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Abstract 
 

The transition to flowering is one of the most important developmental switches in the life of 

a plant. For some species this switch appears only once in life and is tightly regulated. 

Flowering is directly coupled to reproductive success and therefore has to occur under optimal 

conditions. Several genetic pathways regulate the transition to flowering. CO is a central 

component of the photoperiod pathway and mediates flowering in response to day length by 

regulating the expression of FT. CO encodes a B-Box transcription factor that also contains a 

plant specific CCT-domain. Since CO does not contain a known DNA-binding motif I 

conducted yeast-two-hybrid screening to identify proteins that recruit CO to DNA. In 

addition, I conducted yeast-one-hybrid screening to identify proteins regulating FT 

expression. Here I present evidence that CO interacts with all members of the heterotrimeric 

CCAAT-box-binding factor (CBF). The CBF-complex consists of three subunits named 

HAP2, HAP3 and HAP5. HAP3 and HAP5 dimerize and associate with the DNA-binding 

subunit HAP2. Both CCT-domain and HAP2 proteins contain the HAP2-DNA-binding motif. 

Mutations affecting conserved residues in this domain cause loss-of-function phenotypes in 

CCT-domain proteins, which might be due to an impaired interaction with HAP2. The HAP3a 

subunit is co-regulated with CO by GIGANTEA and expression of a putative dominant 

negative transgene causes late flowering. MtN19 was found to interact with the CCT-domain 

of CO and with the FT promoter in yeast. Studies on this gene suggest a possible regulation 

by natural antisense transcription since transgenic plants expressing a dsRNAi construct are 

late or early flowering. The early flowering lines express MtN19, CO and FT at high levels. 

Late flowering plants can not be rescued by overexpression of CO by the 35S-promoter. 

MtN19 and CO are both expressed at the end of the light period in long days implying that 

they might function together to regulate FT expression. FIDGET (FIT) was isolated by yeast-

one-hybrid screening and found to bind the FT promoter. It encodes an APETALA2-like 

protein. Misexpression of FIT in the phloem, the place where FT is naturally expressed, 

accelerates the floral transition. Moreover, I present evidence that FIT is expressed in vascular 

tissue upon UV-light induction. Finally, I show that UV-light is able to accelerate the floral 

transition. Two other AP2-like proteins delay the floral transition when expressed in the 

phloem and can also interact with the FT promoter. In summary, this thesis presents the first 

insight how CO may regulate expression of the floral integrator FT and proposes evidence for 

a novel flowering time pathway involving stress-induced AP2-like transcription factors. 
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Zusammenfassung 
 

Die Entscheidung zur Ausbildung der Blüte ist einer der wichtigsten Prozesse in Pflanzen. 

Viele Pflanzen blühen nur einmal während ihres Lebens weshalb dieser Prozess einer 

strengen Kontrolle unterliegt. Da das Ausbilden der Blüte mit dem reproduktiven Erfolg des 

Organismus gekoppelt ist, muss dieser Entwicklungsschritt unter optimalen Bedingungen 

erfolgen. Vier verschiedene genetische Signalwege, die in die Regulation der Blütenbildung 

involviert sind, wurden bisher beschrieben. Einer der wichtigsten Signalwege, der die 

Ausbildung von Blüten und somit den Wechsel von vegetativem zu reproduktivem Wachstum 

einleitet ist der photoperiodische Signalweg. Licht bewirkt das Einstellen der inneren 

cirkadianen Uhr, welche die zyklische Expression des CONSTANS (CO) Gens bewirkt. Die 

Stabilität des CONSTANS Protein wird durch Licht unterschiedlicher Wellenlängen reguliert. 

Arabidopsis thaliana ist eine fakultative Langtagpflanze, was bedeutet, dass sie in 

Lagtagbedingungen schneller zur Blüte kommt. CO bewirkt die florale Transition in 

Erwiderung auf eine lange Photoperiode durch Aktivierung von FLOWERING LOCUS T 

(FT). CO ist ein B-Box Transkriptionsfaktor mit einer pflanzenspezifischen, 

carboxyterminalen CCT-domäne. Da CO keine bekannte DNA-Bindedomäne besitzt haben 

wir Yeast-two-Hybridscreens durchgeführt um Proteine zu isolieren durch die CO an DNA 

binden kann. Darüber hinaus haben wir Yeast-one-Hybridscreens durchgeführt um Proteine 

zu finden die mit dem FT-Promoter interagieren und dessen Aktivität beeinflussen können. 

Diese Arbeit zeigt, dass CONSTANS mit dem trimeren CCAAT-box-Bindefaktor (HAP-

Komplex) interagiert. Der HAP-Komplex besteht aus drei Untereinheiten von denen zwei 

(HAP3 und HAP5) dimerisieren. Nach Bildung des HAP3/5 Dimers bindet die HAP2-

Untereinheit, die eine DNA-Bindungsdomäne besitzt. Der ternäre Komplex kann sodann an 

DNA binden. CONSTANS interagiert mit allen Untereinheiten des HAP-Komplexes. Des 

Weiteren besitzt CONSTANS eine Domäne die der DNA-Bindedomäne von HAP2 ähnelt. 

Mutationen, die hoch konservierte Aminosäuren in dieser Region in CCT- Domänen 

Proteinen betreffen, haben einen Funktionsverlust zur Folge. Außerdem zeigen wir, dass 

HAP3a mit CO durch GIGANTEA (GI) koreguliert wird. Überexpression von FLAG:HAP3a, 

welches möglicherweise dominant-negativ agiert, zeigt einen spätblühenden Phänotyp. Die 

verspäte Blütenbildung wird durch massive Repression von FT bewirkt. MtN19, ist ein 

Protein unbekannter Funktion das mit CONSTANS interagiert und außerdem an den FT 

Promoter binden kann. Studien des MtN19 Gens deuten darauf hin, dass es eventuell über 

natürliche antisense-RNA reguliert wird. Transgene MtN19-dsRNAi Pflanzen zeigen zwei 
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extreme Phänotypen, frühe oder späte Blütenbildung. Die früh blühenden Linien zeigen 

erhöhte Expressionslevel der MtN19 mRNA sowie der mRNAs von CO und FT, die das 

vorzeitige Blühen erklären. Spätblühende Linien können auch durch Überexpression von CO 

nicht komplementiert werden. MtN19 und CO sind beide am Ende der Photoperiode des 

Langtages exprimiert und könnten so gemeinsam die Expression von FT kontrollieren. 

FIDGET (FIT) codiert für einen APETALA2 (AP2) -like Transkriptionsfaktor und wurde 

durch Yeast-one-Hybridscreens als FT-Promoter-Bindeprotein isoliert. Expression von FIT 

im Phloem, dem Ort wo FT natürlicherweise exprimiert ist, resultiert in früh blühenden 

Pflanzen. Des Weiteren konnten wir zeigen, dass FIT durch UV-Licht im Phloem induziert 

wird und dass UV-Licht die florale Transition beschleunigen kann. In einem Large-scale 

Experiment in welchem 1.000 Arabidopsis Transkriptionsfaktoren ektopisch im Phloem 

exprimiert wurden, resultierte in der Isolierung von verschiedenen AP2-

Transkriptionsfaktoren die den Blütezeitpunkt beeinflussen. Zwei dieser AP2-

Transkriptionsfaktoren bewirken eine Verzögerung des Blühzeitpunktes und es konnte gezeigt 

werden, dass diese beiden Proteine auch an den FT-Promoter binden können. Diese 

Ergebnisse deuten darauf hin, dass der FT-Promoter als regulatorische Schaltstelle für 

aktivierende und reprimierende AP2-Transkriptionsfaktoren fungiert. Zusammengefasst 

beschreibt diese Arbeit die Isolierung verschiedener Proteine mit denen CONSTANS im 

Komplex an den FT Promoter bindet. Des Weiteren wird von der Isolierung von AP2-like 

Proteinen berichtet, die wahrscheinlich in einem neuen physiologischen Signalweg fungieren 

der die Blütenbildung auf Stresssignale beeinflusst. 
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1. Introduction 

 

1.1. The control of flowering-time 

 

During plant development three major growth phases can be discriminated, the juvenile-

vegetative, the adult-vegetative and the reproductive growth phase (Poethig, 2003). A 

combination of external and internal factors regulates fate changes during development. The 

transition to flowering is the most dramatic phase change in the life of a plant and is initiated 

by both endogenous and exogenous cues. In nature, environmental changes are mostly 

associated with the changes of the seasons. Exogenous cues such as photoperiod, light quality, 

temperature and the availability of nutrients are measured by the plant, allowing the floral 

transition to occur under optimal conditions (Coupland, 1995). Exogenous stimuli are 

perceived and transformed into a complex pattern of gene and protein activity that regulates 

this fate change. Based on the different habitats of plants these phase changes are adapted to 

the local environment. Different species do not respond similarly to these exogenous cues. 

Based on the plants requirements of the duration of the photoperiod they can be divided into 

short-day, long-day or day-neutral plants (Garner and Allard, 1919; Bernier, 1988). For some 

plants, the perception of low temperatures during winter is crucial to initiate flowering in the 

following spring, a phenomenon called perannialism. 

The transition to flowering is not only a major phase change in plant development it is also of 

economic importance since reproductive success is directly coupled to the yield. Engineering 

fruit size, the timing of availability of fruits as well as the cultivation of crop plants under 

unfavourable conditions such as drought are economically important tasks. 
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1.1.1. The control of floral evocation and the establishment of 

Arabidopsis thaliana as a model organism to study developmental 

processes 

 

The floral transition in plants is controlled both by exogenous factors such as sunlight, 

photoperiod, temperature and by endogenous factors such as the internal circadian clock and 

hormones. The decision to flower is in many plants controlled by the length of the 

photoperiod. Short-day plants (SDP) and long-day plants (LDP) can be again subdivided into 

obligate and facultative responses. Obligate long-day plants only flower in long-days and 

never in short days. In comparison to facultative long-day plants that flower in short-days, but 

later. However, several environmental factors can influence the flowering behavior. Pharbitis 

nil, a facultative SDP, flowers early in LD when plants are exposed to high irradiance, poor 

nutrition, low temperatures, cytokinin application or when the root is removed (Ogawa and 

King, 1980; Shillo, 1985; Swe et al., 1985; Bernier, 1988). Apart from photoperiod, some 

plants are also able to measure the outside temperature and will only flower when a critical 

threshold is reached. Chamelaucium is an obligate SDP in 24°C/16°C day/night cycles. 

However, in 20°C/10°C day/night cycles Chamelaucium converts to a facultative SDP, which 

will start flowering also in response to long-days (Shillo, 1985; Bernier, 1988). Leaves of 

plants perceive light which leads to the synthesis of a so far unknown compound, named 

florigen, that is transported to the shoot apical meristem to trigger flower development (Knott, 

1934; Zeevaart, 1976). Several grafting experiments confirmed the existence of florigen and 

its transport from leaves to the shoot apex. Leaves from Perilla crispa, a SDP that was 

exposed to inductive short-days, were grafted onto plants growing in long-days. These 

induced leaves were able to cause flowering in non-inductive conditions (Zeevaart, 1985). It 

was confirmed that the floral stimulus is transmitted from photosynthetic leaf tissue through 

phloem sieve elements (King et al., 1968; King and Zeevaart, 1973). All these physiological 

experiments were done with a variety of different plant species (Corbesier and Coupland, 

2005). Analysis of genetic pathways controlling the floral transition required the 

establishment of a model species appropriate for this approach. Researchers agreed on 

Arabidopsis and the history of the establishment as a model organism is reviewed here.  

One of the first descriptions of Arabidopsis thaliana was published  by Friedrich Laibach in 

1907, when he compared the numbers of chromosomes of different plant species (Laibach, 

1907). Laibach later proposed Arabidopsis as a suitable model organism, exhibiting various 

positive features such as short generation time, ease of crosses and the possibility to do 
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mutagenesis (Laibach, 1943). In the following decades scientist started to use Arabidopsis for 

physiological experiments and started to create and describe mutants (Redei, 1975). Redei’s 

article influenced many researchers in the early 1980s when the era of molecular 

characterization of cellular functions started. One of the most important discoveries was the 

gene transfer into plants via Agrobacterium tumefaciens transformation (Chilton et al., 1977). 

This was followed by the publication of the first genetic linkage map of Arabidopsis genes on 

the five chromosomes (Koornneef et al., 1983). The first restriction fragment length 

polymorphism maps (Chang et al., 1988) resulted in the first map-based cloning of genes in 

1992 (Arondel et al., 1992; Giraudat et al., 1992). In 2000 an international consortium of 

scientists published the sequence of the genome of Arabidopsis thaliana (AGI, 2000). Large 

populations of plants carrying T-DNA insertions at defined positions have enabled reverse 

genetic approaches to study gene function (Alonso et al., 2003). The history of Arabidopsis as 

a model species was recently reviewed (Somerville and Koornneef, 2002). 

 

 

1.1.2. The molecular control of flowering time in Arabidopsis 

 

The initiation of flowering is a crucial process for plants, which in many species takes place 

only once during the life cycle. Timing of the transition to flowering is important ensuring 

that flowering occurs in optimal conditions for seed maturation and reproductive success. One 

of these cues is day length. Arabidopsis thaliana is a facultative long-day plant, which means 

that the plant flowers earlier under long days (LD) (e.g. 16 hours light and 8 hours dark) than 

under short days (e.g. 8 hours light and 16 hours dark). Other important cues besides day 

length are temperature and nutrient availability. Perception of these cues results in differential 

gene expression patterns that are finally responsible for the switch from vegetative to 

reproductive growth. The mechanisms controlling flowering are highly regulated processes 

and consist of at least four different genetic pathways that mediate distinct environmental 

responses. The plant integrates information from all of these pathways to ensure flowering 

under most optimal conditions. Figure 1 shows the four flowering-time pathways that have 

been identified and the names of the most important proteins or growth regulators involved in 

the process. These pathways are described in more detail in the following sections and here 

for clarity only the most important factors are mentioned. 
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Figure 1. Four different pathways involved in mediating the floral transition in Arabidopsis. 

 

 

1.1.2.1. Gibberellic acid pathway 

 

One of the first observations indicating that hormones are involved in the floral transition was 

that exogenous application of gibberellic acid (GA3) on rosettes of long-day plants resulted in 

early-flowering under short-day conditions (Lang, 1957; Langridge, 1957). Genetic studies 

showed that overexpression of GA20-oxidase, an enzyme in the GA-biosynthetic pathway, 

resulted in early-flowering under both short and long days. (Huang et al., 1998; Coles et al., 

1999). FLOWERING PROMOTING FACTOR1 (FPF1) was also proposed to be involved in 

GA-signal transduction and overexpression of FPF1 triggers the floral transition (Kania et al., 

1997). 

Consistent with these hormone treatments and transgenic plant studies, gibberellic acid 

insensitive mutants (gai) and impaired GA biosynthetic mutants are late-flowering 

particularly in short-days (Wilson et al., 1992; Putterill et al., 1995). Strong alleles of ga-1 

prevent flowering in SDs, indicating that under these conditions GA is essential for flowering. 

In ga1-3 mutants, LFY expression is reduced, in contrast to application of GA which results in 

upregulation of LFY mRNA both in wild-type and ga1-3 (Blazquez et al., 1998). AtMYB33 is 

a MYB-transcription factor that binds to a GA-response element in the LEAFY (LFY) 

promoter in vitro (Gocal et al., 2001). Recently it was shown that MYB33 mRNA is targeted 
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for degradation by miR159. Overexpression of miR159 resulted in late-flowering under short 

days (Achard et al., 2004). Furthermore miR159 is transcriptionally regulated by GA (Achard 

et al., 2004). Apart from LFY, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 

(SOC1) mRNA is also increased by GA (Moon et al., 2003). 

 

1.1.2.2. Autonomous pathway 

 

Mutations in genes belonging to the autonomous pathway cause late-flowering phenotypes 

both in long and short days. The late-flowering phenotypes can be overcome by vernalization 

(Koornneef et al., 1991).  Seven loss-of-function mutants were isolated so far, namely fca, 

fpa, flk, fy, ld, fve and fld. The corresponding genes encode RNA processing factors (FCA, 

FPA, FLK and FY), proteins involved in histone deacetylation (FVE and FLD) and a 

homeodomain protein (LD) (Lee et al., 1994; Macknight et al., 1997; Chou and Yang, 1998; 

Schomburg et al., 2001; Simpson et al., 2003a; Ausin et al., 2004; Kim et al., 2004; Lim et al., 

2004). The main function of autonomous pathway genes seems to be down regulation of FLC 

mRNA levels because mutations in these genes cause an increase in FLC mRNA and 

mutations in FLC suppress the effect of mutations in the autonomous pathway. FLC is a 

MADS box transcription factor that delays flowering, consistent with it causing a delay in 

flowering in autonomous pathway mutants (Michaels and Amasino, 2001). 

FCA, one of the strongest effectors in this pathway, encodes an RNA-binding protein and 

controls its own pre-mRNA processing dependent on the developmental status of the plant 

(Quesada et al., 2003). FCA interacts with FY, another component of the autonomous 

pathway, which belongs to the class of 3´end-processing factors (Simpson et al., 2003a). The 

FCA/FY interaction finally results in repression of FLC (Simpson et al., 2003b). Another 

level of regulation is the acetylation status of histones in the FLC containing chromatin. 

FLOWERING LOCUS D (FLD) and FVE, proteins homologous to a member of a human 

histone deacetylase complex, deacetylate the histones of FLC-chromatin and thereby prevent 

FLC transcription, resulting in earlier flowering (He et al., 2003; Ausin et al., 2004; Kim et 

al., 2004). 

Thus, regulation of mRNA stability and epigenetic control of gene expression seem to be the 

major mechanism by which components of the autonomous pathway regulate the floral 

transition by modulating FLC levels (Boss et al., 2004). 
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1.1.2.3. Vernalization pathway 

 

Vernalization is the exposure of plants to low temperatures over an extended time period of 

several weeks. It results in the reduction of FLC mRNA levels and thereby triggers the floral 

transition (Michaels and Amasino, 1999; Sheldon et al., 1999). FLC, a MADS box 

transcription factor acts as a floral repressor and is the main target of the vernalization process 

(Michaels and Amasino, 1999). Differences in the response to vernalization exist between 

different Arabidopsis accessions. Many accessions carry an active allele for FRIGIDA (FRI), 

a gene required for high level expression of FLC (Johanson et al., 2000). Exposure to low 

temperatures reduces the FRI-mediated increase in FLC mRNA and the plant can then 

respond to other floral inductive signals (Michaels and Amasino, 1999; Sheldon et al., 1999). 

However, the Arabidopsis accessions Landsberg erecta and Columbia that are commonly 

used in the laboratory carry loss-of-function FRI alleles. They are therefore early-flowering 

and do not require vernalization to flower (Johanson et al., 2000).  

Negative regulators of FLC were isolated in genetic screens designed to identify mutants 

defective for vernalization responses (Chandler et al., 1996; Sung and Amasino, 2004). 

Among these, VRN1 and VRN2 act to maintain FLC repression after vernalization. Wild-type 

plants show a stable repression of FLC after vernalization, whereas vrn1 and vrn2 mutants 

show an increase in FLC mRNA levels after shifting plants from cold to warm temperatures, 

resulting in a delay of the floral transition (Gendall et al., 2001; Levy et al., 2002). VRN2 

encodes a Polycomb group protein, which is likely to act in a chromatin silencing complex 

(Gendall et al., 2001). VRN1 is a putative B3-domain protein that is thought to interact with 

DNA in a non-sequence-specific manner (Levy et al., 2002). VIN3 is a homeodomain protein 

involved in the onset of the establishment of floral repression. A mutation in VIN3 results in 

failure to establish repression at the FLC locus in response to cold temperatures (Sung and 

Amasino, 2004). During vernalization histone tails of FLC chromatin become deacetylated 

followed by an increase in H3-K27 and H3-K9 methylation (Bastow et al., 2004; Sung and 

Amasino, 2004). None of these epigenetic marks in the FLC chromatin is detected in vin3 

mutant plants indicating a major role in this process (Sung and Amasino, 2004). VRN1 is 

required for H3-K9 methylation of FLC chromatin and VRN2 is thought to be involved in the 

H3-K27 methylation process (Bastow et al., 2004; Sung and Amasino, 2004). 

Apart from epigenetic marks resulting in repression of FLC, acetylated histone tails and H3 

trimethylation at lysine 4, an indicator for active chromatin (Santos-Rosa et al., 2002; Ng et 

al., 2003; Schubeler et al., 2004), were observed prior to vernalization in winter-annual 
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Arabidopsis (He et al., 2004). Mutations in EARLY-FLOWERING7 (ELF7), EARLY-

FLOWERING8 (ELF8) and VERNALIZATION INDEPENDENCE4 (VIP4) show low FLC 

levels in presence of active FRI (Zhang and van Nocker, 2002; He et al., 2004). ELF7, ELF8 

and VIP4 are homologous to members of yeast RNA polymerase II associated factor 1 

(PAF1), a chromatin modifying protein complex (Betz et al., 2002; Krogan et al., 2002; 

Squazzo et al., 2002). PAF1 interacts in yeast with SET1, a methylase that mediates H3-K4 

trimethylation, an indicator for active chromatin (Ng et al., 2003). Apart from the PAF1 

components, Arabidopsis encodes several SET-domain proteins, among them EARLY-

FLOWERING IN SHORT-DAYS (EFS) (Soppe et al., 1999). EFS might be involved in 

H3K4-trimethylation of FLC-chromatin by interacting with the PAF1 complex (He and 

Amasino, 2005). 

 

1.1.2.4. Photoperiod pathway 

 

Changes in photoperiod, such as duration of the light period and spectral composition, are 

sensed by the photoreceptor system of the plant. In Arabidopsis, the red/far-red light 

absorbing phytochromes and the UV-A/blue light absorbing cryptochromes are the main 

photoreceptors involved in sensing light in photoperiod response (Lin, 2002; Quail, 2002). 

The circadian clock provides the timing mechanism that enables measurement of the duration 

of the photoperid (Samach and Coupland, 2000). Light inputs are coupled to the circadian 

timer because light/dark transitions at dawn or dusk reset the clock so that it is entrained to the 

day/night cycle (Yanovsky and Kay, 2002). The main components of the circadian oscillator, 

the core circadian clock, are the myb transcription factors LHY and CCA1 and the CCT-

domain protein TOC1 (Millar et al., 1995; Schaffer et al., 1998; Wang and Tobin, 1998). 

TOC1 expression peaks in the evening and loss-of-function mutations shorten circadian 

rhythms whereas overexpression causes arrhythmia (Somers et al., 1998; Strayer et al., 2000). 

CCA1 and LHY peak in the early morning, loss-of-function causes shortened circadian 

rhythms and overexpression results in arrhythmia (Schaffer et al., 1998; Wang and Tobin, 

1998; Green and Tobin, 1999; Mizoguchi et al., 2002). The expression patterns of TOC1, LHY 

and CCA1 as well as genetic data led to the proposal of an autoregulatory negative feedback 

model based on transcriptional regulation (Alabadi et al., 2001). TOC1 induces the 

transcription of LHY and CCA1 at the beginning of the light phase. High levels of LHY and 

CCA1 then repress the transcription of TOC1. Repression of TOC1 causes loss of activation 
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of LHY/CCA1. The repressive effect of LHY/CCA1 is removed at the end of the light phase 

and causes the rise of TOC1 expression.  

GIGANTEA (GI) acts in the circadian clock and loss-of-function of GI causes shortening of 

the period (Huq et al., 2000; Staiger et al., 2003). Furthermore gi mutants are late-flowering 

and have elongated hypocotyls when grown under red light, suggesting it is also involved in 

phytochrome signaling (Fowler et al., 1999; Park et al., 1999; Huq et al., 2000). GI expression 

is circadian clock regulated with a peak in activity around ten hours after dawn and acts both 

in the circadian clock and in a clock output pathway where it promotes flowering by 

upregulating CO mRNA levels (Fowler et al., 1999; Park et al., 1999; Huq et al., 2000; 

Suarez-Lopez et al., 2001; Mizoguchi et al., 2005).  

CO was originally isolated from a late-flowering mutant whose flowering was delayed 

specifically under long days (Putterill et al., 1995). CO protein acts only in the clock output 

pathway and not in the clock mechanism since neither overexpression, nor loss-of-function 

affects the expression of clock genes (Ledger et al., 2001). CO mRNA itself shows a circadian 

expression pattern peaking both in long-days and in short-days 16 hours after dawn. 

Overexpression of CO causes extreme early-flowering (Onouchi et al., 2000) and expression 

analysis indicated that the function of CO is to mediate between the circadian clock and the 

floral transition (Suarez-Lopez et al., 2001). FLAVIN-BINDING, KELCH REPEAT, F-

BOX1 (FKF1) degrades CYCLIC DOF FACTOR1 (CDF1), a repressor of CO transcription 

(Imaizumi et al., 2003; Imaizumi et al., 2005). Degradation of CDF1 allows CO mRNA to 

accumulate at the end of a long-day around 16 hours after dawn (Imaizumi et al., 2005). In the 

fkf1 mutant this peak of CO is abolished and the plants display a late-flowering phenotype 

(Nelson et al., 2000).  

Photoreceptors are involved in the floral transition since loss-of-function mutants of PHYA 

and CRY2 cause late-flowering (Johnson et al., 1994; Guo et al., 1998; Yanovsky and Kay, 

2002) and mutations in PHYB cause early-flowering (Goto et al., 1991). CO protein 

abundance also exhibits a diurnal pattern (Valverde et al., 2004). CO accumulates in the 

presence of light and is degraded by the proteasome in darkness. Involvement of the 

proteasome is illustrated by accumulation of CO in darkness in the presence of proteasome 

inhibitors (Valverde et al., 2004). Moreover, PHYA and CRY2 are involved in stabilization of 

CO whereas PHYB is involved in red-light dependent degradation of CO (Valverde et al., 

2004). This illustrates that CO protein stabilization occurs only at the end of a LD when 

exposure to light coincides with the presence of the CO mRNA.  
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1.1.2.5. Floral integration 

 

CO promotes flowering in LD by direct activation of a set of genes called floral integrators 

comprising LEAFY (LFY), SUPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) 

and FLOWERING LOCUS T (FT) (Hayama and Coupland, 2003). LFY is a plant specific 

transcription factor with no homology to other proteins (Parcy 1998; Weigel 1992). The 

protein localizes both to the nucleus and the cytoplasm (Parcy et al., 1998; Wagner et al., 

1999; Wu et al., 2003) and can move between cells (Sessions et al., 2000). SOC1 encodes a 

MADS box transcription factor and soc1 mutants are late-flowering whereas overexpression 

of SOC1 accelerates the floral transition (Borner et al., 2000; Lee et al., 2000; Onouchi et al., 

2000; Samach et al., 2000). FT encodes a protein with similarities to 

phosphatidylethanolamine binding proteins and Raf kinase inhibitors in animals (Kardailsky 

et al., 1999; Kobayashi et al., 1999). Overexpression of FT causes extreme early-flowering 

and the formation of a terminal flower whereas ft loss-of-function mutations cause late-

flowering (Kardailsky et al., 1999; Kobayashi et al., 1999). Latest results indicate that SOC1 

is not directly induced by CO but rather indirectly through FT (Yoo et al., 2005). The ft 

mutation strongly enhances the lfy mutation and 35S::FT enhances the effect of 35S::LFY 

(Ruiz-Garcia et al., 1997; Kardailsky et al., 1999; Kobayashi et al., 1999), indicating that both 

LFY and FT act independently in promoting flowering. After activation of the floral 

integrators, floral meristem identity genes are activated which initiate the fate change from a 

vegetative to a floral meristem. The floral meristem identity genes encompass LFY, 

APETALA1 (AP1) and CAULIFLOWER (CAL) (Kieffer and Davies, 2001; Lohmann and 

Weigel, 2002). While LFY is able to directly activate AP1 and CAL by binding to their 

promoters (Parcy et al., 1998; Wagner et al., 1999; William et al., 2004), FT can also induce 

AP1 independently of LFY since a lfy mutant is able to form floral structures in contrast to lfy 

ap1 double mutants (Huala and Sussex, 1992; Weigel et al., 1992). However, TFL1 which 

encodes a homolog of FT is able to repress both FT and LFY (Bradley 1998; Ratcliffe 1998, 

1999). Recently it was shown that one amino acid change in FT changes this activator of 

flowering into a repressor and the opposite change in TFL1 converts a repressor into an 

activator of flowering (Hanzawa et al., 2005). 

Another aspect of the floral transition is spatial perception and signal transduction of the floral 

stimulus. Grafting experiments showed that photoperiod is perceived in the leaf and in 

response to this treatment a signal, the floral stimulus, is transduced to the shoot apex where 

the floral transition is induced (Knott, 1934; Zeevaart, 1976). Interestingly, CO is expressed in 
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the vascular system of Arabidopsis leaves where it induces the transcription of FT (Takada 

and Goto, 2003; An et al., 2004; Ayre and Turgeon, 2004). Moreover, misexpression of CO 

using various tissue specific promoters revealed that CO can induce flowering when 

expressed in the vasculature of the leaf but not when ectopically expressed in the shoot apical 

meristem (An et al., 2004). This indicates that CO regulates the floral signal in the leaf since it 

is the last protein in the hierarchy acting only in the leaf. FT can trigger early-flowering when 

expressed both in the leaf and in the shoot apical meristem, indicating that FT itself might be 

the movable signal or that it may control it (An et al., 2004). Huang et al. claim that FT 

mRNA is the movable signal moving from leaves to the shoot apical meristem (Huang et al., 

2005). Using a heat-shock inducible promoter they expressed FT at high levels in leaves and 

were able to detect the mRNA in the shoot apex (Huang et al., 2005). However, they fail to 

demonstrate that movement of the mRNA triggers flowering and exclude that the FT protein 

might also move to the shoot apex. FT triggers flowering in the shoot apical meristem by 

interacting with FD, a bZIP transcription factor that is exclusively expressed in the shoot 

apical meristem (Abe et al., 2005; Wigge et al., 2005). FD and FT interact and activate AP1 

by interacting with its promoter, thereby inducing floral meristem identity in the primordium 

(Abe et al., 2005; Wigge et al., 2005). 

 

 

1.2. Molecular mechanisms regulating gene expression 

 

Flowering-time is a quantitative trait that is regulated by a complex network of genes 

organized in different regulatory pathways. Understanding the relationships between different 

genes involved in this process requires an understanding of the mechanisms that control their 

expression. Such regulatory pathways can be controlled at different levels.  A major layer of 

regulation is the initiation of transcription, which can be influenced by changes in chromatin 

structure by for example histone modification. Once the chromatin is in an active state, the 

rate of transcription can be influenced by specific transcription factors that bind to the gene 

and act as repressors or activators of transcription. Stability of the messenger RNA is another 

layer of regulation that can be influenced by RNA-binding proteins or small RNA species 

such as microRNAs. The rate of translation which determines how much protein is made from 

an mRNA molecule can also be controlled by regulatory proteins or small RNAs. Finally 

protein turn-over and activity is regulated by post-translational modifications such as 
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phosphorylation, ubiquitination or sumoylation. These different levels of regulation form a 

complex and flexible network of gene and protein activity and are discussed in more detail in 

the following sections. All of these layers of regulation have been adopted at different 

positions in the regulatory network that controls the floral transition in response to exogenous 

and endogenous cues. The following sections describe these different layers of regulation and 

show examples how these processes affect the transition to flowering. 

 

 

1.2.1. Regulation of transcription in higher eukaryotes 

 

Transcription is the term used for the process of synthesizing RNA from DNA templates and 

can be regulated at various stages. DNA contains the genetic information and in higher 

eukaryotes is organized into chromosomes to which proteins such as histones and histone-

associated proteins are attached. The protein-coding genes can be divided into different 

regions. The transcribed region of genes is divided into exons and introns and the latter are 

spliced out after transcription. Promoters are DNA sequences typically upstream of the 

transcription initiation sites that regulate the rate of transcription. The whole promoter of a 

gene is characterized by regulatory elements which can be located in sequences up- and 

downstream of the transcription initiation site for example in introns. Promoters contain 

functional motifs where different proteins bind and regulate the rate of transcription often in a 

precise temporal or tissue specific manner. 

In higher eukaryotes RNA is synthesized by three different types of RNA-polymerase. RNA-

polymerase I transcribes 18S, 5.8S- and 28S-ribosomal RNAs (rRNA), RNA-polymerase II 

transcribes mRNA and small nuclear RNA (snRNA) and RNA-polymerase III synthesizes 

transfer RNAs (tRNA) and 5S-rRNA (Lodish et al., 2000). In contrast to animals, plants have 

a fourth RNA-polymerase (PolIV) that is involved in synthesis of small interfering RNAs 

(siRNA) and DNA methylation-dependent heterochromatin formation (Herr et al., 2005; 

Onodera et al., 2005). 

Transcription can be subdivided into three phases. During initiation, the transcription complex 

binds to the promoter of a gene. In the elongation phase RNA-Polymerase synthesizes and 

extends the new RNA molecule. Transcription ends with the termination process, where the 

nascent RNA is released from the transcription complex (Lodish et al., 2000).  
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The proximal promoters of protein-coding genes, which are transcribed by RNA-polymerase 

II, are sequences 5’ of the transcriptional start site. Almost all proximal promoters contain a 

TATA box, a motif found around -25 base pairs (bp) from the transcriptional start. RNA-

polymerase II can not bind to DNA itself, therefore a transcription factor complex is needed 

to facilitate binding. This complex was named transcription factor II (TFII, referring to RNA-

polymerase II). Transcription initiation starts with the binding of TFIID to the TATA-box. 

TFIID is a large protein complex and binds to the TATA-box via the TATA-binding protein 

(TBP) a component of the complex. TFIID binding is followed by association of the subunits 

TFIIA and TFIIB. Finally, RNA-polymerase II and TFIIE join the complex (Guarente and 

Bermingham-McDonogh, 1992). TFII and RNA-polymerase II represent the basic 

transcription machinery, but the rate of transcription can be regulated by association of other 

transcription factors. These factors can associate with DNA up- and downstream of the 

transcriptional start site and modify the rate of expression. Factors acting positively on the 

rate of transcription are called activators, whereas repressors slow down the rate of 

transcription.  

 

1.2.2. Role of transcription factors controlling developmental processes 

 

Developmental processes in higher organisms are often controlled by transcription through 

the action of specific transcription factors (Lodish et al., 2000). Mutations causing 

developmental defects, isolated from a variety of model organisms such as Drosophila 

melanogaster, Caenorhabditis elegans or Arabidopsis thaliana, often affect genes encoding 

transcription factors. In many cases these transcription factors are expressed in a stage and 

tissue specific manner, and particularly in plants many are also expressed in response to 

environmental signals such as light, heat or drought and confer adaptation to changing 

environmental conditions (Riechmann et al., 2000; Riechmann and Ratcliffe, 2000).  

Around 5% of the Arabidopsis genome encodes transcription factors (AGI, 2000). Eleven 

major families of plant transcription factors can be distinguished. The largest group is the 

MYB-transcription factor family that comprises around 180 members; these are involved in a 

variety of processes ranging from morphogenesis to stress signaling. APETALA2 

(AP2)/Ethylene responsive element binding proteins (EREBP) are the second largest group 

also controlling many different processes (Riechmann and Meyerowitz, 1998). Basic helix-

loop-helix (bHLH) transcription factors form the third group. Several bHLH transcription 
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factors act in light signaling (Duek and Fankhauser, 2005), but also in a variety of processes 

such as cell elongation, germination and trichome development (Kirik et al., 2004; Kim et al., 

2005). These three groups together represent around 30% of all Arabidopsis transcription 

factors (Ratcliffe and Riechmann, 2002). Transcription factors from a variety of different 

families have been shown to be involved in the regulation of the floral transition. Some act as 

floral repressors whereas others are activators (Ratcliffe and Riechmann, 2002).   

 

1.2.3. Epigenetic control of gene expression 

 

Initial changes in gene expression can be stabilized through epigenetic effects and inherited 

through many cell divisions. Epigenetic effects do not change the DNA sequence but alter the 

chromatin status by for example histone modifications such as methylation or acetylation 

(Lodish et al., 2000) or modify DNA through methylation. Histones form a scaffold for 

chromosomal DNA. Based on the density of the packing of DNA, different chromosomal 

regions can be distinguished (Lodish et al., 2000). Loose packing of DNA regions, named 

euchromatin, represents areas with high gene activity. Heterochromatic regions represent 

inactive chromatin.  

Imprinting is a process of silencing allelic variants of genes derived from the maternal or 

paternal lineage and the imprinted loci are inherited differently. One of the two parents 

inherits a silent allele, whereas the other parent contributes a fully active allele, resulting in a 

functional non-equivalency of the parental genomes (Autran et al., 2005). In plants normal 

seed development is regulated by the maternal genes MEDEA (MEA), FERTILIZATION-

INDEPENDENT SEED (FIS) and FERTILIZATION-INDEPENDENT ENDOSPERM (FIE). 

Mutations in these genes result in abnormal seed development regardless of the parental 

contribution (Chaudhury et al., 1997; Grossniklaus et al., 1998). These results are consistent 

with findings in mammalian systems, where failure to remember imprinting can result in 

uncontrolled cell divisions giving rise to developmental defects and cancer (Francis and 

Kingston, 2001). In Drosophila melanogaster, factors leading to stable repression of homeotic 

gene expression patterns were identified. These factors are encoded by the Polycomb (PcG) 

and trithorax (trxG) group genes. PcG proteins act as repressors at the level of chromatin and 

trxG genes were identified as encoding suppressors of PcG (Kennison and Tamkun, 1988; 

Brock and van Lohuizen, 2001). Also in Arabidopsis, PcG proteins have a fundamental role in 

controlling developmental processes. They act by methylating and acetylating histones 
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generating a PcG-specific histone code that establishes together with other factors heritable 

epigenetic marks that lead to alterations in transcription through binding of proteins that 

recognize these marks (Hsieh et al., 2003). The previously described Arabidopsis genes MEA, 

FIS and FIE all encode PcG proteins (Chaudhury et al., 1997; Grossniklaus et al., 1998; 

Kiyosue et al., 1999).  

The transition to flowering is also regulated by PcG proteins. The first PcG protein identified 

in this process was CURLY LEAF (CLF). The clf mutant displays an early-flowering 

phenotype caused by ectopic expression of AGAMOUS (AG) (Goodrich et al., 1997). 

Seedlings homozygous for a mutation in the FIE gene do not form rosette leaves, they flower 

soon after germination. The early-flowering phenotype seems to be due to de-repression of 

several floral meristem and floral homeotic genes such as LEAFY (LFY) and AGAMOUS (AG) 

(Kinoshita et al., 2001). Mutations affecting another PcG protein, EMBRYONIC FLOWER2 

(EMF2), exhibit an extreme early-flowering phenotype and EMF2 is thought to act in a 

complex with FIE (Yoshida et al., 2001). The function of EMF2 seems to be to repress the 

floral transition, since analysis of emf2 mutant plants indicate that it is epistatic to CONSTANS 

(CO), FLOWERING LOCUS T (FT) AND APETALA1 (AP1) (Chen et al., 1997; Haung and 

Yang, 1998). 

 

1.2.4. The role of RNA in gene silencing and epigenetic control of gene 

expression 

 

An early observation that lead to the discovery that RNA can interfere with gene expression 

resulting in gene silencing was made by Jorgensen and co-workers when they attempted to 

enhance the colour of the petals of petunia flowers by overexpressing the chalcone-synthase 

gene (Napoli et al., 1990). Instead of achieving more deeply coloured petals they created 

reduced or even unpigmented flowers. Analysis of transgenic plants revealed that both the 

endogenous gene and the transgene were silenced (van der Krol et al., 1990). Gene silencing 

can occur post-transcriptionally such as in the case of petunia flowers (van Blokland et al., 

1994), or at the transcriptional level as was found in tobacco plants when researchers aimed to 

introduce two different transgene complexes regulated by the same promoter. The promoters 

of these two transgenes carried methylation marks, a modification often related to silencing 

(Matzke et al., 1989; Park et al., 1996). Andrew Fire et al. demonstrated in 1998 that the 

expression of double-stranded RNA (dsRNA) triggers the degradation of target messenger 
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RNA in the nematode worm Caenorhabditis elegans (Fire et al., 1998), a process later named 

RNA-interference (RNAi).  A further milestone in the history of gene silencing was the 

discovery by David Baulcombe and co-workers in 1999, of small RNAs homologous to the 

silenced mRNA during the process of post-transcriptional gene silencing (Hamilton and 

Baulcombe, 1999).  

A requirement for effective gene-silencing is the existence of a double-stranded RNA-

precursor molecule that can be processed to generate small RNA species by an RNaseIII 

enzyme called Dicer (Carmell and Hannon, 2004). In the case of small interfering RNAs 

(siRNAs), the double-stranded RNA precursor can originate from transposable elements 

(Lippman et al., 2004) or viruses (Hamilton et al., 2002). SiRNAs anneal to target RNAs and 

the RNA-RNA duplex can be extended by an RNA-dependent RNA-polymerase. Several 

studies have shown that siRNAs are involved in histone methylation and thereby promote the 

formation of heterochromatin at DNA regions homologous to the RNA (Xie et al., 2003; 

Zilberman et al., 2003). Components required for the formation of siRNA-mediated 

heterochromatin are Dicer-like3 (DCL3) and the RNA-dependent RNA-polymerase2 (RDR2). 

MicroRNAs (miRNA; miR) are small RNA-species that are transcribed like messenger RNAs 

by RNA polymerase II from a miRNA-locus termed pri-miRNA which does not encode a 

functional protein. The pre-miRNA primary transcript is approximately 1kb in length, is both 

capped and polyadenylated (Aukerman and Sakai, 2003a) and contains an internal region that 

forms a foldback loop. The RNA duplex is targeted by a protein complex, the Dicer complex, 

that cleaves the dsRNA and generates small 15 to 25 basepair dsRNAs (Grishok et al., 2001; 

Park et al., 2002). Four DICER-like proteins are encoded in the Arabidopsis thaliana genome 

(DCL1-4). Each of these proteins contains a PIWI-PAZ domain, two RNase III domains and 

at least one dsRNA-binding domain (Kidner and Martienssen, 2005). DCL1, DCL2 and 

DCL3 are involved in biogenesis of miRNAs as well as in the processing of viral and 

transposon siRNAs (Xie et al., 2004). DCL1 is the only protein of the group that harbours a 

nuclear localisation signal. This makes it more likely that DCL1 acts in processing miRNAs 

together with the protein HUA ENHANCER1 (HEN1). DCL1 and HEN1 are both required 

for post-transcriptional gene silencing (PTGS) (Park et al., 2002). In summary, miRNA-

mediated mRNA destruction is believed to require the activities of ARGONAUTE1 (AGO1), 

DCL1, HEN1 and HYPONASTIC LEAVES1 (HYL1) whereas siRNA-mediated 

heterochromatin formation requires DCL3 and RNA-DEPENDENT RNA POLYMERASE2 

(RDR2) (Kidner and Martienssen, 2005).  
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Contrary to animals plants have a fourth RNA-polymerase (PolIV) that is involved in siRNA 

production and DNA methylation-dependent heterochromatin formation (Herr et al., 2005; 

Onodera Y, 2005). Recently, Peragine et al. reported, that another subspecies of siRNA exists, 

that were named trans-acting siRNAs (ta-siRNA). Ta-siRNAs direct the destruction of target 

messenger RNA in trans (Peragine et al., 2004). Ta-siRNAs require a plant specific protein of 

unknown function called SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-

DEPENDENT RNA-POLYMERASE6 (RDR6) for the synthesis of 21nt siRNAs (Peragine et 

al., 2004). For proper gene-silencing the ta-siRNA-pathway requires the activities of the 

miRNA-pathway (AGO1, DCL1, HEN1 and HYL1) plus RDR6 and SGS3 (Vazquez et al., 

2004). Finally, Allen et al. demonstrated that miRNAs can anneal to pre-ta-siRNA and serve 

as primer for the RDR6-catalyzed formation of the RNA duplex to yield a phased ta-siRNA 

that negatively regulates target messenger RNAs (Allen et al., 2005).  

Small RNA species are recognized by another protein complex containing a PAZ/PIWI-

domain protein called ARGONAUTE. The PAZ domain of the ARGONAUTE protein binds 

the 3’ end of the small RNA (Bartel, 2004) and is kept inside a fold in the PAZ domain (Song 

et al., 2003). The small RNA can then bind to substrate mRNAs in which the mRNA adheres 

to the PIWI domain which shows structural similarities to RNase H (Song et al., 2004). After 

RNA basepairing the doublestrand is cleaved, resulting in destruction of target mRNA. The 

cleaved mRNA is released from the ARGONAUTE complex and another mRNA molecule 

can be processed as before (Tang and Zamore, 2004). Since the completion of sequencing the 

Arabidopsis thaliana genome (AGI, 2000) ten ARGONAUTE protein encoding genes were 

identified. From some of these proteins, loss-of-function mutants are known, which provide 

insights into the physiological processes that these proteins are involved in. AGO1 is involved 

in post-transcriptional gene silencing and therefore accumulates miRNAs. Ago1 mutants are 

not only impaired in PTGS, but also lose resistance to viruses (Morel et al., 2002). AGO4 is 

involved in siRNA-silencing of transposons and repeats (Zilberman et al., 2003). ago4-1 was 

identified in a screen for mutants that suppress silencing of the SUPERMAN gene. The 

identified mutant exhibited loss of DNA and histone methylation and displayed accumulation 

of siRNAs (Zilberman et al., 2003).  

A gene closely related to AGO1 is PINHEAD (PNH) that is expressed in provascular tissue, 

shoot apical meristem and the adaxial side of lateral organ primordia. PNH regulates axis 

determinacy in Arabidopsis (Lynn et al., 1999). PNH seems not to be involved in PTGS, thus 

it could be redundant with AGO1. Since AGO1 and PNH are closely related and are both 

involved in establishing organ polarity in Arabidopsis they might have redundant functions. In 
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support of this pnh/ago1 double mutants are lethal. ZIPPY/AGO7 is involved in the regulation 

of developmental timing, since loss-of-function mutations exhibit the premature expression of 

adult vegetative traits (Hunter et al., 2003). Based on the composition of the ARGONAUTE 

complex, the complex is called RISC (RNA-induced silencing complex) or RITS (RNA-

induced initiation of transcriptional gene silencing), meaning that RISC is involved in RNA 

destruction and RITS is involved in genome modification (Verdel et al., 2004). The dsRNAs 

against promoter regions lead to methylation of target promoters that often result in 

transcriptional gene silencing (Mette et al., 2000). De novo methylation of cytosines is 

restricted to the region of RNA-DNA complementarity (Aufsatz et al., 2000). So far, it has 

been shown that DNA-methylation is naturally regulated by siRNA which has evolved to 

protect plants from viral attacks (Chan et al., 2005). However, Bao et al. demonstrated that 

microRNAs are also involved in DNA-methylation (Bao et al., 2004). Unravelling this 

mechanism is a challenge for future investigations to understand the relationship and interplay 

between microRNA-mediated gene silencing by mRNA destruction, translational inhibition 

and epigenetic modification of chromosomal DNA. 

A computational approach undertaken by David Bartel and co-workers led to the 

identification of Arabidopsis miRNAs (Jones-Rhoades and Bartel, 2004). Their study 

revealed that miRNAs often target transcription factors that are involved in various 

developmental processes such as meristem determination, organ polarity and vascular 

development as well as floral patterning and hormone response (Kidner and Martienssen, 

2005). In plants, microRNAs target genes can be regulated by mRNA destruction (Llave et 

al., 2002; Palatnik et al., 2003) or translational inhibition (Aukerman and Sakai, 2003a; Chen, 

2004). The importance of microRNAs for normal development is emphasized by their spatial 

and temporal expression patterns (Ambros et al., 2003; Aravin et al., 2003; Bartel and Bartel, 

2003; Aravin et al., 2004; Juarez et al., 2004b; Juarez et al., 2004a; Kidner and Martienssen, 

2004).  

Recent studies revealed that the floral transition is also controlled by small RNAs. The 

FLOWERING LOCUS C (FLC) allele present in the Arabidopsis accession Landsberg erecta 

(Ler) is relatively weak due to the insertion of a transposon in the first exon (Gazzani et al., 

2003; Michaels et al., 2003). SiRNAs corresponding to the transposon were identified in Ler 

and it has been shown that these siRNAs mediate H3-K9 dimethylation resulting in silencing 

of the FLC locus (Liu et al., 2004). Additionally, HEN1, which is involved in siRNA 

metabolism, is required for siRNA mediated H3-K9 dimethylation and silencing of the FLC 

locus (Liu et al., 2004). Apart from siRNAs, miRNAs also regulate flowering-time. 
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SQUAMOSA PROMOTER BINDING PROTEIN LIKE3, SPL3 which has been shown to 

accelerate flowering upon overexpression (Cardon et al., 1997) is targeted for degradation by 

miR156 (Rhoades et al., 2002). In addition to SPL3, also  SPL4 and SPL5 are targeted by 

miR156 (Rhoades et al., 2002). Overexpression of miR156b by the 35S promoter caused late-

flowering (Schwab et al., 2005) suggesting a role of SPL-genes in flowering-time control. 

MicroRNA159 targets MYB33, a regulator of the floral pathway integrator LFY. 

Overexpression of miR159 resulted in a delay of flowering in short-days due to a decrease in 

MYB33 mRNA (Achard et al., 2004). Finally, several APETALA2-like genes were described 

that are involved in floral repression. Among those, TARGET of EAT1 (TOE1), TOE2, 

SCHLAFMUETZE (SMZ), SCHNARCHZAPFEN (SNZ) and At5g67190 are repressors of 

flowering and regulated by miR172 (Aukerman and Sakai, 2003b; Schmid et al., 2003). 

Overexpression of these genes delays flowering in contrast to overexpression of miR172 that 

accelerates flowering by translational inhibition of AP2-like target genes (Aukerman and 

Sakai, 2003b; Kasschau et al., 2003; Schmid et al., 2003; Schwab et al., 2005). 

 

1.2.5. Post-translational modifications and regulation of protein activity 

 

Regulatory processes can also be controlled at the post-translational level by protein 

modification. Proteins can be modified by cleavage such as removal of signal peptides by the 

proteolytic signal recognition particle (SRP), allowing transport of proteins into the 

endoplasmatic reticulum (Rapoport, 1990). Another prominent example of proteolytic 

cleavage is the maturation of the insulin protein. Insulin is secreted from the pancreas as pre-

proinsulin. Cleavage of a 24 amino acid signal peptide yields proinsulin which, after a second 

cleavage, folds to active insulin (Hutton, 1994).  

Secreted membrane bound proteins are often modified by attachment of sugar moieties, a 

process termed glycosylation (Kent, 1967). Defects in degrading glycoproteins often results in 

neurological diseases such as mental retardation (Cantz and Ulrich-Bott, 1990). Protein-

glycosylation is also of importance in plant development. For example, Arabidopsis contains 

an extracellular glycosyl phosphatidylinositol anchored glycoprotein that is involved in 

mediating directional root growth (Sedbrook et al., 2002).  

Prenylation is a process where compounds from the isoprenoid pathway, such as farnesyl and 

geranylgeranyl, are covalently bound to the carboxy terminal ends of proteins by forming a 

thioester linkage. Prenylation participates in growth regulation and signal transduction as well 
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as in membrane trafficking and cell cycle regulation (Anderegg et al., 1988; Hancock et al., 

1989; Vorburger et al., 1989; Anant et al., 1992). Ras, an important oncogene in mammals, 

belongs to the superfamily of small GTPases. Ras is farnesylated and inhibition of 

farnesylation results in loss of Ras function (Hill et al., 2000). This makes the farnesylation 

process an important target for the development of anti-cancer drugs. Farnesylation is also 

involved in regulating the floral transition. APETALA1 (AP1), a MADS box transcription 

factor involved in mediating the transition from inflorescence shoots to floral meristems, is 

farnesylated in vitro and in vivo (Yalovsky et al., 2000). Overexpression of AP1 causes 

formation of a compound terminal flower, which is absent in plants overexpressing a mutant 

form of AP1 that lacks the farnesyl-acceptor. Furthermore, ectopic expression of AP1 in era1-

2 mutants, in which the gene for the farnesyltransferase β-subunit (AtFTB) is deleted, shows 

the same phenotype as overexpression of the AP1 farnesyl acceptor mutant (Yalovsky et al., 

2000). This indicates that function and specificity of AP1 involves post-translational 

regulation by farnesylation. Other post-translational modifications such as ubiquitination, 

sumoylation and phosphorylation and their contributions in controlling the floral transition are 

discussed in the three following sections. 

 

1.2.5.1. Ubiquitination 

 

Failures in regulated proteolysis result in uncontrolled cell divisions and can have dramatic 

effects for the normal development of an organism. Many proteins that stimulate the 

progression of the cell cycle, such as proto-oncogenes, are under strict proteolytic control 

ensuring their degradation and cell cycle arrest. In many types of cancer this proteolytic 

control is disrupted resulting in accumulation of cell-cycle stimulating proteins (Hochstrasser, 

1995; Tanaka, 1995). Ubiquitin is a small, globular protein of 76 amino acids. It can be 

attached to target proteins involving a complex machinery of different enzymes. The 

ubiquitin-activating enzyme (E1) attaches ubiquitin via the glycine residue at position 76 

forming a thioester linkage. Subsequently, the ubiquitin-moiety is transferred from the E1-

enzyme to the ubiquitin-conjugating enzyme (E2). Prior to approaching target proteins, 

ubiquitin is transferred from the E2 to the ubiquitin-ligase (E3) that can then ligate ubiquitin 

to the target protein. After attachment of a mono-ubiquitin to the target protein, several 

ubiquitin-moieties can be attached by the E3-ligase resulting in the formation of a 

polyubiquitin chain. Polyubiquitinated proteins are targeted for degradation by a multiprotein 
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complex, the 26S-proteasome (Sullivan et al., 2003).  Some proteins are not targeted for the 

attachment of a polyubiquitin chain after mono-ubiquitination. Mono-ubiquitination has been 

shown to influence several processes, such as protein trafficking, regulation of transcription 

and translation (Weissman, 2001; Conaway et al., 2002; Aguilar and Wendland, 2003). In 

Arabidopsis around 5% of the genes in the genome encode proteins involved in the 

degradation pathway (Vierstra, 2003).  

Forward genetic screens carried out in Arabidopsis have identified a variety of components of 

the proteolysis pathway that are involved in regulating developmental processes. The 

identified genes encode mostly F-box proteins or RING finger proteins that act as E3-

ubiquitin ligases. FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (FKF1) mediates the 

cyclic degradation of CYCLING DOF FACTOR1 (CDF1) a Dof transcription factor involved 

in repression of the flowering-time gene CONSTANS (Imaizumi et al., 2003; Imaizumi et al., 

2005). TIR1, another F-box protein acts as receptor for the plant hormone auxin and mediates 

degradation of Aux/IAA proteins (Dharmasiri et al., 2005a; Kepinski and Leyser, 2005). Also 

proteins closely related to TIR1 interact with auxin and mediate degradation of substrates 

(Dharmasiri et al., 2005b). 

Downstream components of the plant photoreceptor signaling pathways that are involved in 

repressing photomorphogenesis in darkness were identified by mutant screens in Arabidopsis. 

These are the COP/DET/FUS genes, which have pleiotropic effects on the development of the 

plant (Pepper et al., 1994; Wei et al., 1994; Wei and Deng, 1996; Suzuki et al., 2002). COP1, 

a RING finger protein, mediates the degradation of HY5, a promoter of photomorphogenesis, 

in response to darkness (Deng et al., 1992); (Osterlund et al., 2000). Also for the flower 

promoting protein CONSTANS (CO) COP1 and CO co-localize in sub-nuclear speckles 

(chapter 9.1) and interact with each other in vivo (chapter 9.2). Since cop1 mutants exhibit an 

early-flowering phenotype both under long and short-day conditions (Dieterle et al., 2003), it 

is likely that COP1 is the E3-ligase regulating CO protein abundance in response to 

photoperiod. 
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1.2.5.2. Sumoylation 

 

SMALL UBIQUITIN RELATED MODIFIER (SUMO) proteins are structurally and 

mechanistically similar to ubiquitin. Although they only show around 18% identity in their 

amino acid sequences, they show a high degree of structural similarity (Bayer et al., 1998); 

(Mossessova and Lima, 2000). The cyclic process of SUMO attachment to substrate proteins 

is highly similar to the ubiquitin cycle. The enzymes involved in this process are also termed 

E1 (SUMO-activating enzymes), E2 (SUMO-conjugating enzymes) and E3 (SUMO ligases) 

(Dohmen, 2004). In yeast SUMO is encoded by a single copy gene. In mammals four genes 

code for SUMO and in Arabidopsis eight SUMO-genes were identified (Dohmen, 2004). 

SUMO can be attached as a single entity as well as a poly-SUMO chain. In 1996 SUMO was 

identified as a modifier of the shuttling protein complex RanGAP. Sumoylation targets 

RanGAP to the nuclear pore complex and stimulates an interaction with RanBP2 (Matunis et 

al., 1996; Mahajan et al., 1997). Apart from protein trafficking, SUMO is involved in a 

variety of processes, such as chromosome segregation, cell division, DNA replication and 

repair (Dohmen, 2004). Also transcription factors can be sumoylated and sumoylation is 

involved in regulating transcription factor activity (Ross et al., 2002; Sapetschnig et al., 

2002). Another interesting finding was that the polycomb group protein PC2 acts as a SUMO 

E3 ligase (Kagey et al., 2003) and that in Caenorhabditis elegans SUMO modification is 

required for the regulation of homeotic genes via the polycomb group protein SOP2 (Zhang et 

al., 2004).  

In Arabidopsis, recent studies indicate a broad function for sumoylation in a variety of 

processes. For example, heat stress induces the conjugation of SUMO1 and SUMO2 (Kurepa 

et al., 2003). Also the floral transition seems to be controlled by sumoylation. Forward 

genetics led to the isolation of EARLY-FLOWERING IN SHORT-DAYS4 (ESD4). Loss-of-

function esd4 mutant plants flower early under short-days. The early-flowering phenotype is 

due to low levels of the floral repressor FLC and to an FLC-independent mechanism (Reeves 

et al., 2002). Cloning the ESD4 gene revealed that it shows high similarity to SUMO 

proteases of yeast and mammals that are involved in removing SUMO from target proteins 

(Murtas et al., 2003). A mutation in ESD4 results in accumulation of sumoylated substrates 

and a decrease in free SUMO. Overexpression of mature SUMO in esd4 mutants enhances the 

phenotype, which supports its role in removing SUMO from target proteins (Murtas et al., 

2003). Since sumoylation can affect transcription factors as well as epigenetic modifications it 
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could interfere with the flowering process at various stages of transcriptional and post-

translational regulation. 

 

1.2.5.3. Phosphorylation 

 

Phosphorylation is the transfer of a phosphate group (H2PO3), mostly from an energy-rich 

donor such as ATP, onto a target protein. This transfer is often mediated by protein kinases 

(Lodish et al., 2000). Phosphorylation of transcription factors by CASEIN KINASE2 (CK2) 

modulates their ability to interact with other proteins (Bek and Kemler, 2002). Examples from 

Arabidopsis are CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LONG ELONGATED 

HYPOCOTYL (LHY), two myb transcription factors that are considered to form part of the 

central oscillator of the circadian clock (Schaffer et al., 1998; Wang and Tobin, 1998; Alabadi 

et al., 2001; Mizoguchi et al., 2002). CCA1 is phosphorylated by CK2 and phosphorylation is 

required for the formation of protein-DNA complexes containing CCA1 (Daniel et al., 2004). 

Overexpression of CCA1 abolishes expression of the circadian oscillator and of output genes. 

A mutant form of CCA1 can not be phosphorylated and does not show this reduction in clock 

gene expression, indicating that phosphorylation is crucial for the activity of the CCA1 

protein (Daniel et al., 2004).  

During the floral transition, phosphorylation also appears to have a regulatory function. In 

rice, a phosphatidyl inositol monophosphate kinase (OsPIPK1) negatively regulates floral 

initiation (Ma et al., 2004). In tobacco, a calcium/calmodulin-binding protein kinase acts to 

repress flowering (Hua et al., 2004). Beside kinases, phosphatases that are involved in 

removing phosphate groups from target proteins, influence the floral transition. 

Overexpression of PHYTOCHROME-ASSOCIATED PROTEIN PHOSPHATASE 2A (FyPP) 

causes a delay of flowering whereas knock outs of FyPP cause acceleration of flowering. This 

indicates that FyPP modulates phytochrome signals in the control of flowering (Kim et al., 

2002). Abundance of HY5, a bZIP transcription factor involved in photomorphogenesis and 

root development (Oyama et al., 1997) is regulated by phosphorylation. COP1, an E3 

ubiquitin ligase, is involved in repressing photomorphogenesis by degrading HY5 (Ang and 

Deng, 1994; Ang et al., 1998). HY5 exists in two isoforms, resulting from phosphorylation of 

the COP1-binding domain. It was shown that the dephosphorylated isoform is physiologically 

more active and a target for degradation by COP1 (Hardtke et al., 2000). LONG 

HYPOCOTYL IN FAR-RED LIGHT1 (HFR1), a putative bHLH transcription factor is also 

degraded by COP1 (Duek et al., 2004). In contrast to HY5 the phosphorylated form of HFR1 
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is physiologically active and targeted for degradation by COP1 (Duek et al., 2004). Apart 

from being a putative target for COP1, CONSTANS also exists in phosphorylated and non-

phosphorylated isoforms (Wim Soppe, unpublished). Furthermore, preliminary results 

indicate that the phosphorylated form is biologically active and targeted for degradation by 

COP1 (Wim Soppe, unpublished). A PP2C phosphatase was isolated that interacts with 

CONSTANS in yeast and in vivo (chapters 9.3 and 9.4). Overexpression of PP2C does not 

show alterations in the floral transition but 35S::PP2C 35S::CO F1 plants seem to flower later 

compared to 35S::CO plants (chapter 9.5).   

 

 

1.3. Aims of the thesis 

 

Regulation of CO protein activity plays a major role in controlling the response of the 

photoperiod pathway to daylength, by activation of FT transcription specifically under LDs. 

CO acts as a transcription factor regulating FT expression, but does not contain a known 

DNA-binding motif. In order to understand the biochemical function of CO, how the protein 

is modified and targeted for degradation in the dark, extensive yeast-two-hybrid screening 

was carried out to isolate proteins that interact with CO. In particular DNA-binding proteins 

that could mediate an interaction between CO and DNA were of interest.  

Several flowering-time pathways converge on FT promoting or repressing the floral 

transition. Since FT transcription integrates signals from these various pathways identifying 

novel regulators of FT transcription was also an aim of this work as this could identify 

components of other flowering pathways. To identify transcription factors that bind to FT, 

yeast-one-hybrid screening was carried out with a fragment of the FT promoter. Combining 

yeast-one- and yeast-two-hybrid screening technologies was intended to identify new 

regulators of flowering that could then be studied by reverse genetics and biochemical 

approaches. 
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2. Materials and Methods 
 

2.1. Materials 

2.1.1. General molecular biological techniques, enzymes and chemicals 

Standard molecular biological techniques such as working with DNA (PCR-amplification, 

separation on agarose gels, restriction digests, etc.), protein (SDS-PAGE, western blot etc.) 

and preparation of buffers and media were carried out as described by Sambrook and Russell 

(Sambrook and Russell, 2001).  

Chemicals used were purchased from Amersham, Sigma, Merck, Roth, Boehringer, GIBCO 

unless otherwise stated. 

 

2.1.2. Kits 

ECL western blotting system    Amersham, Piscataway, USA 

TA cloning kit      Invitrogen, Karlsruhe, Germany 

Qiaex agarose gel extraction kit   Qiagen, Hilden, Germany 

Qiagen plasmid preparation kits   Qiagen, Hilden, Germany 

PCR purification kit     Qiagen, Hilden, Germany 

TNT Quick coupled system    Promega, Mannheim, Germany 

 

2.1.3. Enzymes 

All enzymes were used following the manufacturers instructions unless otherwise stated. 

Expand High Fidelity Taq polymerase  Roche, Mannheim, Germany 

T4 ligase      New England Biolabs, Frankfurt am Main 

Shrimp alkaline phosphatase    Roche, Mannheim, Germany 

DNaseI      Roche, Mannheim, Germany 

SuperscriptII Reverse Transcriptase   Invitrogen, Karlsruhe, Germany 

Gateway BP clonase     Invitrogen, Karlsruhe, Germany 

Gateway LR clonase     Invitrogen, Karlsruhe, Germany 

Restriction enzymes     New England Biolabs, Frankfurt am Man 

Quick change in vitro mutagenesis kit  Stratagene, La Jolla, USA 

Lysozyme      Roche, Mannheim, Germany 
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2.1.4. Vectors 

Yeast-vectors 

pAS2.1 Gateway compatible bait vector containing the DNA-binding domain of 

GAL4 

pACT2  prey vector containing the GAL4-activation domain (Clontech) 

pHISi   yeast-one-hybrid bait vector (Clontech) 

pLacZi   yeast-one-hybrid LacZ vector (Clontech) 

pGADT7  prey vector containing the GAL4-activation domain (Clontech) 

pDEST22  prey vector containing the GAL4-activation domain (Invitrogen) 

pDEST32  bait vector containing the GAL4-binding domain (Invitrogen) 

 

TA and Gateway cloning vectors 

pCR2.1 TOPO Invitrogen 

pDONR201  entry clone (Invitrogen), kanamycine-resistant 

pDONR207  entry clone (Invitrogen), gentamycine-resistant 

 

Vectors for protein expression 

pDEST14  Invitrogen 

pDEST17  Invitrogen, N-terminal HIS-tag 

pASK-IBA43plus IBA, Goettingen, N-terminal HIS-tag, C-terminal StrepII-tag 

pGEX-6P2  Promega, N-terminal GST-fusion 

pTNT-GW  Promega, modified containing Gateway® attB sites 

pTNTGAD-GW Promega, modified containing GAL4-AD and Gateway® attB sites 

 

Vectors for plant expression 

pLeela   35S-promoter, Gateway® attB sites 

pAligator2  double 35S-promoter triple HA-tag, Gateway® attB sites 

pSUC2   SUC2-promoter, Gateway® attB sites 

pGPTV-BAR  Gateway® attB sites, GUS gene 

pJawohl8  Gateway compatible for dsRNAi creating a stem-loop structure 

 

Vectors for FRET 

pENSG-YFPN 35S-promoter, Gateway® attB sites, YFP 

pENSG-CFPN 35S-promoter, Gateway® attB sites, CFP 
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2.1.5. Oligonucleotides 

Yeast one-/two-hybrid screen 

300FTs  GAATTCTTTCTCTATAAACTTGGCGGTAC 

300FTas  CTCGAGACGTACATCACACATTGTCGT 

3AD   GTGAACTTGCGGGGTTTTTCAGTATCTACGATT 

5AD   CTATTCGATGATGAAGATACCCCACCAAACC 

T7   GTAATACGACTCACTATAGGGC 

 

Gateway entry clones 

phd-s   (GWF)GCATGGACGCTGATTCCAAGAGATT 

phd-as   (GWR)CTTAGACTTCATCGAAAATGG 

hap5a-s  (GWF)GCATGGATACCAACAACCAGCAACC 

hap5a-as  (GWR)CTTAACCTTGGCCGTCGAGAT 

ap2-s   (GWF)GCATGGAGAGACGAACGAGACGAG 

ap2-as   (GWR)CTTAATCGAAAGAGTGATGATGATGG 

mtn19f   (GWF)GCATGATGGCTCGTTACCACAG 

mtn19r   (GWR)CTTAAGTACTAAGTGATTGGTAACCAT 

HAP2aF  (GWF)GCATGCAATCAAAACCGGGAAGAG 

HAP2aR  (GWR)CTTATGGTGCACCAGAAGAATTCA 

OsMtN19f  (GWF)GCATGAGAAGGGCGACCATTCTTG 

OsMtN19r  (GWR)CTCAGAGATTGCTCGTCAGCCAT 

pPHD-s  (GWF)GCTCTGCTTAGAAAGCATTTCCTTCAT 

pPHD-as  (GWR)CATCGATTTCTCAGAAATGGTGA 

pHAP5a-s  (GWF)GCGGTCGGTTTTGGATTTTGATTT 

pHAP5a-as  (GWR)CATTCAACAAGGCCCAAAATGAG 

pAP2-s  (GWF)GCTGATAGTAGTATCAACGTGTCGGG 

pAP2-as  (GWR)CGTTTCTCAGGAACATCCTTCTTAAA 

pMtN19f  (GWF)GCAGGAAAGAGATTGATTCAGCTAATC 

pMtN10r  (GWR)CCCCTCAATCTTCGTTTATAGTTTAA 

pHAP3aF  (GWF)GCTAATGTAATCATATATGTT 

pHAP3aR  (GWR) CTGGGTTTATACTCTACAGAAACA 
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Protein expression in E.coli 

HISfitSTRf  CCCCCGAATTCATGGAGAGACGAACGAGACG 

HISfitSTRr  CCCCCCTGCAGCATCATCATCACTCTTTCGATTAA 

pGEXHAP2f  CTCGAGCTATGCAATCAAAACCGGGAAGA 

pGEXHAP2r  CTCGAGTTATGGTGCACCAGAAGAATTC 

pGEXHAP3f  GAATTCGCATGGCGGATACGCCTTCGAG 

pGEXHAP3r  CTCGAGTTACCAGCTCGGCATTTCTTC 

pGEXHAP5f  GAATTCGAATGGATACCAACAACCAGCAAC 

pGEXHAP5r  GTCGACTTAACCTTGGCCGTCGAGAT 

GSTFITf  GAATTCGCATGGAGAGACGAACGAGACGA 

GSTFITr  CTCGAGTTAATCGAAAGAGTGATGATGATG 

COCTf  GGATCCTCTTTCAGCTCCATGACCACTACT 

COCTr  GAATTCTCAGAATGAAGGAACAATCCCAT 

 

Real-time quantitative PCR 

tubF   GAGCCTTACAACGCTACTCTGTCTGTC 

tubR   ACACCAGACATAGTAGCAGAAATCAAG 

COQF   CATGGAAACTGGTGTTGTGC 

COQR   TATCTCAGGACCCTGGCTTC 

FITQF   AAGCGCTCACGAATTTCCTA 

FITQR   CGGTATCCCAAAAACATTCG 

HAP5jQF  ACGATATTGCTGCTGCTGTG 

HAP5jQR  CCATTCCCGGATTTCCTATT 

HAP5cQF  CAACGCCATGACCACTACAC 

HAP5cQR  TCTTGCCAATGGAAGGCTAT 

MtN5UTRf  TTCCGTTTTATCCGATTCGT 

MtN5UTRr  TCTGTCCCTAGGAAGCCTTG 

RTMtNF  CTGCACAACCCTCCATTTTT 

RTMtNR  TGCTGAAGTGGTTGACGAAG 

RTHAP2aF  ACGTGCTTTTCTTCGCCTTA 

RTHAP2aR  AAATGACCCAGCGCTCTCTA 

RTHAP3aF  ACCCTCCAACTCCCTGTACC 

RTHAP3aR  GCGTTGCCTCCTAATGGTAA 

 



Materials & Methods 
 

 28

RTHAP5aF  CGAACATCTTCATCGGCTTT 

RTHAP5aR  TGGATACCAACAACCAGCAA 

RTPHDf  CGGTATGCCCTGTTTGTTCT 

RTPHDr  CGACAGGAGAGGATCAGGAG 

PHDSf   GGA CGC TGA TTC CAA GAG ATT TC 

PHDSr   CTT TCT CTT TCG CTG CAA CTT AA 

actinF   GGT GAT GGT GTG TCT 

actinR   ACT GAG CAC AAT GTT AC 

 

In vitro mutagenesis 

HAP3gE90RF  ATACAGTTCAGAGATGCGTCTCTGAGTT 

HAP3gE90RR AACTCAGAGACGCATCTCTGAACTGTAT 

co9F   TCGAGGAAGGCATATACAGAGATAAGACCGC 

co9R   GCGGTCTTATCTCTGTATATGCCTTCCTCGA 

co7F   ATGCAGAGATAAGACCGCAGGTCAATGGC 

co7R   GCCATTGACCTGCGGTCTTATCTCTGCAT 

 

Chromatin-Immunoprecipitation 

ChIPFT1F  TTG GCG GTA CCC TAC TTT TT 

ChIPFT1R  TCT CCC ACT TGG TAG CCA CT 

ChIPFT2F  TTT CCA GTT TGG ACA GTA GAA CC 

ChIPFT2R  GCA CGA CCA GGA TAA TTG GT 

ChIPFT3F  CAA AGG GCA CTC ATG AGG AT 

ChIPFT3R  AGA TTG GCA AGT GGA TGA GG 

ChIPFT4F  TCT GAT ATT CAA GCC AGC CTT T 

ChIPFT4R  TGA GGG TTG CTA GGA CTT GG 

ChIPFT5F  TTA GTG TGG TGG GTT TGG AA 

ChIPFT5R  CAG GTG GTT TCT CTG TGT TGA 

ChIPFT6F  TGC GTA TTT GAG TTC GGA CA 

ChIPFT6R  TCG AAA GCG AAA ACG TTC TAA 
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FT promoter oligonucleotides used for in vitro gelshifts 

FT-3fwd GGG CCA CAA ACA GAA ATA AAA AGA AAG AAA AAT ATG 

AAA TAA GAC GAC AAT GTG TGA TGT ACG TAG AAT CAG 

TTT TAG AT 

FT-3rev GGG ATC TAA AAC TGA TTC TAC GTA CAT CAC ACA TTG 

TCG TCT TAT TTC ATA TTT TTC TTT CTT TTT ATT TCT GTT 

TGT GG 

 

FIT knock-out screening/promoter-isolation 

FITf    GCG GCG AGG AAA GGT AAG CA 

FITr   CTC TGT TTC CTC GTT GAC GTT G 

FK1f    ATT CTG CCA AGG TGA ATC TTC TTC 

FK1r    GAA TCT TAG AAC AGA GGT CGG TGA 

P1f   (GWF )GCT GAT AGT AGT ATC AAC GTG TCG GG 

P1r   (GWR )CGT TTC TCA GGA ACA TCC TTC TTA AA 

 

 

2.2.  Methods 

2.2.1. Yeast-one hybrid screen 

 

Construct preparation 

For yeast one hybrid screening a 300-bp fragment of the FT promoter was amplified using the 

300FTs/as primers and High Fidelity Taq polymerase. The PCR product was digested with 

EcoRI/XbaI and ligated into the pHISi1 plasmid using T4 DNA-ligase. 

 

Transformation of Saccharomyces cerevisiae 

A single colony of PJ69-4A was inoculated in 5ml YPAD and grown overnight. 1ml of 

overnight culture was then transferred to 50ml YPAD and grown for four hours at 30°C. After 

incubation the mixture was centrifuged at 2000g for five minutes and resuspended in 1ml of 

100mM Lithium acetate pH 7.5. After transfer to an Eppendorf tube, cells were pelleted by 

centrifugation and resuspended in 500µl Lithium acetate pH 7.5. Aliquots of 50µl were used 

for transformation. These 50µl aliquots were transferred to Eppendorf tubes and cells were 

pelleted by centrifugation. After removing the supernatant, 240µl 50% PEG, 36µl 1M Lithium 
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acetate pH 7.5, 25µl 2mg/ml ssDNA and 50µl water containing 0.5µg of plasmid DNA were 

added. Cells were resuspended by pipetting, incubated for 30 minutes at 30°C followed by 

incubation for 30 minutes at 42°C. Finally, cells were pelleted by centrifugation, resuspended 

in 100µl 1M sorbitol and spread on selective medium. 

 

Integration of the fragment into the yeast genome 

In order to integrate the FT-promoter fragment into the yeast genome, the pHISi-1-construct 

was digested with XhoI and transformed into the YM4271 yeast strain. The promoter 

fragment integrates by homologous recombination in front of the HIS-locus. For screening, 

the HIS-marker is used for selection.  

 

Prescreening 

In order to identify a suitable strain for screening, different transformants were isolated. The 

transformants were plated on SD-His plates containing increasing concentrations of 3-

aminotriazole. The strain used for screening was inhibited by low amounts of 3-AT, which 

indicates a single insertion event. 

 

Library transformation 

For one-hybrid screening two different Arabidopsis cDNA libraries were used, one prepared 

from shoot apex material and one from whole plants. Both libraries were constructed by Dr. 

Hans Sommer, MPIZ Cologne. The library transformation was carried out as described in 

section 2.2.2. 

 

2.2.2. Yeast-two hybrid screen 

Constructs used for screening 

For the CONSTANS yeast-two-hybrid screen two constructs were used, the B-Boxes of CO, 

COBB (comprising the amino acids 20-105) and a construct encoding for the CCT domain of 

CO (CCTend, amino acids 306-373). Both constructs (in pAS2.1) were made by Dr. José 

Gentilhomme-Le Gourrierec. 

 

Prescreening 

In order to identify a suitable yeast strain for two-hybrid screening several transformants were 

selected and streaked on SD-Trp plates containing varying amounts of 3-aminotriazole, a 
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competitive inhibitor of the HIS-gene product. For the screenings, the selected strains were 

inhibited in growth by low concentrations of 3-aminotriazole. 

 

Library transformation and screening 

For the screenings with the CO B-Boxes and the CO CCT-domain two different cDNA 

libraries were used. A library containing Arabidopsis thaliana cDNAs from whole plants and 

a library containing cDNAs from the Arabidopsis shoot apex. Both libraries (constructed by 

Dr. Hans Sommer, MPIZ Cologne) were cloned into the pGADT7 vector and transformed 

into the Saccharomyces cerevisiae strain Y187. The libraries were introduced into the bait-

containing yeast strains by mating. 

 

Mating procedure 

A 50ml bait-culture (COBB, COCCTend in PJ69-4A) was grown in synthetic drop-out 

medium (SD-medium) supplemented with 4% glucose and all necessary amino acids except 

tryptophan (Trp). Cells were counted in a hemocytometer and the volume of 3 x 108 cells was 

calculated. This volume was then transferred to a 50ml Falcon tube. The library containing 

cells were thawn at 42°C and 5ml of the library were transferred to the bait-containing falcon 

tube (bait/library ratio = 2.5). The mixture was centrifuged for five minutes at 4000rpm and 

the pellet was resuspended in 6ml YCM pH3.5. After 100 minutes incubation at 30°C with 

constant shaking, 5ml were transferred to 500ml sterile water and mixed well. 236ml were 

transferred onto a 47mm membrane filter (450nm; PALL Gelman Lab.) and incubated for five 

hours at 30°C on YCM pH 4.5 plates. The filter was then transferred on SD-Trp-Leu-His 

plates and incubated over night. The filter was overlaid in a 50ml falcon with 1M sorbitol and 

vortexed. The filter was removed and the tube centrifuged at 4000rpm for five minutes. The 

pellet was resuspended in 10ml 1M sorbitol. Cells were counted and 1µl / 0.1µl / 0.01µl / 

0.001µl were plated on SD-Trp-Leu plates to calculate mating efficiency (cells on SD-Trp-

Leu / all cells). Cells were spread on large SD-Trp-Leu-His plates and the amount of 3-

Aminotriazole determined in the pre-screening was added. Plates were incubated for seven to 

ten days at 30°C. Single colonies emerging on the plates were isolated and transferred to 96-

well plates containing 20µl 1M sorbitol. Cells were spread on SD-Trp-Leu-His plates using a 

hedgehog and transferred to 30°C. After the appearance of colonies, these plates were kept at 

4°C as a masterplates. To identify interactors 2µl from the 96-well plates were used in a 25µl 

colony PCR reaction using the 3AD/5AD primer pair. After purification of the PCR products 

using the QIAGEN PCR-purification kit, PCR fragments were sequenced using T7-primer. 
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2.2.3. In vitro co-immunoprecipitation 

In vitro transcription/translation 

All proteins were produced with the TNT® Quick Coupled Transcription/Translation System 

from Promega. cDNAs encoding proteins of interest were recombined into pTNT-GW when 

used as prey and into the pTNTGAD-GW, providing an in-frame fusion of the gal4-activation 

(GAD) domain, when used as bait. 

 

For a single immunoprecipitation 12.5 µl of protein was produced mixing the following 

components: 

TNT Quick master mix    10.0µl 

35S-methionine (1000Ci/mmol at 

10mCi/ml)      0.5µl 

Plasmid DNA (1µg/µl)    0.5µl 

T7-TNT enhancer     0.5µl 

Water       1.0µl 

The reaction mix was incubated at 30°C for 60 minutes. 

 

Co-Immunoprecipitation 

 

In order to test an interaction between two or more proteins, 10µl of GAD-tagged protein was 

mixed with 10µl of every prey protein in 250µl 1x binding buffer (1xBB) containing 20mM 

Tris pH 7.5, 150mM NaCl, 1mM DTT, 0.1% Tween-20, two tablets of Complete Protease 

Inhibitor Cocktail (Roche) per 50ml. The mixture was incubated in an Eppendorf tube for 

three hours at 4°C on a rotating wheel. After three hours, 5µl of anti-GAD monoclonal 

antibody (Santa Cruz Biotechnology) was added and the mixture was incubated for another 

hour under the same conditions. Finally 20µl of protein A-coated magnetic beads (Dynal) 

were added and incubated for another hour. Prior to addition, the beads were washed once 

with 1ml 1xBB.  

The tubes containing the reaction mixes were placed in a rack that contained magnets to pull 

the beads to the wall of the tube. The supernatant was removed, mixed with an equal volume 

of 2xLaemmli buffer and kept as the supernatant fraction of the immunoprecipitation. The 

beads were washed three times using 1ml cold 1xBB. After the final wash 30µl of 1xLaemmli 

was added to the beads. Beads and the supernatant fraction were heated to 80°C for five 

minutes. Beads were again placed in the magnetic rack and the pellet fraction was recovered.  
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The immunoprecipitations were analyzed by SDS-PAGE loading 1µl of the prepared proteins 

(input), 5µl of each supernatant fraction and 10µl of each pellet fraction. After electrophoresis 

the gels were dried and exposed overnight to a phosphorimager screen. 

 

2.2.4. Gel retardation assay 

Purification of recombinant protein from E. coli 

E. coli BL21ai harboring the pDEST17-FIT plasmid were grown overnight to saturation. The 

next day, a fresh one liter culture was started and after two hours protein expression was 

induced by addition of 1ml 10% arabinose. The culture was grown until an O.D. of around 

0.8-1.0 was reached. Bacterial cells were harvested by centrifugation for ten minutes at 4°C. 

The pellet was resuspended in 5ml buffer B (100mM NaH2PO4, 10mM Tris, 8M urea, pH 8.0) 

per gram wet weight and lysed for 30 minutes at room temperature. The lysate was 

centrifuged for 30 minutes at 4,000 rpm to pellet cellular debris and the supernatant. The 

lysate was mixed with 1ml 50% Ni-NTA slurry (Qiagen) for 60 minutes at room temperature. 

The mixture was transferred to an empty column with bottom cap attached. After settlement 

of the resin, bottom cap was removed to let out the supernatant. The resin was washed twice 

with buffer B and twice with buffer C (100mM NaH2PO4, 10mM Tris, 8M urea, pH 6.3). 

Recombinant protein was eluted four times with 0,5ml buffer D (100mM NaH2PO4, 10mM 

Tris, 8M urea, pH 5.9) and four times with buffer E (100mM NaH2PO4, 10mM Tris, 8M urea, 

pH 4.5). Protein concentration was determined by SDS-PAGE and Coomassie staining. 

Due to insolubility the protein was purified under denaturing conditions. To use it for DNA-

binding assays, a refolding was carried out by dialysis. For dialysis the fractions containing 

most protein were pooled and transferred into a dialysis tube. The tube was incubated at 4°C 

for one hour in 500 ml dialysis buffer I (100mM NaH2PO4, 10mM Tris, 6M urea, pH 5.0), 

followed by one hour in 500 ml dialysis buffer II (100mM NaH2PO4, 10mM Tris, 4M urea, 

pH 6.0) and two hours in 500 ml dialysis buffer III (100mM NaH2PO4, 10mM Tris, 2M urea, 

10% glycerol, pH 6.5). The final dialysis was done over night at 4°C in 500ml dialysis buffer 

IV (200mM NaH2PO4, 20mM Tris, 10%glycerol, 1mM PMSF, pH 7.5). To concentrate the 

protein content, the dialysis mixture was applied on an Amicon Centrifuge Column with a 

size exclusion of 5kD. After concentrating, the protein mixture was diluted in an equal 

volume of 50% glycerol and frozen at -20°C. 
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Retardation assay 

The DNA probe was prepared by PCR followed by restriction digestion. Digested and gel-

purified DNA-fragments were labeled by end filling using 32P-labeled dCTP and Klenow-

enzyme (Roche). The probes were then purified using the Qiagen PCR purification kit 

according to the manufacturers instructions. The 100ng of DNA which were initially used for 

labeling were finally diluted in 100µl elution buffer. For retardation assays 5µl of recombinant 

protein was mixed with 5µl TA buffer (20% glycerol, 25mM HEPES-KOH pH 7.9, 50mM 

KCl, 1mM EDTA, 1mM DTT). After that 8µl of TM buffer (10mM Tris-HCl pH 7.9, 25mM 

MgCl2) was added with 1µl poly dI/dC and the mixture was incubated on ice for 10 minutes 

to block unspecific DNA binding. The radiolabeled probe was added and the mixtures were 

incubated on ice for another 30 minutes. The binding reactions were loaded on large (15 x 

20cm) gels containing 4% polyacryl amide in 0.5xTBE and separated at 100V for two hours. 

Gels were dried and exposed to a phosphorimager screen. 

 

2.2.5. Transformation of Arabidopsis leaves by particle bombardment 

For each bombardment experiment 5µg of plasmid DNA was used per construct. The final 

volume of DNA should not exceed 5µl. For ten bombardments 30µg of gold (size 1.0 micron) 

was washed with 1ml of 70% ethanol for 15 minutes while shaking. The gold-ethanol mixture 

was spun down for a few seconds in a microcentrifuge and washed three times with sterile 

water. Finally the gold particles were resuspended in 500µl of sterile 50% glycerol. To each 

DNA-mix of each bombardment experiment 50µl of the gold-glycerol mix was added under 

constant shaking, followed by the addition of 50µl of 2.5M CaCl2 and 20µl 0.1M spermidine. 

The mixtures were incubated for another three minutes shaking and spun down in a 

microcentrifuge. After two washes, first with 140µl of 70% ethanol, second with 140µl of 

100% ethanol, the DNA-gold mixture was resuspended in 50µl of 100% ethanol. For each 

bombardment using the BIORAD biolistic system, 25µl of the DNA-gold mixture was used. 

 

2.2.6. Confocal microscopy and in vivo analysis of protein-protein interactions 

using Foerster resonance energy transfer (FRET) 

To generate fluorescent proteins we used pENSG-YFP:GW and pENSG-CFP:GW which are 

Gateway destination vectors yielding N-terminal fusions of YFP/CFP driven by the 35S-

promoter (kind gift from Dr. Nieves Medina-Escobar, MPIZ Cologne). Plasmids were 
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transformed by particle bombardment on Arabidopsis leaves. Co-localization studies and 

FRET analysis were performed 14-16 hours after bombardment. 

Colocalization of YFP, CFP and dsRED was performed using a Leica TCS SP2 AOBS 

confocal microscope allowing a flexible selection of emission bandwidths and simultaneous 

multicolor-imaging. For FRET analysis transformed Arabidopsis epidermal cells expressing 

equal levels of CFP and YFP were selected. Analysis of FRET was performed using a Zeiss 

LCS510 META confocal microscope equipped with argon ion and He-Ne lasers. FRET was 

quantified using the acceptor-photobleaching (APB) technology and FRET-efficiencies were 

determined according to Karpova and Bhat (Karpova et al., 2003; Bhat et al., 2004). 

 

2.2.7. Promoter-Luciferase assay 

Arabidopsis leaves were transformed by particle bombardment. Gold beads were coated with 

pFT:LUC, 35S::GFP and 35S::effector plasmids. For negative controls, an empty vector was 

used instead of the 35S-effector plasmid. After incubation over night in a long day chamber 

(Percival), transformed leaves were sprayed with 1mM Luciferin (in 0,1% SDS) and 

Luciferase was detected using a Hamamatsu photon counting system. Luciferase expression 

of single leaves was quantified using the Hamamatsu photonics device control program HD-

LIZ. After Luciferase measurements, the GFP signals were recorded using a Leica MZ-FLIII 

binocular system. GFP images were processed and integrated using Adobe Photoshop and 

Scion Image software. 

 

2.2.8. GUS assay 

To visualize the spatial expression pattern of genes, their promoters were amplified by PCR, 

recombined into the pDONR207 plasmid and finally introduced into the pGPTV-BAR 

plasmid in front of the β-glucuronidase gene. Transgenic GUS-expressing plants, or parts of 

them, were harvested and incubated for 10 minutes in heptane to remove cuticular waxes and 

dried at room temperature for about 5 minutes. The tissue was then submerged in GUS-

solution (for 400ml: 15.6ml 1M NaH2PO4, 24.4ml 1M Na2HPO4, 360ml H2O, 263mg   

K3Fe(CN)6, 200mg x-Gluc, 400µl triton-X100) overnight at 37°C. The solution was removed 

and 70% ethanol was added to remove the chlorophyll, followed by washes of 100% ethanol 

until the green color was completely removed and the blue GUS-pattern became visible. For 

long time storage, GUS solution was kept at -20°C, after thawing at 4°C. 
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2.2.9. Isolation of genomic DNA from plant tissue 

DNA from plants was isolated using the method described by Edwards et al. (Edwards et al., 

1991). For genotyping, a single Arabidopsis leaf was harvested per sample and frozen in 

liquid nitrogen. Samples were macerated using disposable grinders or an electric drill. 

Immediately after maceration 400µl of extraction buffer (200mM Tris pH 7.5, 250mM NaCl, 

25mM EDTA, 0.5% SDS) was added and the sample was vortexed for five seconds. Samples 

were kept after this step at room temperature until the last sample was extracted. The extracts 

were centrifuged for 5 minutes and 300µl of supernatant was transferred to a new tube 

containing 300µl of isopropanol and vortexed. After a two minute rest, samples were 

centrifuged at 14,000 rpm. The supernatants were discarded and pellets dried at room 

temperature. After dissolving the pellets in 50µl TE, 1µl was used for PCR. DNA was stored 

at -20°C. 

 

2.2.10.   RNA isolation from plant tissue 

 
To analyze expression levels of genes after hormone treatments or in time-course 

experiments, half a 1.5ml Eppendorf tube was filled with seedlings grown on plates. Total 

RNA was extracted using the RNeasy kit from Qiagen according to the manufacturer’s 

instructions.  

 

DNase treatment 

To remove contaminating DNA, which would negatively interfere in quantitative PCR 

analysis, a DNase digestion was carried out. To 43µl of total RNA 1µl RNase inhibitors, 1µl 

DNaseI (10 units) and 5µl 10xbuffer (200mM Tris HCl pH 7.5, 10mM EDTA, 75mM MgCl2 

in DEPC-H2O) were added and the mix was incubated for 30 minutes at 37°C. 

 

Phenol-chloroform extraction 

To remove DNase from the RNA, a phenol-chloroform extraction was carried out. 

50µl DNase digest was mixed with 150µl DEPC-H2O and 200µl Phenol. The mix was 

vortexed and centrifuged for 30 seconds at 20,000xg. Aqueous layer was transferred in a new 

Eppendorf tube and 200µl Phenol-chloroform-isoamylalcohol (25:24:1) was added. The mix 

was vortexed and centrifuged for 30 seconds at 20,000xg. The aqueous layer (approximately 

180µl) was transferred to a new tube and 120µl isopropanol was added. The mix was 

vortexed, incubated at -20°C for 30 minutes and centrifuged (4°C, five minutes at 20,000xg). 
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The pellet was washed with 1ml 70% ethanol and centrifuged again for five minutes at 

20,000xg. After drying, RNA was dissolved in 25µl DEPC-H2O. RNA was quantified in a 

spectrometer and stored at -20°C. 

 

2.2.11.  Reverse transcription 

Equal amounts of RNA were used for reverse transcription (usually between 1 and 5µg). 

Reverse transcription was carried out in 20µl final volume using the SuperscriptII reverse 

transcriptase from Invitrogen according to the manufacturers instructions. Independent PCR 

reactions were performed on an ABI PRISM 7700 Sequence Detection System (Applied 

Biosystems, Foster City, California, USA). Data analysis was done by the comparative CT 

method (ABI PRISM 7700 user bulletin) and represent means and standard deviations of 

independent amplifications with three to five replicates each. Alternatively, real-time 

quantitative PCR reactions were performed on an iQ5 real-time PCR detection system (Biorad 

Laboratories Inc., Hercules, CA, USA) and data analysis was performed using the Biorad iQ5 

software. 

 

2.2.12.  Quantitative RT-PCR 

For real-time quantitative PCR, 2µl of a ten-fold dilution of the cDNA produced by reverse 

transcription was used. The amplification mix contained the following: 2µl PCR buffer 

containing 0.5µl/ml SYBR-green, 1µl 10µmM of each primer, 0.5µl 10mM dNTPs, 0.25µl 

Taq polymerase and 13.25µl water. 

 

2.2.13.  Plant Chromatin Immunoprecipitation (ChIP) 

This protocol is modified from Gendrel et al. (Gendrel et al., 2002). Seedlings from each 

genotype (e.g. wild-type and mutant) were grown for 12-14 days on two large square plates 

containing MS-agar. After harvesting seedlings in 50ml Falcon tubes they were rinsed twice 

with deionized water followed by 20 minutes incubation in 50ml 1% formaldehyde under 

vacuum. The crosslinking was quenched by adding 2M glycine to a final concentration of 

0.125M. Seedlings were rinsed twice with deionized water and frozen in liquid nitrogen. 

Samples were then ground in liquid nitrogen to a fine powder. 30ml of extraction buffer 1 

(0.4M sucrose, 10mM Tris-HCl pH 8.0, 5mM β-mercaptoethanol, 1mM PMSF, one mini-

tablet of protease inhibitors cocktail (Roche) per 10ml) were added to the powder in a 50ml 
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Falcon tube, vortexed and kept on ice. The mixture was filtered through two layers of 

Miracloth into a fresh 50ml Falcon and centrifuged at 4,000 rpm for 20 minutes. The 

supernatant was removed and the pellet was resuspended in 1ml extraction buffer 2 (0.25M 

sucrose, 10mM Tris-HCl pH 8.0, 10mM MgCl2, 5mM β-mercaptoethanol, 1mM PMSF, 1% 

Triton-X 100, 1 mini-tablet of protease inhibitors cocktail (Roche) per 10ml) and transferred 

into a 2ml Eppendorf tube. The mixture was centrifuged in a bench-top centrifuge at 14,000 

rpm for 10 minutes. The supernatant was remove and the pellet was resuspended in 300µl 

extraction buffer 3 (1.7M sucrose, 10mM Tris-HCl pH 8.0, 2mM MgCl2, 5mM ß-

mercaptoethanol, 1mM PMSF, 0,15% Triton-X 100, 1 mini-tablet of protease inhibitors 

cocktail (Roche) per 10ml). 300µl of extraction buffer 3 were added in a clean 1,5ml 

Eppendorf tube and the resuspended pellet was layered on top. This solution was then 

centrifuged for one hour at 14,000rpm at 4°C. The supernatant was removed and the pellet 

was resuspended in 500µl nuclei lysis buffer (50mM Tris-HCl pH 8.0, 10mM EDTA, 1% 

SDS, 1mM PMSF, protease inhibitor cocktail). Chromatin was sonicated on ice for four times 

avoiding foaming and then centrifuged for 10 minutes at 14,000 rpm at 4°C. The supernatant 

was transferred to a new tube and centrifuged again. Finally, the supernatant was transferred 

to a new tube and stored at -80°C. 60µl chromatin-aliquots were transferred into new tubes 

and diluted with 540µl ChIP-dilution buffer (1.1% Triton-X 100, 1.2mM EDTA, 16.7mM 

Tris-HCl pH 8.0, 167mM NaCl). 10µl of equilibrated Protein-A-coated Dynabeads 

(equilibrated by washing three times in ChIP-dilution buffer) were added to each sample and 

mixed by rotating for one hour at 4°C. This results in pre-cleared chromatin. Samples were 

concentrated by using a magnetic rack and the supernatant was transferred to a new 

Eppendorf tube. After the addition of 5µl antibody (α-rat as negative control and α-HA for 

chromatin IP) to each tube, the mixture was incubated overnight at 4°C on a rotating wheel. 

40µl of equilibrated Protein-A Dynabeads were added and the incubation was allowed to 

proceed for another hour to collect immune complexes. After removing the supernatant using 

a magnetic concentrator, precipitated chromatin was washed at 4°C for five minutes with 1ml 

low salt buffer (150mM NaCl, 0.2% SDS, 0.5% Triton, 2mM EDTA, 20mM Tris pH 8.0) 

followed by washing at 4°C for five minutes with 1ml high salt buffer (500mM NaCl, 0.2% 

SDS, 0.5% Triton, 2mM EDTA, 20mM Tris-HCl pH 8.0). Chromatin was then washed at 4°C 

for 5 minutes with 1ml LiCl2 buffer (0.25M LiCl2, 0.5% NP-40, 0.5% sodiumdeoxycholate, 

1mM EDTA, 10mM Tris-HCl pH 8.0) followed by washing at 4°C for 5 minutes with 1ml TE 

(10mM Tris-HCl pH 8.0, 1mM EDTA). Immune complexes were eluted by the addition of 

250µl elution buffer (1% SDS, 0.1M NaHCO3) to pelleted beads and vortexed vigorously 
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followed by incubation at 65°C for 15 minutes with shaking. Elution was done twice and 

eluates were combined. To reverse protein-DNA crosslinks 20µl 5M NaCl was added 

followed by incubation at 65°C overnight. Then, 10µl 0.5M EDTA, 20µl Tris-HCl pH 6.5 and 

1µl proteinase K were added for a one hour incubation at 45°C. DNA was cleaned by the 

addition of 500µl Phenol:chloroform, vortexing and transfer of the aqueous phase to a new 

tube. Then, 2µl 15mg/ml glycogen, 50µl 3M sodium acetate and 1ml 100% ethanol were 

added and the mixture was vortexed and incubated at -80°C for at least one hour. After a ten 

minute centrifugation at 14,000 rpm the supernatant was discarded and the dry pellet was 

dissolved in 50µl TE. Finally, 2µl of this mixture was used for PCR including a 1:20 dilution 

series from the chromatin of each immunoprecipitation experiment was used as input control. 

 

2.2.14.  Plant growth conditions and flowering time experiments 

Plant material used for gene-expression and ChIP analysis was grown on GM plates 

containing 1% sucrose. After ethanol sterilization seeds were spread on plates, stratified for 3 

days at 4°C and finally transferred to growth chambers with LD (16 hours/8 hours dark) or 

SD (8 hours light/ 16 hours dark) regimes at 22°C. For flowering time experiments seeds were 

sawn on soil, cold-treated for 3 days at 4°C, transferred to Percival growth chambers and 

grown in the desired light regime (SD or LD) at 20°C. Flowering time was determined by 

counting the number of rosette leaves at bolting and the number of cauline leaves after 

bolting. 

 

2.2.15.  Agrobacterium-mediated transformation of Arabidopsis plants 

Transformation of A. tumefaciens 

An aliquot (50µl) of an electrocompetent agrobacteria (strains GV3101 pMP90 or pMP90RK) 

was thawn on ice. 1µl of plasmid DNA was added, cell and DNA were mixed by flicking the 

tube and than transferred to an electroporation cuvette. An electric pulse was applied 

(2.5kV/cm, 25µF, 400Ω for 8-12ms), cells were resuspended with 1ml LB medium and 

transferred to a 15ml Falcon tube. After incubation at 28°C with constant shaking, 100µl were 

plated on LB plates containing appropriate antibiotics. 
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Transformation of Arabidopsis plants 

Plasmid carrying Agrobacterium strains were grown overnight in one liter LB medium and 

appropriate antibiotics. Cells were harvested by a 30 minute centrifugation at 4.000rpm and 

pellets were resuspended in one liter transformation buffer (2.2g MS salts, 50g sucrose, 0.6g 

MES, 300µl silvet, pH 5.7). Arabidopsis plants (nine plants per pot) were dipped in the 

transformation mixture for two minutes and than bagged with plastic for 24 hours. After this 

24 hour incubation, plastic bags were removed. After seed set plants were bagged for seed 

collection. 
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3. Identification of proteins interacting with the FT promoter 

and the CONSTANS protein 

 

3.1. Proteins interacting with the promoter of FLOWERING LOCUS T 

(FT)  

 

In order to identify proteins involved in regulating the expression of flowering-time gene FT, 

a yeast-one hybrid screen was performed. A second aim was to identify proteins that mediate 

an interaction between the flowering-time protein CONSTANS (CO) and the FT promoter. 

For the screen a 300-basepair (bp) fragment of the FT promoter that has been shown by Dr. 

Aidyn Mouradov to contain most of the regulatory elements required for FT activation by CO 

was used (Dr. A. Mouradov, unpublished). More recent studies show that in order to obtain a 

strong pattern of expression by promoter-GUS analysis a 10kb fragment of the FT promoter is 

necessary.  

The 300-bp fragment was integrated into the yeast genome of the Y187 strain and tested for 

background expression on selective media containing increasing concentrations of  3-

aminotriazole, the competitive inhibitor of the yeast HIS gene product (Figure 2). 

 
Figure 2. Analysis of the bait (300FT) containing yeast strain Y187 for growth on various 3-AT 
concentrations. For the screen colony #5 was selected. The screen was carried out using 15mM 3-AT. 
 

After screening of around 200 individual yeast colonies two proteins were identified that were 

considered for further investigation. The first protein was an APETALA2-like protein and the 

second was AtMtN19, a protein of unknown function.  
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3.2. Proteins interacting with CONSTANS  

 

In order to gain more insights into the biochemical function of CO, its mode of binding to 

DNA and possible post-translational modifications that could occur after interacting with 

regulatory proteins, a yeast-two-hybrid screen was performed. 

CO is a B-box type transcription factor containing two conserved domains, the amino 

terminal B-boxes and a carboxy terminal CCT-domain (Figure 3.) 

 

 

Figure 3. Conserved domains in the CONSTANS protein. The carboxyterminal end contains a VP-
domain, which might be involved in interacting with the E3-ligase COP1. 
 

The screen was carried out using two baits, the B-boxes and the CCT-domain. We screened 

two Arabidopsis libraries which were kindly provided by Dr. Hans Sommer. One library was 

made from shoot apical tissue the other was a total plant library. 

 

After screening around 300 individual colonies by PCR (Figure 4) 20 putative interactors 

were selected for further investigation (Table 1). 

 

 

 
Figure 4. Amplification of prey-inserts by colony-PCR. Annealing temperature 55°C, extension time 
1 minute. The gel shows the PCR fragments after purification. * No fragment visible, a second PCR 
reaction was carried out with 2 minutes extension. ** Two fragments visible, plasmids were extracted 
from yeast, transformed in E. coli, extracted and sequenced. 
 
 

At5g15840 CONSTANS Protein
373 aa

CCT-domain
Asparagine-rich region profile

Bbox1 Bbox2

( - - - - V P - - - - )

conserved carboxyterminal domain
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Table 1. Interactors selected for further investigation after yeast-two-hybrid screening. 

 

The plasmids were extracted from yeast and transformed into E. coli for amplification. After 

DNA-extraction and sequencing of the prey-plasmids isolated from E. coli, the plasmids were 

retransformed into the bait containing yeast-strain and a strain without the bait. After 

screening a second time on selective medium, several candidates were discarded because of 

auto activation. The following candidates were selected for further investigation and the full-

length cDNAs were isolated by RT-PCR: zinc finger, receptor kinase, HAP5a, PP2C 

phosphatase, AtLIN10, MtN19, expressed protein, PHD-finger. A third screen was carried out 

using the full length cDNAs of the interacting proteins in a two-hybrid screen and the 

interaction with the CO protein retested. The receptor kinase (At5g16000) and the expressed 

protein (At2g20890) showed no interaction using the full length proteins and were discarded 

from further analysis. 

In order to identify true interacting proteins, protein interactions were tested in two other 

independent systems. The methods used were in vitro co-immunoprecipitations and in vivo 

FRET analysis. As a result we decided to further investigate the zinc finger (At5g26610), 

AtLIN10 (At3g51130), HAP5a (At3g48590), MtN19 (At5g61820), PP2C (At3g12620) and 

the PHD-finger (At1g56280) (Table 2). 
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Table 2. Interactions observed in three independent systems. + = positive interaction observed; - = no 
interaction observed; n.d. not determined. 
 

The following chapters show results obtained from studies on HAP5a (chapter 4), MtN19 

(chapter 5) and FIDGET, the AP2-like protein identified by yeast-one hybrid screening 

(chapter 6). In the appendix (chapter 9) results from studies on the PP2C phosphatase and the 

PHD-finger protein are shown. 
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4. Physical interaction and sequence-similarities between 

CONSTANS and the CCAAT-box-binding factor complex 

 

4.1. Introduction 
 

In Arabidopsis CO is a member of  a gene family comprising 17 members (Putterill et al., 

1995; Robson et al., 2001). COL1 and COL2, two very close homologues, were isolated based 

on sequence homology (Ledger et al., 2001). Overexpression of COL1 and COL2 had only 

very little effect on flowering-time, but transgenic plants overexpressing COL1 sustain a 

shortened circadian period, which seems to be fluence rate dependent (Ledger et al., 2001). 

Recently it was shown that COL9 acts as a floral repressor that downregulates both the 

expression of CO and FT (Cheng and Wang, 2005). Additionally, several CO homologues 

were isolated from a variety of organisms including different Brassica species (Robert et al., 

1998), rice (Yano et al., 2000), Pharbitis nil (Liu et al., 2001), barley (Griffiths et al., 2003), 

wheat (Nemoto et al., 2003), ryegrass (Martin et al., 2004) and the moss Physcomitrella 

patens (Zobell et al., 2005). The Chlamydomonas genome also encodes a single CO-like gene 

(Dr. Federico Valverde, personal communication). Therefore, although CO-like genes do not 

occur in animals they arose early during the evolution of the plant lineage. 

CO homologues are involved in photoperiodic responses in species other than Arabidopsis. In 

rice, the CO-orthologue Hd1 is also involved in the flowering response to photoperiod and has 

a dual function. It represses flowering in response to LD and induces flowering in SD 

(Hayama et al., 2003). Overexpression of Arabidopsis CO in potato represses tuberization in 

response to short days, suggesting that an endogenous CO-like gene acts as a repressor of 

tuberization in response to photoperiod (Martinez-Garcia et al., 2002).  

 

CO encodes a protein with two amino terminal B-boxes, each containing a zinc-finger motif, 

and a carboxy terminal plant-specific CCT (CO, CO-like, TIMING OF CAB 

EXPRESSION1)-domain (Putterill et al., 1995; Strayer et al., 2000; Robson et al., 2001). In 

animals, a variety of B-box zinc-finger proteins exist. Most of these contain a RING-finger 

domain, one or two B-boxes and a coiled-coiled domain (Torok and Etkin, 2001). The first 

described B-box zinc finger protein was Xenopus nuclear factor 7 (Xnf7) (Miller et al., 1991; 

Reddy et al., 1992), which is involved in dorso-ventral patterning in Xenopus (El-Hodiri and 

Etkin, 1998), and probably acts as a transcriptional regulator. Structural analysis of  the 
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promyelocytic leukemia onco-protein (PML) revealed that B-box zinc-finger proteins can 

bind one zinc atom per B-box (Borden et al., 1995; Borden et al., 1996). PML exists in the 

cell in a multimeric complex that localizes to nuclear bodies (Cao et al., 1998), a feature also 

observed for Arabidopsis CO (see section 9.1). The CCT-domain is plant specific and a 

common characteristic of CO and CO-like proteins. One of the functions of the CCT-domain 

is localizing the protein to the nucleus. All point mutations that strongly influence the activity 

of CO were found in the B-boxes or the CCT-domain, indicating the functional importance of 

these domains (Robson et al., 2001). Furthermore, the co-7 mutation in the CCT-domain 

causes a severe late-flowering phenotype but still correctly localizes the protein to the nucleus 

(Robson et al., 2001). VRN2, a CCT-domain protein lacking B-boxes was isolated from 

wheat by positional cloning (Yan et al., 2004). VRN2 is a floral repressor whose mRNA 

levels are downregulated in response to vernalization. A loss-of-function mutation of VRN2 

that affects the same residue mutated as in co-7 converts winter wheat to spring wheat, which 

does not require vernalization to flower (Yan et al., 2004).  

TIMING OF CAB EXPRESSION1 (TOC1) of Arabidopsis is one of the most prominent 

CCT-domain proteins that has no B-boxes but contains an atypical response regulator receiver 

domain (Strayer et al., 2000). The toc1-1 mutant is impaired in the circadian system and 

produces shortened circadian rhythms (Somers et al., 1998). Flowering is controlled through 

the function of TOC1 on the circadian clock where it feeds back on its own expression in a 

positive feedback loop (Strayer et al., 2000; Alabadi et al., 2001; Mizoguchi et al., 2002; 

Yanovsky and Kay, 2002). Recently, an activation tagging approach led to the identification 

of ASML2, a novel CCT-domain protein that is involved in activating the expression of a 

subset of sugar-inducible genes (Masaki et al., 2005).  

Since CO acts upstream of FT and SOC1 and the expression of FT and SOC1 is down-

regulated in co mutant plants we considered the possibility that CO acts as a transcription 

factor. Extensive sequence homology searches indicate that the CCT-domain contains a high 

degree of sequence similarity to the DNA-binding domain of the heterotrimeric CCAAT-box-

binding factor subunit HAP2 (see section 4.7.). CCAAT-boxes are cis-acting elements present 

in approximately 25% of all eukaryotic promoters (Gelinas et al., 1985; Bucher, 1990) and are 

usually found 80-300 basepairs upstream of the transcriptional start site (Chodosh et al., 

1988a; Chodosh et al., 1988b; Hatamochi et al., 1988). A protein complex interacting with the 

CCAAT-motif was identified and named CCAAT-box factor (CBF), also known as Heme 

Activated Protein complex (HAP) or nuclear factor Y (NF-Y) (Guarente, 1984; Guarente and 

Hoar, 1984; Pinkham and Guarente, 1985; Hahn and Guarente, 1988; Hahn et al., 1988; 
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McNabb et al., 1995). In yeast, this complex is required for the transcription of genes 

involved in mitochondrial respiration (Guarente, 1984; Keng and Guarente, 1987; Trueblood 

et al., 1988; Schneider and Guarente, 1991). The complex consists of three subunits. HAP3 

(NF-YB; CBF-A) heterodimerizes with HAP5 (NF-YC; CBF-C) to create a complex surface 

for the interaction with HAP2 (NF-YA; CBF-B), the DNA-binding subunit (Maity and 

Decrombrugghe, 1992a; Kim et al., 1996; Sinha et al., 1996). After trimer assembly the 

complex binds with high affinity and specificity to DNA (Kim and Sheffery, 1990; Bi et al., 

1997). In yeast, the trimeric HAP-complex can not activate gene expression on its own, a 

fourth subunit termed HAP4, containing an acidic activator domain, must join the complex 

(Forsburg and Guarente, 1989). In mammals, the transcriptional activator domain of HAP4 is 

incorporated into the HAP2 and HAP5 subunits (Coustry et al., 1995; Coustry et al., 1996). In 

higher eukaryotes, the HAP-complex controls a variety of genes, ranging from stage- and 

tissue-specific genes (Berry et al., 1992) to ubiquitously expressed housekeeping genes (Roy 

and Lee, 1995; Marziali et al., 1997). In addition to the HAP-complex, other proteins are also 

able to interact with the CCAAT-motif. For instance, Albumin CCAAT factor (ACF), a 

protein unrelated to the HAP-family, binds to the CCAAT-box of the albumin gene in liver 

and spleen (Raymondjean et al., 1988). 

In yeast and mammals, each of the HAP subunits is represented as a single copy gene in the 

genome (Mantovani, 1999). In Arabidopsis all of the subunits are encoded by multigene 

families and multiple and distinct genes were identified (Edwards et al., 1998; Gusmaroli et 

al., 2001, 2002). The Arabidopsis genome encodes ten HAP2, ten HAP3 and nine HAP5-

isoforms (Gusmaroli et al., 2002). Unlike mammals and yeast, the HAP-complex has not been 

shown to be necessary for gene transcription in plants. However, the first plant orthologues 

were identified by functional complementation of yeast hap3 mutants (Edwards et al., 1998), 

indicating that plant HAP proteins are functional. The observation that all subunits are 

encoded by many genes in plants suggests a high degree of genetic redundancy. However, 

mutations in genes encoding HAP proteins were identified and found to be associated with 

defects in development. Silencing of a Brassica napus HAP2 gene by antisense expression 

resulted in reduced male fertility due to precocious degradation of the tapetal cell layer 

(Levesque-Lemay et al., 2003). Recently overexpression of Arabidopsis HAP2a was found to 

cause a severe dwarf phenotype (Dr. Franziska Turck and S. Wenkel, unpublished). In 

Arabidopsis eight out of ten HAP2 genes are regulated by microRNA miR169 (Rhoades et al., 

2002). The microRNA binding site is located in the 3’UTR and was not present in the 

overexpression construct that caused the dwarf phenotype mentioned above. LEAFY 
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COTYLEDON1 (LEC1), which encodes a HAP3 protein, is a regulator of embryogenesis 

(Lotan et al., 1998). Ectopic expression of LEC1 induces embryonic development in 

differentiated leaf tissue (Lotan et al., 1998; Stone et al., 2001). LEAFY COTYLEDON1-LIKE 

(L1L), a LEC1 homologue, also plays a role in embryo development (Kwong et al., 2003). 

Furthermore, three HAP3 subunits from rice were recently isolated and named OsHAP3A, B 

and C (Miyoshi et al., 2003). Plants expressing OsHAP3A antisense or RNAi-constructs have 

reduced mRNA levels of OsHAP3A, B and C and this correlated with pale green leaves with 

degenerated chloroplasts (Miyoshi et al., 2003). This indicates that HAP3 subunits are likely 

to be important factors in plant development. Since genes encoding HAP4 subunits are not 

present in the Arabidopsis genome it is likely that another transcription factor is required to 

interact with the trimeric HAP-complex to activate transcription. In rice OsMADS18, which 

is a MADS-box transcription factor, interacts with a rice HAP3 (Masiero et al., 2002). 

OsMADS18 also binds the HAP3/5 dimer in vitro but the complex could neither interact with 

the DNA-binding HAP2 subunit nor bind to a CCAAT box motif in vitro. The authors further 

hypothesize that the OsMADS18/HAP3/HAP5-complex probably interacts with CArG-boxes, 

the target sequence for MADS-box proteins. Apart from an interaction with the CCAAT-

motif, another function of a HAP3/5 dimer could be stabilizing protein-DNA-interactions 

with other transcription factors. From studies of the HAP-complex in mammals it is known 

that the HAP3/5 dimer is able to interact with TFIID (Frontini et al., 2002) and the TATA-

binding protein (TBP) (Bellorini et al., 1997).  

Since CO acts as a transcription factor without a known DNA-binding motif we assume that 

CO requires DNA-binding proteins to be recruited to DNA. Here, we present evidence that 

suggests that the HAP-complex interacts with CO to control the floral transition. 

 

4.2. AtHAP5a interacts with the CCT-domain of CO in yeast  

 

Yeast-two-hybrid screening (as described in chapter 3) resulted in the identification of three 

HAP5-isoforms (At3g48590, At1g54830 and At1g56170) that interacted with the CCT-

domain. The interaction with HAP5a (At3g48590) was analyzed in more detail (Figure 5). 
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Figure 5. HAP5a reconfirmation test in yeast. A) On the left three colonies are shown that express a 
fusion of HAP5a to the activation domain (AD) of GAL4 and the DNA-binding domain of GAL4 
(BD). These colonies can only grow on non-selective SD-medium lacking tryptophan and leucine 
compared to three colonies expressing AD-HAP5a and the CCT-domain of CO fused to BD which can 
grow on selective SD-medium lacking tryptophan, leucine, histidine supplemented with 15mM 3-AT. 
The screen was done in the yeast strain AH109. B) Quantitative liquid β-galactosidase assay (in yeast 
strain MAV 203) testing the same constructs as in A). 
 

Reconfirmation tests in yeast analyzing the interaction between HAP5a and the CCT-domain 

of CO verified the interaction initially identified in the yeast-two-hybrid screen. Yeast 

expressing both HAP5a and the CCT-domain of CO can grow on selective medium (Figure 

5a) and in liquid β-galactosidase assays a significant difference between the negative control 

(BD alone) was observed (Figure 5b).  

The Regulatory Gene Initiative in Arabidopsis (REGIA) constructed a library containing 

1.200 open reading frames of Arabidopsis transcription factors which were used in a large-

scale yeast-two-hybrid screens (Javier Paz-Ares, 2002). One of the transcription factors 

isolated in this large scale screening was HAP3a (At2g38880) that was found to interact with 

the CCT-domain of CO. 
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4.3. CO interacts with HAP-proteins in vitro 

 

Since CO interacts with HAP5 and HAP3 proteins in yeast, we tested the interactions between 

all three subunits in vitro by co-immunoprecipitation to confirm the binding to CO and to test 

whether the interactions observed in yeast are direct or indirect. CO was expressed as a fusion 

protein with the Gal4-activation domain (GAD) in vitro using the TNT Quick Coupled in 

vitro Transcription/Translation System (Promega), 35S-methionine was included to label 

newly synthesized proteins. The HAP-proteins were produced similarly but without the GAD 

tag.  

 

 
 
 
Figure 6. In vitro-analysis of the protein-protein interactions observed in yeast. Co-
immunoprecipitation of A) HAP2a, B) HAP3a, C) HAP5a, D) HAP5a/HAP3a, E) 
HAP2a/HAP3a/HAP5a using GAD:CO. F) Co-immunoprecipitation of HAP2a/HAP3a/HAP5a using 
GAD:co9. Input: aliquots of in vitro produced proteins that was used for co-immunoprecipitations; 
sup.: supernatant fraction containing unbound proteins; pellet: fraction containing bait proteins (GAD, 
GAD:CO or GAD:co9) and the proteins bound to them.   
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Using GAD:CO and a GAD-specific antibody, immunoprecipitation of HAP3a (Figure 6b), 

HAP5a (Figure 6c) and the HAP3a/HAP5a dimer was observed in vitro (Figure 6d). HAP2a 

was not immunoprecipitated (Figure 6a). However, inclusion of all HAP-subunits to form the 

full HAP complex (HAP2a/HAP3a/HAP5a) resulted in precipitation of a faint band for HAP2 

and stronger bands for the HAP3a/5a dimer (Figure 6e). Whether the co-9 mutation has an 

effect on the interaction with HAP2a can not be determined in these assays since the band 

precipitated using wild-type CO is too faint (Figure 6f). However, immunoprecipitation of 

HAP3a and HAP5a using GAD:co-9 was not affected. 

 

4.4. All three HAP-complex subunits co-localize with CO in the nucleus 

 

 

Transient expression of YFP-labeled CO protein and CFP-labeled HAP proteins after 

bombardment of Arabidopsis leaves with gold particles coated with DNA revealed that CO 

and HAP-proteins co-localize in the nuclei of Arabidopsis epidermal cells (Figure 7). Co-

localisation is a prerequisite for an interaction in planta. 

 

 
 

Figure 7. Transient co-expression of 35S::YFP:CO and 35S::CFP:HAP constructs. A 35S::dsRED 
construct was co-transformed to highlight the whole cell. A-C) Co-localization of A) CFP:HAP2a 
B)YFP:CO C) dsRED D-F) Co-localization of D) CFP:HAP3a E)YFP:CO F) dsRED G-I) Co-
localization of G) CFP:HAP5a H)YFP:CO I) dsRED. 
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Co-localization studies revealed that all HAP isoforms co-localize with CO in the nucleus 

(Figure 7). Furthermore, it was observed that HAP5a also localizes to the cytoplasm (Figure 

7g). 

 

4.5. All three tested HAP-complex subunits interact with CO in vivo and 

mutations in the CCT-domain of CO disrupt the interaction with the 

HAP2-subunit 

 

Transient expression by particle bombardment of Arabidopsis leaves shows that all HAP 

subunits co-localize with CO in the nucleus of transfected cells. To find out whether the 

interactions observed in yeast and in vitro also occur in vivo we used fluorescence resonance 

energy transfer (FRET). Positive FRET-interactions exhibit an increase in the CFP-spectrum 

after YFP-photobleaching. 

 

 
 
Figure 8. I) In vivo FRET analysis showing that CO interacts with all HAP-subunits. co-7 and co-9 do 
not interact with HAP2, since no increase in intensity was observed after photobleaching. YFP:CO 
tested with HAP2a (A,B), HAP3a (G,H), HAP5a (N,O); YFP:co7 tested with HAP2a (C,D), HAP3a 
(I,K), HAP5a (P,Q); and YFP:co9 tested with HAP2a (E,F), HAP3a (L,M), HAP5a (R,S) is shown. 
Pictures display the CFP-channel in false-colors before and after photobleaching. II) Quantification of 
FRET efficiencies after acceptor photobleaching. 
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FRET was detected between YFP:CO and CFP:HAP2a (Figure 8a,b), YFP:CO and 

CFP:HAP3a (Figure 8g,h) and YFP:CO and CFP:HAP5a (Figure 8n,o) in vivo. Since all 

tested interactions were positive, we analyzed whether mutations in the CCT-domain that 

cause late-flowering (co-7 and a recently isolated allele co-9) cause a decrease in FRET-

efficiency. YFP:co-7 and YFP:co-9 both exhibited good FRET signals with CFP:HAP3a 

(Figure 8i-m) and CFP:HAP5a (Figure 8p-s). However, the interaction with HAP2a was 

abolished (Figure 8c-f). This result confirms the in vitro result where immunoprecipitation of 

HAP3a and HAP5a was not impaired using GAD:co-9. Furthermore, it demonstrates the 

mutations resulting in the co-7 and co-9 mutant forms affect the interaction with the HAP2 

subunit in vivo. 

 

4.6. Systematic interaction analysis of Arabidopsis HAP proteins with 

the CCT domains of CO and COL15 

 

To test whether HAP-proteins can interact with the CCT-domains of other COL proteins and 

whether this is restricted to particular HAP isoforms six out of ten HAP2, nine out of ten 

HAP3 and nine out of ten HAP5 isoforms were tested for whether they interact with the CCT-

domains of CO and COL15 (Figure 9). In these yeast-two-hybrid experiments CO and COL15 

interacted with a variety of HAP proteins, implying that one feature of the CCT-domains of 

COL proteins could be the interaction with the HAP-complex (Figure 10, Table 3).  

 

 
 

Figure 9. Phylogenetic analysis showing all Arabidopsis HAP proteins. Proteins in grey were not 
included in the systematic interaction analysis. 
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Figure 10. Yeast-two-hybrid analysis of HAP proteins interacting with the CCT-domains of CO and 
COL15. All prey constructs were in pDEST22 and baits in pDEST32. The screen was carried out in 
the MAV203 yeast strain on medium lacking histidine, leucine and tryptophan supplemented with 
50mM 3-aminotriazole. 
 

 
Table 3. Interactions of HAP-proteins with the CCT-domains of CO and COL15 observed in yeast. 

 

4.7. The CCT-domain and HAP2 are related in sequence 

  

An alignment of HAP2 and COL proteins revealed that these proteins share a domain of 

homology. Romier et al. distinguished two small domains in the HAP2 protein sequence, 

named NF-YA1 and NF-YA2, which are interconnected by a small linker region (Romier et 

al., 2003). NF-YA1 interacts with the HAP3/5 dimer, whereas NF-YA2 is the DNA-binding 

motif. Comparing the amino acid sequences of HAP and COL proteins led to the 

identification of a NF-YA2-type DNA-binding motif in CCT-domain proteins. Residues in 
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the CCT-domain that have been reported to be crucial for its function are present in the region 

of homology (Figure11). For example, the toc1-1 mutation converts alanine 562 to valine 

resulting in non-functional TOC1 protein and to shortened circadian rhythms (Strayer et al., 

2000). The same mutation in CO, named co-9, was recently isolated by screening for 

suppressors of 35S::CO function in blue light (Valverde and Hayama, unpublished). The 

R340Q mutation in the CCT domain of CO found in the co-7 mutant results in an extreme 

late-flowering phenotype under LD conditions (Robson et al., 2001). An amino acid change in 

the same position, from arginine to tryptophan, in the wheat VRN2 protein impairs the 

function of the strong floral suppressor VRN2 and results in the switch of winter wheat, 

which requires vernalization, to spring wheat which is vernalization insensitive (Yan et al., 

2004). These four examples highlight the significance of these conserved residues between 

HAP2 and the CCT-domain in proteins found in different species.  

 

 

Figure 11. Protein alignment showing HAP2a in comparison to three CCT-domain proteins. The 
asterisks indicate the mutated residues. Both of the residues show a high degree of conservation. Color 
code: Yellow: conserved residues; blue: identical residues; green: similar residues. 
 

 

An amino acid alignment of the NF-YA2 domain of all Arabidopsis HAP2 proteins and the 

corresponding regions of the CCT-domain of all COL proteins as well as the CCT-domains of 

TOC1 and VRN2 was performed (Figure 12). This alignment demonstrated that one can 

distinguish four groups of domains (Figure12). The first group comprises the HAP2 proteins, 

the second COL4, COL 6, COL 7 and TOC1, the third several COLs and VRN2 and the 

fourth group containing CO and its homolog from rice Hd1 (Figure 13). This alignment 

reveals also that the alanine mutated in toc1-1 and   co-9 and the arginine that is mutated in 

co-7 and vrn2 are highly conserved (Figure 12). Very recently, PPD-H1, a CCT-domain 

protein controlling photoperiodic flowering in barley was isolated. The ppd-H1 mutation is a 

point mutation that converts the highly conserved glycine residue (Figure 12) to tryptophan 

(Turner et al., 2005), further emphasizing the functional significance of this homology. 
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Figure 12. Sequence alignment of the conserved domain of all Arabidopsis COL proteins, rice Hd1, 
wheat VRN2, Arabidopsis TOC1 and all Arabidopsis HAP2. Indicated are mutations affecting these 
residues cause loss of function of CO, TOC1, VRN2 and PPD-H1. Color code: Yellow: conserved 
residues; blue: identical residues; green: similar residues. K1, A1, F1, R1-4: highly conserved residues 
that are of importance in HAP2 proteins.  
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Figure 13. Phylogenetic tree showing that CCT-domain proteins can be subdivided into four different 
subgroups based on their conserved domain. 
 

 

Comparing the homologies among HAP2 and CCT-domain proteins shows that similarities 

among the NF-YA2 domain of HAP2 proteins ranges from 49 to 92%. Similarities of the NF-

YA2 domain among all CCT-domain proteins range from 49 to 89%. Comparing the NF-YA2 

domains of HAP2 and CCT-domain proteins, the similarities range from 19 to 46% (Figure 

14).  

 

group 
I 

group II 

group III

group IV
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Figure 14. Table comparing similarities between the NF-YA2-domain of HAP and COL proteins (in 
% identity). 
 

4.8. GI regulates the mRNA abundance of HAP3a 

 

Microarray analysis comparing 35S::GI and wild-type plants revealed that HAP3a mRNA 

levels are increased in 35S::GI plants. The expression levels of HAP3a mRNA in wild-type 

Landsberg erecta, gi-3 and 35S::GI seedlings were compared over a 24 hour time course.  
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Figure 15. GI regulates the mRNA-abundance of HAP3a. A) Data extracted from microarray analysis 
(Affymetrix 8k chip) comparing the expression levels of several HAP genes between Ler and 35S::GI. 
B) qRT-PCR analysis of the HAP3a expression pattern in a 24 hour timecourse in Ler, gi-3 and 
35S::GI. Expression levels were quantified against β-tubulin.  
 

 

Microarray experiments comparing the expression levels of several HAP genes in Ler and 

35S::GI revealed that HAP3a (At2g38880) expression levels are significantly higher in 

35S::GI (Figure 15a violet line; microarray experiment was carried out by Dr. Dean 

Ravenscroft). 

In wild-type plants HAP3a mRNA levels peak in LD at the end of the day and this peak is 

absent in the gi-3 mutant (Figure 15b). In 35S::GI expression levels of HAP3a mRNA are 

significantly increased at all timepoints of the day. The HAP3a expression pattern resembles 

the CO expression pattern, which is also regulated by GI (Suarez-Lopez et al., 2001). 
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4.9. Discussion 

 

CONSTANS interacts with HAP5a in yeast 

By yeast-two-hybrid screening, several HAP5 isoforms were isolated that interact with the 

CCT-domain of CO. All identified HAP5 proteins appeared independently several times in 

the screen. In a parallel approach, the REGIA large scale yeast-two-hybrid screen identified 

HAP3a as a putative interactor with the CCT-domain of CO. However, no other interaction 

between COL and HAP proteins was observed in the REGIA screen, which might be due to 

the high concentrations of the competitive inhibitor of the HIS3 gene product, 3-

aminotriazole, in this screen. 

 

Interactions between CO and HAP2, HAP3 or HAP5 were confirmed in three 

independent systems 

In order to confirm the interactions between the CCT-domain of CO and HAP3a and HAP5a, 

two other methods were applied. Furthermore, whether a HAP2-subunit, the third component 

of a functional CCAAT-box-binding complex, also interacts with CO was tested.  

By co-immunoprecipitation using in vitro transcribed and translated proteins the interactions 

of HAP5a and HAP3a with the CCT-domain of CO were confirmed (Figure 6b, c). However, 

since HAP3a and the Gal4-activation domain (GAD) are similar in size, it could not be 

excluded that HAP3 can interact with the GAD domain of GAD:CO. An interaction of 

HAP2a and CO was not observed (Figure 6a), indicating that other protein factors, most likely 

a HAP3 or a HAP5 subunit, might be necessary. Since HAP5 and HAP3 proteins dimerize 

prior to complex formation (Romier et al., 2003) and CO also interacts with the HAP3a/5a 

dimer in vitro (Figure 2d) whether HAP2a was co-immunoprecipitated with the full HAP-

complex was tested. A weak band of the size of HAP2a in these immunoprecipitation 

experiments was detected (Figure 6e). Using the mutated CCT-domain of co-9 the interaction 

with HAP3a and HAP5a was not affected (Figure 6f). To confirm the interaction observed in 

the yeast and in vitro screens we used an in vivo Fluorescence Resonance Energy Transfer 

(FRET) approach. CO was fused to yellow fluorescent protein (YFP) and the HAP-subunits 

were fused to cyan fluorescent protein (CFP). After co-bombardment in Arabidopsis leaves 

FRET-signals were measured, applying the acceptor photobleaching method, between CO and 

all HAP-members (Figure 8a, b, g, h, n, o). The interaction of CO and HAP2a which was 

detected in planta but not observed in vitro may have been stabilized by other plant HAP-

subunits. Also in this screen, whether known mutations in the CCT-domain of CO negatively 
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interfere with the interactions observed was tested. Mutations corresponding to co-7 and co-9 

were introduced by in vitro mutagenesis and the mutated proteins were fused to YFP. 

Analysis of the interactions between the co-7 and co-9 proteins and both HAP3a and HAP5a 

showed that they still interact (Figure 8 l-m, p-s). However, no interaction between HAP2a 

and co-7 or co-9 was detected (Figure 8 c-f). Establishing a negative interaction is difficult 

with the FRET-system because even the positive interactions observed do not occur in all 

cells expressing both fluorescent proteins. In summary, the in vivo FRET analysis confirmed 

that mutations in the CCT-domain affect the interaction with HAP2-proteins. These data also 

demonstrate that CO interacts with HAP3a and HAP5a in yeast, in vitro and in vivo.  

 

CONSTANS and CONSTANS-LIKE15 interact with all members of the HAP complex 

To analyze how specific the interactions between CO and the HAP proteins are, yeast-two-

hybrid tests were performed with six of ten Arabidopsis HAP2 isoforms, nine out of ten 

HAP3 isoforms and nine out of ten HAP5 isoforms together with the CCT-domains of CO 

and COL15 (Figure 9 and 10). COL15 was chosen because it is one of the most distant 

proteins from CO (Griffiths et al., 2003). CO and COL15 were able to interact with multiple 

isoforms of all subunits (Figure 10). These interactions were only tested in yeast and might 

not occur in planta, but support the idea that one of the functions of the CCT-domain may be 

to interact with HAP-proteins probably to access DNA and regulate transcription. 

 

CONSTANS and HAP2 share a domain of homology 

The CCT-domain and HAP2 proteins share a domain of homology. Mutations in three highly 

conserved residues in this domain negatively affect the function of known CCT-domain 

proteins such as CO, TOC1, VRN2 and PPD-H2 (Strayer et al., 2000; Robson et al., 2001; 

Yan et al., 2004; Turner et al., 2005). Biochemical analysis of the mammalian CBF-B subunit 

of the heterotrimeric CCAAT-binding factor, which is homologous to the HAP2 subunit 

revealed that mutations in the highly conserved arginine (R2, Figure 12) affect DNA-binding 

but not the formation of the trimeric complex (Maity and Decrombrugghe, 1992b). From 

studies of HAP2 in yeast it is known that amongst others, the residues A1, R2, R4 and F1 

(Figure 12) are involved in DNA binding and mutations affecting these residues cause loss of 

the DNA-binding ability (Xing et al., 1993). The effect of triple amino acid substitutions was 

analyzed in mammalian NF-YA (HAP2) proteins. Interestingly, a triple substitution including 

the arginine residue R3 caused loss of DNA-binding but the formation of the complex 

remained unaffected (Mantovani et al., 1994). These studies demonstrate that mutations in 
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HAP2 proteins affecting alanine A1 (that is mutated in co-9 and toc1-1) and arginine R3 

(mutated in co-7 and vrn-2) result in loss of DNA-binding. This suggests that one of the 

functions of the NF-YA2 domain in CCT-domain proteins might involve DNA-binding.   

 

Analysis of the NF-YA2 domain of all Arabidopsis HAP2 and COL proteins revealed that 

based on sequence similarities these protein families can be subdivided into four different 

groups. This analysis demonstrated that the choice of COL15 in the systematic yeast-two-

hybrid approach was not optimal because although it was originally selected as being most 

distant from CO, comparing the sequences of the NF-YA2 domain showed that CO and 

COL15 are close homologues sharing 78% of sequence identity (Figure 12 and 14). 

 The similarities within the HAP2 family are comparable to similarities within the COL 

family ranging from around 50 to 90% (Figure 14). Comparing both families against each 

other, the sequence similarities range from 19 to 46%, which appears to be significant because 

apart from this domain both protein families are very divergent. Comparing sequence 

homologies of the HAP5 domain, which is unrelated to the CCT-domain, and all COL 

proteins revealed sequence identities ranging from 9-28% (data not shown). 
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Composition of a putative CO protein complex binding to DNA 

Based on the presented data, four plausible models could explain how a functional CCT-

domain complex could access DNA. 

 

 

 
 
 
Figure 16. Four possible models of a functional CO protein complex. A) The CCT-domain protein 
CO and HAP2 both bind to the HAP3/5 dimer. B) One CO-HAP3/5 complex interacts with another 
HAP2/3/5 complex. C) CO binds to DNA by an unknown mechanism, interacts with a trimeric HAP 
complex and causes transcriptional activation. D) CO binds to DNA and activates transcription 
without HAP complex. 
 

One possibility is that both the CCT-domain protein and the HAP2 protein interact with a 

HAP3/5 dimer. Both NF-YA2 domain of HAP2 and the CCT-domain protein interact 

transiently with each other to access DNA (Figure 16a). In an alternative model, both the 

HAP2 and the CCT-domain protein interact with a HAP3/5 dimer. To regulate target genes, 

the complexes would have to interact via their NF-YA2 domains. Since the HAP2-CCT 

interaction appears to be weak or transient, both HAP3/5 dimers could interact with each 

other and stabilize the interaction (Figure16b). Another possibility of transcriptional 

activation of target genes like FT could be that CO interacts with another protein and binds to 

DNA. After DNA-binding, the CCT-domain of CO interacts with a neighboring HAP 

complex and activates transcription (Figure 16c). Finally, we can not totally exclude that the 

mechanism of how CO activates FT does not involve the HAP complex (Figure 16d).  
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HAP3a is regulated by GIGANTEA 

A comparison of wild-type plants with plants overexpressing GI in a global expression 

analysis performed on Affymetrix microarrays revealed that HAP3a expression is positively 

regulated by GI. A comparison of HAP3a expression levels in gi-3, wild-type and 35S::GI 

confirmed and extended the results of the microarray experiments. In a 24-hour time course 

HAP3a shows higher expression in 35S::GI than wild-type plants. The difference is less 

pronounced between gi-3 and wild-type, however, at the 16 hour timepoint, where also CO 

mRNA shows its highest expression, the expression level of HAP3a is reduced by 50% in the 

gi-3 mutant compared to wild-type. These data indicate that HAP3a and CO are both co-

regulated by GI. Since they are expressed at the same time of day and physically interact with 

each other, this implies that they could also function together in a protein complex. 

 

Analysis of transgenic plants 

Available SALK and GABI-KAT T-DNA insertion lines in HAP2a (SALK_030989), HAP3a 

(GABI_057H09) and HAP5a (SALK_086334; GABI_417B12) were analyzed for phenotypic 

abnormalities and changes in the floral transition (data not shown). No flowering-time 

phenotypes or extreme morphological abnormalities were observed. Since there is likely to be 

genetic redundancy among members of the HAP complex, the effect of a single gene knock-

out might not be obvious. This is likely, since it was already shown, that most subunits show 

ubiquitous expression patterns (Gusmaroli et al., 2001, 2002).  Overexpression of HAP3a and 

HAP5a also did not cause acceleration of the floral transition in our test conditions (data not 

shown). These results suggest that CO is the rate-limiting component necessary to drive 

expression of downstream genes since CO overexpression causes dramatic early-flowering 

and increased FT expression (Onouchi et al., 2000); (Samach et al., 2000). Overexpression of 

myc:HAP2a caused a severe dwarf phenotype (results from Dr. Franziska Turck, data not 

shown), an effect that is probably enhanced due to uncoupling a post-transcriptional 

regulation by miR169. Also these dwarfed plants did not exhibit a significant slowdown or 

acceleration in their flowering-time behavior.  

 

Plants overexpressing FLAG:HAP3a show a late-flowering phenotype that is due to 

reduced FT mRNA levels 

Overexpression of FLAG:HAP3a by the 35S-promoter resulted in late-flowering plants. The 

late-flowering phenotype correlates with a severe reduction in FT transcript levels. 

Furthermore the late-flowering phenotype is stronger in plants showing higher levels of 
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FLAG:HAP3a protein (results from Dr. F. Turck, see section 9.11). FLAG:HAP3a 35S::CO 

plants show an intermediate flowering-time phenotype between wild-type and 35S::CO 

indicating that overexpression of CO partially suppresses the late-flowering phenotype 

(results from Dr. Franziska Turck, section 9.12). Since transgenic plants overexpressing 

HAP3a without epitope tag do not flower later than wild-type (data not shown) indicates that 

the FLAG-epitope probably produces a dominant-negative effect suppressing CO activity. 

However, the fact that overexpression of HAP3a results in late-flowering and reduced FT 

expression levels indicates that CO and HAP3a probably interact in vivo.  

 

Is the HAP-complex required for activation of FT by CO? 

35S::FLAG:HAP3a plants flower late and have low levels of FT transcript so if 

FLAG:HAP3a functions as HAP3a this suggests that the HAP-complex is not involved in the 

activation of FT. Alternatively if HAP3a is a binding partner of CO in vivo then HAP3a 

overexpression could causes its sequestration into non-flowering promoting complexes and 

therefore FT-expression would be low. Overexpression of CO in 35S::FLAG:HAP3a lines 

can partially suppress the late-flowering phenotype perhaps by restoring the stoichiometry 

between HAP3a and CO due to an excess of unbound CO protein. However, other CCAAT-

box containing CO-target genes should show higher expression levels in 35S::FLAG:HAP3a 

plants, which we could not detect (data not shown). It could also be that the FLAG-epitope 

creates a dominant-negative effect, maybe by destroying the formation of the complex and 

therefore sequestering CO into non-functional complexes. Based on our current data, we can 

not conclude whether the HAP-complex is necessary for the activation of FT. 

Analysis of the FT promoter reveals no CCAAT-box in the proximal promoter. However, so 

far it has not been demonstrated that plant HAP-proteins interact with CCAAT-elements. An 

interaction of the HAP-complex with CAAT-elements of the AtpC gene, a subunit of the 

chloroplast ATP-synthase, has been demonstrated in tobacco (Kusnetsov et al., 1999). Also 

the proximal FT promoter contains CAAT-elements as shown in Figure 17. 

 

 

 
 
 
Figure 17. Distribution of CAAT-elements in the proximal FT-promoter. The element located close to 
the translational start (-43bp) is conserved at the same position in the promoter of the Hd3a gene from 
rice. 
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According to findings from yeast and humans a functional CCAAT-box should be located 80-

300 basepairs upstream of the transcriptional start site (Chodosh et al., 1988a; Chodosh et al., 

1988b; Hatamochi et al., 1988). This requirement is fulfilled by the two CAAT-elements 

located at -223 and -180. Interestingly the element located at -43bp in the FT promoter is 

conserved at the same position in the promoter of rice Hd3a, the FT homolog.  

4.10. Conclusion 

 

The data presented here aim to explain how CONSTANS, a transcription factor with no 

known DNA-binding domain could access DNA via an interaction with the heterotrimeric 

HAP complex. CO interacts with all members of the complex in various systems and 

mutations in the CCT-domain, which affect the ability to promote flowering, abolish an 

interaction with the HAP2 subunit. Furthermore, HAP2 and CCT-domain proteins share a 

domain of homology and mutations in conserved residues of CCT-domain proteins cause 

loss-of-function. Moreover, we demonstrated that HAP3a is co-regulated with CO by the 

flowering-time gene GI. Overexpression of FLAG:HAP3a results in a strong delay of the 

floral transition, which might be due to a dominant negative effect created by the FLAG 

epitope. Even in the case that the HAP-complex is not involved in flowering and CO is 

sequestered into non-flowering promoting complexes, CO interacts with HAP3a in vivo since 

35S::FLAG:HAP3a plants are late flowering. Also COL15 interacts with a variety of HAP-

proteins. These data indicate that CCT-domain proteins might more generally regulate target 

genes by interacting with the HAP-complex. These data suggest a function for a plant-specific 

protein domain whose function was previously unknown. 
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5. Characterization of AtMtN19, a protein that provides a 

potential link between the flowering-time genes CONSTANS 

and FLOWERING LOCUS T 

 

5.1. Introduction 

 

The transition to flowering is regulated by different genetic pathways that have been 

identified (see chapter 1). Among these pathways, the photoperiod pathways controls 

flowering in response to day length. CO, the major component of this pathway acts by 

upregulation of the floral integrator gene FT. Since CO functions as a transcription factor but 

does not have a known DNA-binding domain it is likely that it needs to interact with a DNA-

binding domain protein to fulfill its function. AtMtN19 was identified independently using 

two approaches: as a protein interacting with the promoter of FT in a yeast-one-hybrid screen 

and as a protein interacting with the CCT-domain of CO in a yeast-two-hybrid screen.    

MtN19 was first identified in Medicago truncatula (Gamas et al., 1996), where it is a single 

copy gene. However, no function could be assigned to the protein so far. In Alstroemeria 

MtN19 is induced during post-harvest senescence (Breeze et al., 2004) and microarray 

analysis from soybean revealed that it is upregulated in leaves compared to roots (Vodkin et 

al., 2004).  

MtN19 homologues respond to a variety of physiological and stress related processes such as 

auxin, nitric oxide (NO), insect elicitors and high fluence light. Low concentrations of 2,4-

dichlorophenoxyacetic acid (2,4-D), a synthetic auxin, induce cell division and elongation. 

High doses of 2,4-D have inhibiting effects on plant development, making it an attractive 

herbicide in agriculture (Grossmann, 2000; Zheng and Hall, 2001). Treatment of Arabidopsis 

with high doses of 2,4-D to investigate the onset of senescence reveals a strong induction of 

AtMtN19, which is in agreement with findings  in Alstroemeria (Breeze et al., 2004; 

Raghavan C. et al., 2005). NO plays a role in many physiological processes including 

photomorphogenesis and the regulation of stomatal closure (Beligni and Lamattina, 2000; 

Neill et al., 2002). NO is also involved in triggering defense responses involving reactive 

oxygen species (ROS) leading to the activation of pathogenesis related genes (Delledonne et 

al., 1998; Durner et al., 1998). The involvement of ROS is particularly intricate, because it 

can damage the host and the plant (Huang et al., 2002). Recently, NO was proposed to delay 
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the floral transition in Arabidopsis by downregulation of CO and GI and induction of the 

floral repressor FLC (He et al., 2004). Treatment of Arabidopsis suspension cells with the NO 

donor NOR3 in the dark leads to a strong induction of AtMtN19 (Huang et al., 2002). 

Treatment of pea pots with the insect elicitor Bruchin B is also able to induce pea MtN19 

giving further evidence for a role in defense response (Doss, 2005). Bruchin B causes 

stimulation of cell divisions and neoplasm formation (Doss et al., 2000; Oliver et al., 2000). 

However, there could also be a function for MtN19 in cell cycle regulation, since Bruchin B 

and auxin both stimulate cell divisions and induce MtN19. Finally, exposing Arabidopsis 

seedlings to high intensity light conditions also causes a strong induction of MtN19 (Kimura 

et al., 2003). High light intensities increase endogenous levels of reactive oxygen species due 

to leakage of electrons from the overloaded photosynthetic apparatus (Niyogi, 1999). The 

broad range of information available on expression patterns of MtN19 does not provide a 

strong indication of the function of this protein. However, it is striking that many of these 

processes have one common feature, the production of reactive oxygen species. Treatment 

with NO and high light elicits the production of ROS (Huang et al., 2002; Kimura et al., 

2003). Also auxin-treatment induces ROS and it has been shown that ROS are essential for 

auxin-induced root gravitropism (Joo et al., 2001; Joo et al., 2005). Treatment of Arabidopsis 

with catalase-inhibitors, causing oxidative stress by the production of ROS, induces 

senescence-related genes indicating a role for ROS during senescence (Navabpour et al., 

2003). 

 

 

5.2. Sequence comparison of MtN19-like proteins from Arabidopsis and 

other plant species and computational analysis of the MtN19 gene  

 

In Arabidopsis MtN19 exists as a single copy gene and BLAST search was carried out to 

identify homologous proteins from other species. The results obtained indicate that MtN19-

like proteins are only found in higher plant species and they seem to exist as single copy 

genes. In order to identify functional domains, the sequences of Arabidopsis, rice, Medicago 

and pea were aligned using ClustalW (Figure 18). 
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Figure 18. ClustalW 
alignment of MtN19-like 
proteins from different plant 
species. The sequence in the 
red box resembles a sequence 
found in a sensory box 
histidine kinase protein from 
Desulfvibrio vulgaris, the 
sequence in the blue box 
resembles the transcriptional 
regulator dicA/hipB/ansR 
from Clostridium 
acetobutylicum. Color code: 
Yellow: conserved residues; 
blue: identical residues; 
green: similar residues. 
 
 

 

 

 

 

 

 

 

 

After ClustalW alignment, the sequence patches showing conservation in all analyzed 

proteins were used to carry out a BLAST search for short nearly exact matches (NCBI). The 

search revealed homology with two bacterial proteins, a transcriptional regulator and a 

sensory box histidine kinase (Figure 18). The conservation was only found in conserved 

residues but since the sequences used for the BLAST search were small (15-20 amino acids) 

this result might not be informative. All other BLAST searches only referred to MtN19-like 

proteins. 

Analysis of the amino acid sequence using the TMHMM program to predict transmembrane 

helices (http://www.cbs.dtu.dk/services/TMHMM-2.0) reveals a putative transmembrane 

region near the carboxy terminus (Figure 19). 
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Figure 19. Analysis of transmembrane helices in MtN19 using TMHMM. Near the N-terminus of the 
MtN19 protein, a putative transmembrane region is predicted with a probability close to 100%. 
 

Analysis of the amino acid sequences of OsMtN19, Medicago MtN19 and PsMtN19 the 

TMHMM program predicts putative transmembrane regions at the amino terminus (data not 

shown). 

To gain more insight into the regulation of the MtN19 gene itself, publicly available 

microarray data were analyzed (www.genevestigator.ethz.ch).  

 
Figure 20. Digital northern analysis of MtN19 mRNA expression. This figure was extracted from the 
Genevestigator homepage (www.genevestigator.ethz.ch) using the Gene Atlas tool. 
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Analysis of the spatial expression pattern of MtN19 on a digital northern blot revealed that 

MtN19 shows highest expression levels in sepals, senescent leaves and cauline leaves (Figure 

20). 

 

 
 

Figure 21. Analysis of the MtN19 expression pattern during Arabidopsis the development. The graph 
was extracted from Genevestigator using the Gene Chronologer tool. 
 

 

Analysis of the expression pattern of MtN19 in a developmental context indicates that it is 

highly expressed early in development and late in development, after the transition to 

flowering lowest expression levels were detected (Figure 21). 

 

Furthermore, the conditions under which MtN19 is expressed in Arabidopsis were tested 

(Figure 22). 

 



Chapter 5 
 

 72

 
 
Figure 22. Analysis of MtN19 expression in response to various stresses. Microarray-data were 
extracted from Genevestigator using the Response Viewer tool. Boxes in red indicate conditions under 
which MtN19 is upregulated, green boxes represent conditions under which MtN19 is downregulated. 
 

Expression of MtN19 is strongly induced by treatment with auxin inhibitors (2,4,6 T, 

thiazolidinone acetic acid, furyl acrylate ester) as well as by treatment with silver nitrate 

which is an inhibitor of ethylene and in addition causes oxidative stress (Navabpour et al., 
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2003). Moreover, MtN19 upregulation is observed in response to osmotic and oxidative stress 

as well as by ABA and salicylic acid treatments (Figure 22). 

Since MtN19 interacts with CO we analyzed whether both genes are co-regulated in response 

to certain conditions or developmental stages (Figure 23). 

 

 
Figure 23. Analysis of co-regulation of CO and MtN19. Microarray-data were extracted from 
Genevestigator using the Gene Correlator tool. On the x-axis the expression of MtN19 (At5g61820) is 
plotted, on the y-axis the expression of CO (At5g15840) is plotted. Blue dots represent conditions 
where MtN19 is present but CO is absent. Red dots represent conditions where both genes are 
expressed. Dots labelled represent: 1: co-regulation in juvenile leaves in the bountiful mutant; 2: co-
expression in response to salt stress; 3: co-expression in siliques; 4: co-regulation in response to 
Phytophtora infestans spores. 
 

MtN19 and CO are co-expressed in a variety of conditions (Figure 23) allowing both proteins 

to function together. Both genes are expressed strongly in young leaves of the bountiful 

mutant, in response to salt stress and in siliques. 

 

 

5.3. MtN19 interacts with the CCT-domain of CO in yeast 

 

By yeast-two-hybrid screening MtN19 was isolated as an interactor of the CCT-domain of 

CO. Since MtN19 is a single copy gene in Arabidopsis and rice and the amino acid sequences 
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show a high degree of conservation it was tested whether the MtN19 proteins from both 

species are able to interact with CO in yeast. Therefore, both full length proteins were tested 

in the yeast-two-hybrid system.  

 
Figure 24. Analysis of interactions between AtMtN19 and OsMtN19 with the CCT-domain of CO. 
A) SD-medium -Leu,-Trp,-His plus 15mM 3-AT; B) SD-medium -Leu, -Trp. AtMtN19 and OsMtN19 
interact with the CCT-domain of CO but CO does not interact with the empty prey plasmid (control). 
 
AtMtN19 and OsMtN19 were both able to interact with the CCT-domain of CO (Figure24) 

indicating that the domain required for this interaction is conserved between both species.  

 

 

5.4. MtN19 interacts with CO in vitro 

 

In order to verify the interaction observed in yeast, in vitro co-immunoprecipitation 

experiments were carried out to confirm the interaction. Figure 25 shows that 

immunoprecipitation of GAD:CO allowed weak co-immunoprecipitation of MtN19. 

 

 

 
 
Figure 25. In vitro co-immunoprecipitation of MtN19 with 
GAD:CO. The supernatant fraction contains unbound prey 
proteins. After successful immunoprecipitation the pellet 
fractions contain both bait and prey proteins. The 
precipitated band of MtN19 is weak but was obtained 
repeatedly. 
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5.5. MtN19 and CO co-localize in the nucleus and interact in vivo 

Protein analysis using web-based tools identifies a putative trans-membrane domain at the 

carboxy terminus. Since CO is a nuclear protein, it was tested whether both proteins are 

present in the nucleus. Co-localisation studies using fluorescence-labeled proteins showed that 

both MtN19 and CO are targeted to the nucleus (Figure 26). 

 

 
  

Figure 26. Co-localization studies in Arabidopsis epidermal cells bombarded with plasmids 
containing 35S::YFP:CO, 35S::CFP:MtN19 and 35S::dsRED. Both CO and MtN19 are present in the 
nucleus. A:YFP-channel, B: CFP-channel, C: dsRED-channel, D: YFP/CFP –channel overlay 
 

YFP:CO and CFP:MtN19 both co-localize in the nucleus of Arabidopsis epidermal cells and 

MtN19 seems to localize to sub-nuclear aggregates, a feature often observed for CO. It was 

tested by in vivo FRET whether they also interact with each other in plant cells. FRET 

analysis showed this interaction and confirmed the results observed in yeast and in vitro 

(Figure 27). 

 
Figure 27. In vivo FRET analysis by acceptor photobleaching. A) After photobleaching an increase in 
CFP-expression can be observed indicating an interaction. B) FRET quantification comparing results 
obtained from measuring YFP:CO and CFP as FRET pairs with the positive pair YFP:CO and 
CFP:MtN19. 
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5.6. MtN19 interacts with the FT-promoter in yeast 

 

In order to identify proteins able to interact with the promoter of FT, yeast-one-hybrid 

screening with a 300bp fragment of the FT promoter was carried out. MtN19 was isolated as 

an interactor of the promoter of FT. The interaction of MtN19 was reconfirmed by 

transforming the yeast strain Y187 containing the 300bp fragment of the FT promoter 

integrated into the genome upstream of the HIS gene. Since OsMtN19 was able interact with 

CO it was also tested whether it can bind to the FT promoter in yeast. 

 

 

 

 
Figure 28. Yeast-one-hybrid analysis of MtN19 and OsMtN19 interacting with the FT promoter. The 
upper row shows the negative control (pHIS-1), the lower panel shows the interaction with 300FT. –
W: SD-medium lacking tryptophane; -WH 30mM 3-AT: SD-medium lacking tryptophane and 
histidine supplemented with 30mM 3-AT. 
 

After transformation of the constructs, weak growth of yeast expressing MtN19 in the strain 

containing the FT promoter fusion was observed after an incubation of eight days at 30°C; no 

interaction was observed for OsMtN19 (Figure 28). 

 

 

5.7. MtN19 mRNA abundance at the end of the light period in long days 

 

Since MtN19 was identified to interact with CONSTANS, a prerequisite for an interaction in 

planta is that both proteins are expressed at the same time and are localized to the same cells 

and compartments (e.g. nucleus). In order to examine the temporal expression pattern of 

MtN19 mRNA, a time course experiment was done. Arabidopsis seedlings were grown in SD 
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(8 hours light, 16 hours dark) and LD (16 hours light, 8 hours dark) and samples of 12 day old 

seedlings were harvested every four hours over a 24 hour period. After RNA extraction and 

reverse transcription real-time quantitative PCR was performed to quantify MtN19 mRNA 

(Figure 29). 

  

 
 
Figure 29. Temporal expression pattern of MtN19 mRNA. Left picture shows MtN19 mRNA 
expression in SD, the right picture displays the expression in LD. Standard deviations calculated from 
four technical repeats of MtN19/β-tubulin. Bars represent day/night cycles. 
 

Analyzing the temporal expression pattern of MtN19 in short days revealed no obvious 

diurnal expression pattern. However, in LD the expression pattern of MtN19 mRNA 

resembles that of CO mRNA with a peak at the end of the light phase, 16 hours after dawn. 

 

 

5.8. MtN19 mRNA can be induced by application of methyljasmonate 

 

MtN19 expression is increased in different plant species in response to various stresses and 

chemicals indicating a possible role in stress signaling. Global expression analysis on 

microarrays also indicated that MtN19 responds to a variety of conditions (Figure 22). Thus, 

the expression of MtN19 mRNA in Arabidopsis was analyzed in response to various plant 

hormones and at different temperatures (Figure 30). 
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Figure 30. Hormone treatment experiments analyzing MtN19 expression. A) Ten day old seedlings 
were treated on GM-plates with different hormone solutions containing each 50mM gibberellic acid 
(GA3), abscisic acid (ABA), auxin (IAA), methyljasmonate (MeJa) and the ethylene precursor 1-
aminocyclopropan-1-carboxylic acid (ACC) for four hours. Additionally seedlings were incubated for 
four hours at 4°C and 28°C. Control plants were incubated with the same amount of water at room 
temperature. B) Hormone treatment experiment II. Ten day old Arabidopsis seedlings were incubated 
with 20mM and 100mM jasmonic acid (JA), 50mM sodium-nitroprusside (SNP), 100mM abscisic 
acid (ABA), 100mM and 500mM salicylic acid (SA)  for 24 hours. 
 

MtN19 is induced upon abscisic acid treatment which seems to correspond with its role in 

senescence in Alstroemeria (Breeze et al., 2004). Interestingly, the response is transient, since 

expression levels decrease from 6-fold after the four hour treatment (Figure 30a) to 2.5-fold 

after 24 hours (Figure 30b). Highest induction is elicited by treatment with methyljasmonate, 

where the MtN19 transcript was induced 16-fold (Figure 30a). Treatment of Arabidopsis 

seedlings for 24 hours with 100mM jasmonic acid causes a 5-fold reduction in MtN19-

expression (Figure 30b). 

 

 

5.9. Analysis of transgenic plants in which MtN19 expression is altered 

 

To investigate the function of MtN19 in Arabidopsis, transgenic plant lines were generated 

which overexpress the full length cDNA or which silence the gene using dsRNAi. 

Overexpressing MtN19 with the 35S-promoter resulted in plants showing WT phenotype. 

Analysis of these transgenic lines revealed that all the lines tested showed no increase in 

MtN19 mRNA transcript (data not shown). Also expression of MtN19 from the SUC2-

promoter did not alter the WT phenotype (data not shown).  
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To identify plants with reduced MtN19 expression, T-DNA insertion libraries were screened 

for insertions in MtN19. A phenotypic screen for MtN19 knock-out lines from GABI-KAT 

and SALK did not result in plants showing alterations in flowering-time. An RNAi-approach 

was therefore used to knock-out MtN19 in Arabidopsis. The MtN19 cDNA was recombined 

into pJawohl8 vector. Since there is no other homologous gene in the Arabidopsis genome, 

the full length cDNA was used for this experiment. The first observation was that around 50% 

of T1 plants on BASTA selection trays showed an extreme early-flowering phenotype (Figure 

31a). 

 
Figure 31.  MtN19 dsRNAi-lines. A) Three independent T1-transformants in comparison to Columbia 
wild-type 14 days after germination in LD. B) MtN19 expression analysis using a primer annealing in 
the 5’ UTR to amplify specifically endogenous transcript and not the transgene. C) Expression 
analysis of FT. 
 

The early-flowering lines isolated unexpectedly showed an increase in MtN19 transcript 

(Figure 31b). Since the lines flowered extremely early, the expression level of FT was also 

analyzed, and this was increased as well. The other half of T1-transformants showed an 

extreme late-flowering phenotype. Several late and early lines were selected and analyzed for 

their segregation ratio of the transgene in the T2-generation. A 3:1 segregation indicated an 

insertion of a single transgene. After germination of T2-seeds on soil young seedlings were 

treated with BASTA to eliminate wild-type plants. Almost all lines showed a clear 3:1 

segregation ratio, but interestingly several lines showed a conversion in their flowering-time 
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phenotype. In some early lines a few plants showed an extreme late-flowering phenotype, 

whereas in some late lines a few plants flowered extremely early. Early and late-flowering 

lines showing consistently late and early-flowering were selected for identification of 

homozygous lines. To investigate the function of MtN19, a late line (MtL) and an early line 

(MtE) were crossed with 35S::CO and a CO knock-out (co-sail). Figure 32 shows the 

phenotypes observed compared to 35S::CO and co-sail and the F1 of a cross between MtL 

and 35S::CO. Here, only MtL 35S::CO is shown, since both transgenes produce dominant 

phenotypes. 

 

 
 
Figure 32. Analysis of MtN transgenic plants. A) Comparison of Columbia, 35S::CO, MtE, MtL 
35S::CO and MtL at 15 days after germination. B) Columbia, co-sail, MtL and MtL 35S::CO at 35 
days after germination. C) Expression analysis of MtN19, FT, CO and actin by RT-PCR (28 cycles), 
15 days after germination from leaf material. 
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Analysis of transgenic plants demonstrated that MtE and 35S::CO both flower very early 

under long day conditions in comparison to MtL and co-sail which are late-flowering (Figure 

32). An F1-cross between MtL and 35S::CO revealed that CO is not able to complement the 

late-flowering phenotype of MtL (Figure 32). Gene expression analysis by RT-PCR 

demonstrated that both 35S::CO and MtE express MtN19, CO and FT at high levels whereas 

the expression of FT and CO is under the level of detection in wild-type and MtL (Figure 

32d). MtN19 expression is weak in wild-type, intermediate in MtL and high in MtE. The 

MtL35S::CO double mutant expresses medium levels of CO but the level of FT is under the 

level of detection (Figure 32d). It can not be excluded that the reduced CO mRNA levels in 

35S::CO MtL lines could also be due to silencing of the 35S promoter in these plants. 

A recent result obtained by overexpression of MtN19 with a FLAG-epitope using the pJAN 

vector harboring a double 35S-promoter resulted in early-flowering transgenic lines (Figure 

33). 

 

 
Figure 33. Analysis of 35S::FLAG:MtN19 transgenic plants. T1-line after 
BASTA selection, other transgenic plants showed similar phenotypes. The 
arrow indicates the floral bud. 
 

 

 

 

 

 

5.10. Discussion 

 

MtN19 interacts with CONSTANS and the FT promoter in yeast 

MtN19 was identified as an interactor with the CCT-domain of CONSTANS by yeast-two-

hybrid screening and as a protein that is able to bind to the FT promoter in a yeast-one hybrid 

assay. Both screens were done independently and would be consistent with a role for MtN19 

in the CO-mediated activation of FT expression. After isolation of the full-length cDNA the 

interactions were confirmed in yeast. MtN19 interacts with the CCT-domain of CO (Figure 

24). Analysis of the homologous protein from rice shows that this protein also can interact 

with CO (Figure 24) indicating that these proteins have retained functional similarities during 

evolution (Figure 18). It could also be that both proteins share a structural similarity in a non-
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conserved region. Analysis of the ability to interact with the FT promoter shows that MtN19 

can bind to the 300bp fragment although the observed interaction appears to be rather weak 

(Figure 28). However, OsMtN19 does not bind to the FT promoter (Figure 28) suggesting that 

the DNA-binding domain recognized by of OsMtN19 might have changed during evolution. 

This might be related to the observation that CO activates FT expression in Arabidopsis, but 

the rice orthologue of CO (Hd1) represses expression of the rice FT orthologue (Hd3). 

 

The interaction between MtN19 and CONSTANS was confirmed in vitro and in vivo 

To confirm that the interaction of MtN19 with CO observed in yeast is valid, different 

independent assays were performed. In vitro co-immunoprecipitation using GAD-labeled CO 

and a GAD-specific antibody showed a weak precipitated band corresponding to the size of 

MtN19 (Figure 25). In the negative control lane testing the interaction between GAD and 

MtN19, the band was absent. Although the band appears to be very weak suggesting a weak 

interaction between the proteins, the result was obtained repeatedly, confirming that the 

interaction does occur under these conditions.  

Co-transformation of fluorescent protein fusions showed that both MtN19 and CO co-localize 

in the nucleus of Arabidopsis epidermal cells (Figure 26). Additionally, we observed that 

MtN19 is not evenly distributed within the nucleus; it shows a localisation in sub-nuclear 

speckles, one of the features of CO. Testing the ability to interact in vivo, the acceptor 

photobleaching approach was applied and FRET was measured between YFP::CO and 

CFP::MtN19 (Figure 27). Quantification of the FRET efficiencies between YFP::CO and 

CFP::MtN19 compared to YFP and CFP::MtN19 showed a significant difference (Figure 

27b). 

 

MtN19 shows a diurnal expression pattern 

In addition to localisation to the same compartment in the cell, another important prerequisite 

for a functional interaction in planta is expression at the same time. Because CO shows a 

diurnal rhythm, the temporal MtN19 expression pattern was analyzed in 24-hour time courses 

both in SD and LD. Analysis of the temporal expression pattern revealed that in LD CO and 

MtN19 are both expressed at the end of the light phase (Figure 29). In SD a slight peak of 

MtN19 expression appear also at the end of the light phase at eight hours after dawn (Figure 

29). Since CO acts in LD conditions, both CO and MtN19 are expressed at the same time of 

the day and could act together to control FT expression. The activation of FT by CO occurs in 

the phloem (Takada and Goto, 2003; An et al., 2004; Ayre and Turgeon, 2004), but so far the 
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spatial expression pattern of MtN19 is unknown although it seems to be expressed in leaves 

(Figure 20 and 21). 

 

Induction of MtN19 expression by application of plant hormones 

MtN19 expression responded to the application of ABA with a 5-fold increase in mRNA 

levels, and to methyljasmonate with a 16-fold increase (Figure 30). It was shown, that 

methyljasmonate/jasmonate and abscisic acid signaling converge to activate the expression of 

several wound- and stress-inducible genes (Hildmann et al., 1992). Also the process of 

stomatal closure is regulated both by ABA and methyljasmonate indicating the convergence 

of two hormonal pathways on one physiological process. Plants carrying a recessive mutation 

in the OST1 gene are impaired in stomatal closure in response to ABA (Mustilli et al., 2002). 

The methyljasmonate-insensitive mutant jar1-1 is impaired in stomatal closure in response to 

methyljasmonate (MeJa) (Staswick et al., 2002; Suhita et al., 2004). Application of MeJa 

causes stomatal closure in ost1-2 mutants and application of ABA causes stomatal closure in 

jar1-1 indicating interplay between both signaling cascades (Suhita et al., 2004). Finally, it 

was shown that the interplay is at the level of reactive oxygen species (ROS) production and 

both JAR1 and OST1 act upstream of ROS production (Suhita et al., 2004). Production of 

ROS is a common feature of plant responses to biotic and abiotic stresses. ROS production 

triggers signaling cascades  leading to various outputs such as stress tolerance, acclimation 

and cell death (Dat et al., 2000; Mittler, 2002; Vranova et al., 2002). In these various 

processes, ROS production is coupled to the action of several hormonal pathways, mainly 

ABA and methyljasmonate signaling. It is possible that also jasmonic acid induces MtN19 

after a short incubation and long time incubation results in a shut off of this signaling event. 

This would explain why MtN19 is 5-fold reduced in response to jasmonic acid after 24 hour 

incubation (Figure 30b). However, several microarray studies revealed that the application of 

compounds eliciting ROS production cause upregulation of MtN19 (Kimura et al., 2003; 

Navabpour et al., 2003; Breeze et al., 2004; Doss, 2005). We present evidence that application 

of MeJa and ABA, two plant hormones involved in ROS production also cause upregulation 

of MtN19. Since MtN19 shows a diurnal expression pattern peaking at 16 hours after dawn in 

LD induces FT expression with CO and under stress conditions MtN19 may be expressed to 

perform other functions. Nonetheless, the analysis of ROS in the process of flowering-time 

control might reveal a function since its production is controlled by various hormones and 

signalling cascades. 
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Transgenic plants overexpressing MtN19 flower early and silenced lines show early and 

late-flowering phenotypes 

Plants expressing a double-stranded hairpin against the full length cDNA of MtN19 show 

either extreme late or early-flowering. The distribution of late and early-flowering lines 

observed in the T1-generation was approximately 1:1. Analysis of the early-flowering lines 

showed that in these lines the MtN19 transcript is overexpressed and not silenced (Figure 31a 

and b). In these lines, FT is highly induced likely explaining the early-flowering phenotype 

(Figure 31c). Analysis of both early (MtE) and late (MtL) flowering lines revealed that MtE 

has high levels of MtN19, CO and FT whereas in wild-type and MtL the expression levels of 

FT and CO were under the level of detection (Figure 32). The MtN19 expression level is 

slightly upregulated in MtL and highly induced in 35S::CO lines. MtE has high levels of 

MtN19 compared to MtL where the transcript is not absent which would explain the late-

flowering phenotype. In MtL 35S::CO plants the CO transcript is detected but not FT. MtN19 

interacts with CO and overexpression of MtN19 causes early-flowering by up-regulation of 

FT. The observation that MtE lines have high levels of CO suggests that MtN19 can also 

induced the expression of CO or the effect on CO is due to the existence of a positive 

feedback loop from FT. Since CO and MtN19 seem to interact to regulate FT expression they 

might also mutually induce their own transcription. The result that CO is unable to activate 

FT in MtL 35S::CO plants suggests that something CO requires is missing in these transgenic 

plants, which is most likely functional MtN19. However, since CO mRNA levels were 

reduced in these 35S::CO MtL plants the late-flowering may also be partly due to a silencing 

effect between the two 35S promoters. 

In 35S::MtN19 lines, no elevated transcript levels were detected and the plants did not show 

early or late-flowering phenotypes (data not shown) suggesting a post-transcriptional 

mechanism controlling MtN19 mRNA abundance. Overexpression of 35S::FLAG:MtN19 

causes only early-flowering (Figure 33). This result suggests that either this vector produces 

higher levels of transcript that overcomes post-transcriptional regulation or the nucleotides 

encoding the FLAG epitope stabilize the mRNA of the transgene. 

 

Is MtN19 post-transcriptionally regulated by naturally occurring antisense expression? 

The variability observed in MtN19-dsRNAi lines and the failure to overexpress the MtN19 

mRNA could be explained by the existence of naturally occurring antisense transcription at 

the MtN19 locus. Natural antisense transcripts were first described in prokaryotes where they 

regulate a variety of processes such as plasmid replication, conjugation and transposition (for 
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review see Wagner and Simons, 1994). First observations of the occurrence of natural 

antisense transcripts in eukaryotes were made in yeast and humans by analyzing the 

expression of mitochondrial DNA (Anderson et al., 1981; Bibb et al., 1981). After 

discovering overlapping sense / antisense transcription units of the Drosophila dopa 

decarboxylase gene and the role of the antisense transcript regulating the abundance of the 

sense transcript the function of antisense transcription became clear (Spencer et al., 1986). An 

example of transcriptional regulation is the human translation initiation factor eIF-2α whose 

abundance is regulated by the cyclic transcription of antisense RNA controlling the cell cycle 

in T lymphocytes (Noguchi et al., 1994). In the case of the human c-erbAα, belonging to the 

steroid/thyroid hormone receptor family, antisense regulation occurs at the post-

transcriptional level by inhibition of transcript splicing (Miyajima et al., 1989; Munroe and 

Lazar, 1991). In C. elegans the heterochronic lin-14 gene controls early developmental stages 

of the nematode. During development, the mRNA levels of lin-14 remain constant but the 

protein decreases after the L2 stage. The decrease of the Lin-14 protein level is due to 

expression of lin-4 yielding two small transcripts of 22 and 61bp that do not encode a 

functional ORF. Lin-14 mRNA contains four lin-4 complementary elements in its 3’ UTR and 

sense/antisense basepairing results in translational inhibition (Lee et al., 1993). These results 

show that antisense RNA can interfere with gene expression at various levels of transcription 

and translation. Naturally occurring antisense transcripts were also identified in plants. In 

Brassica oleracea the S LOCUS RECEPTOR KINASE (SRK) gene which encodes for a 

protein involved in the regulation of self-incompatibility, is transcribed in both directions. 

Sense transcript accumulation is tissue-specific and depends on the absence of antisense RNA 

(Cock et al., 1997). Other members of this gene family are also controlled by antisense 

transcription as shown in maize (Ansaldi et al., 2000). A computational analysis aligning 

32,127 rice cDNA sequences to rice genome sequences revealed the existence of 687 

bidirectional transcript pairs (Osato et al., 2004). Global transcriptome analysis from mice 

provides evidence for the existence of 4,520 transcription units forming sense-antisense pairs, 

representing around 10% of all transcription units of the genome (Katayama et al., 2005). 

Analysis of the Arabidopsis transcriptome using whole-genome arrays revealed that out of 

around 26,000 genes tested, 3,000 show expression of sense-antisense pairs and 7,600 show 

tissue-specific sense-antisense expression (Prof. Dr. Joseph Ecker, personal communication). 

Moreover, antisense expression seems to show high dynamics in terms of spatial and temporal 

regulation implying that these numbers may only represent a small proportion of the antisense 

RNAs encoded in the genome.  
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The fact that transgenic plants overexpressing MtN19 by the 35S-promoter do not have 

elevated transcript levels nor flower early suggest an active mechanism downregulating 

MtN19 mRNA levels. Furthermore, the observation that transgenic plants expressing a 

dsRNAi construct against MtN19 show two extreme flowering phenotypes underline the 

hypothesis of natural antisense RNA. In MtE-lines the endogenous transcript is up-regulated 

probably due to silencing of the antisense-transcript. In MtL-lines the endogenous transcript is 

not downregulated but plants are late-flowering. Analysis of the MtN19 locus on the 

Arabidopsis whole genome chip (signal.salk.edu) identifies antisense-sequences 

corresponding to the MtN19 gene (Figure 34). 

 

Figure 34. Detected antisense transcripts at 
the MtN19 locus (At5g61820) using 
Arabidopsis whole genome arrays. 
 
Legend: 
L+ Light grown seedlings 
AN Anthers 
FL flowers 
RT roots 
SC suspension culture 
Arrows indicate the detected antisense 
transcripts. 
Data extracted from http://signal.salk.edu 
 
 

 

 

 

 

 

 

 

 

 

Antisense transcripts are only detected for very specific regions and do not cover the whole 

locus. Due to the low spatial and temporal resolution of these few experiments it is likely that 

many more antisense transcripts remained undetected. 

If the antisense transcript is polyadenylated, it is impossible to distinguish by RT-PCR 

between sense and antisense which might explain why the reduction of the sense transcript 

was not detected in MtL plants. However, the observation that some transgenic MtN19-
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dsRNAi plants showing a flowering phenotype as T1-plants, showed the opposite flowering 

phenotype in the next generation suggests that during development a decision is made which 

transcript is silenced by the dsRNAi transgene. Wild-type and transgenic dsRNAi-lines 

should now be analyzed using northern blots with strand-specific probes to distinguish 

between sense and antisense transcripts. If in the late-flowering MtL plants the sense 

transcript is silenced and the antisense transcript stabilized this would support the hypothesis 

that antisense transcription is important in the regulation of MtN19. 

 

 

5.11. Conclusion 

 
We present evidence that CO interacts with the Arabidopsis MtN19 protein in yeast, in vitro 

and in vivo. Both proteins co-localize in the nucleus and we demonstrated that MtN19 is able 

to interact with the promoter of FT in yeast. Furthermore, the analysis of the temporal 

expression pattern of MtN19 revealed that both CO and MtN19 are expressed at the same time 

during the day in LD conditions. This is the timepoint where the CO protein is functional 

(Valverde et al., 2004). MtN19 mRNA expression can be induced by the application of ABA 

and MeJa whereas application of jasmonic acid seems to reduce MtN19 expression. Figure 31 

summarizes our current knowledge on MtN19 and places it in a model that describes how it 

could regulate FT together with CO. 

 

 
Figure 35. Putative model of the regulation of MtN19 and its role in controlling FT expression 
together with CO. 
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Transgenic plants expressing a dsRNAi construct against MtN19 exhibit two strong 

phenotypes, early and late-flowering. We have shown that the early-flowering dsRNAi-lines 

have high levels of MtN19, FT and CO explaining the early-flowering phenotype. All this 

information indicates that MtN19 is involved in controlling flowering-time together with CO. 

Further research on the biochemical function and post-transcriptional regulation of MtN19 is 

needed to understand its precise role in the regulation of flowering in Arabidopsis.  
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6. FIDGET, an APETALA2-like protein involved in UV-light 

induced induction of FLOWERING LOCUS T 

 

6.1 Introduction 

 

Light is a key factor for plant development. In nature, sunlight provides positional 

information, regulates plant development and serves as the major energy source for 

production of sugar during photosynthesis. Sunlight consists of different wave lengths of light 

and depending on the location at which a plant grows, the spectrum of wavelengths it is 

exposed to differ. For example, under a canopy of other plants, light is enriched with far red 

light compared to the open field (Sessa et al., 2005). Plants have different photoreceptors that 

sense light inputs and convert these into physiological responses. One of the major 

physiological pathways that is regulated by light mediates the photoperiodic control of 

flowering-time. CONSTANS (CO) a key protein regulating the floral transition in response to 

photoperiod, activates the expression of FLOWERING LOCUS T (FT) within this pathway 

(Putterill et al., 1995; Samach et al., 2000; Suarez-Lopez et al., 2001). FT is a floral integrator 

on which several floral promoting pathways converge (Kardailsky et al., 1999; Kobayashi et 

al., 1999). FT mediates the floral transition by interacting with FD, a bZIP transcription factor 

and the FT/FD complex induces the transcription of the floral meristem identity gene 

APETALA1 (Abe et al., 2005; Wigge et al., 2005).   

In Arabidopsis, several photoreceptors are known to sense different light qualities and 

wavelengths. Phytochromes are involved in sensing the intensity and ratio of red/far-red light. 

The Arabidopsis thaliana genome encodes five phytochromes (PHYA-E) that mediate 

different developmental responses (Sharrock and Quail, 1989). Blue light is sensed by 

phototropins, protein kinases harboring two LOV domains that can perceive light and in 

response o these signals control phototropic responses (Christie et al., 1998; Briggs and 

Christie, 2002). Cryptochromes also perceive blue light and additionally respond to UV-A 

(320-400nm) light. Three cryptochromes are encoded in the Arabidopsis genome, named 

CRY1, 2 and 3. CRY1 is involved in mediating high fluence responses whereas CRY2 

mediates low fluence responses (Ahmad and Cashmore, 1993; Guo et al., 1998; Lin and 

Shalitin, 2003). CRY3 is a more distantly related protein for which no function is known so 

far. Cryptochromes play an important role in the de-etiolation process, inhibiting hypocotyl 
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growth and promoting cotyledon expansion (Lin, 2002; Liscum et al., 2003). CRY2 also 

regulates photoperiod-dependent flowering, perhaps by interacting physically with PHYB in 

the nucleus (Cashmore et al., 1999; Mockler et al., 1999; Mas et al., 2000; Yanovsky and 

Kay, 2003). CRY1 and CRY2 both physically interact with the E3-ubiquitin ligase COP1, 

independent of the presence or absence of light (Wang et al., 2001; Yang et al., 2001). COP1 

ubiquitinates the bZIP transcription factor HY5 in the dark but not in the light, and therefore 

HY5 promotes photomorphogenesis specifically in the light. In light, it is hypothesized, that 

CRY1 inhibits COP1 activity leading to the release of HY5 (Cashmore, 2003; Lin and 

Shalitin, 2003; Liscum et al., 2003). Beside its involvement in early light signaling (Osterlund 

et al., 2000), HY5 is required to regulate a subset of UV-B (280-320nm) responsive genes 

(Osterlund et al., 2000; Ulm et al., 2004). 

 

Due to the anthropogenic destruction of the ozone layer, organisms living on the earth’s 

surface must cope with increasing levels of UV-B light (Kerr and McElroy, 1993, 1994; 

Madronich et al., 1998; McKenzie et al., 1999). Plants growing in open field conditions are 

exposed to high levels of UV-light on sunny days and these cause damage and trigger stress 

responses such as the production of plant stress hormones and reactive oxygen species 

(Brosche and Strid, 2003; Ulm et al., 2004). Low fluence rates of UV-B initiate a 

photomorphogenic response, but the receptor that perceives UV-B has not been identified 

(Brosche and Strid, 2003). Continuous irradiation of Arabidopsis seedlings with low fluence 

UV-B light causes the inhibition of hypocotyl elongation and promotes cotyledon expansion 

(Kim et al., 1998). This photomorphogenic response requires the activities of both PHYA and 

PHYB (Kim et al., 1998). UV-B treatment followed by red light pulses was shown to enhance 

PHYB-mediated morphogenic responses (Boccalandro et al., 2001). However, phytochromes 

do not act as primary UV-light photoreceptors although they modulate UV-B responses 

(Wade et al., 2001). Apart from photomorphogenic responses, UV-B leads to the biosynthesis 

of UV-absorptive secondary metabolites such as flavonoids (Chappell and Hahlbrock, 1984; 

Landry et al., 1995; Kim et al., 1998; Boccalandro et al., 2001) and to gene expression 

(Christie and Jenkins, 1996; Lo et al., 2004). Elevated UV-B levels also increase the 

frequency of homologous DNA-rearrangements, a repair mechanism for UV-induced DNA-

lesions such as cyclobutane pyrimidine dimers (Ries et al., 2000).  

Although a UV-B receptor has not yet been identified, isolation of UV-B light insensitive 

mutants led to the identification of UV-B LIGHT INSENSITIVE3 (ULI3). ULI3 encodes an 

80kD protein of unknown function harboring a predicted heme-diacylglycerol binding 
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domain. ULI3 mRNA is highly induced upon UV-B treatment and ULI3:GFP localizes to the 

plasma membrane (Suesslin and Frohnmeyer, 2003). Molecular events following UV-B 

perception involve secondary messengers such as calcium, kinases and reactive oxygen 

species (Brosche and Strid, 2003). It is still unclear, whether these reactive oxygen 

compounds are side-products of a general stress response or whether they act as UV-B 

response specific signaling molecules. UV-C (wavelengths less than 280nm) is extremely 

harmful to plants and animals causing DNA-damage (Klaude et al., 1995). It was also shown, 

that UV-C treatment of Arabidopsis seedlings can accelerate the floral transition and that this 

stress signal is dependent on salicylic acid  (Martinez et al., 2004).  

Several classes of Arabidopsis transcription factors are implicated in converting biotic and 

abiotic stress responses into a transcriptional output. One class contains members of the 

APETALA2-like (AP2-like) family of proteins, which are transcription factors involved in 

various stress responses (Chen et al., 2002). Furthermore, it has been shown that AP2-like 

proteins act as integrators of hormonal signals such as those mediated by jasmonic acid and 

ethylene during pathogen threat (Fujimoto et al., 2000; Brown et al., 2003; Lorenzo et al., 

2003). These proteins are named after the apetala2 homeotic mutant, which shows defects in 

flower development (Jofuku et al., 1994). Important processes are controlled by the 

APETALA2 (AP2) protein including the establishment of flower meristem identity (Irish and 

Sussex, 1990; Bowman et al., 1993), floral specification and organogenesis (Komaki et al., 

1988; Bowman et al., 1989, 1991; Jofuku et al., 1994) and regulation of ovule and seed 

development (Leonkloosterziel et al., 1994); (Modrusan et al., 1994). Recently, APETALA2 

was also shown to control seed mass and yield in Arabidopsis (Jofuku et al., 2005; Ohto et al., 

2005). The Arabidopsis genome comprises 145 AP2-like proteins that can be subdivided into 

four major classes; one with two AP2-domains such as APETALA2, two with one AP2-

domain that comprise the drought response element binding proteins (DREB) and ethylene 

response factors (ERF), and finally RAV1-like proteins, which have an AP2-domain and a 

B3-domain (Riechmann and Meyerowitz, 1998; Kagaya et al., 1999; Sakuma et al., 2002; 

Gutterson and Reuber, 2004). DREB-proteins bind to dehydration responsive elements 

(DRE), an element found in a variety of low-temperature stress and dehydration inducible 

genes (Sakuma et al., 2002). ERF-proteins bind to GCC-boxes that are often found in ethylene 

inducible pathogenesis-related genes (Sakuma et al., 2002).  

The AP2-domain itself can be subdivided into two functional domains, the YRG-element 

consisting of a 20-amino acid stretch containing basic and hydrophilic residues and the 

RYAD-element, forming a carboxy terminal amphipathic alpha-helix (Riechmann and 
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Meyerowitz, 1998; Kizis et al., 2001). AP2-domain proteins were also identified in 

cyanobacteria, ciliates and viruses, suggesting that plants may have acquired these genes by 

horizontal gene-transfer via a transposition and homing process (Magnani et al., 2004; 

Wessler, 2005). Furthermore it was reported, that the ciliate AP2-protein can bind to 

poly(dG)/poly(dC) stretches indicating a functional conservation with the plant orthologues 

(Magnani et al., 2004). 

Several AP2-like proteins are involved in regulating the transition to flowering in 

Arabidopsis. Among those, two AP2-like genes, named SCHLAFMUETZE (SMZ) and 

SCHNARCHZAPFEN (SNZ) were isolated by activation-tagging. These two genes exhibit a  

late-flowering phenotype when overexpressed (Schmid et al., 2003). Another activation 

tagging approach led to the identification of microRNA172 (miR172), which causes early-

flowering upon overexpression (Aukerman and Sakai, 2003). A set of AP2-domain proteins 

named TOE1, TOE2, TOE3 as well as SMZ and SNZ were identified as floral repressors 

downregulated by miR172 (Aukerman and Sakai, 2003; Schmid et al., 2003). AP2 is also 

repressed by miR172 and this seems to be due to translational rather than transcriptional 

inhibition (Aukerman and Sakai, 2003; Chen, 2004b).  

In this chapter, an AP2-like protein that regulates FT is described. Using a 300-bp fragment of 

the FT promoter for yeast-one hybrid analysis FIDGET (FIT) an APETALA2-like protein that 

belongs to the subfamily of ethylene response element binding proteins was identified. FIT 

shows highest similarities to Pti6, an AP2-like transcription factor isolated from tomato (Gu et 

al., 2002). Evidence is presented that FIT interacts with the FT promoter in yeast, in vitro and 

in vivo. Overexpression of FIT by the SUC2 promoter specifically in the phloem, the tissue in 

which FT is expressed, causes early-flowering due to upregulation of FT. FIT mRNA is 

strongly induced by UV-B light and analysis of the expression pattern by promoter-GUS 

fusions reveals that expression is detected in the vasculature upon UV-B treatment. 

Furthermore, we demonstrate that UV-B accelerates the floral transition and that this 

transition relies on the activity of FT. 
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6.2. FIT interacts with the promoter of FT in yeast 

 

In order to isolate novel DNA-binding proteins interacting with the FT promoter we 

conducted yeast-one-hybrid screening. A 300-basepair fragment (300FT), which was 

identified in a systematic FT promoter analysis to be most responsive for induction by CO, 

was used for this screen. The 300FT fragment extends from -539bp upstream of FT ATG to -

207bp upstream. 300FT was cloned upstream of the yeast HIS-gene and recombined into the 

genome of the Y187 yeast strain. 

An APETALA2-like protein was the only DNA-binding protein that was found to interact 

with the FT promoter fragment. This protein was named FIDGET (FIT) because in further 

studies it behaved in an opposite way to two floral repressors named SCHLAFMUETZE 

(night-cap, sleepyhead) and SCHNARCHZAPFEN (snorer) (Schmid et al., 2003). After 

isolating the full-length cDNA of FIT, the ability of FIT to bind to 300FT was retested and the 

interaction observed in the primary screen was confirmed. FIT can bind to the FT promoter 

fragment and induce the transcription of the HIS gene in yeast, which allows in growth on 

selective medium (Figure 36). 

 

 
 
Figure 36. FIT binds to a 300bp fragment of the FT promoter in yeast. The control shows Y187 yeast  
expressing FIT which can not grow (left) compared to the yeast expressing FIT and containing 300bp 
of the FT promoter upstream of the HIS gene (right). Cells were grown for seven days on SD-medium 
lacking histidine and leucine supplemented with 15mM 3-AT. 
 

 

6.3. Purification of recombinant HIS-tagged FIT protein 

 

To further characterize the binding of FIT to the FT promoter we purified recombinant HIS-

tagged FIT protein from E. coli. Unfortunately HIS:FIT was insoluble and targeted to 

inclusion bodies in E. coli. Therefore denaturing conditions for protein purification were 

applied. 
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Figure 37. Purification of HIS:FIT using affinity chromatography with Ni-NTA resin. The left picture 
shows HIS:FIT protein after elution on a polyacrylamide gel, asterisk indicates the FIT-band, the 
lower band on the gels seems to be a degradation product. The size of HIS:FIT is around 40kD but it 
seems to migrate at around 50kD. The right picture shows HIS:FIT protein after dialysis. 
 

After eluting the protein from the nickel column a four step dialysis was carried out (1h 

against 6M ura pH 5, 1hour 4M urea pH 5.5, 1h 2M urea pH 6.5, overnight against 100 mM 

NaP, 10% glycerol pH 7.0) to allow the protein to refold. The protein was subsequently 

concentrated on an Amicon centrifugation column. The isolated protein contents of both the 

elution and after dialysis followed by concentration were analyzed by SDS-PAGE (Figure 

33). The isolated protein migrates at around 50kD which is in the range of the actual size of 

HIS:FIT (39kD). 

 

 

6.4. in vitro DNA-binding assays  

 

The interaction of FIT with 300FT observed in yeast was confirmed by in vitro DNA-binding 

assays. In a first approach the 300 base pair fragment labeled with 32P and used for in vitro 

binding. FIT was found to bind to the 300FT fragment but not to the nos terminator which 

was used as a negative control (Figure 38a).  
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Figure 38. In vitro DNA binding assays using HIS:FIT protein. A) Gelshifts using the 300bp fragment 
from the FT promoter (left) in comparison to the nos terminator (right) to exclude unspecific DNA 
binding. Lane 1: 300FT free probe Lane 2: 300FT plus HIS:FIT, lane 3: nos free probe, lane 4: nos 
plus HIS:FIT. Asterisk shows the shifted band indicating an interaction only between FIT and 300FT.  
B) Smaller fragments of 300FT were tested for FIT-binding. FT3 is a 50bp fragment located within 
300FT and extending from -267bp to -191bp upstream of FT ATG. A competition experiment was 
performed with unlabeled fragments (50, 100 and 250 times more unlabeled FT3-DNA) which caused 
a gradual decrease in the DNA-binding of FIT to labeled FT3. Asterisk indicates the shifted band; FP: 
free probe. 
 

The putative FIT-binding site was located in the 5’ region of 300FT using the 50bp 

oligonucleotide FT3 labeled with 32P. It was possible to compete the positive interaction by 

the addition of unlabeled FT3 excluding non-specific binding of FIT to FT3 (Figure 38b). 

 

 

6.5. FIT induces FT expression in a transient Luciferase based system 

 

In order to gain more insight as to the effect of FIT on FT-expression, a transient Luciferase 

expression assay was applied using FT promoter-Luciferase (LUC) fusions. A fragment 

containing the promoter region 2.7kb upstream of the transcriptional start of FT was isolated 

and fused to the LUC gene (constructed by Dr. Aidyn Mouradov). This construct was coated 

on gold microcarriers along with 35S::GFP and 35S::FIT. To reveal whether the action of 

FIT is specific, the next closest homolog (FIDGET-LIKE1, FTL1) was isolated and a second 
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experiment was carried out using 35S::FTL1, FT::LUC and 35S::GFP. A negative control 

was performed using the empty expression vector, FT::LUC and 35S::GFP. After particle 

bombardment on Arabidopsis leaves, the Luciferase expression was measured using a photon 

counter.  

 

 
Figure 39. Transient pFT::LUC assay after particle bombardment. A) and B) show pictures of 
transformed leaves expressing LUC. C) Quantification of LUC signals compared to GFP-signals. C = 
FT::LUC control; FTL1=FIDGET-like 1; FIT = FIDGET 
 

In transient promoter-Luciferase assays FIT was shown to induce FT-expression seven-fold as 

seen by an increase in LUC/GFP ratio (Figure 39). FTL1, the next closest homolog to FIT is 

unable to induce FT (Figure 39C).  

 

 

6.6. Fine-mapping of the FIT-responsive element in the FT-promoter 

 

To define the site through which FIT activates FT expression, different FT promoter 

fragments fused to LUC (constructed by Dr. Aidyn Mouradov) were bombarded with and 

without the FIT-effector plasmid.  
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Figure 40. Transient Luciferase-system using small promoter fragments. Top right is a schematic 
drawing of the FT promoter with positions of the small fragments used (KpnI, 348, 288, 262). On the 
left is plotted the fold activation with and without effector (35S::FIT). 300FT indicates the fragment 
used for yeast-one-hybrid screening. 
 

 A significant decrease in inducibility is detected using fragment 288 compared to 348 (Figure 

40). After calculating the fold-activation the putative FIT-binding site was narrowed down to 

around 60bp, which was also present in the 300FT fragment that was used for yeast-one-

hybrid screening. 

 

 

6.7. FIT binds to the FT-promoter in vivo 

 

To test whether FIT can bind to the FT promoter in vivo transgenic plants overexpressing 

HA:FIT from the 35S-promoter were generated. A homozygous line was chosen for 

chromatin immunoprecipitation and the expression of HA:FIT was analyzed by western blot 

(Figure 41a). 
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Figure 41. Plant Chromatin immunoprecipitation. A) Plants expressing HA:FIT were grown 12 days 
under LD condition on SD-plates. After nuclear extraction, the cytosolic and nuclear fractions were 
analyzed by western blotting comparing HA:FIT plants and Columbia (Col) wild type plants. FIT 
protein is detected both in cytosolic and nuclear fractions (asterisk). B) In vivo ChIP-analysis using 
different primers FT-1 (-0,3kb), FT-2 (- 2,0kb), FT-3 (-4.0kb), FT-4 (+1.0kb), FT-5 (+0,1kb). 
Numbers in brackets are the amplified regions of the FT promoter related to the position of the 
transcriptional start site. Asterisks indicate immunoprecipitated fragments using α-HA-antibody. Input 
is a 1/20 dilution of the chromatin used for immunoprecipitation, numbers represent the amount (µl) 
used for PCR-amplification.  
 

After chromatin immunoprecipitation, PCR-reactions were carried out to amplify different 

regions in the FT-promoter. The region that FIT is thought to bind (FT-1, Figure 41b) could 

not be efficiently amplified. PCR-amplifications using primer FT-4 and FT-5 which anneal in 

closer proximity to the putative FIT-binding site were successful compared to FT-2 and FT-3, 

which amplify regions of the FT-promoter located further upstream (Figure 41b). Using 

Columbia extracts and the α-HA antibody or the α-rat antibody, no immune precipitation was 

detected. Also the α-rat control antibody did not precipitate any chromatin from HA:FIT 

lines. 

 

 

6.8. FIT can homodimerize in vivo 

 

CO activates FT expression by an unknown mechanism. Since FIT is a transcription factor 

which can bind to the FT promoter, it was tested whether CO is able to interact with FIT to 

activate FT. CO was fused to YFP and FIT to CFP and transient FRET experiments in 

Arabidopsis were carried out. However, an interaction was not detected nor was co-
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localization in sub-nuclear speckles observed (data not shown). In contrast, testing of 

YFP:FIT with CFP:FIT showed FRET signals in living cells (Figure 42). 

 

 
Figure 42. FRET analysis of FIT homodimerization. A) YFP:FIT and CFP:FIT interact as seen in the 
increase in intensity of the CFP spectrum after photobleaching YFP:FIT. B) negative control analyzing 
YFP and CFP:FIT, no interaction was observed. C) False color images showing the distributions of 
FRET efficiencies in the nucleus. D) Quantification and comparison between both FRET pairs shown 
in A) and B). 
 

This suggests that FIT is able to dimerize, a phenomenon which has so far not been assigned 

to APETALA2-like proteins. The physiological impact of this interaction is unknown. 

 

 

6.9. FIT mRNA shows a circadian expression pattern that is altered in 

lhy/cca1 double mutants 

 

In order to analyze whether the expression pattern of FIT shows circadian regulation, 

timecourse experiments were performed, harvesting 12 day old seedlings every four hours 

over a time period of 24 hours in short day and long day conditions.  
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Figure 43. FIT timecourse experiment. A) short days and B) long days. The figures show experiments 
from four technical repetitions. FIT mRNA levels were quantified against beta-tubulin. Bars below the 
graphs represent the photoperiod (in hours). 
 

Analysis of the temporal expression pattern shows that FIT is expressed at higher levels in SD 

peaking 4 hours after dawn compared to LD where the peak appears in the dark phase (Figure 

43). Depending on the age of the seedlings the peak in LD is slightly shifted and appears in 9 

day old seedlings at the end of the light phase (data not shown).  

 

 
 
Figure 44. Analysis of the FIT expression pattern in the lhy/cca1 double mutant in short days and long 
days. FIT mRNA levels were quantified against beta-tubulin. Bars below the graph represent the 
photoperiod (in hours). 
 

FIT shows a diurnal expression pattern and therefore whether this expression pattern is altered 

in mutants in which the circadian system is distorted was tested. Analysis of the FIT mRNA 

expression in lhy/cca1 double mutants revealed that the LD peak is abolished (Figure 44). In 

SD a very strong peak can be observed which is shifted to the dark phase at 12 hours after 

dawn (Figure 44). 
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6.10. FIT expression in response to plant hormones 

 

In order to gain more insight into the physiological function of FIT and to be able to place it 

within a physiological pathway, the responses to FIT mRNA levels to various plant hormones 

and changing temperatures were tested. Therefore, 10 day old Arabidopsis seedlings were 

exposed to different plant hormones or different temperatures. 

 

 
Figure 45. Analysis of FIT expression in response to hormone treatments. A) 10 day old seedlings 
were treated with 50mM gibberellic acid (GA3), abscisic acid (ABA), auxin (IAA), methyljasmonate 
(MeJa) and the ethylene precursor 1-aminocyclopropan-1-carboxylic acid (ACC) for four hours. In 
parallel experiments seedlings were incubated for 4 hours at 4°C or 28°C. Control plants were 
incubated with water at room temperature. B) Hormone treatment experiment II. 10 day old 
Arabidopsis seedlings were incubated with 20mM and 100mM jasmonic acid (JA), 50mM sodium 
nitroprusside (SNP), 100mM abscisic acid (ABA),100mM and 500mM salicylic acid (SA)  for 24 
hours. FIT mRNA levels were quantified against beta-tubulin. 
 

The expression level of FIT did not change dramatically upon hormone treatment. The 

strongest effects were a 50% reduction, observed after a four hour treatment with auxin 

(Figure 45a) and a two-fold upregulation, observed by methyljasmonate treatments for four 

hours. In the 24 hour treatments only 100mM jasmonic acid caused a two-fold reduction. 

 

 

6.11. Isolation of fit-1, a loss of function mutation in FIT 

 

Loss-of-function mutants often provide insight into the physiological pathways the 

corresponding genes are involved in. A T-DNA knock out in the FIT gene (GABI-KAT line 

541G11) was found in the GABI-KAT collection and the disruption of the gene was 

confirmed by PCR on genomic DNA and by RT-PCR (Figure 46). 
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Figure 46. Confirmation of the presence of a T-DNA insertion in the FIT-gene. A) PCR on genomic 
DNA amplifying the FIT-gene with primers that flank the proposed insertion site of the T-DNA. The 
transgenic lines 3, 7, 9, 10 show no amplification indicating the insertion of the T-DNA is 
homozygous in these lines. Line 12 shows also no PCR product but the control PCR amplifying a 
1.7kb FIT-promoter fragment also failed, which might be due to poor DNA quality. B) Lines 3, 7, 9 
and 10 were analyzed by RT-PCR and only a very faint PCR product was detected which might be 
background or contamination of wild-type DNA or RNA. 
 

The fit-1 mutant contains a single-insertion of the T-DNA and this is inserted in the middle of 

the FIT gene, which contains no introns. Furthermore, RT-PCR analysis shows that the FIT 

transcript is dramatically reduced (Figure 46) indicating that fit-1 may retain some FIT RNA. 

The analysis of this line will be extended by performing PCR with primers annealing to the T-

DNA and the FIT gene, and by analyzing the structure of the FIT mRNA present in the fit-1 

line. 

 

 

6.12. Misexpression of FIT in the phloem companion cells results in early-

flowering under long days 

 

Overexpression of FIT by the 35S-promoter causes a slight acceleration of the floral 

transition, whereas expression of FIT from the SUC2-promoter, which results in high ectopic 

expression in the phloem, shows a clear early-flowering phenotype. FT is expressed in the 

phloem and misexpression of FIT where FT is expressed enhances the flowering phenotype 

compared to plants overexpressing FIT from the 35S-promoter. The fit-1 mutant plants seem 

to flower later, but this is dependent on the light conditions used (Figure 47).  
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Figure 47. Flowering-time analysis of fit-1, Col-0 and SUC2::FIT in LD conditions. B) Quantification 
of leaf numbers at bolting. 
 

The observed late-flowering phenotype is not consistent in all cabinets, which indicates that 

light fluence or quality is important and that under some conditions the loss of FIT-function is 

compensated for by other regulatory pathways. Growing the same plants in Percival grow 

banks under LD condition resulted in later flowering Col-0 plants and therefore the flowering 

phenotypes of fit-1 and SUC2::FIT were less strong (Figure 48). 

 

 

6.13. The early-flowering phenotype of SUC2::FIT is FT-dependent 

 

FIT has the strongest effect on flowering when expressed in the phloem companion cells 

where FT and CO are expressed. This suggested that FIT activity might depend on the activity 

of these characterized flowering-time genes. Therefore, the SUC2::FIT transgene was 

introduced into mutant plants impaired in the photoperiod pathway (gi-3, co-2 and ft-7) by 

transformation and the flowering-time behavior of homozygous double mutants was analyzed 

(Figure 48). 
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Figure 48. Analysis of SUC2::FIT in different genetic backgrounds under LD conditions. A) 
Flowering phenotypes of transgenic plants (fit-1, SUC2::FIT, 35S::FIT) in Columbia background 
compared to Col-0. B) Flowering phenotypes of SUC2::FIT in gi-3, co-2 and ft-7 (all in Ler) 
compared to gi-3, co-2 and ft-7. C) and D) show leaf numbers at the transition to flowering. E) 
Flowering-time phenotypes of SUC2::FIT in Ler, three independent T1-plants grown in LD compared 
to Ler. F) FT expression in SUC2::FIT transgenic lines. 
 

Under LD conditions 35S::FIT and SUC2::FIT accelerate the floral transition compared to 

wild-type and fit-1 (Figure 48a and c). However, under these growth conditions the effect of 

35S::FIT on flowering-time is weaker than in previous experiments. The late-flowering 

phenotype of gi-3 can be suppressed by misexpression of FIT. Also the late-flowering 

phenotypes of co-2 and ft-7 are rescued by SUC2::FIT but only to a much lesser extent than 

gi-3 (Figure 48b and d). 
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Figure 49. Analysis of SUC2::FIT in different genetic backgrounds under SD conditions. A) 
Flowering phenotypes of transgenic plants ( SUC2::FIT, 35S::FIT) in Columbia background 
compared to Col-0. C) Flowering phenotypes of SUC2::FIT in gi-3 (in Ler) compared to gi-3 and Ler 
B) and D) Quantification of flowering-time by counting the number of leaves at the transition to 
flowering.  
 

35S::FIT is also early-flowering in SD (Figure 49a). SUC2::FIT in Landsberg erecta 

background is early-flowering both in LD and SD compared to Landsberg erecta and the 

early-flowering phenotype correlates with higher levels of FT mRNA (Figure 48 e and f; 

Figure 49a). Also in SD the late-flowering phenotype of gi-3 is suppressed by SUC2::FIT 

(Figure 49c). However, in SD the late-flowering phenotypes of co-2 and ft-7 mutants are not 

affected by SUC2::FIT (data not shown). 

 

 

6.14. FIT mRNA is induced by UV-light and expressed in vascular tissue 

 

Analysis of publicly available microarray data (www.genevestigator.ethz.ch) suggests that 

FIT is induced by UV-B and UV-C light. The response of FIT to UV-B and shorter 

wavelengths of light (UV-C) was confirmed by another microarray study conducted by Dr. 
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Roman Ulm and colleagues from the University of Freiburg, Germany (Dr. R. Ulm, personal 

communication). In order to confirm these results 12 day old Arabidopsis seedlings were 

treated for 30 minutes with UV-B light and RNA extracted prior and after UV-B treatment. 

The expression levels of FIT and FT were then compared in treated and non-treated plants 

(Figure 49). 

 
Figure 50. FIT responds to UV-B light. A) Expression analysis of FIT in response to UV-B. Plants 
were grown for 12 days in LD and a UV-B pulse was applied at ZT6 for 30 minutes (between 0 and 30 
minutes in the graph). The 0 minutes value was before the pulse and the 30 minutes immediately after 
the pulse. 60 and 90 minute values are half an hour and one hour after the pulse. Bar represents the 
time of the UV-pulse. B) Expression analysis of FT. Same conditions as described for A). C.) UV-B 
treatment of pFIT::GUS plants. GUS expression is only detectable after UV-B treatment in the 
vasculature. 

 

UV-treatments confirmed the microarray data, demonstrating that FIT is upregulated in 

response to UV-light. In response to a 30-minute pulse of UV-B a 10-fold increase is detected 

(Figure 50a). For FT the expression analysis was less conclusive because it was difficult to 

detect FT by quantitative RT-PCR (qRT-PCR) due to primer dimer formation. Nevertheless, 

there was a tendency for elevated FT transcript levels after UV treatment (Figure 50b). 
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To examine the spatial expression pattern of FIT, transgenic plants expressing the GUS gene 

under the control of the FIT promoter were constructed. Under normal growth conditions 

GUS expression was almost undetectable. However, treatment of the pFIT::GUS plants with 

UV-B light caused GUS expression in the vascular tissue, confirming our genetic and 

molecular data (Figure 50c).  

 

 

6.15. UV light can accelerate the floral transition in Arabidopsis 

 

Because FIT is expressed in the vascular tissue in response to UV-light and can induce FT 

expression, whether UV-light can induce early-flowering in Arabidopsis was examined. The 

experiment was carried out under short days (10 hours light, 14 hours darkness) in order to 

avoid a strong influence of the photoperiod pathway. 

 

 
 

Figure 51. Flowering-time experiment in response to UV-light. A) Phenotypes observed after UV-B 
(0,5W/m2) treatment of Ler and ft-7. C) Flowering-time analysis in response to UV-B/C. B) and D) 
Quantification of flowering-time by counting the number of leaves at the transition to flowering. (In 
both experiments the comparison of Ler treated to non-treated plants is significant, student’s t-test 
P<<0.05). 
 

The experiment was carried out by treating wild-type and ft-7 plants every second day with 

UV-B for 30 minutes. When stress symptoms (yellowish leaves) were observed, the treatment 
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was stopped for a few days. The results from this experiment indicate that flowering can be 

induced by treating plants with UV-B and that this signaling pathway requires the activity of 

FT (Figure 51a and b). Additionally, we analyzed whether flowering is also accelerated by a 

mixture of UV-B and UV-C light. Since UV-C light causes sever damage, plants were 

irradiated daily for 5-10 minutes with a mixture of UV-B and UV-C light. Also in response to 

this stress, wild-type plants responded by acceleration of flowering. Plants carrying a 

mutation in the FT gene (ft-7) did not respond to UV-B/C irradiation (Figure 51c). 

 

 

6.16. Targeted misexpression of Arabidopsis transcription factors 

demonstrates that AP2-like proteins influence the floral transition 

when expressed in vascular tissue 

 
CO and FT, two of the major regulators of the floral transition, are both expressed in the 

phloem companion cells and mutations in these genes can be rescued by misexpressing them 

in the phloem from the SUC2 promoter. In order to find other regulators of flowering-time 

around 1.000 transcription factor genes from the REGIA transcription factor library were 

misexpressed from the SUC2 promoter (work from Dr. Lionel Gissot). After transformation 

several lines were identified showing abnormal flowering-time phenotypes. Interestingly, 

several AP2-like genes exert flowering-time abnormalities when expressed in the phloem. 

Three AP2-like genes are early-flowering when mis-expressed in the phloem, one of them 

being FIT, which was an independent confirmation of the results described in this chapter. 

Four AP2-like genes exhibit a late-flowering phenotype upon misexpression.  

To find out whether other AP2-like transcription factors can bind to the FT promoter all 

known AP2-like genes having an effect on flowering such as TOE1, 2, and 3, SMZ, SNZ and 

all genes identified as causing late or early-flowering in the above mentioned screen, were 

tested in yeast by one-hybrid screening. 
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Figure 52. Systematic yeast-one hybrid analysis of the interaction of AP2-like proteins having an 
effect on the floral transition using the 300-bp FT promoter fragment. The upper panel shows yeast 
growth on SD-medium lacking tryptophan. The lower panel shows yeast growing on SD-medium 
lacking histidine and tryptophan supplemented with 30mM 3-AT. 
 

Two AP2-like proteins (At3g23220, At1g71450 and FIT) showed strong growth induction by 

yeast-one-hybrid screening (Figure 52).  The induction by SNZ was weak and yeast growth 

was only visible after ten days incubation at 30°C. Phylogenetic analysis of all AP2 proteins 

showed that one of the two AP2-like proteins causing late-flowering, At3g23220, is closely 

related to FIT (not shown) indicating that these two proteins could compete for the same cis 

element in the FT promoter. These results point towards the existence of a regulatory node in 

the FT promoter where positively or negatively acting AP2-like proteins bind to modulate the 

expression of FT in response to environmental stimuli. This would allow a fine-tuning of the 

floral transition at the level of floral integration. 

Various studies have shown that microRNA172 targets mRNAs of AP2 and AP2-like genes 

and interferes with their expression by translational inhibition (Aukerman and Sakai, 2003; 

Schmid et al., 2003; Chen, 2004a). The model Aukerman and Sakai propose is that early in 

development repressors of flowering such as TOE1, TOE2 and TOE3 are expressed. Later in 

development miR172 is expressed and inhibits TOE1, TOE2 and TOE3 allowing the 

transition to flowering to occur (Aukerman and Sakai, 2003). FIT acts as a floral activator and 

is probably not targeted by miR172 since it can induce flowering at the time where miR172 is 

expressed. Moreover, analysis of the microRNA-binding site reveals seven mismatches which 

probably impair microRNA-association and translational inhibition (Figure 53). 
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Figure 53. Alignment of miR172 and the microRNA-
binding sites in AP2 and FIT. A) Alignment of 
miR172a and miR172b showing a difference in one 
nucleotide. B) Sequence alignment of the miR-
binding site in AP2 and FIT showing seven 
mismatches. 
 

 

 

 

Analysis of publicly available microarray data (www.genevestigator.ethz.ch) of FIT, 

At3g23220 and At1g71450 which can bind to the FT promoter and affect flowering-time, 

shows that their mRNAs are induced by salt stress in root tissue (not shown). This effect is 

probably unrelated to FT. The array data indicate that FIT is most highly expressed in 

senescent leaves (not shown), which is in good agreement with the observation that FIT is 

induced in leaves after UV-induction since UV-light is known to evoke senescence-associated 

symptoms (Brosche and Strid, 2003; Ulm et al., 2004). Apart from expression in roots upon 

salt stress, At3g23220 is induced by treatments with cycloheximide and Botrytis cinerea 

(Genevestigator; data not shown). FIT is the only gene among these three that is induced by 

UV-light and acts by upregulation of FT expression. 

 

 

6.17. Discussion 

 

FIT interacts with the FT promoter in yeast, in vitro and in vivo 

FIT was isolated in a yeast-one hybrid screen and found to interact with a 300 base pair 

fragment of the promoter of the flowering-time gene FT. The interaction initially identified in 

yeast with a clone present in the library was verified in yeast using a clone expressing the full 

length protein (Figure 32). Independent methods were used to confirm the interaction 

observed in yeast . In vitro gelshift assays were carried out using recombinant HIS:FIT 

protein (Figure 37; Figure 38a and b). The shifted band appeared very weak, which might be 

due to small amounts of active protein being present or to improper buffer conditions. 

Because of the formation of insoluble inclusion bodies HIS:FIT could not be purified under 

native conditions, which might have improved the in vitro gelshifts. Using smaller FT 

promoter fragments, the interaction was narrowed down to a 60bp region and competition 

experiments indicated a specific interaction (Figure 38b). More competition experiments 
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using mutant fragments are required to confirm these results. In order to verify the interaction 

observed in yeast and in vitro, 35S::HA:FIT plants were used to test the interaction in vivo by 

chromatin immunoprecipitation (ChIP). Chromatin from wild-type and 35S::HA:FIT was 

prepared and precipitated with an HA antibody. PCR reactions flanking the FIT binding site 

confirmed that the interaction occurs in vivo since we obtained amplification products only 

with 35S::HA:FIT chromatin when the HA-antibody was used (Figure 41b). In all negative 

controls no amplification was observed. Due to low resolution of ChIP-PCR reactions because 

of the length of DNA fragments precipitated, this assay is less well suited to determine the 

exact binding element. The fact that chromatin is efficiently precipitated from regions 

upstream of the transcriptional start site suggests a second binding site for FIT in the first 

intron of FT. Recently it was shown, that FLC binds in the first intron of FT to suppress its 

expression (Dr. F. Turck, unpublished). 

 

FIT induces FT in a Luciferase-based promoter assay 

To identify the function of the interaction of FIT with the FT promoter, an in vivo Luciferase 

(LUC)-based promoter assay was carried out. Transient bombardments with 35S::FIT, and  

2.7 kb FT-Luc revealed that FIT can up-regulate FT (Figure 39). The next closest homolog, 

named FTL1, was neither able to induce FT expression (Figure 39) nor did misexpression in 

the phloem by the SUC2-promoter result in early-flowering. This indicates that the effect of 

FIT on FT is specific. To narrow down the FIT responsive element in the FT promoter, 

deletions from the 5’ towards the 3’ end of the promoter were used (constructed by Dr. Aidyn 

Mouradov). Analysis of the LUC activation of these deletion fragments revealed that the FIT 

response element is located in the middle of the 300bp fragment used for one-hybrid 

screening (Figure 40). These results are consistent with the in vitro gelshifts (Figure 38). 

Figure 54 summarizes the findings from yeast, in vitro and the LUC-assay. 
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Figure 54. Schematic overview of the proximal FT promoter showing the distribution of putative 
AP2-binding sites. The blue bar shows the fragment with which FIT interacted in gelshifts and in 
yeast. The green bar represents the region where FIT was able to activate LUC-expression in the 
transient promoter assay. The red bar represents the FT-3 fragment used for in vitro gelshifts. 
 

In summary, these results indicate that FIT binds to a region in the FT promoter with no 

known AP2-like binding element. The 300bp fragment used for yeast-one-hybrid screening 

contains a putative drought response element (DRE) which could be targeted by FIT. Also the 

LUC-experiment is consistent with the involvement of this element but not the gelshift. Since 

the intensity of the shifted band using the FT-3 oligonucleotide was very weak and 

competition experiments with mutant oligonucleotides were not yet performed, the band shift 

experiments might still be misleading. Future experiments will be directed to answer the 

question whether FIT interacts with the putative DRE or binds to a novel element. 

 

FIT homodimerizes, a novel feature of AP2-like proteins? 

The flowering-time gene CO causes upregulation of FT expression by an unknown 

mechanism. It was tested by in vivo FRET analysis whether CO can interact with FIT 

mediating an interaction between CO and DNA. Such an interaction was not detected but 

testing the interaction of FIT with itself revealed that it is able to homodimerize (Figure 42). 

So far homodimerization of AP2-like protein such as FIT has not been described, and the 

functional significance of this homodimerization is still not clear. The observed interaction 

might not take place under natural conditions and occurs only in the artificial testing 

conditions. Nonetheless, homo- or heterodimerization might be important for the function of 

AP2-like proteins in general. This could also be a feature of EREBP-proteins like FIT, since 

these have only one AP2-domain. Homo- or heterodimerization would then yield a two AP2-

domain complex which would increase the complexity of the interaction with DNA and 
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potentially generate enhanced specificity. This effect might help to explain their roles in 

various developmental and stress related pathways.  

 

FIT mRNA shows a circadian expression pattern which is shifted in lhy/cca1 mutant 

plants 

Analysis of the temporal expression pattern of FIT revealed that its mRNA shows a circadian 

expression pattern. In SD FIT mRNA peaks around 4 hours after dawn, compared to LD 

where the peak occurs at the beginning of the night (Figure 39a and b). Whether FIT is 

regulated by the circadian clock of the plant was tested by analyzing the expression pattern in 

lhy/cca1 mutants. These plants show severely altered clock function and clock gene 

expression peaks at an earlier phase in light/dark cycles (Alabadi et al., 2001; Mizoguchi et 

al., 2002). In lhy/cca1 mutant plants a peak of FIT expression is almost absent in LD whereas 

in SD the peak is shifted towards the night at 12 hours after dawn (Figure 40). Moreover, the 

expression in SD is significantly higher, indicating that LHY and CCA1 might regulate FIT 

expression by repression. These results suggest that FIT is a circadian clock regulated gene 

whose expression is affected by mutations in lhy/cca1. 

The natural expression pattern of FIT does not resemble the expression pattern of a gene 

directly involved in FT regulation. The expression of FIT is low in LD and the major peak 

appears in SD at a time at which FT is not expressed. This expression pattern suggests that 

FIT performs functions other than FT regulation. However, in response to UV stress the 

expression of FIT is ectopically induced resulting in FT induction. This is detected in 

response to a 30-minute UV-pulse given to wild-type plants grown in LD. UV-treatment led 

to a ten-fold increase of FIT expression in LD at a time when the gene is naturally expressed 

at low levels (Figure 49). 

 

Analysis of transgenic plants reveals a role for FIT in flowering-time control 

Analysis of fit-1 knock out plants indicated that they might be delayed in flowering under LD 

conditions (Figure 47). Overexpression of FIT by the 35S promoter caused acceleration of 

flowering both under short day (data not shown) and long day conditions (Figure 48). The 

strongest effect is observed when FIT is ectopically expressed in the phloem companion cells 

by the SUC2 promoter. SUC2::FIT plants also flower early in short days (not shown) and 

long days (Figures 47 and 48). The SUC2::FIT transgene was also introduced in mutants 

impaired in the photoperiod pathway. The gi-3 mutant can be rescued by SUC2::FIT whereas 

the extent of complementation is less pronounced in co-2 and ft-7 mutant plants. This 
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indicates that FIT functions in addition to the photoperiod pathway and a basal activity of CO 

is necessary. Since the co mutation is only rescued to a small extent it is possible that the 

presence of CO changes the chromatin structure of the FT promoter allowing an access of 

alternative factors to modulate FT expression. The fact that also ft mutants can be partially 

rescued by SUC2::FIT indicates that FIT can modulate the expression of other flowering-time 

genes (Figure 48). Since high UV-levels are mostly perceived in summer days where the 

photoperiod is long, might explain that additional factors need an active photoperiod pathway 

to accelerate the floral transition. 

 

Analysis of factors to which FIT responds in wild-type plants 

Transient experiments treating Arabidopsis seedlings with different plant hormones and 

exposing them to different temperatures were carried out to identify conditions under which 

FIT mRNA expression is induced. Knowledge of these conditions could place FIT within 

physiological pathways. Treating Arabidopsis seedlings for four hours with different 

hormones revealed a 1.5-fold induction by ABA, a 2-fold induction with methyljasmonate 

and a 2-fold decrease by treating with auxin (Figure 45a). All these effects are very mild and 

do not allow FIT to be placed within one of these hormone pathways. However, the effects of 

ABA and methyljasmonate indicate a possible function in stress signaling. 

Analysis of publicly available microarray experiments (Zimmermann et al., 2004; 

Zimmermann et al., 2005; www.genevestigator.ethz.ch) indicated that FIT might be induced 

by UV-B and UV-C light. Microarray experiments of hy5 mutants and wild-type in response 

to UV-light (Ulm et al., 2004) have shown that FIT expression is HY5 independent and 

induced by UV-B and UV-C light (Dr. Roman Ulm, University of Freiburg, personal 

communication). These results place FIT in the stress signaling pathway rather than being 

involved in a UV-B dependent photomorphogenic response. Treatment of Arabidopsis 

seedlings with a 30 minute UV-B pulse elicited a 10-fold increase in FIT expression 30 

minutes after the pulse (Figure 50a). The upregulation of FT in these conditions is less clear, 

but a trend towards elevated expression levels after the UV-pulse was observed (Figure 50b). 

Analysis of FIT promoter-GUS fusion lines showed almost no expression at various 

developmental stages. Treatment of the pFIT::GUS lines with UV-B light showed that FIT is 

induced in vascular tissue (Figure 50c). These results confirm the misexpression results where 

FIT shows the strongest flowering-time phenotypes when ectopically overexpressed in 

vascular tissue (Figures 47-49). 
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Exposure of plants to UV-light accelerates the floral transition 

To investigate the effect of UV-light on the floral transition, Arabidopsis plants were grown 

under SD conditions of ten hours day and 14 hours night. 14 days after germination plants 

were treated with 30 minute UV-B pulses every two to three days. The frequency of these 

treatments was dependent on obvious stress symptoms such as the development of chlorotic 

leaves. The aim was to avoid these symptoms to allow proper development. In our 

experiment, wild-type plants responded to these UV-B pulses by acceleration of the floral 

transition (Figure 51). However, not all plants responded similarly to the UV-pulses. There 

was some overlap between the latest flowering plants treated with UV-light and the earliest 

non-treated plants (student’s T-test P<<0.05). Nevertheless, measuring the average leaf 

number produced at the transition to flowering clearly showed a significant difference 

between the average leaf numbers of treated and non-treated plants. Homozygous ft mutant 

plants do not respond to the UV-stimulus which indicates that the UV-signal evoking 

flowering requires the activity of FT. Preliminary results show that treatment of plants with a 

combination of UV-B/C is also able to accelerate the floral transition (Figure 51c). Current 

activities aim to identify optimal conditions for the acceleration of the floral transition in 

response to UV-B and UV-C or a combination of both wavelengths. Furthermore, mutants in 

FT, FIT and CO are being analyzed to place these genes within a genetic network of genes 

controlling the floral transition in response to UV-light and/or abiotic stress. 

 

Other AP2-proteins causing late flowering can bind to the FT promoter in yeast 

Analysis of AP2-like proteins that cause alteration of the flowering-time when expressed in 

the vascular tissue revealed that some of these proteins can bind to the FT promoter (Figure 

52). Because most of these genes are expressed in response to different environmental stimuli, 

suggests the existence of a regulatory node in the FT promoter. In response to certain 

environmental cues positively or negatively acting AP2-proteins are expressed which can 

influence the floral transition at the level of floral integration. 
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6.18. Conclusion 

 

The present data suggest the existence of a fifth flowering-time pathway that regulates 

flowering in reponse to stress signals. FIT is not epistatic to CO suggesting that this new 

flowering-time pathway acts together with or involves the photoperiod pathway. Under LD 

conditions where the photoperiodic pathway induces the transition to flowering, the stress 

pathway could be activated by UV-light, high-light or drought stress, leading to an 

acceleration of flowering induction (Figure 55).  

 
 

Figure 55. Five flowering-time pathways control the floral transition in Arabidopsis. 

 

Several AP2-like transcription factors were identified which repress or activate the floral 

transition when overexpressed or ectopically expressed in the phloem. Among those we 

presented evidence that FIT can accelerate the floral transition by direct activation of FT, 

probably in response to UV-light or maybe also other stress factors. Current research focuses 

on the determination of the FIT-binding site in the FT promoter and analysis whether other 

AP2-like proteins interact with the same motif. Furthermore, the response of FIT to various 

UV-light treatments in wild-type and various mutant backgrounds will be analyzed. 
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7. General conclusion and perspectives 
 
 

The transition to flowering is one of the most important changes during plant development. 

Several pathways are known to be involved in mediating this transition. Among them, the 

photoperiod pathway mainly involves the flowering-time genes GI, CO and FT (Boss et al., 

2004; Searle and Coupland, 2004). Activation of CO results in transcription of FT (Samach et 

al., 2000). CO is transcriptionally regulated by the circadian clock of the plant (Suarez-Lopez 

et al., 2001) and post-translationally by the 26S-proteasome in response to different light 

qualities (Valverde et al., 2004). 

 

Identification of proteins involved in recruiting CO to the FT promoter 

The main aim of the thesis was the investigation of proteins interacting with CO and to 

identify potential candidates that are involved in mediating the transcriptional regulation of 

FT. Since CO acts as a transcription factor but does not contain any known DNA-binding 

motif we searched for proteins mediating such interaction with DNA. 

 

We present evidence that CO interacts with all three subunits of the heterotrimeric HAP 

complex. The interaction with the HAP3 and HAP5 subunits are direct and were confirmed in 

yeast, in vitro and in vivo. The interaction with the HAP2 subunit seems to be indirect but 

mutations in CO that result in late-flowering abolished an interaction with HAP2. Sequence 

analysis comparing HAP2 proteins and CCT-domain proteins revealed that both proteins 

share a common domain named NF-YA2. Mutations affecting highly conserved residues in 

this NF-YA2 domain result in loss-of-function both in CCT-domain and in HAP2 proteins. 

Testing several isoforms of HAP2, HAP3 and HAP5 in a systematic yeast-two-hybrid screen 

with the CCT-domains of CO and COL15 unraveled several positive interactions. These 

results indicate that a general function of the CCT-domain is to interact with the HAP 

complex. In addition, we found that overexpression of FLAG:HAP3a by the 35S-promoter 

results in a delay of flowering that correlates with low levels of FT mRNA. Suggesting the 

FLAG-epitope creates a dominant-negative effect we can not explain whether CO becomes 

sequestered into non-flowering promoting complexes because of a disruption of the formation 

of the HAP complex or because the HAP-complex is not involved in the transcriptional 

regulation of FT. However, the flowering-time data suggest that CO and FLAG:HAP3a 

interact in vivo. Mutations affecting highly conserved residues in the domain of homology 
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result in late-flowering and cause a disruption of the interaction with HAP2, which suggests 

that HAP proteins are involved in flowering-time control. 

 

Arabidopsis MtN19, a protein of unknown function, can interact with CO and with the 

promoter of FT unraveling a potential mechanism as of how CO interacts with DNA. It has 

been shown that MtN19-like genes are expressed in response to various stresses mainly 

involving the production of reactive oxygen species. Transgenic plants expressing a dsRNAi 

construct against MtN19 show extreme flowering-time phenotypes. In some of the transgenic 

plants, the endogenous MtN19 mRNA level is higher compared to wild-type and those plants 

flower extremely early. The late-flowering MtN19 dsRNAi plants (MtL) can not be rescued by 

overexpression of CO suggesting that functional MtN19 protein is lacking in these lines. This 

strongly indicates that MtN19 is involved in the control of the floral transition and functions 

by interacting with CO and the promoter of FT.  

 

Isolation of FIDGET, an APETALA2-like protein that interacts with the promoter of 

FT. 

Using yeast-one-hybrid screening we isolated FIT, a protein that binds to the promoter of FT. 

FIT does not interact with CO indicating that it acts as a CO-independent regulator of FT. 

Misexpression of FIT in the phloem by the SUC2 promoter, the place where FT is expressed, 

resulted in early flowering. Analysis of the SUC2::FIT transgene in various flowering-time 

mutants indicates that FIT requires an active photoperiod pathway to fulfill its function. This 

suggests that FIT acts independently of CO but requires active CO to upregulate FT. 

Furthermore, we demonstrate that UV-light can accelerate the floral transition and that FIT is 

induced in response to UV in the phloem probably triggering the expression of FT. Analysis 

of AP2-like proteins that delayed the floral transition when expressed in the phloem 

demonstrated that these proteins can interact with the FT promoter in yeast. This suggests the 

existence of a regulatory node in the FT promoter where repressors and activators can bind to 

modulate the expression of FT. Future research will focus on the determination of the exact 

AP2-binding site in the FT promoter. Moreover, cues that elicit the expression of these 

repressive AP2-like genes will be analyzed whether they negatively influence the transition to 

flowering.  
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Identification of proteins involved in the post-translational regulation of CO 

In addition to the HAP complex, FIT and MtN19, I identified several other proteins that 

appear to be involved in the regulation of CO function. Here we describe that the degradation 

of CO most likely involves the E3-ubiquitin ligase COP1. We present evidence that both CO 

and COP1 co-localize in sub-nuclear speckles and we detected protein-protein interaction by 

FRET in vivo within these speckles. This sheds light on the degradation process which was 

previously unknown (sections 9.1 and 9.2). Another candidate that might be involved in the 

post-translational regulation of CO is a small ZZ-type zinc finger transcription factor named 

PHD. A close homolog of PHD is the ZZ-type zinc finger protein HRB1 that is involved in 

red and blue light signaling (Kang et al., 2005). Here we presented evidence that PHD exists 

in two splice variants and that CO interacts with PHD in yeast and in vivo. Furthermore, we 

have shown that the interaction appears only with the longer splice variant indicating that the 

interaction is via the carboxy terminal part of PHD. Overexpression of PHD resulted in 

elongation of the hypocotyl under red-light. PHD was also found to interact with GI which is 

involved in PHYB-mediated red-light signaling and gi mutants exhibit long hypocotyls in red-

light. PHD is perhaps a negative regulator of red-light signaling. The ZZ-type zinc finger 

domain is closely related to the PHD-domain and RING-finger domain. It is known that 

RING-finger proteins can act as E3-ligases mediating the degradation of target proteins 

(Imaizumi et al., 2003; Dharmasiri et al., 2005a; Dharmasiri et al., 2005b; Imaizumi et al., 

2005; Kepinski and Leyser, 2005). Since a close homolog of PHD is involved in red and blue 

signaling and the stability of CO protein is dependent on the light quality suggests that one of 

the functions of PHD might be modulating stabilization/degradation of CO (sections 9.6-

9.10.). 

It is known that CO protein can be phosphorylated and preliminary data suggest that the 

phosphorylated form of CO is the active form (Dr. Wim Soppe, unpublished). We isolated a 

nuclear PP2C phosphatase and have shown that CO and PP2C interact in yeast and in vivo 

(sections 9.3. and 9.4.). Transgenic plants expressing 35S::PP2C do not show a flowering-

time phenotype in our test conditions (data not shown). Comparing plants expressing 

35S::PP2C 35S::CO with plants expressing 35S::CO, indicated that the double mutants 

flower later compared to plants expressing 35S::CO (Section 9.5.). This could be a dosage 

effect since the F1-cross was analyzed. Future experiments are directed to unravel whether 

plants expressing 35S::PP2C 35S::CO are later flowering and whether this correlates with the 

amount of non-phosphorylated CO protein. Furthermore, we aim to analyze the stability of the 

non-phosphorylated form of CO. 
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Summary of functions of identified proteins interacting with CO 

We present evidence that a variety of proteins including proteins of so far unknown function 

interact with CO. Figure 56 shows the identified candidates organized into their putative 

functions. 

 

 
Figure 56. Schematic drawing of the identified proteins interacting with CO- and the FT promoter. 
COR: CO-responsive element; P: phosphate-group; Ub: ubiquitin. 
 

The nuclear PP2C phosphatase interacts with CO probably to remove phosphate groups and 

maintains CO in an unphosphorylated state. This interaction is likely to take place in the early 

light phase keeping CO in an inactive state (Figure 56.1) since later in the day CO can be 

phosphorylated (Dr. Wim Soppe, unpublished). PHD might also interact with CO during the 

light phase, probably in response to red and/or blue light but the function of this interaction is 

unknown (Figure 56.2). CO can interact with MtN19 which is able to bind to the FT 

promoter. It is possible that CO binds together with MtN19 to a so far unidentified CO-

response element in the FT promoter (Figure 56.3). In addition CO might interact via its CCT-

domain with the heterotrimeric HAP complex and this interaction induces the expression of 

FT at the end of the light phase in LD. In the absence of light CO interacts with the E3-

ubiquitin-ligase COP1 that initiates ubiquitination of CO followed by the degradation by the 
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26S-proteasome. Finally, FIT an AP2-like protein is able to induce the expression of FT by 

binding to its promoter in response to UV-light (Figure 56.5). 
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9. Appendix 

 
The results that are shown in this chapter were obtained by yeast-two-hybrid screening with 

domains of CO. In the case of COP1 the interaction was directly tested, since cop1-mutant 

plants show early flowering in LD and SD which might be due to a failure in the degradation 

of CO protein. 

 

9.1 . CONSTANS and COP1 co-localize in the nucleus in sub-nuclear   

 speckles 
 

 
 

Figure 57. Co-localization of 35S::YFP:CO and 35S::CFP:COP1 and  35S::dsRED. 

 

 

The bombardment revealed that both proteins co-localize in sub-nuclear speckles. 

35S::dsRED was co-transformed to highlight the transformed cell. CO and COP1 co-localize 

in big nuclear speckles, as indicated by the arrows. In addition, some accumulation of 

fluorescent CO and COP1 is found to be located at the plasma membrane. The function of 

these plasma-membrane located aggregations is unknown. 
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9.2 . CONSTANS and COP1 interact in vivo 

 

 
 

Figure 58. Acceptor-photobleaching experiment using 35S::YFP:CO and 35S::CFP:COP1. 
CFP:COP1 does not interact with YFP (A and B). YFP:CO interacts with CFP:COP1 as seen 
by an increase in CFP-fluorescence after YFP-photobleaching (C and D). 
Quantification of the FRET-efficiencies in the whole nucleus indicated a weak interaction but 
analysis of sub-nuclear speckles revealed a strong interaction between CO and COP1 (E). 
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9.3 . CONSTANS and PP2C interact in yeast 
 

 
 

Figure 59. PP2C confirmation tests in yeast. A nuclear PP2C phosphatase was isolated by 
yeast-two-hybrid screening interacting with the CCT-domain of CO. A) selection of 
transformed yeast on HIS-lacking media in yeast strain AH109. The interaction between CO 
and PP2C is weak, because it is inhibited by 15mM 3-AT. B) Liquid β-Galactosidase assay 
(yeast strain MAV 203).  
 
 

9.4 . CONSTANS and PP2C interact in vivo 

 
 

Figure 60. A) Co-bombardment of 35S::YFP-CO and 35S::CFP-PP2C. CO is clearly 
localized in the nucleus, whereas the PP2C protein is in the cytoplasm and in the nucleus. B) 
Acceptor photobleaching experiment to determine the FRET efficiency as a measure of the 
strength of the interaction. An increase of CFP-PP2C fluorescence after photobleaching was 
observed. C) FRET efficiencies of interactions of CO with the PP2C phosphatase. 
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9.5 . Overexpression of PP2C by the 35S-promoter slightly delays   

 flowering of 35S::CO plants 
 

 
Figure 61. Crossing 35S::PP2C to 35S::CO double-heterozygote F1 plants show a small 
delay in the floral transition compared to homozygote 35S::CO plants (A and B). 
 

Overexpression of PP2C by the 35S-promoter does not significantly alter flowering time in 

long day conditions. This delay could be due to lower CO expression in F1-crosses because of 

heterozygosity of the transgene. Future experiments will reveal whether CO protein is less 

phosphorylated in these lines and whether this affects the floral transition or the degradation 

of CO. 

 

9.6 . CO and PHD interact in yeast 

 
Figure 62. Reconfirmation of the CO-PHD-finger interaction tested in yeast. The left panel 
shows the control experiment testing the interaction of AD:PHD with the GAL4-binding 
domain (BD). The right panel shows the interaction of AD:PHD with BD:COBB. PHD 
interacts with the B-boxes of CONSTANS very strongly, up to 15mM 3-AT.  
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9.7 . The PHD-finger exists in two isoforms, PHD and PHDS, which are 

 produced by alternative splicing 
 

 
 

Figure 63. Analysis of the amino acid sequences revealed that the isolated PHD-finger 
belongs to a small family of ZZ-domain proteins. BLAST search revealed that the PHD-finger 
exists in two splice variants. 
 

 
 

Figure 64. Nucleotide alignment of the small variant PHDS and PHD identifies mis-splicing 
at position 258 resulting in precocious termination. 
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Figure 65. Amino acid alignment revealed that PHD and PHDS mainly differ in their carboxy 
terminus which is deleted in PHDS. Yellow: conserved residues; green: similar residues. 
 

 
 

Figure 66. Analysis of the amino acid sequences of all ZZ-domain proteins encoded in the 
Arabidopsis genome revealed that both PHD and PHDS contain the ZZ-domain (red box). 
Furthermore the proteins differ in their carboxy terminus. Color code: Yellow: conserved 
residues; blue: identical residues; green: similar residues. 
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9.8 . CO interacts with PHD in vivo but not with PHDS indicating that 

the interaction is via the carboxy terminus of PHD 
 

 

 
 

Figure 67. In vivo FRET analysis between CO and PHD and CO and PHDS. A+B) FRET 
analysis between PHD and CO. C+D) FRET analysis between PHDS and CO. B+D) FRET 
efficiency maps displayed in false color images. E) Quantification of FRET efficiencies 
acquired in different independent experiments.  
 

Interestingly, CO only interacts with PHD and not with PHDS indicating that the interaction 

is with the carboxy terminus of PHD. The carboxy termini of the ZZ-protein family show 

more divergence than the amino termini, this suggests that the interaction of CO and PHD is 

specific.  
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9.9 . PHD can mediate an interaction between CO and GI in vivo 
 

PHD was also isolated as an interactor of GI (Hugo Konijn, unpublished). To answer the 

question whether CO and GI could be present in a higher order protein complex mediated by 

the small PHD-protein, in vivo FRET experiments were carried out. 

 

 
 

 

Figure 68. A) Quantification of several FRET experiments are shown. B) FRET experiment 
of a nucleus transformed with 35S::YFP:GI, 35S::CFP:CO and 35S::PHD.  
 

FRET analysis of the PHD-finger protein PHD with CO and GI revealed that PHD is able to 

interact both with CO and GI. No FRET was observed between CO and GI indicating that 

these two proteins can not directly interact with each other. The co-transformation of 

35S::PHD revealed indirect FRET signals between CO and GI. These experiments indicate 

that PHD can function as a molecular linker mediating an interaction between CO and GI. 

The physiological consequence of this interaction is unknown.  
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9.10.  Overexpression of PHD causes hypocotyl-elongation in red light  

 conditions 
 

The effect of different wavelengths of light on the elongation of the hypocotyl was analyzed. 

Since GI acts in the PHYB pathway and also shows a hypocotyl phenotype in red light we 

analyzed whether transgenic PHD-lines show a phenotype in these conditions. Furthermore, 

from one member of the ZZ-domain family, HRB1, it is known that it functions in red- and 

blue-light signaling (Kang et al., 2005). Since GI has a function in red light and its known that 

CO protein is degraded in red light we analyzed what effect this putative interactor has. No 

effect was observed in blue, far-red and white light.  

 
 

Figure 69. Hypocotyl length measurements of different mutants A)-C) Quantification of 
hypocotyl lengths (in collaboration with Hugo Konijn). 
 
Analysis of plants overexpressing PHD revealed that these lines have an elongated hypocotyl 

when grown under red light. This phenotype is similar to the gi-mutant. However, a knock out 

of PHD, phd, does not show a phenotype (experiment in cooperation with Hugo Konijn). 
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Figure 70. Analysis of red-light responses depicted as fluence response curves. PHD shows 
the strongest effect in 25% red light (A). The effects of GI in the same light conditions (B) 
(together with Hugo Konijn). 
 

Apart from this phenotype PHD transgenic plants did not exhibit any flowering time 

phenotype in the conditions analyzed so far. Recent experiments focus on the analysis of 

double and triple mutants (crosses to gi, co, phyB, phyA, 35S::CO, 35S::GI) in light signaling 

and flowering time control. Furthermore the stability of the PHD protein in those conditions 

will be analyzed using a PHD-specific antibody. 
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9.11. Overexpression of HAP3a causes late-flowering and this correlates 

with a reduction in FT transcript levels 

 

 

 
 

Figure 71. A) Flowering-time phenotypes of four independent homozygote 
35S::FLAG:HAP3a transgenic plants in comparison to wild-type grown in LD. B) 
Quantification of flowering-time by counting the numbers of leaves produced at bolting in 
LD. C) Flowering-time in SD. D) Western blot using α-FLAG antibody. Lane labeled with 1-
4 show protein extracts from transgenic 35S::FLAG:HAP3a lines. The late flowering 
phenotype correlates with FLAG:HAP3a protein levels. E) Quantification of protein levels 
compared to the control lane (background detected by the secondary antibody). (Figure A-E 
from Dr. Franziska Turck). 
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9.12. CO partially suppresses the late flowering phenotype of 

35S::FLAG:HAP3a 

 

 
 

 

Figure 72. A) Flowering-time analysis in LD comparing 35S::FLAG:HAP3a, 35S::CO and 
35S::FLAG:HAP3a 35S::CO. B) Quantification of flowering-time by counting the numbers 
of leaves produced at bolting shows that overexpression in the late-flowering 
35S::FLAG:HAP3a lines can be partially complemented by CO. (Data from Dr. F. Turck) 
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