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Zusammenfassung

In der Entwicklung der Pflanze sind Zell-Differenzierung und Zell-Zyklus Kontrolle eng
miteinander verknlpft. Eine Klasse von Serin/Threonin Kinasen, die Zyklin-abhangigen
Kinasen (CDKs), kontrolliert den Ablauf des Zell-Zyklus. Ein wichtiger Mechanismus
um die CDK Aktivitat zu regulieren ist die Bindung von CDK-Inhibitoren. Auch in
Pflanzen wurden vor kurzem CDK-Inhibitoren entdeckt. Missexpression von CDK-
Inhibitoren in Arabidopsis fuhrt zu verminderter Endoreplikation und einer Abnahme der
Zell-Zahl. Diese Beobachtung ist konsistent mit der postulierten Funktion von CDK-
Inhibitoren, den Zell-Zyklus wahrend dem Ubergang von der G1- zur S-Phase blockieren
zu konnen. In dieser Arbeit konnte gezeigt werden, dass zumindest der CDK-Inhibitor
KRP1 den Eintritt in die Mitose verhindern kann. Der Eintritt in die S-Phase wird nicht
blockiert und Endoreplikation findet statt. Die Daten dieser Arbeit weisen darauf hin,
dass KRP1 konzentrations-abhangig wirkt. KRP1 spielt eine wichtige Rolle wéhrend der
Zell-Proliferation, dem Austritt aus dem Zell-Zyklus und dem Umschalten von einem
mitotischen- in einen endoreplizierenden Zell-Zyklus-Modus. Endoreplikation wird meist
mit einer terminalen Differenzierung assoziiert, interessanterweise wurden
endoreplizierte Zellen entdeckt, die wieder in einen mitotischen Zell-Zyklus eintreten
konnten. Diese Beobachtung betont die grof3e Flexibilitat pflanzlicher Zellen wahrend
ihrer Entwicklung. Darlber hinaus konnte in dieser Arbeit gezeigt werden, dass im
Gegensatz zu CDK-Inhibitoren aus dem tierischen System, KRP1 sich von Zelle zu Zelle
bewegen kann.

CDKSs regulieren im tierischen System den Eintritt in die S-Phase durch Aktivierung des
E2F-DP Transkriptionsfaktors. Dies geschieht indem CDKs das E2F-DP inhibierende
RETINOBLASTOMA PROTEIN phosphorylieren. Mittlerweile sind orthologe Gene fir
Rb, E2F und DP in Arabidopsis isoliert worden. In dieser Arbeit wurde das
RETINOBLASTOMA RELATED1 (RBR1) Gen und drei E2F Gene (E2Fa, E2Fb und
E2Fc) in endoreplizierenden Trichomen missexprimiert. Die Ergebnisse weisen darauf
hin, dass RBR1 ein negativer Regulator der Endoreplikation ist, wohingegen es sich bei
E2Fa, E2Fb und E2Fc um positive Regulatoren handelt. Dieses Ergebnis 1aRt darauf
schliessen, dass der RBR-E2F Regulations-Mechanismus in hoheren Eukaryoten

konserviert ist.



Abstract

Throughout plant development cell differentiation is closaly linked with cell cycle
control. A class of highly conserved Serine/Threonine kinases, CY CLIN DEPENDENT
KINASESs (CDKs) controls progression through the cell cycle. One important mechanism
to regulate CDK activity is the binding of CDK inhibitors (CKIs). Recently, CKls were
also identified in plants and in previous studies, Arabidopsis plants misexpressing CKls
were found to have reduced endoreplication levels and decreased numbers of cells
consistent with a function of CKlsin blocking the G1/S cell-cycle transition. | found that
a least one inhibitor from Arabidopsis, KRP1, can also block entry into mitosis but
allows S-phase progression causing endoreplication. The data presented in this work
suggest that KRP1 acts in a concentration-dependent manner and has an important
function in cell proliferation as well as in cell-cycle exit and in turning from a mitotic to
an endoreplicating cell-cycle mode. Endoreplication is usually associated with terminal
differentiation. Strikingly, endoreplicated cells were found to be able to re-enter mitosis
emphasizing the high degree of flexibility of plant cells during development. Moreover, it
could be shown that in contrast to animal CKIs KRP1 can move between cells.

In animals CDKs regulate entry into S-phase via activation of the E2F-DP transcription
factor, by phosphorylating the E2F-DP inhibiting RETINOBLASTOMA protein.
Orthologs of Rb, E2F and DP have been identified in the Arabidopsisgenome. In this
work | misexpressed the RETINOBLASTOMA RELATED1 (RBR1) and three genes
encoding for ADENOVIRUS E2 PROMOTOR BINDING FACTORs (E2Fa, E2Fb and
E2Fc) in endoreplicating trichomes. The obtained data suggest that RBR1 negatively
regulates endoreplication, whereas E2Fa, E2Fb and E2Fc act as positive regulators,
indicating that the RBR-E2F regulatory pathway is conserved in higher eukaryotes.
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The who is who of the plant cell cycle genes
CDKs

CDKA;1 = cdc2a (At3g48750)
CDKB1;1 = cdc2b (At3g54180)

inhibitors of CDKs

KRP1 = ICK1 (At2g23430)

KRP2 = ICK2 (At3g50630)

KRP3 = ICK6 (At5g48820)

KRP4 = ICK7 (At2932710)

KRP5 (At3g24810)

KRP6 = ICK4 = ACK1 (At3g19150)
KRP7 = ICK5 (At1g49620)

E2Fs

E2Fa = E2F3 (At2g36010)

E2Fb = E2F1 (At5g22220)

E2Fc = E2F2 (Atlg47870)

DP-E2F-like

DEL1 = E2Fe = E2L3 = ELP2 (At3g48160)
DEL2 = E2Fd = E2L1 = ELP3 (At5g14960)
DEL3 = E2Ff = E2L2 = ELP1 (At3g01330)
RING box

RBX1a = Rbx1:1 (At5g20570)
RBX1b = Rbx1;2 (At3g42830)
COP9 signalosome subunits
CSN5A = AJH1 (At1g22920)
CSN5B = AJH2 (At1g71320)

The abbreviations used in this work are written in bold.
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Introduction

INTRODUCTION

General features of cell cycle control

During development of higher eukaryotes many different cell types are produced all
of which can substantially differ in their cell-cycle program, e. g. mitotic or
endoreplication cycle. Also the presence and length of the distinct cell-cycle phases or
the proliferation activity can vary between different cell types (Figl) (Jakoby and
Schnittger, 2004).

The prototype of a cell cycle is a mitotic cell cycle consisting of four phases,
the synthesis-phase (S-phase) during which DNA is replicated, the mitosis-phase (M-
phase), in which sister chromatids are separated and two gap phases, G1 and G2,
which separate S- and M-phase. The transition from G1 to S-phase and the transition
from G2 to M-phase are controlled by check points, wich are tightly regulated (Figl).
At the G1/S transition multiple extrinsic and intrinsic signals are integrated, e.g. in
animals the nutrition status of a cell. Also hormones can regulate the cell cycle, as
shown for the plant hormone cytokinin, which activates cell division in Arabidopsis
(Wang et al., 1998; Riou-Khamlichi et al., 1999). At the G2/M check point it is
necessary to ensure that the complete genome has been replicated during S-phase in
order to avoid chromosomal aberrations.

Common cell-cycle variants in both animals and plants are endocycles, in
which cells replicate their DNA without undergoing a subsequent mitosis leading to
polyploid cells (Figl) (Edgar and Orr-Weaver, 2001). Endoreplication has been
implicated in cell differentiation and cell growth, for instance in the development of
Drosophila melanogaster nurse cells, Medicago truncatula nodule cells, or

Arabidopsis thaliana leaf hairs (trichomes) (Kondorosi et al., 2000; Edgar and Orr-
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Weaver, 2001; Schnittger and Hulskamp, 2002; Sugimoto-Shirasu and Roberts, 2003;
Kondorosi and Kondorosi, 2004). The cellular need for endoreplication is still not
fully understood. It has been suggested that endoreplication might be essential for an
enhanced metabolic capacity, e.g. observed in plant endosperm tissue, or that higher
ploidy levels might buffer mutations (Kowles and Phillips, 1985). Not much is known
about how plant cells switch form a mitotic to an endoreplication cycle during their
differentiation and how they manage to regulate starting another round of DNA
replication while at the same time inhibiting mitosis. Also nothing is known about

how cells enter, progress and terminate an endoreplication cycle in plants.

S
ENDOREPLICATI

G2/M check point

MITOTIC CYCLE

G1/S check point

G1 M

Figure 1 Different cell cycle modes
Simplified model of different cell cycle modes. The length of the individual phases (S,
G2, M and G1) and the entry into an endoreplication cycle can vary.

Regulation of cyclin dependent kinases
Intrinsic and extrinsic cues are integrated at a central convergence point of eukaryotic
cell-cycle control, which is represented by a group of Serine/Threonine kinases,

CYCLIN DEPENDENT KINASEs (CDKs). To ensure a correct progression through
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the cell cycle these CDKs need to be tightly regulated. CDKs of higher eukaryotes are
regulated at a transcriptional but most importantly at a post-translational level, i.e.
phosphorylation and dephosphorylation, subcellular localization and the binding of
positive, e.g. cyclins, and negative, e.g. CDK inhibitors, regulators.

Four classes of CDKs have been described in Arabidopsis. The most
prominent member is the A-type CDKA;1, that contains the PSTAIRE sequence
which is conserved throughout eukaryotes. CDKA;l has been shown to be
constitutively expressed throughout the cell cycle, whereas expression of the plant-
specific B-type CDKBL1;1, which contains the variant PPTALRE motif, is upregulated
at the G2/M transition (Menges and Murray, 2002). In maize overexpression of
dominant-negative CDKA;1 inhibited endoreplication (Leiva-Neto et al., 2004) and
completely abolished cell cycle progression in tobacco protoplasts arresting cells in
G1 and G2 (Hemerly et al., 1995). Whereas cells were blocked in G2, in Arabidopsis
plants misexpressing a dominant-negative CDKB1;1 (Boudolf et al., 2004). Taken
together these data suggest that CDKA;1 is involved in the regulation of G1/S and
G2/M transition, whereas B-type CDKs play only a role at G2/M transition.

In yeast and animals it has been shown that phosphorylation and
dephosphorylation of specific CDK residues are essential for a fully active
CDK/cyclin complex. WEE1 kinase phosphorylates CDKs at residues Thrl4 and
Tyr15, thereby inhibiting ATP fixation and substrate binding of the CDK (Fig2). In
order to activate the CDK/cyclin complex the phosphogroups at position 14 and 15
have to be removed by the CDC25 phosphatase (Fig2). Additionally, CDKs need to
be phosphorylated at Thr160 by CDK activating kinases. In the Arabidopsis genome
orthologs have been identified for most of the components involved in the

phosphorylation and dephosphorylation of CDKs (Vandepoele et al., 2002). Recently
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a CDC25-like gene has been identified in Arabidopsis .The protein has been shown to
stimulate kinase activity of Arabidopsis CDKs in vitro (Landrieu et al., 2004b;
Landrieu et al., 2004a). The in vivo role of this CDC25-like protein, however, remains
to be determined.

Also the spatial and temporal localization of the CDKs is important. In the
study of Weingartner et al. the CDKA;2 from Medicago sativa was fused to GFP and
its subcellular localization was followed in tobacco suspension culture (2001). The
authors showed that during interphase CDKA;2 is localized in the nucleus and the
cytoplasm. During mitosis CDKA;2 associates with mitotic structures like
preprophase band, metaphase spindles and phragmoplast.

A prerequisite for an active CDK is the binding of a cyclin partner. A principal
control mechanism is the abundance of cyclins, which involves transcriptional and
post-translational regulation. To date, 49 putative cyclins have been identified in the
Arabidopsis genome and are grouped into ten classes (Wang et al., 2004). The class of
A-type cyclins is important for the G1/S and G2/M control; B-type cyclins play a key
role at the G2/M transition and during mitosis; D-type cyclins are involved in the
regulation of G1/S and G2/M transition (Riou-Khamlichi et al., 1999; Riou-Khamlichi
et al., 2000; Schnittger et al., 2002b). The recently isolated H-type cyclin is part of the

CDK-activating kinase (CDKD) (Fig2) (Shimotohno et al., 2004).



Introduction

® e
/

@
Geme 1 Guss T
CDKD @

CDK/cyclin {_CYCH )inactive CDK/cyclin active CDK/cyclin
complex complex complex
formation

Figure 2 CDK-regulation in Arabidopsis
Simplified model of the different regulatory steps during CDK activation
Moreover, the CDC KINASE SUBUNIT (CKS) which has been identified in fission
yeast by its ability to rescue certain temperature sensitive CDK mutants, has shown to
bind to the CDK/cyclin complex (Hayles et al., 1986). In Xenopus, binding of CKS to
the CDK/cyclin complex stimulates the ability of this complex to be dephosphorylated
or phosphorylated by cdc25 or WEEI, respectively (Patra et al., 1999). Only little
information is available about the function of plant CKSs. Two genes encoding for
CKS1 and CKS2 have been identified in Arabidopsis and overexpression of CKS1 has
shown to inhibit cell cycle progression, but did not affect endoreplication (De Veylder
et al., 2001a).

Another important regulatory mechanism of CDK activity is the binding of
CDK inhibitors, which stochiometrically bind to cyclins and CDKs and inhibit the

kinase activity (Fig2).
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CDK inhibitors

In animals, two classes of CDK inhibitors (CKIs) have been identified, the INK4 class
and the CIP/KIP family. The ankyrin containing INK4 class comprises p15, p16, p18,
and p19, which inhibit CDK4 but can also bind to CDK6. Members of the CIP/KIP
family (p21<™*, p27°"! and p57""?) block cyclin D-, E-, and A-dependent kinases, but
predominantly inhibit CDK2 activity (Pavletich, 1999; Sherr and Roberts, 1999).
Besides a negative role in CDK regulation, CKIs have also been found to help
assemble and stabilize a CDK4-cyclin D complex (Sherr and Roberts, 1999). It is not
clear, however, whether these CDK/cyclinD-CKI complexes are active or not
(Olashaw et al., 2004).

Several mechanisms control the abundance of CKIs either on a transcriptional
or a post-translational level. Recently, it has been reported in mouse that E2F1 binds
to the p27Kipl promotor thereby activating its expression and that depletion of E2F1
causes a reduction of the p275"™ expression level (Wang et al., 2005). Activated
CDK2/cyclinE phosphorylates p27Kipl on Threonin residue 187 (Sheaff et al., 1997,
Vlach et al., 1997; Montagnoli et al., 1999). This phosphorylated form of p27Kipl is

recognized by the nuclear localized E3 ligase SCF2

, and subsequently becomes
ubiquitinated and degraded by the 26S proteasome during S- and G2-phase (Pagano et
al., 1995; Carrano et al., 1999; Sutterluty et al., 1999; Tsvetkov et al., 1999). In
addition, Kamura and colleagues have reported the existence of a Skp2 independent
pathway for p27Kipl degradation at G1-phase by the cytoplasmic Kip1 ubiquitination-
promoting complex (KPC) (Kamura et al., 2004).

The subcellular localization of the CDK inhibitor p27Kipl has been shown to

play an important role for its action and regulation. p27Kipl exerts its inhibitory

function in the nucleus whereas p27Kipl becomes degraded in the cytoplasm (Tomoda
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et al., 1999; Connor et al., 2003). Upon phosphorylation at the Serine residue (S10) by

Kipl

the nuclear human kinase interacting stathmin (hKIS) p27™"" is translocated from the

nucleus to the cytoplasm (Boehm et al., 2002). To retain p27Kipl in the cytoplasm Akt-
mediated phosphorylation at Threonine 157 is necessary during Gl1, thereby the
association of p27 with importin o is inhibited preventing re-entry into the nucleus
(Shin et al., 2005). The mammalian COP9 signalosome subunit 5 (CSN5) but not

Kipl and

p27Kipl contains a nuclear export signal (NES). CSN5 can bind to p27
functions as an adaptor between p27Kipl and the exportin CRM1 to induce p27Kipl
nuclear export and its subsequent degradation (Tomoda et al., 1999; Tomoda et al.,
2002).

Putative CKls have also been found in plants (Wang et al., 1998; De Veylder
et al., 2001b; Jasinski et al., 2002). In Arabidopsis, seven genes were identified, which
display homologies to the animal p27Kip1, and thus were named KIP RELATED
PROTEINS (KRPs) or INHIBITORS/INTERACTORs OF CDK (ICKs) (Wang et al.,
1998; De Veylder et al., 2001b). The homology to p27Kipl protein, however, is
restricted to about 30 amino acids in the C-terminus. Information about plant CKlIs is
still very limited. In yeast two hybrid interaction assays it has been shown that KRP1
could bind to CDKA;1 and CYCLIN D3;1. Moreover, it has been demonstrated that
KRP1 can inhibit the histone phosphorylation activity of CDKA;1 in vitro (Wang et
al., 1997; Wang et al., 1998). In several misexpression studies it has been found that
KRPs can block endoreplication and reduce cell numbers leading to dwarf plants,
when ubiquitously expressed (Wang et al., 2000; De Veylder et al., 2001b; Zhou et
al., 2002; Schnittger et al., 2003). All these results are consistent with the presumed

function of KRPs as inhibitors of CDKs at the G1/S transition. However, analysis of

the transcript profile of KRP1 in synchronized cell cultures suggested an additional
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role for KRP1 during G2/M transition, as expression levels are elevated during late
G2-phase (Menges and Murray, 2002). To date not much is known about the
regulation of plant CKls, neither on the transcriptional level nor the post-translational

level, such as localization and degradation.

Controlling the abundance of cell cycle regulators by protein degradation
Regulated protein degradation plays a crucial role in cell cycle progression. One
mechanism for proteolysis in eukaryotes is the ubiquitin-proteasome pathway. First, a
thiolester bond is formed between ubiquitin and an ubiquitin-activating enzyme (E1).
Second, ubiquitin is transferred to a Cystein residue within an ubiquitin-conjugating
enzyme (E2). Third, the E2 interacts with an ubiquitin-protein ligase (E3) and
transfers ubiquitin to E3-bound substrates. Finally, proteins with polyubiquitin chains
are recognized and degraded by the 26S proteasome, a complex consisting of a 20S
core and two 198 regulatory particles (Ciechanover, 1998).

The most important E3 enzymes involved in cell cycle regulation are the
Anaphase Promoting Complex/Cyclosome (APC/C) and the Skp1-cullin F-box (SCF)
complex; both complexes contain a RING-finger protein as the catalytical core. In
animals, the most prominent targets of the APC/C are the B-type cyclins, which
become rapidly degraded at the onset of anaphase. The SCF consists of four subunits:
a cullin, a S-phase kinase-associated proteinl (Skp1), a RING finger protein (RBX1)

and a F-box protein. The F-box protein confers the substrate specificity for the SCF

Skp2 Kipl

targets. One well-known example is the SCF which is required for p27
ubiquitination (Carrano et al., 1999; Sutterluty et al., 1999; Tsvetkov et al., 1999). The

APC/C is conserved in plants, but at present little is known about its substrates and

regulation. Several SCF E3 enzymes have been described in Arabidopsis and more
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than 700 genes encoding for F-box proteins have been identified (Gagne et al., 2002;
Hellmann and Estelle, 2002).

Another component involved in protein degradation is the COP9 signalosome
(CSN). The CSN is a multi-protein complex, which was first discovered through loss-
of-function mutations that repressed photomorphogenesis in Arabidopsis (Wei et al.,
1994; Chamovitz et al., 1996). It consists of eight subunits (CSN1-8), all of which are
related to proteins of the 19S regulatory particle of the proteasome. Mutations in six
of the eight CSN subunits destabilize the entire complex. Moreover, it has been shown
that the turnover of LONG HYPOCOTYL 5 (HY5) is inhibited in csn mutants and
that in these mutants elevated amounts of ubiquitinated proteins accumulate
(Osterlund et al., 2000; Peng et al., 2001a, b; Holm et al., 2002). Moreover the
mammalian COP9 signalosome subunit 5 (CSN5) has shown to be involved in the
nuclear export of p27" (Tomoda et al., 1999; Tomoda et al., 2002).

The CSN interacts with the cullin and the RBX1 subunits of SCF E3s,
suggesting a role of CSN in mediating SCF function (Schwechheimer and Deng,
2001). Rubylation (i.e. attachment of RELATED TO UBIQUITIN (RUB) to certain
proteins) of the SCF subunit cullin, has shown to be an important regulatory step for
of the SCF activation, by facilitating substrate polyubiquitination and E2 recruitment
(Wu et al., 2000; Kawakami et al., 2001). The Arabidopsis CSN5A has shown to
derubylate CUL1, thereby providing evidence for a positive role of the CSN in the

regulation of Arabidopsis SCF through RUB deconjugation (Gusmaroli et al., 2004).

Targets of CDK action: regulation of G1/S transition via the RB-E2F pathway
In mammals activated CDK/cyclin complexes phosphorylate the retinoblastoma (RB)

tumor suppressor protein (Weinberg, 1995). In its non-phosphorylated form RB binds
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to the heterodimeric E2F-DP transcription factor (adenovirus E2 promotor binding
factor; dimerization partner), thereby masking its transcriptional activation domain.
Upon phosphorylation the RB protein dissociates from the E2F-DP heterodimer
thereby allowing the transcription factor to activate genes required for S-phase entry.
The mechanism that regulates G1/S transition appears to be conserved between
animals and plants since close homologs exist in both systems.

In the Arabidopsis genome three genes encoding for E2F transcription factors
(E2Fa, E2Fb and E2Fc) have been identified. E2Fs have also been isolated from
carrot, rice, tobacco and wheat (Ramirez-Parra et al., 1999; Sekine et al., 1999);
(Albani et al., 2000; de Jager et al., 2001; Kosugi and Ohashi, 2002b). Plant E2Fs
share common domains and motifs similar to their animal homologs, such as a DNA
binding motif, a hetero-dimerization domain, a retinoblastoma binding motif and a
transcriptional activation domain, this tranactivation domain is lacking in E2Fc.
Together with their DP dimerization partners E2Fs regulate the transcription of
multiple genes via binding to specific E2F consensus sites in their promotor region.
5765 Arabidopsis genes have been found that contain potential E2F-sites in their
promotors. E2F regulated genes include genes required for DNA replication such as
CDC6 and DNA polymerase a (Ramirez-Parra et al., 2003).

The family of Arabidopsis E2F transcription factors can be divided into two
classes. E2Fa and E2Fb act together with the appropriate dimerization partner as
transcriptional activators whereas E2Fc, which lacks the transcriptional activation
domain, might act as a repressor competing for the same E2F-sites (Fig3). This has
been reported at least for the transcriptional regulation of CDC6, a subunit of the
origin recognition complex (ORC) which has been shown to be upregulated in plants

overepxressing E2Fa together with DPa whereas overexpression of E2Fc results in a
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decrease of CDC6 expression (De Veylder et al.,, 2002; del Pozo et al., 2002).
Moreover, Arabidopsis and tobacco plants misexpressing E2Fa and DPa together
show ectopic cell divisions and excessive endoreplication (De Veylder et al., 2002;
Kosugi and Ohashi, 2003).

In the Arabidopsis genome, two genes have been identified encoding for DP
proteins (DPa and DPb) (Magyar et al., 2000). Not much is known about DPs function
in planta. So far no mutants have been described. The only insights into DP function
came from the misexpression of DPa, that only led to morphological changes if
overexpressed together with E2Fa (De Veylder et al., 2002).

The three Arabidopsis DP-E2F-like genes (DELs) might also act as repressors.
In contrast to the heterodimeric E2F-DP transcription factor which can only bind to
DNA as a dimer, DELs can bind to the same promotor-E2F sites as monomers,
because they contain two DNA binding domains. Like for E2Fc, DEL proteins lack
the transcriptional activation domain suggesting that DELs act as competitors of
E2Fa/b-DPa/b (Fig3) (Kosugi and Ohashi, 2002a). DEL proteins appear to be
involved in the regulation of endoreplication since enhanced ploidy levels have been
reported for the dell mutant whereas overexpression results in a down-regulation of
the expression of E2F target genes and a reduction of endoreplication (Vlieghe et al.,
2005).

Recently, a gametophytic lethal rbrl mutant has been isolated. Loss of
function of RBR1 results in an overproliferation of gametophytic and endosperm
nuclei (Ebel et al., 2004). Ectopic expression of RBR1 under control of promotors
active in the shoot- or root-meristem results in cell cycle arrest, whereas the
misexpression of RBR1-RNAi constructs under control of these promotors leads to

ectopic cell divisions (Wilhelm Gruissem, personal communication). Similar

11



Introduction

observations were made by suppression of RBR1 from Nicotiana benthamiana via

virus induced gene silencing (Park et al., 2005).

CED DEL

b Activation of genes I I

required for S-phase  No activation of genes required for S-phase

Figure 3 The RBR-E2F pathway in Arabidopsis

Simplified model about the regulation of the transcription of genes required for S-
phase by the RBR-E2F pathway in Arabidopsis.

Model systems to study the function of cell cycle regulators

Since many mutants in cell cycle regulators are either embryonic or gametophytic
lethal, e.g. rbrl, or display no alteration from wild type plants due to backup systems
and redundancies, e.g. B-type cyclins (Farshad Roodbarkelari, personal
communication) the analysis of plant cell cycle regulators has strongly relied on the
use of misexpression experiments. For this purpose mostly the ubiquitously active
35S promotor (Prosss) from the Cauliflower Mosaic Virus (CaMV) has been applied.
The positive aspect is that a wide range of different cell types can be analyzed for
their reaction to the overexpression of the respective cell cycle regulator. However,

ectopic expression of cell cycle regulators can cause severe effects on plant growth.
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For examples plants misexpressing Prosss:E2Fa together with Prosss:DPa are
tremendously retarded in growth (De Veylder et al., 2002) and overexpression of the

N-terminally truncated KRP1'®

under control of Prosss was lethal (Zhou et al., 2003).
In these lines, it is difficult to distinguish whether the observed phenotype is caused
by the misexpression of the cell cycle regulator directly, or whether this phenotype
refelects the misregulation of multiple genes challenged by the misexpression, or
whether it is an indirect effect, e.g. in Prosss:KRP1 misexpressing plants also root
development is severely affected.

Misexpression in specific cells, such as Arabidopsis leaf hairs (trichomes),
have been proven to be suitable to study the function of cell cycle regulators in a
developmental context, also largely avoiding general growth and fertility problems
(Schnittger et al., 2002b; Schnittger et al., 2002a; Schnittger et al., 2003). Trichomes
are single-celled leaf hairs, which are initiated with a controlled distance to each other
in the basal part of young and developing leaves. Archetypical for many
differentiating cells, incipient trichomes exit the mitotic program and switch to an
endoreplication mode. Concurrent with outgrowth and initiation of branches,
trichomes undergo approximately four rounds of endoreplication leading mature
three-branched trichomes with a DNA content of approximately 32C (Marks, 1997;
Hulskamp et al., 1999).

To specifically study the role of cell cycle regulators in an endoreplicating
context various promotors can be used, such as CAPRICE, GLABRAZ2 or
TRIPTYCHON promotor. These three genes play important roles in trichome
development and are expressed from very early stages until late stages of trichome
development (FigdC,D,E; Figl0A,F) (Szymanski et al., 1998; Schellmann et al.,

2002). Besides its expression in trichomes GLABRAZ is expressed in alternating
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epidermal files of the hypocotyls of developing embryos, from late-heart stage until
bent-cotyledon stage (FigdA,B) (Costa and Dolan, 2003). Thus expression of cell
cycle regulators under control of the GLABRA2 promotor provided a tool to analyze
their function in a mitotic and an endoreplicating context.

To analyze the function of cell cycle regulators in dividing epidermal cells
during post-embryonic development, the promotor of the TOO MANY MOUTH gene
(TMM) has been used. TMM is involved in the control of stomata distribution and has
been found to randomize the plane and alter the number of asymmetric divisions in
stomata neighboring cells (Geisler et al., 2000). TMM is expressed during early leaf
development in cells of the stomatal lineage. Expression could be detected in
meristemoids, guard mother cells and some of their neighboring cells, but also in

guard cells (FigdF,G;Fig17A,B) (Nadeau and Sack, 2002a).
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Figure 4 Model cells to study cell cycle regulation in Arabidopsis

(A) and (B) Expression of GLABRA2 (GL2) during embryo development is shown in (A) by in situ
hybridization experiments; picture taken from (Costa and Dolan, 2003) and in (B) by laser scanning
microscopy of a bent cotyledon stage embryo expressing Prog; ,.:nls:GFP:GUS.

(C) Expression pattern of CAPRICE (CPC) in rosette leaves revealed by Promotor:GUS analysis
(D) Expression pattern of GLABRA?2 in rosette leaves revealed by Promotor:GUS analysis

(E) Expression pattern of TRIPTYCHON (TRY) in rosette leaves revealed by Promotor:GUS analysis
(F) Schematic drawing of guard cell development; picture taken from (Nadeau and Sack, 2002b)
(G) Confocal scanning micrograph of leaf epidermal cell from plants expressing
Propymp TMM: GEP; to visualize cell walls the leaf was stained with propidium iodide; picture taken
from (Nadeau and Sack, 2002a). GMC: guard mother cell, SM: satellite merisetemoid
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Aim of this work

In this work I wanted to study the regulation of endoreplication in the context of cell
differentiation in Arabidopsis thaliana. The analysis focused on two groups of key-
regulators of the cell cycle. First, the CDK inhibitors (KRPs), which block the activity
of CYCLIN DEPENDENT KINASEs. Second, the components of the RBR-E2F
pathway, which are downstream targets of CDKs, involved in the regulation of entry
into S-phase. To analyze their function cell type specific misexpression experiments

in dividing or endoreplicating cells were performed.
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RESULTS

1. Studying KRP function: loss of function approach

1.1. Isolation of a krpl mutant

One approach to learn more about the function of KRPs is to isolate mutants and
analyze their phenotypes. Therefore I performed a PCR-based screen for T-DNA
insertions in the KRP1 (At2g23430) and the KRP4 (At2g32710) gene in the Koncz T-
DNA line collection, which contains more than 80000 individual Arabidopsis
insertion-lines (Rios et al., 2002).

Whereas for KRP4 no insertion line could be found, for KRP1 one insertion
line was found in Pool #36537. Sequencing of the PCR product obtained with the
screening primer S1 and the left border primer T1 revealed that the T-DNA is inserted
in the second intron, 387 bp downstream from the start codon (FigSA). So far all PCR
attempts, using the primer combinations S2+T2, S2+T4 and S2+T6, to proof that the
complete 7 kb T-DNA was inserted in the KRP1 gene failed to reveal the insertion of
the right border. However, plants were resistant to hygromycin and the
HYGROMYCIN PHOSPHOTRANSFERASE (HPH) which confers resistance is
located approximately 2 kb from the right border. Also no PCR products could be
amplified with the S2 primer and any left border primer (T1, T3 and T5). To test
whether the insertion resulted in a knock-out, a knock-down or knock-in of KRP1-
function semiquantitative RT-PCR analyses were performed. No transcript could be
detected in the homozygous mutant with a primer combination spanning the complete
coding sequence of KRP1 (R1+R2) (Fig5B upper panel). However, using the primers

R3 and R2, which anneal downstream of the T-DNA insertion, transcript could be
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obtained (Fig5B lower panel). This could be because the T-DNA contains promotor-
like elements, which then result in a transcription of the KRP1 C-terminal domain.
Even though the transcript level is reduced in the mutant compared to wild type it
cannot be ruled out that this mRNA becomes translated and that this peptide interferes
for example with the CDK/cyclin complex, especially because it contains the cyclin-

and CDK-interacting domains (see Fig7).

1.2. The krpl mutant

Analysis of the phenotype of the homozygous krpl T-DNA insertion plants revealed
no obvious morphological alterations in comparison to wild type. Promotor-reporter
analysis (Lieven de Veylder personal communication) and in situ hybridization of
KRP1 mRNA suggested that KRP1 is expressed in endoreplicating trichome cells
(Ormenese et al., 2004). Therefore I measured the trichome DNA content, which
revealed a subtle enhancement of endoreplication in the homozygous krpl mutant.
The median of the relative fluorescence of DAPI stained wild-type trichome nuclei
was set as 32C (Fig5C). Three independent measurements of trichome DNA levels in
the homozygous krpl mutant revealed an elevated DNA content, 37.2C, 40.1C and
44.1C respectively, in comparison to wild type (FigSC). This finding suggests that

KRP1 might be involved in the termination of endocycles in trichomes.

Figure 5 The krpl mutant

(A) Schematic drawing of the KRP1 gene showing the T-DNA insertion in the second intron.
Grey boxes represent the four exons, S1, S2 and T1 are the screening primers used for the
identification of the insertion line. Also the primers used for the RT-PCR are shown (R1, R2
and R3).

(B) Semi-quantitative RT-PCR showing the relative expression strength of wild-type and the
krpl mutant. The used KRP1 primers are indicated on the left side. For the control, primers
which amplify the ELONGATION FACTOR 1 (EF1) were used. Samples were taken after 30
or 40 cycles as indicated at the top of the figure.

(C) Distribution of trichome cell DNA contents are given in relative fluorescence units
(RFUs). The median RFU of wild-type was set as 32C so that 2 RFUs represent
approximately 2C. The sample size (n), the mean (m) +/- standard deviation and the median
(md) are given.
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1.3. RNAi approach

At the time the mutant was characterized no further insertion lines for KRP1 were
available from other T-DNA collections to support the observed trichome phenotype.
Therefore I tried to knock-out KRP-function using a RNA interference approach by
which introduction of double-stranded RNA should lead to a post-transcriptional
silencing of the respective gene. In several attempts I tried to knock out KRP1 in
trichomes. For that purpose I expressed double-stranded RNA of either the full-length
KRP1 gene or the N-terminal domain of KRP1, which shows only low homology with
the other members of the KRP family, by using the GLABRA2 promotor (Prog»).
However analysis of seedlings in the T1 generation revealed a wild-type phenotype
with respect to trichome morphology, leaf size and all over plant morphology (Tabl).
Additionally, I expressed double-stranded RNA of full-length KRP4, its N-terminal
domain and a 141 bp fragment, which shows a high homology to KRP1, in trichomes.
Primary transformants did not display any morphological changes. Also the
expression of double-stranded RNA of a short fragment of exon 3 from KRP1 or of
two fragments of exon 4 from KRP7, which has shown to be expressed in
endoreplicating and dividing cells (Ormenese et al., 2004), under control of the
ubiquitously active CaMV35S promotor (Prosss) did not result in a detectable
phenotype in seedlings (Tabl).

In summary these results indicate that either the RNAi approach did not
sufficiently reduce transcript levels of KRPs, or that the individual members of the
KRP family act in a highly redundant manner, so that only in plants with a loss of
function for more than one KRP gene a phenotype can be detected. The latter scenario

is supported by the observation that even double and triple mutant combinations of
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krp2 with other krp mutants did not display any morphological alterations in

comparison to wild type (Lieven de Veylder, personal communication).

TABLE 1
RNAI CONSTRUCTS TO KNOCK OUT KRPS

position position Trichome or
line template sense antisense seedling*

primer primer phenotype
Prog2:fl-KRP1-RNAI KRP1 Exon 1 Exon 4 WT
Progi2:N-KRP1-RNAI KRP1 Exon 1 Exon 3 WT
Prosss:Exon3-KRP1-RNAI KRP1 Exon 3 Exon 3 WT
ProgLo:fl-KRP4-RNAI KRP4 Exon 1 Exon 3 WT
ProgL2:N-KRP4-RNAI KRP4 Exon 1 Exon 1 WT
Progi2:cons-KRP4-RNAI KRP4 Exon 2 Exon 3 WT
Prosss:Exonda-KRP7-RNAI KRP7 Exon 4 Exon 4 WT*
Prosss:Exon4b-KRP7-RNAI KRP7 Exon 4 Exon 4 WT*
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2. Studying KRP function: gain of function approach

2.1. Misexpression of Arabidopsis KRP1 and KRP4 in trichomes

As described previously by Schnittger et al. the misexpression of KRP1 or the N-
terminal truncated KRP1'® in trichomes under control of the GLABRA2 promotor
results in smaller trichomes with reduced number of branches in comparison to wild
type (FigbA;B;E) (2003). In addition trichomes misexpressing KRP1 underwent cell
death (FigbG). DAPI stainings (see FigbC,F for DAPI stained trichome nuclei) and
DNA measurements revealed that endoreplication levels were reduced.

To test whether KRPs display similar functions in endorpelicating cells, I
misexpressed another member of the KRP family, KRP4, which has not been
characterized so far. The trichomes of the Prog2:KRP4 transgenic plants also had
fewer branches, the cell size was reduced and they showed the cell death phenotype as
seen for Prog 2:KRP1 expressing plants (FigoD). Taken together these data indicate

that both KRP1 and KRP4 have similar effects, when misexpressed in trichomes.

Figure 6 Misexpression of KRP1 and KRP4 in trichomes

(A) to (C) Landsberg erecta wildtype In (A) an overview of a two week old seedling with
mostly three-branched trichomes is given. (B) Scanning electron micrograph and (C) light
micrograph of DAPI-stained mature trichomes with its neighboring cells, arrowheads point at
trichome and trichome-neighboring cell nuclei.

(D) Overview of a two week old Prog »:KRP4 misexpressing seedling with two- and
unbranched trichomes

(E) to (G) Progio:KRP1'® misexpressing line. (E) and (G) Scanning electron micrographs
showing in (E) a small and two-branched and in (G) a dead trichome. Note the enormously
increased trichome-neighboring cells. (F) Light micrograph of DAPI-stained trichome with its
neighboring cells, arrowheads point at trichome and the large trichome-neighboring cell
nuclei.

(H) and (I) Scanning electron micrograph of (H) glabra3 and (I) cpr5 mutant trichomes,
which have fewer branches, but normal sized trichome-neighboring cells

(J) and (K) Confocal laser scanning micrographs of enhancer trap line #254. (J) Showing the
youngest state when GFP is detectable in the trichome-neighboring cells (indicated by
arrowheads) and (K) a close up of line #254 showing GFP fluorescence in a mature trichome
and its neighboring cells.

(L) Confocal laser scanning micrograph of Prog ,:KRP crossed in enhancer trap line
#254, showing GFP expression in the enlarged trichome-neighboring cells.

Scale bar in all panels 100um.

1109
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Figure 6 Misexpression of KRPI and KRP4 in trichomes

23



Results

2.2. Domain analysis of the KRP1 protein

Wang et al.,1998 examined in a yeast two hybrid assay KRP1 interactions with
CDKA;1 and CYCLIN D3;1. Creating deletion constructs the authors could identify
distinct functional domains within the KRP1 gene. The CDK and the D-type cyclin
interacting domain are harbored in the C-terminus because a deletion after amino acid
(aa) 152 resulted in a loss of interaction with CDK and cyclin. In this assay also an
inhibitory domain could be identified, deletion of the first 108 aa lead to a strong
enhancement of CDK and cyclin interaction (Fig7). In the work of Schnittger et al.
2003 those two truncated versions of KRP1 (KRP1'™? and KRP1'™) were
misexpressed in trichomes and reflected the yeast data. Prog»: KRP1%%? misexpressing
trichomes looked like wild-type, whereas the misexpression of Progo:KRP1'®
caused a much stronger phenotype than the full-length KRP1 (Fig7). Similar results
have been reported by Zhou et al., 2003 for the overexpression of KRP1%? and
KRP1'"® under control of the 35S promotor, which had a wild type appearance, while
overexpression of KRP1'% resulted in dwarf plants, which eventually died. Also in
their study the KRP1 phenotype was enhanced in transgenic lines misexpressing the
truncated KRP1'®. All these data pointed towards an important regulatory role of the
first 108 aa. To test whether this N-terminal domain might be necessary for KRP1
stability or whether it plays a role in the subcellular localization of the protein I

1'% or the

generated misexpressing lines containing either the Prog.:YFP:KRP
ProgLo:KRP1':YFP construct. Analysis of these transgenic lines revealed a wild
type phenotype based on their trichome morphology, as expected as CDK- and cyclin-

interacting domains are missing. (For a detailed description of the localization, see

below.)
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Yeast2 Trichome
Hybrid phenotype

CDKA;1/CycD3;1
192

KRP1 [cye H 12.4/100.0  medium
109 192
KRP1'® [oel6B] 42.6/480.7  strong
1 108
KRP1'% N WT
1 152
KRP1'* N 0.0/2.2 WT

Figure 7 The KRP1 domains

Schematic drawing of the KRP1 domains in order to give an overview of the full-length
KRP1 and the three truncated versions KRP1'”, KRP1'® and KRP1'*>. Moreover the
interaction strength of the constructs with CDKA;1 and cyclin D3;1 is given. These results
were obtained from [-galactosidase activity assays of yeast two hybrid experiments
performed by Wang et al., 1998. KRP1'”® was not analyzed in the yeast two hybrid assay. The
in planta data of KRP1, KRP1'” and KRP1'? were obtained by Schnittger et al., 2003
representing the trichome misexpression phenotypes.

Cyc: cyclin interacting domain; CDK: CDK interacting domain; N: putative nuclear
localization sequence

2.3. Trichome-neighboring cells in Prog:KRP1 misexpressing plants are
enlarged and have an increased DNA content

Analyzing the cells surrounding a trichome on old rosette leaves of plants expressing
the Progi2:KRP1'® construct I made an unexpected observation: the trichome-
neighboring cells were strongly enlarged (Fig6B,E). Whereas wild-type trichome-
neighboring cells reached in average a total surface-cell-area of ca. 1200pum?, on

1109 plants trichome-neighboring cells encompassed

comparable leaves of Prog 2:KRP
a more than 10 time larger total surface area of approximately 13500um? (Tab2).
Examining transgenic plants carrying the full length KRP1 misexpression construct,

which showed a weaker trichome phenotype, I observed an enlargement of the

trichome-neighboring cells to an average of 4800um? (Tab2).
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Since cell size is often correlated with the degree of cellular polyploidization, I
measured the DNA content by quantifying the fluorescence of DAPI-stained nuclei
(Fig6C,F; Fig8). I detected a strongly increased DNA content in the trichome-
neighboring cells in the KRP1-misexpressing plants, a mean of 17.4C versus 6.4C in
wild type (Fig8). An even stronger increase in DNA levels was measured in plants
expressing the truncated KRP1'® construct with an average of 29.5C, and
occasionally, extremely enlarged nuclei with up to 80C were found (Fig8).

The observed cell enlargement and increase in nuclear size of the trichome-
neighboring cells in the KRP1-misexpression plants are reminiscent of a trichome
developmental program. Trichome patterning is thought to involve a mutual inhibition
mechanism, by which all epidermal cells compete with each other in order to adopt
trichome cell fate (Larkin et al., 2003). Hence, the hypothesis was raised that due to a
compromised and eventually dead trichome as a result of KRP1 misexpression, the
lateral inhibition is released and the trichome-neighboring cells start to develop into
trichomes. Analysis of an early trichome reporter (Prog ,:nls:GFP:GUS), however,
revealed no expression in cells surrounding the KRP1-misexpressing trichomes,
indicating that an initiated trichome developmental program is not responsible for the
observed phenotype (Figl 0A,K).

To further investigate whether the enlargement of the trichome-neighboring cells
could be a response to a compromised trichome-differentiation program, the cells
surrounding a trichome in glabra 3 (gl3) and constitutive pathogen response 5 (cpr5)
mutant plants were analyzed. Trichomes in both mutants have reduced
endoreplication levels, are smaller than wild-type trichomes, and develop mostly only
two branches (Hulskamp et al., 1994; Kirik et al., 2001). In addition, similar to

trichomes on Prog 2:KRP1 expressing plants cprS mutant trichomes have been
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reported to die. However, neither the trichome-neighboring cells in the gl3 nor in the
cpr5 mutant displayed any significant difference to wild-type trichome-neighboring
cells with respect to cell size and DNA content (Fig6H,I; Fig8; Tab2).

Taken together, these data suggest that trichome-neighboring cell enlargement
and increase in DNA content is due to KRP1 misexpression in trichomes, and is not a

general feature of altered trichome development.

TABLE 2

Total surface area of trichome-neighboring cells

line total surface area’ Z cells
Ler 1208+/-493 (1114) 40
gl3 1422+/-789 (1159) 38
cprs 1103+/-761 (790) 54
Progi2:KRP1 4755+/-2120 (4908) 55
Progi2:KRP1'%” 13459+/-6295 (13180) 45
Progi2:YFP:KRP1 1101+/-425 (1154) 46
ProgLa:KRP1'YFP 2495+/-1253 (2007) 86
ProcL2:GUS:YFP:KRP1' 717+/-346 (587) 54
Enhancer trap line #254 675+/-241 (639) 51
Prouas:YFP:KRP1'® in #254 738+/-392 (658) 47

! Total surface area of trichome-neighboring cells on rosette leaves was measured from at
least five different plants per line, average plus/minus standard deviation and median in
parenthesis are given in pm’.

Figure 8 Analysis of the DNA content of trichome-neighboring cells

Distributions of the DNA content of trichome-neighbouring cells are given in relative
fluorescence units (RFUs). RFUs are calibrated with the fluorescence of guard cell nuclei of
the analyzed leaves so that 2 RFUs represent approximately 2C. The sample size (n), the
mean (m) +/- standard deviation and the median (md) are given.
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2.4. Intercellular localization of KRP1

Based on the conclusion that the phenotype of trichome-neighboring cells is specific
for KRP1-misexpression, two different scenarios were reasoned by which KRP1 could
influence the cells surrounding a trichome. First, KRP1 might act indirectly and its
expression in trichomes would induce a non-cell-autonomous response. Alternatively,
given that plant cells are symplastically connected by plasmodesmata (Ding et al.,
2003; Oparka, 2004), KRP1 itself might move into the neighboring cells.

In order to test the localization and mobility of KRP1, the yellow fluorescent
protein (YFP) was fused to KRP1 and KRP1'” and misexpression lines using the
GL2 promotor were generated. Homozygous lines were created and based on mRNA
expression strength comparable lines were chosen as reference lines for further
investigations (Fig9A). All data provided in the following was obtained from the same
reference line. As a control, transgenic plants expressing a cell-autonomous version of
the green fluorescent protein (GFP) with a localization signal for the endoplasmatic
reticulum (Prog2:GFP5ER), and plants expressing an untagged YFP protein
(Progi2:YFP) were created (Siemering et al., 1996; Haseloff et al., 1997; Crawford
and Zambryski, 2000).

Plants expressing the fusion proteins were first analyzed with respect to their
trichome phenotype, in order to compare their phenotypical strength with that of
unfused KRPs. Plants carrying an N-terminal YFP fusion to KRPI1
(Progi2:YFP:KRP1) displayed smaller and under-branched trichomes, which
eventually died, resembling the KRP1-misexpression phenotype (Tab2). The
expression of KRP1 with a C-terminal fusion (Prog 2:KRP1:YFP) did not result in a
phenotype and transgenic plants were not further analyzed. For KRP1'®, plants

misexpressing both N- and C-terminal fusion proteins with YFP resembled the
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phenotype of ProgL2:KRP1'% plants (Tab2). Similarly to the expression of the
unfused KRP1, I recognized that expression of fusion proteins containing the N-

terminally truncated KRP1'%?

resulted in a stronger trichome phenotype than the
expression of fusion protein with the KRP1 full length version (Tab2). Thus, although
fusions in the C-terminus to the full length KRP1 seemed to interfere with protein
action, concluding that a fusion with YFP in the other three constructs did not result in
an altered KRP1 protein activity as judged by their trichome phenotypes.

In order to determine whether the fusion proteins were expressed as complete
proteins western blot experiments of the generated transgenic plants were performed
and the blots were probed with antibodies raised against GFP, which also recognizes
YFP. The protein work was done with the help of Sebastian Marquardt. For plants
expressing Progi2:YFP a strong band could be detected at the expected size of 27 kD.
The majority of the KRP1'® fusion proteins can be detected at the predicted size of 37
kD (Fig9B). For the full-length version no band could be detected, although on RNA
level the construct appeared even to be slightly stronger expressed than the truncated
version (Fig9A,B). Previously it has been shown that a negative regulatory signal
resides in the N-terminus of the KRP1 protein (Schnittger et al., 2003; Zhou et al.,
2003). The limitation in detection of the full-length CDK inhibitor argues that this
domain might regulate the stability of KRP1 protein. Consistently, Zhou et al. recently

reported that a N-terminally truncated version was present in much higher abundance

than the full-length inhibitor (2003).
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Figure 9 Analysis of expression levels

(A) Semi-quantitative RT-PCR showing the relative expression strength of the transgenic
constructs P}"OGL}’KRP], PVOGLz.’KRPIIOQ, PrOGLz.'YFP.'KRPI, PFOGLz.'KRPII()s).'YFP,
Progy:GUS:YFP:KRP11%9 and Proy;,5:KRPI1%? in enhancer trap line #254. The expression
strength was compared with the endogenous expression of translation elongation factor 1 (EF1).
The numbers at top indicate the number of RT-PCR cycles. Prog; »: YFP:KRPI and py;45:KRP1109
appeared to be slightly stronger expressed than the other transgenes.

(B) Western Blot analysis of Prog; »: YFP, Prog - YFP:KRP1, and Pro gy ,:KRPI1%9: YFP misex-
pressing plants with an antibody against GFP/YFP. As a loading control Ponceau staining of the
membrane after protein transfer is shown in the lower panel. From extracts of Prog; ,: YFP plants
a band of approximately 27 kD was detected matching the calculated size of YFP. No bands could
be detected for YFP:KRP1. For KRP1199:YFP a band was detected at the expected fusion protein
size of approximately 37 kD, in addition, a faint band appeared at about 27 kD resembling most
likely a degradation product.
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Next, the cellular localization of the fusion proteins was analyzed by Confocal-Laser-
Scanning-Microscopy. As controls I first analyzed the expression of two GL2 reporter
lines in a wild-type background and in plants expressing ProgLo: KRP1'®. In wild-
type, both GFP5ER and a nls:GFP:GUS fusion protein expressed from the GL2
promotor were only detected in trichomes and trichome precursor cells (Figl0A,F). In
the F1 generation of the cross of the Prog2:nls:GFP:GUS reporter line with the
reference line expressing ProcL2:KRP1'® the GFP signal was still restricted to
trichomes and trichome precursor cells indicating that trichome-specific expression of
KRP1'® did not alter the expression domain of the GL2 promotor (Figl 0K).

In contrast to the trichome-specific localization of the two GL2 promotor
reporter lines, the KRP1 fusion proteins could also be detected in cells around
trichomes. In young leaves, KRP1 fusion protein could be detected in many epidermal
cells (Figl0B,C,D). In older leaves, the full length KRP1 and the KRP1'® fused to
YFP were predominantly found in one to two concentric rings around a trichome
(Figl10G,H). The truncated version KRP1'” was detectable in three to four rings with
decreasing intensity (Figl0I). Also, I could detect a weak YFP signal in the nuclei of
mesophyll cells demonstrating that movement of KRP1 fused to YFP is not restricted
to epidermal cells but reflects rather a general feature of KRP1:YFP fusion proteins
(FiglON, arrowhead). Based on these localization patterns it is conceivable that the
unfused KRP1 when expressed in trichomes will also enter the neighboring cells.

A morphological analysis of the trichome-neighboring cells revealed,
however, that only plants expressing the N-terminally truncated KRP1'” fused to
YFP displayed a significant increase in trichome-neighboring cell size and DNA
content with about 2500pum? and 9.4C (Tab2, Fig8). Thus, in contrast to trichomes,

the alterations of the trichome-neighboring cells were correlated with the protein size
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of the misexpressed KRP1 protein, i.e. smaller proteins caused a more severe
phenotype: KRP1'” (10kD) > KRP1 (22kD) > KRP1'”:YFP (37kD) > YFP:KRP1
(49kD).

To address the dynamics of the movement of KRP1 and to test whether larger
fusion proteins were less abundant in trichome-neighboring cells than smaller KRP1
versions, the fluorescence intensities of KRP1:YFP fusions were compared with that
of free YFP. As previously reported, the YFP-related GFP is able to diffuse up to 16
cells wide in microprojectile bombardment experiments in Arabidopsis (Itaya et al.,
2000). Consistently, in the generated transgenic plants expressing YFP without any
localization signals from the GL2 promotor (Prog 2:YFP) YFP could be detected in
trichomes and in neighboring cells (Figl1A,B). Determination of the fluorescence
intensity of trichome-neighboring-cell nuclei in comparison to trichome nuclei
revealed for KRP1':YFP (37 kD) a similar ratio of approximately 0.5 as for YFP (27
kD) whereas for the larger KRP1 fusion (49 kD) a lower ratio of approximately 0.2
was obtained (Figl1C). This is consistent with a reduced movement and therefore a
lower concentration of increasingly larger fusion proteins in trichome-neighboring
cells.

However, it could not be excluded that the different KRP1 protein versions
have different molecular properties in trichome-neighboring cells versus trichomes,
e.g. protein stability and/or nuclear import rate, which could influence the ratio of
fluorescence intensities independent of protein size. To test more directly for a
protein-size dependent movement, transgenic plants were created expressing another
KRP fusion protein, in which the GUS protein was combined with YFP:KRP1'%; the
size of this fusion protein is approximately 105 kD (kindly provided by Moritz

Nowack). Expression of GUS:YFP:KRP1' from the GL2 promotor caused a
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significant reduction in trichome branch number similarly to the other KRP1 protein
versions demonstrating the functionality of this fusion protein (Tab3). CLSM revealed
that GUS:YFP:KRP1'® was restricted to trichomes (FiglOE,J;O) and no increase in
trichome-neighboring cell size nor DNA content was observed (Fig8,Tab2).

Taken together, it can be concluded that KRP1 can act non-cell-autonomously,
and that the phenotype of the trichome-neighboring cells in the KRP1 misexpression

lines is due to a direct action of the CDK inhibitor in the neighboring cells.

TABLE 3

Trichome branch number

line number of branches in percent per leaf ' trich::)mes
1 2 3 4

Ler 0.0+/-0.0 0.2+/-0.9 99.6+/-1.2 | 0.2+/-0.8 477

Progi2:KRP1 13.7+/-11.1 | 65.3+/-14.4 | 21.0+/-14.9 | 0.0+/-0.0 428

Progio:KRP1'% 19.5+/-15.3 | 71.1+/-151 | 9.4+/-12.9 | 0.0+/-0.0 150

Progi2:YFP:KRP1 13.0+/-4.9 | 58.7+#/-10.2 | 28.3+/-9.4 | 0.0+/-0.0 488

ProgLo:KRP1'%YFP 14.8+/-8.0 65.4+/-7.2 19.8+/-7.1 | 0.0+/-0.0 338

Prog2:GUS:YFP:KRP1'® | 21.2+/-6.2 59.2+/-6.0 19.6+/-3.9 | 0.0+/-0.0 335

" All trichomes on rosette leaf number 3 and 4 were counted from at least 10 plants per line,
the average plus/minus standard deviation is given, the branch number with the highest
percentage is shown in bold.
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Figure 10 Localization of KRP1, KRP1'® and KRP1*® in endoreplicating
trichome cells

(A) to (O) Confocal-laser-scanning micrographs of (A) to (E) young rosette leaves, (F) to (J)
old rosette leaves and (L) to (O) shows a close up of a trichome and its neighboring cells.

(A) and (F) Show the expression of the GLABRA2 promotor in Prog ,:GFP5ER transgenic
lines, which is only detectable in trichomes and trichome precursor cells.

(B), (G) and (L) Localization and distribution of YFP:KRP1 fusion protein in
Prog2:YFP:KRP1 misexpressing plants. In young leaves, the nuclei of almost all epidermal
cells show a YFP:KRP1 signal. In old leaves, the YFP:KRP1 signal is detected in the nuclei
of trichomes and in the nuclei of trichome-neighboring cells in concentric rings. Trichomes
are indicated by arrowheads. The nuclear localization in the trichome and its neighboring cells
is shown in a close up (L)..

(C), (H) and (M) Localization and distribution of YFP:KRP1'® fusion protein in
Prog..:YFP:KRP1'® misexpressing plants. While the nuclear signal is evenly distributed in
the basal part of young leaves (C) it becomes restricted to the trichome (indicated by
arrowheads) and its neighbouring cells at the tip and in old leaves (H). Nuclear localization in
the trichome and its neighboring cells, note that the nuclei are not evenly stained, there are
patches with brighter signals (M).

(D), (1) and (N) Localization and distribution of KRP1'®:YFP fusion protein in
ProgL2:KRP1'®:YFPmisexpressing plants. The distribution of the fusion protein of the
truncated KRP1'” has an even greater range than YFP:KRP1 with two to three concentric
rings of cells around a trichome (I). KRP1':YFP is found in the trichomes in the nucleus and
cytoplasm (N) whereas the trichome-neighboring cells show a nuclear localization. Note that
KRP1'”:YFP could also be found in nuclei of mesophyll cells, indicated by an arrowhead.
(E), (J) and (O) Localization and distribution of GUS:YFP:KRP1'” fusion protein in
Prog.2:GUS:YFP:KRP1'® misexpressing plants. GUS:YFP:KRP1'” can only be detected in
trichome precursor cells and trichomes but not in surrounding cells.

(K) Analysis of the marker line Prog.,:nls:GFP:GUS crossed in Prog,:KRP1'®. The GFP
signal is only detectable in the trichomes (indicated by arrowheads) and not in the
surrounding cells.

Scale bar in (A) to (K) 50pm; (L) to (O) 10um.
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Figure 10 Localization of KRP1 in endoreplicating trichome cells
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Figure 11 Analysis of KRP1 movement

(A) and (B) Confocal-laser-scanning micrograph of a (A) young and (B) old rosette leaves of
Progy,: YFP expressing plants. Note that the YFP signal can be observed in the nucleus and the
cytoplasm of trichomes and their surrounding cells of young and old leaves.

(C) Analysis of KRP1 movement in Pro; ,: YFP:KRP1 and Progy ,-KRP1199:YFP misexpress-
ing plants in comparison to plants expressing ProGL2:YFP as a control. The ratio of the average
YFP intensity of trichome-neighboring cell nuclei to the average YFP intensity of the young
trichome nucleus was determined. Whereas the smaller KRP110%:YFP fusion protein appears to
move similarly as YFP, the fusion-protein of the full length KRP1 to YFP is found at lower
levels in the nuclei of trichome-neighboring cells in comparison to trichome nuclei.

Scale bar in (A) and (B) 50um.
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2.5. Intracellular localization of KRP1

In animals the intracellular localization of the CKI p27Kipl

is strictly regulated and
appears to be inherently connected with protein abundance and activity (Sherr and
Roberts, 1999; Slingerland and Pagano, 2000). The general notion is that p27Kipl
exerts its inhibitory function in the nucleus and becomes degraded in the cytoplasm
(Tomoda et al., 1999; Connor et al., 2003). The regulatory elements which mediate
p27Kipl localization are not conserved in plant CKIs and therefore, I was interested in
the intracellular localization of KRP1.

Whereas YFP expressed from the GL2 promotor could be detected in the
nucleus and the cytoplasm, KRP1 and KRP1'% fused with YFP exhibited a nuclear
localization (Figl0B,C,G,H; Figl1A,B). While this work was in progress a similar
intracellular localization of KRP1 was reported by analyzing GFP fusions with KRP1
(Zhou et al., 2003). Consistent with the report by Zhou and colleagues I found that
YFP fusions with the truncated KRP1'% localized to the nucleus and the cytoplasm in
trichomes (FiglOD,I,N); a cytoplasmic localization was even more prominent for the
GUS:YFP:KRP1'” fusion protein (FiglOE,J,0). In the trichome-neighboring cells,
however, both N- and C-terminal YFP fusions with KRP1'” could only be detected in
the nucleus (FiglON). On the one hand this could indicate different cell-type
dependent dynamics of the intracellular localization of KRP1. On the other hand it is
very well possible that a cytoplasmic fraction of KRP1'®:YFP was below the
detection limit since already in the much brighter stained trichomes the cytoplasmic
fluorescence was weak (compare also FigllC for a reduction of fluorescence
intensities in trichome-neighboring cells).

Two explanations might account for the different intracellular localization

patterns of KRP1, KRP1 1% and KRP1'": First, the N-terminal 108 amino acids might
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contain a strong degradation signal but degradation takes place in the cytoplasm
leaving only a nuclear fluorescence for YFP:KRPI and YFP:KRP1'®. Second,
KRP1'® might contain a nuclear localization signal (NLS). This latter scenario is
supported by the recent identification of a putative NLS in the first 108 aa. Exchanges
of two basic aa in this NLS with Ala residues resulted in transient expression
experiments in a cytoplasmic localization of YFP:KRP1 (Marc Jakoby, personal
communication). However, at the moment it is still unclear, what the nature of the
inhibitory signal in the N-terminus of KRP1 is.

Closer inspection of the N- and C-terminal YFP fusions with KRP1'®
revealed, that the fluorescence was unevenly distributed in the nucleus in comparison
to the nuclear YFP signal of KRP1 and KRP1'” (Fig 10L,M,N; Figl2A,B). These
images had similarities to a typical DAPI stained nucleus, in which the chromocenters
show a much brighter fluorescence compared to the rest of the nucleus (Fig6C,F). An

overlay of the YFP and the DAPI image showed an exact match of the bright stained

regions indicating that the N-terminal domain of KRP1 is chromatin associated

(Figl2B,C,D).

Proc 2 YFRERPT Prog - KRP1E:yFP

Figure 12 Nuclear localization of YFP:KRP1 and YFP:KRP1'%

(A) Confocal laser scanning micrograph of a trichome nucleus of Prog.,:YFP:KRP1
transgenic line

(B) to (D) Confocal laser scanning micrographs of trichome nucleus of Prog ,:YFP:KRP
misexpressing plants. In (B) the YFP signal is shown, (C) shows the DAPI image of the same
nucleus as in (B); (D) represents the overlay of (B) and (C).
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1
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2.6. Premature endoreplication does not interfere with the adaptation of cell
specific marker gene expression

In wild-type, the cells directly neighboring a trichome develop into morphologically
distinct cells, called socket or support cells. Socket cells are rectangular versus the
typically lobed pavement cells and are oriented in their longitudinal axis towards the
trichome (Fig6B). In addition, the expression of a few genes and enhancer trap lines
has been found to discriminate socket cells from epidermal pavement cells (Molhoj et
al., 2001; Vroemen et al., 2003).

Since the trichome-neighboring cells in the KRP1-misexpressing plants were
greatly enlarged and developed lobes (Fig6E), I asked whether these cells still have
socket-cell fate. The analysis of two GAL4 enhancer trap lines from the Scott Poethig
collection (http://enhancertraps.bio.upenn.edu/) marking trichome-socket cells, #232
and #254, crossed into the reference line for Prog 2:KRP1'® revealed expression in
the cells surrounding a trichome (Fig6J,K,L note also the increase in cell size and the
enlarged neighboring-cell nuclei in line #254 expressing ProgL2:KRP1'%). In
addition, most of the cells surrounding a trichome were still polarized towards the
trichome (Fig6E). Taken together, these data suggested that the trichome-neighboring
cells in KRP1-misexpressing plants have developed, at least to some degree, into
socket cells.

Entry into an endoreplication cycle has been found to be associated with cell
differentiation and the adoption of the special cell morphology occurring after cell-
fate specification (Nagl, 1976; Sugimoto-Shirasu and Roberts, 2003). The data
presented in this work, however, implied that trichome-neighboring cells in the KRP1-
misexpressing plants become specified as socket cells independent and after the onset

of an endoreplication program. To explore this hypothesis, the cell division activity
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around incipient wild-type and KRP1-misexpressing trichomes was analyzed more
closely. Figure 13 shows that in cells adjacent to young and growing wild-type
trichomes newly formed cell walls can be found indicating a recent cell division
(Figl3A,B,C). In contrast, around young trichomes of KRP1-misexpressing plants the
neighboring cells had already started to enlarge (Figl3D,E,F). Consistent with this, I
found in DAPI staining that nuclei of trichome-neighboring cells in KRP1-
misexpressing plants had already started to endoreplicate in contrast to wild-type
leaves (Figl3G,H).

As judged by their morphology, the dividing cells around an incipient
trichome on wild-type plants have not acquired a specific fate (Figl3A,B). Also, from
previous studies it is known that trichomes and trichome-socket cells are not of clonal
origin suggesting that socket cells become recruited by trichomes at some later stage
of trichome development (Larkin et al., 1996). Consistent with this, the expression of
the two socket-cell markers used above only starts when the trichome is already three-
branched and expanded (Fig6J). Further evidence from the glabra 2 (gl2) mutant
supports an instruction of socket cells at a time point late during trichome
development. In gl2 mutants two classes of trichomes can be found, one class of
expanding and even branching trichomes surrounded by socket cells, the other class
displays aborted trichomes, which had started to grow out but failed to expand and
become arrested as young bulges (Fig21A,B) (Koornneef, 1990; Rerie et al., 1994). In
this latter class stomata can be found to develop in direct contact with trichomes
suggesting that socket cells have not yet been specified. Finally, in the KRP1-
misexpressing plants the socket-cell marker became also expressed at later stages of

trichome development (data not shown).
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Figure 13 Analysis of cell division activity in trichome-neighboring cells

(A) to (C) Scanning electron micrographs showing the development of trichome-neighboring
cells in wild type. Wild-type trichome-neighboring cells divide until the centrally located
trichome develops its third branch. Examples for newly formed cell walls are marked by
arrowheads.

(D) to (F) Scanning electron micrographs showing the development of trichome neighboring
cells in in Progy ,:KRP11%9 plants. In Prog; . KRP110 trichome-neighboring cells enlarge and
do not divide.

(G) Light micrograph of DAPI-stained wild type trichome with their neighboring cells

(H) Light micrograph of DAPI-stained Progy ,:KRP11% trichome at an early stage of trichome
development,corresponding to (A) and (D). Corresponding to the cell enlargement and the
absence of cell division, trichome-neighboring cells in Prog; ,:KRP1109 plants start to endorep-
licate as seen by the increased nuclear sizes of the trichome-neighboring cells in comparison to
wild type. Arrowheads point to the trichome nuclei and the nuclei of the trichome-neighboring
cells are marked by asterisks.

Scale bar in all panels 10um.
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Taken together, these findings suggest that in the KRPI1-misexpressing plants
endoreplication has started in the trichome-neighboring cells before these cells have
been specified as socket cells and thus, it can becconcluded that plant cells can be

specified independent of an endoreplication program.

2.7. The induction of endocycles by KRP1 depends on the cell-cycle mode and the
developmental state
To test whether KRP1 is generally a positive regulator of endoreplication in trichome-
neighboring cells and its expression is always sufficient to promote endoreplication,
KRP1 was misexpressed at late stages of socket-cell development. For that KRP1%°
was cloned behind an UAS regulatory element and introduced into the GAL4 driver
line #254 from the Scott Poethig collection by transformation (compare Fig6l])
(http://enhancertraps.bio.upenn.edu/). Examining plants expressing Proyas:KRP1'* in
the GAL4 line #254 for a socket-cell phenotype revealed neither an alteration in cell
size nor in DNA content in comparison to line #254 itself or in wild-type plants (Fig8;
Tab2;Fig9A). This observation together with the finding that the trichome-
neighboring cells will undergo a few cell division rounds when the GL2 promotor is
already highly active (compare Figl0A and Fig13A,B,C), indicated that the induction
of endocycles by KRP1 depends on the developmental state and/or the cell-cycle
mode of the cells. This is also supported by the observation that in all transgenic lines
generated expressing the various KRP1 constructs in trichomes never any indication
for an increase of endoreplication levels in trichomes by KRP1 has been observed.

To test further whether induction of endocycles by KRP1 depends on the cell-

cycle mode of the cells, the effect of KRP1 misexpression in other proliferating cells

was analyzed. For that I made use of the observation that GL2 is also expressed
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during embryo development starting at heart stage and persisting till bent-cotyledon
stage (FigdA,B) (Lin and Schiefelbein, 2001; Costa and Dolan, 2003). Figure 14A
and B show a torpedo stage embryo with the typical expression pattern of the GL2
promotor in roughly every second cell file in the embryonic epidermis. Expression of
KRP1 under the GL2 promotor did not alter this expression pattern as revealed by the
analysis of the GL2 promotor reporter line Prog2:nls:GFP:GUS crossed into plants
expressing Proga: KRP1'%° (Figl4C,D). Similar to leaves it was found that KRP1-
YFP fusion proteins could be detected in almost all epidermal cells and also weaker in
subepidermal cells demonstrating that the movement of KRP1 is not restricted to leaf
cells (Figl4E,F).

Next, [ attempted to determine the DNA content of epidermal cells in embryos
of plants misexpressing KRP1. However, measurements of fluorescence intensities
were compromised due to a small cell size and therefore a close vicinity of nuclei
giving rise to high background fluorescence. Therefore, DNA levels were
approximated by nuclear sizes. For that plants carrying a Prog:nls:GFP:GUS
construct were analyzed and the nuclear sizes of pGL2-postive cells in this line was
compared with Progz: KRP1'® plants (Figl4A,B,C,D). Nuclei in the KRP1'%-
misexpressing embryos were larger than in wild type supporting the hypothesis that
KRP1 induced endoreplication in mitotic cells. A quantification of nuclear sizes using
the DNA stain propidium iodide revealed approximately an area of 12um? in Prog»:
KRP1% embryos whereas in wild-type embryos the nuclei of epidermal cells spanned
an average area of approximately 8um? (Figl4E). Taking together these findings
suggest that misexpression of KRP1 in dividing cells can induce endorpelication, but

the induction depends on the developmental state of the cell.
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2.8. Misexpression of KRP1 in dividing epidermal cells of rosette leaves

Because of the experimental limitation of embryonic epidermis, I sought for another
promotor active in dividing cells, yet not active in all mitotic cells in order to interfere
as little as possible with plant fertility and viability. For this purpose the promotor of
the TOO MANY MOUTHS gene (Prorumm) was used (Nadeau and Sack, 2002a). TMM
is expressed during early leaf development in cells of the stomatal lineage and some
adjacent cells (Fig4G; Figl7A,B); many of these cells will undergo at least one more
cell division during leaf development.

To assess whether endoreplication levels were increased, transgenic plants
misexpressing from the TMM promotor the N-terminally truncated KRP1 version
fused to YFP were generated. Transgenic plants displayed a strong leaf phenotype
with an increased degree of serration and a reduction of leaf size in comparison to
wild type (Figl6A,B,D,E). Moreover the number of epidermal cells was reduced, but
these cells were greatly enlarged compared to wild type (Figl6C,E). Rough analysis
of the primary transformants misexpressing Promum:YFP:KRP1 revealed a less severe
phenotype than that of KRP1'%°, Again misexpression of the N-terminal domain

(KRPllOS) did not lead to any morphological alterations.

Figure 14 Analysis of KRP1'%® misexpression in embryonic epidermal cells

(A) and (B) Confocal-laser-scanning micrographs of Prog,:nls:GFP:GUS reporter line in
wild-type torpedo stage embryo. In (B) a close up of hypocotyl epidermal cells is shown.

(C) and (D) Confocal-laser-scanning micrographs of Prog,:nls:GFP:GUS reporter line in
Prog.2:KRP1'® torpedo stage embryo. In (D) a close up of hypocotyl epidermal cells is
shown.

(E) and (F) Confocal laser-scanning micrographs of a Prog ,:KRP1'®:YFP embryo. The YFP
signal can be detected in all cell files of the hypocotyl. (F) Close up of hypocotyl epidermal
nuclei.

(G) Analysis of the area of propidium iodide stained hypocotyl nuclei of embryos of the same
age for wild type (black) and Prog ,:KRP1'® (white) showing an enlargement of nuclear sizes
in Prog 2:KRP1'* expressing plants. The sample size (n), the mean (m) +/- standard deviation
and the median (md) are given.

Scale bar in (A) to (F) S0um.
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The degree of polyploidization in 10, 15, and 20 days old seedlings was studied by
fluorescence activated cell sorting (FACS) of cells of the first and second rosette leaf,
stained with propidium iodide (Figl5A-F). At all time points, I found a quantitative as
well as a qualitative shift towards higher replication levels in comparison to wild-type
plants. In leaves of 10 days old PrOTM,\A:YFP:KRPl109 seedlings elevated levels for 4C
and 8C nuclei as well as a new, although small 16C peak were present (Figl 5A,B). In
15 days old seedlings the 16C peak was increased and a new 32C peak appeared
(Figl5C,D). And in 20 days old seedlings a greater 16C peak and a pronounced 32C
peak were detected (Figl5SE,F). Taken together, these data showed that KRP1 can
block cell divisions and induce endoreplication in mitotic cells.

A detailed morphological analysis at the cellular level revealed that the
number of stomata was drastically reduced in the strong Propuw:YFP:KRP1'®
transgenic plants in comparison to wild type, suggesting that cell division might be
blocked at early stages and cells do not develop into normal guard cells (Figl6G,H).
Besides the decrease of stomata number also the morphology and the spatial pattern of

the guard cells were disturbed in KRP1'%

misexpressing plants. Some of the guard
cells were enlarged and had a “swollen” apperarance (Figl6J see arrowheads). In
some cases the guard cells started to form lobes similar to differentiated pavement
cells (Figl6K). Frequently, I observed that stacks of four guard cells are formed,
instead of the typical pair of guard cells forming the pore (Figl6L). From these
phenotypes one can conclude first, that misexpression of KRP1'% in dividing
epidermal cells interfered with cell divisions resulting in fewer cells in comparison to

wild type. Second, endorpelication was enhanced and finally, the development of

stomata is severely impaired.
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Figure 15 FACS-Analysis of KRP1'%” misexpressed in leaf epidermal cells
(A), (C) and (E) Fluorescence activated cell sorting analysis (FACS) of the first and
second rosette leaf from wild-type plants. (A) 10-day, (C) 15-day and (E) 20-day old
seedlings.

(B), (D) and (F) FACS analysis of the first and second rosette leaf from

Propyuy YFP:KRP1109 transgenic plants. (B) 10-day, (D) 15-day and (F) 20-day old
seedlings. In the transgenic line a quantitative and a qualitative shift towards more
replicated nuclei compared to wild-type is visible at all time points.
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Figure 16 Analysis of KRP1/%° misexpression in TMM-positive cells
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Figure 17 Localization of KRP1, KRP1108 and KRP1109 in dividing leaf epidermal cells
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Concerning the subcellular localization of KRP1, KRP1'® and KRP1'” in TMM
expressing cells the same pattern was observed as in endoreplicating trichomes. The
YFP signals for KRP1 and KRP1'® were only detectable in the nuclei and again
KRPI'™ nuclei showed spotted patches with a very bright fluorescence

(Figl 7C,D,E,F). KRP1'” was found in the nucleus and the cytoplasm (Figl7G,H).

109
1

Interestingly a few cells accumulated very high amounts of the YFP:KRP protein

in the cytoplasm. Whether this is due to the activity of the TMM promotor needs to be

1109

resolved by further experiments, e.g. crossing of the Prorym:YFP:KRP transgenic

plants with the plants expressing the Promwm:GFPER reporter.

Figure 16 Analysis of KRP1'® misexpression in TMM-positive cells

(A) to (C) show images of wild-type plants ecotype Columbia. In (A) an overview of two
week old seedling is shown. (B) Light micrograph and (C) Scanning electron micrograph of
rosette leaves.

(D) to (G) Promm:YFP:KRP1' misexpressing plants. In (D) an overview of two week old
seedling is shown. (E) Light micrograph, (F) and (G) scanning electron micrographs of rosette
leaves. Note the strong reduction in cell number, the enormous increase in cell size of all
pavement cells and the reduction of stomata number in (G).

(H) A scanning electron micrograph of a mature wild-type rosette leaf giving an impression
of typical stomata size and shape.

() Confocal scanning micrograph of a DAPI-stained stoma from Promw:YFP:KRP
transgenic line consisting of three cells forming the pore. The cell wall in the divided guard
cell is marked by an arrowhead, asterisk mark the three nuclei of the stoma.

(J) to (L) Light micrographs of Propu:YFP:KRP1' misexpressing plants. In (J) enlarged
stomata are marked by arrowheads in contrast to a “normal” stoma marked by an arrow. (K)
Misshaped stoma with lobed cell walls is marked by an arrowhead, the “normal” by an arrow.
(L) Shows a stack of guard cells similar to the flp mutant marked by an arrowhead.

Scale bar in (B) and (E) 1mm; (C) and (F) 100um.
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Figure 17 Localization of KRP1 in dividing leaf epidermal cells

(A) and (B) Confocal laser scanning micrographs of rosette leaves from Promwy:GFP5ER
transgenic plants.

(C) and (D) Confocal laser scanning micrographs of rosette leaves from Promyw:YFP:KRP1
transgenic plants.

(E) and (F) Confocal laser scanning micrographs of rosette leaves from Promuv:YFP:KRP
transgenic plants.

(G) and (H) Confocal laser scanning micrographs of rosette leaves from
Promum:YFP:KRP11%° transgenic plants.

In the left panel an overview is given, whereas close up is shown in pictures of the right panel.
Scale bar in (A), (C), (E), (G) 80 um and in (B), (D), (F), (H) 20 pm.
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2.9. Mode of KRP1-induced endoreplication

From animals it is known that a conversion of a mitotic cycle into an endocycle can
be initiated from different phases of a mitotic cell cycle discriminating different
endocycles. For instance, in the first endocycles of Drosophila nurse cells a new G1
phase is initiated shortly after S-phase, whereas mammalian megakaryocytes progress
through a G2 phase and switch to a G1 phase with the beginning of mitosis (Edgar
and Orr-Weaver, 2001).

In order to determine how KRP1-induced endocycles proceeded, a promotor
reporter line for a mitotic cyclin (Procyce1.2:DB:GUS) was used, which marks cells in
a late G2- till M-phase of a cell-division cycle (Schnittger et al., 2002a). Next, the
number of Procycgi:2:DB:GUS-positive socket cells surrounding outgrowing but not
yet maturated trichomes were compared in a wild-type background and in plants
misexpressing KRP1'® from the GL2 promotor. It was found that wild-type as well as
ProgLo: KRP1' plants displayed approximately the same proportion of stained cells
adjacent to a trichome, 31 versus 35 percent (Tab4). Thus, endoreplicating trichome-
neighboring cells in KRP1 misexpressing plants still entered a G2 phase.

I found that in the KRP1 induced endocycles the Anaphase Promoting
Complex/Cyclosome (APC/C) was active. This became evident since the GUS
reporter utilized was fused to the N-terminal 149 amino acids of CYCLIN B1;l
including the destruction box (DB) (Schnittger et al., 2002a). Such a marker becomes
degraded in late mitosis with the onset of APC/C activity, which degrades mitotic
substrates as cyclins and securin and promotes by that exit from mitosis (Colon-
Carmona et al., 1999). Trichome-neighboring cells in KRP1 misexpressing plants,
however, did not display a continuous staining of the DB:GUS marker indicating a

cyclic degradation of the marker.
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TABLE 4
Procvee1:2:DB:GUS in socket cells of young trichomes

percentage of young trichomes with at least one

GUS-positive socket cell ! n | Z trichomes

line

Procycgl;z:DB:GUS
in Ler

PI’OCYCBLQZDBZGUS
in ProgLo:KRP1'*

31.3+/-4.2 4 400

34.5+/-2.9 4 400

" Socket cells of young trichomes (stage 2 to stage 5 according to Szymanski et al. 1998)
were analyzed; average plus/minus standard deviation per 100 counted trichomes.

2.10. Expression of KRP1 in the siamese mutant

The observation that KRP1 could only induce endoreplication in cells with a mitotic
cell-cycle program and not in endoreplicating cells as trichomes or trichome-
neighboring cells suggested that KRP1 acts by blocking a mitotic activity while
allowing S-phase entry rather than by actively promoting S-phase entry. This is also
supported by the cyclic expression of a late G2 reporter.

It is not clear, however, why KRP1 misexpression only in trichomes and not in
proliferating cells appeared to interfere with S-phase entry. To test whether other
developmental cues might be responsible for a differential response of trichome-
neighboring cells versus trichomes with respect to S-phase entry I made use of the
siamese (sim) mutant. In sim mutant plants trichomes undergo mitosis leading to
clustered and multicellular trichomes with strongly reduced endoreplication levels; yet
these multicellular trichomes display characteristics of typical trichomes with branch

formation and papillae on the outer surface (Figl 8A) (Walker et al., 2000).
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ProgL2:YFP:KRP1 and Prog .:YFP:KRP1'® were introduced into sim mutant plants
and analysis of the 14 and 28 generated transgenic plants showed the following three
phenotypical classes: 7% (for Prog o:YFP:KRP1) and 43% (for Prog2:YFP:KRP1%)
of the plants displayed a KRP1 misexpression like phenotype, i.e. small trichomes
with fewer branches, which eventually died. 64%/40% contained almost wild-type
like trichomes with none or only few clusters (Fig18B), and 29%/18% developed sim-
like clustered and multicellular trichomes. Similar results were also obtained by

crossing the untagged KRP1 and KRP1'®

misexpression lines into Sim plants as well
as by introduction the untagged version by plant transformation into sim plants (data
not shown).

Next, the DNA content of wild-type like Sim mutant plants expressing
ProgL2: YFP:KRP1'% was measured. Although nuclei of these trichomes did not fully

reach wild-type replication levels both a quantitative and a qualitative increase in

endoreplication levels were found.

Figure 18 Misexpression of KRP1'% in siamese

(A) Scanning-electron micrographs of a mature multicellular siamese mutant trichome.

(B) Scanning-electron micrographs of a mature unicellular wild-type like trichome in siamese
mutants misexpressing ProGLZZKRPl109 (as seen in line PI‘OGLg:YFP:KRPl109 in sim #5), note
that trichome-neighboring cells are enlarged.

(C) Analysis of trichome DNA content of Col wild type, sim and Prog,,:YFP:KRP1'® in sim
line #5. Distributions of trichome DNA contents are given in relative fluorescence units
(RFUs). The median value of Col trichomes was set as 32 C. From this value the respective C
values of the trichome nuclei were calculated. The sample size (n), the mean (m) +/- standard
deviation and the median (md) are given.

(D) Semi-quantitative RT-PCR showing the relative expression strength of YFP:KRP1'®® in
three independent lines misexpressing Prog.,:YFP:KRP1'® in siamese mutant background.
These lines resemble either a KRP-like, a WT-like or a sim-like phenotype. The expression
strength was compared with the endogenous expression of GLABRA2 (GL2). The numbers at
top indicate the RT-PCR cycle number. Line #14 showed the strongest, line #5 an
intermediate and #25 the weakest transgene expression which correlates with their
phenotypes.

Scale bar in (A) and (B) 100pum.
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In sim mutants roughly 20 percent of the individual nuclei have a DNA content of 4C
or less and the average DNA content of all nuclei is approximately 8C. In contrast, all

1'% in the sim mutant

of the trichome nuclei on plants expressing Prog2:YFP:KRP
background had a DNA content of more than 4C and the overall average DNA
content was approximately 13C (Figl8C, line #15). These data showed that KRP1
expression can at least partially rescue the Sim mutant phenotype. Thus, also in a
trichome environment KRP1 expression can induce endoreplication suggesting that
the difference between trichomes and trichome-neighboring cells is more directly
associated with the execution of a mitotic program than with other developmental
differences.

Furthermore, the spectrum of phenotypes obtained by expressing KRP1 in sim
mutant plants suggested that KRP1 could act in a concentration dependent manner.
Semi-quantitative RT-PCR of representative plants from the different phenotypical
classes revealed that weak sim-like and wild-type like phenotypes were correlated
with low expression strength of the KRP1 construct whereas a KRP1-like phenotype
was associated with higher expression levels of the construct (Figl8D).

Thus, this data suggests that KRP1 supplies a mitosis-suppressing function

which is compatible with an endoreplication program at a low concentration whereas

at higher levels of expression KPP1 blocks cell-cycle progression completely.

2.11. Endoreplicated trichome socket cells re-enter mitosis

Along with maturation and differentiation most of Arabidopsis leaf cells switch to an
endoreplication cycle (Melaragno et al., 1993) (compare also Figl5A,CE).
Correspondingly, cell-divisions become progressively restricted to the basal part of

the leaf and finally stop completely (Donnelly et al., 1999).
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Surprisingly in very old leaves of ProgLo:KRP1'% plants  the
Procycei:2:DB:GUS reporter was expressed again in trichome-socket cells, indicating
that these cells again entered a G2-phase (Figl9A). A comparison with wild-type
plants carrying the Procycei:2:DB:GUS transgene confirmed that in comparable stages
on wild-type leaves cell divisions have ceased with the exception of a few
meristemoid cells at the leaf base. I determined the ratio of GUS-positive trichome-
neighboring cells to total number of trichomes and obtained for leaves of
ProgL2:KRP1'® plants with a few meristemoid cells in a G2-phase a ratio of about
0.024 and on somewhat older leaves without any other detectable cells in a G2 phase
a ratio of about 0.006 (Tab5). Analysis of these mature socket cells in an SEM
revealed new cell walls in very large cells (Figl9B). This finding was supported by
the observation of cell divisions in differentiated guard cells in Propyw:YFP:KRP1'®
misexpressing plants resulting in a stoma composed of three cells(Fig161).

Intriguingly, at the time when the Procycsi:2 marker is turned on again the
majority of the trichomes on Prog2:KRP1'® plants are dead, in addition this is about
the time when the activity of the GL2 promotor ceases (Szymanski et al., 1998). This
correlation suggested that only after the withdrawal from the KRP1 regime trichome-
neighboring cells entered mitosis.

The general notion is that cells, which have started an endoreplication
program, are terminally differentiated and cannot re-enter mitosis (Nagl, 1976;
Melaragno et al., 1993; Edgar and Orr-Weaver, 2001). However, at the time when
neighboring cells resumed cell division all of them appeared to have undergone
substantial endoreplication suggesting that endoreplicated cells were able to re-enter
mitosis. To find further support for this possibility DAPI-stained leaves were

examined with the help of Suzanne Kuijt for the appearance of mitotic figures
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(Fig19C-F). Figure 19 D and F shows two representative mitotic figures, most likely a
metaphase (D) and a late anaphase or telophase (F) of trichome-neighboring cells in
KRP1-misexpressing plants. The comparison with similar mitotic stages of wild-type
root meristem cells or young leaf cells, which are not polyploid (Figl9C,E), revealed
that mitotic figures obtained from KRP1-misexpressing plants contained more DNA
than dividing cells in wild type (Figl9D,F). This demonstrates that endoreplicated
trichome-neighboring cells underwent mitosis.

As judged by the number of cell walls I identified in the SEM many
neighboring cells re-entered mitosis (Figl9B). DAPI staining revealed that the most
common nuclear type was an interphase nucleus indicating that cell divisions did not
result in abnormal mitoses or mitotic arrest but rather that mitosis of an endoreplicated
cell proceeded without aberrations. Thus, it can be concluded that plant cells maintain
the ability after going through endoreplication cycles to divide again, demonstrating a

high degree of flexibility in plant development.

TABLE 5

Procyce1.2:DB:GUS in socket cells of mature trichomes

line stage ' GUS r_:osmve socket cells per 2total b2 S trichomes
trichome number per leaf leaves

Procyce122DB:GUS | g, 0.000+/-0.000 9 326

in Ler

::1 rfaCBliz:DB:GUS GUS- 0.000+/-0.000 15 304

PI’OCYCBl;leB:GUS ~

in Prog.» KRP11%° GUS+ 0.024+/-0.035 16 508

PrOCYCBl;ziDB:GUS _ 2

in Prog,» KRP11%° GUS 0.006+/-0.031 52 868

stage GUS+: GUS staining in other epidermal cells besides socket cells

stage GUS-: GUS staining only in socket cells

Mature trichomes (stage 6 according to Szymanski et al., 1998) were analyzed;
average plus/minus standard deviation.
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Figure 19 Analysis of late cell divisions in endoreplicated trichome-neighboring cells
(A) Light micrograph of a whole-mount GUS-staining of the reporter line Procycp;.,:DB:GUS in
Progy »:KRP1109 showing GUS activity in one trichome-neighboring cell of an old rosette leaf, in
which no other cell divisions are detectable.

(B) Scanning-electron micrograph of trichome-neighboring cells surrounding a dead trichome of an
old rosette leaf of Prog; ,-KRP1199-expressing plants. Arrowheads mark a straight wall indicative
for a newly formed wall in enlarged trichome-neighboring cells.

(C) and (E) Confocal-laser-scanning micrographs of wild-type non-endoreplicated nuclei at difter-
ent mitotic stages. (C) shows a metaphase nucleus with condensed chromosomes from a root
meristem cell. (E) reflects a late anaphase/early telophase nucleus (marked by arrowheads) from a
young leaf epidermal cell.

(D) and (F) show mitotic figures in endoreplicated nuclei of trichome-neighboring cells in

Progy »:KRP1109 expressing plants. Note the increased DNA content compared to wild-type.
Condensed chromosomes most likely reflecting a (D) metaphase, (F) a late anaphase/early
telophase.

Scale bar in (A) and (B) 100pm; (C) to (F) Spm.
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3. Interactors of KRP1 and KRP1'%®

3.1. A-type cyclin dependent kinase CDKA;1

One of the best known Arabidopsis KRP1 interacting protein is the A-type cyclin-
dependent kinase CDKA;1. In several yeast two hybrid assays a strong protein-protein
interaction of KRP1 and CDKA;1 has been shown (Wang et al., 1998; De Veylder et
al., 2001b). Moreover Wang and colleagues were able to show in a histonel kinase
assay that overexpression of KRP1 interferes with CDKA;1 activity (Wang et al.,
2000). The first hints for an interaction of KRP1 with CDKA;1 in planta came from
Schnittger et al. 2003. In their work they could completely rescue the trichome
phenotype of ProgLo:KRP1'% expressing plants by crossing these plants with
transgenic lines misexpressing CDKA;1 under control of the GLABRA2 promotor.
Misexpression of Prog 2:CDKA;1 alone did not result in any morphological changes.
The trichomes in the progeny of the cross Pr‘oGLz:KRPllO9 with Prog2:CDKA;1 had
wild type morphology.

To study whether the interaction with CDKA;l causes changes in the
subcellular localization of KRPI1, transgenic plants containing either the
ProgLs:YFP:KRP1 or the Prog:KRP1'%:YFP construct were crossed with plants
misexpressing Prog 2:CDKA;1. Also plants expressing the dominant active variant of
CDKA;1, Prog2:CDKA;1-AF, were used for crossings. In the CDKA;1-AF variant
the two inhibitory phosphorylation sites Tyr14 and Thrl5 were mutated to Phe and
Ala respectively, thus preventing the inhibitory phosphorylation (Hemerly et al.,
1995). Misexpression of CDKA;1-AF under control of the GL2 promotor did not
result in a phenotype (Arp Schnittger personal communication). By crossing of

ProgL:CDKA;1-AF or Prog,:CDKA;1 with Prog:KRP1!®:YFP the KRP1
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trichome phenotype could be rescued. Because homozygous ProgL2:KRP1':YFP
expressing plants showed only a very weak enlargement of the socket cells rescue was
difficult to judge and (Tab2) therefore this aspect has not been taken into account for
further analysis.

Concerning the localization of YFP:KRP1 in Prog 2:CDKA;1 misexpressing
plants, YFP signal was still detected in the cytoplasm and the nucleus (Tab6). In F1
plants of the cross of the two CDK variants with Prog »:YFP:KRP1 the YFP signal
could only be detected in the nucleus corroborating that the interaction of KRP1 or
KRP1'” with CDKA;1 does not alter the subcellular localization of KRP protein.
Interestingly, phenotypical analysis of the F1 generation of the crosses of YFP:KRP1
with both CDK variants revealed no rescue, i.e. the trichomes were smaller and had
fewer branches as compared to wild type trichomes (Tab6). I observed this phenotype
in the progeny of all crosses, using Progi2:YFP:KRP1 expressing plants either as the
male or the female crossing partner. Taken together, these findings show that KRP1'®
interacts with CDKA;1 and CDKA;I-AF in planta. It needs to be further analyzed
why in plants expressing YFP:KRP1 KRP1 interaction with both CDK variants is
hindered. The Progi2:YFP:KRP1 construct seemed to be functional as the trichomes
in this line looked like Prog 2:KRP1 misexpressing trichomes (Tab3). However,
CDKA;1 and CDKA;1-AF do not interfere with the subcellular localization of KRP1

and KRP1'%,

3.2. B-type cyclin dependent kinase CDKB1;1
As mentioned in the previous chapter misexpression of KRP1 can block cell division.
Therefore the interaction of KRP1 with the mitotic CDKBI1;1 was studied.

Misexpression of the dominant-negative CDKB1;1 resulted in a block in G2-phase in
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Arabidopsis (Boudolf et al., 2004). So far no interactions have been found for
CDKBI1;1 with KRPs based on yeast two hybrid assays (De Veylder et al., 2001b);
(Zhou et al., 2002). Also in planta crosses of Prog 2:KRP1'® with Prog,,:CDKB1;1
showed that truncated KRP1 does not interact with CDKBI1;1 (Schnittger et al., 2003).

In this work, I crossed Progio:YFP:KRP1 and Progi,:KRP1'®:YFP
misexpressing plants with Prog :CDKB1;1 expressing plants and analyzed the
phenotype in their progeny. In addition, the subcellular localization of KRP1 and
KRP1'” in the CDKBI;l overexpressing background was analyzed. The FI
generation of all crosses revealed the KRP phenotype (small trichomes with fewer
branches) and the subcellular localization of KRPland KRP1'” remained unchanged
(Tab6). These data corroborate that there is no genetic interaction between the two

KRP1 versions and the mitotic CDKB1;1.

TABLE 6
Interactors of KRP1 and KRP1'%
male ProgL2: YFP:KRP1 | Progz:KRP1':YFP | Progia:nls:GFP:GUS

female

P KRP WT WT
Proei2:CDKA;1 I nucleus nucleus+cytoplasm NA

P KRP WT WT
ProcLz:CDKA;L-AF [ nucleus nucleus+cytoplasm NA

P KRP KRP WT
Proei2:CDKB1;1 [ nucleus nucleus+cytoplasm NA

P WT WT weak CYCD3;1
Proe.z:CYCD3;1 I nucleus nucleus+cytoplasm NA

P KRP WT WT
ProeL2:CKS1 [ nucleus nucleus+cytoplasm NA

p KRP KRP
ProgL2:nls:GFP:GUS I NA NA

p: trichome phenotype; 1: localization; NA: not analyzed
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endogenous GL2

KRP1109 x CKS1

Figure 20 Interactors of KRP1

(A) and (B) Scanning electron micrographs of plants misexpressing Progy,-CYCD3;1. (A)
shows a young developing multicellular trichome, (B) shows mature trichomes (pictures were
taken from Schnittger et al., 2002).

(C) and (D) UV excited micrographs of Arabidopsis leaves expressing transiently
Pro;54:CFP:CKS1 after particle gold bombardment. CFP:CKS1 can be detected in the nucleus
and the cytoplasm. In (D) the closed arrowhead indicates the cell, which was hit by the gold
particle, whereas open arrowheads indicate the neighboring cells, which show a weaker CFP
signal, suggesting CKS1 movement or diffusion.

(E) Semiquantitative RT-PCR showing the expression of KRP1/09 and as control GL2. RNA
was isolated from F1 seedlings obtained from crossings of Prog; »:KRP1109 with either
Progy,:nls:GFP:GUS (upper panel) or with Prog; ;. CKSI (lower panel). The numbers at top
indicate the RT-PCR cycle number.
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3.3. D-type cyclin CYCLIN D3;1

Besides the C-terminal CDK interacting domain (Fig7) also a cyclin interacting
domain has been identified in yeast two hybrid experiments using various KRP1
deletion constructs (Wang et al., 1998). The authors could show a strong interaction
of KRP1 and KRP1'® with the D-type cyclin CYCD3;1. The first evidence for a
genetic interaction in planta has been described by Schnittger et al. (2003). In their
study they made use of the trichome CYCD3;1 misexpression line (Prog2:CYCD3;1),
in which the wild-type single, unicellular trichome is transformed into clusters of
multicellular trichomes (Fig20A,B) (Schnittger et al., 2002b). The progeny of the
crosses of PrOGLg:KRPl109 with Prog2:CYCD3;1 misexpressing lines had mostly
three-branched, unicellular trichomes and the cluster frequency was like in wild-type.
This means that overexpression of both components could completely rescue the
KRP1- and the CYCD3;l trichome phenotypes, emphasizing that KRP1'” and
CYCD3;1 interact. Additional information came from the work of Zhou et al., who
could partially rescue the growth retardation of Prosss:KRP1 expressing plants by
overexpressing CYCD3;1 under control of the CaMV35S promotor (2003). In this
work a complete rescue was also observed in crosses of plants expressing the YFP
fused to KRP1 or KRP1'” with the Prog2:CYCD3;1 plants. To rule out that the
observed phenotypes are not caused by co-suppression the F1 generation of
ProgL2:CYCD3;1 crossed to Prog2:nls:GFP:GUS was analyzed. The trichomes were
multicellular and were initiated in clusters, but the phenotype was milder than in
homozygous Prog 2:CYCD3;1 expressing plants (Tab6). With respect to the
subcellular localization of KRP1 and KRP1'” no alterations have been observed in

the crosses with Prog 2:CYCD3;1. Taking these data together, the previously reported
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interaction between KRP1 and KRP1'” with CYCD3:1 could be confirmed, also with

YFP translational fusions of KRPs.

3.4. CDC KINASE SUBUNIT CKS1

Like in yeast and animals the Arabidopsis CDC KINASE SUBUNIT 1 has been
identified as an interactor of CDKA;l in a yeast two hybrid screen. Besides this
interaction CKS1 was also found to interact with B-type CDKs, such as CDKBI1;1,
CDKB1;2 and CDKB2;1 (De Veylder et al., 1997). So far not much is known about
further proteins interacting with CKS1 in planta. In the mammalian system it was
shown that CKS1 binds to the F-box protein Skp2 which is part of the SCFS¥?

ubiquitin ligase involved in the ubiquitination of the CDK inhibitor p27<"™*

(Carrano
et al.,, 1999; Sutterluty et al., 1999; Tsvetkov et al., 1999). Furthermore CKSI1 is
required for the ubiquitination of phosphorylated p27Kipl and stabilization of Skp2 and
CKSI1 results in increased proteolysis of p27Kipl (Ganoth et al., 2001; Spruck et al.,
2001; Bashir et al., 2004).

In this work a possible interaction between the Arabidopsis CDK inhibitor
KRP1 and CKS1 was analyzed. In situ hybridization experiments revealed that CKS1
and KRP1 are expressed in partially overlapping domains. While CKS1 is expressed
in mitotic and endoreplicating cells, KRP1 can only be detected in endoreplicating
cells (Jacgmard et al., 1999; Ormenese et al., 2004). To test if KRP1 and CKS1 show
the same subcellular localization I made N-terminal fusions of CFP or YFP to CKS1
and expressed them under control of the CaMV35S promotor (Prosss:CFP:CKS1,
Prosss:YFP:CKS1). With the help of Marc Jakoby and Doris Falkenhahn the

subcellular localization of Prosss:CFP:CKS1 was analyzed by particle bombardment

of Arabidopsis leaves. The CFP:CKS1 fusion protein could be detected in the nucleus
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and the cytoplasm. Interestingly, the CFP signal was also observed in the cells
adjacent to the hit cell indicating that CKS1 might move from cell to cell (Fig20C,D).
To gain insights in the function of CKS1 in planta, this gene was misexpressed
in endoreplicating trichomes (Prog 2:CKS1). However, transgenic plants containing
this construct did not display a phenotype (Arp Schnittger personal communication).
As mentioned above the mammalian CKS1 seems to be involved in the degradation of
the KRP ortholog p27%"*. Thus 1 crossed Progi2:KRP1, Progia:KRP1'%,
ProgL2: YFP:KRP1 and Progi2:KRP1'®:YFP transgenic plants with the Progo:CKS1
misexpressing plants and analyzed the trichome phenotype and the subcellular
localization of KRP1 and KRP1'” in the F1 generation. As in the parental generation,
YFP:KRP1 could only be detected in the nucleus and KRP1'”:YFP was localized in
the nucleus and the cytoplasm (table 6). In the cross of Prog2:YFP:KRP1 with
Prog2:CKS1 misexpressing plants trichomes were small and had fewer branches,
comparable to the Prog 2:KRP1 phenotype. In all other crosses the KRP1 trichome
phenotype was completely rescued by the misexpression of CKS1 (table 6). To ensure
that the observed rescue was not due to co-suppression semiquantitative RT-PCR was
performed with primers for KRP1 and for GL2 as control. RNA was isolated from
young seedlings of the F1 generation of the cross PI’OGLz:KRPllogXPFOGLz:CKS]. and
the cross Prog2:KRP1'®xProg 2:nls:GFP:GUS. In both crosses KRP1'® is
expressed at similar levels (Fig20E), indicating that the observed phenotype was due
to the genetic interaction between KRP1 and CKS1 in planta. Interestingly, work
from the lab of Geert de Jaeger provided evidence for the interaction of KRP4 with
CKSI1, but not KRP2, in pull-down experiments (Geert de Jaeger personal
communication). These data show that CKS1 and KRP1 can interact in planta.

Whether CKS1 is involved in KRP1 proteolysis needs to be further investigated for
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example by measuring the YFP signal strength in the different compartments to check

for alterations.

3.5. Conclusion

For all crosses listed in table 6 the localization of KRP1 and of KRP1'” remained
unchanged. Whether the signal strength in the different cell compartments was altered
needs to be tested in a more detailed study. Moreover, it would be interesting to
analyze, whether crosses with ProgL2: YFP:KRP1'%® transgenic plants would give the

1*°:yFp expressing plants, because the

same results as shown above for Prog o: KRP
N-terminal fusion of YFP to KRP1 interfered with its interaction ability. In this work I
could show that KRP1'%” genetically interacts with CKS1, CYCD3;1 and CDKA;1
but not with the mitotic CDKBI1;1 Surprisingly, interaction of KRP1 fused with YFP
could be only seen for CYCD3;1. This suggests that the cyclin could be the primary
binding partner of KRP1 in the KRP-CDK/cyclin complex and not the CDK. This
secenario is supported by the recent finding, that the binding of p27Kipl to the

CDK2/cyclinA complex is a sequential mechanism, which is initiated by the binding

to cyclinA (Lacy et al. 2004).
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4. Analysis of RBX1a and CSN5A, proteins involved in protein

degradation

4.1. RBX1 the central component of the SCF complex

Besides transcriptional control, one important way to modulate the abundance of cell
cycle regulators is protein degradation. The ubiquitin-proteasome pathway is involved
in the degradation of many plant cell cycle regulators for example the CDK inhibitor
KRP2 (Verkest et al., 2005). Ubiquitination of a target protein involves the sequential
activity of three enzymes: an ubiquitin-activating enzyme (E1), an ubiquitin-
conjugating enzyme (E2) and an ubiquitin-protein ligase (E3). The Skp1-Cullin-F-box
complex (SCF) is a well characterized E3 ligase in plants (Hellmann and Estelle,
2002). The core of the SCF complex consists of a member of the cullin family and a
RING BOX protein, called RBX, which can bind to the E2 enzyme. In Arabidopsis
two genes encoding for RBX proteins haven been identified, RBX1a and RBXI1b
(Gray et al., 2002; Lechner et al., 2002).

It would be interesting to resolve whether the SCF-proteasome dependent
pathway also regulates the abundance of the KRP1 protein. To address this I focused
on the core component of the SCF the RBX1 protein. Based on available EST
sequences 6 ESTs have been found for RBX1a and none for RBX1b (Gray et al., 2002;
Lechner et al., 2002). Therefore misexpression and RNAi experiments were
performed with RBXla. Rough analysis of plants carrying the construct
ProgL2:RBX1a showed increased trichome branching. This result favors the idea that
the SCF-RBX1a complex might be involved in the degradation of an inhibitor of
endoreplication and that overexpression of one component of the SCFcomplex is

sufficient to enhance the degradation of this inhibitor.
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Besides overexpression of RBXla I also tried to decrease the amount of
RBXla in trichomes by a RNA interference approach. Seven out of 22 primary
transformants showed a distinct phenotype. Transgenic seedlings were smaller in
comparison to wild type and the length of the hypocotyl was extremely reduced
(Fig21A,C). Also the leaf shape was altered rosette leaves were laterally expanded,
giving rise to a more round leaf shape in comparison to WT leaves and the length of
the petioles was shorter (Fig21A,C). The leaf surface had an irregular appearance and
the trichomes seemed to be sunken into it (Fig21C). A similar phenotype has been
observed in Prog2:KRP1'® transgenic lines (Fig21B). The rosette leaf trichomes
appeared normal with respect to their branch number, however the trichome stalk was
much shorter. Detailed analysis including scanning electron microscopy revealed that
the trichome neighboring cells were enlarged, similar to the phenotype observed for

misexpression of KRP1'%

in trichomes (Fig21D). Previously Gray et al., 2002 and
Lechner et al., 2002 reported that RBX1a antisense and RBX1a-RNAi Arabidopsis
plants were somewhat perturbed in their auxin response resulting in a loss of apical
dominance. In the present work this phenomenon was also observed in
ProgL2:RBX1a-RNAi expressing plants.

The overexpressing and the RNAi lines form the basis for further experiments.
They will be used to determine the genetic interaction between KRPs and the SCF

RBX1A or to analyze the protein stability of KRP1, KRP1'® and KRP1'” in a RBX1a-

overexpressing or RBX1a-depleted background.
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Figure 21 Analysis of Prog; :RBX1a-RNAi misexpressing
and csnb5a mutant plants
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4.2. CSN5 a component of the COP9 signalosome

The COP9 signalosome (CSN) is a complex that was first discovered through loss-of-
function mutations by which photomorphogenesis was repressed in Arabidopsis (Wei
et al., 1994; Chamovitz et al., 1996). The CSN seems to be involved in the regulation
of protein turnover by E3 ubiquitin ligases and the 26S proteasome and has shown to
interact with the cullin and the RBX1 subunits of SCFs (Schwechheimer and Deng,
2001). Interestingly, in mammalian cells it has been shown that CSN5 interacts with
the CDK inhibitor p27Kipl causing its translocation from the nucleus to the cytoplasm,
where it becomes degraded by the ubiquitin-proteasome pathway (Tomoda et al.,
1999; Tomoda et al.,, 2002). To learn more about the function of the COP9
SIGNALOSOME SUBUNIT 5A I analyzed the phenotype of the csnSa mutant
phenotype (kindly provided by Claus Schwechheimer). The homozygous csn5a
mutant plants were severely impaired in their overall growth and rosette leaves had a
narrow shape in contrast to wild type plants (Fig21E,F,G,H). Recently, similar
phenotypes have been described for a T-DNA insertion line for the CSN5A locus
(Gusmaroli et al., 2004). Also trichome development was affected as leaf hairs had a
reduced cell-size, fewer branches and a shiny appearance, suggesting a defect in

endoreplication (Fig21G,H).

Figure 21 Analysis of Prog 2:RBX1a-RNAI misexpressing and csn5a mutant
plants

(A) Image of two week old seedlings from Prog :RBX1a-RNAi transgenic plant (indicated by
arrowhead) and the corresponding wild type, using the same magnification.

(B) Shows a typical three week old Prog ,:KRP1'® misexpressing seedling.

(C) Shows a three week old Prog 2:RBX1a-RNAIi misexpressing seedling.

(D) Scanning electron migrograph of trichome with enlarged socket cells from
Prog .:RBX1a-RNAI misexpressing plant.

(E) Overview over three week old Col wild type (top) and csn5a mutant (bottom) seedlings.
(F) Two week old Col wild type seedling

(G) Two week old csn5a mutant seedling

(H) Close up of a rosette leaf from csn5a showing small trichomes with fewer branches.

Scale bar in (D) 50pum; (F) 5mm; (G) and (H) 500pm
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Whether CSNS5A is involved in KRP1 regulation has to be investigated. First
experiments were initiated to analyze on the one hand the subcellular localization of
KRP1, KRP1'® and KRP1'” in dividing and endoreplicating cells in a csn5a mutant
background. On the other hand misexpression of CSN5A together with KRP1 in
trichomes will be used to analyze whether the KRP phenotype is weaker, indicating
that CSNS5 is involved in KRP1 proteolysis. Trichome-specific misexpression of
CSN5A alone under the GLABRA2 promotor did not result in any morphological

changes.
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5. The RBR1-E2F pathway in Arabidopsis

Schnittger et al. 2003 could demonstrate that the Arabidopsis CDK inhibitor KRP1 is
involved in the regulation of G1/S transition. Misexpression of KRP1 in trichomes
inhibits endoreplication. It would be interesting to find out whether this block at the
G1/S transition could be overcome by triggering entry into S-phase. Good candidates
for the regulation of entry into S-phase are the components of the Retinoblastoma-
E2F pathway. In the Arabidopsis genome, a number of genes involved in this
pathway, have been identified. So far one gene encoding for the Retinoblastoma
related gene (RBR1), three genes encoding for E2Fs (E2Fa, E2Fb and E2Fc), two
genes encoding for their hetero-dimerization partner DP (DPa and DPb) and three
genes encoding for DP-E2F-like (DEL1, DEL2 and DEL3) proteins have been
described (Vandepoele et al.,, 2002). To learn more about the function of the
individual members of the Arabidopsis RBR-E2F pathway in an endoreplicating
context, trichome specific misexpression lines were generated in this study. For the
misexpression approach the GLABRA2, CAPRICE and TRIPTYCHON promotors
were used (ProgL2, Procpc and Protgry) (FigdC,D,E). Moreover a knock-out approach
was started in which I tried to specifically reduce the transcript levels of DPa, DPb

and RBR1 in trichome cells.

5.1. Retinoblastoma related RBR1

In the mammalian system the Retinoblastoma tumor suppressor protein (Rb) is a key
regulator of the of the G1/S transition. In its non-phosphorylated state Rb binds to the
heterodimeric transcription factor E2F-DP thereby masking the transcriptional

activation domain rendering it inactive. Upon CDK phosphorylation Rb is released
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from the E2F-DP heterodimer and transcription of E2F-DP targets is enabled
(Harbour and Dean, 2000).

In plants not much is known about the Retinoblastoma protein and whether the
regulatory pathway described above is similar in planta. Recently Ebel et al.,
described a loss of function mutant of Arabidopsis retinoblastoma relatedl (RBR1)
(2004). The rbrl mutant is gametophytic lethal emphasizing the importance of RBR1
in plants. Moreover, the mature unfertilized megagametophyte fails to arrest mitosis
and undergoes excessive nuclear proliferation in the embryo sac.

Here I tried to knock-down RBR1 function by a RNA interference approach.
Thereby the complete RBR1 cDNA in sense and antisense orientation was expressed
to produce a double-stranded RNA. Arabidopsis plants were transformed in three
independent experiments with the Prog 2:RBR1-RNAI construct but among more than
10000 T1 seeds never any BASTA resistant transformant could be recovered (Tab7).
One possible explanation could be that silencing of RBR1 might be embryo lethal as
the GL2 promotor is active in epidermal cells during early embryo development
(FigdA,B; Fig14D) (Lin and Schiefelbein, 2001; Costa and Dolan, 2003).

Misexpression studies of RBR1 in trichome cells under control of either the
CPC or the TRY promotor led to trichomes with fewer branches compared to WT.
Consistent with the data that the number of trichome branches and DNA content are
correlated these results suggest that endoreplication is blocked (Hulskamp et al.,
1994). These results are consistent with the data reported from animals that RBR1 is
involved in the regulation of the G1/S transition. However, a more detailed analysis of

the transgenic lines is needed.
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TABLE 7

E2F / DP / RBR1 misexpressing lines

line background | trichome penotype
Procec:E2Fa Ler trichomes with more branches
Procpc:E2Fa gl2 gl2

ProgL2:E2Fa Ler WT

Progi2:E2Fa gl2 gl2

Protry:E2Fa Ler trichomes with more branches
Prorry:E2Fa gl2 gl2

Procec:E2Fb Ler trichomes with more branches
Procpc:E2Fb gl2 gl2

Prog2:E2Fb Ler WT

Prog2:E2Fb gl2 gl2

Prorry:E2Fb Ler WT

Protry:E2Fb gl2 gl2

ProgL2:E2Fc Ler trichomes with more branches
Prog2:DPa Ler WT

ProgL2:DPa gl2 gl2

ProgL2:DPa-RNAI Ler WT

ProgL2:DPb Ler WT

Progi2:DPb gl2 gl2

ProgL2:DPb-RNAI Ler WT

Procec:RBR1 Ler trichomes with fewer branches
Proc2:RBR1 Ler WT

Protry:RBR1 Ler trichomes with fewer branches
Prog2:RBR1-RNAI | Ler no transformants

5.2. E2Fs and DPs

E2Fa and E2Fb, together with their interacting partners DPa and DPb, have been

reported to act as positive regulators triggering entry into and progression through S-

phase via transcriptional activation of various genes involved in cell cycle machinery,

DNA synthesis, replication and repair (De Veylder et al., 2002; Kosugi and Ohashi,

2002¢; Menges and Murray, 2002). E2Fc may act as a repressor, because it binds to

the same E2F motifs as E2Fa and E2Fb in the promotor region of various genes but
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lacks the transcriptional activation domain. The expression of CDC6 is
transcriptionally up-regulated by E2Fa and down-regulated by E2Fc (De Veylder et
al., 2002; del Pozo et al., 2002).

In this work E2Fa, E2Fb and E2Fc were misexpressed in endoreplicating
trichome cells. Transgenic lines containing either Procpc:E2Fa, Protry:E2Fa,
Procpc:E2Fb or Progi2:E2Fc showed an increase in trichome branching (Tab7).

50 out of 90 primary transfomants of Procpc:E2Fa showed an increase in
trichome branching, whereas only 7 out of 80 Procpc:E2Fb containing T1 plants
displayed a similar phenotype. These data suggest that E2Fa acts as a more potent
transcription factor as E2Fb, which is in agreement with the results from Rossignol et
al. showing in a transient expression assay a stronger activation with the construct
Prosss:E2Fa than with Prosss:E2Fb (2002).

Besides their trichome phenotypes no further morphological alterations could
be observed in these transgenic lines in comparison to wild-type. Taken together these
data suggest that all three E2Fs were able to enhance endoreplication and seem to
function as positive regulators at the G1/S transition.

In contrast to the E2F induced increase in trichome branch number,
misexpression of their dimerization partner DPa and DPb under control of the
GLABRAZ2 promotor did not result in any obvious changes of trichome branching or of
trichome cell size (Tab7). This in agreement with the data reported by de Veylder et
al., 2002 and Kosugi and Ohashi, 2003, showing that DPa overexpression under
control of the CaMV35S promotor in Arabidopsis and in tobacco did not alter plant
morphology and DNA levels. However, in plants overexpressing both DPa and E2Fa
a synergistic phenotype could be observed with much higher endoreplication levels as

plants misexpressing E2Fa alone (De Veylder et al., 2002). It still needs to be shown
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by crossings of the various E2F and DP trichome misexpressing lines which specific
heterodimers are functional in planta and if they act as transcriptional activators or
repressors.

The attempts to knock out DP function via post transcriptional gene silencing
by misexpressing RNAi variants of DPa and DPb in trichomes did not result in any

morphological changes as compared to wild type (Tab7).

5.3. Rescue of the glabra2 mutant

Arabidopsis plants with a mutation in the homeobox gene GLABRAZ2 display a
glabrous leaf phenotype. Closer inspection of these leaves revealed that the gl2
trichomes were either enlarged abortive epidermal cells that expanded only in the
plane of the leaf or developed in unbranched spikes, similar to the trichomes
misexpressing KRP1 (Fig22A,B) (Koornneef, 1990; Rerie et al., 1994). DNA
measurements of the outgrowing gl2 trichomes and the aborted gl2 trichomes revealed
that in both cases endoreplication levels were reduced as compared to wild type (Arp

Schnittger, personal communication).

Figure 22 The glabra2 mutant

(A) and (B) Scanning electron micrograhps of glabra2. (A) rosette leaf from the gl2 mutant
showing the typical enlarged abortive epidermal cells and the unbranched and small trichomes
(picture taken from Szymanski et al., 1998). (B) Close up of such a abortive gl2 trichome cell.
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This brought up the hypothesis that the trichome phenotype of the glabra2 mutant is
caused by a decrease of endoreplication cycles. To test this I misexpressed E2Fs
(E2Fa, E2Fb and E2Fc) and DPs (DPa and DPb) under control of trichome-specific
promotors (Procpc, Prog 2 and Prorry) in the gl2 mutant background. As mentioned
above and based on the correlation of branching and DNA content, not all constructs
enhanced endoreplication in the wild-type background (Tab7). In WT plants
misexpressing the Procpc:E2Fa, Protry:E2Fa, Procpc:E2Fb  or Prog:E2Fc
transgene an increase in trichome branching has been observed. Misexpression of
these constructs in the gl2 mutant background resulted in glabrous leaves (Tab7), but
whether the endoreplication levels in these trichomes were elevated in comparison to
gl2 mutant trichomes needs to be analyzed. Furthermore misexpression of E2F and
the respective DP in gl2 trichomes might result in a more pronounced phenotype,
since in wild type plants expressing both E2Fa and DPa the endoreplication

enhancement was much stronger (De Veylder et al., 2002).
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DISCUSSION

In this work I analyzed how endoreplication is contolled in Arabidopsis thaliana. In
the first part I studied the regulatory function of RBR1 and E2Fs at G1/S the transition
in endoreplicating trichome cells. Preliminary data suggest that RBR1 might act as a
negative regulator whereas E2Fa, E2Fb and E2Fc positively affect endorpelication.

In the second part I could show that KRPs are likely to be important regulators
of endocycles in plants since the Arabidopsis CDK inhibitor KRP1 besides an
inhibitory role at the GI1/S transition point can block cell division and induce
endoreplication. In addition, it was found that KRP1 can act non-cell-autonomously.
These findings open a new view on the functions of CDK inhibitors (CKIs) especially
with respect to tissue organization and organ growth control in plants. Moreover, the
work on KRP1 resulted in the finding that already endoreplicated cells can adopt a

certain cell fate, and that endoreplicated cells can re-enter a mitotic cycle.

The RBR-E2F pathway and the regulation of endoreplication

In this work first hints were obtained that the Arabidopsis genes encoding for
members of the RBR-E2F pathway play a role in the regulation of G1/S transition.
Misexpression of the Arabidopsis adenovirus E2 promotor binding factor E2Fa or
E2Fb in trichome cells promotes trichome branching. Given the fact that trichome
branching correlates with DNA content, these data suggest that E2Fa and E2Fb are
able to trigger entry into S-phase, resulting in higher endoreplication levels when
misexpressed in trichome cells (Hulskamp et al, 1994). Surprisingly, the
misexpression of E2FcC in trichomes also resulted in higher branch numbers. This

observation stands in contrast to the reported function of E2Fc as a negative regulator.
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E2Fc competes with E2Fa and E2Fb for the same E2F promotor binding sites and
lacks the transcriptional activation domain (del Pozo et al., 2002; Kosugi and Ohashi,
2002c). However Mariconti et al. could show transcriptional activation of an E2F
responsive GUS construct by E2Fc in Arabidopsis protoplasts (2002). One possible
explanation could be that trichomes are a very sensitive test system for regulators of
the G1/S transition suggesting that already a weak transcriptional activation of E2Fc
results in a trichome phenotype. However, additional experiments are necessary to
understand the function of E2Fc in planta.

Misexpression of the Arabidopsis E2F dimerization partners DPa and DPb did
not result in any morphological changes, which is in agreement with the data observed
by de Veylder et al. for Prosss:DPa transgenic plants (2002). Transgenic plants in
which I tried to reduce DPa and DPb transcript levels by RNA interference did not
display a phenotype. But, it remains to be analyzed whether the expression of the DPs
is reduced in planta. It would be interesting to test whether misexpression of DPs
together with E2Fs, could enhance the observed trichome phenotype caused by E2Fs
as seen for overexpression of E2Fa together with DPa (De Veylder et al., 2002).
Moreover, in Arabidopsis not much is known about the preferences of E2Fs for their
dimerization partners.

Misexpression of the Arabidopsis RBR1 gene led to a decrease in trichome
branch number, as one would expect for a negative regulator of the E2F-DP
transcription factor. As the E2F misexpression lines are generated one could easily
test whether E2Fs are regulated by RBR1 like in animals. To gain more insights in
RBR1 regulation by phosphorylation an interesting experiment could be to test
whether Progi2:CDKA;1 misexpression can resuce the Prog2:RBR1 trichome

phenotype.
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However, one has to be careful with the above described results, because
these data are only based on morphological observations and need to be confirmed by
detailed analyses of the DNA content in these misexpressing lines. It is also worth
checking for the transcription levels of E2F downstream targets, such as CDC6 or
ORC which have shown to be upregulated in response to overexpression of E2Fa

together with DPa (De Veylder et al., 2002; del Pozo et al., 2002).

CKIls as multiple cell-cycle switches

Based on this study and previous experiments CKlIs could have at least three functions
in plants. First, KRPs might be important regulators involved in switching from a
mitotic to an endoreplicating cell-cycle mode in differentiating cells. As demonstrated
by misexpression in trichome-neighboring cells, embryonic epidermis cells, and
Prormm-positive cells, KRP1 is a very potent inhibitor of entry into mitosis while it
allows S-phase to proceed. Such an inhibitory function might be needed in cells
determined to switch to an endoreplication cycle but still contain mitotic regulators.
For instance in Medicago, mRNA of a mitotic cyclin has been detected in the zone of
nitrogen-fixing nodules, in which cells will enter an endoreplication cycle (Cebolla et
al., 1999). Consistently, the KRP1 mRNA was detected in Arabidopsis in mature
leaves, in which cells often endoreplicate (Ormenese et al., 2004). Lastly, the rescue
of sim mutant trichomes by KRP1 expression argues for a function of CKIs in
facilitating the switch to an endoreplication cycle. Intriguingly, SIM encodes a small
protein with limited homology to KRPs (John Larkin, personal communication).
Additionally, Verkest et al could demonstrate that KRP2, another member of the KRP

family, can block mitosis (2005).

81



Discussion

Second, derived from the finding that KRPs can block entry into mitosis I
postulate an additional function of KRPs in dividing cells by assisting to establish a
G1 phase. Licensing of origins of replication in a G1 phase requires a low CDK
activity (Stern and Nurse, 1996). One way to inactivate kinase activity after a
preceding mitosis is the APC/C dependent destruction of mitotic cyclins (Peters,
1998; Harper et al., 2002). In addition, it has been shown that in Drosophila a special
CDK inhibitor, ROUGHEX (RUX), binds to and inactivates mitotic CDK complexes
helping to establish a G1 phase with low CDK activity (Foley et al., 1999; Foley and
Sprenger, 2001). RUX is an essential gene in Drosophila demonstrating that there is a
high demand for this inhibitory activity. Recently, for the human CDK inhibitors
p21°°% p27%%1 and for the RETINOBLASTOMA protein a similar function in
controlling mitotic exit by inactivating mitotic CDK activity was found (Chibazakura
et al., 2004). A function of KRPs in contributing to a G1 phase could also explain the
expression of KRPs in highly proliferating cells, an observation that is so far not
understood and appears even contradictory to the previously described function of
KRPs as inhibitors of cell proliferation (Breuil-Broyer et al., 2004; Ormenese et al.,
2004). Additional hints for a function of KRP1 in or after mitosis come from
transcriptional profiling studies of an Arabidopsis cell culture that revealed an
expression peak of KRP1 mRNA in late G2/M phase (Menges and Murray, 2002;
Menges et al., 2003). Further, genes expressed in late G2 phase and mitosis often
contain mitosis-specific-activator (MSA) elements in their promotors, for instance the
promotor of CYCB1;2 shows 5 elements (Ito et al., 1998; Ito, 2000). In the promotor
of KRP1 at least § MSA elements can be found supporting an expression during
mitosis. However, it remains to be seen how in this scenario KRP1 is prevented from

a premature inhibition of a mitotic CDK complex.
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Finally, as shown in previous experiments, misexpression of KRPS can lead to
cells with a reduced DNA content (De Veylder et al., 2001b; Jasinski et al., 2002;
Schnittger et al., 2003). Therefore, the third function of KRPs might be to
terminate/assist to terminate mitotic as well as endoreplication cycles. First this is
supported, by the analysis of KRP1 transcript over time. In 5-week old Arabidopsis
leaves, in which presumably all cell-cycle activity has ceased, an increased level of
KRP1 transcript in comparison to CDKA;1 was found (Wang et al., 1998). Second,
further support comes from the analysis of the KRP1 T-DNA insertion line in which

endoreplication levels are increased in trichome cells.

Throwing the switch

What determines which CKI function is executed? Why does an endoreplicating cell
undergo an S-phase block whereas a proliferating cell is preferentially blocked at
mitosis? It is conceivable that KRP1 could target different CDK complexes or has
different affinities to the various CDK/cyclin complexes in endoreplicating trichomes
versus mitotic cells. Also, additional components might be present in mitotic and
endoreplicating cells, respectively. Misexpression of human p21Cipl, for instance, has
led to endoreplication only if the RETINOBLASTOMA protein is absent (Niculescu
et al., 1998). Also the Drosophila inhibitor RUX was found upon misexpression to
block mitosis and convert the 16 embryonic cycle into an endocycles. Earlier
embryonic cycles, however, were only converted when in addition cyclin E was
absent (Vidwans et al., 2002). Thus, KRP1 could have a cell-type specific function
depending on a specific set of cell-cycle regulators.

All previous data, however, were obtained from misexpression studies using

strong promotors, either the GL2 or the CaMV35S promotor, precluding any analysis
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of CDK function at weaker concentrations. In this study, I looked at KRP1 moving
from trichomes into their neighboring cells and the comparison of fluorescence
intensities of YFP-tagged KRP proteins between trichomes and their neighboring cells
revealed a more than two-fold difference for KRP1'®:YFP to YFP: KRP1 between
the two cell types. In addition, the GL2 promotor appears to have weaker expression
in young embryos than later in trichome or root development as judged by the
strength of the in situ hybridization signal and fluorescence intensity of reporter genes
(Lin and Schiefelbein, 2001; Costa and Dolan, 2003). Not much is known about the
relative strength of the TMM promotor but it is presumably weaker than the CaMV35S
promotor. Thus, it is possible that CDK inhibitors act as concentration dependent
switches that block entry into S-phase only at high concentrations. This is
substantiated by the finding that a KRP1-misexpression like phenotype was found in
sim mutant plants with high levels of KRP1 expression whereas at lower expression
levels increased endoreplication levels in comparison to the Sim mutant were found.
Recently, similar observations have been reported for weak and strong misexpression
of KRP2 under control of the CaMV35S promotor. Low protein concentrations of
KRP2 inhibited the mitotic cell cycle, but endoreplication was unaffected. Whereas
Arabidopsis plants containing high amounts of KRP2 showed reduced endoreplication
levels (Verkest et al., 2005). Interestingly, the study of temperature sensitive CDK
alleles in yeast has suggested that for entry into mitosis higher levels of CDK activity
are required than for entry into S-phase (MacNeill et al., 1991; Ayscough et al., 1992).
One deduction from the above is that if CDK inhibitors are involved in establishing
endocycles, and thus, are already expressed in endoreplicating cells, e. g. trichomes,
the additional expression of KRP1 might then reach a threshold concentration of CDK

inhibitor resulting in a block of S-phase entry. This could explain why among the
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large number of transgenic plants generated expressing various KRP versions in
trichomes one has only found plants with apparently reduced endoreplication levels in
trichomes.

Of course, cell-type specific action and concentration dependency of CKls are
not mutually exclusive. Also endocycles induced in trichome-neighboring cells
differed from endocycles in wild-type trichomes since in trichomes neither CYCB1;1
nor CYCB1;2 promotor activity can be recognized (Schnittger et al., 2002a).

Remarkably, the CYCB1;1 promotor reporter indicating a G2-phase did not
accumulate in endoreplicating trichome-neighboring cells. This reporter carries a
destruction box indicating that at least some activity of the APC/C remained even
though CDK activity was presumably blocked. In animals and yeast, CDK activity
has been found to be necessary for CDC20 (class of APC/C-cofactors)
phosphorylation and by that activate the APC/CP (Shteinberg et al., 1999; Kramer
et al., 2000). One possibility for KRP1 misexpressing plants could be that only the
affinity to certain substrates or only certain CDKs might be blocked by KRP1 still
permitting the activation of APC/C®“*°. One candidate for a CDK that cannot be
blocked by KRPs are the plant specific B-type CDKs (Joubes et al., 2000).

Alternatively, also a different APC/C complex could be involved since the
CDC20 dependent APC/C is active only in late mitosis (Shteinberg et al., 1999;
Kramer et al., 2000). In animals, with the end of mitosis and during a G1 phase of a
following cell cycle another APC/C is assembled containing the CDH1cofactor class
(Zachariae et al., 1998). Studies from Drosophila have revealed that the APC/CP"" is
also active in the G2 phase and needs to be inactivated prior to mitosis to allow
accumulating mitotic cyclins (Grosskortenhaus and Sprenger, 2002). In contrast to

CDC20, phosphorylation has been found to inactivate CDH1 (Kotani et al., 1999;
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Kramer et al., 2000). Thus, in the case of KRP1 misexpression another possibility is

CDHI
C

that blocked CDK activity might result in an active ACP/ . Yet, it remains to be

seen whether plant APC/C is similarly regulated by CDC20 and CDH1 homologs.

Non-cell-autonomous action of CKls

So far, CKIs have not been found to function in a non-cell-autonomous manner in
animals. Besides controlling CKIs within a cell, the non-cell-autonomous action of
KRP1 offers a possibility to link decisions on a cellular level with the supracellular
division and growth pattern in organs. For instance, it has been found that starting
from the leaf tip epidermal cells enter an endocycle (Melaragno et al., 1993). CKIs
could help to spread the entry into an endoreplication cycle. In addition, CKIs could
be involved in linking developmental programs, e.g. trichomes with trichome-
neighboring cells. In contrast to other epidermal cells it was found that the level of
endoreplication in trichome-neighboring cells is quite constant around 4-8C. Of
course this could be a feature of socket-cell fate. Alternatively, this could also be an
indirect effect resulting from a diffusion of CKIs from a centrally located trichome
leading to a coordinated entry in and perhaps a coordinated exit from an
endoreplication cycle. Analysis of trichome mutants with increased and decreased
endoreplication levels might help to answer this question.

The molecular mechanism of the non-cell-autonomous action of KRP1
remains to be analyzed in detail. Transport through plasomodesmata appears to be
highly regulated and at least for some nuclear localized proteins a controlled transport
mechanism has been found (Gallagher et al., 2004). Conversely, plasmodesmata also
allow the passive diffusion of small molecules. The size exclusion limit (SEL) for

non-targeted symplastic movement has been estimated to be around 60 kD in young
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tobacco leaves and around 40 kD in older tobacco and Arabidopsis leaves (Oparka et
al., 1999; Crawford and Zambryski, 2000; Itaya et al., 2000). Thus, on the one hand
KRP1 is nuclear localized on the other hand KRP1, even fused to YFP, might be
small enough (22 kD and 49 kD, respectively) to diffuse between cells whereas a
GUS:YFP:KRP1'” fusion with 105 kD was retained in trichomes. Yet a third
alternative is that not the protein but the mRNA moves between cells (Ruiz-Medrano
et al., 1999; Kim et al., 2001), and detailed analyses will be required in future to

understand the nature and possible function of the KRP1 non-cell-autonomy.

Regulation of CKIs by their intracellular localization

The finding that KRP1 can move between cells adds another level of complexity to
plant development and challenges cell-cycle control on a tissue and organ level. There
are at least two possible ways for plants to keep CKls in check. The first one might be
the nuclear localization. Plants misexpressing YFP:KRP1'® showed a strong YFP
signal in the nucleus, which is in agreement with the recently identified putative NLS
of KRP1 harbored in the N-terminus. The second one might be the high instability of
the KRP1 proteins. In contrast to YFP expressed from the GL2 promotor full length
KRP1 protein could not be detected on western blots. For the N-terminally truncated
protein KRP1 1% a band of the expected size was found. Intriguingly, whereas the full

1109

length KRP1 was exclusively found in the nucleus, KRP was also located in the

cytoplasm. Similar results were recently obtained by Zhou et al. analyzing roots of
plants misexpressing KRP1 from the CaMV35S promotor (2003). In animals, p27Kipl
abundance and localization is strictly regulated (Sherr and Roberts, 1999; Slingerland

and Pagano, 2000). p27Kipl exerts its inhibitory function in the nucleus and in many

experimental systems p27Kipl has been found to become degraded in the cytoplasm
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(Tomoda et al., 1999; Connor et al., 2003). One likely possibility is that KRP1
becomes degraded in the cytoplasm and that for this degradation a motif in the N-
terminus of the protein is required. To test whether proteolysis of KRPs takes place in
the cytoplasm KRP1 could be targeted to the cytoplasm, for example by fusing it to a

nuclear export signal.

Regulation of CKls by protein degradation

In animals p27Kipl is recognized by the E3 ligase SCF*2, becomes ubiquitinated and
then degraded by the 26S proteasome (Carrano et al., 1999; Sutterluty et al., 1999;
Tsvetkov et al., 1999). The first hints that the SCFS? dependent degradation of CDK
inhibitors is also involved in the proteolysis of Arabidopsis CKIs came from the

1109

misexpression of KRP in Arabidopsis plants lacking the F-box protein Skp2. The

1'% in a skp2-1

cytoplasmic YFP signal of plants misexpressing Promum:YFP:KRP
skp2-2 double mutant background was stronger in comparison to the misexpression of
this construct in wild type (Marquardt, 2005). Interestingly, analysis of the stability of
the YFP:KRP1'"” fusion protein in endoreplicating trichomes by misexpression of
ProgLo:YFP:KRP1'® in a skp2-1 skp2-2 double mutant background revealed no
changes in the cytoplasmic YFP signal strength. In the trichome-neighboring cells of
this line a cytoplasmic signal could be detected, whereas wild-type plants

misexpressing ProgLo: YFP:KRP1'%°

showed only a YFP signal in the nucleus
(Marquardt, 2005). This indicates that KRP1 is degraded in a Skp2-dependent manner
in dividing cells. However, the fact that the YFP:KRP1 fusion protein expressed
under control of the GL2 promotor could not be detected in western blots shows that

KRP1 is subjected to degradation also in endoreplicating cells. These findings suggest

that KRP1 becomes degraded by a Skp2-independent manner in endoreplicating cells.
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This assumption is supported by the phenotypes observed in Prog 2:RBX1a-RNAI
transgenic plants, which showed similarities to KRP1 misexpressing plants. The
trichome-neighboring cells were enlarged and the rosette leaves were roundish with
sunken trichomes, but the trichomes had a wild type appearance with respect to
branch number. An exciting experiment would be to analyze the protein stability of
KRPs in dividing and endoreplicating cells of plants with reduced RBX1a levels, like
in the Prog 2:RBX1a-RNAi line.

Mice lacking the CDC KINASE SUBUNIT CKSI have been shown to
KipL

accumulate high amount of p2 . Further experiments revealed that CKS1 binds to

Skp2, thereby mediating the interaction of Skp2 with p27Kip1and the subsequent

ubiquitination of p27KiIOl (Spruck et al., 2001). Stabilization of the human CKS1 and

Skp2 resulted in enhanced proteolysis of p27<™*

(Bashir et al., 2004). Interestingly, I
observed that misexpression of CKS1 in trichomes could rescue the KRP1 caused
trichome phenotype, suggesting that the proteolysis of Arabidopsis KRPs might be
regulated by a similar SCFSkP2-CKSL dependent pathway. However, analysis of the
stability of the KRP1'®:YFP fusion protein in the progeny of the cross of
Prog2:CKS1 with ProGLz:KRleg:YFP misexpressing plants revealed a strong YFP
signal in the cytoplasm and the nucleus. One possible explanation is that the amount
of KRP1'":YFP in the crosses with CKS1 is reduced below a certain threshold
leading to wild type trichomes. To test this measurements of the YFP intensity of
KRP1'”:YFP in Prog 2:CKS1 and wild type background would be needed. Moreover
it should be analyzed whether the observed rescue also leads to wild-type DNA levels
in the trichomes. Another possibility to explain CKS1 function could be that CKS1

prevents binding of KRP1 to the CDK/cyclin complex. A third possibility is that

CKSI either activates or stabilizes the CDK/cyclin complex. In budding yeast it has
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been shown that CKS1 stabilizes and activates the CDK/cyclin (Cdc28/Cln2) complex

in vitro (Reynard et al., 2000).

Endocycles and terminal differentiation

Endocycles are often regarded as a state of terminal differentiation since the switch to
an endocycle is often associated with cell differentiation (Edgar and Orr-Weaver,
2001; Sugimoto-Shirasu and Roberts, 2003). Evident examples for this connection are
Arabidopsis trichomes (Marks, 1997; Hulskamp et al., 1999), salivary gland cells in
Drosophila (Smith and Orr-Weaver, 1991), or human thrombocytes (Zybina and
Zybina, 1996).

Here I have shown that endocycles might be much more dynamic and flexible
than previously thought. The first observation was that the onset of an endoreplication
program still allows cells to adopt, and thus, change their fate. The second observation
was that an endoreplicated cell can re-enter a mitotic cycle. Interestingly, already
more than 50 years ago it was observed that polyploid plant and animal cells could
occasionally reduce their number of chromosomes and return to a diploid
chromosome set (Grell, 1946; Huskins, 1948a, b). Here it has been shown that a
reduction of DNA content is not limited to tetraploid cells but even highly
endoreplicated cells appeared to divide.

What causes these enlarged cells to re-enter mitosis? Three possibilities are
conceivable. In animals, it has been observed that binding of p27KiIOl can stabilize a
CDK4/cyclin D complex (LaBaer et al., 1997; Cheng et al., 1999; Bagui et al., 2000).
Correspondingly, KRP1 could conserve a mitotic regulator complex in the trichome-

neighboring, cells and after KRP1 is not supplied any longer by the trichome, the

mitotic complex is liberated. A mitotic complex stabilized by KRP1 might include
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cyclin D as in plants D-type cyclins have been found to have also mitotic activities
(Schnittger et al., 2002b; Koroleva et al., 2004). On the other hand a cell-size check
point might operate and induce late cell divisions. The endoreplicated trichome-
neighboring cells in KRP1-misexpressing plants are at least for some time the largest
cells found in the epidermis and likely of the entire leaf. Thus, a cell-autonomous
control mechanism might be responsible for the onset of cell divisions, and after a
certain size might be reached, a new cell division could be initiated.

Finally, also a non-cell-autonomous control mechanism based for instance on
stomata index might be responsible. I noticed that new stomata complexes were
formed by many cell divisions of trichome-neighboring cells (FigSE). Stomata density
is tightly controlled on the leaf blade (Nadeau and Sack, 2002b; Bergmann, 2004).
Stomata can only be generated by cell divisions, and therefore, leaf growth by cell
expansion in maturating leaves would lead to a dramatic decrease in stomata density.
Interestingly, always a few 2C cells were found in maturing leaf areas in which other
cells had undergone a few rounds of endoreplication (Melaragno et al., 1993). These
cells have been interpreted as a “reserve” for regenerating cells and also for stomata
formation. In the light of my findings, however, these cells might not be set aside but
could be generated by divisions of endoreplicated cells.

These different possibilities remain to be tested in future but it already
emerges that plant cell-cycle control is much more flexible than anticipated and
detailed analysis of division patterns will be needed in future to get a deeper insight
into the dynamics of plant cell-cycle control in the context of organ and tissue

development.
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MATERIAL & METHODS

1.MATERIAL

1.1. Chemicals and antibiotics
All used chemicals and antibiotics of analytical quality have been used from Sigma
(Deisenhofen, Germany), Roth (Karlsruhe, Germany), Merck (Darmstadt, Germany)

and Duchefa (Haarlem Netherlands).

1.2. Enzymes, primers and Kits

Restriction enzymes were used from MBI-fermentas (St.Leon-Rot, Germany) and
New England Biolabs (Frankfurt/Main, Germany). Modifying enzymes were used
from MBI-fermentas (St.Leon-Rot, Germany), Invitrogen (Karlsruhe, Germany),
Roche (Mannheim, Germany), usb (Cleveland, USA), Qbiogene (Heidelberg,
Germany), TaKaRa (Otsu, Japan). Primers were generated by Metabion (Miinchen,
Germany). Kits were supplied from peqlab (Erlangen, Germany), GENOMED
(Lohne, Germany), Roche (Mannheim, Germany), QIAGEN (Hilden, Germany) and

DYNAL (Oslo, Norway).

1.3. Cloning vectors and constructs

All used cloning vectors and constructs are listed in the appendix.

1.4. Bacterial strains
For standard cloning the Escherichia coli strains DH5alpha and XL1blue were used,
the DB3;1 strain, which is resistant to the ccdB gene, was used for the Gateway

Entry, Donor and Destination vectors.
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For plant transformation Agrobacterium tumefaciens strain GV3101 was used. For all

gateway vector based plant transformation GV3101+pMP90RK was used.

1.5. Plant lines
In this study Landsberg erecta (Ler), Columbia (Col), and Wassilewskaja (WS-O)

ecotypes were used. All mutants and transgenic lines are listed in the appendix.

2. METHODS

2.1. Plant work
2.1.1. Plant growth conditions
Arabidopsis thaliana plants were grown under long-day conditions (16 h of light, 8 h

of darkness) between 18 and 25 °C under standard greenhouse conditions.

2.1.2. Crossing of plants

At a stage when the flowers were closed and the pollen of the anthers was not ripe the
anthers of the acceptor flower were removed completely using very fine forceps. All
remaining older and younger flowers were also removed. After two days the stigma of

the carpels were pollinated with pollen from the donor plant.

2.1.3. Plant transformation

Plants were transformed according to the “floral dip” method (Clough and Bent,
1998). To gain strong plants, these were allowed to grow at 18°C untill the first
flowers appeared at stalks of approximately 10 cm in length. Four days before plant
transformation a 5 ml Agrobacteria preculture was incubated for two days at 28°C.

This preculture was used to inoculate the final 500 ml culture which was then
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incubated again for two days at 28°C. Before transformation 5% sucrose and 0.05%
Silwett L-77 were added to the culture. Plants were dipped in this solution for
approximately 20 seconds and afterwards covered with a lid. The lid was removed on

the following day.

2.1.4. Seed surface sterilization

The surface of the seeds was sterilized by a five min incubation in 95% Ethanol
followed by a 10 min incubation in a 20% Klorix solution (containing 0.1% triton X-
100). Afterwards the seeds were washed two to three times with 0.01% Triton-X100
solution and than plated under the clean bench on MS-Agar plates (1% Murashige-

Skoog salts, 1% sucrose, 0.7% agar, pH5.7).

2.1.5. Selection of transformants

The seeds of transgenic plants carrying in their T-DNA a kanamycin or a hygromycin
resistance were selected on MS-Agar plates with 50pg/ml kanamycin or 25 pg/ml
hygromycin, respectively. Transgenic plants containing the BASTA resistance were
grown on soil for 10 to 15 days. The seedlings were sprayed with a 0.001% BASTA

solution, the spraying was repeated after three to seven days.

2.2. Microscopy and cytological methods

2.2.1. Microscopy

Light microscopy was performed with an Axiophot microscope (Zeiss, Heidelberg,
Germany) or a Leica DM RA2 (Leica, Wetzlar, Germany) equipped with differential
interference contrast (Nomarski) and epifluorescence optics. The DISKUS software

package (Carl H. Hilgers-Technisches Biiro, Konigswinter, Germany; version

94



Material & Methods

4.30.19) was used to quantify the fluorescence intensity of DAPI stained leaves to
determine nuclear and cell sizes, and to measure the nuclear size of propidium iodide
stained embryos in optical sections. Cryo-scanning electron microscopy was
performed as described by Rumbolz et al., 1999. Confocal-laser-scanning microscopy
was performed with Leica DM-Irbe (Leica, Wetzlar, Germany) or LSM 510 META

(Zeiss, Heidelberg, Germany).

2.2.2. GUS staining

GUS-activity was assayed according to Sessions and Yanofsky, 1999. To allow
complete penetration of the X-Gluc-solution plants were vacuum infiltrated in
staining buffer (0.2% Triton X-100, 50mM NaPOs pH 7.2, 2mM potassium-
ferrocyanide K4Fe(CN)¢*H,O, 2mM potassium-ferricyanide K3;Fe(CN)g containing
2mM X-Gluc) for 15 to 30 minutes and afterwards incubated at 37°C over night.
Clearing was

performed in 70% Ethanol at 37°C over night.

2.2.3. Propidium iodide staining
Plant material was incubated for 5 minutes in 100 pg/ml Propidium iodide in H,O .
Afterwards the samples where washed with H>O, mounted on a slide and analyzed

under the microscope with UV excitation.

2.2.4. DAPI staining
To ensure an equal DAPI staining for DNA measurements of socket cells leaves are
incubated overnight in 70% Ethanol at RT. Leaves are then vacuum infiltrated for 30

min in a DAPI solution (0.25pg/ml DAPI in H,0) followed by a wash with H,O.
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For DNA measurements of trichomes, rosette leaves were vacuum infiltrated for 30
min in formaldehyde solution (3.7% formaldehyde in PBST) followed by a 2h
incubation at 4°C. Samples were washed two times for 15 min in PBST. Then leaves
were vacuum infiltrated in DAPI solution (0.25pg/ml, 5% DMSO in PBST) for 15
min and incubated overnight in DAPI solution at 4°C thereafter leaves were washed

two times in PBST.

2.2.5. Measurement of DNA content and YFP Intensity
Measurements of DNA content and YFP intensity were performed as described in

Weinl et al., 2005.

2.2.6. Fluorescent-Activated Cell Sorting Analysis

FACS Analysis was performed as described in Weinl et al., 2005.

2.3. Molecular-biological methods

2.3.1. RNA isolation, reverse transcription and semiquantitative RT-PCR
Isolation of RNA, DNAse digest, reverse transcription and semiquantitative RT-PCR
was performed according to Schnittger et al., 2002; Schnittger et al., 2003 and Weinl

et al., 2005. All RT-PCR primers are listed in the table 8.
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TABLE 8

RT-PCR primers

gene S/AS primer sequence 5’->3’ antr;ena:gng
att-Gateway S attB1 CAA GTT TGT ACA AAA AAG CAG 55
att-Gateway AS attB2 CCA CTT TGT ACA AGA AAG CTG 55
CDKA;1 AS cdc2a_511 ATG AGT AAA TGT CCT GAC AGG GAT AC 55
CDKB1;1 AS CDKB1;1_560 | TCA AGA GGC TTA GGA TTA GGT CC 62
EF1 SEF1_UP ATG CCC CAG GAC ATC GTGATTTCA T 58
EF1 AS EF1_RP TTG GCG GCA CCC TTA GCT GGA TCA 58
GLABRA2 S GL2_UTR_53 GAG GAG AAG AGG GAA GAG ATC ATA A 55
GLABRA2 AS GL2_330_AS | TCT TTC TCT TAT TAG TGC CCT TGT 55
GLABRA2 AS GL2_685 AGG AAT TAG CCT TGG AAA AAG ACT 55
KRP1 S R1/KRP1_617 CTC CGT CGT CGG TGA TAA TG 55
KRP1 AS R2/KRP1_1591 | AAG ACA CGA CTT TTC TGG GC 55
KRP1 S R3/KRP1_1048 | GGC GGT TAAAGAATC GTTAGAT 55
KRP1/KRP1'® | AS ICK_655_FL TTT ACC CAT TCG TAA CGT CCT TCT A 60
KRP1'% AS ICK_454 CAA CAA CAA TCT AAC GAT TCT TTA ACC 60
YFP S YFP126_S GCT GAC CCT GAA GTT CAT CTG 55
YFP AS YFP485_AS TGA TAT AGA CGT TGT GGC TGT TG 55

2.3.2. Genomic DNA preparation

Genomic DNA was isolated by CTAB-preparation (Rogers & Bendich

1988). Plant material (single rosette or cauline leave) was grinded and 200 pl of
extraction buffer (2%(w/v) CTAB, 1.4M NaCl, 20mM EDTA, 100mM Tris/HCI pH
8.0, 0.2% b-mercaptoethanol) was added and incubated for 30 minutes at 65°C. After
addition of 150 pl Chloroform/Isoamylalcohol (24:1) and careful shaking, the probes
were centrifuged for 15 minutes at 4000 rpm. The aqueous phase was transferred into
a new tube and mixed with 200 ul isopropanol and centrifuged for 15 min. at 4000
rpm. The pellet was washed with 70% Ethanol and dried, afterwards the pellet was

resolved in 20 pul 20mM Tris/HCI pH 8.0.
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2.3.3. Plasmid DNA preparation from bacteria
Plasmid preparation was performed using a column pEQ-LAB Plasmid Miniprep Kitl

(PEQLAB Biotechnology GmbH, Erlangen) according to the manufacturer’s protocol.

2.3.4. DNA-manipulation

DNA manipulation and cloning were carried out according to Sambrock et al., 1989
or Ausubel et al., 1994, using standard procedures. All PCR-amplified fragments were
sequenced prior to further investigation.

PCR-Primers and constructs were designed using the VectorNTI-suite 7.1 software

(Invitrogen, Karlsruhe).

2.3.5. Isolation of T-DNA insertion lines
To isolate T-DNA insertion lines for KRP1 or KRP4 of the Csaba Koncz collection a
PCR based screen was performed following the protocol of Rios et al., 2002. All

screening and T-DNA primers are listed in table 9.

TABLE 9

Screening and T-DNA Primers

primer sequence 5’->3’ antneerzll:i)ng
KRP4_S CCA CAA AGA GCA CTA ATC TTC ACA ACC CTA 68
KRP4_AS GAG TCC CCC TGT ACC GGA ATT CAT A 68
S1 (KRPI_S) CGT CAC TGT AAC GGG ACC ACT AAA AC 68
S2 (KRP1_AS) CTC TAA CTT TAC CCA TTC GTA ACG TCC TTC 68
T1 (left border Fish1) CTG GGA ATG GCG AAA TCA AGG CAT C 68
T2 (right border Fish2) CAG TCA TAG CCG AAT AGC CTC TCC A 68
T3 (left border HOOK1) | CTA CAC TGA ATT GGT AGC TCA AA TGT C 68
T4 (right border HOOK4) | TCA GAG CAG CCG ATT GTC TGT TGT G 68
T5 (left border HOOK3) | GTT GAC AGA CTG CCT AGC ATT TGA GTG 68
T6 (right border HOOK2) | TAC TTT CTC GGC AGG AGC AAG GTG A 68
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