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1. Introduction 1

1. Introduction 

1.1 The organization of the mammalian immune system 

The mammalian immune response can generally be subdivided into three 

interdependent limbs, namely the innate immune response, the humoral response 

and the cell-mediated response. The innate immune system is believed to provide a 

first barrier against the spread of pathogens within a newly infected host. Thereby it 

counteracts the establishing infection and contributes to an early clearance of the 

pathogen. However, the term “innate immune response” describes a very diverse 

repertoire of mechanisms, among them complement-mediated killing of bacteria 

(Gasque et al, 2004), secretion of peptide antibiotics (Boman et al, 1995), elimination 

of extracellular pathogens through phagocytic uptake by macrophages (Hingley-

Wilson et al, 2000) and NK-cell mediated cytotoxicity (Ljunggren et al, 1990). The 

innate immune system identifies its microbial targets mainly by the recognition of 

relatively invariable so-called pathogen-associated molecular patterns (PAMPs) 

(Janeway et al, 2002) through a huge number of specialized receptors, including the 

Toll-like and NOD family of receptors (Janeway et al, 2002; Tschopp et al, 2003). 

Numerous cell types including macrophages, NK cells and epithelial cells contribute 

effector functions to this limb of the immune system and in addition many (perhaps 

all) non-immune cells can acquire an antiviral state upon γ-interferon treatment, a 

phenomenon commonly referred to as cell-autonomous resistance (MacMicking et al, 

2004; Weber et al, 2004). The humoral immune response is mediated by the B cell 

population, which secretes an enormously diverse repertoire of antibodies (Calame 

et al, 2003). Antibodies neutralize toxins (Little et al, 1988; Wild et al, 2003), block the 

adhesion of pathogens to mucosal surfaces (Kunisawa et al, 2005) or opsonize 

pathogens to mark them for phagocytic uptake (or immediate destruction) (Stuart et 
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al, 2005). Thus, an antibody-mediated immune response is predominantly directed 

against extracellular pathogens. According to the theory of clonal selection each 

individual B cell produces only a single type of antibody. The mature gene that 

encodes an antibody is generated by rearrangement of DNA (Sadofsky et al, 2001) 

and its expression gives either rise to the B cell receptor (BCR), which is anchored in 

the plasma membrane or to the secreted antibody, which is its soluble analog 

(Cambier et al, 1992). Antibodies can recognize the antigens they are targeted 

against in their native conformation. This distinguishes them fundamentally from the 

related T cell receptors (TCRs) which require both processing of their epitopes and 

presentation of their peptide antigens in the context of a major histocompatibility 

(MHC) class I or II molecule (Myers et al, 1991). TCR diversity is generated by a site-

directed DNA recombination process largely similar to the mechanism that generates 

the high variety within the antibody repertoire (Sadofsky et al, 2001). T cells originate 

from precursor stem cells in the bone marrow and migrate during their early 

development to the thymus where they differentiate (Bommhardt et al, 2004). There 

they undergo both positive as well as negative selection with the consequence that 

only MHC-restricted cells survive that do not recognize self-antigen with high affinity 

(Sebzda et al, 1999). MHC class II-restricted T cells become selected to the CD4+ 

lineage and henceforth recognize peptide antigens that (largely) derive from 

extracellular proteins ingested by professional phagocytic cells. These include 

dendritic cells, macrophages and B cells. Accordingly, these cell types express high 

levels of MHC class II. The proteolytic processing of MHC class II-presented antigens 

occurs in compartments along the endocytic route (e.g. endosomes or lysosomes) 

and requires the activity of a diverse set of enzymes, among them cysteine proteases 

(e.g. cathepsins S, L, B, H and F) and the γ-interferon-induced lysosomal thiol 

reductase (GILT) (Watts et al, 2004). Two major CD4+ lineages exist: inflammatory 
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TH1 cells and TH2 helper cells. The former secrete γ-interferon and activate 

macrophages to become bactericidal whereas the latter activate B cells to secrete 

antibodies (Dong et al, 2000). Thus, CD4+ T-lymphocytes represent an important 

connection between cell-mediated immunity on the one hand and innate or humoral 

immune response on the other hand. In contrast, MHC class I-restricted T cells 

become selected to the CD8+ lineage. The vast majority of antigenic peptides that 

are recognized by CD8-positive T cells in combination with MHC class I are 

breakdown products of the proteolytic degradation machinery in the cytosol 

(Leonhardt et al, 2003; Pamer et al, 1998). Accordingly, the cell-mediated immune 

response exerted by cytotoxic (CD8+) T lymphocytes (CTLs) is mainly directed 

against intracellular pathogens, primarily viruses and some bacteria. In addition CTLs 

make a major contribution to the elimination of tumor cells. In line with this, MHC 

class I molecules (in contrast to their class II counterparts) are expressed on the 

surface of all nucleated cells. The recognition of non-self peptide by a CTL at the 

surface of an infected (or malignant) cell leads to the release by the T cell of granules 

containing perforin and granzymes that have membrane-disrupting and apoptosis-

inducing activity (Trapani et al, 2002). Using this pathway and/or a FasL-induced 

mechanism the CTL activates the apoptotic program of the infected (or malignant) 

target cell (Trapani et al, 2002). Therefore it is not surprising that many viral (Hewitt 

et al, 2003; Lybarger et al, 2005) but also bacterial (Neumeister et al, 2005; Qimron 

et al, 2004) pathogens have developed a huge number of immune evasion strategies 

that subvert the class I antigen presentation pathway. In addition, tumor cells also 

frequently down-modulate class I surface levels to avoid their recognition by CTLs 

(Bubenik et al, 2003). However, during an infection (or the onset of cancer) the three 

limbs of the immune system synergistically attack intruding microbes (or malignant 

cells) and in most cases efficiently protect the host organism from disease.  
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1.2 The processing of MHC class I-presented antigenic peptide ligands 

Fig. 1 The MHC class I antigen presentation pathway 
Intracellular proteins (1) are degraded by the proteasome in the cytosol (2) and the resulting 
oligopeptides are subsequently translocated into the ER by the peptide transporter TAP (3). There 
they are loaded onto empty MHC class I molecules (3). These are at that stage part of a multi-
protein complex, the so-called MHC class I peptide loading complex (PLC). Within this complex 
TAP is bridged to MHC class I by tapasin. Additionally the PLC comprises the lectin chaperone 
calreticulin and the oxidoreductase ERp57. Upon binding of a peptide ligand the loaded MHC 
class I molecule dissociates from the PLC (4) and migrates to the plasma membrane (7). On this 
way it passes the Golgi apparatus (5) and the trans-Golgi network (6). 

As mentioned above antigenic peptide ligands for MHC class I mostly derive from the 

degradation of intracellular proteins in the cytosol (Pamer et al, 1998). The major 

endoprotease that contributes oligopeptides to this pathway is the proteasome  

(Fig. 1) (Goldberg et al, 2002; Kloetzel et al, 2001). Moreover, in the context of some 

MHC class I alleles the tripeptidyl peptidase II (TPP II) is supposed to play an 

important role for the endoproteolytic generation of antigens (Seifert et al, 2003). 

However, proteasomal activity yields only a small fraction of peptides that have the 
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appropriate length of 8 to 10 amino acids to bind an MHC class I molecule. Namely, 

more than 70% of the oligopeptides generated by the proteasome are too short, 

whereas 15% exceed the size of a suitable class I ligand (Kisselev et al, 1999). 

Aminopeptidases can trim the latter population to a fitting length (Goldberg et al, 

2002). Currently, for several cytosolic aminopeptidases a role in the MHC class I 

antigen presentation pathway is discussed, among them puromycin-sensitive 

aminopeptidase (Levy et al, 2002; Stoltze et al, 2000), bleomycin hydrolase (Stoltze 

et al, 2000), TPP II (Levy et al, 2002) and γ-interferon inducible leucine 

aminopeptidase (LAP) (Beninga et al, 1998). Furthermore, upon induction with γ-

interferon the proteolytic machinery in the cytosol becomes modified (presumably) for 

adjusting it to the requirements of the immune system in the context of an infection. 

Particularly, the composition of the proteasome changes by the incorporation of three 

new γ-interferon-induced subunits and the regulator PA28. The resulting so-called 

immunoproteasome is distinct from the regular housekeeping proteasome with 

respect to its cleavage specificity and hence the peptide repertoire that it generates 

(Cascio et al, 2001). Consistently, the production of several important viral or tumor-

associated peptide antigens specifically depends on the activity of this modified 

protease (Cerundolo et al, 1995; Lautscham et al, 2003; Schultz et al, 2002) or the 

presence of PA28 (Sijts et al, 2002). Interestingly, the activity of the 

immunoproteasome was shown to yield more N-terminally extended precursors of an 

intensively investigated model peptide ligand for MHC class I when compared to its 

constitutive counterpart (Cascio et al, 2001). However, the finding that the 

incorporation of the immuno-subunits into the proteasome conversely abrogates the 

production of some epitopes (Morel et al, 2000) queries the view that 

immunoproteasomes are always the “better” proteasomes under all circumstances. 

During the early phase (approx. one week) of a viral or bacterial infection constitutive 
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proteasomes were reported to become gradually replaced by their immuno-

counterparts (Khan et al, 2001). Thus, the combined presence of both in the 

beginning of the pathogenic challenge may broaden the spectrum of antigenic 

peptide ligands produced, thereby increasing the efficiency of an immune response. 

After their generation in the cytosol oligopeptides have to traverse the endoplasmic 

reticulum (ER) membrane before they can be loaded onto class I (Fig. 1). The major 

route used for entry into the ER is via the peptide transporter associated with antigen 

processing (TAP) which resides in the ER membrane (Leonhardt et al, 2003; Schmitt 

et al, 2000). Although some very hydrophobic class I ligands were reported to get 

access to class I without the need for this transporter (Lautscham et al, 2001; 

Lautscham et al, 2003), the vast majority of cytosolic peptides essentially depends on 

the activity of TAP for their translocation into the ER. This becomes evident by 

markedly decreased MHC class I surface levels on cells of TAP-deficient individuals 

as a consequence of an almost stagnant peptide supply into the endoplasmic 

reticulum (Gadola et al, 2000). However, some MHC class I alleles as HLA-A2 can 

efficiently associate with peptides derived from signal sequences in a TAP-

independent manner (Wölfel et al, 2000). After transport into the ER N-terminally 

extended class I ligands can be further trimmed by the γ-interferon-inducible 

aminopeptidase ERAP1 until a suitable length for loading onto class I is reached 

(Saric et al, 2002; Serwold et al, 2002). In the ER peptide-receptive MHC class I 

molecules associate with TAP and several chaperones to form the so-called MHC 

class I peptide loading complex (PLC) (Fig. 1 and 4) (Leonhardt et al, 2003; Wright et 

al, 2004). This complex retains class I in the ER as long as the loading with a high 

affinity peptide ligand has occurred (see below). Upon binding of such a ligand the 

MHC class I molecule dissociates from the PLC and migrates along the standard 

secretory route to the cell surface, where it presents its peptide to CTLs (Fig. 1) 
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(Yewdell et al, 2003). An unexpected surprise for the field was the finding that some 

antigenic peptides for class I can also be generated in the trans-Golgi network (TGN) 

by furin, a member of the proprotein convertase family (Gil-Torregrosa et al, 1998; 

Gil-Torregrosa et al, 2000). However, to what extent this pathway contributes to the 

overall repertoire of surface-presented peptides and how these specific ligands are 

loaded onto class I has remained elusive.  

Taken together, MHC class I molecules present peptides derived from the 

degradation of intracellular proteins on the cell surface for perusal by CD8+ T cells. 

This process allows CTLs to monitor the current protein content of a host cell and to 

identify (and kill) cells that harbor abnormal or non-self (e.g. of viral origin) proteins. 

To sacrifice a virally infected or malignant cell is a necessary evil that protects the 

host from spreading of the infection to other cells or the development of a life-

threatening tumor. 

 

1.3 The transporter associated with antigen processing (TAP) 

The peptide transporter TAP (Fig. 2) is a member of the ATP binding cassette (ABC) 

transporter family (Schmitt et al, 2000). ABC transporters have been isolated from all 

three kingdoms of life, where they translocate diverse substances including vitamins, 

drugs, ions, amino acids, peptides, sugars or lipids across biological membranes 

(Garmory et al, 2004; Van der Does et al, 2004). Irrespective of the substrate 

specificity, which is clearly distinct among individual members of this protein family all 

ABC transporters share an identical four domain organization comprising two 

nucleotide binding domains (NBDs) and two transmembrane domains (TMDs) 

(Stefkova et al, 2004). TAP also possesses this characteristic four domain 

composition (Fig. 2A and Fig. 2B) (Schmitt et al, 2000). Its NBDs bind and hydrolyze 

ATP (Chen et al, 2003; Knittler et al, 1999; Saveanu et al, 2001; Schmitt et al, 2000) 
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A 

Fig. 2 The structural organization of the ABC transporter TAP 
(A) The TAP transporter is a heterodimer that consists of the two subunits TAP1 (depicted in 
black) and TAP2 (depicted in red). Either chain contributes an N-terminal transmembrane domain 
(TMD) and a C-terminal nucleotide binding domain (NBD) to the assembled transporter. In both, 
TAP1 and TAP2, the TMD can be further subdivided into the N-domain at the extreme N-terminus 
(involved in the tapasin interaction) and an inner core TMD, comprising 6 α-helices (involved in 
peptide binding and the formation of the translocation pore). The NBD binds and hydrolyzes ATP 
to energize the peptide translocation into the ER. (B) Model of the TAP transport pore. The closed 
conformation of the lipid A-transporter MsbA from Vibrio cholera (Chang et al, 2003) served as a 
template to predict the arrangement of the putative six transmembrane segments of the TAP core 
TMD. C) MHC class I surface expression on T1 cells expressing human TAP and their TAP-
deficient derivative T2, reconstituted with rat TAPa. T1 cells or T2 transfectants were incubated 
with the monoclonal anti-MHC class I-antibody 4E followed by FITC-labeled secondary antibody to 
determine the surface expression of HLA-B5 (filled histograms). To control for the specificity of the 
primary antibody T2(ratTAP) cells were briefly exposed to acidic buffer for removal of assembled 
surface MHC class I molecules before processing the cells for flow cytometry. Background staining 
was analyzed by incubating with secondary antibody alone (non-filled histograms). 

B 
4 TM-segments 6 + 6 core TM-segments 3 TM-segments

N-domain N-domaintransport pore C 

to energize the peptide translocation process, whereas its TMDs contain the 

substrate binding site and form the translocation pore (Fig. 2B; Nijenhuis et al, 1996). 

TAP is a heterodimer consisting of two homologous polypeptides, TAP1 and TAP2. 

 



1. Introduction 9

Each of these subunits contributes one NBD and one TMD to the assembled 

transporter (Fig. 2A). Both TAP chains are essential for peptide binding and transport 

(Arora et al, 2001; Meyer et al, 1994; Momburg et al, 1992). Sequential hydrolysis of 

ATP by TAP1 and TAP2 has been proposed to drive the translocation of peptide 

across the ER membrane and to restore the ground state of the transporter, which is 

characterized by high affinity for cytosolic substrates (Alberts et al, 2001). The TMDs 

of TAP1 and TAP2 are predicted to comprise 10 and 9 transmembrane helices, 

respectively (Schmitt et al, 2000). The 6 inner membrane spanning helices of both 

TAP subunits are designated as the core TMD, since they are sufficient to allow for 

the formation of a functional substrate binding site and translocation pore in the 

assembled transporter (Koch et al, 2004). The N-terminal extensions (N-domains) of 

the TMDs, (presumably) comprising 4 transmembrane helices in TAP1 and 3 

transmembrane helices in TAP2 function as docking sites for tapasin (Koch et al, 

2004). The preferred substrates for the transporter are peptides with a length of 8 to 

12 amino acids (Abele et al, 2004). Thus, TAP most efficiently delivers those 

peptides into the ER that have an optimal size for binding to MHC class I. With 

respect to the amino acid sequence of its substrates TAP has been reported to be 

highly promiscuous. However, the nature of the C-terminal residue and to a minor 

extent of the first three N-terminal residues plays a role for peptide binding (and most 

likely transport) by TAP (Schmitt et al, 2000). Importantly, human TAP and rat TAPa 

were both shown to be permissive for peptides with any C-terminus with the 

exception of proline (Schmitt et al, 2000), suggesting that both transporters 

translocate a similar set of peptides (Momburg et al, 1994; Pamer et al, 1998). In line 

with this, the human T1 cell line, which expresses the human TAP transporter and its 

derivative T2(ratTAP), which expresses the rat TAPa transporter have equal levels of 

MHC class I at the cell surface (Fig. 2C), indicating that human TAP and rat TAPa are 
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functionally equivalent. The major function of TAP is to supply ER-resident MHC 

class I molecules with antigenic ligands mostly generated by the proteasome in the 

cytosol. Since its inhibition (or absence) results in a dramatic loss of MHC class I 

surface levels (Ahn et al, 1997; Radosevich et al, 2003) TAP must be considered a 

bottleneck of the class I antigen presentation pathway in most cells. Therefore, the 

peptide transporter may be expected to be a major target for viral evasion strategies 

and indeed several viral effectors have been identified that interfere in one or the 

other way with the function of TAP (Lybarger et al, 2005; Momburg et al, 2002b). 

Taken together, TAP is a central component of the cell-mediated immune response 

that provides an (almost) essential connection between the proteolytic degradation 

machinery in the cytosol and peptide-receptive MHC class I molecules in the ER.  

 

1.4 MHC class I molecules 

An MHC class I molecule is defined as a non-covalently associated trimer consisting 

of the membrane-anchored MHC class I heavy chain, the soluble light chain called 

β2-microglobulin and a peptide ligand, usually of 8 to 10 amino acids (Pamer et al, 

1998). The heavy chain is a 43 kDa transmembrane glycoprotein and consists of 

three domains: α1, α2 and α3. The membrane-proximal α3-domain, as well as the β2-

microglobulin adopts a standard immunoglobulin-like fold and both comprise the 

conserved disulfide bond classically found in these domains (Dick et al, 2004). The 

peptide binding groove is part of the α1- and the α2-domain. The floor of this pocket 

consists of a β-sheet whereas either side is lined by an α-helix (Dick et al, 2004). The 

α2-domain comprises the third disulfide-bridge of an MHC class I molecule (Dick et 

al, 2004). This disulfide-bridge lies in close proximity to the N-terminus of the bound 

peptide ligand (see below). The MHC class I heavy chain is both polygenic and 

extremely polymorphic (Adams et al, 2000). The human MHC locus on chromosome 
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6 encodes three different heavy chain genes, namely HLA-A, HLA-B and HLA-C 

(Adams et al, 2000). The human genome is diploid and hence the extensive 

polymorphism among the heavy chain genes promotes the expression of 6 different 

MHC class I alleles per individual. The association of peptide ligands with an MHC 

class I molecule occurs mainly through the insertion of so-called anchor residues into 

specific pockets in the peptide binding groove (Achour et al, 1998; Kjer-Nielsen et al, 

2002). The presence of the correct anchor residues within a ligand (e.g. frequently 

the C-terminus) is a prerequisite for a peptide antigen to bind a given MHC class I 

allele. Since the polymorphism in the MHC class I heavy chain largely concentrates 

on the peptide binding groove, each class I allele has its particular requirements for 

specific anchor residues. The consequence is that different MHC class I alleles bind 

different sets of peptides. In this regard the expression of 6 dissimilar alleles by most 

individuals (and the expression of numberless alleles within a human population) 

increases the number of pathogenic epitopes to that the cell-mediated immune 

system can respond. Thus, both MHC class I polymorphism and the existence of 

multiple class I loci in the genome create an advantage for the organism (or in a 

broader sense for the population) that improves the host defense against microbial 

intruders as viruses or intracellular bacteria. Indeed, the presence of some class I 

alleles was reported to predispose individuals to (or protect individuals from) specific 

diseases (Jeffery et al, 2000; Schrier et al, 1995) whereas others appear to affect the 

course of the disease (Hendel et al, 1999). However, the class I polymorphism does 

not only expand the antigenic peptide repertoire presented at the cell surface for 

immuno-surveillance by CTLs. Additionally, MHC class I alleles were reported to 

substantially differ in their requirements for the presence of a functional PLC to 

acquire stable binding peptides (Peh et al, 1998). In this regard HLA-B5 is an 

example for an allele that essentially depends on the presence of tapasin for 
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establishing high class I surface levels (Gao et al, 2004; Grandea et al, 1997), 

whereas HLA-B27 appears to be virtually tapasin-independent in this regard (Peh et 

al, 1998). Since some viruses are known to interfere with the proper formation of a 

PLC (Lybarger et al, 2005), the class I polymorphism may also be part of a cellular 

counter strategy in providing alleles that stay functional even under these specific 

circumstances when viruses attempt to subvert the standard antigen presentation 

pathway.  

 

1.5 Lectin chaperones, ERp57 and the oxidative folding pathway in the ER 

The two lectin chaperones calnexin and calreticulin act together with the 

oxidoreductase ERp57 in an oxidative folding pathway for newly synthesized 

glycoproteins in the ER (Fig. 3) (Kleizen et al, 2004). After the initial transfer of a 

sugar tree to an acceptor asparagine within a nascent substrate protein the first step 

is that α-glucosidases Ι and ΙΙ sequentially trim two glucose residues from the tree to 

generate a monoglucosylated glycan. This immature carbohydrate structure, which is 

typically found on newly synthesized and therefore not yet completely folded 

glycoproteins is subsequently recognized by either calnexin or calreticulin (High et al, 

2000; Kleizen et al, 2004). Both of these chaperones associate and act in synergy 

together with the thiol-disulfide oxidoreductase ERp57, which facilitates the coupling 

of substrate oxidation and folding (Molinari et al, 1999; Oliver et al, 1999). After 

eventual ERp57-mediated introduction of disulfide bonds the folding cycle is 

completed with the action of α-glucosidase ΙΙ on the substrate protein, which 

removes the terminal glucose on the glycan. Subsequently, the folded glycoprotein is 

released from calnexin or calreticulin. In the case that folding is not yet completed the 

glycoprotein substrate is recognized by UGGT (UDP glucose:glycoprotein 

glucosyltransferase), which acts as a folding sensor in the pathway and can 
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reglucosylate the substrate to make it reenter a new calnexin/calreticulin folding cycle 

(High et al, 2000; Kleizen et al, 2004).   

Fig. 3 The oxidative folding cycle for glycoproteins in the ER 
Newly synthesized glycoproteins initially carry glycan precursors with the carbohydrate structure 
GlcNAc2Man9Glc3 (1). This sugar tree is trimmed by the sequential action of α-glucosidases Ι and 
ΙΙ, thereby generating a mono-glucosylated oligosaccharide (2). This oligosaccharide is recognized 
by the membrane-anchored lectin chaperone calnexin (CNX) (3a) or its soluble homolog 
calreticulin (CRT) (3b). Both chaperones share the capability to recruit the oxidoreductase ERp57 
into the resulting folding complexes (3a/3b) that promotes the proper formation of disulfide bridges 
within its substrate proteins (4a/4b). The removal of the terminal glucose residue from the sugar 
tree by α-glucosidase ΙΙ releases the polypeptide from the respective lectin chaperone (5). 
Reglucosylation can occur (dashed line) if the folding sensor UGGT determines that the 
glycoprotein is not yet properly folded (6). Subsequently, the latter can enter a new CNX/CRT-
mediated folding cycle.  

 

1.6 The assembly and function of the MHC class I peptide-loading complex 

During the sequential assembly of the PLC MHC class I molecules interact at 

multiple stages with lectin chaperones and the oxidoreductase ERp57 (Fig. 4). The 

first contact occurs between calnexin and the nascent class I heavy chain, 

presumably to facilitate proper folding of the latter during co-translational protein 

translocation into the ER (Dick et al, 2004; Tector et al, 1995; Vassilakos et al, 1996). 

The fact that ERp57 is found in these early assembly complexes (Farmery et al, 
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Fig. 4 Hypothetical model on the assembly of the MHC class I-peptide loading complex 
Glycosylated MHC class I heavy chains (HC) (1) associate with calnexin and ERp57 in the ER (2). 
Both chaperones together promote the proper oxidative folding of the HC. The subsequent 
interaction with β2-microglobulin (3) leads to the disassembly of this initial folding complex through 
the release of calnexin (and probably also ERp57). Concomitantly with (or rapidly upon) the 
association of β2-microglobulin with the HC (3), calreticulin (CRT) is incorporated (4). The resulting 
trimer (4) is inserted into a so-called precursor complex (5) that comprises the TAP transporter, 
tapasin, calnexin (CNX) and ERp57. This final fusion yields the mature peptide loading complex 
(6) and is (according to the standard model) believed to be accompanied by the release of 
calnexin.  

2000; Lindquist et al, 2001) together with the finding that heavy chains are already 

partially oxidized at this stage (Dick et al, 2004; Tector et al, 1995; Farmery et al, 

2000) makes it tempting to speculate that ERp57 is the oxidase, responsible for the 

formation of the respective disulfide bonds, although a contribution of other ER-

resident oxidases as e.g. PDI cannot be excluded. Consistent with this view disulfide-

linked dimers of free MHC class I heavy chains and ERp57 could be isolated from 

human cells (Lindquist et al, 2001) and rat cells expressing human HLA-B27 

(Antoniou et al, 2002). Full oxidation of MHC class I heavy chains, which is believed 

to precede their incorporation into the PLC (Dick et al, 2004) is a prerequisite for an 

MHC class I molecule to become peptide-receptive as is the association with β2-

microglobulin (Neefjes et al, 1993; Sugita et al, 1994). Binding of β2-microglobulin to 

the MHC class I heavy chain is accompanied by the subsequent release of calnexin 

and thereby dissociates the initial assembly complex (at least in human cells) (Sugita 

et al, 1994). Since ERp57 on its own has no peptide-binding activity (Ellgaard et al, 

2004) and is believed to be recruited to its substrate proteins solely through 
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interactions with the lectin chaperones it is plausible to assume that ERp57 is also 

released at this point. Rapidly upon (or concomitantly with) the binding of β2-

microglobulin, calreticulin associates with the assembled MHC class I molecule, 

which at this stage is likely to harbor monoglucosylated N-linked glycans (Wearsch et 

al, 2004; Radcliffe et al, 2002). Calreticulin recognizes MHC class I via one of its 

three exposed sugar trees (Harris et al, 2001). Consistently, treatment with 

castanospermine, a drug that inhibits the deglucosylation of N-linked glycans 

prevents the formation of a complex between MHC class I and the lectin chaperone 

in vivo (Sadasivan et al, 1996). In the past it had been postulated that calreticulin 

tethers ERp57 back into the assembling PLC (Harris et al, 2001). However, this view 

was challenged by the finding that the oxidoreductase co-precipitates at normal 

levels with TAP in calreticulin-deficient cells (Gao et al, 2002). So far the exact 

function that calreticulin exerts within the PLC has not been determined, although 

diverse roles as e.g. cooperative stabilization of the PLC, chaperoned peptide-

delivery from TAP to MHC class I or assisted folding of MHC class I have been 

proposed (Gao et al, 2002; Culina et al, 2004). One attractive hypothesis postulates 

that calreticulin tethers empty (or suboptimally loaded) MHC class I molecules that 

are about to escape the ER back into the PLC (Gao et al, 2002). Such a role in MHC 

class I retention is in keeping with the observation that cells deficient for calreticulin 

display accelerated export of unstable, peptide-receptive class I that largely 

dissociates during (or upon) the migration to the plasma membrane (Gao et al, 

2002). It is important to note that the selective retrieval of empty (or suboptimally 

loaded) MHC class I to the PLC would place calreticulin in the focus of a quality 

control pathway that ensures the egress from the ER of only highly stable MHC-

peptide-complexes. Indeed, this safeguard mechanism is the central function exerted 

by the PLC (Wright et al, 2004). However, the retention of MHC class I, which is (for 
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whatever reason) inappropriate for ER export, represents a rather passive 

contribution to the quality control of peptide loading. A more active role is believed to 

be played by another chaperone: the 48 kDa transmembrane glycoprotein tapasin. 

Prior to its incorporation into the PLC tapasin presumably forms a so-called precursor 

complex that additionally contains the peptide transporter TAP, ERp57 and calnexin 

(Diedrich et al, 2001). The biogenesis of this early complex is not yet well described. 

However, a recent report suggests that the assembled PLC finally results from the 

tapasin-mediated introduction of calreticulin-associated MHC class I into this 

precursor complex (Diedrich et al, 2001). It was stated that this last step in the 

assembly of the PLC leads to the release of calnexin (at least in human cells) 

(Diedrich et al, 2001), so that the PLC in the end consists of TAP, tapasin, 

calreticulin, ERp57 and MHC class I (Wright et al, 2004). Tapasin binds at the same 

time MHC class I molecules via its ER-luminal N-terminus (Bangia et al, 1999) and 

TAP via its C-terminal transmembrane domain (Raghuraman et al, 2002; Lehner et 

al, 1998; Tan et al, 2002), thereby acting as a bridge between peptide transporter 

(TAP) and peptide receptor (MHC class I) (Fig. 4). The transmembrane domains of 

both TAP subunits can bind tapasin independently from each other (Raghuraman et 

al, 2002). Thus, it was hypothesized that TAP has the potential to form a PLC via 

TAP1 and TAP2 in a symmetrical manner (Fig. 4). Soon after the discovery of 

tapasin it was noticed that cells that are deficient for this chaperone display 

substantially reduced (or complete loss of) MHC class I surface levels, albeit some 

allelic variation is observed (Garbi et al, 2000; Grandea et al, 1997; Ortmann et al, 

1997; Peh et al, 1998). This is a consequence of a series of events that all together 

have a negative impact on proper loading of MHC class I with optimal high affinity 

peptide ligands. First, tapasin is required for stabilization of TAP and is therefore 

needed to maintain high expression levels of the transporter (Garbi et al, 2003; 

 



1. Introduction 17

Lehner et al, 1998; Tan et al, 2002). Additionally, tapasin stimulates the binding of 

cytosolic peptides to TAP (Li et al, 2000). Thus, in its absence the overall amount of 

peptides being translocated into the ER is drastically reduced (Abele et al, 2004; 

Lehner et al, 1998; Li et al, 2000; Momburg et al, 2002). Second, by the above 

mentioned bridging function a close proximity between TAP and MHC class I is 

achieved, which may allow for a high local peptide concentration in the immediate 

vicinity of MHC class I (Abele et al, 2004). In this context, it is important to note that 

diminished peptide binding by MHC class I in a situation where tapasin is missing 

has been reported (Dick et al, 2002). It should additionally be mentioned that the 

close proximity between TAP and MHC class I may ensure that the latter is supplied 

with that specific pool of peptides that has most recently been generated in the 

cytosol. The benefit for the immune system could be that viral peptides would 

efficiently become accessible to class I as early as possible before the antigen 

processing machinery may be subverted by viral evasion strategies at a later time 

point during infection (Wright et al, 2004). Third, tapasin is similarly to calreticulin 

required for the retention of empty or suboptimally loaded class I molecules in the ER 

(Barnden et al, 2000; Schoenhals et al, 1999). Hence, the absence of tapasin results 

in a premature release into the secretory route of unstable MHC class I molecules, 

that later at the cell surface show a drastically increased tendency to acquire 

exogenously applied peptide (Barnden et al, 2000). Interestingly, one group observed 

accelerated egress from the ER of MHC class I also in human cells expressing a 

tapasin variant that fails to interact with TAP (Lehner et al, 1998), pointing towards a 

role for the TAP-tapasin interaction in the retention of class I. Although, these results 

are controversially discussed (Tan et al, 2002), they beautifully fit into a model where 

the PLC acts in the ER-membrane as an anchor that retains yet improperly loaded 

MHC class I until optimization of its peptide cargo has occurred. In line with this idea 
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TAP-associated MHC class I displays a dramatically decelerated lateral diffusion 

within the ER membrane when compared to free peptide-loaded molecules (Marguet 

et al, 1999). Furthermore, a mutant MHC class I molecule lacking both, tapasin- and 

calreticulin-interaction was reported to leave the ER loaded with TAP-dependent low-

affinity peptides at a highly accelerated rate (Lewis et al, 1996; Lewis et al, 1998; 

Paulsson et al, 2004; Peace-Brewer et al, 1996). Interestingly, an artificial retention 

of this MHC class I variant in the ER by transient application of the drug brefeldin A 

let to a significant improvement in the stability of MHC-peptide complexes (Lewis et 

al, 1998). This demonstrates that increasing the time that an MHC class I molecule 

spends in the ER as such has a significant positive effect on its stability and suggests 

that optimization of peptide cargo is time-dependent. Taken together, it is attractive to 

speculate that TAP-bound tapasin acts as a docking station in the PLC for calreticulin 

that functions in the recruitment of empty (or suboptimally loaded) MHC class I 

molecules for allowing them the acquisition of high affinity ligands. However, the 

major contribution of tapasin to the quality control of peptide loading does 

presumably not simply lie in the passive retention of suboptimally loaded MHC class I 

molecules in the ER. Rather, in the past years a role for tapasin as a peptide editor 

for MHC class I analogous to the function of the chaperone HLA-DM for MHC class II 

(Brocke et al, 2002) has been described and is despite one conflicting report (Zarling 

et al, 2003) widely accepted in the field (Howarth et al, 2004; Sesma et al, 2005; 

Williams et al, 2002). As a consequence of this peptide editing (or filtering) function 

exerted by tapasin highly stable MHC-peptide complexes are formed through 

selective loading of peptide ligands with low off-rates (Howarth et al, 2004; Sesma et 

al, 2005; Williams et al, 2002). Consistently, the peptide repertoire presented on the 

surface of tapasin-deficient cells is altered when compared to tapasin-proficient cells 

(Garbi et al, 2000; Howarth et al, 2004; Purcell et al, 2001; Zarling et al, 2003). 
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However, the corresponding mechanism is still not clear. A recent review proposes 

that tapasin deforms the peptide binding pocket of a bound MHC class I molecule in 

a way that some stabilizing contacts to the peptide cannot be formed (Wright et al, 

2004). Under such conditions, which disfavor peptide binding only high affinity 

ligands are thought to resist the dissociation from MHC class I. It should be noted 

that this effect may counterbalance the function of tapasin as a facilitator of class I 

peptide loading (see above) and that some variation with regard to the nature of the 

peptide ligands would be expected. Further elucidating the role of tapasin in the PLC, 

several independent studies have shown that tapasin is essential for the recruitment 

of ERp57 into the complex (Dick et al, 2002; Diedrich et al, 2001; Harris et al, 2001; 

Hughes et al, 1998; Tan et al, 2002) where both polypeptides are disulfide-linked with 

each another (Dick et al, 2002). The exact function that the oxidoreductase exerts 

within the PLC is not known yet. However, in cells expressing a tapasin variant that 

fails to recruit ERp57 PLC-associated MHC class I molecules were found to be 

partially reduced (Dick et al, 2002). Crystal structures of class I suggest that the 

disulfide-bridge in the α2-domain, which is located at the fringe of the peptide binding 

pocket may be rather exposed (and thereby vulnerable to reduction) in the absence 

of a peptide ligand (Dick et al, 2004). Therefore, ERp57 may passively shield this 

disulfide-bridge against reduction by glutathione as long as no (optimal) peptide is 

bound (Dick et al, 2004). Another model argues in a similar direction by proposing a 

more active role for ERp57 as an oxidase in the PLC that regenerates partially 

reduced MHC class I (Dick et al, 2002). ERp57 is further believed to act as a clamp 

between calreticulin and tapasin, thereby increasing the overall stability of the PLC 

by cooperative interactions (Wright et al, 2004). Moreover, a periodical resolution of 

the disulfide-bridge between ERp57 and tapasin was recently proposed to act as a 

timer for the release of loaded class I from the PLC (Wright et al, 2004). It was 
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speculated that when this bond is broken the cooperativity of the tapasin-calreticulin-

interaction would be disrupted with the consequence that the affinity of tapasin for 

MHC class I would decrease (Wright et al, 2004). At this stage a bound high affinity 

peptide could induce the closure of the peptide binding pocket and thereby displace 

tapasin from class I (Wright et al, 2004). Subsequently, the stably loaded MHC class 

I molecule could be deglucosylated followed by its release from calreticulin and the 

PLC (Wright et al, 2004). However, this model is yet speculative and remains to be 

proven. Another recent report presented evidence that the recruitment of ERp57 to 

the PLC is essential for the optimization of the peptide cargo loaded onto class I 

(Dick et al, 2002). Since ERp57 was reported to possess cysteine-protease activity 

(Urade et al, 1992) this enzyme may directly shape the MHC class I-associated 

peptide repertoire. However, another study could not validate a role for the 

oxidoreductase in peptide editing (Howarth et al, 2004). Nevertheless, ERp57 could 

play a role in the degradation of suboptimally loaded (or empty) MHC class I, thereby 

helping to selectively remove unstable molecules that otherwise would enter the 

secretory route. Class I molecules that (for whatever reason) cannot fold or acquire 

peptide properly are believed to become retrotranslocated into the cytosol, where 

they are deglycosylated and subsequently degraded by the proteasome (Hughes et 

al, 1997). Accordingly, inhibitors that interfere with the availability of peptides within 

the ER like lactacystin (proteasome inhibitor), ALLN (proteasome inhibitor) or ICP47 

(TAP inhibitor) induce (or drastically enhance) the transfer of class I back into the 

cytosol (Hughes et al, 1997), probably using the Sec61 channel (Pilon et al, 1997; 

Wiertz et al, 1996). The resolution of disulfide-bridges within such molecules is 

believed to precede their delivery to the cytosol (Tortorella et al, 1998) and may be a 

prerequisite for the complete unfolding of the protein prior to dislocation. Interestingly, 

ERp57 was found to possess reductase (in addition to disulfide isomerase and 
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oxidase) activity in vitro (Antoniou et al, 2002; Frickel et al, 2004). Partially folded 

MHC class I is a substrate for this reductase activity, whereas fully folded molecules 

are resistant (Antoniou et al, 2002). Although the oxidoreductase does not resolve 

disulfide bonds within suboptimally loaded MHC class I it acts on peptide-free 

molecules (Antoniou et al, 2002). Since no biological process works with 100% 

fidelity, even peptide-loading within the PLC would be expected to yield a small 

fraction of MHC class I molecules associated with low-affinity ligands. ERp57-

mediated reduction of this population after loss of their peptide cargo would prevent 

the resulting empty class I molecules from binding new peptide outside the PLC and 

its associated peptide-editing machinery. Regarding this, it is important to note that 

class I molecules that have dissociated from the PLC are probably deglucosylated 

(Van Leeuwen et al, 1996) and therefore unlikely to be a substrate for calreticulin-

mediated retention. Interestingly, loaded MHC class I molecules were reported to be 

retained in the ER for a while until export occurs (Marguet et al, 1999). This would 

provide time for such an additional quality control step. In this context it should be 

mentioned that calnexin was also reported to be involved in the degradation of 

glycoproteins. The lectin chaperone was shown to hand over terminally misfolded 

polypeptides to the acceptor EDEM prior to their retrotranslocation into the cytosol 

(Molinari et al, 2003; Oda et al, 2003; Sifers et al, 2003). EDEM is an ER stress-

inducible membrane protein with homology to α-mannosidase that specifically binds 

to mannose-N-acetylglucosamine Man8GlcNAc2 isomer B and has been implicated in 

the degradation of ER glycoproteins (Molinari et al, 2003; Oda et al, 2003; Sifers et 

al, 2003). Upon application of proteasome inhibitors a population of MHC class I was 

reported to redistribute into a subcellular compartment, closely associated with the 

ER that additionally contains high amounts of calnexin (Kamhi-Nesher et al, 2001). It 

was speculated that this compartment is involved in the degradation of misfolded 
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polypeptides (Kamhi-Nesher et al, 2001). The predicted role of ERp57 in the 

degradation of MHC class I molecules (Antoniou et al, 2002) makes it is tempting to 

speculate that the oxidoreductase will also localize to the same subregions within the 

ER. Taken together, it is likely that protein complexes that are associated with MHC 

class I assembly share a very similar composition with complexes that are involved in 

MHC class I degradation. Both would be predicted to contain calnexin and ERp57 

along with class I.  

Interestingly, the amount of PLC-bound ERp57 has been reported to be significantly 

diminished in the TAP-deficient cell lines .174 (Hughes et al, 1998) and T2 (Momburg 

et al, 2002) or LCL .220 cells expressing a tapasin variant that fails to associate with 

TAP (Tan et al, 2002). This shows that TAP is required in human cells for stable 

integration of ERp57 into the PLC and underscores the importance of cooperative 

interactions among PLC components for the structural integrity of the complex. 

Strikingly, the ability of tapasin to bind the peptide transporter was reported to be 

essential for optimal peptide loading onto MHC class I, but not for high class I surface 

levels (Lehner et al, 1998; Tan et al, 2002). This becomes evident by an abnormally 

high thermolability (Gao et al, 2004; Momburg et al, 2002; Tan et al, 2002; Williams 

et al, 2002) and reduced surface half-life of MHC class I molecules (Tan et al, 2002; 

Williams et al, 2002) in cells that express tapasin variants, which fail to interact with 

TAP. However, none of these studies rules out that the low TAP-steady state 

expression level (as a consequence of lacking transporter stabilization by tapasin 

(see above)) and therefore the low peptide translocation rate into the ER is the 

reason for the obvious defect in class I loading. Additionally, given that TAP 

contributes to the peptide editing process, it is not clear, whether the peptide 

transporter acts by recruiting ERp57 into the PLC, by cooperatively stabilizing the 
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PLC, by increasing the local peptide concentration for MHC class I or by other yet 

unknown mechanisms.  
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2. Description of the project 

Both TAP subunits, TAP1 and TAP2, efficiently associate with tapasin, MHC class I 

and the accessory chaperones of the PLC when expressed as isolated subunits 

(Antoniou et al, 2002b; Daumke et al, 2001; Raghuraman et al, 2002). From these 

studies it had been concluded that cells expressing only one or the other TAP chain 

can serve as a model system to analyze the protein composition and biogenesis of 

the PLC. Years ago, it had been postulated that the N-domains that precede the core 

TMD in both TAP subunits (see above) may act as docking modules for tapasin. This 

speculation founded on the observation that other ABC proteins as e.g. the 

sulfonurea receptor (SUR) use their N-terminal extensions to assemble with 

additional components into higher order complexes (Babenko et al, 2003; Chan et al, 

2003). Similarly, the cytosolic N-terminal domain preceding the core TMD in the ABC 

ion channel CFTR functionally interacts with the SNARE protein syntaxin 1A to 

regulate the chloride transport (Naren et al, 1998). Thus, to determine whether the N-

termini of the TAP chains play a role in the recruitment of tapasin, Koch and co-

workers had recently generated a truncation-variant of human TAP, lacking both N-

domains. The respective transporter was over-expressed in insect cells either alone 

or in combination with tapasin. These studies convincingly showed that the mutant 

transporter could efficiently bind and translocate peptides (Koch et al, 2004), 

demonstrating that the core TMD is sufficient to allow for the basic functions of the 

transporter. However, in contrast to wild-type TAP this transporter variant showed no 

detectable interaction with co-expressed tapasin (Koch et al, 2004), suggesting a key 

role for the N-domains in the organization of the PLC. In combination with the above 

mentioned finding that both TAP chains have an intrinsic capability to bind tapasin it 

was concluded that both N-domains simultaneously serve as tapasin docking sites. 

However, this conclusion is mainly based on the hypothesis that the interaction of 
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isolated TAP subunits with tapasin mirrors the respective interactions in the 

assembled transporter. This hypothesis has never been proven. Moreover, the weak 

point of the studies undertaken by Koch and co-workers is that they could not 

analyze the consequences of a possibly deficient PLC formation by N-terminal 

truncated TAP for MHC class I peptide loading, since they expressed the transporter 

variant in the absence of class I (Koch et al, 2004). Furthermore, effects of alterations 

within the PLC on the quality control of peptide loading can anyhow not be 

satisfactory analyzed in an insect cell system, where MHC class I-mediated antigen 

presentation does normally not take place. However, these questions are of high 

significance as in the absence of a proper working quality control instable MHC class 

I molecules are generated that tend to lose their weakly bound peptide cargo as they 

migrate along the secretory route. As a consequence they can end up at the cell 

surface as empty molecules (or even worse they might be reloaded by extracellular 

peptides and subsequently become recognized by CTLs). Yet, to elucidate the 

mechanisms that allow the formation of stable MHC class I molecules, presenting 

high affinity ligands is of fundamental importance to understand how an appropriate 

cellular immune response against intracellular pathogens is raised.  

Hence, to get insight into the function of the N-domains for the loading of MHC class I 

molecules with peptide ligands, N-terminally truncated TAP chains were expressed in 

the human TAP-deficient cell line T2 alone, in combination with the corresponding 

wild-type chain or as head-to-tail fusion proteins. The TAP variants were 

characterized in different functional assays for their ability to translocate class I 

ligands across the ER membrane. Moreover, the established cell lines were used to 

investigate, whether indeed both N-domains of the transporter simultaneously 

interact with tapasin (see above). Although recent reports have demonstrated that 

the insertion of TAP into the PLC is essential to allow MHC class I acquiring full 
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stability (Gao et al, 2004; Momburg et al, 2002; Tan et al, 2002; Williams et al, 2002) 

the underlying mechanism has not yet been elucidated. Moreover, all studies cited 

above analyzed cell lines expressing tapasin variants that fully fail to interact with 

TAP. Thus, it is impossible in the respective experimental systems to distinguish 

between effects caused by the loss of the TAP1-tapasin-interaction and effects due 

to the loss of the TAP2-tapasin interaction. In contrast, the cell lines established 

during this project provided a powerful means to experimentally separate tapasin-

binding in the two TAP chains. Thereby they allowed for the first time to investigate 

the molecular composition and function of PLCs wherein the transporter is 

incorporated solely via TAP1 or TAP2. Using the respective cell lines it became 

possible to examine, whether the bridging function of tapasin as such is sufficient to 

ensure the loading of optimal high affinity ligands as proposed by several groups. In 

this case bridging of the transporter to MHC class I by either TAP chain would be 

expected to equally improve the stability of the peptide-loaded molecules. 

Alternatively, the N-domains of TAP could play a more specific role beyond passively 

increasing the local peptide concentration for MHC class I during the loading 

process. To answer the question whether both N-domains are essential for the 

correct assembly of the PLC and its proper quality control function of MHC class I-

loading, the transient association of MHC class I molecules with the PLC, the kinetics 

of their maturation and finally the characteristics of their surface expression in the 

established cell lines was investigated. Furthermore, to probe for the stability of 

intracellular and surface exposed MHC class I molecules in the transfectants, their 

thermoresistance as well as the time-course of their decay from the cell surface was 

determined. The findings of these studies demonstrate the important role of the N-

domains of TAP for the structural and functional integrity of the PLC. Furthermore, 

they show that in a situation where the quality control function of the PLC fails, a 

 



2. Description of the project 27

post-ER mechanism can rescue the surface expression of stable MHC class I 

molecules. Thus, the outcome of this work extends the knowledge on the biogenesis 

of the PLC and provides new insights into the early and late events of antigen 

presentation.   

 



3. Abbreviations 28

3. Abbreviations 

ADP   adenosine diphosphate 

ALLN   N-acetyl-leucyl-leucyl-norleucinal 

ATP   adenosine triphosphate 

BFA   brefeldin A 

BSA   bovine serum albumin 

CFTR   cystic fibrosis transmembrane conductance regulator  

CNX   calnexin 

CR   connector region 

CRT   calreticulin 

CTL   cytotoxic T-lymphocyte 

DMEM  Dulbecco´s modified Eagle´s medium  

DTT   1,4-dithio-DL-threitol 

ECL   enhanced chemiluminescence  

Endo H  endoglycosidase H 

FBS   fetal bovine serum 

FITC   fluorescein isothiocyanate  

HBV   hepatitis B virus 

HCMV   human cytomegalovirus 

HCV   hepatitis C virus 

HDA   hexa-D-arginine 

HEPES  N-[2-hydroxyethyl]-piperazine-N’-[ethanesulfonic acid] 

HIV   human immunodeficiency virus 

HKV   influenza A Hong Kong virus 

HLA   human leukocyte antigen 

HRP   horseradish peroxidase  
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HRSV   human respiratory syncytial virus 

HSAB   N-hydroxysulfosuccinimidyl-4-azidobenzoate 

HV68   γ-herpesvirus 68  

IMDM   Iscove´s modified Dulbecco´s medium  

MDR1   multidrug resistance transporter 1 

MFI   mean fluorescence intensity 

MHC   major histocompatibility  

NBD   nucleotide binding domain 

ND   N-domain 

NSF   N-ethylmaleimide-sensitive fusion protein 

PACE4  paired amino acid converting enzyme 4 

PAGE   polyacrylamide gel electrophoresis  

PBS   phosphate-buffered saline 

PC   proprotein convertase 

PLC   MHC class I peptide loading complex 

RPMI   Roswell Park Memorial Institute  

SARS   severe acute respiratory syndrome coronavirus  

SDS   sodium dodecyl sulphate 

SLO   streptolysin O 

SNARE  soluble NSF attachment protein receptor 

TAP   transporter associated with antigen processing 

TBS   Tris-buffered saline 

TGN   trans-Golgi network 

TMD   transmembrane domain 

Tris   tris-(hydroxymethyl)-aminomethane  

VZV   varicella-zoster virus
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4. Materials and Methods 

Molecular cloning, polymerase chain reaction (PCR), sodium dodecyl sulphate (SDS) 

polyacrylamide gel electrophoresis (PAGE) and Western blotting were carried out 

according to standard procedures (Ausubel et al, 1990; Coligan et al, 1995; 

Sambrook et al, 1989) using enzymes purchased from New England Biolabs, 

Promega and Amersham. SDS-PAGE was performed under reducing conditions if 

not otherwise indicated. Immunoblots were developed according to the ECL system 

(Amersham). Chemicals used were graded p.A. and purchased from Merck or Sigma 

unless otherwise specified. All solutions and culture media were prepared with 

ultrapure water derived from a combined reverse osmosis / ultrapure water system 

(Seral) equipped with UV and ultrafiltration. 

 
4.1 Cell lines and cell culture 

T2 is a human lymphoblastoid cell line deficient for the TAP subunits and expresses 

HLA-A2 and HLA-B5 MHC class I molecules (DeMars et al, 1984; Salter et al, 1985). 

Transfectants of T2 expressing rat wild-type TAPa (Momburg et al, 1992) or truncated 

variants of rat TAP1a and/or rat TAP2a were cultured in Iscove´s modified Dulbecco´s 

medium (IMDM) (Gibco/Invitrogen) supplemented with 10% fetal bovine serum (FBS) 

and 1 mg/ml G418 (PAA). CEM (Foley et al, 1965) and its calnexin-deficient 

derivative CEM-NKR (Howell et al, 1985) are T cell leukaemia cell lines that express 

the MHC class I alleles HLA-A1, HLA-A30, HLA-B21, HLA-Bw6 and HLA-Cw2 (Scott 

et al, 1995). Both were cultured in IMDM (Gibco/Invitrogen) supplemented with 10% 

FBS. T1 cells (Salter et al, 1985) were cultured in IMDM (Gibco/Invitrogen) 

supplemented with 10% FBS. The cervical carcinoma cell line HeLa (Scherer et al, 

1953) was grown in IMDM (Gibco/Invitrogen) supplemented with 10% FBS. The 

monocyte-derived cell line THP-1 (Tsuchiya et al, 1980) was cultured in Roswell Park 
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Memorial Institute (RPMI) + L-glutamine medium (Gibco/Invitrogen) supplemented 

with 10% FBS. Murine chemically transformed hepatocytes (TIB-75) (Patek et al, 

1978) and the human hepatoma cell line HepG2 (Knowles et al, 1980) were cultured 

in Dulbecco´s modified Eagle´s medium (DMEM) (Gibco/Invitrogen) supplemented 

with 10% FBS, 1 mM sodium pyruvate (Gibco/Invitrogen), 2 mM L-glutamine 

(Gibco/Invitrogen) and non-essential amino acids. All culture media contained 100 

U/ml penicillin (Gibco/Invitrogen) and 100 µg/ml streptomycin (Gibco/Invitrogen) to 

inhibit bacterial growth.  

 

4.2 Cloning and stable expression of TAP chain variants 

The vector pBluescript KS ΙΙ (+) (Stratagene) containing full-length rat TAP1a cDNA 

lacking the internal EcoRΙ-site (Deverson et al, 1990) or the full-length rat TAP2a 

cDNA (Powis et al, 1991) was used as template in the QuikChangeTM site directed 

mutagenesis procedure (Stratagene) to generate N-terminal truncated variants of 

TAP1 and TAP2. The complementary primers 5´-GCGCACGCTCGATGCCCTCCGG 

ACACAAGGGCGCTGG-3´ and 5´-CCAGCGCCCTTGTGTCCGGAGGGCATCGAGC 

GTGCGC-3´ were used to delete nucleotides 4-417 of rat TAP1a (position 1 is the A 

of the start codon) resulting in a TAP1 variant that lacks the residues 2-139 (1∆N). 

Primers 5´-CGCAGACCCCACCATGCCCGGGCAGGAGAATAACAGAGC-3´ and 5´-

GCTCTGTTATTCTCCTGCCCGGGCATGGTGGGGTCTGCG-3´ were used to delete 

nucleotides 4-384 from rat TAP2a resulting in a TAP2 variant that lacks the residues 

2-128 (2∆N). All primers were purchased from Invitrogen. From the resulting TAP 

constructs an EcoRΙ-fragment was cloned into the EcoRΙ-site of the expression 

vector pHßApr1neo (Gunning et al, 1987). The cDNA-constructs of TAP1 and TAP2 

were co-transfected in different combinations into TAP-negative T2 cells by 
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electroporation using a BioRad gene pulser (BioRad) at 270 V and 500 µF. 

Additionally, cell lines expressing single TAP chain variants were generated. For 

cloning of the two tandem transporters precursor plasmids were generated in a first 

step where the sequence encoding either wild-type TAP1 or 1∆N was followed by the 

sequence encoding 2∆N. Therefore, the pBluescript-derivative comprising 2∆N was 

digested with ScaΙ and Acc65Ι. The resulting 3269 bp-fragment was either ligated to 

the 4385 bp-fragment from a ScaΙ/BsrGΙ-digest of the pBluescript-derivative 

containing wild-type TAP1 or to the 3971 bp-fragment from a ScaΙ/BsrGΙ-digest of 

the pBluescript-derivative comprising 1∆N. Both plasmids were digested with AgeΙ 

and BbvCΙ resulting in a 7088 bp- or a 6674 bp-fragment, respectively. The 

fragments were ligated to the AgeΙ/BbvCΙ-fragments containing the linker region of 

murine MDR1b (Gros et al, 1986) (see below). The generated plasmids encoded 

tandem transporters containing (TD1/2∆N) or lacking (TD1∆N/2∆N) the N-domain in 

TAP1. The TAP-tandem variants were cloned as EcoRΙ-fragments into the 

expression vector pHβApr1neo (Gunning et al, 1987) and then transfected into T2 

cells. The murine MDR1b linker region was cloned by RT-PCR. Total RNA was 

collected from TIB-75 hepatocytes (Patek et al, 1978) using the RNeasy-Kit (Qiagen). 

Subsequently, mRNA was prepared using the Oligotex-Kit (Qiagen). An RT-PCR was 

performed using the SuperScript first-strand synthesis Kit (Invitrogen) in combination 

with the MDR1b-specific primer 5´-CCCCTACAATCCTTGAAAATACTATGGC-3´ at a 

concentration of 2 µM. The resulting cDNA served as a template in a standard PCR 

(the conditions used were identical to that chosen for the determination of the 

proprotein convertase expression in T2 cells (see below)) , in which primers 5´-

CCCCTACAATCCTTGAAAATACTATGGC-3´ and 5´-GGTGGTGTCATTGTGGAGC 

AAGG-3´ were used to amplify a fragment of 403 bp. This fragment was digested by 
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SacΙ and HinP1Ι yielding a 303 bp-fragment that was ligated with pBluescript KS ΙΙ 

(+) cleaved by SacΙ and AccΙ. The resulting vector served as a template in a 

standard Pfu-Polymerase-driven PCR using the TAP-MDR1b-chimeric primers 5´-

TGTTACCGGTCCATGGTGGAGGCTCTTGCGGCTCCTTCAGACCCAGGAAATAA 

TGCTTATGGATCCC-3´ and 5´-ATCCGGCTTGGACAGCCTCAGCAACCGCCAAAA 

GGAAACCAGAGGC-3´. Thereby a 252 bp-fragment was amplified, which was 

subsequently digested with AgeΙ and BbvCΙ. The resulting 227 bp-fragment encoded 

the last 12 residues of rat TAP1a followed by MDR1b-sequence 640-701 and the 

residues 140-141 of rat TAP2a. This AgeΙ/BbvCΙ-fragment was ligated with the 

AgeΙ/BbvCΙ-fragments that were derived from the tandem precursor plasmids (see 

above). All TAP constructs were fully sequenced from both directions. All cell lines 

expressing TAP single chains or heterodimeric TAP variants were subcloned. Cells 

expressing high MHC class I surface levels were enriched by magnetic activated cell 

sorting (MACS) using the MiniMACS-Separator (Miltenyi Biotec) in combination with 

the anti-MHC class I-antibody 4E and magnetically labelled rat-anti-mouse IgG2a+b 

(Miltenyi Biotec). Recovered cells were subcloned for a second time.   

 

4.3 Antibodies 

116/5 and D90 are polyclonal rabbit antisera recognizing the C-terminus of rat TAP2 

(Momburg et al, 1992) or rat TAP1 (Powis et al, 1991). 148.3 is a monoclonal 

antibody directed against the C-terminus of human TAP1 (Meyer et al, 1994). 3B10.7 

is a monoclonal rat anti-human MHC class I antibody binding the heavy chains of 

HLA-A and -B (Lutz et al, 1987). 4E is a β2m-dependent mouse monoclonal antibody 

that recognizes an epitope common to all assembled HLA-B molecules (Yang et al, 

1984; Trapani et al, 1989; Tector et al, 1995). w6/32 is a mouse monoclonal antibody 
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that recognizes β2m-associated HLA-A, HLA-B and HLA-C molecules (Barnstable et 

al, 1978). Anti-ER60 is a rabbit antiserum that binds the oxidoreductase ERp57 (Otsu 

et al, 1995). R.gp48N is a polyclonal rabbit antiserum that is specific for the N-

terminus of human tapasin (Sadasivan et al, 1996). SPA-600 and -865 are polyclonal 

rabbit antisera binding calreticulin or calnexin (StressGen). MP-1 and KP-1 are 

polyclonal antisera, directed against the N-terminus or the C-terminus of the 

proprotein convertase 7 (PC7), respectively (Van de Loo et al, 1997). Anti-furin is a 

polyclonal antiserum raised against the proprotein convertase furin (Leitlein et al, 

2001). MAC 256 is a rat-derived monoclonal antibody recognizing the ER retention 

motif KDEL (Napier et al, 1992). Alexa-488 labeled donkey-anti-rat IgG and Alexa-

546 labeled goat-anti-rabbit IgG were purchased from Molecular Probes. Fluorescein 

isothiocyanate (FITC)- and horseradish peroxidase (HRP)-conjugated antibodies 

were purchased from Dianova or Amersham.  

 

4.4 Immunoprecipitation and Western blot analysis 

1 x 107 cells were washed twice in PBS before lysis in PBS / 1% Triton-X-100 

(Sigma). In case that the intact PLC should be co-isolated lysis was performed in 

PBS / 1% digitonin (Wako) as this detergent is known to preserve the TAP-tapasin 

association. Postnuclear supernatants were subsequently applied for at least 16 

hours at 4 °C to the respective antibody linked to sepharose beads for allowing 

immunoadsorption to occur. Antibodies had been covalently coupled before either to 

cyanogen bromide-activated sepharose (Sigma) in case that anti-MHC class I 

antibodies 4E or 3B10.7 were used or protein A-sepharose (Amersham) in case that 

anti-TAP1 antibodies 148.3 or D90 or the anti-TAP2 antiserum 116/5 was used. The 

coupling procedure was performed according to the instructions of the manufacturer. 

After extensive washing of the precipitate with PBS / 1% Triton-X-100 or PBS / 0,1% 
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digitonin (depending on the detergent used for lysis) bound proteins were eluted in 

100 mM Tris / 0,5% SDS pH 9,0. In case that consecutive immunoprecipitation 

sequentially using the anti-TAP2 antiserum 116/5 followed by the monoclonal 

antibody 3B10.7 was performed, bound proteins were eluted from the 116/5-

sepharose by a 2 hour incubation at room temperature in the presence of 100 µM of 

a peptide corresponding to the C-terminus of rat TAP2 (EQDVYAHLVQQRLEA, in 

single letter amino acid code) (Momburg et al, 1992) diluted in PBS / 1% digitonin. 

Eluted samples were separated by SDS-PAGE under reducing conditions. In case 

that calreticulin should be detected later on, SDS-PAGE was performed under non-

reducing conditions. Separated proteins were transferred to a nitrocellulose 

membrane (Schleicher & Schuell) before blocking in PBS / 0,1% Tween20 / 5% dry 

milk powder for 16 hours at 4 °C. Specific polypeptides were decorated with the 

respective primary antibodies diluted in PBS / 10% FBS / 0,1% Tween20 followed by 

extensive washing using PBS / 0,1% Tween20. This was followed by incubation of 

the membrane with HRP-conjugated secondary antibody. Unspecifically bound 

antibody was removed by washing in PBS / 0,3% Tween20. Finally immunoblots 

were developed according to the ECL system (Amersham).   

 

4.5 Inhibition of proteasomal activity with ALLN  

T2 transfectants were incubated in the absence or presence of 250 µM ALLN 

(Calbiochem) for 4h at 37 °C. Subsequently, cells were lysed in PBS / 1% digitonin 

either immediately or after removal of the inhibitor by extensive washing followed by 

overnight incubation at 37 °C in inhibitor-free IMDM containing 10% FBS. TAP-

associated proteins were isolated using the TAP2-specific antibody 116/5. Where 

indicated, MHC class I-associated proteins were re-precipitated from the eluate. 

Isolated proteins were separated by SDS-PAGE and analyzed by Western blot.  
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4.6 Pulse-chase analysis 

Transfectants were starved for 2h in methionine/cysteine-free Roswell Park Memorial 

Institute (RPMI) medium. Then, [35S]methionine and [35S]cysteine (500 µCi 

Promix/ml, Amersham) was added for 45 min. The chase was initiated by the 

addition of medium containing a 10-fold excess of unlabelled methionine and 

cysteine. Equal numbers of cells were removed at various times of chase and 

washed in phosphate-buffered saline (PBS) before resuspension in lysis buffer (PBS 

containing 1% digitonin (Wako) or 1% Triton X-100 (Sigma)). Immunoprecipitations 

were performed from equivalent amounts of precleared lysates by using anti-TAP2 

antiserum (116/5) or anti-MHC class I antibody (4E). The samples were washed five 

times with lysis buffer and subsequently separated by SDS-PAGE under reducing 

conditions. The gels were stained with Coomassie brilliant blue (Roth) and dried. 

Fluorographs were obtained after different exposure times and scanned by 

microdensitometry using a Joyce-Loebl Chromoscan II (Joyce-Loebl).  

 

4.7 Determination of MHC class I thermostability in detergent extracts 

1 x 108 cells were washed twice with ice-cold PBS before lysis in PBS containing 1% 

NP-40 (Sigma) and protease inhibitor-cocktail (Roche). When indicated, lysates were 

pre-incubated for 1 hour with 20 µM of HLA-B5 binding peptide EBV-3C/881-9 

(QPRAPIRPI, in single letter amino acid code) (Hill et al, 1995) at 4°C. Subsequently, 

lysates were incubated for 30 min at 4°C (where suboptimally loaded or empty class I 

molecules are preserved) or at 37°C (where only stable class I molecules resist 

dissociation). Afterwards lysates were immunoprecipitated using the monoclonal anti-

MHC class I antibodies 4E (conformation-dependent) or 3B10.7 (conformation-

independent). Precipitates were analyzed by Western blot and the obtained signals 

were quantified by densitometric scanning. 
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4.8 Immunofluorescence 

5 x 106 cells were washed twice with PBS before fixation in PBS containing 3% 

paraformaldehyde for 15 minutes. Subsequently cells were extensively washed with 

PBS / 10 mM glycine before resuspension in PBS / 0,5 % BSA. Next, the cells were 

permeabilized in PBS containing 0,5 % BSA and 0,5 % saponin and additionally a 

combination of anti-TAP antibody (either D90 directed against TAP1 or 116/5 

directed against TAP2, both of rabbit origin) and anti-KDEL antibody (MAC 256, 

derived from rat) was applied. After 30 minutes incubation, cells were washed twice 

with PBS / 0,5 % BSA / 0,5 % saponin before addition of a combination of two 

secondary antibodies, namely Alexa 488-coupled anti-rat IgG and Alexa 546-coupled 

anti-rabbit IgG. Unspecifically bound antibody was removed by washing with PBS / 

0,5 % BSA / 0,5 % saponin. Subsequently, cells were resuspended in 20 µl mowiol 

and transferred to an object slide. Stained cells were analyzed using a Zeiss 

Axioplan II fluorescence microscope equipped with a cooled CCD camera (Quantix). 

 

4.9 Deglycosylation of MHC class I molecules with endoglycosidase H (EndoH) 

10 µl of a Triton X-100 lysate, corresponding to 1 x 105 cells was added to 20 µl 

EndoH-incubation buffer (50 mM trisodium citrate / 0,01% SDS / 0,1 M 2-

mercaptoethanol) and mildly vortexed for 30 minutes before addition of 7,5 mU 

endoglycosidase H (Roche). Digestion was performed at 37 °C for 16 hours and the 

glycosylation pattern of MHC class I molecules, which corresponds to the steady 

state distribution of MHC class I molecules between the ER and post-ER 

compartments was determined by Western blot, using the monoclonal antibody 

3B10.7. The relative intensity of the bands was quantified by densitometric scanning, 

using the Joyce-Loebl Chromoscan II densitometer (Joyce-Loebl). 
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4.10 Flow cytometry and determination of MHC class I thermostability in intact 

cells 

5 x 106 cells were washed twice in ice-cold DFN (PBS / 10% FBS / 0,9 mM 

CaCl2*2H2O / 0,5 mM MgCl2*6H2O / 0,01% NaN3) and subsequently stained with 

monoclonal HLA-B5-reactive antibody 4E diluted in DFN at a final concentration of 

100 µg/ml for 30 min at 4 °C. After four-fold washing with ice-cold DFN cells were 

incubated with secondary FITC-labelled anti-mouse IgG antibody for 30 min at 4 °C 

in the dark. After four-fold washing with ice-cold DFN 3 µl propidium iodide (Sigma) 

was added to stain permeabilized (dead) cells. Subsequently, HLA-B5 surface levels 

were determined using a FACScan flow cytometer (Becton-Dickinson). To investigate 

the heat-sensitivity of intracellular and surface MHC class I, transfectants were 

incubated for 10 min at 4, 40, 50 and 60°C. Thermostability of intracellular HLA-B5 

was analyzed by an experiment in which cells were treated with 0.5% 

paraformaldehyde for 15 min and washed with 10 mM glycine. Cells were 

permeabilized in PBS containing 0.5% saponin / 0.5% BSA. Simultaneously the 

monoclonal antibody 4E was applied for 30 min at room temperature. Before addition 

of FITC-coupled anti-mouse IgG unspecifically bound antibodies were removed by 

washing with PBS containing 0.5% saponin and 0.5% BSA. The thermostability of 

MHC class I molecules in CEM or CEM-NKR cells was examined in an analogous 

procedure with the exception that the monoclonal antibody w6/32 was used instead 

of the antibody 4E. To determine thermostability of surface HLA-B5, cells were 

directly immunostained with mAb 4E without fixation and permeabilization. The 

dependence of MHC class I presentation on endocytic recycling and endosomal 

processing was analyzed by an experiment in which cells were grown in IMDM 

containing 250 µM primaquine or 20 mM NH4Cl (Sigma) for 3 and 18h, respectively. 

To determine the surface-survival of HLA-B5 cells were incubated for 0h, 1h, 2h, 4h, 
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12h or 15h in the presence of brefeldin A (BFA) (Sigma) at a final concentration of 10 

ng/µl. To analyse the involvement of proprotein convertases (PCs) in antigen 

presentation cells were washed with FBS-free IMDM followed by removal of surface 

MHC class I molecules by incubation with IMDM / 50 mM Na-citrate pH 3.0 for 3 min. 

After neutralizing the pH with 150 mM NaH2PO4, pH 10.5 recovery of surface MHC 

class I was allowed to occur. Therefore, the transfectants were washed and 

incubated for 14 h at 37°C in FBS-free IMDM with or without 10, 33 or 100 µM hexa-

D-arginine (HDA) (Calbiochem). 

 

4.11 Nucleotide-binding assay 

2 x 107 cells were washed twice with ice-cold Tris-buffered saline (TBS) (50 mM Tris / 

150 mM NaCl pH 7,4) comprising 5 mM MgCl2 followed by a short incubation in 10 

mM Tris pH 7,4 (hypotonic buffer) at 4 °C. Subsequently, the cells were 

homogenized and nuclei were removed by centrifugation. The postnuclear 

supernatants were subjected to ultracentrifugation for the isolation of 

endomembranes, which were lysed for 1 hour at 4 °C in TBS / 5 mM MgCl2 / 1% 

Triton-X-100.  Lysed membranes were again centrifuged and precipitated (insoluble) 

material was discarded. The supernatant was applied either to ATP- or ADP-agarose 

(both purchased from Sigma), which had been equilibrated according to the 

instructions of the manufacturer. After 1 hour incubation at 4 °C precipitated material 

was washed 5 times with TBS / 5 mM MgCl2 / 1% Triton X-100, eluted in SDS-

containing sample buffer and analyzed in Western blots probed for TAP1 or TAP2. 

 

4.12 Radioiodination of peptides 

15 nmol of peptide S5 (TVDNKTRYV, in single letter amino acid code) (Momburg et 

al, 1994) or S8 (TVDNKTRYR, in single letter amino acid code) (Deverson et al, 
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1998) were suspended in 100 mM phosphate buffer pH 7,5 and subsequently mixed 

with 5 µl of a 74 MBq solution of the radioisotope 125I (Amersham). To radioiodinate 

tyrosine residues Chloramin T-solution (Sigma) was added. Hereafter, free iodine 

was removed using a Dowex ion exchange column (Supelco) and the labelled 

peptide was eluted in phosphate buffer pH 7,5. 

  

4.13 Peptide cross-linking 

2 x 106 cells were permeabilized for 15 min at 37 °C using streptolysin O (SLO) 

(Murex) at a concentration of 2 U / ml. After washing with ice-cold PBS cells were 

resuspended in peptide binding buffer (50 mM Tris / 1 mM CaCl2 / 5 mM Mg(OAc)2 / 

1 mM DTT (Sigma) / 0,1% dialyzed denatured BSA / protease inhibitor-cocktail 

(Roche) pH 7,5). Subsequently, 1 µM radioiodinated and HSAB-conjugated peptide 

S5 (TVDNKTRYV, in single letter amino acid code) (Momburg et al, 1994) or S8 

(TVDNKTRYR, in single letter amino acid code) (Deverson et al, 1998) was applied, 

followed by UV-mediated (254 nm) cross-linking of bound peptide to TAP for 5 min 

on ice. Hereafter, cells were lysed in PBS / 1% NP-40 (Sigma) and the postnuclear 

supernatants were subjected to immunoprecipitation using the anti-TAP2 antibody 

116/5. Precipitated proteins were separated by SDS-PAGE. The gels were stained 

with Coomassie brilliant blue (Roth), dried and subsequently analyzed by 

autoradiography.    

 

4.14 Peptide transport assay 

3,75 x 106 cells were permeabilized for 15 min at 37 °C using streptolysin O (SLO) 

(Murex) at a concentration of 2 U / ml. Following a short wash with ice-cold PBS cells 

were resuspended in peptide transport buffer (50 mM HEPES / 150 mM KOAc / 5 

mM Mg(OAc)2 / 250 mM D(+)-sucrose / 1 mM DTT / protease inhibitor-cocktail 

 



4. Materials and Methods 41

(Roche) pH 7,5) in the presence of 10 mM ATP. Radioiodinated peptide S5 

(TVDNKTRYV, in single letter amino acid code) (Momburg et al, 1994) or S8 

(TVDNKTRYR, in single letter amino acid code) (Deverson et al, 1998) was added to 

a final concentration of 1,5 µM and subsequently the cells were incubated at 37 °C 

for 15 min to allow for the transport of the labelled peptide into the ER (, which is 

resistant to permeabilization by SLO). Hereafter, cells were lysed for 5 min at room 

temperature in ConcanavalinA (ConA)-binding buffer (20 mM Tris / 500 mM NaCl / 1 

mM CaCl2 / 1 mM Mn(ΙΙ)Cl2 / 0,1% Triton X100 / 0,1% NP-40 / protease inhibitor-

cocktail (Roche) pH 7,5). Postnuclear supernatants were applied to ConA-sepharose 

(Sigma) and binding of glycosylated (transported peptides) was allowed to occur for 1 

hour. Subsequently, the precipitates were washed 5 times with ConA-binding buffer 

and recovered radioactivity was quantitated by γ-counting. To directly compare the 

transport activities of wild-type TAP and truncated TAP variants the results of the 

transport assays were normalized for the expression levels of the different 

transporters. For quantitation of TAP steady-state levels, equivalent numbers of cells 

were lysed in 1% Triton X-100. Lysates were serially diluted 2-fold and separated by 

SDS-PAGE. After protein transfer onto nitrocellulose immunoblots were probed for 

TAP1 and TAP2. Quantification by densitometric scanning revealed very similar 

steady-state expression levels for TAPwt, 1-2∆N and 2-1∆N, but significantly lower 

expression levels for the tandem transporters TD1/2∆N and TD1∆N/2∆N.  

 

4.15 Determination of proprotein convertase expression by RT-PCR  

mRNA isolated from the T2 cell line as well as from the HepG2 cell line was kindly 

provided by Cemalettin Bekpen. Using this mRNA as a template the SuperScript first-

strand synthesis Kit (Invitrogen) in combination with 2 µM of a standard oligo(dT)-
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primer (Invitrogen) was employed to perform RT-PCR. The resulting cDNA served as 

a template in a standard PCR to probe for the expression of individual proprotein 

convertases. All primer pairs were designed so that the amplified region is a part of 

all known isoforms of the respective gene and that it contains a large intron to 

exclude that a contamination by genomic DNA rather than cDNA served as a 

template for the PCR. The primer pair 5´-GCAACGGAGGCCAACACAACG-3´ and 

5´-GCGTTGAGGAGGCCGAAACCG-3´ was used to amplify a 424 bp-fragment from 

the cDNA, corresponding to the PC7 gene (Bruzzaniti et al, 1996). The primer pair 

5´-CTACGGCACCTCCGTGCAGCC-3´ and 5´-CTTGAATCCTGGGCCATTGCACG-

3´ was used to amplify a 769 bp-fragment from the cDNA, corresponding to the PC5 

gene (Mercure et al, 1996). The primer pair 5´-CAAACAATTCCTACTGCATCGTGG 

GC-3´ and 5´-CCGTTCACTTTCCAGTCGCTC GC-3´ was used to amplify a 628 bp-

fragment from the cDNA, corresponding to the PACE4 gene (Kiefer et al, 1991). The 

primer pair 5´-CGAGGATGACGGCAAGACAGTGG-3´ and 5´-CGGCGATTATAGGA 

CAGGGTGAGC-3´ was used to amplify a 726 bp-fragment from the cDNA, 

corresponding to the furin gene (Roebroek et al, 1986). The DNA was amplified 

under the following conditions: 94 °C for 2 min; 39 cycles of 94 °C for 30s, 65 °C for 

30s and 72 °C for 1 min; and a final extension at 72 °C for 15 min. The PCR products 

were analyzed on a 2% agarose gel. 

 

4.16 Examination of proprotein convertase regulation by interferons  

The cell lines T2, HeLa or THP-1 were treated for 24 hours with 200 U/ml interferon-γ 

(Peprotech) or 2000 U/ml interferon-β (PBL Biomedical Laboratories) before mRNA 

was prepared by the sequential use of the RNeasy-Kit (Qiagen) (for isolation of total 

RNA) and the Oligotex-Kit (Qiagen) (for isolation of mRNA). The resulting mRNA, 

which was kindly provided by C. Bekpen served as a template for cDNA synthesis by 
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RT-PCR using the SuperScript first-strand synthesis Kit (Invitrogen) in combination 

with 2 µM of a standard oligo(dT)-primer (Invitrogen). This cDNA was used as a 

template in a standard PCR to probe for the expression of the indicated genes. The 

primer pair 5´-CGAGGATGACGGCAAGACAGTGG-3´ and 5´-CGGCGATTATAGGA 

CAGGGTGAGC-3´ was used to amplify a 726 bp-fragment from the cDNA, 

corresponding to the furin gene (Roebroek et al, 1986). The primer pair 5´-GCAACG 

GAGGCCAACACAACG-3´ and 5´-GCGTTGAGGAGGCCGAAACCG-3´ was used to 

amplify a 424 bp-fragment from the cDNA, corresponding to the PC7 gene 

(Bruzzaniti et al, 1996). The primer pair 5´-CAAACAATTCCTACTGCATCGTGGGC-

3´ and 5´-CCGTTCACTTTCCAGTCGCTCGC-3´ was used to amplify a 628 bp-

fragment from the cDNA, corresponding to the PACE4 gene (Kiefer et al, 1991). The 

primer pair 5´-CTGAGCCTGTCCGAAGCCCTGC-3´ and 5´-GGACTTGGCGGTTCT 

GTGGAGG-3´ was used to amplify a 645 bp-fragment from the cDNA corresponding 

to the MxA gene (Aebi et al, 1989). The primer pair 5´-ATGACAACTTTGGTATCG 

TGGAAGG-3´ and 5´-GAAATGAGCTTGACAAAGTGGTCGT-3´ was used to amplify 

a 442 bp-fragment from the cDNA corresponding to the GAPDH gene (Hanauer et al, 

1984). The primer pair 5´-ATCTGGATGTGGTGTGTGCC-3´ and 5´-CTTGTAGTTTC 

TCGAGCTGG-3´ was used to amplify a 532 bp-fragment from the cDNA 

corresponding to the hGBP1 gene (Cheng et al, 1991). PCR was performed as 

described in the section above with modifications on the cycle number and the 

hybridization temperature. These were 25 cycles with a hybridization temperature of 

60 °C in the case that fragments corresponding to GAPDH, hGBP1 or MxA were 

amplified and 31 cycles with a hybridization temperature of 65 °C in the case that 

fragments corresponding to furin, PC7 or PACE4 were amplified. The PCR products 

were analyzed on a 2% agarose gel.  
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4.17 Preparation of microsomes from T2 cells by sucrose gradient fractionation 

1 x 108 cells were incubated in ice-cold 10 mM Tris pH 7,5 (hypotonic buffer) for 10 

min. Hereafter, the cells were homogenized and the nuclei were removed by 

centrifugation at 1600g and 4 °C. 0,33 vol 1,3 M sucrose buffer (20 mM HEPES pH 

7,5 / 25 mM CH3COOK / 5 mM (CH3COO)2Mg*4H2O / 1 mM DTT / protease inhibitor-

cocktail (Roche)) were added to the supernatant, which was again centrifuged at 

1600g and 4 °C. Following this, the postnuclear supernatant was subjected to 

ultracentrifugation at 100000g and 4 °C to isolate endomembranes, which were 

subsequently resuspended in 800 µl 0,25 M sucrose buffer. Next, 7 vol 2,5 M 

sucrose buffer were added and the solution was mixed for 1 hour at 4 °C. Hereafter, 

the membrane suspension was overlaid with 3 ml 2 M and 3 ml 1,3 M sucrose buffer. 

Finally, 800 µl 0,25 M sucrose were loaded onto the top of the gradient. To 

fractionate the membranes the sucrose gradient was centrifuged for 16 h at 4 °C 

(25500 rpm / SW41Ti-rotor / Beckman). The microsomes were subsequently 

collected at the interface between the1,3 M and 2 M sucrose buffer. After the addition 

of 1 vol 20 mM HEPES buffer (20 mM HEPES pH 7,5 / 25 mM CH3COOK / 5 mM 

(CH3COO)2Mg*4H2O / 1 mM DTT / protease inhibitor-cocktail (Roche)) the 

microsomal suspension was centrifuged at 100000g and 4 °C, resuspended in 400 µl 

membrane buffer (50 mM HEPES pH 7,5 / 250 mM sucrose / 1 mM DTT / protease 

inhibitor-cocktail (Roche)) and homogenized. Subsequently, 10 vol high salt buffer 

(50 mM HEPES pH 7,5 / 250 mM sucrose / 1 M KCl / 10 mM MgCl2*6H2O / 1 mM 

DTT / protease inhibitor-cocktail (Roche)) were added and the suspension was again 

centrifuged at 100000g and 4 °C. Following this, the microsomal pellet was washed 

with 1 ml high salt buffer and afterwards resuspended in membrane buffer at a final 

concentration of 1 equivalent/µl. Subsequently, the microsomes were again 

homogenized, snap frozen in liquid nitrogen and stored at -80 °C. 

 



4. Materials and Methods 45

4.18 In vitro translation  

The TNT SP6 Quick Coupled Transcription/Translation System (Promega) was used 

to in vitro-express TAP2 variants in microsomal membranes. The pSP64 vector 

(Promega) containing wild-type TAP2 (pSP64-TAP2) was kindly provided by K. 

Keusekotten. A pSP64-derivative encoding 2∆N was generated by site directed 

mutagenesis using the QuikChangeTM protocol (Stratagene) in combination with the 

primer pair 5´-CGCAGACCCCACCATGGCGCCCGGGCAGG-3´ and 5´-CCTGCCC 

GGGCGCCATGGTGGGGTCTGCG-3´ and pSP64-TAP2 as a template. For in vitro-

expression 20 µl of microsomes (1 equivalent/µl) were pre-incubated with 0,5 µl 

RNasin-ribonuclease inhibitor (40U/µl) (Promega) in a first step. Furthermore, also 5 

µl plasmid DNA (500 ng/µl), encoding either TAP2 or 2∆N were pre-incubated with 

0,5 µl RNasin-ribonuclease inhibitor (40U/µl) (Promega). Subsequently, 40 µl of the 

TNT Quick Master Mix (Promega), 3 equivalents of microsomes, 500 ng plasmid 

DNA, 2 µl Diethylpyrocarbonate (DEPC)-H2O were incubated at 30 °C for 90 min in 

the presence of 80 µM methionine (Promega) in a final volume of 50 µl. 

 

4.19 Immunodepletion 

Following the in vitro-translation of mutant or wild-type TAP2 chains into microsomes 

derived from T2 transfectants, the membranes were collected by centrifugation at 

100000g and 4 °C and washed twice with PBS. Subsequently, the microsomes were 

solubilized in PBS / 1% digitonin (Wako). The newly synthesized TAP2 chains were 

removed from the resulting lysate in two successive rounds of immunodepletion 

using protein A-sepharose-conjugated anti-TAP2 antibodies (116/5). To control for 

the specificity of the immunodepletion microsomal lysates were incubated with free 

protein A-sepharose (Amersham) in parallel. To examine the heterodimerization of 
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the TAP subunits, the depleted lysates were analyzed in Western blots probed for 

TAP1 and TAP2.  
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5. Results 

5.1 ER-export and surface expression of MHC class I does not depend on the 

number or position of tapasin-docking sites in TAP 

To investigate the function of the N-domains in TAP for MHC class I processing, N-

terminally truncated variants of both rat TAPa subunits were constructed (see section 

4.2). The resulting mutant TAP chains, lacking the residues 2-139 in rat TAP1a or the 

residues 2-128 in rat TAP2a were named 1∆N or 2∆N, respectively (Fig. 5A). Both 

TAP chain variants were stably co-transfected or transfected in combination with the 

corresponding wild-type chain into the TAP-negative human cell line T2. Transporters 

containing wild-type TAP1 and 2∆N were termed 1-2∆N while transporters consisting 

of wild-type TAP2 and 1∆N were named 2-1∆N. Surprisingly, transfectants co-

expressing 1∆N and 2∆N could not be established, although more than 100 different 

clones from four independent transfection experiments were analyzed (data not 

Fig. 5 Expression of TAP variants lacking the N-domain in TAP1 or TAP2 
A) Schematic diagrams of wild-type TAP subunits, 1∆N and 2∆N. N-domains (ND), core 
transmembrane domains (core TMD), transmembrane segments and nucleotide binding domains 
(NBD) are indicated. Topology prediction of the TMDs was performed with TopPred II (Claros et al, 
1994). The regions corresponding to the tapasin-docking sites (Koch et al, 2004) are indicated. B)
Expression of 1-2∆N and 2-1∆N. Cell lysates were analyzed in Western blots probed for TAP1 or 
TAP2. TAP1 (black) and TAP2 (red) are shown as pictograms.  
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shown). This suggests that stable expression of a heterodimeric transporter variant 

lacking both N-domains is either harmful to the transfected T2 cell and/or that the 

TAP variant is structurally unstable and rapidly degraded. Nevertheless, Fig. 5B 

shows that 1-2∆N and 2-1∆N were expressed at levels comparable to that of the 

wild-type transporter. To functionally characterize 1-2∆N and 2-1∆N, the peptide-

binding behaviour of the two TAP variants was determined in a first step (Fig. 6A). 

 

Therefore, photolabeling experiments were carried out using the radioiodinated, UV-

cross-linkable model peptide S8 (TVDNKTRYR, in single letter amino acid code) 

(Deverson et al, 1998). Similar to wild-type TAP, 1-2∆N and 2-1∆N showed peptide-

cross-linking to both transporter subunits (Fig. 6A) suggesting normal substrate 

uptake by the truncated TAP variants. Next, the peptide translocation activity of 1-

2∆N and 2-1∆N was measured (Fig. 6B) using the model peptides S5 (TVDNKTRYV, 

in single letter amino acid code) (Momburg et al, 1994) or S8 (TVDNKTRYR, in single 

Fig. 6 Peptide-binding and transport activity of TAP truncation variants 
A) Peptide-binding of TAPwt, 1-2∆N and 2-1∆N. Permeabilized cells were incubated with 
radiolabeled and HSAB-conjugated peptide S8 (TVDNKTRYR). After UV-cross-linking and 
membrane lysis, TAP was immunoisolated with αTAP2 antiserum. Asterisks indicate unidentified 
cross-link products. B) Peptide transport activity. Cells were permeabilized and incubated with 
radiolabeled peptides S5 (TVDNKTRYV) or S8 (TVDNKTRYR) in the presence of ATP. The 
transport activity measured for 1-2∆N and 2-1∆N is expressed as percentage of the transport 
activity (quantified by γ-counting) obtained for TAPwt. 
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letter amino acid code) (Deverson et al, 1998). Consistent with the previous 

observation that the N-domains are not required for the transport function of TAP 

(Koch et al, 2004), both variants showed peptide-translocation-activities within the 

range of the wild-type transporter (Fig. 6B).  

Based on biochemical and structural data regarding the TAP-related ABC-

transporters MDR1 (Loo et al, 2004) and MsbA (Chang et al, 2001) it is plausible to 

speculate that the N-domains of TAP1 and TAP2 point in the heterodimeric 

transporter to opposite sides of the paired core TMDs (Fig. 2B) and act as two 

autonomous tapasin-docking sites for the transient interaction with MHC class I 

molecules. To investigate this, the ability of the truncated transporter variants to 

interact with tapasin and MHC class I was determined. Therefore, TAP or MHC class 

I molecules were immunoisolated from digitonin lysates of the cell lines T2(TAPwt), 

T2(1-2∆N) or T2(2-1∆N). Co-isolated proteins were subsequently analyzed by 

Western blot (Fig. 7A and Fig. 16). Clearly, both truncated transporter variants 

retained the ability to form complexes with tapasin and MHC class I. However, the 

anti-TAP immunoprecipitations revealed that the tapasin-interaction is reduced in the 

truncated TAP variants by approx. 50% when compared to the wild-type transporter, 

indicating that the latter binds tapasin via both N-domains. In contrast, the amounts 

of MHC class I co-precipitated with TAP were almost identical for the different 

transporter variants, indicating that the MHC class I-interaction is comparable among 

TAPwt, 1-2∆N and 2-1∆N. In accordance with this, pulse-chase experiments (Fig. 

7B) revealed that the half-life of interaction between newly synthesized MHC class I 

and the TAP-containing PLC is identical (approx. 100 min), irrespective whether the 

latter comprises TAPwt, 1-2∆N or 2-1∆N. Thus, despite reduced tapasin-binding, the 

PLCs formed by 1-2∆N and 2-1∆N show a normal transient interaction with peptide-

receptive MHC class I molecules. 
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Fig. 7 Functional characterization of PLCs that comprise TAP variants, which lack the N-
domain in TAP1 or TAP2. 
A) TAP/tapasin-interaction. Digitonin lysates of transfectants expressing truncated or wild-type 
TAPs were subjected to immunoprecipitation using the αTAP2 antiserum 116/5 or the monoclonal 
αMHC class I antibody 3B10.7. Precipitates were analyzed in Western blots probed for TAP1, 
TAP2, tapasin or MHC class I heavy chains. TAP1 (black) and TAP2 (red) are shown as 
pictograms. B) Kinetics of TAP-MHC class I interaction in different transfectants. Cells were pulse-
labeled for 60 min. and chased for the indicated time points. Lysates from equal numbers of cells 
were immunoprecipitated with αTAP2 antiserum and resolved by SDS-PAGE. Quantification of the 
co-isolated MHC class I signals was performed by densitometric scanning of the fluorographs. The 
amount of TAP-associated MHC class I isolated at each time point is expressed as percentage of 
the respective amounts detected directly after the pulse.  

In further approaches the intracellular processing (Fig. 8A), the kinetics of transport 

to the cell surface (Fig. 8B) and the steady-state surface expression (Fig. 8C) of 

MHC class I in the different transfectants was analyzed. Endoglycosidase H (endo 

H)-assays carried out using cell extracts from T2(TAPwt), T2(1-2∆N) and T2(2-1∆N) 

revealed that under steady-state conditions about 80% of MHC class I is present in 

post-ER compartments whereas in non-transfected T2 cells more than 80% of MHC 

class I is retained in the ER (Fig. 8A). In accordance with this, the recovery of HLA-

B5 surface levels after removal of extracellularly exposed MHC class I molecules 

through a short application of acidic buffer was similar in cell lines expressing TAPwt, 

1-2∆N and 2-1∆N (Fig. 8B). Consequently, the steady-state surface HLA-B5 levels in 

the transfectants T2(1-2∆N) and T2(2-1∆N) were determined to be almost identical to 

that observed in the cell line T2(TAPwt) (Fig. 8C).  
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Fig. 8 Intracellular maturation and surface expression of MHC class I in cells expressing 1-
2∆N and 2-1∆N 
A) Intracellular maturation of MHC class I. Cell lysates were incubated with endoglycosidase H 
and analyzed by Western blot using the monoclonal antibody 3B10.7 (bottom). The relative 
intensity of the MHC class I signals quantified by densitometric scanning is shown as bar graphs 
(top). B) Surface recovery of MHC class I. Assembled MHC class I molecules were removed from 
the surface of T2 transfectants by a short application of acidic buffer. After neutralization of the pH 
cells were grown at 37°C for the indicated time before the levels of surface-HLA-B5 were 
determined by flow cytometry using the monoclonal antibody 4E followed by FITC-labeled 
secondary antibody. C) MHC class I surface expression. Cells were incubated with monoclonal 
antibody 4E followed by FITC-labeled secondary antibody and surface expression of HLA-B5 was 
subsequently determined by flow cytometry (filled histograms). Background staining was analyzed 
by incubating with secondary antibody alone (non-filled histograms). 

Thus, neither the N-domain of TAP1 nor the N-domain of TAP2 is required for ER-

export or surface presentation of MHC class I molecules. Furthermore, the above 

mentioned data provides evidence that wild-type TAP, 1-2∆N and 2-1∆N, despite 

differences in the tapasin-binding behaviour do not quantitatively differ in their 

transient recruitment of MHC class I for peptide-loading. 

 

 



5. Results 52

5.2 Head-to-tail-fusion of TAP chains allows stable expression of transporters 

lacking the N-domains in both subunits 

Despite substantial efforts, a T2-transfectant stably co-expressing 1∆N and 2∆N 

could not be generated (see above). One possible explanation for this could be that a 

TAP transporter, which lacks both N-domains is hampered in its biogenesis. 

Misassembly of truncated TAP chains could lead to aggregation of the transporter 

and finally the accumulation of cell-toxic aggregates in the cell. Thus, to get an idea 

whether the complex assembly of 1∆N with 2∆N is impaired, an immunoprecipitation-

based assay was performed, which determines the efficiency of TAP complex 

formation by co-depletion of TAP1 with TAP2 chains (K. Keusekotten, R. M. 

Leonhardt, S. Ehses and M. R. Knittler, manuscript in preparation). By an in vitro-

expression system, it was recently demonstrated that stable and functional 

biogenesis of TAPwt requires the assembly of pre-existing TAP1 with newly 

synthesized TAP2, but not vice versa (K. Keusekotten, R. M. Leonhardt, S. Ehses 

and M. R. Knittler, manuscript in preparation). Therefore, either 2∆N or TAP2 was in 

vitro-translated in the presence of purified microsomes that already contained 1∆N or 

TAP1 (Fig. 9A). Following the in vitro-translation, the microsomes were lysed and the 

newly synthesized TAP2 subunits were removed in two sequential rounds of 

immunodepletion with the anti-TAP2 antiserum 116/5. To control for the efficiency of 

in vivo-complex assembly microsomal lysates from T2(TAPwt) cells were also 

subjected to immunodepletion. As shown in Fig. 9A the TAP1 chain was 

quantitatively removed with anti-TAP2 antibodies from solubilized membranes 

containing wild-type TAP, irrespective whether the TAP2 chain of the transporter had 

been synthesized in vivo (lane 6) or in vitro (lane 4). This suggests efficient 

dimerization of TAP1 and TAP2 in both cases. In contrast, the 1∆N chain displayed a 

strongly diminished co-depletion with the 2∆N chain, indicating that the assembly of 
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Fig. 9 Assembly of truncated TAP chains and expression of TAP tandem variants  
A) Complex assembly of in vitro expressed TAP chains. Microsomes derived from the indicated in 
vitro-translation experiments were lysed and immunodepleted with protein A-sepharose-
conjugated anti-TAP2 antibodies (αTAP2) or (as a control) with free protein A-sepharose (PA). 
Subsequently, the microsomal lysates were separated by SDS-PAGE and analyzed in Western 
blots simultaneously stained with antisera directed against TAP1 and TAP2. TAP1 (black) and 
TAP2 (red) are shown as pictograms. B) Schematic diagrams of TAP tandem variants. N-domains 
(ND), core transmembrane domains (core TMD), transmembrane segments, nucleotide binding 
domains (NBD) and the connector region of MDR1b (CR) are indicated. C) Expression of TAP 
tandem variants. Cell lysates were analyzed by Western blot using αTAP2 antiserum 116/5. 
Tandem TAPs are shown as pictograms. 

TD1∆N/2∆N 

TD1/2∆N 
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the two truncated TAP chains is substantially impaired (Fig. 9A, lane 2). It cannot be 

excluded at present that even the observed low degree of assembly in the latter case 

reflects the formation of microaggregates rather than functional heterodimers. 

Nevertheless, the in vivo-data (Fig. 7A) shows that neither 1∆N nor 2∆N has a 

general defect in complex assembly. Thus, it was speculated that a head-to-tail 

fusion of both truncated TAP chains to a single gene might circumvent the observed 

expression problems and allow for the generation of a TAP variant lacking both N-

domains in T2 cells. The order of TMDs and NBDs within such a gene would 
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resemble the genetic structure of so-called tandem ABC transporters, which encode 

the four characteristic domains of this transporter family (two TMDs and two NBDs) 

on one chain. In particular, a 1∆N-2∆N fusion protein would resemble the TAP-

related tandem multidrug resistance transporter 1 (MDR1) (Gros et al, 1986) as this 

transporter contains only the conserved six α-helices of the core TMD of ABC 

transporters, whereas any homologous sequence corresponding to the N-domains of 

TAP is lacking (Seigneuret et al, 2003). However, in MDR1 (as generally in tandem 

transporters) a flexible connector region of approx. 60 amino acids joins the two 

homologous halves of the protein (Hrycyna et al, 1998). The presence of this 

connector region was shown to be essential for transport function of MDR1 as its 

deletion results in an ATP-hydrolysis-deficient and transport-inactive protein (Hrycyna 

et al, 1998).   

Thus, a TAP-tandem-construct was generated, in which the cDNAs of 1∆N and 2∆N 

were linked by the connector region of murine MDR1b (Fig. 9B, lower panel; see 

section 4.2) (Gros et al, 1986). In addition, a second TAP-fusion construct was made 

containing wild-type TAP1 instead of 1∆N (Fig. 9B upper panel; see section 4.2). The 

resulting tandem constructs (named TD1∆N/2∆N and TD1/2∆N) were transfected into 

T2 cells and analyzed for steady-state expression by Western blot. Fig. 9C shows 

that both, TD1∆N/2∆N and TD1/2∆N were stably expressed in the transfectants.  

Next, the subcellular distribution of the two tandem TAP variants was analyzed by 

immunofluorescence. Fig. 10A shows that comparable to TAPwt both transporters 

co-localized with KDEL-containing polypeptides in the endoplasmic reticulum. For 

functional characterisation of TD1/2∆N or TD1∆N/2∆N peptide-binding (Fig. 10B) and 

translocation (Fig. 10C) were analyzed by the standard methods described above. 

Both tandem variants displayed detectable peptide-cross-linking suggesting that 
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specific antibodies and the co-isolated polypeptides were analyzed by Western blot 

(Fig. 11A). In line with the findings on TAP variant 1-2∆N (Fig. 7A and Fig. 16), the 

related tandem transporter TD1/2∆N retained the capacity to interact with tapasin 

and MHC class I whereas TD1∆N/2∆N, which lacks both N-terminal tapasin binding 

Fig. 11 PLC formation and functional characterization of tandem TAPs  
(A) TAP/tapasin-interaction. Digitonin lysates of transfectants expressing tandem TAP variants 
were subjected to immunoprecipitation using the αTAP2 antiserum 116/5 or the monoclonal 
αMHC class I antibody 3B10.7. Precipitates were analyzed in Western blots probed for TAP2, 
tapasin or MHC class I heavy chains. Tandem TAPs are shown as pictograms. (B) Intracellular 
maturation of MHC class I. Cell lysates were incubated with endoglycosidase H and analyzed by 
Western blot using the monoclonal antibody 3B10.7 (bottom). The relative intensity of the MHC 
class I signals quantified by densitometric scanning is shown as bar graphs (top). C) MHC class I 
surface expression. Cells were incubated with monoclonal antibody 4E followed by FITC-labeled 
secondary antibody and surface expression of HLA-B5 was subsequently determined by flow 
cytometry (filled histograms). Background staining was analyzed by incubating with secondary 
antibody alone (non-filled histograms). 
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sites, is completely excluded from the PLC (Fig. 11A). Next, the capability of 

TD1/2∆N and TD1∆N/2∆N to deliver peptide substrates for the loading onto MHC 

class I molecules was investigated. Since the expression levels of the functional 

tandem transporters were lower than the expression levels of wild-type TAP (Fig. 

9C), the cell lines T2(TD1/2∆N) and T2(TD1∆N/2∆N) displayed only a partial 

restoration of intracellular processing (Fig. 11B) and surface expression (Fig. 11C) of 

MHC class I. However, it is interesting to note that despite the differences in the 

tapasin/MHC class I recruitment by the two tandem transporters, the cell lines 

expressing TD1/2∆N and TD1∆N/2∆N showed very similar steady-state distributions 

of ER and post-ER MHC class I (Fig. 11B) and comparable amounts of surface HLA-

B5 (Fig. 11C). This implies that under conditions, in which physical interaction 

between TAP and tapasin is impaired, newly synthesized MHC class I molecules can 

take alternative routes of peptide-loading outside the TAP-associated PLC as long as 

suitable peptides are delivered by a functional transporter. 

 

5.3 Assembled and non-assembled TAP1 chains use different TMD-subregions 

for tapasin binding 

Comparison of the experiments on the tandem transporters and the heterodimeric 

variants suggests that both N-domains of TAP serve as functional interaction sites for 

tapasin and MHC class I molecules. However, the two TAP subunits are known to 

bind the components of the PLC independently from each other (Antoniou et al, 

2002b; Daumke et al, 2001; Newitt et al., 1999; Raghuraman et al, 2002). Thus, the 

question arises whether the interaction between tapasin and the N-domains depends 

on the heterodimerization of TAP1 and TAP2 or reflects an intrinsic property of the 

two TAP subunits. To address this question, 1∆N and 2∆N were stably transfected 

into T2 cells as single TAP chains. Analysis of the steady-state expression levels by 
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Western blot revealed that both variants were expressed at levels comparable to that 

of the corresponding wild-type TAP subunits (Fig. 12A). Both chains retained the 

normal nucleotide binding behaviour of the wild-type TAP subunits (Alberts et al, 

2001; Ehses et al, 2005) as the TAP1-variant bound both ATP and ADP whereas the 

TAP2-variant associated solely with ADP (Fig. 12B).   

 

Fig. 12 Expression, nucleotide binding and PLC formation of N-terminally truncated TAP 
subunits  
(A) Expression of N-terminally truncated TAP chains. Cell lysates were analyzed in Western blots 
probed for TAP1 or TAP2. TAP1 (black) and TAP2 (red) are shown as pictograms. (B) Nucleotide 
binding properties of single expressed TAP subunits. Membrane fractions of T2 transfections were 
lysed before incubation with different nucleotide-agaroses. Bound proteins were eluted with SDS-
containing sample buffer and analyzed in Western blots probed for TAP1 and TAP2. (C)
TAP/tapasin-interaction. Digitonin lysates of transfectants expressing N-terminally truncated TAP 
subunits were subjected to immunoprecipitation using the αTAP1 antiserum D90 (left panel, left 
half), αTAP2 antiserum 116/5 (left panel, right half) or the monoclonal αMHC class I antibody 
3B10.7 (right panel). Precipitates were analyzed in Western blots probed for TAP1, TAP2, tapasin 
or MHC class I heavy chains. TAP subunits are shown as pictograms. (D) Association of 1∆N or 
wild-type TAP with accessory chaperones of the PLC. Digitonin lysates of transfectants expressing 
wild-type TAP or the 1∆N single chain were subjected to immunoprecipitation using the αTAP1 
antiserum D90. Precipitates were analyzed in Western blots probed for TAP2, tapasin, MHC class 
I heavy chains, Calreticulin or ERp57.    
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To investigate whether the single TAP chain variants become recruited into the PLC, 

1∆N and 2∆N were immunoprecipitated from lysates of the cell lines T2(1∆N) or 

T2(2∆N) with either anti-TAP1 (D90) or anti-TAP2 (116/5) antisera (Fig. 12C). The 

co-isolated polypeptides were analyzed in Western blots using specific antibodies 

recognizing tapasin and MHC class I. Consistent with the data on the tandem 

transporter variant TD1∆N/2∆N (Fig. 11A) the single chain 2∆N was not found in 

association with any of the components of the PLC at all (Fig. 12C left panel and data 

not shown). Surprisingly however, the single expressed 1∆N fully retained the ability 

to interact with tapasin and MHC class I suggesting that the core TMD of the TAP1 

chain allows efficient complex formation (Fig. 12C left panel). To verify this, 

immunoprecipitations using anti-MHC class I antibodies were performed (Fig. 12C, 

right panel). In accordance with the results of the anti-TAP immunoprecipitations, 

1∆N, but not 2∆N co-precipitated with MHC class I molecules (Fig. 12C, right panel). 

Furthermore, to compare PLCs formed via the N-domains of wild-type TAP with 

PLCs formed via the core TMD of TAP1, lysates of the cell lines T2(TAPwt) and T2 

(1∆N) were subjected to immunoprecipitation using the TAP1-specific antiserum D90. 

Co-isolated polypeptides were subsequently separated by SDS-PAGE and analyzed 

by Western blot (Fig. 12D). Consistent with the finding that wild-type TAP does not 

associate with more MHC class I than the two variants 1-2∆N or 2-1∆N (Fig. 7B and 

Fig. 16) the amounts of MHC class I co-isolated with 1∆N and the wild-type 

transporter were roughly identical (Fig. 12D). Additionally, the amounts of calreticulin 

co-precipitating with 1∆N and TAPwt were also very similar. Thus it seems that the 

fully assembled transporter does not even associate with significantly higher levels of 

MHC class I and calreticulin as the 1∆N single chain. However, consistent with the 

finding that TAPwt interacts with tapasin via both TAP1 and TAP2 (Fig. 16) whereas 

 



5. Results 60

1∆N binds tapasin solely through its core TMD the levels of co-precipitated tapasin 

were significantly higher in the case of the wild-type transporter than of the single 

chain 1∆N (Fig. 12D). Consistent with the model that tapasin contributes to the 

recruitment of ERp57 into the PLC (Dick et al, 2002; Diedrich et al, 2001; Harris et al, 

2001) the levels of TAPwt-bound ERp57 versus 1∆N-bound ERp57 were also 

markedly higher (Fig. 12D).  

Furthermore, the subcellular distribution of the truncated TAP chains 1∆N and 2∆N 

was analyzed by indirect immunofluorescence. Fig. 13 shows that both subunits 

properly co-localized with KDEL-containing proteins in the ER. Thus, neither N-

domain is essential for ER-targeting of the respective TAP chain. Moreover, this 

Fig. 13 Subcellular localization of TAP single chain variants  
Intracellular localization of mutant TAP chains. T2 cells, expressing the indicated wild-type or 
mutant TAP subunit were fixed, permeabilized and co-stained with antibodies directed against the 
ER retention signal KDEL (MAC 256) and either TAP1 (D90) or TAP2 (116/5), followed by Alexa 
488- and Alexa 546-conjugated secondary antibodies. Cells were subsequently analyzed using a 
Zeiss Axioplan II fluorescence microscope.    
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experiment excludes that the different tapasin-interaction of 1∆N and 2∆N is caused 

by a distinctive intracellular localization of the truncated subunits.   

Taken together, it seems that depending on the assembly state of TAP1 different 

subregions of TMD1 are used for the interaction with tapasin whereas in TAP2 the 

tapasin-interaction is exclusively mediated by the N-domain. 

 

5.4 TAP variants 1-2∆N and 2-1∆N show different effects on the quality control 

of antigen presentation 

Tan and co-workers recently reported that MHC class I-loading with peptides 

conferring high complex stability requires the tapasin-mediated introduction of TAP 

into the PLC (Tan et al, 2002). To investigate whether and to what extend the 

tapasin-docking sites are required in the quality control of MHC class I processing the 

correlation between the thermostability of MHC class I molecules and the affinity for 

their peptide cargo was applied. The ability of MHC class I molecules to withstand 

thermal denaturation in cell extracts is directly related to the binding affinity of their 

peptide ligands (Williams et al, 2002). Consequently, at temperatures ≥37°C only the 

population of stably loaded MHC class I molecules resists irreversible disassembly 

(Baas et al, 1992; Williams et al, 2002). To explore the thermostability of assembled 

MHC class I in the established cell lines, lysates of the different transfectants were 

prepared and subsequently incubated for 1 hour at 4 °C or 37 °C (Fig. 14A and Fig. 

14B). The integrity of MHC class I complexes was tested by immunoprecipitations 

with the HLA-B5-specific β2m-dependent monoclonal antibody 4E (Trapani et al, 

1989); Tector et al, 1995). In transfectants expressing wild-type TAP or 2-1∆N the 

majority of HLA-B5 was found to be heat-stable (Fig. 14A lanes 2 and 5, for 

quantification see Fig. 14B) whereas in cells expressing 1-2∆N or no TAP most of the 

MHC class I-peptide complexes did not survive the incubation at 37°C (Fig. 14A 
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Fig. 14 In vitro thermostability of MHC class I in detergent extracts 
(A) Thermostability of MHC class I in cell extracts. Lysates of T2 transfectants were pre-treated or 
not with 10 µM HLA-B5 binding peptide EBV-3C/881-9 (QPRAPIRPI) and incubated for 1h at 4 °C 
or 37 °C. The thermostability of HLA-B5 was analyzed by immunoprecipitation of MHC class I from 
these extracts using either the conformation-independent monoclonal antibody 3B10.7 (top) or the 
β2-microglobulin-dependent monoclonal antibody 4E (bottom). Precipitates were analyzed in 
Western blots probed with the antibody 3B10.7. (B) The levels of precipitated MHC class I heavy 
chain were quantitated from the Western blot shown in Fig. 14A by densitometric scanning and 
peak integrals were plotted as bar graphs in arbitrary units. 

lanes 1 and 6, for quantification see Fig. 14B). Instability of HLA-B5 could be also 

seen for transfectants expressing tandem transporters TD1/2∆N or TD1∆N/2∆N (Fig. 

14A lanes 3 and 4, for quantification see Fig. 14B). In contrast, no temperature 

effects were observed in control experiments where immunoisolations were 

performed with the conformation-independent anti-MHC class I antibody 3B10.7 (Fig. 

14A, for quantification see Fig. 14B). To elucidate whether the observed heat-

sensitivity of the MHC class I molecules is due to suboptimal peptide-binding, lysates 

were pre-incubated with the high affinity HLA-B5 peptide ligand EBV-3C/881-9 

(QPRAPIRPI, in single letter amino acid code) (Hill et al, 1995) before incubation at 

37°C. As can be seen from Fig. 14A (for quantification see Fig. 14B), the pre-

treatment with peptides lead to a significant stabilization of HLA-B5 in cells 

expressing 1-2∆N, TD1/2∆N or TD1∆N/2∆N or no TAP at all. Thus, the presence of 
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the N-domain in TAP2, albeit not being essential for MHC class I processing, 

appears to be required for the formation of stable MHC class I complexes. To 

validate this idea, the thermostability of intracellular and cell surface HLA-B5 

complexes in intact cells was analyzed. For these studies the transfectants 

T2(TAPwt), T2 (1-2∆N) and T2 (2-1∆N) were used as these display comparable 

levels of TAP expression (Fig. 5B). Since assembled MHC class I molecules have a 

much higher heat-resistance under physiological conditions than in detergent 

extracts (Batalia et al, 2000), transfectants were heat-shocked for 10 min at 40, 50 

and 60°C or not heat-shocked at all. To determine thermostability of surface HLA-B5, 

cells were directly immunostained with the monoclonal antibody 4E whereas for the 

analysis of intracellular HLA-B5, transfectants were first permeabilized and then 

immunostained for flow cytometry. The experiments in Fig. 15A show that the cell 

lines expressing TAPwt or variant 2-1∆N were characterized by a high thermostability 

of intracellular HLA-B5 whereas in non-transfected T2 cells only 20% of intracellular 

HLA-B5 remained stable at 40°C and ≤10% at temperatures above 50°C. In line with 

the experiments shown in Fig. 14, the T2-transfectant expressing variant 1-2∆N 

showed a remarkable thermolability of intracellular HLA-B5 at temperatures >40°C 

(40 and 70% reduction of the intracellular immunostaining at 50 and 60°C, 

respectively). However, most surprisingly, all analyzed transfectants displayed a 

comparable high thermostability of surface HLA-B5. Accordingly, in the presence of 

the drug brefeldin A (BFA), which blocks the ER-Golgi transport, the time course of 

MHC class I-decay from the cell surface was determined to be almost identical (t1/2 = 

15h) among the cell lines T2(1-2∆N), T2(2-1∆N) and T2(TAPwt) (Fig. 15B), also 

indicating similar surface class I stability in these transfectants. Taken together, this 

suggests that in the cell line T2(1-2∆N) the population of HLA-B5 molecules on the 

cell surface is physically more stable than the intracellular fraction of HLA-B5.  
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Fig. 15 Stability of MHC class I molecules in intact cells  
(A) Thermostability of intracellular and cell surface MHC class I. Transfectants were collected in 
PBS / 0,1% NaN3 before incubation at 4, 40, 50 or 60 °C for 10 min. To examine the 
thermostability of surface HLA-B5, cells were directly immunostained with the monoclonal αMHC 
class I antibody 4E. To analyze the thermostability of intracellular HLA-B5, transfectants were 
fixated, permeabilized and stained with antibody 4E. After incubation with FITC-labeled secondary 
antibody HLA-B5 levels were determined by flow cytometry. (B) Survival of MHC class I molecules 
on the cell surface. Transfectants were treated with brefeldin A (BFA) that inhibits protein export 
from the ER. After culturing the cells for the time indicated, MHC class I surface molecules were 
stained with antibody 4E. Results of the flow cytometry are presented as percentage of the 
reduction in the mean fluorescence intensities (MFI) at 1, 2, 4, 12 and 15h compared with the MFI 
at 0h. (C) Maturation and thermostability of MHC class I. Transfectants were pulse-labeled for 30 
min and chased for the indicated times. Subsequently, cells were lysed in the presence or 
absence of 10 µM peptide EBV-3C/881-9 (QPRAPIRPI) and incubated for 1h at 37 °C. 
Immunoprecipitates recognized by the antibody 4E were digested with endoglycosidase H and 
separated by SDS-PAGE (left panel). Obtained signals of MHC class I heavy chains (ER and post-
ER) were quantitated and the bands with the highest intensity were set to 100% (right panel). 

To investigate whether stabilization of HLA-B5 complexes can occur during the 

intracellular transport to the cell surface, pulse-chase experiments were performed 

with the different transfectants (Fig. 15C). Cell lysates at different time points were 

heat-treated at 37°C for 1h in the presence or absence of the MHC class I-stabilizing 

peptide EBV-3C/881-9 (QPRAPIRPI, in single letter amino acid code) (Hill et al, 

1995) and subsequently incubated with endoglycosidase H. The fraction of 
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thermostable MHC class I molecules was assessed by immunoprecipitation with the 

conformation-sensitive monoclonal antibody 4E. Consistent with the experiments 

shown in Fig. 8A, Fig. 8B and Fig. 8C the ER-export rate of total HLA-B5 was found 

to be similar in T2(TAPwt), T2(1-2∆N) and T2(2-1∆N) as determined in the presence 

of stabilizing peptide (Fig. 15C, closed symbols). Furthermore, without the addition of 

external peptides MHC class I molecules of T2(TAPwt) or T2(2-1∆N) showed high 

thermostability when they had left the ER (Fig. 15C, open symbols). However, the 

situation was different in the cell line T2(1-2∆N) as here MHC class I molecules were 

thermolabile even after their export from the ER (Fig. 15C, open symbols). Moreover, 

comparison of the signals of the Endo H-resistant MHC class I isolated in the 

presence or absence of stabilizing peptides revealed that in T2(1-2∆N) the ER-

exported MHC class I molecules improved their thermostability during the process of 

post-ER maturation (Fig. 15C).  

The experiments described above suggest that PLCs formed by the TAP variant 1-

2∆N have lost their quality control function in the generation of stably loaded MHC 

class I. Furthermore, the presented data provides evidence that structural stability of 

MHC class I complexes can be rescued in the late compartments of the secretory 

route. 

 

5.5 The N-domain of TAP2 is essential for the structural integrity of the PLC 

To elucidate the molecular basis for the defective quality control of MHC class I 

processing in transfectants expressing 1-2∆N the composition of PLCs comprising 

the TAP variants TAPwt, 1-2∆N or 2-1∆N was analyzed. The proper assembly of the 

PLC may be of central significance as in addition to tapasin, also the accessory 

chaperones ERp57 and calreticulin are thought to play a critical role in the quality 
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Fig. 16 Composition of PLCs comprising TAP variants 2-1∆N and 1-2∆N 
Comparative analysis of PLC formation by wild-type TAP, 2-1∆N and 1-2∆N. Immunoblots of SDS-
PAGE-separated proteins from αTAP2 precipitates were probed for TAP1, TAP2, tapasin, MHC 
class I heavy chains, ERp57, calreticulin or calnexin. The relative intensities of signals quantified 
by densitometric scanning are shown as bar graphs. 

control of MHC class I loading (Wright et al, 2004). Recent models propose that the 

functional interplay of all three components is required for the optimization of the 

peptide cargo for MHC class I within the PLC (Gao et al, 2002; Dick et al, 2002). This 

is also reflected in the high cooperativity of interactions among the different PLC 

components (Harris et al, 2001; Hughes et al, 1998; Momburg et al, 2002; Sadasivan 

et al, 1996). Therefore, the complex formation of 1-2∆N and 2-1∆N with ERp57 and 

calreticulin was examined by immunoprecipitation, using the TAP2-specific antiserum 

116/5. Additionally, the association of the transporter variants with calnexin, which is 

thought to be a component of the so-called precursor-complex that precedes the 

formation of the PLC (Diedrich et al, 2001) was analyzed. The TAP immunoblots of 

SDS-PAGE-separated precipitates showed comparable amounts of wild-type and 

truncated TAP chains, demonstrating that immunoisolations from all three cell lines 

had been equally efficient (Fig. 16). In accordance with the experiments shown in 

Fig. 7, comparable co-isolation of MHC class I was also observed (Fig. 16). 

Furthermore, in support of the model that calreticulin becomes inserted into the PLC 

together with MHC class I (Diedrich et al, 2001) identical amounts of this chaperone 
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were found in the complexes of wild-type TAP and 2-1∆N (Fig. 16). It is worth to note 

that this is reminiscent of the similar levels of MHC class I and calreticulin co-

precipitating with TAPwt and the single chain 1∆N (Fig. 12D). However, the amount 

of tapasin, ERp57 and calnexin co-isolated with 2-1∆N equalled half the amount co-

isolated with the wild-type transporter indicating that in 2-1∆N solely the N-domain of 

TAP2 is involved in the formation of precursor and/or peptide-loading complexes 

(Fig. 16). As seen before (Fig. 7), the interaction of 1-2∆N with tapasin and MHC 

class I resembled the properties of complexes formed by variant 2-1∆N (Fig. 16). Yet, 

in striking contrast to 2-1∆N, the quantities of accessory chaperones co-precipitated 

with 1-2∆N were significantly diminished. The amounts of co-isolated ERp57, 

calnexin and calreticulin corresponded to 10, 15 and 40% of that found in the 

complex of TAPwt. This indicates that either the steady state levels of these 

chaperones in PLCs comprising 1-2∆N are drastically reduced or that the interactions 

among the polypeptides within these PLCs are substantially weaker so that the 

accessory components are lost during the immunoprecipitation procedure. In any 

case, despite efficient recruitment of tapasin and MHC class I to the N-domain of 

TAP1 in 1-2∆N, the formation of precursor- and/or peptide-loading- complexes 

seems to be markedly disturbed in the cooperative assembly of accessory 

chaperones. It is reasonable to assume that this is directly responsible for the 

defective quality control of MHC class I loading observed in cells expressing variant 

1-2∆N. 

 

5.6 Calnexin is part of the peptide loading complex in T2 cells expressing TAP 

The experiments depicted in Fig. 16 showed that the instability of intracellular MHC 

class I molecules in the cell line 1-2∆N correlated with diminished co-isolation of 
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calnexin with TAP. This was surprising, as calnexin had previously not been reported 

to be a component of the PLC in human cells, but instead to transiently associate via 

tapasin with TAP in a so-called precursor complex before MHC class I becomes 

inserted along with calreticulin (Diedrich et al, 2001). Nevertheless, this view on the 

assembly of the PLC contrasts with observations regarding the mature loading 

complex in murine cells that was shown to comprise significant levels of the 

membrane-anchored lectin chaperone (Suh et al, 1996). Thus, to address the 

question whether calnexin associates with the PLC in human T2 cells expressing 

TAPwt, 1-2∆N or 2-1∆N, respective cell extracts were subjected to consecutive 

immunoprecipitation to isolate mature loading complexes, which contain TAP and 

MHC class I at the same time. Therefore, in a first step TAP-associated polypeptides 

were precipitated from digitonin lysates of the cell lines T2(TAPwt), T2(1-2∆N) and 

T2(2-1∆N) using the TAP2-specific antiserum 116/5. Subsequently, bound protein 

complexes were eluted by competition with a peptide corresponding to the C-

terminus of TAP2 (EQDVYAHLVQQRLEA, in single letter amino acid code) 

(Momburg et al, 1992). An aliquot of this eluate was saved for Western blot analysis 

of TAP-associated proteins (Fig. 17A, lanes 1, 2 and 3) before complexes were re-

precipitated with the monoclonal anti-MHC class I antibody 3B10.7. Isolated PLCs 

were separated by SDS-PAGE and analyzed by Western blot using antisera directed 

against calnexin, TAP1 or MHC class I (Fig. 17A, lanes 4, 5 and 6). Fig. 17A (lane 4) 

shows that significant amounts of calnexin were found in complexes that 

simultaneously comprised TAPwt and MHC class I, indicating that the lectin 

chaperone is indeed a component of the mature PLC in T2 cells expressing the wild-

type transporter. However, the total amount of calnexin associated with TAP was 

determined to be somewhat larger than its amount in TAP-MHC class I complexes 

(Fig. 17A, compare lane 1 and 4). This difference may reflect the co-existence of 
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A
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Fig. 17 Association of calnexin with the PLC 
A) Association of calnexin with the PLC. TAP-associated proteins were immuno-isolated from 
digitonin lysates of cells expressing TAPwt, 2-1∆N or 1-2∆N, using the TAP2-specific antiserum 
116/5. Bound complexes were eluted by competition with peptide, corresponding to the C-
terminus of TAP2 and re-precipitated with the anti-MHC class I-specific antibody 3B10.7. SDS-
PAGE-separated proteins were transferred onto nitrocellulose membrane and stained with 
antisera, directed against calnexin, TAP1 or MHC class I. B) ALLN enhances the physical 
interaction between calnexin and TAP. T2 transfectants were incubated in the absence or 
presence of the proteasome inhibitor ALLN and lysed either immediately or after removal of the 
inhibitor followed by overnight-incubation in ALLN-free medium. TAP2-associated proteins were 
isolated and analyzed by Western blot. C) The levels of TAP2-bound calnexin were quantitated 
from the Western blot shown in Fig. 17B by densitometric scanning and peak integrals, normalized 
for precipitated TAP1 were plotted as bar graphs. D) ALLN application does not induce calnexin 
recruitment into PLCs comprising 2-1∆N. PLCs were isolated by consecutive immunoprecipitation 
form digitonin-lysates of ALLN-treated cells as in Fig. 17A. Anti-TAP2-immunoprecipitates from the 
first round of IP (left panel) or mature PLCs isolated by consecutive IP (right panel) were 
separated by SDS-PAGE and analyzed by Western Blot.  
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precursor complexes (that lack MHC class I) and mature loading complexes (that 

contain MHC class I) in the cell. Alternatively, this result might also be explained by 

some loss of calnexin from the PLC during the consecutive immunoprecipitation. 
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Nevertheless, in either case a significant fraction of TAP-MHC class I-complexes 

appears to be concomitantly associated with calnexin. In line with the results shown 

in Fig. 16 calnexin also co-precipitated with both truncation variants of the 

transporter. As expected (see Fig. 16), variant 2-1∆N associated with moderately 

reduced levels, whereas variant 1-2∆N bound dramatically reduced levels of the 

lectin chaperone when compared to TAPwt (Fig. 17A, compare lane 1, 2 and 3). (It 

should be noted that in this experiment the levels of MHC class I co-isolated with 1-

2∆N (Fig. 17A, lane 3) as well as the levels of TAP1 co-precipitated with MHC class I 

from the respective eluate (Fig. 17A, lane 6) were somewhat lower than expected. 

This may be caused by a reduced precipitation efficiency, a partial disassembly of 

the less stable loading complexes formed by 1-2∆N or some proteolysis of 

precipitated proteins during the prolonged elution procedure at room temperature.) 

Nevertheless, the calnexin levels in mature PLCs formed by truncated TAPs were 

dramatically reduced (in the case of 2-1∆N) (Fig. 17A, lane 5) or not detectable at all 

(in the case of 1-2∆N) (Fig. 17A, lane 6). This indicates that the presence of the lectin 

chaperone and MHC class I in the loading complexes comprising 1-2∆N or 2-1∆N is 

mutually exclusive. Moreover, the distinctive interaction of calnexin with PLCs formed 

by truncated TAPs and TAPwt demonstrates that the observed association of the 

lectin chaperone with the wild-type loading complex is indeed specific. This 

underscores that calnexin is a regular component of the mature PLC in human cells. 

In addition, the findings described in this thesis show also that the wild-type 

transporter at steady state associates with MHC class I solely via one but not 

simultaneously via both N-domains (Fig. 7B, Fig. 12D, Fig. 16). Thus, in combination 

of these findings it is tempting to speculate that the opposing tapasin-docking site 
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(currently not interacting with class I) is concomitantly involved in the transient 

calnexin interaction (Fig. 23).  

Treatment of cells with the cell-permeable proteasome inhibitor ALLN has been 

reported to enhance and extent the association of TAP with MHC class I molecules 

(Hughes et al, 1996). From these studies it had been concluded that under conditions 

that interfere with the availability of suitable peptide ligands in the ER lumen, empty 

MHC class I molecules stably accumulate in the PLC. One surprising result 

described above is that although both, TAP1 and TAP2 comprise a tapasin/MHC 

class I-docking site in their N-domain (Fig. 7 and Fig. 16) only one appears to be 

used for MHC class I-interaction at steady state (Fig. 7B, Fig. 12D, Fig. 16), whereas 

the other is occupied with calnexin (Fig. 17A and Fig. 23). Consequently, the 

question arises whether this organization of the loading complex indeed reflects a 

physical inability of class I to associate with both N-domains of TAP at the same time 

or if the observed steady state composition of the PLC is solely a result of the high 

dissociation rate of MHC class I from TAP caused by the optimal availability of 

peptide ligands. In the case of the latter scenario, it would be expected that under 

conditions where the peptide delivery into the ER is blocked (e.g. in the presence of 

the proteasome inhibitor ALLN), empty MHC class I molecules would displace 

calnexin from TAP and stably associate with both subunits of the transporter. To 

address this point, the cell line T2(TAPwt) was grown in the presence or absence of 

250 µM ALLN for 4 hours before lysis in digitonin-containing buffer and precipitation 

of TAP-associated polypeptides using the TAP2-specific antiserum 116/5. 

Interestingly, Western blot analysis of co-isolated proteins did not show any 

increased levels of MHC class I bound by TAP in the presence of ALLN in three 

independent experiments, one of which is shown in Fig. 17B (compare lane 4 and 5), 

indicating that in non-treated cells all available docking-sites for MHC class I are 
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already saturated at steady state. Furthermore, the results shown in Fig. 17B 

underscore that even under conditions of extreme peptide starvation MHC class I 

molecules are not able to displace calnexin from TAP. This demonstrates that 

peptide supply does not affect the usage of tapasin-docking sites in the PLC by MHC 

class I. Consequently, the association of MHC class I molecules with both N-domains 

of TAP at the same time is a structural state that cannot be attained by the PLC. One 

possible explanation may be that the formation of a loading complex via one N-

domain sterically hinders the formation of a corresponding complex at the docking-

site in the opposing TAP subunit. Surprisingly, the calnexin signals recovered with 

TAP were significantly increased in the presence of the proteasome inhibitor (Fig. 

17B, compare lane 4 and 5, for quantification see Fig. 17C). This is not due to an 

increase in overall TAP levels in the lysate as the proteasome inhibitor did not affect 

TAP expression (Fig. 17B).  Thus, the results shown in Fig. 17B indicate that either 

additional calnexin molecules are recruited into the PLC upon proteasome inhibition 

or that the association of calnexin with the PLC is structurally stabilized in the 

absence of peptide supply. As the observed increase of co-isolated calnexin in the 

anti-TAP immunoprecipitation is not paralleled by a comparable decrease in co-

isolated MHC class I it can be excluded that additional calnexin molecules occupy 

binding sites in the PLC that had previously been associated with class I (Fig. 17B; 

see also Fig. 17D, left panel). Thus, the finding that more calnexin can be co-

precipitated with TAP in the presence of ALLN is more likely to reflect an enhanced 

physical interaction between TAP and the lectin chaperone than an increase in the 

total number of bound calnexin molecules per PLC. As a recent study suggests that 

peptide-occupation of TAP qualitatively affects its tapasin-mediated interaction with 

class I (Owen et al, 2001), a similar view may be applied for the tapasin-mediated 

interaction of calnexin with the transporter. It is plausible to assume that in the 
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presence of ALLN an intermediate of the PLC is trapped, which corresponds to the 

state where TAP is not associated with cytosolic peptide substrates. Possibly, this 

intermediate is characterized by a higher affinity for the lectin chaperone. One 

prediction that such a model would make, is that the enhanced physical interaction 

between TAP and calnexin observed under conditions of peptide starvation should 

become reversed upon the restoration of the peptide supply into the ER. To validate 

this, T2(TAPwt) cells were treated with 250 µM ALLN for 4 hours, followed by 

extensive washing for removal of the proteasome inhibitor and subsequent over-night 

incubation in ALLN-free medium. 24h later the cells were lysed and TAP-associated 

polypeptides were isolated with the TAP2-specific antiserum 116/5. As expected 

Western blot analysis of the co-isolated proteins showed that the signals for calnexin 

recovered with anti-TAP2 antiserum under these conditions returned to levels 

observed for non-treated cells (Fig. 17B and Fig. 17C). To confirm the results shown 

in Fig. 17B mature MHC class I-containing loading complexes were isolated by 

consecutive immunoprecipitation (as for Fig. 17A) from ALLN-treated T2(TAPwt) or 

T2(2-1∆N) cells. Consistent with the finding that in the presence of ALLN MHC class I 

does not displace calnexin from the wild-type PLC, TAPwt and 2-1∆N bound 

comparable levels of class I even when the proteasome inhibitor was applied (Fig. 

17D, left panel). Furthermore, in line with the idea that binding of calnexin and MHC 

class I to the truncated transporters is mutually exclusive mature loading complexes 

formed by 2-1∆N did not show any detectable association with the lectin chaperone 

(Fig. 17D, right panel). In contrast, calnexin was clearly present in PLCs formed by 

TAPwt (Fig. 17D, right panel). Finally, the results shown in Fig. 17D provide further 

evidence that PLCs comprising 2-1∆N contain only one of the two docking sites for 

the recruitment of tapasin and ERp57. Nevertheless, as expected from the results 
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depicted in Fig. 7B and Fig. 16 MHC class I associates comparably with mature 

PLCs formed by wild-type TAP or 2-1∆N.  

Taken together, the results shown in Fig. 17 support a model of the PLC wherein one 

N-domain of TAP is involved in tapasin-mediated interaction with MHC class I, 

whereas the opposing N-domain is simultaneously involved in the transient tapasin-

mediated interaction with calnexin (Fig. 23). 

 

5.7 Calnexin is not essential for recruitment of ERp57 into the loading complex 

or for the quality control of antigen presentation 

The results depicted in Fig. 16 suggest that the truncation variant 1-2∆N associates 

with significantly lower levels of ERp57, calreticulin and calnexin than the wild-type 

transporter. Since ERp57 is believed to become recruited to its substrate proteins via 

binding to one of the two lectin chaperones (Ellgaard et al, 2004) the question arose 

whether calnexin is responsible for the insertion of the oxidoreductase into the PLC. 

To address this question, TAP-associated proteins were co-isolated with the 

monoclonal TAP1-specific antibody 148.3 from digitonin lysates of the calnexin-

proficient human T cell leukaemia cell line CEM or its calnexin-deficient derivative 

CEM-NKR (Fig. 18A). Precipitates were analyzed by Western blot using antibodies 

targeted against TAP1, calreticulin, tapasin and ERp57 (Fig. 18B). Interestingly, 

PLCs derived from CEM-NKR cells displayed no reduction in ERp57 association, 

indicating that calnexin is not essential for recruitment of ERp57 into the PLC.  

The results depicted in Fig. 17A and Fig. 17D suggest that calnexin and MHC class I 

do not concomitantly associate with the same TAP subunit in the wild-type loading 

complex. This might argue against a direct influence of calnexin on the loading of 

MHC class I molecules. However, as roles for the other components of the PLC in 

the quality control of antigen presentation have been proposed (Dick et al, 2002; Gao 
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Fig. 18 Characterization of the peptide loading complex and MHC class I stability in cells 
lacking calnexin 
A) Expression of calnexin. Cell lysates were analyzed in a Western blot probed for calnexin. B)
Comparison of PLC formation. Immunoblots of SDS-PAGE-separated proteins from αTAP1 
precipitates were probed for TAP1, tapasin, ERp57 and calreticulin. C) Thermostability of 
intracellular MHC class I in CEM and CEM-NKR cells. Cells were collected in PBS / 0,1% NaN3
before incubation at 4, 40, 50 or 60 °C for 10 min. Subsequently, cells were fixated, permeabilized 
and stained with the monoclonal αMHC class I antibody w6/32. After incubation with FITC-labeled 
secondary antibody MHC class I levels were determined by flow cytometry.
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et al, 2002; Tan et al, 2002; Williams et al, 2002), it was analyzed whether or not 

calnexin is a part of the machinery that directs the generation of stable MHC class I 

molecules in the ER. Therefore, the thermostability of intracellular MHC class I 

molecules in calnexin-deficient CEM-NKR cells and their calnexin-proficient 

counterparts CEM was examined by flow cytometry (Fig. 18C). For these studies the 

monoclonal anti-MHC class I antibody w6/32 (Barnstable et al, 1978) was employed, 

which recognizes β2m-associated HLA-A, HLA-B and HLA-C molecules. Fig. 18C 

shows that the total MHC class I population in calnexin-positive CEM cells displayed 

a higher thermolability than HLA-B5 in T2(TAPwt) cells (Fig. 15A). Allele-specific 
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differences in MHC class I stability (Zernich et al, 2004) are likely to account for this. 

However, no further reduction of MHC class I thermostability could be observed in 

calnexin-deficient CEM-NKR cells, suggesting that calnexin has at least no significant 

influence on the stability of the MHC class I alleles expressed in CEM cells.  

 

5.8 High level MHC class I surface expression in the cell line T2(1-2∆N) 

depends on the proteolytical activity of proprotein convertases  

The data regarding the stability of MHC class I in the established cell lines (Fig. 14 

and Fig. 15) showed that the fraction of surface HLA-B5 in the transfectant T2(1-

2∆N) was significantly more thermoresistant than the intracellular population (Fig. 

15A). Since the stability of this class I allele improved over time in a post-ER 

compartment (Fig. 15C) the question arose, which cellular mechanism was 

responsible for the observed effect. To address this point, it was first determined 

whether the transfectants expressing 1-2∆N gained stability of surface HLA-B5 

complexes by an increased rate of endocytic recycling and re-loading of MHC class I 

with peptides generated by endosomal processing. Therefore, the cell lines 

T2(TAPwt), T2(1-2∆N) or T2(2-1∆N) were grown in the presence of primaquine (Fig. 

19, grey bars) or NH4Cl (Fig. 19, white bars) before HLA-B5 surface levels were 

analyzed by flow cytometry. Primaquine is a drug that causes intracellular 

accumulation of endocytosed proteins including MHC class I molecules through a 

block in endocytic recycling (Reid et al, 1990) whereas NH4Cl inhibits endosomal 

processing (Ohkuma et al, 1978). Interestingly, the different transfectants showed 

almost identical reductions in the surface presentation of HLA-B5 in the presence of 

the lysosomotropic reagents (up to 25% for primaquine, see Fig. 19). This indicates 

that the analyzed cell lines do not markedly differ in the endocytic recycling and 

processing of surface MHC class I. 
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Fig. 19 Endocytic recycling and endosomal processing of MHC class I 
Expression of surface HLA-B5 in the presence or absence of primaquine or NH4Cl was analyzed 
by flow cytometry. Results are plotted as percentage of reduction of the MFI compared with the 
MFI of the control experiments.  

  

Stryhn and co-workers had proposed that suboptimally loaded MHC class I 

molecules, which are exported from the ER, may exchange peptide ligands with low 

affinity in the acidic milieu of the late secretory compartments (Stryhn et al, 1996). 

Furthermore, proprotein convertases (PCs) (Seidah et al, 1998), some of which are 

known to cycle between the trans-Golgi network (TGN), plasma membrane and 

endosomes (Rockwell et al, 2004; Seidah et al, 1998), have been reported to be 

involved in the generation of peptide antigens for MHC class I (Gil-Torregrosa et al, 

2000; Zhang et al, 2001). Thus, one promising hypothesis was that the improvement 

of MHC class I stability in the cell line T2(1-2∆N), which occurred along the exocytic 

route reflected re-loading of unstable MHC class I molecules in the TGN with 

proprotein convertase-generated peptides (see working model in Fig. 24). The 

human genome encodes at least seven highly related members of the 

subtilisin/kexin-like prohormone convertase family of serine proteases (Seidah et al, 

1998). Two of these, namely PC1 and PC2 are exclusively expressed in endocrine 

and neuroendocrine cells (Bennett et al, 1992; Seidah et al, 1990; Seidah et al, 

1992), whereas PC4 has been reported to be expressed solely in testis (Nakayama 

et al, 1992). However, the remaining four members of the proprotein convertase 

family, namely furin (Roebroek et al, 1986), PC5 (Mercure et al, 1996), PC7 
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(Bruzzaniti et al, 1996) and PACE4 (Kiefer et al, 1991) are known to display a 

widespread tissue distribution (Bruzzaniti et al, 1996; Hatsuzawa et al, 1990; Kiefer 

et al, 1991; Lusson et al, 1993; Mercure et al, 1996; Seidah et al, 1996; Tsuji et al, 

1994). As T2 cells derive from a hybrid ancestor (T1) generated by the fusion of a B-

lymphoblastoid cell line (LCL 721.174) with a T- lymphoblastoid cell line (CEM) 

(Salter et al, 1985), it is interesting to note that several B-cell lines were also reported 

to express furin and PC7 (Zarkik et al, 1997) while some T-cell lines additionally 

harbour PC5 (Decroly et al, 1996; Decroly et al, 1997). To investigate whether T2 

cells express any of the proprotein convertases displaying broad tissue distribution 

RT-PCR was performed using primers specific for furin, PC5, PC7 or PACE4 (Fig. 

20A). In this experiment the human hepatoma cell line HepG2 served as a positive 

control as previous studies had shown that this cell line expresses several PC 

members (Imamaki et al, 1999). mRNA prepared from both cell lines was kindly 

provided by C. Bekpen. As depicted in Fig. 20A transcripts of all four proprotein 

convertases could be readily detected in HepG2 cells, whereas the T2 cell line 

expressed solely furin and PC7. To additionally confirm at the protein level the 

presence of these two proprotein convertases in T2 cells respective lysates were 

separated by SDS-PAGE and analyzed by Western Blot using PC-specific antisera. 

As shown in Fig. 20B, bands corresponding to furin and PC7 could be detected in T2 

cell lysates at the expected size of approx. 92 kDa. To further analyze the subcellular 

distribution of furin and PC7 in T2 cell lines immunofluorescence studies were 

undertaken. The fluorescence signal measured for PC7 was found to be most 

intense in a juxta-nuclear region that seemed to consist of several membranous 

subcompartments (Fig. 20C-d and Fig. 20C-e). Additionally, some cells displayed 

strong anti-PC7 immunoreactivity associated with vesicular structures immediately 

beneath the plasma membrane (Fig. 20C-f). This is consistent with earlier 
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descriptions of PC7 as a proprotein convertase distributed within the TGN (Van de 

Loo et al, 1997) or post-TGN vesicles (Wouters et al, 1998). Furin was also found to 

Fig. 20 Expression of proprotein convertases in T2 cells 
(A) Detection of proprotein convertase transcripts by RT-PCR. mRNA derived from T2 or HepG2 
cells (kindly provided by C. Bekpen) served as a template for RT-PCR using proprotein 
convertase-specific primers. (B) Expression of furin and PC7 in T2 cells. Lysates of T2 cells were 
analyzed by Western blot using the furin-specific antiserum anti-Furin or the PC7-specific 
antiserum KP-1. (C) Subcellular localization of proprotein convertases in T2 cells. Cells were 
fixated, permeabilized and stained with proprotein convertase specific antisera followed by Alexa 
488-conjugated secondary antibody. Subsequently cells were analyzed using a Zeiss Axioplan II 
fluorescence microscope. (D) Specificity of furin and PC7 stainings. T2 cells were fixated, 
permeabilized and stained with proprotein convertase specific antisera. After incubation with Alexa 
488-labeled secondary antibody intracellular proprotein convertase levels were determined by flow 
cytometry (filled histograms). Unspecific background staining was analyzed by incubation with 
secondary antibody alone (non-filled histograms). 
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be partially distributed in Golgi-like structures (Fig. 20C-c). However, anti-furin 

immunoreactivity was clearly most prominent in small dots that appeared to be 

spread throughout the cell (Fig. 20C-a and Fig. 20C-b). This pattern strongly 

resembles the characteristic staining pattern of the endosomal system, suggesting 

that furin may be predominantly localized to endosomes in T2 cells. To confirm the 

specificity of the immunofluorescent stainings displayed in Fig. 20C flow cytometry 

analysis of proprotein convertase expression using the same combination of primary 

and secondary antibodies was performed (Fig. 20D). To investigate whether the high 

level of surface MHC class I expression in the cell line T2(1-2∆N) depends on the 

activity of proprotein convertases, surface MHC class I-recovery experiments in the 

presence of increasing concentrations of the PC-specific, cell permeable inhibitor 

hexa-D-arginine (HDA) (Fig. 21) were performed (Cameron et al, 2000; Sarac et al, 

2002). In T2 cells expressing wild-type TAP and 2-1∆N, the recovery of surface MHC 

class I was not or only slightly affected (Fig. 21). This suggests that in these two cell 

lines the proprotein convertase-dependent pathways play only a minor role in the 

generation of MHC class I ligands. However, transfectants expressing variant 1-2∆N 

showed in the presence of HDA a significant and concentration-dependent reduction 

(up to 45% at 100 µM HDA) of surface MHC class I suggesting that a substantial 

amount of HLA-B5 antigens originates from proteolytic products generated by furin or 

related PCs (Fig. 21).  

Thus, it seems that in a situation where the quality control in the loading complex fails 

a post-ER mechanism that depends on proprotein convertase-activity can rescue 

stable surface expression of MHC class I molecules (Fig. 24).  
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Fig. 21 Proprotein convertase-dependence of MHC class I surface expression 
Proprotein convertase-dependence of MHC class I surface expression. Cells were acid-washed to 
remove assembled surface MHC class I and incubated for 14h in the presence of increasing 
concentrations of the proprotein convertase inhibitor hexa-D-arginine. Subsequently, cells were 
stained with monoclonal antibody 4E followed by FITC-labeled secondary antibody and surface 
expression of HLA-B5 was determined by flow cytometry. Surface MHC class I staining in the 
presence of hexa-D-arginine is plotted as percentage of reduction of the MFI compared with the 
MFI of the control experiments. 

5.9 Proprotein convertase expression is differentially regulated by interferons 

at the transcriptional level 

The expression of diverse immune-relevant genes is regulated by interferons, among 

them many that play a role in the MHC class I antigen presentation pathway (Boehm 

et al, 1997). As interferons become secreted in the context of an acute infection 

(Boehm et al, 1997) the upregulation of a gene in response to these cytokines has in 

the past been regarded as indicative of an immune-related function. However, 

several abundant proteins that serve for housekeeping functions in the cell, but 

additionally play an important role in antigen presentation (e.g. the constitutive 

proteasome, calnexin or calreticulin) have not been reported to be induced by 

interferons. It is noted that the regulation of proprotein convertase expression in 

virally infected cells may be of particular interest as this class of furin-related 

proteases besides a possible role in antigen presentation (Fig. 21) is required for the 

proteolytic maturation of numberless viral proteins, including those of human 
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immunodeficiency virus (HIV) (Vollenweider et al., 1996), hepatitis B virus (HBV) 

(Messageot et al, 2003), severe acute respiratory syndrome coronavirus (SARS) 

(Bergeron et al, 2005), human respiratory syncytial virus (HRSV) (Gonzalez-Reyes et 

al, 2001), influenza A Hong Kong virus (HKV) (Basak et al, 2001), measles virus (Bolt 

et al, 1998), human cytomegalovirus (HCMV) (Vey et al, 1995) and ebola virus 

(Basak et al, 2001). Thus, in view of the finding that under certain conditions 

proprotein convertases contribute peptides to the MHC class I antigen presentation 

pathway (Fig. 21) the up- or downregulation of proprotein convertases in the context 

of a viral infection may turn out to be a two-edged weapon. To determine whether 

furin or PC7 are regulated at the transcriptional level by interferon-γ the human cell 

lines T2 (a lymphoblastoid cell line), THP-1 (a monocyte-derived cell line) or HeLa (a 

cervical carcinoma cell line) were stimulated with 200 U/ml interferon-γ for 24h before  

mRNA was prepared. This mRNA, which was kindly provided by C. Bekpen, served 

as a template in an RT-PCR in combination with furin- or PC7-specific primers. To 

control for the equal amount and quality of the mRNA derived from uninduced or 

induced cells, RT-PCR was performed with primers specific for the interferon-

unresponsive (Baldeon et al, 1998) housekeeping gene GAPDH (Hanauer et al, 

1984). Additionally, to validate that the induction with the indicated cytokine was 

successful, RT-PCR was carried out using primers specific for the genes hGBP1 

(Cheng et al, 1991) or MxA (Aebi et al, 1989), both of which encode immune-relevant 

GTPases (MacMicking et al, 2004) that have been reported to be highly upregulated 

upon interferon induction (Aebi et al, 1989; Andrews et al, 2002; Cheng et al, 1986). 

As shown in Fig. 22 the expression of PC7 was not or only moderately affected at the 

transcriptional level in all cell lines tested. However, furin transcripts were despite 

their apparent presence in uninduced cells only barely detectable (in T2 cells) or not 

detectable at all (in THP-1 and HeLa cells) in cells stimulated with interferon-γ (Fig. 
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Fig. 22 Interferon-regulation of proprotein convertase expression 
The human cell lines T2 (lymphoblastoid), THP-1 (monocyte-derived) or HeLa (cervical carcinoma) 
were stimulated for 24h with interferon-γ or interferon-β at a concentration of 200 U/ml or 2000 
U/ml, respectively. The mRNA that was subsequently prepared from the indicated cell lines was 
kindly provided by C. Bekpen for this experiment. RT-PCR was performed using this mRNA as a 
template in combination with proprotein convertase-specific primers. Equal amount and quality of 
mRNA isolated from induced and uninduced cells was controlled by RT-PCR using primers 
specific for GAPDH, an interferon-unresponsive housekeeping gene. The induction by interferons 
was controlled by RT-PCR using primers specific for the interferon-regulated genes hGBP1 or 
MxA. 

22). This clearly indicates that furin is strongly (and in some cell lines completely) 

downregulated at the transcriptional level in response to this cytokine. Hence, it is 

tempting to speculate that during most viral infections PC7 is the proprotein 

convertase that eventually rescues unstable MHC class I molecules in the trans-

Golgi-network whereas the expression of furin is repressed to impede viral 

replication. Interestingly, PACE-4 was also found to be strongly downregulated in 

HeLa cells in response to interferon-γ (Fig. 22). Thus, one may speculate that in the 

case of an infection the synthesis of a whole battery of enzymes, all characterized by 

overlapping cleavage-specificities and all able to promote the cleavage-activation of 

viral proteins (with varying efficiency) is switched off. Most interestingly, the treatment 

with interferon-β lead also to a dramatic decrease in the levels of furin transcripts in 

T2 cells suggesting that type Ι (α/β) and type ΙΙ (γ) interferons regulate the synthesis 
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of proprotein convertases in a coordinate and (possibly) synergistic manner as 

described in the case of many other genes (Boehm et al, 1997).  

Taken together, in diverse cell lines the expression of proprotein convertases at the 

transcriptional level appears to be distinctively modulated in response to interferons. 

Additionally, the results shown in Fig. 22 suggest that even under conditions of 

interferon-mediated downregulation of certain proprotein convertases, persistent 

expression of PC7 may allow for the continuing generation of MHC class I antigens in 

the trans-Golgi network. 
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6. Discussion 

6.1 At steady-state TAP does not simultaneously associate with MHC class I via 

both N-domains   

To investigate the function of the N-terminal tapasin-binding sites in TAP1 and TAP2 

for the proper processing of MHC class I molecules, TAP variants lacking the N-

domain in TAP1 (2-1∆N) or TAP2 (1-2∆N) were stably expressed in the human TAP-

negative cell line T2 (Fig. 5B). Both mutant transporters clearly bound peptides (Fig. 

6A) and displayed normal substrate translocation activity when compared to the wild-

type transporter (Fig. 6B). Consequently, MHC class I molecules were efficiently 

supplied with ligands in T2 transfectants expressing TAPwt, 1-2∆N or 2-1∆N. This 

was reflected in almost identical dissociation kinetics of MHC class I from the PLC 

(Fig. 7B), comparable ER-export rates of HLA-B5 (Fig. 8A and Fig. 15C, closed 

symbols), similar time-courses of HLA-B5 surface recovery (Fig. 8B) and equal 

steady state surface expression of both, HLA-B5 (Fig. 8C) and HLA-A2 (data not 

shown) in the established cell lines.  

Consistent with the results of others (Koch et al, 2004) a transporter variant lacking 

both N-regions (TD1∆N/2∆N) was shown to be completely excluded from the PLC 

(Fig. 11A), whereas a similar construct retaining the N-domain in TAP1 readily bound 

tapasin (Fig. 11A). This indicates that the N-terminus of TAP1 indeed acts as a 

docking site for the loading complex. Conversely, the capability of the heterodimeric 

variant 2-1∆N to form a PLC (Fig. 7A, Fig. 16 and Fig. 17D) implies that also the N-

domain in TAP2 acts as a tapasin binding module. In accordance with the above 

mentioned findings pulse-chase experiments showed that both N-domains are able 

to form functional loading complexes, from which MHC class I molecules dissociate 

following the acquisition of peptide cargo (Fig. 7B). Consequently, it is attractive to 
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Fig. 23 Current working-model for the peptide loading complex  
The results presented in this thesis argue for an asymmetric peptide loading complex, in which 
one N-domain of the central TAP molecule is involved in the tapasin-mediated MHC class I-
interaction, whereas the other associates with calnexin (CNX). A consequence of the postulated 
model is that both N-domains are simultaneously associated with tapasin and ERp57 at steady 
state. In contrast, the calreticulin (CRT)/MHC class I-subcomplex as well as calnexin are at any 
given time solely bound by one of the two TAP subunits.  

speculate that the two TAP subunits in the wild-type transporter normally alternate 

with each other in the tapasin-dependent recruitment of newly synthesized MHC 

class I molecules. As expected from the finding that both N-domains can act as 

docking sites for components of the PLC, the wild-type transporter appeared to 

associate with significantly higher levels of tapasin (and ERp57) than the two 

truncated transporters 1-2∆N and 2-1∆N (Fig. 16 and Fig. 17D). Hence, it is tempting 

to speculate that in the case of TAPwt both N-domains simultaneously interact with 

these chaperones (Fig. 23). Surprisingly, the situation was found to be completely 

different for MHC class I and calreticulin. Western blot analysis showed that both 

polypeptides were co-isolated in almost identical amounts with TAPwt, 2-1∆N and 

even the TAP single chain 1∆N (Fig. 12D, Fig. 16 and Fig. 17D). In addition also 1-

2∆N associated comparably with MHC class I molecules (Fig. 16). In accordance 

with these results, pulse-chase experiments displayed very similar kinetics for the 

release of MHC class I from wild-type TAP and the two truncated transporter variants 

(Fig. 7B). This finding and the observation that similar amounts of radiolabeled MHC 

class I co-precipitated with the three TAP variants at any time point of the pulse-
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chase experiment (Fig. 7B) indicates that during the chase period comparable 

amounts of newly synthesized radiolabeled MHC class I passed through the three 

different loading complexes. Thus, although wild-type TAP has the capability to 

recruit MHC class I via both subunits, it seems that in the functional PLC at any given 

time only one of two N-domains is actively involved in the tapasin-mediated 

recruitment, loading and release of newly synthesized MHC class I (Fig. 23). 

Interestingly, this holds true even under conditions of extreme peptide starvation in 

the presence of the proteasome inhibitor ALLN (Fig. 17D, left panel). It should be 

noted that these findings clearly contrast with the initial view on the PLC that 

speculated simultaneous binding of class I to both TAP subunits would favour the 

association of multiple MHC class I alleles with the transporter, thereby increasing 

the probability that a translocated peptide gains immediate access to an appropriate 

allele (Ortmann et al, 1997). This model founded on an early study regarding 

immunoisolated loading complexes, which suggested that one TAP heterodimer 

binds four tapasin and four MHC class I molecules at steady state (Ortmann et al, 

1997). However, as a recent report demonstrated that tapasin does not form dimers, 

trimers or tetramers (Bangia et al, 2005) the predicted stoichiometry would demand 

that four individual tapasin/MHC class I-complexes simultaneously interact with the 

transporter. Furthermore, taking into account the finding that at steady state solely 

one TAP subunit associates with MHC class I (Fig. 7B, Fig. 16 and Fig. 17D), a 

model would follow that claims that each of the two N-domains (comprising solely 3 

or 4 transmembrane helices, respectively) shares the capability to interact with four 

independent tapasin-MHC class I-complexes at the same time. Although the data 

presented in this thesis does not formally exclude such a PLC, it is not considered 

likely either. In better accordance with the results described here, another group 

investigated the composition of the human TAP-complex by velocity sedimentation 
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analysis and provided evidence for a TAP-associated loading complex with a lower 

number of tapasin and MHC class I molecules (Li et al, 1997). Nevertheless, the 

question remains why the transporter does not simultaneously use its N-domains for 

recruitment of MHC class I as both TAP subunits appear to be occupied with tapasin 

at steady state (Fig. 16 and Fig. 17D). One possible explanation may be that several 

viruses considerably interfere with the proper function of the transporter, which must 

be regarded as a bottleneck of the MHC class I antigen presentation pathway (Hewitt 

et al, 2003; Lybarger et al, 2005). Thus, under conditions of a viral infection one 

could speculate that it would be beneficial for the cell to increase the number of 

transporter molecules in order to titrate away viral effectors or at least to temporally 

defer a complete viral block of peptide delivery into the ER. This would be consistent 

with the induction of TAP by the inflammatory cytokine interferon-γ, which is secreted 

by T cells or NK cells in response to an acute infection (Boehm et al, 1997). 

Following this argument, it may be a more promising strategy for the cellular immune 

system to provide a huge number of TAP molecules each associated with one (or a 

small number of) MHC class I alleles than to assemble PLCs that comprise a high 

number of MHC class I alleles bound by a single TAP molecule that in the case of its 

inhibition would render all bound MHC class I molecules peptide-starved and thus 

useless for the immune response.  

 

6.2 Calnexin is a component of the mature human peptide loading complex 

Since several years it is known that the lectin chaperone calnexin associates with the 

loading complex in murine cells (Suh et al, 1996). However, a corresponding 

interaction in the human system has despite some efforts not been detected yet 

(Diedrich et al, 2001). Instead, as a final step of the PLC formation in human cells 
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calnexin was reported to become released from the so-called precursor complex 

rapidly upon (or concomitantly with) the insertion of MHC class I and calreticulin (Fig. 

4) (Diedrich et al, 2001). Consequently, the question arises whether the reproducible 

detection of calnexin in the mature PLCs of the transfectant T2(TAPwt) (Fig. 17A and 

Fig. 17D) reflects indeed a naturally occurring interaction in human cells or is solely 

due to the heterologous expression of rodent TAP. The latter possibility is unlikely as 

several lines of evidence point towards a role for tapasin, but not for TAP in the 

recruitment of calnexin into the PLC / precursor complex. First, tapasin was shown to 

retain the stable association with calnexin and ERp57 after cell lysis in Triton X-100, 

a detergent which is known to release TAP from the other components of the PLC 

(Diedrich et al, 2001). This indicates that TAP is not required to maintain the 

association of calnexin with tapasin and the oxidoreductase. Second, tapasin is 

capable of forming complexes with calnexin in TAP-negative T2 cells (data not 

shown), demonstrating that the peptide transporter is not essential to allow for an 

interaction between the two chaperones. Hence, these results suggest that tapasin, 

but not TAP directly recruits calnexin into the PLC. At present, one can only 

speculate why Diedrich and colleges did not detect calnexin in the human loading 

complex (Diedrich et al, 2001). Hitherto, it cannot be excluded that interactions 

among individual PLC components vary somewhat depending on the MHC class I 

alleles expressed in the cell as suggested by recent results of one group (Paquet et 

al, 2002). Thus, different class I alleles may reside in loading complexes with 

different compositions. However, it is more likely that calnexin-binding to the PLC 

was overlooked as its interaction with the PLC is presumably labile and thus easily 

broken. Surprisingly, the consecutive immunoprecipitation studies depicted in Fig. 

17A and Fig. 17D showed that the simultaneous association of TAP with calnexin 

and MHC class I is solely observed in the case of TAPwt, but not in the case of the 
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truncation variants 1-2∆N and 2-1∆N. As the two latter have not generally lost the 

ability to interact with calnexin (Fig. 16 and Fig. 17A) it must be inferred that both 

interactions are mutually exclusive in the truncated TAPs. Thus, calnexin-bound 

TAP-complexes formed by 1-2∆N and 2-1∆N are with regard to their molecular 

composition reminiscent of the precursor complexes postulated by Diedrich and 

colleges (Diedrich et al, 2001). Consequently, the results presented in Fig. 17A and 

17D do not rule out the existence of precursor complexes in human cells. Rather, it is 

possible that all docking-sites in the PLC that are occupied by MHC class I, were 

previously associated with calnexin. Hence, a model can be predicted, in which the 

docking-sites of the TAP-associated loading complex sequentially switch between 

two states: an MHC class I-associated loading state followed by a calnexin-

associated regeneration or maintenance state (see later). Importantly, the calnexin-

binding properties of the TAP truncation variants imply that the interaction of the 

lectin chaperone with the wild-type transporter occurs via that N-domain, which is 

currently not involved in the binding of MHC class I (see model of the PLC in Fig. 23). 

Interestingly, in the murine system the binding of peptide was shown to release MHC 

class I molecules from TAP but not from calnexin. From this result it was speculated 

that calnexin would ultimately determine whether a loaded MHC class I molecule 

becomes exported from the ER or not (Suh et al, 1996). Such a role for calnexin in 

the retention of murine class I-peptide complexes is consistent with a decelerated 

rate of egress reported for the assembled mouse-derived MHC class I allele H2-Kb 

from the ER when expressed in insect cells in combination with calnexin (Vassilakos 

et al, 1996). Nevertheless, the finding that in murine cells intact MHC class I-calnexin 

complexes become displaced from TAP upon peptide binding, suggests that here 

calnexin binds to the same TAP subunit as class I, making it plausible to speculate 

that the calnexin interaction described for the murine PLC (Suh et al, 1996) is 
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different from that described for the human PLC in this thesis. In line with this, no role 

for calnexin in the retention of assembled MHC class I molecules in human cells was 

found yet (Prasad et al, 1998; Scott et al, 1995). However, up to now it cannot be 

excluded that a concerted release of calnexin and peptide-loaded MHC class I from 

the two opposing N-domains in the human PLC is followed by an association of both 

components. Hitherto, it can only be speculated what the function of calnexin in the 

mature PLC may be. The immunoprecipitation study shown in Fig. 18B rules out that 

calnexin is essential for the recruitment of ERp57 into the loading complex. Thus, as 

calreticulin was also shown to be dispensable for the proper insertion of the 

oxidoreductase into the PLC (Gao et al, 2002) it is likely that either both lectin 

chaperones contribute to the incorporation of ERp57 in a redundant manner or that 

ERp57 is directly recruited by tapasin, to which it forms a disulfide bridge (Dick et al, 

2002). Furthermore, calnexin was shown to be clearly not essential for peptide-

loading, ER-export or surface expression of MHC class I as determined in the 

calnexin-deficient cell line CEM-NKR (Howell et al, 1985; Prasad et al, 1998; Scott et 

al, 1995; data not shown). Typically calnexin is known to play an important role in the 

folding pathway of glycosylated proteins in the ER (Fig. 3) (High et al, 2000). In 

addition, it can act as a molecular chaperone also on several non-glycosylated 

substrates (Ihara et al, 1999). Therefore, one promising hypothesis may be that the 

function of calnexin in the PLC is to maintain (and perhaps protect) the free MHC 

class I-docking site in a state that is competent for class I interaction. This would be 

in line with the finding that a treatment with ALLN enhances the physical interaction 

of calnexin with the PLC. (As this drug blocks the generation of peptides by cellular 

proteases its application may mimic the state of a viral infection, which is often 

characterized by reduced delivery of peptides into the ER through inhibition of TAP or 

the proteasome.) Presumably, such a function for calnexin would be dispensable and 
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hence difficult to observe in a non-infected healthy cell. However, it could become 

important in the context of a pathogenic challenge as several viruses interfere with 

the formation or the function of the PLC (Hewitt et al, 2003; Lybarger et al, 2005). 

One example for such a viral subversion strategy targeting the loading complex is the 

adenovirus protein E19 that binds to both, MHC class I and TAP in order to inhibit the 

interaction of both proteins (Bennett et al, 1999). Another example is the γ-

herpesvirus 68 (HV68) protein mK3 that associates with the TAP-tapasin-complex 

where it presumably awaits the entry of newly synthesized class I chains, on which it 

acts as a ubiquitin ligase (E3) to target them for degradation (Lybarger et al, 2005). In 

addition, recent studies implicated the mK3 polypeptide also with the degradation of 

TAP and tapasin in the cell (Boname et al, 2004). Calnexin may counteract the 

association of viral effectors as E19 and mK3 with the PLC and thereby reduce the 

efficiency of viral interference with the MHC class I antigen presentation pathway. 

Such a role for the lectin chaperone in maintaining (and possibly protecting) the 

loading complex appears to be plausible as under conditions of a viral attack the 

structural integrity and stability of the PLC is likely to be of even greater functional 

importance as under basal conditions. This is underscored by the high cooperativity 

among the interactions of the PLC components (Harris et al, 2001; Hughes et al, 

1998; Momburg et al, 2002; Sadasivan et al, 1996) to which calnexin would be also 

likely to contribute. Such a putative role of calnexin in protecting the class I docking 

sites or conferring additional structural stability on the PLC may also provide an 

explanation why TAP comprises tapasin-docking sites in both subunits, although the 

presence of solely one N-domain (in the 2-1∆N variant) appears to be completely 

sufficient for optimal peptide loading in all assays that were performed so far. 
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6.3 The N-region of TAP2 is essential for the structural and functional integrity 

of the peptide loading complex 

One of the crucial findings presented in this thesis is that T2-transfectants expressing 

variant 1-2∆N are characterized by a significant thermolability of intracellular MHC 

class I molecules when compared to the corresponding cell lines expressing 2-1∆N 

or wild-type TAP (Fig. 14 and Fig. 15). However, the observation that the two 

truncated transporters show comparable binding of tapasin and MHC class I (Fig. 16) 

indicates that the low class I-stability in the cell line T2(1-2∆N) is not due to a 

diminished interaction between 1-2∆N and  tapasin. Instead, in view of the well-

known correlation between the thermostability of MHC class I molecules and the 

affinity of their peptide cargo (Williams et al, 2002), it is reasonable to assume that in 

the presence of variant 1-2∆N suboptimal ligands are loaded onto class I, which fail 

to confer high stability on the resulting complex. This is consistent with previous 

studies that reported a significantly reduced stability of MHC class I molecules in 

human cell lines expressing tapasin variants, which lack TAP-association (Tan et al, 

2002; Williams et al, 2002). As these mutant tapasin molecules fail to recruit the 

transporter into the PLC, it was concluded that the incorporation of TAP into the 

loading complex is essential for an optimal quality control of peptide loading. 

However, by which mechanism TAP improves the stability of class I remained 

elusive. One promising scenario was that the “bridging function” of tapasin, which 

allows for a close structural proximity of TAP and MHC class I molecules within the 

PLC would increase the local peptide concentration. As a direct consequence, the 

diversity of available ligands for class I was postulated to become expanded, which in 

turn could lead to the acquisition of more optimal peptide cargo. However, as 1-2∆N 

displays normal interaction with MHC class I (Fig. 7B and Fig. 16) the results 
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described in this thesis demonstrate for the first time that the “bridging function” of 

tapasin is clearly not sufficient for the formation of stable MHC class I-peptide 

complexes. Instead, the experiments depicted in Fig. 16 show that the thermolability 

of MHC class I in the cell line T2(1-2∆N) (Fig. 14 and Fig. 15) correlates with a 

drastically reduced amount of accessory chaperones in the 1-2∆N-associated loading 

complex (Fig. 16). Nothing comparable is observed in the cell line T2(2-1∆N) (Fig. 

16). Quantitative evaluation of the corresponding immunoblots revealed that the 

amounts of tapasin and ERp57 co-isolated with 2-1∆N correspond to approx. 50% of 

those co-isolated with wild-type TAP. In contrast, the levels of calreticulin and MHC 

class I associated with 2-1∆N and TAPwt are roughly identical. This indicates that the 

transporter variant 2-1∆N forms a normal class I-loading site via TAP2, but lacks the 

tapasin/ERp57-interaction in TAP1. However, in the case of variant 1-2∆N, the 

signals for the co-isolated chaperones ERp57, calreticulin and calnexin were only 

barely detectable. Thus, despite the normal association of the TAP1 subunit with 

tapasin and MHC class I in the TAP variant 1-2∆N, this truncated transporter seems 

to be highly defective in the stable recruitment of chaperones. Nevertheless, neither 

the presence of ERp57 nor that of calreticulin in the PLC was reported to be essential 

for the process of peptide-loading onto MHC class I (Gao et al, 2002; Howarth et al, 

2004). Consistent with this, the kinetics for the release of MHC class I from the PLC 

were found to be identical among the cell lines T2(TAPwt), T2(1-2∆N) and T2(2-

1∆N). However, several recent studies point towards a critical role for ERp57 and 

calreticulin in the quality control of antigen presentation (Dick et al, 2002; Gao et al, 

2002). In this context it was speculated that the optimization of peptide cargo for 

MHC class I within the PLC is a multifactorial process where tapasin in cooperation 

with the accessory chaperones improves the efficient loading with those ligands that 
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confer high conformational stability. A recent working model postulates that tapasin 

optimizes peptides for MHC class I by deforming the peptide-binding pocket in a way 

that some stabilizing contacts to the peptide cannot be formed (Wright et al, 2004). 

Under these conditions, which broadly disfavour peptide-binding solely optimal 

ligands (those that comprise optimal anchor residues) would be expected to resist 

their dissociation from class I. However, the exact function of ERp57 and calreticulin 

in the loading complex is currently not known. One may speculate that both 

contribute to a further deformation of the peptide binding pocket in the class I 

molecule and thereby assist the tapasin-mediated peptide editing function. 

Additionally, it is also possible that ERp57, which possesses cysteine protease 

activity (Urade et al, 1992), acts as a peptide trimming enzyme within the PLC, 

thereby directly shaping the peptide repertoire loaded onto MHC class I molecules. 

Furthermore, since calreticulin was shown to bind peptides translocated by TAP 

(Spee et al, 1997) this lectin chaperone could protect optimal peptide ligands and 

help to efficiently deliver them onto peptide-receptive class I. Moreover, the results 

presented in this thesis show for the first time that in addition to ERp57 and 

calreticulin, also calnexin is a regular component of the mature human PLC (Fig. 17A 

and Fig. 17D). Although the data regarding the MHC class I stability in CEM cells 

(Fig. 18C) argues against a general role for calnexin in the quality control of peptide 

loading it cannot be excluded at present that this lectin chaperone may contribute to 

the stability of peptide-MHC class I complexes in the case of some MHC class I 

alleles. Thus, in accordance with the view that the accessory chaperones in the PLC 

significantly contribute to the generation of highly stable MHC class I-peptide 

complexes (Dick et al, 2002; Gao et al, 2002), the results shown in Fig. 14 and Fig. 

15 suggest that the PLCs formed by 1-2∆N have lost their quality control function in 

MHC class I loading by a failure in the chaperone-assisted peptide editing. 

 



6. Discussion 96

Interestingly, the experiments on the TAP variants 2-1∆N and 1-2∆N also indicate for 

the first time that the N-terminal tapasin-docking sites of TAP1 and TAP2 have 

different requirements for the stable binding of ERp57, calreticulin and calnexin (Fig. 

16). In particular, the results shown in Fig. 14 and Fig. 15 point towards a key role for 

the N-domain in the TAP2 subunit in the proper assembly of the TAP-associated 

PLC.  

As noted before, calnexin was proposed by others to be a component of a 

TAP/tapasin-precursor-complex that is formed preceding the entry of calreticulin and 

MHC class I into the PLC (Fig. 4) (Diedrich et al, 2001). As the co-isolation of this 

chaperone with 1-2∆N was (besides ERp57 and calreticulin) also dramatically 

reduced when compared to TAPwt, the impeded formation of a proper loading 

complex by 1-2∆N could be due to problems that appear early in the biosynthetic 

assembly of TAP/tapasin-complexes. Surprisingly, experiments on the TAP single 

chains and the tandem transporters indicated that depending on its assembly state, 

TAP1 uses different subregions of its TMD for the interaction with tapasin (Fig. 11A 

and Fig. 12C). That comparable amounts of tapasin and MHC class I were co-

isolated with 1∆N and wild-type TAP1 (Fig. 12C) suggests further that the core TMD 

acts as the sole tapasin-docking site in single expressed TAP1 chains. Thus, in view 

of the findings on 1∆N, TD1/2∆N and TD1∆N/2∆N (Fig. 11A and 12C), it is 

reasonable to speculate that TAP subunit pairing is required for the displacement of 

tapasin from the core TMD to the N-domain of TAP1. Interestingly, a recent study on 

the biosynthetic assembly of the TAP subunits provides evidence that 

heterodimerization of TAP occurs in a process where pre-existing (fully synthesized 

and folded) TAP1 chains associate with newly synthesized TAP2 chains (K. 

Keusekotten, R. M. Leonhardt, S. Ehses and M. R. Knittler, manuscript in 

preparation). Thus, it is tempting to speculate that the rearrangement of tapasin 
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within the TMD of TAP1 is directly induced by the entry of the nascent TAP2 chain 

during the heterodimeric assembly of the transporter. In view of this scenario, the N-

domain in TAP2 might have a critical role in stabilizing the interaction with accessory 

chaperones during the displacement of the tapasin-associated loading complex from 

the core TMD to the N-domain in TAP1. Consequently, its absence may result in an 

irreversible loss of accessory chaperones from the PLC or in the persistent failure to 

stabilize TAP1-associated chaperones during the following loading cycles.  

Nevertheless, the question arises, which function the (additional) tapasin-docking-site 

in the core TMD of TAP1 serves for, as it is apparently not used for the formation of a 

loading complex in the assembled transporter (Fig. 11A). The answer may lie in the 

complex network of interactions that are required for the stable high-level expression 

of the transporter. In particular, several groups could recently show that in contrast to 

TAP1, TAP2 chains have a reduced in vivo-stability when expressed in isolation 

(Antoniou et al, 2002b; K. Keusekotten, R. M. Leonhardt, S. Ehses and M. R. Knittler, 

manuscript in preparation). Thus, it was proposed that TAP1 is required for the stable 

expression of TAP2 and the assembled transporter molecule (Furukawa et al, 1999). 

This is in keeping with observations that the expression level of TAP1 seems to 

control the amount of stable and functional heterodimeric TAP in the ER (Herzer et 

al, 2003; Zhu et al, 1999). TAP1 expression in turn depends on its ability to interact 

with tapasin (Garbi et al, 2000; Tan et al, 2002). This becomes evident by a dramatic 

decrease in the steady state levels of TAP1 (up to 100-fold) in cells that are tapasin-

deficient or express tapasin mutants, which fail to associate with TAP (Garbi et al, 

2003; Tan et al, 2002). Interestingly, the steady state expression level of the 

truncated TAP1 chain 1∆N is not affected at all when compared to wild-type TAP1, 

irrespective whether it is expressed as a single subunit (Fig. 12A) or in conjunction 

with the corresponding TAP2 chain (Fig. 5B). This suggests that tapasin-mediated 
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stabilization of TAP1 does not depend on the ability of this chaperone to interact with 

the N-domain of the chain. Consequently, the stabilization of this subunit is likely to 

occur via tapasin-binding to the core TMD of TAP1 and therefore presumably takes 

place before and/or during the biosynthetic assembly of the transporter molecule. 

 

6.4 Functional expression of TAP lacking both N-regions can be achieved by 

head-to-tail fusion of the two chains linked to one another the connector region 

of MDR1b 

Repeated transfection experiments failed to generate T2 cell lines stably co-

expressing the TAP chain variants 1∆N and 2∆N. That Koch and colleges observed 

nothing comparable in baculovirus-infected insect cells (Koch et al, 2004) is most 

likely due to the fact that the authors used a transient over-expression system for 

their studies. Nevertheless, the experiments shown in Fig. 9, Fig. 10 and Fig. 11 

demonstrate that the “co-expression problem” of 1∆N and 2∆N in T2 cells can be 

solved by a head-to-tail fusion of both truncated subunits linked by the 61 amino 

acid-long connector region of murine MDR1b (Gros et al, 1986). The peptide 

transport activity of TD1/2∆N and TD1∆N/2∆N (Fig. 10C, Fig. 11B and Fig. 11C) 

indicates that the fused TAP subunits are able to form the same functional interfaces 

as they do in heterodimeric wild-type TAP. This strongly supports the hypothesis that 

the structural organization and pairing of the TMDs and NBDs is highly conserved 

between “tandem ABC-transporters” and “two chain ABC-transporters”. The 

connector region of MDR1b and other tandem ABC-transporters shares no 

detectable sequence homology to the N-domains of TAP and is known to act as a 

flexible linker that allows proper folding, pairing and coordinated interaction of the two 

halves of tandem transporters (Hrycyna et al, 1998). Mutations in the connector 
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region of MDR1 can lead to protein instability, misfolding and abrogation of transport 

activity (Hrycyna et al, 1998). Thus, although clearly not essential for the expression 

of single TAP chains (Fig. 12A) or the formation of a functional translocation pore in 

the heterodimeric transporter (Fig. 6B), the N-domains of TAP1 and TAP2 may be 

part of a structural unit in TAP that analogous to the connector region is critical for 

the efficiency of transporter biogenesis by reducing the risk of misassembly and as a 

consequence proteolytic degradation or accumulation of cell-toxic aggregates. This 

view is strongly supported by the observation that complex assembly between 1∆N 

and 2∆N is drastically impaired (Fig. 9A). Interestingly, a very recent study reported 

the construction of two equally functional tandem variants of the homodimeric “half 

size” ABC transporter ABCG2 (Bhatia et al, 2005), which has been implicated with 

the acquisition of multidrug resistance in cancer cells (Lockhart et al, 2003). 

Analogous to the tandem transporters described in this thesis, both variants were 

generated by head-to-tail fusion of two identical ABCG2 subunits. In one of the two 

variants the ABCG2 subunits were directly fused to one another whereas in the other 

variant the connector region of human MDR1 was used as a linker to join both 

chains. As either variant was shown to be clearly active (Bhatia et al, 2005) it seems 

that the presence of a connector region in tandem transporters is at least not 

essential for proper function in general. However, it is noted that ABCG2 has a highly 

uncommon genetic structure when compared to other ABC transporters (including 

TAP) as here an N-terminal NBD is followed by a C-terminal TMD (Doyle et al, 1998). 

Consequently, the domain organization in the ABCG2 head-to-tail fusion gene 

follows the order H2N-[NBD-TMD]-[NBD-TMD]-COOH whereas the order in most 

tandem transporters (including TD1/2∆N and TD1∆N/2∆N) is H2N-[TMD-NBD]-[TMD-

NBD]-COOH. Thus, the situation that the connector region in the ABCG2 fusion 

protein is dispensable for proper folding of the transporter and its substrate 
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translocation activity (Bhatia et al, 2005) may represent a special case that can be 

applied for only a few tandem transporters rather than to reflect a fundamental 

feature of tandem transporters in general. In this context it is interesting to note that 

indeed some fungal tandem ABC transporters like Pdr5p share the same unusual 

domain structure as the constructed ABCG2 fusion protein (Bissinger et al, 1994). 

Thus, one may speculate that this specific class of drug exporters does not require a 

connector region for folding and substrate transport. Nevertheless, a head-to-tail 

fusion construct of TAP with N-terminal TAP2 immediately followed by TAP1 without 

any connector region (H2N-TAP2-TAP1-COOH) is only expressed at hardly 

detectable levels in T2 cells and has no apparent transport activity (J. C. Howard, 

personal communication), indicating (albeit not proving) that the construction of a 

functional TAP tandem transporter indeed requires the presence of a connector 

region for proper assembly of the two homologous halves as observed for the related 

MDR1. 

 

6.5 Proprotein convertases rescue suboptimally loaded MHC class I molecules 

in late secretory compartments 

Characterization of the intracellular MHC class I presentation pathway in cells 

expressing variant 1-2∆N (Fig. 15A and Fig. 15C) showed that in a situation where 

the quality control in the loading complex fails stabilization of ER-exported MHC class 

I complexes can occur during intracellular transport to the plasma membrane. Very 

similar observations were also described for tapasin-deficient cells (Williams, et al, 

2002). Thus, the underlying cellular rescue mechanism does not appear to be 

restricted to a situation of malfunctioning TAP, but in contrast is likely to become 

generally applied by the cell under circumstances where (for whatever reason) 

unstable MHC class I molecules leave the ER and traffic to the plasma membrane. 
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Yet, it is unknown whether this process is advantageous for the cellular immune 

response or rather represents an Achilles heel of the host’s ability to efficiently strike 

against intruding microbes or cancerous cells. As tumours were reported to 

frequently down-regulate the expression of tapasin (Delp et al, 2000; Giorda et al, 

2003; Lou et al, 2005; Raffaghello et al, 2005; Seliger et al, 2003) malignant cells 

may exploit this cellular rescue pathway to ensure sufficient levels of “self peptide”-

presenting MHC class I molecules at the cell surface for evasion of NK cell-mediated 

killing (Moretta et al, 1996). Conversely, as some viruses interfere with the quality 

control of peptide loading in the PLC (Park et al, 2004) this pathway could also 

contribute to a rescue in the class I-mediated presentation of viral peptides and 

consequently to an enhanced clearance of infected cells (see below). Most 

interestingly, the studies depicted in Fig. 21 provide for the first time evidence that 

post-ER stabilization of MHC class I in the cell line T2(1-2∆N) depends on proprotein 

convertase activity, but not on endocytic recycling and/or reloading of MHC class I by 

endosomal processing (Fig. 19). Consistent with this idea the stability of ER-exported 

MHC class I molecules appears to improve as these migrate along the exocytic route 

(Fig. 15C). Thus, it is tempting to speculate that the observed phenomenon reflects 

the exchange by MHC class I of suboptimal (weakly binding) peptide ligands that had 

been loaded in the ER for high affinity peptides in the TGN. These are presumably 

derived from prodomains liberated by the proteolytical activity of furin-like 

convertases (Fig. 24). Several lines of evidence support such a model. First, it is 

known that less stably associated peptide ligands dissociate from MHC class I at 

acidic pH-conditions corresponding to the trans-Golgi network (determined to be 

around 5.0) (Chefalo et al, 2003; Stryhn et al, 1996). Furthermore, at an acidic pH of 

around 5.0 MHC class I molecules are peptide-receptive and can perform efficient 

peptide exchange (Chefalo et al, 2003; Gromme et al, 1999). Second, several 
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Fig. 24 Current working-model for proprotein convertase dependent rescue of MHC class I 
molecules in T2(1-2∆N) cells  
In the wild-type loading complex the central TAP molecule forms a precursor complex (comprising 
tapasin, ERp57 and calnexin (CNX)) via one N-domain and a peptide-loading complex (comprising 
tapasin, ERp57, calreticulin (CRT) and MHC class I) via the opposing N-domain (left column). As 
2-1∆N contains solely one of the two tapasin-docking regions present in TAPwt, a normal PLC can 
only be formed via TAP2 whereas 1∆N lacks any tapasin interaction in the assembled transporter 
(middle column). In T2(TAPwt) and T2(2-1∆N) cells the loading of optimal high affinity peptide 
ligands (red triangle) onto MHC class I is favoured over weakly binding cargo (brown triangle) due 
to tapasin-mediated peptide-editing (1). Thus the generated peptide-MHC class I complexes are 
stable when they traverse the TGN and migrate to the cell surface (6). In contrast, 1-2∆N forms 
altered PLCs that fail to stably recruit accessory chaperones (right column). Consequently, the 
peptide-editing function of the PLC is disturbed (2), which leads to the transfer of low-affinity 
peptides (brown triangles) onto MHC class I. The resulting unstable class I molecules become 
exported from the ER (3) at a normal rate, but loose their suboptimal cargo in the acidic milieu of 
the TGN (4). Proprotein convertases (PC) cleave proproteins along the secretory route and 
thereby contribute to the generation of peptides. Although this pathway is active in all T2 
transfectants, empty MHC class I molecules largely appear solely in the TGN of T2(1-2∆N) cells. 
These are rescued by the binding new PC-dependent ligands (5). As the acidic conditions in the 
late secretory compartments confer high stringency on the MHC class I-peptide interaction, 
complexes that can be formed under these circumstances are highly stable. Following the peptide-
exchange in the TGN of T2(1-2∆N) MHC class I becomes exported (6) and migrates to the plasma 
membrane. 

members of the proprotein convertase family, including furin, PACE4, PC5 and PC7 

reside in the trans-Golgi network or in post-TGN vesicles (Fig. 20C; Seidah et al, 

1998; Wouters et al, 1998), where they process a plethora of endogenous ligands 

including matrix metalloproteinases, integrins, growth factors, receptors, peptide-

hormones and neurotransmitters (Khatib et al, 2002). Following the initial cut, the 
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resulting peptides can be further trimmed by carboxypeptidases (Reznik et al, 2001). 

Of these at least carboxypeptidase D is ubiquitously expressed and localized to the 

TGN (Reznik et al, 2001). This indicates that in the compartments of the late 

secretory route (in most cell types) a whole battery of proteases is capable of 

generating and processing putative class I ligands. Most importantly, the finding that 

the MHC class I surface levels in T2(1-2∆N), but not in T2(TAPwt) or T2(2-1∆N) cells 

are sensitive to the highly specific proprotein convertase inhibitor hexa-D-arginine 

(Fig. 21) provides direct evidence for the involvement of PCs in the rescue of 

unstable MHC class I molecules. This is in line with several recent reports, which 

demonstrate that proprotein convertases can contribute peptides to the repertoire of 

MHC class I-presented epitopes (Gil-Torregrosa et al, 1998; Gil-Torregrosa et al, 

2000; Lu et al, 2001; Zhang et al, 2001). However, it is noted that all studies cited 

above focus on the presentation of individual peptide antigens liberated from 

chimeric constructs that are normally not expressed in the cell. Thus, the contribution 

of PCs to the peptide pool presented by MHC class I was in these studies 

determined under somewhat artificial conditions. In contrast, this thesis describes for 

the first time the influence of proprotein convertases on the bulk population of class I 

ligands derived from naturally occurring intracellular proteins. It should additionally be 

mentioned that MHC class I-presented epitopes liberated from PC-processed viral 

polypeptides have been described (Johnstone et al, 2004), although it is not yet clear 

whether proprotein convertases are essential for the generation of the respective 

peptides. Additionally, the idea that suboptimally loaded MHC class I molecules 

exchange their peptide cargo in the TGN is further supported by the time-course at 

which MHC class I molecules acquire stability in T2(1-2∆N) cells. In particular, the 

stability of a pulse-labeled post-ER class I population in T2(1-2∆N) cells continues to 

improve for clearly more than 3 hours (Fig. 15C). This indicates that a significant 
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fraction of the respective molecules has already reached the plasma membrane or 

has at least entered the late compartments of the secretory route (for comparison: 

the T1/2 for MHC class I surface recovery was determined to be approx. 5 hours (Fig. 

8B)). Taken together a model can be postulated, in which the TGN serves as a post-

ER “checkpoint” of MHC class I processing that rescues unstable MHC class I 

complexes, which otherwise would have a reduced chance to survive on the cell 

surface (Fig. 24). This pathway would maintain high (or depending on the allele at 

least moderate) MHC class I surface levels even under conditions of a malfunctioning 

quality control of peptide loading. The respective epitopes would derive from 

secretory proteins and due to a more limited number of substrates (and perhaps 

proteases) involved, the overall repertoire of presented peptides would be expected 

to be somewhat narrowed when compared to a cell where the conventional class I 

antigen presentation pathway works properly. Nevertheless, since MHC class I-

bound peptides are much shorter in length than the propeptides liberated by PCs, 

efficient MHC class I loading would require further processing by other proteolytic 

enzymes. In particular, proprotein convertase-generated peptides for HLA-B5 are 

predicted to depend at least on C-terminal trimming as the furin-like convertases 

cleave after paired basic amino acids whereas HLA-B5 strongly prefers a 

hydrophobic C-terminal anchor residue (Falk et al, 1995). Although not excluding 

other possibilities, recent studies suggest that carboxypeptidases serve for that 

function (Gil-Torregrosa et al, 1998; Lu et al, 2001). Nevertheless, the question 

arises why peptides generated in the TGN by proprotein convertases can stabilize 

HLA-B5 in T2(1-2∆N) cells whereas the ligands available in the ER obviously cannot. 

It must be considered unlikely that the peptide pool to which PC-activity contributes 

has in general a higher affinity for MHC class I as the peptides generated by the 

proteasome. Rather it is plausible to assume that the acidic environment in the TGN 
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confers high stringency on MHC class I loading and allows only optimal peptide 

ligands to bind (and stay associated) (Fig. 24).  

It is interesting to note that a plethora of viral proteins is processed by members of 

the PC-family, among them gp160 of HIV (Decroly et al, 1997), F-protein of RSV 

(Gonzalez-Reyes et al, 2001), P22 of HBV (Messageot et al, 2003) and gpUL55 of 

HCMV. Furthermore, under conditions of an acute infection viral proteins may 

become highly abundant in the secretory compartments. Thus, as evasion strategies 

of some viruses target tapasin-mediated peptide optimization mechanisms and 

thereby cause the generation of instable MHC class I molecules (Park et al, 2004), 

the proprotein convertase-dependent rescue of MHC class I complexes could force 

the surface presentation of viral peptides. Hence, the alternative pathway of MHC 

class I loading in the TGN may be part of a cellular counter strategy that undermines 

viral efforts to block the antigen presentation machinery.  

Nevertheless, as on the one hand proprotein convertases add peptides to the MHC 

class I-pathway under certain conditions (Fig. 21 and Fig. 24), they cleavage-activate 

viral fusion proteins on the other hand and thereby make an essential contribution to 

the infectivity of the virus (Jean et al, 2000; Kibler et al, 2004). Thus, positive aspects 

of proprotein convertase expression for the cellular immune response are likely to be 

counteracted by a high rate of viral replication. Conversely, a downregulation of PCs 

may result in an overall reduction of infectious viral particles, but may also dampen 

efficient antigen presentation and thereby limit the chance to ultimately eliminate 

infected cells. Seven highly related members of the proprotein convertase family 

have been identified so far (Seidah et al, 1998). Despite some individual 

characteristics they all share clearly overlapping cleavage specificities and substrates 

(Basak et al, 2001; Kibler et al, 2004; Vollenweider et al, 1996). The extensive 

downregulation of at least furin and PACE4 in response to interferons (Fig. 22) is 
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likely to represent a novel mechanism of innate cell-autonomous immunity that limits 

the rate of viral spread during an acute infection (see above). It is yet unclear at the 

molecular level how the transcription of the respective convertases is switched off 

upon interferon treatment. However, the furin promotor was shown to contain multiple 

binding sites for the transcription factor SP1 (Ayoubi et al, 1994), which is involved in 

the interferon-γ-induced transcriptional repression of the lipoprotein lipase gene in 

macrophages (Hughes et al, 2002). In addition, also the PACE4 promotor was 

reported to comprise binding sites for SP1 (Tsuji et al, 1997). Therefore, SP1 is one 

attractive candidate for mediating the down-regulation of proprotein convertases in 

response to antiviral cytokines. However, that PC7 expression clearly persists upon 

interferon treatment suggests that this protease may continue to supply MHC class I 

with ligands even under conditions of a viral infection. Possibly, the presence of this 

single convertase is not sufficient to allow for an optimal replication of most viruses. 

As several viral proteins require the cleavage at multiple sites for proper maturation 

(Gonzalez-Reyes et al, 2001; Messageot et al, 2003) and some of these may not be 

favoured by PC7, the presence of only one (or only a few) different convertases in 

the TGN may ensure an efficient generation of peptides without allowing for a high 

viral replication rate. Nevertheless, the results shown in Fig. 22 do not rule out a 

possible role for furin and PACE4 in the presentation of viral antigens in the context 

of an infection, as several viruses have been reported to block the interferon 

signalling pathway, among them HCMV (Miller et al, 1998; Miller et al, 1999), 

hepatitis C virus (HCV) (Duong et al, 2004) and varicella-zoster virus (VZV) 

(Abendroth et al, 2000). One possible reason why viruses tend to inhibit interferon-

signalling could be that they require specific proprotein convertases as furin or 

PACE4 (or they require higher levels of PCs in general) for efficient replication and 
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spread. The results presented in this thesis suggest that they may pay a high price 

for the forced (re-)onset of proprotein convertase expression.   
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7. Summary  

The transporter associated with antigen processing (TAP) translocates antigenic 

peptides into the ER for binding onto MHC class I molecules. Tapasin organizes a 

peptide-loading complex (PLC) by recruiting MHC class I and accessory chaperones 

to the N-terminal regions (N-domains) of the TAP subunits TAP1 and TAP2. To 

investigate the function of the tapasin-docking sites of TAP in MHC class I 

processing, N-terminally truncated variants of TAP1 and TAP2 were expressed in 

combination with wild-type chains, as fusion proteins or as single subunits. The 

results indicate that TAP interacts at steady state with MHC class I solely via one N-

domain whereas the opposing tapasin-docking site concomitantly associates with 

calnexin. Strikingly, TAP variants lacking the N-domain in TAP2, but not in TAP1, 

build PLCs that fail to generate stable MHC class I-peptide complexes. This 

correlates with a substantially reduced recruitment of accessory chaperones into the 

PLC demonstrating their important role in the quality control of MHC class I loading. 

However, stable surface expression of MHC class I is rescued in compartments of 

the late secretory route by a mechanism that depends on the proteolytical activity of 

the proprotein convertase family. Finally, it is shown that proprotein convertase 

expression is differentially modulated in response to interferons indicating that 

individual members of this protease family may make distinct contributions to an 

antiviral immune response.  
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8. Zusammenfassung 

Der Peptidtransporter TAP überführt Peptidantigene aus dem Cytosol in das 

endoplasmatische Retikulum (ER). Diese werden anschließend auf MHC Klasse I-

Moleküle geladen. Tapasin spielt eine zentrale Rolle bei der Organisation des 

sogenannten Peptid-Ladekomplexes, welcher neben TAP und MHC Klasse I-

Molekülen auch akzessorische Chaperone, wie Calreticulin und ERp57 enthält. 

Beide Untereinheiten des heterodimeren Transporters, TAP1 und TAP2, interagieren 

mit Tapasin über ihren N-Terminus, die sogenannte N-Domäne. Um die Funktion der 

Tapasin-Bindestellen in den beiden TAP-Ketten zu ermitteln, wurden 

Deletionsmutanten der TAP-Untereinheiten erzeugt, in denen jeweils die N-Domänen 

entfernt wurden. Diese wurden dann entweder gemeinsam mit der komplementären 

wildtypischen Untereinheit, als Fusionsprotein oder als einzelne Ketten in einem 

humanen TAP-negativen Zellsystem exprimiert. Es konnte gezeigt werden, daß der 

Transporter zu jedem gegebenen Zeitpunkt in der Zelle lediglich über eine seiner 

beiden Tapasin-Bindestellen mit MHC Klasse I-Molekülen assoziiert ist. Dagegen 

interagiert die gegenüberliegende N-Domäne mit dem ER-Chaperon Calnexin. 

Weiterhin ergab sich, daß das Vorhandensein der N-Domäne in TAP2, nicht aber der 

korrespondierenden N-Domäne in TAP1 für die Beladung von MHC Klasse I-

Molekülen mit stabil bindenden, hochaffinen Peptid-Liganden essentiell ist. Eine 

TAP-Deletionsvariante, in welcher der N-Terminus in TAP2 entfernt worden war, 

bildete zwar Peptid-Ladekomplexe aus, allerdings zeigten diese eine deutlich 

schwächere Interaktion mit akzessorischen Chaperonen. Im Einklang mit anderen 

Studien verdeutlicht dies die herausgehobene Rolle dieser Chaperone für die 

Qualitätskontrolle der Peptidbeladung von MHC Klasse I-Molekülen. 

Interessanterweise konnte jedoch gezeigt werden, daß die Stabilität suboptimal 

beladener MHC Klasse I-Moleküle nach Verlassen des ERs in späten sekretorischen 
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Kompartimenten wiederhergestellt werden kann. Dieses Phänomen ist abhängig von 

der proteolytischen Aktivität sogenannter Proprotein-Konvertasen, die sich im trans-

Golgi Netz befinden und dort an der Prozessierung einer Vielzahl zellulärer 

Polypeptide beteiligt sind. Daher legen die erzielten Ergebnisse nahe, daß die 

Zunahme der Stabilität mangelhaft beladener MHC Klasse I-Moleküle durch den 

Austausch von Peptid-Liganden erfolgt. Darüber hinaus konnte gezeigt werden, daß 

die Transkription der verschiedenen Proprotein-Konvertasen unterschiedlich durch 

Interferone moduliert wird, was daraufhin deutet, daß unterschiedliche Mitglieder 

dieser Protease-Familie unterschiedliche Aufgaben während einer antiviralen 

Immunantwort übernehmen. 
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