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Zusammenfassung 
Die Arteriosklerose mit ihren klinischen Komplikationen ist eine der häufigsten 

Todesursachen in den westlichen Industrienationen.  Abstandnehmend vom klassischen 
Verständnis als Erkrankung des Fettstoffwechsels mit konsekutiver Einlagerung von Lipiden 
in der Gefäßwand und hierdurch provozierten mechanischen Komplikationen, geht man 
heute vielmehr von einem komplexen dynamischen Krankheitsbild aus. Dabei sind 
insbesondere inflammatorische und immunologische Prozesse von entscheidender 
pathophysiologischer Bedeutung. In der Tat beinhalten arteriosklerotische Läsionen eine 
Vielzahl immunologisch aktiver Zellen. Diese produzieren verschiedenste 
proinflammatorische Mediatoren, welche ihrerseits die Atherogenese  unterhalten und 
letztlich zum Auftreten klinischer Symtome führen, wie etwa der instabilen Angina, des 
Mykardinfarktes oder des Schlaganfalls. Unlängst konnten wir das proinflammatorische 
Zytokin Interleukin-18 (IL-18) als neuen, potentiellen Mediator der Arteriosklerose 
identifizieren.  

Auf diesen Ergebnissen aufbauend besteht das Ziel der vorliegenden Arbeit darin, die 
in vivo Rolle von IL-18 und seiner aktivierenden Protease Caspase-1 in der Arteriosklerose 
am Mausmodell zu evaluieren. Interressanterweise führte die IL-18-Defizienz zu einer 
signifikanten Reduktion früher arteriosklerotischer Läsionen, während spätere Stadien der 
Erkrankung unbeeinflusst blieben. Diese Studien verdeutlichen, dass IL-18 über seine 
klassiche Funktion, der Induktion von Interferon-γ (INF-γ), hinausgehend von 
pathophysiologischer Bedeutung für die Progression der Arteriosklerose ist. Weiterführende 
Experimente an durch Knochenmarktransplantation erhaltenen chimären Mäusen mit IL-
18Rα defizienten hämatopoetischen bzw. vaskuläre Zellen ergaben, dass die proatherogenen 
Effekte von IL-18 nicht über den IL-18Rα vermittelt werden. Ferner vermochte die Caspase-
1 Defizienz überraschender Weise nicht die Atherogenese zu beeinflussen, ein Ergebnis, 
welches alternative Mechanismen der IL-18 Aktivierung nahelegte. Im Folgenden 
durchgeführte Experimente untersuchten, ob Matrixmetalloproteinasen (MMPs), welche in 
arteriosklerotischen Plaques überexprimiert werden, einen solchen alternativen 
Aktivierunsgweg darstellen könnten. In der Tat bewirkten mehrere rekombinante MMPs die 
proteolytische Spaltung von pro-IL-18. Insbesondere MMP-2 und MMP-8 prozessiertes 
proIL-18 zeigte biologische Aktivität. Sequenzanalysen des prozessierten proIL-18 
identifizierten Schnittstellen, die von der klassischen Schnittstelle von Caspase-1 differierten. 
Abschließend gelang der Nachweis von prozessiertem IL-18 in Casape-1 defizienten 
Mäusen. Dieser Befund unterstreicht die biologische in vivo Relevanz eines solchen 
alternativen MMP-vermittelten Aktivierungsweges.  

Zusammenfassend zeigt die vorliegende Arbeit die proatherogene Rolle von IL-18 in 
vivo auf und weist deren Unabhängigkeit von IL-18Rα und Caspase-1 nach. Der letztere 
Befund ist überraschend und trägt wesentlich zum besseren Verständnis der biologischen 
Funktion von IL-18 bei. Die dargestellten Ergebnisse haben potentiell tiefgreifende 
Konsequenzen für gegenwärtige Strategien zur therapeutischen Intervention dieser 
biologischen Kaskaden. 
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Summary 
Atherosclerosis is the predominant underlying pathology of cardiovascular disease, the 

most common cause of premature death in the industrialized world. Recent research 
attributed inflammation a crucial role in atherosclerosis. Indeed, atherosclerotic lesions are 
characterized by abundance of immune cells and their effector molecules, accelerating 
atherogenesis and eventually leading to clinical symptoms such as unstable angina, 
myocardial infarction, or stroke. We have recently implicated the pro-inflammatory cytokine 
interleukin (IL)-18 as a novel mediator in this disease. 

The present work aims to evaluate the in vivo role of this cytokine and its activating 
protease Caspase-1 in atherosclerosis. Interestingly, IL-18-deficiency limited early lesion 
development in hyperlipidemic mice but did not affect atherogenesis after prolonged 
hyperlipidemia. These studies suggest a direct role for IL-18 in disease progression extending 
beyond the classical function of this cytokine, the induction of interferon gamma. Additional 
experiments employing chimeric mice, that lacked the IL-18Rα on either the hematopoietic 
or the vascular cells, generated by bone-marrow transplantation, revealed that IL-18Rα does 
not participate in the pro-atherogenic effects of IL-18 

 Surprisingly, deficiency of Caspase-1 did not diminish atherogenesis, thus suggesting 
alternative mechanisms of IL-18 activation during atherosclerosis.  

Subsequent experiments tested whether matrix metalloproteinases (MMPs), enzymes 
prominently expressed in atherosclerotic lesions mediate the maturation of the IL-18 
precursor (proIL-18). Indeed, several recombinant MMPs proteolytically cleaved the 
precursor in vitro, and MMP-2- and MMP-8 processed proIL-18 exhibited IL-18 activity.  

Sequence analysis of processed proIL-18 demonstrated that cleavage sites of MMP-2 
and MMP-8 differ from that of Caspase-1. Finally, the presence of mature/processed IL-18 in 
atherosclerotic tissue of Caspase-1-deficient mice highlighted the potential in vivo relevance 
of such an alternative, MMP-mediated IL-18 activation mechanism for this pro-inflammatory 
disease. 

In sum, this work directly demonstrates the pro-atherogenic role of IL-18 independent 
of IL-18Rα or Caspase-1. These surprising observations provide a novel understanding of 
IL-18 biology and may foster re-thinking of current approaches for the therapeutic 
intervention of this pathway in prevalent inflammatory diseases. 
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1. Introduction 
 

1.1. Cardiovascular disease and atherosclerosis 

 

Cardiovascular disease (CVD) continues to lead as a principal cause of death in 

developed countries,1,2 accounting for approximately 38 % and 42 % of deaths in the United 

States and the European Union, respectively.3,4 The total economic burden of CVD exceeds 

$390 billion and €165 billion annually for these regions, respectively.3,4 Due to containment 

of many infectious diseases and increasing adoption of western lifestyles, this trend is 

projected to extend worldwide by 2020.2,5 The vast majority of CVD-related deaths is 

attributed to a disease of arterial blood vessels, known as ‘atherosclerosis’.3 

Derived from the Greek words athera (gruel) and scleros (hard), atherosclerosis has been 

viewed for decades as a mere deposition of lipids along arterial walls. In the progression of 

the disease, these accumulations were thought to gradually narrow the lumen and finally lead 

to occlusion of the vessel, thus interrupting blood flow and oxygen supply to vital organs 

such as the heart and brain.6 This dogma was commonly accepted until studies in the late 

1980s revealed that 60-70% of acute myocardial infarctions result from non-occlusive 

atherosclerotic lesions.7-9 Further research identified plaque disruption and subsequent 

thrombus formation rather than gradually developing stenosis as the final pathologic steps 

that cause acute clinical events such as myocardial infarction or stroke.10,11 Despite its 

considerable impact, the pathological mechanisms underlying this vascular dysfunction 

remain incompletely understood. 

Research during the past two decades has focused on the cellular and molecular 

mechanisms responsible for the development and destabilization of atherosclerotic plaques. 

Indeed, numerous studies demonstrated that most plaques did not consist of mere acellular 

lipid depositions, but rather harbored active inflammation characterized by accumulation of 

immune-competent cells.12-17 The current view of atherosclerosis hypothesizes that complex 

processes, that include molecular and cellular components of the immune system, 

successively decrease plaque stability and provoke its rupture, thus exposing highly pro-



     

PhD Thesis -10- Norbert Gerdes 

coagulant mediators to the blood stream and resulting in thrombosis and its subsequent 

clinical symptoms.18-20 Hence, immune mechanisms that regulate integrity and stability as 

well as formation of atherosclerotic plaques have gained considerable attention among 

vascular biologists.14-17 

 

 

1.2. Atherosclerosis: An inflammatory disease 

 

The development of human atherosclerosis usually extends over decades.13,21,22 Two 

independent studies found fatty streaks, the earliest visible atherosclerotic lesions, ubiquitous 

among teenagers.23,24 These studies revealed that atherosclerosis starts rather early in life 

although clinical symptoms precipitate most commonly in people of advanced age. The 

initial triggers of the atherogenic process still remain undetermined. Among other factors, 

i.e., response to endothelial injury or microbial infection, elevated levels of plasma 

lipoproteins such as low-density lipoproteins (LDL) are considered prerequisite for athero-

genesis. Hyperlipidemia, commonly caused by environmental and/or genetic factors,25- 27 can 

lead to the accumulation of LDL within the vessel wall, where it can undergo modifications 

such as glycation or oxidation within the intima (Figure 1).28,29 Subsequently, such modified 

LDL can activate endothelial cells (EC), preferably at sites of hemodynamic strain,30,31 

promoting recruitment of circulating T lymphocytes and monocytes from the blood via the 

expression of adhesion molecules (e.g., P-selectin, vascular cell adhesion molecule-1 

(VCAM-1), and intercellular adhesion molecule-1 (ICAM-1)).14-17 Upon adhesion, 

monocytes and T lymphocytes, attracted by EC-derived chemokines (e.g., monocyte 

chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α)), 

transmigrate into the intima.16,17 Resident monocytes, termed macrophages, within the 

inflamed vessel wall can incorporate native or modified LDL via phagocytic or receptor-

mediated mechanisms.14,17 Following uptake, cholesterol can not be mobilized sufficiently 

and might instead accumulate as cytosolic droplets of cholesterol esters. These lipid-laden 

macrophages, also termed ‘foam cells’ due to their microscopic appearance, characterize 

early atherosclerotic lesions, also known as fatty streaks (Figure 1).16,17 The 
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accumulation of lipids, particularly their oxidatively modified derivatives furnish a strong 

trigger of pro-inflammatory responses.32,33 Sustained lipid uptake and accumulation causes  

production of pro-inflammatory cytokines, such as interleukin- (IL-)1β and tumor necrosis 

factor (TNF)α.14,16,17 Notably, these mediators might activate in an autocrine and paracrine 

fashion not only other macrophages, but also EC, smooth muscle cells (SMC), and T-

lymphocytes within the lesion, thereby accelerating the inflammatory process in a positive 

feedback loop.14,16,17,34 Additionally, overexpressed growth factors, such as macrophage 

colony-stimulating factor (M-CSF), in the inflamed arterial wall function as survival and 

mitogenic stimulus for the inflammatory cells.35  

 
Figure 1: Cellular mechanisms during atherosclerotic plaque evolution. 

The earliest changes preceding the formation of atherosclerotic lesions take place in the 
endothelium. Increased endothelial permeability to lipoproteins leads to accumulation of low 
density lipoprotein (LDL) in the intima. Modification, particularly oxidation, of these particles 
induces local cytokine elaboration, which enhances in turn the expression of adhesion molecules 
and chemokines, e.g., monocyte chemoattractant protein 1 (MCP-1). Attracted by chemokines 
peripheral blood monocytes enter the lesion and express scavenger receptors in response to 
cytokine stimulation. These receptors mediate the uptake of modified lipoprotein particles by 
macrophages promoting the development of foam cells. Macrophage-derived foam cells are a 
source of further cytokines, smooth muscle cells (SMC) proliferative factors, and matrix 
metalloproteinases. SMC proliferate and can migrate from the media into the intima. Proliferation 
and synthesis of extracellular matrix assist establishing the fibrous cap, which separates the lesion 
from the blood stream. Continued influx and activation of macrophages, which release 
metalloproteinases, can cause degradation of extracellular matrix, eventually leading to rupture of 
the fibrous cap, thrombus formation, and occlusion of the artery (not shown). 
Modified from: Libby. P. The vascular Biology of Atherosclerosis. Heart Disease: A Textbook of Cardiovascular Medicine. Braunwald, 
Zipes, and Libby Eds., 2001.  
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During lesion progression, foam cells in these early lesions can undergo apoptosis.16,36 

This process, thought mediated in part by the Fas/FasL pathway,37,38 contributes to the 

development of the lipid-rich, acellular core of the plaque (Figure 1). The lipid core contains 

large amounts of pro-coagulants, particularly tissue factor (TF) synthesized by foam cells and 

potentially released during their death.20 Furthermore, SMC migrate into the lesion in 

response to signals provided by platelet derived growth factor (PDGF) and other 

chemoattractant mediators from the media, establishing the plaque’s fibrous cap, which 

segregates the pro-thrombotic lipid core from the lumen. SMC proliferate and contribute to 

formation of the fibrous cap by synthesis of extracellular matrix proteins, particularly 

interstitial collagen.39 The thickness and collagen content of the fibrous cap positively 

correlates with the plaque’s biomechanical stability.40,41 Certain pro-inflammatory cytokines 

such as interferon gamma (IFNγ) inhibit proliferation and collagen synthesis of SMC and can 

trigger apoptosis of these cells, eventually contributing to the thinning of the fibrous cap and 

rendering the plaque prone to rupture.16,38,39,42 

Rupture of the atherosclerotic plaque, often occurring in the macrophage-enriched 

shoulder region, the junction between the atheroma and the normal vessel wall, exposes the 

pro-coagulant content of the lesion to coagulation factors of the blood,16 resulting in 

thrombus formation (Figure 2)16,18,43 In subclinical plaque rupture, the thrombus does not 

completely occlude the lumen of the vessel and may eventually resorb. Growth factors 

released during the subsequent wound healing process can lead to SMC proliferation and 

thickening of the fibrous cap, yielding a constriction of the lumen and restriction of blood 

flow. Under increased cardiac demand this can lead to ischemia, provoking symptoms such 

as angina pectoris.16 However, if plaque rupture causes an occlusive thrombus formation it 

may lead to acute clinical complications, such as myocardial infarction (MI) and stroke.16,44 

Therefore, the strength of the fibrous cap is considered a key determinant of atherosclerotic 

plaque stability.40,41 Accordingly, histological studies classify atherosclerotic lesions into 

those with features of ‘stable’ and ‘unstable’ (vulnerable) plaques (Figure 2). An unstable 

atheromatous plaque typically displays a large lipid core containing high amounts of pro-

thrombotic tissue factor overlaid by a thin fibrous cap and accompanied by an accumulation 

of inflammatory cells, particularly in the shoulder region.16,18,21,44 In contrast, a stable fibrous  
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Figure 2: Schematic of the life history of an atheroma. 

The normal human artery has a trilaminar structure. The endothelial cells separate the bloodstream 
from the intima, which contains a smattering of smooth muscle cells scattered with extracellular 
matrix. The media consists of much more tightly packed smooth muscle cells embedded in matrix 
rich in elastin as well as collagen. In early atherogenesis recruitment of inflammatory cells and 
accumulation of lipids lead to the formation of the lipid-rich core, as the artery enlarges to 
accommodate the expansion of the intima. Persistent inflammatory conditions cause further 
growth of the lipid core, degradation of extracellular matrix by proteases secreted by activated 
leukocytes, and reduced de-novo synthesis of collagen. These changes can thin the fibrous cap and 
leave it susceptible to rupture. Upon rupture, blood coming in contact with the thrombogenic 
content in the plaque coagulates and triggers thrombus formation. If the thrombus occludes the 
vessel persistently, an acute myocardial infarction (MI) can result. The thrombus may eventually 
resorb as a result of endogenous or therapeutic thrombolysis. However, growth factors released 
during the subsequent wound healing process can lead to smooth muscle cell proliferation and 
thickening of the fibrous cap, which can cause an inward directed growth of the intima, yielding a 
constriction of the lumen and restriction of blood flow. Increasing cardiac demand can lead to 
ischemia, provoking symptoms such as angina pectoris. Lipid lowering may reduce lipid content 
and calm the intimal inflammatory response, yielding a more “stable” plaque with a thick fibrous 
cap and, hence, less prone to rupture. 
 
Modified from: Libby. P., Inflammation in atherosclerosis. Nature 2002;420:868-74  
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 lesion features a well-developed fibrous cap and moderate lipid/leukocyte content        

(Figure 2).16,18,21,44  

Nonetheless, the progression from fatty streak to advanced, complex lesions likely does 

not occur inevitably and continuously over time.16 Clinical observations rather suggest that 

many human lesions develop discontinuously, featuring “bursts” of growth and progression 

of atheroma.16,45 Therefore, comprehensive understanding of the mechanisms that cause 

plaque progression and destabilization is crucial for the future treatment of the disease and 

prevention of acute clinical events. 

 

 

1.3. Matrix metalloproteinases in atherosclerosis  

 

Matrix metalloproteinases have gained particular interest as potential mediators of 

plaque destabilization. These enzymes constitute a family of zinc-endopeptidases that share 

variations on a basic five-domain structure and are generally classified after their particular 

substrate (e.g., collagenases, gelatinases, elastases).46,47 Notably, atheromatous plaques 

overexpress MMP-1, -2, -3, -7, -8, -9, -10, 12, and -13.46-55  

 Within the fibrous cap, SMC express a mixture of structural proteins, including 

collagen, gelatin, laminin, and elastin, that comprise the extracellular matrix (ECM).46,47  The 

amount of collagen, the most abundant ECM protein in the fibrous cap contributing to it’s 

strength, is modulated by two mechanisms: de novo synthesis and degradation.47,56 Pro-

inflammatory conditions can abrogate synthesis of collagen by SMC and simultaneously 

enhance the expression of MMPs, increasing collagen catabolism and, in turn, decreasing 

plaque stability.18 During lesion progression macrophages and T-cells continue to enter the 

lesion and aggregate particularly in the shoulder region.16,18,43 The continued activation of 

macrophages and T-cells as well as EC and SMC by inflammatory cytokines enhances 

expression and activity of MMPs.18,47 Members of two subfamilies of MMPs are considered 

particularly relevant to atherosclerosis and plaque stability. Interstitial collagenases (MMP-1, 

-8, and -13) mediate the initial breakdown of collagen fibrils, while gelatinases (MMP-2 and 

-9) can facilitate further degradation.47,48,51,55,57 Notably, endogenous inhibitors such as 
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members of the TIMP family (tissue inhibitor of matrix metalloproteinases)46,47,58 and TFPI-2 

(tissue factor pathway inhibitor-2),59 regulated MMP activity. However, chronic 

inflammation may cause an imbalance of MMPs and their endogenous inhibitors, thereby 

promoting elevated MMP activity, a characteristic of atherosclerosis and other inflammatory 

diseases.18,46,47 Indeed, expression of these proteases localizes with sites of collagenolysis in 

advanced atherosclerotic lesions,53 supporting the hypothesis that imbalanced MMP 

regulation contributes to lesion destabilization by decreasing fibrous cap strength, thus 

rendering the plaque prone to rupture.  

 

 

1.4. Cytokines in atherosclerosis 

 

Substantial evidence suggests that the cytokine network orchestrates the complex 

cellular and inflammatory interactions underlying atherogenesis. The net pro- or anti-

atherogenic function of cytokines relates to their ability to augment or antagonize 

inflammation, although this classification certainly oversimplifies the complex pathologic 

scenario of atherosclerosis. IL-1β and TNFα are classical pro-inflammatory cytokines and 

mediate pro-atherogenic functions,16,17 whereas IL-4 and IL-10 are considered anti-

inflammatory cytokines and accordingly promote mostly anti-atherogenic pathways.16,17,60,61 

Macrophages and T-cells, the dominant lymphocyte subpopulation within the atherosclerotic 

plaque, may partially modulate the antagonism between pro- and anti-atherogenic cytokines 

within the lesion and their polarization into a type 1 or type 2 helper T-cell (TH1) or (TH2) 

phenotypes. Lacking distinct surface markers, TH1 lymphocytes are characterized by 

secretion of IFNγ and TNFα,62,63 whereas TH2 polarization favors secretion of IL-3, IL-4, IL-

5, IL-10, and IL-13, which promote B-cell differentiation and immunoglobulin 

production,62,63 processes not commonly associated with atherosclerosis. In accord with the 

observed pro- or anti-inflammatory functions, expression of TH1 cytokines indeed dominates 

over TH2 cytokines in human atherosclerotic lesions in situ.60,64 Moreover, lack of TH1 

cytokines generally diminishes the extent of atheroma in animal models,65-68 whereas 

deficiency of TH2 cytokines promotes atherogenesis.61,68 
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IFNγ crucially mediates the TH1-dominated pathways that lead to macrophage 

activation and the induction of a plethora of pro-inflammatory factors such as chemokines, 

cytokines, and growth factors from vascular as well as immune cells.16,17,63,69 In addition, 

IFNγ might contribute to plaque destabilization by inhibiting SMC-proliferation and collagen 

synthesis, as discussed above.70 Accordingly, IFNγ- or IFNγ receptor-deficiency leads to 

reduced severity of atherosclerosis in hyperlipidemic mice.65-67,71,72 Nonetheless, the 

underlying mechanisms that elicit IFNγ expression in atherosclerosis remained largely 

unknown until recently. 

 

 

1.5. The pro-inflammatory cytokine IL-18 

 

IL-18 is a member of the IL-1 cytokine family. Originally designated as Interferon 

gamma-inducing factor (IGIF) IL-18 was initially discovered as a potent inducer of IFNγ in 

TH1-cells and Natural Killer (NK) cells.73-75 The human IL-18 gene consists of six exons, 

spanning approximately 19.5 kb.76 In both humans and mice, IL-18 expression in 

macrophages is enhanced either directly by bacterial and viral antigens or in an auto- and 

paracrine manner by stimulation with IFNα, -β, or -γ.77,78 Furthermore, pro-inflammatory 

cytokines such as IL-1β or TNFα enhance expression of IL-18.78,79 Initially identified in 

Kupffer cells and activated macrophages,75 a variety of other cell types express IL-18, 

including osteoblasts,80 chondrocytes,81 epidermal keratinocytes,82 dendritic cells,83 as well 

as intestinal and airway epithelial cells.84,85  

IL-18 expression and function has been associated with a variety of chronic 

inflammatory disorders, including cancer, rheumatoid arthritis, Crohn’s disease, psoriasis, 

and pulmonary sarcoidosis.79,86-89 Recently, anti-viral and anti-tumor properties were 

ascribed to IL-18 in addition to its role in innate immunity against bacterial infection.77,90 

In contrast to most cytokines, the IL-18 gene contains only one RNA-destabilizing 

element, conferring unusual stability on IL-18 mRNA that highlights the importance of post-

transcriptional regulation of IL-18 activity.78 Translation results in the synthesis of an 193 

amino acid precursor (proIL-18) of 24 kDa, revealing 65% sequence identity with the 192 
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amino acid murine proIL-18.74 Similar to its analogue proIL-1β, proIL-18 lacks a 

conventional signal sequence and requires processing by Caspase-1, also termed IL-1β-

converting enzyme (ICE), into the active, 18 kDa mature form.91-93 Cleavage via Caspase-1 

occurs between Asp36 and Tyr37 for human proIL-18 and between Asp35 and Asn36 for the 

murine homologue, respectively.78,93 In addition, Caspase-3 has been reported to cleave 

proIL-18 at different sites than Caspase-1, resulting in inactive forms of the cytokine and 

implicating Caspase-3 in negative regulation of IL-18 activity.94 Since the IL-18 mRNA is 

unusually stable, as discussed above, and thus appears to evade stringent transcriptional 

regulation, the post-translational regulation of IL-18 activity by proteases such as Caspase-1 

and -3 is considered particularly relevant to determination of the activity of this cytokine.78 

 

 

1.6. Caspase-1 

 

Caspase-1 represents the founding member of a family of cysteine proteases termed 

Cysteine requiring ASPartate proteASE (Caspase), sharing the active site cysteine and 

aspartate binding clefts.95 Originally isolated and cloned from cells of the monocytic 

lineage96,97 and traditionally considered the enzyme responsible for maturation of IL-1β 

precursor,96 Caspase-1 was identified in 1997 as the protease that mediates the activation of 

proIL-18.91,92 As the prototypical activator of these two prominent cytokines, Caspase-1 may 

participate in a number of inflammatory diseases and has received considerable attention as a 

potential target for therapeutic intervention.98,99  

A variety of cell types express Caspase-1 including EC, SMC, fibroblasts, epithelial 

and epidermal cells.100-103 Although caspases are widely recognized as a family of enzymes 

primarily involved in apoptosis, the role of Caspase-1 in programmed cell death appears 

rather limited, hence, is considered a member of the subfamily of inflammatory 

caspases.93,104-106 

Typically, Caspase-1 is synthesized as an inactive 45 kDa precursor that is 

autocatalytically processed to an active tetrameric complex consisting of the 10 kDa and 20 

kDa subunits ((p20/p10)2).107 However, detection of mature immunoreactive Caspase-1 
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protein does not always correspond to its biological activity.100,108 Indeed, regulation of 

Caspase-1 activity remains incompletely understood. Interestingly, intracellular processing of 

the precursors by Caspase-1 and the secretion of IL-1β and IL-18 seem at least in part 

independently regulated.109 Besides passive release from dead cells, proIL-1β and proIL-18 

can be actively secreted from live cells or,93,109,110 highlighting the relevance of additional 

regulatory control through extracellular proteases. 

 

1.7. IL-18 and atherosclerosis 

Work performed during my diploma thesis implicated the macrophage-derived cytokine 

IL-18 as a potent inducer of IFNγ expression and other pro-inflammatory mechanisms in 

atherogenesis.111,112 Besides initially demonstrating the presence of IL-18 in human 

atherosclerotic lesions, I also provided evidence for the expression of both subunits of the IL-

18R in this tissue as well as in atheroma-associated cell types in vitro. Notably, IL-18 

localized only with macrophages of atherosclerotic lesions, whereas all three atheroma-

associated cell types expressed IL-18Rα, namely EC, SMC, and macrophages (Figure 3).112 

After demonstrating the expression of both receptor subunits on EC, SMC, and macrophages, 

additional experiments revealed several IFNγ-independent pro-atherogenic functions of IL-

18 on these cells, including enhanced expression of ICAM-1, of the cytokines IL-6 and IL-8, 

and of MMPs.112 

Although IL-18 is a sufficient stimulus synergism with IL-12 enhances induction of its 

classical downstream mediator IFNγ.73,74 Reciprocal induction of the respective 

receptor113,114 as well as modulation of different signaling pathways leading to IFNγ  

promotor activation and IFNγ release may cause co-stimulatory induction of IFNγ by IL-18 

and IL-12.78,115,116 
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Cell-typeIL-18 Cell-typeIL-18Rα

MØMØ

SMC

EC EC

SMC

** * *

 
Apart from this prototypical function, IL-18 induces the expression of additional 

inflammatory mediators including the cytokines IL-1β, IL-6, and TNFα, the chemokines    

IL-8, MCP-1, and MIP-1α, as well as adhesion molecules, such as VCAM-1 and ICAM-

1.78,81,117,118 Furthermore, IL-18 stimulation augments Fas/FasL-mediated cytotoxicity, as 

well as expression of perforin and granulocyte macrophage colony stimulating factor (GM-

CSF), all of which contribute to cell death and local inflammation.79,81,119-121 

IL-18 exerts its functions by binding to the heterodimeric IL-18 receptor, comprised of 

the IL-1 receptor-related protein (IL-1Rrp), termed IL-18Rα, and the IL-1 receptor accessory 

protein-like (IL-1RacPL), termed IL-18Rβ.122-124 Both receptor subunits belong to the IL-1R 

family. While IL-18Rα represents the ligand binding chain, IL-18Rβ appears to assist the 

formation of a high affinity complex and mediates intracellular signals.78,124 Binding of IL-18 

Figure 3: Differential expression of IL-18 and IL-18Rα in human atherosclerotic lesions. 

Double-immunofluorescence staining co-localized IL-18 (red, left panels) or IL-18Rα (red, right 
panels) with endothelial cells (EC, anti-CD31), smooth muscle cells (SMC; anti-α-actin), or 
mononuclear phagocytes (MØ, anti-CD68) within human carotid atherosclerotic plaques. Analysis 
of three atheroma from different donors showed similar results. The asterisk indicates the lumen of 
the vessel. The bar corresponds to 10 µm. 
 
Modified from: Gerdes N. et al.: Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, 
smooth muscle cells, and macrophages: implications for atherogenesis. J Exp Med 2002;195:245-57. 
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to the receptor complex results in recruitment of the adaptor protein MyD88, which 

subsequently recruits IL-1R-associated kinase (IRAK)-1 and IRAK-4 to the receptor 

complex.125 After activation, IRAK-1 translocates to the TNFR-associated factor 6 (TRAF-

6)-containing protein complex,126 inducing downstream signals including nuclear factor 

kappa b (NF-κB) and various mitogen activated phosphatase kinase (MAPK) pathways   

(e.g., c-Jun N-terminal kinase (JNK)).78,124,127 Indeed, IL-18 signal transduction requires this 

common cascade, as demonstrated by gene-targeting studies showing that MyD88, IRAK-1, 

and IRAK-4 play critical roles in IL-18 responses.125,128,129 

IL-18Rα is expressed in a variety of tissues and cell types including myeloid, 

monocytic, and lymphocytic cell lines.78,130 Interestingly, the TH1 lymphocyte subpopulation, 

a hallmark cell type in atherosclerotic lesions,17 but not TH2  cells, mediators of which were 

considered anti-atherogenic, express the IL-18 receptor.131 Of note, inflammatory cytokines 

overexpressed in human atheroma, such as TNFα and IL-12,16,17,60 enhance the expression of 

both IL-18R chains on lymphocytes, thereby increasing the responsiveness to IL-18.78,113,130  

 

 

1.8. Clinical association of IL-18 with cardiovascular disease  

and its risk factors 

Following our initial identification of IL-18 as a novel pro-atherogenic mediator,112 
several clinical studies demonstrated the correlation of elevated plasma IL-18 levels with 
cardiovascular risk. In a cohort of 10,600 European men followed for 5 years, IL-18 plasma 
concentrations in subjects who experienced MI, death, or angina were significantly higher 
than those in age-matched controls, independent of other inflammatory markers, such as       
C-reactive protein (CRP), IL-6 or fibrinogen.132 Moreover, IL-18 levels are elevated in 
patients with stable and unstable angina,133 and are higher in patients with MI compared to 
those with unstable angina.134 IL-18 plasma levels have also been associated with mortality 
in patients with coronary artery disease (CAD), independently of CRP, IL-6, and 
fibrinogen.135 Furthermore, elevated plasma IL-18 concentrations reportedly accompany 
acute coronary syndromes,136 a finding corroborated in an experimental model of MI in 
mice.137 Finally, IL-18 correlates with parameters of myocardial dysfunction,136 dilated and 
ischemic cardiomyopathy,138 and severity of congestive heart failure.139,140  
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The predictive value of IL-18 plasma levels extends beyond CVD to related 

dysfunctions such as metabolic syndrome. IL-18 plasma concentrations correlate with body 

mass index (BMI) and waist to hip ratio, and show an inverse correlation to weight loss.141-143 

Furthermore, IL-18 plasma concentrations correlate with hyperglycemia and associate 

inversely with insulin sensitivity.143-145 In accord, several groups have reported susceptibility 

and occurrence of type 2 diabetes mellitus associated with elevated plasma IL-18.146- 149 In 

sum, these clinical data demonstrate a strong correlation between elevated levels of IL-18 

and several manifestations of CVD and risk factors, highlighting the potential of IL-18 as a 

clinical marker as well as a target for therapeutic intervention. 

 

 

1.9. Aim of this thesis 

 

Increased expression of IL-18 and it’s receptor in atherosclerotic tissue together with its 

pro-inflammatory function on atheroma-associated cells in vitro suggest a prominent 

atherogenic role for this molecule. To verify the role of IL-18 in vivo in atherosclerosis this 

thesis used an experimental model of atherosclerosis in mice. Quantification of 

atherosclerosis in mice lacking IL-18 in comparison to control animals will allow for 

assessment of IL-18’s contribution to the disease. 

Furthermore, it remains uncertain whether the lack of Caspase-1 limits development of 

atherosclerosis even more efficiently. Considering that Caspase-1 is the activating enzyme 

for both, IL-1β and IL-18, Caspase-1 deficiency in hyperlipidemic mice might lead to an 

even greater reduction of lesion development than could be attributed to lack of either 

substrate alone. 

In sum, this thesis will evaluate the contribution of IL-18 and IL-1 signaling as well as 

Caspase-1 to experimental atherosclerosis and assess their potential as targets for therapeutic 

intervention. Furthermore, identification of cell types that participate in IL-18 signaling may 

provide valuable information to guide future research on IL-18-mediated mechanisms of 

atherogenesis and other inflammatory diseases. 
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2. Materials and methods 
 

2.1. Materials 
The commercial sources for recombinant proteins and other reagents are listed in Table 1. 

 

Table 1: Recombinant proteins 

Reagent Company Cat.-# 

recombinant human IL-18 MB International, Woburn, MA B-003-5 

recombinant human IL-12 R&D Systems, Minneapolis, MN 219-IL 

recombinant human IL-1β Pierce-Endogen, Cambridge, MA R-IL1B-25 

recombinant human TNFα Pierce-Endogen R-TNF-50 

recombinant human IFNγ Pierce-Endogen R-IFN-100 

recombinant human TNFα Pierce-Endogen R-TNF-50 

Polymyxin B Sigma , St. Louis, MO P4932 

 

 

2.2. Expression of IFNγ in atheroma-associated cell types 
 

2.2.1. Cell isolation and culture 

All human cells were obtained according to protocols approved by the Human 

Investigation Review Committee at Brigham & Women's Hospital. 

 

2.2.1.1. Endothelial Cells 

Human vascular EC were isolated from saphenous veins by collagenase treatment, as 

originally described by Jaffe et al.150 Saphenous veins were rinsed three times using syringe 

and cannula with Hanks’ buffered salt solution (HBSS). Veins were clamped on one end with 

a hemostat, filled with 0.1 % (w/v) collagenase (Worthington Biochemicals, Freehold, NJ) 

solution in phosphate buffered saline (PBS), and were clamped on the other end. After 

incubation (30 min, 25˚C), the EC-containing collagenase solution was flushed out by three 

washes with HBSS. Collagenase treatment was repeated twice. All fractions were collected 

and EC precipitated (5 min, 300 x g, 25˚C). Subsequently, cells were resuspended in EC-
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culture medium (see below) and grown (37˚C, 5% CO2) in 60 cm2 cell culture dishes (Becton 

Dickinson, Franklin Lakes, NJ). Medium was changed for the first time after 24 h and then 

routinely every 3 days. Cells were later cultured in 150 cm2 cell culture flasks (Corning, 

Corning, NY) and used through passages 3-4. For cell passage, confluent layers of EC were 

washed twice with HBSS and subsequently treated (37˚C) with trypsin-EDTA-solution (500 

µg/ml trypsin and 200 µg/ml EDTA; Cambrex, cat.-#:17-161E) until cell detachment. 

Trypsin was inactivated by addition of 10 % volume of fetal bovine serum (FBS; Hyclone, 

Logan, Utah) and cells were precipitated (5 min, 300 x g, 25˚C). Finally, 5000 cells/cm2 were 

sub-cultured in fresh medium in the desired culture vessels. For the experiments, EC were 

cultured in 60 cm2 cell culture dishes and medium was changed 24 h before experiments to 

serum-free starvation medium (see below). All culture dishes and flasks for EC were coated 

with gelatin. For this purpose, culture surface area was covered for 1 min with 0.1 % (w/v) 

gelatin (Becton Dickinson, Sparks, MD) solution in PBS and, after removal of the solution, 

dried for 30 min at 37˚C. 

EC were characterized by immunohistochemical staining with mouse-anti-CD31 (Dako, 

Carpinteria, CA, cat.-#: M 0823). Contamination with SMC, macrophages, or T lymphocytes 

was excluded by employing mouse-anti-muscle actin (Enzo Diagnostics, Farmingdale, NY, 

cat.-#: C34931), mouse-anti-CD68 (Dako, cat.-#: M 0823), and mouse-anti-CD3 (Dako,  

cat.-#: T 0629) antibody, respectively, yielding no specific staining. 

 

2.2.1.2. Smooth Muscle Cells 

Human vascular SMC were isolated from saphenous veins by the explant-outgrowth 

method.151 Veins were cut longitudinally and adventitia and intima were removed with a 

scalpel. The remaining media was cut in 2 x 2 mm pieces, transferred in 60 cm2 cell culture 

dishes, and incubated for 30 min (25˚C) without medium. Subsequently, SMC culture 

medium (see below) was carefully added to cover the tissue. After the first outgrowing SMC 

were observed microscopically, medium was changed every 3 days and the tissue pieces 

were removed after a confluent SMC culture was established (approximately 3 weeks after 

isolation). Cells were sub-cultured, as described above for EC, with 3000 cells/cm2. SMC 

were used through passages 3-4. For the experiments cells were cultured in 60 cm2 cell 

culture dishes and medium was changed 24 h before stimulation to serum-free medium (see 
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below). SMC were characterized by immunohistochemical staining and contamination with 

EC, macrophages, or T-lymphocytes was excluded as described above for EC, yielding no 

specific staining. 

 

2.2.1.3. Monocytes and macrophages 

Monocytes were isolated by density gradient centrifugation from freshly prepared 

leukocyte concentrates (Leukopac) from healthy donors obtained from the Brigham & 

Women's Hospital/Dana Faber Cancer Institute blood donor center. One volume (10 ml) of 

Lymphocyte separation medium (ICN Biomedicals, Aurora, OH) was gently overlaid with 4 

volumes of leukocyte concentrate. Following 45 min centrifugation (450 x g, 25˚C, without 

brake), the upper phase was aspirated and the leukocyte containing interphase was 

transferred into fresh tubes, while avoiding interference with the granulocyte- and 

erythrocyte-containing bottom phase. 

Leukocytes were washed three times with HBSS. Cells were precipitated by 

centrifugation for 10 min (300 x g, 25˚C) between each washing step. After the final washing 

step, the number of viable cells was determined by staining with trypan blue (0.4 % (w/v); 

Sigma), and subsequent counting in a hematocytometer (Neubauer chamber; Reichert, 

Buffalo, NY). Trypan blue penetrates membranes of non-viable cells and thus yields blue 

intracellular staining, whereas viable cells do not stain. 

For purification purposes, 1 x 106 cells/cm2 in monocyte medium were (see below) 

plated in 60 cm2 cell culture dishes. After one hour of incubation (37˚C, 5% CO2), plates 

were vigorously washed three times with HBSS to remove non-adherent cells. Macrophages 

were cultured (37˚C, 5% CO2) in macrophage culture medium supplemented with 2 % (v/v) 

human serum (see below) for 10 days. Medium was changed every 3 days, and differentiated 

macrophages (day 10) were cultured 24 h before stimulation in serum-free medium. The 

purity of macrophages was ≥ 96%, as determined routinely by FACS analysis (PE-

conjugated mouse-anti-human CD68; 20 µl/0.5 x 106 cells; PharMingen; San Diego, CA).  

 

2.2.1.4. Limulus amoebocyte assay 

All culture media, FBS, and human serum contained less than 40 pg endotoxin/ml, as 

determined by the chromogenic Limulus amoebocyte assay following the instructions of the 
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manufacturer (QCL-1000® Chromogenic LAL Kit; Cambrex, cat.-# 50-647U). Endotoxin 

derived from gram-negative bacteria catalyses the activation of a pro-enzyme in the Limulus 

Amoebocyte Lysate. In the second reaction step, the activated enzyme catalyses the cleavage 

of p-nitroaniline (pNA) from a colorless substrate. The pNA released can be measured 

photometrically at 405 nm after the reaction is stopped with stop reagent (25% (v/v) glacial 

acetic acid). The concentration of endotoxin in a sample was calculated from the absorbance 

values of a serial dilution of a known concentration of endotoxin standard. 

 

2.2.1.5. Cell culture media 

 

Culture medium for EC 

Medium M199 (Cambrex) 

Supplemented with: 

5 % (v/v)  Fetal Bovine Serum (FBS; Hyclone) 

250 µg/ml Endothelial Cell Growth Factor (ECGF; kindly provided by Dr. M 

Muszynski, Brigham & Women's Hospital) 

100 U / 100 µg/ml Penicillin/streptomycin (Cambrex) 

1.25 µg/ml  Amphotericin (Fungizone; Apothecon, Princeton, NJ) 

100 µg/ml  Heparin (Sigma) 

 

Starvation medium for EC 

Same as Culture medium for EC but without FBS and ECGF 

 

Culture medium for SMC 

Dulbecco’s Modified Eagle Medium (DMEM; Cambrex) 

Supplemented with: 

10 % (v/v)  FBS 

100 U / 100 µg/ml Penicillin/streptomycin  

1.25 µg/ml  Amphotericin 

200 µM  L-glutamine (Cambrex) 

 



     

PhD Thesis -26- Norbert Gerdes 

Starvation medium for SMC 

Same as Culture medium for SMC but without FBS  

 

Culture medium for macrophages  

Rockwell Park Memorial Institute medium 1640 (RPMI 1640; Cambrex) 

Supplemented with: 

100 U / 100 µg/ml Penicillin/streptomycin 

1.25 µg/ml  Amphotericin 

2 % (v/v)  Human serum (ICN Biomedicals, heat- 

inactivated (30 min/56˚C) before use)  

 

Culture medium for monocytes (also used for starvation of differentiated macrophages)  

Same as Culture medium for macrophages but without human serum  

 

 

2.2.2. Enzyme-Linked Immunosorbent Assay (ELISA) 

Release of IFNγ from EC, SMC, monocytes/macrophages, and KG-1 cells was 

measured by ELISA. Cell supernatants (50 µl) were added for 2 h to 96-well Maxisorb plates 

(Nunc, Rochester, NY) pre-coated with a monoclonal IFNγ capturing antibody (Pierce-

Endogen; 1.5 µg/ml in PBS, 4°C, overnight). The plates were subsequently washed three 

times with PBS 0.1% (v/v) Tween-20 in an automatic plate washer, and the respective biotin-

labeled anti-human IFNγ antibody (Pierce-Endogen; 0.5 µg/ml diluted in 2% (w/v) bovine 

serum albumin (BSA) in PBS) was added for 1 h (25°C, shaking). Following incubation for 

30 min at room temperature with Horse-radish peroxidase (HRP)-conjugated Streptavidin 

(Pierce-Endogen; 0.125 µg/ml in PBS/2%BSA) and three washing steps, antibody binding 

was detected by the addition of tetramethylbenzidine (TMB) solution (Pierce-Endogen) and 

measuring absorbance at 650 nm in a plate reader (Molecular Devices, Spectra Max plus 

384). The concentration of IFNγ was calculated from a standard curve prepared from 

recombinant IFNγ (Pierce-Endogen). Samples were assayed in duplicates.   
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2.2.3. In situ hybridization (ISH) 

In situ hybridization was performed according to the instructions of the manufacturer 

(Innogenex, San Ramos, CA).  Briefly, frozen tissue sections as well as cultures of SMC and 

macrophages on 4-chamber slides were fixed in cold acetone, air-dried, and incubated        

(10 min, 65°C; subsequently 2 h, 37°C) with a mixture of FITC-labeled IFNγ (5’-

CATCGTTTCCGAGAGAATTAAGCCAAAGAAGTTGAAATCA-3’; 5’-AAGAGAA 

CCCAAAACGATGCAGAGCTGAAAAGCCAAGATA-3’; 5’-TTTTCTGTCACTCTCCT 

CTTTCCAATTCTTCAAAATGCCT-3’) antisense oligomers, or the respective sense 

(control) oligomers (all 4 µg/ml, final concentration) in hybridization-buffer.  Finally, slides 

were washed 3 times, incubated with biotinylated mouse-anti-FITC antibody (1 h), followed 

by alkaline phosphatase-conjugated streptavidin (30 min) and NBT/BCIP chromogen 

solution  (1 h). Adjacent sections were analyzed for SMC, macrophage, and T-cell content by 

immunohistochemistry as described below.   

 

 

2.2.4. Immunohistochemistry (IHC) 

Serial cryostat sections (6 µm) of surgical specimens of human carotid atheroma (n=3), 

normal carotids from autopsies, and non-diseased aorta from cardiac transplantation donors 

(n=3) were cut, air dried onto microscope slides, fixed in acetone (-20oC, 5 min), and pre-

incubated with PBS containing 0.3% hydrogen peroxide. Subsequently, sections were 

incubated (30 min) with primary mouse-anti-human muscle actin mAb for SMC (1:200;  

Enzo Diagnostics), mouse-anti-human CD31 mAb for EC (1: 35; Dako, Carpinteria, CA), 

mouse-anti human CD68 for macrophages (1:500; Dako), mouse-anti-human CD3 mAb for 

T cells (1:500; Dako), or control antibody (mouse myeloma protein MOPC-21; 0.25 µg/ml; 

Sigma), diluted in PBS supplemented with 5% appropriate serum, and processed according to 

the recommendations provided by the supplier (Universal Dako LSAB Kit, Dako). 
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2.2.5. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

 

2.2.5.1. RNA isolation 

SMC were washed twice with PBS and total RNA was isolated from SMC cultures 

under RNAse-free conditions employing RNazolTM B reagent (Tel-Test, Friendswood, TX) 

according to the instructions from the manufacturer. Nucleic acids were subsequently 

visualized by UV-transillumination and bands for the 18S and 28S ribosomal RNA examined 

for possible indications of degradation. Concentration was determined by employing a 

spectrophotometer. RNA degradation observed on the gels or an OD260/OD280 value of less 

than 1.7 led to disqualification of these samples. The total RNA yield ranged between 10 and 

30 µg/60 cm2 cell culture dish. Samples were stored at - 80˚C until use. 

 

2.2.5.2. Reverse Transcription and PCR 

All reagents used for this reaction were obtained from Invitrogen (Carlsbad, CA), if not 

stated otherwise. Total RNA (2 µg) was equilibrated at 11 µl and 1 µl of Oligo (dT)12-18 (500 

ng/µl; cat.-#: N42001) was added. Mixture was incubated for 10 min at 70˚C and quickly 

chilled on ice. Subsequently, 4 µl of 5 X First Strand Buffer, 2 µl of 100 mM DTT, 1 µl of 10 

mM (each) dNTP mix were added, and mix was incubated for 2 min at 42˚C, followed by 

addition of 1 µl of reverse transcriptase (Superscript II; 200 U/µl) and total incubation for 1 h 

at 42˚C. Reaction was stopped by heat inactivation of the enzyme at 70˚C for 15 min. RT 

reaction products (2 µl) were added to a 50 µl total PCR reaction. 5 µl PCR-buffer (10 X), 1 

µl dNTP mix (10 mM), 1.5 µl MgCl2 (50 nM), 1 µl Platinum Taq DNA polymerase (5 U/µl), 

1 µl sense primer (20 µM), 1 µl antisense primer (20µM), and 38 µl H2O were added to 2 µl 

cDNA. Primer pairs for either IFNγ or glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) were obtained from Integrated DNA Technologies (Coralville, IA). The sequence 

and expected fragment sizes of these primers are shown in Table 2. 
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Table 2: Primer and conditions for RT- PCR 

Primer Sequence (5’-3’) Fragment   (X)  (Y) 

sense TTTAGCTCTGCATGTGGTAGC IFNγ 

antisense CATGTATTGCTTTGCGTTGG 

375 bp 60˚C 35 

sense GTCAGTGGTGGACCTGACCT GAPDH 

antisense TGCTGTAGCCAAATTCGTTG 

247 bp 60˚C 25 

X = Annealing temperature; Y = cycle number 

 

PCR reaction mix was applied to the general protocol of Y cycles at 94˚C (60 s),            

X˚C (60 s), and 72˚C (90 s), where Y refers to the number of PCR-cycles and X to the 

annealing temperature for each individual primer pair (listed in Table 2). PCR reaction was 

performed in a PTC-200 DNA Engine™ Thermal Cycler (MJ Research, Waltham, MA). 

Aliquots (10 µl) of the PCR products were mixed with 2.5 µl DNA loading buffer (5 X) 

(Sigma, St. Louis), applied to ethidium bromide-containing 1.5% agarose gel in TAE-buffer, 

and subsequently visualized by UV-transillumination. Fragment size was verified by 

comparison to a 100 bp standard (Invitrogen). 

 

 

2.2.6. Flow Cytometry (FACS) 

To determine activity of the IFNγ released by SMC, supernatants of SMC cultures (1:2 

diluted in M199) were applied (48 h) in absence or presence of neutralizing mouse-anti-

human IFNγ antibody (5 µg/ml; R&D Systems) to confluent cultures of human vascular EC.   

Cells were washed with ice-cold PBS, harvested by trypsinization, fixed (PBS/4% 

paraformaldehyde, 15 min), and subsequently washed once with PBS/0.2% BSA before 

being incubated (1 h, 4°C) with PE-conjugated control IgG, mouse-anti-human MHC I, or 

mouse-anti-human MHC II antibody (Coulter, Miami, FL; 1h, 4˚C). Subsequently, cells were 

washed with PBS/0.2% BSA and analyzed in a Becton Dickinson FACScan flow cytometer 

employing CellQuest software (Becton Dickinson; San Jose, CA). At least 20,000 viable 

cells per condition were analyzed. 
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2.3. Murine atherosclerosis model 
The initial mouse study, which tested the relevance of IL-18 for atherosclerosis also 

served the goal to establish the experimental model of atherosclerosis for the subsequent 

studies. In particular, choosing the appropriate duration of high cholesterol diet (HCD) and 

the vascular location for analysis proved invaluable for the succeeding in vivo studies. The 

three most common vascular locations for the analysis are the aortic sinus, the aortic arch, 

and the thoracic/abdominal aorta (Figure 4). Whereas the earliest signs of atherosclerosis are 

commonly observed in the aortic sinus, lesion development in the aortic arch requires 

hypercholesterolemia for at least 6 weeks.152,153 

Aortic sinus

LSALSA

IAIA
LCCALCCA

2 mm2 mm

Aortic arch

Descending
aorta

Analysis of atherosclerosis in the abdominal and thoracic aorta, however, requires prolonged 

hypercholesterolemia. Furthermore, the Oil Red O-stained en face-preparation of the aortae 

allow only very limited conclusion regarding the atherogenic properties of a certain gene or 

protein, since this method only determines the lipid deposition in a two-dimensional fashion, 

 

Figure 4: Common vascular locations employed for analysis of atherosclerosis. 

Analysis of atherosclerosis frequently employs quantification of lesion development in the aortic 
sinus (left), the aortic arch (middle), or the descending aorta (right). While histological analysis can 
analyze several sections of the vessel in aortic sinus and aortic arch, en face analysis of Oil Red O-
stained aorta is limited to two-dimensional analysis. Within the aortic arch, a 2 mm segment of the 
inner curvature was defined for analysis proximal of the perpendicular drawn from the distal side of 
the left subclavian artery origin. IA = Innominate artery; LCCA = Left common carotid artery; LSA 
= Left subclavian artery. 
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in contrast to the histological studies, which facilitate analysis of multiple markers and 

parameters of atherosclerosis, including gross morphology, content of macromolecules, and 

expression of proteins on sections of multiple layers.152,153 

Of note, the prolonged duration of lesion initiation observed in the experiments 

employing chow diet compared to HCD (see Results) is in accord with previous studies.72,154-

156 In addition, previous studies demonstrated that different conclusion could be drawn 

regarding the atherogenic role of certain mediators, depending on vascular location chosen 

for analysis.157 Thus, it was of particular importance to thoroughly establish and optimize the 

methodology for analyzing atherosclerosis in mice and determine a common endpoint for the 

initial (IL-18-deficiency) and the following in vivo studies. In view of the profound changes 

of lesion development following 8 weeks of HCD (see Results), this treatment protocol was 

adopted for the subsequent studies, however, the prolonged hypercholesterolemia (18 weeks) 

was included as a second endpoint, to account for potentially differentially affected 

atherosclerosis in IL-18, IL-18Rα, IL-1R1, or Caspase-1-deficient mice.  

 

2.3.1. Animal housing and welfare 

Mice were housed in specific pathogen-free animal facilities according to guidelines 

from the Office of Laboratory Animal Welfare at the National Institutes of Health. In 

addition, all experimental procedures were approved by the Institutional Animal Care and 

Use Committee (IACUC) at Harvard Medical School. Animals were under constant 

observance of veterinarians from The Center for Animal Resources and Comparative 

Medicine (ARCM) at Harvard Medical School. When necessary, veterinary services were 

provided. Mice were kept under 12 h dark / 12 h light cycles with no more than 4 mice per 

standard cage (0.03 m2) and were administered fresh water and pellet food ad libitum. If not 

indicated otherwise mice consumed a regular chow diet (Labdiet Inc., St. Louis, MO, cat. 

#5001, 0.02 % cholesterol, 4.5 % total fat, 0 % cholate).  
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2.3.2. Generation of compound gene-deficient mice   

There are two common experimental models of atherosclerosis in mice. In 1992 two 

independent groups generated mice deficient for ApoE.158,159 ApoE is the ligand on remnant 

lipoproteins required for their hepatic clearance and its lack leads to severe 

hypercholesterolemia with accumulation of chylomicrons and very low density lipoprotein 

(VLDL) particles even when mice are fed a normal diet. This leads to development of 

atherosclerotic lesion as early as at 10 weeks of age, and this process is further accelerated 

when these mice consume HCD. In contrast, wild type mice on the C57Bl/6 background do 

not develop appreciable plaques even when administered HCD. 

The second most common model of atherosclerosis was developed in 1993 by targeting 

the gene for the LDL receptor (LDLR), leading to accumulation of cholesterol mostly in the 

form of LDL.160 There are several advantages and disadvantages of each of these models, 

which are discussed vividly among vascular biologists.152 However, the fact that the genes 

for LDLR and IL-18 are both located on chromosome 9 in the mouse,75,160 accordingly led to 

the decision to choose the ApoE model for the generation of hyperlipidemic compound 

mutant mice. Since the ApoE gene is located on chromosome 7,158,159 the genes should be 

non-linked, resulting in double-deficient offspring in the F2-generation according to the 

expected Mendelian ratios. To facilitate comparison between results of this initial in vivo 

study using il18-/-apoe-/- mice and all following studies, other double-deficient mice were also 

generated in the ApoE-deficient model. 

ApoE-deficient (B6.129P2-Apoetm1Unc/J; apoe-/-)158, IL-1 receptor type I (IL-1RI)-

deficient mice (B6.129S7-Il1r1tm1Imx/J; i11r1-/-)161, IL-18Rα-deficient mice (B6.129P2-

Il18r1tm1Aki/J; il18r1-/-)162, and mice carrying the common CD45.1 (B6.SJL-Ptprca 

Pep3b/BoyJ; cd451/1)163 were obtained from The Jackson Laboratory (Bar Harbor, ME). IL-

18-deficient mice (B6.129P2-Il18tm1Aki/J; il18-/-)164 were acquired from Dr. S. Akira (Osaka 

University, Suita, Japan). Caspase-1-deficient (casp1-/-) mice165 were kindly provided by Dr. 

W. Wong (Abbott, Worcester, MA). All mouse strains have been previously backcrossed to 

the C57BL/6 background for at least 8 generations. 

Compound-deficient mice were generated by crossbreeding the respective single 

gene-deficient mice and interbreeding the resulting heterozygous F1 generation. Genotypic 

identification of the resulting F2-offspring was performed employing PCR. 
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2.3.3. Genotypic identification 

Genomic DNA was obtained from tail tip biopsies employing the DNeasy tissue kit 

(Qiagen, Hilden, Germany) following the instructions of the manufacturer. Genotyping for 

ApoE, IL-1R1, IL-18, and IL-18Rα was performed employing Hotmastermix (2.5X) 

(Eppendorf, Hamburg, Germany) according to Table 3 and 4. Genotyping for Caspase-1 was 

performed employing Platinum Taq DNA Polymerase kit (Invitrogen, Carlsbad, CA) 

according to Table 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: PCR reactions for genotyping of apoe, il1r1, il18, and  il18r1 

Gene apoe il18 il18r1 il1r1 

Allele +/+ and  -/- +/+ and  -/- +/+ +/+ -/- 

Hotmastermix (2.5X) 10 10 10 10 10 

Primer A (20µM) 0.5 0.5 0.5 0.5 - 

Primer B (20µM) 0.5 0.5 0.5 0.5 0.5 

Primer C (20µM) 0.5 0.5 - - 0.5 

H2O 12.5 12.5 13 13 13 

Template DNA 1 1 1 1 1 

Total 25 25 25 25 25 

All volumes in µl 

Table 4: PCR reactions for genotyping of casp1 

Gene casp1 

Allele +/+ -/- 

PCR beads - - 

PCR buffer (10X) 2.5 2.5 
MgCl2 (50 mM) 0.75 0.75 

dNTP-mix (10 mM) 0.5 0.5 

Platinum Taq (5 U/µl) 0.25 0.25 
Primer A (20µM) 0.5 - 

Primer B (20µM) 0.5 0.5 

Primer C (20µM) - 0.5 

H2O 19 19 

Template DNA 1 1 

Total 25 25 

All volumes in µl 
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Table 5: PCR reactions for genotyping of apoe, il1r1, il18, il18r1, and  casp1 

Gene apoe il18 il18r1 il1r1 casp1 

Allele +/+ and  -/- +/+ and  -/- +/+ +/+ and  -/- +/+ and  -/- 

1. Initial denaturation: 94ºC 120s 120s 180s 120s 120s 

2. Denat.: 94ºC 30s 30s 30s 30s 45s 

3. Annealing: XºC 67ºC, 60s 67ºC, 60s 58ºC, 60s 68ºC, 90s 60ºC, 60s 

4. Elongation: 72ºC 120s 120s 60s 120s 120s 

Go to step 2 34x 34x 29x 39x 39x 

5.Final Elong.: 72ºC 10 Min. 10 Min. 2 Min. 10 Min. 10 Min. 

6. Cool down: 10ºC Indefinite Indefinite  Indefinite  Indefinite  Indefinite  

 

The respective primers obtained from Integrated DNA Technologies are indicated in 

Table 6. PCR reaction was performed in a PTC-200 DNA Engine™ Thermal Cycler. 

Aliquots (10 µl) of the PCR products were mixed with 2.5 µl DNA loading buffer (5 X) 

(Sigma, St. Louis), applied to ethidium bromide-containing 1.5% agarose gel in TAE-buffer, 

and subsequently visualized by UV-transillumination. Fragment size was verified by 

comparison to a 100 bp standard (Invitrogen) and genotype determined based upon the 

presence of the respective wild type (+/+) or mutated allele (-/-). 

Table 6: Primers used for genotyping of apoe, il1r1, il18, il18r1, and casp1 

Allele Primer Sequence (5’-3’) Resulting fragments 

A GCC TAG CCG AGG GAG AGC CG 

B TGT GAC TTG GGA GCT CTG CAG C apoe 

C GCC GCC CCG ACT GCA TCT 

A+B result in 155bp band 

for +/+; B+C result in 245bp 

band for -/- 

A TAA TGG GTG GTC TTC TCA TCT CTG TGT 

B GGA AAA GAA CTG GTC TAG TGT GGT GGC il18 

C ATC GCC TAC TAT CGC CTT CTT GAC GAG 

A+B result in 682bp band 

for +/+; B+C result in 

~900bp band for -/- 

A TAC CTG ATA TCC CAG GCC ATG T 
il18r1 

B GTG TCT CGT CTC TTT CCG CTA T 

A+B result in ~150bp band 

for +/+ 

A GAG TTA CCC GAG GTC CAG TGG 

B CCG AAG AAG CTC ACG TTG TCA AG il1r1 

C GAA TGG GCT GAC CGC TTC CTC G 

A+B result in ~1,150bp 

band for +/+; B+C result in 

860bp band for -/- 

A ATC CAG GAG GGA ATA TGT GG 

B CCT GGT GTT GAA GAG CAG AA casp1 

C TGC TCC TGC CGA GAA AGT AT 

A+B result in 700bp band 

for +/+; B+C result in 

~1,400bp band for -/- 
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2.3.4. Bone marrow reconstitution 

Recipient mice (either il18r1-/-apoe-/- or il18r1+/+apoe-/-) were lethally irradiated          

(2 x 7 Gy, >3 hours apart) at the age of 6-8 weeks and randomly assigned to receive bone 

marrow derived from il18r1-/-apoe-/- or il18r1+/+apoe-/- donor mice 6-8 weeks of age. 

For isolation of bone marrow, femurs, tibias, and humeri were removed from donor 

mice, placed in RPMI with 5% FBS on ice, and subsequently cleaned using scissors and 

gently wiping off muscle tissue with a paper tissue. Bones were washed twice with RPMI 

1640 containing 5% FBS. Under sterile conditions both condyles of the bone were cut off 

and bone marrow was flushed out with RPMI 1640/5% FBS using a 27G needle attached to a 

syringe. Pooled bone marrow (2-6 mice) was homogenized using a 19G needle, centrifuged 

(5 min, 800 x g, 4°C) and resuspended in 3-5 ml of 0.155 M NH4Cl for 3 min, 4°C to lyse 

erythrocytes. 30 ml of HBSS was added, mixed by inverting, and centrifuged (5 min, 800 x 

g, 4°C). The Pellet was resuspend in 20 ml HBSS and filtered through a cell strainer (>70 µm 

il18r1+/+ apoe-/-

Donor

Recipient

14 Gy14 Gy

Bone marrow
il18r1-/- apoe-/-

 

Figure 5: Schematic of the generation of IL-18Rα chimeric mice using bone marrow 

transplantation. 

Bone marrow of donor il18r1-/-apoe-/- or il18r1+/+apoe-/- mice was injected i.v. in previously lethally 
irradiated recipient il18r1-/-apoe-/- or il18r1+/+apoe-/- mice generating chimeric mice either globally 
deficient or competent for IL-18Rα or lacking IL-18Rα selectively on cells of the hematopoietic or 
non-hematopoietic origin.
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exclusion, Becton Dickenson). Cells were centrifuged (5 min, 800 x g, 4°C), counted and 

resuspended to a concentration of 1x108 cells/ml. 5x107 cells (200 µl), adjusted to room 

temperature, were injected (30G needle) into the tail vein following the second dose of 

radiation (Figure 5). 

Following bone marrow transplantation (BMT) mice were housed in microisolator 

cages and provide acidified water (pH 2.5; adjusted with hydrochloric acid) and allowed to 

recover for 6 weeks, before start of HCD. 

In additional experiments bone marrow transplantation employed mice carrying the 

CD45.1 isoform of the common leukocyte antigen (CD45) as both donors and recipients. 

Mice of the C57/Bl6 background commonly carry the CD45.2 allele, making leukocytes of 

cd451/1apoe-/- easily distinguishable from cd452/2apoe-/ and cd452/2il18r1-/-apoe-/- by FACS 

analysis of peripheral blood thus allowing an estimate of reconstitution success (see also 

Results). 

 

 

 

2.3.5. Experimental procedure for induction of atherogenesis  

At the age of 6-8 weeks, littermate male or female mice of the respective gene-

deficient and control strain were either assigned to a high-cholesterol diet (HCD; Research 

Diets, New Brunswick, NJ, cat.-#D12108, 1.25 % cholesterol, 20 % total fat, 0 % cholate) or 

were continued on the chow diet for either 8 or 18 weeks. Bone marrow transplanted mice 

were 12-14 weeks of age at the start of the study since they had a 6 week recovery period 

following BMT. Blood samples were obtained and body weight was recorded prior to diet 

assignment and immediately before study end. Mice were kept in groups of 2-4 animals and 

consumed diet and water ad libitum. 

 

 

 



     

PhD Thesis -37- Norbert Gerdes 

2.3.6. Analysis of atherosclerosis  

2.3.6.1.  Mouse harvesting 

Following 8 or 18 weeks of diet, mice were anesthetized by i.p.-injection of 2,2,2-

tribromoethanol (Sigma; 250 mg/kg) and the vascular tree was perfused with PBS under 

physiologic pressure. Subsequently, the heart and aorta were removed, the arch and 

abdominal portions of the aorta were separated, and the heart and aortic arch were embedded 

and snap-frozen in OCT compound (Tissue-Tek, Torrance, CA), as described previously.166 

The descending (thoracic and abdominal) aortae were fixed in 10% buffered formalin, as 

described previously. 

 

2.3.6.2. En face analysis of descending aorta 

Aortae, fixed and stored in 10 % buffered formalin solution were washed overnight in 

PBS. Subsequently, aortae were dehydrated in propylene glycol for 2 min, stained with 0.5 % 

Oil Red O in propylene glycol for 2-4 h at room temperature, differentiated by 3 washing 

steps in 85 % propylene glycol and finally washed overnight in PBS. Aortae were opened 

longitudinally to the aortic bifurcation, pinned on black silicon-elastomere dishes using 0.2-

mm stainless steel pins while covered with PBS. Dishes were drained, dehydrated with 

propylene glycol for 2 min, and aortae were stained again with 0.5 % Oil Red O in propylene 

glycol for 2-4h at room temperature. Finally, dishes were washed three times with 85 % 

propylene glycol and three times with PBS, and digital image was captured with a CCD 

camera. 

 

2.3.6.3. Histological analysis of aortic sinus and aortic arch 

Serial longitudinal cryostat-sections (6 µm) of the aortic arches were used for 

immunohistochemical-, Oil Red O-, and Picrosirius Red-staining. Within the aortic arch, a 2 

mm segment of the inner curvature was defined proximal of the perpendicular drawn from 

the distal side of the left subclavian artery origin (Figure 4) Serial cryostat-sections (6 µm) of 

the aortic sinus (cross-sections) at the level of all three leaflets of the aortic valve, 

immediately proximal to the right coronary artery ostium (Figure 4) were applied to similar 

staining as outlined for those of aortic arches above and detailed in the following. 
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2.3.6.4. Picrosirius Red-staining for collagen 

Formalin-fixed frozen sections were incubated for 4 hours in a freshly prepared 0.1% 

solution of Sirius Red F3BA (Polysciences Inc., Warrington, PA) in saturated aqueous picric 

acid. After rinsing twice in 0.01 N hydrochloric acid and distilled water, sections were briefly 

dehydrated in 70% ethanol and mounted in Permount (Vector Laboratories). Sirius red 

staining was analyzed by polarization microscopy.  

 

2.3.6.5. Oil Red O staining for lipids 

Frozen sections were fixed in 10 % buffered formalin solution (10 min.), rinsed with 

H2O, and dehydrated in propylene glycol for 2 min. Subsequently, slides were incubated in 

0.5 % Oil Red O solution in propylene glycol (25 min, 60°C), rinsed with H2O, 

counterstained with hematoxylin (see below) and coverslipped with glycerol gelatin (Sigma).  

 

2.3.6.6. Immunohistochemical staining 

For immunohistochemical analysis, sections of the aortic arch or sinus were fixed in 

acetone (-20˚C, 10 min), air dried, and incubated with 0.3 % H2O2 for 15 min to inhibit 

endogenous peroxidase activity. Subsequently, sections were blocked with 4 % normal rabbit 

serum in PBS (30 min, RT) and incubated (90 min, RT) with the following primary 

antibodies diluted in blocking solution: rat-anti-mouse Mac-3 (for macrophages; BD 

Pharmingen, San Diego, CA, cat. #553322, 5 µg/ml); rat-anti-mouse MHC II (BD 

Pharmingen, cat. #556999, 2.5 µg/ml); rat-anti-mouse IFNγ (BD Pharmingen, cat. #551216, 

5 µg/ml); rat-anti-mouse VCAM-1 (BD Pharmingen, cat. #553330, 0.2 µg/ml). Slides were 

washed, incubated (45 min, RT) with biotinylated rabbit-anti-rat IgG antibody (Vector, 

Burlingame, CA, cat. #BA4001, 2.5 µg/ml), and applied to the Vectastain ABC kit (avidin-

biotin complex) according to the instructions of the manufacturer (Vector, cat. #PK-6100). 

The reaction was visualized employing 3-amino-9-ethyl carbazole as substrate (AEC 

substrate chromogen; DAKO, cat. #K3464), and the sections were counterstained with Gill's 

hematoxylin solution (Sigma, cat. #GHS-3-32), differentiated with 0.25 % ammonia in water  

and coverslipped with glycerol gelatin. To verify specificity of the antibodies, staining with 

the respective isotype-matched IgG (BD Pharmingen/ DAKO) was performed. 
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Staining of α-actin for SMC employed a slightly modified protocol. Sections were 

fixed 10 min in chilled acetone at -20ºC, air-dried, and incubated in 0.2% H2O2 in 100% 

methanol for 15 min at room temperature. Following 3 x washing for 5 min in PBS sections 

were incubated in 5% horse serum diluted in PBS for 20 min. Subsequently, slides were 

incubated with primary antibody (α-smooth muscle-FITC conjugate; Sigma cat-# F-3777) 

diluted 1:1000 in 1% BSA/0.1 %Tween20 in PBS for 1 h followed by 3 washes in PBS and 

anti-FITC-biotin conjugated antibody (Sigma, cat # B0287) for 45 min. After that step, the 

staining continued as described above with the Vectastain ABC kit and subsequent steps. 

 

 

2.3.6.7. Computer-assisted image analysis and statistical analysis 

Total vessel wall area, total intima area, and relative positive stained (Oil Red O, Sirius 

Red, Immunohistochemistry) areas of sections of the aortic sinus and arch as well as Oil Red 

O positive area on the thoracic/abdominal aortae employed ImagePro Plus software (Media 

Cybernetics, Silver Springs, MD). Image analysis was performed independently by two 

blinded investigators. 

Data are presented as mean ± standard error of the mean (SEM) and were compared 

between study groups using the non-parametric Mann-Whitney U-test. A p-value of <0.05 

was considered statistically significant. Statistical analysis utilized the Statistical Package for 

Social Sciences (SPSS; SPSS Inc., Chicago, IL). 

 

2.3.7. Plasma cholesterol and triglyceride analysis 

Blood samples of mice starved for at least 8 hours were obtained prior to diet 

assignment under methoxyfluorane-anesthesia (Medical Developments Australia Ltd., 

Springvale, Australia) by puncture of the retro-orbital venous plexus using heparinized glass 

capillaries (Fisher Scientific). Blood was allowed to clot for at least 30 min, centrifuged at 

1,500 x g for 15 min. Subsequently, plasma was removed and stored at -80°C until further 

analysis. Plasma total cholesterol and triglyceride concentrations were determined employing 

enzymatic assays (cat.-#401 and cat.-#343, respectively; Sigma) according to the 

recommendations of the manufacturer, however, adopted for use in 96-well plates. 
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2.3.8. Leukocyte count 

Freshly drawn blood was diluted 1:1,000 in 10 ml of PBS. Three drops of Zap-Oglobin 

II lytic reagent (Beckman Coulter, Fullerton, CA) were added and cell suspension was mixed 

for 10 seconds. Total leukocyte count was estimated using a Z2 particle count & size 

analyzer (Beckman Coulter) limiting particle size from 4-11 µm. 

 

2.3.9. Flow cytometry (FACS) 

50 µl of mouse blood was diluted 1:1 in FACS Buffer (2 % BSA, 0.1 % sodium azide 

in PBS) and incubated with 2 µl of Fc-block (ebioscience, San Diego, CA) for 30 min., at 

room temperature. Subsequently, the fluorescent labeled antibodies were added for another 

30 min. at room temperature. Finally, 1ml of FACS lysis buffer (Becton Dickinson) was 

added for 10 min., cells were washed twice with FACS buffer and analyzed in a Becton 

Dickinson FACScalibur flow cytometer employing CellQuest software (Becton 

Dickinson). At least 20,000 viable cells per condition were analyzed. Antibodies for CD45.1-

PE, CD45.2-PE, CD45.2-FITC, CD11b-FITC, CD19-PECy5, CD3-APC as well as the  

isotype-matched, fluorescent-labeled control antibodies were purchased from ebioscience.  

 

 

2.4. Western blot analysis of mouse tissue lysates  

2.4.1. Preparation of tissue lysates 

Under anesthesia with 2,2,2 tribromoethanol and following perfusion with PBS the 

aortae of mice were removed and immediately frozen in liquid nitrogen and stored at -80°C 

until further use. To extract proteins 0.5 ml of pre-chilled tissue lysis buffer (40 mM Tris 

base, 120 mM sodium chloride, 0.5 % (v/v) Nonident P40, 1 mM sodium vanadate, 5 mM 

EDTA, 1 mM PMSF (added < 10 min before use), and Complete® protease inhibitor cocktail 

(Roche, Indianapolis, IL; cat# 1873580)) was added per one aorta and tissue was 

homogenized using a Polytron homogenizer (Kinematica, Littau, Switzerland; model-# PT 

10/35 with PTA7 aggregate) for 30-60 sec at medium speed and 4°C. Subsequently, 

homogenates were centrifuged for 10 min, (13,000 x g, 4°C) to pre-clear the lysates. 
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Supernatants were transferred into fresh tubes and protein concentration was determined 

using the BCATM protein assay kit (Pierce, Rockford, IL, cat.-# FF70699) according to the 

instructions of the manufacturer. The absorbance was measured at 562 nm in a 96-well plate 

spectrophotometer and compared to a standard of bovine serum albumin.  

 

2.4.2. SDS-PAGE and Western Blot analysis of tissue protein extracts 

Protein extracts from atherosclerotic tissue (50 µg total protein/lane) were mixed with 
reducing SDS-PAGE sample buffer (5 X; 100 mM Tris base, 30 % (v/v) glycerol, 2 % (w/v) 
SDS, 10 % (v/v) β-mercaptoethanol, 0.02 % (w/v), bromophenol blue), boiled 5 min at 95˚C, 
spun down briefly, and loaded on 15 % SDS-PAGE gel. As a reference Precision Plus 
Protein Dual Color Standard (Bio-Rad, Hercules CA; cat.-#: 161-0374) was used to allow 
for later identification of approximate molecular weight. Gels were run (1.5 - 2 h, 125 V, 
current limited to 0.04 A/ chamber) in a SDS-PAGE gel chamber (Mini Trans-Blot, Bio-
Rad, Hercules, CA) in Tris/Glycine/SDS buffer (Bio-Rad, cat.-#: 161-0732). Gels were 
blotted using a semi-dry blotting apparatus (Trans-Blot SD cell, Bio-Rad; 50-60 min, 25 V, 
current limited to 0.8 A/cell) to polyvinylidene difluoride (PVDF) membranes (Perkin Elmer 
Life Sciences, Boston, MA, cat.-#: NEF 1002). Membranes were blocked for 1 h (25˚C, 
shaking) in Western blot blocking solution (5 % dry milk /0.1% Tween-20 in PBS). 
Subsequently, the following primary antibodies were applied in 10 ml total volume of 
Western blot blocking solution (overnight, 4˚C, shaking): rabbit-anti-mouse IL-18 (Cell 
Sciences, Canton, MA, cat# CPI103; 1 µg/ml final concentration); rabbit-anti-human IL-1β 
(Santa Cruz, Santa Cruz, CA, cat# sc-7884; 0.5 µg/ml; cross-reacts with mouse IL-1β); 
rabbit-anti-mouse Caspase-1p10 (Santa Cruz,; 0.8 µg/ml). Membranes were washed 3 x for 5 
min (25˚C, shaking) with 0.1% (v/v) Tween-20 in PBS and subsequently incubated with 
peroxidase-conjugated goat-anti-rabbit IgG antibody (Jackson Immunoresearch, West Grove, 
PA, cat# 111-035-0034; 0.05 µg/ml) for 1 h (25˚C, shaking) in Western blot blocking 
solution. Membranes were washed 3 x for 5 min (25˚C, shaking) with 0.1% (v/v) Tween-20 
in PBS and immunoreactive proteins were visualized using the Western LightningTM 
Chemiluminescence Reagent Plus (Perkin Elmer, cat.-#: NEL 105; 1 min, 25˚C, shaking), 
capturing the luminescent signal on a film (Scientific imaging film; Kodak, Rochester, NY, 
cat.-#: KP 112078). 
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2.5. MMP-mediated processing of proIL-18 

2.5.1. MMP activation 

All recombinant human MMPs (MMP-1, -2, -3, -7, -8, -9, -10, -12, and -13) were 

obtained as recombinant zymogens from R&D Systems. MMPs were activated by incubation 

with APMA (p-aminophenylmercuric acetate; 1 mM) at 37°C for 1 h (MMP-1, -2, -7, and -

8), 2 h (MMP-10 and -13) or 24 h (MMP-3 and -9), as recommended by the supplier. MMP-

12 was provided as a catalytic domain and did not require APMA activation. Activation was 

verified by adding MMP-1, -2, -7, -8, -9, -12, and -13 to the fluorogenic substrate Mca-Pro-

Leu-Gly-Leu-Dpa-Ala-Arg-NH2 (R&D Systems) and adding MMP-3 and -10 to the 

fluorogenic substrate Mca-Arg-Pro-Lys-Pro-Val-Glu-Nval-Trp-Arg-Lys(Dnp)-NH2 (R&D 

Systems). The substrate (10 µM) and defined concentrations of the respective MMP were 

incubated for 1-5 minutes at room temperature before fluorescence intensity was determined 

every 5 minutes for 30 minutes using a fluorescence spectrometer (excitation 320 nm, 

emission 405 nm, Spectra Max M2; Molecular Devices, Sunnyvale, CA). To determine 

activity, the fluorescence intensity of the quenched substrate was set as the baseline.  The 

standard curve was constructed by applying serial dilutions of known concentrations of the 

pre-cleaved fluorogenic peptide fragment (Mca-Pro-Leu-OH; Calbiochem, San Diego, CA). 

 

2.5.2. Pro-IL-18 processing assay 

Caspase-1 (EMD, San Diego, CA) was used at a concentration of 0.5 µg/ml, 
determined during this study to be optimal for the proIL-18 processing assay employed.  
TCNB buffer (50 mM Tris, pH 7.5, 10 mM CaCl2, 150 mM NaCl and 0.05% Brij35) was 
used in all processing assays to maintain an optimal pH for the recombinant MMPs.          

APMA-activated MMPs were tested for concentration- and time-dependent 
processing of proIL-18.  In the concentration-dependent assays, MMPs were incubated at 0-
10 µg/ml with proIL-18 (2.5 µg/ml; kindly provided by Vertex Pharmaceuticals Inc., 
Cambridge, MA) for 1 and 24 h.  In the time-dependent assays, MMPs were incubated at a 
concentration of 1 µg/ml with proIL-18 (2.5 µg/ml) for 0-24 h.  Processing assays were 
performed in a total volume of 40 µl and under sterile conditions at 37°C. 
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2.5.3. SDS-PAGE and Western Blot analysis of pro-IL-18 processing 

For analysis of pro-IL-18 processing, reaction mixtures from the processing assay 

(equivalents of 100 ng pro-IL-18/lane) were stopped after the indicated time by adding 

reducing SDS-PAGE sample buffer (5 X) and applied to SDS-PAGE analysis as described 

above for tissue protein extracts. 

Unprocessed recombinant proIL-18 was applied either alone or following Caspase-1 

treatment (0.5 µg/ml, 1 h, 37°C) as a negative and positive control, respectively. Western blot 

analysis employed rabbit-anti-human IL-18 primary antibody (Serotec, Raleigh, NC, cat.# 

AHP456; 1:1000 dilution) for 1 h (25°C, shaking) and followed  the procedure as described 

above for tissue protein extracts. 

 

 

 

2.5.4. IL-18 bioactivity assay 

KG-1 cells (ATCC, Manassas, VA, cat.-# CCL-246) were maintained by sub-culturing 

every third day at 400,000 cells/ml in RPMI-1640 medium (Cambrex, Walkersville, MD, 

cat.# 12-702F) containing 20 % fetal bovine serum (HyClone, Logan, UT, cat.# SH30070.03) 

with penicillin and streptomycin (Cambrex, cat.# 17-602E; 100 U/ml and 100 µg/ml, 

respectively). For experiments, KG-1 cells (500,000 cells/ml) were plated in a 48-well plate 

in 0.5 ml/well RPMI-1640 medium without serum. Cells were pre-stimulated with TNFα 

(Pierce, Rockford, IL, cat.# M303; 10 ng/ml) for 24 h to induce expression of the IL-18 

receptor, thus rendering the cells more responsive to IL-18. MMP- or Caspase-1-processing 

mixtures co-incubated with proIL-18 for 1 or 24 h were applied in part (50 ng of IL-18/well) 

to KG-1 cells. The cells were incubated for 24 h prior to collection and analysis of 

supernatants. Supernatants were assayed for IFNγ by ELISA as described above. 
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2.5.5. Mass Spectrometry and Protein Sequence Analysis 

MMP-2 or MMP-8 (5 µg/ml) were incubated with pro-IL-18 (12.5 µg/ml) for 24 h.  

Mixtures were prepared for SDS-PAGE analysis as described above. Processing assay 

samples (equivalent to 500 ng of proIL-18) were separated by SDS-PAGE under reducing 

conditions on an 18 % gel. Gels were applied to Coomassie Brilliant Blue (Gel Code Blue 

Stain Reagent; Bio Rad) and Silver staining (Silver Stain Plus; Bio-Rad).    

Mass spectrometric analysis was performed at the Department of Pathology Functional 

Proteomics Center, Harvard Medical School by Eric Spooner. Coomassie-stained gel bands 

were excised and subjected to enzymatic digestion (overnight) with modified trypsin (20 

ng/µl, 37°C; Sigma-Aldrich) after reduction by dithiothreitol (DTT) (10 mM; 30 min; Sigma-

Aldrich) and alkylation by iodoacetamide (100 mM; 30 min; Sigma-Aldrich). Trypsin 

cleaves only to the C-terminal site of Arginine (Arg, R) and Lysine (Lys, K), however does 

not cleave if Arg or Lys is preceded by Proline (Pro, P). Thus, any peptides derived from this 

analysis not featuring an Lys or Arg at the C-terminus potentially indicate a MMP-cleavage 

site. Peptides were subsequently extracted from the digests by treatment with a mixture of 50 

% acetonitrile/ 45% water/ 5% formic acid. Employing a speedvac, volume was reduced to 

20 µl, of which 5 µl were subjected to reverse phase high performance liquid 

chromatography (RP-HPLC; CapLC XE, Waters, Milford, MA) with a C-18 column 

(Waters; 3 µm pore size, 0.75 mm x 100 mm) coupled to a electrospray ionization (ESI) 

tandem-mass spectrometer (MS/MS; Micro-Q-Tof, Micromass, Beverly, MA) operated in a 

data dependent fashion. The analytical gradient was 5% buffer B (Acetonitrile with 0.1% 

Formic Acid) to 45 % buffer B in 35 minutes. 

 The resulting data were analyzed using a database search algorithm (Mascot, 

Matrixscience, Boston, MA) to identify the peptides of interest. Theoretical molecular 

weights of peptide fragments were determined during reverse sequence search for analysis of 

the MMP-8 cleavage site.  

 

 



     

PhD Thesis -45- Norbert Gerdes 

3. Results 

3.1. IL-18 induces production of the pro-inflammatory cytokine IFNγ in 

mononuclear phagocytes and in vascular smooth muscle cells 

Work summarized in my diploma thesis demonstrated expression of IL-18 in human 

atherosclerotic lesions, providing the initial implication for this cytokine in 

atherogenesis.111,112 This work also identified several novel pro-atherogenic functions of IL-

18, such as enhanced expression of adhesion molecules and MMPs in human vascular EC 

and SMC as well as macrophages. Subsequently, I investigated whether IL-18 also mediates 

its originally recognized function, the induction of IFNγ expression, in these atheroma-

 

Figure 6: IL-18 induces IFNγ from freshly isolated human monocytes. 

Human peripheral blood-derived monocytes were either stimulated immediately after isolation or 

cultured for 10 days in medium containing 5% human serum. Cells were serum-starved for 12 h 

and subsequently stimulated with IL-18 [50 ng/ml] alone or in combination with IL-12 [10 ng/ml] 

for 36 hours. Subsequently, concentrations of IFNγ in the supernatant were measured by ELISA. 

Data represent mean ± SD of data obtained in four independent experiments using cells from 

different donors. 
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associated cell types. Indeed, IL-18, particularly in synergism with IL-12, elicited IFNγ 

protein and transcript in macrophages (Figure 6) and, even more surprisingly, in human 

vascular SMC, a cell type previously not implicated in the synthesis of this cytokine. These 

observations were validated on the protein (ELISA, Figure 7) and RNA level (in situ 

hybridization, Figure 8A; RT-PCR, Figure 8B). Of note, addition of Polymyxin B did not 

diminish the expression of IFNγ transcripts or protein, whereas heat-inactivation of the 

recombinant IL-12/IL-18 abolished this function, indicating that endotoxin contamination did 

not account for the IFNγ expression (Figure 7 and 8B). 

Figure 7: IL-18 induces IFNγ expression in human vascular smooth muscle cells. 

Human saphenous vein smooth muscle cells (SMC) or endothelial cells (EC) were stimulated (36 

h) with either IL-1β/TNFα [10/50 ng/ml], IL-12 [10 ng/ml], respective concentrations of IL-18, or 

combinations of the latter two, and supernatants were analyzed by ELISA for IFNγ.  Polymyxin B 

[1 µg/ml] and heat treated (95˚C, 10 min) IL-12/IL-18 were tested to exclude activation via 

endotoxin contamination.  Data represent mean ± SD.  Similar results were obtained five 

independent experiments employing cells of different donors.   
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Figure 8: IL-18 induces IFNγ expression in human monocytes and vascular smooth muscle 

cells. 

(A) Mononuclear phagocytes (MØ, top) or smooth muscle cells (SMC, bottom) cultured to 

confluence on 4-well chamber slides and subsequently incubated with medium alone (None), IL-

12 [10 ng/ml], IL-18 [50 ng/ml], or combinations thereof, were analyzed for the expression of 

IFNγ transcripts by in situ hybridization employing the respective antisense or sense (control) 

oligomers. Magnification is 40x. (B) Total RNA obtained from cultured SMC cultured with 

medium alone (None), IL-12 [10 ng/ml], IL-18 [50 ng/ml], or combinations thereof, was analyzed 

by RT-PCR for IFNγ transcripts. Heat-treated rec. IL-12/IL-18 (95˚C, 10 min) were applied to 

exclude activation via endotoxin contamination. Similar results were obtained in three 

independent experiments employing cells of different donors.   
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Moreover, other pro-inflammatory cytokines such as IL-1β or TNFα did not induce 

expression of IFNγ in these cell types, demonstrating specificity of IL-18 function. The SMC 

cultures employed expressed smooth muscle α-actin but did not yield a signal for CD14 by 

RT-PCR or for CD3, CD4, CD31, CD64, or CD68 by immunohistochemical or FACS 

analysis (data not shown), demonstrating that the SMC cultures employed, indeed contained 

negligible if any T-lymphocytes, EC, or macrophages. Of note, vascular SMC demonstrated 

a donor-specific expression pattern for IFNγ. Within the total of 15 different donors, SMC 

cultures from five donors did not show detectable induction of IFNγ compared to 

supernatants of non-stimulated cultures (1.4±1.8 U IFNγ/ml), even when maximal 
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Figure 9: IFNγ secreted from human smooth muscle cells exhibits biologic activity. 

Supernatants of smooth muscle cell cultures stimulated with medium alone (SMC-SN (none)) or 

combination of IL-12 [10 ng/ml] and IL-18 [50 ng/ml] (SMC-SN (IL-12/18)) were applied in 

absence or presence of neutralizing α-IFNγ antibody (SMC-SN (IL-12/18) + α-IFNγ) to confluent 

endothelial cell (EC) cultures for 48 hours and MHC I (top) and MHC II (bottom) expression was 

compared to unstimulated (none) or IFNγ-stimulated (rIFNγ, 1000 U/ml) EC by FACS analysis.  

Staining (solid histograms) was compared to isotype control (dotted line). At least 20,000 viable 

cells were analyzed for each staining. Values of geometric mean fluorescence are indicated in 

each panel. Similar results were obtained in three independent experiments. 
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concentrations of IL-18 or IL-12/IL-18 were applied. Within the group of ten experiments 

yielding significantly (p ≤ 0.05) enhanced IFNγ expression upon stimulation with IL-12/IL-

18 combination, low and high “responders” were identified.  Five donors yielded an average 

of 16.5±12.9 U IFNγ/ml and the remaining five donors of 260±115 U IFNγ/ml (Figure 7). 

Although the cause remains unknown, neither gender nor age of the cell donor nor passage 

number of the cells appeared to account for this observed variation. In contrast to SMC, 

macrophages expressed IFNγ more uniformly following stimulation with IL-12/IL-18 

(120±43 U IFNγ/ml; n=4). EC did not express IFNγ in response to any of the stimuli or 

combinations thereof tested, supporting the cell type specificity of the finding (Figure 7). 

 In view of the unexpected expression of IFNγ by SMC, I further tested the ability of 

medium conditioned by IL-12/IL-18-stimulated SMC to exhibit a IFNγ-characteristic 

biological activity of IFNγ, such as enhancing the expression of major histocompatibility 

complex (MHC) class I or II. Indeed, incubation with culture supernatants derived from IL-

12/IL-18-stimulated SMC enhanced the expression of MHC I and MHC II (Figure 9) in EC 

compared to those cultured with supernatants of non-treated SMC, as demonstrated by FACS 

analysis. Addition of neutralizing anti-IFNγ antibody to the culture medium abrogated 

induction of MHC I and MHC II on EC, further validating the surprising finding that IFNγ 

secreted by SMC exhibits biological activity. 

To demonstrate the potential relevance of SMC-derived IFNγ to the pathogenesis of 

atherosclerosis, we performed in situ hybridization studies on sections of human atheroma.  

In support of the in vitro observations outlined above, mRNA for IFNγ in atherosclerotic 

lesions localized with T-cells, but also within macrophage- and SMC-enriched areas, which 

were T-cell-deprived (Figure 10).  In contrast, non-atherosclerotic tissue did not contain 

detectable levels IFNγ mRNA (not shown). Moreover, application of sense oligomers did not 

yield detectable signals. Unavailability of appropriate antibodies hampered extension of these 

in situ results to the protein level (see Discussion).  

These studies add to the pro-inflammatory role of IL-18 and further highlight its 

potential relevance for atherosclerosis. In particular, the unexpected finding of IFNγ 

expression by SMC, ascribing this cell type additional immune functions, may have far-

reaching implications considering the abundance of this cell-type in atherosclerosis. 
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Nonetheless, these experiments limited the evaluation of the role of IL-18 in atherogenesis in 

vitro, thus rendering its relevance for atherosclerosis in vivo unexplored. 

 

  
 

 

Figure 10: IFNγ mRNA localizes in macrophage- and smooth muscle cell-rich regions of 

atherosclerotic lesions. 

Serial cryostat sections of frozen specimens of carotid atheroma were analyzed for the expression 

of IFNγ transcripts by in situ hybridization employing the respective antisense (top left panels) or 

sense (bottom left panels) oligomers. Low (4x, left) and high (40x, right) magnifications are 

shown. The asterisk indicates the lumen of the vessels. Adjacent sections were stained for SMC 

(anti-α-actin), macrophages (MØ; anti-CD68), or T-lymphocytes (anti-CD3) (right panels). 
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3.2. Deficiency of IL-18 decreases development of atherosclerosis in mice 

3.2.1. IL-18, IL-18Rα, and Caspase-1 are expressed in murine atherosclerotic lesions 

After the initial observation of IL-18 and IL-18R expression in human atherosclerotic 

lesions and demonstration of pro-atherogenic functions of IL-18 in cells implicated in 

atherosclerosis, I proposed to test whether this cytokine indeed aggravates atherosclerosis in 

vivo. To ensure that IL-18 is also expressed in atherosclerotic lesion of mice, similar to 

human atheroma, Western blot analysis of protein extracts obtained from murine 

atherosclerotic aortas was performed. Indeed, aortae of ApoE-deficient mice fed an 

atherogenic diet for 8 weeks contained both the 24 kDa precursor and 18 kDa mature form of 

IL-18 (Figure 11). Additional experiments revealed Caspase-1 expression in these aortae, 

further displaying the inflammatory conditions induced by hyperlipidemia in mice. Of note, 

the antibody directed against the p10-subunit detects the precursor (~45 kDa) and the p10 
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Figure 11: IL-18, IL-18Rα, and Caspase-1 are expressed in murine atherosclerosis.  

Protein extracts from aorta of two apoe-/- mice fed a high-cholesterol diet for 8 weeks were 

subjected to SDS-PAGE and subsequent Western blot analysis for (A) IL-18 or (B) Caspase-1 

(p10-subunit). Approximate molecular weights are indicated by the arrows on the left. (C) 

Immunohistochemical analysis employing an antibody for IL-18Rα (top) or control IgG (bottom) 

on sections of atheroma from an apoe-/- mouse fed a high-cholesterol diet for 8 weeks were 

analyzed. The asterisk indicates the lumen of the vessel. Similar results were obtained in three 

experiments employing tissue from 5 different mice. 
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monomer (~10 kDa) of Caspase-1. Moreover, immunohistochemical analysis revealed 

expression of IL-18Rα in murine atherosclerosis (Figure 11C), which localized with most 

parts of the plaque, including endothelium and macrophage-rich areas, corroborating 

previous findings in human atheroma (Figure 3 in Introduction). Thus, these initial 

experiments assured the presence of these key components of the IL-18 signaling cascade 

supporting the rationale for the subsequent experiments aimed to test the effect of the 

respective gene-deficiency on murine atherosclerosis. 

 

3.2.2. Deficiency of IL-18 delays development of atherosclerosis in hyperlipidemic mice 

To assess directly the role of IL-18 in atherogenesis, we compared atherosclerotic 

lesion formation in the inner curvature of the aortic arch of il18+/+apoe-/- and il18-/-apoe-/- 

mice. To avoid subjective selection of areas of interest, we did not distinguish between media 

and intima, but rather analyzed the total wall area in longitudinal sections of a defined 
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Figure 12: IL-18 deficiency delays atherosclerotic lesion formation in hyperlipidemic mice 

Quantification of total wall area in the aortic arches of male il18+/+apoe-/- (black) and il18-/-apoe-/- 

(open) mice fed a high-cholesterol diet (HCD) for either 8 (left panel, n=7 or 9, respectively) or 18 

weeks (right, n=10). Data are presented as mean ± SEM. The asterisk indicates a p-value <0.05. 
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segment of the inner curvature (see Methods). Aortic arches of il18-/-apoe-/- mice fed HCD 

for 8 weeks displayed significantly less atheroma than those of il18+/+apoe-/- mice (-35 %; 

p<0.05; Figure 12, left). Interestingly, the degree of atherosclerosis did not differ between the 

il18+/+apoe-/- and il18-/-apoe-/- mice after more prolonged (18 week) hypercholesterolemia 

(Figure 12, right).  These results indicate a role for IL-18 in early rather than advanced lesion 

development. To test this hypothesis further, we fed il18+/+apoe-/- and il18-/-apoe-/- mice a 

low-cholesterol (chow) diet, which slowed the onset of atherosclerosis. After 8 weeks of 

chow diet, we observed little or no lesion development in either strain of mice (Figure 13, 

left).  

However, following 18 weeks of chow diet, the aortic arches of il18+/+apoe-/- mice 

displayed early atheromata, resembling those observed following 8 weeks of HCD (Figure 

13, right). In contrast, il18-/-apoe-/- mice still did not show any evident lesion burden after 18 

weeks of HCD, corroborating the role of IL-18 in early lesion development. Furthermore, 

these data demonstrate that IL-18 mediates its pro-atherogenic function under both moderate 

and extreme hyperlipidemic conditions. 
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Figure 13: Diminished atherosclerosis in IL-18-/- mice consuming a chow diet 

Quantification of total wall in the aortic arches of male il18+/+apoe-/- (black) and il18-/-apoe-/- 

(open) mice fed a normal chow diet for either 8 (left panel, n=7 or 9, respectively) or 18 weeks 

(right, n=10). ). Data are presented as mean ± SEM. The asterisk indicates a p-value <0.05. 
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3.2.3. IL-18-deficiency attenuates early atherogenesis in mice of both genders 

In view of a report by Whitman et al., demonstrating reduced atherosclerosis in male 

but not female IFNγ-deficient mice,72 published during the time of this thesis, I also analyzed 

the effect of IL-18 deficiency on lesion development in female mice. Comparable to the 

findings in male mice, lack of IL-18 led to smaller total wall areas in female mice after 8 

weeks of HCD (-24 %; n=5, P<0.05; Figure 14, top). Also in accord with the findings in 

male mice, we observed no difference in lesion size between female il18+/+apoe-/- and il18-/-

apoe-/- mice following either 18 weeks of HCD or 8 weeks of chow diet. However, following 
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Figure 14: Reduction of atherosclerosis in IL-18 deficient mice is not gender-specific 

Quantification of total wall in the aortic arches of female il18+/+apoe-/- (black) and il18-/-apoe-/- 

(open) mice fed a high-cholesterol diet (HCD; top panels, n=7) or a normal chow diet (chow; 

bottom panels, n=6 or 5, respectively) for either 8 (left panels) or 18 weeks (right panels). Data 

are presented as mean ± SEM The asterisk indicates a p-value <0.05. 
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18 weeks of chow diet, total wall area in il18-/-apoe-/- mice was smaller compared to the 

control group, corroborating the findings in male mice and suggesting a gender-independent 

role of IL-18 in atherogenesis. 

 

3.2.4. IL-18 deficiency increases plasma total cholesterol and triglycerides 

Elevated plasma lipid concentrations promote atherosclerotic lesion development in 

mice. Therefore it is necessary to determine whether alteration of a certain gene, e.g., IL-18, 

might lead to decreased plasma lipid levels, thereby potentially limiting atherogenesis. Our 

Table 7: Total plasma cholesterol, plasma triglyceride, and body weight of il18+/+apoe-/- and 

                il18-/-apoe-/- mice at the end of the study 

Duration of diet 8 weeks 18 weeks 

Type of diet Chow High-cholesterol Chow High-cholesterol 

IL-18 genotype +/+ -/- +/+ -/- +/+ -/- +/+ -/- 

Male 

Number of animals N = 9 N = 8 N = 9 N = 8 N = 10 N = 10 N = 10 N = 10 

Total cholesterol [mg/dL] 
546.5 

± 41.7 

582.5 

± 38.8 

732.9 

± 46.7 

1197.3 

± 75.1* 

402.5 

± 24.4 

591.9 

± 61.5* 

761.4 

± 70.6 

913.1 

± 63.3 

Triglycerides [mg/dL] 
128.6 

± 9.9 

184.0 

± 18.8 

84.7 

± 8.9 

137.5 

± 14.4* 

58.3 

± 5.7 

124.5 

± 14.3* 

129.9 ± 

21.2 

167.4 

± 22.1 

Body weight [g] 
25.6 

± 0.5 

26.1 

± 0.9 

26.2 

± 0.7 

27.5 

± 0.9 

27.1 

± 0.8 

27.9 

± 0.9 

30.7 

± 0.5 

32.1 

± 1.1 

Female 

Number of animals N = 5 N = 5 N = 5 N =5 N = 5 N = 5 N = 4 N = 4 

Total cholesterol [mg/dL] 
342.4 

± 30.6 

511.3 

± 28.6 

653.1 

± 86.7 

984.0 

± 66.3* 

377.1 

± 24.8 

459.0 

± 41.3 

806.6 

± 69.4 

918.4 

± 42.6 

Triglycerides [mg/dL] 
65.1 

± 8.9 

105.5 

± 10.9 

81.6 

± 7.0 

158.3 

± 31.2* 

63.0 

± 8.0 

101.9 

± 7.9* 

79.1 

± 7.1 

110.4 

± 6.9* 

Body weight [g] 
20.2 

± 1.1 

18.8 

± 0.7 

19.7 

± 0.8 

22.4 

± 0.7 

23.5 

± 1.3 

21.3 

± 0.5 

24.7 

± 0.4 

25.4 

± 1.1 

Concentrations were measured following ≥ 8 hours starvation; Values represent mean ± SEM; 

* p ≤ 0.05 vs. control; +/+ = il18+/+apoe-/-; -/- = il18-/-apoe-/- 
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data show that the delay of atherosclerotic lesion formation in the absence of IL-18 did not 

result from diminished plasma cholesterol levels. Rather, IL-18 deficiency delayed 

atherogenesis despite increased total plasma cholesterol and triglyceride concentrations 

(Table 7). Following 8 weeks of HCD, the time point with the greatest reduction of lesion 

development, IL-18 deficiency led to profoundly increased plasma cholesterol and 

triglyceride levels. This remarkable trend was observed regardless of either gender or 

durations of both HCD and chow diet, although statistical significance was not reached in 

some groups, probably due to the limited number of data points (e.g., in most groups of 

female mice). Furthermore, there was a trend towards elevated body weight in il18-/-apoe-/- 

mice compared to control mice following either diet regimen (Table 7). Nonetheless, a 

statistical significance for this trend could not be established. In sum, the elevated lipid levels 

further emphasize the role of IL-18 in atherogenesis. 

 

3.2.5. IL-18 deficiency promotes a more stable plaque phenotype 

Changes in lesion size upon genetic or pharmacologic inhibition of a certain gene allow 

only for limited conclusions regarding the pro- or anti-atherogenic role of this particular 

mediator. Therefore, analysis of plaque composition (e.g., leukocyte infiltration, lipid 

deposition, or content of SMC) is commonly employed to gain further insight into the 

functional relevance of deficiency or inhibition of a particular protein.  

Notably, atheroma of IL-18-deficient mice (n=7) contained significantly fewer 

macrophages (-48 %; p<0.05) following 8 weeks of HCD compared to controls (n=9), as 

determined by immunohistochemical staining for Mac-3 (Figure 15). We observed no 

difference in macrophage content in mice consuming HCD for 18 weeks, corroborating the 

role of IL-18 in early rather than advanced atherogenesis. However, in this study,  

il18+/+apoe-/- and il18-/-apoe-/- mice displayed no difference in the amount of lipid deposition 

within the arterial wall following consumption of HCD (Figure 16) or chow diet (data not 

shown) for 8 or 18 weeks, as determined by Oil Red O staining. These data corroborate the 

previous finding that the cellular composition of the lesion was modified even under elevated 

levels of plasma lipids. 



     

PhD Thesis -57- Norbert Gerdes 

To further characterize the lesional composition and in particular to investigate the 

role of IL-18 in modulating plaque stability, we analyzed the number of SMCs and the 

content of collagen, both features commonly associated with a more stable plaque phenotype. 

Indeed, male il18-/-apoe-/- mice had a 32 % (p<0.05) higher content of SMC than did 

il18+/+apoe-/- following 8 weeks of HCD (Figure 17A and B, left). After prolonged 
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Figure 15: IL-18 deficiency reduces macrophage infiltration in atherosclerotic lesions 

(A) Immunohistochemical staining for macrophages, using a Mac-3-specific antibody, on 

longitudinal sections of representative aortic arches from male il18+/+apoe-/- (left) and il18-/-apoe-/- 

(right) mice fed an atherogenic diet for 8 weeks. The asterisk indicates the lumen of the vessel. 

 (B) Quantitative analysis of immunohistochemical staining for macrophages of male il18+/+apoe-/- 

(black) and il18-/-apoe-/- (open) mice fed an atherogenic diet for either 8 (left panel, n=7 or 9, 

respectively) or 18 weeks (right panel, n=10). Data are presented as mean ± SEM. The asterisk 

indicates a p-value <0.05. 
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hypercholesterolemia for 18 weeks, however, SMC content did not differ between the two 

genotypes, in agreement with the comparable atherosclerotic lesion size and the presumed 

role of IL-18 in early atherogenesis (Figure 17B, right). Although both groups of mice 

showed comparable SMC-positive areas after 18 weeks of high cholesterol diet, the overall 

content of SMC was markedly less compared to the earlier time point, indicating evolution 

towards advanced SMC-depleted lesions following prolonged hypercholesterolemia (Figure 

17B). 
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Figure 16: IL-18 deficiency does not change lipid deposition within the arterial wall 

(A) Oil Red O staining on longitudinal sections of representative aortic arches of male 

il18+/+apoe-/- and il18-/-apoe-/- mice fed an atherogenic diet for 8 weeks. The asterisk indicates the 

lumen of the vessel. (B) Quantitative analysis of Oil Red O staining of male il18+/+apoe-/- (black) 

and il18-/-apoe-/- (open) mice fed an atherogenic diet for either 8 (left panel, n=7 or 9, 

respectively) or 18 weeks (right panel, n=10). Data are presented as mean ± SEM. 
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This depletion of SMC indicates the functionality of the experimental model and, repeatedly  

highlights the relevance of IL-18 for early rather than advanced stages of plaque progression. 

In contrast to the enhanced numbers of SMC, atherosclerotic lesions in il18-/-apoe-/- 

mice following 8 weeks of HCD displayed less collagen compared to il18+/+apoe-/- mice, as 

Figure 17: IL-18 deficiency increases the number of smooth muscle cells within the arterial 

wall. 

(A) Immunohistochemical staining for smooth muscle cells, using an α-actin-specific antibody, on 

longitudinal sections of representative aortic arches of male il18+/+apoe-/- and il18-/-apoe-/- mice fed 

an atherogenic diet for 8 weeks. The asterisk indicates the lumen of the vessel. (B) Quantitative 

analysis of immunohistochemical staining for smooth muscle cells in male il18+/+apoe-/- (black) 

and il18-/-apoe-/- (open) mice fed an atherogenic diet for either 8 (left panel, n=7 or 9, respectively) 

or 18 weeks (right panel, n=10). Data are presented as mean ± SEM. The asterisk indicates a p-

value <0.05. 
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determined by Picrosirius Red staining (Figure 18). This trend, however, did not yield 

statistical significance (no difference was observed when HCD was continued for 18 weeks). 

Analysis of macrophage and SMC content as well as lipid and collagen deposition in 

atherosclerotic lesions revealed comparable results in female mice (data not shown), 

corroborating the findings in male mice and supporting the gender-independent role of IL-18 

in atherogenesis.  
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Figure 18: IL-18 deficiency does not change collagen content within the arterial wall. 

(A) Picrosirius Red staining for collagen  on longitudinal sections of representative aortic arches 

from male il18+/+apoe-/- and il18-/-apoe-/- mice fed an atherogenic diet for 8 weeks. The asterisk 

indicates the lumen of the vessel. (B) Quantitative analysis of Picrosirius Red staining of male 

il18+/+apoe-/- (black) and il18-/-apoe-/- (open) mice fed an atherogenic diet for either 8 (left panel, 

n=7 or 9, respectively) or 18 weeks (right panel, n=10). Data are presented as mean ± SEM. 
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3.2.6. IL-18 deficiency differentially modulates atherosclerosis in the 

 aortic sinus or descending aorta 

Several reports demonstrated considerable variability in the extent and chronology of 

atherosclerotic lesion development between distinct vascular locations in murine 

experimental models. Indeed, the earliest manifestations of lesion development, such as lipid 

deposition or macrophage infiltration, are usually observed in the aortic sinus of 

hyperlipidemic mice, whereas emergence of atherosclerosis in the distal aorta requires 
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Figure 19: IL-18 deficiency does not reduce atherosclerosis in the aortic sinus. 

(A) Representative section of the aortic sinus of male il18+/+apoe-/- and il18-/-apoe-/- mice fed an 

atherogenic diet for 8 (left) or 18 (right) weeks. (B) Quantification of total wall in the aortic sinus 

of male il18+/+apoe-/- (black) and il18-/-apoe-/- (open) mice fed a high-cholesterol diet (HCD) for 

either 8 (left panel, n=5) or 18 weeks (right, n=5). Data are presented as mean ± SEM. 
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prolonged hypercholesterolemia. To account for these potential differences and further 

validate the presumed role of IL-18 in early atherogenesis, lesion progression in these 

vascular locations was quantified. Notably, atherosclerotic lesion development in the aortic 

sinus of male il18+/+apoe-/- and il18-/-apoe-/- mice following 8 or 18 weeks of HCD did not 

differ significantly (Figure 19). Considering that these lesions are already at an advanced 

stage after only 8 weeks of hypercholesterolemia, these data are in agreement with the 

hypothesized role of IL-18 as a modulator of early atherogenesis. 
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Figure 20: IL-18 deficiency does not affect lesion development in the thoracic/abdominal aorta. 

(A) Representative Oil Red O-stained en face-preparations of thoracic/abdominal aortae of male 

il18+/+apoe-/- and il18-/-apoe-/- mice fed an high-cholesterol diet (HCD) for 8 (left) or 18 (right) 

weeks. The bars represent 0.5 cm. (B) Quantitative analysis of Oil-red O staining on aortae of male 

il18+/+apoe-/- (black) and il18-/-apoe-/- (open) fed a HCD for either 8 (left panel, n=5) or 18 weeks 

(right, n=5). Data are presented as mean ± SEM. 
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 Furthermore, en face analysis of Oil Red O-stained aortae revealed that IL-18 does 

not affect fatty streak development within the thoracic/abdominal aorta. Of note, Oil Red O-

stained area, though minimal in this vascular bed following 8 weeks of HCD, was markedly 

increased following 18 weeks of this diet regimen independent of the genotype (Figure 20). 

Since the en face analysis of aortae employs Oil Red O staining and, thus primarily 

determines lipid deposition, these data are in accord with findings of unchanged lipid 

retention in lesions of the aortic arch. Indeed, the markedly elevated plasma lipid 

concentrations in IL-18 deficient mice likely account for the enhanced lipid deposition 

despite overall reduced lesion development (see Discussion).  

 

3.2.7. The pro-atherogenic function of IL-18 is potentially independent of IFNγ 

As discussed above, the original function of IL-18 has been described as the ability to 

induce IFNγ from T- and NK-cells.75 Since IFNγ has been described as a potent agonist of 

atherogenesis,65-67,71,72 it appeared likely that IL-18 mediates its pro-atherogenic function via 

this traditional pathway. However, the lack of gender-specificity observed in our studies 

suggested a potential IFNγ-independent role for IL-18 signaling in atherogenesis, since a 

recent report demonstrated a strong gender-dependent role for IFNγ in the development of 

atherosclerosis.72 To ascertain whether diminished atherosclerosis in IL-18-deficient mice 

results from the attenuation of IL-18’s traditional downstream effector we analyzed 

expression of IFNγ and MHC II, which is strongly dependent on IFNγ.69 Surprisingly, 

however, we observed no difference in the expression of IFNγ within atherosclerotic lesions 

of the aortic arch between il18+/+apoe-/- and il18-/-apoe-/- mice following 8 weeks of HCD, at 

which time lesion development differed significantly (Figure 21A; compare to Figure 12). 

Corroborating these findings, analysis of the IFNγ-regulated MHC II antigens within 

adjacent sections revealed no significant change of expression levels in mice of both 

genotypes following 8 weeks of HCD (Figure 21B). These data support the hypothesis that 

IL-18 mediates its atherogenic functions independent of IFNγ.   

The observation that IL-18 deficiency modulates early lesion development suggests that 

IL-18 might promote the expression of mediators involved in the initiation of atherogenesis. 

As discussed in the Introduction, expression of adhesion molecules and subsequent 
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infiltration of leukocytes is one of the early mechanisms in lesion evolution. In addition, in 

vitro studies have recently demonstrated expression of adhesion molecules upon stimulation 

with IL-18,167 suggesting that IL-18 might contribute to lesion development via this 

prominent pro-atherogenic pathway. To test this hypothesis, sections of atheroma in the 

aortic arch of il18+/+apoe-/- and il18-/-apoe-/- mice were analyzed for expression of VCAM-1, 

the most prominent adhesion molecule figuring in atherosclerosis. Indeed, IL-18 deficiency 

associated with diminished expression of the adhesion molecule VCAM-1 (-29 %) within 

atherosclerotic lesions following 8 weeks of HCD (data not shown), suggesting reduced 

leukocyte adhesion, and thus infiltration, as a possible mechanism by which IL-18 deficiency 

might, at least in part, alleviate atherogenesis.  

 

Figure 21: Reduction of atherosclerosis in IL-18 deficiency is independent of IFNγ 

expression and function. 

Quantitative analysis of immunohistochemical staining for (A) IFNγ and (B) MHC II on 

sections of aortic arches from male il18+/+apoe-/- (black bars) and il18-/-apoe-/- (grey bars) 

mice fed an atherogenic diet for 8 weeks. n = 7 for each group. The bars represent the 

mean ± SEM. 
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3.3. The role of IL-18R in atherogenesis 

 

3.3.1. Generation of chimeric mice lacking IL-18 receptor on either 

  hematopoietic or somatic cells 

After establishing that IL-18 deficiency alleviates atherogenesis, I aimed to investigate 

whether the ligation of IL-18Rα on hematopoietic or somatic cells mediates the pro-

atherogenic function of IL-18. Chimeric mice that expressed IL-18Rα only either on the 

somatic/vascular or on the hematopoietic cells were generated employing bone marrow 

reconstitution experiments in hyperlipidemic mice. In control experiments homologue BMT 

yielded mice either completely deficient for IL-18Rα or globally competent for IL-18Rα (see 

also Figure 5 in Methods). 

To verify successful reconstitution, we also generated mice deficient for ApoE and 

homozygous for allele 1 of the common leukocyte antigen CD45 (cd451/1apoe-/-). Mice of the 

C57/Bl6 background commonly carry the CD45.2 allele. Employing mice with allelic 

variations of CD45 as donors and recipients in BMT allows for rapid discrimination of the 

origin of circulating cells by flow cytometry.168 This method was used to establish successful 

reconstitution of bone marrow following three (not shown) and six weeks (Figure 22) of 

recovery. Indeed, lethal irradiation (14 Gy) and subsequent bone marrow engraftment led to 

>90 % leukocyte reconstitution. Notably, detailed analysis of leukocyte subpopulations 

revealed that monocytes (CD11b+) and B-cells (CD19+) were more than 95 % of donor origin 

(Figure 22C,F, left and middle panels). T-cell reconstitution ranged between 85 % and 97 % 

(Figure 22C,F, right panels). 

These experiments employed cd452/2apoe-/-il18r1+/+ or cd452/2apoe-/-il18r1-/- donor 

bone marrow and cd451/1apoe-/-il18r1+/+ recipient mice as well as cd451/1apoe-/-il18r1+/+ 

donor bone marrow and cd452/2apoe-/-il18r1+/+ or  cd452/2apoe-/-il18r1-/- recipient mice (n=4 

for each of the 4 combinations). We observed no difference in reconstitution efficiency, 

suggesting that IL-18 signaling does not influence the engraftment process. Furthermore, the 

total number of circulating leukocytes determined following recovery as well as at the end of 

the study, did not differ between the experimental groups. These control experiments 

demonstrated that bone marrow reconstitution successfully yielded chimeric mice, expressing 
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Figure 22: Successful bone marrow reconstitution in hyperlipidemic mice. 

Lethally irradiated (14 Gy) male mice were reconstituted with bone marrow cells (2 x 106 

cells/mouse) and blood was analyzed following 6 weeks of recovery by flow cytometry 

discriminating the common leukocyte antigen CD45. Bone marrow from donor cd451/1apoe-/- mice 

was transplanted into cd452/2apoe-/- recipient mice (A-C) or vice versa (D-F). Cell distribution in 

size (FSC) and optical refraction (SSC) is depicted (A,D). Monocyte- and lymphocyte population 

gated from the respective areas in A and D, respectively, were analyzed for distribution of the 

CD45 allele (B,E). Detailed analysis of the distribution of the CD45 allele in monocytes (left, 

CD11b+), B-cells (middle, CD19+), and T-cells (right, CD3+) employing four color flow cytometry 

(C,F). Note, that donor and recipient marker are reciprocal in B-C vs. E-F. Similar results were 

obtained for cd452/2apoe-/-il18r1-/- mice employed as either donors or recipients. Shown are 

representative data from total of 4 mice for each group. 
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IL-18Rα either on hematopoietic or vascular cells. Furthermore, IL-18Rα-deficiency 

apparently does not affect the engraftment process and, thus, the number of leukocytes. 

Upon successful generation of chimeric mice and following a 6 week recovery period, 

these animals consumed HCD for an additional 8 weeks of HCD. Plasma cholesterol and 

triglyceride as well as body weight were determined before the start of the diet and at the end 

of the study (Table 8). Interestingly, plasma lipid levels, in particular triglycerides, were 

Table 8: Total plasma cholesterol, plasma triglyceride, and body weight before and after 8 

weeks of high cholesterol diet in IL-18Rα-competent, -deficient, and -chimeric mice 

Experimental procedure Feeding Bone-marrow transplantation 

Genotype wt ko wt → wt ko → wt ko → ko wt → ko 

Number of animals N = 12 N = 11 N=14 N = 11 N = 13 N = 12 

Baseline (Start of HCD) 

Total cholesterol [mg/dL] 
531 

± 42 

489 

± 27 

982 

± 126 

501 

± 27 

638 

± 43 

617 

± 45 

Triglycerides [mg/dL] 
107.5 

± 15.6 

96.5 

± 7.1 

169.0 

± 35.5 

82.0 

± 8.8 

72.2 

± 7.3 

80.1 

± 7.0 

Body weight [g] 
20.5 

± 0.6 

22.7 

± 0.6 

23.0 

± 0.6 

22.8 

± 0.9 

24.2 

± 0.6 

23.5 

± 0.4 

End of study (after 8 weeks of HCD) 

Total cholesterol [mg/dL] 
1111 

± 74 

1241 

± 72 

1238 

± 74 

993 

± 103 

983 

± 88 

1140 

± 79 

Triglycerides [mg/dL] 
76.5 

± 9.6 

81.4 

± 7.8 

404.6 

± 66.6 

261.0 

± 55.0 

141.5 

± 44.7** 

104.5 

± 9.9* 

Body weight [g] 
26.9 

± 0.9 

29.3 

± 1.0 

25.0 

± 0.3 

25.5 

± 0.5 

26.3 

± 0.4 

25.4 

± 0.4 

Concentrations were measured following ≥ 8 hours starvation; Values represent mean ± SEM; 
* = p ≤ 0.01 vs. wt→ wt ; ** = p ≤ 0.05 vs. ko→ wt , 
wt = il18r1+/+apoe-/-; ko = il18r1-/-apoe-/- ; donor→recipient 
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elevated in bone marrow-transplanted mice globally competent for IL-18Rα (wt → wt), the 

exact cause for this difference, however, remains undetermined. Total body weight did not 

vary between the groups of animals before or after 8 weeks of HCD. 
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Figure 23: Lack of IL-18Rα on either hematopoietic or vascular cells does not affect 

atherosclerotic lesion development in the aortic arch of hyperlipidemic mice. 

Male mice were subjected to bone marrow transplantation (BMT), followed by a 6 week  recovery 

period and additional 8 weeks consumption of high-cholesterol diet. BMT employed 6-8 weeks 

old mice as donors and recipients (wt = il18r1+/+apoe-/-and ko = il18r1-/-apoe-/-; donor → 

recipient). (A) Total wall area in longitudinal sections of the aortic arch was determined. 

Quantification of immunohistochemical staining for (B) smooth muscle cells, using an α-actin-

specific antibody and for (C) macrophages, using a Mac-3-specific antibody on adjacent section of 

the aortic arch. (D) Quantification of Oil Red O staining for lipid deposition on adjacent sections. 

The bars represent the mean ± SEM. 
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3.3.2. Absence of IL-18Rα on either hematopoietic or somatic cells 

does not change atherogenesis in mice 

Following the identification of IL-18 as a pro-atherogenic mediator, experiments 

employing chimeric mice lacking IL-18Rα on either hematopoietic or vascular cells aimed to 

clarify which cell type play the predominant role in pro-atherogenic IL-18 signaling. 

Surprisingly, however, lesion size in the aortic arch of mice from all four groups of chimeric 

mice did not differ following 8 weeks of HCD (Figure 23A). Furthermore, when IL-18Rα 

was absent on vascular cells, hematopoietic or both cells, plaque composition such as SMC- 

and macrophage content or lipid deposition was not affected (Figure 23B-D). 

In sum, the failure of partial or complete deficiency of IL-18Rα to reduce atherogenesis 

is unexpected and contrasts the reduced lesion development previously observed in IL-18-

deficient mice.   

 

3.3.3. Lack of IL-18Rα does not affect atherosclerosis  

Comparable atherogenesis in mice competent or deficient for IL-18Rα on either 
hematopoietic or non-hematopoietic cell types suggested a potential receptor-independent 
function of IL-18. Due to the relevance of this conclusion additional experiments employing 
mice globally lacking IL-18Rα were performed. Interestingly, analysis of atherosclerotic 
lesions in the aortic arch revealed no difference in lesion development between il18r1+/+ 

apoe-/- and il18r1-/-apoe-/- mice following 8 weeks of HCD (Figure 24A). Furthermore, 
measures of plaque composition, namely macrophage and SMC content as well as lipid 
deposition did not differ between mice lacking IL-18Rα and their controls, supporting the 
findings in the chimeric mice. 

These data support the observation obtained in the BMT study: considering that 
deficiency of the ligand IL-18 in this model yielded marked reduction in lesion size and 
modulated plaque composition (Figures 12 and 15-17), these data strongly suggest that IL-18 
mediates its pro-atherogenic function in mice via a receptor(s) other than IL-18Rα. 

Of note, plasma cholesterol and triglyceride levels did not differ between 
il18r1+/+apoe-/- and il18r1-/-apoe-/- mice, contrasting the previous finding of elevated lipid 
levels in IL-18-deficient mice and, thus, further supporting the hypothesis that IL-18 
mediates pro-atherogenic functions independent of its classical receptor (Table 8).   
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Figure 24: IL-18Rα deficiency does not affect atherosclerotic lesion development in the 

aortic arch of hyperlipidemic mice 

(A) Quantification of total wall area in the aortic arches of male il18r1+/+apoe-/- (black) and 

il18r1-/-apoe-/- (grey) mice fed a high-cholesterol diet (HCD) for 8 weeks. Quantification of 

immunohistochemical staining for (B) smooth muscle cells, using an α-actin-specific antibody 

and for (C) macrophages, using a Mac-3-specific antibody on adjacent section of the aortic arch. 

(D) Quantification of Oil Red O staining for lipid deposition on adjacent sections. The bars 

represent the mean ± SEM. 
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3.4. Caspase-1 deficiency does not limit atherogenesis in hyperlipidemic mice 

 

After successfully establishing the crucial role of IL-18 signaling in experimental 

atherosclerosis, we aimed to clarify whether lack of Caspase-1, the traditional processing 

enzyme for IL-18, would also lead to diminished atherosclerosis. During the time this study 

was designed, Kirii et al. reported markedly reduced atherosclerosis in IL-1β deficient 

mice.169 Thus, considering that both substrates of Caspase-1, IL-18 and IL-1β, proved pro-

atherogenic, we hypothesized that lack of Caspase-1 leads to a cumulative reduction of 

atherosclerotic lesion development.  

To test the pro-atherogenic role of IL-1 signaling in our model of atherogenesis we 

applied mice compound-deficient for IL-1R type I and ApoE (il1r1-/-apoe-/-) to a study 

regimen similar to the one described above for IL-18 and IL-18Rα. Employing mice 

deficient for the receptor rather than the ligand would also address the question whether IL-

1β also would signal independent of its receptor. Analysis of atherosclerosis in il1r1-/-apoe-/- 

mice revealed a marked reduction of lesion development in both genders following 8 but not 

18 weeks of HCD, corroborating the previous findings in IL-1β-deficient mice (Figure 25).169 

Furthermore, the reduced atherosclerosis in il1r1-/-apoe-/- mice following short-term but not 

prolonged hyperlipidemia implicates IL-1 signaling similar to IL-18 in promotion of early 

atherogenesis. However, in contrast to il18-/-apoe-/- mice, il1r1-/-apoe-/- mice did not display 

altered content of α-actin positive cells indicating that the IL-1 and IL-18 pathways 

differentially influence SMC proliferation and/or apoptosis (Figure 26). In contrast, when 

analyzing features of plaque destabilization, IL-1R1-deficiency provoked results closely 

resembling those obtained in IL-18-deficient mice. Although il1r1-/-apoe-/- mice displayed 

reduced infiltration of macrophages in aortic lesions of the aortic arch compared to control 

animals, lipid deposition, as determined by Oil Red O staining, was unchanged (Figure 27). 
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Figure 25: Caspase-1 deficiency does not attenuate atherosclerosis in hyperlipidemic mice. 

Quantification of total wall area in the aortic arch of (A) male or (B) female il1r1-/-apoe-/- (open) 

and casp1-/-apoe-/- (grey) vs. apoe-/- (black) mice fed a high-cholesterol diet for either 8 (left 

panels) or 18 weeks (right panels). The squares represent the mean ± SEM. The asterisk indicates 

a p-value <0.05. 
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Surprisingly, Caspase-1 deficiency did not affect atherogenesis, as demonstrated by 

comparable total wall area in the aortic arch of male and female casp1+/+apoe-/- and casp1-/-

apoe-/- mice following 8 or 18 weeks of HCD (Figure 25). Moreover, Caspase-1 deficiency 

did not cause significant changes in lesion composition, e.g., SMC content (Figure 26), 

contrasting the findings in il18-/-apoe-/- and il1r1-/-apoe-/- mice described above. Similarly, 

Caspase-1 deficiency did not affect macrophage- or lipid content, suggesting differential 

atherogenic functions of the substrates IL-1β and IL-18 versus the processing enzyme 

Caspase-1. As expected and previously observed, overall content of macrophages and lipids 

in atherosclerotic lesions did increase after prolonged (18 weeks) hyperlipidemia independent 

of the genotype (Figure 25, compare left and right panels). To verify the differential role of 

 

Figure 26: Deficiency in Caspase-1 or IL-1R1 do not alter smooth muscle cell content in 

atherosclerotic lesions of hyperlipidemic mice 

Quantification of immunohistochemical staining for smooth muscle cells, using an α-actin-

specific antibody, on longitudinal sections of representative aortic arches of male apoe-/- (black), 

il1r1-/-apoe-/- (open), and casp1-/-apoe-/- (grey) mice fed an atherogenic diet for either 8 (left) or 18 

weeks (right). The squares represent the mean ± SEM. 
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Figure 27: Deficiency in IL-1R1 but not in Caspase-1 reduces macrophage infiltration in 

atherosclerotic lesions of hyperlipidemic mice 

Quantitative analysis of (A) immunohistochemical staining for macrophages, using a Mac-3-

specific antibody, or (B) Oil Red O staining on longitudinal sections of representative aortic 

arches of male apoe-/- (black), il1r1-/-apoe-/- (open), and casp1-/-apoe-/- mice (grey) fed an 

atherogenic diet for either 8 (left panels) or 18 weeks (right panels). The squares represent the 

mean ± SEM. The asterisk indicates a p-value <0.05. 
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the processing enzyme versus the substrate in a different vascular location, we analyzed 

lesion progression in the descending aorta. Again, although il1r1-/-apoe-/- mice featured 

reduced lesion development in the abdominal aorta similar to that observed in il18-/-apoe-/- 

mice (Figure 20), Oil Red O staining on en face preparation of aortae revealed that 

atherosclerosis of this vascular bed was unchanged in casp1-/-apoe-/- mice compared with the 

control group (Figure 28). 

Analysis of plasma lipids and body weight revealed that the elevated total plasma 

cholesterol and triglyceride concentration previously observed in il18-/-apoe-/- mice extends 

further to il1r1-/-apoe-/- mice (Table 9). Interestingly, levels of plasma total cholesterol and 

triglycerides in casp1-/-apoe-/- mice markedly exceeded those in IL-1R1- and IL-18- deficient 
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Figure 28: Caspase-1 deficiency does not reduce lesion development in the descending aorta.  

Quantification of Oil Red O-stained en face-preparations of thoracic/abdominal aortae of male 

apoe-/- (black), il1r1-/-apoe-/- (open), and casp1-/-apoe-/- mice (grey) fed an high-cholesterol diet for 

8 (left) or 18 (right) weeks. The squares represent the mean ± SEM. The asterisk indicates a p-

value <0.05. 
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animals, which were already elevated compared to controls. Male mice displayed 

significantly higher levels than those observed in female apoe-/- mice following HCD for 8 

and 18 weeks (Table 9). At the end of the study, body weight of casp1-/-apoe-/- mice was 

significantly higher than that of the controls (Table 9). 

 

 

In sum, lack of an effect of Caspase-1 deficiency on atherosclerotic lesion development 
is sharply contrasted by the lesion reduction in il18-/-apoe-/-mice and il1r1-/-apoe-/- mice 
reported here and in IL-1β-deficient mice, as reported previously. This apparent paradox, 
displayed again in Figure 29, leads to the hypothesis that Caspase-1 does not represent the 

Table 9: Total plasma cholesterol, plasma triglyceride, and body weight at the end of 

                the study in il1r1-/-apoe-/-- and casp1-/-apoe-/- mice vs. apoe-/- mice 

Duration of diet 8 weeks 18 weeks 

Genotype apoe-/- il1r1-/-

apoe-/-
casp1-/-

apoe-/- apoe-/- il1r1-/-

apoe-/- 
casp1-/-

apoe-/- 
Male 

Number of animals N = 14 N = 14 N = 15 N = 14 N = 15 N = 14 

Total cholesterol [mg/dL] 
1350 

± 77 

1488 

± 146 

2267 

± 155* 

340 

± 31 

494 

± 52 

1033 

± 129* 

Triglycerides [mg/dL] 
77.8 

± 15.2 

143.8 

± 13.7* 

108.8 

± 13.5* 

133.8 

± 10.3 

172.9 

± 19.4 

311.7 

± 22.7* 

Body weight [g] 
26.2 

± 0.4 

28.0 

± 0.5 

29.0 

± 0.8* 

30.7 

± 0.6 

32.1 

± 1.1 

37.2 

± 1.6* 

Female 

Number of animals N = 15 N = 15 N = 16 N = 15 N = 12 N = 16 

Total cholesterol [mg/dL] 
1265 

± 75 

878 

± 129* 

1267 

± 153 

512 

± 28 

682 

± 69 

827 

± 40* 

Triglycerides [mg/dL] 
78.0 

± 13.5 

93.0 

± 11.6 

41.3 

± 3.5 

101.6 

± 9.7 

135.6 

± 27.9 

124.3 

± 14.8 

Body weight [g] 
21.9 

± 0.4 

23.0 

± 0.8* 

26.8 

± 0.6* 

23.6 

± 0.6 

27.7 

± 0.6* 

28.4 

± 0.7* 

Concentrations were measured following ≥ 8 hours starvation; Values represent mean ± SEM; 
* = p ≤ 0.05 vs. control 
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exclusive IL-18- and IL-1β-activating enzyme in inflammatory conditions such as 
atherosclerosis. Instead, these findings raise the feasibility of alternative mechanisms that 
may regulate the activity of these prominent pro-inflammatory cytokines.  
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Figure 29: Deficiency in IL-18 but not in Caspase-1 diminishes atherosclerotic lesion 

formation in hyperlipidemic mice 

Total wall area (left) and macrophage content (right) within the aortic arch of mice either 

deficient (grey bars) for Caspase-1 (casp1-/-apoe-/-, A), IL-18 (il18-/-apoe-/-, B), or IL-1 

receptor type 1 (il1r1-/-apoe-/-, C) are shown in comparison to the respective control groups 

(apoe-/-, black bars). 6-8 week old mice consumed a high cholesterol diet for an additional 8 

weeks. Lesion size or macrophage content, as determined by positive immunohistochemical 

staining for the macrophage-specific marker Mac-3 was quantified on longitudinal sections 

of aortic arches employing computer-assisted analysis of. The bars represent the mean ± 

SEM of n ≥ 8. The asterisk indicates a p-value <0.05.
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3.5. Caspase-1 independent processing of proIL-18 

 

3.5.1. MMPs process precursor IL-18  

The lack of an effect of Caspase-1-deficiency on murine atherosclerosis compared to 

the potent reduction in IL-18-deficient mice creates an obvious paradox and challenges the 

accepted notion that IL-18 activation requires Caspase-1, thereby implicating alternative 

modes of IL-18 activation.         

Seeking an explanation for these conflicting results, we hypothesized that MMPs might 

mediate a potential alternative, Caspase-1-independent mechanism of IL-18-activation. In 

fact, our group has previously reported that MMPs can produce active forms of IL-1β,170 

Furthermore, MMPs were reported to process the chemokine MCP-1, generating antagonists 

and thus inhibiting function of the native molecule.171 Notably, MMPs are highly expressed 

at sites of inflammation, including atherosclerotic lesions. Thus, the long-standing interest of 

our group in this class of enzymes and their role in atherogenesis led us to test the hypothesis 

that MMPs provide likely candidates for Caspase-1-independent IL-18 regulation.  

To determine whether MMPs process the IL-18 precursor, an in vitro IL-18-processing 

assay was established employing recombinant MMPs and recombinant pro-IL-18. MMP-

mediated processing of proIL-18 was examined by co-incubation of activated MMPs with 

proIL-18, followed by SDS-PAGE and Western blot analysis employing an IL-18-specific 

polyclonal antibody. The tested MMPs, namely gelatinases (MMP-2 and -9; Figure 30), 

collagenases (MMP-1, -8, and -13; Figure 31), stromelysins (MMP-3 and -10; Figure 

32A+B), matrilysin (MMP-7; Figure 32C), and macrophage elastase (MMP-12; Figure 32D), 

concentration-dependently processed proIL-18 and yielded distinct processing products. Of 

note, processing efficacies varied among the different MMPs. Furthermore, some MMPs 

yielded multiple products, which appeared generated successively (e.g., MMP-8, MMP-13; 

Figure 31). As expected, processing progressed comparing 1 h and 24 h of co-incubation. 

Although some MMPs at high concentrations and after prolonged incubation (e.g., MMP-12, 

Figure 32 and MMP-13, Figure 31) resulted in complete degradation of IL-18, others yielded 
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more stable products upon co-incubation with proIL-18 (e.g., MMP-2 and -9, Figure 30 and 

MMP-8, Figure 31). 

Interestingly, all MMPs yielded one product closely co-migrating on SDS-PAGE with 

the 18 kDa mature form cleaved by Caspase-1. A correlation of the characteristics of proIL-

18 processing and the functional relationship among the MMPs (i.e., gelatinases vs. 

collagenases) was not recognizable. All tested MMPs also exhibited clear time-dependent 

processing of pro-IL-18. MMP-1, -2, -3, -7, -9, -10, -12 (data not shown) as well as MMP-8, 

and MMP-13 (Figure 33A) displayed processing products similar to those observed in their 

respective concentration-dependent assays. As expected, the non-activated MMP zymogens 

(no APMA treatment) yielded virtually no processing (Figure 33A, right lane).    
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Figure 30: The Gelatinases MMP-2 and MMP-9 process pro-IL-18. 

Increasing concentrations of (A) MMP-2 and (B) MMP-9 were incubated with pro-IL-18 (2.5 

µg/ml) for 1 h and 24 h.  Caspase-1 (0.5 µg/ml) was incubated with pro-IL-18 as a positive 

control.  The equivalent of 100 ng of pro-IL-18 was analyzed by Western blotting employing a 

polyclonal anti-human IL-18 antibody. Arrows on the left indicate approximate molecular weight. 

Shown are representative blots from a minimum of three independent experiments. 
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Figure 31: The Collagenases MMP-1, MMP-8, and MMP-13 process pro-IL-18. 

Increasing concentrations of (A) MMP-1, (B) MMP-8, and (C) MMP-13 were incubated with pro-

IL-18 (2.5 µg/ml) for 1 h and 24 h. Caspase-1 (0.5 µg/ml) was incubated with pro-IL-18 as a 

positive control. The equivalent of 100 ng of pro-IL-18 was analyzed by Western blot employing a 

polyclonal anti-human IL-18 antibody. Arrows on the left indicate approximate molecular weight. 

Shown are representative blots from a minimum of three independent experiments. 
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Figure 32: Stromelysins (MMP-3 and MMP-10), Matrilysin (MMP-7), and Macrophage 

Elastase (MMP-12) concentration-dependently process pro-IL-18. 

Increasing concentrations of (A) MMP-3, (B) MMP-10, (C) MMP-7, and (D) MMP-12 were 

incubated with pro-IL-18 (2.5 µg/ml)  for 1 h and 24 h.  Caspase-1 (0.5 µg/ml) was incubated with 

pro-IL-18 as a positive control. The equivalent of 100 ng of pro-IL-18 was analyzed by Western 

blot employing a polyclonal anti-human IL-18 antibody. Arrows on the left indicate approximate 

molecular weight. Shown are representative blots from a minimum of three independent 

experiments. 



     

PhD Thesis -82- Norbert Gerdes 

20
 m

in

A

B

Pr
o-

IL
-1

8 

MMP [1µg/ml]

0 
m

in

5 
m

in 1h 3h 8h 24
h

Zy
m

og
en

C
a s

p a
se

-1

MMP-8

MMP-13

25 kDa

20 kDa

25 kDa

20 kDa
C

as
pa

s e
-1

MMP [1µg/ml]

M
M

P-
1

M
M

P-
2

M
M

P-
3

M
M

P-
7

M
M

P-
8

M
M

P-
9

M
M

P-
10

M
M

P-
12

M
M

P-
13

MMP-
inhibitor

25 kDa

20 kDa

25 kDa

20 kDa
Caspase-1-
inhibitor

 

Figure 33: MMP-mediated processing of pro-IL-18 is time-dependent and abolished by 

      MMP-inhibitor but not Caspase-1-inhibitor. 

(A) MMP-8 and MMP-13 (both at 1 µg/ml) or Caspase-1 (0.5 µg/ml) were incubated with pro-IL-18 

(2.5 µg/ml) for a range of time points (0 min-24 h). The non-APMA-treated MMP zymogen was co-

incubated with pro-IL-18 for 8 h in each assay.  Pro-IL-18 was incubated alone for 1 h as a negative 

control. (B) MMPs (1 µg/ml) or Caspase-1 (0.5 µg/ml) were added to pro-IL-18 (2.5 µg/ml) and 

incubated for 24 h in the presence of MMP-inhibitor (GM6001; top panel) or Caspase-1 inhibitor 

(Ac-YVAD-CHO); bottom panel. The equivalent of 100 ng of pro-IL-18 was analyzed by Western 

blotting. Arrows indicate approximate molecular weight. Shown are representative blots from at 

least three independent experiments. 
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To verify that the observed processing indeed resulted from the action of MMPs and 

not from potential contamination with other proteolytic enzymes, two separate control assays 

were performed, one in the presence of the generic MMP-inhibitor GM6001 and the other in 

the presence of the reversible Caspase-1-inhibitor Ac-YVAD-CHO (YVAD). In the presence 

of GM6001, no MMP-mediated processing of proIL-18 was observed (Figure 33B, top).  

However, Caspase-1 processed proIL-18 to its mature, 18 kDa form, demonstrating that 

Caspase-1-function is not impaired by GM6001 and, more importantly, that cleavage in the 

preceding assays was MMP-specific. 

 In contrast, in the presence of YVAD, MMPs did process proIL-18 in a manner 

consistent with previous experiments, whereas function of Caspase-1 was limited, supporting 

the specificity of the MMP-mediated processing (Figure 33B, bottom). Of note, Ac-YVAD-

CHO is a reversible inhibitor, potentially explaining the incomplete inhibition of Caspase-1 

function observed in these experiments (Figure 33B, bottom).   

 

3.5.2. MMP-2 and MMP-8 cleave precursor IL-18 into biologically active forms 

Although some of the MMP-processed products co-migrate with Caspase-1-cleaved 

mature IL-18, the processing experiments and subsequent Western blot analysis does not 

allow any conclusion regarding their biological activity. Thus, I established a bioactivity 

assay to test the functionality of the MMP-processed proIL-18 products, employing the 

monocytic cell line KG-1, which secretes IFNγ upon incubation with active IL-18.172 These 

cells were pre-stimulated with TNFα for 24 h to up-regulate expression of IL-18R, rendering 

them more responsive to IL-18.172 

ProIL-18 samples processed by MMPs for 1 h or 24 h were applied in parallel to the 

bioactivity assay, to test for potential functionality, and to Western blot analysis, to visualize 

the processed products (Figure 34). As shown earlier, MMPs yielded a ~18 kDa form of IL-

18 following 1 h of processing. While proIL-18 processed by Caspase-1 induced high levels 

of IFNγ in KG-1 cells, only proIL-18 cleaved by MMP-2, -8, and -12 exhibited elevated 

levels of bioactivity. After 24 h of processing, a greater amount of precursor was processed 

to a ~18 kDa form, and some MMP-mediated degradation was observed. Interestingly, the 

bioactivities of MMP-2- and MMP-8-processed proIL-18 were comparable to those of 
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Caspase-1-processed pro-IL-18. However, all other MMPs failed to generate bio-active 

products. Interestingly, proIL-18 processed by MMP-12 exhibited a loss of bioactivity, an 

observation consistent with the complete degradation of IL-18 by the enzyme after 24 h, as 

demonstrated in the Western blot analysis.  
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Figure 34:  Pro-IL-18 processed by MMP-2 and MMP-8 displays biological activity. 

Pro-IL-18 (2.5 µg/ml) and MMPs (1 µg/ml) were incubated for 1 h and 24 h.  Pro-IL-18 incubated 

with Caspase-1 (0.5 µg/ml; 1 h) or alone (24 h) as positive and negative controls, respectively. 

Reaction mixtures were added, in equal parts, to (A) Western blot analysis for IL-18 or to  

(B) KG-1 cell suspensions (500,000 cells/ml). Following 24 h of co-incubation, supernatants were 

removed and assayed for IFNγ by ELISA. The amount of IFNγ correlates with the IL-18 activity 

contained in the mixtures obtained from 1 h (gray bars) and 24 h (black bars) processing. Samples 

were assayed in duplicates on ELISA and the mean result of each reading is reported. Shown are 

representative data from three independent experiments.  Blots are aligned with the corresponding 

bioactivity data. Approximate molecular weight markers are indicated on the left. 
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3.5.3. Sequence analysis of active IL-18 fragments and MMP-cleavage site identification 

To further characterize the MMP-processed IL-18 products that demonstrate biological 

activity and test whether these products differ from Caspase-1-processed IL-18, additional 

experiments aimed to determine the exact cleavage site of MMP-2 and MMP-8 on the IL-18 

precursor. Aliquots of the MMP-2/proIL-18 and MMP-8/proIL-18 processing mixtures were 

separated by SDS-PAGE on separate lanes of the gel and subjected to either Coomassie 

Brilliant Blue staining, Silver staining, or Western blot analysis (Figure 35).  Blots were 

aligned with the aid of molecular weight markers, allowing for identification of bands of 
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Figure 35: SDS-PAGE of MMP-2 and MMP-8-cleaved pro-IL-18 fragments 

      for sequence analysis 

Pro-IL-18 co-incubated for 24 h with either MMP-2 (A) or MMP-8 (B) was separated by SDS-

PAGE and subsequently applied to Western blot analysis employing a polyclonal anti-human IL-

18 antibody (WB; 100 ng pro-IL-18). Additional lanes of the same gel were visualized by either 

Silver staining (Silver; 100 ng pro-IL-18) or Coomassie Brilliant Blue staining (Coomassie; 500 

ng pro-IL-18). Arrows indicate approximate molecular weight.  Red arrows indicate bands applied 

to further sequence analysis. M indicates molecular weight marker. 



     

PhD Thesis -86- Norbert Gerdes 

interest, which were subsequently excised from the Coomassie blue-stained gel. The protein 

bands were subjected to trypsin digestion, eluted from the gel, and reduced and alkylated. 

Finally, the samples were applied to LC-MS/MS analysis. Peptide analysis identified an N-

terminal cleavage site for MMP-2 as Tyr24-Phe25, 12 amino acids N-terminal of the 

prototypical Caspase-1 cleavage site of proIL-18 (Table 10). Processing at this MMP-2 

cleavage site yielded an IL-18 fragment with a calculated molecular weight of approximately 

19.8 kDa, correlating to the ~19-20 kDa predominant band of the MMP-2/proIL-18 reaction 

mixture observed on the Coomassie gel and the Western blots  (Figure 35A). Insufficient 

sequence coverage hampered determination of the MMP-8 cleavage site on proIL-18 through 

a similar peptide analysis. Instead, reverse sequence search calculating hypothetical 

molecular weights for particular peptide fragments and searching the MS database for 

matching molecular weights was performed to detail the cleavage site.  By determining the 

presence and relative abundance of these fragments in the mass spectra, we identified two 

putative cleavage sites for MMP-8 at Asp59-Gln60 and Gly61-Arg62, which would yield 15.8 

and 15.6 kDa IL-18 fragments, respectively (Table 10), again correlating with the most 

abundant fragment on the gel (Figure 35B).  

 

 

3.5.4. Atheromatous lesions of Caspase-1-deficient mice contain  

 mature IL-18 and IL-1β 

To determine the in vivo relevance of alternative Caspase-1-independent mechanisms 

of IL-18 and IL-1β activation, we compared the expression of different forms of these two 

pro-inflammatory cytokines in the atherosclerotic tissue of mice either competent or deficient 

for Caspase-1. 

Interestingly, both apoe-/-  as well as casp1-/-apoe-/- mice readily expressed mature IL-

1β (~17 kDa) in atherosclerotic aortae following 8 and 18 weeks of high-cholesterol diet 

(HCD).  Furthermore, the amount of processed IL-1β appeared greater in casp1-/-apoe-/- mice 

than in apoe-/- mice after 18 weeks of HCD. Expression of the precursor (~33 kDa) and 

intermediate forms (~28 kDa) of IL-1β remained comparable (Figure 36, middle panels). 

These findings indicate that alternative IL-18 processing pathways may accelerate 

inflammatory conditions more potently than Caspase-1.  
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Table 10: Mass ions identified in MMP-processed proIL-18 

MMP-2        
     1 MAAEPVEDNC INFVAMKFID NTLYFIAEDD ENLESDYFGK LESKLSVIRN  

    51 LNDQVLFIDQ GNRPLFEDMT DSDCRDNAPR TIFIISMYKD SQPRGMAVTI  

   101 SVKCEKISTL SCENKIISFK EMNPPDNIKD TKSDIIFFQR SVPGHDNKMQ  

   151 FESSSYEGYF LACEKERDLF KLILKKEDEL GDRSIMFTVQ NED 

Observed Mr(expt) Mr(calc) Delta Sequence 

946.36 1890.71   1890.82  -0.10   25FIAEDDENLESDYFGK40 

928.46   1854.91   1854.96    -0.05   50NLNDQVLFIDQGNRPL65 

1043.41   3127.21   3127.40    -0.18   50NLNDQVLFIDQGNRPLFEDMTDSDCR75 Oxidation (M) 

921.12   3680.44   3680.66    -0.22   50NLNDQVLFIDQGNRPLFEDMTDSDCRDNAPR80 Oxidation (M) 

566.29   1130.56   1130.60  -0.04   81TIFIISMYK89 Oxidation (M) 

572.29   1713.86   1713.88    -0.01   81TIFIISMYKDSQPR94 Oxidation (M) 

461.25    920.48    920.50     -0.02   95GMAVTISVK103 Oxidation (M) 

526.25   1050.49   1050.50    -0.01   107ISTLSCENK115 

701.30   1400.58   1400.66    -0.08   121EMNPPDNIKDTK132 

514.25   1026.48   1026.53    -0.05   124PPDNIKDTK132 

513.26   1024.51   1024.53    -0.03   133SDIIFFQR140 

1046.39   2090.77   2090.86    -0.09   149MQFESSSYEGYFLACEK165 Oxidation (M) 

MMP-8 
     1 MAAEPVEDNC INFVAMKFID NTLYFIAEDD ENLESDYFGK LESKLSVIRN  

    51 LNDQVLFIDQ GNRPLFEDMT DSDCRDNAPR TIFIISMYKD SQPRGMAVTI  

   101 SVKCEKISTL SCENKIISFK EMNPPDNIKD TKSDIIFFQR SVPGHDNKMQ  

   151 FESSSYEGYF LACEKERDLF KLILKKEDEL GDRSIMFTVQ NED 

Observed Mr(expt) Mr(calc) Delta Sequence 

566.33   1130.64   1130.60   0.04  81TIFIISMYK89 Oxidation (M) 

461.28    920.54    920.50     0.04     95GMAVTISVK103 Oxidation (M) 

     

Manual search: 

878.4438 1756.688 1755.743 0.94 62NRPLFEDMTDSDCR75 Oxidation (M) 

970.9923 1941.984 1940.823 1.16 60QGNRPLFEDMTDSDCR75 Oxidation (M) 

Ions  matching with the sequence of proIL-18 are shown in bold. 

Peptides derived from manual search are underlined. 

Observed = experimental m/z (mass/charge) value 

Mr(expt) = experimental m/z value transformed to a relative molecular mass 

Mr(calc) = Calculated relative molecular mass of the matched peptide 

Delta = Difference between experimental and calculated mass 
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A processed form of IL-18 was detected in aortas of apoe-/- mice as well as in casp1-/-

apoe-/- mice following 8 and 18 weeks of HCD in the absence of Caspase-1 expression 

(Figure 36, bottom panels).  Similar to IL-1β, the amount of processed IL-18 in casp1-/-   

apoe-/- mice appeared equal to if not greater than that in apoe-/- mice, despite similar levels of 

proIL-18 expression. Notably, the molecular weight of the processed IL-18 in casp1-/-apoe-/- 

Figure 36: Atherosclerotic lesions from Caspase-1-deficient mice contain 

      cleaved forms of IL-18 and IL-1β. 

Protein extracts from aorta of apoe-/-, casp1-/-apoe-/-, and i18-/-apoe-/- mice fed an high-

cholesterol diet (HCD) for 8 (left) or 18 weeks (right) were subjected to SDS-PAGE and 

subsequent Western blot analysis for Caspase-1 (top), IL-1β (middle), or IL-18 (bottom). The 

spleen of an apoe-/- mouse suffering from an acute skin infection served as a positive control for 

caspase-1 and IL-1β. Approximate molecular weights are indicated by the arrows on the left.  
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mice appeared marginally greater than in apoe-/- mice, further supporting the presence of a 

Caspase-1-independent IL-18 processing mechanism similar to the one described above for 

by MMPs. 

As expected, il18-/-apoe-/- mice did not express any forms of IL-18 within their aortae, 

thereby strengthening the validity of the above data.  Additional Western blot analysis 

employing an antibody for Caspase-1 verified that expression of this protease is indeed 

absent in casp1-/-apoe-/- mice. Following 8 and 18 weeks of HCD, apoe-/- mice expressed 

amounts of Caspase-1 within their aortic walls (Figure 36, top panels). The band migrating at 

~20 kDa appears unspecific, since it is also observed in protein extract in casp1-/-apoe-/- mice. 

Other bands include the 45 kDa precursor, the 10 kDa p10-subunit, and the 30 kDa p10/p20-

heterodimer. 

In sum, these data demonstrating immunoreactive species of IL-18 and IL-1β in 

atherosclerotic tissue of mice lacking functional Caspase-1 provide evidence for the presence 

of processing mechanisms independent of the classical activating enzyme. In agreement with 

previous reports, these findings further highlight the potential relevance of the MMP-

mediated activation of these cytokines under pro-inflammatory conditions in vivo. 
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4. Discussion 
 

Recent research points to a prominent role of immunity and inflammation in the 

pathogenesis of atherosclerosis and increasing data support the hypothesis that the network of 

cytokines orchestrate many of the complex processes underlying this prevalent human 

disease.16,17,32,68 During my diploma thesis I demonstrated expression and in vitro pro-

inflammatory function of the cytokine IL-18,111,112 giving rise to a steady growing field of 

IL-18 biology in cardiovascular disease. Although the elevated expression of IL-18 and its 

receptor in atherosclerotic tissue in situ in combination with the pro-inflammatory function 

on atheroma-associated cells in vitro suggests a prominent atherogenic role of this molecule, 

direct evidence for the crucial involvement of IL-18 and factors associated with the IL-18 

pathway in atherogenesis in vivo remained elusive. This doctoral thesis thus aimed to 

evaluate the in vivo contribution of IL-18- and IL-1-signaling as well as Caspase-1 to 

experimental atherosclerosis in murine models of atherosclerosis and hence to explore their 

potential value as targets for therapeutic intervention. 

 

IFNγ expression in smooth muscle cells 

This thesis started in direct continuation of my diploma thesis extending the findings of 

IL-18’s pro-atherogenic functions and identifying non-lymphatic cells, namely macrophages 

and, surprisingly, SMC as potent producers of IFNγ expression mediated by IL-18. 

Several studies implicated IFNγ in various pro-atherogenic processes, including loss of 

fibrillar collagen and modulation of inflammatory processes, demonstrating its aggravating 

role in atherogenesis in vivo.65,67,173-175 However, the proximal inducers remained elusive. 

 Notably, IFNγ expression by T-cells and NK cells, comprising a minimal fraction of 

lesional cells, was identified as the traditional function of IL-18.73-75 However, expression 

and function of IFNγ showed only limited localization with these cells. Therefore, this thesis 

examined whether other atheroma-associated cell types, such as macrophages, but also non-

hematopoietic cells, namely EC and SMC, can produce this pro-atherogenic mediator.  
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Indeed, freshly isolated monocytes, but not differentiated macrophages secreted IFNγ 

upon stimulation with IL-18. This finding addresses the previously raised controversy around 

expression of IFNγ in monocytes and macrophages,116,176,177 adding this cell type to the list of 

IFNγ producers in atherosclerotic lesions.  

Interestingly, SMC also expressed IFNγ when stimulated with IL-18 and even more 

potently in synergism with IL-12, representing a finding previously not reported and not 

anticipated due to the non-hematopoietic origin of these cells. The lack of appropriate 

antibodies hampered experiments aimed to verify the presence of the protein and to localize 

it with SMC in situ. Immunohistochemical analysis of IFNγ expression in situ is known to be 

problematic and a report published around the time of my findings has called into question 

the specificity of various (13 different) anti-IFNγ antibodies.178 However, the detection of 

IFNγ mRNA in SMC-enriched areas of human atheroma in situ supports the validity of this 

observation. Further highlighting the IFNγ production from sources other than T-cells, 

Tenger et al. showed that injection of recombinant IL-18 did evoke atherosclerotic lesion 

development and raised plasma levels of IFNγ even in the absence of lymphocytes.179 These 

findings imply that IL-18 promotes its functions, including the induction of IFNγ, at least in 

part by other cell types associated with atherosclerosis, namely macrophages or SMC. 

The secretion of IFNγ by SMC might have broad implications considering the 

abundance of this cell type in the vasculature compared to immune cells, such as T-

lymphocytes.16 Notably, this mechanism may constitute part of a feedback loop modulating 

the proliferation of SMC in the vessel wall, as IFNγ is a potent anti-mitogenic mediator,173 

thus limiting plaque growth and inflammatory conditions. 

The present observation also contributes to our understanding of the predominant TH1 

response during atherogenesis.16,17,60 IFNγ enhances the expression of both IL-18 receptor 

chains in combination with IL-1β or TNFα, two prominent pro-inflammatory cytokines also 

found in plaques.112 The elicitation of IL-18Rα/β by IFNγ in an inflammatory setting 

combined with the induction of IFNγ expression via IL-18 signaling in T-cell and 

macrophages, but also SMC, suggests a positive feedback loop in the vasculature, which 

might contribute to the dysregulated inflammatory response characterizing atheroma.  
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In sum, my previous in vitro studies and the continuation thereof detailed in this thesis 

strongly implicated the IL-18 ligand/receptor dyad in atherogenesis and add considerably to 

the burgeoning evidence of a locally self-sustaining immune and inflammatory response 

within the atheromatous plaque. Nonetheless, the contribution of IL-18 and related mediators 

to atherosclerotic lesion development in vivo remained undefined, demanding direct 

evaluation. In light of the pro-atherogenic functions, detailed in this thesis and my previous 

diploma thesis, it remains to be elucidated whether a potential pro-atherogenic role of IL-18 

in vivo is mediated via its classical downstream effector IFNγ or independently thereof. 

 

The role of IL-18 in experimental atherosclerosis 

Following successful generation of il18-/-apoe-/- mice, comparison of atherosclerotic 

lesion development in the aortic arch to that of  il18+/+apoe-/- mice definitively demonstrated 

a role for  IL-18 in early atherogenesis. Of note, IL-18 appears not to affect later stages of 

lesion development following prolonged hypercholesterolemia. These data also provide new 

insight into the mechanisms by which IL-18 contributes to early atherogenesis and suggest 

that IL-18 acts, at least in part, independently of IFNγ. 

Supporting this hypothesis, the expression of IFNγ and MHC II antigens (highly 

regulated by IFNγ) was similar in il18+/+apoe-/- and il18-/-apoe-/- mice despite significantly 

diminished lesion size. The fact that levels of IFNγ remained high despite diminished 

numbers of macrophages and unaltered T-cell content in il18-/-apoe-/- mice attributed in vivo 

relevance to our observation of IFNγ expression by vascular SMC in vitro and in human 

atherosclerotic plaques in situ.112 Alternative triggers for IFNγ induction obviously 

compensate for the lack of IL-18. Of note, oxidized LDL potently induces the expression of 

IFNγ in T-cells.180 Moreover, oxidized LDL also induces IL-12, an established co-factor of 

IFNγ expression, in leukocytes.181 Hence, elevated lipid levels in the circulation might 

compensate, directly and/or via induction of IL-12, the lack of IL-18 as the IFNγ-inducing 

factor. In accord, we found elevated levels of lipid deposition in il18-/-apoe-/- compared to 

il18+/+apoe-/-mice. 
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The fact that IL-18 deficiency led to significantly reduced atherogenesis despite 

unaffected IFNγ expression renders IFNγ-independent functions of IL-18 prominent in 

atherosclerosis. Among potential direct pro-atherogenic functions this study identified 

induction of the adhesion molecule VCAM-1, expression of which is diminished in mice 

lacking IL-18. Considering the crucial role of adhesion molecules in the initial stage of lesion 

development, these data are in agreement with IL-18’s accelerating effect in early rather than 

late atherogenesis. In addition, the modulation of this and other adhesion molecules has been 

confirmed by us and others as a prominent function of IL-18 in vitro.112,182-184 Another 

potential avenue of IL-18 function contributing to early stages of atherosclerosis is thought to 

be the enhanced attraction of leukocytes to developing atherosclerotic lesions by chemokines. 

Indeed, enhanced production of these pro-atherogenic mediators has been attributed to IL-

18.78,112,118 More importantly, IL-18 itself was recently identified as a potent 

chemoattractant,112,185,186 strongly supporting the hypothesis developed in this work. 

Remarkably, IL-18 deficiency did result in elevated plasma lipid concentration, yet 

reduced atherosclerosis. Thus, the pro-atherogenic function of IL-18 in this study might 

actually be underestimated. Interestingly, enhanced inflammation has been reported as 

responsible for a variety of changes in lipid metabolism.187 Since this trend was also 

observed in mice lacking Caspase-1 and IL-1R1, it might be speculated that it is caused by a 

systemic, probably hepatic, alteration of lipid metabolism rather than local changes in the 

lesions. These findings support a developing understanding that not only dyslipidemia 

propagates inflammation, but also vice versa inflammatory mechanisms mediate profound 

changes in lipid metabolism.187 Although, this interesting observation deserves further 

attention, the complexity of both, the immune system and lipid metabolism, would easily 

expand an investigation of the underlying mechanisms far beyond the scope of this thesis. 

Indeed, the elevated plasma lipid levels likely explain the observed unchanged lipid 

deposition in the vessel wall despite diminished macrophage content. Considering that 

macrophage infiltration and lipid content of atheromatous lesions commonly correlate in 

experimental studies in mice or clinical pathological samples,152,153,188,189 the overwhelming 

circulating lipid levels likely account for enhanced lipid deposition in the vessel wall. 

In accord with the findings of this thesis, a recent report demonstrated that 

intraperitoneal treatment of apoe-/- mice with exogenous recombinant IL-18 enhanced 
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lesional lipid- and diminished collagen content.190 Furthermore, electrotransfer of an 

expression plasmid encoding IL-18 binding protein (IL-18BP), an endogenous inhibitor of 

IL-18, diminished lipid deposition in the vessel wall.191 Noteworthy, mice in these studies did 

not display altered plasma lipid levels, suggesting that complete absence of IL-18 by targeted 

gene disruption, as used in our model, affects systemic lipid metabolism, whereas transient 

inhibition or overexpression does not. 

Further supporting the hypothesis of IFNγ-independent atherogenic functions of IL-18, 

is the finding that reduction in lesion formation did not depend on gender. A study by 

Whitman et al. showed that IFNγ deficiency i) decreased atherosclerosis in male but not 

female in apoe-/- mice and ii) did not alter total plasma cholesterol.72 Our data obtained with 

IL-18 deficient mice differ in both points. First, no gender specific influence of IL-18 

deficiency on the extent of atherosclerotic lesions formation was observed. Furthermore, total 

plasma cholesterol and triglyceride concentrations did differ between il18+/+apoe-/- and il18-/-

apoe-/- mice, as outlined above. Thus, the present findings detailing comparable reduction in 

atherosclerotic lesion formation in male and female mice disagree with the observation by 

Whitman et al. and, thus, support the hypothesis that IL-18 promotes atherosclerosis 

independent of IFNγ.   

Several studies in mice have now corroborated the pro-atherogenic role of IL-18 in 

vivo. Enhanced atherosclerosis was observed in hypercholesterolemic mice receiving 

recombinant IL-18.190 Furthermore, in a separate study overexpression of the endogenous 

inhibitor IL-18BP, limited plaque development in apoe-/- mice, including a decrease in the 

numbers of macrophages and T-cells, apoptotic cells, lipid content, and an increase in smooth 

muscle cell and collagen content, suggesting a more stable plaque.191 Besides corroborating 

the findings of our current study Elhage et al. observed in il18-/-apoe-/- mice a shift from a 

TH1-predominat immune response to one that features a TH2, thus, rather atheroprotective 

profile.192 Of note, the involvement of IL-18 in this basic immunologic mechanism is 

supported by previous reports,78,131 although was not yet applied to atherosclerosis. 

The present thesis also provides evidence that IL-18 not only affects lesion size but also 

composition, which is critical for plaque stability and, thus, propensity to cause clinical 

complications. In fact, the enhanced SMC- and diminished macrophage content in mice 

lacking IL-18 indicating stabilized lesions is corroborated by a recent report displaying 
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decreased collagen content and enhanced proteolytic activity following overexpression of IL-

18 in a model of mechanically induced atherosclerosis.193 

In conclusion, this thesis identifies IL-18 as a crucial mediator of early but probably not 

advanced atherogenesis, supporting a proximal role in the cytokine cascade underlying this 

disease.194,195 Furthermore, it furnishes evidence that IL-18 promotes chronic inflammatory 

diseases, such as atherosclerosis, at least in part via IFNγ-independent pathways. Future 

studies investigating IL-18 as a potential therapeutic target of inflammatory diseases should 

therefore take into account the present observation that abrogation of IL-18 signaling delays 

but does not prevent experimental atherosclerosis. 

 

Atherosclerosis in IL-18R deficient mice 

The present finding that selective absence of IL-18Rα on either hematopoietic or 

vascular cells does not affect atherogenesis, although in agreement with the data obtained in 

mice globally deficient for IL-18Rα, was unexpected. The paradoxical outcome for these 

studies testing the lack of the ligand and receptor, respectively, exposes the intriguing 

possibility that IL-18 mediates its pro-atherogenic function via a pathway independent of IL-

18Rα. 

It is unlikely, that IL-18 directly interacts with IL-18Rβ subunit, since this receptor 

chain is not implicated in ligand binding but is rather considered to facilitate the downstream 

signaling upon formation of the IL-18Rα/IL-18β/IL-18 complex.78 

The IL-1 family consist of 10 known ligands as well as 10 closely related 

receptors.196,197 However, only a minority of these, including IL-1 and IL-18, as well as their 

respective receptors, have been described in more detail. Amid some orphan ligands and 

receptors among these mediators the existence of additional, yet unidentified family members 

has been proposed.196,197 Thus, it may be speculated that IL-18 mediates its atherogenic 

function, at least in part, through alternative, potentially yet undiscovered members of this 

receptor family. Indeed, signaling independent of the classical receptor has been previously 

suggested for the related IL-1β in a model of traumatic injury-induced neuronal cell death 

and ischemic brain injury.198,199 In view of the growing redundancy of the IL-1 family of 

receptors and ligands, it was proposed that alternative IL-1 signaling mechanisms are 
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relevant in these pathophysiologic conditions.200 However, so far no alternative receptor for 

IL-1 or IL-18 has been identified. Considering the similarities between the IL-1 and IL-18 

receptors and ligands,197 the existence of alternative pathways for IL-18 action appears 

entirely reasonable.200 Interestingly, two new members of the IL-1 family were recently 

identified and shown to bind to IL-18Rα albeit without classical IL-18-related functions, 

highlighting the potential for crossreactivity in this receptor/ligand system.201,202 Moreover, a 

recent report showed that absence of IL-18Rα does not affect progression of an experimental 

model of lupus erythematosus, although IL-18 itself has been implicated in the disease.203,204  

In sum, the studies investigating atherogenesis in il18r1-/-apoe-/- mice yielded the 

novel insight that IL-18Rα might not be required for IL-18 function in atherosclerosis. In 

accordance, IL-18 signaling independent of the classical IL-18R pathway, may provide an 

explanation for the divergent results observed in the two in vivo studies employing IL-18 or 

IL-18Rα-deficient mice. Thus, the present work has opened a new field of research critical 

with respect to potential therapeutic intervention and future studies should elucidate the 

growing field of the IL-1/IL-18 system, including potential crosstalk between members of the 

IL-1 and IL-18 signaling pathways.197 

 

Atherosclerosis in IL-1R- and Caspase-1 deficient mice 

In contrast to the differential findings discussed above for deficiency in IL-18 and 

IL18Rα, respectively, lack of either IL-1β or IL-1R1 displayed a similar effect on 

atherogenesis. Lesion development in mice deficient for IL-1R1 was markedly limited, in 

agreement with a study by Kirii et al., demonstrating reduced atherogenesis in mice lacking 

the ligand IL-1β.169  

Notably, IL-1R1 deficiency led to reduction of lesion development and macrophage 

infiltration following 8 but not 18 weeks of HCD, reflecting the results observed with il18-/-

apoe-/- mice. However, in contrast to IL-18 deficiency lack of IL-1R1 did not lead to an 

increase of SMC content in the lesions. This observation might result from a differential 

effect of IL-1 and IL-18 signaling on expression of IFNγ, a crucial negative modulator of 

SMC proliferation. 
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Following the implication of IL-18 and IL-1 signaling in atherogenesis and the reduced 

severity of disease in the respective deficient mice, the failure of Caspase-1 deficiency to 

reduce lesion progression was indeed surprising. Since the experimental study and blinded 

analysis of in il1r1-/-apoe-/- (yielding a difference in atherogenesis) and casp1-/-apoe-/- mice 

was performed at the same time, methodological pitfalls accounting for these unexpected 

results can be excluded. This apparently paradoxical observation that IL-18 (and probably 

IL-1β) contributes more to development of atherosclerosis than the proposed processing 

enzyme Caspase-1, fostered the search for a mechanistic explanation. 

 

Caspase-1-independent activation of proIL-18 

The growing implication of IL-18 and IL-1β in chronic inflammatory disorders has 

fostered much interest in Caspase-1, the enzyme reported to mediate the proteolytic 

activation of these two pro-inflammatory cytokines. Seeking a mechanistic explanation for 

the apparently paradoxical results in mice lacking IL-18 on one hand and Caspase-1 on the 

other, this thesis identified MMPs as potent alternative activators of IL-18 in vitro, and 

provides in vivo evidence for the presence of Caspase-1-independent IL-18 cleavage 

mechanisms.  

Until this present work, alternative IL-18 activation mechanisms remained poorly 

characterized and only the serine protease proteinase-3 (PR-3) had been identified as a 

potential Caspase-1-independent activator of IL-18.205 However, expression of PR-3 was 

restricted to oral epithelium and no reports of PR-3 in atheromatous tissue limit the 

implication of this alternative IL-18 activating pathway in atherogenesis. 

Fantuzzi et al. recently demonstrated that wild-type and Caspase-1-deficient mice 

show a similar response to turpentine-induced tissue damage, which leads to IL-1β-

dependent increase of serum IL-6 and symptoms, such as fever, anorexia, and weight loss.206 

However, IL-1β-deficient mice display none of these inflammatory reactions, suggesting that 

turpentine-induced local inflammation produces a biologically active form of IL-1β even in 

the absence of Caspase-1. Corroborating the findings of my work, this and other studies have 

established the generation of immunoreactive mature IL-1β in Caspase-1-deficient mice or 

by Caspase-1-independent mechanisms.206,207 Moreover, our group previously reported that 
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MMPs can produce active forms of IL-1β,170 thereby expanding the generally accepted role 

of MMPs in the pathogenesis of atherosclerosis. 

While MMPs prominently localize and act extracellularly, IL-1β and IL-18 are 

typically processed and activated intracellularly prior to their secretion,93 potentially raising 

concern regarding the relevance of the proposed mechanism. However, the precursors of IL-

18 and IL-1β can be secreted in certain circumstances, such as Caspase-1 inhibition, which 

might occur under both physiological and pathological situations.97,110 Furthermore, 

intracellular proteins can be released from the cytosol or organelles upon apoptosis or 

necrotic cell death,208 both events frequently observed in atheroma.18,38 Thus, processing of 

proIL-18 by MMPs, which generally localize to the extracellular matrix,54 represents a 

plausible mechanism for IL-18 activation in atherosclerosis and other chronic inflammatory 

diseases. 

While assessing the physiological relevance of the proposed cytokine activation 

mechanism, two key elements must be addressed: the specific activity of the resulting 

processed cytokine and the local concentrations of both enzyme and substrate at sites of 

inflammation. Pro-IL-18 processed by MMP-2 and MMP-8 exhibited biological activity 

comparable to that of the Caspase-1-processed, mature form of IL-18, proving that these 

MMP-processed products can induce IL-18-specific function in the absence of Caspase-1.  

As discussed above, IL-18 is constitutively expressed and can be secreted as a 

precursor.110,209 MMPs are highly expressed and active within chronic inflammatory diseases, 

including atherosclerosis.51,53,210 Although not determined in atherosclerotic tissue, their 

concentrations can locally read up to 350 µg/ml (e.g., in synovial fluid of patients suffering 

from rheumatoid arthritis),211-216 rendering the MMP concentrations employed in the proIL-

18 processing assay (0.5 - 10 µg/ml) well within physiological range. Thus, the well-

documented expression of the substrate proIL-18 and the enzyme in atherosclerotic tissue 

adds to the likelihood of this alternative proIL-18 processing pathway indeed figuring in 

atherogenesis. 

Originally characterized as exclusively matrix-degrading enzymes, MMPs have been 

implicated in the processes of vascular remodeling and atherosclerotic plaque 

destabilization.54 However, the present finding that MMPs potently process and activate IL-

18, along with their previously established role in IL-1β activation,170 add further complexity 
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to the already intricate role of MMPs in atherosclerosis and other inflammatory diseases, 

such as rheumatoid arthritis, osteoarthritis, and tumor metastasis.48,217-219 

In atherosclerosis, MMPs mediate collagenolysis within the plaque, one of two distinct 

mechanisms responsible for collagen loss along with IFNγ-mediated inhibition of collagen 

production by SMC.220 Considering the present findings, however, activation of IL-18 by 

MMPs might augment the expression of IFNγ, a prominent function of IL-18. IFNγ, in turn, 

directly inhibits SMC proliferation and collagen synthesis. Thus, MMPs may contribute to 

plaque destabilization not only through direct breakdown of collagen but also by indirectly 

promoting IFNγ production and subsequent inhibition of collagen synthesis.   

Moreover, the proteolytic functions of MMPs may extend beyond ECM catabolism 

and pro-inflammatory cytokine activation to the degradation and hence, inactivation of 

various inflammatory mediators.  In addition to the previously reported degradation of IL-1β 

by MMP-3,170 McQuibban et al. recently demonstrated that several MMPs degrade 

prominent chemokines, such as MCP-1, -2, -3, and -4, yielding functionally inactive 

products.171 Of note, the present study indicates similar MMP-mediated degradation of IL-18, 

as observed upon extended co-incubation of MMPs (e.g., MMP-12 and MMP-13) with 

proIL-18. Of note, processing by MMP-12 yielded diminished bioactivity coinciding with 

complete degradation of the IL-18 protein in Western blot analysis. Such potential anti-

inflammatory actions of MMPs might hold physiological relevance by providing a feedback 

system to limit the otherwise deleterious pro-inflammatory and matrix-deteriorating effects 

of MMPs within the atherosclerotic plaque.  

While MMPs are generally characterized as an entire family or by their subgroups, 

accruing data prompt analysis of individual MMP functions. In the present study, only two of 

the nine tested MMPs produced biologically active forms of IL-18 despite apparent proIL18 

processing and formation of ~18 kDa products by all tested MMPs. Interestingly, the two 

activating MMPs are members of two separate classes. MMP-2 is a gelatinase (gelatinase B), 

while MMP-8 is a member of the collagenase family (neutrophil collagenase). Our 

preliminary findings suggest that these MMPs activate proIL-18 through cleavage at unique 

sites, different from the traditional Caspase-1 cleavage site (Figure 37). Furthermore, it 

illustrates that IL-18 activation is not limited to one particular family of MMPs. In fact, 

MMPs from the same class yield proIL-18 products that either contain or lack biological 



     

PhD Thesis -100- Norbert Gerdes 

activity. Therefore, it might be instructive not only to identify the cleavage sites of 

biologically active IL-18 fragments, but also of inactive processing products. Besides 

providing information about the sequence specificity of individual MMPs, this approach 

could lend further explanation as to why fragments of similar molecular weight exhibit 

markedly differing activities.  Nonetheless, the determination of the cleavage sites of MMP-2 

and MMP-8 still requires verification. In fact, during preparation of the samples for mass-

spectrometric analysis, the protein is subjected to a tryptic digestion. To ensure, that MMPs 

do not utilize a cleavage site identical to that of trypsin, future experiments will employ an 

alternative proteolytic enzyme, such as chymotrypsin, which features a distinct sequence 

preference.  

 The putative cleavage sites identified for MMP-2 and MMP-8 would result in IL-18 

species of distinct molecular weight. While MMP-2 cleaves N-terminal of the traditional 

Caspase-1 cleavage site, the suggested cleavage sites of MMP-8 are more than 20 amino 

acids towards the C-terminus relative to it. Accordingly, the proteolytic processing by MMP-

2 results in a fragment, which is larger than the Caspase-1-cleaved mature IL-18. In contrast, 

MMP-8 processing yields a fragment of smaller molecular weight, in agreement with the ~ 

15 kDa band observed. Of note, the MMP-8 cleavage sites localizes to an exposed loop 

region on the exterior surface of the protein (Figure 37B), thus rendering proteolytic cleavage 

more feasible. 

The broad implication of IL-18 and IL-1β in a variety of human inflammatory diseases 

has promoted extensive research to uncover and characterize novel pharmacological and 

endogenous inhibitors of Caspase-1, the prototypical activator of these pro-inflammatory 

cytokines.221 In fact, newly developed Caspase-1 inhibitors are currently under clinical 

investigation for use as anti-inflammatory drugs in the treatment of rheumatoid arthritis.99 

Moreover, such treatment has been discussed for its potential benefit in other chronic 

inflammatory diseases, including atherosclerosis. However, the results of this thesis 

challenge the proposed effectiveness of Caspase-1-inhibitors in the treatment of 

atherosclerosis. The present data suggest that targeted inhibition of either IL-1β or IL-18 

through novel therapeutic agents might provide more effective and/or more selective 

suppression of inflammation than the envisioned interruption of both IL-1β and IL-18 

pathways through inhibition of their traditional upstream activator. 
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151 FESSSYEGYF LACEKERDLF KLILKKEDEL GDRSIMFTVQ NED

Caspase-1
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101 SVKCEKISTL SCENKIISFK EMNPPDNIKD TKSDIIFFQR SVPGHDNKMQ

51   LNDQVLFIDQ GNRPLFEDMT  DSDCRDNAPR TIFIISMYKD SQPRGMAVTI
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Figure 37: Identification of putative MMP-2 and MMP-8 cleavage sites within the pro-IL-18 

sequence 

(A)  Putative cleavage sites of MMP-2 and MMP-8, as identified by mass-spectrometric analysis. 

In addition, previously described cleavage sites for Caspase-1, Caspase-3, and Proteinase-3 are 

shown (B) The region of the putative MMP-8 cleavage site is indicated on a illustration of the 

three-dimensional structure of human mature IL-18. Of note, the putative MMP-2 cleavage site is 

not displayed, since it is 12 amino acids N-terminal of the Caspase-1 cleavage site, which yield 

Tyr37 on the N-terminus. Structural data for proIL-18 are not available. 
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Furthermore, while aiming to ameliorate the pro-atherogenic function of IL-18, the 

unchanged severity of atherosclerosis in il18r1-/-apoe-/- mice strongly suggests to focus 

efforts towards inhibition of the ligand rather than the receptor IL-18Rα. Accordingly, 

additional research should aim to unravel the underlying signaling of IL-18 in murine and 

human atherosclerosis, potentially leading to identification of alternative receptors. Hence, 

the findings of this thesis should stimulate new research to uncover alternative, Caspase-1-

independent mechanisms for the activation of IL-18 and IL-1β and incite renewed interest in 

the biology of MMPs in the context of atherosclerosis and other inflammatory diseases, 

beyond the classical scope of matrix degradation and vascular remodeling.  

Overall, the previously simple world of Caspase-1 and its substrates, presumed to 

consist of one enzyme, two substrates, and their respective receptors, has turned out more 

complex than anticipated. Thus, this thesis, although it answered several imminent questions, 

proposes new avenues of IL-18 and its related biology asking researchers to dissect IL-18’s 

signaling mechanisms in atherosclerosis and to detail molecular characterization of MMP-

mediated cytokine activation. 
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