des Pulverdiffraktogrammes (Cu K α -Strahlung) der Produkte der Umsetzung Na₂O/ CdO/ Na₂SO₄/ V, molares Verhältnis 3: 1: 2: 1, T = 600°C, mit einem auf der Grundlage der isotypen Verbindung Na₃PO₄ [131] unter Gitterkonstantenverfeinerung simulierten Diffraktogramm von γ -Na₃VO₄, und mit aus Einkristalldaten simulierten Diffraktogrammen von Na₂SO₄ [39] und Fe [132].

Abb. A8 Vergleich des aufgenommenen Pulverdiffraktogrammes (Cu K α -Strahlung) der Umsetzung 3 Na₂O + 2 Na₂CO₃ + CdO + V, T = 600°C, mit einem auf der Grundlage der isotypen Verbindung Na₃PO₄ [131] unter Gitterkonstantenverfeinerung simulierten Diffraktogramm von γ -Na₃VO₄, und mit einem aus Einkristalldaten simulierten Diffraktogramm von Na₂CO₃ [58].

Abb. A9 Vergleich des gemessenen Pulverdiffraktogrammes (Cu K α -Strahlung) des Ansatzes Na₂O/ CdO/ NaOH/ V, molares Verhältnis 3: 1: 2: 1, T = bei 600°C, mit einem auf der Grundlage der isotypen Verbindung NaScO₂ [128] unter Gitterkonstantenverfeinerung simulierten Diffraktogramm von NaVO₂. Weitere Reflexe konnten nicht zugeordnet werden, NaOH und Na_xCdO_y aber ausgeschlossen werden.

Abb. A10 Vergleich des aufgenommenen Pulverdiffraktogrammes (Mo K α -Strahlung) der Umsetzung Na₂O/ CdO/ Na₂SO₄/ Nb, molares Verhältnis 3: 1: 2: 1, T = 700°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₃NbO₄ [133] und Na₂SO₄ [39].

Abb. A11 Vergleich des gemessenen Pulverdiffraktogrammes (Mo K α -Strahlung) der Produkte der Umsetzung Na₂O/ CdO/ Na₂SO₄/ Ta, molares Verhältnis 3: 1: 2: 1, T = 700°C mit einem auf der Grundlage der isotypen Verbindung Na₃NbO₄ [133] unter Gitterkonstantenverfeinerung simulierten Diffraktogramm von Na₃TaO₄ und einem aus Einkristalldaten simulierten Diffraktogramm von Na₂SO₄ [39].

Tabelle A1

Gitterkonstanten und Winkel von einkristallin bekannten Verbindungen im Vergleich zu aus den Pulverdaten verfeinerten Werten (Standardabweichug in Klammern) isotyper Verbindungen.

	NaVO ₂ *	NaScO ₂	Na ₃ TaO ₄ *	Na ₃ NbO ₄	γ-Na ₃ VO ₄ *	Na ₃ PO ₄
		[128]		[133]		[131]
Raum-	R-3m	R-3m	C2/m	C2/m	Fm-3m	Fm-3m
gruppe						
a/ pm	317,99(1)	316,6	1113,2(5)	1112,6	762,595(4)	742,4
b/ pm	317,99(1)	316,6	1298,0(5)	1298,8	762,595(4)	742,4
c/ pm	1627,18(6)	1626,9	574,7(2)	574,6	762,595(4)	742,4
α∕ Grad	90	90	90	90	90	90
β / Grad	90	90	109,32(3)	109,41	90	90
γ⁄ Grad	120	120	90	90	90	90

Abb. B1 Vergleich des aufgenommenen Pulverdiffraktogrammes (Mo K α -Strahlung) der Umsetzung Co/ Mn/ CdO/ Na₂O, molares Verhältnis 2: 2: 7: 5, T = 600°C, mit aus Einkristalldaten simulierten Diffraktogrammen von NaMnO₂ [69], Na₁₄Mn₂O₉ [81] und Co [134].

Abb. B2 Vergleich des aufgenommenen Pulverdiffraktogramms (Mo K α -Strahlung) der Umsetzunge Co/ Mn/ CdO/ Na₂O, molares Verhältnis 1: 3: 4: 5, T = 700°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₄Mn₂O₅ [135], Na₁₄Mn₂O₉ [81], Na₂O [127] und Co [134].

Abb. B3 Vergleich des aufgenommenen Pulverdiffraktogrammes (Mo K α -Strahlung) der Umsetzung Co/ Fe/ CdO/ Na₂O, molares Verhältnis 2: 2: 5: 9, T = 700°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₅FeO₄ [50] (isotyp mit Na₅CoO₄ [111]) und Na₂CdO₂ [136].

Abb. B4 Vergleich des aufgenommenen Pulverdiffraktogrammes (Mo K α -Strahlung) der Umsetzung gemäß Co/ Cr/ CdO/ Na₂O/ Na₂SO₄, molares Verhältnis 1: 1: 2: 6: 4, T = 700°C, mit aus Einkristalldaten simulierten Diffraktogrammen von NaCoO₂ [137] (isotyp mit NaCrO₂ [112]), Na₄CrO₄ [138] und Na₂SO₄ [39].

Abb. B5 Vergleich des aufgenommene Pulverdiffraktogrammes (Mo K α -Strahlung) der Umsetzung gemäß Co/ Cr/ CdO/ Na₂O/ K₂SO₄, molares Verhältnis 1: 1: 2: 6: 4, T = 700°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₄CrO₄ [138] und K₂SO₄ [139].

Abb. B6 Vergleich des aufgenommenen Pulverdiffraktogrammes (Cu K α -Strahlung) der Umsetzung Na₂O/ CdO/ SiO₂/ Ni, molares Verhältnis 7: 1: 1: 2, T = 600°C mit aus Einkristalldaten simulierten Diffraktogrammen von Na₂NiO₂ [114], Na₄SiO₄ [116], Na₂O [127] und Ni [140].

Abb. B7 Vergleich des aufgenommenen Pulverdiffraktogrammes (Cu K α -Strahlung) der Umsetzung Na₂O/ Cu₂O/ SiO₂, molares Verhältnis 7: 1: 1, T = 600°C, mit aus Einkristalldaten simulierten Diffraktogrammen von NaCuO [115] und Na₄SiO₄ [116].

Abb. B8 Vergleich des aufgenommenen Pulverdiffraktogrammes (Cu K α -Strahlung) der Umsetzung CuO/ Na₂O/ Na₂O₂/ Na₂CO₃, molares Verhältnis 2: 4: 1: 6, T = 550°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₆Cu₂O₆ [117] und Na₂CO₃ [58].

Abb. B9 Vergleich des aufgenommenen Pulverdiffraktogrammes (Cu K α -Strahlung) der Umsetzung gemäß CuO/ Na₂O/ Na₂O₂/ NaOH, molares Verhältnis 2: 4: 1: 12, T = 550°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₆Cu₂O₆ [117], Na₅[CuO₂](OH)₂ [118] und NaOH [141].

Abb. C1 Vergleich des aufgenommenen Pulverdiffraktogramms (Mo K α -Strahlung) der Umsetzung Rb₂O/ CdO/ K₂SO₄/ Co, molares Verhältnis 3: 1: 2: 1, T = 600°C mit aus Einkristalldaten simulierten Diffraktogrammen von K₂CoO₂ [142], Rb₂SO₄ [143], Co₃O₄ [120] und CdO [64].

Abb. C2 Vergleich des aufgenommenen Pulverdiffraktogramms (Mo K α -Strahlung) der Umsetzung Rb₂O/ CdO/ K₂CO₃/ Co, molares Verhältnis 3: 1: 2: 1, T = 600°C mit den aus Einkristalldaten simulierten Diffraktogrammen von Rb₂K₄Co₂O₅ [121], K₂CO₃ [144], Co₃O₄ [120] und CdO [64].

Abb. C3 Vergleich des aufgenommenen Pulverdiffraktogramms (Mo K α -Strahlung) der Umsetzung Rb₂O/ CdO/ K₂CO₃/ Co, molares Verhältnis 3: 1: 2: 1, T = 700°C mit den aus Einkristalldaten simulierten Diffraktogrammen von Rb₂K₄Co₂O₅ [121], K₂CO₃ [144], Co₃O₄ [120] und CdO [64].

Abb. C4 Vergleich des aufgenommenen Pulverdiffraktogramms (Mo K α -Strahlung) der Umsetzung Rb₂O/ CdO/ KOH/ Co, molares Verhältnis 3: 1: 2: 1, T = 600°C mit den aus Einkristalldaten simulierten Diffraktogrammen von Co₃O₄ [120], KOH [145] und CdO [64].

Abb. C5 Vergleich des aufgenommenen Pulverdiffraktogrammes (Mo K α -Strahlung) der Umsetzung Rb₂O/ CdO/ K₂CO₃/ Ni, molares Verhältnis 7: 1: 1: 2, T = 700°C mit aus Einkristalldaten simulierten Diffraktogrammen von NiO [146], Rb₂CO₃ [147] und CdO [64].

Abb. C6 Vergleich des aufgenommenen Pulverdiffraktogrammes (Cu K α -Strahlung) der Umsetzung CuO/ Na₂O/ KO₂/ Na₂CO₃, molares Verhältnis 3: 8: 3: 9, T = 550°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₆Cu₂O₆ [117], Na₃AgO₂ [148] und Na₂CO₃ [58].

Abb. C7 Vergleich des aufgenommenen Pulverdiffraktogrammes (Cu K α -Strahlung) der Umsetzung CuO/ Na₂O/ KO₂/ Na₂CO₃, molares Verhältnis 3: 8: 3: 18, T = 550°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₆Cu₂O₆ [117], Na₃AgO₂ [148], NaAgO [149] und NaOH [141].

Abb. D1 Vergleich des aufgenommenen Pulverdiffraktogramms (Mo K α -Strahlung) der Umsetzung Na₂O/ CdO/ Fe/ Mn, molares Verhältnis 18: 38: 6: 29, T = 700°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₂₆Mn₃₉O₅₅ [124], NaMnO₂ [69] und MnO [150].

Abb. D2 Vergleich des aufgenommenen Pulverdiffraktogramms (Mo K α -Strahlung) der Umsetzung Na₂O/ CdO/ Fe/ Mn, molares Verhältnis 7: 99: 58: 12, T = 700°C, mit dem auf der Grundlage der Spinellverbindungen Fe₃O₄ [125] und CdFe₂O₄ [126] simulierten Diffraktogramm von "MnFe₂O₄" und dem aus Einkristalldaten simulierten Diffraktogramm von MnO [150].

Tabelle D1	Gitterkonstanten	und Win	cel der	einkristallin	bekannten	Spinellverbindungen
Fe ₃ O ₄ [125] ur	nd CdFe ₂ O ₄ [126]	mit den si	mulier	ten Werten fü	ir "MnFe ₂ O	4".

	Fe ₃ O ₄ [125]	CdFe ₂ O ₄ [126]	"MnFe ₂ O ₄ "
Raumgruppe	Fd-3m	F d -3 m	F d -3 m
a = b = c / pm	839,58	870,89	855,26(1)

Abb. D3 Vergleich des aufgenommenen Pulverdiffraktogramms (Mo K α -Strahlung) der Umsetzung Na₂O/ CdO/ Cr/ Mn, molares Verhältnis 18: 38: 6: 29, T = 700°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₂₆Mn₃₉O₅₅ [124], NaMnO₂ [69] und Cr [151].

Abb. D4 Vergleich des aufgenommenen Pulverdiffraktogramms (Mo K α -Strahlung) der Umsetzung Na₂O/ CdO/ Cr/ Mn, molares Verhältnis 7: 99: 58: 12, T = 700°C, mit aus Einkristalldaten simulierten Diffraktogrammen von NaMnO₂ [69], CdO [64] und Cr [151].

Abb. D5 Vergleich des aufgenommenen Pulverdiffraktogramms (Mo K α -Strahlung) der dunklen Fraktion der Umsetzung Na₂O/ CdO/ Sc/ Mn, molares Verhältnis 18: 38: 6: 29, T = 700°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₂₆Mn₃₉O₅₅ [124] und NaMnO₂ [69].

Abb. D6 Vergleich des aufgenommenen Pulverdiffraktogramms (Mo K α -Strahlung) der hellen Fraktion der Umsetzung Na₂O/ CdO/ Sc/ Mn, molares Verhältnis 18: 38: 6: 29, T = 700°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₂₆Mn₃₉O₅₅ [124] und NaScO₂ [128].

Abb. D7 Vergleich des aufgenommenen Pulverdiffraktogramms (Mo K α -Strahlung) der Umsetzung Na₂O/ CdO/ Sc/ Mn, molares Verhältnis 7: 99: 58: 12, T = 700°C, mit aus Einkristalldaten simulierten Diffraktogrammen von NaMnO₂ [69], CdO [64] und Sc₂O₃ [152].

Abb. D8 Vergleich des aufgenommenen Pulverdiffraktogramms (Mo K α -Strahlung) der hellen Fraktion der Umsetzung Na₂O/ CdO/ Ga/ Mn, molares Verhältnis 18: 38: 6: 29, T = 700°C, mit aus Einkristalldaten simulierten Diffraktogrammen von Na₂₆Mn₃₉O₅₅ [124], NaMnO₂ [69] und MnO [150].

Abb. D9 Vergleich der aufgenommenen Pulverdiffraktogramme (Mo K α -Strahlung) der Umsetzung Na₂O/ CdO/ Ga/ Mn, molares Verhältnis 7: 99: 58: 12, T = 700°C, mit aus Einkristalldaten simulierten Diffraktogrammen von NaMnO₂ [69] und CdO [64].

Dank

An erster Stelle und in besonderem Maße gilt mein Dank meiner Doktormutter Priv.-Doz. Dr. Angela Möller für die Bereitstellung des Themas, für die hervorragende Betreuung, lehrreiche Anmerkungen und Diskussionen, sowie ihre tatkräftige, unermüdliche Unterstützung bei allen Aspekten dieser Arbeit.

Prof. Dr. Gerd Meyer danke ich für die Übernahme des Koreferats und seine langjährige Förderung und Unterstützung.

Meinem Laborkollegen Dr. Peter Amann gilt Dank für die ständige Hilfsbereitschaft, sowohl bei der präparativen Arbeit als auch bei der Auswertung erhaltener Ergebnisse. Insbesondere möchte ich ihm für die einmalig gute Atmosphäre in Labor 413 danken.

Dr. A.-V. Mudring danke ich für die Durchführung der Extended-Hückel-Rechnungen.

Dr. Ingo Pantenburg und Frau Ingrid Müller danke ich für ihre Messungen an den IPDS-Geräten und ihre Geduld mit mir und meinen oft nur unzulänglich kristallisierten Produkten.

Für die Routinemessungen an den Pulverdiffraktometern und die Durchführung von zahlreichen EDX-Messungen danke ich Horst Schumacher.

Dr. A. Czybulka danke ich für die tatkräftige Hilfe und die lehrreichen Gespräche rund um das Mo-Pulverdiffraktometer.

Dipl.-Physiker Jörg Baier danke ich für die Durchführung der SQUID-Messungen, Prof. Dr. A. Freimuth danke ich für die Bereitstellung des Geräts.

Prof. Dr. J. Paul Attfield danke ich für die Anleitung im Umgang mit Pulverdiffraktogrammen.

Der Studienstiftung des deutschen Volkes danke ich für zwei Jahre Doktorandenstipendium.

Meinen Kollegen Niels, Liesbeth, Steffi, Holger und Frank danke ich für ihre Hilfe, den Humor und die vielen netten Gesten. Dank sei auch allen hier nicht namentlich aufgeführten Kollegen.

Meinen Freunden, allen voran Volker, danke ich für ihre freundschaftliche Unterstützung, das Mutmachen und das viele Verständnis.

Hanno möchte ich dafür danken, dass er so besonders ist, und dass er mich gerade im Endspurt immer wieder aufgerichtet hat.

Ganz besonderer Dank gilt meinen Eltern und Brüdern für ihre uneingeschränkte Unterstützung in allen Lebenslagen, ohne die diese Arbeit so nicht möglich gewesen wäre.

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeiteinschließlich Tabellen, Karten und Abbildungen-, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie- abgesehen von unten angegebenen Teilpublikationen- noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Priv.-Doz. Dr. Angela Möller betreut worden.

Köln, Mai 2004

Bettina Sobotka

Zur Wahrung der Priorität wurden Teile dieser Arbeit bereits publiziert:

A. Möller, B. M. Sobotka, J. Baier, A. Freimuth, Ein Natrium-Oxocobaltat(II)-Sulfat: Na₈[CoO₃][SO₄]₂, *Z. Anorg. Allg. Chem.*, **2002**, *628*, 2705.

B. M. Sobotka, A. Möller, Zur Synthese von Na₃FeO₃, einem ternären Oxoferrat(III) mit Kettenstruktur, *Z. Anorg. Allg. Chem.*, **2003**, *629*, 2063.

Einzelheiten zu den Kristallstrukturbestimmungen dieser Arbeiten können beim Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, unter Angabe folgender CSD-Nummern angefordert werden:

 Na₈[CoO₃][SO₄]₂
 CSD-Nummer 412586

 Na₃FeO₃
 CSD-Nummer 413270

Lebenslauf

Persönliche Daten

Name:	Bettina Marianne Sobotka
Geburtstag:	13.01.1978
Geburtsort:	Köln
Eltern:	Dr. Stephan Sobotka und Dr. Annette Sobotka-Schaper
Familienstand:	ledig
Staatsangehörigkeit:	deutsch

Schule

1984-1988	Gemeinschaftsgrundschule Gellertstrasse
1988-1994	Gymnasium Kreuzgasse, Köln
1994-1995	Pittsford Mendon High School, Pittsford, N.Y., USA
1995-1997	Gymnasium Kreuzgasse, Köln

Studium

10/1997-08/2000	Diplomstudiengang Chemie, Universität zu Köln
10/1999	Vordiplom
09/2000-10/2001	University of Cambridge, UK
10/2001	Master of Philosophy
10/2001-05/2002	Diplomstudiengang Chemie, Universität zu Köln
05/2002	Diplom Chemie

Promotion

seit 06/2002	Wissenschaftliche Mitarbeiterin am Institut für Anorganische
	Chemie der Universität zu Köln
seit 10/2002	Doktorandenstipendium der Studienstiftung des Deutschen
	Volkes