Regulation of glutamate dehydrogenase in Corynebacterium glutamicum and its impact on nitrogen control

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von

Tim Müller

aus Koblenz

Köln, Oktober 2005

Berichterstatter:

Prof. Dr. Andreas Burkovski Prof. Dr. Reinhard Krämer

Tag der Disputation: 28.11.2005

Content

Content	I
Abbreviations	IV
Abstract	V
Zusammenfassung	VI
1. Introduction	1
1.1. Corynebacterium glutamicum	1
1.2. Uptake of nitrogen sources	2
1.3. Assimilation of ammonium	4
1.4. Nitrogen-dependent regulation	7
1.5. Objectives	13
2. Materials and methods	14
2.1. Bacterial strains, plasmids, and primers	14
2.2. Cultivation of bacteria	17
2.3. Genetic manipulation of bacteria	19
2.3.1. Preparation of competent <i>E. coli</i> cells and transformation	19
2.3.2. Preparation of competent C. glutamicum cells and transformation	19
2.3.3. Generation of deletion strains of <i>C. glutamicum</i>	20
2.4. Working with DNA	21
2.4.1. Isolation of plasmid DNA from <i>E. coli</i>	21
2.4.2. Isolation of genomic DNA from C. glutamicum	21
2.4.3. Gel electrohoresis and extraction of DNA from agarose gels	21
2.4.4. PCR and SOE-PCR	22
2.4.5. Restriction, ligation, and sequencing of DNA	22
2.4.6. Site-directed mutagenesis	23
2.5. Working with RNA	23
2.5.1. Isolation of total RNA from C. glutamicum	23
2.5.2. Synthesis of digoxigenin-labelled RNA probes	24
2.5.3. Dot blot analysis and slot blot analysis	25
2.5.4. Quantitative real-time RT-PCR	26
2.5.5. DNA-Microarray analysis	27
2.5.6. Analysis of mRNA degradation rates	29

2.6. Working with proteins	29
2.6.1. Analysis of protein concentrations	29
2.6.2. SDS-PAGE and Coomassie staining	29
2.6.3 Peptide mass fingerprinting	31
2.6.4. Analysis of β -galactosidase activity	31
2.6.5. Analysis of GDH activity	32
2.6.6. DNA affinity purification with magnetic beads	33
2.6.7. Gel shift assays and competition assays	36
2.6.8. Purification of GDH protein by Ni-NTA chromatography, dial	ysis, and
electro-elution, and the production of antibodies for GDH	37
2.6.9. Western blotting	37
2.7. Chromatography	38
2.7.1. Determination of internal 2-oxoglutarate and glutamate	by gas
chromatography	38
2.7.2. Determination of internal ammonium by HPLC	38
2.7.3. Determination of internal glutamine, glutamate, and arginine by H	HPLC .39
2.8. Bioinformatic approaches	40
2.8.1. Identification of open reading frames	40
2.8.2. Identification of putative binding sites	40
2.8.3. Sequence alignments and presentation of consensus sequences	s40
3. Results	41
3.1. Regulation of glutamate dehydrogenase	41
3.1.1. Characterization of the nitrogen-dependent regulation of g	glutamate
dehydrogenase	41
3.1.2. Identification of transcriptional regulators of glutamate dehydroge	enase.45
3.1.3. Characterization of the binding behaviour of AmtR, FarR, O	xyR, and
WHiH to the <i>gdh</i> promoter region	50
3.1.4. Analysis of the role of AmtR, FarR, WhiH, and OxyR in the	nitrogen-
dependent regulation of <i>gdh</i> transcription	57
3.1.5. Identification of conditions that trigger regulation of gdh transc	ription by
AmtR, FarR, OxyR, and WhiH	60
3.1.5.1. Growth rates of the single deletion strains	60

II

3.1.5.2. Identification of putative target genes of FarR and WhiH by DNA
microarray hybridization
3.1.5.3. Identification of putative target genes of FarR using a bioinformatic
approach63
3.1.5.4. Identification of putative effector molecules of FarR66
3.1.5.5. Regulation of gdh transcription in response to various stress
conditions68
.2. The impact of GDH on the nitrogen control network72
3.2.1. Expression of the gdh gene of E. coli in the gdh deletion strain of C.
glutamicum
3.2.2. Expression of an enzymatically inactive glutamate dehydrogenase in the
gdh deletion strain
3.2.3. Influence of a deletion of <i>gdh</i> on intracellular metabolite pools
3.2.4. Influence of a deletion of <i>glnA</i> on intracellular metabolite pools
.3. Putative toxicity of ammonium for <i>C. glutamicum</i>
3.3.1. Diffusion of ammonia across the cell envelope of <i>C. glutamicum</i> 81
3.3.2. Growth of <i>C. glutamicum</i> under high concentrations of ammonium83
3.3.3. Analysis of the presence of a putative futile cycle
Discussion
.1. Regulation of glutamate dehydrogenase
.2. The role of GDH in the nitrogen regulation network of <i>C. glutamicum</i> 97
.3. Investigations of a putative toxicity of ammonium for <i>C. glutamicum</i>
.4. Summary
teferences
ppendix
.1. Construction of <i>C. glutamicum</i> strains115
.2. Construction of plasmids
.3. Complete list of the results of the DNA microarray analyses
· · ·

Abbreviations

Ap ^R	resistant to ampicilin
bp	base pairs
CTAB	N-cetyl-N,N,N-trimethylammonium bromide
DMSO	dimethyl sulfoxide
EDTA	ethylendiaminetetraacetic acid
et al.	et alii
GDH	glutamate dehydrogenase
GOGAT	glutamate synthase
GS	glutamine synthetase
HPLC	high pressure liquid chromatography
kb	kilo base pairs
Km ^R	resistant to kanamycin
MALDI-TOF	matrix-assisted laser despropotion/ionisation time of flight
MOPS	3-[N-morpholino]propansufonic acid
MSTFA	N-methyltrimethylsilyltrifluoroacetamide
Nx ^R	resistant to nalidixic acid
OD ₆₀₀	optical density at 600 nm
PAGE	polyacrylamide gel electrophoresis
RT	room temperature
RT-PCR	reverse transcription polymerase chain reaction
SDS	sodium dodecylsulphate
SOE-PCR	splicing by overlapping extension polymerase chain reaction
TEMED	N,N,N',N'-tetramethyl-ethylendiamine
Tris	2-amino-hydroxymethylpropane-1,3-diol

Abstract

Global regulatory networks are essential for the adaptation to changing environmental conditions and allow bacteria to survive conditions of stress and starvation. Nitrogen control is one of these networks. It regulates the uptake and assimilation of nitrogen containing compounds in dependence on their availability. In *Corynebacterium glutamicum*, a gram-positive soil bacterium of important biotechnological relevance, glutamate dehydrogenase (GDH) seems to play an important but so far less investigated role in nitrogen control. In this work, the regulation of glutamate dehydrogenase and its impact on nitrogen control in *C. glutamicum* were investigated.

Transcription of *gdh* is induced under nitrogen limitation. By DNA affinity purification with magnetic beads, four transcriptional regulators were isolated, which bind specifically to a fragment of the *gdh* promoter region that is responsible for the nitrogen-dependent transcription control. These are the putative transcriptional regulators FarR, WhiH, and OxyR, and the well-characterized transcriptional regulator AmtR, which is a major player of nitrogen control *C. glutamicum*. The exact binding sites of AmtR and FarR were mapped and a principle capacity of FarR to repress *gdh*-promoter-driven transcription was demonstrated. Surprisingly, neither single deletions nor a quadruple deletion of *amtR*, *farR*, *whiH*, and *oxyR* in *C. glutamicum* have any effect on nitrogen-dependent transcription of *gdh*. Consequently, these regulators are not essential for the nitrogen-dependent regulation of *gdh* transcription. Nevertheless, they might regulate *gdh* transcription in response to other stress conditions. A broad range of stress conditions were identified that influence *gdh* transcription. In addition, a putative role of FarR in the regulation of fatty acid biosynthesis and/or glutamate overproduction was revealed.

In the second part of this work, the role of GDH in nitrogen control of *C. glutamicum* was investigated. A deletion of *gdh* results in a deregulation of the nitrogen control network. It was demonstrated, that this effect is caused by the loss of GDH activity and not by the absence of the GDH protein itself. In the *gdh* deletion strain, internal 2-oxoglutarate is accumulated. A high 2-oxoglutarate pool seems to antagonize the nitrogen status and triggers a nitrogen starvation-like response even under nitrogen surplus. In addition, ammonium could be identified as a second metabolite that influences nitrogen control in *C. glutamicum*.

In the third part of this work, it was demonstrated that ammonium is not toxic for *C*. *glutamicum* and the formation of a putative futile cycle of ammonium was not observed.

Zusammenfassung

Globale Regulationsnetzwerke sind essentiell für die Adaptation an unterschiedliche Umweltbedingungen und ermöglichen Bakterien das Überstehen von Stress- und Mangelsituation. Die Stickstoffkontrolle ist ein solches Netzwerk. Sie reguliert die Aufnahme und Verstoffwechselung stickstoffhaltiger Substrate in Abhängigkeit von deren Verfügbarkeit. Bei der Stickstoffkontrolle des Gram-positiven Bodenbakteriums *Corynebacterium glutamicum*, welches eine große biotechnologische Bedeutung hat, scheint die Glutamatdehydrogenase (GDH) eine wichtige, bislang unbekannte Funktion einzunehmen. In dieser Arbeit wurde die Regulation der GDH und ihr Einfluss auf die Stickstoffkontrolle von *C. glutamicum* untersucht.

Die Transkription des gdh-Gens wird unter Stickstoffmangel induziert. Mit Hilfe magnetischer DNA-Affinitätsaufreinigung wurden vier Transkriptionsregulatoren isoliert, welche spezifisch an den Abschnitt der gdh-Promotorregion binden, der für die stickstoffabhängige Regulation verantwortlich ist. Dies sind die drei putativen Transkriptionsregulatoren FarR, WhiH, OxyR sowie der bereits charakterisierte Transkriptionsregulator AmtR, welcher ein zentraler Regulator der Stickstoffkontrolle von C. glutamicum ist. Die genauen Bindestellen von AmtR bzw. FarR innerhalb der gdh-Promotorregion wurden identifiziert und die prinzipielle Fähigkeit zur Repression gdh-Promotor-abhängiger Transkription für FarR gezeigt. Trotz allem führen weder Einfachdeletionen noch die Mehrfachdeletion aller Gene der vier Regulatoren zu einem Verlust der stickstoffabhängigen Transkriptionsregulation von gdh. Folglich regulieren AmtR, FarR, WhiH und OxyR die Transkription von gdh nicht in Abhängigkeit von der Stickstoffversorgung, könnten aber unter anderen Bedingungen aktiv sein. In dieser Arbeit wurden zahlreiche Stressbedingungen identifiziert, welche die Transkription von gdh beeinflussen. Außerdem wurde eine weitere Bindestelle von FarR vor dem dtsR2-Gen identifiziert, was auf eine mögliche Rolle von FarR bei der Regulation der Fettsäurebiosynthese und/oder Glutamatüberproduktion schließen lässt.

Im zweiten Teil dieser Arbeit wurde die Bedeutung der GDH für die Stickstoffkontrolle von *C. glutamicum* untersucht. Eine Deletion des *gdh*-Gens führt zu einer Deregulierung der Stickstoffkontrolle von *C. glutamicum*. Dieser Effekt beruht auf einem Verlust der GDH-Aktivität und nicht auf der Abwesenheit des GDH-Proteins an sich. Der Verlust der GDH-Aktivität führt zu einer Akkumulation von α -Ketoglutarat, was selbst unter guter Stickstoffversorgung eine Stickstoffmangelreaktion auszulösen scheint. Des Weiteren wurde gezeigt, dass auch die Verfügbarkeit von Ammonium die Stickstoffkontolle von *C. glutamicum* direkt beeinflusst.

Im dritten Teil dieser Arbeit wurde gezeigt, dass Ammonium für *C. glutamicum* nicht toxisch ist. Die Anwesenheit eines putativen energieverschwendenden Transmembranzyklus von Ammonium konnte nicht beobachtet werden.

1. Introduction

Nitrogen is an essential element for all life-forms as it is part of many important biomolecules like proteins, nucleotides, and coenzymes. Many organisms have evolved regulatory networks to cope with changes in the nitrogen supply. Transport and metabolism of nitrogen-containing compounds are strictly regulated and adapted to the availability of nitrogen sources. These processes as well as the connecting regulatory networks are referred to as nitrogen control. Until now, nitrogen control has been investigated in a number of bacteria, e.g. *Escherichia coli* (Merrick and Edwards, 1995; Reitzer, 2003), *Bacillus subtilis* (Fisher, 1999), *Rhizobium* (Patriaca *et al.*, 2002), cyanobacteria (Flores *et al.*, 2005), and *Corynebacterium glutamicum* (Burkovski, 2003a; 2003b; 2005). In this thesis, new insights into the nitrogen control of *C. glutamicum* are described.

1.1. Corynebacterium glutamicum

C. glutamicum was first isolated form soil collected at Ueno Zoo in Tokyo/Japan during a screening program for glutamate-producing bacteria (Kinoshita *et al.*, 1957). It is a Gram-positive, aerobic, and non-sporulating bacterium with a rod shape. Due to its complex mycolic acid-containing cell wall and its high G+C-content, *C. glutamicum* belongs to the mycolic acid-containing actinomycetes. This suborder also includes a considerable number of plant-, animal-, and human-pathogens, e.g. *Corynebacterium diphtheriae*, *Mycobacterium tuberculosis*, and *Mycobacterium leprae* (Pascual *et al.*, 1995; Chun *et al.*, 1996). In contrast to these, *C. glutamicum* is non-pathogenic and safe to handle. Therefore, it is suitable as a model organism for its pathogenic relatives.

Additionally, *C. glutamicum* is of great biotechnological relevance. First isolated due to its ability to excrete high amounts of glutamate (Konishita *et al.*, 1957), it is now used for the industrial production of a diverse range of compounds. Amino acids like glutamate (1,500,000 tons per year), lysine (550,000 tons per year), and smaller amounts of tryptophan, glutamine, alanine, isoleucine, as well as nucleotides and vitamins are produced by the use of different *C. glutamicum* strains (Leuchtenberger, 1996; Hermann, 2003).

Because of its great industrial importance, *C. glutamicum* was intensively studied in the last decades. Nowadays, the genomic sequence of *C. glutamicum* is known

(Kalinowski *et al.*, 2003) and several molecular biology tools for the genetic manipulation of *C. glutamicum* are well-established. The central carbon metabolism and amino acid biosynthesis pathways are well-investigated. Several enzymes have been characterized biochemically and flux analyses revealed a better knowledge about interacting metabolic pathways (Dominguez *et al.*, 1998; Tesch *et al.*, 1999; Wendisch *et al.*, 2000; Kiefer *et al.*, 2004; Krömer *et al.*, 2004). The complex network of nitrogen control in *C. glutamicum* was investigated mainly in the last years (Burkovski, 2003a; 2003b; 2005).

1.2. Uptake of nitrogen sources

Bacteria can use a wide range of nitrogen-containing compounds as sole source of cellular nitrogen. Depending on the availability of nitrogen sources, bacteria express various uptake and utilization systems. In accordance with this, C. glutamicum is able to utilize urea, glutamate, glutamine, alanine, asparagine, serine, threonine, creatinine, and several dipeptides. Some of the corresponding uptake systems and metabolic utilization systems are characterized (Krämer et al., 1990; Erdmann et al., 1994; Zittrich et al., 1994; Kronemeyer et al., 1995; Siewe et al., 1995; Burkovski et al., 1996; Siewe et al., 1998; Trötschel et al., 2003; Bendt et al., 2004; Beckers et al., 2004). However, the preferred nitrogen source of C. glutamicum is ammonium. In general, two different uptake routes for ammonium are present (figure 1) and these are used in dependence on the availability of ammonium as described in the following. In aqueous solution, ammonium (NH₄⁺) is in equilibrium with the uncharged and membrane permeable ammonia (NH₃). Ammonia can easily enter the cell by passive diffusion across the cytoplasmic membrane. Under ammonium surplus, diffusion of ammonia is sufficient to promote growth, whereas under nitrogen limitation, ammonium transporters are expressed to ensure a proper nitrogen supply of the cell. In C. glutamicum, two ammonium transporter, AmtA and AmtB, are present under nitrogen limitation (Siewe et al., 1996; Jakoby et al., 1999a; Meier-Wagner et al., 2001) to enhance ammonium uptake and to ensure nitrogen supply of the cell.

The mode of transport by these membrane proteins is not clear. Two models are discussed. On one hand, an energy-dependent transport of charged ammonium was observed, indicating that ammonium uptake depends on the membrane

2

Figure 1: The uptake and assimilation of ammonium in *C. glutamicum.* The uptake of ammonium from the environment occurs either by diffusion of ammonia or *via* transport by AmtA and AmtB, respectively. It is not clear whether AmtA and AmtB actively transport ammonium depending on the membrane potential or if they facilitate passive diffusion of ammonia. Two assimilation pathways for ammonium are present in *C. glutamicum*. One is catalyzed by glutamate dehydrogenase (GDH), the other is a coupled reaction of glutamine synthetase (GS) and glutamate synthase (GOGAT). Both, transport and assimilation are regulated in dependence on the availability of ammonium. In all equations, free protons (H⁺) are not given. (Burkovski, 2003a; 2003b; 2005)

potential (Kleiner, 1993, Siewe *et al.*, 1996; Meier-Wagner *et al.*, 2001). On the other hand, these transporters were described as gas channels that simply facilitate passive diffusion of uncharged ammonia across the cell membrane (Soupene *et al.*, 1998, 2002; Khademi *et al.*, 2004; Zheng *et al.*, 2004; Javelle *et al.*, 2005).

However, the strict regulation of ammonium transporters was ascribed to prevent the formation of a putative energy-costly futile cycle under ammonium surplus. Regarding to this theory, ammonium would first be transported into the cell by the use of energy and then it would diffuse passively back out of the cell resulting in a detrimental waste of energy (Castorph *et al.*, 1984; Kleiner, 1985). Sensitivity to ammonium due to futile cycling is suspected to be a universal phenomenon of animals, plant, and bacteria (Wirén *et al.*, 2004). In fact, a number of plant families (Britto *et al.*, 2001; Kronzucker *et al.*, 2001; Britto *et al.*, 2002) as well as animal cells (Martinelle *et al.*, 1993) are known to be sensitive to ammonium. Nevertheless,

ammonium toxicity has not been demonstrated in bacteria and the formation of a putative futile cycle in bacteria is still speculation.

1.3. Assimilation of ammonium

In many bacteria, the primary products of ammonium assimilation are glutamate and glutamine, which are the major intracellular nitrogen donors (Merrick and Edwards, 1995). Glutamate provides nitrogen for most of the transaminases, whereas glutamine donates nitrogen for the synthesis of purines, pyrimidines, arginine, asparagine, tryptophan, histidine, glucosamine, and *p*-aminobenzoate (Reitzer, 2003). In general, there are two pathways for the assimilation of ammonium forming glutamate or glutamine: the glutamate dehydrogenase (GDH) and the glutamine synthetase/glutamate synthase (GS/GOGAT) pathway (figure 1).

Glutamate dehydrogenases are broadly distributed enzymes which catalyze the reversible reductive amination of 2-oxoglutarate by ammonium to give L-glutamate in an NAD(P)H-dependent reaction (Barker, 1981; Merrick and Edwards, 1995). In contrast to most GDHs identified in higher eukaryotes, which have a dual coenzyme specificity (EC 1.4.1.3) using both, NADH and NADPH, GDHs of prokaryotes and lower eukaryotes act only with one particular coenzyme, NADH or NADPH (Minambres et al., 2000). In general, NADPH-dependent GDHs (EC 1.4.1.4) contribute to anabolism by assimilating ammonium to form glutamate (Consalvi et al., 1991), whereas NADH-dependent GDHs (EC 1.4.1.2) are usually catabolic enzymes for the reverse reaction, the oxidative deamination of glutamate (Duncan et al., 1992). All GDHs described so far are oligomeric enzymes, which consist either of six or four identical subunits. These subunits are either of 50 kDa, 115 kDa, or 180 kDa. According to the oligomeric structure, the subunit size, and the results of hierarchical homology grouping, four different well defined classes of GDHs exist: α_6 -50₁ and α_6 -50₁₁ (small GDHs) as well as α_6 -180 and α_4 -115 (large GDHs). The four classes share the same catalytic mechanism, very similar domain structures, and several well-conserved amino acid residues with distinct function. However, the function of the additional amino acids of large GDHs (α_6 -180 and α_4 -115 classes) is completely unknown. In bacteria, only hexameric GDHs have been reported yet (Minambres et al., 2000). GDH from Clostridium symbiosum is the most extensively studied GDH with regard to the three-dimensional structure, the catalytic mechanism, and amino acid residues with distinct function. GDH from *C. symbiosum* is NADH-dependent and belongs to the α_6 -50₁ class (Minambres *et al.*, 2000). Each subunit of this hexameric GDH consists of two domains separated by a cleft harbouring the active site. One domain binds NADH and the other glutamate and 2-oxoglutarate, respectively (Baker *et al.*, 1992). During the catalytic cycle, a large movement between the two domains occurs, closing the cleft and bringing the substrate and NADH into the correct position for the reaction (Baker *et al.*, 1997). The distinct functions of several amino acid residues are known (Pasquo *et al.*, 1996; Millevoi *et al.*, 1998; Baker *et al.*, 1992; Baker *et al.*, 1997). One of them is lysine-89 in the active site, which plays a key role for the interactions with the γ -carboxyl group of the substrate (Wang *et al.*, 1994; Stillman *et al.*, 1999). If this residue is altered by site-directed mutagenesis to a leucine residue, the resulting mutant has an almost identical conformation as the wild type GDH, but it is enzymatically inactive (Stillman *et al.*, 1999).

GDH from C. glutamicum belongs to the α_6 -50 class of small GDHs (Minambres et al., 2000). It is NADPH-dependent, suggesting that it preferentially acts as an anabolic GDH for ammonium assimilation in vivo. The kinetic properties of GDH from C. glutamicum have been investigated by in vitro assays (Shiio et al., 1970). GDH from C. glutamicum catalyzes the formation as well as the degradation of glutamate in vitro, but the maximum velocity of the formation of glutamate (87.6 μ mol/(min*mg)) is 4.6 times higher than that of the degradation (19.2 µmol/(min*mg)). High concentrations of glutamate (400 mM) inhibit the formation of glutamate (75 % inhibition) and the presence of ammonium (10 mM) inhibits the degradation of glutamate (95% inhibition) in vitro. As GDHs from many other organisms, GDH from C. glutamicum has only a low affinity to its substrates ammonium (K_m = 3.08 mM) and 2-oxoglutarate (K_m = 5.72 mM) and even lower affinity to its product glutamate (K_m = 100 mM) (Shiio et al., 1970). In vivo, GDH from C. glutamicum is the major consumer of cellular ammonium and NADPH under nitrogen surplus. Flux measurements revealed that about 72 % of ammonium assimilation is done by GDH (Tesch et al., 1999), which consumes about 50 % of cellular NADPH (Marx et al., 1999). The gdh gene encoding GDH from C. glutamicum has been identified. It is transcribed monocistronically and transcription starts 284 bp upstream of the start codon of gdh (Börmann et al., 1992).

5

The second pathway for ammonium assimilation is the glutamine synthetase/glutamate synthase (GS/GOGAT) system (figure 1). In this reaction, ammonium is first attached to glutamate to form glutamine by an ATP-dependent glutamine synthetase (GS), followed by the transfer of the amide nitrogen onto 2oxoglutarate by an NADPH-dependent glutamate synthase (GOGAT) to form glutamate. In C. glutamicum, two genes encoding glutamine synthetases were identified: glnA coding for a GSI- β subtype enzyme (Jakoby et al., 1997) and glnA2 coding for a GSI- α subtype enzyme (Nolden *et al.*, 2001a). Analysis of a *glnA* deletion strain revealed that only glnA codes for an active enzyme for glutamine synthesis in C. glutamicum. The glnA mutant was observed to be glutamineauxotrophic (Jakoby et al., 1996). Hence, the gene product of *qlnA2* has obviously no glutamine synthetase activity in C. glutamicum and its physiological role is unclear. Glutamate synthase is encoded by the gltBD operon in C. glutamicum (Beckers et al., 2001; Schulz et al., 2001).

The overall reactions of both pathways, GDH and GS/GOGAT, are very similar (figure 1). Both catalyze the NADPH-dependent formation of glutamate from ammonium and 2-oxoglutarate. But in contrast to the GDH-pathway, the GS/GOGAT-system additionally utilizes energy in form of ATP. Consequently, the GS/GOGAT system is strictly regulated to prevent waste of energy. Ammonium is assimilated mainly by GDH if C. glutamicum is growing in ammonium-rich medium. Under these conditions, GDH activity is on a high level (1.7 U/mg protein), GOGAT activity is not detectable, and GS activity is maintained at a low level (0.1 U/mg protein) exclusively to satisfy the glutamine requirements of the cell (Tesch et al., 1998). As GDH from *C. glutamicum* has only a low affinity to ammonium ($K_m = 3.08$) mM), it is not able to sufficiently assimilate ammonium under nitrogen limitation. Glutamine synthetases are known to have a significantly higher affinity to ammonium than glutamate dehydrogenases. Consequently, the GS/GOGAT system is activated in C. glutamicum under nitrogen limitation (1.5 U/mg protein and 35 mU/mg protein, respectively) (Tesch et al., 1998). Thus, utilization of GS/GOGAT allows nitrogen assimilation even under ammonium limitation, but at the expense of energy.

6

1.4. Nitrogen-dependent regulation

As described above, bacteria regulate nitrogen uptake and assimilation in dependence on the availability of nitrogen sources. For this purpose, bacteria have evolved complex regulatory networks. The most extensive model of nitrogendependent regulation has been described for the Gram-negative enteric bacterium *E. coli* (Merrick and Edwards, 1995; Reitzer, 2003; Ninfa, 2005).

In *E. coli*, two proteins play a major role in the regulation of nitrogen uptake and metabolism (figure 2). These are uridylyltransferase (UTase) and the signal transduction protein PII. UTase is a sensor for the internal concentration of glutamine. The glutamine pool is low under nitrogen starvation and high under nitrogen surplus. UTase transfers this signal to PII by uridylylation and deuridylylation, respectively. Unmodified PII is present under nitrogen surplus, while PII-UMP is present under nitrogen starvation (Jiang *et al.*, 1998a). In addition, PII itself is a sensor for the internal concentration of 2-oxoglutarate. Under nitrogen starvation, 2-oxoglutarate is accumulated. A high 2-oxoglutarate pool antagonizes the status of unmodified PII, which is present under high glutamine concentrations

Figure 2: Nitrogen regulation network of *E. coli.* The nitrogen status is sensed by uridylyltransferase (UTase) in *E. coli.* UTase reversibly uridylylates PII in response to the internal glutamine pool. PII additionally senses 2-oxoglutarate. These signals are transferred by protein interactions of PII/PII-UMP to the NRII/NRI system for transcriptional control of nitrogen-regulated genes and adenylyltransferase (ATase), which regulates glutamine synthetase (GS) activity. ATase reversible adenylylates GS to regulate its activity, whereas NRII reversibly phosphorylates NRI to influence its ability to activate transcription (Ninfa *et al.*, 2005).

(Kamberov et al., 1995; Jiang et al., 1998a; Jiang et al., 1998b). Thus, PII converts two input signals, the concentrations of glutamine and 2-oxoglutarate, in one output signal (Ninfa et al., 2005). This signal is transferred by PII to other regulatory proteins. On the one hand, PII and glutamine synergistically interact with adenylyltransferase (ATase), which regulates glutamine synthetase by adenylylation and deadenylylation. This results in unmodified and fully active GS under nitrogen starvation, whereas GS-AMP with reduced activity is present under nitrogen surplus (Stadtman, 1990; Jiang et al., 1998b). On the other hand, PII interacts with NRII, which is part of the NRII/NRI two component system. Under nitrogen surplus, PII binds the kinase NRII and thereby represses phosphorylation of the response factor NRI (Jiang et al., 1998b; 1998c). Under nitrogen limitation, NRII is released and phosphorylates NRI, which then activates transcription of σ^{54} -dependent genes. Among these are genes of nitrogen metabolism, transport, and regulation (Atkinson et al., 2002). For example, expression of nac, coding for the transcriptional regulator Nac, is activated by NRI under nitrogen limitation. Nac itself regulates the transcription of several genes of the glutamate and serine metabolism, e.g. gdh coding for glutamate dehydrogenase. Nac represses gdh transcription under nitrogen limitation and ammonium assimilation is taken over by the GS/GOGAT system (Camarena et al., 1998). Beside that, NRI activates the expression of the glnK gene, coding for GlnK, under nitrogen limitation. GlnK is another PII-type protein. It is also modified by UTase in response to the nitrogen status in the same manner as PII. GInK is responsible for fine tuning of the nitrogen regulation cascade under nitrogen limitation by the formation of heterotrimers of PII-UMP and GInK-UMP (Atkinson et al., 1998; 1999; 2002; Forchhammer et al., 1999; van Heeswijk et al., 2000). Additionally, GInK binds to the ammonium transporter AmtB, if nitrogenstarved cells are exposed to an ammonium rich environment. This deactivates AmtB presumably to prevent the formation of a futile cycle under ammonium surplus. Additionally, AmtB is discussed to be a sensor for external ammonium and thereby influences the uridylylation state of GlnK (Javelle et al., 2004).

Nitrogen control of *C. glutamicum* differs substantially from that of the model organism *E. coli* (Burkovski, 2003a; 2003b). In *C. glutamicum*, a signal cascade of at least three proteins plays a major role in nitrogen control (figure 3). This cascade

Figure 3: The nitrogen regulation network of *C. glutamicum*. A: Under nitrogen limitation, a so far unknown sensor protein induces the adenylylation of GlnK by GlnD. GlnK-AMP binds the transcriptional repressor AmtR to inactivate it. Consequently, AmtR-controlled genes are transcribed. B: After a shift of nitrogen starved cells to an ammonium rich environment, GlnD deadenylylates GlnK-AMP. Unmodified GlnK does not deactivate AmtR anymore. Consequently, AmtR represses the transcription of its target genes. Unmodified GlnK is sequestered to the membrane. It binds AmtB and thereby most probably deactivates AmtB. Beside that, binding to AmtB induces degradation of GlnK by proteolysis, which is depending on the proteases FtsH, ClpCP, and ClpXP. (Stösser *et al.*, 2004)

consists of the GInD protein, which is similar to the UTase from *E. coli*, the GInK protein, which is the only PII-type protein in *C. glutamicum*, and AmtR, which is a TetR-type transcriptional repressor (Jakoby *et al.*, 1999; 2000; Nolden *et al.*, 2001b). Under nitrogen surplus, AmtR represses transcription of several genes involved in nitrogen metabolism, transport, and regulation (figure 4) (Jakoby *et al.*, 2000; Nolden *et al.*, 2001b; Beckers, 2004). Under this condition, GlnD and GlnK are present only on a low basal level. In response to nitrogen starvation, GlnD adenylylates GlnK (Strösser *et al.*, 2004), which then binds to AmtR (figure 3A). AmtR bound by GlnK-AMP does not bind DNA anymore (Beckers *et al.*, 2005). Consequently, repression of transcription by AmtR is released by GlnK-AMP and the expression of corresponding genes is induced under nitrogen limitation. If nitrogen-starved cells are shifted to an ammonium rich enviroment, GlnD deadenylylates GlnK (Stösser *et al.*, 2004). AmtR cannot be bound by unmodified GlnK, which allows repression of target gene transcription again (figure 3B) (Beckers *et al.*, 2005). Moreover, unmodified GlnK binds to the ammonium

Figure 4: The AmtR-regulon of *C. glutamicum.* The transcriptional repressor AmtR from *C. glutamicum* regulates the expression of genes coding for transporters, enzymes, and signal transduction proteins as indicated. Repression occurs under nitrogen surplus and is released under nitrogen limitation. (Beckers, 2004)

transporter AmtB in response to an ammonium upshift. On the one hand, this is suspected to inactivate AmtB, as described for *E. coli*, to prevent an energy-costly futile cycle in the presence of ammonium. On the other hand, binding of GlnK to AmtB leads to a rapid degradation of GlnK by a process, that involves the proteases FtsH, ClpCP, and ClpXP. Nevertheless, around 5 % of GlnK are protected against proteolysis. The role and the mechanism of protection of GlnK is still unknown (Strösser *et al.*, 2004).

In addition to the transcriptional regulation by the GInD/GInK/AmtR cascade, glutamine synthetase is regulated on the level of activity bv adenylylation/deadenylylation. In accordance to E. coli, GS-AMP is present under nitrogen surplus and is less active than unmodified GS, which is present under nitrogen starvation (Nolden et al., 2001a). The modification/demodification of GS is catalyzed by ATase. But in contrast to E. coli, ATase works independently of GInK (Burkovski, 2003b).

While the signal transduction via the GInD/GInK/AmtR cascade is well-investigated, the sensor of the nitrogen status in C. glutamicum is still unknown. An overexpression of the corresponding *qlnD* gene leads to a loss of nitrogen control (Nolden et al., 2001b). This observation is inconsistent with a putative role of GInD as a primary sensor, as described for in E. coli. Consequently, the presence of at least one additional protein was postulated, which functions as a sensor for the nitrogen status of the cell and controls GInD activity in response to nitrogen supply (figure 3). Beside that, the signal indicating the nitrogen status is unknown as well. The guestion if the internal concentrations of glutamate, glutamine, and ammonium, respectively, indicate the nitrogen status in C. glutamicum was investigated (Nolden et al., 2001b). The cellular concentration of glutamate is high under nitrogen surplus as well as under nitrogen starvation. Thus, glutamate can be excluded. For glutamine, Nolden et al. (2001b) observed only a slight drop of the internal concentration from approximately 18 mM to 8 mM 10 minutes after the removal of nitrogen sources. This indicates, that glutamine does not play a major role in sensing the nitrogen status in C. glutamicum. To measure internal ammonium, Nolden et al. (2001) initially used the indophenol method (Jahns et al., 1988). But this method is significantly influenced by high amino acid pools as present in C. glutamicum and is not reliable under these conditions (L. Nolden, personal communication). Because of that, the values of internal ammonium concentrations presented by Nolden et al. (2001b) might be incorrect.

Glutamate dehydrogenase plays an important but so far less investigated role in nitrogen control of *C. glutamicum*. The presence of the *gdh* gene, coding for glutamate dehydrogenase, is essential for a functional nitrogen-dependent regulation in *C. glutamicum*. GS and GOGAT activity are normally downregulated in the *C. glutamicum* wild type under nitrogen surplus. Deletion of *gdh* causes a significantly increase of GS activity and deregulation of GOGAT activity (Tesch *et al.*, 1998). In accordance to this, a loss of transcription control by the GlnD/GlnK/AmtR signal cascade was observed upon deletion of *gdh*. In the *C. glutamicum* wild type, transcription of *amtA* and *amtB* is repressed by AmtR under nitrogen surplus. Deletion of *gdh* leads to the loss of repression of *amtA* and *amtB* transcription. Consequently, a deletion of *gdh* abolishes transcription control by the

GInD/GInK/AmtR signal cascade (L. Nolden, personal communication). The underlying mechanism for the interaction between *gdh* and the signal cascade is unknown so far.

In addition to that, GDH seems to have a so far unknown function under nitrogen limitation. In other bacteria, expression of NADPH-dependent GDH is either downregulated under nitrogen starvation or it remains constant (Brenchley et al., 1975; Schwacha et al., 1993; Merick and Edwards, 1995; Camarena et al., 1998). In agreement with this, GDH from C. glutamicum was first reported to be unaffected by nitrogen supply. Tesch and co-workers (1999) could not observe a significant change in GDH activity of *C. glutamicum* under nitrogen limitation. This observation was supported by transcriptome analyses of C. glutamicum cultivated under nitrogen excess and nitrogen limitation, where gdh transcription was observed to be unaffected (Beckers, 2004; Silberbach, 2004). In contrast to this, L. Nolden observed a significant increase in *gdh* transcription as well as GDH activity under nitrogen limitation (personal communication). This is remarkable, as an upregulation of NADPH-dependent GDH in bacteria under nitrogen limitation was unknown at that time. Recently published data show, that NADPH-dependent GDH from Ruminococcus flavefaciens is also upregulated on the level of transcription under ammonium limitation (Antonopoulos et al., 2003). The physiological reason for this regulation in *R. flavefaciens* is still unknown. Interestingly, GDH from *R. flavefaciens* and GDH from *C. glutamicum* are closely related. Both are members of the α_6 -50 class of small GDHs, and with an amino acid identity of 63 %, GDH from R. flavefaciens is the most similar homolog of C. glutamicum GDH known so far (Antonopoulos et al., 2003). Because of these observations, one can speculate about a putative new and so far unknown physiological role of certain NADPHdependent GDHs in bacteria under nitrogen limitation. However, the induction of gdh transcription under nitrogen limitation in C. glutamicum seems not to depend on the global nitrogen regulator AmtR. A deletion of the amtR gene did not affect gdh transcription (L. Nolden, personal communication). Consequently, an additional and so far unknown regulatory system for nitrogen-dependent transcription control seems to be present in C. glutamicum, which regulates gdh transcription in response to the nitrogen supply.

1.5. Objectives

Expression of the *gdh* gene is induced under nitrogen limitation. This regulation does not depend on the global nitrogen regulator AmtR. Consequently, a putative new regulatory system for nitrogen-dependent transcription control is present in *C. glutamicum*. The main aim of this work is the identification and characterization of the putative new regulator of *gdh* transcription.

Glutamate dehydrogenase plays a crucial role for a functional nitrogen control by the GlnD/GlnK/AmtR signal cascade. Deletion of the *gdh* gene leads to a complete loss of transcription control by AmtR. The underlying mechanism is still unknown. The characterization of this effect is the second aim of this work.

Ammonium is suspected of being toxic for bacteria due to the formation of a putative energy-wasting transmembrane cycle. An additional aim of this work is to investigate putative ammonium toxicity in *C. glutamicum* and the presence of a putative futile cycle.

2. Materials and methods

2.1. Bacterial strains, plasmids, and primers

Bacterial strains used in this study are listed in table 1, plasmids are listed in table 2.

Table 1: *E. coli* and *C. glutamicum* strains that were used in this work. For strains that were constructed as part of this work, a detailed description is given in the appendix. Nx^R: resistant to nalidixic acid.

Strain	Genotype, phenotype	Reference
E. coli		
DH5α <i>mcr</i>	endA1 supE44 thi-1 λ^- recA1 GyrA96 relA1 deoR Δ (lacZYA-argF) U169 ϕ 80 Δ lacZ Δ M15mcrA Δ (mmr hsdRMS mcrBC)	Grant <i>et al</i> ., 1990
JM109	F [•] traD36 lacl ^q Δ (lacZ)M15 proA ⁺ B ⁺ I e14 ⁻ (McrA ⁻) Δ (lac- proAB) thi gyrA96 (Nx ^R) endA1 hsdR17 (r_km_k) relA1 supE44 recA1	Yanisch-Perron <i>et</i> <i>al</i> ., 1985
M15 pREP4	RecA ⁺ , Uvr ⁺ , Lon ⁺ <i>lac, ara, gal, mtl,</i> pREP4	Qiagen, Hilden
C. glutamicum		
ATCC 13032	wild type	Abe <i>et al</i> ., 1967
RES167	ATCC 13032 ∆(cgllM-cgllRR-cgllIR)	Tauch <i>et al.</i> , 2002
MJ6-18	ATCC 13032 <i>∆amtR</i>	Jakoby <i>et al</i> ., 2000
TM∆farR	RES167 <i>∆farR</i>	this work
TM∆whiH	RES167 ∆whiH	this work
TM∆oxyR	RES167 ∆oxyR	this work
TM∆farR∆amtR	RES167 ∆farR ∆amtR	this work
TM∆farR∆amtR ∆whiH	RES167 ∆farR ∆amtR ∆whiH	this work
TM∆farR∆amtR ∆whiH∆oxyR	RES167 ∆farR ∆amtR ∆whiH ∆oxyR	this work

LNAGDH	ATCC 13032 ∆ <i>gdh</i>	Nolden, unpublished
LNAGS	ATCC 13032 <i>∆gInA</i>	Nolden, unpublished
TM∆gdh∆gInA	LN∆GDH ∆ <i>gInA</i>	this work
JS-1	ATCC 13032 ∆amtA ∆amtB	Strösser, unpublished

Table 2: Plasmids that were used in this work. For plasmids that were constructed as part of this work, a detailed description is given in the appendix. Ap^R: resistant to ampicilin. Km^R: resistant to kanamycin.

Plasmid	Description	Reference
pK18mobsacB	Km ^R , <i>ori</i> pUC, <i>mob</i> , <i>sacB</i>	Schäfer <i>et al</i> ., 1994
pK18∆amtR	Deletion vector for <i>amtR</i> of <i>C. glutamicum</i> , derived from pK18mobsacB, Km ^R , <i>ori</i> pUC, <i>mob</i> , <i>sacB</i>	Nolden, 2001
pK18∆farR	Deletion vector for <i>farR</i> of <i>C. glutamicum</i> , derived from pK18mobsacB, Km ^R , <i>ori</i> pUC, <i>mob</i> , <i>sacB</i>	this work
pK18∆whiH	Deletion vector for <i>whiH</i> of <i>C. glutamicum</i> , derived from pK18mobsacB, Km ^R , <i>ori</i> pUC, <i>mob</i> , <i>sacB</i>	this work
pK18∆oxyR	Deletion vector for <i>oxyR</i> of <i>C. glutamicum</i> , derived from pK18mobsacB, Km ^R , <i>ori</i> pUC, <i>mob</i> , <i>sacB</i>	this work
pK18∆gInA	Deletion vector for <i>glnA</i> of <i>C. glutamicum</i> , derived from pK18mobsacB, Km ^R , <i>ori</i> pUC, <i>mob</i> , <i>sacB</i>	Nolden, unpublished
pZ8-1	Km ^R , <i>ptac</i> , <i>ori C. glutamicum</i>	Degussa AG, Halle
pUC18	Ap ^R , <i>lacZ</i> α	Viera & Messing, 1982
pUC11-1.8	Expression vector of <i>amtR</i> of <i>C. glutamicum</i> derived from pUC19, Ap^{R} , <i>lacZ</i> α	Jakoby <i>et al</i> ., 2000
pUCfarR	Expression vector of <i>farR</i> of <i>C. glutamicum</i> derived from pUC18, Ap ^R , <i>lacZ</i> α	this work

pUCwhiH	Expression vector of <i>whiH</i> of <i>C. glutamicum</i> derived from pUC18, Ap ^R , <i>lacZ</i> α	this work
pUCoxyR	Expression vector of $oxyR$ of <i>C. glutamicum</i> derived from pUC18, Ap ^R , <i>lacZ</i> α	this work
pZgdh	Expression vector of <i>gdh</i> from <i>C. glutamicum</i> , derived from pZ8-1, Km ^R , <i>ptac</i> , <i>ori C. glutamicum</i>	this work
pZgdhEC	Expression vector of <i>gdh</i> from <i>E. coli</i> , derived from pZ8-1, Km ^R , <i>ptac</i> , <i>ori C. glutamicum</i>	this work
pZgdh-K92L	Expression vector for an enyzmatical inactive mutant of GDH from <i>C. glutamicum</i> , derived from pZ8-1, Km ^R , <i>ptac</i> , <i>ori C. glutamicum</i>	this work
pQE30Xa	Ap ^R , <i>ori</i> CoIE1, PT5	Qiagen, Hilden
pQE30Xagdh	Expression vector for his-tagged GDH from <i>C. glutamicum,</i> Ap ^R , <i>ori</i> CoIE1, PT5	this work
	_	
pJC1	Km ^R , <i>ori C. glutamicum</i>	Cremer <i>et al</i> ., 1990
pJC1 pJCgdhlacZ	 Km^R, ori C. glutamicum Km^R, ori C. glutamicum, harbouring a fusion of the gdh promoter of C. glutamicum and lacZ 	Cremer <i>et al</i> ., 1990 this work
pJC1 pJCgdhlacZ pK18gdh-lacZ	 Km^R, <i>ori C. glutamicum</i> Km^R, <i>ori C. glutamicum</i>, harbouring a fusion of the <i>gdh</i> promoter of <i>C. glutamicum</i> and <i>lacZ</i> Km^R, <i>ori</i> pUC, <i>mob</i>, <i>sacB</i>, harbouring a fusion of the <i>gdh</i> promoter of <i>C. glutamicum</i> and <i>lacZ</i> 	Cremer <i>et al.</i> , 1990 this work Nolden, unpublished
pJC1 pJCgdhlacZ pK18gdh-lacZ PGEM3z-amt	Km ^R , <i>ori C. glutamicum</i> Km ^R , <i>ori C. glutamicum</i> , harbouring a fusion of the <i>gdh</i> promoter of <i>C. glutamicum</i> and <i>lacZ</i> Km ^R , <i>ori</i> pUC, <i>mob</i> , <i>sacB</i> , harbouring a fusion of the <i>gdh</i> promoter of <i>C. glutamicum</i> and <i>lacZ</i> Ap ^R , <i>lacZa</i> , harbouring a 0.5 kb fragment of the <i>amtA</i> gene	Cremer <i>et al.</i> , 1990 this work Nolden, unpublished Nolden, 2001
pJC1 pJCgdhlacZ pK18gdh-lacZ PGEM3z-amt PGEM3z-amtB	Km ^R , <i>ori C. glutamicum</i> Km ^R , <i>ori C. glutamicum</i> , harbouring a fusion of the <i>gdh</i> promoter of <i>C. glutamicum</i> and <i>lacZ</i> Km ^R , <i>ori</i> pUC, <i>mob</i> , <i>sacB</i> , harbouring a fusion of the <i>gdh</i> promoter of <i>C. glutamicum</i> and <i>lacZ</i> Ap ^R , <i>lacZ</i> α , harbouring a 0.5 kb fragment of the <i>amtA</i> gene Ap ^R , <i>lacZ</i> α , harbouring a 0.5 kb fragment of the <i>amtB</i> gene	Cremer <i>et al.</i> , 1990 this work Nolden, unpublished Nolden, 2001 Nolden, 2001
pJC1 pJCgdhlacZ pK18gdh-lacZ PGEM3z-amt PGEM3z-amtB PGEM3z-gltB	Km ^R , <i>ori C. glutamicum</i> Km ^R , <i>ori C. glutamicum</i> , harbouring a fusion of the <i>gdh</i> promoter of <i>C. glutamicum</i> and <i>lacZ</i> Km ^R , <i>ori</i> pUC, <i>mob</i> , <i>sacB</i> , harbouring a fusion of the <i>gdh</i> promoter of <i>C. glutamicum</i> and <i>lacZ</i> Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>amtA</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>amtB</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>gltB</i> gene	Cremer <i>et al.</i> , 1990 this work Nolden, unpublished Nolden, 2001 Nolden, 2001 Nolden, 2001
pJC1 pJCgdhlacZ pK18gdh-lacZ PGEM3z-amt PGEM3z-amtB PGEM3z-gltB PGEM3Z-glnA	Km ^R , <i>ori C. glutamicum</i> , harbouring a fusion of the <i>gdh</i> promoter of <i>C. glutamicum</i> and <i>lacZ</i> Km ^R , <i>ori</i> pUC, <i>mob</i> , <i>sacB</i> , harbouring a fusion of the <i>gdh</i> promoter of <i>C. glutamicum</i> and <i>lacZ</i> Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>amtA</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>amtB</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>gltB</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>gltB</i> gene	Cremer <i>et al.</i> , 1990 this work Nolden, unpublished Nolden, 2001 Nolden, 2001 Nolden, 2001 Nolden, 2001
pJC1 pJCgdhlacZ pK18gdh-lacZ PGEM3z-amt PGEM3z-amtB PGEM3z-gltB PGEM3Z-glnA PGEM4z-gdh	Km ^R , <i>ori C. glutamicum</i> , harbouring a fusion of the <i>gdh</i> promoter of <i>C. glutamicum</i> and <i>lacZ</i> Km ^R , <i>ori</i> pUC, <i>mob</i> , <i>sacB</i> , harbouring a fusion of the <i>gdh</i> promoter of <i>C. glutamicum</i> and <i>lacZ</i> Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>amtA</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>amtB</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>gltB</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>gltB</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>gltB</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>glnA</i> gene	Cremer <i>et al.</i> , 1990 this work Nolden, unpublished Nolden, 2001 Nolden, 2001 Nolden, 2001 Nolden, 2001 Nolden, 2001
pJC1 pJCgdhlacZ pK18gdh-lacZ PGEM3z-amt PGEM3z-amtB PGEM3z-gltB PGEM3Z-glnA PGEM4z-gdh PGEM3z-glnD	Km ^R , <i>ori C. glutamicum</i> , harbouring a fusion of the <i>gdh</i> promoter of <i>C. glutamicum</i> and <i>lacZ</i> Km ^R , <i>ori</i> pUC, <i>mob</i> , <i>sacB</i> , harbouring a fusion of the <i>gdh</i> promoter of <i>C. glutamicum</i> and <i>lacZ</i> Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>amtA</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>amtB</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>gltB</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>gltB</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>gltB</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>glnA</i> gene Ap ^R , <i>lacZα</i> , harbouring a 0.5 kb fragment of the <i>glnA</i> gene	Cremer <i>et al.</i> , 1990 this work Nolden, unpublished Nolden, 2001 Nolden, 2001 Nolden, 2001 Nolden, 2001 Nolden, 2001 Nolden, 2001

2.2. Cultivation of bacteria

Culture media used in this study are listed in table 3. If appropriate, antibiotics were added to the media in the following final concentrations: 50 µg/mL carbenicillin, 25 µg/mL kanamycin, or 10 µg/mL kanamycin (latter only for *C. glutamicum* strains after electroporation). *E. coli* strains were routinely grown at 37 °C in LB medium or on LB plates. *C. glutamicum* strains were routinely cultivated at 30 °C in CgC medium, in Brain Heart Infusion (BHI) medium, or on BHI plates. To study various stress conditions under highly reproducible conditions, a standard inoculation schema was applied. *C. glutamicum* strains were first cultivated in 3 mL BHI medium for 8 hours. This culture was used to inoculate 25 mL CgC medium for overnight growth. This culture, with an overnight OD₆₀₀ of approximately 25-33, was used to inoculate 100 mL of fresh CgC medium to an OD₆₀₀ of approximately 1 and cells were grown until the exponential phase was reached (OD₆₀₀ approximately 4-5). In case of LNAGS and TMAgdhAglnA, all media were additionally supplemented with 100 mM glutamine. To analyze the effect of various cultivation conditions or medium compositions, the cells were treated in the following as listed in table 4.

Medium	Ingredients (per L)
LB	10 g Tryptone, 5 g yeast extract, 10 g NaCl
LB plates	15 g Bacto-Agar in LB medium
BHI	37 g/L Brain Heart Infusion
BHI plates	15 g Bacto-Agar in BHI medium
CgC	42 g MOPS, 20 g $(NH_4)_2SO_4$, 5 g urea, 0.5 g KH_2PO_4 , 0.5 g K_2HPO_4 , pH (NaOH) = 7.0, after autoclavation: 10 mL 100 mM CaCl ₂ , 10 mL 1 M MgSO ₄ , 200 mg biotin, 1 mL trace element solution, 50 mL 50 % glucose
CgCoN	42 g MOPS, 0.5 g KH_2PO_4 , 0.5 g K_2HPO_4 , pH (NaOH) = 7.0, after autoclavation: 10 mL 100 mM CaCl ₂ , 10 mL 1 M MgSO ₄ , 200 mg biotin, 1 mL trace element solution, 50 mL 50 % glucose
CgCoC	42 g MOPS, 20 g $(NH_4)_2SO_4$, 5 g urea, 0.5 g KH_2PO_4 , 0.5 g K_2HPO_4 , pH (NaOH) = 7.0, after autoclavation: 10 mL 100 mM CaCl ₂ , 10 mL 1 M MgSO ₄ , 200 mg biotin, 1 mL trace element solution
Trace element solution	28.5 g FeSO ₄ x 7 H ₂ O, 16.5 g MnSO ₄ x H ₂ O, 6.4 g ZnSO ₄ x 7 H ₂ O, 764 mg CuSO ₄ x 5 H ₂ O, 129 mg CoCl ₂ x 6 H ₂ O, 44 mg NiCl ₂ x 6 H ₂ O, 64 mg Na ₂ MoO ₄ x 2 H ₂ O, 48 mg H ₃ BO ₃ , 50 mg SrCl ₂ , 50 mg BaCl ₂ x 2 H ₂ O, 28 mg KAl(SO ₄) ₂ x 12 H ₂ O, pH (H ₂ SO ₄) = 1, sterilization by filtration.

Table 3: Culture media used in this study.

Table 4: Cultivation protoco	ols for the analysis	of various cond	itions. To study the
effect of various conditions, C.	<i>glutamicum</i> strains wa	s treated as descr	ibed in this table.

Condition	Practical procedure
Nitrogen starvation	Cells were harvested by centrifugation and resuspended in 100 mL pre- warmed CgCoN medium. Cells were cultivated again at 30 °C. After a certain period of time, 200 mM $(NH_4)_2SO_4$ was added to the culture medium to restore nitrogen surplus conditions. LN Δ GS was pulsed with either 200 mM $(NH_4)_2SO_4$, or 100 mM glutamine, or both, 200 mM $(NH_4)_2SO_4$ and 100 mM glutamine.
Variation of the nitrogen source	Cells were harvested by centrifugation and resuspended in 100 mL pre- warmed CgCoN medium supplemented with 1 % of the appropriate nitrogen source. Cells were cultivated again at 30 °C.
Carbon starvation	Cells were harvested by centrifugation and resuspended in 100 mL pre- warmed CgCoC medium. Cells were cultivated again at 30 °C. After a certain period of time, 1 % glucose was added to the culture medium to restore carbon surplus conditions.
Variation of the carbon source	Cells were harvested by centrifugation and resuspended in 100 mL pre- warmed CgCoC medium supplemented with 1 % of the appropriate carbon source. Cells were cultivated again at 30 °C.
Osmotic stress	1 M NaCl was added to the culture medium, and cells were cultivated at 30 $^\circ\text{C}.$
Oxidative stress	Either 100 μ M paraquat (superoxide stress) or 58 μ M H ₂ O ₂ (peroxide stress) was added to the culture medium, and cells were cultivated at 30 °C.
Oxygen limitation	50 mL of a culture was transferred to a 50 mL falcon tube. The falcon tube was sealed. In this airtight container, cells were cultivated at 30 °C.
Chill stress	Cells were harvested by centrifugation and resuspended in 100 mL CgC medium with a temperature of 15 °C. Cells were cultivated at 15 °C.
Heat stress	Cells were harvested by centrifugation and resuspended in 100 mL CgC medium with a temperature of 37 °C. Cells were cultivated at 37 °C.
Growth phase	Cells were cultivated at 30 °C until the stationary phase was reached.
Addition of intermediates of arginine biosynthesis	1 % of arginine, citrulline, and ornithine, respectively, was added to the culture medium, and cells were cultivated at 30 °C.
High ammonium concentrations	Cells were harvested by centrifugation and resuspended in 100 mL pre- warmed CgCoN medium supplemented with either 0.25 M $(NH_4)_2SO_4$, 0.5 M $(NH_4)_2SO_4$, or 1 M $(NH_4)_2SO_4$. As control, cells were resuspended in prewaremd CgCoN medium supplemented with either 0.25 M $(NH_4)_2SO_4$ + 0.25 M Na_2SO_4 or 0.25 M $(NH_4)_2SO_4$ + 0.75 M Na_2SO_4 . After resupending, cells were cultivated at 30 °C. Cultures of TM Δ gdh Δ glnA were additionally supplemented with 100 mM glutamine.

2.3. Genetic manipulation of bacteria

2.3.1. Preparation of competent *E. coli* cells and transformation

To prepare competent *E. coli* cells, 20 mL LB medium was inoculated with *E. coli* cells and cultivated for 8 h at 37 °C. 1 mL of this culture was used to inoculate 250 mL SOB medium for overnight growth at 20 °C in a 2 L flask. On the next day, the culture was chilled on ice for 10 min. Cells were harvested by centrifugation (4000 x g, 4 °C, 8 min). The cell pellet was resuspended in 80 mL ice-cold TB buffer and centrifuged again (4000 x g, 4 °C, 10 min). After resuspending in 40 mL TB buffer supplemented with 1.4 mL DMSO, the cells were incubated for 10 min on ice. Aliquots of 100 μ L were transferred to pre-cooled reaction tubes. These were immediately frozen in liquid nitrogen and stored at -80 °C.

For transformation, a 100 μ L aliquot of competent *E. coli* cells was thawed on ice and plasmid DNA was added. The cells were incubated for 30 min on ice. After a heat shock at 42 °C for 30 s, cells were again incubated for 2 min on ice and 900 μ L SOC medium was added. The cell suspension was cultivated for 1 h at 37 °C. After that, 200 μ L of the cell suspension was plated on LB plates containing the appropriate antibioticum.

<u>TB buffer:</u> 10 mM Pipes, 15 mM CaCl₂, 250 mM KCl, pH (KOH) = 6.7. After adjustment of pH, 55 mM MnCl₂ were added, sterilization by filtration.

<u>SOB medium:</u> 20 g/L Tryptone, 5 g/L yeast extract, 0.5 g/L NaCl, 2.5 mM KCl. After autoclavation, 5 mL 2 M MgCl₂ were added.

<u>SOC medium</u>: 10 g/L Tryptone, 5 g/L yeast extract, 5 g NaCl, 3.6 g/L glucose. After autoclavation, 5 mL 2 M MgCl₂ were added.

2.3.2. Preparation of competent C. glutamicum cells and transformation

To prepare competent *C. glutamicum* cells, 20 mL BHI medium was inoculated with *C. glutamicum* cells and cultivated for 8 h at 30 °C. Subsequently, this culture was used to inoculate 200 mL LB medium with growth inhibitors to an OD_{600} of 0.35. This was cultivated at 20 °C in a 2 L flask overnight. On the next day, cells were

harvested by centrifugation (4000 x g, 4 °C, 8 min). The cell pellet was washed five times with ice-cold 10 % glycerol. Finally, the cell pellet was resuspended in 1 mL ice-cold 10 % glycerol. Aliquots of 50 μ L were transferred to pre-cooled reaction tubes. These were immediately frozen in liquid nitrogen and stored at -80 °C.

For transformation, a 50 μ L aliquot of competent *C. glutamicum* cells was thawed on ice and transferred to a pre-cooled electroporation cuvette (Biorad, München). Plasmid DNA was added and electroporation was performed with a Gene-Pulser (Biorad, München) at 2.5 kV, 600 Ω , and 25 μ F. After that, the cell suspension was transferred to a cultivation tube and 1 mL BHIS medium was added. The cells were cultivated for 90 min at 30 °C. After that, 200 μ L of the cell suspension was plated on a BHI plate containing the appropriate antibioticum.

<u>LB medium with growth inhibitors:</u> 10 g/L Tryptone, 5 g/L yeast extract, 5 g/L NaCl, 4 g/L isonicotine acid hydrazide, 25 g/L glycine, 0.1 % (v/v) Tween 80, sterilization by filtration.

BHIS medium: 37 g/L Brain Heart Infusion, 91 g/L sorbitol, sterilization by filtration.

2.3.3. Generation of deletion strains of *C. glutamicum*

To introduce a chromosomal deletion in the *C. glutamicum* genome, a method similar to the protocols described by Schäfer *et al.* (1994) and Niebisch *et al.* (2001) was used. The flanking genomic sequences of the target gene were cloned into the plasmid pK18mobsacB. *C. glutamicum* was transformed with the resulting plasmid. Cells carrying the plasmid were selected by their resistance to kanamycin and their sensitivity to sucrose. A single colony carrying the plasmid was used to inoculate 3 mL BHI medium containing 25 μ g/mL kanamycin. After overnight growth at 30 °C, the cells were harvested by centrifugation (14,000 x g, 30 s, RT) and wash four times with 2 mL CgXIIoNoPoPC medium. Finally, the cells were resuspended in 3 mL CgXIIoNoPoPC medium and cultivated for 6 h at 30 °C in the absence of kanamycin. After that, the culture was diluted 1:1000 and 1:10000, respectively, in 100 μ I BHI medium. These cell suspensions were plated on BHI plates containing 10 % sucrose. Colonies that were resistent to sucrose and sensitive to kanamycin were analyzed by PCR to identify clones carrying the desired deletion.

<u>CgXIIoNoPoPC</u>: 42 g/L MOPS, pH (NaOH) = 7.0, after autoclavation: 1 mM MgSO₄. 0.1 mM CaCl₂, 0.2 mg/L biotin, 1 mL/L trance element solution, 0.5% glucose.

2.4. Working with DNA

2.4.1. Isolation of plasmid DNA from E. coli

To isolate plasmid DNA from *E. coli*, the NucleoSpin[®] Extract kit (Macherey-Nagel, Düren) was used as recommended by the supplier.

2.4.2. Isolation of genomic DNA from C. glutamicum

The isolation of genomic DNA from *C. glutamicum* was performed as described by Eikmanns *et al.* (1994). *C. glutamicum* cells were cultivated overnight in 5 mL LB medium. After that, cells were harvested by centrifugation (14.000 x g, 30 s, RT) and the cell pellet was resuspended in 1 mL TE buffer supplemented with 15 mg lysozyme (Sigma, Deisenhofen). After shaking for 3 h at 37 °C, 200 μ L 10 % SDS was added. After an incubation of 2 min at 37 °C, 3 mL lysis buffer and 125 μ L proteinase K (Roche Diagnostics) were added. The suspension was incubated overnight at 37 °C. On the next day, 2 mL of a saturated solution of NaCl was added and the suspension was gently mixed. After centrifugation (4000 x g, 30 min, RT), the supernatant was transferred to a 50 mL tube and ice-cold ethanol was added to a final volume of 50 mL. The precipitated genomic DNA was washed three times with 70 % ethanol, dried, and resuspended in water.

2.4.3. Gel electrohoresis and extraction of DNA from agarose gels

Gel electrophoresis of DNA was performed in 0.8 – 2 % agarose gels in 1 x TAE buffer as described by Sambrook *et al.* (1989). Samples were mixed with 5 x Loading Dye (MBI Fermentas, St. Leon-Roth). After electrophoresis, DNA was stained with ethidium bromide. For detection of stained DNA, the Image Master VDS system (Amersham Biosciences, Freiburg) was used. DNA was isolated from agarose gels using the NucleoSpion[®] Extract kit (Macherey-Nagel, Düren) as recommended by the supplier.

<u>1x TAE buffer:</u> 40 mM Tris, 0.5 mM EDTA, pH (acetic acid) = 7.5.

2.4.4. PCR and SOE-PCR

The selective amplification of specific DNA fragments was performed by PCR using the Taq PCR Master Mix (Qiagen, Hilden) as recommended by the supplier. For a total reaction volume of 25 μL, 10 pmol of each primer and 1 μL of the template DNA solution were added. Primers were supplied by Sigma-ARK (Darmstadt), Carl Roth GmbH (Karlsruhe), and Operon (Köln). The PCR was performed with a Mastercycler[®] personal or Mastercycler[®] gradient (Eppendorff, Hamburg) using the following program: 5 min, 95°C; 30x (30 s, 95 °C; 30 s, 60 °C; 1 min/kb, 72°C); 5 min, 72°C; 4°C. If appropriate, the PCR product was purified either with the NucleoSpin[®] Extract Kit (Macherey-Nagel, Düren) as recommended by the supplier or by gel electrophoresis as described in section 2.4.3..

Using SOE-PCR (splicing by overlapping extension-PCR) (Horton *et al.*, 1989), two DNA fragments were amplified and fused together by PCR without the use of restriction digestion. For this purpose, the 3' primer of one fragment was designed to overlap the 5' primer of the other fragment and *vice versa*. In a first step, each DNA fragment was amplified separately by PCR using the standard protocol described above. After that, 1 μ L of each reaction mix was applied as template for another PCR to synthesize the fusion DNA. The outer primers were added in excess (100 pmol) and the PCR was performed using the standard protocol described above. The fusion DNA was purified by gel electrophoresis followed by extraction of the DNA as described in section 2.4.3..

2.4.5. Restriction, ligation, and sequencing of DNA

For restriction of DNA, restriction enzymes were used as recommended by the suppliers (NEB, Frankfurt/Main; MBI Fermentas, St. Leon-Roth). If appropriate, 1 µL shrimp alkaline phosphate (SAP) or 1 µL calf intestinal alkaline phosphate (CIP) was added to dephosphorylate 5' ends (NEB, Frankfurt/Main). For fill-in of 5' overhangs to form blunt ends, the large Klenow fragment of DNA polymerase I (NEB, Frankfurt/Main) was used as recommended by the supplier. After restriction, dephosphorylation, or blunting, DNA was purified either with the NucleoSpin® Extract kit (Macherey-Nagel, Düren) following the supplier's protocol or by gel electrophoresis as described in section 2.4.3..

For the ligation of DNA fragments to restricted vectors, the Rapid DNA Ligation kit (MBI Fermentas, St. Leon-Roth) was used as recommended by the supplier. For direct ligation of PCR products to the pDrive vector by T/A-cloning, the QIAGEN PCR Cloning kit (Qiagen, Hilden) was used following the supplier's protocol. After ligation, 5 μ L of the reaction mix was used to transform competent *E. coli* cells as described in section 2.3.1.

DNA sequence analyses were carried out by the bioanalytics service unit at the *Center for Molecular Medicine Cologne* (ZMMK).

2.4.6. Site-directed mutagenesis

For the site-directed mutagenesis of DNA plasmids, the QuikChangeTM Site-Directed Mutagenesis Kit (Stratagene, La Jolla, USA) was used as recommended by the supplier. To produce the methylated template DNA plasmid, the *E. coli* strain JM109 was transformed with the respective unmethylated DNA plasmid as described in section 2.3.1.. From the resulting strain, the methylated DNA plasmid was isolated as described in section 2.4.1.. Primers were supplied by Operon (Köln).

2.5. Working with RNA

2.5.1. Isolation of total RNA from *C. glutamicum*

0.5 mL of a *C. glutamicum* culture with an OD_{600} of 4-5 were centrifuged (14000 x g, 30 s, 30 °C) and the cell pellet was immediately frozen in liquid nitrogen and stored at -80 °C. The cell pellet was thawed at room temperature while resuspensing the cells in RA1 buffer (NucleoSpin RNA II Kit, Macherey-Nagel, Düren). Immediately after resuspention of the cell pellet, the suspension was transferred to a tube containing glass beads and cells were disrupted by vigorous shaking at 6.5 m/s for 1 min using a FastPrep FP120 instrument (Q-BIOgene, Heidelberg). Cell debris and glass beads were removed by centrifugation (14000 x g, 2 min, RT) and the supernatant was mixed with 350 μ L 70 % ethanol. In the following, total RNA was isolated using the NucleoSpin[®] RNA II kit (Macherey-Nagel, Düren) as recommended by the supplier. The purity of total RNA isolated by this approach was

sufficient for dot blot hybridization experiments. However, for DNA microarray experiments and quantitative real-time RT-PCR experiments, total RNA was additionally treated with TURBO-DNase (Ambion, Austin, USA) and subsequently purified using again the NucleoSpin[®] RNA II kit (Macherey-Nagel, Düren) as recommended by the suppliers.

The integrity of isolated total RNA was analyzed by gel electrophoresis. Three μ L of purified total RNA was mixed with 10 μ L RNA loading buffer and incubated for 10 min at 70 °C. After that, the sample was placed on ice for 5 min. In the following, gel electrophoresis and detection of RNA was performed in accordance to the analysis of DNA described in section 2.4.3.

The concentrations of RNA samples used for dot blot hybridization experiments or DNA microarray analyses were measured spectroscopically at a wavelength of 260 nm ($\epsilon = 25 \text{ cm}^2/\text{mg}$) and their purity was analyzed by determine the quotient of A₂₆₀ / A₂₈₀, which is 2.0 for pure RNA. The concentrations of RNA samples used for quantitative real-time RT-PCR experiments were measured using the RiboGreen RNA Quantitation kit (Moleculare Probes, Leiden, NL) as recommended by the supplier.

<u>RNA loading buffer:</u> 250 μ L formamide, 83 μ L 37 % formaldehyde, 50 μ L 10 x MOPS buffer, 50 μ L glycerol, 0.01 % bromphenol blue, 0.01 % xylene cyanole, 1 μ L 10 g/L ethidium bromide, 120 μ L RNase-free water.

MOPS buffer: 200 mM MOPS, 50 mM sodium acetate, 10 mM EDTA, pH = 7.0.

2.5.2. Synthesis of digoxigenin-labelled RNA probes

Digoxigenin-labelled RNA probes were produced by *in vitro* transcription. For this purpose, a DNA plasmid that harbours an insert with the appropriate DNA sequence was used as template. Depending on the orientation of the insert, the plasmid was restricted either upstream or downstream of the insert and *in vitro* transcription was started from a SP6 or T7 promoter that was located at the opposite end of the insert. The probe was labelled by the use of digoxigenin-11-dUTP instead of dUTP for the *in vitro* transcription. The reaction mixture for the *in vitro* transcription was composed of:

- 1 μg template DNA (restricted plasmid)
- 2 μL DIG RNA Labeling Mix (Roche, Mannheim)
- 2 μL 10 x Transcription Buffer (Roche, Mannheim)
- 2 μL SP6 or T7 RNA polymerase (Roche, Mannheim)
- $13 \ \mu L$ RNase-free water

The reaction mixture was incubated for 2 h at 37 °C. After that, 1 μ L DNase (Roche, Mannheim) was added and the solution was incubated for another 20 min at 37 °C. The resulting digoxigenin-labelled RNA probe was stored at -80 °C.

2.5.3. Dot blot analysis and slot blot analysis

For the preparation of RNA blots, 2.5 μ g of total RNA was mixed with 100 μ L 10 x SSC and spotted onto a nylone membrane (BioBond[™] Nylon Membrane, Sigma, Taufkirchen), which was pre-equilibrated in 10 x SSC, using either the Minifold I Dot Blotter (Schleicher & Schuell, Dassel) or the Slot Blotter (Fisher Science, Schwerte). Subsequently, the nylon membrane was dried and RNA was crosslinked by UV radiation (125 mJ/cm²) using a Bio-Link instrument (LFT-Labortechnik, Wasserburg). The membrane was incubated for 1 h in 20 mL hybridization mix. Subsequently, 1 µL digoxigenin-labelled RNA probe (its preparation is described in section 2.5.2.) was added and hybridization was performed at 68 °C overnight. On the next day, the membrane was washed twice with 20 mL washing buffer 1 for 15 min at room temperature. Then, the membrane was washed twice with 20 mL washing buffer 2 for 15 min at 68 °C and subsequently, with 20 mL washing buffer 3 for 1 min at room temperature. After that, the membrane was incubated for 30 min in 20 mL 1 x blocking buffer. Then, 2 µL alkaline phosphatase conjugated antidigoxigenin Fab fragments (Roche, Mannheim) were added and the membrane was incubated for another 30 min at room temperature. After three washing steps with washing buffer 3 for 30 minutes at room temperature, the membrane was equilibrated in detection buffer for 3 minutes. 15 µL CSPD reagent (Roche, Mannheim) was dissolved in 1.5 mL detection buffer. This solution was used to moisten the membrane, which was subsequently covered with and heat-sealed in transparent plastic foil. After an incubation of 15 min at 37 °C, light emission was detected using a Fuji Luminescent Image Analyser LAS1000 (Raytest, Straubenhardt). The intensities of hybridization signals were determined using the software AIDA 2.0 (Raytest, Straubenhardt).

20 x SSC: 3 M NaCl, 0.3 M sodium citrate, pH (HCl) = 7.0.

<u>Hybridization mix:</u> 50 mL formamide, 20 mL 10 x blocking buffer, 25 mL 20 x SSC, 1 mL 10 % sodium lauryl sarconisate, 0.2 mL 10 % SDS, 3.8 mL water.

Washing buffer 1: 2 x SSC, 0.1 % SDS.

Washing buffer 2: 0.2 x SSC, 0.1 % SDS.

<u>10 x blocking buffer:</u> 10 % blocking reagent (Roche, Mannheim) in maleic acid buffer. 10 x blocking buffer was dissolved 1:10 in maleic acid buffer to obtain 1 x blocking buffer.

Maleic acid buffer: 0.1 M maleic acid, 0.15 M NaCl, pH (NaOH) = 7.5.

Washing buffer 3: 0.3 % (v/v) Tween 20 in maleic acid buffer.

Detection buffer: 0.1 M Tris, 0.1 M NaCl, pH (NaOH) = 9.0.

2.5.4. Quantitative real-time RT-PCR

Quantitative real-time RT-PCR was used to quantify the amount of a specific mRNA present in *C. glutamicum* cells. For this purpose, total mRNA was isolated from *C. glutamicum* cells as described in section 2.5.1.. One μ g of total RNA was applied for a reverse transcription reaction using the QuantiTect[®] Reverse Transcription kit (Qiagen, Hilden) as recommended by the supplier. 5 μ L of the resulting cDNA solution was used as template for quantitative real-time PCR using the QPCR Mastermix Plus For SYBR[®] Green I kit (Eurogentec, Seraing, Belgium) as recommended by the supplied by Operon (Köln), and the real-time thermocycler ABI Prism® 7000 (Applied Biosystems, Weiterstadt). The following program was used: 5 min, 95°C; 40x (15 s, 95 °C; 30 s, 60 °C; 30 s, 72°C); 4°C.
After each temperature cycle, the amount of PCR product was determined based on the fact that the applied SYBR® green I dye specifically interacts with doublestranded DNA to become highly fluorescent upon excitation. At the end of the run, the specificity and the purity of the PCR product were analyzed by performing of melt curve. As negative control, total RNA was directly applied for quantitative realtime PCR instead of the corresponding cDNA.

2.5.5. DNA-Microarray analysis

The DNA microarrays that were used in this work were developed and produced by the group of Dr. J. Kalinowski at the University of Bielefeld/Germany as described by Hüser *et al.* (2003). The preparation of the labelled probes, the hybridization of the microarrays, and subsequent detection of the hybridization signals were performed as described Hüser *et al.* (2003).

In order to compare the transriptomes of two different *C. glutamicum* strains, total RNA of both strains was isolated as described in section 2.5.1.. Fluorescently labelled cDNA copies of the total RNA samples were prepared by an indirect labelling technique. Aminoallylmodified nucleotides (aa-dUTP) were incorporated during a first strand reverse transcription, which was started by random priming using 5'-amino-modified hexamer nucleotides (Operon, Köln). For each *C. glutamicum* strain, 8 μ g total RNA and 2.5 μ g 5'-amino-modified hexamers were mixed, incubated at 70 °C for 10 min, and chilled on ice for 5 min to anneal the primers. Subsequently, the following components were added to each reaction mixture:

0.5 mM of each dNTP

0.8 mM aa-dUTP (Sigma–Aldrich, Deisenhofen)

- 300 units Super-Script II RNase H Reverse Transcriptase (Invitrogen, Karlsruhe)
- $6 \mu L$ 5 x first-strand buffer (Invitrogen, Karlsruhe)
- 3 μL 100 mM DTT
- 0.5 μL RNase inhibitor (Roche Diagnostics, Mannheim, Germany)
- ad. 30 µL water

The reverse transcription reactions were performed for 4.5 h at 42 °C. Subsequently, 10 μ L 0.5 mM EDTA and 10 μ L 1 M NaOH were added and the reaction mixtures were incubated for 10 min at 70 °C. After that, 10 μ L 1M HCl was added. The resulting cDNA was purified using the MinElute PCR Purification kit (Qiagen, Hilden) as recommended by the supplier. Then, 1 M sodium bicarbonate buffer (pH 9.0) was added to a final concentration of 0.1 M. One cDNA solutions was transferred to an aliquot of Cy3 monofunctional NHS-esters (Amersham Biosciences, Freiburg), the other to an aliquot of Cy5 monofunctional NHS-esters (Amersham Biosciences, Freiburg). Both solutions were incubated for 60 min in the dark. Non-reactive NHS-esters were quenched by the addition of 4.5 mL 4 M hydroxylamine and incubation for 15 min in the dark. Subsequently, the labelld cDNA probes were purified using the MinElute PCR Purification kit (Qiagen, Hilden) as recommended by the supplier.

For microarray hybridization, both cDNA probes were combined, vacuum-dried and dissolved in 70 μ L DIG Easy-Hyb hybridization solution (Roche, Mannheim). The DNA microarray was pre-hybridized in DIG EasyHyb hybridization solution for 45 min at 45 °C. The microarray was washed in water for 1 min and in ethanol for 10 s and finally centrifuged (185 x g, 3 min, RT). The hybridization probe was incubated for 5 min at 65 °C for denaturation. Hybridization was performed in a final volume of 65 μ L inside an *in situ* hybridization chamber (TeleChem International, Sunnyvale, USA) which was sealed with a cover slip. After 16 h at 45 °C, the microarray was washed for 5 min in washing buffer 1 at 42 °C, for 2 min in washing buffer 2 at room temperature, for 1 min in 0.2 x SSC at room temperature, and for 10 s in 0.1 x SSC at room temperature. Subsequently, the microarray was dried by centrifugation (185 x g, 3 min, RT). Signal acquisition was performed with a ScanArray 4000 microarray scanner (Perkin-Elmer, Boston, USA) and data analysis by the Ima-Gene 5.0 software (BioDiscovery, Los Angeles, USA) and the EMMA Microarray Data Analysis software (Dondrup *et al.*, 2003).

Washing buffer 1: 2 x SSC, 0.2 % SDS.

Washing buffer 2: 0.2 x SSC, 0.2 % SDS.

2.5.6. Analysis of mRNA degradation rates

To analyze the degradation rate of a specific mRNA *in vivo*, 100 μ L 10 g/L rifampicin was added to 100 mL of a *C. glutamicum* culture (OD₆₀₀ = 4-5) in order to stop transcription. Samples of 0.5 mL were taken before and 2, 4, 6, and 8 min after the addition of rifampicin. These samples were used to prepare total RNA as described in section 2.5.1.. The total RNA samples were used for RNA slot blot hybridization analysis as described in section 2.5.3. using an antisense probe for the investigated mRNA, which was prepared as described in section 2.5.2.. The intensities of hybridization signals were determined using the software AIDA 2.0 (Raytest, Straubenhardt). From these values, the degradation rate of the investigated mRNA was determined.

2.6. Working with proteins

2.6.1. Analysis of protein concentrations

The concentration of protein was measured as described by Bradford (1976). For this purpose, the Roti[®]-Nanoquant reagent (Carl Roth GmbH, Karlsruhe) was used as recommended by the supplier. Solutions of bovine serum albumine (NEB, Frankfurt/Main) with distinct concentrations were used for standardization. The concentration was determined by measuring the absorbance at 450 nm and 590 nm. The concentration of protein correlates with the quotient A_{590}/A_{450} .

2.6.2. SDS-PAGE and Coomassie staining

The electrophoretic separation of proteins was performed in 12 % SDS polyacrylamide gels (Schägger *et al.*, 1987). A separation gel was composed of:

12 mL acrylamide : bisacrylamide (30 : 0.8)

10	mL	gel	buffer
----	----	-----	--------

- 10.8 g urea
- ad. 30 mL water
- 10 μL TEMED
- 100 μL 10 % ammonium persulphate

The stocking gel was composed of:

1 mL	acrylamide : bisacrylamide (30 : 0.8)
3.1 mL	gel buffer
8 mL	water
10 μL	TEMED
100 μL	10 % ammonium persulphate

Protein samples were mixed with loading buffer, incubated for 5 min at 65 °C, and loaded onto the gel. Gel electrophoresis was performed in BlueVertical 101 apparatus (Serva Electrophoresis GmbH, Heidelberg) at 30 V for 30 min and subsequently at 100 V for 2 h.

For Coomassie staining, the polyacrylamide gel was first incubated in staining solution at room temperature overnight. On the next day, the gel was incubated in neutralization solution for 2 min and for 45 s in 25 % methanol. Subsequently, the gel was incubated in fixation solution for 8 h. If appropriate, the staining procedure was repeated several times to increase the staining efficiency and to be able to detect even small amounts of protein.

Gel buffer: 3 M Tris, 1M HCl, 0.3 % SDS.

<u>5 x Loading buffer:</u> 20 % SDS, 60 % glycerol (w/v), 250 mM Tris, 10 % mercaptoethanol (v/v), 0.01 % serva blue G, pH (HCl) = 6.8.

Cathode buffer: 0.1 M Tris, 0.1 M tricine, 0.1 % SDS.

Anode buffer: 0.2 M Tris, pH (HCI) = 8.9.

Staining solution: 98 % solution A, 2 % solution B, stirred overnight.

Solution A: 10 % ammonium sulphate, 2 % phosphoric acid.

Solution B: 5 % Coomassie Brilliant Blue G-250.

<u>Neutralization solution:</u> 0.1 M Tris, pH (H_3PO_4) = 6.5.

Fixation solution: 20 % ammonium sulphate.

2.6.3 Peptide mass fingerprinting

The identification of proteins was carried out by the bioanalytics service unit at the *Center for Molecular Medicine Cologne* (ZMMK). To identify a protein, the regarding band was excised from a Coomassie-stained polyacrylamide gel. The protein was digested by trypsin and subsequently analyzed by MALDI-TOF mass spectrometry. The resulting data were used to identify the investigated protein using the GPMAW 6.0 software (Lighthouse Data, Odense, DK) and a data base of all predicted proteins of *C. glutamicum* (Kalinowski *et al.*, 2003).

2.6.4. Analysis of β -galactosidase activity

The analysis of β -galactosidase activity was performed as described by Miller (1972). In this assay, *o*-nitrophenyl β -D-galactoside (OPNG) is converted by β -galactosidase into β -D-galactoside and *o*-nitrophenyl. The concentration of *o*-nitrophenyl can be measured spectroscopically.

Either 10 mL of a *C. glutamicum* culture with an OD₆₀₀ of 4-5 or 10 mL of an overnight culture of *E. coli* were centrifuged (4000 x g, 8 min, RT). The cell pellet was washed with 10 mL 0.1 M K₂HPO₄ (pH = 7.5) and subsequently frozen in liquid nitrogen and stored at -80 °C. The cell pellet was thawed on ice and resuspended in 1 mL reaction buffer. The optical density at 600 nm of this cell suspension was measured. Subsequently, 0.5 mL of the cell suspension was mixed with 1.3 mL reaction buffer and 0.2 mL 1 % CTAB. From the resulting suspension, 100 μ L were transferred into a new reaction tube. 800 μ L reaction buffer was added and the sample was incubated for 1 min in a water bath at 30 °C. To start the reaction, 200 μ L ONPG solution was added and the suspension was incubated for 10 min in a water bath at 30 °C. The reaction was removed by centrifugation (14000 x g, 1 min, RT) and the absorbance at 420 nm was measured spectroscopically. The specific activity of β-galactosidase was determined using the following equation:

$$activity = \frac{\Delta A \cdot V}{\varepsilon \cdot t \cdot m \cdot d}$$

activity:	β -galactosidase activity
Δ Α :	absorbance at 420 nm
V:	total volume
:3	extinction coefficient (4.5 $\text{cm}^2 \mu\text{mol}^{-1}$)
t:	reaction time
m:	cell dry weight
d:	layer thickness

Reaction buffer: 5 mM Tris, 5 % glycerol, 10 mM KCl, pH = 7.5.

<u>ONPG solution</u>: 4 mg/mL *o*-nitrophenyl β -D-galactoside, 0.1 M K₂HPO₄, pH = 7.5.

2.6.5. Analysis of GDH activity

To measure GDH activity as described by Meers *et al.* (1970), 15 mL of a *C. glutamicum* culture ($OD_{600} = 4-5$) was centrifuged (4000 x g, 8 min, RT). The cell pellet was washed with 15 mL ice-cold potassium phosphate buffer (200 mM, pH 7.0). Subsequently, the cell pellet was resuspended in 1.5 mL ice-cold potassium phosphate buffer (200 mM, pH 7.0). The cell suspension was transferred to a tube containing glass beads and cells were disrupted by vigorous shaking at 6.5 m/s for 1 min using a FastPrep FP120 instrument (Q-BIOgene, Heidelberg). Cell debris and glass beads were removed by centrifugation (14000 x g, 30 min, 4 °C). To measure the GDH activity of this cell extract, the following reaction mixture was added to an UV-cuvette:

- $100 \ \mu L$ -1 M Tris, pH 8.0
- $100 \ \mu L$ 2.5 mM NADPH
- 100 µL 200 mM ammonium chloride
- 10 µL cell extract
- 590 µL water

The reaction was started by the addition of 100 μ L 100 mM 2-oxoglutarate and the initial rate of absorbance decrease at 340 nm was measured using the DU-640 Spectrophotometer (Beckman, München). In addition to that, the concentration of total protein in the cell extract was determined as described in section 2.6.1.. From the resulting data, the specific GDH-activity was calculated using the following equation:

$$activity = \frac{\Delta A \cdot V}{\varepsilon \cdot t \cdot m \cdot d}$$

activity: specific GDH activity

- ΔA : decrease of absorbance at 340 nm
- V: total volume
- ε: extinction coefficient (6.3 cm² μ mol⁻¹)
- t: reaction time
- m: mass of total protein in the reaction mixture
- d: layer thickness

2.6.6. DNA affinity purification with magnetic beads

The approach of DNA affinity purification with magnetic beads was used to isolate transcriptional regulators by their ability to bind specifically to certain DNA sequences. For this purpose, a biotinylated target DNA was coupled to magnetic beads. Subsequently, these beads were suspended in a cell extract of *C. glutamicum* in order to allow the protein of interest to bind.

Preparation of biotinylated target DNA:

The target DNA was amplified by PCR using the standard protocol described in section 2.4.4.. For a reaction mixture with a total volume of 50 μ L, 12.5 pmol of the 5'-primer, which was biotin-labelled, and 17.5 pmol of the unlabelled 3'-primer were applied. The PCR was carried out 10 times. Subsequently, the reaction products of the 10 PCRs (each 50 μ L) were combined and concentrated using Microcon-30 columns (Millipore, Billerica, USA). For this purpose, the PCR products were loaded onto a column and centrifuged (12000 x g, 12 min, RT). The DNA was washed three

times by the addition of 500 μ L 1 x DNA binding buffer followed by centrifugation (12000 x g, 12 min, RT). After that, the DNA was eluted by inversion of the column and centrifugation (1000 x g, 4 min, RT). The resulting biotinylated target DNA was stored at -20 °C.

Preparation of DNA-coated magnetic beads:

4 mg of Dynabeads[®]M-280 Streptavidin (Dynal, Oslo, Norway) were washed twice in 500 μ L PBS pH 7.4 + 0.1 % BSA and twice in 500 μ L 2 x DNA binding buffer. Finally, the magnetic beads were resuspended in 200 μ L 1 x DNA binding buffer. The purified biotinylated target DNA obtained by PCR as described above was added and the suspension was incubated for 30 min at room temperature under shacking in order to allow the biotinylated DNA to bind to the streptavidine-coated magnetic beads. The binding efficiency was checked by analyzing the amount of DNA present in the supernatant before and after the incubation period using gel electrophoresis (section 2.4.3.). Then, the magnetic beads were washed three times with 500 μ L 1 x DNA binding buffer. The DNA-coupled magnetic beads were stored at 4 °C in TE buffer containing 0.02 % NaN₃.

Preparation of the total protein extracts:

The *C. glutamicum* wild type strain ATCC 13032 was used to inoculate 25 mL BHI medium. After cultivation at 30 °C for 8 h, the culture was used to inoculate 100 mL CgC medium for overnight growth. This culture, with an overnight OD_{600} of approximately 30-33, was used to inoculate 1000 mL of fresh CgC medium to an OD_{600} of approximately 1 and cells were grown until the exponential phase was reached (OD_{600} approximately 4-5). This culture was used to prepare a total protein extract of cells cultivated under nitrogen surplus, To prepare a total protein extract of cells cultivated under nitrogen starvation, the cells were first harvested by centrifugation (4000 x g, 10 min, 30 °C), transferred to 1000 mL CgCoN medium, and cultivated for 30 min at 30 °C. To isolate total protein, the cells were harvested by centrifugation (4000 rpm, 10 min, 4 °C). The cell pellet was resuspended in 4 mL ice-cold lysis buffer. This cell suspension was transferred to tubes containing glass beads and cells were disrupted by vigorous shaking at 6.5 m/s for 1 min using a FastPrep FP120 instrument (Q-BIOgene, Heidelberg). Cell debris and glass beads

were removed by centrifugation (14000 x g, 4 min, 4 °C). The protein extract was further purified by ultracentrifugation (267000 x g, 30 min, 4 °C). 1 mL-aliquots of the supernatant were transferred to reaction tubes and stored at -80°C.

Isolation of transcriptional regulators:

The DNA coated magnetic beads were washed three times in 500 μ L 1 x DNA binding buffer and equilibrated in 1 mL ice-cold protein binding buffer. Subsequently, the beads were resuspended in 1 mL of ice-cold total protein extract and incubated for 45 min at 4 °C under shacking. The beads were separated from the protein extract at 4 °C and washed with 500 μ L ice-cold protein binding buffer. Then, the beads were suspended again another 1 mL-aliquot of ice-cold total protein extract and incubated and washed again. This procedure was repeated three times in total. Finally, the magnetic beads were washed three times in 500 μ L ice-cold protein binding buffer. Subsequently, the proteins that were bound to the DNA were eluted in several steps. For this purpose, the beads were resuspended in 20 μ L-portions of elution buffer while rising sodium chloride concentrations from 200 mM to 1000 mM in 100 mM-steps. The elutions fractions were analyzed by SDS-PAGE and Coomassie staining as described in section 2.6.2. and proteins were identified by peptide mass fingerprinting (section 2.6.3.).

2 x DNA binding buffer: 2 M NaCl, 1mM EDTA, 10 mM Tris, pH (HCl) = 7.5.

PBS: 8 g NaCl, 0.2 g KCl, 2.68 g Na₂HPO₄ x 7 H₂O, 0.24 g KH₂PO₄, pH (HCl) = 7.4.

<u>TE buffer:</u> 10 mM Tris, 1 mM EDTA, pH = 8.0.

<u>Lysis buffer:</u> 50 mM Tris, 70 mM KCl, 1 mM EDTA, 1 mM DTT, 10 % (v/v) glycerol, 400 μ L Complete, pH = 8.0.

<u>Protein binding buffer:</u> 20 mM Tris, 100 mM NaCl, 1 mM EDTA, 1 mM DTT, 10 % (v/v) glycerol, 0.05 % (w/v) triton X-100, 400 μ L Complete, pH = 8.0.

<u>Elution buffer:</u> 20 mM Tris, 1 mM EDTA, 1 mM DTT, 10 % (v/v) glycerol, 0.05 % (w/v) triton X-100, 400 μ L Complete, pH = 8.0, NaCl in rising concentrations from 200 mM to 1M.

2.6.7. Gel shift assays and competition assays

By gel shift assays, binding of a transcriptional regulator to a distinct DNA fragment can be analyzed. For this purpose, a protein extract of an *E* .*coli* strain heterologously expressing the investigated transcriptional regulator was prepared. The corresponding strain was cultivated in 2 L LB medium at 37 °C overnight. On the next day, cells were harvested by centrifugation (4000 x g, 10 min, 4 °C). The cell pellet was resuspended in 10 mM Tris (pH = 7.5) (2 mL per g cell pellet weight). The cell suspension was transferred to tubes containing glass beads and cells were disrupted by vigorous shaking at 6.5 m/s for 1 min using a FastPrep FP120 instrument (Q-BIOgene, Heidelberg). Cell debris and glass beads were removed by centrifugation (14000 x g, 20 min, 4 °C). The protein extract was stored at -80°C.

The 200 bp target DNA for the gel shift assay was synthesized by PCR (section 2.4.4.) and purified by gel electrophoresis (section 2.4.3.). For labelling of the DNA and the setup of the reaction mixture for the gel shift assay, the DIG Gel Shift Kit (Roche, Mannheim) was used following the supplier's protocol.. Separation by gel electrophoresis was performed in native 6 % polyacrylamide gels (Anamed Electrophorese GmbH, Darmstadt) using 0.5 x TBE buffer as running buffer. Subsequently, the labelled DNA was blotted on a nylone membrane (BioBondTM Nylon Membrane, Sigma, Taufkirchen) by elctro-blotting as described in the protocol of the the DIG Gel Shift Kit (Roche, Mannheim). Detection of the labelled DNA was performed as described in section 2.5.3..

Competition assays were performed in accordance to the protocol of gel shift assays but additionally either unlabelled oligonucleotides (in 1500-fold excess over the labelled DNA) or certain substances were added in order to analyze their ability to inhibit a shift of the labelled target DNA.

<u>10 x TBE buffer:</u> 890 mM Tris, 890 mM boric acid, 20 mM EDTA, pH = 8.0.

2.6.8. Purification of GDH protein by Ni-NTA chromatography, dialysis, and electro-elution, and the production of antibodies for GDH

The E. coli strain M15 pREP4 was transformed with the expression vector pQE30Xagdh. The resulting strain produces his-tagged GDH of C. glutamicum. This strain was used to isolate his-tagged GDH of C. glutamicum by Ni-NTA chromatography using the Ni-NTA Spin kit (Qiagen, Hilden). Cultivation of the E. coli strain and purification of the protein was performed as recommended by the supplier. However, instead of the standard buffer B containing 8 M urea, the alternative buffer A containing 6 M guanidine hydrochloride was used for cell lysis in order to disrupt inclusion bodies of his-tagged GDH. After the isolation of his-tagged GDH, guanidine hydrochloride was removed by dialysis against water at 4°C for 2 days (cut off: 16 kDa). The isolated protein was then further purified by SDS-PAGE and Coomassie staining as described in section 2.6.2.. Protein bands of his-tagged GDH were excised and the protein was isolated by electro-elution using the Electro Eluter 422 (Biorad, München). To verify that the isolated protein was GDH of C. glutamicum, peptide mass fingerprinting analysis was carried out as described in section 2.6.3.. Purified his-tagged GDH was used for antibody production, which was carried out by Eurogentec (Seraing, Belgium) in rabbit.

2.6.9. Western blotting

For the preparation of a *C. glutamicum* cell extract for Western blotting, a 1 mLaliquot of a *C. glutamicum* culture ($OD_{600} = 4-5$) was transferred to a tube containing glass beads and immediately frozen in liquid nitrogen. The sample was thawed on ice and cells were disrupted by vigorous shacking using a FastPrep FP120 instrument (Q-BIOgene, Heidelberg) at 4 °C. Subsequently, glass beads and cell debris were removed by centrifugation. SDS-PAGE was carried out as described in section 2.6.2.. After electrophoresis, the gel-separated proteins were transferred onto a polyvinylidene difluoride membrane by electroblotting (PVDF, Carl Roth GmbH, Karlsruhe) and incubated with GDH-specific anti-sera generated in rabbits as described in section 2.6.8.. Antibody binding was visualized by using appropriate antiantibodies coupled to alkaline phosphatase or peroxidase (Sigma-Aldrich, Deisenhofen) and the BCIP/NBT alkaline phosphatase substrate (Sigma-Aldrich, Deisenhofen).

2.7. Chromatography

2.7.1. Determination of internal 2-oxoglutarate and glutamate by gas chromatography

10 mL of a C. glutamicum culture (OD₆₀₀ approximately 4-5) was harvested by centrifugation. The cell pellet was washed with pre-warmed fresh culture medium and then resuspended in 1 mL methanol. For internal standardisation, 100 μ L of an aqueous solution of 1 mM 2-oxoadipic acid was added. After an incubation of 20 minutes at 70 °C, cell debris was removed by centrifugation. The supernatant was dried under continuous nitrogen flow at 60 °C. The residue was dissolved in 50 µL of a solution of 20 g/L methoxylamine in pyridine and incubated for 90 minutes at 30 °C. 80 μ L MSTFA were added followed by an incubation of 60 minutes at 65 °C. The resulting solution was analyzed by gas chromatography using the TraceGC system (Thermo Finnigan, Woburn, USA) and the FS-Supreme 5 column (CS-Chromatographie, Langerwehe). For this purpose, 0.3 µL were injected (split ration 1:25) and separation was performed under nitrogen gas flow (flowrate: 1 mL/min) using the following time program: 2 min at 60 °C, temperature gradient of 30 °C/min up to 140 °C, temperature gradient of 2 °C/min up to 175 °C, temperature gradient of 30 °C/min up to 320 °C, 5 min at 320 °C. At the end of the run, initial conditions were restored. Column effluents were monitored by flame ionization detection (FID) at 300 °C. Standard solution of 2-oxoglutarate were treated in the same way starting with the addition of 1 mL methanol.

2.7.2. Determination of internal ammonium by HPLC

2 mL of a *C. glutamicum* culture (OD_{600} approximately 4-5) was harvested by centrifugation. The supernatant (culture medium) was saved for further analysis. The cell pellet was weighted and then resuspended in 100 μ L of an aqueous solution of 0.1 % CTAB. After incubation of 10 minutes at room temperature, cell debris was removed by centrifugation. The ammonium concentrations of this supernatant (cell pellet extract) as well as of the supernatant obtained in the first centrifugation step (culture medium) were determined by reversed-phase HPLC using a protocol based on the method described by Lindroth & Mopper (1979). Ammonium was labelled by pre-column derivatisation using *ortho*-phthaldialdehyde

(OPA). For separation, the Agilent 1100 system (Agilent, Waldbronn) with a LiChrosher RP 18 (150 x 3 mm, 5 mm) column (Merck, Darmstadt) and 60 % methanol as mobile phase with a low rate of 0.8 mL/min at 40 °C were used. Column effluents were monitored with a G1321A Fluorimenter (Agilent, Waldbronn) at an excitation wavelength of 330 nm and a detection wavelength of 455 nm. From the ammonium concentrations of the cell pellet extract and the culture medium, the intracellular concentration of ammonium was calculated based on the observation that 62.0 % (\pm 1.0 %) of a cell pellet consists of surrounding culture medium. This percentage was determined by a scintillation assay using ³H-labelled water and ¹⁴C-labelled taurine as described by Rönsch (2000).

2.7.3. Determination of internal glutamine, glutamate, and arginine by HPLC

1 mL of a *C. glutamicum* culture (OD₆₀₀ approximately 4-5) was filtrated in order to separate the cells form the culture medium. If standard culture medium was used, the cells were washed with 1 mL pre-warmed fresh culture medium. If the culture medium was supplemented with glutamine, cells were washed three times with 1 mL pre-warmed fresh culture medium without glutamine. The cells were resuspended in 1 mL of an aqueous solution of 0.1 % CTAB. After incubation of 10 minutes at room temperature, cell debris was removed by centrifugation. The supernatant was analyzed by reversed-phase HPLC after pre-column derivatisation using ortho-phthaldialdehyde (OPA). For separation, the Agilent 1100 system (Agilent, Waldbronn) with a 125/4 Nucleodur 100-5 C18 ec column (Macherey-Nagel, Düren) was used. The following buffer system was applied: A: 40 mM sodium acetate buffer (pH 6.5) : methanol : acetonitrile (95 : 2.5 : 2.5); B: methanol : acteobitrile (50:50). Column effluents were monitored with a G1321A Fluorimenter (Agilent, Waldbronn) at an excitation wavelength of 330 nm and a detection wavelength of 455 nm.

2.8. Bioinformatic approaches

2.8.1. Identification of open reading frames

To investigate if *gdh* transcription is controlled by translation-dependent attenuation, the sequence between the start of transcription and the initiation codon of the *gdh* gene was screened for open reading frames coding for polypeptides of at least five amino acids. This search was performed using the Clone Manager 5.2 software.

2.8.2. Identification of putative binding sites

Putative binding sites of FarR were identified within the genome of *C. glutamicum* by their homology to a known binding motif of FarR from *C. glutamicum*. For this purpose, the FUZZNUC program (http://bioweb.pasteur.fr/seqanal/interfaces/ fuzznuc.html) was used. FUZZNUC allows nucleic acid pattern searches with various ambiguities. The sequence GGTTATATAACC, which is the predicted FarR binding motif upstream of *gdh*, was applied as pattern, whereby, up to three mismatches were allowed. From the resulting putative binding sites, those were selected that were located in non-coding regions of the genome, upstream of genes, and within putative promoter regions, i.e. not more than 600 bp upstream of the start codons of genes. This selection was performed using Microsoft Excel 2000 and a database of all predicted open reading frames of the genome of *C. glutamicum* (accession number: NC003450).

2.8.3. Sequence alignments and presentation of consensus sequences

The sequences of the FarR-binding sites upstream of *gdh* and *dtsR2*, respectively, were used for a sequence alignment to deduce a consensus binding motif of FarR. For this purpose, the CLUSTALW algorithm was used (http://www.expasy.org). The resulting consensus binding motif of FarR was depicted using the program Sequence Logos (http://weblogo.berkeley.edu).

3. Results

3.1. Regulation of glutamate dehydrogenase

3.1.1. Characterization of the nitrogen-dependent regulation of glutamate dehydrogenase

The regulation of glutamate dehydrogenase in response to nitrogen supply has been described controversially in the past. On the one hand, GDH activity and *gdh* transcription were found to by unaffected by changes in nitrogen supply (Tesch *et al.*, 1999; Beckers, 2004; Silberbach, 2004). On the other hand, a significant increase of GDH activity and *gdh* transcription under nitrogen limitation was observed (L. Nolden, personal communication). To reinvestigate nitrogendependent regulation of glutamate dehydrogenase, the *C. glutamicum* wild type strain ATCC13032 was cultivated under nitrogen surplus. Then, the cells were exposed to nitrogen starvation. After that, an excess of ammonium was added to the culture of nitrogen-starved cells. Regulation of glutamate dehydrogenase was analyzed by RNA dot blotting, Western blotting, and enzymatic activity measurements. The level of *gdh* mRNA, GDH protein, and GDH activity are

Figure 5: The nitrogen-dependent regulation of glutamate dehydrogenase. The expression of *gdh* is induced if *C. glutamicum*, which has been cultivated under nitrogen surplus (+N), is exposed to nitrogen starvation (-N) for 15 and 30 minutes, respectively. The initial level is reached again 10 minutes after an excess of ammonium is added to the nitrogen starved cells (N-pulse). The induction of *gdh* expression is detectable by RNA dot blotting using *gdh* as probe (A), by Western blotting using antibodies for GDH (B), and at the level of enzymatic activity of GDH (C).

Figure 6: The nitrogen-dependent regulation of GDH activity depends on transcriptional regulation of *gdh*. In the *C. glutamicum* strain $LN\Delta GDH$ pZgdh, expression of *gdh* is under the control of the *tac* promoter. This strain was cultivated under nitrogen surplus (+N) and then exposed to nitrogen starvation (-N) for 15 and 30 minutes, respectively. After that, an excess of ammonium was added to the nitrogen starved cells (N-pulse). Transcription of *gdh* was analyzed by RNA dot blotting using *gdh* as probe (A). In addition, GDH activity was measured (B). Both, transcription of *gdh* and GDH activity, are not regulated in response to nitrogen supply in the *C. glutamicum* strain LN Δ GDH pZgdh.

significantly increased under nitrogen limitation (figure 5). Thus, glutamate dehydrogenase is nitrogen-regulated under the tested conditions.

At this point, it was not clear if the nitrogen-dependent regulation of glutamate dehydrogenase occurs only on the level of expression or if GDH is additionally regulated by posttranslational processes. This was investigated based on the fact, that a putative posttranslational regulation should still be observable even if *gdh* is transcribed constantly. For this purpose, the *gdh* gene was cloned into the vector pZ8-1. In the resulting plasmid pZgdh, expression of *gdh* is under the control of the *tac* promoter and is consequently not nitrogen-regulated. The strain LN Δ GDH, which lacks endogenous *gdh*, was transformed with pZgdh. In the resulting strain, *gdh* is transcribed constantly irrespective the nitrogen conditions as expected (figure 6). As the enzymatic activity of glutamate dehydrogenase is also unaffected by the nitrogen supply (figure 6), an additional regulation of GDH activity by posttranslational processes in response to nitrogen limitation can be excluded. Hence, the induction of glutamate dehydrogenase under nitrogen limitation occurs most likely exclusively on the level of expression.

Figure 7: Degradation of *gdh* **mRNA under nitrogen surplus and nitrogen limitation.** A: *C. glutamicum* RES167 was cultivated under nitrogen surplus (+N) and for 30 minutes under nitrogen starvation (-N30). Transcription was blocked by the addition of rifampicin to the culture medium. Samples were taken before the addition of rifampicin (0 minutes) and 2, 4, and 6 minutes after the addition. The samples were used for an RNA slot blot hybridization experiment using *gdh* as probe. B: The intensities of the bands of the RNA slot blot were determined and converted into relative amounts of *gdh* transcript, whereby the highest value was set to 100 %. Higher amounts of *gdh* transcript are present after 30 minutes of nitrogen starvation (open circles) than under nitrogen surplus (black circles). The degradation rate of *gdh* is not affected by nitrogen supply.

Expression is generally regulated by varying the amounts of the respective mRNA present in the cell. In principle, this can be achieved in two different ways: firstly, by regulation of the transcription rate or, secondly, by a regulation of mRNA degradation whereas transcription itself remains constant. To investigate, which mechanism is responsible for the regulation of *gdh* expression, degradation rates of *gdh* mRNA were analyzed. *C. glutamicum* RES167 was cultivated under nitrogen surplus and under nitrogen limitation, respectively. Transcription was stopped by the addition of rifampicin to the culture medium. After that, the degradation of *gdh* mRNA was analyzed during a period of 6 minutes using RNA slot blot hybridization (figure 7). Higher amounts of *gdh* mRNA are present under nitrogen limitation as described before, but the degradation of *gdh* mRNA is not affected by the nitrogen conditions. The half-life of *gdh* mRNA is 1.29 minutes under nitrogen surplus and 1.30 minutes under nitrogen starvation. Thus, *gdh* expression is regulated only on the level of transcription under the investigated conditions, but not by a regulated degradation of *gdh* mRNA.

orf-1: MAQVHTLKSCAHAAEMGTRK orf-2: MYMVPSMGTTNITKWPRYTL orf-3: MQPRWERGN orf-4: MTSRLM orf-5: MPAVS orf-6: MNAVFKSFRIRFFTGILLQQTPRMYMVPSMGTTNITKWPRYTL orf-7: MRACSRDGNEEI

Figure 8: Predicted open reading frames of the leader mRNA of *gdh***.** The sequence between the start of transcription and the start of translation of the *gdh* gene was screened for open reading frames coding for peptides of at least five amino acids. The corresponding peptide sequences are given. None of them contains an accumulation of a certain amino acid. Thus, translation-dependent attenuation seems not to be involved in transcription control of *gdh*.

Different mechanisms of transcription control are known. One is translationdependent attenuation. Attenuation describes the control of transcription by regulated termination of mRNA synthesis. The decision between termination and readthrough is triggered by the translation of a small leader peptide from the growing mRNA chain. This leader peptide is located upstream of the structural gene and contains a cluster of certain amino acids. If this amino acid and therefore the respective charged tRNA are present in sufficient concentrations in the cell, translation of the leader peptide is fast, which triggers termination of transcription. In contrast, a lack of the respective tRNA decelerates translation of the leader peptide and transcription continues into the structural gene (Wagner, 2000). To investigate if gdh transcription is controlled by translation-dependent attenuation, the sequence between the start of transcription and the initiation codon of the gdh gene was screened for open reading frames coding for polypeptides of at least five amino acids. Seven open reading frames could be identified, but none of them contains a significant accumulation of a certain amino acid (figure 8). As such an accumulation is essential for translation-dependent attenuation, gdh transcription is most likely not regulated by this mechanism.

3.1.2. Identification of transcriptional regulators of glutamate dehydrogenase

Transcription of *gdh* is regulated in response to nitrogen supply, but the underlying regulatory mechanism is still unknown. To identify putative transcriptional regulators of gdh, the following approaches were used. First, it was analyzed, which part of the gdh promoter is responsible for nitrogen-dependent control, i.e. harbours a binding site for a putative transcription factor. For this purpose, the 550 bp DNA sequence upstream of *gdh* was investigated in a reporter gene assay. As shown in figure 10A, this sequence harbours the transcription start and all basic elements of the core promoter of gdh (Börmann et al., 1992). A fusion of this DNA fragment and the lacZ gene coding for β -galactosidase was cloned into the plasmid pJC1 and then transformed into the C. glutamicum strain RES167. In the resulting strain, expression of *lacZ* is under the control of the 550 bp fragment of the *gdh* promoter from *C.* glutamicum and can be monitored by β -galactosidase activity measurements. The activity of β -galactosidase was determined under nitrogen surplus and nitrogen limitation (figure 9). Expression of *lacZ* was induced under nitrogen limitation. Thus, the investigated 550 bp DNA fragment of the gdh promoter is sufficient for a nitrogen-dependent expression and harbours the corresponding regulatory element, e.g. a binding site for a putative transcriptional regulator.

Figure 9: Reporter gene assay of a distinct part of the *gdh* promoter region. The *C. glutamicum* strain RES167 was transformed with the plasmid pJCgdhlacZ, which harbours a fusion of a 550 bp fragment of the *gdh* promoter and the *lacZ* gene coding for β -galactosidase. The resulting strain was cultivated under nitrogen surplus (+N) and for 30 minutes under nitrogen limitation (-N30). The activity of β -galactosidase was determined.

Figure 10: Schematic presentation of the *gdh* promoter region of *C. glutamicum* and the DNA fragments used for DNA affinity purification with magnetic beads and gel shift assays. A: Scheme of the promoter region upstream of the *gdh* gene containing the -10 region and the -35 region as well as the start of transcription (arrow). Numbers indicate the position upstream of the translation start of *gdh*. The given 550 bp DNA fragment was analyzed by reporter gene assays, showing that this region harbours the regulatory element for nitrogen-dependent transcription control of *gdh*. B: The overlapping DNA fragments A, B, C, and D were used for DNA affinity purification with magnetic beads of putative transcriptional regulators of *gdh*. They span the 550 bp DNA fragment as indicated. The DNA fragments were bound to magnetic beads at their 5'-ends (black balls). C: The given 50 bp DNA fragments (1 - 13) were used for competition assays. One FarR binding site and two AmtR binding sites could be identified upstream of *gdh* as indicated.

This knowledge was used to isolate putative transcriptional regulators of *gdh* by DNA affinity purification with magnetic beads. By this approach, transcription factors can be isolated from total protein extracts by their capacity to bind specifically to an immobilized DNA fragment. To isolate putative transcription factors of *gdh*, four different 200 bp DNA fragments were applied as target DNA (figure 10B). These overlapping DNA fragments span the 550 bp fragment of the *gdh* promoter that harbours the putative transcription factor binding site. The DNA fragments were coupled to magnetic beads and thereby immobilized. The beads were then suspended in protein extracts of *C. glutamicum* to allow the proteins of interest to bind specifically to the immobilized DNA. Protein extracts of *C. glutamicum* cultivated under nitrogen surplus and under nitrogen starvation, respectively, were applied. The purification was carried out separately for each combination of the four DNA sequences (A, B, C, D) and the two total protein extracts. After three washing steps, the DNA-bound proteins were eluted by increasing the concentration of

Figure 11: Coomassie-stained gel of the washing and elution fractions of DNA affinity purification with magnetic beads. This figure shows a Coomassie-stained SDSpolyacrylamide gel of the washing and elution fractions of DNA affinity purification with magnetic beads using the DNA fragment C of the *gdh* promoter as target DNA. The DNAcoated beads were suspended in a total protein extract of *C. glutamicum* cultivated under nitrogen surplus (lane 1). After magnetic separation the unbound proteins were removed by several washing steps (lane 2-4). After that, the DNA-bound proteins were eluted by raising the sodium chloride concentration from 100 mM up to 1M (lane 5-14). Proteins were excised and identified by peptide mass fingerprinting as indicated. M: molecular weight marker.

Table 5: Proteins isolated by DNA affinity purification with magnetic beads coupled to DNA fragments of the *gdh* **promoter region.** The given proteins were isolated by DNA affinity purification with magnetic beads. Only AmtR has been characterized in *C. glutamicum* yet. For the other proteins, the most similar homolog from other organism and the predicted function is given. +: protein could be isolated, -: protein could not be isolated, +N: isolation from a total protein extract of *C. glutamicum* cultivated under nitrogen surplus, -N: isolation from a total protein extract of *C. glutamicum* cultivated under nitrogen starvation, A, B, C, D: isolated using DNA fragment A, B, C, and D from the *gdh* promoter.

ORF-	name of protein / most similar	proposed or known function in <i>C. glutamicum</i>		+N				-N			
number	protein of other organims			В	с	D	А	В	С	D	
984	RpoC (<i>B. subtilis</i>)	RNA polymerase β chain	+	+	+	+	+	+	+	+	
2011	HrpA (<i>E. coli</i>)	ATP-dependent helicase		+	+	+	+	+	+	+	
2682	PoIA (<i>Bacillus</i> stearothermophilus)	DNA polymerase I		+	+	+	+	+	+	+	
2242	PolC (B. subtilis)	DNA polymerase III α chain		+	+	+	+	+	+	+	
1416	AmtR (C. glutamicum)	transcriptional regulator		-	+	-	-	I	+	-	
289	FarR (<i>E. coli</i>)	transcriptional regulator		+	+	-	-	-	-	-	
3471	WhiH (S. coelicolor)	transcriptional regulator		-	-	-	+	-	-	-	
2008	OxyR (<i>M. leprae</i>)	transcriptional regulator	-	-	-	-	-	-	+	-	

sodium chloride in the elution buffer. The elution fractions were analyzed by SDS-PAGE and Coomassie staining as shown in figure 11. Purified proteins were excised from the gels and identified by peptide mass fingerprinting. The results are given in table 5.

All isolated proteins were DNA-binding proteins. Among these were DNA- and RNApolymerase subunits and a helicase. These proteins bound unspecifically to all four DNA fragments. Additionally, four transcriptional regulators were isolated. These bound only to distinct fragments of the *gdh* promoter as given in table 5. Thus, binding of these proteins was sequence-specific as one would expect for transcriptional regulators. One of them was AmtR, the global transcriptional regulator of nitrogen control (for details, see section 1.4.). The binding of AmtR to the *gdh* promoter is astonishing, as a deletion of *amtR* does not affect *gdh* transcription monitored by RNA hybridization experiments (L. Nolden, personal communication). The other putative transcription factors have not been characterized in C. glutamicum yet, but by sequence alignments, they were found to by similar to the transcriptional regulators FarR from E. coli, WhiH from Streptomyces coelicolor, and OxyR from M. leprae. None of them has been described as a regulator of gdh transcription yet. The function of FarR from E. coli, which is HutC/FarR-type regulator of the GntR family, has been described controversially as a fatty acyl responsive regulator of TCA cycle genes (Quail et al., 1994) and as a regulator of genes coding for a 2-O- α -mannosyl-D-glycerate transport and metabolism system (Sampaio et al., 2004). During the magnetic DNA affinity purification described here, FarR from C. glutamicum exhibited an interesting binding behaviour. It was isolated only from a total protein extract of C. glutamicum cultivated under nitrogen excess, but not from a total protein extract of C. glutamicum cultivated under nitrogen limitation (table 5). A putative nitrogendependency could also be observed for OxyR, which was isolated only from a total protein extract of C. glutamicum cultivated under nitrogen limitation. In other organisms, OxyR regulates transcription in response to oxidative stress (Christman et al., 1989; Storz et al., 1990). WhiH from S. coelicolor is also a member of the GntR-family and regulates genes in the late sporulation phase (Ryding et al., 1998). During the DNA affinity purification with magnetic beads, WhiH from C. glutamicum bound to the *gdh* promoter irrespective of the nitrogen conditions.

3.1.3. Characterization of the binding behaviour of AmtR, FarR, OxyR, and WHiH to the gdh promoter region

To verify the binding behaviour of AmtR, FarR, OxyR, and WhiH from C. glutamicum to the *gdh* promoter, gel shift assays were performed. For this purpose, total protein extracts of *E. coli* DH5 α mcr transformed with expression vectors for AmtR, FarR, WhiH, and OxyR from C. glutamicum and the empty vector, respectively, were used. As target DNA, the digoxigenin-labelled 200 bp fragments A, B, C, and D of the gdh promoter region (figure 10B) were applied. The results are given in figure 12. AmtR retarded the DNA fragments B and C, whereas FarR retarded the DNA fragments A and B. WhiH and OxyR, respectively, did not retard any of the DNA fragments under the tested conditions. The results of the gel shift assays are summarized and compared to the results of the DNA affinity purification with magnetic beads in table

Figure 12: Gel shift assays of AmtR, FarR, WhiH, and OxyR and DNA fragments of the gdh promoter region. The figure shows the results of gel shift assays using digoxigenin-labelled DNA sequences A, B, C, and D of the gdh promoter from C. glutamicum as indicated in figure 10B. Free DNA: without any protein extract; AmtR, FarR, OxyR, WhiH: 1.5 µg of protein extracts of E. coli DH5amcr transformed with pUC11-1.8 (expressing amtR from C. glutamicum), pUCfarR (expressing farR from C. glutamicum), pUCoxyR (expressing oxyR from C. glutamicum), and pUCwhiH (expressing whiH from C. glutamicum) were applied; control: 1.5 µg of a protein extract of E. coli DH5amcr transformed with pUC18 expressing none of the four regulators was applied.

DNA fragment A

DNA fragment D

Table 6: Comparison of the results of the DNA affinity purification with magnetic beads and the gel shift assays. The binding of AmtR, FarR, WhiH, and OxyR from *C. glutamicum* to the DNA fragments A, B, C, and D (figure 10B) observed by gel shift assays and during the magnetic DNA affinity purification, respectively, is indicated. +: binding could be observed; -: binding could not be observed.

	ç	gel shif	t assays	S	magnetic DNA affinity purification				
	A	В	с	D	A	В	с	D	
AmtR	-	+	+	-	-	-	+	-	
FarR	+	+	-	-	+	+	+	-	
WhiH	-	-	-	-	+	-	-	-	
OxyR	-	-	-	-	-	-	+	-	

6. In principle, the capacity of AmtR and FarR to bind specifically to the *gdh* promoter region as demonstrated by magnetic DNA affinity purification could be verified by gel shift assays. However, an additional affinity of AmtR to the DNA fragment B was revealed by gel shift assays, whereas binding of FarR to DNA fragment C could not be stated.

As observable in figure 12, addition of AmtR and FarR, respectively, resulted in multiple shifts of the tested DNA fragments, indicating that the DNA fragments bound more than one AmtR or FarR molecule. This observation was further investigated by gel shift assays applying increasing amounts of the protein extracts. A protein extract containing AmtR retarded the DNA fragment C up to four times depending on the amount of protein extract added (figure 13A), whereas DNA fragment B was shifted only twice (figure 13B). Thus, at least four AmtR units (i.e. four AmtR monomers or four AmtR oligomers) bound to the DNA fragment C, from which two AmtR units bound in the overlapping region of DNA fragment B and C. FarR retarded the DNA fragments A as well as B twice (figure 13CD). Thus, at least two FarR units (i.e. two FarR monomers or two FarR oligomers) bound to the overlapping region of sequence A and B.

Figure 13: Mutiple shifts of DNA fragments of the *gdh* promoter region by AmtR or FarR. A: Gel shift assay of DNA fragment C and rising amounts (0.15 μ g, 0.3 μ g, 0.7 μ g, 1.5 μ g) of a protein extract of *E. coli* DH5 α mcr transformed with pUC11-1.8, which expresses *amtR* from *C. glutamicum*. B: Gel shift assay of DNA fragment B and 1.5 μ g of a protein extract of *E. coli* DH5 α mcr transformed with pUC11-1.8, which expresses *amtR* from *C. glutamicum*. C: Gel shift assay of DNA fragment B and rising amounts (0.06 μ g, 0.3 μ g, 1.5 μ g) of a protein extract of *E. coli* DH5 α mcr transformed with pUC11-1.8, which expresses *amtR* from *C. glutamicum*. C: Gel shift assay of DNA fragment B and rising amounts (0.06 μ g, 0.3 μ g, 1.5 μ g) of a protein extract of *E. coli* DH5 α mcr transformed with pUCfarR, which expresses *farR* from *C. glutamicum*. D: Gel shift assay of DNA fragment A and 1.5 μ g of a protein extract of *E. coli* DH5 α mcr transformed with pUCfarR, which expresses *farR* from *C. glutamicum*. D: Gel shift assay of DNA fragment A and 1.5 μ g of a protein extract of *E. coli* DH5 α mcr transformed with pUCfarR, which expresses *farR* from *C. glutamicum*. Free DNA: without any protein extract; control: 1.5 μ g of a protein extract of *E. coli* DH5 α mcr transformed with pUC18 expressing none of the four regulators was applied. Arrows indicate the presence of a band.

Α

protein [µg]	0	0.15	0.3	0.75	1.5
DNA-AmtR ₄ [fmol]	N/D	N/D	0.04	0.25	0.61
DNA-AmtR ₃ [fmol]	N/D	0.08	0.28	0.49	0.53
DNA-AmtR ₂ [fmol]	N/D	0.57	0.78	0.67	0.40
DNA-AmtR [fmol]	N/D	0.41	0.31	0.10	N/D
DNA [fmol]	1.55	0.49	0.13	0.04	N/D

Figure 14: Relative affinities of AmtR to the *gdh* **promoter region.** A: The intensities of the bands of the gelshift assay of the digoxigenin-labelled DNA fragment C and rising amounts of a protein extract containing AmtR (figure 9A) were used to determine the amounts of DNA fragment C bound by one (DNA-AmtR), two (DNA-AmtR₂), three (DNA-AmtR₃), or four (DNA-AmtR₄) AmtR unit and the amount of free DNA (DNA) in dependence on the applied amount of protein extract (protein). N/D: not detectable. B: Equations used to estimate the binding affinities of the first (K₁), the second (K₂), the third (K₃), and the fourth (K₄) AmtR unit bound to the DNA fragment C. C: Relative affinities of the first (K₁), the second (K₂), the third (K₃), and the fourth (K₄) AmtR unit bound to the DNA fragment C. MatR unit bound to the DNA fragment C, whereby the highest affinity was set to 100 %.

From the multiple shifts of DNA fragment C by AmtR (figure 13A), further predictions about the binding affinities of the four AmtR units units (i.e. four AmtR monomers or four AmtR oligomers) could be derived. The intensities of the bands directly correlate with the amount of digoxigenin-labelled DNA present in the bands. Thus, the amount of DNA fragment C bound by one, two, three, or four AmtR units in dependence on the applied amount of protein extract could be determined (figure 14A). From these values, the affinities for the first, the second, the third, and the

fourth AmtR unit could be estimated using the equations given in figure 14B. As shown in figure 14C, the affinities for the first and the second AmtR unit were approximately on the same level and were about eight times higher than the affinities for the third and fourth AmtR unit, which were approximately at the same relatively low level. Thus, the DNA sequence C binds two AmtR units with a relatively high affinity and another two AmtR units with a lower affinity.

To further localize the binding sites of AmtR and FarR within the *gdh* promoter, competition assays with unlabelled 50 bp DNA fragments (figure 10C) were performed. Addition of the 50 bp DNA fragments 11 an 12 in an 1500-fold molar excess partially inhibited retardation of the digoxigenin-labelled DNA fragment C by AmtR (figure 15A). In contrast, the partially overlapping DNA fragments 10 and 13 were not able to inhibit a shift. From that it can be concluded that a binding site of AmtR is located in the 25 bp overlapping region of DNA fragment 11 and 12. Moreover, addition of DNA fragment 6 caused a slight complementation of the shift, indicating a relatively low affinity of AmtR to DNA fragment 6 (figure 15A). To verify this, the digoxigenin-labelled DNA fragment B was used, which harbours only the putative low affinity binding site. A shift of DNA fragment B could be complemented by DNA fragment 6 (figure 15B). Thus, a low affinity binding site for is located within fragment 6. Conclusively, two 25 bp binding sites for AmtR could be identified within the gdh promoter region, one binding site with a higher affinity, which is located downstream of the start of transcription, and another one with a lower affinity, which is located upstream of the start of transcription (figure 10C). Both binding sites are able to bind two AmtR units. This observation is in accordance with the estimated affinities of AmtR to sequence C described above. The two binding sites are homologous to the consensus binding motif of AmtR described by G. Beckers (2004) (figure 16A).

A shift of DNA fragment B by FarR was inhibited by an 1500-fold molar excess of DNA fragment 1 and DNA fragment 2 (figure 15C). In contrast, DNA fragment 3 did not complement the shift. Thus, one FarR binding site is present in the overlapping region of DNA fragment 1 and 2, which binds two FarR molecules (figure 10C). This

Figure 15: Competition assays to identify the exact binding site of AmtR and FarR within the *gdh* promoter region. Competition assays using the digoxigenin-labelled DNA fragments B and C, respectively, and an 1500-fold molar excess of the unlabelled 50 bp DNA fragments 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13, respectively. For details about the DNA fragments, see figure 10C. AmtR: a protein extract of *E. coli* DH5 α mcr transformed with pUC11-1.8, which expresses *amtR* from *C. glutamicum*, was applied; FarR: a protein extract of *E. coli* DH5 α mcr transformed with pUC1arR, which expresses *farR* from *C. glutamicum*, was applied; control: a protein extract of *E. coli* DH5 α mcr transformed with pUC18, which expresses none of the regulators, was applied. Free DNA: without any protein extract.

Α	AACCTAAAGAAATTTTCAAA AAACTATTAACCGTTAGGTA	AmtR binding site I AmtR binding site II
	TWTCTAT.GC.ATAGAWA	Consensus binding motif of AmtR
В	GGCCAGGTTATATAACCAGTCA	FarR binding site
	GTTAAC	Consensus binding motif of HutC/FarR-type regulators

Figure 16: Sequence alignments of the identified binding sites and known binding motifs. A: Sequence alignment of the two AmtR binding sites, which are located upstream of *gdh*, and the consensus binding motif of AmtR described by G. Beckers (2004). AmtR binding site I is located upstream of the start of transcription and AmtR binding site II downstream of the start of transcription. Nucleotides, which are homologous to the consensus binding motif are highlighted in grey. W: A or T; Dot: any nucleotide. B: Sequence alignment of the FarR binding site located upstream of *gdh* and the consensus binding motif of HutC/FarR-like regulators of the GntR family (Rigali *et al.*, 2002). Underlined nucleotides indicate the palindrome of the FarR binding site. Nucleotides, which are identical to the consensus binding motif are highlighted in grey. Dot: any nucleotide.

25 bp binding site harbours a highly palindromic sequence, which is homolog to the consensus binding motif of HutC/FarR-type regulators of the GntR family already described for other organisms (figure 16B) (Rigali *et al.*, 2002).

To investigate if AmtR, FarR, OxyR, and WhiH may also bind *in vivo* to the *gdh* promoter and thereby affect transcription, β -galactosidase assays were used. For this purpose, the *E. coli* strain DH5 α mcr was transformed with two different plasmids. The first plasmid harboured the *gdh* promoter of *C. glutamicum* fused to the reporter gene *lacZ* coding for the β -galactosidase, i.e. expression of *lacZ* was under the control of the *gdh* promoter in this plasmid. The second plasmid was one of the expression vectors for AmtR, FarR, WhiH, and OxyR, respectively, from *C. glutamicum*. In the resulting strains, the regulators were heterologously expressed and their effect on the *gdh* promoter was monitored by β -galactosidase activity measurements. As a control, the plasmid without insert was used instead of the expression vectors. The results are given in figure 17. Expression of AmtR, OxyR,

Figure 17: Reporter gene assay of the *gdh* promoter in *E coli* heterologously expressing AmtR, FarR, WhiH, and OxyR. An *E. coli* strain harbouring a plasmid-coded fusion of the *gdh* promoter from *C. glutamicum* and *lacZ* coding for β -galactosidase was transformed with the following expression vectors: pUC18 (control), pUC11-1.8 (AmtR), pUCfarR (FarR), pUCoxyR (OxyR), and pUCwhiH (WhiH). In the resulting strains, the putative transcriptional regulators from *C. glutamicum* AmtR, FarR, OxyR, and WhiH, respectively, were expressed heterologously. In the control strain, none of the regulators was set to 100 %.

and WhiH, respectively, did not affect β -galactosidase activity. In contrast, expression of FarR caused a significant decrease of the β -galactosidase activity down to 62 % compared to the control strain. Thus, FarR was able to bind *in vivo* to the *gdh* promoter in order to repress transcription of the gene downstream of the *gdh* promoter.

3.1.4. Analysis of the role of AmtR, FarR, WhiH, and OxyR in the nitrogendependent regulation of *gdh* transcription

Single deletion strains of the four transcriptional regulators, AmtR, FarR, WhiH, and OxyR, were used to analyze their role in regulation of *gdh* transcription in *C. glutamicum*. The *amtR* deletion strain MJ6-18, which was derived form the *C. glutamicum* wild type strain ATCC 13032, was available (Jakoby *et al.*, 2000). For *farR*, *whiH*, and *oxyR*, the single deletion strains TM Δ farR, TM Δ whiH, and TM Δ oxyR were constructed by allelic replacement. These were derived from the *C. glutamicum* strain RES167, a defined restriction-deficient mutant of ATCC 13032 and

Figure 18: Transcription of *gdh* **in single and multiple deletion strains of** *amtR***,** *farR***,** *whiH***, and** *oxyR***.** *C. glutamicum* strains were cultivated under nitrogen surplus (+N), under nitrogen starvation (-N). Then a nitrogen-pulse was given to the nitrogen-starved cells (Npulse). Transcription of *gdh* was analyzed by RNA dot blot hybridization after the given periods of time.

RES167 were cultivated under nitrogen surplus. The cells were then exposed to nitrogen limitation for 15 and 30 minutes, respectively. After that, an excess of ammonium was added. Transcription of *gdh* was analyzed by RNA dot blot hybridization. In the wild type strain ATCC 13032 and in RES167, transcription of *gdh* is regulated in dependence on the availability of nitrogen sources as described before (figure 18A). Surprisingly, single deletions of *amtR*, *farR*, *whiH*, and *oxyR*, respectively, did not affect *gdh* transcription at all. Nitrogen-dependent regulation of *gdh* transcription was still observable in the mutant strains. Thus, AmtR, FarR, WhiH, and OxyR, respectively, are not essential for transcription control of *gdh* under the tested conditions.

To verify these results, *gdh* transcription was investigated by quantitative real time RT-PCR. The single deletion strains as well as ATCC 13032 and RES167 were

Figure 19: Quantitative real-time RT-PCR of *gdh* mRNA in the wild type and single deletion strains of *amtR*, *farR*, *whiH*, and *oxyR*. The relative amounts of *gdh* transcript were analyzed by quantitative real-time RT-PCR in the *C. glutamicum* wild type strain (ATCC 13032), in RES167, in the *amtR* deletion strain (MJ6-18), in the *farR* deletion strain (TM Δ farR), in the *oxyR* deletion strain (TM Δ oxyR), and in the *whiH* deletion strain (TM Δ whiH). The strains were cultivated in CgC medium. The amount of *gdh* transcript of RES167 was set to 100 %.

cultivated under nitrogen surplus. Total RNA was isolated and the relative amounts of *gdh* transcript were determined by quantitative real time PCR. Again, single deletions of *amtR*, *farR*, *whiH*, and *oxyR*, respectively, did not affect *gdh* transcription significantly (figure 19).

However, it is possible that the transcription of *gdh* is regulated by more than one regulator and that only the combined deletion of two or more regulators leads to the loss of the nitrogen-dependent regulation. To investigate a putative functional redundancy of AmtR, FarR, WhiH, and OxyR, multiple deletion strains were derived from RES167 by allelic replacement. Nitrogen control of *gdh* transcription was investigated by RNA dot blot hybridization in the resulting strains TM Δ farR Δ amtR, TM Δ farR Δ amtR Δ whiH, and TM Δ farR Δ amtR Δ whiH Δ oxyR. None of the multiple deletions affected nitrogen-dependent *gdh* transcription (figure 18B). Thus, AmtR, FarR, WhiH, and OxyR, respectively, are not essential for transcription control of *gdh* under the tested conditions and functional redundancy among the regulators was not observed.

3.1.5. Identification of conditions that trigger regulation of *gdh* transcription by AmtR, FarR, OxyR, and WhiH

The absence of a distinct effect on *gdh* transcription in the deletion strains is astonishing, as it could be demonstrated *in vitro* that AmtR, FarR, WhiH, and OxyR bind specifically to the *gdh* promoter. For FarR, this could also be observed *in vivo* by β -galactosidase assays in *E. coli*. One possible explanation for this discrepancy is that AmtR, FarR, WhiH, and OxyR regulate *gdh* transcription only under conditions which have not been tested so far, i.e. they respond to other stress conditions than nitrogen starvation. To identify conditions that trigger regulation of gdh transcription by AmtR, FarR, WhiH, and OxyR, these regulators were further characterized as described in the following.

3.1.5.1. Growth rates of the single deletion strains

The single deletions of *amtR*, *farR*, *whiH*, and *oxyR* were further characterized with regard to growth rates. The single deletion strains as well as ATCC13032 and RES167 were cultivated in CgC medium and the optical density at 600 nm was monitored. Single deletions of *farR*, *oxyR*, and *whiH* had no effect on the growth rate, whereas a single deletion of *amtR* slightly induced growth (figure 20).

Figure 20: Growth curves of the wild type and the single deletion strains of *amtR*, *farR*, *whiH*, and *oxyR*. The *C. glutamicum* wild type strain (ATCC 13032), the strain RES167, the *amtR* deletion strain (MJ6-18), the *farR* deletion strain (TM Δ farR), the *oxyR* deletion strain (TM Δ oxyR), and the *whiH* deletion strain (TM Δ whiH) were cultivated in CgC medium and growth was analyzed by monitoring of the optical density at 600 nm. Only the *amtR* deletion strain MJ8-16 exhibited a slight alteration in growth.

3.1.5.2. Identification of putative target genes of FarR and WhiH by DNA microarray hybridization

To characterize the *in vivo* function of FarR and WhiH, DNA microarrays were used to identify putative target genes of FarR and WhiH. The applied DNA microarrays, consisted of 93.4 % of the predicted *C. glutamicum* genes. Each gene was spotted in quadruplicate onto a glass slide. Analysis of the technical variance revealed that *C. glutamicum* genes detected with different intensities resulting in ratios greater than 1.52 or smaller than -1.52 can be regarded as differentially expressed with a confidence level of greater than 95 % (Hüser *et al.*, 2002).

Total mRNA of the *C. glutamicum* strains RES167, TM Δ farR, TM Δ whiH, and TM Δ farR Δ amtR was isolated. These mRNA samples were used for the synthesis of fluorescently labelled cDNA samples, which were then hybridized with DNA microarrays. The following combinations were analyzed: RES167 *vs.* TM Δ farR, RES167 *vs.* TM Δ whiH, and RES167 *vs.* TM Δ farR Δ amtR. For each combination, the hybridization signals were detected and analyzed. Each experiment was carried out in duplicate. Only those genes, which are significantly regulated in both experiments, were taken into account. A complete list of all differentially expressed genes is given in table 8 in the appendix.

The level of *gdh* transcript was unaltered in all experiments. This result is consistent with previous results obtained from dot blot hybridization experiments and quantitative real time RT-PCR. Interestingly, 93 genes were differentially expressed in all three tested combinations, i.e. these genes were differentially expressed in TM Δ farR, TM Δ whiH, and TM Δ farR Δ amtR compared to RES167. Because of that, these genes were considered to be affected by general metabolic perturbations and not to be specific targets of the regulators. In the following, only those genes which were differentially expressed in only one or two of the deletion strains were taken into account.

From the microarray analyses of RES167 *vs.* TM Δ whiH and RES167 *vs.* TM Δ far Δ amtR, putative target genes of FarR and WhiH could not be deduced. Genes that were differentially expressed in RES167 *vs.* TM Δ whiH did not show any clear pattern or any physiological link to *gdh.* Comparing the transcriptomes of RES167 and TM Δ farR Δ amtR, many genes were found to be differentially expressed. Among these were 18 transcriptional regulators. Thus, differentially expressed genes might have been affected by one of these regulators instead of AmtR and FarR. Consequently, identification of specific targets of FarR and AmtR was not possible. However, several known target genes of AmtR were found to be differentially expressed, e.g. *amtA*, *amtB*, *glnA*, *gltBD*, *glnD*, *glnK*, and *ureACDEFG*, validating this experimental approach.

Analysis of RES167 vs. TM Δ farR revealed 132 differentially expressed genes in total. Among these were *glnA* coding for glutamine synthetase, *carB* coding for carbamoylphosphate synthase and several genes of the arginine biosynthesis pathway (*argBCDFJ*). Together, these genes code for enzymes that catalyze the formation of the arginine precursor citrulline using glutamate as the major substrate. The expression of these genes was upregulated in the *farR* deletion strain compared to RES167 by factors between 1.53 and 4.19. Because of that, a putative role of FarR as a transcriptional repressor of arginine biosynthesis genes was assumed. However, *argR*, coding for a transcriptional regulator of arginine biosynthesis, was also upregulated in the *farR* mutant. Because of that, it is possible, that the regulation of genes of the arginine biosynthese is just a secondary effect mediated by ArgR.

To further investigate, if FarR is a repressor of arginine biosynthesis, the internal concentrations of arginine in RES167 and TM Δ farR, respectively, were measured by HPLC. If FarR was a repressor of arginine biosynthesis, a deletion of *farR* might cause an increase of internal arginine. However, analysis by HPLC revealed only a slight increase of internal arginine in the *farR* deletion strain (figure 21A).

Beside that, a putative role of FarR in transcription control of *gdh* in response to the addition of arginine was investigated. For this purpose, RES167 and TM Δ farR were cultivated in standard minimal medium. Then, arginine was added to a final concentration of 1 % to the culture medium. Samples were taken before (0 min) as well as 30 and 60 minutes after the addition of arginine and analyzed by RNA dot blot hybridization using *gdh* as probe. In response to the addition of arginine, transcription of *gdh* was slightly induced in RES167 (figure 21B). This arginine-dependent regulation was not affected by the deletion of *farR*. Thus, FarR is not essential for the regulation of *gdh* transcription in response to arginine. This

Figure 21: Internal concentrations of arginine and *gdh* transcription in response to the addition of arginine. A: The internal concentrations of arginine in the *C. glutamicum* strains RES167 and TM Δ farR cultivated in CgC medium. B: RNA dot blot hybridization using *gdh* as probe and RNA samples of the *C. glutamicum* strains RES167 and TM Δ farR before (-arg) and 30 or 60 minutes after the addition of arginine (+arg) to a final concentration of 1 %.

Additon of citrulline and ornithine, respectively, did not affect *gdh* transcription, neither in RES167 nor in TM Δ farR (data not shown).

Conclusively, the putative role of FarR as repressor of arginine biosynthesis genes revealed by DNA microarray experiments could not be verified by measurements of internal arginine concentrations or by analysis of arginine-dependent transcription control of *gdh*. Thus, the role of FarR remains unclear.

3.1.5.3. Identification of putative target genes of FarR using a bioinformatic approach

A binding motif of FarR upstream of *gdh* from *C. glutamicum* could be identified as described before. This motif was applied in a bioinformatical approach to identify other putative binding sites of FarR within the genome of *C. glutamicum*. For this purpose, the FUZZNUC program was used, which allows nucleic acid pattern searches with various ambiguities (http://bioweb.pasteur.fr/seqanal/interfaces/fuzznuc.html). The sequence GGTTATATAACC, which is the predicted FarR binding motif upstream of *gdh*, was applied as pattern, whereby, up to three mismatches were allowed. The search revealed 576 putative binding sites for FarR in total. However, transcription factors normally bind close to promoters in order to interact with RNA polymerase. Consequently, only those putative binding sites of

Table 3: A selection of genes that were predicted to harbour FarR binding sites within their promoter regions. Several putative binding sites of FarR could be identified by a bioinformatic approach. Out of these, 13 were further analyzed because of their location upstream of genes involved in nitrogen metabolism and transport, fatty acid metabolism, or upstream of genes which were found to be differentially expressed in the DNA microarray analysis of RES167 *vs.* TM Δ farR. The respective genes as well as the location of the binding sites upstream of the genes are given in this table.

NCgl-No.	gene name	annotation	location upstream of the start codon [bp]	differential expression (RES167 vs. TM∆farR)
NCgl0328	noxC	nitroreductase	70	no
NCgl0406	-	permease of major facilitator superfamily	44	yes
NCgl0677	dtsR2	detergent sensitive rescuer	174	no
NCgl1143	narK	nitrate/nitrite transporter	184	no
NCgl1151	fadD4	acyl-CoA synthetase	462	no
NCgl1235	serA	phosphoglycerate dehydrogenase	100	yes
NCgl1266	gpsA	glycerol-3-phosphate dehydrogenase	3	no
NCgl1521	amtA	ammonium transporter	108	no
NCgl1521	amtA	ammonium transporter	196	no
NCgl1875	gluA	glutamate transporter	148	no
NCgl2016	hisH	glutamine amidotransferase	73	no
NCgl2108	-	cell wall-associated hydrolase	257	yes
NCgl2972	plsC	1-acyl-sn-glycerol-3-phosphate acyltransferase	25	no

FarR were taken into account, which were located in non-coding regions of the genome, upstream of genes, and within putative promoter regions, i.e. not more than 600 bp upstream of the start codons of genes. From the resulting 143 putative binding sites, a selection of 13 putative binding sites was further investigated (table 7). These 13 putative binding sites were located upstream of genes of nitrogen metabolism, fatty acid metabolism, or genes which were observed to be differential expressed in the *farR* deletion strain vs. RES167 by DNA microarray experiments.

Figure 22: Competition assay to identify FarR binding sites. Competition assays of the digoxigenin-labelled DNA fragment B of the *gdh* promoter region harbouring a FarR binding site from *C. glutamicum* and a cell extract of *E. coli* heterologously expressing FarR from *C. glutamicum* were performed. Unlabelled 30 bp DNA fragments harbouring putative FarR binding sites located upstream of the given genes were added in a 1500-fold molar excess. Only the DNA fragments of the *gdh* promoter and the *dtsR2* promoter, respectively, inhibited a complete shift of the labelled DNA. Free DNA: without protein extract. Control: cell extract of *E. coli* containing the empty vector.

To verify binding of FarR to these putative binding sites, competition gel shift assays were performed using the digoxigenin-labelled DNA fragment B of the *gdh* promoter and a 1500-fold excess of unlabelled 40 bp DNA fragments containing the putative FarR binding sites for complementation. A protein extract of *E. coli* heterologously expressing FarR from *C. glutamicum* was applied and, as a control, an extract of *E. coli* containing the control vector without *farR*. Addition of the 40 bp DNA fragment harbouring the putative FarR binding site upstream of *dtsR2* partially inhibited the shift (figure 22). Thus, an additional FarR binding site could be identified, which is located 174 bp upstream of *dtsR2*. However, inhibition of the shift by the FarR binding site of *dtsR2* was not as strong as by the FarR binding site of *gdh*, showing that FarR had a higher affinity to the *gdh* promoter than to the *dtsR2* promoter. The *dtsR2* gene codes for the detergent sensitive rescuer protein DtsR2, which is presumed to be a counterpart of biotin-binding acyl-CoA carboxylase (AccBC). This protein complex is involved in fatty acid biosynthesis in *C. glutamicum* (Kimura, 2002).

Figure 23: Consensus binding motif of FarR from *C. glutamicum.* This consensus binding motif of FarR from *C. glutamicum* was derived from the sequences of the binding site of FarR upstream of *gdh* and *dtsR2*, respectively.

The sequences of the FarR-binding sites upstream of *gdh* and *dtsR2*, respectively, were used for a sequence alignment to deduce a consensus binding motif of FarR. For this purpose, the CLUSTALW algorithm was used (http://www.expasy.org). The resulting consensus binding motif of FarR was depicted using the program Sequence Logos (http://weblogo.berkeley.edu) and is given in figure 23.

3.1.5.4. Identification of putative effector molecules of FarR

HutC/FarR-like transcription factors of the GntR family typically consist of a DNAbinding domain fused to a signalling domain. These signalling domains exhibit small-molecule-binding pockets and trigger conformational changes upon recognizing specific ligands. Thereby, binding of ligands influences the DNA-binding properties of the transcription factors which results in activation or repression of transcription (Aravind *et al.*, 2003). Due to sequence homologies, FarR from *C. glutamicum* is predicted to be a HutC/FarR-like transcription of the GntR family, thus, might be regulated upon binding of a ligand. This was investigated by the use of gel shift assays.

As target DNA, the digoxigenin-labelled DNA fragment B was used, which contains a FarR binding site as described above. A protein extract of *E. coli* heterologously expressing *farR* from *C. glutamicum* was applied. To identify putative effector molecules of FarR, a diverse range of metabolites were added and their ability to inhibit binding of FarR to the labelled DNA was analyzed. Most of the tested substances had no effect on the shift caused by FarR (figure 24). In contrast, the addition of sodium myristate and sodium palmitate, respectively, inhibited a shift of the DNA by FarR. Thus, sodium myristate and sodium palmitate prevented binding of FarR to the DNA under the tested conditions. However, it was not clear, if this

Figure 24: Gel shift assays for the identification of effector molecules of FarR. Gel shift assay were performed with the digoxigenin-labelled DNA fragment B of the *gdh* promoter from *C. glutamicum* and a cell extract of *E. coli* heterologously expressing FarR from *C. glutamicum*. The indicated substances were added to a final concentrations of 10 mM, except myristate and palmitate, which were added to a final concentration of 1 mM together with triton X-100 in a final concentration of 0.2 % (w/v). Only myristate and palmitate inhibited a shift of the DNA. Control: cell extract of *E. coli* containing the empty plasmid. Free DNA: without any protein extract.

was the result of a specific interaction of myristate and palmitate with a putative signalling domain of FarR, or if myristate and palmitate just denatured FarR in a detergent-like manner. To investigate this, the effect of detergents similar to myristate and palmitate was analyzed. Sodium dodecylsulfate (SDS), cetyl trimethyl ammonium bromide (CTAB), and sodium oleate also inhibited a shift of the DNA by FarR (figure 25A). Especially the ability of CTAB to partially inhibit DNA-binding by FarR is remarkable, as this molecule is positively charged in contrast to myristate and palmitate, which are negatively charged. Thus, inhibition by sodium myristate and sodium palmitate was most probably unspecific and not caused by a specific binding of myristate and palmitate to a putative signalling domain of FarR. In addition, sodium myristate and sodium palmitate were added in a relatively high concentration of 1 mM. This concentration is not in the physiological range. Because of that, another gel shift assays was carried out applying sodium palmitate in a range of concentrations of 1 μ M up to 100 μ M. In these concentrations, sodium palmitate did not inhibit a shift of the DNA by FarR (figure 25B). Thus, sodium palmitate has no effect on FarR in the physiological range of concentrations.

Figure 25: Analysis of the ability of fatty acids to inhibit DNA binding by FarR. Gel shift assays were performed with the dioxigenin-labelled DNA fragment B of the *gdh* promoter from *C. glutamicum* and a cell extract of *E. coli* heterologously expressing FarR from *C. glutamicum*. Control: cell extract of *E. coli* containing the empty plasmid. Free DNA: without any protein extract. A: The indicated substances were added to a final concentrations of 1 mM, except triton X-100, which was added to a final concentration of 0.2 %. B: sodium myristate was added to a final concentration as given without the addition of triton X-100.

3.1.5.5. Regulation of *gdh* transcription in response to various stress conditions

AmtR, FarR, WhiH, and OxyR do not regulate *gdh* transcription in response to nitrogen starvation but might regulate *gdh* transcription in response to other stress conditions. However, other stress conditions that affect *gdh* transcription have not been described yet. Therefore, the *C. glutamicum* wild type ATCC 13032 was exposed to various conditions and *gdh* transcription was analyzed by RNA dot blot hybridization experiments. Variation of the carbon sources as well as carbon starvation affected *gdh* transcription (figure 26A). The use of alternative nitrogen sources affected *gdh* transcription as well (figure 26B). Additionally, *gdh* was regulated in response to the growth phase (figure 26C) and to oxygen limitation (figure 26D). Chill stress at 15 °C induced *gdh* transcription, whereas heat stress at 37 °C had no effect compared to the standard conditions at 30 °C (figure 26F). Beside that, oxidative stress caused by superoxide and peroxide, respectively

Figure 26: The effect of various conditions on *gdh* transcription. RNA dot blot hybridization was used to analyze *gdh* transcription in the *C. glutamicum* wild type strain ATCC13032 cultivated under various conditions. For this purpose, the cells were first cultivated in standard CgC medium to an optical density of 4.5 (600 nm). Then, *C. glutamicum* was exposed to various conditions as described in the following and *gdh* transcription was analyzed after the given periods of time. A: CgC medium containing the given carbon sources. B: CgC medium containing the nitrogen sources. C: in CgC medium until the stationary phase was reached. D: in a sealed falcon tube without oxygen supply. E: addition of sodium chloride to a final concentration of 1 M. F: in CgC medium under the given temperatures. G: in CgC medium (standard) and after the addition of 100 μ M paraquat (superoxide stress) or 58 μ M H₂O₂ (peroxide stress).

Figure 27: Transcription of *gdh* **in response to carbon limitation and oxygen limitation.** A: C. glutamicum strains were cultivated in CgC medium containing 2.5 % glucose (+C), then in medium without any carbon source (-C), and after an excess of glucose was added to the carbon-starved cells (C-pulse). Samples were taken after the given periods of time and were used for an RNA dot blot hybridization experiment using *gdh* as probe. B: RES167 and TM∆oxyR were cultivated in CgC medium in a standard 500 mL shaking flask. Then, the cultures were transferred to falcon tube, which were sealed to limit oxygen supply. Transcription of gdh was analyzed by RNA dot blot hybridization before (0 minutes) and 10, 30, 60, and 120 minutes after oxygen limitation was imposed.

(figure 26G), as well as osmotic stress (figure 26E) did not affect *gdh* transcription. Conclusively, an astonishingly broad range of stress conditions could be identified that affect *gdh* transcription.

It was investigated whether AmtR, FarR, WhiH, and OxyR are involved in *gdh* regulation in response to carbon starvation. For this purpose, the *C. glutamicum* strain RES167 as well as the deletion strains MJ8-16 ($\Delta amtR$), TM Δ farR, TM Δ whiH, TM Δ oxyR, and TM Δ farR Δ amtR were cultivated in standard medium containing 2.5 % glucose. Then, the cells were transferred to medium without any carbon source. After 60 minutes of carbon starvation, an excess of glucose was added. Transcription of *gdh* was analyzed by RNA dot blot hybridization. In all investigated deletion strains, transcriptional regulation of *gdh* in response to carbon starvation

was not affected (figure 27A). Thus, a putative role of the regulators in carbondependent regulation of *gdh* transcription could not been demonstrated.

To investigate, if OxyR regulates *gdh* transcription in response to oxygen limitation, the respective deletion strain TM Δ oxyR as well as RES167 were tested. Total RNA was isolated before (0 minutes) and 10, 30, 60, and 120 minutes after exposition to oxygen limitation. Transcription of *gdh* was analyzed by RNA dot blot hybridization. The repression of *gdh* under nitrogen limitation was not affected by a deletion of *oxyR* (figure 27B). Thus, OxyR does not regulate *gdh* transcription in response to oxygen limitation.

3.2. The impact of GDH on the nitrogen control network

Glutamate dehydrogenase is essential for nitrogen control by the GlnD/GlnK/AmtR signal cascade in *C. glutamicum*. Deletion of *gdh* leads to a loss of transcriptional repression by AmtR (L. Nolden, personal communication). It is unclear whether this effect is caused by the loss of putative protein interactions between GDH and any member of the GlnD/GlnK/AmtR signal cascade or if the absence of GDH causes changes in the concentration of a metabolite, which serves as the indicator for the nitrogen status of the cell (metabolic effect).

3.2.1. Expression of the *gdh* gene of *E. coli* in the *gdh* deletion strain of *C. glutamicum*

To investigate whether GDH activity or the presence of the GDH for a putative protein interaction predominantly affects nitrogen regulation in *C. glutamicum*, the influence of a non-*C. glutamicum* glutamate dehydrogenase was tested. Both, GDH from *C. glutamicum* and GDH from *E. coli* catalyze the NAPDH-dependent condensation of ammonium and 2-oxoglutarate forming glutamate. In sequence alignments, they share 53 % identical amino acids. Expression of *gdh* from *C.*

Figure 28: Specific GDH activity. Specific GDH activities of the *C. glutamicum* wild type strain ATCC 13032 (1), the *gdh* deletion strain LN Δ GDH (2), LN Δ GDH transformed with pZgdh harbouring *gdh* from *C. glutamicum* (3), LN Δ GDH transformed with pZgdh_{EC} harbouring *gdh* from *E. coli* (4), LN Δ GDH transformed with pZgdh-K92L harbouring *gdh* from *C. glutamicum* with a point mutation (5), and LN Δ GDH containing the control vector pZ8-1 (6). The strains were cultivated under nitrogen surplus (white bars) and under nitrogen starvation for 30 minutes (grey bars). N/D: no GDH activity was detectable.

glutamicum in a *gdh* deletion strain of *C. glutamicum* should complement both, a metabolic effect and a putative protein interaction. In contrast, glutamate dehydrogenase from *E. coli* heterologously expressed in a *gdh* deletion strain of *C. glutamicum* should only be able to complement a metabolic effect by its enzymatic activity, but not a putative protein interaction. The *gdh* genes of *C. glutamicum* and *E. coli*, respectively, were cloned into the plasmid pZ8-1 and were then transformed into the *gdh* deletion strain LN Δ GDH of *C. glutamicum*. The resulting strains, LN Δ GDH pzgdh and LN Δ GDH pZgdh_{EC}, as well as the *C. glutamicum* wild type ATCC13032 and the *gdh* deletion strain LN Δ GDH were cultivated under nitrogen surplus and nitrogen starvation. GDH activity was measured in these strains. Both, expression of *gdh* from *C. glutamicum* and *gdh* from *E. coli* restored GDH activity in the *gdh* deletion strain. GDH activities were almost on the level of the *C. glutamicum* wild type (figure 28). Additionally, total RNA was isolated from these strains cultivated under nitrogen surplus, under starvation, and after an excess of ammonium was added to the nitrogen starved cells. The samples were analysed by

Figure 29: Analysis of the nitrogen-dependency of the transcription of *gltB*, *glnA*, and *glnD*. The *C. glutamicum* strains ATCC 13032 (wild type), LN Δ GDH (*gdh* deletion strain), LN Δ GDH pZgdh (LN Δ GDH expressing plasmid-coded *gdh* from *C. glutamicum*), LN Δ GDH pZgdh_{EC} (LN Δ GDH expressing plasmid-coded *gdh* from *E. coli*), LN Δ GDH pZgdh-K92L (LN Δ GDH expressing plasmid-coded *gdh* from *C. glutamicum* with a point mutation), and LN Δ GDH pZ8-1 (LN Δ GDH containing the control vector) were cultivated under nitrogen surplus (+N), under nitrogen starvation for 15 and 30 minutes (-N), and for 10 minutes after an excess of ammonium was added to the nitrogen-starved cells (N-pulse). Total RNA was isolated and analyzed by RNA dot blot hybridization using the *gltB* gene, the *glnA* gene, and the *glnD* gene as probe.

RNA dot blot hybridization using the AmtR-regulated genes *gltB*, *glnA*, and *glnD* as probe. The loss of nitrogen-dependent transcription control in the *gdh* deletion strain was complemented by both, *gdh* from *C. glutamicum* and *gdh* from *E. coli* (figure 29). Thus, GDH activity seems to be essential for nitrogen control and not the presence of GDH from *C. glutamicum* for putative protein interactions.

3.2.2. Expression of an enzymatically inactive glutamate dehydrogenase in the *gdh* deletion strain

To support this result, an enzymatically inactive glutamate dehydrogenase protein was constructed. An enzymatically inactive mutant of GDH from *C. glutamicum* with a single amino acid exchange in the active site is not able to complement the loss of GDH activity in the *gdh* deletion strain, but should still be able to perform a putative protein interaction.

Lysine 92 in the active centre of *C. glutamicum* GDH was chosen as a target for site-directed mutagenesis. It has been demonstrated for GDH from *Clostridium symbiosum* that an alteration of this residue to leucine leads to a loss of catalytic activity of GDH from *C. symbiosum*, whereas the conformation of this protein is unaffected, which could be shown by crystal structure analyses (Stilmann *et al.*, 1999). Using site-directed mutagenesis, the expression vector pZgdh-K92L was constructed, which harbors the *gdh* gene from *C. glutamicum* containing a point

Figure 30: Western blot using antibodies for GDH. 1: Cell extract of the *C. glutamicum* wild type ATCC13032. 2: Cell extract of the *gdh* deletion strain LN Δ GDH. 3: Cell extract of LN Δ GDH pZgdh-K92L, which is the *gdh* deletion strain transformed with an expression vector harbouring *gdh* from *C. glutamicum* with a point mutation. M: molecular weight marker. The arrow indicates the presence of GDH protein.

mutation that leads to an exchange of lysine 92 to leucine. This plasmid was transformed into the gdh deletion strain of C. glutamicum. In the resulting strain, no GDH activity was detectable (figure 28). To verify the presence of the inactive GDH in this strain, antibodies for GDH were produced using purified His-tagged GDH from C. glutamicum. By Western blotting using these antibodies, the presence of GDH could be verified (figure 30). Thus, this strain harbours an enzymatically inactive mutant of GDH from C. glutamicum. The strain was cultivated under nitrogen surplus, nitrogen starvation, and after an excess of ammonium was added to the nitrogen-starved cells. Total RNA was isolated and analysed by RNA dot blot hybridization using the AmtR-regulated genes gltB, glnA, and glnD as probe. The loss of nitrogen-dependent transcription control in the gdh deletion strain could not be complemented by the enzymatically inactive mutant of GDH from C. glutamicum (figure 29), which was present in this strain as demonstrated by Western blotting (figure 30). Consequently, the physical presence of GDH from C. glutamicum for a putative protein interaction is not sufficient to complement this effect. It is GDH activity itself, which is essential for the nitrogen control by the GInD/GInK/AmtR signal cascade. Thus, the effect caused by the deletion of *gdh* is a metabolic effect, i.e. it is the result of changes in the concentration of one or more metabolites which serve(s) as indicator(s) for the nitrogen status of C. glutamicum.

3.2.3. Influence of a deletion of gdh on intracellular metabolite pools

Glutamate dehydrogenase directly influences the concentrations of 2-oxoglutarate, ammonium, and glutamate. Indirectly, also glutamine concentrations might be affected. Consequently, at least one of these metabolites might be the indicator for the nitrogen status and its internal concentration might change upon deletion of *gdh* resulting in a loss of nitrogen control. To investigate this, the *C. glutamicum* wild type ATCC 13032 and the *gdh* deletion strain LN Δ GDH were cultivated under nitrogen surplus and under nitrogen starvation for 30 minutes. The internal concentrations of 2-oxoglutarate, ammonium, glutamate, and glutamine were measured by HPLC and gas chromatography, respectively. The results are given in figure 31.

The intracellular concentration of glutamate was constantly on a very high level between 70 mM and 150 mM in both strains and under both conditions of nitrogen

Figure 31: Internal concentrations of glutamate, 2-oxoglutarate, ammonium, and glutamine. The *C. glutamicum* wild type strain ATCC 13032 (white bars) and the *gdh* deletion strain LN Δ GDH (grey bars) were cultivated under nitrogen surplus (+N), and under nitrogen starvation for 30 minutes (-N30). The internal concentrations of glutamate (A) and 2-oxoglutarate (B) were measured by gas chromatography, the internal concentrations of ammonium (C) and glutamine (D) were measured by HPLC.

supply (figure 31A). Consequently, glutamate cannot indicate the nitrogen status of the cell. As the concentration of glutamate is more or less constant, also the concentrations of metabolites derived from glutamate by biosynthesis should be constant (except glutamine, which is directly influenced by the availability of ammonium). Thus, these metabolites can be excluded as well. In the wild type strain ATCC 13032, the internal concentration of 2-oxoglutarate was constantly at 1.2 mM under nitrogen surplus as well as under nitrogen starvation (figure 31B). Consequently, neither 2-oxoglutarate nor any other metabolite of central carbon metabolism connected to 2-oxoglutarate indicated the nitrogen status in the wild type strain under the tested conditions. In contrast, the internal concentrations of

ammonium and glutamine were on high levels under nitrogen surplus (152 mM ammonium and 14.4 mM glutamine) and were significantly diminished under nitrogen starvation (2 mM ammonium and 1.7 mM glutamine) (figure 31CD). Thus, the internal concentrations of ammonium and glutamine correlated with the nitrogen supply, i.e. the availability of ammonium in the surrounding medium. Consequently, ammonium or glutamine or any metabolite derived from glutamine indicated the nitrogen status in the *C. glutamicum* wild type under the tested conditions.

However, neither the internal concentrations of ammonium nor the internal concentrations of glutamine were affected by a deletion of *gdh* (figure 31CD). In LN Δ GDH, the internal concentrations of ammonium and glutamine were still on high levels under nitrogen surplus (286 mM ammonium and 16.1 mM glutamine) and were also diminished under nitrogen starvation (9 mM ammonium and 2.9 mM glutamine). Beside that, the internal concentrations of glutamate were not affected by a deletion of *gdh*, too (figure 31A). Thus, the loss of nitrogen control in the *gdh* deletion strain under nitrogen surplus was not mediated by ammonium, glutamate, glutamate, or any metabolite derived from ammonium, glutamine or glutamate by biosynthesis. However, a deletion of *gdh* caused a significant increase of internal 2-oxoglutarate under nitrogen surplus up to 4.2 mM compared to 1.2 mM in the wild type (figure 31B). Thus, the increase in the concentration of 2-oxoglutarate or any other metabolite of central carbon metabolism connected to 2-oxoglutarate is directly correlated to the loss of nitrogen control in the *gdh* deletion strain.

Conclusively, nitrogen control is affected by at least two metabolites. On the one hand, nitrogen control responded to the concentration of ammonium or glutamine or any metabolite derived from glutamine. On the other hand, an increase in the concentration of 2-oxoglutarate or any other metabolite of central carbon metabolism connected to 2-oxoglutarate seems to influences nitrogen control as it is directly correlated to the loss of repression by AmtR in the *gdh* deletion strain.

3.2.4. Influence of a deletion of *glnA* on intracellular metabolite pools

Beside 2-oxoglutarate, the nitrogen status is indicated either by ammonium or by glutamine or by any metabolite derived from glutamine by biosynthesis. To analyze which of these metabolites indicates the nitrogen status in particular, the *glnA* deletion strain LN Δ GS was studied. This strain lacks glutamine synthetase, which

uses ammonium and glutamate to from glutamine. The *glnA* deletion strain LN Δ GS was cultivated in medium containing ammonium and glutamine as nitrogen sources. Then, LN Δ GS was cultivated in medium without any nitrogen source for 30 minutes. After that, either ammonium or glutamine or both, ammonium and glutamine, were added to the nitrogen-starved cells, which were then cultivated for another 30 minutes. Transcription of the *gltB* gene, which is under the control of AmtR, was analyzed by RNA dot blot hybridization. In addition, the internal concentrations of glutamine, ammonium, 2-oxoglutarate, and glutamate were measured by HPLC and GC, respectively. The results are given in figure 32.

The internal concentrations of ammonium correlated with the transcription level of gltB under all tested conditions (figure 32AB). Transcription of gltB was repressed under high internal concentrations of ammonium (+gln+NH₄⁺: 604 mM; gln-NH₄⁺pulse: 478 mM; NH₄⁺-pulse: 450 mM), and activated under low internal concentrations of ammonium (-N: 24 mM; gln-pulse: 26 mM). In contrast, the internal concentration of glutamine was not correlated to the transcription level of gltB, thus, was not decisive for nitrogen control (figure 32AC). After the addition of ammonium to a culture of nitrogen-starved cells (NH_4^+ -pulse), the glutamine pool was almost unaltered compared to nitrogen starvation (-N: 6.8 mM glutamine; NH_4^+ pulse: 10.3 mM glutamine), nevertheless, transcription of gltB was repressed. Additionally, gltB was still transcribed after the addition of glutamine to a culture of nitrogen-starved cells even though the internal concentration of glutamine increased significantly (81 mM). Internal 2-oxoglutarate, which can also induce transcription in high concentrations, was on a low level (1.05 mM) after the glutamine pulse, thus, did not cause this effect (figure 32D). Beside that, glutamate can also be excluded as its internal concentration was unaltered under all tested conditions (figure 32E). Consequently, only the concentration of ammonium was correlated with the transcription level of *gltB*, whereas 2-oxoglutarate, glutamate, glutamine, and, consequently, all metabolites derived from 2-oxoglutarate, glutamate, and glutamine by biosynthesis could be excluded to mediate this effect.

To investigate if ammonium itself indicated the nitrogen status, it was analyzed if ammonium is assimilated only by GDH and GS in *C. glutamicum*, thus, can directly affect only metabolites involved in the reaction catalyzed by GDH and GS, namely 2-oxoglutarate, glutamate, and glutamine. As described below (section 3.3.3.),

Figure 32: Transcription of *gdh* and internal concentrations of ammonium, glutamine, 2oxoglutarate, and glutamate. The *glnA* deletion strain LN Δ GS was cultivated in medium containing ammonium and glutamine as nitrogen sources (+gln+NH4+). Then, the cells were cultivated in medium without any nitrogen source for 30 minutes (-N). After that, either ammonium (NH4+-pulse) or glutamine (gln-pulse) or ammonium and glutamine (gln-NH4+-pulse) were added to the nitrogen-starved cells, which were then cultivated for another 30 minutes. Total RNA was isolated and analyzed by RNA dot blot hybridization using *gltB* as probe (A). The internal concentrations of ammonium (B), glutamine (C), 2-oxoglutarate (D), and glutamate (E) as well as the external concentration of ammonium (F) were measured by HPLC and GC, respectively.

analysis of a mutant strain lacking GDH and GS revealed the presence of a third enzyme for ammonium assimilation in *C. glutamicum*, which is unknown so far. However, assimilation of ammonium *via* this pathway was very slow, thus, the concentrations of the involved metabolites can be assumed to change relatively slowly in response to changes in the availability of ammonium. Because of that, these metabolites are not suitable to trigger the relatively fast response of the GlnD/GlnK/AmtR signal cascade. Thus, it was most probably ammonium itself that triggered nitrogen control under the tested conditions. However, it is not clear if the internal or the external concentration of ammonium was sensed by *C. glutamicum*, as both concentrations correlated with the transcription of *gltB* (figure 32B and 32F).

3.3. Putative toxicity of ammonium for C. glutamicum

Ammonium is suspected of being toxic for bacteria due to the formation of a putative energy-wasting transmembrane cycle. According to this theory, ammonium would first be transported into the cell by the use of energy and then it would diffuse passively back out of the cell resulting in a detrimental waste of energy (Castorph *et al.*, 1984; Kleiner, 1985). However, this has never been demonstrated in bacteria. Because of that, a putative toxicity of ammonium for *C. glutamicum* was investigated.

3.3.1. Diffusion of ammonia across the cell envelope of C. glutamicum

The ability of ammonia to diffuse passively across the cell membrane is an essential requirement for the formation of a putative futile cycle. Rapid diffusion of ammonia across cell membranes has already been demonstrated for different bacteria, e.g. Synechococcus R-2, Rhodobacter spheroides, and Bacillus firmus (Gibson et al., 1987a; 1987b). However, C. glutamicum has a more complex cell envelope with an additional permeability barrier, the mycolic acid layer (Puech et al., 2001). Therefore, the ability of ammonia to diffuse across the cell envelope of C. glutamicum was investigated. For this purpose, the C. glutamicum strain JS-1 was used. In JS-1, the *amtA* and the *amtB* gene coding for ammonium transporters are deleted, thus, no ammonium transporters are present in this strain. JS-1 was cultivated in CgC medium supplemented with casamino acids. Then, the cells were washed with a pre-warmed isoosmolar solution of 330 mM sodium chloride, and the internal concentrations of ammonium of unwashed and washed cells were measured by HPLC in order to investigate if internal ammonium can be washed out. Prior to washing, the intracellular concentration of ammonium was 11.4 mM (± 4.2 mM). This concentration was significantly diminished by one washing step (1.0 ± 1.2) mM). However, the drop of internal ammonium could also be a result of rapid assimilation of ammonium instead of diffusion out of the cell. Therefore, it was investigated if the amount of ammonium that was lost by washing of the cells is present in the washing buffer after the washing step. For this purpose, the intracellular and extracellular amounts of ammonium per cell pellet weight present in a pellet of unwashed cells were determined. After that, the cell pellet was resuspended in pre-warmed isoosmolar solution of 330 mM sodium chloride and

Figure 33: Internal and external amounts of ammonium before and after washing of the cells. The *amtAB* deletion strain JS-1 was cultivated in medium with casamino acids and cells were pelleted by centrifugation. The intracellular (grey bars) and extracellular (white bars) amounts of ammonium per cell pellet weight were determined in a cell pellet of unwashed cells (1) and after the cell pellet was resuspended in pre-warmed isoosmolar solution of 330 mM sodium chloride (2). A: internal amounts of ammonium per cell pellet weight. B: external amount of ammonium per cell pellet weight. C: total amount of internal (grey bars) and external (white bars) ammonium per cell pellet weight.

again the intracellular and extracellular amounts of ammonium per cell pellet weight were determined. The intracellular amount of ammonium per cell pellet weight was diminished by resuspension of the pellet in washing buffer (figure 33A), whereas the extracellular amount of ammonium per mg cell pellet weight raised significantly (figure 33B) as expected if the drop of internal ammonium concentrations during washing of the cell was caused by diffusion of ammonia out of the cell. As shown in, figure 33C, the total amount of ammonium per cell pellet weight did not change during resuspension of the cell pellet, thus, ammonium assimilation was negligible. It was the localization of ammonium that changed from intracellular to extracellular during the washing step. Thus, the cell envelope of *C. glutamicum* was obviously not a permeability barrier for ammonia and rapid diffusion of ammonia across the cell membrane occurred.

3.3.2. Growth of C. glutamicum under high concentrations of ammonium

To investigate putative ammonium toxicity, growth of *C. glutamicum* in the presence of high concentrations of ammonium was studied. The *C. glutamicum* strains ATCC13032, MJ6-18, and TM Δ gdh Δ glnA were investigated. ATCC 13032 is a *C. glutamicum* wild type strain, MJ6-18 is an *amtR* deletion strain lacking the global nitrogen regulator AmtR (Jakoby *et al.*, 2000), and TM Δ gdh Δ glnA, which was generated by allelic replacement as part of this work, lacks the *gdh* gene and the *glnA* gene, coding for the two ammonium assimilating enzymes of *C. glutamicum*. Cultures of these strains were supplemented with raising concentrations of ammonium (0.5 M, 1 M, and 2 M) and growth was analyzed by following the optical density at 600 nm for 7 hours. TM Δ gdh Δ glnA was additionally supplemented with 100 mM glutamine to facilitate growth. As shown in figure 34, higher concentrations of ammonium caused a decrease in growth in all tested *C. glutamicum* strains.

To investigate if the retardation of growth is a specific effect caused by ammonium in particular, the concentration of ammonium was kept constantly at 0.5 M, and

Figure 34: Growth of *C. glutamicum* strains under high ammonium concentrations. The *C. glutamicum* wild type ATCC13032 (A), the *amtR* deletion strain MJ6-18 (B), and TM Δ gdh Δ glnA, double deletion strain of *gdh* and *glnA* (C), were cultivated in CgC medium containing various concentrations of ammonium and Na⁺ in form of ammonium sulphate and sodium sulphate, respectively. TM Δ gdh Δ glnA was additionally supplemented with 100 mM glutamine to facilitate growth. Black squares: 0.5 M ammonium. Black circles: 1 M ammonium. Black triangles: 2 M ammonium. Open circle: 0.5 M ammonium and 0.5 M Na⁺.

raising amounts of sodium sulphate were added. Addition of sodium ions instead of ammonium caused an almost identical impairment of growth (figure 34). Thus, the observed retardation of growth was not caused specifically by ammonium, but is most probaly a general effect caused by the higher ionic strength or osmolarity of the medium. Thus, a specific toxicity of ammonium for *C. glutamicum* could not be observed.

3.3.3. Analysis of the presence of a putative futile cycle

The presence of ammonium transporters is an essential requirement for the formation of a putative futile cycle. Therefore, the expression levels of *amtA* and *amtB* were analyzed by RNA dot blot hybridization in ATCC 13032, MJ6-18, and TM∆gdh∆glnA cultivated under the conditions described above. In ATCC 13032, *amtA* and *amtB* were not expressed (figure 35), which might explain the absence of specific ammonium toxicity. However, *amtA* and *amtB* were expressed in MJ6-18 and TM∆gdh∆glnA under all tested conditions (figure 35). For MJ6-18, this is in accordance to previously described observations (Jakoby *et al.*, 2000). In addition, B. Walter could demonstrate by uptake measurements of the ammonium analog [¹⁴C]methylammonium that the ammonium transporters were active in both strains under the tested conditions (personal communication). Thus, all requirements for the formation of a putative futile cycle should be fulfilled. Nevertheless, a specific retardation of growth by ammonium could not be observed as described above.

Figure 35: Expression of *amtA* **and** *amtB***.** Using RNA dot blot hybridization, the expression of *amtA* and *amtB* were analyzed in the *C. glutamicum* wild type ATCC 13032, the *amtR* deletion strain MJ6-18, and a double deletion strain of *gdh* and *glnA* (TM Δ gdh Δ glnA), respectively, in response to the addition of (NH₄)₂SO₄ and Na₂SO₄, respectively. The strains were cultivated in CgC medium containing 0.5 M ammonium (1), 1 M ammonium (2), 2 M ammonium (3), 0.5 M ammonium and 0.5 M Na⁺ (4), and 0.5 M ammonium and 1.5 M Na⁺ (5), respectively. TM Δ gdh Δ glnA was additionally supplemented with 100 mM glutamine to facilitate growth.

However, in case of MJ6-18, one could postulate that ammonium might be assimilated by GDH and GS immediately after it has entered the cell and therefore can not diffuse out of the cell again to cause a putative futile cycle. Nevertheless, this should not happen in case of TM Δ gdh Δ glnA, as both assimilation systems are absent in this strain. To support this, ammonium assimilation by TM Δ gdh Δ glnA was studied. Surprisingly, TMAgdhAgInA was able to grow on medium with ammonium as the exclusive nitrogen source (figure 36). Thus, a third enzyme for ammonium assimilation must be present in C. glutamicum, which is unknown. However, TM Δ gdh Δ glnA grew only very slowly under these conditions. Thus, the putative new assimilation system should have only a very low activity, and ammonium assimilation in the TMAgdhAgInA strain should not be fast enough to prevent a putative futile cycle. Nevertheless, TMAgdhAgInA showed no specific growth retardation due to high concentrations of ammonium as described above. Thus, no indications for the presence of a energy-wasting transmembrane cycle of ammonium could be observed even in the presents of AmtA and AmtB and in the absence of GDH and GS.

Figure 36: Growth of the double deletion strain of *gdh* and *glnA*. The double deletion strain TM Δ gdh Δ glnA was cultivated in medium containing ammonium as the exclusive nitrogen source for 180 hours. Growth was analyzed by following the optical density at 600 nm.

4. Discussion

Nitrogen control in *C. glutamicum* was investigated mainly in the last years. Several compounds of nitrogen metabolism, transport, and regulation are now well-characterized (Burkovski, 2003a; 2003b; 2005). Among those factors, glutamate dehydrogenase seems to play an important but less investigated role in nitrogen control of *C. glutamicum*. In this work, regulation of glutamate dehydrogenase and its impact on nitrogen control of *C. glutamicum* were investigated.

4.1. Regulation of glutamate dehydrogenase

Glutamate dehydrogenase assimilates ammonium under nitrogen surplus, whereas the glutamine synthetase/glutamate synthase pathway is downregulated under these conditions. However, as GDH has only a low affinity to ammonium, assimilation via GDH is not sufficient under nitrogen limitation. Consequently, the GS/GOGAT system with a high affinity to ammonium is upregulated under nitrogen limitation to ensure ammonium assimilation, whereas expression of GDH is either downregulated or remains constant under nitrogen limitation in most bacteria (Brenchley et al., 1975; Schwacha et al., 1993; Merrick and Edwards, 1995; Camarena et al., 1998). In accordance to this, GDH from C. glutamicum was first reported to be unaffected by nitrogen supply. Tesch et al. (1999) could not observe a significant change in GDH activity of C. glutamicum in response to changes in nitrogen supply. This observation was supported by transcriptome analyses of C. glutamicum cultivated under nitrogen excess and nitrogen limitation, where gdh transcription was observed to be unaffected (Beckers, 2004; Silberbach, 2004). In contrast to this, L. Nolden observed a significant increase in *gdh* transcription as well as GDH activity under nitrogen limitation (personal communication), which is remarkable, since an upregulation of GDH under nitrogen limitation has never been described before in bacteria. Because of these controversial observations, the regulation of *gdh* expression in response to nitrogen supply was reinvestigated as part of this work. The results obtained here clearly demonstrate that glutamate dehydrogenase is under nitrogen control. Nitrogen limitation caused a significant increase of the level of gdh mRNA, GDH protein, and GDH activity in C. glutamicum. Thus, expression of glutamate dehydrogenase is indeed upregulated under nitrogen limitation in *C. glutamicum*. However, the reason for the discrepancy to the observations made by Tesch *et al.* (1999), Beckers (2004), and Silberbach (2004) is still unclear.

The underlying regulatory mechanism for the induction of GDH under nitrogen limitation was unknown as well. Because of that, the main aim of this work was the analysis of the nitrogen-dependent regulation of glutamate dehydrogenase in *C. glutamicum*.

In a first approach, it was demonstrated that nitrogen-dependent regulation of glutamate dehydrogenase occurs only on the level of expression. Regulation of GDH activity by posttranslational modifications could not be observed. This was demonstrated by creating a genetically engineered strain of *C. glutamicum*, where transcription of *gdh* was constant and nitrogen-independent. In this strain, GDH activity was not nitrogen-regulated anymore. Thus, GDH activity is directly correlated with the transcription level of *gdh* and a nitrogen-dependent regulation of GDH activity by posttranslational modifications is not present. This observation is in accordance with the fact that regulation of bacterial GDHs by posttranslational modifications is unknown (Minabres *et al.*, 2000).

In addition, it could be demonstrated that a nitrogen-dependent regulation of the degradation rate of *gdh* mRNA is not present. The transcription rate of *gdh* is induced under nitrogen limitation, whereas the degradation rate of *gdh* mRNA is constant. Thus, glutamate dehydrogenase is regulated only on the level of transcription under the investigated conditions.

The part of the *gdh* promoter region that is responsible for nitrogen-dependent control was identified by reporter genes assays. By this approach, the 550 bp DNA sequence upstream of the *gdh* gene, which harbours the transcription start and all basic elements of the core promoter of *gdh* (Börmann *et al.*, 1992), was found to be sufficient for a nitrogen-dependent expression. Thus, this 550 bp fragment of the *gdh* promoter region harbours the regulatory element for nitrogen-dependent transcription control, e.g. a binding site for a putative transcriptional regulator.

This part of the *gdh* promoter region was used to isolate putative transcriptional regulators of *gdh* by DNA affinity purification with magnetic beads. Four partially overlapping 200 bp DNA fragments were used as target DNAs, which span the 550

bp fragment of the *gdh* promoter. Purified proteins were identified by peptide mass fingerprinting. All isolated proteins were DNA-binding proteins as expected. Among these were DNA- and RNA-polymerase subunits and a helicase. These proteins bound to all four target DNAs. Thus, binding was unspecifically as one would expect for these proteins. In addition, four transcriptional regulators were isolated, which bound only to distinct parts of the *gdh* promoter. Thus, binding of these proteins was sequence-specific, which is typical for transcriptional regulators (Wagner, 2000). One of them is AmtR, the global transcriptional regulator of nitrogen control in *C. glutamicum*. The others have not been characterized in *C. glutamicum* yet, but by sequence alignments, they were found to be similar to the transcriptional regulators FarR from *E. coli*, WhiH from *S. coelicolor*, and OxyR from *M. leprae*, respectively. None of them has been described as a regulator of *gdh* transcription yet.

AmtR is the master regulator of nitrogen control in C. glutamicum and it represses the transcription of several genes of nitrogen metabolism, transport, and regulation under nitrogen limitation (Beckers, 2004). Nevertheless, binding of AmtR to the gdh promoter is astonishing, since AmtR does not seem to be responsible for nitrogen control of gdh transcription. It could be demonstrated that a deletion of amtR does not affect *qdh* transcription (L. Nolden, personal communication). Nevertheless, binding of AmtR to the *gdh* promoter could be clearly demonstrated in this work. The sequence-specific affinity of AmtR to distinct parts of the *gdh* promoter, which was observed by DNA affinity purification with magnetic beads, could be verified by gel shift assays. In addition, two distinct 25 bp binding sites of AmtR could be identified within the *gdh* promoter by gel shift assays. As expected, the sequences of these binding sites are homologous to the known consensus binding motif of AmtR from C. glutamicum (Beckers, 2004). One binding site is located 62 bp upstream of the start of transcription of gdh and the other 87 bp downstream of the start of transcription of gdh, which is a typically arrangement for AmtR. So far, the exact locations of AmtR binding sites compared to the start of transcription have been described for amtA (Jakoby et al., 2000) and gltB (Beckers et al., 2001; 2005). In both cases, two AmtR binding sites are present in the respective promoter regions, and in accordance to gdh, one is located upstream of the start of transcription, whereas the second binding site is located either downstream of the start of transcription (*gltB*) or exactly at the start of transcription (*amtA*). In addition, it could be demonstrated in this work that four AmtR units (four AmtR monomers or four AmtR oligomers) can bind to the gdh promoter region, i.e. two AmtR units per binding site. This binding behaviour is also in accordance with previous observations. The two binding sites of the *gltB* promoter region can also bind four AmtR units (Beckers et al., 2001), whereas the amtA promoter region binds three AmtR units (Jakoby et al., 2000). Beside that, it could be demonstrated in this work that one of the two AmtR binding sites of the *gdh* promoter region has a significantly higher affinity to AmtR than the other binding site. This could be revealed by competition assays, and is in accordance to the estimated binding affinities of AmtR to the gdh promoter region. The affinities of two AmtR binding sites within one promoter region have not been investigated before for AmtR of C. glutamicum. However, the results obtained here are in accordance to general models of transcription control. The high affinity binding site of the gdh promoter region is the one located 87 bp downstream of the start of transcription, which is a typical location for a binding site of a transcriptional repressor (Wagner, 2000). The presence of a second low affinity binding site 150 bp upstream of the high affinity binding site is also a typical feature of transcription control. Such additional low affinity binding sites can cause higher local concentrations of the transcription factor around the high affinity binding site and, thereby, direct the transcription factor to the high affinity site making transcription control more efficient (Dröge and Müller-Hill, 2001). Thus, binding of AmtR to the *gdh* promoter could be clearly demonstrated and the sequences, locations, and affinities of the respective binding sites are consistent with previously investigated target genes of AmtR and general models of transcription control. Thus, these in vitro studies did not provide reasons why AmtR should not affect gdh transcription. Nevertheless, a deletion of amtR does not affect gdh transcription and has no effect on nitrogen-control. The reasons for this discrepancy are still unknown. One can speculate that transcription of gdh is regulated by more than one transcription factor and that a deletion of *amtR* can be compensated by another regulator with redundant function. However, this has not been proven yet.

The second putative transcription factor that could be isolated by magnetic DNA affinity purification using the *gdh* promoter region as target DNA has not been characterized in *C. glutamicum* yet, but it is similar to the transcriptional regulator

FarR from E. coli. The function of FarR from E. coli, which is a HutC/FarR-type regulator of the GntR family, has been described controversially as a fatty acyl responsive regulator of TCA cycle genes (Quail et al., 1994) and as a regulator of genes coding for a 2-O- α -mannosyl-D-glycerate transport and metabolism system (Sampaio et al., 2004). In principle, HutC/FarR-type regulators of the GntR family regulate genes of the central metabolism (Rigali et al., 2002) and are modulated in their activity by binding of small effector molecules (Aravind et al., 2003). During the DNA affinity purification with magnetic beads described here, FarR from C. glutamicum exhibited an interesting binding behaviour. It was isolated only from a total protein extract of C. glutamicum cultivated under nitrogen excess, but not from a total protein extract of C. glutamicum cultivated under nitrogen limitation. Thus, binding of FarR from C. glutamicum was somehow nitrogen-dependent. The capacity of FarR to bind specifically to distinct parts of the gdh promoter as demonstrated by magnetic DNA affinity purification was verified by gel shift assays. A distinct 25 bp binding site of FarR from C. glutamicum could be identified within the *gdh* promoter. This binding site harbours a palindromic sequence, which was assumed to be the FarR binding motif. Palindromic sequences are a typical feature of binding sites of transcription factors (Wagner, 2000). In addition, the sequence of the FarR binding site is homologous to the consensus binding motif of the HutC/FarR-type regulators of the GntR family (Rigali et al., 2002). It is located 172 bp upstream of the start of transcription of gdh. Typically, binding sites of transcriptional activators are located upstream of the core promoter, whereas this is uncommon for transcriptional repressors (Wagner, 2000). However, FarR of C. glutamicum was found to repress transcription. This was demonstrated by reporter gene assays of an E. coli strain harbouring a plasid-coded fusion of the gdh promoter region of C. glutamicum and a reporter gene. Heterologous expression of FarR from C. glutamicum in this E. coli strain caused a significant decrease of the expression of the reporter gene. Conclusively, specific binding of FarR to a distinct binding site within the *gdh* promoter region as well as a principle capacity of FarR to repress transcription could be demonstrated. Surprisingly, a deletion of *farR* from *C*. glutamicum has no effect on gdh transcription. Possibly, a deletion of farR can be compensated by another transcription factor with redundant function, or FarR regulates *gdh* transcription only in response to certain conditions which have not been tested yet.

The third transcription factor that could be isolated by DNA affinity purification with magnetic beads is similar to WhiH from *S. coelicolor*, which is also a member of the GntR-family of transcriptional regulators. WhiH from *S. coelicolor* regulates transcription during the late phase of sporulation, however, the corresponding target genes are unkown (Ryding *et al.*, 1998). During the DNA affinity purification with magnetic beads, WhiH from *C. glutamicum* bound specific to distinct parts of the *gdh* promoter. Until now, this could not be verified by gel shift assays. Again, a single deletion of the corresponding gene, *whiH*, had no effect on *gdh* transcription, which might have the same reasons as described for AmtR and FarR.

Another transcription factor that could be isolated by DNA affinity purification with magnetic beads is similar to OxyR from *M. leprae*, which is a LysR-type transcriptional regulator. In many organisms, OxyR-like regulators control transcription in response to oxidative stress. A distinct disulfide bound of OxyR is oxidized under peroxide stress, which triggers regulation of transcription of several genes of scavenging enzymes as well as of protection and repair systems (Christman *et al.*, 1989; Storz *et al.*, 1990; Mostertz *et al.*, 2004). OxyR has not been described as a regulator of glutamate dehydrogenase yet. The specific binding of OxyR from *C. glutamicum* to a distinct part of the *gdh* promoter region, which was observed by DNA affinity purification with magnetic beads, could not be verified by gel shift assays yet. As observed for *amtR*, *farR*, and *whiH*, a single deletion of *oxyR* had no effect on *gdh* transcription.

Thus, four transcriptional regulators that bind specifically to the *gdh* promoter region could be identified. Surprisingly, none of these transcriptional regulators is responsible for nitrogen-dependent control of *gdh* transcription. Neither dot blot hybridization experiments nor quantitative real time PCR studies revealed any difference in *gdh* transcription between the *C. glutamicum* wild type and the single deletion strains of *amtR*, *farR*, *whiH*, and *oxyR*, respectively. Nitrogen-dependent regulation of *gdh* transcription was still observable in these mutant strains. For AmtR, this result is in accordance to previous observations (L. Nolden, personal communication). To investigate a putative functional redundancy of AmtR, FarR,

WhiH, and OxyR, multiple deletion strains were analyzed. None of the multiple deletions affected nitrogen-dependent *gdh* transcription. Even a quadruple deletion of all four regulators had no effect on transcription of *gdh*. Thus, a functional redundancy among the regulators could not be observed under the tested conditions. These results clearly show that AmtR, FarR, WhiH, and OxyR are not essential for transcription control of *gdh* in response to nitrogen starvation. Their deletion can either be compensated by other regulators or these transcription factors affect gdh transcription only under conditions that have not been tested yet. Consequently, another regulatory mechanism must be present in C. glutamicum which regulates *gdh* transcription in response to nitrogen supply. Using the approach of magnetic DNA affinity purification, a relevant transcriptional regulator could not be isolated. A possible explanation for this is that the assumed relevant transcriptional regulator did not bind under the conditions of the magnetic DNA affinity purification. For example, some transcriptional regulators need certain ligands or other interacting proteins to be able to bind to DNA. These might have been not present or not in the correct concentration during the purification procedure. In addition, for some regulators protein modifications are important. However, modifications like phosphorylation are known to be relatively unstable in vitro.

It is also possible, that nitrogen-dependent control of *gdh* transcription is not performed by a transcriptional regulator but by a different regulatory mechanism. This idea is supported by the fact that transcription of *gdh* starts 284 bp upstream of the first codon of the *gdh* gene. Thus, the mRNA of *gdh* possesses a 284 bp leader mRNA, which is relatively large for *C. glutamicum*. Normally, leader mRNAs that are larger than 150 bp exhibit a regulatory function in *C. glutamicum* (M. Pátek, personal communication). One possibility is translation-dependent attenuation. Attenuation describes the control of transcription by regulated termination of mRNA synthesis. The decision between termination and readthrough is triggered by the translation of a leader peptide from the growing mRNA chain. This leader peptide is encoded by an open reading frame on the leader mRNA and contains a cluster of certain amino acids (Wagner, 2000). Seven putative open reading frames could be identified within the leader mRNA of *gdh*, but none of them contains a significant accumulation of a certain amino acid. As such an accumulation is essential for

translation-dependent attenuation, *gdh* transcription is most likely not regulated by this mechanism. Thus, the role of the 284 bp leader mRNA of *gdh* is still unknown. Beside that, transcription control can be achieved by several other mechanisms, e.g. by alternative σ factors, stringent control, translation-independent attenuation, or regulated antitermination (Wagner, 2000). However, these regulatory mechanisms have not been investigated in this work, but should be continued in future work. Thus, the regulatory mechanism that controls *gdh* transcription in response to nitrogen starvation is still unknown.

AmtR, FarR, OxyR, and WhiH do not regulate *gdh* transcription in response to nitrogen starvation, however, they might regulate *gdh* transcription under conditions which have not been tested so far, i.e. they respond to other stress conditions than nitrogen starvation. In this work, various approaches were used to identify conditions that trigger regulation of *gdh* transcription by AmtR, FarR, WhiH, and OxyR.

To get an idea about the function of FarR and WhiH *in vivo*, DNA microarrays were used to identify putative target genes of FarR and WhiH. In the *farR* deletion strain, the expression of several genes of arginine biosynthesis was induced compared to the wild type, namely *argBCDFJ*, *carB*, *glnA*, and *argR*. However, several other experiments did not support a putative role of FarR as a regulator of arginine biosynthesis. An increase of internal concentration of arginine could not be observed in the *farR* deletion strain. Beside that, FarR does not regulate transcription of *gdh* in response to the addition of arginine or the arginine precursors citrulline and ornithine. Using gel shift assays, binding of FarR to the promoter regions of *argC*, *argG*, and *argR*, respectively, could not be demonstrated yet (E. Hänßler, personal communication). Thus, FarR is most likely not a repressor of arginine biosynthesis genes and the induced expression of these genes in the *farR* deletion strain observed by DNA microarray experiments was most probably a secondary effect caused by metabolic perturbations.

DNA microarray analysis of the *whiH* deletion strain vs. the wild type did not revealed any putative target genes of WhiH. The fact that a differential expression of putative target genes of FarR and WhiH could not be observed by DNA microarray

analyses supports the idea that FarR and WhiH were not active under the tested conditions.

Using a bioinformatical approach, the *dtsR2* gene could be identified as a putative target gene of FarR. In this approach, the FarR binding motif of the *gdh* promoter was used to identify other putative binding sites of FarR within the genome of *C. glutamicum*. For one of the resulting putative binding sites, binding of FarR could be verified by competition gel shift assays. This FarR binding site is located 174 bp upstream of *dtsR2*. Thus, *dtsR2* is another putative target gene of FarR beside *gdh*. The *dtsR2* gene codes for DtsR2, which is a homolog of the detergent sensitive rescuer protein DtsR1. DtsR1 and DtsR2 are involved in fatty acid biosynthesis and

Figure 37: Overproduction of glutamate by *C. glutamicum.* Overproduction of glutamate is induced under biotin limitation or in the presence of detergents. Under both conditions, the level of a detergent sensitive rescue protein (DtsR1) is decreased. DtsR1 and its homolog DtsR2 are counterparts of biotin-binding acyl-CoA carboxylase (AccBC) This protein complex is involved in fatty acid biosynthesis in *C. glutamicum.* A decreased level of DtsR1 causes a decrease of the activity of 2-oxoglutarate dehydrogenase (ODHC) by a still unknown regulatory mechanism. A decrease of ODHC activity induces a drastic metabolic flux change towards glutamate production by glutamate dehydrogenase (GDH). Accumulated glutamate is then exported most probably by a specific transporter, which is still unknown. (Kinura, 2002)

act as counterparts of biotin-binding acyl-CoA carboxylase (AccBC) (Kimura, 2002). This protein complex catalyzes the first step of fatty acid biosynthesis of C. glutamicum (figure 37). Deletion of dtsR1 causes a strict fatty acid auxotrophy (Kimura et al., 1997), whereas deletion of dtsR2 causes only an altered fatty acid composition (Kimura, 2002). Whereas the function of DtsR2 is less clear, the role of DtsR1 has been further studied, DtsR1 was isolated by its ability to inhibit an overproduction of glutamate (Kimura et al., 1996). Overproduction of glutamate can be induced by biotin limitation or by the addition of detergents (figure 37) (Shiio et al., 1962; Takinami et al., 1965; Duperray et al., 1992). In both cases, the level of DtsR1 decreases (Kimura et al., 1999), which causes changes of the fatty acid composition of C. glutamicum as well as a decrease of the activity of 2-oxoglutarate dehydrogenase (ODHC) by a still unknown regulatory mechanism. A decrease of ODHC activity induces a drastic metabolic flux change towards glutamate production by GDH (Kawahara et al., 1997). Accumulated glutamate is then exported most probably by a specific transporter, which is still unknown (Hoischen et al., 1990; Gutmann et al., 1992; Krämer, 1994). This effect can be complemented by an overexpression of dtsR1 (Kimura et al., 1996). Thus, the level of DtsR1 plays an important role in the triggering mechanism of glutamate overproduction. However, the role of DtsR2 for glutamate production is less clear. Beside that, the regulatory mechanism that provides the linkage between the DtsR proteins and the metabolic flux change towards the production of glutamate is unknown (figure 37). As FarR binds to the promoter regions of *gdh* and *dtsR2*, one can speculate about a putative role of FarR in this process. This idea is supported by the fact that FarR from E. coli has been described as a fatty acyl responsive regulator of TCA cycle genes. Referred to this, FarR from E. coli represses transcription of genes coding for subunits of 2-oxoglutarate dehydrogenase, pyruvate dehydrogenase, and citrate synthase. Repression is released in the presence of long chain fatty acids or their CoA thioesters, which bind to FarR from E. coli as effector molecules (Quail et al., 1994). However, a recent publication about FarR from E. coli is in contradiction to this and describes FarR from E. coli as a regulator of genes coding for a 2-O-amannosyl-D-glycerate transport and metabolism system (Sampaio et al., 2004).

However, FarR does not seem to be specifically influenced by fatty acids. As part of this work, a diverse range of metabolites were tested with respect to their ability to influence binding of FarR from C. glutamicum to the gdh promoter region. Most of the tested substances had no effect on FarR from C. glutamicum. Only the fatty acid salts sodium myristate and sodium palmitate, respectively, inhibited binding of FarR to the *gdh* promoter region. However, further experiments revealed that this effect was most probably not the result of a specific interaction of myristate and palmitate with a putative ligand binding domain of FarR. These substances most probably just denatured FarR in a detergent-like manner. This was demonstrated by analysis of substances similar to myristate and palmitate. Sodium dodecylsulfate (SDS), cetyl trimethyl ammonium bromide (CTAB), and sodium oleate also inhibited binding of FarR to the gdh promoter region. Especially for CTAB, this result is remarkable, since this molecule is positively charged in contrast to myristate and palmitate, which are negatively charged. Thus, inhibition by sodium myristate and sodium palmitate was most probably unspecific. In addition, sodium myristate and sodium palmitate influence FarR only in high concentrations, which are not in the physiological range. In contrast, the application of sodium palmitate in the physiological range of concentrations had no effect on FarR. Thus, the role of FarR remains unclear.

As described previously, AmtR, FarR, WhiH, and OxyR might regulate *gdh* transcription in response to stress conditions other than nitrogen starvation. However, other stress conditions that affect *gdh* transcription have not been described before. As part of this work, a broad range of stress conditions could be identified, which influence *gdh* transcription in *C. glutamicum*. It could be demonstrated that variation of the carbon source and the nitrogen source, carbon starvation, oxygen limitation, chill stress, and the growth phase affects *gdh* transcription in *C. glutamicum*. In contrast, heat stress, oxidative stress, and osmotic stress had no influence on *gdh* transcription. However, analysis of the deletion strains of *amtR*, *farR*, *whiH*, and *oxyR* revealed that the corresponding regulators are not involved in regulation of *gdh* transcription in response to oxygen limitation. Nevertheless, several other stress conditions could be identified that

influence *gdh* transcription as described above, and the role of AmtR, FarR, WhiH, and OxyR with regard to those conditions can be tested in the future. Conclusively, transcription control of *gdh* seems to be very complex, since *gdh* is regulated in response to a broad range of stress conditions. This is in accordance to the results of the isolation of putative transcriptional regulators by magnetic DNA affinity purification. Four transcriptional regulators could be identified that bind to the *gdh* promoter indicating that *gdh* transcription control is a complex process.

Complex regulatory networks for the control of glutamate dehydrogenase expression are also present in other bacteria. In B. subtilis, expression of the rocG gene, coding for a NADH-dependent glutamate dehydrogenase, is under the control of several regulatory systems. The transcription factors RocR, AhrC, and CcpA, respectively, regulate rocG transcription in response to various conditions (Calogero et al., 1994; Belitzky et al., 2004). In addition, expression of rocG from B. subtilis depends on the σ_{54} factor as well as on an enhancer element located 1.5 kb downstream of the rocG gene (Belitsky et al., 1999; 2004). In E. coli, at least two transcriptional regulators influence transcription of gdhA, coding for a NADPHdependent glutamate dehydrogenase. The transcription factor Nac represses transcription of gdhA in E. coli under nitrogen limitation, whereas another still unknown transcription factor activates gdhA transcription under the same conditions. These contrary regulations finally result in an unaltered expression of gdhA from E. coli under nitrogen limitation (Camarena et al., 1998). Thus, the observation that transcription control of gdh from C. glutamicum is complex and most probably regulated by several transcription factors, is in accordance to the situation in other bacteria.

4.2. The role of GDH in the nitrogen regulation network of C. glutamicum

In the second part of this work, the role of glutamate dehydrogenase in the nitrogen regulation network of *C. glutamicum* was investigated. It has been observed previously, that glutamate dehydrogenase is essential for a functional nitrogen control in *C. glutamicum*. A deletion of *gdh*, coding for glutamate dehydrogenase, leads to a loss of nitrogen-dependent transcription control by the GlnD/GlnK/AmtR signal cascade resulting in a constitutive expression of genes that are nitrogen-

regulated in the wild type (L. Nolden, personal communication). However, the underlying mechanism of this effect was unknown. As part of this work, it could be demonstrated that GDH activity and not the GDH protein itself is essential for nitrogen control. This is supported by two observations. First, GDH from E. coli heterologously expressed in the gdh deletion strain of C. glutamicum was able to restore nitrogen control. This non-C. glutamicum GDH was most probably not able to perform a specific protein interaction. Thus, it was the enzymatic activity of GDH from *E. coli* that complemented the loss of nitrogen control in the *gdh* deletion strain of C. glutamicum. Second, an enzymatically inactive GDH from C. glutamicum did not restore nitrogen control in the gdh deletion strain. This inactive GDH was generated by the single amino acid exchange of lysine 92 in the active centre of GDH by a leucine residue, which resulted in loss of enzymatic activity. It has been demonstrated for GDH from *Clostridium symbiosum* by analyses of crystal structures that an alteration of this conserved amino acid does not change the conformation of this protein (Stilmann et al., 1999). Referred to this, GDH from C. glutamicum carrying this single point mutation should still able to perform a putative protein interaction when expressed in the *gdh* deletion strain, but it is not able to restore GDH activity. As this enzymatically inactive GDH was not able to complement the loss of nitrogen control in the *gdh* deletion strain, it is the GDH activity, which is essential for a functional nitrogen control by the GInD/GInK/AmtR signal cascade. Thus, the effect caused by the deletion of *gdh* is a metabolic effect, i.e. the lack of GDH activity causes changes in the concentration of one or more metabolites that serve as indicator(s) for the nitrogen status in C. glutamicum and thereby cause the loss of nitrogen control.

To identify the metabolites that indicate the nitrogen status in *C. glutamicum*, internal concentration of ammonium, 2-oxoglutarate, glutamate, and glutamine were measured in the *C. glutamicum* wild type, the *gdh* deletion strain, and a *glnA* deletion strain under various nitrogen conditions. By this approach, it could be demonstrated that at least two metabolites trigger nitrogen control. One of them is most probably ammonium. In high concentrations, ammonium indicated nitrogen surplus in *C. glutamicum* resulting in repression of transcription by AmtR. Under nitrogen limitation, low ammonium concentrations caused derepression of transcription by AmtR and the respective target genes were expressed. This was
demonstrated using a *glnA* deletion strain, where changes in the concentrations of ammonium were sufficient to regulate nitrogen control, whereas glutamate, glutamine, and 2-oxoglutarate could be excluded to mediate this effect. Nevertheless, it could not be completely excluded, that a metabolite involved in the third yet unknown ammonium assimilation pathway indicates the nitrogen status. However, assimilation of ammonium *via* this pathway is very slow, thus, the concentrations of the involved metabolites can be assumed to change relatively slowly in response to changes in the availability of ammonium. Because of that, these metabolites are not suitable to trigger the relatively fast response of the GInD/GInK/AmtR signal cascade. Hence, it is most probably ammonium itself that indicates the nitrogen status of *C. glutamicum*. Until now, it is not clear whether the intracellular concentration or the extracellular concentration of ammonium is sensed by *C. glutamicum*, as both correlated with nitrogen control by AmtR under the tested conditions.

The second metabolite that triggers transcription control by AmtR is most probably 2-oxoglutarate or any other metabolite of the central carbon metabolism connected to 2-oxoglutarate. If 2-oxoglutarate was present in high concentrations in the cytoplasm (approximately 4.2 mM), repression of transcription by AmtR was released. This occurred even under high concentrations of ammonium, which normally indicate nitrogen surplus. Thus, a high 2-oxoglutarate pool can antagonize the status of nitrogen surplus and trigger a nitrogen-starvation-like response by the GlnD/GlnK/AmtR signal cascade even in the presence of ammonium. Under low internal concentrations (\leq 1.2 mM), 2-oxoglutarate had no effect on nitrogen control under the tested conditions.

In contrast, the internal concentrations of glutamine and glutamate do obviously not affect nitrogen control by the GlnD/GlnK/AmtR signal cascade. This result is in accordance with previously published data (Nolden *et al.*, 2001b). However, it still cannot be excluded completely that glutamine is an effector of nitrogen regulation in *C. glutamicum*. For example, regulation of GS activity by adenylylation through ATase works independently of the GlnD/GlnK/AmtR signal cascade in an unknown way (Burkovski, 2003b).

Conclusively, nitrogen control of *C. glutamicum* is affected by at least two signals, which are most probably ammonium and 2-oxoglutarate. Ammonium indicates the

nitrogen status of *C. glutamicum*. In addition, accumulation of 2-oxoglutarate can antagonize the status of nitrogen surplus resulting in a nitrogen-starvation-like response.

The loss of nitrogen control in the *gdh* deletion strain, which is a metabolic effect, was directly correlated to the internal concentration of 2-oxoglutarate. Due to the lack of 2-oxoglutarate consuming GDH, 2-oxoglutarate was accumulated under nitrogen surplus in the *gdh* deletion strain. This seems to trigger the expression of AmtR-regulated genes, which are normally repressed in the wild type under these conditions. Consequently, the loss of nitrogen control by the GlnD/GlnK/AmtR signal cascade was most probably caused by an accumulation of 2-oxoglutarate under nitrogen surplus due to the lack of 2-oxoglutarate-consuming GDH.

Comparison of the nitrogen control of *C. glutamicum* and that of the model organism *E. coli* revealed several substantial differences, but also some similarities. One of the two metabolites that influence nitrogen-dependent regulation in *E. coli* is glutamine (Jiang *et al.*, 1998a). In contrast, the availability of nitrogen in *C. glutamicum* is indicated most probably by ammonium and not by glutamine. In *E. coli*, internal glutamine is sensed by UTase (Jiang *et al.*, 1998a), whereas the UTase homolog in *C. glutamicum*, GlnD, is probably not a primary sensor of the nitrogen status (Nolden *et al.*, 2001b). In a recent publication, a putative role of the ammonium transporter AmtB of *E. coli* as a sensor for external ammonium was discussed (Javelle *et al.*, 2004). However, in *C. glutamicum*, this possibility can be excluded, as a double deletion of *amtA* and *amtB*, coding for the two ammonium transporter of *C. glutamicum*, had no effect on nitrogen control of *C. glutamicum* (J. Strösser, personal communication). Thus, the first signal as well as the corresponding sensor for the availability of nitrogen in *C. glutamicum* differs substantially from that of *E. coli*.

The second metabolite that influences the nitrogen regulation network of *C. glutamicum* is most probably 2-oxoglutarate. This is in accordance to *E. coli*, where internal 2-oxoglutarate also affects nitrogen control in response to the carbon or energy status of the cell (Jiang *et al.*, 1998a; 1998b; Arcondeguy *et al.*, 2001). In *C. glutamicum* as well as in *E. coli*, an accumulation of 2-oxoglutarate antagonizes the status of nitrogen surplus and causes a nitrogen starvation-like response even

under good nitrogen supply. The internal concentrations of 2-oxoglutarate in *C. glutamicum* and *E. coli* are more or less in the same range. In *C. glutamicum*, the internal concentration ranges from 0.3 mM to 8 mM, whereas, between 0.1 mM and 0.9 mM 2-oxoglutarate are present in *E. coli* (Senior, 1975). In *E. coli* as well as in several other bacteria, internal 2-oxoglutarate is sensed by PII proteins, which are integral components of the nitrogen control networks (Ninfa *et al.*, 2005). A PII-type protein, GlnK, is also present in *C. glutamicum* (Nolden *et al.*, 2001b). However, it could not be demonstrated yet that GlnK of *C. glutamicum* is a sensor of internal 2-oxoglutarate.

4.3. Investigations of a putative toxicity of ammonium for *C. glutamicum*

In the third part of this work, a putative toxicity of ammonium for *C. glutamicum* was investigated. In contrast to the situation in plants (Britto *et al.*, 2001; Kronzucker *et al.*, 2001; Britto *et al.*, 2002) and animal cells (Martinelle *et al.*, 1993), a specific toxicity of ammonium for *C. glutamicum* could not be observed. Rising concentrations of ammonium caused a decrease in growth of *C. glutamicum* However, this was not caused specifically by ammonium but by the rising ionic strength or osmolarity of the medium. Thus, ammonium is not specifically toxic for *C. glutamicum* even in molar concentrations. This makes sense from the physiological point of view, since ammonium is the preferred nitrogen source of *C. glutamicum*. In addition, *C. glutamicum* even produces ammonium when it is forced to grow on glutamate as sole carbon and nitrogen source (A. Burkovski, personal communication).

As a reason for putative ammonium toxicity, the formation of a putative futile transmembrane cycle of ammonium was discussed. According to the model of a futile ammonium cycle, ammonium would first be transported into the cell by the use of energy and then it would diffuse passively back out of the cell resulting in a detrimental waste of energy (Castorph *et al.*, 1984; Kleiner, 1985). However, no indications for the presence of a putative futile transmembrane cycle of ammonium in *C. glutamicum* could be observed in this work. It could be demonstrated that rapid diffusion of ammonia across the cell membrane most probably occurs in *C. glutamicum*. This is in accordance to other bacteria, e.g. *Synechococcus* R-2,

Rhodobacter spheroides, and *Bacillus firmus* (Gibson *et al.*, 1987a; 1987b). In addition, B. Walter demonstrated that the ammonium transporters AmtA and AmtB are active in the *amtR* deletion strain and the double deletion strain of *gdh* and *glnA* of *C. glutamicum* under the tested conditions (personal communication). Thus, all requirements for the formation of a putative futile cycle should have been fulfilled in these strains under the tested conditions. In the double deletion strain of *gdh* and *glnA*, the situation is even more extreme. The main ammonium assimilation systems, GDH and GS, are absent, while a third still unknown assimilation system has only a very low activity. Thus, ammonium assimilation in this strain should not be fast enough to prevent a loss of ammonium by diffusion immediately after it has entered the cell by active transport. Nevertheless, in all tested strains, ammonium had no detrimental effect on growth. Thus, putative futile transmembrane cycling of ammonium does not occur in the studied *C. glutamicum* strains or its putative negative effect is negligible.

This result is remarkable, since such a putative detrimental effect of ammonium cycling was always discussed as a reason for the strict regulation of the ammonium transporters. In addition, the absence of a detrimental effect suggests that uptake of ammonium by transporters is energy-independent. However, the mode of transport by AmtA and AmtB is still under discussion. It was first described as an energy-dependent transport of charged ammonium (Kleiner, 1993, Siewe *et al.*, 1996; Meier-Wagner *et al.*, 2001). Later, these transporters were described as gas channels that simply facilitate passive diffusion of uncharged ammonia across the cell membrane (Soupene *et al.*, 1998, 2002; Khademi *et al.*, 2004; Zheng *et al.*, 2005). In accordance, the results obtained here support an energy-independent uptake by AmtA and AmtB in *C. glutamicum*.

4.4. Summary

The regulation of glutamate dehydrogenase in *C. glutamicum* was investigated. Under nitrogen limitation, glutamate dehydrogenase is upregulated on the level of transcription. Using reporter gene assays, the part of the *gdh* promoter region that is responsible for this regulation was identified. DNA fragments spanning this part of the *gdh* promoter region were used to isolate putative transcriptional regulators of *gdh* by DNA affinity purification with magnetic beads. Four transcriptional regulators could be isolated: AmtR, the master regulator of nitrogen control in *C. glutamicum*, and FarR, WhiH, and OxyR, which have not been characterized in *C. glutamicum* yet but are homologous to transcriptional regulators of other bacteria. For AmtR and FarR, binding was verified by gel shift assays and the corresponding binding sites were mapped. In addition, the principle capacity of FarR to repress *gdh*-promoterdriven transcription was demonstrated by reporter gene assays in *E. coli*.

Surprisingly, none of the four regulators is responsible for nitrogen control of *gdh* transcription. Neither single deletions nor a quadruple deletion of *amtR*, *farR*, *whiH*, and *oxyR* in *C. glutamicum* had any effect on nitrogen-dependent transcription of *gdh*. Consequently, the presence of another transcriptional regulator or any other regulatory mechanism for the nitrogen control of *gdh* transcription can be postulated. Nevertheless, translation-dependent attenuation could be excluded as the respective regulatory mechanism.

The four transcriptional regulators AmtR, FarR, WhiH, and OxyR do not regulate *gdh* transcription in response to nitrogen starvation, nevertheless, they might affect *gdh* transcription in response to other stress conditions. A broad range of stress conditions were identified that influence *gdh* transcription. Beside that, a putative role of FarR in the regulation of fatty acid biosynthesis and/or glutamate overproduction was suggested, since an additional FarR binding site could be identified within the promoter region of the *dtsR2* gene, which is presumed to be involved in these processes.

Conclusively, regulation of *gdh* transcription was found to be a complex process, which responds to various stress conditions and includes several regulators.

In the second part of this work, the reason for the loss of nitrogen control in a *gdh* deletion strain of *C. glutamicum* was investigated. It was demonstrated that this

effect is caused by the loss of GDH activity and not by the absence of the GDH protein itself. Nitrogen control was restored by a heterologous expression of GDH from *E. coli* in the *gdh* deletion strain of *C. glutamicum*, but not by expression of an enzymatically inactive mutant of GDH from *C. glutamicum* Thus, the loss of nitrogen control is a metabolic effect, i.e. the lack of GDH activity causes changes in the concentration of a metabolite that influences nitrogen control. In this work, it could be demonstrated that at least two metabolites influence nitrogen control in *C. glutamicum*. These are most probably ammonium and 2-oxoglutarate. The loss of nitrogen control in the *gdh* deletion strain is directly correlated to an accumulation of 2-oxoglutarate under nitrogen surplus due to the lack of 2-oxoglutarate-consuming GDH. A high 2-oxoglutarate pool seems to antagonizes the nitrogen status and triggers a nitrogen starvation-like response even under nitrogen surplus.

In the third part of this work, it was demonstrated that ammonium is not toxic for *C*. *glutamicum* and the formation of a putative futile transmembrane cycle of ammonium was not observed.

5. References

Abe, S., Takayama, K., Kinoshita, S. (1967). Taxonomical studies on glutamic acid producing bacteria. J. Gen. Microbiol. 13: 279-301.

Antonopoulos, D. A., Aminov, R. I., Duncan, P. A., White, B. A. & Mackie, R. I. (2003). Characterization of the gene encoding glutamate dehydrogenase (*gdhA*) from the ruminal bacterium *Ruminococcus flavefaciens* FD-1. Arch. Microbiol. 179: 184-190.

Aravind, L. & Anatharaman, V. (2003). HutC/FarR-like bacterial transcription factors of the GntR family contain a small molecule-binding domain of the chorismate lyase fold. FEMS Microbiol. Lett. 222: 17-23.

Arcondeguy, T., Jack, R. & Merrick, M. (2001). PII signal transduction proteins, pivotal players in microbal nitrogen control. Microbiol. Mol. Biol. Rev. 65: 80-105.

Atkinson, M. R. & Ninfa, A. J. (1998). Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in *Escherichia coli*. Mol. Microbiol. 29:431-447.

Atkinson, M. R. & Ninfa, A. J. (1999). Characterization of the GlnK protein of *Escherichia coli*. Mol. Microbiol. 32: 301-313.

Atkinson, M. R., Blauwkamp, T. A. & Ninfa, A. J. (2002). Context-dependent functions of the PII and GlnK signal transduction proteins in *Escherichia coli*. J. Bacteriol. 184: 5364-5375.

Baker, P. J., Britton, K. L., Engel, P. C., Farrants, G. W., Lilley, K. S., Rice, D. W. & Stillman T. J. (1992). Subunit assembly and active site location in the structure of glutamate dehydrogenase. Proteins. 12: 75-86.

Barker, H. A. (1981). Amino acid degradation by anaerobic bacteria. Annu. Rev. Biochem. 50: 23-40.

Beckers, G., Nolden, L. & Burkovski, A. (2001). Glutamate synthase of *Corynebacterium glutamicum* is not essential for glutamate synthesis and is regulated by the nitrogen status. Microbiology 147: 2961-2970.

Beckers, G. (2004). AmtR – ein globaler Repressor der Stickstoff-Kontrolle in *Corynebacterium glutamicum*. Dissertation an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln.

Beckers, G., Bendt, A. K., Krämer, R. & Burkovski, A. (2004). Molecular identification of the urea uptake system and transcriptional analysis of urea transporter- and ureaseencoding genes in *Corynebacterium glutamicum*. J. Bacteriol. 186(22): 7645-7652.

Beckers, G., Strösser, J., Hildebrandt, U., Kalinowski, J., Farwick, M., Krämer, R. & Burkovski, A. (2005). Regulation of AmtR-controlled gene expression in *Corynebacterium glutamicum*: mechanism and characterization of the AmtR regulon. Mol. Microbiol.

Belitsky, B. R. & Sonenshein, A. L. (1999). An enhancer element located downstream of the major glutamate dehydrogenase gene of *Bacillus subtilis*. Proc. Natl. Acad. Sci. USA. 96: 10290-10295.

Belitsky, B. R., Kim, H. J. & Sonenshein, A. L. (2004). CcpA-dependent regulation of *Bacillus subtilis* glutamate dehydrogenase gene expression. J. Bacteriol. 186: 3392-3398.

Bendt, A. K., Becker, G., Silberbach, M., Wittman, A. & Burkovski R. (2004). Utilization of creatinine as an alternative nitrogen source in *Corynebacterium glutamicum*. Arch. Microbiol. 181: 443-450.

Börmann E. R., Eikmanns, B. J. & Sahm, H. (1992). Molecular analysis of the *Corynebacterium glutamicum gdh* gene encoding glutamate dehydrogenase. Mol. Microbiol. 6: 317-326.

Bradford, M. A. (1976). A rapid and sensitive method fort he quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.

Brenchley, J. E., Baker, C. A. & Patil, L. G. (1975). Regulation of the ammonia assimilatory enzymes in *Salmonella typhimurium*. J. Bacteriol. 124(1): 182-189.

Britto, D. T., Siddiqi, M. Y., Glass, A. D. & Kronzucker, H. J. (2001). Futile transmembrane NH_4^+ cycling: a cellular hypothesis to explain ammonium toxicity in plants. Proc. Natl. Acad. Sci. USA. 98:4255-4258.

Britto, D. T. & Kronzucker, H. J. (2002). NH₄⁺ toxicity in higher plants: a critical review. J. Plant Physiol. 159: 567-584.

Burkovski, A., Weil, B. & Krämer, R. (1996). Characterization of a secondary uptake system for L-glutamate in *Corynebacterium glutamicum*. FEMS Microbiol. Lett. 136: 169-173.

Burkovski, A. (2003a). I do it my way: Regulation of ammonium uptake and ammonium assimilation in *Corynebacterium glutamicum*. Arch. Microbiol. 179: 83-88.

Burkovski, A. (2003b). Ammonium assimilation and nitrogen control in *Corynebacterium glutamicum* and its relatives: an example for new regulatory mechanisms in actinomycetes. FEMS Microbiol. Rev. 27: 617-628.

Burkovski, A. (2005). Nitrogen metabolism and its regulation. In: Bott, M. & Eggeling L. (eds.) Handbook of *Corynebacterium glutamicum*. CRC Press LLC, Boca Raton, FL.

Calogero, S., Gardan, R., Glaser, P., Schweizer, J., Rapoport, G. & Debarbouille, M. (1994). RocR, a novel regulatory protein controlling arginine utilization in *Bacillus subtilis*, belongs to the NtrC/NifA family of transcriptional activators. J. Bacteriol. 176: 1234-1241.

Camarena, L., Poggio, S., Garcia, N. & Osorio, A. (1998). Transcriptional repression of *gdhA* in *Escherichia coli* is mediated by the Nac protein. FEMS. Microbiol. Lett. 167: 51-56.

Castorph, H. & Kleiner, D. (1984). Some properties of a *Klebsiella pneumoniae* ammonium transport negative mutant (Amt). Arch. Microbiol. 139: 245-247.

Christman, M. F., Storz, G. & Ames, B. N. (1989). OxyR, a positive regulator of hydrogen peroxide-inducible genes in *Escherichia coli* and *Salmonella typhimurium*, is homologous to a family of bacterial regulatory proteins. Proc. Natl. Acad. Sci. USA 86: 3484-3488.

Chun, J., Kang, S.-O., Hah, Y. C. & Goodfellow, M. (1996). Phylogeny of mycolic acid-containing actinomycetes. J. Indust. Microbiol. 17: 205-213.

Cremer, J., Eggeling, L. & Sahm, H. (1990). Cloning of the *dapA dapB* cluster of the lysine-secreting bacterium *Corynebaterium glutamicum*. Mol. Gen. Genet. 220: 478-480.

Dominguez, H., Rollin, C., Guyonvarch, A., Guerquin-Kern, J.-L., Cocaign-Bousquet, M. & Lindley, N. D. (1998). Carbon-flux distribution in the central metabolic pathways of *Corynebacterium glutamicum* during growth on fructose. Eur. J. Biochem 254: 96-102.

Dondrup, M., Goesmann, A., Bartels, D., Kalinowski, J., Krause, L., Linke, B., Rupp, O., Sczyrba, A., Pühler, A. & Meyer, F. (2003). EMMA: a platform for consistent storage and efficient analysis of microarray data. J. Biotechnol. 106: 135-146.

Dröge, P. & Müller-Hill, B. (2001). High local concentrations at promoters: strategies in prokaryotic and eukaryotic cells. Bio Éssays. 23: 179-183.

Duperray, F., Jezequel, D., Ghazi, A., Letellier, L. & Shechter, E. (1992). Excretion of glutamate from *Corynebacterium glutamicum* triggered by amine surfactants. Biochim. Biophys. Acta. 1103: 250-258.

Eikmanns, B. J., Thum-Schmitz, N., Eggeling, L., Ludtke, K. U. & Sahm, H. (1994). Nucleotide sequence, expression and transcriptional analysis of the *Corynebacterium glutamicum gltA* gene encoding citrate synthase. Microbiology 140: 1817-1828.

Erdmann, A., Weil, B. & Krämer, R. (1994). Lysine secretion by *Corynebacterium glutamicum* wild-type: regulation of secretion activity. Appl. Microbiol. Biotechnol. 42: 604-610.

Fisher, S. H. (1999). Regulation of nitrogen metabolism in *Bacillus subtilis*: vive la différence!. Mol. Microbiol. 32: 223-232.

Flores, E. & Herrero, A. (2005). Nitrogen assimilation and nitrogen control in cyanobacteria. Biochem. Soc. Trans. 33: 164-167.

Forchhammer, K., Hedler, A., Strobel, H. & Weiss, V. (1999). Heterotrimerization of PII-like signalling proteins: implications for PII-mediated signal transduction systems. Mol. Microbiol. 33: 338-349.

Grant, S. N. G., Jessee, J., Bloom, F. R. & Hanahan, D. (1990). Different plasmid rescue from transgenic mouse DNAs into *Escherichia coli* methylation-restriction mutants. Proc. Natl. Acad. Sci. USA 87: 4645-4649.

Gutmann, M., Hoischen, C. & Krämer, R. (1992). Carrier-mediated glutamate secretion by *Corynebacterium glutamicum* under biotin limitation. Biochim. Biophys. Acta. 1112: 115-123.

Hermann T. (2003). Industrial production of amino acids by coryneform bacteria. J. Biotechnol 104: 155-172

Hoischen, C. & Krämer, R. (1990). Membrane alteration is necessary but not sufficient for effective glutamate secretion in *Corynebacterium glutamicum*. J. Bacteriol. 172: 3409-3416.

Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J.K. & Pease, L. R. (1989). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 77: 61-68.

Hüser, A., Becker, A., Brune, I., Dondrup, M., Kalinowski, J., Plassmeier, J., Pühler, A., Wiegräbe, I. & Tauch, A. (2003). Development of a *Corynebacterium glutamicum* DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source. J. Biotechnol., 106: 269-286.

Jahns, T., Zobel, A., Kleiner, D. & Kaltwasser, H. (1988). Evidence for carriermediated, energy dependent uptake of urea in some bacteria. Arch. Microbiol. 149: 377-383.

Jakoby, M., Tesch, M., Sahm, H., Krämer, R. & Burkovski, A. (1997). Isolation of the *Corynebacterium glutamicum glnA* gene encoding glutamine synthetase I. FEMS Microbiol. Lett. 154: 81-88.

Jakoby, M., Krämer, R. & Burkovski, A. (1999). Nitrogen regulation in *Corynebacterium glutamicum*: isolation of genes involved and biochemical characterization of corresponding proteins. FEMS Microbiol. Lett. 173: 303-310.

Jakoby, M., Nolden, L., Meier-Wagner, J., Krämer, R. & Burkovski, A. (2000). AmtR, a global repressor in the nitrogen regulation system of *Corynebacterium glutamicum*. Mol. Microbiol. 37: 964-977.

Javelle, A., Severi, E., Thornton, J. & Merrick, M. (2004). Ammonium sensing in *Escherichia coli*. Role of the ammonium transporter AmtB and AmtB-GlnK complex formation. J. Biol. Chem. 279: 8530-8538.

Javelle, A., Thomas, G., Marini, A.-M., Krämer, R. & Merrick, M. (2005). *In vivo* characterisation of the *E. coli* ammonium channel AmtB: evidence for the metabolic coupling of AmtB to glutamine synthetase. Biochem. J. 15: 215-222.

Jiang, P., Peliska, J. A. & Ninfa, A. J. (1998a). Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of *Escherichia coli* and its interaction with the PII protein. Biochemistry 37: 12782-12794.

Jiang, P., Peliska, J. A. & Ninfa, A. J. (1998b). The regulation of *Escherichia coli* glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state. Biochemistry 37: 12802-12810.

Jiang, P., Peliska, J. A. & Ninfa, A. J. (1998c). Reconstitution of the signaltransduction bicyclic cascade responsible for the regulation of Ntr gene transcription in *Escherichia coli*. Biochemistry 37: 12795-12801.

Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B. J., Gaigalat, L., Goesmann, A., Hartmann, M., Huthmacher, K., Krämer, R., Linke, B., McHardy, A. C., Meyer, F., Möckel, B., Pfefferle, W., Pühler, A., Rey, D., Rückert, C., Rupp, O., Sahm, H., Wendisch, V. F., Wiegräbe, I. & Tauch, A. (2003). The complete *Corynebacterium glutamicum* ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5-25.

Kamberov, E. S., Atkinson, M. R. & Ninfa, A. J. (1995). The *Escherichia coli* PII signal transduction protein is activated upon binding 2-ketoglutarate and ATP. J. Biol. Chem. 270: 17797-17807.

Kawahara, Y., Takahashi-Fuke, K., Shimizu, E., Nakamatsu, T. & Nakamori, S. (1997). Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in *Brevibacterium lactofermentum*. Biosci. Biotechnol. Biochem. 61: 1109-1112.

Khademi, S. O'Connell III, J., Remis, J., Robles-Colmenares, Y., Miercke, L. J. W. & Stroud, R. M. (2004). Mechansim of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å. Sience 305: 1587-1594.

Kiefer, P., Heinzle, E., Zelder, O. & Wittmann, C. (2004). Comparative metabolic flux analysis of lysine-producing *Corynebacterium glutamicum* cultured on glucose or fructose. Appl. Environ. Microbiol. 70: 229-239.

Kimura, E., Abe, C., Kawahara, Y. & Nakamatsu, T. (1996). Molecular cloning of a novel gene, *dtsR*, which rescues the detergent sensitivity of a mutant derived from *Brevibacterium lactofermentum*. Biosci. Biotechnol. Biochem. 60: 1565-1570.

Kimura, E., Abe, C., Kawahara, Y., Nakamatsu, T. & Tokuda, H. (1997). A *dtsR* genedisrupted mutant of *Brevibacterium lactofermentum* requires fatty acids for growth and efficiently produces L-glutamate in the presence of an excess of biotin. Biochem. Biophys. Res. Commun. 234: 157-161.

Kimura, E., Yagoshi, C., Kawahara,Y., Ohsumi, T. & Nakamatsu, T. (1999). Glutamate overproduction in *Corynebacterium glutamicum* triggered by a decrease in the level of a complex comprising DtsR and a biotin-containing subunit. Biosci. Biotech. Biochem. 63: 1274-1278.

Kimura, E. (2002). Triggering mechanism of L-glutamate overproduction by DtsR1 in coryneform bacteria. J. Biosci. Bioeng. 94: 545-551.

Kleiner, D. (1985). Bacterial ammonium transport. FEMS Microbiol. Rev. 32: 87-100.

Kleiner, D. (1993). NH₄⁺ transport systems. In: Bakker, E. P. (ed) Alkali cation transport systems in prokaryotes. CRC press, Boca Raton, FL.

Kinoshita, **S.**, **Udaka**, **S. & Shimono**, **M. (1957).** Amino acid fermentation. I. Production of L-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol. 3: 193-205.

Krämer, R. & Lambert, C. (1990). Uptake of glutamate in *Corynebacterium glutamicum*. Eur. J. Biochem. 194: 937-944.

Krämer, R. (1994). Secretion of amino acids by bacteria: physiology and mechanism. FEMS Microbiol. Rev. 13: 75-79.

Krömer, J. O., Sorgenfrei, O., Klopprogge, K., Heinzle, E. & Wittmann, C. (2004). Indepth profiling of Lysine-producing *Corynebacterium glutamicum* by combined analysis of the transcriptome, metabolome and fluxome. J. Bacteriol. 186: 1769-1784.

Kronemeyer, W., Peekhaus, N., Krämer, R., Eggeling, L. & Sahm, H. (1995). Structure of the *gluABCD* cluster encoding the glutamate uptake system of *Corynebacterium glutamicum*. J. Bacteriol. 177: 1152-1158.

Kronzucker, H. J., Britto, D. T., Davenport, R. J. & Tester, M. (2001). Ammonium toxicity and the real cost of transport. Trends Plant Sci. 6: 335-337.

Leuchtenberger, W. (1996). Amino acids – technical production and use. In: Rehm, H. & Reed, G. (eds) Products of primary metabolism. Biotechnology, Volume 6. VCH Verlagsgesellschaft mbH, Weinheim/Germany.

Lindroth, P. & Mopper, K. (1979). High performance liquid chromatography determination of subpicomole amounts of amino acids by precolumn flourescence derivatization with *o*-phthaldialdehyde. Anal. Chem. 51: 1667-1674.

Martinelle, K. & Haggestrom, L. (1993). Mechanisms of ammonia and ammonium ion toxicity in animal cells: transport across cell membranes. J. Biotechnol. 30: 339-350.

Marx, A., Eikmanns, B., Sahm, H., de Graaf, A. A. & Eggeling, L. (1999). Response of the central metabolism in *Corynebaterium glutamicum* to the use of NADH-dependent glutamate dehydrogenase. Metabol. Eng. 1: 35-48.

Meier-Wagner, J., Nolden L., Jakoby, M., Siewe, R., Krämer, R. & Burkovski, A. (2001). Multiplicity of ammonium uptake systems in *Corynebacterium glutamicum*: Role of Amt and AmtB. Microbiology 147, 135-143.

Merrick, M. J. & Edwards, R. A. (1995). Nitrogen control in bacteria. Microbiol. Rev. 59: 604-622.

Millevoi, S., Pasquo, A., Chiaraluce, R., Consalvi, V., Giangiacomo, L., Britton, K. L., Stillman, T. J., Rice, D. W. & Engel, P. C. (1994). A monomeric mutant of *Clostridium symbiosum* glutamate dehydrogenase: comparison with a structured monomeric intermediate obtained during refolding. Protein Sci. 7: 966-974.

Minambres, B., Olivera, E. R., Jensen, R. A. & Luengo, J. M. (2000). A new class of glutamate dehydrogenases (GDH). J. Biol. Chem. 275: 39529-39542.

Muse, E. B. & Bender, R. A. (1998). The *nac* (nitrogen assimilation control) gene from *Escherichia coli*. J. Bacteriol. 180: 1166-1173.

Niebisch, A. & Bott, M. (2001). Molecular analysis of the cytochrome bc1-aa3 branch of the *Corynebacterium glutamicum* respiratory chain containing an unusual diheme cytochrome c1. Arch. Microbiol. 175: 282-294.

Ninfa, A. J., Jiang, P. (2005). PII signal transduction proteins: sensors of alphaketoglutarate that regulate nitrogen metabolism. Curr. Opin. Microbiol. 8: 168-173.

Nolden, L. (2001). Mechanismen der Stickstoffkontrolle in *Corynebacterium glutamicum*. Dissertation an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln.

Nolden, L., Farwick, M., Krämer, R. & Burkovski, A. (2001a). Glutamine synthetases of *Corynebacterium glutamicum*: transcriptional control and regulation of activity. FEMS Microbiol. Lett. 201: 91-98.

Nolden, L., Ngouto-Nkili, C.-E., Bendt, A. K., Krämer, R., Burkovski, A. (2001b). Sensing nitrogen limitation in *Corynebacterium glutamicum*: The role of *glnK* and *glnD*. Mol. Microbiol. 42: 1281-1295.

Pascual, C., Lawson, P. A., Farrow, J. A. E., Giminez, M. & Collins, M. D. (1995). Phylogenetic analysis of the genus *Corynebacterium* based on 16S rRNA gene sequences. Int. J. System. Bacteriol. 45: 724-728.

Pasquo, A., Britton, K. L., Stillman, T. J., Rice, D. W., Colfen, H., Harding, S. E., Scandurra, R. & Engel, P. C. (1996). Construction of a dimeric form of glutamate dehydrogenase from *Clostridium symbiosum* by site-directed mutagenesis. Biochim. Biophys. Acta. 1297: 149-158.

Patriaca, E. J., Rosirita, T. & laccarino, M. (2002). Key role of bacterial NH₄⁺ metabolism in rhizobium-plant symbiosis. Microbiol. Mol. Biol. Rev. 66: 203-222.

Puech, V., Chami, M., Lemassu, A., Laneelle, M. A., Schiffler, B., Gounon, P., Bayan, N., Benz, R. & Daffe, M. (2001). Structure of the cell envelope of corynebacteria: inportance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147: 1365-1382.

Quail, M. A., Dempsey, C. E. & Guest, J. R. (1994). Identification of a fatty acyl regulator (FarR) in *Escherichia coli*. FEBS Lett. 356: 183-187.

Reitzer, L. (2003). Nitrogen assimilation and global regulation in *Escherichia coli*. Annu. Rev. Microbiol. 57: 155-176.

Ritchie, R. J. & Gibson, J. (1987a). Permeability of ammonia, methylamine and ethylamine in the cyanobacterium *Synechococcus* R-2 (*Anacystis nidulans*) PCC7942. J. Membr. Biol. 95: 131-142.

Ritchie, R. J. & Gibson, J. (1987b). Permeability of ammonia and amines in *Rhodobacter spheroides* and *Bacillus firmus*. Arch. Biochem. Biophys. 285: 322-341.

Rigali, S., Derouaux, A., Giannotta, F. & Dusart, J. (2002). Subdivision of the helixturn-helix GntR family of bacterial regulators in the FadR, HutC, MocR and YtrA subfamilies. J. Biol. Chem. 227: 12507-12515.

Rönsch, H. (2000). Untersuchung zum Einfluss der Osmoregulation auf die Aminosäure-Produktion mit *Corynebacterium glutamicum*. Dissertation an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln.

Ryding, N. J., Kelemen, G. H., Whatling, C. A., Flardh, K., Buttner, M. J. & Chater, K.F. (1989). A developmentally regulated gene encoding a repressor-like protein is essential for sporulation in *Streptomyces coelicolor* A3(2). Mol. Microbiol. 29: 343-357.

Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular cloning: a laboratory manual, 2nd edition, Cold Spring Habor Laboratory Press, Cold Spring Harbor, N. Y.

Sampaio, M. M., Chevance, F., Dippel, R., Eppler, T., Schlegel, A., Boos, W., Lu, Y. J. & Rock, C. O. (2004). Phosphotransferase-mediated transport of the osmolyte 2-O-alpha-mannosyl-D-glycerate in *Escherichia coli* occurs by the product of the *mngA* (*hrsA*) gene and is regulated by the *mngR* (*farR*) gene product acting as repressor. J. Biol. Chem. 279: 5537-5548.

Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G. & Pühler, A. (1994). Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. Gene 145:69-73.

Schulz, A. A., Collet, H. J. & Reid, S. J. (2001). Nitrogen and carbon regulation of glutamine synthetase and glutamate synthase in *Corynebacterium glutamicum* ATCC 13032. FEMS Microbiol. Lett. 205: 361-367.

Schwacha, A. & Bender, R. A. (1993). The product of the *Klebsiella aerogenes nac* (nitrogen assimilation control) gene is sufficient for activation of the *hut* operons and repression of the *gdh* operon. J. Bacteriol. 175: 2116-2124.

Senior, P. J. (1975). Regulation of nitrogen metabolism in *Escherichia coli* and *Klebsiella aerogenes*: studies with the continuous-culture technique. J. Bacteriol. 123: 407-418.

Shiio, I., Otsuka, S. & Takahashi, M. (1962). Effect of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular permeability of amino acids. J. Biochem. 51: 56-62.

Shiio, I. & Ozaki, H. (1970). Regulation of nicotinamide dinucleotide phosphate-specific glutamate dehydrogenase from *Brevibacterium flavum*, a glutamate-producing bacterium. J. Biochem. 68: 633-647.

Siewe, R. M., Weil, B. & Krämer, R. (1995). Glutamine uptake by a sodium dependent secondary transport system in *Corynebacterium glutamicum*. Arch. Microbiol. 164: 98-103

Siewe, R. M., Weil, B., Burkovski, A., Eikmanns, B. J., Eikmanns, M. & Krämer, R. (1996). Functional and genetic characterization of the (methyl)ammonium uptake carrier of *Corynebacterium glutamicum*. J. Biol. Chem. 271: 5398-5403.

Siewe, R. M., Weil, B., Burkovski, A., Eggeling, L., Krämer, R. & Jahns, T. (1998). Urea uptake and urease activity in *Corynebacterium glutamicum*. Arch. Microbiol. 169: 411-416.

Silberbach, M. (2004). Biochemische, biotechnologische und molekularbiologische Analyse eines Signaltransduktionsweges in *Corynebacterium glutamicum*. Dissertation an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln.

Soupene, E., He, L., Yan, D. & Kustu, S. (1998). Ammonium acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc. Natl. Acad. Sci. USA 95: 7030-7034.

Soupene, E., Lee, H. & Kustu, S. (2002). Ammonium/methylammonium transport (Amt) proteins facilitate diffusion of NH₃ bidirectionally. Proc. Natl. Acad. Sci. USA 90: 3926-3931.

Stadtman, E. R. (1990). Discovery of glutamine synthetase cascade. Methods Enzymol. 182: 793-809.

Stillman, T. J., Migueis, A. M., Wang, X. G., Baker, P. J., Britton, K. L., Engel, P. C. & Rice, D. W. (1999). Insights into the mechanism of domain closure and substrate specificity of glutamate dehydrogenase from *Clostridium symbiosum*. J. Mol. Biol. 285: 875-885.

Storz, G., Tartaglia, L. A. & Ames, B. N. (1990). Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science. 248: 189-194.

Strösser, J., Lüdke, A., Schaffer, S., Krämer, R. & Burkovski, A. (2004). Regulation of GlnK activity: modification, membrane sequestration and proteolysis as regulatory principles in the network of nitrogen control in *Corynebacterium glutamicum*. Mol. Microbiol. 54: 132-147.

Takinami, K., Yoshii, H., Tsuji, H. & Okada, H. (1965). Biochemical effects of fatty acids and its derivatives on L-glutamic acid and the growth of *Brevibacterium lactofermentum*. Agric. Biol. Chem. 29: 351-359.

Tauch, A., Kirchner, O., Löffler, B., Götker, S., Pühler, A. & Kalinowski, J. (2002). Efficient electrotransformation of *Corynebacterium diphtheriae* with a minireplicon derived from the *Corynebacterium glutamicum* plasmid pGA1. Curr. Microbiol. 45: 362-367.

Tesch, M., Eikmanns, B., de Graaf, A. A. & Sahm, H. (1998). Ammonium assimilation in *Corynebacterium glutamicum* and a glutamate dehydrogenase-deficient mutant. Biotech. Lett. 20: 953-957.

Tesch, M., de Graaf, A. A. & Sahm, H. (1999). *In-vivo* fluxes in the ammonium assimilatory pathways in *Corynebacterium glutamicum* studied by ¹⁵N nuclear magnetic resonance. Appl. Environ. Microbiol. 65: 1099-1109.

Trötschel, C., Kandirali, S., Diaz-Achirica, P., Meinhardt, A., Morbach, S., Krämer, R. & Burkovski, A. (2003). GltS, a sodium-coupled L-glutamate uptake system of *Corynebacterium glutamicum*: Identification of the corresponding gene and impact on L-glutamate production. Appl. Microbiol. Biotechnol. 60: 738-742.

van Heeswijk, W. C., Wen, D., Clancy, P., Jaggi, R., Ollis, D. L., Westerhoff, H. V. & Vasudevan, S. G. (2000). The *Escherichia coli* signal transducers PII (GlnB) and GlnK form heterotrimers *in vivo*: fine tuning the nitrogen signal cascade. Proc. Natl. Acad. Sci. USA 97: 3942-3947.

Viera, J. & Messing, J. (1982). The pUC plasmid, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic primers, Gene 19: 259-268.

Wagner, R. (2000). Transcription regulation in prokaryotes. Oxford University Press Inc., Oxford.

Wang, X. G., Dean, J. L., Engel, P. C., Baker, P. J., Britton, K.L., Stillman, T. J. & Rice D. W. (1994). The changed pattern of substrate specificity in the K89L mutant of glutamate dehydrogenase of *Clostridium symbiosum*. Biochem. Soc. Trans. 22: 320-323.

Wendisch VF, de Graaf AA, Sahm H, Eikmanns BJ. (2000). Quantitative determination of metabolic fluxes during co-utilization of two carbon sources: comparative analysis with *Corynebacterium glutamicum* during acetate and/or glucose. J. Bacteriol 182: 3088-3096.

Wray, L. V. Jr., Zalieckas, J. M. & Fisher, S. H. (2001). *Bacillus subtilis* glutamine synthetase controls gene expression through a protein-protein interaction with transcription factor TnrA. Cell. 107: 427-435.

Yanisch-Perron, C., Viera, J. & Messing, J. (1985). Improved M13 phage vectors and host strains:nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33: 103-119.

Zheng, L., Kostrewa, D., Bernèche, S., Winkler, F. K. & Li, X.-D. (2004). The mechanism of ammonia transport based on the crystal structure of AmtB of *Escherichia coli*. Proc. Natl. Acad. Sci. USA 101: 17090-17095.

Zittrich, S. & Krämer, R. (1994). Quantitative discrimination of carrier-mediated excretion of isoleucine from uptale and diffusion in *Corynebacterium glutamicum*. J. Bacteriol. 176: 6892-6899.

6. Appendix

6.1. Construction of C. glutamicum strains

TM∆farR:

This *farR* deletion strain of *C. glutamicum* was derived from RES167 using the deletion vector pK18∆farR following the protocol of Schäfer *et al.* (1994).

TM∆whiH:

This *whiH* deletion strain of *C. glutamicum* was derived from RES167 using the deletion vector pK18∆whiH following the protocol of Schäfer *et al.* (1994).

TM∆oxyR:

This *oxyR* deletion strain of *C. glutamicum* was derived from RES167 using the deletion vector pK18∆oxyR following the protocol of Schäfer *et al.* (1994).

TM∆farR∆amtR:

This double deletion strain of *C. glutamicum* lacking *farR* and *amtR* was derived from TM Δ farR using the deletion vector pK18 Δ amtR following the protocol of Schäfer *et al.* (1994).

TM∆farR∆amtR∆whiH:

This triple deletion strain of *C. glutamicum* lacking *farR*, *amtR*, and *whiH* was derived from TM Δ farR Δ amtR using the deletion vector pK18 Δ whiH following the protocol of Schäfer *et al.* (1994).

TM∆farR∆amtR∆whiH∆oxyR:

This quadruple deletion strain of *C. glutamicum* lacking *farR*, *amtR*, *whiH*, and *oxyR* was derived from TM Δ farR Δ amtR Δ whiH using the deletion vector pK18 Δ oxyR following the protocol of Schäfer *et al.* (1994).

TM∆gdh∆gInA:

This double deletion strain of *C. glutamicum* lacking *gdh* and *glnA* was derived from LN Δ GDH using the deletion vector pK18 Δ glnA following the protocol of Schäfer *et al.* (1994).

6.2. Construction of plasmids

pZgdh:

This plasmid is an expression vector of *gdh* from *C. glutamicum*. The full-length *gdh* gene of *C. glutamicum* was amplified by PCR. For subsequent cloning steps, *Eco*RI and *Sal*I restriction sites (shown in bold) were introduced in the primer sequences (5'-GCG CGC **GAA TTC** ATG ACA GTT GAT GAG CAG GTC-3' / 5'-GCG CGC **GTC GAC** TTA GAT GAC GCC CTG TGC C-3'). After restriction of the PCR product and the expression vector pZ8-1 (Degussa AG, Halle) with *Eco*RI and *Sal*I, the *gdh* gene was ligated to vector pZ8-1 leading to plasmid pZgdh. The cloned *gdh* gene was sequenced.

pZgdh_{EC}:

This plasmid is an expression vector of *gdh* from *E. coli*. The full-length *gdh* gene of *E. coli* was amplified by PCR. For subsequent cloning steps, *Eco*RI and *Bam*HI restriction sites (shown in bold) were introduced in the primer sequences (5'-GCG CGC **GAA TTC** ATG GAT CAG ACA TAT TCT CTG G-3' / 5'-GCG CGC **GGA TCC** TTA TCA CAC CCT GCG CCA G-3'). After restriction of the PCR product and the expression vector pZ8-1 (Degussa AG, Halle) with *Eco*RI and *Bam*HI, the *gdh* gene of *E. coli* was ligated to vector pZ8-1 leading to plasmid pZgdh_{EC}. For verification, the plasmid was transformed into the *gdh* deletion strain LN Δ GDH and GDH-activity was measured. The cloned *gdh* gene was not sequenced.

pZgdh-K92L:

This plasmid is an expression vector for an enzymatic inactive mutant of GDH from *C. glutamicum* harbouring a single point mutation (K92L). The vector was derived from pZgdh by site-directed mutagenesis using the primers 5'-GCA CT TGG ACC ATA CCT GGG CGG CCT GCG CTT C-3' and 5'-GAA GCG CAG GCC GCC CAG GTA TGG TCC AAG TGC-3'. The mutated *gdh* gene was sequenced.

pQE30Xagdh:

This plasmid is an expression vector for GDH from *C. glutamicum* with a histag at its Nterminus. The full-length *gdh* gene of *C. glutamicum* was amplified by PCR. For subsequent cloning steps, *Sph*I and *Hin*dIII restriction sites (shown in bold) were introduced in the primer sequences (5'-GCG CGC **GCA TGC** ATG GAT CAG ACA TAT TCT CTG G-3' / 5'-GCG CGC **AAG CTT** TTA GAT GAC GCC CTG TGC C-3'). After restriction of the PCR product and the expression vector pQE30Xa (Qiagen, Hilden) with *Sph*I and *Hin*dIII, the *gdh* gene was ligated to vector pQE30Xa leading to plasmid pQE30Xagdh. The cloned *gdh* gene was sequenced.

pJCgdhlacZ:

This plasmid harbours a fusion of the *gdh* promoter region of *C. glutamicum* and the *lacZ* gene coding for β -galactosidase and can be used for reporter gene assays. The vector pK18gdh-lacZ (Nolden, 2001) was restricted with *Eco*RI and *Pst*I, The resulting insert, which harbours the fusion of the *gdh* promoter region and the *lacZ* gene, was ligated to the *Eco*RI-*Pst*I-restricted vector pJC1 (Cremer *et al.*, 1990) leading to pJCgdhlacZ.

pUCfarR:

This plasmid is an expression vector of *farR* from *C. glutamicum*. The full-length *farR* gene of *C. glutamicum* was amplified by PCR. For subsequent cloning steps, *Bam*HI restriction sites (shown in bold) were introduced in the primer sequences (5'-GCG CGC **GGA TCC** TTG CTT TTT ACT AGG CGC TCC-3' / 5'-GCG CGC **GGA TCC** CGT CAG AGA TCT TCG GAG-3'). After restriction of the PCR product and the expression vector pUC18 (Viera & Messing, 1982) with *Bam*HI, the *farR* gene was ligated to pUC18 leading to plasmid pUCfarR. The cloned *farR* gene was sequenced.

pUCwhiH:

This plasmid is an expression vector of *whiH* from *C. glutamicum*. The full-length *whiH* gene of *C. glutamicum* was amplified by PCR. For subsequent cloning steps, *Eco*RI restriction sites (shown in bold) were introduced in the primer sequences (5'-GCG CGC **GAA TTC** ATG ACC CCA GCA AAC GAA AG-3' / 5'-GCG CGC **GAA TTC** TTA GTT CAG CGT GCC CCA GC-3'). After restriction of the PCR product and the expression vector pUC18 (Viera & Messing, 1982) with *Eco*RI, the *whiH* gene was ligated to pUC18 leading to plasmid pUCwhiH. The cloned *whiH* gene was sequenced.

pUCoxyR:

This plasmid is an expression vector of *oxyR* from *C. glutamicum*. The full-length *oxyR* gene of *C. glutamicum* was amplified by PCR. For subsequent cloning steps, *Eco*RI restriction sites (shown in bold) were introduced in the primer sequences (5'-GCG CGC **GAA TTC** ATG AGC AAT AAA GAG TAC CGG-3' / 5'-GCG CGC **GAA TTC** CGT TAC TGC GCT ACC GCG -3'). After restriction of the PCR product and the expression vector

pUC18 (Viera & Messing, 1982) with *Eco*RI, the *oxyR* gene was ligated to pUC18 leading to plasmid pUCoxyR. The cloned *oxyR* gene was sequenced.

pK18∆farR:

This plasmid is a deletion vector for farR from C. glutamicum. The 800 bp sequence upstream of the farR gene of C. glutamicum was amplified by PCR (5'-TCA ATG ATT TCG TCC TTG TGG-3' / 5'-GTG GTT TTG GTG ACT GAA GC-3') and ligated to the vector pDrive (Qiagen, Hilden) by T/A-cloning. The resulting plasmid pDrive-△FarRoben-neu was sequenced. The 800 bp sequence downstream of the gdh gene of C. glutamicum was amplified by PCR. For subsequent cloning steps, Xbal and Xmal restriction sites (shown in bold) were introduced in the primer sequences (5'-GCG CGC TCT AGA GAC GTG AAC CCA TTT TGG TG -3' / 5'-GCG CGC CCC GGG ACA CCA AGG TTG ACT G-3'). The PCR product and the vector pUC18 (Viera & Messing, 1982) were restricted with Xbal and Xmal and ligated to form the plasmid pUC18-AFarRunten, which was sequenced. After that, the plasmid pDrive- Δ FarR-oben-neu was linearized by restriction with *Bam*HI and the plasmid pUC18-∆FarR-unten was linearized with Xbal. Subsequently, both were treated the large Klenow fragment of DNA polymerase I for fill-in of 5' overhangs to form blunt ends and subsequently restricted with HindIII. The resulting 800 bp insert of pDrive- Δ FarR-oben-neu was ligated to the linearized vector pUC18- Δ FarR-unten leading to pUC- Δ FarR-gesamt. This plasmid as well as pK18mobsacB (Schäfer et al., 1994) were restricted with HindIII and Xmal, and the insert of pUC- Δ FarR-gesamt was ligated to pK18mobsacB leading to pK18 Δ farR.

pK18∆whiH:

This plasmid is a deletion vector for *whiH* from *C. glutamicum*. By SOE-PCR, a fusion of the 800 bp sequences upstream and downstream of the *whiH* gene of *C. glutamicum* was synthesized. For subsequent cloning steps, *Eco*RI restriction sites (shown in bold) were introduced in the outer primer sequences (5'-GCG CGC **GAA TTC** ACA GGT CTC AAA CTG GGC C-3' / 5'-CGC AGT GCG CGT ATC ACG GGT GCC TCT TTA ATG GGC C-3' / 5'-GGC CCA TTA AAG AGG CAC CCG TGA TAC GCG CAC TGC G-3' / 5'-GCG CGC GAA **TTC** GCA GCT GAA GCT GTG CGC G-3'). After restriction of the SOE-PCR product and the vector pK18mobsacB (Schäfer *et al.*, 1994) with *Eco*RI, the SOE-PCR product was ligated to vector pK18mobsacB leading to plasmid pK18∆whiH, which was sequenced.

pK18∆oxyR:

This plasmid is a deletion vector for *oxyR* from *C. glutamicum*. By SOE-PCR, a fusion of the 800 bp sequences upstream and downstream of the *oxyR* gene of *C. glutamicum* was synthesized. For subsequent cloning steps, *Eco*RI restriction sites (shown in bold) were introduced in the outer primer sequences (5'-GCG CGC **GAA TTC** GTT GTG CGC GAC ATG ATC G-3' / 5'-CTC TGG AAA ACC TCT AGA AAA ATG CCT ATA ACT ATA ACG GTG-3' / 5'-CAC CGT TAT AGT TAT AGG CAT TTT TCT AGA GGT TTT CCA GAG-3' / 5'-GCG CGC **GAA TTC** GCA GCT GAA GCT GTG CGC G-3'). After restriction of the SOE-PCR product and the vector pK18mobsacB (Schäfer *et al.*, 1994) with *Eco*RI, the SOE-PCR product was ligated to vector pK18mobsacB leading to plasmid pK18∆oxyR, which was sequenced.

6.3. Complete list of the results of the DNA microarray analyses

Table 8: A complete list of all genes which were found to be differentially expressed in the DNA microarray analyses of RES167 vs. TM Δ farR, RES167 vs. TM Δ whiH, and RES167 vs. TM Δ farR Δ amtR. Genes were regarded as differentially expressed if the respective intensities resulted in ratios greater than 1.52 or smaller than -1.52. These regulation factors are given. A positive factor indicates a higher expression in the deletion strain, whereas a negative value indicates a higher expression in RES167.

	RES167				
	vs.	vs.	VS.		Annotation
NO.	TM∆farR	TM∆whiH	TM∆farR∆amtR		
NCgl0008		1.56			Conserved hypothetical protein
NCgl0012			1.60	gyrA	DNA gyrase (topoisomerase II) A subunit
NCgl0032			-2.31		Conserved hypothetical protein
NCgl0033			-1.60	ppiA	Peptidyl-prolyl cis-trans isomerase
NCgl0034		-1.75	-1.96		Putative membrane protein
	-1.84			nhnA	Cell division protein Ftsl/penicillin-binding
NC910042	-1.04			рорд	protein 2
NCgl0044		-1.84		ррр	Serine/threonine protein phosphatase
NCgl0059	-1.60	-1.68	-1.52		Spore coat assembly protein
NCgl0061			1.63		4-oxalocrotonate tautomerase homolog
NCgl0074			3.52		Permeases of the major facilitator superfamily
NCgl0075			21.19	codA	Creatinine deaminase
NCgl0082			1.55	ureR	Transcriptional regulator, MarR family
NCgl0083			10.33	ureA	Urea amidohydrolase (urease) gamma subunit
NCgl0085			5.42	ureC	Urea amidohydrolase (urease) alpha subunit
NCgl0086			4.95	ureE	Urease accessory protein
NCgl0087			6.89	ureF	Urease accessory protein
NCgl0088			7.82	ureG	Urease accessory protein
NCgl0089			5.91	ureD	Urease accessory protein
NCgl0090			2.63		Predicted hydrolases or acyltransferases
NCgl0104	2.41				ATP/GTP-binding protein
NCgl0105			-1.99		Transcriptional regulator of sugar metabolism
NCgl0107			1.52	sixA	Phosphohistidine phosphatase SixA
NCgl0118			1.69		Predicted hydrolase (HAD superfamily)
NCgl0119			1.80		Carbonic anhydrases/acetyltransferases
NCgl0124	2.01		-1.62		Putative secreted or membrane protein

NCq0136	NCgl0134			-1.79		Uncharacterized protein conserved in bacteria
NCq0166 1.90 Predicted methylated DNA methytmasfrasee NCq0168 2.07 Conserved hypothetical protein NCq0171 -1.57 cspA Cold shock proteins NCq0171 -1.66 -1.80 Hypothetical membrane protein NCq0173 -1.66 -1.80 Hypothetical membrane protein NCq0173 -1.66 -1.70 Transcriptional regulator, ArsR family NCq0173 -1.66 -1.70 Transcriptional regulator, Leal-family NCq0181 -2.15 Conserved hypothetical protein NCq0182 2.06 1.77 Policited short-chain alcohol dehydrogenases NCq0188 1.57 - podicited short-chain alcohol dehydrogenases NCq0188 1.55 2.09 Hypothetical protein NCq0181 1.93 2.06 1.77 FADFMA containing dehydrogenases NCq0206 1.64 moaE Molydopterin borymetical protein NCq024 NCq02024 1.67 woaE Molydopterin borymetical protein NCq024 NCq02025 1.78 kAd C	NCgl0135			-1.58		Putative ammonia monooxygenase
NCq0166 2.24 Conserved hypothetical protein NCq0168 2.07 Predicted dehydrogenases and related proteins NCq0171 1.57 cspA Cold shock proteins NCq0171 1.66 -1.80 Hypothetical membrane protein NCq0171 1.70 Transcriptional regulators, Laci family NCq0178 -1.84 4.15 NADPH-dependent glutamate synthase NCq0188 2.15 Conserved hypothetical protein NADPH-dependent glutamate synthase NCq0188 1.57 -1.56 Conserved hypothetical protein NCq0188 NCq0188 1.57 -1.61 Molybolptin locartyndrogenases NCq0188 NCq0188 NCq0188 NCq0188 NCq0188 NCq0188 NCq0188 NCq0208 NCq0208 NCq0208 NCq0208 NCq0208 NCq02027 1.61 moa2 Molybdolptin locarythegelde synthase NCq02024 1.79 I/27 Molybdolptin locarythegelde synthase NCq02024 NCq0224 NCq0224 NCq0224 NCq0227 I/27 Molybdolptin locarythegelde synthase NCq0224 NCq0227	NCgl0146	1.90				Predicted methylated DNA methyltransferase
NCg0168 2.07 Prodicited dehydrogenases and related proteins NCg0171 -1.57 cspA Cold shock proteins NCg0172 -1.66 -1.80 Hydpotecial membrane protein NCg0173 -1.66 -1.70 Transcriptional regulator, ArsR 4mily NCg0178 -1.64 -1.96 Transcriptional regulator, ArsR 4mily NCg0182 27.73 gft NADPH-dependent glutamate synthase NCg0183 -2.15 Conserved hydpotecial protein NCg0184 1.57 Patiative membrane protein NCg0186 1.57 Patiative membrane protein NCg0188 1.55 2.09 NCg0181 1.93 2.06 NCg0181 1.93 2.06 NCg0202 1.61 mode NCg0203 1.61 mode NCg0204 1.77 PADFMacontain alcohol desynthesis anzymes NCg0205 1.78 RAMydotecin biosynthesis anzymes NCg0206 1.79 Modydopteni biosynthesis anzymes NCg0207 1.79 Modydopteni biosynthesi	NCgl0156	2.24				Conserved hypothetical protein
NCg0171 -1.57 cold shock proteins NCg0173 -1.60 -1.80 Hypothetical memerina protein NCg0173 -1.64 1.70 Transcriptional regulators, Lac-Lamily NCg0171 -1.84 1.96 Transcriptional regulators, Lac-Lamily NCg0181 -1.84 978 NADPH-dependent glutamate synthase NCg0183 -2.15 Putative membrane protein NCg0186 NCg0186 1.57 Putative membrane protein NCg0187 NCg0188 1.55 2.09 Hypothetical protein NCg0188 1.55 2.09 Hypothetical protein NCg0206 1.64 moaB Molydoptern inosynthesis enzymes NCg0208 1.74 moaB Molydoptern inosynthesis enzymes NCg0208 1.74 moaB Molydoptern inosynthesis enzymes NCg0208 1.74 moaB Molydoptern inosynthesis enzymes NCg0224 1.79 lsu Molydoptern inosynthesis enzymes NCg0224 1.74 .200 Apartokinases NCg0224 <t< td=""><td>NCgl0168</td><td>2.07</td><td></td><td></td><td></td><td>Predicted dehydrogenases and related proteins</td></t<>	NCgl0168	2.07				Predicted dehydrogenases and related proteins
NCg10172 -1.66 -1.80 Hypothetical memebrane protein NCg10173 1.70 Transcriptional regulators, LacFamily NCg10181 5.14 gHB NADPH-dependent glutamate synthase NCg10182 27.31 gHD NADPH-dependent glutamate synthase NCg10183 -2.15 Conserved hypothetical protein NCg10186 1.57 pedicted short-chain actohol dehydrogenases NCg10181 1.55 2.08 Hypothetical protein NCg10186 1.57 Pedicted short-chain actohol dehydrogenases NCg10181 1.55 2.09 Hypothetical protein NCg10207 1.61 moac Molydopterin converting factor, large subunit NCg10208 1.77 Hypothetical protein Ncg10208 NCg10208 1.74 moac Molydopterin converting factor, large subunit NCg10207 1.61 moac Molydopterin converting factor, large subunit NCg10208 -1.79 <i>lysC</i> Aspartate-semialdehyde dehydrogenase NCg10214 -1.79 <i>lysC</i> Aspartate-semialdehyde dehydrogenase <td>NCgl0171</td> <td>-1.57</td> <td></td> <td></td> <td>cspA</td> <td>Cold shock proteins</td>	NCgl0171	-1.57			cspA	Cold shock proteins
NCg10173	NCgl0172	-1.66		-1.80		Hypothetical memebrane protein
NCg1076 -1.84 -1.96 Transcriptional regulators, Laci-Tamily NCg1081 27.31 gttb NADPH-dependent glutamate synthase NCg1082 -2.15 Conserved hypothetical protein NCg1083 -2.15 Putative membrane protein NCg1085 -1.55 Putative membrane protein NCg1086 1.57 Putative membrane protein NCg1081 1.55 2.09 NCg1081 1.55 2.09 NCg1091 2.54 Hypothetical protein NCg10207 1.61 moad NCg10207 1.61 moad NCg10207 1.61 moad NCg10241 -1.79 Modydopterin converting factor, large subunit NCg10247 -1.79 Modydopterin converting factor, large subunit NCg10247 -1.79 Modydopterin converting factor, large subunit NCg10247 -1.79 Modydopterin converting factor, large subunit NCg10246 -1.79 Modydopterin converting factor, large subunit NCg10247 -1.74 2.20 porA <td>NCgl0173</td> <td></td> <td></td> <td>1.70</td> <td></td> <td>Transcriptional regulator, ArsR-family</td>	NCgl0173			1.70		Transcriptional regulator, ArsR-family
NCg10181 5.14 gttB NADPH-dependent glutamate synthase NCg10183 27.31 gttD NADPH-dependent glutamate synthase NCg10183 2.15 Conserved hypothetical protein NCg10186 1.57 Putative membrane protein NCg10186 1.57 Putative membrane protein NCg10181 1.52 2.64 NCg10182 1.55 2.09 NCg10206 1.64 moad NCg10206 1.64 moad NCg10207 1.61 moad NCg10243 1.67 UDP-N-acetymorany tripped synthase NCg10245 -1.79 lsw Molybdopterin biosynthesis enzyme NCg10245 -1.79 lsw Aspartate-semialdehyde dehydrogenase NCg10247 -1.78 katA Aspartate-semialdehyde dehydrogenase NCg10248 -1.74 -2.20 ponA NCg10247 -1.74 -2.20 ponA NCg1025 -1.52 whi24 Putative regulatory protein NCg10263 -1.74 -2.2	NCgl0176	-1.84	-1.96			Transcriptional regulators, Lacl-family
NCg10182 27.31 gttD NADPH-dependent glutamete synthase NCg01083 -2.15 Conserved hypothetical protein NCg01085 -1.55 Putative membrane protein NCg01087 1.93 2.06 1.77 FAD/FMN-containing dehydrogenases NCg01081 1.55 2.09 NCg01081 1.55 2.09 Hypothetical protein NCg0207 1.61 moaeE Molybdopterin converting factor, large subunit NCg0208 1.74 moaeC Molybdopterin converting factor, large subunit NCg0243 1.67 UDP-N-acetylmuramy linepide synthase NCg0244 -1.79 leuA synthases NCg0276 1.52 whi84 Aspartale-semiadehyde dehydrogenase NCg0276 1.52 whi84 Putative requisitor protein NCg0276 1.52 whi84 Putative requisitors NCg0276 1.52 whi84 Putative requisitor NCg0303 -1.74 2.20 porA NCg0303 1.74 Dorseved hypothelical protein	NCgl0181			5.14	gltB	NADPH-dependent glutamate synthase
NCg10183 2.15 Conserved hypothetical protein NCg01086 1.57	NCgl0182			27.31	gltD	NADPH-dependent glutamate synthase
NCg10185	NCgl0183			-2.15		Conserved hypothetical protein
NCg10166 1.57 pedicted short-chain alcohol dehydrogenases NCg01187 1.93 2.06 1.77 FAD/FMN-containing dehydrogenases NCg01018 1.55 2.09 Hypothetical protein NCg01020 1.64 moaE Molybdopterin biosynthesis enzymes NCg02026 1.64 moaE Molybdopterin biosynthesis enzyme NCg0203 1.61 moaE Molybdopterin biosynthesis enzyme NCg0243 1.67 moaE Molybdopterin biosynthesis enzyme NCg0243 1.67 moaE Molybdopterin biosynthesis enzyme NCg0244 -1.79 leuA synthases NCg0276 1.74 -2.0 ponA NCg0276 1.52 whiB4 Putative regulatory protein NCg0276 1.62 Putative engulatory protein NCg0233 1.62 Putative engulatory protein NCg0303 1.73 adhE Cod shock protein NCg0333 1.73 adhE Zh-dependent hydroigenases, including dyoxylases NCg0331 1.73 <td>NCgl0185</td> <td></td> <td></td> <td>-1.55</td> <td></td> <td>Putative membrane protein</td>	NCgl0185			-1.55		Putative membrane protein
NCg10187 1.93 2.06 1.77 FAD/FMN-containing dehydrogenases NCg10181 1.55 2.09 Hypothetical protein NCg10207 1.64 moaE Molybdopterin biosynthesis enzymes NCg10207 1.61 moaE Molybdopterin biosynthesis enzymes NCg10243 1.67 moaE Molybdopterin biosynthesis enzymes NCg10245 -1.79 ////////////////////////////////////	NCgl0186		1.57			pedicted short-chain alcohol dehydrogenases
NCg10188 1.55 2.09 Hypothetical protein NCg10191 1.54 moaE Molybdopterin converting factor, large subunit NCg10206 1.64 moaE Molybdopterin converting factor, large subunit NCg10207 1.61 moaE Molybdopterin biosynthesis enzyme NCg10243 1.67 Molybdopterin biosynthesis enzyme UDP-N-acetylmuramy tripeptide synthase NCg10243 -1.79 lysC Aspartalital=homocitrate/citramalate NCg10247 -1.79 lysC Aspartalital=homocitrate/citramalate NCg10276 -1.74 -2.20 ponA Membrane carboxypetidase NCg10276 1.65 Conserved hypothetical protein NCg10276 NCg10276 1.65 Putative embrane protein NCg10206 NCg10208 1.73 Uncharacterized phage-associated protein NCg10303 -1.74 cspA2 Cold shock protein NCg10314 1.73 adhe In-dependent alcohol dehydrogenases, class III NCg10331 1.74 place Secreted protein, carrying a eukaryotic domain <t< td=""><td>NCgl0187</td><td>1.93</td><td>2.06</td><td>1.77</td><td></td><td>FAD/FMN-containing dehydrogenases</td></t<>	NCgl0187	1.93	2.06	1.77		FAD/FMN-containing dehydrogenases
NCg10206 2.54 Hypothetical protein NCg10206 1.64 moaE Molybdopterin converting factor, large subunit NCg10207 1.61 moaE Molybdopterin converting factor, large subunits NCg10243 1.67 UDP-N-acetylmuramyl tripeptide synthase NCg10245 -1.79 leuA Isopropylmate/homocltrate/citramalate NCg10247 -1.79 lysC Aspartate-semialdehyde dehydrogenase NCg10248 1.74 Aspartate-semialdehyde dehydrogenase NCg10247 -1.74 2.20 ponA NCg10275 -1.74 -2.20 ponA NCg10276 1.62 Putative regulatory protein NCg10203 -1.74 cspA2 Cold shock protein NCg10303 -1.74 cspA2 Cold shock protein NCg10303 -1.74 cspA2 Cold shock protein NCg10303 -1.74 cspA2 Cold shock protein NCg10304 -1.81 topA Topoisomerase IA NCg10305 -1.73 adhE III <	NCgl0188		1.55	2.09		Hypothetical protein
NCg0206 1.64 moaE Molybdopterin converting factor, large subunit NCg0207 1.61 moaE Molybdopterin biosynthesis enzymes NCg0243 1.67 UDP-N-acetylmuramyl tripeptide synthase NCg0243 1.67 Ibor Aspartation NCg0245 -1.79 leuA Sprotylmate/homocitrate/ctranalate NCg0247 -1.79 lysC Aspartate-semialdehyde dehydrogenase NCg0248 -1.74 -2.20 ponA Membrane carboxypeptidase NCg0276 -1.52 whiB4 Putative regulatory protein NCg0276 1.65 Conserved hypothetical protein NCg0303 -1.74 cspA2 Cold shock protein NCg0304 -1.81 topA Putative regulatory protein NCg0303 1.73 adhE Zn-dependent hypothetical protein NCg0311 -1.55 miL1 topA NCg0328 -1.73 adhE Zn-dependent hydrolenses, iacluding glyoxidases NCg0313 -1.73 adhE Zn-dependent hydrolenses, including glyoxidase NCg	NCgl0191			2.54		Hypothetical protein
NCg10207 1.61 moaB Molybdopterin biosynthesis enzymes NCg10208 1.74 moaC Molybdopterin biosynthesis enzymes NCg10243 1.67 UDP-N-acetymuramy tirpeptide synthase NCg10245 -1.79 lpuA Isoproprimate/homocitrate/citramalate NCg10247 -1.79 lpsC Aspartate-semialdehyde dehydrogenase NCg10248 -1.74 asof Aspartate-semialdehyde dehydrogenase NCg10275 -1.74 2.20 ponA Membrane carboxypeptidase NCg10276 1.52 whiB4 Putative regulatory protein NCg10203 1.82 cspaz Conserved hyopthetical protein NCg10304 -1.73 Uncharacterized phage-associated protein NCg10305 1.73 Beta-glucosidase-related glycosidases NCg10312 1.59 Beta-glucosidase-related glycosidases NCg10313 1.73 adhE Zn-dependent alcohol dehydrogenase, class III NCg10314 1.73 glycoxylase Nitroreduciase NCg10325 -1.74 ptpA2 Protein-tyrosine-phosphatase	NCgl0206			1.64	moaE	Molybdopterin converting factor, large subunit
NCg10208 Image Image Molybdenum cofactor biosynthesis enzyme NCg10245 1.67 UDP-N-acetylmuramy trigepidies synthase NCg10247 -1.79 lysC Aspartokinases NCg10247 -1.74 lysC Aspartokinases NCg10274 -1.74 -2.20 ponA NCg10275 1 1.55 katA NCg10276 1.62 WhiB4 Putative regulatory protein NCg10276 1.62 Putative membrane protein NCg10303 -1.74 cspA2 Cold shock protein NCg10303 -1.74 cspA2 Cold shock protein NCg10303 -1.74 cspA2 Cold shock protein NCg10303 -1.73 Uncharacterized phage-associated protein NCg10311 -1.59 Eeta-glucosidase-glated glycosidases NCg10312 -1.59 Conserved hypothetical membrane protein NCg10325 -1.73 adhE NCg10338 -1.74 ppA2 NCg10339 -1.63 Conserved hypothetical membrane protein	NCgl0207			1.61	moaB	Molybdopterin biosynthesis enzymes
NCg10243 1.67 UDP-N-acet/Intramy tipeptide synthase NCg10245 -1.79 Isoproprimate/homocitrate/citramalate NCg10247 -1.79 IysC Aspartokinases NCg10248 -1.83 asd Aspartokinases NCg10251 1.75 katA Catalase NCg10276 -1.74 2.20 ponA NCg10276 1.62 Putative regulatory protein NCg10233 -1.74 Cosperved hypothetical protein NCg10230 -1.74 cspA2 Cold shock protein NCg10303 -1.73 Incharacterized phage-associated protein NCg10304 -1.81 topA Topaisomerase IA NCg10305 1.73 adhE III NCg10314 1.73 adhE III NCg10318 -1.56 -2.02 Conserved hypothetical membrane protein NCg10338 -1.74 ptpA2 Protein-tyrosine-phosphatase NCg10339 -1.63 Sorcride dehydrogenase/fumarate reductase NCg10351 -1.82 udgA1 <td< td=""><td>NCgl0208</td><td></td><td></td><td>1.74</td><td>moaC</td><td>Molybdenum cofactor biosynthesis enzyme</td></td<>	NCgl0208			1.74	moaC	Molybdenum cofactor biosynthesis enzyme
NCg0245 -1.79 IeuA Isopropylmalate/homocitrate/citramalate synthases NCg0247 -1.79 1/5C Aspartate-semialdehyde dehydrogenase NCg0248 -1.74 2.20 Aspartate-semialdehyde dehydrogenase NCg0274 -1.74 -2.20 ponA Membrane carboxypeptidase NCg0276 -1.52 whiB4 Putative regulatory protein NCg02076 1.62 Putative membrane protein NCg02030 -1.74 cspA2 Cold shock protein NCg0303 -1.74 cspA2 Cold shock protein NCg0303 -1.74 cspA2 Cold shock protein NCg0303 -1.73 Uncharacterized phage-associated protein NCg0312 -1.59 Eat-glucosidase-related glycosidases NCg0313 1.73 adhE III NCg0325 -1.55 rmlA1 dTDP-glucose pyrophosphorylase NCg0338 -1.74 ptpA2 Protein-tyrosine-phosphatase NCg0339 -1.63 Secreted protein, carrying a eukaryotic domain NCg0339 -1.55	NCgl0243	1.67				UDP-N-acetylmuramyl tripeptide synthase
NCg1024.3 1.7.9 Jean synthases NCg10247 -1.79 lysC Aspartokiases NCg10248 -1.83 asd Aspartokiases NCg10271 -1.74 Aspartokiases NCg10275 -1.74 -2.20 pon NCg10276 -1.52 whiB4 Putative regulatory protein NCg10276 -1.62 whiB4 Putative regulatory protein NCg10276 -1.62 conserved hypothetical protein NCg10304 -1.74 conserved hypothetical protein NCg10304 -1.81 topA NCg10304 -1.73 Uncharacterized phage-associated protein NCg10313 1.73 adhE Zn-dependent alcohol dehydrogenases, class NCg10314 1.73 adhE Zn-dependent hydrolases, including glyoxylases NCg10318 -1.56 -2.02 conserved hypothetical membrane protein NCg10328 -1.74 ptpA2 Protein-tyrosine-typos			1 70		Iou A	IsopropyImalate/homocitrate/citramalate
NCg10247 -1.79 lysC Aspartokinases NCg1028 -1.83 asd Aspartalre-semialdehyde dehydrogenase NCg10274 -1.74 -2.20 ponA Membrane carboxypeptidase NCg10275 -1.52 while Putative regulatory protein NCg10276 1.65 Conserved hypothetical protein NCg102303 -1.74 cspA2 Cold shock protein NCg10303 -1.74 cspA2 Cold shock protein NCg10303 -1.74 cspA2 Cold shock protein NCg10304 -1.81 topA Topoisomerase IA NCg10312 -1.59 Beta-glucosidase-related glycosidases NCg10313 1.73 adhE Zn-dependent alcohol dehydrogenases, class NCg10314 1.73 glyoxylases Including glyoxylases NCg10328 -1.55 rmIA1 dTD-glucose pyrophosphorylase NCg10339 -1.63 domain Sccreted protein, carrying a eukaryotic domain NCg10351 -1.92 udgA1 Predicited UDP-glucose 6-dehydrogenase/fumarate reductase	NC910245		-1.79		ieuA	synthases
NCg10248 1.83 asd Aspartate-semialdehyde dehydrogenase NCg10274 -1.74 -2.20 ponA Membrane carboxypeptidase NCg10275 -1.52 whiB4 Putative regulatory protein NCg10276 -1.62 whiB4 Putative regulatory protein NCg10293 1.62 Putative regulatory protein NCg10304 -1.81 topA Topoisomerase IA NCg10308 1.73 Uncharacterized phage-associated protein NCg10312 1.73 Beta-glucosidase-related glycosidases NCg10313 1.73 adhE Zn-dependent alcohol dehydrogenases, class NCg10314 1.73 adhE Zn-dependent hydrolases, including glyoxylases NCg10318 -1.56 -2.02 Conserved hypothetical membrane protein NCg10328 -1.74 ptpA2 Protein-tyrosine-phosphatase NCg10339 -1.63 Secreted protein, carrying a eukaryotic domain NCg10351 -1.92 udgA1 Predicet UDP-glucose epidenese/fumarate reductase NCg10359 -1.65 sdhA Succinate dehydrogen	NCgl0247			-1.79	lysC	Aspartokinases
NCg10251 Int katA Catalase NCg10274 -1.74 2.20 ponA Membrane carboxypeptidase NCg10275 -1.52 whiB4 Putative regulatory protein NCg10276 1.65 Conserved hypothetical protein NCg10303 -1.74 cspA2 Cold shock protein NCg10303 -1.74 cspA2 Cold shock protein NCg10308 1.73 Uncharacterized phage-associated protein NCg10312 -1.59 Beta-glucosidase-related glycosidases NCg10313 1.73 adhE Zn-dependent hydrolases, including glyoxylases NCg10314 1.73 glyoxylases including glyoxylases NCg10328 -1.55 rmIA1 dTD-eglucose pyrophosphorylase NCg10339 -1.63 Secreted protein, carrying a eukaryotic domain NCg10351 -1.92 udgA1 NCg10351 -1.92 sdhB Succinate dehydrogenase/fumarate reductase NCg10361 -1.92 sdhB Succinate dehydrogenase/fumarate reductase NCg10351 -1.92 sd	NCgl0248			-1.83	asd	Aspartate-semialdehyde dehydrogenase
NCgl0274 -1.74 -2.20 ponA Membrane carboxypeptidase NCgl0275 -1.52 whB4 Putative regulatory protein NCgl0233 1.62 Putative membrane protein NCgl0304 -1.81 cspA2 Cold shock protein NCgl0304 -1.81 topa Topoisomerase IA NCgl0308 1.73 Uncharacterized phage-associated protein NCgl0312 -1.59 Beta-glucosidase-related glycosidases NCgl0314 1.73 adhE III NCgl0313 1.73 Zn-dependent alcohol dehydrogenases, class NCgl0318 -1.56 -2.02 Conserved hypothetical membrane protein NCgl0325 -1.78 Nitroreductase NCgl0338 -1.74 ptpA2 NCgl0339 -1.63 Secreted protein, carrying a eukaryotic domain NCgl0351 -1.92 udgA1 NCgl036 -2.15 sdhA NCgl036 -2.43 -1.55 NCgl0375 1.64 3.77 NCgl0375 1.64 3.77 <td>NCgl0251</td> <td></td> <td></td> <td>1.75</td> <td>katA</td> <td>Catalase</td>	NCgl0251			1.75	katA	Catalase
NCg0275 -1.52 whB4 Putative regulatory protein NCg0276 1.65 Conserved hypothetical protein NCg0203 1.74 - cspA2 NCg0303 -1.74 - cspA2 NCg0304 -1.81 topA Topoisomerase IA NCg0308 1.73 Uncharacterized phage-associated protein NCg0312 -1.59 Beta-glucosidese-related glycosidases NCg0313 1.73 adhE In-dependent NCg0314 1.73 glycox/lases including NCg0318 -1.56 -2.02 Conserved hypothetical membrane protein NCg0325 -1.55 rmIA1 dTDP-glucose pyrophosphorylase NCg0338 -1.74 ptpA2 Protein-tyrosine-phosphatase NCg0351 -1.92 udgA1 Predicted UDP-glucose exprophosphorylase NCg0360 -2.43 -1.55 sdhA Succinate dehydrogenase/fumarate reductase NCg0375 1.64 3.77 ctpA Succinate dehydrogenase/fumarate reductase NCg0375 1.64	NCgl0274		-1.74	-2.20	ponA	Membrane carboxypeptidase
NCg10276 1.65 Conserved hypothetical protein NCg10203 1.62 Putative membrane protein NCg10304 -1.81 <i>cspA2</i> Cold shock protein NCg10304 -1.81 <i>topA</i> Topoisomersae IA NCg10304 -1.73 Uncharacterized phage-associated protein NCg10312 -1.59 Beta-glucosidase-related glycosidases NCg10313 1.73 <i>adhE</i> II NCg10314 1.73 <i>adhE</i> III NCg10314 1.73 <i>Zn-dependent</i> hydrogenases, class NCg10318 -1.56 -2.02 Conserved hypothetical membrane protein NCg10325 -1.78 MIA1 dTDP-glucose pyrophosphorylase NCg10338 -1.74 <i>ptpA2</i> Protein-tyrosine-phosphatase NCg10339 -1.63 Secreted protein, carrying a eukaryotic domain NCg10351 -1.92 <i>udgA1</i> Predicted UpD-glucose 6-dehydrogenase/fumarate reductase NCg10360 -2.43 -1.55 <i>sdhB</i> Succinate dehydrogenase/fumarate reductase NCg10361 -1.92	NCgl0275			-1.52	whiB4	Putative regulatory protein
NCg10293 1.62 Putative membrane protein NCg10303 -1.74 cspA2 Cold shock protein NCg10304 -1.81 topA Topoisomerase IA NCg10308 1.73 Uncharacterized plage-associated protein NCg10312 -1.59 Beta-glucosidase-related glycosidases NCg10313 1.73 adhE Zn-dependent alcohol dehydrogenases, class III NCg10314 1.73 adhE Zn-dependent hydrolases, including glyoxylases NCg10325 -1.55 rmlA1 dTDP-glucose pyrophosphorylase NCg10328 -1.74 ptpA2 Protein-tyrosine-phosphorylase NCg10339 -1.63 Secreted protein, carrying a eukaryotic domain Ntoreductase NCg10351 -1.92 udgA1 Predicted UDP-glucose 6-dehydrogenase/fumarate reductase NCg10360 -2.43 -1.55 sdhA Succinate dehydrogenase/fumarate reductase NCg10361 -2.43 -1.55 sdhA Succinate dehydrogenase/fumarate reductase NCg10375 1.66 2.18 ctpA Cation transport ATPase NCg10	NCgl0276			1.65		Conserved hypothetical protein
NCg10303 -1.74 cspA2 Cold shock protein NCg10304 -1.81 topA Topoisomerase IA NCg10308 1.73 Uncharacterized phage-associated protein NCg10312 -1.59 Beta-glucosidase-related glycosidases NCg10313 1.73 adhE Zn-dependent alcohol dehydrogenases, class NCg10314 1.73 glyoxylases Conserved hypothetical membrane protein NCg10325 -1.55 rmlA1 dTDP-glucose pyrophosphorylase NCg10326 -1.78 Nitroreductase NCg10338 -1.74 ptpA2 Protein-tryrosine-phosphatase NCg10339 -1.63 Secreted protein, carrying a eukaryotic domain domain NCg10350 -2.43 -1.55 sdhA Succinate dehydrogenase/fumarate reductase NCg10350 -2.43 -1.55 sdhB Succinate dehydrogenase/fumarate reductase NCg10361 -1.92 udgA1 Prediced dehydrogenase/fumarate reductase NCg10351 -1.56 SdhA Succinate dehydrogenase/fumarate reductase NCg10361 -1.92	NCgl0293		1.62			Putative membrane protein
NCg10304 -1.81 topA Topoisomerase IA NCg10308 1.73 Uncharacterized phage-associated protein NCg10312 -1.59 Beta-glucosidase-related glycosidases NCg10313 1.73 adhE Zn-dependent alcohol dehydrogenases, class III NCg10314 1.73 adhE Zn-dependent alcohol dehydrogenases, class III NCg10318 -1.56 -2.02 Conserved hypothetical membrane protein NCg10325 -1.55 rmlA1 dTDP-glucose pyrophosphorylase NCg10338 -1.74 ptrate Protein-tyrosine-phosphatase NCg1039 -1.63 Secreted protein, carrying a eukaryotic domain NCg1039 -1.91 sdhA Succinate dehydrogenase/fumarate reductase NCg10351 -1.92 udgA1 Predicted UDP-glucose 6-dehydrogenase/fumarate reductase NCg10362 -2.05 SdhA Succinate dehydrogenase/fumarate reductase NCg10375 1.56 2.18 ctpA Cation transport ATPase NCg10377 -1.91 Conserved secreted protein Ncg10377 NCg10378 -1.60 <td>NCgl0303</td> <td>-1.74</td> <td></td> <td></td> <td>cspA2</td> <td>Cold shock protein</td>	NCgl0303	-1.74			cspA2	Cold shock protein
NCgI0308 1.73 Uncharacterized phage-associated protein NCgI0312 -1.59 Beta-glucosidase-related glycosidases NCgI0313 1.73 adhE Zn-dependent alcohol dehydrogenases, class III NCgI0314 1.73 adhE Zn-dependent alcohol dehydrogenases, class III NCgI0318 -1.56 -2.02 Conserved hypothetical membrane protein NCgI0325 -1.55 rml/1 dTDP-glucose pyrophosphorylase NCgI0338 -1.74 ptpA2 Protein-tyrosine-phosphatase NCgI0339 -1.63 Secreted protein, carrying a eukaryotic domain NCgI0351 -1.92 udgA1 NCgI0359 -1.91 Succinate dehydrogenase/fumarate reductase NCgI0360 -2.43 -1.55 sdhA Succinate dehydrogenase/fumarate reductase NCgI0375 1.56 2.18 NCgI0375 1.64 3.77 ctpA Cation transport ATPase NCgI0375 1.58 -1.97 Conserved sportein NCgI0376 NCgI0378 -1.60 -2.13 ABC-type Fe ⁻⁷ -siderophore transport system </td <td>NCgl0304</td> <td></td> <td></td> <td>-1.81</td> <td>topA</td> <td>Topoisomerase IA</td>	NCgl0304			-1.81	topA	Topoisomerase IA
NCgI0312 -1.59 Beta-glucosidase-related glycosidases NCgI0313 1.73 adhE Zn-dependent alcohol dehydrogenases, class III NCgI0314 1.73 adhE Zn-dependent alcohol dehydrogenases, class III NCgI0318 -1.56 -2.02 Conserved hypothetical membrane protein NCgI0325 -1.55 rmIA1 dTDP-glucose pyrophosphorylase NCgI0338 -1.74 ptpA2 NCgI0339 -1.63 Secreted protein, carrying a eukaryotic domain NCgI0351 -1.92 udgA1 NCgI0350 -1.91 Secreted protein, carrying a eukaryotic domain NCgI0350 -1.91 Secreted protein, carrying a eukaryotic domain NCgI0351 -1.92 udgA1 NCgI0362 -2.05 Succinate dehydrogenase/fumarate reductase NCgI0375 1.56 2.18 ctpA NCgI0376 1.60 -2.13 ABC-type hermin transport ATPase NCgI0377 -1.60 -2.13 ABC-type her ^{3*} -siderophore transport system NCgI038 1.53 fadD5 Acyt-CoA synthetases	NCgl0308		1.73			Uncharacterized phage-associated protein
NCg10313 1.73 adhE Zn-dependent alcohol dehydrogenases, class III NCg10314 1.73 Zn-dependent hydrolases, including glyoxylases NCg10318 -1.56 -2.02 Conserved hypothetical membrane protein NCg10325 -1.55 <i>mIA1</i> dTDP-glucose pyrophosphorylase NCg10328 -1.78 Nitroreductase NCg10339 -1.74 <i>ptpA2</i> NCg10351 -1.92 <i>udgA1</i> NCg10355 -1.91 Secreted protein, carrying a eukaryotic domain NCg10360 -2.43 -1.55 <i>sdhA</i> NCg10361 -1.92 <i>udgA1</i> Predicted UDP-glucose 6-dehydrogenase/fumarate reductase NCg10360 -2.43 -1.55 <i>sdhA</i> Succinate dehydrogenase/fumarate reductase NCg10375 1.56 2.18 <i>ctpA</i> Cation transport ATPase NCg10377 -1.97 Conserved hypothetical membrane protein NCg10378 NCg10378 -1.60 -2.13 ABC-type Fe ³⁺ siderophore transport system NCg10388 1.53 <i>fadD5</i> ABC-type Fe ³⁺ siderophore transport system <td>NCgl0312</td> <td>-1.59</td> <td></td> <td></td> <td></td> <td>Beta-glucosidase-related glycosidases</td>	NCgl0312	-1.59				Beta-glucosidase-related glycosidases
NCg10314 1.73 Zn-dependent glyoxylases hydrolases, including glyoxylases NCg10318 -1.56 -2.02 Conserved hypothetical membrane protein NCg10325 -1.55 rmlA1 dTDP-glucose pyrophosphorylase NCg10328 -1.78 Nitroreductase NCg10339 -1.74 ptpA2 NCg10339 -1.63 Secreted protein, carrying a eukaryotic domain NCg10351 -1.92 udgA1 NCg10359 -1.91 sdhA Succinate dehydrogenase/fumarate reductase NCg10360 NCg10351 -1.92 sdhA Succinate dehydrogenase/fumarate reductase NCg10361 NCg10360 -2.43 -1.55 NCg10375 1.56 2.18 NCg10375 1.64 3.77 NCg10375 1.64 3.77 NCg10378 -1.60 -2.13 NCg10378 -1.60 -2.13 NCg10379 -1.58 -1.65 NCg10381 -1.89 Conserved secreted protein NCg10384 1.8	NCgl0313			1.73	adhE	Zn-dependent alcohol dehydrogenases, class
NCgl0318 -1.56 -2.02 Conserved hypothetical membrane protein NCgl0325 -1.55 <i>rmlA1</i> dTDP-glucose pyrophosphorylase NCgl0328 -1.78 Nitroreductase Nitroreductase NCgl0338 -1.74 <i>ptpA2</i> Protein-tyrosine-phosphatase NCgl0339 -1.63 Secreted protein, carrying a eukaryotic domain NCgl0351 -1.92 <i>udgA1</i> Predicted UDP-glucose 6-dehydrogenase NCgl0360 -2.43 -1.55 sdhCD Succinate dehydrogenase/fumarate reductase NCgl0361 -1.92 <i>sdhCD</i> Succinate dehydrogenase/fumarate reductase NCgl0361 -1.92 <i>sdhB</i> Succinate dehydrogenase/fumarate reductase NCgl0362 -2.05 Conserved hydrothetical membrane protein NCgl0375 1.56 2.18 <i>ctpA</i> NCgl0377 Cation transport ATPase NCgl0378 NCgl0378 -1.60 -2.13 ABC-type fe ^{3*} -siderophore transport system NCgl0381 -1.89 Conserved secreted protein NCgl0381 1.53 fadD5 Acyl-CoA syntheta	NCgl0314			1.73		Zn-dependent hydrolases, including glyoxylases
NCg10325 -1.55 rm/A1 dTDP-glucose pyrophosphorylase NCg10328 -1.78 Nitroreductase NCg10338 -1.74 ptpA2 Protein-tyrosine-phosphatase NCg10339 -1.63 Secreted protein, carrying a eukaryotic domain NCg10351 -1.92 udgA1 Predicted UDP-glucose 6-dehydrogenase NCg10350 -1.91 sdhCD Succinate dehydrogenase/fumarate reductase NCg10360 -2.43 -1.55 sdhA Succinate dehydrogenase/fumarate reductase NCg10361 -1.92 sdhB Succinate dehydrogenase/fumarate reductase NCg10361 -1.92 sdhB Succinate dehydrogenase/fumarate reductase NCg10361 -1.92 sdhB Succinate dehydrogenase/fumarate reductase NCg10375 1.56 2.18 ctpA Cation transport ATPase NCg10377 -1.64 3.77 ctpA Cation transport ATPase NCg10381 -1.89 -1.65 ABC-type he ^{ast} -siderophore transport system NCg10381 -1.89 Conserved secreted protein NCg10381 <t< td=""><td>NCgl0318</td><td>-1.56</td><td></td><td>-2.02</td><td></td><td>Conserved hypothetical membrane protein</td></t<>	NCgl0318	-1.56		-2.02		Conserved hypothetical membrane protein
NCgl0328 -1.78 Nitroreductase NCgl0338 -1.74 ptpA2 Protein-tyrosine-phosphatase NCgl0339 -1.63 Secreted protein, carrying a eukaryotic domain NCgl0351 -1.92 udgA1 Predicted UDP-glucose 6-dehydrogenase NCgl0350 -2.43 -1.55 sdhCD Succinate dehydrogenase/fumarate reductase NCgl0361 -1.92 sdhA Succinate dehydrogenase/fumarate reductase NCgl0361 -1.92 sdhA Succinate dehydrogenase/fumarate reductase NCgl0361 -1.92 sdhA Succinate dehydrogenase/fumarate reductase NCgl0362 -2.05 Conserved hypothetical membrane protein NCgl0375 1.56 2.18 ctpA NCgl0377 -1.60 -2.13 ABC-type hemin transport ATPase NCgl0381 -1.89 Conserved secreted protein Conserved secreted protein NCgl0381 -1.89 Conserved secreted protein Conserved secreted protein NCgl0381 -1.84 proC Pyroline-5-carboxylate reductase NCgl0390 1.71 gpmA Phosphoglycerate mutase 1 NCgl0331 1.92 <td>NCgl0325</td> <td></td> <td></td> <td>-1.55</td> <td>rmIA1</td> <td>dTDP-glucose pyrophosphorylase</td>	NCgl0325			-1.55	rmIA1	dTDP-glucose pyrophosphorylase
NCgl0338 -1.74 ptpA2 Protein-tyrosine-phosphatase NCgl0339 -1.63 Secreted protein, carrying a eukaryotic domain NCgl0351 -1.91 Secreted protein, carrying a eukaryotic domain NCgl0359 -1.91 sdhCD Succinate dehydrogenase/fumarate reductase NCgl0360 -2.43 -1.55 sdhA Succinate dehydrogenase/fumarate reductase NCgl0361 -1.92 sdhA Succinate dehydrogenase/fumarate reductase NCgl0362 -2.05 Conserved hypothetical membrane protein NCgl0375 1.56 2.18 ctpA NCgl0375 1.64 3.77 ctpA Cation transport ATPase NCgl0377 -1.58 -1.65 ABC-type hemin transport system NCgl0379 -1.58 -1.65 ABC-type hemin transport system NCgl0381 -1.89 Conserved secreted protein Ncgl0388 NCgl0398 1.84 proC Pyroline-5-carboxylate reductase NCgl0406 2.26 Prode Putative membrane protein NCgl0431 1.92 Hutative membrane protein NCgl0431 NCgl0440 1.70 <t< td=""><td>NCgl0328</td><td></td><td></td><td>-1.78</td><td></td><td>Nitroreductase</td></t<>	NCgl0328			-1.78		Nitroreductase
NCgl0339-1.63Secreted protein, carrying a eukaryotic domainNCgl0351-1.92udgA1Predicted UDP-glucose 6-dehydrogenaseNCgl0359-1.91sdhCDSuccinate dehydrogenase/fumarate reductaseNCgl0360-2.43-1.55sdhASuccinate dehydrogenase/fumarate reductaseSuccinate dehydrogenase/fumarate reductaseNCgl0361-1.92sdhBSuccinate dehydrogenase/fumarate reductaseConserved hypothetical membrane proteinNCgl03751.562.18CtpACation transport ATPaseNCgl03751.643.77ctpAConserved secreted proteinNCgl0377-1.97Conserved secreted proteinNCgl0378-1.60-2.13ABC-type Fe ³⁺ -siderophore transport systemNCgl0381-1.89NCgl03901.71MCgl03901.71MCgl03981.84procPyroline-5-carboxylate reductaseNCgl04062.26NCgl04311.92NCgl04311.92NCgl0441-2.33NCgl0445-1.90NCgl04481.52	NCgl0338			-1.74	ptpA2	Protein-tyrosine-phosphatase
NCgl0351-1.92udgA1Predicted UDP-glucose 6-dehydrogenaseNCgl0359-1.91sdhCDSuccinate dehydrogenase/fumarate reductaseNCgl0360-2.43-1.55sdhASuccinate dehydrogenase/fumarate reductaseNCgl0361-1.92sdhBSuccinate dehydrogenase/fumarate reductaseNCgl0362-2.05Conserved hypothetical membrane proteinNCgl03751.562.18ctpACation transport ATPaseConserved secreted proteinNCgl03751.643.77ctpACation transport ATPaseNCgl0377NCgl0377-1.97Conserved secreted proteinNCgl0378-1.60-2.13ABC-type Fe ^{3*} -siderophore transport systemNCgl0381-1.89Conserved secreted proteinNCgl03881.53fadD5Acyl-CoA synthetasesNCgl03901.71gpmAPhosphoglycerate mutase 1NCgl04301.88Predicted transcriptional regulatorsNCgl04311.92Hutive membrane proteinNCgl0444-2.33Putative secreted proteinNCgl0445-1.90pitAPhosphate/sulphate permeasesNCgl04481.52	NCgl0339			-1.63		Secreted protein, carrying a eukaryotic domain
NCg10359-1.91sdhCDSuccinate dehydrogenase/fumarate reductaseNCg10360-2.43-1.55sdhASuccinate dehydrogenase/fumarate reductaseNCg10361-1.92sdhBSuccinate dehydrogenase/fumarate reductaseNCg10362-2.05Conserved hypothetical membrane proteinNCg103751.562.18ctpANCg103751.643.77ctpACation transport ATPaseNCg10377NCg10377-1.97Conserved secreted proteinNCg10378-1.60-2.13NCg10379-1.58-1.65ABC-type Fe ^{3*} -siderophore transport systemNCg10381-1.89NCg103881.53fadD5Acyl-CoA synthetasesNCg103901.71gpmAPhosphoglycerate mutase 1NCg10427-1.66ccs8Transport system of cytochrome c biogenesisNCg104301.88Predicted transcriptional regulatorsNCg104311.92NCg10444-2.33Putative secreted proteinNCg10445-1.90pitAPhosphate/sulphate permeasesNCg104481.52	NCal0351			-1.92	udaA1	Predicted UDP-alucose 6-dehvdrogenase
NCgl0360-2.43-1.55sdhASuccinate dehydrogenase/fumarate reductaseNCgl0361-1.92sdhBSuccinate dehydrogenase/fumarate reductaseNCgl0362-2.05Conserved hypothetical membrane proteinNCgl03751.562.18ctpACation transport ATPaseNCgl0375NCgl03751.643.77ctpACation transport ATPaseNCgl0377NCgl0378-1.60-2.13NCgl0379-1.58-1.65ABC-type hemin transport systemNCgl0381-1.89NCgl03881.53fadD5Acyl-CoA synthetasesNCgl03901.71gpmAPhosphoglycerate mutase 1NCgl0427-1.66ccsBTransport system of cytochrome c biogenesisNCgl04301.88NCgl04311.92NCgl0444-2.33NCgl0445-1.90NCgl04481.52NCgl04481.52	NCal0359	-1.91			sdhCD	Succinate dehydrogenase/fumarate reductase
NCgl0361-1.92sdhBSuccinate denydrogenase/fumarate reductaseNCgl0362-2.05Conserved hypothetical membrane proteinNCgl03751.562.18ctpANCgl03751.643.77ctpANCgl0377-1.97Conserved proteinNCgl0378-1.60-2.13NCgl0379-1.58-1.65NCgl0381-1.89Conserved secreted proteinNCgl03881.53fadD5Acgl03901.71gpmAPhosphoglycerate mutase 1ProCNCgl03981.84proCNCgl0427-1.66ccsBNCgl04301.88NCgl04311.92Putative secreted proteinNCgl04321.92NCgl0444-2.33Putative secreted proteinNCgl0445-1.90pitAPhosphat/sulphate permeasesNCgl04481.52	NCal0360	-2.43	-1.55		sdhA	Succinate dehydrogenase/fumarate reductase
NCgl0362-2.05Conserved hypothetical membrane proteinNCgl03751.562.18 <i>ctpA</i> Cation transport ATPaseNCgl03751.643.77 <i>ctpA</i> Cation transport ATPaseNCgl0377-1.97Conserved secreted proteinNCgl0378-1.60-2.13ABC-type hemin transport systemNCgl0379-1.58-1.65ABC-type Fe ³⁺ -siderophore transport systemNCgl0381-1.89Conserved secreted proteinNCgl03881.53 <i>fadD5</i> Acyl-CoA synthetasesNCgl03901.71 <i>gpmA</i> Phosphoglycerate mutase 1NCgl03981.84 <i>proC</i> Pyrroline-5-carboxylate reductaseNCgl0427-1.66 <i>ccsB</i> Transport system of cytochrome c biogenesisNCgl04301.88Predicted transcriptional regulatorsNCgl04311.92Putative secreted proteinNCgl04401.70Putative serine proteinNCgl0445-2.33Putative membrane proteinNCgl04481.52Ptosphogle protein	NCal0361	-1.92			sdhB	Succinate dehydrogenase/fumarate reductase
NCgl03751.562.18ctpACation transport ATPaseNCgl03751.643.77ctpACation transport ATPaseNCgl0377-1.97Conserved secreted proteinNCgl0378-1.60-2.13ABC-type hemin transport systemNCgl0379-1.58-1.65ABC-type Fe ³⁺ -siderophore transport systemNCgl0381-1.89Conserved secreted proteinNCgl03881.53fadD5Acyl-CoA synthetasesNCgl03901.71gpmAPhosphoglycerate mutase 1NCgl03981.84proCPytroline-5-carboxylate reductaseNCgl04402.26Putative membrane proteinNCgl04311.92Putative secreted proteinNCgl0444-2.33Putative serine proteineNCgl0445-1.90pitANCgl04481.52Petitiase E	NCgl0362	-2.05				Conserved hypothetical membrane protein
NCgl03751.643.77ctpACation transport ATPaseNCgl0377-1.97Conserved secreted proteinNCgl0378-1.60-2.13ABC-type hemin transport systemNCgl0379-1.58-1.65ABC-type Fe ³⁺ -siderophore transport systemNCgl0381-1.89Conserved secreted proteinNCgl03881.53fadD5Acyl-CoA synthetasesNCgl03901.71gpmAPhosphoglycerate mutase 1NCgl03981.84proCPyrroline-5-carboxylate reductaseNCgl04062.26Putative membrane proteinNCgl0427-1.66ccsBTransport system of cytochrome c biogenesisNCgl04311.92Putative secreted proteinNCgl04411.92Putative secreted proteinNCgl0444-2.33Putative membrane proteinNCgl0445-1.90pitAPhosphate/sulphate permeasesPredicted transcriptional regulatorsNCgl04481.52Petidase E	NCal0375		1.56	2.18	CtpA	Cation transport ATPase
NCgl0377-1.97Conserved secreted proteinNCgl0378-1.60-2.13ABC-type hemin transport systemNCgl0379-1.58-1.65ABC-type Fe ³⁺ -siderophore transport systemNCgl0381-1.89Conserved secreted proteinNCgl03881.53fadD5Acyl-CoA synthetasesNCgl03901.71gpmAPhosphoglycerate mutase 1NCgl03981.84proCPyrroline-5-carboxylate reductaseNCgl04062.26Putative membrane proteinNCgl0427-1.66ccsBNCgl04311.92Putative secreted proteinNCgl04321.92Putative secreted proteinNCgl0444-2.33Putative membrane proteinNCgl0445-1.90pitAPhosphate/sulphate permeasesProteineNCgl04481.52Peptidase E	NCgl0375		1.64	3.77	ctpA	Cation transport ATPase
NCgl0378-1.60-2.13ABC-type hemin transport systemNCgl0379-1.58-1.65ABC-type Fe ³⁺ -siderophore transport systemNCgl0381-1.89Conserved secreted proteinNCgl03881.53fadD5Acyl-CoA synthetasesNCgl03901.71gpmAPhosphoglycerate mutase 1NCgl03981.84proCPyrroline-5-carboxylate reductaseNCgl04062.26Putative membrane proteinNCgl0427-1.66ccsBNCgl04301.88Predicted transcriptional regulatorsNCgl04311.92Putative secreted proteinNCgl04421.92Hypothetical proteinNCgl0444-2.33Putative membrane proteinNCgl0445-1.90pitAPhosphate/sulphate permeasesPeptidase E	NCgl0377			-1.97		Conserved secreted protein
NCgI0379-1.58-1.65ABC-type Fe ³⁺ -siderophore transport systemNCgI0381-1.89Conserved secreted proteinNCgI03881.53fadD5Acyl-CoA synthetasesNCgI03901.71gpmAPhosphoglycerate mutase 1NCgI03981.84proCPyrroline-5-carboxylate reductaseNCgI04062.26Putative membrane proteinNCgI0427-1.66ccsBTransport system of cytochrome c biogenesisNCgI04301.88Predicted transcriptional regulatorsNCgI04311.92Putative secreted proteinNCgI04321.92Hypothetical proteinNCgI04401.70Putative membrane protease (ClpP class)NCgI0444-2.33Putative membrane proteinNCgI0445-1.90pitAPhosphate/sulphate permeasesPeptidase E	NCal0378		-1.60	-2.13		ABC-type hemin transport system
NCgI0381-1.89Conserved secreted proteinNCgI03881.53fadD5Acyl-CoA synthetasesNCgI03901.71NCgI03981.84ProCPyrroline-5-carboxylate reductaseNCgI04062.26NCgI0427-1.66Coserved secreted proteinNCgI04301.88Predicted transcriptional regulatorsNCgI04311.92NCgI04321.92NCgI04401.70NCgI0444-2.33NCgI0445-1.90NCgI04481.52Peptidase E	NCal0379		-1.58	-1.65		ABC-type Fe ³⁺ -siderophore transport system
NCgI03881.53fadD5Acyl-CoA synthetasesNCgI03901.71gpmAPhosphoglycerate mutase 1NCgI03981.84proCPyrroline-5-carboxylate reductaseNCgI04062.26Putative membrane proteinNCgI0427-1.66ccsBTransport system of cytochrome c biogenesisNCgI04301.88Predicted transcriptional regulatorsNCgI04311.92Putative secreted proteinNCgI04321.92Hypothetical proteinNCgI04401.70Putative serine protease (ClpP class)NCgI0444-2.33Putative membrane proteinNCgI0445-1.90pitANCgI04481.52Peptidase E	NCal0381	-1.89				Conserved secreted protein
NCgI03901.71gpmAPhosphoglycerate mutase 1NCgI03981.84proCPyrroline-5-carboxylate reductaseNCgI04062.26Putative membrane proteinNCgI0427-1.66ccsBTransport system of cytochrome c biogenesisNCgI04301.88Predicted transcriptional regulatorsNCgI04311.92Putative secreted proteinNCgI04321.92Hypothetical proteinNCgI04401.70Putative serine protease (ClpP class)NCgI0444-2.33Putative membrane proteinNCgI0445-1.90pitANCgI04481.52Peptidase E	NCal0388		1.53		fadD5	AcvI-CoA synthetases
NCgI03981.84proCPyrroline-5-carboxylate reductaseNCgI04062.26Putative membrane proteinNCgI0427-1.66ccsBNCgI04301.88Predicted transcriptional regulatorsNCgI04311.92Putative secreted proteinNCgI04321.92Hypothetical proteinNCgI04401.70Putative serine protease (ClpP class)NCgI0444-2.33Putative membrane proteinNCgI0445-1.90pitAPhosphate/sulphate permeasesNCgI0448	NCal0390	1.71			apmA	Phosphoglycerate mutase 1
NCgI0406 2.26 Putative membrane protein NCgI0427 -1.66 ccsB Transport system of cytochrome c biogenesis NCgI0430 1.88 Predicted transcriptional regulators NCgI0431 1.92 Putative secreted protein NCgI0432 1.92 Hypothetical protein NCgI0440 1.70 Putative serine protease (ClpP class) NCgI0444 -2.33 Putative membrane protein NCgI0445 -1.90 pitA Phypothetical permeases Predicted transcriptional regulators	NCgl0398	1.84			proC	Pvrroline-5-carboxylate reductase
NCgI0427 -1.66 ccsB Transport system of cytochrome c biogenesis NCgI0430 1.88 Predicted transcriptional regulators NCgI0431 1.92 Putative secreted protein NCgI0432 1.92 Hypothetical protein NCgI0440 1.70 Putative secreted protein NCgI0444 -2.33 Putative membrane protein NCgI0445 -1.90 pitA Phosphate/sulphate permeases Peptidase E	NCal0406	2.26				Putative membrane protein
NCgI0430 1.88 Predicted transcriptional regulators NCgI0431 1.92 Putative secreted protein NCgI0432 1.92 Hypothetical protein NCgI0440 1.70 Putative serine protease (ClpP class) NCgI0444 -2.33 Putative membrane protein NCgI0445 -1.90 <i>pitA</i> Phypothetical protein Preptidase E	NCal0427			-1.66	ccsR	Transport system of cytochrome c biogenesis
NCgI0431 1.92 Putative secreted protein NCgI0432 1.92 Hypothetical protein NCgI0440 1.70 Putative serine protease (ClpP class) NCgI0444 -2.33 Putative membrane protein NCgI0445 -1.90 <i>pitA</i> PcgI0448 1.52 Peptidase E	NCal0430			1.88		Predicted transcriptional regulators
NCgI0432 1.92 Hypothetical protein NCgI0440 1.70 Putative serine protease (ClpP class) NCgI0444 -2.33 Putative membrane protein NCgI0445 -1.90 <i>pitA</i> NCgI0448 1.52 Peptidase E	NCgl0431			1.92		Putative secreted protein
NCgl0440 1.70 Putative serine protease (ClpP class) NCgl0444 -2.33 Putative membrane protein NCgl0445 -1.90 <i>pitA</i> NCgl0448 1.52 Peptidase E	NCal0432			1.92		Hypothetical protein
NCgl0444 -2.33 Putative membrane protein NCgl0445 -1.90 <i>pitA</i> NCgl0448 1.52 Peptidase E	NCgl0440			1.70		Putative serine protease (CloP class)
NCgl0445 -1.90 pitA Phosphate/sulphate permeases NCgl0448 1.52 Peptidase E	NCgl0444			-2.33		Putative membrane protein
NCgl0448 1.52 Peptidase E	NCal0445			-1.90	pitA	Phosphate/sulphate permeases
	NCgl0448		1.52			Peptidase E

NCgl0450			-1.73	menD	2-Succinyl-6-hydroxy carboxylate synthase
NCgl0452			1.56		Predicted glycosyltransferases
NCgl0459		-2.52		rplK	Ribosomal protein L11
NCgl0460		-2.66		rpIA	Ribosomal protein L1
NCgl0465			7.93		Cation transport ATPase
NCgl0468		-1.82		rplJ	Ribosomal protein L10
NCgl0469		-2.16		rpIL	Ribosomal protein L7/L12
NCgl0475		1.67			Conserved hypothetical protein
NCgl0476	-1.55	-2.07		rpsL	Ribosomal protein S12
NCgl0477		-1.58		rpsG	Ribosomal protein S7
NCgl0478		-1.96		fusA	Translation elongation factors (GTPases)
NCgI0480	0.55	-1.94	4.00	tuf	GIPases - translation elongation factors
NCgI0486	-2.55	-2.66	-1.89	rpsJ	Ribosomal protein S10
NCgI0487	-2.00	-2.03	-2.20	rpiC	Ribosomal protein L3
NCgI0489	-1.87	-2.12	-1./5	rpivv	Ribosomal protein L23
NCgI0491	1.50	-2.27		rpss mlV	Ribosomal protein 519
NCgl0492	-1.52	-1.00		rpiv	Ribosomal protein 52
NCgl0493	1.60	-2.04		rpsc	Ribosomal protein 133
NCgl0494	-1.09	-2.27		rpre	Ribosomal protein L 20
NCgl0495		-2.27		rnsO	Ribosomal protein S17
NCal0499		-1.58		rpIN	Ribosomal protein 114
NCgl0501		-1.50		rpIR	Ribosomal protein L 5
NCgl0501		-1.07	1.61	dka	
NCgl0508		-1 58	1.01	ung	Secreted protein
NCgl0509		-1.30			Putative membrane protein
NCgl0510	-	-1.97			ABC-type cobalt transport system
NCal0511		-1.67			ABC-type cobalt transport system
NCgl0512		-1.90	-1.96		Dehvdrogenase/glutathione oxidoreductase
NCal0513			-1.69		Putative secreted protein
NCal0516		-1.90		rpIF	Ribosomal protein L6P/L9E
NCgl0517	-1.53	-2.04		rpIR	Ribosomal protein L18
NCgl0518		-1.73		rpsE	Ribosomal protein S5
NCgl0519		-1.64		rpmD	Ribosomal protein L30/L7E
NCgl0520		-1.62		rplO	Ribosomal protein L15
NCgl0531			1.71		Transcriptional regulator LcIR-family
NCgl0535	2.46				Uncharacterized protein conserved in bacteria
NCgl0536	-1.88	-2.49		infA	Translation initiation factor 1 (IF-1)
NCgl0537	-2.07	-2.38		rpsM	Ribosomal protein S13
NCgl0538		-1.96	-1.57	rpsK	Ribosomal protein S11
NCgl0539		-1.58		rpsD	Ribosomal protein S4 and related proteins
NCgl0541		-1.58		rplQ	Ribosomal protein L17
NCgl0556		-1.67		rpIM	Ribosomal protein L13
NCgl0557		-2.03	0.75	rpsi	Ribosomal protein S9
NCgI0565		1.96	2.75	50	Predicted permease
NCgI0572		-2.02	0.00	groES	Co-chaperonin Groes (HSP10)
			2.20	sigD	RNA polymerase specialized sigma subunit
		1 56	-2.14	guaB2	IMP denydrogenase/GMP reductase
	1 03	06.1			Dutative membrane protoin
NCd/0502	1.30		-1 64		Putative secreted protein
NCal0603			-1.04		Predicted sugar enimerases
NCal0608			-1.53	metl	ABC-type metal ion transport system
NCdl0609			-1.57	metN	ABC-type metal ion transport system
NCgl0610	2 75	1 90	-1.82	metO	ABC-type metal ion transport system
NCgl0618	2.70	1.00	-1.94	mere	$ABC-type Fe3^+$ -hydroxamate transport system
NCgl0622			-1 61		Uncharacterized protein conserved in bacteria
NCal0625		2.65		metY	O-acetylhomoserine sulfhydrylase
NCql0629	-2.89			prpB2	PEP phosphonomutase and related enzymes
NCal0630		-3.51		prpC2	Citrate synthase
NCql0635			-1.81	P P ==	Siderophore-interacting protein
NCgl0639			-4.20	Irp1	ABC-type Fe3 ⁺ -hydroxamate transport system
NCgl0641			-1.96		Exonuclease III
NCgl0649		1.67			Putative membrane protein
NCgl0659		-2.19	-1.98	рус	Pyruvate carboxylase
		2.00			Uncharacterized protein with SCP/PR1
		2.00			domains
NCgl0666	-1.90	-1.86		prpC1	Citrate synthase

NCgl0670	1.57		1.52	accBC	Acetyl/propionyl-CoA carboxylase, alpha
NCal0671			1.78	thtR	Rhodanese-related sulfurtransferase
NCgl0673			1 65		Conserved hypothetical protein
NCal0676			-1.86		Conserved hypothetical protein
NCgl0677			-2.20	dtsR2	Acetyl-CoA carboxylase subunit
NCgl0689	-3.36	-2.82	-1.72		predicted short-chain alcohol
NCgl0690	-1.73				Putative membrane protein
NCgl0694	-1.93	-2.10	-2.15		ABC-type sugar transport system
NCgl0695	-1.84	-2.08	-2.27		ABC-type sugar transport systems
NCgl0696	-1.57				Uncharacterized conserved protein
NCgl0697		-2.93			ABC-type sugar transport system
NCgl0698	-1.53		-1.54	msiK2	ABC-type sugar transport systems
NCgl0699			-1.53		Predicted membrane protein
NCgl0700	-2.04	-1.56	-2.93		Distinct helicase family with a unique C-terminus
NCgl0702			1.65		Conserved hypothetical protein
NCgl0715			1.68		Conserved hypothetical protein
NCgl0717		1.81			Putative secreted protein
NCgl0730			1.58	aroA	5-enolpyruvylshikimate-3-phosphate synthase
NCgl0734			1.83	whiB1	Transcription factor WhiB
NCgl0755	2.00		-1.58		Predicted glutamine amidotransferase
NCgl0765	1.53				Archaeal fructose-1,6-bisphosphatase
NCgl0766	1.74				Archaeal fructose-1,6-bisphosphatase
NCgl0768			-1.78	ftsE	Predicted ATPase involved in cell division
NCgl0769			-2.46	ftsX	Cell division protein
NCgl0776		-2.20	-9.94		ABC-type enterochelin transport system
NCgl0777			-7.07		ABC-type enterochelin transport system
NCgl0778			-5.60		ABC-type enterochelin transport system
NCgl0779			-4.60		ABC-type enterochelin transport system
NCgl0788			-1.52		Glutamine cyclotransferase
NCgl0790			-1.59		Permeases
NCgl0793			1.59		Conserved hypothetical protein
NCgl0794			-3.16	serC	Phosphoserine aminotransferase
NCgl0795		-1.84	-2.44	gltA	Citrate synthase
NCgl0801			-1.67		Putative secreted protein
NCgl0805	-1.52				Homoserine acetyltransferase
NCgl0807			-1.71		Hypothetical protein
NCgl0811			1.54	cysQ	Phosphoadenosine phosphosulfate phosphatase
NCgl0826		-1.63	-1.97	purN	phosphoribosylglycinamide formyltransferase
NCgl0831		-1.86		, rpsR	Ribosomal protein S18
NCgl0832		-1.70		rpsN	Ribosomal protein S14
NCgl0833	-1.72	-1.91		rpmG	Ribosomal protein L33
NCgl0834		-1.71		rpmB	Ribosomal protein L28
NCgl0837		-1.98		rpmE	Ribosomal protein L31
NCgl0838		-2.00		rpmF	Ribosomal L32p protein family
NCgl0841		-1.53	-2.88		Trypsin-like serine proteases, typically periplasmic
NCgl0842			-1.78		Molybdopterin biosynthesis enzymes
NCgl0845			1.96		5-formyltetrahydrofolate cyclo-ligase
NCgl0853			2.03		Glycosidases
NCgl0857			-2.27	metS	Methionyl-tRNA synthetase
NCgl0878			1.86		Uncharacterized conserved protein
NCgl0879			2.07		Uncharacterized conserved protein
NCgl0885			-1.88	cmt3	Predicted esterase
NCgl0888		-1.76	-1.66	menG	Demethylmenaquinone methyltransferase
NCgl0893			18.64	urtA	Urea transport system
NCgl0894			7.66	urtB	Urea transport system
NCgl0895			19.42	urtC	Urea transport system
NCgl0896			9.19	urtD	Urea transport system
NCgl0897			10.65	urtE	Urea transport system
NCgl0898			3.02	Pth2	Peptidyl-tRNA hydrolase
NCgl0899	1.67	1.56			Predicted 2-nitropropane dioxygenase
NCgl0902		-1.71		rpIY	Ribosomal protein L25 (general stress protein Ctc)
NCgl0903		1.95			Predicted lactoylglutathione lyase

NCgl0905			-2.56	prsA	Phosphoribosylpyrophosphate synthetase
NCal0906			-2 01	almU	N-acetylglucosamine-1-phosphate
110910000			2.01	giino	uridyltransferase
NCgl0908		1.59			Putative multicopper oxidases
NCgl0909		1.88			ABC-type multidrug transport system
NCGIU910		1.77			Putative memorane protein
NCgl0917			1.98		Alimmor/Critica
NCal0925		1 55			
NCgl0923		1.55	_3.22	norB	
Nogiosso			-0.22	porb	Membrane-bound lytic murein
NCgl0934		1.56			transglycosylase B
NCgl0935		1.76	1.59	eno	Enolase
NCgl0936		1.54	1.85		Septum formation initiator
		1.65	2.47		AraC-type DNA-binding domain-containing
NC910943		-1.05	-2.47		proteins
NCgl0950		-1.83	-1.70	aroF	3-deoxy-D-arabino-heptulosonate synthase
NCgl0954			-2.93	glyA	Glycine/serine hydroxymethyltransferase
NCgl0955			-1.62	pabAB	Anthranilate/para-aminobenzoate synthases
NCgl0957		1.00	2.19		Conserved hypothetical protein
NCgl0967	4.04	1.80		tum	Fumarase
NCGI0976	1.61		0.40	gipx	Fructose-1,6-Dispnosphatase
			2.19	IytB	Penicillin tolerance protein
NCgI0985			-1.72		Putative secreted protein
NCgl1015		-	2 1/		ATPase components of ABC transporter
NCGITUTO			2.14		Cysteine sulfinate desulfinase/cysteine
NCgl1022			-2.00		desulfurase
NCal1023			-2.15	nadC	Nicotinate-nucleotide pyrophosphorylase
NCgl1024			-2.74	nadA	Quinolinate synthase
NCgl1033	-1.76		-3.08		Predicted membrane protein
NCgl1034	-1.85	-1.68	-3.75		ABC-type cobalt transport system
NCgl1035	-1.58	-1.75	-2.94		ABC-type cobalt transport system
NCgl1036	-1.59	-1.80	-2.10		Adenylate kinase and related kinases
NCgl1053			-1.93		Predicted membrane GTPase
NCgl1061			1.72	dapD	Tetrahydrodipicolinate N-succinyltransferase
NCgl1064			1.53	dapE	Acetylornithine deacetylase
NCal1066			1.52	folP2	Dihydropteroate synthase and related
	4 70	-	-	-	enzymes
NCgI1068	1.70		1 71		Conserved hypothetical protein
NCgl1070			1.71	rrm A	
NCgl1074			1.74		Predicted O-methyltransferase
NCal1082			1.04		Conserved hypothetical secreted protein
NCgl1083	1 84	1 72	1.52		Putative secreted protein
NCal1088			1.72	lipT	Carboxylesterase type B
NCgl1089			1.76		Conserved hypothetical protein
NCgl1090	2.59				Conserved hypothetical protein
	1.62		0.19	motE	Methionine synthase II (cobalamin-
NC911094	-1.02		-9.10	met	independent)
NCgl1095	2.39	2.58	3.11		Putative membrane protein
NCgl1096			1.54		Predicted flavoprotein involved in K ⁺ transport
NCgl1098			2.46		Predicted esterase
NCgl1099			4.63		Predicted hydrolases or acyltransferases (
NCgl1100	4.04		2.48	e	Non-ribosomal peptide synthetase
NCgi1104	-1.01			суаА	Superfemily ILDNA and DNA holicocco
NCGITTU9	00.1				CAMP-binding protoins cotobolito conc
NCgl1127		1.61	2.14		activator
NCal1130			1 57		Uncharacterized protein conserved in bacteria
NCal1131		1	-3.22		Predicted hydrolases or acvitransferases)
NCgl1132			-1.99	araS	Arginyl-tRNA synthetase
NCgl1133			-2.14	lysA	Diaminopimelate decarboxylase
NCgl1136		1.63		hom	Homoserine dehydrogenase
NCgl1137		1.54		thrB	Homoserine kinase
NCgl1139			3.11	narl	Nitrate reductase gamma subunit
NCgl1140			3.06	narJ	Nitrate reductase delta subunit
NCgl1141			2.98	narH	Nitrate reductase beta subunit

NCgl1142			1.81	narG	Nitrate reductase alpha subunit
NCgl1145		1.75			Membrane-associated phospholipid
NCal1158			-2.01	atpl	Hypothetical protein
NCgl1160			-1.67	atpE	F0F1-type ATP synthase
NCgl1161			-1.79	atpF	F0F1-type ATP synthase
NCgl1162			-2.04	atpH	F0F1-type ATP synthase
NCgl1163			-1.95	atpA	F0F1-type ATP synthase
NCgl1164			-2.31	atpG	F0F1-type ATP synthase
NCgl1165			-2.09	atpD	F0F1-type ATP synthase
NCgl1166			-1.52	atpC	F0F1-type ATP synthase
NCgl1167			-1.83		Conserved hypothetical protein
NCgl1174		1.70		ssuC	ABC-type nitrate/sulfonate/bicarbonate
NCal1192			-1.83		Predicted tRNA methyltransferase
NCal1194		1 53	1.00		Permease of the major facilitator superfamily
NCal1197		1.00			Conserved hypothetical protein
NCal1200		1.7 1	-1 69		Siderophore-interacting protein
NCal1201		1 59	1.82		Putative membrane protein
NCal1202	1 59	1.00	1.89	nfkA	6-phosphofructokinase
NCal1202	1.00		-1.80	pnot	ABC-type Fe ³⁺ -bydroxamate transport system
NCgl1200			-3.03		Predicted Na ⁺ -dependent transport system
NCal1218	1 52	1.63	0.00		Predicted membrane protein
NCal1221	1.02	1.00	-1 66	vaaB	Small-conductance mechanosensitive channel
NCal1222		-1.85	-2.25	ilvB	Thiamine pyrophosphate-requiring enzymes
NOgHZZZ		-1.00	-2.20	IND	Acetolactate synthase small (regulatory)
NCgl1223		-1.71	-1.69	ilvN	subunit
NCal1235	1.62		-6.08	serA	Phosphoglycerate dehydrogenase
NCal1242	1.02		0.00	00//1	SAM-dependent methyltransferases
NCal1252			-1 65		Conserved hypothetical protein
NCal1253			-2 21	thiC	Thiamine biosynthesis protein ThiC
NCal1255			-2.60	alaP1	Glucan phosphorylase
NCal1262	1 80	-1.65	-3.51	leuC	3-isopropylmalate dehydratase large subunit
NCal1263	1.89	1.00	-2.92	leuD	3-isopropylmalate dehydratase small subunit
NCal1277	1.00		-1.52	ioub	ABC-type amino acid transport system
NCgl1286			1.60		Hypothetical protein predicted by
	2.21	1.50	1 50		Butative appreted protein
	-2.31	-1.32	-1.52		Putative secreted protein
NCg11209	-1.50				Hypothetical protein predicted by
NCgl1290	-1.60				Glimmer/Critica
NCal1291	-1 62	-1 70			Putative secreted protein
NCal1300	2 46	1.70			Permease of the major facilitator superfamily
NCal1305	-1 64			ntsG	Phosphotransferase system IIC components
NCal1324	-1.67	-1 71		infC.	Translation initiation factor 3 (IE-3)
NCal1326	-1.58			rnIT	Ribosomal protein I 20
NCgl1331	3.42			uanB	ABC-type sugar transport system
NCgl1337	0.42		-1 58	ugpb	Secreted hydrolase GDSL lipolytic enzyme
Hoghoon			1.00	_	Acetylalutamate semialdehyde
NCgl1340	2.83			argC	dehydrogenase
NCgl1341	3.57		-1.75	argJ	N-Acetylglutamate synthase
NCgl1342	4.19		-1.62	argB	Acetylglutamate kinase
NCgl1343	3.58			argD	Ornithine/acetylornithine aminotransferase
NCgl1344	2.69		-1.61	argF	Ornithine carbamoyltransferase
NCgl1345	1.80			argR	Arginine repressor
NCgl1346		-1.67	-1.72	argG	Argininosuccinate synthase
NCgl1347			-1.97	argH	Argininosuccinate lyase
NCgl1371	-1.55				16S rRNA uridine-516 pseudouridylate svnthase
NCal1372	-1.59	-1,60	-1.52	cmk	Cytidylate kinase
NCal1373	-1.88	-1.62	-1.60		Predicted GTPases
NCal1375	2 82				Transcriptional regulator
NCgl1385		1.58			FOG: FHA domain
NCgl1396	2.27			and	6-phosphogluconate dehvdrogenase
NCal1399		1.52		g. 10	ABC-type multidrug transport system
NO. 11.000	1		<i>i</i> = 2		Hydroxyethylthiazole kinase sugar kinase
NCgl1408	4 ==		-1.70	thiM	family
NCgl1421	1.58				Conserved hypothetical protein

NCgl1422	-1.73				Putative membrane-associated GTPase
NCgl1425			1.76		Protein affecting phage T7 exclusion
NCgl1433			-1.58	tatC	Sec-independent protein secretion pathway
NCgl1444	1.62		1.69		Plasmid maintenance system antidote protein
NCgl1446			-1.64	aspA	Aspartate ammonia-lyase
		1 77		motU	Methionine synthase I, cobalamin-binding
NC911450		1.77		теп	domain
NCgl1461			-1.65	pyrD	Dihydroorotate dehydrogenase
NCgl1466	3.14				Phospholipid-binding protein
NCgl1472		-1.54	-1.76	mcmA	Methylmalonyl-CoA mutase
NCgl1474			1.85		Conserved hypothetical protein
NCgl1475	1.68				Membrane protease subunits
NCgl1484	2.88				GMP synthase - Glutamine amidotransferase
NCal1485		1.58	2.27		Predicted diphosphate-sugar epimerases
NCal1488		2.08	1.95	pacL	Cation transport ATPase
NCal1490			1,96		Putative membrane protein
NCgl1500			-1.81	nifS2	Selenocysteine lyase
					Transport system involved in Fe-S cluster
NCgl1501			-1.79	sufC	assembly
					Transport system involved in Fe-S cluster
NCgl1502			-2.32	sufD	assembly
					Transport system involved in Fe-S cluster
NCgl1503	-1.68	-1.57	-2.31	sufB	assembly
NCal1504	1.62		2.30		Prodicted transcriptional regulator
NC911504	-1.02		-2.39		Pretoin required for extechrome exidese
NCgl1508			1.59	ctaA	assembly
NCal1510			17.44	-	Chaine/D amine acid exidence (deaminating)
NCgl1519			17.44	and	Brodieted errithing evolutions (dearning)
NCg11520			23.03	000	
NCg11521			19.25	amt	Ammonium transporter
NCgI1525			2.10	рдк	3-phosphoglycerate kinase
NCg11526			1.54	gap	Glyceraldenyde-3-phosphate denydrogenase
NCgI1544		4.00	-1./3	gmk	
NCgl1546		-1.69		pyr⊢	Orotidine-5'-phosphate decarboxylase
NCgl1547	1.53	-1.57		carB	Carbamoylphosphate synthase large subunit
NCgl1556		-1.59	-1.82	nusB	Transcription termination factor
NCgl1557		-1.55	-1.70	efp	Translation elongation factor P
NCgl1559			-1.86	aroB	3-dehydroquinate synthetase
NCgl1565			1.52		ABC-type Fe3⁺-hydroxamate transport system
NCgl1567		-2.66	-2.20	aroE3	Shikimate 5-dehydrogenase
NCgl1568		-1.54	-1.85		Predicted periplasmic solute-binding protein
NCgl1570			-1.76	alaS	Alanyl-tRNA synthetase
NCgl1574			-2.00		Predicted metalloprotease
NCgl1576			-1.65		Predicted membrane protein
NCgl1577			-1.64		Conserved hypothetical protein
NCgl1579	2.03				Conserved hypothetical protein
NCgl1583			-1.81	sdaA	L-Serine deaminase
NCgl1588			-1.87		Putative secreted protein
NCgl1589		1.53	-3.48		Putative membrane protein
NCgl1593		-1.76		secF	Preprotein translocase subunit SecF
NCal1594		-1.78	-1.68	secD	Preprotein translocase subunit SecD
NCal1600		-	-2.80	tesB2	Acyl-CoA thioesterase
NCgl1601			-2.97		Putative membrane protein
NCgl1602		İ	-1.78		Putative membrane protein
NCgl1609			-2 44		Uncharacterized protein conserved in bacteria
NCal1610	1	1 56			Putative Cu resistance protein
Hoghoro		1.00			Hypothetical protein predicted by
NCgl1611		-1.95	-1.60		Glimmer/Critica
					Hypothetical protein predicted by
NCgl1612	-1.80	-2.12	-2.03		Glimmer/Critica
NCal1616		-2.08	_1 Q1		Putative secreted protein
NCal1622		_2.00	-2.46		ABC-type multidrug transport system
NO9/1023		-2.20	-2.40		Hypothetical protein prodicted by
NCgl1631	1.80		-1.58		Glimmer/Critica
					Hypothetical protein prodicted by
NCgl1632			-1.73		Glimmer/Critica
NCal1656	-1.65	-1.66	_1 5/		Putative secreted protein
NCal1665	-1.00	-1.00	_1.54		Hypothetical protein
I NOGHOOD			-1.00		
NCal1672	1 90				Plitativa mamprana protoio

NCgl1676			2.63		Hypothetical protein predicted by Glimmer/Critica
NCgl1737	1.60				Putative membrane protein
NCgl1756	1.85				Putative secreted protein
NCgl1821			1.72	ribD	Pyrimidine reductase, riboflavin biosynthesis
NCgl1837			-1.83		Predicted membrane protein
NCgl1847			-1.56		Conserved hypothetical protein
NCgl1855			1.66	lexA	SOS-response transcriptional repressors
NCgl1859			1.95		Transcriptional regulators of sugar metabolism
NCgl1860			2.24	pfkB	Fructose-1-phosphate kinase
NCgl1861			2.29	ptsF	Phosphotransferase system
NCgl1862			2.01	ptsH	Phosphotransferase system, HPr-related proteins
NCgl1866			-2.11		Conserved hypothetical protein
NCgl1873			1.68		Putative membrane protein
NCgl1875		-3.16	3.55	gluA	Glutamate transporter
NCgl1876		-2.99	3.80	gluB	Glutamate transporter
NCgl1877		-3.24	3.15	gluC	Glutamate transporter
NCgl1878		-1.95	3.10	gluD	Glutamate transporter
NCgl1886	2.75				Phage shock protein A
NCgl1898			1.53	dapB	Dihydrodipicolinate reductase
NCgl1901		-1.78		rpsO	Ribosomal protein S15P/S13E
NCgl1905	1.99			pptA	Phosphopantetheinyl transferase
NCgl1907			-1.75	dinF	Na ⁺ -driven multidrug efflux pump
NCgl1912			-1.74	nusA	Transcription elongation factor
NCgl1915		-3.58	3.24		ABC-type oligopeptide transport system
NOULADAD		0.07			ABC-type dipeptide/oligopeptide/nickel
NCg11916		-2.67			transporter
NO-14047		0.00			ABC-type dipeptide/oligopeptide/nickel
NCg11917		-3.98			transporter
NCgl1918		-2.86	3.88		ABC-type transport systems
NCgl1919			-1.54	proS	Prolyl-tRNA synthetase
NCgl1921	2.73			1	Mg-chelatase subunit ChID
NCgl1923	2.31			cobA	Uroporphyrinogen-III methylase
NCgl1926			-2.87	mqo	Predicted dehydrogenase
NCgl1934	3.09				Response regulator
NCgl1941		1.56			Putative membrane protein
NCgl1945	1.65				Putative membrane protein
NCgl1960	-1.63	-1.85		rpIS	Ribosomal protein L19
NCgl1961			-1.76	thiE	Thiamine monophosphate synthase
NCgl1962			-1.92	thiO	Glycine/D-amino acid oxidases (deaminating)
NCgl1963			-1.74	thiS	Sulfur transfer protein of thiamine biosynthesis
NCal1964	-1.54		-2.02	thiG	Uncharacterized enzyme of thiazole
					biosynthesis
NCgl1973		1.98	1.57		Putative secreted protein
NCal1974			1.55	rimM	RimM protein, required for 16S rRNA
					processing
NCgl1976	-1.56	-1.77		rpsP	Ribosomal protein S16
NCgI1981			1.90	ginD	
NCgI1982			6./1	ginK	Nitrogen regulatory protein Pil
NCGI1983	4		14.17	amtB	Ammonium transporter
NCgI1995	1.77			1.50	Predicted metal-binding
NCgl2006	2.29	(= 0	1.80	glgP2	Glucan phosphorylase
NCgl2008		1.53	1.67	рук	Pyruvate kinase
NCgl2020			-1.74	hisC	Histidinol-phosphate/aromatic aminotransferase
NCgl2023	-1.69	-1.77			Putative membrane protein
NCgl2024			-3.20		Putative secreted protein
NCgl2027			-1.69		SAM-dependent methyltransferases
NCgl2033	1.56		1.53		ABC-type cobalamin/Fe ³⁺ -siderophores transporter
NCgl2034			2.76		Predicted transcriptional regulators
NCgl2047			-2.56	1	Putative secreted protein
NCgl2048		1.53	-1.54		Methionine synthase II (cobalamin-
		1	1.00	dn-F1	DNA polymoroog III olpha syburit
NCgi2049		4 50	-1.62	ana±1	DINA polymerase III alpha subunit
NCgi2053		1.52			predicted short-chain alcohol denydrogenases
NCgi2059		-1.52			Putative secreted protein

NCgl2064	1.71			dinP	Nucleotidyltransferase/DNA polymerase
NCgl2068		-1.66		ileS	Isoleucyl-tRNA synthetase
NCgl2070		1.52			Cell division initiation protein
NCgl2086	1.69			mraW	Predicted methyltransferase
NCgl2090			1.61		Acetyltransferases
NCgl2098		-1.65	-2.03	aroG	3-deoxy-D-arabino-heptulosonate synthase
NCgl2100			-1.58		Putative membrane protein
NCgl2101			-1.65	cmt4	Predicted esterase
NCgl2107			-1.57		Cell wall-associated hydrolases
NCgl2108	-1.89		-1.89		Cell wall-associated hydrolases
NCgl2109			-1.56	<i>qcrB</i>	Cytochrome b subunit of the bc complex
NCgl2110			-1.64	gcrA1	Rieske Fe-S protein
NCgl2112	-1.57			ctaE	Heme/copper-type cytochrome/guinol oxidase
NCgl2114			-2.06		Putative membrane protein
NCgl2115			-1.64	ctaC	Heme/copper-type cytochrome/quinol oxidases
NCal2128			-1.93	lipA	Lipoate synthase
NCal2130		1.70	2.09	r.	Predicted permease
NCal2133	1 63		2 45	alnA	Glutamine synthetase
NCgl2137	2.55			<i>g</i> .	methylene tetrahydromethanopterin reductase
NCal2139	2.00		-2.08	thrC.	Threonine synthase
110912-100			-2.00	4110	Hypothetical protein predicted by
NCgl2145	4.50	0.10	-1.55		Glimmer/Critica
NCgl2146	-1.58	-2.12	-3.08	hmuO	Heme oxygenase
NCgl2157			1.63		Uncharacterized conserved protein
NCgl2158			1.91	pgp2	Predicted phosphatases
NCgl2167		1.66	1.81	aceE	Pyruvate dehydrogenase complex
NCgl2168		-2.01			ABC-type uncharacterized transport system
NCgl2169		-2.14			ABC-type uncharacterized transport system
NCgl2170		-2.36			ABC-type uncharacterized transport system
NCgl2174		1.55		асрМ	Acyl carrier protein
NCgl2175		1.63		nagD	Predicted sugar phosphatases
NCgl2177			1.93		Conserved hypothetical protein
NCgl2191			-1.52	glmS	Glucosamine 6-phosphate synthetase
NCgl2196	2.07				Hypothetical protein predicted by Glimmer/Critica
NCgl2199			2.12		Predicted transcriptional regulators
NCgl2200			1.69	fur	Fe ²⁺ /Zn ²⁺ uptake regulation proteins
NCgl2208		-1.59		phoH2	Phosphate starvation-inducible protein PhoH
NCal2213			1.56	,	Putative secreted protein
NCgl2214			1.55		Conserved hypothetical protein
NCgl2230			-2.08	ectP	Choline-glycine betaine transporter
NCgl2243					
NCal2247			1.97	rbsK2	Sugar kinases, ribokinase family
	-2.60	-2.52	1.97	rbsK2 aceB	Sugar kinases, ribokinase family Malate synthase
NCal2248	-2.60	-2.52	1.97	rbsK2 aceB aceA	Sugar kinases, ribokinase family Malate synthase
NCgl2248	-2.60	-2.52 -3.99	1.97	rbsK2 aceB aceA	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase
NCgl2248 NCgl2252	-2.60 1.53	-2.52 -3.99 1.56	2.32	rbsK2 aceB aceA	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica
NCgl2248 NCgl2252 NCgl2260	-2.60 1.53	-2.52 -3.99 1.56	1.97 2.32	rbsK2 aceB aceA	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica Conserved hypothetical protein
NCgl2248 NCgl2252 NCgl2260 NCgl2261	-2.60 1.53	-2.52 -3.99 1.56	1.97 2.32 1.61	rbsK2 aceB aceA	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica Conserved hypothetical protein Ribosomal protein S20
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2272	-2.60 1.53	-2.52 -3.99 1.56 -1.64	1.97 2.32 1.61	rbsK2 aceB aceA rpsT	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2272 NCgl2276	-2.60	-2.52 -3.99 1.56 -1.64	1.97 2.32 1.61 1.73 -1.79	rbsK2 aceB aceA rpsT proA	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2272 NCgl2276 NCgl2280	-2.60	-2.52 -3.99 1.56 -1.64	1.97 2.32 1.61 1.73 -1.79	rbsK2 aceB aceA rpsT proA	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases Pibecemal protein I 21
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2272 NCgl2276 NCgl2280	-2.60	-2.52 -3.99 1.56 -1.64 -1.52	1.97 2.32 1.61 1.73 -1.79	rbsK2 aceB aceA rpsT proA rpIU	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases Ribosomal protein L21 Conserved hypothetical protein
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2272 NCgl2276 NCgl2280 NCgl2290 NCgl2296	-2.60	-2.52 -3.99 1.56 -1.64 -1.52 1.61	1.97 2.32 1.61 1.73 -1.79 1.53 1.98	rbsK2 aceB aceA rpsT proA rpIU	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases Ribosomal protein L21 Conserved hypothetical protein
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2272 NCgl2276 NCgl2280 NCgl2290 NCgl2296	-2.60	-2.52 -3.99 1.56 -1.64 -1.52 1.61	1.97 2.32 1.61 1.73 -1.79 1.53 1.98 2.08	rbsK2 aceB aceA rpsT proA rpIU	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases Ribosomal protein L21 Conserved hypothetical protein Predicted Rossmann fold nucleotide-binding protein
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2272 NCgl2276 NCgl2280 NCgl2290 NCgl2290 NCgl2297	-2.60 1.53	-2.52 -3.99 1.56 -1.64 -1.52 1.61 2.22	1.97 2.32 1.61 1.73 -1.79 1.53 1.98 2.08	rbsK2 aceB aceA rpsT proA rpIU rpIU	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases Ribosomal protein L21 Conserved hypothetical protein Predicted Rossmann fold nucleotide-binding protein Malate/lactate dehydrogenases vanillote demotbulace
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2276 NCgl2276 NCgl2290 NCgl2290 NCgl2297 NCgl2297	-2.60 1.53 1.72 1.72 -1.57	-2.52 -3.99 1.56 -1.64 -1.52 1.61 2.22	1.97 2.32 1.61 1.73 -1.79 1.53 1.98 2.08	rbsK2 aceB aceA rpsT proA rpIU rpIU mdh vanB	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases Ribosomal protein L21 Conserved hypothetical protein Predicted Rossmann fold nucleotide-binding protein Malate/lactate dehydrogenases vanillate demethylase
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2272 NCgl2276 NCgl2280 NCgl2290 NCgl2297 NCgl2297 NCgl2201 NCgl2301	-2.60 1.53 	-2.52 -3.99 1.56 -1.64 -1.52 1.61 2.22 -1.65	1.97 2.32 1.61 1.73 -1.79 1.53 1.98 2.08 -2.23 1.00	rbsK2 aceB aceA rpsT proA rpIU mdh vanB vanK	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Gimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases Ribosomal protein L21 Conserved hypothetical protein Predicted Rossmann fold nucleotide-binding protein Malate/lactate dehydrogenases vanillate demethylase probalbe protocatechuate transporter Conserved hypothetical protein
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2272 NCgl2276 NCgl2290 NCgl2290 NCgl2296 NCgl2297 NCgl2301 NCgl2302 NCgl2302	-2.60 1.53 1.72 -1.57 -1.56	-2.52 -3.99 1.56 -1.64 -1.52 1.61 2.22 -1.65	1.97 2.32 1.61 1.73 -1.79 1.53 1.98 2.08 -2.23 1.66 2.02	rbsK2 aceB aceA rpsT proA rpIU mdh vanB vanK	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Gimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases Ribosomal protein L21 Conserved hypothetical protein Predicted Rossmann fold nucleotide-binding protein Malate/lactate dehydrogenases vanillate demethylase probalbe protocatechuate transporter Conserved hypothetical protein
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2272 NCgl2276 NCgl2280 NCgl2290 NCgl2290 NCgl2297 NCgl2301 NCgl2302 NCgl2305 NCgl2305 NCgl2313	-2.60 1.53 1.72 -1.57 -1.56	-2.52 -3.99 1.56 -1.64 -1.52 1.61 2.22 -1.65	1.97 2.32 1.61 1.73 -1.79 1.53 1.98 2.08 -2.23 1.66 2.88 1.62	rbsK2 aceB aceA rpsT proA rpIU rpIU mdh vanB vanK pcaB1	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases Ribosomal protein L21 Conserved hypothetical protein Predicted Rossmann fold nucleotide-binding protein Malate/lactate dehydrogenases vanillate demethylase probalbe protocatechuate transporter Conserved hypothetical protein
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2276 NCgl2276 NCgl2280 NCgl2290 NCgl2290 NCgl2297 NCgl2301 NCgl2302 NCgl2305 NCgl2313 NCgl2319	-2.60 1.53 1.72 -1.72 -1.57 -1.56	-2.52 -3.99 1.56 -1.64 -1.52 1.61 2.22 -1.65 -1.65	1.97 2.32 1.61 1.73 -1.79 1.53 1.98 2.08 -2.23 1.66 2.88 4.16	rbsK2 aceB aceA rpsT proA rpIU rpIU mdh vanB vanK pcaB1 catA1	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases Ribosomal protein L21 Conserved hypothetical protein Predicted Rossmann fold nucleotide-binding protein Malate/lactate dehydrogenases vanillate demethylase probalbe protocatechuate transporter Conserved hypothetical protein
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2272 NCgl2276 NCgl2280 NCgl2290 NCgl2290 NCgl2297 NCgl2301 NCgl2302 NCgl2305 NCgl2313 NCgl2319 NCgl2327	-2.60 1.53 1.72 -1.57 -1.56 1.52	-2.52 -3.99 1.56 -1.64 -1.52 1.61 2.22 -1.65 -1.65	1.97 2.32 1.61 1.73 -1.79 1.53 1.98 2.08 -2.23 1.66 2.88 4.16	rbsK2 aceB aceA rpsT proA rpIU rpIU mdh vanB vanK pcaB1 catA1 clpP2	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases Ribosomal protein L21 Conserved hypothetical protein Predicted Rossmann fold nucleotide-binding protein Malate/lactate dehydrogenases vanillate demethylase probalbe protocatechuate transporter Conserved hypothetical protein Adenylosuccinate lyase Protocatechuate 3,4-dioxygenase beta subunit Protease subunit of ATP-dependent Clp proteases
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2272 NCgl2276 NCgl2290 NCgl2290 NCgl2297 NCgl2301 NCgl2301 NCgl2305 NCgl2313 NCgl2319 NCgl2327 NCgl2329	-2.60 1.53 1.53 1.72 -1.57 -1.56 1.52	-2.52 -3.99 1.56 -1.64 -1.52 1.61 2.22 -1.65 -1.65 -1.72	1.97 2.32 1.61 1.73 -1.79 1.53 1.98 2.08 -2.23 1.66 2.88 4.16 -2.12	rbsK2 aceB aceA rpsT proA rpIU rpIU mdh vanB vanK pcaB1 catA1 clpP2 tig	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases Ribosomal protein L21 Conserved hypothetical protein Predicted Rossmann fold nucleotide-binding protein Malate/lactate dehydrogenases vanillate demethylase probalbe protocatechuate transporter Conserved hypothetical protein Adenylosuccinate lyase Protocatechuate 3,4-dioxygenase beta subunit Protease subunit of ATP-dependent Clp proteases FKBP-type peptidyl-prolyl cis-trans isomerase
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2272 NCgl2276 NCgl2280 NCgl2290 NCgl2290 NCgl2297 NCgl2301 NCgl2301 NCgl2302 NCgl2313 NCgl2319 NCgl2327 NCgl2329 NCgl2333	-2.60 1.53 1.53 1.72 -1.57 -1.56 1.52	-2.52 -3.99 1.56 -1.64 -1.52 1.61 2.22 -1.65 -1.65 -1.72	1.97 2.32 1.61 1.73 -1.79 1.53 1.98 2.08 -2.23 1.66 2.88 4.16 -2.12 -2.12 -2.19	rbsK2 aceB aceA rpsT proA rpIU rpIU mdh vanB vanK vanK pcaB1 catA1 clpP2 tig	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Glimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases Ribosomal protein L21 Conserved hypothetical protein Predicted Rossmann fold nucleotide-binding protein Malate/lactate dehydrogenases vanillate demethylase probalbe protocatechuate transporter Conserved hypothetical protein Adenylosuccinate lyase Protocatechuate 3,4-dioxygenase beta subunit Protease subunit of ATP-dependent Clp proteases FKBP-type peptidyl-prolyl cis-trans isomerase Conserved hypothetical protein
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2272 NCgl2276 NCgl2290 NCgl2290 NCgl2290 NCgl2297 NCgl2301 NCgl2301 NCgl2313 NCgl2319 NCgl2319 NCgl2327 NCgl2323 NCgl2333 NCgl2336	-2.60 1.53 1.53 1.72 -1.57 -1.56 1.52	-2.52 -3.99 1.56 -1.64 -1.52 1.61 2.22 -1.65 -1.65 -1.72	1.97 2.32 1.61 1.73 -1.79 1.53 1.98 2.08 -2.23 1.66 2.88 4.16 -2.12 -2.12 -2.19 -1.54	rbsK2 aceB aceA rpsT proA rpIU rpIU mdh vanB vanK vanK pcaB1 catA1 clpP2 tig	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Gimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases Ribosomal protein L21 Conserved hypothetical protein Predicted Rossmann fold nucleotide-binding protein Malate/lactate dehydrogenases vanillate demethylase probalbe protocatechuate transporter Conserved hypothetical protein Adenylosuccinate lyase Protocatechuate 3,4-dioxygenase beta subunit Protease subunit of ATP-dependent Clp proteases FKBP-type peptidyl-prolyl cis-trans isomerase Conserved hypothetical protein
NCgl2248 NCgl2252 NCgl2260 NCgl2261 NCgl2272 NCgl2276 NCgl2290 NCgl2290 NCgl2290 NCgl2297 NCgl2301 NCgl2302 NCgl2313 NCgl2319 NCgl2319 NCgl2327 NCgl2333 NCgl2336 NCgl2349	-2.60 1.53 1.53 1.72 -1.57 -1.56 1.52 1.66	-2.52 -3.99 1.56 -1.64 -1.52 1.61 2.22 -1.65 -1.65 -1.65 -1.72 -1.55	1.97 2.32 1.61 1.73 -1.79 1.53 1.98 2.08 -2.23 1.66 2.88 4.16 -2.12 -2.19 -1.54	rbsK2 aceB aceA rpsT proA rpIU rpIU mdh vanB vanK vanK pcaB1 catA1 clpP2 tig	Sugar kinases, ribokinase family Malate synthase Isocitrate lyase Hypothetical protein predicted by Gimmer/Critica Conserved hypothetical protein Ribosomal protein S20 Gamma-glutamyl phosphate reductase Xanthine/uracil permeases Ribosomal protein L21 Conserved hypothetical protein Predicted Rossmann fold nucleotide-binding protein Malate/lactate dehydrogenases vanillate demethylase probalbe protocatechuate transporter Conserved hypothetical protein Adenylosuccinate lyase Protocatechuate 3,4-dioxygenase beta subunit Proteases subunit of ATP-dependent Clp proteases FKBP-type peptidyl-prolyl cis-trans isomerase Conserved hypothetical protein

NCgl2351	1.64	1.69			ABC-type transport system
NCgl2352	1.65	1.99			ABC-type transport system
NCal2357			1 70		Uncharacterized membrane-associated
NCgiz357			1.75		protein
NCgl2358		1.60	1.68		Probalbe short-chain dehydrogenase
NCgl2373		-1.71			ABC-type sugar transport system
NCgl2376	-1.93				Conserved hypothetical protein
NCgl2377	-2.10			msiK1	ABC-type sugar transport systems
NCgl2399		1.53		gntV	Gluconate kinase
NCgl2439			2.90	ftn	Ferritin-like protein
NCgl2444		1.53		nrdl	Protein involved in ribonucleotide reduction
NCgl2445			-1.91	nrdH	Glutaredoxin and related proteins
NCgl2447			2.41		Uncharacterized protein conserved in bacteria
NCgl2448			1.70		Conserved hypothetical protein
NCgl2450		1.81	-2.22		Uncharacterized protein of propionate catabolism
NCql2451		1.92	-2.22		Uncharacterized conserved protein
NCal2452			-1.72		Putative secreted protein
NCal2457			1.74		-
NCgl2463		1.89			Na ⁺ /H ⁺ -dicarboxylate symporters
NCgl2470			1.80	murA2	UDP-N-acetylglucosamine enolpyruvyl transferase
NCal2471			1 53	pduO	Uncharacterized conserved protein
NCal2473	2.05		1.65	cvsK	Cysteine synthase
NCal2476	2.00	-1 99	1 74	sucD	Succinvl-CoA synthetase, alpha subunit
NCgl2477		1.00	1.55	SUCC	Succinyl-CoA synthetase, beta subunit
NCal2485	-1 57		1.00	nstC	ABC-type phosphate transport system
NCal2487	1.07		1 74	<i>p</i> 3/0	
NCal2407			-1.87	nurE	Glutamine phosphoribose amidotransferase
NCgl2493			-1.07	pun	
NCdl2497			-2.00	nurl	Phosphoribosylformylalycinamidine synthese
NCgl2499			-2.37	purC	Phosphoribosylformylglycinamidine synthase
NCgl2508			-2.20	purQ	Phosphoribosyloringigycinamidine synthase
NCgl2506		1 55	-1.55	puic oatS2	Signal transduction higtiding kingage
NCgl2517		-1.55	-2.10	Cyiss	Prodicted hydrologog of the HAD superfamily
NCgl2530		1.00	1.00		Cancer und hypothetical protoin
NCgl2534			1.02	otoA	Trobalaza & phosphoto synthese
NCgl2535			1.00	OISA	Dutativa membrana protain
NCgi2536	4 75		-1.04	- 4- D	
	1.75	1.00		OISB	ADC type dispertide transport system
NCgi2562		-1.08	1.00		ABC-type dipeptide transport system
NCgl2574	4 74		-1.09		Putative secreted protein
	1.71		1.54		Putative secreted protein
			2.10	xyiC	
NCgi2579			-1.81	супт	Carbonic annydrase
NCgl2582	1.66	2.21	2.04	butA	reductase
NCgl2584			-2.64		biosynthesis
NCgi2597		4.00	1.56	au	Characteria CraFL (UCDCC for it)
NCgi2621		-1.93	4	groel	Chaperonin Groel (HSP60 family)
			1.5/	xtnA	
		0.01	-1.65		ABC-type amino acid transporter
NCgi2656	0.00	-2.24		ackA	Acetate Kinase
NCgi2657	-2.30	-2.04	4.00	pta	Phosphotransacetylase
		4 70	1.69	tpr1	INADPH-dependent glutamate synthase
NCgl2665		-1.76	4 = 0		-
NCg/2666			-1.53		I ransposase and inactivated derivatives
NCg/2669	4.00		-1.67	purA	Adenylosuccinate synthase
NCgl2672	1.82		.		Predicted memorane protein
NCgl2673			1.67	tda	Fructose/tagatose bisphosphate aldolase
NCgl2692			1.62		Uncharacterized protein conserved in bacteria
NCgi2699			2.22	nspR	Predicted transcriptional regulators
NCg(2700			2.59	dnaJ	Dnaj-class molecular chaperone
NCgl2701			2.35	grpE	protein)
NCgl2702			1.68	dnaK	Molecular chaperone
NCgl2709			5.44	adhA	Zn-dependent alcohol dehydrogenases
NCgl2713	1.85	2.56		cysZ	Predicted permeases

NCgl2714	1.94	2.72		cysY	Uncharacterized conserved protein
NCgl2715	2.56	2.81		cysN	GTPases - Sulfate adenylate transferase subunit 1
NCgl2716	3.01	3.93	2.48	cysD	3'-phosphoadenosine 5'-phosphosulfate synthetase
NCgl2717	3.35	5.04	3.16	cysH	3'-phosphoadenosine 5'-phosphosulfate synthetase
NCgl2718	3.88	4.69	3.24	cysl	Sulfite reductase
NCgl2719	1.94	2.71	2.62	cydJ	Ferrodoxin reductase
NCgl2730			1.77		Acetylornithine deacetylase
NCgl2737			2.18		Membrane protease subunit
NCgl2739			1.87	tagA1	3-methyladenine DNA glycosylase
NCgl2747		-1.72	-2.49		Aspartate/tyrosine/aromatic aminotransferase
NCgl2752		-1.68	-2.53		Putative secreted protein
NCgl2753			-1.57		Uncharacterized vancomycin resistance protein
NCgl2765	2.88		2.20	pck	Phosphoenolpyruvate carboxykinase (GTP)
NCgl2770		-1.69			Predicted integral membrane protein
NCgl2775			-1.53		Putative secreted protein
NCgl2776			-1.90		Putative secreted protein
NCgl2779			-1.88	cmt2	Predicted esterase
			4.04		Membrane-associated phospholipid
NCgl2782			-1.61		phosphatase
NCal2783			-1.91		Predicted glycosyltransferases
NCal2784		1.81	1.77		Putative secreted protein
NCgl2785		1.78			Membrane-associated phospholipid
NCal2787	-9.32	-2 90	1 88		Predicted flavoprotein involved in K ⁺ transport
NCal2789	0.02	2.00	-3.05	nsn5	Putative secreted protein
NCal2791			-1.52	μορο	Predicted hydrolases of the HAD superfamily
NCgl2792			-1.58		1-acyl-sn-glycerol-3-phosphate
NCal2794	-9.75		-8.68		Transcriptional regulators
NCgl2794	-1.73		-0.00		Conserved hypothetical protein
NCgl2809	-1.75	1 73	2.86		Dyruvate kinase
NCgl2810	2 4 7	2.46	3 10	ldh	Malate/lactate dehydrogenases
NCgl2813	2.77	1 56	2.57	ian	Predicted flavoprotein
NCgl2814		1.00	1.61		Transcriptional regulators
NCgl2817	1 01		1.01	lldA	
NCgl2820	1.91		2.28	IIUA	Hypothetical protein predicted by Glimmer
NCgl2834			-1.67	catR11	Response regulator
NCgl2842	1 98	1.83	1 77	usnA3	Liniversal stress protein
NCgl2843	1.50	1.00	1.60	израз	
NCal2848		1.67	1.00		Phage shock protein A
NCal2849		1.07	1.00		Hypothetical protein predicted by Glimmer
NCgl2854			1.76		Uncharacterized membrane protein
NCgl2858		1.83	1.70		Uncharacterized protein conserved in bacteria
NCgl2859		1.60	1 72		Cation transport ATPase
NCgl2860		2 34	2 72		Copper chaperone
NCgl2864		2.04	-1.67		Putative secreted protein
NCgl2875	-1 64		-1 59		Copper chaperone
NCgl2876	1.04		4 11		Permease of the major facilitator superfamily
NCgl2877			7.41		Predicted transcriptional regulators
NCgl2879		_1 77	7.71	rnll	Ribosomal protein L9
NCal2880		-1 56		sch	Single-stranded DNA-binding protein
NCgl2881		-1.73		rnsE	Ribosomal protein S6
NCal2886	1 72	1.75	2 58	ipsi	Bacterial regulatory protein MarR family
NCal2887	2.46		1.66		Universal stress protein
NCal2804	2.70		-2 30		Myo-inositol-1-nhosphate synthese
NCal2807			-2.00 6.88	dne	DNA-hinding ferritin-like protein
NCal2002			1 62	ups	NADPH: quinone reductase
NCal2015			-1.50	leus	LeucyLtRNA synthetase
NCal2024		-1 64	-2.05	1603	Na ⁺ /H ⁺ -dicarboxylate symporters
NCal2040		1.04	_1 71		Uncharacterized conserved protein
NCal2043	2 31		=1.71		Predicted dinhosnhate-sugar enimerases
NCd2040	2.01		_1.64		Sec.independent protein secretion pathway
110yiz940		l	-1.04	1	oec-independent protein secretion pathway

Danksagung

Diese Arbeit wurde am Institut für Biochemie der Universität zu Köln im Rahmen der *International Max Planck Research School* des Max-Planck-Instituts für Züchtungsforschung in Köln durchgeführt.

Mein besonderer Dank gilt Herrn Prof. Dr. Andreas Burkovski für die Überlassung des interessanten Arbeitsthemas, die kontinuierlich gute Betreuung, seine stete Diskussionsbereitschaft und die viele Tipps und Tricks für die praktische Arbeit.

Herrn Prof. Dr. Reinhard Krämer danke ich für die Möglichkeit diese Arbeit durchzuführen und seine große fachliche Unterstützung.

Herrn Prof. Dr. George Coupland vom Max-Planck-Institut für Züchtungsforschung in Köln danke ich für die fachlichen Diskussionen.

Herrn Dr. Jörn Kalinowski und Jens Plassmeier von der Universität Bielefeld danke ich für die Bereitstellung der DNA-*Microarrays* und die Unterstützung bei der Durchführung der damit verbundenen Experimente.

Herrn Prof. Dr. H. Bothe und Bettina Berger von der Universität zu Köln danke ich für die Möglichkeit zur Durchführung von *real-time*-PCR-Experimenten.

Bei allen meinen Kollegen aus der Arbeitsgruppe Krämer bedanke ich mich für die schöne Zeit, die ausgesprochen gute Arbeitsatmosphäre und die große Hilfe bei der Durchführung vieler Experimente. Besonders danke ich Astrid für ihre Unterstützung bei den Ammoniummessungen sowie Andreas und Maike für das Korrekturlesen der Arbeit.

Ich danke Lucie für ihre Unterstützung und das Korrekturlesen der Arbeit.

Meinen Eltern danke ich für die große Unterstützung während meines gesamten Studiums.

<u>Lebenslauf</u>

Tim Müller Hanns-Maria-Lux-Str. 46 56077 Koblenz

Angaben zur Person

Geburtsdatum:	09.01.1976
Geburtsort:	Koblenz
Staatsangehörigkeit:	deutsch

Schulbildung und Zivildienst

1982 – 1985	Grundschule Asterstein, Koblenz				
1985 – 1995	Gymnasium auf dem Asterstein, Koblenz				
	Abschluss: Allgemeine Hochschulreife				
1995 – 1996	Zivildienst,	Rhein-Mosel-Werkstatt	für	Behinderte	gem.
	GmbH, Koblenz				

Hochschulbildung

Studium der Chemie, Johannes Gutenberg-Universität				
Mainz, Vordiplom in Chemie				
Studium der Chemie, Westfälische Wilhelms-Universität				
Münster				
Forschungsaufenthalt, Institute of Inorganic Chemistry,				
University of Auckland, Neuseeland				
Studium der Chemie, Westfälische Wilhelms-Universität				
Münster, Diplomarbeit in Biochemie, Abschluss: Diplom-				
Chemiker				
Promotion in Biochemie, Universität zu Köln				

Köln, 05.10.2005

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie - abgesehen von unten angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. A. Burkovski betreut worden.

Keine Teilpublikationen.

Köln, 05.10.2005