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1 INTRODUCTION 

1.1 The Cytoskeleton 

The cytoskeleton is composed mainly of three types of filaments, microfilaments, 

microtubules and intermediate filaments. Microfilaments are fine, thread-like protein fibers, 

7-9 nm in diameter. They are composed of a protein called actin, which is the most abundant 

cellular protein, often accounting 10 to 20 percent of the total cytoplasmic protein content. 

Actin exists either as a globular monomer (called G-actin) or as a filament (designated F-

actin), the latter formed by head-to-tail polymerisation of asymmetric monomers. 

Microfilaments in association with the protein myosin are responsible for muscle contraction. 

They can also carry out cellular movements including gliding, contraction, and cytokinesis.  

Microtubules are cylindrical tubes, 20-25 nm in diameter. They are composed of alpha 

and beta tubulin. Microtubules act as a scaffold to determine cell shape and provide a set of 

"tracks" for cell organelles and vesicles to move on. Microtubules also form the spindle fibers 

for separating chromosomes during mitosis. When arranged in geometric patterns inside 

flagella and cilia they are used for locomotion. 

The intermediate filaments average 10 nm in diameter and thus are "intermediate" in 

size between actin filaments (8 nm) and microtubules (25 nm). There are five major types of 

intermediate filaments each constructed from one or more proteins characteristic of it. Despite 

their chemical diversity, intermediate filaments play similar roles in the cell, providing a 

supporting framework within the cell. For example, in epithelia the nucleus is held within the 

cell by a basketlike network of cytoplasmic intermediate filaments made of proteins called 

keratins, whereas lamins are nuclear proteins that line the nuclear membrane. Intermediate 

filaments (desmin) also anchor the thick and thin filaments of muscle cells in a fixed position 

and provide mechanical strength to the long axons found in some neurons (neurofilaments). 

1.2 The Actin Cytoskeleton 

Actin is a moderate sized protein consisting of approximately 375 residues, which is encoded 

by a large, highly conserved gene family. Some single-celled eukaryotes like yeasts have a 

single actin gene, whereas most organisms contain many actin genes. For example,   

mammals have six distinct actin isotypes (Vandekerckhove and Weber). Each actin molecule 

contains a Mg2+ ion complexed with either ATP or ADP. Thus there are four states of actin: 

ATP-G-actin, ADP-G-actin, ATP-F-actin and ADP-F-actin. Two of these forms, ATP-G-actin 
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and ADP-F-actin predominate in a cell. The addition of ions, Mg2+, K+ or Na+ to a solution of 

G-actin will induce the polymerisation of G-actin into actin filaments. The process is also 

reversible: F-actin depolymerises into G-actin when the ionic strength of the solution is 

lowered. All subunits in a filament point towards the same end. Consequently, at one end of 

the filament, by convention designated plus or barbed end, the ATP-binding cleft of an actin 

subunit is exposed to the surrounding solution and at the opposite end, the minus or pointed 

end, the cleft contacts the neighbouring actin subunit. The actin cytoskeleton is organised into 

bundles and networks of filaments, which are the most common arrangements of actin 

filaments in a cell. Functionally, bundles and networks have identical roles in a cell: both 

provide a framework that supports the plasma membrane and, therefore, determines a cell’s 

shape. Structurally, bundles differ from networks mainly in the organisation of actin 

filaments. In bundles the actin filaments are closely packed in parallel arrays, whereas in a 

network the actin filaments crisscross, often at right angles, and are loosely packed. In all 

bundles and networks, the filaments are held together by actin cross-linking proteins. The 

length and flexibility of a cross-linking protein determine whether bundles or networks are 

formed.  

1.3 Actin Binding Proteins 

Actin binding proteins are classified according to their actin binding function. Actin filament 

severing proteins fragment filaments by mechanisms that do not require the hydrolysis of 

ATP. The purpose of this severing activity is probably to introduce a device whereby existing 

actin filament structures may be removed or remodeled to form other structures within the 

cell. So far, two major groups of actin severing proteins have been identified. The gelsolin 

group is the archetype of the group of actin binding proteins that sever and cap the fast 

growing barbed end of actin filaments and that initiate the polymerisation of new filaments by 

forming a nucleus (Yin et al., 1988; Weeds et al., 1993). The second group, the Actin 

depolymerising factor (ADF)/Cofilin group comprises low molecular weight actin filament 

severing proteins which in addition possess actin monomer binding activity. 

 Actin binding proteins grow by monomer addition exclusively at their ends, 

particularly barbed ends. Filament capping proteins like radixin (Funayama et al., 1991) and 

tensin (Davis et al., 1991) bind to the barbed ends of filaments in cells and are therefore 

essential for the control of actin polymerisation within cells or within local regions of 

individual cells. DNaseI (Podolski et al., 1988) and tropomodulin (Fowler et al., 1993) are 

actin binding proteins that bind to the pointed ends. 
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 There is a well-documented abundance of non-filamentous actin in cells despite the 

intracellular conditions greatly favoring the formation of F-actin. A number of low molecular 

weight actin binding proteins have been identified that are thought to bind G-actin and thus 

directly sequester monomers from the filamentous pool. This pool of monomers is possibly 

drawn upon to support polymerisation when cells are stimulated, for examples by 

chemoattractants. Profilin (Southwick et al., 1990) is an example of an actin monomer 

binding protein, which has sequestering activity. 

 Actin bundling proteins are proteins, which are required to bundle actin filaments in 

two different ways. Any protein that binds actin at a site exposed on the filament, and also has 

the ability to self-associate, should bundle actin filaments. These proteins fall into a family 

sharing a common actin-binding domain (ABD) of the α-actinin type (Matsudaira, 1991). 

Sequence analysis revealed that these proteins share a 250-residue sequence, which can be 

divided into two homologous parts, each of them showing a significant similarity to the N-

terminal part of the calponins, a family of proteins mainly involved in the regulation of 

smooth muscle contraction (Castresana & Saraste, 1995). The ABD composed of two 

calponin homology domains (CH domains) is found in proteins of the α-actinin superfamily 

with proteins such as β-spectrin, α-actinin, dystrophin, utrophin and filamin. Alternatively 

bundling proteins like fimbrin (T-plastin) (Namba et al., 1992) and ABP-50 (Demma et al., 

1990) have two actin binding domains by which they bundle actin filaments. The monomeric 

bundling protein synapsin I has three actin binding sites (Südhof et al., 1989). 

 A distinct group of proteins is formed by the plakins, which have been shown to 

function as cytoskeleton linkers (Ruhrberg & Watt, 1997). These proteins are thought to 

crosslink the microfilaments with the microtubule and intermediate filament systems. Some of 

the plakins like the bullous phemphigoid antigen 1 (BPAG-1/dystonin), plectin and 

microtubule actin crosslinking factor (MACF) share an α-actinin type actin-binding domain at 

their N-terminus with the α-actinin superfamily. Plectin and BPAG-1/dystonin contain an 

additional intermediate-filament-binding domain (Wiche, 1998), and MACF has been shown 

to connect the actin cytoskeleton with the microtubule filaments (Leung et al., 1999). 

1.4 Actin binding proteins related diseases 

The critical role of actin-crosslinking proteins in maintaining cell structure and 

function was uncovered in studies on the Duchenne muscular dystrophy (DMD), a X-linked 

degenerative disorder of muscle. DMD affects about 1 in 3500 live born males. The 

progressive weakness of the striated muscles also leads to respiratory complications, which 
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mark the final stage of the disease before the end of the third decade of life (Moser, 1984). 

Patients with DMD have a defect in the gene encoding the actin-crosslinking protein 

dystrophin (Ahn & Kunkel, 1993). Dystrophin crosslinks actin filaments into a supportive 

cortical network and attaches this network to a glycoprotein complex in the muscle cell 

membrane. The membrane complex is also connected with extracellular proteins. In patients 

lacking a functional dystrophin, the membrane of muscle cells is not supported by cortical 

actin and is easily damaged by stress of repeated muscle contraction. The actin-crosslinking 

protein spectrin mediates important structural properties of erythrocytes to make them robust 

in deformation so that they can squeeze through the small capillaries and sinusoids of the 

spleen. In spectrin-deficient erythrocytes deformability is reduced, which results in a spherical 

shape, lacking the central pallor associated with the biconcave cells. Hereditary spherocytosis, 

elliptocytosis and pyropoikilocytosis represent a group of disorders that are due to deficiency 

or dysfunction of spectrin and other proteins involved in the linkage of the cytoskeleton to the 

plasma membrane in red blood cells (Palek, 1987). Plectin and BPAG-1/dystonin have been 

shown to be important in the maintenance of the cytoskeletal integrity in several cell types 

(Brown et al., 1995; Dalpe et al., 1998). Mutations in the mouse BPAG-1/dystonin gene are 

responsible for the dystonia musculorum (dt) mutant phenotype, which is first recognizable 

between 7 and 10 days after birth and displays a progressive loss of limb coordination. The dt 

mice suffer from neurological, myelination and muscle abnormalities caused by intrinsic 

defects in sensory neurons, Schwann cells and skeletal muscle cells, respectively (Bernier et 

al., 1998). Similarly, targeted inactivation of the plectin gene in mice resulted in lethality two 

to three days after birth, probably a result of severe skin blistering caused by degeneration of 

keratinocytes (Andrä et al., 1997). Mutations in human plectin cause epidermolysis bullosa 

simplex which is associated with muscular dystrophy, an epidermal blister disease which is 

associated with a myopathy(McLean et al., 1996). 

1.5 The nucleus and the nuclear envelope 

The nucleus is the control center and the hallmark of a eukaryotic cell. Usually the 

nucleus is round and is the largest organelle in the cell. It is surrounded by a membrane 

structure called nuclear envelope, which is similar to the cell membrane that encloses the 

entire cell. The nuclear envelope has a complex structure, consisting of two nuclear 

membranes, an underlying nuclear lamina and the nuclear pore complexes. The outer nuclear 

membrane is continuous with the endoplasmic reticulum, so the space between the inner and 

outer nuclear membranes is directly connected with the lumen of the endoplasmic reticulum. 
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In addition, the outer nuclear membrane is functionally similar to the membranes of the 

endoplasmic reticulum and has ribosomes bound to its cytoplasmic surface. In contrast, the 

inner nuclear membrane carries unique proteins that are specific to the nucleus. 

 

 
 

Figure 1.1: A schematic diagram of the nucleus. The picture is taken from "The Cell, A molecular approach", 

Geoffrey M. Cooper., Second edition. 

 The critical function of the nuclear membranes is to act as a barrier that separates the 

contents of the nucleus from the cytoplasm. Like other cell membranes, the nuclear 

membranes are phospholipid bilayers, which are permeable only to small nonpolar molecules. 

Other molecules are unable to diffuse through the phospholipid bilayer. The inner and outer 

nuclear membranes are joined at nuclear pore complexes, the sole channels through which 

small polar molecules and macromolecules are able to travel through the nuclear envelope. 

The nuclear pore complex is a complicated structure that is responsible for the selective traffic 

of proteins and RNAs between the nucleus and the cytoplasm (Figure 1.1). 

A unique feature of the nucleus is that in most eukaryotic organisms it disassembles 

and re-forms each time the cell divides. At the beginning of mitosis, the chromosomes 

condense, the nucleolus disappears, and the nuclear envelope breaks down, resulting in the 

release of most of the contents of the nucleus into the cytoplasm. At the end of mitosis, the 

process is reversed: The chromosomes decondense, and the nuclear envelopes re-form around 

the separated sets of daughter chromosomes and eventually fuse. Nuclear envelope 

 



Introduction______________________________________________________________ 
6

breakdown (NEBD) involves the depolymerisation of the lamina, the fragmentation and 

removal of the nuclear membranes from the chromatin, and the disassembly of the NPCs. The 

lamina in metazoans is composed of the intermediate filament-like proteins, called lamins, 

which connect with the NPCs and inner nuclear membrane to form a network underlying the 

nuclear envelope and extending into the nuclear interior. Here, the lamina can help to 

organize chromatin into functional domains and provide structure to the nucleus (Liu et al., 

2000 and Wilson et al., 2001). The lamina, and by extension, chromatin, are attached to 

integral inner nuclear membrane proteins which, along with the integral pore membrane 

proteins, define the unique composition of the nuclear membranes (Worman and Courvalin, 

2000). 

There is a large body of evidence that many nuclear envelope-associated proteins are 

reversibly phosphorylated during mitosis, concomitant with their dramatic redistribution away 

from the vicinity of the nucleus. Initially, it was thought that these phosphorylation events 

promote NEBD, leading to the dispersal of the inner nuclear membrane into a discrete 

population of vesicles (Vigers and Lohka, 1991), but recent work has indicated that the 

nuclear envelope is not fated to vesiculate. Rather, mitosis involves the redistribution of the 

nuclear envelope membrane proteins into the ER. Although the ER-nuclear envelope 

membrane system is continuous, all membrane proteins do not normally freely diffuse within 

it. Instead, once synthesized, inner nuclear membrane proteins diffuse from the ER through 

the pores to the inner nuclear membrane where they become trapped, presumably by their 

interactions with the lamina, chromatin, and each other (Worman and Courvalin, 2000). 

1.6 Proteins of the nuclear envelope 

The major structural framework at the nuclear periphery is the nuclear lamina, whose 

core structure is formed by type V intermediate filament proteins, the lamins (Stuurman et al., 

1998). Lamins assemble into a meshwork of tetragonally organised 10-nm filaments 

underneath the INM. The attachment of the lamins to the membrane involves several 

mechanisms, and depends also on the type of lamins. B type lamins, which are constitutively 

expressed in all somatic cells, contain a stable C-terminal farnesyl modification, which is 

important but not sufficient for targeting and anchoring B-type lamins to the membrane (Moir 

et al., 1995). Thus, interactions of B-type lamins with integral membrane proteins must also 

contribute to the assembly and stable association of lamin B filaments at the membrane 

(Hutchison et al., 2001). The best-known binding partners for B-type lamins in the INM are 

the lamin B receptor (LBR) (Worman et al., 1990) and LAP2 β (Furukawa et al., 1995). LBR 
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contains eight transmembrane domains, and interacts with B-type lamins both in vivo and in 

vitro (Simos et al., 1992; Ye et al., 1994). LAP2 β is the best-characterized membrane protein 

of the LAP2 family, which comprises up to six alternatively spliced mammalian isoforms 

named LAP2∝, β, γ, δ, ε and ζ (Harris et al., 1994 and Berger et al., 1996) and three Xenopus 

LAP2 isoforms (Lang et al., 1999; Gant et al., 1999). Except for LAP2 ∝ and LAP2 ζ, all 

mammalian LAP2 isoforms have a closely related N-terminal nucleoplasmic domain of 

variable length, plus a single membrane-spanning region and a short lumenal domain at their 

C-terminus (Dechat et al., 2000). LAP2 β has the longest nucleoplasmic N-terminal domain 

(408 residues). Due to alternative messenger RNA (mRNA) splicing, LAP2 ε, δ and γ lack 

stretches of 40, 72 and 109 amino acids, respectively, but are otherwise identical to LAP2 β. 

LAP2 ζ is the smallest isoform of LAP2 β, and is missing ~ 190 residues of the nucleoplasmic 

domain as well as the transmembrane and lumenal regions. LAP2 ∝ is structurally and 

functionally a unique isoform; it shares only the N-terminal 187 residue ‘constant’ domain 

with all other LAP2 isoforms, and then contains a unique C-terminal domain of 506 residues 

with no transmembrane domain. LAP2 β, but not LAP2 ∝, interacts with lamin B in vitro 

(Foisner et al., 1993). The lamin B binding domain maps to 73 residues in the nucleoplasmic 

region (Furukawa et al., 1998), which are also present in the smaller isoforms LAP2 ε and δ, 

and are partly con-served in LAP2 γ. However, the lamin-binding activities of the smaller 

isoforms have not yet been demonstrated.  

The most-studied A-type lamins are lamin A and its smaller splice variant, lamin C. 

A-type lamins are only expressed in later stages of development (Moir et al., 1995; Cohen et 

al., 2001). Lamin A is transiently farnesylated, and lamin C is never farnesylated. Perhaps due 

to their lack of fatty acid modification, lamins A and C do not associate stably with 

membranes during mitosis. A-type lamin structures may also be less stable during interphase, 

or organized differently, because ectopic expression of headless lamin mutants in mammalian 

cells selectively mislocalises A-type lamins into intranuclear aggregates, whereas lamin B 

remains unchanged (Izumi et al., 2000; Dechat et al., 2000). The incorporation of mature, 

non-farnesylated lamins A and C into the lamina after mitosis might depend on B-type lamins 

(Stuurman et al., 1998) and specific interactions with membrane proteins at the INM. Integral 

membrane proteins that might link A-type lamins to the INM include three LAP1 proteins (A, 

B and C), which are alternatively spliced products of a gene unrelated to LAP2 (Martin et al., 

1995), and emerin (Manilal et al., 1996), which shares an ~40 residue domain (LEM domain) 

with the LAP2 isoforms (Dechat et al., 2000; Lin et al., 2000). LAP1-A, LAP1-B and emerin 

all bind A-type lamins in vitro (Foisner et al., 1993; Clements et al., 2000), and the 
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localization of LAP1-C and emerin at the INM depends on A-type lamins (Powell et al., 1990; 

Sullivan et al., 1999). Thus, multiple interactions between lamins and INM proteins are 

probably required to form a stable peripheral lamina (Figure 1.2). 

  

Figure 1.2: Proposed molecular interactions between components of the peripheral lamina, the 

nucleoskeleton and chromatin. INM, inner nuclear membrane, ONM, outer nuclear membrane and NPC, 

nuclear pore complex (taken from Vlcek et al., 2001). 

1.7 Actin binding proteins in the nucleus and nuclear membrane 

The discovery of actin and of numerous actin binding in the nucleus argues that not 

only is actin present in the nucleus but its polymerisation is controlled. The presence of some 

of the actin binding proteins in the nucleus might be irrelevant as many of them are small 

enough to enter the nucleus passively. Thymosin, a 5 kDa sequesterin protein and profilin, a 

12 kDa actin sequestering and nucleotide exchange protein could be examples for this kind of 

passive diffusion into the nucleus. In the light of this objection, two types of nuclear actin 

binding proteins are of particular interest. The first class comprises proteins like c-Abl, a 
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tyrosine kinase involved in the cellular response to DNA damage, which was found to have 

both F- and G-actin binding domains and actin binding activity in vitro (Van Etten et al., 

1994). The second class of protein comprises established actin binding proteins that are 

associated with the nucleus. An example of this class of proteins is the erythrocyte protein 

4.1, which in red blood cells is thought to help to anchor the cytoskeleton to the membrane by 

promoting the interaction of spectrin with actin. In nucleated cells such as HeLa and MDCK 

cells, protein 4.1 has been reported as a component of the nuclear matrix (De Carcer et al., 

1995; Correas et al., 1991). Spectrin has also been reported to be present in the nucleus 

(Bachs et al., 1990). The function of these proteins in the nucleus is not well understood, but 

recent data suggest that protein 4.1 plays a role in RNA splicing (Lallena et al., 1998). 

Recently, a giant actin binding protein of 800 kDa called NUANCE (NUcleus and ActiN 

Connectind Element) was found to be associated with the nuclear membrane (Zhen et al., 

2002). 

1.8 Nuclear migration and the involvement of actin binding proteins 

The nucleus and other organelles are in fact quite dynamic. They often migrate 

through the cytoplasm and then occupy specific locales, often far from the center of the cell. 

For example, in a newly fertilized zygote, pronuclei must first migrate towards one another, 

and then they migrate to a species-specific location before undergoing the first mitosis. 

Nuclear positioning is also essential to a variety of polarized cells, such as intestinal brush-

border cells and many secreting endocrine cells. In other cases, nuclear migration events 

reposition nuclei to distant regions of the cell. Examples include growing plant pollen tube 

cells (Hepler et al., 2001) and developing C. elegans hypodermal cells (Sulston et al., 1983). 

Disruption of nuclear migration in the cell bodies of the developing cerebral cortex leads to 

the human neurodevelopmental disease lissencephaly (Lambert de Rouvroit and Goffinet, 

2001). Even in single celled organisms, such as budding and fission yeast, tight controls exist 

to position the nucleus correctly prior to cell division (Morris, 2000; Tran et al., 2001). 

Nuclei must be carefully positioned throughout oogenesis and embryogenesis of 

Drosophila. During the cytoplasmic dumping stage of oogenesis, when the 15 nurse cells 

rapidly squeeze their cytoplasm into the oocyte through narrow ring canals, nuclei must 

remain anchored away from the ring canals. Normally, an array of striated actin bundles 

extends from the plasma membrane to nurse cell nuclei. These bundles shorten as dumping 

progresses and the nurse cells shrink (Guild et al., 1997). Mutations in the actin-monomer-

binding protein profilin or in the actin-filament-bundling proteins villin and fascin disrupt 
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these filaments, generating free-floating nuclei (Robinson and Cooley, 1997). These mutations 

block oocyte development because, as cytoplasmic dumping from the nurse cells begins, 

nuclei become physically stuck in ring canals. A second example is the early embryonic 

nuclear migrations towards the periphery of the syncytial blastoderm. The actin gel-like 

network around migrating nuclei depolymerizes. This has been hypothesized to contribute to 

the force required for migration as nuclei passively `surf' the depolymerizing front (von 

Dassow and Schubiger, 1994).  

Actin networks can also function actively to reposition nuclei. Chytilova et al. (2000) 

recently described a dramatic example. Actin depolymerising drugs completely abolished 

rapid, long-distance intracellular nuclear migration in Arabidopsis root hairs, whereas drugs 

that disrupted microtubules had no effect. Because of the speed and distance of the nuclear 

migrations in these cells, the actin network must be functioning actively to move nuclei, in 

contrast to the above examples of passive mechanisms. Budding yeast provides another 

example: both actin filaments and microtubules are required for proper localization of the 

nucleus and spindle at the bud neck to ensure normal cell division (Palmer et al., 1992; 

Bloom, 2001).  

ANC-1 is the C. elegans orthologue of the mammalian Enaptin, NUANCE proteins 

and mutations in anc-1 (nuclear anchorage defective) disrupt the positioning of nuclei and 

mitochondria in Caenorhabditis elegans (Starr et al., 2001). NUANCE is a huge human 

spectrin repeat containing protein having a functional ABD at its N-terminus and a single 

transmembrane domain at its C-terminus and is localised to the nuclear envelope (Zhen et al., 

2000). 

1.9 Aim of the work 

The presence of Enaptin-165 and CPG2 (Nedivi et al., 1996), which are highly homologous to 

the N-terminus of NUANCE and are homologous to human Nesprin-1α, human Nesprin-1β, 

mouse Syne-1A, Syne-1B and human Myne-1 (Apel et al., 2000; Mislow et al., 2000; Zhang 

et al., 2000) which themselves are highly homologous to the C-terminus of NUANCE (Zhen 

et al., 2002) signalled the possible existence of Enaptin being a larger gene like NUANCE, 

with Enaptin-165, CPG2, Syne-1A, Syne-1B, Myne-1 and Nesprins being short alternatively 

spliced isoforms. To address this issue, antibodies for the ABD of Enaptin should be 

generated and used for immunofluorescence experiments to study the presence of Enaptin at 

the nuclear envelope in western blots and to detect the biggest transcript of Enaptin. The 
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antibodies will also be used to follow the distribution of Enaptin in various tissues. Yeast two 

hybrid and GST-pull down experiments will be used to study the binding partners of Enaptin 

especially to the evolutionally conserved regions like the region after the transmembrane 

domain. Mouse knock out targeting the transmembrane domain of Enaptin will be carried out 

to study the role of Enaptin in muscular dystrophy given the fact that Enaptin was shown to 

lamin A/C (Mislow et al., 2002), mutations in lamin A/C is known to cause muscular 

dystrophy.
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MATERIALS AND METHODS 
 

2.1 Materials 
 
2.1.1 Enzymes, inhibitors and antibodies 
 
Enzymes for molecular biology 

alkaline phosphatase      Roche 

DNase I (Desoxyribonuclease)    Sigma 

lysozyme        Sigma 

M-MLV reverse transcriptase     Promega 

restriction endonucleases     Life Technologies 

ribonuclease A      Sigma 

T4-DNA-ligase      Life Technologies 

Taq-DNA-polymerase      Roche 

  

Antibodies 

primary antibodies: 

mouse-anti-α-actinin      Sigma 

mouse-anti-desmin      Sigma 

mouse-anti-skeletal (Fast) myosin    Sigma 

mouse-anti-lamin A/C      CHEMICON 

mouse-anti-emerin      NOVO Castra 

mouse-anti-LAP2      Transduction 

rabbit-anti-PDI      Stressgen 

 

secondary antibodies: 

goat-anti-mouse-IgG, peroxidase-conjugated   Sigma 

goat-anti-mouse-IgG, Cy3-conjugated   Sigma 

goat-anti-mouse-IgG, alkaline phosphatase conjugated Sigma 

goat-anti-mouse-IgG, Alexa 488 conjugated   Molecular Probes 

goat-anti-rabbit-IgG,Alexa 568 conjugated   Molecular Probes 
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Inhibitors 

benzamidine       Sigma 

DEPC (Diethylpyrocarbonate)    Sigma 

PMSF (Phenylmethylsulfonylfluoride)   Sigma 

ribonuclease-inhibitor (RNAsin)    Promega 

Complete Inhibitor-Cocktail     Roche 

 

Antibiotics 

ampicillin       Grünenthal 

kanamycin       Biochrom 

penicillin/streptomycin     Biochrom 

 

2.1.2 Reagents 

acrylamide       National Diagnostics 

agarose (electrophoresis grade)    Life Technologies 

acetone        Riedel-de-Haen 

Bacto-Agar, Bacto-Pepton, Bacto-Trypton   Difco 

BSA (bovine serum albumin)     Roth 

chloroform       Riedel-de-Haen 

calcium chloride      Sigma 

Coomassie-brilliant-blue R 250    Serva 

p-cumaric acid       Fluka 

DMEM (Dulbecco´s Modified Eagle´s Medium)  Biochrom 

DMF (dimethylformamide)     Riedel-de Haen 

DMSO (dimethyl sulfoxide)     Merck 

DTT (1,4-dithiothreitol)     Gerbu 

EDTA ([ethylenedinitrilo]tetraacetic acid)   Merck 

EGTA (ethylene-bis(oxyethylenenitrilo)tetraacetic acid) Sigma 

ethanol           Riedel-de-Haen 

ethidium bromide       Sigma 

FCS (fetal calf serum)      Biochrom, 

fish gelatine       Sigma 

formamide       Merck 
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formaldehyde       Sigma 

glycine        Degussa 

IPTG (isopropyl β-D-thiogalactopyranoside)   Sigma 

isopropanol       Merck 

β-mercaptoethanol      Sigma 

methanol       Riedel-de-Haen 

methylbenzoate      Fluka 

mineral oil       Pharmacia 

MOPS ([morpholino]propanesulfonic acid)   Gerbu 

Ni-NTA-agarose      Qiagen 

paraformaldehyde      Sigma 

RNase A       Sigma 

SDS (sodium dodecylsulfate)     Serva 

sodium azide       Merck 

TEMED (tetramethylethylenediamine)   Merck 

Tris (hydroxymethyl)aminomethane    Sigma 

Triton X-100 (t-octylphenoxypolyethoxyethanol)  Merck 

X-Gal(5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside)Roth 

xylol        Fluka 

yeast extract       Oxoid 

 

Radionuclides 

α-32P-desoxyadenosine-5‘-triphosphate (10 mCi/ml) Amersham 

α-32P-desoxycytosine-5‘-triphosphate (10 mCi/ml)  Amersham 

 

Reagents not listed above were purchased from Clontech, Fluka, Merck, Roth, Serva, Sigma, 

Promega and Riedel-de-Haen, respectively. 

 

2.1.3 Kits 

Nucleobond PC 500      Macherey-Nagel 

NucleoSpin Extract 2 in 1     Macherey-Nagel 

NucleoSpin Plus      Macherey-Nagel 
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RNeasy midi kit      Qiagen 

pGEMT easy Cloning Kit      Promega 

Zero Blunt TOPO PCR Cloning Kit    Invitrogen 

EndoFree Plasmid Maxi kit     Qiagen 
 

2.1.4 Bacterial host strains 

E. coli M15   
E. coli DH5α  

 
2.1.5 Eukaryotic cells 

C3H/10T1/2 mouse fibroblasts 
N2A mouse neuroblastoma cell line 

 

COS-7 monkey SV40 transformed kidney cell line 

human primary keratinocytes (kindly provided by Dr. I. Haase, Clinic of  

 Dermatology, University of Cologne) 

C2F3 mouse myoblasts 

MB50 human myoblast primary cell line 

 

2.1.6 Vectors 
 
pQE-30    Qiagen 

pGEM-T Easy   Promega 

pCR-Blunt II-TOPO  Invitrogen  

pEGFP-C2   Clontech 

pGBKT7   Clontech         

pGADT7    Clontech 

pBluescript   Stratagen 

pGEX4T1   Pharmacia    

 

2.1.7 Oligonucleotides 
 
Oligonucleotides for PCR (polymerase chain reaction) were purchased from MWG-Biotech 

AG (Ebersberg), Roth GmbH (Karlsruhe), Germany and metabion (Martinsried). 
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Oligonucleotides used to clone Enaptin-165 in pGEMTeasy vector 
624fullGFP5’end 
GGAATTCATGGCAACCTCCAGAGCATCTTC 
 
624fullGFPC2-3’end 

ACGCGTCGACTTAGAAGTGGTGAAGCACATACTCTTCTTCAAG 

 

Oligonucleotides to correct the deletion after the ABD in the small isoform of Enaptin in the 

pGEMTeasy vetcor  

del.for 

5' ATTTTGAAGG AAACAAAAGT TTGGATAGAA C 3' 

del.rev 

GTTCTATCCA AACTTTTGTT TCCTTCAAAA T 

 

Oligonucleotides to clone the ABD of Enaptin into the yeast two hybrid vector 

624fullGFP5’end 

GGAATTCATGGCAACCTCCAGAGCATCTTC 

y2hABD3' 

TGCGTCGACC TACTTGACTT CCATGAAGAG CTCCCTCC 

 

2.1.8 Buffers and other solutions 

Buffers and solutions not listed below are described in the methods section. 

PBS (pH 7.2):     10x NCP-buffer (pH 8.0): 

10 mM KCl     100 mM Tris/HCl 

10 mM NaCl     1.5 M NaCl 

16 mM Na2HPO4    5 ml Tween 20 

32 mM KH2PO4    2.0 g sodium azide 

 

10x MOPS (pH 7.0/ pH 8.0):   PBG (pH 7.4): 

20 mM MOPS     0.5% BSA 

50 mM sodium acetate   0.045% fish gelatine 

1 mM EDTA  in 1x PBS 

 

20x SSC:                            TE-Puffer (pH 8.0): 

3 M NaCl                          10 mM Tris/HCl (pH 8.0) 
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0.3 M sodium citrate                1 mM EDTA (pH 8.0, adjusted with NaOH) 

autoclaved 

 
2.1.9 Materials 
 
cryotubes, 1 ml      Nunc 

Eppendorf tubes, 1.5 ml and 2 ml    Sarstedt 

hybridization tubes      Hybaid 

3MM filters       Whatmann 

nitrocellulose, type BA85     Schleicher and Schüll 

nylon membrane, Biodyne      PALL 

filter, sterile 0.45 µm and 0.2 µm    Gelman Science 

plastic cuvettes      Greiner 

quartz cuvettes Infrasil     Hellma 

Superdex75 PC3.2/30      Pharmacia Biotech 

15 ml tubes, type 2095     Falcon 

50 ml tubes, type 2070     Falcon 

X-ray film X-omat AR-5     Kodak 

 

2.1.10 Instruments 
 
blotting chamber Trans-Blot SD    Bio-Rad 

centrifuges: Beckman Avanti J25    Beckman 

Sorvall RC 5C plus      Sorvall 

Biotech fresco       Heraeus Instruments 

crosslinker UVC 500      Hoefer 

pH-meter 766       Knick 

heating blocks: type DIGI-Block JR    neoLab 

type thermomixer      Eppendorf  

hybridization oven      Hybaid 

incubator Lab-Therm      Kühner 

microscope: light microscope, Type DMI   Leica 

laser scan microscope      Leica 

Multiphor II/Immobiline focussing system   Pharmacia Biotech 
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PCR-thermocycler      MWG-Biotech 

pump system Biologic Workstation    Bio-Rad 

rotors: type JA-10      Beckman 

 typeJA-25.50      Beckman 

 SLA-1500      Sorvall 

 SLA-3000      Sorvall 

 SS-34       Sorvall 

 TLA 45      Beckmann 

shaker 3015       GFL 

lab-shaker       Kühner 

SMART-system      Pharmacia Biotech 

spectral photometer type Ultraspec 2000   Pharmacia Biotech 

Ultra-Turrax       IKA Labortechnique 

ultracentrifuge Optima TLX     Beckmann 

UV-Monitor TFS-35 M     Faust 

UV-transilluminator      MWG-Biotech 

Vortex REAX top      Heidolph 

water bath       GFL 
 

2.1.11 Computer programs 
 
For alignment analysis of cDNA sequences the GCG software package (University of 

Cologne) and the BLAST (NCBI) program were used. Protein sequences were aligned using 

the programs ClustalW and TreeView. For prediction of motif and pattern searches the 

ExPaSY (SIB) software package was used. Annealing temperatures of primers were 

calculated with the program “Primer Calculator” available in the Internet 

(http://www.williamstone.com). 

 

 
2.2 Molecular biological methods 
 

2.2.1 Plasmid-DNA isolation from E. coli by alkaline lysis miniprep 

 With this DNA isolation method plasmid DNA was prepared from small amounts of 

bacterial cultures. Bacteria were lysed by treatment with a solution containing sodium 

dodecylsulfate (1% SDS) and 0.5 M NaOH (SDS denatures bacterial proteins and NaOH 
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denatures chromosomal and plasmid DNA). The mixture was neutralized with potassium 

acetate, causing the plasmid DNA to reanneal rapidly. Most of the chromosomal DNA and 

bacterial proteins precipitate, as does SDS forming a complex with the potassium, and are 

removed by centrifugation. The reannealed plasmid DNA from the supernatant was 

concentrated by ethanol precipitation. 
 

2.2.2 Plasmid-DNA isolation with a kit from Macherey-Nagel 

NucleoSpin Plasmid is designed for the rapid, small-scale preparation of highly pure 

plasmid DNA (minipreps) and allows a purification of up to 40 µg per preparation of plasmid 

DNA.The principle of this plasmid-DNA purification kit is based on the alkaline lysis 

miniprep. Plasmid DNA was eluted under low ionic strength conditions with a slightly 

alkalibuffer. For higher amounts of plasmid DNA, the Nucleobond AX kit from Machery-

Nagel was used. The plasmid DNA was used for sequencing and transfection of eukaryotic 

cells. The protocols were followed as described in the manufacturer’s manual. 

 

 

2.2.3 DNA agarose gel electrophoresis  

10x DNA-loading buffer:   50X Tris acetate buffer (1000 ml) (pH:8.5) 

40% sucrose, 0.5% SDS   242.2 g Tris0.25% bromophenol blue, in TE (pH 

8.0)  57.5 mL acetic acid 

      100 ml of 0.5 M EDTA (pH:8.0, adjusted with 

NaOH) 

Agarose gel electrophoresis was performed to analyse the length of DNA fragments 

after restriction enzyme digests and polymerase chain reactions (PCR), as well as for the 

purification of PCR products and DNA fragments. DNA fragments of different molecular 

weight show different electrophoretic mobility in an agarose gel matrix. Optimal separation 

results were obtained using 0.5-2% gels in TAE buffer at 10 V/cm. Horizontal gel 

electrophoresis apparatus of different sizes were used. Before loading the gel, the DNA 

sample was mixed with 1/10 volume of the 10x DNA-loading buffer. For visualization of the 

DNA fragments under UV-light, agarose gels were stained with 0.1µg/ml ethidium bromide. 

In order to define the size of the DNA fragments, DNA molecular standard markers were also 

loaded onto the gel. 
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2.2.4 Isolation of total RNA from mouse tissue with RNeasy Mini/Midi kit 

Working with RNA always requires special precautions in order to prevent 

degradation by ubiquitous RNases, e.g. wearing gloves and using RNase-free water and 

material. The RNeasy technology combines the selective binding properties of a silica-gel-

based membrane with centrifugation. A specialized high-salt buffer system allows up to 100 

µg (mini) or 1 mg (midi) of RNA longer than 200 bases to absorb to the RNeasy silica-gel 

membrane. An appropriate amount of different mouse tissues was transferred into a lysis 

buffer containing guanidine isothiocyanate and β-mercaptoethanol followed by disruption and 

homogenization using a rotor homogenizer. After centrifugation the supernatant was 

transferred to a new tube and mixed with one volume of 70% ethanol. This mixture was 

loaded on the RNeasy spin column placed in a collection tube. After another centrifugation 

and discarding the flow through, the RNeasy column was treated with DNase I and washed 

with a washing buffer. To elute the RNA from the column an appropriate volume of RNase-

free water was pipetted directly onto the spin-column membrane. The obtained RNA was 

used for cDNA synthesis by RT-PCR and for northern blot analysis. Exact compositions of 

the buffers used for RNA isolation are listed in the Qiagen RNeasy Handbook. 

 

2.2.5 RNA agarose gel electrophoresis and northern blotting 

RNA-buffer:      RNA loading dye: 

50% formamide     50% sucrose 

6% formaldehyde     0.25% bromophenol blue 

in MOPS buffer (pH 8.0; see 2.1.8)   in RNase free water 

 

The agarose gels were made under RNase free conditions and separation of RNA was 

performed overnight with 2 V/cm voltage. After washing the gels with water and equilibrating 

in a high salt solution (20x SSC), the RNA was transferred onto a nylon membrane overnight 

using the setup similar to the one for Southern blotting. Next day the membrane was washed 

in 2x SSC, briefly air-dried and the RNA was UV-crosslinked to the membrane. 
 

2.2.6 Labeling of DNA probes 

DNA probes used for radioactive labeling were obtained by PCR. About 25 ng DNA 

was denatured by heating for 5 minutes at 92°C and cooled immediately on ice. After adding 

random hexanucleotide primer, α-32P-dATP (50 µCi) and/or α-32P-dCTP, the reaction mix 
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was incubated for 30 min at 37°C with 2 U Klenow-Enzyme for DNA synthesis. 

Unincorporated nucleotides were separated from the probe by centrifugation through a 

Sephadex G-50-column. Before using, labeled probes were denatured at 100°C for 10 

minutes. 

2.2.7 Hybridization of labeled probes 

Church buffer:   Wash buffers: 

0.5 M Na3PO4 (pH 7.15)   1) 2x SSC, 1% SDS 

7% SDS     2) 0.4x SSC, 1% SDS 

1 mM EDTA     3) 0.2x SSC, 1%SDS 

1% BSA 

50 µg/ml salmon sperm 

 

After 1 hour of prehybridizing the blots at 65˚C in Church buffer, radioactively 

labeled probes were added to a portion of fresh Church buffer and hybridization took place for 

18 hours at the same temperature. Several washing steps were performed at 65˚C, as needed. 

Afterwards blots were exposed to an X-ray film at –70 °C. 
 

2.2.8 Elution of DNA fragments from agarose gels 

Elution of DNA fragments from agarose gels was performed using the „NucleoSpin 

Extract 2 in 1“ kit from Macherey-Nagel. Bands of interest were cut out of the gel and the 

agarose melted at 50°C in a binding buffer. After several centrifugation steps with wash 

buffer, the DNA bound selectively to a silica membrane column and was eluted with a low 

salt solution. 

 

2.2.9 Measurement of DNA and RNA concentrations 

Concentrations of DNA and RNA were estimated by determining the absorbance at a 

wavelength of 260 nm. A ratio of OD260/OD280 >2 indicates negligible protein 

contaminations. Protein contaminations were estimated from absorance at 280 nm.  
 

2.2.10 Restriction digestion of DNA 

Digestion of DNA with restriction endonucleases was performed in buffer systems 

provided by the manufacturers at the recommended temperatures. 
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2.2.11 Dephosphorylation of 5´-ends of linearized vectors 

10x CIAP-Puffer (pH 9.0): 

0.5 M Tris/HCl (pH 9.0) 

10 mM MgCl2 

1 mM ZnCl2 

10 mM spermidin 

In order to prevent linearized vectors from religation, the 5’end phosphate groups were 

hydrolyzed with calf intestinal alkaline phosphatase (CIAP) for 30 minutes at 37°C followed 

by heat inactivation at 70°C for 10 min. 

 

2.2.12 Creation of blund ends 

Due to the 3’ exonuclease activity of Klenow enzyme it is possible to transform 

overhanging 3’ ends of DNA (sticky ends) into blunt ends. After the reaction for 30 minutes 

at 37°C, heat inactivation for 10 minutes at 70°C was necessary. 

 

2.2.13 Ligation of vector- and DNA-fragments 

T4-DNA-ligase catalyzes the ligation of DNA fragments and vector DNA. 1 U T4-

ligase was incubated with about 25 ng of DNA fragment overnight at 10°C. 
 

2.2.14 Polymerase chain reaction (PCR) 

PCR can be used for in vitro amplification of DNA fragments (Saiki et al., 1985). A 

doublestranded DNA (dsDNA) serving as a template, two oligonucleotides (primers) 

complementary to the template DNA, desoxyribonucleotides and heat resistant Taq-DNA-

polymerase are required for this reaction. Primers may be designed having non-

complementary ends with sites for restriction enzymes.  First step in PCR reactions is the 

denaturing of dsDNA at 94°C. Second, the reaction mix was incubated at different annealing 

temperatures, depending on the G/C content of the primers. Different programs provide an 

accurate calculation of the annealing temperature based on the nearest neighbours method and 

are free available in the Internet. The third step with a temperature of 72°C allows the 

elongation of the new strand of DNA by the Taq-DNA-polymerase. A PCR machine 

(thermocycler) can be programmed to regulate these different cycles automatically. A 

“standard program” is presented below: 
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I. Initial denaturing: 94°C, 5 min 

II. Cycles (25-35): 

Denaturing (94°C, 15 sec.) 

Annealing (60-68°C, 30 min) 

Elongation (72°C, 1-10min) 

III. Final elongation: 72°C, 10 min 

IV. Cooling to 4°C 

 

2.2.15 Transformation of E. coli cells with plasmid DNA 

LB-Medium:   SOC-Medium: 

10 g Bacto-Trypton     20 g Bacto-Trypton 

5 g yeast extract     5 g yeast extract 

5 g NaCl                           0.5 g NaCl 

       20 mM Glucose 

For transformation of E. coli cells the heat shock method was used. DNA and 

competent cells were incubated for 15 minutes on ice and then for 40 seconds at 42°C. After 

cooling on ice for 2 minutes, the bacteria were incubated for 1 hour at 37°C in SOC-medium 

without any antibiotics. Finally, the bacteria were plated on agar plates containing selective 

antibiotics, and incubated overnight at 37°C. For further analysis single colonies were picked, 

inoculated and incubated for 12 hours in LB-medium on a shaker. From clones of interest 

glycerol stocks were made. For this, samples of E. coli cultures were mixed with an equal 

volume of 50% glycerol and frozen at -80°C. 

2.2.16 Correction of a deletion in Enaptin-165 by site directed mutagenesis and cloning 

in GFP and yeast two hybrid vectors 

 Full length Enaptin-165 was amplified from brain cDNA using 624fullGFP5’end  and 

624fullGFPC2-3’end primers and cloned in pGEMTeasy vector by Braune. The deletion in 

the full length sequence was corrected using site directed mutagenesis. Site directed 

mutagenesis is a technique by which nucleotides can be altered specifically in a plasmid 

DNA. It involves a first step of PCR with two primers (one forward and one reverse) designed 

to the area around the base or bases which are to be mutated, with nucleotides modified in 

such a way that the PCR product gives the desired mutation. After 25 rounds of PCR, the 

PCR product is checked on the gel. The template DNA is digested by an enzyme called Dpn1, 
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which digests methylated DNA, thus leaving the amplified PCR product undigested. The 

amplified PCR product is then transformed in E. coli cells. Plasmid is isolated randomly from 

the transformants and the site directed mutation is confirmed by sequencing. The deletion of a 

base A at position 939 of Enaptin-165 in pGEMTeasy was corrected by site directed 

mutagenesis using the primers del.for and del.rev for PCR amplification. The corrected 

Enaptin-165 was digested by EcoRI and SalI and cloned in both EGFPC2 and pGBKT7 

vectors. 

2.3 Protein methods and immunofluorescence  

2.3.1 Cloning of GFP fusion protein and yeast two hybrid cloning 

For expression of Enaptin GFP fusion proteins a cDNA encoding the Enaptin-165 was 

digested with restriction enzymes EcoRI at the 5’-end and SalI at the 3‘-end from 

pGEMTeasy vector and introduced into pEGFP-C2 with the GFP fused N-terminal to 

Enaptin-165 or into pGBKT7, yeast two hybrid bait vector, encoding a fusion protein with the 

N-terminal BD of Gal4. ABD of Enaptin was amplified from pGEMTeasy with primers 

having restriction sites EcoRI at the 5’-end and Bam HI at the 3’-end and cloned into 

pGEMTeasy. This was further digested with the same enzymes, EcoRI and BamHI and 

cloned into pGBKT7 vector. The constructs were checked by sequencing. 

2.3.2 Expression and purification of recombinant 6xHis-tag protein 

For expression of recombinant 6xHis-ABD-Enaptin the QIAexpress system by Qiagen 

was used. 6xHis-tag enables the purification of the fusion protein by metal-affinity 

chromatography on a Ni-matrix. The host strain E. coli M15 was transformed with the pQE-

30 vector encoding the His-tag fusion protein and expression was induced by the addition of 

IPTG, which leads to inactivation of the lac repressor protein. 

2.3.2.1 Expression 

A single colony was inoculated in 3 ml LB-medium containing both ampicillin (100 

µg/ml) and kanamycin (25 µg/ml) and was grown overnight at 37°C. The overnight culture 

was inoculated into 500 ml LB-medium with ampicillin and kanamycin and incubated at room 

temperature in a shaker (250 Upm) until the cell density reached an OD600 of 0.8. Afterwards 

the recombinant protein expression was induced with 0.1 mM IPTG. Bacteria were incubated 

at room temperature for another 4 hours. Subsequently cells were collected by centrifugation 

at 4,000 g for 20 minutes and the pellet was frozen at –20°C. 
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2.3.2.2 Purification by affinity chromatography 

Buffers:  (pH 8.0) 

Lysis buffer:   Wash buffer:    Elution buffer: 

50 mM NaH2PO4  50 mM NaH2PO4   50 mM NaH2PO4 

300 mM NaCl   300 mM NaCl    300 mM NaCl 

10 mM imidazole  20 mM imidazole   250 mM imidazole 

The pellet was thawed on ice and resuspended in lysis buffer containing protease 

inhibitors (Complete Inhibitor Cocktail). After adding lysozyme (1 mg/ml), the lysate was 

incubated for 30 minutes on ice followed by sonication. The lysate was centrifuged at 10,000 

g for 30 minutes at 4°C and the supernatant was used for subsequent steps. 

The cleared cell lysate was incubated with 50% Ni-NTA slurry shaking overnight at 4°C. 

Then the mixture was loaded onto a column and the flow-through was collected for SDS-

PAGE analysis. The column was washed with 10 ml wash-buffer and protein was finally 

eluted with an elution buffer containing 250 mM imidazole . Purified 6xHis-ABD-Enaptin 

was used for immunization of mice and for actin binding assay. 
 

2.3.3 Affinity purification of polyclonal antibodies 

TBS  : 8 g NaCl, 0.2 g KCl and 3 g Tris/HCl in 1 litre, pH 7.2 

Buffer I : 1% BSA, 0.05% Tween 20 in PBS 

Buffer II : 0.1 M glycin, 0.5 M NaCl, =.05% Tween 20, pH 2.6  

  The recombinant protein, hich was used to produce the polyclonal antibody is run on a 

SDS gel and the protein is transferred to PVDF membrane. The membrane is stained with 

Ponceau S and the blot corresponding to the recombinant protein is cut out. The blot is then 

destained with TBS. The cut out blot is blocked by incubating for 2 hours in buffer I. 1 

volume of serum is diluted with 4 volumes of TBS and incubated with the stripes at 4˚C for 2 

hours and the unbound antibody is washed with TBS 4x 5minutes at 4˚C. After washing, 

antibodies bound to the recombinant protein in the stripes are eluted with buffer II, 1 mL, 2x, 

1.5 minutes at 4˚C. The eluted antibody is neutralised with 100 µl of 1M Tris (pH 8.0) 

immediately after elution. The antibody can be stabilised with 0.5% BSA. 
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2.3.4 Extraction of protein homogenate from mouse tissues and cell cultures 

For characterization of monoclonal antibodies and identification of endogenous 

Enaptin, homogenates from mouse tissues and cell cultures were extracted. For this, mice 

were sacrificed by cervical dislocation. Dissected organs were briefly rinsed in ice-cold PBS 

buffer and frozen in liquid nitrogen. Afterwards ice-cold PBS containing protease inhibitors 

was added. After homogenization, the cell lysate was mixed with SDS-loading buffer boiled 

at 95°C for 5 minutes and centrifuged for 10 minutes at 15,000 rpm. The following cell lines 

were used for extraction of protein homogenates from cell cultures: mouse embryonic 

fibroblasts (C3H/10T1/2), mouse myoblasts (C2/C3), monkey SV40 transformed kidney cells 

(COS7) And human keratinocytes (A431). When these cell cultures were used, about 2-5 x 

107 cells were collected, centrifuged for 5 minutes at 1,000 rpm and resuspended in ice-cold 

PBS containing protease inhibitors. Afterwards samples were treated as described for the 

tissues.  

 

2.3.5 SDS-polyacrylamide-gel electrophoresis (SDS-PAGE) (Laemmli, 1970) 

5x SDS-loading buffer:   10x SDS-PAGE-running buffer: 

2.5 ml 1 M Tris/HCl, pH 6.8    0.25 M Tris 

4.0 ml 10% SDS     1.9 M glycine 

2.0 ml glycerol     1 % SDS 

1.0 ml 14.3 M β-mercaptoethanol 

200 µl 10 % bromophenol blue 

 

Molecular weight standard marker: 

LMW-Marker (Pharmacia) (kDa): 94; 67; 43; 30; 24; 20.1; 14.4 

HMW-Marker (Pharmacia) (kDa): 200; 116; 97.4; 66; 45; 29 

 

For SDS-PAGE analysis 3% - 15% gradient gels were run at a voltage of 9-15 V/cm with 

SDS-PAGE running buffer. Protein samples mixed with SDS-loading buffer were heated for 5 

minutes at 95°C and loaded on the gel. Afterwards the gels were either stained with 

Coomassie-blue or transferred onto a nitrocellulose membrane for western blot analysis. 

Coomassie-blue-staining 

Staining solution:    Destaining solution: 

0.1% Coomassie-brilliant-blue R 250  10% ethanol 
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50% ethanol     7% acetic acid 

10% acetic acid 

Gels were stained for at least 15 minutes. Unbound Coomassie-blue was washed away with 

destaining solution. 

2.3.6 Western blotting (Kyhse-Andersen, 1984) 

Protein transfer 

Buffer: 

Anode buffer (AP1):  300 mM Tris (pH 10.4) 

Anode buffer (AP2):  25 mM Tris (pH 10.4) 

Cathode buffer (KP):  40 mM ε-aminocapron acid 

25 mM Tris/HCl (pH 9.4); all three buffers contain 10% methanol and 0.05% SDS 

 

Western blotting allows the transfer of proteins from a polyacrylamide gel onto a 

nitrocellulose membrane. In this work the semi-dry blotting method was used: One layer of 

Whatmann paper, soaked in AP1, was placed in the blotting chamber. Then two layers of 

Whatmann paper, nitrocellulose membrane and the gel, all soaked in AP2 were overlaid. 

Finally three layers of Whatmann paper, in KP-buffer, where placed on top. The transfer was 

performed at 12 V for two hours. Blotting efficiency was controlled with Ponceau S staining. 

Ponceau S-staining 

Staining solution: 

2 g Ponceau S (Sigma) solubilized in 100 ml 3% Trichloroacetic acid 

 

Nitrocellulose membrane was incubated for 1 minute in Ponceau S and briefly washed with 

water. Bands of interest were marked and afterwards the membrane was destained in NCP 

(see 2.1.8). 

Immunolabeling and detection of proteins on nitrocellulose membrane 

Luminol: 

2 ml 1 M Tris/HCl (pH 8.5) 

200 µl (0.25 M in DMSO) 3-aminonaphthylhydrazide  

89 µl (0.1 M in DMSO) p-coumaric acid 

18 ml water 

6.1 µl 30% H2O2 
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After protein transfer, the nitrocellulose membranes (blots) were blocked with 5% 

milk powder in NCP overnight. Blots were incubated for one hour with primary purified 

antibodies or with hybridoma supernatant overnight at 4°C. Before incubation with the 

secondary peroxidase-conjugated antibody, the membrane was washed in NCP three times for 

5 minutes. Unspecific bound antibodies were washed away with NCP for 20 minutes. 

Immunolabeling was visualized by adding the substrate (luminol) to the peroxidase-

conjugated antibodies. This reaction was detected exposing the blots to an X-ray film for 5 

sec to 30 min. 

2.3.7 Cell fractionation 

 For nuclei preparation, COS7 cells were sonicated in hypotonic buffer (10 mM 

HEPES, pH 7.5, 1.5 mM MgCl2, 1.5 mM KCl, 0.5 mM DTT, 0.2 mM PMSF) supplemented 

with Protease Inhibitor Cocktail CompleteTM, Mini (Boehringer Mannheim). Nuclei were 

sedimented at 1,000 g at 4°C for 15 minutes. For further fractionation the supernatant was 

centrifuged at 100,000 g for 30 minutes at 4°C. Both pellets were resuspended in hypotonic 

buffer and analyzed on immunoblots with polyclonal anti-Enaptin antibodies, anti-emerin, 

anti-tubulin and anti-annexin A7 mAbs. 

2.3.8 Cell culture methods 

Various adherent cell lines were used for immunofluorescence or western blotting 

analysis. 

Trypsin was used to detach cells from the plates when passaging subconfluent cultures. Each 

cell line needed special growth medium as listed below. 

C3H/10T1/2 mouse fibroblasts : DMEM, 10% FCS, 1% penicillin-streptomycin (P/S),     

1% glutamine. 

COS7 monkey kidney cells : DMEM, 10% FCS,  1% glutamine, 1% pyruvate and 

1% P/S. 

C2F3 mouse myoblasts : DMEM, 10% FCS, 1% glutamine, 1% pyruvate and 

1% P/S.  

2.3.9 Immunofluorescence 

 Cells are grown on coverslips kept on six well plates. Nicely spread cells are used for 

fixing. Fixing can be done by three different ways. In the first way, the cells are incubated 

with 3% paraformaldehyde for 20 minutes at room temperature and permeabilised with 0.5% 

Triton X-100 for 5 minutes. In the second method, the permebilisation is done first followed 
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by fixing. The cells are incubated with 0.5% Triton X-100 and 3% paraformaldehyde for 5 

minutes and followed by incubation with 3% formaldehyde for 20 minutes. In the third 

method, the cells are fixed and permeablised by incubating with ice cold methanol for 10 

minutes followed by ice cold acetone. The fixed cells are then washed with PBS for three 

times for 5 minutes. After washing, the cells are incubated with the primary antibody for one 

hour or so, depending on the concentration of the antibody. After one hour, the cells are 

washed with PBS for 3 times for 5 minutes. Then, the cells are incubated with the secondary 

antibody, which has a fluorescent tag for one hour. The cells are then washed again and 

embedded in slides with Gelvatol. 

2.3.10 Immunohistchemical staining of formalin-fixed paraffin-embedded sections 

Solutions 

Xylene 

Ethanol 

0.01 M Phosphate bufferes saline ( pH 7.4) 

Solution of gelatine in PBS (PBG) 

Citric buffer, pH 6.0 

9 ml of solution A (0.1 M Citric acid) 

41 ml of solution B (0.1 M sodium citrate) and made upto 500 ml with water. 

 The paraffin in the sections are removed by incubating them in xylene for 3 times for 

5 minutes and the sections are rehydrated with a series of incubations in different percentages 

of ethanol - 96% (2 times, 5 minutes), 80% (3 times, 5 minutes), 70% (3 times, 5 minutes) and 

finally rinsed with water. The slides are washed with freshly prepared citrate buffer and boiled 

in a microwave in the same buffer for 15 to 20 minutes. The sections are cooled to room 

temperature for about 20 minutes, rinsed in distilled water and then in PBS (3times, 5 

minutes). The sections are incubated with the primary antibody for 24 hours at 4˚C. the slides 

are washed for 3times for 4 minutes. The sections are now incubated with secondary antibody 

with fluorescent tags for 0ne hour in room temperature. The sections are washed again as 

before and mounted in Gelvatol. 

2.4 Yeast two hybrid and GST pull down  

2.4.1 Construction of yeast two hybrid and GST fusion proteins of Sun1 

 All yeast two hybrid constructs and GST fusion proteins were first cloned in 

pGEMTeasy vector before cloning into the target vectors. The perinuclear region of Enaptin 
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(LE or PNE) was amplified from the genomic DNA isolated from ES cells using 

lumenaptin.5prime and lumenaptin.3prime and cloned in pGEMTeasy vector. The 90 bp 

insert was later digested by EcoRI and SalI and cloned into pGBKT7 vector. The same insert 

was also cloned into pGEX4TI vector for expressing the protein as a GST fusion protein. The 

C-terminus of Sun1 (CT+AD) was amplified by Ctermouseunc84.5prime and 

Ctermouseunc84.3prime primers and digested with EcoRI and BamHI and cloned in 

pGADT7 and pGBKT7 vectors. The ∆SUN domain of Sun1  (∆SUN) was amplified using 

Ctermouseunc84.5prime and bSUNy2h.3prime and digested by EcoRI and BamHI and cloned 

into pGADT7 and pGBKT7 vectors. SUN domain was amplified using SUNy2h.5prime and 

Ctermouseunc84.3prime and digested by EcoRI and BamHI and cloned into pGADT7 and 

pGBKT7 vectors. The N-terminal part of Sun1 with two transmembrane domains (NT+2TM) 

was amplified using Ntermouseunc84.5prime and Ntermouseunc84.3prime primers and 

digested by EcoRI and BamHI and cloned in pGADT7 vector. The N-terminus of Sun1 (NT) 

was amplified using Ntermouseunc84.5prime and Y2HNT-3TMUNC84.3prime primers and 

digested with EcoRI and BamHI and cloned in pGADT7 vector. The N-terminus of Sun1 was 

also amplified using Ntermouseunc84.5prime and gstmunc84.3prime primers and digested by 

EcoRI and SalI and cloned in pGEX4TI vector. SUN domain was amplified using 

SUNy2h.5prime and Munc84dsred.3prime primers and digested by EcoRI and SalI and 

cloned in pGEX4T1 vector. 

Primer sequences 
Ntermouseunc84.5prime   

CGAATTCATG GACTTTTCTC GGCTGCACAC GTAC 

 

Ntermouseunc84.3prime   

CGGATCCCTT GCAAATATTT CGAAGGCACC TGGTAAG 

 

Ctermouseunc84.5prime   

CGAATTCGTC TCCCTGTGGG GCCAGGGAAA CTTC 

 

Ctermouseunc84.3prime   

CGGATCCCTA CTGGATGGGC TCTCCGTGGA CTC 

 

bSUNy2h.3prime 

CGGATCCTTG GGAGTACAGC TTCAGAGCAT TG 
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SUNy2h.5prime 

CGAATTCGACAAGACGGGGATGGTGGACTTTGCTC 

 

Y2HNT-3TMUNC84.3prime 

CGGATCCGGC AGCTCTAGTC CTTCGCAGTG C 

gstmunc84.3prime   

CGTCGACGGA GGTGGTCCCG TGGATGGC 

 

lumenaptin.5prime   

CGAATTCTCA GAGAAAGACT ACAGCTGTGC CCTC 

 

lumenaptin.3prime   

CGTCGACTCA GAGTGGAGGA GGACCGTTGG TATATC 
 

Munc84dsred.3prime 

CGTCGACAAC TGGATGGGCT CTCCGTGGAC TC  
 

2.4.2 Yeast transformation 

Stock solutions 

50%PEG 3350 prepared in water 

100% DMSO : 0.1 M Tris-HCl (pH 7.5), 10 mM EDTA  

10X LiAc : 1M LiAc, pH 7.5 

  50 ml of YPD or SD medium are innoculated overnight with several colonies 

of Y190 yeast strain and incubated overnight at 30˚C for 16 to 18 hours with shaking of 250 

rpm to stationary phase. 30ml of overnight culture is transferred 300ml of YPD or SD and 

again incubated at 30˚C for 3 hours until the O.D becomes 0.4 to 0.6. The cells are 

centrifuged and the cells resuspended in TE buffer or water and centrifuged again. The pellet 

is resusupended again in 1XTE/1XliAc(the resuspended cells are called competent cells). 0.1 

µg of plasmid DNA and 0.1 mg of herring testes carrier DNA are added to a 1.5ml tube and 

mixed. 0.1 ml of yeast competent cells is added. 0.6 ml of sterile PEG/LiAc solution is added 

and vortexed and incubated at 30˚C overnight. 70 µl of DMSO is added and mixed gently and 

heat shocked at 42˚C for 30 minutes. The cells are centifuged for 10 seconds, supernatant 

discarded. The pellet is resuspended in 100 µl of water and plated on SD-Trp-Leu plates and 

the plates incubated at 30˚C for 3 to 4 days. The transformed cells were further streaked onto 
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SD-Trp-Leu-His with 3-AT concentrations varying from 25 to 60 mM and the growth 

monitored over a period of one week. 

2.4.3 Yeast plasmid rescue 

STET: 8% sucrose, 50 mM Tris-HCl (pH 8.0), 50 mM EDTA, 5% Triton X-100 

 2.0 ml of yeast overnight culture is grown under selective conditions. The cells are 

harvested in micricentrifuge tube by spanning at 14,000 rpm for 1 minute. The cell pellet is 

resuspended in 100 µl of STET buffer and ¾ volume of 0.45 mm glass beads is added and 

another 100 µl of STET is added. The tube is vortexed briefly and placed in a heating block at 

95˚C for 5 minutes. After 5 minutes, the tube is cooled briefly on ice and spun on 

microcentrifuge tube at 14,000 rpm, 4˚C for 10 minutes. 150 µl of supernatant is transferred 

to a fresh tube containing 75 µl of 7.5 M ammonium acetate and incubated at –20˚C for one 

hour and centrifuged in a microcentifuge at the same spped and temperature for 10 minutes. 

200 µl of the supernatant is added to 400 µl of ice-cold ethanol. The DNA is recovered by 

centrifugation and washed with 70% ethanol and dried in Speedvac for 5 minutes. The DNA 

is resuspended in 20 µl of 10mM Tris-HCl (pH 8.0). 10 µl of this resusupended DNA is used 

to transform competent bacteria. 

 

2.4.4 X-gal colony-lift filter assay 

Z buffer: Na2HPO4 7 H2O: 16.1 g/l, NaH2PO4 H2O: 5.50 g/l, KCl: 0.75 g/l and MgSO4 7H2O: 

0.246 g/l (pH 7.0) 

X-gal stock solution: 20 mg/ml of DMF  

β-mercaptoethanol 

 Yeast colonies grown on SD-Trp-Leu plates are carefully transferred onto a 

nitrocellulose membrane by placing it on the yeast plate. The membrane containing the yeast 

colonies is soaked in liquid nitrogen and then placed on a petri plate with a filter paper, which 

is already soaked in Z buffer/X-gal solution. The plate is then kept in 30°C in dark until there 

is a development of blue colour. 
 

2.4.5 GST-pull down  

50 mM Tris/HCl (pH 7.5), 150 mM NaCl, 1% Triton X-100 and protease inhibitors 

 GFP-CT, GFP-∆SUN and GFP-SUN fusion constructs were separately transfected in 

COS7 cells and grown overnight. The transfected cells were trypsinised from the plates and 
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lysed by sonication in the above stated buffer. The cell lysate was centrifuged ate 13,000 rpm 

for 15 minutes and followed by 45,000 rpm for 30 minutes in an ultracentifuge. The 

supernatant was collected and mixed with GST and GST-PNE proteins, which were calibrated 

with the lysis buffer behorehand, in two different micro centrifuge tubes and incubated 

overnight at 4°C. The mixture was centrifuged shortly in the following day and the 

supernatant collected. The pellet was washed four to five times in PBS and centrifuged. The 

supernatant and final washed pellet were mixed with protein loading dye and loaded on a 12% 

polyacrylamide gel. The gel was transferred onto PVDF membrane overnight in a wet-blot 

chamber at 4°C. The membrane was probed with antibodies specific to GFP and the result 

analysed. 

 

2.5 Construction of GFP fusion proteins and transfection 

 All the GFP fusion constructs were amplified by PCR using Sun1 IMAGE clone as a 

template and cloned in pGEMTeasy vector before cloning it in the final vector. The full-

length GFP-Sun1 was amplified using Ntermouseunc84.5prime and Ctermouseunc84.3prime 

and digested by EcoRI and BamHI and cloned in EGFPC2 vector. GFP-NT+2TM was 

amplified using Ntermouseunc84.5prime and Ntermouseunc84.3prime primers and digested 

by EcoRI and BamHI and cloned in EGFPC2 vector. GFP-CT+2TM was amplified using 

GFPCT+3TM UNC84.5prime and Munc84dsred.3prime primers and digested by EcoRI and 

SalI and cloned in EGFPC2 vector. The C-terminus of Sun1 (GFP-CT) was amplified by 

Ctermouseunc84.5prime and Ctermouseunc84.3prime primers and digested with EcoRI and 

BamHI and cloned in EGFPC2 vector. The ∆SUN domain of Sun1 with three transmembrane 

domains (bSUN+3TM or ∆SUN+3TM) was amplified using GFPCT+3TMUNC84.5prime 

and bSUNy2h.3prime and digested by EcoRI and BamHI and cloned into EGFPC2 vector. 

The ∆SUN domain of Sun1 (bSUN or ∆SUN) was amplified using Ctermouseunc84.5prime 

and bSUNy2h.3prime and digested by EcoRI and BamHI and cloned into EGFPC2 vector. 

The SUN domain of Sun1 was amplified using SUNy2h.5prime and Ctermouseunc84.3prime 

and digested by EcoRI and BamHI and cloned into EGFPC2 vector. All the GFP-fusion 

constructs were transfected in COS7 cells by electroporation and the transfected cells fixed in 

the following day. 

Primer sequence 

Munc84dsred.3prime 

CGTCGACAAC TGGATGGGCT CTCCGTGGAC TC 
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GFPCT+3TMUNC84.5prime 

CGAATTCGGGTGGTCTGTGGCCGAGGCCGTG 

 

2.6 Generation of knock in mouse 

2.6.1 Target vector construction  

 pBS SK+ vector was used for the target vector construction. GFP was amplified from 

pEGFP-N1 vector using GFPN1 and GFPC1 primers and cloned in pGEMTeasy vector. The 

insert was later digested by HindIII and EcoRV and cloned in the target vector. The NEO 

cassette was retrieved from NEO-pGK with EcoRV and XmaI and cloned in the target vector. 

Genomic DNA isolated from IB10 ES cells was used as a template. The 5’arm was amplified 

from genomic DNA using 5arm5prime and 5arm3prime and cloned in pCR-Blunt II-TOPO 

vector. The insert was later digested with SalI and HindIII and cloned in the target vector. The 

3’ arm was amplified using 3arm5prime and 3arm3prime and cloned in pCR-Blunt II-TOPO 

vector. The insert was later digested by SacII and cloned in the target vector. Two probes 

outside the 5’ arm and 3’ arm were also cloned in the pGEMTeasy vector. The 5’ probe was 

amplified using 5probe5prime and 5probe3prime and cloned. The 3’ probe was amplified 

using 3probe5prime and 3probe3prime and cloned. The target vector was purified by 

EndoFree Plasmid Maxi kit (Qiagen) and linearised by SalI. The linearised vector was 

purified by phenol-chloroform extraction procedure. 

 
 
Primer sequences 
GFPN1 

GCGAAGCTTATGGTGAGCAAGGGCGAGGAG 

 

GFPC1 

GCGGATATCCACAACTAGAATGCAGTG 

 

5arm5prime 

CGTCGACCTC TAAGGCAGAG TCACCCTGAT GGAG 

 

5arm3prime 
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CAAGCTTGTC AGAACGGGAG GAATCGGAGC CATC 

3arm5prime 

CACACAAGTG CAGGCAGTAA GAGGAGAAGG 

3arm3prime 

CCACCATCAC CAAAGCATCC AAGTATATGC 

5probe5prime 

CAGTTGCTTT CATGTGCCTA ACAGGTC 

5probe3prime 

CATATCTCTT AATGGAAGAA AGCATCATG 

3probe5prime 

CAGCTTACAA GCTACCTCCT AGTTGAAG 

 

2.6.2 Transfection and colony picking 

MEF media  DMEM (4500 mg/l glucose) (Sigma):  500 ml 

FCS     :       50 ml 

L-glutamine    :          5 ml 

Non-essential amino acids  :          5 ml 

Pen/Strep     :           5 ml 

 

ES cells media DMEM knockout (GIBCO)  :   500 ml 

   FCS     :     90 ml 

   L-glutamine    :        7 ml 

   Non-essential amino-acids  :        7 ml 

   Pen/Strep    :     10 ml 

   Pyruvate    :       5 ml 

   ESGRO (Murine LEF)  :            70 µl 

   β-mercaptoethanol   :              7 µl 

 

Selection media : ES cell media and 400 µg/ml of G418 

Freezing media : ES media, 30% FCS and 20% DMSO 

Gelatin (2%)  

Mitomycin C (400 µg/mL)        
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 Mouse embryonic fibroblasts were grown on MEF media on 0.1% gelatinised 

plates and mitomycin C  (150 µL stock solution in 10 ml medium) treated when they reached 

approximately 70% confluence. RI ES cells were grown on mitomycin C (0.6 µg/mL) treated 

MEF cells. The ES cells were transfected by electroporation using linearised target vector at 

500 µF and 230 volts. The transfected cells were plated on four MEF cells plates already 

treated with mitomycin C and the cells grown on selection media. Colonies starting to appear 

after four days were picked and grown on 24 well plates. The ES cells were trypsinied after 

the cells achieved approximately 70 to 80% confluence and half of the trypsinised ES cells 

were frozen using the freezing media and the other half grown further for genomic DNA 

isolation.  

 

2.6.3 Genomic DNA isolation 

TNES    50 mM Tris (pH: 7.4) 

  100 mM EDTA (pH:8.0) 

  400 mM NaCl 

   0.5% SDS 

6M NaCl 

Proteinase K : 20 mg/ml  

 Trypsinised ES cells were mixed with 500 µL of TNES buffer and 10 µL of 

proteinase K solution and incubated at 55°C overnight in a shaking incubator. 150 µL of 

saturated NaCl was added to this the following day to salt out the proteins. The sample was 

centrifuged at high speed for 5 minutes and the pellet thrown out. The genomic DNA in the 

supernatant was precipitated by 100% ethanol and washed with 70% ethanol. The pellet was 

dried and the genomic DNA was resuspended in 50 µL of water. 

2.6.4 Southern blotting (Southern, 1975) 

             Southern blotting is the transfer of DNA fragments from an electrophoresis gel to a 

membrane. After immobilization, the DNA was subjected to hybridization analysis to identify 

the bands containing DNA complementary to the radioactively labeled probe. In this work the 

alkaline transfer on a nylon membrane was performed. First the gel was washed in 0.25 M 

HCl for 10 minutes, incubated in 0.4 M NaOH for 10 minutes and placed on top of two layers 

of Whatmann 3MM paper having contact to a reservoir of 0.4 M NaOH. After overlaying the 

gel with Zeta-probe GT Genomic Tested Blotting membrane (Bio-Rad), that had been wetted 
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with the transfer buffer, three wet Whatmann 3MM paper and a thick stack of paper towels, 

the transfer was performed for about 18 hours. After washing the membrane in 2% SSC, it 

was air-dried. 

 

2.6.5 Labeling of DNA probes and hybridization 

 
 Prehybridisation solution and  hybridization solution 

: 0.25 M sodium phosphate (pH:7.2) and 7% SDS 

Wash buffer   : 20 mM sodium phosphate (pH:7.2) and 5% or 1% SDS 

 

  0.5% sodium phosphate,pH:7.2 

Stock A : 0.5 M NaH2PO4.H2O 

Stock B : 0.5 M Na2HPO4.7H2O 

 316 mL of Stock A and 684 mL of Stock B are combined to make 0.5% sodium 

phosphate,pH:7.2 

 DNA probes used for radioactive labeling were obtained by digesting the 5’ probe and 

3’ probe in pGEMTeasy vector with EcoRI enzyme and gel extracted. About 25 ng DNA was 

denatured by heating for 5 minutes at 92°C and cooled immediately on ice. After adding 

random hexanucleotide primer, α-32P-dATP (50 µCi), the reaction mix was incubated for 30 

min at 37°C with 2 U Klenow-Enzyme for DNA synthesis. Unincorporated nucleotides were 

separated from the probe by centrifugation through a Sephadex G-50-column. Before using, 

labeled probes were denatured at 100°C for 10 minutes. The membrane was prehybridised 

with prehybridisation buffer for 30 minutes at 65°C. The labeled probes were added to the 

membrane in 10 mL of hybridisation buffer and kept for shaking overnight at 65°C.
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RESULTS 

3 Characterisation, tissue distribution and subcellular localisation of 

Enaptin 

3.1 Analysis of the Enaptin gene sequence 

 The full-length human Enaptin cDNA sequence consists of 27,669 bases with an open 

reading frame encompassing 26,247 bases (accession number: AF535142). It codes for a 

protein of 8,749 amino acids with a predicted mass of about 1,005,000 dalton. The putative 

start codon at position 438 of the cDNA together with the surrounding sequence ACCATGG 

matched the Kozak consensus sequence. This sequence was identified as the optimal sequence 

for initiation of translation by eukaryotic ribosomes when analysing the effects of single base 

substitutions around the ATG initiator codon in a cloned preproinsulin gene. Mutations within 

that sequence modulated the yield of this gene over a 20-fold range (Kozak, 1986). An 

inframe stop codon was observed 40 bases upstream, making this ATG the translational start 

site.  

 The human Enaptin gene maps to the long arm of the chromosomal region 6q24-25. It 

spreads over a region of about 550 kb between positions 152,000 kb and 152,550 kb of 

chromosome 6 and has 147 exons. The location of the Esr1 gene encoding the estrogen 

receptor closely apposed to the C-terminus of Enaptin and Esr2 gene close to NUANCE 

indicates the probable duplication of these genes. 

3.2 Isoform diversity and domain analysis of Enaptin 

 The longest isoform of Enaptin consists of 8,749 amino acids and gives rise to a 

protein of approximately 1,005,000 D. Figure 3.1 represents the structural domains predicted 

by the SMART computer programme. The N-terminus of this protein is predicted to contain a 

CH1 and CH2 domain, which make up the actin binding domain (ABD) which has been 

found to be functional by in vitro actin binding assays (Braune, 2000). The C-terminus of the 

protein includes a type II transmembrane domain (TM) closely related to the one in the 

Drosophila Klarsicht protein which is required for temporally regulated lipid droplet transport 

in developing embryos and for the stereotypical nuclear migrations in differentiating cells of 

the developing eye (Mosley-Bishop et al., 1999; Jäckle and Jahn, 1998). The N-terminal actin 

binding domain is separated from the C-terminal transmembrane domain by a long rod 

portion harboring 50 spectrin repeats. The programme also predicts two leucine zippers (LZ). 
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Leucine zippers are usually found in DNA binding proteins and allow dimer formation. 

Leucine zippers fold into α-helices, which in the dimer are held together by hydrophobic 

interactions between leucine residues, which are located on one side of each helix. Six nuclear 

localisaton signals (NLS) were predicted by the SMART computer analysis. NLSs are 

stretches of 4 to 20 basic amino acids, mostly lysine and arginine, which serve to localise the 

protein to the nucleus. 

 
Figure 3.1: Domain architecture of Enaptin predicted by the computer programme SMART (Simple 

Modular ARchitecture Research Tool). The programme predicts an ABD domain at the N-terminus and a 

transmembrane domain at the C-terminus (TM). The ABD and TM domains are separated by 50 spectrin repeats. 

Two Leucine zippers (LZ) and five nuclear localisation signals (NLS) were also predicted. Various N- and C-

terminal Enaptin isoforms characterised are depicted in this figure. 

 We have identified an N-terminal truncated version of the full-length Enaptin 

namely, Enaptin-165. Enaptin-165 is a rather small protein of 1,431 amino acids with a 

predicted molecular mass of 165,000 dalton. The cDNA was cloned from mouse brain cDNA. 

Domain prediction by the SMART software predicts an actin binding domain followed by a 

coiled coil region which contains a spectrin repeat. The C-terminus of this protein is highly 

homologous to a protein called CPG2 (candidate plasticity gene 2), one of the genes found to 

be expressed in response to light in the adult cerebral cortex and being regulated during 

development (Nedivi et al., 1996). 

 Five C-terminal isoforms of Enaptin have been reported, human Nesprin-1α, human 

Nesprin-1β, mouse Syne-1A, Syne-1B and human Myne-1 (Apel et al., 2000; Mislow et al., 

2000; Zhang et al., 2000). All these isoforms lack the N-terminal ABD domain but harbor the 

C-terminal transmembrane domain with different numbers of spectrin repeats. 
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3.3 Multiple alignment of the actin binding domain of Enaptin with other related ABDs 

 The 100 amino acids calponin homology (CH) domain is one of about a dozen 

protein domains, which are shared by signaling and cytoskeletal proteins. Type 1 and type 2 

CH domains together form the actin binding region of a large number of F-actin interacting 

proteins involved in a variety of cytoskeleton and cytoskeleton-membrane linkages. While the  
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Figure 3.2: Multiple alignment of the actin binding domains. Human Enaptin (residues 1-512, accession 

number AAN03486), human NUANCE (residues 1-501, accession number AAL33548), human dystrophin 

(residues 1-456, accession number P11532), and human utrophin (residues 1-426, accession number P46939) 

were used for the alignment (Corpet et al., 1988). Red colour denotes high consensus, blue colour low consensus 

and black is the background colour. 
  

ABDs as a whole are functionally equivalent; the CH domains they comprise are functionally 

distinct (Gimona et al., 1998). Type 1 CH domains have the intrinsic ability to interact with F-

actin on their own while the type 2 CH domains do not (Way et al., 1992). Clearly, however, 

despite the type 2 domain having no intrinsic actin binding activity, it contributes 
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substantially to the interaction of the complete actin binding domain, perhaps by functioning 

as a locator or providing low affinity docking site on the actin filament. 

 The actin binding domain of Enaptin is comprised of a calponin homology domain 

type 1 and 2 (CH1 and CH2). It shares about 40% identity with the ABDs of NUANCE, 

dystrophin and utrophin (Figure 3.3). But, unlike utrophin and dystrophin the CH1 and CH2 

domains of Enaptin and NUANCE are separated by a serine rich 29 amino acid stretch. 

NUANCE is another actin binding protein, which displays strong homology to Enaptin and is 

located in the nuclear membrane. The actin binding affinity of the ABD of Enaptin has been 

studied previously by an in vitro actin binding assay (Braune, 2000). The binding affinity of 

recombinant 6xHis-ABD-Enaptin (residues 2-294) to actin (Kd: 5.7±1.2 µM) was found to be 

higher than the affinity of the corresponding ABDs of dystrophin (Kd: 44 µM) and utrophin 

(Kd: 19 µM) (Way et al., 1992; Winder et al., 1995). 

 To show the relationship amongst the ABDs of actin binding proteins, we 

constructed a phylogenetic tree (Figure 3.3). The phlyogenetic tree suggests that the actin 

binding domain of Enaptin is more closely related to the ABDs of NUANCE, dystrophin and 

utrophin than to the ones of other actin binding proteins. 
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Figure 3.3: Phylogenetic tree of the actin binding domains of Enaptin and the ABDs of other proteins of 

the α-actinin superfamily based on the calculation from ClustalW alignment of these domains. 
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3.4 Analysis of the C-terminal transmembrane domain of Enaptin 

 During a homology search we found that the C-terminal domain of Enaptin is 

closely related to the C-terminal sequences of NUANCE and the Drosophila Klarsicht protein 

(Figure 3.4). The Drosophila gene klarsicht is required for temporally regulated lipid droplet 

transport in developing embryos and for the stereotypical nuclear migrations in differentiating 

cells of the developing eye. Klarsicht is thought to coordinate the function of several 

molecular motors that are bound to a single lipid droplet or to facilitate the attachment of 

dynein to the cargo (Moshley-Bishop et al., 1999). Recently Klarsicht was shown to be 

required for connecting the microtubule organizing center (MTOC) to the nucleus (Patterson 

et al., 2004). 
  

 The last 62 amino acids of Enaptin’s C-terminus are similar to NUANCE and 

Klarsicht sequences with 33% identity (Figure 3.4). The highly conserved hydrophobic stretch 

of 22 amino acids (residues 8697-8718) in the Klarsicht domain was identified as a 

transmembrane domain, which is flanked by an N-terminally positioned neck domain and the 

C-terminal tail. 

 

Figure 3.4: Multiple alignment of the transmembrane domain 

Enaptin (residues 8672-8749, accession number AAN03486), with human NUANCE (residues 6807-6885, 

accession number AAL33548), and Klarsicht (residues 2189-2262, accession number AAD43129) were used for 

the analysis (Corpet et al., 1988). Red colour denotes high consensus, blue colour low consensus and black is the 

background colour. 
  

3.5 Analysis of the spectrin repeats of Enaptin  

 Spectrin repeats are domains composed of three α-helices (Figure 3.5). A number of 

aromatic residues in the hydrophobic domain are typically conserved. Spectrin repeats are 

best known from the spectrin super family of proteins (spectrin, α-actinin, dystrophin and 

utrophin), in which they are typically found together with actin binding domains of the CH 

type, EF-hand motifs, which are Ca2+-binding sites and various signaling domains. Spectrins 
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normally occur as tetramers in which functional parts like ABDs and EF hands are separated 

by the spectrin repeats. In addition to their spacer function, spectrin repeats have also been 

reported to function as a docking surface for cytoskeletal and signal transduction proteins. 

Certain spectrin repeats seem to have specialised as dimerisation domains determining in this 

way the functional molecular architecture of the overall multimeric protein. 

 The full-length Enaptin molecule is predicted to have 50 spectrin repeats. Sequence 

analysis of the different spectrin repeats shows that the amino acid sequence of different 

repeats are not closely related to each other with respect to sequence homology.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Ribbon presentation of the second spectrin repeat of α-actinin. Helices 1, 2, and 3 are depicted 

in blue, red and green, respectively (Djinovic-Carugo et al., 2001). 

3.6 Generation of polyclonal antibodies  

 To study Enaptin at the biochemical and cellular level we have generated polyclonal 

antibodies against the recombinant His-tagged ABD of Enaptin. Amino acids 2 to 294 of the 

small mouse Enaptin-165 N-terminal isoform were cloned in the expression vector pQE-30, 

which led to the expression of these amino acids fused with the His-tag at its N-terminus. The 

recombinant protein was purified from E. coli strain M15 by affinity purification using a Ni-

NTA column. The purified protein was resolved in SDS-PAGE. The predicted molecular 

weight of the 6xHis-ABD Enaptin is 34 kDa. In addition to the protein with the expected size, 

a 24 kDa protein eluted from the affinity column which was identified in work done by S. 
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Braune to be a degradation product of the 6xhis-ABD Enaptin encompassing residues 2-210. 

The purified fusion protein was used for immunisation of two rabbits and the serum was 

collected after 60, 90, 130 and 160 days, respectively. The serum was checked by western blot 

analysis against the recombinant ABD protein. The polyclonal antibodies both from animal 1 

(pab1) and animal 2 (pab2) detected the recombinant protein using dilutions as low as 

1:10,000. The sera were also checked against protein homogenates prepared from COS7 cells 

that had been transfected with an Enaptin-165 GFP fusion protein. Cell homogenates from 

cells expressing a GFP fusion protein of the ABD of NUANCE were used for control in order 

to demonstrate the specificity of the Enaptin antibodies (Figure 3.6). 

 The monoclonal anti-GFP antibody recognises both the GFP fusion proteins, GFP-

ABD-NUANCE and GFP-Enaptin-165. Pab1 recognises GFP-Enaptin-165 and GFP-ABD-

NUANCE. This could be due to the high homology of the ABDs of Enaptin and NUANCE. 

In contrast, pab2 recognises GFP-Enaptin165 and does not cross-react with the GFP-ABD-

NUANCE fusion protein. Thus, pab2 appears to be specific for Enaptin and was used for all 

further studies including western blotting, immunofluorescence and immunohistochemistry. 

 The polyclonal serum collected after 160 days from animal 2 was also affinity 

purified using the recombinant His-ABD Enaptin immobilised on a PVDF membrane and 

used for immunofluorescence and immunohistochemistry. 

          
 

Figure 3.6: Western blot analysis of cell homogenates from COS7 cells transfected with GFP-ABD-

NUANCE (1) and GFP-Enaptin-165 (2) using the polyclonal antibodies raised against the ABD of Enaptin 

(pab1 and pab2). The proteins were separated on 3-15 % SDS-PAGE gradient gels and transferred to a PVDF 

membrane. Panel A represents the blot probed with a GFP-specific monoclonal antibody, where the GFP 

antibody recognises both GFP fusion proteins as marked by the arrow. In B, the blot was probed with pab1. 

These antibodies recognise both proteins as indicated by the arrows. In C, the blot was probed with pab 2. These 
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antibodies recognise only the Enaptin GFP fusion protein (arrows) but not the ABD-NUANCE GFP fusion 

protein (arrowheads). The expected molecular weight of GFP-ABD-NUANCE is 90 kDA and of GFP-Enaptin-

165 is 190 kDa. In all the blots, the secondary antibody used was coupled to peroxidase. Detection was 

performed with enhanced chemiluminescence (ECL).  

 

3.7 Expression of Enaptin in various cell lines and in brain 

 Pab2 was used in western blots to analyse the expression of Enaptin in various cell 

lines and brain. Protein homogenates prepared from different cell lines such as COS7 

(monkey kidney cells), C2F3 (mouse myoblasts), C3H/10T1/2 (mouse fibroblasts) and A431 

(human keratinocytes) and brain lysate from mouse were used (Figure 3.7). 

 In the brain lysate, a protein of 170 kDa was detected (Figure 3.7A). This could 

represent the small N-terminal isoform of Enaptin, which we have previously cloned from 

brain cDNA (Enaptin-165). In the cell lysates derived from COS7, A431, C2F3 and 

C3H/10T1/2 a protein of 400 kDa was observed, which could represent a large isoform of 

Enaptin, containing the actin binding domain. No signal was detected at the size expected for 

the full-length of Enaptin, which exceeds 1,000 kDa. 

  
Figure 3.7: Presence of Enaptin in mouse brain and cell lines. Pab2 was used as primary antibody with a 

dilution of 1:1000. The secondary antibody used was anti-rabbit IgG conjugated with peroxidase. In mouse brain 

homogenate (A), pab2 recognises a band of about 170 kDa, which could represent the small N-terminal isoform 

of Enaptin, Enaptin-165. B, Cell homogenates from COS7, A431, C2F3, C3H/10T1/2 were separated on a 3-

15% gradient gels as described for Figure 3.10, transferred to a PDVF membrane and probed with pab2. Pab2-
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binding was detected using a peroxidase-coupled goat anti rabbit antibody. Detection was performed with ECL. 

In these cell lines, the Enaptin polyclonal antibodies detect a band of about 400 kDa. 

3.8 Immunofluorescence studies of Enaptin in various cell lines 

 In order to study the subcellular localisation of Enaptin, affinity purified pab2 was 

used for immunofluorescence studies in different cell lines, COS7, C3H/10T1/2 and C2F3. 

The cells were usually fixed with 3% paraformaldehyde or methanol-acetone. In Figure 3.8, 

the cell lines which all express a protein with a molecular mass of 400,000 dalton were fixed 

with methanol- acetone.      

 
B CA 

 

 

 

 

 

 

 

Figure 3.8: Subcellular localisation of Enaptin in various cell lines. COS7, C3H/10T1/2 and C2F3 cells fixed 

with methanol-acetone were stained with pab2. The antibody was detected with an anti-rabbit IgG secondary 

antibody, conjugated with Alexa 568. The pictures were taken using a confocal microscope. 

 

 In COS7 cells, Enaptin was predominantly localised in the nucleus and in the 

cortical area presumed to be the cortical actin cytoskeleton (Figure 3.9A). Furthermore, a few 

fiber-like structures were stained. In C3H/10T/2 and C2F3 cells, Enaptin stained the nuclear 

membrane and also structures resembling focal contacts (Figure 3.9, B and C). There was also 

a staining of fiber like structures and a weak diffused staining throughout the cytoplasm. 

 

Figure 3.9: Nuclear envelope localisation of Enaptin. Confocal images of the nuclear envelope localisation of 

Enaptin in fibroblasts (panel B) were confirmed by costaining with an emerin specific monoclonal antibody 

(panel A). Panel C is the merged image. Secondary antibodies tagged with Alexa-488 and Alexa-568 were used 

for emerin and Enaptin visualisation. 
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 The nuclear envelope staining of Enaptin was confirmed by colocalisation studies 

with an emerin antibody (Figure 3.9). Emerin is a 34 kDa nuclear envelope protein and 

mutation or absence of this protein has been implicated in the generation of Emery-Dreifuss 

muscular dystrophy (EMDM) (Manilal et al., 1996). 

 

 

 
 

 

 

 

 

Figure 3.10: Subcellular localisation of Enaptin in COS7 cells. COS7 cells fixed with 3% paraformaldehyde 

and permeabilised with 0.5% Triton X-100 were stained with FITC-phalloidin for detection of actin-fibers (A) 

and pab2 for Enaptin. The pictures were taken by confocal microscopy. The secondary antibody conjugated with 

Alexa 568 detected Pab2 binding (B). The overlay picture is shown in C. 

 In order to study the association of Enaptin with the actin cytoskeleton in COS7 

cells, we fixed cells with 3% paraformaldehyde and costained them with FITC-phalloidin 

(Figure 3.10). Phalloidin is a toxin from a fungus called Amanita phalloides, which 

specifically interacts with F-actin. COS7 cells fixed with 3% paraformaldehyde and stained 

with pab2 gave a very bright staining of the nucleus and filamentous cytoplasmic structures 

that colocalized with the cortical actin cytoskeleton or at stress fibres.  

 

Figure 3.11: Coimmunofluorescence studies of C3H10T1/2 cells with pab2 and anti-α-actinin antibody. 

Confocal images of cells fixed with methanol-acetone. Panel A shows the α-actinin staining, B shows the 

Enaptin staining, C, merged picture. Enaptin and α-actinin staining were visualised by secondary antibodies 

conjugated with Alexa-488 and Alexa-568. 

 To investigate the actin associated structures of Enaptin in more detail, C3H/10T1/2 

cells fixed with methanol-acetone were stained with pab2 and an α-actinin specific 

monoclonal antibody (Figure 3.11). We observed that Enaptin was colocalising with α-actinin 
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at the periphery of the cells and in structures that might correspond to focal adhesions and the 

striations in the stress fibres. In general, the Enaptin staining was prominent at the nuclear 

membrane, but was also present throughout the cytoplasm.  

 
Figure 3.12: Enaptin does not associate with the microtubule network in C3H/10T172 cells. Confocal 

images of C3H/10T1/2 cells fixed with methanol-acetone and double stained with pab2 and a monoclonal anti-

α-tubulin antibody. Panel A represents C3H/10T/2 cells stained with an ∝-tubulin specific antibody and panel B 

represents the Enaptin staining. Panel C represents the merged image. A secondary anti-rabbit IgG antibody 

conjugated with Alexa 568 detected Pab2 and the anti-tubulin antibody was detected with a secondary anti-

mouse IgG antibody conjugated with Alexa 488. 

 As other large cytoskeletal proteins have been shown to bind to several filaments we 

investigated whether Enaptin localises to the microtubule network. For this C3H/10T1/2 cells 

were double stained with Enaptin and tubulin specific antibodies (Figure 3.12). We did 

however not detect a colocalisation of Enaptin with the microtubule network. 

3.9 Cell fractionation studies of fibroblast cell lysates 

 The inability to detect the 1,000 kDa Enaptin in western blots, and the observed 

nuclear membrane staining in a variety of cells encouraged us to investigate the subcellular 

localization of the 400 kDa protein detected in C3H/10T1/2 cells. The cells were fractionated 

into cytosol, nucleus and membrane structures, and the samples were subjected to 

immunoblot detection. Enaptin staining was observed in both the cytosolic and nuclear 

fractions. Control experiments were done with annexin A7 antibodies, which detects a band 

slightly below 50 kDa in all the fractions, tubulin is detected in the cytosolic fraction and 

emerin was detected in both the nuclear and membrane fractions as expected (Figure 3.13). It 

might well be that the 400 kDa protein has an actin binding domain but lacks the 

transmembrane domain supported by the EST clone CA425673.  
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Figure 3.13: Cell fractionation study of fibroblast cells. Immunoblot investigation of fibroblast cells, which 

were fractionated into cytosol, nuclei and cytoplasmic membranes. The samples were resolved on a 12% SDS 

gel, blotted onto PVDF membrane and the blots were analysed with Enaptin pab2, annexin A7, ∝-tubulin and 

emerin specific monoclonal antibodies. Detection was performed with ECL. 

3.10 Generation of various Enaptin GFP fusion proteins 

 To study the contribution of various domains of Enaptin to its cellular localization, 

we generated GFP fusion constructs of the ABD and the Enaptin-165 isoform. The plasmids 

that allowed expression of green fluorescent protein (GFP) tagged Enaptin fusion proteins 

were transfected into COS7 cells. The actin binding domain of Enaptin was fused to GFP at 

its C-terminus, the second construct consisted of the full-length Enaptin-165 which carried the 

GFP at its amino terminus (Figure 3.14). 

  

 

 

Figure 3.14: Schematic representation of the GFP constructs used for transfection studies. The ABD of 

Enaptin (residues 2-296) was cloned into the EGFPN3 vector and the full-length Enaptin-165 (residues 1-1431) 

was cloned into the EGFPC2 vector.  

 The plasmid allowing the expression of ABD-GFP was transfected into COS7 cells 

and the cells were costained with TRITC-phalloidin for analysis of cytoskeletal association of 

the protein (Figure 3.15). 
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 In COS7 cells, the GFP tagged ABD-Enaptin colocalised with the actin stress fibres 

(Figure 3.15, big arrows), which are not so prominent in this cell line, the cortical actin 

cytoskeleton (Figure 3.15, arrowheads) and was also found very prominently in the nucleus. 

In C3H/10T1/2 cells, ABD-Enaptin was found to localise along the stress fibres and it 

colocalised with vinculin in the focal contacts (Braune, 2002). Vinculin is one of the many 

proteins specifically found in focal contacts. The GFP fusion protein was also present in the 

nucleus (Figure 3.15, small arrows). The localisation of ABD-Enaptin-GFP inside the nucleus 

in both COS7 cells and C3H/10T1/2 cells might be due to the presence of two nuclear 

localisation signals present in the ABD of Enaptin which may allow its entry into the nucleus. 

 
Figure 3.15: The ABD of Enaptin colocalises with the F-actin network in COS7 cells. COS7 cells 

transfected with the GFP-Enaptin ABD plasmid were stained with TRITC-phalloidin. The cells were fixed with 

3% paraformaldehyde and permeabilised with 0.5% Triton X-100. Panel A represents the localisation of the GFP 

fusion protein, B shows phalloidin-TRITC staining and C shows the merged picture. The pictures were taken 

using the confocal microscope. 

 GFP-Enaptin-165 was also transiently transfected in COS7 cells and the cells were 

fixed with 3% paraformaldehyde and costained with TRITC-phalloidin. As an alternative 

fixation procedure we used methanol-acetone to allow a staining with an anti-α-tubulin 

monoclonal antibody (Figure 3.16). These stainings indicate that the GFP-Enaptin-165 fusion 

protein is present along the stress fibres (big arrows) and that it is also present in the cortical 

actin cytoskeleton (arrow heads). There is no colocalisation however with the microtubule 

network, which is in accordance with results obtained with the pab2 staining patterns obtained 

in COS7 cells (Figure 3.16, D-F). Interestingly, the fusion protein is again prominently 

located in the nucleus (small arrows). Enaptin-165 harbors three predicted nuclear localisation 

signals, which might be responsible for this localisation. 
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Figure 3.16: Expression of GFP-tagged Enaptin-165 in COS7 cells. COS7 cells transfected with GFP-

Enaptin-165 were costained with both TRITC-phalloidin and anti-α-tubulin antibody. The top panels represent 

Enaptin-165 transfected cells co-stained with TRITC-phalloidin. The cells were fixed with 3% paraformaldehyde 

and permeabilised with 0.5% Triton X-100. Panel A represents the GFP-Enaptin-165 localisation, B, the TRITC-

phalloidin staining; and C, merge. The bottom panels show GFP-Enaptin-165 transfected cells costained with 

anti-∝-tubulin antibody. D, GFP-Enaptin-165; E, tubulin staining as detected with a Cy3-conjugated anti mouse 

IgG antibody; F, overlay. Big arrows indicate the stress fibers, small arrows the nucleus, and the arrowheads 

cortical actin cytoskeleton structures. 

3.11 Enaptin localisation in mouse skeletal muscle 

 A higher expression of Enaptin in muscle as found by multiple tissue expression 

array analysis (Abraham, 2004) and a possible involvement of Enaptin in muscular dystrophy 

as evidenced by the association of Enaptin with proteins like lamin A and emerin (Mislow et 

al., 2002) encouraged us to analyse the distribution of Enaptin in skeletal muscle. Paraffin 

embedded tissue sections of adult mouse were used for this purpose. The affinity purified 

pab2 was used at a dilution of 1:10. Muscle sections were costained with anti-skeletal myosin 

(Figure 3.17, A-C) and anti-desmin antibodies (Figure 3.17, D-F). Myosin is found in muscle 

sarcomeres which together with actin fibres coordinates the muscle contraction. Desmin is the 

main intermediate filament protein found in skeletal and heart muscle. 

 Our Enaptin antibody stains the muscle sarcomeres in adult muscle sections. Double 

labeling experiments with desmin indicated that Enaptin and desmin only partially colocalise. 
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Whereas desmin is clearly confined to the Z-disc (arrow heads), Enaptin shows a much wider 

distrubution around the Z-disc and appears to surround desmin and is located in the 

neighbouring I-bands (arrows). This finding is confirmed in coimmunofluorescence studies 

with myosin antibodies which show the myosin location at the A-bands (Figure 3.17, A-C).  

 
Figure 3.17: Localisation of Enaptin in skeletal muscle. Adult mouse muscle sections stained with Enaptin 

specific pab2 were costained with myosin and desmin specific monoclonal antibodies. A-C represent a 

comparison of Enaptin and myosin distribution in mouse skeletal muscle. A, Enaptin staining; B, myosin 

staining; C, merged picture. D, desmin staining; E, Enaptin staining; F, overlay. Enaptin was detected by anti-

rabbit IgG secondary antibody tagged with Alexa 568 and myosin and desmin by a anti-mouse IgG secondary 

antibody tagged with Alexa 488. Arrows indicate Enaptin staining and arrowheads desmin or myosin staining. 

 To investigate the distribution of Enaptin in patients affected with a desmin-related 

myopathy, we stained muscle sections with pab2 and an anti-desmin antibody (Figure 3.18). 

In these specimens, an aggregation of desmin is observed in addition to the normal desmin 

location. The sections were prepared by Dr. R. Schröder from the University Hospital in 

Bonn. We observed a striated pattern (arrows) of desmin distribution as well as the presence 

of aggregates (Figure 3.18). The Enaptin pattern was not affected by the unusual aggregates 

of desmin in patient muscle although some Enaptin appeared to be associated with the 

aggregates. 
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Figure 3.18: Distribution of Enaptin in skeletal muscle obtained from a patient suffering from a desmin-

related myopathy. Muscle sections from patients with a desmin related myopathy were costained with pab2 and 

a monoclonal anti-desmin antibody. Secondary anti-rabbit IgG antibody tagged with Alexa 568 detected Pab2 

and an anti-mouse IgG antibody tagged with Alexa 488 detected desmin. A, desmin staining; B, Enaptin 

staining; C, overlay. The arrows indicate the desmin aggregation. 

3.12 Enaptin localisation in human skin 

 The skin is considered the largest organ of the body and has many different 

functions. The skin functions in thermoregulation, protection, metabolic functions and  

 
Figure 3.19: A diagram showing a cross section of skin, illustrating its overall histology. 

sensation. The skin is divided into two main regions, the epidermis, and the dermis, each 

providing a distinct role in the overall function of the skin (Figure 3.19). The dermis is 

attached to an underlying hypodermis, also called subcutaneous connective tissue, which 

stores adipose tissue and is recognised as the superficial fascia of gross anatomy. 
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Figure 3.20: Immunofluorescence studies of Enaptin in skin. Confocal pictures of human skin sections 

stained with pab2 and double stained with rat monoclonal anti-α6β4 antibody (A-C), monoclonal mouse anti-

NUANCE antibody (D-F) and Phalloidin-TRITC (G-I). The α6β4 was visualized by secondary antibody 

conjugated with Alexa 568 and NUANCE by secondary antibody conjugated with Cy3. 

  

 Human skin sections were used for the investigation of the localisation of Enaptin. 

Enaptin polyclonal antibodies stained epidermis of the skin which is shown by double staining 

with α6β4 (Figure 3.20, A-C). α6β4 is a hemidesmosome specific integrin present in the basal 

layer of the skin which binds to laminin in the extracellular matrix (van der Flier and 

Sonnenberg., 2001). α6β4 staining in skin can be seen as a thin layer between the dermis and 

epidermis. The N-terminal specific pab2 antibodies stain the periphery of all the cells in the 

epidermis whereas the related protein NUANCE stains the nuclear membrane (Figure 3.20, 

D-F). This double layered staining around the periphery of the skin cells was further 

investigated by costaining with phalloidin (Figure 3.20, G-I). Enaptin was found to be present 

surrounding the actin cytoskeleton with partial colocalisation. The absence of nuclear 

membrane staining may be due to the presence of Enaptin isoforms in skin which lack the C-
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terminal transmembrane domain. The significance of this interesting observation of the 

presence of Enaptin as a double layer around the cell periphery is yet to be understood. 
  

3.13 Influence of cytoskeletal drugs on the subcellular distribution of Enaptin 

The presence of an actin binding domain in the Enaptin protein and its ability to bind 

to actin both in vitro and in vivo prompted us to examine the effect of the actin 

depolymerising drug latrunculin B on the localisation of Enaptin. In latrunculin B untreated 

cells, the Enaptin antibody stained the nuclear envelope in addition to the actin associated 

structures (Figure 3.21, A-C). The nuclear envelope localisation of Enaptin remained 

unperturbed even after the disruption of the actin cytoskeleton. Interestingly the cytosolic 

localisation of the Enaptin pool was destroyed by this drug (Figure 3.21, D-F). Our results 

confirm that the cytoplasmic staining corresponds to actin based structures, which is lost with 

the depolymerisation of the actin cytoskeleton. The indifference in the nuclear envelope 

localisation of Enaptin maybe due to the fact that the actin cytoskeleton has no role in the NE 

localisation of Enaptin which is probably held to the nuclear envelope by some other proteins 

present in the nuclear envelope.  

  
Figure 3.21: Effect of latrunculin B on Enaptin distribution. Mouse fibroblast cells were grown in the 

absence (A-C) and the presence (D-F) of latrunculin B. The cells were treated with latrunculin B (final 

concentration: 2.5 µM) for 10 min. The latrunculin B treated cells and untreated cells were fixed with methanol-

acetone and stained with pab2 and anti-β-actin antibody and the images taken using a confocal microscope. The 

pab2 was probed with secondary antibody conjugated with Alexa 568 and the β-actin antibody was probed with 

secondary antibody conjugated with Alexa 488. 
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4 Characterisation, localisation and functional analysis of Sun1 

4.1 The perinuclear region of Enaptin is highly conserved 

 The 30 amino acids after the transmembrane domain of Enaptin (PeriNuclear Enaptin; 

PNE) are highly conserved across different species of organisms. Sequences from mouse and 

human NUANCE, mouse and human Enaptin, C. elegans ANC-1, Drosophila Klarsicht, 

homologous EST clones of zebrafish and chicken were used for the alignment. Of the 30 

amino acids used for alignment 12 amino acids are highly conserved in all the organisms 

(Figure 4.1). This observation suggested to us that this highly conserved region of the protein 

is involved in the association with a highly conserved protein. 

  
Figure 4.1: Multiple alignment of the perinuclear region of Enaptin with sequences found in homologous 

proteins. Multiple alignment of mouse NUANCE (CF739892, residues 134-163), human NUANCE (AF435011, 

residues 6854-6885), zebrafish (BI846027, residues 50-79), mouse Enaptin (BE917568, residues 109-138), 

human Enaptin (AF535142, residues 8720-8749), chicken (CD732830 residues 101-130), ANC-1 (BK000642, 

residues 8516-8545), klarsicht (AF157066, residues 2233-2262) using MultiAlin (Corpet et al., 1988).  

4.2 SUN domain containing proteins 

 ANC-1 (C. elegans orthologue of Enaptin) failed to localize to the nuclear periphery 

in the unc-84 null mutant and in strains carrying alleles that have missense mutations in or 

near the conserved SUN domain of UNC-84 (C. elegans orthologue of the mammalian Sun1 

protein). Both proteins are involved in nuclear migration and anchorage in C. elegans (Starr 

and Han, 2002). The SUN domain derives its name from its homology between Sad1 which 

was found to be present in the spindle pole body of S. pombe (Iain and Mitsuhiro, 1995) and 

UNC-84 which has been shown to be involved in nuclear migration and anchorage in C. 

elegans ( Malone et al., 1999). C. elegans has two SUN domain containing proteins, UNC-84 
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and SUN1. SUN1 in C. elegans has been shown to be involved in the attachment of 

centrosomes to the nucleus and also in nuclear migratory events (Malone et al., 2003).  
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Figure 4.2: Schematic diagram of SUN domain containing proteins in mouse. The same gene Sun1, codes 

for the Sun1A and Sun1B transcripts, whereas a different gene codes for the Sun2 protein. Tm1, Tm2 and Tm3 

are the three transmembrane domains and the highly conserved SUN domain is also depicted in the figure. 

Pictures are not drawn to the scale. 

 

Humans and mice have two genes coding for SUN domain containing proteins, Sun1 and Sun2. Sun1 is located 

in the mouse chromosomal locus 5G.2 and codes for two isoforms, Sun1A and Sun1B and Sun2 in the 

chromosomal locus 15E.2 coding for the Sun2 protein. Sun1B is an alternatively spliced isoform lacking amino 

acids 222-234 of Sun1A (Figure 4.2). 

           
Figure 4.3: Phylogenetic tree of the SUN domain containing proteins. The SUN domains of mouse Sun1 and 

Sun2, C. elegans UNC-84 and Sun1 and yeast Sad1 were aligned on ClustalW alignment and the calculation 

used for the construction of this tree was done using Phylodendron Phylogenetic tree printer programme. . 
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The phylogenetic tree constructed by using the SUN domains of the known SUN domain 

containing proteins shows that the SUN domain of C. elegans UNC-84 is more closely related 

to the mouse Sun1 and Sun2 than that of C. elegans SUN1 (Figure 4.3). Interestingly, the 

SUN domain of mouse Sun1 is 47.8% identical to that of C. elegans UNC-84, whereas mouse 

Sun2 shares only 39.8% identity with the C. elegans UNC-84 (Figure 4.4). 

 
Figure 4.4: Multiple alignment of SUN domains. Mouse Sun1 (AAH48156, residues 738-913), mouse Sun2, 

C. elegans UNC-84 (CAA94142, residues 932-1110), S. pombe Sad1 (Q09825, residues 309-489) and C. 

elegans SUN1 (Q20924, residues 266-444) were used for the alignment (Corpet et al., 1988). The reported 

UNC-84 dependent localisation of ANC-1 and the close similarity between the SUN domains of Sun1 and UNC-

84 led us believe that the localisation of Enaptin to the nuclear membrane may be facilitated by the binding of 

Enaptin with Sun1. 

 

4.3 Sequence and domain analysis of Sun1 
The cDNA of the mouse orthologue of UNC-84, Sun1 (accession number AAH48156) 

was obtained from the IMAGE consortium. Mouse Sun1 codes for a 100 kDa protein 

composed of 913 amino acids. The protein has three putative transmembrane domains located 

approximately in the middle of the protein. The N-terminus of the protein has a predicted 

ZnF-C2H2 domain, which is a DNA binding domain normally found in transcription factors. 

The C-terminus of the protein has two predicted coiled coil domains (cc1 and cc2) predicted 

by MULTICOIL programme (Ethan et al., 1997). The final 150 amino acids are highly 

homologous to C. elegans UNC-84 and S. pombe Sad1 and is called SUN domain (Figure 4.5 

and 4.6).  
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   1 MDFSRLHTYT PPQCVPENTG YTYALSSSYS SDALDFETEH KLEPVFDSPR MSRRSLRLVT 

  61 TASYSSGDSQ AIDSHISTSR ATPAKGRETR TVKQRRSASK PAFSINHLSG KGLSSSTSHD 

 121 SSCSLRSATV LRHPVLDESL IREQTKVDHF WGLDDDGDLK GGNKAATQGN GELAAEVASS 

 181 NGYTCRDCRM LSARTDALTA HSAIHGTTSR VYSRDRTLKP RGVSFYLDRT LWLAKSTSSS 

 241 FASFIVQLFQ VVLMKLNFET YKLKGYESRA YESQSYETKS HESEAHLGHC GRMTAGELSR 

 301 VDGESLCDDC KGKKHLEIHT ATHSQLPQPH RVAGAMGRLC IYTGDLLVQA LRRTRAAGWS 

 361 VAEAVWSVLW LAVSAPGKAA SGTFWWLGSG WYQFVTLISW LNVFLLTRCL RNICKVFVLL 

 421 LPLLLLLGAG VSLWGQGNFF SLLPVLNWTA MQPTQRVDDS KGMHRPGPLP PSPPPKVDHK 

 481 ASQWPQESDM GQKVASLSAQ CHNHDERLAE LTVLLQKLQI RVDQVDDGRE GLSLWVKNVV 

 541 GQHLQEMGTI EPPDAKTDFM TFHHDHEVRL SNLEDVLRKL TEKSEAIQKE LEETKLKAGS 

 601 RDEEQPLLDR VQHLELELNL LKSQLSDWQH LKTSCEQAGA RIQETVQLMF SEDQQGGSLE 

 661 WLLEKLSSRF VSKDELQVLL HDLELKLLQN ITHHITVTGQ APTSEAIVSA VNQAGISGIT 

 721 EAQAHIIVNN ALKLYSQDKT GMVDFALESG GGSILSTRCS ETYETKTALL SLFGVPLWYF 

 781 SQSPRVVIQP DIYPGNCWAF KGSQGYLVVR LSMKIYPTTF TMEHIPKTLS PTGNISSAPK 

 841 DFAVYGLETE YQEEGQPLGR FTYDQEGDSL QMFHTLERPD QAFQIVELRV LSNWGHPEYT 

 901 CLYRFRVHGE PIQ 

Figure 4.5: Protein sequence of Sun1. Sun1 is a 913 amino acids containing protein. The amino acids shown in 

red are present only in Sun1A and not Sun1B. The transmembrane domains are highlighted in blue. The coiled 

coil domains are highlighted with pink and the SUN domain with green. 
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Figure 4.6: Domain architecture of Sun1 predicted by the computer program SMART (Simple Modular 

ARchitecture Research Tool) and TMpred (a transmembrane domain prediction software) and 

MULTICOILS program. Sun1 has three transmembrane domains in the middle of the protein. The N-terminus 

of the protein has a ZNF-C2H2 domain and the C-terminus has two coiled coil domains. The C-terminal end of 

the protein is highly homologous to the SUN domain. 
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4.4 The perinuclear segment of Enaptin binds to the C-terminus of Sun1 in vivo and the 

SUN domain is not required for this association 

 We used a yeast two hybrid assay to investigate the possible interaction between the 

perinuclear Enaptin sequence (PNE) and Sun1. PNE (the last 30 amino acids of mouse 

Enaptin) was fused to the binding domain (BD) of Gal4 (BD-PNE). Three different fusion 

constructs of Sun1 protein containing amino acids after the three transmembrane domains 

with the activating domain (AD) of Gal4 were made, namely AD-CT (residues 432-913), AD-

∆SUN (residues 432-737) and AD-SUN (residues 738-913). All the three AD fusion 

constructs were cotransformed into yeast strain Y190 with BD-PNE separately and grown on 

SD-Trp-Leu medium plates. Negative controls were performed with cotransforming BD 

fusion construct with AD alone and AD fusion constructs with BD alone. The growth of the 

transformed yeast cells streaked on SD-Trp-Leu-His (60 mM 3-AT) were monitored over a 

period of 5 to 7 days. The transformed cells were also streaked on SD-Trp-Leu plates and X-

gal assays were performed on these cells. 

 

 
          Yeast two hybrid plasmid constructs -Trp-Leu-His+ 

3AT (60 mM) 

 X-gal 

 BD-LE  AD-CT  +++  ++++ 

 BD-LE  AD-∆SUN  +++  ++++ 

 BD-LE  AD-SUN  +  ++ 

 BD-LE  AD  +  - 

 BD  AD-CT  +  - 

 BD  AD-∆SUN  +  - 

 BD  AD-SUN  +  - 

 

 

Figure 4.7: Yeast two hybrid experiments showing the interaction between perinuclear Enaptin and Sun1. 

The first column shows the different combinations of plasmids used for yeast transformation. The second 

column shows the result of growth of yeast cells on SD-Trp-Leu-His+3AT (60 mM) plates. The result is 

indicated by the symbol “+”. The symbol “+++” was given when the growth was high and optimal. The symbol 

“+” was assigned when the growth was minimal. The third column shows the result from the X-gal assay. 

“++++” symbol was assigned when the intensity of the blue colour was high, “++” when it was half the intensity 

and “–“ when there was no blue colour development. 

 

Y190 cells cotransformed with the plasmids BD-PNE+AD-CT and BD-PNE+AD-

∆SUN grew very well on SD-Trp-Leu-His+3AT (60mM) plates but the cells cotransformed 
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with BD-LE+AD-SUN grew slowly and stopped growing after a minimal growth. This 

behaviour matched the growth of the yeast cells cotansformed with the negative control 

plasmids. The intensity of the blue colour after X-gal assay was found to be high and similar 

in BD-PNE + AD-CT, BD-PNE + AD-∆SUN cotransformed cells, but well reduced in BD-

PNE + AD-SUN cotransformed yeast. These two results indicate that the ∆SUN domain of 

Sun1 interacts with the perinuclear C-terminal Enaptin region. The SUN domain is obviously 

not required for this interaction. The observation of the reduced blue colour in the BD-PNE + 

AD-SUN could well be due to the fact that there might be some few amino acids in the SUN 

domain also involved in its binding. Further experiments with different fusion constructs have 

to be done to map the exact amino acids involved in the binding of the Sun1 protein to 

Enaptin. 
 

4.5 The perinuclear Enaptin amino acids bind to the C-terminus of Sun1 also in vitro 

 A GST pull down experiment was performed to substantiate the fact that the 

interaction between the C-terminus of Sun1 and the PNE is indeed not a false positive 

artefact. The PNE construct was fused to GST using pGEX-4T1 vector and was expressed in 

E. coli and purified by affinity purification using GST beads. The CT, ∆SUN and SUN region 

of Sun1 were fused to GFP in the EGFP-C2 vector and transfected into COS7 cells. GST-

PNE was used to pull down the overexpressed GFP-Sun1 fusion proteins. A negative control 

was performed where only the GST was used for the pull down experiment. 

                                                                 

GST+GFP-CT GST-LE+GFP-CT

P S P S

75 kDa

 
Figure 4.8: PNE binds to the C-terminus of Sun1 in a GST-pull down experiment. The first two lanes 

indicate the pellet (P) and supernatant (S) fractions after incubating cell lysates overexpressing the GFP-CT 

fusion protein with GST alone overnight. The final two lanes indicate the pellet and supernatant fractions 

obtained after the overnight incubation of GST-PNE and GFP-CT. The blot was probed with anti-GFP 

monoclonal antibody (K3-184-2). The expected molecular weight of GFP-CT is 82 kDa. The amount of protein 

homogenates loaded was not equal.  
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  The GST-PNE fusion protein was able to pull down the GFP-CT fusion protein as 

opposed to the GST alone (Figure 4.8) which is consistent with the yeast two hybrid data 

where BD-PNE showed binding with AD-CT and AD-∆SUN. However, we were unable to 

pull down the GFP-∆SUN or GFP-SUN with the GST-PNE fusion protein. 

 

4.6 A full-length GFP fusion protein of Sun1 localises to the nuclear membrane 

 Having observed that Enaptin binds to the C-terminus of Sun1 both in vivo and in 

vitro, we were interested to study the subcellular localisation of Sun1. The full-length cDNA 

of Sun1 was fused to the C-terminus of GFP. The fusion protein was overexpressed in COS7 

cells and the cells were fixed with paraformaldehyde and observed using the confocal 

microscope. The full-length Sun1 localised strongly to the nuclear envelope (Figure 4.9). 
        

 
Figure 4.9: GFP-tagged full-length Sun1 localises to the NE when overexpresssed in COS7 cells. The 

plasmid coding for full-length GFP-Sun1 was transfected into COS7 cells by electroporation. The transfected 

cells were fixed with paraformaldehyde the next day. Panel A shows the GFP fusion protein expressing cells, 

panel B is a DAPI staining to reveal the nucleus and panel C shows the merged image. The confocal microscope 

was used for taking the pictures. 

 

4.7 Endogenous Sun1 is present in the nuclear membrane in HEK cells 

The presence of endogenous Sun1 was analysed by direct immunofluorescence. 

Polyclonal antibodies produced against the N-terminal (281) and C-terminal region (282) of 

Sun1 

 
Tm11 913Tm2 Tm3 SUN

281 282  
Figure 4.10: Schematic representation of the position of the epitopes used for the generation of the 

polyclonal antibodies 281 and 282. 
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Figure 4.11: Endogenous Sun1 localises to the nuclear envelope in HEK cells. HEK cells were stained with 

polyclonal antibodies produced against peptides located at the N-terminus of Sun1 (281) and the C-terminus of 

Sun1 (282). The figures in the first (A-C) row show the cells stained with 281 and the second row (D-F) show 

the staining with 282 antibodies. The cells were fixed with paraformaldehyde and observed under the confocal 

microscope. The secondary antibody used was conjugated with Alexa 568. . 

 

(Figure 4.10) were used to stain HEK cells. The antibodies are a kind gift from Dr. Josef 

Gotzmann (Biocenter, Vienna). Both the antibodies stained the nuclear envelope in addition 

to the diffused staining all across the nucleoplasm and cytoplasm (Figure 4.11). 

4.8 Expression profile of Sun1 in COS7 and HEK cells 

 To learn more about Sun1, the expression levels of endogenous Sun1 in COS7 and 

HEK cells were investigated in western blotting using the 281 polyclonal antibodies. The 281 

unpurified serum detected two different bands, one band between 75 and 100 kDa (Figure 

4.12, arrow) and the other between 50 and 75 kDa (arrowhead, Figure 4.12). The band 

between 75 and 100 kDa in COS7 cells could correspond to the 88 kDa polypeptide predicted 

for the Sun1B isoform. However the Sun1A isoform (100 kDa) was not detected in either of 

the cell lines investigated. It might be expressed in other cell types not included in the present 

analysis. The inability to detect the 88 kDa protein in HEK cells maybe due to the degradation 

of endogenous Sun1 during lysate preparation with the observed ~60 kDa band being the 
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degradation product or may be the result of alternative expression pattern of the Sun1 gene in 

HEK cells. 

     

100 

75

50

kDaCOS7
HEK

 
 

Figure 4.12: Expression profile of Sun1 in COS7 and HEK cells. Cell lysates prepared from COS7 and HEK 

cells were resolved on a 12 % SDS-PAGE and blotted onto a PVDF membrane. The blots were probed with the 

281 polyclonal serum and the detection was performed with ECL. The arrow indicates the Sun1B isoform, and 

the arrowhead indicates an additional ~60 kDa immunoreactive product. 

 

4.9 N- and C-terminal segments of Sun1 localise independently to the nuclear membrane 

 To further investigate the localisation of different domains of Sun1, various 

deletion constructs were made. The N-terminus of Sun1 with the first two transmembrane 

domains was fused to GFP (GFP-NT+2TM, residues 1-412) and the C-terminus of Sun1 with 

all three transmembrane domains was fused to GFP (GFP-CT+3TM, residues 368-913) 

(Figure 4.13). The plasmids were transfected in COS7 cells by electroporation.  
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 Figure 4.13: Schematic representation of two GFP fusion constructs of Sun1 GFP-NT+2TM (A) and 

GFP-CT+3TM (B).  
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Figure 4.14: Overexpression of GFP-NT+2TM and GFP-CT+3TM in COS7 cells. Panels A-C represent 

cells transfected with GFP-NT+2TM. Panels D-F indicate the GFP-CT+3TM overexpression. The cells were 

fixed with paraformaldehyde and stained with DAPI and observed under confocal microscope. The arrows 

indicate the nuclear envelope staining and the arrowheads indicate the discontinuous nuclear membrane staining. 

 

 Both the N- and C-terminal GFP fusions of Sun1 were found to localise to the nuclear 

membrane (Figure 4.14, A-F). Interestingly, most of the cells transfected with GFP-CT+3TM 

gave a discontinuous nuclear membrane staining. (Figure 4.14, G-I, arrowheads). The 

overexpressed GFP-NT+2TM protein formed aggregates apart from the nuclear envelope 

staining. But on the other hand, GFP-CT+3TM seemed to be present also in structures similar 

to the endoplasmic reticulum in addition to the nuclear envelope localisation. This observation 

was confirmed by staining the transfected cells with antibodies against the specific 

endoplasmic reticulum marker PDI (protein disulfide isomerase) (Figure 4.15). PDI family 
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proteins are involved in the processing and maturation of secretory proteins in the ER by 

catalysing the rearrangement of disulfide bonds. 
 

 
Figure 4.15: The GFP-CT+3TM fusion protein localizes to the ER and the nuclear envelope. Confocal 

images of COS7 cells transfected with GFP-CT+3TM. Cells were fixed with paraformaldehyde and 

permeabilised with Triton X-100 before staining. Rabbit anti-PDI polyclonal antibodies were used as an ER 

marker. PDI was visualised by probing with a secondary antibody conjugated with Alexa 568. 

 
 The C-terminus of Sun1 lacking the first transmembrane domain when fused to GFP 

(GFP-CT residues 432-913), failed to localise to the nuclear envelope. A diffused cytosolic 

staining was observed underlining the importance of the transmembrane domains for the NE 

localisation (Figure 4.16). 

               
 

Figure 4.16: Overexpression of GFP-CT in COS7 cells gives a diffused cytosolic distribution. Figure A is 

the schematic diagram of the fusion construct used. Figure B shows the confocal images taken after transfecting 

this construct into COS7 cells. Panel A shows a diffused cytosolic distribution of this overexpressed fusion 

protein. Nuclear staining with DAPI is shown in panel B and panel C is the merged image.  
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4.10 Sun1 dimerises in vivo  

 -Helical coiled-coils represent what is probably the most widespread assembly motif 

found in proteins. A coiled-coil model was first proposed by Crick in 1953 and is comprised 

of two, three, or four right-handed amphipathic -helices, which wrap around each other in a 

left-handed supercoil with a crossing angle of approximately 20° between helices such that 

their hydrophobic surfaces are in continuous contact to form dimeric, trimeric, or tetrameric 

coiled-coils respectively. Two-stranded coiled-coils have traditionally been recognized as a 

dimerisation unit in fibrous proteins such as tropomyosin (Greenfield et al., 2003) and myosin 

(Malnasi-Csizmadia et al., 1998) as well as the longest coiled-coil found so far, NuMA 

(1485 residues) ( Harborth et al., 1995). The MULTICOILS program predicts two coiled coil 

domains in Sun1 after the transmembrane domains (residues 492-527 and residues 563-632) 

(Figure 4.17). 

 

 
Figure 4.17: MULTICOILS program predicts two coiled coil domains in Sun1 (Ethan et al., 1997). This 

prediction matches with the coiled coil domains predicted by the SMART software. 

It was earlier observed that ∆SUN interacts with Enaptin in vivo and in vitro (Figure 

4.7 and 4.8). It is very unlikely that this GFP deletion construct is retained in the nuclear 

envelope by its association with Enaptin owing to the fact that the localisation of ANC-1 (C. 

elegans orthologue of Enaptin) to the nuclear envelope was Unc-84 dependent (C. elegans 
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orthologue of Sun1) and not vice versa (Starr and Han, 2002). This strengthened the notion 

that the ∆SUN domain has some association other than Enaptin or NUANCE for its retention 

to the NE and this is most likely due to dimerisation with endogenous Sun1. 

 In order to analyse the oligomerisation properties of the Sun1 molecule, the ∆SUN 

domain was fused to both the binding domain (BD) and the activating domain (AD) of Gal4 

and these constructs were cotransformed on Y190 yeast cells. The transformed cells were 

selected on SD-Trp-Leu-His +3AT (60 mM) plates and also an X-gal assay was performed. 

Two negative controls were performed to prove that the interaction was not false positive. In 

contrast to the negative controls, the yeast cells transformed with the fusion constructs grew 

efficiently on SD-Trp-Leu-His +3AT(60 mM) plates and also turned blue in the X-gal assay 

(Figure 4.18). All these experiments prove that the ∆SUN domain interacts with itself in vivo 

in yeast two hybrid assays. 
  

 Yeast two hybrid constructs -Trp-Leu-His+ 

3AT (60 mM) 

 X-gal 

 BD-∆SUN  AD-∆SUN  +++  +++ 

 BD-∆SUN  AD  +  - 

 BD  AD-∆SUN  +  - 

 
Figure 4.18: Yeast two hybrid experiments show that Sun1 forms homodimers through the ∆SUN domain. 

Three sets of cotransformation were done, ∆SUN + ∆SUN and two negative controls, ∆SUN+AD and 

∆SUN+BD. Dimerisation was marked by optimal growth of yeast cells on -Trp-Leu-His+3AT (60 mM) plates 

which is indicated by “+++” whereas the growth was inhibited in negative controls which is indicated by “+”. 

Blue colour development in X-gal assay is indicated by “+++” and no development of blue colour in negative 

controls is symbolised with “-“. 

 

4.11 The SUN domain is not required for the NE localisation of Sun1 
Having known that the N- and C-terminal fragments of Sun1 are able to localise to the 

NE independently, our focus turned into knowing the significance of the SUN domain in the 

NE localisation of the C-terminus of Sun1. A GFP construct composed of the C-terminus of 

Sun1 without the SUN domain but with all the transmembrane domains (GFP-SUN+3TM, 

residues 368-737) was constructed to address this issue (Figure 4.19). Interestingly enough, 

this construct was still able to localise to the nuclear membrane underlining that the SUN 

domain is not important for the NE localisation of Sun1 (Figure 4.20). The discontinuous NE 
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localisation as seen with the GFP-CT+3TM was not seen with this construct. The NE 

localisation of GFP-∆SUN+3TM is probably because that ∆SUN domain can dimerise with 

the endogenous Sun1 protein present in the COS7 cells. 
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Figure 4.19: Schematic representation of the ∆SUN domain fused to GFP (GFP-∆SUN+3TM). 

 

 
Figure 4.20: The NE localisation of overexpressed GFP-∆SUN+3TM fusions in COS7 cells. The GFP-Sun1 

fusion protein localises to the nuclear envelope along with a diffused presence in ER (panel A). The DAPI 

staining of nucleus (panel B) and the merged image (panel C) are also shown. The pictures were taken using the 

confocal microscope. 

 

The beautiful rim-like staining around the periphery of the nucleus and the absence of 

discontinuous staining unlike that of GFP-CT+3TM is most likely due to the absence of the 

SUN domain. However, it is unclear how the SUN domain is able to bring about the unusual 

discontinuous staining and the largely ER aggregation of the GFP-CT+3TM consruct. This 

led to the hypothesis that Sun1 probably dimerises with the binding of SUN domain of one 

molecule to the ∆SUN of a neighboring Sun1 and the second to the third and thus could form 

a continuous polymer in the lumen of the ER. This pattern of polymerisation could finally 

segregate the fusion construct in the ER causing mislocalisation. On the other hand, SUN 

domain also could dimerise with itself bringing about the same effect. However, we were 
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unable to detect a direct binding between the SUN- ∆SUN domains and SUN-SUN domains 

in yeast two hybrid experiments (Figure 4.21). 
  Yeast two hybrid constructs -Trp-Leu-His+ 

3AT (60 mM) 

 X-gal 

 BD-SUN  AD-∆SUN  +  - 

 BD-SUN  AD-SUN  +  - 

 BD  AD-∆SUN  +  - 

 BD  AD-SUN  +  - 

 BD-SUN  AD  +  - 

  

Figure 4.21: Yeast two hybrid experiments prove that SUN domain does not interact with ∆SUN domain 

and also does not dimerise with itself. The first two columns shows the different combinations of constructs 

used for yeast transformation. The second column shows the result of growth of yeast cells on SD-Trp-Leu-

His+3AT (60 mM) plates. The result is indicated by the symbol “+”. The symbol “+” was assigned when the 

growth was minimal. The third column shows the result from X-gal assay. The symbol “–“ was assigned when 

there was no development of the blue colour. 

The GFP-∆SUN fusion construct (residues 432-737) without the transmembrane 

domains (Figure 4.22, A) was not able to localise to the nuclear membrane as expected 

(Figure 4.22, B). 

 
Figure 4.22: Overexpression of GFP-∆SUN in COS7 cells. The figure A is a schematic representation of the 

fusion construct used for the transfection. Figure B are confocal images taken of COS7 cells transfected with this 

construct. The fusion protein is diffused throughout the cytoplasm (panel A). The cells were stained with DAPI 

for DNA (panel B). Panel C depicts the merged image. 
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 When the SUN domain was fused to GFP (residues 738-913) it localised to the 

nucleus in COS7 transfected cells (Figure 4.23), though there is no predicted nuclear 

localisation signal present. This nuclear localisation is mostly due to the passive diffusion of 

this protein with GFP into the nucleus. The diameter of the channels of the nuclear pore 

complexes is 10 nm (Hinshaw et al., 1992) large enough to allow the diffusion of globular 

proteins with masses under approximately 60 kDa. The molecular weight of GFP-SUN fusion 

protein is 46 kDa, which is well below the cut-off molecular weight of the nuclear pores. 

 

 
  
Figure 4.23: GFP-SUN fusion protein largely localises to the nucleus. Figure A is the schematic 

representation of the fusion construct used. Figure B shows confocal images taken after transfecting this 

construct in COS7 cells. GFP-Sun localises largely to the nucleus with some diffused staining in the cytosol 

(panel A). Panel B shows DAPI staining and panel C is the merged image. 

 

4.12 Western blotting confirms the expression of all the GFP fusion proteins 

 The expression of all the GFP fusion constructs used in our studies was confirmed by 

western blotting with an anti-GFP monoclonal antibody (K3-184-2). COS7 cell lysates 

transfected with these constructs were resolved on a 12 % polyacrylamide gel and transferred 

onto a PVDF membrane. The schematic diagram representing the amino acids of all the 

fusion proteins used is depicted in Figure 4.24, A. All the fusion proteins detected had the 

expected molecular weights (Figure 4.24, B). 
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Figure 4:24: Western blotting of all the GFP fusion proteins used for our transfection experiments proves 

the expression and proper sizes of all the proteins. Figure A shows a schematic diagram of all the fusion 

proteins used for the COS7 transfection experiments. Figure B is the western blotting analysis of the various 

COS7 GFP-Sun1 laysates to prove the expression of all the GFP fusion proteins. All the fusion proteins were 

detected at the expected molecular weight, GFP-Sun1 (128 kDa), GFP-NT+2TM (73 kDa), GFP-CT+3TM (89 

kDa), GFP-CT (82 kDa), GFP-∆SUN+3TM (70 kDa), GFP-∆SUN (62 kDa) and GFP-SUN (46 kDa). The blot 

was probed with anti-GFP monoclonal antibody. The detection was performed with ECL. 

4.13 GFP-CT+3TM behaves like a dominant negative of Sun1 and displaces endogenous 

Sun1, NUANCE and emerin from the nuclear membrane 

 The discovery that Sun1 binds to Enaptin and NUANCE (Libotte, 2004) and the 

presence of Sun1 at the nuclear membrane encouraged us to do more experiments to find out 

the physiological relevance of these interactions of these proteins. We accidentally found that 

GFP-CT+3TM displaces NUANCE when we were looking for ways to knock Sun1 out of the 

nuclear membrane. Owing to the fact that COS7 cells are easily transfectable cell lines by 
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electroporation and the presence of NUANCE but not Enaptin in the NE of COS7 cell line, 

the analysis of NUANCE distribution but not of Enaptin was pursued in the following 

transfection experiments. It was observed that most of the COS7 cells transfected by this 

dominant negative (DN) construct stained negative for NUANCE in the nuclear membrane 

(Figure 4.25, E-H, arrowheads).  

This interesting observation is probably the manifestation of the displacement of the 

endogenous Sun1 protein by this dominant negative construct, which was later substantiated 

by staining the transfected cells with antibodies specific to the N-terminus of Sun1 (281). 

Most of the transfected cells stained negative for Sun1 (Figure 4.25, A-D, arrowheads). 

However, the mechanism by which this DN construct displaces endogenous Sun1 is not 

understood. 

 
Figure 4.25: Dominant negative displacement of Sun1, NUANCE and emerin from the nuclear membrane. 

Panels A-D depict dominant negative displacement of endogenous Sun1. Panel A, E and I in green show COS7 

cells transfected with the dominant negative construct. Panel B, F and J shows cells costained with Sun1 

polyclonal antibodies (281), the NUANCE N-terminal monoclonal antibody (K20-478-4) and the emerin 

monoclonal antibody respectively. Panel C, G and K shows staining with DAPI and Panels D, H and L shows 

the merged Images. Arrows indicate transfected cells and arrowhead indicates untransfected cells. Sun1 was 

visualised by secondary antibody tagged with Alexa 568 and NUANCE and emerin by secondary antibody 

conjugated with Cy3. 
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The observation that emerin localisation to the nuclear envelope is partially dependent 

of NUANCE by RNAi knock down experiments by Thorsten Libotte compounded the belief 

that this DN construct could also have a similar effect on the NE localisation of emerin. This 

was confirmed by staining the transfected cells with antibodies specific to emerin (Figure 

4.25, I-L). Emerin is another protein found in the inner nuclear membrane and mutations in 

emerin has been attributed to Emery Dreifuss Muscular dystrophy (Bione et al., 1994). 

The overexpressed DN protein mostly formed some discontinuous structure around 

the nucleus and some aggregates, which were already proven to be positive for the ER marker 

PDI. Though it was interesting to find that the DN displaces all these three proteins, it is 

difficult to explain the mechanism by which this effect is carried out or what happens to the 

displaced proteins. However, displaced NUANCE was found to be present in the ER 

aggregates in some of the transfected cells (Figure 26, arrow). 

 

 
 

Figure 4.26: The ER aggregates of DN protein colocalises with NUANCE. Panel A shows a single COS7 cell 

transfected with the GFP-CT+3TM construct. Panel B shows NUANCE staining colocalising with the 

overexpressed protein marked by the arrow. Panel C shows DAPI staining and Panel D is the merged image. 

NUANCE was visualised by secondary antibodies tagged with Cy3. Pictures were taken using the confocal 

microscope. 

 

4.14 Overexpression of GFP-CT+3TM has no effect on lamin A/C or Lap2 localisation 

 Lamins are nuclear intermediate filaments found in the nuclei of multicellular 

eukaryotes. They form stable filaments at the inner nuclear membrane and stable structures at 

the nucleoplam. The main components of nuclear lamina are the A-type and B-type lamins 

(Stuurman et al., 1998 and Gerrace et al., 1978). Both major (A and C) and minor (A∆10 and 

C2) A-type lamin species are encoded by a single developmentally regulated gene LMNA and 

arise through alternative splicing (Fisher et al., 1986). By contrast, the main B-type lamins 

(B1 and B2) are encoded by two separate genes (LMNB1 and LMNB2, respectively) (Hoeger 

et al., 1988, Hoeger et al., 1990, Peter et al., 1989 and Vorburger et al., 1989). A single minor 

 



Results______________________________________________________________________ 75 

B-type lamin (B3) is a splice variant of laminB2 (Furukawa et al., 1993). Lap2 is also an inner 

nuclear membrane protein, which has been shown to bind to A-type lamins (Dechat et al., 

2000) and BAF DNA complexes (Shumaker et al., 2001).  

 The ability of the dominant negative construct of Sun1 to displace Sun1, NUANCE 

and emerin from the nuclear envelope encouraged us to study the distribution of other known 

NE proteins like lamin A/C and Lap2. Staining with lamin A/C and Lap2 antibodies on GFP-

CT+3TM transfected cells showed that the overexpressed DN protein has no effect on the 

normal subcellular localisation of these proteins. Both proteins remained on the nuclear 

membrane (Figure 4.27). 

 

 
 

Figure 4.27: The GFP-CT+3TM overexpression has no effect on the NE localisation of lamin A/C and 

Lap2. Panels A and E depict the overexpressed DN Sun1 protein in green colour. Panels B and F show lamin 

A/C and Lap2 staining respectively. Panels C and G are nuclear staining by DAPI and panels D and H are the 

merged pictures. Secondary antibodies conjugated with Cy3 visualized both lamin A/C and lap2. Pictures were 

taken with confocal microscope. 

 

4.15 Sun1 is an inner nuclear membrane protein  

 The nuclear membrane is composed of two layers of membranes, inner and outer 

membranes, which are connected at the nuclear pore sites. The outer nuclear membrane is 

continuous with the rough endoplasmic reticulum. The space between the inner and outer 

nuclear membrane is also continuous with the lumen of the endoplasmic reticulum. 
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 Both Enaptin (Abraham, 2004) and NUANCE (Zhen et al., 2002) have been found to 

be present in the outer nuclear membrane, but the inner nuclear membrane localisation of 

these two proteins has not been studied in much detail. Lamin A/C, emerin and many other 

nuclear membrane proteins are found to be located only in the inner nuclear membrane. 

Integral proteins of the inner nuclear membrane are synthesised on the rough endoplasmic 

reticulum and reach the inner nuclear membrane by lateral diffusion in the connected ER and 

nuclear envelope membranes. Associations with nuclear ligands retain them in the inner 

nuclear membrane and this type of protein targeting is called ‘diffusion-retention’ model 

(Holmer and Worman, 2001). 

 Digitonin selectively permeabilises only the plasma membrane but not the nuclear 

membrane when the permeabilisation is done in a controlled manner. Digitonin 

permeabilisation studies were done to ascertain the exact localisation of Sun1 protein in the 

nuclear envelope. COS7 cells were fixed with paraformaldehyde and permeabilised with 

Triton X-100 and digitonin. Lamin A/C staining was used as a control for the inner nuclear 

membrane staining. Sun1 and lamin A/C  

 
Figure 4.28: Digitonin extraction experiment establishes the location of Sun1 in the nuclear membrane. 

Panels A-D show cells fixed with paraformaldehyde and permeabilised with Triton X-100 and panels E-H, the 

cells permeabilised with digitonin. Panels A and E show Sun1 staining, B and F lamin A/C staining, C and D 

DAPI staining and D and H, the merged pictures. Lamin A/C was visualised by secondary antibody conjugated 

with Alexa 488. The pictures were taken using confocal microscope. 

  

stain the nuclear envelope of COS 7 cells when permeabilised by Triton X-100 (Figure 4.28, 

A-D), whereas, the Sun1 and lamin A/C antibodies couldn’t stain the nuclear envelope in 

digitonin permeabilised cells (Figure 4.28, E-H). However, the non-specific cytosolic staining 
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by Sun1 polyclonal antibodies, which is normally seen was still visible in the digitonin 

permeabilised cells (Figure 4.28, E) and lamin A/C staining was absent in these cells (Figure 

4.28, E) indicating that the antibodies managed to reach the cytosol but not the nucleus 

because of the selective permeabilisation of the plasma membrane. These observations led to 

the conclusion that Sun1 is an element of the inner nuclear membrane, which is retained there 

by some association with some INM specific proteins, for example lamin A/C. 
 

4.16 Sun1 localises to the nuclear envelope in a lamin A/C dependent manner 

 Most of the known inner nuclear membrane proteins bind to lamins for their retention 

in the NE. The C. elegans of Sun1, Unc-84 was already shown to be dependent on lamins for 

the NE localisation (Lee et al., 2002). This prompted us to investigate the lamin dependent 

localisation of Sun1 in mouse fibroblasts. Wild type and lamin A/C knockout fibroblasts were 

used for this experiment (Sullivan et al., 1999). The cells were stained with lamin A/C and 

Sun1 antibodies. Anti-Sun1 polyclonal antibodies stained the whole nucleoplasm in addition 

to a slightly brighter staining around the nuclear membrane in wild type fibroblasts (Figure 

4.29, A-D), whereas Sun1 staining was completely diffused and faint all through the 

cytoplasm and nucleoplasm in fibroblasts, which are lamin A/C deficient (Figure 4.29, E-H). 

 
Figure 4.29: Lamin A/C dependent localisation of Sun1 in mouse fibroblasts. Panels A-D depict NE 

localisation of Sun1 staining in lamin A/C +/+ fibroblasts and in the lamin A/C -/- cells (panels E-H). Panel A 

shows the NE presence of Sun1 staining and panel E shows the diffused staining of the same in contrast to wild 

type cells. Panel B shows lamin A/C staining and panel F shows the absence of lamin A/C in knockout 

fibroblasts. Panels C and G are nuclei stained with DAPI. Panels D and H are the merged pictures. The pictures 

were taken using the confocal microscope. 

 



Results______________________________________________________________________ 78 

 The disruption of the nuclear and NE localisation of Sun1 in the absence of lamin A/C 

signalled a possible direct interaction between these proteins in wild type cells. The N-

terminus of Sun1 was fused to the AD of Gal4 to check if it interacts with lamin A or laminB, 

which are fused to the BD of Gal4. However, we were unable to detect any such interaction 

between these proteins in yeast two hybrid experiments (Figure 4.30). 
 

 Yeast two hybrid constructs -Trp-Leu-His+ 

3AT (60 mM) 

 X-gal 

 BD-LaminA  AD-NT  +  - 

 BD-LaminB  AD-NT  +  - 

 

Figure 4.30: The N-terminal of Sun1 doesn’t interact with lamins A and B in a yeast two hybrid assay. 

Lamin A and B fused to BD were cotransformed with the AD-NT of Sun1. The transformants stopped growing 

after a minimal growth on Trp-Leu-His+3AT (60 mM) which is indicated by “+” and also didn’t turn blue in X-

gal assay which is symbolised with “-“. 
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5 Generation of a knock-in mouse expressing GFP-tagged full-length 

Enaptin without the transmembrane domain 

5.1 Aim of the project  
 Gene targeting, introduction of site-specific modifications into the mouse genome 

by homologous recombination, is generally used for the production of mutant animals to 

study the gene function in vivo. In order to get further insight into the function of Enaptin, a 

mouse knock out mutant where the ABD is targeted is being generated in our lab. Enaptin is a 

huge 1,000 kDa protein with some alternatively spliced isoforms lacking the C-terminal 

transmembrane domain and some lacking the ABD (Figure 3.1). Though the previously 

mentioned approach to knock out Enaptin gene at the ABD would stop the transcription of the 

full-length protein and the isoforms which contain the ABD, it does not guarantee the knock 

down of other isoforms which lack ABD, for instance Nesprin1α, Nesprin1β, Myne1, 

Syne1A and Syne 1B. Having already known that Enaptin is a nuclear envelope protein and it 

localises to the NE using the single transmembrane domain and the final 30 amino acids, an 

approach to remove the transmembrane domain and the following 30 amino acids would 

ensure the absolute mislocalisation of all the Enaptin isoforms containing the transmembrane 

domain which would in affect enable us to study the functional significance of Enaptin and its 

isoforms in context with the nuclear envelope. We coupled this approach to fuse the rest of 

the protein with GFP, which can alternatively be utilised to study the tissue distribution of 

Enaptin (Figure 5.1).  

 

Figure 5.1: A schematic diagram showing the aim of the project, which is the ablation of the 

tranmembrane domain of Enaptin and its replacement by theGFP protein 

5.2 The knock out strategy 

 The last exon (Exon 147) of the Enaptin gene codes for amino acids, which is 

comprised of the transmembrane domain and the perinuclear region. The 5’ arm of the target 
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vector was designed to include 4 kb of genomic sequence comprising mostly of the intronic 

sequence with few amino acids of the last exon until few amino acids before the 

transmembrane domain (Figure 5.2).  

 Genomic DNA 
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Figure 5.2: Schematic representation of the last five exons of Enaptin and the knock in strategy. The last 

five exons of Enaptin are depicted in the figure. The boxes represent the exons and the size of the exons and the 

lines, the introns and their size. The final exon of Enaptin codes 79 amino acids. The 4 kb 5’arm of the target 

vector includes sequence of the intron between the last exon and the one before with 12 amino acids (marked 

with brown colour) of the last exon. GFP was fused to the target vector immediately after the 5’ arm. The amino 

acids indicated with red colour represent the transmembrane domain (TM) and the amino acids marked with blue 

colour indicate the perinuclear region of Enaptin (PNE). UTS indicates the untranslated sequence of the last 

exon including the stop codon. 

 

 The amplified 5’ arm was cloned in pBLUESCRIPT vector followed by GFP, which 

was cloned in frame to the remaining amino acids of the last exon. Neomycin cassette was 

also cloned into the vector for the later selection of recombination event. 3’arm includes 1.9 

kb of intronic sequence after the final exon of Enaptin which was cloned after NEO cassette 
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in the target vector. Two probes were generated outside of 5’ and 3’ arms of the genomic 

sequence to select for clones site specifically recombined (Figure 5.3). HindIII enzyme was 

used for the screening of the clones, which was supposed to give rise to a 11.7 kb wild type 

signal and an additional knock-in 9.8 kb recombined fragment. 

 

 
 

Figure 5.3: Schematic diagram of the knockout vector and the recombination with wild type genomic 

DNA. WT represents the wild type genomic DNA. TW (target vector) is the model of target vector constructed. 

M (mutant genomic DNA after recombination) shows the insertion of GFP in the final exon of Enaptin gene 

after recombination. 

 

5.3 Transfection and screening  

The 5’ and 3’ probes that were designed for identifying the recombined clones were 

first checked on wild type DNA (Figure 5.4). The target vector was linearised with SalI and 

purified. The purified target vector was transfected into R1 ES cells by electroporation and 

selected on G418. Genomic DNAs isolated from 177 clones were digested by HindIII and 

probed with 5’ probe.  

 Clones 43, 83 and 110 gave bands for the wild type and recombinant allele at the 

expected size when probed with both the probes. However, the clones when digested with 

HindIII and probed with 5’ probe gave a band of the size of 7 kb instead of the expected the 

size of 9.8 kb (Figure 5.5). 
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Figure 5.4: Southern blotting on wild type ES cells DNA to confirm the specificity of the probes. DNA 

digested by EcoRI, EcoRV, HindIII and NcoI were probed by both 5’ and 3’ probes. Both the probes give a 

expected band for the wild type DNA. The expected bands with 5’ probe are, EcoRI: 6.8 kb, EcoRV: 26.4 +X, 

HindIII: 11.7 kb and NcoI: 16.4 kb+X and with 3’ probe are 3 kb+X, EcoRV: 26.4+X, HindIII: 2 kb and NcoI: 

16.4 kb+X. The symbol “X” indicates the unknown sequence in the genomic DNA after the 3’ probe as seen in 

figure 5.3. 

 

 
Figure 5.5: Confirmation of recombination by southern blotting. Figures A and B show clones 43, 83 and 

110 digested by HindIII, SpeI and NcoI and probed with 5’ probe. Figure C show the same clones digested by 

NcoI and probed with 3’ probe and the Figure D tables the expected wild type and recombinant bands.
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6 DISCUSSION 

6.1 Enaptin, a novel NUANCE-like protein 

Enaptin belongs to a novel cytolinker family of actin binding proteins, which might 

connect the actin cytoskeleton to the nucleus. Structurally Enaptin resembles a protein 

recently identified in our lab called NUANCE which is also a giant protein of molecular mass 

of approximately 800,000 dalton with an N-terminal actin binding domain and a C-terminal 

transmembrane domain separated by a stretch containing spectrin repeats (Zhen et al., 2002). 

The actin binding domain and transmembrane domain of Enaptin and NUANCE are closely 

related to each other and exhibit a high degree of homology at the amino acid level. Unlike 

many of the actin binding proteins of α-actinin type, the CH1 domain of Enaptin and 

NUANCE is separated from the CH2 domain by a serine rich stretch of 29 amino acids. The 

ABD domain of Enaptin is closely related to the ABDs of dystrophin, utrophin and interaptin. 

Dystrophin is associated with the plasma membrane of cardiac and skeletal muscle 

(sarcolemma) and by interacting with the integral membrane proteins (sarcoglycan, 

dystroglycans, syntrophin, and dystrobrevin complexes) forms a bridge between the actin 

cytoskeleton and the extracellular matrix (Campbell et al., 1989; Rando, 2001). This 

dystrophin-glycoprotein complex is thought to mechanically stabilise the sarcolemmal 

membrane from shear stresses imposed during eccentric muscle contraction (Petrof et al., 

1993; Straub et al., 1997). Utrophin, which is highly homologous to dystrophin, binds 

laterally along actin filaments and can couple costameric actin with sarcolemma when 

overexpressed in dystrophin-deficient muscle (Rybakowa et al., 2002). The transmembrane 

domains of Enaptin and NUANCE are similar to the one found in the Drosophila Klarsicht 

protein, which has been shown to be important for the attachment of MTOC to the nucleus 

and mediate photoreceptor nuclear migration (Patterson et al., 2003). Interaptin; is the first 

protein characterised to be connecting the actin cytoskeleton to the nucleus, which was shown 

to bind actin and localise to perinuclear and golgi-like structures in Dictyostelium discoideum 

(Rivero et al., 1998). The C. elegans orthologue of Enaptin, ANC-1 has been shown to bind 

actin and be involved in the positioning of nuclei and mitochondria in C. elegans. Unlike 

dystrophin and utrophin, which connect the actin cytoskeleton to the extra cellular matrix 

through the plasma membrane and Klarsicht, which connects the microtubule network to the 

nucleus, Enaptin and NUANCE along with interaptin may connect the actin cytoskeleton to 

the nucleus. 
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6.2 Isoform diversity of Enaptin 

 The Enaptin gene is more complex than NUANCE with regards to their isoform 

diversity. Two N-terminal and five C-terminal isoforms of Enaptin have been characterised so 

far, whereas NUANCE is known to have only four isoforms. Enaptin-165 identified in our lab 

is rather a small protein of 1,431 amino acids with a predicted molecular mass of 165 kDa. 

GFP-Enaptin-165 fusion protein transfected in COS7 cells largely localise to the nucleus in 

addition to the weak localisation along the actin stress fibers. CPG2 is another N-terminal 

isoform lacking the ABD domain, one of the candidate plasticity proteins found to be 

expressed in response to light in the adult cerebral cortex and being regulated during 

development (Nedivi et al., 1996). 

Five C-terminal isoforms of Enaptin have been reported, human Nesprin-1α, human 

Nesprin-1β, mouse Syne-1A, Syne-1B and human Myne-1 (Apel et al., 2000; Mislow et al., 

2000; Zhang et al., 2000). All these isoforms lack the N-terminal ABD domain but harbor the 

C-terminal transmembrane domain with different numbers of spectrin repeats. Nesprin was 

identified as one of the two genes encoding members of a new family of type II integral 

membrane proteins in a search for vascular smooth muscle differentiation markers. Human 

Nesprin-1β is a 3,321 amino acids protein with a predicted molecular mass of 380,000 dalton. 

The protein includes 21 spectrin repeats and a C-terminal transmembrane domain and was 

found to localise to the nuclear membrane (Zhang et al., 2001). Recent experiments showed 

that the third spectrin repeat of another small spliced isoform, Nesprin-1α interacted with the 

fifth spectrin repeat thus mediating self-association. The carboxy terminal half binds to lamin 

A and Nesprin-1α dimers associate with emerin, an inner nuclear membrane protein (Mislow 

et al., 2002). 

 Another C-terminal isoform of Enaptin, mouse Syne-1B, was identified as a protein 

which interacts with MuSK (Muscle specific tyrosine kinase), a component of the agrin 

receptor concentrated in the post-synaptic membrane. The agrin receptor is the receptor for 

the extracellular matrix molecule agrin, which mediates the motor neuron induced 

accumulation of acetylcholine receptors (AChR) at the neuromuscular junction and is required 

for all aspects of postsynaptic differentiation including transcriptional specialisation of 

synaptic nuclei (McMahan et al., 1990; Gautam et al., 1996; Burgess et al., 1999; Valenzuela 

et al., 1995). In adult skeletal muscle fibers, levels of Syne-1 are highest in the nuclei that lie 

beneath the postsynaptic membrane at the neuromuscular junction. These nuclei are 

transcriptionally specialised, expressing genes for synaptic components at higher levels than 

extrasynaptic nuclei in the same cytoplasm (Apel et al., 2000). Syne-1 was also identified as a 
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component of the golgi apparatus (Gough et al., 2003) and was shown to be involved in 

cytokinesis (Fan and Beck., 2004). 

A further C-terminal isoform of Enaptin, Myne-1 (Myocyte nuclear envelope) was 

identified as a protein expressed upon early muscle differentiation in multiple intranuclear 

foci concomitant with lamin A/C expression and was found to be interacting with lamin A/C. 

It is a small protein with 1,139 amino acids with a predicted molecular weight of 131 kDa. 

Myne-1 has 7 putative spectrin repeats and a C-terminal transmembrane domain (Mislow et 

al., 2002). The high complexity of Enaptin gene associated with its isoform diversity suggests 

multiple functions for this gene. When the full length Enaptin protein is most likely involved 

in tethering the nucleus to the actin cytoskeleton, the C-terminal isoforms lacking the ABD 

have been implicated to have functions like muscle differentiation and some unknown 

function at the neuro-muscular junction. Though Enaptin was shown to have a role also in 

cytokinesis, the domain architecture of the isoform involved in this function is not known. In 

addition, the presence of Enaptin-165 isoform predominantly in the cell nucleus provides a 

basis to speculate transcriptional, chromosomal condensational and other nuclear related 

functions for this isoform in the nucleus. 

 

6.3 Subcellular localisation of Enaptin 

Cell fractionation studies show the presence of this protein in the nuclear fraction in 

addition to the cytosolic fraction. It may be that there are two pools of 400 kDa alternatively 

spliced Enaptin isoforms, one lacking the most of the middle rod domain but with both the 

ABD and transmembrane domain, which is supported by the presence of a 400 kDa in the 

nuclear fraction. The cytosolic fraction of the protein may be due to another alternatively 

spliced isoform containing the beginning of the gene with a short C-terminus without the 

transmembrane domain. This hypothesis is supported by the presence of the EST clone 

CA425673 which after 3600 amino acids of transcription, prematurely jumps to another exon 

which has a stop codon and 3’ untranslated region giving rise to a protein the size 

approximately of 400 kDa. 

The subcellular localisation of Enaptin was characterised by immunofluorescence 

studies using the polyclonal antibody and two different GFP constructs. Immunofluorescence 

analysis in COS7 cells gave a very bright nuclear staining and in some cells the actin 

cytoskeleton was also stained. C3H/10T1/2 and C2F3 cell lines give a staining of the nuclear 

membrane and also a staining of focal contacts, which are perfectly colocalising with α-
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actinin. The protein stained in the nuclear membrane might be the biggest isoform of Enaptin 

containing the transmembrane domain, which was so far not identified in western blotting 

experiments. Our failure to detect the protein might be due to several reasons such as protein 

degradation during the preparation of the homogenate as large proteins of this magnitude are 

prone to degradation. Alternatively, the giant Enaptin transcript may also be developmentally 

regulated or enriched in cell lines that have not been included in the present study. Poor 

transfer and also low expression of this protein could contribute to the fact that we did not 

identify it in western blots. The staining in the focal contacts could correspond to the 400 kDa 

band observed. It is likely that this 400 kDa isoform does not have a transmembrane domain 

and could therefore have functions in the focal contacts. Two different GFP constructs were 

used for the elucidation of the localisation of the ABD of Enaptin and of the small N-terminal 

isoform Enaptin-165. The GFP tagged ABD colocalises with the actin cytoskeleton in COS7 

cells and in C3H/10T1/2 cells and in focal contacts in C3H/10T1/2 cells as shown by its 

colocalisation with α-actinin. The protein is also very prominently localised in the nucleus in 

both COS7 and C3H10T1/2 cells. The GFP-Enaptin-165 protein was found at the actin 

cytoskeleton in COS7 cells and was also in the nucleus. The nuclear presence of this protein is 

not surprising owing to the fact that the ABD of Enaptin has two nuclear localisation signals 

and Enaptin-165 has three nuclear localisation signals. The localisation of Enaptin in the 

nucleus does not appear to be due to passive diffusion through the nuclear pore as the proteins 

are fairly large. The relevance of the nuclear localisation of these fusion proteins and the 

significance of the predicted NLS in this function can further be explored by site directed 

mutagenesis targeting the amino acids predicted to be required for nuclear localisation. While 

NUANCE is exclusively found in the nucleus and nuclear envelope (Zhen et al., 2002), 

Enaptin is found in two different compartments of the cell, at the nuclear envelope and at 

actin rich structures in the cytosol. It is unclear at present whether this provides evidence of an 

Enaptin isoform lacking the transmembrane domain, as the antibodies used throughout this 

study were raised against this protein's ABD. The nuclear envelope staining however implies 

that the labelled protein harbours the C-terminal transmembrane domain.   

6.4 Tissue distribution of Enaptin 

Polyclonal antibodies raised against the ABD region of Enaptin were used for western 

blotting and immunohistochemistry in order to find out the expression pattern of Enaptin in 

different tissues and also the differential expression of isoforms in various cell lines and 

tissues. Western blot analysis with the polyclonal antibodies identified a 165 kDa band in the 
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mouse brain tissue and a band corresponing to 400 kDa in the COS7, C3H/10T1/2, A431 and 

C2F3 cell lines. The 165 kDa protein in brain could well correspond to the N-terminal small 

isoform Enaptin-165 cloned in our lab from mouse brain cDNA. Enaptin stained the I-band 

surrounding the Z-line in the muscle sarcomere. It is possible that Enaptin is bound to the 

actin, which is normally present in the I-band. The presence of Enaptin in the I-band apposed 

to the Z-line is tempting to speculate that Enaptin probably has a role in the attachment of the 

I-band to the Z-line. Enaptin stained as a double layer around the periphery of the cells 

present in the epidermis of human skin in contrast to the nuclear envelope staining of 

NUANCE. This double layer staining didn’t colocalise with the actin cytoskeleton when 

costained with phalloidin. The absence of NE staining in muscle and skin could be due to the 

fact that these tissues do not express the full length Enaptin but alternatively spliced isoforms 

without the transmembrane domain 

6.5 Sun1 is a novel nuclear envelope protein and binds to Enaptin 

Sun1 is a novel mouse protein with structural features to be residing in nuclear 

membrane with three transmembrane domains in the middle dividing the protein into an N- 

and C-terminal segment suggesting that both N- and C-termini are found in the opposite side 

of the membrane. The C-terminus of Sun1 was found to be homologous with the SUN 

domain. The SUN domain derives its name from the homology with the stretch of amino 

acids homologous between UNC-84, the C. elegans orthologue of Sun1 and Sad1, an S. 

pombe protein found to be associated with spindle pole body. Two nuclear migrations that 

occur during C. elegans development require the function of the unc-84 gene. Unc-84 mutants 

are also defective in the anchoring of nuclei within the hypodermal syncytium and in the 

migrations of the two distal tip cells of the gonad (Malone et al., 1999). The localisation of 

UNC-84 to the nuclear envelope was found to be dependent of Ce-lamin (Lee at al., 2002). 

Sad1 was found to be associated with the spindle pole body in S. pombe and was shown to be 

necessary for spindle formation in the yeast nucleus (Hagan and Yanagida, 1995). C. elegans 

has another SUN domain containing protein SUN1 though its SUN domain is more 

homologous to S. pombe Sad1 than to C. elegans UNC-84. SUN1 has been shown to play a 

role in the attachment of the centrosomes to the nucleus in a complex formation with a hook 

protein called Zyg-12 (Malone et al., 2003). Human and mouse have two proteins containing 

the SUN domain. The SUN domain of C. elegans UNC-84 is more closely related to the 

mammalian Sun1 than that of Sun2. Sun2 was identified as a novel type II transmembrane 

domain protein present in the inner membrane of the nuclear envelope (Hodzic et al., 2004). 
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Sun1 was also identified as one of four proteins, AKAP9, MEA-2, TXI1 and Sun1 interacting 

with translin associated factor X (TRAX) in yeast two hybrid experiments (Bray et al., 2002). 

TRAX was identified as a protein-binding partner of unknown function of TB-RBP in a yeast 

two hybrid screen (Aoki et al., 1997). TB-RBP has been shown to bind translationally 

suppressed mRNAs to microtubules in testis and brain extracts (Han et al., 1995). This is an 

unusual finding, which could implicate additional function for Sun1 in relation to translational 

regulation. 

The C-terminal 30 amino acids of Enaptin after the transmembrane domain are highly 

conserved across many species from C. elegans until humans. This highly conserved region of 

Enaptin binds to the C-terminus of Sun1 both in vivo in yeast two hybrid assay and in vitro in 

GST-pull down experiments. The closely related mammalian protein NUANCE was also 

shown to bind to Sun1 in vitro (Libotte, 2004). The interaction between Sun1 and Enaptin is 

in consistent with the earlier observation that the NE localisation of ANC-1 (C. elegans 

orthologue of Enaptin) was UNC-84 (C. elegans orthologue of mammalian Sun1) dependent 

(Starr and Han, 2002). It would be interesting to know if the mammalian Sun2 also associates 

with Enaptin. However, the SUN domain of Sun1 was not required for this interaction as 

shown in yeast two hybrid experiments. The development of a mild blue colour in X-gal assay 

in yeast cells cotransformed with BD-PNE and AD-SUN could be due to the fact that a few 

amino acids from the SUN domain is also involved in the interaction. The noninvolvement of 

SUN domain of Sun1 in its association with Enaptin and NUANCE suggests additional 

function for this domain. The SUN domain of C. elegans UNC-84 has been shown to bind to 

UNC-83 in vitro and recruit UNC-83 to the nuclear envelope. Mutations in unc-83 disrupt 

nuclear migration in migrating P cells, hyp7 precursors and the intestinal primordium, but 

have no obvious defects in the association of centrosomes with nuclei or the structure of the 

nuclear lamina of migrating nuclei (Starr et al., 2001). However, there are so far no proteins 

homologous to UNC-83 reported in mammals. It is interesting to note that the few amino 

acids after the transmembrane domain of Enaptin and UNC-83 are reasonably homologous 

(Figure 6.1).  

 
Figure 6.1: Alignment between the last 30 amino acids of C. elegans UNC-83 (Q23064, residues 1012-1031) 

and human Enaptin (AAN03486, residues 8720-8749). 

 



 

Discussion__________________________________________________________________ 

89 

These observations can serve to classify the SUN domain containing proteins into two 

groups with regards to their function. C. elegans UNC-84, mammalian Sun1 and may be Sun2 

fall in the first group connecting the actin cytoskeleton to the nucleus through associations 

with Enaptin/NUANCE/ANC-1. The next group of proteins, S. pombe Sad1 and C. elegans 

SUN1 are involved in the attachment of the centrosomes to the nucleus (Figure 6.1). 

 

 

 SUN domain containing proteins 

 

  

 Function 

C. elegans UNC-84, mammalian Sun1 and 

may be Sun2 

 Connect the nuclear envelope to the actin 

cytoskeleton 

S. pombe Sad1 and C. elegans SUN1 Connect the nuclear envelope to the 

centrosomes  
 

Figure 6.2: A table showing a classification of SUN domain containing proteins into two groups. 

 

6.6 The N- and C-termini of Sun1 localise to the nuclear envelope independently 

The full length Sun1 localised to the nuclear envelope when fused to the GFP. 

Polyclonal antibodies raised against the N- and C-termini of Sun1 also stained the nuclear 

envelope. Both N- and C- termini of Sun1 with the transmembrane domains fused to GFP and 

overexpressed in COS7 cells, localised to the nuclear envelope. However in 70 to 80% of the 

cells transfected with GFP-CT+3TM, the nuclear envelope localisation was discontinuous and 

also formed aggregates in the endoplasmic reticulum, which was proved by its colocalisation 

with anti-protein disulufide isomerase antibodies. This localisation of N- and C-termini of 

Sun1 independently to the nuclear envelope is most likely because they might bind to 

different proteins on both the side of the nuclear envelope. The unexpected NE localisation C-

terminus is most likely due to the dimerisation of ∆SUN domain with the endogenous Sun1. 

The C-terminus of Sun1 when expressed without the transmembrane domains failed to 

localise to the nuclear envelope implying the significance of the transmembrane domains in 

the NE localisation. Though these experiments prove that the C-terminus of Sun1 is in the 

perinuclear space, they do not provide any evidence in ascertaining the topology of the N-

terminus. 
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6.7 Sun1 is essential for the NE localisation Enaptin and NUANCE 

The GFP-CT+3TM fusion protein overexpressed cells stained negative for Sun1, NUANCE 

and emerin. This displacement effect is apparently due to a dominant negative effect by this 

overexpressed protein, which displaces the endogenous Sun1 by a mechanism, which is not 

clearly understood. The displacement of NUANCE from the nuclear membrane indicates that 

the binding of Enaptin and NUANCE to Sun1 is crucial for their retention to the nuclear 

envelope. It was also observed that NUANCE was displaced only from the cells where the 

dominant negative fusion protein formed discontinuous pattern around the nucleus and 

aggregates in the ER. The cells where GFP-CT+3TM formed normal rim around the nucleus 

stained positive for NUANCE. The emerin displacement is in consistent with the previous 

finding where emerin was mislocalised in cells where NUANCE was knocked down by RNAi 

and displaced by a dominant negative construct (Libotte, 2004). This interesting finding of 

displacement of emerin from the NE with the knock down of NUANCE suggests a 

scaffolding function for Enaptin and NUANCE in the nuclear envelope in addition to 

tethering the nuclei to the actin cytoskeleton. 

 

6.8 Sun1 dimerises in vivo 

∆SUN domain of Sun1 dimerises in vivo in yeast two hybrid experiments. This was not 

unexpected of a domain with two coiled coil domains since these are known dimerisation 

domains. The ∆SUN domain of Sun1 with the three transmembrane domains fused to GFP 

and expressed in COS7 cells localised to the nuclear envelope. It is interesting to speculate 

that the NE retention of GFP-∆SUN+3TM is possibly due to its dimerisation with the 

endogenous Sun1 indicating that the SUN domain of Sun1 is not required for the NE 

localisation Sun1. This question can further be addressed by a GFP fusion protein containing 

the transmembrane domains and the SUN domain but without the ∆SUN domain. GFP-∆SUN 

fusion protein failed to localise to the nuclear envelope apparently due to the absence of the 

transmembrane domains. This data exemplifies a typical NE protein, which requires two 

important features for its NE localisation, transmembrane domains and NE retention signal 

and the signal in this case being the dimerisation. This observed dimerisation is consistent 

with genetic evidences, which hypothesised a possible dimerisation of C. elegans UNC-84 

(Malone et al., 1999). 

 

 

 



 

Discussion__________________________________________________________________ 

91 

6.9 Sun1 is an element of inner nuclear envelope and its localisation is lamin A/C 

dependent 

Digitonin experimints prove that Sun1 is present in the inner membrane of the nuclear 

envelope like lamin A/C. This proves that the N-terminus of Sun1 is facing the nucleoplasm. 

The mislocalisation of Sun1 in lamin A/C knockout fibroblasts indicates that the NE 

localisation of Sun1 is lamin A/C dependent. This finding is in consistent with the results, 

which postulated an association between UNC-84 and lamins in C. elegans (Lee et al., 2002). 

However, the inability to detect a direct interaction between the N-terminus of Sun1 and 

lamin A/C in yeast two hybrid experiments could be due to several reasons. This can very 

well be a “false negative” result as yeast two hybrid experiments produce a considerable 

amount of these types of results due to various reasons. On the other hand, the interaction 

between lamin A/C and Sun1 can be indirect through some uncharacterised protein. The 

presence of a Zn-H2 domain in the N-terminus of Sun1 signals that it also interacts with 

DNA. However, this is very unlikely since Sun1 localisation has already been shown to be 

lamin A/C dependent. The N-terminus of Sun1 is most likely involved in a direct or indirect 

association with lamin A/C, which is yet to be characterised by additional binding assays. 

6.10 Enaptin, NUANCE, Sun1 and laminopathies 

Laminopathies represent a group of human hereditary diseases that arise through defects in 

genes that encode nuclear lamina and lamin-associated proteins like emerin. Emery-Dreifuss 

muscular dystrophy (EDMD) is caused by mutations in the gene emerin (Bione et al., 1994). 

Mutations in the lamin A/C has been found to cause autosomal dominant Emery-Dreifuss 

muscular dystrophy (Bonne et al., 1999). Missense mutations in the rod domain of the lamin 

A/C cause dilated cardiomyopathy and conduction-system disease (Fatkin et al., 1999). The 

LMNA gene, which encodes the lamin A/C protein has been found to be mutated in partial 

lipodystrophy (Schackleton et al., 2000). Impaired A-type-lamin function has recently been 

linked to an autosomal-recessive axonal neuropathy that is also known as Charcot-Marie-

Tooth disorder type 2 (CMT2) (De Sandre-Giovannoli et al., 2002).  

One of the C-terminal isoforms of Enaptin, Nesprin 1α  has been found to associate directly 

with emerin and lamin A in vitro (Mislow et al., 2002). Another small C-terminal isoform of 

Enaptin, Myne-1 was found to colocalise with lamin A/C in mature muscle cells (Mislow et 

al., 2002). Enaptin and emerin showed aberrant localisation in the endoplasmic reticulum in 

type 1B muscular dystrophy patients (LGMD1B) carrying nonsense Y259X nonsense 

heterozygous or homozygous mutation in lamin A/C gene (Muchir et al., 2003). The possible 
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involvement of Enaptin in muscular dystrophy will well be addressed in the future by analysis 

of patient material and by the transgenic mouse deficient in Enaptin gene or the mouse 

knockout targeting the transmembrane domain which are already underway in our lab. 

 

6.11 A model depicting the various interactions and findings  

  
Figure 6.3: A simple model depicting the various interactions characterised in the study. ONM indicates the 

outer nuclear membrane and INM indicates the inner nuclear membrane. 

   

    : Sun1 protein 

    : SUN domain 

    : ∆SUN domain 

    : NT of Sun1 

    : Transmembrane domain 

    : A type lamins 

    : dimerisation 
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6.12 A hypothetical model depicting the involvement of Enaptin, NUANCE and Sun1 in 

nuclear positioning and migration 

The earlier finding that ∆SUN also binds to Enaptin and NUANCE in addition to dimerisation 

needs a clarification of the exact region of this domain, which is involved in these two 

different types of interactions. Based on the facts and findings from the experiments, it is 

appropriate to suggest that the dimerisation region of Sun1 is between amino acids 432-632 

and Enaptin and NUANCE binding region is probably between 632 and 750 amino acids. 

 
Figure 6.4: A hypothetical model based on the molecular interactions known so far to demonstrate a 

possible switch between nuclear migration and anchorage. ONM indicates the outer nuclear membrane, 

INM, the inner nuclear membrane and ER, endoplasmic reticulum. 
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It is already known that C. elegans UNC-83 and UNC-84 are important for proper nuclear 

migration and the SUN domain of UNC-84 binds to UNC-83 (Malone et al., 1999; Starr et al., 

2001). The current study in the lab establishes two different interactions Sun1 is involved, 

dimerisation and direct binding with Enaptin and NUANCE. The C. elegans orthologue of 

Enaptin, ANC-1, also has been shown to be involved in nuclear positioning (Starr and Han, 

2002). The fact that these molecules are involved in nuclear migration and positioning and the 

various interactions among them with some imagination offer enough evidence to speculate a 

model by which all these molecules can take part in the nuclear anchorage and migration 

processes. In a normal interphase nucleus, two molecules of Sun1 are located very closely to 

each other in the inner nuclear envelope by the dimerisation of ∆SUN domain. Two 

molecules of UNC-83 or the mammalian orthologue bind to the SUN domain of Sun1 and this 

binding, which pulls the SUN domain away from the ∆SUN domain gives space for the 

perinuclear region of Enaptin to bind to the ∆SUN domain making an indirect contact 

between the actin cytoskeleton and the nucleus, which in effect keeps the nucleus positioned 

in a place. On the other hand, when the nucleus has to migrate, the UNC-83 molecules are 

released from the SUN domain by some complex molecular interactions and the SUN domain 

closes the gap between the two Sun1 molecules disrupting the Enaptin/NUANCE from ∆SUN 

domain, which in turn releases the nucleus from the actin cytoskeleton and the nucleus 

migrates. This theory is entirely hypothetical and many more additional experiments have to 

be done to substantiate this. Though the interaction between the SUN domain of UNC-84 and 

UNC-83 is already known, the exact region of UNC-83 in the participation of these 

interactions is not yet experimentally proved. It was only logical though entirely hypothetical 

to assume it is the region after the transmembrane domain, which is involved in the binding. 

 

6.13 Future perspectives 

The discovery that Enaptin and NUANCE bind to and also need Sun1 for its NE localisation 

paves the way for more interesting experiments in the lab. Though our experiments unravelled 

many exciting characteristics of this nuclear envelope protein Sun1, there are still fairly a 

large amount of unanswered questions. The role of the conserved domain SUN and its 

interaction with other proteins might shed more light in understanding the mechanisms by 

which these proteins supposedly carry out the processes of nuclear migration and anchorage. 

It would also be interesting to know if the other mouse SUN domain containing protein, Sun2 

also interact with Enaptin and NUANCE. In addition, the knockout mouse expressing Enaptin 
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without the transmembrane domain would give additional insight into understanding the 

complex function of these proteins.  
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SUMMARY 

The nucleus is a highly dynamic organelle showing migratory events during 

various developmental and cellular processes. These are made possible by its 

association with the microtubule network and, as shown recently, with the 

microfilament network. We have characterised Enaptin, a giant protein located at the 

nuclear membrane, which may provide a link to the actin cytoskeleton. Enaptin has an 

actin binding domain at the N-terminus with which it binds to the actin cytoskeleton 

and a transmembrane domain at the C-terminus, which tethers it to the nuclear 

envelope (NE). Western blotting experiments with antibodies specific to the ABD of 

Enaptin detect a 400 kDa protein in various cell lines and a 165 kDa protein in mouse 

brain tissue.  

We concentrated on the properties of the very C-terminus composed of the last 

30 amino acids after the transmembrane domain of Enaptin. A similar stretch of 

amino acids is found in the related NUANCE and is also highly conserved in proteins 

of the NE across different species from C. elegans to humans. We show that the 

conserved amino acids in Enaptin and NUANCE bind to the C-terminus of Sun1 in 

yeast two hybrid and GST pull down experiments. Sun1 is a novel NE protein with 

three transmembrane domains in the middle. The C-terminal end of Sun1 is 

homologous to the SUN domain, which derives its name from its homology between 

Sad1 (S. pombe protein associated with the spindle pole body) (Iain and Mitsuhiro, 

1995) and UNC-84 (C. elegans orthologue of Sun1) (Malone et al., 1999). The SUN 

domain of Sun1 is however not engaged in the binding of Enaptin. Instead, the 

interaction site is located in a region neighboring the SUN domain.  

A dominant negative version of Sun1 (GFP-CT+3TM), which displaces 

endogenous Sun1 from the NE also displaces NUANCE and emerin, a protein located 

in the inner nuclear membrane, underlining the fact that NUANCE localisation to the 

NE is also Sun1 dependent. Further experiments were directed at the identification of 

the site of location of Sun1 employing expression of GFP-tagged Sun1 as well as 

antibodies generated against the N- and C-terminus of Sun1. Immunofluorescence 

studies performed after digitonin permeabilisation finally located the protein at the 

inner nuclear membrane. In further experiments we analysed the requirements for the 

nuclear envelope localisation of Sun1. The results point to interactions with different 

proteins of the NE and also to the importance of the coiled coil domain.  
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ZUSAMMENFASSUNG 
Der Zellkern ist beweglich innerhalb einer Zelle und Kernbewegungsprozesse sind 

essentielle Ereignisse sowohl in Entwicklungsprozssen als auch im normalen Leben 

einer Zelle. Diese Beweglichkeit wird ermöglicht durch das Mikrotubuli- und, wie 

neuere Ergebnisse zeigen, auch durch das Aktin-Netzwerk. Wir haben mit Enaptin ein 

neuartiges Protein beschrieben, das eine Verbindung zwischen Zellkern und 

Aktinnetzwerk herstellen kann. Enaptin, ein Protein mit einem Molekulargewicht von 

bis zu 1.000.000 D, besitzt eine Aktinbindedomäne, einen langen helikalen Bereich 

und eine C-terminale Transmembrandomäne, mit der es in der Kernmembran 

verankert ist. In Westernblotexperimenten konnte ein 400.000 D Protein in Zellinien 

nachgewiesen werden und ein 165.000 D Protein in Maushirn. 

Unsere weiteren Untersuchungen haben sich auf Bedeutung der C-terminalen 

30 Aminosäuren für die Lokalisation konzentriert, die der Transmembrandomäne 

folgen. Ein ähnlicher Bereich ist im verwandten Kernmembranprotein NUANCE 

vorhanden sowie in weiteren Proteinen der Kernmembran, die in verschiedenen 

Organismen identifiziert wurden. Diese Aminosäuren sind für die Bindung an den C-

Terminus des Sun1-Proteins verantwortlich. Sun1 ist ein neuartiges 

Kernmembranprotein, das drei in der Mitte des Proteins liegende 

Transmembrandomänen besitzt. Der C-Terminus von Sun1 ist homolog zur SUN-

Domäne, die ihren Namen auf Grund der Homologie zu Sad1 (S. pombe protein 

associated with the spindle pole body, Iain and Mitsuhiro, 1995) und UNC-84 (C. 

elegans orthologue of Sun1, Malone et al., 1999) erhalten hat. Die SUN-Domäne ist 

jedoch nicht in die Bindung von Enaptin involviert, sondern eine benachbarte Region. 

In weiteren Untersuchungen wurde mit Hilfe von GFP-Fusionsproteinen und 

mit Immunfluoreszenzanalysen die Lokalisation von Sun1 in der Kernmembran 

analysiert. Die Ergebnisse verweisen auf die Bedeutung des helikalen Bereichs und 

auf die Assoziation mit weiteren Proteinen und deuten auf komplexe Interaktionen in 

derKernmembran.
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