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1 INTRODUCTION 
 
1.1 The cytoskeleton 
The cytoskeleton is composed mainly of three types of filaments, microfilaments, 

microtubules and intermediate filaments. Microfilaments are fine, thread-like protein fibers, 

7-9 nm in diameter. They are composed predominantly of actin, which is the most abundant 

cellular protein, often amounting 10 to 20 percent of the total cytoplasmic proteins. Actin 

exists either as a globular monomer (called G-actin) or as a filament (designated F-actin), the 

latter formed by head-to-tail polymerisation of asymmetric monomers. Microfilaments in 

association with the protein myosin are responsible for muscle contraction. They can also 

carry out cellular movements including gliding, contraction, and cytokinesis.  

Microtubules are cylindrical tubes, 20-25 nm in diameter. They are composed of alpha and 

beta tubulin. Microtubules act as a scaffold to determine cell shape and provide a set of 

"tracks" for cell organelles and vesicles to move on. Microtubules also form the spindle fibers 

for separating chromosomes during mitosis. When arranged in geometric patterns inside 

flagella and cilia they are used for locomotion. 

The intermediate filaments average 10 nm in diameter and thus are "intermediate" in size 

between actin filaments (8 nm) and microtubules (25 nm). There are five major types of 

intermediate filaments each constructed from one or more proteins characteristic of it. Despite 

their chemical diversity, intermediate filaments play similar roles in the cell, providing a 

supporting framework within the cell. For example, the nucleus is held within the cell by a 

basketlike network of intermediate filaments made of proteins called keratins whereas lamins 

line the nuclear membrane inside the nucleus. Intermediate filaments also anchor the thick 

and thin filaments of muscle cells in a fixed position and provide mechanical strength to the 

long axons found in some neurons. 

 

1.2 The actin cytoskeleton 
Actin is a moderate sized protein consisting of approximately 375 residues, which is encoded 

by a large, highly conserved gene family. Some single-celled eukaryotes like yeast have a 

single actin gene, whereas many multicellular organisms contain many actin genes. For 

example, humans have six actin genes and some plants have as many as 60. Each actin 

molecule contains a Mg2+ ion complexed with either ATP or ADP. Thus there are four states 

of actin: ATP-G-actin, ADP-G-actin, ATP-F-actin and ADP-F-actin. Two of these forms, 

ATP-G-actin and ADP-F-actin predominate in a cell. The addition of ions, Mg2+, K+ or Na+ to 
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a solution of G-actin will induce the polymerisation of G-actin into actin filaments. This 

process is also reversible: F-actin depolymerises into G-actin when the ionic strength of the 

solution is lowered. All subunits in a filament point towards the same filament end. 

Consequently, at one end of the filament, by convention designated minus end or pointed end, 

the ATP-binding cleft of an actin subunit is exposed to the surrounding solution and at the 

opposite end, the plus end or barbed end, the cleft contacts the neighbouring actin subunit. 

The actin cytoskeleton is organized into bundles and networks of filaments, which are the 

most common arrangements of actin filaments in a cell. Functionally, bundles and networks 

have identical roles in a cell: both provide a framework that supports the plasma membrane 

and therefore determines a cell’s shape. Structurally, bundles differ from networks mainly in 

the organization of actin filaments. In bundles the actin filaments are closely packed in 

parallel arrays, whereas in a network the actin filaments crisscross, often at right angles, and 

are loosely packed. In all bundles and networks, actin cross-linking proteins hold the 

filaments together. The length and flexibility of a cross-linking protein determines whether 

bundles or networks are formed. 

 

1.3 Actin and actin binding proteins 
Actin binding proteins are classified according to their actin binding function. Actin filament 

severing proteins fragment filaments by mechanisms that do not require the hydrolysis of 

ATP. The purpose of this severing activity is probably to introduce a device whereby existing 

actin filament structures may be removed or remodelled to form other structures within the 

cell. So far, two major groups of actin severing proteins have been identified. The gelsolin 

group is the archetype of the group of actin binding proteins that sever and cap the fast 

growing barbed end of actin filaments and that initiate the polymerisation of new filaments by 

forming a nucleus (Yin et al., 1988; Weeds et al., 1993). The second group, the Actin 

depolymerising factor (ADF)/Cofilin group comprises low molecular weight actin filament 

severing proteins which in addition possess actin monomer binding activity. 

Actin filaments grow by monomer addition exclusively at their ends, particularly barbed ends. 

Filament capping proteins like radixin (Funayama et al., 1991) and tensin (Davis et al., 1991) 

bind to the barbed ends of filaments in cells and are therefore essential for the control of actin 

polymerisation within the cells or within the local regions of individual cells. DNaseI 

(Podolski et al., 1988) and tropomodulin (Fowler et al., 1993) are actin-binding proteins that 

bind to the pointed ends. 
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Regulation of the actin cytoskeleton is essential for many normal cellular processes such as 

cell motility and platelet activation (Lauffenburger et al., 1996; Shattil et al., 1994; Zigmond 

et al., 1996).  The actin cytoskeleton is also rearranged in some disease states such as 

oncogenic transformation (Collard et al., 1996).  Signals from growth factors and oncogenes 

regulate the assembly of cytoskeletal structures through small G proteins. Ras and Rac both 

stimulate lamellipodia, sheets of microfilaments localized to the periphery of the cell. Rho 

regulates stress fibers, long parallel arrays of microfilaments and Cdc42 regulates both (Hall 

et al., 1998). 

A major mechanism underlying the actin dynamics is the selective polymerisation of G-actin 

into F-actin (Carlier et al., 1991). In vitro, at low actin concentrations only G-actin is 

observed. Once the actin concentration is raised above about 0.1 µM, in physiological salt 

conditions, it spontaneously polymerises into F-actin and continues to polymerise until the G-

actin levels again reach 0.1 µM. Similarly, if actin filaments are diluted they will 

depolymerise until the concentration of G-actin is raised to 0.1 µM. Thus, the concentration of 

G-actin is maintained at a level known as the critical concentration. In cells, about half of the 

actin resides as G-actin despite being present in concentrations greater than 100 µM, far in 

excess of the critical concentration (Carlier et al., 1997). The G-actin is prevented from 

polymerising by several classes of actin binding proteins. Capping proteins such as gelsolin, 

Cap Z and tropomodulin bind F-actin ends to prevent the addition of G-actin (Coluccio et al., 

1994; Hartwig et al., 1995; Nachmias et al., 1996; Weber et al., 1994). In addition, actin 

sequestering proteins such as profilin, thymosin β4 and CAP1 (mammalian cyclase associated 

protein; ASP-56) bind G-actin and prevent it from polymerising spontaneously (Gieselmann 

et al., 1992; Safer et al., 1991; Sun et al., 1995).  

CAP is an evolutionarily highly conserved protein.  It belongs to the class of G-actin binding 

proteins and may regulate the pool of actin monomers. CAP (also known as Srv2p), was first 

identified as a Saccharomyces cerevisiae protein that was co-purified with adenylyl cyclase 

(Fedor-Chaiken et al., 1990; Field et al., 1990). To date, the majority of studies addressing the 

biological function of CAP come from studies in S. cerevisiae. The CAP homologues have 

molecular weights between 56 kDa for the mammalian homologue and 70kDa for the yeast 

protein. Mammals have at least two different CAP proteins, CAP1 and CAP2, which share 

64% amino acid identity (Swiston et al., 1995; Yu et al., 1994). 
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1.4 Domain structure and function of CAP 
CAP of all the organisms has a conserved domain structure. They consist of two functional 

domains separated by a proline-rich region, which might act as SH3-binding domain. The 

amino-terminal domain mediates RAS signalling through adenylyl cyclase in yeast, where it 

was identified as cyclase associated protein, while the carboxy-terminal domain is involved in 

the regulation of the actin cytoskeleton and affects the regulation of cell growth and 

morphogenesis in yeast. At the biochemical level two separate functions could be 

demonstrated: The domains bind directly to actin and are responsible for dimerisation. In the 

C-terminal domain a WH2 domain (WH2=WASP Homology 2) is located and the very C-

terminus is required for dimerisation. WH2 domains bind to G-actin, however the function of 

the WH2 domain in CAP is not clearly known. (Paunola E et al., 2002).  

 

 
Figure 1: Schematic diagram of the domain structure and organisation of functions of Dictyostelium 
discoideum CAP. CAP has a highly conserved domain structure (Gottwald et al., 1996; Hubberstey and Mottillo 
2002; Paunola et al., 2002). An adenylate cyclase binding domain (AC) and a dimerization domain (Di) are 
located at the amino terminus and are followed by the proline-rich region (Pro) and the WH2 domain,which 
includes a highly conserved verprolin homology region (V). At the carboxyl terminus is an actin binding domain 
(Act) and a second dimerization site (Di). (Taken from Ksiazek et al., 2003) 
 
 
1.5 Interaction of CAP with adenylyl cyclase 
Adenylyl cyclase from S. cerevisiae contains at least two subunits, a 200 kDa catalytic 

subunit and a subunit with an apparent molecular mass of 70.000, which has now been called 

cyclase-associated protein (CAP). A cDNA encoding CAP has been cloned by screening a 

yeast cDNA expression library in E. coli with antisera raised against the purified protein. The 

cDNA contained an open reading frame encoding a 526 amino acid protein. Adenylyl cyclase 

activity in membranes from cells that lack CAP is not stimulated by RAS2 protein in vitro. 

These results suggested that CAP is required for at least some aspects of the RAS-responsive 

signalling system (Field et al., 1990). The first CAP gene (also called SRV2) was isolated in 

Saccharomyces cerevisiae as a suppressor of the activated RAS2Val19 allele (Fedor-Chaiken et 

al., 1990).  

Later on it was shown that the N-terminus of CAP binds adenylyl cyclase to facilitate 

activation by RAS (Gerst et al., 1991; Mintzer et al., 1994; Shima et al., 1997). In yeast, 

adenylyl cyclase (CYR1) is a major downstream effector of RAS1 and RAS2, which are 

  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VSR-49G4BCG-H&_coverDate=09%2F30%2F2003&_alid=222628470&_rdoc=1&_fmt=full&_orig=search&_qd=1&_sort=d&view=c&_acct=C000056617&_version=1&_urlVersion=0&_userid=2875156&md5=f330dfb07204379
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VSR-49G4BCG-H&_coverDate=09%2F30%2F2003&_alid=222628470&_rdoc=1&_fmt=full&_orig=search&_qd=1&_sort=d&view=c&_acct=C000056617&_version=1&_urlVersion=0&_userid=2875156&md5=f330dfb07204379
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VSR-49G4BCG-H&_coverDate=09%2F30%2F2003&_alid=222628470&_rdoc=1&_fmt=full&_orig=search&_qd=1&_sort=d&view=c&_acct=C000056617&_version=1&_urlVersion=0&_userid=2875156&md5=f330dfb07204379
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VSR-49G4BCG-H&_coverDate=09%2F30%2F2003&_alid=222628470&_rdoc=1&_fmt=full&_orig=search&_qd=1&_sort=d&view=c&_acct=C000056617&_version=1&_urlVersion=0&_userid=2875156&md5=f330dfb07204379
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structural, functional, and biochemical homologues of mammalian Ras (Broach et al., 1990; 

Casey et al., 1994). Further investigations suggested that the N-terminal region of CAP binds 

to the C-terminal region of CYR1, and this association appeared to be required for the proper 

in vivo response to Ras. Although the mechanism of regulation of the Ras-CYR1 pathway by 

CAP was unknown, it has been recently reported that the association with the CAP N-terminal 

region is essential for the efficient activation of CYR1 by a modified Ras and the effect of 

CAP was successfully reconstituted in vitro by the purified components only (Shima et al., 

1997). These findings suggested that CAP might mediate the stimulatory effect of the 

modified Ras on CYR1 activation. For the interaction of CAP, RAS2 and adenylyl cyclase a 

small segment comprising the N-terminal 36 amino acid residues of CAP is sufficient for 

association with adenylyl cyclase as well as for its function in the Ras-adenylyl cyclase 

pathway as assayed by the ability to confer RAS2 (Val-19)-dependent heat shock sensitivity 

to yeast cells. The CAP-binding site of adenylyl cyclase was mapped to a segment of 119 

amino acid residues near its C terminus. Both of these regions contained tandem repetitions of 

a heptad motif αXXαXXX (where α represents a hydrophobic amino acid and X represents 

any amino acid), suggesting a coiled-coil interaction. When mutants of CAP defective in 

associating with adenylyl cyclase were isolated by screening of a pool of randomly 

mutagenized CAP, they were found to carry substitution mutations in one of the key 

hydrophobic residues in the heptad repeats. Furthermore, mutations of the key hydrophobic 

residues in the heptad repeats of adenylyl cyclase also resulted in loss of association with 

CAP. These results indicate the coiled-coil mechanism as a basis of the CAP-adenylyl cyclase 

interaction. (Nishida et al., 1998).  

The relevance of these findings for other species is not yet certain. S. Pombe CAP can 

suppress the phenotypes associated with deletion of the C-terminal CAP domain in S. 

cerevisiae but does not suppress the phenotypes associated with deletion of the N-terminal 

domain (Kawamukai et al., 1992). Furthermore, in Candida albicans differences in cAMP 

responses of the cap1/cap1 mutant from those of isogenic CAP1 strains indicate that CAP1 

regulates adenylate cyclase activity. cAMP or its membrane-permeable derivative, dbcAMP, 

partially restored filamentation and enhanced hypha production of the cap1/cap1 mutant 

strain, further confirming that CAP1 acts through regulation of cAMP levels (Bahn et al., 

2001). In Hydra (Chlorohydra viridissima), CAP appears to be involved as a mediator for 

transducing the signal from the transmembrane HA (head activator) receptor to the cAMP 

system. Hydra CAP is expressed abundantly in interstitial and epithelial cells. The effect of 

HA, but not of cAMP, on nerve-cell differentiation was inhibited by pretreatment of Hydra 
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with a CAP antisense oligonucleotide, suggesting a role for CAP as a mediator in the signal 

transduction cascade between HA and cAMP (Fenger et al., 1994). In addition to that and 

most likely independent of RAS signalling, CAP is required to maintain the integrity of the 

actin cytoskeleton.  

 

1.6 CAP and the actin cytoskeleton 
The loss of CAP causes abnormal yeast morphologies and disrupts the actin cytoskeleton. The 

actin associated phenotypes are partially restored by overexpression of the C-terminus of CAP 

or the G-actin sequestering protein profilin. Expression of the human CAP in S. cerevisiae 

also suppresses the phenotypes associated with loss of the C-terminal domain of CAP but 

does not suppress the phenotypes associated with loss of the N-terminal domain. Thus, CAP 

proteins have been structurally and, to some extent, functionally conserved in evolution 

between yeasts and mammals (Matviw et al., 1992; Gerst et al., 1991; Vojtek et al., 1991). 

Apart from that, several homologues have been shown to bind actin directly and, when 

expressed in yeast, suppress the cytoskeletal phenotypes of cap knockout yeast. This suggests 

that actin sequestering is conserved in all CAP homologues (Gottwald et al., 1996; 

Hubberstey et al., 1996; Matviw et al., 1992; Vojtek et al., 1993;Yu et al., 1994; Zelicof et al., 

1993). Furthermore, the first mammalian homologue of CAP1, ASP-56, was isolated through 

a search for actin monomer binding proteins (Gieselmann and Mann, 1992). ASP-56 (porcine 

CAP) could bind actin with a 1:1 stoichiometry and could inhibit actin polymerisation as 

measured by falling ball viscometry and fluorescently labelled actin polymerisation assays. 

Similarly, Dictyostelium discoideum CAP has been shown to sequester monomeric actin by 

inhibiting in vitro actin polymerisation in a Ca2+-independent manner with a 1:1 stoichiometry 

(Gottwald et al., 1996). This sequestering activity of CAP was restricted to the carboxyl-

terminal 210 amino acids; the presence of the amino-terminal 215 amino acids had no effect 

on actin polymerisation (Gottwald et al., 1996). S. cerevisiae CAP has been shown to bind G-

actin in vitro with a Kd = 0.4 µM, equivalent to the binding coefficient of another actin 

sequestering protein, thymosin β4, to platelet actin (Freeman et al., 1995; Weber et al., 1992). 

Moreover, immunoprecipitates of yeast and mammalian CAPs contain actin, suggesting that 

CAP is bound to actin in vivo (Vojtek et al., 1993; Amberg et al., 1995).  

The carboxyl-terminus of all well-characterized CAPs shows the greatest degree of 

conservation of any functional domain (Hubberstey et al., 2002). However, the specific 

residues involved in actin binding have not been characterised, although a comparison of the 

carboxyl-terminal domains of all reported CAPs reveals four highly conserved regions. A 
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short deletion of the carboxyl-terminal 27 amino acids eliminated actin binding in S. 

cerevisiae and human CAP (Amberg et al., 1995; Zelicof et al., 1996). Within this region lies 

a stretch of 7 amino acids comprising the site E(X)3PEQ. The residues E, P, E, and Q are 

present in all CAP proteins analysed except the two plant CAPs, which have a substitution of 

a glutamine for the second glutamate residue. It is not clear so far whether these or other 

carboxyl-terminal residues are critical for actin binding. 

Recent experiments with Drosophila CAP have detected a region just downstream from the 

SH3 binding domain that shows similarity to the verprolin homology domain (LKKAET) 

found in a variety of actin binding proteins e.g., thymosin, fimbrin, and α-actinin (Vaduva et 

al., 1997). Verprolin homology domains are also found in members of the WASp family of 

proteins, known to bind monomeric actin, and interact with and activate the Arp2/3 complex 

(Rohatgi et al., 1999). It has recently been reported that actin binding protein Abp1p, a protein 

originally isolated from yeast that interacts with F-actin and activates the Arp2/3 complex, 

interacts with CAP through its SH3 domain (Drubin et al., 1988; Lila et al., 1997; Goode et 

al., 2001). Though intriguing, there is no evidence that CAP participates in Arp2/3-mediated 

nucleation of actin filaments. 

It has been shown that phosphatidylinositol 4,5-biphosphate (PIP2) can promote the 

availability of monomeric actin for polymerisation. Addition of PIP2 at a high molar ratio of 

CAP to PIP2 (1:40) inhibited sequestration of actin (Gottwald et al., 1996), suggesting that 

PIP2
 negatively regulates the CAP–actin interaction, causing the release of G-actin from CAP 

and consequently F-actin assembly. The carboxyl-terminal domain alone was unaffected by 

PIP2 addition, implying that the phospholipid binding site resides within the amino or poly-

proline domains (Gottwald et al., 1996). The negative effect of PIP2 on CAP-actin interaction 

correlates with the positive effect of PIP2 on activating WASp, which can stimulate actin 

nucleation by the Arp2/3 complex (Higgs et al., 2000). Therefore, the CAP data support a 

positive role for PIP2 in promoting actin polymerisation. However, more studies are needed to 

determine whether phospholipid regulation of CAP-actin binding is conserved in higher 

eukaryotes. 

Conservation in the carboxyl-terminal domain in all CAPs together with the high degree of 

conservation in the actin structure and function throughout the evolution suggests that a 

conserved role in G-actin binding is likely for all CAPs. An important point not yet addressed 

is whether CAP has a differential affinity for specific actin isoforms within the cell and 

whether the presence of specific isoforms in specific cell types may affect and potentially 

control CAP function. No information exists on how the interaction between CAP and actin is 
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regulated during the activation of signalling cascades. A very recent finding suggests that 

CAP promotes cofilin-dependent actin turnover in vitro and in vivo (Moriyama and Yahara 

2002) and the evidence provided by the findings of Bertling et al. (2004) indicates that CAP 

promotes rapid actin dynamics in conjunction with ADF/cofilin and is required for several 

central cellular processes in mammals. It has also been reported that S. cerevesiae CAP binds 

with strong preference to ADP-G-actin (Kd 0.02µM) compared with ATP-G-actin (Kd 1.9µM) 

and competes directly with cofilin for binding ADP-G-actin monomers, allows rapid 

nucleotide exchange to occur on actin, and then because of its 100-fold weaker binding 

affinity for ATP-actin compared with ADP-actin, allows other cellular factors such as profilin 

to take the handoff of ATP-actin and facilitate barbed end assembly. These findings suggest 

that CAP plays an important role in the actin based cellular processes. 

 

1.7 The SH3 binding domain of CAP 
A centrally located proline-rich region is conserved in all CAP homologues. In yeast, this 

domain can be subdivided into two regions, the P1 and the P2 sites. The P1 site, found in 

almost all homologues, contains a 10 to 12 amino acid stretch composed almost entirely of 

proline. The P2 region contains a consensus SH3 binding motif (PXXP), binds SH3 domains 

in vitro, and is required to direct CAP to cortical actin patches (Freeman et al., 1996; Yu et 

al., 1999). In yeast, Abp1p has been proposed to target CAP to actin cortical patches through 

its SH3 domain (Lila et al., 1997). In vitro, human CAP1 also binds SH3 domains such as the 

one of human c-Abl, but binding is observed only at the P1 site and its effects on localisation 

are not known (Freeman et al., 1996). Since interaction of full-length CAP and c-Abl has not 

been shown, the significance of this interaction is unclear. However, the important role that c-

Abl plays in signalling actin reorganization (Lanier et al., 2000) implies that an interaction 

between c-Abl and CAP may have important consequences and be biologically relevant. 

Further support for the role of Abl in CAP function has recently been reported in Drosophila 

(Baum et al., 2001). The mammalian P1 sequence can also bind to profilin in vitro, but the 

biological significance of the binding is not known (Lambrechts et al., 1997). Moreover, CAP 

was also shown to act antagonistically with Ena, a member of the Ena/VASP family of 

proteins that catalyse F-actin formation (Gertler et al., 1995). 
 

1.8 Multimerisation domain 
Many reports have shown that CAP can form multimeric complexes with itself (Zelicof et al., 

1996; Yu et al., 1999; Hubberstey et al., 1996). Surprisingly, a single dimerisation motif has 
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not been defined, although it appears that a region in the amino terminus adjacent to the 

adenylyl cyclase binding site in yeast CAP is important for multimerisation (Yu et al., 1999). 

The function of this interaction domain is complex, since two-hybrid screens demonstrate that 

the amino-terminal domain of human CAP (amino acids 1–228) interacts with itself as well as 

with the carboxyl-terminal domain (amino acids 253–475). Likewise, the carboxyl-terminus 

interacts with itself and with the amino terminus (Hubberstey et al., 1996). This suggests that 

at least two binding sites exist within CAP that mediate its interaction. One caveat to these 

two-hybrid results is the presence of endogenous yeast CAP in cells used in the two-hybrid 

analysis. Since human and yeast CAP can interact with each other (Zelicof et al., 1996; 

Hubberstey et al., 1996), yeast CAP could be acting to bridge the interactions between 

expressed human CAP domains in yeast. The potential interfering properties of endogenous 

CAP were eliminated by co expressing a GFP-CAP and an untagged CAP in a cap yeast strain 

(Yu et al., 1999). Using this in vivo system, an amino-terminal domain was discovered that 

inhibited CAP multimer formation. Mutations in this amino-terminal domain also prevented 

proper localisation of the protein, suggesting that multimer formation and localisation may be 

linked. Human CAP1 and CAP2, which have an identity of 64% at the amino acid level, can 

form heteromeric complexes in vivo that may impart specific functional characteristics yet to 

be revealed (Hubberstey et al., 1996). It is unclear whether CAP proteins form dimers or 

higher order structures. A prediction of higher order structures comes from the observation 

that in fractionation profiles from yeast, CAP eluted between 11.3 and 19.5 S (670 kDa), with 

higher CAP levels present in the latter fractions (Shirley Yang et al., 1999). Recent report 

suggests that native Srv2 complex (~ 600kDa) isolated from S. cereveciae is found to be 

comprised of only two proteins, actin and Srv2/CAP, present in a 1:1 M ratio (Balcer et al., 

2003). This suggests that CAP either forms a multimeric structure larger than a dimer or 

forms stable complexes with other proteins. 

 

1.9 Structure of CAP 
 Recent studies on crystal CAP structure revealed that CAP has α helices and β-strands. The 

NMR characterization of the amino-terminal domain of CAP (CAP (1-226)) from 

Dictyostelium discoideum indicates that the first 50 N-terminal residues are unstructured and 

that this highly flexible serine-rich fragment is followed by a stable, folded core starting at Ser 

51. The NMR structure of the folded core is an alpha-helix bundle composed of six 

antiparallel helices, in stark contrast to the recently determined CAP C-terminal domain 

structure, which is solely built by beta-strands (Mavoungou et al., 2004). The crystal structure 
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of the C-terminal dimerisation and actin monomer binding domain (C-CAP) reveals a highly 

unusual dimer, composed of monomers possessing six coils of right-handed beta-helix 

flanked by antiparallel beta-strands. The unusual right-handed beta-helical fold present in C-

CAP appears to support a wide range of biological functions (Didatko et al., 2004).  

 

1.10 Localisation of CAP proteins and their role in cell growth 
S. Cereviciae has provided the most detailed analysis of CAP localization. CAP is localized 

through its poly-proline domain to the cortical actin patches, where active actin turnover takes 

place (Lila et al., 1997; Freeman et al., 1996; Yu et al., 1999). In higher eukaryotes, CAP is a 

cytoplasmic protein, but its precise localisation is species specific. D. discoideum CAP has 

been localised near the plasma membranes in resting cells and is remobilised during cell 

movement (Noegel et al., 1999). Using GFP-tagged CAP deletions, the amino-terminal 

domain is localised to the plasma membranes whereas carboxyl-terminal domains showed a 

diffuse cytoplasmic staining, indicating that proper localisation of CAP is domain dependent 

(Noegel et al., 1999). Dictyostelium cells deficient in CAP showed enlarged cell size and 

defects in cytokinesis and fluid phase endocytosis. 

In mammalian cells, CAP is diffusely distributed throughout the cytoplasm and can 

concentrate at the cell membrane and lamellipodia of migrating fibroblasts (Vojtek et al., 

1993; Zelicof et al., 1996; Freeman et al., 2000). Monoclonal antibodies to human CAP1 were 

recently used to show that human CAP1 colocalised with stress fibers in Swiss 3T3 fibroblasts 

(Freeman et al., 2000). Microinjection of anti-CAP1 antibodies attenuated stress fiber 

formation in response to serum stimulation and microinjection of purified CAP1 promoted the 

formation of actin stress fibers (Freeman et al., 2000). Additional experiments are required to 

confirm the association of stress fibers with human CAP1. Generally, perturbation of CAP 

levels in mammalian cells appears to influence the actin dynamics.  

 

1.11 Role of CAP in cell elongation and development 
In cotton plants, CAP mRNA has been shown to be highly expressed in young fiber cells vs. 

other tissues (Kawai et al., 1998). Cotton fibers are outgrowths of single epidermal cells from 

the integument of ovules in the developing fruit. During production of these fibers, individual 

cells elongate dramatically to >1000-fold longer than their diameter without undergoing cell 

division (Meinert et al., 1997). The cytoskeletal proteins actin, tubulin, spectrin, and the 

intermediate filament protein vimentin are all present during differentiation, and the dynamic 

regulation of cytoskeletal architecture is essential for fiber elongation to occur. 
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Analysis of CAP1 and CAP2 mRNA levels in adult rat tissues reveals a marked difference in 

expression patterns between the two genes  (Swiston et al., 1995), which suggests that CAP1 

and CAP2 have distinct functional roles and that CAPs are not simply ubiquitous 

housekeeping genes. The study of CAP transcriptional regulation will undoubtedly shed light 

on essential functions of CAP in regulating cytoskeletal architecture during development and 

throughout the adult life. 

A recent clue about the role CAP proteins play in development has come from studies of 

Drosophila (Baum et al., 2000; Benlali et al., 2000). These papers have been the subjects of a 

recent mini review (Stevenson et al., 2000). Drosophila CAP (named Act Up-acu) was 

isolated while screening for mutations that disrupt eye development (Benlali et al., 2000). 

Drosophila cells lacking cap/acu show increased amounts of actin filaments during eye 

differentiation as well as defects in the formation of the morphogenetic furrow of the eye 

imaginal disc, which undergoes a dramatic shape change before neuronal differentiation. 

Drosophila cap mutants were also isolated that were defective in establishing and maintaining 

oocyte polarity (Baum et al., 2000). CAP (capulet) was found to be concentrated in the 

oocyte, where it functions to inhibit actin accumulation. Mutants in protein kinase A (PKA) in 

Drosophila mirror some of the cap mutant phenotypes (i.e. loss of nurse cell cortical actin), 

and actin defects are enhanced in cap pka double germline clones. Therefore, PKA and CAP 

may be involved in identical pathways that are controlled by cAMP production. It will be 

interesting to determine whether PKA pathways control CAP activity in vertebrates as well.  

The Drosophila studies support the role of CAP in eye development and maintaining polarity 

during early cell differentiation. The Dictyostelium studies with the CAP mutant exhibiting 

poor polarisation behaviour and reduced levels of cGMP and a phototaxis defect (Noegel et 

al., 2004) suggest that CAP may play a critical role in cell polarity and movement in a 

diversity of organisms. It is intriguing to speculate that one of the conserved functions of CAP 

is to control developmental processes that involve cell elongation, migration, movement, and 

polarity orchestrated by changes in the actin cytoskeleton. On the other hand, CAP plays a 

role during the adult life, since CAP has been shown to be expressed in a wide variety of adult 

mammalian tissues (Swiston et al., 1995; Vojtek et al., 1993).  

 

1.12 Role of CAP in vesicle trafficking and endocytosis 
The link between the actin cytoskeleton and endocytosis has been well established in lower 

eukaryotes such as yeast. Recent studies have elucidated the possible role(s) the actin 
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cytoskeleton plays during endocytosis in mammals. One candidate protein that may link the 

actin cytoskeleton to endocytosis is mammalian Abp1 (mAbp1) (Kessels et al., 2001). 

The first evidence that CAP may be involved in endocytic events was the isolation of a yeast 

synaptobrevin homologue SNC1 that could partially suppress cap phenotypes (Gerst et al., 

1991). More recently, yeast CAP/Srv2p has been shown to be synthetically lethal with SLA2 

in S. cerevisiae (Lila et al., 1997). Sla2p is essential in yeast and is involved in the cortical 

cytoskeleton. CAP may link to a dynamin-mAbp1 complex since yeast CAP can interact with 

Abp1p in yeast. Yeast CAP (SRV2) has been implicated indirectly in endocytic regulation. By 

screening mutants deficient for endocytosis, a recessive negative form of SRV2 that was 

unable to internalise pheromone was discovered (Wesp et al., 1997). Surprisingly, a mutant 

bearing a complete deletion of SRV2 was not deficient for endocytosis, suggesting that the 

mutant form of CAP was causing a disruption of a multiprotein complex (potentially mediated 

through Abp1p) that inhibited actin regulation and thereby disrupted endocytosis. Rvs167p, a 

yeast homologue of the mammalian amphiphysin proteins which are key regulators of 

endocytosis in mammalian cells (Wesp et al., 1997) can interact with Abp1p and recently was 

shown to interact with a multitude of yeast proteins involved in the actin cytoskeleton and 

endocytosis in a two-hybrid screen, including Sla2p, CAP, and Act1p (Drees et al., 2001). 

Therefore, a complex consisting of CAP, Abp1p, Sla2p, and Rvs167p may regulate 

cytoskeletal turnover during endocytic events.  
 

1.13 Aim of the work 
Although CAP proteins have been studied for more than a decade and are present in all 

organisms, many questions remain unanswered about the mechanisms of CAP function. The 

role of mammalian CAP2 proteins has not been studied extensively. We are interested in the 

homologue of mammalian CAP that is CAP2. Our goal is to study CAP2 of Mouse and to 

assign its exact function. For this purpose we are currently generating a mice knock out strain 

for this protein in order to learn more about the functions of this protein using a conventional 

knock out strategy. Furthermore, a detailed study of CAP2 expression in the mouse embryo 

and in the adult mouse is planned. It has been reported that CAP interacts with itself and its 

homologue in humans. So we are interested to study the interaction of CAP2 and its 

homologue in mouse. As CAP is reported to play a role in different cellular processes, we are 

interested in dissecting the role of CAP2 by identifying its interacting partners and to shed a 

light on its mechanism of action as well.  
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2 MATERIALS AND METHODS 

Abbreviations 

 

AP   alkaline phosphatase 

APS   ammonium persulphate 

ATP   adenosine 5’-triphosphate 

bp   base pair(s) 

BCIP   5-bromo-4-chloro-3-indolylphosphate 

BSA   bovine serum albumin 

cAMP   cyclic adenosine monophosphate 

cDNA   complementary DNA 

CIAP   calf intestinal alkaline phosphatase 

dNTP   deoxyribonucleotide triphosphate 

DABCO  diazobicyclooctane 

DEPC   diethylpyrocarbonate 

DMSO   dimethylsulphoxide 

DNA   deoxyribonucleic acid 

DNase   deoxyribonuclease 

DTT   1,4-dithiothreitol 

ECL   enzymatic chemiluminescence 

EDTA   ethylenediaminetetraacetic acid 

EGTA   ethyleneglycol-bis (2-amino-ethylene) N,N,N,N-tetraacetic acid 

ELISA   enzyme linked immunosorbent assay 

ES                                embryonic stem 

G418   geneticin 

HRP   horse radish peroxidase 

IgG   immunoglobulin G 

IPTG   isopropyl-β-D-thiogalactopyranoside 

kb   kilo base pairs 

β-ME   beta-mercaptoethanol 

MEF                            mouse embryonic feeder 

MOPS   Morpholinopropanesulphonic acid 

Mw   molecular weight 
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NBT   nitrobluetetrazolium 

NP-40   nonylphenylpolyethyleneglycol 

pNPP   para-nitrophenyl phosphate  

OD   optical density 

ORF   open reading frame 

PAGE   polyacrylamide gel electrophoresis 

PCR   polymerase chain reaction 

PEG   polyethylenglycol 

PMSF   phenylmethylsulphonylfluoride 

RT-PCR  reverse transcript polymerase chain reaction 

RNA   ribonucleic acid 

RNase   ribonuclease 

rpm   rotations per minute 

SDS   sodium dodecyl sulphate 

TEMED  N,N,N’,N’-tetramethyl-ethylendiamine 

U   unit 

UV   ultra violet 

vol.   volume 

v/v   volume by volume 

w/v   weight by volume 

X-gal   5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 

 

Units of Measure and Prefixes 

 

Unit   Name     Symbol  Prefix (Factor) 

Ci   curie    k   kilo (103) 

°C   degree Celsius   c   centi (10-2) 

kDa   Dalton     m   milli (10-3) 

g   gram    µ   micro (10-6) 

hr   hour    n   nano (10-9) 

L   litre    p   pico (10-12) 

m   meter 

min   minute 

s   sec 
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V   volt 

 

2.1 Materials 
2.1.1 Enzymes, inhibitors and antibodies 

Enzymes for molecular biology 

alkaline phosphatase      Roche 

DNase I (Desoxyribonuclease)    Sigma 

lysozyme        Sigma 

M-MLV reverse transcriptase     Promega 

restriction endonucleases     Life Technologies 

ribonuclease A      Sigma 

T4-DNA-ligase      Life Technologies 

Taq-DNA-polymerase      Roche 

  

Antibodies 

primary antibodies: 

mouse-anti-myc monoclonal            In-house  

mouse-anti- CAP1 Monoclonal           In-house 

mouse-anti- GFP Monoclonal (mAk K3-184-2)                In-house 

mouse-anti- Troponin I (cTnI)                                         Gift from Prof. Gabriele Pfitzer (köln) 

mouse-anti- myomesin                                                      Gift from Prof. Dr. D.Fürst(Potsdam)  

mouse-anti-emerin            NOVO Castra 

mouse-anti-β−tubulin (WA3)           Gift from U.Euteneuer (München) 

mouse-anti-α actinin                                                          Sigma 

mouse-anti-desmin                                                             Sigma 

mouse-anti-GFAP    Gift from Dr. J. Kappler, Institute of Physiological Chemistry, Bonn                               

rabbit-anti-CAP2                                                                In-house 

rabbit-anti-ACF-7(Iso-3 specific)                                  Gift from Dr. Iakowos Karakesisoglou  

rabbit-anti-rodACF-7                                                      Gift from Dr. Iakowos Karakesisoglou 

 

secondary antibodies: 

goat-anti-mouse-IgG, peroxidase-conjugated               Sigma 

goat-anti-rabbit-IgG, peroxidase-conjugated   Sigma 

goat-anti-mouse-IgG, Cy3-conjugated   Sigma 
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goat-anti-mouse-IgG, Cy5-conjugated   Sigma 

goat-anti-mouse-IgG, alkaline phosphatase conjugated Sigma 

goat-anti-mouse-IgG, Alexa 488 conjugated   Molecular Probes 

goat-anti-rabbit-IgG,Alexa 568 conjugated   Molecular Probes 

goat-anti-rabbit-IgG, FITC conjugated   Sigma 

goat-anti-mouse-IgG, FITC conjugated   Sigma 

goat-anti-mouse-IgM, Alexa 488  conjugated                       Molecular Probes 

biotinylated anti-rabbit IgG     Vector Laboratories 

TRITC- Phalloidin      Sigma 

 

Inhibitors 

benzamidine     Sigma 

DEPC (Diethylpyrocarbonate)   Sigma 

PMSF (Phenylmethylsulfonylfluoride)   Sigma 

ribonuclease-inhibitor (RNAsin)   Promega 

Complete Inhibitor-Cocktail    Roche 

 

Antibiotics 

ampicillin       Grünenthal 

kanamycin       Biochrom 

penicillin/streptomycin     Biochrom 

 

2.1.2 Reagents 

 

acrylamide       National Diagnostics 

agarose (electrophoresis grade)    Life Technologies 

acetone        Riedel-de-Haen 

Bacto-Agar, Bacto-Pepton, Bacto-Trypton   Difco 

BSA (bovine serum albumin)     Roth 

chloroform       Riedel-de-Haen 

calcium chloride      Sigma 

Coomassie-brilliant-blue R 250    Serva 

p-cumaric acid       Fluka 

DAPI                                                                                       Sigma 
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DMEM (Dulbecco´s Modified Eagle´s Medium)  Biochrom 

DMF (dimethylformamide)     Riedel-de Haen 

DMSO (dimethyl sulfoxide)     Merck 

DTT (1,4-dithiothreitol)     Gerbu 

EDTA ([ethylenedinitrilo]tetraacetic acid)   Merck 

EGTA (ethylene-bis(oxyethylenenitrilo)tetraacetic acid) Sigma 

ethanol           Riedel-de-Haen 

ethidium bromide       Sigma 

FCS (fetal calf serum)      Biochrom 

formamide       Merck 

formaldehyde       Sigma 

glycine        Degussa 

IPTG (isopropyl β-D-thiogalactopyranoside)   Sigma 

isopropanol       Merck 

β-mercaptoethanol      Sigma 

methanol       Riedel-de-Haen 

methylbenzoate      Fluka 

mineral oil       Pharmacia 

MOPS ([morpholino]propanesulfonic acid)   Gerbu 

Ni-NTA agarose                                                                     Qiagen  

Protein A agorose                                                                   Sigma 

RNase A       Sigma 

SDS (sodium dodecylsulfate)     Serva 

sodium azide       Merck 

TEMED (tetramethylethylenediamine)   Merck 

Tris (hydroxymethyl)aminomethane    Sigma 

Triton X-100 (t-octylphenoxypolyethoxyethanol)  Merck 

X-Gal(5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside)Roth 

 yeast extract       Oxoid 

 

Radionucleotides 

α-32P-deoxyadenosine-5‘-triphosphate (10 mCi/ml) Amersham 
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Reagents not listed above were purchased from Clontech, Fluka, Merck, Roth, Serva, Sigma, 

Promega and Riedel-de-Haen, respectively. 

 

2.1.3 Kits 

Nucleobond PC 500      Macherey-Nagel 

NucleoSpin Extract 2 in 1     Macherey-Nagel 

NucleoSpin Plus      Macherey-Nagel 

RNeasy midi kit      Qiagen 

pGEMT easy Cloning Kit      Promega 

 

2.1.4 Bacterial host strains 

E. coli M15   

E. coli DH5α  

E. coli XL1Blue 

2.1.5 Media for E. coli culture 

        LB medium, pH 7.4 (Sambrook and Russell, 2001)  

   10 g bacto-tryptone  

   5 g yeast extract  

   10 g NaCl  

   adjust to pH 7.4 with 1 N NaOH  

  add H2O to make 1 liter    

For LB agar plates, 0.9% (w/v) agar was added to the LB medium and the medium was then  

autoclaved. For antibiotic selection of E. coli transformants, 50 mg/l ampicillin, kanamycin or  

chloramphenicol was added to the autoclaved medium after cooling it to approximately 50ºC.  

For blue/white selection of E. coli transformants, 10 µl 0.1 M IPTG and 30 µl X-gal solution  

(2% in dimethylformamide) was spread per 90 mm plate and the plate was incubated at 37ºC  

for at least 30 min before using.  
 

SOC medium, pH 7.0 (Sambrook and Russell, 2001) 

20 g bacto-tryptone, 5 g yeast extract, 10 mM NaCl, 2.5 mM KCl. Dissolve in 900 ml 

deionised H2O, adjust to pH 7.0 with 1 N NaOH. The medium was autoclaved, cooled to 

approx. 50ºC and then the following solutions, which were separately sterilized by filtration 

(glucose) or autoclaving, were added: 10 mM MgCl2.6 H2O, 10 mM MgSO4.7 H2O.  

20 mM glucose, add H2O to make 1 liter.   
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2.1.6 Eukaryotic cells 
C3H/10T1/2 mouse fibroblasts 

N2A mouse neuroblastoma cell line 

COS-7 monkey SV40 transformed kidney cell line    

C2F3 mouse myoblasts 

C3H10T1/2 Fibroblast 

ES cells (IB 10)& R1 

PAM212 mouse keratinocytes 

Mouse and human primary keratinocytes (kindly provided by Dept of Dermatology, Medical  

Faculty, University of cologne) 

HEK293 Human embryonic kidney cell line 

Primary neuronal cell cultures and glia cell cultures were a kind gift from Dept of  

Physiological chemistry, University of Bonn 

Rat VSM primary cell culture (kindly provided by Dr. Evren Caglayan, Department of Inner  

Medicine I, University of Cologne) 

HL-1 cardiomyocytes cell line a kind gift from Prof William C. Claycomb, LSU, New 

Orleans, LA, USA. 

 

2.1.7 Media for cell culture 

COS7 (monkey kidney fibroblasts)- DMEM high glucose-500 ml, 10% FBS, 2 mM 

glutamine, penicillin/streptomycin 

MB50 (human myoblasts)- DMEM low glucose-250 ml, Nutrient F10 medium –250 ml, 20% 

FBS, 2 mM glutamine, penicillin/streptomycin, basic fibroblast growth factor (bFGF). 

Differentiation medium for MB50 

DMEM low glucose-250 ml, Nutrient F10 medium -250 ml, 2% horse serum, 2 mM 

glutamine, penicillin/streptomycin 

Human primary fibroblasts 

Minimum Essential Medium (Gibco) 500ml, 10%FBS, penicillin/streptomycin, nonessential 

amino acids (6 ml), Bicarbonate (Gibco)(7.5%), glutamine. 

Neuroblastoma cells (N2A) 

DMEM low glucose 500ml, 10% FBS, nonessential amino acids, 2 mM glutamine, 

penicillin/streptomycin. 
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10T1/2 mouse fibroblasts 

DMEM low glucose-500 ml, 10% FBS, 2 mM glutamine, penicillin/streptomycin 

PAM212 

DMEM high glucose-500 ml, 10% FBS, 2 mM glutamine, penicillin/streptomycin 

HEK293 

DMEM high glucose-500 ml, 10% FBS, 2 mM glutamine, penicillin/streptomycin 

Rat VSM 

DMEM high glucose-500 ml, 10% FBS, 2 mM glutamine, penicillin/streptomycin 

HL-1 

Claycomb medium-87 ml, 10% FBS, 2 mM glutamine, penicillin/streptomycin, 

Norepinephrine 0.1mM. 

 

2.1.8 Vectors 

pQE-30    Qiagen 

pGEM-T Easy Kit  Promega 

pc DNA 3.1 –myc-his             Invitrogen             

pBluescript   Stratagene 

pGK Neo                                (kindly provided by Dr.Neil Smith, Center for Biochemistry,                              

    Biochemie 2, University of Cologne) 

PEGFP                                    Clontech 

 

2.1.9 Oligonucleotides 

Oligonucleotides for PCR (polymerase chain reaction) were purchased from Sigma, Roth 

GmbH (Karlsruhe) and metabion (Martinsried). 

 

Oligonucleotides for CAP2 full length cDNA. 

BglMCAP113      5’GTTAGATCTATCTCTTGGATGTCAGGC  

BglMCAP115      5' TATAGATCTATGACAGACATGGCGGGA  

Oligonucleotides for CAP2 full length cDNA with out STOP codon. 

Cap2-1/fw             5’GCGGCCGCCTATGACAGACATGGCGGG 

bh1cap113ns         5’ AGGATCCGGCCATGATCTCTGCAGG 

Oligonucleotides for the probes of the knock out vector 

1PBAMf              5’ TCCAGAATACTGGGATTACAGCTACC 

1PBAMr              5’ CGAGGCAACATGGCATGCAATAC 
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2PbamF               5’ ACCAATATGATGGAACTTGTTTTG 

2PbamR               5’ ATCCATTATCTGGGCTGCAGG 

1PNCOf              5'  GGATGCTAAGTGGCAGAGAAC 

1PNCOr              5’  CCAGCCCCTATGTTATGTTGA 

2PncoF                5’   CACAAGCACTAATTTCTTTTGAAG 

2PncoR               5’    TGTAGGGTGGGCCTTCTAGTG 
Oligonucleotides for the left arm and the right arm of the knockout vector 

 

1SACTF               5’    TCCCCGCGGC TGCCCTGCAG AATTCTGCAT 

1SACTR              5’    TCCCCGCGGC TTCAGAAGGA CAGCAACTTC ATT 
 

1SALT3R            5’     CGCGTCGACT GATGAGGAAG TGCATGGTGA TGC 
1CLATF              5’      CCATCGATTC AGGAGGATGA AGATCAGGAA TT 
 

 

2.1.10 Buffers and other solutions 
Buffers and solutions not listed below are described in the methods section. 

PBS (pH 7.2):    10x NCP-buffer (pH 8.0): 

10 mM KCl      100 mM Tris/HCl 

10 mM NaCl      1.5 M NaCl 

16 mM Na2HPO4     5 ml Tween 20 

32 mM KH2PO4     2.0 g sodium azide 

 

10x MOPS (pH 7.0/ pH 8.0):    

20 mM MOPS      

50 mM sodium acetate    

1 mM EDTA  in 1x PBS 

 

20x SSC:                     TE-buffer (pH 8.0): 

3 M NaCl                                                  10 mM Tris/HCl (pH 8.0) 

0.3 M sodium citrate        1mM EDTA (pH 8.0, adjusted with NaOH) 

autoclaved 

 
2.1.11 Materials 

cryotubes, 1 ml      Nunc 

Eppendorf tubes, 1.5 ml and 2 ml    Sarstedt 
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hybridization tubes      Hybaid 

3mm filters       Whatmann 

nitrocellulose, type BA85     Schleicher and Schüll 

nylon membrane, Biodyne      PALL 

filter, sterile 0.45 µm and 0.2 µm    Gelman Science 

plastic cuvettes      Greiner 

quartz cuvettes Infrasil     Hellma 

Superdex75 PC3.2/30      Pharmacia Biotech 

15 ml tubes, type 2095     Falcon 

50 ml tubes, type 2070     Falcon 

X-ray film X-omat AR-5     Kodak 

 

2.1.12 Instruments 

blotting chamber Trans-Blot SD    Bio-Rad 

centrifuges: Beckman Avanti J25    Beckman 

Sorvall RC 5C plus      Sorvall 

Biotech fresco       Heraeus Instruments 

crosslinker UVC 500      Hoefer 

pH-meter 766       Knick 

heating blocks: type DIGI-Block JR    neoLab 

type thermomixer      Eppendorf  

hybridization oven      Hybaid 

incubator Lab-Therm      Kühner 

microscope: light microscope, Type DMI   Leica 

Multiphor II/Immobiline focussing system   Pharmacia Biotech 

PCR-thermocycler      MWG-Biotech 

pump system Biologic Workstation    Bio-Rad 

rotors: type JA-10      Beckman 

 typeJA-25.50      Beckman 

 SLA-1500      Sorvall 

 SLA-3000      Sorvall 

 SS-34       Sorvall 

 TLA 45      Beckmann 

shaker 3015       GFL 
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lab-shaker       Kühner 

SMART-system      Pharmacia Biotech 

spectral photometer type Ultraspec 2000   Pharmacia Biotech 

Ultra-Turrax       IKA Labortechnique 

ultracentrifuge Optima TLX     Beckmann 

UV-Monitor TFS-35 M     Faust 

UV-transilluminator      MWG-Biotech 

Vortex REAX top      Heidolph 

water bath       GFL 

 

2.1.13 Computer programs 

For alignment analysis of cDNA sequences the GCG software package (University of 

Cologne) and the BLAST (NCBI) program were used. Protein sequences were aligned using 

the programs ClustalW and TreeView. For prediction of motif and pattern searches the 

ExPaSY (SIB) software package was used. Annealing temperatures of primers were 

calculated with the program “Primer Calculator” available in the Internet 

(http://www.williamstone.com). 

 

2.2 Molecular biological methods 
 
2.2.1 Plasmid-DNA isolation from E. coli by alkaline lysis miniprep 
 With this DNA isolation method plasmid DNA was prepared from small amounts of 

bacterial cultures. Bacteria were lysed by treatment with a solution containing sodium 

dodecylsulfate (1% SDS) and 0.5M NaOH (SDS denatures bacterial proteins and NaOH 

denatures chromosomal and plasmid DNA). The mixture was neutralised with potassium 

acetate, causing the plasmid DNA to reanneal rapidly. Most of the chromosomal DNA and 

bacterial proteins precipitate, as does SDS forming a complex with the potassium, and are 

removed by centrifugation. The reannealed plasmid DNA from the supernatant was 

concentrated by ethanol precipitation. 

 

2.2.2 Plasmid-DNA isolation with a kit from Macherey-Nagel 

NucleoSpin Plasmid is designed for the rapid, small-scale preparation of highly pure 

plasmid DNA (minipreps) and allows a purification of up to 40 µg per preparation of plasmid 

DNA.The principle of this plasmid-DNA purification kit is based on the alkaline lysis 

miniprep. Plasmid DNA was eluted under low ionic strength conditions with a slightly alkali 
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buffer. For higher amounts of plasmid DNA, the Nucleobond AX kit from Machery-Nagel 

was used. The plasmid DNA was used for sequencing and transfection of eukaryotic cells.The 

protocols were followed as described in the manufacturer’s manual. 

 

2.2.3 Genomic DNA Isolation from ES cells and Balb/c Tail. (Kühn et al, 1997)  

Isolation of ES cell DNA.  

ES cells at 60% confluency were trypsinised and washed with 1x TSE. The pellet was 

resuspended well in 250µl TSE (TSE = 10mM Tris, 150mM Nacl, 10mM EDTA). 250µl of 

TSE were added containing 0.4% SDS and 0.6-0.8 mg/ml proteinase K (final concentration 

0.2% SDS and 0.3-0.4mg/ml proteinase K) resuspend first in TSE alone and then add 2x SDS/ 

proteinaseK.Incubated 55°C overnight ( at least 5-6 hours) or until no cellular debris is 

visible.Phenol/chloroform extracted  and chloroform/isoamyl alcohol (24:1) extracted and 

ethanol precipitated.  Spin down in a microfuge for 10minutes, wash once with 70% EtoH, 

and resuspend in minimal volume of TE. Alternatively, the visible precipitate can be drawn 

out by a Pasteur pipet with flame (and sela) and use to spin out DNA precipitate. Immeresed 

once in 70% EtOH and transfer to a new tube. After removal of EtOH traces resuspend 

immediately in TE and digestions can be carried out right away.  

 

Isolation of genomic DNA from mouse tails. 

Tail samples ~ 1cm long were transferred into 1.5ml eppendorf tube and lysed with 

700µl lysis buffer (100mM Tris-Cl pH 8.5, 5mM EDTA, 100mM NaCl, 0.2% SDS, 200mM 

NaCl, 100-400µg proteinase K/ml). Incubated several hours to overnight at 55°C with 

occasional agitation until tissue dissolved.  Samples were centrifuged at maximum speed for 

10 minutes to pellet hair and debris. Clear supernatants were precipitated by adding equal 

volume of isopropanol.  Pellets were washed once with 70% EtOH and the DNA was 

resuspended in ~ 150-200µl TE.  

 

 

2.2.4 DNA agarose gel electrophoresis  

 

10x DNA-loading buffer:              50X Tris acetate buffer (1000 ml) (pH:8.5) 

40% sucrose, 0.5% SDS       242.2 g Tris 0.25% bromophenol blue, in TE (pH 8.0)  

57.5 ml acetic acid                       100 ml of 0.5 M EDTA (pH 8.0) 
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Agarose gel electrophoresis was performed to analyse the length of DNA fragments 

after restriction enzyme digests and polymerase chain reactions (PCR), as well as for the 

purification of PCR products and DNA fragments. DNA fragments of different molecular 

weight show different electrophoretic mobility in an agarose gel matrix. Optimal separation 

results were obtained using 0.5-2% gels in TAE buffer at 10 V/cm. Horizontal gel 

electrophoresis apparatus of different sizes were used. Before loading the gel, the DNA 

sample was mixed with 1/10 volume of the 10x DNA-loading buffer. For visualization of the 

DNA fragments under UV-light, agarose gels were stained with 0.1µg/ml ethidium bromide. 

In order to define the size of the DNA fragments, DNA molecular standard markers were also 

loaded onto the gel. 

 

2.2.5 Southern blotting (Southern et al., 1975) 

             Southern blotting is the transfer of DNA fragments from an electrophoresis gel to a 

membrane. After immobilization, the DNA was subjected to hybridization analysis to identify 

the bands containing DNA complementary to the radioactively labelled probe. In this work 

the alkaline transfer on a nylon membrane was performed. First the gel was washed in 0.25 M 

HCl, incubated in 0.4 M NaOH for 20 minutes and placed on top of two layers of Whatmann 

3mm paper having contact to a reservoir of 0.4 M NaOH. After overlaying the gel with a 

nylon membrane, that had been wetted with water, three wet Whatmann 3mm paper and a 

thick stack of paper towels, the transfer was performed for about 18 hours. After washing the 

membrane it was air-dried and the DNA immobilized by the UV-crosslinking. 

 

2.2.6 Isolation of total RNA from mouse tissue with RNeasy Mini/Midi kit 
Working with RNA always requires special precautions in order to prevent 

degradation by ubiquitous RNases, e.g. wearing gloves and using RNase-free water and 

material. The RNeasy technology combines the selective binding properties of a silica-gel-

based membrane with centrifugation. A specialized high-salt buffer system allows up to 100 

µg (mini) or 1 mg (midi) of RNA longer than 200 bases to absorb to the RNeasy silica-gel 

membrane. An appropriate amount of different mouse tissues was transferred into a lysis 

buffer containing guanidine isothiocyanate and β-mercaptoethanol followed by disruption and 

homogenisation using a rotor homogeniser. After centrifugation the supernatant was 

transferred to a new tube and mixed with one volume of 70% ethanol. This mixture was 

loaded on the RNeasy spin column placed in a collection tube. After another centrifugation 

and discarding the flowthrough, the RNeasy column was treated with DNase I and washed 
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with a washing buffer. To elute the RNA from the column an appropriate volume of RNase-

free water was pipetted directly onto the spin-column membrane. The obtained RNA was 

used for cDNA synthesis by RT-PCR and for northern blot analysis. Exact compositions of 

the buffers used for RNA isolation are listed in the Qiagen RNeasy Handbook. 

 

2.2.7 RNA isolation from Tissue culture cells.TRI Reagent method. (Chomczynski et al, 

1987)  

It is a single step method for RNA isolation using a monophasic solution of phenol and 

guanidine isothiocyanate (TRI reagent). This facilitates effective inhibition of Rnase.  

      Cells in small dish ~ 5*106 cells were lysed in 1ml of TRI reagent. Centrifuged at 13,000 

rpm at 4°C for 10minutes, the   supernatant was transferred  into fresh eppendorf and allowed 

to stand at room temperature for 5 minutes.  200µl chloroform (Tris or water saturated to 

separate aqueous and organic phase) was added and allowed to stand at room temperature for 

5minutes. The solution was centrifuged at 13,000 rpm at 4°C for 15minutes (RNA remain in 

the aqueous phase, DNA in the interphase, proteins in the organic phase)   

 

 Precipitate the RNA by adding equal volume of isopropanol (precipitated RNA) and allowed 

to stand at room temperature for 5min or –80°C overnight.  The precipitate was centrifuged at 

13,000 rpm at 4°C for 30minutes. Pellet washed with 70% ethanol and air dried and 

reconstituted in 20µl of DEPC treated water.  

 

2.2.8 RNA formaldehyde agarose gel electrophoresis 
The formaldehyde-agarose denaturing electrophoresis (Lehrach H et al., 1977) is used for 

separation and resolution of single stranded RNA. 

 

2.2.9 Sample preparation for electrophoresis 

In general, 30 µg of purified total RNA was mixed with an equal volume of RNA-sample 

buffer and denatured by heating at 65ºC for 10 min. After denaturation, the sample was 

immediately transferred on ice and 1 µl of RNA-loading buffer was added. Thereafter, the 

RNA samples were loaded onto a denaturing formaldehyde-agarose gel. 

 

2.2.10 Formaldehyde agarose gel preparation 

For a total gel volume of 150 ml, 1.8 g agarose (final concentration 1.2%) was initially boiled 

with 111 ml DEPC-H2O and 15 ml of RNA-gel-casting buffer, pH 8.0, in an Erlenmeyer 
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flask, cooled to 60ºC and 24 ml of 36% formaldehyde solution were added. The agarose 

solution was mixed by swirling and poured into a sealed gel-casting chamber of the desired 

size (12 x 20 cm). After the gel was completely set, the denatured RNA samples were loaded 

and the gel was run in 1x RNA-gel-running buffer, pH 7.0, at 100 V until the bromophenol 

blue dye had migrated the appropriate distance through the gel. A test gel was sometimes run 

with 5 µg of total RNA to check the quality of the RNA samples. In such a case, 10 µg/ml 

ethidium bromide was added to the RNA-sample buffer during sample preparation and after 

electrophoresis, the gel was examined under UV light at 302 nm and was photographed using 

the gel-documentation system. 

10x RNA-gel-casting buffer (pH 8.0):  10x RNA-gel-running buffer (pH 7.0): 

200 mM MOPS     200 mM MOPS 

50 mM sodium acetate    50 mM sodium acetate 

10 mM EDTA      10 mM EDTA 

adjust pH 8.0 with NaOH    adjust pH 7.0 with NaOH and autoclave 

RNA-sample buffer:       RNA loading dye 

50% formamide     50% sucrose, RNase free 

6% formaldehyde     0.25% bromophenol blue 

in 1x RNA-gel-casting buffer, pH 8.0  in DEPC-H2O 

Internal RNA-size standard: 

26S rRNA (4.1 kb), 18S rRNA (1.9 kb) 

 

2.2.11 Northern blotting 

After electrophoresis, the RNA formaldehyde agarose gel was rinsed in sufficient amount of 

deionised H2O for 5 min and then equilibrated in 10x SSC for 5 min. The resolved RNA was 

then transferred (Sambrook et al., 1989) from the gel to the nylon membrane (Biodyne B 

membrane, Pall) After overnight transfer with 20x SSC, the transferred RNA was 

immobilised by baking the membrane in an oven at 80ºC for 1 h. 

 

2.2.12 Radiolabelling of DNA 

The Prime-it kit (Stratagene) was used for radio labelling of DNA fragments following the 

method suggested by the manufacturer. Briefly, 0.1-0.3 µg DNA sample was suspended in 

24-µl ddH2O (final volume). Then 10 µl of random-oligonucleotide-primer (supplied along 

with the kit) was added and the DNA template was denatured at 95ºC for 5 min. After 

denaturation, 10 µl of 5x dNTP mix without dATP (supplied along with the kit), 5µl of α 32P 
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and 1 µl Klenow enzyme (5 U/µl, supplied along with the kit) was added and the reaction-

mixture was incubated at 37ºC for 10 min. After 10 min the reaction was immediately stopped 

by adding 2-µl stop-mix (supplied along with the kit). Now the reaction-mixture was diluted 

with 100 µl TE, pH 8.0 to increase the reaction volume and the reaction-mixture was overlaid 

on a 0.9 ml Sephadex G-50 spin column. The free nucleotides present in the reaction-mixture 

were separated by centrifugation at 3,000 rpm (Sorvall RT7 centrifuge) for 2 min through the 

Sephadex G-50 spin column and the radiolabelled DNA probe was collected in a 1.5 ml 

eppendorf tube. The purified radiolabelled DNA probe was denatured by heating at 100ºC for 

5 min, cooled on ice and used for hybridization of northern-blots.  

 

2.2.13 Chromatography through Sephadex G-50 spin column 

This technique (Sambrook et al., 1989), which employs gel filtration to separate high-

molecular weight DNA from smaller molecules, was used to separate radiolabelled DNA 

from unincorporated α 32P ATP. 30 g of Sephadex G-50 (Pharmacia) was slowly added to 

250 ml of TE, pH 8.0, in a 500-ml bottle and the beads were allowed to swell overnight at 

room temperature. Next day, the supernatant was decanted and was replaced with an equal 

volume of TE, pH 8.0. The beads were autoclaved and stored in a screw-capped bottle at 4ºC. 

For preparation of Sephadex G-50 spin column, the swollen Sephadex G-50 beads were 

packed in a disposable 1-ml syringe plugged with sterile glass wool and the column was spun 

at 3,000 rpm (Sorvall RT7 centrifuge) for 2 min. Sephadex G-50 was added until the packed 

column volume was 0.9 ml. The column was then used for separation of the radiolabelled 

DNA probe. 

 

2.2.14 Hybridization of Northern blots with radiolabelled DNA probe 

Northern blots were rinsed briefly with 2x SSC and incubated in a heat sealable hybridization 

bag (Life technologies) in 15-20 ml of pre-hybridization buffer for 1h at 37ºC on a shaking 

platform. After pre-hybridization, the denatured radiolabelled DNA probe was added directly 

to the pre-hybridization-buffer in the hybridization bag and the hybridization was performed 

by incubating the blot overnight at 37ºC. After hybridization, the blot was washed twice with 

2x SSC/0.1% SDS for 5 to 10 min each at room temperature with gentle shaking followed by 

two washings with wash buffer for 30 min each at 37ºC with gentle shaking. The blot was 

then wrapped in a plastic wrap and exposing the blot to X-ray film at –70ºC for desired time 

was performed  by autoradiography. 
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Church buffer:   Wash buffers: 

0.5 M Na3PO4 (pH 7.15)   1) 2x SSC, 1% SDS 

7% SDS     2) 0.4x SSC, 1% SDS 

1 mM EDTA     3) 0.2x SSC, 1%SDS 

1% BSA 

50 µg/ml salmon sperm 

After 1 hour of prehybridizing the blots at 65˚C in Church buffer, radioactively 

labelled probes were added to a portion of fresh Church buffer and hybridization took place 

for 18 hours at the same temperature. Several washing steps were performed at 65˚C, as 

needed. Afterwards blots were exposed to an X-ray film at –70 °C.                                                                    

 
2.2.15 Elution of DNA fragments from agarose gels 

Elution of DNA fragments from agarose gels was performed using the NucleoSpin 

Extract 2 in 1 kit from Macherey-Nagel. Bands of interest were cut out of the gel and the 

agarose was melted at 50°C in a binding buffer. After several centrifugation steps with wash 

buffer, the DNA bound selectively to a silica membrane column and was eluted with a low 

salt solution. 

 
2.2.16 Measurement of DNA and RNA concentrations 

Concentrations of DNA and RNA were estimated by determining the absorbance at a 

wavelength of 260 nm. A ratio of OD260/OD280 >2 indicate negligible protein contaminations. 

Protein contaminations were estimated from absorbance at 280 nm.  

 

2.2.17 Restriction digestion of DNA 
Restriction enzyme digestions, DNA ligations and other recombinant DNA preparations were 

performed using standard protocols (Sambrook, 1989). All DNA constructs were verified by 

DNA sequencing. Digestion of DNA with restriction endonucleases was performed in buffer 

systems provided by the manufacturers at the recommended temperatures. 

 

2.2.18 Dephosphorylation of 5´-ends of linearised vectors 

10x CIAP-Puffer (pH 9.0): 

0.5 M Tris/HCl 

10 mM MgCl2 

1 mM ZnCl2 

10 mM spermidin 
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In order to prevent linearized vectors from religation, the 5’end phosphate groups 

were hydrolysed with calf intestinal alkaline phosphatase (CIAP) for 30 minutes at 37°C 

followed by heat inactivation at 70°C for 10 min. 

 
2.2.19 Creation of blunt ends 

Due to the 3’ exonuclease activity of Klenow enzyme it is possible to transform 

overhanging 3’ ends of DNA (sticky ends) into blunt ends. After the reaction for 30 minutes 

at 37°C, heat inactivation for 10 minutes at 70°C was necessary. 

 
2.2.20 Ligation of vector- and DNA-fragments 

T4-DNA-ligase catalyzes the ligation of DNA fragments and vector DNA. 1 U T4-

ligase was incubated with about 25 ng of DNA fragment overnight at 10°C. 

 

2.2.21 Ligation of polylinker and DNA-fragments 

DNA fragment and the polylinker were ligated using Manufactures Protocol of New England 

BioLabs.  

 

2.2.22 Polymerase chain reaction (PCR) 

PCR can be used for in vitro amplification of DNA fragments (Saiki et al., 1985). A 

double stranded DNA (dsDNA) serving as a template, two oligonucleotides (primers) 

complementary to the template DNA, deoxyribonucleotides and heat resistant Taq-DNA-

polymerase are required for this reaction. Primers may be designed having non-

complementary ends with sites for restriction enzymes. The first step in PCR reactions is the 

denaturing of dsDNA at 94°C. Second, the reaction mixture was incubated at different 

annealing temperatures, depending on the G/C content of the primers. Different programs 

provide an accurate calculation of the annealing temperature based on the nearest neighbours 

method and are freely available on the Internet. The third step with a temperature of 72°C 

allows the elongation of the new strand of DNA by the Taq-DNA-polymerase. A PCR 

machine (thermocycler) can be programmed to regulate these different cycles automatically. 

A “standard program” is presented below: 

 

I. Initial denaturing: 94°C, 5 min 

II. Cycles (25-35): 

Denaturing (94°C, 15 sec.) 
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Annealing (60-68°C, 30 min) 

Elongation (72°C, 1-10min) 

III. Final elongation: 72°C, 10 min 

IV. Cooling to 4°C 

 

2.2.23 Transformation of E. coli cells with plasmid DNA 

LB-Medium:   SOC-Medium: 

10 g Bacto-Trypton     20 g Bacto-Trypton 

5 g yeast extract     5 g yeast extract 

5 g NaCl                                                           0.5 g NaCl 

       20 mM Glucose 

For transformation of E. coli cells the heat shock method was used. DNA and 

competent cells were incubated for 15 minutes on ice and then for 40 seconds at 42°C. After 

cooling on ice for 2 minutes, the bacteria were incubated for 1 hour at 37°C in SOC-medium 

without any antibiotics. Finally, the bacteria were plated on agar plates containing selective 

antibiotics, and incubated overnight at 37°C. For further analysis single colonies were picked, 

inoculated and incubated for 12 hours in LB-medium on a shaker. From clones of interest 

glycerol stocks were made. For this, samples of E. coli cultures were mixed with an equal 

volume of 50% glycerol and frozen at -80°C. 

 

2.2.24 Removal of the stop codon in the CAP2 cDNA by PCR technique 

 Using CAP2 cDNA as template, which is in pGEM, PCR was performed with two 

primers (one forward and one reverse). After 25 rounds of PCR, the PCR product was 

checked on the gel.  

 

2.3 Protein biochemical methods   

 
2.3.1 Extraction of protein homogenate from mouse tissues and cell cultures 

For characterization of polyclonal antibodies and identification of endogenous CAP2, 

homogenates from mouse tissues and cell cultures were extracted. For this mice were 

sacrificed by cervical dislocation. Dissected organs were briefly rinsed in ice cold PBS buffer 

and frozen in liquid nitrogen. Afterwards ice-cold equilibrating buffer containing protease 

inhibitors was added. After homogenisation, the cell lysate was mixed with SDS-loading 

buffer boiled at 95˚C for 5 minutes and centrifuged for 5 minutes at 12000rpm.In the case of 
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cell lines, cells from a big dish were harvested by trypsinising the cells at 37°C for 5 minutes 

and then medium was added to stop the reaction of trypsinising. The cells were pelleted at 

4°C for 5 minutes at 1500 rpm. Then cells were resuspended in equilibrating buffer 

containing 0.25M sucrose and sonicated by giving 5 pulses of 10 sec each with a 15 sec rest 

between each pulse. After the sonication the cell lysate was spun at 1500 rpm at 4°C for 10 

minutes. The supernatant was then centrifuged at 12,000rpm for 15 minutes at 4°C referred to 

as 12k sup and 12k pellet. The supernatant was then subjected to ultra centrifugation. The 

samples were centrifuged at 100,000 g for 150 minutes at 4°C. Then the supernatant was 

treated as cytosol and the pellet as the membrane (micro membranes). Afterwards samples 

were treated as described for the tissues. 

The equilibrating buffer contains 50 mM Tris, pH 8.0, 5 mM EDTA, 5 mM EGTA, 10 

mM MgCl2, 100 µM PMSF, 150µM beta mercaptoethanol and a protease inhibitor cocktail 

tablet. 

 

2.3.2 Cell fractionation 

     For nuclei preparation, PAM212 cells were trypsinised, counted and washed once 

in PBS. They were resuspended in equilibrating buffer (0.32M sucrose, 50 mM Tris, pH 8.0, 

5 mM EDTA, 5 mM EGTA, 10 mM MgCl2, 1mM DTT, 0.5% NP40, 100 µM PMSF, 150µM 

beta mercaptoethanol and a protease inhibitor cocktail tablet.; 1x107 cells/ 400µl buffer) and 

sonicated on ice (sonifier UP200S, dr.hielshcer, 40 s, amplitude 50%, cycle 0.5). This step 

was repeated until no more intact cells were observed by light microscopy. The resulting 

homogenate was centrifuged at 500 g for 5 minutes, washed twice in 1ml buffer without 

NP40 and centrifuged again. The resulting pellet contains purified nuclei. Then the nuclei 

were resuspended in a SDS-loading buffer boiled at 95˚C for 5 minutes and centrifuged for 5 

minutes at 12,000rpm. Further the supernatant was centrifuged at 12,000rpm for 15 minutes at 

4°C referred to as 12k sup and 12k pellet. These samples were treated same as the nuclei 

pellet. 

 

2.3.3 Expression of recombinant 6xHis-tag protein 

    For expression of recombinant 6xHis-N-Terminal CAP2 (23kDa), the QIA express system 

by Qiagen was used. The host strain E. coli M15 was transformed with the pQE-30 vector 

encoding the His-tag fusion protein and expression was induced by the addition of IPTG, 

which leads to the inactivation of the lac repressor protein. Single colonies (5-10) of 

recombinant cells were picked and grown overnight in 10 ml of LB medium containing 
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ampicillin and Kanamycin (100 µg/ml) at 37ºC and 250 rpm. 5 ml of the overnight grown 

culture were inoculated into 45 ml of fresh LB medium containing ampicillin and kanamycin 

(100 µg/ml). The culture was then allowed to grow at 37ºC till an OD of 0.5-0.6 measured at 

600 nm was obtained. Now the induction of expression was initiated by adding IPTG. In 

order to standardize the conditions of maximum expression of the fusion protein, induction 

was performed with varying concentrations of IPTG (0.1 mM, 0.5 mM and 1.0 mM final 

concentration) at two different temperature conditions (30ºC and 37ºC). Samples of 1 ml were 

withdrawn at different hours of induction (0 hr, 1 hr, 2 hr, 3 hr, 4 hr and 5 hr), the cells were 

pelleted and resuspended in 100 µl of 1x SDS sample buffer. The samples were denatured by 

heating at 95ºC for 5 min and 10 µl of each sample were resolved on a 12% SDS-

polyacrylamide gel.  

 

2.3.4 Urea Extraction of the N-terminal CAP2 

. The protein expression was induced with 1mM IPTG for 4 hrs at 37˚C and the bacteria were 

collected by centrifugation at 5000 x g for 10 minutes. After the induction, the culture was 

transferred to a 500 ml centrifuge bottle (Beckman) and the cells were collected by 

centrifugation at 4,000 rpm (Beckman Avanti J25, rotor JA-10) for 10 min at 4ºC.  The pellet 

was resuspended in 10 ml of ice-cold lysis buffer containing lysozyme (1 mg/ml) and Triton 

X-100 (0.5%) and supplemented with fresh protease inhibitors, collected in a 50 ml tube and 

incubated on ice for 20 min.  Incubation in lysis buffer was followed by a brief sonication (3 

pulses of 10 s each with a 15 s rest between each pulse), keeping the tube immersed in ice.  

Sonication was followed by homogenisation using a Dounce homogeniser for 2-3 min in 

order to ensure complete and efficient cell lysis.  The lysate was then subjected to gradual 

increases in the molarity of urea.  For every 1 M urea the lysate was pelleted at 15,000 rpm 

(Beckman Avanti J25, rotor JA-25.50) for 15 min at 4ºC followed by next concentration of 

urea and continued till 8 M urea.  The supernatant samples (10 µl) collected from each round 

of solubilisation were dissolved in 1x SDS sample buffer and run on SDS-polyacrylamide gel 

to be analysed by Coomassie staining. 

Lysis buffer: 

50mM NaH2p04

300mM NaCl 

10mM imidazole 

2.3.5 Ni-NTA-pull down of tissue lysates 

       After inducing the protein expression of N-terminal CAP2 protein the bacteria were 
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collected by centrifugation at 5000 x g for 10mts. The pellet was resuspended in lysis buffer 

containing protease inhibitors (complete inhibitor Cocktail). After adding lysozyme (1 

mg/ml), the lysate was incubated for 30minutes on ice followed by sonication. The lysate was 

centrifuged at 10,000 g for 30 minutes at 4˚C and the supernatant was used for the subsequent 

steps after confirming the expressed protein present in some amounts in the supernatant. The 

lysate was incubated with Ni-NTA beads (50ul) shaking 4 hours at 4˚C. Then the lysate was 

centrifuged at 2000 rpm for 3 minutes. The Ni-NTA beads were washed thrice with the 

equilibrating buffer, containing 50 mM Tris, pH 8.0, 5 mM EDTA, 5 mM EGTA, 10 mM 

MgCl2, 100 µM PMSF, 10mM Na2 H2 P2O7, 1mM ATP, 20mM NaF, 1mM Na3VO4, 150µM 

beta mercaptoethanol and a protease inhibitor cocktail tablet. Then the beads were incubated 

with tissue lysate, which was precleared with the Ni-NTA beads and was prepared as in the 

section 2.3.1 (except that, 10mM Na2 H2 P2O7, 1mM ATP, 20mM NaF, 1mM Na3VO4 was 

added here) overnight at 4˚C. Then the beads were centrifuged at 2000 rpm for 3 minutes. 

Then the beads were washed four times with the equilibrating buffer containing 0.5% 

TritonX- 100. Then the beads were resuspended in 50 µl of 1x SDS sample buffer. The 

samples were denatured by heating at 95ºC for 5 min and 20 µl of each sample were resolved 

on a 3-15% gradient SDS-polyacrylamide gel.  As a control the His tagged ABD-enaptin in 

pQE 31 vector was treated same as the N-terminal CAP2 pQE 31 vector in all the steps of the 

experiments. 

 

2.3.6 Immunoprecipitation with polyclonal CAP2 antibody and monoclonal GFP 
antibody (mAb K3-184-2) 

For immunoprecipitations, HEK293 cells were cotransfected with GFPCAP1 and Myc 

CAP2 and HEK293 cells cotransfected with GFP C-ACF7 and Myc CAP2 grown in 10cm 

diameter dishes were washed with PBS and lysed in 500ul of ice cold lysis buffer (50 mM 

Tris, pH 8.0, 5 mM EDTA, 5 mM EGTA, 10 mM MgCl2, 100 µM PMSF, 10mM Na2 H2 

P2O7, 1mM ATP, 20mM NaF, 1mM Na3VO4, 1% PEG 8000, 1% Triton X-100, 150µM beta 

mercaptoethanol and a protease inhibitor cocktail tablet) for 20 minutes on ice. Cleared 

lysates were incubated with anti-GFP (mAb K3-184-2) and anti-CAP2 (purified) antibodies 

for 2 hours followed by incubation with protein A-sepharose beads (Amersham Biosciences) 

for 1 hour at 4˚C on a rotary wheel. Before incubating with the antibodies the lysates were 

precleared with the protein A-sepharose beads (Amersham Biosciences) for 1 hour at 4˚C on a 

rotary wheel. Beads were then washed thrice with lysis buffer without NaF, Na3VO4 , ATP 

and Triton X-100. Precipitates were resolved by SDS-PAGE and analysed by immunoblotting 

using the respective antibodies. 
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2.3.7 Affinity purification of polyclonal antibodies by blot method 

TBS  : 8 g NaCl, 0.2 g KCl and 3 g Tris/HCl in 1 liter, pH 7.2 

Buffer I : 1% BSA, 0.05% Tween 20 in PBS 

Buffer II : 0.1 M glycin, 0.5 M NaCl, 0.5% Tween 20, pH 2.6  

  The recombinant protein, which was used to produce the polyclonal antibody, was 

analysed by SDS-PAGE and the gel was afterwards transferred to a PVDF membrane. The 

membrane was stained with Ponceau S to confirm the transfer efficiency and the blot 

corresponding to the recombinant protein was cut out. The blot was then destained with TBS. 

The portion of the blot where the recombinant protein was immobilized was blocked by 

incubating the blot for 2 hours in buffer I. 1 volume of serum was diluted with 4 volumes of 

TBS and incubated with the stripes at 4˚C for 2 hours. The unbound antibody was washed 

with TBS 4x 5 minutes at 4˚C. After washing, the antibodies bound to the recombinant 

protein on the membrane stripes were eluted with buffer II, 1 ml, 2x, 1.5 minutes at 4˚C. The 

eluted antibody was neutralised with 100 µl of 1 M Tris (pH 8.0) immediately after elution. 

The antibody can be stabilised with 0.5% BSA. 

 

2.3.8 SDS-polyacrylamide gel electrophoresis 

SDS-polyacrylamide gel electrophoresis was performed using the discontinuous buffer 

system. (Laemmli UK et al., 1970). Discontinuous polyacrylamide gels (10-15% resolving 

gel, 5% stacking gel) were prepared using glass-plates of 10 cm x 7.5 cm dimensions and 

spacers of 0.5 cm thickness. A 12-well comb was generally used for formation of the wells in 

the stacking gel. The protein samples were resuspended in 1x SDS sample buffer. The 

samples were denatured by heating at 95ºC for 5 min and loaded into the wells in the stacking 

gel. A molecular weight marker, which was run simultaneously on the same gel in an adjacent 

well, was used as a standard to establish the apparent molecular mass of proteins resolved on 

SDS-polyacrylamide gels. The molecular weight markers were prepared according to the 

manufacturer’s specifications. After loading the samples onto the gel, electrophoresis was 

performed in 1x gel-running buffer at a constant voltage of 100-150 V until the bromophenol 

blue dye front had reached the bottom edge of the gel or had just run out of the gel. After the 

electrophoresis, the resolved proteins in the gel were either observed by Coomassie blue 

staining or transferred onto a nitrocellulose membrane. 
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SDS-sample buffer 1x      10x Gel-running buffer: 

50 mM Tris/HCl, pH 6.8     1.9 M glycine 

2 % (v/v) SDS       0.25 M Tris/HCl, pH 8.8 

10 % (v/v) glycerine      1% SDS 

0.1 % (v/v) bromophenol blue 

2 % (v/v) β-mercaptoethanol 

 

2.3.9 Gradient gel electrophoresis 

Gradient gels were used for visualising both high molecular weight proteins and low 

molecular weight proteins. Gradient gels were made with a gradient mixer and typically a gel 

with a gradient of 3%-15% acrylamide was made. The top of the gel had 3% of acrylamide 

whereas the bottom part had 15% of acrylamide. The middle part of the gel had a gradient 

from 3% till 15%. The gradient mixer was connected to a peristaltic pump, which delivered 

the solution into the gel-casting tray. 15% acrylamide was being added into the near well of 

the outlet from the mixer. 

 

Stock solutions for preparing Gradient gels 

----------------------------------------------------------------------------------------------------------------- 

100 ml stock solution 3% 6% 10% 12% 15% 4% Stacking Gel 

1.5M Tris/HCl, pH 8.8 25 ml 25 ml 25 ml 25 ml 25 ml - 

0.5% tris/HCl, pH 6.8 - - - - - 20 ml 

PAA (30%) 10 ml 20 ml 33.3 ml 40 ml 50 ml 13.3 ml 

SDS (10%) 1 ml 1 ml 1 ml 1 ml 1 ml 1 ml 

H2O 64 ml 54 ml 40.6 ml 34 ml 24 ml 65.6 ml 

Solutions required for individual gradient gel 

 Gradient gel solution per mixing well 1 gel Stacking gel 

Stock solution /Gel 4.5 ml 4.5 ml     9.0 ml 3.0 ml 

APS 10% 15 µl 15 µl 22 µl 30 µl 

TEMED 8 µl 8 µl 10 µl 16 µl 
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2.3.10 Coomassie blue staining of SDS-polyacrylamide gels 

After electrophoresis, the resolved proteins were visualised by staining the gel with 

Coomassie blue staining solution. The gel to be stained was placed in the Coomassie blue 

staining solution immediately after electrophoresis and the gel was allowed to stain at room 

temperature with gentle agitation for at least 30 min. After staining, the staining solution was 

poured off and destaining solution was added. The gel was then destained at room 

temperature with gentle agitation. For best results, the destaining solution was changed with 

fresh destaining solution several times until protein bands were clearly visible. 

Coomassie blue staining solution:     Destaining solution: 

0.1% Coomassie-brilliant- blue R250,    7% acetic acid  

50% ethanol       20% ethanol 

10% acetic acid 

Filter the solution before use 

 

2.3.11  Drying of SDS-polyacrylamide gels 

After destaining, the gel was immersed in gel-dry buffer for 10-15 min at room temperature. 

Two sheets of cellophane (Novex), slightly bigger than the size of the gel, were also 

immersed in gel-dry buffer. The gel was then carefully placed between two moistened sheets 

of cellophane avoiding trapping of air-bubbles, clamped between the gel-drying frames 

(Novex) and dried overnight at room temperature. 

Gel-drying buffer: 

25% ethanol 5% glycerine 

2.3.12 Western blotting using the semi-dry method 

The proteins resolved by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) were 

electrophoretically transferred from the gel to a nitrocellulose membrane by using the method 

described by (Towbin et al., 1979) with little modifications. The transfer was performed using 

Towbin’s buffer in a semi-dry blot apparatus (Bio-Rad) at a constant voltage of 10 V for 35-

45 min. The instructions provided along with the semi-dry apparatus were followed in order 

to set up the transfer. 

Towbin’s buffer (transfer buffer): 

39 mM glycine 

48 mM Tris/HCl, pH 8.3 

0.0375% SDS 

20% methanol or ethanol 
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2.3.13 Ponceau S staining of western blots 

To check for the transfer of proteins onto the nitrocellulose membrane, the membrane was 

stained in 10-15 ml of Ponceau S solution for 2-5 min at room temperature. After staining, the 

membrane was removed from the Ponceau S solution and rinsed with deionised water to 

destain until bands of proteins were visible and the background was clear. The position of the 

constituent proteins of the molecular weight marker and/or the protein of interest was marked 

and the membrane was washed with several changes of NCP to completely remove the stain. 

Now the membrane carrying the transferred proteins was used for immunodetection of 

specific protein. 

Ponceau S solution: Ponceau S concentrate (Sigma): 

1 ml Ponceau S concentrate (Sigma) 2% w/v Ponceau S in 30% w/v TCA 

19 ml distilled H2O and 30% w/v sulfosalicylic acid 

 

2.3.14 Immunodetection of membrane-bound proteins 

The western blot was immersed in blocking buffer (1x NCP) and the blocking was performed 

with gentle agitation either for overnight at 4˚C or for 2-3 h at room temperature with several 

changes of 1x NCP. After blocking, the blot was incubated at room temperature with gentle 

agitation with either commercially available primary antibodies at a proper dilution (in 1x 

NCP) for 1-2 h, or hybridoma-supernatant for overnight. After incubation with primary 

antibody, the blot was washed 5-6 times with 1x NCP at room temperature for 5 min each 

with repeated agitation. Following washings, the blot was incubated for 1 h at room 

temperature with a proper dilution (in 1x NCP) of the enzyme conjugated secondary antibody 

directed against the primary antibody. The secondary antibody was conjugated with either 

Horseradish peroxidase (HRP) or alkaline phosphatase (AP). After incubation with a 

secondary antibody, the blot was washed as described above. After several washings, the 

substrate reaction was carried out depending upon the enzyme coupled to the secondary 

antibody. Enzymatic chemi-luminescence (ECL) detection system was used for blots 

incubated with HRP-conjugated secondary antibody, whereas the BCIP/NBT colour 

development substrate reaction was used for blots incubated with AP-conjugated secondary 

antibody.  

10x NCP-Buffer (pH 8.0) 

12.1 g Tris/HCl 

87.0 g NaCl 

5.0 ml Tween 20 
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2.0 g sodium azide 

 

2.3.15 Enzymatic chemiluminescence (ECL) detection system 

The blot was incubated in ECL-detection-solution for 1-2 min and then wrapped in a saran 

wrap after removing the excess ECL-detection-solution. Now an X-ray film was exposed to 

the wrapped membrane for 1 to 30 min and the film was developed to observe the 

immunolabelled protein. 

ECL-detection-solution: 

2 ml 1 M Tris/HCl, pH 8.0 

200 µl 250 mM 3-aminonaphthylhydrazide in DMSO 

89 µl 90 mM p-Coumaric acid in DMSO 

18 ml deionised H2O 

6.1 µl 30% H2O2 (added just before using) 

 

2.3.16 BCIP/NBT colour development substrate reaction 

The blot was developed using 5-bromo-4-chloro-3-indolyl-phosphate (BCIP) as a substrate 

and nitro blue tetrazolium (NBT) as a colour indicator. The blot was incubated in 10 ml of 

BCIP/NBT substrate solution at room temperature with gentle agitation for 5 min or until 

sufficient colour development has occurred. The reaction was stopped by washing the 

membrane several times with deionised water and the membrane was allowed to dry on a 

piece of blotting paper. 

BCIP/NBT substrate solution: 

66 µl 50mg/ml NBT (Promega) 

33 µl 50mg/ml BCIP (Promega) 

10 ml 0.1M Na2CO3, pH 10.0 

Molecular weight standard marker: 

LMW-Marker (Pharmacia) (kDa): 94; 67; 43; 30; 24; 20.1; 14.4 

 

2.4 Cell culture methods 

 

Various adherent cell lines were used for immunofluorescence and western blotting analysis. 

Trypsin was used to detach cells from the plates when passaging subconfluent cultures and to 

harvest the cells. 
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2.4.1 Preparation of mouse embryonic cardiomyocytes 
 
A pregnant mice was sacrificed by cervical dislocation,abdomen was dissected & the embryos 

were taken out into a petridish with sterile filtered ADS buffer . Heart was taken out from 

each embryo & only the ventricles were retained discarding the atrium.These ventricles were 

again rinced in ADS buffer to get rid of the blood & was  taken into  an eppendorf tube 

,minced into small bits & was digested with 1ml enzyme solution containing 1mg/ml 

Worthington collagenase and 1mg/ml sigma porcine pancreatin in ADS buffer for 15 minutes 

at 37 degrees. Then the mixture was triturated with a pipette tip, the supernatent was taken 

into a 15ml falcon tube with 5 ml DMEM medium containing 10% FBS & 1% 

Penicillin/stryptomycin . Again the above step was repeated for the residue & the supernatent 

was collected into 5ml medium.The third time only the enzyme solution was added to the 

residue & was triturated several times ,the whole mixture was taken into another falcon tube 

containing 5 ml medium.All the 3 falcon tubes were centrifuged for 5 mins at 700  RPM  at 

room temperature.The supernatant was discarded & the pellet in each tube was resuspended in 

1 ml medium & transferred into 3 wells in  a well plate with coverslips coated with 0.1% 

gelatin.This was incubated for 1 hour in an incubator at 37°C with 5% CO2 . Then the cell 

suspension from each well was transferred into several wells depending on the number of 

cells & was kept in the incubator for 24hrs which facilitates the settling of 

cardiomyocytes.After 24 hrs the  cells were fixed using  2.5% paraformaldehyde & was used 

for immunostaining. 

ADS buffer contains Glucose 5.5mM, MgSO4 0.8mM, KCl 5mM, NaH2PO4 1mM, HEPES 

20mM and NaCl  116mM 

 

2.4.2 Preparation of myofibrils 

Myofibrils were prepared from adult mice strain Him. All experiments were approved by the 

Institutional Animal Care and Use Committee. 

The mice were sacrificed by cervical dislocation and the heart was removed. Papillary 

muscles were dissected from the left ventricle, skinned with 1 % v/v Triton-X-100 in skinning 

solution (5 mmol/L K-phosphate pH 6.8, 5 mmol/L Na-azide, 3 mmol/L Mg-acetate, 5 

mmol/L K2EGTA, 3 mmol/L Na2ATP, 3 mmol/L MgCl2, 6 mmol/L KOH and a protease 

inhibitor cocktail) for 2 h and stored at 4 °C in the same solution without Triton-X-100. 

Myofibrillar suspensions were prepared immediately before experiments by homogenising 

skinned papillary muscles with a blender (Ultra Turrax) for 10 s at 4 °C. 
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2.4.3 Staining of myofibrils 

The myofibril suspension were centrifuged at 380x g for 4 minutes and the pellet was 

resuspended with the blocking buffer containing PBG with 10% FCS and incubated for 30 

minutes at 4˚C, again centrifuged at 380x g for 4 minutes and resuspended with primary 

antibody and incubated for an hour at 4˚C and then followed by washing with PBG thrice and 

secondary antibody was incubated for 45 minutes at 4˚C followed by washing with PBG 

thrice and then spread over a cover slip and allowed to settle down on the cover slip and then 

cover slip was fixed on to the slide using Gelvatol. 

 

2.4.4 Immunofluorescence 

 Cells were grown on coverslips kept on six well plates. Nicely spread cells are 

used for fixing. Two ways of fixing was used. In the first way, the cells are incubated with 3% 

paraformaldehyde for 10 minutes at room temperature, washed 3 times with PBS and 

permeabilised with 0.5% Triton X-100 for 5 minutes. In the second method, the cells are fixed 

and permeabilised by incubating with cold methanol (-200C) for 10 minutes. The fixed cells 

were then washed three times with PBS for 5 minutes followed by three times washing with 

PBG. After washing, the cells were incubated with the primary antibody for one hour. After 

one hour, the cells were washed 6 times with PBG for 5 minutes. After the washing step the 

cells were incubated with the secondary antibody, which has a fluorescent tag for one hour. 

The cells were then washed again with 3 times PBG and 3 times with PBS and embedded in 

slides using Gelvatol. For the control, the first antibody was replaced by incubation with PBG 

followed by incubation with the secondary antibody. 

 

2.4.5 Immunohistochemical staining of formalin-fixed paraffin-embedded sections 

Solutions 

Xylene 

Ethanol 

0.01 M Phosphate buffer saline (pH 7.4) 

Solution of 1% gelatine in PBS (PBG) 

10 mM Citric buffer, pH 6.0 

 The paraffin in the sections was removed by incubating the sections 3 times in xylene 

for 5 minutes. The sections were rehydrated in a series of incubation with 96% ethanol (2 

times, 5 minutes), 80% ethanol, 70% ethanol, 50% ethanol and 30% ethanol one minute each, 

and finally rinsed with water. The slides are washed with freshly prepared citrate buffer pH 
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6.0 and boiled in a microwave at 300 Watts in the same buffer for 15 to 20 minutes. The 

sections were kept again at room temperature in citrate buffer for about 20 minutes, rinsed in 

distilled water and then with PBS (3 times, 5 minutes). The sections were blocked for one 

hour using a PBG solution containing 5% horse serum. The sections were incubated with the 

primary antibody for 24 hours at 4˚C. Slides were washed 3 times for 4 minutes. Afterwards 

the sections were incubated with a secondary antibody conjugated to a fluorescent tag for one 

hour at room temperature. The sections were washed again as before and mounted in 

Gelvatol/DABCO (Sigma). 

The staining of sections with the VECTOR MOM kit (VECTOR laboratories) was 

done according to the manufacturer’s instructions. 

 

2.4.6 Microscopy 

Confocal images of immunolabelled specimens were obtained using the confocal laser 

scanning microscope TCS-SP (Leica) equipped with a 63x PL Fluotar 1.32 oil immersion 

objective. A 488-nm argon-ion laser for excitation of GFP fluorescence and a 568-nm 

krypton-ion laser for excitation of Cy3 or TRITC fluorescence were used. For simultaneous 

acquisition of GFP and Cy3 fluorescence, the green and red contributions to the emission 

signal were acquired separately using the appropriate wavelength settings for each 

photomultiplier. The images from green and red channels were independently attributed with 

colour codes and then superimposed using the accompanying software.  

 

2.5 Disruption of the cytoskeleton using various drugs 
Disruption of the actin cytoskeleton was done using Latrunculin B at a final 

concentration of 2.5 µM. The cells were treated with latrunculin B for different time 

limits,washed and fixed in 3% PFA. 

To disrupt the microtubule cytoskeleton, colchicin was dissolved in methanol and used 

at a concentration of 12.5 µM. Cells were treated with colchicin for 90 min and coverslips 

were fixed at different time points using methanol. 

 

2.5.1 Digitonin experiment 
For the permeabilization experiments with digitonin, fixed cells (3% paraformaldehyde) were 

washed in ice-cold PBS and afterwards treated with 40 µg/ml digitonin (Sigma) in PBS for 5 

minutes on ice.  
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2.6 Gene targeting protocols 
2.6.1 Target vector construction  

 The pGK-NEO vector was used as the backbone for the target vector construction. 

The 1SACTF fw and 1SACTR  rv primers were used to amplify the 5’ arm (4.5 kb, left arm) 

of the vector from IB-10 ES cell genomic DNA using the Pfu DNA polymerase (Invitrogen). 

The amplified fragment was cloned into pGK-NEO vector  at SACIIsite. The 3’arm (2.35 kb) 

of the knockout plasmid was amplified with the 1CLATF fw and 1SAL3TR rv primers using 

the Pfu DNA polymerase and the ES cell genomic DNA as a template. The fragment was first 

ligated into the pGMT-easy vector. The 3’arm was cut out from pGMT-easy vector with SmaI 

and SALI and ligated into the pGK-NEO vector using the same enzyme sites. All the 

constructs were sequenced and cloning directions and sequences were verified. The size of the 

complete target vector was 11.7 kb. 

 

2.6.2 Probe generation 

5’arm(left arm) probes 

The 500 bp two probes were generated for each arm. Two probes of around 500 bases 

each were designed for the 9.2 kb BamHI fragment. One is upstream (5’ end)of the left arm 

(4.5 kb) and the other one is (3’end)downstream of the left arm. The probes were PCR 

amplified using the specific primers (1PBAMf, 1PBAMr for the upstream probe 2PbamF, 

2PbamR for the downstream probe) and genomic DNA of ES cells as the template with the 

Advantage Taq polymerase (Clontech). The PCR-fragment was cloned into pGEM.T Easy. 

The 5’ probes could be cut out with the EcoRI enzyme respectively. 

3’ (right arm) probes  

Again two probes of length 470 bp probe was amplified from ES cell genomic DNA 

using the 1PNCOf, 1PNCOr and 2PncoF, 2Pncor for upstream and downstream probes of the 

right arm, respectively. The PCR fragment was cloned into the pGEM.T Easy. The probe 

could be cut out from the plasmid using the EcoRI.  

2.6.3 Embryonic stem cell culture 

Media and materials 

MEF media  DMEM (4500 mg/l glucose) (Sigma):  500 ml 

FCS     :    50 ml 

L-glutamine    :       6 ml 

Non-essential amino acids  :       6 ml 

Pen/Strep    :        6 ml 
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Pyruvate    :    6 ml 

 

ES cells media DMEM knockout (GIBCO)  :   500 ml 

   Knockout SR (GIBCO)  :     90 ml 

   L-glutamine    :        6 ml 

   Non-essential amino-acids  :        6 ml 

   Pen/Strep    :     10 ml 

   Pyruvate    :       6 ml 

   ESGRO (Murine LIF, 107U/ml,  

Chemicon)    :            50 µl 

   β-mercaptoethanol (Sigma) :              6 µl 

    
Selection media   : ES cell media and 400 µg/ml of G418 
 
Freezing media   : ES cell media, 30% FCS and 20% DMSO 
 
Gelatin (2%) (Sigma)   : Final concentration 0.1% (w/v) in sterile PBS  
 
Mitomycin C  (Sigma)  : Mitomycin dissolved in sterile PBS (400 µg/ml) 
 
10X Trypsin (0.5%)(GIBCO)  : Used at 2x dilution 
 
Trypsin Inhibitor (Sigma) : Dissolved in sterile PBS at a concentration of 5mg/ml            

and    used with 1:10 dilution with 2x trypsin 
 
2.6.4 MEF cell culture and Mitomycin treatment 

ES cells were grown on feeder cells called mouse embryonic fibroblasts (MEF), which 

are inactivated by the treatment with mitomycin C. MEFs are primary cells isolated from 

transgenic neomycin mouse which are resistant to G418 selection. MEFs were grown in 

normal cell culture plates for normal proliferation, but grown on 0.1% gelatin treated cell 

culture plates (NUNC) when we required to plate the ES cells on them. Once the MEFs were 

confluent, they were inactivated by the addition of 150µl of mitomycin C (400 µl/ml) for 2 

hours. Mitomycin will arrest the cell division, so there will not be any further growth of the 

cells. After 2hrs, cells were washed thoroughly with PBS to get rid of all the mitomycin C, 

trypsinised and plated onto gelatin coated cell culture plates. 

 
2.6.5 ES cell culture 
 

ES cells are cultured normally on mitotically inactive embryonic feeder cells (MEF). 

MEF cells should be mitomycin C treated and plated on gelatinised plates, one day in advance 
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of any ES cell manipulation. Confluent MEFs should be washed with PBS and supplied with 

ES cell media for at least two hours before the plating of ES cells. Frozen ES cells were 

thawed quickly by placing a vial in a water bath at 370C and the content of the vial was added 

to 10 ml ES media in a 15 ml falkon tube. The cells were centrifuged at 500 rpm for 5 min 

and the pellet was resuspended in ES cell medium and plated on feeder cells. ES cell medium 

should be changed every 24 hrs.  

 

2.6.6 ES cell transfection 

For the transfection experiment 100 µg of the targeting vector was linearised by 

digestion with the SalI enzyme. The linearisation of the plasmid was confirmed on an agarose 

gel. The DNA was then extracted with phenol:chloroform (1:1) and then with chloroform 

alone. The DNA was precipitated with 96% ethanol, pelleted at 12,000 rpm for 10 min. The 

pellet was washed with 96% ethanol and with 76% ethanol. The air dried DNA was dissolved 

in millipore water at a concentration of 1 µg/µl. 

ES cells were cultured on a 10 cm plate and on the day of transfection, the ES cell 

media was changed 2 hr prior to the transfection. After 2 hrs, the cells were washed with PBS 

and then 0.1% trypsin was added for 4 min till the cells detached from the plate. Cell clumps 

were disintegrated by slowly pipetting up and down several times and then centrifuged down 

at 500 x rpm in a Beckman CS 6R centrifuge. The cells were washed with PBS and 

resuspended in 350 µl of ES cell media and then transferred into a 4 mm transfection cuvette 

(BioRad). 50 µl of the target vector DNA was added mixed properly and kept on ice for 10 

minutes. The transfection was done at 250V and 500 µF and typically a time constant between 

8-12 was obtained. Cells were again kept on ice for 5 min and then plated into 4 mitomycin 

treated MEF 10 cm plates.  

 

2.6.7 Antibiotic selection and picking of ES cell clones 
 
  Selection of ES cells resistant to neomycin was started after 48 hrs of transfection. For 

IB10 ES cells, 350 µg/ml (total) of G418 was used for selection and for R1 cells we used 400 

µg/ml of G418. Usually on the third day, the untransfected cells will start to die. The selection 

is continued for another 7 days when small EScell colonies will start to appear. When the 

colonies grew large enough with firm boundaries, the colonies were picked using a 20 µl 

pipette under a light microscope with a 2.5X objective. On the day of picking, several 24 well 

plates plated with MEF were kept ready. Individual colonies were picked into a 96 well round 
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bottom plate along with 7 µl medium and 50 µl of 2X trypsin was added and kept for 10 min 

at 370C. The trypsin was later neutralised with 20 µl of trypsin inhibitor and mixed with 50 µl 

of ES cell media. The cells were pipetted up and down several times slowly to break the cell 

clumps. The individual colonies were then plated onto the 24 well plate kept ready with 

feeder cells thermacoal box. The cells kept for genomic DNA isolation were further grown 

and harvested when the plates became confluent. 

 

2.6.8 Genomic DNA isolation 

 

TNES    50 mM Tris (pH: 7.4) 

  100 mM EDTA (pH: 8.0) 

  400 mM NaCl 

   0.5% SDS 

6 M NaCl 

Proteinase K : 20 mg/ml  

 Trypsinised ES cells were mixed with 500 µl of TNES buffer and 10 µl of 20 mg/ml 

proteinase K solution and incubated at 55°C overnight in a shaking incubator. 150 µl of a 

saturated (5 M) NaCl solution was added the next day to salt out the proteins. The sample was 

centrifuged at high speed for 5 minutes in order to pellet the precipitated proteins. The 

genomic DNA in the supernatant was precipitated by 96% ethanol and the pellet was washed 

with 70% ethanol. The pellet was dried and the genomic DNA was resuspended in 50 µl of 10 

mM Tris/HCl, pH 7.4. 
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3 RESULTS 

3.1 Analysis of the CAP2 (Cyclase associated protein 2) cDNA of M. 

musculus 

A CAP2 cDNA has been isolated in our group by M. Leichter (2002). The CAP 2 cDNA has 

1432 nucleotides (Figure 3.1). There are two possible ATG start codons present of which the 

second one appears to be the true start codon since it is embedded in the translation initiation 

consensus sequence as defined by Kozak (1987). The CAP2 cDNA encodes 476 amino acids. 

We compared the sequence with the one of different mammalian CAP homologues using the 

FastA program to study the homology at the nucleotide level. CAP2 has 86% homology to the 

human CAP2 cDNA and 89% homology to the one of rat.  
 

1 ATGACAGACA TGGCGGGACT GATGGAGAGG CTGGAACGTG CAGTCATCCG GCTGGAGCAG CTGTCTGCAG 

71 GGTTAGACGG ACCTCCCAGA GGCTGCGGGG AAGTGAATGG TGTCAATGGA GGTGTGGCAC CGTCCGTGGA 

141 AGCTTTTGAC AAACTGATAA ACAGTATGGT GGCCGAGTTC TTAAAGAACA GCCGAGTCCT TGCTGGTGAC 

211 GTAGAGACTC ACGCAGAAAT GGTGCACGGT GCTTTCCAAG CCCAGCGTGC TTTTCTTCTC ATGGTCTCGC 

281 AGTACCAACA ACCCCAGGAG AATGAAGTTG CTGTCCTTCT GAAGCCCATA TCGGAGAAGA TTCAAGAAAT 

351 ACAGACTTTC CGAGAGAGAA ACCGGGGAAG CAACATGTTC AACCACCTCT CGGCAGTCAG TGAAAGCATC 

421 GCCGCCCTGG GCTGGATAGC CGTGTCCCCC AAACCTGGTC CTTATGTCAA GGAGATGAAC GACGCTGCCA 

491 CCTTTTACAC AAACAGGGTC CTGAAAGACT ACAAGCACAG CGATCTGCGC CACGTGGATT GGGTGAGGTC 

561 CTACCTCAAC ATCTGGAGCG AGCTGCAAGC CTACATCAGG GAACACCACA CCACAGGCCT CACTTGGAGC 

631 AAAACAGGTC CTGTGGCATC CACAGCGTCA GCGTTTTCCA TCCTCTCCTC TGGGCCTGGT CTCCCGCCAC 

701 CACCTCCACC ACCACCTCCT CCTGGGCCAC CTCCACCCTT TGAGAATGAG GATAAAAAGG AGGAGCCCTC 

771 CCCTTCTCGC TCAGCTTTAT TTGCCCAGCT CAATCAAGGA GAAGCCATCA CTAAAGGGCT CCGGCATGTC  

841 ACAGATGACA AGAAGACATA CAAGAATCCC AGCCTGAGGG CTCAAGGACA GATTCGCTCT CCAACCAAAA 

911 CTCACACGCC GAGCCCCACA TCTCCAAAAT CGAATTCTCC TCAGAAACAT ACTCCAGTGT TGGAGCTGGA 

981 AGGGAAGAAG TGGAGAGTGG AATACCAAGA GGACAGGAAT GACCTTGTCA TCTCCGAGAC CGAGCTGAAA 

1051 CAAGTGGCTT ACATTTTCAA ATGTGACAAA TCCACTCTTC AGATAAAGGG AAAAGTGAAC TCCATCACTG 

1121 TCGATAACTG CAAGAAGTTT GGCCTGGTGT TTGATCATGT GGTGGGCATT GTGGAAGTGA TCAACTCCAA 

1191 GGACATTCAG ATCCAGGTAA TGGGGAGAGT ACCAACAATC TCCATTAATA AGACAGAAGG ATGCCACCTG 

1261 TACCTCAGTG AAGATGCACT AGACTGTGAG ATCGTGAGCG CGAAGTCGTC CGAGATGAAT GTCCTGGTCC 

1331 CTCAGGATGA CGATTATAGA GAATTCCCCA TTCCCGAGCA GTTCAAGACA ATATGGGATG GCTCCAAGCT 

1401 GGTCACCGAA CCTGCAGAGA TCATGGCCTG A   

 

Figure 3.1: Sequence of the mouse CAP2 cDNA (taken form M. Leichter, 2002): The highlighted region (in 
yellow) is the Kozak consensus sequence including the start methionine codon (in bold). Red colour indicates the 
stop codon. 
 

3.2 Multiple alignment of the mouse CAP2 protein with different CAP 
homologues 
The comparison of the protein sequence of mouse CAP2 with CAP of S. cerevesiae revealed 

that it has similar features as the yeast protein. The domain structure shows that CAP2 of 

mouse has an amino terminus with a sequence which is predicted to bind to adenylyl cyclase, 
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a carboxy terminal domain which binds to actin and in between these two domains there is a 

proline rich region. Comparison of the protein sequences of mouse CAP1 and CAP2 revealed 

that CAP2 has 64% identity and 76% similarity with CAP1 (Figure 3.2 A, B). The proteins 

have 33% identity and 53% similarity to the S. cerevesiae CAP. CAP2 has 86% identity and 

has 94% similarity with its mammalian homologues like the rat and the human protein.  

 

    A 
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Figure 3.2: Sequence comparison of CAP of different species. A, Sequence comparison of CAP from mammals 
with CAP from S. cerevesiae using the multalin computer program. The darkly red supported amino acids 
represent the ranges with highest homologies. B, Sequence comparison of CAP from different organisms by 
Clustal W shown as Dendrogramme. The abbreviations are used as follows below. The accession numbers of the 
EMBL data base are also given: CV, Chlorohydra viridissima S47091, Caenorhabditis elegans AAK68198, LE 
Lentinula edodes BAA26003, Candida albicans AAD42978, Saccharomyces cerevesiae CAA86887, FR 
Schizosaccharomyces pombe CAB 41657, dd Dictyostelium discoideum, RK, Arabidopsis thaliana CAB80166, 
GH Gossypim hirsutum BAA36585, DM Drosophila  melanogaster AAD27865, HS CAP1 Homo sapiens 
Q01518, HS Homo sapiens CAP2 P40123, MM1 CAP1 Mus musculus mm, CAP2 Mus musculus, RN CAP1 
Rattus norvegicus A46584, RN CAP2 Rattus norvegicus JC4386. 
 

These results are confirmed by analysing the phylogenetic tree of the CAP family proteins 

(Figure 3.2 B, taken from M. Leichter, 2002). From the multiple alignment data analysis of 

the different protein sequences, we conclude that CAP1 and CAP2 of mouse have similarities 

to the CAP protein from different species to a very large extent. The CAP proteins of mouse 

have around 48% identity to the Dictyostelium CAP whereas the CAP protein of Arabidosis 

thaliana has around 75% identity to the mouse homologues. The degree of homology between 

the Mouse CAP1 and CAP2 varies within the regions of both the sequences. Comparison 

studies reveal that homology between the mouse CAP1 and CAP2 is slightly higher in the C-

terminal region (~74%) than in the middle region (~ 65%). The N-terminal region has less 
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homology (~55%), which makes CAP2 more variable in the N-terminal region as compared 

to that of mouse CAP1.  

  3.3 Transcription of the CAP2 gene 
 
RNA from different tissues of 8 weeks old mice (Balb/c) and from different mouse cell lines 

was isolated and northern blot analysis was performed using a 32P labelled CAP2 specific 

probe of 634 bp derived from the N-terminus of the CAP2 cDNA. Transcripts of 3 kb and 3.5 

kb in length were detected in a limited number of tissues agreeing with the data obtained for 

rat (Swiston et al., 1995). The tissues expressing CAP2 were muscle, testis and heart whereas 

the CAP2 transcript was not detected in brain, spleen, liver, kidney and lungs (Figure 3.3) 

Northern blots were also performed with RNA isolated from the following mouse cell lines: 

Neuroblastoma (N2A), fibroblast (C3H10T1/2) and myoblast (C2F3). No transcripts were 

detected. PCR analysis using CAP2 specific primers on RT-PCR products also resulted in no 

amplification of a PCR product. The data were generated in collaboration with M. Leichter 

(2002). Taken together, we were not able to detect signals in the majority of the tissues and in 

the cell lines unlike the results obtained for CAP1, which was found in most of the tissues and 

in most of the cell lines. 

 

 
Figure 3.3: Northern blot analysis of CAP2 in different tissues. 20 µg of RNA of different tissues were 
separated on a 1% formaldehyde-agarose gel, under denaturing conditions transferred on to a  nitrocellulose 
membrane, followed by hybridisation with a CAP2 specific N-terminal probe (1-634). The arrowheads indicates 
the position of the 28s and 16s ribosomal RNA. 
 
 
 3.4 Generation of polyclonal antibodies specific for CAP2 
 
For investigation of CAP2 at the protein level and to study its biochemical function we 

generated polyclonal antibodies against the N-terminal region of mouse CAP2. This region 

was chosen because of lesser homology with CAP1. A 23 kDa polypeptide (amino acids 1-

207) was expressed in the expression vector pQE-3 resulting in a His-tagged fusion protein, 
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the his-tag being located at the amino terminus. The recombinant protein was extracted using 

8M urea, separated by SDS-PAGE (15 % polyacrylamide) electroeluted from the gel and used 

for the immunization of rabbits (Figure 3.4). Serum was collected at 60, 90, 120, 150, 180 and 

210 days, respectively, and analysed by western blotting against total homogenate of E. coli 

strain DH5� expressing the recombinant protein (Figure 3.3). 

 
Figure 3.4: Expression of N-terminal CAP2 protein in E coli and western blot analysis using polyclonal 
antibodies raised against the N-terminal CAP2 polypeptide. A: The pQE30 plasmid containing N-terminal 
CAP2 sequences was transformed into E. coli DH5α cells. Protein expression was induced by addition of 1 mM 
IPTG. Aliquots from uninduced cells and induced cells for 4 hours at 37˚C were resolved in 10 % SDS 
polyacrylamide gels and the proteins stained with Coomassie blue. The arrow indicates the position of the 
recombinant protein. B: The induced recombinant protein was resolved on 10% SDS polyacrylamide gel and 
transferred onto a nitrocellulose membrane by semidry blotting, the blot was incubated with polyclonal 
antibodies 1:5000 followed by incubation with horseradish peroxidase coupled secondary anti rabbit antibody. 
Detection was done with the ECL detection system. A 23 kDa protein was recognised (arrow) corresponding to 
the recombinant protein and a band of lower molecular weight, which might be a breakdown product.  
 
The signal was detected at the expected size of the recombinant protein indicating that the 

CAP2 antibodies recognize the His tagged N-terminal CAP2 protein. 

 
3.5 Characterization of the CAP2 antibodies 
 
As CAP2 and CAP1 show a high homology we next tested the specificity of the antibodies for 

CAP2. Towards that we generated full length CAP2 fused with a Myc tag at its C-terminus 

and a full length CAP2 GFP fusion protein where GFP was located at the N-terminus of 

CAP2. To test for a cross-reaction with CAP1 we made use of a GFP-CAP1 construct 

generated by M Leichter (2002). The corresponding plasmids were transfected into HEK 293 

cells, a human embryonic kidney cell line. A day after the transfection the cell homogenates 

were prepared and used for western blot analysis. The CAP2 antibodies recognised the full-

length CAP2 Myc and GFP fusion proteins, however, they did not react with GFP-CAP1 
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(Figure 3.4 A lane 5). The antibodies were specific for the mouse CAP2 protein and also seem 

to recognise human CAP2 as taken from Figure 3.5 A lane 2, where a faint signal was 

detected in the whole cell homogenate of HEK 293. The blot was stripped and re-probed with 

GFP specific monoclonal antibody K3-184-2 to confirm the expression of fusion protein 

GFP-CAP2 and GFP-CAP1, respectively. 

 
 
Figure 3.5: Western blot analysis showing the specificity of the CAP2 antibodies. A: Homogenates of HEK 
293 cells expressing Myc-tagged CAP2, GFP-CAP2, GFP-CAP1, GFP-CAP2 and Myc-CAP1 (co transfected) 
and HEK 293 homogenate alone were separated in a 12 % SDS polyacrylamide gel and transferred onto a 
nitrocellulose membrane by semidry blotting. The blot was incubated with the polyclonal CAP2 antiserum 
(1:5000) detection was done using the ECL system and a secondary anti rabbit antibody conjugated with 
peroxidase. The CAP2 antiserum  recognised full length CAP2 fusions with Myc- and GFP-tags as seen in lanes 
1 and 3, respectively. The CAP2 antibodies were found to be specific for CAP2, as they did not recognise GFP-
CAP1 in lane 5. B: The blot was stripped and reprobed with GFP-specific mAb K3-184-2 recognising the GFP 
fusion proteins of CAP2 and CAP1, respectively. As both GFP CAP2 in lane3 and GFP CAP1 in lane 5 were 
recognised by the GFP antibody indicating that both the fusion proteins were expressed. C: Nitrocellulose 
membrane stained with Ponceau. The band indicated by the arrow acts as a loading control.  
 

The expression of GFP-CAP2 and GFP CAP1 was confirmed, as we were able to see the 

signals at the expected sizes of these proteins (Figure 3.5 B). The bands indicated by the 
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arrowhead in figure 3.5 C act as a measure for equal loading in the PonceauS stained blot. As 

we confirmed the specificity of our antibodies for CAP2 recognising only CAP2 but not 

CAP1 and also slightly cross-reacting with human CAP2, we searched for cell lines from 

human and rat origins. For these studies we used affinity purified antibodies. This purification 

step was carried out using the recombinant His-tagged CAP2, which we immobilised onto a 

PVDF membrane. The eluted antibodies were used for all subsequent studies including 

western blotting, immunoprecipitation, immunofluorescence and immunohistochemistry.  

 

3.6 CAP2 over-expression studies in HEK 293 cells 
CAP2 is expressed only in a limited amount of tissues and cells. For an initial study of its 

subcellular localisation we expressed N- and C-terminally modified CAP2 carrying a Myc- or 

GFP-tag in HEK 293 cells. One day after the transfection the cells were fixed with 3 % 

paraformaldehyde or a methanol-acetone mixture and labelled with specific antibodies.  

 
Figure 3.6: Subcellular localisation of GFP-CAP2 in HEK 293 cells. GFP-CAP2 expressing HEK 293 cells 
(A) were fixed with paraformaldehyde, permeabilised with 0.5% Triton X-100 and labelled with TRITC–
phalloidin for the detection of F-actin (B). The GFP-CAP2 expression I shown in (A), the overlay in C. The 
picture was taken using a confocal microscope.  
 
GFP-CAP2 is diffusely present in the cytosol and does not colocalise with F-actin (Figure 

3.6). This contrasts with findings obtained in other organisms. In budding yeast and 

Dictyostelium Srv2/CAP localises to the cortical actin cytoskeleton (Freeman et al., 1996, 

Noegel et al., 1999) and studies with polyclonal antibodies and tagged versions of CAP1 

showed that it is present in the F-actin rich cortical regions in C3H-2K fibroblasts (Moriyama 

and Yahara 2002; Korte 2004). For CAP2, we observed a diffuse cytosolic staining also for 

Myc-tagged CAP2 in indirect immunofluorescence analysis with affinity purified CAP2 

antibodies, which were detected with an anti-rabbit IgG, secondary antibody conjugated with 

Alexa 568. These results were similar to the findings reported by M. Leichter (2002). 
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3.7 CAP2 interacts with CAP1 
Earlier studies on CAP suggested that CAP interacts with actin (Amberg et al., 1995; Freeman 

et al., 1995) and that human CAP2 interacts with human CAP1 (Hubberstey et al., 1996). We 

therefore explored the possible interaction of mouse CAP2 with other molecules or with itself 

making again use of GFP-CAP1 and Myc-CAP2 and transiently expressed these proteins in 

HEK 293 cells by cotransfecting the corresponding plasmids.  

 
 
Figure 3.7: Coimmunoprecipitation and co localisation of GFP-CAP1 and Myc-CAP2: A: Western blot 
analysis of the immunoprecipitate beads  (same as lane 3 in panel B) with mAb K3-184-2. B: Western blot 
analysis. A cell homogenate from HEK 293 cells transiently expressing GFP-CAP1 and Myc-CAP2 was 
incubated with mAb K3-184-2 specific for GFP, followed by incubation with protein A agarose beads. The 
immunoprecipitate was separated on a 12% SDS polyacrylamide gel, blotted to a nitrocellulose membrane and 
incubated with the CAP2 specific polyclonal antibodies. Detection was with enhanced chemiluminescence using 
a horseradish coupled secondary antibody. Upper panel, lane 1, protein A agarose beads + mAb K3-184-2. Lane 
2, protein A agarose beads incubated with a lysate derived from cells expressing GFP-CAP1 and Myc-CAP2 
without antibodies added. Lane 3, protein A agarose beads + mAb K3-184-2 incubated with lysates from 
HEK293 cells co expressing GFP-CAP1 and Myc-CAP2. The resulting blot was probed with CAP2-specific 
polyclonal antibodies. The signal detected in lane 3 indicates that Myc-CAP2 coprecipitates with GFP-CAP1. 
The lower panel shows the corresponding Coomassie stained SDS-polyacrylamide gel. The arrows point to the 
immunoglobulin heavy chain (HC) and lower chain (LC). B-D: Immunofluorescence studies showing the GFP-
CAP1 (B) and Myc-CAP2 (C) distribution. Cells were fixed with 3% paraformaldehyde and permeabilised with 
0.5 % Triton X-100. Myc-CAP2 was detected with the polyclonal CAP2-specific antibody. Detection was with 
anti- rabbit antibody conjugated to Alexa 568. (D) The overlay of the GFP-CAP1 and the Myc-CAP2 shows 
complete colocalisation in the cytosol. CAP1 in addition is also present in cell extensions. 
 

In immunoprecipitation experiments with the GFP-specific mAb K3-184-2 Myc-CAP2 could 

be precipitated (Figure 3.6 B). We could see that GFP-CAP1 also precipitated (Figure 3.7 A).  

Control experiments showed that the pull down of Myc-CAP2 depended on the addition of 

the GFP antibody. This result determines that interactions are conserved in mammals as it has 
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been already shown that human CAP2 binds to human CAP1 (Hubberstey et al., 1996). 

Moreover we have done immunofluorescence studies with the same cells to support the 

findings at this level as well. In coimmunofluorescence studies GFP-CAP1 and the Myc-

CAP2 show an overlap in the cytosol, whereas cortical staining was only observed for CAP1. 

3.8 Analysis of CAP2 distribution in tissues and cell lines by western 
blotting 
In Northern blot analysis we had detected a CAP2 signal only in some tissues (Section 3.3). 

Here we screened various tissues and a number of commonly used mouse, rat and human cell 

lines for the expression of CAP2 by western blots. We found the expression of CAP2 in only 

four organs, namely heart, brain, skeletal muscle and skin (Figure 3.8 A). Heart, brain and 

skeletal muscle showed a strong signal, whereas the amounts of CAP2 in skin were lower. 

The band obtained in Figure 3.7 results from loading 5 times higher amounts of protein for 

skin. The expression of CAP2 in heart and skeletal muscle is in line with the results from the 

northern blot analysis, whereas there was no signal obtained in case of brain and skin.  

 
 
Figure 3.8: Presence of CAP2 in tissues and in Pam212 cells. A: homogenates of heart, 
brain, skin and skeletal muscle tissue were loaded onto 12% SDS poly acrylamide gels and 
transferred onto nitrocellulose by semidry blotting. The blot was incubated with polyclonal 
CAP2 antibodies, and, using the ECL detection system, probed with a secondary anti rabbit 
antibody conjugated to peroxidase. The CAP2 antibodies recognise a 55 kDa size protein, 
which corresponds in size to CAP2. Here for the skin lysate 5 times more was loaded than for 
the other tissue lysates. B: Cell homogenates from HEK 293 cells expressing Myc-CAP2 as a 
positive control, HEK 293, A431 (Human keratinocytes) and PAM212 (mouse keratinocytes) 
were separated on a 12 % SDS polyacrylamide gel and transferred onto a nitrocellulose 
membrane and probed with CAP2 antibodies, using the ECL detection system for detection 
with a secondary anti rabbit antibody conjugated with peroxidase. A 55 kDa band could be 
seen in Myc-CAP2 expressing HEK293 cells, which acted as a positive control, and in the 
mouse keratinocytes PAM212 cell line. A faint band was seen in the HEK 293 cell line, 
which confirms that the mCAP2 antibodies recognise the human protein. 
 
 
Similarly, Bertling et al. (2004) have shown a strong expression of CAP2 in heart, brain and 

skeletal muscle and very weak expression in lung, liver and testis. On the contrary we were 

not able to detect any signal in liver and testis but a very weak signal was seen in lungs. The 
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expression of CAP2 was comparatively higher than the expression of CAP1 in heart, brain, 

skeletal muscle and skin tissues (Korte 2004). In case of the cell lines, we were able to detect 

a (strong) expression of CAP2 only in PAM212 cells, a mouse keratinocyte cell line. We were 

not able to detect a signal for CAP2 in any other mouse cell lines. As we already reported a 

very weak signal in HEK 293 cells, which is a clear indication that the CAP2 antibody also 

recognises the Human CAP2, we checked the CAP2 expression in A431 cells, which are 

derived from human keratinocytes.  Surprisingly, we did not observe any signal for CAP2 in 

A431 cells. We also tested the rat VSM cell line which is derived from rat vascular smooth 

muscle where a very faint signal was detected (data not shown), which indicates that the 

CAP2 antibodies cross react with rat CAP2 as well. Myc CAP2 expressed in HEK 293 cells 

was used as a positive control. From these results we can clearly say that the expression 

pattern of CAP2 and CAP1 are very different in case of both tissues and cell lines since CAP1 

is expressed in almost all the cell lines and tissues unlike CAP2, which is expressed only in 

the PAM212 cell line and a limited number of tissues.   

 

3.9 Search for binding partners of CAP2  
Using the recombinant His-tagged N-terminus of CAP2 and the polyclonal antibodies we 

initiated a search for binding partners. The his-tagged fusion protein was isolated from a 

bacterial lysate by incubation of the 12 K supernatant, which contained reduced but sufficient 

amounts of the recombinant protein significant, with Ni-NTA agarose beads. The beads were 

then incubated with lysates of skin, heart and brain tissues. For control we used the N-

terminal actin binding domain of Enaptin. Both samples were treated similarly as described in 

Materials and methods and the proteins bound to the beads loaded onto a 3% to 15% gradient 

SDS poly acrylamide gel and the proteins stained with Coomassie blue (Figure 3.9). The band 

indicated by an arrow (Figure 3.9) was excised and analysed by MALDI-TOF and identified 

as alkali myosin light chain (MLC3 nm), non-muscle isoform. The myosin molecule consists 

of 2 heavy chains and 4 associated light chains. Two of the light chains are regulatory light 

chains (RLC) encoded by the MYL2 gene and 2 are alkali light chains, or essential light 

chains (ELC), encoded by the MYL3 gene. The light chains stabilise the long alpha-helical 

neck of the myosin head. Distinct isoforms of the myosin alkali light chains are present in 

different tissues. Their function in striated muscle and in other tissues is only partially 

understood (Poetter et al., 1996) 
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Figure 3.9: N-CAP2 binds to alkali myosin light chain (MLC3 nm) in skin. The Ni-NTa-agarose beads 
loaded with the N-terminal polypeptide of CAP (1) or Enaptin (2) were incubated with lysates of skin, heart and 
brain, respectively, and separated on a 3% to 15% gradient SDS polyacrylamide gel and stained with Coomassie 
blue. The lane 1 from all the lysates represents the pull down with His tagged N-CAP2 bound to Ni-NTa agarose 
beads and the lane 2 represents the control (His tagged N-ABD of Enaptin bound to Ni-NTa agarose beads). The 
band in skin indicated by the arrow was absent from the control. It was excised and analysed by MALDI-TOF. 
The protein was identified as alkali myosin light chain.   
 
3.10 CAP2 localisation in skeletal muscle 
Western and northern blot analysis indicates an expression of CAP2 in skeletal muscle. We 

tried to support these findings also by immunofluorescence microscopy and stained sections 

of human and rat skeletal muscle.  

Skeletal muscle, as its name implies, is the muscle attached to the skeleton. It is also called 

striated muscle. Seen from the side under the microscope, skeletal muscle fibers show a 

pattern of cross banding, which gives rise to the other name: striated muscle. The striated 

appearance of the muscle fiber is created by a pattern of alternating dark A bands and light I 

bands .The A bands are bisected by the H zone The I bands are bisected by the Z line (Figure 

3.10).  

Frozen human and rat muscle sections were obtained from Dr. R. Schröder, University 

Hospital, Bonn, and stained with the CAP2 antibodies. These sections were also costained 

with desmin, a marker protein for skeletal muscle, which is the main intermediate filament 

protein found in skeletal and heart muscle and gives a characteristic staining pattern because it 

is usually confined to the Z-disc. Surprisingly we observed a striated pattern for CAP2 

distribution (Figure 3.11 A, D, G and J) similar to the striated pattern obtained for desmin 

(Figure 3.11 B, E, H and K) in both human and rat specimens, respectively. The overlay 
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images (Figure 3.11 C, F, I and l) for both proteins indicate however that CAP2 does not 

colocalise with the desmin and therefore should not be present in the Z-disc. The striated 

staining of CAP2 is rather in-between the Z-disc indicating CAP2 might be present in the 

neighbouring A-band, I-band or M-band in the skeletal muscle sections of both human and 

rat. 

 
Figure 3.10: Schematic diagram representing the sarcomere and depicting the position of Z-line, I-band 
and A-band (taken from users.rcn.com/.../ BiologyPages/M/Muscles.html).  
 

 
 
Figure 3.11: Localization of CAP2 in skeletal muscle. Cryosections of human and rat muscle were fixed with 
3% paraformaldehyde and permeabilised with 0.5% Triton X-100. Adult human and rat muscle sections were 
stained with CAP2 specific antibodies and costained with desmin specific monoclonal antibodies, respectively. 
A-F (human muscle) and G-L (rat muscle) represents a comparison of CAP2 and desmin distribution in human 
and rat skeletal muscle. A and D for human, G and J for rat shows CAP2 staining; B and E (human), H and K 
(rat) shows desmin staining; C and F (human), I and L (rat) shows the overlay respectively. CAP2 was detected 
with anti-rabbit IgG secondary antibody conjugated with Alexa 568 and desmin by anti-mouse IgG secondary 
antibody tagged with Alexa 488. CAP2 does not colocalise with desmin, indicating that CAP2 is not present in 
the Z-disc region. Confocal microscopy was used to take these images. 
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3.11 CAP2 localisation in mouse skin 
The skin is considered the largest and the heaviest organ of the body occupying 16% of the 

total body weight and having many different functions. It functions in thermoregulation, 

protection, metabolic functions and sensation. The skin is divided into two main regions, the 

epidermis and the dermis (Figure 3.12), each providing a distinct role to the overall function 

of the skin. The dermis is attached to an underlying hypodermis. The epidermis is a 

multilayered structure (stratified epithelium), which renews itself continuously by cell 

division in its deepest layer, the basal layer. The principal cell type, the epidermal cell, is most 

commonly referred to as a keratinocyte. The cells produced by cell division in the basal layer 

constitute the prickle cell layer and as they ascend towards the surface they undergo a process 

known as keratinisation, which involves the synthesis of the fibrous protein keratin. The basal 

layer is composed of columnar cells, which are anchored to a basement membrane lying 

between the epidermis and dermis. The basement membrane is a multilayered structure from 

which anchoring fibrils extend into the superficial dermis. Interspersed amongst the basal 

cells are melanocytes, large dendritic cells responsible for melanin pigment production. Basal 

cells are mitotically active, but they loose this potential when they detach from the basement 

membrane and enter the outward path towards the skin surface. The layer of cells directly 

contacting the basement membrane, termed the basal layer, contains proliferating cells. 

During differentiation the epithelial cells undergo apoptosis and loose their nuclei and become 

the dead layer of the epidermis, the stratum corneum (Alonso and Fuchs, 2003). 

 
Figure 3.12: A diagram showing a cross section of skin, illustrating its overall histology (taken from 
http://www.enchantedlearning.com/subjects/anatomy/skin/). 
 

  



Results__________________________________________________________________
_ 

60

 

 
 
Figure 3.13: Immunofluorescence and histological studies of CAP2 in skin. A paraffin section of a mouse 
skin was deparaffinised using xylol and ethanol of varying percentage. The Section was incubated with CAP2 
specific antibodies and DAPI for nuclei staining .The CAP2 antibodies were detected by anti-rabbit IgG 
secondary antibody conjugated to Alexa 568 (panel A-I images were taken by confocal microscopy). For the 
histological staining (J-L) CAP2 antibodies were detected by biotin labelled anti-rabbit secondary antibody after 
quenching the peroxidase activity and blocking. Peroxidase is conjugated with an avidin-biotin system and DAB 
is used as the substrate for peroxidase. 
 
The confocal images of skin staining revealed that CAP2 is present in the epidermal layer of 

the skin (Figure 3.13 A, B and C), panel B was stained for nuclei with DAPI, C shows the 

overlay of CAP2 and DAPI. These images also indicate that CAP2 is localised in the basal 

layer of the epidermis, where keratinocytes are present. The keratinocytes differentiate and 

move to the outer layers to form a dead layer, which is devoid of nuclei as can be clearly seen 

in panel B. The arrowheads in panel C point to cells in which CAP2 staining was also seen in 

the nucleus. CAP2 staining was furthermore observed strongly in the hair follicle regions, 

(Figure 3.13 D, E and F). D, CAP2 staining, E, DAPI and F, overlay. The higher 

magnification of a hair follicle shows that at certain places CAP2 is partially colocalising with 
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DAPI, which is indicated by the arrowheads (panel F). Panels G, H and I are the overview 

images of CAP2 staining in skin wherein the CAP2 antibodies stain the basal layer of the 

epidermis and the hair follicle regions in the lower magnification. The histochemical staining 

shown in panels J, K and L confirms the staining observed with the confocal images. CAP2 is 

clearly localised in keratinocytes and in the hair follicle (panel L) and CAP2 was stained 

positively for the sebaceous glands (shown by arrows in panel K) and in the migration tongue 

of the skin. It showed mostly a cytosolic distribution of CAP2. 

 

3.12 Expression of CAP2 in brain 
Our western blot studies showed a strong expression of CAP2 in brain. We therefore planned 

a more detailed examination of CAP2 in the brain. Towards this we used paraffin embedded 

sagittal sections from 20 days old mice. We stained these sections with the CAP2 antibodies 

and detected the binding by a secondary anti-rabbit IgG antibody conjugated to Alexa 568. 

 
Figure 3.14: Schematic diagram representing the different parts of the brain (taken from 
www.biologycorner.com/ bio3/notes-nervous.html). 
 
In the brain, the neuronal cell bodies comprising the grey matter become clustered into groups 

called nuclei (singular - nucleus). Nuclei in the central nervous system are analogous to 

ganglia in the peripheral nervous system. A nucleus is composed of clusters of neuronal cell 

bodies and should not be confused with the nucleus contained within each cell. In some parts 

of the brain, neurons and neuroglia differentiating from the mantle layer of the original neural 

tube migrate outwards through the white matter (myelinated axons) of the marginal layer 

where they form a peripheral, multi-layered covering of grey matter. This outer covering of 

grey matter on the cerebral hemispheres is called the cerebral cortex. The cerebellum also has 

a cerebellar cortex, which develops in a similar way (Figure 3.14). 
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Figure 3.15: CAP2 distribution in cerebrum, cerebellum and hippocampus. Saggital sections of paraffin 
embedded 20 days old and new born mouse brain were deparafinised and hydrated using xylol and varying 
percentage of ethanol. The sections were incubated with the CAP2 specific antibodies and afterwards with FITC 
conjugated anti-rabbit secondary antibodies along with DAPI. A-D shows the cerebellum straining. E-G shows 
the staining of hippocampus and H-K shows the staining of CAP2 in newborn cerebrum. The first two panels 
give an overview and were taken from http://www.uoguelph.ca/zoology/devobio/miller/). 
 
In Figure 3.15 the first two panels show a sagittal section through a mouse cerebellum. In the 

first panel the outer portion is composed of grey matter in two layers: the molecular layer 

(outer, lighter) and the granular layer (inner, dark). The white matter is seen in the middle of 

the cerebellum. The second panel is a high power image of the cortical area seen in the 

magenta box on the image to the left. From left to right we see the outer molecular layer 

(ML), the single row of Purkinje cells (P), the inner granular layer (GL) and a thin strip of the 

white matter (WM) occupying the central portion of the cerebellum. Purkinje cells are large 

neuronal cells with numerous dendrites, which are characteristic of the cerebellar cortex. The 

panels A and B show the staining of CAP2 in the adult cerebellum wherein CAP2 is localized 

to the molecular layer, CAP2 is also present in the Purkinje cells, which is indicated by the 

arrows whereas CAP1 is absent from the Purkinje cells (Korte, 2004). The arrowhead shows 
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the staining of CAP2 in the thin strip of the white matter. The panel C shows the DAPI 

staining and panel D shows the overlay. The panels E-G represent the staining of the adult 

hippocampus, where strong expression of CAP2 was observed in the hippocampal neurons in 

and around the nucleus, which is indicated by the arrow in panel E. A moderate expression of 

CAP2 was observed in the newborn cerebrum shown in the panels H-K. The CAP2 

expression is migrating outwards from the grey matter towards the cerebrum cortex. The 

arrow in the panel H indicated the direction of migration. This result reveals that CAP2 might 

play a role in the differentiation of neuronal glia cells.  

 

 3.13 Analysis of expression of CAP2 in different parts of the adult and 
newborn mouse brain by western blotting  
As our immunofluorescence studies suggested that CAP2 is present all over the brain, we 

tried to confirm these results by conventional western blots. Homogenates of different parts of 

the adult (30 days old) and newborn brain were obtained from Dr. Andreas Hasse. These 

homogenates were separated on 12% SDS polyacrylamide gels and transferred onto 

nitrocellulose membrane by semidry blotting. The CAP2 antibodies recognised a 55 kDa 

band, which corresponds to CAP2. 

 
Figure 3.16: CAP2 expression in different parts of adult and newborn mouse brain. A: The homogenates of 
different parts of adult brain were loaded onto 12 % SDS polyacrylamide gels, the proteins separated and 
transferred onto nitrocellulose by semidry blotting. The blot was incubated with polyclonal CAP2 specific 
antibodies and a monoclonal anti Coronin 3 antibody for control. The ECL detection system was used to reveal 
binding of the antibodies. The CAP2 antibodies recognise the 55 kDa CAP2. B: The homogenates of different 
parts of newborn brain were loaded onto a 12 % SDS polyacrylamide gel and the proteins transferred onto 
nitrocellulose membrane by semidry blotting. The blot was incubated with polyclonal CAP2 specific antibody 
and a monoclonal anti Tubulin antibody for loading control. As positive control for CAP2 a lysate from HEK 
293 cells expressing Myc-CAP2 was also loaded. The ECL detection system was used to detect binding of the 
antibodies.  
 
As expected we observed the expression of CAP2 throughout the brain. (Figure 3.16 A). The 

expression levels were comparable in all parts of the adult brain except for a slightly reduced 
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expression in the olfactory bulb. The blot was probed for coronin 3 for which the expression 

pattern has been established (Hasse et al., in preparation). The result is also comparable to the 

one obtained for which is also expressed uniformly in all parts of the brain (Korte, 2004). In 

contrast, Bertling et al. (2004) observed a strong expression of CAP2 in striatum, thalamus 

and in cortex. In the newborn mice the expression pattern of CAP2 was different (Figure 3.16 

B). We were able to detect the protein only in the cerebellum and in the brain stem, agreeing 

with the western blot data.  

 

3.14 Localisation of CAP2 in rat primary cerebellar cultures 
In the immunofluorescence images of the brain we observed strong staining of CAP2 in the 

white matter, where myelinated axons are present, in cerebellum and in Purkinje cells. These 

results led us to investigate the expression of CAP2 in primary cerebellar cultures isolated 

from rat brain. The cerebellar cultures and the staining were carried out in collaboration with 

Dr. J. Kappler, Institute of Physiological Chemistry, University of Bonn). 

 
Figure 3.17: Localisation of CAP2 in primary cerebellar culture. Primary cerebellar cells were fixed with 
paraformaldehyde, permeabilised with 0.5% Triton X-100 and stained with CAP2 specific antibodies and then 
probed with secondary anti rabbit IgG antibody conjugated to Cy2. The cells were also stained with TRITC–
phalloidin for the detection of F-actin. Panels A and D show CAP2 straining, B and E show F-actin, C and F 
represent the overlay. These images were taken by confocal microscope. 
 
Tthe immunofluorscence images (Figure 3.17) show the presence of CAP2 in the primary 

cerebellar cells. A diffuse dotted staining of CAP2 was seen in the cytosol with an 

accumulation around the nucleus in some of the cells (Figure 3.17 A). Occasionally CAP2 

was found in the nucleus as well. The comparison with the F-actin distribution (Figure 3.17 C 

and F) showed that CAP2 partially colocalised with actin fibers at certain regions of the 

cortex. 
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3.15 Expression of CAP2 in rat primary glia cells 

As we observed CAP2 staining in the myelinated axons of the white matter in brain, we were 

tempted to check the localisation in glia cells because of its presence in the white matter. Glia 

cells are specialised cells of the nervous system whose main function is to "glue" neurons 

together. Specialised glia cells called Schwann cells secrete myelin sheaths around 

particularly long axons. Glia of the various types greatly outnumbers the actual neurons. Glia 

cells are also known as neuroglia. There are three main types of glia cells in the central 

nervous system: microglia, astrocytes, and oligodendrocytes, each of which perform different 

functions. Glia cells are specialised to support and nourish the neurons and have many 

regulatory functions. 

 
 
Figure 3.18: Localisation of CAP2 in primary glia cells.  Primary glia cells were fixed with paraformaldehyde 
and permeabilised with 0.5% Triton X-100, costained with CAP2 specific antibodies and anti GFAP antibody, 
then probed with secondary anti rabbit IgG antibody conjugated to Cy3 and secondary anti mouse IgG antibody 
conjugated to Alexa 488, respectively. The panels A, D and G show CAP2 staining, panels B, E and H show 
GFAP staining and the panel C, F and I show the overlay of CAP2 and GAFP. Confocal images are shown. 
 
The primary glia cells were isolated from the rat brain. Staining was with CAP2 specific 

antibodies and secondary anti rabbit IgG antibody conjugated to CY2, the cells were also 

costained with anti GFAP antibody detected by secondary anti mouse IgG antibody 

conjugated to Alexa 488. Glial fibrillary acidic protein (GFAP) is an intermediate-filament 

(IF) protein that is highly specific for cells of astroglial lineage. The GFAP antibody detects 
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astrocytes, Schwann cells, satellite cells, enteric glial cells and some groups of ependymal 

cells. We observed a filament like staining (Figure 3.18) for GFAP, which confirmed the 

identity with glia cells. In these glia cells we observed a strong expression of CAP2 in the 

cytoplasm as well as in the nucleus (Figure 3.18 A, D and G) indicated by the arrowheads. 

The panels B, E and H show the GFAP staining. The overlay images C, F and I show that 

CAP2 staining partially overlaps with GFAP. The nuclear staining of CAP2 was not present 

in all glia cells (Figure 3.18 G; H and I). 

 

3.16 Localization of CAP2 in the heart 
There are three layers of the heart similar to those found in the vasculature. However, these 

layers have different names, the lumenal side of the atrium, which is defined as the 

endocardium and includes the collagenous connective tissue lying just beneath the endothelial 

cells (sub-endothelial tissue). The muscular layer is defined as the myocardium and contains 

the cardiac muscle cells. The outer layer is called the epicardium and contains collagenous 

connective tissue, blood vessels, and nerve and has a mesothelial cover. The epicardium of 

the atrium does not contain an abundant supply of vessels and nerve as found in the ventricle. 

The collagenous connective tissue presents as thicker bundles of collagen fibers in the 

epicardium than in the endocardium.  

In heart, one of the organs showing CAP2 expression, CAP2 was observed in sarcomeres 

(Figure 3. 20 B) and in the endothelial cells as indicated by arrows (Figure 3. 20 A). 

 
Figure 3.19: Section  of the cardiac muscle (taken from http://users.rcn.com /jkimball.ma.ultranet 
/biologypages/M/muscles.html) 
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Figure 3.20: Expression of CAP2 in the heart: Heart sections were deparafinised and hydrated using xylol and 
varying percentage of ethanol. The sections were incubated with the CAP2 specific antibodies and afterwards 
with Alexa 568 conjugated anti-rabbit secondary antibodies along with DAPI. Panels A and B stained for CAP2 
and DAPI, panel C stained for CAP2 only. 
 
CAP2 expression was also observed in the capillary wall as indicated by arrows (Figure 3. 20 
C).  
 
3.17 Expression of the CAP2 in primary cardiomyocytes 
To investigate CAP2 expression in the heart in more detail and at a higher level, we isolated 

cardiomyocytes from embryonic mice. We used the embryos of 17 and 19 days. This part of 

the work was carried out in collaboration with Prof. Gabriele Pfitzer, Institute of Vegetative 

Physiology, University of Cologne. The cardiomyocytes were costained with CAP2 specific 

antibodies and cardiac specific Troponin I antibodies. Troponin I was used as a specific 

marker for the cardiomyocytes. We observed a strong expression of CAP2 in the nucleus as 

well as in the cytosol. The staining was of punctate nature in the cytosol and at the cortex 

(Figure 3.21). The Troponin I staining was confined to the cytosol and around the nucleus. In 

the overlay images we see a partial colocalisation of CAP2 with Troponin I. The 

colocalisation was slightly stronger in 19 days old embryonic cardiomyocytes as the 

expression of Troponin I increases with the age. In addition, CAP2 is present in the nucleus 

(Figure 3.21 A-D). 
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Figure 3.21: Expression of CAP2 in primary embryonic cardiomyocytes. Primary embryonic 
cardiomyocytes were fixed with paraformaldehyde and permeabilised with 0.5% Triton X-100, they were 
costained with CAP2 specific antibodies and a cardiac specific Troponin I antibody, then probed with a 
secondary anti rabbit IgG antibody conjugated to Alexa 568 and a secondary anti goat IgG antibody conjugated 
to FITC respectively along with DAPI. The panels A-H shows the staining of 17 days old embryonic 
cardiomyocytes and the panels I-P represents the staining of 19 days old embryonic cardiomyocytes. These 
pictures were taken by confocal microscopy. 
 
3.18 Expression of CAP2 in HL-1, a cardiomyocyte cell line 
The HL-1 cell line is derived from mouse cardiomyocytes. This cell line was a gift from Prof 

William C Claycomb, Dept of biochemistry and molecular biology, LSU, New Orleans, LA. 

Furthermore, we were screening for cell lines, which express CAP2 apart from the PAM212 

mouse keratinocytes (Figure 3.8). When HL-1 cells were stained with CAP2 antibodies and 

cardiac specific Troponin I antibody as a marker for cardiomyocytes. 

We observed CAP2 in the nucleus and in the cytosol as observed with primary 

cardiomyocytes (Figure 3.22). In most of the cells CAP2 was enriched in the nucleus (Figure 

3.22 A and E, D and H). Troponin I exhibited a diffused pattern confined to the cytosol and 

the cortex. In some of the cells the CAP2 staining was very faint in the nucleus but strong 

around the nucleus. In these cases the staining of Troponin I was also strong around the 

nucleus (Figure 3.22 I, J, K and L). 
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Figure 3.22: Localization of CAP2 in HL-1 cells. The HL-1 cells were fixed with paraformaldehyde and 
permeabilised with 0.5% Triton X-100, costained with CAP2 specific antibodies and cardiac specific Troponin I 
antibody, then probed with a secondary anti rabbit IgG antibody conjugated to Alexa 568 and secondary anti 
goat IgG antibody conjugated to FITC, respectively, along with DAPI. The panels A, E and I show the staining 
with the CAP2 antibodies, panels B, F and J shows the staining with the Troponin I antibody, Panel C, G and K, 
DAPI staining and panels D, H and L, overlay images, respectively. These pictures were taken by confocal 
microscopy. 
 

 

 

3.19 Expression of CAP2 in primary rat vascular smooth muscle cells 

(ratVSM) 
The finding of CAP2 expression in the capillary walls of the heart initiated an investigation of  
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Figure 3.23: Localization of CAP2 in primary rat VSM cells. The rat VSM cells were fixed with 
paraformaldehyde and permeabilised with 0.5% Triton X-100, were stained with CAP2 specific antibodies, then 
probed with secondary anti rabbit IgG antibody conjugated to Alexa 568 along with TRITC-Phalloidin for 
observation of F-actin and DAPI. The panels A, E and I show the CAP2 staining, panels B, F and J the TRITC-
Phalloidin staining, panels C, G and K, DAPI staining, panels D,H and L are the overlay images, respectively. 
Confocal images are shown. 
 
CAP2 expression in primary rat vascular smooth muscle cells (VSM), which we obtained 

from Dr. Evren Caglayan, Department of Inner Medicine Ι, University of Cologne. 

In the confocal images (Figure 3.23) we observed a strong enrichment of CAP2 in and around 

the nucleus and also at the cortex of the cell (Figure 3.23 A, E and I). The arrowhead indicates 

the nuclear localization and the arrows show the expression around the nucleus. The overlay 

images (figure 3.23 D, H and L) show the partial colocalisation of CAP2 with F-actin in some 

parts of the cell cortex. 

 

3.20 Expression of CAP2 in myofibrils 
As CAP2 was found in sarcomere regions of the heart and the skeletal muscle, we 

investigated the localisation of CAP2 in myofibrils in more detail. Myofibrils are cylindrical 

organelles, found within muscle cells. They represent bundles of filaments that run from one 

end of the cell to the other and are attached to the cell surface membrane at each end. The 

filaments of myofibrils, the myofilaments, consist of 2 types, thick and thin filaments. Thin 

filaments consist primarily of actin; thick filaments primarily of myosin. In striated muscle 

such as skeletal and cardiac muscle the actin and myosin filaments each have a specific and 

constant length on the order of a few micrometers, far less than the length of the elongated 

muscle cell (a few millimetres in the case of human skeletal muscle cells). The filaments are 

organised into repeated subunits along the length of the myofibril. These subunits are called 

sarcomeres. When the myofibrils were stained with CAP2 specific antibodies we observed a 

striated staining pattern confirming the expression of CAP2 in myofibrils. We were however 

not able to determine the exact localisation i.e. A, Z or M bands at this level.  
 

3.20 1 CAP2 does not localize to the A-bands in the myofibrils 
In this experiment we costained the myofibrils with CAP2 and Troponin I antibodies. 

Troponin I was chosen as an A-band specific protein. In contracted myofibrils we observed an 

overlap of both proteins. However, a clear differentiation is not possible in this case (Figure 

3.24 A-C). We therefore performed a staining of relaxed myofibrils. The images obtained 

show clearly that CAP2 and Troponin I do not colocalise (Figure 3.24 F). 
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Figure 3.24: CAP2 does not localise to A-bands in myofibrils. Myofibrils were stained with CAP2 and 
cardiac specific Troponin I antibodies, then probed with a secondary anti rabbit IgG antibody conjugated to 
Alexa 568 and secondary anti goat IgG antibody conjugated to FITC, respectively. The panels A-C show the 
staining of contracted myofibrils, panels D-F the staining of relaxed myofibrils. The images were taken by a 
confocal microscope. 
 
Thus it is clear that CAP2 is not present in the A-bands of the myofibrils. 
 
3.20 2 CAP2 does not localise to the Z-bands of the myofibrils 
To identify a possible association with the Z-band we carried out a colocalisation study using 

antibodies specific for alpha-actinin, which is highly specific for the Z-bands. Also in this 

case no colocalisation was observed (Figure 3.25 F).  

 
 

Figure 3.25: CAP2 does not localise to the Z-bands in myofibrils. Myofibrils were costained with CAP2 and 
alpha-actinin antibodies, then probed with secondary anti rabbit IgG antibody conjugated to FITC and secondary 
anti mouse IgM antibody conjugated to Alexa 568, respectively. The panels A-C, localisation of CAP2 and 
alpha-actinin in myofibrils, lower magnification; panels D-F, higher magnified images of A-C, respectively. 
Confocal microscope images are shown. 
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3.20 3 CAP2 localises to the M-bands of the myofibrils 
 
In order to probe for M-band localisation, we performed a costaining with a myomesin 

antibody. Myomesin is specifically present in the M-bands and is referred as a M-band 

protein. CAP2 was prominently present in the M bands and clearly colocalised with 

myomesin (Figure 3.26 A-C). In addition we observed a faint expression of CAP2 in between 

two M- bands, which might be the neighbouring I-bands. This part of the work was carried 

out in collaboration with Prof Gabriele Pfitzer, Institute of Vegetative Physiology, University 

of Cologne. 

 
 
Figure 3.26: CAP2 localises to the M-bands in the myofibrils. Myofibrils were costained with CAP2 specific 
antibodies and a myomesin antibody, then probed with secondary anti rabbit IgG antibody conjugated to Alexa 
568 and a secondary anti mouse IgG antibody conjugated to Alexa 488, respectively. Panel A shows the 
localisation of CAP2, B of myomesin and C represent the overlay. Confocal images are shown. 
 
3.21 Expression of CAP2 in a 16-day-old mouse embryo 
To investigate the pattern of expression of CAP2 during mouse embryogenesis, we have used 

a sagittal paraffin section of a 16-day mouse embryo. Images were taken with a fluorescent 

microscope. CAP2 is present in the pituitary cerebellar primordium of the brain, caudal lobe 

of right lung, and auricular part of the right atrium of the heart and primordium follicle of 

vibrissa, which later develop into the sensory taste buds in the tongue (Figure 3.27). In our 

western blot and the northern blot analysis CAP2 expression was not detected in lungs of the 

adult mouse, but we did observe the expression of CAP2 in heart and brain. The results 

obtained with the embryo staining were comparable with the results obtained by Bertling et 

al. (2004) where a very weak expression of CAP2 in lung and a strong expression in heart and 

brain of the mouse embryo at 17 day were reported.  
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Figure 3.27: CAP2 expression in a mouse embryo at day 16. A cryosection of the embryo was fixed with 
paraformaldehyde and permeabilised with 0.5% Triton X-100 The section was incubated with CAP2 specific 
antibody after quenching the peroxidase activity and blocking. It was then incubated with a secondary anti-rabbit 
IgG antibody conjugated to FITC. Panel A shows the mouse embryo at day 16 just depicting the different parts 
of the embryo (taken from S. Abraham, 2004); B, pituitary cerebellar primordium (brain); C, caudal lobe of right 
lung; D, auricular part of the right atrium (heart); E, primordium follicle of vibrissa (upper lip). 
 
 
3.22 Localization of CAP2 in PAM212 (mouse keratinocytes) 
 
Western blot analysis (Figure 3.8) indicated an expression of CAP2 in PAM212 cells derived 

from mouse keratinocytes. Here we studied the subcellular distribution of the protein. 
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Figure 3.28: Localization of CAP2 in PAM212 cells. PAM212 cells were fixed with paraformaldehyde and 
permeabilised with 0.5% Triton X-100, stained with CAP2 specific antibodies, then probed with a secondary anti 
rabbit IgG antibody conjugated to Alexa 568 along with DAPI. The panels A and D show the CAP2 staining, B 
and E represents the DAPI staining and C and F are the overlay images. These images were taken by confocal 
microscopy. 
 
In most of the cells a strong nuclear staining was observed (Figure 3.28). In addition, CAP 

was also located in the cell body and at the leading edge (Figure 3.28 A). In D an overview is 

shown, which shows the prominent nuclear localisation in nearly all of the cells.  

To rule out the possibility of nuclear staining of CAP2 due to an artefact of fixing, we used 

methanol-acetone as a different fixation method. We again observed that CAP2 localises to 

the nucleus (Figure 3.29 A, D and G). In some of the cells CAP2 localisation was also 

prominent in the cytosol in addition to the nuclear staining (Figure 3.29 A and G). For control 

we used a tubulin specific antibody (Figure 3.29 B, E and H) showing the typical filamentous 

pattern of tubulin distribution. We also observed that CAP2 partially colocalised with tubulin 

indicated by the arrowheads (Figure 3.29 C, F and I). The significance of this finding is 

unknown.  

 

 
 

Figure 3.29: Localization of CAP2 in PAM212 cells fixed with methanol. The PAM212 cells were fixed with 
methanol-acetone, costained with CAP2 polyclonal and tubulin monoclonal antibodies, then probed with 
secondary anti rabbit IgG antibody conjugated to FITC and anti mouse IgG antibody conjugated to Alexa 568, 
respectively, along with DAPI. The panels A, D and G show the CAP2 staining, B, E and H represent the tubulin 
staining and C, F and I are the overlay images. These images were taken by confocal microscopy. 
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3.23 CAP2 localisation in PAM212 cells fixed with paraformaldehyde 
 
We also studied the CAP2 colocalisation with the actin network in PAM212 cells. For this we 

had to use paraformaldehyde fixation.  

 
Figure 3.30: Localisation of CAP2 in PAM212. The PAM212 cells were fixed with paraformaldehyde and 
stained with CAP2 specific antibodies and then probed with a secondary anti rabbit IgG antibody conjugated to 
FITC along with DAPI and TRITC-Phalloidin. The panels A and E shows the CAP2 staining, B and F represents 
the F-actin staining and D and H are the overlay images. The images were taken by confocal microscopy. 
 
 
We observed a CAP2 localisation to the nucleus (Figure 3.30 A and D) and also a distribution 

throughout the cytosol where it occasionally localised along actin fibers.  

 

3.24 Subcellular fractionation of PAM212 cells 

To confirm the results obtained by the immunofluorescence studies we performed a 

subcellular fractionation of PAM212 cells and subjected the cell lysates to differential 

centrifugation. The proteins of the different fractions were separated by SDS-PAGE and 

analysed in western blots using CAP2 antibodies and a monoclonal antibody specific for 

emerin, a protein of the inner membrane of the nucleus.  

We observed CAP2 in the nuclear pellet fraction of PAM212 cell lysates (2 K) and in the 12 

K pellet and supernatant. The nuclear envelope protein emerin was only observed in the 2K 

pellet fraction and in the whole cell lysate. In contrast, when we overexpressed CAP2 in HEK 

293 cells the protein was present only in the cytosol (data not shown). The significance of the 

localization of CAP2 to the nucleus is yet to be understood. 
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Figure 3.31: Cell fractionation study of PAM212 cells. The PAM212 cell lysate was subjected to differential 
centrifugation. The nuclei, cytosol and the cytoplasmic membranes were isolated and separated on 12% SDS 
polyacrylamide gels and blotted onto nitrocellulose membranes. The blot was incubated with CAP2 and emerin 
specific antibodies. The position of the proteins are indicated. The bands seen above CAP2  are non-specific 
bands coming from the emerin antibody.  
 
 

3.25 Influence of drugs affecting the cytoskeleton on the subcellular distribution 
of CAP2 
The fact that CAP2 partially colocalises with actin (Figure 3.30) and that actin interacts with 

CAP2 (M. Leichter, 2002; Huberstey et al., 1996) and partially colocalises with cytoskeletal 

components such as microtubuli prompted us to examine the effect of the actin 

depolymerising drug latrunculin B and the microtubule disturbing drug colchicin on the 

localisation of CAP2. 

 

 

 
3.25.1 Nuclear localisation of CAP2 is not affected by a drug disrupting the 

microfilament cytoskeleton 

The actin cytoskeleton was disturbed using latrunculin B, a microfilament-disrupting drug 

that binds to G-actin and prevent its polymerisation (Wakatsuki et al., 2001). PAM 212 were 

treated with the drug at 2.5 µm concentration for 5, 10 and 15 min, fixed with 3% 

paraformaldehyde and permeabilised with Triton X-100 for 5 min. We observed no alteration 

of the CAP2 distribution, whereas the filamentous actin network was no longer present. Also, 

the nuclear staining of CAP2 was retained (Figure 3.32).  
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3.25.2 Nuclear localisation of CAP2 is affected by a drug disrupting the microtubule 

cytoskeleton 

We have previously noted a colocalistaion of CAP2 with microtubules. When we disrupted 

the microtubule cytoskeleton using colchicin at 12.5 �M concentration and fixed the cells 

after 20, 40 and 60 minutes of colchicin treatment,  

 
Figure 3.32: Latrunculin treatment of PAM212 cells. Panels A-C show untreated (control) PAM212 cells and 
panels D-F, G-I and J-L display cells after a 5, 10 and 15 min treatment with latrunculin B (2.5 µm) respectively. 
Cells were fixed in 3% paraformaldehyde and incubated with the CAP2 antibodies and anti-rabbit FITC 
conjugated secondary antibody. F-actin is stained with phalloidin coupled to TRITC. Nuclei are stained with 
DAPI. Images were obtained with a confocal microscope.  
 

In contrast to untreated cells (Figure 3.33 A-C), which display a nicely organized microtubule 

cytoskeleton the colchicin treated cells (Figure 3.33 D-L) showed a disrupted microtubule 

cytoskeletal network. The nuclear staining pattern of CAP2 remained unaffected at 20 min of 

colchicin treatment. (Figure 3.33 D, E and F). At 40 min of colchicin treatment we observed a 

diffused expression of CAP2 all over the cell indicating that CAP2 localisation is getting 

disturbed and at 60 min of colchicin treatment. (Figure 3.33 J, K and L) CAP2 presence in the 

nucleus was strongly reduced indicating that nuclear localisation of CAP2 was affected. From 

these results we conclude that CAP2 localisation is dependent on the microtubular network.  
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Figure 3.33: Colchicin treatment of PAM212 cells. PAM212 cells were treated with colchicin (12.5 �M) for 
20, 40 and 60 min and fixed with methanol. Incubation was with the polyclonal CAP2 specific antibodies and 
anti-�-tubulin mouse monoclonal antibodies. Anti-rabbit-FITC and anti-mouse-Cy3 were used as secondary 
antibodies. Images were taken by confocal microscopy. 
 
3.26 CAP2 localises also at the nuclear membrane 
The nuclear envelope is composed of two membranes, the outer nuclear membrane, which is 

continuous with the endoplasmic reticulum, and the inner nuclear membrane. In order to 

examine a possible localisation and the exact topology of CAP2 at the nuclear envelope we 

performed permeabilisation studies. PAM212 cells were permeabilised with 40 µg/ml 

digitonin for 5 minutes or with 0.5% Triton X-100 separately. Triton X-100 permeabilises 

both the plasma membrane and also the nuclear membrane, while a short incubation with 

digitonin permeabilises only the plasma membrane and leaves the nuclear membrane intact. 

Thus the entry of antibodies only to the cytoplasm and not to the nucleoplasm allows the 

identification of cytoplasmic and outer nuclear membrane components. PAM212 cells were 

fixed with paraformaldehyde and treated with digitonin for different times to optimise the 

permeabilisation conditions. For controlling the permeabilisation procedure, we co-
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immunostained the cells for emerin, which is an inner nuclear membrane protein and also 

located in the inner aspect of the nucleus. After 5 minutes of digitonin treatment,  

 
 

Figure 3.34: Permeabilisation of PAM212 cells with Triton X-100 and digitonin. PAM212 cells were fixed 
with 3% paraformaldehyde and permeabilised with the detergents Triton X-100 or digitonin for 5 min. A-H 
shows a Triton X-100 permeabilised cell and panels I-L show a cell after digitonin treatment. Images were taken 
by confocal microscopy. 
we could observe only cytosolic staining of CAP2 (Figure 3.34 I) in digitonin treated cells. 

Emerin staining was completely absent confirming its presence at the inner aspect of the 

nuclear envelope (Figure 3.34 J). DAPI staining of the nucleus can be seen in panel K. Panel 

L shows the merged image of panels I-K where we can observe that after digitonin treatment 

CAP2 and emerin staining are absent from the nucleus and the inner nuclear membrane. In 

panels A-H, Triton X-100 permeabilised cells however, displayed nuclear, nuclear membrane 

and cytosol staining of CAP2 and inner nuclear membrane staining of emerin. The overlay 

images (Figure 3.34 D and H) show the partial colocalisation of CAP2 with emerin, which 

indicates that CAP2 also localises at the inner nuclear membrane. However the presence of 

CAP2 at the outer nuclear membrane cannot be ruled out. Taken together, CAP2 was 

localised not only to the nucleoplasm but also found to be associated with both inner and 

outer nuclear membranes. 
 
3.27 An overview of nuclear staining in PAM212 cells 
We consistently observed nuclear expression of CAP2 in PAM212 cells. However we also 

noticed cells where a nuclear localisation of CAP2 was absent. We therefore carried out a 

statistical analysis and counted about fifty cells from each staining which we had performed 

and observed that around 95 % of all cells showed a nuclear localisation of CAP2 (Figure 
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3.35), in 5 % of the cells CAP2 was purely cytosolic (Figure 3.35). However all the cells 

expressed CAP2 in the cytosol irrespective of the nuclear localisation. The arrowheads 

indicate the expression of CAP2 in the nucleus and arrows indicate the absence of CAP2 

expression in the nucleus. 

 
 
Figure 3.35: Overview images of CAP2 localisation in PAM212 cells. The PAM212 cells were fixed with 
paraformaldehyde and permeabilised with 0.5% Triton X-100, stained with CAP2 specific antibodies, then 
probed with a secondary anti rabbit IgG antibody conjugated to FITC along with TRITC-Phalloidin and DAPI. 
The panels A and E shows the CAP2 staining, B and F represents F-actin staining, C and G show the DAPI 
staining and panels D and H are the overlay images. The images were taken by confocal microscopy. 
 

3.28 Expression of CAP2 in primary mouse keratinocytes 
Since we observed the nuclear expression of CAP2 in PAM212 cells, which are derived from 

mouse keratinocytes, we wanted to investigate the localisation of CAP2 in primary mouse 

keratinocytes. We costained primary mouse keratinocytes with CAP2 specific antibodies and 

anti tubulin antibody as we had observed the partial colocalisation of CAP2 with tubulin in 

PAM212 cells. In the confocal images (Figure 3.36) we observed CAP2 in the nucleus 

(Figure 3.36 A, E and I) as well as in the cytosol, the tubulin staining gave a filamentous 

pattern (Figure 3.36 B, F and J). In the overlays in D, H and L we can observe that a partial 

colocalisation of CAP2 with tubulin at certain regions and around the nucleus in some cells 

(HandL) whereas in some cells which are represented by panel D the CAP2 expression is 

confined to the nucleus only.  
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Figure 3.36: Localization of CAP2 in primary mouse keratinocytes. The primary mouse keratinocytes were 
fixed with methanol-acetone, costained with CAP2 and tubulin specific antibodies, then probed with secondary 
anti rabbit IgG antibody conjugated to Alexa 568 and anti mouse IgG antibody conjugated to Alexa 488, 
respectively, along with DAPI. The panels A, E and I show the CAP2 staining, B, F and J represent the tubulin 
staining, C, G and K, DAPI staining, and panels D, H and L, overlay images. These images were taken by 
confocal microscopy. 
 

 

The results obtained here are comparable to with the result obtained with PAM212 cells. The 

panel I-L shows an overview of CAP2 localisation in primary mouse keratinocytes with some 

cells showing no CAP2 in the nucleus, which is similar to the findings observed with 

PAM212 cells. 

 

3.29 Expression of CAP2 in primary human keratinocytes 
We also performed immunofluorescence analysis of CAP2 in human keratinocytes. 

Surprisingly CAP2 localisation was confined to the cortex and the cytosol unlike the situation 

in mouse keratinocytes where we observed CAP2 was as also in the nucleus. The staining of 

cytosol and cortex was of a punctate pattern. The punctate pattern could be due to the 

presence of CAP2 in podosome like structures. This will be further investigated. 
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Figure 3.37: Localization of CAP2 in primary human keratinocytes. The primary human keratinocytes were 
fixed with paraformaldehyde and permeabilised with 0.5% Triton X-100, stained with CAP2 specific antibodies 
and probed with secondary anti rabbit IgG antibody conjugated to Alexa 568 along with DAPI. The panels A 
and D shows the CAP2 staining, B and E represents the DAPI staining and panels C and F are the overlay 
images. The images were taken by confocal microscopy. 
 
 
3.30 Role of CAP2 in wound healing 
Since the CAP2 expression was observed in the PAM212 cells, a mouse keratinocyte derived 

cell line, and keratinocytes play a very important role in the wound healing process, we 

studied its role in wound healing. Towards that we emulated the wound healing process in 

PAM212 and rat VSM cells on the cover slips, where we generated a wound by scratching the 

confluent monolayer cells on the cover slips.  

 
 

Figure 3.38: Overview images of CAP2 localization during the wound healing process in rat VSM and 
PAM212 cells. The rat VSM and PAM212 cells were fixed with paraformaldehyde and permeabilised with 0.5% 
Triton X-100, stained with CAP2 specific antibodies, then probed with secondary anti rabbit IgG antibody 
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conjugated to FITC along with TRITC-Phalloidin and DAPI. The panels A, E and I show the CAP2 staining, B, 
F and J represent F-actin, C, G and K show the DAPI staining and panels D, H and L are the overlay images. 
The orange line indicates the position of the wound. These images were taken by confocal microscopy. 
 
After scratching, the cells were fixed at different time intervals and analysed by 

immunofluorescence. CAP2 colocalises with actin at certain regions of the cells where the 

wound was set. The arrowhead indicates the position at which the colocalisation was observed 

in the rat VSM and PAM212 cells, respectively. 

 
3.31 CAP2 interacts with ACF7 
As CAP2 is expressed in different kinds of tissues like heart, brain, skeletal muscle and skin 

and in different cells like glia cells, rat VSM and keratinocytes, it might play a different role 

in these different tissues and cell lines. To assign a role to CAP2; the identification of an 

interacting protein will throw a light and lead to the function of CAP2 in these tissues. For 

Drosophila CAP a meeting report was available (MBC 14, 2003, 1105, page 198a) that 

described that Short Stop protein binds to CAP via its EF-hand. Short Stop is allelic to kakapo 

which is known as ACF-7 in higher eukaryotes. ACF7 and Short Stop belong to the plakin 

family. Plakins are an emerging family of sequence-related cross-linker proteins that include 

plectins, the bullous pemphigoid antigen-1 proteins (BPAG1s), ACF7 (referred to as kakapo 

in lower eukaryotes), desmoplakin, envoplakin, and periplakin. Plakins are enormous proteins 

(200-700 kD) that anchor cytoskeletal networks to each other and/or to cellular structures 

such as adhesive junctions (Fuchs et al., 2001). 

Tools to test for an ACF7 interaction are available in our group through Dr. Iakowos 

Karakesisoglou. A human Trabeculin (hACF7) GFP-ACF7 construct, GFP-C-ACF7, which 

contains the last 387 amino acids including the EF hands (amino acids 5308-5695) was 

coexpressed with Myc-CAP2 in HEK293 cells and an immunoprecipitation was performed 

using the CAP2 antibodies and the immunoprecipitate probed for the presence of the GFP-

ACF7 fusion protein. For control we probed for the presence of coronin3 and coronin7. 

In the immunoprecipitate we detected CAP2 and the GFP-ACF7 polypeptide whereas in the 

total homogenate CAP2 and GFP-ACF7 were detected but not coronin 3 and 7 which were 

only seen in the cell homogenate and thus served as a control for the specificity of the 

immunoprecipitation (Figure 3.38). The result from the immunoprecipitation experiment 

confirmed that CAP2 binds to ACF7 directly, which corresponds to the reported interaction 

for CAP of Drosophila. An interaction of mouse CAP1 with ACF7 was not tested. The 

significance of the binding of CAP2 to ACF7 is yet to be understood. 
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Figure 3.39: CAP2 binds to the C-terminus of ACF-7 in an immunoprecipitation experiment. Lane 1 
represents the immunoprecipitate performed with protein A agarose beads carrying the CAP2 antibodies and 
homogenates of HEK293 cells coexpressing GFP-C-ACF7 and  Myc-tagged CAP2. The lane 2 represents the 
homogenate used for the experiment. The proteins were separated on a 12% SDS polyacrylamide gel and the 
resulting blot was probed for the presence of CAP2 (control for a successful immunoprecipitation),  the GFP-
ACF7 fusion (experimental) and coronin 3 and 7 (negative control). 
 
3.32 CAP2 partially colocalises with ACF7 in COS7 cells 
To further confirm the results obtained from the immunoprecipitation studies (section 3.33) 

we performed immunofluorescence studies in COS7 cells. We used the same GFP-ACF7 

construct as above and transiently coexpressed GFP C-ACF7 and Myc-CAP2 in COS7 cells. 

The cells were fixed with paraformaldehyde and permeabilised with 0.5% Triton X-100 and 

analysed for a CAP2 and ACF7 colocalisation. 

                        
 
Figure 3.40: Expression of Myc-CAP2 and GFP-C-ACF7 in COS7 cells. The COS7 cells were fixed with 
paraformaldehyde and permeabilised with 0.5% Triton X-100, stained with CAP2 specific antibodies, then 
probed with secondary anti rabbit IgG antibody conjugated to Alexa 568 along with DAPI. The panels A and D 
show the CAP2 staining, B and G represent the GFP-C-ACF7 and C and F are the overlay images. The images 
were taken by confocal microscopy. 
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Myc-CAP2 was mainly found in the cytosol, where we observed a very weak filamentous 

pattern indicated by the arrowheads (Figure 3.40 A, D). GFP-C-ACF7 was strongly enriched 

in the nucleus and was also present in the cytosol, where a strong filamentous pattern of 

staining was observed (Figure 3.40 B, E). The panels C and F show the overlay images where 

a partial colocalisation of CAP2 with GFP-C-ACF7 was noted supporting the results obtained 

by immunoprecipitation studies. It may therefore well be that CAP2 interacts with ACF7. 

 

3.33 Expression of ACF-7 in PAM212 cells 
Since we observed CAP2 interaction with ACF7, we studied the localisation of endogenous 

ACF7 in PAM212 cells. Two different ACF7 antibodies were available, which were raised 

against polypeptides from two different regions of the huge ACF7 protein. The antibodies 

raised against the rod domain are designated as Rod ACF-7 and the antibodies raised against 

another part of the protein is designated as ACF-7, which is an isoform 3 specific. The 

PAM212 cells were separately stained with both the antibodies and then probed with 

secondary anti rabbit IgG antibody conjugated to Alexa 568 along with DAPI. 

 
Figure 3.41: Expression of ACF7 in PAM212 cells. The PAM212 cells were fixed with paraformaldehyde and 
permeabilised with 0.5% Triton X-100 and stained with ACF-7 and Rod ACF-7 antibodies, then probed with 
secondary anti rabbit IgG antibody conjugated to Alexa 568. The panels A and B show the ACF-7 staining, C 
and D represent the Rod ACF-7 staining. The images were taken by confocal microscopy. 
 
The confocal images (Figure 3.41) revealed that when PAM212 cells were stained with the 

ACF-7 antibodies, an ACF7 labeling was observed in the nucleus and in the cytosol. This 

pattern resembles the one of CAP2 in PAM212 cells. We observed that even the pattern of 

staining was similar for both proteins because the nuclear staining was absent in some cells as 

in the case of CAP2 (Figure 3.41 B). On the contrary when stained with Rod ACF-7 

antibodies, the expression of ACF7 was confined to the cytosol (Figure 3.41 C) however a 

faint nuclear expression was observed in few cells. Here the staining showed a filamentous 

pattern, which was weaker in the case of the cells stained with the ACF-7 antibodies. 
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3.34 Expression of ACF-7 in primary mouse keratinocytes 
We followed these findings up in primary mouse keratinocytes and stained them with ACF-7 

and Rod ACF-7 antibodies separately. 

 

 
Figure 3.42: Expression of ACF7 in primary mouse keratinocytes. The primary mouse keratinocytes were 
fixed with paraformaldehyde and permeabilised with 0.5% Triton X-100 and costained with anti tubulin (B, F), 
ACF-7 (A) and Rod ACF-7 (E) antibodies, probed with secondary anti mouse and anti rabbit IgG antibodies 
conjugated to Alexa 488 and Alexa 568 along with DAPI respectively .B and F represents the tubulin staining. C 
and G represent the DAPI staining and D and H are the overlay images. The images were taken by confocal 
microscopy. 
 
When stained with the ACF-7 antibody ACF7 in primary mouse keratinocytes was found to 

be similar to that of PAM212 staining (Figure 3.42 A), ACF7 labeling was observed in the 

nucleus and in the cytosol. However the staining pattern was more or less similar in both cell 

types. The ACF7 staining obtained with the Rod ACF-7 antibody was opposite to the one 

obtained with the ACF-7 antibody in PAM212 cells and the protein was observed both in the 

cytosol and in the nucleus (Figure 3.42 E). The staining pattern was more filamentous when 

compared to PAM212 cells. The overlay images (Figure 3.42 D and H) of tubulin and ACF7 

(both the antibodies) shows a colocalisation and the pattern of staining and the overlay was 

similar to that of the CAP2 staining in primary mouse keratinocytes.  

 

3.35 Generation of a CAP2 mouse mutant 
Gene targeted mice are a powerful tool for studying the functional aspects of a protein. Gene 

targeting, introduction of site-specific modifications into the mouse genome by homologous 

recombination, is generally used for the production of mutant animals to study the gene 

function in vivo. In order to get further insight into the function of CAP2, a mouse knock out 

mutant is being generated in our lab.  
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3.35.1 Analysis of the structure of the mouse CAP2 gene  
The CAP2 gene is located on chromosome 13 at the position A5 (13A5) Locus ID 67252. The 

gene has 12 exons spread over a length of around 132 kb. The introns are of varying length. 

The largest intron is around 50 kb in length and the smallest is 93 bases. The size of the first 

intron is around 5.54 kb, the intron between the 2nd and the 3rd exon has 29.53 kb. The intron 

between the 3rd and the 4th exon is the largest one extending over 50 kb. The length of the 

intron between the 4th and the 5th exon is 300 bases. The distance between the 5th and the 6th 

exon is about 5 kb. 20kb is the length between the 6th and the 7th exon. The 7th exon and the 

8th exon are separated by a 2 kb intron. The length of the intron between the 8th and the 9th is 

1.8 kb. The smallest intron size is 93 bases situated between the 9th and the 10th exon. Around 

6.5 kb are present between the 10th and the 11th exon. The boundary between the 11th and the 

12th exon is 1.6 kb. The starting codon ATG is located in the first exon. The exons and their 

intron boundaries are given in Table 3.1. We decided to target the 4th and the 5th exon by 

inserting a neomycin cassette in the middle of exon 4 so that the intron-exon transition is 

ablated and the transcription will come to an end. We decide to take out two exons in order to 

disturb the CAP2 protein as much as possible. Furthermore the intron is of a small size of 

only 300 bases. So it was convenient to remove the 5th exon as well. Since the first ATG is 

not ablated, the transcription will start but will come to a stop after the 3rd exon.  

 
               Table 3.1: Intron-exon boundaries and sizes of introns and exons of the mouse CAP2 gene. 

The possible acceptor from exon 3, in case of a splicing to form an in-frame protein, will be to 

exon 7. Such a spliced variant of CAP2 will be lacking the middle 115 amino acids region of 

the N-terminal domain, which may severely affect the functional property of the translated 

protein. 

Prior to the generation of a targeting construct, 10 kb intronic sequences upstream of 4th exon 

and down stream of the exon 5th were tested against the mouse genomic database to exclude 
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the presence of any repetitive sequence or duplicated sequence. The analysis indicated no 

repetitive sequence in the intended part of vector generation. 

 

3.35.2 Construction of the targeting vector (CAP2 KO) 

For the vector construction, genomic DNA was isolated from IB10 mouse embryonic stem 

cells of the SV126 strain. A schematic diagram of the target vector is given in Figure X. For 

the 5’arm, a 4.506 kb genomic fragment at the 5’ side of the 4th exon including a short stretch 

of bases from the 4th exon itself was amplified with primers which have SacII restriction sites 

using a Pfu Turbo DNA polymerase and cloned into the Neo-pBluescript vector, a pBluescript 

plasmid carrying a 1.8 kb EcoRV-NotI fragment containing the neomycin resistant cassette. 

This plasmid served as the vector backbone. The 5’arm was cloned into Neo-pBluescript 

using SacII to the 5’ side. The 3’ arm was designed downstream of exon 5. The 3’ arm was 

amplified from the ES cell genomic DNA with primers carrying ClaI and SalI restriction sites 

with a SmaI site located just 30 bases to the 5` side of the 3’ arm and cloned first into pGEM-

T easy. The 3’ arm was retrieved from the pGEM-T easy using SmaI and SalI and ligated to 

the 3’arm-Neo-pBluescript. All the fragments were sequenced and the cloning directions were 

confirmed. 

 

 
Figure 3.43: Schematic representation of the targeting vector and the recombination events. The 
perpendicular lines 1 to 12 in the wild type genome represent the 12 exons of the CAP2 gene. Wild type shows 
the 13 kb length upstream of 4th exon to the down stream of 5th exon. The target vector was linearised with SalI. 
Dotted arrows in orange depict the event of homologous recombination. The red line and the green line represent 
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the probes of the 5’ arm (left arm) and the 3’ arm (right arm) respectively. After recombination, depicts the 
integration of the Neomycin cassette in the genome. 
Two external probes were generated for each arm of the target vector, which could be used for 

the screening of clones and also for checking the recombinant clones. These probes were 

tested for the genomic digestion pattern and for the specificity of the probes. Southern 

blotting after digestion of genomic DNA with different enzymes has given the expected 

pattern of bands. The probes detected specifically single bands at the expected sizes (Figure 

3.43 A). After recombination event the possible fragments detected by the individual probes 

of each arm is shown in the tables below. The probes of the left arm (5’ arm of the vector) 

recognising the fragments after recombination is shown in table 3.2. The recognising 

fragments by the 3’arm probes (right arm) are in the table 3.3.    

 

                 BamHI digest: probes of 5’ arm (left arm) of the target vector 

 5’probe 3’probe 

Wild type 9.1kb 9.1kb 

Recombinant 9.1kb 1.1kb 
 

Table 3.2: Sizes of wild type and knockout bands with 5’ and 3’ probes of the left arm (5’ arm of the 
target vector when digested with BamHI). 
 

                              NcoI digest: probes of 3’arm (right arm) of the target vector. 
 5’ probe 3’ probe 

Wild type 6 kb 6 kb 

Recombinant 2.74 kb 4.2 kb 

 
Table3.3: Sizes of wild type and knockout bands with 5’ and 3’ probes of the right arm (3’ 
arm of the target vector when digested with NcoI). 
 
3.35.3  ES cell transfection and screening 

The target vector was linearised with SalI and 40 µg of purified plasmid DNA were 

transfected into ES cells from both the IB-10 and R-1 lineage. The clones were selected using 

G418 for a period of 8 days after transfection. Neomycin resistant clones were picked and 

grown in 24 well plates. One part of the cells was frozen and another part used for isolating 

genomic DNA. NcoI was chosen for digesting the genomic DNA. Since NcoI was chosen, we 

used the 5’probe of the right arm (3’arm of the target vector). The expected sizes of the 

signals with both wild type and recombinant DNA are given in the Tables above. 

  



Results__________________________________________________________________
_ 

90

 
We have done two ES cell transfection and more than 800 clones which showed resistance to 

neomycin were picked and analysed by Southern blotting. Preliminary screening was done 

with the 5’ probe of the right arm (3’arm of the vector) and out of 800 clones, we have 

analysed so far 110 clones and only one clone (98 in lane 2 of Figure 3.44 C) gave the 

recombinant band of 2.7 kb in addition to the wild type band of 6 kb (Figure 3.44 C). 

 

 
Figure 3.44: Southern blot analysis of genomic DNA and Es cell clones. 10 µg of genomic DNA digested 
with the appropriate enzyme were loaded onto an agarose gel (0.9 % agarose), separated by electrophoresis, 
denatured and transferred onto a nitrocellulose membrane and hybridized with 32P labelled probes generated by 
PCR. In (A) Lane1, genomic DNA digested with BamHI hybridized with the 5' probe of the BamHI fragment, 
Lane 2, same as lane 1 but hybridized with the 3' probe of the genomic BamHI fragment. (B) Lane 1, genomic 
DNA digested with NcoI was hybridized with the 5' probe of the NcoI fragment. Lane 2, same as lane 1 but 
hybridized with the 3' probe of the NcoI derived genomic fragment. In panel C, clones resistant to neomycin (8, 
98 and 24) were digested with NcoI and probed with the 5’ probe of the NcoI fragment. The clone number 98 
gives two bands at the expected sizes. 
   

These clones will be analysed further for the recombination events with different 

enzymes and with the neomycin probe to exclude a random integration into other sites before 

they will be used for injection. 
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4 DISCUSSION 
The actin cytoskeleton plays a critical role in many different cellular processes, including 

polarity, morphogenesis, motility, endocytosis and intracellular transport. Various intra- and 

extracellular signals regulate the structure and dynamics of the actin cytoskeleton through an 

array of actin binding proteins. One central family of cytoskeletal regulators is the cyclase 

associated proteins (CAP), which are conserved actin monomer binding proteins found in all 

eukaryotes studied so far. The original CAP was isolated as a component of the 

Saccharomyces cerevisiae adenylyl cyclase complex that serves as an effector of Ras during 

nutritional signalling. CAPs are multifunctional molecules that contain domains involved in 

actin binding, adenylyl cyclase association in yeast, SH3 binding, and oligomerization 

(Hubberstey et al., 1996). Unlike yeast, Drosophila and Dictyostelium, mammals have two 

homologues namely CAP1 and CAP2. CAP2 has 42-50% homology to all the species of CAP 

and to its homologues at the nucleotide level. Furthermore, CAP2 has all the domains, which 

are present in all the other CAPs.  

 

4.1 Comparison of the CAP2 protein sequence with its homologues 

The protein alignment reveals that CAP2 is having significant homology and similarity to 

CAP1 of mouse. Apart from that CAP2 has similar characteristic features in its protein 

sequence as CAP1 of mouse and CAP of S. cerevisiae, where a similar domain structure was 

determined. CAP2 has an amino terminal and a carboxyl terminal domain which is highly 

conserved in all CAPs and a proline rich region which is known to have a role in the 

localisation of the protein. Closer examination of the amino-terminal sequences of CAP 

reveals the presence of a heptad repeat region (αXXαXXX; where α represents a hydrophobic 

residue). Heptad repeats are thought to form α-helices that wind around each other to form a 

coiled coil structure. Coiled coils are highly versatile motifs involved in oligomerization and 

protein-protein interactions (Burkhard et al., 2001). This conserved N-terminal motif was 

termed as the ‘RLE motif’ by other researchers. The RLE motif is identical to the ‘CAP 

signature’ motif identified in the ExPASy protein motif database. It was suggested that this 

motif has diverged functionally during evolution but may still be critical for CAP function in 

all the organisms. Perhaps the coiled coil regions in other signalling proteins interact with the 

CAP RLE motif in higher eukaryotes. On the contrary to the conserved N-.terminal motif, the 

N-terminal domains as such are the least structurally conserved regions from human to yeast 

CAP. As in the human protein, the N-terminus of mouse CAP2 is least conserved with its 

counterpart in CAP1 (Yu et al., 1994). Apart from this CAP2 has a WH2 domain similar to 
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that found in CAP of different organisms. WH2 domains are signature actin-binding motifs 

that show a strong preference for binding ATP-actin monomers (Paunola et al., 2002). The 

WH2 domain of CAP2 resides at 20 amino acids after the middle towards the C-terminus of 

the protein. Recent reports coming from Srv2/CAP suggest that CAP preferentially binds to 

the ADP-actin monomers rather than ATP-actin monomer (Mattila et al., 2004) wherein it 

was shown that mutations in WH2 domain residues, which are critical for actin-binding 

caused no significant effect on the ADP-actin binding affinity, however a small reduction in 

the affinity of binding to ATP-actin. The possibility of a difference in the affinity to bind to 

actin by the WH2 domains of the CAP family protein might come from the fact that all CAP 

family members contain a small insertion of 3-4 residues located near the key actin-binding 

site at the N-terminal α-helix in WH2 domains (Hertzog et al., 2004). Such insertions are not 

found in the other WH2 domain containing proteins (Paunola et al., 2002). The small change 

in the WH2 domain, which is specific to the CAP family, might play a specific role in the 

specific functions of CAP in some specific tissues. This theory may hold good even in the 

case of CAP2 which might have a specific function in specific tissues. 

 

4.2 CAP2 tissue distribution and its role 
The Expression of CAP2 transcripts appear to be tissue specific unlike the one of CAP1, 

which is expressed ubiquitously. It has been reported also in rat that CAP2 expression is 

tissue specific and that it is expressed only in some tissues unlike the CAP1 of rat (Vojtek and 

Cooper, 1993; Zelicof et al., 1993; Swiston et al., 1995). 

One more feature of CAP2 is the presence of two transcripts in contrast to CAP1, which is 

having only one transcript. The result we obtained was in line with the findings of Bertling et 

al. (2004) who also observed two transcripts and reported that the two signals might be the 

consequence of the selective use of two polyadenylation signals. Taken together the results 

from our northern and western blot analyses were in agreement with the findings of Bertling 

et al. They were able to detect a CAP2 transcript in testis; likewise we detected a mRNA in 

our northern blot analysis but did not detect a signal at the protein level. They also reported 

that in the testis the signal detected was from a splice variant of CAP2.  

The expression of CAP2 in heart, skeletal muscle and brain was strong. Similar results were 

also reported by Bertling et al. (2004), who in addition found a very weak expression in lung 

and liver. We were unable to detect the signals for CAP2 in adult mice in lung and liver. On 

the contrary, our embryo staining revealed a moderate expression of CAP2 in lung of E16.5. 

It appears that the level of CAP2 expression in lung might be reduced during the transition 
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stages of embryo to the newborn and to the adulthood. In the skeletal muscle, CAP2 shows a 

striated pattern of distribution. It is however not localized to the Z-band which is obvious 

from our staining as it is not colocalizing with desmin, which is located in the Z-discs. Rather, 

CAP2 might be located in the neighbouring I-, A- or M- bands. Moreover CAP2 is more 

abundant in skeletal muscle than CAP1 (Korte 2004). These findings point to a specific role 

for CAP2 in the skeletal muscle.  

The strength of skeletal muscle is directly proportional to its cross-sectional area. The strength 

of a body, however, is determined by a number of biomechanical principles (the distance 

between muscle insertions and joints, muscle size, and so on). Muscles are normally arranged 

in opposition, so that as one group of muscles contract, another group relaxes or expands. 

Skeletal muscles are used to facilitate movements by applying force to bones and joints via 

contraction. They generally contract voluntarily (via nerve stimulation), although they can 

contract involuntarily. The muscle consists of actin and myosin plus some regulatory 

subunits. These are the components of each muscle cell that actually produce force. The rest 

of the machinery plays a supporting or repair function. Hence the muscle is the important 

machinery for the contractile movements, wherein the actinomyosin complex is involved in. 

The expression of CAP2 in skeletal muscle, its possible association with myofibrillar region 

and its association with actin as reported by Huberstey et al. (1996) give an indication that 

CAP2 might play a role in the formation or regulation of the actinomyosin complex. Further 

investigation is required to exactly localize the CAP2 protein in the skeletal muscles, 

preferably by immuno-electronmicroscopy, and to ascertain the role it might play in the above 

mentioned process.  

In the heart the expression of CAP2 was detected in capillary walls around the RBCs, 

endothelial cells of the heart and in the sarcomeres where we again observed a striated pattern 

of staining. The exact localisation of CAP2 in heart is discussed in the next section. The 

expression of CAP2 in heart was also observed at embryonic stage E16.5, Bertling et al. 

(2004) reported that the CAP2 expression was restricted only to the developing heart and 

muscle tissue at E 10.5.   

From our northern blot analysis we were not able to detect the mRNA of CAP2 in brain, but 

we were able to detect a strong expression of CAP2 at the protein level. The results were 

similar to that of the findings of Bertling et al. (2004). It is quite interesting to mention that 

like in the case of skeletal muscle, the expression of CAP1 in brain was less compared to the 

other tissues (Korte, 2004). The expression of CAP2 was uniform throughout the brain as 

observed in our western blot analysis. On contrary to the data from the adult brain we were 
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able to detect a very weak expression of CAP2 in the cerebellum and in the brain stem of the 

newborn mice. We observed a strong staining in the cortex of the cerebrum and a weak 

expression in the grey matter in case of the newborn, whereas the expression of CAP2 was 

found in the molecular layer and was absent in the grey layer in adult mice thus suggesting 

that the CAP2 expression gradually increases outwards of the white matter into the cortex. 

These results also revealed that CAP2 might play a role in the differentiation of neurons. 

Neurons originate in the white and grey matter and migrate outwards to the cortex implicating 

that the differentiated neurons with their axons are migrating to the cortex of both cerebellum 

and the cerebrum. The expression of CAP2 increases in the differentiated neurons as we 

observed a strong staining of the cerebellar cortex in the adult mice. Unfortunately we could 

not detect CAP2 expression in any of the neuronal cell lines we checked so far. A strong 

expression of CAP2 in the white matter of myelinated axons reveals that CAP2 is present in 

the glia cells and the rat cerebellar culture, which is discussed in the later sections. The 

immunofluorescence studies also revealed that CAP2 was expressed in the Purkinje cells. By 

contrast, CAP1 does not stain Purkinje cells (Korte, 2004). The E16.5 day also showed a 

moderate CAP2 expression in the cerebellum region which correlates with the studies carried 

out by Bertling et al. (2004) that reported a strong expression in the thalamic region of the 

brain at E18.5.  

The expression of CAP2 was observed in skin by western blot analysis and confirmed by two 

different immunofluorescence studies. This is the first report that CAP2 is expressed in skin. 

We observed a strong expression of CAP2 in the basal layer of the epidermis and in the hair 

follicular regions. Further immunostainings revealed that CAP2 is present in the keratinocytes 

of the basal layer of the epidermis. In addition to the presence in the hair follicular region 

CAP2 was also found in the sebaceous glands of the skin. As CAP2 is present in the hair 

follicles, a highly proliferating region of keratinocytes, CAP2 might play a possible role in the 

proliferation of hair follicles and may be involved in the process of differentiation and 

migration of keratinocytes.  

In conclusion, CAP2 is expressed in brain, heart and skeletal muscle, it may be weakly 

expressed in lung and in the testis, furthermore it is present in skin. These reports suggests 

that unlike CAP1, CAP2 is expressed in some specific tissues only and might play an 

important role in different cellular processes like morphogenesis, polarization, migration and 

endocytosis. CAPs are not the only proteins of this class of actin-binding proteins. There are 

reports of similar differntial expression specificities for other mammalian actin binding 
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proteins such as ADF/cofilin, twinflilin and capping protein (Ono et al., 1994; Schafer et al., 

1994; Vartiainen et al., 2003).   

 

4.3 CAP2 associates with cardiac myofibrils 
Myofibrils are made of three kinds of proteins namely, contractile protein (myosin and actin), 
regulatory proteins which turn contraction on and off (Troponin and tropomyosin) and 

structural proteins which provide proper alignment, elasticity and extensibility (titin, 

myomesin, nebulin and dystrophin). Thick filaments are composed of myosin, in which each 

molecule resembles two golf clubs twisted together. Myosin heads (crossbridges) extend 

towards the thin filaments. The thick filaments were held in place by the M line proteins. The 

thin filaments consist of actin, tropomyosin and troponin, which plays a role in regulating the 

muscle contraction. The thin filaments are held in line by Z-discs. 

 
Figure 4.1: Schematic diagram showing the position of the A-, I-; Z- and M-line in the sarcomeres during 
the relaxed, partially contracted and fully contracted muscle. 
 
Our immunofluorescence studies showed that CAP2 is associated with the M-line, wherein 

CAP2 co-localizes with myomesin, which is a M-band protein.(Grove et al., 1984). Recent 

reports suggest that the main components of M-band are the C-terminal kinase domain of the 

giant protein titin (Mayans et al., 1998), MM-CK creatinine kinase (Wallimann et al., 1977) 

and M-protein (Eppenberger et al., 1981). There are few more candidates, which are present 

in the M-band by virtue of interacting with the four major proteins. It will be interesting to 

screen for the interacting partners for CAP2 in the myofibrils to ascertain whether CAP2 is 

present in the M-band on its own or by virtue of the interaction with these proteins. One 

example of an M-band associated protein is murf2, which is present in the M-band through 

association with the kinase domain of titin (Centner et al., 2001). Murf 2 is a ring finger 

protein involved in several cellular processes including signal transduction, ubiquitination and 
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morphogenesis (Jackson et al., 2000; Spencer et al., 2000). A search for an interaction of 

CAP2 with the major M-band proteins may directly lead to the identification of a partner. 

One more interesting point is that all the four proteins have immunoglobulin domains and it 

has been reported that these domains play a part in incorporating these protein into the M-

band region. In myomesin, a N-terminal immunoglobulin-like domain is sufficient for it to 

targeting to the M-band (Auerbach et al., 1999). CAP is composed of alpha helixes in its N-

domain and beta-helices and beta-sheets in the C-domain. The crystal structure of the C-

terminal dimerization and actin monomer-binding domain (C-CAP) reveals a highly unusual 

dimer, composed of monomers possessing six coils of right-handed beta-helices flanked by 

antiparallel beta-strands (Dodatko et al., 2004). For the N-terminus of Dictyostelium CAP it 

has been reported that it is composed of alpha helices where the core is formed by an alpha-

helix bundle composed of six antiparallel helices, in stark contrast to the CAP C-terminal 

domain (Mavoungou et al., 2004). The unusual right-handed beta-helical fold present in C-

CAP has been implicated in supporting a wide range of biological functions. 

CAP2 is present in the myofibril and is associated with the M-band. The M-band is the 

transverse structure in the center of the sarcomeric A-band, which is responsible both for the 

regular packing of thick filaments and for the uniform distribution of the tension over the 

myosin filament lattice in the activated sarcomere. Although some proteins from the Ig-

superfamily, like myomesin and M-protein, are the major candidates for the role of M-band 

bridges, the exact molecular organisation of the M-band is not clear. However, the protein 

composition of the M-band seems to modulate the mechanical characteristics of the thick 

filament lattice, in particular its stiffness, adjusting it to the specific demands in different 

muscle types (Agarkova et al., 2003). CAP2 localisation in the M-band is an exciting aspect 

and further studies are required to ascertain the role of CAP2 in these complex structures. 

 

4.4 Overexpression of CAP2 in mammalian cells 
The overexpression of GFP-CAP2 and Myc-CAP2 fusion proteins showed a diffused 

cytosolic localisation and colocalisation of CAP2 with cortical actin structures which was in 

line with the results obtained by M Leichter (2002). In budding yeast and Dictyostelium 

Srv2/CAP localize to the cortical actin cytoskeleton (Freeman et al., 1996; Noegel et al., 

1999). However, the subcellular localisation of mammalian CAPs has remained elusive. 

Studies with tagged versions and followed by immunofluorescence analysis showed that 

CAP1 localises to the dynamic regions of the cortical actin cytoskeleton in C3H-2K 

fibroblasts (Moriyama and Yahara, 2002). On the other hand, studies with monoclonal 
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antibodies against human CAP1 suggested that, in addition to cortical actin structures, this 

protein also localises to actin stress-fibers in Swiss 3T3 fibroblasts (Freeman and Field, 

2000). The localisation of CAP1 in cultured NIH3T3 and B16F1 cells showed diffused 

cytoplasmic localisation, but it was also concentrated at actin-rich membrane ruffles and 

weakly staining stress-fibers of NIH3T3 cells (Bertling 2004). Therefore we can conclude that 

overexpression of CAP2 and CAP1 has similar effects in cell lines but overexpression of 

CAP/Srv2 in plants results in defects in actin filament structures and problems in cell growth 

and division (Barrero et al., 2002). The other interesting point is that the localisation of CAP1 

was dependent on its N-terminal region with which it associates with actin in the presence of 

cofilin very effectively and in the case of CAP2 as well it holds good that the N-terminal 

region helps in actin-modulating function (Moriyama et al., 2002). In Dictyostelium it was 

reported that the localisation of CAP at the anterior and posterior edges of cells require its N-

terimal domain but not its C-terminus (Noegel et al., 1999). Taken together, the function of 

the N-terminus of CAP is conserved and has a similar role from Dictyostelium to man 

(Moriyama et al., 2002) including CAP2 of mouse. 

 

4.5 CAP2 interacts with CAP1 

Our immunoprecipitation results showed that CAP2 interacts with CAP1. These findings 

extend the ones obtained for human CAP1 and CAP2 (Hubberstey et al., 1996). The results 

obtained by us and findings of the others suggest that the interaction has been conserved in 

mammals. Furthermore, it was reported that CAP is capable of interacting with other CAP 

molecules or with CAP2 in vivo. This suggests that CAP may form large complexes with 

itself or with other homologues. These may be probably dimers, although higher order 

structures have not been excluded. In fact, a number of previous studies have shown that CAP 

exists in a high molecular weight complex in cell extracts and that purified CAPs oligomerise 

via interacting within and between their N and C-termini. Moreover, a recent report indicated 

that CAP is found in a complex containing only actin and CAP is in a 1:1 M ratio in S. 

cerevisiae (Balcer et al., 2003). It was suggested that the complex contains six actin 

monomers and six CAP molecules organized into a macromolecular complex involving intra-

and inter-molecular interactions between the domains. The amino terminus and carboxy 

terminus can interact with each other as well as within themselves which suggests that CAP 

may form a parallel dimer in which the amino terminus interacts with the carboxy terminus to 

potentially block actin binding. Alternatively, antiparallel dimers that interact between the 

amino and carboxy terminus, which then fold over to interact with themselves, may exist (Fig. 
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4.2). Since the poly-proline domain resides essentially in the middle of the protein, both 

models allow for the poly-proline SH3 interacting domain to be free to bind target proteins 

like ABP1 and render proper localisation to the CAP molecule, though other domains may be 

involved. 

 

Figure 4.2:Model for CAP multimerisation: a schematic representation of CAP consisting of the amino-
terminal domain (orange), poly-proline region (blue), and carboxy-terminal actin binding domain (green). 
The figure is taken from Hubberstey and Mottillo 2002, FASEB J. 16, 487-499. 

 

4.6 CAP2 and its interacting partners 

Our results showed that the N-terminal CAP2 interacts with the myosin light chain alkali 3, a 

non-muscle isoform, in the skin (MLC 3 nm). It has been reported that actin interacts not only 

with the N-terminus of MLC_1F but also with the N-terminal sequences of the essential light 

chain isoforms of slow myosin (Nieznanska et al., 2002). Furthermore, the same author 

reported that the long isoform of the essential light chain can induce two different effects in 

the muscle cells, first it is associated with a mechanical lowering of the cross bridge cycling 

rate resulting from the attachment of the myosin head to the actin by the N-terminal part of 

essential light chains, second, it is associated with the introduction of a positive charge by the 

N-terminus of essential light chain into the thin filament suggesting a conformational change 

in the thin filament and thus playing a role in regulating the thin filaments. Since CAP2 is 

present in the striated muscle cells and is associated with M-bands, where proteins present in 

that region - as discussed in the above section - play a structural role in keeping the thick 

filaments in order, the interaction with essential myosin light chain give us a clue that CAP2 

might bind to the myosin light chain of the thick filament not only holding them in position 

but also may play a role through the myosin light chain regulating the thin filaments. 
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Our findings that CAP2 interacts with ACF-7 suggest that the functional aspects of the CAPs 

are conserved from fly to mammals, with the report from Drosophila showing that CAP 

interacts with short stop in a calcium dependent manner through its EF-hand domain residing 

at its C-terminus, a meeting report was available (MBC 14, 2003,1105, page 198a).  Short 

stop is a spectraplakin, which form a subfamily of plakins (Fuchs and Karakesisoglou 2001; 

Leung et al. 2002; Roper et al., 2002). The plakin family, which includes mammalian ACF7 

and neuronal BPAG1, Drosophila Kakapo/shot, and C. elegans vab10, is characterised by 

their unusual capacity to simultaneously bind F-actin and microtubules (Yang et al., 1999; 

Svitkina et al., 1996; Andrä et al., 1998; Karakesisoglou et al., 2000 and Sun et al., 2001). 

ACF7 appears to confer stabilising effects in two ways, by both direct microtubule binding 

and by microtubule-F-actin crosslinking, and is therefore able to respond versatilely to 

positional information within cells and modify microtubule dynamics to spatially organise the 

cytoplasm (Kodama et al., 2003). In our study we observed that CAP2 colocalises with 

microtubules in primary keratinocytes and is affected in its distribution by microtubule 

disrupting drugs. This interaction might be a direct one or be mediated by ACF7. Taken 

together, by binding to ACF7 and associating with the microtubules CAP2 might also play a 

role in regulating the microtubule-F-actin.  

Apart from these interacting partners CAP is also known to interact with at least three other 

actin-binding proteins, Abp1 (Freeman et al., 1996; Lila and Drubin, 1997; Balcer et al., 

2003), cofilin (Moriyama and Yahara, 2002), and profilin (Drees et al., 2000). CAP interacts 

with itself and forms a complex with actin. This complex promotes the cofilin-dependent 

turnover of actin filaments in vitro and in vivo (Moriyama and Yahara, 2002; Balcer et al., 

2003; Bertling et al., 2004). Similar interactions have been noted for CAP2 as it binds to actin 

and interacts with its counter part CAP1 (Hubberstey et al., 1996) and binds to cofilin as well 

(Moriyama and Yahara 2002). CAP2 might have a different interacting partner depending on 

in which process it is involved in and as discussed above section CAP2 might have many 

more tentative potential candidates as its interacting partners. However the mechanism by 

which it interacts and how it gets involved in different cellular process is still a mystery.  

 

4.7 CAP2 in PAM212 and other primary cell culture 

CAP2 is expressed in PAM212 cells, which are derived from mouse keratinocytes. This was 

the only cell line in which CAP2 was expressed out of many other cell lines we have checked 

so far. Interestingly, CAP2 was localised in the nucleus as well as in the cytosol. In general 
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CAP molecules are cytosolic in nature. The nuclear localisation could also be confirmed by 

cell fractionation experiments. CAP2 does not contain a typical nuclear localisation signal and 

the mechanism of its translocation is not known. Also, the role of CAP2 in the nucleus is 

speculative. However, its binding partner actin is a constituent of the nucleus and recent 

reports proved that it is universally existent in the nuclei of many cell types. Actin, actin-

binding proteins and as well as actin-related proteins are necessary for the mediation of the 

conformation and function of nuclear actin, including the transformation of actin between G-

actin (unpolymerised) and F-actin (polymerised), chromatin remodelling, regulation of gene 

expression, RNA processing and as well as RNA transport (Rando et al., 2000; Hofmann.et 

al., 2001; Percipalle et al., 2001). An increasing number of actin-binding proteins has been 

reported to shuttle between nucleus and cytoplasm. Already in 1993, Onoda et al. showed that 

CapG (Mbh1 or gCap39), a ubiquitous 39-kDa barbed end F-actin-binding protein particularly 

abundant in macrophages (Johnston et al., 1990), is a nuclear and cytoplasmic protein. CapG 

does not contain a canonical nuclear localization signal, but it has been suggested that 

phosphorylation of CapG may be involved in controlling the subcellular localization of the 

protein (Onoda et al., 1993). Another protein with a dual localisation is Cofilin. Cofilin is a 

major actin depolymerising protein, and its nuclear translocation is regulated by 

phosphorylation in some cells (Ohta et al., 1989; Samstag et al., 1996; Nebl et al., 1996; 

Nagaoka et al., 1996). Cofilin has a preference for ADP-actin. A very recent report showed 

that Srv2/CAP binds with strong preference to ADP-actin monomers compared with ATP-

actin monomers and directly competes with cofilin for binding to ADP-actin. This explains 

how Srv2 can recycle ADP-G-actin from a cofilin-bound state and release monomers after 

they have undergone nucleotide exchange. Srv2 also blocks ATP-actin monomer addition to 

the barbed ends of filaments, suggesting that in vivo Srv2 acts as a middleman and there is a 

handoff to other actin monomer binding proteins with a higher affinity for ATP-G-actin such 

as profilin (Mattila et al., 2004). It has also been reported that CAP 2 binds to cofilin. So 

CAP2 might take up the job of actin turnover in certain specific tissues and in specific 

locations like in nucleus in certain types of cells. Furthermore, from the sequence analysis we 

know that CAP2 has potential phosphorylation sites. CAP2 localisation could thus be 

regulated in a similar manner as the one of cofilin. Another possibility of taking CAP2 into 

the nucleus could be with ACF7 which has an NLS. 
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Fig 4.3: A schematic model of cooperation between CAP1 and cofilin in promotion of actin dynamics. The 
working steps of CAP1 are indicated by open arrowheads. (1) CAP1 facilitates the addition of Mg-ATP-actin 
monomer onto the barbed end of actin filament. Cofilin-induced severing also contributes to this step by 
increasing the number of barbed ends. (2) CAP1 accelerates subunit release at the pointed end and enhances the 
more potent, analogous effect of cofilin. (3) CAP1 relieves the inhibitory effect of cofilin on nucleotide 
exchange of ADP-actin. (4) CAP1 accelerates nucleotide exchange on G-actin. Taken form Moriyama and 
Ichiro Yahara JCS 115, 1591-1601 (2002). 

One more possibility of CAP2 transport into the nucleus is by the new protein import 

pathway, which was identified for the shuttling of hnRNP K protein, which contains a novel 

shuttling domain (termed KNS), which has many of the characteristics of M9. M9 was 

identified initially as the A1 nuclear localisation signal (NLS) as placement of M9 on 

normally cytoplasmic reporter proteins results in nuclear localisation (Siomi and Dreyfuss 

1995; Weighardt et al., 1995) and also supplies the A1 nuclear export (Michael et al., 1995), 

in that it confers bi-directional transport across the nuclear envelope. KNS-mediated nuclear 

import is dependent on RNA polymerase II transcription, and a classical NLS can override 

this effect. Furthermore, it has been reported that KNS accesses a separate import pathway 

distinct from either classical NLSs or M9 (Michael et al., 1997).  

We confirmed the nuclear localisation of CAP2 also in primary mouse keratinocytes and 

found here also a colocalisation of microtubuli with CAP2 as in the case of PAM212 cells. 

CAP2 interacting partner ACF7 also showed similar localisation and colocalisation pattern 

with microtubuli give us further evidence, apart from our biochemical and 

immunofluorescence that CAP2 indeed interacts with ACF7. 

In primary human keratinocytes, however, nuclear staining was absent and we observed a 

punctate pattern of staining around the cortex. One explanation is that the epitope, which 

recognises CAP2, might be masked inside the nucleus in the human keratinocytes. Similar 

findings were reported for an antibody recognising nuclear actin (Gonsior et al., 1999). As we 

had observed CAP2 expression in the white matter region of the brain, we stained primary 

glia cells from rat and observed a diffuse cytosolic staining in some cells and also observed 

CAP2 in the nucleus of some cells. Nuclear staining was also obtained in case of the rat 

cerebellar cultures.  
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Interestingly, we observed CAP2 expression in primary cardiomyocytes isolated from E17 to 

E19 mice where it partially colocalised with Troponin I (cTnI), which is used as a marker for 

the cardiomyocytes. Troponin is a globular protein complex consisting of three subunits, (1) 

troponin C (TnC), the Ca2+ binding subunit; (2) troponin I (TnI), the inhibitory subunit; and 

(3) troponin T (TnT), the subunit that binds to tropomyosin (Ebashi et al., 1968). It has long 

been appreciated that TnI plays an indispensable role in Ca2+ regulation of the thin filament. 

TnI can be considered as the molecular switch of the thin filament regulatory system (Farah 

and Reinach, 1995). In further studies we will test whether CAP2 interacts directly with 

Troponin I. 

The other important point to be noticed here is the nuclear localisation of CAP2 in primary 

cardiomyocytes apart from the weak cytosolic staining. We also observed the same 

localisation in the cardiomyocyte cell line HL-1. It has been described that proteins associated 

with the Z-disc, I-band and M-band can translocate and shuttle from the cytosol to the 

nucleus. One such report is available for MURF2, a member of the MURF family of muscle-

specific RING/B-box zinc-finger proteins, which localises at the sarcomeric Z- and M-bands 

of cardiomyocytes (Centner et al., 2001; Spencer et al., 2000). MURF2 is largely diffusely 

distributed in the cytosol but notably found in a speckled pattern in the nucleus and 

colocalises with proteins involved in SUMO-regulated nuclear transport like Ran GAP (Pizon 

et al., 2002). The diffused cytosolic staining suggests a mobile pool of protein. As CAP2 also 

shows a diffused cytosolic staining and has a speckled pattern of staining inside the nucleus 

and is associated with the M-band, we speculate that it translocates to the nucleus like 

MURF2. Taken together CAP2 has a triple cellular localisation: it partially colocalises with 

microtubules, at M-bands and in the nucleus where it might have different roles and might 

translocate in to the nucleus in one of the speculative ways discussed above. Further 

investigation   is required to throw a light on its nuclear localisation and its role in the 

nucleus.   

The nuclear localisation of CAP2 was not observed in all the cells of a population. We found 

for PAM212, primary mouse keratinocytes, rat VSM cells and HL-1 that ~5% of the cells did 

not exhibit nuclear CAP2 stain. This phenomenon is not yet understood. Possible explanations 

for this may be, that due to a stress response the CAP2 localisation in some cells was altered.  

In wound healing experiments carried out in rat VSM and PAM212 cells CAP2 partially 

colocalises with F-actin at certain points of the lamellipodia in the cells at the time of wound 

closure.  
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Summarising the various findings on CAP2 it may be concluded that CAP2 could have 

different roles altogether in different tissues and at different stages in the life of a cell. 

4.8 Genomic analysis of CAP2 and its Knockout 

From the previous studies we know that CAP is involved in different cellular processes and 

the ablation or knock out causes a typical phenotype associated with the loss of Srv2 in 

budding yeast. Deletion of its C-terminus in yeast led to severe defects in the actin 

cytoskeleton and abnormalities in cell morphology such as cell swelling and a random 

budding pattern. These phenotypes were partially suppressed by overexpression of the actin 

monomer-binding protein profilin (Gerst et al., 1991; Vojtek et al., 1991). The loss of 

Srv2/CAP in Dictyostelium, Drosophila, and mammalian cells also resulted in an 

accumulation of abnormal actin filament structures and defects in actin-dependent cellular 

processes such as motility and endocytosis (Baum et al., 2000; Benlali et al., 2000; Noegel et 

al., 2004; Bertling et al., 2004). In addition, overexpression of Srv2/CAP in plants results in 

defects in actin filament structures and problems in cell growth and division (Barrero et al., 

2002). Towards dissecting the role of CAP2 in different cellular processes we performed an 

analysis of the CAP2 gene and found that the CAP2 coding regions are distributed along the 

length of 132 kb on the chromosome 13 and located at 13A5. Even though CAP2 has 90% 

identity with the CAP1 coding sequence of mouse, its genomic organisation is different from 

the CAP1 gene. In the CAP1 gene 12 exons are spread over a length of only around 28 kb, 

furthermore the gene is mapped to the chromosome 6. Since the genome structure of CAP2 

and its expression pattern is quite different from CAP1, it could be that CAP2 has a specific 

role in those different tissues. To investigate and shed a light on the above aspects we chose to 

carry out a knock out of the CAP2 gene and study its functions and its role in the above-

mentioned aspects.  

4.9 Future directions 

Apart from the leads we generated analysing CAP2 and knock out mice analysis, since there 

are some indications that CAP is regulated by phosphoinositides. Phosphoinositides generally 

play a critical role not only in generating second messengers but also in modulating a variety 

of cellular functions including cytoskeletal organization and membrane trafficking. Many 

inositol lipid kinases and phosphatases appear to regulate the concentration of a variety of 

phosphoinositides in a specific area, thereby inducing spatial and temporal changes in their 
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availability. For example, local concentration changes in phosphatidylinositol 4,5-

bisphosphate (PI(4,5)P(2)) in response to extracellular stimuli cause the reorganisation of 

actin filaments and a change in cell shape. PI(4,5)P(2) uncaps the barbed end of actin 

filaments and increases actin nucleation by modulating a variety of actin regulatory proteins, 

leading to de novo actin polymerisation. PI(4,5)P(2) also plays a key role in membrane 

trafficking processes. (Takenawa and Itoh, 2001). Apart from that it has been shown that 

phosphatidylinositol 4,5-biphosphate (PIP2) can promote the availability of monomeric actin 

for polymerisation. Addition of PIP2 at a high molar ratio of CAP to PIP2 (1:40) inhibited 

sequestration of actin, suggesting that PIP2 negatively regulates the CAP-actin interaction, 

causing release of G-actin from CAP and consequently F-actin assembly. The carboxy 

terminal domain alone was unaffected by PIP2 addition, implying that the phospholipid 

binding site resides within the amino terminal or proline rich domains (Gottwald et al., 1996). 

The negative effect of PIP2 on the CAP-actin interaction correlates with the positive effect of 

PIP2 on activating WASp, a regulator of actin assembly, which can stimulate actin nucleation 

by the Arp2/3 complex (Higgs and Pollard, 2000). From the multiple alignments we know 

that CAP2 has a SH3 domain as they are present in other CAPs and a region, which shows 

similarity to the verprolin homology domain (LKKAET) (Vaduva et al., 1997). The SH3 

domain of human c-Abl interacted with human CAP in an overlay assay, but in this case the 

P1site was necessary for protein-protein interaction (Freeman et al., 1996). It has been shown 

that c-Abl plays an important role in signalling actin reorganisation (Lanier et al., 2000) 

whereas CAP also plays a role in actin sequestering. So we are interested in studying the 

regulation of CAP2, in particular its relation with PIP2 and ascertain its possible indirect or 

direct interaction with PIP2 and also look for interaction of CAP2 with other proteins   

through its SH3 domain.  
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5 Summary 
 
Cyclase associated protein (CAP) is a bifunctional protein having an N-terminal adenylyl 

cyclase binding domain and a C-terminal actin-binding domain. In-between these two 

domains there is a proline rich SH3 domain presumably involved in the localization of CAP. 

CAP is expressed widely and has been found in yeast, Dictyostelium, Drosophila, rat, mouse 

and humans. Two homologues of CAP have been identified in higher eukaryotes, CAP1 and 

CAP2.  Although CAP proteins have been studied for more than a decade and are present in 

all organisms, many questions remain about the mechanisms of CAP function. The roles of 

mammalian CAP2 proteins have not been investigated extensively. In our study we showed 

that CAP2 has 2 transcripts of 3 and 3.5 kb unlike the ubiquitously expressed CAP1, 

homologue of CAP2 in mice. In contrast to CAP1, CAP2 is expressed in a tissue specific 

manner. We found that CAP2 is present in relatively moderate levels in brain, heart and 

skeletal muscle and lower levels in skin. Furthermore, we investigated the expression pattern 

in more detail in these tissues and found that CAP2 is present in all parts of the adult brain but 

is detected only in the cerebellum and brain stem in the newborn mice and expressed only in 

the cerebellar region of the brain in embryos of E16. In brain CAP2 was expressed uniformly 

in the cortex and also found in the Purkinje cells and in the myelinated axons of the white 

matter. In skeletal muscle we observed a striated pattern..CAP2 was strongly expressed in the 

heart where it was present in cardiomyocytes, endothelial cells and the capillary wall of the 

blood vessels. We observed a striated pattern, which correlated with an association of CAP2 

with the M-bands. In the skin CAP2 was expressed in the basal epidermal layers and in the 

hair follicle region and was found in the sebaceous glands. CAP2 was also expressed in the 

keratinocytes in skin.  

Immunofluorescence studies with PAM212, a mouse keratinocyte cell line, and primary 

mouse keratinocytes revealed that CAP2 was surprisingly localized in the nucleus. Cell 

fractionation experiments performed with PAM212 cells confirmed the presence of CAP2 in 

the nucleus. In the case of primary mouse keratinocytes CAP2 was also localised to the 

nucleus apart from its presence in the cytosol. In contrast in human keratinocytes CAP2 

localised to the cell cortex and present in patches. Immunofluorescence studies and 

experiments with drugs affecting the cytoskeleton revealed that CAP2 was partially 

associated with F-actin and the microtubules. The nuclear localization was dependent on the 

microtubular cytoskeletal network and independent of the actin cytoskeleton. 
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Overexpression studies in HEK293 cells using EGFP and Myc fusion proteins showed that 

CAP2 is cytosolic and was associated with lamellipodia. Unlike our overexpression studies, 

the immunofluorescence studies with HL-1, a cardiomyocyte cell line, and with primary 

cardiomyocytes of embryonic stages E17 and E19 showed that CAP2 was localized to the 

nucleus as in the PAM212 cells. In cardiomyocytes, CAP2 colocalised partially with 

Troponin I. 

In order to investigate the interaction with its homologue CAP1, cotransfection of GFP-

CAP1, Myc-CAP2 into HEK293 cells followed by immunoprecipitation experiments was 

performed. The results revealed that CAP2 interacts with CAP1. While investigating the 

interaction of CAP2 with other proteins, we found that ACF7, an F-actin crosslinking protein 

interacts with CAP2 in immunoprecipitation studies carried out on HEK293 cells, 

coexpressing GFP-C-ACF7 and Myc-CAP2. We further found that the domain of CAP2 

interacts with myosin light chain alkali (MLC3nm) in skin lysate. 

In a wound healing assay CAP2 colocalised with F-actin at certain places suggesting CAP2 

plays a role in wound healing. Using a conventional knock out strategy we are currently 

generating a mice knock out strain of CAP2 in order to learn more about the functions of this 

protein.  
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ZUSAMMENFASSUNG 
 

C AP (Cyclase Associated Protein) besteht aus einer N-terminalen Domäne, die in Hefe an 

Adenylatzyklase binden kann, und einer C-terminalen Domäne, die für die Bindung an G-

Aktin von Bedeutung ist. Beide Bereiche werden durch eine Prolin-reiche Sequenz getrennt, 

die, wiederum in Hefe, die Lokalisation im Zellkortex bestimmt und an SH3-Domänen binden 

kann. In Säugern gibt es zwei CAP Formen, CAP1 und CAP2, die durch unterschiedliche 

Gene kodiert werden.   

In dieser Arbeit wurde CAP2 untersucht. CAP2 ist im Vergleich zu CAP1 weniger stark 

exprimiert und zeigt eine hohe Gewebsspezifität. Es wurde nur in Gehirn, Herz, 

Skelettmuskel und der Haut gefunden. Seine Verteilung in diesen Organen wurde im Embryo 

und im adulten Organismus detailliert untersucht. Bemerkenswert ist die Verteilung im 

Skelettmuskel. Hier wurde eine Bänderung beobachtet wie sie für die Elemente des 

kontraktilen Apparates charakteristisch ist. Koimmunfärbungen mit Antikörpern gegen 

verschiedene Muskelproteine haben dann eine Zuordnung zur M-Bande ergeben.  

Eine weitere ungewöhnliche Färbung wurde beobachtet bei der Analyse der subzellulären 

Lokalisation. In PAM212 Zellen, einer Maus Keratinozyten Zellinie, und in primären Maus 

Keratinozyten ist CAP2 im Zellkern lokalisisert. Diese Lokalisierung konnte in 

Zellfraktionierungsexperimenten bestätigt werden. Die gleiche Verteilung wurde auch in HL-

1 Zellen, einer Kardiomyozyten Zellinie, und in primären embryonalen Kardiomyozyten 

beobachtet. Allerdings ist die Kernlokalisation nicht in allen Zellenn zu beobachten. Die 

Ursache für die wechselnde Lokalisation ist nicht bekannt. CAP2 könnte auf Grund dieser 

Befunde zu einer neuartigen Klasse von Proteinen gehören, die zwischen Zytosol und 

Zellkern hin- und herwandert. Bekanntestes Beispiel ist hierfür β-Catenin. 

Mit der leichten Kette des Myosins und dem Protein ACF7, einem Protein, das 

Zytoskelettelemente verbindet und das auch im Zellkern vorkommen kann, wurden mögliche 

Interaktionspartner von CAP2 identifiziert.  

Schliesslich wude ein Vektor konstruiert, mit dem das CAP2 Gen gezielt inaktiviert werden 

kann und mit dessen Hilfe im weiteren Verlauf der Untersuchungen die in vivo Funktion von 

CAP2 geklärt werden soll. 
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