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Abbreviations/acronyms  

 
(v/v)    volume per volume  

(w/v)    weight per volume  

µ    micro  

ACC   1-aminocyclopropane-1-carboxylic acid 

Amp    Ampicillin  

AOS   Allene Oxide Synthase 

At   Arabidopsis thaliana  

ATP    adenosine 5-triphosphate  

avr    avirulence  

Bgh    Blumeria graminis f.sp. hordei  

bp    base pair(s)  

C    carboxy  

c    centi  

CC   coiled-coil  

cDNA   complementary DNA  

CFU    colony forming unit 

CLSM    confocal laser scanning microscopy  

coi1   coronatine insensitive 1 

cpr1    constitutive PR 1 

CT    carboxy-terminal  

cv.    cultivar  

d    deoxy  

dATP    deoxyadenosinetriphosphate  

dCTP    deoxycytidinetriphosphate  

dd    dideoxy  

ddH
2
O   deionised and distilled water  

DEPC    diethylpolycarbonate  

dGTP    deoxyguanosinetriphosphate  
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dicot    dicotyledonous  

DMF   Dimethyl Formamide 

DMSO   dimythysulfoxide  

DNA    deoxyribonucleic acid  

DNase    deoxyribonuclease  

dnd1   defense no death 1 

dNTP    deoxynucleosidetriphosphate  

dpi    days post inoculation  

dth9    detachment 9 

DTT    dithiothreitol  

dTTP    dioxythimydinetriphosphate  

EDS1   Enhanced Disease Susceptibility 1 

EDTA    ethylenediaminetetraacetic acid  

ein2    ethylene insensitive2 

ER    endoplasmic reticulum  

EST   expressed sequence tag  

ET    ethylene 

EtBr    ethidium bromide  

EtOH    ethanol  

f.sp.    forma specialis  

Flg   Flagellin 

FLS2  Flagellin Sensitive 2 

FRET   Fluorescence Resonance Energy Transfer  

g    gram  

g    gravity constant  

GFP   green fluorescent protein  

GUS    β-glucuronidase  

h    hour  

H
+    

hydrogen proton  

hpi    hours post inoculation  

HR    hypersensitive response  
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Hv    Hordeum vulgare  

ISR    induced systemic resistance 

JA    jasmonic acid 

jar1    jasmonic acid resistant 1 

Kan    Kanamycin  

kb    kilobase(s)  

kDa    kiloDalton(s)  

l    litre  

LPS   Lipopolysaccharide 

LRR    leucine-rich repeats  

LZ   leucine-zipper 

m    milli  

M    Molar  

MAPK   Mitogen-Activated Protein Kinase  

min    Minute(s)  

mmol    millimolar  

monocot   monocotyledonous  

mRNA   messenger ribonucleic acid  

N    amino  

nahG   salicylcate hydroxylase 

NBS    nucleotide binding site  

NDR1    Non-race-specific Disease Resistance 1 

ng    nanogram  

NPR1   Non-expressor of PR1 

Nt   Nicotiana tabacum  

ORF    open reading frame  

Os    Oryza sativa  

p    pico  

PAD4    Phytoalexin Deficient 4 

PAGE    polyacrylamide gel electrophoresis 

PAMP    pathogen-associated molecular pattern  
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PBS1   avrPphB Susceptible 1 

PCR    polymerase chain reaction  

PDF1.2  Plant Defensin1.2 

PEG    polyethylene glycol  

pen   penetration  

pg    picogram  

PGT   primary germ tube  

pH    negative decimal logarithm of the H
+ 

concentration  

PIP
2   

phosphatidyl-inositol 4, 5-bisphosphat  

pmol    picomolar  

pmr    powdery mildew resistance  

PR 1  pathogenesis related protein 1 

PR 5  pathogenesis related protein 5 

pv.    pathovar  

R    resistance  

RFP   red fluorescent protein  

Rho   ras homolog  

RLK    receptor like kinases  

RNA    ribonucleic acid  

ROS    reactive oxygen species  

rpm    rounds per minute  

RT    room temperature  

RT-PCR   reverse transcription-polymerase chain reaction  

SA    salicylic acid 

SAR    systemic acquired resistance 

SDS    sodium dodecyl sulphate  

SDS-PAGE  SDS polyacrylamide gel electrophoresis 

sec    second(s)  

ssp.   species  

Ta    Triticum aestivum  

T-DNA   transfer DNA  
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TIR    Drosophila Toll and human interleukin-1 receptor  

TLR    Toll-like receptor  

TM   transmembrane  

TRIS    Tris-(hydroxymethyl)-aminomethane  

U    unit  

UTR   untranslated region  

UV    ultraviolet  

V    Volt  

VIGS    virus induced gene silencing  

vir    virulence  

Wt    wild-type  

X-Gal    5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside  

X-Gluc   5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid 
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1. Introduction  

1.1. The various layers of plant defense 

In any natural habitat, there is unremitting antagonism between pathogenic microbes and 

plants (Glazebrook, 2001; Gfeller and Farmer, 2004; Glazebrook, 2005). In plants, biotic 

stresses often result by the detrimental effects of diverse potential pathogens like fungi, 

bacteria, viruses, nematodes and insects (Downward, 2001; Nürnberger et al., 2004; 

Rinkevich, 2004; Bais et al., 2005; Bostock, 2005; Glazebrook, 2005). In order to protect 

themselves against pathogenic infection, plants have acquired a vast array of defense 

mechanisms (Dangl and Jones 2001; Gfeller and Farmer, 2004; van Doorn and 

Woltering, 2005). These mechanisms encompass physical barriers and the production of 

antimicrobial compounds both in constitutively or in an inducible dependent manner. By 

providing a barrier to entry, the epidermis and cuticle of plants, together with pre-formed 

antimicrobial enzymes and other secondary metabolites operate as the first layer of 

defense against invaders (Heath, 2000; Dangl and Jones 2001; Dixon, 2001; Kamoun, 

2001; Nürnberger et al., 2004; Nürnberger and Lipka, 2005). Plants produce a remarkably 

diverse array of secondary metabolites, many of which are antimicrobial (Dixon, 2001; 

Sirvent et al., 2003; Thoma et al., 2004). The majority of the antimicrobial compounds 

have evolved to confer selective reinforcement against microbial attack (Dangl and Jones 

2001; Dixon, 2001;; Nürnberger and Lipka, 2005; Zhu-Salzman et al., 2005). These 

compounds may be present constitutively in healthy plants (pre-formed antimicrobial 

compounds, or phytoanticipins such as saponins, tannins, terpenes, flavonoids and other 

phenolics) or alternatively may be synthesized in response to pathogen attack or stress 

(phytoalexins) (Morassutti et al., 2002; Raj and Dentino, 2002; Ganz, 2004). In many 

plants, the epidermis contains hairs (loaded with defense metabolites) or spines acting 

also as the earliest barrier (s) against herbivores as well as certain pathogens (Nürnberger 

et al., 2004; Nürnberger and Lipka, 2005). On the other hand, some fungi/oomycetes 

succeed to traverse this barrier by secreting several enzymes, including cutinase, that 

cleave some of the molecules found in the cuticle (Green et al., 2002; Hückelhoven 

2005). Bacteria and some fungi circumvent this barrier by entering tissues through open 

stomata or wound sites. In addition, some pathogens like Gaeumannomyces graminis 
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combat the antimicrobial compounds of their host plants by producing enzymes such as 

avenacinase that detoxify these phytoprotectants. 

Rapid induced defenses form the second layer of plant defense. These include various 

mechanisms that reorganize the cell wall and cell membranes after pathogen attack and 

recognition (Schilmiller and Howe, 2005). Preparations for the intensification of the cell 

wall, which can enhance host resistance, are activated very promptly after a pathogen 

attempts to penetrate a host cell. This is characterized by an increase in cytoplasmic 

streaming and translocation of cytoplasm and of the cell nucleus to the fungal attempted 

penetration site (Green et al., 2002; Schmelzer; 2002; Hückelhoven 2005). The 

cytoplasmic aggregates are thought to contain the cellular apparatus for the synthesis of 

cell wall fortifications. If the host cell can repair and reinforce its cell walls quickly 

enough, it might dampen the penetration probability of the pathogen. Several types of 

reinforcements are produced by host cells including callose deposition at the site of 

attempted penetration, lignified callose reinforcements and secondary cell wall thickening 

(Zeyen et al., 2002; Hückelhoven 2005). 

The host plasma membrane appears to be involved in the earliest stages of pathogen 

recognition and signal transduction. A change in membrane permeability after exposure 

to a pathogen causes major ions fluxes, such as K+, H+ and Ca2+, that are essential for the 

subsequent changes in gene activation and the triggering of the defense responses (Laloi 

et al., 2004; Karyotou and Donaldson, 2005; Torres and  Dangl, 2005). Also at the 

membrane, the 'oxidative burst', which involves the generation of reactive oxygen 

species, such as hydrogen peroxide, triggers signals that affect gene expression, cross-

linking in the host cell wall and initiation of later defense responses (Garcia-Olmedo et 

al., 2001; Wendehenne et al., 2004; Delledonne, 2005; Torres and Dangl, 2005). The 

reactive oxygen species at the site of infection are also produced in quantities capable of 

directly killing micro-organisms.  

In addition, de novo synthesized antimicrobial compounds like phytoalexins, also 

function as a second line of defense by interfering with pathogen nutrition and 

consequently retarding their development (Raj and Dentino, 2001; Morassutti et al., 

2002; Ganz, 2004). 
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At the early infection process stage, certain bacterial pathogens bypass the two earliest 

plant defense layers by injecting effector molecules via a type III secretion system 

(TTSS) directly into the host cytoplasm. Once inside, these molecules target host 

proteins, that control various plant processes (like defense responses or metabolism) in 

order to block/suppress plant defense mechanisms with the aim to enhance virulence 

activities in the disease establishment process (compatible plant microbe interaction) 

(Abramovitch and Martin, 2005; Kim et al., 2005; Nomura et al., 2005; Normark et al., 

2005).  

Surveillance systems, constituting the third but crucial layer of plant defense, are the 

essential components in the plant defense machinery which are employed to recognize 

such pathogenic events (Hotson and Mudgett, 2004; Mota and Cornelis, 2005; Mota et 

al., 2005; Mudgett, 2005; Schulze-Lefert and Bieri, 2005). These specialized defense 

mechanisms are comprised of diverse plant disease resistance genes (R-genes) encoding 

proteins that recognize directly or indirectly these pathogenic effector molecules termed 

avirulence products. Thus, R-gene mediated resistance forms an allele specific genetic 

interaction between a host R gene and a pathogen avirulence gene avr (Flor, 1971; 

McDowell and Woffenden, 2003) known as incompatible plant microbe interaction. 

Consequently, this interaction leads to the activation of plant defense responses  often 

leading to rapid local cell death termed hypersensitive response (HR) (Heath, 2000; 

Dangl and Jones, 2001; Mackey et al., 2002; Axtell et al., 2003; Axtell and Staskawicz, 

2003; Mackey et al., 2003; Belkhadir et al., 2004; Kim et al., 2005). Moreover, 

identification of mutants affected in both compatible and incompatible plant microbe 

interactions, such as rin4, pmr, ebr mutants and many others, has enabled a 

comprehensive characterization of host target genes (Vogel et al., 2002; Nishimura et al., 

2003; Vogel et al., 2004; Campbell and Ronald, 2005; Nandi et al., 2005).  

In the absence of such a specific R-gene type recognition, a basal defense response still 

occurs by detecting microbial cell surface molecules. These invariant structures are 

referred to as  pathogen-associated molecular patterns (PAMPS) like flagellin and 

lipopolysaccharides (LPS), although they are not unique to phytopathogens and are 

produced by all microorganisms, pathogenic and non pathogenic (Gomez-Gomez and  
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Fig.1. The various layers of plant defense. Physical barriers (cuticle and cell wall) and 

pre-formed antimicrobial compounds (phytoanticipins) form the first line of plant 

defense. Various re-arrangements in the cell wall and cell membranes, the generation of 

reactive oxygen species (H2O2), and the synthesis of secondary metabolites are allocated 

in second layer of plant defense which are part of rapid early defense response. The third 

layer of plant defense includes recognition of effector molecules delivered into the host 

plant via type III secretion systems (TTSS) and pathogen associated molecular patterns 

(PAMPs) leading to the activation of plant defense responses. Activation of various 

defense signaling cascades involving MAP kinases , SA, JA or ET are part of induced 

plant defense forming the fourth layer of plant defense. Delayed active defenses are the 

fifth layer of plant defense. The core of both early and delayed active defense responses 

depends upon transcriptional reprogramming of gene expression. Thick dotted black 

circles represent various layers of plant defense. Grey arrows at the innermost layer 

represent the in and/or out of signals. TTSS: type III secretion systems, PAMPs: 

pathogen associated molecular patterns, MAPKKK: mitogen-activated protein kinase 
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kinase kinase, SA: salicylic acid, JA: jasmonic acid, ET: ethylene, NO: nitric oxide, 

H2O2: hydrogen per oxide, TFs: transcription factor (s).  

 

 

Boller, 2002; Belkhadir et al., 2004, Kunze et al., 2004; Boller, 2005; Zipfel and Felix, 

2005). However, the basal defense is temporally slower and of a lower amplitude.  Basal 

defense often does not prohibit pathogen colonization but does limit the extent of its 

spread (Glazebrook et al., 1997; Belkhadir et al., 2004). Recently, the laboratory of J. 

Dangl experimentally demonstrated that both of these above mentioned pathways overlap 

significantly and are linked. They found that two Pseudomonas syringae type III 

effectors, AvrRpt2 and AvrRpm1, inhibit PAMP-induced signaling and thus compromise 

the host's basal defense system (Kim et al., 2005). Nevertheless, basal plant defense is 

proven to be a powerful shield against numerous non-host pathogens (Thordal-

Christensen, 2003; Jones and Takemoto, 2004; Mysore and Ryu, 2004). Primarily, 

microbial invaders incapable of infecting a certain plant species are phrased as non-host 

pathogens, while plants exhibiting full resistance to various members of a particular class 

of pathogens are called non-host plants (Gabriel and Rolfe, 1990; Prell and Day, 2000; 

Holub and Cooper, 2004). 

Certain defense responses require specific endogenous signal molecules like salicylic 

acid (SA), jasmonic acid (JA) and ethylene (ET) to activate defense signaling cascades 

that lead to the expression of certain subsets of genes which are thought to contribute to 

resistance and thereby constitute a fourth layer of plant defense (Glazebrook, 2001; 

Kunkel and Brooks, 2002; Hammond-Kosack and Parker, 2003; Katagiri, 2004; Bostock, 

2005; Glazebrook, 2005; Wiermer et al., 2005). These include defense against abiotic 

stresses, such as wounding and exposure to ozone, as well as defense against insect and 

microbial attack (Ecker, 1995; Creelman 1998; Kunkel and Brooks, 2002). Numerous 

Arabidopsis thaliana (A. thaliana) mutants, impaired in resistance, have been identified 

and genetically well characterized at various levels of these three known defense 

signaling pathways. An increasing number of reports elaborated that the SA, JA, and ET 

defense signaling pathways do not seem to function in a linear, independent fashion. 

These pathways appear to be involved in a complex signaling network instead, in which 
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each can influence the other (s) through positive and negative regulatory interactions 

(Glazebrook, 2001; Hammond-Kosack and Parker, 2003; Glazebrook, 2005).  

Delayed active defenses, the fifth layer of plant defense, comprise pathogen restraint, 

wound repair, and the acquisition of systemic acquired resistance. These defense 

responses limit pathogen spread after the establishment of infection and restrict host 

tissue damage (Bostock, 2005; van-Bel and Gaupels, 2005). 

A common feature of inducible defense responses upon pathogenic infection is the 

transcriptional regulation of a large number of plant genes triggered during R-mediated 

resistance, basal defense and systemic acquired resistance (Yang et al., 1997; Rushton 

and Somssich, 1998; Uelker and Somssich, 2004; Eulgem, 2005). The core of both 

constitutive and induced (early and delayed) defense responses depends upon 

transcriptional expression of genes (Fig. 1). This comprehensive transcriptional re-

programming is thought to function under a systematic regulatory network (Eulgem, 

2005).  

 

1.2. Transcriptional regulatory network 

 

Transcription factors (TFs) modulate the expression patterns of both constitutively or 

stimuli-specific expressed genes (Guilfoyle, 1997). TFs are thought to function in 

networks, in which a regulatory protein can influence the functions of another to control 

directly and/or indirectly the temporal or spatial expression of a particular gene (Wyrick 

and Young, 2002). The full Arabidopsis genome sequence provides a remarkable 

opportunity to identify various specific TF’s and to explore the regulatory networks (The 

Arabidopsis Genome Initiative, 2000). A typical plant transcription factor contains, with 

few exceptions, a DNA-binding region, an oligomerization site, a transcription-regulation 

domain, and a nuclear localization signal (Liu et al., 1999). Generally, TFs are classified 

according to their DNA binding domains (Pabo and Sauer, 1992). At least, 1500 TFs 

were identified and clustered into 34 families (Reichmann et al., 2000). Only a few of 

them are genetically characterized and have been shown to bind directly to their specific 

cis-regulatory DNA sequences in vivo. Several members of various transcription factor 
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families such as TGA-bZIP, ERF, Myb, Whirly and WRKY, are shown to be linked with 

plant defense responses and specific gene regulation (Rushton et al., 1996; Yang and 

Klessig, 1996 ; Zhou et al., 1997; Rushton and Somssich, 1998; Eulgem et al., 1999; 

Yang et al., 1999; Eulgem et al., 2000; Jakoby et al., 2002; Rushton et al., 2002; 

Desveaux et al., 2004 ; Uelker and Somssich, 2004; Turck et al., 2004; Desveaux et al., 

2005).  

Energy cost-effective plant defenses depend upon an alert transcriptional circuit. In 

Arabidopsis, various TF family representatives have been shown to bind to promoter 

elements of defense-related genes and to regulate their expression (Eulgem, 2005). TGA 

factors constitute a conserved plant sub-family of basic domain/Leucine zipper (bZIP) 

transcriptional regulators, whose genomic targets are thought to include glutathione S-

transferase and pathogenesis-related (PR) genes that are associated with detoxification 

and defense (Klinedinst et al., 2000; Niggeweg et al., 2000a; Johnson et al., 2001; Pontier 

et al., 2001). Using a leaf tissue chromatin immunoprecipitation (ChIP) assay, it was 

demonstrated that Arabidopsis TGA2 and TGA3 are recruited to the PR-1 promoter in 

planta in response to a stimulus and subsequent activation of a pathway involving SA and 

NPR1 (Johnson et al. 2003). NPR1 is a key regulator of the pathway acting as a 

modulator within the cell nucleus. Ethylene-Responsive-Element-Binding Factor (ERF) 

proteins are a sub-family of the plant-specific APETALA2 (AP2)/EREBP (ethylene 

responsive element binding protein) TFs and consist of about 124 members in 

Arabidopsis (Reichmann et al., 2000). The ERF domain, a conserved peptide stretch of 

58 to 68 amino acids can bind to GCC box DNA elements present in several promoters of 

the PR-gene family (Ohme-Takagi and Shinshi, 1995; Zhou et al., 1997; Rushton and 

Somssich, 1998; Eulgem, 1999; Fujimoto et al., 2000; Kirsch et al., 2000; Rushton et al., 

2002; Chakravarthy et al., 2003). Several members of the Myb plant transcription factor 

family are up-regulated upon pathogen challenge or by pathogen related stimuli 

suggesting a role in plant defense (Kranz et al., 1998; Stracke et al., 2001). Plants lacking 

BOS1, a Myb family member, show enhanced disease symptoms towards several 

biotrophic and necrotrophic pathogens (Mengiste et al., 2003). AtWhy1, a member of the 

recently identified Whirly transcription factor family, is proposed to play a role in both 

basal and induced gene-for-gene defense responses, as the loss of function mutant of 



Chapter 1 • Introduction 
  

19 

AtWhy1 shows enhanced susceptibility to the incompatible P. parasitica isolate Emoy2 

(Desveaux et al., 2004 ; Desveaux et al., 2005). Interestingly, Atwhy1 plants exhibit 

reduced PR1 transcript levels upon SA treatment, suggesting a role in combination with 

NPR1 to promote the salicylic acid signal (Desveaux et al., 2005). NPR1 lacks a DNA-

binding domain, but through interaction with TGA transcription factors regulates PR 

gene expression (Dong, 2004; Wang et al., 2005). Microarray data suggest that WRKY 

proteins (see 1.3.) also regulate the expression of defence-related genes including NPRI 

(Dong et al., 2003). The AtWRKY70 transcription factor was recently found to be a 

principal mediator of SA–JA crosstalk (Li et al., 2004). Intriguingly, the presence of one 

conserved Myb-binding motif (type I, GG/TTA/TGG/TT) in the promoters of WRKY 

genes suggests their regulation also by Myb factors (Dong et al., 2003). These various 

lines of evidence support the existence of a sophisticated transcriptional regulatory 

network.  

1.3. The WRKY superfamily of transcription factors 

 

The first cDNA encoding a WRKY protein, Sweet Potato Factor 1 (SPF1), was cloned 

from sweet potato (Ipomoea batatas) (Ishiguro and Nakamura, 1994). Subsequently,  a 

large number of genes encoding WRKY proteins were identified and cloned from more 

than 10 other plant species, including Arabidopsis thaliana, wild oats (Avena fatua) 

,orchardgrass (Dactylis glomerata), barley (Hordeum vulgare), tobacco (Nicotiana 

tabacum), chamomile (Matricaria chamomilla), rice (Oryza sativa), parsley 

(Petroselinum crispum), a desert legume (Retama raetam), sugarcane (Saccharum hybrid 

cultivar) , bittersweet nightshade (Solanum dulcamara) , potato (Solanum tuberosum), 

and wheat (Triticum aestivum) (Eulgem et al., 2000; Uelker and Somssich, 2004; Zhang 

and Wang 2005). Before the identification of two ESTs homologues to WRKY proteins, 

one each from Giardia lamblia, a primitive protozoan, and Dictyostelium discoideum, a 

slime mold, the WRKY superfamily was considered to be restricted to the plant kingdom 

only (Eulgem et al., 2000; Uelker and Somssich, 2004).  On the basis of available 

information, it is hypothesized that the early origin of WRKY genes was in Eukaryota, 

which immensely amplified afterwards in the plant lineage (Uelker and Somssich, 2004). 
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In A. thaliana, WRKY proteins are classified into one of the major families of 

transcription factors comprising 74 members (Eulgem et al., 2000). WRKY proteins 

contain one or two domains with a conserved peptide stretch of about 60 amino acids 

(WRKY domain) encompassing a novel Zn-finger motif. The WRKY domain shows a 

high binding affinity to a distinct cis-acting DNA element termed the W Box 

(TTGACC/T). However, Sun et al. (2003) reported the binding of a barley WRKY factor, 

SUSIBA2 (sugar signaling in barley), to a newly identified sugar responsive cis element 

named SURE. Due to structural features, this multigene family can be further subdivided 

into 3 different groups in Arabidopsis. This classification is based on the number of 

WRKY domains and certain features of the Zn finger-like motif. AtWRKY proteins with 

two WRKY domains belong to group I, whereas most proteins with one WRKY domain 

belong to group II. WRKY domains of group I and group II have the same type of Zn 

finger motif whose pattern of potential zinc ligand is C-X4-5-C-X22-23-H-X-H. The pattern 

of AtWRKY group III is C-X7-C-X23-H-X-C (Eulgem et al., 2000). The recently reported 

NMR solution structure of the C-terminal WRKY DNA binding domain of AtWRKY4 

reveals that the novel domain consists of a four-stranded β-sheet (Yamasaki et al., 2005). 

The zinc-binding pocket of the WRKY domain is located at one end of the β-sheet and 

the WRKYGQK residues correspond to the most N-terminal β-strand that most likely 

enters the DNA groove and forms contact with the DNA bases (Yamasaki et al., 2005). 

A number of studies have shown that WRKY factors are key regulators in certain 

developmental programs and are also involved in plant defense. AtWRKY44 is required 

for proper trichome development (Johnson et al., 2002). High levels of expression of 

AtWRKY6 or AtWRKY18 led to growth retardation and other stress-related phenotypes 

(Robatzek and Somssich, 2002; Chen and Chen, 2002). Additionally, the recent 

identification of WRKY factors from plants other than Arabidopsis further supports their 

involvement in various cellular processes.  The rice WRKY protein, OsWRKY71, acts as 

a transcriptional repressor of gibberellin-responsive genes (Zhang et al., 2004). Barley 

HvWRKY38, an orthologue of AtWRKY40, oat ABF2 and rice OsWRKY71, was shown 

to be involved in cold and drought stress responses (Mare et al., 2004). ScWRKY1 

(Solanum chacoense), an orthologue of AtWRKY33 is shown to express strongly but 

transiently in fertilized ovules bearing late torpedo-staged embryos, suggesting a specific 



Chapter 1 • Introduction 
  

21 

role during embryogenesis (Lagace and Matton, 2004). Based on a study in a 

heterologous system, it was proposed that GaWRKY1 (Gossypium arboreum), an 

orthologue of AtWRKY18, participates in regulation of sesquiterpene biosynthesis in 

cotton (Xu et al., 2004). 

Specific WRKY family members also show enhanced expression upon induction by a 

wide range of pathogens and upon wounding (Eulgem et al., 2000; Uelker and Somssich, 

2004). Expression analysis of group-III AtWRKY factors showed strong transcript 

accumulation of 11 out of 13 AtWRKY genes upon inoculation with compatible, 

incompatible and non-host pathogens (Kalde et al., 2003). A similar study revealed that 

49 out of 72 tested AtWRKY genes exhibited altered expression patterns upon pathogen 

infection or SA treatment (Dong et al., 2003). Transient silencing of the HvWRKY1 gene 

showed increased resistance to Blumeria graminis f.sp. hordei (Eckey et al., 2004). Plants 

ectopically expressing either AtWRKY18 or AtWRKY70 display enhanced resistance 

towards certain virulent pathogens (Chen and Chen, 2002; Li et al., 2004). 

Overexpression, RNAi and knock-out lines of AtWRKY53 showed accelerated and 

delayed senescence phenotypes, respectively (Miao et al., 2004). WRKY proteins bind to 

W boxes which are found in the promoters of many plant defense genes including the 

well studied PR genes (Rushton et al., 1996; Eulgem. et al., 1999; Yang et al., 1999; Du 

and Chen, 2000; Dong et al., 2003; Kalde et al., 2003; Eckey et al., 2004; Kim and 

Zhang, 2004; Uelker and Somssich, 2004). Regulation of the PR1 promoter by AtWRKY 

proteins appears to be complex and may involve both activation and repression functions 

(Turck et al., 2004; Rocher et al., 2005). In addition W boxes are present in clusters 

within short promoter stretches (Eulgem et al., 2000; Maleck et al., 2000) suggesting that 

WRKY proteins may act synergistically with other family members or other classes of 

transcription factors. AtWRKY6 positively influenced pathogen defense-associated PR1 

promoter activity. Target gene analyses for AtWRKY6 using cDNA-AFLP identified a 

gene designated senescence induced receptor kinase (SIRK). Interestingly, AtWRKY6 

activates the expression of SIRK that contains W boxes in its promoter but represses its 

own expression (Robatzek and Somssich, 2002), although the mechanism by which it 

acts as a repressor is not yet known. Expression profiling revealed that AtWRKY70 also 

influences the expression of other AtWRKY factors including AtWRKY53 (Dong et al., 
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2003; Li et al., 2004; Miao et al., 2004). Recent reports suggested the involvement of 

specific WRKY factors associated with defense-induced mitogen-activated protein kinase 

(MAPK) signaling cascades (Asai et al., 2002; Wan et al., 2004). A complete plant 

MAPK cascade (AtMEKK1, AtMKK4/AtMKK5 and AtMPK3/AtMPK6) was identified 

that functions downstream of the bacterial flagellin receptor FLS2. The FLS2 pathway is 

controlled by AtFLS2, a receptor-like leucine-rich repeat serine/threonine kinase (a LRR 

receptor kinsae) which is involved in perception of flagellin. Transient overexpression of 

truncated AtMEKK1, constitutively active AtMKK4 and AtMKK5, or 

AtWRKY22/AtWRKY29 was shown to confer resistance to the bacterial pathogen 

Pseudomonas syringae or the fungal pathogen Botrytis cinerea (Asai et al., 2002). 

AtWRKY22 and AtWRKY29 were also able to activate flagellin induced receptor 

kinase1 (FRK1) expression. FRK1 is identical to SIRK. In tobacco, virus-induced 

silencing of genes encoding a MAPK cascade resulted in the transcript reduction of three 

WRKY genes. Moreover, silencing of these three WRKY genes compromised N gene 

mediated resistance to Tobacco Mosaic Virus (Liu et al., 2004). NtWRKY1 is 

phosphorylated by salicylic acid-induced protein kinase (SIPK). Co-expression of SIPK 

and NtWRKY1 in N.  benthamiana resulted in a more rapid cell death than expression of 

SIPK alone, suggesting that NtWRKY1 is involved in the development of an HR-like cell 

death (Menke et al 2005). More recently, in an elegant experiment using chromatin 

immunoprecipitation, it has been shown in cultured parsley cells, that the promoter sites 

of elicitor-induced genes such as PcWRKY1 and PcPR1-1 are constitutively occupied by 

certain WRKY proteins in the non-induced state but replaced by other WRKY proteins in 

a stimulus dependent manner in vivo (Turck et al., 2004; Uelker and Somssich, 2004). 
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Fig.2. Hypothetical model for WRKY/W-box-mediated transcriptional gene regulation in 

parsley. 1: In un-induced parsley cells, W box promoter elements of direct target genes 

are already bound by a set of WRKY factors (shown in black box) that are inactive or 

participate in actively repressing basal gene expression. 2: Upon receptor-mediated 

recognition of a pathogen, a MAPK cascade (MAPK kinase kinase [MAPKKK]—MAPK 

kinase [MKK]—MAPK [MPK]) (shown in blue) is rapidly activated and ultimately 

results in the translocation of the protein kinase (MPK) to the nucleus. 3: The activity of 

this kinase directly modifies certain WRKY factors at the promoter of immediate-early-

type genes such as PcWRKY1 (shown in orange box), and thereby derepressing/activating 

the expression of these genes by positive feedback loop. 4: Consequently, WRKY1 

protein levels in the cell increase, resulting in the autoregulation of PcWRKY1 (shown in 

red box) and in the activation of secondary target genes such as PcPR10. Blue arrows 

show the activation of MAPK pathway and translocation of MAPK from cytoplasm to 

nucleus. Green arrow shows synthesis of PcWRKY1 (immediate-early-type genes 

products). Red arrow shows the activation of PcPR10 by PcWRKY1. Adapted from 

Uelker and Somssich (2004). 
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These experimental observations revealed the involvement of a dynamic mechanism in 

which the various regulatory WRKY proteins are replaced by other WRKY factors upon 

pathogen infection or elicitor treatment in a mutual competing manner rather than by 

recruitment of WRKY factors to specific unoccupied cis-acting elements (Fig. 2).  

Genetic analysis between Arabidopsis and Ralstonia solanacearum (R. solanacearum) 

interactions yielded in the cloning of Resistance to Ralstonia solanacearum (RRS1) gene, 

also named AtWRKY52. It encodes a protein that exhibits structural motifs similar to 

those of other resistance proteins (TIR-NBS-LRR). RRS1 has a C-terminal extension 

with a putative nuclear localization signal (NLS) and a WRKY domain (Deslandes et al., 

2002). RRS1-GFP localized to nucleus upon pathogen challenge (Deslandes et al., 2003).  

 

1.4. Bacterial wilt disease 

R. solanacearum is a soil borne bacterium causing lethal wilting disease of more than 200 

plant species representing over 50 families (Hayward, 1991). This broad host range 

covers Solanaceous plants (e.g tomato, potato, tobacco, and eggplant), various 

Leguminous plants (peanut, French bean etc), diverse monocots (like banana, ginger) and 

extends from annual plants to trees and shrubs (mulberry olive, cassava, and eucalyptus). 

Recently, Deslandes and co-workers in 1998, 2002 and 2003 showed that certain 

Arabidopsis ecotypes are also susceptible to several R. solanacearum strains (Fig. 3). 

Beside the broad and diverse host range of R. solanacearum, this devastating pathogen 

adapted a wide geographic distribution mainly in warm and tropical climates (Hayward, 

1994). However, an increasing number of reports elaborate on the expansion of regional 

spectra more towards temperate countries in Europe and North America as the 

consequence of faster adaptation of certain strains to cooler environmental conditions 

(Janse, 1996), demonstrating the versatile and aggressive nature of the pathogen.        
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Fig. 3. A: Symptoms caused by Ralstonia solanacearum on tomato. B: Phenotype of 

susceptible Arabidopsis thaliana Col-5 plants, 10 days after root inoculation by the 

Ralstonia solanacearum GMI1000 strain. Photo courtesy of Stephane Genin, Christian 

Boucher and Laurent Deslandes, Toulose, France 

1.5. R. solanacearum 

R. solanacearum, previously known as Pseudomonas solanacearum, is a Gram-negative 

bacterium (Palleroni and Doudoroff, 1971; Palleroni, 1984; Stackebrandt et al., 1988). 

The closest members of R. solanacearum are R. pickettii, and R. eutropha. Surprisingly, 

both these species are not pathogens of plants. However, they are able to metabolize a 

wide range of aromatic compounds. Additionally, R. pickettii is an opportunistic human 

pathogen (Palleroni, 1984).  

R. solanacearum strains show a high degree of ecological and physiological 

dissimilarities and are divided into five races as a result of their host preferences 

(Buddenhagen et al., 1962). By contrast, the six biovars were classified based on their 

ability to metabolize disaccharides (cellobiose, lactose, and maltose) and hexose alcohols 

(mannitol, sorbitol, and dulcitol) (Hayward, 1991 and 1994). For instance, bv-1 can’t 

oxidize any of the disaccharides and hexose alcohols, while bv-3 can oxidize all. On the 

contrary, bv-2 can only oxidize the disaccharides, whereas bv-4 oxidizes only the hexose 

alcohols (Buddenhagen et al., 1962). In spite of these biological and biochemical 
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differences, R. solanacearum has clearly delineated into two evolutionary/geographic 

conserved divisions on the basis of restriction fragment length polymorphism (RFLP) 

analyses (Cook et al., 1989 and 1991), along with DNA sequence analyses of 16s rRNA, 

egl (extracellular glucanases), and pglA (polygalacturonaseA) (Fegan et al., 1998). 

Division 1 strains are primarily from Asiatic origin, and belong to bv-3, bv-4, or bv-5; 

division 2 strains belong to mostly bv-1, and are from the Americas. Recently, isolates 

belong to a third group have also been identified and known to be of African origin 

(Poussier et al., 2000).  

In order to understand the molecular mechanism of bacterial pathogenicity, three strains, 

namely K60 (Kelman, 1954), GMI1000 (Boucher et al., 1986) and AW (Schell, 1987) 

have been intensively studied. Particularly, the whole genome sequence availability of 

strain GMI1000 (Salanoubat et al., 2002) facilitated a deep insight into bacterial virulence 

by developing numerous genetic and biochemical tools.  

 

1.6. Molecular mechanism for disease establishment 

Primarily R. solanacearum behaves as a saprophytic bacterium which can survive over a 

long period in various natural habitats like water surfaces, humid soil, and even among 

the roots of non-susceptible plant hosts (Hayward, 1991). Thus, the bacterium developed 

sophisticated and versatile metabolic mechanisms to detoxify deleterious compounds as 

well as increased adhesion for efficient colonization and maintenance in specific 

ecological zones (Genin and Boucher, 2002 and 2004).  

Under favorable conditions, the early events in the natural infection process involve the 

bacterial attachment to the root surface, motility and microcolony formation, especially at 

the root elongation zones (Kang et al., 2002; Tans-Kersten et al., 2001). R. solanacearum 

strain GMI1000, an adherent pathogen, contains a large set of genes encoding attachment 

factors and extracellular molecules/structure that interact with  
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Fig. 4. Hypothetical scheme of Ralstonia solanacearum strain GMI1000 natural infection 

process in Arabidopsis thaliana. A magnified view of Arabidopsis root (lower picture) 

and stem vasculature (upper picture.). Directions of black and red arrows show the 

bacterial disease development path after the adhesion of bacterium at root elongation 

zone. REZ (in blue): root elongation zone (bacterial attachment site), ED (in red): 

endodermis (bacterial entry port into plant root). C: root cortex (bacterial path towards 

root vasculature), RXV (in red): root xylem vessels (bacterial free movement space), 

SVX (in red): stem xylem vessels (bacterial multiplication site). 

 

 

diverse surfaces. The well known adherence structures are the filamentous appendages 

called pili. From here, bacteria invade the intercellular spaces of the root cortex by 

natural wounding sites of lateral roots and after crossing the endodermal barrier enter into 
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the vascular parenchyma (Schmit., 1978; Vasse et al., 1995; Saile et al., 1997;  

McGarvey. 1999). Pectic polymers of the middle lamella are disrupted by the pectinolytic 

enzymes, providing the nutrients to the bacteria and also allowing them to disperse 

throughout the tissue (Schell, 2000). Finally, bacteria break the xylem vessels probably 

by their cellulolytic enzymes and can freely move upwards throughout the stem into the 

aerial parts of the plants (Fig. 4).  

In vitro studies showed the production of two extracellular glucanases (Egl1and CbhA), 

which are capable of breaking β-1-4 glycosidic linkages of cellulose (Schell., 1987 and 

2000; McGarvey., 1999). In xylem vessels, bacteria rapidly multiply and reach high titer 

levels of > 1010cells/cm of stem (in tomato). Eventually, plants wilt owing to the reduced 

sap flow caused by the high accumulation of bacteria and their exopolysaccharide (EPS) 

slime in the xylem (Saile et al., 1997; McGarvey et al., 1999). The bacteria released from 

the collapsed stems and infected roots then return to soil again surviving as saprophytic 

organisms. 

 

1.7. Pathogenicity determinants and protein secretion systems in 

Ralstonia solanacearum strain GMI1000 

Extracytoplasmic protein secretion trafficking is an essential characteristic of almost all 

bacteria. It facilitates many biological processes including bacterial host 

pathogenic/symbiotic interactions (Ma et al., 2003). Unlike nutrient molecules, 

extracellular molecules are comparatively much larger and are unable to diffuse from the 

outer membranes (Pallen et al., 2003). Thus, secreted proteins in gram-negative bacteria 

are translocated through the lipid bilayer of the cell envelope by the general secretion 

pathway (Sec-pathway) in two independent steps (de Keyzer et al., 2003). In gram 

negative bacteria, at last six major secretion systems (the type I, II, III, IV, V and the 

chaperone/usher pathway) are operated for protein translocation through the outer 

membranes (Cornelis et al., 2000; Henderson and Nataro, 2001; Jacob-Dubuisson et al., 

2001; Sandkvist et al., 2001; Ding et al., 2003; Desvaux et al., 2005). Noticeably, R. 

solanacearum strain GMI1000 contains genetic information for all of the known 



Chapter 1 • Introduction 
  

29 

secretion pathways (Salanoubat et al., 2002; Genin and Boucher, 2004). However, the 

well studied Type III secretion systems (TTSS) plays a major role in the pathogenicity of 

several important pathogens that differ in host range and lifestyle including R. 

solanacearum. Type III secretion toxins, also known as effectors, can be delivered 

directly into the host cell cytosol by an injection mechanism (Abe et al., 2005; Mota and 

Cornelis, 2005). TTSS are encoded by hypersensitive response and pathogenicity (hrp) 

genes (Van Gijsegem et al., 1995). The hrp genes are required for bacteria to trigger the 

hypersensitive response (HR, a plant defense response) in resistant plants and to 

contribute to disease in susceptible plants (He et al., 2004). Christian Boucher and co-

workers in 2004 predicted the presence of at least 60-80 TTSS-effector molecules in the 

genome of R. solanacearum strain GMI1000. Among them, PopP2, RipA, RipB, RipG, 

and RipT effectors were shown to transit through the TTSS (Sory et al., 1994; Casper-

Lindley et al., 2002; Cunnac et al., 2004; Genin et al., 2005). 

 

1.8. Recognition of TTSS-effectors by plant surveillance system 

R. solanacearum, PopP2 and RipT, although unrelated in sequence, possess the catalytic 

triad characteristic of classes of cysteine proteases related to Yersinia sp. YopP/J and 

YopT, respectively (Deslandes et al., 2002; Deslandes et al., 2003). Some plants have 

evolved resistance proteins to recognize YopJ-like effectors. Arabidopsis RRS1 confers 

resistance to R. solanacearum strain GMI1000 expressing PopP2 (Deslandes et al., 

2002). RRS1 has been shown to interact with PopP2 of R.  solanacearum in a yeast split 

ubiquitin yeast two-hybrid assay (Deslandes et al., 2003). Furthermore, RRS1 and PopP2 

co-localize to the nucleus when transiently coexpressed in Arabidopsis protoplasts and 

nuclear translocation of RRS1 is dependent upon the nuclear localization signal present in 

PopP2. The presence of a WRKY transcriptional activator domain on the C terminus of 

RRS1 and the putative SUMO-protease activity of PopP2, might suggest that RRS1 is a  

target of PopP2, rather than being a specific receptor for PopP2 (Lahaye, 2004). 
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1.9. Objectives of this study 

Very little is known about the transcriptional involvement of AtWRKY factors activating 

defense responses. The primary goal of this project was to define the biological function 

of a specific AtWRKY factor involved in plant defense. Functional redundancy is the 

common problem often associated with transcription factor families. Therefore, initially 

there was a need to have a deep insight into the whole family, and then further 

characterize a specific AtWRKY family member.  In order to achieve the primary 

objective, the following topics were studied: 

 

1. Analysis of AtWRKY expression profiles in A. thaliana mutants impaired in different 

signaling pathways 

2. Phenotypical responses of WRKY-KO mutants to plant pathogens. 

On the basis of results obtained from the above analysis, a specific candidate was chosen. 

In order to further characterize it, the following questions were addressed: 

1. What role does the AtWRKY factor play in plant defense? 

2. What are the direct/indirect target genes of the chosen AtWRKY factor? 
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2. Materials and Methods 

2.1. Materials 

2.1.1. Bacteria / fungi / oomycetes 
 
E coli strains: 

DH5α: Genotype: supE44 DlacU169 hsdR17, recA1, endA1, gyrA96, thi-1, relA1, F 

(Hanahan, 1983). 

DB3.1: Genotype: F- gyrA462 endA1 ∆(sr1-recA) mcrB mrr hsdS20(rB-, mB-) supE44 

ara14 galK2 lacY1 proA2 rpsL20(Smr) xyl5 ∆leu mtl1 (Invitrogen) 

Agrobacterium tumefaciens: 

GV3101 pMP90RK (Koncz et al., 1990) 

Pathogens 

Bacterial pathogens 

P seudomonas  syringae pv. tomato DC3000 (Whalen et al., 1991) 

Ralstonia solanacearum Strain GMI1000 (Deslandes et al., 1998) 

 

Fungal Pathogens 

 

Barley powdery mildew Blumeria graminis f. sp. hordei (Bgh) (kindly provided by  

Ralph Panstruga MPIZ-Koeln 

Pea powdery mildew Erysiphe pisi (kindly provided by Ralph Panstruga MPIZ-Koeln) 

A. thaliana powdery mildew Golovinomyces orontii(kindly provided by Ralph 

Panstruga MPIZ-Koeln) 

 

Oomycete pathogen  

 

Peronospora parasitica isolate Noco2 (McDowell et al., 2000; Dangl et al., 1992).
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2.1.2. Plant Material 
 
All A. thaliana plants used in this study belong to Col-0, Col-1, Col-6, Ler, Ws0 and Nd-

1 genetic background. Plants were grown at 20° C and and PFD of 80 mmol photons m-2 

s-1 in pathogens free chambers either in long day conditions (16h light/8h darkness) or 

short day conditions (8h light/16h darkness) with the exception mentioned specifically. 

For pathogen test, plants were grown under a 10 h light/ 14 h darkness cycle. Below, 

here is the list of all mutants and transgenic/non-transgenic lines used in this study. 

Mutants: 

Mutant names       Abbreviations    Backgrounds 

allene oxide synthase     (aos)   Col-6 

constitutive expressor of PR genes    (cpr5-2)  Col-0 

constitutive triple  response1    (ctr1)   Col-0 

defense no death 1    (dnd1)    Col-0 

enhanced disease resistance1   (edr1)   Col-0 

enhanced disease susceptibility1   (eds1)    Ws0 

ethylene insensitive2     (ein2-1)  Col-0 

ethylene-related1     (etr1)   Col-0 

jasmonic acid resistant1    (jar1)   Col-0 

non-race–specific disease resistance1 (ndr1)   Col-0 

non-expressor of PR 1    (npr1)   Col-0 

phytoalexin-deficient 4   (pad4-1)  Col-0 

Atwrky27ETL     27ETL   Col-1 

Atwrky27-90-1(SALK_109290)  27-90-1  Col-0 
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Transgenic Lines: 

Transgenic designation    Description 

GFP lines 

AtWRKY27p::sm-GFP::Term Plants expressing a 2kb AtWRKY27 

promoter driven coding sequence of sm-

GFP and terminator sequences using 

MultiSite Gateway ® Three-Fragment 

Vector System 

AtWRKY27p::AtWRKY27::GFP-Term Plants expressing a 2kb AtWRKY27 

promoter driven AtWRKY27 cDNA, coding 

sequences of GFP and terminator sequences 

using MultiSite Gateway ® Three-

Fragment Vector System 

Complementation lines 

AtWRKY27p::AtWRKY27::StrepII-Term Plants expressing a 2kb AtWRKY27 

promoter driven AtWRKY27 cDNA, coding 

sequences of StrepII and terminator 

sequences using MultiSite Gateway ® 

Three-Fragment Vector System 

At4CL-2p::AtWRKY27::StrepII-Term Plants expressing a 1550 bps At4CL-2 

promoter driven AtWRKY27 cDNA, coding 

sequences of StrepII and terminator 

sequences using MultiSite Gateway ® 

Three-Fragment Vector System 

AtSUC2p::AtWRKY27::StrepII-Term Plants expressing a 2067 bps AtSUC2 

promoter driven AtWRKY27 cDNA, coding 

sequences of StrepII and terminator 

sequences using MultiSite Gateway ® 

Three-Fragment Vector System 

AtCel1p::AtWRKY27::StrepII-Term  Plants expressing a 1649 bps AtCel1 

promoter driven AtWRKY27 cDNA, coding 
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sequences of StrepII and terminator 

sequences using MultiSite Gateway ® 

Three-Fragment Vector System 

Promoter GUS lines 

AtWRKY27p::GUS::StrepII-Term Plants expressing a 2kb AtWRKY27 

promoter driven GUS reporter gene, coding 

sequences of StrepII and terminator 

sequences using MultiSite Gateway ® 

Three-Fragment Vector System 

At4CL-2p::GUS::StrepII-Term Plants expressing a 1550 bps At4CL-2 

promoter driven GUS reporter gene, coding 

sequences of StrepII and terminator 

sequences using MultiSite Gateway ® 

Three-Fragment Vector System 

AtSUC2p::GUS::StrepII-Term Plants expressing a 2067 bps AtSUC2 

promoter driven GUS reporter gene, coding 

sequences of StrepII and terminator 

sequences using MultiSite Gateway ® 

Three-Fragment Vector System 

AtCel1p::GUS::StrepII-Term Plants expressing a 1649 bps AtCel1 

promoter driven GUS reporter gene, coding 

sequences of StrepII and terminator 

sequences using MultiSite Gateway ® 

Three-Fragment Vector System 

Ectopic overexpressor lines 

2x35S::AtWRKY27-GFP Plants expressing double 35S promoter 

driven AtWRKY27 cDNA, coding 

sequences of GFP and terminator sequences 
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2x35S::AtWRKY27-Term Plants expressing double 35S promoter 

driven AtWRKY27 cDNA and terminator 

sequences 

 

2x35S::AtWRKY27-myc-Term Plants expressing double 35S promoter 

driven AtWRKY27 cDNA, coding 

sequences of myc and terminator sequences 

2x35S::AtWRKY27-StrepII-Term Plants expressing double 35S promoter 

driven AtWRKY27 cDNA, coding 

sequences of StrepII and terminator 

sequences 

Inducible Overexpressor lines 

RGRBD::GFP→SIRKp::GUS line SIRKp::GUS transgenic plants expressing a 

strong Dex inducible PG10-90
  promoter 

driven coding sequence of GFP and 

terminator sequences 

RGRBD::27→SIRKp::GUS line SIRKp::GUS transgenic plants expressing a 

strong Dex inducible PG10-90
  promoter 

driven AtWRKY27 cDNA and terminator 

sequences 

pMD::vector→ Atwrky27-90-1  Atwrky27-90-1 mutant plants expressing a 

strong β-estradiol inducible PG10-90
  

promoter driven vector sequences 

 

pMD::vector→ Atwrky27ETL Atwrky27ETL mutant plants expressing a 

strong β-estradiol inducible PG10-90
  

promoter driven vector sequences 

pMD::27→ Atwrky27-90-1 Atwrky27-90-1 mutant plants expressing a 

strong β-estradiol inducible PG10-90
  

promoter driven AtWRKY27 cDNA and 

terminator sequences 
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pMD::27→Atwrky27ETL Atwrky27ETL mutant plants expressing a 

strong β-estradiol inducible PG10-90
  

promoter driven AtWRKY27 cDNA and 

terminator sequences 

2.1.3. Media and Additives  
 
Media for Bacteria 

 

LB medium (Sambrook ) 5g yeast extract, 10g trypton, 10g N, pH=7.5. 

SOC medium (Sambrook) 5g yeast extract, 20g trypton, 20 mM glucose, 

0.5g NaCl, 2.5 mM CaCl2, pH=7.5. 

YEB medium 10g yeast extract, 10g peptone, 5g NaCl. 

When required, antibiotics were supplemented to the following final concentration: 

Ampicillin 100 mg/l 

Carbenicillin 100 mg/l 

Gentamycin 10 mg/l 

Rifampicin 100 mg/l 

Kanamycin 50 mg/l 

 

Media for plants 

 

Media were diluted in 1l deionized H2O. 

MS-medium: 4.7g MS salt supplemented with vitamins, 5-10 g glucose, pH 5.7-5.8  

Media were diluted in deionized 1l H2O. For solid media 15 g of agar was added. 

 

Additives  

 

Antibiotics: 

Ampicillin (1000x):   100 mg/ml in H2O 

Carbenicillin (1000x):  50mg/ml in Ethanol 

Chloramphenicol (1000x):  25 mg/ml in Ethanol 
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Gentamycin (1000x):   25mg/ml in DMF 

Kanamycin (1000x):   50 mg/ml in H2O 

Rifampicin (1000x):   100mg/ml in DMSO 

Streptomycin (1000x):  20mg/ml in H2O 

Spectinomycin (1000x): 100mg/ml in H2O 

Stock solution stored at –20 oC 

 

2.1.4. Nucleic Acids 
 
Plasmids 

Plasmids used for the generation of constructs described in this thesis are listed below: 

pCR TOPO2.1 (Invitrogen, Heidelberg) ampR kanR 

pDONR™ 201 (Invitrogen, Heidelberg) kanR 

pDONR™P4-P1R (Invitrogen, Heidelberg) kanR 

pDONR™P2-RP3 Terminator (Laurent Deslandes and Imre E Somssich) kanR 

pDONR™P2-RP3 StrepII-Terminator (Laurent Deslandes and Imre E Somssich ) kanR 

pDONR™P2-RP3 GFP-Terminator (Laurent Deslandes and Imre E Somssich) kanR 

pAM-PAT 35S GW Terminator (Bekir Uelker and Imre E Somssich) ampR 

pAM-PAT 35S GW myc-Terminator (kindly provided by Imre E Somssich) ampR 

pAM-PAT 35S GW StrepII-Terminator (Laurent Noel, Laurent Deslandes and Imre E 

Somssich) ampR 

pAM-Kan 35S GW GFP (Franziska Turck and Imre E Somssich) ampR 

pAM-PAT Mult  based on pDEST™R4-R3 ((Laurent Deslandes and Imre E Somssich) 

ampR 

pAM-PAT PG10-90
  RGRBD GW ((Laurent Deslandes and Imre E Somssich) ampR 

pMD-pER8-LexA-GUS-stop-LexA-GW-StrepII (M S Mukhtar, Laurent Deslandes and 

Imre E Somssich) SpectinomycinR 

 

 

 

 



Chapter 2 • Materials and Methods 
 

38 

Oligonucleotides 

Table 1. Listed below are primers used in the present study and were synthesized by 

Invitrogen.  

 

Primers Primer sequence 5’ → 3’ 

ASN2Qt-R GCTTTCGCGGTACTGCAAGCTAT 

LTP-fam-R GAGAAGAAGACTGAGAGAGAGT 

LTP-fam-F CGGTAACTGCGGTTGCCCTTCTC 

Dof-znc-R CGCTCTGTTGATCACAGTTGTTC 

Dof-znc-F GTGAATTGTTATGATCCGTCGTC 

GH3-R GCTTAAGACCACGTTCTTGCGGC 

GH3-F GTGGAGTTACTAGCTCTATCAGT 

ARD-fam-R CTATGTTACGGTCCCCAATCACC 

ARD-fam-F CTTATGTGAGGTGTGTCCAGAG 

SAM-R GGGTTTAGATCCCAAAGCAAGAAG 

SAM-F CAGTCAAGCTACCAGGAAGAAATC 

NR2-R CCAGATTCATTACCAGGAAGCG 

NR2-F CCATGTCACGAGGAGATTCTTC 

NR1-R CATCCACCCACCCGACTGGTTTC 

NR1-F GTGTTTGTGAGCTTGACCACCAG 

Exp-prot-R GCTGGGTCCAGACCCCGGACGA 

Exp-prot-F CCGGAGAGATCCCTCCTGTTTCT 

DSS1-SEM1-R GTACCATTCTCAAGCTCCTTCC 

DSS1-SEM1-F ATGGCGGCAGAACCGAAGGCAGC 

ASN2-R GTTCCATTCTTAGGAAGAGGATC 

ASN2-F GTATAGCTGGATAGATGGTCTG 

UBQ-Exon4-Rev GCAGTTGACAGCTCTTGGGTG 

UBQ-Exon1-Frw CCGGCAAGACCATCACTCTCG 

SIRK-Exon3-Rev TTCTGAACTCACTATACGCGGTGTC 

SIRK-Exon1-Frw CATCGATTTTATTCACAAGCTTTGC 

W27Exon3_684R-2 CCGGTGAGTAGGACGTGGATGAGT 
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W27-exon1-F-2nd GAGGTCAACGCGACCAGCTTCTTCA 

SALK_LBb1_R489s GCGTGGACCGCTTGCTGCAACT 

SUC2-int1700b-R CTGATATGGACGTTCGATTCTC 

SUC2-int1700b-F GAGAATCGAACGTCCATATCAG 

SUC2-int1400b-R GTTTTATTTTCAGACGAAAGCG 

SUC2-int1264b-F CAAATAAACAGTGGGAGAGGTG 

SUC2-int-849b-R CGATCTCTTCCGTTATCTCTG 

SUC2-int-803b-F GATTACAAGTGTCAAGTCCATGAC 

SUC2-int-468b-R CTTTATGGATGAGACAACATAAC 

SUC2-int-359b-F GGTTGTTCGTAAATGGTGC 

Cel1-int1240b-F TAGGGCGGTGGATCACATGGT 

Cel1-int-985b-F CACAACCACAACCACAAGTTTG 

Cel1-int-960b-R CTCGATGTATATAGTAACGT 

Cel1-int-750b-F GGCACACAAAGAACAGAACAGG 

Cel1-int-450b-R CTAGTAGACCAAATCAGAGAC 

Cel1-int-340b-F CGTGTATGACATAATGATTAGCA 

4CL-int1150bp-F GGGCTAGTTGCAGAGGAAACTC 

4CL-int-800bp-F GTTCTGTCTTGGAAGAGTACTG 

4CL-int-600bp-R GCTGACACTTCTCTAGAGCCTGC 

4CL-int-400bp-F GGCCTTAAAGACCTGAGAATG 

SUC2-pr-mltis-R GGGGACTGCTTTTTTGTACAAACTTGT

ATTTGACAAACCAAGAAAGTAAG 

SUC2-pr-mltis-F GGGGACAACTTTGTATAGAAAAGTTGG

GGGACCATGAAATCATTTGCATATG 

Cel1-pr-mltis-R GGGGACTGCTTTTTTGTACAAACTTGTT

CTTTTGTCTCTGTTTTTTGTGC 

Cel1-pr-mltis-F GGGGACAACTTTGTATAGAAAAGTTGG

GGAGGATCACATGCATCAGCACT 

4CL2-pr-mltis-R GGGGACTGCTTTTTTGTACAAACTTGT

GAATCAGAAGTTAATATCAAAT 

4CL2-pr-mltis-F GGGGACAACTTTGTATAGAAAAGTTGG
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GGAATTCCATCATTTCAGTAGAG 

Glutathione-R GTAACACTTCCAAACATGGCC 

Glutathione-F GGTAGATCGATAGCCGAATCA 

GAD1-R CCAGCCAGTGATGATATCTCTC 

GAD1-F GACCAACCCACCTTTACTCTC 

AttB2-smGFPstpR (GWR)CTTATTTGTATAGTTCATCCATG

CC 

AttB1-smGFPstpF (GWF)TAATGAGTAAAGGAGAAGAACT

TTTC 

EIN2_CAPS_318_R CTTCTCCACAGGACTCATTGG 

EIN2_CAPS_318_F CAATAGTGCGGTTGGAAAGCAGGG 

GUS-Rev-375nstd CCCGGCAATAACATACGGCGTGA 

W27-Exon3_FRW CTCATCCACGTCCTACTCACCGGA 

SelB_Rev GTAACATCAGAGATTTTGAGACAC 

SelA_FRW TCGCGTTAACGCTAGCATGGATCTC 

THI2.1_Rev CAACAGTTTAGGCGGCCCAG 

THI2.1Frw TGGTCATGGCACAAGTTCAAGTAG 

PDF1.2_rev CAGATACACTTGTGTGCTGGG 

PDF1.2_Frw CTTATCTTCGCTGCTCTTGTTCTC 

PR5_Rev CCGGATGGTCTTATCCCCAGC 

PR5_Frw CTCTTCCTCGTGTTCATCAC 

PR1_Rev GACCGATGTAATTCCCCGGAGGATC 

PR1_Frw CGTCACACTCCCGCTCAACCGCC 

VSP1_attB2 (GWR)CAGAAGGTACGTAGTAGAGTGG 

VSP1_attB1 (GWF)TAATGAAAATCCTCTCACTTTCA 

Strep_Rev19bp CAAATTGAGGATGAGACCA 

LBa1-Salk-Left TGGTTCACGTAGTGGGCCATCG 

W27-exon1-FRW GAGGTCAACGCGACCAGCTTCTTCA 

GUSFRW817 CCCGCTTCGCGTCGGCATCCGGT 

GUSrev556 CGTCCACCCAGGTGTTCGGCGT 

GUSFRW898bps GGCTTTGGTCGTCATGAAGATGCGGA 
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GUSRev1001bp GCGTAAGGGTAATGCGAGGTACGGTA 

AttB2-SpeI-GUS (GWR)CACTAGTTCATTGTTTGCCTCCC

TGCTGCGGT 

AttB1-XhoI-GUS (GWF)TACTCGAGATGTTACGTCCTGTA

GAAACCCCA 

W27Exon3_684Rev CCGGTGAGTAGGACGTGGATGAGT 

SALK_LBb1_Rev GCGTGGACCGCTTGCTGCAACT 

W27exon3_890FRW CATGGAAGAGGAAGAGGAGGA 

W27exon1_245Rev GGAGGAAGTAGAGGAGGAGGAGACCA 

W27_pr_intF1027 CTTGTTTTCGCAAGAAAATCTGATA 

W27_pr_intR1136 CGACCACTAGCCCTCAAAAATCTA 

W27pr_msiteGW-R TTTGTACAAACTTGTGGCGATCTTGAA

TTCGTGAGGAAAGCT 

W27pr_msiteGW-F GTATAGAAAAGTTGGGATACGGAAGC

AGACAATCATTACCT 

Tublin_reverse ATATCGTAGAGAGCCTCATTGTCC 

Tubilin_forward ACGTATCGATGTCTATTTCAACGA 

M13reverse GGAAACAGCTATGACCATG 

M13forward GTAAAACGACGGCCAGT 

 

The universal Gateway – compatible extensions for the BP recombination reactions 

(between an attB-flanked PCR product and a donor vector containing attP sites to create 

an entry clone) were:  

GWF (attB1) 5´ ggggacaagtttgtacaaaaaagcaggctta3´ 

GWR (attB2) 5´ggggaccactttgtacaagaaagctgggtc3´ 
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2.1.5. Proteins 
 
Antibodies: 

2 mol AP / mol Strep-Tactin conjugate (0.125 ml) is used in this study.  

 

Enzymes 

If not indicated otherwise, enzymes used for experiments in this thesis were obtained 

from Roche and New England Biolabs. 10 x buffers for restriction enzymes were 

companied with the enzymes and supplied by manufacturers. 

 

Nucleic acid modifying enzymes  

Taq DNA Polymerase Mix Roch  

Pfu DNA-Polymerase Stratagene (Heidelberg)  

Pfx DNA-Polymerase Invitrogen (Heidelberg)  

TAKARA LA Taq polymerase (Takara, Seta 3-4-1, Otsu, Shiga 520-2193, Japan) 

Klenow fragment exo- MBI Fermentas  

Lysozym Serva  

RNase A (DNase-free) MBI Fermentas  

T4 DNA ligase MBI Fermentas  

Ribonuclease Inhibitor MBI Fermentas 

 

2.1.6. Buffers and Solutions 
 

Buffer/Solution     Recipe  

Coomassie staining solution  0.01% (w/v) Coomassie brilliant blue G-250  

10% (v/v) Glacial acetic acid 

C-TAB solution CTAB (20grams), β-mercaptoethanol 10ml) dH20 

(990ml) 

DNA loading buffer  67% (w/v) Sucrose 50 mM EDTA pH 8.0 0.42% 

(w/v) Bromphenolblue 0.42% (w/v) Xylenecyanol 

0.42% (w/v) Orange G 
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DNA extraction buffer 0.1 M NaCl 0.01 M Tris-HCl, pH 7.5 1 mM EDTA 

1% SDS 

Denaturation extraction buffer  4 M Urea 16.6% (v/v) Glycerol 5% (v/v) ß-ME  

for total protein (fresh) 5% (w/v) SDS  0.5% (w/v) Bromphenolblue 

GUS De-staining solution   50% glycerol 25% lactic acid H2O 

GUS staining solution  Na2HPO4 (1M) 57.7 ml NaH2PO4 (1M) 42.3 ml 

Na2EDTA (0.5 M) 20.0 ml K4Fe[CN]6 2.11 g 

K3Fe[CN]6 1.65 g Triton X-100 0.1 % (v/v) 

Methanol 20.0 % (v/v) X-Gluc 1.0 g  X-Gluc: 5-

bromo-4-chloro-3-indoxyl-β-D-glucuronic acid, 

cyclohexylammonium salt (Roth).  

Hybridization buffer  1 M NaCl 10% Dextran Sulphate 1 % SDS 

1x PBS buffer 68 mM NaCl 58 mM Na2HPO4 17 mM NaH2PO4 

pH 7.4 (NaOH) 

1x PBS-T    1x PBS 0.1% (v/v) Tween 20 

2x Protein Loading buffer (40ml)  H2O 5ml Tris pH 6.8 (1M) 5ml SDS (10%) 20ml 

glycerol 10ml Bromphenol blue 0.01g Prior to use, 

add DTT (20µl DTT (1M) to 80µl loading buffer) 

Resolving gel components10%  H2O 4ml 30% acrylamide mix 5ml 1M Tris-HCl 

(pH8.8) 5.7ml 10% SDS 0.15ml  10% ammonium 

persulfate 0.15ml  TEMED 0.006ml  

10x RNA Gel running buffer  200 mM 3-[N-morpholino]propanesulfonic acid 

(MOPS) (free acid) 50 mM sodium acetate 10 mM 

EDTA pH to 7.0 with NaOH 

1.2% RNA gel preparation   FA gel (1.2% agarose) of size 10 x 14 x 0.7 cm, 

mix 1.2 g agarose 10 ml 10x RNA gel buffer Add 

RNase-free water to 100 ml 

 

5x RNA Loading Buffer  16 µl saturated aqueous bromophenol blue solution 

80 µl 500 mM EDTA, pH 8.0 720 µl 37% (12.3 M) 

formaldehyde 2 ml 100% glycerol 3084 µl 



Chapter 2 • Materials and Methods 
 

44 

formamide 4 ml 10 x FA gel buffer RNase-free 

water to 10 ml Stability: Approximately 3 months 

at 4°C 

Spermidine solution (0.1 M)   Spermidine 73.0 mg ddH2O ad 50.0 ml  

 

10x SDS-PAGE running buffer  25 mM Tris-HCl, pH 8.3 200 mM Glycine 0.1% 

(w/v) SDS 

20x SSC  2 M NaCl 0.3 M Sodium citrate Adjust pH to 7.0 

with HCl 

Stacking gel components (5ml)  H2O 2.7ml, 30% acrylamide mixb 0.67ml, 1.5M 

Tris-HCl (pH8.8) 0.5ml, 10% SDS 0.04ml, 10% 

ammonium persulfatec 0.04ml, TEMED 0.004ml 

StrepII Extraction buffer   100 mM Tris, pH 8.0; 5 mM EGTA; 5 mM EDTA; 

150 mM NaCl; 10 mM DTT; 0.5 mM AEBSF (4-

(2-aminoethyl)benzenesulfonyl fluoride 

hydrochloride); 5 lg/ml aprotinin; 5 lg/ml 

leupeptin; plant protease inhibitor cocktail (Sigma 

P9599, Taufkirchen, Germany); diluted 1:200; 

0.5% Triton X-100; and 100 lg/ml avidin 

20x TAE  800 mM Tris 20 mM EDTA 2.3% (v/v) Glacial 

acetic acid 

TE Buffer  10mM Tris, 0.1mM EDTA 

TFB I  for 150 ml for 300 ml 30 mM KaC 0,44 g 0,883 g 0 

mM MnCl2x4H2O 1,48 g 2,969 g 100mM RbCl2 

1,81 g 3,627 g 10 mM CaCl2x2H2O 0,22 g 0,441 g 

15 % Glycerin 22,5 ml 45 ml Adjust pH to 5,8 with 

HCl 

TFB II  for 50 ml for 150 ml 10 mM Mops 0,105 g 0,45 g 

75 mM CaCl2x2H20 0,551 g 1,65 g 10 mM RbCl2 

0,061 g 0,18 g 15 % Glycerin 7,5 ml 22,5 ml 

Adjust pH to 7,0 with NaOH  
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Western-blotting Transfer buffer  NaPO4 pH 7 1M 15ml SDS 10% 5ml Methanol 

200ml H2O add up to 1l. Pre-cool transfer buffer 

on ice (for 1l) 

 

2.1.7. Chemicals and radiochemicals 
 
If not indicated otherwise, chemicals and radiochemicals used for experiments in this 

thesis were obtained from Amersham Buchler GmbH & Co KG, J.T. Baker Chemicals, 

BioRad, Difco Laboratories, Fluka, Merck AG, Serva Feinbiochemica GmbH & Co, 

Sigma Aldrich GmbH. 

 

2.1.8. Microscopes 
 
Fluorescence microscope: Leica MZ12 with Mercury HBO 50 W/Ac lamp and FITC 

filter. Confocal laser scanning microscope: Leica DMIRBE, TCS4D, with digital 

imaging processing, A 530+/-15nm band pass filter for FITC specific detection and a 

580 nm band pass filter for autofluorescence detection. 

 

2.1.9. Photographical data processing 
 
Pictures were taken with assistance of Mrs. Maret-Linda Kalda, MPI-Photo Laboratory. 

Photos were processed using Adobe Photoshop 6.0 (Adobe Systems Inc.). 

 

2.1.10. Online Softwares 
 
BLAST and Bioinformatics    NCBI, MIPS, TAIR and TIGER 

Cluster analysis     NASC "EPCLUST" 

MultAlin software  Corpet, INRA Toulouse, France, BCM 

Launcher 

Mutant search tools     GABI PoMaMo Database, SALK, NASC  

Promoter analysis     PlantCare, PLACE 
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Protein prediction  ProtParam Tools, nterProScan Sequence 

Search tool, iPSORT, TargetP, Predotar  

2.1.11. Other materials and Kits 
 
Autoradiofilm XOMAT AR - Kodak 

BP-Clonase - Invitrogen, Heidelberg 

First Strand cDNA Synthesis Kit MBI Fermentas  

Gel Extraction Kit - QIAGEN  

Hybond N - Amersham Pharmacia Biotech 

LR-Clonase - Invitrogen, Heidelberg 

LR-Clonase plus- Invitrogen, Heidelberg 

Miniprep® Kit - QIAGEN  

Parafilm M - American National Can. 

Reaction tubes - Eppendorf 

Petridishes - Greiner GmbH 

Pipette tips - Greiner GmbH 

RNAwiz extraction reagent - Ambion 

RNeasy Plant Mini® Kit - QIAGEN 

Shrimp alkaline phosphatase – Roche, Mannheim 

Sterile filtration units - Millipore 

Strep-tag® AP Detection Kit - IBA 

Whatman 3MM paper – Whatman 

2.2. Methods 

If not indicated otherwise, the methods employed in this study were taken from 

Sambrook, J. et al., eds. (1989) Molecular cloning — a laboratory manual, 2nd ed. Cold 

Spring Harbor, NY: Cold Spring Harbor Laboratory Press). 
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2.2.1. Nucleic acids-related methods 
 
DNA isolation: 

DNA was isolated by C-TAB method (modified protocol of Shahjahan et al. 1995). 100 

mg plant material was ground in liquid N2 and transferred into 1.5 ml microfuge tube. 

300µl hot (pre-heated at 65°C C-TAB was added as extraction buffer and incubated the 

tubes for 20 minutes. 600µl of Chloroform:Isoamyl-alcohol (24:1) was added and mixed 

on shaker for 15 minutes. The samples were centrifuged at 13000rpm for 5 minutes. 

Supernatant was transferred to a new Eppendorf tube containing equal volume (600µl) 

Isopropanol. The samples were thoroughly mixed and placed at -20°C for 10 

minutes. Supernatant was discarded and pellet was washed with 70% cold Ethanol. 

Finally dry pellet was resuspended in 100µl TE Buffer. The DNA was measured by 

Eppendorf BioPhotometer with sample concentrations, absorption values, 

OD260/OD230 and OD260/OD230. 

 

Separation of DNA fragments by agarose gel electrophoresis 

DNA fragments were mixed with DNA loading buffer and analyzed by agarose gel 

electrophoresis. The agarose concentration depended on the size of fragments to be 

resolved (Sambrook and Fritsch, 1998). Electrophoresis was performed at 5 V/cm using 

TAE buffer. 1kb ladder DNA size marker (Invitrogen) was used to estimate the size of 

DNA fragments. After electrophoresis, DNA was visualized on a transilluminator under 

UV light (254 nm). 

 

Purification of gel-extracted DNA fragments 

PCR products were purified using Qiagen PCR Fragments Purification Kit or Qiagen 

Gel Extraction Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol.  

 

DNA sequencing 

DNA sequences were ascertained by the DNA core facility (ADIS) of Max-Planck 

Institute for Plant Breeding Research, Cologne on Abi Prism 377, 3100 or 3730 

sequencers (Applied Biosystems, Weiterstadt, Germany) using BigDye-terminator v3.1 
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chemistry. Premixed reagents were from Applied Biosystems. Sequences were analyzed 

with various softwares an internet tools mentioned above.  

 

RNA isolation and mRNA purification 

Total RNA was isolated from 100 mg fresh tissue. The tissue was flash-frozen and 

ground in liquid nitrogen. Total RNA was extracted with 1 ml RNAwiz extraction 

reagent (Ambion, Huntingdon, Cambridgeshire, UK) following the supplier’s protocol. 

The RNA was measured by Eppendorf BioPhotometer with sample concentrations, 

absorption values, OD260/OD230 and OD260/OD230. DNaseII treatment was 

performed using the DNA-free reagent (Ambion) for 20 min at 37ºC, and reaction 

composition was as suggested by the producer. Poly(A)+ RNA was purified using 

Dynabeads Oligo (dT)25 (Dynal Biotech GmbH, Hamburg, Germany) according to the 

supplier’s instructions. Poly(A)+ RNA was eluted in 20 µl of DEPC-treated water.  

 

PCR  

Routine PCRs were carried out according to a standard protocol. Fifty ng DNA template 

(genomic DNA, plasmid DNA, cDNA, bacterial colony suspended in dH2O/NaOH etc) 

were amplified in 25/50 µl of 20 mM Tris-HCl, pH 8.0, 50 mM KCl, 1.5 mM MgCl2, 0.2 

mM each of dATP, dGTP, dCTP and dTTP (Carl Roth & Co. KG, Karlsruhe, Germany), 

0.25 µM of each primer (synthesized by Invitrogen), and 0.025/0.05 U/µl of Taq DNA 

polymerase (Invitrogen, Life Technologies, Karlsruhe, Germany). Reaction conditions 

were as follows: denaturation (2 min, 94°) one cycle, denaturation (15 sec, 94°), primer 

annealing (30 sec, 57-65 °C) and elongation (1 min per 1 kb, 68/72 °C), terminated by 

final elongation (72°C, 5-10 min).  

 

RT-PCR 

Reverse transcription–polymerase chain reactions (RT-PCR) were carried out with total 

RNA/mRNA templates, isolated and purified as described above. 3mg RNA or 250 ng 

mRNA was used as starting template material for first strand cDNA synthesis using 

SuperScriptTM II RNase H- (Invitrogen) as instructed by manual provided with the 

SuperScriptTM II RNase H-. For subsequent RT-PCR analyses, 2 µl of above mixture as 
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template was used and reactions were standardized using tubulin primers, specific to 

tubulin β-subunit of Arabidopsis  

 

Northern and dot blot analyses 

Formaldehyde agarose gel preparation, quantification, electrophoresis and samples 

prepration/loading were done following the RNeasy Plant Mini® Kit QIAGEN protocol.  

 

Plasmid DNA spotting 

50ng of gel purified plasmid DNA or PCR products (plasmids were specifically 

amplified using defined respective two flanking primers) was spotted on Hybond N+ 

nylon membrane (Hybond N - Amersham Pharmacia Biotech) by the DNA core facility 

(ADIS) of Max-Planck Institute for Plant Breeding Research, Cologne on Micro Gid II 

(Biorobotics).  

 

Transfer the gel on nylon membrane 

The gel was rinsed with DEPC-H20.  4-5 pieces of Whatman 3mm paper and a piece of 

Hybond N+ nylon membrane (Hybond N - Amersham Pharmacia Biotech), according to 

the pattern of the gel, were also wet with DEPC-10X SSC and placed on a platform 

(made of filter papers in a tray containing 10XSSC solution). Inverted marked gel was 

transferred on to Nylon membrane such that all of the area containing RNA is touching 

the nylon membrane. Air bubbles were rolled out during all the procedures. This 

sandwich was covered with a layer of 4 to 5 Whatman papers. Over the top a bit heavy 

scientific catalogue (mostly Sigma) was placed. After at least 20 hours, the sandwich 

was disassembled and RNA was crosslinked on the membrane by UV crosslinker 

provided by Stratgene by applying 120,000J x cm-2 of energy. 

 

RNA hybridization  

Pre-hybridization and hybridization were carried out in hybridization solution in glass 

tubes (30 cm x 4 cm) at 65°C under continuous rotation in a hybridization oven 

(Bachofer, Reutlingen, Germany). The pre-hybridization was performed overnight. Upon 
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adding the denatured radio-active probe, the hybridization was performed for at least 16 

hrs. After hybridization the filter was washed accordingly:  

1. twice 50 ml 2 x SSC + 0.1 % SDS at RT for 10 minutes 

2. twice 50 ml 1 x SSC + 0.1 % SDS at 65°C for 10 minutes  

3. once 50 ml 0.1 x SSC + 0.1 % SDS at 65°C for 15 minutes  

The filter was wrapped in thin plastic foil (Saran wrap) and exposed overnight to a 

phosphoimager screen (Molecular Dynamics) in a cassette at room temperature. 

 

Radioactively labeled probe preparation for Northern analysis 

50-100 ng of gel-purified PCR product for Northern analysis was used in this protocol. 

Probe was prepared according to Rediprime II Random Prime Labelling System protocol 

manual provided by Amersham Biosciences. Probe was later on purified on a Sephadex 

G25 column. 

 

Radioactively-labeled complex-probe preparation for dot-blot analysis 

mRNA denaturation 

mRNA   250 ng  (Dynabeads) 

Oligo dT   1µl (stock1ug. µl, pd(T)12-18 Amersham, cat. 27-7858-02) 

DEPC-dH2O  final volume of 12.5 µl 

The above 3 components were mixed and incubated at 65°C for 5 minutes and 

afterwards immediately placed at RT to allowing slow cool down for about 10 min. 

 

Reverse Transcription 

RT buffer 5x  6 µl  

dNTP mix   1 µl (10 mM A+G+T and 0.01mM dCTP) 

DTT 100mM  3 µl 

RNAseout  1 µl 

P32 α-dCTP  5 µl  (50 uCi. µl) 

SuperscriptII  1.5 µl (10 U.µl) 

The above mentioned components were mixed and incubated at 42°C for 90 min. The 

reaction was stopped by adding 2 µl of 10 mM EDTA. The remaining RNA was 
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hydrolyzed by adding 2 µl of 0.5 M NaOH. The reaction was inactivated at 70°C for 10 

min. 

 

Probe purification by Sephadex column 

An I ml blue tip (with a filter) was filled with Sephadex G25 (resuspended in DEPC 

treated water and autoclaved) and centrifuged at 2000 rpm for 2 min. Subsequently, 

column was equilibrated with 100 µl dH2O. Hot probe was loaded onto Sephadex 

containing blue tipand subsequently centrifuged at 2000 rpm for 2 min. The purified 

probe was taken into a new Eppendorf tube.  

 

Affymetrix transcriptome analysis 

Purified high yielded RNA isolation  

For genome-wide microarray analysis samples were prepared according to the 

instruction available on Nottingham Arabidopsis Stock Centre (NASC) homepage 

(http://affymetrix.arabidopsis.info/sampleprep/index.html). Total RNA was first isolated 

from entire aerial parts of 15 days old seedlings by RNAwiz extraction reagent (Ambion, 

Huntingdon, Cambridgeshire, UK) followed by a clean up step using the Qiagen 

columns in order to remove most impurities. 40µg (~1µg/1µl) of total RNA of each 

sample was shipped on dry-ice to NASC. The samples were hybridized with affymetrix 

chip (Gene Chip) after QC (Quality control) analysis. 

 

Affymetrix transcriptome data analysis 

Crude data was normalised using the Affymetrix standard procedure by NASC service 

by applying a so-called "Scaling Factor" using the Affymetrix software led to the 

removal of 2% of signal values from top and bottom values.  These data were further on 

subjected to Microsoft excel spread sheet and sorted the normalized signal values in 

ascending order. A ratio of up/down regulated genes was assorted by dividing the 

normalized signal values of vector control with their respective partner. Furthermore, 

Clustering analysis was performed using clustering tool "EPCLUST" available at 

http://ep.ebi.ac.uk 
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Cloning strategies 

Cloning strategies performed in the course of this thesis are described below. Plasmids 

and primers used for cloning procedures are listed in materials section. 

 

TOPO reaction  

PCR Product, gel-purified (20 ng in 4µl)                4 µl  

pCR TOPO2.1® salt solution                                   1 µl  

pCR TOPO2.1® topoisomerase/vector                    1 µl  

 

BP reaction  

attB-PCR Product (50 ng/µl)                                   1 µl  

GATEWAY® BP clonase                                        1 µl  

BP reaction buffer (5x)                                            1 µl  

pDONR™201 vector (50 ng/µl)                              1 µl  

ddH2O                                                                      1 µl  

 

LR reaction  

Entry clone (50 ng/µl)                                             1 µl  

GATEWAY® LR clonase                                       1 µl  

LR reaction buffer (5x)                                          1 µl  

Destination vector (50 ng/µl)                                 1 µl  

ddH2O                                                                    1 µl   

 

LR Plus reaction  

5’ element p4P1R Entry clone (20 ng/µl)            1.2 µl  

Entry clone pENTR201 (20 ng/µl)                      1.2 µl  

3’ element p2RP3 Entry clone (20 ng/µl)            1.2 µl  

GATEWAY® LR Plus clonase                            2.0 µl  

LR Plus reaction buffer (5x)                                2.0 µl  

Destination vector (20 ng/µl)                               1.4 µl  

ddH2O                                                                  1.0 µl   
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Typically, reactions were carried out in 1.5 ml Eppendorf tubes. Reactions were 

incubated at 25ºC for at least 1 h (for TOPO TA cloning) or 12 h (for Gateway cloning), 

before completely transformed into E. coli strain DH5α. 

   

Plasmid DNA cleavage by digestion with restriction endonucleases 

Isolated plasmids were cleaved in diagnostic sites using restriction enzymes in order to 

confirm the accuracy of obtained construct. For the digestion of plasmid DNA with 

restriction endonucleases, buffers supplied by manufacturers were used. Cleavage of 

DNA was performed at recommended optimal temperatures, usually at 37°C. 5-10 U of 

enzyme were used. Digestion of plasmid DNA and was performed for 1-3 hrs. Enzyme 

reactions were stopped by heat inactivation of restriction enzymes upon transfer of the 

restriction mix to 65° for 20 min. 

 

Complementation and promoter GUS fusion using Multisite Gateway® Technology 

Three DNA/cDNA sequences of interest were amplified (i.e. 5′ element, gene of interest, 

and 3′ element) using the recommended attB primers extension sites by Invitrogen to 

generate PCR products that are flanked by attB sites. Separate BP recombination 

reactions with three donor vectors (pDONR.P4-P1R, pDONR.221and pDONR.P2R-P3) 

were done to generate three entry clones containing your DNA sequences of interest.  

These three entry clones were used in a single MultiSite Gateway® LR plus 

recombination reaction with a pAM-PAT based pDEST.R4-R3 vector to create a 

transcriptional fusion among 5´ element (promoter sequence), cDNA (GUS reporter 

gene/cDNA) and terminator sequence/ epitop tag sequence (StrepII-terminator). 

 

2.2.2. Methods for the cultivation of bacteria and transformation of plants 
 
The Agrobacterium strain GV3101 was used for all the below described transformations. 

The strain has a C58C1 chromosomal background marked by a rifampicin resistance 

mutation, and carries pMP90RK, a helper Ti plasmid encoding virulence functions for T-

DNA transfer from Agrobacterium to plant cells (Koncz et al., 1990). 
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Preparation of chemo-competent E. coli cells (Hanahan, 1983)  

All steps in this experiment were performed at 4°C. 5 ml of an over night culture of E. 

coli strains DH5α or DB3.1 were added to pre-warmed 100 ml of LB and keep on 

shaking  at 37°C to achieve the bacterial growth to an OD600 of 0.5-0.6. The bacteria 

were centrifuged at 5000 x g for 10 minutes at 4°C. After discarding the supernatant, the 

pellet was gently re-suspended in 30 ml ice-cold TFBI solution. After the second step of 

centrifugation, the pellet was resuspended in ice-cold TFBII solution. 1.5 ml Eppendorf 

reaction tubes containing 50 µl aliquots of cells were frozen in liquid nitrogen and stored 

at -80°C until use. 

 

Transformation of chemo-competent E. coli cells  

For each transformation, one aliquot of chemo-competent cells was thawed on ice. For 

Gateway vectors propagation, 20 to 50 ng of plasmid DNA was mixed with the aliquot 

of E. coli DB3.1 cells. In case of TOPO TA cloning and Gateway recombination 

reactions, entire reaction mixture (6 µl or 5 µl, respectively) were added to an aliquot of 

E. coli DH5α cells. The cells were incubated on ice for 30 minutes. The mixture was 

heat-shocked for 30 seconds at 42°C and again incubated on ice for 2 minutes. 900 µl of 

SOC medium was immediately added to the Eppendorf tube and incubated at 37°C for 1 

hour with continuous shaking at 950 rpm. A fraction (~ 150-200 µl) of the 

transformation mixture was plated out onto selection media plates. Transformed colonies 

were isolated. 

 

Small scale plasmid isolation from E. coli 

Small scale plasmid isolation from E.coli was performed by alkaline lysis according to 

Sambrook and Fritsch, 1998, using Plasmid Isolation Mini kit (Qiagen). 
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Preparation of electrocompetent A. tumefaciens 

A single colony of A. tumefaciens was inoculated into 5 ml of YEB medium and grown 

o/n at 28°C. The o/n culture was used to inoculate 400 ml of YEB medium and grown to 

A600nm=0.5. Cells were harvested by centrifugation at 4.9 krpm and successively 

resuspended in 200 ml, 100 ml and 10 ml of ice-cold 1 mM Hepes (pH=7.5). Finally 

cells were resuspended in 800 µl of 1 mM Hepes (pH=7.5) and 10% v/v glycerol, 

aliquoted and frozen at –70°C. 

 

Electroporation of A. tumefaciens cells 

An aliquot of frozen electrocompetent A. tumefaciens was thawed on ice and mixed with 

450 µl of 10% glycerol. The electroporator was set to 25 µF, 2.5 kV and 200 Ω. A single 

electroporation pulse was given and 1 ml of YEB medium immediately added. After 

incubation at 28°C for 2 hrs, cells are plated on selective YEB medium and incubated for 

2 d at 28°C. Transformed colonies were isolated. 

 

Transformation of Arabidopsis plants 

Agrobacterium clones carrying respective plasmid were grown in 5 ml of YEB medium 

with gentamycin (25 mg/l), kanamycin (25 mg/l), carbenicillin (50 mg/l) and rifampicin 

(50 mg/l) o/n at 28°C. The o/n culture was used to inoculate 400 ml of YEB medium and 

grown for another 16-20h. Cells were harvested by centrifugation at 4.9 krpm and 

resuspended in 50 ml of 5% sucrose solution. The resuspended culture was brought to 

A600nm=0.8 by dilution with 5% sucrose solution. Before transformation 

benzylaminoprine (10 µl/l) and Silwet L-77 (500 µl/l) were added to the A. tumefaciens 

culture. Arabidopsis aos plants were grown under greenhouse conditions at a density of 

5 plants/pot (9 cm diameter). The first emerged floral bolts were monitored for male 

sterility phenotype and cut off to remove the apical dominance, and therefore encourage 

growth of multiple secondary bolts. Transformation was performed 5-10 days after 

clipping. The plants were dipped for 30 s into A. tumefaciens culture and covered with a 

plastic dome for 24 hrs to maintain high humidity. After removal of the plastic domes, 

plants were transferred to a growth-chamber with high humidity conditions for two days 

and then to the greenhouse until seeds were harvested.  
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Transient transformation of N. benthamiana leaves 

2 ml overnight culture of Agrobacterium carrying binary construct was grown at 28°C in 

liquid YEB medium containing antibiotics. Bacteria were spun down and resuspended in 

1 ml induction medium. After transferring to new test tubes, 3-5 ml induction medium 

(with antibiotics) were added. Culture was grown for another 4-6 hrs and bacteria 

harvested. Subsequently, bacteria were resuspended in infiltration medium to OD 0.4-

0.6. Healthy, fresh-looking leaves of young N. benthamiana plants were infiltrated with 

a needleless syringe on the underside. Leaf material was harvested 72 hrs after 

infiltration to continue subsequent experiments. 

 

Transient transfection assay in Arabidopsis and leek epidermal cells using particle 

delivery system (for 10 bombardments) 

Note: This protocol is compiled by Brigitte Schauf at the MPIZ Cologne, Abt. 

Molekulare Phytopathologie headed by Paul Schulze-Lefert.  

This method works on the principle to use helium pressure introducing gold/tungsten 

particles (microcarriers) coated DNA into living cells. 30mg of 1µm gold microcarrier 

was weighed and transferred into a 1.5ml Eppendorf tube. After adding 1ml of 70% 

ethanol, the suspension was vigorously vortex for 3-5 minutes. Subsequently, 15 minutes 

break to allow the particles soaking. Micro-particles were centrifuged for 5 seconds to 

pellet. After the complete removal of supernatant, 1ml sterile dH2O was added. 

Subsequently, rigorous vortexing for 1 min and allowing the particles to sediment for 

1min. afterwards, gold particles were microfuged briefly to remove the supernatant. 

These steps were repeated three times to get proper washing of micro-particles.  

Finally, micro-particles were suspended in 500µl sterilized 50% glycerol: 50%dH2O. 

These washed micro-particles can be used within to 2 weeks with the condition storing at 

4°C. 

 

Coating Microcarriers with DNA 

Pre-washed micro-carriers in 50% glycerol (60mg/ml) were votexed for 5 minutes to 

resuspend and disrupt agglomerated particles. For one bombardment, 50µL was 

aliquoted into a new Eppendorf tube and subsequently added in order 5µl DNA (1µg/µl), 
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50µl 2.5M CaCl2 by slowly pipetting and 20µl 0.1M spermidine. Meanwhile, the tube 

was kept carrying on vigorous vortexing.  Vortexing was continued 2-3 min. more and 

then stopped. In further sediment step, microcarriers were stayed in rest for 1 min. 

Micro-carriers were centrifuged for 2 seconds and after discarding the supernatant, 140µ 

70% EtOH was added. The next step was done at low speed to vortex the micro-carriers 

for 2 seconds and spun for 2 seconds. Supernatant was removed and 140µl 100% EtOH 

was added. The step was repeated one more time and micro-carriers were resuspended in 

48 µl 100% EtOH. DNA coated gold particles were kept on ice until bombardment.  

 

Transient transfection assay 

Arabidopsis leaves or leek peelings were cut in appropriate sizes and placed on MS-

medium plates. Macrocarriers were positioned in the appropriate seven places the 

macrocarrier holder (Hepta Adapter™ BioRad) and fix those tightly with a holder. 6 µl 

of DNA coated microcarriers was taken while vortexing and pasted on pre-placed 

mrocarriers. Once the ethanol was fully evaporated, this Hepta Adapter™ was placed 

inside the BioRad particle delivery system (Biolistic-PDS-1000/He) and fixed it tightly 

with a provided key. A vacuum of 27 mm Hg was applied. Under this constant pressure, 

rupture discs were burst at a pressure of 900 psi led to the start of bombardment process. 

The bombarded leaves were placed in a light chamber at 18°C for 24 h to allow the 

protein expression.  

 

2.2.3. Plant treatments 
 
1-aminocyclopropane-1-carboxylic acid (ACC): ACC was purchased from Sigma 

Chemical Co. and either infiltrated or supplemented with MS-medium at final 

concentration of 100µM) while mock solution was Tween 20 of 0.01% concentration.  

2,4-dichlorophenoxyacetic acid (2,4 D): 2, 4 D was purchased from Sigma. The tested 

concentrations were (0.001%, 0.005% and 0.01%) 

β-estradiol: 10 µM DEX solution in DMSO was sprayed on Arabidopsis transgenic 

plants. 

Basta: 0.1% on the cotyledon stage and sprayed by atomizer.  
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Dehydration stress: 

0, 100, 200, 400 mM concentrations of NaCl were tested to observe the germination 

ratio and growth effect on Arabidopsis seedlings. 

Dexamethasone (DEX): 10 µM DEX solution in ethanol was sprayed on Arabidopsis 

transgenic plants. 

gamma-aminobutyric acid (GABA): 1mM to 0.5M concentration soluble in dH2O and 

sprayed on Arabidopsis transgenic plants. 

Heavy metals:  

Following heavy metals were dissolved in dH2O and supplemented with MS-medium in 

the below stated concentrations.  

CdCl2: 0, 200, 250, 300 µM 

CuSO4: 0, 10, 100, 125, 150 and 175 µM  

H2O2: Arabidopsis seeds were either sown on filter paper containing H2O2 or MS-

medium gown one-week-old seedlings were shifted to MS-medium supplemented with 

H2O2 to observe the root growth phenotypes (0, 10, 20 mM) 

MeJA: (Duchefa Biochemie) The working solution spraying concentration was 100µM 

while the mock solution was 0.2% ethanol.  

Paraquat: 

Droplet assay: A 5 to 25µM concentration paraquat droplet was used and leaves of 3-4 

weeks old plants were placed in darkness for 2h. Necrosis diameter was observed after 2 

days. 

Germination assay:. Relative germination ratio was determined on MS medium 

supplemented with 5 µM paraquat.  

 Root growth/bending assay: 0.5 to 1.00 uM paraquat, MS plates. Mark root tip, turn 

90o. After one week measure additional root growth. 

Root gravitropism: 

10 days old vertically MS-medium grown Arabidopsis seedlings were reoriented to a 90o 

angle relative to gravity vector and root tip responses were monitored.  

 

 

 



Chapter 2 • Materials and Methods 
 

59 

Root winding assay: 

In order to study wavy root growth patterns seedlings were vertically grown on 1.5% MS 

medium and tilted to 45o for 3 days.  

Salicylic acid (SA):  5mM SA solution (pH 7.0 with KOH) in ethanol was sprayed on 

Arabidopsis seedlings/plants.  

Sugar: 0, 100, 175 mM concentrations were tested to observe the any phenotypic effect 

on Arabidopsis seedlings.  

UV (Stratagene UV transillumination Crosslinker): 50-100 mJ/cm2 energy was used 

to monitor any phenotypic effect on Arabidopsis seedlings.  

Evaluation of Arabidopsis thaliana pollen viability by FDA staining 

The fluorochromatic reaction (FCR) procedure (Heslop-Harrison et al. 1984; Shivanna 

and Rangaswamy 1992) was used for determining the viability of pollen. 0.02 g of 

fluorescein diacetate (FDA) (Sigma-Aldrich GmbH, Munich, Germany), was mixed with 

10 ml of acetone. A 20% sucrose solution was made up and 5 ml removed into a separate 

container. The FDA solution was added drop by drop to this 5 ml of sucrose until 

persistent turbidity. This solution was used within 30 min of mixing. One 10 µl drop of 

the mixture was added to a clean microscope slide and subsequently pollen was added. 

Each slide was incubated at room temperature for 15 min. Then a cover slip was placed 

over the sample. Viability of pollen grains was examined under a fluorescence 

microscope (Leica MZ12, excitation filter 450–490nm). Using the fluorochromatic 

reaction test for the complementation lines pollen, the viable pollen grains fluoresced in 

a bright green colour, whilst the non-viable grains were of a dull yellow colour. A 

hundred grains visible on the slide were scored and the percentage viability calculated. 

GUS staining assay 

Plant tissue were stained for GUS activity using a solution containing 2 mM 5-bromo-4-

chloro-3-indolyl glucuronide (X-Gluc) in 0.1 M Na2HPO4, pH 7.0, 10 mM EDTA, 0.5 

mM potassium ferricyanide/ferrocyanide, and 0.06% Triton X-100 (Jefferson et al., 

1987) at 37°C for 16 hours. The samples were cleared of chlorophyll by sequential 

washing in 70% ethanol.  
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2.2.4. Protein analyses 
 
Preparation of the crude-extract 

0.25 g and 0.75 g leaf material for N. benthamiana and A. thaliana, respectively was 

ground in liquid nitrogen to get a fine powder. The ground tissue was thawed by adding 

0.75 ml of StrepII- extraction buffer and kept on grinding until uniform slurry was 

obtained. The slurry was transferred into a 2 ml Eppendorf tube, sonicated for 30 

seconds then centrifuged for 10 min at 4°C. The supernatant was transferred into a new 

Eppendorf and used as crude extract for protein analysis by adding 2xloading buffer. 

 

SDS-polyacrylamide gel electrophoresis (PAGE), immunoblotting and protein 

detection 

All denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out 

using the Mini-blot Protean system (BioRad). 10% resolving gel and 4% stacking gel 

was prepared (see materials). After placing the gel in electrode assembly, the samples 

were carefully loaded using Hamilton syringe and migrated. Immunoblotting was done 

by Trans-Blot System SD Semi-Dry Transfer Gel (Bio-Rad Trans-Blot® semi-Dry) as 

instructed by Trans-Blot® semi-Dry Quick Reference Guide. Recombinant protein via 

the StrepII tag was detected following the manual instruction of IBA (BioTAGnology, 

www.iba-go.com ) and Witte et al. 2004.  
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3. Results 

3.1. Expression pattern of various AtWRKY family members in A. thaliana 

mutants impaired in different signaling pathways 

In contrast to six other plant transcription factor families, over 70% of all AtWRKY 

family members appear to respond to various abiotic and biotic stresses (Chen et al., 

2003; Kalde et al., 2003). As a first step in order to get a general overview of the 

expression pattern of individual members of the AtWRKY superfamily, an attempt was 

made to analyze the entire set of these genes. This expression profiling was studied using 

different defined signaling Arabidopsis mutant plants specifically affected in different 

plant defense signaling pathways (Table 2). Macroarray analyses were carried out using 

a reverse RNA blot approach. The majority of the AtWRKY cDNA clones were available 

in a Gateway Entry vector in our laboratory clone collection. PCR products of each 

AtWRKY cDNA were amplified using Gateway attB1 and attB2 universal primers (Fig. 

5A).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Optimizing the vector construct used for macroarray analyses. A. Schematic 

representation of a Gateway clone for PCR product amplification. Red, blue and orange 

boxes indicate attB1, cDNA clone cassette and attB2, respectively. Arrow bars indicate 

position of the primers flanking the sites of attB1 and attB2. B. Each duplicate dot 
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represents a AtWRKY cDNA spotted on the nylon membrane and hybridized with the 

attB1 probe. The different amounts spotted are shown on the right side of the diagram. 

Small round circle highlights the good correlation between the cDNA amount spotted 

and signal intensity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Example of a expression comparison between wild-type and mutant plants via 

macroarray analyses. Pictures of the wild-type Col-0 plant and the dnd1 mutant are 

shown at the left. The various steps performed include mRNA purification from plants, 

complex probe preparation and hybridization to duplicate nylon membranes. Blue circles 

mark the spots of constitutively expressed marker genes. Red circles represent the spots 

of different AtWRKY genes indicated by their numbers. Small arrows points towards the 

spots of plant defense pathogenesis-related (PR1, PR2 and PR5) marker genes. LOX2: 

lipoxygensae 2, SAG13: senescence associated gene 13, RPW: resistance to powdery 

mildew. 

 

Various amounts of 72 AtWRKY cDNA (6.75, 13.5 and 27 ng/spot) were spotted in 

duplicate on nylon membranes in order to determine the optimal concentration of cDNA 

needed per spot. The twin spots served as internal controls for differences in signal 
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intensity. attB1 probe was used for hybridization to the filters. A good correlation was 

observed between cDNA amount and signal intensity (Fig. 5B). 

Table 2. A. thaliana mutants impaired in different signaling pathways used in these 

experiments. 

 

 

 

 

Mutant 
name 

Full name Annotation/Description 

aos Allene Oxide Synthase Defect in the allene oxide synthase gene (completely 
blocked in the synthesis of jasmonic acid. Allene oxide 
synthase, catalyses dehydration of the hydroperoxide to 
an unstable allene oxide in the jasmonic acid biosynthetic 
pathway (Laudert et al. 1996; Park et al., 2002). 

ctr1-1 Constitutive Triple 
Response1 

CTR1 encodes a Raf-like protein kinase which acts as a 
negative regulator of the ethylene signaling pathway 
(Kieber et al., 1993). 

cpr5 Constitutive expressor of 
Pathogensis Related 
genes 5 

A transmembrane protein regulating expression of 
pathogenesis-related (PR) genes. Participates in signal 
transduction pathways involved in plant defense 
(systemic acquired resistance - SAR) (Clarke et al. 2001). 

dnd1 Defense, No Death 1 Cyclic nucleotide-gated ion channel, also known as 
CNGC2 (Clough et al. 2000). 

edr1 Enhanced Disease 
Resistance 1 

A mitogen-activated protein kinase kinase kinase 
(MAPKKK) that confers resistance to powdery mildew 
disease caused by fungus Erysiphe cichoracearum (Frye 
et al. 2001). 

fls1-2 Flagellin Insensitive1 This is also an fls2 mutant having a stop-codon in the 
kinase domain. It also shows strong flg22 insensitivity in 
growth inhibition assays, and cannot bind flg22. FLS2 
encodes a receptor-like protein kinase.(Gómez-Gómez et 
al., 1999; Gómez-Gómez and Boller, 2000; Gómez-
Gómez and Boller, 2002). 

ein2 Ethylene Insensitive 2 EIN2 is a bifunctional transducer of ethylene and stress 
response (Guzman and Ecker, 1990; Alonso et al., 1999). 

jar1 Jasmonate Response 1 An auxin-induced gene encoding a cytoplasmic localized 
phytochrome A signaling component protein similar to 
the GH3 family of proteins (Staswick et al. 2002). 

ndr1 Non-Race-Specific 
Disease Resistance 1 

Required for non-race specific resistance to bacterial and 
fungal pathogens. Many CC-NBS-LRR type proteins 
require NDR1. NDR1 encodes a 219 AS long protein 
with putative trans-membrane domain. Mediates systemic 
acquired resistance (SAR) response (Century et al., 1995; 
Century et al., 1997; Tornero et al., 2002). 

npr1 Non-Expressor of PR 
genes 1 

Adaptor molecule containing ankyrin repeats, controls 
systemic acquired resistance (SAR), also known as NIM1 
and SAI1 (Cao et al. 1997). 
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For all the subsequent experiments, 13.50g/spot (50ng/ul) was selected. Various marker 

genes, both constitutively expressed and pathogen induced were also spotted on the filter 

in order to validate the results (Table 3).  

 

 

 

 

 

 

 

 

Table 3. Various marker genes included on the macroarray. Constitutively expressed 

molecular markers (Actin and Ubiquitin) are shown at the upper panel of the table while 

plant defense associated molecular markers are given in the lower panel of the table.   

 

mRNA populations were purified from leaves of 3-week old wild-type or from the 

respective mutant plants to generate complex cDNA probes.  These probes were used to 

hybridize duplicate filters (Fig. 6). The signal intensity or pixel value of each twin spot 

on a filter, representing a AtWRKY cDNA or control gene, was measured After 

correcting for background of each spot, the signal intensities were spread on an Excel-

sheet. Pixel values of all spots were normalized based on the signal intensities of 

constitutively expressed marker genes. These normalized values were used to create a 

histogram (Fig. 7).  The data were corroborated on the basis of plant defense related 

marker genes expressed differentially in certain plant defense signaling networks.  

 

 

 

 

 

Constitutively Expressed 
marker genes

Actin, Ubiquitin 

Plant Defense
Related Marker genes

CHS (Chalcone Synthase) , CPR5 (Constitutive Expressor of Pathogensis
Related genes 5) , EDS1(Enhanced Disease Susceptibility 1), Eli3 (Mannitol
Dehydrogenase, Lox2 (Lipoxygenase 2) , MPK4 (Mitogen-Activated Protein 
Kinase 4) , NDR1 (Non-Race-Specific Disease Resistance 1) , NPR1 (Non-
Expressor of PR1) , PAD4 (Phytoalexin-Deficient 4) , PAL2 (Phenylalanine 
Ammonia-Lyase 2) , PDF1.2, PDF1.4 (Plant Defensin), PR1, PR2, PR5 
(Pathogensis Related ) , RPW8 (Resistance to Powdery Mildew 8), SAG13 
(Senescence-associated gene 13)
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Fig. 7. Diagramtic representation of normalized pixel values of the various obtained 

signals. A. Light blue and light red bars in the histogram represent wild-type and mutant 

signal intensities of various AtWRKY genes, respectively. The differentially regulated 

AtWRKY genes are labeled by an algorithmic number. B. Dark blue and dark red bars in 

the histogram correspond to wild-type and mutant normalized signal intensities of 

marker genes, respectively.  

 

For instance, dnd1 (defense no death 1) is known to exhibit constitutively elevated levels 

of salicylic acid and mRNAs for pathogenesis-related (PR) genes (Glazebrook, 2001). 

Overall the levels of transcripts for 12 AtWRKY genes were constitutively elevated in 

various tested mutants compared to wild-type (AtWRKY6, AtWRKY15, AtWRKY18, 

AtWRKY25, AtWRKY26, AtWRKY33, AtWRKY40, AtWRKY46, AtWRKY53, AtWRKY54, 

AtWRKY70 and AtWRKY75), while transcript levels of AtWRKY18 and AtWRKY40 were 

induced in wounded plants compared to control plants (Table  4). 
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Table 4. Differentaily expressed AtWRKY genes with respect to the tested mutants are 

highlighted in red. The serial number represents the designation of various AtWRKY 

genes listed in the first columns of the Excel spread sheet. Mutants and treatments are 

given at the top.  

 

Furthermore, comprehensive expression patterns of AtWRKY18, AtWRKY25, 

AtWRKY33, AtWRKY53 and AtWRKY70 were analyzed in different mutants impaired in 

plant defense networks upon elicitor/stimuli application. 3-week old plants of wild-type, 

ndr1, edr1, cpr5-2 and npr1 were treated with salicylic acid (SA), aos and jar1 with 

Methyl jasmonate (MeJa), and ctr1 and ein2 with 1-aminocyclopropane-1-carboxylic 

acid (ACC), a natural precursor of ET. Total RNA was isolated from leaves 3 hours after 

start of treatment. Full length cDNAs of AtWRKY18, AtWRKY25, AtWRKY33, 

AtWRKY53 and AtWRKY70 were PCR-amplified and used as probes. The transcript 

levels of AtWRKY18, AtWRKY33, AtWRKY53, AtWRKY60 and AtWRKY70 were induced 
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by SA in the wild-type, ndr1, edr1and cpr5-2 plants but the transcript levels were either 

unchanged or actually decreased in npr1 mutant plants (Fig. 8 A and B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. A & B. Northern blot analysis to analyze the expression patterns of specific 

AtWRKY genes. RNA samples were prepared from leaves of 21 days old wild-type (WT) 

or respective mutant plants. After electrophoretic separation on the gel and blotting onto 

nylon membranes, the blots was probed with AtWRKY18, AtWRKY25, AtWRKY33, 

AtWRKY53 and AtWRKY70 specific DNA fragments as indicated on the left. Tubulin 

probe or Ethidium Bromide staining of rRNA was used as loading controls. Wild-type 

and mutant plants are indicated at the top of the blots and underlined, and the respective 

treatments are given for each lane. SA: salicylic acid, MeJa: methyl jasmonate, ACC: 1-

aminocyclopropane-1-carboxylic acid. 

 

 

 

aos

Mock
MeJA

jar1

Mock
MeJA

ACC

ctr1

Mock

ein2

Mock
ACC

AtWRKY18

AtWRKY53

AtWRKY25

AtWRKY33

AtWRKY60

Tubulin

ACC

WT

Mock
ACC

ctr1

Mock

ein2

Mock
ACC

aos

Mock
MeJ

A

jar1

Mock
MeJ

A

AtWRKY70

Tubulin

rRNA

AtWRKY18

AtWRKY53

AtWRKY25

AtWRKY33

AtWRKY60

Tubulin

WT

Eth
an

ol

SA Moc
k

SA Moc
k

SA Moc
k

SA Moc
k

SA

ndr1
cpr5-2

npr1
edr1

MeJ
A

Tw
ee

n

ACC

AtWRKY70

Tubulin

rRNA

WT

Mock SA
Mock SA

Mock SA
Mock SA

Mock SA

ndr1
cpr5-2

npr1
edr1

MeJ
A

A.  

B.  



Chapter 3 • Results 
 

68 

AtWRKY25, AtWRKY53 and AtWRKY70 showed both basal and SA-induced higher 

transcript levels in cpr5 mutant plants compared to wild-type plants. By contrast, 

AtWRKY18 and AtWRKY53 exhibited SA-induced higher transcript levels only in cpr5 

mutant plants compared to wild-type. AtWRKY18, AtWRKY25 and AtWRKY33 exhibited 

an increased transcript level in JA/ET signaling deficient mutant plants compared to 

wild-type plants after appropriate treatment. Interestingly, AtWRKY53 and AtWRKY60 

showed constitutively elevated transcript levels only in ET signaling deficient (ctr1 and 

ein2) mutant plants.  

3.2. Pathogen tests to define Atwrky loss of function mutants showing 

differential phenotypes compared to wild-type plants 

Since the complete Arabidopsis genome sequence is available, reverse genetics can be a 

major tool to study gene function. Although it has been estimated that the Arabidopsis 

genome is saturated with T-DNA and transposable element insertions, relatively few 

informative knockouts have been reported that provide a clue to gene function (Bouche 

and Bouchez, 2001). Structural and functional redundancy, due to the partial duplication 

of the Arabidopsis genome, may explain the lack of phenotypical alterations in certain 

cases (Vision et al., 2000; Simillion et al., 2002). The redundancy problem can be 

especially acute for transcription factors (TFs) because they are, in general, members of 

large gene families that often include closely related genes (Riechmann et al., 2000). It is 

also possible that the lack of phenotypes in knockouts is conditional and does not alter 

plant morphology even in the presence of severe physiological defects or is due to our 

inability to detect small phenotypic changes. 

In Arabidopsis, WRKY proteins were categorized among one of the major families of 

transcription factors (Eulgem et al., 2000), comprised of 74 members. Usually, single 

gene mutation at most of individual AtWRKY loci do not exhibit altered phenotypes 

under natural growth conditions (Bekir Uelker and Imre E. Somssich, personal 

communication). A plausible hypothesis would propose that subtle, conditional 

phenotypical changes can be identified under specific environmental or biological 

changes. In order to dissect the role of AtWRKY factors in the context of plant defense, 

diverse biotic and abiotic stresses were tested. One of the employed methods was to 
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subject a set of Atwrky knock out (KO) mutants to diverse pathogen infections (host, 

non-host, virulent/avirulent) and analyze specific altered responses. Among the virulent 

pathogens selected, Ralstonia solanacearum strain GMI1000 was also included in the 

screening experiments. 

3.3. Phenotypic responses of Atwrky27 knock out mutant to R. 

solanacearum strain GMI1000  

R. solanacearum strain GMI1000 is virulent on most of A. thaliana ecotypes, including 

Columbia, causing severe bacterial wilt and leading to death of the entire plant within 

10-12 days post inoculation. However, ecotype Nd-1 displays complete resistance to R. 

solanacearum. The molecular phenomenon underlying this difference was elucidated by 

Deslandes and co-workers (1998, 2003), who showed the presence of two alleles of 

AtWRKY52, named AtRRS1-S and AtRRS1-R, isolated from Col-5 and Nd-1, 

respectively. Sequence analysis of the RRS1 genes present in two homozygous intragenic 

recombinant lines indicates that several domains of RRS1-R are essential for its 

resistance function.  

 

 

Fig. 9. Phenotypic responses of various 

Atwrky knock-out mutant plants to Ralstonia 

solanacearum strain GMI1000 (108 bacteria 

ml-1), 8 days post inoculation. In each row, 

several plants of 15 different  Atwrky knock 

out mutant and wild-type Col-0 plants were 

root-inoculated. Atwrky27ETL knock-out 

mutant displayed delayed symptom 

development compared to the other tested 

Atwrky knock-out mutants and wild-type 

plants (experiment performed by Y. Marco, 

CNRS/INRA Toulouse, France).  

Wild-type Atwrky27ETL 
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A collection of Atwrky KO mutant plants (all in Columbia background) was subjected to 

R. solanacearum strain GMI1000 infection experiments. Due to the general nature of 

this screen, both enhanced resistance and enhanced susceptible mutants were expected. 

In Col-0 wild type plants, first wilt symptoms were observed on older leaves 6-8 days 

post inoculation, which led to wilting of the entire plant 3-5 days later. Interestingly, 

among all the tested Atwrky KO mutants, Atwrky27 KO mutant plants were found to 

exhibit a delayed disease symptoms response to R. solanacearum strain GMI1000 (Fig. 

9) 8 days post inoculation. 

Based on this preliminary observation, the foremost hypothesis is that AtWRKY27 or the 

component (s) under the control of this TF could correspond to a plant susceptibility 

factor (s), which is required for the bacteria to provoke wilt symptoms.  

3.4. Response of Atwrky27 KO mutants to various biotic stresses 

3.4.1. Host pathogens 
 
Pseudomonas syringae pv. tomato DC3000 

Pseudomonas syringae is a gram negative, plant pathogenic bacterium divided into more 

than 40 pathovars on the basis of its host specificity for different plant species (Hirano 

and Upper 2000). P. syringae pv. tomato DC3000 causes bacterial speck of tomato and 

Arabidopsis but elicits the defense-associated hypersensitive response (HR) in bean, 

tobacco, and many other plants (Whalen et al., 1991; Zhao et al., 2000). A key factor in 

the pathogenicity of Pst DC3000, and many other plant and animal bacteria including 

Ralstonia solanacearum, is the virulence effector proteins delivered via a type III 

secretion system (TTSS) directly into host cells (Bonas and Lahaye, 2002; Collmer et al., 

2000; Cornelis and van Gijsegem, 2000; Galan and Collmer, 1999; He, 1998; 

Staskawicz et al., 2001). In this study, strain Pst DC3000 which is virulent on Col-0 

Arabidopsis accession was employed (Whalen et al. 1991). The Arabidopsis gene 

Enhanced Disease Susceptibility1 (AtEDS1) encodes a lipase-like protein and has been 

shown to be a key component of the SA-dependent pathway.  eds1 mutants exhibit 

enhanced susceptibility to Pst DC3000 and the virulent oomycete Peronospora 

parasitica Noco2  (Parker et al., 1996; Feys et al., 2001). On the contrary, constitutive 

expression of pathogenesis related protein-5 (cpr5-2) mutant (Bowling et al., 1994, 
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1997) shows enhanced resistance to virulent strains of P.  syringae and/or P.  parasitica 

and exhibits spontaneous lesion formation and constitutive expression of PR genes.  eds1 

and cpr5-2 mutant plants were both also included into the experiments as controls.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Bacterial growth kinetics following P. syringae pv. tomato DC3000 infection. 

Bacterial density in leaves after inoculation of Col-0, eds1, cpr5-2 and Atwrky27ETL 

plants with P. syringae pv tomato DC3000 (initial inoculation set at OD600=0.001). For 

each time point triplicate assays were performed on 9 plants for each accession/mutant 

line.  

 

3-week-old plants of Col-1, eds1, cpr5-2 and Atwrky27ETL were vacuum-infiltrated with 

the virulent strain Pst DC3000. eds1 clearly showed more extensive chlorosis compared 

to Col-0 and Col-1 at day 3 post inoculation, while cpr5-2 plants were highly resistant 

confirming that the infection was properly performed. No visible differences were found 

between Atwrky27ETL and wild-type plants in terms of bacterial chlorotic phenotype. 

Furthermore, bacterial density was also monitored on 0 and day 3 post inoculation. Both 

Atwrky27ETL and wild-type showed similar levels of bacterial growth (Fig. 10). 
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Peronospora parasitica Noco2 

Peronospora parasitica is an obligate biotrophic oomycete pathogen, which is virulent 

on the Arabidopsis accession Col-0 (Parker et al. 1993). This pathogen usually effects 

young seedling and leaves causing a very destructive disease known as downy mildew. 

Two-week old seedlings of Col-1, eds1, cpr5-2 and Atwrky27ETL were sprayed with a 

spore suspension of P. parasitica isolate Noco2 (4x104 spores ml-1) and conidiophores 

formation was quantified 7 days later. eds1 plants exhibited enhanced susceptibility 

indicated by vast sporulation of the oomycete, while cpr5-2 seedlings remained resistant 

(Fig. 11). The Atwrky27ETL seedlings showed a similar magnitude of conidiophore 

formation compared to wild-type (Fig. 12). 

 

Fig. 11. Symptoms response of 

Atwrky27ETL plants upon infection with 

P. parasitica isolate Noco2. Two-week 

old seedlings of wild-type Col-0, eds1, 

cpr5-2 and Atwrky27ETL were spray-

inoculated with a suspension of P. 

parasitica isolate Noco2 conidia (5x 

104/ml) and incubated in highly humid 

chambers.  P icture was taken 7 days 

post-inoculation. 

 

 

 

Golovinomyces orontii 

Golovinomyces orontii is a biotrophic fungus (Braun, 1999), which grows and penetrates 

into epidermal cells to establish nutrient-harvesting organs. This pathogen infects 

Arabidopsis wild-type Col-0 plants and typically does not induce the ET/JA-dependent 

pathogen responsive marker genes PDF1.2 and Thi2.1 (Plotnikova et al., 1998). 4-week-

old plants of two independent Atwrky27 insertion lines (Atwrky27 ETL and Atwrky27-90-

1), two AtWRKY27 overexpressor lines (see 3.13; OE-4 strepII and OE-7 strepII) and 
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wild-type control plants were inoculated with G. orontii and macroscopically visualized 

for fungal sporulation 10 days post inoculation. No difference in the susceptibility was 

observed for all of the tested plants (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Quantification of conidiophores formation 7 days post inoculation with P. 

parasitica isolate Noco2. Degree of pathogen infection was determined by harvesting 25 

leaves per sample in 1 ml H2O. After vigorous vortexing, two 10 ml aliquots of the 

spores from one sample were counted in a hemocytometer and averaged. Two replicate 

samples per genotype were assayed to obtain means and standard deviations. Error bars 

represent the standard deviations. 

 

3.4.2. Non-host pathogens 
 
Erysiphe pisi and Blumeria graminis f.sp. hordei (Bgh)  

Erysiphe pisi and Blumeria graminis f.sp. hordei (Bgh) are referred to as non-host 

pathogens of Arabidopsis. Four-week-old plants of two independent Atwrky27 insertion 

lines, two AtWRKY27 overexpressor lines (see 3.13; OE-4 strepII and OE-7 strepII) and 

wild-type plants were inoculated either with Bgh or E. pisi. Leaf samples were collected 

7 days and 11 days post inoculation, respectively. Samples were stained individually 

with aniline blue and analyzed under UV-light to determine alteration in the penetration 

rate and cell death. No differences were observed between the evaluated plants (Fig. 13). 
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Fig. 13.  Quantification of Bgh growth on Atwrky27 mutant plants and AtWRKY27 

overexpressor plants. Rosette leaves of 4-week-old plants of Atwrky27ETL, Atwrky27-

90-1, OE-4-StrepII, OE-7-StrepII and wild-type were inoculated with Bgh conidiospores. 

Samples were collected 7 days post inoculation. The graphic represents the frequency 

events of successful penetration (in red) and failed papilla (in blue). The data reported in 

the graphic represent the average of two independent experiments from 9 plants per 

replicate. 

3.5. AtWRKY27 

The AtWRKY27 protein is composed of 348 amino acids, with the molecular mass of 

38.7 kDa and theoretical pI of 4.72. The aliphatic index was calculated as 58.76 and the 

GRAVY (Grand average of hydropathicity) index is equal to -0.927, indicating a 

hydrophobic nature of the protein. The instability index (II) is computed to be 77.07, 

which classifies the protein as rather unstable. Theoretical post-translational 

modifications were also surveyed. Two highly probable SUMOylation motifs were 

detected: 257VKEE260 and 94LKQE 97, with probabilities of 0.93 and 0.91, respectively 

(http://us.expasy.org/).   

As the N-terminal glycine is lacking, the AtWRKY27 protein is unlikely to be a target 

for myristylation. Neither O-, nor N-glycosylation sites could be found while scanning 

the protein in the various databases available. However, a number of likely 
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phosphorylation sites are predicted for AtWRKY27. In particular, serines 87, 118, 239 

and 342 (highest scores 0.986, 0.986, 0.983 and 0.987, respectively), and threonine 226 

(highest score 0.983) are prominent as targets for phosphorylation (Fig. 14). 

 

 

 

 

 

 

 

 

 

Fig. 14. Numerous phosphorylation sites were predicted in AtWRKY27 using 

NetPhos2.0 (http://us.expasy.org/).  Amino acid sequence position is given along the x-

axis, while phosphorylation potential is marked from 0-1 on the y-axis. The cut-off value 

is set at 0.5 for putative phosphorylation sites. 

 

AtWRKY proteins are divided into 3 subgroups on the basis of number of WRKY 

domains and features of Zn finger like motif (Eulgem et al., 2000). AtWRKY27, with a 

single WRKY domain within the C-terminus, belongs to group-IIe in the phylogenetic 

tree. Structurally closest members are AtWRKY22 and AtWRKY29 (Fig. 15) to which 

AtWRKY27 shares 54% and 62% identity and 64% and 73% similarity, respectively 

(http://www.sdsc.edu/MEME). 

Fig. 15. Phylogenetic analysis of AtWRKY 

group-IIe. The amino acid sequences of 9 

members of this sub-group were aligned using 

CLUSTALW (Thompson et al 1994) and 

hierarchy analysis was done using TREEVIEW 

program (www.sdsc.edu/MEME). AtWRKY27 

was found to be closely related to AtWRKY22 

and AtWRKY29. 
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3.5.1. Subcellular localization of AtWRKY27  
One of the main features of transcription factors (TFs) and a pre-requisite for their 

functionality is nuclear localization. Previously, it was shown that Arabidopsis WRKY 

proteins localized to nucleus (Robatzek and Somssich, 2001; Ingo Ciolkowski, Dierk 

Wanke and Bekir Uelker, personal communication). Computer based subcellular 

localization prediction program “PSORT” (http://psort.nibb.ac.jp/) deduced at least 2 

putative nucleus localization signals (NLS): 144RKRK147 and 140PLRSRKR146. In 

contrast, the certainty value for nuclear localization of AtWRKY27 is not significant 

(table.) instead suggests rather mitochondrial and chloroplastic subcellular localization. 

Subcellular localization of AtWRKY27 was determined experimentally by means of 

transient expression of fluorescently tagged proteins. For this, the coding sequence of the 

green fluorescent protein (GFP) was fused in frame to the 3' end of the full-length 

AtWRKY27 cDNA while the control construct consisted of the coding sequence of red 

fluorescent protein (DsRed). Both these constructs were driven by the constitutively 

expressed double cauliflower mosaic virus CaMV 35S promoter (2x CaMV 35S) (Odell et 

al., 1985). 

 

Table 5. Predicted subcellular localization probabilities in various cellular compartments 

using PSORT (Prediction of protein subcellular localization) software 

(http://psort.nibb.ac.jp/). Cut-off value for probability is 0.5.  

 

Cellular compartment Probability 
Mitochondrial matrix space 

Chloroplast stroma   

Nucleus     

Mitochondrial inner membrane 

0.627 

0.467 

0.420 

0.326 

 

 

The fusion construct 2x35S::AtWRKY27-GFP and the control construct 2x35S::DsRED 

were coated onto gold particles and co-bombarded into leek epidermal cells. Confocal 

laser scanning microscopy observations illustrated the detection of red fluorescence in 
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the entire transformed cells 24 h post transfection (Fig. 16). By contrast, the 

AtWRKY27-GFP was visualized solely in the nucleus. In the overlay, AtWRKY27-GFP 

and RFP can be observed in the same transformed cell.  These data clearly indicate that 

AtWRKY27-GFP is targeted to nucleus. 

 

Fig. 16. Transient, heterologous 

expression of AtWRKY27-GFP 

and DsRed in leek epidermal 

cells. Subcellular localization 

was studied by confocal laser 

scanning microscopy. A) 

AtWRKY27-GFP was targeted 

to the nucleus. B) DsRed 

expression is observed in the 

entire transformed cell. C) 

Overlay for GFP and DsRed 

channels.  

 

 

3.5.2. Monitoring the endogenous expression of AtWRKY27 in Atwrky27ETL 

and using AtWRKY27 promoter GUS reporter constructs 

To gain clues concerning the function of a particular gene, it’s important to characterize 

its temporal and spatial expression pattern. A number of reporter genes have been used 

as convenient markers to visualize gene expression and protein localization in a wide 

spectrum of prokaryotes and eukaryotes (Jefferson et al., 1987; Davis and Vierstra, 

1998). The Escherichia coli uidA gene (also referred to as GUS reporter), which encodes 

ß-glucuronidase (GUS), has been extensively used in plants (Jefferson et al., 1987). The 

ß-glucuronidase assay is very sensitive, and it is possible to obtain both qualitative 

(histochemical) and quantitative (fluorometric) data (Jefferson et al., 1987). 
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The Atwrky27ETL loss-of-function mutant is an exon trap line, in which the GUS 

reporter gene has inserted into intron-2. The bonus of the gene trap T-DNA based 

mutagenesis is that besides disrupting a particular gene by insertional mutation, it allows 

detection and monitoring of the endogenous expression pattern of the targeted gene 

(Martienssen and Springer, 1998). Constructs used to generate exon trap lines don’t have 

a promoter sequence, so that the expression of the reporter gene can occur only if 

inserted within transcribed chromosomal regions and are under the influence of 

endogenous regulatory sequences creating a transcriptional/translational fusion.  

Genomic and transcript sequence analyses revealed that AtWRKY27 introns as well as 

left and right triple splice acceptors (T-DNA borders) are spliced out after the 

transcription events resulting in an in-frame translational fusion between AtWRKY27 

exon-2 and the GUS reporter gene as well as leading to the disruption of the endogenous 

gene (Fig. 17).  

 

 

 

 

 

 

 

 

 

 

Fig. 17. Schematic representation of the Atwrky27ETL (Exon Trap Line) knock-out 

mutant.  Position of the GUS reporter gene within AtWRKY27 is shown. Sequence region 

encoding the WRKY domain is marked by the red arrows.  Disruption of the endogenous 

gene leading to the generation of a translational fusion encoded by the exon1, exon2 and 

the GUS reporter gene.  Atwrky27 ETL was kindly provided by S. Kushnir, Ghent 

University, Belgium).  
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Therefore, the detectable GUS activity staining in Atwrky27ETL represents expression of 

the entire native 5' flanking regulatory region of AtWRKY27, and was systematically 

analyzed to determine the endogenous expression of this gene in various tissues during 

different developmental stages of the plant. 

The full-length 5’ upstream flanking intergenic region of AtWRKY27 is 6792 bp. A 

construct comprising 2 kb of upstream DNA sequence relative to the translational start 

site was fused to the GUS reporter gene and the strepII 

sequence(AtWRKY27p::GUS::StrepII-terminator) (Fig. 18).  10 independent 

AtWRKY27p::GUS::StrepII-terminator stable transgenics lines were analyzed and 

compared AtWRKY27 expression in Atwrky27ETL. 

 

 

 

 

Fig. 18. Diagrammatic representation of the AtWRKY27promoter::GUS::StrepII-

terminator construct. The size of the AtWRKY27 promoter is 2kb (relative to the 

translational start) which was fused upstream of a chimeric sequences encoding the GUS 

reporter, StrepII sequence and terminator sequence. StrepII sequence allows detection of 

the protein via use of a commercially available StrepII antibody. This construct was 

transformed into Columbia-0 wild-type plants.   

 

GUS activity staining was examined at various stages of plant development to monitor 

endogenous AtWRKY27 expression. Overall, similar, consistent but weak GUS 

expression was detected for both the Atwrky27ETL and the different AtWRKY27p::GUS 

lines. In 2 days old seedlings, detectable GUS expression was confined to areas of roots: 

the elongation zone, and to vascular tissue. At early stages of plant development (7 days 

and 14 days old plants), both Atwrky27ETL and AtWRKY27p::GUS lines display 

consistent GUS activity patterns (Fig. 19) within the root elongation zone and the 

vasculature (Fig. 19). In stem, 7 and 14 days old plants, GUS expression is highly 

restricted to vascular tissue (Fig. 19). Similar expression patterns can be detected in 21, 

28 and 35 days old plants (data not shown).  

27-promoter GUS StrepII-term Col-027-promoter GUS StrepII-term27-promoter GUS StrepII-term Col-0
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Fig. 19. Comparative GUS expression analysis between the Atwrky27ETL line and a 

representative AtWRKY27 promoter (2kb)::GUS::StrepII-terminator transgenic plant. A 

comparable GUS activity was detected between Atwrky27ETL and AtWRKY27p::GUS 

lines in 7 and 14 days old plants. A, C, E & F: GUS activity was monitored specifically 

in stem and leaf vasculature. The close up (inset in A) shows the restriction of the 

activity to the vasculature. B: GUS activity is also seen in the vasculature of primary and 

secondary roots. GUS activity is highly restricted to the root elongation zone (inset in B). 

D: GUS activity is highly restricted to root elongation zone. 

 

 

During early plant maturation, at the bud stage, GUS activity staining was transiently 

observed in various floral tissues such as stigmatic papillae, anthers, pollen grains, and 

the flower abscission zone. However, at later stage of flower development, GUS activity 

Atwrky27ETL AtWRKY27 Promoter (2kb) 
::GUS::Strep-terminator 

A.  

D.  

B.  

E.  C.

F.  
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staining was no longer detected in mature flowers and siliques, whereas it remained 

persistent in the abscission zone (Fig. 20). Moreover, GUS activity staining was not 

observed in pollen grains at later stages of flowers nor in pollen tubes that were 

germinated on artificial medium (Fig. 21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. AtWRKY27 promoter driven GUS expression in floral organs. A, D & G: GUS 

activity was detected in anthers of older flower. C & D: GUS activity was detected in 

total inflorescences.  B, E & F: GUS activity can also be seen in the residual stigmatic 

papillae.  E & F: GUS activity was detected in the transmission tract of the septum. 

 

 

 

 

Atwrky27ETL AtWRKY27 promoter (2kb) 
::GUS::Strep-terminator 

A.  

D.  
B.  

EC.

F.  

G.  



Chapter 3 • Results 
 

82 

Fig.21. AtWRKY27 promoter 

driven GUS expression analysis 

in anther and flower abscission 

zones. A & C: GUS activity in 

the flower abscission zones was 

persistent at early and later 

stages of flowering, while GUS 

activity is absent in stigmatic 

papillae at later stages of 

flower/silique development (A). 

B: GUS activity is undetectable 

in pollen grains and D: in pollen 

tubes germinated on artificial 

media.  

 

To more precisely localize GUS activity staining in the vasculature, cross and 

longitudinal sections of Atwrky27ETL stems were made. GUS staining was only 

observed in phloem tissue (Fig. 22). For more detailed studies, transgenic lines 

containing a AtWRKY27p::GFP construct were generated. GFP has several advantages 

as an in vivo reporter for monitoring dynamic processes in living cells or organisms, as 

its fluorescence can be measured directly without additional proteins, substrates, or 

cofactors (Chalfie at el., 1994; Fey et al., 1995; Gubin et al., 1997; Kain et al., 1997).  

 

Fig. 22. Longitudinal section 

(left) and cross section (right) 

of Atwrky27ETL stem tissue.  

GUS activity staining 

(regions of blue staining) 

appears to be localized to 

phloem tissue. 

 

Xylem Phloem 
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For this, two new constructs were generated using the 2 kb promoter of AtWRKY27 

either driving the expression of the AtWRKY27 cDNA fused to the coding sequence of 

GFP and a terminator (Fig. 23: AtWRKY27p::AtWRKY27::GFP-terminator) or driving 

the expression of a soluble modified-green fluorescent protein reporter gene (smGFP) 

and respective terminator sequence  (Fig. 23: AtWRKY27p::smGFP::terminator).  

Confocal laser scanning microscopy was used to detect GFP in these transgenic lines. 

Unfortunately, no GFP was detected in several analyses of independent lines (data not 

shown) expressing either the AtWRKY27p::AtWRKY27::GFP-terminator or 

AtWRKY27p::sm-GFP::terminator  constructs. A possible explanation could be that the 

expression of AtWRKY27 was below the sensitivity level despite the use of a brighter 

variant of GFP (smGFP).  

 

 

 

 
Fig. 23. Schematic representation of AtWRKY27promoter::smGFP-cDNA::I-Terminator 

(top) and AtWRKY27promoter::AtWRKY27::GFP-cDNA-Terminator (bottom) constructs 

used for transformation of Arabidopsis Col-0 wild-type plants.  

3.5.3. Analysis of AtWRKY27 expression upon treatments with various 

elicitors/stimuli 

 
For a better insight into the possible function of AtWRKY27, a stimuli-dependent 

expression analysis was equally important. Taking advantage of the cis-regulatory 

element software PlantCare (Higo et al. 1999), 2 kb 5´ upstream DNA regulatory region 

of AtWRKY27 was evaluated for the presence of various known regulatory motifs (Fig. 

24). Computational analysis showed the presence of at least 4 W box (TTGACC/T) - 

like sequences. W box is a cis-regulatory DNA element which is shown to be the binding 

site of AtWRKY proteins (Uelker and Somssich, 2004). Interestingly, two W boxes are 

27-promoter sm-GFP term27-promoter sm-GFP term

27-promoter AtWRKY27 GFP-term27-promoter AtWRKY27 GFP-term

Col-0Col-0
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present in the direct physical proximity (between -300 bp and -200 bp relative to the 

translational start site), while the other two W boxes are also located together (between -

2000 bp and -1800 bp relative to the translational start site).  

 

 

 

 

 

 

 

 

Fig. 24. Analysis of the 2kb AtWRKY27 promoter (relative to translational start) using 

the PlantCare program to detect known cis-regulatory DNA elements (Higo et al. 1999). 

Position of the classified motifs within this promoter region is shown. Further 

information see text. 

 

A large number of other known cis-regulatory sequences were also predicted that have 

been shown to be involved in both activation and repression of gene expression. These 

include a wound responsive element (WUN-motif: tCATTacct, Elliott and Shirsat, 

1998), numerous light responsive elements like GT1-consensus sequences (GRWAAW, 

Zhou 1999), ethylene responsive element (ERE: AWTTCAAA, Itzhaki et al., 1994), 

abscisic acid responsive element (ABRE: cgtACGTaac Hagen et al., 2002), auxin 

responsive element (AuxRR-core: GGTCcct, Ulmasov et al., 1999, Hagen et al., 2002), 

MeJA responsive element (CGTCA-motif, Kubigsteltig et al., 1999), SA responsive 

element (TCA-element: aAGAAcaaga, Zhou, 1999), and endosperm specific elements 

(AACA_motif: aAACAtactata, Ulmasov et al., 2001).  
Based on these in silico predictions, various stimuli/elicitors (table) which are known to 

mediate the expression of such cis-elements were analyzed to check for changes in basal 

GUS expression levels in the Atwrky27ETL at various phases of plant development, 

using appropriate controls, from 2 days old seedlings up to 28 days old plants. 
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ND-NDNDHeat (2 hours)

ND-NDNDCold (2 hours)

ND-NDNDUV (50 mj/cm2)

ND-NDNDWounding

----ACC (100µM)

----SA (2mM)

----MeJa (100µM)

----Flg22 (1µM)

21 days14 days7 days2 days

ND-NDNDHeat (2 hours)

ND-NDNDCold (2 hours)

ND-NDNDUV (50 mj/cm2)

ND-NDNDWounding

----ACC (100µM)

----SA (2mM)

----MeJa (100µM)

----Flg22 (1µM)

21 days14 days7 days2 days

= No response
ND   = not determined

Treatments

Stage

Treatments

StageStage

Somewhat unexpectedly, all the tested treatments did not noticeably influence 

AtWRKY27expression levels (Table 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Expression analysis of AtWRKY27 by means of promoter::GUS studies using 

the Atwrky27ETL line with various indicated stimuli or elicitors. The selected treatments 

are listed in the left column, while the various stages of plant development are indicated 

on the top row. 2- and 7-day-old-seedlings were grown on MS-medium while 14 and 21 

days old plants were grown on soil in the greenhouse. flg22: 22-amino acid motif of the 

bacterial flagellin (Felix et al., 1999), SA: salicylic acid, MeJa: methyl jasmonate, ACC: 

1-aminocyclopropane-1-carboxylic acid, UV: ultra violet light.  

 

 

A parallel, complementary approach to gather more information on the responsiveness of 

the AtWRKY27 promoter was to make use of expression data available in the NASC and 

Genevestigator databases (http://arabidopsis.info/, https://www.genevestigator.ethz.ch/). 

Both cover a vast part (currently available data from 2292 Affymetrix Arabidopsis Gene 

Chip [ATH1], dated September 08, 2005) of the Arabidopsis thaliana transcriptome 

(~25.000 genes) and allow monitoring of gene expression under various conditions, 
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developmental stages, treatments, in wild type plants and numerous mutants, etc. 

However, despite screening of a number of experiments currently available in the 

databases, no significant alterations in the level of AtWRKY27 expression have been 

documented (Fig. 25). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25.  AtWRKY27 expression pattern over all slides available in Nottingham 

Arabidopsis Stock Centre (NASC) database (September 08, 2005).  Spot history and 

Gene scatter plot tools were used to plot the signal intensities of AtWRKY27. These data 

indicate that overall, AtWRKY27 expression levels are very low and are not influenced 

under various condition tested. 
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3.5.4. Study of AtWRKY27 transcript levels in various plant organs 
In order to corroborate the AtWRKY27::GUS basal expression data, an extensive 

expression analysis of AtWRKY27 was pursued as an additional experimental approach. 

A series of semi-quantitative RT-PCRs were performed in wild-type Col-0 plants. 

mRNA from root, shoot, leaf, flower and silique tissue was isolated, and subsequently 

first strand cDNA was synthesized. This material was further used as PCR-template in 

the experiment. Firstly, Attubulin β-subunit transcript was amplified to adjust for equal 

loading of the samples, while genomic DNA template was also included in the 

experiment to rule out possible DNA contaminations. The same procedure was repeated 

for all subsequent RT-PCR analyses. Relatively weak but differential transcript levels of 

AtWRKY27 were observed (Fig. 26), which were highly consistent with previous results 

using GUS reporter lines.  

 

Fig. 26. AtWRKY27 transcript 

levels tested in various organs. 

Steady state expression levels of 

AtWRKY27, AtWRKY22 and 

AtWRKY29 in root, shoot, leaf, 

flower and silique derived tissue 

detected by RT-PCR analysis. 

 

 

Additionally, semi-quantitative RT-PCR was also performed, in order to compare the 

basal expression patterns of two closely related gene family members namely 

AtWRKY22 and AtWRKY29, using specific primer combinations. Interestingly, all three 

members showed similar levels of expression in root, while none of them was expressed 

in siliques. AtWRKY29 displayed relatively weak expression in shoot, leaf and flower 

tissue which contrasts to the expression of AtWRKY22 and AtWRKY27. Importantly, 

AtWRKY27 exhibited a comparatively higher expression level in floral tissue compared 

to the other tested AtWRKY sub-group members (Fig. 27). 
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Fig. 27. Semi-quantitative measurements of AtWRKY27 expression levels. Transcript 

levels of AtWRKY27 (in blue), AtWRKY22 (in red) and AtWRKY29 (in green) in root, 

shoot, leaf, flower and silique tissue analyzed by RT-PCR. 

3.6. Importance of known host defense signaling pathways for AtWRKY27 

function 

An important aspect is to find out the resistance mechanism operating in Atwrky27 loss-

of-function mutants and furthermore to evaluate whether or not known host defense 

pathways play any role in this type of resistance. If AtWRKY27 or a component(s) under 

the control of this transcription factor is a susceptibility factor, then Atwrky27 resistance 

hould be largely independent of these defense signaling networks.  

 

Fig. 28. Basal expression levels of pathogenesis 

responsive marker genes in Atwrky27 mutant plants. 

Transcript levels of PR1, PR5, Thi2.1 and PDF1.2 

in Col-0 wild-type, Atwrky27ETL and Atwrky27-90-

1 plants were detected by RT-PCR. PCR on 

Genomic DNA showed no DNA contamination. 

PR1: pathogen related 1, PR5: pathogen related 5 

PDF1.2: plant defensin1.2, Thi2.1:Thionin2.1. 
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In Arabidopsis, at least three genetically distinguishable pathways: the salicylic acid 

(SA), jasmonic acid (JA) and ethylene (ET) mediated resistance, through which defense 

genes can be activated, are well characterized (Glazebrook, 2001 & 2005).  

Pathogen related proteins, e.g. PR1 and PR5 act downstream to the SA dependent 

signaling pathway, while JA and ET act together to activate the expression of plant 

defensin1.2 (PDF1.2) and Thionin2.1 (Thi2.1). To determine the activation state of the 

SA, JA and ET pathways in the Atwrky27 mutant, the steady-state transcript levels of 

PR1, PR5, Thi2.1 and PDF1.2 were evaluated in both wild-type and Atwrky27 mutant 

plants. As shown in Fig. 28, no difference in mRNA levels was detected for the 

respective SA and JA/ET-responsive defense marker genes when comparing wild-type 

and Atwrky27 plants. Thus, Atwrky27 mediated resistance is not associated with altered 

regulation of these defenses response genes.  

3.7. Basal expression pattern of AtWRKY27 in different defense signaling 

mutants 

A range of mutants or transgenic lines are genetically well defined at distinct positions 

within known host defense signaling pathways, which either block or constitutively 

enhance the activation of downstream defense responsive genes. To further analyze the 

association of defense signaling pathways to Atwrky27 resistance and possibly integrate 

AtWRKY27 into the network, basal expression of AtWRKY27 was examined in these 

mutants or transgenic lines. The transcript level of AtWRKY27 was not significantly 

altered in any of the mutants or transgenic lines under study (Fig. 29). Thus, Atwrky27-

mediated resistance does not appear to signal through SA and JA/ET pathways leaving 

open the possibility that AtWRKY27 or a component(s) under the control of this 

transcription factor are either required for bacterial growth or that the Atwrky27 mutation 

leads to the activation of an undetermined defense pathway.  
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Fig. 29.  Basal AtWRKY27 transcript analysis in various signaling mutants. Comparative 

basal AtWRKY27 transcript levels among a number of selected Arabidopsis mutants 

impaired in different defense signaling pathways. cpr5, pad4, NahG and npr1 are 

defined in the SA dependent pathway, aos and jar1 are in the JA-dependent and ctr1 and 

ein2 are in the ET-dependent pathway. 

3.8. Analysis of independent Atwrky27 T-DNA insertion lines 

Taking advantage of various publicly available T-DNA insertion sources, three 

independent T-DNA insertion lines were selected from the SIGnAL database (accession 

numbers: SALK_048949, SALK_048952 and SALK_109290; http://signal.salk.edu/cgi-

bin/tdnaexpress?GENE=&FUNCTION=&TDNA=salk_109290). All these lines were 

predicted to contain T-DNA insertions in the exon-2 of the AtWRKY27 locus. PCR was 

performed using SALK left border T-DNA specific primer sets which verified the 

presence of the T-DNA in two insertion lines, designated SALK_048952 and 

SALK_109290. However, no T-DNA was detected in the SALK_048949 insertion line. 

Further on, sequence analysis was done to specify the precise site of T-DNA insertion in 

the SALK_048952 and SALK_109290 lines. The position of the T-DNA insertion in the 

SALK_048952 insertion line was detected in intron-1 rather than of the previously 

predicted exon-2, while in the case of the SALK_109290 line, the presence of the T-

DNA was confirmed to be in exon-2 as shown in Fig. 30A.  

In order to select for homozygous T-DNA insertion lines (insertions in both homologous 

chromosomes), PCR analysis was performed using designed gene specific primers 

flanking the sequence of the T-DNA. Heterozygous plants were sorted out from 

homozygous ones by the presence or absence of a specific band, respectively (Fig. 30B).  
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RT-PCR analysis confirmed the absence of AtWRKY27 transcript in the selected 

homozygous progeny for the T-DNA insertion lines (Fig. 30C).  SALK_109290 

(Atwrky27-90-1) line was selected for subsequent experiments, as the T-DNA insertion 

was located in an exon.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30. Molecular identification of additional Atwrky27 T-DNA insertion lines. 

A. Schematic picture of the T-DNA insertions in the AtWRKY27 locus. Exons are 

highlighted. Coding sequence for the WRKY domain is indicated in pink. Positions of T-

DNA insertions are marked.  

B. Homozygous lines were selected by PCR analysis. Equal amount of DNA template 

from wild-type plants and the T-DNA tagged lines (SALK_048949, SALK_048952 and 

SALK_109290=Atwrky27-90-1) were used to confirm the presence of the respective 

insert using the AtWRKY27 primers (W27-exon1-FRW and W27Exon3_684Rev; details 

available in materials and methods) and T-DNA left border (LB) specific primer pairs 

(SALK_LBb1_Rev). No T-DNA was found in the case of the SALK_048949 line.  

C. RT-PCR analysis of AtWRKY27 expression levels in the selected T-DNA lines. No 

endogenous AtWRKY27 transcript was detected in the homozygous insertion lines. 

Atwrky27ETL line was included in this analysis. Genomic DNA was used as control for 

contamination. –ve: no DNA template was added to the reaction. 
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3.8.1. Analysis of two the independent Atwrky27 insertion lines in response to 

R. solanacearum GMI1000 strain infection 

To further solidify the involvement of Atwrky27 in the establishment of a delayed 

disease symptoms response to Ralstonia solanacearum strain GMI1000, two 

independent insertion lines namely Atwrky27ETL and Atwrky27-90-1 were analyzed. 

Both of the independent insertion lines and appropriate wild-type control plants 

(Atwrky27ETL line is derived from Col-1 plants, while Atwrky27-90-1 is in Col-0 

background) were root inoculated with Ralstonia solanacearum strain GMI1000. 

Infected plants were monitored for symptom appearance and development (Disease 

Index) over a period of 13 days. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31. Disease Index curve over a course of time of infection. A clear-cut difference in 

the development of wilt symptoms starting 8 days post inoculation can be observed 

between wild-type plants and Atwrky27 mutant plants. By day 10 100% of the control 

Col-0/Col-1 plants wilted, while the Disease Index for both Atwrky27 knock-out mutants 
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stayed in the range of 25-50%. (Experiment performed by Dr. Y. Marco, CNRS/INRA, 

Toulouse France). 

The Disease Index curve in the course of time showed a clear-cut difference between 

wild-type and mutant plants starting 8 days post inoculation. Further on, at 10 days post 

inoculation, 100% of the control wild-type plants wilted completely, while the Disease 

Index for both of the independent Atwrky27 insertion lines remained in the range of 25-

50% (Fig. 31).  The infection experiment was performed in replications (50 plants per 

replication) and confirmed the consistent differential response of the two independent 

AtWRKY27 KO lines.  

3.9. Test for abiotic stresses 

3.9.1. Dark-induced and natural leaf senescence studies 
 
Leaf senescence is a continuous and complex process regulated by numerous exogenous 

and endogenous factors with light playing a major role. Several lines of evidence have 

demonstrated the involvement of AtWRKY factors in both the induced and natural 

senescence process (Robatzek and Somssich, 2002; Miao et al., 2004; Bekir Uelker and 

Imre Somssich, personal communication). Thus, a possible role of AtWRKY27 in leaf 

senescence was also investigated by employing both a dark-induced and natural 

senescence regime. 

2-week-old soil grown plants of the two independent Atwrky27 insertion lines and wild-

type plants were placed in darkness or individual detached leaves were covered with a 

black cloth in a box (data not shown). Under the above tested conditions, no visible 

differences in terms of yellowing time were found. Further on, both Atwrky27 insertion 

lines and wild-type plants were grown in standard conditions to monitor natural 

senescence. Atwrky27 knock out mutant plants did not exhibit any differences compared 

to wild-type plants in the rate or efficiency of seed germination, elongation of the root 

system, seedling development, bolting, flowering time and senescence (data not shown). 

These data indicate that mutations within Atwrky27 do not influence gross plant 

development and in particular leaf senescence.   
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3.9.2. Root gravitropism 
Arabidopsis seedlings immediately respond to a gravistimulated state by developing a 

downward root tip curvature. Gravity is perceived mainly by the columella cells of the 

root cap, whereas the differential growth response associated with gravistimulation 

occurs in the root elongation zone (Blancaflor and Masson, 2003). Since AtWRKY27 is 

specifically expressed in the root elongation zone (see 3.5.2), I tested whether 

AtWRKY27 plays any role in root gravitropism. 10 days old vertically grown seedlings of 

the two independent Atwrky27 insertion lines and wild-type plants, were reoriented by 

90o angle relative to the gravity vector and root tip responses were monitored. No visible 

differences were found in root tip curvature of Atwrky27 insertion lines compared to 

wild-type seedlings (Fig. 32).   

 

 

 

 

 

 

 

 

 

 

Fig. 32. The AtWRKY27 overexpressor and Atwrky27ETL seedlings were vertically 

grown on MS media for 10 days and then reoriented by 90o angle relative to the gravity 

vector. The root tip responses were monitored. Pictures were taken 2 days later. No 

visible differences were found in root tip curvature of AtWRKY27 overexpressor lines 

compared to Atwrky27ETL seedlings. 

3.9.3. Root winding assay 
Furthermore, wavy root growth patterns were also studied to check for a possible role of 

AtWRKY27 in root gravitropism. The two independent Atwrky27 insertion lines and 

wild-type seedlings were vertically grown on 1.5% MS medium and tilted by 45o for 3 

Atwrky27ETL2xCaMV35S::AtWRKY27
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days. Atwrky27 insertion lines and wild-type all exhibited similar patterns of root growth 

(Fig. 33).   

 

 

 

 

 

 

 

 
 

Fig. 33. Independent Atwrky27 insertion lines and wild-type seedlings were vertically 

grown on 1.5% agar-agar MS medium for 10 days and tilted by 45o. Pictures were taken 

after 3 days after tilting the plates.  

3.9.4. Other abiotic stresses 
Atwrky27 insertion lines and wild-type seedlings/plants were also subjected to various 

other abiotic stresses including cold, heat shock, paraquat, H2O2 and KNO3. Soil grown 

plants were either placed at 4o for 2 days to observe cold stress or at 37o for one hour to 

examine a heat shock effect. Seedlings were grown on MS media containing 5 µM 

paraquat for germination tests, while various concentrations (0, 10, 20 mM) of H2O2 

were used to study root growth. Both Atwrky27 insertion lines showed similar responses 

to all above mentioned stresses compared to the wild-type plants. (Fig. 34).   

 

Fig. 34. The two independent Atwrky27 

knock-out mutants and wild-type seedlings 

were grown on MS media supplemented with 

KNO3. No visible differences were found. 
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Pictures were taken 13 days after the germination. 

 

3.10. AtWRKY27 complementation lines  

Based on the GUS studies (see 3.5.2), it appears that 2 kb of AtWKY27 5´ regulatory 

region is sufficient to mediate all observed expression patterns of the gene. Thus, a 

transcriptional fusion construct was generated using the AtWRKY27 2kb promoter 

sequence, a full length AtWRKY27 cDNA and the StrepII-terminator sequence as shown 

in Fig. 35A. This construct was transformed into Atwrky27ETL plants using 

Agrobacterium. After Basta selection, RT-PCR was performed to detect AtWRKY27 

transcript in several T1 and T2 lines (Fig. 35B and C).  Differential levels of AtWRKY27 

transcript were detected in various complementation lines, most likely due to position 

events of T-DNA insertion into different genomic loci.   

Two T2 lines (Comp5-4, Comp5-8) and one T1 line (Comp-8) were further subjected to 

subsequent Ralstonia solanacearum strain GMI1000 root inoculation experiments. The 

Disease Index curve of Comp5-4, a line showing AtWRKY27 expression levels similar to 

wild-type plants, fully overlapped with that of wild-type plants during the entire period 

of symptoms development. Similarly, Comp5-8 and Comp-8 both showed a positive 

correlation between expression levels and the magnitude of susceptibility (Fig. 36).   

 

3.11. Bacterial growth kinetics  

To better understand the molecular mechanisms and type of resistance displayed by the 

Atwrky27 KO mutant, bacterial growth was monitored in the aerial parts of the plants.  A 

relatively low bacterial titer was root-inoculated and the magnitude of pathogen 

multiplication was determined over time. Surprisingly, the bacterial density in both 

Atwrky27 KO lines versus wild-type plants increased at a similar rate, and reached high 

densities of 1010 CFU per gram fresh weight (Fig. 37).   
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Fig. 35. AtWRKY27 transcript levels in various complementation lines.   

A. Schematic representation of the construct used for complementation of the 

Atwrky27ETL knock-out line. The 2kb fragment of AtWRKY27 upstream regulatory 

sequence was fused to the full length cDNA of AtWRKY27 and Strep-II epitope 

terminator sequence. 

B. A number of individual T1 complementation lines were screened by RT-PCR for the 

presence of AtWRKY27 transcript. 

C. A number of T2 siblings originating from selfing of the line Comp-5 were screened by 

RT-PCR and showed the presence of AtWRKY27 transcript compared to wild type 

plants. Genomic DNA was used as control for contamination. –ve: no DNA template 

added to the reaction. 
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Fig. 36. Infection of R. solanacearum strain GMI1000 on wild type Col-1 and 

AtWRKY27 complementation lines. Disease Index curve during the course of time. 

Symptom development is indistinguishable between wild-type and Comp5-4 lines, while 

Comp8 and Comp5-8 lines show enhanced susceptibility. (Experiment performed by Dr. 

Y. Marco, CNRS/INRA, Toulouse, France). 

3.12. Tissue-specific expression of the AtWRKY27 transgene 

In order to track down where in the AtWRKY27 KO mutant plants the normal R. 

solanacearum strain GMI1000 infection process is affected, a series of constructs were 

generated, expressing AtWRKY27 under three tissue specific promoters.  

The Arabidopsis sucrose transporter2 (AtSUC2) is expressed in the plasma membrane of 

companion cells within the phloem, a specialized tissue of the plant vasculature (Ward et 

al., 1998). 2067 bp of 5´ untranslated promoter fragment of AtSUC2 was previously 

shown to specify the expression pattern restricted only to companion cells (Truernit and 

Sauer, 1995).  
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Fig. 37.  Bacterial growth kinetics upon infection with R. solanacearum strain GMI1000. 

Bacterial multiplication in leaves of Col-1, Atwrky27-90-1 and Atwrky27ETL upon 

inoculation with R. solanacearum strain GMI1000 (108 bacteria ml-1). For each time 

point triplicate assays were performed on 3 plants for each accession/mutant line. 

(Experiment performed by Dr. Y. Marco, CNRS/INRA, Toulouse, France). 

 

In situ localization of GUS activity in Arabidopsis plants showed that 4-

coumarate:coenzyme A ligase (4CL) promoters (with the exception of 4CL-3) are 

specifically expressed in xylem, root sub-apical cells and pigmented portions of petals ( 

Douglas et al., 1991; Hauffe et al., 1991). 1550 bps of 4CL-2 upstream regulatory DNA 

sequence is sufficient to ensure the expression in the appropriate tissues (Stuible and 

Kombrink, personal communication).  

Transgenic Arabidopsis carrying a construct of  1648 bps of the endo-1,4-β-glucanase 

(Cel1) promoter fused to the GUS reporter gene, demonstrated its expression specifically 

within both shoot and root elongation zones (Shani et al ., 1997; Tsabary, 2001).  

The above described promoters (SUC2, 4CL-2 and Cel1) were individually fused to 

generate a series of transcriptional fusion constructs, either with the AtWRKY27-cDNA 

or with the GUS reporter gene, respectively (Fig. 38A).  The former constructs were 

transformed into Atwrky27ETL KO mutant plants to assay for tissue-specific  
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Fig. 38. Tissue-specific expression of AtWRKY27 

A. Schematic representation of the constructs used for tissue-specific complementation 

of Atwrky27ETL with the cDNA of AtWRKY27. Three different promoters: (At4CL-2, 

AtSUC2 and AtCel1) were used and each construct contained a StrepII sequence that 

allows for the detection of the protein using a StrepII antibody.  

B. RT-PCR analysis of selected AtWRKY27 complementation lines. AtWRKY27 

transcript was detected in the lines with differential intensities. Genomic DNA was used 

as control for contamination.  

C.  GUS activity was detected in leaf vasculature of  4CL-2 promoter::GUS::StrepII-

Terminator (left) and SUC-2 promoter::GUS::StrepII-Terminator (middle) transgenic 

plants. GUS activity was detected in the elongation zones of plant tissue harboring the 

Cel1 promoter::GUS::StrepII-Terminator (right) transgene. 
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complementation, whereas reporter gene constructs were transformed into wild-type 

plants. This served the purpose of a positive control, to note accurate transcriptional 

fusion as well as to monitor GUS expression within proper compartments (Fig. 38C).  

RT-PCR analysis confirmed the presence of AtWRKY27 transcript expressed under the 

various tissue specific promoters (Fig. 38B).  These transgenic lines will be analyzed to 

document their responses to Ralstonia solanacearum strain GMI1000.  

3.13. Ectopic overexpression of AtWRKY27 

Besides using diverse biotic and abiotic stresses to identify altered effects related to 

Atwrky27 loss-of-function mutants, overexpression advocates an alternative and 

complementary approach to define AtWRKY27 function that is less affected by 

functional redundancy. A set of overexpressor constructs, driven by the 2xCaMV35S 

promoter, were generated using the full-length cDNA of AtWRKY27 fused with the 3´ 

terminator element or in frame to a myc/StrepII sequence allowing epitope tagging of the 

respective protein (Fig. 39A).  The constructs: 2x35S::AtWRKY27-terminator, 

2x35S::AtWRKY27-myc-terminator and 2x35S::AtWRKY27-StrepII-terminator, were 

transformed into Arabidopsis wild-type and Atwrky27ETL KO mutant plants. RT-PCR 

and Northern blot analyses clearly showed elevated but varying levels of AtWRKY27 

transcript in three T1 2x35S::AtWRKY27-StrepII-terminator overexpressor lines (OE-

Strep-4, OE-Strep-7 and OE-Strep-8) compared to wild-type plants (Fig. 39B and C).  

Similarly, high AtWRKY27 transcript levels were also detected by RT-PCR in several 

other transgenic lines, expressing either the 2x35S::AtWRKY27-terminator or the 

2x35S::AtWRKY27-myc-terminator constructs. OE-Strep-4 and OE-Strep-7 were further 

used in the subsequent experiments (Fig. 39D). 

Moreover, stable OE-Strep-4 and OE-Strep-7 overexpressor lines were confirmed by 

detection of epitope tagged AtWRKY27 protein on Western blots (Fig. 39E).  Equal 

volumes of crude extracts from leaves of the transgenic Arabidopsis plants were 

dissolved in loading buffer and separated by SDS-PAGE. As controls, crude extracts 

derived from Nicotiana benthamiana leaves transiently expressing the 

2x35S::AtWRKY27-StrepII-terminator and 2x35S::AtEDS1-StrepII-terminator constructs,  
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Fig. 39. Ectopic overexpression of AtWRKY27. A. Schematic representation of the 

constructs used for ectopic expression of AtWRKY27 in Col-0/Atwrky27ETL plants. For 

the AtWRKY27 overexpressor constructs, the 2x CaMV35S constitutive promoter was 

fused with AtWRKY27 cDNA and with terminator sequences (in violet box), myc and 

terminator sequences (in green box) and StrepII and terminator sequences (indicated in 

grey box).  

B. RT-PCR analysis on 8 T1 AtWRKY27 overexpressor StrepII-terminator lines. 

Transcript level was compared with the wild-type plants. Genomic DNA was used as 

control for contamination. –ve: no DNA template. 

C. Northern blot analysis on 8 T1 AtWRKY27 overexpressor StrepII-terminator lines.  

AtWRKY27 transcript abundance was examined in 3 lines (OE-Strep-4, OE-Strep-7 and 

OE-Strep-8). Ethidium bromide stain of rRNA was used to monitor for equal loading of 

the samples. 

D. RT-PCR analysis of AtWRKY27 expression level in T2 selected transgenic lines 

carrying 3 differnet overexpressor constructs.  

E. Western blot to detect StrepII-tagged AtWRKY27 protein. Immunoblot of crude 

extracts derived from overexpressor transgenic lines. For controls, crude extracts were 

from Nicotiana benthamiana leaves transiently expressing 2x35S::AtWRKY27-StrepII-

E. 
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terminator or the 2x35S::AtEDS1-StrepII-terminator,  respectively.  Ponceau S staining 

of gel was used for equal loading of the samples.  

respectively were included. AtEDS1 encodes a lipase-like protein (Parker et al. 1996) 

unrelated to WRKY factors. The protein is larger than AtWRKY27 and was used as a 

control. After immunoblotting with the Strep-Tactin alkaline phosphate conjugate (ST-

AP), AtWRKY27-StrepII and AtEDS1-StrepII proteins were detected at the expected 

molecular weights in all samples (Fig. 39E).   

3.13.1 Pleiotropic phenotypes of ectopic AtWRKY27 overexpressor plants 
During the entire vegetative growth, 2x35S::AtWRKY27 (regardless of which transgene 

construct was used) plants exhibited visible phenotype associated with stunted growth 

and irregular leaf shape (Fig. 40).  The most striking observation, however, was partial 

sterility and a delay in senescence in perianth organs. The young siliques of the 

overexpressor transgenic plants were undeveloped and empty, while at very late stages 

of flowering, the siliques started to elongate.  Nevertheless, the normal size was never 

attained and the seed content was clearly reduced, compared to those of wild-type plants 

(Fig. 40).   

Fig. 40. Pleiotropic 

phenotypes of ectopic 

AtWRKY27 overexpressor 

plants. Wt – wild type plant, 

OE – AtWRKY27 

overexpressor plant. A. 

AtWRKY27 overexpressor 

transgenic lines exhibit dwarf 

phenotypes compared to wild-

type plants. B & C. partial 

sterility was found in plants 

expressing increased levels of 

AtWRKY27 compared to wild-

A B

C D E F
Wt OE Wt OE

Wt OE Wt OE Wt OE OE 
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type plants. D.  Delayed senescence in perianth organs of the AtWRKY27 overexpressor 

line. E & F.  Altered leaf shape of AtWRKY27 overexpressor transgenic plants (to the 

right in E & F) compared to wild-type leaves (to the left in E & F). 

The sterility phenotype was neither reversible by exogenous application of jasmonic acid 

(JA), gibberelic acid (GA) and gamma-amino butyric acid (GABA), nor was growth 

under various temperature conditions (220C, 260C and 280C) affected. Using scanning 

electron microscopy, at higher magnification, anther dehiscence defect was observed in 

the developing flowers of ectopic AtWRKY27 overexpressor plants (Fig. 41).  

Furthermore, viability of the pollen produced by the AtWRKY27 overexpressor lines was 

also investigated. Pollen grains from five independent 2xCaMV35S::AtWRKY27 

overexpressor lines were stained with FDA (fluoresceine diacetate), which is a 

substrate processed by an esterase in the living cell. Released fluoresceine results in 

bright fluorescence of a viable grain indicative of the intactness of the plasma 

membrane. The viability of stained grains was inspected under a fluorescence 

microscope. The count of viable grains revealed that a very low percentage of the pollen 

derived from the overexpressor lines has restored fertility (Fig. 41). In addition, 

AtWRKY27 overexpressor flowers were artificially pollinated with wild-type pollen at an 

early flowering stage. This resulted in the restoration of fertility. Thus, overexpression of 

AtWRKY27 results in male sterility. 

Fig. 41. AtWRKY27 overexpressor lines 

show reduced fertility. A. Scanning 

electron microscopy (SEM) analysis of 

2x35S::AtWRKY27 flower development. 

Unopened anthers of AtWRKY27 

overexpressor transgenic plants 

compared to those of wild-type plants. 

B.  Fluoresceine diacetate (FDA) assay 

on unopened anthers from 

2x35S::AtWRKY27 overexpressor lines 

showing reduced pollen viability 

compared to wild-type plants. FDASEM

W
ild-type

2x35S:.A
tW

R
K

Y27
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3.13.2. Response of AtWRKY27-StrepII overexpressor lines to R. 

solanacearum strain GMI1000 infection 

Based on phenotypic data from the complementation experiments, which showed a tight 

association between expression levels and the degree of susceptibility, the response of 

strong ectopic AtWRKY27 overexpressor lines to R. solanacearum strain GMI1000 

infections was studied. OE-Strep-4, OE-Strep-7 and wild-type plants were root-

inoculated and their disease symptoms were monitored and evaluated during the course 

of time. Disease Index curve of both the OE-Strep-4 and OE-Strep-7 lines indicated a 

substantial enhanced susceptibility phenotype compared with that of the wild-type plants 

(Fig. 42).   

 

 

 

 

 

 

 

 

 

Fig. 42. Response of 2x35S::AtWRKY27 transgenic plants to R. solanacearum strain 

GMI1000 infection. Disease index curve of two ectopic AtWRKY27 overexpressor lines 

showed significant enhanced susceptibility to this strain compared to wild-type. 200 

plants for each line were used for root inoculation with the pathogen. (Experiment 

performed by Dr. Y. Marco, CNRS/INRA, Toulouse, France). 
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3.14. Search for target genes of AtWRKY27 

3.14.1. AtWRKY27 does not autoregulate its own promoter 
 
2 kb of upstream DNA sequence of AtWRKY27 (relative to the translational start site) 

was analyzed to examine various DNA binding motifs particularly the consensus 

sequences of the W box. The presence of at least 3 putative W box like elements hinted 

towards possible regulation by AtWRKY factors. AtWRKY22 and AtWRKY29, the 

structurally closest members of AtWRKY27, have been shown to autoregulate their own 

promoters by a positive feedback loop (Asai et al., 2002). In order to test the possibility 

of AtWRKY27 autoregulation of its own promoter, the 2 kb AtWRKY27 promoter-driven 

GUS reporter gene construct (AtWRKY27p::GUS) was co-bombarded using the particle 

gun together with a 2xCaMV35S-driven AtWRKY27 cDNA construct 

(2xCaMV35S::AtWRKY27) into detached green leaves of wild-type plants. 

AtWRKY22p::GUS and AtWRKY6p::GUS were also co-bombarded in combination with 

a 2xCaMV35S::AtWRKY22 and 2xCaMV35S::AtWRKY6, as positive and negative 

controls, respectively (Asai et al., 2002; Robatzek and Somssich, 2002).  As expected, 

strong GUS activity staining was detected in co-bombardments of AtWRKY22p::GUS 

with 2xCaMV35S::AtWRKY22 while, no GUS activity was detected in the combinations 

of AtWRKY6p::GUS or AtWRKY27p::GUS with 2xCaMV35S::AtWRKY6 and 

2xCaMV35S::AtWRKY27, respectively (Fig. 43).   

 

 

 

 

 

 

 

 

Fig. 43. AtWRKY27 does not activate its promoter. Representative leaves of three 

independent biolistic-mediated transient transfection assays are shown. The effectors and 

Effector constructs Reporter constructs

2xCaMV35S::AtWRKY27 + AtWRKY27p::GUS

2xCaMV35S::AtWRKY22 + AtWRKY22p::GUS

2xCaMV35S::AtWRKY6 + AtWRKY6p::GUS



Chapter 3 • Results 
 

108 

reporter constructs used for co-bombardment are indicated to the left. AtWRKY22 and 

AtWRKY6 were used as positive and negative controls in the experiment.  

These results suggest that AtWRKY27 does not function as an activator of a reporter 

gene driven by the AtWRKY27 promoter.   

3.14.2. AtWRKY27 is able to activate AtSIRK promoter mediated expression 
 
Senescence Induced Receptor Kinase (AtSIRK)/Flagellin Receptor Kinase 1 (AtFRKI) is 

one of the putative targets of several AtWRKY family members including AtWRKY6, 

AtWRKY22, AtWRKY29 and AtWRKY42 (Robatzek and Somssich, 2002, Asai et al., 

2002; Zhou and Somssich unpublished). Transient transfection assays of detached leaves 

were used to monitor possible AtWRKY27-dependent activation of the AtSIRK 

promoter. 2xCaMV35S::AtWRKY6, 2xCaMV35S::AtWRKY11 or 

2xCaMV35S::AtWRKY27 clones were co-bombarded in combination with a 

AtSIRKp::GUS reporter construct. Strong GUS activity staining was detected with the 

2xCaMV35S::AtWRKY6 or 2xCaMV35S::AtWRKY27 effector constructs suggesting that 

AtWRKY27 is able to regulate AtSIRK expression (Fig. 44).  As expected, GUS activity 

staining was not detected using the 2xCaMV35S::AtWRKY11 effector construct 

(Robatzek and Somssich, 2002; Ciolkowski and Somssich unpublished). AtWRKY11 has 

recently been shown to have a repressor activity on the AtSIRK promoter (Ciolkowski 

and Somssich unpublished). 

 

 

 

 

 

 

 

 

Fig. 44. AtWRKY27 can activate the AtSIRK promoter driven GUS reporter gene. 

Representative leaves of three independent biolistic-mediated transient transfection 

assays using an AtSIRK promoter-driven GUS reporter gene. Bombardments of detached 

Effector constructs Reporter constructs

2xCaMV35S::AtWRKY27 + AtSIRKp::GUS

2xCaMV35S ::AtWRKY6 + AtSIRKp::GUS

2xCaMV35S ::AtWRKY11 + AtSIRKp::GUS
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wild-type leaves were performed in combination with the effector and reporter 

constructs indicated to the left.  

Arabidopsis plants harboring a AtSIRKp::GUS reporter cassette were used as starting 

material to generate new transgenic lines containing PG10-90:: AtWRKY27-GR and PG10-

90::GFP-GR constructs (Fig. 45).  PG10-90 is a synthetic promoter allowing strong 

constitutive expression (Ishige et al., 1999). The GR sequence encodes the 

glucocorticoide receptor. In these transgenic plants, PG10-90 allows strong expression of 

AtWRKY27-GR or GFP-GR but the nuclear translocation of AtWRKY27-GR or GFP-

GR solely requires dexamethasone (Dex).  

 

 

 

 

 

 

Fig. 45. Schematic representation of the PG10-90:: AtWRKY27-GR (top) and PG10-90::GFP-

GR (bottom) constructs. These constructs were transformed into transgenic plants 

carrying AtSIRK promoter::GUS reporter gene cassettes. The construct carries the pat 

gene for Basta selection. PG10-90 is a synthetic promoter allowing strong constitutive 

expression (Ishige et al., 1999). GR codes for the glucocorticoid receptor. 

 
 

 

PG10-90:: AtWRKY27-GR and PG10-90::GFP-GR T2 plants were treated with Tween-20, 

Dex or flg22. flg22 was shown to also activate AtSIRK expression (Robatzek and 

Somssich, 2002:; Navarro et al., 2004). GUS activity staining was detected in both PG10-

90:: AtWRKY27-GR and PG10-90::GFP-GR transgenic plants after flg22 treatment. GUS 

activity staining was not detected neither by the application of Dex or Tween-20 in PG10-

90::GFP-GR plants. A strong GUS activity was only observed in PG10-90:: AtWRKY27-

GR plants after Dex application but not by Tween-20 treatment demonstrating positive 

regulation of AtSIRK by AtWRKY27 in planta (Fig. 46).   

BastaR GFP-GR

BastaR AtWRKY27-GR

AtSIRKp::GUS
BastaR GFP-GRBastaR GFP-GR

BastaR AtWRKY27-GRBastaR AtWRKY27-GR

AtSIRKp::GUS
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Fig. 46. AtWRKY27 regulates AtSIRK promoter activity based on the detection of 

induced GUS staining.  A, B & C. GUS assay on detached leaves of transgenic plants 

harboring the PG10-90:: AtWRKY27-GR and the AtSIRKp::GUS constructs following 

Tween-20, Dex and flg22 application, respectively. A. GUS activity staining was not 

detected after Tween-20 application. B & C. Strong GUS activity staining was detected 

either after Dex or flg22 application. D, E & F. GUS assay on detached leaves of 

transgenic plants harboring the PG10-90::GFP-GR and the AtSIRKp::GUS constructs, after 

Tween-20, Dex and flg22 application, respectively. D & E. GUS activity staining was 

not detected either after Tween-20 or Dex application. F. GUS activity was detected 

after flg22 application for one hour.  
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3.14.3. Potential genes regulated by AtWRKY27 
Additional expression constructs were designed to allow for simultaneous β-estradiol 

inducible expression of AtWRKY27 and the GUS reporter gene (Fig. ). For this, the pre-

existing XVE (pER8) based inducible system (Zuo et al., 2000) was modified by 

inserting the coding sequences for Gateway-StrepII and the GUS reporter gene each 

behind a LexA operator sequence. PG10-90 promoter driven XVE results in production of 

the chimeric transcription factor that can bind to LexA sites but requires β-estradiol for 

transactivation function. This new vector was named pMD (Fig. 47A).   

 

 

 

 

 

 

 

 

 

Fig. 47. Schematic representation of the β-estradiol inducible expression constructs 

designed for use in the Atwrky27 mutant lines. (A) Important features of the pMD  

vector: Only the region between the right and left borders is shown (not to scale)., XVE 

expression is under the control of the PG10 90 promoter; XVE encodes a chimeric 

transcription factor containing the LexA DNA-binding domain, the transcription 

activation domain of VP16  and the regulatory region of the human estrogen receptor; 

HPT, hygromycin phosphotransferase II coding sequence; Basta, coding sequences for 

the pat gene, eight copies of the LexA operator sequence; 46, the 46 35S minimal 

promoter; GUS-stop, coding sequences of the GUS reporter gene with terminal stop 

codon, GW: Gateway cloning site for target genes allowing fusions to coding sequences 

of StrepII;. Arrows indicate the direction of transcription.  (B) pMD vector (upper) and 

pMD27construct (bottom) containing the AtWRKY27 cDNA. Both of these plasmids are 

transformed into Atwrky27-90-1 and Atwrky27ETL mutant plants. 

GUS-stopBASTAR LexA
LBRB XVE HygroR GW-StrepIILexA

pMD

GUS-stopBASTAR LexA
LBRB XVE HygroR GW-StrepIILexA

pMD

A.  

B.  
Atwrky27ETL

Atwrky27-90-1

Atwrky27ETL

Atwrky27-90-1
pMD

pMD27

GUS-stopBASTAR LexA
LBRB XVE HygroR GW-StrepIILexA

GUS-stopBASTAR LexA
LBRB XVE HygroR W27-StrepIILexA

Atwrky27ETL

Atwrky27-90-1

Atwrky27ETL

Atwrky27-90-1
pMD

pMD27

GUS-stopBASTAR LexA
LBRB XVE HygroR GW-StrepIILexAGUS-stopBASTAR LexA
LBRB XVE HygroR GW-StrepIILexA

GUS-stopBASTAR LexA
LBRB XVE HygroR W27-StrepIILexAGUS-stopBASTAR LexA
LBRB XVE HygroR W27-StrepIILexA



Chapter 3 • Results 
 

112 

The AtWRKY27 cDNA was cloned into the Gateway cassette resulting in pMD27. This 

construct and an appropriate vector control were used to transform into Atwrky27-90-1 

and Atwrky27ETL mutant plants (Fig. 47B).  Inclusion of the GUS reporter cassette 

enabled rapid selection of appropriate transformation lines (preferentially with no 

background activity) based solely on GUS activity staining (Fig. 48).   

 

Fig. 48. High inducibility and tight 

control of the XVE-expression 

system in transgenic Atwrky27 

mutant plants. Strong GUS activity 

staining was detected in transgenic 

plants expressing either pMD or 

pMD27 constructs after β-estradiol 

application. Conditions for β-estradiol based induction are indicated at the left. +: β-

estradiol treated, -: β-estradiol untreated. 

 

 

Additionally, stable pMD27 construct-expressing transgenic lines in two independent 

Atwrky27 mutants were confirmed by detection of AtWRKY27-StrepII protein on 

Western blots (Fig. 49).  Equal volumes of crude extracts from leaves of transgenic 

Arabidopsis plants, pre-treated with β-estradiol for 22 hours prior to sample collection, 

were separated by SDS-PAGE electrophoresis. As control, crude extracts derived from 

Nicotiana benthamiana leaves transiently expressing a 2xCaMV35S::AtEDS1-StrepII-

terminator construct was also included. After immunoblotting with the Strep-Tactin 

alkaline phosphate conjugate (ST-AP), AtWRKY27-StrepII and AtEDS1-StrepII proteins 

were detected at the expected molecular weights in the appropriate samples (Fig. 49).  

Furthermore, optimal induction conditions for β-estradiol-induced expression of the 

pMD27construct were identified. AtWRKY27 transcript accumulation was detected as 

early as 4 hours after β-estradiol application in a series of time course experiments 

ranging from 4 to 22 hours (Fig. and data not shown). AtWRKY27 transcript was not 

detected in transgenic mutant plants expressing the pMD construct after β-estradiol  

β-estradiol
(10µM, 22h)

- +
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Fig. 49. Detection of StrepII-tagged AtWRKY27 protein. Immunoblot of crude extracts 

derived from indicated transgenic plants either expressing pMD or pMD27 after β-

estradiol application. Extracts from Nicotiana benthamiana leaves transiently expressing 

2xCaMV35S::AtEDS1-StrepII-terminator was used to monitor the specificity of the 

antibody. Ponceau S staining of the gel was performed for protein loading. 

 

Fig. 50. Optimal induction 

conditions for β-estradiol-

induced expression of the 

pMD27construct. Induction of 

AtWRKY27 expression 4 and 6 

hours after DMSO (left RT-PCR 

panel) and β-estradiol (right RT-

PCR panel) (10 µM) treatment. 

The number of PCR cycles and 

the number of hours of β-

estradiol treatment are indicated 

on the right side of the diagram. 

AtWRKY30 (lowly expressed) and AtTubulin (moderately expressed) were used as 

loading controls in the experiment. RNA samples were derived from the transgenic 

plants as indicated below for each lane. 
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application nor in transgenic lines expressing either pMD or pMD27 following DMSO 

treatment (Fig. 50).  AtWRKY30 and AtTubulin were included as loading controls in this 

experiment. For the identification of putative AtWRKY27 target genes, transgenic plants 

expressing pMD or pMD27 in Atwrky27-90-1 and Atwrky27ETL mutants background 

were treated with β-estradiol for 6 hours and total RNA was isolated from these four 

samples. Using the Affymetrix Arabidopsis Gene Chip (ATH1) representing ~25000 

genes, (performed by the service unit of Nottingham Arabidopsis Stock Centre) 

normalized transcriptional profiles of pMD or pMD27 in the Atwrky27-90-1 and 

Atwrky27ETL mutant backgrounds were analyzed.  Initially, the data were sorted out in 

excel spread sheets by dividing the normalized pMD27signal intensity by pMD with 

respect to their corresponding mutants. Genes that showed a consistent difference 

(>1.5fold) in their expression pattern (induction or repression) in both mutants 

(background and high signal intensity >100) are listed in Table 7 and were considered 

for further analysis.  

 

 

 

 

 

 

 

 

 

Table 7. A partial list of putative target genes of AtWRKY27 identified in the microarray 

experiments. Data obtained using the Arabidopsis ATH1 chip, were sorted out in an 

Excel spread sheet by dividing the normalized pMD27signal intensity by pMD with 

respect to their corresponding mutants. Up-regulated and down-regulated genes are 

listed at the top and bottom panel of the table. Cut-off signal intensity was set at 100. 

Genes exhibiting more than 1.5 fold differential regulation were selected.  

Putative candidate targets pMD27/pMD in Atwrky27-90-1 pMD27/pMD in Atwrky27ETL 
Nitrate Reductase1 (NR1) 4.19 2.21
Asparagine Synthetase 2 (ASN2) 3.28 1.76
Nitrate Reductase 2 (NR2) 2.75 1.48
Expressed Protein (At3g10930) 1.56 1.61
Sterile Alpha Motif (SAM) domain-containing protein 1.54 1.54
DSS1/SEM1 family protein (At1g64750) 1.77 1.74

Putative candidate targets pMD27/pMD in Atwrky27-90-1 pMD27/pMD in Atwrky27ETL 
Dof-type zinc finger domain-containing protein 0.41 0.72
Protease Inhibitor/seed storage/Lipid Transfer protein (LTP) family protein 0.49 0.7
Auxin-Responsive GH3 protein, putative (DFL-1) 0.52 0.74
Acireductone Dioxygenase (ARD/ARD') family protein 0.55 0.67
AtWRKY 38 0.55 0.71

Up-regulated candidates

Down-regulated candidates
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Putative candidate targets W box(TTGAC[C/T]) W-like box (TTGACA)
Nitrate Reductase1 (NR1) 2 1
Asparagine Synthetase 2 (ASN2) 1 3
Nitrate Reductase 2 (NR2) 1 3
Acireductone Dioxygenase (ARD/ARD') family protein 0 1
AtWRKY 38 2 1

 

 

 

 

 

Table 8. List of putative differentially regulated genes by AtWRKY27 confirmed by 

independent RT-PCR experiments. W box or W-like box distribution is within 2kb 

promoter sequences 

 

Independent RT-PCR analyses were performed to validate the differential expression of 

these genes. In the up-regulated class of genes, transcript levels of Nitrate Reductase1 

(NR1), Nitrate Reductase1 (NR1) and Asparagine Synthetase 2(ASN2) were higher in 

pMD27 expressing plants compared to pMD (Fig. 51A) plants, while transcript levels of 

Expressed Protein (At3g10930), Sterile Alpha Motif (SAM) domain-containing protein 

and DSS1/SEM1 family protein (At1g64750) were found to be similar in both pMD27 

and pMD expressing plants. Within the down-regulated class of genes, AtWRKY38 and 

Acireductone Dioxygenase (ARD/ARD') family protein exhibited rather low transcript 

levels in the pMD27 expressing plants compared to pMD plants while, Protease 

Inhibitor/seed storage/Lipid Transfer protein (LTP) family protein, Dof-type zinc finger 

domain-containing protein and Auxin-Responsive GH3 protein, putative (DFL-1) 

showed similar levels of transcript in both pMD27 and pMD expressing plants (Fig. 

51B). AtSIRK, AtGlutathionine and AtTubulin were included as loading control in these 

experiments (Fig. 51C). Thus, RT-PCR was able to confirm some putative target genes. 

The confirmed candidate genes contain W box/W box like sequences found in their 2 kb 

promoter regions (Table 8). However, the differences observed were not always that 

obvious.  
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Fig. 51. RT-PCR evaluation of the putative AtWRKY27 target genes identified by 

microarray analysis. A: Analysis of putative up-regulated candidate genes from table No. 

7. B: Analysis of putative down-regulated candidate genes from table. Transgenic lines 

from which the RNA was isolated are given below each lane. Number of PCR cycles is 

indicated to the right in all experiments. The abbreviations for each gene are listed in the 

table. C: AtSIRK (lowly expressed), AtGlutathionine (lowly expressed) and AtTubulin 

(moderately expressed) were used as loading control.  
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4. Discussion 
 
For understanding the molecular basis of plant development it is necessary to acquire 

detailed knowledge on the functions of transcription factors and thus on the plant gene 

regulation processes. The biological functions of some representatives of plant 

transcription factors families are already elucidated. Completely different roles were 

found to be played by them, in processes as diverse as organ identity determination, 

development and stress defense mediation. So far, the AtWRKY factors were 

predominantly described to act in plant defense responses against abiotic and biotic 

stresses (Eulgem et al., 2000). In the scope of this work, the accomplished functional 

analysis of an AtWRKY genes superfamily representative offered new insights into plant 

– microbes interactions (Arabidopsis thaliana-Ralstonia solanacearum), namely the 

enhanced pathogen tolerance phenomenon. 

4.1. The AtWRKY family expression signatures: shared and specific 

expression patterns 

In the present study, unique basal and induced expression patterns of some AtWRKY 

genes were identified. Yet, genetic analyses of Arabidopsis have yielded experimental 

proof of function for only 3,500 genes (Berardini et al., 2004). One powerful approach to 

get clues for assigning the function of a particular gene is high throughput gene 

expression analysis (microarray-based transcript analysis) (D’Haeseleer et al., 2000; 

Hughes et al., 2000; Maki et al., 2001; Lee et al., 2002). Expression profiling analyses 

have revealed that plants express similar sets of defense genes in response to different 

pathogens. An array of about 8000 genes representing nearly one-third of the total 

number of protein-encoding genes in Arabidopsis, was used to study the gene-for-gene 

type resistance response to the bacterial pathogen Pseudomonas syringae (Zhu and 

Wang, 2000; Glazebrook et al., 2003). More than 2000 genes showed altered expression 

levels within nine hours of inoculation with the pathogen (Tao et al., 2003). 

Accordingly, a similar ratio could be expected for more than 27,000 genes in 

Arabidopsis.  
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Thus, a large array of the genes shows altered expression in response to a given 

pathogen. In order to narrow down the candidate genes number, (Katagiri, 2004) the 

subsequent confirmation needs to be performed under defined biological conditions, to 

validate the specificity of gene expression related to a particular pathogen infection. One 

way to gain meaningful information about the specific expression regulation is to 

perform expression profiling on loss-of-function mutants and transgenics, impaired in 

defense signaling (Katagiri, 2004; Uelker and Somssich, 2004). 

A comparative expression profile of approximately 8,000 Arabidopsis genes was 

analyzed using wild-type and mutant plants disrupted in three different R-gene 

dependent defense pathways upon pathogen infection either with compatible or 

incompatible isolates of oomycete Peronospora parasitica. These genetically separable 

R-gene dependent defense pathways are: the RPP4 (Resistance to Peronospora 

parasitica4) that is dependent on PAD4 (Phytoalexin Deficient4), SA accumulation, and 

SGT1b (suppressor of G2 allele of suppressor of kinetochore protein1 (skp1)); the RPP7 

(Resistance to Peronospora parasitica7) pathway that is dependent on SGT1b but 

independent of PAD4 or SA accumulation; and the unique RPP8 (Resistance to 

Peronospora parasitica8)  pathway that is independent of PAD4, SA accumulation, or 

SGT1b. The analysis revealed the convergence of these three pathways leading to up-

regulation of a common set of target genes (Eulgem et al., 2004).  

Similarly, the expression profiles of the Arabidopsis WRKY gene family revealed that 

almost two-third (49 out of 72) of the AtWRKY genes were differentially regulated in 

plants infected by an avirulent strain of the bacterial pathogen Pseudomonas syringae or 

treatment with SA (Dong et al., 2003). However, in the npr1-3 mutant plants (impaired 

in systemic acquired resistance) altered expression patterns of AtWRKY were 

documented. For instance, the pathogen induced expression of AtWRKY51, AtWRKY55 

and AtWRKY62 appeared to be substantially reduced in the npr1-3 mutant. In the 

transgenic nahG plants, AtWRKY38, AtWRKY50, AtWRKY51, AtWRKY55, AtWRKY59, 

AtWRKY60, AtWRKY62, and AtWRKY66 had substantially reduced levels of pathogen-

induced expression (Dong et al., 2003). A similar study only on group-III AtWRKY 

factors showed strong transcript accumulation for 11 out of the 13 AtWRKY gene 

members upon SA treatment or pathogen infection (Kalde et al., 2003). The transgenic 
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nahG plants express the bacterial nahG gene encoding a salicylate hydroxylase that 

degrades SA to catechol, thereby making nahG transgenic plants SA deficient (Gaffney, 

1993; Delaney, 1994). Transcript levels of AtWRKY30, AtWRKY41, AtWRKY53, and 

AtWRKY70 were not changed in nahG transgenic compared with wild-type plants 

infected with P. parasitica Cala2 among the 13 members tested of AtWRKY sub-group 

III (Kalde et al., 2003).  Transcript accumulation of AtWRKY members of group III was 

tested in pad4-1 and wild-type plants after SA treatment. Expression patterns of all 

tested AtWRKY genes were unchanged with the notable exception of AtWRKY64 whose 

expression was dampened in pad4-1 plants (Kalde et al., 2003).  PAD4, is a lipase like 

protein, affecting the synthesis of the phytoalexin camalexin in response to infection 

with Pseudomonas syringae pv. maculicola and is also an important component of SA 

mediating signaling cascade leading to systemic acquired resistance. The pad4 knock-

out fails to accumulate SA in response to pathogen infection which makes it a valuable 

tool for analysis of SA-dependent plant defense.  

A large set of microarray experiments has been performed and can be found in the 

Nottingham Arabidopsis Stock Centre microarray database (http://arabidopsis.info). 

However, the Affymetrix ATH 8,000 and 22,000 gene arrays did not include a 

significant proportion of the 74 AtWRKY genes. In addition, the whole genome gene 

expression analyses were performed in only a few Arabidopsis defense signaling 

mutants. 

A so far unique wide-range expression study of all the AtWRKY family members in 

nahG transgenic and npr1-3 mutant plants was performed by Dong and colleagues 

(2003). However, information is still lacking about the AtWRKY expression patterns in 

other defense signaling mutants, especially in the SA-, JA- and ET-dependent pathways.  

In the present study, the basal expression patterns of 12 AtWRKY genes were found to be 

affected in SA-dependent (dnd1, ndr1, npr1 and cpr5), JA-dependent (aos) and ET-

dependent (ein2) mutant plants. These distinct expression patterns demonstrated that 

regulation of different subsets of the AtWRKY factor family requires different signaling 

pathways. The SA-induced expression of some of these defense-related AtWRKY genes 

was greatly inhibited in the npr1 mutant. Thus, there appears to be NPR1-dependent and 

NPR1-independent pathways for regulated expression of the AtWRKY genes. 
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Interestingly, AtWRKY18, AtWRKY25 and AtWRKY33 exhibited increased basal 

transcript levels in all JA/ET signaling mutants tested (aos, jar1, ctr1 and ein2). 

Moreover, transcript levels of these genes are shown to be up-regulated by pathogen 

infection and SA treatment. AtWRKY18, AtWRKY25 and AtWRKY33 showed altered 

expression after ozone treatment and pathogen infection (Nottingham Arabidopsis Stock 

Centre microarray, http://arabidopsis.info). Present study revealed that JA/ET pathway 

directly/indirectly repressed AtWRKY18, AtWRKY25 and AtWRKY33. In contrast, 

AtWRKY53 and AtWRKY60 only showed constitutively elevated transcript levels in the 

mutants affected in ET pathway (ctr1 and ein2). Moreover, AtWRKY53 showed altered 

expression patterns upon pathogen infection, cold treatment, wounding and SA treatment 

(Nottingham Arabidopsis Stock Centre microarray, http://arabidopsis.info; Uelker and 

Somssich, 2004). AtWRKY53 and AtWRKY60 are also shown to be involved in 

senescence (Uelker and Somssich, 2004). The observations made in the present study 

also indicate the existence of separate ET-signaling pathway independent of JA.  

In another study, the expression level of AtWRKY70 was shown to be strongly up-

regulated in the plants treated with SA, but not in ACC (1-aminocyclopropane-1-

carboxylic acid a natural precursor of ET) treated plants. MeJA treatment, on the other 

hand, appeared to repress AtWRKY70 expression at rather later stages of treatment (Li et 

al., 2004). Basal and SA-induced expression levels of AtWRKY70 are completely 

blocked in plants expressing the nahG transgene and are significantly reduced in npr1 

mutant plants. Enhanced accumulation of AtWRKY70 transcripts was also absent in coi1 

(coronatine insensitive1), a mutant impaired in JA-signaling pathway, plants. These and 

other lines  of evidence suggest that AtWRKY70 acts as a node of convergence for 

integrating SA- and JA-signaling events during plant defense (Li et al., 2004). These 

results of Li et al stand partly in contrast to this study that showed basal and MeJa-

induced transcript levels of AtWRKY70 are not affected in aos and jar1 mutant plants 

(mutants impaired in JA-signaling pathway) compared to wilt-type plants. They also are 

in conflict with a report showing that AtWRKY70 expression was not significantly altered 

in the mid-flowering stage of coi1 (coronatine insensitive1), mutant plants (V. 

Buchanan-Wollaston, Nottingham Arabidopsis Stock Centre microarray, 

http://arabidopsis.info). These discrepancies may be due to differences in the 
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experimental set-up used or the age of the tested plants. However, an extensive 

transcription profiling and detailed genetic evidences are still needed in order to state 

that AtWRKY70 functions as a point for cross talk in SA-, JA/ET-signaling network.  

4.2. The enhanced pathogen tolerance mechanism in Atwrky27 knock-out 

mutant 

 In a screen, a set of Atwrky knock-out mutants were subjected to diverse pathogen 

infections (host, non-host, virulent/avirulent). Atwrky27 knock-out mutant plants showed 

an altered phenotypic response specifically to R. solanacearum strain GMI1000. Loss-

of-function mutants of AtWRKY genes have rarely resulted in obvious phenotypes most 

likely due to functional redundancy in the transcription factor (TF’s) familes 

(Riechmann et al., 2000; Vision et al., 2000; Simillion et al., 2002). Nevertheless, 

generation of multiple knock-out lines based on the sequence redundancy or overlapping 

expression patterns together with phenotypic profiling under altered environmental 

conditions can be alternative approach (Cutler and McCourt, 2005). Individual knock-

out for the TGA TF’s don’t exhibit sensitivity to SA. However, SA-induced PR1 

expression in tga6-1 tga2-1 tga5-1(a triple tga mutant) plants was completely blocked as 

shown in npr1 mutant plants (Zhang et al., 2003). The elegant example in the AtWRKY 

superfamily which shows noticeable phenotypes is AtWRKY44, also known as 

Transparent Testa Glabra2 (TTG2).  Atwrky44/ttg2 knock out mutant plants have 

unbranched trichomes that are reduced in number, in addition to reductions in mucilage 

production and tannin synthesis in the seed coat (Johnson et al., 2002). RNAi and knock-

out lines of AtWRKY53 exhibited delayed senescence phenotype under normal growth 

conditions (Miao et al., 2004). Next to other subtle physiological changes, antisense 

AtWRKY70 lines were shown to be more sensitive to E. c. carotovora strain SSC1 (Li et 

al., 2004).  In the case described here, Atwrky27 loss-of-function mutant plants exhibit 

clearly delayed wilting symptoms in response to R. solanacearum GMI1000 although 

the plants do ultimately die.  

Currently, two genetic components have been studied in detail in Arabidopsis that 

mediate resistance to R. solanacearum GMI1000, namely RRS1 and NWS1 (Deslandes et 

al., 2002, Feng et al., 2004). In the case of RRS1, resistance is mediated by the 
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interaction of a major R-gene product RRS1 with the bacterial avr gene product PopP2 

in the plant cell nucleus (Deslandes et al., 2003). This specific gene for gene interaction 

is a particular strong form of plant defense leading to full resistance by inhibiting 

bacterial growth. Thus, the type of resistance conferred by RRS1-R in Nd-1 plants is 

different from the delayed wilt symptoms phenotypes observed in Atwrky27 mutant 

plants as the latter will wilt eventually. Moreover, RRS1-R-mediated resistance is 

partially salicylic acid- and NDR1 (Non-Race-Specific Disease Resistance 1)-dependent, 

as Nd-1 plants containing salicylate hydroxylase or RRS1-R/RRS1-R ndr1/ndr1 plants 

exhibit wilting symptoms, suggesting the existence of similar signaling pathways to 

those controlled by resistance genes in specific resistance (Deslandes et al., 2002).  

In a large genetic screen (12000 fast-neutron mutagenized Col-0 plants) to find 

additional components operating in the wilt symptoms response to R. solanacearum 

strain GMI1000 led to the identification of a novel recessive Arabidopsis thaliana 

mutant, nws1 (no wilt symptoms) (Feng et al., 2004). The nws1 mutant plants 

completely failed to develop wilt symptom in response to virulent strains of the 

phytopathogenic bacterium (Feng et al., 2004). Thus, the type of phenotypic response 

displayed by nws1 knock-out mutant plants is also different from the delayed wilt 

symptom phenotypes observed in Atwrky27 mutant plants as the latter will wilt 

eventually. The identity of the AtNWS1 locus is not known so far.  

In order to understand the role of other known signaling pathways contributing to 

resistance in response to R. solanacearum strain GMI1000 infection, several mutants or 

transgenic lines impaired in SA-, JA-, and ET-dependent signaling pathways, all in a 

susceptible Col-0 background, were tested in another study (Hirsch et al., 2002). These 

included nahG transgenics, affected in SA accumulation, cpr1 and cpr5 plants, 

overexpressing a number of PR-related genes, jar1 plants, JA-insensitive mutant, and 

various mutants affected in the ethylene signaling pathway such as etr1-3, ein2-1, ein3-

1, ein4-1 (ethylene insensitive mutants), and eto3 (ethylene-overproducing mutant). This 

study revealed that development of wilt symptoms was strongly delayed in ein2-1 and 

eto3 mutant plants compared with Col-0 wild-type plants (Hirsch et al., 2002). 

Thus, it appears that Arabidopsis plant responses to R. solanacearum strain GMI1000 

are composite of multiple signaling pathways. However, the nature of the host 
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components required for disease development, including targets of virulence factors, 

negative regulators of plant defense responses, and susceptibility factors required for 

both pathogen growth or fitness, remains largely elusive (Glazebrook, 2001; Vogel at al., 

2002; Nishimura et al., 2003; Belkhadir et al., 2004;Vogel at al., 2004: Kim et al., 2005).  

The steady-state transcript levels of AtWRKY27 are not significantly altered in any of the 

mutants or transgenic lines under study which block signaling through the SA or JA/ET 

pathways. Additionally, Atwrky27 mediated delayed symptoms phenotype is not 

associated with constitutive expression of defense response marker genes like PR1, PR5, 

Thi2.1 or PDF1.2. Most of the mutants in these signaling pathways, such as acd11 

(accelerated cell death11), cpr (constitutive expressor of PR), dnd (defense no death), 

edr1 (enhanced disease resistance) and cev1 (constitutive expression of VSP1) confer 

enhanced resistance to virulent strains of different pathogens either by constitutively 

expressing elevated levels of defense genes or influencing steps leading to accelerated 

cell death (Glazebrook, 2001). These mutants are affected in genes that appear to act as 

negative regulators of signaling molecules such as SA and JA. However, the cost for this 

type of resistance is extremely high and these mutants have pleiotropic phenotypes 

including stunted growth, nectrotic lesions of leaves and stress alterations (Bowling et 

al., 1994; Glazebrook, 2001; Katagiri, 2004).  

This is in contrast to Arabidopsis pmr (powdery mildew resistance) mutants or rice ebr 

(enhanced blast resistance) mutants, required for compatible plant microbe interactions. 

pmr5 and pmr6 mutants exhibit enhanced resistance to a virulent pathogen  E. 

cichoracearum but not to the unrelated pathogens Pseudomonas syringae or 

Peronospora parasitica (Vogel et al., 2002; Vogel at al., 2004). Similarly, ebr1 and ebr2 

display enhanced resistance to Magnaporthe grisea (Campbell and Ronald, 2005). The 

resistance mechanisms operating in these mutants display no constitutively elevated 

expression of the defense genes and do not require the activation of either the SA or 

JA/ethylene defense pathways. Therefore, it is very likely that pathogens target these 

genes or their respective products for successful proliferation within the plant 

(susceptibility/compatible factors) (Vogel at al., 2004; Campbell and Ronald, 2005). 

NWS1 may also constitute such as susceptibility factor. The nws1 mutation is recessive 

and appears to be highly specific to R. solanacearum. Similarly, the basal transcript 
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levels of defense responsive molecular markers don’t accumulate to higher levels 

compared to wild-type plants. However, nws1 plants showed no wilt symptoms and 

inhibit bacterial growth (Hirsch et al., 2002). In case of Atwrky27, the delayed symptom 

phenotypes are not due to the inhibition of bacterial growth, which revealed the fact that 

AtWRKY27 is not a compatibility factor. However, it is not excluded that the subtle 

difference in bacterial growth could not be detected at these time points using the 

described assays. An alternative possibility is that the Atwrky27 loss-of-function mutant 

plants may be affected in a specific defense mechanism known as enhanced pathogen 

tolerance (Bent et al., 1992). Pathogen tolerance is considered to be a defense 

mechanism which doesn’t limit infection but reduces or offsets pathogen fitness. For 

example, rTGA2.1 (rice TGA transcription factor 2.1) mutant plants and rTGA2.1–

silenced transgenic plants exhibited reduced lesion development after infection with the 

rice bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), but bacterial growth in 

infected leaves did not differ when compared with wild-type plants (Fitzgerald et al., 

2005). Xoo, like R. solanacearum, is a vascular pathogen whose excessive production of 

extracellular polysaccharides eventually impedes nutrient movement through xylem 

tissues (Ou, 1972). In another study, the effect of silicon accumulation on the resistance 

level of tomato (a silicon-non-accumulator plant) in response to R. solanacearum was 

elucidated (Dannon and Wydra, 2004). Both tomato genotypes L390 (susceptible) and 

King Kong2 (moderately resistant) showed reduced bacterial wilt incidence following 

silicon treatment but bacterial numbers in roots, midstems and leaves of the genotype 

L390 was not affected, while significantly bacterial growth was reduced in all organs of 

genotype King Kong2 (Dannon and Wydra, 2004). This observation also points at a 

mechanism of an induced tolerance in genotype L390, where silicon treated plants 

showed less symptoms with similar bacterial numbers compared to non-treated plants 

and increased tolerance in King Kong2 after silicon treatment, when disease severity was 

further reduced, (Dannon and Wydra, 2004). Tolerance and resistance traits can be 

genetically linked (Stowe, 1998), or they can be pleiotropic, with a single host trait 

altering both the incidence of disease and host tolerance (Vanderplank, 1984; Roy and 

Kirchner, 2000). For instance, ethylene-insensitive (ein2) mutant plants of different 

species such as Arabidopsis, tobacco, soybean, and tomato, exhibit both enhanced 
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resistance and enhanced tolerance to various pathogens which ultimately contribute to 

plant defense (Bent et al., 1992; Knoester et al., 1998; Hoffmann et al., 1999; Thomma 

et al., 1999; Wubben et al., 2001; Hirsch et al., 2002). Arabidopsis ein2 mutant plants 

also display a delayed symptoms response to R. solanacearum by inhibiting bacterial 

growth (Hirsch et al., 2002) but show minimal disease development to P. syringae pv. 

maculicola, or X. campestris pv. campestris without effecting bacterial growth (Bent et 

al., 1992). Additionally, the tomato dominant ethylene-insensitive mutant, Nr (Never 

ripe; impaired in ethylene perception), exhibits a significant reduction in disease 

symptoms which is not due to the reduction in bacterial titer or decreased ethylene 

synthesis (Lund et al., 1998). 

Tolerance strategies and resistance defenses can both contribute to improve host fitness 

in response to phytopathogens (Roy and Kirchner, 2000). However, resistance traits 

exert direct pressure on pathogen fitness leading to alterations of the pathogens to offset 

such host defenses. Thus, host resistance defenses create a co-evolutionary combat with 

pathogens. By contrast, host tolerance strategies avoid such combat because they don’t 

threaten the pathogen survival. As a consequent, enhanced tolerance may be co-

evolutionarily stable (Roy and Kirchner, 2000).  

4.3. In silico predictions versus in vivo functional analysis of AtWRKY27 

GFP-tagged version of AtWRKY27 revealed its nuclear localization. This could be 

expected for transcription factor and have also been demonstrated by other AtWRKY 

factors (Robatzek and Somssich, 2001; Ingo Ciolkowski, Dierk Wanke and Bekir 

Uelker, personal communication). However, several computer predictions did not 

indicate nuclear localization but rather chloroplastic/mitochondrial targeting. Therefore, 

the computer-assisted forecast of the subcellular localization should be treated with 

caution and always must be experimentally validated.  

The AtWRKY27 is also predicted to undergo various post-translational modifications. 

Recent reports suggest that AtWRKY factors can be targets of modifications particularly, 

involving mitogen-activated protein kinase (MAPK) (Asai et al., 2002; Liu et al., 2004; 

Wan et al., 2004; Ülker and Somssisch, 2004). An exciting possibility would be that 

AtWRKY27, like its closest neighbors in the phylogenetic AtWRKY tree, AtWRKY22 
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and AtWRKY29, would be a target to phosphorylation (Asai et al., 2002), activating the 

early defense signaling via a MAP kinase cascade. Whether or not these sites are 

biologically functional is an interesting question to be addressed in future experiments.  

The entire Arabidopsis thaliana WRKY27 5` intergenic region (with respect to the 

translational start) is 6,800 bp in length. Atwrky27ETL, where the GUS reporter 

transgene is inserted in-frame with the second exon of the gene, and thus remians under 

the control of the endogenous AtWRKY27 regulatory region was compared to the 

transgenic line containing a 2 kb AtWRKY27 promoter GUS reporter construct. The 

distribution and intensity of GUS expression overlapped consistently between the two 

transgenic lines tested, offering evidence that 2 kb promoter fragment is sufficient to 

driving the AtWRKY27 expression under the conditions tested.  

A large number of known cis-regulatory sequences are also predicted within the 2 kb 

AtWRKY27 promoter that have been shown to be involved in both activation and 

repression of gene expression. The GCC box (AGCCGCC) has been shown to mediate 

ethylene-responsiveness and is often found in activators of defense genes (Ohme-Tagaki 

and Shinshi, 1995; Rushton et al. 2002). A similar element (JERE, AGACCGCC, Menke 

et al., 1999) directs jasmonic acid and elicitor-responsive expression. Some of the cis 

elements also respond to both wounding and pathogen attack; in addition, a functional 

separation from elements in both signal pathways is conceivable. Although no more than 

one single element is sometimes sufficient for pathogen inducibility, usually promoters 

contain different elements, and frequently several elements contribute to the better 

activation of gene expression (Rushton and Somssich, 1998; Rushton et al. 2002). 

Numerous motifs responsive to a number of abiotic (wounding) and biotic 

(phytohormons, light) treatments were identified in silico. However, none of these 

elements were shown to be functional under the experimental conditions tested. 

Moreover, Atwrky27ETL plants don’t show altered phenotypes in response to various 

abiotic stresses analyzed on the basis of different predicted elements in the AtWRKY27 

promoter. It cannot however be excluded that the AtWRKY27 promoter may respond to 

certain treatments at certain defined developmental stages or in a highly specific tissue 

of the plant. In addition, the induced AtWRKY27 expression levels might have been 

below the detection threshold of the reporter used. On the other hand, the in silico 
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prediction of promoter DNA elements were not accurate. According to the literature 

reports, the online tools available currently can predict a certain element with 80% 

confidence, i.e. 20 false positives in a hundred will be detected (Shahmuradov et al. 

2005). 

4.4. The phenotypical effects of AtWRKY27 endogenous expression and 

ectopic overexpression in complementation analyses 

The complementation approach, employing native regulatory sequences of a gene, 

requires the determination of promoter size for the successful complementation effect. 

The majority of literature reports state that the usage of ~2 kb of native upstream 

intergenic regulatory sequences is sufficient for the complementation analyses. 

However, it cannot be excluded that certain regulatory elements (e.g. enhancers) are 

present within the entire intergenic region or in some other position on the chromosome. 

Based on the GUS studies it appears that 2 kb of AtWKY27 5´ regulatory region is 

sufficient to mediate all observed expression patterns of the gene and capable of 

restoring the wild-type disease susceptibility. 

The overexpressor AtWRKY27 plants showed early wilting symptoms in response to R. 

solanacearum strain GMI1000. Moreover, a positive correlation between wilting 

symptoms and AtWRKY27 transcript levels were observed. This provides an additional 

line of evidence that AtWRKY27 or the component (s) under this TF could contribute to 

wilt disease development.  

The use of Cauliflower Mosaic Virus (CaMV) 35S promoter induces a strong expression 

throughout the plant in various developmental stages. This promoter allows expression 

in virtually all tissues and is largely independent of environmental and developmental 

factors. This can well serve a purpose of defining basic gene functionality, but is not 

suitable for subtle investigations of gene regulation or protein activity (Meyer et al. 

1996, Stacey et al. 1999). While elevated levels of the transcript are the consequence of 

strong constitutive overexpression, decreased amounts of AtWRKY27 mRNA in some of 

the overexpressor transgenic plants are likely due to the phenomenon called “co-

suppression” (Napoli et al. 1990). 
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The lines with highest levels of AtWRKY27 mRNA displayed additionally numerous 

alterations in the morphological phenotype, related to stunted growth, irregular leaf 

shape, and drastically reduced male fertility. Endogenous expression patterns of 

AtWRKY27 coincide with these aberrant phenotypes. Similar aberrations were previously 

observed by Delessert et al. (2005), who overexpressed AtAF2, a member of the plant-

specific NAC-domain transcription factor family. Transgenic plants displayed an 

increased biomass and yellowing of the leaves, while no obvious phenotype could be 

observed in two independent AtAF2 T-DNA insertion lines. Interestingly, AtAF2 

overexpressing plants showed a higher susceptibility to the soil-borne fungal pathogen 

Fusarium oxysporum, similarly to the results obtained in this study with AtWRKY27 

overexpression toward R. solanacearum. 

Evidence accumulates also for other members of the AtWRKY family (Chen 2005). For 

example, overexpression lines for AtWRKY18, AtWRKY40 and AtWRKY48 have 

significantly stunted plants and more serrated leaves. These plants also displayed 

delayed flowering. On the other hand, overexpression lines for other AtWRKY genes 

such as AtWRKY7, AtWRKY25 and AtWRKY26 flowered earlier than wild type plants. 

Moreover, overexpression of multiple WRKY genes was found to play a role in defense 

responses to bacterial and fungal pathogens. Overexpressor lines of ten AtWRKY family 

members displayed so far pathogen-related phenotypes (Chen 2005; Bekir Uelker and 

Imre Somssich, personal communication; this study).  

It is unclear whether the AtWRKY genes mentioned above affect plant growth and 

development directly or indirectly through affecting expression of genes involved in 

plant stress responses. One of the possibilities would be that some of the AtWRKY 

family members are capable of occupying the W boxes present in the promoters of 

developmentally crucial genes, and in this way repressing their expression, leading to 

disturbed life cycle (Turck et al. 2004). Taken together, these data validate the usage of 2 

kb AtWRKY27 promoter for the complementation analysis, as the native regulatory 

sequence, mimicking the wild type situation, contrasting to the CaMV 35S promoter, 

which resulted in the early wilt symptom development and morphological disorders of 

ectopic overexpressor lines. The results mentioned above indicate a significant role for 

AtWRKY transcription factors in regulation of plant development and defense responses, 
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and suggest that the ectopic overexpression may offer a valuable tool to track down the 

biological role of genes clustered in families, and therefore functionally redundant.  

4.5. Choice of selective promoters for tissue-specific expression of 

AtWRKY27 transgene 

In this present study, the main emphasis was to elucidate the molecular mechanism, 

through which AtWRKY27 is involved in the wilt disease establishment. An attempt to 

determine where exactly within the plant AtWRKY27 is needed was made initially 

employing the Atwrky27ETL. The GUS expression pattern was detected within the 

vascular bundles of stem and leaves, as well as within the cells of the root elongation 

zone, whereas the bacterial propagation sites are xylem vessels. As the xylem cells are 

dead and empty of cell contents at maturity, parenchymatic cells are often present in 

xylem tissue, where they help to maintain water balance and carry out metabolism within 

the tissue. The parenchymatic tissue would be, therefore, a likely target for the 

AtWRKY27 expression site. Alternatively, the phloem tissue constitutes another possible 

location for the AtWRKY27 transcription. Unlike xylem, phloem is alive at maturity, but 

usually with a much reduced cell contents and no nucleus. The only transcriptionally 

active phloem components are parenchymatous companion cells. Despite multiple 

attempts and applications of various enhanced versions of fluorescent proteins, neither 

the longitudinal and cross sections through the stem of Atwrky27-ETL nor AtWRKY27 

promoter driven GFP transgenic lines didn’t provide any ultimate answer where in 

plant’s vasculature AtWRKY27 is expressed. In order to overcome the problems with 

microscopy-based AtWRKY27 detection, a series of constructs were generated, 

expressing AtWRKY27 under three Arabidopsis tissue specific promoters (phloem-

specific SUC2, xylem-specific 4CL-2 and elongation zone-specific Cel1). These lines 

were aimed at providing genetic data, indicating whether a site-specific expression of 

AtWRKY27 would restore the wild-type wilt susceptibility in response to Ralstonia 

solanacearum strain GMI1000. The analysis of these transgenic lines will give an insight 

into the spatial regulation of the gene expression. However, it is not known whether the 

temporal and circadian activity of the tissue-specific promoters would be supportive for 
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or interfering with the complementation effect. This possibilities need to be resolved 

experimentally. 

Currently, the most active research for tissue-specific promoters focuses on cancer-

targeted systems (Fukazawa et al. 2004); however, numerous reports of plant tissue-

specific promoters appear in the literature (Funk et al. 2002, Ito et al. 2003, Koiwai et al. 

2004). Unlike constitutive expression of genes, tissue-specific expression is the result of 

several interacting levels of gene regulation. As such, it is then preferable to use 

promoters from homologous or closely related plant species to achieve efficient and 

reliable expression of transgenes in particular tissues. This is one of the main reasons for 

the large amount of tissue-specific promoters isolated from particular plants and tissues 

found in scientific literature. Some of agronomically important tissue-specific promoters 

are covered by patents, such as beta-amylase gene or barley hordein gene promoters (for 

seed gene expression), tomato pz7 and pz130 gene promoters (for ovary gene 

expression), tobacco RD2 gene promoter (for root gene expression), banana TRX 

promoter and melon actin promoter (for fruit gene expression), etc. (Roa-Rodríguez 

2003).  

4.6. Potential genes regulated by AtWRKY27 

In a candidate gene approach to find the potential targets of AtWRKY27, it was found 

that AtWRKY27 does not autoregulate its own promoter. However, it is still unclear 

whether AtWRKY27 can repress its own promoter activity. Moreover, loss-of-function 

or overexpression of AtWRKY27 gene was not found to exhibit differential expression of 

pathogenesis-related defense marker genes. WRKY proteins show high DNA binding 

affinity to a cis-regulatory DNA element known as W box (TTGACT/C) (Rushton et al., 

1996; Eulgem. et al., 1999; Yang et al., 1999; Uelker and Somssich, 2004). W boxes are 

present in clusters within short promoter stretches of many AtWRKY genes as well as the 

genes representing other transcription factor families (Eulgem et al., 2000; Maleck et al., 

2000) suggesting that WRKY proteins may act synergistically with other family 

members or other classes of transcription factors. In addition, W boxes are also present 

in the promoters of many plant defense genes including the well studied PR genes 

(Rushton et al., 1996; Eulgem. et al., 1999; Dong et al., 2003; Kalde et al., 2003; Eckey 
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et al., 2004; Kim and Zhang, 2004; Uelker and Somssich, 2004). WRKY proteins 

dependent PR1 regulation appears to be complex and may involve both activation and 

repression functions (Turck et al., 2004; Rocher et al., 2005). 

Transient silencing of HvWRKY1 gene showed reduced fungal penetration of the cells, 

suggesting that this HvWRKY1 gene functions as a negative regulator of powdery 

mildew resistance (Eckey et al., 2004). Mutation analyses revealed that a cluster of three 

W box sequences in the promoter of the AtWRKY18 gene reduced its own promoter 

activity (Chen and Chen, 2002). AtWRKY6 was shown to act as a negative regulator on 

its own and on AtWRKY42 expression by unknown mechanism (Robatzek and Somssich, 

2002). Similarly, AtWRKY53 was shown to influence its own expression in a negative 

feed back loop (Miao et al., 2004). In vitro binding assay showed that recombinant 

AtWRKY53 protein can bind to the promoter region of AtWRKY42 in a W box 

dependent manner and AtWRKY53 can negatively regulate AtWRKY6 and AtWRKY42 

expression patterns. Additional evidences showed the involvement of AtWRKY proteins 

in plant defense by acting as positive regulators. Interestingly, AtWRKY22 and 

AtWRKY29, structurally closest members of AtWRKY27, have been shown to 

autoregulate their own promoters by a positive feedback loop (Asai et al., 2002). 

AtWRKY6 positively influences PR-promoter activity. Moreover, AtWRKY6 

overexpressor plants showed increased PR1 expression upon pathogen infection leading 

to a significant enhancement of resistance or increased cell death (Robatzek and 

Somssich, 2002). Similarly, overexpression of AtWRKY18 and AtWRKY70 led to 

constitutive or enhanced expression of defense-related genes, including SA-induced 

PR1, and increased resistance to virulent pathogens (Chen and Chen, 2002; Li et al., 

2004).  

In this study, it was also shown that AtWRKY27 is able to activate AtSIRK expression. 

Increasing sets of data showed the induced expressions of many AtWRKY genes during 

the onset of senescence (Hinderhofer and Zentgraf, 2001; Lin and Wu, 2004). 

Senescence process is at least regulated via a key component known as senescence 

induced receptor kinase (AtSIRK). AtWRKY6, AtWRKY42, AtWRKY53 positively 

regulate AtSIRK expression in a W box selectivity dependent manner (Robatzek and 

Somssich, 2002; Miao et al., 2004; Zhou and Somssich unpublished). Moreover, 
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AtWRKY22 and AtWRKY29, structurally closest members of AtWRKY27, were also 

shown to activate flagellin induced kinase1 (AtFRK1) expression. AtFRK1 was found to 

be identical to AtSIRK (Navarro et al., 2004). These lines of evidence suggest that the 

regulation of WRKY factors is rather complex. AtWRKY factors can also act in a 

regulatory network by influencing the transcription of each other, rather than in a linear 

signal transduction pathway. Besides the annotation of specific function of an individual 

AtWRKY factor, regulation of common sets of genes by AtWRKY proteins reveals a 

high functional redundancy within family.  

Microarray analysis using Affymetrix genome arrays was employed to identify 

downstream potential regulon genes of AtWRKY27. Gene expression profiling using 

membrane-spotted macroarray, cDNA-AFLP (amplified fragment length 

polymorphism), SAGE (serial analysis of gene expression) and oligonucleotide-based 

array  provides a general overview without distinguishing direct versus indirect putative 

target genes (Aharoni and Vorst, 2002; Donson et al., 2002; Wyrick and Young, 2002; 

Chen and Zhu, 2005). Target gene analysis of AtWRKY6 using cDNA-AFLP differential 

display indicated that the single Atwrky6 knockout does result in altered gene expression 

profiles including AtSIRK (senescence induced receptor kinase). Further studies showed 

that the regulation of AtSIRK by AtWRKY6 in a W box selectivity dependent manner 

(Robatzek and Somssich, 2002). A similar study showed the identification of few 

indirect putative target genes regulated by AtWRKY70 in a microarray analysis using 

Affymetrix genome arrays (approx. 8300 genes) (Li et al., 2004).  

Target gene analysis of AtWRKY27 revealed the identification of up-regulated gene 

expressions of Asparagine Synthetase 2 (ASN2), Nitrate Reductase1 (NR1) and Nitrate 

Reductase2 (NR2). In Arabidopsis, asparagine synthetase (Asn) is encoded by a small 

gene family (ASN1, ASN2, and ASN3). Phylogenetic analysis revealed that although 

ASN1 clustered with all dicot Asn genes, ASN2 and ASN3 are more closely related to 

monocot Asn genes (Lam et al., 1998). ASN1 and ASN2 were shown to be reciprocally 

regulated by light and metabolites in Arabidopsis (Lam et al., 1998). ASN1 was proposed 

to play a role related to primary nitrogen assimilation and transport (Lam et al., 1998). 

However, ammonium and stress treatments-dependent ASN2 induction revealed that the 

physiological role of ASN2 may be related, directly or indirectly, to the recapturing of 
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lost nitrogen resources under stress conditions (Wong et al., 2004). Ammonium 

accumulation may also occur when plants are under abiotic and biotic stresses. For 

instance, an increase of ammonium level was observed in tomato (Lyocopersicon 

esculentum) plants subjected to water and salinity stresses (Feng and Barker, 1993). On 

the other hand, when tomato was infected with root-knot nematode, foliar accumulation 

of ammonium was observed (Barker, 1999).  

In Arabidopsis, nitrate reducatse (NR) is encoded by at least two genes; NR1 (NIA1) and 

NR2 (NIA2). In a chlorate-resistant mutant screen, nia2 null mutant was identified which 

still retained 10% of wild-type nitrate reductase activity (Wilkinson and Crawford, 

1991). However, a NR-null mutant (nia1/nia2) exhibits no nitrate reductase activity both 

in roots and shoots (Wang et al., 2004). At least, Arabidopsis NIA2 was shown to 

express in the living cells of the vascular tissue, based on GUS staining activity 

(Sherameti et al., 2005). Endogenous expression patterns of AtWRKY27 was also 

detected on the basis of GUS staining activity at the root elongation zone and root-, 

stem- and leaf-vasculature which coincides with the sites of bacterial colonization and 

propagation. 

NR is the key enzyme of nitrate assimilation in plants (Neill et al., 2003). In plants, NO 

is produced nonenzymatically through light-mediated conversion of NO2 by carotenoids 

or enzymatically from NO2 by nitrate reductase (NR) (Millar and Day 1997; Neill et al., 

2003). A recent study revealed that the NO production site is mainly in both phloem 

fibres and xylem cells regardless of the cell differentiation status, but spatial and 

temporal NO gradient is inversely related to the degree of xylem differentiation 

(Gabaldon et al., 2005). Xylem vessels are also shown to be the colonization and 

propagation sites of Ralstonia solanacearum (Saile et al., 1994). NO is involved in many 

physiological processes in plants, where it serves as a synchronizing chemical messenger 

involved in cytotoxicity and programmed cell death (PCD) (van Camp et al., 1998; 

Durner and Klessig, 1999; de Pinto et al., 2002; Neill et al., 2003). PCD is one of the 

most distinctive characteristics exhibited by the differentiating xylem in plants (Fukuda, 

1996; Robert and McCann, 2000) and is invariably coordinated with processes of 

secondary cell wall formation and lignification (Groover & Jones, 1999).  
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NO works with O2
–/H2O2 to trigger PCD through a finely balanced NO/O2

–/H2O2 

cooperation (Delledonne et al., 2001). Therefore, the species which characterize xylem 

differentiation also work together during the PCD. Lignifying plant tissues are capable 

of sustaining both NO and O2
– production (Ogawa et al., 1997; Ros Barceló, 1998; 

Gabaldon et al., 2005). Therefore it is likely that in the differentiating xylem both NO 

and O2
–  react to produce the peroxynitrite anion (ONOO–). Peroxynitrite is postulated to 

play a major role in cytotoxicity (Delledonne et al., 2001; Wendehenne et al., 2001), 

although it’s real role in PCD is uncertain (Fukuto & Ignarro, 1997). Regardless of this 

uncertainty, NO does not affect O2
–/H2O2 production by the lignifying xylem (Ferrer & 

Ros Barceló, 1999) or H2O2 production by isolated plant mitochondria (one of the 

organelles involved in H2O2 production during PCD) (Yamasaki et al., 2001). These 

lines of evidence indicate that the synthesis of O2
–/H2O2 and NO in plant cells is 

simultaneously coordinated in response to environmental/hormonal stimuli with no 

negative crosstalk between them (Delledonne et al., 1998).  

Nitric oxide selectively regulates Ca2+- sensitive ion channels in plant cells by promoting 

Ca2+ release from intracellular stores to raise cytosolic-free Ca2+ (García-Mata et al., 

2003; Gould et al., 2003). Execution of cell death in xylem elements involves a Ca2+ 

influx into the cell, and it is manifested by a rapid collapse of the vacuole leading to the 

release of hydrolytic enzymes, and the cessation of cytoplasmic streaming (Groover and 

Jones, 1999). Moreover, differentiating (noncollapsed) thin-walled xylem cells showed a 

burst of NO production just before the late processes of secondary cell wall formation 

and cell autolysis suggesting a certain role for NO in xylem differentiation/cell death 

(Gabaldon et al., 2005). Thus, cell differentiation/ vacuolar collapse and cell death via at 

least NO and Ca2+ is one of the possible metabolic cascades that may be present in the 

differentiating xylem (Gabaldon et al., 2005). 

NO appears to involved in controlling plant growth and development, fruit ripening, 

senescence, stomatal movement and pathogen defense (Neill et al., 2003). High levels 

accumulation of NO (40–80 pphm) exhibit reduced growth in tomato and tobacco, 

whereas low levels (0–20 pphm) enhanced growth in lettuce and pea (Hufton et al., 

1996; Leshem and Haramaty, 1996; Morot-Gaudry et al., 2002). NO also increased 

chlorophyll content in pea leaves, particularly in guard cells (Leshem et al., 1997). A 
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potential role for NO in delaying flower senescence is indicated by the increased 

longevity of several varieties of cut flowers induced by application of NO donors 

(Leshem, 2001). Expression patterns of NR genes were shown to be induced upon 

inoculation with an incompatible race of P. infestans or treated with a crude elicitor 

(Yamamoto et al., 2003). During the PCD events, kinetics of accumulation of NO was 

studied by employing 4-amino-5-methylamino-2´, 7´-difluorofluorescein (DAF-FM) 

diacetate, upon infection with Pseudomonas syringae pv. tomato DC3000 carrying either 

avrB or avrRpt2  (Zhang et al., 2003). Moreover, the experiments with an NO scavenger 

and an nitric oxide synthase (NOS) inhibitor demonstrated that NO accumulation can 

slow down hypersensitive response (HR) progression and can function in cell-to-cell 

spread of the HR (Zhang et al., 2003; Mur et al., 2005). In another elegant experiment, 

co-delivery of R.  solanacearum with NOS inhibitor exhibited delay of HR development 

without inhibitory growth effect on bacterium (Huang and Knopp, 1998).  

On the basis of these data, it is hypothesized that AtWRKY27 acts upstream of NR1 and 

NR2 in the process of nitric oxide accumulation. Additionally, enhanced pathogen 

tolerance observed in Atwrky27 mutant plants (in terms of delayed symptoms response 

without the inhibition of bacterial growth) is regulated by the suppression/blockage of 

NO accumulation via NR in the vasculature.  Moreover, pleiotropic phenotypes (stunted 

growth, delayed in perianth organs and partial sterility) observed in AtWRKY27 

overexpressor plants can be due to the enhanced accumulation of NO. However, still 

comprehensive genetic and biochemical analyses needed to demonstrate the regulation 

of NR1 and NR2 by AtWRKY27. 
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5. Summary 

5.1. Summary (English) 

 
In the present study, it was shown that Arabidopsis plants lacking a functional gene, 

AtWRKY27, coding for a WRKY-type transcription factor, displayed an altered disease 

response towards the soil-borne pathogen Ralstonia solanacearum strain GMI 1000. 

Two independent Atwrky27 knockout (KO) lines consistently exhibited clearly delayed 

wilting symptoms in response to the bacterium. The steady-state transcript levels of 

AtWRKY27 were not significantly affected in any of the SA or JA/ET signaling pathway 

mutants under study. Additionally, Atwrky27-mediated delayed symptoms phenotype 

was not associated with constitutive expression of defense response marker genes such 

as PR1, PR5, Thi2.1 or PDF1.2. Loss of AtWRKY27 function did not affect the response 

of the plants towards other tested pathogens nor towards diverse abiotic stresses. 

Complementation of the KO lines with AtWRKY27 under the control of its own promoter 

restored wild type susceptibility to the GMI1000 strain, whereas ectopic overexpression 

of AtWRKY27 led to an even earlier wilting symptom response than wild type plants. 

Surprisingly, the bacterial density in aerial parts of both KO lines versus wild type plants 

increased at similar levels throughout the period assayed. These observations point to a 

role of AtWRKY27 in a specific defense mechanism known as enhanced pathogen 

tolerance. AtWRKY27 expressions appear mainly restricted to specific root parts and in 

vascular tissue that is highly consistent with sites of bacterial colonization and 

propagation. Interestingly however, AtWRKY27 also appears to be expressed in defined 

floral organs and the ectopic overexpressor lines showed significant partial male sterility. 

Our data suggest that AtWRKY27 or a component(s) under the control of this 

transcription factor can contribute to enhanced pathogen tolerance. There also reveal 

however that AtWRKY27 has additional functions within certain stages of anther and 

pollen development. 
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5.2. Zusammenfassung (Deutsch) 

In der vorliegenden Arbeit wurde gezeigt, dass Arabidopsis-Pflanzen mit einem defekten 
AtWRKY27-Gen, dass einen WRKY-Transkriptionsfaktor kodiert, ein verändertes 
Resistenzverhalten gegenüber dem bodenbürtigem, pathogenen Bakterium Ralstonia 
solanacearum (Stamm GMI 1000) zeigen. Zwei unabhängige Atwrky27-Nullmutanten 
zeigten übereinstimmend deutlich reduzierte Welkesymptome nach Infektion mit dem 
Bakterium. Die Expression des AtWRKY27-Gens, gemessen als “steady-state” mRNA-
Menge, war in allen untersuchten Mutanten mit Defekten in den durch Salicylsäure (SA) 
oder Jasmonsäure (JA) bzw. Ethylen (ET) vermittelten Signaltransduktionswegen 
unverändert. Auch die Expression von Markergenen der pflanzlichen Pathogenabwehr, 
wie z.B. der Gene PR1, PR5, Thi2.1, oder PDF1.2, war in den Nullmutanten im 
Vergleich zum Wildtyp unverändert und damit nicht mit dem verzögerten 
Welkephänotyp korreliert. Der Verlust der AtWRKY27-Funktion führte nicht zu einer 
veränderten Reaktion der Pflanzen gegenüber anderen Pathogen oder unterschiedlichen 
Arten von abiotischem Stress. Expression des AtWRKY27-Gens unter der Kontrolle 
seines eigenen Promotors in der Atwrky27-Nullmutate führte zur Komplementation des 
Phänotyps und damit zur Restauration der Suszeptibilität gegenüber R. solanacearum 
(Stamm GMI 1000) wie in Wildtyp-Pflanzen. Im Gegensatz dazu führte ektopische 
Expression des AtWRKY27-Gens zu verstärkten und früher einsetzenden 
Welkesymptomen. Die Bakterienanzahl nahm in den überirdischen Pflanzenteilen 
sowohl im Wildtyp als auch in beiden Nullmutanten im gesamten 
Untersuchungszeitraum in gleichem Masse zu. Dies Befund war unerwarte und deutet 
darauf hin, dass AtWRKY27 eine spezifische Funktion bei der Vermittlung von erhöhter 
Toleranz gegenüber Pathogenen hat. Die Expression des AtWRKY27-Gens ist beschränkt 
auf spezifische Regionen in Wurzeln und auf Leitbündel, was den Geweben entspricht, 
die von Bakterien befallen werden. Darüber hinaus wird das AtWRKY27-Gen in 
begrenztem Maß in Blütenorganen exprimiert und ektopische Expression führt zu 
eindeutiger, partieller männlicher Sterilität. Insgesamt zeigen die vorgelegten Daten, 
dass AtWRKY27 selbst, oder eine Komponente, die von diesem Transkriptionsfaktor 
kontrolliert wird, zur erhöhten Toleranz von Pflanzen gegenüber Pathogen beitragen 
kann. Darüber hinaus hat AtWRKY27 vermutliche zusätzliche Funktionen in bestimmten 
Entwicklungstadien von Antheren und Pollen. 
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6. Outlook 
 
The results available so far require extended and detailed experimental continuation, 

which is already initiated to a large extent. The ongoing characterization of the tissue-

specific AtWRKY27 complementation lines will provide an insight into the spatial 

requirements for the gene expression during the R. solanacearum infection process.  The 

kinetics of bacterial growth in Atwrky27 mutant plants in various organs including root-, 

shoot- and leaf-vasculature will provide evidence whether the delayed symptom 

responses are due to enhanced pathogen tolerance strategies or enhanced disease 

resistance mechanisms. On the other hand, the wilt resistance phenotype of the Atwrky27 

ein2 double knock-out needs to be analyzed. This would show whether AtWRKY27 

functions via the ethylene-mediated signaling pathway and displays an additive effect 

together with AtEIN2, or acts independently.  

The preliminary results of the ATH1 microarray analysis indicated AtNIA1, AtNIA2 and 

AtASN1 as putative early targets of the AtWRKY27. Further analyses of nia1nia2 double 

knock-out plants will provide a genetic proof of the involvement of genes coding nitrate 

reductase in wilting disease by R. solanacearum strain GMI1000. Usage of a NO 

scavenger/inhibitor on wilt-type plants and a NO donor on Atwrky27 knock-out plants 

would further strengthen the hypothesis of AtWRKY27 involvement in the wilting 

symptom response via the nitric oxide accumulation. Phenotypic response of AtWRKY27 

overexpressor plants grown on MS-media supplemented with ammonium succinate 

would allow supporting the above mentioned hypothesis. Furthermore, chlorophyll 

contents measurement and nitrate reductase activity analysis in AtWRKY27 

overexpressor plants would confirm the involvement of AtWRKY27 in NO 

accumulation. Chromatin-immunoprecipitation of AtWRKY27 with NR1 and NR2 

promoters would provide a final line of evidence that these two genes are indeed in vivo 

regulated by AtWRKY27 in the process of NO accumulation upon pathogen infection. 
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