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Chapter 1

Introduction

Neurons display three different types of dynamics: Stationary behaviour and
oscillations in the form of bursting and spiking. Bursting is characterised by
oscillations that are interrupted by quasistationary behaviour whereas spiking
consists of continous oscillations. Bursting is linked to many neural processes.
For example sleep oscillations in thalamocortical systems display bursting [33] as
well as respiratory pacemaker neurons [3]. The responses of cells in the visual
cortex of the cat to intracellular injection of current pulses [30] show classes of
characteristic oscillatory behaviour (see figure 1.1). Four main classes of oscilla-
tions are observed there: Regular spiking, fast spiking, chattering and intrinsic
bursting. Chattering cells consist also of bursts, they generate repetitive bursting
of thin action potentials.

In this thesis the phenomenon of bursting in a mathematical model for neurons is
investigated by connecting it with the bifurcation properties of the model. This
leads to a better understanding of the underlying mechanisms of bursting and
gives new criteria for the occurence of bursting in dependence on parameters of
the neuron model used.

1.1 Neuron models

Mathematical models for neuron potentials are often based on the Hodgkin-
Huxley model [23, 25, 11] which was developed to describe the action potentials
in the squid giant axon. The description of the transmission of electrical pulses
along a nerve membrane relies on the balance of a current that passes a resistance
and the change of the membrane potential v of the neuron.

dv
Cma_*_lion =0 (11)
The membrane potential v is the difference between internal and external voltage

and the ion current depends on the specific membrane resistance: [, = v/R.
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Figure 1.1: Examples of action potential responses of cats cortical neurons (pic-
ture taken from [30]).
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The Hodgkin-Huxley model consists of an equation for the membrane potential v
of the neuron that depends on several ionic currents (sodium ion currents, potas-
sium ion currents and leak currents) and auxiliary equations modelling the gating
of ion channels. We refer to appendix A for the description of the Hodgkin-Huxley
equations.

FitzHugh and Nagumo developed a system that has similar qualitative proper-
ties than the four-dimensional Hodgkin-Huxley model but it is in contrast only
two-dimensional [12, 29]. FitzHugh’s system gives accurate descriptions of an
action potential only for the initial stage but since its equations are simpler it
is an appropriate ansatz for numerical and analytical investigations of neurons.
A general version of the FitzHugh-Nagumo model which is described in [25] is
system

e% — Aww)+ 1. (1.2)
Cil_qf = f2(v7w)

where v denotes the membrane potential, w is considered as auxiliary variable,
I is a current that is generated by synapses and by external signals and e being
a small constant parameter. Here the function f;(v,w) is a cubic polynomial
and fy(v,w) is a linear function. In this thesis the following special variant of
FitzHugh-Nagumos system is employed which is described in detail in [14, 17]:

o) = c(w(t)+v(t)—%v3(t))+u, (1.3)
w(t) = (a—ov(t)—bw(t))/c.

Here, the external input to the system is replaced by the parameter u. a, b, c are
constant parameters. In [14] the FitzHugh-Nagumo system (1.3) is regarded as
nonlinear oscillator that generates the outgoing signal or membrane potential of
a neuron. All incoming signals of a neuron that are collected at the synapses
are commuted into the total postsynaptic potential u. A network equation in
[14] models the cumulation of the incoming presynaptic potentials v and the
generation of the total postsynaptic potential u.

Tu(t) = —u(t)+qgv(t—T))+e (1.4)

The parameter 7 characterises the relaxation time of the postsynaptic potential.
In biology three main classes of postsynaptic potentials are distinguished: fast,
slow and late slow postsynaptic potentials. They differ from each other in their
relaxation time. A more detailed description of these temporal postsynaptic dy-
namics is given in chapter 6 of this thesis. Coupling between neurons occurs at
the synapses of a neuron. Synapses that strengthen the incoming presynaptic
potential are called excitatory synapses and are presented in (1.4) by positive
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coupling constants ¢. Inhibitory coupling weakens or represses presynaptic po-
tentials and are denoted in the network equation by negative values of ¢q. Taking
into account the propagation time of neural signals along the axon and the den-
drites a time delay 7" is appended. The relation between pre- and postsynaptic
potential is given by the nonlinear sigmoidal transfer function g.

1
T 1+ exp(—du(t—1T))

g(o(t —1T)) (1.5)
Further external signals are considered with the variable e.
Pulling together the network equation and the FitzHugh-Nagumo oscillator we

acquire completingly a mathematical model for neural cells which is applied in
this thesis.

Tu(t) = —u(t)+q9(v(t—T)) +e,
o) = clwlt) +o(t) — 30%(0) + u(t) (1.6)

w(t) = (a—o(t) —bw(t))/c

General analytical and numerical investigations of the model as well as applica-
tions in the range of epileptiform activity can be read in [14, 13, 21, 20].

In terms of biology the neuron model is extended to an m-dimensional system
displaying a network of coupled cells.

Tini(t) = —ui(t) + Zqikg(vk(t — Tix)) + €,
B0 = elwilt) +ult) - 3o} + s

wi(t) = (a—v(t) —bw;(t))/c.

Figure 1.2 shows a sketch of the processes that take place during signal trans-
mission. Incoming signals vy (¢ — Tj) are collected at the synapses. Subsequently
the total postsynaptic potential u;(¢) is generated and propagates to the axon
hillock of the neuron. At the axon hillock the postsynaptic potential can evoke
an outgoing membrane potential v; if it exceeds a certain threshold.

System (1.6) exhibits two different oscillation modes: bursting and spiking that
are controlled primarily by the parameters e and ¢. The FitzHugh-Nagumo os-
cillator (1.3) can be considered as the fast subsystem of the whole model. The
oscillatory dynamics of the fast subsystem alone consists only of spikes. In com-
bination with a slow subsystem that is in our model the network equation (1.4)
the whole system is also able to oscillate in the bursting mode. Bursting in the
context of slow-fast systems has been investigated for other neural models, see
for example [32].
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Figure 1.2: Sketch of two coupled neurons displaying signal transmission.

1.2 Outline of the thesis

It is the intention of the thesis to investigate the bursting mode of the neural
system (1.6). This will lead to a better understanding of the underlying mecha-
nisms of bursting and in that way new criteria for the occurence of bursting in
dependence on important parameters of our neuron model are developed.

For this purpose bifurcation properties of the neuron model are analysed and
are connected with the bursting properties of the model. The most important
bifurcation parameter of the system is the external signal e. Former investiga-
tions of the model [14, 13, 21] have already shown that the onset of oscillations
can be controlled by the parameter e. Further a range of e had been determined
empirically for which bursting in a single neuron as well as in networks of neurons
occurs. The task of this thesis is to specify the appearance of bursting in detail
and to give criteria for the occurence of bursting that are directly taken from the
bifurcation analysis of the model.

Since the neuron model is three dimensional, nonlinear and contains a time delay
it is not possible to obtain a full bifurcation analysis by using analytical methods.
We therefore approach the investigation of the bifurcation properties of the sys-
tem with respect to the parameter e from three sides and combine the obtained
results in order to explain bursting behaviour.

In chapter 2 the neural system (1.6) is examined for the limiting case of infinite
delay T'. An iterated map can then be derived from the equations of the system.
The iterated map is investigated with analytical and numerical methods. It turns
out that the map possesses a bifurcation to periodic solutions. The critical values
of e that correspond to the bifurcation points of the map are determined. Further
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the type of the bifurcation is classified and the stability of the periodic region of
the map is determined.

Chapter 3 contains a bifurcation analysis of the neuron model based on the transi-
tion of stable stationary solutions to unstable stationary solutions. The obtained
transition points are potential Hopf points of the system. At a Hopf point there
occurs a bifurcation to periodic solutions. The transition points are determined
for finite and infinite delay 7', in both cases with respect to the parameters e and
q of the model. In addition, the system is analysed for the limiting case of infinite
time constant 7.

In chapter 4 a numerical bifurcation analysis of the neural system (1.6) is carried
out. With the help of the Matlab package DDE-BIFTOOL [9] that allows the
numerical analysis of retarded differential equations the Hopf points of the system
were detected. Branches of periodic solutions that emanate from the Hopf points
are followed and their stability is determined with the help of Floquet multipliers.
The numerical bifurcation analysis yields a bifurcation diagram of the variable v
with respect to the bifurcation parameter e. This result is the first bifurcation
diagram that was obtained for the full, time delayed neuron model. Existing
publications on the neuron model only deal with the bifurcation properties of the
underlying FitzHugh-Nagumo system.

The results of the numerical bifurcation analysis are compared with the results of
the iterated map and those of the analysis of the transition points in chapter 5.
With the help of the numerical bifurcation analysis the potential Hopf points of
the analysis of the loss of stability can be determined to be real Hopf bifurcation
points. In addition, numerical simulations of the solutions of the neural system
are related to the results of the analysis of the iterated map and to examples
of the numerical bifurcation analysis. Pulling these results together allows for a
deeper understanding of the origin of bursting. We succeed in giving criteria for
the occurence of bursting that are directly related to the bifurcation properties
of the model.

An application of the bursting phenomena of our model is presented in chapter
6. By means of enlarging the number of network equations in the neuron model
it is possible to model different classes of postsynaptic potentials that occur in
nature. Due to the interaction of multiple time scales the appearance of burst
multiplets is observed in numerical simulations. A reduction of the multiple time
scale model to a three time scale model is given and the phenomenon of burst
multiplets is described on the basis of this reduced model. The burst multiplets
are finally related to experimental data coming from respiratory research.

An outlook of further aspects of the neuron model whose analysis seems to be
rewarding is given in chapter 7. A discussion and summary of the attained results
concludes this thesis.



Chapter 2

The iterated map

It is one aim of this work to find criteria for the occurence of bursting which are
based directly on the mathematical properties of the neuron model.

The phenomenon of bursting in networks of neurons which are modelled by the
following system (2.1) has been investigated numerically in [20] both for small
and large networks.

Tu(t) = —u(t)+q9v(t—T)) +e,
o) = c(w(t)+v(t)—%v3(t))+u(t), 2.1)
w(t) = (a—v(t) —bw(t))/c.

For appropriate parameters ¢ and e and for 7 > % system (2.1) displays bursting
[14]. Figure 2.1 shows that the dynamics of v is characterised during bursting
by an alternation between a quasistationary state and a state of repetitive firing.
If the total postsynaptic potential enters the oscillation interval I, (indicated
by dotted lines in figure (2.1)) of the FitzHugh-Nagumo oscillator the membrane
potential v starts to oscillate. Due to the delayed incoupling of v with a negative
coupling term the postsynaptic potential is pushed outside the oscillation interval
and the oscillation is terminated. After relaxation u returns into the oscillation
interval because of the quasistationary behaviour of v that pushes u. The cycle
starts again and a further burst is generated.

The most important bifurcation parameter of the system is the external signal e.
Numerical simulations have shown that the neural system (2.1) displays bursting
only for a small regime of e. An investigation of the mathematical model with
analytical and numerical methods will give criteria for the dependence of bursting
on the bifurcation parameter e.

Especially in this chapter the bifurcation behaviour of the neuron model is inves-
tigated for infinite delay 7" by deriving an iterated map for the model. After an
introduction of different types of bifurcations of iterated maps a bifurcation anal-
ysis is performed which yields the type of bifurcation of the iterated map as well

11
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Figure 2.1: Bursting of the single neuron. The oscillation interval of the
FitzHugh-Nagumo subsystem is indicated by the dotted lines. The simulation
was performed for (a,b,c,q,7,T,¢) = (0.9, 0.9, 2.0, —1.0, 20, 30, —2.5).

as its stability properties. Finally the parameter values e for which bifurcations
occur are determined.

2.1 Derivation of the iterated map

Investigating the oscillation properties of the neural system (2.1) with respect to
the bifurcation parameter is a difficult task because the phase space of retarded
differential equations is infinite dimensional and no complete bifurcation theory
exists in this case. The limiting case of infinite delay simplifies our neural system
and so it is possible to examine the dynamics of system. First a variable trans-
formation has to be accomplished in order to simplify calculating the limit. The
new variables are given by

s =%, U(s) :=u(Ts), V(s) :=v(Ts) and W(s) := w(T's).

Under this transformation the system (1.6) becomes

% diiS) = —U(s) +q9(V(s—1)) +e,

1 dV(s) 1,

T g = c(W(s)+V(s)— §V (s)) +U(s), (2.2)
1 dW(s)

= (a—V(s)—bW(s))/c.

~

ds
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Carrying out the limit 7" — oo we obtain a difference-algebraic system

0 = —U(s) +qg(V(s—1)) +e,
0 = cIW(s)+V(s) — 5V3s)) + Us) (2.3)
0 = (a—V(s)—0bW(s))/c.

With the auxiliary function H(V(s))

1 1 a
H(V(s)) := c(3V(s) + V(s)(5 = 1) = 3) = U(s) (2:4)
a scalar iterated map is deduced from (2.3). The U-representation of the the map

is given by
Uni1 = qg(H *(U,)) +e. (2.5)

The explicit formula of the inverse H~'(U(s)) of the auxiliary function is given
in appendix B. For the V-representation we obtain

c 1 ac

Vi — el = )V = qg(Va) + 7 +e. (2.6)
Since we are considering real variables we always take the real roots when we
solve the polynomials of third order.

2.2 Bifurcation of the iterated map

A bifurcation analysis of the iterated map is obtained in the following. In ad-
dition the type of bifurcation is determined by a combination of analytical and
numerical methods.

Computing the bifurcation diagram of the scaled iterated map in dependence on
the parameter e shows the existence of an area of periodic solutions.

The iterates of the map represent the two types of dynamics of the system. It-
erates for values of e that correspond to stationary solutions of the iterated map
are shown in figure 2.3 as well as iterates for e lying in the periodic region of
the iterated map. The numerical computed bifurcation diagrams of the iterated
map, see figure 2.2, show that a period doubling bifurcation occurs and that the
transition to the periodic solutions is supercritical. Properties of the period dou-
bling bifurcation, which is also called flip bifurcation or subharmonic bifurcation
are shown in the next subsection. Subsequently, our iterated map is investigated
with respect to the properties of the flip bifurcation to verify its bifurcation type.
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Figure 2.2: Bifurcation diagrams of the iterated map with respect to the param-
eter e. The left figure shows the bifurcation diagram for U and the right figure
displays the dependence of V on e. The parameters of the computation were
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Figure 2.3: Iterates of the scalar map. Left: Stationary solution. Iterates for
e = —2.5. Right: Periodic solution. Iterates for e = —1.5.
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2.2.1 Flip bifurcation

Discrete dynamical systems show three main classes of one-parameter bifurca-
tions of fixed points: the saddle-node bifurcation, the flip bifurcation and the
Neimark-Sacker bifurcation. Scalar systems have the lowest possible dimension
for the occurence of saddle-node and flip bifurcations. Neimark-Sacker bifur-
cations appear only in planar systems and higher dimensional systems. For a
detailed description of iterated maps see [36, 28, 18].

Consider a discrete dynamical system depending on the parameter p

x> f(z, pm), reR", peR" (2.7)
where f is C". Suppose (2.7) has a fixed point at (x, u) = (xg, f10).

Definition 2.1 A fized point (xq, o) of f : R" — IR" is called hyperbolic if
D, f(xo, o) has no eigenvalues on the unit circle. D, f(xq, o) is the Jacobian
matrix at the fived point.

Bifurcations of maps only occur if the hyperbolicity condition is violated. There
are three ways in which a fixed point of a map can be nonhyperbolic.

Definition 2.2 Saddle-node bifurcation: The linearised map D, f(xo, o) has a
single eigenvalue equal to 1 and the remaining n-1 eigenvalues have moduli not
equal to 1.

Flip bifurcation: The linearised map D, f(xo, o) has a single eigenvalue equal to
-1 and the remaining n-1 eigenvalues have moduli not equal to 1.
Neimark-Sacker (torus) bifurcation: The linearised map D, f(xq, o) has a pair of
complex conjugate eigenvalues having moduli 1 and the remaining n-2 eigenvalues
have moduli not equal to 1.

Since we are considering a one dimensional iterated map the Neimark-Sacker
bifurcation does not have any importance for the further considerations. The
saddle-node bifurcation however can occur in the iterated map and we will go
into this in the further course of the bifurcation analysis.

In the following the flip bifurcation is considered in its lowest possible dimension
and we obtain a one dimensional iterated map.

x> f(x,p), reR, pelR (2.8)

f is in this case C3. In addition to the eigenvalue criterium it is sufficient for
system (2.8) to satisfy the following two conditions that can be found in the book
of Guckenheimer [16].
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Figure 2.4: Eigenvalues on the unit circle of the complex plane corresponding to
nonhyperbolicity: a) Saddle-node bifurcation, b) Flip bifurcation, ¢) Neimark-
Sacker bifurcation.

Theorem 2.1 Let f: IR — IR be a one-parameter family of mappings such that
fo has a fized point xo with eigenvalue -1. Assume

af o°f 8% f . OfPf Of 0*f
1,02 1,0
0= (GG + 3GE) £ at (an o) (F2)

Then there is a smooth curve of fixed points of f passing through (x¢, j1o), the
stability of which changes at (xo, o). There is also a smooth curce v passing
through (o, po) so that v — {(xo, o)} is a union of hyperbolic period 2 orbits.
The curve y has quadratic tangency with the line IR x {po} at (zq, po).

F1 is the p-derivative of f' along the curve of the fixed points and condition F'2
determines the stability of the periodic orbits. A positive value of a is related
to stable periodic orbits and if @ is negative the periodic orbits are unstable. In
addition F'2 gives the direction of bifurcation of the periodic orbits: positive a
correspond to supercritical bifurcations and negative a to subcritical bifurcations.
Figure 2.5 shows a sketch of the two bifurcation directions.

2.2.2 Bifurcation analysis

Starting from the description of a general flip bifurcation in the last subsection
now the flip bifurcation points of the scalar iterated map

U qg(H *(U)) +e (2.9)
are calculated. For the fixed points U of (2.9) we obtain
U=qg(H NU))+e. (2.10)

An example of numerically calculated fixed points of the VV-map in dependence
on the parameter e is given in figure 2.7. In the case of a saddle-node bifurcation
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f f

Figure 2.5: Sketch of bifurcation directions of the flip bifurcation. Left: Sub-
critical bifurcation. Right: Supercritical bifurcation. Solid lines represent stable
solutions and dashed lines represent unstable solutions.

the eigenvalue of the linearisation of (2.9) at the fixed point is equal to 1. In order
to compare the results of the iterated map with results of the following chapters
the further analysis is restricted to a special set of parameters that leads to a
flip bifurcation of the iterated map. Therefore we will not study the saddle-node
bifurcation subsequently.

The linearisation of (2.9) at the fixed point is equal to —1 for flip bifurcations.

D(qg(H ' (U)) +e) = —1. (2.11)

This is equivalent to
1
"H'U)) e = — 1. 2.12
00/ () ) (212)

We restrict the further analysis to the case ¢ = —1 for which bifurcation diagrams
were shown in figure 2.2 and obtain

g(H(U)) = H'(H'(U)). (2.13)

Inserting the auxiliary function

H(z) =c(za® +z(- = 1) — ) (2.14)

- N 1
g(HU) =c((HU) +5 - 1). (2.15)
The sigmoidal function

1+ exp(—4x) (2.16)
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has a maximal slope of 1. The derivative H' of the auxiliary function has a
minimum at x = 0 since we are always considering positive ¢ in our model. With
the standard choice of b = 0.9 and ¢ = 2.0 the minimum of H' at x = 0 has the
value %. This implies that the derivatives of the function g and H have two points
of intersection which is shown in figure 2.6. The two intersection points H ' (u;)

g.H
2.5

2

1.5

1
22 1 1 > H
Figure 2.6: Intersections of the derivatives of ¢ (shown in black) and H (drawn
in blue) for the parameters b = 0.9 and ¢ = 2.0.

and H '(uy) were calculated numerically, u; and uy were determined with the
help of the inverse H~! for the parameter values (a, b, ¢,q) = (0.9, 0.9, 2.0, —1.0).
Inserting this into the iterated map yields the two bifurcation points e; and e, of
the flip bifurcation.

el = —1.97 el = —1.03 (2.17)

The numerically calculated bifurcation diagrams for the same set of parameters
are shown in figure (2.2). They are in total agreement with the bifurcation points
el and el" obtained in the previous calculation.

The bifurcation analysis of the iterated map is completed by calculating the con-
ditions given in theorem (2.1). Computing condition (F'1) guarantees that a
single curve of fixed points passes through (zg, 1p). Condition (F2) gives infor-
mation about the stability of the periodic orbit and the direction of the bifur-
cation of the periodic orbit. The two conditions were calculated using the V
representation of the iterated map and the usual set of parameters (a,b,c,q) =
(0.9, 0.9, 2.0, —1.0). Evaluating both conditions leads to

(Fl) is positive at (U{lip, e{lip),
flip point 1 : (2‘18)

(F2) is positive at (U{lip, 6{lip)
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for the first flip point and for the second flip point there holds

(F1) is positive at (Uglip, 6£lip)’
flip point 2 : (2‘19)
(F2) is positive at (v{"?, e]'"P).

The calculation of (F'1) and (F2) have shown that for both flip points the bi-
furcating periodic solutions are stable and that the direction of the bifurcating
periodic orbit is supercritical.

v
1.5/
0.5
-4 -3 2/ 1 1 > €
-0.5
-1

Figure 2.7: Curve of fixed points of V' with respect to the parameter e. The
calculation was performed for (a,b,c,¢) = (0.9, 0.9, 2.0, —1.0).



Chapter 3

Bifurcation properties of the
neural system

In the previous chapter the bifurcation points for infinite delay were calculated.
The objective of this chapter however is the calculation of bifurcation points of
the neural system for finite delay.

The direct calculation of Hopf points is difficult for the system (3.1) because it
consists of three coupled nonlinear differential equations with delay. Neverthe-
less it is possible to examine the bifurcation behaviour of the neural system by
studying the loss of stability of the stationary solutions. The latter facilitates to
determine transition points between stationary and periodic behaviour. These
transition points are potential Hopf points of the system

Tu(t) = —u(t) +qg(v(t—T)) +e,
o) = clwlt) +o(t) — 30°(0) +uld), (3.1)
w(t) = (a—ov(t) —bw(t))/ec.

In the first two sections a review of results of the analysis of the neural system
is given which yields the potential Hopf points in dependence on the parameter
q for finite delay T. This review is taken from [14]. An analysis of the loss of
stability of the neural system in the case of infinite delay 7" and infinite time
constant 7 is given in the subsequent sections.

3.1 Existence and uniqueness of stationary so-

lutions
The solutions (u,v,w) € IR® of system (3.1) are stationary in the case of
H(v) = o3 +e(3 — Do —qg(v) =e+ %
u = qg(v)+e (3.2)
w — a—v

b

20
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The following lemma gives conditions for the existence and the uniqueness of the
stationary solution. The lemma and the proof were taken from [14].

Lemma 3.1 (Ezistence of stationary solutions)
Assume a,c > 0 and 0 < b < 1. Further we assume g € C?*(IR,R) is an
increasing function satisfying ¢" (v)v < 0 for all v # 0.

1. If c(% — 1) > ¢q¢'(0) then for any e € R equation (3.1) possesses a unique
stationary solution.

2. If c(§ — 1) < qg'(0) then there ezist ey, e; € IR with ey < ey such that
(a) for e € (—oo,e9) U (e1,+00) equation (3.1) has exactly one stationary
solution,
(b) for e € {ey,es} equation (3.1) has exactly two stationary solutions,
(c) for e € (ea,e1) equation (3.1) has exactly three stationary solutions.

Proof: Since .
lim H(v) =+ .
Jim H(v) = o0, (3.3)
equation (3.1) has at least one stationary solution.
For ¢(3 — 1) > q¢/(0) the function H is strictly increasing. This provides the
uniqueness of the stationary solution.

For c(% —1) < q¢'(0) there are exactly two solutions vy and vy with vg; < 0 < vgs
of

[ =

H@w)=c’+c(v —1)—qg'(v) =0, (3.4)

—~

such that H is strictly increasing on
creasing on [vgy, Voz].
Setting

—00, 1] and [vge, +00), and strictly de-

~ ac c 1 .
¢i = H(vy) — 4 = (gvgi +e(y = Do) —ag(var) , i=1,2, (3.5)
completes the proof. The dependence of e; on the parameter ¢ is shown in figure

3.1 which is plotted in the next section.

3.2 Stability of stationary solutions

The loss of stability of the stationary solutions is calculated in this section and
conditions for the transition to oscillatory dynamics are given in dependence on
the parameters ¢ and e.

Let (4,7, w) € R® be a stationary solution of the system (1.6). The linearisation
of a delay equation system is given by the Fréchet-map in the Banach space.

DF(z) = DF(%) 2(t) + DF(Z) x(t — T) (3.6)
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Applying this to our system yields

Tu(t) = —u(t)+q g @vt—-T), (3.7)
v(t) = ¢ (w(t) +(1- 172)v(t)) + u(t),
w(t) = (—v(t) —bw(t)) /e

To calculate the characteristic equation of system (3.7) we choose the following
ansatz for the derivatives of the left side

X = (u(t),v(t),w)" =" ¢ (3.8)

Inserting this into the linearisation

X(t)=AX(t)+ BX(t—1T) (3.9)
with
—1 0 0 0 Lgg'(m) 0
A= 1 c(1-7%) ¢ and B=| 0 0 0 (3.10)
0 -1 ¢ 0o 0 0
gives the characteristic equation of the linearised system
x(2) = det(21 — A — Be *T) =0 (3.11)
which is equivalent to
z _|_ l _e_Zqul(’D) 0
X(z) = det -1 z—c(l1-2%) —c . (3.12)
0 % g +z

Evaluating the determinant gives the following expression for the characteristic
equation

q9'(7)

X(2) = ps3(2) — (z + g) exp(—2T) =0 (3.13)

where p3 is a third order polynomial

pa(2) = (2 4+ 2)( — el - C% — )z (e 4 - 1), (3.14)

For z # —% the characteristic polynomial is equivalent to

_ Tp3(2) exp(2T)

(+ Do) (3.15)
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2z =iw, w € IR is a solution of (3.13) if and only if

q=0,(w, D) (3.16)
and
e =0 (3.17)
where
w,v) = 7p3(iw) exp(iwT)
(Sr( ) ) =R ( (iw =+ %)gl(@) ) (3.18)
and

5i(w, ) = 3 (Tp?’(i“) eXp(iM)) | (3.19)

(iw + 2)g'(D)

Solving (3.17) with respect to v yields

U= QZSLQ(W) = F P ; Q, (320)
with
P = tan(wT)(c*tw* + (¢* — 7(c* — b*))w? — cb(1 — b)),
Q = Alre— 1w’ + (2= —1eb(1 = b))w,
R = c(tan(wT) + Tw)(Pw’ + b%)

provided that tan(wT) + 7w # 0 and PLRQ > 0. From (3.16) and (3.20) we
obtain

272t — (12( — 1) — )w? — ( — B?)
Yewr b?)y(Tw cos(wT) + sin(wT))g' (d12(w))
We are considering only the case of a unique existing stationary solution which
implies that ¢ < =Y “The loss of stability then takes places at the boundaries

=G (3.21)

bg'(0) *
€ = max {H (5, (w)) — % D g=q(w)},

) e (3.22)
& =min {H(@m:W)) -+ + ¢=¢W)}

Provided that a and c¢ are positive, 0 < b < 1, g € C*(R, R) and ¢"v < 0 for
all v # 0 the unique existing stationary solution of the neural system (3.1) is
asymptotically stable if and only if e ¢ [y, é5].

The curves é€;(¢q) and éy(q) represent the potential Hopf bifurcation points of
system (3.1). This dependence between é and ¢ is determined numerically and
the result is shown in figure 3.1.
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€2

34 €1
Figure 3.1: Stability chart of the stationary solution of the neural system (3.1).
The curves €; and é; denote the transition points between stable stationary and
unstable stationary behaviour. For ¢ > Cb(gl,(_[]b)> there are two existing stationary
solutions (curves e; and ey). They can be read in equation (3.5). The simulation
parameters are (a,b,c,T,7) = (0.9, 0.9, 2.0, 30.0 40.0). Recalculated from [14].

3.3 Limiting case T"— o0

In the case of T" — oo the loss of stability of the stationary solution is calculated.
The results of this analysis can be directly related to the bifurcation structure of
the iterated map. Let (i, 7,w) € R® be a stationary solution of the system (1.6).
For the characteristic polynomial which was already calculated in the previous
section holds

qg'(v)

X(2) = ps3(2) — (z + g) exp(—2T) =0 (3.23)

where p3 is a third order polynomial
1., 5 b, 5 1
pg(z):(z—l—;)(z _C(l_c_Q_U )z + b(0 +5_1))' (3.24)
In order to obtain the limit of T" — oo we first scale the characteristic polynomial

and replace z by z = %. For the corresponding expression for ¢ we obtain in the
limit case

c(v® + 1 — 1) exp(s)
g'(?)

Since ¢ is a real parameter, s = iw, w € IR is a solution of equation (3.25) if the

imaginary part of ¢ is equal to zero. Solving

q= (3.25)

(0?4 § — 1) sin(w)

G =0 (3.26)
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yields the condition w = k7 with £ € INy. The stationary solution of the neural
system loses its stability in the case of infinite delay if

c(v® + 3 — 1) cos(km)
g'(v) ’

The choice of k determines the type of bifurcation. In the special case of the basic

parameters used in the calculations throughout this thesis ((b, ¢) = (0.9, 2.0)) and

the sigmoidal function ¢ having a positive derivative, odd k correspond to a Flip
bifurcation whereas even k correspond to a saddle-node bifurcation. Restriction

k € IN,. (3.27)

q:

to the case ¢ = —1 which was regarded for the iterated map leads to the choice

of an even k£ and we obtain the following condition for the flip bifurcation points
1

g'(0) = (v + 5 1). (3.28)

Comparing this result with the linearisation of the iterated map at the fixed point
for ¢ = —1 (see equation (2.13))

g(H '(U)) = H'(H '(U)) (3:29)
and evaluating the auxiliary function
(3.30)
leads to
g(H '(U) =c((H '(U)*+ 5 —1). (3.31)

Equation (3.28) derived from the loss of stability of the stationary solution is
equivalent to equation (3.31) that was obtained for the iterated map.

For the border case of 7' — oo we obtain the following conclusion: The analysis
has shown that the stationary solutions lose their stability at the flip bifurcation
points of the iterated map.

3.4 Limiting case 7 — o0

The case of infinite time constant 7 is related to an infinite refraction time of the
postsynaptic potential. The characteristic polynomial of the linearisation (3.13)
in this case becomes

b - 1
lim x(2) = xro (2) = 2° — ¢(1 — — — %) 2® + b(v2 + 5 1)z. (3.32)

T—00 CQ

The case 7 — oo leads to a decoupling of the network equation and the FitzHugh-
Nagumo subsystem. u becomes constant and can therefore no longer determine
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the stability of the system. The dynamics of the system is then determined by the
remaining FitzHugh-Nagumo system with u regarded as bifurcation parameter.

o) = clwt)+v(t) — év3(t)) +u, (3.33)
w(t) = (a—ov(t)—bw(t))/c.

The bifurcation behaviour of the FitzHugh-Nagumo system is well studied by
several authors [12, 17, 24, 35]. We therefore give only a short summary of
the main bifurcational results that are specified in [14]. The results concerning
the FitzHugh-Nagumo system are used in the discussion of bifurcation results
obtained in the further course of the thesis.

Lemma 3.2 (Hopf bifurcation)
Assume a,c>0,0<b<1 andb> c*. With

1 3 1 a
m_ Sitoo S AP I 3.34
where
b
v = (—1)4/1 - 5 1=1,2, (3.35)

there holds:

1 2 b2
If5<b<Tlandc > 5,
at u = uW, | = 1,2. This means, there are positive numbers €1, €5 such that
(1.3) has a periodic solution for u € (u) — e, u') and u € (u@,u® +&,). The
bifurcating periodic solutions are unstable.

equation (1.8) undergoes a subcritical Hopf bifurcation

Lemma 3.3 (Global existence and nonezxistence of periodic solutions)

Assume a,¢ > 0,0 < b <1 and b > 2. There are real numbers u*), u®) with
u) < u < u® <u®) ™ and u® as in Lemma 3.2, such that:

For u < u") and u > u®) equation (1.3) has no nonconstant periodic solutions.
In this case the unique existing stationary solution of (1.3) is globally asymptot-
ically stable.

For u") < u < u®) equation (1.3) has a nonconstant periodic solution.

Lemma 3.4 (Uniqueness and Stability of periodic solutions)

Assume a,c >0, 3 <b<1 andb>cg>#i1.

For uV < u < u®, u" and u® as in Lemma 3.2, equation (1.3) has a unique
periodic solution, which is asymptotically orbitally stable.

Remark 3.1 (Bistability and saddle-node bifurcation of periodic solutions)
Assume L <b<landb>c? > ;2.
A numerical calculation (see Figure 3.2) performed using [7] indicates that for

u") < u < u®™ and u® < u < u®) there are exactly two periodic solutions,
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a stable and an unstable one. In this case (1.3) is bistable. Notice that the
interior and the exterior of the trajectory of the unstable periodic solution are the
attraction domains of the stable stationary and the periodic solution, respectively.
At u = u™) and u = u?) saddle-node bifurcations of periodic solutions occur.

max v
\

_2§”IHI I |

-3.0 =2.5 -2.0 -1.5 -1.0
u

Figure 3.2: Bifurcation diagram of the FitzHugh-Nagumo subsystem with pa-
rameter u.

Numerical calculations using the parameters (¢ = b = 0.9 and ¢ = 2.0) yield
that the FitzHugh-Nagumo oscillator (1.3) has a subcritical Hopf bifurcation for
u=u = —2.6505 and v = u® = —1.3495. From Lemma (3.3) and Remark
(3.1) the oscillation interval I, of (1.3) can be calculated:

Ise = [u), u®)] = [-2.6969, —1.3031].



Chapter 4

Numerical bifurcation analysis

In contrast to the two previous chapters where the bifurcation behaviour of the
neural model was analysed for the limiting case of infinite delay with the help of
analytical methods this chapter contains a numerical bifurcation analysis of the
neuron model for different time delays.

Numerical bifurcation results for our model were until now only achieved for
the underlying FitzHugh-Nagumo subsystem that consists of ordinary differen-
tial equations, see for example [14]. A numerical bifurcation analysis for the
whole model that contains a time delay was still to be found. In contrast to
ordinary differential equations retarded differential equations require special nu-
merical bifurcation techniques. In the case of ordinary differential equations a
lot of numerical software exists to analyse the bifurcation behaviour. To our
knowledge for delayed differential equations there exists only one software that
is able to deal with bifurcations of delay differential systems. This software is
called DDE-BIFTOOL (a matlab package for numerical bifurcation analysis of
delay differential equations with several fixed, discrete delays), version 2.00 [9]
and was developed by Koen Engelborghs and coauthors at the University of Leu-
ven, Belgium. DDE-BIFTOOL was applied successfully on bifurcation problems
for systems with time delay. For example mathematical models for semiconduc-
tor lasers with delayed feedback due to reflections on optical fibers were analysed
with DDE-BIFTOOL [22, 15] as well as mathematical models for blood cell pro-
duction [2].

To prepare the numerical bifurcation analysis of our delayed neuron model we
first give a short introduction of the underlying theoretical methods for the bifur-
cation analysis of delayed differential systems. On the basis of the introductory
remarks we first determine the stationary solutions of the neural system and anal-
yse the characteristic roots of the steady state with regard to the parameter e.
With that is is possible to detect the specific points of bifurcation. Starting from
the bifurcation point the branch of periodic solutions is calculated and so the bi-
furcation diagram with respect to the bifurcation parameter e is drawn up. The
stability along the branch of periodic solutions is determined using the Floquet

28
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multipliers. Stable as well as instable sections are found.

A calculation of the bifurcation diagram for large time delays completes the nu-
merical bifurcation analysis and facilitates a comparison with the results of the
previous chapters that were obtained for infinite delay.

A comparison of the results of the different approaches to bifurcation analysis of
the neural system from chapter 2 (iterated map), chapter 3 (bifurcation proper-
ties of the neural system) and chapter 4 (numerical bifurcation analysis) is carried
out in the following chapter 5.

4.1 Bifurcation analysis of delay differential equa-
tions

The purpose of this section is to provide a short summary of the bifurcation
analysis of delayed differential systems. In part, we follow [27, 26]. A detailed
description of delayed differential systems and bifurcation analysis can be found
in [6, 19, 28, 8|.

4.1.1 Theoretical approach

In order to adapt it to our neuron model we restrict the further description of
retarded differential equations to systems with one constant delay. The general
form of a retarded differential system is then

a(t) = f(x(t),z(t —T),n) for ¢ > 0, (4.1)
z(t) = ¢ for — 7T <t<0.
The spaces for the variables and parameters are: = € IR", the delay 7" € IR

and the parameters 1 € IRP. For the function f which represents the right-hand
derivative holds

fiR™x R* — R". (4.2)

In contrast to ordinary differential equations it is necessary to know the entire
history of x(0) to obtain a unique solution. The history is a continous function
on the interval [—7,0]. This denotes that the phase space of (4.1) is an infinite
dimensional space of continous functions denoted by C' which maps into the space
Rn

:[-T,0] - R" (4.3)

with the history {o(¢) | ¢t € [-7,0)} and the head ¢(0). The temporal evolution
of every point ¢ in the phase space C' is determined by equation (4.1) for any
positive £ and can be described by an evolution operator

' C — C. (4.4)
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The solution of (4.1) starting from a point ¢ in C' is then given by
z:[0,00) = R", t— ®(p). (4.5)

Steady states of (4.1) are points g such that () = 2o V ¢ € [T, 0] and fixed
xo € IR". This is equivalent to f(z,z,n0) = 0 for fixed parameter values 7.
The stability of the fixed point is given by the eigenvalues of the linearisation

D f(xo,x0,m0) = D f(x0,z0,m0) x(t) + Df(xg,20,m0) 2(t = T) (4.6)
around the fixed point. For x(t) we use the ansatz
z(t) = exp(zt) & (4.7)
and joining this together leads to the characteristic equation of the system
x(2) = det(z] — Ay, 9,10) — B(xo,20,m0) e *7) = 0. (4.8)

In contrast to ordinary differential equations the characteristic equation is tran-
scendental and posseses an infinite number of eigenvalues. In the case of fixed
delays the eigenvalues are discrete and the eigenvalues have an important prop-
erty that is given in the next theorem.

Theorem 4.1 Given any real number p, equation (4.8) has no more than a finite
number of roots z such that Re z > p.

Further informations on this theorem can be found in [8, 19].

In analogy to the definition of hyperbolicity for maps in definition 2.1 hyperbolic
steady states of retarded differential equations can be defined. They have no
eigenvalues of the characteristic equation that have zero real part.
Nonhyperbolic steady states of retarded differential equations show two types of
local bifurcations of codimension one:

e Saddle-node bifurcation: a single real eigenvalue goes through zero.

e Hopf bifurcation: a complex conjugate pair of eigenvalues crosses the imag-
inary axis.

A solution z(t) of (4.1) is called periodic if it is starting from a point ¢ € C' with
the property ®(q) = ¢ for the period P. The periodic orbit I' contains all ¢
with ®”(q) = ¢. In order to determine the stability of the periodic orbit we first
introduce the notion Poincaré map II.

Definition 4.1 Let I’ be a periodic orbit of the flow ® and ¥ C IR" be a hyper-
plane perpendicular to I'. If ¥ C IR" s fired and Cs, denotes the space of points
in C whose heads are lying in ¥ then the Poincaré map 11 : Cy, — Cy is defined
as

() =" ¢ (4.9)

with t, > 0 being the return time to 3.
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The stability of the periodic orbit can be calculated with the help of the Floquet
multipliers. They are the eigenvalues of the linearisation DII(q) of the Poincaré
map around the fixed point ¢ € Cy;.

Hyperbolicity in terms of periodic orbits means that there is no Floquet multiplier
lying on the unit circle except the trivial Floquet multiplier at +1. Periodic orbits
of codimension one can display three basic local bifurcations if the hyperbolicity
condition is violated:

e Saddle-node bifurcation: a single real eigenvalue goes through +1.
e Period doubling bifurcation: a single real eigenvalue goes through -1.

e Neimark-Sacker (or torus) bifurcation: a complex conjugate pair of Floquet
multipliers moves through the unit circle of the complex plane at e?™® with

1 1 2 1 3
a%oafagagazaz'

4.2 Numerical analysis of the bifurcations

This section contains the numerical bifurcation analysis of the neural system
using DDE-BIFTOOL. After a short description of this tool, we calculate the
bifurcation diagram of the neural system for the delay 7" = 30 and for large delay
T = 1000 in order to compare the results with the calculations of the previous
chapters for infinite delay.

4.2.1 DDE-BIFTOOL

The numerical bifurcation analysis of our neuron model was carried out with
DDE-BIFTOOL, version 2.00 [9]. DDE-BIFTOOL is a collection of MATLAB
routines for the numerical analysis of delay differential equations. The package
contains various routines to analyse steady state solutions and periodic solutions
of delay differential equations. After a steady state has been found it can com-
pute the eigenvalues of the characteristic equation and it allows to determine
the rightmost root that is decisive for the stability of the system. A correction
of the eigenvalues follows using Newton iterations. DDE-BIFTOOL is able to
compute and to continue Hopf bifurcations and saddle-node bifurcations from
steady states. Furthermore, it can detect the local codimension one bifurcations
of periodic orbits (saddle-node bifurcations, period doubling bifurcations and
Neimark-Sacker bifurcations) using orthogonal collocation. In addition adaptive
mesh selection can be chosen to improve the results. In order to determine the
stability of points on the branch of periodic solutions the package provides also
routines to calculate the largest Floquet multipliers.



4.2 Numerical analysis of the bifurcations 32

4.2.2 Steady state solutions

Starting from our basic neuron model
Tu(t) = —u(t)+qg(v(t—T)) +e, (4.10)
o) = clwlt) +o(t) = 30°(0) +uld),
w(t) = (a—o(t) —bw(t))/c

we first determine the stationary solutions which have been already defined in
equation (3.2)

(4.11)

Il
<
Q

&4
+
)

We consider only the case of a unique existing solution (see lemma 3.1) which
holds for

o5 1) > 4g'(0) (412
as condition on the parameters. The most important bifurcation parameter is
the external signal e for which a numerical bifurcation analysis is given in this
chapter. Numerical calculations have shown that the variation of the external
signal e causes a destabilisation of the system that leads to periodic oscillations
in the form of bursting and spiking. Consecutively a fixed set of basic parameters
was used in the bifurcation analysis (a,b,¢,¢,7,T7) = (0.9,0.9,2.0, —1.0, 40, 30).
The steady state solution was computed numerically and we obtain for the given
set of parameters and a starting value of e = —2.5 the points (v* = —2.5374, v* =
—0.8120, w* = 1.9022). Solving the characteristic equation

x(z) =det(z1 — A— Be ") =0 (4.13)

with A and B given in (3.10) we obtain the rightmost roots which are shown in
figure (4.1). The left picture shows the rightmost correctly computed character-
istic roots of the steady state that were calculated up to R(z) > —0.04. The red
colour denotes unstable roots and the green color corresponds to stable roots. In
the right picture the characteristic roots were calculated up to (z) > —0.3. The
calculation was extended in direction to lower real part in order to obtain more
roots. There it is possible to see a small discrepancy between approximated and
corrected roots. The calculations of the characteristic roots show that the steady
state solution is unstable because a pair of characteristic roots with positive real
part R(z) ~ 0.118 was found.
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Figure 4.1: Approximated (x) and corrected (x) roots of (1) at u*, v*, w*. Left:
Correctly computed roots up to R(z) > —0.04. Right: Roots calculated up to
R(z) > —0.3.

Figure 4.2: Real part of the characteristic roots of (1) at u*, v*, w*.
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4.2.3 Periodic solutions

The real part of the roots of the characteristic equation (4.13) can now be eval-
uated with respect to the bifurcation parameter e, see figure 4.2. It can be seen
that there are two points at which the real part of the characteristic roots is zero.
This could correspond to a Hopf bifurcation of steady states. The two possible
Hopf points e, e5 can be determined numerically. The next step is to clarify
whether the two Hopf point candidates fulfill the Hopf criterium of a complex
conjugate pair of eigenvalues that cross the imaginary axis. Figure 4.3 shows
that there is indeed a complex conjugate pair passing the imaginary axis and this
confirms that we have found two Hopf bifurcation points e] and e3.

Starting from the Hopf bifurcation point e} the branch of periodic solutions is fol-
lowed in a two parameter space. Subsequently the branches of periodic solutions
can be calculated in dependence on the bifurcation parameter e. Figure 4.4 shows

1
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Figure 4.3: Characteristic roots at Hopf point e].

the computation of the branch of periodic solutions with regard to the bifurca-
tion parameter e. Predictions of the branch were plotted in green, corrections are
plotted in blue. It is visible that the numerical calculation was difficult in some
regions of the bifurcation diagram due to the discrepancy between predictions
and corrections. The dots indicate the underlying mesh.

To determine the bifurcation direction of the periodic solution the branch was
followed for a small number of points in the vicinity of the Hopf bifurcation point.
Figure 4.5 displays the branch of periodic solutions which is drawn in blue. The
branch of steady states is plotted in red. This reveals that the transition from
stationary to periodic solutions occurs via a subcritical Hopf bifurcation.

The whole bifurcation diagram displaying the branch of periodic v solutions in
dependence on the bifurcation parameter e is drawn in figure 4.6. The red line
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max v(t)—-min v(t)
o
&

Figure 4.4: Predictions and corrections of the periodic solution branch. The
branch emanates from the Hopf point e} and displays the predictions (green
color) and corrections (blue color) along the branch. The mesh is represented by
the dots.
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Figure 4.5: Part of the bifurcation diagram for the membrane potential v in the
vicinity of the bifurcation with respect to the parameter e. This figure demon-
strates the subcritical Hopf bifurcation. The red line shows the stationary solu-
tion and the blue line represents the envelope of the maxima of the periodic v
solutions.
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displays the steady state solution and the blue lines indicate the branches of pe-
riodic v solutions that emanate from the two Hopf points e] and ej. The period

2

151 q

0.5 7

-15 4

Figure 4.6: Bifurcation diagram for the branch of periodic v solutions with respect
to the bifurcation parameter e. The red line represents the stationary solution
v* and the blue lines depict the envelope of the periodic v solutions.

of the periodic orbits as a function of the bifurcation parameter e is shown in
figure 4.7.

The stability of the periodic solution can be determined by calculating the Flo-
quet multipliers for each point located on the branch of the periodic solutions.
For three selected points on the branch of periodic solutions the Floquet multi-
pliers are calculated in order to obtain information about the stability structure
of the branch. The approximate position of the chosen points is drawn in figure
4.8 and the Floquet multipliers themselves are displayed in figures 4.9, 4.10 and
4.11.

As we can see from the different configurations of the three Floquet multipliers
the branch of periodic solutions for parameter values of e lying in the interval
of e € [e] = —2.62; —2.32] shows a complex structure of a mixture of stable and
unstable points. The Floquet multipliers indicate unstable behaviour that cor-
responds to saddle-node bifurcations as well as period doubling bifurcations and
Neimark-Sacker bifurcations for this part of the branch. It seems to be that these
stability changes do not correspond to real bifurcation points of the branch of
periodic solutions but seem to be caused by computational difficulties. We have
already seen that right in the interval e € [ef = —2.62; —2.32] there exist big
discrepancies between predictions and corrections of the periodic solutions which
was shown in figure 4.4.

To summarise we can say that it is not clear what happens definitely with
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Figure 4.8: Branch of periodic solutions.
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Figure 4.10: Floquet multipliers of point 38 on the branch of periodic solutions.
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Figure 4.11: Floquet multipliers of point 41 on the branch of periodic solutions.
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the branch of periodic solutions in the region that corresponds to e € [e] =
—2.62; —2.32]. It seems to be a rather unstable part of the branch of periodic
solutions.

However, in the middle of the branch there is a range of periodic solutions that
have Floquet multipliers which are all located inside the unit circle and which
correspond to stable behaviour. This stable part of the branch starts at the re-
lated parameter value e = —2.32 and ends at e &~ —0.71.

The information obtained by the numerical bifurcation analysis of the neural
system is now compared with the periodic solutions of the neural system (4.10)
which were computed using the software XPPAUT [10], with which it is possible
to calculate the solutions of delay differential equations.

The region of instability on the branch of periodic solutions corresponds to the
bursting regime of the neural system (see figure 4.12, left picture). The simu-
lation shows solutions for e = —2.5 displaying bursting. Spiking can be found
for the stable part of the branch. The numerical simulation in figure 4.12, right
picture, displays this spiking for e = —2.0.

With this a possible explanation for the numerical difficulties in continuing the
branch of periodic solutions can now be found. Since numerical simulations indi-
cate that bursting occurs for parameter values of e that correspond to the unstable
part of the branch the numerical calculation in this region has to treat a system
that displays a permanent change from oscillatory dynamics to quasistationary
behaviour. During bursting the interaction of the two time scales of the model is
especially visible. This may cause problems in following the branch of periodic
solutions and computing the Floquet multipliers in the bursting region.

The spiking region always shows stable behaviour and there seems to be no nu-
merical difficulty. This can be attributed to the permanent oscillations during
spiking which do not turn into quasistationary behaviour.

2

T 2

V()

v(t)

151 1 15 H
1r 1 1
05 - 1 0.5
s or ] s 0
> -05 1 > -0.5
-1F b -1
-15 + 1 -15
2+ 1 -2 F
-25 - - - - - - - -25 - - - - - -
200 300 400 500 600 700 800 300 400 500 600 700 800

t t

Figure 4.12: Numerical simulations of the membrane potential v(¢) with param-
eters (a,b,¢,q,7,T) = (0.9,0.9,2.0,—1.0, 40, 30) with XPPAUT. Left: Periodic
solution for e = —2.5 displaying bursting. Right: Periodic solution for e = —2.0
displaying spiking.
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To conclude this section the point where the stable part of the branch of periodic
solutions begins is compared with numerical solutions of the neural system. The
analysis with DDE-BIFTOOL revealed that the branch of periodic solutions be-
comes stable for e > ez e = —2.32. Looking at the periodic solution of the neu-
ral system around e,y in figure 4.13 calculated with XPPAUT shows that the
transition between bursting and spiking takes place right there. The transition
occurs for e = —2.34 which is close to the value calculated with DDE-BIFTOOL.
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Figure 4.13: The transition from bursting to spiking takes place at a value of
e = —2.34 for the bifurcation parameter (calculated with XPPAUT). This corre-
sponds very well to the transition point egq. = —2.32 that was calculated with
DDE-BIFTOOL.

4.3 Numerical bifurcation analysis for large time
delay

This last section of the numerical bifurcation analysis of the neural model shows
the results of the bifurcation analysis for a large time delay 7" = 1000. Similar to
the proceeding in the previous section we first calculate the steady state solution
and determine the bifurcation points with respect to the parameter e. Starting
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from the Hopf points the branches of periodic solutions are followed and the
bifurcation diagram is calculated. Figure 4.14 shows the branches of periodic v
solutions with regard to the bifurcation parameter e for 7" = 1000. The branch of
steady states is drawn in red and the branches of periodic solutions are plotted
in blue.

For calculations with DDE-BIFTOOL for large delay T (7" = 10000) it turned
out that DDE-BIFTOOL is not able to calculate a complete bifurcation diagram.
For that reason also the calculated bifurcation diagram for 7" = 1000 has to be
regarded sceptically especially with respect to the direction of bifurcation and the
shape of the branches. Calculations of the solution of the neuron model carried
out with XPPAUT confirm this lack of abilities of DDE-BIFTOOL.

However, the comparison with results of the iterated map show that for 7" = 1000
the bifurcation points calculated with DDE-BIFTOOL are plausible.

15
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e

Figure 4.14: Branches of periodic solutions for large time delay 7" = 1000 with
regard to the bifurcation parameter e. The red line depicts the branch of steady
state solutions and the branches of periodic solutions are depicted by blue lines.

In contrast to the bifurcation diagram 4.6 for time delay 7" = 30 the region
of periodic solutions has shrunk and the amplitude of the branch of periodic
solutions became smaller. In addition the shape of the branch of periodic solutions
changed.



Chapter 5

Comparison of analytical and
numerical results

It is the purpose of this chapter to compare and to combine the results of the
three previous chapters in order to find an explanation of the bursting behaviour
of our neuron model

Tu(t) = —u(t) +qg(v(t—T)) +e,
i) = clwlt) +o(t) — 30°(1) +uld), (5.1)
w(t) = (a—v(t) —bw(t))/c.

Chapter 2 contains the concept of the iterated map. The neural system has been
investigated there for the limit case of infinite delay. The iterated map facilitates
an analytical bifurcation analysis (with support of some numerical calculations)
in the case of infinite delay. As a result the range of periodic solutions was
determined as well as the direction of bifurcation.

A different approach of analysing the bifurcation behaviour of (5.1) is given in
chapter 3. Starting from the stationary solution we calculated mainly analytically
the potential Hopf points where the stationary solutions become unstable. The
loss of stability of the stationary solutions was also calculated for infinite delay
T which led to the same bifurcation points as for the iterated map.

The third approach to obtain information about the bifurcation behaviour of
the neuron model was a numerical bifurcation analysis that was carried out in
chapter 4. Bifurcation diagrams and bifurcation directions were determined for
two different delays.

A detailed comparison of the three approaches is carried out in the following
subsections and a conclusion for the occurence of bursting is drawn from the
results.

42
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5.1 Results for finite delay

An analytical result for finite delay is the stability diagram of the stationary
solution for the parameter set (a, b, ¢, T, 7) = (0.9, 0.9, 2.0, 30.0, 40.0) calculated
from the loss of stability of the stationary solutions. The two curves é; and
€9, see figure 5.1, represent the potential Hopf points of the neural system in
dependence on the coupling parameter q. The case of ¢ = —1 is depicted by the
green line and yields two potential Hopf bifurcation points. These are related

e

2 gt 1 2

—2

€

€1
-3

Figure 5.1: Hopf points calculated from the loss of stability of the stationary
solutions. The solid green line emphasizes the case ¢ = —1 and the dashed green
lines refer to the corresponding value of e.

to parameter values ef ' ~ —2.62 and e)?/ ~ —0.39 (dashed green lines).
This is in perfect agreement with the numerical bifurcation analysis that was
carried out with DDE-BIFTOOL. For the parameter values (a,b,c¢,q,T,7) =
(0.9, 0.9, 2.0, —1.0, 30.0, 40.0) the DDE-BIFTOOL bifurcation diagram is
shown in figure 5.2. So the numerical bifurcation analysis with DDE-BIFTOOL
confirms that the potential Hopf points are indeed Hopf bifurcation points.
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Figure 5.2: Hopf points calculated with the numerical bifurcation analysis using
DDE-BIFTOOL. The solid green lines mark the two Hopf bifurcation points and
refer to the corresponding e values.
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5.2 Results for infinite and large delay

The bifurcation points for infinite delay have been calculated with the iterated
map and with the loss of stability of the stationary solutions. Both methods
deliver the same bifurcation points.

For our standard set of parameters (a, b, ¢, ¢, T, 7) = (0.9, 0.9, 2.0, —1.0, 30.0, 40.0)
the iterated map on the one hand has two bifurcation points at

el = —1.97 s = —1.03 (5.2)

that were calculated using an analytical approach. The corresponding bifurcation
diagram of the iterated V-map is drawn in figure 5.3.

Figure 5.3: Bifurcation diagram of the iterated V-map for infinite delay.

The numerically calculated bifurcation diagram for the v branch of periodic solu-
tions (figure 5.4) using DDE-BIFTOOL on the other hand shows the behaviour
of the system for a large time delay 7" = 1000. The bifurcation points are the
same than those calculated using the iterated map for infinite delay.

Figure 5.4: Bifurcation diagram of the branch of periodic v solutions for delay
T = 1000.
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5.3 Bursting in relation to the iterated map

To complete the analysis of the iterated map we examined the connection between
the FitzHugh-Nagumo subsystem and the bifurcation structure of the iterated
map. The FitzHugh-Nagumo subsystem has already been described in section
3.4 and we know that its periodic solutions emanate from the stationary solution
via a subcritical Hopf bifurcation. The interval of oscillations I, in dependence
on the parameter u has been calculated in [14] and it holds

Ise = [u™), u?)] = [-2.6969, —1.3031].

Drawing together the iterated U-map and the oscillation interval I, of the
FitzHugh-Nagumo system shows that the region of periodic solutions of the iter-
ated U-map lies completely within the oscillation interval, see figure 5.5.
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Figure 5.5: The iterated U-map plotted together with the borders of the oscilla-
tion interval of the FitzHugh-Nagumo subsystem (drawn in red).

In order to clarify the connection between the iterated map, the oscillation inter-
val of the FitzHugh-Nagumo oscillator and the behaviour of the neural system
(5.1) we calculated its solutions for a large time delay 7" = 10000 and for various
values of parameters e € [—2.7, —0.2] with XPPAUT. The result sketched in fig-
ure 5.6 is very instructive.

On the basis of the calculation of the iterated map and numerical calculations of
the neuron model for large delays we can draw the following conclusions on the
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Figure 5.6: The sketch displays the behaviour of the neural system for large time
delays T" in comparison with the iterated map.
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generation of bursting:

Explaining the sketch (figure 5.6) from left to the right we start in the region for
the parameter e where the stationary solution of the iterated map lies outside
the interval of oscillations of the FitzHugh-Nagumo (FHN) system. In this region
the corresponding solutions of the neural system are stationary.

For stationary solutions of the iterated map lying already in the oscillation in-
terval of the FHN system but before the first flip bifurcation the neural system
shows bursting.

Parameter values e that correspond to periodic solutions of the iterated map gen-
erate spiking in the neural system for large delays.

Values of e that correspond to stationary solutions of the iterated map between
the second flip bifurcation point and the upper border of the oscillation interval
of the FHN system lead again to bursting in the neural system.

Stationary solutions of the iterated map that lie outside the upper border of the
oscillation interval of the FHN oscillator are related to stationary behaviour of
the neural system for large delays.

To summarise one can say that bursting in the neuron model for large delays
occurs if the bifurcation parameter e corresponds to a stationary solution of the
iterated map that lies in the interval of oscillation of the FitzHugh-Nagumo os-
cillator.

To conclude we would like to show two numerical simulations that were taken
out of a scan of the range of the parameter e which are the basis for establishing
our theory of the reasons of bursting. Figure 5.7 shows the bursting behaviour
of the neural system for the parameter e = —2.3 and for time delay 7" = 10000.
The spiking region is shown in figure 5.8 for time delay 7" = 10000 and parameter
value e = —1.4.

5.4 Bursting for small delay

Regarding small delays in the neuron model it was not possible to use the iterated
map as an argument. So in this case we had to look at the results of the numerical
bifurcation analysis of our system. The stability analysis of the branch of periodic
solutions revealed that there exists a part of the branch that is stable and another
part that shows an unstable behaviour. With the help of the Floquet multipliers
it was possible to find the parameter value e for which the transition between
the unstable and the stable part of the branch occurs. Inserting this parameter
into the numerical calculations of the solutions of the neuron model, carried out
with XPPAUT, also yields the transition point e.4,s; from bursting to spiking,
see figure 4.13. Bursting occurs for the unstable and spiking for the stable region
of the branch.
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u(t),v(t)

Figure 5.7: Bursting: The figure displays the solutions v(t) (black line) and u(t)
(blue line) of the neural system for large time delays T = 10000 and for the
parameter value e = —2.3 calculated with XPPAUT. In addition the borders
of the oscillation interval of the FitzHugh-Nagumo oscillator are plotted by red
dots.
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Figure 5.8: Spiking: The figure displays the solutions v(t) (black line) and u(t)
(blue line) of the neural system for large time delays 7 = 10000 and for the
parameter value e = —1.4 calculated with XPPAUT. In addition the borders
of the oscillation interval of the FitzHugh-Nagumo oscillator are plotted by red
dots.



5.5 Mechanisms of bursting 50

5.5 Mechanisms of bursting

In summary the mechanisms of bursting can be described for two cases.

e Regarding small time delays numerical calculations lead to the conclusion
that bursting corresponds to the unstable part of the branch of periodic
solutions and spiking can be seen for the stable part of the branch of periodic
solutions. Picking out the branch point at which the transition between
unstable and stable periodic solutions occurs facilitates the calculation of
the corresponding transition value of the parameter e;.q,s. Bursting then
occurs for parameter values of e that lie between the Hopf point of the
neuron system and the transition point €.qys.

e For large time delays 1" bursting occurs for parameter values e that corre-
spond either to the region between the lower boundary of the oscillation
interval of the FitzHugh-Nagumo system and the first flip bifurcation point
e{li” of the iterated map or between the second flip bifurcation point egli”

of the iterated map and the upper boundary of the oscillation interval of

the FitzHugh-Nagumo oscillator.



Chapter 6

Multiple time scales

In the neuron model the FitzHugh-Nagumo subsystem represents one time scale
and the network equation which describes the postsynaptic potential possesses
a second time scale. Adding further network equations to our model enables
us to describe several postsynaptic potentials which represent incoming signals.
As an example the system below describes two different classes of postsynaptic
potentials u(¢) within one neuron on the basis of the model

(t) +qg(v(t—T1)) + e,
= —uy(t) + qg(v(t — Tr)) + e, (6.1)

— c(u)(t) + v(t) — %1)3(15)) + ’Y(Ul(t)+u2(t))a

= (a—v(t) —bw(t))/ec.

The postsynaptic potentials may have different delay times T respectively dif-
ferent relaxation times 7. So an application of our neuron model consists in the
description of nerve cells with potentials of different time scales which can be
found in biological systems.

In the first part of this chapter the basic types of postsynaptic potentials that
occur in nature are listed and a short summary of their generation is given. We
apply the idea of different time scales to a small but realistic neural network and
demonstrate the simulation of different types of postsynaptic potentials on the
basis of our neuron model. The variation of the time delay during the simulations
leads to an interesting phenomenon: With increasing time delay the solutions of
the small neural network display burst multiplets. It has been found that it is
possible to also generate burst multiplets with a reduced neural network model.
With the help of this reduced model the occurence and shape of burst multiplets
and their transition states can definitively put down to the parameter 7.

The chapter ends with an example of experimental data that attest that burst
multiplets also occur in real neural networks.

ol



6.1 Postsynaptic potentials 52

6.1 Postsynaptic potentials

Every postsynaptic potential is created by a special reaction between a neuro-
transmitter and a receptor. The postsynaptic potentials are subdivided into two
classes: inhibitory and excitatory postsynaptic potentials. Inhibitory potentials
are created by hyperpolarisation as a result of closure of cation ion channels and
opening of anion ion channels. Inhibitory postsynaptic potentials are not able to
exceed the threshold that is necessary for the generation of action potentials at
the axon hillock of the neuron. Excitatory postsynaptic potentials are produced
from opening of cation ion channels and the influx of positive ions into the neu-
ron. This leads to a depolarisation of the cell membrane and the exceed of the
threshold for generation of new action potentials.

The decay of inhibitory as well as excitatory postsynaptic potentials (IPSP re-
spectively EPSP) is splitted into the categories fast, slow and late slow. Figure
6.1 shows a sketch of the temporal course of postsynaptic potentials that occur
in neurons. A detailed description of the classes of postsynaptic potentials and
the underlying mechanisms is given in [31].

Postsynaptic potentials

fast EPSP ——
slow EPSP ——
_ 4 fast IPSP ——
2 late slow IPSP ———
E
= 2
g
S,
2 0
s i
S
S ‘
-2 7
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0 1 2 3 4 5 6

time [min]

Figure 6.1: Classes of postsynaptic potentials.

6.2 Small neural network consisting of three neu-
rons

A simple and biologically convenient ansatz for the description of different post-
synaptic potentials is a system consisting of three coupled neurons, see figure
6.2. It is very unlikely that one neuron has two synapses with itself or with an-
other neuron. We therefore chose the three neuron ansatz to model two different
synapses at one neuron. The two inhibitory neurons possess only one synapse
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Figure 6.2: Neural network with one excitatory and two inhibitory neurons.

whereas the excitatory nerve cell possesses two synapses. The inhibitory neurons
do not have a mutual coupling. The aim of the choice of this three neuron net-
work is the modelling of three classes of postsynaptic potentials: fast IPSP, slow
IPSP and a fast EPSP.

The nerve cells of the small neural network in figure 6.2 are described by the
following equations. For the excitatory neuron holds

0 () = fw (t) + 0 (1) - é(ve‘”)?’(t)} +y(u (1) +uy" (1) + egy).

W (t) = (a — v (t) — bw™(t))/c,
(6.2)

() = —uit(t) + ¢ {g(vi"(t = T — T° — T{™))}, fast IPSP

T () = —ui (1) + ¢ {g(i"(t = T — T° — Ty"))}. slow TPSP

The parameters 7, and 75 and the coupling constant ¢ are chosen in a way that
the last two equations correspond to a fast IPSP and to a slow IPSP. For the two
inhibitory neurons we obtain with k£ € {1,2}

62(E) = el () + o (1) — AP0} + (g () + ),
Wi () = (a — v (t) — bui" (1)) /e, (6.3)

T (t) = —uf"(t) + ¢ {g(v(t — T — T° — T7**))} fast EPSP
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with 7, and ¢ providing a fast EPSP in the last equation. The variables and
parameters in the three neuron network are defined as follows:

u : postsynaptic potential v : membrane potential
w : recovery variable g : neuronal transfer function

¢"™ : inhibitory coupling (negative) ¢°" : excitatory coupling (positive)
T : synaptic time constant €ezt © €xternal signal
T : time delay between neurons T°,T° : dendritic, synaptic time delay
v : membrane conductance a, b, c : constants

We take into account delays due to synaptic and dendritic propagation time of
the signal and the model contains a general delay 7' characterising the signal
transmission between neurons. In contrast to the neuron model considered in the
previous chapters we also allow a membrane conductance v representing diffusive
effects.

The processes of the signal transmission in the three neuron network are illus-
trated representatively for the excitatory neuron in a flow diagram in figure 6.3.
Both inhibitory neurons send their outgoing signal v to the excitatory neuron
where it is first transformed by the neuronal transfer function g. Then the signal
passes the synapses and is supplied with an inhibitory coupling term ¢ and a delay
due to synaptic processes. The effect of the network equation with respect to the
synaptic time constant can be regarded as a low pass filter. After an interneural
transmission time 7 all postsynaptic signals are summed up and they reach the
nonlinear oscillator where an outgoing signal is generated in dependence on the
two incoming postsynaptic potentials and the external signal e.

6.3 Burst multiplets

A numerical simulation of the coupled system consisting of (6.2) and (6.3) was
performed using XPPAUT, see figure 9.4. Due to the choice of the simulation
parameters the excitatory neuron generates a fast excitatory postsynaptic poten-
tial which is drawn in red. One inhibitory neuron with a small parameter value
of 7 displays a fast inhibitory postsynaptic potential which is drawn in black.
The second inhibitory neuron provided with a large time constant 7 shows slow
inhibitory postsynaptic oscillations that are denoted by the blue curve.
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Figure 6.3: Flow diagram of the excitatory neuron.
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Figure 6.4: Different classes of modelled postsynaptic potentials. The blue po-
tential (ui2) corresponds to a slow inhibitory postsynaptic potential, the black
curve (uil) shows a fast inhibitory postsynaptic potential and the red curve
(ue=uel=ue2) denotes a fast excitatory postsynaptic potential.

The parameter set used for this simulation is

7" = 5 ms T+T° +T7" =5ms

7" = 40 ms T + T° + TJ" varies

76" =5 ms T+T°+T7= =5ms

¢ =1.0 ¢"=-1.0
a=b=0.9 c=2

e, = —2.5074 ek = —2.725
v =1.

With increasing time delay of the slow inhibitory postsynaptic potential an in-
teresting effect occurs: Burst multiplets are created in dependence on the time
delay. Results of the three neuron network show that the prerequisite for the
generation of burst multiplets is that both inhibitory synapses differ with re-
gard to the synaptic time constant and synaptic time delay. This means that
one synapse generates a fast and the other a slow postsynaptic potential. The
postsynaptic potentials and the membrane potentials of all three neurons in our
small network are shown in figure 6.5 in dependence on the parameter 75 ™. For
Ty = 35 ms we obtain the classes of postsynaptic potentials described above.
With increasing time delay new structures are generated and for 75 = 125 ms
the neural network displays oscillations in the form of burst doublets. A further
increase of the time delay to 75 = 180 ms generates burst triplets.
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Figure 6.5: Generation of burst multiplets in the postsynaptic potential and in
the membrane potential of the three neuron system.

Top: simulations for 75 = 35ms, middle: simulations for 79 = 125 ms,
bottom: simulations for 75 = 185 ms.
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6.4 Reduction of the model

The formation of burst multiplets shown in the previous section can not be well
studied in a large system like the three neuron network. We therefore looked
for a reduction of the three neuron model that still produces burst multiplets.
As mentioned above the superposition of different delays is responsible for the
generation of burst multiplets. So the simplest model for burst multiplets is the
basic neuron model with two incoupled potentials v that have different time delay.
Especially the time delay of one membrane potential v can be equal to zero.

ri(t) = —ult) + a{g(e(t) + 9ot~ T))} +e, (6.4
o0 = elw(®)+o(0) = 30°(0) +7ult),

w(t) = (a—v(t)—bw(t))/c.

System (6.4) contains only three time scales: the fast subsystem of the FitzHugh-
Nagumo oscillator and the slow subsystem of the network equation which pos-
sesses two time scales due to one delayed and one non delayed membrane poten-
tial.

Equation (6.4) was analysed numerically and its solutions are plotted for differ-
ent values of delay T (figure 6.6). For T = 50 ms the solution displays periodic
bursting and a Fourier analysis of the frequencies shows that there are some main
oscillation frequencies that are responsible for the periodic bursting.

Membrane potential for delay=50 ms x 10 Spectrum for delay=50 ms
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Figure 6.6: Simulations of the reduced model for " = 50 ms. Left: membrane
potential. Right: frequency spectrum.

The corresponding phase portrait in figure 6.7 as well as the frequency analysis
in figure 6.6 indicate that the solution for 7' = 50 ms behaves almost non chaotic.
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Figure 6.7: Phase diagram for 7" = 50 ms.

An increase of the time delay to 7' = 80 ms in system (6.4) leads to a transition
state between regular bursting and a burst doublet. Here the transition state
displays a wide spectrum of frequencies and a chaotic structure of the phase di-
agram (see figures 6.8 and 6.9).

At T = 110 ms the superposition of the three time scales yield the generation
of burst doublets, see figure 6.10. The frequencies are less wide spread than in
the transition state at 7" = 80 ms. The corresponding phase diagram is shown
in figure 6.11.

A further increase of the time delay T leads to the generation of burst multiplets
containing three bursts et cetera.

The study of the neural model consisting of three time scales reveals that there
occurs a bifurcation of the number of bursts per multiplet with respect to the
bifurcation parameter 7.

Periodic oscillations in the form of bursting are a widespread phenomenon in neu-
rons. But also the formation of burst doublets and burst triplets can be observed
in real neural networks. An example of burst multiplets is described in [34]. Here
the cells of the brain stem of tadpoles are analysed in order to obtain informations
on gill and lung ventilation in pre- and postmetamorphic states. Recordings of
the tadpole brain stem are shown in figure 6.12 and in figure 6.13.
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Figure 6.8: Simulations of the reduced model for 7' = 80 ms. Left: membrane
potential. Right: frequency spectrum.

Phase diagram for delay=80 ms
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Figure 6.9: Phase diagram for 7" = 80 ms.
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Figure 6.10: Simulations of the reduced model for 7' = 110 ms. Left: membrane
potential. Right: frequency spectrum.

Phase diagram for delay=110 ms
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Figure 6.11: Phase diagram for 7" = 110 ms.
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Figure 6.13: Burst doublets in the tadpole brain stem (taken from [34]).




Chapter 7

Prospects

It is the aim of this chapter to shortly present some aspects of the neuron model
and the bifurcation analysis that could not be investigated in this thesis but
whose analysis seems to be rewarding.

As mentioned in chapter 4 and 5 it turned out that DDE-BIFTOOL has diffi-
culties to follow a branch of periodic solutions in the case of large delays and in
the case of systems that obtain different time scales. It would be worth focussing
on this problem and making use of all numerical features of DDE-BIFTOOL in
order to clarify whether this is a principal problem of DDE-BIFTOOL or only a
problem of the chosen numerical routines and related parameters.

In order to obtain an overall impression of the neuron model it would be very
useful to analyse its bifurcation behaviour numerically in dependence on all im-
portant system parameters. Analytical methods similar to those already pre-
sented in chapter 2 and 3 could supply the numerical results and could be used
as reference results in order to avoid numerical artefacts.

The coupling between pre- and postsynaptic potentials in the neuron is mod-
elled by the coupling constant ¢g. The coupling between network equation and
FitzHugh-Nagumo subsystem however has been regarded up to now as constant.
Introducing a diffusive coupling constant v into the neuron model

Tu(t) = —u(t) +qg(v(t—T)) +e,
o) = clwlt) +o(t) — 30%(0) + yu(t)
w(t) = (a—o(t) —bw(t))/c

and analysing its influence on the system could lead to a more realistic model of
the neuron.

A further extension of our system could be the introduction of time dependent
external signals e(t).
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Figure 7.1: Waxing and waning membrane potential of the neuron due to super-

critical Hopf bifurcation in the underlying FitzHugh-Nagumo system.

To demonstrate an example of the properties of the model worth to be analysed
we present a possible application of our neuron model to spindle oscillations in the
thalamus [5, 33, 4]. Spindle oscillations consist of waxing and waning potentials
that are separated by long rest periods. Typically spindles occur at the beginning
of sleep. They are put down to complex mechanisms in the cells. Spindle oscil-
lations as well as the related brain area are well investigated and experimental
data suggest that epileptic seizures are generated by mechanisms that are similar
to those that generate spindle oscillations.

In order to model waxing and waning oscillations with the neuron model used in
this thesis we will present shortly two possible methods. First an application of an
appropriate, time-dependent external signal e(¢) can generate waxing and wan-
ing oscillations. A second method uses the properties of the FitzHugh-Nagumo
system: In the case of a supercritical Hopf bifurcation that holds for % <b<1,
b<c?< #ﬁl (see [14] for further details) the transition to periodic solutions
is soft which leads to waxing and waning oscillations for our neuron model (see
figure 7.1). The open task in this problem is to find conditions for which the

waxing and waning solutions become separated by long quasistationary regions.



Chapter 8

Conclusion

Basis of the investigations within this thesis is a neuron model describing the
membrane potentials as well as the postsynaptic potentials of a neuron. The
neuron is modelled by a coupled system of three differential equations with de-
lay. It consists of a FitzHugh-Nagumo oscillator that is to be considered as an
oscillation generator at the axon hillock of the neuron. Further, the model con-
sists of a network equation that sums up all incoming signals and describes the
synaptic properties of the neuron. The solutions of the neuron model display
three different types of dynamics: stationary behaviour, bursting and spiking.
Bursting is characterised by periodic oscillations that are separated by phases
of quasistationary behaviour. Permanent oscillations however are called spiking.
The different types of dynamics depend on the parameters of the neuron model.
Bursting up to now has been regarded as a phenomenon that arises due to the
interaction of different time scales within the model. Parameter values that lead
to bursting were obtained empirically.

It was the aim of this thesis to find a connection between the appearance of
bursting and the bifurcation properties of the neuron model.

For this purpose the neuron model was analysed using three different approaches.
These were the analysis of the complete system for the limiting case of infinite
delay time 7" of the model, the analysis of the stability of the stationary solutions
of the model for finite and infinite delay and a bifurcation analysis of the com-
plete system using a numerical bifurcation tool for delay differential equations.
In the following a deeper insight into the three approaches is given.

First approach

For the limiting case of infinite delay time 7' it was possible to derive an iterated
map from the equations of the neuron model. The iterated map was analysed
numerically which led to a bifurcation diagram that displayed stationary solu-
tions as well as a range of periodic solutions in dependence on the bifurcation
parameter e. In the model e represents an external signal to the network equa-
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tion. Biologically this signal is collected at the synapse of the neuron.

With the numerical analysis the type of bifurcation was determined to be a flip
bifurcation of the iterated map.

Applying analytical methods with regard to flip bifurcations we determined for
which values of e the transition between stationary and periodic behaviour of the
iterated map occured.

Second approach

As a second step the bifurcation properties of the neural system were examined
by an analysis of the stability of the stationary solutions of the model. For
this purpose a result of Giannakopoulos et al. [14] was used which yields the
transition points between stable stationary and unstable stationary behaviour in
dependence on the parameters e and the coupling constant ¢ between membrane
potential and postsynaptic potential.

The loss of stability of the stationary solutions was then calculated again for the
limiting cases T'— oo and 7 — oc (7 denotes the relaxation time of the postsy-
naptic potential).

In the case of T' — oc the transition points between stable stationary and unsta-
ble stationary regions turned out to be exactly the flip bifurcation points of the
iterated map.

In the case of 7 — oo the equations of the system decouple. That means that
the postsynaptic potential becomes stationary and the FitzHugh-Nagumo system
with the postsynaptic potential u as bifurcation parameter remains. The bifurca-
tion behaviour of the FitzHugh-Nagumo system is well documented in literature
[12, 17, 24, 35].

Third approach

Using the numerical bifurcation tool DDE-BIFTOOL a bifurcation analysis of the
complete system was performed. DDE-BIFTOOL proceeds in analysing delay dif-
ferential systems as follows: Emanating from the stationary solution bifurcation
points were searched in dependence on e. If bifurcation points were found the
type of bifurcation can be determined. For our model two Hopf bifurcation points
were detected which correspond exactly to the transition points between stable
stationary and unstable stationary solutions given in approach two in the case of
finite delay. Starting at the bifurcation point a branch of periodic solutions can
be followed. In addition the stability of the periodic solutions can be determined
for each point located on the branch. Stable as well as unstable parts of the
branch of periodic solutions were found.

The bifurcation analysis was also performed for a large time delay. Here the
resulting bifurcation points are equal to those obtained for the iterated map.
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Regarding each approach by itself leads to interesting results but within the frame
of this thesis it was important to compare the three methods and study the cor-
relations between them in order to obtain a deeper insight into the mechanisms
responsible for bursting.

For finite delay it turned out that there is no difference between the potential
Hopf bifurcation points of the neuron model obtained by analysing the stability
of stationary solutions and the Hopf bifurcation points calculated with DDE-
BIFTOOL. That means that with the help of analytical calculations it is possi-
ble to check the results of DDE-BIFTOOL which for systems with different time
scales like our system sometimes displays difficulties in producing reliable results.
The bifurcation results of the iterated map and the analysis using DDE-BIFTOOL
can also be compared. For this purpose one has to choose a large delay time for
DDE-BIFTOOL because the iterated map only yields results for infinite delay.
Although the delay times are not equal and DDE-BIFTOOL has difficulties in
calculating the branches of periodic solutions for large time delay and the way to
find the bifurcations is different in both cases the same bifurcation points were
found.

In addition, solutions of the neuron model for large time delay 7" were calculated
with XPPAUT, a software that solves delay differential equations. The obtained
solutions displaying stationary behaviour, bursting or spiking in dependence on
e were compared with the iterated map. Calculations yield that the periodic re-
gion of the iterated map for the variable U lies completely within the oscillation
interval of the FitzHugh-Nagumo oscillator. Now the comparison of solutions
of the neuron model for large time delays T yields that bursting corresponds to
special regions for the values of e. These regions are characterised by the iterated
map displaying stationary behaviour and lying within the oscillation interval. In
contrast spiking occurs for values of e that are related to the periodic solutions
of the iterated map. For all other values of e the neural system is stationary.

In the case of small delays it is not possible to refer to the iterated map. So one
has to take the results of the DDE-BIFTOOL analysis of the branch of periodic
solutions. The numerical calculations showed that for e corresponding to the
unstable part of the branch the solutions of the neuron model display bursting.
Spiking on the other hand refers to the stable part of the branch of periodic
solutions.

Finally in this thesis the neuron model was used to describe qualitatively the
behaviour of postsynaptic potentials of nerve cells. The idea of different time
scales was applied to a small but realistic neural network of three neurons which
made it possible to model different types of postsynaptic potentials. For well
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chosen e the time delay turned out to be a parameter which is responsible for
the occurence of burst multiplets and the number of bursts within one multiplet.
With increasing time delay the number of bursts in a multiplet grows. Since
the formation of burst multiplets could not be well studied in the large model of
the three neuron network the model was reduced to a simpler model that still
generated burst multiplets. This system was analysed numerically. We found
that with increasing number of bursts in a multiplet the system showed a more
complex structure of the phase diagrams.

The phenomenon of burst multiplets which was found in context with the mod-
elling of postsynaptic potentials of nerve cells has also a counterpart in biology.
Recordings of the brain stem of tadpoles in order to analyse pre- and postmeta-
morphic states of gill and lung ventilation for example display burst multiplets.



Chapter 9

Zusammenfassung

9.1 Bursting in Modellen mit Zeitverzogerung
fiir neuronale Netze

In der vorliegenden Arbeit werden Mechanismen, die zu Bursting in einem Neu-
ronenmodell fiihren, untersucht. Als Bursting wird eine Oszillationsform der
Potentiale von Nervenzellen bezeichnet, die sich durch Phasen periodischer Ak-
tivitdt auszeichnet. Zwischen den Phasen periodischer Aktivitit zeigt sich quasis-
tationares Verhalten. Eine weitere Oszillationsart von Nervenzellen ist Spiking,
das ein kontinuierliches Oszillieren des Potentials bezeichnet.

In bisherigen Veroffentlichungen wurden fiir das Auftreten von Bursting empirisch
gefundene Kriterien angegeben. Das heifit, dass aus numerischen Simulationen
Parameterbereiche abgeleitet wurden, fiir die Bursting auftritt. Ziel dieser Arbeit
ist es, Kriterien fiir das Auftreten von Bursting zu finden, die sich direkt aus den
Verzweigungseigenschaften des Modells herleiten lassen.

9.1.1 Mathematisches Modell

Das Neuronenmodell, das in dieser Arbeit untersucht wird, besteht aus drei
gekoppelten nichtlinearen Differentialgleichungen mit Zeitverzégerung 7.

Tu(t) = —u(t) +qg(v(t—T)) +e,
o) = clwlt) +o(t) — 30%(0) + u(t)
w(t) = (a—v(t) —bw(t))/c.

Die Variable u beschreibt das postsynaptische Potential einer Nervenzelle. Es
setzt sich aus allen Signalen zusammen, die an der Synapse eingehen und dort je
nach Art der Synapse entweder mit einer inhibitorischen (negativen) oder einer
exzitatorischen (positiven) Kopplung ¢ versehen werden. Eine wichtige Eigen-
schaft der postsynaptischen Potentiale ist ihre Abklingzeit. Diese wird in un-
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serem Modell durch den Parameter 7 modelliert. Zusatzlich beriicksichtigt wer-
den auflerdem externe konstante Signale e, die ebenfalls in das postsynaptische
Potential eingehen.

Das ausgehende Signal einer Nervenzelle wird am Axonhiigel erzeugt. Im vor-
liegenden Modell entspricht das dem FitzHugh-Nagumo Untersystem, das aus
den Variablen v und w besteht. v ist das ausgehende Signal oder auch Membran-
potential und w ist eine Hilfsvariable.

9.1.2 Verzweigungsanalyse

Um Kriterien fiir das Auftreten von Bursting zu finden, die auf der Parame-
terabhangigkeit des Modells beruhen, miissen die Verzweigungseigenschaften des
neuronalen Systems untersucht werden. Dies ist schwierig, da es sich um ein
dreidimensionales, nichtlineares System handelt, das eine Zeitverzogerung bein-
haltet. Deshalb werden drei verschiedene Wege gewahlt, um Verzweigungseigen-
schaften berechnen zu kénnen. Die Kombination der Ergebnisse dieser Ansétze
ermoglicht es dann, Bedingungen anzugeben, fiir die Bursting in Abhangigkeit
vom Verzweigungsparameter e auftritt. Die verschiedenen Herangehensweisen
werden im Folgenden kurz dargestellt.

Iterierte Abbildung

Zunachst wird der Fall unendlicher Zeitverzogerung untersucht. Das mathe-
matische Modell fiir ein Neuron kann dann in Form einer iterierten Abbildung
beschrieben werden. Die Darstellung der iterierten Abbildung fiir die Variable U
ist durch

Uns1 =q9(H™ ' (Un)) + €

gegeben. Die verwendete Hilfsfunktion lautet

H(V(s)) = c(%V3(S) + V(s)(% —1) =N =06)

Die explizite Darstellung ihrer inversen Funktion H '(U(s)) ist im Anhang B
aufgefiihrt. Eine numerische Verzweigungsanalyse der iterierten Abbildung ergibt,
dass es in Abhangigkeit vom Parameter e sowohl stationére als auch periodische
Losungen der iterierten Abbildung gibt (siehe Abbildung 9.1). Der Ubergang
zu den periodischen Losungen erfolgt als superkritische Flip-Verzweigung der
iterierten Abbildung. Mit Hilfe von analytischen Methoden wurden die beiden
Flip-Ver-

zweigungspunkte bestimmt und die Verzweigungsrichtung bestatigt. Die beiden
Flip-Verzweigungspunkte wurden fiir den Parametersatz (a, b, ¢, q) = (0.9, 0.9, 2.0,
—1.0) berechnet zu:

el = —1.97 el = —1.03.
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Figure 9.1: Tterierte U-Abbildung in Abhangigkeit vom Verzweigungsparameter
e.

Stabilitatsanalyse fiir stationare Losungen

Die Verzweigungseigenschaften des Neuronenmodells werden im zweiten Ansatz
mittels einer Stabilitatsanalyse der stationaren Losung des Systems untersucht.
Ausgehend von Ergebnissen von Giannakopoulos et al. [14], die potentielle Hopf-
Punkte in Abhéngigkeit von den Parametern e und ¢ liefern, wird der Sta-
bilitdtsverlust der stationdren Losung fiir die beiden Grenzfille T — oo und
7 — oo untersucht. Im Falle unendlicher Zeitverzogerung ergeben sich exakt
die Verzweigungspunkte, die in der Analyse der Flip-Verzweigung der iterierten
Abbildung berechnet wurden. Der Grenzfall 7 — oo fiihrt dagegen zu einer Ent-
kopplung des Systems. Die Dynamik wird dann nur noch durch den FitzHugh-
Nagumo Oszillator bestimmt, wobei das postsynaptische Potential u als Verzwei-
gungsparameter dient.

Numerische Verzweigungsanalyse

Eine numerische Verzweigungsanalyse des Neuronenmodells wurde mit Hilfe des
Matlab Paketes DDE-BIFTOOL erstellt. Diese Sammlung numerischer Routinen
fiir zeitverzogerte Differentialgleichungen ermoglicht die Berechnung von Verzwei-
gungspunkten und die Fortsetzung von periodischen Losungen.

Fiir das Neuronenmodell wurden zwei Hopf-Verzweigungspunkte gefunden, und
durch Berechnen des Zweiges der periodischen Losungen wurde das Verzweigungs-
diagramm fiir die Variable v in Abhéngigkeit vom Verzweigungsparameter e er-
stellt (siehe Abbildung 9.2). Desweiteren wurde die Stabilitit auf dem Zweig der
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Figure 9.2: Verzweigungsdiagramm des Membranpotentials v in Abhangigkeit
vom Verzweigungsparamter e. Die rote Linie stellt die stationare Losung dar und
die Einhiillende der periodischen Losung ist in blau aufgetragen.

periodischen Losungen mit Hilfe der Floquet-Multiplikatoren bestimmt. Eine Un-
tersuchung des Modells fiir sehr grofle Zeitverzogerungen schliefit die numerische
Verzweigungsanalyse ab.

9.1.3 Ergebnisse der Verzweigungsanalyse
Vergleich der Verzweigungseigenschaften

Fiir endliche Zeitverzogerungen wird durch die numerische Verzweigungsanalyse
mit DDE-BIFTOOL bestatigt, dass es sich bei den potentiellen Hopf-Punkten,
die aus dem Ansatz des Stabilititsverlustes der stationdren Losung berechnet
werden, tatsachlich um solche handelt.

Im Falle unendlicher bzw. sehr grofler Zeitverzogerung konnen die Resultate
der iterierten Abbildung und der numerischen Verzweigungsanalyse fiir grofle
Zeitverzogerungen miteinander verglichen werden. In beiden Fallen wurden die
gleichen Parameterwerte fiir die Verzweigungspunkte gefunden.

Ein weiteres Ergebnis dieser Arbeit ist die Erkenntnis, dass mit Hilfe analytischer
Methoden und mit der Simulation der Losungen des Neuronensystems unter Ver-
wendung der Software XPPAUT Kontrollrechnungen fiir das Verzweigungsverhal-
ten moglich sind. Dies erweist sich als wichtig, da das DDE-BIFTOOL bei der
Berechnung von Zweigen periodischer Losungen fiir Systeme mit mehreren Zeit-
skalen und fiir sehr grofie Zeitverzogerungen aufgrund numerischer Schwierigkeiten
an seine Grenzen stofit.



9.1 Bursting in Modellen mit Zeitverzogerung fiir neuronale Netze 73

Mechanismen fiir Bursting

Aus den Resultaten fiir die verschiedenen Ansitze zur Verzweigungsanalyse lassen
sich folgende Kriterien fiir das Auftreten von Bursting ableiten.

Un+1

4

&

/ / iterated

/ map

3 f25 -p -1.5 1 -0.5 €
behaviour of the
neural system
4
stationary spiking stationary for large delays T
\

bursting bursting

Figure 9.3: Zuordnung von Bereichen des Verzweigungsdiagramms der iterierten
Abbildung zum Verhalten des Neuronenmodells fiir grofie Zeitverzdgerungen.

e Fiir grofie/unendliche Zeitverzogerungen: Bursting tritt fiir solche Parame-
terwerte e auf, die einer stationdren Losung der iterierten Abbildung entsprechen,
wobei diese stationare Losung im Oszillationsintervall des FitzHugh-Nagumo
Oszillators liegen muss. Spiking entspricht dann Parameterwerten e, fiir die
die iterierte Abbildung periodische Lésungen besitzt (siehe Abbildung 9.3).

e Fiir endliche/kleine Zeitverzogerungen: Bursting tritt fiir Parameterwerte
e auf, die instabilen Bereichen auf dem Zweig der periodischen L&sung
entsprechen. Stabile Bereiche des Zweiges der periodischen Losung entsprechen
Spiking.
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9.1.4 Systeme mit vielen Zeitskalen

Die Untersuchungen der Dissertation werden durch ein Anwendungsbeispiel fiir
Bursting abgeschlossen. In der Natur treten viele Arten postsynaptischer Poten-
tiale auf, die in die Basiskategorien schnell, langsam, inhibitorisch und exzita-
torisch eingeteilt werden konnen. Durch die Hinzunahme weiterer Netzgleichun-
gen in das Modell wurde es moglich, diese Klassen postsynaptischer Potentiale
fiir ein kleines neuronales Netz von drei Neuronen zu modellieren (siehe Abbil-
dung 9.4).

Postsynaptic potentials
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Figure 9.4: Modellierung verschiedener postsynaptischer Potentiale. Das blaue
Potential (ui2) entspricht einem langsamen inhibitorischen postsynaptischen Po-
tential, das schwarze Potential (uil) einem schnellen inhibitorischen postsynap-
tischen Potential und das rote Potential (ue=uel=ue2) ist ein schnelles exzita-
torisches postsynaptisches Potential.

Das neuronale Netz zur Modellierung postsynaptischer Potentiale weist eine inter-
essante Eigenschaft auf: Mit wachsender Zeitverzogerung zeigen die Potentiale
die Bildung von Burst-Multipletts (sieche Abbildung 9.5). Dies sind Einheiten
einer gewissen Anzahl von Bursts, die sich periodisch wiederholen. Um eine nu-
merische Analyse des Burstverhaltens durchfiihren zu kénnen, wird das Modell
auf ein System mit nur noch drei Zeitskalen reduziert, ohne dass das Auftreten
von Burst-Multipletts verloren geht.

rit) = —u(t) + alg(o(t) + glo(t = T} +e.
i) = clwlt) +o(t) — 30°(0) +yuld),

w(t) = (a—v(t)—bw(t))/ec.

Die Analyse dieses Systems zeigt, dass es zwischen den Zustédnden mit Burst-
Multipletts Ubergangsphasen gibt, die ein eher chaotisches Verhalten zeigen. Es
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Figure 9.5: Burst-Multipletts des postsynaptischen Potentials und des Membran-
potentials in einem kleinen neuronalen Netz.

wird auch beobachtet, dass die Dynamik der Burst-Multipletts mit wachsender
Anzahl der Bursts ebenfalls komplexer wird.

Burst-Multipletts treten auch in realen neuronalen Netzen auf; sie wurden zum
Beispiel im Hirnstamm der Kaulquappe nachgewiesen.



Appendix A

Hodgkin-Huxley equations

The Hodgkin-Huxley model was developed in order to describe the action po-
tentials in the squid giant axon. v denotes the membrane potential of the cell
and the variables m, n and h describe the conductance of the cell membrane for
different types of ions (sodium, potassium and the rest is summed in a leak term).

dv

C’ma = —grn'(v—vK) — gnam’h(v — vng) — 91 (v — V1) + Lopps
d
—= = an(l—m) = fam,
d
= = an(l—n) = fun,
dh

The specific functions a and 3 depend on the membrane potentials and it holds

25 — v
am(v) = 01 Tl,
exp( 10 )_
—v
fBm(v) = 4 exp(ﬁ),
—v
ap(v) = 0.07 exp(%),
1
Br(v) = E TR
(v) exp (2352) + 1
10 —
Cln(U) = 001 w—_vv,
exp (T) -1

fBm(v) = 0.125 exp(;—g).
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The conductivity parameters are gy, = 120, gx = 36 and g, = 0.3. For the
equilibrium potentials holds vy, = 115, vg = —12 and v;, = 10.6.
A detailed review of the properties of the Hodgkin-Huxley model is given in [25].



Appendix B

Inverse function H1(U(s))

Starting out from the limiting case 7" — oo the neural system is described by a
difference-algebraic system

0 = ~U(s) +ag(V(s—1) +e.
0 = W)+ V(s) — 5V3(s) + Uls),
0 = (a—V(s)—bW(s))/c

with an auxiliary function

H(V(3)) 1= e(3V) + V(s) (5 — 1) — ) = Us)

The inverse of H(V (s)) is

323 (—c+be)

H'(U(s)) =

1
3

<—81ab2c3-81b3c2u4-\/—2916b3c3(—c4-bcf-+(—81ab2c3-81b3c2uf>

1
3
<—81ab2é‘—81b3c2u4-\/—2916b3@(—1>+bcﬁ-+(—81ab2@-—81b3c2uf>

325 bhe

78



Bibliography

1]

2]

U. an der Heiden. Analysis of neural networks, volume 35 of Lecture Notes
in Biomathematics. Springer-Verlag, Berlin, 1980.

S. Bernard, J. Bélair, and M. Mackey. Oscillations on cyclical neutrope-
nia: new evidence based on mathematical modeling. J. Theoretical Biology,
223:283-298, 2003.

R. J. Butera, Jr., J. Rinzel, and J. C. Smith. Models of Respiratory Rhythm
Generation in the Pre-Botzinger Complex. II. Populations of Coupled Pace-
maker Neurons. J. Neurophysiol., 82:398-415, 1999.

A. Destexhe, D. A. McCormick, and T. J. Sejnowski. A model for 8-10 Hz
spindling in interconnected thalamic relay and reticularis neurons. Biophys.
J., 65:2474-8, 1993.

A. Destexhe and T. J. Sejnowski. Thalamocortical Assemblies. Oxford Uni-
versity Press, New York, 2001.

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, and H.-O. Walther. Delay
equations, volume 110 of Applied Mathematical Sciences. Springer-Verlag,
New York, 1995. Functional, complex, and nonlinear analysis.

E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sand-
stede, and X.-J. Wang. AUTO97: Continuation and bifurcation software for
ordinary differential equations. Technical report, Department of Computer
Science, Concordia University, Montreal, Canada, 1997. (Available by FTP
from ftp.cs.concordia.ca in directory pub/doedel/auto).

R. D. Driver. Ordinary and delay differential equations. Springer-Verlag,
New York, 1977. Applied Mathematical Sciences, Vol. 20.

K. Engelborghs, L. Luzyanina, and G. Samaey. DDE-BIFTOOL v. 2.00:
a Matlab package for bifurcation analysis of delay differential equations.
Technical Report TW-330, Department of Computer Science, K.U. Leuven,
Leuven, Belgium, 2001.

79



BIBLIOGRAPHY 80

[10]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

B. Ermentrout. XPPAUT 5.5 - the differential equations tool. Available
from http://www.math.pitt.edu/ bard/xpp/download. html.

C. P. Fall, E. S. Marland, J. M. Wagner, and J. J. Tyson, editors. Com-
putational cell biology, volume 20 of Interdisciplinary Applied Mathematics.
Springer-Verlag, New York, 2002.

R. FitzHugh. Impulses and physiological states in theoretical models of nerve
membrane. Biophysical Journal, 1:445-466, 1961.

F. Giannakopoulos, U. Bihler, C. Hauptmann, and H. J. Luhmann. Epilep-
tiform activity in a neocortical network: a mathematical model. Biological
Cybernetics, 85:257-268, 2001.

F. Giannakopoulos, C. Hauptmann, and A. Zapp. Bursting activity in a
model of a neuron with recurrent synaptic feedback. In Topics in functional
differential and difference equations (Lisbon, 1999), volume 29 of Fields Inst.
Commun., pages 147-159. Amer. Math. Soc., Providence, RI, 2001.

K. Green and B. Krauskopf. Bifurcation analysis of frequency locking in a
semiconductor laser with phase conjugate feedback. Int. J. Bifurcation and
Chaos, 13(9):2589-2601, 2003.

J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems,
and bifurcations of vector fields, volume 42 of Applied Mathematical Sciences.
Springer-Verlag, New York, 1990. Revised and corrected reprint of the 1983
original.

K. P. Hadeler, U. an der Heiden, and K. Schumacher. Generation of the
nervous impulse and periodic oscillations. Biol. Cybernet., 23(4):211-218,
1976.

J. K. Hale and H. Kocak. Dynamics and bifurcations, volume 3 of Texts in
Applied Mathematics. Springer-Verlag, New York, 1991.

J. K. Hale and S. M. Verduyn Lunel. Introduction to functional-differential
equations, volume 99 of Applied Mathematical Sciences. Springer-Verlag,
New York, 1993.

C. Hauptmann. Epileptiform activity in differential equation models of neu-
ronal networks. Shaker Verlag, Aachen, 2000.

C. Hauptmann, A. Gail, and F. Giannakopoulos. Intermittent burst synchro-
nization in neural networks. Lecture Notes in Computer Science, 2686:46—53,
2003.



BIBLIOGRAPHY 81

22]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

T. Heil, I. Fischer, B. Elsafler, B. Krauskopf, K. Grenn, and A. Gavrielides.
Delay dynamics of semiconductor lasers with short external cavities: bifur-
cation scenarios and mechanisms. Physical Review E, 67(6):1-11, 2003.

A. Hodgkin and A. Huxley. A quantitative description of membrane current
and application to conduction and excitation. J. Physiol., 117:500-544, 1952.

E. Kaumann and U. Staude. Uniqueness and nonexistence of limit cycles
for the Fitz Hugh equation. In H. W. Knobloch and K. Schmitt, editors,
Equadiff 82. Lecture notes in mathematics., volume 1017, pages 313-321.
Springer Verlag, Berlin, 1983.

J. Keener and J. Sneyd. Mathematical physiology, volume 8 of Interdisci-
plinary Applied Mathematics. Springer-Verlag, New York, 1998.

B. Krauskopf. Bifurcation analysis of lasers with delay. In D. Kane and
K. Shore, editors, Unlocking Dynamical Diversity: Optical Feedback Effects
on Semiconductor Lasers. Wiley, to appear.

B. Krauskopf and K. Green. Computing unstable manifolds of periodic orbits
in delay differential equations. J. Computational Physics, 186(1):230-249,
2003.

Y. A. Kuznetsov. FElements of applied bifurcation theory, volume 112 of
Applied Mathematical Sciences. Springer-Verlag, New York, second edition,
1998.

J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line
simulating nerve axon. Proc. IRFE, 50:2061-2070, 1964.

L. G. Nowak, M. Azouz, R. amd Sanchez-Vives, C. Gray, and D. McCormick.
Electrophysiological Classes of Cat Primary Visual Cortical Neurons In Vivo
as Revealed by Quantitative Analyses. J. Neurophysiol., 89:1541-1566, 2003.

G. M. Shepherd. The synaptic organization of the brain. Oxford University
Press, New York, 3rd edition, 1990.

A. Shilnikov, R. Calabrese, and G. Cymbalyuk. Mechanisms of bi-stability:
tonic spiking and bursting in a neuron model. Submitted to Phys. Review E.

M. Steriade, D. A. McCormick, and T. J. Sejnowski. Thalamocortical Os-
cillations in the Sleeping and Aroused Brain. Science, 262:679-685, 1993.

C. Torgerson, M. Gdovin, and J. E. Remmers. Fictive gill and lung ventila-
tion in the pre- and postmetamorphic tadpole brain stem. J. Neurophysiol.,
80:2022-2025, 1998.



BIBLIOGRAPHY 82

[35] W. Troy. Bifurcation phenomena in FitzHugh’s nerve conduction equation.
J. Math. Annal. Appl., 54:678-690, 1976.

[36] S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos,
volume 2 of Texts in Applied Mathematics. Springer-Verlag, New York, 1990.



List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

5.1
5.2
5.3
5.4
)

Action potential responses of cats cortical neurons. . . . . .. ..
Sketch of two coupled neurons displaying signal transmission. . . .

Bursting of the single neuron. . . . . . . .. ... ... ... ...
Bifurcation diagrams of the iterated map.. . . . . . ... ... ..
Iterates of the scalar map. . . . . . . .. .. ... ... .. ....
Eigenvalues corresponding to nonhyperbolicity. . . . . . . . . . ..
Sketch of bifurcation directions. . . . . . . . . ... ... ...
Derivativesof gand H. . . . . . . . . . . .. ... ... ... ...
Curve of fixed points. . . . . . . .. ... ...

Stability chart of stationary solution. . . . . . . .. .. ... ...
Bifurcation diagram of the FitzHugh-Nagumo system. . . . . . . .

Characteristic roots along the steady state solutions. . . . . . ..
Real part of the characteristic roots of (1) at u*, v*, w*. . . . . ..
Characteristic roots at Hopf pointej. . . . . . .. ... ... ...
Predictions and corrections of the periodic solution branch. . . . .
Subcritical Hopf bifurcation. . . . . . . . . . ... ... .. ....
Bifurcation diagram of the branch of periodic v solutions. . . . . .
Period of oscillation. . . . . . . .. .. ... ... ... ... ...
Branch of periodic solutions. . . . . . . ... ... ... ... ...
Floquet multipliers of point 19. . . . . . . . . .. ... ... ...
Floquet multipliers of point 38. . . . . . . . ... ... ......
Floquet multipliers of point 41. . . . . . . . .. ... ... ....
Periodic solutions displaying bursting and spiking. . . . . . . . ..
Transition from bursting to spiking. . . . . . . ... .. ... ...
Branches of periodic solutions for large time delay. . . . . . . . ..

Loss of stability: Hopf points. . . . . . . .. ... ... .. ....
Numerical bifurcation analysis: Hopf points. . . . . . . . ... ..
Iterated V-map: Bifurcation diagram. . . . . . . . ... ... ...
Numerically calculated bifurcation diagram for large delay. . . . .
Iterated U-map and FHN oscillation interval. . . . . . ... . ..

83



LIST OF FIGURES 84

5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

7.1

9.1
9.2
9.3
9.4
9.5

Sketch of periodic solution structure for large delay 7. . . . . . . 47
Burst solutions of the neural system for large time delay. . . . . . 49
Spike solutions of the neural system for large time delay. . . . . . 49
Classes of postsynaptic potentials. . . . . . . . .. ... ... ... 52
Network of three neurons. . . . . . . .. .. ... ... .. .... 53
Flow diagram of the excitatory neuron. . . . . . . . .. .. .. .. 55
Different classes of modelled postsynaptic potentials. . . . . . .. 56
Burst multiplets in dependence on the delay. . . . . . . . ... .. 57
Simulations of the reduced model for T'=50ms. . . . . ... .. 58
Phase diagram for 7’=50ms. . . . . . . . .. ... ... 59
Simulations of the reduced model for '=80ms. . . . . ... .. 60
Phase diagram for T’=80ms. . . . . . . . ... ... 60
Simulations of the reduced model for T'=110ms. . . . . . . . .. 61
Phase diagram for 7= 110ms. . . . . . . . . . .. .. ... ... 61
Burst multiplets in the cells of the tadpole brain stem. . . . . .. 62
Burst doublets in the tadpole brain stem. . . . . . .. .. ... .. 62
Waxing and waning membrane potential. . . . . . . . ... .. .. 64
Iterierte U-Abbildung. . . . . . . . ... ... oL 71
Verzweigungsdiagramm fiir das Membranpotential. . . . . . . .. 72
Skizze der periodischen Losung fiir grole Verzogerung 7. . . . . . 73
Modellierung verschiedener postsynaptischer Potentiale. . . . . . . 74

Burst-Multipletts. . . . . . . .. .. ... ... 75



Acknowledgements

I would like to thank Prof. Dr. Tassilo Kiipper and Prof. Dr. Dietrich Stauffer
who enabled this Ph.D. thesis and supported my work.

I am grateful to PD Dr. Fotios Giannakopoulos for his interest and help with
regard to the scientific content and the progress of this thesis.

My thanks also comprise Mrs. Marion Adam and my colleagues for their advice
and the good working atmosphere at the Mathematical Institute.

Finally, T would like to thank the Deutsche Forschungsgemeinschaft for fund-

ing me within the Graduiertenkolleg Scientific Computing at the University of
Cologne.

85



Ich versichere, daf ich die von mir vorgelegte Dissertation selbstandig angefer-
tigt, die benutzten Quellen und Hilfsmittel vollstandig angegeben und die Stellen
der Arbeit - einschliellich Tabellen, Karten und Abbildungen -, die anderen
Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem FEinzelfall
als Entlehnung kenntlich gemacht habe; dafl diese Dissertation noch keiner an-
deren Fakultit oder Universitidt zur Priifung vorgelegen hat; daf} sie abgese-
hen von unten angegebenen Teilpublikationen noch nicht veroffentlicht worden
ist sowie, daf} ich eine solche Veroffentlichung vor Abschlufl des Promotionsver-
fahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordung
sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Tassilo
Kiipper betreut worden.

Teilpublikation: C. Hauptmann, A. Gail, F. Giannakopoulos,
Intermittent Burst Synchronization in Neural Networks,
Lecture Notes in Computer Science 2686, p. 46-53, 2003.



Bursting in a model with delay for networks of neurons

It is the intention of this thesis to analyse the mechanisms that lead to bursting
in a neuron model. The neuron model used within the thesis describes the mem-
brane potentials as well as the postsynaptic potentials of neurons. The neuron
is modelled by a coupled nonlinear system of three differential equations with
delay. It consists of a FitzHugh-Nagumo oscillator that is to be considered as
an oscillation generator at the axon hillock of the neuron. Further, the model
consists of a network equation that sums up all incoming signals and describes
the synaptic properties of the neuron. The solutions of the neuron model display
three different types of dynamics: stationary behaviour, bursting and spiking.
Bursting is characterised by periodic oscillations that are separated by phases
of quasistationary behaviour. Permanent oscillations however are called spiking.
The different types of dynamics depend on the parameters of the neuron model.
Bursting in the analysed model has been regarded up to now as a phenomenon
that arises due to the interaction of different time scales within the model. Pa-
rameter values that lead to bursting were obtained empirically.

It was the aim of this thesis to find a connection between the appearance of
bursting and the bifurcation properties of the neuron model.

For this purpose the neuron model was analysed using three different approaches.
These were the analysis of the complete system for the limiting case of infinite
delay time 7" of the model, the analysis of the stability of the stationary solutions
of the model for finite and infinite delay and a bifurcation analysis of the com-
plete system using a numerical bifurcation tool for delay differential equations.
The investigations resulted in criteria for the occurence of bursting with respect
to the bifurcation parameter for small/finite and large/infinite delay. Finally in
this thesis the neuron model was used to describe qualitatively the behaviour
of postsynaptic potentials of nerve cells. The idea of different time scales was
applied to a small but realistic neural network of three neurons which made it
possible to model different types of postsynaptic potentials.



Bursting in Modellen mit Zeitverzogerung fiir neuronale
Netze

In der vorliegenden Arbeit werden Mechanismen, die zu Bursting in einem Neu-
ronenmodell fithren, untersucht. Als Bursting wird eine Oszillationsform der
Potentiale von Nervenzellen bezeichnet, die sich durch Phasen periodischer Ak-
tivitdt auszeichnet. Zwischen den Phasen periodischer Aktivitat zeigt sich quasis-
tationdres Verhalten. Eine weitere Oszillationsart von Nervenzellen ist Spiking,
das ein kontinuierliches Ostzillieren des Potentials bezeichnet.

In bisherigen Veroffentlichungen zu dem verwendeten Neuronenmodell wurden
fiir das Auftreten von Bursting empirisch gefundene Kriterien angegeben. Das
heiflt, dass aus numerischen Simulationen Parameterbereiche abgeleitet wurden,
fiir die Bursting auftritt. Ziel dieser Arbeit ist es, Kriterien fiir das Auftreten
von Bursting zu finden, die sich direkt aus den Verzweigungseigenschaften des
Modells herleiten lassen.

Das Neuronenmodell, das in dieser Arbeit untersucht wird, besteht aus drei
gekoppelten nichtlinearen Differentialgleichungen mit Zeitverzogerung.

Um Kriterien fiir das Auftreten von Bursting zu finden, die auf der Parame-
terabhangigkeit des Modells beruhen, miissen die Verzweigungseigenschaften des
neuronalen Systems untersucht werden. Dies wurde in der Arbeit mittels drei
verschiedener Ansétze durchgefithrt: Die Untersuchung des Systems im Fall un-
endlicher Zeitverzogerung, die Analyse der Stabilitdt der stationdren Losungen
fiir endliche und unendliche Zeitverzogerung sowie eine numerische Bifurkations-
analyse des Systems. Die Kombination der Ergebnisse dieser Ansitze ermdglicht
es dann, Bedingungen anzugeben, fiir die Bursting in Abhéngigkeit vom Verzwei-
gungsparameter auftritt.

Die Untersuchungen der Dissertation werden durch ein Anwendungsbeispiel fiir
Bursting abgeschlossen. In der Natur treten viele Arten postsynaptischer Poten-
tiale auf, die in die Basiskategorien schnell, langsam, inhibitorisch und exzita-
torisch eingeteilt werden konnen. Durch die Hinzunahme weiterer Netzgleichun-
gen in das Modell wurde es moglich, diese Klassen postsynaptischer Potentiale
fiir ein kleines neuronales Netz zu modellieren.



