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Chapter 1

Introduction

The class of transition metal compounds shows an enormous richness of physical
properties [1,2], such as metal-insulator transitions, colossal magneto-resistance,
super-conductivity, magneto-optics and spin-depend transport. The theoretical
description of these materials is still a challenge. Traditional methods using
the independent electron approximation most of the time fail on even the sim-
plest predictions. For example, many of the transition metal compounds, with
NiO as the classical example, should be a metal according to band-structure
calculations, but are in reality excellent insulators.

The single band Mott-Hubbard model [3, 4] explains very nicely why many
correlated materials are insulating. But even the Mott-Hubbard model has
some problems in describing the band-gap found for many of the transition
metal compounds [5]. With the recognition that transition metal compounds
can be of the charge-transfer type or the Mott-Hubbard type [6], depending on
the ratio of U and ∆, also the band-gap can be understood. Hereby U is defined
as the repulsive Coulomb energy of two electrons on the same transition metal
site and ∆ is defined as the energy it costs to bring an electron from an oxygen
site to a transition metal site.

The single band Mott-Hubbard model is, however, even when charge transfer
effects are included, inadequate in describing the full richness found in many of
the transition metal compounds [7–9]. It now becomes more and more clear that
in order to describe transition metal compounds the charge, orbital, spin and
lattice degrees of freedom should all be taken into account. Especially the orbital
degrees of freedom have not been considered to the full extend until recently. In
the manganates, for example, orbital and charge ordering of the Mn ions play
an important role for the colossal magneto-resistance of these materials [10–14].
An other example would be the metal-insulator transition in V2O3 [15–17]. The
orbital occupation of the V ion changes drastically at the phase transition [15].
This change in orbital occupation will change the local spin-spin correlations
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which in-turn will change the effective band-width. This indicates that not only
electron-electron Coulomb repulsion in a single band must be considered, but a
full multi-band theory including all interactions must be considered in order to
understand this prototypical Mott-Hubbard system.

1.1 How to measure orbital occupations

With the recognition that the local orbital occupation plays an important role
in many of the transition metal compounds there is a need for experimental
techniques that can measure the orbital occupation. This technique is soft
x-ray absorption spectroscopy. For transition metal atoms one measures the
local transition of a 2p core electron into the 3d valence shell. This type of
spectroscopy has only developed into maturity over the last 20 years, both in
terms of instrumentation as well as in terms of theoretical understanding of
these spectra [18–20]. The pioneering work of Fink, Thole, Sawatzky and Fug-
gle, who used electron energy loss spectroscopy on narrow band and impurity
systems has been very important for the development of soft x-ray absorption
spectroscopy. They recognized, that the observed multiplet structures can pro-
vide an extremely detailed information about the local electronic structure of
the ground and lower excited states of the system [21–23].

The 2p core-electron excitation into the 3d shell is dipole allowed. This has,
first of all the advantage that good intensities are found. The locally dipole
allowed transition has also the advantage of obeying the strict dipole selec-
tion rules. This means that the intensity found for a given final-state depends
strongly on the symmetry of the initial state. In most cases the dependence
on the initial state symmetry is so large that one does not need to have good
resolution in order to determine which of the possible states is realized as the
ground-state. Within chapter 2 we will show many examples taken from the lit-
erature of what can be measured with the use of x-ray absorption spectroscopy
and how these dipole selection rules are active.

1.2 Interpretation of x-ray absorption spectros-
copy

For the interpretation of 2p x-ray absorption spectra cluster calculations are
an essential tool. At the moment cluster calculations are still one of the best
methods to describe both near ground-state properties and spectra of transi-
tion metal compounds. This might seem surprising while cluster calculations
are not ab-inito and the translational symmetry of the solid is not taken into
account. There are two reasons why cluster calculations are so powerful. The
first reason is that within cluster calculations the initial state and the final state



1.2 Interpretation of x-ray absorption spectroscopy 3

are treated on an equal footing. This results in calculated spectra that can be
compared to experiments in great detail. This is in strong contrast to density
functional methods or Hartree-Fock methods which produce density of states
and not spectra. One should realize that a density of states is not a spectrum.
The second reason is that within cluster calculations the full electron-electron
repulsion Hamiltonian can be included. The importance of full multiplet theory
for the description of transition metal compounds will be stressed within the
next section.

Part of the breakthrough in the understanding of 2p x-ray absorption spec-
troscopy on transition metal compounds was realized with the creation of good
computation codes that can calculate the spectra of a cluster. Here the work
done by Theo Thole [18, 21] and Arata Tanaka [24] must be mentioned who
both wrote a program able to do cluster calculations and calculate the x-ray
absorption spectra with all its multiplet structure up to great detail.

Initial state PES final state XAS final state

dn

dn+1L

dn+2 2L

∆

∆+Udd

dn-1

dnL

dn+1 2L

dn+2 3L

∆-Udd

∆

∆+Udd

pdn+1

p Ldn+2

p Ldn+3 2

∆+U -Udd dp

∆+2Udd dp-U

2p-core level
PES final state

pdn

p Ldn+1

p Ldn+2 2

p Ldn+3 3

∆-Udp

∆+U -Udd dp

∆+2Udd dp-U

Figure 1.1: On-site energies of the bare configurations for the initial state and
different final states. ∆ is the energy it costs to hop with one electron from
the oxygen band to the transition metal d shell. U is the repulsive Coulomb
energy between two electrons in the 3d shell (Udd) or between a 3d electron and
a 2p core electron (Udp). L denotes the oxygen or ligand states and Ln stands
for n holes in the ligands. The holes in the p shell for the 2p-core level PES
final states and for the XAS final states are holes in the 2p-core level of the 3d
transition metal ions. Scheme taken from J. Zaanen, G. A. Sawatzky and J. W.
Allen [6].

The cluster calculations are done within the configuration interaction scheme,
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allowing for the inclusion of hybridization of the transition metal d orbitals with
the oxygen p orbitals [25–27], denoted as the ligand orbitals (L). The on-site
energies are parameterized with U and ∆ in the same way as done by J. Zaa-
nen, G. A. Sawatzky and J. W. Allen [6]. In figure 1.1 we show the energy level
diagram for the initial state and the final states of valence-band photo-electron
spectroscopy, 2p-core level photo-electron spectroscopy and 2p-core level x-ray
absorption spectroscopy. For the last two spectroscopies, the 2p-core levels are
core levels of the transition metal ions. For the initial state only the few lowest
states are important. For the final state in principle all different configurations
can be reached and are therefore important. The intensity of each final state
does depend on the dipolar matrix elements between the initial state wave func-
tion and the final state wave-function under consideration. In order to reproduce
the measured x-ray absorption spectra one has to have the correct final state
as well as the correct initial state within the cluster calculation. This means
that detailed information concerning the initial-state can be obtained once the
spectrum has been reproduced.

In figure 1.1 we only showed the on-site energies of the different configu-
rations. The configurations will be split into different states. First of all the
hybridization of different orbitals is not equal. For a transition metal in Oh

symmetry the eg orbitals hybridize more with the oxygen orbitals then the t2g

orbitals. States with more holes in the eg shell will therefore be more covalent
and have different energies than states where the eg orbitals are occupied. Sec-
ond there will be a splitting due to the crystal field. Within mean-field theory
this crystal field originates from the electric field made by the charges of the
atoms that surround the atom under consideration. For transition metal oxides
the oxygen atoms are charged negative and the electrons at the metal site do
want to point away from the oxygen atom. Within Oh symmetry this means
that the t2g orbitals are lowered with respect to the eg orbitals. Third there
will be a splitting between the different states within one configuration due to
the electron-electron repulsion. The importance of electron-electron repulsion
and the effect of screening for 3d elements will be discussed within the next
section. Forth there are the spin-orbit coupling and magnetic interactions that
split the different states within one configuration. Within a cluster calculation
these interactions can be included and for many systems have to be included in
order to reproduce the x-ray absorption spectra properly.

Besides cluster calculations there is an other way to deduce information from
x-ray absorption spectra. B. T. Thole, P. Carra et al. [28,29] have derived sum-
rules that relate the total integrated intensity of polarized spectra to expectation
values of some operators of the initial state. These sum-rules are very powerful
due to there simplicity of use.
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1.3 The importance of full multiplet theory

One might expect that within a solid the multiplet splitting due to electron-
electron repulsion is largely screened. For the monopole part of the electron-
electron repulsion this is indeed true. If one adds an extra charge to one atom
within the solid the charges of the surrounding atoms (or other shells of the
same atom) will change and thereby lower the total repulsion the added charge
feels. This type of screening is also found experimentally. We define Uav as
the local average repulsion between two electrons. Uav can be related to the
Slater Integrals, F 0, F 2 and F 4. The expression then becomes; Uav = F 0 −
14
441 (F 2 + F 4). This Uav is within a solid much smaller than the Hartree-Fock
value found for a free ion. Take Co2+ in CoO for example. The Hartree-Fock
value of Uav for the free ion is about 25 eV. The Uav experimentally found is
about 6.5 eV [24].

Surprisingly the multiplet splitting within a configuration in the solid is ex-
perimentally found not to be reduced from the free ion multiplet splitting. E.
Antonides, E. C. Janse and G. A. Sawatzky [30] did Auger spectroscopy on Cu,
Zn, Ga and Ge metal and found that the F 2 and F 4 Slater integrals, the param-
eters describing the multiplet splitting between states with the same number of
electrons are in reasonable agreement with Hartree-Fock calculations on a free
ion. This implies that only F 0 can be efficiently screened. These findings have
been confirmed on many transition metal compounds [20, 26, 27, 31–34]. This
absence of screening for the multiplet part of the electron-electron interaction
can be understood if one realizes that the multiplet splitting is due to the differ-
ent shape of the local electron cloud and\or due to different spin densities. Such
differences are very difficult to screen by charges located externally. Moreover,
there are also even states that have the same spin-resolved electron density ma-
trix, d†mσdm′σ′ , but very different electron-electron repulsion interaction. Take
a Ni2+ ion for example. The 3FML=±3,MS=0 state, which belongs to the 21 fold
degenerate ground-state, and the 1GML=±3,MS=0 state have the same electron
density matrix d†

mσdm′σ′ but an energy difference of 12
49F 2 + 10

441F 4. Within a
mean-field approximation it is not possible to screen this splitting since these
states have the same electron densities.

The full electron-electron interaction Hamiltonian is give by [31,35,36]:

He−e =
∑

〈mm′m′′m′′′σσ′〉
Umm′m′′m′′′σσ′ l†mσl′†m′σ′ l′′m′′σl′′′m′′′σ′ (1.1)
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with:

Umm′m′′m′′′σσ′ =δ(m + m′,m′′ + m′′′)
∞∑

k=0

〈lm|Ck
m−m′′ |l′′m′′〉〈l′′′m′′′|Ck

m′′′−m′ |l′m′〉Rk(ll′l′′l′′′)

Rk(ll′l′′l′′′) =e2

∫ ∞

0

∫ ∞

0

rk
<

rk+1
>

Rn
l (r1)Rn′

l′ (r2)Rn′′
l′′ (r1)Rn′′′

l′′′ (r2)r2
1r

2
2δr1δr2

(1.2)

With r< = Min(r1, r2) and r> = Max(r1, r2). This Hamiltonian describes a
scattering event of two electrons. These two electrons have before scattering the
quantum numbers m′′,m′′′, σ and σ′. After the scatter event they have the quan-
tum numbers m,m′, σ and σ′. The scatter intensity is given by Umm′m′′m′′′σσ′ .
The angular dependence can be solved analytically and is expressed in integrals
over spherical harmonics. The radial part can not be solved analytically and is
expressed in terms of Slater integrals over the radial wave equation; Rk(ll′l′′l′′′).
For two d electrons interacting with each other, the only important values of k
are k = 0, 2 or 4. For these k values the radial integrals are expressed as F 0, F 2

and F 4.
Many calculations done on solids containing transition metal ions do not

include the full electron-electron Hamiltonian, but make an approximation. The
simplest approximation that one can make is to describe the electron-electron
repulsion by two parameters U0 and JH , in which U0 is the repulsive Coulomb
energy between each pair of electrons and JH is the attractive Hund’s rule
exchange interaction between each pair of electrons with parallel spin. This
leads to the following Hamiltonian:

HSimple
e−e =U0

∑
〈mm′σσ′〉

l†mσl′†m′σ′ lmσl′m′σ′

−JH

∑
〈mm′σ〉

l†mσl′†m′σlmσl′m′σ

(1.3)

This Hamiltonian is built up entirely by number operators nmσ = l†mσlmσ, and
is therefore diagonal in the basis vectors that span the full electron-electron
Hamiltonian.

This extremely simple Hamiltonian leads for the Hund’s rule high-spin ground-
state to remarkably good results [38]. In table 1.1 we compare the total energy of
a dn configuration (n = 0...10) calculated using the full multiplet theory to that
calculated using the simple scheme. To facilitate the comparison, we have rewrit-
ten the Slater integrals, F 0, F 2 and F 4 in terms of U0 = F 0, JH = 1

14 (F 2 +F 4)
and C = 1

14 ( 9
7F 2 − 5

7F 4). We now see that the simple scheme is even exact
in half of the n cases and has an error of C for the other cases. Whereby the
Hartree-Fock value of C ranges from 0.5 eV for Ti2+ to 0.8 eV for Cu2+.
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Coulomb energy of Hund’s rule ground-state

Full Hamiltonian Simple Kanamori Kanamori
mean field

d0 0 0 0 0 0
d1 0 0 0 0 0
d2 F0- 8

49
F2- 9

441
F4 U0- JH -C U0- JH U’ - J U’ - J

d3 3F0- 15
49

F2- 72
441

F4 3U0- 3JH -C 3U0- 3JH 3U’ - 3J 3U’ - 3J

d4 6F0- 21
49

F2- 189
441

F4 6U0- 6JH 6U0- 6JH 6U’ - 6J 6U’ - 6J

d5 10F0- 35
49

F2- 315
441

F4 10U0-10JH 10U0-10JH 10U’ -10J 10U’ -10J

d6 15F0- 35
49

F2- 315
441

F4 15U0-10JH 15U0-10JH 14U’+ U-10J 14U’+ U-10J

d7 21F0- 43
49

F2- 324
441

F4 21U0-11JH -C 21U0-11JH 19U’+2U-11J 19U’+2U-11J

d8 28F0- 50
49

F2- 387
441

F4 28U0-13JH -C 28U0-13JH 25U’+3U-13J 25U’+3U-13J

d9 36F0- 56
49

F2- 504
441

F4 36U0-16JH 36U0-16JH 32U’+4U-16J 32U’+4U-16J

d10 45F0- 70
49

F2- 630
441

F4 45U0-20JH 45U0-20JH 40U’+5U-20J 40U’+5U-20J

Table 1.1: Energy of the Hund’s rule ground-state of a dn electron configura-
tion for different schemes. The relation between the Slater integrals F 0, F 2 and
F 4 and the parameters U0, JH , C, U ′, U , J , J ′ is: U0 = F 0, JH = 1

14 (F 2 +F 4),
C = 1

14 ( 9
7F 2 − 5

7F 4), U ′ = U − 2J , J ′ = J , U = F 0 + 4
49F 2 + 36

441F 4 and
J = 2.5

49 F 2 + 22.5
441 F 4 [37, 38]. The center of each multiplet for the full Hamilto-

nian is Eav(dn) = (F 0 − 14
441 (F 2 + F 4))n(n−1)

2 .

Effective Coulomb interaction Ueff for Hund’s rule ground-state

Full Hamiltonian Simple Kanamori Kanamori
mean field

d1 F0- 8
49

F2- 9
441

F4 U0- JH -C U0- JH U’- J U’- J

d2 F0+ 1
49

F2- 54
441

F4 U0- JH+C U0- JH U’- J U’- J

d3 F0+ 1
49

F2- 54
441

F4 U0- JH+C U0- JH U’- J U’- J

d4 F0- 8
49

F2- 9
441

F4 U0- JH -C U0- JH U’- J U’- J

d5 F0+ 14
49

F2+ 126
441

F4 U0+4JH U0+4JH U+4J U+4J

d6 F0- 8
49

F2- 9
441

F4 U0- JH -C U0- JH U’- J U’- J

d7 F0+ 1
49

F2- 54
441

F4 U0- JH+C U0- JH U’- J U’- J

d8 F0+ 1
49

F2- 54
441

F4 U0- JH+C U0- JH U’- J U’- J

d9 F0- 8
49

F2- 9
441

F4 U0- JH -C U0- JH U’- J U’- J

Table 1.2: The effective Hubbard U between lowest Hund’s rule ground-state
multiplets for different approximation schemes. The relation between the Slater
integrals F 0, F 2 and F 4 and the parameters U0, JH , C, U ′, U , J , J ′ is: U0 = F 0,
JH = 1

14 (F 2+F 4), C = 1
14 ( 9

7F 2− 5
7F 4), U ′ = U−2J , J ′ = J , U = F 0+ 4

49F 2+
36
441F 4 and J = 2.5

49 F 2 + 22.5
441 F 4 [37,38]. The average U for the full Hamiltonian

is: Uav = F 0 − 14
441 (F 2 + F 4).
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This remarkable accuracy is important for the study of the conductivity gap
in Mott-Hubbard insulators. The energy gap to move an electron from one site
to another site far away is given by U :

U(dn) = E(dn−1) + E(dn+1) − 2E(dn) (1.4)

If multiplet effects are important, then there will be many different manners to
move the electron. The gap is equal to the cheapest way to move one electron
from one site to another site far away and thus given by the U = Ueff., which
involves the lowest multiplet states and not by Uav, which refers to the the
multiplet average energies. In table 1.2 we have listed Ueff for the various dn

configurations (n = 1...9), having the high-spin Hund’s rule ground-state. We
can see here that the correspondence between the simple scheme and the full-
multiplet theory is very good. The deviation is not more than C ≈ 0.5...0.8
eV, which is quite acceptable since the accuracy in the determination of U0 by
experiment or calculation is of the same order.

The shortcomings of the simple scheme do, however, show up dramatically
when we have to consider the presence of states other than the Hund’s rule
ground-state. In figure 1.2 we show the energy level diagram for the dn config-
uration (n = 2...5), in spherical symmetry as an example. We can see that the
multiplet splitting within the simple scheme is very different from that within
the full multiplet theory. This first of all means that the simple scheme is com-
pletely useless for calculating high energy excitations, like soft-x-ray absorption
spectra. One truly needs the full multiplet theory to explain the many sharp
structures observed in experiments [20,26,27,30–34]. Not only for spectroscopy
the simple scheme is inadequate, also for calculating ground-state properties,
such as the magnetic susceptibility: the multiplicities are quite different. Within
the simplified scheme only the magnetic angular spin momentum Sz is a good
quantum number, whereas in the full electron-electron repulsion Hamiltonian
also the angular momenta of spin and orbital moment, S and L, are good quan-
tum numbers. In other words the simple scheme brakes symmetry. It is almost
needles to state that the simple scheme is by far to inaccurate to calculate,
the relative stability of, for instance, the different spin-states within a partic-
ular configuration. Figure 1.2 shows clearly that the energy levels in the two
schemes differ by many electron volts.

In order to improve on the simple scheme, but still simplify the full electron-
electron Hamiltonian we will have a look at the simplification as proposed by
J. Kanamori. He proposed a simplification that tries to preserve the multiplet
character of the electron-electron interaction as much as possible. The approxi-
mation he made is that the electron-electron scattering events can be expressed
in terms that only depend on wether the scattered electrons are in the same
band (orbital) or in different bands (orbitals). The Hamilton found by these
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Figure 1.2: Energy levels of a d2, d3, d4 and a d5 configuration in spheri-
cal symmetry, split due to electron-electron repulsion within the full electron-
electron repulsion Hamiltonian, a simplified scheme, as explained in the text,
the Kanamori scheme and the Kanamori scheme calculated in mean-field the-
ory. The values taken for the Slater integrals are F 0=5 eV, F 2=10 eV and
F 4=6.25 eV. On the left of each term we wrote the term name. On the right
of each term we show the multiplicity in brackets. The energies for the d6, d7

and d8 configurations can be found by the equivalence of electrons and holes.
In spherical symmetry the dn configuration has the same multiplet splitting as
the d10−n configuration, only shifted in total energy.
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approximations is [39]:

HKanamori
e−e =U

∑
m

l†m↑l
†
m↓lm↑lm↓

+U ′ ∑
m 6=m′

l†m↑l
′†
m′↓lm↑l′m′↓

+U ′ ∑
m>m′σ

l†mσl′†m′σlmσl′m′σ

+J
∑

m>m′σ

l†mσl′†m′σl′m′σlmσ

+J
∑

m 6=m′
l†m↑l

′†
m′↓l

′
m′↑lm↓

+J ′ ∑
m 6=m′

l†m↑l
†
m↓l

′
m′↑l

′
m′↓

(1.5)

U is the parameter that describes the direct repulsion between two elec-
trons in the same orbital; U =

∫ ∫
φ∗(r1)φ∗(r2) e2

|r1−r2| φ(r1)φ(r2)δr1δr2. U ′

describes the direct repulsion between two electrons in different orbitals; U ′ =∫ ∫
φ∗(r1)φ′∗(r2) e2

|r1−r2| φ(r1)φ′(r2)δr1δr2. It is assumed that this repulsion is
equal between all different orbitals, φ and φ′. One can easily understand that
this is not true. For example, the repulsion between the dxy and the dx2−y2

orbital is larger than between the dz2 and the dx2−y2 orbital. The value of U ′

taken when we compare the Kanamori scheme with the full multiplet calculation
is the average of the repulsion between all different orbitals [37]. The process
where two electrons are interchanged is described by the exchange integral;
J =

∫ ∫
φ∗(r1)φ′∗(r2) e2

|r1−r2| φ′(r1)φ(r2)δr1δr2. The process where two elec-
trons residing in the same orbital scatter on each other and are transferred from
one orbital into another is characterized by the integral; J ′ =

∫ ∫
φ∗(r1)φ∗(r2)

e2

|r1−r2| φ′(r1)φ′(r2)δr1δr2.
In table 1.1 and 1.2 we show the energy of the lowest Hund’s rule multiplet

and the effective U within the Kanamori scheme. Like in the case of the simple
scheme, one find that the Kanamori scheme gives very similar and sometimes
identical values as the full multiplet theory, as long as one limits oneself to the
high-spin Hund’s rule ground-state.

The energetics of the excited states and the multiplicities of the states as
calculated using the Kanamori scheme differ nevertheless still quite apprecia-
bly from the full multiplet theory. Although, the spread of the multiplets is
now much improved as compared to that coming from the simple scheme, the
Kanamori multiplet structure still will not be of use to explain the high energy
soft-x-ray absorption data, which usually contain many very detailed and sharp
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fine structures. Also, like in the case for the simple scheme, the Kanamori ap-
proximation will be quite unreliable when one wants to calculate the relative
energies of the different spin-states within a particular dn configuration.

Nevertheless, the Kanamori scheme is better than the simple scheme: (1)
The spread of the multiplet splitting is much better reproduced; (2) The mul-
tiplicity for the Hund’s rule ground-state is less wrong; within the Kanamori
scheme all states with maximum S are degenerate, while in the single scheme
it is only all states with maximum |Sz|; and (3) within the Kanamori scheme S
is a good quantum number, whereas in the simple scheme it is not.

Sofar we have discussed approximations made in the scattering amplitude
Umm′m′′m′′′σσ′σ′′σ′′′ . There are however, more fundamental approximations
made when calculating the electron-electron repulsion. Within the electron-
electron repulsion Hamiltonian Umm′m′′m′′′σσ′σ′′σ′′′ is multiplied by two creation
and two annihilation operators, l†mσl′†m′σ′ l′′m′′σl′′′m′′′σ′ . In order to calculate eigen-
values of a particular state one has to evaluate the integral 〈l†mσl′†m′σ′ l′′m′′σl′′′m′′′σ′〉.
If one uses a mean-field approximation, the Hartree-Fock approximation or den-
sity functional theory, this integral over four operators reduces to two integrals
over two operators, 〈l†mσl′′m′′σ〉〈l′†m′σ′ l′′′m′′′σ′〉. We will discuss the effect of this
mean field approximation within the Kanamori scheme, as it shows very instruc-
tive what happens.

Within mean-field theory the expectation values of the Kanamori Hamilto-
nian reduce to:

〈HKanamori
e−e 〉 =U

∑
m

〈l†m↑lm↑〉〈l†m↓lm↓〉

+U ′ ∑
m 6=m′

〈l†m↑lm↑〉〈l′†m′↓l
′
m′↓〉

+U ′ ∑
m>m′σ

〈l†mσlmσ〉〈l′†m′σl′m′σ〉

−J
∑

m>m′σ

〈l†mσlmσ〉〈l′†m′σl′m′σ〉

(1.6)

The two terms, J
∑

m 6=m′ l†m↑l
′†
m′↓l

′
m′↑lm↓ and J ′ ∑

m 6=m′ l†m↑l
†
m↓l

′
m′↑l

′
m′↓ drop

since they are only non-zero between two wave-functions that differ by two sin-
gle electron wave functions from each other. We now see that the Kanamori
Hamiltonian within mean-field theory only depends on number operators and
therefore that it is diagonal within the basis vectors that span the full electron-
electron Hamiltonian. Within mean-field theory there are remarkable similar-
ities between the Kanamori scheme and the simple approximation we started
with. The Kanamori Hamiltonian can in mean-field approximation be described
by three parameters, U , U ′ and J , in which U is the repulsive Coulomb energy
between two electrons in the same orbital, with opposite spin, U ′ is the repulsive
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Coulomb energy between two electrons in different orbitals and J is the attrac-
tive Hund’s exchange interaction between each pair of electrons with parallel
spin. The only difference with the simple scheme is that we introduced a U and
U ′ that accounts for a difference between repulsion when two electrons are in
the same orbital, or if they are in a different orbital.

In table 1.1 and 1.2 we show the energy of the lowest Hund’s rule multiplet
and the effective U in the mean-field approximation of the Kanamori scheme. It
should not be a surprise that these values are very similar to the full-multiplet
theory. In fact the values are identical to the values found for the Kanamori
scheme. So for the energy of the Hund’s rule ground-state it does not matter
if one calculates the Kanamori scheme in mean-field theory or not. The mul-
tiplicity of the ground-state and the energies of the excited state as calculated
within the Kanamori scheme within mean-field approximation differ consider-
ably from the Kanamori scheme as can be seen in figure 1.2. The spread of the
multiplets is, like in the simple scheme, much smaller than in the full multiplet
calculation. The multiplicity of the ground-state is incorrect and similar as in
the simple scheme, only Sz is a good quantum number and S is not.

The importance of the full electron-electron repulsion Hamiltonian should
not be underestimated. From high energy spectroscopy it has been shown that
the full electron-electron repulsion Hamiltonian has to be included to explain
the spectra. This is also true for ground-state properties. For example there
is a lively discussion about the spin-states of many of the cobaltates materials
synthesized. A meaningful comparison of different multiplet terms can only be
done if the electron-electron repulsion is correctly included. The differences of
total energies between different spin states are often small and the differences
between the full electron-electron repulsion Hamiltonian and the approximations
shown here are quite large. Another example is CoO. There one finds an ordered
orbital momentum that is quite large and experiment hints that it even might
be larger than 1µB [40]. For a d7 system with one hole in the t2g orbitals this is
not so easy to understand as the maximum orbital momentum of a t2g orbital is
1µB . The only way to understand this large orbital momentum is by inclusion of
the correct full electron-electron repulsion Hamiltonian. A detailed explanation
of this effect can be found in chapter 6.

Finally, we would like to remind the reader again that there are different
definitions of U and J around. The U as defined in the simple scheme is equal
to F 0, the J to 1

14 (F 2 + F 4). The U in the Kanamori scheme is equal to
F 0+ 4

49F 2+ 36
441F 4 and the J to 2.5

49 F 2+ 22.5
441 F 4. Within full multiplet theory Uav

is equal to F 0 + 14
441 (F 2 +F 4). The effective Ueff. depends on the configuration

one looks at. Within this thesis when we talk about U we mean the U defined
within the full multiplet theory with respect to the multiplet average.
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1.4 Scope

This thesis can be divided into three parts. Within the first part, ranging from
chapter 2 to 4 we will discuss some properties of x-ray absorption spectroscopy
and show how these spectra can be interpreted with the use of cluster calcula-
tions and sum-rules. The second part, ranging from chapter 5 to chapter 7 will
be about applications in thin-film research. In these chapters we will have a
closer look on strain induced low symmetry crystal fields and orbital and spin
magnetic moments. The third part, ranging from chapter 8 to 10, will deal with
spin and orbital degrees of freedom in bulk transition metal compounds.

In chapter 2 an overview from literature is given of the different material
properties, or operator values, one can measure with the use of x-ray absorption
spectroscopy. With the use of cluster calculations and dipole selection rules it
is shown why x-ray absorption spectroscopy is extremely sensitive to many of
the initial state operator values we are interested in.

In chapter 3 some concepts of cluster calculations are given. This overview
is by no means complete, as already many very good textbooks exist on this
topic. We do not concentrate on simplifications one can make in diagonalizing
the Hamiltonian, but assume this is done with the use of a PC and brute force.

In chapter 4 we discuss the sum-rules present in x-ray absorption spec-
troscopy as derived by Thole and Carra et al. [28, 29]. These sum-rules have
become very important in the interpretation of x-ray absorption spectroscopy
due to their simplicity of use. In chapter 4 we will spent some time on how
these sum-rules can be derived based on second quantization on the same line
of thought as proposed by M. Altarelli [41].

In chapter 5 we present linear dichroism in the Ni L2,3 x-ray absorption spec-
tra of a monolayer NiO(001) on Ag(001) capped with MgO (001). The dichroic
signal appears to be very similar to the magnetic linear dichroism observed for
thicker antiferromagnetic NiO films. A detailed experimental and theoretical
analysis reveals, however, that the dichroism is caused by crystal field effects.
We present a practical experimental method for identifying the independent
magnetic and crystal field contributions to the linear dichroic signal in spectra
of NiO films with arbitrary thickness and lattice strain.

In chapter 6 we first used XAS to study the properties of CoO bulk, as well
as thin films. We confirm that the Co ion in CoO has a free orbital momentum
in cubic symmetry. We confirm that spin-orbit coupling is very important for
understanding the properties of CoO and show that it is not reduced from the
Hartree-Fock value for a free Co2+ ion. With the use of cluster calculations we
can get a full consistent understanding of the XAS spectra and the polarization
dependence of CoO. For CoO thin films we used XAS to show that we can
control the orbital momentum and spin direction with the application of strain
to thin CoO films. This finding opens up great opportunities for the use of
exchange-bias, where people put an antiferromagnet adjoined to a ferromagnet
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in order to shift the magnetization hysteresis loop in one of the magnetic field
directions [42, 43]. With the application of strain in the antiferromagnet one
can chose if the system will be exchange-biased in the plane of the thin film,
or perpendicular to the thin film surface. It also has great implications for
the understanding of the exchange-bias phenomenon so far. The exchange-bias
effect takes place at the interface between the ferromagnet and antiferromagnet
[44, 45]. At the interface there will be strain in the antiferromagnet and one
can not assume that the antiferromagnet has the same spin structure at the
interface as it has in the bulk.

In chapter 7 we show how one can orientate spins in antiferromagnetic thin
films with low magnetocrystalline anisotropy (d3, d5 and d8 systems in Oh sym-
metry) via the exchange coupling to adjacent antiferromagnetic films with high
magnetocrystalline anisotropy (d6 and d7 systems in nearly Oh symmetry). We
have grown MnO thin films on CoO thin films with different predetermined
spin orientation. With the use of Mn L2,3 soft x-ray absorption spectroscopy
we show that the Mn spin ’follows’ the Co spin direction.

In chapter 8 we study the spin-state problem within the cobaltates. Normally
one is used to discuss the spin direction, or the magnetic spin angular momen-
tum, Sz. Within the cobaltates, d6 compounds, there is however a discussion
about the size of the spin, or the spin angular momentum, S2 = S(S + 1). S2

can be 0, 2, or 6 (S=0,1,2), referred to as a low-spin state, an intermediate-spin
state and a high-spin state. Within the literature there is a lot of confusion
about the spin state as deduced from magnetic, neutron and x-ray diffraction
measurements in the newly synthesized layered cobalt perovskits [46–70]. These
measurements determine the size of the spin angular momentum (S2) from the
maximum size of the magnetic spin momentum Sz. XAS is directly sensitive
to the expectation value of S2, the spin angular momentum. We carried out a
test experiment using a relatively simple model compound, namely Sr2CoO3Cl,
in which there are no spin state transitions present and in which there is only
one kind of Co3+ ion coordination [63, 64]. Important is that this coordina-
tion is identical to the pyramidal CoO5 present in the heavily debated layered
perovskites [46–62]. Using a spectroscopic tool, that is soft x-ray absorption
spectroscopy (XAS), we demonstrate that pyramidal Co3+ ions are not in the
often claimed intermediate-spin state but unambiguously in a high-spin state.
This outcome suggests that the spin states and their temperature dependence in
layered cobalt perovskites may be rather different in nature from those proposed
in the recent literature.

In chapter 9 we study LaTiO3. There has been a strong debate about the
role of orbital degrees of freedom within the titanates and in LaTiO3 especially
[13, 71–79]. With the use of spin resolved circular polarized photo electron
spectroscopy we confirmed that the orbital momentum in LaTiO3 is indeed
quenched [74]. With the use of XAS we show that this is due to a relative
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large crystal field in the order of 120 to 300 meV. For a realistic description
of materials one should not forget that there is a strong coupling between the
orbitals and the lattice.

In chapter 10 we look at the metal-insulator transition in VO2. With the
use of XAS we show that the metal-insulator transition within this material is
accompanied by a change in orbital occupation. The orbital occupation changes
from almost isotropic in the metallic phase to the almost completely σ-polarized
in the insulating phase, in close agreement with the two-site cluster model [80].
This very strong orbital polarization leads in fact to a change of the electronic
structure of VO2 from a 3-dimensional to effectively a 1-dimensional system [81].
The V ions in the chain along the c-axis are then very susceptible to a Peierls
transition. In this respect, the MIT in VO2 can indeed be regarded as a Peierls
transition [82]. However, to achieve the required dramatic change of the orbital
occupation one also need the condition that strong electron correlations bring
this narrow band system close to the Mott regime [83]. The MIT in VO2 may
therefore be labelled as a ”collaborative” Mott-Peierls transition.
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Chapter 2

X-ray absorption
spectroscopy

X-ray absorption spectroscopy (XAS) is based on core-level absorption. This
means that one makes excitations with light of high energy with respect to the
chemical binding energies of the system. These excitations are dipole allowed
and therefore do have good absorption cross sections. For 2p elements like C,N
and O one can make a 1s to 2p excitation, found in the 300 - 700 eV range. For
the 3d transition metals one can make a 2p to 3d excitation found in the 350 to
950 eV energy range. The 4d transition metals have their 2p to 4d excitations at
an energy from 2000 to 3500 eV. For the rare earth Lanthanides one can make
a 3d to 4f excitation found in the 800 to 1700 eV energy range. These are the
most useful excitations, but more excitations are possible. For the 3d elements
one could make excitations into the 4p shell, from 1s, but these excitations do
not probe directly the valence shell and are therefore less informative. In this
thesis we will concentrate on the 3d transition metals and excitations from the
2p to 3d shell therein. Historically this absorption edge is called the L edge.

The light source used to create light within this energy range is synchrotron
radiation. Synchrotron radiation of modern synchrotrons is bright enough to
do most XAS experiments wanted. Important is, however, to be able to scan
through the energy range of the spectrum in a fast and reproducible way. Mod-
ern beam-lines become more and more stable and have a very good accuracy
and reproducibility, necessary in many of the dichroic experiments done in this
thesis. Stability really becomes a big issue when one wants to compare spectra
taken at different temperatures. The spectra in this thesis have been taken at
the banding magnet Dragon beam-line at the NSRRC of Taiwan and the un-
dulator Dragon beam-line ID08 at the ESRF in Grenoble. Although banding
magnet beam-lines are less brilliant than undulator beam-lines, they are still a
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good choice for absorption spectroscopy. This while not the brilliancy of the
light source is the bottle neck in many experiments, but stability, scanning speed
and reproducibility is more important. The absorption measurements at ID08
have been done with a fixed gap of the undulator.

LaTiO3 VO Cr O2 3 MnO FeO CoO NiO CuO
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Figure 2.1: 2p-Core level spectroscopy of different transition metal compounds.
Each element has its absorption edge at a different energy.

In figure 2.1 we show the XAS spectra for some selected 3d transition metal
oxides. The first thing one should notice is that each element has its absorption
edge at a different energy. The reason for that is actually very simple. The
more protons in the nucleus the more the core electrons are bound to the ion
and the more energy it will cost to bring a core electron into the valence shell.
The fact that each element has its own energy for the core level absorption edge
makes XAS very powerful. By selecting the energy of a specific element one will
get information about the properties of only that element in the material. This
allows one to do element specific measurements.

There are some features that all 2p core level XAS spectra have in common.
In figure 2.2 we show the 2p-XAS spectra of NiO. One can clearly see two sets
of peaks, one around 850 eV, the other around 867 eV. The spectrum is split in
two parts due to the 2p-core level spin-orbit coupling. This energy is not small,
because the 2p electrons are close to the core and therefore should be treated
relativistically. Historical the two different peak structures are called the L2

edge and the L3 edge. In figure 2.1 one can see that the splitting between the
L3 and the L2 edge is larger for the late transition metal compounds than for the
early transition metal compounds. The late transition metal atoms have more
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Figure 2.2: A general example of
2p-XAS. One can clearly see the
general features present. The L2

and the L3 edges and the corre-
sponding continuum edge-jumps
about 15 eV higher.
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charge at the nucleus and therefore a tighter bound 2p shell, which enlarges the
2p spin-orbit coupling constant. In figure 2.2 one can also see that the intensity
above 885 eV is larger than the intensity below 845 eV. This is called the edge-
jump. The increase in overall spectral intensity, often called the background,
takes largely place in two distinct small energy areas. In accordance to G.
van der Laan et al. [84], these have been labelled as the continuum edge-jump
belonging to the L2 and the L3 edge. We will show below that the L2 and the
L3 edges are excitons. The 2p-core hole is bound to the additional 3d electron
whereas the continuum-edge jump is due to non-bonding final states.

2.1 One-electron theory

In order to understand why these features are present we start by describing
what one should expect if no electron-electron correlations were present. With-
out correlations materials and there spectra can very well be explained in an
one-electron picture. In figure 2.3 we show, on the left side a density of states
(DOS) for an arbitrary insulator, with a 3d valence shell. Below the fermi en-
ergy the levels are occupied and above the fermi energy they are empty. We
also show the 2p core level at deep energies. Other core levels, the 1s, 2s, 3s,
and 3p are omitted for clarity. The 2p core level is a delta function, since there
is no overlap between core levels of neighboring atoms, resulting in a flat band
and a delta function as DOS. It is important to notice that we drew two delta
functions for the 2p core level. This is done on purpose while the 2p core level
is split by spin-orbit coupling. Since we are talking about a core level the spin-
orbit coupling constant is not small, but it varies from 1.88 eV for K to 15.7 eV
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WARNING: one electron picture does no work for correlated systems!
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Figure 2.3: Interpretation of spectra within a one-electron theory. The shape
of the spectra represents the band-structure.

for Zn. The 2p shell has an orbital momentum of 1 and spin of 1
2 . This results

for a 2p electron in a total angular momentum j = 1
2 or j = 3

2 . There are 2
times as much 2p orbitals with j = 3

2 than orbitals with j = 1
2 . Therefore we

drew one delta function twice as high as the other one. Excitations made from
the 2p orbital with j = 1

2 to the 3d valence band are called the L2 edge and
excitations made from the 2p orbital with j = 3

2 the L3 edge.
In the middle left panel of figure 2.3 we drew the photo emission spectra

(PES) and inverse photo emission spectra (IPES). Within a single electron the-
ory these types of spectroscopy measure the occupied and unoccupied DOS
respectively. For optical spectroscopy one makes excitations from the occupied
DOS to the unoccupied DOS. This means the spectra measured is a convolu-
tion of both, the occupied and the unoccupied DOS. There is a minimum energy
required to make an excitation at all, the optical gap. This is the distance be-
tween the highest occupied state to the lowest unoccupied state. In the right
panel of figure 2.3 we show the XAS spectra expected in a single electron theory.
The principle of x-ray spectroscopy is similar to optical spectroscopy, we make
an excitation from the occupied core DOS to the unoccupied DOS. Again the
spectrum found is a convolution of the core DOS with the unoccupied valence
DOS. But in this case the 2p core DOS consists of 2 delta peaks. Therefore the
2p XAS consists of 2 times the unoccupied DOS shifted in energy by 3

2 times the
2p core level spin orbit constant. Thereby one should notice that, since there
are 2 times as much 2p core orbitals with j = 3

2 than with j = 1
2 , there is a

difference in intensity of a factor of two between the L2 and L3 edge.
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Figure 2.4: LDA electron den-
sity of the 2p core-hole 3d electron
2p-XAS final-state exciton in CaO.
Shown is the difference charge den-
sity of CaO with a core hole on the
center Ca atom and one extra va-
lence electron, and the charge den-
sity of normal CaO. On the corners
and the middle of the sides Ca atoms
are placed. On 1

4 and 3
4 of each side

O atoms are placed. The rest of
the square is filled in a checkerboard
manner.
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2.2 Excitons

Within one-electron theory the L2 edge is equal in line-shape to the L3 edge and
both edges are equal to the IPES spectra. If we look back at the spectra of NiO
in figure 5, or further to any spectrum in this thesis, we see that the L2 edge
is generally quite different from the L3 edge. This indicates that something is
wrong with our one-electron explanation. We neglected the interaction between
electrons and especially the interaction between the 2p core hole created and the
electrons that are in the valence band, including the electron that is added to the
valence band due to our spectroscopic process. These interactions are not small
and should be taken serious. It is true that within a solid part of the electron-
electron interactions are screened. The monopole part of the electron-electron
interaction (U or F 0) is within a solid reduced from the atomic value, however
still important for the understanding of many transition metal compounds [1–6].
The multipole part of the electron-electron repulsion (F 2 and F 4, for d − d
interactions) is however not screened as shown, for example, by E. Antonides
et al. [30]. For 2p-XAS also the monopole part of the 2p-3d electron-electron
interaction is very important [85].

It is well know that optical transitions can form excitons and exactly that
is what happens in 2p-XAS. In order to get a feeling of how tight the electron
that is added to the valence band is bound to the hole it leaves behind we
did a LDA calculation on CaO. CaO is a simple cubic rock-salt with a 4s03d0

configuration at the Ca site. CaO is a band-insulator that should be reproduced
quite nicely in LDA. In figure 2.4 we plotted the final state charge-density minus
the initial state charge density of CaO. The initial state charge density is the
normal charge density of CaO, but now not calculated for a single unit cell, but
for a cubic supper-cell consisting of 32 Ca atoms and 32 O atoms. The final
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state charge density has a 2p core hole on one of the Ca sites and an extra
electron in the valence band. The charge density shown in figure 2.4 includes all
occupied bands, including the semi core states, but excluding the core states.
The Ca-1s, 2s and 2p are treated as core-states. For the O atoms only the
1s states are treated as core states. The result is that the integral over the
difference charge density, as plotted, is equal to one. The size of figure 2.4 is 4
times the Ca-O distance on each side. The atom on which the 2p core hole has
been made can be found exactly in the middle. Above, below and on the left
and right of the excited Ca atom are O atoms. Around that are eight Ca atoms.
This checkerboard like pattern of Ca and O atoms continues, until the edge
of the figure. The calculations have been done with the use of WIEN2k [86].
The colors are such that the large grey area means that the charge density for
the final-state exciton is equal to the initial state. Lighter areas mean that the
final state has more charge, dark areas mean less charge. One should note that
the completely black areas are there because lines separating different charge
densities got to close to each other to resolve, this does not mean that there is
much less charge in these areas.
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Figure 2.5: 2p-XAS of CaO.
The spectra can be reproduced
within a Ca single atom calculation,
including cubic crystal fields, a
direct consequence of the localized
final-state of 2p-XAS. The spectra
and calculation are copied from F.
J. Himpsel et al. [87].

In figure 2.4 we see that the entire electron added to the valence shell is
gathered around the atom with the core hole. Close to the core there is a large
increase of charge. The semi-core shells contract due to the missing 2p electron.
Then there is a small area where there is a small depletion of charge, followed
by a wider ’corona’ of extra charge. All of this happens however within the
neighborhood of the Ca atom on which the core hole is made. If we look at the
total change of charge around each atom we find that within our super-cell all
atoms stay neutral, except for the O atoms close to the exciton. These atoms
lose about 0.02 electrons each. The Ca atom on which the core hole is made
loses a 2p electron and gains almost one (about 0.85, depending on the muffin-
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tin sphere radius) electron within the muffin tin sphere. The additional charge
is located in the inter-muffin-tin sphere area, close to the Ca atom with a 2p
core hole. The 2p core hole completely binds the additional valence electron
plus the electrons lost on the neighbor O atoms within a radius of about 1.5 Å.
Additional there are some multipole induced changes around the exciton. The
O atoms close to the exciton have less charge in the p orbital pointing to the
exciton and more charge in the orbitals perpendicular to the direction to the
exciton. The multipole changes on the next atom, a Ca atom, are very small.

We see that the final state of 2p-XAS is a tightly bound exciton, that can be
largely understood when considered only one atom. However the O atoms that
are close to the exciton do react and for a full description should not be forgotten.
Within a TMO6 cluster however the entire exciton can be understood. Good
news, since this is exactly the cluster that we can calculate without running into
calculations that become to big for a PC.

In figure 2.5 we show the 2p XAS of CaO as measured and calculated by F.
J. Himpsel et al. [87]. The top line is the experimental spectra, the bottom a
theoretical calculation done for a single atom in cubic symmetry. We see that
the spectra is excellent reproduced. A direct consequence of the closely bound
exciton representing the final state of 2p-XAS.

Figure 2.6: Cu 2p core level photo
emission. The spectra are copied
from. J. Ghijsen et al. [88].
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The 2p-XAS spectra are excitonic due to the large 2p-3d electron-electron
interaction. That this interaction is really present for real materials can be nicely
seen in 2p core level x-ray photo emission (XPS). In one-electron theory 2p-XPS
is quite boring to look at. Core levels are atomic like, have no k dependence and
have a delta peak as DOS. In one-electron theory 2p-XPS should be two delta
peaks with an intensity ratio of 2 to 1 due to the 2p spin-orbit coupling. If there
is however an interaction between 2p core levels and the 3d valence shell one
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would expect more peaks in the 2p-XPS. J. Ghijsen et al. measured 2p-XAS on
CuO and found four peaks. They explained these four peaks quite naturally in
a many-electron picture. One should realize that Cu2+ has 9 electrons in the d
shell. Therefore it is possible to remove a 2p electron and do nothing, this will
change the Cu configuration from 3d9 to 2p53d9. The second option is to remove
a 2p core electron and move one electron from the oxygen to the Cu atom. If we
denote the oxygen band by L we could write the electron configuration in this
case as 2p53d10L. Where L means a hole in the oxygen band. The 2p53d10L
configuration should be one peak, whereas for the 2p53d9 configuration we would
expect multiplet effects.

Ghijsen et al. [88] measured the 2p-XPS of CuO and found two peaks per
edge, one with multiplet splitting and one without multiplet splitting. In figure
2.6 we show their measurements on CuO. The peak with the lowest energy
does not show multiplet effects and originates from the 2p53d10L configuration.
The structured peak about 7 eV higher in energy is the multiplet of the 2p53d9

configuration. This shows that the 2p hole 3d electron attraction is so large that
it is energetically more favorable to make a hole in the oxygen band and put
this electron close to the created 2p core hole than to leave the Cu atom with
an extra positive charge. Below the measured spectra we also show a cluster
calculation, that describes the spectra quite well. From cluster fits to the 2p
XPS spectra as well as to valence band PES spectra Ghijsen et al. [88] deduce
that there is an effective attractive potential of about 8.8 eV between a 2p core
hole and 3d valence electron in CuO. This hole-electron attraction between 2p
core holes and 3d electrons is also responsible for making 2p x-ray absorption
spectroscopy excitonic like.

Ψinitial Ψfinal

hν

Figure 2.7: A spectroscopic proses brings the system from the initial state, in
which properties we are interested, to a final state.

Excitons are very well known in optical spectroscopy [89,90] and often hard
to understand. If correlations are important the one-electron picture brakes
down and one can not talk about bands anymore. An exciton can only be
understood as a many-electron wave function. That brings us to figure 2.7.
Here we show in a cartoon how to look at 2p XAS. There is a many-electron
initial state wave function, describing all electrons in the system. This is the
ground-state wave function. By shining light on the sample this initial state
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wave function is transformed into a final state wave function. Here we should
warn the reader. In this context the initial state wave function describes the
valence band. All core shells in the initial state wave function are filled and 2p
core level spin orbit coupling is not important for the initial state wave function,
as the 2p core shell is fully filled. For the final state wave functions we have
excitons. They have nothing to do with the bands calculated for the material
and 2p spin orbit coupling for the final state wave function is important, since
here we do have a hole in the 2p core shell.

In optical spectroscopy calculating the excitons is far from easy as many
more, free electron like states are present at equal energies. For 2p XAS the
excitonic binding energy is very large. Actually almost all intensity is in the
excitonic excitation and only a small part of the intensity is due to excitations
where the 2p core hole and the additional 3d electron are not bound. The non-
excitonic part of the spectrum shows up as continuum jump at 8.0-15.0 eV above
the white line of the spectrum. Excitons alone can be understood quite well,
since an exciton lives largely on a single atom, so atomic multiplet theory will
explain the spectra quite well. For the less tight bound excitons it is important
to consider a small cluster calculation of one TM with the neighboring O atoms.
Exactly that is what we have used to understand 2p core level spectroscopy.
A small cluster with full inclusion of all electron-electron interaction, leading
to many multiplets. It should be noted that in order to calculate a spectrum
correctly the final state as well as the initial state have to be calculated correctly.
Therefore these high-energy spectra still contain a lot of information about the
initial state, or ground-state wave function.

Atomic multiplet theory has been known very long and for atoms imbedded
in a crystal the crystal field theory was developed about 60 years ago and many
textbooks have been written on one single atom in a crystal field [31,35]. In the
last 15 years computer codes have been developed [18, 20, 24, 36] to do crystal
field calculations. With the modern desktop computers these calculations can
be run on any pc available, thereby opening up the very detailed interpretation
of XAS spectra as we have today. That a single atom calculation embedded in
an electric field mimicking the rest of the crystal (crystal field theory) already
works quite remarkable in describing 2p XAS spectra has been shown by fits to
measured spectra on very many different samples [18, 20]. In this thesis we do
more than single atom calculations, since charge transfer from the O atoms to
the TM atoms is often important in understanding the physics of oxides. Our
calculations are done on a small cluster. Typical clusters taken into account are
TMO6 clusters. This theory is about as old as the crystal field theory and the
program of Thole [18,20,36] as well as the program of Tanaka [24] can do these
cluster calculations on any desktop pc within reasonable time. In this thesis
Tanaka’s program XTLS8.0 has been used.

In short 2p XAS can be very well calculated while there is a core hole at very



26 X-ray absorption spectroscopy

high energies (350-950 eV) resulting in a flat band. This core hole is bound very
strong with the 3d valence electrons due to the large 2p core hole - 3d electron
attraction. Thereby creating strongly bound excitons. This results in atomic
like physics which is very well known.

2.3 Multiplets and selection rules

Now lets have a closer look at the exciton itself. The exciton is the final state
of 2p XAS. The final state has a 2p53dn+1 configuration. The 2p core hole can
be in six different orbitals which are split in a group of four orbitals with j = 3

2
and a group of two orbitals with j = 1

2 due to the 2p spin orbit coupling. So for
n = 9, a 2p53d10 configuration there are 6 final states split in two groups. For
n = 8 however one has to consider the hole in the 3d shell. This hole can be in
10 different orbitals and therefore there are 60 different final states. Electron
electron repulsion between a 3dz2 orbital and a 2pz orbital is larger than between
a 3dx2−y2 and a 2pz orbital, which can be understood by looking at the electron-
electron density overlap of these two orbitals. This effect is known as a multiplet
effect and causes the sixty final states present in a 2p53d9 configuration to be
spread out over an energy range. For n = 7, a 2p53d8 configuration there are
6×10×9

2 = 270 states. 6 for the p hole, 10 for the first d hole, 9 for the second
and divided by 2 since electrons are equivalent and it does not matter if the
first hole in the d shell was made on orbital a and the second on orbital b or
the first hole was made on orbital b and the second on orbital a.
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Figure 2.8: Multiplets of the
2p53dn+1 final states of 2p-XAS.

In figure 2.8 we show the atomic multiplet calculations for n = 9 to n = 6.
Each configuration has its own amount of final states and its own multiplet.
Naturally if one changes from one element to an other some parameters change.
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The Slater integrals, determining the size of the electron electron repulsion differ
from element to element and the crystal fields present are different from material
to material, but the general structure of a multiplet is strongly dependent on
the configuration one has.
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Figure 2.9: Experimental spectra of FeO and Sr2CoO3Cl on the left side and
CaO and SrTiO3 on the right side. FeO and Sr2CoO3Cl are d6 systems and
have the same 2p53d7 final state configuration, CaO and SrTiO3 are d0 systems
and have the same 2p53d1 final state configuration. The configuration (valence)
is very important for the line-shape of the spectra. The FeO spectrum has been
copied from J.-H. Park et al. [91]. The CaO spectrum has been copied from F.
J. Himpsel et al. [87].

In figure 2.9 we compare the 2p Fe XAS of FeO taken from J.-H. Park et
al. [91] with the 2p Co XAS of Sr2CoO3Cl as well as the spectra of CaO taken
from from F. J. Himpsel et al. [87] with the spectra of SrTiO3. Fe in FeO is 2+
and has therefore a d6 configuration. Co in Sr2CoO3Cl is 3+ and has also a d6

configuration. Ca in CaO is 2+ and has a d0 configuration and Ti in SrTiO3

is 3+ and has also a d0 configuration. As one can see are the spectra of FeO
and Sr2CoO3Cl alike. The same is true for the spectra of CaO and SrTiO3.
Naturally there are differences. For lighter transition elements the 2p core level
spin orbit coupling constant is smaller. So to make a good comparison we added
some space in the FeO spectra between the L2 and the L3 edge. Thereby the
crystal fields present are not equal, resulting in slightly different positions of the
peaks and differences in intensities of some peaks.

If we now compare the spectra in figure 2.9 with the multiplets calculated
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in figure 2.8 we see that there are far more multiplets present than peaks in
the spectra. For a d6 compound we see that there are almost everywhere final
states multiplets in the energy region of the spectra, but we do see very distinct
peaks with clear structure. This can be explained very nicely with the use of
dipole selection rules.

The intensity of a 2p XAS spectrum is proportional to the square of 〈Ψi|O|Ψf 〉.
Here Ψi stands for the initial state wave function, Ψf for one of the many final
state wave functions and O can be approximated as a dipole operator. We know
that Ψi|O|Ψf has to be even, otherwise the integral 〈Ψi|O|Ψf 〉 will be zero. O,
the dipole operator is odd and we further know that p and f orbitals are odd
and s and p orbitals are even. Using these symmetries we find the following
selection rules for excitations to be allowed.

∆l = ±1 (2.1)
∆j = 0,±1

∆ml = 0,±1
∆ms = 0

∆L = 0,±1
∆S = 0

∆J = 0,±1

Lets make it more clear on a simple example. We start with studying the
spectra of a d9 compound, Ni metal for example, since for Ni metal there exist
a very instructive measurement by P. Gambardella et al. [92], illustrating the
effects of selection rules. The final state of 2p XAS on a d9 compound has a
2p53d10 configuration. There are six states split by the 2p spin orbit coupling
into 4 states with J = 3

2 and 2 states with J = 1
2 . The initial state has the d9

configuration. There are 10 states, also split by spin orbit coupling into 6 states
with J = 5

2 and four states with J = 3
2 .

On the left side of figure 2.10 we show the initial and final state configurations
and the splitting within them present due to spin orbit coupling. For the lowest
state of the initial configuration we have J = 5

2 . We also have the selection rule
∆J = 0,±1. So from the initial states with J = 5

2 only the final states with
J = 3

2 can be reached and the final states with 1
2 can not be reached. For the

initial states with J = 3
2 both final states can be reached. On the right side of

figure 2.10 we show the spectra calculated for the ground-state with J = 5
2 and

for the first excited state with J = 3
2 . We also show the spectra assuming all

initial states are populated equally.
However, in Ni metal 3d spin-orbit coupling is not the most important in-

teraction present. Covalency between the Ni atoms and band formation is more
important and splits the 3d levels resulting in an almost equal population of
states with J = 3

2 and states with J = 5
2 . The spectra for Ni metal measured
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Figure 2.10: Left: Initial state of a d9 system split by 3d spin orbit coupling
and final state split by, much stronger, 2p spin orbit coupling. The arrows
indicate the dipole allowed transitions. Right: the spectra for the ground-state,
first excited state and for a system where all states are equally occupied.

Figure 2.11: 2p XAS spectra of Ni
metal and Ni on Potassium. The
differences in Ni spectra can be
explained by the differences in the
Ni ground-state and the selection
rules ∆J = 0,±1. The spectra have
been copied from P. Gambardella et
al. [92].
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by P. Gambardella et al. [92] are presented in figure 2.11. They look most like the
spectra calculated with all states populated. P. Gambardella et al. [92] showed
that Ni atoms placed on Potassium (K) retrieve their atomic character and spin
orbit coupling becomes the most important low energy interaction again. J is
a good quantum number and the spectra is equal to a cluster calculation where
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the ground-state is a state with J = 5
2 .
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15-30 eV Figure 2.12: General idea be-
hind 2p-XAS. There is a ground-
state, that might be degenerate, and
have important lower excited states.
There are, much higher in energy,
many final states. Strong dipole se-
lection rules determine which of the
final states can be reached. For each
of the initial state there the set of fi-
nal states that can be reached is dif-
ferent, making 2p-XAS a very sensi-
tive probe.

The basic idea behind 2p XAS can be stated as follows. There is a ground-
state belonging to a 3dn configuration, there are many final states, belonging to
the 2p53dn+1 configuration. Of these final states only a few can be reached in
2p XAS experiments due to the strict selection rules. There might be excited
states close by the ground-state that are important to consider as well. If the
energy splitting is small temperature might cause these states to be populated,
assuming Boltzmann statistics. A small perturbing Hamiltonian like exchange
interaction might shift these states in and out population range with different
temperatures. Each excited state belonging to the initial state will in principle
have a different set of final states it can reach. Therefore 2p XAS is very sensitive
to small changes in the ground-state. Small shifts in the initial state are able
to make very large shift in spectral intensity, since a different set of final states
can be reached for each initial state. In figure 2.12 we show this graphically.

In order to show this temperature dependence due to population of different
initial states we turn our attention to CoO. CoO is a material where the Co
atoms are in a d7 configuration and it is know for CoO that there is a large
orbital momentum present at the Co site [40, 93]. Co in CoO is surrounded by
six O atoms in Octahedral (Oh) symmetry. In Oh symmetry the d orbitals split
in three t2g orbitals and two eg orbitals. The eg orbitals being about 1.1 eV
higher in energy. In order to keep things simple we assume an occupation of
e2
gt

5
2g. The t2g shell has a pseudo orbital momentum of l̃=1. With one hole in

the t2g shell and a spin momentum of S = 3
2 we find that the ground state is 12

fold degenerate. This degeneracy is lifted by spin orbit coupling and splits into
a ground-state doublet with J̃= 1

2 , a first excited quartet, about 500 K higher in
energy with J̃= 3

2 , and a sixted, about 1500 K higher in energy than the ground-
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Figure 2.13: Left: energy level diagram of CoO, the e2
gt

5
2g initial state is split by

spin orbit coupling into a lowest triplet, first excited quintet and highest septet.
Right: the different theoretical spectra for the triplet, quintet and septet in
CoO.

state. This sixted has J̃= 5
2 . The final states of 2p XAS on CoO all belong to

the 2p53d8 configuration and are about 780 eV higher in energy.
In figure 2.13 we show the energy level diagram of the initial states belong-

ing to the e2
gt

5
2g configuration and of the final states belonging to the 2p53d8

configuration. Each initial state with a different J̃ can make excitations to a
different set of final states and therefore each spectrum of each initial state will
be different. The spectra for the 3 different initial states are shown on the right
side. At T=0 K we should see the spectrum belonging to the state with J̃=1

2
and with increase in temperatures we should see a change towards the spectrum
with J̃= 3

2 and J̃= 5
2 . Population of excited states is according to Boltzmann

statistics.
In figure 2.14 we show the L2 edge of the measured spectra of poly crystalline

CoO on Al. We also show a cluster calculation including the temperature effect
discussed in the previous paragraph. In this case we included the O atoms
and did not do a single atom calculation, but calculated the spectrum for a
CoO6 cluster. As one can see we do reproduce the temperature dependence and
general line shape with our cluster calculations. In chapter 6 we will discuss
more about CoO thin films.

There are more selection rules then ∆J = 0,±1 that can be used to see large
differences in spectra when small changes in the ground state or population of
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Figure 2.14: Experimental and
theoretical temperature dependence
in the CoO 2p-XAS L2 edge spectra
due to population of excited states.

the low energy excited states happen. One of them used in chapter 8 is the
selection rule ∆S = 0. If a transition metal is placed in a cubic crystal field the
d orbitals split into two eg and three t2g orbitals. If the splitting is small first
the five orbitals with spin up will be occupied upon filling and only when they
are full the 5 orbitals with spin down will be filled. This in order to minimize the
electron-electron repulsion according to Hund’s rules. If the splitting between
the eg and t2g orbitals becomes big however Hund’s rules brake down and first
the three t2g orbitals with spin up are filled, then the three t2g orbitals with
spin down are filled and after that the eg orbitals with spin up are filled. For
a d6 configuration many materials are found that are on the border of being in
the high spin configuration t42ge

2
g with S = 2, or low spin, configuration t62g with

S = 0.

Using XAS C. C. dit Moulin et al. [94] confirmed that for Fe(phen)2(NCS)2
there is a spin state transition at T=177 K. In figure 2.15 we show their 2p XAS
spectra of Fe(phen)2(NCS)2 at 77 K and at 300 K. The spectral changes are
remarkable making XAS a very good tool to study the spin state of materials.
Especially valuable for the newly synthesized layered cobaltates where for many
materials there is a dispute about the spin state of the Co ion [46–70]. In figure
2.15 we also show the spectra of EuCoO3 and Sr2CoO3Cl, a low and high spin
system respectively. Showing how easy it can be to determine the spin state of
different materials.

We would like to note that 2p XAS spectroscopy is one of the few, if not
the only method that is sensitive to the value of S, the spin momentum, and
does not deduces the value of S from the maximum value of the magnetic spin
momentum Sz, or the degeneracy of the state.
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Figure 2.15: Difference in spectra for d6 high-spin and low-spin electron
arrangements. Fe2+ and Co3+ have similar spectra, but there is a clear
difference between the spectra of high-spin and low-spin compounds. The
Fe(phen)2(NCS)2 spectra have been copied from C. C. dit Moulin et al. [94].

2.4 Polarization dependence

Sofar we have only discussed isotropic XAS spectra. But light has an electric
vector and can be linear or circular polarized. Magnetic dichroism spectra at
the L2,3 edges of transition metals has for the first time been measured in the
beginning of the nineteens [95–98]. Shortly thereafter it has been calculated
by G. van der Laan and B. T. Thole [99], that strong magnetic dichroism is
present in the 2p x-ray absorption spectra of 3d transition-metal ions. X-ray
magnetic circular dichroism became a widely used tool after the derivation of
sum-rules. It has been shown [28, 29] that the total integrated intensity of
circular polarized spectra can be related to the average aligned spin and orbital
magnetic momentum. The multiplet structure of the polarized spectra can
contain even more information. Not only large circular dichroism is found in the
2p absorption edges of transition metals. Also large magnetic linear dichroism
has been predicted [99] and measured [100–102]. Besides a magnetic origin,
linear dichroism can also be induced by a non-cubic orbital occupation [15,
103, 104] or local, non-cubic, crystal fields [105]. A review about dichroism
effects in 2p x-ray absorption spectroscopy has been written by J. Stöhr and R.
Nakajima [106] and by F. M. F. de Groot [19].

In the next paragraphs we will first discuss the polarization dependence for
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systems with a non-cubic orbital occupation. We will show the spectra of C. T.
Chen et al. [103] measured on CuO planes of an High-TC super conductor as an
example. Then we will show how crystal fields can be determined for thin NiO
films [105]. After that we will continue with NiO and explain the magnetic linear
dichroism therein. We will use the measurements of D. Alders et al. [101, 102]
who showed, among other properties of the magnetic linear dichroic spectra,
how with the use of linear dichroism, the average aligned magnetic moments
of NiO thin films can be determined. The last feature of XAS we will show
will be about magnetism in CoO, where we will discus the circular polarization
dependence and show that the spectra contain information about Lz and Sz.
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Figure 2.16: Linear polarization
dependence in La1.85Sr0.15CuO4

due to orbital polarization of the
ground-state. The spectra are
copied from C. T. Chen et al. [103]

The simplest form of dichroic spectroscopy in the x-ray regime is that of
linear dichroism due to a difference in orbital occupation. The difference in
total intensity caused by a non-cubic orbital occupation can be understood in
a one-electron picture. Lets start with a simple example where we make an
excitation from a s orbital to a p orbital. There are three different orbitals (px,
py, and pz) one can excite to. If we use z polarized light then the intensity found
for exciting the s orbital to a px orbital is proportional to the square of 〈s|z|px〉.
If we evaluate the integral 〈s|z|px〉 we notice that s is even in z, z is odd in z
and px is again even in z. The total integrand is thus odd in z. The integral
over an odd function is zero. With z polarized light one can only excite an s
orbital to the pz orbital. If we now take a system where we have a p5 shell, then
the orbital occupied can be measured by XAS. Just look at the total intensity
of the spectra with respect to the intensity of the x,y, and z polarized spectra.
The ratio of intensity with x, y, or z polarized light is equal to the ratio of the
number of holes in the px, py, or pz orbital.

For excitations from a p to d shell things become a bit more complicated,
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since the p shell has 3 and the d shell 5 orbitals, but the basic principle is the
same. With x polarized light one can only excite a py orbital to a dxy, a pz

orbital to a dxz orbital and an px orbital to an dx2 = −
√

1
4dz2 +

√
3
4dx2−y2

orbital. The other excitations are zero because the integrand is odd. For the
other polarization directions a cyclic permutation of the coordinates will do. In
the end we can write for the total intensities measured with linear polarized
light for p to d excitations:

Ix =
1
2
nxy +

1
2
nxz +

2
3
nx2 (2.2)

Iy =
1
2
nxy +

1
2
nyz +

2
3
ny2

Iz =
1
2
nxz +

1
2
nyz +

2
3
nz2

Where nx2 = dx2d†x2 = 1
4nz2 + 3

4nx2−y2 −
√

3
16 (dz2d†x2−y2 + dx2−y2d†z2) and

ny2 = dy2d†y2 = 1
4nz2 + 3

4nx2−y2 +
√

3
16 (dz2d†x2−y2 +dx2−y2d†z2). The polarization

dependence due to orbital occupation has been demonstrated very nicely in the
XAS of High TC superconductors [103, 104]. High TC superconductors have a
CuO plane where the valence of the Cu is d9. The one hole at the Cu site is in the
dx2−y2 orbital. This means that for x and y polarized light we would expect to
see some intensity and for z polarized light we would expect to see no intensity.
This effect has been demonstrated by C. T. Chen et al. [103] on La1.85Sr0.15CuO4

their measurements can be seen in figure 2.16. We would like to note that the
contrast seen has nothing to do with the energy splitting between the dz2 and
dx2−y2 orbital. XAS would be equally sensitive if the energy splitting was just
barely larger than the temperature of the system. Second we would like to note
the huge contrast there exists between the different polarizations, making XAS
a very sensitive tool to study orbital occupations.

In chapter 10 we have used this technique on VO2 and in chapter 6 on CoO.
For VO2 the question of which orbital is occupied is one of the basic assumptions
to about all theories of the metal-insulator transition present in this compound.
To test this against experiment is most valuable. For CoO orbital occupation is
closely related to the orbital momentum present. From the information which
orbital is occupied a detailed understanding of the materials can be achieved.

We are not only interested in orbital occupations, but also in the energy scale
of the splitting between the orbitals. The energy splitting between the orbitals,
or crystal fields can be measured with polarization dependent XAS. For that we
have a look at figure 2.17 where we show the 2p XAS spectra of one monolayer
of NiO on Ag, kept with MgO. A thin film of NiO on Ag is compressed in plane
and therefore has a dx2−y2 orbital that has a higher energy than the dz2 orbital.
The energy splitting can be read of very easily in the polarized XAS spectra.
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Figure 2.17: Linear dichroism in
NiO due to crystal field splitting.
The energy difference between the
L3 edge maximum taken at differ-
ent polarizations is about equal to
the crystal field splitting between
the dz2 and dx2−y2 orbital.

One should just remember that for z polarized light one can excite to the dz2

orbital, but not to the dx2−y2 orbital. Whereas with x polarized light one excites
with an intensity of 3

4 to the dx2−y2 orbital and only with an intensity of 1
4 to the

dz2 orbital. To a good approximation the energy splitting between the L3 edge
for different polarizations is therefore equal to the crystal field splitting between
the dx2−y2 and the dz2 orbital. In chapter 5 we will discuss this in more detail
and explain also the changes in intensity found due to the crystal fields. The
determination of crystal fields is often extremely important. In chapter 6 we
determine the crystal fields of thin CoO films, grown on different substrates.
The crystal fields in CoO are important since they determine the single ion
anisotropy, which is closely related to the effectiveness of exchange-bias. In
chapter 9 we determine the size of the crystal fields in LaTiO3. We do not
have polarization dependent data on LaTiO3, since the crystals are not single
domain, but also from the isotropic line-shape information about the crystal
fields can be deduced. There has been a lively debate about the importance
of orbital fluctuations in this compound. Orbital fluctuations are only possible
if the crystal fields splitting these orbitals are small. By determining the local
crystal fields present in LaTiO3 we are able to determine if the orbitals are
spatially locked, or if they can fluctuate.

Not only orbital ordering and crystal fields lead to linear dichroism. Also
magnetic ordering does so. On first account this might sound strange since the
dipole operator does not act on spin space. If spin orbit interaction is neglected
the initial (final) wave function can be written as Ψi(f)

e χ
i(f)
s , where Ψi(f)

e is the
electron part of the wave function and χ

i(f)
s the spin part. The 2p-XAS intensity

is proportional to the square of 〈Ψi
eχ

i
s|q|Ψf

eχf
s 〉 = 〈Ψi

e|q|Ψf
e 〉〈χi

s|χf
s 〉. Where q

is the dipole operator. For cubic electron distributions this is independent of
polarization and this intensity is only nonzero if χi = χf . No room for magnetic
linear dichroism without spin orbit coupling thus.
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We know however that for 2p core levels the spin orbit coupling is very large.
In order to become sensitive to the spin ordering in the valence shell we also need
a coupling between the core hole and the valence electrons. This is realized while
the final state is strongly excitonic. The p hole attracts the d electrons quite
hard. Coulomb attraction is orbital and spin dependent. The spin dependent
part has become know as the exchange energy. From atomic physics Hund’s rules
are know to describe the lowest arrangement for electrons and one of Hund’s
rules states that electron electron repulsion tries to maximize the total spin
momentum S. In other words the repulsion of two electrons with the same spin
is smaller than the repulsion of two electrons with opposite spins. Hund’s rules
however are not exact, but rules of thumb, and sometimes, especially when two
different shells are involved, fail. In order to understand the magnetic linear
dichroism it is important to calculate the full multiplet structure of the final
state excitons involved. Based on atomic, full multiplet calculations, including
a cubic crystal field, strong magnetic linear dichroism has been predicted by
G. van der Laan and B. T. Thole [99]. These predictions have been confirmed
by P. Kuiper et al. [100] on Fe2O3. They also give a relative simple, intuitive
explanation of the reason why magnetic linear dichroism should be present in
Fe2+, a d5 system. We will not show their spectra as an example, but use the
example of magnetic linear dichroism in NiO. This while the final state of NiO is
easier to understand and one can calculate the L2 edge and the magnetic linear
dichroism therein by hand.

Figure 2.18: Magnetic linear
dichroism in thin films of NiO on
MgO. The linear dichroism arises
due to the antiferromagnetic order-
ing within the NiO thin film. The
spectra have been copied from D.
Alders et al. [102].
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D. Alders et al. [102] measured the magnetic linear dichroism of NiO thin
films and in figure 2.18 we show their spectra of 20 ML NiO on MgO. NiO is an
antiferromagnetic rock salt with a (112) easy axes for the spins. In bulk NiO all
24 domains are available (±1± 1± 2), (±1± 2± 1), (±2± 1± 1) and on average
no dichroic signal is found. For thin films of NiO on MgO D. Alders et al. [102]
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showed that the (±1± 1± 2) domains are stabilized and a nett magnetic linear
dichroic effect can be found. This effect has been widely used in order to study
antiferromagnetic systems and to map out different domains.

In order to show the details why magnetic linear dichroism works one needs
to use a multi electron approach, since besides 2p spin-orbit coupling, 2p–3d
electron correlations are needed in order to create a linear dichroic effect. We
will discuss the example of a 3d8 spectrum, like NiO. For a 3d8 system a 2p
electron is excited into the valence 3d band. In a multi electron notation the
3d8 state is excited to 2p53d9. For the 3d8 initial state we assume an occupation
of d↑

x2−y2d
↑
z2 This state is orbitally Oh symmetric and fully spin polarized in

the z direction. There should not be any orbital induced linear dichroism (as
long as the crystal field is of Oh symmetry), but there should be magnetic
linear dichroism. For the final state one should realize that the 2p spin orbit
coupling is by far the largest interaction. We will assume that the 2p final
state orbitals are eigenstates of the 2p spin-orbit coupling Hamiltonian. There
are two different eigenstates for the 2p spin-orbit coupling Hamiltonian, j = 1

2
(l.s = −1) and j = 3

2 (l.s = 1
2 ). These eigenstates can be seen in the spectrum

as two distinct edges. The L2 edge for j = 1
2 and the L3 edge for j = 3

2 . We will
concentrate us here on the L2 edge, since this edge shows the nicest magnetic
linear dichroism. For the L2 edge j = 1

2 . This means the 2p orbitals available

are | 12 1
2 〉 =

√
1
3p↓x−i

√
1
3p↓y−

√
1
3p↑z and |12− 1

2 〉 =
√

1
3p↑x+i

√
1
3p↑y+

√
1
3p↓z. The

3d orbitals available for the final state are in principal all five d orbitals with 2
fold spin degeneracy. We will however restrict ourselves in this example to the
two eg orbitals with two fold spin degeneracy. This is strictly only correct if
10Dq >> Gpd

1 . I.e the crystal field is stronger than the 2p–3d electron-electron
repulsion. Although this is not fulfilled in NiO one can sill use this example
to get qualitative good agreement between theory and experiment. In total we
have a basis of 8 wave functions for the final state. The 2p orbital can be |12 1

2 〉,
or | 12 − 1

2 〉. The 3d orbital can be dx2−y2 or dz2 . The 3d spin can be up or down.
These 8 states do not have the same energy, but are split by the 2p–3d

electron-electron Hamiltonian. As a first approximation one could take only
the exchange part of the electron-electron repulsion Hamiltonian and assume
an energy difference between the states that couple to K = 1 and K = 0, where
K = J2p +S3d . This however is not sufficient since there is a large difference in
electron-electron repulsion between different orbital occupations. If one looks at
the electron densities, or the part of the Hamiltonian that depends on nmσnm′σ′

one will find that the pz orbital has a much larger density overlap with a dz2

orbital than with a dx2−y2 orbital. Group theory teaches us that there are 3
different states, one doublet and two triplets. The doublet has K = 0, the two
triplets have K = 1. If one diagonalizes the 2p–3d electron-electron repulsion
Hamiltonian on the basis of the eight wave functions we limited ourselves too one
recovers this doublet and two triplets. The doublet has an energy of − 2

15G1 −
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Ψfinal E Ix Iz

+
√

1
2 |12 − 1

2 〉d↑
x2−y2 −

√
1
2 |12 1

2 〉d↓
x2−y2 − 6

45G1 − 21
245G3 1

18 0

−
√

1
2 |12 − 1

2 〉d↑
z2 +

√
1
2 |12 1

2 〉d↓
z2

3
18 0

+
√

1
2 |12 − 1

2 〉d↑
x2−y2 +

√
1
2 |12 1

2 〉d↓
x2−y2 − 6

45G1 − 11
245G2 1

18 0

−
√

3
4 |12 1

2 〉d↑
z2 +

√
1
4 |12 − 1

2 〉d↓
x2−y2 0 0

+
√

1
4 |12 1

2 〉d↑
x2−y2 −

√
3
4 |12 − 1

2 〉d↓
z2 0 2

18

+
√

1
2 |12 − 1

2 〉d↑
z2 +

√
1
2 |12 1

2 〉d↓
z2

2
45G1 − 3

245G3 3
18 0

+
√

1
4 |12 1

2 〉d↑
z2 +

√
3
4 |12 − 1

2 〉d↓
x2−y2 0 0

+
√

3
4 |12 1

2 〉d↑
x2−y2 +

√
1
4 |12 − 1

2 〉d↓
z2 0 6

18

Table 2.1: L2 final states of 2p-XAS on NiO. The |12 ± 1
2 〉 states denote a 2p

core hole with j = 1
2 and mj = ± 1

2 . Whereby |12 − 1
2 〉 =

√
1
3p↓

x
− i

√
1
3p↓

y
−

√
1
3p↑

z

and |12 1
2 〉 =

√
1
3p↑

x
+ i

√
1
3p↑

y
+

√
1
3p↓

z
. The intensities for x and z polarized

light are calculated assuming a d↑x2−y2d
↑
z2 initial state.

3
35G3. The lowest triplet has an energy of − 2

15G1− 11
245G2 and the highes triplet

has an energy of 2
45G1 − 3

245G3. If one fills in the atomic Hartree-Fock values
for the Slater integrals one finds the doublet to be the lowest-state. The first
triplet is 140 meV higher in energy. The second triplet is 1.27 eV higher in
energy. This can also be seen in the NiO L2 spectra where one sees two peaks
at ± 1eV difference. The left peak belongs to a doublet and a triplet, the right
peak belongs to a triplet.

In order to understand the magnetic linear dichroism we have to take a look
at the final states. In table 2.4 we show the eight different final states, their
energies and the intensity these states contribute to a spectrum with x or z
polarized light. Now one can see that the doublet, with K = 0, can only be
excited by x polarized light, whereas the two triplets can be excited by both
polarizations and have more intensity for z polarized light than for x polarized
light. We see that for x polarized light the peak at the lower energy is higher
in intensity and that for z polarized light the latest peak is higher in intensity.

This more or less complete calculation shows what goes into the explanation
of magnetic linear dichroism in cubic symmetry. One can also explain these
spectra with the use of coupling of orbital momenta. For the final state J2p and
S3d couple to K = J2p + S3d. K can be 2, 1 or 0, while S3d = 1

2 and J2p = 3
2

or 1
2 . The initial state has J2p = 0 and S = 1 and therefore K = 1. If we
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fully magnetize the sample we have MK = 1 in the initial state. For angular
momenta we have the polarization dependent selection rules ∆MK = 0 for z
polarized light and ∆MK = ±1 for x,y polarized light. Starting from MK = 1
one reaches MK = 1 final states with z polarized light and MK = 0, 2 states
with x,y polarized light. The final states with K = 0 do not contain MK = 1
levels and can therefore not be reached with z polarized light. For the L2 edge
(J2p = 1

2 ) this shows very clearly since there are only final states with K = 1 or
K = 0.

µ+ µ-

B+

hν+ hν-hν-hν+

B- B- B+

In
te

n
si

ty
(a

rb
.

u
n

it
s)

Photon energy (eV)
775 780 785 790 795

CoO
B=6T

(µ −µ )∗25+ -

Figure 2.19: Circular dichroism
in CoO in the paramagnetic state
at 291K in a field of 6 Tesla. The
circular dichroism arises due to the
induced magnetic moment by the
magnetic field.

The last option of 2p-XAS spectroscopy we want to discus is x-ray magnetic
circular dichroism (XMCD). For systems with net aligned magnetic moments the
spectra taken with right and left circular polarized light are different. Magnetic
moments can be due to ferromagnetic ordering, but can equally well be induced
by a magnetic field. In figure 2.19 we show these measurements for CoO in a
6T magnetic field. One can use cluster calculations to reproduce the spectra.
If the spectra are reproduced information about the magnetic state can be
obtained. There is however an even simpler way to deduce information from
circular dichroic spectra. Thole et al. [28] have derived sum-rules relating the
integrated intensity of the XMCD signal directly to the expectation value of
Lz. This makes the use of XMCD spectroscopy rather easy and widely used. In
chapter 4 we will discuss more about these sum-rules. The XMCD effect within
CoO will be explained in more detail in chapter 6, where we will discuss in quite
detail the interplay of spin, orbitals and the lattice in CoO.

In conclusion; XAS is a very powerful type of spectroscopy. XAS spectra
are about sensitive to any local operator one wants to measure. They give a
huge amount of information about the ground-state of the system. XAS spectra
consist of excitons and can not be compared to some kind of band structure,
since 2p core hole - 3d electron attractions are important. XAS spectra are
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however so strongly excitonic that a small cluster (TMO6) generally will be
sufficient to calculate the spectra. From these cluster calculations information
about operator values of the ground-state can be deduced.
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Chapter 3

Cluster calculations

In this chapter we will discuss some concepts of a cluster calculation. The main
cluster we will be dealing with is a transition metal with 6 oxygens around,
embedded in an electrical field due to the charges of the other atoms and elec-
trons in the crystal. The electron hopping between the oxygen and the transi-
tion metal within the cluster will be dealt with within a tight-binding approach.
The influence of spin and charge of the surrounding atoms will be treated within
mean-field theory. For the transition metal we will only consider the 3d shell
and for the oxygens only the 2p shell. Many good books have been been written
on how to do cluster or ligand field calculations [31, 35, 107], and the theory is
quite old. With the calculation speed of the modern desktop PC-s and because
of good source codes available [18,24], the calculation of a transition metal oxy-
gen cluster is no problem any more. Within this thesis we used the program
XTLS 8.0 written by A. Tanaka. [24]. In appendix C we present a short manual
for his program.

Within cluster calculations we define a Hamiltonian matrix on a many-
electron basis. The Hamiltonian will be diagonalized using a Lancsoz routine
in order to find the ground state energy and wave function. For spectroscopy
calculations we also define a final state basis and calculate the final state Hamil-
tonian. The spectra can now be calculated by diagonalizing the entire final state
Hamiltonian and calculate the transition probability for each final state from the
given initial state, or with much less computational burden by using a Greens-
function method. In the following paragraphs we will introduce the idea of a
many-electron basis and the full anti-symmetrized wave functions within that
basis. Then we will discuss how to construct the Hamiltonian, in the end we
will discuss how to calculate spectra.
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3.1 Constructing the basis

The basis we use for our cluster calculations is a configuration interaction ba-
sis. For a Cu 3d9 system interacting with one oxygen 2p6 shell we have two
possible configurations, namely; Cu3d9–O2p6 and Cu3d10–O2p5. The configu-
ration Cu3d9–O2p6 will have 10 wave functions, namely the five d orbitals with
ml = −2 to ml = 2, each with spin up or down. The configuration Cu3d10–
O2p5 will have 6 wave functions, which are, the three p orbitals with ml=-1
to ml=1, each with spin up or down. In total there will be 16 wave-functions
building up the basis for a Cu–O cluster with one hole. In other words, we have
for a Cu–O cluster a 16 by 16 Hamiltonian that we first have to fill in and then
diagonalize, in order to find the ground-state energy and wave function. For
a Ni 3d8 system with one oxygen, however, the number of basis states already
drastically increases. There are 3 configurations which should be take into ac-
count. These configurations are; Ni3d8–O2p6, Ni3d9–O2p5, and Ni3d10–O2p4.
The Ni3d8–O2p6 configuration has 45 wave-functions. The first hole on the Ni
atom can be in 10 orbitals. For the second hole there are still 9 orbitals it can
go to. This will give 90 possible functions, but one should realize that electrons
are indistinguishable and that if the first electron goes in orbital one and the
second in orbital two this will give the same wave function as when the first
electron goes in orbital two and the second in orbital one. 45 wave functions
thus for the Ni3d8O2p6 configuration. 60 wave-functions for the Ni3d9–O2p5

configuration and 15 ((6*5)/2) for the Ni3d10–O2p4 configuration. A total basis
of 120 wave-functions. The largest basis one could encounter in a TmO6 cluster
is the basis of a 3d0 problem with 6 oxygen 2p6 shells around. If one would
include all configurations, like 3d02p62p62p62p62p62p6, 3d12p52p62p62p62p62p6,
...., up to 3d102p62p62p62p62p22p0, one would find a basis of 46!

36!10! = 4076350421
wave functions. Modern computers (2005) can not store one wave function of
this size, so diagonalizing such a matrix is not possible at this time, but within
ten to twenty years this might change. More important, configurations with 6
holes on one oxygen and 10 electrons at the d site will have energies so high
that there is no need to consider them. If one does not take into account the
configurations which have more than 2 electrons at the d site, there are only
28 configurations left with a total basis of 28711 wave-functions, which gives no
computing problem.

3.2 Many-electron wave-functions

For many-electron wave functions (2 electrons or more) it is important to
anti-symmetrize the wave function with respect to the electron coordinates.
If we have two electrons in orbital a and b, the total wave function would

be
√

1
2 (Ψa(r1)Ψb(r2) − Ψa(r2)Ψb(r1)). For more than two electrons, the full
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anti-symmetrized wave function can be written down as a Slater determinant,
the determinant of a matrix in which the rows contain all different orbitals
present in the wave function and the collums contain all different coordinates
necessary to describe the positions of all electrons in the system. When we
write a wave function we will implicitly assume that anti-symmetrizing has
been taken care of. The wave function written as ΨaΨb should be read as√

1
2 (Ψa(r1)Ψb(r2) − Ψa(r2)Ψb(r1)). When calculating matrix elements proper

anti-symmetrization has been taken into account.

3.3 Filling in the Hamilton matrix

When filling in the Hamilton matrix it is important to realize that there are 2
very different types of Hamilton operators. The one-electron operator and the
two-electron operator. Any one-electron operator can be written as Oµνc†µcν

where c† and c are creation and annihilation operators. Whereas a two-electron
operator is written as Oµνητ c†µc†νcηcτ . All one-electron operators can be taken
into account within a one-electron theory and it makes sense to draw a density
of states for eigensystems of a one-electron Hamiltonian. For a two electron
operator, however, one-electron theory fails drastically and a density of states is
not defined for a Hamilton operator containing two-electron operators. Luckily
most Hamilton operators are one-electron operators. Only electron-electron
repulsion is a two-electron operator.

We will first consider one-electron Hamilton operators. These operators
will only have a contribution between two wave functions that differ no more
then one electron from each other. We will start with the crystal-field and
we will follow the line of thought of the first pages in S. Sugano, Y. Tanabe
and H. Kamimura [35]. With one difference. We will not assume a cubic point
charge distribution responsible for the crystal field, but take an arbitrary charge
distribution. After that we will discuss covalency. Covalency is responsible for
the interaction terms between different configurations and shall be treated in a
similar way as done by Slater and Koster within tight-binding theory [108], but
within a cluster not k dependent.

3.4 One-electron Hamilton Operators

A one-electron Hamilton Operator has a non zero interaction between two wave
functions only if the two functions do not differ by more than one electron.
In that case the Hamiltonian between these two wave-functions is equal to
the Hamiltonian between the two different one-electron basis functions, mul-
tiplied by -1 to the power of number of permutations needed to put the two
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basis functions in the same order. The factor -1 originates from the anti-
symmetrization of the wave function. Realize that a fully anti-symmetrized
wave function has all possible orders of one-electron wave functions with respect
to the electron coordinates, but with different signs. To make things clearer
lets have a look at an example. Let H1 be a one-electron Hamiltonian, then:
〈dxydyz|H1|dxydxz〉 = 〈dyz|H1|dxz〉 and 〈dxydyz|H1|dxzdxy〉 = −〈dyz|H1|dxz〉.
For diagonal elements one has to take the sum of all one-electron contributions:
〈dxydyz|H1|dxydyz〉 = 〈dxy|H1|dxy〉+ 〈dyz|H1|dyz〉. In the next sections we will
only describe the value of a Hamilton operator acting on a one-electron state.
The Matrix elements for the many-electron wave-functions can be derived from
this by using the above argumentation.

3.4.1 Crystal Field

In the following section we want to discuss the effect of the charges, that sur-
round the cluster we calculate, on the level splitting of that cluster. To do so
we will use a mean-field approximation. The potential of all other charges on
the site of one atom is known as the Madelung potential. It is custom to men-
tion only the local value of the Madelung potential, but we will also use the
derivatives of the Madelung potential in order to describe the local crystal field.
These derivatives of the Madelung potential at the site of an atom will result
in a level splitting similar to the Stark effect, but a few orders of magnitude
stronger.

Let us define the Madelung potential at the site of the atom we consider
as V(r, θ, φ). Since our basis functions are expanded on spherical harmonics,
Ψ(r, θ, φ) = Rn,l(r)Y m

l (θ, φ), we will also expand our Madelung potential on
spherical harmonics:

V (r, θ, φ) =
∞∑

k=0

k∑
m=−k

Ak,mrkCm
k (θ, φ) (3.1)

Where Cm
k (θ, φ) =

√
4π

2k+1Y m
k (θ, φ). The values of Ak,m are Tailor expansions

in r and are therefore related to the derivatives of V(r, θ, φ). For k ≤ 6 we found
the relation:

Ak,m =
1√

(k − m)!
1√

(k + m)!
∂k−|m|

z (−Sign[m]∂x+ı∂y)|m|V (r, θ, φ)|r=0 (3.2)

If one knows the values of Ak,m the matrix elements of the Hamiltonian can be
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calculated straightforward:

Hi,j =〈Rli
ni

(r)Y mi

li
(θ, φ) |

∞∑
k=0

k∑
m=−k

Ak,mrkCm
k (θ, φ) | Rlj

nj
(r)Y mj

lj
(θ, φ)〉

=
∞∑

k=0

k∑
m=−k

Ak,m〈Y mi

li
(θ, φ) | Cm

k (θ, φ) | Y
mj

lj
(θ, φ)〉〈Rli

ni
| rk | Rlj

nj
〉

(3.3)

The integrals over the radial part of the wave-function, 〈Rli
ni

| rk | R
lj
nj 〉, have

been calculated in the Hartree-Fock approximation on a free atom with the
use of Cowan’s code [36] and are tabulated in appendix A. The integrals over
the angular part can be calculated analytically and are normally expressed in
Glebs-Gordan coefficients or 3J symbols. The 3J symbols are closed expressions
and are explained in Cowan’s book, chapter 5 [36], for example:

〈Y mi

li
(θ, φ) | Cm

k (θ, φ) | Y
mj

lj
(θ, φ)〉 =

(−1)mi

√
(2li + 1)(2lj + 1)

(
li k lj
0 0 0

)(
li k lj

−mi m mj

) (3.4)

The expansion of the Madelung potential on spherical harmonics does not have
to be taken up to arbitrary high values of k in order to be exact. We know from
the triangular equation on the 3J symbols that the crystal field only contributes
to terms in the Hamiltonian for k≤ li + lj . We can reduce the number of
expansion coefficients, Ak,m, even further by realizing that k+li+lj has to be
even. Furthermore, since the Hamiltonian has to be hermitian we find that:

Hij = H∗
ji

< Rli
ni

(r)Y mi

li
(θ, φ) |

∑
k,m

rkAk,mCm
k (θ, φ) | Y

mj

lj
(θ, φ)Rlj

nj
(r) >=

< Rlj
nj

(r)Y mj

lj
(θ, φ) |

∑
k,m

rkA∗
k,mC−m

k (θ, φ) | Y mi

li
(θ, φ)Rli

ni
(r) >

Ak,m =(−1)mA∗
k,−m

(3.5)

A program to calculate the Madelung potential of an arbitrary crystal structure,
using an Ewald summation over point charges and expanding this potential on
spherical harmonics up to the 6th order, can be found in appendix B.

In this thesis, however, we did not try to calculate the crystal field by the use
of an Ewald summation. We fitted our crystal fields to our measured spectra.
This is a more general approach that does not rely on an assumed point charge
ordering within the crystal. The number of parameters with which the crystal
field can be described can be greatly reduced if symmetries are present. If
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the system does not have a high symmetry, we used the help of LDA(+U)
calculations in order to determine the crystal field.

In order to make fitting possible it is necessary to reduce the number of
free parameters as far as possible. For a crystal field splitting within a d shell
we have li=lj=2, so only values of k=0,2 or 4 contribute to the crystal field.
This leaves us with 15 independent parameters Ak,m. The parameters Ak,m

always show up in the Hamiltonian multiplied by 〈Rli
ni

| rk | R
lj
nj 〉. Since the

radial wave functions might differ from the atomic Hartree Fock radial wave
functions within a solid, it seems logic to include the expectation value of the
radial wave functions within the fitting parameters. Therefore we define the
parameter Bk,m;

Bk,m = Ak,m〈Rli
ni

| rk | Rlj
nj
〉 (3.6)

Now we have to fit these 15 parameters Bk,m in order to reproduce the
measured spectra. 15 parameters is quite a lot, but if some symmetry is present
many parameters will be related or have to be strictly zero. For a system with
Oh symmetry we will show that the number of parameters reduces to one, so
it is worth to have a look into some symmetry arguments and group theory. A
good starting-point would be chapter 3 and 4 of Ballhausen [31] for example.
We will go very fast through the symmetry arguments and quickly write down
the final results for the crystal fields in higher symmetry.
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eg

t :d ,d ,d2g yz xz xy
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Figure 3.1: Energy level diagram for a d shell in Trigonal (D3d), Cubic (Oh),
Tetragonal D4h and orthorhombic (D2h) symmetry.

The Madelung potential at the position of the atom for which we want
to calculate the crystal field has been written as

∫
V (r, θ, φ)δr = V (θ, φ) =
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∑∞
k=0

∑k
m=−k Bk,mCm

k (θ, φ). If we now know, for example, that the crystal
goes back into itself after a rotation of C2

z which is a 180◦ rotation around the
z axe, we can conclude that:

C2
zV (θ, φ) = V (θ, φ) (3.7)

A rotation of 180◦ around the z axe will transform φ into φ + π. Spherical
harmonics scale with φ as eimφ. From which one can see that:

C2
zCm

k (θ, φ) = −1mCm
k (θ, φ) (3.8)

Combining the last two equations it is clear that if a crystal has a 2 fold sym-
metry around the z axe, all Bk,m values with m odd should be zero. A similar
argumentation yields that for an i fold symmetry around the z axe only Bk,m

values with m = in are nonzero. Where n ∈ N. Making use of all symmetry
operations present we find that for an atom at an Oh point-group site only one
parameter remains to describe the crystal field splitting within a d-shell. This
parameter is generally known as 10Dq, the energy difference between the t2g

and eg sub-shell. For an atom at a D4h point-group site there are 3 parameters.
The eg levels are split by an additional parameter ∆eg

and the t2g levels are
split in a doublet (dxz and dyz) and a singlet (dxy) with an energy difference of
∆t2g

. Ballhausen [31] uses the parameters Ds and Dt for this splitting, where
∆eg

= 4Ds + 5Dt and ∆t2g
= 3Ds − 5Dt. Within D2h symmetry two more

parameters are introduced. We will refer to these two parameters as Du and
Dv. 2Du will be the splitting between the dxz and dyz orbital. The parameter
Dv does not split the levels further, but introduces a mixing between the dz2

and dx2−y2 orbital. The complete form of the crystal field coupling to d orbitals
within Oh, D4h, D2h and D3d symmetry can now be written as a function of
the parameters 10Dq, Ds, Dt, Du, Dv, Dσ, and Dτ .

VOh
=21DqC0

4 (θ, φ) + 21

√
5
14

Dq(C4
4 (θ, φ) + C−4

4 (θ, φ))

VD4h
= − 7DsC0

2 (θ, φ) + 21(Dq − Dt)C0
4 (θ, φ)

+ 21

√
5
14

Dq(C4
4 (θ, φ) + C−4

4 (θ, φ))

VD2h
= − 7DsC0

2 (θ, φ) + (
1
2

√
6Du − 2

√
2Dv)(C2

2 (θ, φ) + C−2
2 (θ, φ))

+ 21(Dq − Dt)C0
4 (θ, φ) + 3(

√
2
5
Du +

√
6
5
Dv)(C2

4 (θ, φ) + C−2
4 (θ, φ))

+ 21

√
5
14

Dq(C4
4 (θ, φ) + C−4

4 (θ, φ))
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VD3d
= − 7DσC0

2 (θ, φ) − 14(Dq +
3
2
Dτ)C0

4 (θ, φ)

− 14

√
10
7

Dq(C3
4 (θ, φ) + C−3

4 (θ, φ))
(3.9)

A complete energy level diagram can be seen in figure 3.1. For the splitting
within trigonal symmetry we will need three parameters. Ballhausen [31] used
the parameters 10Dq, Dσ and Dτ . 10Dq is again the splitting between the t2g

and eg orbitals. Within D3d symmetry, the eg levels stay degenerate and only
the t2g levels split further with an energy of ∆t2g

= −Dσ + 6 2
3Dτ . In figure 3.1

we also present the energy level splitting within D3d symmetry.

For high-symmetry systems we found that one can reduce the crystal field
to a few understandable parameters. Part of this thesis, however, deals with
systems that have very low symmetry at the metal site. This leaves us with
15 parameters Bk,m which might have non-zero values. There is no intuitive
meaning within these parameters Bk,m. We normally think in real-space or-
bitals. On a basis of real-space orbitals the 15 crystal field parameters are
rather intuitively expressed as the 15 parameters of a 5 by 5 Hamiltonian cou-
pling the real-space orbitals with each other. There are 5 parameters which
define the on-site energies of the real-space orbitals, Vxy, Vyz, Vxz, Vx2−y2 , and
Vz2 . There are also ten parameters that couple the real-space orbitals with each
other, Vxy,yz, Vxy,xz, Vxy,x2−y2 , etc. These parameters are understandable. The
relation between Bk,m and Vτ,τ ′ is as follows:

B0,0 =
1
5
(Vx2−y2 + Vxy + Vxz + Vyz + Vz2)

B2,0 =
1
2
(−2Vx2−y2 − 2Vxy + Vxz + Vyz + 2Vz2)

B2,1 =
1
2
(i
√

6Vxy,xz −
√

6Vxy,yz −
√

6Vxz,x2−y2

−
√

2Vxz,z2 − i
√

6Vyz,x2−y2 + i
√

2Vyz,z2)

B2,2 =
1
4
(−4

√
2Vx2−y2,z2 + 4i

√
2Vxy,z2 +

√
6Vxz −

√
6Vyz − 2i

√
6Vyz,xz)

B4,0 =
3
10

(Vx2−y2 + Vxy − 4Vxz − 4Vyz + 6Vz2)

B4,1 =
3
10

(−i
√

5Vxy,xz +
√

5Vxy,yz +
√

5Vxz,x2−y2

− 2
√

15Vxz,z2 + i
√

5Vyz,x2−y2 + 2i
√

15Vyz,z2)

B4,2 =
3
10

(
√

30Vx2−y2,z2 − i
√

30Vxy,z2 +
√

10Vxz −
√

10Vyz − 2i
√

10Vyz,xz)



3.4 One-electron Hamilton Operators 51

B4,3 =
3
√

35
10

(iVxy,xz + Vxy,yz − Vxz,x2−y2 + iVyz,x2−y2)

B4,4 =
3
√

70
20

(Vx2−y2 − Vxy − 2iVxy,x2−y2)

(3.10)

3.4.2 Covalency

Covalency arises from the hopping of electrons between the oxygen and the tran-
sition metal site. Within our single cluster calculations it is the only term that
mixes two different configurations, dnp6 and dn+1p5. The size of the hopping
can be expressed in the parameters pdσ and pdπ. In cubic symmetry the t2g

electrons hop with the parameter pdπ and the eg electrons with the parameter
pdσ. The angular dependence can be found in table 1 of the paper by Slater and
Koster [108]. This paper is, although rather old, still an excellent introduction
into tight-binding theory and cluster calculations.

Figure 3.2: Bonding Oxygen or-
bitals in a Transition metal - Oxy-
gen six cluster, within Oh symmetry.
Shown are the dxy and the dx2−y2

orbital with the bonding linear com-
bination of Oxygen p orbitals.
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+
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- +
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We mostly calculate a cluster consisting of one transition metal and 6 oxygen
atoms. One can use symmetry within the orbitals to reduce the basis. In figure
3.2, we show a t2g and an eg orbital together with the oxygen orbitals with
which a bonding state can be made. By making a linear combination of the
oxygen orbitals, bonding and non-bonding orbitals can be separated. In figure
3.2 we see that for the t2g orbital the IIpx−IV px combination is bonding while
the IIpx + IV px (not shown) combination is non-bonding. The IIpx + IV px

has a positive overlap for oxygen II, but exactly the same amount of negative
overlap for oxygen IV. Each d orbital has exactly one linear combination of p
orbitals with which an overlap exists. The other orbitals are non-bonding. We
show the bonding oxygen orbitals for a dxy and an dx2−y2 orbital in figure 3.2.

Using a basis set of only bonding orbitals greatly reduces the size of the
basis set. For a cluster consisting of one transition metal and 6 oxygens there
are 10 + 6× 6 = 46 orbitals. Of these 46 orbitals only 20 are important. Which
are the 10 bonding and/or anti-bonding oxygen and transition metal orbitals.
This reduction in basis set enormously reduces the computation time.
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3.5 Two electron Hamiltonian Operators, elec-
tron-electron interaction

Electron-electron repulsion is the hardest Hamilton operator we have to deal
with. This has everything to do with the fact that it is a two electron operator.
It does not only couple wave-functions which are different in one electron, but
the wave-functions may also be different in two electrons. In other words, if
one electron moves from one orbital to another the rest of the electrons will
react. The result is that one can not work with independent electrons anymore.
An excellent short introduction into electron-electron repulsion can be found
in chapter two of Ballhausen [31]. A full, complete and lengthy account on
electron-electron repulsion can be read in Cowan [36].

In second quantization we can write the electron-electron Hamilton as:

He−e =
∑

〈mm′m′′m′′′σσ′〉
Umm′m′′m′′′σσ′ l†mσl′†m′σ′ l′′m′′σl′′′m′′′σ′

Umm′m′′m′′′σσ′ =δ(m + m′,m′′ + m′′′)
∞∑

k=0

〈lm|Ck
m−m′′ |l′′m′′〉〈l′′′m′′′|Ck

m′′′−m′ |l′m′〉Rk(ll′l′′l′′′)

Rk(ll′l′′l′′′) =e2

∫ ∞

0

∫ ∞

0

rk
<

rk+1
>

Rn
l (r1)Rn′

l′ (r2)Rn′′
l′′ (r1)Rn′′′

l′′′ (r2)r2
1r

2
2δr1δr2

(3.11)

With r< = Min(r1, r2) and r> = Max(r1, r2).
The integral over the radial wave functions has been calculated in the Hartree-

Fock approximation on a free ion with the use of Cowan’s code [36] and for d–d
and p–d interactions they are tabulated in appendix A.

One should be careful when one makes simplifications for electron-electron
repulsion. In the introduction we compare the eigenstates of the full electron-
electron repulsion Hamiltonian with different approximated Hamiltonians. The
differences are very large.

3.6 Spectroscopy

For calculating a spectrum from a cluster we start from the dipole approximation
[109,110]:

µq(hν) =
∑
Φf

|〈Φf |rC(1)
q |Φi〉|2δ(Ei − Ef + hν) (3.12)

Φi is the initial state wave function that is occupied, Φf are all possible final state
wave functions and q is the polarization of the light. The integral |〈Φf |rC(1)

q |Φi〉|
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gives the excitation probability for a given final state and δ(Ei −Ef +hν) takes
care of the energy conservation. If one wants to calculate a spectrum one has
to find the lowest eigenstate of the initial state Hamiltonian and diagonalize
the entire final state Hamiltonian. For each final state one has to calculate
the excitation probability, which will give the spectrum as a set of delta-peaks.
After broadening this can be compared with experiment. For larger clusters
this becomes very time consuming and the spectra are calculated with less
computational burden with the use of Greens functions.

The Greens function is defined as 1
Hf+Ei−hν− 1

2 iΓ
. The imaginary part of

this function consists of Lorentzians with width Γ that peak at all eigenvalues
of the final-state Hamiltonian. The dipolar operator will be written in second
quantization as rC

(1)
q = r

∑
mσm′σ′ cmσl†m′σ′〈lmσ|C(1)

q |cm′σ′〉, which defines the
non cubic transition matrix T which gives the transition probability from a given
initial state basis function to a given final state basis function. The spectral
intensity can now be written as:

µq(hν) = Im
〈
Φi|T †GT |Φi

〉
(3.13)

Instead of calculating all eigenvalues of the final state Hamiltonian one has to
calculate once the inverse of this final state Hamiltonian.
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Chapter 4

Sum-rules

Comparing cluster calculations with measured 2p-XAS spectra gives an enor-
mous amount of information about the system. This is not always an advantage,
because it also means that all interactions that influence the ground-state and
the spectrum have to be incorporated correctly. Sometimes it becomes quite
hard to get a good fit of the spectra within a cluster calculation. In general, fit-
ting becomes harder when the system has a lower symmetry and therefore more
parameters to model the crystal field need to be incorporated. There is another
method to derive information from XAS spectra. The integrated intensity of
polarized spectra is related to a number of operator values of the initial state.
These relations, first pointed out by Thole et al. [28], are extremely powerful
since they are simple to use. Intuitively, one can understand that there should
be something like a sum-rule. We know that the spectral intensity for a certain
final state is proportional to

〈Φi|O|Φf 〉2 = 〈Φi|O|Φf 〉〈Φf |O|Φi〉 (4.1)

If one sums over all final states we get∑
Φf

〈Φi|O|Φf 〉〈Φf |O|Φi〉 = 〈Φi|O||O|Φi〉 (4.2)

Thereby it is used that,
∑

Φf
Φf 〉〈Φf = 1. The only question is what is the

operator O||O.
The original sum-rules have been derived for correlated wave-functions [28,

29, 111]. Later they have been re-derived within a one-electron approximation
[112]. It has been shown that the sum-rules are a result of symmetries already
present in the 3J symbols [113]. In other words, the sum-rules are an intrinsic
property of the dipole operator. They do not depend on the assumptions made
on the local symmetry and they are independent of the framework in which one
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is working, namely, many-electron theory or one-electron theory. In this chapter
we will show the derivation of the sum-rules in second quantization, along the
lines of M. Altarelli [41]. The derivation of the sum-rules will start with the
dipole approximation. The light interacting with the material will be written
as rC

(1)
q , where q is the polarization, −1 for left, 1 for right circular polarized

light and 0 for z linear polarized light. In the end one wants to have a sum-rule
in which one does not need to integrate over the energy range from 0 eV to ∞
eV, but only over one edge. In order to achieve this we will rewrite the dipole
operator in second quantization, active to one edge only:

rC(1)
q = r

∑
mσm′σ′

cmσl†m′σ′〈lmσ|C(1)
q |cm′σ′〉 (4.3)

Now it is easy to define the dipole operator to be active into one edge only. To
do so, one should not sum over all l and c, but set l and c to a fixed value,
depending on the edge one is looking at. For 2p XAS we have c = 1 and l = 2.

The dipole operator is expanded on spherical harmonics, C and the same will
be done with the wave functions. This can be done without loss of generality.
One has to make the assumption that one can write the initial state and the
final state locally as a product of the angular part times the radial part of the
wave-function, Φ = Ψ(θ, φ)R(r). The spectral intensity for final state ΨfRf

can now be written as:

|〈Ri|r|Rf 〉|2
∑

m,...,σ′′′
〈Ψi|lmσc†m′σ′ |Ψf 〉〈Ψf |cm′′′σ′′′ l†m′′σ′′ |Ψi〉

〈lmσ|C(1)
q |cm′σ′〉〈lm′′σ′′ |C(1)

q |cm′′′σ′′′〉
(4.4)

A summation over the final state wave-functions Ψf and the use of the closure
relation gives:

Iq =|〈Ri|r|Rf 〉|2∑
m,...,σ′′′

〈Ψi|c†m′σ′cm′′′σ′′′ lmσl†m′′σ′′ |Ψi〉

〈lmσ|C(1)
q |cm′σ′〉〈lm′′σ′′ |C(1)

q |cm′′′σ′′′〉

(4.5)

The wave function Ψi has a complete filled c shell. Therefore, the operator
c†m′σ′cm′′′σ′′′ reduces to δm′,m′′′δσ′,σ′′′ . One can drop the wave function Ψi as
it is known to take expectation values of operators for the initial state. Fur-
thermore, one should note that σ = σ′ = σ′′ because otherwise the integral
< lmσ|C(1)

q |cm′σ′ > is zero:

Iq = |〈Ri|r|Rf 〉|2
∑

m,m′,m′′,σ

lmσl†m′′σ〈lmσ|C(1)
q |cm′σ〉〈lm′′σ|C(1)

q |cm′σ〉 (4.6)
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The integrals < lmσ|C(1)
q |cm′σ > are integrals over 3 spherical harmonics and

analytical expressions of l, c, q,m,and m′. A good way to see symmetries in
these integrals is by writing them as 3J symbols. This can be done with the use
of the following formula.

〈lm|C(k)
q |l′m′〉 = −1m

√
(2l + 1)(2l′ + 1)

(
l k l′

0 0 0

)(
l k l′

−m q m′

)
(4.7)

Writing the integrals with the use of 3J symbols results in:

Iq =|〈Ri|r|Rf 〉|2∑
m,m′,m′′,σ

lmσl†m′′σ(−1)(m+m′′)(2l + 1)(2c + 1)

(
l 1 c
0 0 0

)(
l 1 c

−m q m′

)(
l 1 c
0 0 0

)(
l 1 c

−m′′ q m′

)
(4.8)

Absorbing the c, l and r dependence in one constant P 2
cl this simplifies to:

Iq = P 2
cl

∑
m,m′,m′′,σ

lmσl†m′′σ(−1)(m+m′′)

(
l 1 c

−m q m′

)(
l 1 c

−m′′ q m′

) (4.9)

Using the triangular equations and using conservation of magnetic angular mo-
mentum for the 3J symbol one sees that m′′ = q + m′ = m and that c = l ± 1.
As the excitation with c = l− 1 is physical more relevant we will take c = l− 1:

Iq = P 2
cl

∑
m,σ

nmσ

(
l 1 l − 1

−m q −q + m

)2

(4.10)

A 3J symbol with only one j and one m value unknown reduces to a simple
polynomial expression. Since q ∈ (−1, 0, 1) one can write three closed expres-
sions:

I−1 =P 2
cl

∑
m,σ

nmσ

(l − m)(l − m − 1)
l(2l − 1)(2l + 1)

I0 =P 2
cl

∑
m,σ

nmσ

(l − m)(l + m)
l(2l − 1)(2l + 1)

I1 =P 2
cl

∑
m,σ

nmσ

(l + m)(l + m − 1)
l(2l − 1)(2l + 1)

(4.11)
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These spectra can be recombined to give nice expectation values. The isotropic
spectrum is Iiso = I−1 + I0 + I1 and the Lz spectrum is ILz = I−1 − I1.

IIso =P 2
cl

∑
m,σ

nmσ

1
(2l + 1)

= P 2
cl

n

2l + 1

ILz
=P 2

cl

∑
m,σ

nmσ

−m

l(2l + 1)
= P 2

cl

Lz

l(2l + 1)

(4.12)

Because often only relative intensities can be measured, it is useful to define the
normalized intensity Iq to be Iq

I−1+I0+I1
:

I−1 − I1 =
1
n

∑
m,σ

nmσ

−m

l
=

Lz

ln
(4.13)

This is the well known result, found by Thole et al. [28].
For linear polarized light one wants to compare x, y and z polarized light.

The derivation of the sum-rules for x and y polarized light is very similar to
the derivation for left, right and z polarized light. The dipole operator for x

polarized light is
√

1
2 (C(1)

−1 − C
(1)
1 ) and for y polarized light i

√
1
2 (C(1)

−1 + C
(1)
1 ).

Using the formulas derived before one can write

Ix,y =|〈Ri|r|Rf 〉|2
∑

m,m′,m′′,σ

lmσl†m′′σ

〈lmσ|
√

1
2
(C(1)

−1 ∓ C
(1)
1 )|cm′σ〉〈lm′′σ|

√
1
2
(C(1)

−1 ∓ C
(1)
1 )|cm′σ〉

(4.14)

Writing again the integrals over 3 spherical harmonics as 3J symbols and ab-
sorbing the l, c, and r dependence in a constant P 2

cl one finds:

Ix,y =
1
2
(I−1 + I1) ∓ P 2

cl

∑
m,m′,m′′,σ

(−1)(m+m′′)lmσl†m′′σ

1
2

((
l 1 c

−m 1 m′

)(
l 1 c

−m′′ −1 m′

)
+(

l 1 c
−m −1 m′

) (
l 1 c

−m′′ 1 m′

))
(4.15)

Using the triangular equations and using conservation of magnetic orbital mo-
mentum one finds for the first term of two 3J symbols m′ = m−1,m′′ = m′−1 =
m−2 and for the second term of two 3J symbols m′ = m+1,m′′ = m′+1 = m+2.
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Furthermore we will take c = l − 1:

Ix,y =
1
2
(I−1 + I1) ∓ P 2

cl

∑
m,σ

1
2

((
l 1 l − 1

−m 1 m − 1

) (
l 1 l − 1

−m + 2 −1 m − 1

)
lmσl†m−2σ+(

l 1 l − 1
−m −1 m + 1

)(
l 1 l − 1

−m − 2 1 m + 1

)
lmσl†m+2σ

)
(4.16)

One sees that the 3J symbols only depend on two variables (l and m) and
therefore can be expressed as simple polynomial functions:

Ix,y =
1
2
(I−1 + I1) ∓ P 2

cl

∑
m,σ

1
2

(√
1 + l − m

√
2 + l − m

√
l + m − 1

√
l + m

2l(2l + 1)(2l − 1)
lmσl†m−2σ+

√
l − m − 1

√
l − m

√
l + m + 1

√
l + m + 2

2l(2l + 1)(2l − 1)
lmσl†m+2σ

)
(4.17)

Changing m to m + 2 in the first term gives:

Ix,y = P 2
cl

∑
m,σ

(
l2 − l + m2

2l(2l − 1)(2l + 1)
lmσl†mσ∓

1
2

√
l − m − 1

√
l − m

√
l + m + 1

√
l + m + 2

2l(2l − 1)(2l + 1)
(lm+2σl†mσ + lmσl†m+2σ)

)
(4.18)

These equations are not very intuitive. This becomes better when one changes
to real wave functions. For l = 1 the relation between spherical harmonics and

real wave-functions is pz = l0, px =
√

1
2 (l−1 − l1), and py =

√
1
2 i(l−1 + l1). We

will write nx for pxp†x. Now realizing that,

nx =
1
2
(n−1 + n1) − 1

2
(l−1l

†
1 + l1l

†
−1) (4.19)

we end up with:

Ix =
nx

n

Iy =
ny

n

Iz =
nz

n

(4.20)
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We used again that Iq = Iq

Ix+Iy+Iz
. The same thing can be done for d electrons.

One should remember that the relations between the real wave functions and
the spherical harmonics are: dyz =

√
1
2 i(d−1 + d1), dxz =

√
1
2 (d−1 − d1), dxy =√

1
2 i(d−2 −d2), dx2−y2 =

√
1
2 (d−2 +d2), and dz2 = d0. Knowing these relations

one can relatively light simplify the sum-rules:

Ix =
1
n

(
1
2
nxy +

1
2
nxz +

1
6
nz2 +

1
2
nx2−y2 −

√
1
12

(dz2d†x2+y2 + d†z2dx2+y2))

Iy =
1
n

(
1
2
nxy +

1
2
nyz +

1
6
nz2 +

1
2
nx2−y2 +

√
1
12

(dz2d†x2+y2 + d†z2dx2+y2))

Iz =
1
n

(
1
2
nxz +

1
2
nyz +

2
3
nz2)

(4.21)

This can be written down more symmetric when realizing that nx2 = 1
4nz2 +

3
4nx2−y2 −

√
3
16 (dz2d†x2+y2 + d†z2dx2+y2)) and that ny2 = 1

4nz2 + 3
4nx2−y2 +√

3
16 (dz2d†x2+y2 + d†z2dx2+y2)).

Ix =
1
n

(
1
2
nxy +

1
2
nxz +

2
3
nx2)

Iy =
1
n

(
1
2
nxy +

1
2
nyz +

2
3
ny2)

Iz =
1
n

(
1
2
nxz +

1
2
nyz +

2
3
nz2)

(4.22)

Not long after the publication of the first paper by Thole et al. [28], a second
paper was published in which the normalized integrated intensity of the L3 (M5)
edge minus the normalized integrated intensity of the L2 (M4) edge is related
to the expectation value of 2

3nSz + 2l+3
3ln Tz [29]. In order to obtain this result

one can use a similar derivation as shown above. For the Sz sum-rule one has to
assume, however, that jc is a good quantum number. Although this might sound
reasonable, there are a large class of systems whereby j of the core-hole is not
a good quantum number. For the rare earths errors up to 230% can exist [114].
As shown before, the XAS for L and M edges consists of strong excitons. In
other words, there is a strong interaction between the core hole and the valence
electrons. This interaction mixes states with different j of the core hole. It has
been shown by Y. Teramura, A. Tanaka, B. T. Thole, and T. Jo [114] that the
shell specific sum-rules can not be used for 3d and 4f systems with less than
half filled shells, since extremely large, low energy parameter dependent errors
do occur.
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In order to show the derivation of the sum-rules where integration over the
spin-orbit spit edges is taken separately we start again by writing the dipole
operator in second quantization. Now however, we do not use m and σ as
quantum numbers for the c shell, but j and mj , in the same way as done by P.
Carra et al. [29]:

rC(1)
q = r

∑
mjmlσ

cjmj
l†mlσ

〈jmj |C(1)
q |mlσ〉 (4.23)

The spectral intensity for a single final state Ψj
f can now be written as:

Ij
q =|〈Ri|r|Rf 〉|2∑

ml,..σ′
〈Ψi|lmlσc†jmj

|Ψj
f 〉〈Ψj

f |cjm′
j
l†m′

lσ
′ |Ψi〉

〈lmlσ|C(1)
q |cjmj

〉〈lm′
lσ

′ |C(1)
q |cjm′

j
〉

(4.24)

Next, one has to sum over the final-state wave functions Ψj
f . Using the closure

relation will remove the final-states in the expression for the integrated intensity.
After that the expectation value of c†jm′

j
cjm′′′

j
has to be taken over the initial

state. Since the initial state has a filled c shell, c†jm′
j
cjm′′′

j
reduces to δm′

j ,m′′′
j

.
Doing all this at once, since it is merely a repetition of the steps done previously
for integrating over both edges, one finds:

Ij
q =|〈Ri|r|Rf 〉|2∑

ml,m′
l,σ,σ′,mj

lmlσl†m′
lσ

′〈lmlσ|C(1)
q |cjmj

〉〈lm′
lσ

′ |C(1)
q |cjmj

〉 (4.25)

In order to continue, one needs to express the wave functions cjmj
as linear

combinations of cmcσ. To do so the following equation exists:

cjmj
=

∑
mlσ

(−1)c− 1
2+mj

√
(2j + 1)

(
c 1

2 j
mc σ mj

)
cmcσ

(4.26)

Changing the basis of the c shell from jmj orbitals to mcσ orbitals, writing the
integrals over 3 spherical harmonics as 3J symbols, and absorbing the c, l and
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r dependence in a constant P 2
cl gives:

Ij
q = P 2

cl

∑
mc,ml,σ,m′

c,m′
l,σ

′,mj

(2j + 1)lmlσl†m′
lσ

′

(
c 1

2 j
mc σ −mj

)(
c 1 l

−mc q ml

)
(

c 1
2 j

m′
c σ′ −mj

)(
c 1 l

−m′
c q m′

l

)
(4.27)

From the triangular equations and from the conservation of magnetic angular
momentum one finds that mj = mc + σ, mj = m′

c + σ′, mc = q + ml, and
m′

c = q + m′
l. Which means that ml + σ = m′

l + σ′. Replacing mj , mc, and m′
c

with the use of these previous functions one ends up with:

Ij
q = P 2

cl

∑
ml,σ,m′

l,σ
′
(2j + 1)lmlσl†m′

lσ
′

(
c 1

2 j
q + ml σ −(q + ml + σ)

)(
c 1 l

−(q + ml) q ml

)
(

c 1
2 j

q + m′
l σ′ −(q + m′

l + σ′)

) (
c 1 l

−(q + m′
l) q m′

l

)
(4.28)

Taking c = l−1 and j = c±1, one has for every q, σ and σ′ a 3J symbol with no
more than 2 unknowns. These are simple polynomial expressions. With some
algebra the different expressions for σ, σ′, and j can be combined to give the
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following result:

Ij
q=−1 = P 2

cl

( ∑
mσ

(l + m − 1)(l + m)(1
2 + j + 4(1 + j − l)(m − 1)σ)

2(1 − 2l)2l(1 + 2l)
lmσl†mσ+

∑
m

(
(−1)j−l− 1

2
(l + m − 1)(l + m)
2(1 − 2l)2l(1 + 2l)

√
l + m + 1

√
l − m(lm 1

2
l†
m+1− 1

2
+ lm+1− 1

2
l†
m 1

2
)

) )

Ij
q=0 = P 2

cl

( ∑
mσ

(l + m)(l − m)(1
2 + j + 4(1 + j − l)(m)σ)

(1 − 2l)2l(1 + 2l)
lmσl†mσ+

∑
m

(
(−1)j−l− 1

2
(l − m − 1)(l + m)
(1 − 2l)2l(1 + 2l)

√
l + m + 1

√
l − m(lm 1

2
l†
m+1− 1

2
+ lm+1− 1

2
l†
m 1

2
)

) )

Ij
q=1 = P 2

cl

( ∑
mσ

(l − m)(l − m − 1)(1
2 + j + 4(1 + j − l)(m + 1)σ)

2(1 − 2l)2l(1 + 2l)
lmσl†mσ+

∑
m

(
(−1)j−l− 1

2
(l − m − 1)(l − m − 2)

2(1 − 2l)2l(1 + 2l)

√
l + m + 1

√
l − m(lm 1

2
l†
m+1− 1

2
+ lm+1− 1

2
l†
m 1

2
)

) )

(4.29)

We dropped the l as subscript from the m, because it is clear that we are talking
about the magnetic orbital momentum. In order to end up with some simple
expectation values of known operators one has to use difference spectra. P. Carra
et al. [29,111] showed that it is useful to take the same linear combinations as for

the Lz sum-rule, but now one has to take I
c+ 1

2
q − l

l−1I
c− 1

2
q for each polarization.

For the isotropic branching ratio one finds:

(Ic+ 1
2

−1 + Ic+ 1
2

0 + Ic+ 1
2

1 ) − l

l − 1
(Ic− 1

2
−1 + Ic− 1

2
0 + Ic− 1

2
1 ) =

1
ln

(∑
mσ

2mσlmσl†mσ −
∑
m

√
l + m + 1

√
l − m(lm 1

2
l†
m+1− 1

2
+ lm+1− 1

2
l†
m 1

2
)

)

(4.30)

If one now realizes that
√

l + m + 1
√

l − m(lm 1
2
l†
m+1− 1

2
+ lm+1− 1

2
l†
m 1

2
) can be
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written as l+s− + l−s+ and that mσlmσl†mσ is equal to −lzsz one arrives at:

(Ic+ 1
2

−1 + Ic+ 1
2

0 + Ic+ 1
2

1 ) − l

l − 1
(Ic− 1

2
−1 + Ic− 1

2
0 + Ic− 1

2
1 ) = −2

∑
i

li ¦ si

ln (4.31)

We made the operator l bold and the quantum number l normal font in order
to distinguish between quantum numbers and operators. The sum over i runs
over all electrons. This is equal to a rather old result of Thole and van der
Laan [115].

For circular polarized light one finds:

(Ic+ 1
2

−1 − Ic+ 1
2

1 ) − l

l − 1
(Ic− 1

2
−1 − Ic− 1

2
1 ) =

∑
mσ

2(l − 2m2)
l(2l − 1)n

σlmσl†mσ+

∑
m

2m + 1
l(2l − 1)n

√
l + m + 1

√
l − m(lm 1

2
l†
m+1− 1

2
+ lm+1− 1

2
l†
m 1

2
)

(4.32)

In order to simplify this, Carra et al. [116] used the magnetic dipole opera-
tor T. T is defined as

∑
i si − 3r̂i(r̂i ¦ si). One only needs the value of Tz.

One needs to write Tz in second quantization, in order to compare Tz with
the calculations sofar. To do so we will first write Tz in spherical harmon-
ics. Tz =

∑
i(1 − 3ẑ2)si

z − 3ẑx̂si
x − 3ẑŷsi

y =
∑

i −2C
(2)
0 si

z − 1
2

√
6(−C

(2)
1 s−i +

C
(2)
−1s

+
i ). By taking the expectation values over the spherical harmonics, writing

them as 3J symbols and simplifying these to polynomial expressions, one can
write Tz as

∑
m,σ

2(l2+l−3m2)
(2l+3)(2l−1) σlmσl†mσ+

∑
m

3
2

(1+2m)
√

l−m
√

l+m+1
(2l+3)(2l−1) (lm 1

2
l†
m+1− 1

2
+

lm+1− 1
2
l†
m 1

2
). Substituting the expression for Tz into the sum-rule for circular

polarized light gives:

(Ic+ 1
2

−1 − Ic+ 1
2

1 ) − l

l − 1
(Ic− 1

2
−1 − Ic− 1

2
1 ) =

2
3n

Sz +
2(2l + 3)

3ln
Tz (4.33)

Which is equal to the result found in the original publication of Carra, Thole,
Altarelli, and Wang [29].

4.1 Summery

In summery, B. T. Thole, P. Carra, G. van der Laan et al. showed that there
are sum-rules for the isotropic spectrum [115], for linear polarized light [111]
and for circular polarized light [28, 29]. One can integrate over both edges or
compare the ratio of the L2(M4) and L3(M5) edge. Since normally only relative
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intensities are measured all spectra are divided by the isotropic intensity. For
circular polarized light there are the two following sum-rules:

I−1 − I1 =
Lz

ln

(Ic+ 1
2

−1 − Ic+ 1
2

1 ) − l

l − 1
(Ic− 1

2
−1 − Ic− 1

2
1 ) =

2
3n

Sz +
2(2l + 3)

3ln
Tz

(4.34)

For the isotropic branching ratio there exists:

(Ic+ 1
2

−1 + Ic+ 1
2

0 + Ic+ 1
2

1 ) − l

l − 1
(Ic− 1

2
−1 + Ic− 1

2
0 + Ic− 1

2
1 ) = −2

∑
i

li ¦ si

ln (4.35)

For linear polarized light one can write the sum rules in real orbitals and write
different formulas for l = p or d.

l = p :Ix =
nx

n

Iy =
ny

n

Iz =
nz

n

l = d :Ix =
1
n

(
1
2
nxy +

1
2
nxz +

2
3
nx2)

Iy =
1
n

(
1
2
nxy +

1
2
nyz +

2
3
ny2)

Iz =
1
n

(
1
2
nxz +

1
2
nyz +

2
3
nz2)

(4.36)

We would like to warn again that for the derivation of the sum-rules, where one
integrates separately over edges with different jc it is assumed that jc is a good
quantum number. This is in general not the case due to excitonic effects! These
problems do not occur when using the sum-rules where the integral is taken
over both edges at once.
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Chapter 5

Magnetic versus crystal
field linear dichroism in
NiO thin films
Phys. Rev. B 69, 020408 (2004)

We have detected strong dichroism in the Ni L2,3 x-ray absorp-
tion spectra of monolayer NiO films. The dichroic signal appears
to be very similar to the magnetic linear dichroism observed for
thicker antiferromagnetic NiO films. A detailed experimental
and theoretical analysis reveals, however, that the dichroism is
caused by crystal field effects in the monolayer films, which is a
non trivial effect because the high spin Ni 3d8 ground state is
not split by low symmetry crystal fields. We present a practi-
cal experimental method for identifying the independent mag-
netic and crystal field contributions to the linear dichroic signal
in spectra of NiO films with arbitrary thicknesses and lattice
strains. Our findings are also directly relevant for high spin 3d5

and 3d3 systems such as LaFeO3, Fe2O3, VO, LaCrO3, Cr2O3,
and Mn4+ manganate thin films.

Magnetic linear dichroism (MLD) in soft-x-ray absorption spectroscopy (XAS)
has recently developed into one of the most powerful tools to study the magnetic
properties of antiferromagnetic thin films [100–102,117,118]. The contrast that
one can obtain as a result of differences in the magnitude and orientation of local
moments is essential to determine the spin anisotropy and important parame-
ters like the Néel temperature (TN ), as well as to map out spatially the different
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magnetic domains that are present in antiferromagnetic films [119–127]. Such
information is extremely valuable for the research and application of magnetic
devices that make use of exchange-bias.

D4h with
exchange

Oh with
exchange

Oh

∆E=0.2 meV

a b c d

E (eV) D4h

3
2A 3

2A 3
1B 3

1B
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Figure 5.1: Energy level diagram
for Ni2+ (3d8) in: (a) Oh symmetry
with pdσ=-1.29 and 10Dq=0.85 eV;
(b) Oh symmetry with additional ex-
change field of 0.16 eV; (c) D4h sym-
metry with pdσ=-1.29, 10Dq=0.85,
and Ds=0.12 eV; (d) D4h symmetry
with additional exchange. The 3d
spin-orbit interaction is included,
but the states are labelled as if the
spin-orbit interaction was not present

Much of the modern MLD work has been focussed on NiO and LaFeO3

thin films, and the observed dichroism has been attributed entirely to mag-
netic effects [119–127]. Other sources that could contribute to linear dichroism,
however, such as crystal fields of lower than octahedral symmetry, have been
neglected or not considered. Indeed, one would expect that such low symmetry
crystal fields are negligible for bulk-like NiO and LaFeO3 films, and, more fun-
damentally, that such crystal fields will not split the high-spin Ni 3d8 or Fe 3d5

ground state. We have illustrated this insensitivity in Fig. 1 for the Ni2+ case,
where the energy level diagram in an Oh environment is compared to that in a
D4h point group symmetry [128]. In contrast, an exchange field will split the
Ni2+ ground state into three levels with MS=-1,0,1 with an energy separation
given by the exchange coupling J , see Fig. 5.1. The basis for obtaining strong
dichroism in the Ni L2,3 (2p→3d) absorption spectra is that dipole selection
rules dictate which of the quite different final states can be reach and with what
probability for each of the initial states. The isotropic spectrum of each of these
three states will be the same, but each state with a different |MS | value will have
a different polarization dependence [100–102,117,118]. A completely analogous
argumentation can be given for the orbitally highly symmetric high spin 3d5

and 3d3 cases, e.g. Mn2+, Fe3+, V2+, Cr3+, Mn4+.
In this paper we report on XAS measurements on single monolayer (ML)

NiO films which are grown on a Ag(100) substrate and capped by a 10 ML
MgO(100) film. We have observed strong linear dichroism in the Ni L2,3 spectra,
very similar to that measured for thicker NiO films. From a detailed theoretical
and experimental analysis, however, we discovered that the dichroism can not
be attributed to the presence of some form of magnetic order, but entirely to
crystal field effects. The analysis provides us also with a practical guide of how
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to disentangle quantitatively the individual contributions to the linear dichroic
signal, i.e. the contribution from magnetic interactions versus that from low
symmetry crystal fields. This is important for a reliable determination of, for
instance, the spin moment orientation in NiO as well as LaFeO3, Fe2O3, VO,
LaCrO3, Cr2O3, and Mn4+ manganate ultra thin films, surfaces and strained
films, where the low symmetry crystal field splitting may not be negligible as
compared to the exchange field energies.

The polarization dependent XAS measurements were performed at the Dra-
gon beamline of the National Synchrotron Radiation Research Center in Tai-
wan. The spectra were recorded using the total electron yield method in an
XAS chamber with a base pressure of 3 × 10−10 mbar. The photon energy
resolution at the Ni L2,3 edges (hν ≈ 850 − 880 eV) was set at 0.3 eV, and
the degree of linear polarization was ≈ 98%. A NiO single crystal is measured
simultaneously in a separate chamber upstream of the XAS chamber in order
to obtain a relative energy reference with an accuracy of better than 0.02 eV.
The 1 ML NiO film on Ag(100) was prepared in Groningen, by using NO2 as-
sisted molecular beam epitaxy. Immediately after the NiO growth, the sample
was capped in-situ with an epitaxial 10 ML MgO(100) film. Reflection high en-
ergy electron diffraction (RHEED) intensity oscillations recorded during growth
of thicker films demonstrated the layer-by-layer growth mode and provided an
accurate thickness calibration [129,130].

Figure 5.2: Experimental polariza-
tion dependent Ni L2,3 XAS of 1 ML
NiO(100) on Ag(100) covered with
MgO(100). θ is the angle between
the light polarization vector and the
(001) surface normal (θ=90◦ means
normal light incidence).
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Fig. 5.2 shows the polarization dependent Ni L2,3 XAS spectra of the 1 ML
NiO film, taken at room temperature. The angle between the light polarization
vector and the (001) surface normal is given by θ (θ = 90◦ means normal light
incidence). The general lineshape of the spectra is very similar to that of thicker
NiO films and bulk NiO [102].

Fig. 5.3 presents a close-up of the L2 edge, the region most often used to
measure the magnitude of the magnetic linear dichroic effect in antiferromag-
netic NiO films [119–121, 124–127]. The spectra of the 1 ML NiO film show a
very clear polarization dependence. This linear dichroic effect is as strong as
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Figure 5.3: Polarization depen-
dence of the Ni L2 XAS of 1 ML NiO
on Ag(100) covered by MgO(100).
The 20 ML NiO on MgO spectra
are taken from Ref. [102]. The
theoretical spectra for the 1 ML
NiO are calculated in D4h symmetry
without exchange, and for the 20
ML in Oh with exchange.

that for a 20 ML NiO film grown on MgO(100) (taken from Alders et al. [102]),
albeit with an opposite sign, as can be seen from Fig. 5.3. Relying on the
analysis by Alders et al. [102] for the antiferromagnetic 20 ML film, one may be
tempted to conclude directly that the spin orientation in the 1 ML film is quite
different to that of the 20 ML film, i.e. that the spins for the 1 ML would be
lying more parallel to the interface while those of the thicker films are pointing
more along the interface normal. However, Alders et al. [102] have also shown
that the magnetic ordering temperature of NiO films decreases strongly if the
film is made thinner. In fact, for a 5 ML NiO film on MgO(100), it was found
that TN is around or below room temperature, i.e. that no linear dichroism can
be observed at room temperature. A simple extrapolation will therefore suggest
that 1 ML NiO will not be magnetically ordered at room temperature. This is
in fact supported by the 80 K data of the 1 ML NiO on Ag(100) as shown in
Figs. 2 and 3: the spectra and the dichroism therein are identical to those at
300 K, indicating that TN must be at least lower than 80 K.
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imental polarization dependence of
the Ni L3-XAS of a 1 ML NiO(100)
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The theoretical spectra are calcu-
lated in D4h symmetry without
exchange.
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In order to resolve the origin of the linear dichroism in the 1 ML NiO system,
we now resort to the Ni L3 part of the spectrum. A close-up of this region is
given in Fig. 5.4. We can easily observe that the strong polarization dependence
of the spectra is accompanied by an energy shift ∆E of 0.35 eV in the main
peak of the L3 white line. This shift seems small compared to the 852 eV
photon energy being used, but it is very reproducible and well detectable since
the photon energy calibration is done with an accuracy of better than 0.02 eV
thanks to the simultaneous measurement of a NiO single crystal reference. We
now take this energy shift as an indicator for the presence and strength of local
crystal fields with a symmetry lower than Oh, i.e. crystal fields that do not
split the ground state but do alter the energies of the XAS final states, and, via
second order processes, also causes spectral weight to be transferred between
the various peaks as we will show below.

To understand the Ni L2,3 spectra quantitatively, we perform calculations
for the atomic 2p63d8 → 2p53d9 transitions using the same method as described
earlier by Alders et al. [102], but now in a D4h point group symmetry. The
method uses the full atomic multiplet theory and includes the effects of the
solid. It accounts for the intra-atomic 3d-3d and 2p-3d Coulomb and exchange
interactions, the atomic 2p and 3d spin-orbit couplings, the O 2p - Ni 3d hy-
bridization with pdσ = -1.29 eV, and an Oh crystal field splitting of 10Dq =
0.85 eV. The local symmetry for the Ni ion sandwiched between the Ag(100)
substrate and the MgO(100) film is in principle C4v, but for d electrons one can
ignore the odd part of the crystal field, so that effectively one can use the tetrag-
onal D4h point group symmetry. As we will explain below, the D4h parameters
Ds and Dt [31] are set to 0.12 and 0.00 eV, respectively, and the exchange field
(the molecular field acting on the spins) to zero. The calculations have been
carried out using the XTLS 8.0 programm [24].

The right panel of Fig. 5.4 shows the calculated L3 spectrum for the light
polarization vector perpendicular and parallel to the C4 axis (θ = 90◦ and
θ = 0◦, respectively). One can clearly see that the major experimental features
are well reproduced, including the 0.35 eV energy shift between the two polar-
izations. This shift can be understood in a single electron picture. The ground
state has the 3dx2−y23dz2 configuration, where the underline denotes a hole.
The final state has a 2p53dx2−y2 or 2p53dz2 configuration. For z polarized light
the 3dz2 state can be reached, but the 3dx2−y2 can not, and the final state will
be of the form 2p53dx2−y2 . For x polarized light the final state will be of the
form 2p53dz2−y2=

√
3/4(2p53dz2)+

√
1/4(2p53dx2−y2). In a pure ionic picture,

the 2p53dx2−y2 state will be 4Ds+5Dt lower in energy than the 2p53dz2 state.
In the presence of the O 2p - Ni 3d hybridization, we find that Ds=0.12 and
Dt=0.00 eV reproduce the observed 0.35 eV shift.

Going back to the L2 edge, we can see in Fig. 3 that the calculations can
also reproduce very well the observed linear dichroism in the 1 ML NiO spectra.
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In fact, one now could also see the same 0.35 eV shift at this edge, although it
is not as clear as in the L3 edge. We would like to stress here that the good
agreement has been achieved without the inclusion of an exchange splitting, i.e.
the dichroism is solely due to the low symmetry crystal field splitting. It is a
final state effect and the change in the ratio between the two peaks of the L2

edge as a function of polarization can be understood as follows. In Oh symmetry
the first peak is due to two final states, one of T ′

2 and one of E′
1 symmetry. The

second peak is due to a final state of T ′
1 symmetry. All three states have the

2p53deg
configuration. If one reduces the crystal field to D4h symmetry the

peaks will split. The T ′
2 state will split into two states of B′

2 and E′
1 symmetry,

the E′
1 into A′

1 and B′
1, and the T ′

1 into A′
2 and E′

1. The energy splitting can be
measured, but this is much easier done using the L3 edge. We note that each
of the two peaks in the L2 edge will have a state of E′

1 symmetry, so that these
two will mix and transfer spectral weight. This can be seen with isotropic light,
but will show up more pronounced as a linear dichroic effect if polarized light
is used.

In contrast to the 1 ML NiO case, the good agreement between theory and
experiment for the polarization dependent spectra of a 20 ML NiO film [102]
have been achieved by assuming the presence of an antiferromagnetic order
with an exchange field of about 0.16 eV in a pure local Oh symmetry. It is
surprising and also disturbing that a low symmetry crystal field could induce a
spectral weight transfer between the two peaks of the L2 white line such that the
resulting linear dichroism appears to be very similar as a dichroism of magnetic
origin. It is obvious that the ratio between the two peaks can not be taken as
a direct measure of the spin orientation or magnitude of the exchange field in
NiO films [102] if one has not first established what the crystal field contribution
could be.

We now can identify two strategies for finding out which part of the linear
dichroism is due to low symmetry crystal field effects. The first one is to study
the temperature dependence as we have done above. Here we have made use of
the fact that those crystal fields do not split the high spin ground state, so that
there are no additional states to be occupied with different temperatures other
than those already created by the presence of exchange fields. Thus there should
not be any temperature dependence in the crystal field dichroism. The linear
dichroism due to magnetism, however, is temperature dependent and scales with
<M2>. By going to temperatures high enough such that there is no longer any
temperature dependence in the linear dichroism, i.e. when all magnetic ordering
has been destroyed, one will find the pure crystal field induced dichroism.

The second strategy to determine the low symmetry crystal field contribution
is to measure carefully the energy shift ∆E in the main peak of the Ni L3 white
line for θ=0◦ vs. θ=90◦. We now calculate the ratio between the two peaks of
the Ni L2 edge as a function of ∆E, and the results are plotted in Fig. 5.5 for
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Figure 5.5: Calculated ratio of
the two peaks in the L2 edge as a
function of ∆E, which is the shift
in energy of the L3 main peak in
going from normal (θ = 90◦) to
grazing (θ = 0◦) incidence of the
linearly polarized light. The L2 ratio
is calculated for θ = 90◦, θ = 0◦, and
for the isotropic spectrum.
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θ = 90◦, θ = 0◦, and θ = 54.7◦ (isotropic spectrum). Since ∆E is a function of
Ds and Dt combined, we have carried out the calculations with Ds as a running
variable for several fixed values of Dt, and plotted the resulting L2 ratios vs.
∆E. We now can use Fig. 5 as a road map to determine how much of the
linear dichroism in the Ni L2 edge is due to crystal field effects and how much
due to magnetism. We can see directly that the 1 ML data lie on curves with
the same Dt, meaning that the measured L2 ratios are entirely due to crystal
fields. The same can also be said for the 20 ML NiO on MgO at 528 K, which
is not surprising since this temperature is above TN . However, for the 20 ML
NiO at 195 K, one can see that the data points do not lie on one of the Dt
curves (one may look for larger Dt curves, but this results in lineshapes very
different from experiment) or let alone on curves with the same Dt, indicating
that one need magnetism to explain the L2 ratios. In other words, knowing the
L2 ratio and ∆E together allows us to determine the magnitude of the exchange
interaction and the orientation of the spin moments. It is best to use the θ = 0◦

spectra since here the L2 ratio is determined almost by ∆E alone and is not
too sensitive to the individual values of Ds and Dt.

To conclude, we have observed strong linear dichroism in the 1 ML NiO on
Ag, very similar to the well known magnetic linear dichroism found for bulk
like antiferromagnetic NiO films. The dichroism in the 1 ML, however, can not
be attributed to the presence of some form of magnetic order, but entirely to
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crystal field effects. We provide a detailed analysis and a practical guide of how
to disentangle quantitatively the magnetic from the crystal field contributions
to the dichroic signal. This is important for a reliable determination of, for
instance, the spin moment orientation in NiO as well as LaFeO3, Fe2O3, VO,
LaCrO3, Cr2O3, and Mn4+ manganate ultra thin films, surfaces and strained
films, where the low symmetry crystal field splitting may not be negligible as
compared to the exchange field energies.

We acknowledge the NSRRC staff for providing us with an extremely stable
beam. We would like to thank Lucie Hamdan for her skillful technical and
organizational assistance in preparing the experiment. The research in Cologne
is supported by the Deutsche Forschungsgemeinschaft through SFB 608.



Chapter 6

CoO

CoO is a rock-salt antiferromagnetic insulator with a Néel temperature of about
291 K [131]. At first sight it may look like a simple material, but it is actu-
ally quite an amazing material with many unusual properties. Above the Néel
temperature, CoO orders in a simple rock-salt crystal structure with a small
tetragonal elongation of about 0.25 % [132]. Below the Néel temperature, there
exists a relatively large tetragonal contraction, more or less proportional to the
magnetic ordering, saturating at about 1.2% at 0 K [133,134]. Unlike MnO and
NiO, however, the spins do not orientate in a {112} direction. The exact direc-
tion of the spin has given rise to a lot of debate in the literature. This debate
continues up to date [133–145]. CoO is one of the few materials that has a large
magnetic orbital momentum and therefore a strong coupling between magnetic
and crystal structure [40,138,144,146]. It is most likely that spin-orbit coupling
will play an important role in understanding the fascinating magnetic proper-
ties of the class of cobaltates, which we will discuss in chapter 8. The effects of
spin-orbit coupling in those materials are not widely known and CoO is a good
reference system. As we will show below, spin-orbit coupling results in a few
amazing properties of CoO, which should be true in general for systems where
spin-orbit coupling is important.

From a technological point of view CoO is quite interesting. About 50
years ago the exchange-bias phenomenon has been discovered in surface-oxidized
cobalt particles [42, 43]. This discovery marks the beginning of a new research
field in magnetism. Since then several combinations of antiferromagnetic and
ferromagnetic thin-film materials have been fabricated and investigated [44,45],
motivated by the potential for applications in information-storage technology,
such as magnetoresistive devices involving spin valves. Therefore it is not sur-
prising that there is a lot of research on how exchange-bias functions. Thin
films of CoO are widely used as antiferromagnets within the field of exchange-
bias [116,124,147–156].
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A good understanding of the magnetic and electronic properties of CoO is
desirable. However, antiferromagnetic thin films are not so easy to investigate.
The total volume is very small and standard techniques like magnetic suscep-
tibility measurements or neutron scattering would require the use of multiple
repetition of these films in the form of multi-layers. Moreover, susceptibility
measurements do not work if the antiferromagnetic CoO is grown adjoint to a
ferromagnetic layer. Fortunately, soft x-ray absorption spectroscopy has made
a large development in the last decades and has become a good option for
the investigation of antiferromagnetic thin films. It can be combined with mi-
croscopy in order to resolve different domains [20, 102, 157]. For NiO this has
been used with great success [102, 121, 124–126, 156, 158–161]. For CoO, how-
ever, no polarization-dependent data have been reported so far from which one
could deduce the magnetic structure and the underlaying electronic structure.

In this chapter we will present detailed measurements on; bulk CoO, a poly-
crystalline CoO thin film and single-crystal CoO thin films epitaxial grown on
different substrates. After an introduction about the general properties of CoO
and our measurement setup, we will discuss the temperature dependence of
the isotropic CoO spectra. From the temperature dependence of the isotropic
spectra the importance of spin-orbit coupling can be deduced. Next we will
show the x-ray magnetic circular dichroism (XMCD) in CoO, induced by a
high magnetic field. From the XMCD spectra, information about the orbital
momentum and the spin momentum are obtained. We also obtain a value
for the exchange coupling in the paramagnetic phase. The last part of this
chapter will be about linear dichroism in thin CoO films. We will give a detailed
understanding of the magnetic and crystal field induced linear dichroism within
these thin films. Using CoO grown on different substrates (Ag and MnO), we
impose different kinds of stress in our thin films. CoO on Ag is elongated in plane
and CoO on MnO is compressed in plane. We will show that these different kinds
of in-plane stress will lead to different crystal-fields, a reorientation of orbital
momentum and a reorientation of spin direction. We will present a quantitative
model to explain this spin reorientation.

Our analysis is based on a detailed fit of spectra, calculated within a CoO6

cluster, to the measured spectra, as well as the use of sum-rules. Sum-rules are
powerful due to there simplicity and give a nice double check for the results
of the cluster fit. The parameters used, for the cubic non-distorted and non-
magnetic spectra, within our cluster fit are, in agreement with the literature
[24,162,163]. Below the Néel temperature we added an effective exchange field.
The exchange field at 0 K has been taken to agree with neutron measurements
[164, 165]. The temperature dependence has been taken to be according to a
J = 3

2 Brillouin function. We scaled the temperature axis in order to get the
correct Néel temperature. The spin-orbit coupling constant has been taken to
be the Hartree-Fock value. The tetragonal crystal field distortions and the spin
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direction for our thin films have been fitted to reproduce the correct spectra.
When we refer to CoO, we always refer to type I CoO [166]. A face centered

cubic structure with no vacancies on the Co or O site. CoO can have vacancies
at the Co and O site in a similar way as VO always has [167]. CoO with
vacancies could be denoted as Co1−yO1−y or type II CoO, as introduced by
Hang Nam Ok et al. [166]. Our samples are stable when heated up to 400 K and
cooled down again over several measurement cycles, show sharp x-ray diffraction
peaks, are good insulators and have sharp peaks in the x-ray absorption data.
Within Co1−yO1−y the Co ions have a different local symmetry, resulting in
locally different crystal fields for each ion. As we will show below, Co 2p x-
ray absorption spectra are very sensitive to the local crystal field. If many
different crystal fields would be present, the x-ray absorption spectra would also
become very broad. This broadening can be seen very nicely in VO [167], but is
completely absent in CoO. In contrast, the first peak of the XAS spectrum is so
sharp that the width is limited by the resolution of the beam-line. We therefore
conclude that the amount of double vacancies is rather low.

6.1 Crystal and magnetic structure of cobalt ox-
ide.

In antiferromagnetic CoO the spin direction has given rise to a lot of de-
bate. Different angles between the spin and the tetragonal axis have been
reported [133, 134, 136, 168]. A tilt of the spin with respect to the tetrago-
nal axis is not compatible with a tetragonal space-group. In order to resolve
this discrepancy, a multi-axis spin structure has been proposed [137, 140–143].
The multi-axis spin structure is, however, inconsistent with the findings that
the magnetic anisotropy does not have its minimum in the direction of the
tetragonal axis [138–140]. Thereby an additional rhombohedral elongation of
about 5× 10−4 lowering the total symmetry to monoclinic was found [134,139].
These experiments, together with diffraction experiments of CoO under uniax-
ial stress [169], resolved this discrepancy in favor of a collinear alignment of the
spins. Recently a new spin structure has been proposed, where a type I antifer-
romagnet has been mixed into a type II antiferromagnet, in order to explain all
neutron reflections [145]. It has been suggested that the discrepancies between
these measurements might be due to the neglect of orbital momentum of the Co
ions [139]. Neutron measurements give an exchange constant J2 between next
nearest neighbors of about 1.4–1.5 meV [164,165]. This results in a temperature
dependent exchange field of Hex = 6J〈S〉, or 12.6 meV when the Co spin is fully
aligned. The orbital momentum of CoO is quite large. The presence of strong
K-edge resonant x-ray magnetic scattering indicates a large orbital contribu-
tion to the ordered momentum [93]. A γ-ray diffraction study found an electron
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distribution at 10 K that is consistent with an ordered orbital momentum of
1.6 µB , where they assumed the spin and orbital momentum to be parallel [40].
The total ordered momentum at low temperatures lies between 3.36µB and
3.98µB [133, 134, 141, 143, 169]. The angle between the orbital momentum and
the spin momentum is not known.

6.2 Experimental setup

E

[001]

Ag

θ=20
α=70

E

[001]

Ag

α=70
θ=90

Figure 6.1: Experimental XAS ge-
ometry for the linear dichroism ex-
periments, with polarization of the
light in the horizontal plane. θ gives
the angle between the electric field
vector ~E and the [001] surface nor-
mal and can be varied between 20◦

and 90◦. The tilt angle α between
the Poynting vector and the surface
normal is kept at 70◦.

Three different samples have been measured. In order to gain information
about the isotropic spectra and their temperature dependence a poly-crystalline
CoO thin film on Ag has been measured. In order to gain information about the
local spin momentum, orbital momentum and the exchange coupling, circular-
dichroism spectra have been taken on a bulk CoO sample. The linear dichroism
experiments have been preformed on a thin film of CoO, epitaxially grown on
different substrates.

All spectra have been recorded using the total electron yield method in a
chamber with a base pressure of 3 × 10−10 mbar. The absolute-energy cali-
bration of the monochromator has been done by setting the energy scale of a
bulk NiO spectrum to the absolute-energy scale in the NiO electron energy loss
spectrum, as measured by Reinert et al. [170]. The relative energy calibration
between spectra taken at different scans has been done by measuring, simulta-
neously with the measured sample, a bulk CoO crystal in a separate upstream
chamber. This way an energy calibration of better than 20 meV per scan has
been achieved.

The isotropic spectra have been measured at the Dragon beamline of the
NSRRC in Taiwan. The photon energy resolution at the Co L2,3 edges (hν ≈
770–800 eV) was set to 0.3 eV. The sample has been grown by evaporating
elemental Co from alumina crucibles in a pure oxygen atmosphere of 10−7 to
10−8 mbar onto sandpapered poly-crystalline Ag. The base pressure of the
chamber is in the low 10−10 mbar range. The sample thickness is about 90
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Å. The sample has been measured in situ. The spectra have been measured
at normal incidence. By growing a thin poly-crystalline film, we measured an
isotropic spectrum, since our beam-spot of 1 by 1 mm2 is larger than the size
of each ordered crystallite.

The magnetic circular dichroic spectra have been measured at the Dragon
beamline ID08 of the ESRF in Grenoble. The photon energy resolution at the
Co L2,3 edges (hν ≈ 770–800 eV) was set to 0.17 eV, and the degree of circular
polarization was ≈ 100%. The magnetic field used to create the circular dichroic
effect was 6 Tesla. The XMCD spectra have been broadened with a Gaussian
of FWHM of 0.12 eV, resulting in a total resolution of 0.21 eV. The broadening
was done in order to gain better statistics, needed for the energy calibration.
A good energy calibration was necessary to measure small differences between
different scans. After averaging over 36 scans a final energy calibration of better
than 2 meV between different polarizations has been achieved. The sample is
a pressed pellet of CoO powder mixed with 10% Au to decrease the resistivity.
The pallet has been sintered at 600K before and after pressing in order to reduce
the Co3+ content. The sample has been checked with x-ray diffraction patterns
for the presence of undesired Co2O3, which content was found to be negligible
small. The pellet has been cleaved in situ to create a clean surface.

The linear dichroic spectra have been measured at the Dragon beamline of
the NSRRC in Taiwan. The photon energy resolution at the Co L2,3 edges
(hν ≈ 770−800 eV) was set to 0.3 eV, and the degree of linear polarization was
≈ 98%. In order to assure an equivalent light path for the different polarizations
measured we recorded the spectra with an angle of α = 0◦ between the [001]
surface normal and the Poynting vector of the light. To change the polarization,
the sample was rotated around the Poynting vector as depicted in figure 6.1.
The angle θ, between the electric field vector ~E and the [001] surface normal,
can be varied between 20◦ and 90◦. This measurement geometry allows for an
optical path of the incoming beam which is independent of θ, guaranteeing a
reliable and accurate comparison of the spectral line shapes as a function of θ.

We measured linear dichroism on two different samples, (14Å)MnO/(10Å)
CoO/(100Å)MnO/Ag(001) and (90Å)CoO/Ag(001). The two samples were
grown by molecular beam epitaxy (MBE), evaporating elemental Mn and Co
from alumina crucibles in a pure oxygen atmosphere of 10−7 to 10−6 mbar. The
base pressure of the MBE system is in the low 10−10 mbar range. The thickness
and epitaxial quality of the films are monitored by reflection high energy elec-
tron diffraction measurements. With the lattice constant of bulk Ag (4.09 Å)
being smaller than that of bulk CoO (4.26 Å) and MnO (4.444 Å), we find from
x-ray diffraction that CoO on Ag is slightly compressed in-plane (a‖ ≈ 4.235 Å,
a⊥ ≈ 4.285 Å), and from reflection high energy electron diffraction (RHEED)
that CoO sandwiched by MnO is about 4% expanded in-plane (a‖ ≈ 4.424
Å). The sandwich structure was used to maximize the CoO thickness with full
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in-plane strain. Details about the growth will be published elsewhere [171].
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Figure 6.2: CoO L2,3 spectra
taken at normal incidence (α = 0◦)
and taken at grazing incidence (
α = 70◦), before correction for
electron-yield saturation effects
(bottom) and after (top). After
correction the two spectra fall
perfectly on top of each other.

The spectra have been corrected for electron-yield saturation effects. Sat-
uration effects are very small for spectra taken with light of normal incidence.
For light that comes in with an angle of 70◦ the saturation effect is about 10%
at the maximum of the L3 edge. The corrections have been made using the fact
that light with grazing incidence has larger saturation effects than light with
normal incidence. We know that the measured electron-yield, Ye is proportional
to the absorption coefficient µ with the following formula [172]:

Ye = Y0
Ge

G0

1
1 + λeµ

cos[α]

(
1 − e−

t
λe

(1+ λeµ
cos[α] )

) λeµ

cos[α]
(6.1)

Where Ye is the measured sample current. Y0 is the current of a gold mesh,
mounted upstream in the beam-spot used for normalization of the incident pho-
ton flux. Ge is the electron gain factor of the sample, G0 is the electron gain
factor of the gold reference mesh, α is the angle between the Poynting vector
of the light and the surface normal, t is the sample thickness, λe is the electron
escape depth and µ is the absorption coefficient we want to know. For bulk
samples t = ∞ and µλe is expressed easily as a function of Ye

Y0
. There remains

one unknown in this equation, namely Ge

G0
. This constant has been fitted such

that the spectra λeµ taken at different incidence angles, α overlap over the en-
tire spectra range. The fitted constant Ge

G0
determines for a given beam-line

and material the effect of saturation uniquely. For thin films one has to make
a Taylor expansion of e−

t
λe

(1+ λeµ
cos[α] ) in order to create µλe as a function of Ye

Y0
.

This function has two fitting parameters, Ge

G0
and t

λe
, that can be determined

uniquely by comparing spectra taken at different incidence angles, α. In figure
6.2 we show the spectra of a 90 Å thick CoO film on Ag, taken with normal
incidence and at an angle of α = 70◦. The polarization of both spectra is such
that θ = 90◦, the electric vector ~E is in the plane of the thin film. One can
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clearly see that the spectra taken with α = 70◦ show a larger saturation effect
at the top of the L3 edge than the spectra taken with normal incidence. We also
show the spectra after correction. We would like to note that the corrections
made are quite small. The orbital momentum, as derived from the Lz sum-rule,
does not change more then 0.05 µB due to these corrections. The branching
ratio changes by about 5%.

6.3 Isotropic line-shape and temperature depen-
dence.

Figure 6.3: Temperature depen-
dence of the experimental and
theoretical isotropic CoO L2,3

spectra.
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In order to get a better understanding of the CoO spectra and its many
properties, we start with the temperature dependence in the isotropic spectra.
In figure 6.3 we show the temperature dependence of the isotropic CoO spectra.
Within the L3 edge one sees that the first sharp peak at 777 eV becomes less in
intensity as the temperature goes up. This peak has been enlarged by a factor
of two on the left in the same figure. One might think that this reduction in
intensity is due to phononic broadening. However, the onset of the peak does
not go up with temperature, showing that the peak does not become broader
but really looses intensity as the temperature is increased. At the L2 edge one
can see, beyond any doubt, that something happens with the spectrum when
the temperature changes which can not be related to phonons. The intensity of
the L2 edge shifts to the left when the temperature is increased. Thereby the
total intensity of the L2 edge increases with increasing temperature.

Let’s figure out where this temperature dependence comes from. One could
assume that it has to do with magnetic interactions, in the same way as found
for NiO [102]. When CoO is cooled down below the Néel temperature the system
starts to order antiferromagnetically. This ordering will result in an exchange
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field of the form
∑

i J〈Si〉, which is the driving force for the spin-ordering. This
exchange field will not only order the magnetic moments in the ground-state,
but can also influence the excitonic final states. These changes in final state can
modify the spectra as has been shown for NiO [102]. The exchange field for CoO,
is much smaller than the exchange field for NiO, therefore the measured changes
of the isotropic spectra, due to the increase of an exchange field, should be quite
small in CoO. Thereby the change in spectra in the temperature range from 300
K to 400 K is about as large as the change in spectra in the temperature range
from 0 K to 300 K. If the change in the spectra was due to an exchange field, one
would not expect any, or very small changes above the Néel temperature. We
have to conclude that the changes in isotropic spectra of CoO with temperature
are not due to magnetic interactions. We have to look for another mechanism.
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Figure 6.4: Left bottom: Energy level diagram of the 12 lowest states of the
Co2+ ion split by spin-orbit coupling. Left top: Energy level diagram of the
many final states possible for a Co2+ ion with a 2p core hole. Middle: The lines
and arrows indicate the few possible excitations that are allowed due to the
strict selection rules. Each initial state can reach a different set of final states.
Right: 2p XAS spectra for the three different states with J̃= 1

2 , J̃= 3
2 and J̃= 5

2 .

In CoO the cobalt ions are 2+ and have 7 electrons in the 3d shell. In cubic
symmetry the 3d shell is split into a lower-lying t2g shell and a higher-lying
eg shell. The t2g shell is 3-fold orbital degenerate and the eg shell is 2-fold
orbital degenerate. The first five electrons of the cobalt ion populate the t2g

and eg orbitals with spin up. The last two electrons occupy the t2g orbitals with
spin down. Two electrons in three orbitals means that there is a 3-fold orbital
degeneracy present at the Co site. In other words, there is one hole in the t2g

shell, which can be in the dxy, dyz, or dxz orbital. One is used to chose a real
basis set for the t2g orbitals. However, with a linear combination of the dyz and
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dxz orbitals one can create a d1 =
√

1
2 (−dxz − idyz) or a d−1 =

√
1
2 (dxz − idyz)

orbital, containing a magnetic orbital momentum of ±1µB in the z direction.
Since the t2g shell has three orbitals with a magnetic orbital momentum of
−1,0, and 1 µB , it is natural to assign a pseudo orbital momentum of l̃ = 1
to the t2g shell. This pseudo orbital momentum couples with the local spin of
3
2 and forms three separate states. These states are separated due to the 3d
spin-orbit coupling and have their spin and pseudo orbital momentum coupled
to a pseudo total momentum of J̃ = 1

2 , J̃ = 3
2 and J̃ = 5

2 . The ground state
is twofold degenerate and has J̃ = 1

2 . The first excited state has J̃ = 3
2 and is

fourfold degenerate. The second excited state is sixfold degenerate and has J̃
= 5

2 . The Hartree-Fock value of the spin-orbit coupling constant for Co2+ is
about 66 meV. However, the effective splitting is reduced due to covalency, so
we find for a CoO10−

6 cluster with a coupling constant of 66 meV a splitting
between ground state and first excited state of about 40 meV.

At 0 K, only the state with J̃ = 1
2 is populated, but when the temperature is

increased, the first and second excited state become populated. At 400 K, the
state with J̃ = 3

2 is populated appreciable. Since we are talking about many-
electron wave-functions one can calculate the occupation with the use of Boltz-
mann statistics. Knowing that the ground-state of CoO is split by spin-orbit
coupling and that for higher temperatures excited states become populated, it
is quite easy to understand why the x-ray absorption spectra are temperature
dependent. The 2p to 3d transition is dipole allowed and strong dipole selection
rules are present. One of the dipole selection rules is ∆J = 0,±1. For each
state with a different J̃, a different set of final states can be reached. On the left
side of figure 6.4 we show this graphically. On the bottom we show the energy
level diagram of the lowest 12 states of the d7 configuration split by spin-orbit
coupling. On the top we show the many states present in the final 2p53d8 con-
figuration. The arrows indicate different excitation probabilities from a given
initial state with a specific J̃ value to the different final states. On the right of
figure 6.4 the 3 spectra for the different initial states with different values of J̃
are shown. As one can see they are quite different.

Now we have all ingredients in order to calculate the temperature depen-
dence of the isotropic spectrum. We have calculated the spectrum for each of
the initial states with different values of J̃. We have calculated the splitting be-
tween the different initial states. Next we use Boltzmann statistics to calculate
the different populations of each of the initial states at different temperatures.
Finally we take a weighted sum of the spectra according to the population cal-
culated with the use of Boltzmann statistics. In figure 6.3 we compare the
temperature-dependence in the theoretical spectrum for a cluster calculation
with the experimental spectrum. All features are represented and the temper-
ature dependent change of spectra can be related to the population of excited
states with different J̃. Our calculations are in good agrement with previous
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predictions made about the temperature changes in the CoO spectra on the
basis of the same cluster calculations [163, 173, 174]. The parameters used are
in agreement with parameters noted in the literature [24,162,163].
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Theory

0.50

0.45

0.40

0.55

(
-2

)/
(

+
)

L
L

L
L

3
2

3
2

100 200 300 400
T(K)

Isotropic ratioL L2 3

Figure 6.5: Isotropic branching
ratio as a function of temperature.

There is another way to check the influence of 3d spin orbit coupling in
the initial state. Thole and Van der Laan have studied the reason for the
nonstatistical branching ratio and found that the branching ratio scales linear
with the expectation value of

∑
i〈li · si〉 [115, 175]. They already suggested

that by doing temperature-dependent x-ray absorption measurements one could
deduce, if excited states with different spin-orbit coupling become populated by
looking at the branching ratio. The branching ratio is related to an exact number
for the spin-orbit coupling operator and for p to d transitions the relation they
found is: ∫

L3
−2

∫
L2∫

L3
+

∫
L2

=
∑

i〈li · si〉
n

(6.2)

Where n is the number of holes in the 3d shell.
∑

i〈li · si〉 is different for each
state with a different J̃. In our case

∑
i〈li · si〉 = −1.31 for states with J̃= 1

2 ,∑
i〈li · si〉 = −0.72 for states with J̃= 3

2 and
∑

i〈li · si〉 = 0.35 for the average
over states with J̃= 5

2 . In figure 6.5 we show the measured branching ratio as
well as the branching ratio of the cluster calculations. A clear degreasing trend
can be seen, as one should expect from the sum rule. We find for T=77K an
expectation value of

∑
i < li · si >= −1.30 and for T=400 K an expectation

value of
∑

i〈li · si〉 = −1.00. These values are derived from our cluster fit and
not from the sum rule. The values for

∑
i〈li · si〉 are in perfect agreement with

circular polarized spin resolved photo-emission measurements that measured
the expectation value of

∑
i〈li · si〉 = −0.99 at 390 K. If we now compare these

values with the values obtained from the sum rule we find that the sum rule
gives values for

∑
i〈li · si〉 that are about 10% larger than the values found from

our cluster fit. However our fit does get the correct L3–L2 ratio. The deviation
of the sum rule is due to an approximation made in the derivation of sum rule.
In the derivation of the sum rule it is assumed that the L2 and the L3 edge are
well separated. In other words, that j2p is a good quantum number. This is
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not the case. The 2p–3d electron electron repulsion mixes both edges and the
prerequisites for the sum rule are not fulfilled. A 10% deviation might not seem
too bad, but this deviation depends on other parameters within the system.
In figure six of reference [175] Thole and Van der Laan showed the theoretical
branching ratio for different initial state terms as a function of 2p–3d electron-
electron interaction. If the 2p–3d electron-electron interaction is made zero, the
statistical branching ratio is found and the l · s sum-rule works perfectly. If the
2p–3d electron-electron interaction is increased, deviations from the statistical
branching ratio occur. These deviations are different for each multiplet term of
the d7 ion. This can be seen in figure seven of reference [175]. The 4F term has a
larger deviation from the statistical branching ratio than the 4P term. In CoO,
the Co ions are in a high-spin d7 state. In spherical symmetry there are two
terms that have S = 3

2 , a P (L = 2) and a F (L = 3) term. One should realize
that the orbital momentum is not a good quantum number in Oh symmetry.
This means that the F and P term mix in order to build the ground-state. The
amount of F and P depends on the splitting between the t2g and eg orbitals.
If this splitting is zero, we are back in spherical symmetry and find that the
ground-state belongs to the F term. If this splitting is very large, we have a
ground-state that is built up of about 20% P and 80% F . Since the branching
ratio for the F and P terms is different, we will also find a change in branching
ratio if we change the splitting between the t2g and eg orbitals. Therefore the
decreasing trend found in the branching ratio when temperature is increased,
as shown in figure 6.5, is very nice, but without the analysis done before, based
on cluster calculations, we would not have been able to determine wether the
change in branching ratio is due to population of excited states with a different
value of J̃ or due to an increase of the splitting between the t2g and eg orbitals.
From our cluster fits there is no doubt. Within CoO we can quantify a localized
ground-state and excited states that are split due to spin-orbit coupling and
become thermally populated when temperature is increased.

6.4 Circular dichroism; magnetic spin momen-
tum, magnetic orbital momentum, and ex-
change coupling.

In order to get a better understanding of the exchange field and magnetic prop-
erties of CoO and its influence on the CoO spectra, we set out an experiment to
do x-ray magnetic circular dichroism (XMCD) on bulk CoO. The XMCD signal
is proportional to the magnetization of the Co ion. CoO has the largest sus-
ceptibility at its Néel temperature of 291 K. However, the susceptibility at that
temperature is still rather small. To get a well measurable signal, we needed a
strong magnetic field. We used a magnetic field of 6 Tesla, present at ID08 of
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the ESRF.

In
te

n
si

ty
(a

rb
.
u
n
it

s)

775 780 785 790 795 800
Photon energy (eV)

Theory

Experiment

Theory

Experiment
Isotropic

XMCD 25

Figure 6.6: Magnetic circular
dichroism in CoO at the Néel
temperature of 291 K. Magnetic
ordering is induced by a magnetic
field of 6 Tesla.

In figure 6.6 we show the isotropic CoO spectrum at 291 K as well as the
XMCD signal. The isotropic spectrum is defined as the average of the four dif-
ferent spectra, taken with positive or negative helicity and positive or negative
magnetic field. The XMCD signal is defined as the difference between the anti-
parallel (e.g. positive helicity and negative magnetic field) and parallel spectra.
The XMCD signal is about 3% of the isotropic spectrum and is highly repro-
ducible for different scans and positions of the sample. When within a cluster
calculation only a magnetic field of 6 Tesla is introduced to calculate the XMCD
signal, we find that the theoretical XMCD spectra does have the correct line
shape, but is about 2.5 times too large. This should be expected, as a magnetic
field will order the spins and therefore induce an exchange field. This exchange
field acts in mean-field theory as a magnetic field, which only operates on the
spins. This exchange field is anti-parallel to the applied magnetic field, therefore
it reduces the size of the XMCD effect. We fitted the size of the exchange field to
be such that the total size of the XMCD signal is correctly reproduced. We find
that at 291 K we need to include an exchange field of 0.58 meV. The magnetic
moments then become; Lz = 0.022 and Sz = 0.016. If we assume that the mag-
netic susceptibility is equal to M

B we find that χ = (2Sz+Lz)µBNA

B10 = 5.1 × 10−3

[emu mol−1]. This is in reasonable agrement with the magnetically measured
value of 5.3× 10−3 [emu mol−1] [131]. If we compare our value of the exchange
field with the value expected from neutron measurements we do not find an
agreement. We know that Hex =

∑
n.n. J1〈Sn.n.〉 +

∑
n.n.n. J2〈Sn.n.n.〉, where

n.n. stands for the nearest-neighbors and n.n.n. for the next-nearest-neighbors.
The nearest-neighbors can be found in the {011} directions, the next-nearest-
neighbors in the {001} directions. Within the paramagnetic phase all sites are
equal. If we now realize that there are 12 nearest-neighbors and 6 next-nearest-
neighbors we find that Hex = (12J1 + 6J2)〈S〉. From our measurements we
have 2J1 + J2 = 0.58

0.016·6 = 6 meV. This value is 3 to 4 times larger than found
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from neutron measurements [164,165]. Sakurai et al. [165] deduced from inelas-
tic neutron scattering and paramagnetic susceptibility measurements a value of
J1 = 0.1 meV and J2 = 1.5 meV. The spin waves have been measured at 110
K. Rechtin et al. [164] measured the diffuse scattered neutron intensity in the
paramagnetic phase at temperatures close to the Néel temperature. In the same
temperature regime as our XMCD measurements have been done. Rechtin et
al. found J1 = 0.3 meV and J2 = 1.4 meV. The discrepancies between neutron
measurements and our XMCD results are outside the error-bars of our mea-
surement and should be taken seriously. It is not clear what the reason for this
discrepancy is, but a few considerations can be given. An exchange-field is in-
troduced in our cluster calculations in order to reduce the calculated magnetic
moments in the paramagnetic phase and make them consistent with the mea-
sured moments. This exchange-field is taken into account in a mean-field way,
which is for antiferromagnets not so good. It would be better to do spin-wave
theory, whereby it is known that within spin-wave theory the ordered moments
are reduced. However, for a spin-only system this can never explain the factor
of 3 to 4 with which the exchange field has to be reduced.

Spin-wave theory for CoO is not so easy. CoO is a cubic antiferromagnet
with orbital degree of freedom. Above the Néel temperature the tetragonal dis-
tortion is small and the t2g levels can be taken to be degenerate. Spin-orbit
coupling is important and with different temperatures different orbitals are oc-
cupied. One should expect different Co–O–Co hopping for each different orbital,
resulting in a temperature dependent exchange coupling constant. Thereby di-
rect orbital-orbital interactions might play an important role in describing the
size of the exchange coupling constants and might be an essential ingredient for
understanding the magnetic interactions. Should CoO be described in terms
of an orbital liquid in the presence of strong spin-orbit coupling as proposed
for LaTiO3 [75]? Within an orbital liquid orbital fluctuations are important
for describing the magnetic interactions and are responsible for reducing the
magnetic moments.

6.5 Linear dichroism; orbital occupation and
spin direction.

Next we turn our attention to the linear dichroism within the CoO spectra.
Linear dichroism can give us information about spin-orientation and exchange
fields, as well about orbital occupation and crystal fields. It is important to
have a good understanding of the linear dichroism in CoO, since with the use
of XAS and the linear dichroism therein, an enormous amount of information
can be obtained about the properties of CoO.

We compare our theoretical calculations with two different CoO thin films,
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one under tensile and another under compressive in-plane stress. This allows
us to present a detailed understanding of CoO and the XAS spectra of CoO
with a tetragonal distortion. We do not present data on perfect cubic CoO, as
these samples simply do not exist. Bulk CoO becomes tetragonally distorted
when cooled down below the Néel temperature. We decided to take thin films
of CoO grown on well defined substrates with a well-defined lattice mismatch,
in order to fully control the crystal fields in the CoO thin film. We took CoO
thin films epitaxially grown on MnO(100) and on Ag(100), as model systems
for CoO under either tensile or compressive in-plane stress. We will show how
XAS can be used to establish how the magnetic anisotropy, as well as the spin
and orbital contributions to the magnetic moments, depend on the lowering of
the local crystal-field symmetry by epitaxial strain.

The actual compositions of the CoO/MnO(100) and CoO/Ag(100) systems
are (14Å)MnO/(10Å)CoO/ (100Å)MnO/Ag(001) and (90Å)CoO/Ag(001), re-
spectively. With the lattice constant of bulk Ag (4.09 Å) being smaller than
that of bulk CoO (4.26 Å) and MnO (4.444 Å), we find from x-ray diffraction
that CoO on Ag is slightly compressed in-plane (a‖ ≈ 4.235 Å, a⊥ ≈ 4.285 Å),
and from reflection high energy electron diffraction (RHEED) that CoO sand-
wiched by MnO is about 4% expanded in-plane (a‖ ≈ 4.424 Å). The sandwich
structure was used to maximize the CoO thickness with full in-plane strain.

A tetragonal distortion can be modelled by two parameters, ∆t2g
and ∆eg

.
Here ∆t2g

is defined as the energy difference between the dxy orbital, and the dxz

and dyz orbitals. ∆eg
is defined as the energy difference between the dx2−y2 and

dz2 orbital. The parameters ∆t2g
and ∆eg

are related to the parameters Ds and
Dt, used in many textbooks, via ∆t2g

= 3Ds− 5Dt and ∆eg
= 4Ds + 5Dt [31].

In figure 6.7 we show the theoretical linear dichroism of the L2,3 edges of CoO
for different values of the tetragonal crystal field parameter ∆eg

on the left
hand side and ∆t2g

on the right hand side. Since CoO has an open t2g shell, the
orbitals will align when ∆t2g

is set nonzero. The spectra are therefore rather
sensitive to changes in the parameter ∆t2g

. In a first approximation, the eg shell
is half filled with two electrons, one electron in the dz2 and one electron in the
dx2−y2 orbital. Therefore the eg shell does not show any anisotropy when the
parameter ∆eg

is varied. One might expect that the spectra then do not change
at all when ∆eg

is varied. This, however, is not completely true. The changes
in spectral line-shape are much smaller when one varies ∆eg

, but still clearly
visible. There is a simple reason for that. The final-state does change when one
changes ∆eg

, therefore one finds changes in the spectra. The mechanism is very
similar as has been shown to be important for NiO [105].

In figure 6.8 we show the experimental spectra of CoO sandwiched by MnO
on the left and CoO on Ag on the right. These spectra are taken at 400 K,
well above the Néel temperature. At these temperatures there should not be
any linear dichroism due to magnetic ordering and all linear dichroism should
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Figure 6.7: Theoretical CoO spectra as a function of tetragonal distortion
parameter ∆eg

(left) and ∆t2g
(right).

be due to the crystal field. This is confirmed by our cluster calculations. The
theoretical spectra and the linear dichroism therein can be found below the
experimental spectra in figure 6.8. We took the value of ∆eg to be 4∆t2g

for
all our simulations. We find for CoO sandwiched by MnO a crystal field of
∆t2g

= −56 meV (∆eg
= −224 meV) and for CoO on Ag a crystal field of

∆t2g
= 18 meV (∆eg

= 72 meV). The opposite sign of the crystal field reflects
perfectly the opposite strain opposed in these thin films. For CoO sandwiched by
MnO we find that the dxy orbital is lower in energy then the dxz and dyz orbitals,
which also should be so, since the oxygen atoms in the xy-plane are further away
then the oxygen atoms in the z direction. For CoO on Ag the energies of the
orbitals is opposite, as one should expect from the crystal structure. The size
of the crystal fields is also fully consistent with our structural data that shows
that the CoO sandwiched by MnO(001) experiences a large in-plane expansion
and therefore has a large negative crystal field (−56 meV) while the CoO in
CoO on Ag(001) is only slightly contracted in-plane and therefore has a small
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Figure 6.8: Experimental spectra of CoO for CoO sandwiched by MnO on
the left and CoO on Ag on the right taken at 400 K, well above the Néel
temperature. The theoretical fits have been made by choosing the best value
of ∆t2g

and by assuming that ∆eg
= 4∆t2g

.

positive crystal field (+18 meV).
If we look at figure 6.7 or figure 6.8 we first notice that the largest contrast

can be found at the first peak of the spectrum around 777 eV. That is nice,
since this is also the only part of the spectrum that can be understood, more or
less quantitatively, in a one-electron picture. The lowest exciton one can make
with one hole in the 2p shell and 8 electrons in the 3d shell is a state with all
t2g electrons occupied and 2 electrons in the eg shell. This means that the first
peak originates from an excitation from the 2p core level to the t2g shell. CoO
has one hole in the t2g shell and now the selection rules for the dipole operator
become important. The intensity for an excitation is proportional to the square
of 〈pi|q|dj〉, where i can be x,y, or z depending on the p orbital excited, q can
be x,y, or z depending on the polarization and j can be xy, xz, or yz, since we
excite to the t2g shell. This integral is integrated over all space and therefore
0 if the integrand is odd. For z polarized light the only way to create an even
integrand and therefore to excite an electron into the t2g shell is by exciting the
px orbital into the dxz orbital (〈px|z|dxz〉), or the py orbital into the dyz orbital
(〈py|z|dyz〉). The integrand of the integral 〈pi|z|dxy〉 with i=x,y or z is always
odd. Therefore the dxy orbital can not be reached with z polarized light. In the
same way the selection rules for x and y polarized light can be deduced. We
find that for every polarization there is one t2g orbital that can not be reached.
With z polarized light one can not reach the dxy orbital, with x polarized light
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one can not reach the dyz orbital and with y polarized light one can not reach
the dxz orbital. CoO has only one hole in the t2g shell. Therefore if this hole
is in the dxy orbital one will not find any intensity with z polarized light for
the first peak of the Co2+ XAS spectra. If we now take a crystal field with
positive ∆t2g

then the dxy orbital is raised in energy with respect to the dxz

and dyz orbitals, it becomes unpopulated. The intensity of the first peak goes
down when we look with z polarized light (E ‖ C4). This can also be seen in
the right collum of figure 6.7 where for the topmost spectrum, ∆t2g

= 75 meV
the intensity of the first peak at 777 eV is almost gone for z polarized (E ‖ C4)
light. What one should notice is that the intensity contrast for the first peak
does not change abrupt, but slowly as the crystal field is varied. This is due
to the spin-orbit coupling that favors a spherical charge distribution. Without
spin-orbit coupling, one has zero or full intensity for the first peak already for
any crystal field larger than the temperature of the system. Spin-orbit coupling
turns this into a slow change when ∆t2g

is varied from +75 meV to −75 meV.

Figure 6.9: Polarization-
dependent theoretical CoO 2p
XAS spectra for different values of
the exchange field Hex = 6J2〈S〉.
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Ferro-orbital ordering and crystal fields are not the only reason for linear
dichroism. Magnetic ordering and exchange fields can give linear dichroism as
well [99,102]. In figure 6.9 we show the magnetic linear dichroism of cubic CoO
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as a function of the exchange field at 0 K. Up to an exchange field of 30 meV
one sees that the dichroic effect scales with the size of the exchange field. Above
30 meV the changes become roughly independent of the exchange field. This is
radically different from the magnetic linear dichroism found in NiO for example.
Within NiO there is hardly any dependence of the magnetic linear dichroism on
the size of the exchange field. For NiO at T=0 K the linear dichroism is already
present at its full extend for infinitesimally small exchange fields. This can be
understood if one takes into account that within CoO strong spin-orbit coupling
and a free orbital momentum is present. Spin-orbit coupling favors a spherical
state. Therefore one needs a finite exchange field to align the spins. For NiO
this is not the case and the spins align already with an infinitesimal exchange
field. If we have a look at the spectra as shown in figure 6.9, one sees that there
is a large contrast between different polarizations for the first peak at 777 eV.
This is the same peak where we saw the large contrast in the linear dichroism
that was induced due to crystal fields. The reason why there is linear dichroism
due to an exchange field in the first peak is actually the same as for a crystal
field. An exchange field induces a preferred orbital occupation. If the spins of
CoO are aligned in the z direction the spin-orbit coupling will also align the
orbital momentum in the z direction. Now one needs to realize that the dxz and
the dyz orbital can be recombined to give a d1 =

√
1
2 (−dxz − idyz) orbital. This

orbital has an orbital momentum in the z direction. If we align the spin in the z
direction, then the orbital momentum will also be aligned in the z direction. In
other words there will be half a hole in the dxz orbital and half a hole in the dyz

orbital, but no holes in the dxy orbital. For z polarized light (E‖ 001) we find a
large intensity of the first peak and for x or y polarized light (E⊥001) a small
intensity. If one regards figure 6.9, this is exactly what shows in the theoretical
spectra.

An exchange field is doing more then changing the initial state orbital occu-
pation. If we look at the L2 edge we see an effect that can not be described by
the orbital occupation, but measures directly the spin alignment. The mean-
energy position of the L2 edge depends on the polarization direction with respect
to the spin. For light polarized parallel to the spin direction, the mean-energy
position of the L2 edge is lower than for light polarized perpendicular to the
spin direction. This effect is also present as one varies the tetragonal crystal
field, but much weaker. Using both properties of the linear dichroism of CoO,
one is able to determine the spin and orbital momentum direction. These do
not have to be parallel for a Co ion in a symmetry lower then D2.

In figure 6.10 we show the low temperature spectra of the CoO thin films.
On the left we show the spectra of CoO sandwiched by MnO and on the right
the spectra of CoO on Ag. The spectra are taken at a temperature of T=77
K, well below the Néel temperature of about 300 K for these thin films as we
will show below. These temperatures guarantee an almost complete alignment
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Figure 6.10: Experimental spectra of CoO for CoO sandwiched by MnO on
the left and CoO on Ag on the right taken at 77 K, below the Néel temperature.
The theoretical fits have been made by including an exchange field of 12.6 meV
as found from neutron measurements [164, 165]. The direction of the exchange
field has been fitted to the best agreement between theory and experiment. For
CoO sandwiched by MnO we find the exchange field to be perpendicular to the
thin film surface and for CoO on Ag we find the spin to be in the plane of the
thin-film surface.

of the spins. The theoretical fits have been made by including an exchange field
of 12.6 meV, as found from neutron measurements [164, 165]. The direction of
the exchange field has been fitted to the best agreement between theory and
experiment. For CoO sandwiched by MnO, we find the exchange field to be
perpendicular to the thin-film surface and for CoO on Ag we find the spin to
be in the plane of the thin-film surface. Theoretically, one would expect that
dipolar interactions would tilt the spin towards the 112 direction. Our findings
hint, that these tilts should be rather small. A tilt of the spin, away from the
surface normal for CoO sandwiched by MnO or away from the film plane for
CoO on Ag, would reduce the measured linear dichroism. It has, exactly the
correct size if one assumes an exchange field of 12.6 meV and spins perfectly in or
out off the film plane. The canting of the spins could not be measured directly
since different domains are present. The average in-plane spin ordering over
these domains is isotropic. In this sense it would be extremely nice to combine
x-ray spectroscopy with microscopy (PEEM). By doing so one should be able to
see different domains and determine the angle with which the spins are canted.
For single-domain measurements information about the spin direction as well as
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information about the orbital momentum direction can be obtained separately
from the XAS spectra.

CoO on AgCoO sandwiched by MnO

Experiment

Theory

θ=90

θ=20

θ=90

θ=20

In
te

n
si

ty
(a

rb
.
u

n
it

s)
In

te
n

si
ty

(a
rb

.
u

n
it

s)

77K
100K
150K
200K
300K
400K

77K
100K
150K
200K
300K
400K

77K
100K
150K
200K
300K
400K

77K
100K
150K
200K
300K
400K

2

4 2

4

Experiment

Theory

Experiment

Theory

Experiment

Theory

Experiment

Theory

Experiment

Theory

Experiment

Theory

Experiment

Theory

Figure 6.11: Experimental and calculated Co L2,3 XAS spec-
tra and their temperature dependence of: left panel) CoO in
(14Å)MnO/(10Å)CoO/(100Å)MnO/Ag(001) at θ = 20◦ (top panel) and
θ = 90◦ (bottom panel); right panel) the same for CoO in (90Å)CoO/Ag(001)

We have shown that assuming an exchange field of 12.6 meV as measured
by neutrons [164,165], we find good fits for our spectra if we take the spins for
CoO on Ag in the film plane and for CoO sandwiched by MnO parallel to the
surface normal. In order to calculate spectra at a temperature below the Néel
temperature, but not so low that the Co spins are fully ordered, we assumed
that the exchange field scales like a Brillouin function. In figure 6.11 we show
the linear polarized spectra for a temperature range of 77 K to 400 K.

If we compare the temperature dependence of the linear polarized spectra in
figure 6.11 with the temperature dependence of the isotropic spectrum shown in
figure 6.3 we find some remarkable similarities. The intensity of the first peak,
found at 777 K, goes down when the temperature is increased for the isotropic
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spectrum. This also happens for the spectra taken with θ = 20◦ on the CoO
between MnO sample and for the spectra taken with θ = 90◦ on the CoO on Ag
sample. If one looks more carefully one will notice that the effect is even larger
for these thin films. The intensity of the first peak goes up with increase of
temperature between 77 K and 300 K for the CoO sample sandwiched by MnO
taken at θ = 90◦ and for the CoO on Ag sample taken at θ = 20◦. Surprisingly,
above 300 K this upward trend is broken and also for the CoO on Ag spectra
taken at θ = 20◦ and the CoO sandwiched by MnO spectra taken at θ = 90◦ the
intensity of the first peak goes down when the temperature is increased above
300 K. All these changes can be understood by using the argumentation given
in the previous paragraphs. At low temperature only the state with J̃ = 1

2 is
occupied. At higher temperatures also the state with J̃ = 3

2 becomes occupied.
As can be seen in figure 6.4 the state with J̃ = 3

2 has less intensity at the first
peak than the state with J̃ = 1

2 . When an exchange field is included, the states
with different values of J̃ start to mix in order to create a non-negative spin
momentum. However, there still will be many (12) excited states that, with
increase of temperature, start to get populated. The general trend for the po-
larized temperature-dependent intensity of the spectra is equal to the general
trend of the temperature-dependent isotropic spectra. As we will show later this
is a direct consequence of the fact that the exchange field (12.6 meV) is much
smaller than the spin-orbit coupling constant (66 meV). There are a few places
in the spectra where the temperature dependence of the polarized spectra is dif-
ferent from the temperature dependence of the isotropic spectra. First of all the
intensity of the first peak goes down faster with temperature if the polarization
is parallel to the spin direction, compared to the isotropic spectra. Second the
intensity measured with the polarization of the first peak perpendicular to the
spin direction goes up with increase of temperature up to the Néel temperature
and than starts to fall again. In order to understand this temperature behavior
we have to look at the effect of an exchange field on the orbital ordering. If
the spins become orientated due to an exchange field, the orbital momentum
will follow, in order to maximize the spin-orbit coupling. This means that the
hole in the t2g orbital will not be spread out evenly. The orbital occupation
depends on the exchange field, as shown in figure 6.9. If one now increases the
temperature from 77 K to 300 K the exchange-field decreases. This will also
decrease the ordered orbital momentum and the orbital occupation. Therefore
the intensity of the first peak, taken with the polarization perpendicular to the
spin direction, will increase when the temperature is increased from 77 to 300 K.
For temperatures larger than 300K the intensity will decrease again, as states
with J̃ = 3

2 start to become thermally populated.

This we can make more quantitative by comparing the polarization-dependent
peak contrast measured at the first peak at 777 eV, which we will call peak A,
as a function of temperature. In figure 6.12 we show this contrast for tempera-
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Figure 6.12: Temperature de-
pendence of the polarization peak
contrast, defined as the difference
divided by the sum of the height
of the first peak at hν = 775 eV,
taken with θ = 20◦ and θ = 90◦

polarizations. Filled and empty
circles are the experimental data
points. The solid lines are the
theoretical simulations.

tures between 77 K and 400 K. We see that there is a kink in the line around
300 K, which can be related to the Néel temperature. Below the Néel tem-
perature the exchange field increases, which enlarges the absolute value of the
polarization-dependent peak contrast in peak A. Furthermore we see that the
polarization contrast does not go to zero above the Néel temperature, which is
a direct consequence of the tetragonal distortions present in these films due to
the strain induced by the substrate. We finally also note that the polarization
contrast above the Néel temperature is still temperature dependent. This does
not mean that the crystal fields are changing, but is a consequence of the popu-
lation of higher excited states. These states exist due to the spin-orbit coupling
and due to the crystal field. The interaction between spin-orbit coupling and
crystal fields will be discussed more in the next section.

We can also look at the polarization-dependent energy position of the L2

edge. We therefore plotted in figure 6.13 the integral
∫

L2
Eµ(θ=20◦)∫

L2
µ(θ=20◦) −

∫
L2

Eµ(θ=90◦)∫
L2

µ(θ=90◦) .

This integral is a measure for the polarization-dependent energy shift of the L2

edge and does not depend on the absolute energy calibration or resolution of
the monochromator. We see a similar behavior for the polarization-dependent
energy position of the L2 edge as found for the peak contrast of peak A. With
one difference, the contrast in peak A is mainly given due to the orbital oc-
cupation. The contrast of peak A is largely sensitive to crystal field and for
exchange fields picks up the induced orbital momentum that starts to order.
The polarization-dependent energy position of the L2 edge is mainly sensitive
to the spin ordering. This opens up great opportunities for combined measure-
ments of core-level spectroscopy and microscopy (PEEM). With this technique
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Figure 6.13: Temperature depen-
dence of the polarization-dependent
energy shift of the L2 edge as de-

fined as
∫

L2
Eµ(θ=20◦)∫

L2
µ(θ=20◦) −

∫
L2

Eµ(θ=90◦)∫
L2

µ(θ=90◦) .

Filled and empty circles are the
experimental data points. The solid
lines are the theoretical simulations.
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one can look at different domains without averaging over these domains. There-
fore accurate determination between the spin, orbital momentum and the crystal
axis of each domain can be obtained.

For linear polarized light there have been sum-rules derived, relating the
total integrated intensity contrast over the L2,3 edges to the operator value
of the quadrupole moment, Qzz. [111] These sum-rules are extremely powerful
while they are so simple in use and generate a quantitative number for the
quadrupole moment. For the cuprates, d9 systems, it has been shown that the
quadropole moment is directly related to the question if the hole is in the dz2

or the dx2−y2 orbital [104]. With the following argumentation we will show
that this is true more general and that the linear polarized integrated intensity
contrast over the L2,3 edges can be related to the occupied orbitals.

The simplest example is an excitation from an s orbital to a p orbital. The
excitation probability is proportional to the square of the integral 〈s|q|pi〉 where
q can be x,y, or z depending on the polarization and i can be x,y, or z depending



98 CoO

on the p orbital to which the s orbital is excited to. The integrand has to be
even. An s orbital is always even. So for x-polarized light, one can excite into
px holes, for y-polarized light one can excite into py holes and for z-polarized
light one can excite into pz holes. We know that the total integrated intensity
for x plus y plus z polarized light is proportional to the total number of holes
in the p shell. If we now express the integral over the intensity taken with one
polarization divided by the integral over the spectra taken with all polarizations
we find for an s to p excitation.∫

K
µx∫

K
µx + µy + µz

=
nx

n∫
K

µy∫
K

µx + µy + µz
=

ny

n∫
K

µz∫
K

µx + µy + µz
=

nz

n
(6.3)

Where n denotes the total number of holes present and ni denotes the number
of holes in orbital i. The prefactors, in this case 1, are chosen such that the sum
of the three normalized integrals, for x, y and z polarization is 1. This has to
be the case as it is given by our normalization to the isotropic spectrum.

We can do the same thing for a p to d excitation. For 2p to 3d excitations
the electron can be excited from three different 2p orbitals to five different 3d
orbitals. We have to find all combinations of p orbital, polarization and d orbital
for which the integrand of the integral 〈pi|q|dj〉 is even. For p to t2g excitations
we already showed that this means that for z polarized light one can excite a px

orbital to the dxz orbital and the py orbital to the dyz orbital and that the dxy

orbital can not be reached. For the eg shell one can excite the pz orbital into
the dz2 orbital with z polarized light but can not excite into the dx2−y2 orbital.
The integrand of the integral 〈pz|z|dx2−y2〉 is even in x, y and z, but changes
sign when x and y are interchanged. For x and y polarization, one can use cyclic
permutation of the orbitals in order to obtain to which orbital one can excite.
Combining these argumentations, we arrive at the following formulas.∫

L2,3
µx∫

L2,3
µx + µy + µz

=
1
2nxy + 1

2nxz + 2
3nx2

n∫
L2,3

µy∫
L2,3

µx + µy + µz
=

1
2nxy + 1

2nyz + 2
3ny2

n∫
L2,3

µz∫
L2,3

µx + µy + µz
=

1
2nxz + 1

2nyz + 2
3nz2

n
(6.4)

Where the prefactors 1
2 and 2

3 are chosen such that the sum of these three
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integrals,
1
2 nxy+ 1

2 nxz+ 2
3 nx2

n +
1
2 nxy+ 1

2 nyz+ 2
3 ny2

n +
1
2 nxz+ 1

2 nyz+ 2
3 nz2

n = 1, which
it has to be, since we normalized our integrals over the spectra in that way.
One has to consider that the dx2 orbital is not orthogonal to the dz2 orbital
and in tetragonal symmetry it is better to rewrite the dx2 orbital as a linear
combination of the dz2 and the dx2−y2 orbital. The number operator ni can be
written as a creation and annihilation operator, ni = did

†
i , resulting in the total

expression:

nx2 =
1
4
nz2 +

3
4
nx2−y2 −

√
3
16

(dz2d†x2+y2 + c.c.))

ny2 =
1
4
nz2 +

3
4
nx2−y2 +

√
3
16

(dz2d†x2+y2 + c.c.)) (6.5)

In tetragonal symmetry, the expectation values of the operator dz2d†x2+y2 is
exactly zero. In lower symmetry, even in D2 where the x,y and z axe are still
orthogonal to each other, the operator dz2d†x2+y2 becomes important. This
operator counts the mixing between the dz2 and the dx2−y2 orbital.

These sum-rules are nice, since we now can exactly quantify where the holes
are. This is important, since for CoO it will directly relate to the direction and
size of orbital momentum present. The sum-rules relate to the holes in the t2g

shell as well as to the holes in the eg shell. We are only interested in the hole of
the t2g shell. Let us therefore make a few assumptions for the ground-state of
CoO. First of all we assume that the Co2+ ion has 5 electrons in the t2g shell
and 2 electrons in the eg shell. Since the Co2+ ion is in the high-spin state
we assume that the holes are equally spaced over the eg orbitals, even when a
tetragonal distortion is induced, therefore we have that nz2 = nx2−y2 = nx2 =
ny2 = 1. Using these approximations we can simplify equation 6.4 to relate to
the occupation of only one t2g orbital, where we will choose the dxy orbital. In
tetragonal symmetry we know that nxz = nyz and since we only have one hole
in the t2g orbital we have nxz + nyz = 1− nxy. Furthermore we know from our
approximation that n = 3. Plugging all these numbers in equation 6.4 we get:∫

1
2 (µx + µy) − ∫

µz∫
µx + µy + µz

=
1
4
nxy − 1

12
(6.6)

In figure 6.14 we show the integrated intensity contrast for our two different
films as a function of temperature. We also show the integrated intensity con-
trast as obtained from our calculated spectra. On the right hand side we now
also show a scale where one can read of the number of holes in the dxy orbital
obtained from the sum-rule. Above the Néel temperature, one sees that for CoO
on Ag there are more then 1

3 holes in the dxy orbital. This is directly related
to the in-plane contraction of the CoO on Ag crystal structure. For the CoO
sandwiched by MnO there are less than 1

3 holes in the dxy orbital. This is what
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one would expect while in CoO sandwiched by MnO there exists an in plane
elongation. One can also see that with increase of temperature the number of
holes in the dxy orbital becomes closer to 1

3 . This is due to population of higher
excited states that are present because of the crystal fields and the spin-orbit
coupling. If the temperature would have been raised high enough to populate
all states equally the number of holes in the dxy orbital would reduce again to
1
3 . One can also see that there is a kink in the theoretical value of the number
of holes in the dxy orbital at the Néel temperature. An exchange field will in-
troduce spin ordering. Spin ordering will order the orbital momentum due to
spin orbit coupling and a state with orbital momentum does not have all the
t2g orbitals equally occupied. What should be noted is that for a system with a
full magnetic orbital momentum of 1µB in the z direction due to the t2g orbitals

one would expect that the hole is in the d1 =
√

1
2 (−dxz − idyz) orbital. In other

words we would expect no holes in the dxy orbital anymore. For the CoO film
sandwiched by MnO the number of holes in the dxy orbital goes down to 0.18 at
low temperatures and for the CoO on Ag the number of holes in the dxy orbital
goes up to 0.44 at low temperatures. Clearly indicating that spin-orbit coupling
is larger, or approximately of the same order, than the crystal field distortions
we have made.

6.6 Spin direction in thin films of CoO under
tensile or compressive strain [176].

By fitting the magnetic linear dichroism we have observed that CoO films with
an in-plane compression (CoO on Ag) have their spin in the plane of the film
whereas CoO films with an in-plane elongation (CoO on MnO) have there spins
perpendicular to the plane of the thin film. This can be understood very nicely
within one-electron theory as we will show in this section. Within the next
section we will discuss the properties of CoO within the framework of many-
electron theory. The advantage of many-electron theory above one-electron the-
ory is that it allows us to derive quantitative numbers for the ordered magnetic
orbital moment, ordered magnetic spin moment and the single ion anisotropy.

The spin orientation of CoO sandwiched by MnO is the easiest to understand.
The CoO octahedral is tetragonal distorted and the in-plane Co–O distance is
larger than the out-off-plane Co–O distance. This results in a crystal field where
the dxy orbital is 56 meV lower in energy then the dxz and dyz orbital. There
is one hole in the t2g orbitals. The cheapest orbital to place this hole in will
be the dxz or dyz orbital. One is normally used to talk about real orbitals, but
these orbitals can be recombined to spherical harmonics, which have an orbital

momentum. The d1 orbital can be written as d1 =
√

1
2 (−dxz−idyz) and the d−1
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orbital can be written as d−1 =
√

1
2 (dxz− idyz). With the use of the dxz and the

dyz orbital only an orbital momentum in the z direction can be created and not
in the x or y direction. The spin (of each electron) wants to order anti-parallel
to the orbital momentum (of that same electron). The two t2g electrons of Co
ion with spin down will therefore be in the dxy orbital and the d1 orbital. This
results in an orbital momentum of 1µB in the z direction and a spin in the z
direction.

For CoO on Ag the dxy orbital is raised by 18 meV with respect to the dxz

and dyz orbital. On first sight one would think that this would result in double
occupation of the dxz and dyz orbital and a hole in the dxy orbital. There would
be no orbital momentum and the spin is free to orientate to any direction it likes.
This is not fully true. The crystal field is only 18 meV whereas the spin-orbit
coupling constant is equal to 66 meV. Spin orbit coupling is more important
than the crystal field and we should have a look at the spherical harmonics as
a basis. If we would place the hole in the d−1 orbital, spin-orbit coupling is
happy, but the crystal field is fully unhappy. The dxy orbital is fully occupied,
and raised in energy by the crystal field. So orbital momentum and thus spin
in the z direction is not a good choice. We can make things better by placing
the spin and orbital momentum in the x direction. For that it would be better
to quantize also around the x axis. Thereby the tetragonal C4 axis stays the z
axis. This is more easy to realize than one might think. A cyclic permutation
of the coordinates is enough. Replace all x’es by y’s all y’s by z’s and all z’s by
x’es, but leave the dxy orbital the orbital in which the holes want to be. Then
we will find that the dx

−1 orbital, an orbital with a magnetic orbital momentum

of −1µB in the x direction, is build up from dx
−1 =

√
1
2 (dyx − idzx). If we place

the hole in this orbital we have half a hole in the dxy orbital and made the
spin-orbit interaction completely happy.

CoO under tensile in-plane strain will have the spin out-of-plane and CoO
under compressive in-plane strain will have the spin in the plane of the thin
film. These findings are extreme important for understanding the mechanism(s)
responsible for exchange-biasing. It is well agreed that the interface between
ferromagnet and antiferromagnet is important for the functionality of exchange-
biassing. It is not well studied what happens at this interface and strain might
reorientate the spins of the antiferromagnet at the interface completely as we
have shown. These findings, however, also give great opportunities. By applying
strain to the antiferromagnet one can control the spin direction and choose
whether one wants to have a system with the spins parallel to the surface of the
film plane or perpendicular to the surface of the film plane.
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6.7 Electronic structure of CoO

We have done polarization-dependent 2p XAS on CoO bulk samples, and thin
films. Using cluster fits we have been able to derive the important parameters
for CoO. Knowing these parameters, we now can derive other useful information
about CoO and its electronic structure. CoO is a strongly correlated insulator
with a band-gap of about 2.6–3.0 eV [177,178]. There is an energy difference of
about 1.1 eV between the t2g and eg electrons. The system is not very covalent
as only 7.12 electrons reside per Co atom in a CoO6 cluster calculation.
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Figure 6.15: Energy level diagram
of the twelve lowest states of CoO.
Top panel: Energy level diagram as
a function of tetragonal distortion.
Bottom left panel: Energy level
diagram for crystal fields of CoO
sandwiched by MnO as a function of
temperature, where below the Néel
temperature the exchange field is
changed with temperature. Bottom
right panel: same but for crystal
fields belonging to CoO on Ag.

The Co ions have a formal valence of d7, which means that in a simple
picture there are 5 electrons with spin up and 2 electrons with spin down in
the t2g shell. In other words we have one hole in the t2g shell and therefore a
threefold orbital degeneracy. We have locally a spin 3

2 system and thus a fourfold
spin degeneracy. Combining both gives a twelvefold totally degenerated ground-
state. This degeneracy is lifted due to spin-orbit coupling, crystal fields of lower
than cubic symmetry and exchange fields. The hardest thing about CoO is
that none of these interactions is so much larger than the others that one can
introduce the largest one first and treat the rest within perturbation theory.
Spin-orbit coupling is the largest of the three interactions and we will start with
its influence.

In figure 6.15 we show the energy level diagram of the 12 lowest eigen-states
of a CoO cluster. We start with the top graph. Here we show the energy level
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diagram as a function of the t2g crystal-field splitting. We start in the middle
where ∆t2g

= 0. Here we find the energy level diagram of cubic CoO. We see
that the 12 states are split due to spin orbit coupling into a ground-state with
J̃ = 1

2 , a first excited state with J̃ = 3
2 and a highest excited state with J̃ =

5
2 . There is a small splitting in the state with J̃ = 5

2 into a lower lying quartet
and higher lying doublet. This should be there, already on the basis of group
theory, but we do not want to discuss its presence in this chapter.

If we now look what happens when we introduce a tetragonal distortion, it is
good to first have a look at the extreme cases. If we make an in-plane elongation
then ∆t2g

becomes negative and the dxy orbital is lowered in energy. The hole
in the t2g shell will therefore be in the dxz or dyz orbital. Due to spin orbit
coupling, these will recombine to a d1 and d−1 orbital. The magnetic orbital
momentum of these states can be parallel or anti-parallel to the magnetic total
spin momentum of ± 3

2 or ± 1
2 . In total this will give four twofold degenerate

states that go down with decrease of ∆t2g
. The ground-state in the extreme

case of −∆t2g
À ζ would consist of a wave-function with a hole in the d−1

orbital and a total magnetic spin momentum of 3
2 or a hole in the d1 orbital

and a total magnetic spin momentum of − 3
2 . These two states form together

a Kramers doublet. The four twofold degenerate states coming down with a
tetragonal in-plane elongation can be seen as four lines going down on the left
in the top graph of figure 6.15. On the right side of the top graph in figure
6.15 we show what happens when one makes an in-plane contraction. For an
in-plane contraction ∆t2g

becomes positive and the energy of the dxy orbital
goes up. Therefore in the extreme case that ∆t2g

À ζ the t2g hole will be in
the dxy orbital and the orbital momentum is totaly quenched.

In the top graph of figure 6.15 we show how the different energies of the
12 eigenstates evolve when ∆t2g

is changed from −150 to plus 150 meV. The
actual parameters found for our thin films of CoO are ∆t2g

= −56 meV for CoO
sandwiched by MnO which is about 4% expanded in-plane (a‖ ≈ 4.424Å). For
CoO on Ag which is slightly compressed in-plane (a‖ ≈ 4.235 Å, a⊥ ≈ 4.285
Å) we find ∆t2g

= 18 meV. These values for the crystal field are somewhat
smaller than the spin-orbit coupling energy scale. For the ∆t2g

values of these
distortions, marked by the dotted line in the top graph of figure 6.15, one can
still recognize the doublet, quartet and sextet energy levels set up due to spin-
orbit coupling. For the CoO sandwiched by MnO with a crystal field of −56
meV, one can also already recognize a lower lying eightfold degenerate state
with the hole in the d1 or d−1 orbital (four separate lines) and a higher lying
quartet with the hole in the dxy orbital (two separate lines).

The effect of an exchange field on the energy level diagram can be seen in
the bottom part of figure 6.15. We did not plot the energy level diagram as
a function of exchange field, but as a function of temperature. The exchange
field changes with temperature according to a J = 3

2 Brillioun function. We set
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CoO sandwiched CoO on Ag bulk CoO
by MnO

ζ 66 meV 66 meV 66 meV
∆t2g

−56 meV 18 meV ≈ −25 meV
Hex 12.6 meV 12.6 meV 12.6 meV
ML 1.36 µB 1.00 µB *
MS 2.46 µB 2.14 µB *
MT 0.04 µB 0.02 µB *∑
i〈li.si〉 −1.25 µ2

B −1.28 µ2
B −1.28 µ2

B

nxy 0.18 0.44 *
EHz

ex
− E

H
(x,y)
ex

-4.8 meV 1.6 meV -2.3 meV

Table 6.1: Crystal-field, Exchange field and spin-orbit coupling parameter for
CoO sandwiched by MnO, CoO on Ag and bulk CoO at 0K. As well as the
magnetic orbital and spin momentum, the expectation value of the magnetic
dipole operator, the expectation value of the spin-orbit operator, the number of
holes in the dxy orbital and the single-ion anisotropy EHz

ex
− E

H
(x,y)
ex

.
∗These values depend crucially on the direction of the spin.

the exchange field at 0 K to be 12.6 meV and scaled the temperature scale in
order to reproduce the experimental Néel temperatures of 290 K for the CoO
sandwiched by MnO and 310 for CoO on Ag. On the bottom left of figure
6.15 we show the energy level diagram as a function of temperature for CoO
sandwiched by MnO and on the bottom right we show the energy level diagram
for CoO on Ag. The crystal field is -56 meV and 18 meV respectively. An
exchange field splits the Kramers doublets into a state with spin up and spin
down. However, not all states are split in the same way. Thereby an exchange
field also mixes the states and should not be treated as a perturbation on only
the J̃ = 1

2 states.

In table 6.7 we list the most important operator values for the ground-state
at 0 K of our thin films, found from our cluster calculations. The number of holes
in the dxy orbital as calculated from our cluster calculation is fully consistent
with the values found from the sum-rules. The magnetic orbital momentum is
surprisingly large. Even larger than the maximum of 1µB that one can have for
a single t2g electron. The reason for this lies in the presence of electron-electron
repulsion. We assumed that the Co ion has two holes in the eg shell and one
hole in the t2g shell. This is not completely true. Electron-electron repulsion is
minimized when there are about 1.2 holes in the t2g shell and 1.8 holes in the eg

shell. If one increases the splitting between the t2g and eg shell, electrons move
from the eg shell to the t2g shell in order to minimize the crystal field energy,
but thereby paying energy due to electron-electron repulsion. More exactly, in
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spherical symmetry there are two terms with S = 3
2 . One term has L = 3(F )

and is the ground-state in spherical symmetry, the other term has L = 2(P ).
When one introduces a cubic crystal field, the 4F term is split into a lowest
T1 level, a higher lying T2 level and an even higher lying A1 level. The 4P
term does not split when a cubic crystal field is introduced, but its symmetry
becomes T1, the same as the ground-state. The A1 level has three holes in the
t2g shell. The T2 level has two holes in the t2g shell and one hole in the eg shell.
The T1 level split from the 4F term, has for an infinitesimal small crystal field,
about 1.2 holes in the t2g shell and 1.8 holes in the eg shell. The T1 level that
originates from the 4P term, has for an infinitesimal small crystal field, about
1.8 holes in the t2g shell and 1.2 holes in the eg shell. If the splitting between
the t2g shell and the eg shell is made large, with respect to the electron-electron
repulsion energy difference between the 4F and 4P terms (about 2 eV), the T1

level originating from the 4P term will mix in for about 20% to the ground-
state, resulting in an orbital occupation of one hole in the t2g shell and two
holes in the eg shell. Covalency makes things a bit more complicated, since
when covalency is included the total number of electrons is not 7, but becomes
7.13. If we now restrict ourselves to the fitted parameters, we find that from
those 7.13 electrons, 4.93 electrons are in the t2g shell and 2.20 are in the eg

shell. The 4P term has mixed in for about 10% into the ground-state. In order
to explain the large orbital momentum, we now can combine the 0.1 extra hole
in the t2g shell with the extra electrons in the eg shell to give additional orbital
momentum. Within the t2g shell we could combine the dxz and the dyz orbital
to a d1 and d−1 orbital. When we combine the dxy orbital with the dx2−y2

orbital we can create a d2 or d−2 state with magnetic orbital momentum of 2
and −2 respectively. We find that, for CoO sandwiched by MnO 0.72 of the
total orbital momentum comes from a d1 orbital and that 0.65 of the orbital
momentum comes from a d2 orbital. CoO is one of the few materials where
mixing of the t2g and eg shell due to electron-electron repulsion is important.
(Based on group theory this only happens for d2 and d7 configurations.) In order
to get the orbital momentum correct one has to include this mixing. That this
mixing is also present in the real material and is not just an artifact of a cluster
calculation can be seen very nicely at the XMCD spectra. Here we find that
about 2

5 of the magnetic susceptibility is due to magnetic orbital momentum;
an abnormally large portion. This is found from the Lz sum-rule, as well as
from cluster calculations.

We also show the single ion anisotropy energy in table 6.7. The single ion
anisotropy energy depends on the size of the exchange field, spin-orbit coupling
and low symmetry crystal field distortions [179]. These parameters are deduced
from our fits of the spectra and therefore we are able to calculate the single ion
anisotropy energies. The single ion anisotropy has been calculated by compar-
ing the total energy of a CoO6 cluster for different assumed directions of the
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exchange field.

Knowing all cluster parameters for CoO thin films from our fits to experi-
ment, we now can have a look at the properties of bulk CoO. At 0 K there is a
tetragonal distortion of 1.2%, which means that ∆t2g

is about −25 meV. The
parameter values and expectation values of operators can be found in table 6.7.
We first have a look at the single ion anisotropy. We find that the energy for the
exchange-field in the direction of the tetragonal contraction is lower. This can
be understood quite easily. Spin orientation induces an orbital momentum. A
state with orbital momentum does not have all orbitals equally occupied. For an
orbital momentum in the z direction the hole will be in a d1 orbital (−dxz−idyz)
and therefore not in the dxy orbital. If we have to fit this electron density cloud
in a crystal structure that has one short and two large axis, the energy will
be lowest if we place the filled dxy orbital in the direction of the two larger
axis. One probably should see the tetragonal distortion in CoO the other way
around. Since below the Néel temperature the spins order, orbital momentum
is induced. This turns the spherical electron cloud into something cylindrical,
that is larger in the direction perpendicular to the orbital momentum. This will
introduce a tetragonal crystal deformation.

For bulk CoO neutron measurements tell us that the spins are not perfectly
aligned with the tetragonal axis, but have an angle of 27.4◦ with this axis.
[134] In order to calculate this scenario we placed our exchange field in the
[0.325 0.325 0.888] direction. The total energy found is 0.44 meV higher than
the energy for the spins orientated parallel to the tetragonal axis. One should
notice that these calculations are not self-consistent. If we place an exchange
field at an angle of 27.4◦ with the tetragonal axis we do not find as a result
that the spins are also orientated with an angle of 27.4◦ to the tetragonal axis.
We find that the angle between the spin and the tetragonal axis is 20.3◦ and
that the angle of the orbital momentum with the tetragonal axis is 16.5◦. The
large angles found between orbital momentum and spin and between spin and
exchange field can be understood again if one realizes that the electron cloud
is not spherical while there is some orbital momentum induced. The orbital
momentum wants to be in the tetragonal axis direction due to the crystal field
and the shape of a d7 system with orbital momentum (the dxy orbital is double
occupied and the hole is half in the dxz and half in the dyz orbital). The
spin wants to be parallel to the orbital momentum due to spin-orbit coupling
and the spin wants to be in the direction of the exchange field. Since non of
these interactions is larger than the others, one finds a system where there is a
relative large angle between the easy axis and the orbital momentum, between
the orbital momentum and the spin and between the spin and the exchange
field. Hereby one should realize that the exchange field is by definition parallel
to the spins on the next-nearest neighboring sites.
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6.8 Conclusion

We have shown that with the use of polarized 2p-core level spectroscopy one can
deduce an enormous amount of information for CoO systems. We showed that
there is a temperature dependence in the isotropic spectra due to the presence
of spin-orbit coupling in the initial state. We showed how one can deduce the
size of the crystal field in thin films by going above the Néel temperature and
look at the linear dichroism that still is present at these elevated temperatures.
We calculated the spectra for different values of ∆t2g

, so that other systems can
be fit to these spectra. We showed how one can find out, which orbitals are
occupied by using sum-rules relating the linear polarized integrated intensity
contrast to the number of holes in the different orbitals. We showed that by
using the linear polarized intensity contrast of the first peak at 777 eV, one
can get approximate information about where the holes in the t2g shell are.
For magnetically ordered systems this also relates to the orbital momentum.
We also showed how one can relate the linear polarization dependent energy
position shift of the L2 edge to the approximate direction of spin momentum.
We have based our cluster calculations on parameters fitted to two systems, one
time CoO on Ag, with an in-plane contraction, and one time CoO sandwiched
by MnO with an in-plane elongation. Our cluster fits are satisfactory and give
confidence in the findings and experimental method. The orbital momentum
found for CoO is surprisingly large, this can be understood quite well in a cluster
approach. Thereby more confidence in this large orbital momentum is obtained
by direct XMCD measurement of the orbital momentum of bulk CoO in the
paramagnetic phase at 300 K. These XMCD measurements show an orbital
momentum which is also extremely large and well reproduced by our cluster
calculations.

It would be extremely nice to use PEEM to look at the films studied here
and see if one can find different domains present in these films. One then could
measure the angle between the surface normal and the spin in a more accurate
way and also find the angle between spin and orbital momentum. When one
finds a way to solve the problem of charging of bulk CoO at low temperatures
it would be good to look at bulk CoO and determine the spin and orbital
momentum direction of bulk CoO with the use of XAS.
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Chapter 7

Aligning spins in
antiferromagnetic films
using antiferromagnets [180]

We have explored the possibility to orient spins in antiferromag-
netic thin films with low magnetocrystalline anisotropy via the
exchange coupling to adjacent antiferromagnetic films with high
magnetocrystalline anisotropy. We have used MnO as a proto-
type for a system with negligible single-ion anisotropy. We were
able to control its spin direction very effectively by growing it as
a film on antiferromagnetic CoO films with different predeter-
mined spin orientations. This result may pave the way for tai-
loring antiferromagnets with low magnetocrystalline anisotropy
for applications in exchange-bias systems. Very detailed infor-
mation concerning the exchange-coupling and strain effects was
obtained from the Mn L2,3 soft x-ray absorption spectroscopy.

The study of the exchange-bias phenomena in multilayered magnetic systems
is a very active research field in magnetism, not the least motivated by the high
potential for applications in information technology. Various combinations of
antiferromagnetic (AFM) and ferromagnetic (FM) thin film materials have been
fabricated and intensively investigated [44,45]. There seems to be an agreement
among the experimental and theoretical studies that the largest exchange-bias
effects can be found in systems containing AFMs with a high magnetocrystalline
anisotropy, such as CoO. The simple underlying idea is that the anisotropy helps
to fix the spin orientation in the AFM while switching the magnetization in the
FM.
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Our objective is to explore the possibilities to control and to pin the spin di-
rection in AFM oxides having low magnetocrystalline anisotropy, e.g. transition
metal oxides with the 3d3, 3d5, or 3d8 ionic configurations. If successful, this
would help to extend the materials basis for the AFMs used in exchange-bias
systems. One could then consider thin films of not only NiO, but also LaCrO3,
LaFeO3, γ-Fe2O3, and R3Fe5O12 [181]. At first sight, our chances may seem
bleak since a recent study on ultra thin NiO films reveal that the magnetic
anisotropy results from a detailed balance between the influence of strain and
thickness on the already very weak dipolar interactions in the AFM [159, 182].
On the other hand, the few studies available in the literature on combinations
of AFM/AFM films revealed that the interlayer exchange coupling can be very
strong [116,147,183–188]. We took these findings as starting point of our work.

We have used MnO as an ideal model for an antiferromagnetic system with
negligible single-ion anisotropy. We have grown the MnO as a thin film epitax-
ially on two different types of CoO single crystal films. In one CoO film the
spin direction is oriented perpendicular to the surface, and in the other parallel
to the surface [176]. Using soft x-ray absorption spectroscopy at the Mn L2,3

edges, we observed that the spin direction of the MnO film strongly depends on
the type of CoO film the MnO is grown on, and that it is dictated by the spin
orientation of the CoO film and not by the strain or dipolar interactions in the
MnO film. Interlayer exhange coupling is thus a very effective manner to control
spin directions and may be used for tailoring AFMs with low magnetocrystalline
anisotropy for exchange-bias applications.

The actual MnO/CoO systems studied are (14Å) MnO/ (10Å) CoO/ (100Å)
MnO/ Ag(001) and (22Å) MnO/( 90Å) CoO/ Ag(001). The two samples were
grown on a Ag(001) single crystal by molecular beam epitaxy (MBE), evaporat-
ing elemental Mn and Co from alumina crucibles in a pure oxygen atmosphere
of 10−7 to 10−6 mbar. The base pressure of the MBE system is in the low 10−10

mbar range. The thickness and epitaxial quality of the films are monitored by
reflection high energy electron diffraction (RHEED) measurements. With the
lattice constant of bulk Ag, CoO and MnO being 4.09Å, 4.26Å, and 4.444Å, re-
spectively, we find from x-ray diffraction (XRD) and RHEED that the in-plane
lattice constants in each film are essentially given by the thickest layer which
is almost bulk like. Compared to the bulk, the 10Å CoO sandwiched by MnO
is about 4% expanded in-plane (a‖ ≈ 4.424Å), while the 90Å CoO directly on
Ag is slightly compressed in-plane (a‖ ≈ 4.235Å, a⊥ ≈ 4.285Å). The MnO is in
both samples compressed, but much more so for the one on the 90Å CoO film.
Details about the growth will be published elsewhere [171]. We have shown
recently that the spin direction is oriented perpendicular to the surface in the
CoO film under tensile in-plane stress , and that it is parallel to the surface in
the film with the slightly compressive in-plane stress [176].

The XAS measurements were performed at the Dragon beamline of the
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Figure 7.1: Experimental and calculated Mn L2,3 XAS spectra of: left
panel) MnO in (14Å)MnO/(10Å)CoO/(100Å)MnO/Ag(001) for θ = 20◦

and θ = 90◦, below (top panel, T=77K) and above (bottom panel,
T=200K) the TN of the MnO thin film; right panel) the same for MnO in
(22Å)MnO/(90Å)CoO/Ag(001)

NSRRC in Taiwan using in-situ MBE grown samples. The spectra were recorded
using the total electron yield method in a chamber with a base pressure of
3 × 10−10 mbar. The photon energy resolution at the Mn L2,3 edges (hν ≈
635 − 655 eV) was set at 0.3 eV, and the degree of linear polarization was
≈ 98%. The sample was tilted with respect to the incoming beam, so that the
Poynting vector of the light makes an angle of α = 70◦ with respect to the [001]
surface normal. To change the polarization, the sample was rotated around the
Poynting vector axis, so that θ, the angle between the electric field vector ~E
and the [001] surface normal, can be varied between 20◦ and 90◦ [176]. This
measurement geometry allows for an optical path of the incoming beam which is
independent of θ, guaranteeing a reliable comparison of the spectral line shapes
as a function of θ. A MnO single crystal is measured simultaneously in a sep-
arate chamber to obtain a relative energy reference with an accuracy of better
than 0.02 eV.
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Fig. 7.1 shows the polarization dependent Mn L2,3 XAS spectra of the
MnO/CoO samples with CoO spin-orientation perpendicular (left panels) and
parallel (right panels) to the surface, taken at temperatures far below (top
panels) and far above (bottom panels) the Néel temperature (TN ) of the MnO
thin film, which is about 130 K as we will show below. The spectra have been
corrected for electron yield saturation effects [172]. The general line shape of the
spectra shows the characteristic features of bulk MnO [19], ensuring the good
quality of our MnO films. Very striking in the spectra is the clear polarization
dependence, which is the strongest at low temperatures. Important is that
below TN the dichroism, i.e. the polarization dependence, of the two samples
are opposite: for instance, the intensity of the first peak at hν = 639 eV is
higher for θ = 20◦ than for θ = 90◦ in MnO/CoO where the spin orientation
of the CoO is out-of-plane, while it is smaller in the other sample. Above TN ,
the dichroism almost vanishes. Nevertheless, small but clear and reproducible
shifts in the spectra as a function of polarization can be seen: the main peak
at 640 eV has a shift of about 30 meV for the MnO sandwiching the 10Å CoO
film, and 150 meV for the MnO overlaying the 90Å CoO film.
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Figure 7.2: Temperature depen-
dence of the polarization contrast
in the Mn L2,3 spectra, defined as
the difference divided by the sum of
the height of the first peak at hν
= 639 eV, taken with θ = 20◦ and
θ = 90◦ polarizations. Filled and
empty circles are the experimental
data. The solid lines are the the-
oretical simulations. The shaded
area represents the TN of the CoO
layers under the MnO film.

In order to resolve the origin of the dichroism in the spectra, we have in-
vestigated the temperature dependence in more detail. Fig. 7.2 depicts the
polarization contrast of the peak at hν = 639 eV, defined as the difference di-
vided by the sum of the peak height in the spectra taken with the θ = 20◦ and
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θ = 90◦ polarizations. In going from low to high temperatures, one can see
a significant temperature dependence for both samples (with opposite signs),
which flattens off at about 130K, indicating the TN of these MnO thin films.
We therefore infer that at low temperatures the strong dichroic signal is caused
by the presence of magnetic ordering. Important is to note that the opposite
sign in the dichroism for the two samples implies that the orientation of the
magnetic moments is quite different.

To analyze the Mn L2,3 spectra quantitatively, we perform calculations for
the atomic-like 2p63d5 → 2p53d6 transitions using a similar method as described
by Kuiper et al. [100] and Alders et al. [102], but now in a D4h point group sym-
metry and including covalency. The method uses a MnO6 cluster which includes
the full atomic multiplet theory and the local effects of the solid [19,24]. It ac-
counts for the intra-atomic 3d-3d and 2p-3d Coulomb and exchange interactions,
the atomic 2p and 3d spin-orbit couplings, the O 2p - Mn 3d hybridization, lo-
cal crystal field parameters 10Dq, Ds and Dt, and a Brillouin type temperature
dependent exchange field which acts on spins only and which vanishes at TN .
The calculations have been carried out using the XTLS 8.0 programm [24].

The results of the calculations are shown in Fig. 7.1. We have used the
parameters already known for bulk MnO [24, 189], and have to tune only the
parameters for Ds, Dt and the direction of the exchange field. For the MnO
sandwiching the 10Å CoO we find an excellent simulation of the experimental
spectra for Ds = 9.3 meV, Dt = 2.6 meV and an exchange field parallel to the
[112] direction. For the MnO overlaying the 90Å CoO we obtained the best
fit for Ds = 48.6 meV, Dt = 11.1 meV and an exchange field along the [211]
direction. These two sets of parameters reproduce extremely well the spectra
at all temperatures. This is also demonstrated in Fig. 2, showing the excellent
agreement between the calculated and measured temperature dependence of
the dichroism in the first peak. Most important is obviously the information
concerning the spin direction that can be extracted from these simulations. We
thus find that the magnetic moments in the MnO are oriented towards the
surface normal when it is grown on the CoO film which has the spin direction
perpendicular to the surface, and that it is lying towards the surface when it is
attached to the CoO film which has the parallel alignment. In other words, it
seems that the MnO tries to follow the CoO magnetically.

In order to find out whether the spin direction in the MnO thin films is deter-
mined by the exchange coupling with the CoO, or whether it is given by strain
and dipole interactions in the films as found for NiO thin films on non-magnetic
substrates [159,182], we now have to look more closely into the tetragonal crystal
fields in the MnO films. The values for the tetragonal crystal field parameters
Ds and Dt, which we have used to obtain the excellent simulations as plotted
in Fig. 1, can actually be extracted almost directly from the high tempera-
ture spectra, where the magnetic order has vanished and does not contribute
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Figure 7.3: top panel) Close-up
of the experimental and calculated
Mn L3 XAS spectra at 200K, i.e.
above TN of (left) (14Å) MnO/
(10Å) CoO/ (100Å) MnO/ Ag(001)
and (right) (22Å) MnO/ (90Å)
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}

splittings.

anymore to the polarization dependence.
The top panels of Fig. 7.3 show a close-up of the spectra taken at 200K,

i.e. above TN . One can now observe the small but clear and reproducible shifts
in the spectra as a function of polarization: the shift in the first peak at 639
eV is denoted by ∆A and in the main peak at 640 eV by ∆B . In order to
understand intuitively the origin of these shifts, we will start to describe the
energetics of the high spin Mn2+ (3d5) ion in a one-electron like picture. In
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Oh symmetry the atomic 3d levels are split into 3 t2g and 2 eg orbitals, all
containing a spin-up electron. The L3 edge of Mn2+ should then consist of two
peaks: in exciting an electron from the 2p core level to the 3d, one can add
an extra spin-down electron either to the lower lying t2g or the higher lying eg

shell, producing the peaks at 639 and 640 eV, respectively. In the presence of
a tetragonal distortion, both the t2g and eg levels will be split. This will result
in a polarization dependent energy shifts ∆A and ∆B , analogous as found for
NiO [105].

Due to the intra-atomic 2p-3d and 3d-3d electron correlation effects, the rela-
tionship between the shifts in the spectra and the crystal field splittings become
non-linear. Using the cluster model we are able to calculate this relationship for
a Mn2+ 3d5 system and the results are plotted in Fig. 3. Using this map, we find
for the MnO sandwiching the 10Å CoO that ∆t2g

= 15 meV and ∆eg
= 50 meV,

and for the MnO overlaying the 90Å CoO that ∆t2g
= 90 meV and ∆eg

= 250
meV (Ds=(∆eg

+∆t2g
)/7, Dt=(3∆eg

-4∆t2g
)/35). The crystal field splittings

for the second sample are much larger than for the first sample, fully consistent
with our structural data in that the MnO in the second sample experiences
a much stronger compressive in-plane strain. Important is now to recognize
that the crystal field splittings for the two samples have the same sign, i.e. that
both MnO films are compressed in-plane. This implies that strain together with
the dipolar interactions cannot explain the quite different spin-orientations of
the two MnO systems. We conclude that the magnetic anisotropy mechanism
present in, for instance, NiO thin films on non-magnetic substrates [159, 182],
is overruled by the stronger interlayer exchange coupling [116,147,183–188] be-
tween the CoO and MnO layers.

The TN for these thin MnO layers is found to be at about 130 K. It is
surprising that it is not reduced as compared to the bulk value of 121 K [168],
since generally one would expect such to happen with decreasing thickness as
was observed for NiO on MgO [102]. The origin for this is not clear at this
moment. It is possible that the in-plane compressive stress gives an increase of
the Mn 3d - O 2p hybridization, which in turn could produce an increase of the
superexchange interaction strength [181] and thus also of TN . Another, more
exciting, possibility emerges from the recent experimental and theoretical work
on AFM/AFM multilayers such as FeF2/CoF2 and CoO/NiO [116,147,183–188].
Experiments have revealed that multilayers could even have a single magnetic
ordering transition temperature lying in between the two TN s of the constituent
materials. The phenomenon has been ascribed to the very strong interlayer
exchange coupling.

In conclusion we have shown that it is possible to control the spin direction in
MnO very effectively by growing them as thin films on antiferromagnetic CoO
films with different predetermined spin orientations. Using detailed Mn L2,3

soft x-ray absorption spectroscopy, we are also able to show that it is not strain
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but interlayer exchange coupling which plays a decisive role herein. This result
may pave the way for tailoring antiferromagnets with low magnetocrystalline
anistropy for applications in exchange-bias.
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Chapter 8

The spin-state puzzle in the
cobaltates

The cobaltates are one of the most fascinating and richest class of materials.
Effects like metal-insulator transitions, large magneto resistance, non-magnetic
to magnetic transitions, superconductivity and different kinds of magnetic or-
dering are found in the cobaltates. The large diversity, is closely related to the
many possibilities in which the Co ion can be stabilized. The Co ion can be 2+,
3+ or 4+. Not only differences in valence are important, but also the variations
in the spin-state, which make the cobaltates unique.

Figure 8.1: Possible valences and
spin states of the Co ion in cubic
symmetry. The d shell is split in cu-
bic symmetry into a t2g and eg sub-
shell.
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Within cubic symmetry, the d orbitals are split into three energetically lower-
lying t2g orbitals and two higher-lying eg orbitals. The crystal field favors the
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occupation of the t2g orbitals. Hund’s rule exchange tries to align the spins to
be parallel. This competition leads to the variation in spin-state. In figure 8.1
we show all possible spin-states of Co 2+, 3+ and 4+.

The crystal-field splitting between the t2g and eg orbitals is generally called
10Dq. This means that every electron in the t2g shell has an energy of −6Dq
and every electron in the eg shell an energy of 4Dq. Within the simple scheme as
explained in the introduction, one can calculate the electron-electron repulsion
energy easily. The electron-electron repulsion energy is U times the number
of electron pairs found minus JH times the number of pairs of electrons with
parallel spin. A full explanation of the simple scheme can be found within the
introduction. If we compare the energy of different spin-states for a d6 system,
one finds that all d6 spin states have a contribution of 15U and are only different
in JH and 10Dq. Ignoring U as it does not change the relative energies of the
different spin-states within a single-ion approximation, we find for the total
energies of the different spin-states: EHS = −10JH − 4Dq, EIS = −7JH − 14Dq
and ELS = −6JH − 24Dq.
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Figure 8.2: Energy-level diagram of the Co3+ multiplet as a function of crystal-
field parameter 10Dq. Left: electron-electron interaction is approximated, only
Hund’s rule exchange energy is included. Right: the full multiplet structure is
included.

In figure 8.2, we show the energy of the low-, intermediate-, and high-spin
state of a d6 configuration for different values of the crystal-field splitting 10Dq.
In the left graph, we approximated the electron-electron repulsion in the simple
scheme. Each pair of parallel spins lowers the energy by an amount of JH ≈ 0.8.
10Dq, the energy between the eg and the t2g orbitals, is varied from 0 to 3 eV.
One can see that for small values of 10Dq the high-spin state is the ground-state
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whereas for larger values of 10Dq Hund’s rule is broken and the low-spin state
becomes the ground-state. On the right of figure 8.2 we did the same calcula-
tion, but now included the full electron-electron interaction Hamiltonian. There
are many more states in the full multiplet calculation and, most important for
our discussions later, there are two different intermediate-spin states. For the
simplified calculation we find a low-spin to high-spin transition at 10Dq = 1.6
eV. For the full multiplet calculation we find this transition at a crystal field
of about 10Dq = 2.2 eV. Within a single-ion calculation the intermediate-spin
state never becomes the ground-state. The large differences between the energy-
level diagram as calculated within the simple scheme and with the use of the full
electron-electron repulsion Hamiltonian make clear that it is absolutely neces-
sary to use the full electron-electron repulsion Hamiltonian when theoretically
comparing spin-states. Here we would like to stress again, that the multiplet
splitting is not screened within solids. See for example [30] or the references in
the introduction of this thesis.

The question that arises is: Are these states realized in nature? We first look
at some examples. For Co2+, we know that almost all systems are in the high-
spin state. In some molecular magnets the low-spin state can be stabilized. See
reference [190] for examples. In these systems the low-spin is stabilized by short
Co-N bonds of about 1.92–1.98 Å within the plane of the molecule. For Co2+

we can conclude that both spin states are realized. Next we will have a look
at the Co3+ spin-states. Many examples of Co3+ with a low-spin configuration
are known. The double perovskite La4LiCoO8 is a clear example [191]. Also
all Lanthanide perovskites LnCoO3 have a low-spin ground-state. Although,
LaCoO3 has a first excited magnetic state very close in energy to the ground-
state, it is generally excepted that the ground-state at 0 K is a low-spin state.
There are also undisputed examples of Co3+ ions being in the high-spin state.
Cs3CoF6, Rb3CoF6 and CoF3 are well-known fluorides with a Co3+ high-spin
state [192]. Up to now, however, no d6 system has been found that is undisputed
in the intermediate-spin state. Many claims for an intermediate d6 Co ion have
been made, but for each of these systems also contradicting claims have put
forward. Next we have a look at Co4+. For Co4+, we have Ba2CoO4 as an
example for a high-spin system [193]. The intermediate-spin state has been
suggested to be realized in SrCoO3 [194]. A low-spin state can be found in
BaCoO3 [193, 195, 196]. In La1.8Sr0.2Co0.5Li0.5O4 the 20% hole doping creates
Co4+ ions which are in the low-spin state [191]. If the number of doped holes is
increased, so that all Co ions are Co4+, we get La1.5Sr0.5Co0.5Li0.5O4 which has
all its Co ions in the low-spin state [191]. In conclusion we can say that for all
valences low-spin and high-spin states are known to us, but that the existence
of an intermediate-spin state is still debated. There are some candidates, but
the discussion is still going on.

Care has to be taken about the spin-state assignments made in the litera-
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ture. Often different papers disagree with each other, especially for some newly
synthesized materials. Take TbBaCo2O5.5 for example. This material belongs
to the group of layered cobaltates where CoO2 planes are separated by BaO
and TbO0.5 planes. Within TbBaCo2O5.5, half of the Co sites are surrounded
by 6 O atoms in a more or less octahedral environment and the other Co sites
are surrounded by only 5 O atoms with a pyramidal arrangement. All Co
atoms are 3+, i.e. all Co atoms have a d6 configuration. This system has a
metal-insulator (or perhaps an insulator-insulator?) transition around 340K.
The proposed spin states, are however, contradictory [56, 58, 62]. For the high-
temperature phase a low-spin, an intermediate-spin and a high-spin state have
been proposed for the octahedral site, and for the low-temperature phase a low-
spin and an intermediate-spin state. For the low-temperature phase there is
an agreement that the pyramidal sites are in the intermediate-spin state. For
the high-temperature phase the Co ion is thought to be in the high-spin or
intermediate-spin state.

The class of layered cobaltates is extremely confusing [46–70], but not the
only class where problems with spin-state assignments arise. For Ca2Co3O6

[197–201] or LaCoO3 [202–216], there are also different experimental assign-
ments in the literature.

The problem of the spin states in the cobaltates becomes even more confus-
ing when one realizes that even within theory there are conflicting spin-state
assignments. Take YBaCo2O5 for example. YBaCo2O5 also belongs to the class
of layered cobaltates. It has all Co atoms surrounded by 5 O atoms in a pyra-
midal environment. Half of the Co atoms are 2+ and the other half 3+. One
LDA+U study found all Co atoms to be in the high-spin state [65]. Another
LDA+U study found the Co2+ ions to be in the high-spin state and the Co3+

ions to be in the intermediate-spin state [66]. Hartree-Fock calculations found
both ions to be in the high-spin state again [67].

In this chapter we will concentrate on the spin state of Co3+ and especially
on the option of having the Co ion in an intermediate-spin state. The interme-
diate spin state is an unusual state and it is a-priori not clear how it can be
stabilized to become the ground-state. As we have explained above, in the limit
that the crystal field is much more important than the Hund’s exchange energy,
the system will be in a low spin state, whereas when the crystal field is smaller
than the Hund’s exchange energy, the system will be in the high-spin state. In
this simple picture the intermediate-spin state never will be the ground-state.
We will start with some theory and try to explain why the intermediate-spin
state can become the ground-state. We will start our theory within a single
CoO6 cluster calculation, which explicitly includes the O-2p Co-3d hybridiza-
tion. We will show that, for Co3+ in cubic symmetry, the intermediate-spin
state can not be stabilized within such a single-cluster calculation. For Co4+

it can be stabilized. Next we will look at the effects of band-formation and
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distortions. In the end we turn to experiment and try to find systems that are
in the intermediate-spin state.

8.1 Stabilization of the intermediate-spin state
within cluster calculations

Within a CoO6 cluster there are two reasons for the energy difference between
the t2g and eg orbitals. One is the ionic crystal field, an electric field due to
the charges of the other atoms and their electrons. This energy difference is
called 10Dq. The other reason is the covalency between Co and O atoms. The
covalency is larger for eg orbitals then for t2g orbitals, resulting in an effective
splitting between the eg and t2g orbitals.

In figure 8.3 we show the energy-level diagram of Co4+ and Co3+ calculated
within a CoO6 cluster. We vary the size of 10Dq, the crystal-field splitting,
in order to see which states can become the ground-state. We have calculated
these graphs for 4 different values of ∆, the charge transfer energy, which is the
energy it costs to hop with one electron from an oxygen atom to the Co atom. ∆
has been defined with respect to the multiplet center. In the top graph, we show
the energy-level diagram for ∆ = 2.5 eV. This diagram is more or less equal
to the ionic energy-level diagram as shown in figure 8.2. The biggest difference
is that the point of zero crystal field has been shifted. In first approximation,
covalency gives an equal effect as an ionic crystal field.

For ∆ = 2.5, plotted in the top graphs in figure 8.3, we find that a d5

ion is rather stable in the high-spin state. Only for crystal fields larger than
10Dq = 3.3 eV (not shown in figure 8.3) the low-spin state can be stabilized. A
d6 ion can, for ∆ = 2.5, be either in the low- or high-spin state, depending on
the size of the crystal field. If we now increase the covalency by reducing the
value of ∆ we see that the intermediate-spin state is reduced in energy, but the
low-spin state is reduced even more in energy. This can be understood when
one realizes how many orbitals there are to which the oxygen electrons can hop.
Thereby one should take into account that the hopping from the oxygens to
the eg electrons is much larger than the hopping from the oxygens to the t2g

electrons. In other words, covalent mixing for the eg shell is larger than for
the t2g shell. A low-spin state has four holes in the eg shell and is therefore
very covalent. The intermediate-spin state has three holes in the eg shell and is
therefore less covalent than the low-spin state. The high-spin state has only two
holes in the eg shell and is therefore also the least covalent. For a d5 system we
find that, if we make ∆ = −5 eV, there is a range of values of 10Dq for which the
intermediate-spin state is the ground-state. This is the same result as previously
found by Potze et al. [194]. If we decrease ∆ even further the low-spin state
becomes the ground-state for all values of 10Dq. For a d6 system, we find that
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Figure 8.3: Energy level diagram of a CoO6 cluster, for Co4+, d5 in the left
side collum and for Co3+, d6 in the right collum. The energy level diagram
is calculated as a function of 10Dq the ionic contribution to the crystal-field
splitting between the eg and the t2g orbitals. The calculations have been done
for 4 different values of ∆, i.e. the energy it costs to hop with one electron from
the O atom to the Co atom.

in cubic symmetry the intermediate-spin state can never be the ground-state.
Within a CoO6 cluster it is always the high-spin or low-spin state that is the
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ground-state. We do find, however, that for ∆ ≈ 0 the energy difference between
the low-spin - high-spin crossing and the intermediate-spin state is not so big,
≈ 0.25 eV. If one now realizes that a solid is more than one cobalt ion with six
oxygens around, there might be possibilities to stabilize the intermediate-spin
state.

8.2 Stabilizing the intermediate-spin state by
band formation

Korotin et al. [217] have done band-structure calculations for LaCoO3 on the
basis of the LDA+U approximation. They found that the intermediate-spin
state is the ground-state for a certain range of lattice-constant parameters. They
also found that in LaCoO3 the high-spin state energy is about 0.5 eV per formula
unit higher than the low- and intermediate-spin state.

Figure 8.4: Total-energy level
diagram as calculated within the
LDA+U approximation, as a func-
tion of crystal-lattice size. The
graph has been copied from Korotin
et al. [217].

In figure 8.4 we show the results of the calculation by Korotin et al. [217].
To simulate the temperature effect, when heating up the sample, the lattice
parameters are varied. One can see that for low temperatures the low-spin state
is the ground-state and for higher temperatures the intermediate-spin state is
the ground-state. This is a very nice result, as it explains the temperature
behavior of the susceptibility in LaCoO3. At low temperatures the system is
non-magnetic and at higher temperatures the system becomes magnetic, with
a maximum of the susceptibility at about 100 K. Following the paper of Ko-
rotin et al. [217] many experimental efforts have been made to confirm that
the low-temperature spin-state transition in LaCoO3 is from a low-spin to an
intermediate-spin state [211–213,215], whereas in the ’old’ picture the transition
was from the low-spin to the high-spin state [202–205].

The reason why band-formation lowers the intermediate-spin state relative
to the low- and the high-spin state is not so obvious. It has often been noted that
the intermediate-spin state is stabilized due to covalency. The intermediate-spin
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state is more covalent than the high-spin state because the intermediate-spin
state has 3 holes in the eg shell whereas the high-spin state has only two holes in
the eg shell. This is true, but the low-spin state is even more covalent. Covalency
within a single cluster does not stabilize the intermediate-spin state as we have
shown in the previous section. But then, why do Korotin et al. [217] find the
intermediate-spin state to be so low, and why do they find the high-spin state
so high in energy?

In order to answer this question, we have to look into the details of their
calculation. Korotin et al. assumed a ferromagnetic ordering and a U so large
that the high-spin state is an insulator. With this knowledge their calculation
can be understood when considering the super-exchange paths present between
two cobalt sites within a double cluster. The hopping between oxygen and cobalt
is much larger for eg orbitals than for t2g orbitals, so we neglect the t2g shell.
There are two super-exchange paths present, coupling two cobalt atoms joined
over a 180◦ oxygen bond. The most important path for LaCoO3 is the path
where first one of the oxygen electrons hops from the oxygen p orbital pointing
to the cobalt atom, into the eg orbitals of that cobalt atom. Next, one of the eg

electrons of the cobalt atom on the opposite site of the oxygen atom hops into
the hole at the oxygen atom. This intermediate states cost an energy Udd. In
order to return to the original state, one has to hop back the same way as the
electrons came. If possible this hopping will reduce the energy of the state in a
double cluster with respect to the energy found in a single cluster.

For the ferromagnetic intermediate-spin state this super-exchange path is
very well possible. For the low-spin state this super-exchange path is not possi-
ble. There are no eg electrons present at the cobalt site that can hop to the hole
left behind when an electron hoped from the oxygen atom to an other cobalt
eg orbital. For the ferromagnetic high-spin state this hopping path is also not
present. There are holes in the cobalt eg shell, but only holes with spin down
and none with spin up. Only electrons with spin down can hop from the oxygen
to the cobalt site. There are no eg electrons with spin down that can hop to the
hole left behind on the oxygen atom. For a ferromagnetic spin ordering only the
intermediate-spin state can gain super-exchange energy and is therefore lowered
with respect to the low-spin and high-spin state. This is the result found by
Korotin et al. [217].

If one wants to calculate which of the spin-states has the lowest energy, one
should consider all possible magnetic orderings. The intermediate-spin state
is ferromagnetic and gains energy with respect to the low- and high-spin state
when a ferromagnetic calculation is done. The high-spin state can not gain
super-exchange energy when the spins are aligned ferromagnetically, but it can
gain super-exchange energy when the spins are aligned antiferromagnetically.
For an antiferromagnetic alignment of the cobalt spins the super-exchange path
discussed before becomes possible for the high-spin state. The oxygen electron
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with spin up can hop into the eg shell of a neighboring cobalt atom. This means
that the cobalt that accepts the electron had its spin down. The cobalt atom
on the other site of the oxygen atom will have therefore its spin up and one of
its eg electrons can hop into the spin up hole of the oxygen atom.

Figure 8.5: Energy-level dia-
gram of the different spin-states
in LaCoO3 assuming different
magnetic or spin-state ordering,
calculated within the Hartree-Fock
approximation. The graph has
been copied from the paper by Min
Zhuang, et al. [208].

The effect of different magnetic ordering on the energy of the different
spin-states has been calculated within the Hartree-Fock approximation by Min
Zhuang, Weiyi Zhang and Naiben Ming [218]. In figure 8.5 we show their re-
sults. They calculated the energy for different spin-states and different magnetic
orderings within LaCoO3 as a function of the crystal field 10Dq. From this cal-
culation, one can clearly see that the intermediate-spin state never becomes the
lowest state. The high-spin antiferromagnetic state or the low-spin state are
always lower in energy than the intermediate-spin state. One can also see a
third possibility. If there is a low-spin - high-spin ordering, the energy is even
lower. Hua Wu is doing calculations in the LDA+U approximation [219] along
these lines at the moment. More work has to be done to find out which state
has the lowest energy within the LDA+U approximation.

Another issue is the question how well LDA or LDA+U can handle the
electron-electron interaction for the different spin states. The electron-electron
interaction does not only depend on the local electron density. In operator form
we could write the electron-electron repulsion Hamiltonian as Umσm′σ′m′′σ′′m′′′σ′′′
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d†mσd†m′σ′dm′′σ′′dm′′′σ′′′ . This operator can not be written in density opera-
tors. Thereby one should realize that 〈d†mσd†m′σ′dm′′σ′′dm′′′σ′′′〉 6= 〈d†mσdm′′σ′′〉
〈d†

m′σ′dm′′′σ′′′〉. In the introduction we showed how severe these approximations
can be. We compared the multiplet calculated in spherical symmetry as found
in the Kanamori scheme with a mean-field approximation for the Kanamori
scheme. The differences are large. Within the introduction we also compared
full multiplet calculations with the Kanamori scheme. For the Hund’s rule
ground-state, i.e. the high-spin state, the energy is reproduced quite reason-
able. The other multiplets as well as the degeneracies are completely different.
This can also be seen in figure 8.2 where we compare the energy level diagram
of a d6 state as a function of 10Dq. On the left we use the simple scheme, on the
right we use the full multiplet calculation. There are remarkable differences. It is
not clear how the electron-electron interactions are exactly implemented within
LDA+U. These kind of errors may very well be present within the LDA+U
codes used, due to the approximations made in the calculation of the electron-
electron repulsion energy. Maybe this is one of the reasons why different codes
show different total energies for the same spin-state [219].

8.3 Stabilizing the intermediate-spin state by
Jahn-Teller distortions

There is, however, yet another way to stabilize the intermediate-spin state. The
intermediate-spin state has one electron in the eg shell and is therefore Jahn-
Teller active. If the structure becomes distorted, the intermediate-spin state
can gain energy, but the low-spin state can not. The high-spin state has one
electron in the t2g spin down shell and should therefore be mildly Jahn-Teller
active, since the Jahn-Teller effect for the t2g orbitals is much smaller than for
the eg orbitals. This scenario for stabilizing the intermediate spin state due to
Jahn-Teller distortions has been proposed by G. Maris et al. [215] based on their
single-crystal x-ray diffraction experiments.

In figure 8.6, we show the energy-level diagram of Co3+ as a function of
the tetragonal-distortion parameter Ds [31]. As one can see for Ds > 0.6,
the intermediate-spin state becomes the ground-state. One should notice that
in cubic symmetry, i.e. Ds = 0, there exist two different intermediate-spin
states with different energies. The lowest intermediate-spin state is about 0.8
eV higher than the high-spin state. The highest intermediate-spin state is about
1.5 eV higher than the high-spin state. One should further notice that not the
lowest intermediate-spin state, but the highest intermediate-spin state becomes
the ground-state due to a tetragonal distortion. In order to understand this
behavior, we have to understand the cause of the splitting in the intermediate-
spin state. The intermediate-spin state has one hole in the t2g shell and one
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Figure 8.6: Ionic energy level
diagram of a Co3+ ion as a function
of tetragonal distortion parameter
Ds. The crystal field is chosen such
that for zero distortion the high-spin
and low-spin state are degenerate.
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electron in the eg shell. In total, the intermediate-spin state is 2 · 3 = 6 times
orbitally degenerate. This degeneracy is lifted since the t2g hole and the eg

electron have a strong Coulomb interaction. In order to create the maximum
eg-electron-t2g-hole density overlap and therefore the lowest energy, the hole
will occupy the dxy orbital and the electron the dx2−y2 orbital. This lowest
intermediate-spin state is threefold degenerate and the other two wave-functions
can be found by cyclic permutation of x, y and z. The highest intermediate-
spin state can be found by choosing orbitals that are orthogonal to the lowest
intermediate-spin state. In figure 8.6, we have labelled the states accordingly.
One should realize that the lowest intermediate-spin state does not have a dz2

occupation, but always a dx2−y2-like occupation. This is also the occupation
found by LDA+U for an intermediate-spin state [217]. The fact that the dx2−y2-
electron is combined with a dxy hole has important consequences. In figure 8.7,
we show these two orbitals with the hole in white and the electron in black.
This is a very symmetric electron distribution and is thus not as Jahn-Teller
active as one would expect for a half-filled eg shell, which is the reason why this
state does not become the ground-state when tetragonal distortions are made.
The second intermediate-spin state does have a dz2 orbital, combined with a
dxy hole, and is very Jahn-Teller active.

We have calculated the energy-level diagram as a function of Ds with Dt
equal to zero. This is not the most favorable way to lower the intermediate-spin
state, but it makes very clear what happens. If Dt is taken into account, the
lowest and highest intermediate-spin state start to mix. This mixing already
happens if only Ds is considered for the two states with dy2−z2dyz and dz2−x2dxz

occupation. These occupations slowly change to dz2dyz and dz2dxz. When
Dt is included, this mixing is increased and the dz2dxz and dz2dyz states can
become lower in energy than the dz2dxy state. One should realize that the
double-degenerate intermediate-spin state has a magnetic orbital momentum.
In figure 8.7 we also drew the shape of the intermediate-spin orbital that can
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Figure 8.7: Possible orbital arrangement of the intermediate-spin state. The
intermediate-spin state has one hole in the t2g shell, shown in white and one
electron in the eg shell, drawn in black. Left: the lowest energy configuration,
the t2g hole and the eg electron are close to each other. Middle: the highest
energy configuration, the t2g hole and the eg electron are far away from each
other. Right: Not an eigenstate of the electron-electron repulsion Hamiltonian,
but if there is a tetragonal distortion (elongation) the dz2 orbital is lowered. For

crystal-fields only the dz2dxy configuration would be best, the dz2

√
1
2 (dxz +idyz)

configuration is, however, better for electron-hole attraction.

be stabilized when Dt is included. One can see that the electron density of the√
1
2 (−dxz − idyz) orbital is quite different from the dxz or dxz orbital. This

state, is neither an eigenfunction of the electron-electron repulsion Hamiltonian
nor of the crystal-field Hamiltonian. If both are present, this state can be a
good compromise and becomes the ground-state.

We have to conclude that distortions might stabilize the intermediate-spin
state, but that important details concerning the multiplet structure need to be
considered. Furthermore, we notice that distortions do not automatically reduce
the magnetic orbital momentum. Even for a locally tetragonal elongation it is
on forehand not so easy to tell whether the magnetic orbital momentum of the
intermediate-spin state will be quenched or not.

8.4 Different look at the spin state of Co3+ ions
in a CoO5 pyramidal coordination.

In order to find out if an intermediate-spin state is realized in nature, we set
out an experimental search for systems with an intermediate-spin state. To
maximize the chance of finding an intermediate-spin state, we took a system
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that has a large Jahn-Teller distortion. We also took a system where we find
180◦ bonds between Co-O-Co atoms. This maximizes the hopping and band-
formation. The material we choose is Sr2CoO3Cl which has CoO5 pyramids that
are connected by a corner-sharing oxygen. The results of our measurements can
be seen in the publication below.

Phys. Rev. Lett. 92, 207402 (2004)

Using soft-x-ray absorption spectroscopy at the Co-L2,3 and O-
K edges, we demonstrate that the Co3+ ions with the CoO5

pyramidal coordination in the layered Sr2CoO3Cl compound are
unambiguously in the high-spin state. Our result questions the
reliability of the spin-state assignments made so far for the re-
cently synthesized layered cobalt perovskites, and calls for a
re-examination of the modeling for the complex and fascinating
properties of these new materials.

The class of cobalt-oxide based materials has attracted considerable interest
in the last decade because of expectations that spectacular properties may be
found similar to those in the manganites and cuprates. Indeed, giant magneto
resistance effects have been observed in the La1−xAxCoO3 (A=Ca,Sr,Ba) per-
ovskites [220] and RBaCo2O5+x (R=Eu,Gd) layered perovskites [46, 47]. Very
recently, superconductivity has also been found in the NaxCoO2 · yH2O ma-
terial [221]. In fact, numerous one-, two-, and three-dimensional cobalt-oxide
materials have been synthesized or rediscovered in the last 5 years, with prop-
erties that include metal-insulator and ferro-ferri-antiferro-magnetic transitions
with various forms of charge, orbital and spin ordering [48,50–64,197,198,222].

A key aspect of cobalt oxides that distinguishes them clearly from the man-
ganese and copper materials, is the spin-state degree of freedom of the Co3+/III

ions: it can be low spin (LS, S=0), high spin (HS, S=2) and even intermediate
spin (IS, S=1) [35]. This aspect comes on top of the orbital, spin (up/down) and
charge degrees of freedom that already make the manganite and cuprate systems
so exciting. It is, however, also precisely this aspect that causes considerable
debate in the literature. For the classic LaCoO3 compound, for instance, various
early studies attributed the low-temperature spin-state change to be of LS-HS
nature [202, 223], while studies in the last decade put a lot of effort to propose
a LS-IS scenario instead [207, 217]. More topical, confusion has arisen about
the Co spin state in the newly synthesized layered cobalt perovskites [46–64].
In fact, all possible spin states have been claimed for each of the different Co
sites present. There is even no consensus in the predictions from band structure
calculations [65–70].
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In this letter we are questioning the reliability of the spin states as deduced
from magnetic, neutron and x-ray diffraction measurements for the newly syn-
thesized layered cobalt perovskites [46–62]. We carried out a test experiment
using a relatively simple model compound, namely Sr2CoO3Cl, in which there
are no spin state transitions present and in which there is only one kind of Co3+

ion coordination [63,64]. Important is that this coordination is identical to the
pyramidal CoO5 present in the heavily debated layered perovskites [46–62]. Us-
ing a spectroscopic tool, that is soft x-ray absorption spectroscopy (XAS), we
demonstrate that pyramidal Co3+ ions are not in the often claimed IS state
but unambiguously in a HS state. This outcome suggests that the spin states
and their temperature dependence in layered cobalt perovskites may be rather
different in nature from those proposed in the recent literature.

Bulk polycrystalline samples of Sr2CoO3Cl were prepared by a solid state
reaction route [63]. The magnetic susceptibility is measured to be very similar
to the one reported by Loureiro et al. [63] and Knee et al. [64]. We find that
up to 600 K the susceptibility does not follow a Curie-Weiss behavior, making a
simple determination of the spin state impossible. Spectroscopic measurements
were carried out using soft x-rays in the vicinity of the Co-L2,3 (hν ≈ 780–
800 eV) and O-K (hν ≈ 528–535 eV) absorption edges. The experiments were
performed at the Dragon beamline at the NSRRC in Taiwan, with a photon
energy resolution of about 0.30 eV and 0.15 eV, respectively. Clean sample
surfaces were obtained by scraping in-situ with a diamond file, in an ultra-high
vacuum chamber with a pressure in the low 10−9 mbar range. The Co-L2,3 XAS
spectra were recorded in the total electron yield (TEY) mode by measuring the
sample drain current. The O-K XAS spectra were collected by both the TEY
and the bulk-sensitive fluorescence yield (FY) mode simultaneously. The close
similarity of the spectra taken with these two modes is used to verify that the
TEY mode spectra are representative for the bulk material. A single crystal of
EuCoO3 is included as an unambiguous reference for a LS CoIII system [224].
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Figure 8.8: Co-L2,3 XAS spectrum
of Sr2CoO3Cl measured at 300 K
(•) and Fe-L2,3 XAS spectrum of
Fe1−xO (x≤0.05) reproduced from
reference [225] (solid line).
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Figure 8.8 shows the Co-L2,3 XAS spectrum of Sr2CoO3Cl taken at room
temperature. It is dominated by the Co 2p core-hole spin-orbit coupling which
splits the spectrum roughly in two parts, namely the L3 (hν ≈ 780 eV) and
L2 (hν ≈ 796 eV) white lines regions. The line shape of the spectrum depends
strongly on the multiplet structure given by the Co 3d-3d and 2p-3d Coulomb
and exchange interactions, as well as by the local crystal fields and the hy-
bridization with the O 2p ligands. Unique to soft x-ray absorption is that the
dipole selection rules are very effective in determining which of the 2p53dn+1

final states can be reached and with what intensity, starting from a particular
2p63dn initial state (n=6 for Co3+) [18,19]. This makes the technique extremely
sensitive to the symmetry of the initial state, i.e. the valence [95], orbital [15,103]
and spin [175,225–227] state of the ion.

Utilizing this sensitivity, we compare the Co-L2,3 XAS spectrum of Sr2CoO3-
Cl to that of another 3d6 compound, namely Fe1−xO (x≤0.05), reproduced from
the thesis of J.-H. Park [91]. This spectrum was taken at room temperature. Ex-
cept for the different photon energy scale and the smaller 2p core-hole spin-orbit
splitting, the Fe1−xO spectrum as shown in Figure 8.8 is essentially identical
with that of Sr2CoO3Cl. From this we can immediately conclude that the Co3+

ions in Sr2CoO3Cl are in the HS state, since the Fe2+ ions are also unambigu-
ously HS.

To find further support for our conclusion, we also compare the Co-L2,3 XAS
spectrum of Sr2CoO3Cl with that of EuCoO3, which is known to be a LS system
[224]. From Figure 8.9 one now can clearly see large discrepancies between the
spectra of the two compounds. Not only are the line shapes different, but also
the ratios of the integrated intensities of the L3 and L2 regions: in comparison
with Sr2CoO3Cl, the LS EuCoO3 has relatively less intensity at the L3 and
more at the L2, characteristic for a spin state difference [175, 225–227]. Figure
8.9 thus demonstrates that Sr2CoO3Cl is definitely not a LS system.

It would have made our case even easier to prove, if we could have excluded
experimentally the IS scenario for Sr2CoO3Cl by comparing the spectrum to
that of a known Co3+ IS reference system. However, there is to date no con-
sensus for such an oxide reference system. Nevertheless, the spin state can
also be deduced from theoretical simulations of the experimental spectra. To
this end, we use the successful configuration interaction cluster model that in-
cludes the full atomic multiplet theory and the hybridization with the O 2p
ligands [18, 19, 24]. We have carried out the calculations for a Co3+ ion in the
CoO5 pyramidal cluster as present in Sr2CoO3Cl and for the ion in the CoO6

octahedral cluster found in EuCoO3. We use parameter values typical for a
Co3+ system [207]. The Co 3d to O 2p transfer integrals are adapted for the
various Co-O bond lengths according to Harrison’s prescription [228,229]. This
together with the crystal field parameters determines whether the Co3+ ion is in
the HS or LS state [35]. The results are shown in Figure 8.9 and one can clearly
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Figure 8.9: (a) Co-L2,3 XAS spec-
tra of Sr2CoO3Cl (•) and EuCoO3

(◦); (b) Comparison between the
Sr2CoO3Cl spectrum (•) and a
theoretical simulation for a high-
spin (HS) CoO5 pyramidal cluster
(solid line); (c) Comparison between
the EuCoO3 spectrum (◦) and a
theoretical simulation for a low-spin
(LS) CoO6 octahedral cluster (solid
line).

see that the calculated spectrum of the HS pyramidal CoO5 cluster reproduces
very well the experimental Sr2CoO3Cl spectrum, and that the calculated LS
octahedral CoO6 spectrum matches nicely the experimental EuCoO3 spectrum.
This demonstrates that our spectroscopic assignments are firmly founded.

More spectroscopic evidence for the HS nature of the Co3+ in the pyramidal
CoO5 coordination can be found from the O-K XAS spectrum as shown in
Figure 8.10. The structures from 528 to 533 eV are due to transitions from
the O 1s core level to the O 2p orbitals that are mixed into the unoccupied
Co 3d t2g and eg states. The broad structures above 533 eV are due to Sr
4d, Co 4s and Cl 3p related bands. For comparison, Figure 8.10 also includes
the spectrum of the LS EuCoO3, and clear differences can be seen in the line
shapes and energy positions of the Co 3d–O 2p derived states. This again
is indicative that Sr2CoO3Cl is not a LS system. To interpret the spectra,
we also have carried out full-potential band structure calculations [65, 68–70]
for Sr2CoO3Cl in the local-density approximation with correction for electron-
correlation effects (LDA+U) [230]. We find the ground state of the system to
be an antiferromagnetic insulator with a band gap of 1.3 eV and a magnetic
moment of 3.2 µB . Although less than 4µB , this indicates that the Co is in the
HS state since in an antiferromagnet the moment is reduced due to covalency.
The calculated unoccupied O 2p partial density of states (DOS) are depicted
in Figure 8.10, and good agreement with the experimental spectrum can be
observed.
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Figure 8.10: O-K XAS spectra
of Sr2CoO3Cl and EuCoO3. The
solid lines below the experimental
curves depict the LDA+U calcu-
lated unoccupied O 2p partial DOS
for Sr2CoO3Cl in the real crystal
structure with the HS state (upper)
and in the artificial structure with
the IS state (lower). The dashed,
dashed-dotted, and dotted lines are
the t22g, 3z2-r2, and x2-y2 projec-
tions, respectively.
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It is now interesting to look with more detail into the character of the states
relevant for the O K XAS spectra. For the LS EuCoO3 with the 3d t62g config-
uration, the lowest energy structure in the spectrum at about 529.5 eV is due
to transitions into the unoccupied Co 3d eg states. The fact that Sr2CoO3Cl
has a lower energy structure thus indicates that transitions to the lower lying
t2g are allowed, i.e. that the t2g states are not fully occupied. In other words,
Sr2CoO3Cl is in the HS t42ge

2
g or IS t52ge

1
g state. At first sight, one might then

expect a much larger spectral weight for the higher lying eg level, since the
hybridization with the O 2p is larger for the eg than for the t2g. However, our
LDA+U calculations in which we find the HS ground state, indicate that, be-
cause of the missing apical oxygen in the CoO5 coordination, the unoccupied
3z2-r2 level is pulled down by 1.6 eV from the x2-y2, and comes close to the
unoccupied t22g. Moreover, because of the large displacement (0.33 Å) of the
Co ion out of the O4 basal plane of the pyramid [63], the hybridization of the
x2-y2 with the O 2p ligands is strongly reduced. Therefore, the dominant lower
energy structure at 528.3 eV consists of the unoccupied minority t22g (dashed
line in Figure 8.10) and minority 3z2-r2 (dashed dotted line) levels, and the
shoulder at 530.4 eV of the minority x2-y2 (dotted line).

From the LDA+U calculations, we have found that the IS state [66] is unsta-
ble with respect to HS ground state for the real crystal structure of Sr2CoO3Cl.
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We have also found nevertheless, that the IS state can be stabilized by artifi-
cially moving the Co ion into the O4 basal plane of the CoO5 pyramid. For the
latter, however, the calculated unoccupied O 2p partial DOS does not repro-
duce the experimental O-K XAS spectrum that well, as one can see from the
discrepancies in the 531-532 eV range in Fig. 3. What happens is that the x2-y2

level is pushed up by the increased hybridization with the O 2p ligands, since
the Co ion is within the O4 basal plane in this artificial crystal structure. More-
over, the up-rising majority x2-y2 becomes unoccupied, resulting in the IS state.
Apparently, the actual large base corrugation of the CoO5 pyramid helps to sta-
bilize the HS state [65, 68–70], a trend that should not be overlooked if one is
to understand the real spin state of CoO5 pyramids. We find from our LDA+U
calculations that the HS is more stable than the IS for out-of-basal-plane Co
displacements larger than a critical value of about 0.15 Å.

Having established that the pyramidal coordinated Co3+ ions in Sr2CoO3Cl
are in the HS state, we now turn our attention to other layered cobalt mate-
rials that have the same structural units. Neutron diffraction experiments on
RBaCo2O5.0 (R = rare earth) have revealed the existence of alternating Co3+

and Co2+ ions, both in pyramidal CoO5 coordination. The magnetic structure is
G-type antiferro with moments of 2.7 and 4.2 µB [51], or 2.7 and 3.7 µB , respec-
tively [53]. For the R=Nd compound, charge ordering was not observed, but an
average moment of 3.5 µB was measured [54, 55]. These studies suggested two
possible scenarios for the Co3+ ions, namely either HS with spin-only moments
or IS with orbital moment. Our findings based on Sr2CoO3Cl on the other
hand, strongly suggest the HS state of such pyramidal Co3+ ions. Here we keep
in mind that the out-of-plane Co displacements of the pyramids in RBaCo2O5.0

are larger than 0.35 Å [51, 53, 54], i.e. much larger than the above mentioned
0.15 Å critical value. The first scenario is thus favored, with the remark that
neutron diffraction techniques tend to observe smaller magnetic moments due
to the Co-O covalency, which is responsible for the antiferromagnetic superex-
change interactions present in these materials.

The experimental situation for the RBaCo2O5.5 system is more complicated.
Neutron and x-ray diffraction measurements indicate the presence of all Co3+

ions in alternating pyramidal CoO5 and octahedral CoO6 units [54–60,62]. The
magnetic structure is most likely not a simple G-type [60,61], and depending on
the model, values between 0.7 and 2.0 µB have been extracted for the pyrami-
dal Co3+ [60,62]. The IS state is thus proposed, and in fact most other studies
also assume this starting point [54–59, 61]. Nevertheless, structural data indi-
cate that the CoO5 pyramids in these compounds have very similar Co-O bond
lengths and angles as in Sr2CoO3Cl. The out-of-plane Co3+ displacements in
the pyramids are larger than 0.3 Å [54, 57–59], and again, much larger than
the 0.15 Å critical value. We therefore infer that also in these compounds the
pyramidal Co3+ must be HS, which is supported by the observation that the
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effective magnetic moment as extracted from the high temperature Curie-Weiss
behavior indicates a HS state for all Co3+ [46,47,56]. In fact, the average Co-O
bond length for the CoO5 pyramids even increases at lower temperatures [58,59],
thereby stabilizing the HS state even more. The fact that neutron diffraction
detects lower moments may indicate a complex magnetic structure as a result of
a delicately balanced spin state of the octahedral Co3+ ions affecting the various
exchange interactions in the compounds in which the pyramidal Co3+ remains
HS.

Summarizing, we have found an overwhelming amount of evidence for the
HS nature of the pyramidal coordinated Co3+ ions in Sr2CoO3Cl: (1) the Co
L2,3 spectrum has essentially an identical line shape as the Fe L2,3 in Fe1−xO
(x≤0.05); (2) the Co L2,3 spectrum can be reproduced to a great detail by
model calculations with the Co ion in the HS state; (3) the O K spectrum can
be well explained by LDA+U calculations with the Co in the HS state, but not
with the Co in the IS state; and (4) LDA+U calculations yield the HS ground
state and no stable IS state for the real crystal structure. With other newly
synthesized layered cobalt oxides having very similar pyramidal CoO5 units,
we infer that those Co3+ ions must also be in the HS state, contradicting the
assignments made so far. It is highly desirable to investigate the consequences
for the modeling of the properties of these new materials.

We would like to thank Lucie Hamdan for her skillful technical and or-
ganizational assistance in preparing the experiment, and Daniel Khomskii for
stimulating discussions. The research in Köln is supported by the Deutsche
Forschungsgemeinschaft through SFB 608.
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Chapter 9

Determination of the
orbital moment and crystal
field splitting in LaTiO3
Phys. Rev. Lett. 94, 056401
(2005)

Utilizing a sum-rule in a spin-resolved photoelectron spectro-
scopic experiment with circularly polarized light, we show that
the orbital moment in LaTiO3 is strongly reduced from its ionic
value, both below and above the Néel temperature. Using Ti
L2,3 x-ray absorption spectroscopy as a local probe, we found
that the crystal field splitting in the t2g subshell is about 0.12-
0.30 eV. This large splitting does not facilitate the formation of
an orbital liquid.

LaTiO3 is an antiferromagnetic insulator with a pseudocubic perovskite crys-
tal structure [71,231,232]. The Néel temperature varies between TN = 130 and
146 K, depending on the exact oxygen stoichiometry [71–73]. A reduced total
moment of about 0.45-0.57 µB in the ordered state has been observed [71–73],
which could imply the presence of an orbital angular momentum that is an-
tiparallel to the spin momentum in the Ti3+ 3d1 ion [13,73]. In a recent Letter,
however, Keimer et al. [74] have reported that the spin wave spectrum is nearly
isotropic with a very small gap, and concluded that therefore the orbital moment
must be quenched. To explain the reduced moment, they proposed the presence
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of strong orbital fluctuations in the system. This seems to be supported by the
theoretical study of Khaliullin and Maekawa [75], who suggested that LaTiO3 is
in an orbital liquid state. If true, this would in fact constitute a completely novel
state of matter. By contrast, Cwik et al. [71], Mochizuki and Imada [76], as well
as Pavarini et al. [77] estimated that small orthorhombic distortions present in
LaTiO3 would produce a crystal field (CF) splitting strong enough to lift the
Ti 3d t2g orbital degeneracy. However, one of the latest theoretical papers finds
a much smaller CF splitting, leaving open the possibility for an orbital liquid
state [78].

In view of these controversies, it is highly desirable to have experimental
tests which would allow to uniquely choose between different possibilities. On
the experimental side, however, very little is known about the energetics of the
LaTiO3 system. We have carried out spin-resolved photoemission (PES) ex-
periments using circularly polarized light, and by applying a sum-rule we have
determined unambiguously that the orbital moment is indeed strongly reduced
from its ionic value in a wide temperature range. We have also performed tem-
perature dependent Ti L2,3 x-ray absorption (XAS) measurements, and found
from this local probe that the Ti 3d t2g orbitals are split by about 0.12-0.30 eV.
Our results are consistent with the conclusion of Keimer et al. in that the or-
bital moment is very small. However, the sizable CF splitting does not provide
conditions favorable for the realization of an orbital liquid.

Twinned single crystals of LaTiO3 with TN = 146 K have been grown by
the traveling floating-zone method. The PES experiments were performed at
the ID08 beamline of the ESRF in Grenoble. The photon energy was set to 700
eV, sufficiently high to ensure bulk sensitivity [233,234]. The degree of circular
polarization was close to 100% and the spin detector had an efficiency (Sherman
function) of 17%. The combined energy resolution for the measurements was 0.6
eV and the angle θ between the Poynting vector of the light and the analyzer
was 60◦. The XAS measurements were carried out at the Dragon beamline
of the NSRRC in Taiwan, with a photon energy resolution set at 0.15 eV for
the Ti L2,3 edges (hν ≈ 450 − 470 eV). The spectra were recorded using the
total electron yield method. Clean sample areas were obtained by cleaving the
crystals inside the measuring chambers with a pressure of low 10−10 mbar.

Fig. 9.1 shows the spin-resolved photoemission spectra of the LaTiO3 3d
states in the valence band, taken with circularly polarized light. The spectra
are corrected for the spin detector efficiency. One can observe a small but
reproducible difference between the spectra taken with the photon spin (given
by the helicity of the light) parallel or antiparallel to the electron spin. The
relevant quantity to be evaluated here is the integrated intensity of the difference
spectrum (

∫
dif

) relative to that of the integrated intensity of the sum spectrum
(
∫

sum
). This can be directly related to the expectation value of the spin-orbit

operator (l.s) applied to the initial state, thanks to the sum rule developed by
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Figure 9.1: Spin-resolved photoe-
mission spectra of twinned LaTiO3

single crystal taken with circularly
polarized light.
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van der Laan and Thole [235]. For a randomly oriented sample [146], and for
a 3d system in which the final states are mainly of f character due to the high
photon energies used [24,236], and we obtain:∫

dif∫
sum

= − 1
U(θ)

〈∑i li · si〉
3〈n〉 (9.1)

where U(θ)=(2-cos2(θ))/(3-4cos2(θ)) is a geometrical factor to account for the
angle between the Poynting vector of the light and the outgoing photoelectron,
the index i runs over the electrons in the 3d shell and 〈n〉 is the number of 3d
electrons contributing to the spectra.

Figure 9.2: 〈∑i li · si〉 values
extracted from the spin-resolved
circularly polarized photoemission
data, together with theoretical
predictions for various crystal field
parameters.
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With
∫

dif
/
∫

sum
≈0.03, θ=60◦, and 〈n〉≈0.8 from our cluster calculations [24],

we arrive at 〈∑i li · si〉≈-0.06 (in units of ~
2), see Fig. 9.2. This is, in absolute

value, an order of magnitude smaller than the maximum possible value of -0.50
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for a 3d1 t2g ion with sz=1/2 and lz=-1 (in units of ~). In fact, the -0.06
value is so small, that we can directly conclude that for this 3d1 ion the orbital
momentum is practically quenched. Fig. 9.2 shows that this is the case for a
wide range of temperatures, both below and above TN .

Having established that LaTiO3 has a strongly reduced orbital moment, we
now focus on the issue whether this is caused by strong orbital fluctuations
[74,75] or rather by strong local CF effects as theoretically proposed [71,76,77].
To this end, we carry out temperature dependent XAS measurements at the
Ti L2,3 (2p → 3d) edges. Here we make use of the fact that the 2p core hole
produced has a strong attractive Coulomb interaction with the 3d electrons.
This interaction is about 6 eV, and is more than one order of magnitude larger
than the band width of the 3d t2g states. The absorption process is therefore
strongly excitonic, making the technique an ideal and extremely sensitive local
probe [18,19,24].

The top panel of Fig. 9.3 shows the experimental Ti L2,3 XAS spectra
for several temperatures below and above TN . One can clearly observe that
the spectra are temperature independent. In the subsequent sections we will
discuss two aspects of the spectra that are relevant for the determination of the
energetics and symmetry of the ground state and the lowest excited states of
LaTiO3. The first is the detailed line shape of the spectra, and the second is
their temperature insensitivity.

To start with the first aspect, we have performed simulations in order to
obtain the best match with the experimental spectra, and by doing so, to deter-
mine the magnitude of the CF splitting in the t2g levels. For this we have used
the well-proven configuration interaction cluster model that includes the full
atomic multiplet theory and the hybridization with the O 2p ligands [18,19,24].
Curves (a) in left panel of Fig. 9.3 are the calculated isotropic spectra of a TiO6

cluster with a non-cubic crystal field splitting of ∆CF = 230 meV, as obtained,
using a Wannier function projection procedure, from our LDA calculation [237]
on the refined orthorhombic crystal structure [71]. One can see that the exper-
imental data are well reproduced. We have also carried out simulations with
other ∆CF values, and found that ∆CF should be in the range of about 120 to
300 meV in order to maintain the good agreement. If we chose, for example,
∆CF = 54 meV as proposed from the LDA calculations by Solovyev [78], we
find that the simulated line shapes are less satisfactory: curves (b) show devi-
ations from the experimental spectra, especially in the encircled region. More
important is that the situation without CF splitting, i.e. in O

′
h symmetry as

shown by curves (c), definitely does not agree with the experiment. Also the
case as depicted by curves (d), in which the spin-orbit interaction in Oh symme-
try is artificially switched off as to obtain fully degenerate t2g levels, which was
the starting point of the treatment of Khaliullin and Maekawa [75], does not
agree with the measurement. From the line shape analysis we can thus firmly
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Figure 9.3: Top panel: experimental Ti L2,3 XAS spectra taken from a
twinned LaTiO3 single crystal at 20, 100, 150 and 200 K. Left panel: simulated
isotropic spectra calculated for a TiO6 cluster at 20, 100, 150 and 200 K for
several CF parameters. Right panel: corresponding energy level diagrams for
the cluster in an exchange field of Hex = 46.5 meV (from Keimer et al. [74])
at T = 0 K and vanishing at TN = 146 K. Four scenarios are presented: (a)
non-cubic symmetry with ∆CF = 230 meV from our LDA calculation [237] and
with ∆CF = 120 and 300 meV, (b) non-cubic symmetry with ∆CF = 54 meV
from Solovyev [78], (c) O

′
h and (d) Oh symmetry. The spin-orbit constant ζ is

15.2 meV for (a), (b) and (c), and 0 for (d). Note the very different energy scales.
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conclude that the crystal field splitting in LaTiO3 is quite appreciable.
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The second aspect of the Ti L2,3 XAS spectra is their temperature insen-
sitivity. This may look like a trivial observation, but actually it is not. For
a 3d system with an open t2g shell, one usually expects to see an appreciable
temperature dependence in the isotropic spectrum: for instance, in Fig. 4 we
depict the Co L2 XAS spectra of polycrystalline CoO, and indeed, we do see
a strong temperature dependence. The reason for this behavior is that for a
system with an unquenched orbital moment like CoO, the ground state and the
lowest excited states are split in energy by the spin-orbit interaction and are
separated in energy by an amount of the order of the spin-orbit coupling [174].
Since the final states that can be reached from the ground state and from the
lowest excited states are very different, the spectrum will change with tempera-
ture depending on how much each of the initial states is thermally populated. In
Fig. 9.4 we have also simulated the CoO spectra using a CoO6 cluster model,
and clearly the temperature dependence is reproduced. In the left panel of
Fig. 9.3, we have calculated the LaTiO3 spectra assuming a perfect O

′
h local

symmetry, and the resulting curves (c) show indeed also a strong temperature
dependence. However, the fact that experimentally the LaTiO3 spectra are
temperature independent, indicates directly that the spin-orbit interaction is
inactive in LaTiO3. Indeed, simulations carried out for CF splittings much
larger than the spin-orbit interaction, e.g. curves (a) and (b) in Fig. 9.3, are
not temperature sensitive. The experimentally observed temperature insensitiv-
ity is therefore fully consistent with the very small orbital moment found from
the spin-resolved photoemission measurements. We would like to note that the
XAS simulations were carried out including, for completeness, the presence of
an exchange field as depicted in the right panel of Fig. 9.3, although this had a
negligible influence on the isotropic spectra.

Returning to the spin-resolved photoemission data, we are able to reproduce
the very low 〈∑i li · si〉 of about -0.06 if we use ∆CF values in the range of 120
and 300 meV. In Fig. 2 we show the results calculated for the ∆CF = 230 meV
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as found from our LDA. The corresponding extracted orbital moment is Lz =
-0.06. The ∆CF = 54 meV value as proposed by Solovyev [78], however, clearly
gives a 〈∑i li · si〉 value that deviates substantially from the experimental one.
The orbital moment in this scenario is quite large: Lz = -0.24. It is almost
superfluous to note that the calculation with ∆CF = 0 meV, i.e. in perfect O

′
h

symmetry, gives results that are in strong disagreement with the experiment.
To conclude, we have observed that the orbital moment in LaTiO3 is strongly

reduced from its ionic value, supporting the analysis from the neutron exper-
iment by Keimer et al. [74]. Our experiments have also revealed the presence
of non-cubic crystal fields sufficiently strong to split the Ti t2g levels by about
0.12-0.30 eV, confirming several of the theoretical estimates [71, 76, 77, 237].
Such a large crystal field splitting provides a strong tendency for the Ti 3d or-
bitals to be spatially locked, i.e. the quadrupole moment measured at 1.5 K by
NMR [238] should also persist at the more relevant higher temperatures, making
the formation of an orbital liquid in LaTiO3 rather unfavorable.

We acknowledge Lucie Hamdan for her skillful technical assistance. The
research in Köln is supported by the Deutsche Forschungsgemeinschaft through
SFB 608 and the research in Ekaterinburg by grants RFFI 04-02-16096 and
yp.01.01.059.
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Chapter 10

Orbital-assisted metal-
insulator transition in
VO2 [239]

We have found direct experimental evidence for an orbital
switching in the V 3d states across the metal-insulator tran-
sition in VO2. We have used soft-x-ray absorption spectroscopy
at the V L2,3 edges as a sensitive local probe, and have de-
termined quantitatively the orbital polarizations. These results
strongly suggest that, in going from the metallic to the insu-
lating state, the orbital occupation changes in a manner which
makes the system more 1-dimensional and more susceptible to
a Peierls-like transition, and that the required massive orbital
switching can only be made if the system is close to a Mott
insulating regime.

The problem of metal-insulator transitions (MIT) in transition metal com-
pounds attracts considerable attention already for a long time. Among the best
studied of such systems are the V oxides, especially V2O3 and VO2 [1, 2]. The
long-standing problem in these systems is the relative role of electron-lattice in-
teractions and corresponding structural distortions versus electron correlations.
This problem is especially acute for the MIT in VO2, which was described either
as predominantly a Peierls transition [82] or as a Mott-Hubbard transition [83].

An intriguing aspect that has largely been neglected in the discussions about
MIT in TM oxides is the possible role of magnetic correlations and especially
the orbital structure of constituent TM ions [15]. Very recently, a theoretical
model for spinels such as MgTi2O4 and CuIr2S4 has been proposed in which a
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specific orbital occupation effectively leads to the formation of one-dimensional
bands, making the systems, in a natural manner, susceptible to a Peierls-like
MIT [81].

V-atom

O-atom

b

a
c Figure 10.1: Crystal structure of

VO2 in the metallic rutile (R) phase
and in the insulating monoclinic
(M1) phase. The arrows show the
direction of the displacements of the
V ions in the M1-phase. The a, b
and c-axes are defined with respect
to the rutile structure.

The crystal and electronic structure of VO2 is in this respect more intricate.
The MIT in VO2 is a structural transition from the high-temperature rutile
(R) structure to a monoclinic (M1) structure, in which there appears simulta-
neous dimerization in each V chain along the c-axis and a twisting of V-V pairs
due to an antiferroelectric shift of neighboring V atoms towards the apex oxy-
gens, which lay at the axis perpendicular to the crystal c-axis, as shown in Fig.
10.1. As argued already long ago by Goodenough [240], one should discrimi-
nate between two types of orbitals and corresponding bands: d‖-orbitals/bands,
formed by the t2g-orbitals with strong direct overlap with the neighboring V in
the chains, and π∗-orbitals/bands, made of the two other t2g-orbitals. In the R-
phase, the d‖ band overlaps with the π∗-band, resulting in a orbitally isotropic
metallic state, see Fig. 10.2. The twisting in the M1-phase increases the V -
apex O hybridization and moves the π∗ band up, so that only the d‖ band is
occupied. The later one then becomes split by the dimerization, leading to the
insulating state.

Many theoretical ab-initio studies were performed to test the Goodenough
picture. LDA calculations indicated indeed that the d‖ band becomes more
occupied in the M1-phase [82, 241], but they in fact failed to reproduce the
insulating state. The LDA+U approach predicts more dramatic changes in the
orbital occupations, but unfortunately it does not give the metallic solution for
the R-phase [242, 243]. Similar changes were also the outcome of a study with
the three-band Hubbard model by means of exact diagonalization of finite size
clusters [80]. Very recently, various LDA+DMFT methods have been applied
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Metal
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Figure 10.2: Top panel: schematic electronic structure of VO2 according to
Goodenough [240]; bottom panel: definitions of the relevant V 3d t2g orbitals
used in this work, drawn in the (110) plane spanned by the a, b and c-axes of
Fig. 1. Site 1 and 2 are related by a 90◦ rotation around the c-axis.

to explain the MIT, and also here the orbital occupations are an important
issue [243–246]. In view of the fact that the orbital occupation and changes
thereof are central to the MIT theories for VO2, it is quite surprising that an
experimental proof of it is completely lacking.

In this paper we give a direct experimental evidence of this orbital redistribu-
tion at the MIT in VO2. We present a polarization-dependent x-ray absorption
spectroscopy (XAS) study on VO2 single crystals at the V L2,3 (2p → 3d)
edges. Here we make use of the fact that the Coulomb interaction of the 2p core
hole with the 3d electrons is much larger than the 3d t2g band width, so that
the absorption process is strongly excitonic and therefore can be well under-
stood in terms of atomic-like transitions to multiplet split final states subject
to dipole selection rules. This makes the technique an extremely sensitive local
probe [18, 19, 24], ideal to study the orbital character [15, 103] of the ground or
initial state. For our experiment on VO2, we redefine the orbitals in terms of
σ, π, or δ with respect to the V chain as shown in Fig. 2. The σ orbital is then
equivalent to the d‖, and the π and δ to the π∗. The transition probability will
strongly depend on which of the σ, π, or δ orbitals are occupied and on how
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the polarization vector ~E of the light is oriented. Our measurememts reveal a
dramatic switching of the orbital occupation across the MIT, even more than in
V2O3 [15], indicating the crucial role of the orbitals and lattice in the correlated
motion of the electrons.

Single crystals of VO2 with TMIT = 67 ◦C have been grown by the vapor
transport method [247]. The XAS measurements were performed at the Dragon
beamline of the NSRRC in Taiwan. The spectra were recorded using the total
electron yield method in a chamber with a base pressure of 3 × 10−10 mbar.
Clean sample areas were obtained by cleaving the crystals in-situ. The photon
energy resolution at the V L2,3 edges (hν ≈ 510 − 530 eV) was set at 0.15 eV,
and the degree of linear polarization was ≈ 98%. The VO2 single crystal was
mounted with the c-axis perpendicular to the Poynting vector of the light. By
rotating the sample around this Poynting vector, the polarization of the electric
field vector can be varied continuously from ~E ‖ c to ~E ⊥ c. This measurement
geometry allows for an optical path of the incoming beam which is independent
of the polarization, guaranteeing a reliable comparison of the spectral line shapes
as a function of polarization.
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Figure 10.3: Experimental V
L2,3 XAS spectra of VO2 in the
insulating M1-phase (top panel,
T=30◦C) and metallic R-phase
(bottom panel, T=100◦C), taken
with the light polarization ~E ‖ c

(solid lines) and ~E ⊥ c (dashed
lines). The metal-insulator transi-
tion temperature is 67 ◦C.
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Fig. 10.3 shows the V L2,3 XAS spectra of VO2 taken in the insulating
M1-phase (top panel), and in the metallic R-phase (bottom panel). The gen-
eral lineshape of the spectra is similar to that in earlier works, each of which
only reports spectra for one particular polarization [248, 249]. In our work, we
have measured for each phase the spectra with two different light polarizations,
namely ~E ‖ c (solid lines) and ~E ⊥ c (dashed lines). We observe a clear po-
larization dependence for the insulating phase. By contrast, the polarization
dependence is quite weak for the metallic phase. Fig. 10.3 shows for each phase
also the dichroic spectrum, i.e. the difference between the spectra taken with
the two polarizations. One now can see that the dichroic spectrum of the insu-
lating phase has not only a larger amplitude, but also a very different lineshape
then that of the metallic phase.
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Figure 10.4: Theoretical simulations for the polarization dependent V L2,3

XAS spectra. Left panel: best fit to the experimental spectra, using orbital
occupations as indicated in Table I. Right panel: simulations for the V 3d1

ion assuming a pure σ, π, or δ orbital occupation. Top part of the panels:
simulations for the insulating M1-phase. Bottom part of the panels: idem for
the metallic R-phase.

In the subsequent section we will describe how one can determine the orbital
occupation of the V 3d shell from the lineshape of the spectra and the dichroism
in those spectra. First of all, it is important to note, that one may be tempted to
think that the polarization dependence in the insulating phase, although clear,
is still rather small since the amplitude of the dichroic spectrum is not larger
than 10% of the strongest peaks in the spectra, and that therefore the orbital
occupation will not be strongly polarized. This, however, would be an incorrect
statement, since one should not see a strong polarization for a system which
contain many holes in the 3d shell. In the particular case of VO2: even if the
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3d1 state would be fully orbitally polarized, there still will be 9 possible orbitals
left to choose for the 2p core electron to make the L2,3 XAS transition, so that
the maximum dichroic signal cannot be expected to be very large.

To extract information concerning the orbital occupation from the V L2,3

XAS spectra, we have performed simulations of the atomic-like 2p63d1 → 2p53d2

transitions using the well-proven configuration interaction cluster model [18,19,
24]. The method uses a VO6 cluster which includes the full atomic multiplet
theory and the local effects of the solid. It accounts for the intra-atomic 3d-3d
and 2p-3d Coulomb and exchange interactions, the atomic 2p and 3d spin-orbit
couplings, the O 2p - V 3d hybridization, and local crystal field parameters.
Parameters for the multipole part of the Coulomb and exchange interactions
were given by the Hartree-Fock values [24], while the monopole parts (Udd,
Upd) as well as the O 2p - V 3d charge transfer energy were determined from
photoemission experiments [250]. The one-electron parameters such as the O
2p - V 3d and O 2p - O 2p transfer integrals as well as the local crystal fields
were extracted from the LDA band structure results [242, 251] for the crystal
structure corresponding to each of the two phases of VO2. The simulations have
been carried out using the XTLS 8.0 programm [24,80,252].

Fig. 10.4 shows the results of our theoretical simulations of the spectra. In
the top part of the right panel we have simulated the insulating M1-phase spectra
for the following three scenarios: the V 3d1 ion is set either in the pure σ, π, or δ-
orbital symmetry. One can clearly observe that the different orbital symmetries
will lead to very different spectra with quite different polarization dependence.
One can notice that the σ-orbital scenario resembles the experimental spectra
the most, especially when one focuses on the most excitonic part of the spectrum,
namely between 512 and 516 eV. In a simulation with the V ion in the true
ground state symmetry, belonging to the proper local crystal fields of the M1-
phase, we find, as shown in the left panel, even a better fit to the experimental
data. The corresponding orbital symmetry, as listed in the left column of Table
10.1, has indeed overwhelmingly the σ character (0.81), and only very little π
(0.10) and δ (0.09).

We have also simulated the spectra in the metallic R-phase, again for the
three scenarios in which the V ion is set to have either the pure σ, π, or δ-orbital
symmetry. The bottom part of the right panel shows that each scenario results
in quite different spectra and polarization dependence. We also note that each
of the R-phase scenario gives spectra different from the corresponding M1-phase,
simply because of the differences in the local electronic structure, resulting from
the different crystal structure. Important is now that none of the three scenarios
of the R-phase give good agreement with the experimental spectra. Apparently,
the V ion has an orbital symmetry which is very far from a pure σ, or π, or
δ. We now approximate the initial state symmetry of the V ion by a linear
combination of those three symmetries, and optimize the relative weights to
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M1-phase R-phase
fit to exp. ab-initio fit to exp. ab-initio

sym. 3d occ. LDA LDA+U sym. 3d occ. LDA LDA+U
σ 0.81 0.86 0.64 0.89 0.33 0.41 0.43 0.20
π 0.10 0.21 0.39 0.23 0.16 0.25 0.35 0.24
δ 0.09 0.17 0.41 0.25 0.51 0.58 0.67 0.97
eg1 0.00 0.27 0.46 0.40 0.00 0.27 0.47 0.42
eg2 0.00 0.32 0.53 0.51 0.00 0.27 0.48 0.48
tot. 1.00 1.83 2.43 2.48 1.00 1.78 2.40 2.31

Table 10.1: Symmetry and orbital occupation of the 3d shell of VO2 in the
M1- and R-phase.

obtain the best fit to the experiment, with the emphasis on the excitonic part.
The left panel of Fig. 10.4 shows that this state is built up of 0.33 σ, 0.16 π and
0.51 δ symmetries, see also the 5th column of Table 10.1. It seems thus that in
the metallic phase the V orbital occupation is almost isotropic.

In Table 10.1 we have also listed the 3d orbital occupation as found from the
simulations of the experimental spectra. These numbers are not identical to the
symmetry occupation numbers because of the covalency, i.e. the hybridization of
the V 3d with the surrounding O 2p ligands. We now can compare our findings
directly with the numbers from our LDA and LDA+U calculations [242, 251].
We note that our LDA band structure is quite similar to the one published
earlier [82, 241], and that the occupation numbers of our LDA+U is in close
agreement with the one published very recently [243]. For the insulating M1-
phase, we find that the orbital occupation, which is highly (σ) polarized, is well
reproduced by the LDA+U model but not so by the standard LDA, see Table I.
On the other hand, for the metallic R-phase, we observe that the almost isotropic
orbital occupation as experimentally determined is well reproduced by the LDA,
but not so by the LDA+U. It seems that the LDA tends to underestimate the
orbital polarization, which makes the method less suitable for the insulating
phase. The LDA+U, on the other hand, tend to overestimate it, which puts
this approach in disadvantage for the metallic phase. These problems are likely
to be related to the fact that the LDA cannot reproduce the insulating state
in the M1-phase, while the LDA+U does not give the metallic state for the
R-phase. Nevertheless, the general trend that the orbital occupation is more
σ-polarized in the M1-phase is predicted correctly in both approaches.

In comparing our experimental results with the DMFT calculations, we
note that in one implementation of the standard LDA+DMFT method the
change in orbital polarization is too small, which has been attributed to the
fact that the insulating phase cannot be reproduced [243]. Very exciting is
that an LDA+cluster/DMFT study [246] has been very successful in reproduc-
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ing the strong change in orbital polarization, indicating the importance of the
k-dependence of the self-energy correction.

The significant outcome of our experiments is that the orbital occupation
changes from almost isotropic in the metallic phase to the almost completely
σ-polarized in the insulating phase, in close agreement with the two-site cluster
model [80]. This very strong orbital polarization leads in fact to a change
of the electronic structure of VO2 from a 3-dimensional to effectively an one-
dimensional system [81]. The V ions in the chain along the c-axis are then
very susceptible to a Peierls transition. In this respect, the MIT in VO2 can
indeed be regarded as a Peierls transition [82]. However, to achieve the required
dramatic change of the orbital occupation one also need the condition that
strong electron correlations bring this narrow band system close to the Mott
regime [83]. The MIT in VO2 may therefore be labelled as a ”collaborative”
Mott-Peierls transition.

To conclude, we have found direct experimental evidence for an orbital
switching in the V 3d states across the metal-insulator transition in VO2. We
have used soft-x-ray absorption spectroscopy at the V L2,3 edges as a sensi-
tive local probe, and have determined quantitatively the orbital occupation on
both sides of the transition. These results strongly suggest that, in going from
the metallic to the insulating state, the orbital occupation changes in such a
manner that the system becomes more 1-dimensional and more susceptible to
a Peierls-like transition, and that this orbital change can only be so dramatic if
the system is close to a Mott insulating regime.

We acknowledge the NSRRC staff for providing us with an extremely stable
beam. We acknowledge Lucie Hamdan for her skillful technical assistance. The
research in Köln is supported by the Deutsche Forschungsgemeinschaft through
SFB 608 and the research in Ekaterinburg by grants RFFI 04-02-16096 and
yp.01.01.059.



Appendix A

Slater integrals for 3d and
4d elements

The Slater integrals used in this thesis are calculated within the Hartree-Fock
approximation with the use of R. D. Cowan’s coded RCN36K. The basics of
the functionality of this code is described in the book: ”The theory of atomic
structure and spectra” [36]. Some calculations on transition metal ions with low
valences converged with an extremely large ionic radius. When the value of r2

(r4) exceeded 10 Å2 (Å4) we replaced it by an ∗. For these configurations non
of the Slater-integrals should be trusted to work within a solid.

The values of r2 and r4 are in Å2 and Å4 respectively. All other values are
in eV.

3d elements

K r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 3d1 ∗ ∗ 0.000 0.000 0.000
2p5 3d2 ∗ ∗ 0.002 2.723 1.622 1.880 1.045 0.583 0.329
2p5 3d1 1.687 6.860 0.005 0.000 0.000 1.880 2.202 1.318 0.745

Ca r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 3d2 ∗ ∗ 0.001 2.433 1.452
2p5 3d3 ∗ ∗ 0.005 4.205 2.529 2.405 1.970 1.204 0.681
2p6 3d1 ∗ ∗ 0.004 0.000 0.000
2p5 3d2 1.202 3.577 0.008 6.258 3.851 2.405 2.917 1.851 1.048
2p5 3d1 0.781 1.306 0.011 0.000 0.000 2.404 3.793 2.511 1.423
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Sc r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 3d3 ∗ ∗ 0.005 3.855 2.311
2p5 3d4 ∗ ∗ 0.010 5.326 3.224 3.034 2.696 1.733 0.982
2p6 3d2 1.356 4.559 0.007 5.851 3.590
2p5 3d3 0.943 2.247 0.013 7.116 4.385 3.033 3.532 2.331 1.321
2p6 3d1 0.844 1.535 0.010 0.000 0.000
2p5 3d2 0.658 0.946 0.017 8.530 5.321 3.032 4.332 2.950 1.674
2p5 3d1 0.516 0.535 0.020 0.000 0.000 3.032 5.095 3.582 2.035

Ti r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 3d4 ∗ ∗ 0.009 5.002 3.019
2p5 3d5 1.326 6.323 0.015 6.261 3.806 3.778 3.329 2.216 1.257
2p6 3d3 1.029 2.692 0.012 6.780 4.167
2p5 3d4 0.775 1.546 0.019 7.888 4.865 3.777 4.098 2.783 1.578
2p6 3d2 0.699 1.075 0.016 8.243 5.132
2p5 3d3 0.566 0.713 0.023 9.213 5.744 3.776 4.849 3.376 1.917
2p6 3d1 0.538 0.587 0.019 0.000 0.000
2p5 3d2 0.453 0.421 0.027 10.342 6.499 3.776 5.580 3.989 2.267
2p5 3d1 0.381 0.281 0.032 0.000 0.000 3.776 6.301 4.626 2.632

V r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 3d5 1.447 7.507 0.014 5.970 3.620
2p5 3d6 1.044 3.981 0.022 7.095 4.324 4.652 3.911 2.673 1.517
2p6 3d4 0.829 1.786 0.018 7.599 4.676
2p5 3d5 0.655 1.124 0.026 8.612 5.314 4.651 4.634 3.218 1.827
2p6 3d3 0.595 0.793 0.022 8.961 5.576
2p5 3d4 0.494 0.553 0.031 9.875 6.152 4.650 5.351 3.792 2.154
2p6 3d2 0.470 0.456 0.027 10.126 6.353
2p5 3d3 0.403 0.338 0.036 10.973 6.887 4.649 6.056 4.389 2.495
2p6 3d1 0.392 0.299 0.031 0.000 0.000
2p5 3d2 0.342 0.231 0.041 11.963 7.554 4.650 6.757 5.011 2.852
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Cr r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 3d6 1.121 4.612 0.021 6.833 4.155
2p5 3d7 0.856 2.709 0.030 7.866 4.803 5.671 4.460 3.112 1.767
2p6 3d5 0.692 1.267 0.025 8.355 5.146
2p5 3d6 0.565 0.851 0.035 9.303 5.742 5.669 5.151 3.641 2.068
2p6 3d4 0.515 0.605 0.030 9.648 6.001
2p5 3d5 0.437 0.439 0.041 10.521 6.551 5.668 5.840 4.201 2.387
2p6 3d3 0.416 0.362 0.035 10.776 6.754
2p5 3d4 0.361 0.276 0.047 11.594 7.270 5.667 6.524 4.785 2.721
2p6 3d2 0.351 0.243 0.041 11.793 7.437
2p5 3d3 0.310 0.191 0.053 12.572 7.928 5.668 7.209 5.394 3.070

Mn r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 3d7 ∗ ∗ 0.032 5.312 3.268
2p5 3d8 0.721 1.945 0.040 8.594 5.255 6.849 4.987 3.539 2.010
2p6 3d6 0.592 0.942 0.035 9.072 5.590
2p5 3d7 0.495 0.662 0.046 9.971 6.156 6.847 5.652 4.056 2.304
2p6 3d5 0.452 0.475 0.040 10.315 6.413
2p5 3d6 0.390 0.355 0.053 11.154 6.942 6.846 6.320 4.603 2.617
2p6 3d4 0.371 0.293 0.046 11.414 7.147
2p5 3d5 0.326 0.228 0.059 12.209 7.648 6.845 6.987 5.176 2.944
2p6 3d3 0.316 0.201 0.052 12.414 7.819
2p5 3d4 0.282 0.161 0.066 13.176 8.299 6.845 7.657 5.773 3.287

Fe r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 3d8 ∗ ∗ 0.021 2.087 1.275
2p5 3d9 0.620 1.452 0.053 9.293 5.688 8.203 5.498 3.957 2.248
2p6 3d7 0.515 0.723 0.045 9.761 6.017
2p5 3d8 0.438 0.527 0.059 10.622 6.559 8.202 6.142 4.463 2.537
2p6 3d6 0.402 0.380 0.052 10.965 6.815
2p5 3d7 0.351 0.292 0.067 11.778 7.327 8.200 6.792 5.000 2.843
2p6 3d5 0.334 0.240 0.059 12.042 7.534
2p5 3d6 0.296 0.191 0.074 12.817 8.023 8.199 7.445 5.563 3.165
2p6 3d4 0.287 0.167 0.066 13.029 8.197
2p5 3d5 0.258 0.136 0.082 13.775 8.667 8.199 8.101 6.150 3.502
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Co r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 3d9 ∗ ∗ 0.027 2.196 1.348
2p5 3d10 0.541 1.117 0.067 9.969 6.108 9.752 5.996 4.367 2.482
2p6 3d8 0.453 0.570 0.059 10.430 6.431
2p5 3d9 0.392 0.427 0.075 11.261 6.954 9.750 6.624 4.865 2.766
2p6 3d7 0.360 0.310 0.066 11.604 7.209
2p5 3d8 0.318 0.243 0.083 12.395 7.707 9.748 7.259 5.394 3.068
2p6 3d6 0.302 0.200 0.074 12.662 7.916
2p5 3d7 0.270 0.161 0.092 13.421 8.394 9.746 7.899 5.947 3.384
2p6 3d5 0.262 0.141 0.082 13.638 8.572
2p5 3d6 0.237 0.116 0.101 14.372 9.034 9.746 8.544 6.525 3.716

Ni r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 3d9 0.404 0.458 0.074 11.084 6.835
2p5 3d10 0.353 0.351 0.093 11.890 7.343 11.509 7.098 5.262 2.993
2p6 3d8 0.325 0.256 0.083 12.233 7.597
2p5 3d9 0.289 0.204 0.102 13.005 8.084 11.507 7.720 5.783 3.290
2p6 3d7 0.275 0.168 0.091 13.276 8.294
2p5 3d8 0.248 0.137 0.112 14.021 8.763 11.506 8.349 6.329 3.602
2p6 3d6 0.240 0.120 0.101 14.244 8.944
2p5 3d7 0.218 0.100 0.122 14.965 9.399 11.505 8.984 6.898 3.929

Cu r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 3d9 0.295 0.214 0.102 12.854 7.980
2p5 3d10 0.265 0.173 0.124 13.611 8.457 13.498 8.177 6.169 3.510
2p6 3d8 0.252 0.143 0.112 13.885 8.669
2p5 3d9 0.228 0.118 0.135 14.617 9.130 13.496 8.796 6.708 3.818
2p6 3d7 0.221 0.103 0.123 14.845 9.313
2p5 3d8 0.202 0.087 0.147 15.556 9.762 13.495 9.421 7.270 4.141

Zn r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 3d9 0.232 0.122 0.136 14.489 9.041
2p5 3d10 0.211 0.102 0.162 15.210 9.495 15.738 9.240 7.084 4.033
2p6 3d8 0.204 0.089 0.147 15.443 9.681
2p5 3d9 0.187 0.076 0.175 16.145 10.124 15.737 9.857 7.639 4.352
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4d elements

Rb r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 4d1 ∗ ∗ 0.001 0.000 0.000
2p5 4d2 ∗ ∗ 0.009 2.530 1.553 40.394 0.232 0.171 0.099
2p5 4d1 ∗ ∗ 0.017 0.000 0.000 40.393 0.440 0.333 0.192

Sr r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 4d2 ∗ ∗ 0.008 2.459 1.510
2p5 4d3 ∗ ∗ 0.020 3.585 2.230 45.518 0.459 0.350 0.203
2p6 4d1 ∗ ∗ 0.016 0.000 0.000
2p5 4d2 2.173 9.473 0.029 4.784 3.052 45.518 0.656 0.508 0.294
2p5 4d1 1.579 4.467 0.038 0.000 0.000 45.517 0.857 0.672 0.389

Y r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 4d3 ∗ ∗ 0.019 3.504 2.177
2p5 4d4 ∗ ∗ 0.033 4.415 2.774 51.132 0.666 0.519 0.301
2p6 4d2 ∗ ∗ 0.028 4.696 2.992
2p5 4d3 1.689 5.745 0.042 5.456 3.497 51.131 0.855 0.673 0.390
2p6 4d1 1.620 4.708 0.038 0.000 0.000
2p5 4d2 1.306 3.079 0.052 6.257 4.067 51.131 1.047 0.832 0.482
2p5 4d1 1.089 2.006 0.062 0.000 0.000 51.130 1.238 0.992 0.575

Zr r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 4d4 ∗ ∗ 0.032 4.338 2.723
2p5 4d5 1.949 9.637 0.047 5.119 3.238 57.267 0.863 0.683 0.396
2p6 4d3 1.734 6.062 0.042 5.379 3.444
2p5 4d4 1.381 3.846 0.058 6.051 3.892 57.267 1.046 0.833 0.483
2p6 4d2 1.333 3.213 0.052 6.188 4.020
2p5 4d3 1.111 2.240 0.068 6.786 4.418 57.266 1.232 0.989 0.574
2p6 4d1 1.107 2.076 0.062 0.000 0.000
2p5 4d2 0.947 1.528 0.079 7.394 4.859 57.266 1.419 1.147 0.666
2p5 4d1 0.833 1.135 0.091 0.000 0.000 57.266 1.607 1.309 0.760
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Nb r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 4d5 ∗ ∗ 0.047 5.047 3.190
2p5 4d6 1.558 6.078 0.064 5.745 3.653 63.959 1.052 0.842 0.489
2p6 4d4 1.411 4.020 0.057 5.983 3.844
2p5 4d5 1.165 2.738 0.075 6.600 4.256 63.958 1.232 0.991 0.575
2p6 4d3 1.130 2.320 0.068 6.724 4.375
2p5 4d4 0.963 1.691 0.087 7.288 4.750 63.958 1.414 1.144 0.665
2p6 4d2 0.960 1.573 0.079 7.338 4.820
2p5 4d3 0.834 1.194 0.099 7.866 5.171 63.958 1.597 1.302 0.756
2p6 4d1 0.843 1.164 0.091 0.000 0.000
2p5 4d2 0.743 0.907 0.111 8.370 5.540 63.958 1.783 1.462 0.850

Mo r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 4d6 0.000 0.000 0.000 5.679 3.608
2p5 4d7 1.291 4.126 0.083 6.320 4.034 71.243 1.237 0.998 0.580
2p6 4d5 1.186 2.843 0.075 6.538 4.213
2p5 4d6 1.004 2.034 0.095 7.118 4.599 71.242 1.414 1.147 0.666
2p6 4d4 0.977 1.743 0.087 7.231 4.711
2p5 4d5 0.847 1.313 0.108 7.769 5.069 71.242 1.593 1.299 0.755
2p6 4d3 0.845 1.225 0.099 7.815 5.135
2p5 4d4 0.743 0.953 0.121 8.325 5.474 71.241 1.774 1.455 0.846
2p6 4d2 0.750 0.928 0.112 8.324 5.508
2p5 4d3 0.668 0.738 0.134 8.814 5.833 71.242 1.958 1.615 0.939

Tc r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 4d7 1.316 4.299 0.083 6.259 3.992
2p5 4d8 1.098 2.951 0.104 6.860 4.392 79.157 1.418 1.153 0.671
2p6 4d6 1.019 2.102 0.095 7.061 4.560
2p5 4d7 0.879 1.560 0.118 7.613 4.927 79.156 1.592 1.300 0.756
2p6 4d5 0.858 1.350 0.108 7.717 5.033
2p5 4d6 0.753 1.044 0.132 8.236 5.378 79.155 1.769 1.452 0.845
2p6 4d4 0.751 0.975 0.121 8.278 5.441
2p5 4d5 0.668 0.774 0.146 8.773 5.771 79.155 1.949 1.607 0.936
2p6 4d3 0.674 0.752 0.135 8.771 5.803
2p5 4d4 0.604 0.608 0.160 9.250 6.121 79.156 2.131 1.767 1.029
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Ru r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 4d8 1.116 3.060 0.104 6.802 4.352
2p5 4d9 0.952 2.193 0.129 7.373 4.732 87.739 1.596 1.306 0.761
2p6 4d7 0.890 1.605 0.118 7.560 4.890
2p5 4d8 0.779 1.226 0.143 8.090 5.243 87.738 1.769 1.453 0.846
2p6 4d6 0.762 1.068 0.132 8.187 5.344
2p5 4d7 0.676 0.844 0.158 8.690 5.678 87.737 1.944 1.604 0.934
2p6 4d5 0.674 0.790 0.146 8.729 5.739
2p5 4d6 0.605 0.637 0.173 9.213 6.061 87.737 2.122 1.759 1.025
2p6 4d4 0.609 0.619 0.161 9.210 6.093
2p5 4d5 0.551 0.508 0.189 9.680 6.404 87.738 2.303 1.918 1.117

Rh r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 4d9 0.965 2.265 0.129 7.320 4.695
2p5 4d10 0.836 1.678 0.156 7.866 5.059 97.031 1.772 1.458 0.850
2p6 4d8 0.787 1.257 0.144 8.041 5.209
2p5 4d9 0.697 0.982 0.172 8.554 5.551 97.030 1.943 1.605 0.935
2p6 4d7 0.683 0.861 0.159 8.645 5.647
2p5 4d8 0.612 0.692 0.188 9.135 5.973 97.029 2.117 1.755 1.023
2p6 4d6 0.610 0.649 0.175 9.172 6.031
2p5 4d7 0.551 0.531 0.205 9.645 6.346 97.029 2.294 1.910 1.114
2p6 4d5 0.554 0.515 0.191 9.642 6.377
2p5 4d6 0.504 0.428 0.222 10.104 6.684 97.030 2.474 2.068 1.206

Pd r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 4d9 0.704 1.005 0.173 8.508 5.518
2p5 4d10 0.629 0.800 0.204 9.007 5.850 107.075 2.117 1.756 1.025
2p6 4d8 0.617 0.705 0.189 9.093 5.943
2p5 4d9 0.556 0.575 0.221 9.572 6.261 107.074 2.290 1.907 1.113
2p6 4d7 0.555 0.540 0.206 9.607 6.319
2p5 4d8 0.504 0.447 0.239 10.072 6.628 107.074 2.466 2.061 1.203
2p6 4d6 0.507 0.434 0.223 10.069 6.659
2p5 4d7 0.464 0.364 0.258 10.522 6.960 107.075 2.644 2.219 1.295

Ag r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 4d9 0.561 0.585 0.223 9.533 6.233
2p5 4d10 0.509 0.483 0.258 10.002 6.546 117.915 2.461 2.057 1.201
2p6 4d8 0.508 0.454 0.241 10.036 6.602
2p5 4d9 0.464 0.380 0.278 10.493 6.906 117.915 2.636 2.210 1.291
2p6 4d7 0.467 0.368 0.260 10.490 6.936
2p5 4d8 0.429 0.312 0.298 10.938 7.234 117.916 2.813 2.368 1.383
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Cd r2 r4 ζd F 2
dd F 4

dd ζ2p F 2
pd G1

pd G3
pd

2p6 4d9 0.467 0.385 0.280 10.459 6.881
2p5 4d10 0.429 0.326 0.320 10.910 7.181 129.599 2.804 2.359 1.379
2p6 4d8 0.431 0.315 0.300 10.907 7.211
2p5 4d9 0.397 0.269 0.342 11.350 7.505 129.600 2.981 2.516 1.471



Appendix B

Source-code of Ak,m

The program Ak,m can calculate the Madelung potential of an infinite point
charge distribution. The Madelung potential is expanded on spherical harmonics
and can be used as crystal field for a cluster calculation. The Madelung sum
does not converge absolutely. In order to find the sum an Ewald summation
has been used. The program has been tested on a linux platform with the Gnu
f77 compiler and the Intel 8.1 ifort compiler. Both run fine, the Intel compiler
is about two times faster. A short explanation to the program can be found in
the comments fields of the source-code.

The power of the program lies not within the exactness of the potential or
crystal-fields calculated. A point charge model is very crude. However if one
has a system with some odd symmetry and one wants to know quickly which
parameters of the crystal field are zero and which are not, this program gives a
very fast answer. In other words, it is a good starting-point for fitting.

An example input file for a cubic rocksalt with 1 Å between the different
atoms and a charge of plus and minus one at each site is printed below. One
only has to input the charges within the unit cell. Charges on the boundaries
of the unit cell should be reduced in charge corresponding to the number of
times they reappear in the crystal structure, or as shown below only taken into
account once. The first three lines are the vectors spanning the unit cell. The
next line is a multiplication factor for the x,y and z positions of the charges.
The fifth line contains one number, the amount of charge at the origin. The
sixth line contains the number of charges within the unit cell. The next n lines
contain the charge and its position (q, x, y, z).

2.000 0.000 0.0000
1.000 1.000 0.0000
1.000 0.000 1.0000
1.000 1.000 1.0000
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1.0
1
-1.0 1.0 0.0 0.0

Saving this file as in.dat and run Akm will give the file out.dat. For the give
example this file is plotted below. One can nicely see that most of the Ak,m

values are zero, as one should expect for a cubic symmetry.

Calculation of the Madelung potential
Expanded on renormalized spherical harmonics
V=A_{k,m} r^k C_{k,m}

input crystal structure:
Latice parameters:
a= 2.000000 0.000000 0.000000
b= 1.000000 1.000000 0.000000
c= 1.000000 0.000000 1.000000
Positions of charges:

q x y z
1.000000 0.000000 0.000000 0.000000

-1.000000 1.000000 0.000000 0.000000

Ewald sum calculated with G= 0.772609 1.545218 and 3.090435
Time used to calculate 0.109999999403954 sec.

Potential found (A_{k,m} parameters)
A_{0, 0}=( 25.16407095, 0.00000000)
A_{1, 0}=( 0.00000000, 0.00000000)
A_{1, 1}=( 0.00000000, 0.00000000)
A_{2, 0}=( 0.00000000, 0.00000000)
A_{2, 1}=( 0.00000000, 0.00000000)
A_{2, 2}=( 0.00000000, 0.00000000)
A_{3, 0}=( 0.00000000, 0.00000000)
A_{3, 1}=( 0.00000000, 0.00000000)
A_{3, 2}=( 0.00000000, 0.00000000)
A_{3, 3}=( 0.00000000, 0.00000000)
A_{4, 0}=( 51.52982716, 0.00000000)
A_{4, 1}=( 0.00000000, 0.00000000)
A_{4, 2}=( 0.00000000, 0.00000000)
A_{4, 3}=( 0.00000000, 0.00000000)
A_{4, 4}=( 30.79496183, 0.00000000)
A_{5, 0}=( 0.00000000, 0.00000000)
A_{5, 1}=( 0.00000000, 0.00000000)
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A_{5, 2}=( 0.00000000, 0.00000000)
A_{5, 3}=( 0.00000000, 0.00000000)
A_{5, 4}=( 0.00000000, 0.00000000)
A_{5, 5}=( 0.00000000, 0.00000000)
A_{6, 0}=( 14.24830629, 0.00000000)
A_{6, 1}=( 0.00000000, 0.00000000)
A_{6, 2}=( 0.00000000, 0.00000000)
A_{6, 3}=( 0.00000000, 0.00000000)
A_{6, 4}=( -26.65614024, 0.00000000)
A_{6, 5}=( 0.00000000, 0.00000000)
A_{6, 6}=( 0.00000000, 0.00000000)

input for Tanaka’s programme

QAk={ang
,0, 0, 25.164071*rk, 0.000000*rk
,1,-1, 0.000000*rk, 0.000000*rk
,1, 0, 0.000000*rk, 0.000000*rk
,1, 1, 0.000000*rk, 0.000000*rk
,2,-2, 0.000000*rk, 0.000000*rk
,2,-1, 0.000000*rk, 0.000000*rk
,2, 0, 0.000000*rk, 0.000000*rk
,2, 1, 0.000000*rk, 0.000000*rk
,2, 2, 0.000000*rk, 0.000000*rk
,3,-3, 0.000000*rk, 0.000000*rk
,3,-2, 0.000000*rk, 0.000000*rk
,3,-1, 0.000000*rk, 0.000000*rk
,3, 0, 0.000000*rk, 0.000000*rk
,3, 1, 0.000000*rk, 0.000000*rk
,3, 2, 0.000000*rk, 0.000000*rk
,3, 3, 0.000000*rk, 0.000000*rk
,4,-4, 30.794962*rk, 0.000000*rk
,4,-3, 0.000000*rk, 0.000000*rk
,4,-2, 0.000000*rk, 0.000000*rk
,4,-1, 0.000000*rk, 0.000000*rk
,4, 0, 51.529827*rk, 0.000000*rk
,4, 1, 0.000000*rk, 0.000000*rk
,4, 2, 0.000000*rk, 0.000000*rk
,4, 3, 0.000000*rk, 0.000000*rk
,4, 4, 30.794962*rk, 0.000000*rk
,5,-5, 0.000000*rk, 0.000000*rk
,5,-4, 0.000000*rk, 0.000000*rk
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,5,-3, 0.000000*rk, 0.000000*rk
,5,-2, 0.000000*rk, 0.000000*rk
,5,-1, 0.000000*rk, 0.000000*rk
,5, 0, 0.000000*rk, 0.000000*rk
,5, 1, 0.000000*rk, 0.000000*rk
,5, 2, 0.000000*rk, 0.000000*rk
,5, 3, 0.000000*rk, 0.000000*rk
,5, 4, 0.000000*rk, 0.000000*rk
,5, 5, 0.000000*rk, 0.000000*rk
,6,-6, 0.000000*rk, 0.000000*rk
,6,-5, 0.000000*rk, 0.000000*rk
,6,-4, -26.656140*rk, 0.000000*rk
,6,-3, 0.000000*rk, 0.000000*rk
,6,-2, 0.000000*rk, 0.000000*rk
,6,-1, 0.000000*rk, 0.000000*rk
,6, 0, 14.248306*rk, 0.000000*rk
,6, 1, 0.000000*rk, 0.000000*rk
,6, 2, 0.000000*rk, 0.000000*rk
,6, 3, 0.000000*rk, 0.000000*rk
,6, 4, -26.656140*rk, 0.000000*rk
,6, 5, 0.000000*rk, 0.000000*rk
,6, 6, 0.000000*rk, 0.000000*rk

};

The source-code of the program is printed below.

C

C A program to calculate the Madelung potential at a crystal

C lattice site, expanded on spherical harmonics up to 6-th order

C Programmed by M.W. Haverkort and M. Grueninger

C 06-03 at Koeln University.

C

C Input is read from in.dat

C Output is written to out.dat

C working info is written to standard output

C

C The input file should be named in.dat and have the form

C a(x) a(y) a(z)

C b(x) b(y) b(z)

C c(x) c(y) c(z)

C factorX factorY factorZ

C charge at origin

C number N of other charges

C q(1) x(1) y(1) z(1)

C ...
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C q(N) x(N) y(N) z(N)

C

C The positions x(i) will be multiplied by the number factorX.

C For orthogonal unit-cells one can input the crystal structure

C in relative coordinates.

C

C The Ewald sums is expanded on spherical Harmonics.

C The radial part of the Ewald sum is expanded on a Taylor series:

C V(r)=\sum_{k=0}^{k=\inf}\sum_{m=-k}^{m=k}

C A_{k,m} r^k C_m^k(\theta\phi)

C

C The coefficients A_{k,m} are found with the relation:

C A_{k,m}=\frac{1}{\sqrt{(k-m)!(k+m)!}} d_z^k-m(-d_x+i d_y)^m V(r)

C for m=>0

C for m<0 we use A_{k,m}=-1^m A_{k,m}^*

C

C Convergence, or G independency is checked by calculating

C the Ewald sum for 3 different values of G.

C If the sums did converge they should all be the same.

C The G values taken are one time the G for which computation time

C is minimum, one time Gopt*2 and one time Gopt/2

C

program Akm

C

integer Mq

parameter (Mq=100)

C Mq=maximum number of charges in unit cell

C warning parameters also defined in subroutines

C should be the same in all subroutine before compiling

real*8 a(3),b(3),c(3),q(Mq,0:3),G,T

complex*16 V(0:6,-6:6),Vd(0:6,-6:6),Vh(0:6,-6:6)

integer Nq,Ok

call getinput(a,b,c,q,Nq)

call calculateG(G,a,b,c)

call ewaldsum(V,a,b,c,q,Nq,G)

G=G/2D0

call ewaldsum(Vh,a,b,c,q,Nq,G)

G=G*4D0

call ewaldsum(Vd,a,b,c,q,Nq,G)

G=G/2D0

call converged(V,Vh,Vd,Ok)

call writeoutput(Vh,V,Vd,a,b,c,q,Nq,G,Ok)

end

C

C Check convergence. If the sum converged O.K. the sum is G

C independent. This program calculates the sum for optimum G, 2*G
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C and G/2 This subroutine checks if these are within 8 digits the

C same, if so the subroutine returns OK=1 if not OK=0

C

subroutine converged(V,Vh,Vd,Ok)

complex*16 V(0:6,-6:6),Vd(0:6,-6:6),Vh(0:6,-6:6)

real*8 acc

integer Ok,k,m

acc=10D-8

OK=1

DO k=0,6

DO m=-k,k

If (Dabs(Dreal(V(k,m))-Dreal(Vd(k,m))).GE.acc) then

OK=0

write(*,*)’No convergence for real part of V’,k,’,’,m

Endif

If (Dabs(Dimag(V(k,m))-Dimag(Vd(k,m))).GE.acc) then

OK=0

write(*,*)’No convergence for imag part of V’,k,’,’,m

Endif

Enddo

Enddo

end

C

C Calculate G such that the sum goes over a minimum of points

C Nsumpoints=Na*Nb*Nc+Nga*Ngb*Ngc

C

subroutine calculateG(G,a,b,c)

real*8 PI

parameter (PI=3.1415926535D0)

real*8 a(3),b(3),c(3),G,ga(3),gb(3),gc(3),Na,Nb,Nc,

& Nga,Ngb,Ngc,x(3),Vunit

CALL reciprocallatice(ga,gb,gc,a,b,c)

CALL Cros(x,a,b)

Vunit=dabs(c(1)*x(1)+c(2)*x(2)+c(3)*x(3))

CALL Cros(x,c,b)

Na=int(1D0+10D0*DSQRT((x(1)**2+x(2)**2+x(3)**2))/

& Vunit)

CALL Cros(x,a,c)

Nb=int(1D0+10D0*DSQRT((x(1)**2+x(2)**2+x(3)**2))/

& Vunit)

CALL Cros(x,a,b)

Nc=int(1D0+10D0*DSQRT((x(1)**2+x(2)**2+x(3)**2))/

& Vunit)

CALL Cros(x,ga,gb)

Vunit=dabs(gc(1)*x(1)+gc(2)*x(2)+gc(3)*x(3))
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CALL Cros(x,gc,gb)

Nga=int(1D0+15D0*DSQRT((x(1)**2+x(2)**2+x(3)**2))/

& Vunit)

CALL Cros(x,ga,gc)

Ngb=int(1D0+15D0*DSQRT((x(1)**2+x(2)**2+x(3)**2))/

& Vunit)

CALL Cros(x,ga,gb)

Ngc=int(1D0+15D0*DSQRT((x(1)**2+x(2)**2+x(3)**2))/

& Vunit)

G=(Na*Nb*Nc/(Nga*Ngb*Ngc))**(1D0/6D0)

end

C

C

C

subroutine writeoutput(Vh,V,Vd,a,b,c,q,Nq,G,Ok)

integer Mq

parameter (Mq=100)

real*8 a(3),b(3),c(3),q(Mq,0:3),G,T

complex*16 V(0:6,-6:6),Vh(0:6,-6:6),Vd(0:6,-6:6)

integer i,k,m,Nq,Ok

CALL CLOCK(T)

write(*,*)’start of writeoutput at’,T,’sec.’

open(10,file=’out.dat’)

IF (Ok.Eq.0) then

write(10,*)’Warning !!!!!!!!!!!’

write(10,*)’The system did not converge completely (10^-8)’

write(10,*)’check your results and G dependence’

write(10,*)’Small differences could be due to number loss’

write(10,*)’If it is not number loss you are looking at’

write(10,*)’Please contact Maurits Haverkort’

write(10,*)’haverkort@ph2.uni-koeln.de’

write(10,*)’’

write(10,*)’’

endif

100 format(A,3F10.6)

write(10,*)’Calculation of the Madelung potential’

write(10,*)’Expanded on renormalized spherical harmonics’

write(10,*)’V=A_{k,m} r^k C_{k,m}’

write(10,*)

write(10,*)’input crystal structure:’

write(10,*)’Latice parameters:’

write(10,100)’a=’,a

write(10,100)’b=’,b

write(10,100)’c=’,c

write(10,*)’Positions of charges:’

write(10,*)’ q x y z’
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101 format(4F10.6)

DO i=1,Nq

write(10,101)q(i,0),q(i,1),q(i,2),q(i,3)

ENDDO

write(10,*)

102 format(A,2F10.6,A,F10.6)

write(10,102)’Ewald sum calculated with G=’,G/2D0,G,

& ’ and’,G*2D0

write(10,*)’Time used to calculate ’,T,’ sec.’

write(10,*)

write(10,*)’Potential found (A_{k,m} parameters)’

103 format(A,I1,A,I2,A,’(’,F14.8,’,’,F14.8,’)’)

104 format(A,’(’,F14.8,’,’,F14.8,’)’)

DO k=0,6

DO m=0,k

IF(OK.EQ.0)THEN

write(10,103)’A_{’,k,’,’,m,’}=’,Vh(k,m)

write(10,104)’ ’,V(k,m)

write(10,104)’ ’,Vd(k,m)

ELSE

write(10,103)’A_{’,k,’,’,m,’}=’,V(k,m)

ENDIF

ENDDO

ENDDO

105 format(A,’,’,I1,’,’,I2,’,’,F11.6,’*rk,’,F11.6,’*rk’)

write(10,*)

write(10,*)’input for Tanaka’’s programme’

write(10,*)

write(10, *)’QAk={ang’

DO k=0,6

DO m=-k,k

write(10,105)’ ’,k,m,V(k,m)

ENDDO

ENDDO

write(10,*)’ };’

close(10)

CALL CLOCK(T)

write(*,*) ’wrote output to out.dat at’,T,’sec.’

end

C

C Read input parameters from in.dat

C The input file should be named in.dat and have the form

C a(x) a(y) a(z)

C b(x) b(y) b(z)

C c(x) c(y) c(z)

C factorX factorY factorZ
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C charge at origin

C number N of other charges

C q(1) x(1) y(1) z(1)

C ...

C q(N) x(N) y(N) z(N)

C

subroutine getinput(a,b,c,q,Nq)

integer Mq

parameter (Mq=100)

real*8 a(3),b(3),c(3),q(Mq,0:3),T,xfac,yfac,zfac

integer i,Nq

CALL CLOCK(T)

write(*,*)’start of getinput at’,T,’sec.’

open(10,file=’in.dat’)

read(10,*) a(1),a(2),a(3)

read(10,*) b(1),b(2),b(3)

read(10,*) c(1),c(2),c(3)

read(10,*) xfac,yfac,zfac

read(10,*) q(1,0)

q(1,1)=0D0

q(1,2)=0D0

q(1,2)=0D0

read(10,*) Nq

Nq=Nq+1

IF (Nq.GT.Mq) THEN

write(*,*) ’Error in getinput’

write(*,*) ’Nq to big you must increase Mq to at least’,Nq

ENDIF

DO i=2,Nq

read(10,*) q(i,0),q(i,1),q(i,2),q(i,3)

q(i,1)=q(i,1)*xfac

q(i,2)=q(i,2)*yfac

q(i,3)=q(i,3)*zfac

ENDDO

close(10)

write(*,*)’parameters are read.’

write(*,*)’a=’,a

write(*,*)’b=’,b

write(*,*)’c=’,c

write(*,*)’the prefactors are’,xfac,yfac,zfac

write(*,*)’The number of charges and their positions are:’

DO i=1,Nq

write(*,*) q(i,0),q(i,1),q(i,2),q(i,3)

ENDDO

CALL CLOCK(T)

write(*,*)’End of getinput at’,T,’sec.’
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end

C

C Current time in seconds after start of programme

C

subroutine CLOCK(CPU)

REAL*8 CPU

REAL*4 DUM, T(2)

DUM=ETIME(T)

CPU=DBLE(T(1))

end

C

C sum over the lattice with use of Ewald summation

C V is output a,b,c are the lattice parameters

C q gives the position of the charges

C Nq the number of the charges

C G defines the truncation frequency

C The result should not depend on G

C the convergence rate of the fourier transformed

C and normal sum do depend on G

C

subroutine EWALDSUM(V,a,b,c,q,Nq,G)

C

integer Mq

real*8 PI,eps0,JtoeV,e,Anstr

parameter (Mq=100,PI=3.1415926535D0,eps0=8.854187817D-12,

& JtoeV=6.2414509745D18,e=1.602176462D-19,Anstr=1D10)

real*8 a(3),b(3),c(3),ga(3),gb(3),gc(3),q(Mq,0:3),G,x(3)

& ,r,Ve,derfctemp,dexptemp,temp,T,Vunit,kmmfac,kpmfac

complex*16 V(0:6,-6:6),Vtemp(0:6,-6:6),sum,ctemp,xiy,ixy,iz

integer i,j,k,m,Nq,Na,Nb,Nc,ia,ib,ic

C initialize the potential to be 0.

DO k=0,6

DO m=-6,6

V(k,m)=(0D0,0D0)

Vtemp(k,m)=(0D0,0D0)

ENDDO

ENDDO

CALL reciprocallatice(ga,gb,gc,a,b,c)

C do the normal space part of the summation

C calculate Na,Nb,Nc such that erfc<1D-17

C That happens when G*Na*|a_n|>6

C The radius of the sphere included has to be 6/G

C but for higher orders factors of r^k play also a role

C sum up to 10/G and the convergence is depended on G

C but for G=1 better than 1D-17 for all cases

write(*,*) ’start normal space of the Ewald sum’
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write(*,*) ’the radius of the sphere over which is summed’

& ,10/G

CALL Cros(x,a,b)

Vunit=dabs(c(1)*x(1)+c(2)*x(2)+c(3)*x(3))

Ve=Vunit

CALL Cros(x,c,b)

Na=int(1D0+10D0/G*DSQRT((x(1)**2+x(2)**2+x(3)**2))/

& Vunit)

CALL Cros(x,a,c)

Nb=int(1D0+10D0/G*DSQRT((x(1)**2+x(2)**2+x(3)**2))/

& Vunit)

CALL Cros(x,a,b)

Nc=int(1D0+10D0/G*DSQRT((x(1)**2+x(2)**2+x(3)**2))/

& Vunit)

write(*,*) ’this fits in a parallelepiped with Na,Nb,Nc=’

& ,Na,Nb,Nc

write(*,*) ’with the basis vectors:’

write(*,*) ’a:’,a

write(*,*) ’b:’,b

write(*,*) ’c:’,c

C do the normal space summation

DO ia=-Na,Na

DO ib=-Nb,Nb

DO ic=-Nc,Nc

DO j=1,Nq

IF(.NOT.((ia.EQ.0).AND.(ib.EQ.0).AND.(ic.EQ.0)

& .AND.(j.EQ.1)))THEN

x(1)=ia*a(1)+ib*b(1)+ic*c(1)+q(j,1)

x(2)=ia*a(2)+ib*b(2)+ic*c(2)+q(j,2)

x(3)=ia*a(3)+ib*b(3)+ic*c(3)+q(j,3)

r=dsqrt(x(1)**2+x(2)**2+x(3)**2)

xiy=dcmplx(x(1),-x(2))

derfctemp=derfc(G*r)

dexptemp=dexp(-G**2*r**2)/dsqrt(PI)

V(0,0)=V(0,0)+q(j,0)*derfctemp/r

V(1,0)=V(1,0)+x(3)*q(j,0)*(2D0*r*G*dexptemp+derfctemp)/r**3

V(1,1)=V(1,1)-xiy *q(j,0)*(2D0*r*G*dexptemp+derfctemp)/r**3

V(2,0)=V(2,0)-q(j,0)*(2D0*r*G*dexptemp*(-3D0*x(3)**2+r**2

& *(1D0-2D0*x(3)**2*G**2))+(r**2-3D0*x(3)**2)*derfctemp)

& /r**5

V(2,1)=V(2,1)-xiy*x(3)*q(j,0)*((6D0*r*G+4D0*r**3*G**3)

& *dexptemp+3D0*derfctemp)/r**5

V(2,2)=V(2,2)+xiy**2*q(j,0)*((6D0*r*G+4D0*r**3*G**3)*dexptemp

& +3D0*derfctemp)/r**5

V(3,0)=V(3,0)+x(3)*q(j,0)*(2D0*r*G*dexptemp*(15D0*x(3)**2

& +r**2*(-9D0+2D0*G**2*(5D0*x(3)**2+r**2*(-3D0+2D0
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& *x(3)**2*G**2))))

& +(-9D0*r**2+15D0*x(3)**2)*derfctemp)/r**7

V(3,1)=V(3,1)+xiy*q(j,0)*(dexptemp*(6D0*r*(r**2-5D0*x(3)**2)

& *G+4D0*r**3*(r**2-5D0*x(3)**2)*G**3-8D0*r**5*x(3)**2

& *G**5)+3D0*(r**2-5D0*x(3)**2)*derfctemp)/r**7

V(3,2)=V(3,2)+xiy**2*x(3)*q(j,0)*(dexptemp*(30D0*r*G+20D0

& *r**3*G**3+8D0*r**5*G**5)+15D0*derfctemp)/r**7

V(3,3)=V(3,3)-xiy**3*q(j,0)*(dexptemp*(30D0*r*G+20D0

& *r**3*G**3+8D0*r**5*G**5)+15D0*derfctemp)/r**7

V(4,0)=V(4,0)+q(j,0)*(dexptemp*2D0*r*G*(105D0*x(3)**4+10D0

& *r**2*x(3)**2*(-9D0+7D0*x(3)**2*G**2)+r**4*(9D0-60D0

& *x(3)**2*G**2+28D0*x(3)**4*G**4)+r**6*(6D0*G**2-24D0

& *x(3)**2*G**4+8D0*x(3)**4*G**6))+3D0*(3D0*r**4-30D0

& *r**2*x(3)**2+35D0*x(3)**4)*derfctemp)/r**9

V(4,1)=V(4,1)+xiy*x(3)*q(j,0)*(-2D0*r*G*dexptemp*(105D0

& *x(3)**2+r**2*(-45D0+2D0*G**2*(35D0*x(3)**2+r**2

& *(-15D0+2D0*G**2*(7D0*x(3)**2+r**2*(-3D0+2D0*x(3)**2

& *G**2))))))+15D0*(3D0*r**2-7D0*x(3)**2)*derfctemp)/r**9

V(4,2)=V(4,2)+xiy**2*q(j,0)*(2D0*r*G*dexptemp*(105*x(3)**2

& +r**2*(-15D0-10D0*(r**2-7D0*x(3)**2)*G**2-4D0*r**2

& *(r**2-7D0*x(3)**2)*G**4+8D0*r**4*x(3)**2*G**6))

& -15D0*(r**2-7D0*x(3)**2)*derfctemp)/r**9

V(4,3)=V(4,3)-xiy**3*x(3)*q(j,0)*(2D0*r*G*dexptemp*(105D0

& +70D0*r**2*G**2+28D0*r**4*G**4+8D0*r**6*G**6)

& +105D0*derfctemp)/r**9

V(4,4)=V(4,4)+xiy**4*q(j,0)*(2D0*r*G*dexptemp*(105D0

& +70D0*r**2*G**2+28D0*r**4*G**4+8D0*r**6*G**6)

& +105D0*derfctemp)/r**9

V(5,0)=V(5,0)+x(3)*q(j,0)*(2D0*r*G*dexptemp*(945D0*x(3)**4

& +210D0*r**2*x(3)**2*(-5D0+3D0*x(3)**2*G**2)+4D0*r**8

& *G**4*(15D0-20D0*x(3)**2*G**2+4D0*x(3)**4*G**4)+2D0

& *r**6*G**2*(75D0-140D0*x(3)**2*G**2+36D0*x(3)**4*G**4)

& +r**4*(225D0-700D0*x(3)**2*G**2+252D0*x(3)**4*G**4))+15D0

& *(15D0*r**4-70D0*r**2*x(3)**2+63D0*x(3)**4)*derfctemp)

& /r**11

V(5,1)=V(5,1)-xiy*q(j,0)*(dexptemp*2D0*r*G*(945D0*x(3)**4

& +630D0*r**2*x(3)**2*(-1D0+x(3)**2*G**2)+4D0*r**8*G**4

& *(3D0-12D0*x(3)**2*G**2+4D0*x(3)**4*G**4)+6D0*r**6*G**2

& *(5D0-28D0*x(3)**2*G**2+12D0*x(3)**4*G**4)+3D0*r**4

& *(15D0-140D0*x(3)**2*G**2+84D0*x(3)**4*G**4))+45D0

& *(r**4-14D0*r**2*x(3)**2+21D0*x(3)**4)*derfctemp)/r**11

V(5,2)=V(5,2)+xiy**2*x(3)*q(j,0)*(2D0*r*G*dexptemp*(945D0

& *x(3)**2+8D0*r**8*G**6*(-3D0+2D0*x(3)**2*G**2)+315D0

& *r**2*(-1D0+2D0*x(3)**2*G**2)+12D0*r**6*G**4*(-7D0+6D0

& *x(3)**2*G**2)+42D0*r**4*G**2*(-5D0+6D0*x(3)**2*G**2))

& -315D0*(r**2-3D0*x(3)**2)*derfctemp)/r**11
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V(5,3)=V(5,3)+xiy**3*q(j,0)*(dexptemp*(210D0*r*(r**2-9D0

& *x(3)**2)*G+140D0*r**3*(r**2-9D0*x(3)**2)*G**3+56D0

& *r**5*(r**2-9D0*x(3)**2)*G**5+16D0*r**7*(r**2-9D0

& *x(3)**2)*G**7-32*r**9*x(3)**2*G**9)+105*(r**2-9D0

& *x(3)**2)*derfctemp)/r**11

V(5,4)=V(5,4)+xiy**4*x(3)*q(j,0)*(2D0*r*G*dexptemp*(945D0

& +630D0*r**2*G**2+252D0*r**4*G**4+72D0*r**6*G**6

& +16D0*r**8*G**8)+945D0*derfctemp)/r**11

V(5,5)=V(5,5)-xiy**5*q(j,0)*(2D0*r*G*dexptemp*(945D0

& +630D0*r**2*G**2+252D0*r**4*G**4+72D0*r**6*G**6

& +16D0*r**8*G**8)+945D0*derfctemp)/r**11

V(6,0)=V(6,0)+q(j,0)*(2D0*r*G*dexptemp*(10395D0*x(3)**6+315D0

& *r**2*x(3)**4*(-45D0+22D0*x(3)**2*G**2)+63D0*r**4

& *x(3)**2*(75D0-150D0*x(3)**2*G**2+44D0*x(3)**4*G**4)

& +4D0*r**10*G**4*(-15D0+90D0*x(3)**2*G**2-60D0*x(3)**4

& *G**4+8D0*x(3)**6*G**6)+2D0*r**8*G**2*(-75D0+630D0

& *x(3)**2*G**2-540D0*x(3)**4*G**4+88D0*x(3)**6*G**6)

& +9D0*r**6*(-25D0+350D0*x(3)**2*G**2-420D0*x(3)**4*G**4

& +88D0*x(3)**6*G**6))-45D0*(5D0*r**6-105D0*r**4*x(3)**2

& +315D0*r**2*x(3)**4-231D0*x(3)**6)*derfctemp)/r**13

V(6,1)=V(6,1)-xiy*x(3)*q(j,0)*(2D0*r*G*dexptemp*(10395D0

& *x(3)**4+630D0*r**2*x(3)**2*(-15D0+11D0*x(3)**2*G**2)

& +8D0*r**10*G**6*(15D0-20D0*x(3)**2*G**2+4D0*x(3)**4

& *G**4)+4D0*r**8*G**4*(105D0-180D0*x(3)**2*G**2+44D0

& *x(3)**4*G**4)+63D0*r**4*(25D0-100D0*x(3)**2*G**2+44D0

& *x(3)**4*G**4)+6D0*r**6*G**2*(175D0-420D0*x(3)**2*G**2

& +132D0*x(3)**4*G**4))+315D0*(5D0*r**4-30D0*r**2*x(3)**2

& +33D0*x(3)**4)*derfctemp)/r**13

V(6,2)=V(6,2)+xiy**2*q(j,0)*(dexptemp*((630D0*r*G+420D0*r**3

& *G**3+168D0*r**5*G**5+48D0*r**7*G**7)*(r**4-18D0*r**2

& *x(3)**2+33D0*x(3)**4)-32D0*r**9*x(3)**2*(6D0*r**2-11D0

& *x(3)**2)*G**9+64D0*r**11*x(3)**4*G**11)+315D0*(r**4

& -18D0*r**2*x(3)**2+33D0*x(3)**4)*derfctemp)/r**13

V(6,3)=V(6,3)-xiy**3*x(3)*q(j,0)*(2D0*r*G*dexptemp*(10395D0

& *x(3)**2+r**2*(-2835D0+2D0*G**2*(3465D0*x(3)**2+r**2

& *(-945D0+2D0*G**2*(693D0*x(3)**2+r**2*(-189D0+2D0*G**2

& *(99D0*x(3)**2+r**2*(-27D0+2D0*G**2*(11D0*x(3)**2+r**2

& *(-3D0+2D0*x(3)**2*G**2))))))))))-945D0*(3D0*r**2-11D0

& *x(3)**2)*derfctemp)/r**13

V(6,4)=V(6,4)+xiy**4*q(j,0)*(2D0*r*G*dexptemp*(10395*x(3)**2

& +r**2*(-945D0+2D0*G**2*(3465D0*x(3)**2+r**2*(-315D0

& +2D0*G**2*(693D0*x(3)**2+r**2*(-63D0+2D0*G**2*(99D0

& *x(3)**2+r**2*(-9D0+2D0*G**2*(11D0*x(3)**2+r**2*(-1D0

& +2D0*x(3)**2*G**2))))))))))-945D0*(r**2-11D0*x(3)**2)

& *derfctemp)/r**13

V(6,5)=V(6,5)-xiy**5*x(3)*q(j,0)*(2D0*r*G*dexptemp*(10395D0
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& +2D0*r**2*G**2*(3465D0+1386D0*r**2*G**2+396D0*r**4*G**4

& +88D0*r**6*G**6+16D0*r**8*G**8))+10395D0*derfctemp)

& /r**13

V(6,6)=V(6,6)+xiy**6*q(j,0)*(2D0*r*G*dexptemp*(10395D0

& +2D0*r**2*G**2*(3465D0+1386D0*r**2*G**2+396D0*r**4*G**4

& +88D0*r**6*G**6+16D0*r**8*G**8))+10395D0*derfctemp)

& /r**13

ENDIF

ENDDO

ENDDO

ENDDO

ENDDO

CALL CLOCK(T)

write(*,*) ’end of the normal space summation at’,T,’sec.’

C do the summation over k space

C calculate boundaries for Na,Nb and Nc in sum over ga,gb,gc

C radius over which has to be integrated r:

C such that e^-r^2/4G^2<1D-12

C r=12G

C but higher orders of the potential make problems, see normal

C space sum. Sum up to r=15G

write(*,*) ’start k-space of the Ewald sum’

write(*,*) ’the radius of the sphere over which is summed’,15*G

CALL Cros(x,ga,gb)

Vunit=dabs(gc(1)*x(1)+gc(2)*x(2)+gc(3)*x(3))

CALL Cros(x,gc,gb)

Na=int(1D0+15D0*G*DSQRT((x(1)**2+x(2)**2+x(3)**2))/

& Vunit)

CALL Cros(x,ga,gc)

Nb=int(1D0+15D0*G*DSQRT((x(1)**2+x(2)**2+x(3)**2))/

& Vunit)

CALL Cros(x,ga,gb)

Nc=int(1D0+15D0*G*DSQRT((x(1)**2+x(2)**2+x(3)**2))/

& Vunit)

write(*,*) ’this fits in a parallelepiped with Na,Nb,Nc=’,Na,Nb,Nc

write(*,*) ’with the basis vectors:’

write(*,*) ’a:’,ga

write(*,*) ’b:’,gb

write(*,*) ’c:’,gc

C do the k-space summation

DO ia=-Na,Na

DO ib=-Nb,Nb

DO ic=-Nc,Nc

IF(.NOT.((ia.EQ.0).AND.(ib.EQ.0).AND.(ic.EQ.0)))THEN

x(1)=ia*ga(1)+ib*gb(1)+ic*gc(1)

x(2)=ia*ga(2)+ib*gb(2)+ic*gc(2)
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x(3)=ia*ga(3)+ib*gb(3)+ic*gc(3)

iz=Dcmplx(0D0,x(3))

ixy=Dcmplx(x(2),x(1))

r=dsqrt(x(1)**2+x(2)**2+x(3)**2)

sum=0D0

DO j=1,Nq

sum=sum+q(j,0)*cdexp(-dcmplx(0D0,1D0)*

& (x(1)*q(j,1)+x(2)*q(j,2)+x(3)*q(j,3)))

ENDDO

ctemp=4*PI*DEXP(-r**2/(4D0*G**2))*sum/(Ve*r**2)

Vtemp(0,0)=Vtemp(0, 0)+ctemp

Vtemp(1,0)=Vtemp(1, 0)+ctemp*iz

Vtemp(1,1)=Vtemp(1, 1)-ctemp*ixy

Vtemp(2,0)=Vtemp(2, 0)+ctemp*iz**2

Vtemp(2,1)=Vtemp(2, 1)-ctemp*iz*ixy

Vtemp(2,2)=Vtemp(2, 2)+ctemp*ixy**2

Vtemp(3,0)=Vtemp(3, 0)+ctemp*iz**3

Vtemp(3,1)=Vtemp(3, 1)-ctemp*iz**2*ixy

Vtemp(3,2)=Vtemp(3, 2)+ctemp*iz*ixy**2

Vtemp(3,3)=Vtemp(3, 3)-ctemp*ixy**3

Vtemp(4,0)=Vtemp(4, 0)+ctemp*iz**4

Vtemp(4,1)=Vtemp(4, 1)-ctemp*iz**3*ixy

Vtemp(4,2)=Vtemp(4, 2)+ctemp*iz**2*ixy**2

Vtemp(4,3)=Vtemp(4, 3)-ctemp*iz*ixy**3

Vtemp(4,4)=Vtemp(4, 4)+ctemp*ixy**4

Vtemp(5,0)=Vtemp(5, 0)+ctemp*iz**5

Vtemp(5,1)=Vtemp(5, 1)-ctemp*iz**4*ixy

Vtemp(5,2)=Vtemp(5, 2)+ctemp*iz**3*ixy**2

Vtemp(5,3)=Vtemp(5, 3)-ctemp*iz**2*ixy**3

Vtemp(5,4)=Vtemp(5, 4)+ctemp*iz*ixy**4

Vtemp(5,5)=Vtemp(5, 5)-ctemp*ixy**5

Vtemp(6,0)=Vtemp(6, 0)+ctemp*iz**6

Vtemp(6,1)=Vtemp(6, 1)-ctemp*iz**5*ixy

Vtemp(6,2)=Vtemp(6, 2)+ctemp*iz**4*ixy**2

Vtemp(6,3)=Vtemp(6, 3)-ctemp*iz**3*ixy**3

Vtemp(6,4)=Vtemp(6, 4)+ctemp*iz**2*ixy**4

Vtemp(6,5)=Vtemp(6, 5)-ctemp*iz*ixy**5

Vtemp(6,6)=Vtemp(6, 6)+ctemp*ixy**6

ENDIF

ENDDO

ENDDO

ENDDO

C correct for charge at origin

Vtemp(0,0)=Vtemp(0,0)-2D0 *G *q(1,0)/Dsqrt(PI)

Vtemp(2,0)=Vtemp(2,0)+4D0 *G**3*q(1,0)/(3D0*Dsqrt(PI))

Vtemp(4,0)=Vtemp(4,0)-24D0 *G**5*q(1,0)/(5D0*Dsqrt(PI))
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Vtemp(6,0)=Vtemp(6,0)+240D0*G**7*q(1,0)/(7D0*Dsqrt(PI))

C include prefactor \frac{1}{(\sqrt{k-m)!(k+m)!}}

DO k=0,6

DO m=0,k

kmmfac=1

kpmfac=1

DO i=1,k-m

kmmfac=kmmfac*i

ENDDO

DO i=1,k+m

kpmfac=kpmfac*i

ENDDO

V(k,m)=(1D0/Dsqrt(kmmfac*kpmfac))*(Vtemp(k,m)+V(k,m))

ENDDO

ENDDO

DO k=0,6

DO m=-k,-1

V(k,m)=(-1)**m*Dcmplx(Dreal(V(k,-m)),-Dimag(V(k,-m)))

ENDDO

ENDDO

CALL CLOCK(T)

write(*,*) ’end of the k-space summation at,’,T,’sec’

C from natural units to eV and A

DO k=0,6

DO m=-k,k

V(k,m)=-e**2*JtoeV*Anstr/(4*PI*eps0)*V(k,m)

ENDDO

ENDDO

end

C

C calculate the reciprocal lattice

C

subroutine reciprocallatice(ga,gb,gc,a,b,c)

real*8 PI

parameter (PI=3.141592653589793285D0)

real*8 a(3),b(3),c(3),ga(3),gb(3),gc(3),V

CALL CROS(ga,b,c)

CALL CROS(gb,c,a)

CALL CROS(gc,a,b)

CALL DOT(V,ga,a)

ga(1)=2*PI*ga(1)/V

ga(2)=2*PI*ga(2)/V

ga(3)=2*PI*ga(3)/V

gb(1)=2*PI*gb(1)/V

gb(2)=2*PI*gb(2)/V

gb(3)=2*PI*gb(3)/V
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gc(1)=2*PI*gc(1)/V

gc(2)=2*PI*gc(2)/V

gc(3)=2*PI*gc(3)/V

end

C

C Calculate the dot product of two vectors

C

subroutine DOT(d,a,b)

real*8 d,a(3),b(3)

d=a(1)*b(1)+a(2)*b(2)+a(3)*b(3)

end

C

C Calculate the cross product of two vectors

C

subroutine CROS(c,a,b)

real*8 c(3),a(3),b(3)

c(1)=a(2)*b(3)-a(3)*b(2)

c(2)=a(3)*b(1)-a(1)*b(3)

c(3)=a(1)*b(2)-a(2)*b(1)

end
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Appendix C

Manual for XTLS

The program XTLS, written by A. Tanaka, is a very powerful programme to
solve any kind of model Hamiltonian. It can find the lowest eigen-states and
operator values, as well as calculate spectra. It uses a Lancsos routine to find
the lowest eigenstates of the Hamiltonian. With the use of Greens functions
one can calculate absorption and electron emission spectra, as well as resonant
processes. In this appendix we will explain how to set up an TMO6 cluster
Hamiltonian and how to calculate absorption and electron emission spectra.

When starting a new project or calculating a new material it is necessary
to create three directories; xcards, xobjs, and xwrk. The xcards directory will
contain the input files. The xobjs directory will contain the results of the cal-
culation. The xwrk directory is used by the program to save temporary files,
and a log file of the entire calculation containing some hints if errors are found.

The input file for a ground-state calculation consist of five parts. In the first
part user variables and functions can be defined. Useful if one wants to check
the dependence of the results as a function of some parameter. The second
part contains the definition of the basis. Only the configurations in use have
to be specified, the program will create the full basis for each configuration. In
the third pard some global parameters can be specified. In the forth part one
has to specify what one wants to calculate. Only the ground-state, or also an
absorption or photo emission spectrum. In the fifth part the Hamiltonian has
to be specified.

Lets start with a simple input file, calculating the energy levels of a single d
electron in Oh symmetry.

XCRD: //example 01
(
)
CNFG:
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3d
#i1 1

PARA:
EXEC:

Mode=nop;
Mag={3d};
Ninit=10;

OPRT:
10Dq(#i1 3d)=1.0;

XEND:
STOP:

The input file, xcard starts with the commando XCRD: to lett the program
know the file starts. Comments can be written behind //.

The first part, written between brackets () contains user variables and is
empty in the first example.

The second part contains the definition of the configurations in use. It starts
with CNFG: then there is one line with the orbitals used. The name of an orbital
can be a number or letter, followed by the orbital quantum number of that
orbital. 1s, 2p and 3d are good names for an orbital, but also Ld for the binding
oxygen orbitals in a TMO6 cluster is a good name, or Ap, Bp, Cp, Dp, Ep, and
Fp are good names when there are 6 oxygen 2p orbitals belonging to different
atoms. After the first line specifying the orbitals in use there can be many lines
with different configurations. Each configuration has a name, starting with #.
It is common practise to take the first letter of the configuration name to be i
for initial states, f for final states and m for intermediate states. After the name
of the configuration one has to specify how much electrons are in each orbital.
In the case of example 1 there is one orbital defined, a 3d orbital. There is one
configuration defined with the name #i1 and this configuration has one electron
in the 3d shell.

The third part is used to define global parameters. In the case of example 1
it is empty.

The forth part tells the pc what has to be calculated. With the use of the
Mode command one can specify if the computer will calculate an absorption
spectra, Mode=xas; an photo emission spectra, Mode=pes; or only an energy
level diagram of the initial-state, Mode=nop; The program can calculate the
expectation value of many operators, like L,S, and T it calculates occupation
numbers and gives out a density matrix. If one has many orbitals this output
can become pretty large and hard to read, especially if one is only interested
in one orbital. With the command Mag one can decide for which orbitals the
operator information should be given in all its detail. In example one there is
only one orbital, the 3d orbital and for this orbital all information should be
printed in the output file. The computer also needs to know how much states
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it should compute. The command Ninit tells how many initial states should be
included. The more initial states included the slower the programm becomes.
But one should be careful not to exclude important initial states. In general
all initial states that are within an energy range that can be thermal populated
should be included in the calculation.

In the fifth part the operator is defined. In this case we only added a crystal
field of Oh symmetry. For that one can use the command 10Dq(#configuration
orbital)=value;. Where #configuration and orbital should be replaced by the
configuration and orbital the crystal field acts on.

The input file should end with XEND: and STOP: to tell the pc that every-
thing is ready.

If we now want to include electron electron repulsion we need to include the
command Rk in the operator. The operator Rk defines the values of the Slater
integrals and for d-d interactions it expects the parameters F 2 and F 4. For a
d8 system the input file would look like:

XCRD: //example 02
(
)
CNFG:

3d
#i1 8

PARA:
EXEC:

Mode=nop;
Mag={3d};
Ninit=45;

OPRT:
10Dq(#i1 3d)=1.0;
Rk(#i1 3d 3d)={10.000,6.250};

XEND:
STOP:

We want to do cluster calculations and include the effect of covalency with
the oxygens. Lets start with a simple cluster and project out the non-bonding
oxygen orbitals. From the 6 oxygens, each with 6 2p orbitals only 10 orbitals
are bonding and they have d orbital symmetry, as explained in chapter 3.

XCRD: //example 03
(
)
CNFG:

3d Ld
#i1 8 10
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#i2 9 9
#i3 10 8

PARA:
U(3d,3d)=6.0;
Dlt(#i1 #i2 3d Ld)=5.0;

EXEC:
Mode=nop;
Mag={3d,Ld};
Ninit=190;

OPRT:
10Dq(#i1 3d)=1.0;
10Dq(#i2 3d)=1.0;
Rk(#i1 3d 3d)={10.000,6.250};
VOh(#i1 #i2 3d Ld)={2.0,1.0};
VOh(#i2 #i3 3d Ld)={2.0,1.0};

XEND:
STOP:

In example 3 we included three configurations. A d8 configuration, a d9L
and a d10L2 configuration named #i1, #i2 and #i3 respectively. In order to
define the on-site energies of these configurations we defined a U and a ∆ as
defined in the introduction [6]. The on-site energy of configuration #i1 is zero by
definition. The on-site energy of configuration #i2 is ∆ and the on-site energy
of configuration #i3 is 2∆+U . We also added the operator V Oh, which defines
the hybridization between the 3d and Ld orbitals. There are two parameters for
the operator V Oh. These parameters are the hybridization strength between
the eg orbitals, Veg

= −√
3pdσ and the hybridization between strength between

the t2g orbitals, Vt2g
= 2pdπ. In example 3 we took Veg

= 2.0 eV and Vt2g
= 1.0

eV.
We do not only want to calculate the ground-state of a cluster, but want

to calculate spectra. In order to calculate spectra we need to add a final state.
A final state is added when the final state configurations are defined and an
extra OPRT : command is added in which the final state Hamilton operator is
defined. One also needs to define the dipole matrix elements. We normally set
the dipole strength between the initial state and the final state equal to 1.0 as
we are interested in relative intensities only.

In example 4 we show the input file for 2p XAS and in example 5 the input
file for 3d valence band photo emission.

XCRD: //example 04
(
)
CNFG:
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2p 3d Ld
#i1 6 8 10
#i2 6 9 9
#i3 6 10 8
#f1 5 9 10
#f2 5 10 9

PARA:
U(3d,3d)=6.0;
U(2p,3d)=8.0;
Dlt(#i1 #i2 3d Ld)=5.0;

EXEC:
Mode=xas;
Mag={3d,Ld};
Ninit=3;

OPRT:
10Dq(#i1 3d)=1.0;
10Dq(#i2 3d)=1.0;
Rk(#i1 3d 3d)={10.000,6.250};
VOh(#i1 #i2 3d Ld)={2.0,1.0};
VOh(#i2 #i3 3d Ld)={2.0,1.0};

OPRT:
10Dq(#f1 3d)=1.0;
Rk(#f1 2p 3d)={6.000,5.000,4.000};
VOh(#f1 #f2 3d Ld)={2.0,1.0};
Zta{#f1 2p}=10.0;
Zta{#f2 2p}=10.0;

OPRT:
Dk(#i1 #f1 2p 3d)=1.0;
Dk(#i2 #f2 2p 3d)=1.0;

XEND:
STOP:

XCRD: //example 05
(
)
CNFG:

3d Ld
#i1 8 10
#i2 9 9
#i3 10 8
#f1 7 10
#f2 8 9
#f3 9 8
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#f4 10 7
PARA:

U(3d,3d)=6.0;
U(2p,3d)=8.0;
Dlt(#i1 #i2 3d Ld)=5.0;

EXEC:
Mode=pes;
Mag={3d,Ld};
Ninit=3;

OPRT:
10Dq(#i1 3d)=1.0;
10Dq(#i2 3d)=1.0;
Rk(#i1 3d 3d)={10.000,6.250};
VOh(#i1 #i2 3d Ld)={2.0,1.0};
VOh(#i2 #i3 3d Ld)={2.0,1.0};

OPRT:
10Dq(#f1 3d)=1.0;
10Dq(#f2 3d)=1.0;
10Dq(#f3 3d)=1.0;
10Dq(#f4 3d)=1.0;
Rk(#f1 3d 3d)={10.000, 6.250};
Rk(#f2 3d 3d)={10.000, 6.250};
VOh(#f1 #f2 3d Ld)={2.0,1.0};
VOh(#f2 #f3 3d Ld)={2.0,1.0};
VOh(#f3 #f4 3d Ld)={2.0,1.0};

OPRT:
Dk

XEND:
STOP:

Sofar we have only discussed systems in cubic symmetry, without spin-orbit
coupling, without a magnetic field and without magnetic exchange interaction.
These interactions can be added with the use of the following commands.
Spin-orbit coupling:

Zta(#i1 3d)=0.1;

A magnetic field of strength B in the direction k,l,m where k,l,m are the direc-
tional cosines:

Ba(#i1 3d)={B,k,l,m};

An exchange field of strength H in the direction k,l,m where k,l,m are the di-
rectional cosines:
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Ha(#i1 3d)={H,x,y,z}

A crystal field of arbitrary symmetry can be included with the command Akm
for real crystal fields and CAkm for complex crystal fields. These commands
expect the expansion coefficients of the crystal field expanded on spherical har-
monics as discussed in chapter 3. Only nonzero Bk,m values have to be listed.
The real and imaginary part of Bk,m are placed after each other, separated by
a comma.

CAkm(#i1 3d)={k1,m1,ReBk1m1,ImBk1m1,
k2,m2,ReBk2m2,ImBk2m2};

Hybridization of arbitrary symmetry can also be included with the use of poten-
tials expanded on spherical harmonics. The hybridization between the 3dx2−y2

orbital and the Ldx2−y2 orbital is called Vx2−y2,x2−y2 More general the hy-
bridization between the 3dτ orbital and the Ldτ ′ orbital is called Vτ,τ ′ . This
potential V can be expanded on spherical harmonics and gives parameters Bk,m.
The way how to expand this is explained within chapter 3. If we have config-
uration #i1 to be a 3dn configuration and the configuration #i2 is a 3dn+1Ld
configuration then the potential V expanded on spherical harmonics can be
added in the following way:

CAkm(#i1 #i2 3d Ld)={k1,m1,ReBk1m1,ImBk1m1,
k2,m2,ReBk2m2,ImBk2m2};
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Abstract

The class of transition metal compounds shows an enormous richness of physical
properties [1,2], such as metal-insulator transitions, colossal magneto-resistance,
super-conductivity, magneto-optics and spin-depend transport. The theoretical
description of these materials is still a challenge. Traditional methods using
the independent electron approximation most of the time fail on even the sim-
plest predictions. For example, many of the transition metal compounds, with
NiO as the classical example, should be a metal according to band-structure
calculations, but are in reality excellent insulators.

The single band Mott-Hubbard model [3, 4] explains very nicely why many
correlated materials are insulating. But even the Mott-Hubbard model has some
problems in understanding the band-gap found for many of the transition metal
compounds [5]. With the recognition that transition metal compounds can be of
the charge-transfer type or the Mott-Hubbard type [6], depending on the ratio
of U and ∆, also the band-gap can be understood. Hereby U is defined as the
repulsive Coulomb energy of two electrons on the same transition metal site and
∆ is defined as the energy it costs to bring an electron from an oxygen site to
a transition metal site.

The single band Mott-Hubbard model is however, even when charge transfer
effects are included, inadequate in describing the full richness found in many of
the transition metal compounds [7–9]. It now becomes more and more clear that
in order to describe transition metal compounds, the charge, orbital, spin and
lattice degrees of freedom should all be taken into account. Especially the orbital
degrees of freedom have not been considered to the full extend until recently. In
the manganates, for example, orbital and charge ordering of the Mn ions play
an important role for the colossal magneto-resistance of these materials [10–14].
An other example would be the metal-insulator transition in V2O3 [15–17]. The
orbital occupation of the V ion changes drastically at the phase transition [15].
This change in orbital occupation will change the local spin-spin correlations
which in-turn will change the effective band-width. This indicates that not only
electron-electron Coulomb repulsion in a single band must be considered, but a
full multi-band theory including all interactions must be considered in order to
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understand this prototypical Mott-Hubbard system.
With the recognition that the local orbital occupation plays an important

role in many of the transition metal compounds there is a need for experimental
techniques that can measure the orbital occupation. This technique is soft x-ray
absorption spectroscopy (XAS). For transition metal atoms one measures the
local transition of a 2p core electron into the 3d valence shell. In chapter 5 to
chapter 7 we used soft x-ray absorption spectroscopy to measure orbital occu-
pations, crystal fields, and spin directions in thin films. In chapter 8 to chapter
10 we used soft x-ray absorption spectroscopy to gain insight in the importance
of spin and orbital degrees of freedom in bulk transition metal compounds.

In chapter 5 we present linear dichroism in the Ni L2,3 x-ray absorption spec-
tra of a monolayer NiO(001) on Ag(001) capped with MgO (001). The dichroic
signal appears to be very similar to the magnetic linear dichroism observed for
thicker antiferromagnetic NiO films. A detailed experimental and theoretical
analysis reveals, however, that the dichroism is caused by crystal field effects.
We present a practical experimental method for identifying the independent
magnetic and crystal field contributions to the linear dichroic signal in spectra
of NiO films with arbitrary thickness and lattice strain.

In chapter 6 we first used XAS to study the properties of CoO bulk, as well
as thin films. We confirm that the Co ion in CoO has a free orbital momentum
in cubic symmetry. We confirm that spin-orbit coupling is very important for
understanding the properties of CoO and show that it is not reduced from the
Hartree-Fock value for a free Co2+ ion. With the use of cluster calculations we
can get a full consistent understanding of the XAS spectra and the polarization
dependence of CoO. For CoO thin films we used XAS to show that we can control
the orbital momentum and spin direction with the use of strain in thin CoO
films. This finding opens up great opportunities for the use of exchange-bias,
where people put an antiferromagnet adjoined to a ferromagnet in order to shift
the magnetization hysteresis loop in one of the magnetic field directions [42,43].
With the use of strain in the antiferromagnet one can chose if the system will be
exchange-biased in the plane of the thin film, or perpendicular to the thin film
surface. It also has great implications for the understanding of the exchange-bias
phenomenon sofar. The exchange-bias effect takes place at the interface between
the ferromagnet and antiferromagnet [44, 45]. At the interface there will be
strain in the antiferromagnet and one can not assume that the antiferromagnet
has the same spin structure at the interface as it has in the bulk.

In chapter 7 we show how one can orientate spins in antiferromagnetic thin
films with low magnetocrystalline anisotropy (d3, d5 and d8 systems in Oh sym-
metry) via the exchange coupling to adjacent antiferromagnetic films with high
magnetocrystalline anisotropy (d6 and d7 systems in nearly Oh symmetry). We
have grown MnO thin films on CoO thin films with different predetermined
spin orientation. With the use of Mn L2,3 soft x-ray absorption spectroscopy
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we show that the Mn spin ’follows’ the Co spin direction.
In chapter 8 we study the spin-state problem within the cobaltates. Normally

one is used to discuss the spin direction, or the magnetic spin angular momen-
tum, Sz. Within the cobaltates, d6 compounds, there is however a discussion
about the size of the spin, or the spin angular momentum, S2 = S(S+1). S2 can
be 0, 2, or 6 (S=0,1,2), referred to as a low-spin state, an intermediate-spin state
and a high-spin state. Within the literature there is a lot of confusion about
the spin state as deduced from magnetic, neutron and x-ray diffraction mea-
surements in the newly synthesized layered cobalt perovskites [46–70]. These
measurements determine the size of the spin angular momentum (S2) from the
maximum size of the magnetic spin momentum Sz. XAS is directly sensitive to
the expectation value of S2. We carried out a test experiment using a relatively
simple model compound, namely Sr2CoO3Cl, in which there are no spin state
transitions present and in which there is only one kind of Co3+ ion coordina-
tion [63, 64]. Important is that this coordination is identical to the pyramidal
CoO5 present in the heavily debated layered perovskites [46–62]. Using a spec-
troscopic tool, that is soft x-ray absorption spectroscopy (XAS), we demonstrate
that pyramidal Co3+ ions are not in the often claimed intermediate-spin state
but unambiguously in a high-spin state. This outcome suggests that the spin
states and their temperature dependence in layered cobalt perovskites may be
rather different in nature from those proposed in the recent literature.

In chapter 9 we study LaTiO3. There has been a strong debate about the
role of orbital degrees of freedom within the titanates and in LaTiO3 especially
[13, 71–79]. With the use of spin resolved circular polarized photo emission
spectroscopy we confirmed that the orbital momentum in LaTiO3 is indeed
quenched [74]. With the use of XAS we show that this is due to a relative
large crystal field in the order of 120 to 300 meV. For a realistic description
of materials one should not forget that there is a strong coupling between the
orbitals and the lattice.

In chapter 10 we look at the metal-insulator transition in VO2. With the
use of XAS we show that the metal-insulator transition within this material is
accompanied by a change in orbital occupation. The orbital occupation changes
from almost isotropic in the metallic phase to the almost completely σ-polarized
in the insulating phase, in close agreement with the two-site cluster model [80].
This very strong orbital polarization leads in fact to a change of the electronic
structure of VO2 from a 3-dimensional to effectively a 1-dimensional system [81].
The V ions in the chain along the c-axis are then very susceptible to a Peierls
transition. In this respect, the MIT in VO2 can indeed be regarded as a Peierls
transition [82]. However, to achieve the required dramatic change of the orbital
occupation one also need the condition that strong electron correlations bring
this narrow band system close to the Mott regime [83]. The MIT in VO2 may
therefore be labelled as a ”collaborative” Mott-Peierls transition.
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Zusammenfassung

Die Material Klasse der Übergangsmetalloxide zeichnet sich durch einen enor-
men Reichtum an physikalischen Effecten aus [1,2]; dazu gehören Metall-Isolator-
Übergänge, kolossaler Magnetwiderstand, Supraleitung, Magnetooptik und spin-
abhängiger Transport. Die theoretische Beschreibung dieser Materialien ist noch
immer eine Herausforderung: Traditionelle Methoden, die auf der Näherung un-
abhängiger Elektronen basieren, scheitern oftmals schon bei einfachen Vorher-
sagen. Zum Beispiel sollten viele Übergangsmetalloxide, NiO ist das klassische
Beispiel, laut klassischen Bandstrukturrechnungen Metalle sein, in Wirklichkeit
sind sie jedoch Isolatoren.

Das Ein-Band-Hubbardmodell [3, 4] beschreibt sehr gut, warum viele korre-
lierte Materialien isolierend sind; aber selbst mit dem Mott-Hubbardmodell hat
man Probleme, die Bandlücke in vielen Übergangsmetallverbindung zu verste-
hen [5]. Mit der Erkenntnis, da Übergangsmetallverbindungen, abhängig von
Verhältnis U zu ∆, entweder vom Ladungstransfer- oder Mott-Hubbard-Typ
sind, kann man auch die Bandlücke verstehen [6]. Hierbei ist U definiert als die
abstoende Coulomb-Energie zweier Elektronen desselben Übergangsmetall-Ions
und ∆ ist die Energie, die man braucht, um ein Elektron vom Sauerstoff auf
das Metall zu übertragen.

Das Ein-Band-Hubbardmodell scheitert jedoch, selbst wenn Ladungstrans-
fer-Effekte berücksichtig werden, an der vollständigen Beschreibung der Effekte
einer Vielzahl von Übergangsmetallverbindungen [7–9]. Es wird zunehmend
klarer, da Ladungs-, Spin- und Gitterfreiheitsgrade gleichermaen berücksichtigt
werden müssen, um Übergangsmetallverbindungen korrekt zu beschreiben. Be-
sonders die orbitalen Freiheitsgrade wurden bis vor kurzem nicht vollständig
berücksichtigt. In Manganaten spielt beispielsweise die orbitale und Ladung-
sordnung der Manganionen eine groe Rolle für den kolossalen Magnetwider-
stand dieser Materialen [10–14]. Ein anderes Beispiel ist der Metall-Isolator-
Übergang in V2O3 [15–17]: Die orbitale Besetzung des Vanadiumions ändert
sich stark am Phasenübergang [15]. Diese nderung beeinflut die lokale Spin-
Spin-Wechselwirkung und so die effektive Bandbreite. Das deutet darauf hin,
da nicht nur die Elektron-Elektron-Coulombabstoung in einem einzelnen Band
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berücksichtigt werden mu, sondern vielmehr eine Theorie ntig ist, die Mehr-
Band-Effekte einschlielich aller Wechselwirkungen umfat, um dieses prototypis-
che Mott-Hubbard-System zu verstehen.

When mann berücksichtigt, da die lokale orbitale Besetzung eine groe Rolle
in vielen Übergangsmetallverbindungen spielt, wird eine experimentelle Meth-
ode bentigt, mit der die orbitale Besetzung gemessen werden kann. Dies erlaubt
die Rntgenabsoptionsspektroskopie. Bei Übergangsmetallatomen mit man den
lokalen Übergang eines kernnahen 2p-Elektrons in die 3d-Valenzschale. In Kapi-
tel 5 bis 7 wird die Rntgenabsoptionsspektroskopie (XAS) benutzt, um die or-
bitale Besetzung, Kristallfelder und Spinrichtung in dünnen Filmen zu messen.
In Kapitel 8 bis 10 wird versucht, mittels ihr ein Einblick in die Bedeutung der
Spin- und orbitalen Freiheitsgrade in Übergangsmetalloxiden zu gewinnen.

In Kapitel 5 zeigen wir den linearen Dichroismus in Nickel L2,3-Absorption-
spektren einer Lage NiO(001) auf Ag(001), die mit MnO(001) abgedeckt ist. Das
dichroische Signal scheint dem magnetischen, linearen Dichroismius dickerer, an-
tiferromagnetischer NiO-Filme zu ähneln. Eine detailierte experimentelle und
theoretischen Analyse zeigt jedoch, da der Dichroismus durch Kristallfeldef-
fekte verursacht wird. Wir zeigen eine praktische Methode, die es erlaubt, die
von einander unabhänigen magnetischen und Kristallfeld-Anteile des linearem
dichroischen Signal im Spektrum von NiO-Filmen beliebiger Dicke und Verspan-
nung zu identifizieren.

In Kapitel 6 benutzen wir zuerst die XAS, um die Eigenschaften von CoO
sowohl im Volumen als auch in dünnen Filmen zu studieren. Wir bestätigen,
da die Cobaltionen in CoO in kubischer Symmetrie ein freies orbitales Moment
haben. Weiter zeigen wir, da die Spin-Bahn-Wechselwirkung sehr wichtig für das
Verständnis der CoO-Eigenschaften ist und, da sie nicht gegenüber dem Hartree-
Fock-Wert eines freien Co2+-Ions reduziert ist. Mittels Cluster-Rechnung kann
man ein vollkommen konsistentes Verständnis der XAS-Spektren und der Po-
larisationsabhänigkeit von CoO erhalten. Für dünne Filme von CoO haben
wir XAS benutzt, um zu zeigen, da wir das orbitale Moment und die Spinrich-
tung durch Verspannung kontrollieren knnen. Diese Entdeckung erffnet weite
Mglichkeiten für die Verwendung der Austauschanisotropie (exchange bias),
bei der ein Antiferromagnet mit einem Ferromagneten verbunden wird, um
die Magnetisierungs-Hysteresekurve in eine der Magnetfeldrichtungen zu ver-
schieben [42, 43]. Mittels Verzerrung kann der Antiferromagnet dafür sorgen,
da das System entweder in der Filmebene oder orthogonal dazu die Austausch-
anisotropie zeigt. Dies hat auch groe Auswirkungen auf das Verständnis der
bisher bekannten Austauschanisotropie-Phänomene. Der Austauschanisotrope-
Effekt findet an der Grenzfläche zwischen Antiferro- und Ferromagneten statt
[44,45]; an dieser wird der Antiferromagnet verzerrt, so da man nicht erwarten
kann, da der Antiferromagnet an der Grenzfläche dieselbe Spinstruktur hat wie
im Volumen.
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In Kapitel 7 zeigen wir, wie man den Spin in antiferromagnetischen dünnen
Filmen mit niedrigen magnetokristallinen Anisotropien (d3-, d5- und d8-Syste-
men in Oh-Symmetrie) mittels Austauschkopplung an einen angrenzenden an-
tiferromagnetischen Films mit starker magnetokristallinen Anisotrope (d6- und
d7-Systeme in fast Oh-Symmetrie) ausrichten kann. Wir haben dünne MnO-
Filme auf dünnen CoO-Filmen mit unterschiedlicher Spinorientierung gewach-
sen; mit Hilfe von XAS an der Mn-L2,3-Kante knnen wir zeigen, da der Mn-Spin
der Richtung des Co-Spins folgt.

In Kapitel 8 studieren wir das Problem des Spinzustandes in den Cobal-
taten. Normalerweise ist man es gewhnt, die Spinrichtung oder das magnetis-
che Spinmoment Sz zu diskutieren. Bei den Cobaltaten (d6-Verbindungen),
wird jedoch über die Gre des betrags der Spins, S2 = S(S + 1) diskutiert.
S2 kann 0, 2 oder 6 (S = 0, 1, 2) sein und dementsprechend spricht man von
einem Niedrig-, intermediären oder Hochspinsystem. In der Literatur herrscht
einige Verwirrung über den aus Magnetisierungs-, Neutronen- und Rntgen-
beugungsmessungen hergeleiteten Spinzustands in neusynthetisierten Schicht-
Cobaltperowskiten [46–70]. In diesen Messungen wurde die Gre des Spindrehmo-
mentes S2 aus dem maximalen Erwartungswert für Sz bestimmt. XAS kann
hingegen direkt den Erwartungswert von S2 bestimmen. Wir haben ein Test-
experiment mit einer relativ einfachen Modellverbindung, nämlich Sr2CoO3Cl,
durchgeführt, in der es keine Spinübergänge gibt und in der die Co3+-Ionen in
nur einer Koordination vorliegen [63,64]. Wichtig ist, da diese Koordination die
selbe ist wie in dem pyramidialen CoO5 in den stark diskutierten Schichtper-
owskiten [46–62]. Durch die Verwendung einer spektroskopischen Technik wie
der Rntgenabsorptionsspektroskopie konnten wir zeigen, da die pyramidialen
Co3+-Ionen nicht, wie oft behaupted im intermediären Spinzustand, sondern
zweifelsfrei im Hochspinzustand sind. Dieses Ergebnis lät darauf schlieen, da
die Ursache des Spinzustands und dessen Temperaturabhänigkeit sich stark von
der in der jüngeren Literatur diskutierten unterscheidet.

In Kapitel 9 studieren wir LaTiO3. Es gab eine starke Diskussion über die
Rolle des orbitalen Freiheitsgrads innerhalb der Titanate und LaTiO3 im beson-
deren [13, 71–79]. Mittels spinaufgelöster, zirklar polarisierter Photoemissions-
spektroskopie konnten wir bestätigen, da das orbitale Moment in LaTiO3 tat-
sächlich ausgelscht (gequenched) ist. Mit Hilfe der XAS zeigen wir, da dies
durch ein relativ starkes Kristallfeld im Bereich von 120 bis 300 meV verursacht
wird. Für eine realistische Beschreibung dieser Materialien muß man berück-
sichtigen, da es eine starke Kopplung zwischen den Orbitalen und dem Gitter
gibt.

In Kapitel 10 untersuchen wir den Metall-Isolator-Übergang in VO2. Mittels
XAS zeigen wir, da zusammen mit dem Metall-Isolator-Übergang sich auch die
orbitale Besetzung dieses Materials ändert. Die orbitale Besetzung geht dabei
von fast isotrop in der Metallphase zu fast vollständig σ-polarisiert in der Iso-
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latorphase über, in guter Übereinstimmung mit dem Doppelclustermodell [80].
Diese sehr starke orbitale Polarisation führt tatsächlich zu einer Änderung der
elektronischen Struktur des VO2 von einem dreidimensionalen zu einem effektiv
eindimensionalen System [81]. Die Vanadiumionen in der Kette entlang der c-
Achse sind dann sehr empfindlich auf den Peierls-Übergang. In dieser Beziehung
kann der Metall-Isolator-Übergang in VO2 tatsächlich als Peierls-Übergang be-
trachtet werden [82]. Um jedoch diese dramatische nderung in der orbitalen
Besetzung zu erreichen, ist es zusätzlich nötig, da durch starke Elektronenko-
rrelation das schmalbandige System in die Nähe des Mottbereiches gebracht
wird. Der Metall-Isolator-Übergang in VO2 kann deshalb als ”gemeinsamer”
Mott-Peierls-Übergang bezeichnet werden.
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