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Tschechische Republik

Köln 2004



Berichterstatter:

Prof. Dr. Rainer Schrader
Prof. Dr. med. Karl Herholz

Tag der mündlichen Prüfung: 31.1.2005



Abstract

This thesis is concerned with the process of automatically aligning 3D medical
images of human brain. It concentrates on rigid-body matching of Positron
Emission Tomography images (PET) and Magnetic Resonance images (MR)
within one patient and on non-linear matching of PET images of different
patients.

In recent years, mutual information has proved to be an excellent criterion
for automatic registration of intra-individual images from different modali-
ties. We propose and evaluate a method that combines a multi-resolution
optimization of mutual information with an efficient segmentation of back-
ground voxels and a modified principal axes algorithm. We show that an
acceleration factor of 6-7 can be achieved without loss of accuracy and that
the method significantly reduces the rate of unsuccessful registrations. Em-
phasis was also laid on creation of an automatic registration system that
could be used routinely in clinical environment.

Non-linear registration tries to reduce the inter-individual variability of
shape and structure between two brain images by deforming one image so
that homologous regions in both images get aligned. It is an important step
of many procedures in medical image processing and analysis. We present
a novel algorithm for an automatic non-linear registration of PET images
based on hierarchical volume subdivisions and local affine optimizations. It
produces a C2-continuous deformation function and guarantees that the de-
formation is one-to-one. Performance of the algorithm was evaluated on more
than 600 clinical PET images.





Kurzzusammenfassung

Diese Arbeit beschäftigt sich mit der automatischen Korregistrierung dreidi-
mensionaler Datensätze des menschlichen Gehirns, wie sie bei der Verwen-
dung moderner bildgebender Verfahren gewonnen werden. Sie konzentriert
sich auf das Ausrichten von Datensätzen aufeinander, die mittels Positronen-
emissionstomographie (PET) und Magnetresonanztomographie (MR) des gle-
ichen Probanden erzeugt wurden sowie auf die nichtlineare Verformung von
PET-Bildern, die von unterschiedlichen Probanden stammen.

In den letzten Jahren hat sich das “Mutual Information”-Konzept als ein
exzellentes Kriterium für die automatisierte Korregistrierung medizinischer
Bilddatensätze unterschiedlicher Modalitäten erwiesen. In dieser Arbeit wird
eine Methode entwickelt, die eine Optimierung von “Mutual Information”
in verschieden granularen Auflösungen mit einer effizienten Segmentierung
des Hintergrundes und einer Modifikation des “Principal Axes”-Algorithmus
verknüpft. Wir zeigen, daß eine 6-7fache Beschleunigung des Registrierung-
sprozesses ohne Verlust an Präzision möglich ist und dabei noch die Rate
fehlerhafter Korregistrierungen deutlich gesenkt wird.

Zweck der nichtlinearen Korregistrierung ist es, die interindividuelle Vari-
abilität zu reduzieren, die die Form und Struktur unterschiedlicher men-
schlicher Gerhirne aufweist. Dabei wird ein Bild räumlich deformiert und
an das andere Bild angepasst. Dies ist Ausgangspunkt vieler Prozeduren der
medizinischen Bildverarbeitung und Bildanalyse. Wir stellen einen neuen Al-
gorithmus für die automatische nichtlineare Korregistrierung von PET Bilder
vor, der auf einer hierarchischen Teilung des Bildvolumens und lokalen affinen
Optimierungen basiert. Der Algorithmus erzeugt eine C2-kontinuierliche De-
formationsfunktion und garantiert, daß die Deformation eineindeutig ist. Die
Leistung des Algorithmus wurde auf einer Anzahl von über 600 klinischen
PET Bildern validiert.
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Chapter

1

Introduction

Medical imaging is a rapidly developing field of medical diagnostics. It allows
physicians to see into human body without the necessity to surgically open
it and to study internal structures and function of human body in a non-
invasive way. The principle of medical imaging is a measurement of certain
physical properties of a real object (patient’s body) in order to delineate
functional or anatomical characteristics of the object.

Various physical properties of the human body are exploited, e.g.:

• Measurement of radioisotope density in tissue as a result of radio-tracer
uptake reveals functional information. The radioisotope density is mea-
sured in a positron emission tomograph (PET) or in a single-photon
emission tomograph (SPET).

• Measuring of proton spin density and relaxation times in a magnetic
resonance scanner (MR) provides a precise anatomical view of soft tis-
sue.

• Measuring of X-ray attenuation using a computed tomograph (CT)
detects anatomy of rigid tissue (e.g. bones).

Modern scanners are able to deliver three-dimensional images reflecting
distribution of the measured property. Such images allow a detailed inspec-
tion of structural and functional relationships in three dimensions and they
initiated a rapid development of many new applications in neurology, neu-
rosurgery, radiotherapy, cardiology and other areas. The applications now
occur throughout the whole clinical track of events: diagnostics, therapy
planning, treatment (e.g. surgical operations, radiotherapeutical treatment)
and therapy follow-up.

Multi-modal registration

Each modality delineates and emphasizes different property of the measured
object. A large information gain can be achieved by combining comple-
mentary information about the same object acquired by different modalities.

1



2 Chapter 1. Introduction

Figure 1.1: MR and PET image of a patient with a tumour. MR image (left)
shows rather homogenous changes of the tissue whereas the high uptake of
11C-methionin in the PET image (middle) indicates presence of a tumour
that can be precisely localized and analyzed by combining the information
in both images (right) (Kracht et al., 2004).

For example, MR images provide a high-resolution information about the
anatomy of different types of soft tissue and PET images provide an infor-
mation about specific functions of different structures but mostly with poor
anatomical detail and lower spatial resolution. Figure 1.1 shows a single slice
of a PET brain image revealing a spot with an abnormally high level of glu-
cose metabolism indicating presence of a tumour. Combining the PET and
the MR image allows a precise anatomical localization of the tumour site.

In practice, the process of acquiring multiple images of different proper-
ties cannot be done simultaneously and using the same imaging system. Each
image modality is acquired in a different scanner, very often in an interval
of several days and it is mostly impossible to assure that patients are always
scanned in the same position and using the same settings. One of the impor-
tant tasks in medical imaging is the alignment of different image modalities
of a single patient so that they can be directly compared. This task is of-
ten referred to as a single-subject multi-modal registration. The images are
taken from the same person which means that rigid parts of body, e.g. head,
can be brought into an alignment just using rigid-body transformations, i.e.
rotations and translations.

Inter-subject registration

It is often desirable to compare images from a number of individuals acquired
using the same modality. For example, a comparison of a PET brain image
of one patient with a group of normal PET images allows to detect abnormal
changes in function that would not be otherwise detectable in the image
alone. It is also useful for studying various generic properties of human body
over a number of individuals or for creation of atlases and template images.
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There are usually considerable differences in the size and shape of brains of
different individuals and that is why affine or non-linear deformations must be
used to bring images into alignment, a task usually termed the inter-subject
non-linear registration or spatial normalization. Non-linear registration in
three-dimensions is very difficult to perform manually and reliable automated
procedures are thus crucial.

In this thesis we present two contributions to the development of faster
and more reliable automated registration procedures: a fast algorithm for
alignment of multi-modal images and a robust algorithm for inter-subject
matching with one-to-one deformations. Both algorithms have a large ap-
plicability in clinical practice. Before we proceed with this main topic we
shortly review the many different approaches to image registration.

1.1 Review of medical image registration
The problem of aligning 3D images is nearly as old as the 3D imaging tech-
niques themselves. A comprehensive survey of registration methods was
presented in Maintz and Viergever (1998). According to this survey, each
registration procedure can be decomposed into three major parts:

• Problem statement determines the type of images involved (multi-modal
or just a single modality), the type of required alignment (intra-subject,
inter-subject or atlas registration) and the nature of transformation to
be recovered (rigid-body, affine, non-linear, etc.).

• Registration paradigm involves the image features and the correspon-
dence criterion exploited to compute the registration.

• Optimization procedure determines the search strategy for the selected
criterion and the degree of user interaction required.

Registration methods can be divided according to the registration para-
digm into extrinsic or intrinsic.

Extrinsic methods make use of external markers fixed onto the scanned
person specifically with the intention to facilitate the subsequent registration.
For example, in stereotactic neurosurgery a frame with a set of markers of
known geometry is rigidly attached to the patient’s skull and the markers are
filled with a contrast medium that is clearly visible and distinguishable in
the resulting image. Registration of images with such markers is fast, usually
accurate and can be easily automated without the need for sophisticated reg-
istration algorithms. The necessity of mounting of markers is, however, very
uncomfortable for patients and also puts a considerable burden on the clini-
cal crew. Moreover, external markers are by their nature mostly restricted to



4 Chapter 1. Introduction

rigid-body transformations and cannot be used for matching of images from
different patients where non-linear deformations are necessary. For these and
other reasons, most images are acquired without the use of external markers
and intrinsic methods must be employed in order to align them.

Intrinsic methods make use solely of the image contents. They can be
landmark based or voxel based.

1.1.1 Landmark based methods

Landmark based methods rely on identification and extraction of homologous
objects in both images that are subsequently brought into alignment. These
can be points, lines, surfaces, curvatures etc. The set of objects is usually
sparse which allows a relatively fast optimization procedures but the issue of
a reliable landmark identification poses large problems.

Landmarks can be identified manually by an experienced physician, au-
tomatically by segmentation procedure or in a semi-automatic way. Several
years ago, manual point based methods were frequently used for retrospective
intra-subject registration (Pietrzyk et al., 1994) but they are labor-intensive,
time-consuming and their accuracy depends on physician’s experience.

Landmarks have often been used for non-linear registration of intra-
subject images based on deformable models. In these methods an extracted
structure from one image, mostly surface or curve, is elastically deformed
to fit a corresponding object in the second image (e.g. Johnson and Chris-
tensen, 2002; Bookstein, 1997; Thompson and Toga, 1996; Collins et al.,
1994). The registration accuracy is limited to the accuracy of the segmenta-
tion step. These methods are usually automated except for the segmentation
step which is mostly performed semi-automatically. An extensive survey on
these methods was presented in McInerney and Terzopoulos (1996).

Extraction of landmarks in a (semi-)automatic way is a highly data and
application dependent task that requires good quality images with sufficiently
distinct pattern (e.g. magnetic resonance images). Automatic identification
of landmarks in functional images like PET is not reliable. Landmark-based
methods are therefore not suitable for the purpose of this thesis.

1.1.2 Voxel based methods

Voxel based methods use the full image content and are among the most
promising methods of current research. They are theoretically the most flex-
ible methods since they use all available information throughout the regis-
tration process. Their enormous expansion in the last years has been made
possible by the increasing performance of modern computers. Voxel based
methods can be applied in almost any medical application and using various
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types of transformation.
The main principle of this class of methods is an iterative optimization

of some measure of similarity between the registered images. One of the
images is static and a suitable transformation is sought for the other image
that aligns it with the static image. For each transformation, the similarity
measure gives a number computed from corresponding voxels in both images
that evaluates the quality of alignment. An optimization algorithm is applied
to find a transformation that maximizes the similarity.

If the registered images come from the same modality, the matching crite-
rion can simply compare values of corresponding voxel in both images. The
situation becomes complicated when the input images come from different
modalities. Such images look very different and a precise relationship be-
tween the modalities is unknown. Mutual information has proved to be an
excellent criterion for registration of intra-individual images from different
modalities (Maes et al., 1997; Pluim et al., 2001a; Studholme et al., 1997;
Thurfjell et al., 2000; West et al., 1997). A multi-resolution approach was
proposed by several researchers for acceleration of image registration (Maes
et al., 1999; Pluim et al., 2001a; Thurfjell et al., 2000). They showed that a
suitable multi-resolution schema is able to improve registration speed by a
factor of more than 2 without loss of accuracy.

Methods for affine and non-linear registration of inter-individual images
deal almost exclusively with images from one modality, mostly MR images.
A frequent approach is to specify a parametric transformation model and a
similarity measure and to perform an iterative optimization of parameters of
the model in order to maximize similarity. Various transformation models
were proposed, for example low-order polynomials (Woods et al., 1998) or
cosine basis functions (Ashburner and Friston, 1999). A common problem in
these methods is ensuring of a one-to-one mapping between images. Linear
regularization is usually incorporated to improve robustness and topological
consistency (Ashburner, 2000) but it does not prevent production of a non-
injective mapping.

Interested reader may consult Pluim et al. (2003) and Maintz and Viergever
(1998) for a more detailed information and a comprehensive survey of liter-
ature about each particular registration type.

1.2 Overview of the text
The text is organized as follows. Chapter 2 sets the scene by introducing
the basic concepts of tomographical imaging and handling of 3D medical im-
ages. Section 2.3 describes the used coordinate system and introduces matrix
representation of affine transformations and conversion between coordinate
systems of two images with anisotropic voxel sizes. The chapter is concluded
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with a discussion of efficient ways of transforming 3D images.
Chapter 3 is concerned with voxel similarity measures. Sum of squared

differences and correlation coefficient are introduced as convenient measures
for estimation of alignment of images from the same modality. In the last
years, mutual information proved its superiority among measures estimat-
ing alignment of images from different modalities. The concept of mutual
information and joint histograms is described in detail in this chapter.

The next two chapters present the main contributions of this thesis.
Chapter 4 deals with registration of images from a single patient where
the matching transformation can be sufficiently described using rigid-body
transformation. This includes both single-modality registration (e.g. motion
correction of a sequence of image frames of one patient) and multi-modality
registration (e.g. PET-MR alignment). A method is described that brings
images into alignment by optimizing a suitable similarity measure as a func-
tion of transformation parameters. The question of a suitable histogram size
for computation of mutual information is discussed in detail and an empiri-
cal solution is suggested. An efficient segmentation method is proposed for
speeding-up of the registration process. The occurrence of failed registrations
is reduced by including an automated detection of a suitable initial trans-
formation estimate based on a modification of the principal axes algorithm.
The developed method is evaluated on a number of simulated and real images
and the results are discussed at the end of the chapter.

Chapter 5 is about non-linear registration of images from different pa-
tients. A novel algorithm is proposed which enables matching of images
of differing shapes. The method is designed mainly for matching of low-
resolution PET images of human brain. Performance of the method is evalu-
ated on matching of generated geometrical objects, on two control groups of
normal images and on a large database of diseased brain images. In addition,
a novel approach is presented that enables reliable matching of images with
large lesions.

Implementation details are given in chapter 6. A graphical user interface
developed for an easy utilization in clinical applications is described.

Chapters 4 and 5 include their own discussion sections. The chapter 7
summarizes the work and discusses possible future directions.



Chapter

2

Structure and transformations of 3D
medical images

In this chapter we introduce the fundamentals of two types of medical im-
age acquisition that are considered in the subsequent chapters: images from
positron emission tomographs (PET) and from magnetic resonance scanners
(MR). The aim is to provide a general background information necessary to
understand various issues that are inherent in medical applications with PET
and MR.

We will then describe the structure of 3D medical images, introduce two
convenient coordinate systems and the matrix representation of affine trans-
formations and discuss transformations of anisotropic 3D volumes in detail.

2.1 Medical images
2.1.1 Positron emission tomography
Positron emission tomography is a non invasive, diagnostic imaging tech-
nique for measuring the metabolic activity of cells in the human body. PET
is a unique technique in that it produces images of function of the body.
Traditional diagnostic techniques, such as CT scans or MRI, produce images
of anatomy or structure. The premise with these techniques is that disease
induces a change in structure or anatomy that can be seen in the images.
However, biochemical processes are also altered with disease and may occur
even before there is a change in gross anatomy. PET is an imaging technique
that is used to detect and visualize some of these functional processes and
their changes. Even in diseases such as Alzheimer’s disease or Parkinson’s
disease, where there is no gross structural abnormality, PET is able to reveal
a functional alteration. PET is often used in combination with MR images,
allowing a precise anatomical localization.

The principle of the positron emission tomography is following. A very
small amount of radionuclide-labelled compound (called radiopharmaceutical
or radiotracer) is introduced into a patient usually by intravenous injection.
The radionuclide decays in the patient’s body and some products of the decay

7
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Figure 2.1: Single slices of PET images acquired using different tracers.

are detected in a scanner, allowing measurement of concentration of the tracer
in tissue. In PET, radiopharmaceuticals are labelled with radionuclides that
emit a positron which, after travelling a short distance (1-5 mm), encounters
an electron from the surrounding environment. The two particles interact
and annihilate which results in the emission of two gamma rays of 511 keV
each in opposite directions. These two photons then travel through the tissue
and air and are eventually detected by a field of detectors located in rings
around the body. If the photons reach the detector rings they are detected by
opposite detectors and approximatelly at the same time. Each such detected
coincidence means that somewhere on the line connecting the two detectors
an annihilation is likely to have occurred. The coincidences are recorded
and afterwards reconstructed into a 3D image. Each image voxel carries
information about the approximate number of emissions that occurred at
that position which is closely related to the concentration of the injected
tracer at that location.

The radiotracers used in PET are chosen to enable the study of particular
metabolic and physiological processes in the living body. There is a number
of tracers that can be used, each revealing a different type of functional
(metabolic) information. For example, glucose labelled with 18F accumulates
in tumours, so that its high concentration indicates a possible presence of
a tumour. Tracers commonly used in PET imaging include 2-18F-fluoro-
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Figure 2.2: Two common types of MR images: T1-MR and T2-MR.

2-deoxy-D-glucose (18F-FDG), 15O-water, 11C-methionin (11C-MET), 11C-
flumazenil (11C-FLUMA), 6-18F-fluoro-L-dopa (18F-DOPA), N-11C-methyl-
4-piperidyl acetate (11C-MP4A). Figure 2.1 shows a slice of PET images of
each type. For more details about the tracers, their applications and the
PET acquisition process see for example Herholz et al. (2004); Toga and
Mazziotta (1996); Holmes (1995); Wienhard et al. (1994).

2.1.2 Magnetic resonance imaging

MRI produces a map of hydrogen distribution in the body. Hydrogen is the
simplest element known, the most abundant in biological tissue, and one that
can be magnetized. This property is used in MRI scanners that consist to
a large part of a very strong superconducting magnet that is able to align
spins of hydrogen atoms in the patient’s body.

Once hydrogen atoms have been aligned in the magnet, pulses of very
specific radio wave frequencies are used to bring them out of alignment. The
hydrogen atoms alternately absorb and emit radio wave energy, vibrating
back and forth between their resting (magnetized) state and their agitated
(radio pulse) state.

The MRI equipment records the duration, strength, and source location
of the signals emitted by the atoms as they relax and translates the data into
an image. In some cases, chemical agents such as gadolinium can be injected
to improve the contrast between healthy and diseased tissue. Acquisition
with different parameters (e.g. at different relaxation times) results in dis-
tinct types of MR images, the most common being the T1-MR and T2-MR,
presented in Figure 2.2. For details about the MRI acquisition see Toga and
Mazziotta (1996).
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Figure 2.3: The output from a scanner is a set of 2D slices, each containing
dimx × dimy pixels (a). For the purpose of image registration they are re-
garded as a 3D volume of dimx × dimy × dimz voxels with anisotropic sizes
vx, vy, vz mm (b).

2.2 Voxel and world coordinate systems
The output from a PET or MR scanner is a set of 2D slices1 that together
constitute a discrete image of measured tracer activity (Fig. 2.3a). For the
purpose of methods presented in this thesis it is sufficient to regard the image
data as a 3D volume of voxels with anisotropic sizes (Fig. 2.3b). The volume
is thus characterized by the number of voxels in each dimension (dimx, dimy,
dimz) and the voxel size in millimeters (vx, vy, vz).

Due to the anisotropic voxel sizes we need to work with two types of
coordinate systems:

Voxel coordinate system 3D images are defined on a rectangular lattice
and the voxel coordinate system provides a direct 3D representation of
the image data stored in memory. Integer coordinates (i, j, k) ∈ Z3

correspond to the zero-based order of voxels in each axis and are related
to the voxel centres. For example, the voxel with coordinates (3, 7, 1)
is the 4-th voxel in the x-axis, 8-th in the y-axis and 2-nd in the z-axis.
The intensity value of a voxel is assigned to the corresponding integer
coordinate. Non-integer coordinates do not have an intensity assigned
to them and the intensity must be interpolated from the neighbouring
integer coordinates. Interpolation is discussed in section 2.3.6.

The voxel coordinate system does not take voxel sizes into account. The

1In the last years, PET images are often reconstructed in a fully 3D reconstruction
process. However, the resolution in the “in-slice” dimensions is mostly better than in the
remaining axis and we can still regard the image as a set of 2D slices.
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Figure 2.4: Geometric transformations of a regular rectangular grid.

legal range for a coordinate (i, j, k) is i ∈ 〈0, dimx−1〉, j ∈ 〈0, dimy−1〉,
k ∈ 〈0, dimz− 1〉. We will denote S(i, j, k) the intensity value of image
S at the coordinate (i, j, k). When the 3D position of a voxel is not
important, the notation S(i) will be used. S(i) is the intensity value
of the i-th voxel (in an arbitrary fixed ordering), i ∈ 〈0, dimx · dimy ·
dimz − 1〉.

World coordinate system: Coordinates of the world coordinate system
(x, y, z) ∈ R3 are expressed in millimetres and take voxel sizes into
account. The origin (0, 0, 0) is in the exact centre of the image volume.
The directions of axes are the same for both the voxel and the world
coordinate system.

Every image has its own voxel coordinate system that depends on its dimen-
sions and voxel size. The world coordinate system is common to all images
and independent of dimensions and voxel sizes of individual images. Im-
age transformations applied during a registration therefore take place in the
world coordinate system.

In the whole text we will use the characters (i, j, k) for coordinates in the
voxel coordinate system and the characters (x, y, z) for coordinates in the
world coordinate system, unless otherwise stated.

2.3 Image transformations
The methods presented in this thesis work with three types of transforma-
tions: rigid-body, affine and non-linear (see Figure 2.4). Affine transfor-
mations and their subset, rigid-body transformations, are the topic of this
section. Non-linear transformations are described in chapter 5 as a part of
the non-linear registration algorithm.
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2.3.1 Affine transformation
Affine transformations constitute one of the corner-stones of the registration
methods presented in this thesis, imposing mathematical constraints on the
types of geometric distortions that can be applied during the process of reg-
istration. They represent a subset of the linear transformations and they
project, by definition, parallel lines onto parallel lines. An overview of affine
transformations with respect to medical applications and with practical ex-
amples can be found in Woods (2000).

Affine transformations in a three dimensional space are defined by a set of
12 independent parameters and can be conveniently expressed using matrix
notation by a 4× 4 matrix M :

M =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1


The elegance and usefulness of the matrix formulation is that a sequence

of transformations (i.e. transformation matrices) can be combined together
via matrix multiplication to form a single matrix. Points in the three di-
mensional space must be expressed in homogenous coordinates in order to
transform them using this matrix notation. Homogenous coordinates are a
common technique that enables us to represent a full affine transformation of
a point using matrix notation2. For the purpose of this thesis it is sufficient
to state that a point p = (x, y, z) in 3D Cartesian coordinates corresponds
to a point ph = (x, y, z, 1) in 3D homogenous coordinates and that a point
ph = (x, y, z, w), w > 0, can be transformed back to the common 3D coor-
dinates as p = (x/w, y/w, z/w). For more information about homogenous
coordinates see Woods (2000).

In the rest of this section we implicitly assume the use of homogenous
coordinates in places where a matrix transformation of a point is concerned.
Transformation of vectors, e.g. coordinate axes, is performed using just the
upper left 3× 3 matrix without involving homogenous coordinates.

Most of the parameters of the transformation matrix M do not have
a direct obvious meaning and therefore various other parametrizations are
often used. A popular parametrization expresses the matrix M as a sequence
of the primitive operations translation, rotation, scaling and shear. In this
thesis we will use a slightly different parametrization in order to facilitate
reverse matrix decomposition (section 2.3.7). In this parametrization the
transformation matrix is composed as:

2Translation can not be represented without the help of homogenous coordinates. Ro-
tation, scaling and shear can be fully represented just by common 3D coordinates.
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M = T ·R ·U · S ·UT

T represents translation by tx, ty, tz millimetres in the x, y and z axis:

T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


R is a rotation matrix and can be further decomposed as:

R = Rx ·Ry ·Rz

The elementary matrices Rx, Ry, Rz represent rotation by rx, ry and rz

radians around the x, y and z axis:

Rx =


1 0 0 0
0 cos rx sin rx 0
0 − sin rx cos rx 0
0 0 0 1



Ry =


cos ry 0 sin ry 0

0 1 0 0
− sin ry 0 cos ry 0

0 0 0 1



Rz =


cos rz sin rz 0 0
− sin rz cos rz 0 0

0 0 1 0
0 0 0 1


U is a rotation matrix as well, described by parameters ux, uy, uz. It

represents so called “stretch rotation” (Shoemake and Duff, 1992).
The matrix S stands for scaling with factors sx, sy, sz:

S =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1


A negative scaling factor represents mirroring across the respective axis.

Mirroring is not of interest here and we will therefore limit the scaling para-
meters to positive values.

For each of the described elementary transformation there is a simple
expression for inverse transformation parameters and for composition of an
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inverse transformation matrix (see, e.g., Woods (2000)). The inverse M−1 of
the whole affine transformation matrix M is computed using the elementary
inverse transformation matrices as:

M−1 = (UT )−1 · S−1 ·U−1 ·R−1 · T−1

A point p = (x, y, z, 1)T in a 3D coordinate space is transformed to a new
point p′ = (x′, y′, z′, 1)T as:

p′ = M · p

Instead of working with transformation matrices, the registration meth-
ods described in the following chapters work internally with vectors of 12
independent transformation parameters α where

α = (rx, ry, rz, tx, ty, tz, sx, sy, sz, ux, uy, uz)

This has several good reasons. In contrast to the coefficients of transfor-
mation matrices, these parameters have an obvious meaning and are suitable
for interaction with users (e.g. displaying of registration progress, entering of
initial transformation estimates, etc.). Tuning of optimization methods that
work on vectors of parameters is easier. Another reason is that the composi-
tion of a transformation matrix from a vector of transformation parameters
is simple and unique whereas decomposition of a matrix into independent
parameters is ambiguous and requires utilization of numerical methods. The
transformation matrix Mα corresponding to α is composed and used solely
during the transformation of image.

Note that a transformation matrix uniquely describes a certain transfor-
mation whereas a vector of transformation parameters must be accompanied
by an information about the way of composing elementary matrices from
parameters and about the order of these elementary transformations.

2.3.2 Rigid-body transformation
Rigid-body transformation is a special case of affine transformations that
consists of rotation and translation only. It does not change Euclidean dis-
tances between any two coordinates, i.e. only position and orientation of
objects can change whereas shape and size remain unchanged.

2.3.3 Conversion between coordinate systems
Voxel coordinates of an image are transformed to the world coordinates by
first shifting the centre of the image to its origin and then scaling by the
voxel size.
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Let C be the image centre expressed in the voxel coordinates, i.e.

C = (cx, cy, cz) =

(
dimx − 1

2
,
dimy − 1

2
,
dimz − 1

2

)
The shift to the origin is accomplished by the centering matrix Tc, the scaling
by voxel size is provided by the matrix Sw:

Tc =


1 0 0 −cx

0 1 0 −cy

0 0 1 −cz

0 0 0 1

 Sw =


vx 0 0 0
0 vy 0 0
0 0 vz 0
0 0 0 1



The voxel-to-world and the world-to-voxel transformation matrices are
then given by:

Mv→w = SwTc Mw→v = T−1
c S−1

w

Note that transforming a voxel p = (i, j, k) ∈ Z3 from the voxel
coordinate space to a point p′ = (x, y, z) ∈ R3 in the world coordinate
space assigns the precise intensity value of p to p′. A reverse transformation
from the world coordinates in R3 to the voxel coordinates in Z3 can not get
along without some kind of interpolation of intensity values in the image
grid.

2.3.4 Resampling to different image dimensions
It is often necessary to resample an image to other dimensions, different voxel
sizes or to express a coordinate in one image using coordinates of another
image. A matrix that provides a conversion between the voxel coordinates v1,
v2 of two images can be expressed using the matrices defined in the previous
text:

Mv1→v2 = M−1
w→v2

·Mv1→w

2.3.5 Transformation of a 3D image
Consider a transformation of a 3D image S (source) using an affine trans-
formation matrix M and subsequent resampling into a 3D image T (target)
with a different dimension and voxel size. This task is accomplished by a
common backward mapping in two steps:
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1. Geometrical transformation: The target volume T is passed voxel
by voxel, each voxel is converted to the world coordinate system, trans-
formed using the inverse matrix M−1 and then converted to the coor-
dinate system of S. The whole transformation can be combined into a
single matrix MS,T :

MS,T = Mw→vS ·M−1 ·MvT→w

2. Interpolation: Intensity at the resulting location is interpolated from
neighbouring voxels and assigned back to the original voxel in T . If
the resulting location falls outside of the volume of S than we assign it
some predefined value, e.g. zero or NaN.

Suppose that interpolate is an interpolation function that takes an image
and a point in its voxel coordinate system as arguments and returns the
interpolated intensity value at this point. Algorithm 1 outlines the principle
of the image transformation.

Algorithm 1: Transformation of a 3D Image

Input: image S, transformation matrix M

Output: image T

create space for the output volume T
MS,T ←−Mw→vS ·M−1 ·MvT→w

foreach voxel p ∈ T do

1 p′ ←−MS,T · p
2 T (p)←− interpolate(S, p′)

end

This algorithm is not very efficient, the inefficient part being the first line
of the for loop which forces matrix multiplication and requires 12 multiplica-
tions and 9 additions for each voxel, i.e. a total of dimx ·dimy ·dimz ·(12 mul+
9 add). We can achieve a better performance if we just transform the origin p0

of the voxel coordinate system of T into a point p′0 in the coordinate system
of S and also the unit vectors ex, ey, ez of the main axes of T into vectors
e′x, e′y, e′z. Transformed position p′ ∈ S of every point p = (x, y, z) ∈ T
can then be expressed as a linear combination of the transformed origin and
main axes (see Figure 2.5):

p′ = p′0 + x · e′x + y · e′y + z · e′z
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Figure 2.5: A 2D illustration of a transformation of a point p ∈ T into a
point p′ ∈ S as a linear combination of the transformed origin p′0 and main
axes e′x, e′y.

If we transform the origin and vectors of main axes once at the beginning,
the transformation part of the for loop then makes do just with additions.
This approach corresponds to scanline algorithms often used in computer
graphics (Wolberg, 1990) and is outlined in the Algorithm 2.

The initial transformation of the origin and main axes requires 39 multi-
plications and 27 additions. The for loops make do just with addition, the
number of which is:

3·dimx ·(dimy ·(dimz +1)+1) add = 3·(dimx ·dimy ·dimz +dimx ·dimy+dimx) add

It is apparent from this expression that we can further reduce the number
of operations by choosing the smallest image dimension for the outmost for
loop and the largest dimensions for the innermost loop.

Table 2.1 compares the number of operations and computational time
for two common image dimensions using both described algorithms. The
number of operations in Algorithm 1 is approx. 7 times higher than that
of Algorithm 2. Since multiplication usually takes slightly more time than
addition, this factor is in reality larger (approx. 11), as indicated by the
measured computational times3.

3The computational times were measured on a PC with an AMD Athlon 1 GHz proces-
sor and represent the mean value of a sequence of 100 successive transformations.
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Algorithm 2: Scanline Transformation of a 3D Image

Input: image S, transformation matrix M

Output: image T

create space for the output volume T ;

MT ,S ←−Mw→vS ·M−1 ·MvT→w;

//transform origin

p′0 ←−MT ,S · p0;

//transform main axes

e′x ←−MT ,S · ex;

e′y ←−MT ,S · ey;

e′z ←−MT ,S · ez;

p′ ←− p′0;

for x← 0 to dimx − 1 do

p′′ ←− p′;

for y ← 0 to dimy − 1 do

p′′′ ←− p′′;

for z ← 0 to dimz − 1 do

T (x, y, z)←− interpolate(S, p′′′);

p′′′ ←− p′′′ + e′z;

p′′ ←− p′′ + e′y;

p′ ←− p′ + e′x;
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(dx, dy, dz) (128, 128, 47) (256, 256, 200)
No. of operations No. op. Time No. op. Time

Algo 1 dxdydz(12 mul + 9 add) 16.2 · 106 0.81 s 27.5 · 107 13.85 s

Algo 2 39 mul + 27 add+ 2.3 · 106 0.07 s 3.9 · 107 1.12 s
3(dxdydz + dxdy + dx) add

Algo 1
Algo 2 6.95 11.57 6.97 12.37

Table 2.1: The number of multiplications (mul), additions (add) and the
computational time needed for transformation of a 3D image with target
dimensions (dx, dy, dz).

An important note to the transformation algorithms

A necessary presumption in using the scanline transformation algorithm is
that the transformation can be fully described as a linear combination of
a transformed origin and main axes of the coordinate system of the source
image. The algorithm is thus limited to the class of linear transformations
(affine+perspective). Non-linear transformations must be in general com-
puted using Algorithm 1 where the first line of the for loop can be replaced
by any kind of transformation. This fact was one of the important impulses in
development of the non-linear registration algorithm HBM described in chap-
ter 5. In a registration process, image volumes must be transformed many
times (> 100) during a search for an optimum match. In order to allow a
fast non-linear matching, the HBM algorithm was designed to use piecewise
affine transformations with the fast scanline algorithm to approximate the
non-linear nature of matching at the optimization stage and to use non-linear
transformations just for formation of intermediate or resulting images.

2.3.6 Interpolation

Interpolation is a reverse (not inverse) process to acquisition of image data in
a scanner. A tomographic scanner records a three-dimensional information
about a continuous object (e.g. intensity of a radio-tracer in a human brain)
by sampling it in discrete intervals which results in a 3D discrete grid of
intensity samples. For further processing and analysis of the data it is usually
necessary to know the intensity in between the discrete samples. This is done
by interpolation from neighbouring samples.

A comprehensive overview of interpolation types and related issues can
be found in Thevenaz et al. (2000); Eddy and Young (2000). A thorough
evaluation and discussion of interpolation issues related to medical imaging
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was published in Pluim et al. (2000). The computational demand raises
with increasing quality of interpolation and the choice of the most suitable
interpolation type depends on the specific application.

Nearest neighbour interpolation

Nearest-neighbour interpolation is the simplest type of all. An interpolated
point (x, y, z) is assigned the value of the closest neighbouring voxel. The
main benefit of this kind of interpolation is its simplicity that enables a
very efficient implementation. It preserves the original voxel intensities. The
price to pay is a considerable degradation of the resulting image (“blocky”
appearance).

Tri-linear interpolation

A very popular approach in medical imaging is the tri-linear interpolation.
The value of an interpolated point (x, y, z) is computed as the average value
of its eight neighbouring voxels, weighted by their distance to the interpo-
lated point. It is only slightly slower than nearest-neighbour, it produces
a continuous interpolation and its implementation is simple. On the other
hand, tri-linear interpolation results in a strong attenuation of high frequen-
cies in the image. It is nevertheless a good compromise between quality and
speed for many applications and we use it in all applications in this thesis.

Higher-order interpolation

A smoother interpolation can be achieved with higher-order polynomials, e.g.
cubic B-splines, or with the sinc function. Computation of these interpolation
functions involves much more neighbouring voxels and is significantly slower
than the tri-linear interpolation. The result is smooth (at least the first
partial derivatives are continuous) and high frequencies are not that much
attenuated.

2.3.7 Decomposition of transformation matrix

As mentioned in section 2.3.1, composition of a transformation matrix from a
vector of transformation parameters is simple and straightforward and it is of
advantage to work with parameter vectors wherever possible. In some cases
the reverse process might be required: decomposition of a transformation
matrix into a parameter vector. It is needed, for example, for interaction
with other software packages that pass a transformation matrix or use a
different order of elementary transformations.

Every affine transformation of an object can be described by a matrix
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with 12 variable coefficients m11-m34 (section 2.3.1). The question is, how
to decompose the matrix into a parameter vector α. Note that no decompo-
sition procedure is unique because different parameter vectors may describe
the same resulting transformation. We have chosen the polar matrix decom-
position method of Shoemake and Duff (Shoemake and Duff, 1992; Heckbert,
1994, chap. 3). Polar decomposition factors a transformation matrix M into
primitive components T , R, U and S, defined in the section 2.3.1.
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Chapter

3

Similarity measures

3.1 Introduction
Consider two images, a target imageR and a source image S, each containing
an object of interest (e.g. brain images). Let tα denote a transformation cor-
responding to some transformation parameters α. The aim of a registration
is to transform the image S so that the objects within the two images are
aligned. In other words, we want to find transformation parameters α that
match the object in R to the object in tα(S). This process is illustrated on
an example of registration of a target MR image and a source PET images
in Figure 3.1.

One possible approach is to maximize some measure of similarity between
the images. We can formulate this mathematically as an optimization of some
cost function f(R, tα(S)) of the two images. The cost function, or similarity
measure, evaluates the quality of alignment of the object in image R and the
object in the transformed image tα(S). The goal is to find a transformation
α∗ for which the similarity measure is maximal, i.e.

α∗ = arg max
α∈A

f(R, tα(S))

where A is the space of possible transformation parameters.

The crucial questions are:

1. How do we determine that two images are similar or well aligned?

2. How do we find an optimum transformation?

In this chapter we will deal with the first question. Finding a suitable
transformation is the topic of the next chapters.

23
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Figure 3.1: Schema of the registration process.

A similarity measure f should have the following properties:

• It should have a global maximum for the transformation that best aligns
the images.

• The function should have as few local maxima as possible within a
sufficiently large vicinity of the global maximum to avoid capture in a
local maximum (i.e. a large capture range).

The right choice of a plausible function depends on the modalities of the
registered images. There are, however, several general characteristics that
most of them have in common. In contrast to the landmark-based methods
reviewed in section 1.1, these voxel-based similarity measures do not rely on
extracting specific features from images but work on the full image contents.
More specifically, on a set of pairs of corresponding voxels (v, tα(v)) where
v ∈ R and tα(v) ∈ S.

When the images come from the same modality (e.g. both are PET
images), they have a similar appearance, pattern and mostly a similar range
of intensity values. Similarity of such images can be measured by a direct
comparison of intensity values in corresponding voxels. Two of the most
commonly used measures for this purpose are the Sum of Squared Differences
and the Correlation Coefficient.
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Similarity of images of different modalities (e.g. PET and MR) is in
general difficult to assess since the precise relationships between the values
and patterns are unknown. More sophisticated methods must be used to
estimate the similarity. One of the most successful measures is the Mutual
Information.

3.2 Image overlap
Before getting into a detailed discussion of similarity measures, attention
must be paid to the question of spatial correspondence and image overlap.
The target image R and the source image S generally do not have the same
dimensions and voxel sizes and might encompass areas of different size in the
world coordinates. Moreover, the overlap of the images varies according to
the transformation tα.

The similarity measures presented in the following sections work on pairs
of corresponding voxels (v, tα(v)) where v ∈ R and tα(v) ∈ S. Only voxels
in the overlap of R and S are taken into account. To simplify definitions of
similarity measures, we will define a sub-image Ro as the part of the image
R that overlaps with the transformed image S.

Ro = {v|v ∈ R, tα(v) ∈ S} (3.1)

Note that voxels v ∈ R are discrete samples in the voxel coordinates of
R and values R(v) are precise whereas voxels v′ = tα(v) and values S(v′)
must be interpolated in the image grid of S. An abbreviation Sα(v) will be
used in place of S(tα(v)) in the following sections.

3.3 Sum of squared differences
Consider now two images R, S of the same modality. If they originate from
the same patient and were acquired using the same scanner with the same
settings, the vast majority of voxels in the aligned images differs only by
noise. A very simple measure of similarity of two corresponding voxels v and
tα(v) is the absolute difference of their values |R(v) − Sα(v)|. According
to Hill and Hawkes (2000), the sum of squared differences (SSD) should
theoretically be the optimum measure in the case where the two images
differ only by Gaussian noise. The sum of squared differences between the
overlapping parts of images is computed as:

SSD(R,Sα) =
1

N

∑
v∈Ro

(R(v)− Sα(v))2 (3.2)

where N = |Ro| is the number of voxels in the area of overlap in R.
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SSD of identical images is zero and SSD of non-identical or misaligned
images is always greater than zero. The intrinsic assumption for using this
measure is that the voxel values in both images are calibrated to the same
intensity range. In such case the SSD function will have a global minimum
at alignment. Note that it is important to take average in the equation 3.2,
i.e. to divide by N . Otherwise the measure would depend on the number
of voxels in the overlap and prefer solutions that decrease the area of over-
lap. Consequently, the global minimum of SSD would not necessarily be at
alignment.

In practice, even the fact that two images originate from the same scanner
does not guarantee that their intensity ranges are in concordance because
the calibrations are often different. In order to accommodate to differing
calibrations, we can add a global scaling parameter q into the expression of
SSD which adjusts the intensity range of image S to that of R:

SSD(R,Sα) =
1

N

∑
v∈Ro

(R(v)− q · Sα(v))2 (3.3)

The parameter q can be either fixed and estimated prior to registration or
it can play a role of an additional optimized parameter. Choosing a fixed pa-
rameter is problematic since a bad estimate may spoil the whole registration.
Adding of the calibration parameter to the set of optimized transformation
parameters is a more flexible solution. However, an additional optimization
parameter naturally increases computational demand of optimization. More-
over, another transformation dimension is added along which the optimiza-
tion may fail. In the next section we will describe a more flexible measure
that implicitly accounts for a linear relationship between image values.

3.4 Correlation coefficient
Consider again two images R and S originating from the same modality and
suppose that their intensity ranges differ due to an unequal calibration. A
simple measure of similarity that accounts for this linear relationship is the
cross correlation. The measure is expressed as the sum of the product of all
corresponding voxel pairs in the image overlap:

C(R,Sα) =
∑
v∈Ro

R(v) · Sα(v) (3.4)

Cross correlation is frequently used in signal processing. It is also quite
often applied in medical imaging although the justification of its applicability
is limited and its usage problematic. One assumption for a successful appli-
cation of this measure is that the number of voxels used for computation
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does not change. In image registration this assumption is violated since the
area of image overlap changes for different transformations of the image S.
As a result, the value of cross correlation generally tends to be higher for
transformations that produce a larger overlap. This problem can be easily
avoided by dividing cross correlation by the number of voxels in the overlap
N , as in the computation of the SSD measure in equation 3.2. Still, there
remains another unwanted property that the cross correlation bears: the de-
pendency on the overall intensity of voxels in the overlap. The measure tends
to prefer transformation that produce overlaps with higher intensity values
even though other transformations might give a better alignment.

A measure that overcomes both problems is the correlation coefficient :

CC(R,Sα) =

∑
v∈Ro(R(v)− R̄)(Sα(v)− S̄)√∑

v∈Ro(R(v)− R̄)2 ·
√∑

v∈Ro(Sα(v)− S̄)2
(3.5)

where

R̄ = 1
N

∑
v∈RoR(v) S̄ = 1

N

∑
v∈Ro Sα(v)

are the mean intensity values of images R and Sα in their overlap.
In practice, we use a squared version of the correlation coefficient CC2

in order to avoid the necessity to compute square roots. The range of values
of CC2 is CC2 ∈ 〈0, 1〉 where CC2 = 0 means no correlation and CC2 = 1
means a perfect correlation.

The correlation coefficient is suitable for images with a wide range of
intensity values like PET images. It is however not applicable for images
with one or a few intensity values that repeat throughout the image.

3.5 Mutual information
In the previous sections we have presented two measures suitable for images
of the same modality. In the following text we describe a measure applicable
to images from different modalities: mutual information.

The roots of mutual information go back to year 1948 when Claude Shan-
non defined basic measures of information (e.g. the entropy) together with
fundamental laws of data compression and transmission (Shannon, 1948).
On this basis a whole new field - the theory of information - has evolved
which plays an important role in many fields of computer science, physics,
statistics, linguistics, biology, etc. In the works of Viola and Wells (Viola
and Wells, 1995; Viola, 1995; Wells et al., 1996; Viola and Wells, 1997), Col-
lignon et al. (Collignon et al., 1995a; Maes et al., 1997) and Studholme et al.
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(Studholme et al., 1995, 1999) the joint entropy and the mutual information
entered the field of image registration.

Entropy-based measures require estimation of the underlying intensity
distribution in the images. There are basically two ways how to estimate
the unknown intensity distribution: image histograms and kernel density
estimation. The latter is a computationally demanding approach that is
rarely used in medical image registration and was not pursued in this work.

In the next sections we will describe the concept of the marginal and
joint image histograms and review the most basic definitions of the theory
of information. On this basis we will then define the mutual information
measure.

3.5.1 Image histogram
Histogram HR of an image R can be regarded as a way to estimate the
unknown probability density of the intensity distribution in the image R. It
is obtained by dividing the intensity range of the image into equally spaced
discrete bins.

Let rmin, resp. rmax be the minimum and maximum value in the image
R and BR the number of bins in the histogram. A voxel v with intensity
R(v) falls into a bin k given as

k =

⌊
R(v)− rmin

rmax − rmin

·BR

⌋
(3.6)

This mapping will be further markedR(v) 7−→ k. Note that this mapping
is surjective and therefore not invertible. Each intensity maps to a certain
bin but a certain bin corresponds to a range of intensities.

The bin width w is given as

w =
rmax − rmin

BR
(3.7)

and a single histogram bin k corresponds to all intensities in the range〈
k · w + rmin, (k + 1) · w + rmin

)
(3.8)

The value of the histogram H(k) in a bin k is the number of voxels whose
intensity falls into this bin:

HR(k) =
∣∣∣{v|R(v) 7−→ k}

∣∣∣ (3.9)

Figure 3.2 shows an example of a PET image and its histogram created
using 128 bins.
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Figure 3.2: PET image and its image histogram (128 bins). The high peak
in the lower bins corresponds to the background. Small bars in the higher
bins represent brain tissue.

A histogram can be used to estimate the probability density function of
the image. The probability of an intensity falling into bin k can be approxi-
mated as

PR(k) =
HR(k)∑BR−1

i=0 HR(i)
(3.10)

where the denominator corresponds to the number of voxels in the im-
age R.

Removal of outliers

A characteristic property of PET images is that their intensity distribution
contains a small number of outliers that originate from the reconstruction
process where a 3D volume is computed from a set of 2D projections. These
outliers are voxels with very high or very low intensity in comparison to the
rest of the image. In the Figure 3.2 they correspond approximatelly to bins
0-40 and 120-128. They together represent about 1-3% of the whole volume
but have considerable influence on the histogram in that they occupy many
bins and “squeeze” the actually important data into a smaller number of
bins. This can be easily avoided by setting the value of the lowest 1% of
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Figure 3.3: Joint histogram (128 x 128 bins) of a misaligned and aligned pair
of PET and MR images.

all voxels to the minimum value of the remaining voxels and analogously by
setting the value of the highest 1% of all voxels to the maximum of the rest.
In the remaining sections and chapters we will implicitly assume that PET
images have undergone this procedure. MR images usually do not have this
problem.

3.5.2 Joint image histogram
Joint histogram HR,S of images R, S is an estimate of the joint intensity
distribution of the two images. HR,S(p, q) is the number of voxels v with
intensity R(v) falling into bin p and intensity S(v) falling into bin q:

HR,S(p, q) =
∣∣∣{v|R(v) 7−→ p ∧ S(v) 7−→ q}

∣∣∣ (3.11)

The joint probability distribution PR,S of intensity in images R, S can
be assessed with the help of the joint histogram HR,S as a probability of
intensities in R, resp. S falling into bin k, resp. l:

PR,S(k, l) =
HR,S(k, l)∑BR−1

i=0

∑BS−1
j=0 HR,S(i, j)

(3.12)

where the denominator corresponds to the number of voxels in the overlap
of R and S. If the number of bins used for the joint histogram is equal to
the number of bins in the respective marginal histograms then the latter can
be easily computed from the joint histogram by a summation.

An example of a joint histogram of a PET and MR images is shown in
Figure 3.3. The histogram is more dispersed when the images are misaligned
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than in case of an alignment.

3.5.3 Shannon entropy
Shannon Entropy of a set of N symbols X = {x1, x2, . . . , xN} is defined as:

E(X) = −
N∑

i=1

PX(i) log PX(i) (3.13)

where PX(i) is the probability of appearance of symbol xi in the set. The
Shannon entropy expresses the average information supplied by the set of
symbols.

Entropy of an image R can be estimated from its probability distribu-
tion PR:

E(R) = −
BR−1∑
k=0

PR(k) log PR(k) (3.14)

Note that although the Shannon entropy is by far the most commonly
used measure of information there are many other possible definitions. For
example, generalizations of the Shannon entropy like the Rényi entropy or
f -information metrics have been used by several authors for computation of
generalized mutual information (Capek et al., 2001; Pluim et al., 2001a; He
et al., 2003; Bardera et al., 2004). Some of these measures seem to improve
registration precision in special applications. Nevertheless, the generalized
measures are more difficult to optimize and so far none of the tested variations
persuasively outperformed the mutual information measure based on the
Shannon entropy. For the purpose of our work, Shannon entropy seems
to be the best choice.

3.5.4 Joint entropy
Joint entropy of two images R, Sα is given by:

E(R,Sα) = −
BR−1∑
k=0

BS−1∑
l=0

PR,Sα(k, l) log PR,Sα(k, l) (3.15)

The joint entropy measures the amount of information in the combined
images. As noted in Studholme (1997), if two images with similar struc-
tures are misaligned, then in their combined image these structures will be
duplicated: “For example, when a transaxial slice through the head is mis-
aligned, there may be four eyes and four ears. As the images are brought
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into alignment the duplication of features is reduced and the combined im-
age is simplified.” Registration can thus be seen as a process of reducing
the amount of information in the combined image which can be achieved by
minimizing of joint entropy.

The performance of the joint entropy in image registration has been eval-
uated by several researchers (e.g. Collignon et al., 1995b; Studholme et al.,
1995) and was found to be unreliable. The joint entropy has a problem with
registration of images that only partially overlap: it tends to prefer larger
overlaps even though at perfect registration the images might overlap only
partially. This is due to the fact that the marginal entropies H(R) and H(S)
are not constant during the registration process because of the changing area
of overlap.

3.5.5 Mutual information
We can overcome these inconveniences by using the mutual information mea-
sure which takes the changing marginal entropies into account. It was pro-
posed independently by Collignon et al. (Collignon et al., 1995a; Maes et al.,
1997) and Viola and Wells (Viola and Wells, 1995; Viola, 1995). Mutual
information is defined as:

MI(R,Sα) = E(R) + E(Sα)− E(R,Sα) (3.16)

By substituting from the equations 3.14, 3.15 and after some adjustments
it can be written as

MI(R,Sα) =

BR−1∑
k=0

BS−1∑
l=0

PR,Sα(k, l) log
PR,Sα(k, l)

PR(k)PSα(l)
(3.17)

3.5.6 Normalized mutual information
Mutual information is less sensitive to overlap than the joint entropy but not
completely immune. Studholme et al. showed that for larger misregistrations
the mutual information measure may actually increase with increasing mis-
registration (Studholme, 1997). They proposed a normalized version of MI,
the normalized mutual information (NMI), and found a distinct improvement
in robustness with respect to varying overlap (Studholme, 1997; Studholme
et al., 1999):

NMI(R,Sα) =
E(R) + E(Sα)

E(R,Sα)

Maes et al. proposed a similar measure, called the entropy correlation
coefficient (Maes et al., 1997):
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ECC(R,Sα) =
2 ·MI(R,Sα)

E(R) + E(Sα)

NMI and ECC are related in the following manner (Pluim et al., 2003):

ECC = 2− 2

NMI

3.6 Interpolation schemes for similarity mea-
sures

The SSD, resp. CC measure of two images R and Sα is evaluated by passing
through every voxel v of the target image R, transforming it to a point tα(v)
in S, interpolating its value from neighbouring voxels in S and then adding
the contribution of the pair (v, tα(v)) to the value of the respective measure.
Trilinear interpolation (section 2.3.6) is used because it is continuous and
very efficient.

The situation is different in computation of MI, resp. NMI. The trilinear
interpolation could in principle be used exactly in the same way as with CC
and SSD. In such case, however, intensity values are distributed into discrete
histogram bins and a single voxel pair (v, tα(v)) contributes to exactly one
bin. It implicates that even a small change of transformation parameters
α may result in a discontinuous change in the histograms, regardless of the
used interpolation type. There are many ways how to make the MI vary
continuously with α. Some authors use Parzen windows for computation of
the mutual information (Thevenaz and Unser, 2000; Viola and Wells, 1997).
We use the efficient partial volume interpolation (PV) that was proposed in
Collignon et al. (1995a) and Maes et al. (1997). For every pair (v, tα(v)),
the eight nearest neighbours v′i in the other image are determined and the
histogram entries of the eight pairs (v, v′i) are enlarged by a fraction inversely
proportional to the distance between v and v′i, as in trilinear interpolation.

3.7 Complexity of similarity evaluation
The most time consuming part of registration is the evaluation of similarity
measure. The time spent on the optimization algorithm itself is negligible.

All three presented similarity measures are in principle evaluated in the
same way, by passing through voxels of the target image volume, transform-
ing each voxel v onto a point v′ in the source image and adding contribution
of the pair (v, v′) to the computed value of similarity measure. The trans-
formation is carried out by the scan-line algorithm 2 (page 18). The time
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required for evaluation of a similarity measure of two images is directly pro-
portional to the number of samples taken from the target image.



Chapter

4

Rigid-body registration

4.1 Introduction
The topic of this chapter is registration of images of the same subject acquired
by the same or different modalities (intra- or inter-modality registration).
Although the intra- and inter-modality cases introduce diverse challenges,
the basic transformation and optimization approach remains same and they
can be handled in the same framework. Apart from differences originating
from acquisition by different modalities, images of the same subject usually
differ only in position and orientation whereas the subject’s shape remains
uniform. This implies the use of rigid-body transformations (translation and
rotation) in the matching procedure.

In chapter 3 we have defined several measures of similarity that evaluate
quality of alignment of two images. Registration task consists in searching
for a transformation α∗ for which the selected similarity measure is maximal,
i.e.

α∗ = arg max
α∈A

f(R, tα(S))

where A is the space of transformation parameters. In the following sections
we will describe a convenient way of optimizing the similarity measures and
propose a technique that reduces computational time and increases robust-
ness of registration.

The chapter concentrates on a multi-modal registration of PET and MR
images using mutual information as similarity measure. However, most of the
text applies to a single-modal registration as well and in fact constitutes the
basis for the non-linear registration method presented in the next chapter 5.

4.2 Optimization
The aim of an optimization is to find a set of transformation parameters α
for which the similarity measure function SM(α) is maximized. In case of
a 6-parameter rigid-body transformation there is a 6-dimensional space of
possible parameters to seek through which clearly is not possible to manage

35
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with an exhaustive search. A common approach is to make an initial esti-
mate of transformation parameters (e.g. identity transformation or manually
estimated parameters) and start an iterative search from there. At each iter-
ation, the optimized function (similarity measure) is evaluated for the current
parameter estimate and depending on its value a new estimate is constituted.
The optimization stops on achieving some convergence criterion.

The optimization algorithm we have chosen here is the downhill simplex
minimization by Nelder and Mead (Nelder and Mead, 1965). This method
does not require computation of a gradient of similarity measure and is com-
parable in speed and accuracy to other commonly used algorithms like the
Powell’s minimization or the conjugate gradient method, as demonstrated
for registration of MR and CT images in Maes et al. (1999). Moreover, they
show that the downhill simplex method is even slightly more efficient than
the Powell’s method when a multi-scale approach (section 4.3) is used. The
competitive performance of the simplex method and the relative simplicity
of its implementation and tuning (no gradient estimation needed) makes it
the method of choice here.

For an N -dimensional minimization, the method begins with N +1 initial
points defining a geometrical object called simplex in N -dimensional space of
transformation parameters. The simplex is then iteratively transformed using
a predefined sequence of transformations that aim at moving the vertices
of the simplex towards the minimum. The implementation here is based
on the code presented in Press et al. (1992). Offsets of the vertices of the
initial simplex are +10mm for translation and +5 ◦ for rotation. Convergence
of optimization is declared when the fractional decrease of the optimized
function is smaller than some threshold. The threshold is set to 10−5 (an
empirically chosen value) in all presented tests unless otherwise stated.

Note that the simplex algorithm searches for minimum of a function.
It means that the measures which require maximization, i.e. correlation
coefficient and mutual information, must be used with negative sign.

4.2.1 A note about computational efficiency

The most time consuming part of registration is the evaluation of similarity
measure. The time spent on the optimization algorithm itself is negligible.
All three presented similarity measures are in principle evaluated in the same
way: by passing through voxels of the target image volume, transforming each
voxel v onto some point v′ in the source image and adding the pair (v, v′), in
a respective manner, to the computed value of the similarity measure. This
implies that the time required for evaluation of similarity measure is directly
proportional to the number of voxels in the target image. We therefore
always use the image with smaller number of voxels as the target image.
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In case of a PET-MR registration this is usually the PET image. Should a
registration of a PET image to a target MR image be requested, then we
perform a MR-to-PET registration first and then apply the inverse of the
resulting transformation to the PET image.

4.3 Multi-scale approach
The computational demand can be significantly reduced without loss of ac-
curacy with the help of a multi-scale coarse-to-fine optimization approach.
First, optimization is performed at a low resolution using a small subset of
image volume. After reaching convergence it proceeds at higher resolutions
using the transformation computed at lower resolution as initial estimate.

We construct the subsampled image subsets as in Maes et al. (1999) by
sampling the target image with integral factors [fx, fy, fz] along the x, y
and z dimension using the nearest-neighbour interpolation. In this imple-
mentation, factor fx means that every fx-th voxel in the x-direction is used
for computations (Fig. 4.1). No new intensities are introduced in the sam-
pling process. Evaluation of a similarity measure with sub-sampling factors
[fx, fy, fz] is theoretically fx · fy · fz times faster in comparison to the full
resolution. If the optimization at lower resolutions converges close to the
full-resolution optimum, it is likely that the number of iterations required to
reach convergence at higher resolutions will be much smaller and the total
computational time will be shortened.

4.3.1 Smoothing

Another option is to include smoothing prior to sampling of the images
(Pluim et al., 2001b). In this way the subsampled subset should be less sus-
ceptible to noise in the original image. Maes speculated that smoothing may
change the shape of iso-intensity objects on which the registration is based
which could induce differences and inconsistencies in the optimal registration
position at different resolution levels (Maes, 1998). On the other hand, one
could argue that reducing the number of samples without smoothing might
increase the influence of noise in the subsampled image and introduce new
local minima into the similarity function.

In my experience, smoothing rather increases registration errors in mu-
tual information-based multi-modal registrations whereas it reduces errors in
inter-subject single-modal registrations. A possible explanation is that the
process of computing mutual information already implicitly involves a certain
kind of smoothing, namely the reduction of the intensity range into discrete
bins. Nevertheless, smoothing may sometimes be of benefit in multi-modal
registrations where images with poor signal are involved, e.g. H2O-PET im-
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Figure 4.1: Illustration of the multi-scale approach on a magnified part of a
MR image.

age frames or SPECT images, see Thurfjell et al. (2000). The single-modality
similarity measures (SSD and CC) do not include any kind of smoothing and
that is why an explicit reduction of noise is often helpful in these cases. Vali-
dation tests in this work use smoothing only when mutual information is not
involved.

4.3.2 Scale schemas
The gain of the multi-scale approach evidently depends on the right choice
of suitable number of levels and subsampling factors because subsampling
may significantly influence the shape of the similarity function. Too large
factors could introduce new local extremes and cause the optimization to
end up too far from optimum. Such low-resolution optimization would then
provide no good starting estimate for a higher-resolution optimization. In
an extreme case this could make the multi-resolution approach even slower
than the single full-resolution optimization due to additional optimizations
at lower level that prove useless.

Several authors evaluated utilization of multi-scale optimization for mu-
tual information based multi-modality registration (Maes et al., 1999; Thur-
fjell et al., 2000; Pluim et al., 2001b).

Maes et al. (1999) evaluated various parameters of a multi-scale optimiza-
tion for registration of MR and CT images. The images used for evaluations
had in-plane resolution of 256 x 256 voxels (approx. 1x1mm) and 52-128
planes with 1.5-3mm separation. They used a fixed number of histogram
bins at all levels (256 bins) and came to the conclusion that the best results
can be achieved with subsampling factors up to 4, e.g. a three level scheme
with factors [4, 4, 1] in the first level followed by a level with factors [2, 2, 1]
and a full-resolution level [1, 1, 1]. Sampling factors larger than 8 did not
bring any advantages according to their tests.
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Thurfjell et al. (2000) evaluated multi-scale registration for simulated and
clinical SPET (single-photon emission tomography) and MR images. They
used different histogram sizes depending on the sub-sampling factors. They
came to the conclusion that a SPET image (dimensions 64 x 64 x 62 voxels,
3 x 3 x 3.44mm) can be matched to a corresponding MR image (dimensions
128 x 128 x 124 voxels, 1.5 x 1.5 x 1.75mm) with sub-voxel accuracy using
schemas with factors up to 8. Moreover, they showed that a similar precision
can be acquired for SPET images even without the full-resolution level which
brings an additional acceleration. Smoothing of images with gaussian filter
of FWHM = 10mm prior to registration increased robustness and accuracy
in their tests.

Pluim et al. (2001b) inspected the effects of multi-scale approaches for
matching of high-resolution MR and CT images and low-resolution PET,
MR or CT images. They infer that multi-scale schemas are suitable only for
high-resolution images whereas low-resolution images should be better co-
registered at the full resolution only. They also did not find any advantage of
using gaussian smoothing prior to registration. Their results clearly contrast
with the results of Thurfjell et al..

The discrepancies in the published results can be partially ascribed to the
differences in experimental setups but they very likely stem from the different
choices of histogram sizes as well. We will see later in sections 4.7 and 4.9
that the number of histogram bins plays an important role. Unfortunately,
only a few from the large number of articles dealing with mutual information-
based registrations actually mention the number of bins that has been used
which precludes comparisons and general inferences.

The aim of this work was not an evaluation of multi-scale approaches.
For a PET-MR co-registration we use an empirically efficient three-level op-
timization schema with factors [4, 4, 1], [2, 2, 1] and (optionally) [1, 1, 1] which
corresponds to the schema suggested in Thurfjell et al. (2000) and Maes et al.
(1999). The z-axis is always sampled at the full resolution at all scale levels
because the z-dimensions of PET images is usually much smaller than the x-
and y-dimensions, the resolution in the z-axis is worse and the z-direction is
empirically more difficult to align because it is less anatomically constrained.

4.4 Summary of the algorithm
The described registration algorithm largely reflects the most common frame-
work of voxel-based algorithms for a rigid-body registration of medical im-
ages. We will further refer to this algorithm as the MMM algorithm (multi-
modal matching). It is summarized in Algorithm 3 where SMR,S(α, l) is a
similarity measure (i.e. NMI, SSD or CC) computed from images R and Sα

at a scale level l.
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Algorithm 3: Voxel-based rigid-body registration

Input: images R, S, initial transformation estimate αI

Output: transformation parameters αR that align R and S

//αR are the transformation parameters to compute
αR ←− αI

//scale levels

L = {[4, 4, 1], [2, 2, 1], [1, 1, 1]}

//loop over scale levels

forall l ∈ L do

//iterative optimization

while not converged do

sm←− value of SMR,S(αR)

create a new estimate of αR according to sm

end

end

4.5 Segmentation of background
In this section we will extend the registration framework by an efficient seg-
mentation method that significantly improves computation time of regis-
tration. The basic idea is similar to the multi-scale approach described in
the previous section, namely to increase the registration speed by using less
voxels for computation. In contrast to the multi-scale approach where the
acceleration is achieved by using voxels across the whole volume with a sparse
sampling, the idea here is to limit the set of used voxels to the area of interest,
i.e. the brain or head volume. In common PET and MR images of human
brain this volume of interest occupies around 20-50% of the whole volume
and the rest is background. It can be assumed that omitting background
voxels from computation brings a significant acceleration.

In the following text we propose a method that segments a 3D volume
into voxels of interest and background voxels. The aim was to develop a
method that is fast, reliable and robust enough to be applied to various im-
age modalities. Another important requirement was that the method is fully
automatic, without the necessity of any tuning by user. For the purpose
of registration the segmentation does not need to be very precise which al-
lows the use of a simple and efficient technique. The method combines an
intensity-based thresholding with an automatically detected threshold fol-
lowed by a set of binary morphological operations. It is applicable to both
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PET and MR images.

In ideal case the intensity in the background area would be zero, reflecting
absence of the measured quantity, e.g. radioactivity from tracer molecules
in PET images. In reality the background areas contain a substantial level
of noise, in PET images combined with reconstruction artefacts. It can be
assumed that omitting of background from computation would decrease the
probability of a misregistration. This assumption has been validated in our
previous article (Cizek et al., 2004) where we demonstrated that apart from a
significant acceleration, a removal of background in noisy images can increase
robustness of a registration. However, it was empirically observed that when
the initial misalignment is very large then a removal of background may
actually be a cause of a failed registration. This happens when the initial
overlap of the two images is too small to allow a robust similarity estimation.
We therefore suggest and evaluate a procedure for a coarse pre-alignment that
increases robustness and further reduces registration time. It is an analytical
(and thus very efficient) technique based on the principal axes transformation
and it is described in section 4.6.

4.5.1 Thresholding

One of the easiest ways to segment an image into two parts, background
and object, is to select a certain intensity value and mark all voxels with
intensities lower than this value as background. With a well chosen threshold
it is possible to correctly segment most (not all) background and object
(i.e. head) voxels in PET and MR images. In our previous work (Cizek
et al., 2004), the ratio q of the background (non-head) volume to the whole
image volume was used for selection of the suitable intensity threshold. The
intensity threshold corresponding to a certain ratio q was defined as the
q-% quantile in the intensity histogram of the whole volume (i.e. the lowest
intensity higher than q% of all image voxels). Thresholding resulted in a
3D binary mask where zero voxels corresponded to the voxels in the original
image with an intensity lower than the intensity threshold.

An example of such a thresholded image is given in Figure 4.2. When
a low threshold is used, many background voxels are not removed (Fig. 4.2
left). On the other hand, a higher threshold unavoidably removes some por-
tion of brain voxels (Fig. 4.2 right). An implicit assumption of our previous
approach was that the ratio q does not vary much for a given scanner and
acquisition protocol. It was thus necessary to estimate the threshold manu-
ally for every scanner. To overcome this inconvenience, a simple automatic
procedure has been developed that combines two common ways of threshold
detection - an iterative algorithm that assumes no knowledge about the in-
tensity distributions of background and object voxels, and an expression for
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Figure 4.2: A binary mask of a PET image created by thresholding at 65%-
and 85%-quantile.

a minimum-error threshold for distributions with known parameters.

4.5.2 Iterative optimal threshold selection
Let Ω denote the set of all voxels in the image. The goal is to separate the
set Ω into two disjoint classes ωb (background) and ωo (object) such that
Ω = ωb ∪ ωo. A simple iterative algorithm, summarized in Algorithm 4, can
be used for an automatic threshold selection in an image with a bimodal
histogram with unknown parameters (Sonka et al., 1994).

Algorithm 4: Iterative estimation of a threshold

1 Set the initial estimate of the threshold t1 to the median value of all
voxel intensities.

2 Step k:
Assign all voxels with intensity lower than tk to the background and
the remainder to the object.
Compute mean intensities µk

b and µk
o of background and object

voxels.
3 tk+1 ⇐

µk
b +µk

o

2

tk+1 is a new threshold estimate.
4 Stop if |tk+1 − tk| < ε. Otherwise continue with step 2.

It works well for images where the standard deviations of background and
object voxel intensities are similar. In case of medical images this assumption
is not valid. This is illustrated in Figure 4.3 showing a typical histogram of
a PET image. The high narrow peak corresponds to the background and
has a much smaller standard deviation than the bins of the object. As a
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Figure 4.3: Histogram of a PET image. The thresholds t1 and t2 are results
of the iterative algorithm 4 without and with the use of the Gaussian mixture
density model.

result, the simple procedure would choose a wrong threshold (threshold t1 in
Figure 4.3) causing many object voxels to be marked as background which
in turn would make subsequent morphological postprocessing unreliable.

We can avoid this problem if we replace the step 3 with a simple fitting
of two probability density functions, one modelling the distribution of the
background voxels and one for the object voxels, similar to the approach
described in Gonzales and Woods (1993). Both classes of voxels (background
ωb, object ωo) are thus characterized by class-specific probability density
functions and by prior probabilities that together constitute a model of the
whole image histogram, in general:

P (ωi) prior probability for class ωi (
∑

i P (ωi) = 1)
p(x|ωi) probability density function of voxel intensity x given

class ωi (
∫

p(x|ωi)dx = 1)
p(x) image histogram computed as a sum of conditional prob-

ability density functions weighted by prior probabilities:
p(x) =

∑
i

P (ωi) · p(x|ωi)

The prior probabilities represent ratios of the number of voxels in each
class. If Nb, resp. No represent the number of voxels initially marked as
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background, resp. object then P (ωb) = Nb/N and P (ωo) = No/N where
N = Nb + No is the total number of image voxels.

Normal (Gaussian) distribution was chosen to model the distribution of
background and object intensity p(x|ωb), p(x|ωo). This approximation is
roughly valid for the purpose of segmentation of PET and MR images, a
precise fit is not required here. The model of the image histogram p(x) is
then:

p(x) = Pb ·
1√

2πσb

e
− (x−µb)2

2σ2
b + Po ·

1√
2πσo

e
− (x−µo)2

2σ2
o (4.1)

Using the histogram model p(x) and the prior probabilities is is possible
to separate the image voxels x according to their intensity using the posterior
probability of their belonging to a certain class. The a posteriori probability
is given by the Bayes Rule:

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
(4.2)

A voxel x will be marked as background if P (ωb|x) > P (ωo|x), otherwise
it will be marked as object. Consequently, the new threshold in the step 3 of
the algorithm 4 is the intensity t for which P (ωb|t) = P (ωo|t) (see threshold t2
in Figure 4.3). This equation yields a minimum error estimate, as described
in Gonzales and Woods (1993). Substituting both sides with the equation
4.2 yields an exponential equation:

p(x|ωb)P (ωb) = p(x|ωo)P (ωo) (4.3)

which gives the quadratic equation

at2 + bt + c = 0

where

a = σ2
b − σ2

o

b = 2(µbσ
2
o − µoσ

2
b )

c = σ2
bµ

2
o − σ2

oµ
2
b + 2σ2

bσ
2
o ln(

σoPb

σbPo

)

In case of two solutions, the new threshold is the value t for which µb <
t < µo.

Empirically, about 10-20 iterations are sufficient for a good threshold
estimate. The procedure is efficient, taking a fraction of a second for a
common PET image (dimensions 128 x 128 x 47 voxels) and about 1-2 s for



4.5. Segmentation of background 45

a common MR image (dimensions 256 x 256 x 150 voxels). The algorithm
works well for PET modalities that exhibit separate histogram modes for
background and object, e.g. FMZ-PET, FDG-PET, MET -PET, MP4A-
PET. It cannot handle types of images where the background and object
modes are nearly merged, e.g. H2O-PET or DOPA-PET frames with a short
acquisition time. These images can be thresholded with the quantile-based
procedure described in Cizek et al. (2004).

4.5.3 Morphological cleaning

Intensity-based thresholding unavoidably marks some object voxels as back-
ground and vice versa (see Figure 4.4b). Binary 3D morphological operations
can be applied to “clean” background areas and to fill “holes” in the object
in the thresholded image. In general, morphological operations can simplify
image data and eliminate irrelevant objects while preserving shape of large
enough objects. The operators make use of structuring elements that de-
termine the effect of the operator and its extent. A detailed description of
the binary mathematical morphology and structuring elements can be found
in Seul et al. (2001); Parker (1997); Sonka et al. (1994).

In our application, we first use an erosion operator with a spherical struc-
turing element to remove all background voxels that were incorrectly marked
as object voxels. The size of the structuring element should be large enough
to assure removing of all background voxels. Radius of 3 voxels for PET
images and 1 voxel for MR images is sufficient. Apart from cleaning of
background, erosion also removes a certain part of the object area itself (Fig-
ure 4.4c). We recover the object by a sequence of dilations. Empirically, a
sequence of two dilations with radius of 3 voxels for PET and 1 voxel for
MR images joins up the object area (Figure 4.4d). In this way, background
voxels can be efficiently removed while the head volume is preserved.

An advantage of this approach is that the automatic threshold selection
does not need to be very precise. As demonstrated in Figure 4.5, the dif-
ferences between binary masks created using thresholds at 65%, 75% and
85% quantile are quite significant. When erosion and dilation are used af-
ter thresholding, the resulting masks differ only slightly in the brain outline.
This also justifies the simple threshold selection procedure we described in
the previous section.
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Figure 4.4: Computation of a mask for a PET (upper row) and MR (bottom
row) image. Original image (a) is first thresholded into a binary image (b).
Small spots in the background areas are removed by erosion (c). Holes and
gulfs in the eroded image are then filled by dilation (d).

Figure 4.5: Binary masks created from a PET image using thresholding only
(upper row) and thresholding followed by erosion and dilation (bottom row).
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Figure 4.6: Reduction of image volumes in computation of mutual informa-
tion using binary masks.

4.5.4 Performance of the morphological segmentation

The additional time needed to erode and dilate a 3D PET or MR image
volume is about 2 s for PET images and 3-10 s for MR images1 and is small
in comparison with the gain in speed due to the masking, which we will
demonstrate in section 4.10. The segmentation method has been tested on
a set of 46 PET images acquired with various radiotracers and on a set of
30 T1-MR images. The results were checked visually, all segmentations gave
sufficiently good results with respect to the intended application. In 2 PET
images and 3 MR images there remained a few small separate clusters of
voxels in the background area. Their influence on robustness or precision
is certainly negligible compared to the large number of voxels in the object
area. They only can potentially hamper computational speed by prohibiting
a tight alignment of bounding box (see section 4.5.5 below).

4.5.5 Similarity measures with background masking

Recall that a similarity measure of two images R, S is evaluated by passing
through voxels of the target image R, transforming each voxel v onto some
point v′ in the source image S and adding the pair (v, v′), in a respective
manner, to the computed value of similarity measure.

1All computational times mentioned in this thesis were measured on a PC with a 1.1
GHz AMD Athlon processor, unless otherwise stated.
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Suppose now that binary masks were created for both images, dividing
each image into background and object voxels. Evaluation of similarity mea-
sure runs in the following way:

1. The smallest rectangular box (bounding box) containing all object vox-
els is determined in the target volume (Figure 4.6 top left) using the
target image mask (Figure 4.6 bottom left). Samples are taken only
from this box. Note that the morphological “cleaning” of background
in the segmentation procedure is an important step because it allows
the bounding box to be tightly matched to the object.

2. The volume within the bounding box in the target image is sampled,
background voxels are skipped (e.g. the voxel v1 in Figure 4.6). After
this, all background voxels in the target image have been removed from
the computation without the need for a transformation.

3. Sample voxels v that pass the two preceding steps are transformed
to corresponding samples v′ in the source volume. If v′ belongs to
background in the source volume, the pair v, v′ is removed from the
computation (e.g. the voxel pair v2, v′2 in Figure 4.6).

Voxels that pass all these steps (e.g. the voxel pair v3, v′3 in Figure 4.6)
are then used for computation of similarity measure. This approach largely
reduces the number of necessary transformations - only voxels that pass steps
1 and 2 need to be transformed.

4.6 Global misalignment estimation
It is not possible for any optimization algorithm to ensure finding of a global
optimum in a multi-dimensional search space of transformation parameters.
The downhill simplex method used in this thesis as well as other commonly
used methods (Powell’s direction set, gradient methods, etc.) are in their
nature local. They start searching from a certain initial estimate and find a
local optimum within their capture range. If there is no a priori knowledge
about the mutual position of the registered images the initial estimate is usu-
ally the identity transformation. If the estimate is far from global optimum
the registration is more likely to fail. It is therefore important to try and
make a good initial transformation estimate that is close to the true global
optimum.

One solution is to estimate the transformation manually and pass it on
the registration algorithm. This option was implemented in the registration
tool described in chapter 6 where users can make a fast manual pre-alignment
using a convenient graphical interface. By experience, such pre-registration



4.6. Global misalignment estimation 49

nearly always helped in cases where the automatic registration procedure
failed.

Another option is to use some kind of “global” stochastic optimization
algorithm like simulated annealing (Capek et al., 2001), genetic algorithms,
etc. These algorithms are, however, much more computationally demand-
ing and existing results in the field of medical image registration have not
persuasively demonstrated an increase of robustness that would justify the
considerably high computational time.

Jenkinson et al. (2002) described an approach where transformation pa-
rameters, sampled in fixed intervals across the whole transformation space,
were sequentially tested using a voxel similarity criterion. The potential
problem of this approach is that the similarity criterion is used to evalu-
ate alignment for very large misalignments. Even the normalized versions
of mutual information cannot remove all local optima in the whole range
of expected values. It means that there could appear a configuration of a
total misregistration that will nevertheless give better value than a relatively
small misregistration. It is therefore not possible to recover any extent of
misregistration just using voxel-based similarity measures like NMI. I made
this observation several times while experimenting with various global opti-
mization approaches.

The approach proposed here attempts at making a close initial estimate
without using the similarity criterion in the first place. The aim was to design
an automatic procedure that would preferably make a global search over the
whole space of possible transformation parameters but without spending too
much time on it. The basic idea is to use the binary masks extracted in the
process of background removal. The masks reflect the global shape of the
registered images and can thus be used for making a rough initial alignment
in a robust geometrical way. The proposed technique is a modification of the
principal axes transformation which uses low-order moments to compute the
registration transformation analytically.

Note that the aim is not recovering of any extent of rotation and trans-
lation. A reasonable assumption is that the head in both input images is
roughly in the same global orientation (transversal, coronal or sagittal), e.g.
increasing z-direction corresponds to the bottom-to-top direction in head in
both images. The information about orientation of slices is usually stored
with images and it is therefore easy to make the reorientation while loading
the images. In other words, we do not expect that orientation of head in the
input images differs by 90◦ or 180◦ in any axis but it is fairly possible that
there will be a difference up to 30−40◦ and the aim is to make the procedure
more robust within this range of expected parameters.

In the following sections, we will first summarize the basic notions about
the image moments and the principal axes transformation and then present
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a modification suitable for registration of PET and MR images.

4.6.1 Moments and the principal axes transformation
The moment theory is a classical theory in physics. The utilization of various
moments, such as the centre of mass or the moments of inertia, is a common-
place in many disciplines. Moments are frequently applied in digital image
processing for description, classification and recognition of shapes (Seul et al.,
2001; Parker, 1997; Sonka et al., 1994; Gonzales and Woods, 1993). They
are useful features for determining location and orientation of an object in
an image, and can be also applied to matching of image patterns. A possible
application of moments for registration of CT, MR and PET images was
presented in Alpert et al. (1990). In their work the image shapes had to be
delineated manually which was a time consuming process.

Moments

For a 3D continuous function f(x, y, z), the moment of order (p + q + r) is
defined as

mpqr =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
xpyqzr f(x, y, z) dx dy dz (4.4)

In digitized 3D images the function f(x, y, z) corresponds to voxel inten-
sities and the moments are evaluated using sums:

mpqr =
∑

x

∑
y

∑
z

xpyqzr f(x, y, z) (4.5)

These moments are dependent on scaling, translation, rotation and inten-
sity transformation of the function f(x, y, z). The zero-order moment m000

represents the total image power and the first-order moments determine the
image centroid (x̄, ȳ, z̄):

(x̄, ȳ, z̄) =

(
m100

m000

,
m010

m000

,
m001

m000

)
(4.6)

Image centroid determines the position of the image in space. Translation
invariance can be achieved by central moments µpqr which are defined with
the help of the image centroid as:

µpqr =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(x− x̄)p(y − ȳ)q(z − z̄)r f(x, y, z) dx dy dz (4.7)

and in digitized images as:
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µpqr =
∑

x

∑
y

∑
z

(x− x̄)p(y − ȳ)q(z − z̄)r f(x, y, z) (4.8)

Matrix of inertia and principal axes

Second-order central moments characterize the image orientation in space.
They together constitute the symmetric matrix of inertia I:

I =

 µ200 µ110 µ101

µ110 µ020 µ011

µ101 µ011 µ002

 (4.9)

In an intuitive sense, the diagonal moments (moments of inertia) deter-
mine the rotation moment of the object around each coordinate axis and
the off-diagonal moments (products of inertia) roughly correspond to torque
forces that work on the object when it rotates around each coordinate axis.

The matrix of inertia is dependent on the object’s orientation in the
cartesian coordinate space. The Principal axes theorem states that for every
rigid body it is possible to chose a cartesian system and an origin so that
the matrix of inertia becomes diagonal. This can happen when one aligns
the axes of the local reference frame in such a way that the mass of the
object evenly distributes around the axes, thus, the off-diagonal product-of-
inertia terms all vanish. Such coordinate axes are called the principal axes
of the object. Their origin coincides with the object’s centroid. For more
information see, e.g., Fowles and Cassiday (1993).

For illustration, a principal axis of a rigid body corresponds to an axis
where there are no torque and vibration forces on the body when it rotates
around the axis. For simple geometrical shapes, the principal axes coincide
with the axes of symmetry and, in general, form an orthogonal coordinate
system with the origin in the centre of mass of the object.

The matrix of inertia I can be expressed using a similarity transformation
as:

I = SIaS
T (4.10)

where Ia represents the (diagonal) matrix of inertia in the principal axes
coordinate system and the matrix S is a rotation matrix of eigencolumns,
orthonormal vectors directed along the principal axes. Equation 4.10 can
be interpreted as a rotation of the inertia matrix Ia relative to the original
image coordinates.



52 Chapter 4. Rigid-body registration

4.6.2 Image registration using principal axes

Suppose that images R1, R2 represent the same object in different orien-
tations and that the two objects have been shifted so that their centroids
coincide. The similarity transformations for each image

I1 = S1IaS
T
1 and I2 = S2IaS

T
2

imply that the inertia matrices I1, I2 are related by

I2 = S2S
T
1 I1S1S

T
2 . (4.11)

where S2S
T
1 represents the rotation matrix that aligns the coordinate

axes of the object in R1 with the coordinate axes of R2. This equation is
the basis of the registration based on principal axes.

If the centroids of the objects in R1 and R2 do not coincide then it
is necessary to include the translation matrices C1, C2 that shift the image
centroids to the origin of the coordinate system. That is, they shift the image
by (−x̄1,−ȳ1,−z̄1), resp. (−x̄2,−ȳ2,−z̄2) so that their centroids coincide
when the rotation is applied. The resulting transformation matrix M that
registers the image R1 to R2 is then:

M = C1S2S
T
1 I1S1S

T
2 C−1

2 . (4.12)

We use the Jacobi’s method for computation of eigenvalues and eigenvec-
tors of the symmetric matrix I in equation 4.10. It is not the most efficient
method but efficiency is not an issue for a 3 × 3 matrix and the Jacobi’s
method is fairly robust and simple to implement. The implementation used
here is based on the code presented in Press et al. (1992). The moments are
computed from voxels within the respective masks.

Direction of the principal axes

The eigenvectors of the diagonalized inertia matrix define the direction of
the principal axes but not their orientation. It is thus necessary to check the
correct orientation. Since we do not attempt recovering of rotational differ-
ences larger than approx. 40 ◦ we can check the orientation of corresponding
pairs of axes from both images by checking the sign of the scalar product of
the vectors.
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Figure 4.7: Estimation of initial displacement and orientation. The centres
of mass and principal axes are computed for each image from voxels within
each mask and are used for estimation of the initial transformation.
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4.6.3 Corrections for PET and MR images
The described technique assumes that the registered objects are identical in
shape and are not rotationally symmetrical2. Masks created from a PET
and a MR image do not have identical shape and therefore some additional
corrections must be employed in order to achieve a good result.

Brain masks of PET and MR images are very similar in shape in the
transversal (xy) plane (see Figure 4.7). This makes the estimation of the
translation in x and y as well as of the rotation around the z axis quite robust
and mostly precise. The largest difference between a PET and MR mask is
in the inferior part (negative z-direction) where MR masks include the neck
area but PET masks usually not (see the xz- and yz-planes in Figure 4.7).
The consequence is that the z-coordinates of centroids are systematically
shifted with respect to the true alignment position and that the estimation
of orientation in the xz- and yz-plane may differ in the PET and the MR
image.

We therefore apply an additional rough exhaustive search over the two
rotation parameters and one translation parameter with the help of the sim-
ilarity measure. The similarity measure is evaluated at a low resolution
(scaling factors [8,8,2] by default) for a set of Lr different values of each
rotation parameter in regular intervals around the parameters determined
by the principal axis transformation up to a limiting rotation extent ±rlim.
Analogously, the displacement in the z-axis is tested for Lz values of the
z-translation parameter up to a limit translation ±tlim. This makes up a
total of L2

r · Lz evaluations of similarity function. Suitable empirical values
are for example Lr = 7, Lt = 5, rlim = 30 ◦ and tlim = 20 mm requiring a
total of 245 evaluations and taking about 4 s. The estimation of similarity
at the scale level [8,8,2] is very rough and therefore the B1 best transforma-
tions (i.e. those yielding the best similarity values) are evaluated once again
at the scale level [4,4,1]. For B1 = 20 this step takes about 2 s. The best
B2 transformations (e.g. B2 = 5) are then optimized using a few (e.g. 10)
iterations of the simplex method at the scale level [4,4,1] and finally the best
result of these optimizations is used as the initial transformation estimate for
the main optimization procedure. For a common PET-MR image pair the
whole procedure takes about 8-15 s.

The advantage our approach is that three of the six transformation para-
meters are computed purely analytically yielding a robust estimation without
involving the similarity evaluation or iterative optimization. It reduces di-
mensionality of the problem and increases chances that the estimation of the
remaining parameters succeeds and that a good initial estimate is provided

2If the object is rotationally symmetrical around some axis then the two corresponding
principal axes are not uniquely defined.
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for the main iterative optimization procedure.

We will further refer to the MMM algorithm extended by the segmentation
procedure and by the modified principal axis transformation as MMM-PA.
The robustness and computational time of MMM-PA will be compared against
the basic MMM algorithm in section 4.10.

4.7 How many bins to use for computation of
mutual information?

In this section we will focus on the selection of a suitable number of bins for
computation of the MI-based measures. We will demonstrate that the num-
ber of histogram bins is an important parameter that may to a large extent
influence smoothness of the MI function and thus robustness and accuracy
of a registration. This issue requires yet more caution when applying multi-
scale schemes (section 4.3). The main goal is finding of a suitable histogram
size for a PET-MR registration.

Distribution of image intensities into histogram bins is effectively a re-
quantization of the image. A small number of bins reduces detail in image
as a larger range of image intensities is mapped into a single bin, such that a
worse accuracy might be expected. For example, using 16 bins is equivalent to
that image having a 4 bit intensity range. On the other hand, a large number
of bins makes the histogram sparse. This may lead to a poor approximation
of the joint and marginal probability distributions from the corresponding
histograms which would in turn make the mutual information function less
smooth with more local maxima.

Figure 4.8 shows the shape of mutual information as a function of rota-
tional misalignment around the x and y axes for different histogram sizes.
The graphs were computed from a PET and a MR image. A too small
histogram size reduces detail in image and may introduce some false local
minima (Fig. 4.8 top). Using of too many histogram bins seems to be even
worse because it spoils the “global” smoothness of MI and introduces many
local minima (Fig. 4.8 bottom). A suitable compromise needs to be found
(Fig. 4.8 middle).

4.7.1 Statistical background

The question of a suitable bin width for computation of histograms has been
known to statisticians for a long time, the first account probably being the
Sturges’ rule in the year 1926. Since that time, several attempts have been
made to cover the problem with a suitable theory and many other rules
have been proposed, some theoretically well-founded, many empirical and
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Figure 4.8: Plots of the mutual information as a function of rotation around
the x and y axis for various histogram sizes.
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just as many oraclous. See Wand (1997) for a review of the most important
approaches. As noted in Keating and Scott (1999), the potential of these
rules is limited and this basic problem still remains unresolved. In practice,
the choice of bin width depends on the practitioner’s motives and experience
and the character of the data.

Theoretically better-founded rules mostly aim at minimizing some error
measure between the original density function f(x) and the approximating
histogram function f̂(x, w) where w is the bin width. It was found that, with
respect to Lp norms, the optimal rate of decrease of the bin width w is N−1/3

(Wand, 1997). The most often used error measure is the mean L2 norm, the
Mean Integrated Squared Error (MISE):

MISE(f̂(·, w), f(·)) = E

∫ ∞

−∞

(
f̂(x, w)− f(x)

)2

dx. (4.13)

In the works of Scott, Freedman and Diaconis several rules have been
proposed that try to minimize MISE (see Wand (1997) for a summary of
these rules). The rules for the bin width w are generally of the form

w = Ĉ ·N−1/3 (4.14)

where Ĉ is some suitable statistic. If vmax, resp. vmin are the maximum
and minimum values in the image then the number of histogram bins B
corresponding to the width w is:

B =
vmax − vmin

Ĉ
·N1/3 (4.15)

A popular choice for Ĉ is (Keating and Scott, 1999)

Ĉ = 3.49 ·min

(
S,

IQR

1.349

)
(4.16)

where S is the sample standard deviation of the data and IQR is the
inter-quartile range3. It has been noted in Wand (1997) that this choice of Ĉ
produces only a rough approximation to the MISE-optimal bin width and has
no good properties for large samples or when the data is skewed or when the
histogram consists of more than one mode. Unfortunatelly, large number of
samples is exactly what we have in medical images and the data is bi-modal
(background and object). The latter is the reason why the formula for Ĉ
in equation 4.16 is not suitable in our case and would produce far too large
histogram size.

Histogram is not the only way how to estimate the value of mutual in-
formation. An interesting approach was presented in Fransens et al. (2004)

3Inter-quartile range is the 75%-quantile minus the 25%-quantile.
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where kernel density estimation is used instead of histograms for computation
of MI in registration of snapshots of the earth surface. On the contrary to
histograms, the kernel density estimation is well theoretically founded, even
with regard to multi-variate density functions like the joint entropy. This
class of methods, however, cannot be easily applied here because it is com-
putationally very demanding for sample sizes > 105 (Fransens et al., 2004;
Sain, 1999).

4.7.2 Histogram size and mutual information

As there has been little research of the bin width in statistics, there has
been nearly no research about the influence of bin width on the properties
of MI-based functions and on the robustness and precision of a multi-modal
registration. It is not clear how the bin width should be chosen in order to get
a smooth MI function with large capture range on one side and on the other
side to make the MI function precise enough in the vicinity of its optimum.
More specifically, there is no evidence that selecting a MISE-optimal bin
width is optimal with respect to the properties that one needs for a good
registration.

Most works about MI-based medical image registration use a fixed num-
ber of bins without giving reasons for the choice, or the information about
histogram size is missing. It is not unusual to find methods that use 256
bins for PET-MR registration which is a choice that results in too sparse
histograms and gives suboptimal results, as we will see in the following tests.
Surprisingly, in a recent and very comprehensive survey of MI-based regis-
tration (Pluim et al., 2003) the question of histogram size is not mentioned.

So far we have been discussing estimation of 1D marginal histograms
only. Mutual information also requires estimation of a 2D distribution func-
tion. Theoretic foundations for multi-variate probability density estimation
are available for methods based on the kernel density estimation (e.g. Sain,
1999; Fransens et al., 2004) that are computationally too demanding to be
applicable here. Estimation of multi-variate probability density with the help
of multi-dimensional histograms seems to be an unexplored area of statistics.
We will therefore use the simplest generalization of the 1D case and use the
same number of bins for the 1D histograms and for both dimensions of the
2D histogram (i.e. if the 1D histogram has N bins, the 2D histogram has
N2 bins). This simplifies implementation of mutual information since both
marginal histograms can be efficiently computed by summation over the joint
histogram.
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Multi-scale registration

From the equation 4.14 it follows that a convenient value of histogram size
depends on the number of samples in the image. Registration with a multi-
scale approach uses substantially different amounts of samples at each level
which means that the common approach, i.e. using of a fixed number of bins
at all levels, needs not be appropriate. At a scale level with factors [fx, fy, fz],
the average number of counts in the histograms is fx · fy · fz times smaller
and the histogram becomes very sparse for larger subsampling factors. For
example, a common PET image with 128x128x47 voxels provides 770048
samples. When using 256 bins there are on average 3000 samples per bin in
the marginal histograms and about 12 samples per bin in the joint histogram.
On a scale level with factors [4, 4, 1], however, the average sample count in
the marginal histograms is approx. 190 for the marginal histograms and only
0.7 for the joint histogram.

To the best of my knowledge, the only paper touching the topic is that
of Thurfjell et al. (2000). They studied the influence of histogram size on
the accuracy of registration of MR and simulated SPECT images in a multi-
scale registration and came to the conclusion that using too many bins may
significantly decrease registration accuracy. They also suggested using of
different histogram sizes at each scale level.

Since there is not enough theoretical foundation to derive a suitable bin
width for medical images we will experimentally examine the relation between
bin width and registration quality in more detail on simulated and real PET
and MR images and use the results to select a suitable number of bins for
the type of multi-modal registrations considered here.

4.8 Experimental setup
In the following sections, we present several experiments that examine the
relationship between the histogram size and registration quality and that
validate the proposed MMM-PA method. Two types of test data are used for
these evaluations:

• Simulated, artificially misaligned PET images derived from high-
resolution MR images. The transformation needed to align them is
precisely known which makes them suitable for rigorous tests of regis-
tration accuracy and robustness. These tests are suitable for a basic
validation of a registration procedure but care must be taken when
interpreting the results for real images.

• Clinical PET-MR image pairs: These images stem from clinical
examinations where the alignment transformation is not known. The
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quality of registration must be evaluated visually by an experienced
physician or by some indirect measure, a rigorous evaluation of accu-
racy is not possible. These images should demonstrate that the results
acquired for simulated data are in accord with the outcomes for real
images.

Three quantities evaluated in these tests are the robustness, accuracy and
computational time. Accuracy can be evaluated using error measures com-
puted from the true transformation and the transformation computed by the
registration algorithm. The error measures can be computed only for the sim-
ulated data where the true misalignment is known precisely. In most cases,
the errors are either very large, indicating that the registration failed, or com-
paratively small for successful registrations. This allows to easily distinguish
between successful and failed registrations. The term robustness stands for
the rate of unsuccessful registrations to the total number of registrations.

All used PET and MR images originate from the PET Laboratory of the
Max-Planck-Institute for Neurological Research in Cologne.

4.8.1 Simulated PET images
The simulated PET images were generated from a set of 5 high-resolution,
high-contrast T1-weighted MR images of normal patients acquired using a
1.5 T Gyroscan Intera scanner (Philips Medical Systems, Best, The Nether-
lands). The image dimensions were 256 x 256 x 200 voxels with voxel size
1.0 x 1.0 x 1.0mm.

For each MR image, a simulated PET image was created using a fully
automatic procedure described below. The procedure is based on the simu-
lation procedure used by Kiebel et al. for cross-validation of SPM and AIR
(Kiebel et al., 1997). High-resolution, high-contrast MR images were used to
enable robust segmentation of cortex and white matter.

1. Brain volume was extracted from MR image using the Brain Extraction
Tool (Smith, 2002).

2. The extracted volume was automatically segmented into gray matter
(GM), white matter (WM) and cerebro-spinal fluid (CSF) using the
segmentation tool FAST from the FMRIB software package (Zhang
et al., 2001).

3. Voxel intensities of the MR image were scaled so that the mean inten-
sities of GM, WM and CSF were related by a ratio of 10 : 3 : 1;

4. A random rigid-body transformation was applied and the image was
resliced to a dimension of 128 x 128 x 47 voxels with voxel size 2.2 x
2.2 x 3.125mm using tri-linear interpolation.
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5. The image was smoothed by an isotropic 3D Gaussian filter with FWHM
of 6mm.

6. Additive Gaussian white noise with variance equal to 20% of the mean
intensity value of brain voxels was applied.

7. The image was smoothed again by an isotropic 3D Gaussian filter with
FWHM of 2mm.

In this way, a misaligned MR-PET pair was created with a known exact
transformation needed to realign it. The simulation sequence was repeated
several times with different transformation parameters for each MR image.

Registration errors were evaluated using a fixed set of 14 control points
located on the boundary of the brain volume in each MR image. For each
registration, these points where once transformed using the exact original
transformation and once using the transformation computed by the registra-
tion procedure. The mean and maximum Euclidean distances ∆E and ∆max

between the two sets of transformed points were used as measures of registra-
tion error for one patient. Due to the location of control points on the brain
boundary the value of ∆max approximates the maximum displacement that
can be encountered within the brain volume and is suitable for distinction
between successful and unsuccessful registrations. We will denote as E{∆E}
the mean value of ∆E over all patients.

4.8.2 Clinical PET and MR images
Evaluation with real data is always problematic because the precise match-
ing transformation is not known and cannot be determined retrospectively.
A standard (prospective) evaluation technique consists in utilization of fidu-
cial markers fixed on patient’s head during scanning in PET and MR scanner.
The alignment transformation is then computed by means of least squares
fit of the set of markers in the PET image to the set of markers in MR. The
procedure is demanding for both patients and physicians because it must be
assured that the markers remain in the same position during both measure-
ments. Such procedure could not be performed at the time of this work and
therefore the quality of registration had to be evaluated by indirect error
measures.

Several pairs of real PET and T1-weighted MR images were used in the
tests. Each pair was coregistered using the MMM algorithm, the results were
checked visually and the resulting transformation parameters were recorded.
These parameters served only as a reference for discrimination between suc-
cessful and unsuccessful registrations and for generation of random trans-
formation parameters where a possibly slightly imprecise alignment is not
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a problem.
For each pair, a total of N misplaced PET images were created by trans-

forming the original PET images with random transformation parameters
generated around the reference transformation. Each misplaced PET im-
age was then coregistered to the corresponding MR image be each of the
evaluated methods.

As the correct alignment parameters were not known, the mean and maxi-
mum errors of each registration could not be computed. Instead, the accuracy
was estimated by the standard deviation of the computed transformations
in all N runs. The motivation for this choice was an assumption that the
more precise a registration method is, the less dispersed will be the resulting
transformations.

The standard deviations were computed with the help of the 14 control
points ci, i = 1, . . . , 14 that were displaced in the MR volumes in the same
way as in the tests with simulated data. For a patient p, the N test runs
produced N vectors of transformation parameters αp,t, t = 1, . . . , N . Every
control point ci was transformed, for each patient, using the computed pa-
rameters into locations c′i,p,t. Mean locations (centres of mass) µi,p of all
c′i,p,t, t = 1, . . . , N were computed and from them the standard deviations
σi,p were determined that represented the dispersion of results at a control
point i of a patient p. The mean value of σi,p over all control points and
patients, E{σE}, was used for evaluation of registration accuracy.

This measure is only informative, since it may be influenced by unknown
systematic errors. For example, a certain registration type might give very
consistent resulting transformations with a small variance but systematically
shifted from the true alignment.

4.9 Test of the influence of histogram size
The aim of this test is to examine how the registration outcome of a PET-MR
registration depends on a good choice of the number of histogram bins used
for computation of mutual information. It examines the relation between the
number of bins, number of voxel samples, registration accuracy and robust-
ness. It also verifies if and how the dependency on histogram size changes
when performing registration with or without background masking.

We want to evaluate two basic characteristics. First, we need to know
how the histogram size influences the shape of mutual information in vicinity
of optimum because it directly influences precision of registration. Second,
we want to estimate the impact of histogram size on the capture range of
mutual information which influences robustness of registration.

For the test of precision we generate images with small initial misregistra-
tions and evaluate how precisely the registration method aligns the images.
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The test of robustness uses images with larger initial misregistrations and
the evaluated property is the ratio of successful registrations where we define
successful registrations as those with registration error smaller than some
threshold.

Test setup

Both simulated and real data were used in this test. The initial misregistra-
tions were generated randomly from a normal distribution with mean µ = 0
and standard deviation σ:

• for the test of precision: σ = 3 ◦ for rotation and σ = 5 mm for trans-
lation parameters,

• for the test of robustness : σ = 9 ◦ for rotation and σ = 15 mm for
translation parameters.

25 artificially misaligned PET-MR pairs were generated for each regis-
tration type (precision, robustness), image type (simulated, real) and every
patient. MR images of 5 patients were used for generation of simulated PET
images. The real PET-MR pairs originated from 4 patients and consisted of
the following PET modalities: FDG, FMZ (2x) and MP4A. Together 5 x 25
x 2 simulated and 4 x 25 x 2 real PET images were created which gives a
total of 450 misaligned PET-MR pairs.

The PET-MR pairs were coregistered using 8, 16, 32, 64, 128 and 256
histogram bins in single-scale registrations with scaling factors [1,1,1], [2,2,1]
and [4,4,1]. Each registration was performed both with and without prior
background removal. There were thus altogether 36 different registration
setups for each PET-MR pair and a total of 36 x 450 = 16 200 registrations
runs.

4.9.1 Results and discussion
The Figures 4.9 and 4.10 show graphically the dependence of registration er-
rors on the number of histogram bins. The relationship between the number
of histogram bins and the ratio of unsuccessful registrations is visualized in
Figures 4.11 and 4.12. We consider a registration as successful if its regis-
tration error is smaller than 5mm. This threshold was chosen so that most
registrations have either much higher or much smaller registration error.

We will first discuss the basic registration method, i.e. with no back-
ground segmentation. At all scale levels the errors are larger when the num-
ber of bins is at the low or high end of the scale. Optimal precision and
robustness has been achieved with 32 - 64 bins. There is a tendency that
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Figure 4.9: Registration errors of real PET images with and without seg-
mentation of background.
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Figure 4.10: Registration errors of simulated PET images with and without
segmentation of background.
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Figure 4.11: Robustness (percentage of failed registrations) for real PET
images with and without segmentation of background.
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Figure 4.12: Robustness (percentage of failed registrations) for simulated
PET images with and without segmentation of background.
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lower resolutions prefer smaller histogram size than higher resolutions. It
means that an adaptive number of bins that takes sample size into account
is more appropriate than a fixed histogram size. On the other hand, it is
apparently possible to a achieve good accuracy and robustness even with a
fixed number of bins that gives stable results at all scale levels, e.g. 32 bins.

Precision and particularly robustness gets considerably deteriorated when
8 or 256 bins are used. It is however not uncommon that authors use 256
bins for registration of PET and MR images. For example, Maes evaluated
registration of PET and MR images using a very similar method to our basic
MMM with a fixed histogram size of 256 bins and reported registration errors
as large as 5 ◦ for rotation and 30mm for translation (Maes, 1998).

If we compare precision of registrations with and without background
segmentation we can see that removal of background improves precision at
scale levels [2,2,1] and [1,1,1]. For both real and simulated images, removal
of background “stabilized” the dependency on histogram size at scale levels
[2,2,1] and [1,1,1] and provided a balanced precision for histogram sizes 16 -
256 (real images), resp. 8 - 256 (simulated images).

Robustness of registrations with background removal may become prob-
lematic if the initial misalignment is large and the overlap of the registered
images in their starting position is small. According to the presented results
this is not the case at the levels [2,2,1] and [1,1,1] that even exhibit a slightly
improved robustness. At the low-resolution level [4,4,1] the smaller overlap
and the small number of samples outweighed the advantage of removing of
noisy background and resulted in a much higher number of failed registra-
tions. We will see in the next section that this poses no problems if we use the
global displacement estimation. It provides an estimate that is sufficiently
close to the optimum to allow a robust registration at the level [4,4,1].

Looking at the differences between results of simulated and real data
registrations we can see that the character of these results is very similar.
This is important because the displacement error of real data registrations
is just an indirect measure of accuracy whereas the error of a simulated
registration is a precise measure of displacement. A direct comparison of
errors of both registration types is not possible because they reflect different
quantities.

An empirical choice of histogram size

On the basis of the experimental results we can select a suitable number of
bins for each scale level. The optimal histogram sizes for real and simulated
data, as well as for registrations with and without background segmentation
are quite similar and in most tests there are no outright optima. It allows us
to use the same parameters in all these cases.
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The generic rule in equation 4.15 (section 4.7.1) suggests that the L2-
optimal number of bins is dependent on the number of samples N as N1/3.
In the case of our PET-MR registration, the number of samples of the target
PET image (dimension 128 x 128 x 47 voxels) is approximately 7 · 105 at the
full resolution, about 1.9 · 105 at the level [2, 2, 1] and 4.8 · 104 at the level
[4,4,1].

In our tests, the scale level [4,4,1] was the most sensitive to the number
of bins and it generally achieved best results with approximatelly 32 bins.
If we suppose that the N1/3 dependency approximatelly holds for mutual
information and if we require 32 bins for the [4,4,1] level, we can determine
the number of bins at at each scale level as:

B = 0.87 ·N1/3

This equation suggests 32, 50 and 80 bins for levels [4,4,1], [2,2,1] and
[1,1,1]. These values are in compliance with the approximate overall optimal
values according to the experiments.

Summary

The most important result of this experiment is a confirmation of the hy-
pothesis that the number of histogram bins has a large impact on registration
outcome and that both too small and too high number of bins decrease reg-
istration accuracy and robustness. The rule for selecting of bin size is a
rather pragmatical solution to an issue where a theoretical solution is miss-
ing. There is no prove that the relation between the number of samples and
the optimal number of bins for mutual information is N1/3. The mutual
information measure is an interaction of 1D and 2D histograms and might
behave in a more complex way.

The issue of histogram size is a largely unknown space in the otherwise
well explored field of medical image registration based on mutual information.
There are many aspects that would deserve closer examination. For example,
it could be of advantage to use different histogram sizes for the marginal and
the joint histogram. It could also be interesting to investigate possibilities
of a variable bin width. The two modes in PET and MR image histograms
(object, background) have very different characteristics and it could be of
benefit to use two different bin widths, one for estimating the distribution of
background voxels and one for the object voxels.
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4.10 Evaluation of masking and global displace-
ment estimation

The aim of the following test is to validate the MMM-PA method and to test
if it actually increases robustness and accelerates registration. An important
goal is making sure that the gain in speed is not at the cost of a lower
accuracy. In addition, we examine the effect of omitting the full-resolution
level (scale factors [1,1,1]).

Test setup

The test was performed with both simulated and real data. Rigid-body
transformations were generated randomly from a normal distribution with
mean µ = 0 and standard deviation σ = 20 ◦ for the rotation parameters,
σ = 30 mm for the translation in x and y and σ = 20 mm for the translation
in z. The generated transformations were limited to the range of ±40 ◦ for
rotation, ±70 mm for translation in x and y and ±50 mm for translation in z
in order to make them fit into the range of expected transformation parame-
ters and also into the image grid (see section 4.6 for details). The generated
transformations were larger than usual misalignments of real images. On the
other hand, such misalignments occur in practice now and then and the aim
was to simulate the worst-case scenario.

4.10.1 Results and Discussion
Each PET image was co-registered to its corresponding MR image using
MMM and MMM-PA. A multi-scale scheme with scale factors [4,4,1], [2,2,1]
and optionally [1,1,1] was used. We denote a registration with just the
first two levels as low-resolution, all three levels together constitute a full-
resolution registration.

Robustness

Table 4.1 summarizes the number of failed registrations for each type of
registration. For this purpose, a registration is declared as unsuccessful if
the error measure ∆max exceeds 3mm for the levels [2,2,1] and [1,1,1] and
6mm for the level [4,4,1].

The large extent of initial misalignment apparently exceeds the capability
of the basic MMM method. MMM-PA performed substantially better and
achieved a very low failure rate, regarding the extent of initial misalignment.

A closer look at the results revealed that nearly all unsuccessful registra-
tions of MMM-PA were those registrations where the artificially misaligned
PET image did not completely fit into the image grid. The corresponding
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real data simulated data
MMM MMM-PA MMM MMM-PA

total 125 125 125 125

failed at [4,4,1] 76 9 113 10
% 60.8 7.2 90.4 8.0

failed at [2,2,1] 41 6 95 6
% 32.8 4.8 76.0 4.8

failed at [1,1,1] 37 2 92 5
% 29.6 1.6 73.6 4.0

Table 4.1: Number of failed registrations for each type of registration.

PET image mask was thus partially cropped which changed the direction of
the principal axes. In one such case the MMM method even performed better.
There were, however, other cases were the MMM-PA registration succeeded
despite a partially cropped object mask.

Omitting of the full-resolution level slightly worsened the failure rate of
MMM-PA but the rate still remains very low, considering the large extent of
initial misalignments.

Computational time

Table 4.2 presents average computational times and speed-up factors for each
type of registration. The segmentation time includes the time necessary to
threshold, erode and dilate images. The initialization time is just the time
necessary for initialization of internal structures; the time needed for loading
of data (a few seconds) is not included. The most time consuming part of
each optimization stage is the evaluation of similarity measure. The number
of these evaluations is therefore also included in the table.

As expected, the removal of background substantially accelerated the
registration process. The numbers in parentheses in Table 4.2 are the speed-
up factors for optimization times of MMM-PA compared to MMM and the
reduction factors for the number of similarity evaluations needed to converge
at each level.

The global estimation of misalignment added 14.2 s on average to the
overall registration time of MMM-PA. On the other hand, it provided a good
starting estimate for the optimization and eliminated a number of similarity
measure evaluations that would have otherwise been necessary (compare the
number of evaluations for MMM vs. MMM-PA).

Recall from section 4.5.5 that the time of similarity evaluation is mainly
dependent on the number of samples in the target volume. Removal of back-
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real data simulated data
MMM MMM-PA MMM MMM-PA

initialization [s] 2.0 2.0 2.1 2.1
segmentation [s] - 6.3 - 6.5

global alignment [s] - 14.2 - 8.0

optimization [4,4,1] [s] 34.7 9.6 (3.6) 28.7 7.4 (3.9)
evaluations of MI 217.9 162.2 (1.3) 194.0 188.4 (1.0)

optimization [2,2,1] [s] 96.9 27.7 (3.5) 70.8 21.5 (3.3)
evaluations of MI 153.4 113.1 (1.4) 144.4 116.9 (1.2)

optimization [1,1,1] [s] 237.5 89.3 (2.7) 218.9 59.0 (3.7)
evaluations of MI 94.9 89.2 (1.1) 99.0 90.7 (1.1)

full-resolution
total time [s] 371.1 149.0 (2.5) 320.5 104.6 (3.1)

low-resolution
total time [s] 133.6 59.7 (2.2) 101.6 45.6 (2.2)

Table 4.2: Mean computational times and speed-up factors.

ground reduces the image volumes to approximately 40% which implies a
speed-up factor of 2.5 for a single similarity measure evaluation. The smaller
number of similarity evaluations needed for convergency of MMM-PA further
decreased optimization time and yielded, for the real data, a speed-up factor
of 3.61 and 3.5 for the first two levels and 2.7 for the full-resolution level.

When the full-resolution level is omitted, a low-resolution MMM-PA reg-
istration takes less than one minute and is more than two times faster than
the low-resolution MMM registration and more than six times faster than the
full-resolution MMM.

Precision

An important question is whether the preprocessing in MMM-PA does not
result in a loss of accuracy. Table 4.3 compares the mean registration er-
rors over all successful registrations. The registration errors of MMM-PA are
smaller than the errors of MMM in both the low- and full-resolution regis-
trations. This is probably due to the elimination of noisy background that
might have influenced accuracy of MMM.

The average precision of low-resolution registrations is only about 10%
worse than that of the full-resolution ones. Moreover, the low-resolution
registration with MMM-PA gave on average more precise results than the
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real data
E{σE} [mm] MMM MMM-PA

level [4,4,1] 1.83 1.37

level [2,2,1] 1.32 0.93

level [1,1,1] 1.20 0.70

simulated data
E{∆E} [mm] MMM MMM-PA

level [4,4,1] 0.87 0.71

level [2,2,1] 0.40 0.34

level [1,1,1] 0.34 0.24

Table 4.3: Mean registration errors over all successful registrations.

full-resolution registration with MMM. It suggests that the full-resolution
step could be omitted in MMM-PA for the sake of a significant reduction of
registration time.

Summary

The proposed method, MMM-PA, performed better than the basic MMM
method in all three evaluated aspects: computational time, robustness, ac-
curacy. The combination of an automatic large volume reduction with a fast
analytical estimation of gross alignment resulted in an average speed-up of
factor 2.5 for a full-resolution registration and 2.2 for a low-resolution reg-
istration. The speed-up factor is slightly smaller in the low-resolution case
because the constant preprocessing time becomes more pronounced.

MMM-PA achieved a better accuracy than MMM at all levels. More
importantly, the low-resolution MMM-PA was more precise than the full-
resolution MMM. The achieved precision is undistinguishable by a visual
check. For many applications it is therefore convenient to use MMM-PA
without the full-resolution level and profit from the considerable accelera-
tion.

MMM-PA should not be used when the brain object does not completely
fit into the image volume. In such case the principal axes transformation
may easily produce a wrong transformation estimate and be a cause of an
unsuccessful registration.

Other applications

The described method concentrated on the registration of PET-MR images.
The registration framework is, however, general enough to be easily extended
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for other applications. For example, alignment of PET images acquired using
different radiotracers can be accomplished using nearly the same parameters
as for a PET-MR registration. Motion correction of a sequence of PET
frames uses the SSD or CC similarity measure instead of MI, otherwise the
parameters are similar. All these registration types were also implemented
and successfully used in a number of applications at the PET Laboratory of
the Max-Planck-Institute for Neurological Research in Cologne.

For a coarse co-registration of images from different patients, the rigid-
body transformation model can be extended to an affine model. A precise
matching, however, requires utilization of some kind of non-linear deforma-
tions which is the topic of the next chapter.



Chapter

5

Non-linear registration

5.1 Introduction
In the previous chapter we were dealing with registration of images from the
same patient. Rigid-body transformation model - rotation and translation -
was sufficient and most suitable for the task. In this chapter we will consider
non-linear inter-subject registration, i.e. registration of images of different
patients, and we will focus on registration of PET images.

The most important applications of non-linear registration are:

• Alignment of an image or a set of images with an image template for the
purpose of statistical analysis of both normal and abnormal functional
or anatomical variability. This process is called spatial normalization.

• Construction of normal and disease-specific atlases and normative im-
ages.

• Alignment of a model of anatomy (e.g. atlas) with a particular image
for the purpose of segmentation and interpretation.

Images of different patients may be very dissimilar due to a normal vari-
ability of human brain. It is therefore not sufficient to use just rigid-body
transformations if a precise match of the shape and inner brain structures is
required. In order to accommodate for this normal variability it would be pos-
sible to use affine transformations, i.e. rigid-body + scaling + shear. While
this may suffice for some applications, in most cases a more local matching is
required which calls for utilization of some kind of non-linear deformations.
An example registration is shown in Figure 5.1 where a patient’s PET im-
age is warped to a template image. In this way it gets transformed into a
standard space which enables subsequent statistical analysis and comparison.

In the following sections, we will introduce a novel algorithm for a non-
linear registration of PET images and evaluate it on various types of clinical
and simulated images.

75
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Figure 5.1: Non-linear registration of a source image (middle) to a target
image (left). The registration algorithm warps the source image so that
homologous features in both images correspond (right).

5.2 Rationale for a new approach
At present, there is a lot of research in the field of non-linear registration of
high-quality MR images. MR scanners often produce images with in-plane
pixel size of about 1mm and provide a distinct and diversified pattern that
makes possible extraction of higher-level information like edges and surfaces.
Some methods for registration of MR images are to some extent able to match
larger gyri and sulci in cortex (e.g. cortical flattening approaches). However,
these methods are mostly not fully automatic and require, to various degree,
interaction with user.

PET images on the other hand have significantly lower spatial resolution
(in-plane pixel size of about 2.5mm in better scanners) and do not have a
significantly diversified pattern. PET images also contain a higher amount of
noise and reconstruction artefacts. The character of the images thus does not
allow reliable identification of features. For this reason most of the methods
developed for high-dimensional warping of MR images would not work with
PET images. Non-linear registration of PET images requires utilization of
the full image contents, similarly to the rigid-body registration method de-
scribed in chapter 4.

The registration task is usually regarded as an attempt to match images
“as precise as possible”. However, we must consider that in the end our aim is
to compare images in order to detect differences between them and therefore
an exact match should not even be attempted. For example, when matching a
lesioned brain to a normal brain it is desirable to preserve the area of lesion
from being destroyed. Moreover, there exists no true one-to-one mapping
between cortical structures (gyri and sulci) of two different brains (not even
for healthy patients) because some structures may exist in one brain and not
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in the other. Any method that tries to match brains exactly must fold the
brain to “create” artificial structures and let other structures “disappear”.
It is therefore not appropriate to match images beyond a certain extent and
resolution.

Instead of directly registering PET to PET, we could use corresponding
MR images, perform a non-linear inter-subject MR-MR registration and a
rigid-body PET-MR registration for each image and transfer the non-linear
transformation parameters from the MR to the PET images. There are
at least two reasons why this approach is not always optimal and why it is
necessary to have a procedure for a direct PET-PET registration. Firstly, MR
images are not always available. Secondly, a MR-to-MR registration matches
anatomical structures in both images. Although the functional structure in
PET images highly correlates with anatomical structure, there is no evidence
that they are always tightly linked. The purpose of spatial normalization of
functional images is usually to maximize the sensitivity and specificity of
subsequent statistical analyses of brain function. For this purpose, a direct
registration of PET images might be more appropriate.

The method described in this chapter utilizes parts of the framework of
the rigid-body registration method described in the chapter 4. The main dif-
ference is in the transformation model where rigid-body transformations are
replaced by a non-linear transformation model. This extension brings along
many difficulties. Unlike the registration of images from the same patient
where the transformation model is well defined by rotations and translations,
there is no clear rule as to what kind of transformations should be used to
map brain image of one patient to a brain image of another patient. The
non-linear registration problem is therefore ill-posed without suitable con-
straints:

• The transformation must be continuous and smooth.

• Topology and connectivity have to be maintained (no folding over).

In addition, an algorithm suitable for non-linear PET-PET matching
must handle the specific characteristics of PET images:

• Low resolution, significant level of noise and reconstruction artefacts.

• No detailed pattern (in contrast to MR images).
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The goal of the work presented in this chapter is developing of a method
that:

→ works well for low-resolution and noisy images,

→ is robust and sufficiently precise,

→ works fully automatically for a given class of images,

→ guarantees a one-to-one deformation, i.e. it produces no folding-over
or discontinuities,

→ generates a deformation function that is smooth,

→ is fast enough to be applicable in the time frame of common clinical
applications,

→ can be easily used by non-experts and if possible does not require special
knowledge about the method and its parameters.

In the following text we will present a new voxel-based method that fulfils
these requirements, the Hierarchical Free-Form Block Matching (HBM).

5.3 Hierarchical Free-Form Block Matching
Given a target image R and a source image S, the aim is to estimate a
non-linear transformation (deformation field) that warps the image S to the
shape of the image R.

Recall from chapter 2.3 that registration of S to R effectively means
finding a suitable transformation that maps voxels of R into the space of S.
The resulting resampling of S is then performed via backward mapping, i.e.
each voxel v of R is mapped by the transformation into some point v′ in S,
the value of v′ is interpolated from the neighbouring voxels in S and assigned
back to v. We can thus formulate the registration task in the following way:

Find a smooth one-to-one function w : R3 → R3 that maps each point
pi ∈ R to a point qi ∈ S, w(pi) = qi, so that the deformed image w(R) and
S maximize some similarity measure.

5.3.1 Similarity measure
Since we want to register images from the same modality, both the sum of
squared differences (SSD) as well as the correlation coefficient (CC) described
in chapter 3 can be used as a measure of similarity. We have chosen the cor-
relation coefficient because it turned out to be a more robust estimator of
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similarity of PET images than the commonly used SSD. Moreover, CC eval-
uates linear relationship between intensities of two images and has therefore
no problem with differing global intensity magnitudes. In the case of SSD,
this must be handled by estimation of a suitable scaling factor or by includ-
ing an additional optimization parameter (see section 3.3). CC also has the
nice property that its range of values is clearly given. Its values fall into the
range of 〈0, 1〉 which makes a convenient regularization of the measure easier
(more about regularization in section 5.3.9).

Correlation coefficient is convenient for data with diversified intensity
values like PET images. It fails, however, on data that contain only a small
range of intensities, e.g. binary images, and in such case the sum of squared
differences is the measure of choice. The non-linear registration method
presented in the following text is general enough and does not rely on a
specific measure. The most suitable measure can thus be chosen depending
on the intended application. All tests with PET images described further use
the correlation coefficient, validation tests with binary images use the sum of
squared differences. Optimization of the similarity measure is accomplished
by the simplex algorithm (section 4.2) like in the multi-modality registration.

The HBM method consists of two main parts: an affine part that provides
a rough initial alignment followed by a non-linear part that tries to adjust
misalignments at a local level.

5.3.2 Affine part

The affine part provides an initial co-registration of images. The framework
is analogous to the multi-modal registration described in chapter 4. Here,
the correlation coefficient or the sum of squared differences is used instead of
mutual information as the measure of similarity and the rigid-body transfor-
mation model is replaced by the affine model (chapter 2.3). The affine part
also utilizes the multi-scale approach (section 4.3).

5.3.3 Non-linear part

The affine registration results in a mapping that is only roughly valid in the
image volume as a whole. Different parts of image would need to be more
precisely matched, with slightly different transformation parameters than
those provided by the global affine transformation. This inspires to divide the
image into regular blocks and to perform a local affine registration for each
block separately. After these local co-registrations, resulting transformations
need to be somehow interpolated among neighbouring blocks.

We will first deal with generation of a smooth warping function and then
derive a subdivision schema that makes a fine local co-registration possible.
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Figure 5.2: Subdivision of an image into uniform blocks (2D example).

5.3.4 Free-form Deformation

Let R be a 3D image with dimensions dimx × dimy × dimz voxels that is
uniformly divided into nx × ny × nz rectangular parallelepipedic equal-sized
blocks Bpqr where p, q, r ∈ N, 1 ≤ p ≤ nx, 1 ≤ q ≤ ny, 1 ≤ r ≤ nz

(Figure 5.2). Each block has size bx × by × bz voxels where bi = dimi/ni.
Suppose without loss of generality that the image dimensions are multiples
of block dimensions so that bx, by and bz are integer numbers. (If this was
not the case we would pad the volume with virtual “empty” voxels, see
section 5.3.8 for details.) Next, we co-register each block separately to a
corresponding area in the image S. Let tpqr denote the affine transformation
computed for the block Bpqr. The transformation tpqr maps the block Bpqr

to an area tpqr(Bpqr) in the image S.

We will now describe a convenient and efficient way to create a smooth
deformation from the affine transformations computed for each block. The
method is based on the Free-form Deformation algorithm (FFD) that was
proposed by Sederberg and Parry as a powerful modeling tool for 3D de-
formable objects (Sederberg and Parry, 1986). The basic idea of FFD is
to deform a volume by manipulating a 3D parallelepiped lattice of control
points enclosing the volume. The displaced control points determine a defor-
mation function that specifies a new position for each point of the enclosed
volume (see Figure 5.3). The deformation function is thus fully specified by
the initial lattice of control points, by the transformed lattice of displaced
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Figure 5.3: Free-form deformation of a volume: initial lattice of control
points (left) and lattice of manipulated control points defining a deformed
state (right).

control points and by an interpolation function that we will describe later.

5.3.5 Lattices of control points

The original FFD algorithm works with lattices of points but the registration
algorithm described here uses blocks. We must therefore translate the blocks
and their corresponding affine transformations to some suitable lattices.

Control points of the initial lattice Φ overlaid over the image R can be
defined in a straightforward way: They correspond to the vertices of blocks
(Figure 5.4). Each control point is thus a shared vertex of at least one
and at most eight blocks and each block Bpqr contains eight control points
φ(p+l)(q+m)(r+n), (l,m, n) ∈ {0, 1}3.

Computation of the transformed lattice Φ′ is illustrated in Figure 5.4.
For each (p, q, r) ∈ {0, . . . , nx}× {0, . . . , ny}× {0, . . . , nz} there is an affine
transformation tpqr that maps blocks Bpqr of the image R onto block B′

pqr =
tpqr(Bpqr) in the image S. A control point φpqr that was initially shared by the
ambient blocks B(p−1)(q−1)(r−1), . . . , Bpqr is transformed to distinct locations
t(p−1)(q−1)(r−1)(φpqr), . . . , tpqr(φpqr). We will define its resulting transformed
position φ′ as the average of these positions:

φ′
pqr =

1

8

∑
(l,m,n)∈{0,1}3

t(p−l)(q−m)(r−n)(φpqr) (5.1)

For a reason that becomes clear in the following text it is necessary to
enlarge both lattices by one strip of imaginary blocks and control points on
each side. These outer points remain in the same positions in both lattices.
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Figure 5.4: Formation of an initial and a deformed control lattice illustrated
on a 2D example: Transition from blocks to control points.

5.3.6 B-spline approximation

Having defined the initial and transformed lattice of control points we can
now advance to the description of the free form deformations. The trans-
formed lattice of control points determines a deformation function that spec-
ifies a new position for each point of the transformed volume. The FFD
method does not prescribe a specific type of deformation function and it is
therefore possible to choose one that is suitable for the intended application.
The original FFD algorithm of Sederberg and Parry used the Bernstein poly-
nomials that resulted in a global warping function, i.e. new position of each
point was computed as a weighted sum of all control points. In this work we
use B-splines because they offer local control and guarantee C2-continuity
(Sederberg, 2003). We can thus model local C2-continuous distortions that
only affect the nearest neighbourhood of each block. Deformation of each
block is influenced just by the 26 neighbouring blocks which provides com-
putationally a more efficient solution than the Bernstein polynomials. Free
form deformations with B-splines were used in a number of applications, for
instance for generation of image morphing sequences (Hsu et al., 1992; Lee
et al., 1995) or for scattered data interpolation (Lee et al., 1997).

Consider now the deformation of voxels in a block Bpqr and let φpqr =
(φx, φy, φz) be a control point of the initial lattice Φ expressed in the voxel
coordinates of the image R. The block is assigned a set of local coordinates
s, t, u ∈ R such that 0 ≤ s, t, u ≤ 1. Each voxel (i, j, k) ∈ Bpqr is expressed
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in these local coordinates as

(s, t, u) =

(
i− φx

bx

,
j − φy

by

,
k − φz

bz

)
(5.2)

The deformation function w : R3 → R3 within the block Bpqr is then
defined as the trivariate cubic B-spline tensor product:

w(i, j, k) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(s)Bm(t)Bn(u)φ′
(p+l−1)(q+m−1)(r+n−1) (5.3)

where φ′
... are the 43 control points in their displaced positions in the

lattice Φ′ and Bl(s), Bm(t) and Bn(u) are the uniform cubic B-spline basis
functions evaluated at s, t and u, respectively. They are defined as

B0(t) =
(
−t3 + 3t2 − 3t + 1

)
/6

B1(t) =
(
3t3 − 6t2 + 4

)
/6

B2(t) =
(
−3t3 + 3t2 + 3t + 1

)
/6

B3(t) = t3/6

Since a B-spline curve through collinear control points is itself linear, the
initial configuration of control points generates the undeformed volume:

wid(i, j, k) = (i, j, k) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(s)Bm(t)Bn(u)φ(p+l)(q+m)(r+n)

5.3.7 One-to-one mapping
An important point in the list of desired properties of the developed registra-
tion method was the requirement to generate a one-to-one mapping between
the target and source image. One-to-one (injective) mapping is essential for
obtaining physically correct results. If a mapping function is not injective,
the resulting deformed image may contain undesirable artefacts because parts
of the original image get folded upon nearby parts.

Injectivity is a requirement that most of the widely used tools for non-
linear registration of PET and MR images do not guarantee (e.g. SPM or
AIR). Some tools partially solve the problem by using linear regularization
which reduces the probability of occurrence of non-physical deformations.
Although widely used, linear regularization alone does not guarantee injec-
tivity. It is nevertheless fair to say that the concept can significantly reduce
the probability of occurrence of non-injective deformations.
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Figure 5.5: Self-intersection in a lattice of control points.

The injectivity of a warping function w means that no self-intersection
is introduced to the deformed volume. Self-intersection implies that at least
two points in the initial volume map to a single point in deformed volume.
The injectivity of the warping function w can be violated in two ways. First,
a global violation of injectivity occurs when the lattice of control points Φ
contains a self-intersection (Figure 5.5). Second, the injectivity may also be
violated locally within a block even if the lattice is not self-intersecting. An
example of this case was presented in Lee et al. (1996).

Consider first the local injectivity in a single block Bpqr of the 3D image
lattice. The deformation function w within this block is influenced by the 16
control points φ(p+l)(q+m)(r+n), (l,m, n) ∈ {−1, 0, 1, 2}3 (and only by these).
For a better readability, these points will be for the moment referred only
by the indices (l,m, n) relative to the current block Bpqr as φlmn, (l,m, n) ∈
{−1, 0, 1, 2}3. Let ∆φlmn = φ′

lmn − φlmn = (∆xlmn, ∆ylmn, ∆zlmn) be the
displacement of each of the 16 control points. Let δx = 1/bx ·max {|∆xlmn|},
δy = 1/by ·max {|∆ylmn|} and δz = 1/bz ·max {|∆zlmn|}. The factors δx,δy,δz

thus express maximum displacements in units of the block size. Further let
δmax = max {δx, δy, δz}.

Lee et al. presented a sufficient condition for the local injectivity of a 2D
free-form deformation with uniform cubic B-splines (Lee et al., 1996). Choi
and Lee generalized the results to 3D and derived less strict conditions for
both 2D and 3D B-spline FFDs (Choi and Lee, 1999, 2000). The sufficient
condition for the 3D case is summarized in the following theorem:

Theorem 1. The deformation function w given by equation 5.3 is locally
injective if δmax < D.

D is a constant that provides a sufficient (not a necessary) condition for
the bound of the control point displacements. Its value is approximately
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D = 0.40331. Note that theorem 1 provides a tight bound, i.e. there exists
a lattice configuration that does not generate an injective function when
δx = δy = δz = D. For details and proof see Choi and Lee (1999, 2000).

In sum, to guarantee a local one-to-one mapping within one block it is
sufficient to check during registration of each block that none of the eight
vertices of the block in any of the x-, y- and z-directions moves more than
D-times of the initial spacing between the control points. The check needs
to be made in every evaluation of the similarity measure. The cost of the
check is negligible in comparison with the time spent on evaluation of the
similarity measure and it is thus very efficient.

Recall from section 5.3.5 that the resulting displacement of each control
point φ′

pqr in the lattice Φ′ is computed as the average of the eight trans-
formed points t(p−1)(q−1)(r−1)(φpqr), . . . , tpqr(φpqr). The displacement of every
one of these points is limited by the constant D, hence the average of these
displacements fulfils the injective condition as well.

Global injectivity can be guaranteed by making sure that the manipu-
lated lattice Φ′ does not intersect itself in any place. This is secured if all
control point displacements are less than half of the initial distance between
control points in each direction. Since the theorem 1 limits displacements to
approximately 0.4 times of the distance this global condition is also fulfilled.

5.3.8 Hierarchical subdivisions
In the previous sections, building blocks of a non-linear registration procedure
were presented that consists of three steps:

1. Target volume R is uniformly divided into rectangular blocks. Vertices
of blocks compose the initial control lattice Φ.

2. Separately for each block, an affine transformation is computed that
maps the block to a corresponding area in the source image S, by means
of optimization of a similarity measure. Transformation of each block
is limited by the condition given in the Theorem 1.

3. The displaced control lattice Φ′ is computed from the transformed
blocks.

4. The image S is deformed using the Free-Form Deformation technique
with B-spline weighting functions.

The choice of fineness of subdivisions (i.e. block size) in step 1 has a great
impact on the quality of registration. The smaller the blocks are, the more
locally and precisely it is possible to align brain structures. Registration of



86 Chapter 5. Non-linear registration

small blocks is, however, less robust due to a reduced number of used voxels
and thus there is a higher risk of incorrect and unnatural transformations.
On the other hand, large blocks do not allow sufficiently fine deformations.
Moreover, the limit on block displacement imposed by Theorem 1 is likely to
prohibit sufficiently fine alignment in any case.

To overcome these drawbacks, a multi-level hierarchical optimization tech-
nique has been designed and used as an integral part of the developed
HBM algorithm. Co-registration of images R and S is performed in suc-
cessive steps using smaller and smaller blocks which generate a hierarchy
of control lattices, Φ0, Φ1, . . . , Φn and their corresponding displaced lattices,
Φ′

0, Φ
′
1, . . . , Φ

′
n. They determine a sequence of free-form deformation func-

tions w0, w1, . . . ,wn. Each step builds on results of the previous steps and
improves the deformation on a more local level. The resulting deformation
function is defined by the composite function w = wn ◦wn−1 ◦ . . . ◦w0.

In the initial affine-only step 0, the volume of image R consists of a single
block B0 with block size b0 = (dimx, dimy, dimz). The initial lattice Φ0

corresponding to B has control point spacing b0. The affine transformation
t0 for this block is computed by co-registering the images R and S and it
determines the displaced lattice Φ′

0. Lattices Φ0 and Φ′
0 together define the

deformation function w0.

In the next step, the block B0 is subdivided into eight blocks with size
b1 = b0/2 that compose the initial lattice Φ1. For each block, a correspond-
ing affine transformation is determined by co-registering it to the transformed
volume w0(S). The displaced lattice Φ′

1 is computed from the transforma-
tions of all blocks and defines the deformation function w1.

In the step k, the volume of R is divided into 8k blocks of size bk =
b0/2

k that constitute the initial lattice Φk. Each block is co-registered to the
deformed intermediate image wk−1 ◦ . . . ◦w0(S) and the displaced lattice Φ′

k

is computed, defining the deformation function wk.

Subdivisions terminate at a level n when the block size drops below some
selected minimum size bmin. The resulting deformation function mapping R
to S is given by w = wn ◦ . . . ◦w0.

Parameters of the hierarchical schema

Suitable parameters for the hierarchical schema (initial block size, minimum
block size, number of levels) can be selected in various ways. The most
important parameter is certainly the minimum block size that determines
how fine registration it is reasonable to attempt regarding the quality and
voxel resolution of the input images. It seems therefore convenient to let the
minimum block size be the one input parameter and compute the remaining
parameters automatically in the following way:
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Let bmin = (bx,min, by,min, bz,min) be the block size at the last and finest
level. Then the size b0 = (bx,0, by,0, bz,0) of the block B0 at the first level is
defined as the tightest bounding block that contains the whole volume of R
and whose dimension in each x-, y- and z-axis is power of the minimum block
size:

bx,0 = (bx,min) · 2 lx where lx = min
{

l | (bx,min) · 2 l > dimx

}
(5.4)

The values lx, ly, lz represent the number of subdivisions required in each
axis. Let lm = min {lx, ly, lz}. After the initial affine registration step, the
block B0 is subdivided into regular blocks with size

b1 = (bx,1, by,1, bz,1) =

(
bx,0

2 lx−lm+1
,

by,0

2 ly−lm+1
,

bz,0

2 lz−lm+1

)
The first subdivision step thus equalizes the different numbers of required

levels in each axis. Subsequently in every following step k, the block B0 is
subdivided uniformly in each axis into blocks with size bk = bk−1/2.

In this way, we can assure that the initial control lattices are uniform at
each level which is one of the presumptions of the Free-Form Deformation
technique. If the block B0 exceeds the size of the volume R then the non-
overlapping parts of the block will be ignored during registration.

Computation of intermediate images

At the end of each subdivision level, a new transformed image is computed
that is then used as the source image in the next level. Let Sk denote the
intermediate source image for level k. Sk is computed as

Sk = wk−1 ◦ . . . ◦w0(S) (5.5)

where S is the original source image. A very efficient way of computing Sk

would be to transform it from the previous source Sk−1, i.e. Sk = wk−1(Sk−1).
This approach would, however, cause that every subsequent intermediate im-
age would be more deteriorated since every image transformation involves
interpolation. This would certainly negatively influence precision and ro-
bustness at the finest levels where a good-quality source image is desirable.
Therefore, a less efficient way was chosen where every intermediate image is
always computed only from the original source image and is subject to one
interpolation only.

Each voxel v of the volume Sk is transformed to a point v′ in S via
backward mapping as v′ = w−1

0 ◦ . . . w−1
k−1(v) by subsequently using the

lattices Φ0, Φ
′
0, . . . , Φk−1, Φ

′
k−1. This transformation involves no interpolation
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and is precise. The value of v′ is then interpolated from the neighbouring
voxels in S and assigned back to v. The drawback is that each level requires
one computation of deformation more, for each voxel, than the previous level.
In other words, the time complexity increases linearly with the number of
levels. This is however no big problem for the number of levels considered
here (i.e. 4-6).

The computational demand also depends on the dimensions of intermedi-
ate source images. The HBM algorithm prescribes no particular dimensions
but too small dimensions would obviously decrease precision of registrations
in blocks. By default, the dimensions of the source image are used.

Multi-resolution optimization

The initial affine level uses a multi-resolution optimization schema as de-
scribed in the section 4.3. Design of a suitable schema depends on the size
and quality of input images. As demonstrated in section 4.10, omitting the
full-resolution level only marginally influences precision but significantly de-
creases registration time. The same seems to hold for the inter-subject affine
registration (see section 5.4). The HBM implementation used here for vali-
dation tests thus omits the full-resolution level and uses a two-level schema
with scale factors [4, 4, 4] and [2, 2, 2].

Subsequent subdivision levels do not use multi-resolution schema and
perform a full-resolution registration only. This is because the number of
available voxels is much lower and a low-resolution registration would not be
robust enough.

5.3.9 Linear regularization

Decreasing size of blocks on one side allows more local matching but also
decreases robustness of optimization. The threshold on maximum extent
of transformations presented in the section 5.3.7 guarantees injectivity and
has a positive influence on robustness because it prohibits large deforma-
tions. Robustness is also significantly improved by the hierarchical schema
presented in the previous section. Still, unnecessary large transformations
may occur in some cases, although within limits of injectivity. For exam-
ple, the optimization method might find maximum of similarity for some
larger transformation, although there exists another, much smaller and bet-
ter transformation that gives only slightly worse similarity. In such case it is
very probable that the higher similarity for the large transformation is caused
by artefacts, noise or slightly different structure in the registered images.

A common approach to avoiding such situation is the concept of linear
regularization (LR). It is formulated by extending the similarity measure SM
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by a second term that penalizes large deformations:

SMLR = SM − λ ·DF (5.6)

DF is a non-negative penalization function which equals to zero in case
of no deformation. Thus, minimization of SM now becomes a task of find-
ing a deformation that simultaneously maximizes similarity of images and
minimizes the necessary deformation. In this way we can partially avoid de-
formations that would improve the similarity measure by a tiny amount but
that would cause large and unnatural deformations. The extent of penaliza-
tion is driven by the parameter λ. Linear regularization has been commonly
used by many authors for non-linear registration of images (e.g. Ashburner
and Friston, 1999; Hajnal et al., 2001; Hellier et al., 2001). The penalization
function is usually linear elastic energy, membrane energy or bending energy
(Ashburner, 2000).

Although commonly applied in renown registration packages, e.g., SPM
(Ashburner and Friston, 1999), linear regularization is a debatable solution.
The parameter λ joins together two quantities with different physical dimen-
sions: an intensity measure (SM) and a geometric measure (DF). As noted in
Cachier and Ayache (2001), the intensity similarity is related to the amount
of change in intensity that must be applied to go from one image to the other,
which is not uniformly proportional to the amount of motion necessary to
deform one image to the other. Consequently, effect of regularization largely
depends on the local variation of the similarity measure and there is no clear
way of determining a suitable value for the parameter λ.

Therefore, we will make here an attempt to relate the two physically
different quantities, SM and DF, using the specific properties of the HBM
method. The similarity measure used in HBM is mostly the correlation coef-
ficient with values in the range 〈0, 1〉, the maximum extent of transformation
is limited by the condition δmax < D from Theorem 1. The proposed expres-
sion for a regularized similarity measure is thus:

SMLR = CC −
(

δmax

D

)h

(5.7)

The second term is a geometric penalization function. Its values lie in the
range 〈0, 1) corresponding to the range of the correlation coefficient in the
first term. The exponent h determines the strength of penalization. Lower
values of h cause strong penalization even for small registrations. Suitable
experimentally found values are h = 3, 4. The advantage of this penalization
function, besides its convenient range of values, is the efficiency of its com-
putation, compared to the energy-based functions that require computation
of at least first partial derivations of the similarity measure function.
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In summary, the HBM method uses Theorem 1 to limit the maximum ex-
tent of transformations whereas the proposed linear regularization regulates
transformations below this limit.

5.3.10 Preprocessing
Preprocessing of input images is very important in a non-linear registration.
The described procedure optimizes ten thousands of parameters and is thus
naturally more prone to local misregistrations and faulty estimation of some
of the parameters than the global affine registration with just 12 parameters.
It is therefore crucial to supply input images of a reasonable quality. Typical
PET images unfortunately do not have sufficiently good quality and need to
be processed prior to entering the registration procedure.

Preprocessing can also significantly improve registration speed. There are
basically two potential sources of acceleration:

• Reduction of volume: Removing of irrelevant image areas from com-
putation.

• Faster convergence of optimization: By improving image qual-
ity it is possible to acquire a smoother and more conveniently shaped
similarity function and thus a faster convergence of optimization (less
iterations).

The HBM method uses two kinds of preprocessing: background removal
and reduction of noise.

Background removal: Prior to registration, background is automatically
segmented from images using the method described in section 4.5.1.

Noise reduction: Median filtering is used to reduce random small recon-
struction artefacts emerging as outliers. After that an isotropic 3D Gaussian
filtering is applied to smooth the image and reduce the additive noise.

5.3.11 Summary of the algorithm
Let register(R,S, B) be a function that co-registers images R, S within
a block B of the image R so that the resulting transformation fulfils the
condition given by the Theorem 1. Let βl denote the set of all blocks at a
level l. The Algorithm 5 outlines the hierarchical registration scheme of the
HBM algorithm.
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Algorithm 5: Hierarchical Block Matching

Input: preprocessed images R, S, minimum block size bmin

Output: deformation function w that matches R and S
transformed image Sw

lx, ly, lz ←− no. of subdivision levels in each axis (equation 5.4)

lm ←− min {lx, ly, lz}

// block size

b = (bx, by, bz)←− (blx
x,min, b

ly
y,min, b

lz
z,min)

// initial intermediate image

S0 ←− S

// loop over subdivision levels

for l←− 0 . . . lm do

compose initial lattice Φl

foreach block B ∈ βl do

// local affine registration

tB ←− register(R,Sl, B)
end

compose displaced lattice Φ′
l from all tB, B ∈ βl

deformation wl is determined by Φl, Φ′
l

Sl+1 ←− wl ◦ . . . ◦w0(S)

if l = 0 then

b←− (bx/2
lx−lm+1, by/2

ly−lm+1, bz/2
lz−lm+1)

else

b←− b/2

end

end

// Results

w ←− wlm ◦ . . . ◦w0(S)

Sw ←− Slm+1
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5.3.12 Complexity of the algorithm

The time complexity of an affine registration of two images is linearly depen-
dent on the number of voxels N in the target image (see section 3.7). When
the target image is subdivided into B blocks then the affine optimization
of each blocks requires O(N/B) time and the overall complexity for all B
blocks remains approximatelly O(N). The time necessary for composition of
the initial and the displaced lattices is negligible.

The time for computation of the intermediate images Sl increases with
every new subdivision level. Computation of the image Sl at a level l − 1
requires, for each voxel v ∈ Sl, to pass through transformation lattices of
levels 0 . . . l− 1 and compute, at every level i, a B-spline interpolation of the
coordinates of v using lattices Φi, Φ′

i. If M is the number of voxels in Sl then
the computation of Sl has complexity O(M · l).

HBM with L levels has thus time complexity O(L·N)+O(L2·M). The first
term is the time required for optimizations and the second term corresponds
to the time needed for computation of intermediate images. The quadratic
nature of the second term is not a problem for the common dimensions of
PET images (approx. 106 voxels) and for the corresponding maximal depth
of subdivisions (4-5). Such registration takes about 4min on a 1GHz PC.
It has, however, more impact when more subdivision levels are required, e.g.
for high resolution HRRT-PET images. Section 5.4.3 brings more details
about registration HRRT images.

The registration time can be reduced if we use smaller dimensions for the
intermediate images (smaller M). This would, however, deteriorate precision
of the optimization step.

5.3.13 Spatial normalization

The term spatial normalization is commonly used for transformation of an
image or a set of images to some standard space, i.e. to a template brain
image with a standard size and shape. Spatial normalization allows a direct
comparison of corresponding structures in examined images.

The FDG16 and FMZ17 templates

For the purpose of spatial normalization with the HBM algorithm, templates
for FDG-PET and FMZ-PET images were created. The FDG-PET template
was created from FDG-PET images of a group of 16 healthy people (thereof
6 male). The PET images were acquired on ECAT Exact HR scanner (Wien-
hard et al., 1994) from CPS Innovations, Inc., Knoxville, Tennessee, USA.
The mean age in the group was 59.6±3.8, median 59.5, minimum 57 and max-
imum 65 years. The images were first spatially normalized using the software
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package SPM2 (Ashburner and Friston (1999),www.fil.ion.ucl.ac.uk/spm) to
the standard PET template supplied with the software. According to the
information from the authors, this PET template corresponds to the space
of the ICBM152 template defined by the International Consortium for Brain
Mapping. The intensity in the normalized images was scaled so that the
mean intensity in the brain area in each image was unity and then a mean
image of these images was computed. We will refer to this template as the
FDG16 template. The same procedure was applied to the group of FMZ-
PET control images of 17 healthy people (thereof 10 male) and resulted in
the FMZ17 template. The mean age of this group was 50.5 ± 19.6, me-
dian 61, minimum 22, maximum 74 years and all images were acquired on
the ECAT Exact HR scanner. Both templates had dimensions 91 x 109 x
91 with an isotropic voxel size of 2mm. To fasten the spatial normalization
process, binary masks corresponding to the head volume were created for
both templates and used for removal of background.
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5.4 Evaluation

The difficulty in evaluation of algorithms for non-linear registration is in
defining a criterion for a well registered image. For real images of human
brain a definition of optimal result does not exist, not even theoretically. This
is simply because the variability of human brain at a local level is high and
even the topology of two healthy brain images does not exactly correspond
(in particular the topology of gyri and sulci). Alignment of structures can
thus be achieved only to a certain level. Moreover, it is not clear what
structures are desirable to be in alignment - this depends on the intended
application in particular. Visual verification of results by an experienced
person is therefore always necessary. It means that in the end the quality of
a normalization algorithm is evaluated by experience acquired in routine use.
The following sections present several validation tests of the HBM method.

5.4.1 Binary geometric images

The basic behaviour of the HBM algorithm was evaluated on several artificial
binary images with various geometrical objects. The aim was to demonstrate
that the proposed procedure is able to closely match images even though
their shape does not allow a precise match with a C2-continuous deformation
function. Three pairs of images were created and in each pair one image was
registered to the other using HBM. In Figure 5.6, the first column contains
the target images, the second column the source images and the aim was to
automatically deform each source image to match the target. The images
had dimensions 128 x 128 x 128 voxels. The minimum block size was set to
2 x 2 x 2 voxels resulting in 1 affine and 6 non-linear levels.

Registration quality was estimated by the ratio of mismatched voxels at
each level. The ratio was computed as the number of non-overlapping voxels
of the two objects divided by the total number of voxels in the target ob-
ject. The results are presented in Table 5.1. In all cases the HBM method
substantially decreased the initial misalignment. The affine level (SL0) ac-
counted mainly for global differences in size. For the first pair (cube+sphere)
the number of mismatched voxels was halved at the affine level whereas the
improvement yielded by the other pairs was smaller. This corresponds to
the differing volume ratios in each pair. The first non-linear level (SL1) did
not achieve any improvement worth mentioning, in contrast to the last three
levels that were able to halve the number of mismatched voxels from previous
levels. This indicates that the first non-linear level could be omitted in order
to decrease registration time.



5.4. Evaluation 95

Figure 5.6: Non-linear registration of artificial binary images. Source images
(second column) are matched to target images (first column). The resulting
images after 6 subdivision levels are in the fourth column. The last column
shows a regular grid deformed using the resulting transformation.

HBM - subdivision levels

target image initial position SL0 SL1 SL2 SL3 SL4 SL5

cube - full 64.1 30.9 30.5 25.9 15.0 4.5 0.9
cube - hollow 44.8 29.0 28.3 21.2 12.0 5.7 3.0
sphere - hollow 44.8 36.6 31.1 24.0 15.7 9.0 5.7

Table 5.1: The percentage of mismatched voxels for the initial position of
registered objects and after each subdivision level. The percentage is com-
puted as the number of non-overlapping voxels divided by the number of
voxels in the target volume multiplied by 100.
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5.4.2 Normalization of FDG-PET and FMZ-PET images

This section evaluates the quality of alignment achieved by the hierarchical
subdivision schema of the HBM algorithm on real medical images. For this
purpose, a group of 16 normal FDG-PET images (the same as the group in
section 5.3.13) was spatially normalized to the FDG16 template. The images
had dimensions 128 x 128 x 47 with voxel size 2.2 x 2.2 x 3.125 mm. The
template had dimensions 91 x 109 x 91 with an isotropic voxel size of 2mm.

The minimum block size was set to 4 x 4 x 4 voxels which resulted in 6 sub-
division levels (SL) - 1 affine and 5 non-linear. Regularization factor 4 was
used for non-linear registrations. According to the hierarchical schema, at the
finest level each image was subdivided into 323 = 32 768 blocks. Therefrom
approximately one third was actually used, the remaining blocks contained
just background or non-brain parts. For each block, 12 affine transformation
parameters were computed. The deformation on the finest level was thus
modelled by approximately 1.3 · 105 parameters.

Experiments showed that the first SL (subdivision into 8 cubes) brought
only a tiny decrease of the standard deviation and the resulting image af-
ter this level did not differ much from the affine result. The first SL was
consequently skipped in all tests to reduce registration time. Note that this
observation is also in agreement with the results of the previous section 5.4.1.

During every registration, intermediate images were stored after each sub-
division level. Finally, the mean image and image of standard deviations for
the group were computed from the resulting images at each level. The image
intensities were first scaled so that the mean intensity within the brain vol-
ume was unity, where the brain volume was defined by the same binary mask
as the one used for masking of the template (section 5.3.13). The mean and
standard deviation images for each level were then computed voxel by voxel
across all intermediate images at that level and smoothed with an isotropic
gauss filter with FWHM 4mm. The same procedure was also applied to a
group of 17 normal FMZ-PET images (the same as the images in section
5.3.13) that were normalized to the space of the FMZ17 template.

The HBM procedure does not optimize at the full-resolution in the initial
affine level (section 5.3.8). It would be therefore inappropriate to make com-
parisons just with the intermediate result of the initial affine step. Therefore,
the control images were also co-registered using an affine-only procedure that
corresponds to the initial affine step of HBM with an additional full-resolution
optimization. We will refer to this procedure as AFF.

Figure 5.7 presents the images of standard deviations in an axial slice at
selected subdivision levels for both FDG-PET and FMZ-PET images. The
images demonstrate a significant overall decrease of standard deviation (σ),
especially apparent in the brain rim, putamen, thalamus, etc.
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Figure 5.7: Standard deviations of the group of 16 FDG-PET images (left
column) and 17 FMZ-PET images (right column) after the affine level and
after the 3rd and 5th subdivision level of HBM. The first row contains the
mean images of the groups at the 5th subdivision level.
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Table 5.2 summarizes, for the FDG group, the average σ within the brain
volume at each level. The last column presents the total decrease of σ com-
pared to the results produced by AFF. HBM achieved on average a 38 %
smaller standard deviation than AFF. For FMZ images the reduction was
similar. Besides the overall decrease of σ it is important to look at smaller
brain regions. The average σ values for several selected regions - basal gan-
glia, brain rim and cerebellum - show that the non-linear registration achieves
much better alignment of smaller structures than the affine-only registration.

The graph in Figure 5.8 shows the reduction of standard deviation with
the increasing number of subdivision levels. Averaged over the whole brain,
each subdivision level reduces σ by about the same amount. Nevertheless,
the curves of basal ganglia and cerebellum show that for some areas the
largest decrease occurs not until the last two levels which demonstrates the
importance of fine subdivision levels.

The average computational times are summarized in Table 5.3. The time
required for computations at each subdivision level is split into the time for
registration of blocks and the time needed for computation of the interme-
diate image Sk for the next subdivision level, resp. for computation of the
resulting image after the last level SL5. The first column contains times of
AFF, the remaining columns correspond to subdivision levels of HBM. Notice
that the time of block registration in AFF is significantly longer than in SL0
of HBM but the average standard deviations (Table 5.2) are nearly the same.
This justifies omitting of the full-resolution optimization in the affine level
of HBM.

After the last level, the image is warped and resampled into the dimen-
sions of the template image which has about 17 % larger volume than the
source image dimensions used for computation of intermediate images (128 x
128 x 47 source dimensions vs. 91 x 109 x 91 template dimensions). Taking
this into account for the time of SL5, we can see that the transformation time
increases linearly with the number of levels which is in accordance with the
discussion in the section 5.3.8. Starting from the second subdivision level,
the computational time of block registrations slightly decreases. The reason
is that with increasing fineness of subdivisions there are more blocks that fall
outside the brain and that are not registered at all. These relationships are
graphically presented in Figure 5.9. The total time for all levels, 242 s, plus
the time needed for initial preprocessing of images, approx. 8 s, give on the
whole slightly more than 4 minutes needed for spatial normalization of one
PET image.
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Std. dev. HBM subdivision levels Reduction [%]

[×10−1] AFF SL0 SL2 SL3 SL4 SL5 SL5 vs. AFF

brain 1.40 1.44 1.29 1.15 1.00 0.87 38 %
bas. gan. 2.80 2.92 2.73 2.54 2.01 1.14 59 %
brain rim 3.44 3.47 2.87 2.38 1.59 0.92 73 %
cereb. 2.67 2.71 2.56 2.41 1.93 1.18 56 %

Table 5.2: Average standard deviations of the FDG group within the brain
volume and in selected regions (basal ganglia, brain rim, cerebellum) achieved
by AFF and by each subdivision level of HBM. The last column presents the
procentual decrease of standard deviation after SL5 compared to AFF.

Figure 5.8: Reduction of the average standard deviation of the FDG group
with the increasing number of subdivision levels.
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HBM subdivision levels

Time [s] AFF SL0 SL2 SL3 SL4 SL5

optimization in blocks 72 21 48 34 32 35
transformation 2 2 7 12 18 33
time per level 74 23 55 46 50 68

total time 74 23 78 124 174 242

Table 5.3: Average computational time of each subdivision level. The compu-
tational time of a single level is the sum of the time needed for co-registration
in all blocks plus the time for computation of intermediate images Sk at levels
SL0-SL4, resp. for computation of the resulting image after the 5th level.

Figure 5.9: The time required for each subdivision level and the total time.
The time per level is the sum of the optimization time and the warping time.
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5.4.3 Normalization of high-resolution HRRT PET images

The HBM method was also evaluated on high-resolution PET images acquired
on the most advanced type of PET scanner nowadays - the High-Resolution
Research Tomograph (HRRT) (CPS Innovations, Inc., Knoxville, Tennessee,
USA). FDG-PET images of a group of 12 healthy volunteers were used (10
male, 2 female), the mean age was 39.8±13.6, median 35.1, minimum 25 and
maximum 64 years. Each volunteer acquired an injection of 370 MBq FDG
and the activity was recorded for one hour. The acquired data was subse-
quently corrected for attenuation, random and scatter and reconstructed by
OSEM3D in 3 iterations with span 3 in an image with dimensions 256 x 256
x 207 voxels and voxel size of 1.22 x 1.22 x 1.22 mm (Wienhard et al., 2002).
The figure 5.10 shows one of the images in the group. Compared to the com-
mon PET images evaluated in the previous section, HRRT images present a
considerable increase of data size - more than 17 fold. It brings along much
higher demands on memory space and computational performance.

Figure 5.10: An example HRRT FDG-PET image in three orthogonal slices.

As in the previous test, the minimum block size was set to 4 x 4 x 4
voxels. This resulted in 7 subdivision levels - 1 affine and 6 non-linear. Again,
regularization factor 4 was used for non-linear registrations and the first non-
linear level was omitted. At the finest level each image was subdivided into
643 = 262 144 blocks, from which approximately one quarter was used. The
deformation on the finest level was thus modelled by approximately 4 · 107

parameters. In order to acquire a high-resolution template for the test, the 12
images were first spatially normalized to the FDG16 template, saved in their
original dimensions and averaged, resulting in a high-resolution template
called HRRT-FDG12.

The 12 HRRT PET images were then normalized to the HRRT-FDG12
template using HBM and AFF. Mean images and images of standard devia-
tions were computed for each subdivision level as in the previous test and
smoothed with an isotropic gauss filter with FWHM 4mm. Figure 5.11
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presents the images of standard deviations in three orthogonal slices at se-
lected subdivision levels.

Table 5.4 summarizes the average standard deviation σ within the brain
volume at each level. The last column presents the total decrease of σ com-
pared to the results produced by AFF. HBM achieved on average 39 % smaller
standard deviation than AFF. Similar to the results of the test with FDG-
PET images, the improvement in alignment quality is best demonstrated on
smaller regions, a few of which are listed in the table.

The graph in Figure 5.12 shows the reduction of standard deviation with
increasing number of subdivision levels. The results are very similar to the
results of the previous test with common FDG-PET and FMZ-PET images.
Note that standard deviation within the region of cerebellum in SL2 and SL3
is even worse than in SL0. This means that there were other brain structures
in the optimized block that had had higher impact on the optimization. A
fine alignment of cerebellum was not possible until finer subdivision levels.

The average computational times are summarized in Table 5.5 and pre-
sented graphically in Figure 5.13. The decrease of optimization time is
slightly more pronounced here than in the case of common FDG-PET images
but otherwise the time course is very similar in both cases. Due to the larger
data size, the HRRT FDG-PET registration takes much longer - about 48
minutes. This is however still feasible for many clinical applications.

5.4.4 Evaluation on clinical images
The evaluations presented in the previous sections demonstrate that the HBM
method is able to align a group of normal images so that the standard devia-
tion of voxel intensity in the group is substantially reduced. This aim of the
following test was to provide an informal, informative evaluation of the HBM
method on clinical images with various types and extent of deterioration.

The method was used to spatially normalize 504 FDG-PET images from
a large PET image database, created in cooperation with several European
PET centres in the frame of the NEST-DD project. The database contains
mostly images of patients with Alzheimer’s and Parkinson’s disease. The
HBM method has also been tested on a set of 38 FMZ-PET images of patients
suffering epilepsy, tumour or stroke. The results were evaluated visually. In
all cases, the normalization produced correct and visually precise results
within healthy tissue. It also gave correct alignment of diseased tissue in
patients with Alzheimer’s and Parkinson’s disease as well as for patients
with smaller lesions.

In several images with larger lesions the algorithm showed a tendency to
diminish the lesion area. The next section deals with this issue.
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Figure 5.11: Standard deviations of the group of 12 HRRT FDG-PET images
in three orthogonal slices after the affine level and after the 4th and 6th
subdivision level of HBM. The first row shows the mean image of the group
at the 6th subdivision level.
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Std. dev. HBM subdivision levels Reduction [%]

[×10−1] AFF SL0 SL2 SL3 SL4 SL5 SL6 SL6 vs. AFF

brain 1.40 1.40 1.37 1.21 1.06 0.94 0.86 39 %
bas. gan. 3.76 3.77 3.67 3.63 3.00 1.71 1.10 71 %
brain rim 4.85 4.89 3.77 2.94 2.10 1.59 1.24 74 %
cereb. 3.79 3.78 3.93 3.81 2.99 2.05 1.49 61 %

Table 5.4: Average standard deviations in the brain volume and in selected
regions (basal ganglia, brain rim, cerebellum) achieved by AFF and by each
subdivision level of HBM. The last column presents the procentual decrease
of the average standard deviation after SL6 compared to AFF.

Figure 5.12: Reduction of the average standard deviation with the increasing
number of subdivision levels.
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HBM subdivision levels

Time [s] AFF SL0 SL2 SL3 SL4 SL5 SL6

optimization in blocks 423 127 311 267 184 137 146
transformation 28 24 128 235 339 442 548
time per level 451 152 439 502 523 578 694

total time 451 152 591 1093 1615 2194 2888

Table 5.5: Average computational time required at each subdivision level of
the HRRT PET spatial normalization. The computational time of a single
level is the sum of the time needed for co-registration in all blocks plus the
time for computation of intermediate images Sk at levels SL0-SL5, resp. for
computation of the resulting image after the 6th level.

Figure 5.13: The time required at each subdivision level and the total time
of the HRRT PET spatial normalization.
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5.5 Spatial normalization of images with lesions
Spatial normalization of images may become problematic when input images
contain pathological lesions, e.g. epileptic focus or stroke-impaired tissue.
In such cases, automated normalization algorithms attempt to diminish the
lesion while trying to reduce mismatch between the image and the template.
For example, if the lesion comes out as an area of decreased intensity then the
algorithm tries to pull surrounding areas with higher intensity values onto
the lesion and “close” it (see Figure 5.14).

Figure 5.14: A transversal slice of a PET image with a lesion after affine-only
spatial normalization (left) and the same image after the full non-linear nor-
malization (middle). The lesion area in the middle image is largely reduced
which negatively influences subsequent analysis. The image on the right is
a regular grid transformed using the deformation of the middle image. It
shows that excessive deformations take place in the area of lesion.

Several researchers addressed this issue in recent articles. Stamatakis
et al. studied the influence of the degree of locality in non-linear registration
in presence of lesions in SPET images (Stamatakis et al., 2001). They came
to the conclusion that there are basically two possibilities to preserve the
area of lesion. One option is to use affine transformations only which is
currently the standard approach to this problem, although it cannot provide
sufficient accuracy. The latter option is to employ non-linear deformations
with some kind of lesion masking. The latter case means that a binary mask
needs to be created defining the lesion area. The mask is then passed on to
the normalization algorithm that excludes the area from computations. This
approach was found superior to the affine-only approach (Stamatakis et al.,
2001). Brett et al. studied influence of lesion masking in T1-MRI images
and came to a similar conclusion (Brett et al., 2001).

In both cases, binary masks had to be created manually by a physician
and this considerably increases the total processing time. It also means that
the whole normalization process is no longer reproducible because different
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Figure 5.15: Creation of a lesion mask: An image with a lesion (a) and
its mirrored image are subtracted to produce a difference image (b). The
difference image is thresholded (c) and small clusters are removed by erosion
and dilation (d) which yields the desired lesion mask.

physicians would create different masks for the same lesion object. To address
this issue, we propose a procedure that attempts an automatic masking of
lesions during spatial normalization of images of human brain with HBM.

5.5.1 Creation of lesion mask

In the proposed procedure we utilize the fact that human brain is largely
symmetric across the sagittal plane. Focal lesions are mostly present only in
one hemisphere which means that at the site of lesion there is a pronounced
asymmetry.

Suppose that an image S is centred within the image volume in the x-
direction, i.e. it is roughly symmetric across the central yz-plane1. Let S̄ be
a mirrored image created by flipping the original image S across the central
yz-plane:

∀ voxel (i, j, k) ∈ S : S̄(i, j, k) = S(dimx − i− 1, j, k) (5.8)

The idea is to subtract the image S and its mirrored version Sm which
results in a difference image Sd. Large values in Sd correspond to highly
asymmetric voxel intensities. If a lesion is presented in the image S, the
difference image shows very high values in one hemisphere and very low values
in the other hemisphere. Suppose that the lesion in S expresses itself as a
region with lowered intensity. Potential lesion voxels are then the voxels with
high negative values. In the next step we apply the segmentation procedure
described in section 4.5.3, i.e. thresholding followed by binary erosion and
dilation. The erosion and dilation use the same structuring element in this

1All templates used in this thesis are centered in the x-direction and are roughly sym-
metric. In consequence, every image normalized to these templates is also approximately
symmetric accross the the central yz-plane.



108 Chapter 5. Non-linear registration

case2. Figure 5.15 illustrates this process.
We use a quantile-based thresholding which means that for some thresh-

old p, p-% of all voxels with the largest negative values are marked as poten-
tial lesion voxels and the rest is marked as background. A suitable threshold
does not need to be selected very precisely, as demonstrated in section 4.5.3.
The size or diameter of lesions considered for this procedure is rougly in the
order of 10-50 voxels. Smaller lesions are hardly detectable in this automatic
way but on the other hand, such small lesions do not have a significant influ-
ence on the normalization, as demonstrated in Stamatakis et al. (2001). With
respect to the considered lesion sizes, the choice of thresholds was tested on
several lesioned images with the result that thresholds between 0.90 − 0.99
resulted in nearly the same masks. The outcome of subsequent morphological
operations is also robust with respect to the choice of the size of structuring
element. The aim of these operations is to remove isolated asymmetrical
voxels that do not belong to the lesion area (see Fig. 5.15c). Taking into
account the minimum considered lesion size and the tiny size of clusters of
scattered voxels not belonging to the lesion, a spherical structuring element
with a diameter of about 3 voxels can remove all, or most, non-lesion voxels
while preserving the lesion voxels in the mask. Analogously to section 4.5.3, a
precise selection of the size of structuring element is not crutial. This means
that a single set of parameters is likely to work for a class of lesions with
diverse sizes.

5.5.2 Masking within the hierarchical framework
We incorporate the described masking procedure into the hierarchical frame-
work of HBM in the following way. First of all, we use a symmetric template
centred in the x-direction which implies that the registered image becomes
more symmetric with each level of HBM. The increasing symmetry then en-
ables using of the automatic lesion masking.

The initial affine step usually does not result in a sufficiently symmetric
image. On the other hand, the affine step and the very next step are neg-
ligibly influenced by presence of a lesion and there is consequently no need
for masking. On the subsequent levels the influence of lesion increases and
masking becomes needful for a proper alignment. We apply the masking
procedure at each level starting from SL3 and always recompute the lesion
mask from the current intermediate image Sk. The mask is thus updated
after each level and reflects all transformation changes.

Figure 5.16 shows an example of spatial normalization of a lesioned PET
image. The masking procedure used the 95%-quantile for thresholding fol-
lowed by erosion and dilation with a spherical structuring element with ra-

2Such morphological operation is called “opening”.
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Figure 5.16: The figure shows three orthogonal slices of a PET image with
lesion. In the upper row there is the original PET image realigned to a
standard position using affine transformations. The middle row shows this
image after a non-linear normalization without lesion masking. The lesion
area is substantially diminished (see arrows) which is apparent mainly in
the coronal slice (middle column) where the lesion was almost closed. The
bottom row shows result of the same normalization where automatic masking
of lesion was used. The area of lesion is mostly preserved and only its position
and global shape was adapted during the normalization process.
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Figure 5.17: The figure shows a deformation grid resulting from spatial nor-
malization of a lesioned PET image with automatic lesion masking (right)
and without it (left). When masking of lesion is used the extent of defor-
mation in the lesion area does not deviate from the rest of the volume, in
contrast to unnaturally large deformations occurring when masking is not
used.

dius 3 voxels. In contrast to the normalized image and its deformation grid
showed in Figure 5.14, the lesion area in the resulting image in fig. 5.16 (c)
is largely preserved. The corresponding deformation grid in the lesion area
does not exhibit deformations distinctively larger than in other areas.

5.6 Discussion
We presented a novel method for non-linear registration of 3D images of
human brain. The method was designed for the types of images that lack a
distinctively diversified pattern, e.g. PET or SPET images. In such images
a reliable identification of landmarks, segmentation of fine structures or a
precise extraction of brain surface is not possible which prohibits application
of algorithms capable of generating high-frequency deformations.

The number of transformation parameters effectively used for modelling
of deformations by the HBM method is in the order of hundreds of thousands
to millions. It enables precise alignment of functional information in PET
images to a very local level. Using of more parameters would be necessary
for matching of fine cortical structures but the low resolution and lack of
diversified pattern in PET images do not allow such attempt. As mentioned
in the introduction to this chapter, it does not need to be always appropriate
to attempt registration beyond a certain resolution.

There exists a number of methods that are designed or at least applicable
for non-linear registration of functional medical images. None of the com-
monly used methods assures one-to-one mapping of images. HBM implicitly
guarantees one-to-one mapping and C2-continuous deformations which yields
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fluid image warping. It generates visually well registered images without un-
desirable ripples and foldovers.

The performance of the method was evaluated on a group of normal
FDG-PET and FMZ-PET images and on a group of high-resolution HRRT
FDG-PET images. High robustness was confirmed by a power test on a set
of 504 mostly pathologically impaired FDG-PET images and 38 FMZ-PET
images.

The method was designed with respect to the requirement to have a fast
method applicable for routine clinical applications. During optimization,
only very efficient affine transformations are used. Afterwards, smoothness
of deformation is supplied by B-spline warping. In this way it was possible to
make the method sufficiently fast to be applicable in many clinical applica-
tions, even though it works with a relatively large number of transformation
parameters. On a PC with 1 GHz processor a spatial normalization of a PET
image with dimensions 128 × 128 × 47 voxels takes about 4 minutes. The
computational time increases linearly with the number of voxels in registered
images. The total computational time can be divided into the time required
for optimization of blocks at all levels and the time needed for warping of in-
termediate images after each block. The optimization time increases linearly
with the number of levels whereas the time for warping increases quadrat-
ically. The quadratic behaviour is unwelcome but it does not hamper the
performance for the number of levels considered here. The registration could
however become more time-consuming if significantly larger images appear
at some time in the future, requiring more subdivision levels for a precise
local alignment. This would then require further optimization.

A difficulty arises when a non-linear registration method needs to be ap-
plied to images that contain lesions. With the intention to reduce differences
between a template and the lesioned image, a normalization algorithm tends
to deform the image so that the area of lesion is destroyed (“closed”). Up
to now, the problem has usually been solved by limiting the transformation
model to affine transformations that offer only a very limited precision or by
using a lesion mask that needs to be manually created. In this chapter, we
proposed an automatic method for masking of lesions and incorporated it
into the HBM method. It allows precise normalization of the image volume
and at the same time preserves the lesion area from being diminished.
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Chapter

6

Implementation

One of the goals of this work was creation of a robust registration tool that
could be used in clinical environment. Since the beginning the development
was tightly linked with a feedback from physicians who were using the soft-
ware for the purpose of research as well as for medical diagnoses.

The registration methods described in this thesis were implemented in
a commandline tool called Mmm which runs under Windows NT/2000/XP
and Linux. The software was written in C++ in a portable way. Input for
Mmm is an XML-based setup file that specifies input files and registration
parameters. It reads and writes images in Analyze97 and ECAT7 formats.

The software development was made largely in MS Visual Studio .NET
on a PC running Windows XP and partially using KDevelop and CBuilderX
on SuSE Linux 9.0. The tests in chapter 4 were performed in an automated
way with the help of Perl scripts. Evaluations of the tests were made in Perl,
Matlab, Origin and in Vinci.

6.1 Graphical user interface
Vinci, a graphical tool for medical image analysis in Windows NT/2000/XP,
has been developed at the Max-Planck Institute for Neurological Research in
Cologne (MPI) since several years (Vollmar et al., 2001). It is the standard
tool for medical image analysis in research and clinical applications in the
PET laboratory of MPI. Vinci was designed in a modular way and is easily
extensible by external plug-ins which communicate with the core engine via
XML commands. To facilitate the usage of Mmm, a graphical interface was
created as an external plugin for Vinci. This step was a major improvement
which significantly facilitated and accelerated the routine work in the PET
laboratory (Cizek et al., 2004). The user interface was implemented in a
way that allows easy operation without a need to understand the registra-
tion procedure and its parameters. On the other hand, many parameters
can be tuned by an experienced user. Registration progress is presented
on a fusion of images and updated every few seconds with the current best
transformation (Figure 6.1). In this way the user can immediately see if the
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Figure 6.1: Snapshot of a running registration in Vinci.

registration evolves in the right direction. In case of problems it is possible
to pre-align images manually per mouse before an automatic registration.
Tools are provided for visual inspection of registration results, image vol-
umes can be resliced and zoomed synchronously in an intuitive fashion with
an optional contour rendering. The registration tool has been successfully
used since more than one year in a number of clinical applications.

6.2 Multi-threading
The most time consuming part of the rigid body registration (MMM) as well
as the non-linear registration (HBM) is the many times repeated evaluation
of similarity measure during the iterative optimization. Each evaluation of
similarity measure involves transformation of all or a subset of the image
voxels. All three presented measures, SSD, CC and MI, are computed from
contributions of pairs of corresponding voxels in both images (chapter 3).
Computation of every such contribution is independent on the remaining
voxels which means that it is possible to distribute the computation to several
processors. Each processor computes contributions in different part of the
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image and at the end all contributions are merged.
Multi-threading has currently been implemented and tested for the MMM

method. The performance was tested on a SGI machine with four 700MHz
processors running SuSE Linux 8.1 and on a PC with two 3GHz processors
running Windows 2000. On the four-processor machine an acceleration fac-
tor of 3.7 was achieved for the optimization part of a registration of large
high-resolution HRRT PET and MR images and about 3.5 for a pair of com-
mon PET and MR images. On the two-processor computer the acceleration
factor was about 1.8 for high-resolution and about 1.7 for low resolution
images. The results demonstrate that the registration procedure is very suit-
able for parallelization. At the present time, when the large cost reduction of
multi-processor PCs made them affordable for many clinical facilities, multi-
processor registration is an attractive option for additional reduction of the
time spent on a registration. Registration on multi-processor systems be-
comes yet more needful for registration of the new high-resolution HRRT
PET images.
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Chapter

7

Conclusions

The aim of this thesis was to develop algorithms for a fast, robust and precise
alignment of 3D medical images of human brain. The focus was on multi-
modal registration of PET and MR images of a single patient and on non-
linear matching of inter-subject PET images.

7.1 Contributions
The most important contributions of this thesis can be found in chapters 4
and 5. Both chapters are concluded with a discussion of the presented solu-
tions. This section briefly summarizes the results.

7.1.1 Rigid-body registration
In chapter 4 we described a registration algorithm for a 3D registration of
multi-modal images of the same patient based on maximization of mutual
information. The general framework has been used and validated in many
medical applications. The increasing performance of modern computers has
already enabled routine usage of automated registration methods but there
is still a considerable demand after yet faster and robuster algorithms that
would facilitate and accelerate work in the tight time frame of clinical appli-
cations.

Masking of background and global displacement estimation

We proposed several modifications to the basic MMM algorithm that aimed
at increasing speed of registration and that tried to make the automatic
procedure more reliable.

Both input images are first efficiently segmented into background and
object voxels by an automatic thresholding procedure followed by a sequence
of morphological operations. Only the object voxels are then used for evalu-
ation of similarity measure which brings more than threefold acceleration on
the optimization part.

The segmentation step also provides an approximate information about
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the shape, position and orientation of the brain volume in each image. We
exploit this information by a modified principal axes algorithm that provides
a rough estimate of mutual position and orientation of the registered im-
ages in a geometrical way, without purely relying on the similarity function.
The estimated transformation is then passed on to the optimization method.
This approach is efficient and provides an estimate that is more likely in the
“capture range” of the optimization method.

These procedures were combined and implemented in a registration al-
gorithm called MMM-PA. Tests with simulated and clinical images demon-
strated that it is much more robust than the basic MMM method. It is,
however, less suitable when one of the images is partially cropped because
the registered brain shapes are then no longer similar. MMM-PA achieved an
acceleration of factor 2.5, resp. 3.1 for registration of real, resp. simulated
images and yielded a better accuracy than MMM for both real and simulated
images. The accuracy of a low-resolution MMM-PA registration was even
better than the accuracy of the full-resolution MMM. It means that for many
applications we can just use the low-resolution MMM-PA and profit from
a 6-7 times shorter computational time compared to the current standard
method, the full-resolution MMM.

Importance of a proper histogram size

We demonstrated that the number of bins used for computation of mutual
information is an important factor that influences robustness and accuracy
of registration. So far, very little attention has been paid to this parameter
which might be one of the reasons for some discrepancies in results presented
by different authors. Tests with simulated and clinical images proved that
both too large and too small number of bins significantly deteriorate accuracy
and diminish the capture range. The optimum histogram size depends on
the number of samples which means that multi-resolution approaches should
adapt the number of bins to the number of voxels at each scale level.

The question of a suitable histogram size belongs to yet unresolved issues
in statistics. We therefore selected the suitable histogram size according to
the results of our experiments.

Multi-threading

The most time consuming part of a rigid-body registration is the repeated
evaluation of similarity measure during iterative optimization. The com-
putation of similarity measure can be easily parallelized: a multi-threaded
implementation of MMM yielded an acceleration factor 3.7 for registration
of high-resolution PET and MR images on a four-processor SGI machine
running SuSE Linux 8.1.
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Clinical validation

The MMM tool has been in routine use in the PET Laboratory of the Max-
Planck-Institute for Neurological Research in Cologne for more than one year
and has been successfully applied in many clinical applications.

7.1.2 Non-linear registration

We developed a new algorithm HBM for non-linear registration 3D medical
images. The algorithm estimates a suitable deformation that matches brain
images of different individuals. It guarantees that the generated deformation
is injective which is a missing property in existing comparable algorithms
and it is one of the most important contributions of this method. It assures
that the topology of the deformed image remains unchanged and that there
is no folding-over which would erase intensity information. Injectivity thus
improves physiological consistency of deformed medical images.

Validation

The HBM method is particularly suitable for functional images, e.g. PET
images. We performed a number of tests to validate the method on various
types of data: simulated geometrical objects, normal FMZ-PET brain im-
ages, normal FDG-PET images, high-resolution HRRT FDG-PET images, a
set of 38 FMZ-PET images of diseased brains and a large database of 508
FDG-PET images, partially with significant distortions, reconstruction arte-
facts or lesions. The tests with the groups of normal images demonstrated
that in comparison to an affine-only registration, the proposed algorithm is
able to decrease the standard deviation of corresponding voxels across each
group by nearly 40% on average, in some areas even by 70%. The results
of the tests with diseased brain images are very promising. There was no
dataset for which the registration would fail or give a seriously inaccurate
result.

Masking of lesions

Non-linear registration of images becomes more problematic when one of
the registered images contains a large lesion. In such case the registration
algorithm tries to diminish the lesion in order to improve similarity of the
images. We presented a solution for an automatic masking of lesions during
non-linear registration which exploits brain symmetry. First results show
that in this way the lesion area can be preserved without hindering alignment
of neighbouring structures.
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7.1.3 User interface
The described registration methods have been implemented in an application
with a convenient graphical user interface. The MMM registration also pro-
vides a real-time on-screen visual presentation of registration progress. The
graphical implementation presents a powerful yet easy-to-use tool for both
clinical and research environments.

7.2 Future directions
Precise validation of registration quality with real data Accuracy of
the MMM-PA registration of clinical PET and MR images was evaluated only
indirectly, with no “gold standard” transformations available for comparison.
It would be interesting to evaluate the registration accuracy on a set of PET
and MR images acquired with fiducial markers fastened to patient’s head
during image acquisition in both PET and MR scanner. The markers would
allow a precise alignment that could serve as a gold standard against which
the automatic registration could be compared. Unfortunately, such procedure
is very time-consuming and demanding for both patients and physicians.

Complexity of the non-linear method The time complexity of the non-
linear method increases quadratically with increasing number of subdivision
levels. This is caused by the necessity to recompute intermediate source im-
age after every level using all by then computed deformation lattices. This
inefficiency could be avoided if it was possible to merge each computed lattice
with a refined lattice from previous level. Creation of refined lattice poses
no big difficulty. It is the considerable loss of precision resulting from inter-
polation of transformation vectors that hindered me in going this direction.
A possible solution could be in modifying the method in a way that would
make interpolation of transformation vectors unnecessary. This is a task for
future research.

Masking of lesions Automatic masking of lesions presented in section 5.5
is a promising technique that could improve information gained from lesioned
images. However, a precise quantification of its effects on simulated and real
lesions is necessary before it can be used routinely in clinical applications.

Computation of inverse deformation The injectivity property opens
many new possibilities for future development. It theoretically allows cre-
ation of an inverse transformation but there is still no clear way of generating
it. It could also be worth trying to develop a hybrid algorithm that would
simultaneously compute deformations in both directions, i.e. from source
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image to target and vice versa, and combine the results in order to achieve
more precise results.

Comparison with other registration packages It would be interesting
to compare the performance of proposed algorithms with other competitive
methods. This is feasible for the multi-modality registration (with the help of
fiducial markers) but it is very difficult for non-linear registration because an
optimum deformation that matches images of two different individuals is un-
known. In fact, an ultimate “optimal deformation” does not even exist since
its definition may substantially vary depending on the intended application.

One option is to make the algorithm generate a random deformation and
then to let it attempt to recover the initial shape. A more challenging test
would be trying to recover a deformation generated with a different model
than the B-spline deformation model.
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schluß des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen
dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Disser-
tation ist von Prof. Dr. R. Schrader und Prof. Dr. med. K. Herholz betreut
worden.





Lebenslauf

Persönliche Daten

Name Jǐŕı Č́ıžek
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Studium
1996-2001 Studium der Informatik an der Mathematisch-

Physikalischen Fakultät der Karls-Universität
in Prag

2002-2004 Promotionsstudium der Informatik an der
Mathematisch-Naturwissenschaftlichen Fakultät
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