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  Abstract 
 

 

Abstract 
 
Collagen II is the major collagen present in the extracellular matrix of cartilage, in addition it is 
found in the vitreous of the eye and it is also detected during early embryogenesis. Due to the 
complexity of the biosynthesis, assembly and secretion, collagen II is highly susceptible to 
mutations leading to disease states which are broadly classified as chondrodysplasias. Most of 
these mutations are substitutions of glycine in the Gly-X-Y repeats in the triple helical domain 
resulting in destabilization of the helix. Point mutations leading to arginine to cysteine 
substitution are interesting since they occur at either X or Y position and cause two different 
diseases termed Stickler syndrome and congenital spondyloepiphyseal dysplasia (SEDC) in 
association with osteoarthritis.  
The present study aimed at determining the consequences of arginine to cysteine substitutions in 
either X or the Y position in the Gly-X-Y repeats and at either the N- or the C- terminus of the 
triple helix. The impact of these mutations on protein trafficking, secretion and cell survival was 
also analyzed. 
Biochemical studies revealed great similarities between R75C, R134C and R704C collagens and 
the wild type molecules with the exception that electron micrographs of R75C collagen 
displayed kinks in the structure. R740C and R789C collagens accumulated in the cells and the 
R789C protein migrated faster on SDS gels. The R740C and R789C proteins were also 
susceptible to protease digestion and circular dichroism spectra were altered and showed lower 
Tm values than other collagen II variants. Due to the altered structure, R789C protein was more 
susceptible to MMP cleavage in the vicinity of the mutation causing the truncation of the protein. 
Additionally, electron micrographs revealed only scarce and thin filamentous structures in 
preparations of R740C and R789C protein. The biochemical results indicate that the R740C and 
R789C proteins have unstable triple helices and that this affects the overall protein structure. 
Protein trafficking was monitored in HT1080 cells expressing the collagen II variants. 
Intracellular retention in the ER due to misfolding of the R740C and R789C proteins triggered an 
ER stress response including splicing of XBP-1 and induction and binding of BiP. Continuous 
accumulation of misfolded proteins in the ER caused apoptosis of the R740C and R789C 
expressing cells. 
Substitution of arginine to cysteine in the X or Y position towards the C-terminus of the triple 
helix caused pronounced instability of the triple helix with a deleterious effect on the cells, while 
R704C and more N-terminal mutations did not cause any significant changes irrespective of 
being in the X or the Y position. 
The different severities of patient phenotypes are due to a combination of structural factors, 
which may be synergistically augmented by genetic modifiers, additional unknown mutations 
and environmental factors.    
 

 



  Zusammenfassung 
 

 

Zusammenfassung 
 
Collagen II ist der Hauptbestandteil der extrazellulären Matrix des Knorpels. Außerdem wird 
Collagen II im Glaskörper des Auges exprimiert und konnte während der frühen embryonalen 
Entwicklung nachgewiesen werden. Collagen II ist durch seine komplexe Biosynthese, 
Assemblierung und Sekretion besonders anfällig für Mutationen, die im Menschen zu 
Krankheiten führen, die allgemein unter dem Begriff Chondrodysplasien zusammengefasst 
werden. Bei den meisten dieser Mutationen handelt es sich um den Austausch eines Glycins in 
den Gly-X-Y Triplets der tripelhelikalen Domäne, die zu einer Destabilisierung dieser Helix 
führen. Punktmutationen, die zu einem Austausch von Arginin zu Cystein führen, kommen 
sowohl in der X- als auch Y-Position vor und führen interessanterweise zu zwei 
unterschiedlichen Krankheitsbildern, dem Stickler Syndrom bzw. der congenitalen 
Spondyloepiphysiären Dysplasie verbunden mit Osteoarthrose. 
In der vorliegenden Arbeit wurden Auswirkungen von Substitutionen eines Arginins zu einem 
Cystein sowohl in der X- als auch in der Y-Position bzw. im N- oder C-terminalen Bereich der 
Tripelhelix untersucht. Außerdem wurden Effekte dieser Mutationen auf den intrazellulären 
Proteintransport, die Sekretion und die Zellvitalität analysiert. 
Biochemische Untersuchungen ergaben keinerlei wesentliche Unterschiede zwischen den 
Mutanten R75C, R134C und R704C im Vergleich mit dem Wildtyp Protein mit Ausnahme der 
elektronenmikroskopischen Aufnahmen, in denen die Mutation R75C zu charakteristischen 
Knicken in der Struktur des Collagens führte. Die Proteine R740C und R789C akkumulierten 
intrazellulär, und das Collagen R789C zeigte veränderte Laufeigenschaften im SDS Gel. Die 
Proteine R740C und R789C waren außerdem empfindlicher gegenüber Proteasen, und die 
Analyse mittels CD Spektroskopie ergab untypische Spektren und erniedrigte 
Schmelztemperaturen. Die durch die veränderte Struktur erhöhte Empfindlichkeit des Proteins 
R789C gegenüber dem Abbau durch MMPs in unmittelbarer Nähe der Mutation führte zu einer 
Verkürzung des Proteins durch Proteolyse. 
In elektronenmikroskopischen Untersuchungen der Proteine R740C und R789C konnten nur 
kurze filamentöse Strukturen nachgewiesen werden. Diese Ergebnisse führen zu dem Schluss, 
dass die Proteine R740C und R789C lediglich instabile Tripelhelices ausbilden und die 
Mutationen so die Gesamtstruktur des Proteins beeinflussen. 
Der intrazelluläre Transport der mutierten Proteine wurde in transfizierten HT1080 Zellen 
untersucht. Die fehlgefalteten Proteine R740C und R789C wurden im endoplasmatischen 
Retikulum (ER) zurückgehalten und lösten eine ER Stressantwort aus, die mit einem Splicing 
von XBP-1 und einer erhöhten Induktion und Bindung des Chaperons BiP einhergeht. Die 
andauernde Akkumulation dieser fehlgefalteten Proteine im ER führte schließlich zur Auslösung 
der Apopotse. 
Der Austausch von Arginin zu Cystein im C-terminalen Bereich der Tripelhelix führte sowohl in 
der X- als auch der Y-Position zur Instabilität der Tripelhelix mit schädlichen Auswirkungen auf 
die exprimierenden Zellen. Im Gegensatz hierzu resultierten bereits die Mutation R704C und 
weiter N-terminal gelegene Mutationen in keinerlei signifikanten Veränderungen, unabhängig 
davon, ob sie in der X- bzw. Y-Position vorlagen. 
Die in Patienten beschriebenen, sehr unterschiedlich ausgeprägten Krankheitsbilder sind 
wahrscheinlich durch eine Kombination sich synergistisch verstärkender struktureller und 
genetischer Faktoren sowie unbekannter Mutationen und Umwelteinflüsse zu erklären. 
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1 Introduction 

1.1 Collagen 

Collagens form a family of proteins that constitute the major structural components of the ECM, 

representing approximately one third of the body protein in man. The general definition of a 

collagen is “a protein consisting of three identical or related polypeptide chains, which are folded 

into at least one triple-helical domain and assemble into supramolecular aggregates mostly in the 

extracellular space”. They are found in almost all tissues of the body, and are particular abundant 

in bone, skin, tendon, ligaments, cartilage and vessel walls (Myllyharju & Kivirikko 2004). 

1.2 Classification of collagens 

Collagens are characterized by the presence of triple-helical domains, which are either composed 

of three identical polypeptide chains (homotrimers) or two to three genetically distinct chains 

(heterotrimers). The collagen types are designated with Roman numerals in the order of their 

discovery, and the chains found in each collagen type are identified with Arabic numerals 

(Kivirikko 1993, Pihlajaniemi & Rehn 1995, Prockop & Kivirikko 1995, Myllyharju & 

Kivirikko 2004). Collagens are broadly classified into two groups on the basis of their primary 

structure, physicochemical properties and macromolecular assembly: 

1. Fibrillar collagens (over 70% of total collagens; e.g. type I, II, III, V, XI), possessing a large, 

uninterrupted triple-helical domain capable of fibril formation. Their fibrils create the 

structural frameworks for many tissues. 

2. The non-fibril-forming collagens, made up by basement membrane collagens (type IV and 

VII), transmembrane collagens (type XIII and XVII), fibril-associated collagens with 

interrupted triple helices (FACIT; type IX, XII, XIV, XVI and XIX), multiplexin collagens 

(type XV and XVIII), short-chain collagens (type VI, VIII and X) form a more 

heterogeneous group. A distinct feature of non-fibril-forming collagens is the presence of one 

or more non collagenous interruptions within the collagenous sequence. Members of this 

group form filaments, sheet-like structures, network-like elements and anchoring fibrils and 

can associate with collagen fibrils and membranes in a highly tissue-specific manner in 

variety of organs. 

Fig 1.1 summarizes the classification within the collagen superfamily, the known collagen 

supramolecular assemblies and molecular and functional properties.  
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Fig 1.1 Members of the collagen superfamily and their known supramolecular assemblies. The collagen 
superfamily can be divided into nine families on the basis of the supramolecular assemblies and other features of its 
members: (a) fibril-forming collagens; (b) fibril-associated collagens with interrupted triple helices (FACITs), 
located at the surface of fibrils, and structurally related collagens; (c) collagens forming hexagonal networks; (d) the 
family of type IV collagens located in basement membranes; (e) type VI collagen, which forms beaded filaments; (f) 
type VII collagen, which forms anchoring fibrils at basement membranes; (g) collagens with transmembrane 
domains; and (h) the family of type XV and XVIII collagens. The supramolecular assemblies of families (g) and (h) 
are unknown and are therefore not shown (Myllyharju & Kivirikko 2004). 
 

1.3 Genes and nomenclature 

The genes encoding the fibril-forming collagens I-III show structural similarity but vary in size 

from 18 to 44 kb (Prockop & Kivirikko 1995, Yamada et al. 1980). They consist of 51-54 exons 

with the major triple-helical domain being encoded by 44 exons. The similarity in gene structure 

is also extended to propeptides. The N-propeptide is in each case encoded by six exons, whereas 
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the C-propeptides are encoded by four exons. The gene loci for the members of the collagen 

family have been given names beginning with COL in a human context and col in animals, 

followed by an Arabic numeral denoting the collagen. For example, COL1A1 is the gene locus 

for the human proα1(I) chain, and COL1A2 for the proα2(I) chain. 

All the exons encoding the triple-helical domain are of sizes that are multiples of 9 bp (e.g. 45, 

54, 99, 108 and 162 bp, coding for 5, 6, 11, 12 and 18 Gly-X-Y triplets, respectively), the most 

common size being 54 bp. It has been suggested that the ancestral gene for the fibril-forming 

collagens must have evolved by amplification of a 54 bp unit embedded into intron sequences 

(Yamada et al. 1980). All these exons start with a codon for glycine and end with a complete 

codon for an amino acid in the Y position. 

1.4 Structure and stability of the collagen triple helix 

In collagens three α chains are wound around each other into a right-handed triple helix. In some 

collagens all three chains in the molecule are identical and form homotrimers, while other types 

contain two or even three different chains leading to heterotrimeric molecules (Engel & Prockop 

1991, Hulmes 1992).  At the amino acid level the collagenous or triple helical domains contain 

of repeats consisting of three amino acids (Fig 1.2A). The presence of glycine as every third 

amino acid in the repeating Gly-X-Y sequence is essential because a larger amino acid would not 

fit in the center of the triple helix where the three chains come together (Fig 1.2B). Proline is 

frequently in the X position of the Gly-X-Y sequence and 4-hydroxyproline is frequently in the 

Y position. These two amino acids limit the rotation of the polypeptide chains. The triple helix is 

further stabilized by hydrogen bonds and water bridges, many of which require the presence of 

4-hydroxyproline. Stabilization of the triple helix by glycines has been studied using collagen-

like peptides (Bella et al. 1994, 1995). In addition, many glycine substitutions in the collagen 

triple helix have been identified in various heritable connective tissue disorders (Kivirikko 1993, 

Dalgleish 1997, 1998). These glycine substitutions result in a small local untwisting of the triple 

helix and reduce its thermal stability (Bella et al. 1994), suggesting that similar conformational 

changes may occur in the case of glycine substitutions at other positions. It is also thought that 

glycine substitutions may reduce the rate of folding of the triple helix, as a Gly to Cys 

substitution within the collagen domain of type I collagen prolongs the time needed to reach the 

triple-helical state (Raghunath et al. 1994). 
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Fig 1.2 Arrangement of amino acids in the Gly-X-Y repeat in the triple helical part of a fibrillar collagen. (A) 
Characteristic Gly-X-Y repeat with the orientation of glycine. (B) The central fit of glycine in the structure of triple 
helix with all other amino acid being more peripheral (Cooper & Hausman 2004, Nelson & Cox 2005). 
 

1.5 Biosynthesis of collagen 

Collagen biosynthesis and assembly follows the normal pathway of a secretory protein. Fig 1.3 

represents a schematic illustration of the intracellular and extracellular events during collagen 

biosynthesis, which are briefly described below. 

1. Synthesis: Collagen chains are synthesized as longer precursors called procollagens. The 

growing polypeptide chains are co-translationally transported into the lumen of the rough 

endoplasmic reticulum (ER). In the ER, the procollagen chain undergoes a series of post-

translational modifications, in particular hydroxylation and glycosylation.  

2. Hydroxylation: Specific proline and lysine residues in the propeptide are hydroxylated by 

membrane-bound hydroxylases. These hydroxyproline residues are essential for the stability of 

triple helical molecules since underhydroxylated procollagens are not stable at normal body 

A 

B 
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temperature. Lysyl hydroxylase and proline hydroxylase catalyses the hydroxylation of lysine 

and proline residues in the procollagen chains. The hydroxylysine residues serve as attachment 

sites for carbohydrate units and are also needed for the formation of intermolecular cross-links 

during the collagen fibril formation. Ascorbate is a cofactor required for hydroxylase activity and 

a deficiency may lead to triple helix instability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig 1.3 Intracellular and extracellular events during collagen biosynthesis and fibrillogenesis.  (A) Procollagen 
synthesis, posttranslational modification, secretion and fibril assembly. (B) Electron micrograph of a negatively 
stained collagen fibril reveals its typical striated appearance (Alberts et al. 1994). 
 
 

3. Glycosylation: Procollagens are further glycosylated in the ER and in the Golgi complex. 

Galactose and glucose residues are added to hydroxylysine residues and longer oligosaccharides 

are transferred to certain asparagine residues in the C-terminal propeptide. 

4. Procollagen assembly: N- and C-propeptides first fold and intrachain disulphide bonds are 

formed within them (Bächinger et al. 1981, Doege & Fessler 1986). Three pro α chains then 

associate through non-covalent interactions between the folded C-propeptides followed by 

formation of interchain disulphide bonds catalyzed by protein disulphide isomerase (PDI) (Olsen 

et al. 1976, Forster & Freedman 1984, Noiva & Lennarz 1992). The formation of a triple-helical 

procollagen molecule begins by association of the C-propeptides of the three pro α chains 

B

A 

B 
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(Bächinger et al. 1981, Bulleid et al. 1996) and the triple helix is formed in a zipper-like manner 

proceeding from the C-terminal region towards the N-terminus (Engel & Prockop 1991).  

5. Quality control: During the entire process molecular chaperones play an important role in 

regulating the correct folding and assembly of proteins (Fig 1.4). Chaperones bind to 

hydrophobic regions of unfolded proteins and prevent aggregation while the polypeptides are 

synthesized (Gething & Sambrook 1992, Becker & Craig 1994, Hartl et al. 1994). They also 

serve as folding quality controllers, preventing the secretion of misfolded proteins and promoting 

their degradation. BiP is a 78 kD protein located within the lumen of the ER and plays a general 

role in protein folding and oligomeric assembly (Haas & Wabl 1983). In certain osteogenesis 

imperfecta patients, mutant type I collagen remains bound to BiP (Chessler & Byers 1992). PDI 

also acts as a molecular chaperone during the assembly of procollagen chains (Wilson et al. 

1998). PDI interacts specifically with the propeptides of monomeric type I procollagen chains 

and prevents their premature assembly or aggregation (Wilson et al. 1998). 

 

 
Fig 1.4 Interactions of ER chaperones during procollagen assembly and secretion. Procollagen interacts with a 
variety of ER resident proteins during folding and assembly within the ER. The carboxy-terminal propeptide may 
interact transiently with BiP (light blue) before it folds correctly and assembles covalently with two other pro-α-
chains to form a trimer. Protein disulfide isomerase (PDI; blue) catalyzes this latter event. Proline hydroxylases 
(P4H; green) modifies selected proline and lysine residues in the triple helix-forming domains. These hydroxylated 
residues form hydrogen bonds that stabilize the helix once it forms. This triple helical form of procollagen is the 
preferred substrate of Hsp47 (yellow) (Hendershot & Bulleid 2000). 
 

Hsp47 is an endoplasmic reticulum (ER)-resident molecular chaperone that is specific for 

collagen and plays a role in collagen maturation (Nagata & Hosokawa 1996, Nagata 2003). After 

binding to procollagen in the ER, Hsp47 is co-transported with procollagen from the ER to the 
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cis-Golgi or ER-Golgi intermediate compartment, where it dissociates from procollagen in a pH-

dependent manner (Saga et al. 1987, Satoh et al. 1996). 

6. Secretion: The mechanism responsible for transporting assembled procollagen molecules 

from the ER to the Golgi complex is poorly understood. Various studies have shown that triple-

helical procollagen molecules form large electron-dense aggregates in a cis-Golgi compartment 

of fibroblasts and that these aggregates then move across the Golgi stacks without leaving the 

lumen of the Golgi cisternae (Bonfanti et al. 1998). Progressive maturation of the Golgi cisternae 

appears to be responsible for the transport through the Golgi complex (Mironov et al. 1997). If 

triple helix formation is prevented and random coil polypeptide chains accumulate within the 

cisternae of the rough endoplasmic reticulum, they are degraded in part or secreted at a delayed 

rate (Kivirikko et al. 1992). Detailed investigations using video-electron microscopy, serial-

section 3D reconstruction and electron tomography have shown that procollagens are transported 

in saccular structures formed directly from protruding portions of the ER membrane (Mironov et 

al. 2003). 

7. Procollagen processing: In the extracellular space the N- and C-propeptides of procollagens 

are cleaved by specific proteinases before the molecules start to self-assemble into fibrils 

(Prockop & Hulmes 1994, Canty & Kadler 2005) (Fig 1.5). These procollagen proteinases are 

endopeptidases and require a divalent cation such as Ca2+ for maximal activity (Hojima et al. 

1989, Prockop et al. 1998). Propeptides are cleaved by two enzymes, procollagen N proteinase 

and procollagen C proteinase, which cleave N- and C-propeptides respectively (Prockop et al. 

1998, Kivirikko 1995) Procollagen C proteinase activity (Hojima et al. 1985) is exerted by 

members of the tolloid family of zinc metalloproteinases [bone morphogenetic protein 1 (BMP-

1), mammalian tolloid (mTLD) and tolloid like 1 (TLL-1); (Hartigan et al. 2003, Kessler et al. 

1996, Li et al. 1996, Scott et al. 1999)] and N-proteinase activity is provided by members of the 

ADAMTS (metalloproteinase with thrombospondin motifs) family: ADAMTS-2, ADAMTS-3 

and ADAMTS-14 (Colige et al. 1997, 2002, Fernandes et al. 2001). 

8. Fibril assembly: Fibril formation starts after removal of the globular N and C propeptides 

from procollagen by the procollagen N- and C-proteinases (Leung et al. 1979) (Fig 1.5). 

Cleavage of the C-propeptides reduces the solubility of the protein and the collagen molecules 

self-assemble into fibrils (Kadler et al. 1987, Prockop & Hulmes 1994, Canty & Kadler 2005). 

After assembly of the collagen molecules into fibrils, covalent cross-links are formed and these 

provide the fibrils with their tensile strength and mechanical stability. The crosslinks are formed 
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from lysine and hydroxylysine derived aldehydes that are synthesized in a reaction catalyzed by 

lysyl oxidase (Prockop & Kivirikko 1995), which causes the oxidative deamination of the ε-

amino group in certain lysine and hydroxylysine residues (Kagan & Trackman 1991). The 

crosslinks formed from a hydroxylysine derived aldehyde are more stable than those formed 

from a lysine derived aldehyde (Prockop & Kivirikko 1995). A characteristic feature of the fibril 

forming collagens is that they form highly ordered, quarter-staggered, 67 nm banded fibrils, i.e. 

adjacent molecules overlap by a distance of 67 nm or a multiple of this, with a 40 nm gap 

between the ends of the continuous non-overlapping molecules (Prockop & Kivirikko 1995, 

Bella et al. 1994). Collagen fibril diameters range from 20 to 500 nm, depending on the tissue 

and age. 

 
 
Fig 1.5 Overview of the steps involved in the production of collagen fibrils by fibroblasts. Procollagen chains 
are synthesized in the endoplasmic reticulum (ER), are brought together by interactions between the C-propeptides 
and fold to form a rod-like triple-helical domain flanked by globular N- and C-propeptides. Removal of the N- and 
C-propeptides from fully folded procollagen only occurs after transport of procollagen across the Golgi stacks and 
results in collagen molecules that are then able to assemble into fibrils. Covalent crosslinks occur within and 
between triple-helical collagen molecules in fibrils (Canty & Kadler 2005). 
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1.6 Collagen II 

Collagen II is the major cartilage collagen, but is also expressed in the vitreous of the eye and is 

detected during early embryogenesis in the cranial mesenchyme and sclerotome of the somites. 

Collagen II transcripts are further present in the axial and appendicular skeleton, in 

nonchondrogenic tissues such as notochord, neural retina, cornea and conjunctival epithelia and 

in the sclera of the developing eye (Brewton & Mayne 1992). Unexpectedly, localisation of type 

II collagen mRNA was also reported in the proliferative ventricular cells of the forebrain and 

midbrain of embryos and in the cervical spinal cord (Cheah et al. 1991). The gene that codes for 

the polypeptide chains of homotrimeric collagen II consists of 54 exons and is about 31 kb in 

size (Ala-Kokko & Prockop 1990, Ala-Kokko et al. 1995). Its chromosomal location is 

12q13.11-q13.12 (Takahashi et al. 1990). The sequence coding for the N-terminal propeptide 

contains an alternatively spliced exon that codes for a 69-amino acid cysteine-rich domain (Ryan 

& Sandell 1990). Collagen II molecules including (IIA) or excluding this domain (IIB) have 

distinct distributions in various stages of chondrogenesis, type IIA predominating in the 

prechondrogenic mesenchyme and differentiating chondrocytes, and type IIB in differentiated 

chondrocytes (Nah & Upholt 1991, Sandell et al. 1991). The collagen II molecules in the fibril 

overlap with each other by a distance of about a quarter of their length, thus forming a banded 

fibril. The molecules are covalently crosslinked between the triple helical domain and the N- or 

C-terminal telopeptides of adjacent collagen II molecules. Collagen II has a high capacity to 

withstand forces exerted. Indeed, it has a tensile strength comparable to steel and thereby 

strongly influences the biomechanical properties of cartilage (Vikkula et al. 1994). Due to the 

complexity of the folding and assembly, collagen II structure is susceptible to mutations leading 

to disease states that are collectively termed chondrodysplasias and possess a wide range of well-

characterised clinical phenotypes (Vikkula et al. 1994, Mundlos & Olsen 1997, Myllyharju & 

Kivirikko 2001). 

1.7 Chondrodysplasias 

Most chondrodysplasias are due to point mutations in the collagen II gene. Most of these result 

in the substitution of glycine in the Gly-X-Y repeats and thereby the stability of the triple helix is 

decreased. Mutations in the X or Y position in the peptide chain are less frequent. In addition, 

nonsense mutations occur which lead to premature termination of the chain. Deletions have also 

been reported, leading to severe pathological conditions (Vikkula et al. 1994, Mundlos & Olsen 
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1997, Myllyharju & Kivirikko 2001). Table 1.1 summarizes the known mutations and the 

resulting phenotype. A brief description of each phenotype is given below. 

 

Table 1.1 Types of chondrodysplasia caused by point mutations and the resulting amino 
acid exchanges in collagen II. Numbers indicate the position in the triple helical domain. 
 

Achondrogenesis II Hypochondrogenesis SEDC Stickler syndrome 

Gly253Asp 

Gly310Asp 

Gly313Ser 

Gly517Val 

Gly571Ala 

Gly571Asp 

Gly580Arg 

Gly595Arg 

Gly694Glu 

Gly748Asp 

Gly769Ser 

Gly781Ser 

Gly817Val 

Gly313Ser 

Gly517Val 

Gly571Ala 

Gly604Ala 

Gly691Arg 

Gly805Ser 

Gly853Glu 

Gly913Cys 

Gly988Arg 

Thr1190Asn 

Arg 75 Cys 

Arg789Cys 

Gly973Arg  

Gly997Ser 

Arg9Term 

Gly 67Asp 

Arg365Cys 

Leu467Phe 

Gly506Term 

Arg519Cys 

Arg585Term 

Arg704Cys 

Arg732Term 

 

SEDC, Spondylo Epiphyseal Dysplasia Congenita; Term, Termination 
Mutations in bold are used in the present study 
 

1.8 Achondrogenesis type II and hypochondrogenesis (OMIM 200610) 

Achondrogenesis type II and hypochondrogenesis were considered two separate disorders 

(Langer et al. 1969, Saldino 1971, Maroteaux et al. 1983). After individuals with an intermediate 

phenotype have been characterized they are defined as different degrees of severity of the same 

disorder (Borochowitz et al. 1986). Infants die perinatally or within the first weeks of life. The 

disorder is characterized by a short, barrel-shaped trunk, very short extremities, large head, soft 

cranium, flat face and hydropic appearance. Radiographically, the affected infants show varying 

degrees of underossification of the axial skeleton. Histological and electron microscopic 

examinations reveal hypercellular epiphyseal cartilage with poorly organized or absent growth 

plate and diminished extracellular matrix that contains thick, irregular collagen fibrils together 

with large chondrocytes with a dilated rough endoplasmic reticulum. Biochemical studies of 
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hyaline cartilage from these infants have indicated abnormal and diminished collagen II (Eyre et 

al. 1986, Godfrey et al. 1988, Godfrey & Hollister 1988, Spranger et al. 1994.). The genetic 

defect leading to this pathology was found in the COL2A1 gene (Vissing et al. 1989). Table 1.1 

lists various mutations leading to achondrogenesis II.  All of them involve the replacement of 

glycine by a bulkier amino acid in the triple helical region of the 1(II) chain.  

1.9 Spondyloepiphyseal dysplasia and congenital 
spondyloepiphyseal dysplasia (SEDC, OMIM 183900) 

Spondyloepiphyseal dysplasia is characterized by short trunk, short extremities, barrel-shaped 

chest, kyphosis, severe myopia, retinal detachments, cleft palate and clubfoot (Fig 1.6A). 

Radiographs (Fig 1.6B) show defects in ossification of the spine and primarily proximal 

extremities (Mortier et al. 2000).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Fig 1.6 Phenotype of SEDC patients. (A) Disproportionate short stature with short trunk, enlarged joints, high 
forehead, frontal bossing, pectus carinatum deformity and radiological findings of anteroposterior and lateral spine 
radiographs shows: thoracic scoliosis, accentuated lumbar lordosis, flattened and dysplastic vertebral bodies 
(Sobetzko et al 2000). (B)  Anteroposterior radiographs of patients representing a severe phenotype characterised by 
short tubular bones with metaphyseal irregularities, minimal ossification of vertebral bodies in the thoracic spine, 
hypoplastic iliac wings with flat acetabular roofs, short ribs along with shortened tubular bones, flattened but 
normally ossified vertebral bodies, normal acetabular roofs, and a less narrow chest (Mortier et al 2000). 
 

A B 
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Histological studies show defects resembling those in achondrogenesis type II-

hypochondrogenesis and biochemical examination indicates abnormalities in collagen II (Murray  

et al. 1989). SED refers to a heterogeneous group of disorders that affect the spine and 

epiphyses, and as the symptoms resemble those of achondrogenesis type II-hypochondrogenesis, 

SED can be considered to represent the mild end of the spectrum comprising achondrogenesis 

type II-hypochondrogenesis and SED phenotypes (Spranger et al. 1994). Most cases of SED 

show autosomal dominant inheritance, but an autosomal recessive form of inheritance has also 

been suggested in some cases (Harrod et al. 1984). Lee et al. (1989) identified a deletion of an 

entire exon in the COL2A1 gene, leading to a lack of 36 amino acids in the triple helical region 

of the chain, and subsequently numerous mutations, including insertions, mutations causing 

aberrant RNA splicing, glycine mutations and a cysteine for arginine substitution, have been 

characterized (Vikkula et al. 1994, Kuivaniemi et al. 1997). However, some investigations have 

excluded the COL2A1 gene as a locus for SED in certain families, indicating that there must also 

be some other locus or loci for the disorder (Wordsworth et al. 1988, Anderson et al. 1990). 

SEDC is of autosomal dominant inheritance and affects the vertebrae, juxtatruncal epiphyses and 

leads to a lack of ossification of pubis, distal femoral and proximal tibial epiphyses, talus and 

calcaneues, flattening of vertebral bodies, short limbs, cleft palate, mental retardation, myopia 

etc. (Gunthard et al. 1995). Previous studies indicate that the processing and assembly of 

collagen is disrupted but the exact mechanism of pathogenesis is yet to be unraveled. 

1.10 Stickler syndrome (OMIM 108300) 

Stickler syndrome, originally called hereditary progressive arthroophthalmopathy, is an 

autosomal dominantly inherited disorder and is caused by mutations in collagen II or collagen 

XI. The α 3 (XI) chain is the IIB splicing variant product of the COL2A1 gene (Wu & Eyre, 

1995). Phenotypically, it is characterised by progressive myopia and vitreoretinal degeneration 

resulting in retinal detachment and blindness. Midfacial hypoplasia and micrognathia are often 

accompanied by cleft palate or a lesser degree of clefting, and a sensorineural hearing defect is 

common (Fig 1.7). The skeletal manifestations include juvenile progressive arthropathy, 

irregularity of the vertebral bodies and hypermobile joints. Skeletal growth is usually normal. 

Mild epiphyseal dysplasia and overtubulation of long bones are seen in radiological examination 

(Temple 1989, Snead & Yates 1999). Linkage studies have shown that the COL2A1 gene is a 

locus for Stickler syndrome (Francomano et al. 1987, Knowlton et al. 1989). Altogether nine 

mutations have been reported to date, all of them leading to premature termination of translation 
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(Ahmad et al. 1991, Brown et al. 1992, Ahmad et al. 1993, Ritvaniemi et al. 1993, Brown et al. 

1995a, Ahmad et al. 1995, Williams et al. 1996). The COL2A1 gene has also been excluded in 

several families with Stickler syndrome (Knowlton et al. 1989, Vintiner et al. 1991, Bonaventure 

et al. 1992). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig 1.7 Clinical phenotypes of patients with Stickler syndrome. (A) Probands with mild nasal root hypolasia, 
midfacial hypoplasia and slender digits. (B) Vitreous phenotypes displaying membraneous congenital vitreous 
anomaly, beaded appearance of vitreous and a fibrillar vitreous anomaly in comparison with normal vitreous 
(Richards et al. 2000, 2002a, 2002b). 
 

B 
 

A 
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Stickler families with congenital vitreous anomaly (Stickler syndrome type 1) have linkage to the 

COL2A1 gene, while in those with congenitally defective vitreous gel architecture but no 

congenital vitreous anomaly (Stickler syndrome type 2) linkage is excluded (Snead et al.1994).  

Subsequently, Richards et al. (1996) demonstrated linkage to the COL11A1 gene in a family 

with Stickler syndrome type 2, and traced it to a missense mutation converting glycine to valine 

in the N-terminal part of the triple helix of the α 1(XI) chain. In addition, Wilkin et al. (1998) 

have suggested still another locus for Stickler syndrome apart from the genes coding for 

collagens II and XI. It has also been reported that mutations in collagen II in the X position cause 

haploinsufficiency and that leads to reduced amount of collagen, resulting in characteristic 

membranous congenital anomaly in the vitreous (Snead et al. 1994, Snead and Yates 1999, 

Richards et al. 2000). 

1.11 Osteoarthritis (OMIM 165720) 

Osteoarthritis (OA) is the most common articular disorder, characterized by joint pain and 

tenderness, stiffness, crepitus and limitation of motion. Radiographs of patients indicate joint-

space narrowing, osteophytes, subchondral bone sclerosis and subchondral cyst formation. In 

severe cases, deformity of the bone ends is also seen. OA is classified into primary (idiopathic) 

or secondary subsets, in primary cases there is no known predisposing factor, while in secondary 

cases factors such as trauma, infection, some other joint disorder or a metabolic disease is 

indicated. Further classification divides OA into localized, in which only certain joints are 

affected, and generalized subsets. Even though OA is often considered an consequence of 

ageing, female sex, obesity, occupational load and heavy sports exertion are risk factors (Altman 

1995, Creamer & Hochberg 1997). The suggestion of genetic factors underlying OA in certain 

families was made several decades ago (Stecher et al. 1953, Kellgren et al. 1963). Palotie et al 

(1989) demonstrated a linkage to the COL2A1 gene in a family with primary OA. Knowlton et 

al. (1990) made a similar finding in a family with precocious OA and associated mild 

chondrodysplasia and Ala-Kokko et al. (1990) subsequently demonstrated a mutation in this 

family. The mutation converted arginine to cysteine, an amino acid not normally found in the 

triple helical domains of collagens, in the middle of the triple helix of the collagen II molecule. 

Altogether five families with this same mutation have been reported to date, and three of them 

have been shown to have a common ancestor (Bleasel et al. 1995, Kuivaniemi et al. 1997, 

Bleasel et al. 1998). In addition, a mutation converting arginine to cysteine at position 75, near 

the N-terminus of the triple helix, has been reported in three families with OA associated with 

mild SED (Bleasel et al. 1995, Bleasel et al. 1996). Osteoarthritis is also associated with 
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mutations in other non collagenous proteins; e.g. a missense mutation in the epidermal growth 

factor-like domain in matrilin-3 leading to OA in several families.  (Stefansson et al. 2003). 

Kizawa et al. (2005) identified polymorphism in asporin that suppressed TGF-β-mediated 

expression of the genes coding for aggrecan (AGC1) and type II collagen (COL2A1) 

accompanied with reduced proteoglycan accumulation leading to osteoarthritis. Similar forms of 

osteoarthritis were reported to be due to functional variants within the secreted frizzled-related 

protein 3 gene (Loughlin et al. 2004). 

1.12 Animal models for chondrodysplasias due to collagen II 
mutations 

Transgenic mice carrying a partially deleted human COL2A1 gene developed the phenotype of a 

chondrodysplasia with dwarfism, short and thick limbs, short snout, cranial bulge, cleft palate, 

and delayed mineralization of bone (Vandenberg et al. 1991). In cultured chondrocytes from 

transgenic mice, the minigene was expressed as shortened pro-α-1(II) chains that were disulfide-

linked to normal mouse type II collagen chains. Therefore, the phenotype was probably 

explained by depletion of endogenous mouse type II procollagen through the phenomenon of 

procollagen suicide. Transgenic mice harboring a glycine-to-cysteine mutation at residue 85 of 

the triple helical domain of mouse type II collagen displayed severe chondrodysplasia with short 

limbs and trunk, craniofacial deformities, and cleft palate (Garofalo et al. 1991). Electron 

microscopic analysis showed a pronounced decrease in the number of typical thin cartilage 

collagen fibrils, distention of the rough endoplasmic reticulum of chondrocytes, and the presence 

of abnormally large banded collagen fibril bundles. Garofalo et al. (1991) postulated that the 

abnormally thick collagen bundles were related to a defect in crosslinking.  

A transgenic mouse model of SEDC carrying collagen II transgene with an R789C mutation, in 

combination with a murine Col2a1 promoter directing the gene expression to cartilage, displayed 

overall short stature, had shorter limbs with disorganized growth plates, a short nose, cleft palate, 

and died at birth (Gaiser et al. 2002). The cellular organization of the cartilage architecture was 

profoundly disturbed in the transgenic growth plate, although the overall polarity was 

maintained. There were fewer stacks of flattened chondrocytes in the proliferative zone of the 

transgenic mouse growth plates. In addition to the abnormal cartilaginous tissue, the 

perichondrium was thicker and electron microscopy revealed a marked reduction of collagen 

fibrils in cartilage matrix from transgenic compared with that of wild-type mice. Increased 

distension of rough endoplasmic reticulum was observed in these chondrocytes. Using cell 

culture experiments and molecular modeling, Gaiser et al. (2002) suggested that this Y-position 
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mutation acts in a dominant-negative manner, resulting in destabilization of collagen molecules 

during assembly and reduction in the number of fibrils formed. 

1.13 Arginine to cysteine mutations 

The majority of chondrodysplasia-causing missense mutations in COL2A1 are substitutions of 

obligatory glycine residues in the triple helical domain. Only a few non-glycine missense 

mutations have been reported and among these, the arginine to cysteine substitutions 

predominate. In addition to the above R75C and R789C substitution (Table 1.1), recently two 

additional mutations (R365C and R1076C) were found in unrelated probands (Hoornaert et al. 

2005). 

Most of these chondrodysplasias are due to point mutations in the collagen II gene, altering the 

amino acid sequence in a way which destabilizes the triple helix. In addition, nonsense mutations 

have been detected which lead to premature termination of the chain. Deletions have also been 

reported leading to severe pathological conditions. 

 Point mutations leading to a change from arginine to cysteine are interesting since different 

mutations of this kind cause two well characterized clinical phenotypes, i.e Stickler syndrome 

and congenital spondyloepiphyseal dysplasia (SEDC) and osteoarthritis-associated SED. It is 

being speculated that Stickler syndrome can be caused by amino acid substitutions in the X 

position of Gly-X-Y repeats (Richards et al 2000) and substitutions in the Y position rather lead 

to SEDC. One of the notions derived from previous studies on mutations in collagen I is that the 

mutant molecules are intracellularly degraded leading to a reduction in the pool of extracellular 

collagen molecules available for the formation of correct collagen fibrils. Another hypothesis is 

that some of the mutant collagens are incorporated into collagen fibrils, thereby affecting their 

biomechanical characteristics (Royce & Steinmann 2002). 
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1.14 Aims of the thesis 

The mechanisms by which point mutation in collagen II cause damage to the structure of 

connective tissues are not fully understood, and some of the proposed pathways leading from a 

mutant genotype to a phenotype are controversial.  

The aims of this thesis were therefore: 

 

1. To investigate the effects of arginine to cysteine mutations in collagen II and to 
determine how these may lead to different clinical phenotypes. 

 
2. To analyze the biochemical consequences of arginine to cysteine substitutions found in 

patients with Stickler syndrome and SEDC. 
 

3. To determine the importance of the position of point mutations within the triple helical 
domain (towards the N- or C-terminal of the triple helix) with respect to triple helical 
integrity and overall collagen structure.  

 
4. To elucidate the effects of these point mutations on protein trafficking, secretion and cell 

survival.  
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2 Materials and methods  

2.1 Materials 

Standard chemicals and enzymes were if not otherwise mentioned purchased from Merck 

(Darmstadt), Sigma (Taufkirchen), Invitrogen (Karlsruhe), Biozym (Oldendorf), Roche 

(Mannheim) or New England Biolabs (Schwalbach). 

2.1.1 Enzymes for molecular biology 

Calf intestinal alkaline phosphatase (NEB) 

M-MLV reverse transcriptase (Promega) 

Restriction endonucleases (NEB) 

Ribonuclease A (Sigma) 

T4 DNA ligase (NEB) 

Taq DNA polymerase (Roche) 

2.1.2 Materials for cell culture 

Dulbecco’s Modified Eagle Medium (DMEM-F12), Invitrogen 

Non-essential Amino Acids (NEA), Invitrogen 

L-Glutamine (200 mM), Invitrogen 

Penicillin/Steptomycin, Invitrogen 

Fetal Bovine Serum (FBS), Biochrom KG, Berlin 

2.1.3 Plasmid and adenoviral vectors 

2.1.3.1. pBluescript KS+ (pBS KS+) phagemid 

The phagemid vector pBluescript KS+ (pBS KS+) was used for subcloning and was the basic 

vector used for site directed mutagenesis. Fig. 2.1 shows the map of pBS KS+ vector. The 

complete manual and sequence information for this vector are available from Stratagene at 

http://www.stratagene.com/manuals/212205.pdf. 
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Fig. 2.1 Map of the cloning vector pBS KS+. It consists of an f1 and PUC origin of replication (pUC ori), an 
ampicillin resistance ORF and a multiple cloning site (MCS) flanked by restriction sites for Kpn I and Sac I. 

2.1.3.2. pSL1180 superlinker phagemid 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.2 Map of the superlinker phagemid pSL1180. It consists of an ampicillin resistance (Ampr) ORF, an M13 
origin of replication and a multiple cloning site. The multiple cloning site and restriction sites are shown in detail. 
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The phagemid vector pSL1180 was used for subcloning of collagen II cDNA after site directed 

mutagenesis and to remove the endogenous signal peptide. Fig. 2.2 shows the map of pSL1180 

vector with details of multiple cloning sites. A complete description and sequence informations from 

Amersham Biosciences can be found at http://www4.amershambiosciences.com/-

aptrix/upp01077.nsf/Content/Products? OpenDocument&parentid=41175&moduleid=41179. 

2.1.3.3 Eukaryotic expression vector pCEP-Pu 

The mammalian expression vector pCEP-Pu is a derivative of the pCEP-3 vector (Invitrogen) 

now containing a BM-40 signal peptide and a puromycin resistance (Kohfeldt et al 1997). In 

addition an enterokinase cleavage site was introduced between the sequence coding for the his6-

myc tag and the multiple cloning site (Wuttke et al 2001). This vector was used for expression of 

all collagen II variants. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.3: Map of the eukaryotic expression vector pCEP-Pu (Wuttke et al 2001). This vector contains the signal 
peptide from BM-40 (BM-40 SP), a his6-myc-tag, the site for protease digestion by enterokinase (EK) and multiple 
cloning site between the CMV promoter and the SV 40 polyadenylation signal (pA). 

2.1.3.4. Adenoviral vector pGS66 and shuttle vector pGS70 

The adenoviral vector pGS66 and the shuttle vector pGS70 were kindly provided by G. 

Schiedner and S. Kochanek from the Center for Molecular Medicine, University of Cologne, 

Germany (Schiedner et al. 2000). The adenoviral vectors were used for transfection of primary 

chondrocytes. 

BM-40 SP- his6-myc-EK-collagen II cDNA 
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Collagen II cDNA from pCEP-Pu and pGS70 vector was digested with Hind III and Bam HI. 

After separation by electrophoresis the collagen II cDNA was purified using a gel purification 

kit. The linearised vector pGS70 was dephosphorylated and purified. Equimolar amounts of 

vector and insert were used for ligation.  

Fig.2.4: Map of adenoviral vectors used for cloning collagen II cDNA. (A) Map of the first generation adenoviral 
vector pGS66 with an ampicillin resistance (ampr) ORF, an adenoviral internal terminal repeats and a Pac I site for 
cloning the insert. (B) Map of pGS70 vector with a multiple cloning site for use with different enzymes, a SV40 
origin of replication and antibiotic resistance markers for kanamycin (Kanr) and neomycin (Neor). 

Collagen II cDNA was released from the vector pGS70 by digesting with the restriction enzyme 

Pac I. The vector pGS66 was also digested with Pac I and dephosphorylated to avoid self 
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ligation. Equimolar amounts of vector and insert were used for ligation. 10 µl ligation mixture 

was used for transformation and colonies obtained were screened for the insert by restriction 

digestion of the plasmid. 

2.2 Molecular biology methods  

2.2.1 Plasmid DNA isolation from E. coli  

Plasmid DNA was prepared from small scale bacterial cultures. Bacteria were lysed by treatment 

with a solution containing 1% SDS and 0.5 M NaOH. SDS denatures bacterial proteins and 

NaOH denatures chromosomal and plasmid DNA. The mixture was neutralized with potassium 

acetate, causing the plasmid DNA to reanneal rapidly. Most of the chromosomal DNA and 

bacterial proteins remain in the precipitate, as does SDS forming a complex with the potassium, 

and are removed by centrifugation. The reannealed plasmid DNA from the supernatant was 

concentrated by ethanol precipitation.  

2.2.2 Pure MIDI plasmid DNA isolation  

Highly pure plasmid preparations were purified on either a small or a large scale using kits from 

Macherey-Nagel (Nucleobond AX kit for small scale plasmid preparations) or Qiagen (Qiagen 

Midi and Maxi Prep kit for large scale plasmid preparations). Briefly, overnight cultures of 

bacteria, grown in the presence of an antibiotic marker for the plasmid DNA, were pelleted and 

the cells were lysed by alkali. The supernantant containing plasmid DNA was passed over silica 

columns whereby the DNA was bound to the matrix and the impurities and digested RNA were 

washed off. The plasmid DNA was eluted and concentrated by ethanol precipitation. Highly pure 

plasmid DNA obtained was washed with 70% ethanol to remove salts and further reconstituted 

in TE buffer. This plasmid DNA was used for site directed mutagenesis, PCR, sequencing and 

transfection of eukaryotic cells. The protocols were as described by the manufacturer.  

2.2.3 DNA agarose gel electrophoresis  

10X DNA loading buffer 

40% w/v sucrose 

0.5% w/v SDS    

0.25% w/v bromophenol blue 

in TE buffer pH 7.4  

50X Tris acetate buffer (1000 ml)  

242.2 g Tris 

57.5 ml acetic acid 

100 ml of 0.5 M EDTA 

pH 8.0, adjusted with NaOH 



  Material and methods 
 

 23

 

TE Buffer 

10 mM Tris-HCl  

1 mM EDTA 

pH 7.4 

 

Agarose gel electrophoresis to resolve and purify DNA fragments was performed according to 

the method described by Sambrook et al. (1989). Electrophoresis was typically performed with 1 

% (w/v) agarose gels submerged in a horizontal electrophoresis tank containing 1x TAE buffer at 

1-5 V/cm. For resolving fragments less than 1,000 bp, 2.5 % (w/v) agarose gels in 1x TAE buffer 

were used. DNA size marker (Life Technologies) was always loaded along with the DNA 

samples in order to estimate the size of the resolved DNA fragments. The gel was run until the 

bromophenol blue dye present in the DNA loading buffer had migrated the appropriate distance. 

The gel was examined under UV light at 302 nm and was photographed using a gel 

documentation system. 

2.2.4 Elution of DNA fragments from agarose gels 

Elution of DNA fragments from agarose gels was performed using UltraCleanTM15 (MO BIO 

LABS Inc) DNA purification kit. DNA bands of interest were cut out of the gel along with a 

minimal amount of agarose and then solubilised in binding buffer at 50 °C. This solution 

containing DNA was incubated with a silica matrix suspension to bind the DNA which was 

subsequently centrifuged and washed to remove unbound material. Pure DNA was isolated by 

incubating the silica matrix DNA pellet with low salt alkaline elution buffer. 

2.2.5 Measurement of DNA and RNA concentrations  

Concentrations of DNA and RNA were estimated by determining the absorbance at 260 nm and 

280 nm. A ratio of 1.8 indicates negligible protein contaminations.   

2.2.6 Restriction digestion of DNA  

Digestions were performed using restriction enzymes with the desired buffer and temperature as 

suggested by the manufacturers. Routinely 1-2 µg of plasmid DNA was digested for 1-2 h. 

2.2.7 Dephosphorylation of 5´ends of linearized vectors  

To avoid self-ligation of the vector having blunt ends or having been digested with a single 

restriction enzyme, the 5’ ends of the linearised plasmids were dephosphorylated by calf 
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intestinal alkaline phosphatase (CIP). Briefly, 1 µg DNA was suspended in the supplied NEB 

buffer before 1.0 U CIP was added and incubated for 60 min at 37 °C. DNA was purified by 

agarose gel electrophoresis.  

2.2.8 Ligation reaction 

The desired DNA fragment and the appropriate linearised plasmid were mixed in approximately 

equimolar amounts. T4 DNA ligase and ligation buffer containing ATP were added as indicated 

below and the ligation reaction left overnight at 10-12 ºC. 

Ligation reaction 

Linearised vector  

DNA fragment  

2 µl 10X ligation buffer 

1.5 U T4 ligase 

add H2O to make 20 µl 

2.2.9 Polymerase chain reaction (PCR)  

PCR can be used for in vitro amplification of DNA fragments (Saiki et al., 1985). A double 

stranded DNA (dsDNA) serving as a template, two oligonucleotides (primers) complementary to 

the template DNA, deoxyribonucleotides and heat resistant Taq polymerase are required for this 

reaction. Primers are designed as required (Table 2.1). The first step in PCR reactions involves 

the denaturing of dsDNA at 95 °C. Second, the reaction mix is incubated at different annealing 

temperatures, depending on the G/C content of the primers. The third step is the elongation step 

with a temperature of 68-72 °C that allows the elongation of the new strand of DNA by the Taq 

polymerase. A PCR machine (thermocycler) can be programmed to regulate these different 

cycles automatically. A “standard program” is presented in the table 2.2. 

 

Table 2.1 Primers and primer sequences used in the present study 

primer name sequence 

XBP-1F 5'-GGAGTTAAGACAGCGCTTGG-3' 

XBP-2R 5'-ACTGGGTCCAAGTTGTCCAG-3' 
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Table 2.2 Standard PCR programme used in the present study 

step cycles temperature time 

Initial denaturation 1 95 °C 1 min 

Denaturation 25-35 95 °C 50 s 

Annealing  25-35 55-68 °C 50 s 

Elongation 25-35 68 °C 1-15 min 

Final elongation 1 68 °C 7 min 

Cooling  1 4 °C  

 

2.2.10 Collagen II cDNA and patient derived mutations 

Human collagen II cDNA of 4.5 kb including the poly adenylation signal was kindly provided by 

Fibrogen Europe. In the present work, the shorter isoform of collagen II was used (Nah & Upholt 

1991, Sandell et al. 1991). Table 2.3 summarizes the patient based and artificial mutations which 

were selected for this study, all mutations selected lie in the triple helical domain of the protein.  

Table 2.3 Selected mutations used for the present study. The number represents the amino acid 
position from the start of triple helical region. 

position in Gly-X-Y X  Y  

 position amino acid exchange position amino acid exchange 

 134* Arg → Cys 75a Arg → Cys 

 704b Arg → Cys 789c Arg → Cys 

 740* Arg → Cys   

* artificial mutation, a Williams et al 1993, b Ballo et al 1998, c Chan et al 1993 

2.2.11 Subcloning of collagen II cDNA 

Due to the size of the full length cDNA, collagen II cDNA was subcloned into smaller fragments 

which were ligated into pBluescript KS+ vector and used for site directed mutagenesis. After 

confirmation of the positive clones by restriction analysis and sequencing, the insert was removed 

and ligated back into the original vector to obtain the complete collagen II cDNA backbone with the 

desired mutation. The subcloning strategy is illustrated in figure 3.1.  
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2.2.12 Site directed mutagenesis 

Site directed mutagenesis was carried out using the XL Quick Change mutagenesis kit from 

Stratagene following the manufacturers protocol. Fig 2.5 illustrates the procedure. In brief, 

mutagenesis was carried out by designing specific primers carrying single or double nucleotide 

changes in the middle of the primers leading to the mutation of interest. After sequencing of the 

wild type collagen II cDNA an unwanted mutation at codon 52 with a histidine in place of proline 

was identified. Since this mutation lies in the N-propeptide region, there was a need to correct it by 

site directed mutagenesis. Primers were designed (His Pro) possessing the desired change along 

with a silent mutation leading to a new restriction site Xma I, which facilitate identification of 

positive clones by restriction digestion. The primers used for respective site directed mutagenesis 

are listed in the table 2.4. 

Table 2.4 Primer pairs used for site directed mutagenesis 

primer name sequence 

 75F 5’-GGTCCTCAGGGTGCTTGTGGTTTCCCAGG-3’ 

 75R 3’-CCTGGGAAACCACAAGCACCCTGAGGACC-5’ 

 134F 5’-CTGGTGAAAGAGGATGCACTGGCCCTGCTG-3’ 

 134R 3’-CCAGCAGGGCCAGTGCATCCTCTTTCACC-5’ 

 704F 5’-GGAGCTGCTGGGTGCGTTGGACCCCC-3’ 

 704R 3’-GGGGGTCCAACGCACCCAGCAGCTCC-5’ 

 740F 5’-CCCCCTGGCTGCGCTGGTGAACCCGG-3’ 

 740R 3’-GGGTTCACCAGCGCAGCCAGGGGGG-5’ 

 789F 5’-GGTCTGCCTGGGCAATGTGGTGAGAGAGGATTCC-3’

 789R 3’-GGAATCCTCTCTCACCACATTGCCCAGGCAGACC-5’ 

 His ProF 5’-GACCCAAAGGACCTCCCGGGCCTCAGGG-3’ 

 His ProR 3’-CCCTGAGGCCCGGGAGGTCCTTTGGGTC-5’ 

Numbers 75, 134, 704, 740 and 789 stand for the amino acid residue numbered from the start of the triple helix 
where the mutation of interest is located. His Pro stands for the primers used to correct the unwanted mutation 
histidine to proline (see details in the text). Nucleotides marked in bold indicate the nucleotide change to introduce 
the mutation of interest. 
 

The tubes were gently mixed and a standard PCR was run as shown in Table 2.1 with 18 cycles 

using an annealing temperature of 60 °C for 50 s and an elongation step of 15 min at 68 °C in 

each cycle. A final elongation step at 68 °C for 7 min was followed. After the PCR reaction, the 
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enzyme Dpn I was added to each tube to digest the parental DNA and samples were incubated 

for 2 h at 37 °C. 

Table 2.5 Standard reaction mixture for site directed mutagenesis.  

compound amount 

10X reaction buffer 5.0 µl 

cDNA template 2.0 µl (40 ng) 

primer F 1.25 µl (125 ng) 

primer R 1.25 µl (125 ng) 

dNTP mix (10 mM) 1.0 µl 

Quick solution 3.0 µl 

dd H20 36.5 µl 

Pfu Turbo DNA polymerase 1.0 µl 

 

10 µl of each sample was run on a 1% agarose gel. Another 10 µl was used for transformation of 

XL10 – Gold ultracompetent cells (Stratagene) and SURE cells. In brief, the ultra competent 

cells were thawed on ice. 2 µl of ß-mercaptoethanol was added to 25 µl of each cell suspension, 

swirled gently and incubated on ice for 10 min with occasional swirling. 10 µl of Dpn I digested 

DNA was added to the cells, swirled gently to mix and incubated for 30 min on ice, heat pulsed 

for 30 s at 42 °C and incubated again for 2 min on ice. Finally 0.5 ml of LB or SOC medium was 

added and incubated at 37 °C for 1h at 250 rpm shaking. 200 µl of the transformation mixture 

was plated on a LB-ampicillin agar plate and incubated at 37 °C for at least 16 h. 

 

SOC medium 

20 g Bacto-tryptone  

5 g Bacto-yeast extract  

0.5 g NaCl    

2.5 ml 1 M KCl    

add H2O to make 1000 ml 

pH to 7.0 with 10 N NaOH 

add 20 ml of sterile 1 M glucose before 

use after autoclaving 

Luria-Bertani (LB) Medium 

10 g Bacto-tryptone 

5 g Bacto-yeast extract 

10 g NaCl 

add H2O to make 1000 ml 

Autoclave 

 

 



  Material and methods 
 

 28

 

 

Fig. 2.5: Schematic representation of XL10 quick change site directed mutagenesis. A detailed description of 
the figure is explained in the text. 
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2.2.13 Removal of the collagen II signal peptide 

Before cloning into the mammalian expression vector pCEP-Pu, the signal peptide of collagen II 

cDNA had to be removed since pCEP-Pu bears a BM-40 signal peptide. Primers (Table 2.6) 

were designed to have the Nhe I overhangs at the 5’ end of the forward primer and start of 

collagen II cDNA without the signal peptide. The reverse primer was 1.4 kb downstream. The 

PCR product was cloned into pBS KS+ vector after digesting both the PCR product and the 

vector with Nhe I and Sac II. This insert after sequencing was excised from the vector and 

cloned into collagen II cDNA which was excised from pBS KS+ vector by Spe I and EcoR V 

and cloned into pSL 1180 vector.  

Table 2.6. Primers used for deletion of the signal peptide sequence from the collagen II 
cDNA 

 primer name sequence 

 Nhe I SP-F 5’-GCCGCTAGCCCAGGATGTCCGGC-3’ 

 Sac II-R 3’-GGAAACCGCGGTTGCCGGGAGC-5’ 

2.2.14 Screening for recombinants and sequencing  

Colonies obtained were individually picked and inoculated into sterile LB media containing 200 

µg/µl of ampicillin and were allowed to grow for 12 h. Plasmid DNA was isolated by a slightly 

modified method based on a commercially available Qiagen kit as per the manufacturer’s 

instructions. 2 µl was used to check for size and purity on a 1% agarose gel and further 

confirmation obtained by restriction digestion. 1 µl of the plasmid preparation was mixed with 1 

µl of primer (125 ng) and sequenced at the service facility of the Centre for Molecular Medicine, 

University of Cologne by modified dideoxy nucleotide termination method using a ‘Perkin 

Elmer ABI prism 377’ DNA sequencer. 

2.2.15 Eukaryotic expression vector 

pCEP-Pu with an N-terminal his6-myc tag was used as the basic mammalian expression system 

(Wuttke et al. 2001). Wild type and mutated collagen II cDNA was excised from pSL1180 using 

Nhe I and Bam HI and then ligated into the pCEP-Pu expression vector which was digested with 

the same enzyme and dephosphorylated. 10 µl ligation mixture was transformed into SURE cells 

and plated these on LB agar plates containing ampicillin and grown overnight. Colonies were 

picked and the plasmid isolated from 2 ml cultures. These clones were screened by restriction 

digestion and positive clones sequenced. 
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2.2.16 RNA isolation from cultured HT1080 cells 

Total RNA was isolated from transfected HT1080 cells grown in 6 well plates using the TRIZOL 

reagent (Invitrogen) as per the manufacturer’s instruction. Briefly, 3 x 105 cells which were 

transfected in six well plates were rinsed with PBS and 1 ml of TRIZOL reagent was added to 

lyse the cells. This homogenate was transferred to an RNase free microfuge tube and incubated 

for 5 min at room temperature to permit the complete dissociation of nucleoprotein complexes.  

0.2 ml of chloroform per 1 ml of TRIZOL reagent was added, mixed well by vortexing for 15 s 

and incubated for 2 to 3 min. Samples were centrifuged at 12,000 g for 15 min at 2 °C. During 

centrifugation the mixture separated into a lower red phenol-chloroform phase, an interphase, 

and a colorless upper aqueous phase. RNA remained exclusively in the aqueous phase which was 

carefully transferred to a fresh tube without transferring any of the interphase material. RNA was 

precipitated from the aqueous phase by mixing with 0.5 ml isopropyl alcohol and incubating the 

samples at room temperature for 10 min followed by centrifugation at 12,000 g for 10 min at 2 

°C. The RNA precipitate obtained was washed with 70% ethanol to remove all traces of 

isopropanol and centrifuged again. The RNA pellet was reconstituted in 20 µl of DEPC water.  

2.2.17 Reverse transcription  

Isolated RNA was converted into cDNA using reverse transcriptase (Superscript II, Invitrogen) 

and an Oligo-dT-Primer. 2 µl of total RNA was mixed with 25 µM Oligo-dT-Primer and the 

volume adjusted to 12 µl with DEPC water. Secondary structures in the RNA were removed by 

incubating for 10 min at 70 °C and then cooling on ice. The reaction mixture containing 0.5 µl 

reverse transcriptase (200 U/µl), 4 µl enzyme buffer, 0.5 µl RNase-inhibitor (40 U/µl, Roche), 1 

µl dNTP mix (10 mM mix of  dATP, dGTP, dCTP, dTTP) und 2 µl 0.1 % DTT  was added and 

incubated for 50 min at 42 °C. The reaction was stopped by denaturing the enzyme by heating to 

72 °C. cDNA obtained was frozen at -20 °C and 1 µl of this cDNA was used for polymerase 

chain reaction. 

2.3 Cell biology methods 

2.3.1 Cell culture and maintenance of 293 EBNA and HT1080 cells  

293 EBNA cells (Invitrogen) derived from human embryonic kidney and HT1080 (CCL-121 

from ATTC) cells derived from human fibrosarcoma were cultured in DMEM-F12 containing 

200 U/ml penicillin, 200 µg/ml streptomycin, 20 mM L-glutamine and 10 % FBS (Biochrom), 

from now on referred to as standard medium, at 37 °C in a humified incubator with a 5 % CO2 
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atmosphere. Media were supplemented with 100 µg/ml ascorbate during expression of 

recombinant collagens since ascorbate acts as a cofactor for proline hydroxylation during 

collagen biosynthesis.  

2.3.2 Transfection 293 EBNA and HT1080 cells with FuGene6  

6 µl of FuGene6 (Roche) reagent was added to a microfuge tube containing 94 µl of serum free 

medium, after 5 min incubation this solution was added to another microfuge tube containing 1 

µg of plasmid DNA. The reaction mixture was mixed well and incubated for 15 min at room 

temperature. The suspension was again mixed and added dropwise on to cells which were at 70 

% confluency. After 24 h fresh medium was added, containing 1 µg/ml puromycin if the cells 

were to be selected. 

2.3.3 Isolation and culture of bovine chondrocytes   

Bovine humeroscapular joints of 18–24 month old animals were obtained from the local 

slaughterhouse. Aseptically, cartilage tissue was exposed, scraped and collected. Chondrocytes 

were isolated by sequential digestion with pronase (0.4 % w/v; 1.5 h at 37°C) and collagenase P 

(0.025% w/v; overnight at 37 °C) in DMEM containing 5% v/v FBS and 50 µg/ml gentamicin. 

The isolated chondrocytes were plated at a density of 3×104 cells/cm2. After reaching confluency 

cells were subcultured twice a week and grown in standard medium containing ascorbate. 

2.3.4 Passaging of cell lines 

When the cells had grown to confluency cell culture media were aspirated and the cells washed 

once with sterile phosphate-buffered saline (PBS; 137 mM NaCl, 2.7 mM KCl, 4.3 mM 

Na2HPO4 7H2O, 1.4 mM KH2PO4, pH 7.4) to remove all traces of serum that contains trypsin 

inhibitor. Cells were detached from the surface using a minimal volume of 0.05% trypsin and 

0.02% EDTA in PBS, pH 7.4. Cells that were difficult to detach were placed at 37 °C to 

facilitate dispersal, fresh growth medium supplemented with serum added to neutralize the action 

of trypsin and cells aspirated by gentle pipetting. If required, cells were counted before 

aliquoting into new culture vessels or split 1:4 during routine cell culture. Cultures were 

incubated at 37 °C. 

2.3.5 Freezing cells for storage 

Cells were trypsinised, resuspended in growth medium supplemented with 20% FBS and 10% 

DMSO (Sigma-Aldrich) which acts as cryoprotectant. Cells were transferred into cryotubes 
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which were slowly cooled down to -80 °C in a cryobox containing isopropanol.  24 hours later 

they were placed in liquid nitrogen for longer conservation.  

2.3.6 Thawing of frozen cells  

Frozen cryotubes containing the cells were rapidly defrosted in a 37 °C water bath. The thawed 

cell suspension was diluted in standard medium and centrifuged at 1000 g for 5 mins to remove 

DMSO. The cells were then resuspended in fresh standard growth medium.  

2.3.7 Cell counting  

Cells were trypsinised, collected by centrifugation (1000 g, 5 min) and resuspended in a small 

volume of medium. A 10 µl aliquot was introduced in a Neubauer’s chamber with a pipette, cells 

counted and the cell number per ml calculated. 

2.3.8 Immunofluorescence staining 

Sterile glass cover slips were washed with 1 N HCl, sterile water and 70% ethanol. After drying, 

they were placed in a 24 well culture plate and sterilized under UV light for 20 min. 25,000 cells 

were added into each well and grown overnight. Cells were transfected with Fugene6 as 

mentioned above and next day the media were replaced with fresh standard medium containing 

100 µg/ml ascorbate. Depending on the experimental requirements, cells were fixed either two or 

three days after transfection at room temperature with a freshly prepared 4% paraformaldehyde 

solution in PBS for 15 min and subsequently permeabilised with 1% Triton-X100 in PBS for 4 

min. Immediately, cells were washed three times with PBS followed by blocking with 1% 

normal goat serum (NGS) for 30 min to avoid unspecific binding of antibodies. Subsequently the 

fixed cells were incubated with the primary antibodies in PBS for 60 min and washed four times 

with PBS before applying the fluorochrome conjugated secondary antibodies in PBS for 60 min. 

Cells were washed three times with PBS to remove unbound secondary antibodies and incubated 

with bisbenzimide (Sigma, 0.1 µg/ml) for 5 min to stain the nuclei, followed by two additional 

washing steps to remove unbound bisbenzimide. Cover slips containing stained cells were 

carefully lifted from wells and mounted on histoslides with fluorescent mounting medium 

(DAKO). All the steps after adding secondary antibody were performed in dark. The list of 

primary and secondary antibodies used is shown in the table 2.7. 
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Table 2.7 List of primary and secondary antibodies used in immunofluorescence 

Antibody Dilution Company 

Primary antibodies   

Mouse monoclonal anti-c-myc 1:1000 Santa Cruz 

Rabbit polyclonal anti-c-myc 1:1000 Santa Cruz  

Mouse monoclonal anti-Golgi 58K protein 1:1000 Sigma 

Mouse monoclonal anti-PDI (ER marker) 1:1000 Stress Gene 

Rabbit polyclonal anti-Grp78 (BiP) 1:1000 Stress Gene 

Mouse monoclonal FITC conjugated rabbit anti-active 

caspase-3 

1:500 BD Biosciences 

Secondary antibodies   

Alexa 488 goat anti-rabbit IgG 1:1000 Molecular Probes 

Alexa 546 goat anti-rabbit IgG 1:1000 Molecular Probes 

2.3.9 Image analysis  

Immunofluorescence stainings were observed with an inverted fluorescence microscope. Digital 

images obtained were acquired with the Metamorph software and processed using Adobe 

Photoshop. 

2.3.10 Comet assay or single cell gel electrophoresis (SCGE) 

Fully frosted slides were precoated with 1 % solution of normal agarose in PBS and allowed to 

dry, this layer supports the attachment of the cell containing agarose layer. Single cell 

suspensions obtained by trypsinisation were counted, diluted to give approximately 5 x 104 

cells/ml and reduced to 100 µl volume by centrifugation. 80 µl of each final suspension was 

added to 400 µl of 0.5% low melting agarose maintained at 37 °C and 90 µl of this suspension 

was pipetted onto a precoated slide. An additional 1% low melting agarose layer without cells 

was added after solidification of the above layer. After solidification, the slides were placed in 

alkaline lysis solution (2.5 M NaCl, 100 mM EDTA, 10 mM Tris-HCl, 1% Triton X-100, 10% 

DMSO, pH to 10.0) and the cells were lysed in the dark at 4 °C for 1 h. Slides were then rinsed 

for 30 min in three changes of neutralizing solution (400 mM Tris-HCl, pH 7.5) to remove all 

detergents and salts. After rinsing, slides were placed side by side in a horizontal electrophoresis 

chamber containing freshly made electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH>13) 
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and incubated in the alkaline buffer for 20 to 60 min to allow unwinding of the DNA. The slides 

were subjected to electrophoresis at 0.6 V/cm for 30 min. Following electrophoresis, the slides 

were rinsed with neutralisation buffer twice, stained with 100 µl ethidium bromide solution (10 

mg/ml) and scored immediately or dried in cold 100 % ethanol before storage. Comets were 

visualized using an inverted fluorescence microscope and evaluated using TriTek CometScore™ 

software. 

2.3.11 Nick labelling  

Apoptosis was detected using the DeadEnd™ Fluorometric TUNEL System from Promega 

following a slightly modified manufacturer’s protocol. Briefly, four days post transfection cells 

were fixed by immersion in 4% paraformaldehyde solution for 25 min, washed twice in PBS for 

5 min and permeabilized by adding 0.2% Triton X-100 solution in PBS for 5 min.  After washing 

in PBS cells were incubated in 100 µl of equilibration buffer at room temperature for 5–10 min.  

Cells were incubated with 50 µl of reaction buffer (rTdT incubation buffer) at 37 °C for 60 min 

inside a dark humidified chamber to allow for the tailing reaction, which was terminated by 

adding 2X SSC for 15 min. Cover slips were washed with PBS twice to remove unincorporated 

fluorescein-12-dUTP. Bisbenzimide (0.1 µg/ml in PBS) was added for 5 min to stain the nuclei 

and cells were washed twice to remove unbound bisbenzimide. Cover slips were washed once 

with deionized water for 5 min at room temperature and excess water was drained and blotted 

with tissue paper. Cover slips were mounted on histoslides with DAKO mounting medium. 

 

Equilibration buffer 

200 mM potassium cacodylate (pH 6.6) 

25 mM Tris-HCl (pH 6.6) 

0.2 mM DTT 

0.25 mg/ml BSA 

2.5  mM cobalt chloride 

Nucleotide mix 

50 µM fluorescein-12-dUTP 

100 µM dATP 

10 mM Tris-HCl (pH 7.6) 

1 mM EDTA 

rTdT incubation buffer 

Combine the following: 

90 µl equilibration buffer 

10 µl nucleotide mix 

2 µl rTdT enzyme 

20X SSC 

87.7 g NaCl 

44.1 g sodium citrate 

pH 7.2 
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2.3.12 Transduction of chondrocytes and transgene expression 

First generation and high capacity gutless adenoviral particles were transduced by addition of 10 

to 1000 moieties of infection (MOI). This was added with 0.75 ml of fresh culture medium to 

each well of a six-well plate containing 3 x 105 adherent cells and incubated at 37 °C. Transgene 

expression in chondrocytes was monitored by the EGFP expression using fluorescence and phase 

contrast microscopy. 

2.3.13 Cell toxicity 

Trypsinised cells were collected and washed with PBS. After adding equal amounts of trypan 

blue (0.5% w/v in 0.9% NaCl) to the cell suspensions, cells were immediately counted in a 

Neubauer’s chamber and simultaneously compared with the number of live cells expressing 

eGFP using fluorescent microscopy. 

2.4 Biochemical methods 

2.4.1 Harvesting of supernatants from 293 EBNA cells 

Transfected and selected 293 EBNA cells were expanded in standard growth medium 

supplemented with 50 µg/ml β-aminopropionitrile to avoid crosslinking of expressed collagens. 

On reaching confluency the FBS was reduced to 2%. Cell culture supernatants were harvested 

every day and fresh media supplemented with fresh ascorbate and β-aminopropionitrile were 

added. 

2.4.2 Isolation and purification of collagens from the supernatants 

Immobilized-metal affinity chromatography (IMAC) was used for purification of recombinantly 

secreted collagens with N-terminal his-tags. Supernatants were thawed and the protease 

inhibitors PMSF (0.5 mM) and NEM (0.5 mM) added. Supernatants (pH adjusted to 8.0) were 

filtered through Whatman filter paper to remove suspended particles and the filtrate was loaded 

onto a column already packed with 2 ml Ni-NTA superflow matrix (Qiagen) at the rate of 1 

ml/min at 4 °C. After complete loading of the supernatants the impurities and unspecifically 

bound proteins were washed off the column with 50 ml buffer A and the bound native proteins 

eluted with buffer B. 
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Buffer A/Wash buffer  

50 mM NaH2PO4 

300 mM NaCl  

20 mM imidazole  

0.05% Tween 20 

Adjust pH to 8.0 using NaOH 

Buffer B/Elution buffer 

50 mM NaH2PO4 

300 mM NaCl  

250 mM imidazole  

Adjust pH to 8.0 using NaOH 

2.4.3 Estimation of protein concentration 

The concentration of purified collagen II variants was determined by the bicinchoninic acid 

assay (BC assay protein quantitation kit, Uptima) as per the manufacturer’s instructions. Pepsin 

extracted collagen from bovine nasal septum (Sigma) was used as an additional standard along 

with BSA. 

2.4.4 SDS polyacrylamide gel electrophoresis (SDS PAGE) 

SDS polyacrylamide gel electrophoresis was performed using the buffer system of Laemmli 

(1970). Gels were prepared using glass plates of 10 cm x 7.5 cm and spacers of 0.5 cm thickness. 

A 15 well comb was generally used for formation of the wells in the stacking gel. The 

composition of 8% resolving and 4% stacking gels is given in Table 2.8. 

Protein samples were mixed with an equal volume of 2X SDS sample buffer whereas cells were 

lysed and resuspended in 1X SDS sample buffer. Before loading, samples were reduced and 

denatured by adding 5% β-mercaptoethanol and heating at 95 ºC for 5 min. A molecular weight 

marker (NEB), run simultaneously on the same gel in an adjacent lane, was used as a standard to 

establish the apparent molecular weights of proteins resolved on SDS polyacrylamide gels. 

Table 2.8. Compostion of stacking and separating gels for SDS PAGE  

component stacking gel 4% separating gel 8% 

AA/Bis (30 %/0.8 %) 

1 M Tris pH 8.8 

1 M Tris pH 6.8 

H
2
O 

10% SDS 

10% APS 

TEMED 

4.1 ml 

- 

3.7 ml 

22.3 ml 

300 µl 

300 µl 

41 µl 

7.2 ml 

10.2 ml 

- 

9.2 ml 

300 µl 

95 µl 

24 µl 
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The molecular weight markers were prepared according to the manufacturer’s specifications. 

Pepsin extracted collagen II (Sigma) was used as an additional molecular standard marker. After 

loading the samples onto the gel, electrophoresis was performed in 1X running buffer at a 

constant voltage of 100-150 V until the bromophenol blue dye front had reached the bottom edge 

of the gel or had just run out of the gel. After electrophoresis, the resolved proteins in the gel 

were either stained with Coomassie blue, silver nitrate or transferred onto a nitrocellulose 

membrane for western blotting. 

2X SDS sample buffer 

100 mM Tris-HCl, pH 6.8 

4 % v/v SDS 

20 % v/v glycerine 

0.2 % w/v bromophenol blue 

 

10X running buffer: 

1.9 M glycine 

0.25 M Tris-HCl, pH 8.8 

1% SDS 

 

2.4.5 Coomassie blue staining of SDS-polyacrylamide gels 

The resolved proteins were visualised by staining the gel with Coomassie blue staining solution 

at room temperature with gentle agitation for at least 60 min. Then, the staining solution was 

removed and destaining solution was added. The gel was destained at room temperature with 

gentle agitation with several changes of destaining solution until protein bands were clearly 

visible. 

Coomassie blue staining solution 

0.1% w/v Coomassie blue R250  

50% v/v ethanol 

10% v/v acetic acid 

 filter the solution before use 

Destaining solution 

7% v/v acetic acid 

20% v/v ethanol 

 

2.4.6 Silver staining of gels 

Gels were carefully removed after separation of proteins and fixed by immersing in fixative 

solution for 15 min with two changes of fixative. To this 50 ml of sensitizer was added and 

incubated for 20 min. Gels were rinsed in demineralised water three times for 5 min each. 0.1 % 

silver nitrate solution was added and incubated for 15 min before the gel was quickly rinsed with 

demineralised water. 40 ml of developer was added and the reaction was stopped by adding the 

fixative solution as soon as bands appear. 
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Fixative 

250 ml methanol 

25 ml acetic acid 

to 500 ml with water 

 

 

 

 

Silver nitrate solution 

0.5 g silver nitrate 

to 500 ml with water 

80 µl of formalin  

added freshly to every 50 ml solution 

Sensitizer 

150 ml ethanol 

27.2 g sodium acetate 

1.5 ml acetic acid 

10 ml glutaraldehyde (25 %) 

0.5 g sodium thiosulfate pentahydrate 

to 500 ml with water 

 

Developer  

541 µl formalin 

10 g sodium carbonate 

to 500 ml with water 

 

2.4.7 Transfer of proteins to nitrocellulose membranes 

Proteins resolved on the gel were transferred electrophoretically to a nitrocellulose membrane in 

transfer buffer at a constant current of 100 mA overnight at 4°C. After transfer the membrane 

was stained in 10-15 ml of Ponceau S (Serva) solution for 2-5 min at room temperature to check 

the transfer of proteins. After staining, the membrane was removed from the Ponceau S solution 

and rinsed with water to destain until protein bands were visible and the background was clear. 

The positions of the constituent proteins of the molecular weight marker were marked and the 

membrane washed with TBS to completely remove the stain. 

2.4.8 Immunodetection of membrane bound proteins 

Nitrocellulose membranes with bound proteins were blocked with 5% low fat milk powder in 

TBS for 1 h. The membrane was incubated 1 to 2 h at room temperature with primary antibody 

diluted appropriately in 5% low fat milk powder in TBS followed by three washes of 5 min each 

in TBST buffer. Appropriately diluted secondary antibody coupled with horseradish peroxidase 

was added to the membrane and incubated at room temperature for one hour. Finally the 

membrane was rinsed in TBST buffer three times for 5 min each to remove unbound antibody 

and the reaction was detected using an chemiluminescence detection system. The light signals 

were captured by exposure to X-ray film (RX-Super, Fujifilm). 
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Table 2.9. List of primary and secondary antibodies used in Western blot 

Antibody Dilution Company 

Primary antibodies   

Mouse monoclonal anti-c-myc 1:1000 Santa Cruz  

Rabbit polyclonal anti-c-myc 1:1000 Santa Cruz 

Goat polyclonal anti-collagen II 1:1000 Chemicon 

Secondary antibodies   

Peroxidase conjugated anti-goat IgG 1:1000 Dako 

Peroxidase conjugated anti-rabbit IgG 1:1000 Dako 

Peroxidase conjugated anti-mouse IgG 1:1000 Dako 

 

Transfer buffer 

50 mM boric acid, pH 8.5 

10 % methanol 

ECL detection 

100 mM Tris-HCl pH 8,5  

1.25 mM luminol 

225 nM coumarin 

0.03 % hydrogen peroxide 

2.4.9 Trypsin digestion of purified collagen II proteins 

10 µl of trypsin solution (100 µg in 10 mM EDTA) was added to 50 µl of eluted protein (50 

µg/ml of protein) at pH 8.0 and incubated at 25 oC for 2 min. The reaction was stopped by 

adding 5 µl of soyabean trypsin inhibitor and 50 µl 2X SDS PAGE sample. Samples were boiled 

at 95 oC for 10 min, resolved on 8% SDS PAGE gels and subsequently the proteins detected by 

silver staining. 

2.4.10 Measurement of circular dichroism spectra and melting curves 

Purified collagen II proteins were dialyzed in 100 mM acetic acid and the concentration was 

adjusted to 60 µg/ml. 200 µl of this solution was used to measure the spectrum between 190 nm 

and 280 nm using a Jasco J-715 Polarimeter at 4 oC. Melting curves were registered  at 222 nm 

with  in a temperature range of 10 °C to 55 °C at increments of 1 °C /min. 
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2.4.11 Negative staining of collagens for electron microscopy 

Purified recombinant collagen II proteins and its variants were adsorbed to 400 mesh carbon-

coated copper grids, which had been rendered hydrophilic by glow-discharge at low pressure in 

air. The grids were immediately blotted, washed with two drops of water, and stained with 0.75 

% uranyl formate for 15 s. Samples were observed in a Jeol 1200 EX transmission electron 

microscope operated at 60 kV accelerating voltage and 300000X magnification. These 

experiments were performed at the University of Lund in cooperation with Dr. M. Mörgelin. 

2.4.12 Inhibition of proteolytic processing of collagen II using specific 
inhibitors 

Three days after transfection, HT1080 cells in six well plates were washed with medium and 

fresh medium, supplemented with 100 µg/ml of ascorbate and 50 µM proteasomal inhibitor 

MG132 (10 mM stock in DMSO) was added. Supernatants were collected 6 h, 12 h and 24 h 

respectively and resolved on an 8 % SDS-PAGE. Collagen II and fragments thereof were 

detected by western blot using an antibody directed against the myc epitope.  

GM6001 is a universal inhibitor of the MMP pathway. Three days after transfection of HT1080 

cells with collagen II constructs, supernatants were collected and the cells rinsed with fresh 

media. 25 µM GM6001 (1 mM stock in DMSO) was added to the growth medium supplemented 

with 100 µg/ml of ascorbate. Supernatants and cell lysates were harvested 48 h after addition of 

the inhibitor and resolved by SDS-PAGE on 8% gels. Collagen II and fragments thereof were 

detected by western blot using the anti-myc antibody. 

2.4.13 Mass spectrometry of purified collagen II variants 

Purified collagen II samples were reduced with 10 mM DTT at 37 oC for 2 h, alkylated with 20 

mM idodoacetamide for 1 h at 37 °C and than reduced again. MALDI-TOF spectra were 

obtained at service facility of the Centre for Molecular Medicine, University of Cologne, using a 

Reflex IV Brucker Daltonics Mass spectrometer. 
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3 Results   

3.1 Subcloning of collagen II cDNA 

Collagen II cDNA in the pBS KS+ vector was subcloned into smaller fragments and these 

fragments were used for site directed mutagenesis to introduce desired point mutations. Attempts 

to introduce specific point mutations in full length collagen II cDNA were futile due to the 

frequent introduction of unwanted mutations. Further the sequence analysis was cumbersome 

due to the high GC content. Fig 3.1 represents a schematic outline of the cloning strategy.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.1 The subcloning scheme for site directed mutagenesis of collagen II cDNA. (A) represents a 1% agarose 
gel of DNA separated after digestion of collagen II cDNA in pBS KS+ with Sac II (Lane 1). Two fragments were 
obtained, the Sac II A fragment was cloned in pBS KS+ vector and used for introducing mutations leading to R75C 
and R134C. The fragment Sac II B was ligated back at the Sac II position and further digested with Sac I. (B) shows 
fragments after digestion of Sac II B with Sac I (lane 2). The Sac I A fragment was used for introducing mutations 
leading to R704C, R740C and R789C. After introducing the desired mutation the inserts was cloned back into the 
backbone vector in the same order. M, 1 kb DNA standard marker. 
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After subcloning of the smaller fragment, the point mutations R75C and R134C were introduced 

in the Sac II A fragment and the mutations R704C, R740C and R789C in the Sac I A fragment. 

After sequence analysis to confirm the mutation of interest the respective fragments were 

digested from their vectors and cloned back into the original backbone vector to give full length 

cDNA with the desired mutation. All the cDNAs were sequenced to rule out unwanted 

mutations. 

3.2 Cloning of collagen II cDNA into pSL1180 vector 

The endogenous signal peptide in the collagen II cDNA had to be removed since the mammalian 

expression vector pCEP-Pu already contains the BM 40 signal peptide. Hence it was necessary to 

clone the collagen II cDNA constructs from the pBS KS+ vector to the pSL1180 vector. After 

mutagenesis, the collagen II cDNA was excised from the pBS KS+ vector by digestion with Spe 

I and Eco RV and then ligated into pSL1180 which was digested with the same enzymes and 

dephosphorylated (Fig 3.2). 

 

 

 

 

 

 

 

 
 
 
 
 
Fig. 3.2 Cloning of collagen II cDNA from the pBS KS+ vector into the pSL1180 vector for deletion of the 
endogenous signal peptide.A 1% agarose gel showing restriction digestion products after digestion with Spe I and 
Eco RV of collagen II cDNA in the pBS KS+ vector (lane 1) and the pSL1180 vector (lane 2). M represents the 
DNA standard marker. 

3.3 Cloning of collagen II cDNA without signal peptide into the 
mammalian expression vector pCEP-Pu 

Collagen II cDNA without endogenous signal peptide was excised from the pSL1180 vector at 

the Nhe I and Bam HI positions and ligated into the pCEP-Pu vector which had been digested 

with Nhe I and Bam HI. Fig 3.3 shows all the collagen II variants after digestion of the pCEP-Pu 

vector. 
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Fig 3.3 Restriction digestion of all collagen II constructs from pCEP-Pu.DNA was separated on a 1% agarose 
gel after restriction digestion with Nhe I and Bam HI of the collagen II cDNA cloned in the mammalian expression 
vector pCEP-Pu. M, DNA standard marker. 

3.4 Transient expression of collagen II proteins in 293 EBNA cells 

Supernatants and cell lysates from 293 EBNA cells transfected with collagen II constructs were 

reduced with mercaptoethanol and proteins separated on a 8% SDS PAGE gel (Fig 3.4). 

Recombinantly expressed collagen II was in all cases detected in the supernatants of transfected 

293 EBNA cells. Significantly higher amounts of proteins were seen in the cell lysates of R740C 

and R789C transfected cells as compared with cells expressing other collagen II variants. In 

addition, the mobility of the R789C protein was altered as compared with other collagens. 

Collagens in the cell lysates migrate slightly higher than those in the supernatants.          

                  

 

 

 

                                                                                                                                                 

 

 
Fig 3.4 Western blot analysis of supernatants and cell extracts of transfected 293 EBNA cells. 293 EBNA cells 
transiently transfected with different collagen II constructs were analysed by western blot for expression of collagen 
II proteins. Supernatants (S) and cell lysates (C) harvested three days post transfection were separated by SDS 
PAGE (8% gel) under reducing conditions and the blot was developed with an antibody directed against the myc 
epitope. NT, non transfected; WT, wild type; R75C, R134C, R134, R704C, R740C and R789C are cells transfected 
with the respective mutated collagen II variants.  
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3.5 Purification of recombinantly expressed collagen II 

To analyze the effect of these mutations by physicochemical and structural methods, proteins 

were purified from the media of 293 EBNA cells. Supernatants were harvested from 293 EBNA 

cells expressing his6-myc-tagged recombinant collagen II constructs and these were subjected to 

affinity chromatography using a nickel-NTA column. The bound protein was eluted with 

increasing imidazole concentrations (up to 250 mM). Fractions containing collagen II variants 

were separated by SDS PAGE and the gels subjected to Coomassie blue staining. Fig 3.5 shows 

respresentative gels from the purification of the wildtype and R789C constructs. 

      

 

 

 

                             

                             

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.5 Protein fractions from various stages of collagen purification resolved on 8% SDS PAGE gels stained 
with Coommassie blue. Panel A depicts a Coomassie stained gel of fractions from wild type collagen II and panel 
B shows the corresponding gel for R789C mutant collagen.S1, S2, cell culture supernatants; F1, flow through; W1, 
wash; E1 to E9, elution fractions 1 to 9; M, marker; SC, pepsin extracted collagen II (Sigma)  
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3.6 Coomassie staining of purified collagen II variants  

The concentrations of the purified collagen II proteins were measured and 1 µg of each variant 

was resolved on an 8% SDS PAGE gel and stained with Coomassie blue as shown in the Fig 3.6. 

Trimeric bands representing collagen II (with both the propeptides, with one propeptide and fully 

processed) as indicated by arrow marks were visible in samples of WT, R75C, R134C, R704C 

and R740C collagens. In the R789C sample a distinct single band migrating lower than all other 

variants, including the pepsin extracted collagen, was observed. 

 

 

 

 

 

 

 

 

 
Fig 3.6 Coommassie blue stained SDS-PAGE gel of all the purified collagen II variants. Triple bands as 
indicated by arrows represent the WT, R75C, R134C, R704C and R740C collagen in contrast to a single band 
migrating lower for R789C. M, protein standard; SC, pepsin extracted collagen II (Sigma).  
 

3.7 Immunoblot of purified collagen II variants 

The purified collagen II proteins were analysed by western blot using antibodies specific for 

collagen II and the N-terminal tag, respectively. With both antibodies two bands were detected, 

with the upper one being more prominent when detected with antibody directed against the myc 

epitope (Fig 3.7 A) and the lower band more intense when detected with anti-collagen II (Fig 3.7 

B). The anti-myc antibody detects the upper band which most probably corresponds to the full 

length procollagen II. Also the purified R789C migrated at a lower position than the other 

collagen II variants and the protein was intact at the N-terminal end as it could be detected with 

the anti-myc antibody.  
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Fig 3.7 Western blot analysis of all the purified collagen II variants. Purified recombinant proteins were resolved 
on 8% SDS PAGE gels and the blots developed using antibodies against collagen II (A) and the myc epitope (B), 
respectively. 
 

3.8 Trypsin digestion of different collagen II variants    

To determine the triple helical stability of different collagen II variants, these were subjected to 

trypsin digestion. A single collagen II polypeptide has 135 potential trypsin cleavage sites. In the 

case of collagen II forming stable triple helical trimers, these sites are not exposed and therefore 

not accessible to trypsin. Only the N- and C-propeptides are cleaved. Fig 3.8 shows silver stained 

gels of all collagen II variants before and after trypsin digestion. WT, R75C, R134C and R704C 

collagens were trypsin resistant, indicating that the secreted protein has formed a stable triple 

helix. R740C and R789C collagens were susceptible to trypsin digestion and completely 

degraded. This implies that the secreted R740C and R789C proteins are not forming stable triple 

helical structures.   
 

Fig 3.8 Silver stained SDS-PAGE gel after trypsin digestion of the purified collagen II variants to analyse 
their triple helical integrity. Collagen II variants were tested by digestion with trypsin at 25 °C for 2 minutes 
followed by SDS-PAGE. The collagens were visualized by silver staining. Left panel; collagen variants incubated 
without trypsin, and right panel; with trypsin. R740C and R789C collagens were extensively degraded, whereas for 
all the other constructs a single band of the size of the triple helical domain remained. 
 

A B

WT   
R75C  

R134C  

R704C  

R740C  

R789C 

WT R75C
R134C

R704C
R740C

R789C

-trypsin +trypsin

175

83

WT   
R75C  

R134C  

R704C  

R740C  

R789C 

WT R75C
R134C

R704C
R740C

R789C

-trypsin +trypsin

175

83

WT   
R75C  

R134C  

R704C  

R740C  

R789C 

WT R75C
R134C

R704C
R740C

R789C

-trypsin +trypsin

175

83



  Results 
 

 47

3.9 Circular dichroism of purified collagen II proteins 

The folding of triple helical collagens can be analysed by CD spectroscopy. At 222 nm a typical 

collagen spectrum shows a positive ellipticity indicating a triple helical structure. In case of a 

unstable structure, e.g. as a result of low hydroxylation, the ellipticity shifts below zero at 222 

nm. The CD spectra of the purified collagen II variants are shown in Fig 3.9. WT, R75C, R134C, 

and R704C proteins displayed normal collagen II spectra indicating a high triple helical content 

and a stable overall structure. The structure of the collagen II mutants R740C and R789C was 

clearly affected when compared to wild type collagen and the spectra indicate a decreased triple 

helical content in these proteins. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig  3.9 CD spectra of purified collagen II variants. Spectra were recorded using collagens at a concentration of 
60 µg/ml after dialysis against 100 mM acetic acid. The structure of the mutant collagen II proteins R740C and 
R789C were altered as compared with other collagen II variants and the shape of the spectra indicate a decrease in 
triple helical structure. 
 

3.10 Melting curves of purified recombinant collagen II proteins 

Purified collagens were subjected to incremental heating with simultaneous measurement of 

molar ellipticity at 222 nm. The temperature where 50% of the triple helical structure is lost is 

defined as the melting temperature (Tm) of the respective collagen. Tm depends on the stability 

of collagen triple helix, the more stable the triple helix is the higher the Tm. The melting curves 

of all the purified collagen II proteins are shown in Fig 3.10A. The percentage of folded 

collagens as a function of temperature was determined by using a curve fit model assuming 100 

% initially folded molecules (Fig 3.10B). The curves for WT, R75C, R134C and R704C 
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collagens show similar profiles while R740C and R789C proteins showed a thermal instability as 

compared to the other collagens. The Tm values are summarized in Table 3.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.10 Melting curves of purified collagen II variants. (A)  CD melting curves of collagen II proteins (60 
µg/ml) recorded after dialysis into 100 mM acetic acid at 222 nm with a 1 °C/min temperature gradient from 10 to 
55 °C. (B) The percentage folding using a curve fit model assuming that initially 100 % of the collagen molecules 
were folded. The R740C and R789C proteins displayed a decreased thermal stability when compared to all other 
collagen II variants.  
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Table 3.1 Melting points (Tm) of the purified collagen II variants 

sample melting point (Tm) 

WT 38.6 °C 

R75C 36.2 °C 

R134C 36.1 °C 

R704C 36.1 °C 

R740C 30.2 °C 

R789C 31.5 °C 

 

3.11 Mass spectrometric analysis of purified collagen II proteins 

Purified collagen II proteins were analysed by mass spectrometry to determine the masses of the 

intact protein. Fig 3.11 shows the combined mass spectra for the wildtype, R789C and pepsin 

extracted collagens (SC). Wild type collagen showed a mass of approximately 150.6 kD. This 

value was also obtained for R75C, R134C, R704C and R740C proteins (data not shown). In case 

of R789C collagen the mass of the processed protein was around 92.9 kD (Fig 3.11), lower than 

the mass obtained for pepsin extracted collagen which lacks propeptides (123.9 kD). Table 3.2 

compares the theoretical with the measured mass for all the collagen II variants.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig 3.11 MALDI-TOF spectra of purified collagen II proteins. Wild type collagen II protein (black) gave a 
measured mass of 150.6 kD which includes the mass of the his6 myc tag. The mass of the R789C protein (red) was 
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approximately 92.9 kD. Pepsin extracted collagen from the bovine nasal cartilage, which lacks both propeptides, 
displayed a mass of 123.9 kD (green).  
 

Table 3.2 Comparison of theoretical and measured mass of collagen II variants 

sample mass from MALDI-TOF theoretical mass* 

WT 150.6 kD 136.8 kD 

R789C 92.9 kD 136.8 kD 

SCa  123.9 kD 96 kD 
             *Theoretical mass include the propeptides and tag; a pepsin extracted collagen (Sigma) 

3.12 Negative electron microscopy of purified collagen II proteins 

Purified collagen II proteins were analysed by electron microscopy after negative staining. Fig 

3.12 shows representative electron micrographs of WT, R75C R740C and R789C collagens. 

Characteristic filaments were observed in the WT and R75C samples. R134C and R704C 

collagens displayed similar structures (data not shown). In the R740C and R789C samples the 

characteristic filaments were not seen and the short proteins detected were significantly thinner 

and more sparse. In addition, R75C collagen showed kinks (arrow mark) close to the end of the 

structure. Because of the low contrast in the electron micrographs, selected filaments were 

highlighted to illustrate representative structures. 
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Fig 3.12 Electron micrographs of purified and negatively stained collagen II variants. In the wildtype and 

R75C samples characteristic collagen filaments are seen (redrawn for WT-R and R75C-R). In the R740C-R and 

R789C-R panels these filaments, if at all present, all are thinner and hardly detectable. In R75C collagen kinks were 

consistently seen (arrows). 
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3.13 HT 1080 cells transiently transfected with collagen II constructs 

HT 1080 is a fibroblast derived cell line and was used to study the intracellular trafficking of 

wild type and mutant collagen II. Three days after transfection with collagen II constructs, 

supernatants and cell lysates were analysed. Fig 3.13 shows a western blot developed with 

antibodies directed against the myc epitope. Collagen II was detected exclusively in the 

supernatants of WT, R75C, R134C and R704C cultures. In the R740C culture, protein was found 

in cell lysate and in about equal amounts in the supernatant. In the case of the R789C mutation, 

the protein was almost exclusively detected in the cell lysate indicating significant intracellular 

retention. The R789C collagen mobility was shifted as compared to other collagen II proteins in 

a manner similar to that seen with protein from 293 EBNA cells. 

 

 

 

 

 

 

 

 

 

 
Fig 3.13 Western blot analysis of collagen II variants expressed in HT1080 cells. Supernatants (S) and cell 
lysates (C) from HT1080 cells were analysed three days post transfection with antibodies directed against the myc 
epitope. Significant amounts of R740C and R789C protein were detected in the cell lysates and only a minor portion 
was secreted into the supernatants. 

3.14 Effect of the MMP inhibitor GM6001 on HT1080 cells expressing 
collagen II 

The extracellular degradation of the fibrillar collagens type I, II, and III can occur both at 

nonhelical sites (Liu et al. 1995) and through a triple helix cleavage. This is achieved by 

collagenases, which belong to the family of zinc-dependent endopeptidases called matrix 

metalloproteinases (MMPs). Collagenase-1 or MMP-1 (interstitial collagenase), collagenase-2 or 

MMP-8 (neutrophil collagenase), and the more recently cloned and characterized collagenase-3 

or MMP-13 (Freije et al. 1994 and Knauper et al. 1996) are the only mammalian enzymes known 

to be able to initiate the intrahelical cleavage of triple helical collagen at neutral pH. These three 
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collagenases have the ability to cleave the fibrillar collagens type I, II, and III at a single site 

(Gly 775–Leu/Ile 776) within each chain of the triple helical collagen molecule. 

To investigate if the shift in R789C protein mobility is due to MMP cleavage, GM6001, an 

universal inhibitor for MMPs, was used. Cells expressing wildtype and R789C collagen were 

incubated for two days with the inhibitor. Supernatants and cell lysates from these cells were 

analysed by western blot and detected with an antibody directed against myc epitope (Fig 3.14). 

In the presence of GM6001 significant amounts of R789C proteins remained uncleaved, in 

contrast to what was seen in the absence of the inhibitor. This indicates that the mutation R789C 

is aiding MMPs to cleave collagen II and thereby causes the shift in the mobility when compared 

with wild type protein. In the presence of GM6001, R789C protein can also be detected in the 

supernatant showing that inhibition of cleavage results in increased secretion. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig 3.14 Analysis of proteolytic processing in the absence (left) or presence (right) of the general MMP 
inhibitor GM6001 by western blot. Non transfected cells (NT) and cells expressing wildtype (WT) and R789C 
collagens were treated for two days with GM6001 (25µM). Supernatants (s) and cell lysates (c) were harvested and 
analysed by western blot. After treatment with GM6001 the R789C collagen was partially protected from 
degradation, indicating that the reduced mass or shift in mobility is due to a proteolytic cleavage by MMPs. 

3.15 Effect of proteasome inhibitor MG132 on processing of R789C 

Endoplasmic reticulum (ER)-associated protein degradation (ERAD) eliminates misfolded or 

unassembled proteins from the ER. ERAD targets are selected by a quality control system within 

the ER lumen and are ultimately degraded by the cytoplasmic ubiquitin-proteasome system 

(UPS) (Meusser et al 2005). 
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MG132 is a universal inhibitor used to block the proteasomal degradation pathway. To 

determine if the cleavage collagen occurs at proteasomes. HT1080 cells expressing wildtype and 

R789C collagens were treated with MG132 for 6 h, 12 h and 24 h. Supernatants from these cells 

were analysed by western blotting and collagens were detected with an antibody directed against 

the myc epitope (Fig 3.15). Treatment with MG132 did not affect the mobility of R789C 

collagen when compared with non treated R789C samples. This indicates that the cleavage of the 

R789C mutant does not involve proteasomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3.15 Effect of the proteasomal inhibitor MG132 on R789C protein expression. Supernatants  from cells 
treated for 6 h, 12 h and 24 h with MG132 (50 µM) were analysed with an anti-myc antibody. Lane 1, non 
transfected (NT); lane 2, wildtype collagen II (WT) and lane 3, mutant collagen R789C (R789C). MG132 did not 
show any affect on the collagen II processing in HT1080 cells when compared to untreated control cells (-MG132). 

3.17 ER stress response in collagen expressing HT1080 cells  

XBP-1 is a chaperone involved in the endoplasmic reticulum stress response occurring when 

misfolded proteins are retained in the ER and is used as a marker for this response. It has been 

shown previously that XBP-1 is specifically spliced as a consequence of ER stress. Therefore 

RNA of transfected HT1080 cells was isolated and XBP-1 splicing was investigated by RT-PCR 

using specific primers giving rise to a 248 bp band in the case of unspliced XBP-1 and to a 222 

bp band where XBP-1 is spliced. Fig 3.17 shows the PCR products for XBP-1. In non-
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transfected cells as well as cells transfected with wildtype, R75C, R134C and R704C constructs 

only the unspliced form of XBP-1 was detected whereas in cells transfected with R740C and 

R789C the spliced variant (XBP-S) was also present. This indicates that ER stress response is 

activated in these cells due to the mutation. 

 

 
Fig 3.16 Analysis of stress induced XBP-1 splicing by RT-PCR. mRNA isolated from HT1080 cells was used for 
RT-PCR with primers specific for XBP-1. The PCR product was analysed by agarose gel electrophoresis on 2.5 % 
gels. XBP-1 mRNA could be detected in all cells. Frame switch splicing of XBP-1 (XBP-S) due to ER stress was 
detected in cells transfected with R740C and R789C constructs. 
 

3.18 Immunofluorescence and light microscopy of HT1080 cells 
expressing collagen II variants  

The morphology of transfected HT1080 cells was visualized by light microscopy (Fig 3.17). To 

analyze the intracellular localization of the transfected collagen II variants in HT1080 cells, 

immunofluorescence staining was performed. In addition to the staining for the myc tag, a 

costaining was performed using antibodies directed against compartment specific proteins, e.g 

58K for the Golgi apparatus and PDI for the endoplasmic reticulum (ER). Using these antibodies 

the trafficking of collagen from endoplasmic reticulum to the Golgi apparatus can be followed 

and a potential retention or secretion defect revealed.  
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Fig 3.17 Phase contrast images of HT1080 cells after transfection with indicated collagen II constructs. Cells 
transfected with R740C and R789C constructs were significantly more rounded and spindle shaped as compared 
with other cells. 
 
The non-transfected cells do not show any expression of collagen II, but show the characteristic 

halfmoon shaped perinuclear staining of the Golgi compartment. In cells transfected with wild 

type, R75C, R134C and R704C constructs, expression of collagen II (green) was observed and 

this was significantly colocalised with the signal for the Golgi apparatus, indicating that most of 

the protein has reached this compartment and is in transit for secretion. In  cells transfected with  

the constructs R740C and R789C significant amounts of protein were detected in other 

intracellular compartments leading to a separate green and red signal (Fig 3.18). Less protein was 

seen colocalised with the Golgi marker, further the morphology of cells expressing R740C and 

R789C collagens was severely changed.  
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Fig 3.18 Costaining of HT1080 cells with antibodies against collagen II and the 58K Golgi marker. HT1080 
cells transfected with collagen II constructs were analysed three days post transfection with antibodies directed 
against the Golgi apparatus (red) and collagen II (green). Nuclei (blue) were counterstained with bisbenzimide. 
Colocalisation of collagen with 58K in the Golgi compartment is seen in cells transfected with WT, R75C, R134C 
and R704C constructs. In cells expressing R740C and R789C collagens significant amounts of protein are detected 
outside the Golgi apparatus.  
  

In addition, transfected HT1080 cells were analysed by immunofluorescence using an antibody 

directed against protein disulfide isomerase (PDI), an ER specific enzyme. In non-transfected 

HT1080 cells, the ER was distributed all over the cells. Fig 3.19 shows that WT, R75C, R134C, 

R704C collagen expressing cells display a clear difference between the two stainings and little 

colocalisation between the ER marker and collagen II proteins was seen. In contrast, in R740C 
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and R789C expressing cells a significant colocalisation of the ER marker and collagen II was 

observed, whereas a characteristic staining of the Golgi apparatus did not appear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                        

 

 

 

 

 

 

 

 
 
Fig 3.19 Analysis of transfected HT1080 cells by costaining for PDI and collagen II. Three days after 
transfection with collagen II variants, HT1080 cells were analysed by immunofluorescence staining using antibodies 
directed against collagen II (green) and PDI (red). Nuclei were counterstained with bisbenzimide (blue). Non-
transfected cells show staining for PDI distributed across the cells. Cells transfected with WT, R75C, R134C, and 
R704C constructs displayed separate distinct staining for the ER and the expressed collagens with much less 
colocalisation. Significant colocalisation of PDI with collagen II staining was seen only in cells expressing R740C 
and R789C and these cells were also rounded in appearance.    
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Fig 3.20 Analysis of BiP expression by immunofluorescence microscopy of transfected HT1080 cells. HT1080 
cells transfected with collagen II constructs were analysed three days post transfection by staining with antibodies 
directed against collagen (red) and BiP (green). Nuclei were counterstained with bisbenzimide (blue). BiP 
expression was observed in all the cells. Collagen II (red) expression was detected in cells transfected with WT, 
R75C, R134C, and R704C constructs and there was no colocalisation with BiP. Colocalisation of BiP and collagen 
II was seen only in cells expressing R740C and R789C collagens and these cells were also rounded.    
 

An accumulation of misfolded proteins in the ER leads to an induction of stress response related 

chaperones which attempt to refold the affected proteins. One example is BiP (Sitia and 

Braakman, 2003) which is an ER resident protein. 

To determine if the intracellular protein accumulation is initiating an ER stress response in 

collagen II transfected HT1080 cells, these were analyzed by immunofluorescence microscopy 

with antibodies directed against BiP (Fig 3.20). BiP expression was observed in all the cells 
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(green fluorescence) and collagen II expression was seen around the Golgi compartment (red). In 

cells expressing R740C and R789C collagens colocalisation of BiP and collagen II proteins was 

significant and the intensity of BiP staining was also increased. Further, the cell morphology was 

rounded. 

The rounding and detachment of the cells might be a sign of cell death. Accumulation of large 

amounts of misfolded proteins might interfere with cell viability. It was investigated if these 

transfected HT1080 cells were destined to apoptosis mediated by an ER stress response due   

intracellular retention of misfolded proteins. For this purpose an FITC conjugated antibody 

directed against active caspase-3 was used for staining of HT1080 cells. Caspase-3 belongs to the 

caspase family of cysteine proteases (Martin and Green, 1995), which exist as latent zymogens 

or procaspases. Apoptosis is a form of cell death that involves the concerted action of a number 

of intracellular signaling pathways including members of the caspase family.  Oligomerization of 

procaspases is an important step leading to caspase activation, which in turn is amplified by the 

cleavage and activation of other downstream caspases (Earnshaw et al 1999 and Salvesen and 

Dixit, 1997). Activated caspase-8 and -9 activate executioner caspases, including caspase-3. 

Once active, executioner caspases cleave a number of cellular proteins, e.g. nuclear proteins, 

structural proteins, signaling molecules and cytoskeletal proteins (Stroh and Schulze 1998). 

Proteolysis of these proteins disrupts cellular homeostasis and terminates survival signals. 

To analyse if R740C and R789C transfected HT1080 cells were positive for activated caspase-3, 

these along with cells expressing other collagen II variants and non transfected cells, were 

stained for active caspase-3 three days after transfection by using an  FITC conjugated rabbit 

anti-active caspase-3 antibody (Fig 3.21). Active caspase-3 was not detected in non-transfected 

cells or the cells transfected with WT, R75C, R134C and R704C constructs, but significant 

expression was seen in R740C and R789C transfected cells. Since the active form of caspase-3 

was present in cells expressing R740C and R789C collagens, these cells are undergoing 

apoptosis, presumably due to the irreversible accumulation of misfolded proteins in the ER 

which leads to the activation of the ER stress response and, finally, to cell death. 
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Fig 3.21 Immunofluorescence staining of transfected HT1080 cells using antibodies directed against active 
caspase 3. HT1080 cells transfected with collagen II constructs were analysed three days post transfection for the 
presence of active caspase-3 (green), a marker for apoptosis. No active caspase-3 was detected in non-transfected 
cells nor in cells transfected with WT, R75C, R134C, and R704C constructs, whereas active caspase-3 was present 
in cells expressing R740C and R789C collagens.    
 

3.19 Detection of DNA cleaved due to apoptosis by nick labelling  

Caspase activation is accompanied by nuclear fragmentation, another hallmark of apoptosis. 

Hence, it was necessary to analyze if DNA fragmentation occurs in the R740C and R789C 

collagen expressing HT1080 cells. Non transfected cells and cells transfected with collagen II 
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variants were labeled for nicked DNA four days after transfection (Fig 3.22). Nick labeled DNA 

was observed in cells expressing R740C and R789C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Fig 3.22 Nick labeling of HT1080 cells transfected with collagen II constructs to detect cleaved DNA. Four 
days after transfection with collagen II constructs, HT1080 cells transfected with R740C and R789C constructs 
showed distinct nick labeling (green). Nick labeling was not seen in non-transfected cells nor in cells transfected 
with constructs carrying other mutations. 
 

3.20 Single cell gel electrophoresis (comet assay) of HT1080 cells 
transfected with collagen II variants 

To ascertain whether activation of caspase-3 and nick labeling of DNA in cells transfected with 

R740C and R789C constructs leads to DNA fragmentation, HT1080 cells were analysed by 
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single cell gel electrophoresis four days post transfection. (Fig 3.23).  DNA tailing leading to a 

comet shaped appearance was observed in cells transfected with R740C and R789C constructs 

(Fig 3.23A). Further, the mean tail length was evaluated for these comets (20 cells from each 

group) using the CometScore software (Fig 3.23B). Significant increase in tail length, 

corresponding to DNA fragmentation and apoptosis was observed in cells expressing R740C and 

R789C collagens. 

                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig 3.23 Single cell gel electrophoresis of HT1080 cells transfected with collagen II variants. Panel A shows 
representative pictures of wild type and R789C collagen transfected cells after comet assay. In panel B the mean tail 
lengths of the comets are shown. A significant increase in tail length was observed in cells expressing R740C and 
R789C collagens whereas cells transfected with WT, R75C, R134C, R704C constructs were similar to non-
transfected controls. 
 

3.21 Comparison of the efficiency and toxicity of first and third 
generation adenoviral vectors 

Chondrocytes, the cells expressing collagen II in vivo, show a very low transfection efficiency 

when conventional methods are employed. Adenovirus based gene delivery yields a higher 

efficiency of gene transfer. Currently, two generations of adenoviral vectors are commonly used 

for transduction. First generation viruses are easier to produce and handle but only short DNAs 
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can be inserted. Further, those viruses show immunogenic potential and are toxic in animal 

models. Third generation viruses are cumbersome to produce and need a helper virus for 

packaging. However, this type of virus is non-immunogenic and less toxic in animal models and 

can accept 30-32kb foreign DNA as insert. 

 
 
 
 
 
 
 
 
 
 
 
 
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.24 Transduction of primary chondrocytes using first and third generation adenoviral vectors. 
Chondrocytes were transduced with first (I) and third generation (III) adenoviral vectors expressing enhanced green 
fluorescent protein (eGFP) to determine efficiency of transduction and toxicity. A, fluorescent and phase contrast 
(PHC) images of chondrocytes three days after transduction with 100 MOI. B, viable cells expressing eGFP after 
transduction with 20, 50, 100 and 1000 MOI (moieties of infection). At 1000 MOI only few cells are viable and 
these were positive for eGFP. 
 

eGFP expressing first generation and third generation adenoviruses were used for transduction of 

chondrocytes. The proportion of cells positive for eGFP expression was higher after transduction 

with first generation vectors as compared with third generation vectors (Fig 3.24A). Similarly the 

percentage of viable cells expressing eGFP was higher in chondrocytes transducted with first 

generation adenoviruses as compared to third generation vectors (Fig 3.24B). 
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4 Discussion 
Point mutations in fibrillar collagens cause a number of abnormalities in connective tissues that 

manifest, as for example, brittle bone disease, osteoarthritis and osteochondrodysplasias. Earlier 

studies on collagen I mutations have revealed that the effects of these are remarkably dependent 

on their positions within the triple helix and that mutations localized at the N-terminus of 

collagens are less destabilizing than those occurring at the C-terminus (Byers & Cole 2002). In 

the present study, collagen II mutations leading to substitution of arginine to cysteine with 

different patient phenotypes (R75C, R789C (spondyloepiphyseal dysplasia congenital), R704C 

(Stickler syndrome)), as well as artificial mutations (R134C and R740C) were selected to 

understand the impact of the amino acid position within the Gly-X-Y repeats and the location 

either at the N- or the C-terminus of the triple helix. 

4.1 Effect of point mutations on protein expression and secretion 

Wild type and mutant collagen II proteins were expressed by transfection of 293 EBNA cells. 

Secretion of collagen II proteins into the cell culture media was detected for wild type, R75C, 

R134C and R704C expressing cells. The R740C protein was detected in equal amounts in both 

the cell lysate and supernatant, whereas R789C protein was detected almost exclusively in the 

cell lysate (Fig 3.4). Additionally, the R789C protein migrated lower on SDS gels in comparison 

to other collagen II variants. All recombinant collagen II variants could be detected with 

antibodies directed against the myc epitope as well as with collagen II antibodies, demonstrating 

that the proteins have an intact N-terminus. A shift in the SDS PAGE migration of R789C 

protein was observed for the first time and is in contrast to earlier reports (Steplewski et al. 

2004). In these studies identical mutations (R75C and R789C) were introduced into 

recombinantly engineered collagen II cDNA (Steplewski et al. 2004, Arnold et al. 1997, 1998, 

Majsterek et al. 2003), but no differences in the migration behaviour in comparison to the wild 

type collagen II were observed. In addition, the occurrence of high molecular mass aggregates, 

due to the presence of newly formed disulfide bridges were described. There is no unpaired 

cysteine present in the triple helical domain of the wild type protein and a cysteine substitution 

might therefore lead to abnormal intra- and intermolecular disulfide bridges. In the present study, 

some high molecular aggregates were detected in case of the R75C protein (data not shown) but 

not with the other collagen II variants. Altered secretion and moderate intracellular retention of 

R789C collagen was also reported for transfected HT1080 and SW-1353 cells (Steplewski et al. 
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2004, Ito et al. 2005), whereas significant intracellular retention and very low rate of secretion 

was observed for HT1080 cells expressing R789C protein. 

Analysis of pepsin extracted R789C protein expressed in rat chondrosarcoma cells showed no 

shift in the migration pattern upon SDS PAGE and no disulfide linked oligomers were detected 

(Gaiser et al. 2002). The impression that R789C is not degraded might have been due to the 

extraction procedure used. Pepsin digestion probably degraded all the mutant chains yielding 

only trimeric collagen II formed from endogenous wild type collagen II that is pepsin resistant. 

The faster migration of R789C might either be due to a difference in the protein structure and 

folding or to enhanced proteolytic processing of the protein caused by the mutation. Using 

MALDI TOF mass spectroscopy (Table 3.1), a mass of 92.9 kD was determined for the R789C 

protein, whereas wild type collagen II and all other variants had a mass of around 150.6 kD. This 

mass was significantly higher than the theoretical mass, calculated to be 136.8 kD. This higher 

mass is most probably due to posttranslational modification (glycosylation, hydroxylation) of 

collagen II during biosynthesis. The extent of collagen II modification could be estimated from 

the mass determination of pepsin extracted collagen from bovine nasal cartilage. Even in the 

absence of N- and C-propeptides, which also carry posttranslational modifications, the difference 

between measured and calculated mass was around 30 kD. 

It has been reported that hydroxylation and glycosylation varies markedly between collagen 

types and even within the same collagen type between tissues and species. In a given tissue the 

posttranslational modification depends on physiological and pathological states (Kivirikko & 

Myllyla 1979, Kivirikko 1995). The extent of these modifications plays a major role in collagen 

fibril formation and stability (Notbohm et al. 1999, Bann & Bachinger 2000, Dominguez at al. 

2005). The hydroxylation and glycosylation of recombinantly expressed collagens by various 

cell culture systems is reviewed by Bulleid et al. (2000). From the results presented here, it might 

be speculated that the reduced mass for the R789C is due to proteolytic processing of the protein 

that results in the observed shift in SDS PAGE migration. 

In addition to 293 EBNA cells, collagens were expressed in HT1080 cells, a fibroblastic cell line 

commonly used to study collagen synthesis (Fertala et al. 1994, Steplewski et al. 2005). Again, 

when expression was analyzed by SDS PAGE, wild type, R75C, R134C and R704C proteins 

were mainly detected in the supernatants. As in 293 EBNA cells the R740C protein was found in 

about equal proportions in supernatants and cell lysates. The R789C protein was exclusively 

found in the cell lysate and again migrated faster on SDS PAGE (Fig 3.13). This demonstrates a 

processing of the R789C protein irrespective of the cell line used for expression. 
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The mass spectrometry results strengthen the assumption that the protein is truncated. From the 

detection of the myc epitope in immunoblot it can be concluded that the R789C protein has an 

intact N-terminus. Therefore, the truncation of the R789C protein must occur at the C-terminal 

end of the collagen triple helix. The cleavage might be due to an increased accessibility of 

proteases to regions around the site of mutation. It is known that the degradation of fibrillar 

collagen types I, II, and III can occur in non-helical regions as well as through a triple helix 

cleavage (Liu et al. 1995) resulting in unfolding at physiological temperatures. The collagenases 

involved in these processes belong to the family of zinc-dependent endopeptidases called matrix 

metalloproteinases (MMPs). Collagenase-1 or MMP-1 (interstitial collagenase), collagenase-2 or 

MMP-8 (neutrophil collagenase), and the collagenase-3 or MMP-13 (Freije at al. 1994, Knauper 

et al. 1996) are the only mammalian enzymes so far identified which are able to initiate the 

intrahelical cleavage of triple helical collagen at neutral pH. These three collagenases cleave the 

fibrillar collagens type I, II, and III at a single site (Gly775–Leu/Ile776) within each α chain of the 

triple helical collagen molecule (Miller et al. 1976, Mitchell et al. 1996, Billinghurst et al. 1997) 

(Fig 4.1).  

 

 

 

 
 
 
 
 
 
 
 
 
Fig 4.1 Sequence around the potential collagenase cleavage sites in the triple helical domain of human 
collagen II. The position of arginine 789 is marked in red. (modified from Billinghurst et al. 1997).  
 
To investigate the involvement of MMPs in intrahelical cleavage of the R789C protein, 

GM6001, a universal inhibitor of MMPs which can block both intracellular and extracellular 

action of MMPs, was used on R789C expressing cells. The cleavage of the R789C protein was 

partially inhibited by pretreatment of the cells with GM6001 (Fig 3.14). Interestingly, the 

inhibition of cleavage leads to an increased secretion of the now fully intact protein into the 

supernatant. Inhibition of MMP cleavage of collagen by GM6001 was also reported earlier 

(Song & Windsor 2005, Naqvi et al. 2005). Billinghurst et al. (1997) demonstrated the presence 

of two potential collagenase cleavage sites at the amino acid position 775 and 777 in the triple 

Collagen II  
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helical domain of collagen II (Fig 4.1). The exact cleavage position in the R789C protein is yet 

to be identified, but could potentially be determined by N-terminal sequencing of the smaller C-

terminal fragment. Another possibility was the use of a neoepitope antibody directed against the 

C-terminus of the so-called COL2-3/4C fragment (Fig 4.1). This antibody would specifically 

detect the fragment if it is cleaved at the position 775. Unfortunately, no specific signal was 

detected by immunoblotting using this antibody (data not shown). This might indicate that after 

initial cleavage by MMPs, the R789C protein has undergone further cleavage, leading to the loss 

of the recognition site. Another possible explanation is that the mutation in immediate vicinity of 

the cleavage and recognition site alters the three dimensional structure so that the antibody does 

not detect the neoepitope even if generated. 

The fact that the truncated R789C protein was detected in the cell lysate demonstrates that the 

cleavage takes place already inside the cells. This implies that MMPs are active within the 

cellular compartments where the protein is retained. The fact the R789C protein is secreted when 

not cleaved is in good agreement with earlier studies (Majsterek et al. 2003, Steplewski et al. 

2004) where mutation of the MMP cleavage site gave increased secretion of R789C collagen 

(Arnold et al. 1997, Majsterek et al. 2003, Steplewski et al. 2004). 

Since the mutation R789C is in close vicinity of the MMPs cleavage sites it can be speculated 

that the mutations increases the accessibility to MMPs and thus may cause truncation of the 

R789C protein. Analysis of patients with some forms of osteoarthritis and as well as transgenic 

mice with osteoarthritis have indeed shown collagen II cleavage at this position by MMPs (Wu 

et al. 2002, Salminen et al. 2002, Tchetina et al. 2005, Xu et al. 2005). 

Treatment of HT1080 cells expressing recombinant R789C with a universal proteasome 

inhibitor, MG132, did not affect the mobility of R789C (Fig 3.15), indicating that the mutant 

protein is not cleaved by endoplasmic reticulum associated protein degradation (ERAD) using 

the cytoplasmic ubiquitin-proteasome system (Meusser et al. 2005). 

4.2 Impact of arginine to cysteine mutations on the structure and 
stability of collagen II 

To check the stability of recombinantly expressed collagen II and mutants containing arginine to 

cysteine mutations, proteins were analysed by protease digestion, CD spectroscopy and electron 

microscopy. Wild type, R75C, R134C and R704C proteins were protease resistant on treatment 

with trypsin at 25 °C as evidenced by a protease-resistant band corresponding to the collagenous 

domain (Fig 3.8). Similar treatment on R740C and R789C collagens lead to complete 

degradation indicating an unfolding of the triple helix. Such an instability was reported for 
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patient mutations in COL3A1 causing Ehlers-Danlos syndrome type IV (Narcisi et al. 1993), in 

COL1A2 mutations leading to type I osteogenesis imperfecta (Zhuang et al. 1993) and in 

collagens recombinantly expressed in vitro (Bruckner & Prockop 1981, Raghunath et al. 1994, 

Olague-Marchen et al. 2000, Galicka et al. 2003, Cabral at al. 2001). In contrast to the results 

presented here, other groups have shown that the R789C protein was resistant to digestion with 

trypsin and chymotrypsin (Steplewski et al. 2004). However, this trypsin resistance was observed 

only when the MMP cleavage site was mutated and intact full length R789C protein was 

secreted. As mentioned above, the presumed MMP processing reduces stability and increases the 

susceptibility for further degradation. 

The impact of R740C and R789C on the stability and integrity of the triple helix was further 

confirmed by CD spectroscopy and by determination of melting temperatures (Tm). Wild type, 

R75C, R134C and R704C proteins displayed typical collagen CD spectra (Fig 3.9).  In contrast, 

a shift of the spectrum to below zero at 222 nm for R740C and R789C proteins indicates that 

there is a decrease in triple helical structures in these mutants. Similarly glycine substitutions 

lead to destabilization in collagen XVII (Tasanen et al. 2000). The melting temperature of wild 

type collagen II was 38.6 °C, 2.4 °C lower than for collagen extracted from bovine nasal 

cartilage (Liang & Chakrabarti 1981, Amudeswari et al. 1987, Arnold et al. 1998). This 

difference in absolute melting temperature might be caused by inefficient hydroxylation by 293 

EBNA cells (Wagner et al. 2000; Mizuno et al. 2003). The R75C, R134C and R704C proteins 

had a 2.5 °C lower melting temperature than the wild type protein and the Tm values of the 

R789C and R740C proteins were further decreased to 31.5 °C and 30.2 °C, respectively. The 

decreased Tm of the R789C protein is in agreement with earlier studies (Steplewski et al. 2004), 

although in the present study the Tm of the truncated protein was determined whereas others 

have analyzed the full length form. 

The thermal instability is caused by unstable triple helical structures. An increased monomer 

content and lowered trimer population has been shown to result in dramatic decrease in triple 

helix content, melting temperature and, in turn, stability when using collagen like model peptides 

with glycine to alanine exchanges (Bhate et al. 2002). When using an algorithm to predict the 

structure and stability of collagen triple helices from amino acid sequences (Persikov et al. 2005) 

the R789C protein depicted a significant difference in the stability around the amino acid 

sequence 783 to 795. The other mutants studied did not show such pronounced local 

destabilization (Fig 4.2).  
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Fig 4.2 Calculated relative stability profiles in the immediate vicinity of arginine to cysteine mutations in the 
collagen II compared to the wild type protein. (http://semimajor.net/collagen_calculator/). 
 

The structural instability of the R740C and R789C proteins was confirmed by negative staining 

electron microscopy (Fig 3.12). In contrast to the wild type collagen, which showed 

characteristic procollagen structures (Lightfoot et al. 1992), the R740C and R789C samples 

contain only short filaments. This again indicates that these molecules do not form stable triple 

helices and are therefore not visible by negative staining. Other mutant proteins, such as R75C, 

R134C and R704C, showed filamentous structures comparable with wild type. However, kinks 

were consistently seen in most of the R75C filaments. The kinks were at the end of the filaments 

which agrees with where the mutation is located. Similar kinked structures were previously 

reported for collagen I molecules harboring mutations leading to osteogenesis imperfecta (Vogel 

et al. 1988, Lightfoot et al. 1992). 

30

32

34

36

38

40

42

44

51 57 63 69 75 81 87 93 99 10
5
11
1

Residue number

R
el

at
iv

e 
st

ab
ili

ty
WT
R75C

sss

32

34

36

38

40

42

44

10
4
11
0
11
6
12
2
12
8
13
4
14
0
14
6
15
2
15
8
16
4

Residue number

Re
la

tiv
e 

st
ab

ili
ty

WT
R134C

32

34

36

38

40

42

44

67
4
68
0
68
6
69
2
69
8
70
4
71
0
71
6
72
2
72
8
73
4

Residue number

Re
la

tiv
e 

st
ab

ili
ty

WT
R704C

32

34

36

38

40

42

44

71
0
71
6
72
2
72
8
73
4
74
0
74
6
75
2
75
8
76
4
77
0

Residue number

Re
la

tiv
e 

st
ab

ili
ty

WT
R740C

32
33
34
35
36
37
38
39
40
41
42

75
9

76
5

77
1

77
7

78
3

78
9

79
5

80
1

80
7

81
3

81
9

Residue number

Re
la

tiv
e 

st
ab

ili
ty

WT

R789C



  Discussion 
 

 71

All results from biochemical studies support the conclusion that the R740C and R789C proteins 

form unstable triple helices. In addition, the local instability around the R789C mutation leads to 

increased accessibility for MMP cleavage leading to a truncated protein which is then susceptible 

for digestion by less specific proteases. 

4.3 Impact of collagen II mutations on protein trafficking  

The fibroblastic cell line HT1080 is commonly used to study the protein expression, trafficking 

and secretion of collagen II (Fertala et al. 1994, Steplewski et al. 2005). Immunoblotting 

revealed that a considerable amount of R740C and R789C protein was present in the cell lysate, 

suggesting intracellular retention.  

By immunofluorescence costaining with compartment specific antibodies, the WT, R75C, 

R134C and R704C proteins were seen to be mainly present in the Golgi compartment (Fig 3.18). 

This indicates that most of these proteins are being transported to the extracellular space. In 

contrast, R740C and R789C proteins were detected in other cellular compartments, and showed 

only weak colocalisation with the 58k Golgi marker. Moreover, colocalisation of R740C and 

R789C procollagens with PDI, a marker for the endoplasmic reticulum, was observed in these 

cells (Fig 3.19). PDI is an ER resident chaperone and functions in retaining unassembled or 

misfolded proteins within the ER. It binds to unfolded collagens preventing aggregation (John et 

al. 1993, Kivirikko & Myllyharju 1998) and acts as an ER resident quality control. This might 

suggest that the mutant R740C and R789C proteins are recognized as misfolded by the PDI 

which may be bound to these proteins, leading to colocalisation. Misfolded proteins are retained 

by the ER quality control system and subjected to either degradation or refolding (Bottomley et 

al. 2001). The intracellular retention of the misfolded R740C and R789C collagens in the ER is 

in agreement with the intracellular retention, due to point mutations, of other cartilage proteins 

such as COMP and collagen IX in patients with inherited skeletal dysplasias (Hecht et al. 2004, 

Vranka et al. 2001). Intracellular retention was also observed in mice harboring mutations in the 

collagen II C-propeptide (Fernandes et al. 2003). Intracellular retention has also been shown to 

result from point mutations in the triple helical domain of collagen II (Tiller at al. 1995). 

Interestingly, most of the retained collagens have substitutions of glycine in the Gly-X-Y repeats 

in the triple helical domain (Tiller et al. 1995, Vissing et al. 1989). Intracellular retention was 

reported to be due to abnormal disulfide bridges after the introduction of cysteine in the triple 

helix. Cysteine induced abnormal disulfide bridges were reported for COL1A1 mutations in cells 

cultured from patient skin biopsies, which also showed a dilated endoplasmic reticulum 

(Nuytinck et al. 2000). Along the same lines glycine to cysteine substitution in collagen II caused 
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reduced secretion of the protein and protein dimers were formed (Mundlos et al. 1996). 

Similarly, truncated protein due to exon deletion in the α3 chain of collagen IX caused 

intracellular retention in chondrocytes (Bonnemann et al. 2000). It appears that mutation-induced 

intracellular retention can be due to various factors, such as substitution by bulkier amino acid, 

presence of artificial disulfide bridges, misfolding as in R740C and truncation as in R789C.   

The retention of misfolded protein in the ER leads to the activation of a complex signal 

transduction pathway called the misfolded or unfolded protein response (UPR) (Rutkowski & 

Kaufman 2004, Zhang & Kaufman 2004). The UPR has evolved to limit the potential impact of 

protein accumulation on cellular homeostasis and involves the activation of transcription factor-6 

and XBP-1 (X-box DNA binding protein-1) (Lee et al. 2003, Yoshida et al. 2001). In cells 

undergoing ER stress, active XBP-1 is generated by excision of a 26 bp nucleotide sequence 

from the XBP-1 transcript by IRE1 endonuclease, one of three ER transmembrane “stress 

sensors” (Calfon et al. 2002). RT-PCR results from transfected HT1080 cells show the presence 

of XBP-1 spliced variant in addition to the unspliced form in cells expressing R740C and R789C 

(Fig 3.16). This result is in agreement with the results from Wilson et al. (2005) where misfolded 

protein accumulation due to a mutation in the NC1 domain of collagen X lead to splicing of 

XBP-1. XBP-1 splicing leads to the active up-regulation of ER-resident molecular chaperones 

like BiP and other components of the ER-associated protein degradation machinery (Yoshida et 

al. 2003, Oyadomari & Mori 2004). Upregulation and colocalisation of BiP (ER resident 

molecular chaperone) with R740C and R789C procollagen chains was observed by 

immunofluorescence (Fig 3.20). Similar results were also reported for upregulation and binding 

of BiP to collagen chains harboring mutations in type I collagen from patients with osteogenesis 

imperfecta (Chessler & Byers 1993). Splicing of XBP-1 leads to upregulation of BiP in response 

to accumulation of misfolded collagen X (Wilson et al. 2005). In case of the R740C and R789C 

collagen II mutations it appears that misfolded and truncated protein, accumulate in the ER and 

this triggers an ER stress response leading to the activation of ERAD. ER stress response also 

can downregulate protein synthesis and lead to growth arrest, PERK an ER transmembrane 

protein which plays a role in inhibition of cell cycle and PERK associated phosphorylation of 

translation elongation factor 2α (eIF2α) blocks translation (Brewer & Diehl 2000, Kaufman 

1999, Sood et al. 2000). Inhibition of proteasomes using MG132 did not affect R789C collagen 

(Fig 3.14), which indicates that this collagen is not degraded by the ERAD machinery. This leads 

to accumulation of misfolded proteins in the ER of R740C and R789C expressing cells and this 

abnormal accumulation results in an altered cellular morphology (Fig 3.17) which correlates with 

cell death. Similar flattened chondrocytes as well as a reduced cell number was reported in mice 
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harboring R789C mutation. These chondrocytes also displayed a distended endoplasmic 

reticulum (Gaiser et al. 2002).  

4.4 Fate of cells expressing R740C and R789C collagens 

Accumulation of misfolded R740C and R789C procollagens in the ER does not result in 

degradation but continuous protein accumulation may cause programmed cell death 

(Breckenridge et al. 2003, Sitia & Braakman 2003, Rao et al. 2004). Indeed, the large amount of 

rounded and dead cells observed in cultures expressing R740C and R789C collagens (Fig 3.17) 

may indicate that the cells are undergoing apoptosis. This was confirmed by the detection of 

active caspase-3 in cells transfected with R740C and R789C constructs but not in cells 

transfected with other collagen II variants. Active caspase-3 is implicated in mutations leading to 

disruption of cellular homeostasis and apoptosis (Mulugeta et al. 2005). Presence of nicked DNA 

(Fig 3.22) and increased tail length of comets (Fig 3.23) (DNA fragmentation) in cells 

expressing R740C and R789C collagens confirms that these cells are undergoing apoptosis (Fig 

4.3). This result agrees with other studies in which cell death was reported due to the 

intracellular accumulation of mutant COMP proteins (Hashimoto et al. 2003) and apoptosis in 

chondrocytes due to ER stress has been reported (Yang et al. 2005). Our results indicates that 

expression of R740C and R789C collagens leads to an ER storage disease, similar to that 

observed in pseudoachondroplasia (Dinser et al. 2002) and this may be the reason for the reduced 

number of chondrocytes observed in patients and in animal models (Hecht et al. 1998, 2005, 

Gaiser et al. 2002).  
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Fig. 4.3 Schematic representation of intracellular events occurring in the bioynthesis of R740C and R789C 
collagens. R740C and R789C mutant proteins do not form proper triple helical molecules. This leads to impaired 
trafficking and thereby accumulation in the ER lumen which in turn triggers an ER stress response leading to 
splicing of XBP-1 by IRE1. Finally as the proteins are not degraded, accumulation triggers apoptosis as seen by the 
activation of effector caspases. (modified from Baum & Brodsky 1999,  Breckenridge et al. 2003). 
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4.5 Consequences of intracellular retention of collagen II for the   
assembly of extracellular matrix 

The cartilage extracellular matrix is composed of intricate networks, formed by interactions 

between a large number of proteins and proteoglycans. Collagen II is the major collagenous 

component in cartilage and forms fibrils together with other collagens such as collagen IX and 

XI (Reginato & Olsen 2002) that directly or indirectly interact with noncollagenous components, 

e.g. aggrecan, fibronectin, decorin, fibromodulin, lumican, matrilins and COMP (Poole 2001, 

Mann et al. 2004). Thereby mutations in collagen II may have profound effects on the overall 

structure of the extracellular matrix.  

Intracellular retention with delayed secretion of R789C collagen  leads to abnormal binding to 

fibronectin, thereby altering the intracellular and extracellular processes in which fibronectin 

takes part (Ito et al. 2005). In addition, altered interactions of R789C collagen II  with collagen 

IX may lead to a change in the architecture of the ECM in the patients harboring these  mutations 

(Ito et al. 2005, Steplewski et al. 2005). Also using computer modeling, R789C displayed a 

decrease in electrostatic potential around the vicinity of the mutation (Steplewski at al. 2005) and 

this was correlated to the altered interaction with collagen IX. 

In some chondrodysplasias secretion of mutant COMP is markedly delayed, and collagen IX is 

partially coretained in the ER. However, collagen II secretion is not affected and collagen II can 

be detected in the matrix (Dinser et al. 2002, Hecht et al. 2005). This indicates that the secretory 

pathways for COMP and collagen II are different and that the secretion of collagen IX is more 

closely associated with that of COMP.  

Complete retention of collagen II could cause its complete absence in the matrix. This would 

represent a knockout situation as in collagen II deficient mouse models. These show highly 

disorganized chondrocytes in a cartilage which completely lacks extracellular fibrils (Liu et al. 

1995). Similar observations were also made in transgenic mice carrying a partially deleted 

human COL2A1 gene which developed a chondrodysplasia phenotype. The extracellular matrix 

in these mice contained fewer collagen fibrils and the individual fibrils were thinner 

(Vandenberg et al. 1991). Similarly, transgenic mice harboring glycine to cysteine and arginine 

to cysteine mutations in the triple helical domain developed chondrodysplasia. The chondrocytes 

displayed a distended and dilated endoplasmic reticulum and the matrix consisted of thin 

collagen fibrils (Garofalo et al. 1991, Gaiser at al. 2002). This agrees well with the results with 

R740C and R789C collagen expressed by HT1080 cells where the intracellular accumulation of 

mutant proteins leads to cell death and this may contribute to altered extracellular matrix.  
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In case of R704C collagen, the mutation might lead to haploinsufficiency of collagens fibrils in 

the matrix. Haploinsufficiency was indicated in mutations in collagen II leading to Stickler 

syndrome, where mutated mRNA was subjected to nonsense-mediated mRNA decay (Richards 

et al. 2000) and may be the molecular basis of Stickler syndrome (Freddi et al. 2000). Although 

the HT1080 cells are a frequently used model, attempts should be made to confirm the result 

with real chondrocytes, which are the natural producers of collagen II. However, repeated 

attempts to transfect chondrocytes with plasmid vectors encoding collagen II and its variants 

were unsuccessful. Hence, adenoviral vectors containing collagen II cDNA with the desired 

mutations were cloned. Adenovirus based vectors have been successfully used to study the 

effects of COMP mutations in chondrocytes (Dinser et al 2002). The efficiency and toxicity of 

first and third generation adenoviral vectors in transducing chondrocytes were evaluated by using 

eGFP expressing viruses. First generation vectors were highly efficient with decreased toxicity in 

comparison with third generation vectors when used to transducer cultured bovine chondrocytes 

(Fig 3.24). Further analysis of transduced chondrocytes will shed light on the intricate role of 

different mutations in the cartilage. 

4.6 Conclusion 

The results obtained with point mutations resulting in substitution of arginine to cysteine within 

the triple helical domain of collagen II carry the following implications: 

The R75C (Y position) and R134C (X position) mutations did not cause any biochemical 

alterations except for the presence of kinks in R75C collagen. Similar result were obtained for 

the R704C (X position) mutation. In case of R740C (X position) and R789C (Y position) the 

mutations had deleterious effects on protein structure irrespective of being in the X or Y 

position. 

Cells expressing the R75C, R134C and R704C mutations were phenotypically normal and the 

protein trafficking was not affected, whereas cell death was observed for R740C and R789C 

mutants, caused by the accumulation of misfolded proteins in the endoplasmic reticulum. 

With regard to the location, mutations at the N-terminus of the triple helix had less severe effects 

than such towards the C-terminus.  The R740C and R789C mutation located towards the C-

terminus displayed a deleterious effect on the protein structure and caused apoptosis of the 

expressing cells irrespective of being in the X or Y position. This result is in agreement with the 

finding that glycine substitutions towards the C-terminus of the collagen I chains are clinically 

more severe than those towards the N-terminus (Bateman et al. 1992) and may be due to the fact 

that mutations at the C-terminus lead to a disruptive effect during helix initiation and 
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propagation (Bonadio & Byers 1985, Byers 1990, Kuivaniemi et al 1991, Bateman et al. 1984, 

1986, 1992). However R704C, another mutation towards the C terminus, did not show any lethal 

effect. The phenotype in these patients may be due to haploinsuficiency in collagen II (Richards 

et al. 2000).  

In patients with R75C and R704C, the mutations might contribute to disease together with other 

factors such as genetic modifiers or the presence of additional mutations in other gene loci yet to 

be identified. Similar observations have been made in patients with MED (Jakkula et al. 2005).  

These results suggests that a single amino acid alteration in collagen II could lead to skeletal 

abnormalities through multiple secondary effects on the synthesis and assembly of ECM 

components. Chondrodysplasia is clearly caused not just by the formation of abnormal matrix 

molecules but also by the effect of these mutations on protein trafficking and apoptosis possibly 

augmented by environmental factors and genetic modifiers. The alteration of ECM components 

may lead to a cascade of disruption of other gene activities which collectively contribute to the 

pathological changes and thereby contribute to the phenotype in patients. 
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a. Collagen II cDNA sequence used in the present study  
The codons which are marked in red represent arginines that have been exchanged to cysteines in 

the present study.  
 
ATGATTCGCCTCGGGGCTCCCCAGTCGCTGGTGCTGCTGACGCTGCTCGTCGCCGCTGTCCTTC

GGTGTCAGGGCCAGGATGTCCGGCAACCAGGACCAAAGGGACAGAAAGGAGAACCTGGAGACAT

CAAGGATATTGTAGGACCCAAAGGACCTCCTGGGCCTCAGGGACCTGCAGGGGAACAAGGACCC

AGAGGGGATCGTGGTGACAAAGGTGAAAAAGGTGCCCCTGGACCTCGTGGCAGAGATGGAGAAC

CTGGGACCCCTGGAAATCCTGGCCCCCCTGGTCCTCCCGGCCCCCCTGGTCCCCCTGGTCTTGG

TGGAAACTTTGCTGCCCAGATGGCTGGAGGATTTGATGAAAAGGCTGGTGGCGCCCAGTTGGGA

GTAATGCAAGGACCAATGGGCCCCATGGGACCTCGAGGACCTCCAGGCCCTGCAGGTGCTCCTG

GGCCTCAAGGATTTCAAGGCAATCCTGGTGAACCTGGTGAACCTGGTGTCTCTGGTCCCATGGG

TCCCCGTGGTCCTCCTGGTCCCCCTGGAAAGCCTGGTGATGATGGTGAAGCTGGAAAACCTGGA

AAAGCTGGTGAAAGGGGTCCGCCTGGTCCTCAGGGTGCTCGTGGTTTCCCAGGAACCCCAGGCC

TTCCTGGTGTCAAAGGTCACAGAGGTTATCCAGGCCTGGACGGTGCTAAGGGAGAGGCGGGTGC

TCCTGGTGTGAAGGGTGAGAGTGGTTCCCCGGGTGAGAACGGATCTCCGGGCCCAATGGGTCCT

CGTGGCCTGCCTGGTGAAAGAGGACGGACTGGCCCTGCTGGCGCTGCGGGTGCCCGAGGCAACG

ATGGTCAGCCAGGCCCCGCAGGTCCTCCGGGTCCTGTCGGTCCTGCTGGTGGTCCTGGCTTCCC

TGGTGCTCCTGGAGCCAAGGGTGAAGCCGGCCCCACTGGTGCCCGTGGTCCTGAAGGTGCTCAA

GGTCCTCGCGGTGAACCTGGTACTCCTGGGTCCCCTGGGCCTGCTGGTGCCTCCGGTAACCCTG

GAACAGATGGAATTCCTGGAGCCAAAGGATCTGCTGGTGCTCCTGGCATTGCTGGTGCTCCTGG

CTTCCCTGGGCCACGGGGTCCTCCTGGCCCTCAAGGTGCAACTGGTCCTCTGGGCCCGAAAGGT

CAGACGGGTGAACCTGGTATTGCTGGCTTCAAAGGTGAACAAGGCCCCAAGGGAGAACCTGGCC

CTGCTGGCCCCCAGGGAGCCCCTGGACCCGCTGGTGAAGAAGGCAAGAGAGGTGCCCGTGGAGA

GCCTGGTGGCGTTGGGCCCATCGGTCCCCCTGGAGAAAGAGGTGCTCCCGGAAACCGCGGTTTC

CCAGGTCAAGATGGTCTGGCAGGTCCCAAGGGAGCCCCTGGAGAGCGAGGGCCCAGTGGTCTTG

CTGGCCCCAAGGGAGCCAACGGTGACCCTGGCCGTCCTGGAGAACCTGGCCTTCCTGGAGCCCG

GGGTCTCACTGGCCGCCCTGGTGATGCTGGTCCTCAAGGCAAAGTTGGCCCTTCTGGAGCCCCT

GGTGAAGATGGTCGTCCTGGACCTCCAGGTCCTCAGGGGGCTCGTGGGCAGCCTGGTGTCATGG

GTTTCCCTGGCCCCAAAGGTGCCAACGGTGAGCCTGGCAAAGCTGGTGAGAAGGGACTGCCTGG

TGCTCCTGGTCTGAGGGGTCTTCCTGGCAAAGATGGTGAGACAGGTGCTGCAGGACCCCCTGGC

CCTGCTGGACCTGCTGGTGAACGAGGCGAGCAGGGTGCTCCTGGGCCATCTGGGTTCCAGGGAC

TTCCTGGCCCTCCTGGTCCCCCAGGTGAAGGTGGAAAACCAGGTGACCAGGGTGTTCCCGGTGA

AGCTGGAGCCCCTGGCCTCGTGGGTCCCAGGGGTGAACGAGGTTTCCCAGGTGAACGTGGCTCT

CCCGGTGCCCAGGGCCTCCAGGGTCCCCGTGGCCTCCCCGGCACTCCTGGCACTGATGGTCCCA

AAGGTGCATCTGGCCCAGCAGGCCCCCCTGGCGCACAGGGCCCTCCAGGTCTTCAGGGAATGCC

TGGCGAGAGGGGAGCAGCTGGTATCGCTGGGCCCAAAGGCGACAGGGGTGACGTTGGTGAGAAA

GGCCCTGAGGGAGCCCCTGGAAAGGATGGTGGACGAGGCCTGACAGGTCCCATTGGCCCCCCTG

GCCCAGCTGGTGCTAACGGCGAGAAGGGAGAAGTTGGACCTCCTGGTCCTGCAGGAAGTGCTGG

TGCTCGTGGCGCTCCGGGTGAACGTGGAGAGACTGGCCCCCCCGGACCAGCGGGATTTGCTGGG
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CCTCCTGGTGCTGATGGCCAGCCTGGGGCCAAGGGTGAGCAAGGAGAGGCCGGCCAGAAAGGCG

ATGCTGGTGCCCCTGGTCCTCAGGGCCCCTCTGGAGCACCTGGGCCTCAGGGTCCTACTGGAGT

GACTGGTCCTAAAGGAGCCCGAGGTGCCCAAGGCCCCCCGGGAGCCACTGGATTCCCTGGAGCT

GCTGGCCGCGTTGGACCCCCAGGCTCCAATGGCAACCCTGGACCCCCTGGTCCCCCTGGTCCTT

CTGGAAAAGATGGTCCCAAAGGTGCTCGAGGAGACAGCGGCCCCCCTGGCCGAGCTGGTGAACC

CGGCCTCCAAGGTCCTGCTGGACCCCCTGGCGAGAAGGGAGAGCCTGGAGATGACGGTCCCTCT

GGTGCCGAAGGTCCACCAGGTCCCCAGGGTCTGGCTGGTCAGAGAGGCATCGTCGGTCTGCCTG

GGCAACGTGGTGAGAGAGGATTCCCTGGCTTGCCTGGCCCATCGGGTGAGCCCGGCAAGCAGGG

TGCTCCTGGAGCATCTGGAGACAGAGGTCCTCCTGGCCCCGTGGGTCCTCCTGGCCTGACGGGT

CCTGCAGGTGAACCCGGACGAGAGGGAAGCCCCGGTGCTGATGGCCCCCCTGGCAGAGATGGCG

CTGCTGGAGTCAAGGGTGATCGTGGTGAGACTGGTGCTGTGGGAGCTCCTGGAGCCCCTGGGCC

CCCTGGCTCCCCTGGCCCCGCTGGTCCAACTGGCAAGCAAGGAGACAGAGGAGAAGCTGGTGCA

CAAGGCCCCATGGGACCCTCAGGACCAGCTGGAGCCCGGGGAATCCAGGGTCCTCAAGGCCCCA

GAGGTGACAAAGGAGAGGCTGGAGAGCCTGGCGAGAGAGGCCTGAAGGGACACCGTGGCTTCAC

TGGTCTGCAGGGTCTGCCCGGCCCTCCTGGTCCTTCTGGAGACCAAGGTGCTTCTGGTCCTGCT

GGTCCTTCTGGCCCTAGAGGTCCTCCTGGCCCCGTCGGTCCCTCTGGCAAAGATGGTGCTAATG

GAATCCCTGGCCCCATTGGGCCTCCTGGTCCCCGTGGACGATCAGGCGAAACCGGTCCTGCTGG

TCCTCCTGGAAATCCTGGGCCCCCTGGTCCTCCAGGTCCCCCTGGCCCTGGCATCGACATGTCC

GCCTTTGCTGGCTTAGGCCCGAGAGAGAAGGGCCCCGACCCCCTGCAGTACATGCGGGCCGACC

AGGCAGCCGGTGGCCTGAGACAGCATGACGCCGAGGTGGATGCCACACTCAAGTCCCTCAACAA

CCAGATTGAGAGCATCCGCAGCCCCGAGGGCTCCCGCAAGAACCCTGCTCGCACCTGCAGAGAC

CTGAAACTCTGCCACCCTGAGTGGAAGAGTGGAGACTACTGGATTGACCCCAACCAAGGCTGCA

CCTTGGACGCCATGAAGGTTTTCTGCAACATGGAGACTGGCGAGACTTGCGTCTACCCCAATCC

AGCAAACGTTCCCAAGAAGAACTGGTGGAGCAGCAAGAGCAAGGAGAAGAAACACATCTGGTTT

GGAGAAACCATCAATGGTGGCTTCCATTTCAGCTATGGAGATGACAATCTGGCTCCCAACACTG

CCAACGTCCAGATGACCTTCCTACGCCTGCTGTCCACGGAAGGCTCCCAGAACATCACCTACCA

CTGCAAGAACAGCATTGCCTATCTGGACGAAGCAGCTGGCAACCTCAAGAAGGCCCTGCTCATC

CAGGGCTCCAATGACGTGGAGATCCGGGCAGAGGGCAATAGCAGGTTCACGTACACTGCCCTGA

AGGATGGCTGCACGAAACATACCGGTAAGTGGGGCAAGACTGTTATCGAGTACCGGTCACAGAA

GACCTCACGCCTCCCCATCATTGACATTGCACCCATGGACATAGGAGGGCCCGAGCAGGAATTC

GGTGTGGACATAGGGCCGGTCTGCTTCTTGTAAAAACCTGAACCCAGAAACAACACAATCCGTT

GCAAACCCAAAGGACCCAAGTACTTTCCAATCTCAGTCACTCTAGGACTCTGCACTGAATGGCT

GACCTGACCTGATGTCCATTCATCCCACCCTCTCACAGTTCGGACTTTTCTCCCCTCTCTTTCT

AAGAGACCTGAACTGGGCAGACTGCAAAATAAAATCTCGGTGTTCTATTTATTTATTGTCTTCC

TGTAAGACCTTCGGGTCAAGGCAGAGGCAGGAAACTAACTGGTGTGAGTCAAATGCCCCCTGAG

TGACTGCCCCCAGCCCAGGCCAGAAGACCTCCCTTCAGGTGCCGGGCGCAGGAACTGTGTGTGT

CCTACACAATGGTGCTATTCTGTGTCAAACACCTCTGTATTTTTTAAA 
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b. Collagen II protein sequence 
The protein sequence of collagen II including, BM40 signal peptide, the hexahistidine motif 

(yellow) and the my epitope is shown. Arginines which are substituted to cysteines in the present 

study are marked in red. The triple helical domain is marked by the shaded area. 
 

MRAWIFFLLCLAGRALAAPLVHHHHHHGPLVDVASNEQKLISEEDLASMTGGQQMGRDIEGRGL

AQDVRQPGPKGQKGEPGDIKDIVGPKGPPGPQGPAGEQGPRGDRGDKGEKGAPGPRGRDGEPGT

PGNPGPPGPPGPPGPPGLGGNFAAQMAGGFDEKAGGAQLGVMQGPMGPMGPRGPPGPAGAPGPQ

GFQGNPGEPGEPGVSGPMGPRGPPGPPGKPGDDGEAGKPGKAGERGPPGPQGARGFPGTPGLPG

VKGHRGYPGLDGAKGEAGAPGVKGESGSPGENGSPGPMGPRGLPGERGRTGPAGAAGARGNDGQ

PGPAGPPGPVGPAGGPGFPGAPGAKGEAGPTGARGPEGAQGPRGEPGTPGSPGPAGASGNPGTD

GIPGAKGSAGAPGIAGAPGFPGPRGPPGPQGATGPLGPKGQTGEPGIAGFKGEQGPKGEPGPAG

PQGAPGPAGEEGKRGARGEPGGVGPIGPPGERGAPGNRGFPGQDGLAGPKGAPGERGPSGLAGP

KGANGDPGRPGEPGLPGARGLTGRPGDAGPQGKVGPSGAPGEDGRPGPPGPQGARGQPGVMGFP

GPKGANGEPGKAGEKGLPGAPGLRGLPGKDGETGAAGPPGPAGPAGERGEQGAPGPSGFQGLPG

PPGPPGEGGKPGDQGVPGEAGAPGLVGPRGERGFPGERGSPGAQGLQGPRGLPGTPGTDGPKGA

SGPAGPPGAQGPPGLQGMPGERGAAGIAGPKGDRGDVGEKGPEGAPGKDGGRGLTGPIGPPGPA

GANGEKGEVGPPGPAGSAGARGAPGERGETGPPGPAGFAGPPGADGQPGAKGEQGEAGQKGDAG

APGPQGPSGAPGPQGPTGVTGPKGARGAQGPPGATGFPGAAGRVGPPGSNGNPGPPGPPGPSGK

DGPKGARGDSGPPGRAGEPGLQGPAGPPGEKGEPGDDGPSGAEGPPGPQGLAGQRGIVGLPGQR

GERGFPGLPGPSGEPGKQGAPGASGDRGPRGPPGPVGPPGLTGPAGEPGREGSPGADGPPGRDG

AAGVKGDRGETGAVGAPGAPGPPGSPGPAGPTGKQGDRGEAGAQGPMGPSGPAGARGIQGPQGP

RGDKGEAGEPGERGLKGHRGFTGLQGLPGPPGPSGDQGASGPAGPSGPRGPPGPVGPSGKDGAN

GIPGPIGPPGPRGRSGETGPAGPPGNPGPPGPPGPPGPGIDMSAFAGLGPREKGPDPLQYMRAD

QAAGGLRQHDAEVDATLKSLNNQIESIRSPEGSRKNPARTCRDLKLCHPEWKSGDYWIDPNQGC

TLDAMKVFCNMETGETCVYPNPANVPKKNWWSSKSKEKKHIWFGETINGGFHFSYGDDNLAPNT

ANVQMTFLRLLSTEGSQNITYHCKNSIAYLDEAAGNLKKALLIQGSNDVEIRAEGNSRFTYTAL

KDGCTKHTGKWGKTVIEYRSQKTSRLPIIDIAPMDIGGPEQEFGVDIGPVCFL 
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