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1. Introduction 
 
1.1 G Protein Coupled Receptors 

Multicellular organisms have highly evolved based on the capacity of their cells to 

communicate with each other and with their environment.  Over years of discovery the 

membrane-bound receptors have been categorized into four or five families belonging to one 

large G protein-coupled receptor (GPCR) superfamily.  GPCRs are among the oldest signal 

transduction machinery present in plants (Plakidou-Dymock et al., 1998), yeast (Dohlman et 

al., 1991) and slime mold (Dictyostelium discoideum) (Devreotes, 1994), which control the 

activity of enzymes, ion channels and transport of vesicles via the catalysis of the GDP–GTP 

exchange on heterotrimeric G proteins (Gα–βγ).  A large number of genes code for GPCRs in 

vertebrates and Caenorhabditis elegans that are mainly involved in the recognition and 

transduction of messages as diverse as light, Ca2+, odorants, small molecules including amino-

acids, nucleotides and peptides, as well as proteins (Figure I).  Although sequence comparison 

between the different GPCRs revealed the existence of different receptor families sharing low 

sequence similarity they have a central core domain constituted of seven transmembrane 

helices (TM I-VII).   

 

 
Figure I. Illustration of the GPCR mediated signal transductions (Bockaert and Pin, 1999). 

 

Two cysteine residues in the extracellular loops (e1 and e2) are conserved in most GPCRs that 

form a disulfide link which is probably important for the packing and for the stabilization of a 

restricted number of conformations of these seven TMs (Figure I).  GPCRs differ in the length 

and function of their N-terminal extracellular domain, their C-terminal intracellular domain 

and their intracellular loops.  Each of these domains provides specific properties to the various 

receptor proteins and any conformational change in the core domain will affect the 
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intracellular pocket formed between the TM III-VI that plays a major role in binding and 

activating the G proteins (Bockaert and Pin, 1999). 

 

1.2 Frizzled proteins 

Frizzled proteins belong to the cell surface proteins functioning as the receptor for the Wnt 

ligand and range in length from about ~500 to 700 amino acids. The amino terminus of 

Frizzled protein is predicted to be extracellular and contains a cysteine-rich domain (CRD) 

that is required for binding of Wnt molecules (Bhanot et al., 1996), followed by a hydrophilic 

linker region of 40-100 amino acids.  The proteins also contain seven hydrophobic domains 

that are predicted to form transmembrane α-helices.  The intracellular carboxy-terminal 

domain has a variable length and is not well conserved among different family members 

(Wang et al., 1996).  Moreover, the presence of seven hydrophobic domains has categorized 

the protein to be related to the GPCR superfamily.  The sequence similarity to GPCRs is low, 

because similarity is restricted to the seven transmembrane regions that have a high frequency 

of hydrophobic residues.   

 

1.2.1 Functions of Frizzled proteins  

Frizzled proteins are exclusively found at the cell surface to bind Wnt and get internalized to 

regulate the extracellular level of Wnt protein (Chen et al., 2003).  The binding of Wnt ligands 

to the Frizzled receptors induces a canonical and two non-canonical β-catenin dependent 

Wnt/Fz pathways, the planar cell polarity (PCP) and the Wnt/Ca2+ pathway.  

I Canonical Wnt/β-catenin pathway 

The canonical Wnt/β-catenin pathway is characterized by stabilization of β-catenin in 

response to ligand binding. Wnt proteins act on the target cells by binding to the Frizzled 

(Fz)/low-density lipoprotein (LDL) receptor-related protein (LRP) complex at the cell surface. 

These receptors transduce a signal to several intracellular proteins which mainly includes 

Dishevelled (Dsh) and the transcriptional regulator, β-catenin.  Cytoplasmic β-catenin levels 

are normally kept low through continuous proteasome-mediated degradation but the 

degradation pathway is inhibited when cells receive Wnt signals and consequently β-catenin 

accumulates in the cytoplasm and nucleus.  This accumulated β-catenin in the nucleus 

interacts with the transcription factors such as the lymphoid enhancer-binding factor 1/Tcell-

specific transcription factor (LEF/TCF) to affect transcription (Figure III).  A large number of 

Wnt targets have been identified that include members of the Wnt signal transduction 
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pathway itself, which provide feedback control during Wnt signaling (Logan and Nusse, 

2004). 

 
Figure III. Canonical Wnt signaling (Logan and Nusse, 2004) 

 
II Non-canonical planar cell polarity 

The PCP pathway regulated genes when mutated result in cell polarity defects in a planar 

tissue.  A non-canonical Frizzled (fz) activity controls the coordinated cell polarity decisions 

in the Drosophila cuticle where each cell produces a single hair on its apical surface at the 

distal vertex of the cell, which then grows out distalwards (Figure IIA).  In the absence of fz, 

hairs form in the centre of the apical surface of the cell and no longer invariably grow out 

distalwards (Figure IIB) (Wong and Adler, 1993). This constitutes the cell-autonomous 

activity of fz in the wing. 

 
 
Figure II. Planar cell polarity in Drosophila wing (Strutt, 2003). 
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III Non-canonical Wnt/Ca2+ pathway 

In the Wnt/calcium pathway Frizzled appears to act through heterotrimeric guanine 

nucleotide–binding proteins (G proteins) activating phospholipase C (PLC) (Slusarski et al., 

1997a) and phosphodiesterase (PDE) (Ahumada et al., 2002), which leads to increased 

concentrations of free intracellular calcium [Ca2+]i (Slusarski et al., 1997b) and to decreased 

intracellular concentrations of cyclic guanosine monophosphate (cGMP) (Ahumada et al., 

2002), respectively (Figure IV).  However the newly discovered role of cGMP in Wnt 

signaling is the least well understood.  Therefore Frizzleds appear to function in multiple 

pathways, including the PCP, Wnt/calcium, and canonical Wnt/ß-catenin pathways and 

induce different signal transduction pathways that regulate some of the major cellular 

processes in a cell. 

 

 
Figure IV. Frizzled mediated Wnt-Ca2+ signaling (Wang and Malbon, 2003). 

 
1.2.2 Frizzled role in development and diseases 

Frizzled receptors regulate specification of cell fate, cell adhesion, migration, polarity, and 

proliferation by binding to Wnt molecules.  Their roles in development have been analysed by 

the phenotypes exhibited in different model systems as a result of gene knockout or mutations 

which is summarized in Table I (Huang and Klein, 2004).  Noticable is a human hereditary 

disorder, called familial exudative vitreopathy (FEVR), which is caused by mutation in the 

Frizzled (Fz4) receptor that results in defective vasculogenesis in the peripheral retina 

(Robitaille et al., 2002).   

 
1.3 Do Frizzled receptors exist in Dictyostelium? 

Frizzled’s role is remarkable with extended functions from cell polarity in Drosophila to the 

human diseases.  The highly conserved signal transduction pathways identified in many 
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primitive organism like Hydra vulgaris to highly evolved species such as humans prompted 

us to search for Frizzleds in Dictyostelium.  Although Dictyostelium has a β-catenin, a 

canonical β-catenin dependent pathway is not described. 

 
Table I. Frizzleds function in different model systems.  All the phenotypes exhibited by the 
organisms due to the lack of Frizzled or mutation in Frizzled presented here is taken from (Huang and 
Klein, 2004).  The number represents the respective references, 1-(Adler, 2002), 2 and 3-(Chen and 
Struhl, 1999), 4-(Muller et al., 1999), 5-(Kennerdell and Carthew, 1998), 6-(Sato et al., 1999), 7- 
(Rocheleau et al., 1997), 8-(Harris et al., 1996), 9-(Sawa et al., 1996), 10-(Wang et al., 2002), 11-
(Wang et al., 2001), 12-(Ishikawa et al., 2001), 13-(Robitaille et al., 2002), 14-(Deardorff et al., 2001), 
15-(Sumanas et al., 2000) , 16-(Winklbauer et al., 2001). 
 

However, cAR1 mediated signaling has been compared to the cell fate determination pathway 

in Xenopus, Drosophila and C. elegans (Kim et al., 2002).  The PCP pathway may be present 

in Dictyostelium as the cells during development exhibit cell polarity (Williams and Harwood, 

2003), but cell polarity is not directly associated to the components of PCP signaling.  

Calcium is an important part of Dictyostelium development (Bumann et al., 1984) and all the 

components of the Wnt/Ca2+ pathway are present except the Wnt protein and the Frizzled 

protein.  The Wnt proteins are extracellular signaling molecules that play a central role in cell 

fate determination in C. elegans (Nusse and Varmus, 1992).  Although Wnt proteins were not 

identified in Dictyostelium, CMF, an extracellular glycoprotein was identified that determines 

the cell density for aggregation and the cell type jointly with cAMP during development 

7 



Introduction 
___________________________________________________________________________ 

(Mehdy and Firtel, 1985; Yuen et al., 1995).  But when searched for Frizzled in the 

Dictyostelium we identified 25 Frizzled like receptors.   

 

1.3.1 Dictyostelium as a model system  

D. discoideum is a eukaryote, which can exist as a unicellular and multicellular organism.  

Various signal-transduction pathways regulates processes such as chemotaxis, cell adhesion 

and cell fate determination and are closely related to metazoan pathway (Firtel and Chung, 

2000; Gerisch, 1968; Kim et al., 2002).  Therefore Dictyostelium has been identified as a good 

model system for studying many biological processes.  Dictyostelium cells feed on bacteria 

and grow as amoebae but with depletion of food they initiate development and achieve 

multicellularity by the aggregation of cells (Figure V) (Brown and Firtel, 1999).   

 
Figure V. Life cycle of Dictyostelium (Williams and Harwood, 2003) 

 

1.3.1.1 Early development 

The amoebae feed on bacteria and grow exponentially until the depletion of the food source.  

The status of the food supply is monitored by secretion of a prestarvation factor (PSF).  The 

PSF expression is high till the depletion of the food source and the level goes down with the 

onset of starvation.  The genes that are expressed at low level in response to PSF during the 

late exponential growth are expressed at higher level in starving cells (Rathi and Clarke, 

1992).  Discoidin-I is one of them which is induced in response to PSF (Rathi et al., 1991) 

and continues to be stimulated during early development by conditioned medium factor 

(CMF), a factor secreted by starving cells (Gomer et al., 1991).  The expression level of 

discoidin-I is downregulated by cAMP during aggregation which is important for the 

formation of head-to-tail streams by aggregating cells (Crowley et al., 1985; Vauti et al., 

1990).  Although these factors PSF and CMF are produced at different times in the 

Dictyostelium life cycle, cells need both glycoproteins to measure their own density and to 

aggregate. 

The developing Dictyostelium cells exhibit chemotactic response by extending pseudopods 

towards cAMP during aggregation (Soll et al., 2002).  During this process the cells form 

radial branching streams, which results from the cAMP wave propagation depending on the 
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cell density (van Oss et al., 1996).  These streams then move coordinately towards the 

aggregation centre to form a mass of 105 cells.  When the cells move in streams they adhere to 

each other and express first the cell adhesion protein gp24.  In later stage of aggregation a 

second adhesion molecule, csA, is expressed which is induced by cAMP pulses secreted by 

the starving cells.  Cell-cell adhesion was found to be important for induction of 

developmentally regulated genes during the aggregation (Faix et al., 1992).  The cAMP 

synthesized by aggregating cells is sensed by a cell surface receptor (cAR1) which through G 

protein signaling stimulates cAMP production through an adenylyl cyclase (Fontana et al., 

1991; Klein et al., 1988).  The signaling molecule cAMP acts as a chemoattractant, secreted at 

the aggregation centres towards which cells make directed migration (Alcantara and Monk, 

1974).  Similar chemotactic responses are critical for a wide variety of biological processes 

including immune system responses, neuronal path finding, angiogenesis and metastasis.  

Signalling molecules downstream of the receptors that contribute to chemotactic responses 

include guanylyl cyclase, phosphatidylinositol 3-kinases (PI 3-kinases), phospholipases and 

mitogen-activated protein kinases (Segall, 1999). Moreover, Dictyostelium and mammalian 

cells have a common mechanism for migration.  

 

1.3.1.2 Calcium role in early development 

The binding of cAMP to its receptor cAR1 also induces a transient entry of external Ca2+, 

however G-proteins are not required for this process (Milne et al., 1995).  Ca2+ influx 

increases the intracellular Ca2+ and activates phospholipase C (PLC) to elevate inositol 1, 4, 5-

triphosphate (IP3), cAMP and cGMP.  Although Ca2+ levels control the motile response it is 

not required for chemotaxis (Malchow et al., 1996a; Traynor et al., 2000).   A slow periodic 

Ca2+ oscillation was observed during early development in suspension (Bumann et al., 1984) 

and a wave of Ca2+ is propagated from the tip of the slug towards the rear end in the 

multicellular slug stage that may help to regulate gene expression and coordinate cell 

movement in Dictyostelium (Pinter and Gross, 1995). 

 

1.3.1.3 cAMP signaling  

When cells are in the preaggregative stage a low level of cAMP is produced in a pulsatile 

fashion that augments the expression of aggregative genes coding for cAMP receptor (cAR1) 

and contact sites A (csA) (Gerisch and Malchow, 1976).  cAR1 null cells show a defect in 

aggregation, however it is not clear whether cells produce a signal or whether the signal 

produced is not transduced to regulate gene expression.  At the aggregation stage the cAMP 
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produced binds to cAR1 and induces the G protein Gα2 which binds to cAR1 and frees the 

Gβ causing PI-3 kinase activation that stimulates activation of the adenylyl cyclase (ACA) 

gene.  ACA is expressed at high levels exclusively at the aggregation stage and is necessary 

for synthesis of the chemoattractant cAMP.  The cAMP produced mediates chemotaxis and 

induces gene expression through cAR1 (van Haastert and Kien, 1983; Wu et al., 1995).   

The hydrolysis of cAMP is very important for dynamic signaling.  Dictyostelium employs 5 

different classes of phosphodiesterase to breakdown cAMP, of which the cAMP 

phosphodiesterase gene (PDE) shows a pronounced expression during aggregation and is 

induced by cAMP pulses contributing to the negative feedback loop of oscillatory cAMP 

signaling (Meima et al., 2003).  The level of active PDE is regulated at transcription level and 

by the phosphodiesterase inhibitor (PDI), which is induced at low levels of cAMP and inhibits 

the PDE by binding.  PDI expression is also controlled by the presence of high levels of PDE 

(Franke and Kessin, 1992).  The expression level of ACA decreases with the progression of 

aggregation to the mound stage.  At this stage the postaggregative and cell-type specific genes 

stimulate a developmental change to form cell types that are the precusor cells found within 

the mature fruiting body. 

 

1.4 Aim of work 

We identified for the first time Frizzled in Dictyostelium, and found FrzA, one of the 25 

Frizzled like receptors. It has a unique C-terminus with a Phosphatidylinositol-4-phosphate 5-

kinase (PIP5K) domain.  The N-terminus preceeding the Frizzled transmembrane domain is 

rather short and lacks the extracellular CRD region.  Our studies included RACE PCR, RT-

PCR and characterisation of the genomic and cDNA database, to assemble the full-length 

FrzA cDNA.  The sequence homology of FrzA showed its close relation to the smoothened 

receptor, which is a homologue of Frizzled having a structural and functional similarity to the 

GPCR.  To characterize the cell biology of the FrzA protein further we generated a polyclonal 

antibody against the C- terminus of FrzA.  To get further insight in to the function of this 

protein, a knockout strategy was initiated.  Although the knock out cells survive as amoebae, 

they do not aggregate during the developmental cycle to develop into fruiting bodies.  To 

understand the role of FrzA in Dictyostelium during early development, we analysed the 

FrzA− mutant in detail with regard to, 

1. Aggregation  4. cAMP and calcium signaling 
2. Cell-cell adhesion  5. Cell fate determination 
3. Cell migration 
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1. Materials  

1.1 Laboratory materials 

Cellophane sheet, Dry ease     Novex  

Centrifuge tubes, 15 ml, 50 ml    Greiner 

Coverslips (glass), ∅ 12 mm, ∅ 18 mm   Assistant 

Corex tube, 15 ml, 50 ml     Corex 

Cryo tube, 1 ml      Nunc 

Electroporation cuvette, 2 mm electrode gap   Bio-Rad 

Gel drying frames      Novex 

Hybridisation bag      Life technologies 

Microcentrifuge tube, 1.5 ml, 2.2 ml    Sarstedt 

Micropipette, 1-20 µl, 10-200 µl, 100-1,000 µl  Gilson 

Micropipette tips      Greiner 

Multi-channel pipette      Finnigan 

Needles (sterile), 18G–27G      Terumo, Microlance 

Nitrocellulose membrane, BA85    Schleicher and Schuell 

Nitrocellulose-round filter, BA85, ∅ 82 mm   Schleicher and Schuell 

Nylon membrane, Biodyne B     Pall 

Parafilm       American National Can 

Pasteur pipette, 145 mm, 230 mm    Brand, Volac 

PCR softtubes, 0.2 ml      Biozym 

Petri dish (35 mm, 60 mm, 100 mm)    Falcon 

Petri dish (90 mm)      Greiner 

Plastic cuvette, semi-micro     Greiner 

Plastic pipettes (sterile), 1 ml, 2 ml, 5 ml, 10 ml, 25 ml Greiner 

Quartz cuvette, Infrasil     Hellma  

Quartz cuvette, semi-micro     Perkin Elmer 

Saran wrap       Dow 

Scalpels (disposable), Nr. 10, 11, 15, 21   Feather 

Slides, 76 x 26 mm      Menzel 

Syringes (sterile), 1 ml, 5 ml, 10 ml, 20 ml   Amefa, Omnifix 

Syringe filters (Acrodisc), 0.2 µm, 0.45 µm   Gelman Sciences 

Tissue culture flasks, 25 cm2, 75 cm2, 175 cm2  Nunc 

Tissue culture dishes, 6 wells, 24 wells, 96 wells  Nunc 
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Whatman 3MM filter paper     Whatman 

X-ray film, X-omat AR-5, 18 x 24 mm, 535 x 43 mm Kodak 

 

1.2 Instruments and equipments 

Centrifuges (microcentrifuges): 

Centrifuge 5417 C    Eppendorf 

Centrifuge Sigma    B. Braun Biotech Instruments 

Cold centrifuge Biofuge fresco  Heraeus Instruments 

Centrifuges (table-top, cooling, low speed): 

Centrifuge CS-6R    Beckman 

Centrifuge RT7    Sorvall 

Centrifuge Allegra 21R   Beckman 

Centrifuges (cooling, high speed): 

Beckman Avanti J25    Beckman 

Sorvall RC 5C plus    Sorvall 

Centrifuge-rotors:  

JA-10      Beckman 

JA-25.50     Beckman  

SLA-1500     Sorvall 

SLA-3000     Sorvall 

SS-34      Sorvall 

Dounce homogeniser, 10 ml and 60 ml   B. Braun 

Electrophoresis power supply, Power-pac-200, -300  Bio-Rad 

Electroporation unit, Gene-Pulser    Bio-Rad 

Freezer (-80°C)      Nunc 

Freezer (-20°C)      Siemens, Liebherr 

Gel-documentation unit     MWG-Biotech 

Heating block, DIGI-Block JR    neoLab 

Heating block, Dry-Block DB x 20    Techne 

Hybridising oven      Hybaid  

Ice machine       Ziegra 

Incubators:  

  CO2-incubator, BBD 6220, BB 6220  Heraeus 

  CO2-incubator, WTC Binder   Biotran 
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  Incubator, microbiological   Heraeus 

  Incubator with shaker, Lab-Therm  Kuehner 

Laminar flow, Hera Safe (HS 12)    Heraeus 

Magnetic stirrer, MR 3001 K     Heidolph 

Microscopes: 

Light microscope, CH30   Olympus 

Light microscope, DMIL   Leica 

Light microscope, CK2   Olympus 

Fluorescence microscope, DMR  Leica 

Fluorescence microscope, 1X70  Olympus 

Fluorescence microscope, CTR/MIC  Leica 

Confocal laser scan microscope, DM/IRBE Leica 

Stereomicroscope, SZ4045TR  Olympus 

Oven, conventional      Heraeus 

PCR machine, PCR-DNA Engine PTC-2000   MJ Research 

pH-Meter 766 Calimatic     Knick 

Refrigerator       Liebherr 

Semi-dry blot apparatus, Trans-Blot SD   Bio-Rad 

Shakers       GFL, Kuehner 

Sonicator (water bath), Sonorex RK 52   Bandelin 

Speed-vac concentrator, DNA 110    Savant 

Spectrophotometer: Ultraspec 2000, UV/visible  Pharmacia Biotech 

BioPhotometer    Eppendorf 

Scanarray Express Scanner     Perkin Elmer 

UV- transilluminator, TFS-35 M     Faust 

Vortex, REAX top      Heidolph 

Waterbath       GFL 

X-ray-film developing machine, FPM-100A   Fujifilm 

 

1.3 Kits 

Nucleobond AX 100 and 500     Macherey-Nagel 

NucleoSpin Extract 2 in 1     Macherey-Nagel 

Nucleotrap       Macherey-Nagel 

1 kb DNA-marker       Gibco-BRL 
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pGEM-T Easy       Promega 

High molecular weight protein marker    Amersham Biosciences 

Low molecular weight protein marker    Amersham Biosciences 

SMART RACE PCR Kit     Clontech 

Qiagen RNeasy Mini or Midi Kit    Qiagen 

 

1.4 Enzymes, antibodies, substrates, inhibitors and antibiotics 

Enzymes used in the molecular biology experiments: 

Calf Intestinal Alkaline Phosphatase (CIP)   Boehringer 

Klenow fragment      Boehringer 

Lysozyme       Sigma 

Proteinase K       Sigma 

Restriction endonucleases     Amersham, Life technologies,  

New England Biolabs 

Reverse transcriptase, M-MLV    Promega 

Ribonuclease H (RNase H)     Boehringer  

T4 DNA ligase      Boehringer 

Taq-polymerase      Life technologies/Boehringer  

 

Primary antibodies: 

Goat anti-GST antibody     Pharmacia 

Mouse anti-GFP monoclonal antibody, K3-184-2    (Noegel et al., 2004) 

Polyclonal anti-cAR1      Gift from Dr. Peter Devreotes 

Polyclonal anti- Gα2      Gift from Dr. Gundersen 

 

Secondary antibodies: 

Goat anti-mouse IgG, peroxidase conjugated   Sigma 

Goat anti-rabbit IgG, peroxidase conjugated   Sigma 

Mouse anti-goat IgG, peroxidase conjugated    Sigma 

Sheep anti-mouse IgG, Cy3 conjugated   Sigma 

 

Inhibitors: 

Diethylpyrocarbonate (DEPC)    Sigma 

Leupeptin       Sigma 
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Pepstatin       Sigma 

Phenylmethylsulphonylfluoride (PMSF)   Sigma 

Benzamidine hydrochloride      Sigma 

Proteinase Inhibitor cocktail     Sigma 

 

Antibiotics: 

Ampicillin       Grünenthal 

Blasticidin S       ICN Biomedicals 

Chloramphenicol      Sigma 

Dihydrostreptomycinsulphate     Sigma 

Geneticin (G418)      Life technologies 

Kanamycin       Sigma, Biochrom 

Tetracyclin       Sigma 

 

1.5 Chemicals and reagents 

Most of the chemicals and reagents were obtained either from Sigma, Fluka, Difco, Merck, 

Roche, Roth or Serva.  Those chemicals or reagents that were obtained from companies other 

than those mentioned here are listed below: 

 

Acetic acid (98-100%)     Riedel-de-Haen 

Acrylamide (Protogel: 30:0,8 AA/Bis-AA)   National Diagnostics 

Agar-Agar (BRC-RG)      Biomatic 

Agarose (Electrophoresis Grade)    Life technologies 

Chloroform       Riedel-de-Haen 

Dimethylformamide      Riedel-de-Haen 

Ethanol       Riedel-de-Haen 

Glycerine       Riedel-de-Haen 

Glycine       Riedel-de-Haen 

Isopropypl-β-D-thiogalactopyranoside (IPTG)  Loewe Biochemica 

Methanol       Riedel-de-Haen 

Morpholino propane sulphonic acid (MOPS)   Gerbu 

Peptone       Oxoid 

Sodium hydroxide      Riedel-de-Haen 

Yeast extract       Oxoid 
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Roti-Phenol       Roth 

TRITC Phallodin      Sigma 

 

Radiolabelled nucleotide: 

α-32P-deoxyadenosine triphosphate, (10 mCi/ml)  Amersham 

 

1.6 Media and buffers 

All media and buffers were prepared with deionised water filtered through an ion-exchange 

unit (Membra Pure).  The media and buffers were sterilized by autoclaving at 120ºC and 

antibiotics were added to the media after cooling to approx. 50ºC.  For making agar plates, a 

semi-automatic plate-pouring machine (Technomat) was used. 

 

1.6.1 Media and buffers for Dictyostelium culture 

Ax2-medium, pH 6.7: 

(Claviez et al., 1982)     7.15 g yeast extract 

     14.3 g peptone (proteose)  

   18.0 g maltose 

     0.486 g KH2PO4

     0.616 g Na2HPO4.2H2O 

     add H2O to make 1 litre 

Phosphate agar plates, pH 6.0: 

     9 g agar 

     add Soerensen phosphate buffer, pH 6.0 to make 1 litre 

Salt solution:      

(Bonner, 1947)   10 mM NaCl 

10 mM KCl 

2.7 mM CaCl2 

 

Starvation buffer, pH 6.5: 

(Shaulsky et al., 1998)  10 mM MES, pH 6.5 

     10 mM NaCl 

     10 mM KCl 

     1 mM CaCl2 

     1 mM MgSO4
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SM agar plates, pH 6.5: 

(Sussman, 1951)   9 g agar 

     10 g peptone 

     10 g glucose 

1 g yeast extract 

     1 g MgSO4.7H2O 

     2.2 g KH2PO4

     1 g K2HPO4

     add H2O to make 1 litre 

 

Soerensen phosphate buffer, pH 6.0:  

(Malchow et al., 1972)  2 mM Na2HPO4

     14.6 mM KH2PO4

 

1.6.2 Media for E. coli culture 

LB medium, pH 7.4: 

(Sambrook, 1989)   10 g bacto-tryptone 

5 g yeast extract 

10 g NaCl 

adjust to pH 7.4 with 1 N NaOH 

add H2O to make 1 liter 

 

For LB agar plates, 0.9% (w/v) agar was added to the LB medium and the medium was then 

autoclaved.  For antibiotic selection of E. coli transformants, 50 mg/l ampicillin, kanamycin 

or chloramphenicol was added to the autoclaved medium after cooling it to approx. 50ºC.  For 

blue/white selection of E. coli transformants, 10 µl 0.1 M IPTG and 30 µl X-gal solution (2% 

in dimethylformamide) was plated per 90 mm plate and the plate was incubated at 37ºC for at 

least 30 min before using.  

 

SOC medium, pH 7.0: 

(Sambrook, 1989)   20 g bacto-tryptone 

5 g yeast extract 

10 mM NaCl 

2.5 mM KCl 
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dissolve in 900 ml deionised H2O 

adjust to pH 7.0 with 1 N NaOH 

The medium was autoclaved, cooled to approx. 50ºC 

and then the following solutions, which were separately 

sterilized by filtration (glucose) or autoclaving, were 

added: 

10 mM MgCl2.6H2O 

10 mM MgSO4.7H2O 

20 mM Glucose 

add H2O to make 1 litre 

 

1.6.3 Buffers and other solutions 

The buffers and solutions that were commonly used during the course of this study are 

mentioned below 

10x MOPS, pH 7.0/ pH 8.0:  41.9 g MOPS 

     16.7 ml 3 M sodium acetate  

     20 ml 0.5 M EDTA 

     add H2O to make 1 litre 

 

10x NCP-buffer, pH 8.0:  100ml 1M Tris/HCl, pH 8.0 

     87.0 g NaCl 

     5.0 ml Tween 20 

     add H2O to make 1 litre    

 

PBG, pH 7.4:    0.5 % bovine serum albumin 

     0.1 % gelatin (cold-water fish skin) 

     in 1x PBS, pH 7.4 

 

1x PBS, pH 7.4:   8.0 g NaCl 

0.2 g KH2PO4  

1.15 g Na2HPO4 

0.2 g KCl 

dissolve in 900 ml deionised H2O 

adjust to pH 7.4 
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add H2O to make 1 litre, autoclave 

 

20x SSC, pH 7.0:   3 M NaCl 

     0.3 M sodium citrate 

 

TE buffer, pH 8.0:   10 mM Tris/HCl, pH 8.0 

     1 mM EDTA 

 

10x TAE buffer, pH 8.3:  27.22 g Tris 

     13.6 g sodium acetate  

     3.72 g EDTA 

     add H2O to make 1 litre 

 

1.7 Biological materials 

Bacterial strains: 

E. coli BL21 (DE)  Studier and Moffat, 1986 

 E. coli DH5α   Hanahan, 1983 

 E. coli XL1 blue  Bullock et al., 1987 

 Klebsiella aeorgenes  Williams and Newell, 1976 

 

Dictyostelium discoideum strain: 

Ax2-214   An axenically growing derivative of wild strain, NC-4  

(Raper, 1935) commonly referred to as Ax2. 

 

1.8 Plasmids 

pDNeo  II   Witke et al, 1987 

pDGFP-MCS   Weber et al, 1999 

p1aBsr8   Gräf et al, 2000b 

pGEM-T Easy   Kit: Promega 

pGEX-4T1, 2 and 3  Pharmacia Biotech 

 

1.9 Oligonucleotide primers 

Oligonucleotide primers were designed on the basis of sequence information available and 

ordered for synthesis from Sigma and Metabion companies.  Following is a list of the primers 
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used for PCR or sequence analysis or both during the course of the present investigation.  The 

position and orientation of the primers are indicated in the text. 

 

FullFrzAfp GGT ACC AAA ATG TCT TTT GCT GGA AGA ATT TCA TTA GAT GC 
FullFrzArp CTC GAG TTG TTG AGT AGC AGA TTT ATG    
FrzTMrp CTC GAG TGC AAT ACC ACG TAA TGA ACA 
Myrpipkfp GGT ACC ATG GGT TCA TCA AAA TCA AAA CCA AAA GAT CCA.... 
 ...TCA CAA CGT CGT CGT TGT TCA TTA CGT GGT ATT GC 
PIPKfp GAATTCT T GTT CAT TAC GTG GTA TTG C 
PIPKrp TTA GTT GAG TAG CAG ATT TAT G    
FrizcDNAfp CTA TTG GAT GGA GTG GTA TGA 
FrizcDNArp ACT CGC TTG GTT GGG TGC ATC 
14extn GAAC CCATCTTTAA AATTTACTAC 
15extn GATTCAAGGGT TTATGAATGC 
10extn CTGAAGAGGG TTACCCTCTA AAG 
11extn CATCA GGGTTAAACCATATGGATG 
8extn CTAC CCCCAACAAT TCTCACATTT G 
9extn CCAAA TTATGCTCCC ATACCTTG 
RtCMFfp CCAAACCACTGTTGATGAAACAC 
RtCMFrp GGTGGAGAATGAACAATTGTACG 
RtCMFRfp TCGTTCAACCGGTGTTTGGAC 
RtCMFRrp GATGGTGGGTAGAAAACAACACC 
frizkoFPa15p CCA ACC CAA GTT TTT TTA AAC C 
frizkoFPneo1 GAT TGT CGC ACC TGA TTG C 
frizkoFPneo2 GTT TCC CGT TGA ATA TGG CTC AT 
frizkoRPtest 1 CTT GAA GTG AAC GAA TTA GTG GTG 
frizkoRPtest 2 GCA ATA CCA CGT AAT GAA CAT G 
  
 

2. Cell biological methods 

2.1 Growth of Dictyostelium  

2.1.1 Growth in liquid nutrient medium (Claviez et al., 1982) 

Dictyostelium discoideum Ax2 and the derived transformants were grown in liquid Ax2 

medium containing dihydrostreptomycin (40 µg/ml) and other appropriate selective 

antibiotics (depending upon the mutant) at 21°C either in shaking-suspension in an 

Erlenmeyer flask with shaking at 160 rpm or the cells were grown in petri dishes.  

 

2.1.2 Growth on SM agar plates (Bonner, 1967) 

In general, Dictyostelium cells were plated onto SM agar plates overlaid with Klebsiella 

aerogenes and incubated at 21ºC for 3-4 days until Dictyostelium plaques appeared on the 

bacterial lawns.  To obtain single clones of Dictyostelium, 50-200 cells were suspended in 100 

µl Soerensen phosphate buffer and plated onto Klebsiella overlaid SM agar plates.  Single 

plaques obtained after incubation at 21ºC for 3-4 days were picked up with sterile tooth-picks, 
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transferred either to new Klebsiella overlaid SM agar plates or to separate petri dishes in Ax2 

medium supplemented with dihydrostreptomycin (40 µg/ml) and ampicillin (50 µg/ml) to get 

rid of the bacteria and any other appropriate selective antibiotic (depending upon the mutant). 

 

2.2 Development of Dictyostelium 

Development in Dictyostelium is induced by starvation.  For analysis of development in 

suspension culture and on phosphate agar, cells grown to a density of 2-3 x 106 cells/ml were 

pelleted by centrifugation at 2,000 rpm (Sorvall RT7 centrifuge) for 2 min at 4ºC and were 

washed two times in an equal volume of cold Soerensen phosphate buffer in order to remove 

all the nutrients present from the Ax2 media. 

 

2.2.1 Development in suspension culture 

After washing twice in Soerensen phosphate buffer, the cells were resuspended in Soerensen 

phosphate buffer at a density of 1 x 107 cells/ml and were shaken at 160 rpm and 21ºC for the 

desired time periods.   

 

2.2.2 Development on phosphate-buffered agar plates  

The washed cells were then resuspended as 1 x 108 per ml in Soerensen phosphate buffer and 

evenly distributed at 5 x 106 (high cell density) or 106 (low cell density) per cm2 or other 

varying cell densities onto the phosphate-buffered agar plates.  The plates were air-dried and 

any excess liquid was carefully aspirated without disturbing the cell layer.  The plates were 

then incubated at 21°C, different stages of development were observed or used for preparation 

of protein or RNA samples and the microscopic images were captured at indicated time 

points. 

 
2.3 Transformation of Dictyostelium  (Mann et al., 1994)  
 

Electroporation method 

Dictyostelium discoideum Ax2 cells were grown axenically in suspension culture to a density 

of 2-3 x 106 cells/ml. The cell suspension was incubated on ice for 20 min and centrifuged at 

2,000 rpm (Sorvall RT7 centrifuge) for 2 min at 4ºC to collect the cells.  The cells were then 

washed with an equal volume of ice-cold Soerensen phosphate buffer, followed by another 

wash with the electroporation buffer.  After washings, the cells were resuspended in 

electroporation buffer at a density of 1 x 108 cells/ml and 500 µl of this was pipetted into a 

prechilled 2 mm cuvette with 20-30 µg of plasmid DNA.  The cells were electroporated using 
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a Biorad Genpulser Xcell preset program for Dictyostelium or Biorad Genespulser II with a 

condition set at 3 µF, 0.9V.  The cells were left on ice for 10 mintues after electroporation and 

later spread on a petri plate.  The healing solution was then added dropwise to the plate and 

the cells were left on a shaker for 1 h at 50 rpm.  Axenic medium was then added to this plate, 

after 16-20 hrs, the respective antibiotic was added to select the transformants. 

 

Electroporation buffer (EB) 

10 mM Na/K phosphate buffer, pH 6.1 

50 mM sucrose 

 

Healing Solution (10 ml) 

15 µl 1M CaCl2

15 µl 1M MgCl2 in EB  

 

2.4 Preservation and revival of preserved Dictyostelium cells 

Dictyostelium cells were allowed to grow densely in Ax2 medium to a concentration of 4-5 x 

106 cells/ml.  9 ml of the densely grown culture was collected in a 15 ml Falcon tube on ice 

and supplemented with 1 ml Horse serum and 1 ml DMSO.  The contents were mixed by 

gentle pipetting, followed by preparing aliquots of 1 ml in cryotubes (1 ml, Nunc).  The 

aliquots were incubated on ice for 60 min, followed by incubation at –20ºC for at least 2 hrs. 

Finally the aliquots were transferred to –80ºC for long term storage. 

For reviving the frozen Dictyostelium cells, the aliquot was taken out from –80ºC and thawed.  

In order to remove DMSO, the cells were transferred to a Falcon tube containing 30 ml Ax2 

medium and centrifuged at 2,000 rpm (Sorvall RT7 centrifuge) for 2 min at 4ºC.  The cell 

pellet was resuspended in 10 ml of Ax2 medium and 200 µl of the cell suspension was plated 

onto SM agar plates overlaid with Klebsiella, while the remaining cell suspension was 

transferred into a 100-mm petri dish (Falcon) and appropriate antibiotics were added.  Cells in 

the petri dish were allowed to recover overnight at 21ºC and the medium was changed the 

next day to remove the dead cells, whereas, the SM agar plates coated with cell suspension 

and bacteria were incubated at 21ºC until plaques of Dictyostelium cells started to appear. 
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3. Molecular biological methods 

3.1 Purification of plasmid DNA 

In general, for small cultures (1 ml) of E. coli transformants, the alkaline lysis method of 

Holmes and Quigley (1981) was used to extract plasmid DNA.  This method is good for 

screening a large number of clones simultaneously for the desired recombinant plasmid. 

Alternatively, for pure plasmid preparations in small and large scales, kits provided either by 

Machery-Nagel (Nucleobond AX kit for small scale plasmid preparations) were used when 

the pure plasmid DNA was required for sequencing, PCR or transformation.  These kits 

follow basically the same principle: first an overnight culture of bacteria containing the 

plasmid is pelleted and the cells are lysed by alkaline lysis.  The freed plasmid DNA is then 

adsorbed on a silica matrix, washed with ethanol, and then eluted into TE, pH 8.0.  This 

method avoids the requirement of caesium chloride or phenol-chloroform steps during 

purification. 

 

3.2 Digestion with restriction enzymes 

All restriction enzymes were obtained from NEB, Amersham or Life technologies and the 

digestions were performed in the buffer systems and temperature conditions as suggested by 

the manufacturers. The plasmid DNA was digested for 1-2 hrs and the chromosomal DNA for 

12-16 hrs. 

 

3.3 Dephosphorylation of DNA fragments 

To avoid self-ligation of the vector having blunt ends or that has been digested with a single 

restriction enzyme, 5’ ends of the linearised plasmids were dephosphorylated by calf-

intestinal alkaline phosphatase (CIAP, Boehringer).  Briefly, in a 50 µl reaction volume, 1-5 

µg of the linearised vector-DNA was incubated with 1unit calf-intestinal alkaline phosphatase 

(CIAP) in CIAP-buffer (provided by the manufacturer) at 37ºC for 30 min.  The reaction was 

stopped by inactivating the enzyme by heating the reaction-mixture at 65ºC for 10 min.  The 

dephosphorylated DNA was extracted once with phenol-chloroform and precipitated with 2.5 

volumes ethanol and 1/10 volume of 3 M sodium acetate, pH 5.2. 

 

3.4 Setting up of ligation reaction  

DNA fragment and the appropriate linearised plasmid was mixed in approximately equimolar 

amounts.  T4 DNA ligase (Life technologies/Boehringer) and ATP was added as indicated 

below and the ligation reaction was left overnight at 10-12ºC. 
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Ligation reaction:  5x Ligation buffer:  

Linearised vector DNA (200-400 ng)  supplied along with the T4 ligase   

DNA-fragment  enzyme by the manufacturer 

4 µl 5x Ligation buffer  

1 µl 0.1 M ATP 

1.5 U T4 ligase 

add H2O to make 20 µl 

 

3.5 Isolation of Dictyostelium genomic DNA 

Genomic DNA from Dictyostelium was prepared according to the method described by 

Nellen et al. (1987), with slight modifications.  Dictyostelium cells were allowed to grow on 

Klebsiella-covered SM plates or as suspension culture (Materials and Methods, 2.2) at 21ºC.  

When the plates were covered with densely grown Dictyostelium, cells were collected in 15 

ml ice-cold water, pelleted and washed twice with ice-cold water to get rid of Klebsiella.  

Alternatively, the pellet of 1 x 108 Dictyostelium cells grown in shaking suspension was 

washed twice with ice-cold Soerensen phosphate buffer.  The pellet of Dictyostelium cells 

was finally resuspended in 5 ml cold Nucleolysis buffer.  The nuclei fraction was obtained by 

centrifugation at 3,000 rpm (Sorvall RT7 centrifuge) for 10 min. The nuclear pellet obtained 

was carefully resuspended in 1 ml TE, pH 8.0, with 0.5% SDS and 0.1 mg/ml proteinase K 

and incubated at 37ºC for 3-5 hrs. The genomic DNA was extracted twice with 

phenol/chloroform (1:1 v/v), precipitated by adding 2.5 vol. 96% ethanol and 1/10 vol. 3 M 

sodium acetate, pH 5.2.  The DNA precipitate was carefully spooled with a Pasteur pipette, 

washed with 96% ethanol, air-dried and dissolved in the desired volume of TE, pH 8.0. 

 

Nucleolysis buffer: Estimation of DNA concentration: 

10 mM magnesium acetate 1 OD at 260 nm = 50 µg DNA 

10 mM NaCl 

30 mM HEPES, pH 7.5 

10% sucrose 

2% Nonidet P40 
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3.6 DNA agarose gel electrophoresis 

Agarose gel electrophoresis was performed according to the method described by Sambrook 

et al. (1989) to resolve and purify the DNA fragments.  Electrophoresis was typically 

performed with 0.8% (w/v) agarose gels in 1x TAE buffer submerged in a horizontal 

electrophoresis tank containing 1x TAE buffer at 1-5 V/cm.  Only for resolving fragments less 

than 1,000 bp, 1% (w/v) agarose gels in 1x TAE buffer were used.  DNA-size marker (Life 

technologies) was always loaded along with the DNA samples in order to estimate the size of 

the resolved DNA fragments in the samples.  The gel was run until the bromophenol blue dye 

present in the DNA-loading buffer had migrated the appropriate distance through the gel.  The 

gel was examined under UV light at 302 nm and was photographed using a gel-

documentation system (MWG-Biotech) 

 

DNA-size marker: 

1 kb DNA Ladder (Life technologies or NEB) 

 

3.7 Recovery of DNA fragments from agarose gel 

DNA fragments from restriction enzyme digests or from PCR reactions were separated by 

agarose gel electrophoresis and the gel piece containing the desired DNA fragment was 

carefully and quickly excised while observing the ethidium bromide stained gel under a UV 

transilluminator.  The DNA fragment was then purified from the excised gel piece using the 

Macherey-Nagel gel elution kit (NucleoSpin Extract 2 in 1), following the method described 

by the manufacturers. 

 

3.8 Southern blotting 

Southern blotting (Southern, 1975) is a technique used to transfer DNA from its position in an 

agarose gel to a nitrocellulose/nylon membrane.  After transfer, the membrane can be 

hybridised with a radiolabelled probe to identify specific fragments.  The ethidium bromide 

stained agarose gel was photographed using a ruler under UV light to document migration of 

DNA fragments with respect to the DNA-size marker.  DNA was depurinated by incubating 

the gel in 2 vol. of 0.25 M HCl for 20 min at room temperature with gentle shaking.  The gel 

was rinsed in deionised H2O to remove excess HCl and was then incubated in 2 vol. of 

denaturation solution (0.5 M NaOH, 1.5 M NaCl) for 30 min in order to denature the DNA. 

Now the transfer was performed by capillary transfer technique.  Briefly, the gel was 

transferred directly from the denaturation solution to a buffer reservoir containing a 
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supporting wick (made up of Whatman 3MM paper) and 20x SSC.  A dry nylon membrane 

(Biodyne B membrane, Pall) of the same size as the gel was then directly placed on the 

alkaline gel.  Three pieces of Whatman 3MM paper followed by blotting pads, all cut to the 

same size as the gel were placed on top of the nylon membrane.  A glass plate supporting 

approximately 500 g weight was finally kept on top of the stack and transfer of DNA to the 

membrane was allowed to proceed for overnight.  Next day, the position of the wells and the 

orientation of the membrane were marked before removing the membrane from the gel 

surface.  The transferred DNA was then immobilized onto the membrane by baking at 80ºC 

for 2 hrs. After baking, the membrane was hybridised with a desired radiolabelled probe. 

 

3.9 Total RNA and cDNA preparation 

3.9.1 Isolation of total RNA from Dictyostelium cells 

Total RNA was extracted from either Ax2 or FrzA− cells of different developmental stages of 

the Dictyostelium life cycle using the Qiagen RNeasy Mini or Midi kit.   The manufacturers 

protocol for the isolation of RNA from the cytoplasm of animal cells was used for 

preparation.  The RNA samples were used for northern blot analysis (3.10 and 3.11) and after 

reverse transcription for Real-Time PCR (3.16) and Microarray analysis (4.0). 

 

3.9.2 Generation of cDNA  

cDNA was generated using the M-MLV reverse transcriptase, RNAse H minus (Promega) 

according to the manufacturers protocol.  Usually 1 µg of total RNA was taken in a RNase-

free microcentrifuge tube, add 1µg of Oligo dT per microgram of RNA and make up the 

volume to 15µl with water.  The tube is incubated at 70ºC for 5 min and cooled on ice.  To 

this add 10µl of the master mix as given below and incubate the tube for 60 min at 42ºC.  The 

generated cDNA was used for down-stream applications. 

 

Master Mix 

M-MLV 5x reaction buffer 5 µl 

10mM dNTP             10µl 

M-MLV RT      200 units 
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3.10 RNA formaldehyde-agarose gel electrophoresis 

The denaturing formaldehyde agarose electrophoresis is used for separation and resolution of 

RNA (Lehrach et al., 1977). 

 

Sample preparation for electrophoresis: 

In general, 20 µg of purified total RNA was mixed with an equal volume of RNA-sample 

buffer and denatured by heating at 65ºC for 10 min.  After denaturation, the sample was 

immediately transferred to ice and 1/10 vol. of RNA-loading buffer was added.  Thereafter, 

the RNA samples were loaded onto a denaturing formaldehyde-agarose gel. 

 

Formaldehyde-agarose gel preparation: 

For a total gel volume of 150 ml, 1.8 g agarose (final concentration 1.2%) was initially boiled 

with 111 ml DEPC-H2O in an Erlenmeyer flask, cooled to 60ºC and then 15 ml of the RNA 

gel casting buffer, pH 8.0 and 24 ml of a 36% formaldehyde solution were added.  The 

agarose solution was mixed by swirling and poured into a sealed gel-casting chamber of the 

desired size.  After the gel was completely set, denatured RNA samples were loaded and the 

gel was run in 1x RNA gel running buffer, pH 7.0, at 100 V until the bromophenol blue dye 

had migrated the appropriate distance through the gel.  A test gel was sometimes run with 5 

µg of total RNA to check the quality of the RNA samples.  In such a case, 10 µg/ml ethidium 

bromide was added to the RNA sample buffer during sample preparation and after 

electrophoresis the gel was examined under UV light at 302 nm and was photographed using 

the gel-documentation system. 

 

10x RNA-gel-casting buffer, pH 8.0: 10x RNA-gel-running buffer, pH 7.0: 

200 mM MOPS 200 mM MOPS 

50 mM sodium acetate 50 mM sodium acetate 

10 mM EDTA 10 mM EDTA 

adjust pH 8.0 with NaOH adjust pH 7.0 with NaOH 

autoclaved autoclaved 

RNA-sample buffer: RNA-loading buffer: 

50% formamide 50% sucrose, RNase free 

6% formaldehyde 0.25% bromophenol blue 

in 1x RNA-gel-casting buffer, pH 8.0 in DEPC-H2O 
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Internal RNA-size standard: 

26S rRNA (4.1 kb) 

17S rRNA (1.9 kb) 

 

3.11 Northern blotting 

After electrophoresis, the RNA formaldehyde agarose gel was rinsed in sufficient amount of 

deionised H2O for 5 min and then equilibrated in 10x SSC for 25 min.  The resolved RNA 

was then transferred from the gel to a nylon membrane (Biodyne B membrane, Pall) using the 

transfer setup as described for Southern blotting (Materials and Methods, 3.8).  After 

overnight transfer with 20x SSC, the transferred RNA was immobilised by baking the 

membrane in an oven at 80ºC for 2 hrs. 

 

3.12 Radiolabeling of DNA 

Prime-it kit (Stratagene) was used for radiolabeling of DNA fragments following the method 

suggested by the manufacturers.  Briefly, 0.1-0.3 µg DNA was suspended in 24 µl ddH2O 

(final volume).  Then 10 µl of random-oligonucleotide-primer (supplied along with the kit) 

was added and the DNA template was denatured at 95ºC for 5 min.  After denaturation, 10 µl 

of 5x dATP-primer buffer (supplied along with the kit), 5 µl of α-32P-ATP (Amersham) and 1 

µl Klenow enzyme (5 U/µl, supplied along with the kit) was added and the reaction-mixture 

was incubated at 37ºC for 10 min.  After 10 min the reaction was immediately stopped by 

adding 2 µl stop-mix (supplied along with the kit).  Now the reaction-mixture was diluted 

with 100 µl TE, pH 8.0, to increase the reaction volume and the reaction-mixture was overlaid 

on a 0.9 ml Sephadex G-50 spin column (Materials and Methods, 3.13).  The free nucleotides 

present in the reaction-mixture were separated by centrifugation at 3,000 rpm (Sorvall RT7 

centrifuge) for 2 min through the Sephadex G-50 spin column and the radiolabelled DNA 

probe was collected in a 1.5 ml eppendorf tube.  The purified radiolabelled DNA probe was 

denatured by heating at 100ºC for 10 min, cooled on ice and used for hybridisation of 

Southern or Northern blots. 

 

3.13 Chromatography through Sephadex G-50 spin column 

This technique (Sambrook et al., 1989), which employs gel filtration to separate high-

molecular weight DNA from smaller molecules, was used to segregate radiolabelled DNA 

from unincorporated α-32P-ATP.  30 g of Sephadex G-50 (Pharmacia) was slowly added to 

250 ml of TE, pH 8.0, in a 500-ml bottle and the beads were allowed to swell overnight at 
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room temperature.  Next day, the supernatant was decanted and was replaced with an equal 

volume of TE, pH 8.0.  The beads were autoclaved and stored in a screw-capped bottle at 4ºC. 

For preparation of Sephadex G-50 spin column, the swollen Sephadex G-50 beads were 

packed in a disposable 1-ml syringe plugged with sterile glass wool and the column was spun 

at 3,000 rpm (Sorvall RT7 centrifuge) for 2 min. Sephadex G-50 was added until the packed 

column volume was 0.9 ml.  The column was then used for segregation of radiolabelled DNA 

probe. 

 

3.14 Hybridisation of Southern or Northern blot with radiolabelled DNA probe 

Southern or northern blots were rinsed briefly with 2x SSC and incubated in a hybridisation-

bottle in 15-20 ml of pre-hybridisation buffer for 1 hrs at 37ºC on a rotating incubator.  After 

pre-hybridization, the denatured radiolabelled DNA probe was added directly to the pre-

hybridization-buffer in the hybridization bottle and the blot incubated overnight at 37ºC.  

After hybridization, the blot was washed twice with wash buffer for 30 min followed by one 

wash with 2x SSC/0.1% SDS for 10 min and one wash with 0.2x SSC/0.1% SDS for 10 min, 

in the end one wash with 2x SSC at 37ºC. The blot was then wrapped in a plastic wrap and 

autoradiograph was performed by exposing the blot to X-ray film at –70ºC for the desired 

time. 

 

Pre-hybridisation/Hybridisation buffer: Wash buffer: 

50% formamide same contents as Pre-hybridisation/ 

1% sodium lauryl sarcosinate hybridisation buffer except without  

0.2% SDS 4x Denhardt’s reagent 

2 mM EDTA, pH 7.2 

0.12 M phosphate buffer, pH 6.8 100x Denhardt’s reagent: 

2x SSC 2% ficoll 400 

4x Denhardt’s reagent 2% polyvinylpyrolidone 

  2% bovine serum albumin 

 

3.15 Transformation of E. coli 

3.15.1 Transformation of E. coli cells by the CaCl2 method 

Transformation of CaCl2-competent E. coli cells: 

Plasmid DNA (~50-100 ng of a ligase reaction or ~10 ng of a supercoiled plasmid) was mixed 

with 100-200 µl of CaCl2-competent E. coli cells and incubated on ice for 30 min.  The cells 
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were then heat-shocked at 42ºC for 45 sec and immediately transferred to ice to cool for 2 

minutes.  The cells were then mixed with 1 ml of pre-warmed (at 37ºC) SOC medium and 

incubated at 37ºC with shaking at ~150 rpm for 45 min.  Finally, 100-200 µl of the 

transformation mix, or an appropriate dilution, was plated onto selection plates and the 

transformants were allowed to grow overnight at 37ºC. 

 

3.15.2 Glycerol stock of bacterial culture 

Glycerol stocks of all the bacterial strains/transformants were prepared for long-term storage. 

The culture was grown overnight in LB medium with or without the selective antibiotic 

(depending upon the bacterial transformant).  850 µl of the overnight grown culture was 

added to 150 µl of sterilized glycerol in a 1.5 ml microcentrifuge tube, mixed well by 

vortexing and the tube was frozen on dry ice and stored at –80°C. 

 

3.15.3 DNA sequencing 

Sequencing of the PCR-amplified product or plasmid DNA was performed at the sequencing 

facility of the Centre for Molecular Medicine, University of Cologne, Cologne by modified 

dideoxy nucleotide termination method using a ‘Perkin Elmer ABI prism 377’ DNA 

sequencer. 

 

3.16 Quantitative PCR 

Total RNA was extracted and cDNA was prepared as described under 3.9.  Primers were 

selected such that the expected product size was between 250-350bp.  Prior to use in real time 

experiment the quality of the cDNA and the primers were tested by PCR.  Real Time PCR 

was carried out with the QuantitedΤΜ SYBR® green PCR kit (Qiagen) according to the 

manufacturers protocol.  For each sample gene specific primers (10 pmole) and 1 µl of cDNA 

was used.  As a quantification standard defined concentrations (10ng, 1ng, 100pg, 10pg and 

1pg) of pT7-7 contianing the annexin 7 gene were used.  Actin specific primers were used as 

positive control and to ensure comparable concentrations of cDNA in samples of wild type 

and mutant cells. 
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4.0 Microarray analysis 

4.1 Principle  

 

Figure A. Principle of DNA microarray analysis.  cDNAs or partial ORFs are amplified by PCR 
and subsequently printed onto the microarray slides.  The slides are hybridized with a pool of 
fluorescently labelled cDNAs derived from total RNA of control and experiment cells.  The 
hybridized targets are then scanned to measure the intensity of each spots and the data further 
analysed. 

4.2 The Dictyostelium discoideum DNA microarray 

The Dictyostelium DNA microarray consists of an array of DNA probes that are derived from 

ESTs, published genes and controls.  The array contains the sequences of 5423 non-redundant 

cDNA clones that were obtained from the Dictyostelium cDNA project  

(http://www.csm.biol.tsukuba.ac.jp/cDNAproject.html), 450 partial sequences of published 

genes and 33 controls (Table A).  Positive controls are selected partial gene sequences from 

D. discoideum, genomic DNA (100 ng/µl) and the SpotReport-10 PCR products (Stratagene).  

Negative controls are Fish sperm DNA (100 ng/µl), phage λ Bst E III (100 ng/µl), human 

Cot-1 (10 ng/µl) and SpotReport Poly(dA) (1 ng/µl).  Altogether, the array contains 5906 

targets, each of which was printed at least in duplicate.  Corning Ultra Gaps microrray slides 

were used for spotting and the spotted slides were baked for 2hrs at 80°C to covalently attach 

the DNA to the slides.  
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 Description Probes Spots 
Published genes 450 900 
cDNAs 5423 10846 
Controls 33 2874 
Total 5906 14620 

 

 

 

Table A. Properties of the Dicytostelium DNA microarray 

 

4.2.1 Pre-hybridisation 

The slides were pre-hybridised with blocking solution to reduce background signals through 

non-specific binding of labeled cDNAs. 

 

Blocking solution (for 25 slides)  Final concentration 

Water     92 ml    - 

20x SSC  100 ml        5x SSC 

Formamide  200 ml             50% 

10% SDS      4 ml            0.1% 

BSA (10mg/ml)     4 ml     0.1mg/ml 

 

Procedure 

• Pre-heat the blocking solution to 42°C 

• Incubate the spotted slides in the pre-heated blocking solution for 45 min  

• Rinse with water for 15 sec  

• Briefly dip in Isoproponal 

• Spin the slides at 235 x g for 2 min to dry them  

• The slides are now ready for hybridisation 

 

4.2.2 Sample preparation and cDNA generation 

Total RNA from Ax2 cells and the FrzA− mutant was prepared, as described in (3.9.1).  RNA 

was isolated at different time points of development in two independent experiments from 

cells starved at high cell density (HCD, 5 x 106 cells per cm2) and low cell density (LCD; 1 x 

106 cells per cm2).   
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4.2.3 Spiking of internal mRNA controls 

Quality control is an important issue of DNA microarray analysis.  Therefore ten different 

mRNAs from Arabidopsis thaliana genes are used as internal controls.  These are added 

(spiked) to the D. discoideum RNA prior to cDNA generation and labeling.  mRNAs are 

provided in a spikemix with different known amounts of each mRNA (Table B).  Two 

different mixes are used for the two labeling reactions (Cy3 and Cy5) of one microarray 

experiment.  

Spikemix  4   Spike A Spike B Ratio Total Amount 
single reaction   (pg) (pg)   (pg) 

1 Cab 300 150 2 450 
2 RCA 250 250 1 500 
3 rbcL 250 250 1 500 
4 LTP4 5 5 1 10 
5 LTP6 2 2 1 4 
6 XCP2 1 1 1 2 
7 RCP1 300 150 2 450 
8 NAC1 400 40 10 440 
9 TIM 375 75 5 450 

10 PRKase 375 75 5 450 

Table B. The composition of the mRNA spike mix. 

Procedure: 

• Add 1 volume of Spikemix to D. discoideum total RNA (e.g. 10 µl of Spikemix A to 

10 µg of RNA from wild type and 10 µl of Spikemix B to 10 µg of RNA from the 

mutant).  

• Precipitate the RNA mixes by adding 0.1 volumes 3 M sodium acetate, pH 4.8, and 

2.5 volumes 100 % Ethanol.  

• Store at −20°C for 2 hrs and centrifuge in a tabletop centrifuge at maximum speed for 

30 min.  

• Remove Ethanol by aspiration and wash with 70 % Ethanol.  

• Centrifuge 15 min at maximum speed, aspirate and dry.  

• Dissolve in 12 µl of Rnase free water.  

• Proceed with cDNA generation and labeling. 
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4.3 cDNA generation and fluorescent labeling of cDNA 

Total RNA (10 µg) in 12 µl of RNase free water was incubated with 1 µl of 500 ng/µl 

oligonucleotide (dT) for 10 min at 70oC and immediately cooled on ice. 5 µl of a mastermix 

(see below) and 0.7 µl of reverse transcriptasse (Stratascript RT 50 U/µl) was added and the 

sample incubated at 48oC for 25 min.  Then another 1µl of 50 U/µl Stratascript RT was added 

and incubation continued at 48oC for 35 min.  The reaction was stopped by adding 10 µl of 

1M NaOH and then incubated at 70oC for 10 min.  The samples were slowly cooled to room 

temperature.  Tubes were spun briefly and 10 µl of 1M HCl was added for neutralisation.  

Master mix 
Stratascript reaction buffer     2 µl 

dNTP mix*        1 µl 

0.1M DTT      1.5 µl 

RNase block (40 U/µl)  0.5 µl 

*The dNTP mix contains aminoallyl dUTP to which the fluorescent dyes (CyΤΜ3 or CyΤΜ5, 

Amersham) are covalently attached in the labeling reaction.  The labeling was done with dyes 

according to the protocol of the Stratagene Fair Play kit with slight modifications. 

4.4 Hybridization of microarray slides 

The microarray slides have a labeling area with the slide number and a bar code that is used to 

identify each slide (Figure B).  The array has 14620 spots per slide and represents almost 50% 

of the Dictyostelium genome. A corning hybridization chamber was used for hybridization. 

 

Figure B. Microarray slide with a bar code 

4.4.1 Buffers and solutions 

Hybridization solution (50 µl)    Hybridization buffer 

Hybridization buffer            48 µl  Na-phosphate buffer, pH 6.8 0.12 M 
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Fish sperm DNA [10 mg/ml]  1 µl  EDTA      2 mM 

Oligo dA (18 mer, 100 µM)  1 µl  Formamide      50 % 

       Na-Laurylsarcosinate       1 % 

      SDS      0.2 % 

       Denhardt's reagent         4x 

 

100 x Denhardt's reagent    20 x SSC 

Ficoll 400   2 %   NaCl     3 M 

Polyvinylpyrrolidone  2 %   Na-citrate 0.3 M 

Bovine serum albumin 2 % 
 
1.2 M Phosphate buffer, pH 6.8 

1.2 M Na2HPO4  2 vol. 

1.2 M NaH2PO4  1 vol. 

 

Procedure: 

• Pipette 10 µl of 3xSSC into the two holes of the Corning hybridization chamber.  

• Dissolve the precipitated targets in 65 µl of hybridisation solution.  

• Incubate the target solution 10 min at 80°C.  

• Centrifuge and pipette the 65 µl of targets on the microarray slide on the side opposite 

of the barcode.  

• Take a cover-slip and slowly place it onto the microarray slide.  

• Place the slide cover-slip up into the hybridisation chamber, close the chamber and 

submerge it in the water-bath at 37°C for overnight. 

Washing 

After hybridisation the microarray is washed to remove unbound target.  During washing the 

transitions from the baths should be performed swiftly, so the microarray does not dry before 

processing is finished.  

• Remove the microarray from the hybridisation chamber and plunge into 2xSSC with 

0.1% SDS.  Gently shake until the cover-slip comes loose and remove it with 

tweezers.  

• Wash for 5 min in 1xSSC, 0.1% SDS. 

• Wash for 5 sec in 0.1xSSC; repeat this step for five times. 
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• Wash for 5 sec with 0.01x SSC. 

• Centrifuge slides in a rack at 235 x g (1000 rpm) for 5 min. 

4.5 Scanning of microarray slides  

The ScanArray 4000XL confocal laser scanner (Perkin Elmer Life Sciences) was used to 

detect the fluorescently labelled cDNA targets that bound to the immobilised DNA on the 

array.  The microarray slide was scanned for Cy3 and Cy5 successively with a resolution 

down to 5 µm/pixel.  The fluorescent dyes are excited by laser-light of pertinent wavelength 

and emission is detected by a photo-multiplier.  To obtain images well suited for signal 

quantification image brightness has to be adjusted by adjusting the laser-power between 50% 

and 100% (photo-multiplier power should always be set at 70 to 80 %).  The signals should be 

as bright as possible, but spots should not be saturated (indicated by white colouring).  It 

might be necessary to scan at two different laser-power settings.  One setting where most 

spots give bright signals, but a few like some of the positive controls are saturated, and 

another setting where no saturation is seen, but most spots give weak signals. 

4.6 Data Analysis  

The spot and background intensities of the scanned images were quantified using ScanArray 

Express (Version 2.2.22).  The raw data thus obtained were subjected to a series analysis 

steps. 

• The Scanarray express CSV files were converted into *.txt files and imported into the 

ArrayTools, which is an Add-in for Microsoft Excel designed for import and export of 

microarray data.   

• Data were then exported to the program R for normalization and imported back to 

AarryTools.   

• The normalized data were then imported to the Significance Analysis for Microarray 

(SAM) program to identify differentially expressed genes.   

• The significant genes were then clustered based on their expression pattern using the 

clustering tool (K-means) in the program GeneSpring (Version 4.1). 

 

36 



Materials and Methods 
___________________________________________________________________________ 

5.0 Construction of vectors 

5.1 Amplification and cloning of the partial and full-length cDNA 

Different domains of FrzA gene were PCR amplified with primers listed in Materials and 

Methods (1.9) to facilitate cloning into GFP expression or GST expression vector.  

10x PCR buffer: 

 100 mM Tris/HCl, pH 8.3  

 500 mM KCl   

 

Reaction-mix:  

 1 µl Template   

 1 µl Forward primer (10 pmol/µl)   

 1 µl Reverse primer (10 pmol/µl)   

 5 µl 10x PCR buffer    

 1 µl dNTP-mix (10 mM each)   

 1 µl Taq polymerase (1 U/µl)  

 add H2O to make 50 µl    

  

5.2 Vector for expression as a GFP-fusion protein 

A vector for expression of different domains and full-length genes as a GFP- fusion protein in 

Dictyostelium under the control of actin-15 promoter and actin-8 terminator was constructed 

using the vector p1aBsr8 vector (Graf et al., 2000) or pGFP-MCS (Weber et al, 1999).  To 

facilitate subcloning into p1aBsr8 vector, various domains of FrzA gene (the positions relative 

to the start ATG are shown below) were PCR amplified with primers mentioned in Materials 

and Methods (1.9), and cloned into pGEM-T easy vector.  The resulting plasmids were 

verified by sequencing and each of the domains were then taken as Kpn I + Sac I fragment 

and cloned in frame with the green fluorescent protein (GFP) as C-terminal fusion for 

p1aBsr8 vector, or cloned form of PIP5K in frame with the green fluorescent protein (GFP) as 

N-terminal fusion for pGFP-MCS vector.  A sequence coding for the first 16 amino acids of 

chicken c-Src, composed of the myristoylation signal and the basic amino acid cluster 

sufficient for stable membrane association (Chung et al., 1999) was added to the forward 

primer to amplify the PIP5K domain for cloning the myristolyated form of PIP5K domain in 

p1aBsr8 vector. 
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5.3 Vector for expression of PIP5K domain as a GST-fusion protein 

The PIP5K domain encompassing amino acid residues 422-792 of the FrzA protein was 

amplified by PCR with primers PIP5kfp and PIP5krp and subcloned as Eco RI fragment 

encompassing amino acid residues 480-792 of the protein in pGEX-4T3 vector.  The obtained 

pGEX-PIP5K expression vector was transformed into E. coli XL1 blue cells for the 

expression of GST-PIP5K fusion protein. 

 

5.4 Gene replacement vectors 

To create the gene replacement vector for the FrzA gene the Neomycin cassette from the 

pDNeo II plasmid was taken out as an Eco RV fragment and inserted into a FrzA read 

(JC2e123a11.r1) obtained from the IMB, Jena, Germany.  The digested and eluted fragment 

shown below was used for transformation of Ax2 wild type cells. 
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5.4.1 Screening of FrzA- mutant 
A PCR approach was used for screening for FrzA- mutant cells.  Wild type Ax2 cells were 

electroporated with the gene replacement vector (Materials and Methods, 2.3) and the 

transformants were selected for resistance to Neomycin (3.5 µg/ml). Single cell transformants 

were then obtained by spreader dilution of the whole pool of transformants onto SM plates 

overlaid with Klebsiella. Thereafter, the single transformants were picked up and grown in 

separate wells in a 24 well tissue culture plate in the selection medium (as above) that has 

been supplemented with streptomycin (40 µg/ml) and ampicillin (50 µg/ml) to get rid of the 

bacteria.  The positive clones were then further grown in separate flasks to prepare genomic 

DNA for the Southern blot analysis to confirm the recombination event. 

 

Preparation of DNA for PCR reaction: 

After the cells had grown confluent in the wells, cells were suspended in the medium present 

in the wells and transferred to a 1.5 ml microcentrifuge tube. The cells were then pelleted by 

centrifugation in a microcentrifuge at maximum speed for 15 s. The cells were washed twice 

with 1 ml of ice-cold H2O and resuspended in 100 µl of lysis buffer. The cells were then 

incubated at 56ºC for 45 min followed by incubation at 95ºC for 10 min to liberate the 

genomic DNA. 

 
PCR conditions:  

15 µl of the processed cell suspension containing the liberated genomic DNA was used as a 

template for PCR. Reaction programme and composition of the reaction-mix are indicated: 

 
Lysis buffer 10x PCR buffer: 
0.5% Nonidet P-40 100 mM Tris/HCl, pH 8.3 
0.05 mg/ml proteinase K 500 mM KCl 
in 1x PCR buffer 15 mM MgCl2 
 
Reaction-mix (50 µl final volume) Reaction programme: 
15 µl template 94ºC for 3 min 
2.5 µl a15p forward primer (2 pmol/µl) 56ºC for 1 min 
2.5 µl knock out reverse primer (2 pmol/µl) 68ºC for 1 min 
1.0 µl dNTP-mix (10 mM each) 94ºC for 45 sec 
5.0 µl 10x PCR buffer 56ºC for 45 sec (Step 5-3, 35 cylces) 
1.0 µl Taq polymerase (1 U/µl) 68ºC for 10 min 
23 µl H2O            4ºC till end 
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6. Biochemical methods 

6.1 Cell Culture of Dictyostelium  

Cells were grown in axenic medium (Materials and Method 2.1.1) to a density of 2 x 106 

cells/ml.  Growing Dictoystelium cells were then harvested by centrifugation to collect 

vegetative cells or washed twice in Soerensen phosphate buffer and starved by plating onto a 

phosphate agar plate (for protein and RNA preparation) or shaking in Soerensen phosphate 

buffer with required cell density for IP3 and cGMP assay or protein and RNA preparation or 

to collect developmental stages for protein sample preparation.   

 

6.2 cAMP pulsing experiment 

Cells were shaken in Soerensen buffer at a density of 1 x 107/ml either unpulsed or pulsed 

with 100 nM cAMP at 6 min intervals for 8 hrs at 160 rpm.  Samples were then taken at 2 hrs 

intervals for protein and RNA preparation.  Total protein of 1 x 107 cells was prepared by 

lysing the cells in 50 µl 1x SDS sample buffer and RNA was prepared after 8 hrs of shaking 

(with and without cAMP pulsing) as mentioned in Materials and Methods (3.9.1). 

 

6.3 Subcellular fractionation 

Dictyostelium cells were collected by centrifugation (1000 x g for 5 min) and resuspended in 

MES buffer supplemented with a protease inhibitor mixture (50 µg/ml leupeptin, 10 µg/ml 

pepstatin A, 2 mM benzamidine, 1 mM PMSF) and 0.1% Triton X-100.  Triton X-100 soluble 

and insoluble fractions were separated by centrifugation at 100,000 x g for 10 min and 

extracted in 2x SDS sample buffer. 

 

6.4 Preparation of a membrane-enriched cell fraction for cAR1 analysis (Brandon and 

Podgorski, 1997) 

Cells at a density of 8-10 x 106 cells in a volume of 0.1 ml were rapidly diluted in 0.9 ml of 

ice-cold saturated ammonium sulfate, vortexed vigorously, and centrifuged at 6000 x g for 6 

min at 4ºC.  The supernatant was gently aspirated and the cell pellet was resuspended in 0.2 

ml of ice-cold receptor assay buffer containing protease inhibitors (Theibert et al., 1984) to 

lyse the cells.  A membrane-enriched cell fraction was collected by centrifugation at 16,000 x 

g for 10 min at 4ºC.  The final pellet was resuspended in sample buffer (10% glycerol, 5% 

DTT, 3% SDS, 62.5 mM Tris, pH 6.8, 2% bromophenol blue) at 5 x 107 cell equivalents/ml. 

Approximately 2 x 107 cell equivalents were loaded per lane on a 12% SDS-PAGE gel. 
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6.5 PLC assay 

Inositol 1,4,5-trisphosphate (IP-3) production was determined following the procedure 

described in Van Haastert, 1989, using a kit (Amersham Pharmacia Biotech) for the IP3 assay 

with a modification. The assay was performed in the presence or absence of a stimulus 

(1ng/ml rCMF) and 100 µl of supernatant from the neutralized cell extract was used. 

 

6.6 cGMP assay 

Competitive immunoassay for quantitative determination of cGMP levels was carried out 

using a cGMP assay kit (Amersham Pharmacia Biotech).  Cells were prepared as in Materials 

and Methods (6.1) and the assay was done according to the manufacturers protocol. 

 

6.7 SDS-polyacrylamide gel electrophoresis 

SDS-polyacrylamide gel electrophoresis was performed using the discontinuous buffer system 

of Laemmli (1970).  Discontinuous polyacrylamide gel (10-15% resolving gel, 5% stacking 

gel) was prepared using glass-plates of 10 cm x 7.5 cm dimensions and spacers of 1mm 

thickness.  A 12-well comb was generally used for formation of the wells in the stacking gel.   

The composition of 12 resolving and 12 stacking gels is given in the table below: 

 

Components 
Resolving gel 

10 %   12 %   15 %

Stacking gel 

5% 

Acrylamide/Bisacrylamide (30:0.8) [ml]: 19.7 23.6 30 4.08 

1.5 M Tris/HCl, pH 8.8 [ml]: 16 16 16 - 

0.5 M Tris/HCl, pH 6.8 [ml]: - - - 2.4 

10 % SDS [µl]: 590 590 590 240 

TEMED [µl]: 23 23 23 20 

10 % APS [µl]: 240 240 240 360 

Deionised H2O [ml]: 23.5 19.6 13.2 17.16 

     

 

Protein solutions were mixed with suitable volumes of 2x SDS sample buffer, whereas protein 

pellets were resuspended in a suitable volume of 1x SDS sample buffer.  The samples were 

denatured by heating at 95ºC for 5 min and loaded into the wells in the stacking gel.  A 

molecular weight marker, which was run simultaneously on the same gel in an adjacent well, 

was used as a standard to establish the apparent molecular weights of proteins resolved on 
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SDS-polyacrylamide gels.  The molecular weight markers were prepared according to the 

manufacturer’s specifications.  After loading the samples onto the gel, electrophoresis was 

performed in 1x gel-running buffer at a constant voltage of 100-180 V until the bromophenol 

blue dye front had reached the bottom edge of the gel or had just run out of the gel.  After the 

electrophoresis, the resolved proteins in the gel were either observed by Coomassie blue 

staining or transferred onto a nitrocellulose membrane for western blot analysis. 

 

SDS-sample buffer:    

1x 2x    

50 100  (mM) Tris/HCl, pH 6.8  

2 4 (% v/v) SDS   

10 20 (% v/v) glycerine 

0.1 0.2 (% v/v) bromophenol blue 

2 4  (% v/v) β-mercaptoethanol 

Molecular weight markers: 10x Gel-running buffer:  

Marker (Pharmacia) 1.9 M glycine 

LMW- 94, 67, 43, 30, 20.1, 14.4 kDa 0.25 M Tris/HCl, pH 8.8 

HMW-116, 76, 70, 50 kDa 1% SDS 

 

6.8 Coomassie blue staining of SDS-polyacrylamide gels 

After electrophoresis, the resolved proteins were visualised by staining the gel with 

Coomassie blue staining solution.  The gel to be stained was placed in the Coomassie blue 

staining solution immediately after electrophoresis and the gel was allowed to stain at room 

temperature with gentle agitation for at least 30 min.  After staining, the staining solution was 

poured off and destaining solution was added.  The gel was then destained at room 

temperature with gentle agitation.  For best results, the destaining solution was changed with 

fresh destaining solution several times until protein bands were clearly visible. 

Coomassie blue staining solution: Destaining solution: 

0.1% Coomassie blue R250 7 % acetic acid 

50% ethanol 20% ethanol 

10% acetic acid 

filter the solution before use 
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6.9 Drying of SDS-polyacrylamide gels 

After destaining, the gel was immersed in gel-dry buffer for 10-15 min at room temperature. 

Two sheets of cellophane (Novex), slightly bigger than the size of the gel, were also 

immersed in gel-dry buffer.  The gel was then carefully placed between two moistened sheets 

of cellophane avoiding trapping of air-bubbles, clamped between the gel-drying frames 

(Novex) and dried overnight at room temperature. 

Gel-drying buffer: 

25% ethanol 

5% glycerine 

 

6.10 Western blotting using the semi-dry method 

The proteins resolved by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) were 

electrophoretically transferred from the gel to a nitrocellulose membrane by using the method 

described by Towbin et al. (1979) with little modifications.  The transfer was performed using 

Towbin’s buffer in a semi-dry blot apparatus (Bio-Rad) at a constant voltage of 10 V for 35-

45 min.  The instructions provided along with the semi-dry apparatus were followed in order 

to set up the transfer. 

Towbin’s buffer (transfer buffer): 

39 mM glycine 

48 mM Tris/HCl, pH 8.3 

0.0375% SDS 

20% methanol or ethanol 

 

6.11 Ponceau S staining of western blots 

To check for the transfer of proteins onto the nitrocellulose membrane, the membrane was 

stained in 10-15 ml of Ponceau S solution for 2-5 min at room temperature.  After staining, 

the membrane was removed from the Ponceau S solution and rinsed with deionised water to 

destain until bands of proteins were visible and the background was clear.  The position of the 

constituent proteins of the molecular weight marker and/or the protein of interest was marked 

and the membrane was again washed with several changes of deionised water to completely 

remove the stain.  Now the membrane carrying the transferred proteins was used for 

immunodetection (Materials and Methods, 6.11) of specific proteins. 
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Ponceau S solution: Ponceau S concentrate (Sigma): 

1 ml Ponceau S concentrate (Sigma) 2% w/v Ponceau S in 30% w/v TCA  

19 ml distilled H2O and 30% w/v sulfosalicylic acid  

 

6.12 Immunodetection of nitrocellulose membrane bound proteins 

The western blot was immersed in blocking buffer (1x NCP with 5% milk powder) and the 

blocking was performed with gentle agitation either overnight in the cold room or at room 

temperature for 1h. After blocking, the blot was incubated at room temperature with gentle 

agitation with either commercially available primary antibodies or hybridoma-supernatant at a 

proper dilution (in 1x NCP) for 1-2 h.  After incubation with the primary antibody, the blot 

was washed 5-6 times with 1x NCP at room temperature for 5 min each with repeated 

agitation.  Following washings, the blot was incubated for 1 h at room temperature with a 

proper dilution (in 1x NCP) of Horseradish peroxidase (HRP) conjugated secondary antibody 

directed against the primary antibody.  After incubation with the secondary antibody, the blot 

was washed as described above.  After washings, the substrate reaction was carried out 

depending upon the enzyme coupled to the secondary antibody.  Enzymatic 

chemiluminescence (ECL) detection system (Materials and Methods, 6.12) was used for blots 

incubated with HRP-conjugated secondary antibody. 

 

6.13 Enzymatic chemiluminescence (ECL) detection system 

The blot was incubated in ECL-detection-solution for 1-2 min and then wrapped in a saran 

wrap after removing the excess ECL-detection-solution.  Now an X-ray film was exposed to 

the wrapped membrane for 1-30 min and the film was developed to observe the 

immunolabelled protein. 

 

ECL-detection-solution:   

2 ml   1 M Tris/HCl, pH 8.0 

200 µl   250 mM 3-aminonaphthylhydrazide in DMSO  

90 µl   90 mM p-Coumaric acid in DMSO 

18 ml   deionised H2O 

6.0 µl   30% H2O2 (added just before using) 
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6.14 Expression and purification of GST fusion protein 

E. coli strain XL1 blue cells were transformed with expression vector pGEX-PIP5K 

(Materials and Methods, 3.15.1) for expression of GST-PIP5K as a glutathione S-transferase 

(GST)-fusion protein under the control of the IPTG-inducible tac promoter. 

 

6.14.1 Small-scale protein expression 

Small-scale expression of GST fusion proteins was performed to check the efficiency of 

expression of various recombinant clones as well as to standardise the conditions of 

expression before proceeding for the large-scale expression and purification of GST fusion 

proteins.  Single colonies (5-10) of recombinant cells were picked and grown overnight in 10 

ml of LB medium containing ampicillin (100 µg/ml) at 37ºC and 250 rpm.  5 ml of the 

overnight grown culture was inoculated into 45 ml of fresh LB medium containing ampicillin 

(50µg/ml).  The culture was then allowed to grow at 37ºC till an OD600 of 0.5-0.6 was 

obtained.  Now the induction of expression was initiated by adding IPTG.  In order to 

standardise the conditions of maximum expression of the fusion protein, induction was 

performed with varying concentrations of IPTG (0.1 mM, 0.5 mM and 1.0 mM final 

concentration) at 37ºC.  Samples of 1 ml were withdrawn at different hours of induction (3 

and 5 hrs).  The cells were then pelleted and resuspended in 100 µl of 1x SDS sample buffer.  

The samples were denatured by heating at 95ºC for 5 min and 10 µl of each sample was 

checked on a 10% SDS-polyacrylamide gel.  Expression of the GST-PIP5K fusion protein 

was analysed by Coomassie blue staining of the SDS-polyacrylamide gel.  

 

6.14.2 Large-scale protein expression  

Large-scale expression of GST-PIP5K fusion protein was performed on the basis of results 

obtained with small-scale expression procedures as described above.  An overnight culture 

was started with a recombinant clone, showing maximum level of expression, in 50 ml LB 

medium containing ampicillin (50µg/ml) at 37ºC and 250 rpm.  The next day, 50 ml of the 

overnight grown culture was inoculated into 450 ml fresh LB medium containing ampicillin 

(50 µg/ml) and the culture was allowed to grow at 37ºC till an OD600 of 0.5-0.6 was obtained.  

Now the induction of expression was initiated by adding 1 M IPTG to a final concentration of 

1.0 mM and the induction was performed for 5 hrs at 37ºC and 250 rpm. 
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6.14.3 Preparation of cell homogenates 

 After the induction, the culture was transferred to a 500 ml centrifuge bottle (Beckman) and 

the cells were collected by centrifugation at 4,000 rpm (Beckman Avanti J25, rotor JA-10) for 

10 min at 4ºC.  The pellet was resuspended in 10 ml of ice-cold lysis buffer containing 

lysozyme (1 mg/ml) and Triton X-100 (0.5%) and supplemented with fresh protease 

inhibitors, collected in a 50 ml tube and incubated on ice for 20 min.  Incubation in lysis 

buffer was followed by a brief sonication (3 pulses of 10 s each with a 15 s rest between each 

pulse), keeping the tube immersed in ice.  Sonication was followed by homogenisation using 

a Dounce homogeniser for 2-3 min in order to ensure complete and efficient cell lysis.  The 

lysate was then subjected to gradual increases in the molarity of urea.  At every extraction 

step the lysate is pelleted at 15,000 rpm (Beckman Avanti J25, rotor JA-25.50) for 15 min at 

4ºC followed by next concentration of urea and continued till 8 M urea.  The supernatant 

samples (10 µl) collected from each round of solubilization were dissolved in 1x SDS sample 

buffer and run on SDS-polyacrylamide gel to be analysed by Coomassie staining. 

 

Lysis buffer: Protease inhibitors: 

50 mM Tris/HCl, pH 7.5 1 mM PMSF 

100 mM NaCl 1.4 µg/ml pepstatin 

5 mM MgCl2 5.0 µg/ml leupeptin 

0.5 % Triton X-100 

add fresh before use- 

1 mM DTT  

1 mg/ml lysozyme 

protease inhibitors 

 

6.14.4 Analysis of GST fusion protein in fractionated cell lysate of E. coli 

To analyse whether the fusion protein is in the cytosol or in inclusion bodies the cells were 

sonicated (3 pulses of 10 s each with a 15 s pause between each pulse) and centrifuged at high 

speed in a tabletop centrifuge for 1 min. Supernatant and pellet were dissolved in 1x SDS 

sample buffer individually and the proteins separated by SDS-polyacrylamide gel for analysis 

by both Coomassie blue staining and western blot analysis. 
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6.14.5 Affinity purification of polyclonal antibodies by the blot method  

The recombinant protein, which was used to produce the polyclonal antibody, was transferred 

onto a nitrocellulose membrane and was stained with Ponceau S to confirm the transfer 

efficiency.  The blot membrane corresponding to the recombinant protein was cut out and 

destained with 1x NCP followed by blocking in Solution I for 2 hrs.  The serum was mixed in 

a ratio of 1:4 with 1x NCP and the stripes incubated in it at 4°C for 2 hrs.  The unbound 

antibody was washed off by four to five times incubation with 1x NCP at 4°C.  After 

washing, the antibodies bound to the recombinant protein on the membrane stripes are eluted 

with 1 ml Solution II, by incubation for 1min at 4°C.  The eluted antibody was immediately 

neutralised with 100 µl of 1 M Tris/HCl, pH 8.0. The purified antibody was then stabilised 

with 0.5% BSA. 

 

10x NCP (1L) 

87 g  NaCl 

2 g  KCl  

100 ml 1 M Tris/HCl, pH 8.0  

 

Solution I      Solution II, pH 2.6 

5% milk powder     0.1 M glycin 

0.05% Tween 20 in PBS    0.5 M NaCl 

0.5% Tween 20  

 

7. Cell biological methods 

7.1 Measuring cell size 

Ax2 wild type and FrzA− cells were washed once and allowed to settle on a coverslip for 15 

min and random images of the cells were taken using a microscope.  The images were then 

opened using Diskus software to measure the cell size for at least 600-700 cells for both Ax2 

and FrzA−.  The values were processed using Microsoft Excel program. 

 

7.2 Growth rate measurement 

Cells from wild type and mutant were inoculated in equal volume of medium at a density of 1 

x 106 cells/ml and grown at 21ºC with shaking at 160 rpm. Cells were counted at different 

time points using the Neubauer chamber. 
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7.3 Fluid uptake analysis 

Cells were resuspended in fresh axenic medium at a density of 5 x 106 cells/ml in the presence 

of 2 mg/ml TRITC-dextran.  Samples were harvested at indicated time points and the cells 

were pelleted after incubating for 3 min with 100 µl of trypan blue (2 mg/ml) to remove 

nonspecifically bound marker. The pellet was resuspended in phosphate buffer and the 

fluorescence was measured using a Fluorimeter (544 nm excitation/ 574 nm emission).  

 
7.4 Conditioned medium preparation and starvation under submerged condition 
 
Exponentially growing cells were harvested by centrifugation at 700 x g for 5 min, washed 

twice in ice-cold Soerensen buffer and resuspended in the same buffer at a density of 1 x 107 

cells/ml for initiating starvation.  For preparation of conditioned medium, cells were 

suspended at 1x107 cells/ml and starved for 16-20 hrs, at 21ºC with shaking at 160 rpm.  Cell-

free supernatant was prepared by a 700g centrifugation of the starved cell suspension for 5 

min.  The supernatant was immediately frozen at -80ºC and stored until use as starvation 

media for freshly harvested vegetative cells.  Aggregation tests were performed by starving 

cells in a 6 well plate (NUNC, USA), in 1 ml of Soerensen buffer or in 1 ml of a cell-free 

conditioned medium or at a cell density of 104 or 105 cells per cm2 in the presence of 

recombinant CMF (1ng/ml). 

 

7.5 Light scattering measurements and [Ca2+]i  determination 
 

The changes in light scattering of suspensions of amoebae were recorded with a Zeiss 

spectrophotometer (PM6) according to the method of (Gerisch and Hess, 1974), modified as 

in (Bumann et al., 1986), at a cell density of 2 x 107/ml in Soerensen phosphate buffer starting 

at 4 h after induction of development. [Ca2+]i measurements were performed as described 

(Malchow et al., 1996b). 

 

7.6 Prespore differentiation assay  

The cells were grown and harvested as mentioned in Materials and Methods (6.1).  

Approximately 6000 cells were starved in the well of a Lab-Tek 4 chamber glass slide 

(roughly 1.1 cm2 surface area; Miles, Naperville, IL) in 200 µl of buffer with or without 

1ng/ml of CMF protein as described by Renu et al., (1994).  The cells were subsequently 

fixed and stained for the prespore antigen D19 using the Mud-1 monoclonal antibodies as 

primary antibody and and the number of prespore positive cells was counted.  

48 



Materials and Methods 
___________________________________________________________________________ 

7.7 Video imaging and chemotaxis assay 

Cells were prepared as in Materials and Methods (6.1) and starved for 6 to 8 hours.  25-30 µl 

of cell suspension were diluted in 3 ml of Soerensen buffer and mixed well by pipetting (25-

30 times, with occasional vortexing). This is important to dissociate cells from aggregates.  

1.5 ml of the diluted cells were then transferred onto a 5 cm glass cover-slip with a plastic 

ring placed on an Leica inverse microscope equipped with a 10x UplanFl 0.3 objective. Cells 

were stimulated with a glass capillary micropipette (Eppendorf Femtotip) filled with 0.1 mM 

cAMP (Gerisch and Keller, 1981), which was attached to a microcontroller.  Time-lapse 

image series were captured and stored on a computer hard drive at 30 seconds intervals with a 

JAI CV-M10 CCD camera and an Imagenation PX610 frame grabber (Imagenation Corp., 

Beaverton, OR) controlled through Optimas software (Optimas Corp., Bothell, Washington).  

The DIAS software (Soltech, Oakdale, IA) was used to trace individual cells along image 

series and calculate the cell motility parameters (Soll et al., 2001).  For processing images, 

Corel Draw version 11, Corel Photopaint and Adobe Photoshop were used. 

 

7.8 Indirect immunofluorescence of Dictyostelium cells  

7.8.1 Preparation of Dictyostelium cells 

Dictyostelium cells were grown in shaking culture to a density of 2-4 x 106 cells/ml.  Desired 

amounts of cells were collected in a centrifuge tube, washed twice with Soerensen phosphate 

buffer and finally resuspended in Soerensen phosphate buffer at 1 x 106 cells/ml.  400 µl of 

the cell suspension were then pipetted onto an 18 mm acid-washed glass cover-slip lying on a 

parafilm covered glass plate resting in a humid-box.  Cells were allowed to attach to the glass 

cover-slip for 15 min.  Thereafter cells attached onto the cover-slip were fixed immediately by 

one of the fixation techniques described below. 

 

7.8.2 Methanol or PFA fixation 

After the cells have attached to the coverslip, the supernatant was aspirated and the coverslip 

was either fixed by incubating the cells in 3% PFA for 20 min at room temperature or dipped 

instantaneously into the pre-chilled (-20ºC) methanol in a petri dish and incubated at –20ºC 

for 10 min.  The coverslip was then washed with 500 µl PBS/glycine for 5 min to block free 

reactive groups followed by two washings with 500 µl of PBG for 15 min each. After 

washings, the cells were immunolabelled as described below. 
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Paraformaldehyde solution 

0.3 g paraformaldehyde was dissolved in 5 ml ddH2O by stirring at 40°C and adding 3-4 

drops of 2M NaOH. After dissolving, the volume was adjusted to 10 ml with ddH2O. 

 

PBG , pH 7.4:      PBS Glycine  

 0.5 % bovine serum albumin   500ml 1x PBS 

 0.1 % gelatin (cold-water fish skin)  3.75g glycine 

 in 1x PBS, pH 7.4     filter sterilize and store at –20ºC 

 

7.8.3 Immunolabeling 

The cover-slip containing the fixed cells was incubated with 400 µl of the desired dilution (in 

PBG) of primary antibody for 1-2 h in the humid-box at room temperature. After incubation, 

the excess antibody was removed by washing the cover-slip five times with PBG for 5 min 

each. Now the coverslip was incubated for 1 h with 400 µl of a proper dilution (in PBG) of 

the appropriate secondary antibody followed by two washings with PBG for 5 min and then 

three washings with PBS for 5 min. After washings, the cover-slip was mounted onto a glass 

slide.  Some time cells expressing GFP fusion protein were directly mounted on to a glass 

slide after fixation (Materials and Methods, 7.8.2) and observed under a fluorescence 

microscope or confocal laser scan microscope. 

 

7.8.4 DAPI and phalloidin staining of fixed cells 

DAPI staining of Dictyostelium nuclei and phalloidin staining of Dictyostelium F-actin was 

performed simultaneously. Staining of F-actin with TRITC- phalloidin demarcated the cell-

boundary, which facilitated in determining the number of DAPI stained nuclei within a 

particular cell. Cells were harvested and the coverslip coated with cells were prepared as 

explained in Materials and Methods (7.8.1). Cells were then fixed onto the coverslip by 

methanol or paraformaldehyde fixation in case of TRITC-phalloidin as discussed in Materials 

and Methods (7.8.2). After fixation and usual washings, coverslips were incubated for 30 min 

with 400 µl of PBG containing DAPI (1:1000 dil.) and/or TRITC-phalloidin (1:1000 dil.). 

Thereafter, the coverslip was washed twice with 400 µl of PBG for 5 min each followed by 

three washings with 400 µl of PBS for 5 min each. After washings, the coverslips were 

mounted onto the glass slides (Materials and Methods, 7.6.5) for observation under a 

fluorescence microscope or confocal laser scan microscope. 
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7.8.5 Mounting 

After immunolabeling of the fixed cells, the coverslip was swirled once in deionised water 

and the extra water was soaked off on a soft tissue paper.  Now a drop of gelvatol was placed 

to the middle of a clean glass slide and the coverslip was mounted (with the cell-surface 

facing downwards) onto the drop of gelvatol taking care not to trap any air-bubble between 

the coverslip and the glass slide.  Mounted slides were then stored in the dark at 4ºC for 

overnight.  Thereafter, the mounted slides were observed under a fluorescence microscope or 

confocal laser scan microscope. 

 

Gelvatol 

2.4 g of polyvinyl alcohol (Mw 30,000-70,000; Sigma) was added to 6 g of glycerol in a 50 

ml centrifuge tube and mixed by stirring.  To the mixture, 6 ml of distilled H2O were added 

and the mixture was incubated at room temperature.  After several hours of incubation at 

room temperature, 12 ml of 0.2 M Tris/HCl, pH 8.5, was added and the mixture was heated to 

50°C for 10 min with occasional mixing to completely dissolve polyvinyl alcohol.  The 

solution was centrifuged at 5,100 rpm for 15 min.  After centrifugation, 2.5% of diazobicyclo 

octane (DABCO), an anti-oxidant agent, was added to reduce the bleaching of the 

fluorescence.  The solution was aliquoted in small volumes in 1.5 ml microcentrifuge tubes 

and stored at –20°C. 

 

8. Computer analyses 

Analyses of the sequences and homology searches were performed using the ‘University of 

Wisconsin’ GCG software package (Devereux et al., 1984) and different gene bank databases 

and Dictyostelium discoideum gene databases.  Structural predictions and multiple alignments 

of the protein sequences were made using Expasy Tools and ClustalW software respectively, 

accessible on the world-wide-web. For processing images, Corel Draw version 11, Adobe 

Illustrator, Adobe Photoshop and Microsoft Powerpoint softwares were used.  Graphs were 

prepared using the Microsoft Excel software. 
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1. Results   

1.1 Search for polarity genes in Dictyostelium  

The Dictyostelium genome sequence is fully known and can be searched for gene sequences 

and/or domains of proteins that are involved in cell polarity.  When we searched the 

Dictyostelium cDNA database at Tsukuba University, Japan, for domains that have been 

characterised to be present in the components of cell polarity pathways, we identified a gene 

with a Frizzled domain, a transmembrane region found in the Wnt receptors which are known 

to be involved in various cellular functions including the planar cell polarity signalling 

(Wallingford et al., 2000).  We identified clone VFC361, harbouring a seven transmembrane 

Frizzled domain of the DdFrizzled gene (FrzA) as a singlet clone only in the cDNA database, 

Japan.  Further experiments in our lab in combination with the information gained from the 

Dictyostelium genome project resulted in the complete sequence of the FrzA. 

  

1.2 Sequence analysis and generation of the complete sequence for FrzA 

The cDNA clone VFC361 was obtained from the Dictyostelium cDNA project, Japan, and 

sequenced in our laboratory.  The sequence information thus obtained was then used to search 

for reads in the Dictyostelium genome project, IMB, Jena, Germany.  Three genomic reads 

JC1a109d02.s1, JC2e123a11.r1 and JC2e123a12.r1, were identified and sequenced.  RACE 

PCR was carried out to identify the real start of the gene giving a small fragment of 450 base 

pair that contained a start codon at 50 bp upstream of the cDNA sequence available.  

Meanwhile, the Dictyostelium genome project was also completed and the contigs were 

created from all reads at the Sanger Centre, UK, which had a contig, 4246, containing the 

complete information of the FrzA sequence.  Independent sequencing and assembly of reads 

and data from the RACE PCR matched the contig from the Sanger Centre.  Two contigs one 

upstream and the other downstream of contig 4246 were assembled to identify restriction 

enzyme sites for confirming the sequence information and screening the mutants (Figure 1B).  

Southern blot analysis for the gene FrzA was done based on the information.  We observed 

that there was only one copy of the gene and the signal obtained was of the expected size 

(Figure 1A). 
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Figure 1. Southern blot analysis of Ax2 genomic DNA to confirm the information of the FrzA 
gene.  A) Wild-type D. discoideum Ax2 DNA was digested with Eco RI and Hind III.  The fragments 
were then separated in a 0.8 % agarose gel in TAE buffer and transferred to a nylon membrane as 
described in Materials and Methods (3.8) and probed with the 1.3 kb DNA probe derived from the 3' 
end of the gene giving a signal at 30 kb and 5.1 kb for Hind III and Eco RI, respectively. B) Image 
shows the assembly of the contig sequences obtained from the Sanger Centre, UK.  Read 
JC2e123a11.r1 is also shown that comprises a part of the FrzA sequence. 
 

1.2.1 Dictyostelium Frizzled like proteins 
We identified 25 Frizzled like receptors when searching the Dictyostelium genome database 

using the transmembrane region of Frizzled.  The seven transmembrane regions of 

Dictyostelium Frizzled like receptors were aligned using the ClustalX program and a 

phylogenetic tree was constructed using Treeview.  Dictyostelium Frizzled like receptors 

clustered into five groups (Figure 2).  Group I is more closely related to the smoothened 

Frizzled of Drosophila and human, diverging from DdcAR1.  DdcAR1 (cAMP receptor) 

belong to a separate class of cAMP receptors unique to Dictyostelium (Bockaert and Pin, 

1999) that diverged as a separate family before Group I.  Figure 2 also shows that FrzA and 

DdFrzlike9, though belonging to Group I, are divergent from each other.  Group I also 

diverges from other GPCR like GABA or Serotonin receptors at similar stage where GABA 

and Serotonin receptors diverge.  FrzA has a unique domain architecture and emerges as a 

new class of proteins in Dictyostelium (Figure 3). 
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Figure 2. Phylogenetic tree of Dictyostelium Frizzled like receptors.  Sequences of Dd 
Dictyostelium discoideum, Ce Caenorhabditis elegans, Xe Xenopus laevis, Mm Mus musculus, Hs 
Homo sapiens, Dr Danio rerio and Dm Drosophila melanogaster were aligned using ClustalX and the 
tree was constructed using Treeview. Only the Frizzled transmembrane region was considered for the 
multiple alignment. The Dictyostelium gene that is marked with a circle is the object of this study. Bar 
represents 10% divergence. 
 

1.2.2 Comparison of FrzA protein structure to a typical Frizzled receptor  

The full length FrzA cDNA (2487 bp) codes for a polypeptide of ~885 amino acid residues 

with an estimated molecular weight of ~92 kDa (Figure 3B).  The FrzA protein has an unique 

domain architecture with a seven transmembrane region (Frizzled domain) at the N-terminus 

and a Phosphatidylinositol-4-phosphate 5-kinase (PIP5K) domain at the C-terminus (Figure 

3C), unlike a typical Frizzled protein (Figure 3A) that has a conserved region of 120 amino 

acids in the extracellular domain containing a motif of 10 invariantly spaced cysteine residues 

(the cysteine-rich domain or CRD), a seven-pass transmembrane region and a cytoplasmic tail 

(Yang-Snyder et al., 1996). 
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Figure 3. Domain architecture of FrzA.  A) A typical Frizzled receptor (human) having a cysteine 
rich domain (CRD) and seven transmembrane region.  B) Dictyostelium Frizzled (FrzA) genomic 
structure.  The green box represents the exons and the gap between them represents the intron.  C) The 
protein structure for Dictyostelium Frizzled like FrzA was generated using the SMART program 
available from EMBL showing a seven transmembrane region and PIP5K domain.   
 
1.2.3 Domain analysis of the FrzA protein 

Multiple alignment  

Transmembrane region of the FrzA 

 
 
Figure 4. Multiple alignment of Dictyostelium and representative Frizzled proteins.    Sequences 
of Frizzled proteins from Dd Dictyostelium discoideum, Pp Polysphondylium pallidum, Ce 
Caenorhabditis elegans, Xl Xenopus laevis, Mm Mus musculus and Hs Homo sapiens were aligned 
using ClustalX.  Seven transmemrane regions are represented as TM I-VII.  Red and black colour 
represents identity and similarity, respectively.  Gene bank accession numbers: FrzA, AY254474; 
DdGCPR, AY219179; PpcAR; AB045712, CeFz2, T37325; XlFz7, AAH44687; MmFrz2, 10048406; 
HsGCPR, AAH27965.   
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With 26% identity and 45% similarity to that of the Frizzled/Smoothened family membrane 

region of Caenorhabditis elegans (Ce), FrzA has the membrane-spanning region of Frizzled 

and smoothened receptors.  The membrane region is predicted to contain seven 

transmembrane alpha helices and proteins related to Drosophila (Dm) FRIZZLED, which are 

receptors for the Wnt signaling molecules (Jeffery, 2001).  

 
Phosphatidylinositol-4-phosphate 5-kinase (PIP5K) domain 
 

 
 

Figure 5. Alignment of the Phosphatidylinositol-4-phosphate 5-kinase (PIP5K) domain.  Multiple 
alignment was done with PIP5K sequences from Dd Dictyostelium discoideum, At Arabidopsis 
thaliana, Mm Mus musculus, Hs Homo sapiens using ClustalX.  Red and black colour represents 
identity and similarity, respectively.  Gene bank accession numbers: FrzA, AY254474; DdPIPkinA, 
AF339903; AtPIPK5´, CAB72166; MmPIPkinaseC, 6679328; HsSTM7, AAC51327.     
 

The PIP5K domain has 36% identity and 55% similarity to that of the PIP5K domain 

containing protein STM7 (human) which has been associated to Friedreich's ataxia (Carvajal 

et al., 1995).  PIP5K catalyses the formation of phosphoinositol-4, 5-bisphosphate via the 

phosphorylation of phosphatidylinositol-4-phosphate, a precursor in the phosphoinositide 

signaling pathway. 
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1.3 Northern blot analysis for studying the gene expression pattern of the FrzA 

Dictyostelium grow and divide as amoebae and undergo development into multicellular 

organism when starved (Williams and Harwood, 2003), and this change activates or represses 

specific genes.  Therefore, a northern blot analysis using RNA from different stages of the 

Dictyostelium life cycle was performed to study the expression profile of the FrzA gene.  The 

blot was hybridised with a 450 bp DNA probe derived from the Frizzled domain (40-459 bp) 

revealing a transcript of ~2.5 kb in size which was present throughout development, although 

a slightly higher amount of mRNA was detected during aggregation (t8) stage.  As a control 

the same blot after stripping was used for hybridisation with the 1.5 kb CAP cDNA probe that 

revealed a transcript of nearly 1.7 kb which appears to be upregulated during early 

aggregation (t4, t8) and is also present throughout development (Noegel et al., 1999).   

 

 
 
Figure 6. Northern blot analysis shows the presence of the FrzA transcript during the 
development of D. discoideum strain Ax2.  20 µg of total RNA isolated from different time points of 
development (in hours) as described in Materials and Methods (3.9.1) was loaded in each lane.  As a 
control the same northern blot was used for probing with the cyclase associated protein (CAP) cDNA. 
 

1.4 Expression of GST fusion proteins 

The sequences encoding the PIP5K domain of the FrzA protein (480-792 aa) were cloned into 

the E. coli expression vector pGEX-4T3 (glutathione–S-transferase gene fusion system, 

Pharmacia) in-frame at the C-terminus of GST (Materials and Methods, 5.3) to express it as a 

GST fusion protein in E. coli.  Fusion protein expression was done in E. coli strain XL1-blue 

at 37°C with IPTG (1.0 mM) (Materials and Methods, 6.14.1).  The GST-PIP5K fusion 

protein migrated in a SDS-polyacrylamide gel to an expected molecular mass of 75 kDa.  

Maximum yield was obtained after 5h of induction with 1.0 mM IPTG at 37°C (Figure 7A).  

The cells were fractionated further for analysing the localisation of the fusion protein and the 

GST fusion protein was found in the pellet fraction.  This was further confirmed by 

immunoblotting (Figure 7B) using a goat anti-GST antibody (Pharmacia).   
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Figure 7A. Expression of GST-PIP5K fusion protein. Coomassie blue stained SDS-polyacrylamide 
gel (10% acrylamide) showing cell lysates obtained from uninduced and induced (3 and 5 hrs) E. coli 
XL1-blue cultures expressing the GST-PIP5K fusion protein.  
 

   
 
Figure 7B. Analysis of GST-PIP5K fusion protein in cytosol and membrane fractions.  
Coomassie blue stained SDS-polyacrylamide gel (10% acrylamide) showing supernatant and pellet of 
induced cells prepared as described in Materials and Methods (6.14.4).  GST-PIP5K is found in the 
pellet fraction and confirmed by western blot analysis with anti-GST antibodies indicated by an 
arrowhead ( ).  Immuno-detection was performed with polyclonal GST-antibodies and secondary 
peroxidase coupled goat anti rabbit antibodies followed by enhanced chemiluminescence.  The lower 
band of ~66 kDa appears to be due to degradation of the 75 kDa GST-PIP5K fusion protein. 
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1.5 Purification of GST-PIP5K fusion protein 

GST-PIP5K was expressed and extracted from the pellet with increasing amounts of urea 

(Materials and Methods, 6.14.3).  Supernatants obtained at each step were dissolved in 1x 

SDS sample buffer and separated on 10% SDS-polyacrylamide gel.  The GST-PIP5K fusion 

protein was extracted at higher concentrations of urea (5-7M urea). 

 

 
 
Figure 8. Purification of GST-PIP5K fusion protein.  GST-PIP5K expressing E. coli XL1- blue 
cells were prepared as described in Materials and Methods (6.14.3).   Urea solubilised proteins (D-J) 
were separated in a 10% SDS-polyacrylamide gel and stained with Coomassie blue.  A, uninduced cell 
lysate; B, induced cell lysate; C, lysate after lysozyme (1mg/ml) treatment; D-J, 2M, 3M, 5M, 4M, 
6M, 7M and 8M urea extracts; respectively. 
 
1.5.1 Characterisation of FrzA polyclonal antibodies  
To confirm the identity of the protein expressed, the 8M urea solubilised proteins were 

separated on a 10% SDS-polyacrylamide gel and the GST fusion protein band was excised for 

MALDI analysis.  To raise polyclonal antibodies specific for the FrzA PIP5K domain, the 

GST-PIP5K protein was prepared by gel elution (Figure 9A).  100 µg of pure protein was 

used for immunizing two rabbits to raise polyclonal antibodies (Anti-FrzA).  One of the 

rabbits died after 60 days, therefore, the results given here are for only one rabbit.  The rabbit 

serum after 90 days of immunization was tested for the specificity of the antibody produced.  

Preliminary screening was done using the recombinant GST-PIP5K.  The serum was affinity 

purified (Materials and Methods, 6.14.4) and tested.  It recognised GST-PIP5K but not GST 

(Figure 9B).  To further characterise the polyclonal antibodies, cell lysates from Ax2 control 

cells and Ax2 and FrzA− transformants expressing GFP-PIP5K were used.  Western blot 

analysis with anti-GFP and Anti-FrzA antibodies showed an appropriate band of ~75 kDa in 

transformed cells (Figure 9). 
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Figure 9. Characterisation of the C-terminus specific FrzA antibodies (Anti-FrzA).  A) The pure 
gel eluted GST-PIP5K protein was run along with the 7M urea solubilised GST fusion protein on a 
10% SDS-polyacrylamide gel and stained with Coomassie blue.  B) GST and GST-PIP5K were 
purified from E. coli and resolved on a 12% SDS-polyacrylamide gel and transferred to a 
nitrocellulose membrane by semidry blotting. Immuno-detection was with polyclonal Anti-FrzA and 
peroxidase coupled goat anti-rabbit antibodies followed by enhanced chemiluminescence.   
 
2.0 Generation of FrzA− mutant cells  

To gain more insight into the function of FrzA in vivo, a FrzA− mutant was generated by 

homologous recombination (Materials and Methods, 5.4).  The knockout construct was 

generated using the plasmid JC2e123a11.r1 which is 1330 bp in size encompassing four 

transmembrane regions of the Frizzled domain and also has an additional upstream sequence 

(-263 nucelotides) to that of the start codon (+1 bp).  The neomycin resistance cassette was 

inserted into the plasmid at the Eco RV site (+530 bp) without loosing any part of the gene 

(Figure 12A).  After homologous recombination the complete FrzA will not be transcribed 

due to the insertion of Neomycin cassette into the third transmembrane region of the Frizzled 

domain (Figure 12A).  Furthermore, there is no splice site that would allow trascription of the 

PIP5K domain alone and even if transcribed it cannot be active due to the lack of the seven 

transmembrane region necessary for membrane localisation.  Mutants were initially screened 

by polymerase chain reaction (PCR), which showed a band of the expected size confirming 

the insertion of the fragment used as replacement vector.   
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2.0.1 Southern blot analysis of FrzA− mutant cells 

Information gathered from assembly of genomic contigs (Figure 10A) was used for the 

screening of the mutants.  Southern blot analysis for wild type genomic DNA gave a 5.1 kb 

and 30 kb fragment for Eco RI and Hind III digestion, respectively (see Results, 1.2).  

Genomic DNA isolated from Ax2 cells (Materials and Methods, 3.5) and five of the PCR-

positive transformants was digested with Eco RI restriction enzyme, which does not have any 

internal restriction site in the Neomycin resistance cassette.  Hybridization analysis with 32P 

labelled PIP5K cDNA (1642-2553 bp) revealed that a gene replacement event had occurred in 

the transformants, as the insertion of the 2.2 kb Neomycin resistance cassette causes a shift 

from 5.1 kb to 7.3 kb (Figure 10B).  To confirm the recombination event, another restriction 

enzyme, Hind III, which has an internal site in the Neomycin resistance cassette was used for 

Southern blot analysis.  The insertion of the 2.2 kb Neomycin resistance cassette introduces a 

Hind III site into the genomic DNA, which leads to a shift from 30 kb to 8.2 kb (Figure 10B). 

 

 
 
Figure 10A. Illustration of the homologous recombination event.  Insertion of the Neomycin 
resistance cassette introduces a Hind III site that was confirmed by Southern blot analysis.  The 
external probe for Southern blot analysis is shown as a red bar in the recombination event. 
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Figure 10B. Disruption of the FrzA gene in wild-type Ax2 cells by homologous recombination. 
Southern blot analysis of Hind III and Eco RI restricted genomic DNA of Ax2 and mutant (1-5) cells 
indicates that a gene replacement event has occurred, since insertion of the Neomycin cassette causes 
the shift of a 5.1 kb band to 7.3 kb in case of Eco RI and 30 kb to 8.2 kb in case of Hind III digestion, 
respectively.  Therefore, this mutant was referred to as FrzA − mutant and clone 2 was selected for 
further cell-biological and biochemical characterisation.  The probe used for screening the mutants 
was a 32P labelled PIP5K cDNA. 
 
2.1 Characterization of the FrzA − mutant 

2.1.1 Measurement of cell size of Ax2 and FrzA− 

Cells from wild type (Ax2) and FrzA−  were prepared as mentioned in Materials and Methods 

(7.1) for measurement of cell size.  25% of wild type cells measured were of 10-12 µm in 

size, whereas 30% of the mutant cells were 9-10 µm (Figure 11).  The data showed no 

significant change in cell size although cells from FrzA− were slightly smaller in size.  Lack 

of FrzA may not affect cell shape and size. 
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Figure 11. Cell size measurement of Ax2 and FrzA−.  Cells were grown at 21ºC to a density of 2 x 
106 cells/ml with shaking at 160 rpm.  Cells were prepared and measured (~650 cells) as mentioned in 
Materials and Methods (7.1). 
 

2.1.2 Growth in axenic medium 

Cell growth involves various cellular processes, and alteration in any of these processes may 

affect growth rate.  Wild-type Ax2 cells attained maximum cell density of 1.1 x 107 cells/ml.  

FrzA− under similar conditions grew to a density of 1.2 x 107 cells/ml and exhibited a 

doubling point of 53 hrs similar to that of the wild type cells.  Therefore, no difference was 

observed between growth rate and final cell density of Ax2 and FrzA− cells (Figure 12). 

 
Figure 12. Growth of Ax2 and FrzA− in axenic medium. Cultures were inoculated in equal volume 
of medium at a density of 1 x 106 cells/ml and grown at 21ºC with shaking at 160 rpm.  Cells were 
counted at the indicated time points using a Neubauer chamber.  The graph represents the average of 
two experiments. 
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2.1.3 Cytokinesis in FrzA−

 
Cytokinesis is one of the important processes for cell survival.  Therefore, the number of 

nuclei/cell of FrzA− mutant cells were quantitated and compared with that of the Ax2 cells 

employing immunofluorescence studies using the DNA binding dye DAPI (Materials and 

Methods, 7.8.4).  Observation of the DAPI labelled mutant cells under the fluorescence 

microscope revealed that the FrzA− mutant cells were mainly mononucleated as are Ax2 cells 

under these conditions (Figure 13A and B).   This suggests that cell division is normal in cells 

lacking FrzA. 

 
 

 
 
Figure 13. Quantitation of nuclei in Ax2 and FrzA −  cells.  A) Overlay of fluorescent images after 
DAPI staining of the nuclei of the Ax2 and FrzA − mutant cells (Materials and Methods, 7.8.4).  The 
cells shown are representatives of all the cells in the population.  Bar is 10 µm.  B) The 
histogram illustrates quantitation of nuclei of 200 Ax2 and FrzA − mutant cells.     
 

2.1.4 Fluid uptake in wild type and FrzA− 

Dictyostelium cells obtain their nutrients by means of engulfing media via pinocytosis 

(Maniak, 2001). The kinetics of pinocytosis process is measured using FITC-dextran, which 

has been previously shown to be an appropriate fluid phase pinocytic marker in Dictyostelium  
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(Hacker et al., 1997).  The results obtained for Ax2 and FrzA− cells show the accumulation of 

FITC-dextran in a linear fashion over a period of 1 hr.   FrzA− behaved in similar way as the 

Ax2 cells (Figure 14) indicating that FrzA may not be involved in the process of fluid uptake.  

 
Figure 14. Fluid-phase endocytosis in Ax2 and FrzA −.  Cells were resuspended in fresh axenic 
medium with presence of FITC-dextran and fluorescence was measured at the indicated time points 
(Materials and Methods, 7.3).  All values are the average of at least two independent experiments.   
 

2.1.5 Growth on a lawn of Klebsiella 

Dictyostelium cells feed on bacteria as a food source and can be propagated on a bacterial 

lawn on nutrient agar plate.  Wild type cells developed fruiting bodies in the region where the 

food source is depleted (Figure 15), whereas, FrzA− cells did not produce any fruiting bodies.  

We can infer that the mutant is able to feed on bacteria for their growth but they are not able 

to undergo development. 

 

 
Figure 15.  Growth and development of Ax2 and FrzA− cells on Klebsiella plates. Cells were 
plated on nutrient agar in the presence of K. aerogenes and allowed to develop at 21°C.  Images were 
taken using a stereomicroscope.  Bar is 1mm. 
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2.2 Aggregation and development of FrzA − mutant 

2.2.1 Aggregation on a plastic surface 

Cells from Ax2 and FrzA−   were starved and analysed for their ability to aggregate under 

submerged condition (Materials and Methods, 6.1).  Ax2 cells were able to form streams 

towards the aggregation centre (Devreotes, 1982; Janssens and Van Haastert, 1987), whereas, 

FrzA−  cells formed no streams and remained as single or small group of cells (Figure 16).   A 

similar result was also obtained when starved on phosphate agar plates.  This suggests that 

FrzA− mutant cells may not recognise the signal from neighbouring cells or may have a 

motility defect to move towards the aggregation centre or may not develop. 

 
 
Figure 16. Aggregation on plastic surface.  Equal number of cells (2.5 x 105 per cm2) from Ax2 and 
FrzA − were analysed for formation of aggregation on plastic surfaces.  Images were taken after 6 h of 
starvation under submerged condition.  Bar is 50 µM. 
 
2.2.2 Development on phosphate agar plates 

The cells can aggregate when starved under submerged conditions, while post-aggregation 

development and fruiting require a solid substratum (Coates and Harwood, 2001).  Water or 

phosphate agar is commonly used as substratum to study Dictyostelium development.  Wild 

type cells formed tight aggregates after 6 hrs of starvation followed by formation of finger 

like structures which migrate as slugs after 12 hrs (Kessin, 2001), which then become fruiting 

bodies by a culmination process after 20-24 hrs of starvation (Figure 17A).  But, FrzA − does 

not form tight aggregates like wild type cells and remains as loose aggregates even after 24 

hrs of starvation.  The mutant then undergoes a sudden change in morphology after 48 hrs 

forming very small fruiting bodies emerging from the loose aggregates.  But even after 48 hrs 

of starvation many of the loose aggregates are still seen (Figure 19B).  Therefore, lack of 

FrzA cause cells to remain predominantly at the loose aggregation stage exhibiting an early 

developmental defect. 
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Figure 17. Development of Ax2 and FrzA − cells on phosphate agar plates. Cells from Ax2 wild 
type (A) and FrzA− (B) were plated on phosphate agar plates at a cell density of 5 x 107 and allowed to 
develop at 21°C.  A stereomicroscope was used to take images at the indicated time points.  Bar is 1 
mm. 
 
2.3 Characterisation of FrzA− development  

FrzA− cells were observed to have a defect at the aggregation stage of development (Figure 

19). The genes required for the aggregation process include the cAMP receptor cAR1, 

adenylyl cyclase gene ACA and the cell adhesion molecule contact sites A (csA) (Firtel, 1995; 

Gerisch, 1968; Noegel et al., 1986a).  We compared the expression of the cAMP receptor 

gene cAR1 (Klein, 1988; Klein et al., 1988), the adenylyl cyclase gene ACA (Pitt et al., 1992) 

and csA gene (Faix et al., 1992) by Northern blot analysis (Figure  18).  The mRNA of cAR1 

for the FrzA− mutant was present at low levels in vegetative cells and did not increase 

significantly during the first 4 hr of starvation as in wild-type cells.  It was notable that in the 

mutant, the expression of ACA was undetectable during the aggregation stage and found 

weakly expressed only at 24hrs.  By that time the wild type cells had completed the 

development cycle (Figure 18).  The cell adhesion molecule, contact sites A was expressed 

significantly lower in the mutant during the aggregation period (4-8 hrs) and slowly increased 

after 24 hrs in contrast to wild type cells where contact sites A expression decreases after 8 hrs 

of development.  Phosphodiesterase (PDE) controls extracellular and intracellular cAMP 

concentration in the cell (Riley and Barclay, 1990).  Wild type cells express PDE after 4 hrs 

of intiation of development, which then decreases after 8 hrs.  In the FrzA− mutant PDE was 

found to be expressed constantly throughout the developmental cycle.  A secreted 

glycoprotein phosphodiesterase inhibitor (PDI) regulates the activity of PDE whose 

expression is reciprocally regulated by extracellular cAMP levels as PDE (Franke et al., 

1991).  PDI is expressed significantly lower in the mutant than the wild type cells.  Although 
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the PDI expression in the mutant seems to slowly increase from 12 hrs to 48 hrs of starvation 

this is in contrast to wild type cells where the expression is completely decreased by that time.  

While nanomolar pulses of cAMP are necessary for induction of cAMP induced genes, high 

constant level of cAMP after aggregation is required for expression of postaggregative genes 

(Landfear and Lodish, 1980).  In the FrzA− mutant prestalk (ecmA) and prespore precursor 

(pspA) genes are not expressed at similar stages as in wild type (Figure 18), although the 

expression levels are comparable once they are expressed.  On the whole it could be that the 

periodic signaling which occurs in wild type through an oscillatory circuit (Maeda et al., 

2004) may not be present in FrzA− cells.  Proper expression of cAMP regulated early and late 

developmental genes may therefore not take place.   

 

 
 
Figure 18. Northern blot analysis of developmentally regulated genes.  Total RNA was prepared from 
wild type and FrzA− at the indicated the time points.  10 µg of RNA was separated on 1.2 % agarose 
gels under non-denaturing conditions (6% formaldehyde) and transferred to membranes as described 
in Material and Methods (3.11).  cDNA probes of genes specific for the indicated transcripts were 
used for hybridizing the blots.  A CAP cDNA probe was used as control. 
 
2.4 Role of FrzA in cell adhesion and aggregation 

The cell adhesion molecule contact sites A is expressed at the aggregation stage between 6 

and 10h of development.  Contact sites A has been implicated in the EDTA-stable (Ca2+-
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independent) type of cell adhesion of aggregating cells (Harloff et al., 1989) and is known to 

be under cAMP regulation (Siu et al., 1986).  When FrzA− cells were analysed for expression 

of csA at the protein level we found that csA was not produced in the FrzA− cells either in 

shaking (Figure 19B) or on agar plate (Figure 19A).  This may indicate that FrzA controls csA 

expression directly or indirectly.  Alpha-actinin is used as a positive control, whose 

expression is unaltered throughout the Dictyostelium developmental cycle (Noegel et al., 

1986b; Witke et al., 1986).  Contact sites A is also one of the genes involved in the 

aggregation process (Noegel et al., 1986a).  To test whether the inability of FrzA− mutant cells 

to aggregate (Figure 16 and 17B) might be caused by an inability of the cells to respond to 

cAMP and activate aggregation stage gene expression or whether the cells can be induced to 

develop if pulsed with exogenous cAMP (Lee et al., 1999), Ax2 and FrzA− cells were starved 

in shaking condition with or without exogenous pulses of  cAMP.  The wild type cells showed 

csA protein expression at 6 hrs in unpulsed cells and already at 4 hrs when pulsed with 

cAMP, whereas in FrzA− mutants csA expression was observed only in cAMP pulsed and not 

in unpulsed cells (Figure 19B).  This suggests that the aggregation defect is not due to an 

inability to sense the cAMP pulses and induce aggregation stage gene expression. 
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Figure 19. csA expression in Ax2 and FrzA− cells.  A) Cells were starved on phosphate agar plate at 
a density of 5 x 107 cells and protein samples were prepared and separated by SDS-polyacrylamide gel 
(10% acrylamide).  B) Wild type and mutant cells at a cell density of 1 x 107 cells/ml were developed 
in suspension with or without cAMP pulses.  Cells were collected at indicated time points and 
resuspended in 1x SDS sample buffer.  Equal amount of cells were loaded on the 10% SDS PAGE gel 
to analyse for csA and alpha-actinin expression by western blot analysis using the monoclonal 
antibodies for csA (33-294) and for alpha-actinin (47-16-1 or 47-62-1).  Alpha actinin was used as a 
loading control. 
 
2.4.1 Can exogenous cAMP pulses also induce ACA expression? 

The FrzA− mutant did not express adenylyl cyclase gene (ACA) during aggregation stage 

(Figure 18).  When FrzA − cells were pulsed with cAMP (Materials and Methods, 6.2) and 

analysed for ACA transcription in samples collected after 8 hrs of starvation, it was clear that 

exogenous cAMP pulses were able to induce ACA expression (Figure 20).  The data obtained 

here show that cAMP pulses are able to independently induce ACA transcription even in the 

absence of FrzA. 
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Figure 20. cAMP pulsing of FrzA− cells restores transcription of ACA.  Total RNA from wild type 
and mutant cells with and without addition of exogenous cAMP was prepared after 8 hrs of starvation 
(Materials and Methods, 3.9.1).  10 µg of RNA was separated on 1.2 % agarose gel under non-
denaturing conditions (6% formaldehyde) and transferred to membranes as described in Material and 
Methods (3.11).  An ACA cDNA probe was used for hybridizing the blot.  CAP cDNA probe was 
used as control. 
 
2.5 Synergy between FrzA− and wild type cells 

The FrzA− cells were found to be aggregation defective and this phenotype can be suppressed 

by exogenous pulsing of cAMP.  To determine if the developmental defect observed in FrzA− 

mutant is cell autonomous or non-cell autonomous, we performed chimeric development in 

the presence of wild type, which may provide essential secreted morphogens and 

chemoattractants.  The FrzA− mutant even in chimera with 50% of wild-type cells developed 

more asynchronously forming few fruiting bodies with many loose aggregates left behind and 

significantly slower than did wild type alone (Table 1).  Relatively, development was 

improved with an increasing ratio of wild type to FrzA− mutant cells.  The chimeric structures 

developed normally as the wild type only when the ratio of wild type to mutant is 60:40.  This 

infers that the mutant showed delayed development even in the presence of high percentage of 

wild type cells.  To test this hypothesis we mixed 90% FrzA− cells with 10% GFP-tagged wild 

type cells.  We found the labelled parental cells to be sorted out leaving the mutant behind, 

although the chimera exhibited the mutant phenotype (Figure 21).  This indicates that only the 

early developmental process of the wild type was affected in the chimera however they then 

developed to become fruiting bodies.  These results clearly indicate that the delayed 

development of FrzA− cells is primarily cell autonomous in nature and not non-cell 

autonomous in which genotypically mutant cells cause other cells (regardless of their 

genotype) to exhibit a mutant phenotype. 
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Table 1. Development of FrzA− mutants in synergy with wild type cells.  Wild type and FrzA− cells 
were mixed at different ratio as indicated and allowed to develop on phosphate agar plates as in 
Materials and Methods (6.1).  Images were taken using a stereomicroscope at 24 hrs and 48 hrs and 
formation of fruiting bodies was checked.  Efficiency of development is represented as (–) no fruiting 
body formation, (+) formed small fruiting bodies with many loose aggregates left behind like in the 
mutant and (++) most of the tight aggregates developed into fruiting bodies as in wild type.  
 

 
 
Figure 21. Synergetic behaviour of FrzA− mutant in mixtures with wild type Ax2 cells.  GFP-
tagged wild type and untagged mutant cells were mixed (10:90) and developed on phosphate agar 
plates as in Materials and Methods (6.1).  Images were taken after 48 hrs of development using a 
fluorescent microscope.  GFP labelled Ax2 cells were found to form spores and the majority of the 
FrzA− mutant cells were left behind.  Bar is 50µm. 
 
2.6 Cell motility and chemotaxis of FrzA− mutant 

Development also depends on cell migration towards an external signal such as cAMP, which 

is produced in a pulsatile fashion during Dictyostelium development.  Chemotaxis is 

established by cell polarity and the response to a directional signal (Chung et al., 2001).  Since 

the FrzA− mutant shows a developmental defect we analysed its ability to perform 

chemoattractant induced cell migration.  We used a chemotaxis assay combined with time-

lapse video microscopy.  FrzA− cells were made aggregation competent by developing in 

suspension for 6 hrs with or without cAMP pulse (Materials and Methods, 6.2).  Aggregation 

competent cells were allowed to migrate toward a micropipette filled with 0.1 mM cAMP and 

time-lapse image series were taken to generate migration paths and calculate cell motility 

parameters (Figure 22 and Table 2).  Parameters like speed, persistence, directionality and 

directional change were measured as an indicator of directed migration (Materials and 

Methods, 7.7).  The wild type (Ax2) cells polarized, formed streams and migrated towards the 

tip at a speed of 14.70 + 3.79 µm/min, with high persistence (5.47 + 2.9 µm/min), 

directionality (around 0.83) and lower directional change (around 17°).  By contrast FrzA− 

cells were not polarized moving at a very low speed of 2.8 + 1.03 µm/min or they changed 

direction frequently at 55.5° and failed to respond to cAMP (Figure 22 and Table 2).  As we 

had found that the aggregation competent FrzA− pulsed cells were able to sense cAMP and 

induce aggregation stage specific genes, csA and ACA (Figure 19B and 20) we pulsed FrzA 

72 



Results 
___________________________________________________________________________ 

cells to analyse if pulsing can also restore chemotactic motility.  The pulsed FrzA− mutant 

cells elongated and established polarity with directed movement towards the tip exhibiting 

low directional change of 27° but at a significantly lower speed (7.5 + 1.2 µm/min) and 

persistence (2.55 + 1.15 µm/min).  These results indicate that FrzA− cells are impaired in their 

ability to chemotax up a concentration gradient of chemoattractants and exogenous pulsing of 

cAMP of the FrzA− cells was able to restore the chemotactic defect but not the speed and 

persistence of the directional movement. 

 

 
 
Figure 22. Chemotaxis of wild type and FrzA − cells.  Cells were washed and developed in 
suspension for 6 hrs before they are stimulated with a micropipette filled with 0.1 mM cAMP 
(Materials and Methods, 6.2).  Wild-type cells polarize, migrate fast and orientate properly towards the 
tip of the micropipette.  FrzA− cells did not migrate towards the source of cAMP when unpulsed.  
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Upon pulsing with cAMP the mutants were able to move in a directed fashion towards the 
micropipette.  Time-lapse images of FrzA− cells when subjected to a spatial temporal gradient of 
cAMP chemoattractant were taken using a microscope and the images were processed using DIAS 
software as described in Materials and Methods (7.7).  The cell paths shown for wild type and mutant 
are representative of two independent experiments and the asterix in red colour represents the tip of 
the micropipette.   
 
Strain Speed (µm/min) Persistence 

(µm/min x deg) 
Directionality
(deg) 

Directionality 
change (deg) 

Ax2 14.70 + 3.79 5.47 + 2.9 0.834 + 0.11 16.04 + 6.50 

Unpulsed FrzA− 2.8 + 1.03 0.76 + 0.50 0.3 + 0.21 55.5 + 17.7 

Pulsed FrzA− 7.5 + 1.2 2.55 + 1.15 0.69 + 0.20 26.93 + 12.5 

 

Table 2. Analysis of cell motility towards a cAMP filled capillary for wild type Ax2 and FrzA − 
mutant.  Cells were prepared as described in legend Figure 22.  Time-lapse image series were 
captured and stored on a computer hard drive at 30 seconds intervals.  The DIAS software was used to 
trace individual cells along image series and calculate motility parameters.  Persistence is an 
estimation of movement in the direction of the path.  Directionality is calculated as the net path length 
divided by the total path length, and gives 1.0 for a straight path.  Directional change represents the 
average change of angle between frames in the direction of movement.  Values are mean ± standard 
deviation of 40 to 50 cells from at least two independent experiments.  
 

2.7 Does FrzA play an important role even before aggregation? 

When the Dictyostelium cells starve, they sense the local density of other starving cells by 

simultaneously secreting and sensing conditioned medium factor (CMF) that binds to a G 

protein coupled receptor (Brazill et al., 1998) and allows further aggregation by chemotaxis 

towards cAMP when CMF reaches a threshold concentration (Van Haastert et al., 1996).  

Since the FrzA− cells were not able to aggregate and behaved like the CMF− cells we tested 

whether FrzA has a role in controlling the cell density during starvation. 

 

2.7.1 Cell density factor in FrzA− mutant cells 

Cell density is an important criteria for development in Dictyostelium (Jain et al., 1992).  

Therefore, FrzA− cells were analysed for aggregation and development at varying cell density.  

Wild type cells can aggregate and develop fruiting bodies at high cell density of 5 x 106 per 

cm2 or even at a low cell density of 105 per cm2 at 24 hrs from intiation of starvation, but for 

comparison 48 hrs images are shown here in Figure (23A-C).  FrzA− cells formed loose 

aggregates at high cell density of 5 x 106 per cm2 and developed into small fruiting bodies 

emerging from loose aggregates after 48 hrs, but most of the cells remained at the loose 

aggregate stage (Figure 23F).  The mutant phenotype at high cell density may be due to 

random collision of cells.  In contrast, FrzA− cells at a low cell density of 106 per cm2 or 105 
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per cm2 remained single even after 48 hrs without forming aggregates and fruiting bodies 

(Figure 23E).  This may indicate that FrzA− does not produce or sense the cell density factor 

in order to determine the cell density necessary for aggregation and development.  

 
 

Figure 23. Cell density dependent development of Ax2 and FrzA−.  Cells from wild type and FrzA− 
were developed (Materials and Methods, 6.1) at varying cell densities as indicated.  Pictures were 
taken after 48 hrs of starvation on a phosphate agar plate using a stereomicroscope.  Bar is 1 mm (A-C 
and F) and 0.6 mm (D-E).   
 

2.7.2 Do FrzA− cells produce and/or sense cell density factors? 

Cells when starved secrete factors, which are called conditioned medium factors (Mehdy and 

Firtel, 1985).  Conditioned medium containing secreted factors can induce aggregation when 

added to other cells (Nakagawa et al., 1999).  As we know from the previous experiment, 

FrzA− starving cells may not be able to sense and/or secrete CMF.  We analysed if FrzA− cells 

can produce conditioned medium factors by starving the wild type cells in the presence of CM 

prepared from the mutant (koCM) and found that wild type cells had formed streams towards 

aggregation centre at 5 hrs after initiation of starvation (Figure 24), whereas, wild type cells 

starved in Soerensen buffer begin to form streams at 5 hrs, indicating that the koCM contains 
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the necessary factors that can induce wild type cells to aggregate as early as in the CM from 

wild type (WtCM).  We then analysed if the FrzA− cells can sense the secreted factors by 

starving in wtCM that contains the necessary factors for aggregation.  The mutant was not 

able to form aggregation streams in presence of wtCM and behaved similar to starvation in 

buffer (Figure 24).  This suggests that FrzA− can produce the necessary factors for 

aggregation but cannot sense these factors when starved. Furthermore we can conclude that 

FrzA is involved in sensing these factors. 

 

 
 
Figure 24. Analysis of the conditioned medium of FrzA−.  Exponentially growing cells from Ax2 
and FrzA− were collected and starved under submerged condition at a density of 105 per cm2 in the 
presence of 2 ml of buffer or CM from wild type or FrzA− cells.  CM from Ax2 and FrzA− was 
prepared by starving 107 cell/ml in Soerensen buffer for 16-20 hrs at 21ºC with shaking at 160 rpm.  
Images were taken after 5 hrs of starvation using a stereomicroscope. 
 

2.7.3 Expression of CMF and CMFR1 in FrzA- 

Cell density factor (CMF) is a secreted glycoprotein which allows the cells to sense the 

density of the surrounding starving cells (Brazill et al., 1998).  As the FrzA- mutant was able 

to produce conditioned medium factors but not able to sense these factors, we compared at the 

trascriptional level the expression of CMF and receptor for cell density factor (CMFR1) 

between the wild type and mutant at different developmental time points.  Here, the time 

points 0, 4, 8, 12, 16 and 20 hrs cDNA was used for wild type as the development was 

achieved by 20 hrs, whereas, for the mutant 24 and 48 hrs cDNA was also used in addition to 

0-20 hrs cDNA due to prolonged development (Figure 17).  Using forward (rtCMFfp, 

rtCMFRfp) and reverse (rtCMFrp, rtCMFRrp) primers specific to CMF and CMFR1, 
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expression was analysed by real time PCR.  In wild type cells CMF and CMFR1 expression 

was high at the vegetative stage, which is consistent with results shown in (Deery and Gomer, 

1999; Jain et al., 1992).  But, during progression of development the expression of CMF and 

CMFR1 in wild type decreases (Figure 25), whereas in FrzA− cells high expression of CMF 

and CMFR1 was not observed at 0 hrs.  This indicates that expression of these molecules was 

not induced with the onset of starvation unlike in wild type cells (Figure 25).   However, the 

expression of CMF and CMFR1 in the mutant was detectable although at low levels when 

compared to the wild type remained constant after 4 hrs suggesting that in FrzA− mutant 

expression of CMF and CMFR1 is maintained at basal level throughout the developmental 

cycle. 

 
 
Figure 25. Transcript levels of cell density factor and its receptor.  Cells from Ax2 and FrzA− were 
developed on phosphate agar plates and cDNA was prepared (Materials and Methods, 3.9.2) for 
different developmental time points indicated in the text.  Real time PCR analysis for CMF and 
CMFR1 in wild type and FrzA− cells was carried out using primers specific for CMF and CMFR1.  
Values are average of two independent experiments. 
 

2.7.4 Is CMF mediated signaling in FrzA− mutant cells affected? 

When cells are starved in a given area the extracellular level of CMF rises and permits 

aggregation using relayed pulses of cAMP as the chemoattractant (Yuen et al., 1995).  From 

previous experiments we understand that FrzA− cells do produce the cell density factor 

(CMF), but the mutant is not able to respond to it.  To test this hypothesis we subjected wild 

type (Ax2) and FrzA− cells to recombinant CMF (rCMF) at low cell density (104 or 105 cells 

per cm2), as the effect of CMF can be appreciated when cells are starved at low cell density 

(Clay et al., 1995).  Figure 26 shows that Ax2 cells when starved at a cell density of 105 per 

cm2 in buffer they show cell polarization.  In the presence of rCMF (1ng/ml) the cells make 
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aggregation streams.  At a cell density of 104 per cm2 many of the Ax2 cells are rounded and 

some having few protrusions when starved in buffer, whereas in the presence of rCMF the 

Ax2 cells become elongated and polarize.  In contrast, the FrzA− cells remain rounded in the 

presence of rCMF at both cell densities, but when starved in buffer the mutant cells have 

small protrusions at a cell density of 105 per cm2 and remain rounded at 104 per cm2 (Figure 

26).  This indicates that the FrzA− mutant does not respond to rCMF and could be a potential 

G-protein coupled receptor for CMF as described by (Brazill et al., 1998). 

 

 
 
Figure 26. Effect of recombinant CMF on FrzA− cells.  Ax2 and FrzA− cells were starved in the 
presence and absence of rCMF (Materials and Methods, 7.4) and phase contrast images were taken 
after 6 hrs of starvation. 
 
3.0 cAMP signal transduction in FrzA− cells 
 

CMF controls cAMP receptor (cAR1) mediated activation of adenylyl cyclase and thus 

regulates cAMP signal transduction (Yuen et al., 1995).  As the FrzA− mutant was not able to 

respond to CMF we examined the expression of cAR1 in the FrzA− mutant and its parental 

strain Ax2.  Cells were developed in the presence or absence of 100 nM cAMP pulses for up 

to 7 h (Materials and Methods, 6.4).  Aliquots of cells were removed at 2 or 3 hrs intervals for 

preparation of the membrane-enriched cell fraction.  cARl was detected by a specific 

polyclonal antibody.  In the absence of cAMP pulses, cARl could be detected in the Ax2 cells 

at 5 hrs of development and its expression increased at 8hrs (Figure 27A).  cAMP pulsed Ax2 

cells were found to have an increased cAR1 expression at 5 hrs of starvation.  In FrzA− the 
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cAR1 expression profile was comparable to the wild type Ax2 which is in agreement with the 

results from Northern blot analysis (2.3).  These results further demonstrate that cARl 

expression is not dependent on FrzA.   The G alpha 2 (Gα2) gene, like cARl, is required for 

aggregation and its expression can be induced by cAMP pulses (Kumagai et al., 1991). The 

expression of Gα2 protein was compared by western blot analysis in Ax2 and FrzA− mutant 

cells.  In pulsed and unpulsed Ax2 cells Gα2 expression was detected at 3 h of development 

and increased upto 7 h of development as described by (Kumagai et al., 1991).  The pattern of 

Gα2 expression in the FrzA− mutant was not significantly different from Ax2, although the 

Gα2 expression was found at 3 hrs only in cAMP pulsed cells (Figure 27A).  Therefore, Gα2 

expression is not dependent on FrzA. 

As FrzA− mutant did not develop at low cell densities (Figure 23) we analysed the cAR1 

expression when cells were developed at high (5 x 106 cells per cm2) and low (1 x 106 cells 

per cm2) cell density conditions.  Cells were harvested at 4 hrs intervals.  Figure 27B shows 

Ax2 expressing cAR1 at 8 hrs of starvation in both high (HCD) and low cell density 

conditions (LCD).  The phosphorylation of cARl is required for the ligand induced reduction 

of receptor affinity that is a hallmark of G-protein-coupled receptors (Caterina et al., 1995).  

The phosphorylated form of cARl was observed as the slower mobility form in the Ax2 cells 

developed at high cell density (Figure 27B, asterix), at LCD Ax2 cells did not show the 

phosphorylated form of cARl.  The FrzA− mutant developed at LCD did not show cARl 

expression, although when developed at HCD cAR1 expression was observed, the 

phosphorylated cARl was not visible in the membrane-enriched cell fraction. (Figure 27B).  

This indicates that cAR1 expression is dependent on FrzA when the cell density is low. 
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Figure 27. Suspension assay for cAR1 and Gα2 expression.  A) Wild type (Ax2) and FrzA− cells 
were prepared as described (Materials ad Methods, 6.4).  Samples prepared were run on 12 % SDS 
PAGE gels and blotted onto nitrocellulose membrane for western blot analysis.  B) Cells were 
developed on phosphate agar plates at different cell densities for protein sample preparation as given 
in Materials and Methods (6.1).  Immunodetection was done for cAR1, Gα2 and alpha-actinin, using 
cAR1 and Gα2 polyclonal antibodies and alpha-actinin monoclonal antibodies (47-16-1 or 47-62-1), 
respectively.  The phosphorylated form of cAR1 is marked as .  Alpha-actinin was used as a control. 
 
3.1 Function of FrzA in cell differentiation at low cell density 
 
Dictyostelium cells can differentiate even without cell-cell contact (Kay and Trevan, 1981) 

and CMFR1 can mediate CMF induced prestalk and prespore expression in the absence of 

cell-cell contact (Deery and Gomer, 1999).  We observed that FrzA− mutant cells produced 

only a basal level of CMF and CMFR1 with a little response to rCMF (Figure 25 and 26).  We 

analysed if FrzA− mutants can also mediate CMF induced prespore differentiation.  We found 

that wild type cells were able to respond to rCMF and differentiate into prespores cells 

(Figure 28), which was observed by staining the prespore cells with Mud-1 monoclonal 

antibody specific for D19, a prespore marker.  The mutant cells were not able to differentiate 

into prespore cells which correlates with the result that FrzA− do not respond to rCMF (Figure 

28).  This indicates that FrzA may be directly or indirectly involved in the CMF induced cell 

differentiation.  
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Figure 28. Differentiation of cells starved at low cell density.  Cells from Ax2 and FrzA− were 
starved in presence of buffer or rCMF (1ng/ml) for 6 hrs and then subjected to continuous cAMP 
treatment (300µM) for 16-18 hrs followed by immunostaining using Mud-1 monoclonal antibody for 
D-19, a prespore marker.  For each condition, approximately 700 cells were examined, and the number 
of D19-positive cells was counted.  The percentage of positive cells was then calculated. The graph is 
representative of two separate experiments and the error bar represents the standard deviation between 
two experiments. 
 
3.2 Production of Inositol Phosphate-3 (IP3) and cGMP in wild type and FrzA− cells 

CMF was found to activate Phospholipase-C (PLC) in wild type cells causing an increase in 

the IP3 levels which occurs within ~30 sec of stimulation (Brazill et al., 1998).  To test the 

hypothesis that FrzA− cells are not able to respond to rCMF, we analysed the mutant for CMF 

induced activation of PLC.  When FrzA− cells were stimulated with rCMF there was no 

increased IP3 production (Figure 29) whereas when the Ax2 cells were induced by rCMF IP3 

production increased by two fold at 60 sec in comparison to 0 sec.  This indicates that FrzA 

could be involved in the process of activating PLC via CMF to produce IP3.  The estimation 

of IP3 production in response to rCMF was done by Dr.Derrick Brazill, Hunter College, USA: 

cGMP accumulates in response to cAMP stimulation and is important for cytoskeletal 

rearrangement during chemotaxis (Goldberg et al., 2002).  As the FrzA− cells exhibited a 

chemotaxis defect we analysed the mutant for accumulation of cGMP in response to cAMP 

stimulation.  Wild type cells were stimulated by cAMP and a 2.25 fold increase in cGMP was 

observed at 10 sec after induction, which correlates with the result from (Brazill et al., 1998),  

whereas the mutant cells stimulated by cAMP showed only a 0.9 fold cGMP accumulation at 

10 sec.  This result is consistent with the chemotaxis defect in the mutant and indicates FrzA 

could be a G protein coupled CMF receptor that mediates CMF induced PLC activation.   
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Figure 29. cGMP and IP3 production in FrzA− cells.  Cells were prepared (Materials and Methods, 
6.5 and 6.6) and production of cGMP and IP3 was measured, using cGMP and IP3 assay kit 
(Amersham), respectively.  Error bars represent mean ± standard deviation of at least two independent 
experiments.  
 
 3.3 Calcium oscillation in FrzA− cells 
 
The light scattering oscillations coincide with cAMP relay and extracellular Ca2+-oscillations 

(Bumann et al., 1986).  Wild type cells in the presence of the calmodulin antagonist W-7 

interfere with an internal Ca2+oscillation by inhibiting Ca2+-influx and enhancing light 

scattering as well as cAMP relay (Malchow et al., 2004).  In contrast to wild type, in FrzA− 

suspension there is only one large peak followed by very few or no oscillations (Figure 30).  

This observation indicates that in FrzA− the regulation of oscillations/production of cAMP 

relay might not be as tight as in wild type.  Dr. Christina Schlatterer, University of Konstanz, 

Germany, carried out the analysis for calcium oscillation by light scattering method in the 

FrzA− mutant. 
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Figure 30. Measurement of [Ca2+]i.  Early light scattering oscillations are enhanced by W-7. Free 
running oscillations of a cell suspension at 2 × 107 cells/ml were recorded using the light scattering 
technique as described in Materials and Methods (7.5).  The result shown here is representative of at 
least two independent experiments. 
 
3.4 Complementation analysis for FrzA− 

 

To understand whether a part of the gene or the complete gene is responsible for the 

aggregation negative phenotype of the FrzA− mutant, we tried to rescue the phenotype by 

overexpressing different domains (Frizzled transmembrane and PIP5K) or the full length 

FrzA as a GFP fusion protein driven by a constitutive promotor.  In the following we discuss 

only the results of overexpression of the PIP5K domain in Ax2 and FrzA− mutant. 

 

3.4.1 Expression of PIP5K-GFP fusion proteins 

GFP fusion proteins are ideal for the analysis of proteins in vivo.  The PIP5K-GFP fusion 

construct was generated as given in Materials and Methods (5.2) and the recombinant vector 

was introduced into D. discoideum Ax2 and FrzA− cells using the electroporation method 

(Materials and Methods, 2.3).  Stable transformants were isolated and the appropriate sizes of 

the fusion proteins were confirmed by western blot analysis using GFP-specific monoclonal 

antibodies (K3-184-29) and affinity purified Anti-FrzA polyclonal antibodies. 
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Figure 31. Immunoblot showing the expression of GFP-PIP5K proteins in Ax2 wild type and 
FrzA−  cells.  Whole cell homogenates of Ax2 and FrzA− cells expressing the GFP-PIP5K fusion 
protein were resolved on a SDS-polyacrylamide gel (12% acrylamide), blotted onto a nitrocellulose 
membrane and immunolabelled with anti-GFP monoclonal antibodies (K3-184-2) and anti-FrzA 
polyclonal antibodies.  Equal amounts of total cellular protein (equivalent to 2 x 105 cells) were loaded 
in each lane. The immunoblots were processed after incubation with an appropriate HRP-conjugated 
secondary antibody using the ECL-detection system for visualization of the specific immunolabelled 
band of ~75 kDa for the GFP fusion protein.  Wild type Ax2 cells were used as negative control.   The 
band at ~60 kDa ( ) appears to be due to non-specific binding of the polyclonal antibodies. 
 

The purified polyclonal antisera specific for PIP5K recognised proteins of ~75 kDa in wild 

type and mutant cells expressing a GFP-PIP5K polypeptide.  A GFP specific antibody 

recognised this protein as well.  The fainter band at approximately 60 kDa that is labelled by 

the purified polyclonal antisera (Anti-FrzA) is probably a non-specific signal.  The anti-FrzA 

was not able to recognise the endogenous protein of ~92 kDa in the wild type.  

 
3.4.2 Subcellular localization of GFP-PIP5K in vegetative cells  

Wild type Ax2 and FrzA− mutant expressing GFP-PIP5K were grown axenically and prepared 

for imaging under a confocal laser scan microscope (Leica DM/IRBE) as described in 

Materials and Methods (7.8).  GFP-PIP5K expressing cells were fixed with cold methanol and 

immunostained with anti-actin monoclonal antibodies (Act 1-7) followed by staining with 

Cy3 conjugated goat-anti mouse IgG as the secondary antibody as described in Materials and 

Methods (7.8.3).  Localisation of GPF-PIP5K is not homogenous and the protein appears to 

be present in the internal membranes, whereas the actin antibody shows mainly a cortical 

staining (Figure 31A).  This indicates that the GFP-PIP5K fusion protein is not associated 

with the cortical actin.  To test this hypothesis we performed Triton X-100 insoluble 

fractionation on the cells expressing GFP-PIP5K fusion protein (Materials and Methods, 6.3), 

where a substantial proportion of intracellular proteins are solublised with Triton-X 100 

containing buffer, whereas the insoluble fraction is enriched in cytoskeletal proteins (Prassler 

et al., 1998).  Figure 31B shows an immunoblot of the Triton X-100 soluble and insoluble 

fractions of GFP-PIP5K expressing Dictyostelium cells labelled with anti-GFP antibodies, 

where the GFP-PIP5K fusion protein is observed in the Triton X-100 soluble fraction of both 

Ax2 and the mutant cells.  This clearly supports our findings that the GFP-PIP5K fusion 

protein in both Ax2 and FrzA− cells is not associated with the actin cortex. 
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Figure 31A. Localization of GFP-PIP5K fusion protein in Ax2 and FrzA− cells. 
Immunofluorescence studies performed with GFP-PIP5K (GFP-PIP5K) expressing cells exhibit a 
fluorescence pattern that does not coincide with the actin staining in the cortex and predominantly 
remains cytoplasmic.  The cells were fixed with methanol and labelled with anti-actin monoclonal 
antibodies (Act 1-7).  Bar is 8 µm.  
 

 
 

Figure 31B. Distribution of GFP-PIP5K fusion protein in Ax2 and FrzA− cells.  Cells expressing 
GFP-PIP5K fusion protein were treated with 0.1% Triton-X 100 containing buffer and cytosolic and 
membrane fractions was prepared (Materials and Methods, 6.3).  The GFP-PIP5K fusion protein was 
found only in the Triton X-100 soluble fraction (S) fraction.  The fusion protein was recognized with 
GFP specific monoclonal antibodies (K-184-3), whereas actin is enriched in the insoluble fraction (P) 
as visualized by ponceau staining. 
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3.4.3 Development of Ax2 and FrzA− mutant expressing the PIP5K domain 

Wild type and FrzA− cells expressing the GFP-PIP5K protein were analysed for development.  

When Ax2 cells expressing GFP-PIP5K fusion protein were developed on phosphate agar 

plates, they aggregated and developed fruiting bodies at 24 hrs similar to that of the 

untransformed Ax2 cells (Figure 32A and B).  FrzA− cells expressing GFP-PIP5K did not 

aggregate at 12 hrs unlike the wild type cells and remained as loose aggregates like the 

untransformed FrzA− cells (Figure 32C and 17B) suggesting that the PIP5K domain may not 

rescue the aggregation defect in FrzA− mutant.  However, we cannot exclude the possibility of 

the PIP5K function in rescuing the mutant phenotype.  Since the SMART program predicted 

that FrzA has a signal peptide (1-30 aa), probably PIP5K exists as membrane bound protein in 

vivo.  Therefore, a myristoylated consensus sequence from the c-Src was added to the PIP5K 

domain as described in (Chung and Firtel, 1999) to analyse the function of membrane bound 

myrPIP5K in wild type and FrzA− cells.   

 
 
Figure 32. Development of cells expressing the GFP-PIP5K fusion protein.  Cells were starved at a 
cell density of 5 x 107 on phosphate agar plates and images were taken at indicated time points using a 
stereomicroscope.  A - wild type cells, B - wild type cells expressing GFP-PIP5K, and C - FrzA− 
expressing GFP-PIP5K. 
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3.5 Microarray analysis 
 
3.5.1 Experimental design 
 
DNA microarrays can be used to investigate the transcriptional changes between wild type 

and mutant cells on a large scale.  For these experiments we used the Dictyostelium DNA 

microarray (Materials and Methods, 4.0) that represents approximately 50% of the 

Dictyostelium genome.  Northern blot analysis showed that several genes of the FrzA− mutant 

exhibited an altered expression pattern during early development when compared to the Ax2 

wild type (Figure 18).  The developmental defect in the FrzA− mutant was more pronounced 

when the mutant cells were developed at low cell density (Figure 23).  Therefore, we 

compared the expression pattern of the mutant and wild type cells during early development 

(0-8 hrs) to identify those genes whose expression is significantly changed. 

  
Cell density Wild type Mutant Developmental stage 

(cells per cm2) 

Microarray 

Total RNA   dye Total RNA   dye 

  12874460 Culture A        Cy3 Culture A        Cy5 

T0 or vegetative (cells/ml) 12945001 Culture B        Cy3 Culture B        Cy5 

  12874461 Culture A        Cy5 Culture A        Cy3 

  12945002 Culture B        Cy5 Culture B        Cy3 

 5 x 106 12874463 Culture A        Cy3 Culture A        Cy5 

 5 x 106 12945003 Culture B        Cy3 Culture B        Cy5 

 5 x 106 12874464 Culture A        Cy5 Culture A        Cy3 

 5 x 106 12945004 Culture B        Cy5 Culture B        Cy3 

T4 1 x 106 12880811 Culture A        Cy3 Culture A        Cy5 

 1 x 106 12944986 Culture B        Cy3 Culture B        Cy5 

 1 x 106 12882231 Culture A        Cy5 Culture A        Cy3 

 1 x 106 12953217 Culture B        Cy5 Culture B        Cy3 

 5 x 106 12882232 Culture A        Cy3 Culture A        Cy5 

 5 x 106 12953218 Culture B        Cy3 Culture B        Cy5 

 5 x 106 12882233 Culture A        Cy5 Culture A        Cy3 

 5 x 106 12953220 Culture B        Cy5 Culture B        Cy3 

T8 1 x 106 12882234 Culture A        Cy3 Culture A        Cy5 

 1 x 106 12953221 Culture B        Cy3 Culture B        Cy5 

 1 x 106 12882235 Culture A        Cy5 Culture A        Cy3 

 1 x 106 12953222 Culture B        Cy5 Culture B        Cy3 

 
Table 3. Microarray analysis for the FrzA− mutant.  Ax2 wild type and FrzA− mutant cells were 
developed on phosphate agar plates at the indicated cell densities (5 x 106 cells per cm2 = HCD; 1 x 
106 cells per cm2 = LCD).  T0 cells were collected before plating, the other samples at 4 and 8 hrs after 
initiation of development.  Total RNA was prepared as described in Materials and Methods (4.2.2).  
Cy3 and Cy5 are green and red fluorescent dyes, respectively, and were used to label the cDNA 
generated from total RNA of wild type and mutant cells.  Two independent experiments were 
performed and are represented as culture A and B.  The numbers in the third column are the bar code 
numbers of the microarray slides used.   
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Ax2 cells and the FrzA− mutant were developed on phosphate agar plates at either high cell 

density (HCD, 5 x 106 cells per cm2) or low cell density (LCD, 1 x 106 cells per cm2).  

Samples were collected at 0, 4 and 8 hrs of development and total RNA isolated.  

Fluorescently labeled cDNA of the mutant was generated from RNA of each time point and 

compared to labeled cDNA from Ax2 wild type RNA (Table 3).  Dye-swap correction was 

done to minimize the effects of dye bias on fluorescent hybridization signals and to maximize 

the experimental design efficiency (Rosenzweig et al., 2004).  Data from each time point were 

normalized (Materials and Methods, 4.7) and differentially expressed genes were identified 

using the program “Significance Analysis for Microarray” (SAM).   

 
3.5.2 Comparison of the expression profile of vegetatively growing cells. 

We compared the expression profile of vegetatively growing Ax2 and FrzA− cells and found 

only 54 genes that were at least 1.5 fold up- or downregulated.  This finding shows that the 

expression of the majority of the genes that are expressed during vegetative growth was 

unaltered in the mutant. Only approximately 1 % of all genes appear to be differentially 

regulated.  Table 4 lists the 15 most significantly upregulated and 12 most significantly 

downregulated genes.  Notable among these are three up-regulated genes that appear to be 

involved in glucose metabolism and the downregulated V4a and V4b genes whose expression 

is attributed to transition from growth to development in response to lack of nutrients 

(McPherson and Singleton, 1992; Morita et al., 2000).  This finding indicates that the mutant 

might not sense the depletion of food for the initiation of the preaggregation program as in the 

wild type cells.  This is in good agreement with the early developmental defects exhibited by 

the mutant.   
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Gene ID Score Factor BLAST result p-value 
SSD175 7.45 2.68 Q94465 Dictyostelium discoideum (slime mold). gtp cyclohydrolase  1.00E-126 

VSA360 11.02 2.13 - - 

SSC656 18.63 1.99 P14326 Dictyostelium discoideum (slime mold). vegetative specific protein H5 1.00E-148 

X15387 9.60 1.98 Dictyostelium discoideum H5 gene  NA 

SLC679 17.56 1.97 Aas38798 Dictyostelium discoideum (slime mold) cutinase negative acting protein 3.00E-76 

SLC335 17.19 1.93 Q8ye76 Brucella melitensis chaperone protein dnak (hsp 70) 0 

SLB403 9.34 1.78 O04308 Arabidopsis thaliana probable mitochondrial processing peptidase alpha subunit 2 5.00E-42 

SLA176 11.16 1.76 P08113 Mus musculus 94 kda glucose-regulated protein 1.00E-167 

SSH169 13.12 1.72 Q8t690 Dictyostelium discoideum (slime mold). abc transporter  1.00E-54 

M64282 8.85 1.70 Dictyostelium discoideum GMP synthetase mRNA NA 

SLD415 23.41 1.69 O60037 Cunninghamella elegans. 6-phosphogluconate dehydrogenase 1.00E-151 

SLG272 10.30 1.67 Q7rvs9 Neurospora crassa. phosphoenolpyruvate carboxykinase [atp]  0 

SLE355 9.37 1.65 Q9ur07 Schizosaccharomyces pombe (fission yeast). Retrotransposable element tf2  5.00E-17 

SLE817 22.86 1.62  P54659 Dictyostelium discoideum major vault protein beta (mvp-beta) 0 

VSH185 10.46 1.60 Q869w9 Dictyostelium discoideum (slime mold) similar to anabaena sp polyketide synthase 0 

     

SLC380 -19.73 0.27 - - 

VSI664 -10.63 0.28 - - 

X15380 -15.77 0.29 Dictyostelium discoideum V4b gene NA 

SLJ376 -8.25 0.37 Q9uag7 Dictyostelium discoideum (slime mold). Flavohemoglobin 0 

VSB701 -20.58 0.38 - - 

X15381 -10.23 0.42 Dictyostelium discoideum V4a gene NA 

SSM789 -8.50 0.42 O77257 Dictyostelium discoideum (slime mold). 17 kda protein precursor 5.00E-23 

SLI122 -18.75 0.43 - - 

SSD184 -13.04 0.46 O00780 Dictyostelium discoideum vacuolar atp synthase subunit e  1.00E-112 

VSJ323 -9.15 0.47 - - 

AB025583 -8.04 0.49 Dictyostelium discoideum DdFHa mRNA for flavohemoglobin NA 

SSL817 -22.41 0.49 - - 
 
Table 4. Significantly up- or downregulated genes of vegetatively growing FrzA cells in 
comparison to Ax2.  Differentially expressed genes were identified by the SAM program.  Those 
genes are listed that are in addition more than 1.5 fold up- or downregulated in comparison to wild 
type. Gene ID is the sequence identification number, Score represents the SAM value for 
reproducibility of the result between independent experiments, Factor is the averaged value for up- or 
downregulation for four independent experiments, BLAST result provides the description of the best 
hit obtained from searches against the SwissPort/TrEMBL database (http://ch.expasy.org/cgi-
bin/niceprot) and the p-value indicates the statistical significance of the search result.  For up-
regulated genes score values are shown in red and for downregulated genes in green, respectively.  
The absence of a significant BLAST result is indicated by ‘-‘.  NA = not applicable 
 
3.5.3 Comparison of the expression profile during early development  

The FrzA− mutant exhibited a cell density dependent developmental defect.  The phenotype of 

cells that were allowed to develop at low cell density (LCD) was much more severe than for 

those that developed at high cell density (HCD).  To identify the genes that are differentially 

expressed during early development in the mutant in comparison to wild type we studied the 

expression profile at 4 and 8 hrs of development for two cell densities, HCD and LCD. 
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3.5.3.1 Differential gene regulation after 4 hrs of starvation 

We compared the expression profile of Ax2 and FrzA− cells that were developed for 4 hrs 

(t4) under HCD and LCD conditions and found that nearly twice as many genes were 

differentially regulated under HCD conditions in comparison to LCD conditions.  In total 63 

genes were at least 1.5 fold up- or downregulated under HCD conditions and 36 genes under 

LCD conditions.  This corresponds to approximately 1.2% of all genes under HCD conditions 

and 0.7% of all genes under LCD conditions.  Table 5 and 6 shows those genes for HCD and 

LCD conditions, respectively, were also found at 4 hrs HCD development that were found by 

SAM and whose expression deviated strongly from wild type.   

 

Gene ID Score Factor BLAST result p-value
SLE355 15.44 2.87 Q9ur07 Schizosaccharomyces pombe retrotransposable element tf2 5.00E-17

J05457 13.98 2.25 Dictyostelium discoideum nucleoside diphosphate kinase mRNA NA 

AF025951 8.19 2.03 Dictyostelium discoideum heat shock cognate protein 70 (hsc70) mRNA NA 

A32505 8.71 1.92 Dictyostelium discoideum nucleoside diphosphate kinase mRNA NA 

SLA176 9.44 1.89 P08113 Mus musculus 94 kda glucose-regulated protein 1.00E-167

SLI421 9.81 1.83 - - 

SLC470 9.01 1.74 Q8t869 Dictyostelium discoideum 78 kda glucose-regulated protein homolog 0 

VSI585 19.91 1.74 - - 

SSE777 10.68 1.73 Q8mpa5 Dictyostelium discoideum hypothetical protein 1.00E-77

SLJ671 8.69 1.72 Q02860 Dictyostelium discoideum retrotransposable element dre, chain b  8.00E-39

SLD225 6.72 1.72 P36415 Dictyostelium discoideum heat shock cognate protein 70 (hsc70) mRNA 0 

SSH524 11.76 1.70 P34112 Dictyostelium discoideum cell division control protein 2 homolog  0 

SLB742 12.82 1.68 P43280 Lycopersicon esculentum s-adenosylmethionine synthetase 1  1.00E-124

VSB688 11.71 1.65 P05165 Homo sapiens propionyl-coa carboxylase alpha chain, mitochondrial precursor  4.00E-85

SLG566 16.70 1.65 Q86k01 Dictyostelium discoideum 60s ribosomal protein  1.00E-94

     

SSK802 -17.48 0.62 Aas38648 Dictyostelium discoideum similar to homo sapiens (human). piwi-like  1.00E-113

SLB737 -11.00 0.63 Q09840 Schizosaccharomyces pombe probable alpha-amylase c23d3.14c  2.00E-70

X56297 -7.19 0.63 Dictyostelium discoideum LLRep3 Mrna NA 

SSB743 -9.43 0.63 Q96a08 Homo sapiens testis-specific histone h2b 2.00E-14

SSB153 -10.79 0.63 - - 

SSM847 -12.82 0.64 - - 

SLE621 -13.14 0.64 DDB0191456 delta 5 fatty acid desaturase (Dictybase curated) - 

X61797 -7.31 0.65 Dictyostelium discoideum mRNA for p17, purified from actin-myosin complex NA 

SLB406 -17.01 0.65 - - 

SLB425 -15.00 0.65 P54670 Dictyostelium discoideum calfumirin-1  3.00E-12

SLB350 -14.54 0.65 - - 

SSG712 -14.15 0.65 - - 

SSK687 -16.06 0.65 - - 

SSM830 -9.57 0.66 O15819 Dictyostelium discoideum histone h3 3.00E-65

 
Table 5. Differentially up- or downregulated genes at HCD after 4 hrs of development.  Cells 
were starved on phosphate agar plates for 4 hrs at HCD.  Please see the legend of Table 4 for the 
description of the table parameters.   
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Most of the differentially regulated genes that were found under LCD conditions were also 

found at 4 hrs HCD development.  However, there are exceptions and those genes that were 

only found under LCD conditions are interesting because they might help to explain the more 

severe developmental phenotype of the FrzA− mutant under LCD conditions.  While FrzA− 

cells formed very small fruiting bodies when developed under HCD conditions, the mutant 

did not aggregate or develop fruiting bodies under LCD conditions.  Interestingly, several 

genes like ACA, smlA and discoidin that are important during early development were found 

to be downregulated only under LCD conditions.  It is also noteworthy that under HCD 

conditions none of the differentially regulated genes was downregulated more than 1.6-fold 

while under LCD conditions significantly larger factors were observed e.g ACA was down 

regulated 3.3-fold. 

Gene ID Score Factor BLAST result p-value 
SLE355 26.88 4.26 Q9ur07 Schizosaccharomyces pombe retrotransposable element tf2  5.00E-17 

SLD225 28.72 2.62 P36415 Dictyostelium discoideum heat shock cognate protein 70 (hsc70) mRNA 0 

SLC470 5.81 2.29 P24067 Zea mays luminal binding protein 2  1.00E-180 

AF025951 10.17 2.16 Dictyostelium discoideum heat shock cognate protein 70 (hsc70) mRNA NA 

SSE777 13.90 2.11 Q869n5 Dictyostelium discoideum phosphatidylinositol phosphate kinase 6 1.00E-43 

SLJ671 12.54 1.94 Q9gq49 Dictyostelium discoideum group--specific antigen 2.00E-36 

SLA176 16.35 1.79 P08113 Mus musculus 94 kda glucose-regulated protein 1.00E-167 

J05457 6.00 1.69 Dictyostelium discoideum nucleoside diphosphate kinase mRNA NA 

A32505 5.57 1.66 Dictyostelium discoideum nucleoside diphosphate kinase mRNA NA 

SLB742 9.62 1.60 P31153 Homo sapiens  s-adenosylmethionine synthetase gamma form 1.00E-124 

SSH524 7.57 1.58 P34112 Dictyostelium discoideum cell division control protein 2 homolog  1.00E-140 

SLI455 8.66 1.56 O15901 Dictyostelium discoideum putative transposase 0.00E+00 

SSG654 8.63 1.51 Q9um47 Homo sapiens neurogenic locus notch homolog protein 3 precursor (notch 3) 5.00E-11 

     
SSM424 -13.69 0.30 - - 

SSL845 -9.52 0.31 Q86au2 Dictyostelium discoideum adenylyl cyclase, ACA 3.00E-49 

SSJ758 -11.17 0.34 - - 

SSL878 -13.34 0.34 P11491 Schizosaccharomyces cerevisiae repressible alkaline phosphatase precursor  3.00E-47 

VSJ403 -14.53 0.35 P13021 Dictyostelium discoideum  f-actin capping protein beta subunit (cap32) 1.00E-153 

SSJ693 -11.54 0.41 - - 

VSI401 -11.07 0.44 Q8t690 Dictyostelium discoideum abc transporter  0 

SSL818 -12.35 0.45 Q9gye0 Dictyostelium discoideum calcium-binding protein 4a 3.00E-78 

VSB592 -15.79 0.47 P54661 Dictyostelium discoideum small aggregate formation protein, smlA 4.00E-72 

SSM847 -13.21 0.55 - - 

VSK348 -13.28 0.56 - - 

SSH269 -10.10 0.60 Q869k6 Dictyostelium discoideum similar to anabaena sp. bacterioferritin comigratory protein 5.00E-12 

SSK802 -20.84 0.60 Q9h9g7 Homo sapiens eukaryotic translation initiation factor 2c 4.00E-34 

VSD289 -11.29 0.65 P42530 Dictyostelium discoideum discoidin ii 1.00E-149 

VSJ578 -13.41 0.66 P27685 Dictyostelium discoideum  40s ribosomal protein s2  1.00E-123 
Table 6. Differentially up- or downregulated genes at LCD after 4 hrs of development.  Cells 
were starved on phosphate agar plates for 4 hrs at LCD.  Those genes that are highlighted in the table 
were only found to be differentially regulated under LCD conditions.  Please see the legend of Table 4 
for the description of the table parameters.  
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3.5.3.2 Differential gene regulation after 8 hrs of starvation  

The microarray results of the FrzA− mutant in comparison to Ax2 wild type cells after 8 hrs of 

development showed a similar percentage of differentially regulated genes under HCD and 

LCD conditions.  Approximately 3.7% of all genes were found to be differentially regulated 

under both conditions. 

Gene ID Score Factor BLAST result p-value
SLE355 7.67 4.35 Q9ur07 Schizosaccharomyces pombe retrotransposable element tf2  5.00E-17

SLI421 8.31 3.91 - - 

SLD225 27.39 2.84 P36415 Dictyostelium discoideum heat shock cognate protein  0 

SSF869 19.36 2.72 P62242 Mus musculus 40s ribosomal protein s8 4.00E-51

AF140780 10.39 2.68 Dictyostelium discoideum countin gene, complete cds NA 

SLB758 15.45 2.66 P15112 Dictyostelium discoideum elongation factor 2  0 

SLD607 8.42 2.62 P15112 Dictyostelium discoideum elongation factor 2  0 

SSM731 15.77 2.59 P21147 Schizosaccharomyces cerevisiae acyl-coa desaturase 1  1.00E-107

SLH759 13.40 2.59 P35679 Schizosaccharomyces cerevisiae 60s ribosomal protein l4-a  2.00E-96

SSI266 17.93 2.58 Q86ae0 Dictyostelium discoideum phosphoinositide phosphatase sac1 5.00E-97

SLA374 20.26 2.56 O15706 Dictyostelium discoideum vacuolin a 0.00E+00
SSA863 7.77 2.45 P57728 Schizosaccharomyces cerevisiae 60s ribosomal protein  6.00E-48

VSC841 9.43 2.43 Q86kq6 Dictyostelium discoideum hypothetical protein 1.00E-132

X56192 22.27 2.39 Dictyostelium discoideum mRNA for ribosomal acidic phosphoprotein P2 NA 

VSG377 7.62 2.36 P36241 Drosophila melanogaster 60s ribosomal protein  2.00E-21

     

X82784 -11.01 0.20 Dictyostelium discoideum mRNA for calcium binding protein NA 

VSI401 -10.17 0.34 Q8t690 Dictyostelium discoideum abc transporter  0 

VSD859 -7.33 0.37 - - 

X52465 -7.72 0.47 Dictyostelium discoideum D2 gene NA 

X61581 -8.37 0.47 Dictyostelium discoideum mRNA for profilin I NA 

X15430 -13.52 0.51 Dictyostelium discoideum mRNA for gelation factor NA 

X04004 -13.72 0.53 Dictyostelium discoideum mRNA for contact sites A (csA) protein NA 

VSH187 -10.40 0.55 Q9erg0 Mus musculus epithelial protein lost in neoplasm (meplin) 2.00E-13

X66483 -12.85 0.57 Dictyostelium discoideum contact sites A (csA) protein NA 

VSJ349 -9.68 0.58 Q86l09 Dictyostelium discoideum hypothetical protein 0 

VSK466 -9.39 0.59 - - 

VSJ403 -8.00 0.59 P13021 Dictyostelium discoideum f-actin capping protein beta subunit (cap32) 1.00E-153

VSJ758 -16.46 0.59 Q86ac9 Dictyostelium discoideum  similar to kaposi’s sarcoma-associated herpesvirus 0 

VSC385 -7.62 0.60 O15254 Homo sapiens acyl-coenzyme a oxidase 3 6.00E-72

VSG463 -7.52 0.63 Q60715 Mus musculus prolyl 4-hydroxylase alpha-1 subunit precursor 1.00E-20

VSG756 -7.89 0.64 Aap35881 Homo sapiens proteasome (prosome, macropain) 26s subunit 1.00E-100
 
Table 7. Differentially up- and downregulated genes at 8 hrs for HCD.  Cells were starved for 8 
hrs at LCD and cDNA was prepared as described in Materials and Methods (4.2.2).  Genes highlighted 
are mentioned in the discussion.  Please see the legend of Table 4 for the description of the table 
parameters.  
 
This number is considerably higher than for vegetative and t4 cells.  It probably reflects the 

increasing delay in the development of the FrzA− mutant in comparison to wild type cells.  

Interestingly, although the total number of differentially regulated genes was similar for HCD 
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and LCD development, the proportion of up- and downregulated genes was different for both 

conditions (see Figure 33).   

 
Gene ID Score Factor BLAST result p-value

SLE355 21.87 6.00 Q9ur07 Schizosaccharomyces pombe retrotransposable element  5.00E-17

SLG566 12.73 5.59 Q96s84 Homo sapiens ribosomal protein l15 9.00E-58

SLI421 16.53 4.11 - - 

AF140780 11.70 3.76 Dictyostelium discoideum countin gene NA 

J05457 12.68 3.41 Dictyostelium discoideum nucleoside diphosphate kinase mRNA NA 

SLA374 16.18 3.06 O15706 Dictyostelium discoideum vacuolin a 0 

AF025951 7.12 2.97 Dictyostelium discoideum heat-shock cognate protein 70 (hsc70) mRNA NA 

SSI266 23.95 2.96 P61358 Mus musculus 60s ribosomal protein l27 4.00E-32

SSM731 7.62 2.93 O00767 Homo sapiens acyl-coa desaturase  1.00E-47

SSL471 11.04 2.80 - - 

A32505 10.72 2.75 Dictyostelium discoideum nucleoside diphosphate kinase mRNA NA 

SSH336 25.79 2.73 Q10344 Schizosaccharomyces pombe translationally controlled tumor protein p32 homolog p32 3.00E-36

SSE777 7.20 2.72 Q8mmn1 Dictyostelium discoideum hypothetical protein 2.00E-74

SLH759 19.95 2.68 P08429 Xenopus laevis 60s ribosomal protein l4a 7.00E-97

SSF869 13.73 2.64 P48156 Caenorhabditis elegans 40s ribosomal protein s8 2.00E-50

     

SSB469 -7.17 0.57 putative calmodulin-binding protein CaM-BP15 - 

SLB640 -11.29 0.58 Q9tx40 Dictyostelium discoideum tat-binding protein alpha 0 

SSF841 -7.70 0.59 Q86uw6 Homo sapiens nedd4-binding protein 2  9.00E-12

SSC210 -8.13 0.60 - - 

SLF270 -7.05 0.60 O00231 Homo sapiens 26s proteasome non-atpase regulatory subunit 11  3.00E-86

VSJ758 -8.07 0.60 Q86ac9 Dictyostelium discoideum similar to kaposi’s sarcoma-associated herpesvirus  0 

Y07497 -8.64 0.60 Dictyostelium discoideum putative alpha-L-fucosidase gene NA 

SSI530 -7.14 0.62 Q7x2a0 Pseudomonas aeruginosa. tetracycline inactivating enzyme 2.00E-26

VSG756 -9.99 0.62 O43242 Homo sapiens 26s proteasome non-atpase regulatory subunit 3  1.00E-101

SSK505 -8.44 0.63 - - 

SLE486 -10.95 0.64 P49598 Arabidopsis thaliana protein phosphatase 2c  3.00E-15

VSK466 -7.25 0.64 - - 

SSK819 -8.36 0.65 O74850 Schizosaccharomyces pombe diacylglycerol o-acyltransferase 1  5.00E-67

VSE243 -7.44 0.66 O43242 Homo sapiens 26s proteasome non-atpase regulatory subunit 3 1.00E-101

VSG496 -7.71 0.66 P34117 Dictyostelium discoideum  cdc2-like serine/threonine-protein kinase crp 1.00E-162

 
Table 8. Differentially up- and downregulated genes at 8 hrs for LCD.  Cells were starved for 8 
hrs at LCD and cDNA was prepared as described in Materials and Methods (4.2.2).  Genes highlighted 
in the table are differentially regulated only at this condition and also mentioned in the discussion.  
Please see the legend of Table 4 for the description of the table parameters. 
 
Table 7 and 8 lists the 15 most significantly up- or downregulated genes under HCD and LCD 

conditions, respectively.  It also shows that there are considerable number of downregulated 

genes that are unique for the LCD development.  Among these are five genes (highlighted in 

Table 8), which are associated with the proteasome-mediated degradation pathway.  This 

suggests that the proteasome regulated degradation which is necessary for multicellular 

development (Lindsey et al., 1998) is somehow reduced in the FrzA− mutant.  This could be 
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one of the reasons why the mutant cells were not able to transit from growth phase to 

developmental phase when starved under LCD conditions. 

 
3.5.3.3 Comparison of differentially regulated genes under HCD and LCD conditions  

During an analysis of the FrzA− mutant we found that the developmental defect depends on 

the cell density. Cells starved on phosphate agar plates at HCD developed considerably 

slower than wild type cells and only produced small fruiting bodies. However, when starved 

at LCD the mutant did neither form aggregates nor did it develop into fruiting bodies.  This 

difference in the developmental defect can be analysed by looking at those genes which are 

only up- or downregulated under HCD or LCD conditions respectively. Since most 

transcriptional changes occur between 4-10 hrs of development (Van Driessche et al., 2002), 

we analysed the data from 4 and 8 hrs.  Figure 33 summarises our findings for up- or 

downregulated genes under LCD and HCD conditions at 4 and 8 hrs of development. With 

exception of the downregulated genes at 4 hrs of development under HCD conditions, the 

percentage of common genes between the two conditions was generally higher than 50%. 

Those genes that are common might be responsible for the delay in development when 

compared to wild type while those genes that are only differentially regulated under LCD 

conditions might be responsible for the more severe phenotype under this condition. It is also 

noteworthy that 3 to 6 fold more genes were differentially regulated at 8 hrs of development 

as compared to 4 hrs. This probably mirrors the increasing delay in the development of the 

mutant. 
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Figure 33. Bar diagram showing the genes that are common and unique between HCD and LCD 
conditions.  All genes that are up- or down regulated at the 4 and 8 hrs time points and that are 
common between the HCD and LCD condition are represented as bar graph. The size of the bars 
corresponds to the number of differentially regulated genes and their absolute number is stated.  Genes 
that are unique to the HCD or LCD condition are given in brackets.   
 
3.5.3.4 Cluster analysis 

To simplify the results we applied different clustering methods. We subjected those genes to 

clustering methods that were found to be at least 1.5-fold up- or downregulated at either 0, 4 

or 8 hrs.  A set of 257 and 271 differentially regulated genes for HCD and LCD development, 

respectively, was grouped into five clusters using the K-means clustering method (Figure 34).  

We compared the cluster profile of HCD and LCD conditions and found that the expression of 

genes in clusters 1 and 5 went down with starvation whereas it went up in clusters 3 and 4. 

Most informative was cluster 2. For this cluster the expression profile was completely 

opposite for HCD and LCD.  It contained genes that were predominantly downregulated in 

HCD and upregulated in LCD development.  Table 9 shows that at least 50% of the genes 

were common between the clusters 1, 3, 4 and 5 of HCD and LCD development, while cluster 

2 showed a very low number of common genes. Since the strongest developmental defect is 

exhibited during LCD condition we looked more closely at the unique genes under HCD and 

LCD conditions of cluster 2.  Table 10 shows up- and downregulated genes of cluster 2 at 8 

hrs of development for HCD and LCD conditions, respectively. Only the ten highest 

upregulated genes for the LCD and the nine most downregulated genes for the HCD condition 

are listed.  

An interesting aspect of the list of unique genes under HCD conditions was the presence of 

four genes encoding protein disulfide isomerases. The protein disulfide isomerase is an ER 

resident protein and deletion of this protein in yeast was found to be lethal (LaMantia et al., 

1991).  Another gene that was found to be downregulated was Calreticulin, which interacts 

with protein disulfide isomerase and found to be important for normal heart development in 

mouse (Baksh et al., 1995; Michalak et al., 2004).  It is at present not clear why these genes 

are downregulated at 8 hrs of HCD development.  In addition a cell division cycle protein 

(cdc48) that is important for M to G1 transition during the cell cycle was also found to be 

downregulated (Cao and Zheng, 2004).  The list of uniquely upregulated genes of cluster 2 

under LCD conditions was not very telling. To find out more about the molecular basis of the 

developmental defect under LCD and HCD conditions it will be necessary to analyse all 

genes that are unique to LCD or HCD, respectively, in more detail.  
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Figure 34. Cluster analysis.  Genes that were at least 1.5 fold up- or downregulated at either 0, 4 or 8 
hrs of development were subjected to cluster analysis. For LCD (left) and HCD (right) K- means 
clustering resulted in each case in five groups. Symbols represent the average up- or downregulation 
of all members of the corresponding cluster. The number of genes in each cluster ranged from 
approximately 15 to 100.  The clusters of LCD and HCD are indicated by consistent colors.  
 

Cluster LCD HCD Common
1 73 67 39 
2 37 14 3 
3 100 103 54 
4 27 28 17 
5 34 45 27 

 
Table 9. Comparison of genes between their respective clusters.  The numbers given under LCD 
and HCD are the total number of genes in the respective clusters that have a similar expression profile.  
The genes between similar cluster profiles were compared and the number of genes in common is 
presented. 
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     Cluster 2 HCD  

     
Gene ID Score 0 4 8 BLAST result p-value
SSD437 -10.11 1.68 0.82 0.26 P54653 Dictyostelium discoideum calcium-binding protein 2 2.00E-92 
SLC177 -11.30 1.41 1.29 0.27 Aao52220 Dictyostelium discoideum protein disulfide isomerase 1.00E-129
U83085 -15.34 1.34 1.13 0.50 Dictyostelium discoideum cell division cycle protein 48 (cdcD)  NA 

AF019112 -8.43 1.11 1.15 0.50 Dictyostelium discoideum protein disulfide isomerase  NA 
U36937 -12.68 1.47 1.33 0.55 Dictyostelium discoideum calreticulin mRNA NA 
VSC385 -7.62 1.07 1.09 0.60 P05335 Candida maltosa acyl-coenzyme a oxidase pox4 (acyl-coa oxidase)  4.00E-65 
SLC694 -8.21 1.10 1.05 0.61 P35573 Homo sapiens glycogen debranching enzyme (glycogen debrancher)   1.00E-117
SLH760 -10.53 1.09 1.16 0.62 Q12730 Aspergillus niger. protein disulfide-isomerase precursor  4.00E-93 
SLC492 -16.18 1.11 1.09 0.63 Q12730 Aspergillus niger. protein disulfide-isomerase precursor (pdi) 4.00E-93 

       
     Cluster 2 LCD  
       

SLE355 21.87 1.65 4.26 6.00 Q9ur07 Schizosaccharomyces pombe retrotransposable element tf2  5.00E-17 
SLI421 16.53 1.56 1.70 4.11 - - 
J05457 12.68 1.23 1.69 3.41 Dictyostelium discoideum nucleoside diphosphate kinase mRNA NA 

AF025951 7.12 1.56 2.16 2.97 Dictyostelium discoideum heat-shock cognate protein 70 (hsc70) mRNA NA 
SSM731 7.62 1.08 1.60 2.93 Q86ak4 Dictyostelium discoideum similar to Mortierella alpina. stearoyl-coa desaturase  0 
A32505 10.72 1.37 1.66 2.75 Dictyostelium discoideum nucleoside diphosphate kinase mRNA NA 
SSE777 7.20 1.00 2.11 2.72 Q8mpa5 Dictyostelium discoideum hypothetical protein 1.00E-77 
SLH759 19.95 1.37 1.23 2.68 Q86kt2 Dictyostelium discoideum similar to arabidopsis thaliana (mouse-ear cress)  0 
SSL485 6.91 1.29 1.76 2.60 - - 
SLB742 10.12 1.20 1.60 2.13 P31153 Homo sapiens s-adenosylmethionine synthetase gamma form  1.00E-124

 
Table 10. Unique genes in cluster 2.  The factors for up- or down regulation at 0, 4 or 8 hrs of 
development of the mutant in comparison to wild type is given under 0, 4 and 8.  The score values 
represent only the values for the 8 hrs time point.  Highlighted genes are mentioned in the text.  Please 
see the legend of Table 4 for the description of the other table parameters.  
 
3.5.3.5 Developmental regulation of genes in cluster 2 in comparison to Ax2 and the 
ACA− mutant 
 
Those genes which are found upregulated in the mutant might only appear upregulated 

because they are actually downregulated during development in the wild type cells; 

correspondingly genes that are found downregulated in the mutant might be upregulated in the 

wild type during development.  Therefore, to understand the profile of cluster 2 obtained from 

the cluster analysis of the FrzA- mutant we compared the expression of genes at the 8 hrs time 

point with that of the parental strain Ax2 (Van Driessche et al., 2002) and ACA-, an 

aggregation defective strain (Iranfar et al., 2003). 

At HCD conditions only values for six of the genes were available from published results 

(Iranfar et al., 2003; Van Driessche et al., 2002).  Three of these, SSD437, SLC177 and 

SLH760 confirmed our theory that some of those genes that appear downregulated in the 

FrzA- mutant are actually upregulated during wild type development. One of these genes, 

AF019112, was also found to be downregulated during wild type development by (Van 
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Driessche et al., 2002) and it is not clear why this gene appeared to be downregulated in the 

FrzA- mutant at 8 hrs of development.  For two of the genes no data were available from wild 

type development.  It is interesting that five of the genes are very similarly regulated in the 

FrzA- and the ACA- mutant. 

For development under LCD conditions there are 34 unique upregulated genes in cluster 2 at 

8 hrs of development (Table 9).  For 25 of these there were values available for either the Ax2 

or for ACA null development and Figure 35B shows only the ten most significantly 

upregulated genes of cluster 2 of the FrzA− mutant.  Only two of these, SSM731 and SLB742, 

are downregulated during Ax2 development.  These two confirm our theory that some of the 

genes only appear upregulated during mutant development because they are infact 

downregulated during wild type development but not so in the mutant.  Most other genes, 

with exception of SLH759, appear truly upregulated at 8 hrs of mutant development in 

comparison to wild type.  It is interesting that, in contrast to development under HCD 

conditions, most of these genes are similarly regulated in wild type and ACA null cells.  It 

appears therefore that the expression profile of the FrzA− mutant is only very similar to the 

ACA null mutant when the cells are allowed to develop under HCD conditions. 

 
 
Figure 35. Expressions of unique genes in cluster 2 in comparison to Ax2 and ACA null strain at 
8 hrs of development.  A shows unique genes for HCD conditions, B for LCD conditions. Only those 
genes identified in the FrzA− mutant are shown for which corresponding values were available in 
either Ax2 and/or the ACA null strain. Gene identity numbers are given below the X-axis.  Relative 
value is the fold up- or downregulation in the corresponding comparison. 
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1. Discussion 

 
The Frizzled gene was first identified in Drosophila in a screen for mutations that disrupt the 

polarity of epidermal cells in the adult fly (Gubb and Garcia-Bellido, 1982).  Subsequently, 

Frizzleds have been found in diverse metazoans (Wang et al., 1996), including at least ten in 

vertebrates, four in Drosophila, and three in Caenorhabditis elegans.  Frizzleds have also 

been identified in primitive metazoans, including the sponge Suberites domuncula (Adell et 

al., 2003) and in Hydra vulgaris (Minobe et al., 2000).  The Frizzled (Fz) proteins are 7-pass 

transmembrane proteins characterized by an extracellular N-terminal, cysteine-rich domain 

that might constitute part or all of the ligand-binding domain of the Wnt proteins (Hsieh et al., 

1999).  When we searched the Dictyostelium database using the Frizzled transmembrane 

domain we identified 25 Frizzled like receptors (Figure 2).  Dictyostelium FrzA was unique 

among them, with a N-terminal Frizzled transmembrane and C-terminal Phosphatidylinositol-

4-phosphate 5-kinase (PIP5K) domain.  The sequence homologies of Frizzled transmembrane 

region clearly places FrzA in the smoothened Frizzled receptor family.  Frizzled in 

Dictyostelium is reported for the first time and the function of FrzA is studied here. 

In general, Frizzleds are widely and dynamically expressed in almost all cell types.  

Expression pattern and function of Frizzleds in different model organisms are well described 

(Strutt, 2003).  Frizzleds are essential for cell fate determination during embryonic 

development and various other Frizzled family members are associated with cell proliferation 

and activating stimuli for specific signal transduction.  However, Frizzled functions are as 

varied as the number of cell types that express them.  Our object of interest, FrzA, a novel 

Frizzled like protein in Dictyostelium, was found to be expressed throughout the development 

although the expression was slightly higher after 8 hrs of development (Figure 6).   

We generated a mutant (FrzA−) lacking the functional FrzA gene to understand the in vivo 

function of this novel Frizzled like protein, FrzA in Dictyostelium.  The FrzA− mutant was 

able to grow normal in axenic medium or feed on bacteria, but was not able to form fruiting 

bodies with the depletion of the food source when grown on a bacterial lawn.  Therefore, 

absence of FrzA in Dictyostelium is not lethal unlike the homozygous deletion of Fzd5 in 

mouse that causes embryonic death at around 10.5 days due to a defect in yolk sac and 

placental angiogenesis (Ishikawa et al., 2001).  However the FrzA− null cells exhibit 

developmental defects such as lack of aggregation and delayed development of small and few 

fruiting bodies. 
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1.1 FrzA role in aggregation and development of Dictyostelium 

Dictyostelium discoideum grows vegetatively as individual amoebae and on depletion of food, 

a multicellular developmental program is initiated.  When cells begin to starve, a 10 hrs 

aggregation process is initiated where a cell functioning as an aggregation center begins to 

emit pulses of cAMP at 6 to 9 min intervals.  Wild type cells form streams at ~6 hrs of 

starvation on a plastic surface in a submerged culture assay (Thiery et al., 1992).  But we 

found that the FrzA− null cells were not able to form streams (Figure 16).  Aggregation is 

stimulated by pulse-induced genes in a two-phase process (Mann and Firtel, 1989).  The 

initial phase of starvation requires the synthesis of a secreted soluble protein factor, CMF, and 

coordinates development (Mehdy and Firtel, 1985).  When a majority of the cells in a given 

area starve, the extracellular level of CMF rises above a threshold value, and cells aggregate 

using relayed pulses of cAMP as the chemoattractant.  With wild type cells when starved on 

phosphate agar plate, approximately 105 cells stream together to form tight aggregates 

between 6-10 hrs that proceed through a series of morphogenetic changes, culminating into a 

fruiting body at around 24 hrs.  While the FrzA− mutant exhibits an aberrant developmental 

pattern, lacking formation of streams or aggregates at 6 hrs after initiation of starvation, they 

form a loose group of cells from which very few and small fruiting bodies emerge.  But 85% 

of the loose aggregates do not undergo further development (Figure 17).  And when wild type 

cells are starved at a density below a particular threshold, they do not develop.  Under these 

conditions, the concentration of CMF in the extracellular environment is insufficient to allow 

gene expression necessary for aggregation (Mehdy and Firtel, 1985).  Dictyostelium can 

successfully aggregate only if there are enough cells within a given space secreting CMF that 

monitors the cell density prior to inducing genes that are required for aggregation (Deery and 

Gomer, 1999) and CMF functions in vivo as a cell density-determining factor (Yuen et al., 

1995). Wild type cells when starved on phosphate agar plates at different cell densities, even 

at 1 x 105 cells per cm2 aggregated followed by formation of fruiting bodies after 20-24 hrs of 

starvation.  When performing this analysis with the FrzA− mutant, we observed that they were 

polarized with many lateral pseudopods but did not aggregate and develop into fruiting bodies 

at a density less than 5 x 106 cells per cm2 (Figure 23).  The mutant did however form few 

fruiting bodies at 5 x 106 cells per cm2 but after 48 hrs of development, which may be due to 

random collision of cells at high cell density.  Thus FrzA might play a role in determining cell 

density necessary at early stages of development by functioning as a receptor for the secreted 

cell density factors.   
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Molecular evidence for aggregation defect in the mutant was coming from northern blot 

analysis.  Aggregation specific genes csA and cAR1 (Firtel, 1995; Gerisch, 1968; Noegel et 

al., 1986a) were found to be significantly lower in the FrzA− mutant when compared to the 

wild type Ax2.  During aggregation cAMP pulses are synthesized by activation of adenylyl 

cyclase (ACA), which is mediated by cAR1 (Anjard et al., 2001).  In comparison to the wild 

type Ax2 the FrzA− mutant did not produce any ACA transcript during 6-10 hrs of starvation 

and this is consistent with the aggregation defect (Figure 18) indicating FrzA might not 

produce the cAMP pulse to induce pulse-dependent genes necessary for aggregation. 

During the second phase of induction of pulse-induced genes, the cell-surface receptors bind 

cAMP and change to an inactive state (Devreotes, 1982).  As the extracellular cAMP is 

degraded by an extracellular cAMP phosphodiesterase (Gerisch, 1987; Kessin, 1988), the 

receptors return to an active state, making the cells ready to receive the next signal.  cAMP 

pulse produced as signal is amplified and propagated outward from the aggregation center in 

form of waves.  This signal relay system serves to establish a gradient of cAMP, which 

functions as the chemoattractant during aggregation. Cells move up the cAMP gradient 

toward the aggregation center, forming streams as they establish cell-cell contacts and move 

together (Devreotes, 1982).  A number of developmentally regulated genes have been 

identified in Dictyostelium whose expression is regulated by cAMP activated signal 

transduction processes (Mehdy et al., 1983).  PDE that may contribute to the negative 

feedback loop of oscillatory cAMP signaling (Meima et al., 2003), was found to be stimulated 

by cAMP at the aggregation stage in wild type.  But in FrzA− mutant the PDE expression was 

high and constant throughout the development process.  A secreted glycoprotein 

phosphodiesterase inhibitor (PDI) that regulates the activity of PDE (Franke et al., 1991) is 

induced in response to cAMP secretion in the wild type cells.  In the FrzA− mutant 

transcription of PDI was observed to be significantly low.  Development followed by 

aggregation regulates genes that are stimulated by moderate and high concentration of cAMP. 

Prestalk and prespore specific late genes are induced at 10 and 15 hrs of development, 

respectively, and require moderate levels of cAMP for their expression (Mehdy et al., 1983; 

Schaap and van Driel, 1985).  Changing levels of cAMP within the population of cells is used 

to regulate gene expression throughout Dictyostelium development.  In the FrzA− mutant 

Prestalk (ecmA) and prespore precursor (pspA) genes were expressed but delayed by 36 hrs in 

comparison to the wild type Ax2 (Figure 18).  These observations infer that FrzA may have a 

role even before the aggregation stage with a defect in generating cAMP pulses necessary for 

induction of other genes to continue development.   
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1.2 csA mediated cell adhesion is controlled by FrzA  

During Dictyostelium development the signal transduction pathways induced by cAMP are 

involved in the regulation of gene expression.  At the early phase of development, several 

genes become responsive to pulses of low levels of cAMP upon the initiation of the cAMP 

signal-relay (Mann et al., 1988).  One gene whose expression is highly augmented by pulses 

of cAMP is gp80/csA.  Transcription of the csA gene is first turned on at a low basal level at 

the preaggregation stage and then greatly enhanced by low levels of cAMP at the aggregation 

stage.  Expression of csA is under developmental regulation and accumulates rapidly on the 

cell surface between 6 and 10 hrs of development, corresponding to the aggregation stage (Siu 

et al., 1987).  csA is a cell adhesion molecule with an apparent molecular weight of 80 kDa 

(Siu et al., 1985).  Northern blot analysis for the FrzA− mutant shows that the csA expression 

level was not comparable to the wild type Ax2 at the aggregation stage (Figure 18), while csA 

protein expression was not observed either when developed in phosphate agar plates or when 

developed in suspension (Figure 19A and B).  When Ax2 development was carried out in the 

presence of exogenous pulses of nanomolar amounts of cAMP, cells express csA in an 

enhanced and precocious manner (Siu et al., 1988), while in the FrzA− mutant csA expression 

could be induced by exogenous pulsing with cAMP (Figure 19B).  This clearly indicates that 

csA mediated cell adhesion in Dictyostelium requires direct or indirect role of FrzA. 

 

1.3 FrzA plays a major role in chemotaxis 

Directed movement of the cells toward or away from a chemoattractant, mediates the 

inflammatory and immune responses, neuronal outgrowth, embryonic cell movements, 

fertilization, angiogenesis and metastasis.  Chemotaxis in Dictyostelium is better studied than 

in any other cell type (Malchow et al., 1996a).  During growth, cells feed on bacteria by 

orienting to folic acid (Pan et al., 1972) and in the absence of food changes in gene expression 

are observed with onset of cAMP secretion and responsiveness towards cAMP initiating 

development (Firtel, 1991).  Chemotaxis is also a critical determinant in tissue organization of 

Dictyostelium (Durston and Vork, 1979).  Determining the ability of the FrzA− mutant to 

chemotax up a concentration gradient of chemoattractant was necessary due to the 

developmental defect at low cell density, where motility of cells towards the signal is 

important.   FrzA− cells when challenged with cAMP through a micropipette showed poor 

directed movement towards the cAMP which coincides with low level of cAR1 expression.  

Exogenous cAMP pulses were able to rescue the chemotaxis defect in DdPIPkinA− cells (Guo 

et al., 2001).  In FrzA− mutant exogenous cAMP pulsing was also able to restore the 
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chemotaxis defect, but speed and persistence during directed migration was not rescued 

(Table 2) suggesting that FrzA could be involved in a distinct pathway for directed movement 

of the cells towards the chemoattractant. 

 
1.4 Function of FrzA in cAMP signaling 

cAMP mediated chemotaxis is regulated by gene products that are dependent on cAMP 

signaling and Gα2 protein (Sun and Firtel, 2003).  cAMP outside the cell acts as 

chemoattractant responsible for conversion of a unicellular into a multicellular organism 

(Konijn et al., 1967) and regulates genes that are required for chemotactic aggregation 

(Gerisch et al., 1975).  Expression of many receptors is controlled by their own ligands.  

cAR1, receptor for cAMP is expressed at undetectable level when cells growing in low 

density and expressed at low level with increase in cell density.  When cells starve and start to 

develop, cAR1 expression increases more than 20 fold (Kimmel, 1987; Kimmel and Firtel, 

1991).  Starving cells secrete factors to allow cells to aggregate and cells aggregate by sensing 

and secreting cAMP in a pulsatile fashion.  The phosphorylated cAR1 is transiently expressed 

upon cAMP stimulation and increases the extracellular cAMP level (Klein et al., 1985).  The 

PDE degrades cAMP and resulting in partial deactivation of cAR1 inducing a cycle of 

responsiveness and desensitization of cAR1 leading to low level oscillations in extracellular 

cAMP concentration.  In the FrzA− mutant the cAR1 and Gα2 protein level was normal when 

developed in suspension, where random collision can induce gene expression, whereas during 

development on phosphate agar plates the FrzA− mutant was not able to produce normal 

levels of cAR1 like cAR1− null cells that do not initiate cAMP singaling (Saxe et al., 1991).  

Thus the mutant may have abnormal cAMP signaling.  Since cell density determines 

development we analysed if cell density also affects cAR1 expression during development.  

When wild type cells were developed at low and high cell density, normal cycle of activation 

and deactivation of cAR1 was observed at high cell density, but at low cell density they 

mainly expressed the deactivated form of cAR1 but underwent development (Figure 27B).  

And FrzA− mutant under similar conditions showed expression of cAR1 at high cell density 

but with abnormal development, whereas cAR1 expression was completely absent at low cell 

density.  The phenotype exhibited by the mutant at low cell density is similar to that of the 

cAR1− mutant (Sun and Devreotes, 1991).  Thus FrzA controls expression of cAR1 and is 

indispensable for induction of cAMP signaling to initiate the process of development when 

developed at low cell density.   
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1.5 FrzA affects calcium oscillation 

Dictyostelium cells exhibit a rapid activation and delayed inhibition of ACA causing a 

periodic oscillation of cAMP production, that controls the chemotactic signaling mechanism 

during the aggregation stage of development (Maeda et al., 2004).  Cytosolic Ca2+ was also 

found to play an important role during aggregation and development (Newell et al., 1995), 

where Ca2+ influx elevates cytosolic calcium level shortly after cAMP synthesis and Ca2+ 

efflux occurs when cAMP level comes to a basal level (Bumann et al., 1984).  However, a 

direct link has not been shown between Ca2+ and cAMP oscillation.  This was shown with 

W7, an antagonist of calmodulin that was found to enhance the light scattering and cAMP 

oscillation linking Ca2+ to cAMP oscillation.  In the wild type cells, W7 increases the light 

scattering and cAMP relay by Ca2+ efflux from intact cells, whereas in the FrzA− mutant W7 

only one large peak is elicited and no oscillation occurs (Figure 30) like in the PLC null cells 

(Malchow et al., 2004).  Therefore, FrzA may be important for Dictyostelium cells to induce 

an oscillatory circuit by producing periodic cAMP pulses and this is consistent with the 

aggregation and chemotaxis defect in the FrzA− mutant. 

 
1.6 The FrzA acts as a GPCR like CMF Receptor  

The secreted factors in conditioned medium promotes expression of genes induced early in 

the developmental process (Mehdy and Firtel, 1985).  We found that the FrzA− mutant to be 

able to produce these factors but is not able to sense them (Figure 24).  A putative receptor 

that mediates cell density sensing in Dictyostelium was identified and characterized (Deery 

and Gomer, 1999).  Disruption of CMFR1 does not affect the CMF mediated binding of 

cAMP to its receptor cAR1 or induction of IP3 synthesis.  But, (Brazill et al., 1998) showed 

that CMF regulates cAMP binding and IP3 synthesis by activating a G protein.  Therefore, 

Deery and Gomer (1999) assumed the existence of an unknown G protein-coupled CMF 

receptor and that the absence of CMFR1 did not affect this receptor.  However absence of 

FrzA affected both CMF and CMFR1 expression (Figure 25), which correlated with the cell 

differentiation assay at low cell density (Figure 28).  The FrzA− mutant did not induce 

prespore (D19) differentiation in response to rCMF like in the CMFR1 or CMF null cells 

indicating that FrzA may affect a G-protein independent pathway by controlling the 

expression of CMF and its receptor CMFR1.  CMFR1− null cells are aggregation negative and 

show a defect in expression of pulse-induced genes, csA and cAR1 as in the FrzA− mutant.  

Therefore we examined the FrzA− cells ability to sense the rCMF and found the cells not 
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responding to the rCMF by remaining unpolarised (Figure 26) providing a clue that FrzA 

could be a receptor specific to CMF.   

The model shows the extracellular protein CMF binding to a G protein coupled receptor, 

which is associated with Gα1βγ.  Binding of CMF allows Gβγ to dissociate from Gα1 

activating phospholipase (PLC).  The activation of PLC either directly or indirectly causes the 

cAMP stimulated GTPase activity of Gα2 to decrease by prolonging the lifetime of the Gα2-

GTP configuration.  This prolongation could be reduced in the absence of CMF causing rapid 

hydrolysis of Gα2-GTP to GDP form and not allowing the cells to aggregate (Brazill et al., 

1998).  A similar response was observed in the FrzA− mutants, where the presence of CMF 

did not stimulate the activation of PLC to increase the IP3 production.  Therefore Gα1 

appears to be a component downstream of the FrzA, a GPCR like CMF receptor in a pathway 

mediating CMF signaling to Gα2 which is consistent with the hypothesis put forth by Brazill 

et al., (1998). 

 

 
Figure 36. Hypothetical function of FrzA in Dictyostelium 
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1.7 Microarray analysis of FrzA− mutant 
 

Northern blot analysis showed that the FrzA− mutant exhibited poor expression of some of the 

genes that are involved in the aggregation stage during Dictyostelium development (Figure 

18).  In addition, the mutant showed a cell density dependent phenotype where cells at HCD 

condition underwent delayed development forming few and small fruiting bodies, whereas 

under LCD condition they did not aggregate or develop into fruiting bodies at all.  To identify 

the genes that were differentially regulated under these two different conditions we performed 

a large scale expression study using the Dictyostelium DNA microarray.   

When Dictyostelium Ax2 cells are depleted of nutrients they arrest proliferation to initiate a 

developmental program during which genes necessary for differentiation are differentially 

regulated.  At the onset of starvation genes necessary for the initiation of the aggregation 

process are induced.  One of these is the contact sites A (csA), gene which encodes a cell 

adhesion molecule whose expression is induced by cAMP pulses produced during aggregation 

(Desbarats et al., 1992).  Our biochemical studies showed that the FrzA− mutant might not be 

able to secrete or sense the pulses of cAMP and we also found that expression of csA is 

delayed and also reduced (Figure 18 and 19).  This result was confirmed by our microarray 

studies which showed that csA was significantly downregulated under HCD and LCD 

conditions.  In addition the analysis revealed changes in the expression pattern of several 

more genes like ACA, cAR1, smlA and vegetative specific proteins which either play a role 

during aggregation or are important for transition from growth to development.  This suggests 

that the results that were obtained by the microarray analysis are trustworthy and mirror the 

observed changes during development of the FrzA− mutant.   

We performed a detailed analysis of all the differentially regulated genes under HCD and 

LCD conditions at 0, 4 and 8hrs of development (see Table 4-8).  We found that most of the 

upregulated genes were common between HCD and LCD development and thus gave no clear 

explanation for the difference in development.  However, we observed some interesting 

differences for the downregulated genes of which some were unique for LCD conditions.  

Most interesting among these were at 4 hrs of development, ACA, smlA and discoidin and at 

8 hrs of development five genes enconding components of the 26S proteasome.  In 

Drosophila the 26S proteasome machinery is found to play a major role in degrading cell 

cycle regulatory proteins to initiate early embryonic mitosis and development (Klein et al., 

1990).  This finding suggests that proteins that need to be degraded during wild type 

development might not be efficiently degraded under LCD conditions in the FrzA− mutant.  It 
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is also interesting that the heat shock protein 70 was found to be upregulated under most 

conditions.  Gao et al., (2000) showed that in human endothelial cell line ECV304 the heat 

shock proteins 70 (Hsp 70) class of protein is overexpressed with inhibition of the 26S 

proteasome.   

We performed a cluster analysis to simplify the comparison of the microarray results under 

HCD and LCD conditions.  K-means clustering resulted in five clusters for HCD and LCD 

development (Figure 34).  Cluster 1, 3, 4 and 5 showed similar expression patterns for HCD 

and LCD development and contained mainly genes in common with both conditions.  In 

contrast cluster 2 was markedly different between the two conditions.  At LCD development 

the genes of this cluster were upregulated while they were downregulated at HCD 

development.  In addition, only few genes were common between the two conditions.  To 

gain further insight we compared the expression levels of the genes in cluster 2 at 8 hrs of 

development to the respective expression levels in wild type and ACA null cells (Iranfar et al., 

2003; Van Driessche et al., 2002).  It turned out that most of the genes of cluster 2 at HCD 

had similar expression levels as the ACA null cells (Figure 35A), consistent with the similar 

development phenotypes of the FrzA− and the ACA− mutant (Anjard et al., 2001).  

Unfortunately, the list of genes found in cluster 2 at LCD development was not very telling.  

It will be necessary to study all the genes that are differentially regulated and unique to LCD 

development in more detail.  This might give more clues for the cell density dependent 

phenotype exhibited by the FrzA− mutant. 
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Summary 
 

Frizzled genes encode integral membrane proteins that function in multiple signal 

transduction pathways.  They have been identified in diverse animals, from sponges to 

humans.  Frizzled genes are well characterized for their functions in development and 

diseases.  In this study we report the identification and characterisation of a Frizzled like 

protein in Dictyostelium.  We identified a novel Frizzled like protein (FrzA) in the 

Dictyostelium database, which has a seven transmembrane region at the N-terminus but unlike 

other Frizzleds it lacks the CRD domain and instead has a Phosphatidylinositol-4-phosphate 

5-kinase (PIP5K) domain at the C-terminus.   

The FrzA gene is present on the chromosome 4 of the Dictyostelium genome.  The expression 

pattern of FrzA revealed a single transcript of ~2.5kb in size in the northern blot analysis.  To 

characterize the function of FrzA protein in vivo, cells carrying an inactivated FrzA gene were 

generated by homologous recombination.  The FrzA− cells grew normal on a bacterial lawn or 

in axenic medium indicating normal pinocytosis as well as intact cytokinesis.  However the 

cell size was slightly smaller when compared to the Ax2 wild type cells.  Notable was the 

defect in development on bacterial plates.  When developed on phosphate agar plates the 

FrzA− cells did not form tight aggregates during early development.  However the loose 

aggregates gave rise to very few and small fruiting bodies, which were formed with a delay of 

24hrs.  Also, the FrzA− mutant exhibited a pronounced developmental defect when developed 

at low cell density, where the mutant cells did not aggregate or develop fruiting bodies.  

Northern blot analysis to characterise the developmental defect in the FrzA− mutant showed 

expression of genes expressed early in aggregation such as csA; cAR1, ACA, PDE and PDI.  

However, the pattern was strongly altered and showed prolonged expression in case of CAR1 

nad PDE and delayed expression for ACA and csA.  The mutant cells did not exhibit a 

directed migration towards cAMP and thus showing a defect in chemotaxis.  However, 

application of the exogenous cAMP pulses restored the expression of contact sites A and 

adenylyl cyclase (ACA) transcripts necessary for aggregation and also rescued the defect in 

chemotaxis.  Calcium oscillation, which is important for initiating aggregation and further 

development, was disturbed in the mutant.  We could show that the FrzA− mutant did not 

sense the cell density factor (CMF) and produce IP3 in response to the CMF stimulation.  We 

therefore presume that FrzA is involved in the early steps of aggregation during Dictyostelium 

development. 
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Our results indicate that FrzA is a potential G protein coupled receptor for the ligand CMF to 

induce the CMF signaling during the early development of Dictyostelium. 
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Zusammenfassung 
 

Frizzled Gene kodieren für integrale Membranproteine, die in verschiedenen 

Signaltransduktionswegen beteiligt sind. Sie sind in Entwicklungsprozesse involviert und sind 

auch als Krankheitsgene identifiziert worden. In dieser Arbeit wird ein Frizzled Gen, FrzA, 

aus Dictyostelium beschrieben. Das Vorkommen von Frizzled in niederen Eukaryonten war 

unerwartet. FrzA besitzt sieben für Frizzled Proteine charakteristische 

Transmembrandomänen. Der N-Terminus ist ungewöhnlich kurz und enthält nicht die übliche 

CRD-Domäne, eine Cysteinreiche Aminosäuresequenz. Ungewöhnlich ist auch der C-

Terminus. Hier wird die Transmembrandomäne von einer C-terminalen Phosphatidylinositol-

4-Phosphat-5-Kinase Domäne gefolgt. Die FrzA mRNA ist während des gesamten 

Entwicklungszyklus nachweisbar. 

Um die Funktion von FrzA zu analysieren, wurde eine Mutante durch homologe 

Rekombination erzeugt. Die Wachstumseigenschaften der Mutante waren gegenüber dem 

Wildtyp nicht verändert. Verändert war dagegen die Entwicklung. Normalerweise aggregieren 

Dictyostelium Zellen unter Nahrungsentzug und formen einen vielzelligen Organismus, der 

sich in einen Fruchtkörper umbildet. In der FrzA− ist die Entwicklung stark beeinträchtigt. 

Sowohl auf einem Bakterienrasen als auch auch Phosphatagarplatten ist die Mutante 

grösstenteils nicht in der Lage, den Entwicklungszyklus normal zu durchlaufen und mit der 

Ausbildung von Fruchtkörpern abzuschliessen. Eine Genexpressionsanalyse hat gezeigt, dass 

das Muster der Expression von Genen, die normalerweise in der frühen Entwicklungsphase 

angeschaltet werden, stark verändert ist. So werden z. B. das Adenylatzyklase A Gen und das 

Contact site A Gen verspätet exprimiert, während die Transkriptmengen für den cAMP 

Rezeptor CAR1 und für die Phosphodiesterase durchgehend exprimiert sind. Entsprechend ist 

auch die chemotaktische Migration auf cAMP hin gestört. Ebenfalls veändert sind Calcium 

Oszillationen, die normalerweise während der Entwicklung beobachtet werden. Die Gabe von 

exogenem cAMP in Pulsen stellt die gestörte Entwicklung wieder her.  

In einem Test für Ereignisse, die d 

er Entwicklung vorausgehen, konnte gezeigt werden, dass FrzA− Zellen nicht in der Lage 

waren, das CMF-Signal aufzunehmen und darauf zu antworten. CMF ist ein Faktor, mit dem 

die Zellen die Zelldichte und damit den Nahrungsvorrat messen. Aufgrund der Eigenschaften 

der Mutante wurde FrzA als Rezeptor für CMF vorgeschlagen. 
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