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1 INTRODUCTION 

1.1 Infection and immunity- the never ending battle 

Millions of years of co-evolution and reciprocal adaptation have created a 

complicated system of interactions between pathogens and their hosts [1, 2]. The aim 

of all pathogens is to invade the host and successfully establish an infection, which 

allows them to exploit resources, propagate and eventually spread to other hosts. In 

order to achieve these goals pathogens have developed numerous evasion mechanisms 

interfering with host resistance processes [3-8]. To answer the pathogen challenge 

living organisms have developed a sophisticated multilayer immune system. The 

function of this system is to recognize invaders, interfere with essential steps in their 

propagation and destroy them. All multicellular organisms possess a complex of 

evolutionary conserved immune mechanisms, known as the innate immune system. In 

vertebrates, there is a second and more sophisticated layer of defense mechanisms, the 

adaptive immune system. All elements of the immune system, innate and adaptive, are 

subjected to complex regulation in order to guarantee elimination of invading agents 

with minimal host damage. 

The innate immune system provides the first line of defense against invasion. This 

system senses the invaders through a variety of germline-encoded pattern recognition 

receptors (PRRs) recognizing conserved products of microbial metabolism designated 

as pathogen associated molecular patterns (PAMPs) [9]. The lists of PRRs includes 

cell surface molecules such as Toll-like receptors (TLRs) [10] and scavenger 

receptors [11], intracellular receptors like NODs [12], PKR [13], 2’-5’-oligoadenylate 

synthase (OAS) [14] and some molecules secreted in the bloodstream and tissue 

fluids, for example mannose-binding protein (MBP) [15] and C-reactive protein 

(CRP) [16]. Essential components of the innate immune system are numerous cells 

that bear PRRs; these include macrophages, dendritic cells (DCs), mast cells, 

neutrophils, eosinophils, natural killer (NK) cells. They can rapidly become activated 

during an inflammatory response and differentiate to short-lived effector cells whose 

major role is to fight the infection. Important innate elements of host defense are also 

the different antimicrobial peptides [17, 18] and the complement system [19]. The 

mechanisms by which the innate immune system fights infections include 
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opsonization and phagocytosis, activation of complement and coagulation cascades, 

induction of apoptosis, activation of  proinflamatory signaling pathways. 

In vertebrates, the immune system is more complicated. It includes a complex of 

mechanisms known as the adaptive immune system. It becomes activated with the 

help of the innate immune system, which induces the production of co-stimulatory 

molecules, secretion of chemokines and cytokines and triggers DC maturation, thus 

directing the cells of the adaptive immune system to the place of inflammation. The 

adaptive immune system provides some big advantages to the host, especially in 

immune recognition. The cells of the adaptive immune system, T and B-lymphocytes, 

express surface receptors known as T-cell receptor (TCR) and B-cell receptor (BCR), 

respectively. The genes encoding these receptors are assembled by recombination of 

gene segments during lymphocyte development. This assembling process generates a 

huge variability of receptors, which potentially could recognize every unknown 

antigen the organism can encounter. The pathogens, which manage to go through the 

barriers of the innate immune system, meet the pool of lymphocytes and select among 

them the cells bearing receptors with the right specificity. These cells clonally expand 

and produce large numbers of effector cells, which fight the invaders. Because of the 

processes of selection and clonal expansion, the adaptive immune response is very 

specific but also delayed in time when compared to innate immunity. In the process of 

clonal expansion the adaptive immune system produces also long-lived cells, thus 

providing the host with immunological memory and allowing it to mount a stronger 

and more specific response in case of re-encounter with the same pathogen. The cells 

of the adaptive immune system are specialized with respect to their anti-pathogenic 

effector functions. B cells differentiate into plasma cells, which produce antibodies 

targeting extracellular pathogens. T cells from the CD8+ subset directly lyse infected 

cells or neutralize pathogens in non-cytolytic manner by secreting cytokines, mainly 

IFNγ [20]. The CD4+ T cells do not have direct antimicrobial functions but they 

orchestrate the complicated actions of the immune system by secreting diverse 

cytokines. Cytokines are small regulatory proteins secreted by various cells of the 

body in response to activating stimuli. They control important processes such as cell 

proliferation and chemotaxis, thus contributing to both innate and adaptive immunity. 

Some cytokines have direct antimicrobial and antiviral functions. In this respect, very 

important molecules are the IFNs. 
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1.2 Interferons, the central players in antimicrobial and antiviral 

immunity 

Interferons (IFNs) are members of a multigene family of small inducible cytokines, 

originally described as substances protecting cells from viral infection [21]. The 

family subdivides in three groups: IFN type I, II and III. The group of type I IFNs 

includes multiple IFNα proteins [22-23], as well as IFNβ [24], IFNκ [25], IFNε [26] 

and IFNτ [27], each with a single member. All proteins from this list are found in both 

mice and humans. Mouse limitin [28], pig IFNδ [29] and human IFNω [30] also 

belong to the group of type I IFNs. The IFNα species exhibit antiviral, 

antiproliferative and immunomodulatory activities. Antiviral activity has also been 

demonstrated for IFNβ, IFNω and IFNκ. The group of type III IFNs consists of three 

IFNλ proteins [31-32] which are also induced by virus infection and have antiviral 

activity. 

The type II IFN group has only one member- IFNγ. IFNγ is produced by cells of the 

immune system (NK cells, CD4 cells, CD8 CTLs, macrophages) [33] in response to 

diverse activating stimuli. The synthesis of IFNγ is regulated mainly by IL-12 and IL-

18, which synergistically induce its production. IFNα/β also can promote IFNγ 

expression.  

IFNγ mediates its functions through the Jak-Stat signaling pathway [34] (Fig. 1). The 

receptor for IFNγ (IFNGR) is expressed on the cell surface of all nucleated cells and 

consists of two heterologous subunits, IFNGR-1 and IFNGR-2. Upon binding of the 

ligand, the IFNGR dimerizes and induces a cascade of intracellular phosphorylation  

and activation events involving members of the Janus family tyrosine kinases (Jak-1 

and Jak-2) and subsequently Stat-1, a transcription factor from the STAT (signal 

transducer and activator of transcription) family. Phosphorylated Stat-1 forms a 

homodimer, known as gamma activation factor (GAF); the dimer translocates to the 

nucleus and binds to the gamma activation site (GAS) response element present in 

IFNγ-responsive promoters, thus leading to activation of transcription. 

IFNα and β also signal through a heterodimeric receptor and a pathway similar of that 

of IFNγ (Fig.1). Receptor dimerization is, however, not required and the set of Jak 

and Stat components involved is different. This pathway employs the kinases Jak-1 

and Tyk-2 and the transcription factors Stat-1 and Stat-2. Upon activation, the latter 

two form a trimer with another transcription factor, IRF-9 (IFN regulatory factor 9); 
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the trimer is known as ISGF3. This trimer translocates to the nucleus, binds to the 

IFN-stimulated response element (ISRE) promoter sequence and activates 

transcription of IFNα/β-inducible genes.  

 

The cellular response to IFNs and especially to IFNγ in particular, is extremely 

complex. Current data shows that IFNγ induces the expression of more then 800 

genes. The products of these genes mediate the multiple effects of IFNγ on all aspects 

of immunity [35-38]. The complexity of the IFNγ response, however, makes the 

analysis of the functions of the individual genes involved in it very difficult. 

Therefore, the mechanisms by which IFNγ mediates its functions are still largely 

unknown. 

 

Figure 1. Interferon receptors and 
activation of the JAK–STAT pathways by 
type I and type II interferons. ( from [219])  
Type I interferons (IFNs) bind to a 
common receptor (type I IFN receptor) The 
type I IFN receptor is composed of two 
subunits, IFNAR1 and IFNAR2, which are 
associated with the tyrosine kinases TYK2 
and JAK1, respectively. IFN- , binds to a 
distinct cell-surface receptor (type II IFN 
receptor). This receptor is also composed 
of two subunits, IFNGR1 and IFNGR2, 
which are associated with JAK1 and JAK2, 
respectively. Activation of the JAKs that 
are associated with the type I IFN receptor 
results in tyrosine phosphorylation of 
STAT2 and STAT1; this leads to the 
formation of STAT1–STAT2–IRF9 
complexes, which are known as ISGF3 
complexes. These complexes translocate to 
the nucleus and bind ISREs in DNA to 
initiate gene transcription. Both type I and 
type II IFNs also induce the formation of 
STAT1–STAT1 homodimers (GAFs) that 
translocate to the nucleus and bind GAS 
elements that are present in the promoter of 
certain ISGs, thereby initiating the 
transcription of these genes. The consensus 
GAS element and ISRE sequences are 
shown. 
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1.3 Antimicrobial functions of IFNγ 

Pathogenesis studies using mouse mutants with disrupted genes encoding IFNγ, 

IFNGR-1, IFNGR-2 and Stat-1 provide strong evidence for the importance of IFNγ in 

host response to microbial and viral pathogens. If kept in pathogen-free environment 

these null mutants show no developmental or physiological abnormalities but their 

ability to mount an immune response against infections is largely compromised. 

These include infections with a variety of intracellular bacteria, protozoa and viruses 

some of which are listed in Table 1. 

Table1 

Pathogens References 

Intracellular bacteria 

Mycobacterium spp. [41, 42] 

Chlamydia spp. [43, 44] 

Salmonella typhimurium [45, 46] 

Listeria monocytogenes [47-50] 

Shigella flexneri [51] 

Yersinia enterocolitica [52] 

Legionella pneumophilla [53] 

Bordetella pertussis [54] 

Intracellular protozoa 

Toxoplasma gondii [55] 

Plasmodium spp. [56] 

Trypanosoma cruzi [57] 

Leishmania major [58, 59] 

Viruses 

herpes simples virus (HSV) [60] 

lymphocytic choriomeningitis virus (LCMV) [61] 

Vaccinia virus [47] 

murine cytomegalovirus (MCMV) [62] 

vesicular stomatitis virus (VSV) [49] 

 

The classical view about IFNγ is that this cytokine is mainly involved in resistance 

against bacteria while the antiviral defense is a function of the type I IFNs. IFNγ 
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indeed plays a critical role in innate host response against microbes but it also 

contributes to the protection against viruses, especially in long-term control of viral 

infections. In some diseases, IFNγ plays important role in both protection and 

pathogenesis. For example, in a Helicobacter pylori infection model, increased 

production of IFNγ in absence of IL-4 promotes mucosal inflammation [39]. IFNγ is 

also proved to be responsible for persistence of Chlamydia spp. infection [40]. 

In many cases, the antimicrobial and antiviral effects of IFNγ are due to its general 

immunostimulatory functions. However, there is growing evidence supporting the 

idea that the potent direct negative effect of many IFNγ-induced proteins on growth of 

intracellular pathogens is essential for host defense. Extensive data shows that IFNγ 

directly induces intracellular resistance programs and these cell-autonomous effects 

play a critical role in resistance against intracellular pathogens from all classes. 

 

1.4 IFN-induced cell-autonomous immunity 
By definition, cell-autonomous resistance is mediated by any cell without assistance 

from specialized cells of the immune system. Such assistance might be needed 

initially for the induction of a cell-autonomous resistance factor but once induced and 

synthesized in the cell this factor confers resistance by itself without further 

specialized help. In recent years, many IFN-induced molecules have been implicated 

in cell-autonomous resistance mechanisms. The list of such molecules includes well-

known and extensively studied antiviral factors as PKR [63, 64] and 2’-5’ 

OAS/RNaseL [65, 66], as well as molecules with activity against a large spectrum of 

pathogens from all classes, for example iNOS [67, 68, 69], IDO [70, 71, 72] and the 

phox complex [73]. The list of cell-autonomous resistance factors is still growing, 

relative newcomers in it being ADAR1 [74], ISG20 [75], ZAP [76] and TRIM5α 

[77]. It is becoming clear that IFN-induced GTPases also play an important role in 

cell-autonomous resistance against intracellular pathogens.  

 

1.5 IFN-inducible GTPases as cell-autonomous resistance factors 

Among the genes highly induced by IFNs are the members of four families of 

GTPases. Type I IFNs induce the Mx proteins. Type II IFN induces three other 

families of GTP binding proteins: the p65 guanylate-binding proteins (GBPs), the 
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very large inducible GTPases (VLIGs) and the p47 GTPases. Members of all these 

families except the VLIGs have already been implicated in cell-autonomous 

resistance mechanisms. 

 

1.5.1 Mx proteins 

The first mouse Mx gene was identified as a locus in A2G mice conferring resistance 

to influenza virus [78]. The gene was subsequently mapped and cloned [79, 80] and is 

currently known as Mx1. A second mouse family member (Mx2) [81] and two human 

proteins (MxA and MxB) were identified later [82, 83]. Mx GTPses are strongly 

induced by IFNα and IFNβ in cultured cells. They are also shown to be abundant in 

most tissues of mice infected with viruses or treated with IFNα or IFNβ. Other 

cytokines, including IFNγ are poor inducers of Mx GTPases. 

Mx proteins, in particular MxA and Mx1, attract a great deal of attention due to their 

potent antiviral activity demonstrated in induced or stably transfected cell culture 

systems. The Mx proteins protect cells against a variety of negative-strand RNA 

viruses form the families Orthomyxoviridae, Bunyaviridae and Hepadnaviridae. This 

group of viruses includes some human pathogens causing severe diseases, for 

example influenza  [84], hepatitis B (HBV) [85], hemorrhagic fever with high 

mortality rate (Hantaan virus and Crimean-Congo hemorrhagic fever virus) [86, 87], 

fever epidemics (Rift Valley fever virus) [87] or encephalitis (La Crosse virus) [87].  

The antiviral activity of the Mx proteins is further demonstrated by extensive in vivo 

studies. It is long known that most inbred mouse strains naturally carry nonfunctional 

Mx genes [88]. This explains their strong susceptibility to infections with 

orthomyxoviruses [89, 90]. The higher resistance of MxA-transgenic mice to certain 

viral infections [91] also confirms the function of human MxA as a potent antiviral 

effector in vivo. Furthermore, MxA protects these transgenic mice from viruses even 

in the absence of functional IFNα/β system [92], a fact, undoubtedly proving that the 

protein does not need help from other IFN-induced proteins to perform its antiviral 

activity. MxA is a powerful antiviral agent on its own, once induced and synthesized 

it works without external help. This makes the protein a paradigm for a GTPase 

functioning as a cell-autonomous resistance factor. 

The mechanism of action of Mx proteins is still unclear. The direct interaction of 

MxA with viral particles has been demonstrated and proposed to be important for its 



                                                                                                                      Introduction 

                                                                                                                                        8 

function [93]. The protein was shown to block nuclear import of viral nucleocapsids 

[94] probably by sequestering them into perinuclear complexes [95] in a process 

involving smooth ER membranes [96]. Like certain other large GTPases, Mx proteins 

also form highly organized oligomers in nucleotide-dependent manner [97, 98] and 

exhibit high GTP hydrolysis rate [97, 99]; however, a report on a MxA mutant unable 

to oligomerize and hydrolyze GTP but still exhibiting antiviral activity, makes the 

functional significance of these processes questionable [100]. MxA was also shown to 

self-assemble into rings, which tubulate lipids in vitro, but its still unknown if 

membrane deformation is important for its function [101]. Mouse Mx1 is a nuclear 

protein accumulating in distinct nuclear dots that frequently associate with 

promyelocytic leukemia protein (PML) nuclear bodies. However, recently the protein 

was shown to be functionally independent from them [102]. 

 

1.5.2 p65-kDa GBPs 

GBPs represent a family of GTPases conserved in vertebrates [103]. They are highly 

induced by IFNγ and less by IFNα/β [103]. The function of the members of this 

family is still not completely clear. When stably expressed in HeLa cells human 

GBP1 (hGBP1) shows activity against vesicular stomatitis virus (VSV) and 

encephalomyocarditis virus (ECMV) [104]. A similar but smaller effect against these 

two viruses was also recently reported for murine GBP2 (mGBP) [105]. GBPs were 

also shown to be involved in regulation of cell proliferation: mGBP2 alters the growth 

characteristics of fibroblasts [106] and hGBP1 controls proliferation and angiogenic 

capability of endothelial cells [107, 108] only in the presence of a functional GTP-

binding domain. Some family members are isoprenylated at the C-terminus and this 

appears to be necessary for targeting to intracellular vesicular structures [109]; the 

functional importance of this modification for the GBP proteins is, however, still 

unclear. 

 

1.5.3 Very large inducible GTPases (VLIGs) 

The VLIGs are the most recently discovered family of IFN-inducible GTPases [110]. 

In mice, this family consists of at least six genes, in humans there is only one 

homologue. The prototype VLIG, VLIG-1, is a cytosolic and nuclear protein which is 

induced by both type I and type II IFNs and has a canonical GTP-binding domain. 
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The molecular mass of VLIG-1 is 280 kDa, which makes it the largest known GTPase 

in any species. No resistance function for this protein has been shown so far but 

VLIG-1 displays highest homology to the GTPases mediating cell-autonomous 

resistance. This, in addition to the IFN inducibility, suggests a possible role of the 

VLIGs in intracellular defense mechanisms. 

  

1.5.4 p47 (IRG) GTPases 

Extensive data generated in the last few years clearly show that the p47 GTPases are 

among the most efficient cell-autonomous resistance mediators found in the mouse so 

far [111]. The family consists of 23 members in C57BL/6 mice [112], six of which 

have been previously described, namely TGTP/Mg21 [113], IRG-47 [114], IIGP1 

[103], GTPI [103], IGTP [115] and LRG-47 [116]. IIGP1, TGTP and IRG-47 contain 

the three classical GTP binding motifs [117]: GX4GKS/T (G1; phosphate binding P 

loop), DXXG (G3) and (N/T)(K/Q)XD (G4; responsible for the base specificity). In 

the three other published members the universally conserved GKS sequence in the P 

loop is substituted by GMS, which is so far a unique feature among all known 

GTPases. The substitution correlates with other sequence similarities between these 

three proteins and defines a distinct GMS subgroup in the family [103]. p47 GTPase 

families with different degree of complexity are found in jawed fish and mammals 

[112]. Only two genes are present in humans: a homologue of mCINEMA, called 

hCINEMA, and a gene fragment homologous to the members of the mouse GMS 

subgroup [112]. Recently a new general nomenclature for the p47 GTPase family was 

introduced [112]. It is based on phylogenetic principles and the names of the genes 

originate from the stem name IRG (Immunity-Related GTPases). The family tree 

shown in Fig. 2 presents the new, as well as the old names of the members of the 

mouse p47 GTPase (IRG) family. The old names will to be used in this thesis. 

The p47 GTPases are classified as immediate-early genes because their expression 

does not require de novo protein synthesis of transcription factors [118, 116, 111]. A 

hallmark feature of the members of the p47 family is their strong and rapid induction 

in response to IFNγ stimulation from almost undetectable basal levels in all cell lines 

and primary cells tested [115, 114, 103, 116, 112]. The only exception in this respect 

is CINEMA, which is not IFN inducible [112]. IFNα/β and LPS also induce the 

expression of the p47 GTPases but less than IFNγ [116, 119]. Other bacterial cell wall 
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components also stimulate synthesis of some family members, probably via TLR 

signaling and indirect secretion of IFNβ [120]. The p47 GTPases seem not to be 

induced by other cytokines, including some interleukins (IL-1α and β, IL-2, IL-4, IL-

6, IL-10), tumor necrosis factor α (TNFα) and granulocyte-macrophage colony 

stimulating factor (GM-CSF) [116, 118, 119]. The p47 GTPases are also shown to be 

highly induced in vivo after infection with bacteria and protozoa [103, 121, 122]. 

Interestingly, at least the six published family members have low but detectable basal 

expression levels in almost all mouse organs  tested and apparently this basal 

production does not depend on IFN, as it is still present in mice lacking receptors for 

IFNα/β or/and IFNγ (Jia Zeng, personal communication). The in vivo expression 

pattern of CINEMA is also an exception from the rule: the protein is expressed only in 

 

                                        
Figure 2: Unrooted tree of nucleotide sequences of the G-domains of the 23 members of the mouse 
p47 GTPase (Irg) family (p-distance based on a Neighbour-Joining method). The names generated 
according to the new nomenclature [112] are depicted in black, the old names, in green (courtesy to 
Cemalettin Bekpen) 
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testis in both mouse and man ([112] and Christoph Rohde, personal communication).  

Mice with targeted deletions of three individual members of the p47 GTPase family, 

namely IGTP, IRG-47 and LRG-47, display complete loss of resistance to several 

intracellular pathogens of bacterial and protozoan origin despite having an intact and 

functional adaptive immune system and IFNγ production [111, 121, 122]. The data on 

susceptibility of these deficient mice is summarized in Table 2. 

 
Table 2. This table (from Taylor et al. [111]) summarizes the phenotypes of the three available p47 
GTPase deficient mice in comparison to the IFNγ deficient mouse (S, susceptible, R, resistant, N.T., 
not tested) 

The cellular mechanisms underlying the essential resistance functions of the p47 

GTPases are not yet understood. Currently available data is concentrated mainly on 

the interactions between LRG-47 and phagosomes. The protein was reported to co-

purify with phagosomes from Mycobacterium-infected macrophages and promote the 

acidification, and thus maturation of these phagosomes [123]. In resting cells, LRG-

47 was shown to localize to cis-Golgi and ER [124]. Upon phagocytosis LRG-47 

translocates to the plasma membrane at the forming phagocytic cups and in fibroblasts 

also at phagocytosis-induced membrane ruffles; the protein then stays associated with 

the maturing phagosome and reaches the lysosomal compartment [124]. Other family 

members have also been shown to associate with intracellular membrane 

compartments: IIGP1 and IGTP both localize to the ER [124, 125], GTPI is a Golgi 

protein [126] and TGTP1 partitions between intracellular membranes and cytosol 

[126]. The intracellular behavior of the p47 GTPases suggests that these proteins work 

by interfering with the lifestyle of pathogens whose survival and propagation in host 

cells is critically dependent on exploitation of membrane compartments. 

  

1.5.4.1 IIGP1    

From all published members of the p47 GTPase family IIGP1 is the best characterized 

with respect to biochemical properties and enzymatic activity in vitro, features, which 

relate the protein to the large GTPases including dynamins and p65 GBPs [127-129]. 

Purified recombinant IIGP1 binds GDP and GTP in the micromolar range, hydrolizes 
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GTP to GDP in a cooperative manner and forms enzymatically active oligomers in 

presence of GTP in vitro [130]. In contrast to the large GTPases, however, IIGP1 has 

higher affinity for GDP than for GTP; its intrinsic enzymatic activity is also relatively 

low, which suggests that the protein might need additional help for GTPase activation. 

Such GAP (GTPase-activating protein) activity is an intrinsic feature of the related 

dynamins and p65 GBPs [127, 131, 132]. It is possible that the IIGP1 molecules are 

activated in trans during the oligomerization process.  

The crystal structure of IIGP1 shows a typical Ras-like G domain between an N-

terminal three-helix bundle and a complex system of C-terminal helices and loops 

[133]. The protein crystallizes as a dimer, which is required for cooperative GTP 

hydrolysis and GTP-dependent oligomerization as shown by analysis of dimer 

interface mutants. Sequence comparison and secondary structure prediction suggests 

that the structure of IIGP1 can be a valid model for the p47 GTPase family. 

IIGP1 associates to the endoplasmic reticulum in fibroblast, macrophage and 

hepatocyte cell lines [124]; it was also previously reported to be a predominantly 

Golgi protein in bone-marrow derived macrophages [119]. Notably, IIGP1 

translocates to the parasitophorous vacuole (PV) in primary astrocytes infected with 

Toxoplasma gondii and this process correlates with subsequent disruption of the PV 

[134]. IIGP1 behaves as a classical peripheral membrane protein with relatively weak 

interactions to the membrane [124]. The protein is partly membrane associated but it 

also has a substantial cytosolic pool. IIGP1 is targeted to membranes by N-terminal 

myristoylation. There is, however, also a residual membrane interaction signal 

because the non-myristoylated IIGP1 mutant is still partly membrane-bound. IIGP1 

probably could interact directly with lipids in cellular membranes as suggested by its 

ability to bind to synthetic phosphatidylserine lipid vesicles in vitro [124].  

The only interaction partner of IIGP1 reported until now is the microtubule binding 

protein Hook3 (mHk3) [135]. The interaction was identified by yeast-two-hybrid 

screen using the complete IIGP1 protein as a bait. It was also confirmed by co-

immunoprecipitation of the two proteins in lysates of IFNγ-activated bone marrow-

derived macrophages. The hook proteins were previously proposed to participate in 

proper assembly and/or positioning of membranous compartments and contribute to 

their ordered dynamic formation, maturation and trafficking [136]. Therefore, the 

interaction between IIGP1 and mHk3 was reported as evidence for participation of 

IIGP1 in intracellular trafficking [135]. 
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1.6 Aims of this study 

The introductory remarks in the previous chapter summarized our current knowledge 

about IIGP1 with respect to biochemical characteristics and intracellular behavior. 

Our aim was to investigate the proposed defense function of the protein by generating 

an IIGP1 deficient mouse strain and analyzing the susceptibility of these animals to 

infection with different pathogens. We also planned to characterize in detail the 

expression profile of IIGP1 and the genomic organization of its homologous genes.  
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2 MATERIALS AND METHODS 

2.1 Chemicals and reagents 

All chemicals were purchased from Aldrich (Steinheim), Amersham-Pharmacia 

(Freiburg), Applichem (Darmstadt), Baker (Deventer, Netherlands), Boehringer 

Mannheim (Mannheim), Fluka (Neu-Ulm), GERBU (Gaiberg), Merck (Darmstadt), 

Pharma-Waldhof (Düsseldorf), Qiagen (Hilden), Riedel de Haen (Seelze), Roth 

(Karlsruhe), Serva (Heidelberg), Sigma-Aldrich (Deisenhofen) or ICN biochemicals, 

Oxoid, (Hampshire UK).  

 

2.1.1 Oligonucleotides  

Oligonucleotidess were purchased from Invitrogen (Carisbad, USA) and are listed in 

Table 3  

Table 3 

Name Sequence 5’- 3’ Usage 
RT1.1FA TGCTTCCTGAAGCTGAACTA Real-Time PCR (IIGP1A) 

RT1.2FA ACCGAGGGCTATTCCTCTCA Real-Time PCR (IIGP1B) 

RT1R CAGAGAAGGGATGATATTCAC Real-Time PCR (IIGP1A and B) 

mHPRT FA ATTAGCGATGATGAACCAGG Real-Time PCR (HPRT) 

mHPRT R2A TGGCCTATAGGCTCATAGTG Real-Time PCR (HPRT) 

5HAF CCGCTCGAGGTACTGTTGAAAGCAATGATT 

5HAR1 CCGCTCGAGGAATTCTATACAAAACTTTCC

CAGTAG 

Targeting vector (5’ homology 

arm) 

3HAF CAGGATCCCGCAGAAGGTTTG 

3HAR CGCGGATCCATAATGTTTTCATCTCTAATC 

Targeting vector (3’ homology 

arm) 

5DEL TTGTTATTCAGGGAAGCTAAG 

3DEL TGTCTGGTGATTCTCATTAGC 

5’EX2 CTCAGGTTATCTAACATTCTG 

IIGP1 mouse typing 

G6PDH 1f ACAGGGACAGAGGGAGAA 

G6PDH 1r AACGCAAAGCTGAAGTGA 

Real-Time PCR  

A. phagocytophilum detection 

CL Forward GGA GGC TGC AGT CGA GAA TCT 

CL Reverse TTA CAA CCC TAG AGC CTT CAT CAC 

Real-Time PCR  

C. trachomatis detection 

 

2.1.2 Enzymes 

Restriction Enzymes were purchased from New England Biolabs (Bad Schwalbach); 

T4 DNA ligase (New England Biolabs); RNase A (Sigma); shrimp alkaline 



                                                                                                     Materials and Methods 

                                                                                                                                      15 

phosphatase (SAP) (USB, Amersham); Thermus aquaticus (Taq) polymerase was 

prepared by Rita Lange; Pyrococcus furiosus (Pfu) DNA Polymerase (Promega, 

Mannheim) 

 

2.1.3 Kits 

Plasmid Maxi and Midi kit (Qiagen, Hilden), Terminator-cycle Sequencing kit 

version 3 (ABI), Rapid PCR product purification Kit (Boehringer, Ingelheim), pGEM-

T Easy Vector System I (Promega, Madison, USA), Ladderman labeling kit (TaKaRa) 

RNeasy Mini Kit (Qiagen, Hilden), Oligotex mRNA Mine Kit (Qiagen, Hilden), 

SuperScript First-Strand Synthesis System (Invirtogen, Carisbad, USA), QuantiTect 

SYBR Green PCR KIT (Qiagen, Hilden) 

  

2.1.4 Serological reagents. 

2.1.4.1 Primary antibodies and antisera (Table 4) 

name target species dilution origin 
10D7 IIGP1 mouse monoclonal IB: 1:1000 

IF: 1:200 
Jens Zerrahn, 
Berlin 

A20 TGTP1 goat polyclonal IF: 1:100 Santa Cruz Biotechnology, 
Santa Cruz, CA 

I68120 IGTP mouse monoclonal IF: 1:250 BD Transduction 
Laboratories, Lexington, 
KY 

5-241-178 GRA7 mouse monoclonal IF: 1:30000 R. Ziemann, Abbott 
Laboratories, Abbott Park, 
IL 

 

2.1.4.2 Secondary antibodies and antisera 

goat anti-mouse Alexa 546/488, goat anti-rabbit Alexa 546/488, donkey anti-goat 

Alexa 546/488, donkey anti-mouse Alexa 488, goat anti-mouse Alexa 680 (all 

Molecular Probes), goat anti-mouse HRP (Amersham) 

 

2.2 Media 

2.2.1 Luria Bertani (LB) medium 

10g bactotryptone, 5g yeast extract, 10g NaCl, 1l dH2O  

 

2.2.2 LB agar medium 

10g  bactotryptone, 5g yeast extract, 10g NaCl, 15g agar, 1l dH2O 
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2.2.3 EF medium 

DMEM (Dulbecco’s Modified Eagle Medium) with Glutamax (no sodium piruvate, 

4500 mg glucose, with pyridoxine) supplemented with 10% EF FCS, 1 mM sodium 

piruvate, 100 µg/ml penicillin/streptomycin (optional) 

 

2.2.4 ES medium 

DMEM (Dulbecco’s Modified Eagle Medium) supplemented with 15% ES FCS 

(tested for germline transmission), 1 mM sodium piruvate, 2 mM L-glutamine, 1x 

non-essential amino acids, 1 mM β-mercaptoethanol, 100 µg/ml 

penicillin/streptomycin (optional, not recommended), LIF (leukemia inhibitory factor; 

a supernatant from LIF-transfected CHO cells line 8/24 720 LIFD(.1) from Genetics 

Institute, Cambridge, Massachusetts; the amount used depends on the concentration of 

the batch) 

Mammalian tissue culture media and supplements were bought from Gibco BRL, 

(Eggelstein), ES and EF FCS from Gibco BRL, (Eggelstein), LIF was provided by the 

Center for Mouse Genetics, Institute for Genetics, Cologne 

 

2.2.5 Freezing medium 

10% DMSO, 90% FCS, sterile filtered, kept in aliquots at -20◦C  

2x Freezing media (for 96 well plates) 

20% DMSO, 80% FCS, sterile filtered, kept in aliquots at -20◦C  

 

2.3 Cells and cell lines 

2.3.1 Bacterial strains 

Escherichia coli DH5α: 80dlacZ∆M15, recA1, gyrA96, thi-1, hsdR17 (rB
-, mB

+), 

supE44, relA1, deoR, ∆(lacZYA-argF)U196 

 

2.3.2 Bacterial pathogens 

Listeria monocytogenes strain EDG, serotype 1/2a 

Chlamydia trachomatis L2 

Anaplasma phagocytophilum strain MRK 
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2.3.3 Protozoan parasites 

Toxoplasma gondii strain ME49, DX  

Plasmodium berghei strain ANKA 

Leishmania major clone V1 (MHOM/IL/80/Friedlin) 

 

2.3.4 Mammalian cells and cell lines 

Embryonic feeder (EF) cells: primary, prepared from day 13-14 embryos from 129 

mouse strain harboring pSV2 neo [137] 

Embryonic stem (ES) cells: Bruce4 cell line derived from C57BL/6 mouse strain 

[138] 

2.4 Methods 

2.4.1 Molecular biology 

All common methods molecular biology methods were performed according to 

standard protocols [139] or cited references. 

 

2.4.1.1 Preparation of competent Cells  

Competent Escherichia coli DH5α or BL21 cells were prepared according to the 

protocol of Inoue et al. [140] and used in heat shock transformations of plasmid DNA.  

 

2.4.1.2 Isolation of Plasmid DNA 

Plasmid DNA was isolated from transformed bacteria with an alkaline lysis method 

[141] following the standard protocol [139]. Plasmid DNA of a higher amount and 

purity was prepared with Oiagen Plasmid Midi kit (Qiagen, Hilden) following the 

supplier's instructions. BAC DNA was isolated using Oiagen Plasmid Midi kit 

(Qiagen, Hilden) following the protocol for preparation of very low copy number 

plasmids provided by the company. 

 

2.4.1.3 Isolation of Genomic DNA from mouse tissues and cells 

Mouse tissue was incubated o/n at 56°C in lysis buffer (l0 mM NaC1, 10 mM Tris-

HCl pH 7.5, l0 mM EDTA, 0.2% SDS, 0.4 mg/mI Proteinase K [freshly added each 

time]). Debris were pelleted by centrifugation and supernatant was mixed with an 

equal volume of isopropanol to precipitate DNA. DNA was washed with 70% EtOH, 

dried and resuspended in ddH2O or TE buffer. 
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Preparation and restriction digest of ES cell DNA in 96 well plates was performed as 

follows. 50 µl of lysis buffer (l0 mM NaC1, 10 mM Tris-HCl pH 7.5, l0 mM EDTA, 

0.5% Sarcosyl, 0.4 mg/mI Proteinase K [freshly added each time]) was added to each 

well of the 96 well plate. The plate was wrapped in parafilm, transferred to pre 

warmed at 56◦C humidified chamber and incubated at 56◦C overnight. At the next day, 

the plate was allowed to cool down at room temperature for 1 hour. 100 µl of 100% 

EtOH were added to each well and the plate was let to sit at room temperature for 1 

hour during which the DNA strands became visible at lower magnification. The plate 

was inverted and carefully drained on paper towels allowing DNA to remain attached 

to the plastic walls of the wells. The plate was washed 3 times with 100µl 70% EtOH 

and dried at room temperature. 35 µl restriction mix (1x restriction buffer, 1 mM 

spermidine, 1 mM DTT, 100 µg/ml BSA, 20-30 units of restriction enzyme per 

reaction) were added to each well and the plate was incubated overnight at the 

appropriate temperature in a humidified chamber. At the next day, the digested DNA 

samples were fractionated on agarose gel. 

 

2.4.1.4 Agarose gel electrophoresis purification of DNA fragments from 

agarose gels 

Size of DNA fragments was analyzed by agarose gel electrophoresis. DNA was run 

on 0.7% - 2% gels in 1 x TAE [139] and stained with 0.3 µg/ml ethidium bromide; 

migration of the DNA molecules was visualized by using Bromophenol blue or 

Orange G. DNA fragments were eluted from the gel with the rapid PCR purification 

Kit (Boehringer) according to the manufacture’s protocol. Purity and yield of the 

DNA was determined by agarose gel electrophoresis and measurement of OD260. 

 

2.4.1.5 Quantification of nucleic acids 

The concentration of DNA and total RNA was determined by measuring the 

absorption of the sample at 260 nm in a spectrophotometer (Pharmacia). An OD260 

of 1 corresponds approximately to 50 µg/ml for double stranded DNA or 40 µg/ml 

RNA. 
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2.4.1.6 Polymerase Chain Reaction 

2.4.1.6.1 General PCR protocol 

Polymerase chain reaction (PCR) [142] was used for the cloning of the short and long 

arm of homology of the targeting vector, screening for deleted clones after in vitro 

neo deletion and typing of transgenic mouse strains. All PCR reactions except the 

amplifications of the homology arms were made with Thermus aquaticus (Taq) DNA 

polymerase prepared by Rita Lange; for the homology arms 1:20 mix of KlenTherm 

Taq (BIOFIDAL, Vaulcs-En-Velin, France) and Pyrococcus furiosus (Pfu) DNA 

Polymerase (Promega, Mannheim) was used. The general reaction mix contained 1 µl 

DNA, 1x Hepes PCR buffer, 10 pM of each primer, 200 pM dNTP-mix, various 

amount of 50 mM MgCl2, 2,5U Taq-Polymerase, and water up to 50 µl. Primers were 

bought from Invitrogen and are listed in Table 3 

 

2.4.1.6.2 Mouse typing PCR for IIGP1 deletion 

The reaction mix contained 1 µl genomic tail DNA, 1x Hepes  PCR buffer, 10 pM of 

each primer (5DEL, 3DEL, 5’EX2) (Table 3), 200 pM dNTP-mix, 3 mM MgCl2, 2,5U 

Taq-Polymerase, and water up to 50 µl. The PCR program was 94°C for 2 min, 

followed by 35 cycles of 94°C for 30 sec, 58° for 30 sec and 72°C for 45 sec. The 

sizes of the amplified bands were 260, 330 and 500 bp for wild type, floxed and 

deleted IIGP1 allele, respectively.  

 

2.4.1.7 Cloning of PCR products 

Amplified PCR products were purified using the rapid PCR purification Kit 

(Boehringer). DNA yield was monitored by agarose gel electrophoresis. Purified 

fragments were cloned in pGEMTeasy vector according to supplier’s protocol. 

 

2.4.1.8 Ligation 

Vector was cut with the respective restriction enzyme(s) (10U/1µg DNA) usually for 

1h under temperature and buffer conditions optimal for the enzyme(s) used. After the 

first hour the same amount of restriction enzyme(s) and 0.1U of shrimp alkaline 

phosphatase were added to the reaction followed by 1.5h incubation under the same 

conditions. Following restriction DNA fragments were ran on agarose gel and purified 

using the rapid PCR purification Kit (Boehringer). DNA yield after purification was 

monitored by agarose gel electrophoresis. Vector and insert were mixed at a ratio of 
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1:3 and ligated with T4-DNA ligase in total volume of 10µl at 16◦C over night 

according to the manufacture’s protocol. Two control reactions were set in parallel: a 

ligation of vector without insert (control for dephosphorylation of the vector) and a 

ligation of insert only (control for purity of the insert). At the next day 5 µl of each 

ligation reaction were transformed in competent bacteria. 

 

2.4.1.9 DNA sequencing 

Plasmid DNA and PCR products were sequenced using the ABI PrismR BigDyeTM 

Terminator Cycle Sequencing Ready Reaction Kit (PE Applied Biosystems) and the 

automatic sequencers ABI373 and ABI377 with the help of Rita Lange. The method 

is based on the dideoxy-chain termination reaction with fluorescently labeled dNTPs 

[143]. 

 

2.4.1.10 Southern Blot analysis 

Gels were treated subsequently with 0.25 M HCl and 0.4 M NaOH for 20 min and 

placed onto a prewet Hybond N+ thansfer membrane (Amersham). The membrane 

was placed on stacks of paper towels covered with 3 prewet Whatman paper sheets. 

The gels were overlaid with prewet Watman paper sheets and connected via a 

Wantman paper bridge to a reservoir with transfer solution (0.4 M NaOH, 0.6 M 

NaCl). Transfer for performed for at least four hrs, then the blot was dissembled. The 

membrane was incubated with hybridization solution (1 M NaCl, 50 mM Tris pH 7.5, 

10% Dextransulfat, 1% SDS, 250 µg/ml sonicated salmon sperm DNA) over night or 

at least 2 hrs at 65ºC in a hybridization oven (Techne Hybridizer HB-1D, Techne, 

Cambridge, UK). Probes were labeled with Ladermann labeling kit (Takara, Japan) 

according to manufacturers instructions, cleaned from residual radioactive nucleotide 

over ProbeQuant G-50 Micro Columns (Amersham Biosciences, UK) added to the 

hybridization solution and incubated overnight at 65ºC in hybridization oven. At the 

next day blots were subsequently washed for 10 min at 65ºC with 2xSSC, 1xSSC, 

0.5xSSC 1%SDS for 10 min at 65ºC. Radioactive signals were measured with Fujix 

BAS 1000 phosphoimager and analyzed with Aida Image Analyser v.3.43 software. 

 

2.4.1.11 Preparation of total RNA from mouse tissues and cells 

Mice were killed with CO2; tissues were prepared and immediately placed in the 

appropriate amount of RNAlater RNA Stabilization Reagent (Qiagen). According to 
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manufacturer’s instructions, tissues were kept in the reagent overnight at 4◦C and later 

processed or kept for archival storage at -20◦C.  

Total RNA from tissues was prepared with RNeasy Mini Kit (Qiagen); the only 

exceptions were testis and brain tissue, which were processed with RNeasy Lipid 

Tissue Kit (Qiagen). In all cases, the procedures recommended by the manufacturer 

were followed including an additional on-column DNaseI digestion with RNase-Free 

DNase Set (Qiagen). Prior to RNA preparation tissues were mechanically disrupted in 

the appropriate volume of lysis buffer from the kit and homogenized through 

QIAshredder Homogenizers (Qiagen).  

Total RNA from cells was also prepared with RNeasy Mini Kit (Qiagen) following 

manufacturer’s instructions. 

The integrity and size of purified total RNA was evaluated by agarose gel 

electrophoresis and ethidium bromide staining. RNA was stored at -80◦C in water. 

 

2.4.1.12 Preparation of mRNA 

PolyA mRNA was prepared from total RNA with Oligotex mRNA kit (Qiagen) 

according to the procedure recommended by the supplier. mRNA was stored at -80◦C.  

 

2.4.1.13 cDNA synthesis 

cDNA was synthesized from mRNA using SuperScript First-Strand Synthesis System 

(Invirtogen) according to manufacturers instructions. 10 to 100 ng mRNA was used as 

template; synthesis was primed by Oligo-dT. cDNA diluted in water 1:1 to reduce the 

concentration of MgCl2, which might interfere with further amplification and stored at 

-20◦C. 

 

2.4.1.14 Real-Time PCR  

2.4.1.14.1 Quantification of IIGP1 transcripts 

The amount of IIGP1A and IIGP1B transcripts was detected by a quantitative PCR 

assay using the LightCycler System (Roche). cDNA was used as a template. 

Fragments from IIGP1A (969 bp) and IIGP1B (972 bp) transcripts were amplified 

using primer pairs RT1.1FA/RT1R and RT1.2FA/RT1R, respectively. The amount of 

measured transcripts was normalized to the amount of the mouse HPRT transcript in 

the probes. The 827 bp fragment from this transctipt was amplified in a separate 
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reaction using the primers mHPRT FA and mHPRT R2A. The sequences of all 

primers are listed in Table 3. 

The PCR reaction mixtures (20 µl) contained 1x QuantiTect SYBR Green PCR 

Master Mix (Qigen, Hilden), 10 pM of each primer, 2 µ l of template cDNA and 1U 

Taq polymerase (prepared by R.Lange). The LightCycler PCR program consisted of 

95°C for 3 min followed by 35 cycles of 95°C for 30 s, 60°C for 30 s, and 72°C for 1 

min and 78°C for 1 min; additional melting step was added at the end of each run 

(95°C for 15 min). Melting curve analysis was performed after each run. The 

quantitation of all transcripts was achieved by external standards, five serial tenfold 

dilutions of IIGP1A containing pGEMTeasy plasmid; the dilutions were ranging from 

106 to 102 plasmid copies/dilution. 

 

2.4.1.14.2 Detection of A. phagocytophilum  

This analysis was preformed in the laboratory of Prof. Christian Bogdan, Institute of 

Medical Microbiology and Hygiene, University of Freiburg 

A. phagocytophilum was detected by a quantitative PCR assay using the LightCycler 

System (Roche). The 444-bp fragment of the A. phagocytophilum ankA gene was 

amplified using the primers LA1 and LA6 [144]. For the sequence-specific detection 

of the amplicon the hybridization probes Ephago-HP-3 and Ephago-HP-4 were used. 

The amount of bacterial DNA was normalized to the amount of mouse genomic DNA 

in the probes. The 429-bp fragment of the mouse glucose-6-phosphate dehydrogenase 

gene (G6PDH) was amplified in a separate reaction using the primers G6PDH 1f  and 

G6PDH 1r (Table 3). The amplicon was detected by the hybridization probes 

G6PDH-HP-3 and G6PDH-HP-4. The hybridization probes were synthesized by TIB 

MOLBIOL (Berlin) and had the following sequence: 

 

Ephago-HP-3   TAAAGCATGTAAAATACTACTAAAGTCT-fluorescein 

Ephago-HP-4  LC Red 640-CGTCAGTATCAGTCGTGAATGTAGA-Ph 

G6PDH-HP-3  TCATTACGCTTGCACTGTTGGTGGA-fluorescein 

G6PDH-HP-4  LC Red 640-TCACCTGCCACGTCTCGGAACTGC-Ph 

 

The PCR reaction mixtures (20 µl) contained 1×LightCyclerFastStart DNA Master 

Hybridization Probes (Roche), 3 mM MgCl2, 0.5 µM of each primer, 0.2 µM of the 

respective hybridization probes, and 2 µ l of template DNA. The LightCycler PCR 
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program consisted of 95°C for 10 min followed by 50 cycles of 95°C for 10 s, 55°C 

for 20 s, and 72°C for 30 s. The quantitation of bacterial DNA and mouse genomic 

DNA was achieved by external DNA standard preparations, which consisted of five 

serial tenfold dilutions (ranging from 106 to 102 plasmid copies/dilution).  

 

2.4.1.14.3 Detection of C. trachomatis 

C. trachomatis was detected by a quantitative PCR assay by amplifying a fragment of 

the C. trachomatis 16s gene using primers CL Forward and CL Reverse (Table 3). For 

the sequence-specific detection of the amplicon, the following hybridization probe 

was used: 

5'-[6-FAM]-TCG TCA GAC TTC CGT CCA TTG CGA-[TAMRA]-3' 

The amount of bacterial DNA was normalized to the amount of mouse genomic DNA 

in the samples by amplifying a fragment of the mouse GAPDH gene in a separate 

reaction using primers and probe from Applied Biosystems. 

 

2.4.2 Cell biology 

2.4.2.1 ES cell culture 

ES cell culture was performed according to the protocols published in Laboratory 

Protocols for Conditional Gene Targeting [145] with modifications used in the 

laboratory of Ari Waisman. 

  

2.4.2.1.1 Thawing of cells 

Cells were thawed fast at 37◦C in a water bath, immediately transferred in 10 ml 

media to dilute DMSO and pelleted by centrifugation for 5 min 1200 rpm, 4◦C. The 

pellet was resuspended in appropriate amount of media and plated. 

 

2.4.2.1.2 Freezing of cells 

Plates were washed 2 times with PBS and trypsinized for 3-5 min at 37◦C. The 

reaction was stopped by adding equal volume of media. Cells were pelleted for 5 min 

1200 rpm, 4◦C. The pellet was resuspended in 1 ml freezing media, immediately 

transferred on ice and slowly frozen at -80◦C. At the next day, the frozen tubes were 

transferred in liquid nitrogen for storage. 
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2.4.2.1.3 Mitomycin C treatment of EF cells 

ES cells were grown on a layer of EFs, mitotically inactivated by treatment with 

mitomycin C (MMC). Mitomycin C was diluted in EF media to final concentration 10 

µg/ml and aliquoted. Aliquotes were kept at -20◦C. EFs were grown to confluence on 

15 cm tissues culture plates and treated with 10 ml MMC media for 3 hours. After the 

treatment, cells were washed 2 times with PBS, trypsinized, counted and plated on 

gelatinized 9 cm tissue culture plates.     

 

2.4.2.1.4 Transfection of ES cells 

2 individual transfections were made. 30 µg of linearized pEF-IIGP1 were used for 

each transfection. ES cells were fed with fresh media 4 hours before transfection. 

DNA was dried under sterile hood and dissolved in 0.8 ml RPMI without phenol rot. 

ES cells were trypsinized and counted. 103 cells were plated for ES cell viability 

control and 2 aliquots of 107 cells were kept for transfection. These cells were 

centrifuged for 10 min at 1200 rpm, 4◦C. The cell pellet was dissolved in 0.4 ml RPMI 

without phenol rot and 0.4 ml of dissolved DNA was added. The mix was transferred 

to an electroporation cuvette, allowed to sit for 10 min at room temperature and 

electroporated at 240V/500µF. 103 cells from each transfection were plated on 

individual EF covered 6 cm tissue culture plates to control the survival rate of the ES 

cells after the transfection; additional  105 cells were pated for stringency of selection 

control. The rest of the transfected cells were diluted in media and plated on 10 cm 

tissue culture plates with MMC treated EF (5 plates per transfection). The cells were 

grown for 2 days with normal ES media. At day 2 the G418 process started.  

The cell viability controls were analyzed by counting and comparing the number of 

colonies formed from the transfected and non-transfected ES cells. For both 

transfections the cell survival was around 10 %.  

 

2.4.2.1.5 G418 selection (positive selection) 

For Bruce4 ES cells, G418 is generally used in final active concentration 200 µg/ml. 

The activity differs between the batches of G418 and has to be experimentally 

assessed for each new batch. The stock used for the experiments in this thesis was 

70% active, i.e. 1.4 ml G418 were used per bottle (600 ml) of ES media. G418 was 

kept in aliquots at -80◦C. The selection process started at day 2 after transfection. 
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2.4.2.1.6 Gancyclovir (GANC) selection (negative selection) 

GANC was used in working concentration 2x10-6 M and prepared fresh every day 

from a stock kept at -80◦C. To prepare the stock 4.3 mg GANC sodium salt were 

dissolved in 80 µl ddH2O to obtain a concentration 2x10-1 M. 10 µl of the stock were 

further diluted in 1 ml of ES media, sterilized by filtering through a 0.22 µm filter, 

kept at -20◦C and used for preparation of the final working dilution of GANC. The 

selection process took 3 days from day 5 to day 8 after transfection with the targeting 

vector.  

 

2.4.2.1.7 ES colony picking 

At day 9-10 after transfection with the targeting vector plates with ES cells were 

washed three times with PBS and left in PBS after the last washing. Colonies were 

picked in a sterile hood. Individual colonies were taken with a P20 pipette and 

transferred to individual wells of a 96 well round bottom plate previously filled with 

50µl trypsin/EDTA. After 20 min of picking, the plates incubated at 37◦C for 3-4 min. 

Subsequently trypsinization process was stopped by adding 150µl of ES cell media 

and picking was continued. After one hour of picking the trypsinized ES cells were 

distributed into three gelatinized and EF covered flat bottom 96 well tissue culture 

plates and the wells were filled with media up to 200µl. At least 300 colonies were 

picked from each transfection. 

The cells were grown for 2 to 3 days; two plates were frozen on two subsequent days 

and kept at -80◦C. The third plate was washed 2 times with PBS and trypsinized. The 

cells were equally distributed to three gelatinized flat bottom 96 well tissue culture 

plates and grown to complete confluence. The wells were subsequently washed 2 

times with 100µl PBS and the plates were frozen at -20◦C. 

 

2.4.2.1.8 Freezing of 96 well plates 

The wells were washed 2 times with 100 µl PBS. The colonies were incubated for 3- 

5 min with 50 µl trypsin/EDTA. The reaction was stopped by adding 50 µl ice cold 2x 

freezing media. The plates were immediately placed on ice, wrapped in parafilm and 

frozen slowly (in Styrofoam box) at -80◦C. 
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2.4.2.1.9 Thawing and expansion of clones from 96 well plates 

The 96 well plates were thawed by incubation at 37◦C in a water bath or on a heating 

block. Immediately after thawing the cells were transferred to previously prepared 

tubes with 5 ml ES media and centrifuged for 5 min at 1200 rpm, 4◦C. Each cell pellet 

was dissolved in 1 ml ES media and plated in an individual well of gelatinized and EF 

covered 24 well tissue culture plate. Clones were expanded by subsequent transfer to 

gelatinized and EF covered 6 well tissue culture plates, 6- and 9 cm tissue culture 

dishes with growing for 2 to 3 days between the transferring steps. Three aliquots 

were frozen from each individual ES clone. 

 

2.4.2.1.10 His-TAT-NLS-Cre transduction of ES cells 

2x105 ES cells were plated in individual wells of gelatinized 6 well tissue culture 

plate. Cells were allowed to attach for 4-5 hours and media was aspirated. His-TAT-

NLS-Cre protein was diluted to 1 mM or 2 mM final concentration in ES media 

without FCS and sterile filtered. 600 µl were added per well and the plates were 

incubated for 20 hours at 37◦C. After the incubation His-TAT-NLS-Cre containing 

media was changed with normal ES cell media and cells were grown to confluence. 

His-TAT-NLS-Cre protein was kindly provided by Thomas Wunderlich. 

 

2.4.2.1.11 Preparation of ES cells for blastocyst injection 

ES cells were thawed and plated on gelatinized and EF covered 9 cm tissue culture 

dishes 2 days prior injection. At the day of injection, plates were washed 2 times with 

PBS and trypsinized for 4-5 min at 37◦C. The reaction was stopped by adding equal 

volume of ES media. Cells were pelleted for 5 min at 1200 rpm, 4◦C, and resuspended 

in 10 ml ES media. The cell suspension was plated on gelatinized 9 cm tissue culture 

plate and incubated for 30 min at 37◦C to deplete from EF cells. After incubation, the 

supernatant containing the ES cells was centrifuged for 5 min at 1200 rpm, 4◦C and 

the cell pellet was resuspended in 1 ml injection media. The plate was washed with 10 

ml ES media to harvest potentially weakly attached ES cells. This media was also 

centrifuged for 5 min at 1200 rpm, 4◦C and the cell pellet was resuspended in 1 ml 

injection media. ES cells from both pellets were compared under microscope and 

usually both were used for blastocyst injection.  
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2.4.2.2 FACS analysis 

Single cell suspensions were stained with FITC-, PE-, APC- and biotin-conjugated 

antibodies. Staining with these fluorescently labeled antibodies was performed as 

described elsewhere [146]. Briefly, 2x106 cells were stained with antibodies diluted in 

PBS/1% BSA/0.01% NaN3 (PBA) for 15 min at 4°C. All antibodies were titrated in 

separate experiments before use. After washing with PBA either a second staining 

step including Streptaviding-Cychrome, -APC, -Cy7-PE or analysis was performed 

immediately after resuspending of the cells in 200–400 µl of PBA. Analysis was done 

FACScalibur (BecktonDickinson). Dead cells were excluded by adding Topro-3 (1 

nM). All antibodies were kindly provided by Ari Waisman. 

 

2.4.2.3 In vitro passage of Toxoplasma gondii 

T. gondii infection experiments were performed under the supervision of Dr. Gaby 

Reichmann, Institute for Medical Microbiology and Hygiene, University of 

Duesseldorf. 

Toxoplasma gondii tachyzoites, strain ME49, were passaged in vitro in HS27 human 

foreskin fibroblasts. Confluent fibroblast monolayers in 25 cm2
 flasks were inoculated 

with 1x106
 parasites in IMDM supplied with 5% FCS, 2 mM L-Glutamin and 50 µM 

β-mercaptoethanol. Under these conditions, parasites actively invade the host cells, 

replicate intracellularly and egress from the cells approximately 3 days later. At this 

time point extracellular parasites were harvested with the supernatant and purified 

from host cell debris by differential centrifugation procedure consisting of 2 steps:  

5´at 500g and 15’ at 1500g, both steps performed at room temperature. Parasites were 

resuspended in culture medium, counted in a Neubauer chamber and immediately 

used for inoculation of host cells.   

 

2.4.2.4 Preparation and culture of murine primary astrocytes (mixed glial 

cell cultures) 

Mixed glial cell cultures contain approximately 90 % glial fibrillary acidic protein 

(GFAP)-positive astrocytes and less than 10% microglia (as controlled by 

immunofluorescence staining). The cultures were prepared as follows. 

1 day old mice were killed in CO2, desinfected in 70 % ethanol and decapitated. 

Cortices were prepared and meninges were removed under a binocular. Brain tissue 

was placed in DMEM and mechanically disrupted by repeated passage through a 
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Pasteur pipette until a homogenous cell suspension was obtained. The suspension was 

filtered through a 70µm cell strainer and centrifuged for 10´at 220g, 4°C. The pellet 

was resuspended in DMEM supplied with 10 % FCS, 2mM L-glutamine, 50µM 2-

mercaptoethanol and seeded in 6-well plates at density of 1x106
 cells per well. 

Medium was exchanged every 3-4 days. At day 10, when a confluent glial cell 

monolayer had developed, cells were harvested, depleted from microglia using 

CD11b MACS columns and replated in 6-well plates. After reaching confluence 

again, the cells were seeded at density of 1x105
 cells/well in 48-well plates for growth 

assay or onto glass cover slips for immunofluorescence. When monolayers reached 

confluence they were used for experiments.  

 

2.4.2.5 Toxoplasma gondii growth assay 

Murine primary astrocytes plated in 48 well plates were stimulated with 1 to 100 U/ml 

IFN-γ for 24h; control cells were left untreated. Cultures were then inoculated at 

different multiplicities of infection (MOI) with T. gondii ME49 tachyzoites for 24 

hours. Cultures were then labelled with 1µCi/well [3H]-uracil (Hartmann analytical) 

for further 24 h and frozen at -80◦C to release the parasites. After thawing the 

parasites were harvested with the media and moved to 96 well plates; the wells of the 

48 well plates were washed two times with 300 µl 0.1% SDS to harvest all remaining 

tachyzoites. The parasites were then moved to paper filters using a cell harvester. The 

filters were dried at 100◦C, sealed in plastic bags with scintillation liquid and the 

amount of incorporated uracil, directly corresponding to the parasite growth [147], 

was determined by liquid scintillation counting. 

 

2.4.2.6 Infection of primary astrocytes with T.  gondii for 

immunofluorescence 

Murine primary astrocytes were grown in 48-well plates on glass cover slips to 

confluence and stimulated with 100 U/ml IFN-γ for 24h; control cells were left 

untreated. Cultures were then inoculated at a MOI 10 with T. gondii ME49 

tachyzoites. Non-invaded parasites were removed 2h later by extensive washing with 

PBS (3-5 times, 1ml/well) and cells were fixed with 3% paraformaldehyde (PFA) in 

PBS for 20 min at room temperature. After one wash with PBS, fixed cultures were 

stored with PBS at 4◦C until immunostaining was performed. 
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2.4.2.7 Indirect immunofluorescence 

Cells were grown on coverslips, fixed with 3% paraformaldehyde (PFA) in PBS for 

20´ and subsequently washed 4 times with PBS. Cells were permeabilized with 0.1% 

saponin in PBS (washing buffer) followed by a blocking step with 0.1% saponin, 3% 

BSA fraction V, 0.1% gelatin in PBS (blocking buffer) for 1h. Cover slips were then 

incubated with the appropriate primary antibodies (Table 4) diluted in blocking buffer 

for 1h and washed three times with washing buffer for 5 min. Cells were then 

incubated with secondary antibodies for 30 min and washed as described above. 

Cover slips were mounted on slides with embedding media (ProLong antifade 

reagent, Molecular Probes, USA), sealed with nail polish and kept at 4◦C in the dark.  

Images were taken with a Zeiss Axioplan II fluorescence microscope equipped with a 

cooled CCD camera (Quantix) using the Metamorph software (version 4.5r3, 

Universal Imaging Corp.); the same software was used for general processing of raw 

images. Overlays of fluorescence images were created using Adobe Photoshop 

version 5.5 

 

2.4.3 Mouse infection experiments 

2.4.3.1 Preparation of Toxoplasma gondii cysts from mouse brain 

Mice chronically infected with Toxoplasma gondii ME49 or DX strains were killed in 

CO2; brains were prepared and washed with PBS to remove blood. Brains were then 

cut in small pieces with scissors and homogenized in 4 ml PBS by subsequent passage 

through needles (18, 20, 22 and 23 gauge). Brain suspension was pelleted by 

centrifugation for 5 min at 500 rpm, RT and resuspended in 15 ml PBS. Cysts were 

isolated from the brain suspension in a Ficoll gradient (10 ml Ficoll) by centrifugation 

for 25 min at 2500 rpm, RT; under these conditions cysts are pelleted under the Ficoll 

and cell debris are kept in the interface between Ficoll and PBS. Cysts were 

resuspended in PBS and 10 µl of the suspension were counted under an 18x18 mm 

glass cover slip.     

 

2.4.3.2 Infection of mice with Toxoplasma gondii 

Mice were infected with Toxoplasma gondii bradyzoites isolated from the brains of 

chronically infected CD1 mice. Freshly isolated cysts were lysed in 0.5 ml 

Trypsin/EDTA solution to release the bradyzoites; lysis was observed under 
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microscope. After all cysts were lysed the reaction was stopped by adding equal 

volume of FCS. Bradyzoites were washed with 2 ml PBS, pelleted at 1800 rpm, 15 

min, RT and immediately used for infection. Each mouse was infected i.p. with 

bradyzoites from five cysts in 200 µl PBS. 

 

2.4.3.3 Infection of mice with Plasmodium berghei 

P. berghei infection experiments were performed in the laboratory of Prof. Achim 

Hoerauf under the supervision of Dr. Michael Saeftel, Institute for Parasytology, 

University of Bonn. 

P. berghei strainANKA was maintained by periodic passages through the vector A. 

stephensi. For infection with sporozoites, mosquitoes were prepared that had been 

infected from identical frozen aliquots of parasites. Mice were infected by intravenous 

(i.v.) injection into the tail of a phosphate-buffered saline (PBS) suspension of 50 

sporozoites per animal. For infection with parasitized erythrocytes, mice were 

infected with the identical frozen aliquots of parasite. The percentage of parasitemia 

was calculated by examining Giemsa-stained smears under a microscope with an oil 

immersion lens (x1,000). The parasitized blood was diluted in PBS and injected 

intraperitoneally (i.p.) into mice. Mice were observed daily for disease symptoms and 

time of death. 

 

2.4.3.4 Preparation of Leishmania major metacyclic promastigotes and 

infection of mice 

L. major infection experiments were performed in the laboratory of Dr. Esther von 

Stebut, Institure for Dermatology, University of Mainz. 

L. major clone V1 (MHOM/IL/80/Friedlin) was cultured in 199 medium 

supplemented with 20% FCS (Hyclone Laboratories Inc., Logan, UT), 100 U/ml 

penicillin, 100 µg/ml streptomycin, 2 mM Lglutamine, 40 mM Hepes, 0.1 mM 

adenine (in 50 mM Hepes), 5 µg/ml hemin (in 50% triethanolamine) and 1 µg/ml 6-

biotin (in 95% EtOH). Infective-stage promastigotes (metacyclic promastigotes) of L. 

major were isolated from stationary cultures (5–6 days old) by their lack of 

agglutination with peanut agglutinin (Vector Laboratories Inc., Burlingame, CA). 

Prior to infection, promastigotes were opsonized with 5% C5-deficient serum 

obtained from B10.D2/OsNj mice, by incubation at 37 °C for 30 min. 
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Experimental mice were infected by injection of 10 µl of PBS containing the 

appropriate dose of parasites into the dorsal dermis of the left ears. 

2.4.3.5 Infection of mice with Listeria monocytogenes 

L. monocytogenesi infection experiments were performed under the supervision of Dr. 

Olaf Utermohlen, Institute for Medical Microbiology, Immunology and Hygiene, 

University of Cologne. 

L. monocytogenes, strain EGD, serotype 1/2a was freshly prepared for each 

experiment from aliquots of log-phase growing cultures kept frozen at -80°C. The 

aliquots were thawed and grown overnight in brain-heart infusion (BHI) medium, 

resuspended in fresh BHI medium, and harvested during mid-log phase. Bacteria were 

washed in PBS once and their density was estimated by OD measurement at 600 nm. 

The inocula were adjusted to the desired density and injected i.p. in 0.5 ml PBS; serial 

dilutions of the inocula were plated on bloodagar plates to quantify the CFU. 

 

2.4.3.6 Measurement of L. monocytogenes load in spleen and liver 

At day 3 p.i. mice were euthanized by cervical dislocation and specimens of liver and 

spleen were examined for bacterial titers. Organs were homogenized in 0.1% Triton 

X100 in water and 10-fold serial dilutions were plated on blood-agar plates. The 

plates were incubated at 37°C and 48 h later the CFU were counted to determine the 

bacterial load, which was presented as CFU/g organ. 

 

2.4.3.7 Infection of mice with A. phagocytophilum  

A. phagocytophilum infection experiments were performed in the laboratory of Prof. 

Christian Bogdan, Institute of Medical Microbiology and Hygiene, University of 

Freiburg 

The A. phagocytophilum strain MRK (formerly Ehrlichia equi MRK) was cultured in 

HL60 cells grown in RPMI 1640 medium supplemented with 1% fetal calf serum with 

5% CO2. Experimental animals were infected with 100 µl blood from infected C.B17 

SCID mice by i.p. injection; before the injection the infected blood was diluted 1:5 in 

PBS. C.B17 SCID mice were infected i.p. with 106 A. phagocytophilum MRK cells 

and infection was maintained through continuous passage of infected blood.  

Mice were sacrificed at different time points after infection. EDTA-anticoagulated 

blood, spleen and lung were collected from each mouse. DNA was extracted from 

blood using the High Pure PCR Template Preparation Kit (Roche, Mannheim, 
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Germany) and from the organs using the QIAamp tissue kit (Qiagen, Hilden, 

Germany). A. phagocytophilum was detected by a Real-Time PCR as described in 

section 3.4.1.14.2 (Detection of A. phagocytophilum)  

 

2.4.3.8 Infection of mice with C. trachomatis 

C. trachomatis infection experiments were performed in the laboratory of Prof.W. 

Dietrich, Harvard Medical School, Boston, USA 

Mice were infected with 107 CFU of C. trachomatis strain L2. by i.v.injection into the 

tail vain. Animals were sacrificed at 29h p.i., spleens were isolated form each animal 

and the amount of C. trachomatis in the samples was measured by Real-Time PCR 

assay as described in section 3.4.1.14.3 (Detection of C. trachomatis) 
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3 RESULTS 

3.1 IIGP1 has seven homologues 

At the time this project was started two genes homologous to IIGP1, namely IIGP2 

and IIGP3, were already known. A subsequent screening of the NCBI mouse EST 

database revealed two other homologues, later named IIGP4 and IIGP5. It was 

however still unclear if the mouse genome contained more IIGP1 homologous genes 

and if these genes were clustered together or located on different chromosomes.  

In order to obtain information about the genomic structure of the IIGP1-related group 

of genes we analyzed three genomic bacterial artificial chromosome (BAC) clones, 

20620, RP23-19A12 and RP24-335D4. The 20620 BAC was previously identified as 

an IIGP1 containing clone by Doris Luedke [218]; this clone originated from a 129Sv 

mouse genomic library. The other two BAC clones were identified by search of the 

NCBI Nucleotide database, which showed that the ends of these clones contained part 

of the coding sequence (CDS) of IIGP3 and IIGP2, respectively. Both clones 

originated from C57BL/6 derived mouse genomic libraries.  

To analyze the order of the IIGP1-related genes DNA from all BAC clones was 

digested with HindIII and subjected to Southern blot analysis. The PCR amplified 

CDS of IIGP1 and its homologues were used as probes. We started with the analysis 

of the positions of IIGP1, 2 and 3 and observed that in addition to IIGP3, which was 

part of the end of RP23-19A12, this BAC clone also contained IIGP1 and 2 (Fig. 3a). 

Due to the high homology between these three genes (75-85%), the corresponding 

probes showed strong cross-hybridization. Nevertheless, every gene could be 

individually identified by the size of the corresponding band and the strength of the 

signal on the blot. The 20620 BAC clone did not contain IIGP2 and 3, the signals of 

the two corresponding probes were due to cross-hybridization to the IIGP1 band (Fig. 

3a). Therefore, we positioned IIGP1 at the end of the cluster.  The analysis of these 

two BAC clones showed that IIGP1, 2 and 3 were clustered in the mouse genome. 

The first gene in this group was IIGP3, followed by IIGP2 and IIGP1 (Fig. 3b). The 

next step was to find the positions of IIGP4 and 5 in the IIGP cluster. The alignment 

of the sequences of these two genes showed that they were 95% identical. Therefore, 

it was not possible to distinguish between them on a Southern blot and to find their 

position  
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we chose a PCR approach. We used primers, which could amplify both genes, and 

DNA from RP23-19A12 or 20620 as a template. The PCR products were sequenced 

and the analysis of the sequences showed that RP23-19A12 and 20620 contained 

IIGP4 and IIGP5, respectively (not shown). This result positioned IIGP5 at the 3’ end 

of the IIGP cluster but the position of IIGP4 relative to IIGP2 was still unknown (Fig. 

3c). To find this position we analyzed DNA from the RP24-335D4 BAC clone by 

 

 
 

Figure 3: Structure of the IIGP cluster 

DNA from RP23-19A12, 20620 (a) and RP24-335D4 (d) BAC clones was digested with HindIII 
and subjected to Southern blot analysis. PR1, 2, 3 and 4 were the probes for IIGP1, IIGP2, IIGP3 
and IIGP4, respectively. The arrows show the bands corresponding to the indicated genes. (b), (c) 
and (e) presents the subsequent steps in the elucidation of the structure of the IIGP1 cluster based 
on the information obtained from the analysis of the BAC clones. The schemes are not in scale. 
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Southern blot using IIGP4 as a probe and found that this clone contained the gene 

(Fig. 3d). We therefore concluded that IIGP4 was positioned 3’ from IIGP2 in the 

IIGP cluster.  Together the analysis of the three BAC clones revealed that the IIGP 

cluster consisted of five genes in the order depicted in Figure 3e. 

The first complete sequence of the mouse genome was published soon after the end of 

this analysis. The sequence published in the ENSEMBL database confirmed the order 

we found but also showed that there are three additional IIGP1 homologues, which 

belong to the same cluster [112].    

 

3.2 IIGP1 has two splice variants originating from two individual 

promoters 

Analysis of IIGP1 mRNA and EST (expressed sequence tags) sequences available in 

the GenBank database showed that there are at least two splice variants (Fig. 4a). 

They will be further referred to as IIGP1A and IIGP1B. Both variants encode the 

same protein, as they both contain the IIGP1 coding exon (exon 3). The two 

molecules however significantly differed in the sequence of the first exons (exon 1A 

and exon 1B). Extensive analysis of the 5’ ends of the available ESTs showed that 

there is no other exon positioned further 5’ from exon 1A and 1B. We therefore 

concluded that the IIGP1A and IIGP1B originate from different promoters. Some rare 

ESTs however contained an additional exon between exons 1 and 3 (Fig. 4b). 

Together this analysis showed that the IIGP1 gene has 4 exons (Fig. 4c), two leading 

non-coding exons (1A and 1B) with two different promoters, a non-coding and 

possibly rarely used exon 2 and a coding exon 3. This structure was later confirmed 

by analysis of the IIGP1 genomic sequence available in the ENSEMBL database 

[112]. Further analysis of the available EST sequences showed that the ESTs for 

IIGP1A seemed to be more abundant. The transcript was found in EST libraries from 

spleen, liver, kidney, skin, heart, lung and lymph node. There were only a few ESTs 

encoding IIGP1B and they originated from liver and spleen. This suggested that the 

two IIGP1 splice variants might have a differential expression profile in mouse 

tissues. 
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3.3 IIGP1A and IIGP1B have similar basal expression levels in all 

mouse organs except the liver  

In order to analyze qualitative and quantitative differences between the IIGP1A and B 

transcripts in different organs of healthy and infected mice the amount of these 

transcripts was measured by two-step Real-Time PCR. mRNA was isolated from 

mouse organs and used as a template for cDNA synthesis primed by Oligo-dT. The 

 
Figure 4: Structure of the IIGP1 gene 

Presented are alignments of mRNA sequences encoding IIGP1 splice variants. IIGP1A and IIGP1B 
(a) originate from two alternative promoters and differ in the sequence of their first exons, which 
are non-coding. In some rare mRNAs exon 1 splices to exon 2 (b), which is also non-coding. 
Shown are the borders between the exons. The beginning of the CDS (ATG) is written in gray. The 
differences between the sequences in a) are highlighted in grey. The differences in the nucleotides 
in positions 7 and 35 in b) (not highlighted) are probably due to sequencing errors. c) shows a 
scheme of the IIGP1 gene based on the alignment of available mRNA and EST sequences. Black 
blocks indicate exons, white box- CDS, black arrows- promoter regions, blue arrows- positions of 
primers used for Real-Time PCR.  
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cDNA samples were diluted 1:1 with water to reduce the concentration of MgCl2, 

which might interfere with further amplification, and used as templates for Real-Time 

PCR on LightCycler (Roche). The number of molecules in each sample was 

calculated using a standard curve generated by amplification of known concentrations 

of an IIGP1A containing plasmid. The expression of the measured transcripts was 

normalized between the different organs to the expression level of the mouse 

hypoxanthine guanine phosphoribosyl transferase 1 gene (HPRT). The expression of 

HPRT was measured for each sample and set as 1 unit; the amounts of IIGP1A and B 

were calculated for each sample based on the HPRT unit and are therefore presented 

here as relative units. 

In agreement with the already available IIGP1 protein expression profile (Jia Zeng, 

personal communication) the amount of both transcripts in all tested organs except 

brain was low but detectable (Fig. 5a). In all organs except lung and skin, the 

expression of IIGP1 seemed to be driven preferably by the IIGP1A promoter although 

in all these cases we could not detect very big differences in the amounts of the two 

transcripts. The only organ, which showed significant differences in expression level 

and ratio between IIGP1A and IIGP1B, was the liver. The expression level of IIGP1 

in the liver was exceptionally high, being approximately equal to the expression of the 

HPRT gene in this organ (Fig. 5b), while the highest level in other organs reached 

only up to 0.05 relative units (Fig. 5a). Furthermore, the high expression in the liver 

was driven exclusively by the IIGP1B promoter (Fig. 5b). This data was confirmed by 

the analysis of IIGP1A and IIGP1B expression in primary hepatocytes (Fig. 6a, b). 

The basal expression of IIGP1 in these cells was also high, although not as high as in 

the liver, and was driven by the IIGP1B promoter (Fig. 6b).  

 

3.4 The response of the IIGP1A but not IIGP1B promoter to IFNγ 

induction is very strong 

Another important difference between the two IIGP1 promoters was revealed by the 

analysis of the amount of the two transcripts in organs from mice infected with L. 

monocytogenes. In agreement with previously published data [103, 119] we observed 

upregulation of IIGP1 expression in spleen and liver of mice 24 hours after infection 

with L. monocytogenes (Fig. 5c, d). Notably, in liver the IIGP1A transcription    
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was strongly induced while the IIGP1B promoter did not respond to the induction 

(Fig. 5c). In spleen, there was a slight increase in the level of the IIGP1B transcript 

but the strong upregulation of IIGP1 in this organ was also mainly driven by the 

          
Figure 5: Expression profile of IIGP1A and IIGP1B splice variants in mouse organs 

mRNA was isolated from organs of healthy (a, b) and L. monocytogenes infected (c, d) C57BL/6 
mice and subjected to Real-Time PCR analysis. Presented are the mean values and standard 
deviations from 4 to 5 individual measurements. The amounts of both transcripts were similar in 
all organs (a) except liver, which showed exceptionally high expression driven by the IIGP1B 
promoter (b). The IIGP1A promoter exhibited strong induction by infection, while the IIGP1B 
promoter was barely inducible (c, d). SP-spleen, LN- lymph nodes, TH- thymus, LG- lung, HE- 
heart, KD- kidney, IN- intestine, TS- testis, BR- brain, MU- muscle, SK- skin 
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IIGP1A promoter (Fig. 5d). A similar induction profile was observed in infected lung 

(Fig. 5d). The analysis of the induction of IIGP1 by IFNγ and in primary hepatocytes 

also showed high inducibitiy of the IIGP1A promoter and no induction of the IIGP1B 

promoter (Fig. 6c, d). Taken together our analysis of the inducibility of the two IIGP1 

promoters indicates that they are probably regulated by different factors. The IIGP1A 

promoter is responsible for the IFNγ inducibility of the IIGP1 gene in all organs. The 

IIGP1B promoter is barely inducible by IFNγ but its high activity in the liver suggests 

that it is probably regulated by liver-specific transcription factors. This conclusion 

was later confirmed by in silico analysis of the two promoter sequences, which 

showed that the IIGP1A promoter has multiple IFNγ inducible elements (GAS and 

ISRE) [112], while the IIGP1B promoter includes only a single GAS site but also 

binding sites for liver-specific transcription factors ([112] and Jia Zeng, personal 

communication). 

 

 
Figure 6: Expression profile of IIGP1A and IIGP1B splice variants in primary hepatocytes 

Primary hepatocytes were isolated from livers of adult mice and immediately processed or 
cultured up to 24h. Cells were left untreated (a, b) or induced with 100U/ml IFNγ for 24h (c, d) 
and harvested at the indicated time points. mRNA isolated form the cells was subjected to Real-
Time PCR analysis. Presented are the mean values and standard deviations from 3 individual 
measurements. In agreement with the observed liver expression profile the basal expression of 
IGP1B was high, while IIGP1A showed low basal expression but strong IFNγ induction. Primary 
hepatocytes were kindly provided by Jia Zeng. 
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3.5 Generation of a conditional IIGP1 allele and an IIGP1-deficient 

mouse 

The IIGP1 gene is located on mouse chromosome 18 [112]. The complete CDS of the 

protein is part of exon 3. In order to generate an IIGP1 conditional allele (IIGP1FN), a 

targeting vector, which allowed placing of this coding exon between two loxP sites in 

the mouse genome had to be designed and cloned (Fig. 7A). 

The genomic DNA used for generation of the targeting vector was obtained from a 

C57BL/6 genomic BAC clone (RP23-19A12) containing the almost complete IIGP 

cluster. The genomic sequences were cloned into the vector pEasyFlox as follows. 

4kb BamHI fragment containing exon 2, 5’ UTR and polyA signal of IIGP1 was 

subcloned from the BAC and cloned blunt into the previously SalI digested and 

blunted pEasyFlox. The two arms of homology were generated by PCR from two 

subclones of the BAC. The PCR primers contained the restriction sites needed for the 

subsequent cloning of the homology arms in the targeting vector; the 3’ primer of the 

long arm of homology contained also an additional EcoRI site, which was later used 

for screening for homologous recombinant ES cell clones. The 5’ and 3’ arms of 

homology were cloned into the XhoI and NotI sites of pEasyFlox, respectively. The 

integrity of the targeting vector was proven by multiple restriction digests; all 

important elements of the vector, including the three loxP sites, IIGP1 coding 

sequence, polyA signal and all borders between the cloned genomic fragments, were 

sequenced. 

107 Bruce4 ES cells [138] derived from C57Bl/6-Thy1.1 mice were transfected with 

SfiI linearized targeting vector, cultured and selected as described in Materials and 

Methods. Out of 300 G418 and gancyclovir resistant colonies 2 were identified as 

homologous recombinants by Southern blot analysis of EcoRI digested genomic DNA 

with probe p1 (not shown). Homologous recombination in the 3’ region was 

confirmed with HindIII restriction digest and probe p2 (not shown); this digest also 

proved co-integration of the third loxP site. Additionally, random integration of the 

targeting vector was excluded by hybridization with an internal probe specific for the 

neomycin-resistance gene (probe p3; not shown). In vitro deletion of the sequence 

between the external loxP sites after incubation of the cells with membrane-permeable 

Cre protein (His-TAT-NLS-Cre) [148] showed that they are functional (not shown). 
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Figure 7: Generation of IIGP1-deficient ES cells 

(a) Insertion of the targeting vector into the IIGP1 locus by homologous recombination generates a 
targeted IIGP1 allele. The neo cassette and the exon placed between two loxP sites are excised by 
partial and complete Cre mediated deletion, respectively. Sizes of DNA fragments are indicated 
under the two-sided arrows; white boxes represent exons; Neo, neomycin resistance gene; p1,2 and 
3, Southern blot probes; EI, EcoRI restriction site; HIII, Hind III restriction site. (b), (c) 
Homologous recombination was confirmed by Southern blot analysis after EcoRI digest and 
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ES cells from both clones were injected into CB20 blastocysts by Sonja Becker 

(Center for Mouse Genetics, Cologne). As a result, mice with chimerism between 10 

and 30% were generated from both clones. Seven chimaeras were bred for germline 

transmission of the IIGP1 targeted allele (IIGP1FN) to C57BL/6 animals. The IIGP1FN 

failed to be transmitted through the germline. Therefore, a second transfection of 

Bruce4 ES cells was performed in conditions identical to the first one. Out of 350 

G418 and gancyclovir resistant colonies 3 were identified as homologous 

recombinants by Southern blot analysis of EcoRI digested genomic DNA with probe 

p1 (Fig. 7b). Probe p2 showed that one of these clones was a partial integrant (Fig. 

7c), therefore the work continued with the other two (1B10 and 3A3). Random 

integration of the targeting vector was excluded by hybridization with probe p3 (not 

shown). In vitro deletion of the sequence between the external loxP sites after 

treatment of the cells with His-TAT-NLS-Cre showed that they are functional (Fig. 

7d). Cells from these two clones were injected in CB20 blastocysts and mice with 

chimerism between 30 and 90 percent were generated. The chimeric mice were bred 

for germline transmission of the IIGP1FN allele to C57BL/6 animals. Two of the 

chimeras generated from clone 1B10 transmitted the allele in 100% of the progeny.  

In order to generate a complete IIGP1 deficient mouse the germline-transmitted 

offspring were crossed to C57BL/6 Cre-deleter mice [149]. The progeny were 

screened for deletion of IIGP1 by PCR and/or Southern blot (not shown) and the 

positive heterozygous (IIGP1+/-) animals were crossed for homozygocity. The latter 

breeding produced all expected genotypes (IIGP1-/-, IIGP1+/- and IIGP1+/+) in 

mendelian ratio. The intercross of the IIGP1-/- offspring showed that these animals 

were fertile. 

The inability of the generated IIGP1-/- mice to produce IIGP1 protein upon IFNγ 

induction was demonstrated by a Western blot analysis of lysates from primary 

embryonic fibroblasts prepared from these animals. 24 h after stimulation with 100 

hybridization with p1 (b) and HindIII digest and hybridization with p2 (c). The respective wild type 
(WT) and homologous recombinant (HR) bands and the names of the clones are indicated. 
Additional bands are due to crossreactivity of the probes to IIGP1 homologous genes. (d) 
Recombinant ES cells from clones 1B10 and 3A3 were treated with the indicated concentrations of 
His-TAT-NLS-Cre. Complete deletion after Cre treatment was confirmed by Southern blot analysis 
after HindIII restriction digest and hybridization with p2. The respective WT, HR and complete 
deletion (∆) are indicated (e) Lack of expression of IIGP1 after IFNγ induction was confirmed by 
Western blot analysis of lysates from mouse embryonic fibroblasts. The respective IIGP1 and 
calnexin (cal) bands are indicated. 
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U/ml IFNγ the IIGP1 deficient cells did not produce any detectable IIGP1 protein 

(Fig. 7e).  

IIGP1 deficient mice did not have any apparent anatomical abnormalities. An initial 

analysis of the adaptive immune system by flow cytometry showed the presence of all 

major cell types in normal numbers. Single cell suspensions of spleen and mesenteric 

and inguinal lymph nodes were stained with fluorescent antibodies and analysed on a 

FACScalibur flow cytometer. CD19 expressing B cells and TCRβ expressing T cells 

were observed in normal numbers (Fig.8a). In addition, the T cell subpopulations 

characterized by CD4 (helper T cells) and CD8 (cytotoxic T cells) were found to be 

unaltered (Fig.8b). Analysis with the markers NK1.1 and CD11c also confirmed the 

presence of normal numbers of NK cells and dendritic cells, respectively (Fig. 9). 

An IIGP1 conditional mutant mouse was generated by crossing the IIGP1FN germline 

transmitted animals to Partial Cre-deleter mice [220]. The conditional mutant animals 

were not used in this study. 

                       
Figure 8: Initial analysis of the adaptive immune system of IIGP1-deficient mice 

Single cell suspensions were prepared from spleen and lymph nodes of IIGP1-/-, IIGP1+/- and 
IIGP1+/+ mice and the expression of lineage-specific surface markers was analyzed by flow 
cytometry under exclusion of dead cells by Topro-3. The percentages of the different cell 
populations are shown in the respective quadrants. All analyzed cell populations, B- and T-cells (a), 
CD4 and CD8 positive T cells (b) were present in normal numbers. SP- spleen, LN- lymph nodes 
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3.6 Influence of IIGP1 deficiency on resistance against intracellular 

pathogens 

To examine the ability of the IIGP1 deficient mice to mount a response against 

intracellular pathogens the animals were challenged with several infectious agents 

from bacterial and protozoan origin. Resistance against all these pathogens has been 

previously proven to be crucially dependent on IFNγ (Table 1). 

 

3.6.1 IIGP1 deficiency leads to a partial loss of IFNγ-induced inhibition of 

Toxoplasma gondii growth in primary astrocytes.  

T. gondii is an obligate intracellular protozoan parasite, which causes one of the most 

common infections in humans. Infection with T. gondii is characterized by an acute 

phase in which the rapidly proliferating form (tachyzoite) disseminates throughout the 

host, followed by a chronic phase in which the slowly replicating form (bradyzoite) 

encysts and persists mainly in the central nervous system (CNS) and muscles. These 

brain cysts periodically reactivate and rupture releasing bradyzoites. In healthy 

individuals, parasite replication is limited and the infection is asymptomatic. In 

immunosuppressed patients, however, upon cyst reactivation the bradyzoites convert 

into rapidly replicating tachyzoites and cause necrotizing and often fatal encephalitis. 

                        
Figure 9: Analysis of NK cells and DCs in IIGP1-deficient mice 

Single cell suspensions were prepared from spleen of IIGP1-/-, IIGP1+/- and IIGP1+/+ mice and the 
expression of lineage-specific surface markers was analyzed by flow cytometry under exclusion of 
dead cells by Topro-3. The percentages of the different cell populations are shown in the respective 
quadrants. NK cells (a) and DCs (b) were present in normal numbers. SP- spleen 



                                                                                                                              Results 

                                                                                                                                      45 

IFNγ is critical for control of both phases of T. gondii infection [55, 150]. There 

seems to be a difference in the set of resistance mechanisms, which IFNγ induces in 

different types of cells. IFNγ-activated microglia control T. gondii growth via a NO-

mediated mechanism [151], whereas in murine astrocytes restriction of parasite 

growth is dependent on the p47 GTPase IGTP [154]. 

To study the influence of IIGP1 deficiency on the IFNγ-induced protection against T. 

gondii we analyzed the parasite growth in primary astrocytes prepared from brains of 

neonatal IIGP1-/- and IIGP1+/+ littermate mice. The astrocytes were stimulated with 

different concentrations of IFNγ (1, 10 or 100 U/ml) for 24 h; control cells were left 

untreated. Cells were then infected with T. gondii ME49 tachyzoites at different 

multiplicity of infection (MOI) (0.1, 0.3, 1 or 3) for 24 h. Cultures were labeled with 

[3H]-uracil (1 µCi/well Hartmann Analytical) for further 24 h and the amount of 

incorporated uracil, directly corresponding to the parasite growth [147], was 

           
Figure 10: IIGP1 deficient astrocytes show a partial loss of IFNγ-induced inhibition of Toxoplasma 
gondii growth  
Primary astrocytes were prepared from brains of neonatal IIGP1-/- and IIGP1+/+ littermate mice, 
stimulated with the indicated concentrations of IFNγ for 24 h and infected with T. gondii ME49 
tachyzoites at MOI 3 (a), 1 (b), 0.3 (c) or 0.1 (d) for total of 48h. Parasite growth was monitored by 
uracil incorporation assay. The higher parasite growth at MOI 0.1 and 0.3 indicated the reduced 
ability of IIGP1-/- astrocytes to inhibit intracellular T. gondii (P values: ** 0.0015, *** 0.0001 by 
unpaired Student’s T-test). Results are representative of 3 experiments. MOI, multiplicity of 
infection 
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determined by liquid scintillation counting. The results are presented as percentages 

of T. gondii growth calculated separately for each set of conditions (MOI and 

genotype) with the radioactive signal measured in non-induced cells set to 100%. The 

initial experiment showed that an infection at MOI 3 could not be controlled even by 

IFNγ-stimulated IIGP1+/+ astrocytes (Fig. 10a) while at MOI 1 or lower an IFNγ-

induced anti-parasitic effect was detectable in IIGP1-/- and IIGP1+/+ cells (Fig. 10b). 

At MOI 0.1 and 0.3 parasite growth was higher in the IIGP1-/- astrocytes compared to 

the one in IIGP1+/+ control cells (Fig. 10c,d) indicating a reduced ability of IIGP1-/- 

astrocytes to inhibit intracellular T. gondii. Although only partial, the loss of 

resistance in the IIGP1-/- cells was significant, as controlled by unpaired Student’s T-

test. The effect of IIGP1 deficiency on inhibitory capacity of astrocytes is smaller than 

the one reported for IGTP [154]. This suggests that IIGP1 might be partially 

redundant to other IFNγ-inducible resistance factors, at least in the inhibition of T. 

gondii growth by murine astrocytes.  

 

3.6.2 The accumulation of other p47 GTPases at the membrane of T. gondii 

parasitophorous vacuoles does not depend on IIGP1 

T. gondii actively invades cells [155] and replicates in a parasitophorous vacuole (PV) 

formed by invagination of the host cell plasma membrane during entry [156]. During 

the formation of the PV, most of the host proteins are excluded from its membrane 

and the PV escapes fusion with the endocytic compartment [157, 158]. After entry of 

the parasite into the host cell IIGP1 rapidly translocates to the PV and massively 

accumulates around it [134]. A similar behavior has also been observed for other 

members of the p47 GTPase family [134]. 

In order to explore possible interactions of IIGP1 with other p47 GTPases at the PV 

we analyzed the localization of TGTP1 and IGTP in T. gondii infected IIGP1-/- and 

IIGP1+/+ astrocytes. Cells were stimulated with 100 U/ml IFNγ for 24 hours and 

infected with T. gondii ME49 tachyzoites at MOI 10 for 2 hours. The cells were then 

extensively washed with PBS to remove extracellular parasites, fixed with 3 % PFA, 

and stained with the appropriate antibodies (Table 4). Vacuoles containing 

intracellular parasites were visualized by indirect immunostaining for T. gondii 

GRA7, a 29kDa predicted transmembrane protein, which is released in the PV by 

parasites shortly after cell invasion and associates with the PV membrane (PVM) 

[159]. The nuclei of host cells and parasites were visualized by DAPI staining. In 
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agreement with previous data [134], TGTP1 massively accumulated around the PV in 

IIGP1+/+ cells (Fig. 11d). Similar association of TGTP1 with the PV was observed in 

IIGP1-/- cells (Fig. 11b). The localization of IGTP in IIGP1-/- astrocytes (Fig. 11a) was 

also indistinguishable from that in IIGP1+/+ cells (Fig. 11c). Preliminary data shows 

that GTPI and IRG-47 also associate with the PV in IIGP1-/- astrocytes in a manner 

similar to the one in IIGP1+/+ cells but this has to reconfirmed. Together these data 

indicate that IIGP1 is not required for the accumulation of at least some other p47 

GTPases at the PV. 

 

3.6.3 The effect of IIGP1 deficiency on susceptibility of mice to T. gondii is not 

yet clear 

Groups of 4 to 7 IIGP1-/-, IIGP1+/- and IIGP1+/+ littermate mice were infected with T. 

gondii bradyzoites freshly prepared from cysts isolated from the brains of chronically 

infected CD1 mice. Two avirulent strains of T. gondii (ME49 and DX) were used. 

Each animal was infected i.p. with bradyzoites prepared from 5 cysts of strain DX or 

                    
Figure 11: The association of IGTP and TGTP1 with T. gondii PV in IIGP1-/- astrocytes is 
indistinguishable from that in IIGP1+/+ cells 

Astrocytes were stimulated with 100 U/ml IFNγ for 24 hours and infected with T. gondii ME49 
tachyzoites at MOI 10 for 2 hours. The cells were then extensively washed with PBS to remove 
extracellular parasites, fixed with 3 % PFA, and stained with the appropriate antibodies. The 
localization of IGTP in IIGP1-/- astrocytes (a) was indistinguishable from that in IIGP1+/+ cells 
(c). The association of TGTP1 with the PV in IIGP1-/- cells (b) was also similar to that in 
IIGP1+/+ astrocytes. 
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20 cysts of strain ME49. The mice were observed daily for disease symptoms and 

their weight was measured every 2-3 days. The results obtained were similar 

regardless of the T. gondii strain used for infection. In both experiments all infected 

IIGP1+/- and IIGP1+/+ animals survived the acute phase of the infection, while one 

mouse from the IIGP1-/- group died in each experiment, at day 11 during the DX 

infection and day 14 after infection with ME49 parasites. During the chronic phase of 

infection, all animals lost weight comparably and around week 7 p.i., they all 

developed neurological symptoms (ataxia, deviation of the head). During infection 

with ME49 one IIGP1+/- mouse died at day 54 p.i., while all animals infected with 

strain DX survived until the end of week 8 p.i. At that time point (day 56 p.i.), all 

surviving mice were sacrificed. T. gondii cysts were isolated from the brains and their 

number was counted. Following infection with strain DX, the brain parasite load was 

similar in IIGP1-/-, IIGP1+/- and IIGP1+/+ mice (Fig. 12a). After infection with strain 

ME49 one IIGP1-/- and one IIGP1+/- animals had a very high parasitic load in the 

brain, while the cyst numbers in the remaining animals were comparable to these of 

IIGP1+/+ mice (Fig. 12b). The results from these in vivo infection experiments are not 

yet conclusive. The possibility that a higher T. gondii growth in IIGP1-/- astrocytes 

may lead to a higher mortality rate of IIGP1-/- compared to IIGP1+/+ mice cannot be 

excluded. The expected effect on survival is, however, relatively small. Therefore, the 

infection experiments have to be conducted on a larger scale.  

          
Figure 12: T. gondii load in brains of infected mice 

Mice were infected with freshly prepared T. gondii strain DX (a) or ME49 (b) bradyzoites. At day 
56 p.i., all animals were sacrificed., T. gondii cysts were isolated from the brains and their number 
was counted. After infection with strain DX, the brain parasite load was similar in IIGP1-/-, IIGP1+/- 
and IIGP1+/+ mice. Following infection with strain ME49 one IIGP1-/- and one IIGP1+/- animals had 
a very high parasitic load in the brain, while the cyst numbers in the remaining animals were 
comparable to these of IIGP1+/+ mice.  
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3.6.4 IIGP1 deficient mice have higher incidence of development of cerebral 

malaria 

Malaria is caused by infection with different members of the Plasmodium genus. 

These protozoan parasites have a very complex life cycle [160], which includes 

diverse stages infecting different tissues of the host. The disease has two stages, pre-

erythrocytic (sporozoite/liver) and erythrocytic. During the pre-erythrocytic stage, the 

Plasmodium spp. sporozoites invade the liver and amplify in hepatocytes producing 

merozoites. At the end of this stage, the merozoites leave the liver and infect 

erythrocytes thus starting the erythrocyte stage, which is responsible for all symptoms 

and pathology of malaria. The immune response against malaria is extremely complex 

and it is apparent that different components of the immune system operate at the pre-

erythrocytic and erythrocytic stages of the parasite. IFNγ secreted by CD8+ T cells 

and NK cells and inducing NO production in hepatocytes mediates the former [161, 

162].  The latter varies in different hosts infected with different parasites but is largely 

dependent on protective antibodies, NO and γδT cells [163, 162, 164]. 

In many mouse strains, malaria progresses into a brain vascular pathology known as 

cerebral malaria (CM). CM is characterized by sequestration of parasitized red blood 

cells by brain microvascular endothelial cells, which leads to vessel obstruction and 

hypoxia; the disease is also accompanied by vessel disruption and brain hemorrhages 

[165, 166]. Host-derived inflammatory cytokines play a key role in the pathogenesis 

of CM in both mice and humans [164, 167].  

To study the influence of the IIGP1 deficiency on development of cerebral malaria we 

infected mice with either sporozoites of Plasmodium berghei strain ANKA or blood 

of mice previously infected with this parasite. The infection with sporozoites mimics 

the natural route of transmission of the disease. The injected sporozoites infect 

hepatocytes; in mice, the liver stage of malaria continues around two days, after which 

the merozoites egress the liver and start the blood stage. Some of the infected mice 

develop neurological disease symptoms of cerebral malaria (deviation of the head, 

ataxia and convulsions) at day 8-9 p.i.; the sick animals die fast, usually in 1 or 2 days 

after the first symptoms. The period of development of cerebral malaria continues 

until day 14 p.i. The animals, which survive this period, do not develop cerebral 

malaria anymore. They die between day 25- 30 p.i. from anemia caused by very high 

blood parasitemia.  When mice are infected with parasitized blood all manifestations 

of the disease start two days later in comparison to the liver stage infection. In the 



                                                                                                                              Results 

                                                                                                                                      50 

presented liver stage infection experiment groups of 7 to 11 IIGP1-/-, IIGP1+/- and 

IIGP1+/+ littermate mice were infected by injection of 500 µl PBS containing 50 

sporozoites in the tail vein; the sporozoites were freshly prepared from the salivary 

glands of infected Anopheles stephensi mosquitoes. In the presented blood stage 

infection experiments groups of 10 to 13 IIGP1-/-, IIGP1+/- and IIGP1+/+ littermate 

mice were infected with 50 000 parasitized erythrocytes. The animals were observed 

daily for symptoms of cerebral malaria and time of death. The three groups of mice 

infected with parasitized blood showed similar survival rates (Fig. 13a). The mortality 

of the IIGP1-/- animals was slightly higher but the closer analysis of the data with 

Kaplan-Meier test showed that this difference is not significant (p=0.77). The 

sporozoite infection, however, revealed a 30% higher mortality of IIGP1-/- mice 

compared to IIGP1+/- and IIGP1+/+ control animals (Fig. 13b). The statistical analysis 

of this data showed that the difference in survival between the IIGP1-/- and IIGP1+/+ in 

this experiment had a high tendency to be significant (p<0.1 by Kaplan-Meier test) 

but in order to confirm the result the experiment had to be conducted on a larger scale. 

 

 

 

 

Figure 13: Survival of mice infected with 
the P. berghei strain ANKA 
Mice were infected by i.v. injection of 
50 000 parasitized erythrocytes (a) or 50 
sporozoites (b, c). The difference in 
mortality rate after blood infection was 
not significant (p=77) (a). The sporozoite 
infection (b) revealed 30% difference in 
survival with tendency to be significant 
(p<0.1). An experiment with a larger 
group of animals showed similar 
difference in mortality with high 
significance (p=0.01).  
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Therefore, we challenged groups of 25 IIGP1-/- and IIGP1+/+ mice with the same 

sporozoite dose (50 sporozoites per mouse) and monitored their survival. The 

difference in mortality rate detected in this experiment was in the same range, 35% 

(Fig. 13c) and the statistical analysis showed that the result is highly significant 

(p=0.01 by Kaplan-Meier test). Together these experiments indicate that IIGP1 

contributes to host defense against P. berghei.  

 

3.6.5 Resistance of C57BL/6 mice against Leishmania major is not affected by 

the lack of IIGP1 

L. major is a protozoan pathogen causing cutaneous disease in humans and rodents, 

which is transmitted by sand flies and characterized by development of localized skin 

lesions that eventually heal. It is well established that inbred mouse strains are 

genetically predisposed for susceptibility or resistance to L. major and the 

predisposition correlates with the dominance of TH1 or TH2 responses in the 

respective strains. TH1 cells are required for protection and differentiate naturally in 

genetically resistant strains of mice, such as C57BL/6, whereas TH2 cells cause 

disease progression and differentiate naturally in genetically susceptible mouse 

strains, such as BALB/c [168, 169]. IFNγ secreted by TH1 cells is the leading factor 

generating protective immunity against L. major [58, 59].  

To test the potential effect of IIGP1 deficiency on resistance to L. major groups of 4 

IIGP1-/-, IIGP1+/- and IIGP1+/+ littermate mice were challenged with infective-stage 

(metacyclic) promastigotes of L. major clone V1 (MHOM/IL/80/Friedlin). The mice 

were infected by injection of 10 µl of PBS containing the parasites into the dorsal 

dermis of the left ears. Lesion volumes were measured weekly in three dimensions 

using a caliper.  

In the presented experiments two infectious doses were used, a high dose (2x105) and 

a low dose (1x103). Most studies on the host response against L. major employ high 

doses of promastygotes because in such a set-up the lesions appear and resolve very 

fast. In the low dose model, the disease develops slower. It has an initial silent phase 

characterized by increasing load of parasites in the dermis but no histopathological 

changes; after the end of this phase, around week 4 p.i., the lesions develop. The 

advantage of the low dose model is that it is much closer to the natural transmission of 

the disease. In the experiments presented here the development of the lesions in the 

IIGP1-/- mice was not significantly different from the one in the control animals for 
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both infectious doses (Fig. 13). The lesions appeared at the same time, developed to 

the same maximal size and healed in all infected animals regardless of their genotype. 

 

 

3.6.6 IIGP1 deficient mice are not susceptible to infection with Listeria 

monocytogenes 

L. monocytogenes is a bacterial pathogen with a very broad host range. It causes food 

born disease, which is particularly dangerous for immunocompromised individuals 

and pregnant women. Early resistance to infection with L. monocytogenes is attributed 

to the rapid triggering of innate immune responses and especially IFNγ production 

[170, 171]. 

To analyze the effect of IIGP1 deficiency on host response against L. monocytogenes 

we infected IIGP1-/- and IIGP1+/+ littermate mice by i.p. injection of 103 or 104 CFU 

of L. monocytogenes, strain EDG, serotype 1/2a. Following infection mice were 

monitored daily for disease symptoms and time of death. The infectious dose of 104, 

which equals to LD50 of L. monocytogenes strain EDG in C57BL/6 mice, showed 

similar mortality rate in both groups of animals (Fig. 15). All mice infected with 103 

bacteria (n=8 for both genotypes) survived the infection. At day 3 p.i., four mice from 

each genotype infected with 103 bacteria were sacrificed and specimens of liver and 

spleen were examined for bacterial titers. Organs were homogenized in 0.1% Triton 

X100 and 10-fold serial dilutions from the homogenates were plated on blood-agar 

plates. 48 h later the CFU were counted to determine the bacterial load, which was 

 
Figure 14: Disease onset in L. major infected mice 

Groups of 4 IIGP1-/-, IIGP1+/- and IIGP1+/+ littermate mice were infected with 2x105 (a) or 103 (b) 
metacyclic promastigotes of L. major clone V1 (MHOM/IL/80/Friedlin). Lesion volumes were 
measured weekly in three dimensions using a caliper. Presented are the mean volumes with 
standard errors. There was no significant difference in disease outcome between the groups of 
experimental animals. 
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presented as CFU/g organ. The two groups of animals had similar bacterial burden in 

spleen, 20 ± 12.3x103 and 31.5 ± 11.6x103 CFU/g (mean ± standard deviation) for 

IIGP1+/+ and IIGP1-/-, respectively. The amount of bacteria in the liver was under the 

detection limit (< 2x102) and the infection in this organ at day 3 p.i. was probably 

already cleared in all mice. Thus, the lack of IIGP1 does not affect resistance of mice 

against infection with L. monocytogenes. 

 

 

3.6.7 IIGP1 deficient mice are resistant to infection with Anaplasma 

phagocytophilum 

Anaplasma phagocytophilum is an obligate intracellular bacterium that is transmitted 

by ticks. It belongs to the order Rickettsiales and is recognized as the causative agent 

of human granulocytic anaplasmosis (HGA) [172]. Unique feature of A. 

phagocytophilum is its ability to replicate within the hostile environment of its host 

cell, the neutrophil. Resistance to A. phagocytophilum in mice is dependent on IFNγ 

[173, 174]. 

Groups of nine IIGP1-/- and C57BL/6 control mice were infected by i.p. injection of 

100 µl blood from C.B17 SCID mice infected with A. phagocytophilum strain MRK; 

before the injection the infected blood was diluted 1:5 in PBS. Mice were sacrificed at 

day 3, 7 and 14 after infection and EDTA-anticoagulated blood, spleen and lung were 

collected from each animal. DNA was extracted from all samples and A. 

phagocytophilum was detected by a quantitative PCR assay. The amount of bacterial 

DNA was normalized to the amount of mouse genomic DNA in the probes by 

amplifying the mouse glucose-6-phosphate dehydrogenase gene (G6PDH). The 

 

Figure 15: Survival of mice infected 
with L. monocytogenes 

Mice were infected by i.p. injection 
of 104 CFU of L. monocytogenes, 
strain EDG, serotype 1/2a. The 
infectious dose equals to LD50 for 
strain EDG in C57BL/6 mice. 
Animals were monitored daily for 
disease symptoms and time of death. 
The two experimental groups 
showed similar mortality rate. 
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results are presented in Fig. 16 There was no significant difference in the bacterial 

load between the IIGP1-/- and the control animals at any of the analyzed time points 

and at day 14 p.i. all mice had cleared the infection. Therefore, we concluded that 

IIGP1 deficiency does not influence resistance of mice to A. phagocytophilum. 

 

 

 

3.6.8 IIGP1 deficient mice are not susceptible to infection with Chlamydia 

trachomatis 

C. trachomatis is an obligate intracellular bacterium that causes sexually transmitted 

diseases in humans. Infections with different serovars of the bacterium can lead to 

infectious blindness and infertility [175]. Resistance against Chlamydia depends on 

IFNγ [43, 44]. The protective mechanisms of IFNγ are not completely understood but 

it is well established that this cytokine controls the in vitro growth of Chlamydia by 

inducing the production of IDO and iNOS [176, 177]. However, IFNγ also plays a 

role in pathogenesis of Chlamydia by inducing persistence [40]. 

Groups of four IIGP1-/- and control mice were infected by i.v.injection of 107 CFU of 

C. trachomatis L2. The control group consisted of two IIGP1+/- and two 

 

         
Figure 16: A. phagocytophilum load in organs of infected mice 

Mice were infected by i.p. injection of 100 µl A. phagocytophilum strain MRK infected blood. 
and sacrificed at the indicated time points. DNA was extracted from blood, spleen and lung and 
A. phagocytophilum was detected by a quantitative PCR assay. The amount of bacterial DNA 
was normalized to the amount of mouse genomic DNA in the probes by amplifying the 
mG6PDH. Presented are the mean values and standard deviations from three animals. There is 
no significant difference in the bacterial load between both experimental groups of animals at 
any of the analyzed time points. 
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IIGP1+/+animals. Mice were sacrificed at 29h p.i. and spleens were isolated form each 

animal. The amount of C. trachomatis in the samples was measured by Real-Time 

PCR assay by amplifying the C. trachomatis  16s gene. The amount of bacterial DNA 

was normalized to the amount of mouse genomic DNA in the probes by amplifying 

the mGAPDH gene. There was no significant difference in the bacterial load between 

the two experimental groups (Fig. 17). Thus, IIGP1 deficiency does not influence 

resistance of mice to C. trachomatis. 

 

 

 

 
 

Figure 17: C. trachomatis load in 
spleens of infected mice 
Mice were infected with 107 CFU 
of C. trachomatis L2 by i.v. 
injection. 29h p.i. spleens were 
isolated from each animal and the 
amount of C. trachomatis was 
measured by Real-Time PCR 
assay. The amount of bacterial 
DNA was normalized to the 
amount of mouse genomic DNA 
in the probes by amplifying the 
mG6PDH gene. No significant 
difference in the bacterial load 
between the two experimental 
groups was detected. 
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4 DISCUSSION 
 
This thesis describes the initial attempt to reveal the role of the p47 GTPase IIGP1 in 

host defense against intracellular pathogens. The pathogens included in this study 

have developed different strategies of evading host defense mechanisms and surviving 

in the hostile environment of their host cell. The data presented will be discussed in 

the context of our current knowledge about these pathogens and the effect of the p47 

GTPases on their survival in host cells.  

The resistance against all pathogens included in this analysis has been shown to be 

critically dependent on IFNγ (Table 1). Our choice of pathogens was influenced 

initially by the high basal expression and inducibility of IIGP1 in the liver (Fig. 5b, c). 

The importance of the liver for innate and adaptive immunity is becoming 

increasingly appreciated [178, 179]. This organ is constantly exposed to a variety of 

pathogens, which enter the body through the gastrointestinal tract and is an important 

barrier against their further dissemination. A paradigmatic example for such a 

pathogen is the bacterium L. monocytogenes. The liver is also an initial homing organ 

for Plasmodium spp. sporozoites and provides a niche in which these pathogens 

replicate before spreading into the blood. The high liver basal expression of IIGP1, 

which we observed indicated that IIGP1 might provide resistance against liver-

specific pathogens at a very early time point, probably even before other IFNγ-

inducible factors are produced. The group of pathogens analyzed was later enlarged 

by including other intracellular pathogens from protozoan and bacterial origin and the 

data obtained formed our current view on the role of IIGP1 in host resistance. 

 

4.1 IIGP1 is required for resistance against some intracellular 

protozoan parasites 

In this study, we analyzed the effect of IIGP1 deficiency on mouse resistance against 

three intracellular protozoan parasites. Toxoplasma gondii and Plasmodium berghei 

belong to the same phylum, Apicomplexa, and have strikingly similar mechanisms of 

cell invasion and intracellular survival. The phylogenetically distant relative of the 

apicomplexans Leishmania major has a significantly different intracellular lifestyle. 
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4.1.1 IIGP1 and Toxoplasma  

T. gondii is an obligate intracellular protozoan parasite with an extremely large host 

range. It can infect virtually all nucleated cells from a variety of vertebrate hosts 

[180]. The parasite utilizes a distinct form of actin/myosin-dependent movement, 

known as gliding motility, which facilitates dissemination throughout the host and 

active penetration of target cells [155, 181]. The process of cell invasion is very rapid 

(20-30 s) and does not involve the endocytic machinery of the host cell; it employs the 

actin cytoskeleton of the parasite but not of the host [182, 183]. The invasion process 

is facilitated by proteins secreted from specialized apical secretory organelles of the 

parasite, known as rhoptries and micronemes. During entry T. gondii squeezes 

through a moving junction, which is formed between the host cell plasma membrane 

and the parasite and controls internalization of host cell membrane components into 

the forming parasitophorous vacuole (PV) [157, 184]. The lipid components of the PV 

membrane (PVM) originate from the host cell plasma membrane (PM) [156] and flow 

freely past the moving junction during the formation of the PV [157]. In contrast, the 

moving junction selectively excludes many transmembrane (TM) proteins by a 

mechanism that is still unknown but depends on their membrane anchoring [157]. 

Subsequently, the PVM is extensively modified by secreted parasite proteins [185]. 

These remodeling processes render the PV completely non-fusogenic; it resists fusion 

with both endocytic and exocytic host cell vesicles. After invasion, the formed PV 

tightly associates with host cell endoplasmic reticulum and mitochondria [186]. The 

PV contains pores, which allow small molecules to diffuse through the membrane 

[187]. The PV thus provides T. gondii with an intracellular niche in which the parasite 

is supplied with nutrients and can multiply without being endangered by the host cell 

lysosomal compartment. 

The p47 GTPases proved to be potent factors in host defense against T. gondii 

infection. All three proteins analyzed so far, LRG-47, IGTP and IRG-47 play distinct 

and non-redundant roles in resistance against this pathogen [121, 122]. IGTP and 

LRG-47 are required for resistance during the acute phase of infection, while IRG-47 

is needed during the chronic phase. Furthermore, for normal resistance IGTP 

expression is required in both haematopoetic and non-haematopoetic cells [188] and 

the protein was shown to be an essential mediator of IFNγ-induced inhibition of T. 

gondii growth in astrocytes [154]. The same effect was observed in IGTP-deficient 
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macrophages [111]. However, the mechanisms through which these three proteins 

promote the IFNγ-induced T. gondii clearance are still unknown. 

IIGP1 shows a markedly dynamic behavior in T. gondii infected astrocytes. In IFNγ-

induced non-infected cells, the protein associates with the ER membrane [124]. Upon 

T. gondii infection, IIGP1 rapidly translocates to the PV and accumulates around it 

[134]. Already at 15 min p.i., IIGP1 associates with approximately 30% of the PVs; 

by 2 h p.i., this number increases to 75% and then begins to drop. The dynamic 

association of IIGP1 with the PV correlates with maturation of the PVs, disintegration 

of the PVM and damage of the parasite PM [134]. Furthermore, overexpression of 

IIGP1 leads to accelerated maturation and disintegration of the PVs, while the 

expression of a dominant negative mutant of IIGP1 (K82A) partially inhibits the T. 

gondii killing by IFNγ stimulated astrocytes [134]. All these observations pointed to a 

potential role of IIGP1 in IFNγ-dependent T. gondii in astrocytes. 

Our analysis of T. gondii growth in IFNγ-induced IIGP1-/- astrocytes did indeed show 

a partial loss of resistance to the parasite (Fig. 10c, d). The effect of IIGP1 deficiency 

on the inhibitory capacity of astrocytes differed from the one showed for IGTP [154]. 

This study reported an uncontrollable growth of T. gondii in IFNγ stimulated IGTP-/- 

astrocytes at MOI 5. In our system we could not use such a high MOI because already 

at MOI 3 the infection could not be controlled even by the IFNγ-induced IIGP1+/+ 

cells. This is possibly due to the different genetic background of the astrocytes; we 

used C57BL/6 cells, while the astrocytes used by Halonen et al. were derived from 

mice with a mixed C57BL/6x129Sv background. We observed a loss of resistance to 

T. gondii at lower MOI and the effect was smaller than the one reported for IGTP. 

The latter suggests that IIGP1 might be partially redundant with other IFNγ-inducible 

resistant factors at least in the inhibition of T. gondii growth in mouse astrocytes. In 

addition to IIGP1, four other p47 GTPases associate with T. gondii PVs after 

infection; this association is very pronounced for TGTP1, GTPI and IRG47 but not so 

strong for IGTP ([134] and Fig. 11c, d). Furthermore, here we showed that TGTP1 

and IGTP accumulated at the PV in IIGP1-/- astrocytes in a manner at least 

qualitatively indistinguishable from the one in IIGP1+/+ cells (Fig. 11a, b). Thus, their 

association with the PV does not depend on IIGP1. Preliminary data suggests a 

similar PV associaton dynamics of GTPI and IRG-47 in IIGP1-/- and IIGP1+/+ 

astrocytes. It is therefore possible that one or more of these p47 GTPases could at 
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least partly take over the defense function of IIGP1 and compensate the effect of the 

lack of this molecule in the IIGP1-/- astrocytes.  

It is still unclear whether IIGP1 recognizes the PVs directly or is recruited to the PVM 

by another factor. It is however evident that the recruitment of IIGP1 to the PV is 

stimulated by active invasion because the protein does not associate with phagosomes 

formed upon internalization of heat-killed parasites [134]. The mechanism used by 

IIGP1 to promote disintegration of the PV is still unknown but there are already hints 

that at least some of the biochemical properties of the protein could be critical for this 

process. Intact GTP-binding is important for both association with the PV and 

subsequent disruption of this vacuole because the IIGP1K82A dominant negative 

mutant, which is deficient in GTP-binding, does not translocate to the PV and 

partially inhibits T. gondii killing in astrocytes [134]. It has been suggested that the N-

terminal myristoylation of IIGP1 could facilitate disruption of the PVM by 

introducing positive curvature into this membrane and thus causing its vesiculation 

[134]. Future experiments employing transfection of IIGP1 mutants into IIGP1-

deficient cells will show whether other properties of the protein such as GTP 

hydrolysis and GTP-dependant oligomerization also play a role in the process of 

IIGP1-promoted PV disintegration. 

The results from the T. gondii infections in mice are not yet conclusive. All IIGP1+/+ 

animals infected with both T. gondii avirulent strains used in the presented 

experiments (DX and Me49) survived until week 8 p.i., while one IIGP1-/- mouse died 

in each experiment during the acute phase. The brain cyst burden at the end of week 8 

p.i. was increased in only one IIGP1-/- and one IIGP1+/- mouse, while the remaining 

animals had similar cyst numbers (Fig. 12). These results are difficult to interpret 

because the number of animals used in the two experiments was not big enough to 

allow registering of small effects on parasite burden or mouse survival. An 

experiment in a larger scale might show an increased cyst burden in some of the 

IIGP1-/- mice, which would be in agreement with the promoted growth of T. gondii 

tachyzoites in IIGP1-/- astrocytes. Such an increased parasite burden might in turn lead 

to increased mortality of the IIGP1-/- animals at a time point later than the end of week 

8 p.i. The latter however indicates that we might have to infect IIGP1 deficient 

animals from a different genetic background. C57BL/6 mice are generally susceptible 

to infection with T. gondii. These animals start loosing weight during the chronic 

phase of infection and die earlier than other mouse strains, usually around week 8 to 9 
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p.i. It is therefore possible that the small difference in survival, which we expect, 

would be undetectable in the C57BL/6 strain. 

  

4.1.2 IIGP1 and Plasmodium 

The causative agents of malaria, the Plasmodium spp. parasites, also belong to the 

phylum Apicomplexa. Despite having a host range restricted to only two types of host 

cells, hepatocytes and erythrocytes, the Plasmodium parasites share the basic invasion 

features and intracellular life-style with Toxoplasma. Like Toxoplasma, Plasmodium 

extensively migrates through the host utilizing an actin-dependent gliding motility 

[189]. Host cell invasion is also an active process; however, during parasite entry into 

erythrocytes, additional signaling through host β2-adenergic receptors is required for 

successful penetration [190]. During entry into hepatocytes and erythrocytes, the two 

invasive forms of Plasmodium (sporozoites and merozoites) form PVs. The process of 

PV formation is very similar to that of Toxoplasma [185]. It starts with the formation 

of a moving junction and is accompanied by selective exclusion of most host cell TM 

proteins [191, 192], while the PVM lipids are largely derived from the PM of the host 

cell [193, 194]. However, the biological functions of the PVM differ in hepatocytes 

and erythrocytes due to the specific features of these two types of host cells. 

Hepatocytes are nucleated cells with complete biosynthetic machinery and therefore 

the function of the PVM in these cells is very similar to that of Toxoplasma PVM; it 

resists fusion to endosomes and lysosomes and provides the parasite with essential 

nutrients. Erythrocytes however lack a nucleus and are incapable of protein, nucleic 

acid or lipid synthesis, as well as endocytosis. Therefore, many molecules essential 

for the parasite development have to be obtained from outside the host cell. In 

infected erythrocytes, the PVM extends into the host cytosol as a network of so-called 

tubovesicular membranes (TVM). The TVM is believed to be an intracellular 

transport system, which forms junctions with the erythrocyte membrane and facilitates 

import of specific nutrients [195].  

The similarity in the intracellular life-style of the two apicomplexan parasites used in 

this study suggests that the model of IIGP1-dependent killing of Toxoplasma in 

astrocytes [134] could also be relevant for defense against at least the hepatocyte 

invasive stage of Plasmodium. IIGP1 has high basal expression in primary 

hepatocytes (Fig. 6b) and accumulates at the PVs after infection of these cells with T. 

gondii (Jia Zeng, personal communication). It is therefore possible that in hepatocytes 
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IIGP1 associates also with the PVs formed during the invasion of Plasmodium 

sporozoites and facilitates their disintegration and the killing of the parasites. Such a 

model underlines the possibility for an important role of the basal expression of IIGP1 

in early defense against malaria. The sporozoites, which enter the body with the 

mosquito bite, are transported with the blood stream and rapidly reach the liver, 

within 2 min after the bite. Once in the liver, the parasites breach through a few 

hepatocytes and stop in a final cell, which they enter by forming a PV [196]. IIGP1, 

which is already synthesized in these cells, might facilitate the killing of the parasites 

very early after invasion, before the IFNγ response is stimulated and fully functional. 

If IIGP1 is indeed required for the killing of the sporozoites in the liver, then the lack 

of this protein in the IIGP1 deficient animals could lead to increased survival of the 

sporozoites in this organ followed by a release of more merozoites in the blood after 

the end of the liver stage and a higher blood parasitemia. This might be the reason for 

the observed higher incidence of cerebral malaria (CM) in these animals (Fig. 13b, c) 

because the risk of developing CM correlates with the level of parasitemia, at least in 

humans [197]. The possible role of IIGP1 in defense of hepatocytes against 

sporozoites remains to be explored.  

At the present stage of this analysis, we cannot exclude the possibility that IIGP1 

deficiency could also influence the blood stage of malaria. The difference in survival 

of IIGP1-/- and IIGP1+/+ animals, which we observed after erythrocyte infection is 

small (Fig. 13a). However, an experiment in a larger scale might render this 

difference significant. The IIGP1-dependent disintegration of the PV as discussed 

above is not applicable for the malaria blood stage because the infected erythrocytes 

are not capable of protein synthesis. However, the infected erythrocytes move with 

the blood stream and pass through the spleen, which was shown to be very important 

for defense against the disease [198]. The spleen plays a major role in generation of 

antimalarial immunity but also is largely responsible for removal of parasitized 

erythrocytes from the blood probably through the resident macrophages of the red 

pulp [199, 200]. IIGP1 synthesized in the spleen might facilitate the process of 

parasite clearance and thus influence the blood stage of malaria. Conversely, the lack 

of IIGP1 then might lead to decreased parasite clearance, higher parasitemia and 

increased incidence of CM. 

Our hypothesis for increased parasite survival leading to higher parasitemia is only 

one possible explanation for the observed higher mortality of IIGP1-deficient animals. 
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Alternatively, IIGP1 deficiency might influence the vascular pathology and brain 

inflammation associated with development of CM. Pathogenesis of CM is a very 

complex process the underlying mechanisms of which despite extensive analysis are 

still largely unclear [164]. It is however evident that the brain vascular pathology 

associated with CM is mediated by pro-inflammatory cytokines, mainly TNF family 

members and IFNγ. So far, we did not analyze the effect of IIGP1 deficiency on the 

brain cytokine profile following infection. However, the existence of such an effect 

seems unlikely because cytokine production is not affected in the available p47 

GTPase-deficient mice. Nevertheless, the development of CM-associated brain 

pathology in IIGP1 deficient mice remains to be studied in detail. 

 

4.1.3 IIGP1 and Leishmania 

Leishmania is also a protozoan parasite but the mechanisms it utilizes to infect and 

exploit host cells are very different from the ones used by the apicomplexians. 

Leishmania is not capable of entering cells actively and therefore infects exclusively 

professional phagocytes, mainly macrophages, with the exception of fibroblasts, DCs 

and neutrophils [201]. The parasites are taken up by macrophages via conventional 

receptor-mediated phagocytosis facilitated by the opsonization of the parasites [202, 

203]. In contrast to the apicomplexian parasites Leshmania amastigotes do not modify 

the phagosome and it rapidly (within 30 minutes) fuses with late endosomes or 

lysosomes [204] thus generating a PV that maintains low pH and intact hydrolytic 

activity. Promastigotes, which are considered more sensitive to acid, seem to delay 

phagosomal maturation until they have differentiated into amastigotes; when this 

transformation has occured, the block on phagosomal maturation is lifted and the 

amastigotes multiply in the formed acidic PV.  

Our experiments showed similar disease onset in all L. major infected mice regardless 

of their genotype for both infectious doses (Fig. 14). We therefore concluded that 

IIGP1 is not required for host defense against L. major infection. In contrast to IIGP1-

, LRG-47- and IGTP-deficient mice were both found to be acutely susceptible to L. 

major developing lesions and increased parasite burdens [111]. The mechanisms by 

which these two p47 GTPases protect mice from L. major are however still unknown. 

 

Our analysis of the role of IIGP1 in resistance against intracellular protozoan parasites 

shows an important trend. IIGP1 is involved in resistance against two apicomplexan 
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parasites, which extensively modify their PVs and survive in cells by inhibiting fusion 

of the PV with lysosomes; in contrast, IIGP1 is dispensable in defense against 

Leishmania, which does not modify the PV and delays but does not completely block 

its fusion with lysosomes. This observation suggests that IIGP1 is probably involved 

specifically in cellular defense against apicomplexan parasites residing in non-

fusogenic PVs.  

 

4.2 IIGP1 seems not to be required for defense against intracellular 

bacteria 

In this study, we analyzed the influence of the IIGP1 deficiency on mouse resistance 

against three intracellular pathogenic bacteria, Listeria monocytogenes, Chlamydia 

trachomatis and Anaplasma phagocytophilum. These pathogens differ in the 

mechanisms they utilize to invade host cells and to facilitate their intracellular 

survival and replication. 

L. monocytogenes employs a cell entry strategy used by a variety of invasive bacteria 

[205]. It actively induces its own uptake in normally non-phagocytic cells by means 

of surface proteins, which are known as internalins and mimic the ligands of host cell 

receptors [206]. Binding of L. monocytogenes to these receptors induces the uptake of 

the bacterium by phagocytosis. After the invasion, L. monocytogenes escapes 

destruction in the host cell endocytic pathway by a rapid (within 30 min) lysis of the 

phagosome and escape in the cytoplasm. This process is facilitated by a pore-forming 

bacterial toxin called listeriolysin-O (LLO) [207] or in some cells by bacterial 

phospholipases [208]. Listeria replicates in the cytoplasm and spreads to neighboring 

cells by an actin-based motility process enabled by the polar expression of an actin-

assembly inducing protein, ActA [209, 210]. When Listeria reaches the PM, it 

induces the formation of a protrusion, which is endocytosed by a neighboring cell and 

leads to a formation of a two-membrane vacuole that in turn is lysed and releases the 

bacterium it the cytoplasm. Thus, Listeria directly spreads from cell to cell and 

escapes the immune response of the host. 

A. phagocytophilum has a unique choice of host cells, it replicates in the hostile 

environment of neutophils. The bacterium enters neutrophils by phagocytosis and 

replicates in a phagosome, which completely resists fusion with early and late 
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endosomes and lysosomes [211]. Furthermore, A. phagocytophilum inhibits the 

NADPH oxidase thus blocking the neutrophil oxidative burst. A. phagocytophilum 

was also shown to delay neutrophil apoptosis thus ensuring itself enough time for 

replication in these normally short-lived cells. 

Chlamydia is also an invasive bacterium but unlike Listeria it enters non-phagocytic 

cells by a process similar to macropinocytosis, which is facilitated by the type III 

secretion system of the bacterium [212]. The infectious and metabolically inactive 

form of Clamydia, the elementary body (EB), is taken up by mucosal epithelial cells. 

Upon entry, it forms a unique vacuole, known as inclusion [213, 214]. Like the 

protozoan PVs, the inclusion blocks fusion with endosomes and lysosomes. However, 

the Chlamydia inclusion is not completely non-fusogenic. Once formed, it is 

extensively modified by bacterial proteins and this modification process initiates 

fusion with exocytic vacuoles [215]. The inclusion thus acquires massive amounts of 

membrane and eventually grows to occupy a significant fraction of the cell. Inside the 

giant inclusion, the EB transforms into a metabolically active reticulate body (RB), 

which replicates by binary division. 40-48 hrs after cell invasion the RBs transform 

into infective EBs, which are released from the inclusion vacuole and infect 

neighboring cells. 

Our analysis showed that IIGP1 is not required for resistance against any of these 

three intracellular bacterial pathogens. All mice infected with L. monocytogenes 

survived the infection regardless of their genotype. Furthermore, at day 3 p.i. they 

showed similar bacterial burden in the spleen, while the infection in the liver was 

already cleared. The infection with A. phagocytophilum also showed no difference 

between IIGP1-deficient and control animals. All mice had similar bacterial burden in 

spleen, lung and blood at day 3, 7 and 14 p.i. (Fig. 16). All mice infected with 

Chlamydia also had no significant differences in bacterial burden in spleen at 29h p.i. 

(Fig. 17). 

From the members of the p47 GTPase family analyzed so far only LRG-47 was 

implicated in resistance against bacteria, while IGTP and IRG-47 were shown to be 

dispensable [111]. LRG-47 has a large antibacterial spectrum including bacteria 

utilizing different cell entry and intracellular survival strategies. LRG-47 deficient 

mice are profoundly susceptible to L. monocytogenes, Salmonella typhimurium, 

Mycobacterium tuberculosis and Mycobacterium avium [111, 121, 123]. 

Mycobacterium enters macrophages by phagocytosis and avoids destruction by 
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blocking fusion of the phagosome with lysosomes. LRG-47 protects macrophages 

from M. tuberculosis by promoting phagosomal acidification and maturation [123]. 

How LRG-47 counteracts L. monocytogenes is still unknown but it was hypothesized 

that this protein might be involved in the recruitment of the small GTPase Rab5a to 

Listeria-containing vacuoles and thus facilitate bacterial killing by the already 

established Rab5a-dependent mechanism [216, 217]. S. typhimurium does not enter 

cells by phagocytosis but induces its uptake by a type III secretion system; the formed 

Salmonella-containing vacuole recruits some early and late endosomal markers, 

acidifies but lacks functional hydrolases. It is possible that LRG-47 counteracts some 

of the bacterial proteins secreted into the cell by the type III secretion system of 

Salmonella by modulating the function of host cell microtubule associated proteins 

[216]. LRG-47 is recruited very early to the forming phagocytic cups and stays 

associated with the phagosomes throughout their maturation pathway [124]. The 

protein probably marks the phagosomes for rapid maturation thus counteracting the 

bacterial strategies of escape and maturation arrest. This would explain why LRG-47 

is an essential mediator in resistance against various bacteria entering cells by 

phagocytosis, despite the differences in the evasion mechanisms they could further 

employ to ensure intracellular survival and replication. In contrast to LRG-47, IIGP1 

is not recruited to phagosomes formed after uptake of latex beads [124] indicating that 

the protein is probably not required for defense against bacteria invading cells by 

phagocytosis. The lack of susceptibility of the IIGP1 deficient mice to Listeria and 

Anaplasma demonstrated in the present study confirms this hypothesis. The here 

reported resistance of IIGP1 deficient mice to Chlamydia together with the observed 

lack of association of IIGP1 with Salmonella-containing vacuoles [126] implicate that 

the protein is probably dispensable also in defense against bacteria that invade cells by 

means of type III secretion systems and reside in pathogen-specific vacuoles. Our 

analysis of the role of IIGP1 in defense against intracellular bacteria is still far from 

being complete. However, the bacterial pathogens that we used employ diverse cell 

entry and intracellular survival strategies and IIGP1 seems not to counteract any of 

these processes. Therefore, the obtained data allows us to hypothesize that IIGP1, like 

IGTP and IRG-47 might not be required for defense against intracellular bacteria. 

This hypothesis has to be further proven by challenging the IIGP1 deficient mice with 

other bacterial pathogens and analysis of the behavior of the protein in infected cells. 
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The here discussed data allow us to propose a model for the role of IIGP1 in 

intracellular defense and the place of this protein among the other p47 GTPases. The 

effect of IIGP1 deficiency on survival of mice following infection is not as profound 

as the ones reported for the other p47 GTPases, which might be due to a partial 

functional redundancy, possibly within the family itself. Compared to LRG-47, which 

is effective against a variety of pathogens, IIGP1 has a more restricted antipathogenic 

spectrum; in this respect, it is more similar to IGTP and IRG-47. IIGP1 seems to be 

specifically involved in defense against protozoan parasites residing in non-fusigenic 

PVs, a function, which it shares with the other family members. Unlike LRG-47, 

IIGP1 is dispensable for resistance against pathogens entering cells by phagocytosis. 

Furthermore, this does not seem to depend on the origin of the pathogen because 

IIGP1 deficiency does not affect both bacteria and protozoa, which invade cells by 

phagocytosis. Although still not proven, it is possible that like IGTP and IRG-47, 

IIGP1 is not involved in defense against intracellular bacteria. The role of IIGP1 in 

defense against viruses remains to be analyzed. 
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6 SUMMARY 
 

IIGP1 is a member of the p47 GTPase family of IFNγ-induced proteins, which are 

among the most potent presently known mediators of cell-autonomous resistance 

against intracellular bacterial and protozoan pathogens in the mouse. From all studied 

members of this family IIGP1 is the best characterized with respect to biochemical 

characteristics and enzymatic activity in vitro, as well as membrane binding properties 

and dynamic behavior in cells. The role of the protein in intracellular defense was 

however, unknown and this study was set as an initial attempt to reveal it. 

This thesis describes the generation of an IIGP1 deficient mouse and analysis of the 

susceptibility of this animal to pathogens from protozoan and bacterial origin, which 

employ diverse strategies for host cell invasion and intracellular survival and 

replication. Despite having intact adaptive immune system, the IIGP1 deficient mice 

showed higher incidence of development of cerebral malaria after infection with 

Plasmodium berghei sporozoites. In addition, IIGP1 deficient astrocytes exhibited a 

partial loss of IFNγ-induced inhibition of Toxoplasma gondii growth. IIGP1 deficient 

animals were not susceptible to infection with Leishmania major, Listeria 

monocytogenes, Chlamydia trachomatis and Anaplasma phagocytophilum. 

From the analysis of the obtained data in the context of the intracellular lifestyle of the 

pathogens involved in this study, we concluded that IIGP1 seems to be specifically 

involved in defense against protozoan parasites, which like Pl. berghei and T. gondii 

reside in non-fusigenic parasitophorous vacuoles after entering cells. The mechanisms 

of IIGP1-dependent protection of cells against these pathogens remain to be studied. 
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7 ZUSAMMENFASSUNG 
 

IIGP1 ist ein IFNg-induziertes Protein und Mitglied der p47 GTPase-Familie. Die 

Mitglieder dieser Familie sind in der Maus hauptverantwortlich für die zellautonome 

Resistenz gegen intrazelluläre Pathogene, wie Bakterien und Protozoen. Von allen 

untersuchten Familienmitgliedern ist IIGP1 am Besten charakterisiert, sowohl was die 

biochemischen Charakteristika, die enzymatische Aktivität in vitro, die 

Membranassoziation wie auch das dynamische Verhalten in der Zelle angehen. Die 

Rolle des Proteins in der intrazellulären Verteidigung war bisher allerdings 

unbekannt. 

Diese Arbeit beschreibt die Erstellung von IIGP1-defizienten Mäusen und die 

Analyse dieser Tiere auf Sukzeptibilität gegenüber verschiedenen Pathogenen. Diese 

Bakterien und Protozoen benutzen eine Reihe verschiedener Strategien für die 

Invasion von Zielzellen und für das anschliessende Überleben und die Replikation in 

diesen Zellen. Obwohl IIGP1-defiziente Mäuse ein ansonsten funktionierendes 

adaptives Immunsystem besitzen, zeigen sie eine höhere Inzidenz zerebraler Malaria 

nach Infektion mit Plasmodium berghei Sporozoiten. Ausserdem zeigten IIGP1 –

defiziente Astrozyten einen partiellen Verlust von IFNinduzierter Inhibition des 

Wachstums von Toxoplasma gondii. IIGP1-defiziente Tiere zeigten hingegen keine 

erhöhte Sukzetibilität für Infektionen mit Leishmania major, Listeria monocytogenes, 

Chlamydia trachomatis und Anaplasma phagocytophilum.  

Aufgrund unserer Analysen erscheint es daher, dass IIGP1 spezifisch in der 

Verteidigung gegen intrazelluläre Protozoen, die wie wie Plasmodium berghei und 

Toxoplasma gondii in einer nicht-fusigenen parasitophoren Vakuole leben, eine 

zentrale Rolle spielt. Der Mechanismus des IIGP1-abhängigen Schutzes der Zellen 

gegen diese Pathogene muss nun weiter untersucht werden.  
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