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Zusammenfassung

Membranen können durch das Modell einer mathematischen Fläche beschrieben wer-
den, in dem die Krümmungseigenschaften der Membran durch die drei Membrankon-
stanten ’spontane Krümmung’, ’Biegesteifigkeit’ und ’Gauß’sches Biegemodul’ cha-
rakterisiert werden. Experimente zeigen, daß sich durch die Zugabe von Polymeren
das Verhalten von Membransystemen deutlich verändern kann. Der kürzlich entdeck-
te Polymer-Boosting-Effekt in Öl-Wasser-Amphiphil-Mikroemulsionen ist ein Beispiel,
bei dem die Daten aus Streuexperimenten mit Hilfe des Membranmodells erfolgreich
beschrieben werden konnten. Der Einfluß des Polymers wurde dabei in Form von effek-
tiven Membrankonstanten berücksichtigt.

Das Konzept der effektiven Membrankonstanten wird eingeführt und die Effekte
verschiedener Arten von Polymerzugaben zu Membransystemen werden anhand der
Literatur diskutiert. Unter Verwendung des Modells frei verbundener Ketten für die
Polymere werden mit Monte-Carlo-Simulationen die Effekte von verankerten Polymeren
auf die Membrankonstanten für verschiedene Systeme untersucht.

Es wird eine Simulationsmethode beschrieben, mit deren Hilfe die Effekte an der
Membran verankerter Polymere mit hoher Genauigkeit im Limes kleiner Membran-
krümmungen berechnet werden können. Die Einflüsse von Selbstvermeidung und ver-
schiedenen Polymerarchitekturen werden diskutiert. Es zeigt sich, daß der Effekt der
Selbstvermeidung bei linearen Ketten klein ist. Hingegen ergeben die Simulationen, daß
sich mit Sternpolymeren die Effizienz des Polymers steigern läßt. Der Polymereffekt auf
die Biegesteifigkeit und die spontane Krümmung pro Arm nimmt mit der Funktiona-
lität (d. h. der Anzahl der Arme) des Sternpolymers zu; der Effekt auf das Gauß’sche
Biegemodul ist unabhängig von der Funktionalität. Skalenargumente bestätigen das in
den Simulationen gefundene Verhalten für Sternpolymere. Der Effekt von Ringpolyme-
ren wird untersucht und der Einfluß von Knoten auf das Verhalten der Ringpolymer-
Systeme wird diskutiert.

Es wird ein Algorithmus vorgestellt, mit dessen Hilfe sich, ebenfalls im Limes kleiner
Krümmungen, der Einfluß an der Membran adsorbierter Polymere auf die Membran-
konstanten simulieren läßt.

Für lineare Polymere in der lamellaren Phase wird im Limes kleiner Membran-
krümmungen der Einfluß der eingeschränkten Geometrie untersucht. Die Simulationen
zeigen, daß sich der Polymereffekt an der Membran verankerter Polymere auf die Mem-
brankonstanten bei kleinem Membranenabstand qualitativ ändert. Während für große
lamellare Abstände das Polymer die Biegesteifigkeit erhöht und den Gauß’schen Biege-
modul erniedrigt, werden ab einem Lamellenabstand der ungefähr dem Trägheitsradius
des Polymers entspricht, Effekte umgekehrten Vorzeichens beobachtet.

Unter Verwendung eines Modells für verankerte Polymere an einer fluktuierenden

Membran wird schließlich der Polymereffekt auf das gesamte Fluktuationsspektrum

der Membran simuliert. Das Ergebnis ist eine universelle Skalenfunktion mit einem

Maximum bei großen Fluktuationswellenlängen.



Abstract

Membranes can be described by a model of mathematical surfaces where the
membrane’s properties are characterised by the three membrane curvature elastic
constants ’spontaneous curvature’, ’bending rigidity’ and ’saddle-splay modulus’.
Experiments show that the addition of polymers can change the properties of
a membrane system considerably. One example is the polymer-boosting effect
which has been discovered recently for oil-water-amphiphile mixtures. The scat-
tering data has been described successfully by the membrane model. The effect
of the polymers has been taken into account by effective membrane curvature
elastic constants.

The concept of effective curvature elastic constants will be introduced, and
the effects of different kinds of polymer additions to membrane systems discussed
in the literature will be reviewed. Using the model of freely-jointed chains for
the polymers, the effects of polymers anchored to membranes will be studied for
several systems by means of Monte Carlo simulations.

A simulation technique is described which allows to calculate the polymer
effect with high accuracy in the limit of small membrane curvatures. The effects
of self-avoidance and of different polymer architectures are investigated. The
self-avoidance effect for linear polymer chains is found to be small. However, the
simulations show that star polymers increase the efficiency of the polymer. The
effects on the bending rigidity and the spontaneous curvature per arm increase
with the functionality (i. e. the number of arms) of the star, whereas the effect
on the saddle-splay modulus does not depend on the functionality. Scaling ar-
guments confirm the behaviour observed in the simulations. The properties of
anchored ring polymers are studied and the effects of knots are discussed.

An algorithm is presented which can be employed to calculate the effect of
adsorbed polymers on the curvature elastic constants in the limit of small curva-
tures.

For linear chains in the lamellar phase, the effect of the confined geometry is
investigated, again in the limit of small membrane curvatures. The simulations
show that for polymers anchored to membranes, at a small lamellar spacing
the effect on the membrane curvature elastic constants changes qualitatively.
While for large interlayer spacings the polymer increases the bending rigidity
and decreases the saddle-splay modulus, effects of opposite sign are observed for
lamellar spacings smaller than the radius of gyration of the free chain.

With a model for polymers anchored to a fluctuating membrane, the polymer
effect is simulated for the whole fluctuation spectrum of the membrane. We
obtain a universal scaling function with a maximum at large fluctuation lengths.
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Chapter 1

Introduction

Soft matter physics deals with the behaviour of systems which are characterised
by a mesoscopic length scale, between atomic and macroscopic size. These sys-
tems are referred to as ’soft’ because typically small changes in energies (e. g. ad-
hesion energies) have huge effects on their behaviour. From a theoretical point of
view, soft matter physics is a part of classical statistical mechanics. In my thesis, I
have investigated properties of polymer-membrane systems by means of computer
simulations. Theoretical models for these compound systems have been studied
only recently, despite research for systems of each kind is well established. The
properties of systems containing only polymers have already been investigated
thoroughly and also the properties of pure membrane systems are well known.
My work focuses on the description of the effect of polymers anchored to mem-
branes in the so-called mushroom regime by effective membrane curvature elastic
constants. The values of the effective constants can be determined using simple
polymer-membrane models and they can be employed to study more complex
systems within the framework of pure membrane models.

The shapes and fluctuations of membranes are controlled by their curvature
elasticity, governed by the membrane Hamiltonian

H =

∫

dS
[κ

2
(c1 + c2 − c0)

2 + κ̄c1c2

]

(1.1)

where the integral is performed over the whole membrane area and c1 and c2 are
the principal curvatures at each point of the membrane. The Hamiltonian will be
discussed in more detail in chapter 3, but as it defines the membrane’s curvature
elastic constants, it needs to be introduced as early as possible. κ denotes the
bending rigidity, c0 the spontaneous curvature and κ̄ the Gaussian saddle-splay
modulus.

Polymers can be added to a membrane system as free chains in solution or as
chains which are anchored to the membrane, compare figure 1.1. For anchored
polymers, different concentration regimes have to be distinguished. In the mush-
room regime, polymers do not interact mutually. The polymer chain is not further
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Introduction

(b)

(c) (d)

(a)

Figure 1.1: A polymer-membrane system for different kinds polymer additions:
(a) free chains in solutions, (b) anchored polymers in the mushroom regime, (c)
anchored chains at the overlap concentration, (d) polymers in brush regime

constrained and forms a coil (with a monomer density looking somewhat similar
to a mushroom). At the overlap concentration, interchain interaction comes into
play. The overlap concentration is defined by the distance of roughly the average
radius of the polymer coil between the anchor points. In the brush regime, the
polymer chains are closely packed, so that they have to stretch away from the
membrane. Polymers interact with the membrane either by steric repulsion be-
cause of their entropy loss due to confinement, or they influence the membrane’s
curvature elastic constants. E. g. for asymmetric polymer addition, they affect
the spontaneous curvature c0, i. e. they cause the membrane to bend. In any
case, polymers change the bending elasticities κ and κ̄. In the brush regime, it
is most easy to illustrate the effects on the membrane constants. If polymers are
anchored only to one side of the membrane, the membrane will bend in order
that the chains acquire more space and gain entropy. In case the membrane is
decorated with chains on both sides, the polymers will stiffen the membrane. For
a curved membrane shape, the inner chains loose entropy by being packed to-
gether more tightly. This entropy cost is larger than the entropy gain of the outer
chains by their extra space. Thus fluctuations of the membrane are suppressed
and κ increases on polymer addition.

In chapter 2, the thesis will be motivated by the discussion of several types
of membrane systems with added polymers. The reader will get familiar with
the polymer boosting effect, with polymer-decorated vesicles and with polymer-
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containing lamellar membrane phases. The discussion will be based mainly on
experiments.

An overview over recent achievements in theoretical studies for the mushroom
regime will be presented in chapter 3. After a short introduction to the theoret-
ical description of membranes, results of analytical calculations will be reported
as well as results obtained by computer simulations. This chapter does not in-
tend to give an introduction to the methodology: chapters 2 and 3 provide the
background knowledge on the phenomena observed in compound systems.1

Computer simulations are a powerful tool in soft matter physics as the sys-
tem’s behaviour is mainly driven by entropy. The models employed are formu-
lated on a coarse-grained level and can be used to describe a large variety of
experimental systems. Universal scaling laws even allow to access several system
sizes with the results of one calculation. I will use different techniques for my
investigations, but some aspects of modeling and simulation are relevant for all
cases and will be discussed in chapter 4. All simulations in this work have been
done with the Monte Carlo method. Using Monte Carlo, considerable effort has
to be spent to choose an efficient algorithm, because the same code needs to be
executed many times. Important qualities of each program are speed (to obtain
a proper statistics in reasonable time) and a good random number generator.
The question of the execution time of the algorithm is especially crucial for the
self-avoidance check of polymers, thus an adequate technique for that task will
be described in this chapter.

A simulation and evaluation method has been developed to investigate the
influences of polymer self-avoidance and different polymer architectures. The
polymers exhibit an excluded-volume interaction with the membrane. Metropolis
Monte Carlo and the pivot algorithm have been applied to generate ensembles
of system conformations. Information on bending rigidity, saddle splay modulus
and spontaneous curvature can be extracted from the simulation data. Details
of the method as well as results are presented in chapter 5. The influence of self-
avoidance for linear chains has been studied by the simulation of chains with up to
200 bonds. A model-specific correction-to-scaling relation has been established.
The corrections describe the data for finite system sizes and allow to extrapolate
to the universal values that correspond to an infinite number of bonds. The
method is capable to deal with polymers of all architectures provided that they
are anchored to the membrane at a single point. I will present and discuss data
for self-avoiding star polymers anchored at their center and for ring polymers
with and without self-avoidance.

Systems with an additional attractive membrane-polymer interaction require
a different sampling algorithm compared to those where interaction is only due
to excluded volume. The idea of evaluation is basically the same, but Metropolis

1If an introduction to the concept of membrane curvature constants is needed, the reader
should start with chapter 3.
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Introduction

Monte Carlo is no longer the method of choice. A simulation technique that
employs the Pruned Enriched Rosenbluth Method (PERM) will be introduced in
chapter 6. As every growth algorithm, PERM delivers values for the partition
function of a system which will be needed for further evaluation. The simulations
of chains anchored to walls of different curvatures can then provide the data
necessary to calculate the polymer effect.

Various experiments are well described by the polymer’s influence on mem-
brane fluctuations of a length scale which is large compared to the size of the
chains. The studies of self-avoidance, of different architectures and of the poly-
mer adsorption effects only consider this limit. Apart from theoretical interest,
for some experimental systems the effects on fluctuations of all length scales are
relevant. Simulations of linear chains attached to fluctuating membranes that
show the polymer’s influence on the fluctuation spectrum are presented in chap-
ter 7.

An intriguing question is the effect of polymers in confined geometries, for ex-
ample in lamellar membrane stacks. The most naive expectation would be that
the absolute value of the polymer effect increases significantly due to the con-
finement, as the chains will interact with the membrane much more frequently.
While this hypothesis seems to be trivial, the consideration of limiting cases re-
veals a crucial point: Without any additional spacial constraint, the effect of free
and anchored polymers on the membrane’s bending rigidity and the saddle splay
modulus have different signs. A tight compression of the chains in a lamellar
phase implies that the anchoring effect of the polymer vanishes, because the an-
chor no longer affects the polymer conformations. In this case, free and anchored
polymers should induce exactly the same changes on the curvature elastic con-
stants. Thus for one of both systems, strong confinement results in a qualitative
change of the influence on the membrane fluctuations! Simulation results will be
presented in chapter 8.

Finally, the conclusions in chapter 9 summarise the results.

Unless otherwise noted, all values for κ, κ̄ in this thesis are in units of kBT .
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Chapter 2

Experimental background

The flexibility of polymer chains has been discovered in the 1930s [1–6]: Ex-
periments had been done to determine the change in entropy when polymers are
solubilised, and to measure the viscosity of polymer solutions. In some solid sam-
ples birefringence had been observed if stress had been applied to the materials.
Theories that tried to explain the observed effects by rod-like molecules failed.
The experimental data led to the conclusion that the polymers had to be flexible
molecules in these systems. More recently, several experiments have been done
for polymer-membrane systems and will be discussed in the following sections to
motivate my theoretical studies.

2.1 Microemulsions

It is common knowledge that under normal conditions oil and water do not mix.
Addition of amphiphiles to the system can induce a mixing process. Amphiphiles
are molecules that consist of a hydrophobic and a hydrophilic part. Their hy-
drophilic part likes to be in contact with water whereas their hydrophobic part
prefers to be in contact with oil. Thus amphiphiles assemble inbetween both
liquids. The properties of the amphiphilic interface are different from those of an
interface where oil and water are in direct contact; in particular the amphiphiles
lead to a vanishing surface tension.1 For this reason, amphiphiles are often de-
noted as ’surface active components’ or ’surfactants’ in these systems. The effect
of vanishing surface tension is used in cleaning processes2 (figure 2.1) , but can
also be employed to mix larger volumes of oil and water or other polar and non-
polar liquids (figure 2.2). Under appropriate conditions, addition of amphiphiles
will lead to a so-called microemulsion phase.

Recent experiments led to the discovery of the ’polymer boosting effect’,

1Because of the vanishing surface tension, in my terminology the interface formed by the
amphiphiles is a membrane, compare [7].

2In cleaning processes, the amphiphiles are referred to as detergents.
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Experimental background

Figure 2.1: Addition of amphiphiles to an oily fiber in water reduces the surface
tension between oil and water. This leads to the formation of oil droplets and the
oil will be removed from the fiber [8]. The figure shows the system at different
times after the addition of the amphiphiles.
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2.1 Microemulsions

Figure 2.2: Oil and water stay separated under normal conditions (left column).
After addition of about 6.5% (per volume) of amphiphile, a certain amount of
oil and water is found to be in a microemulsion phase (second column). Further
addition of amphiphilic block copolymers (0.5% in the third and 0.9% in the
fourth column) dramatically enlarges the microemulsion phase [20].

described in several PhD theses [9–11] and a number of accompanying papers
[12–19]: The addition of small amounts of amphiphilic diblock copolymers to an
oil-water microemulsion can result in a huge enhancement of the volumes of oil
and water which are found in the microemulsion phase.3 The interfacial area is
fixed by the amount of amphiphiles, thus the structural size needs to grow in
order to mix larger volumes of both liquids. In the system shown in figure 2.2,
the structural size becomes of the order of the wavelength of visible light, which
can be recognised because the microemulsion appeares more opaque. The struc-
ture of the microemulsion can be revealed on a nanometer scale by freeze-fracture
electron microscopy [21] (see figure 2.3). The 3D picture that emerges from this
is that oil and water form a bicontinuous sponge-like structure (figure 2.4): From
each point in the oil, every other point in the oil can be reached without leaving
the oil; the same applies for the water. It has been shown by neutron scattering

3This implies that the microemulsion phase is shifted in phase diagrams to lower volume
fractions of amphiphiles. For a more detailed discussion of this aspect, please refer to the
literature.
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Experimental background

Figure 2.3: A freeze-fracture electron micrograph of the microemulsion phase of
an oil-water-amphiphile system [22].
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2.1 Microemulsions

Figure 2.4: The amphiphile separates oil and water within the bicontinuous mi-
croemulsion. Experimentally, the polymer is found to assemble at the interface
in mushroom conformation [23].
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Experimental background

that the polymers assemble — like the amphiphiles — at the oil-water interface.
Neutron and light scattering experiments together with modern theories have
provided a consistent description of the system’s behaviour.

Before continuing the discussion with details of the polymer-membrane sys-
tem, I will give a short overview on microemulsion research in this paragraph.
The theoretical interest in emulsions of two liquids that are formed by addition
of an amphiphilic component is rather old [24] and quantitative descriptions of
emulsion structure and phase diagrams can be found in articles written in the
1940s [25, 26]. Systematic studies of the solubilisation of different hydrocarbons
in aqueous solutions using several kinds of nonionic surfactants have already been
reported in the 1960s [27]. The occurrence of bicontinuous structures in fluid-fluid
mixtures has first been proposed in the 1970s [28]. Nevertheless, the evaluation
of microemulsion scattering data continued to be based on droplet structures for
some years, see e.g. Ref. [29]. Only in 1987 Teubner and Strey published a model
to interpret the scattering intensity distribution of bicontinuous microemulsions
which has been since then applied to investigate different systems [30–34]. In this
model, the scattering intensity function is fitted to the functional form

I (q) ∼ 1

a2 + c1 q2 + c2 q4
+ b (2.1)

with the parameters a2, c1, c2 and b.4 By Fourier transformation, the correlation
function is obtained which contains the two length scales

ξ =

[

1

2

(

a2

c2

)1/2

+
c1

4c2

]−1/2

(2.2)

and

d = 2π

[

1

2

(

a2

c2

)1/2

− c1

4c2

]−1/2

(2.3)

where d characterises the domain size while ξ is the correlation length. Roughly at
the same time when the first experiments based on the Teubner-Strey model have
been done, an active discussion of the scattering properties of bicontinuous mi-
croemulsions on a theoretical level took place, which addressed static [35–37] and
dynamic [38–41] aspects. Some of the publications of experiments with bicontin-
uous and droplet microemulsions discuss the elastic constants of the amphiphilic
film [34,42–47].

The polymer-membrane system has been treated theoretically on the basis of
a pure membrane system, taking into account for the polymers by effective mem-
brane curvature elastic constants. Calculations employing a Gaussian random

4The fit parameter b represents an (mainly) incoherent background contribution which can
be determined from the scattering intensity at large q values.
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2.1 Microemulsions

field model give an expression for the dimensionless product

kξ =
64

5
√

3

κ

kBT
Θ

(

κ

kBT
, δm

S

V

)

(2.4)

with the characteristic wave vector k = 2π/d and the algebraic function Θ (x, y)
which approaches unity for large κ. The parameter S denotes the membrane area,
V the sample volume and δm the membrane thickness. Membrane fluctuations
at smaller length scales lead to a renormalisation of the bending rigidity on the
length scale ` by

κ̃R (`) = κ − α
kBT

4π
ln

(

`

δs

)

(2.5)

where δs is the size of the surfactant molecules. The value of α is still under
debate, but taken to equal 3 [7, 48–50]. Combining Eqs. (2.4) and (2.5) and
assuming κ to be large enough to set Θ = 1 provides an expression to extract the
bending rigidity κ from the experimental data5:

kξ =
64

5
√

3

κR (φs)

kBT
(2.6)

At the three-phase coexistence, the Gaussian saddle splay modulus κ̄ can be
obtained by exploiting equation

ln

(

φs

φ∗

)

= −4π

ᾱ

κ̄

kBT
, (2.7)

where φ∗ is a constant of order unity 6 and ᾱ = −10/3 7. Details of the derivation
of these equations can be found in Ref. [16].

The polymers have been shown experimentally not to interact with each other,
thus their effects on κ and κ̄ are proportional to the density σ of chains per
membrane area. The polymer effects will certainly also depend on the polymer
length which can be characterised by the mean squared end-to-end distances,
that the hydrophobic (R2

o) and the hydrophilic (R2
w) parts of the polymer would

have as a free chains in oil respectively water. The total effect has been found to
be proportional to R2

o + R2
w.

5φs denotes the surfactant volume fraction and is proportional to 1/`.
6The constant φ∗ is determined in order to fulfill

κR (σ) =
(

κmem − α

ᾱ
κ̄mem

)

+
kBT

12

[

1 +
π

2
+ 2

α

ᾱ

]

σ
(

R2

w + R2

o

)

(2.8)

where σ, Ro and Rw are determined by the amount of polymer and the polymer chain length;
parameters with subscript ’mem’ denote bare membrane values, compare chapter 3.

7This value is under debate, same as α [7, 48–50]
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Experimental background

The theoretical picture describes the experimental results very well. The
change of the bending rigidity has been determined experimentally of a system
of water, n-decane, C10E4 and PEPx-PEOy 8 to be

∆κexp = 0.334 σ
(

R2
w + R2

o

)

(2.9)

in Ref. [16]. The corresponding value of the saddle splay modulus is reported to
be

∆κ̄exp = 0.408 [±0.014] σ
(

R2
w + R2

o

)

(2.10)

in Ref. [13]. Both values exceed those found in analytical calculations for ideal
chains (∆κanalytical = (1 + π/2) /12 = 0.214 and ∆κ̄analytical = 1/6 = 0.167) by a
factor between 1.5 to 2 (compare chapter 3). Note that the evaluation of κ̄ has
been published before the evaluation of κ. In retrospect, the evaluation of κ̄ seems
to be inconsistent: In Eq. (2.8) the theoretical value for the polymer effect of ideal
chains has been used to describe the behaviour of κ. As there is a discrepancy
found in this value between the experimental data and the analytical theory, it
should be more reasonable to use the experimentally determined κ instead of the
theoretical value.

For completeness I want to refer the reader to two other recent publications
and references therein: The effects of polymers adsorbing at the interfacial layer
in microemulsions are discussed in Ref. [51] and the effects of a copolymer with
a hydrophobic backbone and hydrophilic side chains added to an oil-continuous
microemulsion were published in [52].

2.2 Vesicles

Polymer-dressed vesicles constitute an especially interesting object to study, be-
cause the system’s architecture is close to the one of biological cells [53].

Of particular interest for my thesis is the micropipet aspiration method for
vesicles which allows to measure the effect of anchored polymers on the bending
rigidity [54–56] (see figure 2.5). The vesicle diameter in the pioneering experiment
by Evans and Rawicz [54] has been ∼ 20 µm, the glass caliber ∼ 8 µm. Suction
pressures between ∼ 10−6 atm and ∼ 10−2 atm have been applied which led to
lateral tensions in the membrane between ∼ 10−3 mN/m and ∼ 10 mN/m. The
data which is needed to determine the bending rigidity are the suction pressure
∆P , the pipet radius Rp, the mean radius of the exterior vesicle segment Ro and
the projection length ∆L inside the pipet. The evaluation takes into account for
an (apparent or real) increase in membrane area, which is assumed to be due to
damping of fluctuations at low surface tensions and to direct stretching at high
surface tensions. The bending rigidity κ (and the bare area dilution module Kα)

8polyethylene-propylene/polyethyleneoxid with x PEP and y PEO units
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2.2 Vesicles

Figure 2.5: Micropipette measurements can be used to determine the bending
rigidity of polymer-decorated membranes [54].

of the membrane is then determined using the relations

τm ≈ ∆PRp

2

(

1 − Rp

Ro

)

α =

[

(

Rp

Ro

)2

−
(

Rp

Ro

)3
]

∆L

2Rp

α =

(

kBT

8πκ

)

ln (1 + cτmA) +
τm

Kα

(2.11)

where τm is the (uniform) membrane tension, α = ∆A/A the fractional change in
area and c ≈ 0.1 is used to describe the surface undulations. The third equation
is valid for ’high enough’ bending moduli (compare Ref. [54]). Note that the
polymer effect measured in Ref. [54] is proportional to σR2

polymer as expected for
the mushroom regime. However, the experimental values of Evans and Ravicz
are measured at the transition to the brush regime, in which a different scaling
behaviour is expected theoretically.

Polymer-dressed vesicles have good prospects for application: They are dis-
cussed for use in medicine [57–61], e. g. for targeted drug delivery to tumors.
Polymer coating enhances the stability of vesicles in biological environments sig-
nificantly and leads to an increased circulation time in the human blood system.
Red blood cells as well as the human vascular system are also coated with a
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Figure 2.6: A photo-micrograph of an ethylcellulose-stabilised water-in-oil emul-
sion, taken at 15 ◦C. The scale bar has a length of 9.23 µm. [67]

polymer layer [62]. Because artificially produced dressed vesicles are kind of in-
visible to the human’s immune system, these vesicles are often denoted as ’stealth9

liposomes’. In other publications they are referred to as ’sterically stabilised lipo-
somes’ because their stability is believed to be due to the steric barrier provided
by the anchored (or adsorbed) polymers [59,60]. It is interesting to note that red
blood cells are best described by the marginal brush regime 10 and this is also
the concentration at which stealth liposomes are most efficient [54]. A further
increase of the grafting density does not prolong the lifetime of the stealth lipo-
somes in the human body, whereas in vitro experiments have shown an increased
repulsion with increased grafting density and chain length [60,63]. Basic research
on vesicles with grafted polymers is going on [64–66]. The stabilising effect seems
to be not yet fully understood and the rather general statement on the knowledge
about stealth liposomes in the review article of Lasic from 1994 is still up to date:

”Liposomes aggregate and fuse in the presence of hydrophilic poly-
mers but their properties were difficult to explain when block copoly-
mers were adsorbed or surfactants with larger polymeric polar heads
were inserted into the liposome membrane, because such systems are
inherently ill defined.” [60]

After all, I would like to discuss a third subtopic in this section: Emulsion
stabilisation. A typical picture of a polymer-stabilised emulsion is shown in figure

9’Stealth’ is a registered trade name by Liposome Technology, Inc.
10just above the overlap concentration
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2.6. At first glance emulsions seem to be rather different from stealth liposomes.
On a second view both systems are very closely related. Emulsions typically
consist of oil-in-water or water-in-oil droplets. At least for some systems the
interfacial tension between both liquids is considered to be very low [68], which
indicates that the membrane picture applies. Polymers that are soluble in the
exterior phase are used as emulsion stabilisers. An essential feature of these
polymers is the presence of small anchors that graft the chain in the other liquid
[67,69–73]. Thus polymer-stabilised emulsions can be discussed in the framework
of a theory developed for polymer-dressed vesicles. Authors in both fields also
refer to the same publications when they refer to the historic development of their
research area (see [60, 70, 74] and references therein):

• Ink was prepared already in Egypt and China about 2500 BC by mixing
lamp black with a solution of a natural polymeric stabilizer.

• Michael Faraday did the first scientific studies on the aggregation of gold
particles with and without polymer around 1850.

• Zigmondy coined the term ’protective colloid’ and Heller and Pugh intro-
duced the term ’steric stabilisation’.

Anyhow, obviously in emulsion systems as well as for stealth liposomes there is a
new aspect compared to the traditional research on colloid stabilisation by poly-
mers: The flexibility of the membrane. The influence of membrane fluctuations
on the stabilisation has, to my knowledge, not yet been investigated for stealth
liposomes, nor for polymer-stabilised emulsions.

2.3 Lamellar systems

Studies for polymer-membrane systems in the lamellar phase are present in lit-
erature for almost 20 years. Helfrich has shown in 1978 that pure lamellar mem-
brane stacks are stabilised by entropic undulations forces [75]. Two years later,
the Caille factor of smectic liquid crystal phases has been measured by x-ray scat-
tering [76]. Using this technique, the Helfrich expression for lamellar membrane
stacks has been confirmed experimentally [77]. Nevertheless, note that Monte
Carlo simulations of lamellar systems show the same qualitative behaviour as re-
ported in the original work by Helfrich, but lead to a different prefactor c∞ [78–80]
for the free energy at mean membrane distance d, per projected surface area and
per membrane:

f(d) = c∞
(kBT )2

κd
(2.12)

Field theoretical calculations for a membrane between walls support the validity
of the simulation results compared to the original estimate [81–83].
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The first experiments of polymers confined to lamellar phases have been re-
ported, to my knowledge, in 1984. Studies on phase diagrams by NMR and
x-ray scattering have been done to investigate the dissolving properties of poly-
mers in a lamellar phase [84]. Reports of the early investigations concentrate on
a polymer-induced phase separation [85], measured critical exponents [86] and
provide detailed phase diagrams [87, 88]. Especially interesting from my point
of view are experiments where the system stays in the lamellar phase because
these experiments allow to measure the effect of the polymer on the properties
of the lamellar stack quantitatively, exploiting the Helfrich and Caille theories.
Two kinds of effects are expected to appear: Polymers directly change the inter-
lamellar interaction and they change the effective curvature elastic constants of
each membrane. For non-adsorbing polymers (figure 2.7, B), the interlayer inter-
actions have been found to be attractive in all cases by theoretical arguments.11

Contributions to the curvature elastic constants have been considered to be neg-
ligible in the early publications, based on calculations for the renormalisation of
the constants by adsorbed polymers [90, 91].12 The experiments thus have been
considered as ideal systems to study the confinement of polymer chains [89,92,93].
Brooks and Cates have suggested to describe the polymer effect by a modified
bilayer thickness adding a term ∆dBC = εBCLBC in the energy and pressure
expressions of the lamellar system. The variation of εBC allows to describe short-
ranged repulsive (εBC > 1) and attractive forces (εBC < 1) between the layers on
a phenomenological level while L3

BC denotes the systems size [92].

More recent experiments report effects that seem to be not compliant with the-
ories which take into account only for the direct interlayer interactions mediated
by the polymers. In some studies, even membrane curvature elastic constants are
evaluated:

• Warriner et al. [94] investigate a system with linear polymers anchored with
one end to the membrane (figure 2.7, A). They observe a phase transition
from the lamellar to the gel phase which occurs at increased polymer content
as well as for addition of water. This effect might be explained by the same
changes of the membrane elastic constants in both cases, see chapter 8.
In a consecutive publication, Warriner et al. [95] study the effects of the
polymer in a more detailed fashion by the Caille theory.

• The picture of an effective thickness to describe polymer addition, orig-
inally introduced by Brooks and Cates, is put forward again in a letter
where the thickness is directly related to the geometrical properties of the
polymer [96]. Trying to connect this picture with experimental data, it is
found that the effective thickness seems to reach a maximum as soon as the

11The effect is argued to be analogous to the depletion interaction between two plates [89].
12The calculations were done for single membranes and unconstrained geometries.
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A

B

C

D

Figure 2.7: A polymer-membrane system in lamellar phase. Systems with differ-
ent kinds of polymers are visualised. In part A, polymers grafted with one end
to the membrane are sketched, part B shows free chains, part C a mixed-polymer
system and in part D diblock copolymers assemble at the interface.

polymer mushrooms begin to overlap.13 At low polymer concentrations the
observed effects are stronger than expected in a simple model for the poly-
mer thickness. Both observations can be explained by the assumption that
the polymers increase the membrane thickness on areas much larger than
those determined by the radius of gyration. Further details of the more
elaborate model for the thickness of the polymer layer, including consider-
ations of the stretching of the membrane in the brush regime, are discussed
in Ref. [97].

• Yang et al. [98] report a rigidification, i. e. an increased κ when polysoaps are
added. Polysoaps have a long backbone which is anchored with sidechains to
the membrane (similar to figure 2.7, A). A detailed theory for this situation
is not yet available. The interesting point is that the authors explicitly
claim that in their case the contribution of the increased layer thickness by
the polymer can be neglected.

• Addition of free polymer chains to a lamellar phase was studied in Ref. [99]
(figure 2.7, B). The authors find that the bending rigidity κ is insensitive to

13This observation is consistent with the observations of sterical stabilisation discussed in the
vesicles section of this chapter.
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the amount of polymer in the lamellar phase while the saddle-splay modulus
κ̄ is strongly decreasing.

• Tsapis et al. [100] have investigated a system with peptides lying on the
membrane layers. They have measured a rigidification of the membranes of
a high magnitude which could not be explained by the theories for mem-
branes with rigid inclusions [101, 102].

• Taulier et al. [103] have studied a lamellar stack with low molecular-weight
polymer inclusions. They explain the observed decrease in lamellar spacing
by a thinning of the single layers.

A selection of experiments has been presented in which the effect of poly-
mers added to a lamellar membrane phase is studied. Qualitatively different
effects have been observed in the systems. Several variations of the experi-
ments discussed have been investigated: e. g. addition of polymers which as-
semble within the bilayers itself [104], modification of the lamellar phase by
polyelectrolytes [105], investigation of systems with combined electrostatic and
polymer effects [106] and coiling of cylindrical membrane stacks with anchored
polymers [107]. Among other applications, lamellar systems can be used for the
production of amphiphilic polymer networks [108]. There is a huge number of
experiments and applications, but as far as I know the number of theoretical
studies available is rather limited: Estimates of the smectic compressibility of
polymer-containing lyotropic lamellar phases are available [89], investigations of
the changes of the bending moduli by rigid inclusions in bilayers of lamellar mem-
brane stacks have been published [101,102,109] and the model of the renormalised
membrane thickness [96] is discussed in literature. A new work of Blokhuis et
al. [110] investigates the interaction between two planar, polymer-adsorbing sur-
faces.

I am not aware of a single theoretical study taking into account direct and
indirect effects of the polymer addition. Such a theory would be valid for the
whole range of interlamellar spacings and should be able to combine the data
of different experiments in one consistent picture. The theory should also be
capable to explain phenomena observed for polymer dressed vesicles in confined
geometries, i. e. systems like stealth liposomes and stabilised emulsions. For sure
it is necessary that this theory will incorporate, among others, the polymer-effect
on the curvature elastic constants as function of the mean interlamellar distance.
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Chapter 3

Theoretical background

Several aspects of polymer-membrane systems have been investigated by means
of analytical and simulation methods. It is possible to determine effective values
of the membrane curvature elastic constants which can be used to model the
experimental systems. The results of a one-polymer model apply to systems with
low polymer densities where the chains do not interact mutually. For example in
the microemulsion experiment, the polymers are found to be in the mushroom
regime where the interactions between the chains can be neglected. In this chap-
ter, results and concepts will be presented and I try to avoid to address aspects
of modeling and calculational details. The basic techniques which have been
employed for my own work will be described in the next chapter.

3.1 The membrane Hamiltonian and curvature

elastic constants

The Hamiltonian of a membrane [111–113] (compare also Ref. [114]) is given by

H =

∫

dS
[κ

2
(c1 + c2 − c0)

2 + κ̄c1c2

]

(3.1)

with the bending rigidity κ, the spontaneous curvature c0 and the saddle-splay
modulus κ̄. The variables c1 and c2 denote the principal curvatures at each point
of the membrane (compare figure 3.1) and the integral is performed over the
whole membrane area.

The meaning of the membrane curvature elastic constants can be illustrated
in simple examples. First consider the integrand at one point of the membrane.

• If c1 = −c2 and c0 = 0, the first term in the Hamiltonian is zero and the
energy to form a saddle-like structure is determined by the saddle-splay
modulus κ̄.
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R

R

1

2

(a) saddle shape

R 1

R 2 = 0= 1 /2c

(b) cylinder shape

Figure 3.1: The principal curvature radii at a point of a surface.

• A cylinder-like deformation of the membrane is described by c1 = 0 and
c2 6= 0 or c1 6= 0 and c2 = 0. For c0 = 0, the energy of the deformation is
characterised solely by the bending rigidity κ.

• A finite value for the spontaneous curvature determines a preferred cur-
vature of the membrane which differs from the planar shape. A non-zero
spontaneous curvature is expected for asymmetric situations, e. g. a bilayer
membrane with two different layers.

Now discuss macroscopic membrane structures.

• For c0 = 0, a high value of the bending rigidity κ will favour a lamellar
structure where the single membranes are roughly in a planar shape.

For the evaluation of the saddle-splay part of the integral, the Gauss-Bonnet
theorem can be employed [115]. One can show that the topology of an orientable
closed surface S with no boundaries is characterised by an integer g ≥ 0, called
the genus of S. The theorem states that

2
√

g

∫

dS c1c2 = 4πχ (3.2)

where χ is the Euler characteristic of the surface. For connected surfaces, the
result of the integral is characterised by χ = 2 (1 − g). The integer g can be
interpreted as the number of ’handles’ of the surface. A spherical object has
no handles and thus gsphere = 0 and χsphere = 2, a torus has one handle and
therefore χtorus = 0, an object as sketched in figure 3.2 (c) consists of six handles
and therefore has χ = −10.
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(a) g = 0, χ = 2 (b) g = 1, χ = 0 (c) g = 6, χ = −10

Figure 3.2: The Euler characteristic of different surfaces. A sphere is sketched in
(a), (b) represents a torus and (c) is a surface with 6 handles.

• Using the Gauss-Bonnet theorem, it is immediately clear that for vanish-
ing spontaneous curvature a negative value of κ̄ favours vesicles or droplet
emulsions while a positive value would go along with high genus surfaces,
as for example bicontinuous microemulsions.

• A non-zero homogeneous spontaneous curvature favours vesicle structures
for bilayers, micelles for monolayers.

3.2 Effective membrane curvature elastic con-

stants

General concept

In many cases, the effect of the addition of macromolecules to membrane systems
can be described by effective membrane elastic constants.

c0,eff = c0,mem + ∆c0

κeff = κmem + ∆κ

κ̄eff = κ̄mem + ∆κ̄ (3.3)

where the index ”mem” indicates the elastic constants of the bare membrane.
The ansatz is very useful to explain the system’s properties, especially if the
macromolecular size is small compared to the typical system structure size. In
this case, direct polymer-mediated effects between ’different’ membranes — as
for example repulsive forces between layers in lamellar systems (see e.g. [96]) or
adhesive forces by polymers that act as anchored stickers [116, 117] — can be
neglected.
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Different macromolecular additions

It is instructive to compare the effects of the different kinds of added molecules
qualitatively. If not stated explicitly, membrane and macromolecules interact via
an excluded volume interaction. For macromolecular additions only at one side
of the membrane, the dominant effect is a change of the spontaneous curvature
c0, because this term is of linear order in the membrane curvature. All effects
are summarised in table 3.1. Addition of spherical colloid [118], rod-like colloid
[118, 119, 140, 141] and linear polymer [120] solutions affects the spontaneous
curvature in a way that the membrane will bend towards the molecules. The
basic effect in these systems is depletion. If the membrane is decorated with
end-grafted linear polymer chains, in the mushroom as well as in the dense brush
regime the membrane bends away from the polymer [122]. In case the anchored
chains experience an additional strong adsorption interaction with the membrane,
the membrane is supposed to bend towards the polymer [126] (if the adsorption is
not too strong, so that the polymer would completely lie on the membrane [133]).
The membrane has been claimed to bend away from the polymer in case of weak
adsorption of free chains [121].

Effect of an ideal end-grafted chain

For mushrooms of ideal chains, the effects on the curvature constants read

κeff ∆c0 = +
kBT

4

√

π

6
σ Re

≈ + 0.18 kBT σ Re

∆κ = +
kBT

12

(

1 +
π

2

)

σR2
e

≈ + 0.21 kBT σR2
e

∆κ̄ = − kBT

6
σR2

e

≈ − 0.17 kBT σR2
e (3.4)

where σ is the number density of chains per membrane area and Re denotes the
root mean squared end-to-end distance of free chains in solution. The values have
been obtained by solving the diffusion equation for chains which are anchored
to spheres and cylinders of curvature radii much larger than the polymer size
[123,124,142]. The free energies for the different scenarios are expanded for small
curvatures and compared to the membrane Hamiltonian in Eq. (3.1).
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3.2 Effective membrane curvature elastic constants

type of added molecules ∆c0 ∆κ ∆κ̄ references

spheres t = 0 > 0 [118]

rods t < 0 (1) > 0 (1) [118, 119]

free chains t < 0 (2) > 0 [120]

weakly adsorbed free chains a (3) < 0 (4) > 0 (4) [90, 91, 121]

strongly adsorbed free chains t (3) < 0 (4) > 0 (4) [90, 91, 121]

anchored chains a (∗) > 0 (∗) < 0 (∗) [122–125]

weakly adsorbed anchored chains a (5) > 0 < 0 [126]

strongly adsorbed anchored chains t (5) < 0 > 0 [126]

Table 3.1: Qualitative effects of low-density macromolecular addition to mem-
brane systems in different cases. The macromolecules are assumed to be small
compared with the system’s typical length scale. In the column for the spontan-
uous curvature it is noted, if the membrane bends towards (t) of away (a) from
macromolecules which are added only at one side.
(1) There was found a nonanalyticity and an asymmetry for the free energy change by addi-

tion of rods with respect to the transition R → −R of the membrane’s curvature radii. The

interpretation of the effects by renormalised membrane constants can only be understood as

an approximation. (2) This disagrees with the calculations of Podgornik [127]. (3) The re-

sults for the effect on c0 are taken from Kim and Sung [121], they claim that their results are

valid for large curvatures which might lead to different qualitative results. From the results

for strongly adsorbed chains and for free chains without adsorption, I would have expected a

curvature towards the polymer in both cases for small curvature radii. Unfortunately, I cannot

find any proof in literature. (4) κ and κ̄ are taken from Brooks et al. [90, 91]. Podgornik [127]

and Clement and Garel [128] agree with Brooks on the signs of ∆κ̄ and ∆κ [127], Laradji also

finds ∆κ < 0 [129]. Note that in the system studied by de Gennes, the membrane gets more

rigid [130]. Rigidification is also observed by Garel, Kadar and Orland [131] as well as by Sung

and Oh [132] for the adsorption of self-avoiding chains on a membrane. (5) Breidenich, Netz

and Lipowsky [133] have found that the presence of a finite length of an anchor segment is

crucial for the occurence of the sign change of the spontaneous curvature. Their calculations

show that without an anchor segment the membrane will bend away from the polymer in case

of weak adsorption and that the induced curvature vanishes for strong adsorption when the

polymer lies on the membrane. (*) The same effects as in the mushroom regime of anchored

polymers are also observed for brushes [97, 123,134–139].

The spontaneous curvature enters the membrane Hamiltonian only in form
of a product with κ, thus the value for κeff∆c0 is specified. As we assume
that there is no polymer-polymer interaction, it is obvious that the effect should
be proportional to σ. Because κ and κ̄ have the dimension of an energy, by
dimensionality arguments we also need a factor of R2

e and a factor of the dimension
of an energy. The dependences of the effects on σ and Re are expected to hold for
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all polymer architectures and if the curvature or the amplitudes of the membrane
fluctuations are small compared to the polymer size. The ansatz

κeff ∆c0 = asp kBT σRe

∆κ = aκ kBT σR2
e

∆κ̄ = āκ kBT σR2
e (3.5)

can thus be used for all systems studied in this thesis. The determination of the
dimensionless prefactors asp, aκ and āκ is the crucial point of the calculations.

Results obtained for κ and κ̄ should apply for real membrane systems if two
chains of equal length are anchored to the same point of the membrane but at
different sides (as for example in the microemulsion experiment).1

The effect on the spontaneous curvature calculated with the method described
seems to be questionable because the model assumes that a single chain, end-
grafted to one side of the membrane, induces a sphere-like deformation. Details
will be discussed in the next section.

3.3 Membrane shape deformations induced by

anchored polymers

A single chain anchored to a membrane has been shown to induce a pinch-like
membrane shape. The pinch can be found in simulations [143] and the membrane
deformation can be calculated analytically from the pressure distribution of an
ideal chain [143–147]. The polymer pulls at the anchor point and exerts a repul-
sive pressure to the rest of the membrane. The strongest pressure is found next
to the anchor point, which corresponds to the density distribution of the polymer
(compare figure 4.3). Assuming that the polymer is anchored at h (0) = 0 above
a free membrane, the membrane shape is determined by the radial function [147]

h (r) = − kBT

2
√

6πκ
Re

[√
6

4

r

Re
exp

(

−3

2

r2

R2
e

)

− 3
√

π

4

r2

R2
e

erfc

(√
6r

2Re

)

+

√
π

4
erf

(√
6r

2Re

)

+

√
π

2

∫

√
6r

Re

0

du

u
erf
(u

2

)

]

(3.6)

The deformation is cone-like

h (r) ∼ − kBT

κ
r (3.7)

1If the polymers are only attached to one side of the membrane, a pinch-like deformation is
expected (section 3.3) and redistribution effects of the polymers at the membrane will decrease
the effect (chapter 7).
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Figure 3.3: The radial shape of a membrane induced by a polymer chain with
length Re, attached above the membrane at h (0) = 0 [147].

for r � Re, and it has a catenoid shape

h (r) ∼ − kBT

κ
Re ln

(

r

Re

)

(3.8)

for r � Re. As shown in figure 3.3, the magnitude of the pinch is already small
compared to the length of the chain for κ = 1, for example in the microemulsion
experiment [16]. For higher values of κ like 10−40 for biological systems [148,149]
and 10 − 20 for phospholipid membranes [142, 150], the height scales as kBT/κ,
compare figure 3.3.

With the pinch shape in mind, the method to calculate a spontaneous curva-
ture by sphere-like deformations seems to be questionable for real systems. How-
ever, there is a connection between the pinch and sphere model which supports
the validity of the results obtained for the sphere case. In real systems, usually
more than one chain is attached to the surface. Each single chain leads to the
formation of a pinch, but the average spontaneous curvature of the membrane
has been found to be [143]

κeff ∆c0 = +
kBT

4

√

π

6
σRe (3.9)

which is exactly the same value as obtained in Eq. (3.4).
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Figure 3.4: The polymer-contribution to the bending rigidity at different length
scales for the model of Bickel and Marques with q = 2π/lfluctuation [151].

3.4 Membrane fluctuations

The influence of polymers on the whole fluctuation spectrum of the membrane
has been addressed by Bickel and Marques [151] in a recent publication, indepen-
dently from my studies presented in chapter 7. The authors consider a system of
end-grafted linear polymer chains at both sides of the membrane. They find by
analytical calculations the relation

κ (q) = 6 kBT
(

1 +
π

2

)

σR2
e

1

q4R4
e

{

exp

(−q2R2
e

6

)

− 1 +
q2R2

e

6

}

. (3.10)

As illustrated in figure 3.4, the influence of the polymer on membrane fluctuations
of wavelengths short compared to the polymer size is much lower than for large-
scale fluctuations.2

3.5 Star polymers

The effect of star polymers on the shape of the pinch has been discussed in
Ref. [146,149], but the effect on κ and κ̄ is not addressed. Marques and Fournier
[152] have studied two Gaussian chains, separated by a wall which prevents both

2Bickel and Marques specify a value for aκ in the limit of large fluctuation lengths that
exceeds all other values in the literature by a factor of 2. This should not affect the results
presented here.
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3.5 Star polymers

chains to interpenetrate. The authors focus on the anisotropy effects of the
inclusion, that have been discussed by Fournier [153] also in a more general
fashion. In this context, they obtain asp = (7/2)[

√
π/(4

√
6)] σRe and calculate

the effects on κ and κ̄. The system can be viewed as an approximation for a
two-arm star. Obviously the interchain exclusion effects will be overestimated in
this approximation compared to a real star polymer.
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Chapter 4

Modeling and simulation
on a mesoscopic length scale

The polymer effect is mainly of entropic nature and details of the chemical struc-
ture are not important. As in other soft-matter systems, simple classical models
can be employed in theoretical studies [154–157]. Scaling provides the connection
with the specific experimental system [158]. Generally, in order to characterise
entropy-dominated systems, ensemble averages have to be calculated. For com-
puter simulation studies this implies that a sufficient amount of system confor-
mations needs to be generated. Therefore the models have to be simple enough
in order to be able to compute these quantities within a reasonable computation
time.

4.1 Simulation techniques

Monte Carlo and Molecular Dynamics

In statistical physics, two main powerful simulation techniques have been devel-
oped to sample the phase space: Monte Carlo (MC) and Molecular Dynamics
(MD).

• Molecular Dynamics evaluates the equations of motion and is especially
useful to determine the system’s evolution [159,160].

• Monte Carlo algorithms traditionally provide information on equilibrium
properties of the system [161, 162]. Using a random number generator,
different system conformations are generated. An average over the observ-
ables provides the desired information. ’Importance sampling’ [163] chooses
preferably those states of the system which contribute most significantly to
the integrals in phase space and makes the method universally applicable
to a large number of models and problems.
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I have employed the Metropolis Monte Carlo technique [163] for my studies.1

There is no need to explain details of the algorithm here, because they can be
found in many textbooks on Monte Carlo simulations (e. g. Ref. [164]). However,
for the discussion of the results, there are two crucial aspects which shall be
addressed: the random number generator and error estimation.

The random number generator

The availability of a fast and reliable random number generator is a basic pre-
requisite for any Monte Carlo simulation. Speed is important, because a huge
amount of random numbers is typically generated to determine the conforma-
tions. Reliability concerns the question of correlations. The ’random numbers’
are never really random, but generated by some algorithm. It is important to
assure that the generator does not favour certain regions of the phase space and
that there are no correlations between the numbers. In the literature, tests are
available to check the quality of the random numbers produced by a genera-
tor [165]. Nevertheless, it can never be guaranteed that a generator is suited for
a special problem. This should be checked — if possible — for special cases of
the system under investigation in which the results are known [166].

It is not difficult to write a short code for a random number generator with
the desired properties (e. g. to obtain a uniform or a Gaussian distribution of
random numbers) [167, 168]. However, ’ready-made’ generators which can be
found in literature offer comfort (like the possibility to easily write out the status
of the generator and later proceed exactly at this point of the random number
sequence) and several tests have already been performed for them. For these
reasons, I have decided to use the CPC routine RANLUX [169–171]. Speed-
optimized codes are available for this generator [172, 173] and it has been tested
in Ref. [174].

Error estimation and binning analysis

Systematic and statistical errors occur in the simulation results. It is difficult
to determine the influence of the several sources of systematic errors due to the
evaluation steps, but statistical errors of the direct simulation observables can be
calculated more rigorously. However, a naive use of the well known expression
for the standard deviation of the data might lead to a significant underestima-
tion of the errors due to correlations in the data. Subsequent measurements of
an observable might not be completely independent from each other. Let’s as-
sume the rather artificial case that exactly the same value is always measured in
two subsequent observable snapshots, because the conformation did not change

1In chapter 6, the PERM algorithm is described. PERM is not Metropolis Monte Carlo.
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inbetween the two measurements. The standard deviation — given by

σ =

√

√

√

√

1

N (N − 1)

N
∑

n=1

(

fn − f̄
)2

(4.1)

for a set of observables fn with an arithmetic mean value f̄ — will in this case
lead to an error estimate which is a factor of 1/

√
2 too small.

A possibility to get rid of the correlation effects in the error estimation pro-
cedure is to perform a so-called binning analysis [175]. Always a certain number
of subsequent measurements will be merged in packages of k values

fB,m =
1

k

mk
∑

i=(m−1)k+1

fi m = 1, ..., N/k (4.2)

and the standard deviation will be calculated for the fB,m. In the case that
subsequent measurements do not differ too much due to correlations, the error
estimate will grow for k → k + 1. If the error estimate stays constant when k
is increased, the binned values are considered to be independent from each other
and thus the error estimate is reliable. For all simulation errors calculated in my
thesis, I have employed binning.

4.2 Membrane systems

The model which describes the membrane by a mathematical surface (Eq. (3.1))
is an established theoretical model, has been successfully applied to experi-
ments [176–180] and confirmed by Molecular Dynamics simulations of amphiphilic
bilayers [181, 182]; compare also recent review articles [183, 184].

The Monge representation

If the membrane is ’stiff’, i. e. if it’s persistence length [7,185] is long enough that
a membrane of the desired size can be described by small fluctuations of a planar
shape, the membrane can be represented by a special parametrisation which is
called Monge representation in differential geometry. In the Monge representa-
tion, the membrane’s coordinates are given by a height field h (x, y) as illustrated
in the simulation snapshot shown in figure 4.1. In this geometry, topological
changes do not take place by definition and the second term in the Hamiltonian
turns out to be constant due to the Gauss-Bonnet theorem (Eq. (3.2)). For that
reason, the term with κ̄ is not of interest in the following. In an expansion valid
for fluctuations of small amplitudes, this leads to

H =
κ

2

∫

dx
√

1 + (∆h)2
[

∇2h (x) − c0

]2
(4.3)
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z

y

x

Figure 4.1: The Monge representation. The local membrane position is repre-
sented by a height field z = h(x, y).

with x = (x, y). Often — as in my case — the system is modeled with periodic
boundary conditions, the spontaneous curvature is taken to be zero, and the
integral simplifies to

H =
κ

2

∫

dx
[

∇2h (x)
]2

(4.4)

in a continuum description. For computer simulations, the continuum model
needs to be discretised and the analogous expression is

H =
κ

2

∑

x

a2
[

∇2h (x)
]2

x
(4.5)

with the discretised Laplace operator

∇2h (x, y) =
1

a2
{h (x, y + a) + h (x − a, y) + h (x + a, y)

+h (x, y − a) − 4h (x, y)} (4.6)

on a square lattice of grid constant a. Depending on the observables, it can be
advantageous to use the Hamiltonian in the Fourier-transformed space

H =
κ

2

∫

dq

(2π)2
q4 H (q) H (−q) (4.7)

where

H (q) =

∫

dxh (x) exp (−iq · x) (4.8)
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and q = 2π/l with the fluctuation lengthscale l, see e. g. Ref. [186]. Again, for
the use in computer simulation studies, the formula is needed in its discretised
version

H =
κ

2

∑

q

q4HqH−q (4.9)

with q between qmin = (2π/L, 2π/L) and qmax = (2π/a, 2π/a). Note that also
for the integral of Eq. (4.7) an upper boundary is determined by the finite size
of the molecules forming the membrane and a lower boundary is provided by the
system’s size.

For the simulations in chapter 7, the Fourier representation of the membrane
height field will be used, because the expectation values of interest contain H (q).
To change H (q) directly leads to less correlations of consecutive configurations.
Nevertheless, the height field data in real space is also needed in order to compare
the conformations of membrane and polymer. Therefore a fast routine to switch
between h (x) and H (q) is needed. Further remarks on this Fourier transforma-
tion and its implementation can be found in appendix A.

4.3 Polymer systems

I have already pointed out in chapter 2 that a polymer can be described by
a flexible-chain model, typically a random walk. I have stated that chemical
details are not of interest for my systems. The question arises how to connect
real polymers to the random walk data and if further requirements for the random
walk should be chosen — as different molecules show different properties.

The persistence length and scaling

Comparing a polyethylene chain and a DNA molecule, the polyethylene chain is
far more flexible. This ’stiffness’ aspect is taken into account by the persistence
length, the typical length on which the polymer is well represented by a rod.
The persistence length of DNA is approximately 1 µm, the persistence length of
polyethylen is of the order of 1 nm. These polymers can be modeled by bonds
of the persistence length which are joined by an arbitrary angle. The exact
definitions of the persistence length in literature slightly differ [187–190], but
this is not important for my further work as my final results are for the limit
of persistence lengths which are short compared to the contour length of the
chain. In this regime, the properties of the polymer become universal and only
scale with the extension of the chain. For example, the end-to-end distance of
a rod consisting of segments (each of the same length) scales linearly with the
number of segments N , the root-mean-squared end-to-end distance of a random
walk scales with N1/2 and the radius of gyration of a close-packed polymer chain
scales like N1/3.
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Modeling and simulation on a mesoscopic length scale

The self-avoiding Pearson walk

The question which kind of random walk to choose is more crucial than the
discussion of the persistence length — although for the final results it is also not
important. The observables should not differ any more in the limit of large bond
numbers. The point is that for the extrapolation to infinite bond numbers, some
models might be more suitable, while with others, observables for a given bond
number are obtained faster.

• It has to be decided whether to choose a random walk on a lattice or if
an off-lattice simulation should be performed. The off-lattice simulation
of a polymer is certainly slower than the simulation of a chain with the
same bond number on the lattice. The problem of lattice models is, that
artefacts of the lattice can occur [191]. This aspect is particularly important
in combination with the continuum description of the membrane. Therefore
an off-lattice simulation method has been employed in this thesis.

• The bond length can be chosen to be always the same, or to vary with a
Gaussian distribution around a mean value. This aspect is for example of
considerable interest for hydrodynamic simulations [192], but is not relevant
for static properties. Thus a fixed bond length has been chosen.

• The angle between consecutive bonds might be chosen in order to mimic
real polymer chains [193, 194]. As my interest does not focus on a certain
finite-size system, arbitrary bond angles have been allowed.

An off-lattice model with a fixed bond length, joined by an arbitrary angle at the
vertices is called a Pearson walk [195]. Obviously this simple model allows two
different parts of the polymer to be in the same location. Self-avoidance can be
introduced if beads are attached at the vertices which are not allowed to overlap
each other, compare figure 4.2.

The pivot algorithm and more

Once a polymer model has been chosen, the next question concerns the algorithm
to generate the conformations. Intuitively the simplest way to generate a random
walk is the growth method: choose a random direction, go in this direction a
distance a, choose a random direction etc. For a walk without self-avoidance, this
method works very well. With self-avoidance, a problem occurs if two spheres
happen to overlap. In order not to introduce unwanted bias, these conformations
have to be discarded in a simple growth algorithm. This leads to an exponential
attrition. If n0 chains have been started to grow, for large N only

nN = n0 exp (−λN) (4.10)

chains with N bonds will be left over.
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Considerable effort has been spent and different methods have been developed
to investigate self-avoiding polymer chains by means of analytical calculations
(see e. g. [196–199]) and simulations (see e. g. [200–209]). Methodologically of
special interest is the simulation method of Rosenbluth [210], an extension of
which will be discussed in chapter 6. For all other simulations, I have decided
for the pivot algorithm to generate the polymer conformations [211, 212]. An
arbitrary junction of two bonds of the chain is selected randomly and denoted as
a ’pivot point’. It divides the chain in two parts and one part of the chain will
be rotated around the pivot point by an randomly selected angle [213,214]. Even
for single chains, the acceptance rate of conformational changes calculated by the
pivot algorithm is rather low for large bond numbers, but the relaxation time for
properties that involve large length scales is extremely short [215]. The algorithm
has been successfully applied in several recent simulations and is considered to
be very effective [216–220].

Because of the large moves of a long part of the chain, the algorithm is es-
pecially suited for not too dense systems. For example in polymer melts, the
acceptance fraction would be virtually zero and the pivot algorithm is inadequate
for such a problem. Star polymers have been investigated in chapter 5 and cer-
tainly there is a threshold value of the arm number for which the pivot algorithm
becomes inefficient. Therefore other algorithms have also been implemented: a
simple growth algorithm; an algorithm which changes one bond arbitrarily and
shifts the rest of the chain; crankshaft algorithms2 for one and several beads; a
2D pivot algorithm which turns part of the polymer around an axis perpendicular
to the anchoring wall. It turned out that the normal pivot algorithm is applicable
for 5-arm star polymers, but the crankshaft algorithms have been essential for
the simulations of ring polymers (chapter 5) and the 2D pivot algorithm has been
employed for the polymers in the lamellar phase (chapter 8). For further details
on different polymer changing algorithms, see e. g. Refs. [221,222]. All algorithms
have been tested mutually for Re and for changes in the elastic constants of short
chains (N = 20) to check for correct coding.

The advanced self-avoidance check

The time needed to check for the overlap of N beads scales like N2, if it is
performed in a naive way. For monomer #1 it has to be checked for overlap
with the monomers #2 to #N, for monomer #2 checks have to be done for the
monomers #3 to #N etc. Thus in order to handle longer chains, a more elaborate
algorithm has to be employed. I have implemented a hierarchical scheme, in which
several consecutive monomers are enveloped by one large sphere. Only if large
spheres overlap, it will be checked for the overlap of the smaller spheres inside
them [223]. In figure 4.2 self-avoidance checks will, for example, be performed

2The crankshaft algorithm is the off-lattice analogon to the kink-jump algorithm.
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Figure 4.2: This twodimensional sketch demonstrates the hierarchical algorithm
used to check for self avoidance of polymer chains. The picture shows three
hierarchy levels: 16 discs representing individual monomers, 8 two-monomer discs
and 4 four-monomer discs. Self-avoidance between individual monomers will only
be checked if the corresponding two-monomer discs overlap or if the monomers
are in the same two-monomer disc etc.

for 1 and 2, for 10 and 11, but not for 6 and 7 and not for 10 and 13. Depending
on the chain length, several hierarchy levels of ’superbeads’ have to be chosen.
With the hierarchical algorithm, the time needed for the self-avoidance check of
N beads scales only like N ln(N).

Self-avoidance effects

The most basic property distinguishing self-avoiding polymer chains from ideal
chains is their different scaling behaviour. The root mean squared end-to-end
distance and the radius of gyration scale like N0.588 for a self-avoiding chain in
good solvent, instead of N1/2 for an ideal chain. Therefore a self-avoiding chain
will be much more extended than an ideal chain, if both have the same bond
numbers and bond lengths. This ’swelling’ behaviour, observed when introducing
self-avoidance in the system, is illustrated in figure 4.3.

The most exact estimate for the scaling law of self-avoiding chains is provided
by field theory [224,225]. Rather famous is the Flory estimate, which determines
the scaling exponent ν of the scaling relation Re ∼ Nν to be

ν =
3

d + 2
(4.11)

in d dimensions by simple arguments [226, 227]. The formula is exact for d = 4
and a surprisingly good approximation for d < 4: the Flory value of 0.6 is very
close to the value of 0.588 which is obtained by much more complex calculations.
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Figure 4.3: Contour plot of monomer densities of (a) an ideal and (b) a self-
avoiding chain with 200 bonds and bond length apol = 0.1732. The bead radius
for the self-avoiding chain is 0.25 apol.. All density values are given in units of
1/a2

pol. Bond length and number of bonds correspond to a free ideal chain of
Rg = 1 and a free self-avoiding chain of Rg = 1.48. The length of the scale bar is
two.

While the scaling laws can be fulfilled for ideal chains of any bond number,
in the case of self-avoiding chains the exponent ν = 0.588 is normally observed
only for large N . For smaller numbers of bonds, model dependent correction-to-
scaling terms need to be taken into account [228–230]. The self-avoiding Pearson
walk can be adjusted to show the ’proper’ scaling behaviour already for small
chains by choosing an appropriate ratio of the radius rbead for the beads modeling
the self-avoidance to the bond length apol. In figure 4.4, the scaling behaviour
for bead radii with rbead/apol = 0.1, 0.25 and 0.5 is plotted. To allow an easy
comparison of the slopes, the curves have been shifted. The corrections-to-scaling
for a bead radius of 0.25 apol are very small. If not indicated otherwise, I have
used this radius for all further simulations.
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Figure 4.4: The logarithm of the mean squared end-to-end distance of free self-
avoiding linear polymer chains is plotted against the logarithm of the bond num-
ber. The line has the slope 2ν = 1.176 and is used to compare the simulation
data with the expected scaling exponent. The factor a is used to shift the sim-
ulation data next to each other in order to compare the slope more easily with
the the slope of the line. For a bead radius of 0.25 times the bond length (×),
the data is shown to obey the scaling relation already for N = 10. For a bead
radius of 0.10 of the bond length (+), the slope of the data for small N is too
small, the system’s behaviour is similar to the one observed for an ideal walk.
In case of touching beads with a radius of 0.50 of the bond length (stars), the
slope is slightly larger than 2ν for small bond numbers. For large N — data up
to N = 5000 is plotted — the slopes for all data sets coincide.
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Chapter 5

Polymer self-avoidance effects
and different architectures

In this chapter, the effects of ideal and self-avoiding linear polymer chains, of
self-avoiding star polymers, and of ideal and self-avoiding ring polymers on the
membrane curvature elastic constants are discussed in the limit of small curva-
tures.

5.1 Model

The polymers are modeled by a Pearson walk with beads assuring the self-
avoidance, as described in the previous chapter. Simulation snapshots that il-
lustrate the systems under investigation are shown in figure 5.1. For the star
polymer case, a five-chain star polymer is shown. The chains are coloured differ-
ently for clarity, but without any physical significance: All beads — of the same
or of different chains — are identical and exhibit excluded volume interactions.

5.2 Simulation and evaluation technique

The investigations focus on systems with high membrane κ values. We study
the effect of the polymers by an expansion of the free energy in the limit of
small curvatures. We simulate the polymer anchored to a hard wall, thus no
explicit variation of the curvature takes place. To connect the simulation with the
membrane observables, ratios of the partition functions for spherical or cylindrical
shapes of the wall and for a planar wall are evaluated. If a polymer anchored
to a planar wall is simulated, the ratios are given by 1 − Px (R) where Px (R)
is the probability for parts of the polymer chain penetrating the region between
a virtual sphere (x = s) or cylinder (x = c) that touch the wall at the anchor
point and the wall itself. The curvature radius of the virtual sphere/cylinder
is given by R. By definition, R is taken to be negative if the membrane curves
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(a) ideal linear chain (b) self-avoiding linear chain

(c) self-avoiding star polymer (d) self-avoiding ring polymer

Figure 5.1: Simulation snapshots of polymers anchored to a planar wall. The
chains of the star polymer are coloured differently for clarity.

towards the polymer. This is sketched for the more general situation of a polymer
anchored to the outside of a sphere — that allows to investigate the polymer
effect also for membranes curved away from the polymer.1 The evaluation of
the probabilities is efficient, because the maximum curvature radius Rmax for
which the sphere/cylinder touches the polymer chain can be determined very
fast by nested intervals. The contribution of this conformation for all curvatures
is then immediately known. We now need to extract the expansion coefficients
for small curvatures from the simulation data up to second order. The expansion
coefficients are defined by

1For all architectures, the case of the membrane curving away from the polymer has been
evaluated for N = 20 by attaching the chain to a sphere, compare figure 5.2.
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R

Figure 5.2: The polymer is anchored to a hard, spherically curved wall. Spheres
and cylinders of different curvatures that touch the wall at the anchor point are
applied to the conformation. The probability of the polymer entering the red
marked region between the wall and the sphere/cylinder is evaluated.

1 − Pc(R) =
Zc(R, N)

Zp(N)
= 1 − a1

Re

R
− a2

(

Re

R

)2

− O

[

(

Re

R

)3
]

1 − Ps(R) =
Zs(R, N)

Zp(N)
= 1 − b1

Re

R
− b2

(

Re

R

)2

− O

[

(

Re

R

)3
]

. (5.1)

Zp(N), Zc(R, N) and Zs(R, N) denote the partition functions of a polymer of N
bonds anchored to a plane (index p) resp. to a cylinder / a sphere of curvature
radius R. The root-mean-squared end-to-end distance of the free chain in solution
scales like Re ∼ Nν with ν ≈ 0.59 in good solvent (for self-avoiding chains) and
with ν = 1/2 in Θ-solvent (for ideal chains). Consistency with the curvature
energy requires b1 = 2a1, compare Eq. (5.5). The simulation data has been fitted
to quadratic polynomials in the range from cmin = 0 to cmax = −1/Rmax for
values of cmax between 0 and a maximum value Cmax. Higher order terms also
occur in the simulation data, therefore a fit to a quadratic function obviously
contains systematic deviations for any finite cmax. Fits for very small values of
cmax should be the best choice in this respect; unfortunately they suffer from
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large statistical errors. For ideal chains, the analytical results for the expansion
coefficients are given by [231]

Zc(R, N)

Zp(N)
= 1 −

√
π

2

Rg

R
− 1

4

(

Rg

R

)2

−
√

π

8

(

Rg

R

)3

−25

96

(

Rg

R

)4

− O

[

(

Rg

R

)5
]

Zs(R, N)

Zp(N)
= 1 −

√
π

Rg

R
(5.2)

with the well-known relationship R2
g = R2

e/6 [224]. Using the analytical expan-
sions for ideal chains, a least-squares fit procedure2 can be shown to be very
accurate to extract the first and second order coefficients from the data:

• Fit the data simultaneously with the constraint b1 = 2a1 to the quadratic
expressions (5.1) to get sets of expansion coefficients a1, a2, b1 and b2.
Perform the fit several times in a range [cmin, cmax] for different cmax.

• Fit the values of a1, a2, b1 and b2 to a quadratic polynomial in cmax.
3 The

constant term of the polynomial is the corresponding expansion coefficient
of the partition function ratio.

In figure 5.3, the simulation data, the linear as well as the linear plus the quadratic
term are plotted. This figure demonstrates nicely that the expansions hold for
positive and negative values of R, which is a necessary prerequisite to describe the
polymer effect by effective membrane curvature elastic constants. To calculate the
polymer contribution to the curvature energy, expansion of free energy differences
instead of the partition function ratios are required. They can easily be obtained
by

F = −kBT ln Z (5.3)

and the expansion ln (1 − ax − bx2) = −ax − (b + a2/2)x2 − O (x3), valid for
small x:

Fc (R, N) − Fp (N)

kBT
= a1

Re

R
+

(

a2 +
a2

1

2

)(

Re

R

)2

+ O

[

(

Re

R

)3
]

Fs (R, N) − Fp (N)

kBT
= b1

Re

R
+

(

b2 +
b2
1

2

) (

Re

R

)2

+ O

[

(

Re

R

)3
]

(5.4)

2For all fits in this thesis, the nonlinear least-squares Marquardt-Levenberg algorithm which
is implemented in gnuplot has been employed.

3I have only applied the quadratic polynomial to ideal and self-avoiding linear chains. For
the other architectures, fits where performed up to linear order and ’by eye’ because of larger
statistical errors. I expect that therefore systematic errors occur for these systems due to the
crude approximations in this step.
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Figure 5.3: Simulation results for the partition function ratios Zx(R, N)/Zp(N) of
an ideal linear chain with 20 bonds. In addition, linear and quadratic terms of the
fit are shown. In the sphere case, all terms of higher order than linear vanish and
the fit exactly matches the simulation data. Cylinder: simulation data (solid),
linear (long dashes) and linear plus quadratic (short dashes) contribution. Sphere:
simulation data (dashed-dotted).

The curvature Hamiltonian (compare Eq. 3.1) of the membrane for spherical and
cylindrical membrane shapes reads

Hc =

∫

dS

[

κ

2

1

R2
c

− 2κc0
1

Rc
+ 2κc0

]

Hs =

∫

dS

[

2κ
1

R2
s

− 4κc0
1

Rs
+ 2κc0 + κ̄

1

R2
s

]

. (5.5)

The polymer free energies in Eqs. (5.4) and the curvature energies in Eqs. (5.5)
relate the simulation data to the membrane curvature constants: 4

asp = −a1

2

aκ = (2a2 + a2
1)

āκ = (b2 − 4a2) (5.6)

4The terms that do not depend on the curvature are obviously not of interest for this
question.

43



Polymer self-avoidance effects and different architectures

An error estimate is obtained by the fit errors of a1, a2 and b2, which propagate
like ∆asp = ∆a1/2, ∆aκ = 2∆a2 + 2 |a1|∆a1, ∆āκ = ∆b2 + 4∆a2. If systematic
errors are present, i. e. if a linear function has been used for the fits to the data
in figure 5.4, the values for the expansion coefficients will be too small.5 Thus
the value of the error estimate is especially uncertain in the cases with linear fits
for the functions a1(cmax), a2(cmax) and b2(cmax).

The method described so far supplies values of the polymer effect for chains
of finite bond numbers. To obtain the universal curvature elastic constants, the
results have to be extrapolated to infinite N . The data is well described by a
linear function in N−1/2. This allows to extrapolate to N−1/2 = 0 by a least-
squares fit, compare figure 5.5. Note that the finite-size corrections are supposed
to depend on the discretisation length apol and the total length of the polymer
chain Re. Thus a function α0 + α1(apol/N

ν)µ + α2(apol/N
ν)2µ + O[(apol/N

ν)3µ]
for the corrections-to-scaling relations is expected. Similar corrections have been
observed for example for the hydrodynamic radius of polymer chains in solution
[232] and for a self-consistent field theory calculation of the effect of long block
copolymers on the interfacial curvature elasticity in a ternary mixture of two
homopolymers and a short block-copolymer [125].

5.3 Ideal linear chains: validation of the method

Ideal, freely hinged chains may serve as a test for the method developed. The
limit of vanishing persistence length can be calculated analytically by solving
the diffusion equation, as discussed in chapter 3 [123, 124]. We use the scheme
described in the previous section to evaluate the simulation data. The fit results
for chains with N = 20 and different values of cmax are shown in figure 5.4 (a). The
data for small values of cmax is not plotted because of the large statistical errors.
The quadratic polynomial is fitted to the data in the range 0.2 < cmaxRe < 0.3
to extrapolate to the value for cmax = 0. Data for polymers with N = 10, 20,
30, 40, 50, 100 and 200 has been evaluated. The results for the contributions to
the curvature elastic constants are plotted against N−1/2, see figure 5.5 (a). The
corrections-to-scaling relations are given by:

asp = 0.1801
(

1 − 0.369 N−1/2
)

aκ = 0.2130
(

1 − 0.870 N−1/2
)

āκ = −0.1682
(

1 − 1.179 N−1/2
)

(5.7)

The statistical error of the amplitudes is of the order 10−3. A positive asp —
by definition — corresponds to the membrane bending away from the polymer.
The finite size effects in all cases lead to a reduction of the amplitude of the

5For all functionalities investigated, the sign of the second order term in the functions is
positive.
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Figure 5.4: Small-curvature expansion coefficients for the partition function ratios
(20 bonds). The fits are performed from zero curvature up to cmax.
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Figure 5.5: Universal amplitudes asp, aκ und āκ for ideal and self-avoiding linear
polymers with 10 to 200 bonds. The arrow indicates the analytical result.

46



5.4 Self-avoiding linear chains

analytical simulation

asp

√
π/(4

√
6) +0.1809 +0.1801

aκ (1 + π/2) /12 +0.2142 +0.2130
āκ −1/6 −0.1667 −0.1682

Table 5.1: Universal amplitudes for anchored ideal linear polymers. The sta-
tistical error is of the order 10−3. The analytical values have been taken from
[123,124].

polymer effect. Note that the overall prefactor is universal in all equations, but
the prefactor of the N−1/2 term is model dependent. Even within the same model,
the prefactor of the corrections-to-scaling varies for different ratios of the bead size
to the bond length. The universal prefactors extracted from the simulations that
describe the change of the membrane curvature elastic constants in the case of
small membrane curvatures are listed in table 5.1, together with the analytically
calculated values. The analytical results and the simulation results for ∆c0, ∆κ
and ∆κ̄ agree nicely.

5.4 Self-avoiding linear chains

The simulation method which has been developed provides a straight forward
way to investigate self-avoidance effects. Data of good quality can be obtained,
so that the fit of the expansion coefficient data for different cmax can be done with
a quadratic polynomial, compare figure 5.4 (b). A plot of the results for different
bond numbers against N−1/2, as shown for N = 20 in figure 5.5 (b), allows the
conclusion that all data points fall on a linear curve. The coefficients obtained
for the corrections-to-scaling prefactors as well as the resulting universal values
for the curvature elastic constants have been found to be:

asp = 0.168
(

1 − 0.391 N−1/2
)

aκ = 0.120
(

1 − 0.972 N−1/2
)

āκ = −0.153
(

1 − 1.221 N−1/2
)

(5.8)

Simulating self-avoiding chains is very time-consuming, especially for longer chains
with N > 50. The statistical accuracy of the data is therefore not as good as
for ideal chains. Thus the statistical errors of all values have been estimated to
be of the order 10−2. In table 5.2, the universal prefactors of the simulations
for ideal and self-avoiding chains are listed. Self-avoidance has been shown to
reduce the polymer effect, if ideal and self-avoiding chains of the same Re are
compared. If the bond length and bond number are kept fixed, the introduction
of self-avoidance to the system leads to a swelling of the chain, as shown in figure
4.3. In the latter case, Rg as well as Re increase, and thus also the polymer’s
effect on the membrane curvature elastic constants increases.
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ideal self-avoiding
asp +0.1801 +0.1679
aκ +0.2130 +0.1997
āκ −0.1682 −0.1532

Table 5.2: Universal amplitudes for anchored linear polymers. The statistical
error is of the order 10−3 for ideal and 10−2 for self-avoiding chains.

5.5 Star polymers

The effect of self-avoidance for a single linear chain is not very large, but for some
polymer architectures self-avoidance is a necessary prerequisite to investigate even
qualitative effects. One of these examples is the star polymer architecture. Let us
assume that no membrane-mediated interactions between the polymer chains are
present. This is the case if the polymer effect is small compared with the κ of the
bare membrane. For ideal chains, therefore no differences in the polymer effects
will be observed if the chains are attached to different points of the membrane or
if several chains are anchored to the same point. Star polymer effects on κ and
κ̄ can only be investigated taking into account for self-avoidance!

Simulations

Star polymers of functionalities f between 2 and 5, i. e. polymers with two to
five arms, have been attached at their centers to a wall. The pivot algorithm has
been used for all functionalities to change the polymer conformation [233–236].
The performance of local algorithms [237,238] has been tested, but they did not
lead to an improved data quality. Unfortunately, the quality of the simulation
data has not been good enough in order to extrapolate to zero curvature using a
quadratic polynomial. The data has been fitted ’by eye’ with a linear function.
Most probably, systematic errors are present in the results due to the linear fit.
The second order contribution is positive. The plots in figure 5.4 illustrate, that
by a linear fit preferably a smaller value for all expansion coefficients is obtained.
Finally, a set of universal amplitudes and a set of corrections-to-scaling prefactors
have been obtained, determined by fits of the data to a function

ax = ax,∞

(

1 − cxN
−1/2

)

. (5.9)

The corrections-to-scaling prefactors generally do not vary with the arm number
within the statistical error (table 5.3). The value for f = 5 seems to be a maverick.

In table 5.4, the data of the universal prefactors per chain for different func-
tionalities is listed.6 As discussed earlier, for ideal chains the same value for all

6A calculation of two ideal chains separated by a wall is found in literature [152]. The
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f csp cκ c̄κ

1 0.39 0.97 1.22
2 0.39 0.93 1.20
3 0.37 0.94 1.28
4 0.39 0.82 1.13
5 0.39 0.85 0.44

Table 5.3: Amplitudes of the correction
to scaling prefactors for anchored star
polymers with functionality f . The sta-
tistical error is of the order 10−2 for csp

and 10−1 for cκ and c̄κ.

f asp/f aκ/f āκ/f
1 0.168 0.200 −0.153
2 0.193 0.224 −0.157
3 0.215 0.255 −0.169
4 0.235 0.272 −0.168
5 0.254 0.301 −0.141

Table 5.4: Universal amplitudes (per
chain) for anchored star polymers of
functionality f . The statistical error is
of the order 10−2.

functionalities would be obtained. In the case of self-avoiding chains, the poly-
mer effects of spontaneous curvature c0 and bending rigidity κ increase almost
linearly with functionality and double at about f = 10. The saddle splay modulus
κ̄ does not change with f . All simulation results are illustrated in figure 5.6 (a).
A descriptive argument why the bending rigidity changes with the arm number
whereas the saddle splay modulus does not can be obtained in the context of a
blob model calculation.

Blob model

Blob model calculations are used to derive scaling arguments. They have been
successfully employed, for example, for polymers in constrained geometries [239,
240], to mimic intra- and interchain excluded volume interactions in dense poly-
mer systems [123, 226, 241] and to study polymers in flow [242, 243]. Computer
simulations for many-arm star polymers are rather expensive concerning CPU
time, therefore the behaviour of star polymers with high functionalities has been
calculated by the blob model. The polymer is modeled by blobs for all distances
from the center of the polymer.7. In a naive picture, the star can be thought
of consisting of cones, meeting at the center of the star and containing spherical
blobs as sketched in figure 5.7. The free energy is then — according to the basic
idea of blobs — given by the number of blobs in the system. In my calculations, a
continuum version of the model is applied. The volume accessible to the polymer

authors obtain an effect on the spontaneous curvature of κeff∆c0 = (7/2)
[√

π/
(

4
√

6
)]

σRe.
This overestimates the effect, as the simulations show.

7Different regimes of a ’stretched conformation’, a ’blob model’ and a ’free chain’ as in
Ref. [241] have not been distinguished
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Figure 5.6: The star-polymer effect per chain as function of the functionality f .
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5.5 Star polymers

Figure 5.7: Two-dimensional sketch of the blob model describing a star anchored
to a planar wall.

is given by an integral over the infinitesimal volumes determined by the areas
ξ2
x(r) accessible to the polymer at distances r from the anchor point.

ξ2
x(r) =

1

f

∫ 2π

0

dφ

∫ π/2

θmin,x

dθ r2 cos θ (5.10)

The geometrical constraints for the star are taken into account by the lower in-
tegration boundary θmin,x. For a free star polymer, θmin,f = −π/2 applies while
for a star polymer anchored with its center to a planar wall, θmin,f = 0. If the
polymer is anchored to the inside of a sphere or a cylinder, the intersections be-
tween the ’polymer’ sphere which describes region in which the blobs are located
and the deformed ’membrane’ are determined to be

sin θmin,s =
r

2R
(5.11)

sin θmin,c(ϕ) =
R − (R2 − r2 sin2 ϕ cos2 ϕ)1/2

r cos2 ϕ
, (5.12)

for a spherical resp. a cylindrical deformation. A cylindrical deformation is il-
lustrated in figure 5.8. The integrals of Eq. 5.10 can be evaluated exactly for
free stars and in the cases of the planar wall and a spherical deformation. For a
cylindrical deformation, an expansion in terms of small membrane deformations
has been employed. Besides the linear and the quadratic term, terms of orders
O
[

(r/Rc)
4] and of higher orders occur. However, contributions of orders beyond

O[(r/Rc)
2] are not relevant for the calculation of effective membrane curvature

constants. Up to quadratic order, the areas of the polymer-sphere surfaces in the
space region accessible to the polymer in the different scenarios are given by

ξ2
x(r) =

2πr2

f

(

1 − qx
r

R

)

(5.13)
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Figure 5.8: The intersection of the hemisphere describing the star polymer an-
chored to a planar wall and a cylinder further restricting the geometry is described
by θmin,c (φ, r, R), indicated by the green curve.

with qp = 0 for the planar wall, qs = 1/2 for a spherical deformation and qc = 1/4
for a cylindrical deformation. The typical length scale for the polymer is therefore
ξx (r) and corresponds to the number of monomers nx(r) in a blob of this radius.
The value of nx(r) is determined by

nx (r) =

(

ξx (r)

l0

)1/ν

(5.14)

due to the scaling laws Re ∼ l0N
ν and Rg ∼ l0N

ν for a chain of bond length l0.
For known l0 and total bond number N , the radius of the star polymer Rstar,x

can be determined using the implicit equation

N =

∫ Rstar,x

0

dr
nx(r)

ξx(r)
(5.15)

with the radial monomer density nx (r) /ξx (r). After evaluation of the integral,
recursive substitution of Rstar,x and expansion of several expressions for small
l0N

ν/Rx gives

Rstar,x = f (1−ν)/2 `0N
ν Γ

(

f (1−ν)/2 `0N
ν

Rx

)

(5.16)

with a scaling function Γ(x) = Q0 + Qx,1x + Qx,2x
2 and positive constants Q0,

Qx,1 and Qx,2. The complete expressions can be found in appendix B. Using
Rstar,x, the free energies can be calculated. The idea of the blob model is that the
free energy corresponds to the number of blobs, thus the upper integral boundary
is Rstar,x. A lower cutoff needs to be introduced in order to prevent the integral
from diverging. A physical meaning of this lower cutoff might be provided by the
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5.5 Star polymers

monomer size `0.
8 The radial number density of blobs is inverse proportional to

the blob radius ξx (r) and the free energy is given by:

Fx = kBT

∫ Rstar,x

`0

dr
1

ξx(r)
(5.17)

For further details, please refer to appendix B. The final result shows that the
polymer effect per chain scales nearly linearly with f for c0 and κ. The polymer
effect for κ̄ is predicted to be constant with respect to f . The results nicely
complement the simulation data.

κeff∆c0/f ∼ f 1−ν/2 σ`0N
ν ∼ f 0.71

∆κ/f ∼ f 3/2−ν σ`2
0N

2ν ∼ f 0.91

∆κ̄/f = const. < 0 (5.18)

The scaling relations imply that ∆κ/∆κ̄ ∼ −f 3/2−ν . Scaling applies for large
functionalities. A fit of the simulation data to a function c1 + c2f

c3 is consistent
with the scaling behaviour. The results of such a fit are

(κeff∆c0/f) (f) =
[

0.79 + 0.23 f 0.71
]

(κeff∆c0/f) (1)

(∆κ/f) (f) =
[

0.85 + 0.15 f 0.91
]

(∆κ/f) (1)

(∆κ̄/f) (f) = (∆κ̄/f) (1) (5.19)

with the single chain values denoted by ’(1)’. The fit curves are plotted in figure
5.6 (b).

Discussion

Concerning the validity of the results, some further discussion is needed. The
spontaneous curvature has been evaluated for a polymer chain attached to a
sphere. As discussed earlier, a pinch-like deformation is expected to occur for
a real membrane. I have argued that for ideal linear chains the average mean
curvature calculated within the pinch model and the spontaneous curvature cal-
culated for a single chain anchored to a spherically deformed membrane coincide.
This implies that the average mean curvature only depends on the total pressure
exerted by an anchored polymer to a planar wall and not on the shape of the
deformation — at least in the limit of bending rigidities κ of the bare membrane
which are large compared to the effect of the polymer. Thus the analogy should
also hold in the case of star polymers. Note that this interpretation problem
for c0 again does not occur for symmetrical polymers which are anchored to a
membrane. In this case, the spontaneous curvature of the membrane vanishes.

8An exact definition is not needed because the results for the membrane curvature constants
are independent from the cutoff value.
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Figure 5.9: Ratios of ∆κ to ∆κ̄ for different systems [120,123,124,134,244–246].
Ring and star polymer values result from simulations presented in this work. To
minimise the error, assuming that āκ is constant, always the single-chain value
of āκ has been used.

The formation of stars at the membrane makes the polymer more efficient,
an increased effect per chain on κ and c0 is observed. However, the absolute
value of the polymer effect can also be altered by a different number density
of chains per membrane area. In my view, the fact that the star architecture
allows to change the ratio ∆κ/∆κ̄ according to different functionalities is more
important. This effect can be used to modify the phase behaviour of the system
in a controlled fashion. There are of course also other possibilities to change the
effective membrane curvature constants that allow to obtain different ratios of
∆κ/∆κ̄, see figure 5.9. The advantage of star polymers is the possibility to get
different effects on both constants just by changing the functionality and without
altering the type of the system.

The results of this chapter discussed so far, have been published recently in
Ref. [247].
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5.6 Ring polymers

Ring polymers are of special interest because the effect of knots can be investi-
gated. Two cases have been considered in my thesis, ring polymers with an arbi-
trary number of knots and without knots. Ring polymers have been simulated em-
ploying the single-bead and the multiple-bead crankshaft algorithms [248,249].9

Ring polymers of arbitrary knot number (phantom chains)

In the case of artificially synthesised polymers, an arbitrary knot number models
the ensemble average of real systems [251–253]. The polymer effect is charac-
terised by the anchor density σ, the root mean squared end-to-end distance Re

of a free linear chain with equal bond number and the set of prefactors asp, aκ

and āκ. Another view would be to characterise the polymer effect by the root
mean squared radius of gyration of the ring polymers Rg,ring, which is connected
by conversion factors of 12 for ideal polymers and 10.6 for self-avoiding chains to
Re [254]. The ratios between the radius of gyration of the ring and the end-to-end
distance vary slightly due to finite-size effects [255] but — most essential — the
scaling of both is the same [256, 257].10 The finite-size effects for the membrane
curvature elastic constants again can be described by a N−1/2 term, as illustrated
in figure 5.10. The fit functions are given by

asp = 0.18
(

1 − 0.74 N−1/2
)

aκ = 0.13
(

1 − 1.47 N−1/2
)

āκ = −0.12
(

1 − 1.92 N−1/2
)

(5.20)

in the case of ideal chains and by

asp = 0.18
(

1 − 0.77 N−1/2
)

aκ = 0.12
(

1 − 1.31 N−1/2
)

āκ = −0.10
(

1 − 1.58 N−1/2
)

(5.21)

for self-avoiding polymers. The errors of all amplitudes are of the order 10−2.
Figure 5.11 demonstrates that the universal amplitudes of self-avoiding chains
in the limit N → ∞ agree rather well for bead sizes of 0.25 apol and 0.50 apol

within the simulation accuracies. This is consistent with the expectation that
the universal amplitudes should be independent from the bead radius.

The universal amplitudes of the polymer effect for linear and self-avoiding
polymers (rbead = 0.25 apol) are listed in table 5.5. The spontaneous curvature
term is the same in both cases, up to the simulation accuracy. For the bending

9It is claimed that the so-called ’vector shuffling’ method is much more efficient [250].
10Non-phantom ideal ring polymers have been shown to scale with ν ≈ 0.588 [258].
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Figure 5.10: Universal amplitudes asp, aκ und āκ for ideal and self-avoiding ring
polymers with 20 to 200 bonds and a bead radius of 0.25 apol.
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Figure 5.11: Universal amplitudes asp, aκ und āκ for self-avoiding polymers with
20 to 200 bonds and bead sizes 0.25 apol and 0.50 apol.
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ideal self-avoiding
asp +0.18 +0.18
aκ +0.13 +0.12
āκ −0.12 −0.10

Table 5.5: Universal amplitudes for anchored ring polymers. The statistical error
is of the order 10−2.

(1) (2) (3) (4)
(∆c0)ring/(∆c0)x 1.00 1.05 0.71 0.79
(∆κ)ring/(∆κ)x 0.62 0.60 0.62 0.67
(∆κ̄)ring/(∆κ̄)x 0.68 0.64 0.68 0.73

Table 5.6: Ratios of the effect of anchored ring polymers to the effect of other
polymer geometries with equal contour length. The statistical error is of the
order 10−2. The following systems have been compared: (1) ideal ring polymer,
ideal linear chain; (2) self-avoiding ring polymer, self-avoiding linear chain; (3)
ideal ring polymer, two ideal linear chains of half length; (4) self-avoiding ring
polymer, self-avoiding star with two arms of half length

rigidity and the saddle-splay modulus, the effects self-avoiding polymers have
smaller amplitudes, which is consistent with the results obtained for linear chains.
Note that for self-avoiding polymers the conversion factor between the ring’s
radius of gyration and the end-to-end radius of the linear chain is smaller than
for ideal polymers. This partly ’cancels’ the self-avoidance effect if it is presented
in a notation of the ring-polymer effects in terms of σ and Rg,ring.

It is instructive to compare the effects of different polymer architectures with
equal contour lengths. In table 5.6, the ring polymer effect is compared to the
effect of a linear chain anchored at one end, and in its middle to the membrane.
Both comparisons have been done for ideal and the self-avoiding polymers.

• The spontaneous curvature induced by a ring polymer is virtually the same
as the spontaneous curvature induced by an end-grafted chain.

• Compared to chains that are grafted in the middle, ring polymers induce a
spontaneous curvature which is about 30% smaller.

• For κ and κ̄, the effect of the ring polymer is about 30 − 40% smaller
compared to the other architectures. The differences between self-avoiding
and ideal chains as well as between end-grafted chains and those which are
attached in the middle are basically not significant.11 For the latter case

11In case the ring is compared with the two-arm star, self-avoidance seems to relatively
increase the polymer effect due to the ring, compared to the effect of the star.
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Figure 5.12: Universal amplitudes asp, aκ und āκ for self-avoiding non-phantom
ring polymers with 10 to 200 bonds and a bead radius of 0.25 of the bond length.

it can be shown by simple calculations that the effects of ideal chains are
even exactly the same.

Ring polymers without knots

An example for a ring polymer without knots is circular DNA [252]. In the
simulation, the constraint can be implemented straightforward by geometric hin-
drance. There is a minimal bead radius of rbead = apol/

(

2
√

2
)

for which a part of
the polymer chain cannot cross any other part of the chain in case the changes
are only done by an one-bead crankshaft algorithm. The possible number of
knots is preserved and can be controlled by the number of knots in the initial
conformation.

Simulations for chains of up to 200 bonds without knots and with touch-
ing neighbouring beads (rbead = 0.5 apol) were performed in order to investigate
the effect of knot-free rings. Especially changes in the slopes of aκ

(

N−1/2
)

and

āκ

(

N−1/2
)

seem to occur for N > 50, see figure 5.12.
For very small bond numbers, the probability of knots is probably very low

due to the small flexibility of the chain. This might be the reason why there are
no differences observed for asp, aκ and āκ between phantom and non-phantom
ring polymers. I expect a threshold value of N at which knots become more
probable for the phantom chain. This might be the reason for the differences
observed in aκ and āκ for bond numbers larger than N ≈ 50.

A further investigation would require a more thorough study of the knot prob-
abilities. Tests of the knot numbers are computationally rather expensive [259]
and have not been done yet. The tube inflation method has been strongly rec-
ommended to me [259,260], because different kinds of knots can be distinguished
unambiguously. For checking only for the occurrence of knots, the more common
method using the Alexander polynomials should be sufficient [261].
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Chapter 6

Polymer adsorption effects

Polymer adsorption is a phenomenon which is quite common in biological sys-
tems [262] and which is very important in many technical applications. One
of the most prominent applications is probably glue. By theoretical studies on
surfaces, a phase transition has been shown to occur between completely des-
orbed and completely adsorbed polymers for free chains in solution [263–266].
Effects of adsorbed polymers on the membrane curvature constants have already
been discussed in chapter 3 by means of results that can be found in the litera-
ture. For an anchored chain and a weak attractive interaction between membrane
and polymer, the bending rigidity increases while the saddle splay modulus de-
creases; vice versa for strong adsorption [126]. The results for free chains were
based on calculations employing a mean-field approximation. Beyond these ba-
sic effects, two very recent papers are dealing with special aspects of adsorbed
polymers. Breidenich, Netz and Lipowsky discuss the pinch induced by one-
sided anchored polymers, the induced average mean curvature and the effect of
an anchor length for ideal chains by means of simulations and analytical calcu-
lations [133]. Skau and Blokhuis have presented extended mean-field models to
deal with adsorbed polymers which are in coexistence with a semi-dilute solution
of free polymers [267]. Detailed studies for self-avoiding chains have not yet been
done and results beyond mean-field approximations for the effects on κ and κ̄
and for different adsorption strengths are not available in the literature.

6.1 Model, simulation and evaluation technique

I have implemented a simulation technique to investigate adsorption effects. Like
in the case without adsorption, the polymer is anchored to a hard wall. Again
a Pearson walk with and without excluded volume interaction is used to model
the polymer chain. In addition to the model of the last chapter, a square-well
potential of the membrane acting on the polymer’s vertices is introduced. The
potential can be used to model attractive and repulsive forces between the poly-
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recursive subroutine STEP(X,N)

# X: location of last polymer bead (start at X=(0,0,0))

# N: number of bonds in polymer

# w_step : weight attached to placing the next bond

# w_total: total weight of the chain with N bonds

# Choose new position X’

X -> X’

# Determine new weight connected with the choice of X’.

w_step = p(allowed) * exp(-E(X’)/k_B T)

w_total(N) = w_total(N-1) * w_step(N)

# Determine partition functions for polymers attached to spheres/cylinders

# (choice given by the type variable) of curvatures c > c_min:

for type=sphere,cylinder; for c_min < c < c_max

if X’ belongs to a valid conformation

partition_function(type,c,N) = partition_function(type,c,N) + w_total

...

end if

end for; end for

# Add the current chain’s contribution to the partition sum Z(N) of all N-bond

# chains generated up to now and calculate observables.

Z(N) = Z(N) + w_total(N)

r_e2e = r_e2e + X’^2 * w_total(N)

...

# Enrich, prune or grow the conformation in the next step according to the

# ratio of its weight to the mean weight of all previous conformations, if

# the chain has not yet reached its maximal length N_MAX (and if it has a

# finite weight). Z(N) counts the number of initial chains.

if N < N_MAX and w_total(N) > 0 then

w_upper_bound = c_upper * Z(N) / Z(1)

w_lower_bound = c_lower * Z(N) / Z(1)

if w_total(N) > w_upper_bound then

w_total(N) = w_total(N) / 2

call STEP(X’,N+1); call STEP(X’,N+1)

else if w_total(N) < w_lower_bound then

w_total(N) = w_total(N) / 2

choose 0 <= random_number < 1

if random_number < 1/2 then; call STEP(X’,N+1); end if

else

call STEP(X’,N+1)

end if

end if

return

end subroutine STEP

Figure 6.1: Pseudocode of a PERM algorithm to evaluate the polymer effect (a
more general PERM pseudocode can be found in the appendix of [268]).
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mer chain and the membrane and thus allows to study adsorption effects. It is
obvious that the use of the pivot algorithm probably still works fine in the system
with a weak attractive interaction, but will certainly fail to generate a proper en-
semble for a strong attractive interaction. The same applies for the evaluation
technique of simulating a polymer chain anchored to a planar wall and applying
virtual spheres and cylinders to determine ratios of partition functions. For ad-
sorbed polymers, ensembles that are suitable to describe systems with differently
curved walls simultaneously obviously do not exist.

The first problem of applying the simulation method described in the last
chapter, that conformations of high statistical weight cannot be generated by
the pivot algorithm, can certainly be overcome. A method that changes the
conformation by local instead of global moves should be more suitable for this
problem. However, the second problem that partition functions and free energies
of one ensemble are not accessible by Metropolis Monte Carlo remains. These
values are needed for the evaluation of the partition function ratios, because for
each membrane shape one simulation run has to be performed. This second
problem can be solved by a growth algorithm, which intrinsically delivers the
free energy of each ensemble1: the growth of polymers attached to membranes of
different shapes will deliver the desired values of the partition functions.

Unfortunately, naive growth of chains is not capable of handling strong adsorp-
tion with good statistics. A refined technique, the Pruned Enriched Rosenbluth
Method (PERM), has been proven to generate proper ensembles for dense poly-
mer systems and for strongly restricted geometries [269–271]. The partition func-
tion of a system and its free energy are a natural result of the simulation, as they
are needed by PERM for its population control.

PERM is based on the growth algorithm introduced by Rosenbluth in the
1950s [210], which already provides a possibility to grow self-avoiding chains
without facing the problem of severe attrition for large bond numbers. With the
Rosenbluth algorithm, new bonds are always chosen in such a way that an allowed
conformation results. In order to avoid unwanted bias, weights have to be intro-
duced which correspond to the number of available growth possibilities in each
step. Assume that a bond should be added on a 3D simple cubic lattice and only
two of the five possible growth directions are available.2 One of both possibilities
is chosen randomly in order to obtain a new valid conformation, while the weight
of this chain will be reduced by a factor of 2/6. The PERM algorithm adds
an additional feature to the simple Rosenbluth method. A population control
enriches the conformations with high statistical weight and prunes the ensemble
from conformations of low weight. Pruning and enrichment enables PERM to
keep those conformations which contribute most when calculating observables.

1A simple growth algorithm provides the free energy in terms of the fraction of conformations
that succeeded to reach a certain bond number.

2Each grid point has six neighbours but one possibility is already occupied by the monomer
grown in the previous step.
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(a) no adsorption (b) adsorption energy: 3 kBT per bead

(c) adsorption energy: 3 kBT per bead (d) adsorption energy: 10 kBT per bead

Figure 6.2: Simulation snapshots of polymers anchored to hard walls of different
shape with N = 20, apol = 1 and rbead = 0.125 apol. The potential width is
0.125 apol. In all images, the wall is on the top.

This is the crucial feature of the algorithm, which leads to its good performance
in highly confined geometries. PERM, as well as the original Rosenbluth algo-
rithm, naturally applies for polymers on a lattice. However, off-lattice versions of
both algorithms are also available. A set of possible growth vectors is provided
before each growing step. All vectors are given by the polymer bond length and
their direction chosen by random determination of points on a sphere. Thus for
each growth step a ’local grid environment’ is present3 but the result of the total
growth process will be an off-lattice chain.

PERM can be implemented in a recursive fashion which results in a rather
short and simple program code. Figure 6.1 shows the pseudocode of a typical

3Obviously the concept of ’occupied lattice sites’ to check for self-avoidance does not apply
directly. Self-avoidance is checked for by the overlap of (virtual) spheres centered at the polymer
vertices.
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PERM implementation, used to determine the polymer effect.4

In the adsorbed regime, simulations for each curvature and membrane shape
have to be done separately. At first glance the need of separate simulations
for each membrane shape seems to be a major disadvantage compared to the
method applied in the last chapter. However, note that PERM allows to generate
ensembles for different chain lengths in one simulation run which is an advantage
compared to the method of chapter 5.

6.2 Simulations

The method has been validated for systems without an attractive potential where
the effects on the membrane curvature constants can be compared directly with
the simulations done by the pivot algorithm. Long production runs to determine
membrane constants for systems with adsorption have not yet been done, but
simulation snapshots for different observables and different wall shapes are shown
in figure 6.2.

4Choosing c lower = 0 and c upper = ∞ (or a sufficiently high value), neither pruning nor
enrichment will occur and the code is just the usual Rosenbluth algorithm.
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Chapter 7

Fluctuation spectrum of a
decorated membrane

In the previous chapters, the effects of the polymer on the membrane curvature
elastic constants have only been calculated in the limit where the wavelengths of
the fluctuations are large compared to the polymer size. The simulation methods
which have been employed are especially suitable for polymers attached symmet-
rically to the membrane and for membranes with a high bare membrane κ. For
bending rigidities of the order of kBT , which typically occur in surfactant systems,
it becomes more important to gain insight into the polymer effect on the whole
fluctuation spectrum of the membrane. Independently from my work, Bickel and
Marques [151] have addressed this aspect recently for membrane-polymer systems
with ideal end-grafted linear chains that decorate both sides of a membrane.

7.1 Modeling, simulation and evaluation

In order to evaluate the polymer effect on the whole fluctuation spectrum, we
need to simulate a fluctuating membrane with an attached polymer. The Monge
representation is used for the membrane (compare chapter 4) and periodic bound-
ary conditions are applied. To avoid possible problems corresponding to the pinch
which is formed at asymmetric polymer coverage, for the systematic studies chains
have always been symmetrically attached to each side of the membrane. A picture
of such a polymer-membrane system is shown in figure 7.1. The average mean
curvature of the membrane will vanish due to the symmetry, and the saddle-splay
contribution will be a constant because of the Gauss-Bonnet theorem1. Therefore
only the influence on κ will be extracted from the simulation data, the effects on
κ̄ cannot be evaluated. For the evaluation of κ, ’cylinder-like’ deformations are
sufficient, i. e. a membrane that fluctuates only in one direction. This simplifi-

1Neglecting the fact that the polymer contribution is not exactly homogeneous on the mem-
brane area. Further discussion is found in chapter 3.
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Figure 7.1: Simulation snapshot of a self avoiding polymer anchored to a fluc-
tuating membrane. The chain is fixed to the membrane in such a way that the
parts on both sides of the membrane have equal lengths.
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7.1 Modeling, simulation and evaluation

Figure 7.2: A bead fixed by a rod in
the apex of an angle. This simple model
helps to illustrate the polymer effect on
the bending rigidity.

cation reduces the degrees of freedom of the system considerably and speeds up
the simulations (see chapter 3).

Simple models

Simple models can be calculated analytically and might be helpful to understand
why polymers anchored to a membrane increase the bending rigidity.

• A 2D clapper-wedge model is sketched in figure 7.2. Compared to the planar
case, a clapper located at the outside of the wedge will gain entropy while
the inner clapper will loose entropy. The entropy of the system is given by
Stwo = −kBT ln(φ(2π−φ)) for φ ∈ [0, 2π]. The maximum of Stwo occurs at
φ = π, which is thus the preferred state of the system.

• In a histogram model, the membrane is assumed to consist of height levels
which are constant in one direction (figure 7.3). In the perpendicular di-
rection, all levels have the width of the clapper length (taken to be 1) and
periodic boundary conditions apply. The partition function of the system
is given by the integral over the membrane height differences of adjacent
strips with the proper weights, and integrals over the steradians available to
the clapper ends for the polymer. For a system of three strips, the clapper
integrals can be evaluated in the limit of small height differences hij of the
strips and incorporated in the Boltzmann factors

Z (κ) =

∫

dh12

∫

dh23

∫

dh31 δ (h31 − h12 − h13) (7.1)
∫

Ω1(h12,h23)

dΩ̃1

∫

Ω2(h12,h23)

dΩ̃2

exp

[

−3

2
κ
(

(h12 − h23)
2 + (h23 − h31)

2 + (h31 − h12)
2)
]
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x

3
21

y

z

Figure 7.3: The membrane fluctuates only in one direction and is discretised
using three heights with periodic boundary conditions. It interacts with a bead,
fixed in unit distance from a membrane point via a histogram shape.

≈ 4π2

∫

dh12

∫

dh23

∫

dh31 δ (h31 − h12 − h13)

exp

[

−3

2
κ

((

1 +
2

27

)

(∆h12,23)
2 + (∆h23,31)

2 + (∆h31,12)
2

)]

where ∆hij,jk = hij −hjk. Thus the clapper contribution can be interpreted
as an effective bending rigidity

κeff ≈ κ +
1

3

(

2

27

)

≈ κ + 0.025 (7.2)

if the anchor point is equally distributed over all strips.
The model calculation has been presented for three levels but can be gener-
alised to L height levels for any L > 2. The corresponding effect on κ is then
given by ∆κ = 2/(9L2). Analytical values and simulation results are listed
in table 7.1. The simulations have been done with the code which is has
also been used to simulate the polymer chains of several bonds. Thus this
model serves as a test of the code. For high κ, it is rather time-consuming
to obtain a proper statististical accuracy (and therefore these values have
been skipped for large L) while for very small κ the approximations used in
the analytical calculation do not hold. The simulation results are consistent
with the analytical values.
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7.1 Modeling, simulation and evaluation

L 2/(9L2) κ = 0.1 κ = 1 κ = 10 κ = 20 κ = 50

2 0.055 0.013 0.054 0.055 0.048 0.04
3 0.025 0.003 0.023 0.026 0.023 0.03
4 0.013 0.003 0.013 0.013 0.012 0.01
5 8.9 10−3 2 10−3 8.1 10−3 1 10−2 1 10−2 -
8 3.5 10−3 - 3.4 10−3 - - -

Table 7.1: Analytical and simulation results for the clapper-wedge model. The
error is of the order of magnitude of the last digit. Simulations have been per-
formed for a membranes with different bare κ values.

Modeling the membrane-polymer interaction

The membrane representation can be discretised either in Fourier space or in real
space. If it is discretised in Fourier space, it is continuous in real space and calcu-
lations of the avoidance of the polymers with the smooth membrane height field
are computationally rather time-consuming. All membrane fluctuation modes
need to be evaluated for each coordinate pair (x, y) which describes a polymer
location. The smooth membrane representation thus seems to be not favourable,
because typically 108 Monte Carlo steps have to be generated. As it will be dis-
cussed later, the membrane has been discretised in Fourier space for generating
the membrane conformations and an additional discretisation has been employed
in real space to model the interaction with the polymer.

The simplest polymer-membrane model used for the simulations is a histogram
representation of the membrane and attached Pearson walks to simulate the poly-
mer chains. The membrane-polymer interaction is given by the requirement that
the vertices of the polymer cannot cross the ’staircase’ of height levels. Two
discretisations are involved in this model: the polymer bond length, and the
histogram representation used to evaluate the membrane-polymer interaction.
While the effects of the polymer discretisation have already been extensively dis-
cussed for smooth membrane shapes in chapter 5, the additional discretisation
effects due to the membrane discretisation are investigated in this chapter. On
the one hand, the height levels of the histogram model are a crude approximation
to the smooth membrane shape shown in figure 7.4. On the other hand, the use of
height levels is very fast concerning computation time. Only the integer parts of
the x and y coordinates of the vertices need to be determined (as the membrane
grid constant is 1) and the z coordinate can be compared to the corresponding
height level, the value of the height is stored in an array.

A membrane representation with an linear interpolation between the grid
points is only slightly more time-consuming than the histogram model. The
membrane coordinates of neighbouring grid points are joined by straight lines for
a membrane fluctuating only in one direction. A triangulation is applied for more
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Fluctuation spectrum of a decorated membrane

Figure 7.4: A diblock copolymer and the membrane: exact membrane shape.

general fluctuations. The applicability of both approximate models is discussed
in section 7.2.

Generating membrane conformations and evaluation

The membrane Hamiltonian in Monge representation can be written in terms of
Fourier-transformed variables instead of the membrane height field. Using the
expressions in Fourier space which were discussed in section 4.2 and in appendix
C, several observables can be calculated analytically for pure membrane systems.
For the discretised membrane model of size L × L, with q = (2πkx/L, 2πky/L),
the ensemble averages read

〈

∑

x

[

hx − h̄
]2

〉

c

=
1

L2

∑

q;q 6=0

〈HqH−q〉c (7.3)

for the mean squared deviations from the average value of the height field and

〈

∑

x

[∇h (x)]2
x

〉

c

=
2

L2

L−1
∑

q;q 6=0

〈HqH−q〉c {[cos (qx)] + [cos (qy)] − 2}

(7.4)

for the mean squared gradients of the height field. Both observables comprise
membrane fluctuations on all length scales and in all directions. They employ
sums over the ensemble averages of

〈HqH−q〉c =
1

4κ
[cos (qx) + cos (qy) − 2]−2 (7.5)

72



7.2 Results and discussion

which characterise fluctuations of wavelengths determined by q. The values
〈HqH−q〉c can be reproduced exactly by simulations for pure membrane systems.
If these observables are extracted from the data of membrane-polymer simula-
tions, effective values of κ can be calculated. Of special interest is Eq. (7.5) which
has been employed to calculate the length-scale dependent polymer effect on the
bending rigidity.

There are two different strategies to change the membrane conformation in
a Metropolis Monte Carlo simulation algorithm: Either the membrane height of
one grid point is varied and the energy of the new conformation2 is determined
by Eq. (4.5), or the value of one Hq is varied, which affects one of the terms in the
sum occurring in Eq. (4.9). The observables of most interest (Eq. (7.5)) can be
directly deduced from the Hq (Eq. (7.5)). In order to reduce the correlation time
of consecutive observable snapshots, a method that generates the conformations
in Fourier space has been chosen.

7.2 Results and discussion

Ideal and self-avoiding polymers anchored to a membrane have been simulated.

Ideal chains

Simulations have been done for membrane grids of the sizes L = 16, 32 and
64, for polymer bond numbers N between 12 and 100 and for bare membrane
κ values of 1.6, 2.0, 3.2 and 6.4. In most simulations, the polymer bond length
apol has been chosen to equal the membrane grid constant amem. To check for
discretisation effects, systems with apol = 2 amem and apol = 0.5 amem have also
been investigated. The membrane-polymer interaction has been modeled by the
histogram and the straight-line membrane representations. Simulations have been
done for the coupled case where modes change on all length scales, as well as for
the decoupled case with only one active fluctuation mode. All systematic studies
have been done for symmetric polymer coverage, but one system with a single
end-grafted chain has also been simulated.

In the case of symmetric polymer coverage and large-scale fluctuations, the
polymer effect is expected to match the values discussed in chapter 5, i. e. for the
ideal chains the analytical values that have been calculated by Eisenriegler and
Hiergeist/Lipowsky [123,124].

A comparison of the results obtained by the histogram and the straight-line
model is shown in figure 7.5 for a membrane grid size L = 32 (32 × 32 grid
points). The bare membrane bending rigidity is κmem = 2. The polymer coverage
is symmetric with one chain anchored to each side of the membrane, each chain
consists of N = 12 bonds of length apol = amem. Note that the value of the

2In practice, the energy change is evaluated only on five grid points, see Eq. (4.6)
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(b) linear-connection model

Figure 7.5: The simulation snapshots show the same conformation using different
membrane representations to model the membrane-polymer interaction. In the
histogram case, the bending rigidity increases strongly for |q| → 0. The dashed
lines denote the analytical value for q → 0 [123, 124]. Note that the amplitudes
of the membrane fluctuations in the simulation snapshots are not realistic. An
extremely low bare membrane κ has been chosen for the snapshots.
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polymer effect is only about 0.1% of κmem.3 This requires a high accuracy of the
simulation data and a large number of observable snapshots.

• The histogram model extrapolates for |q| → 0 to a much too high value
compared to the analytical calculations. The strong increase of the polymer
effect for small |q| becomes less pronounced if larger ratios of apol/amem are
chosen, but does not vanish for reasonable sizes of the membrane grid.4

• The data obtained by simulations with the straight-line approximation al-
lows for a proper extrapolation to |q| → 0, but the data seems to extrapolate
to a somewhat too small value.

The strongly increased polymer effect for large-scale fluctuations in the histogram
model could be traced back to be mostly due to those conformations where the
polymer is anchored to a ’planar’ part of the membrane which is tilted against
the plane defining the membrane grid, compare figure 7.6 (a). For these confor-
mations, the ’staircase’ effect is most pronounced. This has been investigated
by attaching a polymer chain to a membrane with a fluctuation length larger
than the radius of gyration of the polymer. The membrane has been chosen to
fluctuate like a sin(x) and the polymer chain has been attached at x = 0 in one
simulation and at x = π/2 in another simulation. The amplitude a has been
varied by simulations in order to comply with the membrane curvature energy.
It has been found, that in the histogram model the polymer-damping of the fluc-
tuation is much stronger if the chain is anchored at x = 0 than if it is anchored
at x = π/2. This behaviour is opposite to the behaviour which is expected to
occur for a smooth membrane representation. In the smooth case, the mem-
brane remains flat around x = 0 despite of the fluctuations. The polymer should
therefore have no influence on the fluctuations, if it is anchored to this part of the
membrane. Obviously this problem does not occur if the membrane height values
on the grid are connected by straight lines. In order to get rid of the staircase
artefact, the straight-line representation of the membrane has been applied for
all further studies.

Figure 7.7 shows simulations for several membrane sizes and chain lengths.
The results for finite q are normalised by aκ(0), denoting the universal amplitudes
discussed in chapter 5. For dimensionality reasons, aκ(q)/aκ(0) is plotted against
|q|Re, so the data for different chain lengths scales properly. The polymer effect
is large for small values of |q|. This is compliant with an intuitive picture because
the fluctuation amplitudes scale like 1/q4 (compare appendix C). Surprisingly, a

3It is not possible to choose a much lower κ of the bare membrane for two reasons: 1.
The Hamiltonian employed is valid only for small curvatures. 2. With larger curvatures the
connection to the known limiting values is not possible any more.

4Increasing the ratio apol/amem requires an enlarged membrane grid size in oder to avoid
spurious effects due to the periodic boundary conditions — and thus leads to an increase of the
simulation time.
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Figure 7.6: The histogram model for the polymer-membrane interaction. The κ
value chosen to obtain the snapshots is much smaller than the value used for the
simulations.
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Figure 7.7: Simulation results for ideal chains without finite size corrections.
Labels are given by the set of values for L, N and κmem.
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Figure 7.8: Simulation results for ideal chains with the finite size corrections
obtained in chapter 5. Labels are given by the set of values L, N and κmem. The
function is f(x) = 2.0 {exp(−x2) − 1 + x2}/x4 where x = |q|Re/2.

decrease of aκ(q) at the lowest |q| value on the grid is observed in several cases.
The decrease occurs especially for low κmem and for polymer chains which are
short compared to the membrane size. At least partly this behaviour is due to
mode coupling, as will be discussed later. The statistical errors become rather
large compared to the effect for high absolute values of q. However, the simulation
results for different chain lengths and membrane sizes fall on a single master curve
reasonably well, even though the bond number of some of the chains is extremely
small and huge finite-size effects might have been expected (N = 12). If the
finite-size effects given by Eq. (5.7) are taken into account, the consistency of the
data improves considerably, see figure 7.8. Neglecting the decrease for the low |q|,
an extrapolation of the data to 1 now seems to be possible. Postulating that the
data extrapolates to 1 for small |q| and assuming that the functional form is the
same as for the system of Bickel and Marques [151], we find that the simulations
results can be very well described by:

f (q Re) = 2

{

exp

(

−
[

q Re

2

]2
)

− 1 +

[

q Re

2

]2
}

/

[

q Re

2

]4

(7.6)

Note that a priori there is no reason to expect that our simulation data is
described exactly by the calculations of Bickel and Marques. Both systems differ:
in Ref. [151] on both sides single chains are anchored at one end to the membrane,
whereas in the simulation symmetric polymers have been anchored. Indeed the
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authors propose that the ratio aκ(q)/aκ(0) in their system is given by 5

fBM (q Re) = ABM

{

exp

(

−
[

q Re√
6

]2
)

− 1 +

[

q Re√
6

]2
}

/

[

q Re√
6

]4

(7.7)

and is not extrapolating to 1. They calculate that for q → 0 the function extrap-
olates to 1/(1 + π/2) and the function decays more slowly with increasing qRe.
Note the different scale factors 1/2 and 1/

√
6. The different behaviour is due to

the different system responses to the spontaneous curvature terms. The distri-
butions of end-grafted polymers on the membrane will adjust to the membrane
shape, driven by an effect which is linear in the membrane’s curvature. The
end-grafted single chains prefer locations where the membrane is curved away
from the polymer. Due to the symmetric coverage, in the system investigated in
this work the polymers prefer planar parts of the membrane rather than those
which are highly curved.6 I have observed a similar effect as Bickel and Marques
have found, if the membrane has been decorated by one end-grafted polymer
chain (figure 7.9).7 However, quantitatively the simulation data of this asymmet-
ric system does not confirm the results in the publication. For my system, the
data is well described if the prefactor ABM would be only half the value given in
the reference. A decrease of κ due to polymer redistribution is consistent with
more general studies on asymmetric membrane components [272]. In my simula-
tion, asymmetry has only been introduced in one direction because the polymer
molecule is attached only to one side of the membrane. This might explain the
mismatch of a factor 2.

I have studied the effect of different ratios apol/amem (figure 7.10) and have
found the simulation data for ratios of 0.5, 1 and 2 to be consistent for a wide
range of |q|Re. This supports that Eq. (7.6) is independent from discretisation
effects.

Finally, I have checked for mode coupling effects by simulating the different
modes separately. The results for single q-modes in figure 7.11 imply that the
observed decrease of the polymer effect for low |q| is at least partly due to mode
coupling.

Self-avoiding chains

Self-avoiding chains of N = 50 and N = 100 bonds have been simulated. The
bond length has been chosen to equal the membrane grid constant and a bead

5see Eq. 3.10
6The free energy term corresponding to this redistribution is already of quadratic order in

the curvature and thus the resdistribution should not affect the value of the bending rigidity.
This is also the reason why I expect my simulations to extrapolate to 1.

7For more detailed studies of this architecture, the effect of the pinch would have to be
discussed.
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Figure 7.9: Simulation results for a symmetric polymer attachment to the mem-
brane and a chain anchored only to one side. Labels are given by the set of values
L, N and κmem.
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Figure 7.10: Simulation results for different ratios abond/amem. Labels are given
by the set of values L, N , apol/amem and κmem.
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Figure 7.11: Simulation results for coupled and decoupled modes of different q.
Labels are given by the set of values L, N and κmem.

size of 0.25 apol is used. The values for Re have been determined by calculations
for free chains. The effects for the membrane’s curvature elastic constants on the
whole fluctuation spectrum have been normalised by those for the limit of large
fluctuation length scales, aκ(0), that have been obtained in chapter 5. Up to the
simulation accuracy, self-avoidance has no influence on the functional dependence
of the polymer effect on |q| (figure 7.12).

Self-avoiding chains have much larger values of Re and Rg compared to ideal
chains of the same bond numbers and bond lengths. The average chain con-
formation therefore needs to be much more stretched in the self-avoiding case.
Already for 200 bonds the radius of gyration for the self-avoiding chain is a factor
of 1.5 larger than for the ideal case, compare figure 4.3. In addition, as discussed
in chapter 5, the amplitude of the polymer effect for large κmem changes if self-
avoidance effects are taken into account. Therefore it is very remarkable that
the proper normalised functions aκ(q) coincide for ideal and self-avoiding chains.
However, this is consistent with the results of an recent investigation for the pres-
sure exerted by ideal and self-avoiding chains in Ref. [147], and it confirms the
simulation results for aκ(0), obtained in the limit of large scale fluctuations.
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Figure 7.12: Simulation results for ideal and self-avoiding chains. Labels are
given by the set of values L, N and κmem. The function f(x) is the same as in
figure 7.8.
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Chapter 8

Linear polymers in the lamellar
phase

8.1 Model and simulation technique

In this chapter, the effects of an anchored linear polymer in the lamellar phase
are discussed. The polymer is modeled by a freely-jointed chain confined between
two parallel walls. The chain is end-grafted to one of the walls. The evaluation
technique is very similar to the one described in chapter 5. In addition to the
one-wall case, virtual spheres and cylinders will be applied to both walls.

For wall distances which are very small compared to the size of the polymer,
a new algorithm generating conformations of the chain needs to be introduced.
Apart from the one-bead crankshaft algorithm, conformations generated by 3D
pivot, multiple-bead crankshaft, one-bond changes and simple growth all have
very low acceptance rates. Subsequent conformations generated by a one-bead
crankshaft algorithm are correlated to a very high degree. Therefore I have
introduced a 2D pivot algorithm that operates only in the plane parallel to the
walls. In combination with the one-bead crankshaft algorithm, 2D pivot moves
are capable to generate all possible conformations. I have validated the 2D pivot
algorithm by comparing the results with those which were obtained with the
standard pivot algorithm for chains of length 20 and not too small interlayer
distances.

8.2 Polymer-wall simulations

An ideal chain of N = 100 bonds with bond length 0.245, i. e. Rg = 1 and
Re =

√
6 = 2.45, has been simulated. For large distances of the parallel walls,

the polymer does not notice the additional constraint and the results equal those
of chapter 5. For distances between d = 5 Rg and d = 1.5 Rg, the polymer effect
increases for all membrane constants, see figure 8.1 (a). For d = 3 Rg, the effect
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Figure 8.1: Universal amplitudes asp, aκ und āκ for an ideal linear polymer (N =
100, Rg = 1) constrained between parallel walls of distance d. Diamonds denote
the effect on the wall the chain is attached to, circles the effect on the opposite
wall and squares the total effect. The dashed line indicates the analytical value
without confinement.
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8.3 Discussion

d/Rg asp,d asp,o asp,a aκ,d aκ,o aκ,a āκ,d āκ,o āκ,a

1 1.28 1.39 2.67 -8 -8 -16 11 11 23
2 0.37 0.26 0.63 0.49 0.50 0.99 -0.25 -0.27 -0.52
3 0.21 0.06 0.28 0.27 0.23 0.50 -0.20 -0.18 -0.38
4 0.19 0.01 0.20 0.22 0.06 0.29 -0.17 -0.04 -0.21
5 0.18 0.00 0.18 0.21 0.01 0.22 -0.17 0.00 -0.17

Table 8.1: Membrane constants obtained for a polymer constrained between two
parallel walls. Data is presented for the wall the chain is directly anchored to
(index d), the opposite wall (index o) and the sum of both (index a). The
statistical error is of the order of magnitude of the last digit.

almost doubles for κ and κ̄, compared to d = ∞ and it increases by about 1/3
for c0. For d = 2 Rg, the model predicts enhancement factors of about 4.2 for κ,
and 3 for κ̄ and c0. The enhanced effects are due to two different reasons:

• The effect on the anchoring wall increases.

• The polymer also affects the fluctuations of the opposite wall.

Surprisingly, at d ≈ 1.5 Rg the polymer effect changes qualitatively, compare
figure 8.1 (b). The absolute values of aκ and āκ increase strongly if the interlayer
distance is decreased, but with reversed sign.1 The effect on asp continues to
increase and remains positive. For d > 0.5 Rg, the universal amplitudes can be
calculated with reasonable accuracy and the N1/2 extrapolation holds for bond
lengths smaller than the interlayer distance. The extrapolated data is listed in
table 8.1. The strong negative values at small interlayer distances have been
observed for all finite chain lengths, but the for d < 0.5 Rg extrapolation errors
in the limit N → ∞ become too large to decide about the sign of asp, aκ and āκ.

8.3 Discussion

An ensemble has been investigated where the distance between the polymer an-
chor point and the opposite wall has been kept fixed.2 In this model, a strong
decrease of the bending rigidity and a strong increase of the saddle-splay modu-
lus have been observed. It is obvious that we do not expect a sign change of the
total effective membrane constants, because an instability of the lamellar phase
is expected to occur at somewhat larger distances. The results of the wall model

1In the figure, only the total values are shown. The values for anchor and opposite wall are
both half of the total effect.

2For a real membrane, a relaxation of this distance should be taken into account.
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Linear polymers in the lamellar phase

should be valid if the bare membrane κ is sufficiently larger than the ∆κ induced
by the polymer.

The results for the polymers in the lamellar phase are rather surprising. How-
ever, it is obvious that the anchor looses its effect on the polymer conformations
when the interlayer distance becomes small. Therefore the effect of free and an-
chored chains should be the same for strong confinement and one of both effects
thus has to change sign.

In a blob model calculation, the most naive ansatz is the assumption of a
cylindrical symmetry of the polymer extension around the anchor point. With
this assumption, the sizes of the blobs are changed if the membrane is curved, but
a blob redistribution will not take place. An increase of the absolute values for
aκ and āκ is found in the calculations if the lamellar spacings decrease. However,
the model cannot explain the sign change in aκ, because all expansion coefficients
for the free energy turn out to be positive for arbitrary values of d (compare
Eqs. (5.6)). The model is obviously not capable to take into account for changes
of an asymmetric shape of the polymers, which are due to a finite membrane
curvature. Indeed, figure 8.2 shows that (a) the polymer has a mean shape which
is not cylindrically symmetric and (b) that the monomer density redistributions
for a small change of the curvature of the anchoring wall are large. The response
of the polymer chain to this asymmetry thus seems to be an important effect for
the determination of the values of aκ and āκ at small interlayer distances.

The dependence of the polymer effect on the interlayer distance might explain
some of the effects described for the lamellar-phase experiments in chapter 2. Es-
pecially it might explain two effects observed in the microemulsion experiments3:

• Confinement effects might explain the missing factor of about 2 in the mea-
surements of aκ and āκ in the microemulsion experiment [13,16]. Note that
the average structural size of a microemulsion in Ref. [16] has about twice
the value of the interlayer spacing where confinement effects are expected.4

However, due to fluctuations which have not been taken into account by
the wall model, also smaller intermembrane distances will occur.

• Confinement effects might explain the occurrence of a lamellar island in the
microemulsion experiments [9, 17]. The effect has been observed for high
polymer additions and the structural size of the microemulsion is of the
order of magnitude where confinement effects are expected. The ratio −κ/κ̄
has a maximum at about d = 2Rg. This might favour a lamellar phase,
compare appendix D. The decrease of the amplitudes of the polymer effect

3Note that in both cases data obtained for the lamellar phase is used to argue for microemul-

sion experiments.
4Compare Fig. 1 in Ref. [16] and use the formula d = 2.05 nm/φs to determine the domain

size [273]. With Rg(PEP5 − PEO5) = 3 nm, we obtain d = 6.3 Rg for the measurement at
φs = 0.11 and d = 10.5 Rg for φs = 0.71.
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Figure 8.2: Contour plot of monomer densities of an ideal linear polymer with
100 bonds and bond length apol. = 0.2449 which is constrained by two walls. The
anchor point is fixed at (0, 0) and the center of gravity is always oriented in posi-
tive x direction by turning the confirmation around an axis perpendicular to the
walls through the anchor point. Bond lengths and number of bonds correspond
to a free chain of mean squared radius of gyration 1. All density values are given
in units of 1/a2

pol.. The sketches are strongly exaggerated. The distance between
the walls is 0.25 and the curvature in cases (a) and (c) equals 8.3169 × 10−4.
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Figure 8.3: The lamellar island observed in oil-water-amphiphile microemulsion
experiments by addition of block-copolymers (identifying the amphiphile volume
fraction φ with 1/d) [9, 17]. The island might be due to confinement effects of
the anchored polymer chains which act differently on κ and κ̄.
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8.3 Discussion

might also explain why the lamellar phase at high values of 1/d has been
observed not to shift upon polymer addition [9]. This hypothetical scenario
is sketched in figure 8.3. Note that the relation of the theoretical data for
the extrema of aκ(1/d) and āκ(1/d) with the position of the lamellar island
in the phase diagram, as indicated in the figure, still has to be investigated
in more detail.

In this chapter, confinement effects have been investigated for the limit of
bare membrane κ values that are large compared to the polymer effect. Ex-
perimental evidence for this limiting case has not yet been found. It would be
therefore interesting to extend the studies in order to connect them quantita-
tively to experiments with smaller membrane κ, e. g. surfactant systems like the
microemulsions.
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Chapter 9

Conclusions

Several experiments on different kinds of polymer-membrane systems have been
discussed. With microemulsion experiments, the polymer effect on the bending
rigidity and the saddle-splay modulus have been measured recently. While the
scaling behaviour agrees very well, the values do not coincide with the analytical
theories of ideal chains. The measurements are about a factor of 1.5 to 2 larger
than current theoretical predictions.

I have developed a Monte Carlo simulation technique for polymers anchored
to membranes and was able to reproduce the analytical results for ideal linear
chains. Finite-size effects as well as universal system properties have been studied.
Two fit steps are involved to obtain the universal constants from simulations of
chains with up to 200 bonds. After validation of the method, the effects of self-
avoidance have been determined with high accuracy. The self-avoidance effects
for linear chains have been found to be rather small. Star polymers with up to
5 arms, anchored at their centers to the membrane, have been simulated. I have
found that

1. A star increases the efficiency of the polymer with respect to the bending
rigidity and the spontaneous curvature.

2. The ratio of the polymer effects on κ and κ̄ can be chosen by the function-
ality.

Both properties of star polymers have been confirmed analytically by blob model
calculations. Ring polymers with and without self-avoidance have been studied.
For a self-avoiding ring polymer without knots, I have observed a change in
the effect on the membrane curvature elastic constants, if the number of bonds
increases over a threshold number of about 50.

Polymers in a multilayer system have been investigated, modeled as one chain
constrained between two parallel walls. I have found the effect of an anchored
polymer to increase significantly for interlayer distances d of 2 to 4 times the
radius of gyration of the chain. For smaller interlayer distances, the effects on κ
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and κ̄ have been found to change their signs and to increase much more strongly
in magnitude. A sign change of the effective membrane constants is not supposed
to be found in real systems because an instability is supposed to occur for a some-
what larger value d. The confinement effects are of the right order of magnitude
that they might explain the missing factor of about 2 for the bending rigidity
and the saddle splay modulus if the microemulsion measurements are compared
to the analytical theory.

I have modified the simulation method in order to make it capable to inves-
tigate adsorption effects. Simulation results have not yet been obtained.

The polymer effect on the bending rigidity has been evaluated for the whole
fluctuation spectrum of the membrane. The chain has therefore been attached to
a fluctuating surface. In compliance with intuitive arguments, the effect is most
pronounced for fluctuations on length scales large compared to the size of the
chain. Using the calculated finite-size effects, scaling works very well for different
system sizes. We were able to describe the data by a single master curve. Self-
avoidance effects have been determined, and the data is found to be described by
the same master curve obtained for ideal chains. This allows to make the point
that there are no effects of self-avoidance on the functional form of the fluctuation
spectrum of a membrane.
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Appendix A

Fourier transformation
of the membrane height field

A 2D discrete Fourier transform is needed to transform the membrane height field.
The fact that the data is real allows to simplify and fasten the transformation
by about a factor of two [274]. The discrete Fourier transformation of a field
X [j1, j2] of dimension L × L is defined by

Y [i1, i2] =
1

N

L−1
∑

j1=0

L−1
∑

j2=0

X [j1, j2] exp

(

2πi

L
i1j1

)

exp

(

2πi

L
i2j2

)

(A.1)

with an appropriate normalization factor N and for 0 ≤ i1 < L, 0 ≤ i2 < L. In
general, the Y [i1, i2] are complex; for real X, the array Y has hermitian symme-
try, i. e. Y [i1, i2] = Y ∗ [L − i1, L − i2]. It is easy to see that hermitian symmetry
corresponds to a real value: If a = ar + i ai, a exp (i kx) + a∗ exp (−i kx) =
2ar cos (kx) + 2ai sin (kx).

Contrary to the impression one might get in reading textbooks on numerical
mathematics, it is not essential to choose the size of the data field to powers of

l ↓ m → 0 1 2 3
0 r c2 r c∗2
1 c3 c4 c5 c6

2 r c1 r c∗1
3 c∗3 c∗6 c∗5 c∗4

l ↓ m → 0 1 2 3 4
0 r c1 c2 c∗2 c∗1
1 c3 c5 c8 c10 c11

2 c4 c7 c6 c9 c12

3 c∗4 c∗12 c∗9 c∗6 c∗7
4 c∗3 c∗11 c∗10 c∗8 c∗5

Table A.1: The structure of the fourier transformed 2D real array. The marked
region is the data that rfftw2d prints out. Here, r stands for a real data entry,
c for a complex one. Complex entries always occur together with their complex
conjugate counterpart.
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Fourier transformation of the membrane height field

two — needed for a conventional fast Fourier transformation — in order to get
reasonable performance. Program libraries as for example the freely available
FFTW are fast also for other array sizes [275–277]. The FFTW library is com-
monly used for scientific computations but the structure of the output of a 2D
real transform is somewhat intriguing. For the special cases of N = 4 and N = 5,
table A.1 lists the structure of the arrays. Note that there are four real values
if L is even: (0, 0), (0, L/2), (L/2, 0) and (L/2, L/2). In case of odd L, only the
value with index (0, 0) is real.

For my membrane height field data, the value with the index (0, 0) is not
of interest because it corresponds to an overall shift of the membrane. The
values with indices (1, 0) and (0, 1) correspond to the amplitude of the longest
wavelength fluctuations which are possible in the system. The values with indices
(L − 1, 0) and (0, L − 1) analogously give the amplitudes of fluctuations with the
smallest fluctuation lengths (parallel to one of the coordinate axes).
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Appendix B

The blob model for star polymers

In this appendix, detailed equations for the blob model calculation for star poly-
mers discussed in chapter 5 can be found. These expressions are not necessary
for a basic understanding of the problem and are presented for completeness.

Evaluating integral 5.15 radius of the star polymer is found to be

Rstar,x = l0N
ν

(

f

2π

)
1−ν

2

ν−ν

{

1 +

(

1

2
− 1

2ν
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Rx
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2ν

)(

3
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2ν

)
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x
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R2
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}−ν

(B.1)

in exact representation. Expansion of the terms in curled brackets gives

Rstar,x = l0N
ν
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2π

)
1−ν
2

ν−ν

{

1 +

(

1

2ν
− 1

2

)

ν

1 + ν
ax

Rstar,x

Rx
+

1

2

[(

1

2ν
− 1

2

)

(

3

2
− 1

2ν

)

1

1 + 2ν
+

(

1

2ν
− 1

2

)2
1

1 + ν

]

νa2
x

R2
star,x

R2
x

}

. (B.2)

Recursive substitution of Rstar,x leads to Eq. (5.16) and

Q0 = ν−ν (B.3)

Qx,1 = ax

(

1

2ν
− 1

2

)

ν1−2ν

1 + ν
(B.4)

Qx,2 = a2
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(B.5)
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The blob model for star polymers

Inserting ξx (r), the free energy (Eq. (5.17)) reads

Fx = kBT

(

f

2π

)
1
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∫ Rstar,x

l0

dr
1

r

(

1 − ax
r

Rx

)− 1

2

(B.6)

and valuation of the integral leads to
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Now the value for Rstar,x determined previously needs to be inserted. After several
steps one ends up with
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for the free energy of the whole star polymer. It is easy to show analogously that
the expansion also holds for spheres and cylinders that are curved away from
the membrane. Comparison of the free energy with Eq. (5.5) gives the scaling
relations for asp/f , aκ/f and āκ/f :

asp

f
= −1

4

(

(

1

2ν
− 1

2

)

ν

1 + ν
+

1

2

)

as

(

f

2π

)1− ν
2

aκ

f
=

(

(

1

2ν
− 1

2

)(

3

2
− 1

2ν

)

ν

1 + 2ν
+

(

1

2ν
− 1

2

)2
ν (1 + 2ν)

(1 + ν)2

+

(

1

2ν
− 1

2

)

ν

1 + ν
+

3

8

)

ν−2ν

(

f

2π

)
3

2
−ν

a2
c

āκ
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Appendix C

Analytical calculation of
membrane observables

Observables of the pure 2D membrane system in Monge representation with small
fluctuation amplitudes can be calculated analytically. The most accurate calcula-
tion seems to be a continuum model, but to compare with the simulation results a
grid model is needed. Continuum as well as grid model employ the representation
of the height field in Fourier space.

Continuum model

The membrane is represented in real space by a height field h(x). This corre-
sponds to an amplitude

H(q) =
1

2π

∫ ∞

−∞

dxh(x) exp (−iq · x) (C.1)

in Fourier space and the backwards transformation is given by

h(x) =
1

(2π)2

∫ ∞

−∞

dqH(q) exp (q · x) (C.2)

for two-dimensional vectors q and x. The membrane Hamiltonian

H =
1

2

∫ ∞

−∞

dxκ
(

∇2h (x)
)2

(C.3)

thus reads1:

H =
κ

2

∫ ∞

−∞

dq

∫ ∞

−∞

dq′ q2q′2 H(q)H(−q′)δ(q + q′) (C.5)

1

δ(x) =
1

(2π)2

∫

∞

−∞

dt exp (ix · t) (2D) (C.4)
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Analytical calculation of membrane observables

Using the equipartition theorem [186], one gets for the ensemble average:

κ

2
q2q′2 〈H(q)H(−q′)〉c =

1

2
kBTδ(q + q′) (C.6)

The mean squared deviations of h(x) from the average membrane height can be
calculated using polar coordinates and taking into account for the physical re-
strictions of the model. The system size is given by Lmax and the molecular length
scale is amol. They determine the range of the integral in |q| to [2π/Lmax, 2π/amol].

〈

h2 (x)
〉

c
=

1

(2π)2
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∞

dq
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∞
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dq
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∫ 2πκ
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0

dq
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q4

≈ 1

2πκ

∫ 2π/amol

2π/Lmax

dq

q3

≈ 1

16π3

L2
max

κ
(C.7)

In a similar calculation,
〈

(∇h (x))2〉

c
evaluates to:

〈

(∇h (x))2
〉

c
≈ 1

2πκ
ln

(

Lmax

amol

)

(C.8)

Grid model

In this section, the discretised membrane model with periodic boundary con-
ditions, i. e. h(x + La,y + La) = h(x,y), and discretisation length 1 will be
discussed. The Fourier transformation of the height field is given by

Hnx,ny
=

1

L

L−1
∑

kx=0

L−1
∑

ky=0

hkx,ky
exp [−2πi (kxnx + kyny) /L] (C.9)

and the reverse transformation reads

hkx,ky
=

1

L

L−1
∑

nx=0

L−1
∑

ny=0

Hnx,ny
exp [+2πi (kxnx + kyny) /L] (C.10)
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for a square grid of size L×L and nx, ny, kx, ky ∈ {0, 1, ..., L − 1}. The Hamilto-
nian becomes (compare Eq. (4.6) )2:

H =
κ

2

L−1
∑

j,k=1

(hj+1,k + hj−1,k + hj,k+1 + hj,k−1 − 4hj,k)

= 2κ
L−1
∑

l,m=0

Hl,mH−l,−m

[

cos

(

2πm

L

)

+ cos

(

2πl

L

)

− 2

]2

(C.12)

The equipartition theorem gives3:

〈Hl,mHl′,m′〉c =
δl,l′δm,m′

4κ

[

cos

(

2πm

L

)

+ cos

(

2πl

L

)

− 2

]−2

(C.13)

We get the observables:

〈

L
∑

j,k=1

(∇hj,k)
2

〉

c

=
2

L2

L−1
∑

l,m=0;(l,m)6=0

< Hl,mH−l,−m >c

{(

1 − cos

(

2πl

L

))

+

(

1 − cos

(

2πm

L

))}

(C.14)

〈

L
∑

j,k=1

(

hj,k − h̄
)2

〉

c

=
1

L2

L−1
∑

l,m=0;(l,m)6=0

< Hl,mH−l,−m >c (C.15)

2

δmx,m′

x
δmy,m′

y
=

1

L2

L−1
∑

tx,ty=0

exp

[

2πi

L

{

(mx − m′

x) tx +
(

my − m′

y

)

ty
}

]

(C.11)

3As hj,k consists of real numbers, < Hl,mH−l,−m >=< Hl,mH∗

l,m >.
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Appendix D

Free energy functions

Simple free energy functions might be used to calculate phase diagrams, based
on the effective membrane curvature elastic constants, compare [278]. The basic
variables of a phase diagram are the amphiphile concentration φ and the ra-
tio of diblock-copolymer to amphiphile δ2

p. We start with membrane-curvature
expressions and rewrite the equations in terms of φ and δ2

p.

Microemulsion phase

At vanishing spontaneous curvature, the microemulsion phase can be modeled
by a minimal surface with c1 + c2 = 0, but c1 = −c2 6= 0 [279]. The curvature
Hamiltonian reduces to the κ̄ term:

H =

∫

dS κ̄c1c2 (D.1)

The curvatures are inverse proportional to the typical system length scale and
are proportional to the amphiphile concentration φ. As c1 = −c2, c1c2 < 0. The
integration over the whole interfacial area divided by the volume is proportional
to the amphiphile concentration φ. We obtain

Fµe = −cµeφ
3 κ̄ (D.2)

with cµe > 0.

Lamellar phase

The lamellar phase is characterised by the bending rigidity κ of the membrane.
The free energy density of a membrane confined between two parallel walls reads

∆Fwalls = c1
(kBT )2

κ
ξ−2 (D.3)
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Free energy functions

where ξ is the length scale on which the fluctuations are analysed [279]. The free
energy density per volume goes like ∆F/ξ due to the membrane periodicity. The
free energy density is given by

∆Flam = c1
(kBT )2

κ
ξ−3 (D.4)

and connected with the concentration by a proportionality constant clam > 0

∆Flam = clamc∞
(kBT )2

κ
φ−3 (D.5)

with a different prefactor c∞ = 0.106, if the membrane is confined by other
membranes instead of walls.

Renormalisation due to fluctuations on smaller length scales

Fluctuations on smaller length scales than ξ should be taken into account by
renormalisation of κ and κ̄ (compare Eq. 2.5; see [278]). A lower cutoff acut is
approximately the molecular size.

κR(ξ) = κ(ξ) − 3 ln

(

ξ

acut

)

κ̄R(ξ) = κ̄(ξ) +
10

3
ln

(

ξ

acut

)

(D.6)

The polymer effect

The polymer effects on the membrane curvature constants are given by

κeff = κ + aκ(d) σ
(

R2
e,w + R2

e,o

)

κ̄eff = κ̄ + āκ(d) σ
(

R2
e,w + R2

e,o

)

(D.7)

where aκ(∞) = kBT
(

1 + π
2

)

/12, āκ(∞) = kBT/6 and the root mean squared
end-to-end radii Re,o and Re,w of the oil and the water part respectively (compare
Eq. 3.4). The area density of the polymers σ can be replaced by the δ2

p , again
introducing a proportionality factor which will be neglected in the following.

In the case of the lamellar phase we assume that the polymer renormalises the
bilayer thickness in addition to the changes of the membrane’s curvature elastic
constants. This changes the membrane free energy expression to

∆Flam = clamc∞
(kBT )2

κ
φ

(

1

φ
− δ

)−2

(D.8)

The additional thickness can be estimated to be proportional to the radius of
gyration and the amount of polymer to be δ = δ2

p(Re,o + Re,w)/
√

6.
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Summary

Finally, we end up with a set of equations which can be used to calculate the
phase diagrams:

• free energy of lamellar phase with renormalisation

Flam =
0.106 φ3

κ + 3 ln(φ)
(D.9)

• free energy of lamellar phase with renormalisation and polymer effect

Flam,p = 0.106 φ

/
[

κ + aκ(d)δ2
p(R

2
e,o + R2

e,w) + 3 ln(φ)
]

/
[

1/φ − (Re,o + Re,w)δ2
p/
√

6
]2

(D.10)

• free energy of microemulsion phase with renormalisation

Fµe = −φ3

(

κ̄ − 10

3
ln(φ)

)

(D.11)

• free energy of microemulsion phase with renormalisation and polymer effect

Fµe,p = −φ3

(

κ̄ + δ2
pāκ(d)

(

R2
e,o + R2

e,w

)

− 10

3
ln(φ)

)

(D.12)
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thesis, Université Louis Pasteur Strasbourg I, 2001.

[147] T. Bickel, C. Jeppesen, and C. M. Marques, Local entropic effects of poly-
mers grafted to soft interfaces, Eur. Phys. J. E 4, 33 (2001).

[148] F. Brochard and J. F. Lennon, Frequency spectrum of the flicker phe-
nomenon in erythrocytes, J. Phys. France 36, 1035 (1975).

[149] A. R. Evans, M. S. Turner, and P. Sens, Interactions between proteins bound
to biomembranes, Phys. Rev. E 67, 041907 (2003).

[150] R. Lipowsky, The conformation of membranes, Nature 349, 475 (1991).

[151] T. Bickel and C. M. Marques, Scale-dependent rigidity of polymer-
ornamented membranes, Eur. Phys. J. E 9, 349 (2002).

[152] C. M. Marques and J. B. Fournier, Deviatoric spontaneous curvature of lipid
membranes induced by Siamese macromolecular cosurfactants, Europhys.
Lett. 35, 361 (1996).

[153] J. B. Fournier, Nontopological Saddle-Splay and Curvature Instabilities from
Anisotropic Membrane Inclusions, Phys. Rev. Lett. 76, 4436 (1996).

[154] G. Gompper, J. K. G. Dhont, and D. Richter, Komplexe Materialien auf
mesoskopische Skala, Phys. Unserer Zeit 34, 12 (2003).

[155] G. Gompper, J. K. G. Dhont, and D. Richter, Eine Welt zwischen Fest und
Flüssig, Phys. Unserer Zeit 34, 19 (2003).

[156] G. Gompper, Modellierung von Knautschprozessen, Spektrum der Wis-
senschaft , 29 (1997).

[157] G. Gompper and D. M. Kroll, Statistische Physik von Zufallsflächen,
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tigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen
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