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Überarbeitung der in englischer Sprache geschriebenen Artikel unterstützt hat,

und meinem Zimmernachbarn Hendrik Vollrath, mit dem ich, auch durch un-

5



6 CONTENTS

seren gemeinsamen Hintergrund als Mathematiker, viele interessante Gespräche
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mein privates Umfeld. Ich danke meinen Eltern Heinz und Hildegard für alles,

was sie mir auf den Weg gegeben haben, und meinen Geschwistern Thorsten,

Sarah und Ruth. Ebenfalls danke ich meinen Freunden für ihre psychologis-
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Abstract

The present thesis investigates the problem of testing for stochastic dominance

which is a basic concept of decision theory. We focus on stochastic dominance

of first and of second degree which are the most important stochastic dominance

decision rules. These decision rules are applied in various branches of economics,

e.g. finance and social welfare theory. Statistical tests for stochastic dominance

are based on the difference of the empirical distribution or quantile functions.

For the determination of the critical region we need the distribution of the test

statistic under the null hypothesis. In many tests contemporaneous and serial

independence are assumed. However, in many applications the observations do

not satisfy these constraints. In particular, financial data usually feature posi-

tive correlation between the observations of different samples at the same time

and conditional heteroskedasticity within each sample. We confine ourselves to

bivariate GARCH (1,1) which has good fit and forecast properties for financial

data. In order to get an idea about the impact of conditional heteroskedastic-

ity on statistical tests we analyze its effect on common statistical procedures for

means and variances. It turns out that the effect on procedures for variances is

tremendous. The main issue of this thesis is the development of tests for stochas-

tic dominance which are robust to these time series properties. Two kinds of tests

are considered: on the one hand tests in which dominance is the hypothesis, on

the other hand tests with the alternative of dominance. Most of the tests known

from literature are not robust to conditional heteroskedasticity. We develop two
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tests for the first test problem and one test for the second test problem which

can be used under the assumption that the underlying processes are strongly

mixing. Theoretical analysis and simulations show that the tests using circular

subsampling, block permutation and truncation, respectively, have good size and

power properties even if conditional heteroskedasticity is prevalent in the data.

The developed tests are applied to the daily returns of the stocks of the German

stock index DAX.

Die vorliegende Arbeit untersucht Tests auf stochastische Dominanz, welche

ein grundlegendes Konzept der Entscheidungstheorie ist. Hierbei konzentrieren

wir uns auf stochastische Dominanz erster und zweiter Ordnung. Diese sind die

beiden wichtigsten Entscheidungsregeln und finden Anwendung in verschiedenen

Bereichen der Wirtschaftswissenschaften, z.B. Finanzwirtschaft und Wohlfahrt-

stheorie. Tests auf stochastische Dominanz basieren auf der Differenz der em-

pirischen Verteilungs- oder Quantilfunktionen. Für die Bestimmung des kri-

tischen Wertes benötigen wir die Verteilung der Teststatistik unter der Null-

hypothese. Obwohl in vielen Tests kontemporäre und serielle Unabhängigkeit

der Beobachtungen angenommen werden, sind diese Voraussetzungen bei vie-

len Anwendungen nicht erfüllt. Insbesondere Finanzmarktdaten weisen positive

Korrelation zwischen den Beobachtungen zu derselben Zeit und bedingte Het-

eroskedastizität innerhalb der jeweiligen Zeitreihen auf. Wir beschränken uns

auf bivariaten GARCH (1,1), der bezüglich Anpassung und Vorhersage gut für

Finanzmarktdaten geeignet ist. Um einen Eindruck über den Einfluss bedingter

Heteroskedastizität auf die Gültigkeit statistischer Tests zu erhalten, untersuchen

wir ihren Effekt auf inferenzstatistische Methoden für Erwartungswerte und Var-

ianzen. Es zeigt sich, dass Varianzprozeduren durch GARCH (1,1) stark bee-

influsst werden. Hauptthema dieser Arbeit ist die Entwicklung von Tests auf

stochastische Dominanz, die robust gegenüber Zeitreiheneigenschaften sind. Zwei
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Arten von Tests werden untersucht: einerseits Tests, bei denen stochastische

Dominanz die Hypothese ist, andererseits Tests mit Dominanzalternative. Wir

entwickeln zwei Tests für das erste Testproblem and einen Test für das zweite

Testproblem, die anwendbar sind unter der Bedingung, dass die Prozesse stark

mischend sind. Theoretische Untersuchung and Simulationen zeigen, dass die

Tests durch die Benutzung von Circular Subsampling, Blockpermutation bzw.

geeignetes Abschneiden gute Niveau- und Powereigenschaften erhalten. Dies gilt

auch unter dem Einfluss bedingter Heteroskedastizität. Die entwickelten Tests

werden angewendet auf die Tagesrenditen der Aktien des deutschen Aktienindex

DAX.
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Chapter 1

Introduction and Summary

The present thesis investigates the problem of testing for stochastic dominance

which is a basic concept of decision theory. Since the seminal study of von Neu-

mann/ Morgenstern (1944), maximizing the expected utility is the main approach

in the issue of decision making under risk. Due to the fact that utility perception

and risk aversion (or risk proneness) differ among different people, it is generally

impossible to give universal advice on how to maximize expected utility. However,

one can look for a decision rule which is rational for a large class of individuals.

The mean-variance approach by Markowitz (1952) proved to be a great contri-

bution, but it also has its drawbacks. It does not consider the full distribution,

but only the parameters mean and variance. Hence it neglects a lot of impor-

tant information and, in some cases, promotes decisions which are obviously not

reasonable; an example is given, for instance, by Hanoch/ Levy (1969).

A more universal decision rule and a benchmark for other rules is the concept

of stochastic dominance introduced by Quirk/ Saposnik (1962). If one alternative

dominates another one in the sense of stochastic dominance, it is preferred by a

class of individuals having some similarities in their utility functions. The most

important stochastic dominance decision rules are stochastic dominance of first

and of second degree, abbreviated by SD1 and SD2, respectively. Let X and Y

11



12 Chapter 1. Introduction and Summary

be random variables standing for payoff. X dominates Y in the sense of SD1 if

every individual preferring more over less prefers X. This is the most important

stochastic dominance rule. SD2 is less restrictive: if X is preferred to Y by

every individual who prefers more over less and is risk averse or risk neutral, X

dominates Y in the sense of second degree stochastic dominance. It is obvious

that SD1 implies SD2. Stochastic dominance decision rules are applied in various

branches of economics, e.g. finance and social welfare theory. Furthermore, the

concept of stochastic dominance plays an important role in some other sciences,

for instance agricultural economics (Langyintuo/ Yiridoe/ Dogbe/ Lowenberg-

Debour, 2005) and environmental sciences (Maasoumi/ Millimet, 2005).

For the detection of stochastic dominance there are some useful characteri-

zations concerning the distribution and quantile functions. X dominates Y in

the sense of SD1 if and only if FX(x) ≤ FY (x) for all x ∈ R which is equi-

valent to QX(p) ≥ QY (p) for all p ∈ (0, 1). This means that a uniform order

of the distribution and quantile functions is equivalent to SD1. Furthermore,

SD2 is equivalent to the relations
∫ x

−∞ FX(t)dt ≤ ∫ x

−∞ FY (t)dt for all x ∈ R and
∫ p

0
QX(t)dt ≥ ∫ p

0
QY (t)dt for all p ∈ (0, 1). These relations are the starting point

for the investigation whether one distribution dominates another one. If the

distributions are known, the comparison is straightforward with this characteri-

zation. However, in empirical applications the distributions are usually unknown

and have to be inferred from the data. Due to the strong impact of the standard

error on the descriptive comparison, a descriptive comparison is not sufficient for

getting meaningful results. Hence we need statistical inference for establishing or

rejecting stochastic dominance.

There is a plethora of tests for stochastic dominance. Most of them are based

on the empirical distribution function, some on the empirical quantile function.

The test statistic is usually the maximum difference or a weighted average of the

difference of the empirical distribution or quantile functions. The vast majority

of tests consider the null hypothesis of dominance and the alternative of non-
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dominance. Therefore statistical evidence for stochastic dominance cannot be

found. Instead, stochastic dominance can only be rejected or not by most of the

tests. The reason for this finding is the mathematical complexity of the set of all

distribution pairs without any dominance relation. In particular, the boundary

cannot be expressed in closed form. Hence, usually the null hypothesis is the

assertion that one random variable dominates the other one.

For the determination of the critical region we need the distribution of the

test statistic under the null hypothesis. In many tests contemporaneous and

serial independence are assumed, i.e. it is presumed that there is no dependence

within each sample and between the samples. However, in many applications the

observations do not satisfy these constraints. In particular, financial data usually

feature contemporaneous and serial dependence: positive correlation between the

observations of different samples at the same time and time series properties,

e.g. conditional heteroskedasticity within each sample. In the investigation of

conditional heteroskedasticity we confine ourselves to GARCH(1,1) which has

good fit and forecast properties for financial data; see e.g. Akgiray (1989), Davis/

Mikosch (2000) and Engle (2001).

In order to get an idea about the impact of conditional heteroskedasticity on

tests of stochastic dominance we analyze its effect on common statistical pro-

cedures for means and variances, e.g. the t-test and the F-test. The analytical

investigation and simulation show that GARCH(1,1) does not have any signifi-

cant effect on procedures for means. On the contrary, the impact on procedures

for variances is tremendous. Hence we advise not to use the usual F-test and the

usual confidence interval if conditional heteroskedasticity is prevalent in the data.

The main issue of this thesis is the development of a test for stochastic dom-

inance which is applicable to data featuring conditional heteroskedasticity and

contemporaneous correlation. The tests of Schmid/ Trede (1997) for SD2, Xu/

Fisher/ Willson (1997) for SD1 and SD2 and Linton/ Maasoumi/ Whang (2005)

for SD1 and SD2, denoted by ST, XFW and LMW, are the starting point. The ST
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test, based on permutations, captures the correlation whereas it does not consider

conditional heteroskedasticity. The XFW and the LMW tests asymptotically keep

the size and are consistent if the observations are generated by strongly mixing

processes. Due to the fact that GARCH(1,1) processes are strongly mixing, these

tests are expected to perform well even if the data feature this dependence struc-

ture. The tests are based on block bootstrap methods: XFW on moving block

bootstrap, LMW on subsampling.

By means of simulation, we analyze the performance of the tests for finite

samples. It turns out that the ST, XFW and LMW are all robust to contempo-

raneous correlation. On the other hand, the effect of GARCH(1,1) on the size is

enormous. The variation of the block length is no remedy for the XFW and the

LMW tests. Indeed, the effect decreases with increasing block length, but it does

not vanish completely and increases again for very large block length. Hence the

original XFW and LMW tests cannot be used for finite samples.

What is the reason for these results? The XFW and LMW tests consider

overlapping blocks of a fixed length. Consequently, the data in the middle of the

time series are taken into account more than the data at the beginning and at

the end. This effect even increases with increasing block length.

Due to the poor performance of the tests we propose some modifications.

The permutation principle in the ST test is changed to block permutation. The

modified test does not transpose single observation pairs as the original ST test,

but whole blocks of them. In this manner it should capture the dependence

structure. The XFW test is altered as follows: instead of moving block bootstrap

the new test uses circular block bootstrap, introduced by Politis/ Romano (1992).

In addition to the blocks of the moving block bootstrap it considers blocks which

consist of some observations at the end and continue at the beginning of the

sample. According to Lahiri (1999) circular block bootstrap and moving block

bootstrap are asymptotically equivalent. The LMW test is modified in a similar

way: the distribution of the test statistic is not inferred by usual subsampling,
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but by circular subsampling. This procedure uses, in addition to the blocks used

by usual subsampling, blocks consisting of the first and the last observations. We

show that the modified LMW test asymptotically keeps the size and is consistent,

as is the original one.

We investigate the performance of the modified tests for finite samples by

simulation. The simulation results show the following. On the one hand, the

XFW test cannot be improved by the circular block bootstrap. On the other

hand, the modified versions of the ST and the LMW tests keep the size for the

appropriate block length. We explore the question of the optimal block length

for various sample sizes. It turns out that for both tests the optimal block length

is of order
√

n where n is the sample size. Further simulations show that the new

tests have good power properties.

As mentioned above, most of the tests developed in recent years test the null

hypothesis of dominance against the alternative of non-dominance. The drawback

of this approach is that there is no significant evidence of stochastic dominance.

Starting from the test of Kaur/ Rao/ Singh (1994), abbreviated by KRS, we look

for a remedy to this problem and develop a new test. This test has the alternative

of SD2 and the hypothesis of non-SD2. The KRS test does not regard the whole

real axis, but only a fixed interval. In addition, it requires the observations to

be independent. The new test considers the whole real axis and all data, but

appropriately truncates the range for the determination of the infimum. This

test asymptotically keeps the size if the truncation value is chosen appropriately.

Furthermore, in contrast to the KRS test, for the new test we do not need to

assume that the data are independent. It can be applied if the observations are

generated by a strongly mixing process and satisfy some moment conditions. In

a Monte Carlo study we explore the problem of the appropriate truncation choice

for finite samples. We find truncation values in such a way that the test has good

size and power properties for the cases we analyze.

Finally we apply the tests developed in this thesis in an empirical study in
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which we test whether there are stochastic dominance relations among the 30

stocks of the German stock index DAX. We compare the daily returns of a 1-

year period and a 10-year period using the modified versions of the LMW test

for SD1, of the ST test for SD2 and of the KRS test against SD2. Due to the

fact that conditional heteroskedasticity and positive correlation are prevalent in

the data, we need these tests which capture the dependence structure. From the

test results we determine the efficient sets, i.e. the subsets of the non-dominated

stocks. In many comparisons neither the null hypothesis of stochastic dominance

nor the null hypothesis of non-dominance is rejected. This is due to the fact that

in many cases the empirical distributions are close to each other. The modified

LMW and ST tests yield small, the modified KRS test rather large efficient sets.

However, as the modified KRS test significantly confirms stochastic dominance,

the efficiency results according to this test are more meaningful.

The structure of this thesis is as follows. Chapter 2 illustrates stochastic

dominance as a decision criterion. We give a survey on the theoretical results, in

particular the definition and some characterizations of stochastic dominance, in

section 2.1. In section 2.2 we illustrate the problems of a descriptive comparison.

A survey on various approaches of testing for stochastic dominance is given

in chapter 3. Some of the tests will be analyzed in more detail later.

In chapter 4 we investigate the effect of conditional heteroskedasticity on

common statistical procedures as the t-test or F-test. We give some definitions

and preliminary results in section 4.1. The procedures for means and variances

are investigated in the sections 4.2 and 4.3, respectively. Section 4.4 sums up the

results of chapter 4.

In chapter 5, we deal with the main issue of this study. We analyze vari-

ous tests for stochastic dominance which asymptotically capture the dependence

structure given by GARCH(1,1) and positive correlation. Having illustrated the

tests in section 5.1 we analyze them by means of simulation in section 5.2. Due

to poor performance for finite samples, we modify the tests and find analytical
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results in section 5.3. In section 5.4, we explore the performance of the tests in a

Monte Carlo study. Further we investigate the power in section 5.5 and conclude

chapter 5 in section 5.6.

We find a test with second degree stochastic dominance in the alternative in

chapter 6. After an introduction in section 6.1 we present various approaches in

section 6.2, in particular the test of Kaur/ Rao/ Singh (1994). In section 6.3 we

analyze and modify the test and prove that the new test asymptotically keeps

the size. We explore the performance for various distributions by simulation in

section 6.4. In section 6.5 we sum up the results of this chapter.

In chapter 7 we apply the tests developed in chapters 5 and 6 to the daily

returns of the stocks of the German stock index DAX. In section 7.1 we explain

the methodology which we use in the empirical study. We present and analyze

the data in section 7.2. Finally we present and interpret the test results in section

7.3.
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Chapter 2

Stochastic Dominance as a

Decision Criterion

2.1 Theory of Stochastic Dominance

The problem of decision making is as old as mankind. The classical theory of

rational decisions under risk is based on the von Neumann-Morgenstern utility

axioms. Let º denote the binary preference relation “is weakly preferred to”.

Consider a set X of real-valued random variables and let X,Y, Z ∈ X stand

for uncertain, real-valued outcome. Von Neumann/ Morgenstern (1944) make

the following assumptions concerning the preferences of a given person. For

X,Y, Z ∈ X holds:

1. Completeness: X º Y or Y º X holds

2. Transitivity: X º Y and Y º Z yield X º Z

3. Monotonicity: X ≥ Y a.s. (almost surely) yields X º Y

4. Continuity: If X > Y > Z a.s. holds, then there exist α, β ∈ (0, 1) satisfying

αX + (1− α)Z º Y and Y º βX + (1− β)Z

19



20 Chapter 2. Stochastic Dominance as a Decision Criterion

5. Substitution: X º Y yields αX + (1 − α)Z º αY + (1 − α)Z for any

α ∈ [0, 1].

If a preference relation º satisfies these axioms and X is rich enough (contains

at least the finite-discrete random variables), then there exists a (von Neumann-

Morgenstern) utility function u representing the preference. This means that

the inequality E(u(X)) ≥ E(u(Y )) of the expected utilities holds if and only

if X º Y . Fishburn (1970) and Zachow/ Schmitz (1977) give necessary and

sufficient conditions for the preference order to be equivalent to the expected

utility criterion. They also show that the utility function u is unique except for

affine transformations. Hence choice of a person between uncertain alternatives

depends on their probability distributions and on the individual utility function.

The objective of an individual is to maximize his or her expected utility. Due to

the fact that the utility function may differ from person to person, their rational

decisions differ as well.

It is an important goal of decision theory to find the optimal choice for a large

set of utility functions. One approach is the mean-variance analysis of Markowitz

(1952). Random variables standing for monetary payoff are compared by their

means and variances. X is preferred over Y if and only if X has larger or equal

mean and smaller or equal variance. In the case of nonnormal distributions this

might yield dissatisfying results. Consider, for example, the case mentioned by

Hanoch/ Levy (1969). If X and Y are random variables with the distributions

P (X = 1) = 0.8, P (X = 100) = 0.2, P (Y = 10) = 0.99 and P (Y = 1000) = 0.01,

we get

E(X) = 20.8 > 19.9 = E(Y )

and

V ar(X) = 1468 < 9703 = V ar(Y ).
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Hence X is preferred by the Markowitz criterion. However, if a risk averse person

has the utility function u(x) = log10(x), this results in

E(u(X)) = 0.4 < 1.02 = E(u(Y )).

Hence this person prefers Y which is contrary to the Markowitz criterion. Further-

more, it is easy to find an example where the Markowitz criterion does not lead

to a decision in spite of one alternative clearly being preferable. For instance,

consider the case where P (Y = 0) = 1, P (X = 0) = 1 − p, P (X = x) = p for

some 0 < p < 1, x > 0. Y has mean and variance zero whereas X has mean

px > 0 and variance p(1 − p)x2 > 0. In this example, the use of the Markowitz

criterion does not lead to a decision for one random variable although the result

of X is at least as large as that of Y and larger with positive probability.

This example shows that a criterion which only considers some parameters

such as mean or variance in some cases does not lead to an economically meaning-

ful decision. We need a decision criterion which yields a utility maximizing deci-

sion for a class of utility functions. This requirement is fulfilled by the concept

of stochastic dominance. The decision rule for first order stochastic dominance

was introduced by Quirk/ Saposnik (1962). Hadar/ Russell (1969) and Hanoch/

Levy (1969) develop stochastic dominance of second degree, Whitmore (1970) of

third degree, Rolski (1976) of any positive integer degree and Fishburn (1980)

of any real degree α for α ≥ 1. In this study we confine ourselves to stochastic

dominance of positive integer degree which is defined as follows.

Definition 1. Let X and Y be real-valued random variables and k be a positive

integer. X weakly dominates Y in the sense of kth degree stochastic dominance

(SDk) if and only if E(u(X)) ≥ E(u(Y )) holds for every utility function u with

existing and finite expected values and (−1)j+1u(j) ≥ 0 for all j ∈ {1, . . . , k}
where u(j) denotes the jth derivative of u. It is denoted by X ºk Y .

We can illustrate stochastic dominance for lower degrees. X º1 Y holds

if E(u(X)) ≥ E(u(Y )) for all nondecreasing utility functions u; this means
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that every individual favoring more over less prefers X. X º2 Y means that

E(u(X)) ≥ E(u(Y )) for all nondecreasing and concave utility functions u, which

stands for risk aversion.

It is obvious from the definition that SDk implies stochastic dominance of any

higher degree. SD1 is the strongest stochastic dominance relationship and occurs

most rarely. Moreover we see from the definition and the characterizations that

stochastic dominance is a partial order of all real-valued random variables. There

are, in particular for lower degrees, many pairs of random variables which do not

dominate each other in either direction.

Several authors (e.g. Mosler, 1982) generalize the concept of stochastic domi-

nance to probability measures on a measurable space (E,S) where S is a σ-field

on E. This means that S is a non-empty subset of the power set of E satisfying

the following properties:

1. E ∈ S

2. If A ∈ S, then E \A ∈ S where E \A is the relative complement of A in E.

3. If Ak ∈ S for all k ∈ N, then
⋃

k∈N
Ak ∈ S where

⋃
k∈N

Ak is the union of Ak

for all k ∈ N.

Let B be the set of all measurable functions u : E → R and U ⊂ B be a

subset. Suppose that ν and µ are probability measures on S. Then ν dominates

µ regarding U if ∫
udν ≥

∫
udµ

holds for all u ∈ U with existing and finite integrals. With this notation first

degree stochastic dominance can be generalized as follows. Let (E,S,≤) be a

preordered measurable vector space where ≤ is compatible with the addition of

vectors. We denote by U1 the set of all nondecreasing real-valued functions, i.e.

U1 = {u ∈ B|u(x) ≤ u(y) if x ≤ y, x, y ∈ E}.
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Then ν dominates µ in the sense of SD1 if
∫

udν ≥ ∫
udµ holds for all u ∈ U1

with existing and finite integrals.

Let X and Y be random variables with the induced probability distributions PX

and PY . X is said to dominate Y in the sense of SD1 if and only if PX dominates

PY in the sense of SD1. This definition is in accordance with definition 1.

In the case E = Rn the relation x ≤ y means that xi ≤ yi holds for each com-

ponent of the vectors x = (x1, . . . , xn), y = (y1, . . . , yn). Stochastic dominance in

this setting is called multivariate stochastic dominance. However, in this study

we confine ourselves to the case E = R.

For the investigation of stochastic dominance there are useful characteriza-

tions, based on the distribution and quantile functions. Let FX , FY be the (cu-

mulative) distribution functions and QX , QY be the quantile functions of X and

Y , i.e.

FX(x) = P (X ≤ x)

for x ∈ R and

QX(p) = inf{x ∈ R : FX(x) ≥ p}

for p ∈ (0, 1), correspondingly for FY and QY . Define F
(1)
X = FX , Q

(1)
X = QX ,

F
(k+1)
X (x) =

∫ x

−∞
F

(k)
X (t)dt

and

Q
(k+1)
X (p) =

∫ p

0

Q
(k)
X (t)dt

for all k ∈ N, x ∈ R and p ∈ (0, 1).

Jean (1984) states a relation between F
(k)
X and the lower partial moment. The

kth lower partial moment with reference value c ∈ R is a common risk measure

which is defined as

LPMk
X(c) =

∫

(−∞,c)

(c− x)kdPX(x).
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The second lower partial moment is the well known (lower) semivariance

SVX(c) = LPM2
X(c).

An important and useful relation between F
(k)
X and LPMk

X is given by the fol-

lowing proposition. Here and in the following let λ denote the Lebesgue measure.

Proposition 1 (Jean, 1984).

LPMk
X(c) = k!F

(k+1)
X (c) (2.1)

holds for all k ∈ N.

Proof. We prove the assertion by complete induction.

For k = 0 we have

LPM0
X(c) =

∫

(−∞,c)

(c− x)0dPX(x) = FX(c) = 0!F
(1)
X (c),

therefore (2.1) holds for k = 0.

Let (2.1) hold for some k ∈ N. Then we have to prove that

LPMk+1
X (c) = (k + 1)!F

(k+2)
X (c)

holds. Due to Fubini’s theorem for measure integrals it follows that

(k + 1)!F
(k+2)
X (c) =

∫

(−∞,c)

(k + 1)k!F
(k+1)
X (t)dλ(t)

=

∫

(−∞,c)

∫

(−∞,t)

(k + 1)(t− x)kdPX(x)dλ(t) (Induction hypothesis)

=

∫

(−∞,c)

∫

(x,c)

(k + 1)(t− x)kdλ(t)dPX(x) (Fubini)

=

∫

(−∞,c)

(c− x)k+1dPX(x) = LPMk+1
X (c)

which yields the assertion of the induction step and completes the proof.
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It is obvious that the kth lower partial moment exists and is finite for every

c ∈ R if and only if this holds for the kth moment. Using the proposition, it

follows for any k ∈ N that F
(k)
X (x) exists and is finite for all x ∈ R if and only if

X has an existing and finite (k − 1)th moment.

Proposition 2. Let k ∈ N such that E(Xk−1) and E(Y k−1) exist and are finite.

Then the following statements are equivalent:

1. X ºk Y

2. F
(k)
X (x) ≤ F

(k)
Y (x) for all x ∈ R

For k = 1, 2 these statements are equivalent to

3. Q
(k)
X (p) ≥ Q

(k)
Y (p) for all p ∈ (0, 1).

For the proof we need the following auxiliary result.

Lemma 1. For k ∈ N arbitrary let E(Xk−1) and E(Y k−1) exist and be finite.

Assume that F
(k)
X (x) ≤ F

(k)
Y (x) holds for all x ∈ R. Then

lim
x→∞

F
(l)
X (x)− F

(l)
Y (x) ≤ 0

holds for all l ∈ N, l < k.

Proof. Let Gk(x) := F
(k)
X (x) and Hk(x) := F

(k)
Y (x). First note that for all k ∈ N

the functions Gk and Hk asymptotically behave like polynomials of degree k−1 if

x approaches infinity. This holds for k = 1 and follows for all k ∈ N by complete

induction due to the fact that Gk and Hk are some antiderivatives of Gk−1 and

Hk−1. Therefore

lim
x→∞

Gk(x)−Hk(x)

exists – at least in the improper sense – for all k ∈ N.

We prove the assertion in two steps: First we show that Gk(x) ≤ Hk(x) for

all x ∈ R yields

lim
x→∞

Gk−1(x)−Hk−1(x) ≤ 0,
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then we see that this results in

lim
x→∞

Gl(x)−Hl(x) ≤ 0

for all l < k.

We prove the first part by contraposition. Assume lim
x→∞

(Gk−1(x)−Hk−1(x)) =

c > 0 or lim
x→∞

(Gk−1(x) −Hk−1(x)) = ∞. Then there exists an x0 ∈ R satisfying

Gk−1(x)−Hk−1(x) ≥ c
2

for all x ≥ x0. Define

d := Gk(x0)−Hk(x0) =

∫ x0

−∞
Gk−1(t)−Hk−1(t)dt.

Then we get for x > x0:

Gk(x)−Hk(x) = d +

∫ x

x0

Gk−1(t)−Hk−1(t)︸ ︷︷ ︸
≥ c

2

dt ≥ d +
c

2
(x− x0).

For sufficiently large x0 we get

Gk(x)−Hk(x) ≥ d +
c

2
(x− x0) > 0,

which is a contradiction to Gk(x) ≤ Hk(x) for all x ∈ R. This completes the first

part of the proof.

We prove the second part by contraposition as well. Assume that

lim
x→∞

Gl(x)−Hl(x) > 0

holds for some l < k − 1. As in the first part we can deduce that there are c > 0

and d, x0 ∈ R satisfying Gl+1(x)−Hl+1(x) ≥ d + c
2
(x− x0) for all x ≥ x0. Hence

lim
x→∞

Gl+1(x)−Hl+1(x) > 0.

Then

lim
x→∞

Gk−1(x)−Hk−1(x) > 0

follows by complete induction.
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Proof of proposition 2. The equivalence of statements 2 and 3 for k = 1, 2 is

proved by Levy/ Kroll (1978).

In the following we prove that statements 1 and 2 are equivalent. Let k ∈
N be arbitrary and H(k) := F

(k)
X − F

(k)
Y . Note that because of the existence

and finiteness of E(Xk−1) and E(Y k−1) the functions F
(k)
X (x) and F

(k)
Y (x) and

therefore H(k)(x) also feature this property for all x ∈ R.

2 ⇒ 1: Let H(k)(x) ≤ 0 for all x ∈ R and u ∈ Uk be an arbitrary utility

function with existing and finite expectations E(u(X)) and E(u(Y )). Then the

difference

E(u(X))− E(u(Y )) =

∫

(−∞,∞)

u(x)dH(x)

also exists and is finite. Using k-fold partial integration we get
∫

(−∞,∞)

u(x)dH(x)

=
k−1∑
j=0

(−1)ju(j)(x)H(j+1)(x)

∣∣∣∣
∞

−∞
+ (−1)k

∫

(−∞,∞)

u(k)(x)dH(k+1)(x)

=
k−1∑
j=0

(−1)ju(j)(x)H(j+1)(x)

∣∣∣∣
∞

−∞
+

∫

(−∞,∞)

(−1)ku(k)(x)H(k)(x)dx. (2.2)

Due to lemma 1, H(k)(x) ≤ 0 for all x ∈ R yields lim
x→∞

H(j)(x) ≤ 0 for all

j ∈ {0, . . . , k − 1}. Because of (−1)ju(j)(x) ≤ 0 for all j ≤ k − 1 and all x ∈ R
we get

lim
x→∞

(−1)ju(j)(x)H(j+1)(x) ≥ 0

for all j ≤ k − 1. Furthermore, note that for all j ≤ k − 1 we have

lim
x→−∞

(−1)ju(j)(x)H(j+1)(x) = 0.

This asymptotic behavior results from the finiteness of
∫ t

−∞
(−1)ju(j+1)(x)H(j+1)(x)dx

for all t ∈ R. Hence the first part of (2.2) is nonnegative. The nonnegativity of

the second part follows from (−1)ku(k)(x) ≤ 0 and H(k)(x) ≤ 0 for all x ∈ R.
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1 ⇒ 2 (by contraposition): Assume that H(k)(x0) > 0 holds for some x0 ∈ R.

Due to the continuity from the right of H(k) there exists an ε > 0 satisfying

H(k)(x) > 0 for all x satisfying 0 < x − x0 < ε. Let u be a utility function with

u(k)(x) = 0 for all x satisfying 0 < x−x0 ≥ ε. Due to the existence and finiteness

of the integral
∫

(−∞,∞)
u(x)dH(x) we know that

k−1∑
j=0

(−1)ju(j)(x)H(j+1)(x)
∣∣∣
∞

−∞
=: c

also exists and is finite. If we choose u in such a way that (−1)ku(k)(x) is suffi-

ciently small in the interval [x, x0 + ε], using (2.2) we get
∫

(−∞,∞)

u(x)dH(x) = c +

∫

(−∞,∞)

(−1)ku(k)(x)H(k)(x)dx < 0

which is contrary to 1.

For k = 1, 2 proposition 2 yields:

• X º1 Y is equivalent to FX(x) ≤ FY (x) for all x ∈ R and to QX(p) ≥ QY (p)

for all p ∈ (0, 1).

• X º2 Y is equivalent to
∫ x

−∞ FX(t)dt ≤ ∫ x

−∞ FY (t)dt for all x ∈ R and to
∫ p

0
QX(t)dt ≥ ∫ p

0
QY (t)dt for all p ∈ (0, 1).

This means that first degree stochastic dominance of X over Y is equivalent

to X having a uniformly smaller or equal distribution function and a larger or

equal quantile function than Y . Second degree stochastic dominance is equivalent

to a uniform order of the integrals of the distribution and quantile functions from

−∞ to x for all x ∈ R.

In the following let µX = E(X), µY = E(Y ) be the means of X and Y ,

respectively. Define the kth central moments Ck
X = E(X − µX)k and Ck

Y =

E(Y −µY )k. The second central moments are the well-known variances σ2
X = C2

X

and σ2
Y = C2

Y .

For the antiderivatives F
(k)
X of the distribution function we can state the fol-

lowing for k = 1, 2, 3:
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• F
(1)
X = FX is nonnegative, continuous from the right, nondecreasing and

has the limit properties lim
x→−∞

FX(x) = 0, lim
x→∞

FX(x) = 1 as is common

knowledge.

• F
(2)
X is nonnegative, continuous, convex, nondecreasing and has the limit

properties lim
x→−∞

F
(2)
X (x) = 0, lim

x→∞
F

(2)
X (x) − (x − µX) = 1 (see Ogryczak/

Ruszczynski, 1999).

• F
(3)
X is nonnegative, continuous, convex, nondecreasing, differentiable and

has the limit properties lim
x→−∞

F
(3)
X (x) = 0,

lim
x→∞

F
(3)
X (x)− 1

2
((x− µX)2 + σ2

X) = 1

(see Gotoh/ Konno, 2000).

Shaked/ Shanthikumar (1994) report the following result which is an equiva-

lent characterization of stochastic dominance of the first two degrees.

Proposition 3. Let X and Y be random variables. Then X dominates Y

• in the sense of SD1 if and only if there exist random variables X̃ and Ỹ ,

defined on the same probability space, satisfying PX = PX̃ , PY = PỸ and

P (X̃ ≥ Ỹ ) = 1.

• in the sense of SD2 if and only if there exist random variables X̃ and Ỹ ,

defined on the same probability space, satisfying PX = PX̃ , PY = PỸ and

(X̃, Ỹ ) is a supermartingale, i.e. E(Ỹ |X̃) ≤ X̃ a.s.

We can interpret these results as follows. If X dominates Y in the sense of

SD1, there are some random variables X̃ and Ỹ with the same distributions as X

and Y , with X̃ almost surely being larger than Ỹ . X dominates Y in the sense

of SD2 if and only if the mean of Ỹ − X̃, conditional on X̃, is negative.

Since the development of stochastic dominance various necessary conditions

have been found. Jean/ Helms (1987) explore a generalization of many moment
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conditions. Let b be an upper bound for the supports of PX and PY . Then

a necessary condition for any degree of stochastic dominance of X over Y is

F
(k)
X (b) ≤ F

(k)
X (b) and therefore

k∑
j=0

(−1)j

(
k

j

)
(b− µX)k−jE((X − µX)j)

≤
k∑

j=0

(−1)j

(
k

j

)
(b− µY )k−jE((Y − µY )j) (2.3)

for all k ∈ N; see Jean/ Helms (1987).

For k = 1 we get the ranking condition µX ≥ µY of the means, for k = 2 the

mean-variance condition (σ2
X − σ2

Y ) + (µY − µX)(b− µX − µY ) ≤ 0. The latter is

found by Whitmore (1970) to be a necessary condition for SD3, the result above

shows that it is necessary for stochastic dominance of any degree. Furthermore,

(2.3) with k = 3 yields the following condition for the third central moments C3
X

and C3
Y which is found by Jean (1984):

C3
X − 3(b− µX)σ2

X − (b− µX)3 ≥ C3
Y − 3(b− µY )σ2

Y − (b− µY )3.

If the supports of PX and PY have no upper bound b, we can generalize (2.3) to

lim sup
b→∞

k∑
j=0

(−1)j

(
k

j

)
((b− µX)k−jE((X − µX)j)− (b− µY )k−jE((Y − µY )j)) ≤ 0

if X and Y have finite kth moments. This yields µX ≥ µY for k = 1,

lim
b→∞

(σ2
X − σ2

Y ) + (µY − µX)(b− µX − µY ) ≤ 0

for k = 2 and

lim inf
b→∞

C3
X − 3(b− µX)σ2

X − (b− µX)3 − C3
Y − 3(b− µY )σ2

Y − (b− µY )3 ≥ 0

for k = 3.

From the above mentioned moment conditions we can deduce the following:

If X dominates Y in the sense of any degree and both have equal means, then
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X has smaller or equal variance. If, in addition, the variances are equal, X has

larger or equal central third moment. We get the following result for the kth

central moments Ck
X , Ck

Y : If X dominates Y in the sense of any degree and we

have µX = µY and Cj
X = Cj

Y for j = 2, . . . , k − 1, then

(−1)kCk
X ≤ (−1)kCk

Y

holds.

Furthermore, an ordering of lower partial moments is a necessary condition

for certain degrees of stochastic dominance. As stated above, Jean (1984) asserts

that

LPMk
X(c) = k!F

(k+1)
X (c)

holds for all k ∈ N. Therefore it is obvious that LPMk−1
X (c) ≤ LPMk−1

Y (c) is

necessary for X ºk Y . Due to the fact that SDk implies stochastic dominance

of any higher degree we know that X ºk Y yields LPM l
X(c) ≤ LPM l

Y (c) for all

l ∈ N satisfying l ≥ k− 1. Remember that the (lower) semivariance is defined by

SVX(c) = LPM2
X(c).

The relation stated above implies that SVX(c) ≤ SVY (c) is necessary for first,

second and third degree stochastic dominance whereas SVX(c) > SVY (c) for some

c does not prevent X ºk Y for k ≥ 4. This is e.g. the case for X ∼ U(−√3,
√

3),

Y ∼ N (0, 1) where U(a, b) denotes the uniform distribution on the interval (a, b)

and N (µ, σ) the normal distribution with mean µ and variance σ2; X dominates

Y in the sense of SD4 whereas SVX(1) > SVY (1) holds.

Ogryczak/ Ruszczynski (2001) establish an interesting result for the relation-

ship of mean and semideviation. If X dominates Y in the sense of SDk, then

µX ≥ µY and

µX − (LPMk−1
X (µX))

1
k−1 ≥ µY − (LPMk−1

Y (µY ))
1

k−1
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hold. If the first inequality is strict, this also holds for the last one. Because of

the fact that stochastic dominance of some degree implies stochastic dominance

of any higher degree X ºk Y yields

µX − (LPM l
X(µX))

1
l ≥ µY − (LPM l

Y (µY ))
1
l

for all l ∈ N satisfying l ≥ k − 1.

Second degree stochastic dominance is also known as generalized Lorenz domi-

nance. Atkinson (1970) introduces the concept of Lorenz dominance as a criterion

of social inequality. The Lorenz curve of a non-negative random variable X ≥ 0

is defined by

LX(p) =
1

µX

E(1{X<QX(p)}X) =
1

µX

∫

(−∞,QX(p))

tdPX(t) =
1

µX

∫ p

0

QX(t)dt

for p ∈ (0, 1) where µX denotes the mean of X. It is easy to see that lim
p→0

LX(p) = 0

and lim
p→1

LX(p) = 1 hold. If X has a continuous distribution, then 1
µX

QX(p) is

the derivative of LX(p). LX is convex because QX is monotonically increasing.

Therefore we get LX(p) ≤ p for all p ∈ (0, 1). In social welfare investigations the

random variable X usually stands for income. The larger the difference p−LX(p)

is, the larger is the inequality in the population. If LX(p) ≥ LY (p) holds for all

p ∈ (0, 1), then X dominates Y in the sense of Lorenz dominance; it is denoted

by X ºL Y .

Shorrocks (1983) extends this concept to the generalized Lorenz curve and

dominance. The generalized Lorenz curve is defined by

GLX(p) = µXL(p) =

∫

(−∞,QX(p))

tdPX(t) =

∫ p

0

QX(t)dt

for p ∈ (0, 1). It has the properties lim
p→0

GLX(p) = 0 and lim
p→1

GLX(p) = µX ,

d
dp

GLX(p) = QX(p) and GLX(p) ≤ µXp for all p ∈ (0, 1).

X dominates Y in the sense of generalized Lorenz dominance if

GLX(p) ≥ GLY (p)



2.2 Descriptive Stochastic Dominance 33

holds for all p ∈ (0, 1). Because of GLX(p) = Q
(2)
X (p) it follows from proposition

2 that generalized Lorenz dominance and second degree stochastic dominance are

equivalent. If X and Y have the same mean, these dominance relations are also

equivalent to Lorenz dominance.

Foster/ Sen (1997) and Zheng/ Formby/ Smith/ Chow (2000) generalize the

concept of Lorenz dominance in the same way as stochastic dominance is a gener-

alization of generalized Lorenz dominance. They consider normalized stochastic

dominance which is defined as follows. Let X and Y be random variables with

nonnegative real values. Then X dominates Y in the sense of kth degree normal-

ized stochastic dominance if X
µX

dominates Y
µY

in the sense of kth degree stochastic

dominance. Obviously, second degree normalized stochastic dominance is equiv-

alent to Lorenz dominance.

For a survey concerning stochastic dominance see for instance Whitmore/

Findlay (1978), Levy (1992) and Mosler/ Scarsini (1991). Bawa (1982) and

Mosler/ Scarsini (1993) give detailed bibliographies for theoretical and applied

studies of stochastic dominance.

2.2 Descriptive Stochastic Dominance

In this chapter we discuss the pros and cons of a descriptive approach to in-

vestigating stochastic dominance. As we stated above, X ºk Y is equivalent to

F
(k)
X (x) ≤ F

(k)
Y (x) for all x ∈ R and to Q

(k)
X (p) ≥ Q

(k)
Y (p) for all p ∈ (0, 1) if

k ∈ {1, 2}. In applications the compared distributions are usually unknown and

have to be inferred from the observations of X and Y . One could just compare

the (k − 1)th antiderivatives of the empirical distribution functions F̂
(k)
n or of

the empirical quantile functions Q̂
(k)
n . The empirical distribution and quantile

functions of the observations x1, . . . , xn of X are defined by

F̂X,n(x) =
1

n

n∑

k=1

1(xk,∞)(x)
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and by

Q̂X,n(p) = inf{x ∈ R : F̂X,n(x) ≥ p},

respectively.

For instance, X(ω) is said to (descriptively) dominate Y (ω) in the sense of SD2

if and only if
∫ x

−∞ F̂X,n(t)dt ≤ ∫ x

−∞ F̂Y,n(t)dt holds for all x ∈ R. The theoretical

justification is the well known theorem of Glivenko-Cantelli.

Theorem 1 (Glivenko-Cantelli). Let (Xn)n∈N be a sequence of independent,

identically distributed random variables with common distribution function FX .

Let F̂X,n be the empirical distribution function of X1, . . . , Xn. Then

sup
x∈R

|F̂X,n(x)− FX(x)| a.s.−→ 0.

The assertion of this theorem is that almost surely the empirical distribution

of an independent, identically distributed sample converges uniformly to the dis-

tribution function. According to Yu (1993) the independence assumption can be

weakened.

Theorem 2 (Yu, 1993). Let (Xn)n∈N be a sequence of identically distributed

random variables with a common continuous distribution function FX , and let

F̂X,n be the empirical distribution function of X1, . . . , Xn. Assume that

∞∑
n=1

1

n2
Cov(Xn, Sn−1) < ∞

where Sn :=
∑n

k=1 Xk. Then

sup
x∈R

|F̂X,n(x)− FX(x)| a.s.−→ 0.

However, the main drawback of a descriptive comparison is the strong impact

of the standard error. As discussed above, stochastic dominance is a partial

order and very restrictive. If the distribution functions (or their antiderivatives,

respectively) cross at least once, then there is no dominance relationship between
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Degree SD1 SD2

Sample PX N (0, 1) N (0.1, 1) N (0, 1) N (0.1, 1) N (0, 1)

size PY N (0, 1) N (0, 1) N (0, 1) N (0, 1) N (0, 1.1)

250 0.998 0.965 0.832 0.613 0.677

1000 0.999 0.960 0.865 0.554 0.630

4000 1.000 0.925 0.887 0.531 0.588

Table 2.1: Rate of wrong rejection of stochastic dominance in a descriptive com-

parison for SD1 and SD2 and various sample sizes and distributions. “X ºk Y ” is

rejected if there exists an x ∈ R satisfying F̂
(k)
X,n(x) ≤ F̂

(k)
Y,n(x). The data are normally

distributed and stochastically independent. The number of replications is R = 1000.

the random variables. For the empirical distribution functions things are even

more involved. Even if X dominates Y , the probability of rejecting stochastic

dominance, based on the fact that the empirical distributions cross at least once,

is very high in many cases.

We investigate the frequency of wrong rejection of stochastic dominance of

first and second degree by means of simulation. In our analysis we consider three

cases of pairs of normally distributed random variables: in the first case both

are standard normally distributed, in the second case Y has a standard normal

distribution whereas X has a normal distribution with mean 0.1 and variance 1,

in the third case X has a standard normal distribution whereas Y is normally

distributed with mean 0 and variance 1.1. In all of the three cases X dominates

Y in the sense of SD2, in the first and second case in the sense of SD1 as well.

Table 2.1 displays the results. Stochastic dominance is often not detected. This

holds particularly for SD1, but the results are also not satisfying for SD2. If X

and Y are equally distributed, the rate of wrong rejection is particularly large

and increases with increasing sample size.

As explained above, the tendency of the descriptive procedure to reject stochas-

tic dominance too often is not surprising. The multiple comparison is not robust
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even for small standard errors. For a more detailed analysis of this topic see, for

instance, Nelson/ Pope (1991) and Stein/ Pfaffenberger/ Kumar (1983).

Schmid/ Trede (2000) explore the dominance relations in the daily returns

of German assets during the 1990s. They show that SD1 is rejected in every

comparison. In addition, although SD2 and SD3 can be established in some

cases, the efficient sets, i.e. the sets of non-dominated assets, are still large for

second and third degree stochastic dominance. This holds in particular for larger

periods. In chapter 7 we will also encounter this problem.

These results altogether show that we need statistical tests for surveying a

stochastic dominance relationship. In the last two decades many tests have been

developed. In the next chapter we will give a review.



Chapter 3

Tests of Stochastic Dominance:

A Survey

The vast majority of tests for stochastic dominance test the null hypothesis H0 of

dominance or equality against the alternative H1 of non-dominance. Therefore in

most of the tests stochastic dominance can be rejected or not, but not significantly

asserted. This dissatisfying fact results from the complexity of the set of non-

dominance. Usually tests are constructed in a way that they just keep the size

at the border of the hypothesis. The border of the hypothesis “X ºk Y ” for any

k is the equality of the distributions of X and Y . On the contrary, the border of

the set “X �k Y ” cannot be described in such a simple way. Consider e.g. the

distributions PX = δ0.99, i.e. P (X = 0.99) = 1, and PY = U(0, 1). For the

distribution functions we get FX = 1[0.99,∞) and FY (x) = x1[0,1)(x) + 1[1,∞)(x).

Therefore FX(x) ≤ FY (x) holds for all x /∈ [0.99, 1), we even have

lim
x↑0.99

FX(x)− FY (x) = −0.99.

On the other hand,

FX(x) = 1 > x = FY (x)

holds for x ∈ [0.99, 1). Hence X does not dominate Y in the sense of SD1. The

example illustrates the consequence of the fact that F
(k)
X (x) > F

(k)
Y (x) for one

37
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x suffices to prevent X from dominating Y in the sense of SDk. The boundary

cannot be described in closed form, hence the construction of a test with non-

dominance in the hypothesis is very difficult.

In the following we report on the development of the tests for stochastic

dominance. The tests vary in some respects. One aspect is the degree of stochastic

dominance they test. Some tests examine SD1, others SD2, others are applicable

to various degrees of stochastic dominance. Many tests assume independence of

the data, both contemporaneous and serial. In recent years some tests have been

developed which permit various kinds of dependence structures. In this study we

particularly focus on these tests and extend them.

A further question is the choice of an appropriate test statistic. According to

proposition 2 the test statistic can be based on the proper antiderivatives of the

empirical distribution functions F̂
(k)
X,n, F̂

(k)
Y,n or of the empirical quantile functions

Q̂
(k)
X,n, Q̂

(k)
Y,n if k ∈ {1, 2}.1 The differences are derived at some grid points; note

that these statistics are multidimensional. In order to get a unidimensional test

statistic primarily two kinds of functions are applied to F̂
(k)
X,n−F̂

(k)
Y,n and accordingly

Q̂
(k)
X,n − Q̂

(k)
Y,n: area and supremum statistics. An area statistic derives an integral

or a weighted average of F̂
(k)
X,n− F̂

(k)
Y,n or Q̂

(k)
X,n− Q̂

(k)
Y,n at some grid points, whereas

a supremum statistic determines the maximal difference.

Presumably the first test of stochastic dominance is the test of Beach/ David-

son (1983). They examine Lorenz dominance and second degree stochastic dom-

inance. The test statistics are derived from the empirical Lorenz and generalized

Lorenz curve at some grid points. They consider the covariance structure of the

quantile curve ordinates, but implicitly assume that the data are independent.

Under this and some regularity assumptions the test statistics are asymptotically

χ2-distributed.

Deshpande/ Singh (1985) also create a test for SD2. They test H0 : F = F0

1In this study we confine ourselves to the case that both samples have the same size n.
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against H1 : F º2 F0 where F0 is known. The test statistic is the double integral

T2 =

∫ ∞

−∞

∫ x

−∞
(F̂X,n(t)− F0(t))dt dF0(x).

The term is an area statistic, statistical inference is based on its asymptotic

normality. Although the test has the alternative of dominance and good efficiency

properties, it is of very limited use. A data set can only be tested against a known

alternative F0, in addition to this the data have to be independent.

Chow (1989) develops a test for stochastic dominance of any degree. He tests

H0 : PX = PY against the two-sided alternative H1 : (X º2 Y or Y º2 X) using

a multiple comparison procedure. The difference of the empirical distribution

functions is derived at some grid points, in addition to this its empirical covari-

ance matrix contributes to the test statistic. Under the independence assumption

the test statistic tends to a Studentized Maximum Modulus (SMM) distribution.

Zheng/ Formby/ Smith/ Chow (2000) take up the idea to create a test for nor-

malized stochastic dominance. They develop a corresponding test for normalized

stochastic dominance of any order.

Bishop/ Chakraborti/ Thistle (1989) provide a test for SD2 which is asymptot-

ically distribution-free. For the test of H0 : X º2 Y against H1 : X �2 Y they de-

rive the differences Q̂
(2)
X,n(pk)−Q̂

(2)
Y (pk) at some grid points 0 < p1 < · · · < pn = 1.

The test statistic is

T = (Q̂
(2)
X,n(P )− Q̂

(2)
Y (P ))′Ω̂−1(Q̂

(2)
X,n(P )− Q̂

(2)
Y (P ))

where P = (p1, . . . , pn) and Ω̂ is an estimator of the covariance matrix Ω of

Q̂
(2)
X,n(P )− Q̂

(2)
Y (P ). If the samples are independent, T is χ2-distributed.

McFadden (1989) develops tests for SD1 and SD2. For k = 1, 2 he tests the

null hypothesis H0 : X ºk Y against the alternative H1 : X �k Y using the

supremum statistic

Tk =
√

n sup
x∈[0,1]

(F̂
(k)
X,n(x)− F̂

(k)
Y,n(x));
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X and Y are assumed to have values in [0,1]. The data are assumed to be

independent. For T1 he gives the distribution under PX = PY in closed form

and asymptotically, whereas he only gives some bounds for the distribution of T2

under PX = PY .

Klecan/ McFadden/ McFadden (1991) generalize the procedure to testing

stochastic maximality. A set is stochastically maximal if no prospect is stochas-

tically dominated by another prospect in the set. In addition to this, they allow

for general weak dependence within the processes and generalized exchangeability

between them.

The weak dependence structure assumed is that the processes are strictly

stationary and strongly mixing (or α-mixing) with coefficient α(k) = O(k−δ) for

some δ > 1. The strong mixing coefficient of two sigma fields A and B is defined

by

α(A,B) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ A, B ∈ B}.

A sequence (Zk)k∈Z of random variables is strongly mixing if for the generated

sigma fields F b
a := σ(Zk : a ≤ k < b) the following holds:

α(m) := sup{α(Fk
−∞,F∞

k+m) : k ∈ Z} −→
m→∞

0.

The strong mixing coefficient α(m) of (Zk)k∈Z is defined for m ∈ N. Davis/

Mikosch/ Basrak (1999) show that a stationary GARCH process is strongly mix-

ing.

A set of random variables {X1, . . . , Xn} is exchangeable if for every per-

mutation (i1, . . . , in) of (1, . . . , n) the tuple (Xi1 , . . . , Xin) has the same distri-

bution as (X1, . . . , Xn). Consequently, exchangeable random variables must be

identically distributed whereas independence and an identical distribution are

sufficient for exchangeability. The set {X1, . . . , Xn} is generalized exchangeable if

{Y1, . . . , Yn} is exchangeable where Yi = FXi
(Xi). If X1, . . . , Xn have continuous

distributions, all Yi are identically U(0, 1) distributed. Therefore, in this case in-

dependence of X1, . . . , Xn is sufficient for generalized exchangeability. However,
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the assumption of generalized exchangeability is weaker than the assumption of

independence.

Altogether we see that the test of Klecan/ McFadden/ McFadden can be

applied to more general settings than a test which requires contemporaneous and

serial independence of the data.

Schmid/ Trede (1997) propose a similar test for SD2. In chapter 5 we analyze

its performance in detail. We find that the test captures the serial dependence

very well, but is not robust to the effect of conditional heteroskedasticity. The test

of Klecan/ McFadden/ McFadden (1991) is applied e.g. by Maasoumi/ Heshmati

(2000) to the comparison of income distributions.

Aly (1991) tests for Lorenz dominance, namely the null hypothesis H0 : X
L
= Y

against the alternative H1 : (X ºL Y and X
L

6= Y ). He uses the test statistic

T = 2

∫ 1

0

(L̂X(p)− L̂Y (p))dp

where

L̂X(p) =
1

µ̂X

∫ p

0

Q̂X,n(t)dt

is the empirical Lorenz curve of X and L̂Y is defined analogously. Under the

assumption of independence of the data the statistic
√

n
2

T
σ̂X,Y

, where σ̂2
X,Y is

a variance estimator of the pooled observations of X and Y , is asymptotically

normal.

Bishop/ Formby/ Thistle (1992) devise a union-intersection test to determine

whether the conditional means of the quantile functions differ. As in Chow (1989)

and Zheng/ Formby/ Smith/ Chow (2000) the test statistic is SMM distributed

under the null hypothesis.

Eubank/ Schechtman/ Yitzhaki (1993) design a test for SD2. They test the

equality hypothesis H0 : PX = PY against the alternative of dominance H1 :

X º2 Y with the area statistic

T =
√

n

∫ ∞

−∞
(2− F̂X,n(x)− F̂Y,n(x))(F̂X,n(x)− F̂Y,n(x))dx.
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If the data are independent, the test statistic asymptotically tends to a normal

distribution under H0. Besides the independence assumption the test has another

essential drawback. If the test rejects the null hypothesis of equality, it does not

significantly confirm that X dominates Y . In the case that F
(2)
X and F

(2)
Y cross

the test statistic can still be arbitrarily large.

Kaur/ Rao/ Singh (1994) create a test of

H0 : F
(2)
X (x) ≥ F

(2)
Y (x) for some x ∈ [a, b]

against the alternative

H1 : F
(2)
X (x) < F

(2)
Y (x) for all x ∈ [a, b]

where a and b are any real numbers satisfying a < b. The alternative H1 is

similar to the statement that X dominates Y in the sense of SD2. In contrast to

the test of Eubank/ Schechtman/ Yitzhaki (1993) the null hypothesis resembles

“X �2 Y ”. Kaur/ Rao/ Singh (1994) use the infimum statistic

T = inf
x∈[a,b]

F̂
(2)
Y,n(x)− F̂

(2)
X,n(x)√

1
n
(S2

X,n(x) + S2
Y,n(x))

where

S2
X,n(x) =

1

n

n∑

k=1

(1(xk,∞)(x)(x− xk)
2)− (F̂

(2)
X,n(x))2

and S2
Y,n(x) is defined analogously. They show that for the appropriate critical

value the test has an upper bound α on the asymptotic size and is consistent.

The test of Kaur/ Rao/ Singh is a good starting point for testing for stochastic

dominance where dominance is the alternative. However, their approach has

two crucial drawbacks. As in many other tests, the observations have to be

independent. But the more important disadvantage concerns the shape of the

hypotheses. The lower and upper bound a and b of the considered interval are

chosen arbitrarily. In the case that the distributions have bounded support [a, b]
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we get F
(2)
X (a) = F

(2)
Y (a) = 0, hence H1 do not hold even if X dominates Y in

the sense of SD2. We will discuss this test and look for a remedy in chapter 6.

Herring (1996a) tests H0 : (µX = µY , X º2 Y ) against the alternative

H1 : (µX = µY , σX ≥ σY ). The test statistic is the rank sum of X where

the observations are ranked by the deviation from the mean. The critical value is

easy to determine if the data are independent. The assumption of independence is

restrictive, but this holds even more for the assumption of equal means on which

the test is based. In particular, in most empirical applications the theoretical

mean is unknown.

Herring (1996b) tests H0 : PX = PY against H1 : X º2 Y using the test

statistic

T =
2n∑

k=1

(F̂
(2)
Y,n(zk)− F̂

(2)
X,n(zk))

where (z1, . . . , z2n) is the ordered combined sample of X and Y . The critical

value is determined by permutations. The data are assumed to be independent.

The main drawback is the same as for the test of Eubank/ Schechtman/ Yitzhaki

(1993). The alternative is not the whole complement of the hypothesis, hence

rejection of the hypothesis does not mean that the alternative of dominance is

significantly confirmed.

Anderson (1996) tests for the first three degrees of stochastic dominance. The

hypothesis is H0 : PX = PY in each case, the alternative is H1 : X ºk Y for

k = 1, 2, 3. The test is based on modifications of the goodness-of-fit test and

composed of a multiple comparison at some grid points. Under the independence

assumption the test statistic is χ2-distributed under H0. As in the tests of Herring

(1996b) and Eubank/ Schechtman/ Yitzhaki, the main disadvantage is the fact

that rejection of the hypothesis is not equivalent to significant confirmation of

the alternative. The reason is that the alternative is not the complement of the

hypothesis.

Schmid/ Trede (1996a) develop a test for SD1. For the test of H0 : X º1 Y
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against H1 : X �1 Y they use the area statistic

T =

√
n

2

∫ ∞

−∞
(F̂X,n(x)− F̂Y,n(x))+dF̂Y,n(x)

=

√
1

2n

n∑

k=1

(F̂X,n(y(k))− k

n
)+ =

√
1

2n

n∑

k=1

(
R(y(k))− 2k

n
)+.

x+ denotes the nonnegative part of a real number x, i.e. x+ = max{x, 0},
y(1) ≤ · · · ≤ y(n) denotes the order statistic of y1, . . . , yn, and R(y(k)) denotes

the rank of y(k) in the combined sample. Schmid/ Trede note that T is an affine

transformation of the Wilcoxon-Mann-Whitney statistic
∑n

k=1 R(y(k)). They give

the finite sample and asymptotic distribution under the limiting case PX = PY

and under the assumption that the samples are independent. Power investigations

suggest that the test is an attractive substitute for the Wilcoxon-Mann-Whitney

test. However, the performance of the test in the case that the independence

assumption is abandoned is not known.

Schmid/ Trede (1996b) test for SD2 using second degree analogs of some well-

known statistics. For the test of H0 : X º2 Y against H1 : X �2 Y they use the

supremum statistic

T1 = sup
x∈R

(F̂
(2)
X,n(x)− F̂

(2)
Y,n(x)) = max

i=1,...,2n
(F̂

(2)
X,n(z(i))− F̂

(2)
Y,n(z(i)))

where z(i) denotes the ith order statistic of the combined sample (z1, . . . , z2n) =

(x1, . . . , xn, y1, . . . , yn) and the area statistic

T2 =

∫ ∞

−∞
(F̂

(2)
X,n(t)− F̂

(2)
Y,n(t))d(F̂X,n(t) + F̂Y,n(t)).

T1 is a second degree analog of the one-sided Kolmogorov-Smirnov statistic, T2

of the Wilcoxon statistic. The critical values are determined by permutations.

There are
(
2n
n

)
different subsets of order n from (z1, . . . , z2n), for large n they

randomly choose B = 500 of them. For every permutation the test statistics are

calculated and ordered according to size: T (1) ≤ · · · ≤ T (B). Then c = T (B(1−α))

is the critical value. Under the assumption that the observations are independent

the tests keep the size α and have good power properties.



45

The independence restrictions of this test are relaxed in the already mentioned

test of Schmid/ Trede (1997). They use the test statistic T1 as defined above, but

permute matched pairs instead of all observations. With this modification they

can capture the dependence between Xk and Yk for every k, but the test is still

not robust to serial dependence within each sample. In chapter 5 we will explore

this study in more detail.

Schmid/ Trede (1998) confine themselves to the case where one of the com-

pared distributions is completely known. They test H0 : X º2 Y against

H1 : X �2 Y where PY is a known continuous distribution and PX has to be

inferred from the observed data. If the distribution function FY of Y satisfies

F ′
Y ≥ 0 and F ′′

Y ≤ 0, i.e. Y has a decreasing density on its support, then X º2 Y

implies FY (X) º2 FY (Y ). Due to the fact that FY (Y ) is uniformly distributed

on (0, 1), the test can be traced back to the problem H0 : Z º2 U(0, 1) against

H1 : not H0 where Z = FY (X). The test statistic is

T = sup
x∈[0,1]

√
n

∫ x

0

(F̂Z,n(t)− t)dt.

If the observations are independent, for the limiting case Z ∼ U(0, 1) of H0,

the test statistic converges in distribution to sup
x∈[0,1]

∫ x

0
B(t)dt where B denotes a

Brownian Bridge on [0, 1]. They show that the test has better power than the

test of Deshpande/ Singh. However, the independence assumption and the fact

that one distribution is assumed to be known are very hard restrictions.

Xu/ Fisher/ Willson (1997) create tests for first and second degree stochastic

dominance. They test the hypothesis H0 : X ºk Y against H1 : X �k Y for

k = 1, 2 with some test statistics T1 and T2 which are solutions of minimizations

under constraints. T1 and T2 are asymptotically distributed as weighted sums of

χ2-variates of various degrees of freedom. The tests are applicable under very

general assumptions. If the samples are generated by strongly mixing processes,

then the test asymptotically keeps the nominal size. For capturing the dependence

structure between proximate observations Xu/ Fisher/ Willson (1997) use the
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moving block bootstrap. We explain and examine the test in chapter 5.

Barrett/ Donald (2003) test for stochastic dominance of any degree. They

assume independent samples and test H0 : X ºk Y against H1 : X �k Y for any

k ∈ N. The test statistic is

T =

√
n

2
sup

x∈[0,a]

(F̂
(k)
X,n(x)− F̂

(k)
Y,n(x))

where X and Y are assumed to be bounded by 0 and a > 0. The critical value

is determined by bootstrap and Monte Carlo simulation. This approach gives a

very general result concerning the distributions of the random variables, but still

the assumption of independence is a very hard restriction.

Linton/ Maasoumi/ Whang (2005) develop a test for stochastic dominance of

the first and second degree. For a set of random variables X1, . . . , Xn they test

H0 : ∃i, j ∈ {1, . . . , n}, i 6= j : Xi ºk Xj, i.e. there is one random variable which

is dominated, against the alternative H1 : (not H0). The test statistic

Tk = min
i6=j

sup
x∈R

√
n(F̂

(k)
Xi,n

(x)− F̂
(k)
Xj ,n(x))

can be easily modified by omitting the min operator in the case that we just test

H0 : Xi ºk Xj against H1 : (not H0). A subsampling procedure is used for deter-

mining the critical value. The test can be applied to strongly mixing processes

because the subsampling captures the dependence of proximate observations. The

test will be examined in more detail in further chapters.

In most of the tests illustrated in this chapter independence of the data is

assumed, both within and between samples. If we interpret the observations

as time series data, this means that the data Xt and Yt are contemporaneously

independent for each t and the series (Xt)t∈Z and (Yt)t∈Z are serially independent.

There is strong evidence that in many fields of application the assumption of

independence is not realistic. The question arises whether the deviations have a

strong effect on the performance of the test procedure.
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There is a multitude of possible dependence structures in a series of random

variables. The most important ones for financial data are contemporaneous cor-

relation – which is usually positive – and conditional heteroskedasticity within

each time series. Before investigating the effect on tests of stochastic dominance,

we consider standard statistical procedures for means and variances such as the

t-test and F-test, respectively. In the next chapter, we present the results of

Kläver/ Schmid (2004) concerning the impact of conditional heteroskedasticity

and positive correlation on these procedures.
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Chapter 4

The Effect of Conditional

Heteroskedasticity on Common

Statistical Procedures for Means

and Variances

Commonly used standard statistical procedures for means and variances (such

as the t-test for means or the F-test for variances and corresponding confidence

procedures) require observations from independent and identically normally dis-

tributed variables (standard case). These procedures, however, are routinely

applied to data which do not satisfy these constraints. In particular, this is the

case for financial data such as daily returns on assets or currencies, which are

notoriously nonnormal and show conditional heteroskedasticity, hence they are

dependent.

Is there any effect of conditional heteroskedasticity on these procedures for

means and variances? We will shed some light on this question which might be of

interest to statisticians, econometricians and financial analysts. In order to keep

the study short we will confine ourselves to the case where data are generated by a

49
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GARCH(1,1) process. Though this is a special approach to modelling conditional

heteroskedasticity, it is commonly believed that this model is well suited to be

used on financial data. Akgiray (1989) concludes in an empirical study of the

temporal behavior of daily stock market returns:

“The conditional heteroskedastic processes . . . fit to data very satisfactorily.

More important, they provide improved forecasts of volatility. Within the class of

such models, GARCH(1,1) processes show the best fit and forecast accuracy.” For

further affirmation of the evidence and usefulness of GARCH(1,1) see e.g. Davis/

Mikosch (2000) and Engle (2001).

In this chapter, we examine the impact of GARCH on the procedures for

means and variances. We state some fundamental results, such as strong laws

of large numbers (SLLN) and a central limit theorem (CLT) for GARCH(1,1)

processes. It is shown that the t-test for a mean is (at least asymptotically) valid

for observations generated by a GARCH(1,1) process. The same is true for the

corresponding confidence interval for the mean. The effect of conditional hetero-

skedasticity on confidence and testing procedures for variances is investigated

analytically and by simulation. It turns out that the variance estimator S2
n is

still unbiased and consistent, but the variance of S2
n is larger than in the case

of independent random variables. The difference between GARCH(1,1) and the

standard case depends on the parameters of the GARCH(1,1) process. Simula-

tions show that the coverage probability of the standard confidence interval and

the error probability of the first kind for the F-test differ significantly from their

nominal values. This effect increases with increasing GARCH parameters and

with an increasing number of observations. The largest effect emerges in the case

of an infinite fourth moment of Xt, hence infinite variance of S2
n. We further

investigate the Levene test (Levene, 1960) which is known to be more robust to

deviations from the normal distribution. It yields better results than the F-test,

but still does not keep the nominal size.
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4.1 Notations, Definitions and Preliminary Re-

sults

Let (εt)t∈Z denote a sequence of independent and identically N (0, 1)-distributed

random variables. Let Xt = σtεt where

σ2
t = α0 +

q∑

k=1

αkX
2
t−k +

p∑

k=1

βkσ
2
t−k

for t ∈ Z and α0 > 0, αk ≥ 0, βl ≥ 0 for all k ∈ {1, . . . , q}, l ∈ {1, . . . , p}. Accord-

ing to Bollerslev (1986) the process (Xt)t∈Z is called Generalized AutoRegressive

Conditional Heteroskedastic process with parameters p and q, abbreviated by

GARCH(p,q). For p = 0 the process corresponds to the ARCH(q) process intro-

duced by Engle (1982).

In the following we consider a GARCH(1,1) process. It is weakly stationary

with

E(Xt) = Cov(Xt, Xs) = 0

for t 6= s and

σ2 := V ar(Xt) =
α0

1− α1 − β1

if and only if α1 + β1 < 1.

Further Bollerslev shows that Xt has a finite fourth moment if and only if

3α2
1 + 2α1β1 + β2

1 < 1; in this case

κ4 := E(X4
t ) =

3α2
0(1 + α1 + β1)

(1− α1 − β1)(1− 3α2
1 − 2α1β1 − β2

1)

= 3(σ2)2 1− (α1 + β1)
2

1− 3α2
1 − 2α1β1 − β2

1

= 3(σ2)2
(
1 +

2α2
1

1− 3α2
1 − 2α1β1 − β2

1

)
. (4.1)

From (4.1) we see that Xt is leptokurtic if and only if α1 > 0.

In a subsequent article Bollerslev (1988) asserts that for the autocorrelations
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ρs := Corr(X2
t , X2

t−s) for t, s ∈ Z, s > 0, the following holds:

ρs = (α1 + β1)
s−1α1(1− α1β1 − β2

1)

1− 2α1β1 − β2
1

(4.2)

and ρ−s = ρs, due to symmetry. For the covariances γs := Cov(X2
t , X2

t−s) and

mixed moments ξs := E(X2
t X2

t−s) this yields

γs = (σ2)2(α1 + β1)
s−1 2α1(1− α1β1 − β2

1)

1− 3α2
1 − 2α1β1 − β2

1

(4.3)

ξs = (σ2)2
[
1 + (α1 + β1)

s−1 2α1(1− α1β1 − β2
1)

1− 3α2
1 − 2α1β1 − β2

1

]
(4.4)

and γ−s = γs, ξ−s = ξs.

We will make use of these results when investigating the distribution of the

usual variance estimator S2
n.

According to Nelson (1990) the process (Xt)t∈N is strictly stationary and er-

godic, according to White (1984, Prop. 3.36) this implies strict stationarity and

ergodicity of (X2
t )t∈N. Therefore the ergodic theorem yields that (Xt)t∈N and

(X2
t )t∈N satisfy the following strong law of large numbers.

Proposition 4 (SLLN for GARCH(1,1)). Let (Xt)t∈Z be a weakly stationary

GARCH(1,1) process, i.e. Xt = σtεt, σ2
t = α0 +α1X

2
t−1 +β1σ

2
t−1 and α1 +β1 < 1.

With σ2 := V ar(Xt) = α0

1−α1−β1
we have

1

n

n∑
t=1

Xt
a.s.−→ 0 (4.5)

1

n

n∑
t=1

X2
t

a.s.−→ σ2 (4.6)

where “
a.s.−→” denotes almost sure convergence.

In addition to the ergodicity we know that a GARCH(1,1) process is a martin-

gale difference sequence; the result of Hayashi (2000, p. 104) for ARCH processes

can easily be extended to GARCH processes. Hence, it follows from a result of

Billingsley (1961) that the central limit theorem holds for a GARCH(1,1) process.
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Proposition 5 (CLT for GARCH(1,1)). Let (Xt)t∈Z denote a weakly statio-

nary GARCH(1,1) process with σ2 := V ar(Xt). Then

1

σ
√

n

n∑
t=1

Xt
d−→ N (0, 1)

where “
d−→” denotes convergence in distribution.

Note that the existence of fourth moments is not required for proposition 4

and 5 to hold; the only restrictions for α1 and β1 are α1, β1 ≥ 0 and α1 + β1 < 1.

4.2 Procedures for Means

Let µ ∈ R and Yt := µ + Xt for t ∈ Z. The usual t-test statistic for the

null hypothesis H0 : µ = µ0 or a corresponding one-sided hypothesis based on

observations Y1, . . . , Yn is

τn =

√
n(Y n − µ0)√

1
n−1

∑n
t=1(Yt − Y n)2

=

√
n(Y n − µ0)√

S2
n

where Y n := 1
n

∑n
t=1 Yt. τn has a t-distribution with n − 1 degrees of freedom

in the standard, i.e. the independent case α1 = β1 = 0. Therefore under H0 the

distribution of τn tends to a N (0, 1)-distribution for n →∞ in the standard case.

The following proposition states that the latter also holds in the more general

case where (Xt)t∈Z is a weakly stationary GARCH(1,1) process. However, τn does

not have a tn−1-distribution for finite samples of size n.

Proposition 6. Let (Xt)t∈Z be a weakly stationary GARCH(1,1) process (as

defined in section 4.1). Then under H0 we have

τn
d−→ N (0, 1).

Proposition 6, which follows easily from the SLLN and CLT for GARCH(1,1)

and Slutsky’s theorem, tells us that asymptotically there is no effect of conditional

heteroskedasticity as modelled by a GARCH(1,1) process on the usual t-test.
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α1�β1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.1 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05

0.2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.3 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.4 0.05 0.05 0.05 0.04 0.05 0.05

0.5 0.05 0.05 0.05 0.05 0.05

0.6 0.05 0.05 0.05 0.05

0.7 0.05 0.04 0.05

0.8 0.05 0.05

0.9 0.05

α1 0 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 0.99

β1 0.99 0.88 0.77 0.66 0.55 0.44 0.33 0.22 0.11 0

size 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Table 4.1: Rejection probability of the t-test for the nominal value α = 0.05. We

choose α0 = 0.1, n = 20 and various values for α1 and β1. The number of Monte

Carlo replications is N = 50000.

The simulations show that the distributional convergence to the normal dis-

tribution is very fast. Table 4.1 presents the results for n = 20. Even for this

small length of the time series the deviation from the nominal size α = 0.05 is

very small and could be a result of the standard error of the simulation. This

also holds for n = 100 and n = 1000 which is presented in table 4.2 and 4.3.

Further, proposition 6 tells us that asymptotically there is no effect of condi-

tional heteroskedasticity on the commonly used confidence interval for µ, i.e. the

nominal coverage probability 1− α is clearly kept in the GARCH(1,1) case.

Note that for these findings the existence of fourth moments is not necessary.
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α1�β1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.3 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.4 0.05 0.05 0.05 0.05 0.05 0.05

0.5 0.05 0.05 0.05 0.05 0.05

0.6 0.05 0.05 0.05 0.05

0.7 0.05 0.05 0.05

0.8 0.05 0.05

0.9 0.05

α1 0 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 0.99

β1 0.99 0.88 0.77 0.66 0.55 0.44 0.33 0.22 0.11 0

size 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Table 4.2: Rejection probability of the t-test for the nominal value α = 0.05. We

choose α0 = 0.1, n = 100 and various values for α1 and β1. The number of Monte

Carlo replications is N = 50000.
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α1�β1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05

0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05

0.2 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05

0.3 0.05 0.05 0.05 0.05 0.05 0.06 0.05

0.4 0.05 0.05 0.05 0.05 0.05 0.05

0.5 0.05 0.05 0.05 0.06 0.05

0.6 0.05 0.05 0.05 0.05

0.7 0.05 0.05 0.05

0.8 0.05 0.05

0.9 0.05

α1 0 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 0.99

β1 0.99 0.88 0.77 0.66 0.55 0.44 0.33 0.22 0.11 0

size 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05

Table 4.3: Rejection probability of the t-test for the nominal value α = 0.05. We

choose α0 = 0.1, n = 1000 and various values for α1 and β1. The number of Monte

Carlo replications is N = 50000.
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4.3 Procedures for Variances

The focus of this section is the (unconditional) variance

σ2 =
α0

1− α1 − β1

of a weakly stationary GARCH(1,1) process (Xt)t∈Z. For µ ∈ R we define Yt :=

µ + Xt. The usual estimator for σ2 based on Y1, . . . , Yn is

S2
n =

1

n− 1

n∑
t=1

(Yt − Y n)2 =
1

n− 1

n∑
t=1

(Xt −Xn)2.

S2
n is unbiased, i.e.

E(S2
n) = σ2,

and consistent for σ2, i.e.

S2
n

p−→ σ2,

as in the standard (independent) case; “
p−→” denotes convergence in probability.

The former follows from Cov(Xt, Xs) = 0 for t 6= s, the latter is a simple con-

sequence of proposition 4 and Slutsky’s theorem. Therefore conditional hetero-

skedasticity (as modelled by GARCH (1,1)) has no effect on unbiasedness and

consistency of S2
n. However, it has a tremendous effect on the distribution of S2

n.

In the standard case (i.e. α1 = β1 = 0) we have

(n− 1)S2
n

σ2

d∼ χ2
n−1

where “X
d∼ P” denotes that X has the distribution P and χ2

k denotes a chi-

squared distribution with k degrees of freedom. Therefore

V ar(S2
n) =

2(σ2)2

n− 1

in the standard case.

Things are much more involved for the more general case under study. If

(Xt)t∈Z is a GARCH(1,1) process, then

(n− 1)S2
n

σ2
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does not have a χ2
n−1-distribution. The computation of V ar(S2

n) is therefore much

more sophisticated.

S2
n =

1

n− 1

( n∑
t=1

X2
t − nX

2

n

)

yields

(S2
n)2 =

1

(n− 1)2

( n∑
t=1

n∑
s=1

X2
t X2

s −
2

n

n∑
t=1

n∑
s=1

n∑
r=1

X2
t XsXr

+
1

n2

n∑
t=1

n∑
s=1

n∑
r=1

n∑
q=1

XtXsXrXq

)
.

Therefore we have to calculate E(X4
t ), E(X3

t Xs), E(X2
t X2

s ), E(X2
t XsXr) and

E(XtXsXrXq) for t, s, r, q mutually different. If the fourth moment is infinite,

i.e. 3α2
1 +2α1β1 +β2

1 ≥ 1, the variance of S2
n does not exist. If the fourth moment

is finite, i.e. 3α2
1 + 2α1β1 + β2

1 < 1, we know from (4.4) that

E(X2
t X2

s ) = (σ2)2
[
1 + (α1 + β1)

|t−s|−1 2α1(1− α1β1 − β2
1)

1− 3α2
1 − 2α1β1 − β2

1

]

for t 6= s. Further calculation shows

E(X3
t Xs) = E(X2

t XsXr) = E(XtXsXrXq) = 0

for t, s, r, q mutually different. Further calculations lead to

(S2
n)2 =

1

(n− 1)2

[(
1− 2

n
+

1

n2

) n∑
t=1

X4
t +

(
1− 2

n
+

3

n2

) n∑
t,s=1
t6=s

X2
t X2

s + Z

]

with E(Z) = 0 and therefore

V ar(S2
n) = E((S2

n)2)− (E(S2
n))2

= (σ2)2
{

4
n2 − 2n + 3

(n(n− 1))2

α1

1− (α1 + β1)

[
n− 1− (α1 + β1)

n

1− (α1 + β1)

]

1− α1β1 − β2
1

1− 3α2
1 − 2α1β1 − β2

1

+
3

n

1− (α1 + β1)
2

1− 3α2
1 − 2α1β1 − β2

1

− n− 3

n(n− 1)

}

= (σ2)2
{

4
n2 − 2n + 3

(n(n− 1))2

α1

1− (α1 + β1)

[
n− 1− (α1 + β1)

n

1− (α1 + β1)

]

(
1 +

3α2
1 + α1β1

1− 3α2
1 − 2α1β1 − β2

1

)
+

3

n

(
1 +

2α2
1

1− 3α2
1 − 2α1β1 − β2

1

)
− n− 3

n(n− 1)

}
.
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In the standard case α1 = β1 = 0 we have V ar(S2
n) = 2(σ2)2

n−1
which is consistent

with the fact that (n−1)S2
n

σ2

d∼ χ2
n−1. V ar(S2

n) = 2(σ2)2

n−1
even holds for α1 = 0 and

β1 ∈ [0, 1) arbitrary.

V ar(S2
n) increases monotonically in α1 and β1, so the variance of the estimator

S2
n increases with the GARCH parameters if n is fixed. The variance increases

strictly monotonically with the exception of α1 = 0 and β1 increasing, as stated

above.

What happens if 3α2
1 + 2α1β1 + β2

1 → 1, i.e. if we approach the boundary of

the area with finite fourth moment? For α1 = 0 the assertion above yields

V ar(S2
n) =

2(σ2)2

n− 1
−→
β1→1

2(σ2)2

n− 1
.

If α1 > 0, we have
α2

1

1− 3α2
1 − 2α1β1 − β2

1

−→∞,

hence V ar(S2
n) −→∞ for 3α2

1 + 2α1β1 + β2
1 → 1.

With these results one might expect that procedures for variances are affected

by large values of α1 and β1, where the impact of α1 should be larger. The value

of α0 should have no effect on the results.

4.3.1 Confidence interval for σ2

The common (1− α)-confidence interval for σ2 in the standard case is given by
[
(n− 1)S2

n

b
,
(n− 1)S2

n

a

]

where a is the α
2

quantile and b is the (1− α
2
) quantile of a χ2

n−1-distribution. The

coverage probability is (1− α) for this confidence interval in the standard case.

We cannot compute the true coverage probability if (Xt)t∈Z is a GARCH(1,1)

process. The following simulations show, however, that the true coverage proba-

bilities are much lower than 1− α; therefore the intervals are much too narrow.

Table 4.4 presents the results for α0 = 0.1, n = 1000 and various values of α1

and β1. The number of Monte Carlo replications is N = 50000. For the nominal
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coverage probability we choose 1−α = 0.95. Simulations with alternative values

of α0 show that this variable does not influence the coverage probability. For the

process to be weakly stationary we have to choose α1 and β1 such that α1+β1 < 1.

Table 4.4 shows: For α1 = β1 = 0 (standard case) the coverage probability is

0.95 as it should theoretically be. This still holds for α1 = 0 and arbitrary values

of β1; the reason is that in this case the variance of S2
n does not differ from the

standard case. For α1 > 0 we see that the larger α1 and β1, the smaller is the

coverage probability, where the influence of α1 is much larger than that of β1.

For α1 + β1 = 0.99 and large α1 the effect of conditional heteroskedasticity is as

strong as it can possibly be: The coverage probability is 0.00.

These results are consistent with the fact that V ar(S2
n) increases with α1 and

β1 and that in particular large values of α1 cause V ar(S2
n) = ∞.

Further simulations with different numbers of observations n show that for

growing n the effect of conditional heteroskedasticity becomes larger.

4.3.2 F-test for equality of variances

In the standard case we have X1, . . . , Xn, Y1, . . . , Ym independent, Xi
d∼ N (µX , σX),

Yj
d∼ N (µY , σY ). The usual F-test statistic for the null hypothesis H0 : σX =

σY or a corresponding one-sided hypothesis based on observations X1, . . . , Xn,

Y1, . . . , Ym is

Tn,m =
S2

X,n

S2
Y,m

where S2
X,n and S2

Y,m are the usual estimators for σ2
X and σ2

Y , respectively. In the

standard case we reject H0 if and only if Tn,m < a or Tn,m > b, where a is the

α
2

quantile and b is the (1− α
2
) quantile of a Fn−1,m−1-distribution and Fn−1,m−1

denotes the F -distribution with n − 1 and m − 1 degrees of freedom. This test

keeps the error probability of the first kind α in the standard case.

Let (X1, . . . , Xn, Y1, . . . , Ym) = (Z1, . . . , Zn+m) where (Zt)t∈Z is a GARCH(1,1)

process. If we construct the test as above, we cannot compute the true size of
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α1�β1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

0.1 0.92 0.91 0.90 0.90 0.89 0.87 0.85 0.80 0.66

0.2 0.86 0.85 0.83 0.81 0.78 0.73 0.63 0.43

0.3 0.78 0.76 0.72 0.68 0.62 0.49 0.29

0.4 0.68 0.63 0.58 0.50 0.38 0.21

0.5 0.55 0.49 0.41 0.29 0.14

0.6 0.40 0.33 0.23 0.11

0.7 0.27 0.18 0.08

0.8 0.14 0.07

0.9 0.04

α1 0 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 0.99

β1 0.99 0.88 0.77 0.66 0.55 0.44 0.33 0.22 0.11 0

coverage prob. 0.95 0.12 0.05 0.02 0.01 0.01 0.01 0.00 0.00 0.00

Table 4.4: Coverage probability of the confidence interval for the nominal value

1−α = 0.95. We choose α0 = 0.1, n = 1000 and various values for α1 and β1. The

number of Monte Carlo replications is N = 50000.
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α1�β1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.1 0.09 0.09 0.09 0.10 0.11 0.12 0.15 0.19 0.33

0.2 0.13 0.14 0.16 0.18 0.21 0.26 0.36 0.53

0.3 0.21 0.24 0.27 0.30 0.37 0.47 0.63

0.4 0.31 0.35 0.39 0.47 0.56 0.69

0.5 0.41 0.46 0.53 0.61 0.72

0.6 0.52 0.58 0.66 0.73

0.7 0.61 0.69 0.75

0.8 0.71 0.76

0.9 0.77

α1 0 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 0.99

β1 0.99 0.88 0.77 0.66 0.55 0.44 0.33 0.22 0.11 0

rejection prob. 0.05 0.78 0.83 0.83 0.84 0.83 0.83 0.82 0.82 0.81

Table 4.5: Rejection probability of the F-test for the nominal value α = 0.05. We

choose α0 = 0.1, n = m = 500 and various values for α1 and β1. The number of

Monte Carlo replications is N = 50000.

the test. The simulations show that the true size is much higher than α.

Table 4.5 presents the results for α0 = 0.1, n = m = 500 and various values

of α1 and β1 satisfying α1 + β1 < 1. The number of Monte Carlo replications

is N = 50000, the nominal size is α = 0.05. Again simulations with alternative

values of α0 show that this parameter is not essential for the results. The results

in table 4.5 are to some extent analogous to the results concerning confidence

intervals: For α1 = 0 there is no GARCH effect. The larger α1 and β1 are,

the larger is the probability of false rejection; however, the effect of α1 is much

stronger. The size is more than 0.8 in the most extreme cases which is sizeable

in comparison to the nominal size of α = 0.05.
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Again these results are consistent with the fact that V ar(S2
n) increases with

α1 and β1 and that in particular large values of α1 cause V ar(S2
n) = ∞.

As it is well known, the Levene test (Levene, 1960) is more robust to deviations

from the normal distribution. Let σ2
1, . . . , σ

2
n be the variances of the subsamples

of a random sample. The Levene test investigates whether these variances are

equal. In our setting there are two subsamples of the same size n. For the test

of H0 : σX = σY against the alternative H1 : σX 6= σY the test statistic is

T = 2n(n− 1)
(Z1· − Z ··)2 + (Z2· − Z ··)2

∑n
j=1(Z1j − Z1·)2 +

∑n
j=1(Z2j − Z2·)2

where Z1j = |Xj − Xn|, Z2j = |Yj − Y n|, Zi· = 1
n

∑
j=1 Zij and Z ·· = 1

2
(Z1· +

Z2·). If the observations are independent, T is F1,n−1-distributed under the null

hypothesis and T tends to be larger if H0 is wrong. Therefore we reject H0 if T

is larger than the (1− α) quantile of the F1,n−1-distribution.

We examine the effect of conditional heteroskedasticity on the Levene test

by means of simulation. Table 4.6 shows the results for data generated by

GARCH(1,1). The Levene test performs better than the F-test, but still the

true size of the test is much higher than α.

4.4 Conclusion

The theoretical results and simulations show that the effect of conditional hetero-

skedasticity as modelled by GARCH(1,1) is very different for procedures regarding

means and variances. Procedures for means which are developed for the standard

case are still valid if the observations are generated by a GARCH(1,1) process. On

the other hand, the GARCH effect on procedures for variances is substantial. The

procedures should not be used if conditional heteroskedasticity is prevalent in the

data. A topic for further research is to develop adjustments to these procedures

to ensure that they keep the nominal error probabilities or coverage probabilities.
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α1�β1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05

0.1 0.08 0.07 0.09 0.09 0.09 0.10 0.12 0.16 0.28

0.2 0.10 0.10 0.12 0.13 0.15 0.20 0.25 0.41

0.3 0.12 0.15 0.16 0.19 0.25 0.32 0.46

0.4 0.17 0.19 0.22 0.28 0.35 0.48

0.5 0.20 0.24 0.29 0.37 0.48

0.6 0.23 0.29 0.37 0.47

0.7 0.29 0.35 0.44

0.8 0.33 0.43

0.9 0.39

α1 0 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 0.99

β1 0.99 0.88 0.77 0.66 0.55 0.44 0.33 0.22 0.11 0

rejection prob. 0.05 0.72 0.73 0.70 0.66 0.62 0.58 0.54 0.48 0.43

Table 4.6: Rejection probability of the Levene test for the nominal value α = 0.05.

We choose α0 = 0.1, n = m = 500 and various values for α1 and β1. The number

of Monte Carlo replications is N = 10000.
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The results of this chapter show that procedures for variances are tremen-

dously affected by GARCH(1,1). This gives us an idea of the impact conditional

heteroskedasticity can have. In the next chapter, we will revert to the inves-

tigation of tests for stochastic dominance and explore the effect of conditional

heteroskedasticity.
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Chapter 5

Testing for Stochastic Dominance

Using Circular Block Methods

In this chapter we investigate various tests for stochastic dominance when condi-

tional heteroskedasticity is prevalent in the data. As financial data often feature

this property, we have to consider it for the application of stochastic dominance

tests. Various tests developed in the last years asymptotically capture the depen-

dence structure very well, but we still do not know how these tests perform for

finite samples. This chapter analyzes this question and proposes some new tests

which are asymptotically equivalent and perform better for finite samples. The

results of this chapter are from Kläver (2005a).

As we illustrated in chapter 3, many tests for stochastic dominance have been

developed in the last two decades. Many of them have restrictive assumptions,

in particular concerning the independence of the data. In general, however, eco-

nomic data do not satisfy these constraints. In particular, this is the case for

financial data such as daily returns on assets or currencies, which feature con-

ditional heteroskedasticity. In other words, financial time series feature serial

dependence. Furthermore, for every time index t we have some contemporaneous

dependence: usually Xt and Yt are positively correlated.

67
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In chapter 4 we analyzed the effect of conditional heteroskedasticity on com-

mon statistical procedures such as the t-test or the F-test. We found that the

considered procedures for means are still asymptotically valid if the data are gen-

erated by a GARCH(1,1) process whereas the procedures for variances cannot be

used in the same way as in the standard case of independent data.

This chapter investigates the performance of various tests for stochastic domi-

nance when conditional heteroskedasticity and contemporaneous correlation are

prevalent in the data. We consider the tests of Schmid/ Trede (1997), Xu/ Fisher/

Willson (1997) and Linton/ Maasoumi/ Whang (2005). Hereafter, we denote the

tests by ST, XFW and LMW. We investigate these tests because they asymptoti-

cally capture a dependence structure which is suitable for financial data. The

ST test investigates whether X dominates Y in the sense of SD2. The XFW

and LMW tests address SD1 as well as SD2. Schmid/ Trede take Xt and Yt

as matched pairs for each t; their test is based on permutations. Hence they

consider the correlation of Xt and Yt, but no serial dependence. The XFW and

LMW tests use block methods for capturing the dependence structure within

each time series and the correlation between them: Xu/ Fisher/ Willson use the

moving block bootstrap, Linton/ Maasoumi/ Whang use a subsampling approach.

Both papers demonstrate that the tests perform well asymptotically if the data

are generated by strongly mixing processes. In particular, GARCH processes are

strongly mixing.

Simulations show that all of these tests do not perform very well for finite

samples when the data are generated by a GARCH(1,1) process where the sum

of the parameters is close to 1. A remedy is found in other blocking methods:

the circular block bootstrap, its subsampling equivalent and the block permutation.

From Lahiri (1999) we know that, asymptotically, the circular block bootstrap

performs as well as the moving block bootstrap. We show analytically that the

asymptotic result of Linton/ Maasoumi/ Whang for usual subsampling also holds

for circular subsampling. Further simulations indicate that, for a finite sample,
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circular subsampling performs better than the usual subsampling of Linton/ Maa-

soumi/ Whang and block permutation performs better than the permutation test

of Schmid/ Trede, whereas circular block bootstrap does not improve the perfor-

mance of the test developed by Xu/ Fisher/ Willson. The choice of the block

length is crucial for the modified versions of the tests of Schmid/ Trede and of

Linton/ Maasoumi/ Whang. For various values of sample size n, in each case with

optimal block length, we explore the power of the tests. The main drawback in

the investigation is the complexity of the alternative.

In this chapter, we proceed as follows. Section 5.1 presents the tests of

Schmid/ Trede, Xu/ Fisher/ Willson and Linton/ Maasoumi/ Whang which use

various resampling methods. In section 5.2 we establish the performance of these

tests using a simulation study. In section 5.3 we develop some modified tests

based on circular block methods. The simulation results for these tests are pre-

sented in section 5.4. We examine the power of the tests in section 5.5. Finally

we conclude the results of this chapter.

5.1 Tests Based on Resampling Methods

5.1.1 A Permutation Test from Matched Pairs

Schmid/ Trede test the null hypothesis H0 : (X º2 Y ) against the alternative

H1 : (not H0) and H∗
0 : (X º2 Y or Y º2 X) vs. H∗

1 : (not H∗
0 ). We confine our

investigation to the first testing problem, which can also be written as

H0 : For all x ∈ R : F
(2)
X (x) ≤ F

(2)
Y (x)

vs. H1 : There exists x′ ∈ R : F
(2)
X (x′) > F

(2)
Y (x′).

Schmid/ Trede use the test statistic

T = sup
t∈R

(F̂
(2)
X,n(t)− F̂

(2)
Y,n(t)) = max

i
(F̂

(2)
X,n(z(i))− F̂

(2)
Y,n(z(i)))
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where z(i) denotes the ith order statistic of the combined sample (z1, . . . , z2n) =

(x1, . . . , xn, y1, . . . , yn).

H0 is rejected if T ≥ c where the critical value c is determined by permu-

tations. There are 2n possibilities of permuting xi and yi in the paired sample

(x1, y1), . . . , (xn, yn). The corresponding values of the test statistics can be ar-

ranged according to size: T (1) ≤ · · · ≤ T (2n). The critical value c is determined

by c = T ((1−α)2n). Under PX = PY the probability of wrongly rejecting H0 is ap-

proximately α. As the number of permutations becomes large very quickly with

increasing n, Schmid/ Trede take only M permutations at random and determine

the critical value by c = T ((1−α)M). They show in a Monte Carlo study that un-

der the assumption of a bivariate normal distribution with serial independence

M = 500 permutations are sufficient. Schmid/ Trede do not give any advice on

how to decide if there is a tie, i.e. T = T (k) for some k < (1 − α)M and some

k ≥ (1− α)M .1

In section 5.2 we will investigate the performance of the test by means of

simulation for the case that conditional heteroskedasticity is prevalent in the

data.

5.1.2 Tests Using Moving Block Methods

Xu/ Fisher/ Willson test H i
0 : (X ºi Y ) vs. H i

1 : (not H0) for i = 1, 2 which can

be written as

H i
0 : For all x ∈ R : Q

(i)
X (x) ≥ Q

(i)
Y (x)

vs. H i
1 : There exists x′ ∈ R : Q

(i)
X (x′) < Q

(i)
Y (x′).

They compute the difference of the empirical quantile functions Q̂
(i)
n (i = 1, 2)

at various grid points p1, . . . , pn satisfying 0 < p1 < · · · < pn < 1 and define

Q̂
(i)
n (P ) = [Q̂

(i)
n (p1), . . . , Q̂

(i)
n (pn)]′.

1Indeed, one can practically ignore this problem for the original ST test because in our

simulations there is no tie for any replication of the test.
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The test statistic is given by

Ti = max
q≥0

[(Q̂
(i)
X,n − Q̂

(i)
Y,n − q)′Λ̂−1(Q̂

(i)
X,n − Q̂

(i)
Y,n − q)]

where Λ̂ is a consistent estimate of the covariance matrix Λ of Q̂
(i)
X,n − Q̂

(i)
Y,n. Ti is

asymptotically distributed as a weighted sum of χ2-variates of various degrees of

freedom. The weights are determined by Monte Carlo simulation using nonlinear

programming.

In this procedure, the estimation of Λ is crucial. Xu/ Fisher/ Willson propose

that moving block bootstrap (MBB) captures the dependence structure if the

processes (Xt)t∈Z and (Yt)t∈Z are strongly mixing (or α-mixing) which is defined

in chapter 3. Note that, in particular, a stationary GARCH process is strongly

mixing.

MBB is developed by Künsch (1989) and Liu/ Singh (1992). In the last years

a multitude of bootstrap methods has been developed which are constructed

to capture the dependence structures emerging in time series; see e.g. Härdle/

Horowitz/ Kreiss (2003).

In contrast to the usual bootstrap introduced by Efron (1979) MBB does

not resample single observations, but whole blocks of a fixed length b. For a

sample of observations (z1, . . . , zn) denote the moving blocks as B1, . . . , Bn−b+1,

where Bj = (xj, xj+1, . . . , xj+b−1) stands for the block consisting of b observations

starting from xj. One bootstrap resample consists of k = bn
b
c randomly resampled

moving blocks where bxc denotes the largest integer equal to or smaller than x.

The MBB estimate is consistent if b(n) and k(n) approach infinity with n

approaching infinity. For a finite sample the choice of b is vital: on the one

hand, a large value of b is necessary to capture strong dependence, while on the

other hand, the number of blocks should also be large enough to reproduce the

variability of the original sample.

Xu/ Fisher/ Willson proceed as follows: The observations of X and Y are

resampled M times by MBB. For every resample Xu/ Fisher/ Willson compute
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the differences of the empirical quantile functions at the grid points. The empi-

rical covariance matrix Λ̂ of these vectors is taken as an estimator for Λ. In

an empirical example, Xu/ Fisher/ Willson choose M = 500. We follow their

example in our investigation.

Linton/ Maasoumi/ Whang test for stochastic maximality of a set of prospects.

A set is stochastically maximal if no prospect is stochastically dominated by an-

other prospect in the set. The test can be easily modified in a way that it also tests

for stochastic dominance. The test problem is H i
0 : (X ºi Y ) vs. H i

1 : (not H0)

for i = 1, 2 as in Xu/ Fisher/ Willson, but in contrast Linton/ Maasoumi/ Whang

use the test statistic

Tn,i = sup
x∈R

√
n(F̂

(i)
X,n(x)− F̂

(i)
Y,n(x)).

In the study of Linton/ Maasoumi/ Whang (Xt)t∈Z and (Yt)t∈Z are errors in

a linear regression model. For the investigation of stochastic dominance some

regularity conditions have to be satisfied. If we do not assume a regression model,

the only persisting regularity condition is that (Xt)t∈Z and (Yt)t∈Z are strongly

mixing with α(m) = O(m−3). If (Xt)t∈Z and (Yt)t∈Z are generated by a strictly

stationary GARCH process with innovations εt satisfying E|εt|δ < ∞ for some

δ > 0, then they are strongly mixing with a geometric rate, i.e. α(m) = O(am)

for some a ∈ (0, 1) (Davis/ Mikosch/ Basrak, 1999); thus α(m) = O(m−3) holds.

For the approximation of the distribution of Tn,i under H i
0 Linton/ Maa-

soumi/ Whang use a subsampling method developed by Politis/ Romano (1994).

An overview of resampling methods for various situations, e.g. stationary obser-

vations, is given by Politis/ Romano/ Wolf (1999). We outline the procedure for

the test of SD1. Let

dn(W1, . . . , Wn) =
1√
n

Tn,1

and dn,b,k = db(Wk,Wk+1, . . . , Wk+b−1) for k = 1, . . . , n− b+1 be the transformed

test statistic for the subsample (Wk,Wk+1, . . . ,Wk+b−1) of size b. Suppose that

gn,b is the empirical quantile function of {
√

bdn,b,k : k = 1, . . . , n−b+1} and g the



5.2 Simulation Results for the Conventional Tests 73

quantile function of the asymptotic distribution of Tn,1 under H1
0 . Assume that

b(n) −→
n→∞

∞ and b(n)
n

−→
n→∞

0 and that the mixing condition stated above holds.

For example, this will be the case for a stationary GARCH process.

Then under the subcase PX = PY of H1
0 we have gn,b(1− α)

p→ g(1− α) and

P (Tn,1 > gn,b(1− α)) −→
n→∞

α.

Under H1
1 the test is consistent, i.e.

P (Tn,1 > gn,b(1− α)) −→
n→∞

1.

The result concerning SD2 is analogous.

The described tests in this section are robust to contemporaneous correlation

between the processes. Moreover, the XFW and the LMW tests are asymptoti-

cally robust to serial dependence within the processes if they are strongly mixing.

An important theoretical topic and problem for applications is the performance

of these tests for finite samples if the data are dependent, in particular if they

are conditionally heteroskedastic. This will be investigated in the next section.

5.2 Simulation Results for the Conventional Tests

By simulation we investigate the effect of some dependence structures on the

size of the tests described in the previous section. The nominal size in each

test is α = 0.05. Unless stated differently, the sample size is n = 1000 and

the number of replications is R = 500 for the ST test and R = 1000 for the

XFW test and the LMW test. For our research concerning contemporaneous

dependence we determine the size of the tests for various values of the correlation

coefficient ρ. In exploring the effects of serial dependence we confine ourselves to

GARCH(1,1), a kind of conditional heteroskedasticity. As already mentioned in

chapter 4, this kind of process is an appropriate approach to modelling conditional

heteroskedasticity for financial data. Akgiray (1989), Davis/ Mikosch (2000) and

Engle (2001) affirm the evidence and usefulness of GARCH(1,1).
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We consider the following situations:

• For every t the vector (Xt, Yt) has a bivariate normal distribution with mean

0 := (0 0) and covariance matrix

(
1 ρ

ρ 1

)
. The process (Xt, Yt)t∈Z is

serially independent.

• For every t the random variables Xt and Yt are independent. Both random

variables follow a GARCH(1,1) process as we have defined in chapter 4: Let

(εt)t∈Z denote a sequence of independent and identically N (0, 1)-distributed

random variables. Let Xt = σtεt where

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1

for t ∈ Z and α0 > 0, α1, β1 ≥ 0. Then (Xt)t∈Z is called a GARCH(1,1)

process. As mentioned in chapter 4, (Xt)t∈Z is weakly stationary if and only

α1 + β1 < 1.

• (Xt, Yt)t∈Z is a bivariate GARCH(1,1) process: Let εt = (ε1t, ε2t)
′ be inde-

pendent and identically N2(0, I2)-distributed random vectors for all t ∈ Z;

here In is the n-dimensional identity matrix. For i = 1, 2 define the condi-

tional variances

hii,t = α0 + α1Z
2
i,t−1 + β1hii,t−1

where Z1,t = Xt, Z2,t = Yt. Let

h12,t = ρα0 + α1Z1,t−1Z2,t−1 + β1h12,t−1

be the conditional covariance and Ht :=

(
h11,t h12,t

h12,t h22,t

)
be the conditional

covariance matrix. If H0 is positive definite, this holds for all Ht, t ∈ N.

This follows from a more general result of Engle/ Kroner (1995).

Let (Xt, Yt)
′ = Ctεt, where Ct is a positive definite matrix satisfying C2

t =

Ht, i.e. Ct is a root of Ht. Then (Xt)t∈Z and (Yt)t∈Z follow a GARCH(1,1)



5.2 Simulation Results for the Conventional Tests 75

ρ −0.5 0 0.5

size 0.05 0.05 0.04

Table 5.1: Rejection probability of the ST test for the nominal value α = 0.05. The

processes are serially independent and contemporaneously correlated with coefficient

ρ. The sample size is n = 1000, the number of Monte Carlo replications is R = 500.

process as described above. In particular, (Xt)t∈Z and (Yt)t∈Z are weakly

stationary if and only α1 +β1 < 1. For every t the unconditional correlation

between Xt and Yt is ρ. However, the conditional correlation

h12,t√
h11,th22,t

depends on t. For a more general approach and details concerning multi-

variate GARCH, see Engle/ Kroner (1995).

First we investigate the ST test. As recommended by Schmid/ Trede, we

choose M = 500 as the number of permutations. As expected, the test is robust

to contemporaneous correlation. We simulate two samples (Xt : t = 1, . . . , n)

and (Yt : t = 1, . . . , n). For every time t the observation pairs (Xt, Yt) follow a

bivariate normal distribution with correlation coefficient ρ. The observation pairs

are independent of each other. The true size ranges from α = 0.05 to α = 0.04

if the correlation varies from ρ = −0.5 to ρ = 0.5 (see table 5.1). Hence the

correlation does not have a significant effect on the size of the test. This was

already asserted by Schmid and Trede.

Concerning conditional heteroskedasticity within the samples things are much

more involved. Table 5.2 presents the results for various values of the GARCH(1,1)

parameters α1 and β1. The size of the test increases slowly in α1 and β1; how-

ever, the increase becomes faster for larger values of α1 and β1. If α1 +β1 is close

to 1, the true size of the test is much larger than the nominal size of the test.

For α1 = 0.14 and β1 = 0.85, which is an appropriate choice for financial data,



76 Chapter 5. Testing for Stochastic Dominance Using Circular Block Methods

α1 β1 α1 + β1 size

0.1 0.8 0.9 0.07

0 0.99 0.99 0.04

0.1 0.89 0.99 0.30

0.14 0.85 0.99 0.30

Table 5.2: Rejection probability of the ST test for the nominal value α = 0.05. The

processes are generated by contemporaneously independent GARCH(1,1) processes

with parameters α0 = 0.1, α1 and β1. The sample size is n = 1000, the number of

Monte Carlo replications is R = 500.

ρ −0.8 −0.5 0 0.5 0.8

size 0.06 0.06 0.06 0.07 0.05

Table 5.3: Rejection probability of the XFW test for the nominal value α = 0.05,

sample size n = 1000 and block length b = 1. The processes are serially independent

and contemporaneously correlated with parameter ρ. The number of grid points is

K − 1 = 9, the number of Monte Carlo replications is R = 1000.

the size is α = 0.30. Hence the ST test should not be used if the data follow a

GARCH(1,1) process with large parameters.

In our investigation of the XFW test we choose the grid points ( 1
K

, . . . , K−1
K

)

with K = 10 and K = 20. The performance depends on the length b of the blocks,

whereas the number of grid points K does not have a significant effect. Hence we

only report the results for K = 10. In the case of serial independence within each

sample the test works very well, even for b = 1, i.e. usual bootstrap. For various

values of contemporaneous correlation ρ the size ranges between α = 0.05 and

α = 0.07 (see table 5.3).

However, if the observations are generated by a GARCH(1,1) process, there is

a notable effect on the size of the test. We focus on the parameter constellation

α0 = 0.1, α1 = 0.14 and β1 = 0.85. For K = 10 and b = 1 we get α = 0.62,
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ρ −0.5 0 0.5

b

1 0.38 0.62 0.47

10 0.29 0.44 0.34

50 0.18 0.21 0.15

100 0.14 0.13 0.17

200 0.20 0.21 0.24

Table 5.4: Rejection probability of the XFW test for the nominal value α = 0.05,

sample size n = 1000 and various values of block length b. The processes are gener-

ated by bivariate GARCH(1,1) processes with correlation parameter ρ and parameters

α0 = 0.1, α1 = 0.14 and β1 = 0.85. The number of grid points is K − 1 = 9. The

number of Monte Carlo replications is R = 1000.

the size decreases for increasing b as can be seen in table 5.4. However, for larger

values of b the size increases, therefore, for b = 200 the size is larger than for

b = 100.

If the data are generated by a bivariate GARCH(1,1) process, the results are

similar. For α0 = 0.1, α1 = 0.14, β1 = 0.85 and ρ = ±0.5 we choose various values

of the block length b; the results are also reported in table 5.4. As in the case

of independent univariate GARCH(1,1) processes (Xt)t∈Z and (Yt)t∈Z, the size

first decreases with increasing block length, but increases after the block length

has exceeded a critical border. We observe the following results: For sample

size n = 1000 we cannot manage to keep the nominal rejection probability α by

adjusting the size of the block length. Hence the asymptotic result of Xu/ Fisher/

Willson is not useful if the number of observations is equal to 1000 or even lower!

For the LMW test the results are similar. Even for small block length the

test performs very well in the case of serial independence. The block length

b = 1 is, by construction, no reasonable choice. Table 5.5 shows the results for

various block lengths and correlation parameters. For b = 10 the size lies between
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ρ −0.8 −0.5 0 0.5 0.8

b

10 0.07 0.06 0.08 0.09 0.06

20 0.07 0.06 0.04 0.06 0.06

40 0.04 0.04 0.04 0.04 0.06

Table 5.5: Rejection probability of the LMW test for the nominal value α = 0.05,

serial independence, contemporaneous correlation ρ, sample size n = 1000 and block

length b. The number of Monte Carlo replications is R = 1000.

α1 β1 α1 + β1 size

0 0.99 0.99 0.05

0.1 0.8 0.9 0.08

0.1 0.89 0.99 0.35

0.14 0.85 0.99 0.28

Table 5.6: Rejection probability of the LMW test for the nominal value α = 0.05,

sample size n = 1000 and block length b = 20. The processes are generated by

contemporaneously independent GARCH(1,1) processes with parameters α0 = 0.1,

α1 and β1. The number of Monte Carlo replications is R = 1000.

α = 0.06 and α = 0.09 for various values of the correlation coefficient ρ. If we

choose b = 40, the nominal size is kept well: the size ranges from α = 0.04 to

α = 0.06.

However, if the data are generated by a GARCH(1,1) process, there is a

significant effect on the size of the test. Table 5.6 shows the same effect as in the

ST test and the XFW test: If α1 + β1 approaches 1, the nominal size is not kept

any longer.

Is the variation of the block length a remedy? No! As we see in table 5.7,

for the GARCH parameters α0 = 0.1, α1 = 0.14 and β1 = 0.85 and correlation

coefficient ρ = 0 or ρ = ±0.5, the size first decreases with increasing block length,
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ρ −0.5 0 0.5

b

10 0.31 0.38 0.37

20 0.25 0.28 0.30

40 0.16 0.20 0.19

100 0.10 0.10 0.11

200 0.07 0.09 0.09

250 0.07 0.07 0.07

300 0.09 0.07 0.08

500 0.08 0.13 0.11

Table 5.7: Rejection probability of the LMW test for the nominal value α = 0.05,

sample size n = 1000 and various values of block length b. The processes are gener-

ated by bivariate GARCH(1,1) processes with correlation parameter ρ and parameters

α0 = 0.1, α1 = 0.14 and β1 = 0.85. The number of Monte Carlo replications is

R = 1000.

but then increases again. We do not find any such block length that the nominal

size is kept. The LMW test should not be used if conditional heteroskedasticity

is prevalent in the data and the number of observations is 1000 or less.

In many applications in finance a GARCH(1,1) process with large parameters,

i.e. α1 + β1 close to 1, is a good fit of the time series. The simulations indicate

that the dominance tests of Schmid/ Trede, Xu/ Fisher/ Willson and Linton/

Maasoumi/ Whang are not useful in this case if there are less than 1000 obser-

vations.
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5.3 Circular Block Methods as an Alternative

Concept

Due to the moderate success of the moving block methods we propose alterna-

tively investigating the use of circular block methods. The circular block boot-

strap (CBB) is developed by Politis/ Romano (1992). As the MBB method,

CBB resamples overlapping blocks of observations which are of a fixed length

b. One problem of MBB is that the observations at the beginning and the

end of the time series are less considered. CBB solves this problem as fol-

lows. The collection of blocks from which it is resampled consists of the blocks

B1, . . . , Bn−b+1 of the MBB and additionally of the blocks Bn−b+2, . . . , Bn of the

form Bk = (xk, . . . , xn, x1, . . . , xk+b−n−1). Lahiri (1999) investigates the asymp-

totic behavior of some block bootstrap methods and found that MBB and CBB

are asymptotically equivalent. We apply CBB to the XFW test and investigate

by simulation whether this improves the size of the test.

The modification of the subsampling method of Linton/ Maasoumi/ Whang

is analogous. The distribution of Tn,i under H i
0 is approximated by

√
bdn,b,k where

dn,b,k =





db(Wk,Wk+1, . . . , Wk+b−1) for k = 1, . . . , n− b + 1,

db(Wk, . . . , Wn,W1, . . . , Wk+b−n−1) for k = n− b + 2, . . . , n.

By some modification of the proofs we can show that the main results of Linton/

Maasoumi/ Whang still hold if we use the modified subsampling method.

Theorem 3. Let (Xt)t∈Z and (Yt)t∈Z be strongly mixing with α(m) = O(m−3).

Assume b(n) →∞ and b(n)
n
→ 0 as n →∞. Let α ∈ (0, 1), gn,b be the empirical

quantile function of {
√

bdn,b,k : k = 1, . . . , n} and g the quantile function of the

asymptotic distribution of Tn,1 under H1
0 . Then:

1. Under the subcase PX = PY of H1
0 we have gn,b(1 − α)

p→ g(1 − α) and

P (Tn,1 > gn,b(1− α)) −→
n→∞

α, i.e. the test keeps the size α asymptotically.
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2. Under H1
1 we have P (Tn,1 > gn,b(1− α)) −→

n→∞
1, i.e. the test is consistent.

Proof. Let us first prove part 1. Let Ĝn,b be the empirical distribution function

of {
√

bdn,b,k : k = 1, . . . , n} and G the distribution function of the asymptotic dis-

tribution of Tn,1 under H1
0 . As Linton/ Maasoumi/ Whang state, G is absolutely

continuous according to Lifshits (1982), theorem 1. Therefore, to prove part 1, it

suffices to show

Ĝn,b(w)
p−→

n→∞
G(w) ∀w ∈ R.

By definition of G

Gb(w) := P (
√

bdn,b,1 ≤ w) −→
b→∞

G(w)

holds for all w ∈ R. Hence we have to show Ĝn,b(w) −→
n→∞

Gb(w) for all w ∈ R;

note that b →∞ as n →∞. Let Ik = 1(
√

bdn,b,k ≤ w) for k = 1, . . . , n. E(Ik) =

P (
√

bdn,b,k ≤ w) = P (
√

bdn,b,1 ≤ w) = Gb(w) holds for k = 1, . . . , n− b + 1. This

yields

E(Ĝn,b(w)) =
1

n

n∑

k=1

E(Ik) =
n− b + 1

n
Gb(w) +

1

n

n∑

k=n−b+2

E(Ik)

and therefore

|E(Ĝn,b(w))−Gb(w)| =
∣∣∣ 1
n

n∑

k=n−b+2

E(Ik)− b− 1

n
Gb(w)

∣∣∣ ≤ b− 1

n
−→
n→∞

0. (5.1)

Furthermore,

V ar(Ĝn,b(w)) =
1

n2

( n∑

k=1

V ar(Ik) + 2
∑

1≤k<l≤n

Cov(Ik, Il)
)

=
1

n2

( n∑

k=1

V ar(Ik) + 2
n−1∑
m=1

n−m∑

k=1

Cov(Ik, Ik+m)
)

= Sn,0 + 2
n−1∑
m=1

Sn,m

where

Sn,m =
1

n2

n−m∑

k=1

Cov(Ik, Ik+m).
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|Ik| ≤ 1 for all k yields |Cov(Ik, Ik+m)| ≤ 1 and so |Sn,m| ≤ 1
n

for all m. Therefore

∣∣∣Sn,0 + 2
b−1∑
m=1

Sn,m + 2
n−1∑

m=n−b+1

Sn,m

∣∣∣ ≤ O
( b

n

)
= o(1).

In addition, we have

∣∣∣2
n−b∑

m=b

Sn,m

∣∣∣ =
2

n2

∣∣∣
bn

2
c∑

m=b

n−m∑

k=1

Cov(Ik, Ik+m) +
n−b∑

m=bn
2
c+1

n−m∑

k=1

Cov(Ik, Ik+m)
∣∣∣

≤ 8

n2

∣∣∣
bn

2
c∑

m=b

n−m∑

k=1

α(m− b + 1) +
n−b∑

m=bn
2
c+1

n−m∑

k=1

α(n−m− b + 1)
∣∣∣ (5.2)

≤ 8

n

∣∣∣
bn

2
c−b+1∑
m=1

α(m) +

dn
2
e−b∑

m=1

α(m)
∣∣∣

≤ O(n−1) = o(1) (5.3)

where (5.2) holds by Hall/ Heyde (1980), theorem A.5, and (5.3) holds by the

assumption that α(m) = O(m−3). Hence we have shown

lim
n→∞

V ar(Ĝn,b(w)) = 0. (5.4)

(5.1) and (5.4) yield Ĝn,b(w)
p−→

n→∞
Gb(w) and therefore Ĝn,b(w)

p−→
n→∞

G(w). This

establishes part 1 of the theorem.

For the proof of part 2 first note that under H1
1 we have

d := sup
x∈R

(FX(x)− FY (x)) > 0.

Analogously to Linton/ Maasoumi/ Whang dn(W1, . . . , Wn)
p−→

n→∞
d holds. Let

Ĝ0
n,b and g0

n,b be the empirical distribution and quantile function of {dn,b,k : k =

1, . . . , n} and G0
b the distribution function of dn,b,1. Due to the mixing condition

the convergence Ĝ0
n,b(w)

p−→
n→∞

G0
b(w) holds; this can be shown analogously to

part 1. With db(W1, . . . , Wb)
p−→

n→∞
d this yields Ĝ0

n,b(w)
d−→

n→∞
δd where δd denotes

the Dirac distribution in d. Therefore we have g0
n,b(1 − α)

p−→
n→∞

d. Because of

gn,b(1− α) =
√

bg0
n,b(1− α) this yields

P (Tn,1 > gn,b(1− α)) −→
n→∞

1
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as in Linton/ Maasoumi/ Whang.

By simulation we investigate if the modified subsampling method improves

the performance of the LMW test for finite samples.

In contrast to the XFW and the LMW test, the ST test does not consider

any serial dependence at all. In this section, we modify the permutation test to a

block permutation test. Like the block bootstrap and subsampling methods, the

block permutation reproduces the dependence structure of the observations.

The block permutation method is performed as follows. We consider the

random variable U = |{i ∈ {1, . . . , n} : Xi and Yi are transposed}|. In the per-

mutations of Schmid/ Trede, U follows a binomial distribution with parameters

n and 1
2
. Therefore, in the modified test we first generate for every permutation

the number u of the transposed pairs. If the given block length is b, we choose by

chance bu
b
c blocks of length b and one block of length u− bbu

b
c for which Xi and

Yi are transposed. The test is further performed as described in Schmid/ Trede.

We will investigate by simulation whether this block permutation improves the

ST test in finite samples with conditional heteroskedasticity.

In this section, we developed some modifications of the tests of Schmid/ Trede,

Xu/ Fisher/ Willson and Linton/ Maasoumi/ Whang. We find that the circular

block methods are asymptotically equivalent to their moving block counterparts.

For finite samples, there are two opposed effects. On the one hand, the observa-

tions at the beginning and at the end of the time series are considered as well as

the observations in the middle. This is an improvement to moving block bootstrap

and subsampling. On the other hand, some blocks we build are no reasonable

construction in terms of reproduction of the dependence structure. In strongly

mixing processes the observations with a large time lag are nearly independent.

Therefore a block consisting of the first and the last observations does not seem

to make sense. But, on the other hand, a block of the first k and the last b − k

observations is just a combination of two blocks with a strong dependence struc-
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ρ −0.5 0 0.5

size 0.03 0.03 0.03

Table 5.8: Rejection probability of the STm test for the nominal value α = 0.05 and

sample size n = 1000. The processes are serially independent and contemporaneously

correlated with coefficient ρ. The block length is b = 100, the number of Monte Carlo

replications is R = 500.

ture within both of them. In other words, the resample consists of blocks with

different lengths and a strong dependence within each block. Hence we suppose

that the advantages of our modification outweigh the disadvantages.

On the basis of these considerations, one can expect that the circular block

methods improve the performance of the tests. In the next section, we investigate

this by means of simulation.

5.4 Simulation Results Using Circular Block Me-

thods

In this section we report on the simulation results of the modified tests. We refer

to the modified tests as STm test, XFWm test and LMWm test.

The modification described in the previous section is a remedy for the weak-

nesses of the ST test. As can be seen in table 5.8, the modification does not

destroy the good result for data which are serially independent, but contempora-

neously correlated. The nominal size α = 0.05 is kept well, the test is just a bit

too conservative.

But the modification is a real improvement. In section 5.2 we stated that the

ST test does not keep the nominal size if the data are generated by a GARCH(1,1)

process with parameters whose sum is close to 1. Table 5.9 shows that the STm

test keeps the nomimal size if the block length is chosen appropriately. This also
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ρ −0.5 0 0.5

b

100 0.09 0.14 0.13

200 0.07 0.08 0.08

300 0.04 0.05 0.06

500 0.00 0.01 0.00

Table 5.9: Rejection probability of the STm test for the nominal value α = 0.05,

sample size n = 1000 and various values of block length b. The processes are

generated by bivariate GARCH(1,1) with correlation coefficient ρ and parameters

α0 = 0.1, α1 = 0.14 and β1 = 0.85. The number of Monte Carlo replications is

R = 500.

ρ −0.8 −0.5 0 0.5 0.8

size 0.06 0.06 0.05 0.07 0.05

Table 5.10: Rejection probability of the XFWm test for the nominal value α = 0.05

and sample size n = 1000. The processes are serially independent and contempora-

neously correlated with parameter ρ. The number of grid points is K − 1 = 9, the

block length b = 1. The number of Monte Carlo replications is R = 1000.

holds for the bivariate GARCH(1,1) process with correlation coefficient ρ. The

choice b = 200 is not sufficient to keep the level; for b = 500 the test is too

conservative. According to table 5.9, b = 300 seems to be a good choice.

The XFW test cannot be improved significantly by modifying it with circular

block bootstrap. At least, like the original test, the modified version still keeps

the size if the observations are serially independent, but contemporaneously cor-

related. Table 5.10 presents the simulation results for K = 10, block length b = 1

and various values of the correlation coefficient ρ.

However, if the data are generated by a GARCH(1,1) process, the circular

block bootstrap is no remedy for the weaknesses of the XFW test. The simulation
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ρ −0.5 0 0.5

b

10 0.28 0.44 0.34

50 0.17 0.21 0.17

100 0.16 0.17 0.17

200 0.19 0.19 0.22

500 0.42 0.49 0.52

Table 5.11: Rejection probability of the XFWm test for the nominal value α = 0.05,

sample size n = 1000 and various values of block length b. The processes are

generated by bivariate GARCH(1,1) with correlation parameter ρ and parameters

α0 = 0.1, α1 = 0.14 and β1 = 0.85. The number of grid points is K − 1 = 9. The

number of Monte Carlo replications is R = 1000.

results (see table 5.11) show that there is no block length for which the nominal

size is kept. As for the original versions of the XFW and LMW test, for small block

length b the size decreases with increasing b, but is always significantly higher than

the nominal size. For b > 100 the size increases with increasing b. This holds for

both independent GARCH(1,1) processes and bivariate GARCH(1,1) processes

with contemporaneous correlation.

The LMWm test keeps the size for appropriate block length. Table 5.12 shows

the simulation results for serially independent time series and various values of

contemporaneous correlation ρ. The block length is b = 40. As for the original

LMW test, the nominal size α = 0.05 is kept well. Therefore, the performance of

the modified LMW test is at least not worse than that of the original test.

But the modified version is even better. With the appropriate block length it

keeps the nominal size even if the data feature conditional heteroskedasticity. The

simulation results for a bivariate GARCH(1,1) process with parameters α0 = 0.1,

α1 = 0.14 and β1 = 0.85 and correlation ρ = 0 and ρ = ±0.5 are reported in table

5.13. In contrast to the original LMW test, the size decreases monotonically with
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ρ −0.8 −0.5 0 0.5 0.8

size 0.04 0.04 0.04 0.05 0.06

Table 5.12: Rejection probability of the LMWm test for the nominal value α = 0.05,

sample size n = 1000 and block length b = 40. The processes are serially independent

and contemporaneously correlated with parameter ρ. The number of Monte Carlo

replications is R = 1000.

ρ −0.5 0 0.5

b

100 0.09 0.11 0.09

200 0.05 0.07 0.06

300 0.05 0.05 0.05

500 0.03 0.03 0.04

Table 5.13: Rejection probability of the LMWm test for the nominal value α =

0.05 and various values of block length b. The processes are generated by bivariate

GARCH(1,1) with correlation parameter ρ and parameters α0 = 0.1, α1 = 0.14 and

β1 = 0.85. The number of Monte Carlo replications is R = 1000.

increasing b. If we choose block length b = 300, the size is kept well, whereas for

b = 500 the test is too conservative. As for the ST test, b = 300 seems to be a

good choice.

We have seen that for sample size n = 1000 the STm and LMWm tests keep

the size if we choose the appropriate block length. If the sample size varies, which

block length is the best choice? We explore this question with the help of some

further simulations. Tables 5.14 and 5.15 show the corresponding results for the

STm and the LMWm tests.

For the STm test, the optimal block length seems to be proportional to
√

n.

The block length b = 150 is a good choice for n = 250 whereas the size cannot

be kept for b = 100 or b = 200. With increasing sample size the block length has
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ρ −0.5 0 0.5

n b

250 100 0.14 0.12 0.18

250 150 0.06 0.03 0.03

250 200 0.12 0.17 0.20

2500 300 0.12 0.12 0.11

2500 500 0.05 0.05 0.04

Table 5.14: Rejection probability of the STm test for the nominal value α = 0.05

and various values of sample size n and block length b. The processes are generated

by bivariate GARCH(1,1) with correlation coefficient ρ and parameters α0 = 0.1,

α1 = 0.14 and β1 = 0.85. The number of Monte Carlo replications is R = 500.

to increase. The block length b = 300 yields a bad result for n = 2500, but the

performance is much better for b = 500. This suggests an optimal block length

of approximately b(n) ≈ 10
√

n.

We see that for the sample size n = 4000 the LMWm test performs well if

we choose the block length b = 300. This result suggests that for the considered

dependence structure and a sample size larger than n = 1000 the increase of the

optimal block length is very slow. Furthermore, the range of block lengths with

good performance becomes larger with increasing sample size: b = 600 is still a

reasonable choice for n = 4000. However, for smaller block lengths the choice

of the block length is more critical. For n = 250 the block length b = 150 is

a good choice whereas b = 100 and b = 200 yield rather poor results. These

results suggest that at least for smaller sample sizes the optimal block length is

proportional to
√

n, the optimal block length is approximately b(n) ≈ 10
√

n, as

for the STm test.

Summing up the results of this section, the modifications of the considered

tests are successful for the tests of Schmid/ Trede and of Linton/ Maasoumi/

Whang, whereas it does not improve the performance of the test of Xu/ Fisher/
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ρ −0.5 0 0.5

n b

250 100 0.09 0.08 0.10

250 150 0.04 0.04 0.05

250 200 0.01 0.01 0.01

500 220 0.04 0.06 0.06

4000 300 0.04 0.05 0.05

4000 600 0.04 0.03 0.05

Table 5.15: Rejection probability of the LMWm test for the nominal value α = 0.05

and various values of sample size n and block length b. The processes are generated

by bivariate GARCH(1,1) with correlation parameter ρ and parameters α0 = 0.1,

α1 = 0.14 and β1 = 0.85. The number of Monte Carlo replications is R = 1000.

Willson. This test cannot be improved significantly by moving block bootstrap,

but block permutation makes the permutation test of Schmid/ Trede robust

to conditional heteroskedasticity, and circular subsampling improves the perfor-

mance of the test of Linton/ Maasoumi/ Whang for finite samples. The choice

of the appropriate block length is crucial. For both the modified ST and LMW

tests the optimal block length is approximately b(n) = 10
√

n.

5.5 Power Investigation

In the previous sections we modified the tests of Schmid/ Trede for SD2 and

Linton/ Maasoumi/ Whang for SD1 successfully. We investigated the optimal

block lengths for various sample sizes.

In this section we explore the power of the tests. The main problem is the

shape of the alternative H1. There are many combinations of distribution func-

tions FX , FY so that FX(x) > FY (x) for at least one x ∈ R (analogous for F (2)).

Hence the alternative H1 : X � Y is very complex.



90 Chapter 5. Testing for Stochastic Dominance Using Circular Block Methods

We start with the investigation of some scale alternatives. For both tests we

consider the alternative

H1(σX) : PX = N (0, σX), PY = N (0, 1)

and vary σX from 1.1 to 1.5 in 0.1 steps. Furthermore, we analyze the alternative

H1(σY ) : PX = N (0, 1), PY = N (0, σY )

with σY = 1.1, 1.2, . . . , 1.5 only for the LMWm test of SD1. Note that PX =

N (0, 1), PY = N (0, σY ) with σY > 1 is in the null hypothesis for SD2. For

both tests we consider the sample sizes n = 250, 1000, 2500 and the values of

the block length b which are found to be optimal in the previous section. The

samples are generated by contemporaneously and serially independent processes.

The number of Monte Carlo replications is R = 100. This small number causes a

large standard error of the simulation results, but we can at least interpret them

as a tendency.

Tables 5.16, 5.17 and 5.18 display the results. As one might expect, the power

increases with increasing standard deviation σZ (Z = X, Y ) and increasing sample

size n. The larger σZ , the larger is the distance to H0. Hence the violation of the

null hypothesis is more likely to be detected for larger σZ . With larger sample

size the consistency of the tests becomes stronger. For n = 250 the results are

not that satisfactory whereas for n = 2500 the power tends toward 1 very fast

with growing σZ .

Then we explore the power of the tests for the location alternative H1 : PX =

N (0, 1), PY = N (0.1, 1) where the observations are contemporaneously and seri-

ally independent. Here Y dominates X in the sense of SD1 and SD2, hence the

dominance of X has to be rejected. The results are presented in table 5.19. For

n = 2500 the power is very high, for the STm test for SD2 n = 1000 suffices to

give good results. The low power for smaller sample size is caused by the fact

that the deviation from equality, which is a limiting case of stochastic dominance,

is small.
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σX 1.1 1.2 1.3 1.4 1.5

n b

250 150 0.15 0.24 0.39 0.48 0.64

1000 300 0.16 0.52 0.85 0.96 1.00

2500 500 0.42 0.94 1.00 1.00 1.00

Table 5.16: Power of the STm test for SD2 for the nominal value α = 0.05 and

various values of sample size n and block length b. The alternative considered is

H1(σX) : PX = N (0, σX), PY = N (0, 1) where the processes (Xt)t∈Z and (Yt)t∈Z are

contemporaneously and serially independent. The number of Monte Carlo replications

is R = 100.

σX 1.1 1.2 1.3 1.4 1.5

n b

250 150 0.03 0.06 0.08 0.21 0.27

1000 300 0.11 0.43 0.67 0.92 0.97

2500 300 0.29 0.96 1.00 1.00 1.00

Table 5.17: Power of the LMWm test for SD1 for the nominal value α = 0.05

and various values of sample size n and block length b. The alternative considered is

H1(σX) : PX = N (0, σX), PY = N (0, 1) where the processes (Xt)t∈Z and (Yt)t∈Z are

contemporaneously and serially independent. The number of Monte Carlo replications

is R = 100.



92 Chapter 5. Testing for Stochastic Dominance Using Circular Block Methods

σY 1.1 1.2 1.3 1.4 1.5

n b

250 150 0.00 0.01 0.08 0.10 0.19

1000 300 0.07 0.45 0.73 0.94 0.99

2500 300 0.24 0.89 1.00 1.00 1.00

Table 5.18: Power of the LMWm test for SD1 for the nominal value α = 0.05

and various values of sample size n and block length b. The alternative considered is

H1(σY ) : PX = N (0, 1), PY = N (0, σY ) where the processes (Xt)t∈Z and (Yt)t∈Z are

contemporaneously and serially independent. The number of Monte Carlo replications

is R = 100.

Test LMWm SD1 STm SD2

n b

250 150 0.05 0.39

1000 300 0.29 0.69

2500 300 0.79 −
2500 500 − 0.97

Table 5.19: Power of the LMWm test for SD1 and STm test for SD2 – hence also

SD1 – for the nominal value α = 0.05 and various values of sample size n and block

length b. The alternative considered is H1 : PX = N (0, 1), PY = N (0.1, 1) where

the processes (Xt)t∈Z and (Yt)t∈Z are contemporaneously and serially independent.

The number of Monte Carlo replications is R = 100.
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Furthermore, we analyze the power of the tests if the observations are con-

temporaneously and serially independent and normally distributed and differ in

both mean and variance. We consider the cases PX = N (0, 1), PY = N (1, 2),

PX = N (0, 1), PY = N (−1, 2) and vice versa. PX = N (0, 1), PY = N (−1, 2) is

the only combination of distributions where X dominates Y in the sense of SD2,

whereas SD1 does not hold in any of these cases.

Tables 5.20 and 5.21 display the results. For both tests and all alternatives

the power is very good for the sample size n = 2500; for the LMWm test n =

1000 already gives satisfactory results. In addition to this, both tests have good

power even for n = 250 if PX = N (−1, 2), PY = N (0, 1) or if PX = N (0, 1),

PY = N (1, 2) hold. In these cases, X has a smaller mean and the dominance

of X in the sense of SD1 or SD2 can therefore be clearly rejected. The case

PX = N (1, 2), PY = N (0, 1) is most critical. The LMWm test has low power

for n = 250, the STm test even for n = 1000. If X and Y are distributed like

this, FX(x) ≤ FY (x) holds for x ≥ −1. The fact that X takes on very small

values with larger probability than Y is the reason why X does not dominate Y

in the sense of SD1 or SD2. However, in small samples the number of extreme

observations is very small. Hence the violation of SD is often not detected whereas

for larger samples this problem becomes more and more negligible. In the case

PX = N (0, 1), PY = N (−1, 2), X dominates Y in the sense of SD2, but not of

SD1. X does not dominate Y in the sense of SD1 because Y takes very large

values with larger probability than Y . The LMWm test does not detect the

violation of SD1 for n = 250 because there are only few observations belonging

to the right tail for this small sample. For n = 1000 and n = 2500 this problem

does not occur any more.

So far we have investigated the power of the LMWm test for SD1 and the STm

test for SD2 in various settings, but under the assumption of contemporaneous

and serial independence. As mentioned earlier, this is not a realistic presumption

for financial data. Due to the fact that contemporaneous correlation does not have
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PX N (0, 1) N (1, 2) N (−1, 2)

PY N (1, 2) N (0, 1) N (0, 1)

n b

250 150 1.00 0.01 1.00

1000 300 1.00 0.04 1.00

2500 500 1.00 0.64 1.00

Table 5.20: Power of the STm test for SD2 for the nominal value α = 0.05 and

various values of sample size n and block length b. The alternative considered is the

combination of two normal distributions with different means and variances where the

processes (Xt)t∈Z and (Yt)t∈Z are contemporaneously and serially independent. The

number of Monte Carlo replications is R = 100.

PX N (0, 1) N (1, 2) N (0, 1) N (−1, 2)

PY N (1, 2) N (0, 1) N (−1, 2) N (0, 1)

n b

250 150 1.00 0.08 0.11 0.99

1000 300 1.00 0.88 0.87 1.00

2500 300 1.00 1.00 1.00 1.00

Table 5.21: Power of the LMWm test for SD1 for the nominal value α = 0.05 and

various values of sample size n and block length b. The alternative considered is the

combination of two normal distributions with different means and variances where the

processes (Xt)t∈Z and (Yt)t∈Z are contemporaneously and serially independent. The

number of Monte Carlo replications is R = 100.
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a significant effect on the performance of the tests, we only report the impact of

serial dependence caused by GARCH(1,1). We consider the following settings.

Let (At)t∈Z and (Bt)t∈Z be two independent univariate GARCH(1,1) processes.

As in previous sections, we choose the parameters α0 = 0.1, α1 = 0.14 and

β = 0.85. We consider the scale alternatives Xt = σXAt, Yt = Bt (case 1) and

Xt = At, Yt = σY Bt (case 2) where we choose σX = 1.1, 1.5 and σY = 1.1, 1.5. In

both cases X does not dominate Y in the sense of SD1 whereas X dominates Y

in the sense of SD2 in case 2. This can be proved as follows. In case 1 we have

FX(x) = FY (x
σ
) and F

(2)
X (x) = σF

(2)
Y (x

σ
) and therefore FX(x) > FY (x) for some

x < 0, FX(x) < FY (x) for some x > 0 and F
(2)
X (x) ≥ F

(2)
Y (x) for all x ∈ R, in

case 2 this holds with reversed roles of X and Y .

As we have seen, case 2 is in the null hypothesis that X dominates Y in

the sense of SD2. Hence we only explore the power of the LMWm test for

SD1 in case 2. Furthermore, we explore the power of the LMWm test for SD1

and of the STm test for SD2 in case 1. In all settings we choose the sample

sizes n = 250, 1000, 2500. The results, which are displayed in table 5.22, are

similar to those in the case of independent observations. The power increases

with increasing σX or σY , respectively, and with increasing sample size. The main

difference to the case of independent observations is the speed of convergence.

For σX = 1.5 or σY = 1.5 the power is lower than in the independent case, in

particular for smaller sample sizes.

Finally we analyze the location alternative Xt = At, Yt = Bt + µY where

(At)t∈Z and (Bt)t∈Z are two independent univariate GARCH(1,1) processes as

described above. If we choose the values µY = 0.1, 0.5, X does obviously not

dominate Y in the sense of SD1 or SD2. We investigate the power of the LMWm

test for SD1 and the STm test for SD2. As above, we choose the sample sizes

n = 250, 1000, 2500. Table 5.23 displays the results. For µY = 0.5, which implies

a larger deviation from dominance of X, the power is high. However, for µY = 0.1

the power increases very slowly with increasing sample size. Even for n = 2500
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Test LMWm SD1 STm SD2

σX 1.1 1.5 1.0 1.0 1.1 1.5

n b σY 1.0 1.0 1.1 1.5 1.0 1.0

250 150 0.07 0.15 0.07 0.11 0.19 0.55

1000 300 0.05 0.31 0.12 0.43 0.21 0.66

2500 300 0.12 0.88 0.10 0.79 − −
2500 500 − − − − 0.24 0.86

Table 5.22: Power of the LMWm test for SD1 and of the STm test for SD2 –

hence also SD1 – for the nominal value α = 0.05 and various values of sample size

n and block length b. The alternative considered is (Xt, Yt)t∈Z where Xt = σXAt

and Yt = σY Bt and (At)t∈Z and (Bt)t∈Z are independent univariate GARCH(1,1)

processes with the parameters α0 = 0.1, α1 = 0.14, β1 = 0.85. The number of

Monte Carlo replications is R = 100.

we do not get satisfactory results. Nevertheless, the main tendency is, as in the

case of independent observations, that the power increases with increasing µY

and sample size. Altogether we see that conditional heteroskedasticity does not

have a strong effect on the power of the tests which we have developed.

In this section we analyze the power of the tests we have developed in this

chapter. Among the large number of alternatives we first confine ourselves to the

case of independent, normally distributed observations. We see that the STm test

has good power for n = 2500, for the LMWm test we get satisfactory results even

for n = 1000. The larger the distance to H0, the higher is the power. For some

alternatives the power is close to one even for sample size n = 250. Furthermore,

we analyze the power if conditional heteroskedasticity is prevalent in the data. It

turns out that there is a weak effect of GARCH(1,1), but that the power is still

satisfactory with a sufficiently large sample size.
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Test LMWm SD1 STm SD2

n b µY 0.1 0.5 0.1 0.5

250 150 0.08 0.19 0.27 0.68

1000 300 0.15 0.61 0.30 0.90

2500 300/500 0.15 0.99 0.27 0.98

Table 5.23: Power of the LMWm test for SD1 and of the STm test for SD2 for the

nominal value α = 0.05 and various values of sample size n and block length b. The

alternative considered is (Xt, Yt)t∈Z where Xt = At and Yt = Bt + µY and (At)t∈Z

and (Bt)t∈Z are independent univariate GARCH(1,1) processes with the parameters

α0 = 0.1, α1 = 0.14, β1 = 0.85. The number of Monte Carlo replications is R = 100.

5.6 Conclusion

We investigate the tests for stochastic dominance of Schmid/ Trede, Xu/ Fisher/

Willson and Linton/ Maasoumi/ Whang using a simulation study. They deter-

mine the critical values of the tests using subsampling methods. Schmid/ Trede

use the permutation principle, Xu/ Fisher/ Willson the moving block bootstrap

and Linton/ Maasoumi/ Whang subsampling estimation. Simulations show that

all these tests perform rather poorly for finite samples if the data are generated

by GARCH(1,1) processes, which is an appropriate choice for financial data.

We develop several modifications to overcome these shortcomings. Our modi-

fication consists of using circular block methods: the modified ST test uses circu-

lar block permutation, the modified XFW test circular block bootstrap and the

modified LMW test circular subsampling.

We show analytically that the modifications of the XFW and the LMW tests

are asymptotically equivalent to the original tests. We argue that the circular

block methods are more appropriate for resampling the dependence structure. By

Monte Carlo simulation we show that for finite samples the modifications make

the ST and the LMW tests robust to conditional heteroskedasticity. In contrast,
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the modifications do not improve the XFW test.

For the modified ST and LMW tests the appropriate block length has to be

chosen. We find that for both tests the optimal block length is proportional to
√

n where n is the sample size. For the LMWm test the range of suitable block

lengths is broader for larger sample sizes whereas this is is not true for the STm

test.

Then we investigate the power of the developed tests. For various combina-

tions of normally distributed observations we see that the power increases with

increasing sample size and with increasing distance to the null hypothesis. If the

data are generated by bivariate GARCH(1,1), the power is lower than in the case

of serially independent observations. However, the power still increases with in-

creasing sample size and increasing distance to H0. For a sufficiently large sample

size (e.g. n = 2500) we get satisfactory power results.

In the Monte Carlo simulations for investigating size and power, we consider

certain settings which are only small parts of the null hypothesis of dominance

and the alternative of non-dominance, respectively. In further research one could

explore size and power under different assumptions concerning distribution and

dependence structure, e.g. stochastic volatility or non-Gaussian copulas.

Furthermore, one could search for a test with non-dominance in the null hypo-

thesis and dominance in the alternative. In investigating this topic similar com-

plexity problems as in the power investigation arise. In the next chapter we will

explore this topic in more detail and find a test which asymptotically keeps the

size.



Chapter 6

A Test in which Stochastic

Dominance is the Alternative

6.1 Introduction

As we stated in previous chapters, the vast majority of the tests for stochas-

tic dominance test the hypothesis of dominance against the alternative of non-

dominance. The reason is that the set of all pairs of random variables without a

dominance relationship is mathematically complex. However, there is a need for

a test which can significantly assert stochastic dominance.

In this chapter, we approach the problem of finding a test in which stochastic

dominance is the alternative. The starting point is the test of Kaur/ Rao/ Singh

(1994). The main drawback is that this test only regards a fixed interval which

has to be a proper subset of the support of the distributions. We propose some

modifications of the test statistic as a remedy to this problem. The new test

which we develop appropriately truncates the range for the determination of

the infimum. This test asymptotically keeps the size if the truncation value is

chosen appropriately. In a Monte Carlo study we explore the problem of the

right truncation choice for finite samples. The results of this chapter are based

99
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on Kläver (2005b).

It is obvious that SDk in a descriptive sense, i.e. F̂
(k)
X,n(x) ≤ F̂

(k)
Y,n(x) for all

x ∈ R, is a necessary condition for a significant conclusion of SDk. Due to

the fact that SD1 is rejected in the descriptive sense in most of the empirical

comparisons whereas SD2 is asserted more often, there is more need for a test for

SD2. Hence in this chapter we focus on a test for SD2.

The structure of this chapter is as follows. The next section gives a survey

on the problem and on approaches for the construction of an appropriate test.

Furthermore, the test of Kaur/ Rao/ Singh is presented. We discuss their test and

propose a modified one in section 6.3. Section 6.4 shows the simulation results

for various settings in order to investigate the size and power properties of the

proposed test. Section 6.5 draws conclusions from the results of this chapter.

6.2 Previous Tests in which Stochastic Domi-

nance is the Alternative

In most of the tests for stochastic dominance the hypothesis of dominance is tested

against the alternative of non-dominance. In such a procedure stochastic domi-

nance cannot be significantly asserted, but only be rejected or not. The reason

for the asymmetric development of tests for stochastic dominance is the mathe-

matical complexity of the hypothesis of non-dominance. Whereas the limiting

case of the dominance hypothesis is just equality of distributions, the bound-

ary of the non-dominance hypothesis cannot be expressed in closed form. In

the approaches of Eubank/ Schechtman/ Yitzhaki (1993), Anderson (1996) and

Herring (1996) the hypothesis of equality of the distributions is tested against

the alternative of stochastic dominance. The critical point is that in these tests

rejection of the hypothesis is not equivalent to significant assertion of stochastic

dominance. Equality of distributions can also be rejected in favor of reversed
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stochastic dominance or of incomparableness of the distributions.

The test of Kaur/ Rao/ Singh (1994) is a good starting point for testing for

second degree stochastic dominance. They test the null hypothesis

H0 : F
(2)
X (x) ≥ F

(2)
Y (x) for some x ∈ [a, b]

against the alternative

H1 : F
(2)
X (x) < F

(2)
Y (x) for all x ∈ [a, b]

where a and b are any real numbers satisfying −∞ < a < b < ∞. They use the

infimum statistic T̃ ∗
n,m = inf

x∈[a,b]
T̃n,m(x) where

T̃n,m(x) =
F̂

(2)
Y,m(x)− F̂

(2)
X,n(x)√

1
n
S2

X,n(x) + 1
m

S2
Y,m(x)

and

S2
X,n(x) =

1

n

n∑

k=1

((x− xk)+ − (F̂
(2)
X,n(x)))2 =

1

n

n∑

k=1

(x− xk)
2
+ − (F̂

(2)
X,n(x))2

and S2
Y,m(x) is defined analogously. Remember that x+ denotes the nonnegative

part of a real number x, i.e. x+ = max{x, 0}. In case the numerator and the

denominator are both zero, T̃n,m(x) is defined to be zero. Under the assumption

that the observations are independent Kaur/ Rao/ Singh state the following result

for the critical value cα := Φ(1 − α) where Φ is the distribution function of the

standard normal distribution.

Theorem 4 (Theorem 2.2 in Kaur/ Rao/ Singh). Let lim
n,m→∞

m
m+n

= κ ∈
[0, 1) and X1, . . . , Xn, Y1, . . . , Ym independent random variables with the distribu-

tions PX and PY , respectively. Let E(X2) and E(Y 2) be finite and FX and FY

be continuous. Then the following holds:

1. If (PX , PY ) ∈ H0, then

lim sup
n,m→∞

P (T̃ ∗
n,m > cα) ≤ α.
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2. If there is a non-empty subset M ⊂ (a, b) such that

F
(2)
X (x) = F

(2)
Y (x) 6= 0 for all x ∈ M

and

F
(2)
X (x) < F

(2)
Y (x) for all x ∈ [a, b]\M,

then

lim
n,m→∞

P (T̃ ∗
n,m > cα) = α.

3. If (PX , PY ) ∈ H1, then

lim
n,m→∞

P (T̃ ∗
n,m > cα) = 1.

Kaur/ Rao/ Singh propose a test which rejects H0 in favor of H1 if and only

if T̃ ∗
n,m > cα. Hereafter, we denote the test by KRS. Theorem 4 establishes that

the KRS test has an upper bound α on the asymptotic size and is consistent.

The KRS test is similar to a test for SD2, but there are some critical distinc-

tions. We will discuss them in the next section.

6.3 Discussion and Modification

In this section, we discuss and modify the KRS test. As in previous chapters, let

n = m in the following for the sake of simplicity. First we modify the function

T̃n,m(x) for relaxing the independence assumption. With the notation

Wk(x) = ((x− Yk)+ − (x−Xk)+)

we get W̄(n)(x) = (F̂
(2)
Y,n(x) − F̂

(2)
X,n(x)) and E(Wk(x)) = F

(2)
Y (x) − F

(2)
X (x) for

k = 1, . . . , n where x̄(n) denotes the average of a sample x1, . . . , xn. We consider

the function

Tn(x) =

√
n(F̂

(2)
Y,n(x)− F̂

(2)
X,n(x))

SX,Y,n(x)



6.3 Discussion and Modification 103

where

S2
X,Y,n(x) =

1

n

n∑

k=1

(Vk(x))2 +

b√nc∑

l=1

2

n− l

n−l∑

k=1

Vk(x)Vk+l(x)

and Vk(x) = Wk(x)− W̄(n)(x). We define Tn(x) to be zero, when both numerator

and denominator are zero. The following proposition is similar to theorem 2.1

in Kaur/ Rao/ Singh, but the data are not required to be independent. The

result will help us to construct a new test which is robust to some deviations

from independence.

Proposition 7. Let (Xt)t∈Z and (Yt)t∈Z be nondegenerate, strictly stationary,

ergodic, strongly mixing sequences of random variables satisfying E|X0|2+δ < ∞,

E|Y0|2+δ < ∞ for some δ > 0. Suppose that the mixing coefficients αX(k) and

αY (k) satisfy
∞∑

k=1

αX(k)
δ

2+δ ,

∞∑

k=1

αY (k)
δ

2+δ < ∞.

Let

Tn(x) =

√
n(F̂

(2)
Y,n(x)− F̂

(2)
X,n(x))

SX,Y,n(x)

as defined above. If V ar(W1(x)) > 0, then

P (Tn(x) > cα) −→
n→∞





0 if F
(2)
X (x) > F

(2)
Y (x)

α if F
(2)
X (x) = F

(2)
Y (x)

1 if F
(2)
X (x) < F

(2)
Y (x)

.

If V ar(W1(x)) = 0, then Tn(x) = 0 a.s. and so P (Tn(x) > cα) = 0 for all n.

Proof. Let

Tn(x) =
An(x)

SX,Y,n(x)
+

Bn(x)

SX,Y,n(x)
(6.1)

where

An(x) =
√

n((F̂
(2)
Y,n(x)− F̂

(2)
X,n(x))− (F

(2)
Y (x)− F

(2)
X (x)))

=
1√
n

n∑

k=1

(Wk(x)− E(W1(x))),

Bn(x) =
√

n(F
(2)
Y (x)− F

(2)
X (x)) =

√
nE(W1(x)).
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If V ar(W1(x)) = 0, then (x−X1)+ and (x− Y1)+ are degenerate. As X1 and Y1

are nondegenerate by assumption, X1 and Y1 have support in [x,∞) and therefore

Tn(x) = 0 a.s.

In the following let V ar(W1(x)) > 0. By assumption, (Xt)t∈Z and (Yt)t∈Z

are strictly stationary and ergodic. According to Stout (1974, pp. 170, 182),

this also holds for (Wk(x))k∈Z. Furthermore, for the mixing coefficient αW (k) of

(Wk(x))k∈Z we have αW (k) ≤ max{αX(k), αY (k)}. Hence

∞∑

k=1

αW (k)
δ

2+δ < ∞.

Therefore, according to Jones (2004), An(x) converges in distribution to aN (0, σ(x))

distribution where

σ2(x) = V ar(W1(x)) + 2
∞∑

l=1

Cov(W1(x), W1+l(x)) < ∞.

Furthermore the ergodic theorem yields that S2
X,Y,n(x) satisfies the strong law of

large numbers:

S2
X,Y,n(x)

a.s.−→ E(V 2
1 (x)) + 2

∞∑

l=1

E(V1(x)V1+l(x))

= V ar(W1(x)) + 2
∞∑

l=1

Cov(W1(x),W1+l(x)).

It follows by Slutsky’s theorem that

An(x)

SX,Y,n(x)

d−→ N (0, 1). (6.2)

Furthermore, by definition of Bn(x), we have

Bn(x) −→
n→∞





−∞ if F
(2)
X (x) > F

(2)
Y (x)

0 if F
(2)
X (x) = F

(2)
Y (x)

∞ if F
(2)
X (x) < F

(2)
Y (x)

. (6.3)

(6.1), (6.2) and (6.3) yield the assertion.



6.3 Discussion and Modification 105

Now let us have a closer look at the hypothesis and the alternative of the KRS

test. The modification

H∗∗
1 : F

(2)
X (x) ≤ F

(2)
Y (x) for all x ∈ R

of H1 is equivalent to second degree stochastic dominance of X over Y . There

are two differences between H1 and H∗∗
1 : Kaur/ Rao/ Singh still rank X and Y

among the null hypothesis if F
(2)
X (x) = F

(2)
Y (x) for some x ∈ R. Furthermore they

only consider the bounded interval [a, b] instead of R. The first difference only

affects some limiting cases where F
(2)
X (x) ≤ F

(2)
Y (x) for all x and F

(2)
X (x) = F

(2)
Y (x)

for some x. However, the second difference is more serious. H1 does not assure

SD2 because outside the interval [a, b] the inequality does not need to hold. The

values a and b cannot be chosen in a way that [a, b] is the support of PX and PY .

In this case, F
(2)
X (a) = F

(2)
Y (a) = 0 which is contrary to H1.

In the following, we modify the KRS test. If the supports of PX and PY

have a lower bound a and therefore FX(x) = FY (x) = 0 for all x < a, we

get F
(2)
X (x) = F

(2)
Y (x) = 0 for all x ≤ a. Further, if X and Y have the same

mean, lim
x→∞

(F
(2)
X (x)−F

(2)
Y (x)) = 0 (see e.g. Ogryczak/ Ruszczynski, 1999). If the

supports have an upper bound b, we even get F
(2)
X (b) = F

(2)
Y (b). Therefore we

propose the following modification of the KRS test. We test

H∗
0 : F

(2)
X (x) ≥ F

(2)
Y (x) for some x ∈ R satisfying 0 < FX(x) + FY (x) < 2

against

H∗
1 : F

(2)
X (x) < F

(2)
Y (x) for all x ∈ R satisfying 0 < FX(x) + FY (x) < 2.

The alternative H∗
1 is still not equivalent to SD2. Indeed, the set of the pairs of

random variables (X, Y ) satisfying H∗
1 is a subset of the pairs satisfying X º2 Y .

Why does this relation hold? First note that F
(2)
X (x) = F

(2)
Y (x) = 0 holds for

all x satisfying FX(x) = FY (x) = 0. Second, if F
(2)
X (x) < F

(2)
Y (x) holds for all

x satisfying 0 < FX(x) + FY (x) < 2, then F
(2)
X (x) ≤ F

(2)
Y (x) for all x satisfying



106 Chapter 6. A Test in which Stochastic Dominance is the Alternative

FX(x) + FY (x) = 2, due to the continuity of F
(2)
X and F

(2)
Y . Furthermore H∗

1 is

a proper subset of the pairs (X, Y ) satisfying X º2 Y . The relative complement

consists of the cases where F
(2)
X (x) ≤ F

(2)
Y (x) for all x and F

(2)
X (x) = F

(2)
Y (x) for

some x satisfying 0 < FX(x) + FY (x) < 2.

How can we perform an appropriate test? At first sight the test statistic

T ∗
n = inf

x∈R
Tn(x) where Tn(x) is defined as in proposition 7 seems to be suitable.

In contrast to the KRS test, the infimum of Tn(x) is taken over all values x ∈ R.

However, a test based on this statistic does not give meaningful results. Let

x(k) and y(k) be the kth order statistics of the samples in ascending order and

(z1, . . . , z2n) be the ordered combined sample. Because of F̂
(2)
Y,n(z1) = F̂

(2)
X,n(z1) = 0

we get Tn(z1) = 0 and therefore T ∗
n ≤ 0. The problem cannot be solved simply

by redefining the term 0
0
. For the second smallest value z(2) we get

Tn(x) ≈





√
n

n−2
√

n
if z1 = y(1)

−
√

n
n−2

√
n

if z1 = x(1)

which is close to ±1 for large n. Therefore, if the critical value is larger than one,

the test will never reject the hypothesis of non-dominance, i.e. the power is zero.

In addition to this, F
(2)
X (x) and F

(2)
Y (x) have the same asymptote for x →∞

if X and Y have the same mean, as mentioned above. Hence, if X º2 Y and

µX = µY , F̂
(2)
X,n(x) and F̂

(2)
Y,n(x) are expected to be close to each other for large

x ∈ R. Tse/ Zhang (2004) find that the KRS test is too conservative which is in

accordance with the assertions above.

Which remedy can be found to solve these problems? We propose the following

procedure. The statistic Tn(x) is determined for all x ∈ R. For each interval

[zk, zk+1] for k = 1, . . . , 2n − 1 the indicator functions contained in Tn(x) are

constants, and the infimum

inf
x∈[zk,zk+1]

Tn(x)

can be derived using standard procedures.
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Due to the fact that F
(2)
X (x) and F

(2)
Y (x) are equal for very small x and, if X

and Y have equal mean, close to each other for very large x, we do not take the

infimum of Tn(x) over all x ∈ R. Instead, we only consider all x ∈ [zan , z2n−bn ]

where an and bn have to be chosen appropriately. In other words, the test statistic

is

T ∗
n = inf{Tn(x) : F̂X,n(x) + F̂Y,n(x) ∈ [

an

n
, 2− bn

n
]}.

The null hypothesis H∗
0 is rejected if and only if T ∗

n > cα.

If

lim
n→∞

an

n
= lim

n→∞
bn

n
= 0

holds, then the test asymptotically keeps the size α. This is stated by the following

theorem.

Theorem 5. Let (Xt)t∈Z and (Yt)t∈Z be nondegenerate, strictly stationary, er-

godic, strongly mixing sequences of random variables satisfying E|X0|2+δ < ∞,

E|Y0|2+δ < ∞ for some δ > 0. Suppose that the mixing coefficients αX(k) and

αY (k) satisfy

∞∑

k=1

αX(k)
δ

2+δ ,

∞∑

k=1

αY (k)
δ

2+δ < ∞. (6.4)

Further assume that the sequences (Xt)t∈Z and (Yt)t∈Z are either serially inde-

pendent or serially uncorrelated with continuous distribution functions FX and

FY .

Let

T ∗
n = inf{Tn(x) : F̂X,n(x) + F̂Y,n(x) ∈ [

an

n
, 2− bn

n
]}

be the test statistic for testing the null hypothesis

H∗
0 : F

(2)
X (x) ≥ F

(2)
Y (x) for some x ∈ R satisfying 0 < FX(x) + FY (x) < 2

against the alternative

H∗
1 : F

(2)
X (x) < F

(2)
Y (x) for all x ∈ R satisfying 0 < FX(x) + FY (x) < 2.
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If (PX , PY ) ∈ H∗
0 and

lim
n→∞

an

n
= lim

n→∞
bn

n
= 0,

then

lim sup
n→∞

P (T ∗
n > cα) ≤ α.

Proof. Let (PX , PY ) ∈ H∗
0 . Then there exists an x0 ∈ R satisfying 0 < FX(x0) +

FY (x0) < 2 and F
(2)
X (x0) ≥ F

(2)
Y (x0). Let d := FX(x0) + FY (x0). Due to

lim
n→∞

an

n
= lim

n→∞
bn

n
= 0

there exist δ > 0 and n0 ∈ N satisfying d ∈ (an

n
+ δ, 2 − bn

n
− δ] for all n ≥ n0.

Then we get

P (T ∗
n > cα) = P (inf{Tn(x) : F̂X,n(x) + F̂Y,n(x) ∈ [

an

n
, 2− bn

n
]} > cα)

≤ P (inf{Tn(x) : FX(x) + FY (x) ∈ [
an

n
+ δ, 2− bn

n
− δ]} > cα) (6.5)

≤ P (Tn(x0) > cα)

for sufficiently large n where (6.5) holds due to Yu’s (1993) extension of the

theorem of Glivenko-Cantelli (proposition 2 in this thesis). Using proposition 7

we get

lim sup
n→∞

P (T ∗
n > cα) ≤ lim sup

n→∞
P (Tn(x0) > cα) ≤ α

which yields the assertion.

To which settings can we apply this theorem? Let (Xt)t∈Z and (Yt)t∈Z be

GARCH(1,1) processes as defined in chapter 4. As we stated in chapter 5,

GARCH (1,1) processes are strongly mixing with a geometric rate, i.e. α(m) =

O(am) for some a ∈ (0, 1); for more details see Davis/ Mikosch/ Basrak (1999).

If (Xt)t∈Z and (Yt)t∈Z have finite fourth moments, they satisfy the assumptions of

theorem 5. According to Bollerslev (1986) Xt and Yt have finite fourth moments

for every t ∈ Z if and only if 3α2
1 + 2α1β1 + β2

1 < 1. Hence we can conclude that
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the test developed in this chapter asymptotically keeps the size if (Xt)t∈Z and

(Yt)t∈Z are GARCH(1,1) processes satisfying 3α2
1 + 2α1β1 + β2

1 < 1.

Concerning consistency things are more involved. Kaur/ Rao/ Singh consider

an interval [a, b] of the domain of the distribution functions, i.e. the support of

the random variables. This interval has a fixed length. In contrast to this, in

the new test the length of the considered interval varies with n. In addition to

this, the interval is part of the range of the distribution functions. Therefore,

the asymptotic behavior of T ∗
n depends on how fast an

n
and bn

n
tend to zero. We

suppose that the test is consistent if these terms converge sufficiently slowly.

The main assertion in this section is that the proposed test asymptotically

keeps the size α if an

n
−→
n→∞

0 and bn

n
−→
n→∞

0 hold for the truncation sequences.

Furthermore we guess that for sufficiently slow convergence the test is consistent.

This involves a tradeoff concerning the choice of an and bn, i.e. the truncation.

How do we choose an and bn appropriately for various finite values of n? We will

investigate this question in a Monte Carlo study in the next section.

6.4 Simulation Results

In the following we analyze the performance of the proposed test by means of

simulation. We consider the strictly stationary bivariate process (Xt, Yt)t∈Z which

implies that (Xt, Yt) has the same distribution for all t ∈ Z. The marginal prob-

ability measures are denoted by PX and PY , respectively, and the corresponding

distribution functions by FX and FY . We explore two kinds of settings: for size

investigation we examine various settings of (Xt, Yt) satisfying H∗
0 , for power in-

vestigation we have a look at (Xt, Yt) satisfying H∗
1 . For all considered cases we

choose the nominal size α = 0.05.

First we consider a limiting case of H∗
0 (case 1). The observations are inde-

pendent within each sample and between the samples. Xt takes on the values

−
√

2
π

and
√

2
π

each with probability 1
2
, i.e. PX = 1

2
(δ−
√

2
π

+δ√ 2
π

) where δx stands
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for the Dirac distribution in x. In the following we abbreviate this by just saying

PX = dirac. It follows that

F
(2)
X (x) =





0 : x < −
√

2
π

1
2
(x +

√
2
π
) : −

√
2
π
≤ x <

√
2
π

x : x ≥
√

2
π

.

Yt is standard normally distributed, i.e. PY = N (0, 1). Due to (2.1) in chapter 2

we get

F
(2)
Y (x) = LPM1

Y (x) =

∫

(−∞,x)

(x− t)dPY (t) = xΦ(x) + φ(x)

where φ is the density of the standard normal distribution. Altogether this yields

F
(2)
X (0) = 1√

2π
= F

(2)
Y (0). We show that

F
(2)
X (x) < F

(2)
Y (x) (6.6)

holds for all x 6= 0.

d

dx
(F

(2)
Y (x)− F

(2)
X (x)) = Φ(x)− 1

2





< 0 : −
√

2
π

< x < 0

> 0 : 0 < x <
√

2
π

yields (6.6) for all x satisfying |x| <
√

2
π

and x 6= 0. It is obvious that

F
(2)
X (x) = 0 <

∫ x

−∞
Φ(t)dt = F

(2)
Y (x)

for all x ≤ −
√

2
π
. Further, due to

lim
x→∞

F
(2)
Y (x)− F

(2)
X (x) = lim

x→∞
xΦ(x) + φ(x)− x = 0

and
d

dx
(F

(2)
Y (x)− F

(2)
X (x)) = Φ(x)− 1 < 0,

(6.6) also holds for x ≥
√

2
π
.

Altogether we have shown that this setting belongs to a limiting case of H∗
0 .

The inequality F
(2)
X (x) < F

(2)
Y (x) holds for all but one x ∈ R, in this exceptional
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case at least equality holds, which already follows from the continuity of F
(2)
X and

F
(2)
Y .

The second setting, which is denoted by case 2, also belongs to the null hy-

pothesis H∗
0 . (Xt, Yt)t∈Z is a sequence of independent random variables which

have a normal distribution with mean 0 and covariance matrix

(
1 ρ

ρ 1

)
. We

choose ρ = 0,±0.5. With this setting, F
(2)
X (x) = F

(2)
Y (x) holds for all x ∈ R.

Compared to the first case, (X, Y ) is located further in the interior of the null

hypothesis. This suggests that the size α will not be completely exploited here.

Whereas in cases 1 and 2 the observations are serially independent, in case 3

we deal with the effect of conditional heteroskedasticity on the size of the test.

We consider a bivariate GARCH(1,1) process (Xt, Yt)t∈Z as defined in chapter 5.

In our Monte Carlo study we choose the GARCH parameters α0 = 0.1, α1 =

0.13 and β1 = 0.85 and the correlation parameters ρ = 0,±0.5. Due to 3α2
1 +

2α1β1 +β2
1 = 0.9942 < 1 these parameters imply that Xt and Yt have finite fourth

moments. Hence, due to theorem 5, the test asymptotically keeps the size if the

truncations satisfy lim
n→∞

an

n
= lim

n→∞
bn

n
= 0.

After the investigation of the size we have a look at the power. First we analyze

case 4 where (Xt, Yt)t∈Z is a sequence of independent, identically normally dis-

tributed random vectors (Xt, Yt) with mean 0 and covariance matrix

(
1 ρσ

ρσ σ2

)

with σ > 1 and various values of ρ ∈ (−1, 1). Then we have F
(2)
X (x) =

∫ x

−∞ Φ(t)dt

and F
(2)
Y (x) = σF

(2)
X (x

σ
). It is well known and can be shown easily that the in-

equality F
(2)
X (x) < F

(2)
Y (x) holds for all x ∈ R. Due to the fact that Xt and Yt

both have mean zero, for the limit behavior we get lim
x→∞

(F
(2)
Y (x) − F

(2)
X (x)) = 0.

We choose the values σ = 1.1 and σ = 2 for the standard deviation of Yt and

ρ = 0,±0.5 for the correlation between Xt and Yt.

Furthermore we consider another case which is part of the alternative: in

case 5 (Xt, Yt)t∈Z is a sequence of independent, identically normally distributed
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random vectors (Xt, Yt) with mean (0.1, 0) and covariance matrix

(
1 ρ

ρ 1

)
.

In this setting Xt dominates Yt even in the sense of SD1. Furthermore we have

the asymptotic behavior lim
x→∞

(F
(2)
Y (x) − F

(2)
X (x)) = 0.1 > 0. Hence it may be

expected that in this case even without upper truncation the power will be good

if the lower truncation is large enough.

Finally we analyze the power if conditional heteroskedasticity is prevalent in

the data. Let (At, Bt)t∈Z be a bivariate GARCH(1,1) process with a constant

correlation coefficient ρ. We choose the parameters α0 = 0.1, α1 = 0.13 and

β = 0.85 and the correlation coefficient ρ = 0,±0.5. In case 6 we consider the

scale alternative Xt = At, Yt = σBt and choose σ = 1.1, 2 as in case 4. Finally

we have a look at the location alternative Xt = At + µ, Yt = Bt where we choose

µ = 0.1. It is denoted by case 7.

For each setting, we choose the sample sizes n = 250, 1000, 4000. This means

that the empirical distributions are based on 2n observations {x1, . . . , xn, y1, . . . , yn}.
For n = 250 we vary the truncations an and bn from 0 to 250 in steps of 10, for

n = 1000 and n = 4000 we vary an and bn from 0 to 500 in steps of 10 and from

500 to 1000 and to 4000 respectively in steps of 100. For all cases the number

of replications is R = 1000. The truncations from below and above are smaller

than or equal to the sample size in each case, i.e. an ≤ n, bn ≤ n. The reason for

this choice is that in order to get reasonable results the sum of the truncations

should be smaller than the number of observations the empirical distribution is

based on. If an = 0, the test statistic is zero in any case. Hence the rejection rate

of the null hypothesis is zero whatever the data are. Therefore we have to choose

an > 0.

In the following we report and analyze the results. It turns out that in all

considered cases the correlation ρ between Xt and Yt does not have a significant

effect. Therefore we only report the settings where Xt and Yt are uncorrelated. In

cases 1 and 2 the size is kept for all sample sizes and all considered truncations.
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bn 0 10 100 200 250

an

10 0.03 0.05 0.05 0.05 0.06

100 0.03 0.05 0.05 0.05 0.06

200 0.03 0.05 0.05 0.05 0.06

250 0.04 0.05 0.06 0.06 ·

Table 6.1: Rejection probability of the modified KRS test for SD2 for the nomi-

nal value α = 0.05, sample size n = 250 and various truncation values an and bn.

(Xt, Yt)t∈Z is a sequence of serially independent random vectors. The marginal dis-

tributions of Xt and Yt, which are uncorrelated for every t, are PX = dirac and

PY = N (0, 1). The number of Monte Carlo replications is R = 1000.

This even holds if an and bn are large simultaneously, i.e. if an + bn is close to 2n.

In the limiting case of the hypothesis (case 1), where PX = dirac, PY = N (0, 1),

the size is more exploited than in case 2 which is more in the interior of H∗
0 . In

case 2 the size still grows with the truncation if the truncation is larger. However,

the main result of the size investigation for serially independent observations is

that the size is kept for any truncation satisfying an < n and bn < n. For detailed

results see tables 6.1, 6.2 and 6.3 (limiting case PX = dirac, PY = N (0, 1)) and

6.4, 6.5 and 6.6 (equal distributions PX = PY = N (0, 1)).

If the data feature conditional heteroskedasticity, the choice of the trunca-

tion values is more crucial. Tables 6.7, 6.8 and 6.9 display the simulation re-

sults of case 3 where (Xt)t∈Z and (Yt)t∈Z are independent GARCH(1,1) processes

with the parameters α0 = 0.1, α1 = 0.13 and β1 = 0.85. As we see in the

tables, in this setting the upper truncation bn has a stronger impact on the

size than the lower truncation an. The size α = 0.05 is kept for truncation

values up to (an, bn) ∈ {(10, 50), (30, 40), (100, 30)} for sample size n = 250,

up to (an, bn) ∈ {(10, 500), (200, 150), (1000, 100)} for n = 1000, and up to
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bn 0 10 100 500 1000

an

10 0.04 0.04 0.05 0.05 0.05

100 0.04 0.04 0.05 0.05 0.05

500 0.04 0.04 0.05 0.05 0.05

1000 0.04 0.04 0.05 0.05 ·

Table 6.2: Rejection probability of the modified KRS test for SD2 for the nominal

value α = 0.05, sample size n = 1000 and various truncation values an and bn.

(Xt, Yt)t∈Z is a sequence of serially independent random vectors. The marginal dis-

tributions of Xt and Yt, which are uncorrelated for every t, are PX = dirac and

PY = N (0, 1). The number of Monte Carlo replications is R = 1000.

bn 0 50 100 2000 4000

an

10 0.04 0.04 0.05 0.05 0.05

2000 0.04 0.05 0.05 0.05 0.05

4000 0.04 0.05 0.05 0.05 ·

Table 6.3: Rejection probability of the modified KRS test for SD2 for the nominal

value α = 0.05, sample size n = 4000 and various truncation values an and bn.

(Xt, Yt)t∈Z is a sequence of serially independent random vectors. The marginal dis-

tributions of Xt and Yt, which are uncorrelated for every t, are PX = dirac and

PY = N (0, 1). The number of Monte Carlo replications is R = 1000.
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bn 0 10 50 100 150 200 250

an

10 0.00 0.00 0.00 0.00 0.00 0.00 0.01

50 0.01 0.01 0.02 0.02 0.02 0.02 0.03

100 0.02 0.02 0.03 0.03 0.03 0.03 0.04

150 0.02 0.03 0.03 0.03 0.03 0.04 0.04

200 0.03 0.03 0.03 0.04 0.04 0.04 0.05

250 0.03 0.04 0.04 0.04 0.05 0.05 ·

Table 6.4: Rejection probability of the modified KRS test for SD2 for the nomi-

nal value α = 0.05, sample size n = 250 and various truncation values an and bn.

(Xt, Yt)t∈Z is a sequence of serially independent random vectors. The marginal dis-

tributions of Xt and Yt, which are uncorrelated for every t, are PX = PY = N (0, 1).

The number of Monte Carlo replications is R = 1000.

bn 0 200 400 600 800 1000

an

10 0.00 0.00 0.00 0.00 0.00 0.00

200 0.01 0.01 0.01 0.02 0.02 0.02

400 0.02 0.02 0.02 0.03 0.03 0.03

600 0.02 0.02 0.03 0.03 0.03 0.04

800 0.03 0.03 0.03 0.04 0.04 0.05

1000 0.03 0.03 0.04 0.04 0.05 ·

Table 6.5: Rejection probability of the modified KRS test for SD2 for the nominal

value α = 0.05, sample size n = 1000 and various truncation values an and bn.

(Xt, Yt)t∈Z is a sequence of serially independent random vectors. The marginal dis-

tributions of Xt and Yt, which are uncorrelated for every t, are PX = PY = N (0, 1).

The number of Monte Carlo replications is R = 1000.
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bn 0 500 1000 1500 2000 2500 3000 3500 4000

an

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

500 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

1000 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

1500 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

2000 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04

2500 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04

3000 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04

3500 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.05

4000 0.03 0.04 0.04 0.04 0.04 0.05 0.05 0.05 ·

Table 6.6: Rejection probability of the modified KRS test for SD2 for the nominal

value α = 0.05, sample size n = 4000 and various truncation values an and bn.

(Xt, Yt)t∈Z is a sequence of serially independent random vectors. The marginal dis-

tributions of Xt and Yt, which are uncorrelated for every t, are PX = PY = N (0, 1).

The number of Monte Carlo replications is R = 1000.
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bn 0 10 20 30 40 50 100 200 250

an

10 0.01 0.02 0.03 0.03 0.04 0.05 0.07 0.09 0.10

30 0.02 0.03 0.03 0.04 0.05 0.06 0.08 0.13 0.14

50 0.02 0.03 0.04 0.05 0.06 0.07 0.09 0.14 0.15

100 0.02 0.03 0.04 0.05 0.06 0.07 0.10 0.15 0.16

200 0.03 0.04 0.05 0.06 0.07 0.08 0.11 0.17 0.19

250 0.03 0.05 0.05 0.07 0.08 0.09 0.12 0.18 ·

Table 6.7: Rejection probability of the modified KRS test for SD2 for the nominal

value α = 0.05, sample size n = 250 and various truncation values an and bn.

(Xt)t∈Z and (Yt)t∈Z are independent univariate GARCH(1,1) processes with the para-

meters α0 = 0.1, α1 = 0.13, β1 = 0.85. The number of Monte Carlo replications is

R = 1000.

(an, bn) ∈ {(10, 4000), (100, 500), (4000, 200)} for n = 4000.

In the Monte Carlo simulations we analyzed various settings. They only cover,

however, a small part of the null hypothesis. Hence it is difficult to give clear

advice concerning the lower and upper truncations. However, we infer from the

simulation results that an = bn = 0.5n
3
4 is an appropriate choice for sample size

n. Using this formula we get

an = bn ≈





31 : n = 250

89 : n = 1000

251 : n = 4000

which is in accordance with the simulation results. Note that the formula is just

a rule of thumb which we inferred from the simulation results concerning the size.

Nonetheless, we will use these truncation values in the following and refer to them

as the recommended values.

In the following we will have a look at the power results. For the scale alter-

native with independent observations (case 4) the choice of the upper truncation



118 Chapter 6. A Test in which Stochastic Dominance is the Alternative

bn 0 10 50 100 150 200 300 400 500 1000

an

10 0.00 0.01 0.01 0.02 0.02 0.03 0.04 0.04 0.05 0.06

50 0.01 0.01 0.02 0.04 0.05 0.06 0.07 0.08 0.09 0.12

100 0.01 0.01 0.02 0.04 0.05 0.07 0.08 0.10 0.11 0.14

200 0.01 0.01 0.03 0.04 0.05 0.07 0.08 0.10 0.11 0.15

500 0.01 0.01 0.03 0.04 0.06 0.07 0.09 0.11 0.12 0.17

1000 0.02 0.02 0.03 0.05 0.06 0.08 0.10 0.12 0.12 ·

Table 6.8: Rejection probability of the modified KRS test for SD2 for the nominal

value α = 0.05, sample size n = 1000 and various truncation values an and bn.

(Xt)t∈Z and (Yt)t∈Z are independent univariate GARCH(1,1) processes with the para-

meters α0 = 0.1, α1 = 0.13, β1 = 0.85. The number of Monte Carlo replications is

R = 1000.

bn 0 100 200 500 1000 4000

an

10 0.00 0.01 0.01 0.01 0.02 0.03

100 0.02 0.03 0.03 0.05 0.07 0.10

500 0.02 0.04 0.04 0.06 0.09 0.13

1000 0.02 0.04 0.04 0.06 0.10 0.14

4000 0.03 0.04 0.05 0.07 0.11 ·

Table 6.9: Rejection probability of the modified KRS test for SD2 for the nominal

value α = 0.05, sample size n = 4000 and various truncation values an and bn.

(Xt)t∈Z and (Yt)t∈Z are independent univariate GARCH(1,1) processes with the para-

meters α0 = 0.1, α1 = 0.13, β1 = 0.85. The number of Monte Carlo replications is

R = 1000.
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bn 0 50 100 250

an

10 0.06 0.41 0.80 0.99

100 0.06 0.41 0.81 1.00

250 0.06 0.41 0.81 ·

Table 6.10: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 250 and various truncation values an and bn. (Xt, Yt)t∈Z is a

sequence of serially independent random vectors. The marginal distributions of Xt

and Yt, which are uncorrelated for every t, are PX = N (0, 1) and PY = N (0, 2).

The number of Monte Carlo replications is R = 1000.

bn is more crucial than of the lower truncation an. In case 4 with σ = 2 the power

is high if the truncation parameters are sufficiently large. Tables 6.10, 6.11 and

6.12 display the results. If we choose the truncation parameters as recommended

above, the power is about 0.4.

If we take a pair of distributions with smaller distance to H∗
0 , the power is

not as good any more. If we choose σ = 1.1 in case 4, the power increases very

slowly with increasing truncation values an and bn. The results are reported in

tables 6.13, 6.14 and 6.15. The power for the recommended truncation values is

only about 0.06. Hence, in this setting, this test in many cases fails to detect the

second degree stochastic dominance of X over Y if we apply it to smaller samples,

but this problem becomes less important the more the sample size increases.

In case 5 we compare PX = N (0.1, 1) and PY = N (0, 1), i.e. two normal

distributions with the same variance, but different means. Tables 6.16, 6.17 and

6.18 display the results. As expected, the value of the upper truncation bn is not

important. The power is quite high in this setting where X has higher mean and

dominates Y in the sense of SD1, although the difference between their means

is not very large. If we choose the recommended truncation values, the power

increases with increasing sample size from less than 0.1 for n = 250 to about 0.4
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bn 0 100 200 300 1000

an

10 0.05 0.38 0.85 0.96 0.99

1000 0.05 0.38 0.86 0.99 ·

Table 6.11: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 1000 and various truncation values an and bn. (Xt, Yt)t∈Z is a

sequence of serially independent random vectors. The marginal distributions of Xt

and Yt, which are uncorrelated for every t, are PX = N (0, 1) and PY = N (0, 2).

The number of Monte Carlo replications is R = 1000.

bn 0 100 200 300 400 500 1000 4000

an

10 0.06 0.15 0.37 0.63 0.84 0.95 1.00 1.00

4000 0.06 0.15 0.37 0.64 0.85 0.96 1.00 ·

Table 6.12: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 4000 and various truncation values an and bn. (Xt, Yt)t∈Z is a

sequence of serially independent random vectors. The marginal distributions of Xt

and Yt, which are uncorrelated for every t, are PX = N (0, 1) and PY = N (0, 2).

The number of Monte Carlo replications is R = 1000.
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bn 0 50 100 150 200 250

an

10 0.01 0.03 0.04 0.05 0.06 0.08

50 0.03 0.06 0.08 0.09 0.12 0.14

100 0.04 0.07 0.10 0.12 0.15 0.17

250 0.05 0.09 0.11 0.14 0.18 ·

Table 6.13: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 250 and various truncation values an and bn. (Xt, Yt)t∈Z is a

sequence of serially independent random vectors. The marginal distributions of Xt

and Yt, which are uncorrelated for every t, are PX = N (0, 1) and PY = N (0, 1.1).

The number of Monte Carlo replications is R = 1000.

bn 0 100 200 400 600 800 1000

an

10 0.01 0.02 0.03 0.05 0.06 0.08 0.11

100 0.04 0.06 0.08 0.14 0.19 0.25 0.32

200 0.05 0.07 0.09 0.16 0.22 0.29 0.38

1000 0.06 0.08 0.11 0.18 0.25 0.34 ·

Table 6.14: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 1000 and various truncation values an and bn. (Xt, Yt)t∈Z is a

sequence of serially independent random vectors. The marginal distributions of Xt

and Yt, which are uncorrelated for every t, are PX = N (0, 1) and PY = N (0, 1.1).

The number of Monte Carlo replications is R = 1000.
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bn 0 500 1000 1500 2000 4000

an

10 0.02 0.06 0.10 0.14 0.21 0.31

100 0.06 0.15 0.24 0.34 0.49 0.77

500 0.06 0.16 0.27 0.38 0.55 0.90

4000 0.06 0.16 0.27 0.39 0.56 ·

Table 6.15: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 4000 and various truncation values an and bn. (Xt, Yt)t∈Z is a

sequence of serially independent random vectors. The marginal distributions of Xt

and Yt, which are uncorrelated for every t, are PX = N (0, 1) and PY = N (0, 1.1).

The number of Monte Carlo replications is R = 1000.

for n = 4000.

Finally we analyze the power in the settings where conditional heteroskedasti-

city is prevalent in the data. The results for the scale and location alternatives

for conditionally heteroskedastic data are similar to the corresponding results for

serially independent observations. The results for the scale alternative (case 6)

are displayed in tables 6.19, 6.20 and 6.21 for σ = 2 and in tables 6.22, 6.23 and

6.24 for σ = 1.1. The power is about 0.4 for σ = 2 and about 0.1 for σ = 1.1 if

we choose the truncation values which we recommended in the size investigation.

For the location alternative (case 7) we also see that conditional hetero-

skedasticity does not have a strong impact on the power. Tables 6.25, 6.26 and

6.27 display the results. As in case 5 where the observations are independent, the

power increases with increasing sample size if we take the recommended trunca-

tion values. It increases from about 0.09 for n = 250 to 0.16 for n = 4000.

The simulation results in this study have various implications. In cases 1

and 2 where we investigate the size for serially independent observations, we see

that the test keeps the size even if the truncations an and bn are close to the

sample size. However, this does not hold in case 3 where the data are generated
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bn 0 50 100 250

an

10 0.04 0.04 0.04 0.05

50 0.09 0.09 0.09 0.11

100 0.13 0.13 0.14 0.16

250 0.21 0.22 0.24 ·

Table 6.16: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 250 and various truncation values an and bn. (Xt, Yt)t∈Z is a

sequence of serially independent random vectors. The marginal distributions of Xt

and Yt, which are uncorrelated for every t, are PX = N (0.1, 1) and PY = N (0, 1).

The number of Monte Carlo replications is R = 1000.

bn 0 200 400 1000

an

10 0.05 0.05 0.05 0.06

100 0.18 0.19 0.19 0.20

200 0.28 0.28 0.28 0.29

400 0.39 0.40 0.40 0.42

1000 0.58 0.59 0.59 ·

Table 6.17: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 1000 and various truncation values an and bn. (Xt, Yt)t∈Z is a

sequence of serially independent random vectors. The marginal distributions of Xt

and Yt, which are uncorrelated for every t, are PX = N (0.1, 1) and PY = N (0, 1).

The number of Monte Carlo replications is R = 1000.
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bn 0 2000 4000

an

10 0.07 0.07 0.07

100 0.26 0.26 0.26

200 0.39 0.39 0.39

500 0.62 0.62 0.62

1000 0.80 0.80 0.80

4000 0.99 0.99 ·

Table 6.18: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 4000 and various truncation values an and bn. (Xt, Yt)t∈Z is a

sequence of serially independent random vectors. The marginal distributions of Xt

and Yt, which are uncorrelated for every t, are PX = N (0.1, 1) and PY = N (0, 1).

The number of Monte Carlo replications is R = 1000.

bn 0 50 100 250

an

10 0.06 0.32 0.53 0.64

50 0.08 0.44 0.71 0.88

100 0.08 0.44 0.72 0.90

250 0.08 0.44 0.72 ·

Table 6.19: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 250 and various truncation values an and bn. The alternative

considered is (Xt, Yt)t∈Z where Xt = At and Yt = 2Bt and (At)t∈Z and (Bt)t∈Z

are independent univariate GARCH(1,1) processes with the parameters α0 = 0.1,

α1 = 0.13, β1 = 0.85. The number of Monte Carlo replications is R = 1000.
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bn 0 100 200 300 400 1000

an

10 0.03 0.29 0.52 0.60 0.62 0.62

100 0.05 0.42 0.80 0.94 0.97 0.97

1000 0.05 0.42 0.80 0.94 0.98 ·

Table 6.20: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 1000 and various truncation values an and bn. The alternative

considered is (Xt, Yt)t∈Z where Xt = At and Yt = 2Bt and (At)t∈Z and (Bt)t∈Z

are independent univariate GARCH(1,1) processes with the parameters α0 = 0.1,

α1 = 0.13, β1 = 0.85. The number of Monte Carlo replications is R = 1000.

bn 0 100 200 300 400 500 4000

an

10 0.04 0.15 0.27 0.43 0.51 0.54 0.56

100 0.06 0.23 0.47 0.75 0.89 0.95 0.98

4000 0.06 0.23 0.47 0.75 0.89 0.96 ·

Table 6.21: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 4000 and various truncation values an and bn. The alternative

considered is (Xt, Yt)t∈Z where Xt = At and Yt = 2Bt and (At)t∈Z and (Bt)t∈Z

are independent univariate GARCH(1,1) processes with the parameters α0 = 0.1,

α1 = 0.13, β1 = 0.85. The number of Monte Carlo replications is R = 1000.
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bn 0 50 100 250

an

10 0.01 0.06 0.09 0.13

50 0.02 0.09 0.13 0.21

100 0.03 0.10 0.14 0.23

250 0.04 0.11 0.16 ·

Table 6.22: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 250 and various truncation values an and bn. The alternative

considered is (Xt, Yt)t∈Z where Xt = At and Yt = 1.1Bt and (At)t∈Z and (Bt)t∈Z

are independent univariate GARCH(1,1) processes with the parameters α0 = 0.1,

α1 = 0.13, β1 = 0.85. The number of Monte Carlo replications is R = 1000.

bn 0 100 200 300 400 1000

an

10 0.00 0.03 0.06 0.08 0.09 0.11

100 0.02 0.07 0.12 0.15 0.17 0.24

200 0.02 0.07 0.13 0.16 0.18 0.27

1000 0.03 0.09 0.15 0.19 0.21 ·

Table 6.23: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 1000 and various truncation values an and bn. The alternative

considered is (Xt, Yt)t∈Z where Xt = At and Yt = 1.1Bt and (At)t∈Z and (Bt)t∈Z

are independent univariate GARCH(1,1) processes with the parameters α0 = 0.1,

α1 = 0.13, β1 = 0.85. The number of Monte Carlo replications is R = 1000.
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bn 0 200 500 1000 2000 4000

an

10 0.01 0.04 0.06 0.08 0.10 0.11

100 0.02 0.07 0.13 0.19 0.25 0.27

500 0.03 0.08 0.16 0.26 0.35 0.40

1000 0.03 0.09 0.17 0.27 0.37 0.43

4000 0.03 0.09 0.18 0.28 0.39 ·

Table 6.24: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 4000 and various truncation values an and bn. The alternative

considered is (Xt, Yt)t∈Z where Xt = At and Yt = 1.1Bt and (At)t∈Z and (Bt)t∈Z

are independent univariate GARCH(1,1) processes with the parameters α0 = 0.1,

α1 = 0.13, β1 = 0.85. The number of Monte Carlo replications is R = 1000.

bn 0 30 50 100 250

an

10 0.04 0.07 0.07 0.09 0.12

30 0.05 0.09 0.10 0.13 0.18

50 0.06 0.10 0.11 0.14 0.19

100 0.07 0.11 0.13 0.16 0.22

250 0.09 0.14 0.16 0.20 ·

Table 6.25: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 250 and various truncation values an and bn. The alternative

considered is (Xt, Yt)t∈Z where Xt = At + 0.1 and Yt = Bt and (At)t∈Z and (Bt)t∈Z

are independent univariate GARCH(1,1) processes with the parameters α0 = 0.1,

α1 = 0.13, β1 = 0.85. The number of Monte Carlo replications is R = 1000.
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bn 0 100 200 400 1000

an

10 0.03 0.07 0.07 0.08 0.09

100 0.08 0.15 0.17 0.18 0.20

200 0.09 0.16 0.18 0.20 0.22

400 0.10 0.18 0.20 0.22 0.25

1000 0.13 0.21 0.24 0.26 ·

Table 6.26: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 1000 and various truncation values an and bn. The alternative

considered is (Xt, Yt)t∈Z where Xt = At + 0.1 and Yt = Bt and (At)t∈Z and (Bt)t∈Z

are independent univariate GARCH(1,1) processes with the parameters α0 = 0.1,

α1 = 0.13, β1 = 0.85. The number of Monte Carlo replications is R = 1000.

bn 0 100 2000 4000

an

10 0.04 0.05 0.05 0.05

100 0.10 0.13 0.14 0.14

200 0.13 0.16 0.17 0.17

500 0.15 0.18 0.20 0.20

1000 0.18 0.21 0.24 0.24

2000 0.22 0.25 0.28 0.28

4000 0.29 0.33 0.37 ·

Table 6.27: Power of the modified KRS test for SD2 for the nominal value α = 0.05,

sample size n = 4000 and various truncation values an and bn. The alternative

considered is (Xt, Yt)t∈Z where Xt = At + 0.1 and Yt = Bt and (At)t∈Z and (Bt)t∈Z

are independent univariate GARCH(1,1) processes with the parameters α0 = 0.1,

α1 = 0.13, β1 = 0.85. The number of Monte Carlo replications is R = 1000.
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by a GARCH(1,1) process. From the simulation results we infer the formula

an = bn = 0.5n
3
4 for appropriate truncation values where n is the sample size. In

the course of this study we refer to this formula as providing the recommended

truncation values.

In the power investigation we see that conditional heteroskedasticity does not

have a strong impact neither on the scale nor on the location alternative. The

power is low for the scale alternative if the deviation from the null hypothesis

is not very large (σ = 1.1), but we get good power results for σ = 2. For the

location alternative the power is high even in the case of a small distance to

the null hypothesis. In this setting, the power increases strongly with increasing

sample size. Altogether we suppose that the developed test is consistent for a

large part of the alternative.

6.5 Conclusion

The goal of this chapter was to find a test of the hypothesis of non-dominance

against the alternative that one random variable dominates another one in the

sense of second degree stochastic dominance. An appropriate starting point for

the construction of such a test procedure is the test of Kaur/ Rao/ Singh. How-

ever, this test faces the problem that in the comparison it only considers an

interval with arbitrarily chosen bounds. Furthermore their test requires the data

to be contemporaneously and serially independent. If we replace the bounded

interval by the set of all real numbers, the test completely loses its power. We

try to remedy this problem by a truncation of the range over which we take

the infimum. If the truncations grow more slowly than the sample size, the test

asymptotically keeps the size. Furthermore, we modify the test statistic in a way

that the test can be applied to strongly mixing processes.

In a Monte Carlo study, we investigate the question of the appropriate trun-

cation for finite samples. We find that for sample size n the truncation values
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an = bn = 0.5n
3
4 are an appropriate choice in order to keep the size of the test.

Furthermore the test has good power properties for this choice.

An open question is how the test performs if the distributions differ from the

situation we analyzed by simulation. This is an interesting question requiring

further research. However, we still have the result that the test at least asymp-

totically keeps the size under certain conditions. Furthermore it is of interest

whether there are truncation values which would make the test consistent.

In the next chapter, we analyze if there are any stochastic dominance relations

among the daily returns of the stocks in the German stock index DAX. In addition

to the modified KRS test which we designed in this chapter, we apply the modified

versions of the ST and LMW tests developed in chapter 5.



Chapter 7

Empirical Application: Testing

for Stochastic Dominance in

German Stock Returns

7.1 Methodology

There are various fields of economics in which stochastic dominance decision rules

are of use, e.g. in social welfare theory and financial economics. In social welfare

theory, stochastic dominance is a criterion for comparing two income distributions

without making strict assumptions concerning the social welfare function. In

financial economics, the stochastic dominance decision rules make an assertion

whether the return distribution of one asset is preferred to another one by a

specified group of decision makers.

In previous chapters, we developed various tests for stochastic dominance.

In chapter 5, we analyzed and modified some tests of the null hypothesis H0 :

X ºi Y (i = 1, 2) which means that X dominates Y in the sense of ith degree

stochastic dominance (SDi) against the alternative H1 : X �i Y . It turns out that

modified versions of the Linton/ Maasoumi/ Whang (LMWm) and of the Schmid/

131
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Trede (STm) tests asymptotically keep the size and have good power properties

even if conditional heteroskedasticity is prevalent in the data. In chapter 6 we

developed a test where the hypotheses are reversed to the case described above.

The modified test of Kaur/ Rao/ Singh (KRSm) asymptotically keeps the size

and has good power properties. It can be applied to strongly mixing processes,

in particular to time series featuring conditional heteroskedasticity. The main

contribution of this test is that it can significantly assert SD2.

In this chapter, we analyze the stochastic dominance relations among the

daily returns of the 30 stocks contained in the German stock index DAX. First

we investigate whether stochastic dominance can be established in a descriptive

sense, as described in chapter 2.2. In order to get significant results for the

hypothesis of dominance against the alternative of non-dominance, we apply the

LMWm test for SD1 and the STm test for SD2 to the data. Furthermore we test

the hypothesis of non-SD2 against the alternative of SD2 using the KRSm test.

From the obtained test results we determine the efficient sets. For a given

set A of random variables, the efficient set is the subset of random variables

which are not dominated by another random variable in A. If the distributions

of the random variables are known, the determination of stochastic dominance

and therefore of the efficient set is straightforward. The same holds for the

determination of the efficient set if we compare the empirical distributions in

a descriptive sense, as described in chapter 2.2.

However, if we infer stochastic dominance relations using tests, things are

more involved. First we have a look at the LMWm and STm tests where stochas-

tic dominance is the null hypothesis. It can – and does – happen that for some

random variables X and Y stochastic dominance is not rejected in neither direc-

tion, i.e. neither X ºi Y nor Y ºi X are rejected. We proceed as follows. SDi of

X against Y is established if and only if Y ºi X is rejected whereas X ºi Y is

not and X has a larger mean than Y . The LMWm and STm efficient sets consist

of the stocks which are not dominated in this sense. The condition concerning the
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means is required in order to prevent the paradox result that a stock dominates

another one with larger mean. A necessary condition for stochastic dominance of

any degree is that the mean of the dominant random variable has to be at least

as large as the mean of the dominated one.

Note that we have to take the efficiency results for these tests with a pinch

of salt. The considered tests do not assert significantly that one random variable

dominates another one, instead, the tests do or do not reject the hypothesis of

dominance. In many cases the empirical distributions are very close to each other,

therefore the test can often not reject stochastic dominance.

In the following we consider the KRSm test where stochastic dominance is

the alternative. In some comparisons, the null hypothesis of non-SD2 is rejected

and therefore the alternative of SD2 significantly asserted. The KRSm efficient

set consists of the stocks which are not significantly dominated by another stock.

Due to the fact that the KRSm test significantly confirms stochastic dominance,

the identification of the efficient set is more justifiable for this test than for the

LMWm and the STm tests.

Nevertheless, we have to be aware of the fact that even a dominated stock can

be a useful member of a portfolio. Diversification diminishes risk, and this effect

can be stronger than the one caused by stochastic dominance. Hence, in many

cases, a dominated stock should not be eliminated from a portfolio. Post (2003)

and Kuosmanen (2004) study the problem of stochastic dominance efficiency of

a portfolio.

7.2 Data

In our study we examine the daily returns of the 30 stocks listed in the German

stock index DAX. The return at day t is defined by rt = ln( pt

pt−1
) where pt is the

daily spot stock price. We consider the 10-year period between 16 September

1994 and 15 September 2004 and the 1-year period between 16 September 2003
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and 15 September 2004. The data are taken from Datastream. There are 2,522

observations for the 10-year period and 255 observations for the 1-year period.

For the 10-year period we only consider the 22 stocks which were listed in the

DAX for the entire period.

Tables 7.1 and 7.2 display some descriptive statistics of the stock returns.

More precisely, they present the annualized means and standard deviations, skew-

ness and kurtosis for all stocks and both periods considered in this study. We

annualize the empirical mean x̄ and standard deviation s by multiplying them

by d and
√

d, respectively, where d is the average number of trading days per

year. For the 1-year period we have d = 255, for the 10-year period d = 252.2.

The skewness and kurtosis are the empirical third and fourth central moments,

respectively, divided by s3 and s4, respectively.

In tables 7.1 and 7.2, the abbreviations of the companies, which are also used

in the other tables, are specified. 8 out of 30 stocks have negative mean returns

in the 1-year period, this number diminishes to 4 out of 22 for the 10-year period.

The stocks of the travel agency TUI had the strongest decline which might have

been caused by the tourism crisis after 11 September 2001. Most of the standard

deviations range between 20 and 30 percent for the 1-year period and between 30

and 40 percent for the 10-year period. The majority of the stocks have positive

skewed daily returns, i.e. the third central moment is positive. This holds for

both periods considered in this study, but in many cases the absolute value of

the skewness is not large. However, for the kurtosis we see a stronger tendency.

Remember that the kurtosis of a normally distributed random variable is 3. If the

kurtosis is larger than 3, the distribution is leptokurtic. As we see in tables 7.1

and 7.2, in the 10-year period all stocks have leptokurtic daily returns whereas

in the 1-year period the only exception is Infineon whose returns have a kurtosis

of 2.838. In the 1-year period, SAP has the largest kurtosis (10.116), Bayer has

the largest kurtosis (26.805) in the 10-year period. These results suggest that the

returns have fat tails, i.e. the probability of very large and of very small returns
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is larger than it would be in the case of a normal distribution.

As mentioned in the previous chapters, financial data feature contempora-

neous correlation and conditional heteroskedasticity. The estimated correlations

are summarized in tables 7.3 and 7.4 for the 1-year period and in tables 7.5 and

7.6 for the 10-year period. The stocks are all positively correlated with each

other, the correlations range from 0.11 to 0.76 for the 1-year period and from

0.15 to 0.74 for the 10-year period. The estimates for the parameters α1 and β1

in the GARCH model σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1 are presented in table 7.7 for

the 1-year and the 10-year periods. For many stocks the sum α1 + β1 is close to

unity. This phenomenon is stronger for the 10-year period.

7.3 Results

We start the investigation of stochastic dominance with a descriptive comparison.

X descriptively dominates Y in the sense of SDi if for the empirical distribution

functions F̂
(i)
X,n(x) ≤ F̂

(i)
Y,n(x) holds for all x ∈ R. Descriptively, no dominance

relationship in the sense of SD1 can be established between any pair of return

series, neither for the 1-year nor for the 10-year period. Every pair of empirical

distribution functions crosses at least once. Hence all stocks are SD1 efficient in

a descriptive sense.

Concerning SD2 the findings are different. The results are reported in tables

7.8 and 7.9 for the 1-year period and in table 7.10 for the 10-year period. In the

descriptive sense, SD2 can be established in 187 of 870 comparisons for the 1-year

period and in 91 of 462 comparisons for the 10-year period. For the 1-year period

there are only 4 out of 30 stocks which are efficient: Adidas-Salomon, BASF,

Continental, RWE. 8 out of 22 stocks are efficient for the 10-year period: Altana,

BASF, Continental, Eon, Henkel, RWE, SAP, Schering. Table 7.20 displays the

descriptive efficiency results; see the second column for each period. For a larger

sample size, a descriptive dominance relationship is harder to establish. Hence
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the fraction of the SD2 efficient stocks becomes larger the longer the period is.

The problem of too large efficient sets has already been mentioned by Nelson/

Pope (1991) and Stein/ Pfaffenberger/ Kumar (1983).

In order to get significant results concerning stochastic dominance we ap-

ply the test which we developed in this study to the data. First we apply the

tests which test the null hypothesis of dominance against the alternative of non-

dominance. We use the LMWm test for SD1 and the STm test for SD2. For

the 1-year period we choose the block length b = 150 for both tests. Due to

the fact that b = 300 is a good choice for the LMWm test and both n = 1000

and n = 4000, we choose b = 300 for the application of the LMWm test to the

10-year period. For this period we choose b = 500 for the STm test because the

simulations show that this is an appropriate block length for n = 2500. Further-

more b = 500 is the recommended block length if we apply the rule b(n) = 10
√

n

for the appropriate block length. The MATLAB programs used are given in the

appendix.

Tables 7.11, 7.12, 7.13 and 7.14 display the test results for the 1-year period,

tables 7.17 and 7.18 for the 10-year period. We find that in most cases dominance

cannot be rejected at a size of α = 0.05. For many comparisons this holds in

both directions. For instance, the application of the LMWm test for SD1 for

the 1-year period (see table 7.11) yields no rejection for dominance of Adidas-

Salomon against Allianz and vice versa. SD1 cannot be rejected in 777 out of

870 comparisons for the 1-year period and in 361 out of 462 comparisons for the

10-year period, SD2 is not rejected in 665 out of 870 comparisons for the 1-year

period and in 365 out of 462 comparisons for the 10-year period. These findings

suggest that in many cases the empirical distributions are very close to each other,

hence stochastic dominance cannot be rejected in either direction.

From the test results we determine the efficient sets, i.e. the sets of non-

dominated stocks, as described above. Table 7.20 summarizes the results. For

the 1-year period Adidas-Salomon, Continental, Eon and RWE are in the SD1
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and SD2 efficient sets whereas Altana, Deutsche Bank, Deutsche Post, Metro and

Siemens are only in the SD1 efficient set. The SD1 efficient set for the 10-year pe-

riod consists of Altana, BASF, Continental, Henkel, SAP, Schering and Siemens.

These stocks are also contained in the SD2 efficient set, as well as Eon, Linde and

RWE. It seems to be paradox that for the 10-year period some stocks are found

to be SD2 efficient, but not SD1 efficient. Indeed, SD2 is a necessary condition

for SD1. Hence the SD2 efficient set is a subset of the SD1 efficient set. This is

a contradiction to the result we get when applying the tests to the data of the

10-year period. The reason for this finding is the fact that the tests are affected

by sampling errors.

Furthermore we apply the KRSm test for SD2 which tests the null hypothesis

of non-dominance against the alternative of dominance. In chapter 6, we re-

commended the truncation values an = bn = 0.5n
3
4 for the sample size n. This

yields an = bn ≈ 32 for n = 255 (1-year period) and an = bn ≈ 178 for n = 2522.

We choose these truncation values in our empirical analysis.

Table 7.15 displays the test results for the 1-year period, tables 7.16 and

7.19 for the 10-year period. In the vast majority of the pairwise comparisons

the null hypothesis of non-dominance cannot be rejected. SD2 is significantly

confirmed in 70 out of 870 comparisons for the 1-year period and in 15 out of

462 comparisons for the 10-year period. The reason for this finding is that in

many cases the distributions are very close to each other, hence second degree

stochastic dominance cannot be confirmed in either direction. But there are still

some comparisons where stochastic dominance is significantly confirmed by the

KRSm test which is a stronger assertion than the establishment of stochastic

dominance in a descriptive comparison.

As described above, we determine the efficient sets from the test results. Table

7.20 displays the results. Due to the fact that in most of the comparisons non-

dominance cannot be rejected, the efficient sets are large. For the 1-year period,

18 out of 30 stocks are not dominated by another stock and therefore belong to
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the efficient set. For the 10-year period, this holds for 16 out of 22 stocks. As

we see in table 7.20, the SD2 efficient set according to the STm test is a proper

subset of the SD2 efficient set according to the KRSm test. This holds for the

1-year period and for the 10-year period.

In this chapter, we investigated the stochastic dominance relations among

daily returns of the DAX30 stocks. In a descriptive analysis SD1 is rejected in

every case whereas SD2 is confirmed in some cases. In order to get significant

results, we applied the tests which we developed in previous chapters to the data.

We use the modified tests of Linton/ Maasoumi/ Whang for SD1 and of Schmid/

Trede for SD2 in order to test the hypothesis of dominance against the alternative

of non-dominance. Conversely, we test the hypothesis of non-dominance against

the alternative of dominance using the modified test of Kaur/ Rao/ Singh for

SD2. In many comparisons neither SDk (k = 1, 2) nor non-SD2 can be rejected

by the developed tests. The reason for this finding is that in many cases the

empirical distributions of the different stock returns are close to each other. We

determined the efficient sets, i.e. the sets of stocks which are not dominated by

another stock. The LMWm and STm tests yield small efficient sets. However,

in these tests stochastic dominance is not significantly confirmed. In contrast, in

the KRSm test stochastic dominance is the alternative. We get larger efficient

sets, but some stocks are significantly dominated by another stock.
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Name of Stock Mean Std.dev. Skewness Kurtosis

×100 ×100

Adidas-Salomon ADS 37.102 19.653 0.313 4.523

Allianz ALL 1.428 27.287 0.031 3.591

Altana ALT −13.082 22.955 0.148 5.354

BASF BAS 10.990 20.491 0.209 4.247

Bayer BAY 9.588 26.676 0.176 4.549

Bay. Hypo-Vereinsbank BHV 9.869 37.097 −0.112 4.732

BMW BMW −2.270 23.468 −0.145 4.309

Commerzbank CBK 9.384 29.970 0.186 3.562

Continental CON 63.495 26.080 −0.120 3.227

Daimler-Chrysler DAC 4.386 24.242 0.161 3.903

Deutsche Bank DBK 4.208 24.454 0.516 5.147

Deutsche Boerse DBO −6.987 23.102 −0.720 9.405

Deutsche Lufthansa DLH −15.810 28.634 0.099 3.546

Deutsche Post DPO 10.685 26.732 −0.054 3.420

Deutsche Telekom DTL 8.772 20.466 −0.087 3.111

Eon EON 27.285 19.744 −0.284 3.989

Fresenius FRE 17.162 21.091 0.166 3.617

Henkel HEN 4.080 20.561 −0.395 5.092

Infineon INF −41.718 35.534 −0.112 2.838

Linde LIN 17.162 22.209 0.199 3.968

MAN MAN 32.334 30.329 −0.068 4.165

Metro MET 17.416 25.109 0.288 4.534

Muenchner Rueckvers. MRV −11.271 26.067 0.332 4.841

RWE RWE 46.308 23.150 0.070 3.485

SAP SAP 11.297 31.008 1.200 10.116

Schering SCH 22.797 21.511 0.170 4.703

Siemens SIE 9.894 25.184 −0.215 4.160

Thyssen-Krupp TYK 17.416 28.330 −0.136 3.590

TUI TUI −5.075 32.008 0.533 4.260

Volkswagen VW −28.229 24.105 0.024 3.674

Table 7.1: Descriptive statistics of the annualized daily returns of DAX stocks for

the 1-year period.
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Name of Stock Mean Std.dev. Skewness Kurtosis

×100 ×100

Allianz ALL −2.093 36.778 −0.016 7.546

Altana ALT 16.065 36.972 −0.408 13.763

BASF BAS 10.441 28.955 0.039 5.238

Bayer BAY 1.639 34.344 0.881 26.805

Bay. Hypo-Vereinsbank BHV −1.412 41.449 0.097 7.738

BMW BMW 10.113 35.729 −0.070 6.676

Commerzbank CBK −0.530 35.098 0.146 8.596

Continental CON 13.114 32.427 0.072 6.296

Deutsche Bank DBK 5.321 33.996 −0.101 6.065

Deutsche Lufthansa DLH 0.378 36.791 −0.024 6.385

Eon EON 7.566 29.132 0.106 5.355

Henkel HEN 7.188 29.902 0.057 6.722

Linde LIN 1.009 29.750 0.004 5.722

MAN MAN 2.926 34.809 0.052 5.224

Muenchner Rueckvers. MRV 2.623 38.763 −0.096 8.217

RWE RWE 5.120 29.702 0.323 6.130

SAP SAP 21.992 51.177 0.068 8.983

Schering SCH 11.324 29.480 −0.053 6.023

Siemens SIE 9.685 36.505 0.079 5.535

Thyssen-Krupp TYK 0.303 34.034 −0.036 6.391

TUI TUI −4.111 35.894 0.098 7.286

Volkswagen VW 3.354 34.490 −0.273 5.622

Table 7.2: Descriptive statistics of the annualized daily returns of DAX stocks for

the 10-year period.
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A A A B B B B C C D D D D D D
D L L A A H M B O A B B L P T
S L T S Y V W K N C K O H O L

ADS 36 18 37 34 30 27 33 29 32 34 19 25 25 39

ALL 36 27 64 63 61 62 64 52 67 66 33 63 52 66

ALT 18 27 17 17 22 25 22 15 18 23 13 20 12 19

BAS 37 64 17 71 46 59 52 50 60 62 24 50 50 63

BAY 34 63 17 71 46 56 52 52 54 56 20 50 42 61

BHV 30 61 22 46 46 46 67 43 50 52 31 48 43 49

BMW 27 62 25 59 56 46 49 56 69 53 22 52 40 51

CBK 33 64 22 52 52 67 49 46 52 60 33 49 49 56

CON 29 52 15 50 52 43 56 46 55 46 14 42 43 48

DAC 32 67 18 60 54 50 69 52 55 54 26 53 39 53

DBK 34 66 23 62 56 52 53 60 46 54 32 49 53 57

DBO 19 33 13 24 20 31 22 33 14 26 32 32 31 32

DLH 25 63 20 50 50 48 52 49 42 53 49 32 49 52

DPO 25 52 12 50 42 43 40 49 43 39 53 31 49 49

DTL 39 66 19 63 61 49 51 56 48 53 57 32 52 49

EON 27 49 27 61 50 41 47 44 43 46 46 21 42 39 47

FRE 24 32 26 40 32 27 36 33 31 37 29 15 27 28 29

HEN 27 44 27 35 38 34 37 39 34 35 39 19 35 36 30

INF 31 55 25 49 47 50 44 49 32 45 52 29 55 45 52

LIN 33 49 19 52 48 40 47 48 39 47 50 31 47 46 44

MAN 26 58 16 51 53 41 60 46 46 51 47 28 58 42 49

MET 27 58 25 58 46 47 46 48 44 50 48 22 43 44 46

MRV 36 76 21 63 61 58 54 63 49 60 58 25 56 46 60

RWE 34 48 19 52 44 37 45 38 37 42 45 22 37 42 46

SAP 28 50 12 50 51 46 46 47 37 43 50 30 47 44 52

SCH 21 31 36 30 35 33 33 39 34 30 28 14 21 21 29

SIE 39 74 24 70 66 55 61 59 53 63 66 31 61 54 65

TYK 37 66 19 58 55 56 60 52 58 60 52 17 58 49 58

TUI 30 56 11 49 46 38 46 41 39 48 46 18 52 44 54

VW 33 65 20 59 57 55 75 50 61 69 59 27 57 49 51

Table 7.3: Correlation coefficients (× 100) of the daily returns of DAX stocks for the

1-year period.
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E F H I L M M M R S S S T T V
O R E N I A E R W A C I Y U W
N E N F N N T V E P H E K I

ADS 27 24 27 31 33 26 27 36 34 28 21 39 37 30 33

ALL 49 32 44 55 49 58 58 76 48 50 31 74 66 56 65

ALT 27 26 27 25 19 16 25 21 19 12 36 24 19 11 20

BAS 61 40 35 49 52 51 58 63 52 50 30 70 58 49 59

BAY 50 32 38 47 48 53 46 61 44 51 35 66 55 46 57

BHV 41 27 34 50 40 41 47 58 37 46 33 55 56 38 55

BMW 47 36 37 44 47 60 46 54 45 46 33 61 60 46 75

CBK 44 33 39 49 48 46 48 63 38 47 39 59 52 41 50

CON 43 31 34 32 39 46 44 49 37 37 34 53 58 39 61

DAC 46 37 35 45 47 51 50 60 42 43 30 63 60 48 69

DBK 46 29 39 52 50 47 48 58 45 50 28 66 52 46 59

DBO 21 15 19 29 31 28 22 25 22 30 14 31 17 18 27

DLH 42 27 35 55 47 58 43 56 37 47 21 61 58 52 57

DPO 39 28 36 45 46 42 44 46 42 44 21 54 49 44 49

DTL 47 29 30 52 44 49 46 60 46 52 29 65 58 54 51

EON 42 41 33 46 36 45 53 69 34 36 46 52 44 49

FRE 42 23 26 25 30 30 29 32 30 31 34 37 29 39

HEN 41 23 30 45 41 38 45 32 29 33 41 37 26 41

INF 33 26 30 39 45 42 53 29 66 25 67 50 43 49

LIN 46 25 45 39 48 44 47 43 42 36 51 49 41 50

MAN 36 30 41 45 48 39 49 37 47 28 61 59 44 59

MET 45 30 38 42 44 39 52 37 36 29 54 48 36 50

MRV 53 29 45 53 47 49 52 47 47 29 66 58 47 59

RWE 69 32 32 29 43 37 37 47 33 32 41 45 39 45

SAP 34 30 29 66 42 47 36 47 33 26 63 47 42 49

SCH 36 31 33 25 36 28 29 29 32 26 34 25 25 33

SIE 46 34 41 67 51 61 54 66 41 63 34 67 52 66

TYK 52 37 37 50 49 59 48 58 45 47 25 67 52 61

TUI 44 29 26 43 41 44 36 47 39 42 25 52 52 48

VW 49 39 41 49 50 59 50 59 45 49 33 66 61 48

Table 7.4: Correlation coefficients (× 100) of the daily returns of DAX stocks for the

1-year period.
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A A B B B B C C D D E
L L A A H M B O B L O
L T S Y V W K N K H N

ALL 23 49 48 58 45 58 37 61 46 39

ALT 23 23 21 19 19 21 17 23 17 21

BAS 49 23 68 44 50 46 37 51 48 41

BAY 48 21 68 41 45 44 34 48 41 37

BHV 58 19 44 41 40 62 32 59 40 32

BMW 45 19 50 45 40 45 40 48 44 36

CBK 58 21 46 44 62 45 36 64 45 34

CON 37 17 37 34 32 40 36 37 36 29

DBK 61 23 51 48 59 48 64 37 47 39

DLH 46 17 48 41 40 44 45 36 47 33

EON 39 21 41 37 32 36 34 29 39 33

HEN 31 18 39 37 29 37 30 31 32 32 31

LIN 39 19 45 43 35 41 39 32 40 37 31

MAN 43 17 44 42 40 41 43 35 44 41 30

MRV 74 25 47 45 53 44 53 35 55 41 39

RWE 41 24 40 40 35 37 34 26 39 31 58

SAP 37 19 34 32 32 31 38 25 42 34 23

SCH 35 24 38 38 31 35 33 25 35 29 33

SIE 52 23 47 44 44 44 48 36 56 43 34

TYK 42 17 46 45 37 44 42 33 43 39 32

TUI 45 15 43 38 38 41 43 32 45 44 32

VW 48 20 54 48 44 61 48 44 52 48 40

Table 7.5: Correlation coefficients (× 100) of the daily returns of DAX stocks for the

10-year period.
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H L M M R S S S T T V
E I A R W A C I Y U W
N N N V E P H E K I

ALL 31 39 43 74 41 37 35 52 42 45 48

ALT 18 19 17 25 24 19 24 23 17 15 20

BAS 39 45 44 47 40 34 38 47 46 43 54

BAY 37 43 42 45 40 32 38 44 45 38 48

BHV 29 35 40 53 35 32 31 44 37 38 44

BMW 37 41 41 44 37 31 35 44 44 41 61

CBK 30 39 43 53 34 38 33 48 42 43 48

CON 31 32 35 35 26 25 25 36 33 32 44

DBK 32 40 44 55 39 42 35 56 43 45 52

DLH 32 37 41 41 31 34 29 43 39 44 48

EON 31 31 30 39 58 23 33 34 32 32 40

HEN 35 33 32 32 19 28 28 30 27 36

LIN 35 44 38 34 28 30 36 43 39 43

MAN 33 44 40 32 32 28 44 45 40 45

MRV 32 38 40 42 32 36 46 39 41 47

RWE 32 34 32 42 23 34 35 32 33 37

SAP 19 28 32 32 23 25 50 29 30 38

SCH 28 30 28 36 34 25 31 28 31 33

SIE 28 36 44 46 35 50 31 41 42 49

TYK 30 43 45 39 32 29 28 41 43 45

TUI 27 39 40 41 33 30 31 42 43 44

VW 36 43 45 47 37 38 33 49 45 44

Table 7.6: Correlation coefficients (× 100) of the daily returns of DAX stocks for the

10-year period.
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Name of Stock 1-year period 10-year period

α1 β1 α1 β1

Adidas-Salomon ADS 0.0000 0.0051

Allianz ALL 0.1131 0.5529 0.1037 0.8921

Altana ALT 0.2275 0.4364 0.0561 0.9439

BASF BAS 0.0802 0.8882 0.0991 0.8741

Bayer BAY 0.0827 0.7675 0.0713 0.9193

Bay. Hypo-Vereinsbank BHV 0.0861 0.8268 0.1290 0.8710

BMW BMW 0.0732 0.8407 0.0927 0.9073

Commerzbank CBK 0.1038 0.8351 0.1469 0.8530

Continental CON 0.0847 0.8184 0.0828 0.8806

Daimler-Chrysler DAC 0.0870 0.8453

Deutsche Bank DBK 0.0207 0.7580 0.0909 0.9070

Deutsche Boerse DBO 0.0503 0.0000

Deutsche Lufthansa DLH 0.0536 0.7385 0.0655 0.9180

Deutsche Post DPO 0.0287 0.9681

Deutsche Telekom DTL 0.0375 0.8183

Eon EON 0.0185 0.9781 0.0793 0.9118

Fresenius FRE 0.0154 0.9816

Henkel HEN 0.0776 0.7292 0.0681 0.9188

Infineon INF 0.0495 0.8289

Linde LIN 0.0621 0.8004 0.0563 0.9390

MAN MAN 0.0977 0.7602 0.0538 0.9381

Metro MET 0.0912 0.8217

Muenchner Rueckvers. MRV 0.1203 0.7791 0.1013 0.8944

RWE RWE 0.1148 0.3936 0.0694 0.9249

SAP SAP 0.1187 0.7656 0.1603 0.7917

Schering SCH 0.0642 0.8161 0.0700 0.9092

Siemens SIE 0.0000 0.9991 0.0554 0.9435

Thyssen-Krupp TYK 0.0293 0.9670 0.0937 0.9001

TUI TUI 0.1079 0.4465 0.0935 0.9044

Volkswagen VW 0.0337 0.9288 0.0731 0.9180

Table 7.7: Estimated GARCH parameters of the daily returns of DAX stocks for the

1-year and the 10-year periods.
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A A A B B B B C C D D D D D D
D L L A A H M B O A B B L P T
S L T S Y V W K N C K O H O L

ADS 0 0 1 0 0 0 0 1 0 0 0 0 0 0

ALL 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ALT 1 1 1 1 1 1 1 1 1 1 1 0 1 1

BAS 1 0 0 0 0 0 0 1 0 0 0 0 1 1

BAY 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BHV 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BMW 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CBK 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CON 1 1 1 1 1 0 1 0 1 1 1 1 0 1

DAC 1 0 1 1 1 1 1 1 1 1 1 0 1 1

DBK 1 1 1 1 1 1 1 1 1 1 1 0 1 1

DBO 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DLH 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DPO 1 1 1 1 1 0 1 1 1 1 1 1 1 1

DTL 1 0 0 1 1 1 0 1 1 1 1 0 0 1

EON 1 0 0 1 0 0 0 0 1 1 1 0 0 0 1

FRE 1 0 1 1 0 0 0 0 1 1 1 0 0 0 1

HEN 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

INF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LIN 1 0 1 1 0 0 0 0 1 1 1 0 0 0 1

MAN 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

MET 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1

MRV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RWE 1 0 1 1 0 0 0 0 1 1 1 0 0 0 1

SAP 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

SCH 1 0 1 1 0 0 0 0 1 1 1 0 0 0 1

SIE 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

TYK 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

TUI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

VW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 7.8: Descriptive results for stochastic dominance (2nd order) of the daily returns

of DAX stocks for the 1-year period (1 ∼ rejection of dominance).
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E F H I L M M M R S S S T T V
O R E N I A E R W A C I Y U W
N E N F N N T V E P H E K I

ADS 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

ALL 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1

ALT 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

BAS 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0

BAY 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1

BHV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BMW 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1

CBK 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1

CON 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1

DAC 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0

DBK 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0

DBO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DLH 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

DPO 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

DTL 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0

EON 1 0 0 0 1 0 0 1 0 0 0 0 0 0

FRE 1 1 0 1 1 1 0 1 0 1 0 1 0 0

HEN 1 1 0 1 1 1 0 1 1 1 1 1 0 1

INF 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LIN 1 1 1 0 1 1 0 1 0 1 0 1 0 0

MAN 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MET 1 1 1 0 1 1 0 1 1 1 1 1 0 1

MRV 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RWE 1 1 1 0 1 0 0 0 0 1 0 0 0 0

SAP 1 1 1 0 1 1 1 1 1 1 1 1 0 1

SCH 1 1 0 0 1 1 0 0 1 0 0 0 0 0

SIE 1 1 1 0 1 1 1 1 1 1 1 1 1 1

TYK 1 1 1 0 1 1 1 1 1 1 1 1 1 1

TUI 1 1 1 0 1 1 1 1 1 1 1 1 1 1

VW 1 1 1 0 1 1 1 1 1 1 1 1 1 1

Table 7.9: Descriptive results for stochastic dominance (2nd order) of the daily returns

of DAX stocks for the 1-year period (1 ∼ rejection of dominance).
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A A B B B B C C D D E H L M M R S S S T T V
L L A A H M B O B L O E I A R W A C I Y U W
L T S Y V W K N K H N N N N V E P H E K I

ALL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ALT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BAS 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0

BAY 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BHV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BMW 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

CBK 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CON 0 1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1

DBK 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1

DLH 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EON 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0

HEN 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0

LIN 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1

MAN 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1

MRV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RWE 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 0

SAP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SCH 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 0 0 0

SIE 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

TYK 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

TUI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

VW 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

Table 7.10: Descriptive results for stochastic dominance (2nd order) of the daily

returns of DAX stocks for the 10-year period (1 ∼ rejection of dominance).
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A A A B B B B C C D D D D D D
D L L A A H M B O A B B L P T
S L T S Y V W K N C K O H O L

ADS 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ALL 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ALT 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BAS 0 1 0 0 0 0 0 0 0 0 0 0 0 0

BAY 1 0 0 0 0 0 0 1 0 0 0 0 0 0

BHV 1 1 0 1 0 1 0 0 0 0 0 0 0 1

BMW 1 0 0 0 0 0 0 0 0 1 0 1 0 0

CBK 1 0 0 1 0 0 0 0 0 0 0 0 0 0

CON 1 0 0 0 0 0 0 0 0 0 0 0 0 0

DAC 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DBK 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DBO 0 0 0 0 0 0 0 0 1 0 1 0 0 0

DLH 0 0 0 0 0 0 0 0 0 0 0 0 0 1

DPO 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DTL 0 0 0 0 0 0 0 0 1 0 0 0 0 0

EON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FRE 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

HEN 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

INF 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0

LIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAN 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

MET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MRV 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

RWE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SAP 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

SCH 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

SIE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TYK 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TUI 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

VW 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1

Table 7.11: LMWm test results on stochastic dominance (1st order) of the daily

returns of DAX stocks for the 1-year period (1 ∼ rejection of dominance).
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E F H I L M M M R S S S T T V
O R E N I A E R W A C I Y U W
N E N F N N T V E P H E K I

ADS 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

ALL 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

ALT 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

BAS 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

BAY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BHV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BMW 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

CBK 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0

CON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DAC 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0

DBK 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

DBO 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

DLH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DPO 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

DTL 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

EON 0 0 1 0 0 0 0 0 0 0 0 0 1 0

FRE 0 0 1 0 0 0 0 0 0 0 0 0 0 0

HEN 0 0 1 0 0 1 0 0 0 0 0 0 0 0

INF 1 0 1 1 0 0 1 1 1 1 0 0 0 0

LIN 0 0 0 1 0 0 0 0 0 0 0 1 0 0

MAN 1 0 0 0 1 0 0 0 0 0 0 0 0 0

MET 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MRV 1 0 1 1 0 0 0 0 0 0 0 0 0 0

RWE 0 0 0 1 0 0 0 0 0 0 0 0 0 0

SAP 1 0 0 0 0 0 0 0 0 0 0 0 0 0

SCH 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SIE 0 0 0 1 0 0 0 0 0 0 0 0 1 0

TYK 1 0 0 0 0 0 0 0 0 0 0 0 0 0

TUI 0 0 1 0 0 0 0 0 0 0 0 0 0 0

VW 1 0 0 1 1 0 0 0 0 0 1 0 0 1

Table 7.12: LMWm results on stochastic dominance (1st order) between the daily

returns of DAX stocks for the 1-year period (1 ∼ rejection of dominance).
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A A A B B B B C C D D D D D D
D L L A A H M B O A B B L P T
S L T S Y V W K N C K O H O L

ADS 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ALL 1 0 0 0 0 0 0 1 0 0 0 0 0 1

ALT 1 0 0 0 0 0 0 1 0 0 0 0 0 0

BAS 1 0 0 0 0 0 0 1 0 0 0 0 0 0

BAY 1 0 0 1 0 0 0 1 0 0 0 0 0 1

BHV 1 1 0 1 0 0 0 1 0 0 0 0 0 1

BMW 1 1 0 1 0 0 0 1 0 0 0 0 0 1

CBK 1 0 0 1 0 0 0 1 0 0 0 0 0 1

CON 1 0 0 0 0 0 0 0 0 0 0 0 0 0

DAC 1 0 0 0 0 0 0 0 1 0 0 0 0 0

DBK 1 0 0 0 0 0 0 0 1 0 0 0 0 0

DBO 1 0 0 0 0 0 0 0 1 0 0 0 0 0

DLH 1 0 0 1 0 0 0 0 1 0 1 1 0 1

DPO 1 0 0 1 0 0 0 0 1 0 0 0 0 1

DTL 1 0 0 0 0 0 0 0 1 0 0 0 0 0

EON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FRE 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

HEN 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

INF 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

LIN 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

MAN 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1

MET 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0

MRV 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1

RWE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SAP 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1

SCH 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

SIE 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1

TYK 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1

TUI 1 0 0 1 1 0 1 0 1 1 1 1 0 1 1

VW 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1

Table 7.13: STm results on stochastic dominance (2nd order) between the daily

returns of DAX stocks for the 1-year period (1 ∼ rejection of dominance).
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E F H I L M M M R S S S T T V
O R E N I A E R W A C I Y U W
N E N F N N T V E P H E K I

ADS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ALL 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0

ALT 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0

BAS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BAY 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0

BHV 1 0 1 0 1 0 0 0 0 0 1 1 1 0 0

BMW 1 0 1 0 1 0 0 0 0 0 1 1 1 0 0

CBK 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0

CON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DAC 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0

DBK 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0

DBO 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0

DLH 1 0 1 0 1 1 0 0 1 0 0 1 0 0 0

DPO 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0

DTL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EON 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FRE 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HEN 0 0 0 0 1 0 0 1 0 0 0 0 0 0

INF 1 1 1 1 1 1 1 1 1 1 1 1 0 1

LIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAN 1 0 1 0 1 0 0 1 0 0 0 0 0 0

MET 1 1 0 0 0 0 0 0 0 0 0 0 0 0

MRV 1 1 1 0 1 1 1 1 0 1 0 0 0 0

RWE 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SAP 1 1 1 0 1 0 1 0 1 1 0 0 0 0

SCH 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SIE 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TYK 0 0 0 0 1 0 0 0 0 0 0 0 0 0

TUI 1 1 1 0 1 1 1 0 1 0 1 1 0 0

VW 1 1 1 0 1 1 1 0 1 1 1 1 1 0

Table 7.14: STm results on stochastic dominance (2nd order) between the daily

returns of DAX stocks for the 1-year period (1 ∼ rejection of dominance).
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A A A B B B B C C D D D D D D
D L L A A H M B O A B B L P T
S L T S Y V W K N C K O H O L

ADS 1 1 0 0 1 1 1 0 0 0 0 1 0 0

ALL 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ALT 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BAS 0 0 0 0 0 1 1 0 0 0 0 1 0 0

BAY 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BHV 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BMW 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CBK 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CON 0 1 0 0 0 1 0 0 0 0 0 1 0 0

DAC 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DBK 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DBO 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DLH 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DPO 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DTL 0 1 0 0 0 0 0 0 0 0 0 0 1 0

EON 0 1 1 0 0 0 1 1 0 1 0 0 1 0 0

FRE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

INF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LIN 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

MAN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MRV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RWE 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0

SAP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SIE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TYK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TUI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.15: KRSm results on stochastic dominance (2nd order) between the daily

returns of DAX stocks for the 1-year period (1 ∼ rejection of non-dominance).
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E F H I L M M M R S S S T T V
O R E N I A E R W A C I Y U W
N E N F N N T V E P H E K I

ADS 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1

ALL 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

ALT 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

BAS 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1

BAY 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

BHV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BMW 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

CBK 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

CON 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

DAC 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

DBK 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

DBO 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

DLH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DPO 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

DTL 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1

EON 0 0 1 0 0 0 1 0 1 0 0 0 1 1

FRE 0 0 1 0 0 0 0 0 1 0 0 0 1 0

HEN 0 0 1 0 0 0 0 0 0 0 0 0 0 0

INF 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LIN 0 0 0 1 0 0 1 0 0 0 0 0 0 0

MAN 0 0 0 1 0 0 0 0 0 0 0 0 0 0

MET 0 0 0 1 0 0 0 0 0 0 0 0 0 0

MRV 0 0 0 1 0 0 0 0 0 0 0 0 0 0

RWE 0 0 0 1 0 0 0 0 1 0 0 0 1 0

SAP 0 0 0 1 0 0 0 0 0 0 0 0 0 0

SCH 0 0 0 1 0 0 0 0 0 0 0 0 0 0

SIE 0 0 0 1 0 0 0 0 0 0 0 0 0 0

TYK 0 0 0 1 0 0 0 0 0 0 0 0 0 0

TUI 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VW 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.16: KRSm results on stochastic dominance (2nd order) between the daily

returns of DAX stocks for the 1-year period (1 ∼ rejection of non-dominance).
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A A B B B B C C D D E H L M M R S S S T T V
L L A A H M B O B L O E I A R W A C I Y U W
L T S Y V W K N K H N N N N V E P H E K I

ALL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

ALT 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

BAS 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0

BAY 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0

BHV 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0

BMW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

CBK 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0

CON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

DBK 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

DLH 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0

EON 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1

HEN 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

LIN 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1

MAN 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0

MRV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

RWE 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1

SAP 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1

SCH 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1

SIE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TYK 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0

TUI 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0

VW 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0

Table 7.17: LMWm results on stochastic dominance (1st order) between the daily

returns of DAX stocks for the 10-year period (1 ∼ rejection of dominance).
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A A B B B B C C D D E H L M M R S S S T T V
L L A A H M B O B L O E I A R W A C I Y U W
L T S Y V W K N K H N N N N V E P H E K I

ALL 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

ALT 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0

BAS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BAY 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

BHV 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0

BMW 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0

CBK 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

CON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DBK 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

DLH 0 0 1 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1

EON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAN 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0

MRV 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0

RWE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SAP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SCH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SIE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TYK 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0

TUI 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

VW 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0

Table 7.18: STm results on stochastic dominance (2nd order) of the daily returns of

DAX stocks for the 10-year period (1 ∼ rejection of dominance).
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A A B B B B C C D D E H L M M R S S S T T V
L L A A H M B O B L O E I A R W A C I Y U W
L T S Y V W K N K H N N N N V E P H E K I

ALL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ALT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BAS 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

BAY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BHV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BMW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CBK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CON 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

DBK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DLH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EON 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

HEN 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MRV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RWE 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SAP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCH 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

SIE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TYK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TUI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.19: KRSm results on stochastic dominance (2nd order) of the daily returns

of DAX stocks for the 10-year period (1 ∼ rejection of non-dominance).
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Abbr. 1-year period 10-year period

of LMWm descr. STm KRSm LMWm descr. STm KRSm

stock SD1 SD2 SD2 SD2 SD1 SD2 SD2 SD2

ADS • • • • − − − −
ALL
ALT • • • • •
BAS • • • • • •
BAY • •
BHV
BMW •
CBK
CON • • • • • • • •
DAC − − − −
DBK • • •
DBO • − − − −
DLH •
DPO • • − − − −
DTL • − − − −
EON • • • • • •
FRE • − − − −
HEN • • • • •
INF − − − −
LIN • • •
MAN • •
MET • • − − − −
MRV
RWE • • • • • • •
SAP • • • •
SCH • • • • •
SIE • • • • •
TYK • •
TUI
VW •

Table 7.20: Efficiency results concerning the application of the considered tests on

stochastic dominance to the daily returns of DAX stocks for the 1-year and the 10-year

periods. The efficient stocks are denoted with a bullet. The stocks not considered

for the longer period are denoted with a hyphen.



Appendix

In the following we give the MATLAB programs which apply the modified versions

of the tests of Linton/ Maasoumi/ Whang and of Schmid/ Trede to the daily

returns of the DAX30 stocks. Lines beginning with “%” are comments and are

not executed by the program. Comments can be found behind the lines they refer

to.

LMWm test

tic

% The test for SD1 of Linton/Maasoumi/Whang with circular

% subsampling is applied to the daily returns of the DAX stocks.

lengthX = 2522;

% We consider the data of 10 years, i.e. 2522 observations.

load Returns.mat;

% The data set is loaded.

Returns = Returns((end-lengthX+1):end,:);

index = find(sum(isnan(Returns))==0);

Returns = Returns(:,index);

% Incomplete datasets are excluded.

block = 500;

% We fix the block length of our choice.
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alpha = 0.05;

% The size of the test is fixed.

for m = 1:length(index)

for l = 1:(m-1)

data = Returns(:,[m l]);

data1 = data(:,1); data2 = data(:,2);

s = prod(size(data));

dataset = sort(data(1:s));

for j = 1:s

distrdiff(j) = distrfct(dataset(j),data1)...

- distrfct(dataset(j),data2);

end

d(m,l) = sqrt(lengthX)*max(distrdiff);

d(l,m) = sqrt(lengthX)*max(-distrdiff);

% d(m,l) and d(l,m) are the test statistics for testing for

% stochastic dominance of stock m against stock l and vice versa.

for i = 1:lengthX

for j = 1:block

B1(i,j) = data1(mod(i+j-2,lengthX)+1);

B2(i,j) = data2(mod(i+j-2,lengthX)+1);

% The blocks for circular subsampling are created.

end

B(i,:) = [B1(i,:) B2(i,:)];

blockset(i,:) = sort(B(i,:));

for k = 1:(2*block)

blockdiff(i,k) = distrfct(blockset(i,k),B1(i,:))

- distrfct(blockset(i,k),B2(i,:));

end
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db1(i) = sqrt(block)*max(blockdiff(i,:));

db2(i) = sqrt(block)*max(-blockdiff(i,:));

% db1 and db2 are the test statistics for the

% circular subsampling blocks.

end

q(m,l) = mean(d(m,l)>db1)+.5.*mean(d(m,l)==db1);

q(l,m) = mean(d(l,m)>db2)+.5.*mean(d(l,m)==db2);

% The test statistics for the whole sample are compared to

% the test statistics of the circular subsampling blocks.

domin(m,l) = (q(m,l) >= 1-alpha);

domin(l,m) = (q(l,m) >= 1-alpha);

% The decision is made. ‘‘1’’ means rejection of the

% dominance hypothesis, ‘‘0’’ means no rejection.

save test.mat;

% The results are buffered after each comparison.

end

end

toc

time = toc;

% The computation time is determined.

save SD1-lmw-block500-length2522.mat;

% The results are saved.

STm test

tic

lengthX = 2522;
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% We consider the data of 10 years, i.e. 2522 observations.

load Returns.mat;

% The data set is loaded.

Returns = Returns((end-lengthX+1):end,:);

index = find(sum(isnan(Returns))==0);

Returns = Returns(:,index);

% Incomplete datasets are excluded.

M = 500;

% The number of permutations is as recommended by Schmid and Trede.

block = 500;

% We fix the block length of our choice.

alpha = 0.05;

% The size of the test is fixed.

for n = 1:length(index)

for l = 1:(n-1)

data = Returns(:,[n l]);

data1 = data(:,1); data2 = data(:,2);

s = prod(size(data));

dataset = sort(data(1:s));

for j = 1:s

distrdiff(j) = distrfctint(dataset(j),data1)...

- distrfctint(dataset(j),data2);

end

d(n,l) = max(distrdiff);

d(l,n) = max(-distrdiff);

% d(n,l) and d(l,n) are the test statistics for testing for

% stochastic dominance of stock n against stock l and vice versa.

datadouble = [data; data];
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for m = 1:M

permnumber = binornd(lengthX,.5);

% The number of transposed observations pairs is chosen

% randomly.

startindex = unidrnd(lengthX,1,1);

dataturn = datadouble(startindex:(startindex+lengthX-1),:);

blocknumber = ceil(permnumber./block);

turnindex = randperm(lengthX-permnumber+blocknumber);

turnindex = sort(turnindex(1:blocknumber));

% The blocks of observation pairs which are transposed

% are chosen randomly.

dataperm = dataturn;

if blocknumber>0

for k = 1:(blocknumber-1)

dataperm((turnindex(k)+(k-1).*(block-1))...

:(turnindex(k)+k.*(block-1)),:)...

= fliplr(dataperm((turnindex(k)+(k-1).*(block-1))...

:(turnindex(k)+k.*(block-1)),:));

end

dataperm((turnindex(blocknumber)...

+(blocknumber-1).*(block-1))...

:(turnindex(blocknumber)+permnumber-blocknumber),:)...

= fliplr(dataperm((turnindex(blocknumber)...

+(blocknumber-1).*(block-1))...

:(turnindex(blocknumber)+permnumber-blocknumber),:));

% The data are transposed for the chosen blocks.

end

dataperm1 = dataperm(:,1); dataperm2 = dataperm(:,2);
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for k = 1:s

tperm(k) = distrfctint(dataset(k),dataperm1)...

- distrfctint(dataset(k),dataperm2);

end

Tperm1(m) = max(tperm); Tperm2(m) = max(-tperm);

% Tperm1 and Tperm2 are the test statistics for the

% permuted data testing in either direction.

end

rank1(n,l) = sum(Tperm1>d(n,l));

rank2(n,l) = sum(Tperm1>=d(n,l));

rank1(l,n) = sum(Tperm2>d(l,n));

rank2(l,n) = sum(Tperm2>=d(l,n));

% The test statistics for the original data are compared to

% the test statistics for the permutations.

domin(n,l) = ((rank1(n,l)+rank2(n,l))./2 < alpha.*M);

domin(l,n) = ((rank1(l,n)+rank2(l,n))./2 < alpha.*M);

% The decision is made. ‘‘1’’ means rejection of the

% dominance hypothesis, ‘‘0’’ means no rejection.

save test.mat;

% The results are buffered after each comparison.

end

end

toc

time = toc;

% The computation time is determined.

save SD2-st-block500-length2522.mat;

% The results are saved.
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KRSm test

tic;

lengthX = 255;

% We consider the data of 10 years, i.e. 2522 observations.

load Returns.mat;

% The data set is loaded.

Returns = Returns((end-lengthX+1):end,:);

index = find(sum(isnan(Returns))==0);

Returns = Returns(:,index);

lindex = length(index);

% Incomplete datasets are excluded.

alpha = 0.05; q = norminv(1-alpha);

% The size of the test is fixed.

for m = 1:lindex

for l = 1:lindex;

if m = l

data = Returns(:,[m l]);

data1 = data(:,1);

data2 = data(:,2);

s = prod(size(data));

datenset = sort(data(1:s));

for j = 1:s

Z(j,m,l) = testkrs(dataset(j),data1,data2);

end

% The auxiliary function for the test statistic is derived

% at all data points.

save test.mat;

end
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end

end

Trunc10 = zeros(51,51,lindex,lindex);

for k = 1:51

for j = 1:51

if 10*(k-1)+1 <= size(Z,1)-10*(j-1)

Trunc10(k,j,:,:) = min(Z((10*(k-1)+1):(end-10*(j-1)),:,:));

else

Trunc10(k,j,:,:) = 10*ones(1,1,lindex,lindex);

end

end

end

% The value of the test statistic is derived for various

% truncation values.

decis10 = (Trunc10>q);

% The test decision is made, it is dependent on the truncation

% values.

save test.mat;

toc

time = toc;

% The computation time is determined.

save SD2-krscov-laen255-mod.mat;

% The results are saved.

The auxiliary function testkrs is defined as follows.

function t = testkrs(x,dat1,dat2);

lenda = length(dat1);

covar = covardistrfctint(x,dat1,dat2,1:lenda);
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for k = 1:floor(lenda∧(1/2))

covarcross(k) = mean(covar(1:(lenda-k)).*covar((k+1):lenda));

end

numerator = sqrt(lenda).*(distrfctint(x,dat1)-distrfctint(x,dat2));

denominator = sqrt(max(mean(covar.∧2) + 2.*sum(covarcross),0));

if denominator ∼= 0

t = numerator./denominator;

elseif numerator == 0

t = 0;

else

t = sign(numerator)./eps;

end

Basic Functions

The functions distrfct, distrfctint and covardistrfctint which we use in the pro-

grams are created by ourselves. They are defined as follows.

function q = distrfct(x,data)

q = sum(data<=x)./length(data);

% distrfct is the empirical distribution function F̂
(1)
n .

function q = distrfctint(x,data)

q = sum((data<=x).*(x-data))./length(data);

% distrfctint is the antiderivative F̂
(2)
n of the empirical

% distribution function.

function q = covardistrfctint(x,data1,data2,index)

q = (data1(index)<=x).*(x-data1(index))-(data2(index)<=x)...



168 APPENDIX

.*(x-data2(index))-distrfctint(x,data1)+distrfctint(x,data2);

% covardistrfctint is the empirical covariance function of the

% antiderivative F (2) of the distribution function.



List of Symbols

X º Y X is weakly preferred to Y by an individual

X ºk Y X dominates Y in the sense of kth degree stochastic dominance

X ºL Y X dominates Y in the sense of Lorenz dominance

0 zero vector

1A indicator function of a set A

Ck
X kth central moment of a random variable X

Cov(X, Y ) covariance of two random variables X and Y

E(X) expected value or mean of a random variable X

FX cumulative distribution function (c.d.f.) of the random variable X

F̂X,n empirical distribution function of a sample of size n generated by a

random variable X

F
(k)
X higher order antiderivative of FX , defined recursively by F

(1)
X = FX ,

F
(k+1)
X (x) =

∫ x

−∞ F
(k)
X (t)dt for all k ∈ N

F̂
(k)
X,n empirical equivalent of F

(k)
X

GLX generalized Lorenz curve of a nonnegative random variable X

H0 null hypothesis

H1 alternative

Id d-dimensional identity matrix

LX Lorenz curve of a nonnegative random variable X

LPMk
X(c) kth lower partial moment of a random variable X with reference
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value c

PX probability measure of a random variable X

QX quantile function of the random variable X

Q̂X,n empirical quantile function of a sample of size n generated by a

random variable X

Q
(k)
X higher order antiderivative of QX , defined recursively by Q

(1)
X = QX ,

Q
(k+1)
X (x) =

∫ x

−∞ Q
(k)
X (t)dt for all k ∈ N

Q̂
(k)
X,n empirical equivalent of Q

(k)
X

SDk kth degree stochastic dominance

SVX(c) lower semivariance of a random variable X with reference value c

(= LPM2
X(c))

u utility function

u(k) kth derivative of the utility function u

Uk set of all utility functions satisfying (−1)ju(j) ≤ 0 for all j = 1, . . . , k

V ar(X) variance of a random variable X

x(k) kth order statistic of a sample (x1, . . . , xn)

bxc largest integer equal to or smaller than x

x+ nonnegative part of a real number x, i.e. x+ = max{x, 0}
x̄(n) average of a sample x1, . . . , xn, i.e. x̄(n) = 1

n

∑n
k=1 xk

α(A,B) strong mixing coefficient of two σ-fields:

α(A,B) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ A, B ∈ B}
α(m) strong mixing coefficient of a process:

α(m) := sup{α(Fk
−∞,F∞

k+m) : k ∈ Z}
αi, βi parameters in the GARCH model σ2

t = α0 + α1X
2
t−1 + β1σ

2
t

δx Dirac distribution in x

µX expected value or mean of a random variable X

σ2
X variance of a random variable X

σ2
t conditional variance in t ∈ Z
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F b
a σ-field generated by a process (Xt)t∈Z: F b

a := σ(Xt : a ≤ t < b)

N (µ, σ) univariate normal distribution with mean µ and variance σ2

Nd(µ, Σ) d-variate normal distribution with location vector µ and covariance

matrix Σ

U(a, b) uniform distribution on the interval (a, b)

N set of positive integers

R set of real numbers

Rn n-dimensional real space

Z set of integers
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List of Abbreviations

a.s. almost surely

CBB Circular Block Bootstrap

CLT Central Limit Theorem

DAX German stock index

e.g. exempli gratia (for example)

GARCH generalized autoregressive conditional heteroskedasticity

i.e. id est (that is)

KRS test for stochastic dominance of Kaur, Rao and Singh (1994)

KRSm modified KRS test

LMW test for stochastic dominance of Linton, Maasoumi and Whang

(2005)

LMWm modified LMW test

MBB Moving Block Bootstrap

SLLN strong law of large numbers

ST test for stochastic dominance of Schmid and Trede (1997)

STm modified ST test

XFW test for stochastic dominance of Xu, Fisher and Willson (1997)

XFWm modified XFW test



174 LIST OF ABBREVIATIONS



Bibliography

Akgiray, V. (1989): Conditional Heteroskedasticity in Time Series of Stock Re-

turns: Evidence and Forecasts. Journal of Business 62, 55–80.

Aly, E.-E. (1991): On Testing for Lorenz Ordering. Metrika 38, 117–124.

Anderson, G. (1996): Nonparametric Tests of Stochastic Dominance in Income

Distributions. Econometrica 64(5), 1183–1193.

Atkinson, A.B. (1970): On the Measurement of Inequality. Journal of Economic

Theory 2, 244–263.

Barrett, G., Donald, S. (2003): Consistent Tests for Stochastic Dominance.

Econometrica 71(1), 71–104.

Bawa, V. (1982): Stochastic Dominance: A Research Bibliography. Manage-

ment Science 28(6), 698–713.

Beach, C.M., Davidson, R. (1983): Distribution-Free Statistical Inference with

Lorenz Curves and Income Shares. Review of Economic Studies 50, 723–

735.

Billingsley, P. (1961): The Lindeberg-Lévy Theorem for Martingales. Proceed-
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