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Abstract

For an arbitrary n-dimensional riemannian manifold N and an integer m ∈ {1, . . . , n − 1} a
covariant derivative ∇̂ on the Graßmann bundle N̂ := Gm(TN) is introduced which has the
property that an m-dimensional submanifold M ⊂ N has parallel second fundamental form if
and only if its Gauß map M → N̂ is affine. (For N = Rn this result was already obtained by
J.Vilms in 1972.) By means of this relation a generalization of É. Cartan’s theorem on the
total geodesy of a geodesic umbrella can be derived: Suppose, initial data (p,W, b) prescribing
a tangent space W ∈ Gm(TpN) and a second fundamental form b at p ∈ N are given; for
these data an m-dimensional “umbrella” M = MU (p,W, b) ⊂ N gets constructed, the rays of
which are helical arcs of N ; moreover tensorial conditions (not involving ∇̂ ) are presented,
which guarantee that the umbrella M has parallel second fundamental form. These conditions
are as well necessary, and locally every submanifold with parallel second fundamental form can
be obtained in this way.
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1 Introduction

In a riemannian manifold N the most “straight” submanifolds are the totally geodesic ones.
In general, totally geodesic submanifolds of dimensions ≥ 2 and < dimN occur very scarcely;
however É. Cartan had proved already the following criterion:

Theorem (É. Cartan). If a point p ∈ N , a linear subspace V $ TpN of dimension ≥ 1 and
some star shaped neighborhood U of 0 in V are given such that the exponential map expNp
of N at p is defined on U and is there an injective immersion into N , then the “geodesic
umbrella” MU (p, V ) := expNp (U) is a totally geodesic submanifold of N if and only if for every
u ∈ U the parallel translate Vu of V along the geodesic arc cu : [0, 1] → N , t 7→ expNp (tu) ,

Vu := (
1

‖
0
cu )N(V ) ⊂ TexpNp (u)N (see below (1)) ,

is curvature invariant (“integrability condition”), that means R(v, v′)v′′ ∈ Vu for all v, v′, v′′ ∈
Vu . Notice, p ∈MU (p, V ) and Tp(MU (p, V )) = V .

A famous special case of this theorem is the well known relation between Lie triple systems and
totally geodesic submanifolds in the theory of symmetric spaces. – In this thesis the analogous
problem for submanifolds with parallel second fundamental form, in the literature sometimes
called parallel submanifolds, is solved; thereby the terminology II-parallel submanifold is more
likely to be used, since it refers explicitly to the second fundamental form. A survey on II-parallel
submanifolds can be found in [L].

In real space forms the II-parallel submanifolds were classified by Ferus, Takeuchi, Backes
and Reckziegel [F, Ta, BR]; in particular, it was shown that they are always open parts
of complete ones and that the latter are exactly the (extrinsic) symmetric submanifolds in the
sense of Ferus [F]. In symmetric spaces the symmetric submanifolds were classified by Naitoh,
Takeuchi, Berndt, Eschenburg, Tsukada and others (see [NT, B-T]), after Naitoh had
already shown in [Na1] that these symmetric submanifolds always are II-parallel.

If M ⊂ N is a II-parallel submanifold, then every unit speed geodesic of M is a helical arc (a
concept including geodesics, circles and genuine helices) in the ambient space N (first proved
by Strübing [S]). Therefore the geodesic umbrella of Cartan’s theorem has to be replaced
in case of this problem by a helical umbrella MU (p,W, b) ; here p is an arbitrary point of
N , W ⊂ TpN is the prescribed tangent space for the II-parallel submanifold M to be looked
for, b : W × W → W⊥ is the prescribed second fundamental form for M at p and U a
sufficiently small starshaped neighborhood of 0 in W . In fact, this helical umbrella satisfies
the initial data (p,W, b) , and if W is curvature invariant, then the covariant derivative of its
second fundamental form vanishes at p (see Proposition 8).

In order to give some insight in the main result (Theorem 1) the space End−(TpN) of skew-
adjoint endomorphisms of TpN and its linear subspace

MW := {A ∈ End−(TpN) |A(W ) ⊂W⊥ and A(W⊥) ⊂W }

are introduced. Definition 1 associates with b a linear map Ab : W → MW , u 7→ Ab
u ; then

for every u ∈ W the helical arc cu , the analogue of the geodesic of Cartan’s theorem, will be
defined by means of the 1-parameter subgroup t 7→ Exp(t Ab

u) ∈ SO(TpN) , which comprises
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most effectively the helical character of cu (see Definition 3). The helical umbrella now is defined
by

MU (p,W, b) := { cu(1) |u ∈ U } .

It should be mentioned that, if there exists a II-parallel submanifold M with the initial data
(p,W, b) , then it always contains such a sufficiently small helical umbrella MU (p,W, b) as an
open subset (see Proposition 5(c) and Corollary 4).

Lemma 4 shows how the second fundamental form of a submanifold M ⊂ N determines the
“twisting” of the tangent spaces of M in TN along a curve c : J → M with c(0) = p :
Namely, by parallel transport of the second fundamental form of M along c back to TpN (and
using the above mentioned map b 7→ Ab ) one obtains a function A : J → End−(TpN) , and
if g : J → SO(TpN) is the solution of the the differential equation g′(t) = g(t) ◦ A(t) with
g(0) = idTpN , then the linear isometry

ϕ(t) = (
t

‖
0
c )N ◦ g(t) : TpN → Tc(t)N (t ∈ J)

maps TpM (resp. ⊥pM ) by parallel transport within M (resp. within the normal bundle
⊥M ) onto Tc(t)M (resp. onto ⊥c(t)M ). In case that c = cu is a geodesic of a II-parallel
submanifold with ċu(0) = u this M -split-parallel displacement of TpN along cu turns out to
be the isometry

ϕb
u(t) = (

t

‖
0
c )N ◦ Exp(t Ab

u) : TpN → Tc(t)N

for every t ∈ J (see Proposition 5(c)). As a consequence of this, as an substitute for the
parallel translation along cu in Cartan’s above mentioned theorem these isometries ϕb

u(t) must
serve; hence Vu has to be replaced by ξu(t) := ϕb

u(t)(W ) ; and in addition a bilinear map
hu(t) : ξu(t) × ξu(t) → ξu(t)⊥ has to be constructed by transporting b to Tcu(t)N via ϕb

u(t) .
Now Theorem 1 states:

The helical umbrella MU (p,W, b) is II-parallel if and only if for all unit vectors u ∈ W the
subspaces ξu(t) are curvature invariant and the bilinear maps hu(t) are semiparallel (see
Definition 1(b)).

In [PR2] Pawel and Reckziegel already solved the problem for spherical submanifolds (con-
stituting a subclass of the set of all II-parallel submanifolds) by constructing circular umbrellas
(see also Example 7).

From Corollary 5 one sees that in a space N of constant curvature there exists a II-parallel
submanifold M with the initial data (p,W, b) if and only if b is RN

p -semiparallel. There is
known a quite different sufficient and necessary tensorial condition for the existence of II-parallel
submanifolds in standard spaces discovered by D.Ferus in [F] for N = Rn and later extended
to the other spaces of constant curvature in [BR] (see Section 2 there), namely that a certain
bilinear map L : W ×W → End(W ) associated with the triple (p,W, b) is a euclidean Jordan
triple system. In Section 4 Ferus’ calculations will be presented in such a way that one is able to
prove (by purely tensorial calculations) that in case of a constant curvature N the conditions
of Ferus and ours are equivalent (see Theorem 3).

For the proof of Theorem 1 in Section 5 a framework which concerns the differential geometry
(up to second order) for arbitrary m-dimensional submanifolds M ⊂ N (without reffering to
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a special submanifold M) is developed. As the splittings TpN = TpM ⊕ ⊥pM for p ∈ M
are crucial, the Graßmann bundle τ : N̂ → N with fibres N̂p := Gm(TpN) and the following
bundles over N̂ will be considered: the pull back vector bundle E := N̂×N TN → N̂ (with fibre
Tτ(W )N over W ∈ N̂ ), the canonical splitting E = >>⊕⊥⊥ which at a “point” W ∈ N̂p is given
by TpN = W⊕W⊥ , the principal bundle P of orthonormal frames of E adapted to this splitting,
the vector bundle B of “potential” second fundamental forms given by BW := L2(W,W⊥)
and the vector bundle M whose fibres MW had been described above. The bundle P is
canonically equipped with a connection HP which induces distinguished covariant derivatives of
the associated vector bundles E , B and M . In particular the parallel displacement in E will be
a universal split-parallel displacement, it describes theM -split-parallel displacement for arbitrary
m-dimensional submanifolds. Moreover, if the second fundamental form of an m-dimensional
submanifold M is considered as a section in B along its Gauß map, then its covariant derivative
(just mentioned) coincides with the one usually used in submanifold geometry. Key object in this
treatment is a certain differential 1-form ν̂ on N̂ with values in the bundle M , which “contains”
the second fundamental form of arbitrary m-dimensional submanifolds of N ; using it one can
formulate universal Gauß and Weingarten equations and a universal formula combining the
curvature equations of Gauß, Codazzi and Ricci (see (75), (78) and Example 9).

On the other hand, for every q ∈ N and W ∈ N̂q the restriction ν̂|TW N̂q is the well known
isomorphism between the tangent space of the symmetric space Gm(TqN) at the “point” W
and the subspace MW of the Lie algebra End−(TqN) of the transformation group O(TqN)
(see Remark 7 and Theorem 4). This fact enables one to construct a linear connection ∇̂
(with torsion) on the manifold N̂ (see Section 6), which – concerning this problem – seems
to be adapted to the geometry of the Graßmann bundle in the best possible way. In fact, for
every m-dimensional submanifold M a relation between the covariant derivative of its second
fundamental form and the second fundamental form of the Gauß map ξM of M (see Theorem 6)
will be derived; as a Corollary of this one gets the important geometric insight:

M has a parallel second fundamental form if and only if ξM is an affine map into (N̂ , ∇̂) .

The theorem mentioned just now and its corollary generalize Vilms’ well known results from
[V2] concerning submanifolds in euclidean space.

Further objects, which are crucial for the investigations done in this thesis, are distinguished
m-dimensional subspaces Tb ⊂ TW N̂ associated with the bilinear maps b ∈ BW (see Section 7).
For m-dimensional submanifolds they play a similar role as the spaces of acceleration vectors
∈ T (TN) for curves of N , which also do not fill the entire second order tangent bundle of N
(see Theorem 7). In fact, such “higher ordered tangent spaces” of submanifolds were already
investigated by Ambrose in [A]; the relation between his investigation and the subspaces Tb

is described in Theorem 7 and Proposition 16. As a byproduct I obtain a new criterion for the
involutivity of a distribution (see Corollary 11).

Now one can conclude: The construction of a submanifold M ⊂ N with parallel second fun-
damental form for given initial data (p,W, b) is equivalent to the construction of an affine
(=autoparallel) submanifold in (N̂ , ∇̂) for the initial data (W, Tb) . The only local candidates
for such affine submanifolds in N̂ are the geodesic umbrellas described in Cartan’s theorem.
As was shown in [PR1] this theorem remains valid in every “affine” manifold (N̂ , ∇̂) , if the
condition “Vu is curvature invariant” is replaced by “Vu is curvature and torsion invariant”. In
Proposition 14 these “integrability conditions” are translated into the “integrability conditions”
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for the parallelity of the second fundamental form of the helical umbrella MU (p,W, b) . After
that the proof of the main result is finished quickly (see Section 8).

In Section 9 a global version of Theorem 1 is proved. In particular, one obtains that in a
symmetric space N a II-parallel isometric immersion from a complete riemannian manifold into
N exists for prescribed initial data (p,W, b) , if an arbitrarily small helical umbrella MU (p,W, b)
is II-parallel. This local condition can be checked by testing only a finite number of tensorial
equations at the point p (see Theorem 2).

For the sake of simplicity I have supposed in this paper that the riemannian metric of N is
positive definite. In the case of a pseudoriemannian manifold N of index k ∈ {1, . . . ,dimN−1}
the prescribed tangent space W ∈ Gm(TpN) in Theorem 1 must be supposed to be non-
degenerate (with resprect to the metric of N ); if this pseudoeuclidean vector space has index
` ∈ {0, . . . ,min{m, k}} , the Graßmann bundle τ : N̂ → N has to be restricted to the set
of the subspaces of this kind. In Section 11 this fact and the necessary modifications of the
investigation are described in detail. Here I will only mention one fact. In a complete riemannian
manifold the maximal helical arcs are defined on the whole real line R . But this is not true
in the pseudoriemannian case, because a geodesically complete pseudoriemannian manifold in
general is not totally complete; in Proposition 3 an essential exception is described, namely
pseudoriemannian symmetric spaces (more generally reductive homogeneous spaces with the
canonical connection); although this fact is known, there is given a proof, because I could not
find one in textbooks.

So far the content of the thesis was described with regard to Theorem 1, the analogue of Car-
tan’s theorem cited at the beginning. In fact, the purpose of the thesis is also to give more
insight into the geometry of II-parallel submanifolds. For instance, the description of helical
arcs in Definition 3 and of the twisting of the tangent space of a II-parallel submanifold along
a geodesic in Proposition 5 (already presented in [JR]) seem to be new. In fact, this twisting
of tangent planes occurs also in a slightly more general situation (see Proposition 6 and Corol-
lary 3). Furthermore, Corollary 4 shows that the well known rigidity of II-parallel submanifolds
can be extended to submanifolds, for which some k-th covariant derivative of the second fun-
damental form vanishes identically. Also Corollary 2 should be mentioned, which says that a
II-parallel submanifold of a locally symmetric space again is locally symmetric, a result which is
stated in [Na1] without proof. As the second fundamental form hM of a submanifold M is the
primary object of the thesis, I will here also mention Proposition 1, which gives an interpretation
of hM by means of the infinitesimal movement of the tangent spaces of M along curves. In
Section 6 it is shown that this fact can be derived also via the “universal second fundamental
form” ν̂ from a very general observation concerning associated fibre bundles (see Lemma 6).

As well I could have declared the generalization of Vilms’ result (Theorem 6 and Corollary 10)
as the main topic of this thesis. In regard to this it was of interest to compare the linear
connection ∇̂ with the Levi-Civita connection ∇LC of the canonical riemannian metric of the
Graßmann bundle; the main properties of ∇LC are described in Proposition 12; the comparision
can be found in Section 6 (Theorem 5, Corollary 8 and 9).

The last Section deals with a riemannian manifold N which is equipped with an additional
“parallel” geometric structure (see Definition 13). Then it is asked for II-parallel isometric im-
mersions, which in some sense are compatible with this structure. Starting with a distinguished
subspace W0 ∈ N̂ there is constructed a parallel subbundle N̂(W0) → N of τ : N̂ → N ,
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the fibres of which are symmetric subspaces of the fibres of τ and the bundle space of which
turns out to be an affine submanifold of (N̂ , ∇̂) (see assertion (i) of Example 16(c) and Propo-
sition 24). An m-dimensional II-parallel isometric immersion f : M → N , whose Gauß map
satisfies ξf(M) ⊂ N̂(W0) are considered as compatible with the given structure of N , and the
condition ξf(M) ⊂ N̂(W0) is fulfilled, if at one point p ∈ M the 1-jet of ξf is in accordance
with this fact (see Theorem 12). That this abstract theory makes sense is demonstrated by
two examples, namely by complex and Lagrangian II-parallel submanifolds in Kählerian man-
ifolds (see Corollary 14) and by extrinsic symmetric submanifolds in symmetric spaces (see
Corollary 15 and Theorem 13).

Lastly some words to Section 10 are in order. In it the theory for II-parallel submanifolds in N
is extended to strips along arbitrary differentiable maps f : M → N . (Strips can be considered
as generalizations of immersions, since the Gauß map of an immersion is a strip.) Having done
this one recovers easily a theorem describing a condition that the image of a differentiable map is
contained in a II-parallel submanifold (Theorem 11); this result includes Erbacher’s theorem
on the reduction of codimension for isometric immersions in real space forms; see [R, Theorem 1]
and [E].

2 Helical arcs and helical umbrellas

In this thesis all manifolds, maps etc. are assumed to be C∞-differentiable if not otherwise
stated. N always denotes a connected riemannian manifold of dimension n ; 〈· , ·〉 , ∇N and
RN denote its riemannian metric, Levi-Civita connection and curvature tensor, respectively.
Furthermore, for any curve c : J → N and any t1, t2 ∈ J let

(
t2
‖
t1

c )N : Tc(t1)N → Tc(t2)N (1)

denote the parallel displacement in N along c . For all other manifolds the analogous geometric
objects will be marked by an appropriate index. If f : M → N is an isometric immersion from
a further riemannian manifold M , its second fundamental form and shape operator are denoted
by hf resp. Sf , its mean curvature vector field by Hf , its normal bundle by ⊥f , the canonical
connection on ⊥f by ∇⊥f and the curvature tensor of ∇⊥f by R⊥f . The covariant derivative
of hf is defined by

(∇Xh
f)(Y, Z) = ∇⊥f

Xh
f(Y, Z)− hf(∇M

XY, Z)− hf(Y,∇M
XZ) (2)

for X, Y, Z ∈ Γ(TM) . To say that hf is parallel means ∇hf = 0 . For a submanifold M ⊂ N
the normal bundle ⊥M , second fundamental form hM , shape operator SM and mean curvature
vector field HM are those of the inclusion map M ↪→ N . If the second fundamental form of
an isometric immersion or a submanifold is parallel, we will also speak shortly of II-parallel
isometric immersions resp. submanifolds. For the fundamentals of submanifold geometry see
[Ch].

For any vector bundle E → N and any C∞-map f : M → N the C∞(M)-module of sections
in E along f will be denoted by Γf (E) . Finally, by ∂ we denote the canonical unit vector
field on R ; for instance, for a curve c : J → N and a vector field Y ∈ Γc(TN) ∇N

∂Y is its
covariant derivative.1

1For the covariant differentiation of vector fields along maps see [P] p.36.
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Example 1 (Spherical immersions).

(a) Every spherical immersion f is II-parallel, because then hf(X,Y ) = 〈X,Y 〉Hf with
∇⊥fHf = 0 holds by definition. Moreover, every totally geodesic immersion f is spherical
(with Hf = 0 ) and therefore II-parallel.

(b) A unit speed curve c : J → N (which of course is an isometric immersion) is II-parallel if
and only if it is a circular arc, i.e., if it satisfies the differential equation

∇N

∂∇
N

∂ ċ + 〈∇N

∂ ċ,∇
N

∂ ċ〉 · ċ = 0 ,

where automatically 〈∇N

∂ ċ,∇
N

∂ ċ〉 is constant , see §1 in [LN].

As the second fundamental form of a submanifold is of primary interest in this thesis, I will give
now a very geometric description using the Graßmann manifold Gm(TpN) of the m-dimensional
linear subspaces of the tangent space TpN .

Proposition 1 (A Graßmann approach towards the second fundamental form). Let be given
an m-dimensional submanifold M of a riemannian manifold N and a point p ∈M . Then the
second fundamental form hMp of M at p can be obtained in the following way: If c : J → M
is a curve with c(0) = p and ċ(0) =: u , define the curve

ξ : J → Gm(TpN) , t 7→(
0

‖
t
c )N(Tc(t)M)

= the parallel displacement of Tc(t)M in N along c to p

in the Graßmann manifold Gm(TpN) and put W := TpM . Then for the parameters t of a
sufficiently small neighbourhood U(0) ⊂ J the linear subspaces ξ(t) ⊂ TpN = W ⊕W⊥ can be
interpreted as the graphs of linear maps `(t) : W → W⊥ and by ordinary differentiation of the
function ` : U(0) → L(W,W⊥) one obtains

hMp (u, v) = `′(0) v for all v ∈ TpM .

Proof. First notice that ξ is a differentiable curve in Gm(TpN) and that the graphs of all linear
maps W → W⊥ constitute a neighbourhood U(W ) of ξ(0) = W in Gm(TpN) ; this implies
the existence of the neighbourhood U(0) .

Now, for every vector v ∈ W let Y v denote the ∇M-parallel vector field in M along c with
Y v(0) = v and define its “backward parallel displacement”

Ŷ v : J → TpN , t 7→ (
0

‖
t
c )N Y v(t)

(see the following Definition 2 and Proposition 2(a)); notice that one has
(
∇N

∂ Y
v
)
t=0

= (Ŷ v)′(0) .
Therefore we obtain for t ∈ U(0)

hMp (u, v) =
(
∇N

∂ Y
v −∇M

∂ Y
v

)
t=0

= (Ŷ v)′(0) . (3)

Using the orthogonal projections
TpN

Q−−−−→ W⊥

P

y
W
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and the fact that { Ŷ v(t) | v ∈ W } = ξ(t) = { v + `(t)v | } by our choice of the linear map `(t)
we get for every t ∈ U(0) and v ∈W

`(t)PŶ v(t) = QŶ v(t) and therefore `′(t)PŶ v(t) + `(t)P (Ŷ v)′(t) = Q(Ŷ v)′(t) .

Since `(0) ≡ 0 and Ŷ v(0) = v and because of (3), we obtain `′(0) v = QhMp (u, v) =
hMp (u, v) .

In the previous proof we have used the subset U(W ) . In the general situation of a euclidean
vector space V with dimV =: n > m and a subspace W ∈ Gm(V ) the analogous set U(W ) ⊂
Gm(V ) is well known to be open and dense in Gm(V ) ; furthermore, the map

x : U(W ) → L(W,W⊥) characterized by W ′ = graph of x(W ′) (4)

is a C∞-chart of the manifold Gm(V ) ; obviously this chart is canonical with respect to the
subspace W . Thus we obtain the canonical isomorphism

dx : TW Gm(V ) → L(W,W⊥) ; (5)

With this terminology we can formulate the result of Proposition 1 by

hMp (u, v) = dx
(
ξ̇(0)

)
v for all v ∈ TpM . (6)

As is well known, Gm(V ) is a symmetric space ∼= O(V )/H with the isotropy group

H := { g ∈ O(V ) | g(W ) = W }

(e.g. see [By], p. 362). The corresponding decomposition of the Lie algebra o(V ) = End−(V ) is
o(V ) = h⊕m with the Lie algebra h of H and the subspace

m := MW := {A ∈ End−(V ) |A(W ) ⊂W⊥ and A(W⊥) ⊂W } . (7)

The notation MW is introduced for further convenience. Furthermore,

ΘW : MW → TW Gm(V ) , A 7→ ḋ
dt

∣∣∣
t=0

(
Exp(tA)(W )

)
(8)

is the isomorphism always used in the theory of symmetric spaces. In fact, the isomorphisms in
(5) and (8) are related in the simplest way to each other, namely by

∀ A ∈ MW : dx
(
ΘW (A)

)
= A|W . (9)

The proof of (9) runs in the lines of the proof of Proposition 1 with the following modifications:

instead of Ŷ v use fv : R → V , t 7→ Exp(tA)(v) for every v ∈W and
instead of ξ(t) use ξ(t) := Exp(tA)(W ) = { fv(t) | v ∈W } for every t ∈ R ,

and notice that we have f ′v(t) = Exp(tA)(Av) now and therefore f ′v(0) = Av ∈W⊥ .

Combining (6) and (9) we obtain

Corollary 1. If in the situation of Proposition 1 A ∈ MW is the endomorphism character-
ized by Av = hMp (u, v) for all v ∈ TpM , then ΘW (A) = ξ̇(0) (see also Definition 1(a) and
Example 2(a)).
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Before we start with the investigation of II-parallel submanifolds, we have to make some prepa-
rations.

Definition 1. Let V be a euclidean vector space, W 6= {0} a proper linear subspace of
V , End−(V ) the vector space of skew-adjoint endomorphisms of V and L(W,W⊥) resp.
L2(W,W⊥) the vector spaces of linear resp. bilinear maps ` : W → W⊥ resp. b : W ×W →
W⊥ .

(a) For every ` ∈ L(W,W⊥) let A` ∈ MW be the unique element with A`|W = ` (see (7));
notice, A`|W⊥ = −`∗ (where `∗ : W⊥ → W denotes the adjoint of ` ) and the map
L(W,W⊥) → MW : ` 7→ A` is an isomorphism. For every pair (b, v) ∈ L2(W,W⊥) ×W
we put Ab

v := Ab(v,·) .

(b) If R is an algebraic curvature tensor of type (1,3) on V (see [Be] p. 46) and b ∈
L2(W,W⊥) , then we associate a skew-symmetric bilinear map Rb : W ×W → End−(V )
with the quadruple (V,W, b,R) by

Rb(u1, u2) := R(u1, u2)− [Ab
u1
, Ab

u2
] for all u1, u2 ∈W ; (10)

here [·, ·] denotes the commutator in End−(V ) . It should be noticed that [Ab
u1
, Ab

u2
](W ) ⊂

W and [Ab
u1
, Ab

u2
](W⊥) ⊂W⊥ . If in addition, W isR-invariant, i.e., R(W,W )(W ) ⊂W ,

then we have Rb(W,W )(W ) ⊂W and Rb(W,W )(W⊥) ⊂W⊥ therefore; in this situation
we will say that b is R-semiparallel, if for all u1, u2, v1, v2 ∈W we have

Rb(u1, u2)(b(v1, v2)) = b(Rb(u1, u2)v1, v2) + b(v1, Rb(u1, u2)v2) ; (11)

see also Remark 8.

(c) For every A ∈ End−(V ) and v ∈ V let V (A, v) denote the smallest A-invariant subspace
of V containing v , and let βA

v denote the orbit R → V , t 7→ Exp(tA) v of the 1-
parameter subgroup R → SO(V ) , t 7→ Exp(t A) ; dim V (A, v) will also be called the
rank of the orbit βA

v (see Lemma 1(b)).

Example 2. (a) Significance of the tensors Ab
u in submanifold geometry. If M is a sub-

manifold with shape operator SM , then for every p ∈ M and u ∈ W := TpM the
endomorphism Ab

u with b := hMp satisfies

∀ (v, z) ∈ TpM ×⊥pM : Ab
u(v) = hM(u, v) and Ab

u(z) = −SM
z u .

Notice that the endomorphism A in Corollary 1 concides with Ab
u . Furthermore, if we

assign the tensor Rb to the quadruple (TpN,TpM,hMp , R
N
p ) according to (10) the curvature

equations of Gauß and Ricci can be written in a uniform manner for all u1, u2, v1, v2 ∈ TpM
and z1, z2 ∈ ⊥pM by

〈RM
p (u1, u2)v1, v2〉 = 〈Rb(u1, u2)v1, v2〉 and

〈R⊥M
p (u1, u2)z1, z2〉 = 〈Rb(u1, u2)z1, z2〉 .

If TpM is curvature invariant (i.e. RN
p -invariant), then we even have

RM
p (u1, u2) = Rb(u1, u2)|TpM and

R⊥M
p (u1, u2) = Rb(u1, u2)|⊥pM ;
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thus in this situation hMp is RN
p -semiparallel if and only if for all u1, u2, v1, v2 ∈ TpM we

have

R⊥M
p (u1, u2)(hMp (v1, v2)) = hMp (RM

p (u1, u2)v1, v2) + hMp (v1, RM
p (u1, u2)v2) , (12)

which is the usual characterization in case of curvature constant spaces N .

(b) Let V and W be as in Definition 1 and put b := 〈· , ·〉 z ∈ L2(W,W⊥) and ω := ‖z‖ with
some vector z ∈W⊥ . Then for every unit vector u ∈W we get A := Ab

u = −u ∧ z : v 7→
〈v, u〉z − 〈v, z〉u ; in particular, Au = z , Az = −ω2 u and Av = 0 for v ∈ span{u, z}⊥ .
Thus the orbits of these vectors with respect to the 1-paramater subgroup t 7→ Exp(tA)
are βA

u (t) = cos(ω t)u + ω−1 sin(ω t) z , βA
z (t) = cos(ω t) z − ω sin(ω t)u and βA

v ≡ v .
If furthermore R is an algebraic curvature tensor on V , then we get Rb(u1, u2) =
R(u1, u2) + 〈z, z〉u1 ∧ u2 for all u1, u2 ∈W ; if in addition W is R-invariant, b therefore
is R-semiparallel if and only if R(u1, u2)z = 0 for all u1, u2 ∈W .

Lemma 1. Let an element A ∈ End−(V ) and a unit vector v ∈ V be given and put r :=
dim V (A, v) . Then with the notations of Definition 1(c) the following assertions (a) – (c) are
true:

(a) There exists an orthonormal basis (a1, . . . , ar) of V (A, v) with a1 = v and numbers
κ1, . . . ,κr−1 ∈ R+ such that

Aai = −κi−1 ai−1 + κi ai+1 for i = 1, . . . , r (13)

holds with a0 := ar+1 := 0 and κ0 := κr := 0 . The vectors a1, . . . , ar and numbers
κ1, . . . ,κr−1 are uniquely determined by the pair (A, v) .

(b) V (A, v) = span{Akv | k = 0, . . . , r − 1 } = span
(
βA

v (R)
)

= Exp(tA)(V (A, v))

(c) With the notations of (a) the following holds: The functions yi = Exp(tA) ai (1 ≤ i ≤ r)
solve the initial value problem

y′i = −κi−1 yi−1 + κi yi+1 and yi(0) = ai for i = 1, . . . , r

with y0 := yr+1 := 0 ; notice, βA
v = y1 .

Proof. For (a). Differential geometers are familiar with the proof from Frenet theory of curves:
Put a1 := v . Then Aa1 ⊥ a1 and for r > 1 one has κ1 := ‖Aa1‖ > 0 , put a2 := κ−1

1 Aa1 .
Then Aa2 + κ1 a1 ⊥ a1, a2 and for r > 2 one has κ2 := ‖Aa2 + κ1 a1‖ > 0 , put a3 :=
κ−1

2 (Aa2+κ1 a1) . Continuing this procedure the orthonormal basis (a1, . . . , ar) of V (A, v) and
the numbers κ1, . . . ,κr−1 ∈ R+ are constructed. Finally, Aar + κr−1 ar−1 ⊥ a1, . . . , ar ; since
on the other hand Aar +κr−1 ar−1 ∈ V (A, v) , one obtains the last equation Aar = −κr−1 ar−1 .

For (b). V (A, v) = span{Akv | k = 0, . . . , r − 1 } is clear from the definition of V (A, v) , and
Exp(tA)(V (A, v)) = V (A, v) follows from Exp(tA) =

∑∞
k=0

1
k! · t

k Ak ; in particular we get
βA

v (R) ⊂ V (A, v) . Conversely, if βA
v (R) ⊂W holds for some linear subspace W ⊂ V , then also

the derivatives (βA
v )(k)(0) = Akv (k < r) are contained in W , hence V (A, v) ⊂W .

For (c). Since d
dtExp(tA) = Exp(tA)A , the statement follows from (13).
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Lemma 2. Let be given two quadruples (V,W, b,R) and (Ṽ , W̃ , b̃, R̃) as in Definition 1(b) and
a linear isometry ϕ : V → Ṽ with ϕ(W ) = W̃ and assume that for all u1, u2 ∈W and v ∈ V
the following holds:

b̃(ϕ(u1), ϕ(u2)) = ϕ(b(u1, u2)) and

R̃(ϕ(u1), ϕ(u2))ϕ(v) = ϕ(R(u1, u2)v) .

Then W̃ is R̃-invariant if and only if W is R-invariant; and if the latter is true, then b̃ is
R̃-semiparallel if and only if b is R-semiparallel.

Proof. Notice that ϕ is an isomorphism between the two quadruples.

An essential tool in our treatment will be the procedure of envelopping a curve, which is the
converse of Cartan’s procedure of developping a curve:

Definition 2 (De- and envelopments). Here we suppose that the manifold N is only equipped
with a linear connection ∇N . For every curve c : J → N with 0 ∈ J and q := c(0) we define:

(a) For every vector field Y : J → TN along c the function Ŷ : J → TqN given by

Ŷ (t) := (
0

‖
t
c )N Y (t) (see (1))

is called the backward parallel displacement of Y into TqN .

(b) The curve C : J → TqN with initial point C(0) = 0 whose derivative C ′ is the back-
ward parallel displacement of the vector field ċ is called the development of c (see
[KN] vol. 1, p. 130). Conversely, c will be called “the” envelopment of C (see Proposi-
tion 2(b)).

Proposition 2 (Envelopments). In the situation of Definition 2 let a point q ∈ N be given.

(a) If Ŷ is the backward parallel displacement of a vector field Y along a curve c : J → N ,
then the derivative Ŷ ′ is the backward parallel displacement of the covariant derivative
∇N

∂ Y . In particular, in a riemannian manifold the Frenet apparatus of a curve “coincides”
with the Frenet apparatus of its envelopment (considered as a curve in the euclidean space
TqN ).

(b) For every C∞-curve C : J → TqN with 0 ∈ J and C(0) = 0 there exists an interval
J̃ ⊂ J with 0 ∈ J̃ and an envelopment c : J̃ → N of C|J̃ ,which is maximal and unique
in the following sense: If c∗ : J∗ → N is another envelopment of this kind, then we have
J∗ ⊂ J̃ and c∗ = c|J∗ .

(c) Let L be a further manifold, G ⊂ R × L an open neighborhood of {0} × L and as-
sume that Jλ := { t ∈ R | (t, λ) ∈ G } is an interval for every λ ∈ L . Further-
more, let a C∞-map F : G → TqN with F |({0} × L) ≡ 0 be given and denote the
maximal envelopment of Cλ := F (·, λ) by cλ : J̃λ → N for every λ . Then G̃ :=⋃

λ∈L(J̃λ × {λ}) is again an open neighborhood of {0} × L , and

F̃ : G̃→ N , (t, λ) 7→ cλ(t) is a C∞-map .
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(d) Suppose C : J → TqN is a C∞-curve with 0 ∈ J and C(0) = 0 , and let c : J̃ → N denote
its maximal development. Then c is also maximal in the following sense: If c∗ : J∗ → N
is a curve defined on some interval J∗ with J̃ ⊂ J∗ ⊂ J and satisfying c∗|J̃ = c, then
J̃ = J∗.

(e) If N is a riemannian manifold and ∇N its Levi Civita connection, one can say even more:
If δ := sup J̃ < supJ holds in the assertion of (b), then for every compact set K ⊂ N
there exists a parameter s ∈ [0, δ[ such that K ∩ c([s, δ[ ) = ∅ .

Proof. (a) is deduced easily by use of a frame field of TN along c .

Although assertion (b) is well known, we indicate its proof. Let π : L(N) → N denote the
frame bundle of N . As in [KN] ,Vol.1 ,p. 55 the elements of the fibre Lq(N) are considered
as isomorphisms u : Rn → TqN . In order to prove (b) we choose a frame u0 ∈ Lq(N) ,
introduce the vector field X : J × L(N) → TN , (t, u) 7→ u ◦ u−1

0 (C ′(t)) and its horizontal lift
J × L(N) → TL(N) which on L(N) describes a time depending differential equation. Then a
curve E : J∗ → L(N) with E(0) = u0 is a solution of this differential equation if and only if
E is horizontal and π ◦ E is an envelopment of C . This implies (b).

For (c) one works with the vector field X : G × L(N) → TN , (t, λ, u) 7→ u ◦ u−1
0 (F∗ ∂

∂ t(t, λ))
and the corresponding time and parameter depending differential equation.

For (d), let δ := sup J̃ and assume δ < supJ∗. Let E resp. E∗ denote the horizontal lift to
L(N) of c resp. c∗ with E(0) = E∗(0) ; thus lim

t→δ
E(t) = E∗(δ) exists. Now by the proof of (b),

E is the maximal solution of a time depending differential equation described by a vector field
J × L(N) → TL(N). Since δ < supJ , lim

t→δ
E(t) can not exist in L(N) by means of the theory

of ordinary differential equations. This is a contradiction to the assumption δ < supJ∗. Thus
we see J̃ = J∗.

For (e) one modifies the proof of (b) by substituting the bundle L(N) by the orthonormal frame
bundle of N . Then π is a proper map and the assertion follows from the behavior of solutions
of differential equations.

Proposition 3 (Total completeness). Every complete riemannian manifold N and every re-
ductive homogeneous space N (with its canonical connection) is totally complete, that means,
for every p ∈ N and every curve C : J → TpN with 0 ∈ J and C(0) = 0 the maximal
envelopment of C is defined on the entire interval J .

For the case of reductive homogeneous space see also [W]. Notice also that symmetric spaces
are reductive homogeneous spaces.

Proof. Let a curve C : J → TpN with 0 ∈ J and C(0) = 0 be given. – In the case of a
complete riemannian manifold let denote the maximal envelopment of C by c : J̃ → N and
suppose δ := sup J̃ < supJ . Because of ‖C ′(t)‖ = ‖ċ(t)‖ , c([0, δ[) is contained in the ball
Br(q) ⊂ N with r := length(C|[0, δ]) . Since N is complete, the closed ball Br(q) ⊂ N is
compact, and we get a contradiction to Proposition 2(e).

Now let N be a reductive homogeneous space and choose the above point p ∈ N as reference
point. The reductive homogenous structure of N is given by a transitive action φ : G×N → N
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of some Lie group G such that the Lie algebra g of G splits in the direct sum k⊕m , where k is
the Lie algebra of the isotropy group of φ corresponding to p and m is some Ad(K)-invariant
subspace of g ; here we consider g as the Lie algebra of the left invariant vector fields of G .
Then φp : G → M , g 7→ φ(g, p) is a principal fibre bundle over N with structure group K ,
and

θ : m → TpN, X 7→ φp
∗Xe

is an isomorphism. In order to describe the the canonical linear connection2 ∇N of N we equip
the principal fibre bundle φp with the G-invariant connection H defined by

Hg := {Xg |X ∈ m } . (14)

Since the tangent bundle TN is associated with φp via the map

ρ : G× TpN → TN, (g, v) 7→ φg∗v , (15)

the connection H induces also a linear connection ∇N on the tangent bundle, namely the
canonical connection; it should be mentioned that it is independent of the choice of the reference
point p . According to (1) and the construction of ∇N (see [KN], Vol. 1, p. 87) it has the following
characterizing property: For every H -horizontal curve γ : J → G with γ(0) = e the∇N-parallel
displacement in TN along c := φp ◦ γ is given by

(
t

‖
0
c )N = φγ(t)∗ : TpN → Tc(t)N . (16)

Now, starting with the given curve C : J → TpN we define the function

A := θ−1 ◦ C ′ : J → m . (17)

It is well known (compare with the analogous situation in [KN], Vol. 1, Lemma on p. 69) that
there exists a curve γ : J → G (defined on the entire interval J ) satisfying the differential
equation

γ̇(t) = A(t)γ(t) for all t ∈ J with the initial value γ(0) = e . (18)

The proof will be complete when we will have shown that

c := φp ◦ γ : J → N

is the envelopment of C . This is done by means of the Equations (16) – (18) and the fact that
γ is H -horizontal by construction:

(
t

‖
0
c )NC ′(t) = φγ(t)∗C

′(t) = φγ(t)∗φ
p
∗A(t)e = (φγ(t) ◦ φp)∗A(t)e

= (φp ◦ Lγ(t))∗A(t)e = φp
∗Lγ(t)∗A(t)e = φp

∗Aγ(t) = φp
∗ γ̇(t) = ċ(t) .

Inspired by the treatment [NY] of circles in arbitrary riemannian manifolds we now will define
helical arcs in the following way.

2I have learned this construction from Prof. H. Reckziegel. For another description see [KN]Vol.2, p. 190.
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Definition 3 (Helical arcs). In a riemannian manifold N a curve c : J → N with 0 ∈ J ,
q := c(0) and u := ċ(0) will be called a helical arc, if there exists some A ∈ End−(TqN)
such that c is the envelopment of C|J where C : R → TqN is the curve with C(0) = 0 and
C ′(t) = Exp(tA)u , in other words,

ċ(t) =
(
(

t

‖
0
c )N ◦ Exp(tA)

)
u for all t ∈ J . (19)

Note that ‖ċ(t)‖ ≡ ‖u‖. The rank of the orbit βA
u : t 7→ Exp(tA)u is also called the rank

of the helical arc c (see Definition 1(c)). If W is a proper subspace of TqN containing the
vector u , b ∈ L2(W,W⊥) and A = Ab

u (see Definition 1(a)), we will say that c is generated by
the quadruple (q,W, b, u) . If c is the maximal envelopment of C in N , then c is called the
maximal helical arc associated with the pair (u,A) .

Remark 1. (a) In a riemannian manifold N a unit speed curve c : J → N with 0 ∈ J is a
helical arc of rank r if and only if its Frenet equations are

∇N

∂ Ei = −κi−1Ei−1 + κiEi+1 for i = 1, . . . , r

with E1 = ċ , suitable numbers κ1, . . . ,κr−1 ∈ R+ , κ0 := κr := 0 and E0 := Er+1 := 0 .

(b) If N is complete, then every maximal helical arc of N is defined on R .

Proof. Since, according to Proposition 2(a), c has the same Frenet apparatus as its development
C , statement (a) follows from Lemma 1(c). For (b) take notice of Proposition 3(a).

Example 3. The helical arcs of rank 0 are the constant curves. Helical arcs of rank 1 are the
geodesics with velocity different from 0 ; and the unit speed helical arcs of rank 2 are the circular
arcs (see Example 1(b)), which are no geodesics; this follows from Remark 1(a); see also [NY].
It should also be noticed that if u is a unit vector then in the situation (19) c has rank 2 if and
only if (u, ω−1Au) is an orthonormal basis of V (A, u) for some ω ∈ R+ ; then we are in the
situation of Example 2(b) with z := Au .

Definition 4 (M -split-parallel displacement). Let M be a submanifold of N , c : J → M a
curve with 0 ∈ J and p := c(0) . Then the M -split-parallel displacement

(
ϕ(t)

)
t∈J

of TpN
along the curve c is the family of linear isometries ϕ(t) : TpN → Tc(t)N characterized by the
following properties:

• ϕ(t)|TpM is the parallel displacement (
t

‖
0
c )M : TpM → Tc(t)M in M along c (in partic-

ular Tc(t)M = ϕ(t)(TpM) ) and

• ϕ(t)|⊥pM is the parallel displacement (
t

‖
0
c )⊥M : ⊥pM → ⊥c(t)M in the normal bundle

⊥M along c .

Example 4. By means of the M -split-parallel displacement
(
ϕ(t)

)
t∈J

of TpN along the curve
c it is now easy also to describe the parallel displacement of hMp (with respect to ∇ , see (2)
and also (81) and (68)) along c to the point c(t) ; it is given by

ϕ(t) ◦ hMp ◦
(
ϕ(t)−1 × ϕ(t)−1

)∣∣Tc(t)M × Tc(t)M .
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The next proposition shows how the twisting of the tangent spaces of a submanifold M ⊂ N
along a curve c : J →M (described by the isometries ϕ(t) ) is related to the second fundamental
form of M .

Proposition 4 (Relation between the M -split-parallel displacement and hM ). In the situation
of Definition 4 define W := TpM , let `(t) ∈ L(W,W⊥) be the canonical backward parallel
transport of hMc(t)(ċ(t), · ) along c to p , i.e.,

ϕ(t) ◦ `(t) v := hMc(t)(ċ(t), ϕ(t)v) (20)

and define

J 3 t 7→ A(t) := A`(t) ∈ MW (see Definition 1(a) and Formula (7)) . (21)

Then the function

g : J → SO(TpN) , t 7→ (
0

‖
t
c )N ◦ ϕ(t)

is the solution of the linear differential equation

g′(t) = g(t) ◦A(t) with g(0) = idTpN . (22)

Proof. If we put b(t) := hMc(t) , then we derive easily

ϕ(t) ◦A(t) = A
b(t)
ċ(t) ◦ ϕ(t) . (23)

Now we abbreviate ψ(t) := (
t

‖
0
c )N , fix a vector v ∈ TpN and define the vector field Y ∈ Γc(TN)

by Y (t) := ϕ(t)v = ψ(t) ◦ g(t) v . Obviously Ŷ : t 7→ g(t)v ∈ TpN is the backward parallel
displacement of Y into TpN (see Definition 2); thus we get from Proposition 2(a)

∇N

∂ Y (t) = ψ(t) Ŷ ′(t) = ψ(t) ◦ g′(t)v . (24)

If we write Y = Y >+Y ⊥ according to the splitting Tc(t)N = Tc(t)M 	⊥c(t)M , we obtain from
the definition of the M -split-parallel displacement that Y > is a parallel vector field of M and
Y ⊥ a parallel normal field of M . Using the equations of Gauß and Weingarten in combination
with Example 2(a) and (23) we get

∇N

∂ Y (t) = A
b(t)
ċ(t)Y (t) = ϕ(t) ◦A(t)v = ψ(t) ◦ g(t) ◦A(t)v .

Thus, by means of (24) we see that (22) is satisfied.

Remark 2 (The twisting of the tangent spaces of a submanifold). In the situation of Proposition 4
the tangent space Tc(t)M is obtained from g(t)(W ) merely by parallel transport in N along c .
Thus the function g describes the twisting of the tangent spaces of M along c . On the other
hand, because of A(t) ∈ MW and (22) the curve

J → Gm(TpN) , t 7→ g(t)(W )
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is the envelopment of the curve

C : J → TW Gm(TpN) , t 7→
∫ t

0
ΘW (A(s)) ds ;

here we consider the Graßmann manifold Gm(TpN) as symmetric space with its canonical linear
connection (see also Proposition 3(b) and its proof). Taking the definition of A(t) in account
we recognize how the second fundamental form influences the twisting of the tangent spaces of
M along c ; see also Proposition 1.

Besides, it should be mentioned that

the curve c (in Proposition 4) is a geodesic of M if and only if the development C
of c in TpN satisfies C ′(t) = g(t) ċ(0) for all t ∈ J . (25)

Indeed, both statements are equivalent to ∀ t ∈ J : ċ(t) = ϕ(t) ċ(0) .

Proposition 5 (Geometry of II-parallel submanifolds). If M is a II-parallel submanifold of
N , then the following assertions are true:

(a) Every tangent space TpM is curvature invariant, i.e., it is RN
p -invariant.

(b) For every p ∈M the second fundamental form hMp is RN
p -semiparallel.

(c) Every geodesic c : J → M of M is a helical arc in N and the tangent spaces Tc(t)M
rotate uniformly; in more details: If we assume 0 ∈ J , put p := c(0) , u := ċ(0) and
b := hMp , then the M -split-parallel displacement of TpN along c is given by

ϕb
u(t) := (

t

‖
0
c )N ◦ Exp(tAb

u) : TpN → Tc(t)N for all t ∈ J

(see Definition 1). In particular, ċ(t) = ϕb
u(t)u ; hence c is a helical arc generated by the

quadruple (p, TpM,hMp , u) . Furthermore, the second fundamental form hM satisfies

hMc(t)(ϕ
b
u(t) v1 , ϕb

u(t) v2 ) = ϕb
u(t) b(v1, v2) for all v1, v2 ∈ TpM .

Proof. (a) is exactly the Codazzi equation for M , and (b) is obtained immediately from ∇hM =
0 by means of (a) and (12). For (c): We use the notations of Proposition 4; in particular,(
ϕ(t)

)
t∈J

denotes the M -split-parallel displacement along c . Because hM and ċ are parallel,
we find `(t) ≡ `(0) = hMp (u, ·) = b(u, ·) ; consequently we get A(t) ≡ Ab

u . Hence (22) implies
g(t) = Exp(t Ab

u) and consequently ϕ(t) = ϕb
u(t) . – Assertion (d) follows trivially from (c) and

the parallelity of hM .

As a corollary of Proposition 5(a) we easily get the following result, which is mentioned (without
proof) in [Na1], p. 217:

Corollary 2. If f : M → N is a II-parallel immersion into a locally symmetric space N , then
also M is locally symmetric.
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Proof. Since the local symmetry of a space is a local property, we may suppose that M is a
II-parallel submanifold of N and f the inclusion M ↪→ N . Let RN,[ resp. RM,[ denote the
(0,4)-tensor on N resp. M associated canonically with the curvature tensor RN resp. RM . We
must prove ∇MRM,[ = 0 ; this means: If c : J →M is any curve and Yi ∈ Γc(TM) (i = 1, . . . , 4)
are any parallel vector fields along c , we must show RM,[(Y1, Y2, Y3, Y4) ≡ const. Of course, the
proof is based on the Gauß equation:

RM,[(Y1, Y2, Y3, Y4) = RN,[(Y1, Y2, Y3, Y4) + F

with the function

F := 〈hM(Y1, Y4), hM(Y2, Y3)〉 − 〈hM(Y1, Y3), hM(Y2, Y4)〉 ,

which in fact is constant, as hM is parallel. Thus we get(
RM,[(Y1, Y2, Y3, Y4)

)′ =
(
RN,[(Y1, Y2, Y3, Y4)

)′
= (∇ċR

N,[)(Y1, Y2, Y3, Y4) +
∑

i

RN,[(Y1, . . . ,∇
N

∂ Yi, . . . , , Y4) . (26)

Since the Yi are ∇M -parallel, we have ∇N

∂ Yi = hf (ċ, Yi) . Thus Proposition 5(a) implies for
instance:

RN,[(Y1, . . . , Y3,∇
N

∂ Y4) = 〈RN(Y1, Y2)Y3, h
f (ċ, Y4)〉 = 0 .

Because of the symmetry properties of the curvature tensor we also have

∀ i = 1, 2, 3 : RN,[(Y1, . . . ,∇
N

∂ Yi, . . . , , Y4) = 0 .

From (26) we therefore obtain the equation(
RM,[(Y1, Y2, Y3, Y4)

)′ = (∇ċR
N,[)(Y1, Y2, Y3, Y4) ,

which holds in every riemannian manifold N . In the case of a locally symmetric space N the
right hand side of the previous equation vanishes, and thus the corollary is proved.

In the following I will weaken the hypothesis of Proposition 5 and will show that nevertheless
an essential part of assertion (c) keeps valid.

Proposition 6. For every m-dimensional submanifold M ⊂ N the following assertions are
equivalent:

(a)
(
∇uh

M
)
(u, v) = 0 holds for all p ∈M and u, v ∈ TpM .

(b) For every geodesic c : J → M of M with 0 ∈ J and p := c(0) the M -split-parallel
displacement

(
ϕ(t)

)
t∈J

of TpN along c is given by

ϕ(t) = ϕb
u(t) := (

t

‖
0
c )N ◦ Exp(tAb

u) with u := ċ(0) and b := hMp ,

c is the helical arc generated by the quadruple (p, TpM,hMp , u) , and the second fundamental
form hM satisfies

hMc(t)(ċ(t), ϕ
b
u(t) v ) = ϕb

u(t) b(u, v) for all v ∈ TpM .
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(c) The Gauß map ξM : M → N̂ := Gm(TN) , p 7→ TpM is totally geodesic3 with respect to
the covariant derivative ∇̂ introduced in Section 6.

Proof. Let be given a point p ∈M and a vector u ∈ TpM and let c : J →M be a geodesic of
M with 0 ∈ J and ċ(0) = u . We use the notations of Proposition 4 with respect to c . – As ċ
and t 7→ ϕ(t)v are parallel vector fields along c in M for all v ∈ TpM , we get

∇⊥M
∂

(
t 7→ hMc(t)(ċ(t), ϕ(t)v)

)
=

(
t 7→

(
∇ċ(t)h

M
)
(ċ(t), ϕ(t)v)

)
.

Therefore, the following sequence of equivalences is true:(
∇ċ(t)h

M
)
(ċ(t), v) = 0 for all t ∈ J and v ∈ Tc(t)M

⇐⇒ t 7→ hMc(t)(ċ(t), ϕ(t)v) is a parallel normal field for every v ∈ TpM

⇐⇒ the function ` defined in (20) is constant ≡ hMp (u, · )
⇐⇒ the function A defined in (21) is constant ≡ Ab

u with b := hMp

⇐⇒ the solution g of the differential Equation (22) is given by g(t) = Exp(t Ab
u)

⇐⇒ the M -split-parallel displacement of TpN along c is
(
ϕb

u(t)
)
t∈J

.

Therefrom the equivalence “(a) ⇔ (b)” can be read off. Furthermore, in Theorem 6 we will
learn that the second fundamental form hξ of the Gauß map ξ = ξM is related to ∇hM by

hξ
p(u, v) = Θξ(p)(A

b
v) with b := ∇uh

M for all u, v ∈ TpM (p ∈M) .

Therefore assertion (a) is equivalent to hξ
p(u, u) = 0 for all u ∈ TpM (p ∈ M) , which implies

the total geodesy of ξ .

Remark 3. The equivalence “(a) ⇔ (c)” of Proposition 6 is some analogue of Corollary 10 .

Corollary 3. A submanifold is II-parallel if and only if all its tangent spaces are curvature
invariant and one of the three equivalent conditions (a) – (c) in Proposition 6 holds.

Proof. Because of Proposition 5(a) we can start with a submanifold M whose tangent spaces
are curvature invariant. Then according to the equation of Codazzi we have(

∇uh
M

)
(v, w) =

(
∇vh

M
)
(u,w) for all u, v, w ∈ TpM (p ∈M) .

In this situation the II-parallelity of M is equivalent to condition (a) of Proposition 6.

Remark 4. In spaces of constant curvature all submanifolds are curvature invariant; thus here
each of the conditions (a) – (c) of Proposition 6 is equivalent to the II-parallelity of M . In com-
plex space forms of non-vanishing curvature, the curvature invariant submanifolds are exactly
the complex and the totally real ones; see [CO] p.260.

3Notice, every affine immersion ξ : M → N̂ is also totally geodesic, that means, the image ξ◦c of any geodesic
c of M is a geodesic of N̂ . But since ∇̂ has torsion, a totally geodesic immersion ξ : M → N̂ may fail to be
affine, that means: there may exist a parallel vector field Y in M along some curve c , whose image ξ∗Y is not
parallel in N̂ .
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There is a generalization of the argument “∇ċh
M(ċ, · ) = 0 ⇒ A(t) ≡ Ab

u ” of the proof of the
implication “(a)⇒ (b)” of Proposition 6:

Proposition 7. Let M ⊂ N be a submanifold with the following property: There exists some
k ∈ {0, 1, 2, . . .} such that the k-th covariant derivative ∇[k]hM of the second fundamental form
hM (see the proof for more details) satisfies4

∀u ∈ TM :
(
∇[k]hM

)
(u, . . . , u︸ ︷︷ ︸
k+1 times

, · ) = 0 . (27)

If in the situation of Proposition 4 c is a geodesic with initial velocity u := ċ(0) , then the
function J 3 t 7→ A(t) is the restriction of the polynomial

∑k−1
j=0 t

j · Aj : R → MW , whose
coefficients Aj ∈ MW are given by Aj := A`j with `j := 1

j! ·∇
[j]hM(u, . . . , u, · ) ∈ L(TpM,⊥pM)

(according to Definition 1(a)).

Proof. In order to explain first the situation in more detail, let us define for arbitrary j the
covariant derivative ∇S ∈ Γ(Lj+1(TM,⊥M)) for sections S of the bundle Lj(TM,⊥M) by
the same recipe as for the second fundamental form of M , that means

(
∇S

)
(X0, . . . , Xj) := ∇⊥M

X0

(
S(X1, . . . , Xj)

)
−

j∑
i=1

S(X1, . . . ,∇M
X0Xi, . . . , Xj) . (28)

For vector fields Y1, . . . , Yk ∈ Γc(TM) one calculates

(
∇S

)
(ċ, Y1, . . . , Yj) = ∇⊥M

∂

(
S(Y1, . . . , Yj)

)
−

j∑
i=1

S(Y1, . . . ,∇M
∂Yi, . . . , Yj) .

If in particular c is a geodesic of M and Y ∈ Γc(TM) is ∇M-parallel, we get

∇⊥M
∂

(
S(ċ, . . . , ċ, Y )

)
=

(
∇S

)
(ċ, . . . , ċ, Y ) . (29)

Now, according to definition (28) we can define the j-th derivative ∇[j]hM of the second fun-
damental form hM ∈ Γ(L2(TM,⊥M) by

∇[j]hM := ∇ · · ·∇︸ ︷︷ ︸
j times

hM .

By means of Formula (29) we derive by induction(
∇[j]hM

)
( ċ, . . . , ċ︸ ︷︷ ︸
j+1 times

, Y ) = ∇⊥M
∂ · · ·∇⊥M

∂︸ ︷︷ ︸
j times

(
hM(ċ, Y )

)
; (30)

indeed: (
∇[j+1]hM

)
( ċ, . . . , ċ︸ ︷︷ ︸
j+2 times

, Y ) =
(29)

∇⊥M
∂

((
∇[j]hM

)
( ċ, . . . , ċ︸ ︷︷ ︸
j+1 times

, Y )
)

= . . .

Now we go into Proposition 4, but with a geodesic c , and abbreviate W := TpM . If
then ` : J → L(W,W⊥) is defined according to Formula (20), then for every v ∈ W

4For k = 0 condition (27) means hM ≡ 0 , i.e., that M is totally geodesic; in this case we get A(t) ≡ 0 .
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the function t 7→ `(t) v is the backward parallel transport of hMc(t)(ċ(t), ϕ(t)v) in the nor-
mal bundle ⊥M along c to p . Therefore, because of (30) (applied to the parallel field
Y : t 7→ ϕ(t) v) ) we see that the ordinary j-th derivative t 7→ `(j)(t) v of the function
t 7→ `(t) v is the backward parallel transport of

(
∇[j]hM

)
(ċ, . . . , ċ, Y ) in the normal bun-

dle ⊥M along c . Hence, hypothesis (27) implies `(k) ≡ 0 . Consequently, ` is a re-
striction of the polynomial

∑k−1
j=0 t

j · `j with `j := 1
j! · `

(j)(0) = 1
j! · ∇

[j]hM(u, . . . , u, · )
∈ L(W,W⊥) . Because of the linearity of the funcion L(W,W⊥) → MW , λ 7→ Aλ the proposi-
tion is proved.

Corollary 4 (Rigidity of submanifolds). Let M and M̃ be submanifolds of N both satisfying
condition (27) of Proposition 7 for some k ∈ {0, 1, 2, . . .} , and suppose that there exists a point
p ∈M ∩ M̃ such that W := TpM = TpM̃ and

∀u, v ∈W :
(
∇[j]hM

)
(u, . . . , u, v) =

(
∇[j]hM̃

)
(u, . . . , u, v) (31)

holds for j = 0, . . . , k − 1 , and choose some star shaped neighborhood U of 0 in W such that
the exponential maps expMp and expM̃p are defined on U . Then the neighborhoods expMp (U)
and expM̃p (U) of p in M resp. M̃ coincide.

Notice that condition (27) is fulfilled with k = 1 if M and M̃ are II-parallel submanifolds;
condition (31) then reduces to hMp = hM̃p .5

Proof. Let u ∈ W be given, put J := { t ∈ R | tu ∈ U } , consider the geodesics c : J → M
and c̃ : J → M̃ with ċ(0) = u = ˙̃c(0) and construct the functions A, Ã : J → MW and
g, g̃ : J → SO(TpN) corresponding to this geodesics according to Proposition 4. Because of
Proposition 7 and condition (31) we have A ≡ Ã and therefore also g ≡ g̃ (because of (22)).
Assertion (25) then shows that the geodesics c and c̃ have the same development C in TpN ,
namely C(t) = g(t)u . This proves c ≡ c̃ .

Example 5. As is well known the cylinder M := S1 × R is a II-parallel submanifold of R3 .
Generically the unit speed geodesics of M are helical arcs in R3 of rank 3. But there are
exceptional directions at every point. The unit speed geodesics in direction of the ruling of M
are also geodesics in R3 and have rank 1, therefore; and the unit speed geodesics in perpendicular
direction are circles in R3 and have rank 2, therefore. – Since in general the unit speed geodesics
of a II-parallel submanifold will be helical arcs in the ambient space of different ranks, the usual
Frenet theoretical description of helical arcs (as in Remark 1) is not practical for our work.

Proposition 8 (Helical umbrellas). Let be given a point p ∈ N , a proper linear subspace
W 6= {0} of TpN and a symmetric bilinear map b ∈ L2(W,W⊥) . Then there exists a maximal
star shaped neighborhood D of 0 in W such that for each vector u ∈ D the maximal helical
arc cu generated by the quadruples (p,W, b, u) is defined at least on the interval [0, 1] and the
map

expb : D → N , u 7→ cu(1)

is differentiable. Moreover, there exists a star shaped neighbourhood U of 0 in D such that
expb |U is an injective immersion, and the “helical umbrella”

M = MU (p,W, b) := expb(U)
5This special case of Proposition 4 was already proved in Theorem 2 of the article [R].
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is a submanifold of N . We have p ∈ M , its tangent space resp. second fundamental form at
p is given by TpM = W resp. hMp = b , and (∇hM)p = 0 holds if and only if W is curvature
invariant.

Remark 5. In order to motivate the notation “helical umbrella” for the submanifold MU (p,W, b)
we introduce the intervals Ju := { t ∈ R | tu ∈ U } for all vectors u ∈W . Then we get

MU (p,W, b) =
⋃

u∈W

cu(Ju ∩ [0,∞[ ) ;

that means MU (p,W, b) is the union of all “helical rays” cu(Ju∩ [0,∞[ ) emanating from p . Of
course, for every s ∈ R+ the rays cu(Ju ∩ [0,∞[ ) and csu(Jsu ∩ [0,∞[ ) coincide. Therefore, it
would be possible to restrict the consideration to those rays constructed with a unit vector u .
But then the generalization to the pseudoriemannian case (described in Section 11) would not
be so obvious.

It should also be mentioned that (expb |U)−1 : MU (p,W, b) →W may be considered as a chart
of the helical umbrella and that the Christoffel symbol of this chart vanishes at the center p
because of (38).

Proof. We put V := TpN and define the differentiable map

F : R×W → V , (t, u) 7→ Cu(t) :=
∞∑

k=1

1
k!
· tk (Ab

u)k−1 u .

Since Ab
su = sAb

u , F has the following properties:

F (0, u) = Cu(0) = 0 , Csu(t) = Cu(st) , C ′u(t) = Exp(tAb
u)u , hence C ′u(0) = u . (32)

In particular, for every u ∈ W the maximal envelopment cu : J̃u → N of Cu is the maximal
helical arc generated by the quadruple (p,W, b, u) . According to Proposition 2(c) the set G̃ :=⋃

u∈W (J̃u×{u}) is an open neighborhood of {0}×W in R×W and F̃ : G̃→ N , (t, u) 7→ cu(t)
is a C∞-map, which because of (32) satisfies:

F̃ (0, u) = p , csu(t) = cu(st) and ċu(0) = u ; (33)

the second equation is valid for t ∈ J̃su = s−1J̃u (if s 6= 0 ), because the two curves csu and
t 7→ cu(st) have the same development. Since J̃0 = R , D := {u ∈ W | (1, u) ∈ G̃ } is a star
shaped open neighborhood of 0 in W and expb : D → N , u 7→ F̃ (1, u) = cu(1) a C∞-map.
Furthermore, because of (33) we obtain(

t ∈ J̃u ⇐⇒ tu ∈ D
)

and
(
t ∈ J̃u =⇒ cu(t) = expb(tu)

)
. (34)

Now, we get from (33) and (34) expb
∗ u = ċu(0) = u for every u ∈ T0W ∼= W ; consequently

expb
∗ |T0W : T0W → TpN is injective. Therefore, there exists a star shaped neighborhood U of

0 in D such that expb |U is an injective immersion and hence expb(U) is a submanifold of N .

Obviously we have p ∈ M and TpM = W . Now we calculate the second fundamental form
hMp : From (32) we derive C ′′u(t) = Exp(tAb

u)Ab
uu = Exp(tAb

u) b(u, u) , hence C ′′u(0) = b(u, u) .
By means of Proposition 2(a) we therefore obtain

(∇N

∂ ċu)(0) = b(u, u) ∈W⊥ ; (35)
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thus the Gauß equation implies hMp (u, u) =
(
(∇N

∂ ċu)(0)
)⊥ = b(u, u)⊥ = b(u, u) .

It remains to discuss the assertion on ∇hM . If (∇hM)p = 0 holds, then because of the Codazzi
equation W = TpM is curvature invariant. – Conversely, let us suppose the curvature invariance
of W . Then by means of the Codazzi equation (∇hM)p is a symmetric 3-tensor and therefore
it is sufficient to prove:

∀u ∈W : (∇hM)(u, u, u) = 0 . (36)

For that let u ∈ W be given. Repeating the preceding argumentation we obtain C ′′′u (0) =
(Ab

u)2u and therefore
(∇N

∂∇
N

∂ ċu)(0) = Ab
u(b(u, u)) ∈W . (37)

Notice that cu is a curve in M , but not necessarily a geodesic of M . However Equation (35)
implies

(∇M

∂ ċu)(0) = 0 . (38)

Using ċu(0) = u and (38) we get

∇hM(u, u, u) = ∇hM(ċu, ċu, ċu)
∣∣
0

= ∇⊥M
∂

(
hM(ċu, ċu)

)∣∣
0

= W⊥-part of ∇N

∂

(
hM(ċu, ċu)

)∣∣
0
.

Substituting hM(ċu, ċu) = ∇N

∂ ċu −∇
M

∂ ċu we get

∇hM(u, u, u) = W⊥-part of (∇N

∂∇
N

∂ ċu)(0) −W⊥-part of (∇N

∂∇
M

∂ ċu)(0) .

Now the first term in the sum vanishes by means (37) and for the second we calculate using
Equation (38)

W⊥-part of (∇N

∂∇
M

∂ ċu)(0) = hM(ċu(0), (∇M

∂ ċu)(0)) = 0 .

thereby (36) is verified.

Example 6. If in Proposition 8 we choose b = 0 , then the helical arcs cu are geodesics of

N , because then ċu(t) = (
t

‖
0
cu )N u ; thus we end up with the geodesic umbrella of Cartan’s

Theorem; the function expb of the previous proof is the restriction expNp |U of the exponential
map of N . If on the other hand in Proposition 8 we choose b = 〈· , ·〉 z with some vector
z ∈ W⊥ \ {0} , then the helical arcs cu with ‖u‖ = 1 are circular arcs of N with the initial
“acceleration” (∇N

∂ ċu)(0) = z (see the Examples 2(b) and 3); in this case we end up with the
circular umbrella, which was the main tool in the treatment [PR2] on “spherical submanifolds”.
Finally, if W is the tangent space TpM of a II-parallel submanifold M and b = hMp , then for
sufficiently small U the helical umbrella of Proposition 8 is an open part of M according to
Proposition 5(c).

3 The main result

Let be given a riemannian manifold N , a point p ∈ N , a proper linear subspace W 6= {0} of
TpN and a symmetric bilinear map b ∈ L2(W,W⊥) . Motivated by Proposition 5 we define in
the situation of Proposition 8 for every u ∈ D
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• the linear isometry Φb
u := (

1

‖
0
cu )N ◦ Exp(Ab

u) : TpN → Texpb(u)N ,

• the linear subspace Wu := Φb
u(W ) ⊂ Texpb(u)N and

• the symmetric bilinear form bu ∈ L2(Wu,W
⊥
u ) characterized by

bu ◦ (Φb
u × Φb

u)
∣∣(W ×W ) = Φb

u ◦ b .

Theorem 1 (Main result). The helical umbrella MU (p,W, b) from Proposition 8 has parallel
second fundamental form if and only if for every u ∈ U the following conditions are satisfied:

(CI) Wu is curvature invariant and

(SP) bu is RN

expb(u)
-semiparallel.

From Proposition 5 we see that (CI) and (SP) are necessary conditions for the parallelity of the
second fundamental form of MU (p,W, b) ; that these conditions are also sufficient will be proved
in Section 8.

Remark 6. For every vector u ∈ W and every t ∈ R with tu ∈ D let Ru(t) be the algebraic
curvature tensor on TpN characterized by

Φb
tu

(
Ru(t)(v1, v2)v3

)
= RN

expb(tu)(Φ
b
tu v1,Φ

b
tu v2)(Φ

b
tu v3) .

According to Lemma 2 the conditions (CI) and (SP) for arbitrary u ∈ U are equivalent to

(CI’) W is Ru(t)-invariant and

(SP’) b is Ru(t)-semiparallel

for all vectors u ∈W and all t ∈ Ju := { t ∈ R | tu ∈ U } .

Example 7. (a) If b = 0 , then according to Example 6 MU (p,W, b) is a geodesic umbrella.

Since then Φb
u = (

1

‖
0
cu )N and hu = 0 for every u ∈ U , condition (SP) is satisfied trivially

and Theorem 1 is exactly Cartan’s theorem.

(b) If b = 〈· , ·〉 z , then according to Example 6 MU (p,W, b) is a circular umbrella. If we
put zu := Φb

u z = (∇N

∂ ċu)(1) , then we get hu = 〈· , ·〉expb(u) zu . Therefore, according to
Example 2(b) condition (SP) is equivalent to RN(u1, u2)zu = 0 for all u1, u2 ∈Wu . Thus
we have recovered the main result from [PR2] (see p. 200) on the existence of spherical
submanifolds. For a comparison of the results it should be mentioned that because of

Example 2(b) the space Vu := (
1

‖
0
cu )N(W ⊕ Rz) coincides with Wu ⊕ R zu .

Corollary 5 (II-parallel submanifolds in spaces of constant curvature). If N is a riemannian
manifold of constant curvature, then the helical umbrella MU (p,W, b) from Proposition 8 has
parallel second fundamental form if and only if b is RN

p -semiparallel.
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Proof. The assertion follows immediately from Remark 6, because for all choices of u and t we
have Ru(t) = RN

p ; and every subspace of TpN is curvature invariant.

I will shed some further light on this situation in Section 4.

At the end of this section we will derive a characterization of those initial data (p,W, b) in a
symmetric space N , to which there exists a II-parallel submanifold. For that we introduce the
vector space C(V ) of algebraic curvature tensors for an arbitrary euclidean vector space V of
dimension n ≥ 2 and for every subspace W ⊂ V of dimension m ∈ {1, . . . , n − 1} and every
symmetric bilinear map b ∈ L2(W,W⊥) the affine subspace

C(V,W, b) := {R ∈ C(V ) | W is R-invariant and b is R-semiparallel } (see Definition 1(b)) ;

its associated linear space C(V,W, b)L is the space of those algebraic curvature tensors R for
which W is R-invariant and for all u1, u2, v1, v2 ∈W the equations

R(u1, u2)(b(v1, v2)) = b(R(u1, u2)v1, v2) + b(v1, R(u1, u2)v2)

hold. One calculates

d := dim C(V ) ≤ 1
8
n (n− 1) (n2 − n+ 2) .

The space C(V ) inherits an inner product from V in the usual way; moreover, for every
g ∈ O(V ) and R ∈ C(V ) the map gCR : (u, v, w) 7→ g

(
R(g−1u, g−1v)g−1w

)
is an algebraic

curvature tensor again, the map gC : R 7→ gCR is an orthogonal transformation of C(V ) and
Ψ : O(V ) → O(C(V )) , g 7→ gC is a homomorphism of Lie groups. For every A ∈ End−(V ) the
image Ψ ◦ γA of the 1-parameter subgroup γA : t 7→ Exp(t A) ∈ SO(V ) is given by

Ψ ◦ γA(t) = Exp(t AC) =
∞∑

k=0

1
k!
tk (AC)k ,

where AC ∈ End−(C(V )) is the endomorphism characterized by

ACR : (u, v, w) 7→ A(R(u, v)w)−R(Au, v)w −R(u,Av)w −R(u, v)Aw . (39)

Notice that ΨL : End−(V ) → End−(C(V )) , A 7→ AC is the Lie algebra homomorphism induced
by Ψ and End−(V ) × C(V ) → C(V ) , (A,R) 7→ ACR the “infinitesimal version” of the action
Ψ , see [BD] p. 111.

Now, let N be a symmetric space, (p,W, b) as in Theorem 1 and apply the above consideration
to V := TpN . For every u ∈ W the maximal helical arc cu generated by the quadruple
(p,W, b, u) is defined over the whole real line R (see Proposition 3); consequently, the map
expb of Proposition 8 is defined on the whole space W . Therefore, also the algebraic curvature
tensors Ru(t) defined in Remark 6 can also be considered for all (u, t) ∈W × R .

As the curvature tensor RN is parallel, for every u ∈W and parameter t ∈ R we get

Ru(t) = (Exp(−Ab
tu))CR

N
p = Exp(t Â(u))RN

p with Â(u) = −(Ab
u)C . (40)
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According to Remark 6 the conditions (CI) and (SP) of Theorem 1 are fulfilled if and only if

Ru(Ju) ⊂ C(TpN,W, b) for every vector u ∈W . (41)

For each u this condition is satisfies if and only if RN
p = Ru(0) ∈ C(TpN,W, b) and

Exp(t Â(u))Â(u)RN
p = R′u(t) ∈ C(TpN,W, b)L for all t ∈ Ju . With the ideas of Lemma 1(b)

(applied to β
Â(u)
v with v := Â(u)RN

p ) we find

R′u(Ju) ∈ C(TpN,W, b)L ⇐⇒ Â(u)kRN
p ∈ C(TpN,W, b)L for k = 1, . . . , d .

Therefrom on the one hand we derive

Ru(Ju) ⊂ C(TpN,W, b) =⇒ Ru(R) ⊂ C(TpN,W, b) , (42)

and on the other hand we get that condition (41) is equivalent to

RN
p ∈ C(TpN,W, b) and Â(u)kRN

p ∈ C(TpN,W, b)L for all u ∈W and k = 1, . . . , d . (43)

The functions Pk : u 7→ Â(u)kRN
p are homogeneous polynomials W → C(TpN) of degree k

corresponding to the symmetric k-linear maps

Lk : W k → C(TpN) , (u1, . . . , uk) 7→
1
k!

∑ (
Â(ui1) ◦ · · · ◦ Â(uik)

)
RN

p ,

here the sum is taken over all permutations (i1, . . . , ik) of {1, . . . , k} . Using the polarization
formula (expressing Lk(u1, . . . , uk) as a sum of values of the polynomial Pk , see [Ca] p. 85) we
get from (43):

Theorem 2 (II-parallel submanifolds in symmetric spaces). In the above situation there exists
a II-parallel submanifold M of the symmetric space N with p ∈ M , TpM = W and hMp =
b if and only if RN

p ∈ C(TpN,W, b) and the maps Lk (k = 1, . . . , d) take their values in
C(TpN,W, b)L . If (u1, . . . , um) is a basis of W , the latter condition is satisfied if and only if
the finite number of values Lk(ui1 , . . . , uik) are contained in C(TpN,W, b)L .

Remember that because of Corollary 2 II-parallel submanifolds of a symmetric space again are
locally symmetric.

4 Semiparallelity of the second fundamental form
and the euclidean Jordan triple property

From Corollary 5 one sees that in a space N of constant curvature there exists a II-parallel
submanifold M with the initial data (p,W, b) if and only if b is RN

p -semiparallel. There is
known a quite different sufficient and necessary tensorial condition for the existence of II-parallel
submanifolds in standard spaces discovered by D.Ferus in [F] for N = Rn and later extended
to the other spaces of constant curvature in [BR] (see Section 2 there), namely that a certain
bilinear map L : W ×W → End(W ) associated with the triple (p,W, b) is a euclidean Jordan
triple system. Following Ferus’ calculations I will prove (by purely tensorial calculations) now
that in case of a constant curvature N the conditions of Ferus and ours are equivalent.
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Let V be a euclidean vector space, R the curvature like tensor of a space of constant curvature
κ on V (i.e. R(u, v) = κ ·u∧v ), W ∈ Gm(V ) and b ∈ L2(W,W⊥) a symmetric bilinear map.
For this special case Equation (10) reads as

Rb(u, v) = κ · u ∧ v − [Ab
u, A

b
v] ∈ End−(V ) for all u, v ∈W .

Furthermore, by S : W⊥ → End(W ) , ξ 7→ Sξ we denote the “shape operator” corresponding
to b .

Lemma 3. (a) ∀u, v, w, z ∈W : 〈Rb(u, v)w, z〉 = 〈Rb(w, z)u, v〉 .

(b) The orthogonal complement of the “first normal space” N1 := span{b(x, y)|x, y ∈ W} is
N⊥

1 = {ξ ∈W⊥|Sξ ≡ 0} ; and for every ξ ∈ N⊥
1 and u, v ∈W we also have SRb(u,v)ξ = 0 .

Proof. The proof of (a) is trivial. For (b): The assertion N⊥
1 = {ξ ∈ W⊥|Sξ ≡ 0} is easily

proved. Suppose now ξ = b(x, y) with x, y ∈W and calculate

Rb(u, v)ξ = b(Sξu, v)− b(u, Sξv) ∈ N1 . (44)

Thus Rb(u, v) leaves N1 invariant, and consequently also N⊥
1 , because Rb(u, v) is skew-adjoint.

Thus we have also SRb(u,v)ξ = 0 .

Definition 5 (Semiparallelity of tensors). Let T be a tensor of type (k, r) on V . Then for all
u, v ∈W we define the tensor Rb(u, v)T of type (k, r) by

(Rb(u, v)T )(x1, . . . , xr) :=


−

∑
T (x1, . . . , xi−1, R

b(u, v)xi, xi+1, . . . , xr) for k = 0

Rb(u, v)(T (x1, . . . , xr))
−

∑
T (x1, . . . , xi−1, R

b(u, v)xi, xi+1, . . . , xr) for k = 1
We apply the definition also to maps T ∈ End(W ) , T ∈ L2(W,W⊥) , the shape operator
W⊥ ×W →W , (ξ, v) 7→ Sξv , etc. Furthermore, we say that any of these maps is semiparallel,
if Rb(u, v)T = 0 for all u, v ∈W .

Example 8 (Semiparallel tensors). (a) The inner product of V is semiparallel, because
Rb(u, v) ∈ End−(V ) ; the curvature like tensor R is semiparallel.

(b) The bilinear map b is semiparallel if and only if the corresponding shape operator S is
semiparallel.

(c) If b is semiparallel, then also Ab : W × V → V , (u, v) 7→ Ab
uv , [Ab, Ab] : W 2 × V →

V , (u1, u2, v) 7→ [Ab
u1
, Ab

u2
]v and W 2×V → V , (u1, u2, v) 7→ Rb(u1, u2)v are semiparallel.

Now we introduce the following endomorphisms W →W for every x, y ∈W :

Sb(x, y) := κ 〈x, y〉 idW + Sb(x,y) and L(x, y) := Rb(x, y) + Sb(x, y) .

It can easily be proved that the following holds (see [BR]):

∀x, y, z ∈W :
(
L(x, y)z = L(z, y)x and L(x, y)∗ = L(y, x)

)
. (45)
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Lemma 4. If b is semiparallel, then also Sb and L are semiparallel; here Sb and L are
considered as trilinear maps W 3 →W .

Proof. Use Example 8(c).

Definition 6 (Euclidean Jordan triple systems). The map L is called a euclidean Jordan triple
system, if besides (45) it satisfies

∀x, y, u, v ∈W : [L(x, y), L(u, v)] = L(L(x, y)u, v)− L(u, L(y, x)v) . (46)

Observation 1. Equation (46) is equivalent to the two equations

∀x, y, u, v ∈W : [Sb(x, y), L(u, v)] = L(Sb(x, y)u, v)− L(u, Sb(x, y)v) and (47)

∀x, y, u, v ∈W : [Rb(x, y), L(u, v)] = L(Rb(x, y)u, v) + L(u,Rb(x, y)v) . (48)

Proof. Notice L(x, y) + L(y, x) = 2Sb(x, y) and L(x, y)− L(y, x) = 2Rb(x, y) .

Observation 2. (48) exactly means that L is semiparallel.

Observation 3. (47) is equivalent to

∀u, v ∈W , ξ ∈ N1 : [Sξ, L(u, v)] = L(Sξu, v)− L(u, Sξv) . (49)

Proof. Use the definition of Sb and take notice of the definition of N1 .

Observation 4. Equation (49) is equivalent to the two equations

∀u, v ∈W , ξ ∈ N1 : [Sξ, S
b(u, v)] = Rb(Sξu, v) +Rb(Sξv, u) and (50)

∀u, v ∈W , ξ ∈ N1 : [Sξ, R
b(u, v)] = Sb(Sξu, v)− Sb(Sξv, u) . (51)

Proof. Notice the second equation of (45) and L(u, v) + L(u, v)∗ = 2Sb(u, v) and L(u, v) −
L(u, v)∗ = 2Rb(u, v) .

Conclusion. L is a euclidean Jordan triple system if and only if L is semiparallel and the
Equations (50) and (51) are satisfied.

Proof. Apply the Observations 1 – 4.

Proposition 9. Equation (51) is satisfied if and only if b is semiparallel.

Proof. Using the definitions of Sb and Formula (44) we find that (51) is equivalent to ∀u, v ∈
W , ξ ∈ N1 : [Sξ, R

b(u, v)] = SRb(u,v)ξ , that means to

∀u, v, w ∈W , ξ ∈ N1 : (Rb(u, v) · S)ξw = 0 , (52)
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Thus we see, if b is semiparallel, then because of Example 8(b) also S is semiparallel and
therefore (52), hence also (51) are satisfied. – Conversely, let (51) be satisfied. Because of
Example 8(b) it suffices to prove the semiparallelity of S ; and because of (52) it remains
to prove formula (Rb(u, v) · S)ξw = 0 , i.e., [Sξ, R

b(u, v)] = SRb(u,v)ξ for all u, v ∈ W and
ξ ∈ N⊥

1 ; but this previous fact is trivial because then Sξ and SRb(u,v)ξ vanish according to
Lemma 3(b).

Theorem 3 (A characterization of euclidean Jordan triple systems). L is a euclidean Jordan
triple system if and only if b is semiparallel.

Proof. For “⇒ ”. If L is a Jordan triple system, then (51) is satisfied according to the Conclusion
and therefore b is semiparallel by means of Proposition 9.

For “⇐ ”. We suppose the semiparallelity of b and prove at first that (50) is satisfied. For that
let u, v, w, z ∈ W and ξ ∈ N1 be given and apply the right-hand side of (50) to w and take
the inner product with z ; by means of Lemma 3(a) and the semiparallelity of b we get

〈Rb(Sξu, v)w, z〉+ 〈Rb(Sξv, u)w, z〉 = 〈Rb(w, z)Sξu, v〉+ 〈Rb(w, z)Sξv, u〉
= −〈Sξu,R

b(w, z)v〉 − 〈Sξv,R
b(w, z)u〉 = −〈ξ, b(u,Rb(w, z)v)〉 − 〈ξ, b(v,Rb(w, z)u)〉

= −〈ξ,Rb(w, z)b(u, v)〉 = −〈ξ, [Ab
w, A

b
z]b(u, v)〉 = 〈ξ, b(z, Sb(u,v)w)− b(w,Sb(u,v)z)〉

= 〈Sξ ◦ Sb(u,v)w, z〉 − 〈Sξ ◦ Sb(u,v)z, w〉 = 〈[Sξ, Sb(u,v)]w, z〉 = 〈[Sξ, S
b(u, v)]w, z〉 .

Thus (50) is valid. Furthermore, (51) is valid because of Proposition 9. Eventually L is
semiparallel because of Lemma 4. Thus the Conclusion shows that L is a Jordan triple system.

Corollary 6. L is a euclidean Jordan triple system if and only if Equation (51) is satisfied.

Proof. Combine Proposition 9 and Theorem 3.

5 Geometry over the Graßmann bundle of N

Let m be some integer with 1 ≤ m ≤ n − 1 and τ : N̂ → N the corresponding Graßmann
bundle over N ; its fibre N̂q over q ∈ N is the Graßmann manifold Gm(TqN) of m-dimensional
linear subspaces of TqN . Elements of N̂ will be denoted by W .

In this section we will develop a general framework for the geometry of m-dimensional subman-
ifolds of N by introducing some fibre bundles over N̂ together with connections. Example 9
at the end of this section will show how the usual submanifold geometry is embedded in the
general apparatus.

The pull back of the tangent bundle TN

E := τ∗TN = N̂ ×N TN
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is a vector bundle over N̂ ; as its fibre EW over W is isomorphic to Tτ(W )N , E inherits a
metric from TN . By varying W ∈ N̂ the orthogonal splittings EW = W ⊕ W⊥ give the
orthogonal vector bundle splitting

E = >>⊕⊥⊥

into the well known tautological bundle >> and its orthogonal complement ⊥⊥ . For the sake
of readability we will suppress superfluous letters W ; so we write simply EW = Tτ(W )N ,
>>W = W , L(>>,⊥⊥)W = L(W,W⊥) , etc.

We will now introduce the principal fibre bundle of adapted orthonormal frames of E . For
that we fix a subspace V0 ∈ Gm(Rn) and denote by O> resp. O⊥ the principal O(V0)- resp.
O(V ⊥

0 )-fibre bundle over N̂ , whose fibre over W ∈ N̂ is the set O>
W resp. O⊥

W of the linear
isometries V0 → W resp. V ⊥

0 → W⊥ ; we may interpret O> resp. O⊥ as the bundle of the
orthonormal frames of >> resp. ⊥⊥ .6 Taking the fibre product of these bundles we obtain the
principal fibre bundle

P := O> ×N̂ O⊥ with projektion πP : P → N̂ , u 7→ u(V0)

(for the interpretation of u see below) over N̂ whose structure group is the isotropy group

H := { g ∈ O(Rn) | g(V0) = V0 } ∼= O(V0)×O(V ⊥
0 ) (53)

of the canonical action of O(Rn) on the Graßmann manifold Gm(Rn) at the “point” V0 . The
elements of PW are the linear isometries u : Rn → EW = Tτ(W )N with u(V0) = W and
u(V ⊥

0 ) = W⊥ ; the elements u|V0 ∈ O>
W resp. u|V ⊥

0 ∈ O⊥
W will be denoted by u> resp. u⊥ .

The vector bundles E, >> and ⊥⊥ are associated with P via the maps

P× Rn → E , (u, x) 7→ (πP(u), u(x)) resp. P× V0 → >> , (u, x) 7→ (πP(u), u>(x))

resp. P× V ⊥
0 →⊥⊥ , (u, x) 7→ (πP(u), u⊥(x)) ;

see [Bo] sect. 5.6.1. Now, we introduce also the associated vector bundles End−(E) and B :=
L2(>>,⊥⊥) with the typical fibres End−(Rn) and L2(V0, V

⊥
0 ) ; for instance, the latter bundle has

the fibres BW = L2(W,W⊥) and is associated with P via the map

P× L2(V0, V
⊥
0 ) → B , (u, b) 7→ (πP(u), u⊥ ◦ b ◦ (u>× u>)−1) .

Let σ : E → E be the bundle involution, which on the fibre EW (W ∈ N̂) is the reflection in
W . Thereby, we also can define an involution Σ for the bundle End−(E) , namely by

ΣW (A) := σW ◦A ◦ σ−1
W for A ∈ End−(EW ) .

As obviously >> resp. ⊥⊥ is the eigenbundle of σ with respect to the eigenvalue 1 resp. −1 ,
the eigenspace splitting H ⊕ M of End−(E) with respect to Σ and the eigenvalues 1, −1 is
given by

HW = {A ∈ End−(EW ) |A(W ) ⊂W and A(W⊥) ⊂W⊥ } and (54)

MW = {A ∈ End−(EW ) |A(W ) ⊂W⊥ and A(W⊥) ⊂W } (55)

6A natural choice for V0 would be V0 := Rm × {0} ⊂ Rn ; but with regard to the generalization to pseudorie-
mannian manifolds N in Section 11 we have not specified V0 in this way.
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(notice that the definition of MW is in accordance with (7)) and for each A ∈ End−(EW ) the
HW - resp. MW -part is the endomorphism

AH = 1
2 (A+ ΣW (A)) resp. AM = 1

2 (A− ΣW (A)) . (56)

Of course, the vector bundles H and M also are canonically associated with P . The typical
fibre of M is

m := MV0 := {A ∈ End−(Rn) |A(V0) ⊂ V ⊥
0 and A(V ⊥

0 ) ⊂ V0 } , (57)

on which H acts by the isotropy representation H×m → m , (g,A) 7→ g◦A◦g−1 ; the association
of M with P is described by

ρM : P×m → M , (u,A) 7→ (πP(u), u ◦A ◦ u−1) . (58)

Remark 7. As already mentioned in Section 2 after Proposition 1, Gm(Rn) is a symmetric space
∼= O(Rn)/H with the isotropy group H described in (53) and

θ := ΘV0 : m → TV0Gm(Rn) , A 7→ ḋ
dt

∣∣∣
t=0

(
Exp(tA)(V0)

)
(59)

is an isomorphism from the subspace m ⊂ End−(Rn) described in (57) onto the tangent space
TV0Gm(Rn) .

Of course one can carry out the same construction for each fibre N̂q = Gm(TqN) of the Graß-
mann bundle τ with respect to any fixed W ∈ N̂q (instead of V0 ∈ Gm(Rn) ). Then the
decomposition of the Lie algebra End−(TqN) = End−(EW ) of the group O(TqN) (replacing
the decomposition o(Rn) = h⊕m ) is exactly the splitting End−(EW ) = HW ⊕MW and instead
of θ we have the isomorphism

ΘW : MW → TW Gm(TqN) = TW N̂q , A 7→ ḋ
dt

∣∣∣
t=0

(
Exp(tA)(W )

)
(60)

already described in (8). �

We will also use that for every subspace W ∈ N̂ there exist canonical Lie algebra homomor-
phisms

HW → End(BW ) , A 7→ AB and HW → End(MW ) , A 7→ AM ,

which for every A ∈ HW , b ∈ BW and C ∈ MW are described by

(ABb)(v1, v2) = A(b(v1, v2))− b(Av1, v2)− b(v1, Av2) and (61)
(AMC)(v) = A(C(v))− C(Av)) = [A,C](v) . (62)

Remark 8 (A better understanding of semiparallelity). If W ∈ N̂q is curvature invariant, then
for every b ∈ BW the values of the “tensor” Rb associated with the quadruple (TqN,W, b,R

N
q )

(according to (10)) lie in HW ; using the terminology of (61) we therefore can state: b is
RN

q -semiparallel if and only if

Rb(u1, u2)Bb = 0 for all u1, u2 ∈W .
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As the sections of the vector bundle E can be identified with the vector fields of N along the
projection τ : N̂ → N and as for every vector field X̂ ∈ Γ(TN̂) and section Z ∈ Γ(E) the
covariant derivative ∇N

X̂Z can again be considered as a section of E (see footnote 1), we can
define metric covariant derivatives ∇> resp. ∇⊥ on >> resp. ⊥⊥ via the splitting E = >>⊕⊥⊥ :
For v̂ ∈ TW N̂ , Y ∈ Γ(>>) and ζ ∈ Γ(⊥⊥) they are given by

∇>
v̂ Y := (W -part of ∇N

v̂Y ) ∈ >>W and ∇⊥
v̂ ζ := (W⊥-part of ∇N

v̂ζ) ∈⊥⊥W . (63)

Furthermore, these covariant derivatives correspond to linear connections on the principal fibre
bundles O> and O⊥ ; in a further step the latter connections produce a linear connection HP

on the product bundle P . It can be characterized by the following fact:

For every curve ξ : J → N̂ , parameter t0 ∈ J and element u ∈ Pξ(t0) the HP-
horizontal lift of ξ through u is the curve uξ : J → P , which is determined by
uξ(t0) = u and the fact that the functions

t 7→ uξ(t)(x>) ∈ ξ(t) for x> ∈ V0 and t 7→ uξ(t)(x⊥) ∈ ξ(t)⊥ for x⊥ ∈ V ⊥
0

are parallel sections of (>>,∇>) and (⊥⊥,∇⊥) along ξ , respectively;

(64)

again we have identified sections of >> and ⊥⊥ with vector fields of N along τ ◦ ξ ; so we will
do in future.

As is well known the connection HP induces connections on every fibre bundle associated with P
in a canonical way (see [KN]Vol. I, p. 87) and in case of associated vector bundles this connections
correspond to covariant derivatives. For the vector bundles >> and ⊥⊥ we come back to ∇>

and ∇⊥ . For E the “new” covariant derivative ∇E is different from that given by ∇N ; loosely
speaking, it is the “sum” of ∇> and ∇⊥ ; that means, >> and ⊥⊥ are parallel subbundles of
(E,∇E) ;7 thus, for all v̂ ∈ TW N̂ , Y ∈ Γ(>>) and ζ ∈ Γ(⊥⊥) we have

∇>
v̂ Y = ∇E

v̂Y and ∇⊥
v̂ ζ = ∇E

v̂ζ (65)

and for all û1, û2 ∈ TW N̂

R>>(û1, û2) = RE(û1, û2)|W and R⊥⊥(û1, û2) = RE(û1, û2)|W⊥ ,

hence RE(û1, û2) ∈ HM . (66)

Following the general procedure (described in [KN]Vol. I, p. 88) we obtain: If ξ : J → N̂ and
uξ : J → P are as in (64), then

ϕ(t) := uξ(t) ◦ uξ(t0)−1 : Eξ(t0) → Eξ(t) is the parallel displacement (
t

‖
t0

ξ )E (67)

in (E,∇E) along the curve ξ ; it satisfies ϕ(t)(ξ(t0)) = ξ(t) and ϕ(t)(ξ(t0)⊥) = ξ(t)⊥ .8

Moreover, for every b ∈ Bξ(t0) and A ∈ Mξ(t0) the functions bξ : J → B and Aξ : J → M
determined by

bξ(t) ◦ (ϕ(t)× ϕ(t))
∣∣(ξ(t0)× ξ(t0)) = ϕ(t) ◦ b and Aξ(t) ◦ ϕ(t) = ϕ(t) ◦A (68)

7A general reason will be described in Remark 10.
8An inhabitant of ξ(t0) moved with this subspace will consider t 7→ ϕ(t) as the natural parallel transport of

the tangent space Tτ◦ξ(t0)N .
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are the parallel sections in B resp. M along ξ with bξ(t0) = b and Aξ(t0) = A . This fact
implies

(∇B
X̂h)(Y1, Y2) = ∇⊥

X̂
(h(Y1, Y2))− h(∇>

X̂
Y1, Y2)− h(Y1,∇>

X̂
Y2) , (69)

(∇M
X̂S)Z = ∇E

X̂S(Z)− S(∇E
X̂Z) , and therefore (70)

(∇M
X̂S)Y = ∇⊥

X̂
S(Y )− S(∇>

X̂
Y ) and (∇M

X̂S)ζ = ∇>
X̂
S(ζ)− S(∇⊥

X̂
ζ) (71)

for every X̂ ∈ Γ(TN̂), h ∈ Γ(B), S ∈ Γ(M), Z ∈ Γ(E), Y, Y1, Y2 ∈ Γ(>>) and ζ ∈ Γ(⊥⊥) . Using
the terminology of (61) and (62) and taking in account (65) and (66) we find that the curvature
tensors of the connections ∇B , ∇M and ∇E are related by

∀ û1, û2 ∈ TW N̂ : RB(û1, û2) = RE(û1, û2)B and (72)
RM(û1, û2) = RE(û1, û2)M . (73)

An essential tool in the following will be the difference tensor ν̂ of ∇N and ∇E , which we
consider as a differential 1-form, whose values lie in the vector bundle M , as is seen from (76):

∀ v̂ ∈ TW N̂ , Z ∈ Γ(E) : ν̂(v̂)Zq := ∇N
v̂Z −∇E

v̂Z . (74)

Because of (63) and (65) for Y ∈ Γ(>>) resp. ζ ∈ Γ(⊥⊥) we have

∇N
v̂Y = ∇>

v̂ Y + ν̂(v̂)YW and ∇N
v̂ζ = ν̂(v̂)ζW +∇⊥

v̂ ζ (75)

with
ν̂(v̂)YW ∈ W⊥ and ν̂(v̂)ζW ∈ W . (76)

Comparing this with Example 2(a) we may interpret ν̂ as a universal second fundamental form
and the Equations (75) as a universal Gauß equation resp. a universal Weingarten equation,
see also Example 9. Eventually, let us call in mind the Cartan derivative of the 1-form ν̂ ; it is
characterized by

dν̂(X̂1, X̂2) = ∇M
X̂1

(ν̂(X̂2))−∇M
X̂2

(ν̂(X̂1))− ν̂([X̂1, X̂2]) . (77)

Using (74), (70) and Cartan’s structure equation for the curvature tensor we get the following
relation between the curvature tensors of the connections ∇N and ∇E

∀ û1, û2 ∈ TW N̂ : RN(τ∗û1, τ∗û2) = RE(û1, û2) + [ν̂(û1), ν̂(û2)] + dν̂(û1, û2) ; (78)

the HW - resp. MW -part of the endomorphism RN(τ∗û1, τ∗û2) ∈ End−(EW ) is RE(û1, û2) +
[ν̂(û1), ν̂(û2)] resp. dν̂(û1, û2) ; see also the following example.

Example 9 (Embedding of submanifold geometry into the preceding framework). Let M be an
m-dimensional submanifold of N . Then its Gauß map ξ := ξM : M → N̂ , p 7→ TpM is an
injective immersion (because τ ◦ ξ is the inclusion M ↪→ N ) and its second fundamental form
h := hM a section in B along ξ . In particular, the image M̂ := ξ(M) is a submanifold of
N̂ . The pull back bundles ξ∗E , ξ∗>> and ξ∗⊥⊥ are canonical isomorphic to TN |M , TM and
⊥M , respectively; and ξ∗P = M×N̂ P is the principal bundle of M -adapted frames over M , see
[KN]Vol.2, p. 1. For all vectors v, u, u1, u2 ∈ TpM and z ∈ ⊥pM and all sections Y ∈ Γ(TM)
and ζ ∈ Γ(⊥M) the Formulas (63), (65) and (75) yield

∇E
vY = ∇M

vY and ∇E
vζ = ∇⊥M

vζ ,

ν̂(ξ∗u)v = hp(u, v) and ν̂(ξ∗u)z = −SMz u , hence ν̂(ξ∗u) = A
hp
u

(79)
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(see Definition 1(a) and notice that Y and ζ can be considered as sections in E along the map
ξ ); and therefore

RE(ξ∗u1, ξ∗u2)|TpM = RM(u1, u2) and RE(ξ∗u1, ξ∗u2)|⊥pM = R⊥M(u1, u2) . (80)

The first two formulas of (79) show also that the isometries ϕ(t) of the M -split-parallel dis-
placement of TpN along a curve c : J →M with p := c(0) (see Definition 4) coincide with the
isometries, which in (67) are associated with the curve ξ ◦ c : J → N̂ . Furthermore, from (2),
(69), (72) and (80) we obtain

∇B
vh = ∇vh and (RB(ξ∗u1, ξ∗u2)hp)(v1, v2) =

= R⊥M(u1, u2)(hp(v1, v2))− hp(RM(u1, u2)v1, v2)− hp(v1, RM(u1, u2)v2) .
(81)

In particular, M is a II-parallel submanifold if and only if hM is a parallel section in the bundle
(B,∇B) . Eventually, Formula (78) can be seen as a combination of the curvature equations of
Gauß , Coddazi and Ricci by means of Example 2 and the following expressions, which are
crucial in the two versions of the Codazzi equation

dν̂(ξ∗u1, ξ∗u2)v = (∇u1h)(u2, v)− (∇u2h)(u1, v) and
dν̂(ξ∗u1, ξ∗u2)z = (∇u2S

M)zu1 − (∇u1S
M)zu2 ;

for the calculation use (2), (70), (77) and (79). If the tangent space TpM is curvature invariant,
then we know from the Codazzi equation that the right-hand sides of the previous two formulas
vanish, and we obtain from (10), (78) and (79) that the tensor Rb associated with the quadruple
(TpN,TpM,hp, R

N
p ) satisfies Rb(u1, u2) = RE(ξ∗u1, ξ∗u2) . See also Remark 15. �

Lemma 5 (Parallel displacement in E along distinguished curves). Let a curve c : J → N
with 0 ∈ J and elements W ∈ N̂c(0) and A ∈ MW be given. Then the isometries

ϕ(t) := (
t

‖
0
c )N ◦ Exp(tA) : Tc(0)N → Tc(t)N (t ∈ J)

describe the parallel displacement in (E,∇E) along the curve ξ : J → N̂ , t 7→ ϕ(t)(W ) (see also
(67)); obviously c = τ ◦ ξ holds. Furthermore, if denotes , then we have

Aξ : J → M , t 7→ ν̂( ξ̇(t)) (82)

is the parallel section in M along ξ with Aξ(0) = A .

Proof. For every v ∈ TpN let us introduce the vector field Zv : t 7→ ϕ(t)v along c . Since
by definition Ẑv : t 7→ Exp(tA) v is the backward parallel displacement of Zv and Ẑ ′v =
ẐAv , Proposition 2(a) proves ∇N

∂ Zv = ZAv . Now, we start with an element v ∈ W , then
by construction we have Zv(t) ∈ ξ(t) = >>ξ(t) and (∇N

∂ Zv)(t) = ZAv(t) ∈ ξ(t)⊥ = ⊥⊥ξ(t)

because Av ∈ W⊥ . By means of (63) and (65) we obtain therefore (∇E
∂Zv)(t) = (∇>

∂ Zv)(t) =(
ξ(t)-part of (∇N

∂ Zv)(t)
)

= 0 . Thereby we have proved that Zv is a parallel section in E
along ξ . For v ∈ W⊥ the previous result is proved analogously. Consequently, all sections Zv

with v ∈ EW are ∇E-parallel, and therefore ϕ(t) is the parallel displacement in E as stated
in the proposition. We call in mind that this displacement already appeared in (67). Finally,
in order to prove (82) we calculate for every v ∈ TqN by means of (74): ν̂(ξ̇(t))(ϕ(t)v) =
ν̂(ξ̇(t))Zv(t) = (∇N

∂ Zv)(t)−(∇E
∂Zv)(t) = ZAv(t) = ϕ(t)(Av) ; in particular, we have ν̂(ξ̇(0))(v) =

ν̂(ξ̇(0))(ϕ(0)v) = ϕ(0)(Av) = Av , hence ν̂(ξ̇(0)) = A ; moreover, according to (68) the section
t 7→ ν̂(ξ̇(t)) is ∇M-parallel.
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Remark 9. In the situation of Lemma 5 the function Aξ is not only a parallel section in M ,
but it satisfies even

Aξ(t) ◦ (
t

‖
0
c )N = (

t

‖
0
c )N ◦A : Tc(0)N → Tc(t)N (83)

because of (68) and Exp(tA) ◦A = A ◦ Exp(tA) . �

Let us end this section with a further remark.

Remark 10. If two fibre bundles F and F̃ with typical fibres F resp. F̃ are associated with
P via maps ρ : P × F → F resp. ρ̃ : P × F̃ → F̃ and if φ : F → F̃ is an H-equivariant map,
then there exists a unique fibre morphism Φ : F → F̃ satisfying Φ(ρ(u, f)) = ρ̃(u, φ(f)) ; see
[Bo] sect. 6.5.5. Fibre morphisms which occur in this way shall be called P-morphisms in future.
Such a P-morphism is compatible with the connections induced on the bundles by HP , that
means: if α : J → F is a horizontal curve, then also Φ ◦ α : J → F̃ is horizontal. If F and F̃
are associated vector bundles and φ is linear , then Φ is a vetor bundle morphism satisfying

∇F̃
X̂(Φ ◦ s) = Φ ◦ (∇F

X̂s) for all X̂ ∈ Γ(TN̂) and s ∈ Γ(F) ;

consequently the curvature tensors of the connections ∇F and ∇F̃ are related by

∀ û1, û2 ∈ TW N̂ , z ∈ FW : RF̃(û1, û2)Φ(z) = Φ(RF(û1, û2)z) . (84)

For instance, since >> and ⊥⊥ are associated subbundles of E , these subbundles are parallel in
E as was already noticed above. Further important applications will follow in the next sections.

6 Geometry of the manifold N̂

In this section we introduce a linear connection ∇̂ (with torsion) on N̂ , which for our purpose
is adapted to the geometry of the Graßmann bundle in the best possible way. For instance, the
maps ξu : t 7→ Wtu ∈ N̂ , where Wtu is defined as before Theorem 1, will become geodesics of
N̂ .

If we consider N̂ as a fibre bundle associated with the bundle L(N) of all linear frames of N
via the map

ρ̂ : L(N)×Gm(Rn) → N̂ , (u, V ) 7→ u(V ) , (85)

then the linear connection of L(N) corresponding to ∇N induces a connection Ĥ on the bundle
τ : N̂ → N , i.e., we obtain a splitting

TN̂ = Ĥ ⊕ V̂ with V̂ := Ker(τ∗) (the latter means V̂W = TW N̂q for every W ∈ N̂q )

into the horizontal and vertical subbundle (see [KN]Vol. 1, p. 87); more explicitely, a curve
ξ : J → N̂ is horizontal if and only if for any t0, t ∈ J we have

ξ(t) = Wc(t) := (
t

‖
t0

c )N(W ) with c := τ ◦ ξ and W := ξ(t0) (see (1)) . (86)

Let
η : TN̂ → Ĥ and ν : TN̂ → V̂ (87)

denote the projections corresponding to the splitting TN̂ = Ĥ ⊕ V̂ .
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Theorem 4 (The isomorphism TN̂ → E ⊕ M ). The isomorphisms ΘW from Remark 7 are
the “fibres” of a vector bundle P-isomorphism Θ : M → V̂ , and the following identity holds

Θ ◦ ν̂ = ν .

If additionally we define the vector bundle morphism η̂ : TN̂ → E , TW N̂ 3 v̂ 7→ (W, τ∗v̂) =
(W, τ∗ ◦ η(v̂)) , then

(η̂, ν̂) : TN̂ → E⊕M

becomes a fibre bundle isomorphism. Via this map the splitting TN̂ = Ĥ ⊕ V̂ corresponds with
the direct sum structure of E⊕M .

Proof. As is well known, also V̂ is a fibre bundle over N associated with L(N) , namely via
the map ρV̂ : L(N) × TGm(Rn) → V̂ , (u,w) 7→ ρ̂u ∗w with ρ̂u := ρ̂(u, ·) : Gm(Rn) → N̂ .
As P × TV0Gm(Rn) is a submanifold of L(N) × TGm(Rn) , we can define the restriction ρ̃ :=
ρV̂

∣∣(P× TV0Gm(Rn)) . Now it turns out that V̂ is a vector bundle over N̂ associated with the
principal bundle P via this map.

Furthermore, the isomorphism θ : m → TV0Gm(Rn) from (59) is H-equivariant. As m is the
typical fibre of the associated bundle M , we therefore can apply Remark 10 and obtain a P-
isomorphism Θ : M → V̂ . If for W ∈ N̂ , u ∈ PW and A ∈ MW we put Ã := u−1 ◦A ◦ u ∈ m ,
then we get by means of (60)

Θ(A) = ρ̃(u, θ(Ã)) = ρ̂u ∗
ḋ
dt

∣∣∣
t=0

(
Exp(tÃ)(V0)

)
=

ḋ
dt

∣∣∣
t=0

ρ̂u ◦ (Exp(tÃ)(V0))

=
ḋ
dt

∣∣∣
t=0

u(Exp(tÃ)(V0)) =
ḋ
dt

∣∣∣
t=0

(
Exp(tA)(u(V0))

)
=

ḋ
dt

∣∣∣
t=0

(
Exp(tA)(W )

)
= ΘW (A) .

Proof of Θ ◦ ν̂(v̂) = ν(v̂) for v̂ ∈ TW N̂ and W ∈ N̂q : According to the splitting TW N̂ =
ĤW ⊕ V̂W we may restrict the proof to the two cases v̂ ∈ ĤW and v̂ ∈ V̂W . In both cases we
will choose an appropriate curve c : J → N with 0 ∈ J and c(0) = q and an element A ∈ MW

such that v̂ = ξ̇(0) , where ξ : J → N̂ is the curve defined in Lemma 5; because of (82), we
know then ν̂(v̂) = A and therefore Θ ◦ ν̂(v̂) = Θ(A) ; thus we have to prove Θ(A) = ν(v̂) in
the two cases.

Case v̂ ∈ ĤW . Let c be some curve with ċ(0) = τ∗v̂ and A = 0 ∈ MW . Then the curve ξ
from Lemma 5 is exactly the horizontal lift Wc described in (86), ξ̇(0) = v̂ holds and we have
Θ(A) = 0 = ν(v̂) .

Case v̂ ∈ V̂W = TW N̂q. Now we put c ≡ q . Because of Remark 7 there exists exactly one
A ∈ MW with ΘW (A) = v̂ . Since we have ξ(t) = Exp(tA)(W ) now, we get ξ̇(0) = ΘW (A) = v̂ .
In this situation Θ(A) = v̂ = ν(v̂) is satisfied trivially.

Thus the equation Θ ◦ ν̂ = ν is proved completely. Therefrom we will now derive that (η̂, ν̂)
is a fibre bundle isomorphism: As dim(EW ⊕MW ) = dimN + dim N̂q = dim ĤW + dim V̂W =
dimTW N̂ , it is sufficient to show the injectivity of (η̂, ν̂)W . For that we choose some v̂ ∈ TW N̂
with η̂(v̂) = ν̂(v̂) = 0 ; then we get ν(v̂) = 0 and therefore v̂ ∈ ĤW ; consequently, τ∗v̂ =
η̂(v̂) = 0 implies v̂ = 0 .

Remark 11. At every point W ∈ N̂q the 1-form ν̂ is characterized by
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(i) ν̂ vanishes on the horizontal subspace ĤW and

(ii) for vectors v̂ of the vertical subspace VW we have ν̂(v̂)|W = dx
(
v̂
)
, where x :

Gm(TqN) ⊃ U(W ) → L(W,W⊥) is the canonical chart of Gm(TqN) about W described
in (4).

Proof. Since according to Theorem 4 Θ ◦ ν̂|TW N̂ is the projection TW N̂ → V̂W along ĤW ,
assertion (i) is obtained immediately, and assertion (ii) follows with (9) by the following calcu-
lation: dx

(
v̂
)

= dx
(
ΘW (ν̂(v̂))

)
= ν̂(v̂)|W .

This characterization of ν̂ may remind the reader to the connection map of a vector bundle E →
N with a linear connection ∇E ; if s : J → E is a section in E along a curve c : J → N , then
the connection map K : TE → E describes the relation between the two possible derivatives of
s , namely by Kṡ = ∇E

∂ s . This connection map vanishes on the horizontal subbundle of TE ,
and on each vertical subspace TeEp it coincides with the canonical identification of TeEp with
the linear space Ep .

In order to emphasize that ν̂ is a natural extension of the second fundamental forms of all m-
dimensional submanifolds M ⊂ N we show how Proposition 1 can be deduced from the above
characterization of ν̂ . For this purpose we need the following

Lemma 6. Let τ : B → N be a fibre bundle associated with a principal fibre bundle π : P → N ,
on which a connection H (invariant with respect to the structure group of π ) is given. Then
for every curve α : J → B with 0 ∈ J the following is true:

ḋ
dt

∣∣∣
t=0

(
(
0

‖
t
c )Bα(t)

)
= vertical part of α̇(0) ;

here c denotes the curve τ ◦ α and (
0

‖
t
c )B the horizontal backward displacement Bc(t) → Bc(0)

in B along c induced by the connection H (see [KN]Vol.1, p.87).

Proof. Let F denote the typical fibre of the bundle τ and ρ : P × F → B the map, which
associates τ with π . Furthermore, let u : J → P denote a horizontal lift of c . Then for every
t ∈ J we have

(
0

‖
t
c )B = ρu(0) ◦ ρ−1

u(t) with ρu(t) := ρ(u(t), • ) . (88)

Now, there exists exactly one C∞-curve β : J → F such that α(t) = ρ(u(t), β(t)) for all t ∈ J .
Hence we have

α̇(0) = (ρu(0))∗β̇(0) + (ρβ(0))∗u̇(0) .

By definition of the horizontal structure of the bundle τ the vector (ρβ(0))∗u̇(0) is horizontal.
Therefore, (ρu(0))∗β̇(0) is the vertical part of α̇(0) , which is of our present interest. Hence, the
following calculation finishes our proof:

(ρu(0))∗β̇(0) =
ḋ
dt

∣∣∣
t=0

(ρu(0) ◦ β)(t) =
(88)

ḋ
dt

∣∣∣
t=0

(
(
0

‖
t
c )B(ρu(t) ◦ β(t))

)
=

ḋ
dt

∣∣∣
t=0

(
(
0

‖
t
c )B α(t)

)
.
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Deduction of Proposition 1 from Remark 11. Let ξM : M → N̂ denote the Gauß map of the
submanifold M ⊂ N . From Example 9 we know

ν̂(ξM∗ u)|W = hp(u, · ) with W = TpM for all u ∈ TpM .

If in the situation of Proposition 1 we put α := ξM ◦ c , then we get ξM∗ u = α̇(0) and therefore
because of Remark 11:

hp(u, · ) = ν̂(ξM∗ u)|W = ν̂(vertical part of α̇(0))|W = dx
(
vertical part of α̇(0)

)
;

The previous lemma shows that the vertical part of α̇(0) is
ḋ
dt

∣∣∣
t=0

(
(
0

‖
t
c )Bα(t)

)
. Therefore, we

obtain (with the notations of Proposition 1)

hp(u, ·) = dx
( ḋ
dt

∣∣∣
t=0

(
(
0

‖
t
c )B(Tc(t)M)

))
=

d
dt

∣∣∣
t=0

(
x
(
(
0

‖
t
c )B(Tc(t)M)

)
︸ ︷︷ ︸

= `(t)

)
= `′(t) .

Construction of the connection ∇̂. Because of the isomorphy TN̂ ∼= E⊕M the tangent
bundle TN̂ can be considered as being associated with P , too, namely with typical fibre Rn⊕m

and via the map
ρTN̂ : P× (Rn ⊕m) → TN̂ (89)

characterized by

τ∗ρ
TN̂(u, x,A) = u(x) and ν̂(ρTN̂(u, x,A)) = (πP(u), u ◦A ◦ u−1) ; (90)

see (57) and (58). Therefore, the manifold N̂ bears a linear connection ∇̂ which comes from
the connection HP . It is characterized by the following fact (see [KN]Vol. 1, p. 87):

For every curve ξ : J → N̂ , parameter t0 ∈ J and vector v̂ ∈ Tξ(t0)N̂ the ∇̂-
parallel vector field v̂ξ : J → TN̂ along ξ with v̂ξ(t0) = v̂ can be described by
means of a basis u ∈ Pξ(t0) and the horizontal lift uξ : J → P of ξ with uξ(t0) = u :

v̂ξ : t 7→ ρTN̂(uξ(t), x, A) with (x,A) := (ρTN̂u )−1(v̂) .

 (91)

Proposition 10 (Properties of ∇̂ ). The covariant derivative ∇̂ on N̂ induced by the connec-
tion HP is characterized by the following formulas valid for all v̂ ∈ TW N̂ and Ŷ ∈ Γ(TN̂)

τ∗∇̂v̂Ŷ = ∇E
v̂τ∗Ŷ = ∇N

v̂τ∗Ŷ − ν̂(v̂)(τ∗ŶW ) and ν̂(∇̂v̂Ŷ ) = ∇M
v̂ν̂(Ŷ ) . (92)

The torsion and curvature tensors of ∇̂ are given by the following formulas: If we put ui := τ∗ûi

for ûi ∈ TW N̂ , then:

τ∗T
N̂(û1, û2) = ν̂(û2)u1 − ν̂(û1)u2 and ν̂(T N̂(û1, û2)) = MW -part of RN(u1, u2) , (93)

τ∗R
N̂(û1, û2)û3 = RE(û1, û2)u3

=
(
(HW -part of RN(u1, u2))− [ν̂(û1), ν̂(û2)]

)
u3 ,

ν̂
(
RN̂(û1, û2) û3

)
= RM(û1, û2)ν̂(û3) = [RE(û1, û2), ν̂(û3)] .

(94)

Because of (93) the torsion T N̂ does not vanish identically.
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Proof. For (92) we use that (η̂, ν̂) is a P-morphism and Formula (74). Formula (93) follows by
means of Cartan’s structure equation for the torsion, because the torsion of N vanishes, and
by means of (77) and (78); for (94) we use that η̂ and ν̂ are P-morphisms and the Formulas
(84), (78), (73) and (62). Finally we get T N̂(û1, û2) = ν̂(û2)u1 6= 0 for û1 ∈ ĤW \ {0} and
û2 ∈ V̂W \ {0} by means of (93).

Remark 12 (Special parallel subbundles of TN̂ ). For every W ∈ N̂ and u ∈ PW the following
holds:

ρTN̂u ({0}×m) = V̂W , ρTN̂u (Rn×{0}) = ĤW and ρTN̂u (V0×{0}) = { v̂ ∈ ĤW | τ∗v̂ ∈W } =: DW .

Because of (91) V̂ , Ĥ , D and D⊥ := ρTN̂(P× V ⊥
0 × {0}) therefore are ∇̂-parallel subbundles

of TN̂ .

Proposition 11 (Geodesics in N̂). Let an arbitrary vector û ∈ TW N̂ (W ∈ N̂q) be given, put
A := ν̂(û) and u := τ∗û , and denote the maximal helical arc in N associated with the pair
(u,A) by c : J → N (see Definition 3). Then the curve

ξ : J → N̂ , t 7→ (
t

‖
0
c )N

(
Exp(tA)(W )

)
is the maximal geodesic of (N̂ , ∇̂) with ξ̇(0) = û .

Proof. Notice that ξ is the curve which is associated with (c, A) by Lemma 5. Since c = τ◦ξ , we
get in particular, τ∗ξ̇(0) = ċ(0) = u = τ∗û ; on the other hand (82) shows ν̂(ξ̇(0)) = A = ν̂(û) ;
thus we obtain ξ̇(0) = û by Theorem 4. In order to prove that ξ is a geodesic, define the

isometries ϕ(t) := (
t

‖
0
c )N ◦ Exp(tA) and the parallel section Zu : t 7→ ϕ(t)u of E along ξ ,

compare Lemma 5. Then we use (92) and Definition 3 to calculate

τ∗(∇̂∂ ξ̇)(t) = ∇E
∂ ċ(t) = ∇E

∂ Zu(t) = 0 ;

on the other hand, (92), (82) and (68) induce

ν̂(∇̂∂ ξ̇) = ∇M
∂ ν̂(ξ̇) = ∇M

∂Aξ = 0 .

Thus we have proved ∇̂∂ ξ̇ = 0 , i.e. ξ is a geodesic with the initial velocity û . It is maximally
extended; indeed, if ξ would be extendable to some larger interval J∗ ' J , then τ ◦ ξ would
extend c to J∗ in contradiction to Proposition 2 (d).

Corollary 7. If N is complete, then N̂ is geodesically complete.

Proof. See Remark 1(b).

Now we will compare ∇̂ with the Levi-Civita connection ∇LC of the riemannian metric usually
considered on the Graßmann bundle. This metric can be defined as follows:

On the vector space m we choose the inner product

〈〈A1, A2〉〉 := −trace (A2 ◦A1) ,
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which is invariant with respect to the isotropy representation Ad : H×m → m, (g,A) 7→ g◦A◦g−1

(see (57) and (59)). Then, on the one hand, there exists a unique riemannian metric on Gm(Rn) ,
with respect to which the maps

ψg : Gm(Rn) → Gm(Rn) , V 7→ g(V ) for g ∈ O(Rn) (95)

are isometries and which satisfies

〈θ(A1), θ(A2)〉V0 = 〈〈A1, A2〉〉 . (96)

I will call it the canonical riemannian metric of the Graßmann manifold Gm(Rn) , and I will
use this notation also for the Grassmannian Gm(V ) of other euclidean vector spaces V . – On
the other hand, as the isotropy group H acts on the euclidean space Rn ×m by the isometries
g ×Ad(g) (g ∈ H) , there exists a unique riemannian metric on N̂ (which from now on will be
referred to as “the” riemannian metric of N̂ ) such that for every u ∈ PW the map

ρTN̂u : Rn ⊕m → TW N̂ is a linear isometry ; (97)

here ρTN̂ is the map, by which TN̂ was associated with P (see (89)) and which was also used
in the construction of the connection ∇̂ . In distinction to the latter connection the Levi-Civita
connection of the riemannian manifold N̂ will be denoted by ∇LC .

Proposition 12 (On the riemannian manifold N̂ ). (a)9 The riemannian metric of N̂ has the
following properties:10

(i) V̂ ⊥ Ĥ
(ii) τ : N̂ → N is a riemannian submersion.

(iii) The riemannian metric of N̂ induces on each fibre N̂q = Gm(TqN) the canonical
riemannian metric of this Grassmannian, and for every orthonormal basis u ∈ Lq(N)
the map ρ̂u : Gm(Rn) → N̂ is an isometry onto the fibre N̂q (for the definition of ρ̂
see (85)).

(b) For every curve c : J → N and all parameters t1, t2 ∈ J the horizontal displacement

(
t2
‖
t1

c )Ĥ : N̂c(t1) → N̂c(t2) , W 7→ (
t2
‖
t1

c )N(W )

in N̂ along c (described by Formula (86)) is an isometry, if the fibres N̂c(t) are considered
as riemannian submanifolds of the riemannian manifold N̂ . Hence the holonomy group
of the connection Ĥ with respect to a point q ∈ N is a subgroup of the isometry group of
N̂q .

(c) If Ω̂ : TN̂ ×N̂ TN̂ → V̂ denotes the “curvature tensor” of Ĥ characterized by

∀ X̂, Ŷ ∈ Γ(TN̂) : Ω̂(X̂, Ŷ ) = −ν([ηX̂, ηŶ ]) (for η, ν see (87)) ,

9This proposition is based on an unpublished paper of H. Reckziegel (Cologne).
10These properties show that the riemannian metric of the bundle space N̂ coincides with the one which

J.Vilms constructed in [V1] in some more general situations (see also [Be]Th.9.55 on p. 249).
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then the following O’Neill equations are true:

∀ X̂, Ŷ ∈ Γ(Ĥ) : ν
(
∇LC

X̂ Ŷ
)

= −1
2 · Ω̂(X̂, Ŷ ) and (98)

∀ X̂, Ŷ ∈ Γ(Ĥ) : τ∗∇LC

X̂ Ŷ = ∇N

X̂τ∗Ŷ . (99)

Formula (98) says that −1
2 · Ω̂|(Ĥ ×N̂ Ĥ) can be considered as second fundamental form

of the subbundle Ĥ ⊂ TN̂ .

(d) The shape operator11 SĤ : V̂ ×N̂ Ĥ → Ĥ of the subbundle Ĥ given by

∀ Û ∈ Γ(V̂) , X̂ ∈ Γ(Ĥ) : SĤ
Û
X̂ = −η

(
∇LC

X̂ Û
)

is related to the curvature tensor Ω̂ by

∀ Û ∈ Γ(V̂) , X̂, Ŷ ∈ Γ(Ĥ) : 〈SĤ
Û
X̂, Ŷ 〉 = −1

2 · 〈Ω̂(X̂, Ŷ ), Û〉 . (100)

Besides Formula (99) we have

∀ Û ∈ Γ(V̂) , X̂ ∈ Γ(Ĥ) : τ∗∇LC

ÛX̂ = ∇N

Ûτ∗X̂ − τ∗S
Ĥ
Û
X̂ . (101)

(e) The vector bundle V̂ is a ∇LC-autoparallel subbundle of TN̂ , and therefore the fibres N̂q

are totally geodesic submanifolds of the riemannian manifold N̂ . Therefrom one derives
for all X̂ ∈ Γ(Ĥ) and Û , Û1, Û2 ∈ Γ(V̂) :

ν(∇LC

X̂ Û) = ν[X̂, Û ] and thus (102)

X̂〈Û1, Û2〉 = 〈[X̂, Û1], Û2〉+ 〈Û1, [X̂, Û2]〉 . (103)

(f) In addition to Equation (101) the following is true:

∀ Û ∈ Γ(V̂) , X̂ ∈ Γ(Ĥ) : ∇LC

ÛX̂ ∈ Γ(Ĥ) . (104)

Proof. For (a). (i) follows immediately from Remark 12. Since we also get ‖τ∗(ρTN̂u (x, 0))‖ =
‖u(x)‖ = ‖x‖ = ‖(x, 0)‖ = ‖ρTN̂u (x, 0)‖ , we have verified (ii). In order to verify (iii) we first
prove the following relation between the maps ρ̂u and ρTN̂u :

∀ (u,A) ∈ PW ×m : ρTN̂u (0, A) = ΘW (u ◦A ◦ u−1) = ρ̂u∗(θ(A)) . (105)

For (105). Since u(V0) = W holds and ρTN̂u (0, A) is vertical, Formula (90) shows ρTN̂u (0, A) =
ΘW (u ◦A ◦ u−1) = ḋ

dt

∣∣∣
t=0

(
Exp(t · u ◦A ◦ u−1)(W )

)
= ḋ

dt

∣∣∣
t=0

(
ρ̂u(Exp(t ·A)(V0))

)
= ρ̂u∗(θ(A)) .

Now let a point V ∈ Gm(Rn) and a vector v ∈ TV Gm(Rn) be given. Then there exist a
transformation g ∈ O(Rn) and an element A ∈ m such that

g(V0) = ψg(V0) = V , hence u ◦ g ∈ Pu(V ) , and ψg∗θ(A) = v (see (95)) . (106)

Because of ρ̂u◦g = ρ̂u ◦ ψg we obtain by means of (106) and (105)

ρ̂u∗v = ρ̂u∗ ◦ ψg∗(θ(A)) = ρ̂u◦g∗(θ(A)) = ρTN̂u◦g(0, A) ,

11I use the notations second fundamental form and shape operator of Ĥ because of the statements (c) and (d);

but one must notice that this second fundamental form is skew-symmetric and therefore this shape operators SĤû
are skew-adjoint.
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hence
‖ρ̂u∗v‖ = ‖ρTN̂u◦g(0, A)‖ = ‖A‖ =

(96)
‖θ(A)‖ =

(95)
‖ψg∗θ(A)‖ =

(106)
‖v‖ .

Thus ρ̂u is an isometric embedding into N̂ with image N̂q . Next we prove that the induced
riemannian metric on N̂q = Gm(TqN) is the canonical one. We continue with the preceding
notations. If Ã1, Ã2 ∈ MW are given, we put Ak := u−1 ◦ Ãk ◦ u ∈ m . Since ρ̂u is isometric,
we obtain

〈〈Ã1, Ã2〉〉 = −trace(Ã2 ◦ Ã1) = −trace(A2 ◦A1) = 〈〈A1, A2〉〉
=

(96)
〈θ(A1), θ(A2)〉Gm(Rn),V0

= 〈ρ̂u∗θ(A1), ρ̂u∗θ(A2)〉N̂,W (107)

=
(105)

〈Θ(Ã1),Θ(Ã2〉N̂q ,W .

Thus 〈· , ·〉N̂q satisfies the analogous Formula (96) for the Grassmannian Gm(TqN) = N̂q with
respect to the reference point W . It remains to prove the analogous Formula (95) for the
Grassmannian Gm(Tq) = N̂q . This is done easily: If g̃ ∈ O(TqN) is given and we put g :=
u−1 ◦ g̃ ◦ u ∈ O(Rn) , then we have ψg̃ = ρ̂u ◦ ψg ◦ (ρ̂u)−1 , which is an isometry of N̂q .

For (b). We choose a parallel orthonormal frame field c̃ : J → L(N) of the riemannian manifold
N along c . The horizontal displacement under consideration is then given by

(
1

‖
0
c )Ĥ = ρ̂c̃(t2) ◦ (ρ̂c̃(t1))

−1 ,

see (85) and [KN]Vol. I, p. 88. Thus (b) follows from (a)(iii).

For (c) and (d). These assertions are valid for every riemannian submersion τ ; for (c) see
[ON1]. – Equation (100) is the relation between the second fundamental form and the shape
operator (well known from submanifold geometry); it is verified by means of the Ricci equation
and Formula (98). In order to prove (101) we rearrange it to

τ∗∇LC

ÛX̂ − ∇N

Ûτ∗X̂ = −τ∗SĤÛ X̂ .

As both sides of this formula are linear in the variable X̂ , we may suppose that X̂ is the
horizontal lift of a vector field X ∈ Γ(TN) ; then we have ∇N

Ûτ∗X̂ = ∇N

τ∗Û
X = 0 and

[Û , X̂] ∈ Γ(V̂) . Thus we get

τ∗∇LC

ÛX̂ − ∇N

Ûτ∗X̂ = τ∗
(
∇LC

X̂ Û + [Û , X̂]
)

= −τ∗SĤÛ X̂ .

For (e). First we prove Equation (103): Both sides of (103) are linear in X̂ . Thus it suffices to
verify it for the horizontal lift X̂ of some vector field X ∈ Γ(TN) . Let (Φ̂t) and (Φt) denote
the local 1-parameter groups of X̂ and X , respectively; then we have τ ◦ Φ̂t = Φt ◦ τ , and this
fact implies that for every W ∈ N̂ Φ̂t∗|V̂W is an isomorphism V̂W → V̂Φ̂t(W ) . Let ξW : J → N̂

be the maximal integral curve of X̂ with ξW (0) = W and c := τ◦ξW . Then t 7→ Φ̂t(W ) = ξW (t)
is the horizontal lift of c with initial point W ; thus Φ̂t|N̂c(0) : N̂c(0) → N̂c(t) is the Ĥ-horizontal
displacement. Because of (b), therefore the isomorphism Φ̂t∗|V̂W : V̂W → V̂Φ̂t(W ) is isometric,
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and we get

X̂W · 〈Û1, Û2〉 =
(
〈Û1, Û2〉 ◦ ξW

)′(0) =
d
dt

∣∣∣
t=0
〈Û1 ◦ Φ̂t(W ), Û2 ◦ Φ̂t(W )〉

=
d
dt

∣∣∣
t=0
〈Φ̂−1

t∗ Û1 ◦ Φ̂t(W ), Φ̂−1
t∗ Û2 ◦ Φ̂t(W )〉

= 〈d
dt

∣∣∣
t=0

Φ̂−1
t∗ Û1 ◦ Φ̂t(W ), Û2(W )〉+ 〈Û1(W ),

d
dt

∣∣∣
t=0

Φ̂−1
t∗ Û2 ◦ Φ̂t(W )〉

Now, the term
d
dt

∣∣∣
t=0

Φ̂−1
t∗ Ûk ◦ Φ̂t(W ) defines the Lie derivative LX̂ Ûk at the point W , which

coincides with the Lie bracket [X̂, Ûk]W (see [KN] Vol. I, p. 29). Substituting the Lie bracket in
the preceding formula we get Equation (103). – In order to prove that V̂ is a ∇LC-autoparallel
subbundle of TN̂ let X̂, Û1, Û2 be as before, in particular X̂ is some horizontal lift. Then
[Û1, Û2] , [Û1, X̂] and [Û2, X̂] are vertical. Thus by the formula of Koszul for the Levi Civita
connection (see [ON2], p. 61) we get:

2 · 〈∇LC

Û1
Û2, X̂〉 = (Û1〈Û2, X̂〉 − 〈Û1, [Û2, X̂]〉)

+ (Û2〈Û1, X̂〉 − 〈Û2, [Û1, X̂]〉)− (X̂〈Û1, Û2〉 − 〈X̂, [Û1, Û2]〉)
= −

(
〈Û1, [Û2, X̂]〉+ 〈Û2, [Û1, X̂]〉+ X̂〈Û1, Û2〉

)
= −

(
X̂〈Û1, Û2〉 − 〈Û1, [X̂, Û2]〉 − 〈Û2, [X̂, Û1]〉

)
=

(103)
0 ,

hence ∇LC

Û1
Û2 ∈ Γ(V̂) ; that means the autoparallelity of the subbundle V̂ . As the fibres

N̂q are integral manifolds of V̂ , we see that they are totally geodesic submanifolds of N̂ . –
Furthermore, since the torsion of ∇LC vanishes and V̂ is ∇̂-autoparallel we get

〈[X̂, Û1], Û2〉 = 〈∇LC

X̂ Û1 −∇LC

Û1
X̂, Û2〉 = 〈∇LC

X̂ Û1, Û2〉+ 〈X̂,∇LC

Û1
Û2〉 = 〈∇LC

X̂ Û1, Û2〉 .

This result implies Equation (102). Finally Equation (103) can also be deduced from Equa-
tion (102) by applying the Ricci identity.

For (f). This statement is true for every riemannian submersion τ with totally geodesic fibres.
For the proof we choose a further vector field Û ′ ∈ Γ(V̂) . Since V̂ is autoparallel, we obtain by
means of the Ricci identity

〈∇LC

ÛX̂, Û
′〉 = −〈X̂,∇LC

Û Û
′〉 = 0 ,

which implies (104).

In the following we will also use the inner product

〈〈A1, A2〉〉 = −trace(A2 ◦A1)

for all endomorphisms A1, A2 ∈ End−(TqN) . It is well known that for every W ∈ N̂q one has

HW ⊥ MW ; (108)

this can easily been proved by use of an orthonormal frame u ∈ PW .

In [ON1] O’Neill has derived relations between the curvature tensors of the bundle space
and base space of a riemannian submersion. For our investigation the following will become
important.
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Lemma 7 (A relation between the curvature of Ĥ and N ). For all W ∈ N̂ , x̂, ŷ ∈ ĤW and
û ∈ V̂W we have

−2 · 〈SĤû x̂, ŷ〉 = 〈Ω̂(x̂, ŷ), û〉 = 〈〈RN(x, y), ν̂(û)〉〉 (109)

with x := τ∗x̂ and y := τ∗ŷ .

Proof. the first part of (109) is a repetition of (100). Furthermore, using Equation (78), (77)
and Remark 11 we calculate:

∀ x̂, ŷ ∈ ĤW : MW -part of RN(x, y) = dν̂(x̂, ŷ) = ν̂(Ω̂(x̂, ŷ)) .

Therefore, Theorem 4 gives Ω̂(x̂, ŷ) = ΘW

(
MW -part of RN(x, y) . Moreover it implies û =

Θ(ν̂(û)) ; therefore we get:

〈Ω̂(x̂, ŷ), û〉 = 〈Θ( MW -part of RN(x, y) ),Θ(ν̂(û))〉
=

(107)
〈〈MW -part of RN(x, y), ν̂(û)〉〉 .

If we split RN(x, y) =
(
MW -part of RN(x, y)

)
+

(
HW -part of RN(x, y)

)
and take (108) into

account, we obtain the second part of (109).

Now we will compare the two connections ∇̂ and ∇LC . At first we see that these connections
are different, because according to Proposition 10 the torsion of ∇̂ does not vanish identically.
For our comparison we introduce the difference tensor

∆ := ∇LC− ∇̂ . (110)

Theorem 5. (a) ∇̂ is a metric connection on the riemannian manifold N̂ . Therefore we
have in particular

∀W ∈ N̂ , û, v̂, ŵ ∈ TW N̂ : 〈∆(û, v̂), ŵ〉+ 〈∆(û, ŵ), v̂〉 = 0 . (111)

(b) The following holds: ∀ Û1, Û2 ∈ Γ(V̂) : ∇̂Û1
Û2 = ∇LC

Û1
Û2 ∈ Γ(V̂) . (112)

Therefore, for every q ∈ N the fibre N̂q = Gm(TqN) is an affine (= autoparallel) sub-
manifold of (N̂ , ∇̂) ,

∆
∣∣(V̂ ×N̂ V̂) = 0 (113)

and on N̂q the connection ∇̂ coincides with the connection which N̂q bears canonically
as symmetric space (see [KN]Vol.2, p. 230).

For the following Equations (116) and (117) we fix a subspace W ∈ N̂q (q ∈ N) , choose
x̂, ŷ ∈ ĤW and û ∈ V̂W and put x := τ∗x̂ and y := τ∗ŷ ∈ TqN .

(c) For all vector fields X̂ , Ŷ ∈ Γ(Ĥ) and Û ∈ Γ(V̂) the following formulas hold:

∇LC

X̂ Ŷ = ∇̂X̂ Ŷ − 1
2 · Ω̂(X̂, Ŷ ) and (114)

∇LC

X̂ Û = −SĤ
Û
X̂ + ∇̂X̂ Û . (115)

Because of ∇̂X̂ Ŷ , S
Ĥ
Û
X̂ ∈ Γ(Ĥ) and ∇̂X̂ Û , Ω̂(X̂, Ŷ ) ∈ Γ(V̂) the Formulas (114) and

(115) can be interpreted as Gauß and Weingarten equation of the subbundle Ĥ in the
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riemannian manifold N̂ ; then ∇̂|(Ĥ × Γ(Ĥ)) and ∇̂|(Ĥ × Γ(V̂)) play the role of a
“semi-connection” on Ĥ resp. on the normal bundle V̂ of Ĥ . The quantities SĤ and
−1

2 · Ω̂|(Ĥ × Γ(Ĥ)) were already interpreted as shape operator and second fundamental
form of the subbundle Ĥ in Proposition 12. The Formulas (114) and (115) can also be
expressed by

∆(x̂, ŷ) = −1
2 · Ω̂(x̂, ŷ) ∈ V̂W and ∆(x̂, û) = −SĤû x̂ ∈ ĤW (116)

for all choices of x̂, ŷ ∈ ĤW and û ∈ V̂W .

(d) ∆(û, x̂) ∈ ĤW and 〈∆(û, x̂), ŷ〉 = 1
2 · 〈〈R

N(x, y)− x ∧ y , ν̂(û)〉〉 (117)

Proof. For (a). The background for this statement is that the tangent bundle TN̂ is associated
with the principal bundle P via the map ρTN̂ and that ∇̂ and the riemannian metric of N̂ are
defined by means of this association. In order to prove it explicitly we use that this statement
is equivalent to the following claim: For every curve ξ : J → N̂ and every ∇̂-parallel vector
fields Ŷ1 , Ŷ2 ∈ Γξ(TN̂) the function 〈Ŷ1, Ŷ2〉 is constant. For verifying the last statement, we
use the description (91) for ∇̂-parallel vector fields choosing a horizontal lift uξ : J → P of ξ
and suitable elements (xi, Ai) ∈ Rn ⊕m such that we have Ŷi(t) = ρTN̂uξ(t)

(xi, Ai) . Formula (97)

then implies 〈Ŷ1, Ŷ2〉 ≡ 〈〈(x1, A1), (x2, A2)〉〉 . – Formula (111) follows now, because ∇̂ and ∇LC

both are metric connections.

For (b). As mentioned above V̂ is a ∇̂-parallel subbundle of TN̂ . In particular, it is autopar-
allel, i.e., we have

∀ Û1, Û2 ∈ Γ(V̂) : ∇̂Û1
Û2 ∈ Γ(V̂) ;

therefore, its integral manifolds, i.e. the fibres N̂q , are affine submanifolds of N̂ . Furthermore,
for all vectors û1, û2 ∈ TW N̂q we have τ∗ûi = 0 , and therefore the torsion of N̂q (equipped with
the connection ∇N̂q induced by ∇̂ ) vanishes by means of (93), since T N̂q(û1, û2) = T N̂(û1, û2) .
Because of (a) ∇N̂q , therefore, is the Levi-Civita connection of the totally geodesic submanifold
N̂q of N̂ . This fact implies

∀ Û1, Û2 ∈ Γ(V̂) : ∇̂Û1
Û2 = ∇LC

Û1
Û2 ;

thus (112) is proved. The further statement of (b) follows from Proposition 12(a)(iii), because
the Levi-Civita connection of the canonical riemannian metric of Gm(TqN) is the canonical
connection of this symmetric space.

For (c). The Equations (114) and (115) obviously will follow from the four equations

(i) η(∇LC

X̂ Ŷ ) = ∇̂X̂ Ŷ (ii) ν(∇LC

X̂ Ŷ ) = −1
2 · Ω̂(X̂, Ŷ )

(iii) η(∇LC

X̂ Û) = −SĤ
Û
X̂ (iv) ν(∇LC

X̂ Û) = ∇̂X̂ Û

The Equations (ii) and (iii) are true as was shown in Proposition 12(c) and (d). Furthermore,
from the first part of (92), Remark 11(i) and O’Neills Formula (99) we get τ∗∇̂X̂ Ŷ = ∇N

X̂τ∗Ŷ −
ν̂(X̂)(τ∗Ŷ ) = ∇N

X̂τ∗Ŷ = τ∗∇LC

X̂ Ŷ ; because of ∇̂X̂ Ŷ ∈ Γ(Ĥ) therefore Equation (i) is true.
Finally, we calculate by means of Formula (102)

ν(∇LC

X̂ Û) = ν[X̂, Û ] = ν
(
∇̂X̂ Û − ∇̂ÛX̂ − T N̂(X̂, Û)

)
.
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Because of Equation (93) we have ν̂(T N̂(X̂, Û)) = 0 , and therefore Theorem 4 implies
ν(T N̂(Ŷ , Û)) = 0 ; moreover we have ∇̂ÛX̂ ∈ Γ(Ĥ) and ∇̂X̂ Û ∈ Γ(V̂) ; thus Equation (iv)
is true.

For (d). The first part of (117) follows from Proposition 12(f) and the ∇̂-parallelity of Ĥ .
Furthermore, if we combine the first part of Formula (92) with (101) we find τ∗∆(û, x̂) =
ν̂(û)x− τ∗S

Ĥ
û x̂ and therefore

〈∆(û, x̂), ŷ〉 = 〈ν̂(û)x, y〉 − 〈SĤû x̂, ŷ〉 . (118)

The last term of (118) is known from (109). Thus the second part of (117) follows with the
following fact: If V is a euclidean vector space, then we have for all vectors x, y ∈ V and every
endomorphism A ∈ End−(V )

〈Ax, y〉 = −1
2 · 〈〈x ∧ y,A〉〉 .

The proof of this equation is an easy task, if one chooses an orthonormal basis (a1, . . . , an) of
V and writes x =

∑
〈x, ai〉 · ai and y =

∑
〈y, aj〉 · aj .

Corollary 8 (Comparison of ∇̂ with ∇LC ). The difference tensor ∆ is determined by the
following formula valid for all triples (û, v̂, ŵ) ∈ TN̂ ×N̂ TN̂ ×N̂ TN̂ :

〈∆(û, v̂), ŵ〉 = 1
2 ·

(
− 〈〈RN(u, v), ν̂(ŵ)〉〉+ 〈〈RN(u,w), ν̂(v̂)〉〉+ 〈〈RN(v, w)− v ∧ w, ν̂(û)〉〉

)
,

where we have defined u := τ∗û, v := τ∗v̂ and w := τ∗ŵ .

Proof. The equation can be proved by checking the eight cases, in which the vectors û, v̂ and
ŵ are vertical or horizontal. Obviously the right-hand side of the equation vanishes, if more
than one vector is vertical or if all vectors are horizontal; in these cases also the left-hand side
vanishes because of (113), (116) and (117). The case (û, v̂, ŵ) ∈ V̂W × ĤW × ĤW follows
from (117). So we are left with two cases to be treated: For (û, v̂, ŵ) ∈ ĤW × ĤW × V̂W we
obtain from (116) and Lemma 7: 〈∆(û, v̂), ŵ〉 = −1

2 · 〈Ω̂(û, v̂), ŵ〉 = −1
2 · 〈〈R

N(u, v), ν̂(ŵ)〉〉 =
right-hand side of the equation ; and the case (û, v̂, ŵ) ∈ ĤW × V̂W × ĤW follows from the
previous one because both sides of our equation are skew-symmetric with respect to the variables
v̂ and ŵ (see (111)).

But nevertheless perhaps there is yet a close geometric relation between the connections ∇LC

and ∇̂ . To explain the idea let us call in mind how the connection ∇̂ was defined. We started
from the Levi-Civita connection on N , considered its “pull back connection” on the pull back
bundle E = τ∗TN and defined in usual way (i.e., by projection) the connections ∇> , ∇⊥ on
the subbundles >> , ⊥⊥ ⊂ E (see (63)); from these connections we obtained the connection ∇M

on the bundle M ∼= L(>>,⊥⊥) (see (70) and (70)). Thus we got the connection ∇> ⊕∇⊥ ⊕∇M

on the bundle E ⊕ M = >> ⊕⊥⊥ ⊕ M . Finally the connection ∇̂ was constructed by pulling
back the previous connection via the isomorphism (η̂, ν̂) : TN̂ → E⊕M (see Theorem 4). On
the other hand, via this isomorphism the splitting >> ⊕⊥⊥ ⊕ M corresponds to the splitting
TN̂ = D⊕D⊥⊕ V̂ ; see Remark 12. This remark stated that the three subbundles D , D⊥ and
V̂ are ∇̂ -parallel; we also see now that the notation D⊥ was justified because the construction
of the riemannian metric via the map ρTN̂ implies that

the splitting TN̂ = D ⊕D⊥ ⊕ V̂ is an orthogonal splitting . (119)
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After this description it is natural to wonder whether the connection ∇̂ conicides with the
connection ∇D ⊕ ∇D⊥ ⊕ ∇V̂ , where the connections ∇D, ∇D⊥, ∇V̂ are induced by ∇LC (by
projection). Because the subbundles D , D⊥ and V̂ are ∇̂ -parallel, this question is equivalent
to the set of following three “partial questions”:

Question 1. ∀ (ŵ, û, v̂) ∈ TN̂ ×N̂ V̂ ×N̂ V̂ : 〈∆(ŵ, û), v̂〉 = 0 ?

Question 2. ∀ (ŵ, x̂, ŷ) ∈ TN̂ ×N̂ D̂ ×N̂ D̂ : 〈∆(ŵ, x̂), ŷ〉 = 0 ?

Question 3. ∀ (ŵ, x̂, ŷ) ∈ TN̂ ×N̂ D̂⊥ ×N̂ D̂⊥ : 〈∆(ŵ, x̂), ŷ〉 = 0 ?

Corollary 9 (Answers to the questions). Question 1 has always a positive answer. Question 2
resp. Question 3 is true at a “point” W ∈ N̂ if and only if W resp. W⊥ is a curvature
invariant subspace of Tτ(W )N . Therefore in case m ≥ 2 the connections ∇̂ and ∇D⊕∇D⊥⊕∇V̂

coincide on the whole manifold N̂ if and only N is a space of constant curvature.

Proof. The answer of Question 1 follows immediately from Corollary 8. The answers to the
other two questions are based on the the assertion

∀ x̂, ŷ ∈ ĤW :
((
∀ û ∈ V̂W : 〈∆(û, x̂), ŷ〉 = 0

)
⇐⇒ RN(x, y)− x ∧ y ∈ HW

)
,

which follows from the second part of (117), because HW ⊕ MW is an orthogonal splitting of
End−(Tτ(W )N) (because of (108)) and MW = ν̂(V̂W ) . By this result we get:

∀ (ŵ, x̂, ŷ) ∈ TW N̂ ×DW ×DW : 〈∆(ŵ, x̂), ŷ〉 = 0

⇐⇒ ∀ (û, x̂, ŷ) ∈ V̂W ×DW ×DW : 〈∆(û, x̂), ŷ〉 = 0
⇐⇒ ∀ (x̂, ŷ) ∈ DW ×DW : RN(x, y)− x ∧ y ∈ HW

⇐⇒ ∀ (x̂, ŷ) ∈ DW ×DW : RN(x, y) ∈ HW

⇐⇒ W is curvature invariant ;

for the first equivalence we have used the first part of (117), and for the third equivalence notice
that we have x ∧ y ∈ HW if both vectors x and y lie in W resp. in W⊥ . (The characteri-
zation of the curvature invariance of W in the last equivalence has a further consequence, see
footnote12.) Hereby our answer of Question 2 is proved. For Question 3 we can use the same
argumentation only replacing D by D⊥ .

The last statement of the corollary is true, because n-dimensional riemannian spaces N of
constant curvature are characterized by the fact that all subspaces W ∈ Gm(TN) for some
dimension m ∈ {2, . . . , n− 1} are curvature invariant (already proved by É. Cartan in No. 108
of his book [C]).

Theorem 6 (The second fundamental form of a Gauß map). If M is an m-dimensional sub-
manifold of N , then the second fundamental form hξ of its Gauß map ξ := ξM : M → N̂
characterized by the “Gauß equation”

∇̂Xξ∗Y = ξ∗∇M
XY + hξ(X,Y ) for all X, Y ∈ Γ(TM)

12From the Equations (108) and (109) and the definition of D it follows that W is curvature invariant if and
only if ∀ v̂1, v̂2 ∈ DW : Ω̂(v̂1, v̂2) = 0 holds. This result can also be found in the proof of Theorem 5 in [PR1].
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is related to the covariant derivative ∇hM of the second fundamental form of M by

hξ
p(u, v) = Θξ(p)(A

b
v) with b := ∇uh

M for all u, v ∈ TpM (p ∈M) . (120)

In particular, hξ takes its values in the vertical subbundle V̂ .

Proof. Let vector fields X, Y, Z ∈ Γ(TM) be fixed. We use (92), (79), (70) and τ◦ξ = M ↪→ N .
First we obtain τ∗h

ξ(X,Y ) = ∇N
XY − ν̂(ξ∗X)Y −∇M

XY = hM(X,Y )− ν̂(ξ∗X)Y = 0 ; thus hξ

is vertical. Furthermore,

ν̂(hξ(X,Y ))Z =
(
∇M

X ν̂(ξ∗Y )
)
Z − ν̂

(
ξ∗∇M

XY
)
Z

= ∇E
X

(
ν̂(ξ∗Y )Z

)
− ν̂(ξ∗Y )

(
∇E

XZ
)
− ν̂

(
ξ∗∇M

XY
)
Z

= ∇⊥M
X

(
hM(Y, Z)

)
− hM(Y,∇M

XZ)− hM(∇M
XY, Z) = (∇Xh

M)(Y, Z) ;

thus ν̂(hξ(u, v)) = Ab
v with b := ∇uh

M for all u, v ∈ TpM . Since hξ is vertical, Theorem 4
shows Θ(Ab

v) = ν(hξ(u, v)) = hξ(u, v) .

Corollary 10 (Characterization of II-parallelity by the Gauß map). An isometric immersion
f : M → N with dimM = m is II-parallel if and only if its Gauß map ξ := ξf : M → N̂ , p 7→
f∗TpM is affine, i.e., if the second fundamental form hξ vanishes (see [KN]Vol. 1, p. 225).

Proof. As we may argue locally, we may restrict the consideration to the case that f is the in-
clusion of a submanifold M ⊂ N . Because Θξ(p) : Mξ(p) → V̂ξ(p) is an isomorphism, Theorem 6
shows that ξM is affine if and only if ∇hM = 0 .

Remark 13. (a) Theorem 6 and Corollary 10 are generalizations of results, which J.Vilms
discovered for submanifolds of the euclidean space Rn (see Lemma 2 and 3 in [V2]). As
in this case N̂ ∼= Rn ×Gm(Rn) , it was very plain that his Gauß maps take their values in
Gm(Rn) only. Another generalization of Vilms’ results was given by H.Naitoh in [Na2];
but it is only valid for symmetric submanifolds in symmetric spaces; the target space of
his Gauß map is a symmetric space, whose construction is rather complicated.

(b) Since the tangent spaces of all submanifold of Rn are curvature invariant, Corollary 3 can
be interpreted as another generalization of the results given in [V2].

(c) In order not to overload formulas by many f∗’s we have formulated them for submanifolds
only instead for isometric immersions. It will not be difficult for the reader to reformulate
them for an isometric immersion f : M → N . It is necessary then to replace the second
fundamental form hf by the section ĥf in B along the Gauß map ξf : p 7→ f∗TpM
characterized by

ĥfp(f∗v, f∗w) = hfp(v, w) for all v, w ∈ TpM (p ∈M) . (121)

For instance, by means of (81) formula (120) becomes

hξ
p(u, v) = Θξ(p)(A

b
f∗v) with b := ∇B

uĥ
f ;

the element b ∈ Bξ(p) is also characterized by b(f∗v, f∗w) = (∇uh
f
p)(v, w) for v, w ∈ TpM .
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7 Distinguished m-planes of TN̂

If M is an m-dimensional II-parallel submanifold of N , then we learned from Corollary 10
that M̂ := ξM(M) is an m-dimensional affine (=autoparallel) submanifold of N̂ . Since in this
case M = τ(M̂) , it is a good idea to try a construction of II-parallel immersions into N by
starting from an m-dimensional affine submanifold M̂ ⊂ N̂ and considering f := τ |M̂ . Of
course, in general f will not even be an immersion; but if we suppose an additional condition,
then we will succeed (see Theorem 8). For formulating this condition we assign m-dimensional
subspaces Tb ⊂ TW N̂ to all bilinear maps b ∈ BW (W ∈ N̂) , which play a similar role for
m-dimensional submanifolds as the subspaces of acceleration vectors ∈ T (TN) for curves in N
(see Theorem 7(a)). The geometric impact of the subspaces Tb will be described in Theorem 7.

Proposition 13 (Definition of Tb ). For every element W ∈ N̂ and every b ∈ BW the set

Tb := { v̂ ∈ TW N̂ | v := τ∗v̂ ∈W and Ab
v = ν̂(v̂) } (122)

is an m-dimensional linear subspace of TW N̂ , which is mapped isomorphically onto W by τ∗ .
The assignment b 7→ Tb is injective.

Proof. The graph graph(Ab) of the map Ab : W → MW , v 7→ Ab
v can be considered as an m-

dimensional linear subspace of EW ⊕MW ; then Tb is the inverse image of graph(Ab) in TW N̂
with respect to the isomorphism (η̂, ν̂)|TW N̂ (see Theorem 4) and therefore an m-dimensional
subspace of TW N̂ . As b 7→ Ab 7→ graph(Ab) is injective, the proof is finished.

Example 10 (The Gauß map of a Gauß map). If M is an m-dimensional submanifold of N
with Gauß map ξM , then ξM∗ TpM = ThMp

holds for every point p ∈M according to (79).

Remark 14 (The Tsukada distribution). The distribution D ⊂ TN̂ , defined in Remark 12 and
already introduced by K.Tsukada in the article [Ts], can now be described by

∀W ∈ N̂ : DW = T0W with the zero element 0W ∈ BW . (123)

The other subspaces Tb (b ∈ BW ) are obtained by tipping DW up from his horizontal position,
but preserving the condition τ∗Tb = W .

Proposition 14 (Invariance properties of Tb ). For every W ∈ N̂q (q ∈ N) and every b ∈ BW

the subspace Tb has the following properties:

(a) Suppose that b is symmetric. Then Tb is torsion invariant in (N̂ , ∇̂) (i.e. T N̂(Tb, Tb) ⊂
Tb ) if and only if W is curvature invariant in N ; moreover, in this case the torsion
already vanishes on Tb , i.e. T N̂(Tb, Tb) = 0.

(b) Provided that W is curvature invariant in N , also Tb is curvature invariant in (N̂ , ∇̂)
if and only if b is RN

q -semiparallel (see Definition 1(b)).

Proof. We choose ûi ∈ Tb , put ui := τ∗ûi ∈ W , abbreviate T̂ := T N̂ and R̂ := RN̂ and
calculate by means of Proposition 10 and (66):

τ∗T̂ (û1, û2) = Ab
u2

(u1)−Ab
u1

(u2) = b(u2, u1)− b(u1, u2) and (124)

v := τ∗R̂(û1, û2)û3 = RE(û1, û2)u3 ∈W . (125)
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Suppose now that b is symmetric. Then τ∗T̂ (û1, û2) = 0 by means of (124), and the tor-
sion invariance of Tb is equivalent to ν̂(T̂ (û1, û2)) = 0 ; according to (93) it is the same as
RN(u1, u2) ∈ HW . Thus the torsion invariance of Tb is equivalent to the curvature invariance
of W . Furthermore, τ∗T̂ (û1, û2) = 0 and ν̂(T̂ (û1, û2)) = 0 imply T̂ (û1, û2) = 0 . Therefore,
the proof of assertion (a) is complete.

Henceforth we assume the curvature invariance of W . Then we have RN(u1, u2) ∈ HW ; hence
we obtain from (78)

Rb(u1, u2) = RE(û1, û2) (126)

for the tensor Rb associated with the quadruple (TqN,W, b,R
N
q ) according to (10). Because of

(125) and (94) R̂(û1, û2)û3 ∈ Tb is equivalent to [RE(û1, û2), Ab
u3

] = Ab
v , that means, to

∀w ∈W : RE(û1, û2)b(u3, w)− b(u3, R
E(û1, û2)w) = b(RE(û1, û2)u3, w) .

Substituting (126) we get assertion (b).

Remark 15 (On the van der Waerden-Bortolotti connection). From Remark 8, (126) and (72)
we see that b is RN

q -semiparallel (according to (11)) if and only if W is curvature invariant
and RB(û1, û2)b = 0 for all û1, û2 ∈ Tb . Hence, if the tangent space TpM of an m-dimensional
submanifold M ⊂ N is curvature invariant, then the second fundamental form hMp is RN

q -
semiparallel if and only if RB(ξM∗ u1, ξ

M
∗ u2)hMq = 0 holds for all vectors u1, u2 ∈ TqM . We

remind the reader also of the equation ∇B
vh

M = ∇vh
M (see (81)). These results show

that the bundle (B,∇B) provides a convincing framework for handling the so called van der
Waerden-Bortolotti connection ∇ of second fundamental forms (see [Ch] p. 65). For instance,
saying that the van der Waerden-Bortolotti connection of M is flat (see [L] p. 801) means
RB(ξM∗ TpM, ξM∗ TpM) = 0 for all p ∈M .

Proposition 15 (“Parallelity” of the map b 7→ Tb ). If h : J → B is a parallel section in B
along a curve ξ : J → N̂ , then t 7→ Th(t) is a ∇̂-parallel subbundle of TN̂ along ξ , i.e.,

Th(t) = (
t

‖
t0

ξ )N̂(Th(t0)) for all t0, t ∈ J . (127)

Proof. Let v̂ ∈ Th(t0) be given, let X̂ ∈ Γξ(TN̂) denote the ∇̂-parallel vector field along ξ with
X̂(t0) = v̂ and put X := τ∗X̂ . According to Proposition 10 X resp. ν̂(X̂) are parallel sections
in E resp. M . As >> is a parallel subbundle of E and X(t0) = τ∗v̂ ∈ ξ(t0) = >>ξ(t0) , we get

X(t) ∈ >>ξ(t) = ξ(t) for all t ∈ J . (128)

Now, let Y ∈ Γξ(>>) be another ∇>-parallel section. Then ζ1 : t 7→ ν̂(X̂(t))Y (t) and ζ2 :
t 7→ A

h(t)
X(t)Y (t) = h(t)(X(t), Y (t)) are parallel sections of ⊥⊥ according to (71) and (69). Since

X̂(t0) ∈ Th(t0) , we have ζ1(t0) = ζ2(t0) and therefore ζ1 ≡ ζ2 . Combining this with (128) we
obtain X̂(t) ∈ Th(t) for all t ∈ J . Thus (127) is proved.
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Remark 16 (The P-morphism T : B → ˆ̂N ). As the tangent bundle TN̂ is associated with P
(see the construction of ∇̂ ) also the Graßmann bundle τ̂ : ˆ̂

N → N̂ over N̂ with the fibres
ˆ̂
NW = Gm(TW N̂) is associated with P . Thus the connection HP induces also a connection for

this Graßmann bundle; for a curve ξ : J → N̂ with 0 ∈ J and an element Ŵ ∈ ˆ̂
Nξ(0) the

horizontal lift Ŵξ : J → ˆ̂
N of ξ through Ŵ is given by Ŵξ(t) := (

t

‖
0
ξ )N̂(Ŵ ) . The map

T : B → ˆ̂
N , b 7→ Tb

turns out to be an injective P-morphism; thus Remark 10 implies Proposition 15 immediately.
Furthermore, the image T (B) is an associated subbundle of ˆ̂

N , and T : B → T (B) is a P-
isomorphism. The proof of these assertions is based on Remark 10 applied on the injective
H-equivariant map

φ : (typical fibre of B ) = L2(V0, V
⊥
0 )

φ1→ L(V0,m)
φ2→ Gm(V0 ⊕m)

φ3
↪→ Gm(Rn ⊕m) = (typical fibre of ˆ̂

N , see the construction of ∇̂ ) ,

where φ1 is the canonical isomorphism b 7→ (Ab : x 7→ Ab
x) (see Definition 1(a) and (57)), φ2 the

injective map ` 7→ graph(`) and φ3 the canonical inclusion induced by V0⊕m ↪→ Rn⊕m .13 With
the canonical projections pr : V0 ⊕ m → V0 and p̂r : Rn ⊕ m → Rn we obtain φ2(L(V0,m)) =
{V ∈ Gm(V0 ⊕m) |pr(V ) = V0 } and therefore φ(L2(V0, V

⊥
0 )) = {V ∈ Gm(Rn ⊕ m) | p̂r(V ) =

V0 } ; hence, φ2(L(V0,m)) is an open subset of Gm(V0 ⊕ m) (see [KN] Vol. 2, p. 133) and thus
φ(L2(V0, V

⊥
0 )) a H-invariant, embedded submanifold of Gm(Rn⊕m) , which is the typical fibre

of T (B) . Of course, T turns out to be the P-morphism Φ associated with φ according to
Remark 10. �

In [A] W.Ambrose has considered the subspaces Ŵ ∈ ˆ̂
NW , which occur as image ξM

∗ (TpM)
under the Gauß map ξM of m-dimensional submanifolds M ⊂ N . We denote the set of these
subspaces by E0

W . Following his ideas we also introduce the subsets

EW := { Ŵ ∈ ˆ̂
NW | τ∗Ŵ = W } for all W ∈ N̂ .

We obtain immediately
E0

W ⊂ EW .

Ambrose calls E :=
⋃
EW the bundle of second order m-planes and the elements of E0 :=

⋃
E0

W

integrable second order m-planes. Furthermore, for every p ∈ N and W ∈ N̂p let Γ(p,W )(τ)
denote the set of all sections ξ : U → N̂ of τ with ξ(p) = W , which are defined on some
neighbourhood U ⊂ N of p . Obviously we have

∀ ξ ∈ Γ(p,W )(τ) : ξ∗(W ) ∈ EW . (129)

Considering a section (ξ : U → N̂) ∈ Γ(p,W )(τ) as a distribution on U it make sense to say
that it is involutive at p ; that means: for all vector fields X, Y ∈ Γ(ξ) ⊂ Γ(TU) we have
[X,Y ]p ∈ W . – Notice that the objects E0

W , EW , Γ(p,W )(τ) and the involutivity of sections
ξ ∈ Γ(p,W )(τ) are defined without taking account of B and the metric structure of N .

13Compare this construction with the proof of Proposition 13.
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Theorem 7 (The geometric impact of the subspaces Tb). For every p ∈ N and W ∈ N̂p we
have:

(a) EW = T (BW ) ; therefore, E in fact is a subbundle of τ̂ : ˆ̂
N → N̂ .

(b) E0
W = T ({ b ∈ BW | b is symmetric }) ; therefore, E0 in fact is a subbundle of E .

(c) EW = { ξ∗(W ) | ξ ∈ Γ(p,W )(τ) } ; moreover, if a local section ξ ∈ Γ(p,W )(τ) and a map
b ∈ BW are related by ξ∗(W ) = Tb , then we have14

∀u ∈W, Y ∈ Γ(ξ) : W⊥-part of ∇N
uY = b(u, Yp) . (130)

(d) If ξ ∈ Γ(p,W )(τ) and b ∈ BW are related by ξ∗(W ) = Tb , then ξ is involutive at p if and
only if b is symmetric.

Proof. For (a). The inclusion Tb ∈ EW for b ∈ BW is obvious according to Proposition 13. If
on the other hand Ŵ ∈ EW is given, let us define λ := ν̂W ◦ (τ∗|Ŵ )−1 ∈ L(W,HW ) and b ∈ BW

by b(u, v) := λ(u)v . Then it is easy to prove Ŵ ⊂ Tb ; because dim Ŵ = m = dim Tb we even
have Ŵ = Tb .

For (b). In Proposition 8 we have learned that all symmetric bilinear maps b ∈ BW occur as
second fundamental forms hMp:=τ(W ) of some m-dimensional submanifolds M ⊂ N . Therefore
Example 10 proves (b).

For (c). The inclusion { ξ∗(W ) | ξ ∈ Γ(p,W )(τ) } ⊂ EW was already noticed in (129). Conversely,
for a given subspace Ŵ ∈ EW we must show that there exists a section ξ ∈ Γ(p,W )(τ) with
ξ∗(W ) = Ŵ . As τ is a submersion, we can find coordinate systems x resp. y of N̂ resp. N
about W resp. p with x(W ) = 0 and y(p) = 0 such that in these coordinates τ is represented
by the canonical projection pr : Rn+m(n−m) ∼= Rn×Rm(n−m) → Rn . If M̂ resp. M are the m-
dimensional linear subspaces of Rn+m(n−m) resp. Rn , whose tangent planes at 0 represent Ŵ
resp. W with respect to the coordinates, then τ∗Ŵ = W implies that pr|M̂ is an isomorphism
M̂ →M . Now enlarge M̂ to an n-dimensional subspace L̂ of Rn+m(n−m) such that pr|L̂ also
is an isomorphism L̂ → Rn . Then the linear map Rn → Rn+m(n−m) , u 7→ (pr|L̂)−1(u) is the
coordinate representation of a section ξ ∈ Γ(p,W )(τ) with ξ∗(W ) = Ŵ .

In order to prove (130) let (ξ : U → N̂) ∈ Γ(p,W )(τ) , b ∈ BW with ξ∗(W ) = Tb , u ∈ W and
Y ∈ Γ(ξ) be given and let us define the section Z : τ−1(U) → E , V 7→ (V, Yτ(V )) . Then we
have

Z ◦ ξ(q) = (ξ(q), Y (q)) ∈ >>ξ(q) for all q ∈ U , (131)

because Y is a section in ξ . Now using ξ∗(W ) = Tb we calculate by means of Formula (74)

∇N
uY = ∇N

u(Z ◦ ξ) = ∇N
ξ∗uZ = ∇E

ξ∗uZ + ν̂(ξ∗u)Yp = ∇E
u(Z ◦ ξ) + b(u, Yp) .

On the one hand (131) implies ∇E
u(Z ◦ ξ) ∈ ξ(p) = W , because >> is a parallel subbundle of

(E,∇E) ; on the other hand we have b(u, Yp) ∈W⊥ ; thus Formula (130) follows.

14Formula (130) shows that b plays a similar role for ξ as the second fundamental form for a submanifold; see
also Definition 10(b).
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For (d). Let ξ ∈ Γ(p,W )(τ) and b ∈ BW with ξ∗(W ) = Tb be given. For arbitrary sections
X, Y ∈ Γ(ξ) we have [X,Y ]p = ∇N

XpY −∇N
YpX ; therefore (130) implies

W⊥-part of [X,Y ]p = b(Xp, Yp)− b(Yp, Xp) ;

and because of ξ(p) = W the symmetry of b is equivalent to

∀X, Y ∈ Γ(ξ) : [X,Y ]p ∈W ,

that means, to the involutivity of ξ at p .

As an application of Theorem 7 we derive how the involutivity at a point p of an m-dimensional
distribution ξ on a manifold N can be read off the second order m-plane ξ∗(ξ(p)) :

Corollary 11 (A criterion for the involutivity of a distribution). A distribution ξ on a dif-
ferentiable manifold N is involutive at a point p ∈ N if and only if ξ∗(ξ(p)) ∈ E0

ξ(p) , that
means, if and only if there exists a submanifold M ⊂ N with p ∈ M , TpM = ξ(p) and
ξM(TpM) = ξ∗(ξ(p)) .

Proof. We choose a riemannian metric on N so that we can apply Theorem 7, where m is the
dimension of the distribution ξ . If for a given point p ∈ N we put W := ξ(p) , then we have
ξ ∈ Γ(p,W )(τ) . Now we apply (129) and the assertions (a), (d) and (b) of Theorem 7.

At the end of the discussion of the bundle E I will mention another characterization of the
subbundle E0 , which was given by Ambrose in [A]. For that we consider the subbundle
η̂−1(>>) = D ⊕ V̂ ⊂ TN̂ , where η̂ : TN̂ → E is the vector bundle morphism described in
Theorem 4, and its orthogonal complement η̂−1(>>)⊥ in the cotangent bundle T ∗N̂ with respect
to the canonical pairing T ∗N̂ ×N̂ TN̂ → R , (α̂, v̂) 7→ α̂(v̂) , that means:

η̂−1(>>)⊥V = { α̂ ∈ T ∗V N̂ | ∀ v̂ ∈ η̂−1(>>)V : α̂(v̂) = 0 } for all V ∈ N̂ .

The global sections of η̂−1(>>)⊥ (considered as differential 1-form on N̂ ) are called lift forms
by Ambrose. From the definitions we obtain immediately for every local section ξ : U → N̂ of
the bundle τ

∀ q ∈ U : Ŵq := ξ∗(ξ(q)) ⊂ η̂−1(>>)ξ(q) , hence ω̂(Ŵq) = 0 for all lift forms ω̂ . (132)

By means of Theorem 7 we can now give a rather short proof of the following result:

Proposition 16 (Ambrose, 1964). A second order m-plane Ŵ ∈ EW is integrable (i.e., it
belongs to E0

W ) if and only if dω̂(Ŵ , Ŵ ) = 0 holds for every lift form ω̂ .

Proof. If p := τ(W ) , then according to Theorem 7(c) there exists a local section (ξ : U → N̂) ∈
Γ(p,W )(τ) such that Ŵ = ξ∗(W ) . Let us first fix a lift form ω̂ and two sections X, Y ∈ Γ(ξ)
and consider the 1-form ω := ξ∗ω̂ on U . Because of (132) we have ω(X) = ω̂(ξ∗X) ≡ 0 and
ω(Y ) ≡ 0 , and therefore

dω̂(ξ∗Xp, ξ∗Yp) = (ξ∗dω̂)(Xp, Yp) = dω(Xp, Yp) = Xp · ω(Y )− Yp · ω(X)− ω([X,Y ]p)
= −ω̂(ξ∗[X,Y ]p)
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Because of Ŵ = ξ∗(W ) and since every element α̂ ∈ η̂−1(>>)⊥W can be extended to a lift form
ω̂ , the previous formula shows that dω̂(Ŵ , Ŵ ) = 0 holds for every lift form ω̂ if and only if
∀X,Y ∈ Γ(ξ) : ξ∗[X,Y ]p ∈ η̂−1(τ)W , that means, if and only if ∀X,Y ∈ Γ(ξ) : [X,Y ]p =
τ∗ξ∗[X,Y ]p ∈W , whereby the involutivity of ξ at p is characterized. According to Corollary 11
the previous condition is equivalent to Ŵ ∈ E0

W .

Remark 17 (A further criterion for the involutivity of a distribution). The essential part of
the proof of Proposition 16 was to show: A distribution ξ on a differentiable manifold N is
involutive at a point p ∈ N if and only if dω̂(ξ∗(ξ(p)), ξ∗(ξ(p))) = 0 holds for every lift form
ω̂ .

Theorem 8 (The projection of affine immersions into N̂ ). Let M be a connected m-
dimensional manifold with a linear connection ∇M and ξ : M → N̂ an affine immersion,
and assume that there exists a point p0 ∈M such that ξ∗Tp0M ∈ T (B) . Then f := τ ◦ ξ is an
immersion with Gauß map ξ , ∇M is the Levi-Civita connection of f∗〈· , ·〉N and in this way
f is a II-parallel isometric immersion.

Proof. In a first step we show

∀ p ∈M ∃h(p) ∈ Bξ(p) : ξ∗TpM = Th(p) . (133)

According to the assumption this assertion is true for p = p0 . For another point p ∈ M we
choose a curve c : [0, 1] → M with c(0) = p0 and c(1) = p and consider the parallel section
h̃ ∈ Γξ◦c(B) with h̃(0) = h(p0) . Then we know from the affinity of ξ and from Proposition 15
that t 7→ ξ∗Tc(t)M and t 7→ Th̃(t) are parallel subbundles of TN̂ along ξ ◦ c which coincide at
t = 0 . Thus we have ξ∗Tc(t)M = Th̃(t) for every t ∈ [0, 1] . In particular, (133) is proved also
for p = c(1) .

Now, according to Proposition 13, τ∗|Th(p) : Th(p) → ξ(p) ⊂ Tf(p)N is injective; hence, f is an
immersion and f∗TpM = τ∗Th(p) = ξ(p) . Therefore, ξ is the Gauß map of f .

Next, for an arbitrary vector field X ∈ Γ(TM) and a vector v ∈ TpM we calculate

f∗∇M
vX = τ∗ξ∗∇M

vX = τ∗∇̂vξ∗X = ∇N
vf∗X − ν̂(ξ∗v)f∗Xp = ∇N

vf∗X −A
h(p)
f∗v

f∗Xp ;

the last equality follows from (133). Since A
h(p)
f∗v

f∗Xp ∈ ξ(p)⊥ = ⊥pf , ∇M is the Levi-Civita
connection of f∗〈· , ·〉N . Corollary 10 can now be applied: Because ξ is affine, f has parallel
second fundamental form.

At the end of this section we introduce prolongations of triples (q,W, b) .

Definition 7 (The prolongations of a triple (q, W, b) ). Let c : J → N be the maximal helical
arc generated by a quadruple (q,W, b, u) as described in Definition 3, ξ : J → N̂ the curve
associated with the pair (c, A := Ab

u) (according to Lemma 5) and h : J → B the parallel
section in B along ξ with h(0) = b . Then we will call (c, ξ, h) the prolongation of the triple
(q,W, b) in direction u .
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Remark 18. Notice that in the situation of Definition 7 we have c = τ ◦ ξ , ξ(t) = ϕb
u(t)(W )

and that h coincides with the section bξ determined by Formula (68) with ϕ(t) = ϕb
u(t) :=

(
t

‖
0
c )N ◦ Exp(t Ab

u) .

Proposition 17 (The geometry of a prolongation of a triple (q, W, b) ). In the situation of
Definition 7 the curve ξ is the maximal geodesic of N̂ with τ∗ξ̇(0) = u and ν̂(ξ̇(0)) = Ab

u ,
and t 7→ Th(t) is a parallel strip along the curve ξ , that means, it is a parallel subbundle of TN̂
along ξ with ξ̇(t) ∈ Th(t) for all t ∈ J (see Definition 10(a) in Section 10).

Proof. Apply Remark 18, Proposition 11 and 15. Furthermore, notice that ξ̇(0) ∈ Tb follows
from τ∗ξ̇(0) = u ∈ W and ν̂(ξ̇(0)) = Ab

u and that therefrom we obtain ξ̇(t) ∈ Th(t) because ξ̇

is a parallel vector field in N̂ and t 7→ Th(t) a parallel subbundle of TN̂ .

Example 11 (Canonical appearance of prolongations). If M is an m-dimensional II-parallel
submanifold of N , c̃ : J̃ → M a unit speed geodesic of M with p := c̃(0) and (c, ξ, h) the
prolongation of (p, TpM,hMp ) in direction u := ˙̃c(0) defined over an interval J , then Proposi-
tion 5(c) and Remark 18 show:

J̃ ⊂ J , c̃ = c|J̃ , Tc̃(t)M = ξ(t) and hMc̃(t) = h(t) for all t ∈ J̃ .

8 Proof of Theorem 1

We assume the situation of Theorem 1 with the notations which were fixed before this theorem, in
Proposition 8 and its proof. In particular, for any u ∈W let cu : J̃u → N be the maximal helical
arc associated with the quadruple (p,W, b, u) and put û := (τ∗|Tb)−1(u) (see Proposition 13).
Hence we have

τ∗û = u and ν̂(û) = Ab
u . (134)

From (34) we know

∀ t ∈ J̃ :
(
tu ∈ D and cu(t) = expb(tu)

)
. (135)

Therefore, we can define

ϕb
u(t) := Φb

tu , ξu(t) := Wtu and hu(t) = btu for all t ∈ J̃ .

Because of (33) and the definition of Φb
tu resp. Wtu resp. btu before Theorem 1 we get

ϕb
u(t) = (

1

‖
0
ctu )N ◦ Exp(Ab

tu) = (
t

‖
0
cu )N ◦ Exp(tAb

u) , ξu(t) = ϕb
u(t)(W )

and the following characterization of hu(t) :

hu(t) ◦ (ϕb
u(t)× ϕb

u(t)) = ϕb
u(t) ◦ b .

According to Lemma 5 and the formulae (67), (68) the map hu : J̃ → B is a parallel section
along ξu . Therefore, (cu, ξu, hu) is the prolongation of (p,W, b) in the direction u ∈W . Thus
we know from Proposition 17 that the curve ξu is the maximal geodesic of N̂ with the initial
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velocity ξ̇u(0) = û (because of (134))and the assignment t 7→ Thu(t) is a parallel subbundle of
TN̂ along ξu ; in particular we have

Tbu = (
1

‖
0
ξu )N̂(Tb) . (136)

Moreover, since τ∗ gives an isomorphism Tb →W by means of Proposition 13, the preimages

D̂ := (τ∗|Tb)−1(D) and Û := (τ∗|Tb)−1(U)

are star shaped neighbourhoods of 0 in Tb with Û ⊂ D̂ . As we have cu = τ ◦ξu for all u ∈W
we get from (135)

expb ◦τ∗|D̂ = τ ◦ expN̂W |D̂ .

Because expb |U is an diffeomorphism onto the helical umbrella MU (p,W, b) ⊂ N , the map
expN̂W |Û is an injective immersion and therefore M̂ := expN̂

W (Û) a geodesic umbrella of the
“affine” manifold (N̂ , ∇̂) with the initial data (W, Tb) ; thereby we are reminded of Cartan’s
theorem from the introduction. Moreover, τ |M̂ becomes a diffeomorphism M̂ →MU (p,W, b) .

In [PR1, Theorem 1] was shown that there exists an affine analogon of Cartan’s theorem claiming
that in an affine manifold such a geodesic umbrella is an affine (=autoparallel) submanifold, if
all subspaces Vu (in the sense of Cartan’s theorem) are torsion and curvature invariant.15 We
will now apply this affine analogon using the following lexicon

general analogon N p V U u cu Vu

present specification N̂ W Tb Û û ξu Tbu

.

By means of Proposition 14 the conditions (CI) and (SP) of Theorem 1 imply that the subspaces
Tbu ⊂ TWuN̂ are torsion and curvature invariant in the present situation; notice also (136). Thus
we obtain from the affine analogon of Cartan’s theorem that the geodesic umbrella M̂ is an
affine submanifold of N̂ with W ∈ M̂ and TW M̂ = Tb . In a last step we apply Theorem 8 to
the inclusion M̂ ↪→ N̂ , which is an affine immersion. We obtain that τ |M̂ is an injective II-
parallel isometric immersion into N , and therefore its image τ(M̂) = MU (p,W, b) is a II-parallel
submanifold of N .

9 A globalization of Theorem 1

Definition 8 (The saturated subsets B(q0, W0, b0) ). We put BN := { (q,W, b) | q ∈ N , W ∈
N̂q , b ∈ BW symmetric } and say that a subset B ⊂ BN is saturated, if it is not empty and if
for every triple (q,W, b) ∈ B also the triples (c(t), ξ(t), h(t)) of the prolongations of (q,W, b)
in the different directions u ∈ W belong to B (see Definition 7). For every (q0,W0, b0) ∈ BN

there exists a smallest saturated subset B ⊂ BN containing (q0,W0, b0) , which will be denoted
by B(q0,W0, b0) in the following.

15To be correct, in this Theorem 1 the starting point is a normal neighborhood exp : UT → N of the initial
point and U is the intersection UT ∩ V . But it is easy to see that the result keeps valid under the weaker
hypothesis on U .
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Notice that BN is saturated (since the maps h(t) ∈ Bξ(t) from the preceding definition auto-
matically are symmetric) and that the intersection of all saturated subsets B ⊂ BN containing
(q0,W0, b0) is saturated again, whereby the existence of B(q0,W0, b0) is proved.

Example 12. If N is a space of constant curvature, then the subset B0 := { (q,W, b) ∈
BN | b is RN

q -semiparallel } is saturated, and therefore we have B(q0,W0, b0) ⊂ B0 for every
triple (q0,W0, b0) ∈ B0 . In fact, let (c, ξ, h) be the prolongation of a triple (q,W, b) ∈ B0 in
some direction u ∈ W . Because of Remark 18 and of the special structure of the curvature

tensor of N the isometry ϕb
u(t) = (

t

‖
0
c )N ◦ Exp(t Ab

u) : TqN → Tc(t)N gives an “isomorphism”

between the quadruples (TqN,W, b,R
N
q ) and (Tc(t)N, ξ(t), h(t), RN

c(t)) in the sense of Lemma 2;
thus this lemma proves (c(t), ξ(t), h(t)) ∈ B0 .

Definition 9 (Geodesically closed immersions). An affine immersion f : M → N into an affine
manifold (N,∇) resp. a II-parallel isometric immersion f : M → N into a riemannian manifold
N is said to be geodesically closed, if the image f ◦ c of every maximal geodesic c : J →M is

(a) a maximal geodesic of N in case that f is affine, and

(b) a maximal helical arc of N in case that f is II-parallel.

Remark 19. Provided that N is geodesically complete, in both cases of Definition 9 such a map
f is geodesically closed if and only if M is geodesically complete (take notice of Remark 1(b)).

For later use (see the proof of Theorem 12) we give some information on geodesically closed
affine submanifolds:

Lemma 8. For an affine submanifold M of an affine manifold (N,∇) the following is true:

(a) If M is a closed, regular submanifold of N , then M is geodesically closed; this means
that the immersion M ↪→ N is geodesically closed.

(b) If M is geodesically closed and f : L→ N is an affine immersion from another connected
affine manifold L satisfying f(p) ∈M and f∗TpL ⊂ Tf(p)M for some point p ∈ L , then
f is a differentiable map into M .

Proof. For (a). Suppose that there exists a maximal geodesic c : J → M , which in N can be
extended to a geodesic c̃ : J̃ → N with J ( J̃ ; assume for instance δ := supJ < sup J̃ . Since
M is closed, we have p := c̃(δ) ∈M ; and since the topology of M is generated by the topology
of N , the points c(t) converge to p for t → δ with respect to the topology of M . But this
behaviour is impossible for maximal geodesics of M , as follows from the existence of convex
neighbourhoods of p in M .16

For (b). We define the non-empty subset

L0 := { q ∈ L | f(q) ∈M and f∗TqL ⊂ Tf(q)M }

16 By a convex neighbourhood in M we mean a non-empty, open subset of M , which is a normal neighbourhood
of each of its points; see Theorem 6.2 on p. 34 in [He].
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and prove:

If c : J → L is a geodesic in L with 0 ∈ J and q := c(0) ∈ L0 , then f ◦ c is
a geodesic in M and c(J) ⊂ L0 .

(137)

Since f∗ċ(0) ∈ Tf(q)M , we can define the maximal geodesic c̃ : J̃ → M with ˙̃c(0) = f∗ċ(0) .
As M is a geodesically closed affine submanifold of N , c̃ also is a maximal geodesic in N .
On the other hand f ◦ c is a geodesic in N with the same velocity vector at t = 0 . Therefore
we get f ◦ c = c̃|J ; in particular, f ◦ c is a geodesic in M . Moreover, as f is an affine
immersion into N and M is an affine submanifold of N , the two subbundles t 7→ f∗Tc(t)L and
J 3 t 7→ Tc̃(t)M of TN along the curve c̃|J are parallel. From f∗TqL ⊂ Tf(q)M we therefore
obtain f∗Tc(t)L ⊂ Tf(c(t))M for all t ∈ J . Thus (137) is proved. – Using the exponential map
of L and M we obtain immediately from (137):

If U is a normal neighbourhood of q ∈ L0 in L , then U ⊂ L0 and f |U is a
C∞ map into M .

(138)

Next we prove that

The closur L0 of L0 is contained in the interior (L0)o of L0 . (139)

For that let a point q̃ ∈ L0 be given. If U is a convex neighbourhood of q̃ in L (see footnote 16),
then there exists a point q ∈ U ∩ L0 . Since U is a normal neighbourhood of q , we can apply
(138) and find q̃ ∈ (L0)o .

As L was supposed as connected, the statement (139) implies L = L0 . Therefore, assertion
(b) of the Lemma follows from (138).

With Definition 9 at hand we can state:

Theorem 9 (A globalization of the main theorem). Let a triple (q0,W0, b0) ∈ BN be given
and assume that for every triple (q,W, b) ∈ B(q0,W0, b0) the subspace W ⊂ TqN is curvature
invariant and the bilinear map b is RN

q -semiparallel. Then there exists a geodesically closed II-
parallel isometric immersion f : M → N from an m-dimensional simply connected riemannian
manifold M and a point p0 ∈M such that

f(p0) = q0 , f∗Tp0M = W0 and hfp0
(u, v) = b0(f∗u, f∗v) for all u, v ∈ Tp0M ,

and this II-parallel isometric immersion is unique up to isometries, i.e.: If f̃ : M̃ → N and
p̃0 ∈ M̃ also have these properties, then there exists an isometry F : M → M̃ with F (p0) = p̃0

and f̃ ◦ F = f . Furthermore, if N is complete, then also M is complete.

Addendum. By means of Example 12 for a space N of constant curvature the hypothesis on
the triple (q0,W0, b0) can be replaced by the simple assumption that b0 is RN

q0
-semiparallel.

We shall deduce this result from [PR1, Theorem 3] which is concerned with the analogous
global problem for affine immersions into an affine manifold (N̂ , ∇̂) . To formulate this result

in a suitable manner we introduce the Graßmann bundle τ̂ : ˆ̂
N → N̂ with the fibre Gm(Tq̂N̂)

over q̂ ∈ N̂ . We say that a subset A ⊂ ˆ̂
N is saturated, if it is not empty and if for every subset

Ŵ ∈ A and for every geodesic γ : J → N̂ with γ(0) = τ̂(Ŵ ) and γ̇(0) ∈ Ŵ and for every

56



t ∈ J also the parallel translate (
t

‖
0
γ )N̂(Ŵ ) belongs to A . For every Ŵ0 ∈ ˆ̂

N there exists a

smallest saturated subset A ⊂ ˆ̂
N containing Ŵ0 , which will be denoted by A(Ŵ0) . Now the

cited result says:

Theorem ([PR1, Theorem 3]). Let a subspace Ŵ0 ∈ ˆ̂
Nq̂0 (q̂0 ∈ N̂) be given and assume that

every subspace Ŵ ∈ A(Ŵ0) is torsion and curvature invariant. Then there exists a geodesically
closed affine immersion f : M → N̂ from an m-dimensional simply connected affine manifold
(M,∇M) and a point p0 ∈M such that

f(p0) = q̂0 and f∗Tp0M = Ŵ0 ,

and this immersion is unique up to affine diffeomorphisms. Furthermore, if N̂ is geodesically
complete, then also M is geodesically complete.

In [PR1] the set A(Ŵ0) was not introduced, but the hypothesis of Theorem 3 was formulated
equivalently by means of distinguished broken geodesics. Analogously the hypothesis of Theo-
rem 9 can be formulated by means of broken helical curves; but we hesitate to do so, because it
is rather lengthy (some impression can be obtained in the proof of Theorem 10).

Proof of Theorem 9. Let (N̂ , ∇̂) have the special meaning of this thesis; then the fibre bundle

τ̂ : ˆ̂
N → N̂ already appeared in Remark 16. We introduce the map

χ : BN → ˆ̂
N , (q,W, b) 7→ Tb

and prove:

If B is a saturated subset of BN , then χ(B) is a saturated subset of ˆ̂
N . (140)

For that let a triple (q,W, b) ∈ B and a maximal geodesic ξ : J → N̂ with ξ(0) = W and
ξ̇(0) ∈ Tb be given. We must show

(
t

‖
0
ξ )N̂(Tb) ∈ χ(B) for all t ∈ J . (141)

For that notice that according to Proposition 11 and Remark 18 the prolongation of (q,W, b)
in the direction u := τ∗ξ̇(0) ∈ W is (c, ξ, h) with c := τ ◦ ξ and with the parallel section
h = bξ : J → B . Since B is saturated, also the triples (c(t), ξ(t), h(t)) belong to B . From
Proposition 17 we therefore obtain:

(
t

‖
0
ξ )N̂(Tb) = Th(t) = χ(c(t), ξ(t), h(t)) ∈ χ(B) .

Thus (141) and (140) are verified.

Now, applying (140) to B = B(q0,W0, b0) we get A(Tb0) ⊂ χ(B(q0,W0, b0)) . Moreover, the
hypothesis of Theorem 9 implies the hypothesis of the previous theorem for Ŵ0 := Tb0 by
means of Proposition 14. Thus there exists a geodesically closed affine immersion f̂ : M → N̂
from an m-dimensional simply connected affine manifold (M,∇M) and a point p0 ∈ M such
that f̂(p0) = W0 and f̂∗Tp0M = Tb0 . According to Theorem 8, the third formula of (79) (take
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also notice of Remark 13(c)) and Example 10 f := τ ◦ f̂ gives us the desired II-parallel isometric
immersion. It is geodesically closed by means of Proposition 11, because this holds for f̂ .

The uniqueness of f follows from the uniqueness of f̂ . Indeed, if f̃ : M̃ → N is another
“solution” (as described in Theorem 9), then its Gauß map ξ̃ : M̃ → N̂ is an affine immersion
(according to Corollary 10) with ξ̃(p̃0) = W0 and ξ̃∗Tp̃0M̃ = Tb0 (see Example 10). Further-
more, by means of Proposition 11 ξ̃ is geodesically closed (as this holds for f̃ ). Therefore the
uniqueness assertion of the previous theorem implies that there exists an affine diffeomorphism
F : M → M̃ with F (p0) = p̃0 such that ξ̃ ◦ F = f̂ . Consequently we have f̃ ◦ F = f ; in
particular, F is an isometry.

Finally the completeness result follows from Remark 19.

Interpretating (42) in geometric terms we get by means of Lemma 2 and the Remarks 6 and
18: If in a symmetric space N (cu, ξu, hu) is the prolongation of a triple (q0,W0, b0) in some
direction u ∈ W0 and if ξu(t) is curvature invariant and hu(t) RN

cu(t)-semiparallel for the
parameters t ∈ Ju , then these “integrability conditions” also are satisfied for all t ∈ R . The
following theorem generalizes this “local ⇒ global” principle.

Theorem 10 (Completion of II-parallel submanifolds of symmetric spaces). If N is a riemann-
ian symmetric space, then for every connected II-parallel submanifold Mloc ⊂ N there exists a
II-parallel isometric immersion f : M → N from a symmetric space M such that

M̃ := { p ∈M | f(p) ∈Mloc , f∗TpM = Tf(p)Mloc and hfp = f∗hMloc

f(p) } (142)

is a non-empty open submanifold of M and f |M̃ is an isometric covering onto Mloc .

Proof. We fix some point q0 ∈ Mloc and define W0 := Tq0Mloc , b0 := hMloc
q0

, B0(q0,W0, b0) :=
{(q0,W0, b0)} and

Bk(q0,W0, b0) := { (c(t), ξ(t), h(t)) | t ∈ R and (c, ξ, h) is the prolongation of a triple
(q,W, b) ∈ Bk−1(q0,W0, b0) in direction of some u ∈W } for k ∈ IN .

Then we have Bk−1(q0,W0, b0) ⊂ Bk(q0,W0, b0) for all k ∈ IN and B(q0,W0, b0) =⋃
k∈IN Bk(q0,W0, b0) . Therefore, the hypothesis of Theorem 9 are satisfied if for every k ∈ IN

the following holds:

For every triple (q,W, b) ∈ Bk(q0,W0, b0) the subspace W ⊂ TqN is RN
q -invariant

and the bilinear map b is RN
q -semiparallel. (143)

Using the notations, which were introduced before Theorem 2, we first will prove that (143) is
equivalent to:

For every k-tuple u = (u1, . . . , uk) of vectors ui ∈W0 the values of the function

Ru : Rk → C(Tq0N) , (t1, . . . , tk) 7→ Exp(tk Â(uk)) ◦ · · · ◦ Exp(t1 Â(u1))RN
q0

with Â(ui) := −(Ab0
ui)C ∈ End−(C(Tq0N)) lie in C(Tq0N,W0, b0) .

(144)

For k = 1 . A triple (q1,W1, b1) lies in B1(q0,W0, b0) if and only if there exists a prolon-
gation (c, ξ, h) from (q0,W0, b0) in a direction u1 ∈ W0 and a parameter t ∈ R such that
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(q1,W1, b1) = (c(t), ξ(t), h(t)) . Remark 18, the definition of Ru(t) before Theorem 1 and For-

mula (40) show that the isometry ϕb0
u1

(t) := (
t

‖
0
c )N ◦ Exp(t Ab0

u1
) gives an isomorphism between

the quadruples (Tq0N,W0, b0, Ru1(t)) with Ru1(t) =
(
Exp(−t Ab0

u1
)
)
C
RN

q0
= Exp(t Â(u1))RN

q0

and (Tq1N,W1, b1, R
N
q1

) in the sense of Lemma 2. Thus this lemma shows the equivalence of
(143) and (144) in case k = 1 .

For k = 2 . A triple (q,W, b) lies in B2(q0,W0, b0) if and only if there exists a triple
(q1,W1, b1) ∈ B1(q0,W0, b0) , a prolongation (c̃, ξ̃, h̃) from (q1,W1, b1) in a direction v ∈ W1

and a parameter s ∈ R such that (q,W, b) = (c̃(s), ξ̃(s), h̃(s)) . As in case k = 1 the isometry

ϕb1
v (s) := (

s

‖
0
c̃ )N ◦Exp(sAb1

v ) gives an isomorphism between the quadruples (Tq1N,W1, b1, Rv(s))

with Rv(s) = Exp(−sAb1
v )

)
C
RN

q1
and (TqN,W, b,R

N
q ) . For the triple (q1,W1, b1) ∈ B1 we use

the description (q1,W1, b1) = (c(t), ξ(t), h(t)) of the preceding case. Then there exists a unit vec-
tor u2 ∈W0 such that v = ϕb0

u1
(t)u2 . Therefore, because of Remark 18 we get b1(v, ϕb0

u1
(t)w) =

ϕb0
u1

(t)b0(u2, w) for every further vector w ∈W0 , hence Ab1
v ◦ϕb0

u1
(t) = ϕb0

u1
(t) ◦Ab0

u2
and eventu-

ally Exp(sAb1
v ) ◦ϕb0

u1
(t) = ϕb0

u1
(t) ◦Exp(sAb0

u2
) . Now it is not difficult to show that the isometry

ϕb0
u1

(t) gives an isomorphism between the quadruples (Tq0N,W0, b0, Ru(t, s)) with u := (u1, u2)
and (Tq1N,W1, b1, Rv(s)) . Thus the isometry ϕb1

v (s)◦ϕb0
u1

(t) gives an isomorphism between the
quadruples (Tq0N,W0, b0, Ru(t, s)) and (TqN,W, b,R

N
q ) , and Lemma 2 implies the equivalence

of (143) and (144) in case k = 2 .

For k > 2 the equivalence “(143) ⇔ (144)” is proved by induction using Bk(q0,W0, b0) =⋃
Bk−1(q1,W1, b1) , (q1,W1, b1) ∈ B1(q0,W0, b0) ; all essential steps were already carried out in

case k = 2 ; therefore we do not go into more details.

Let us now show that for every k ∈ IN and every k-tuple u = (u1, . . . , uk) of vectors ui ∈W0

there exists a neighbourhood G ⊂ Rk of 0 with Ru(G) ⊂ C(Tq0N,W0, b0) . (145)

The construction of the neighbourhood G is somewhat complicated. We construct C∞-maps gi : Gi →
Mloc for i = 1, . . . , k and vector fields Yi in Mloc along gi for i = 1, . . . , k − 1 by recursion: g1 :
G1 →Mloc is defined as the maximal geodesic of Mloc with ġ1(0) = u1 ; by X12, . . . , X1k we denote the
parallel vector fields along g1 with the initial values X1i(0) = ui , and we put Y1 := X12 . Then the map
g2 : G2 →Mloc is characterized by the fact that G2 is a neighbourhood of G1×{0} in R2 and for each
t1 ∈ G1 the map t 7→ g2(t1, t) is the maximal geodesic in Mloc with initial velocity Y1(t1) ; furthermore,
let X23, . . . , X2k be the vector fields along g2 which are parallel along the before mentioned geodesics and
satisfy X2i(t1, 0) = X1i(t1) for all t1 ∈ G1 and put Y2 := X23 . Continuing this procedure we construct
the further maps gi : Gi →Mloc and get G := Gk as an open neighbourhood of Gk−1 × {0} in Rk . In
order to prove now (145) one considers for every (t1, . . . , tk) ∈ G the broken geodesic which is composed
by the geodesic arcs [0, 1] 3 s 7→ g1(st1) , [0, 1] 3 s 7→ g2(t1, st2) , . . . , [0, 1] 3 s 7→ gk(t1, . . . , tk−1, stk) ;
then one obtains (qi, Tqi

Mloc, h
Mloc
qi

) ∈ Bi(q0,W0, b0) for qi := gi(t1, . . . , ti) and i = 1, . . . , k by means of
Proposition 5(c); because of RN

q ∈ C(TqN,TqMloc, h
Mloc
q ) for all q ∈ M (see Proposition 5(a) and (b)),

one derives Ru(t1, . . . , tk) ∈ C(Tq0N,W0, b0) with the same arguments as in the proof of “(143)⇔ (144)”.

From (145) we get

RN
q0
∈ C(Tq0N,W0, b0) and

Â(uk) ◦ · · · ◦ Â(u1)RN
q0

=
∂kRu

∂t1 . . . ∂tk
(0, . . . , 0) ∈ C(Tq0N,W0, b0)L . (146)
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In order to prove now the validity of (144) we approximate the exponential maps Exp(ti Â(ui))
by their partial sums and get the approximations

Ru,`(t1, . . . , tk) =
∑̀

i1,...,ik=0

1
i1! · · · ik!

· ti11 · · · t
ik
k · Â(uk)ik ◦ · · · ◦ Â(u1)i1RN

q (` ∈ IN)

of Ru(t1, . . . , tk) . By means of (146) we obtain Ru,`(Rk) ⊂ C(Tq0N,W0, b0) for all ` ∈ IN and
therefore eventually Ru(Rk) ⊂ C(Tq0N,W0, b0) . Thereby (144) is proved.

After that we can apply Theorem 9 (as described in the beginning of this proof) and find that
there exists a complete, simply connected riemannian manifold M , a point p0 ∈ M and a
II-parallel isometric immersion f : M → N , such that p0 ∈ M̃ and f(p0) = q0 , where M̃ is
the subset defined in (142). Taking Corollary 2 into account we see that M even is a symmetric
space. For every p ∈ M̃ we can now choose a open neighbourhood U(p) ⊂ M of p such that
f(U(p)) is another II-parallel submanifold of N . From Corollary 4 we find that f(U(p)) is an
open submanifold of Mloc , if we choose U(p) sufficiently small; obviously, then f |U(p) is an
isometry into Mloc ; therefrom we obtain U(p) ⊂ M̃ . Hence, M̃ is an open submanifold of M
and f |M̃ is a local isometry into Mloc . – Next we prove:

The local isometry f |M̃ : M̃ → Mloc is geodesically closed (in the sense of Defini-
tion 9(a)).

(147)

For (147). Let be given a point p ∈ M̃ and a vector ũ ∈ TpM̃ and let c̃ : J̃ → M̃ resp.
c : J → Mloc be the maximal geodesics of M̃ resp. Mloc with ˙̃c(0) = ũ resp. ċ(0) = f∗ũ .
Obviously we have J̃ ⊂ J and c|J̃ = f ◦ c̃ , and we must show J̃ = J . Because of the
completeness of M the geodesic c̃ can be extended to a geodesic R → M of M , which we
denote by c̃ again. Now we will show c̃(J) ⊂ M̃ , wherefrom we get J̃ = J immediately: Since
M̃ is open in M , the set I := { t ∈ J | c̃(t) ∈ M̃ } is open in J . It suffices now to show that I is
also closed in J . For that we construct the sections ξ̃ := ξf ◦c̃|J and ξ := ξMloc◦c in τ : N̂ → N
along c̃|J resp. c (with the Gauß maps of f resp. Mloc ) and the sections h̃ : J → B resp.
h : J → B of the bundle B along ξ̃ resp. ξ by means of the second fundamental forms of f
resp. Mloc :

f∗h̃(t) := hfc̃(t) and h(t) = h
Mloc

c(t) .

Since these sections are continous and I = { t ∈ J | f ◦ c̃(t) = c(t) , ξ̃(t) = ξ(t) h̃(t) = h(t) }
holds, it is obvious that I is closed in J . Thus (147) is proved.

Because of (147) the hypotheses of the following lemma are satisfied; therefore, f |M̃ : M̃ →Mloc

is in fact a covering.

Lemma 9. Every local affine diffeomorphism f : M̃ → M into a connected affine manifold
(M,∇M) , which is geodesically closed (in the sense of Definition 9(a)), is a covering.

A special riemannian version of this lemma (assuming M̃ to be complete, instead of f being
geodesically closed) is Theorem 4.6(a) in [KN],Vol. 1, p. 176, which was generalized to affine
manifolds by Hicks (see Theorem 3 in [Hi]). I learned the present version of Lemma 9 in 1998
from H. Reckziegel attending a course on differential geometry; its proof works in the lines of
Hicks’ argumentation.
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10 Geometry of strips

First we suppose that N is only equipped with a linear connection ∇N .

Definition 10 (Strips and second fundamental forms for them). (a) A subbundle ξ of TN
along some map f : M → N is called a strip in N along f of rank m , if ξ(p) is an
m-dimensional subspace of Tf(p)N and f∗TpM ⊂ ξ(p) for all p ∈M .

(b) If N is a riemannian manifold and ξ a strip in N along f : M → N of rank m , then
a section h : M → B along ξ is called a second fundamental form for ξ , if for all vector
fields X ∈ Γ(TM) and all sections Y ∈ Γ(ξ) we have(

ξ⊥-part of ∇N
XY

)
= h(f∗X,Y ) .

Notice, ξ can be considered as a map into N̂ and the previous equation can be written
as ν̂(ξ∗X)Y = h(f∗X,Y ) (see (75) and (76)); thus it is equivalent to

ν̂(ξ∗v) = A
h(p)
f∗v

for all v ∈ TpM (p ∈M) . (148)

Up to this point only symmetric elements of B has been used essentially,17 but now non-
symmetric elements are usefull to enlarge the range of strips which possess a second fundamental
form. Strips are generalizations of immersions f : M → N because the Gauß map ξf : p 7→
f∗TpM is a strip along f . In this case the version ĥf of the second fundamental form of f
described in Remark 13(b) is the only possible second fundamental form of the strip ξf (compare
(148) with (79)). Already W.Blaschke has used strips along curves (see [BL] p. 80).

Proposition 18 (Characterization of strips with second fundamental form). Let N be a
riemannian manifold, for which a map ξ : M → N̂ and a section h ∈ Γξ(B) are given,
put f := τ ◦ ξ and ξ̂ := T ◦ h (see Remark 16).

(a) The following assertions are pairwise equivalent:

(i) ξ is a strip in N along f with second fundamental form h .

(ii) ξ∗TpM ⊂ Th(p) for all p ∈M

(iii) ξ̂ is a strip in N̂ along ξ .

(b) If ξ is a strip in N along f with second fundamental form h , then h is a parallel section
of B if and only if the strip ξ̂ is parallel, i.e., if it is a parallel subbundle of TN̂ .

Assertion (b) is a generalization of Corollary 10.

Proof. The equivalence (i)⇔ (ii) of (a) follows immediately from (122) in combination with
(148), and the equivalence (ii)⇔ (iii) is obvious because of Definition 10(a). Eventually, assertion
(b) follows, because T is a P-isomorphism B → T (B) (see Remark 10).

17An exception is the description of the geometric impact of the general subspaces Tb in Theorem 7.
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Because of the previous assertion (b) we are now interested in parallel strips in an affine manifold
N equipped only with a connection ∇N . Of course, the Graßmann bundle τ : N̂ → N can
then also be defined, and ∇N induces a connection Ĥ for this bundle as was described at the
beginning of Section 6. In particular, Formula (86) keeps valid. Thus a subbundle ξ of TN
along a map f : M → N of rank m is parallel if and only if it is a Ĥ-horizontal map into N̂ .
Furthermore, the Tsukada distribution D described in Remark 14 can be introduced in this
general situation (see [PR1] p. 348); it is valuable for us, because we immediately obtain from
(123):

Proposition 19 (Parallel strips and the Tsukada distribution). A strip ξ in N along a map
f : M → N of rank m is parallel if and only if it is a D-integral map into N̂ , that means,

ξ∗TpM ⊂ Dξ(p) for all p ∈M .

In particular, if S is an m-dimensional affine submanifold of N , then the image ξS(S) of the
Gauß map ξS is an integral manifold of D .

From this proposition we derive the following local version of a general theorem on the reduction
of codimension including the theorem of J. Erbacher on the reduction of the codimension of
isometric immersions in real space forms (see [E] and [R] p. 87) and several further results for
specific ambient spaces N (c.g. complex space forms and symmetric spaces).

Proposition 20 (Reduction of the codimension). If ξ is a parallel strip in N along a map
f : M → N , S an affine submanifold of N and if there exist points p0 ∈M and q0 ∈ S such
that f(p0) = q0 and ξ(p0) = Tq0S , then there exists a neighborhood U of p0 in M such that
f |U is a C∞-map into S and ξ(p) = Tf(p)S holds for all p ∈ U .

This is a special, but important case of a Theorem of P.Dombrowski (see [D], Section 3.4),
for which we can give a short proof now.

Proof. From Proposition 19 and the integration theory of differentiable distributions (e.g. see
[Nu, Theorem 4(iii)]) we obtain that U := { p ∈ M | ξ(p) ∈ Ŝ } with Ŝ := ξS(S) is an open
subset of M containing p0 and that ξ|U is a differentiable map into Ŝ . Applying τ to this
situation we get the desired assertion.

We will now show, how one can deduce an analogous result for strips with a parallel second
fundamental form. In the rest of this section N is a riemannian manifold.

Theorem 11 (Strips which osculate II-parallel submanifolds). If ξ is a strip in N along a
map f : M → N with a ∇B-parallel second fundamental form h , S an II-parallel submanifold
of N and if there exist points p0 ∈M and q0 ∈ S such that

f(p0) = q0 , ξ(p0) = Tq0S and h(p0) = hS
q0
,

then there exists a neighborhood U of p0 in M such that f |U is a C∞-map into S and
ξ(p) = Tf(p)S and h(p) = hS

f(p) hold for all p ∈ U ; loosely speaking, the strip ξ|U osculates
the submanifold S along f |U in second order.

This result can already be found in [R, Theorem 1]. But we will give now a very different proof
demonstrating the efficiency of the methods developed in this thesis.
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Proof. According to Proposition 18(b) and Corollary 10 ξ̂ : p → Th(p) is a parallel strip in N̂

along ξ and Ŝ := ξS(S) an affine submanifold of N̂ . Because of the initial data we get from
Example 10

W0 := ξ(p0) = Tq0S ∈ Ŝ and ξ̂(p0) = Th(p0) = ThSq0
= ξS

∗ Tq0S = TW0Ŝ .

Therefore, Proposition 20 guaranties that there exists a neighborhood U of p0 in M such that
ξ|U is a C∞-map into Ŝ and ξ̂(p) = Tξ(p)Ŝ holds for all p ∈ U . Applying τ resp. τ∗ to this
situation we get that f |U is a C∞-map into S and

ξ(p) = τ∗Th(p) = τ∗ξ̂(p) = τ∗Tξ(p)Ŝ = Tf(p)S .

Furthermore, because of ξ̂(p) = Th(p) and Tξ(p)Ŝ = ξS
∗ Tf(p)S = ThS

f(p)
the equality ξ̂(p) = Tξ(p)Ŝ

also proves h(p) = hS
f(p) for all p ∈ U .

Example 13. Let (c, ξ, h) be the prolongation of a triple (p,W, b) in the direction u ∈ W (in
the sense of Definition 7) defined over an interval J . From Proposition 17 we know ξ̇(t) ∈ Th(t)

for all t and that t 7→ Th(t) is a parallel subbundle of TN̂ along ξ . Therefore Proposition 18
shows that ξ is a strip along c with ∇B-parallel second fundamental form h . In particular we
see that each element b ∈ B occurs as second fundamental form of some strip. Now, let S be
some II-parallel submanifold of N with p ∈ S , W = TpS and b = hSp . As ξ(0) = W and
h(0) = b we can apply Theorem 11 and see that there exists some neighborhood U of 0 in J
such that the strip ξ|U osculates the submanifold S along c|U in second order. This result
can also be derived from Example 11, which in addition shows that c|U is a geodesic of S .

There are also global versions of Proposition 20 and Theorem 11 under suitable hypotheses on
the submanifold S , which can be derived easily now.

11 The generalization to indefinite metrics

For simplicity I have supposed in the previous sections that N is a riemannian manifold. In
this section I will show that the main results, in particular those of the following list, remain
valid in pseudoriemannian geometry:

• Theorem 1 on the II-parallelity of helical umbrellas,

• Theorem 6 on the second fundamental form of a Gauß map,

• Corollary 10 on the characterization of II-parallelity of a submanifold by its Gauß map,

• Theorem 8 on the construction of a II-parallel immersion f : M → N by projecting an
affine immersions ξ : M → N̂ ,

• the globalization of Theorem 1 (see Theorem 9) and

• Theorem 11 on strips which osculate II-parallel submanifolds.
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First I will itemize the essential difficulties which may occur by handling an indefinite riemannian
manifold N :18

(i) The indefinite inner product of N does not induce a distance function. Therefore the
notion of “completeness” makes no sense. Instead we must speak about geodesic complete-
ness, which is characterized only by the fact that maximal geodesics are defined on the
whole real line R . In particular, the Theorem of Hopf-Rinow is not available.

(ii) We cannot concentrate on unit speed curves, because there also are curves in N which
may be lightlike at some points.

(iii) The Frenet apparatus is not available for arbitrary curves of N .

(iv) Also in the case of a geodesically complete space N the maximal envelopment of a curve
C : J → TqN may only be defined on a proper “subinterval” of J (see Definition 2).

(v) Pseudoriemannian submanifolds tangent to a given subspace W ∈ Gm(TqN) can only exist
if W is non-degenerate, that means that the inner product of TqN is non-degenerate on
W .

(vi) For a pseudoriemannian submanifolds M and an arbitrary normal vector z ∈ ⊥M the
shape operator SMz may not be diagonalizable.

(vii) The orthogonal group O(TqN) is not compact in the indefinite case and has four connected
components.

The items (vi) and (vii) do not play any role for our consideration; the Theorem of Hopf-Rinow
is not used.

In this section N always denotes an n-dimensional connected pseudoriemannian manifold of
index k ∈ {1, . . . , n− 1} .19 Let us now follow the preceding sections one after the other.

Ad Section 2. In order to avoid the difficulty (ii) we have already defined helical arcs of
arbitrary velocity in Definition 3. Concerning (iii), the Frenet apparatus was only used in order
to compare our definition of helical arcs with the common definition in the case of riemannian
manifolds. A consequence of (iv) is that maximal helical arcs in a geodesical complete space N
may be defined only on some subsets J ( R in contrast to Remark 1(b); but from Proposition 3
we get:

Corollary 12. In a pseudoriemannian symmetric space N every maximal helical arc is defined
on R .

Proof. Also for such symmetric space N the Levi Civita connection coincides with its canonical
connection as a homogeneous reductive space; thus N is totally complete by Proposition 3 (b).
Now the statement follows from Definition 3.

18We use the terminology of [ON2], where all basic facts of pseudoriemannian (= semiriemannian) geometry
can be found.

19The case k = n can be ignored, because it can be reduced to the riemannian case by replacing the metric
〈· , ·〉 of N by −〈· , ·〉 .
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In this entire section V a pseudoeuclidean vector space of index k , and W 6= {0} a non-
degenerate, proper subspace of V (or TpN , respectively) of index ` ∈ {0, . . . ,min{m, k}} .
Since then W⊥ is also non-degenerate and V = W ⊕ W⊥ , we can define Ab

v for arbitrary
(b, v) ∈ L2(W,W⊥)×W , the tensor Rb and the semiparallelity of b for b ∈ L2(W,W⊥) as in
Definition 1. Lemma 2 on the curvature invariance of subspaces W and the semiparallelity of
bilinear maps with respect to linear isometries remains valid without any change.

The parts (a) and (c) of Lemma 1 fail, because of analoguous reasons as for the above item (iii);
but this Lemma was only important for Remark 1(a) and will not be used in the sequel.

Definition 2 and Proposition 2 are formulated for arbitrary “affine” manifolds (N,∇N) and are
therefore also true for a pseudoriemannian N .

The Definition 4 of M -split-parallel displacement makes sense also in pseudoriemannian geome-
try for pseudoriemannian submanifolds M ; in this situation Proposition 4 is also true. Further-
more, Proposition 5 on the geometry of II-parallel submanifolds in pseudoriemannian manifolds
and Corollary 4 on the rigidity of submanifolds remains valid without any change. In spite of
the previous item (iv), Proposition 8 and its proof yet remain valid for non-degenerate sub-
spaces W ⊂ TpN ; thus the helical umbrella MU (p,W, b) := expb(U) associated with the triple
(p,W, b) exists (as pseudoriemannian submanifold of N ) for sufficiently small star shaped neigh-
bourhoods U of 0 in W .

Ad Section 3. The formulation of the pseudoriemannian version of Theorem 1 is now straight
forward: We can define the linear isometries Φb

u , the linear, non-degenerate subspaces Wu (no-
tice, W is supposed to be non-degenerate) and the symmetric bilinear forms bu ∈ L2(Wu,W

⊥
u )

as in the beginning of Section 3. Then Theorem 1, Remark 6, Corollary 5 on the II-parallelity of
the helical umbrella MU (p,W, b) and Theorem 2 (now for pseudoriemannian symmetric spaces)
remain valid. For the proof of the pseudoriemannian version of Theorem 1 see “Ad Section 8”.

Ad Section 4. To my knowledge pseudoeuclidean Jordan triple systems were not yet discussed
in literature; therefore I do not compare Ferus’ characterization with the conditions (CI) and
(SP) of Theorem 1 in the pseudoriemannian setting.

Ad Section 5. In the proof of Theorem 1, more exactly in the definition of the fibre bundle
τ : N̂ → N , an essential modification is necessary, because we must restrict our consideration
on m-dimensional submanifolds M resp. subspaces W of index ` . For that we introduce for
any n-dimensional pseudoeuclidean vector space V of index k the subset

G`
m(V ) := {W ∈ Gm(V ) |W is non-degenerate and of index ` }

of Gm(V ) . As before O(V ) denotes the (pseudo-)orthogonal group of V and End−(V ) the sub-
algebra of skew-adjoint endomorphisms V → V now with respect to the indefinite inner product
of V . Then G`

m(V ) is one of the orbits of the action ψ : O(V )×Gm(V ) → Gm(V ) , (g,W ) 7→
g(W ) , and already the neutral component of O(V ) acts transitively on this orbit; hence G`

m(V )
bears the structure of a connected differentiable manifold. For a fixed element W ∈ G`

m(V ) the
isotropy group of the action ψ is

{A ∈ O(V ) |A(W ) = W } ∼= O(W )×O(W⊥) .
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In fact, G`
m(V ) is a symmetric space isomorphic to O(V )/O(W ) × O(W⊥) ; its symmetric

structure is determined by the involution

O(V ) → O(V ) , A 7→ σW ◦A ◦ σ−1
W ,

where σW ∈ O(V ) denotes the reflection in the subspace W . Of course, G`
m(V ) is no symmetric

subspace of Gm(V ) , but it is an open differentiable submanifold of Gm(V ) .20

Proof of the previous statement. First notice that dimG`
m(V ) = dimGm(V ) = m(n−m) . Now, let us consider

the following commutative diagram

O(V )
ι−−−−−→ GL(V )

ψ̃W0 |O(V )

?
?
y

?
?
yψ̃W0

G`
m(V )

ι−−−−−→ Gm(V ) ,

(149)

where ι and ι denote the inclusion maps, W0 ∈ G`
m(V ) some subspace and ψ̃W0 the surjective submersion

g 7→ g(W0) induced by the canonical action ψ̃ : GL(V )×Gm(V ) → Gm(V ) . Also ψ̃W0 |O(V ) : O(V ) → G`
m(V )

is a surjective submersion. As O(V ) is a regular submanifold of GL(V ) , therefore ι is a differentiable map;
moreover, it has constant rank, because it is equivariant with respect to the canonical actions of O(V ) on G`

m(V )
resp. of GL(V ) on Gm(V ) . Therefore, it suffices to show that ι is immersive at the “point” W0 (hence, because
of dimG`

m(V ) = Gm(V ) the map ι is a diffeomorphism from G`
m(V ) onto an open subset of Gm(V ) , which is

the desired result). In order to finish the proof we deduce from (149) the commutative diagram

TidO(V )
Tidι−−−−−→ TidGL(V )

Tidψ̃
W0 |O(V )

?
?
y

?
?
yTidψ̃

W0

TW0G
`
m(V )

TW0 ι−−−−−→ TW0Gm(V ) ,

(150)

and represent TidO(V ) as h ⊕ m according to the symmetric space representation G`
m(V ) ∼= O(V )/O(W0) ×

O(W⊥
0 ) ; we have m ∼= {A ∈ End−(V ) |A(W0) ⊂W⊥

0 and A(W⊥
0 ) ⊂W0 } ⊂ TidGL(V ) . If now v ∈ TW0G

`
m(V )

is a vector with TW0 ι(v) = 0 , then there exists an element A ∈ m with Tid(ψ̃W0 |O(V ))(A) = v ; because of (150)
we have Tidψ̃

W0(A) = TW0 ι(v) = 0 . Therefore, A is tangential to the isotropy group {B ∈ GL(V ) |B(W0) =
W0 } of ψ̃ ; therefrom we get A(W0) ⊂W0 . Because of A ∈ m we deduce A = 0 and hence v = 0 .

By Rn
k we denote the vector space Rn with the inner product

〈x, y〉 = −
k∑

i=1

xi yi +
n∑

i=k+1

xi yi

of index k . Now we specialize the previous consideration to V = Rn
k , choose some subspace

V0 ∈ G`
m(Rn

k) , and introduce the subgroup H ⊂ O(Rn
k) , the subspace m ⊂ End−(Rn

k) and the
isomorphism θ : m → TV0G

`
m(Rn

k) as in the formulas (53), (57) and (59) (replacing always Rn

by Rn
k ).

In contrast to Section 5 now τ : N̂ → N denotes the Graßmann bundle over N whose fibre
N̂q over q ∈ N is G`

m(TqN) . Its differentiable structure is given by the fact that this bundle
is associated with the bundle O(N) of orthonormal frames (the structure group of which is
O(Rn

k) ) via the map
ρ̂ : O(N)×G`

m(Rn
k) → N̂ , (u,W ) 7→ u(W ) . (151)

20One can show that the set G∗
m(V ) of all non-degenerate subspaces W ∈ Gm(V ) is an open, dense subset of

Gm(V ) and that G`
m(V ) is a connected component of G∗

m(V ) , see [Pa], p. 26.
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Remark 20. In order to compare this Graßmann bundle with that from Section 5 we denote
the previous bundle by τ (k,`) : N̂ (k,`) → N in this remark and the bundle from Section 5 by
τ (0,0) : N̂ (0,0) → N . As τ (0,0) is associated with the linear frame bundle L(N) (see (85)) and
the principal bundle O(N) is a reduction of L(N) (see [KN]Vol. 1, p. 53), the bundle τ (0,0) is
also associated with O(N) , namely via the map

O(N)×Gm(Rn) → N̂ (0,0) , (u,W ) 7→ u(W ) .

Since G`
m(Rn

k) is an open submanifold of Gm(Rn) , therefore τ (k,`) is an associated subbundle
of τ (0,0) and N̂ (k,`) an open differentiable submanifold of N̂ (0,0) .

Now we can follow the constructions of Section 5 without any changes: We introduce the pull
back bundle E := τ∗TN = N̂ ×N TN . Since every W ∈ G`

m(TqN) is non-degenerate, we
get the orthogonal splitting EW = W ⊕W⊥ exactly as in the riemannian case; this induces
the orthogonal vector bundle splitting E = >>⊕⊥⊥ . On this basis we can define the principal
fibre bundle πP : P = O> ×N̂ O⊥ → N̂ of the adapted orthonormal frames of E (whose
structure group is the isotropy group H ) and the connection HP . Furthermore, the construction
of the associated vector bundles End−(E) , H , M and B together with their induced linear
connections is immediate. Moreover, we have the isomorphisms ΘW : MW → TW G`

m(TqN) for
all W ∈ N̂q (because G`

m(TqN) is a symmetric space) and the universal second fundamental
form ν̂ : TN̂ → M . All results on these data described in Section 5 are true without any
change in the present situation. In particular, Example 9 is applicable for any m-dimensional
pseudoriemannian submanifold M ⊂ N of index ` ; notice that its Gauß map ξM : p 7→
TpM takes its values in the present bundle space N̂ . Furthermore, Lemma 5 on the parallel
displacement in E remains valid; and Remark 10 on P-morphisms is of general nature and
therefore it is also true in the present situation.

Ad Section 6. In order to define the linear connection ∇̂ on the present manifold N̂ we have
to make slight modifications in Section 6. As the group GL(Rn) does not act on the “restricted”
Graßmann manifold G`

m(Rn
k) we must replace it by the group O(Rn

k) ; consequently we can not
use the situation of (85), but we must consider the present Graßmann bundle τ : N̂ → N as
being associated with the principal fibre bundle O(N) of orthonormal frames of TN via the
map ρ̂ : O(N)×G`

m(Rn
k) → N̂ described in (151). As in Section 6 the linear connection of O(N)

corresponding to ∇N induces a connection Ĥ on the bundle τ : N̂ → N ; Ĥ-horizontal curves
in N̂ are again characterized by formula (86).21 Furthermore, we introduce the projection
ν : TN̂ → V̂ corresponding to the splitting TN̂ = Ĥ ⊕ V̂ . Then Theorem 4 remains valid; it
means, the isomorphisms ΘW are the “fibres” of a vector bundle P-isomorphism Θ : M → V̂ ,
the identity Θ ◦ ν̂ = ν holds and

(η̂, ν̂) : TN̂ → E⊕M with η̂ : TN̂ → E , v̂ 7→ τ∗v̂

is a fibre bundle isomorphism. The proof for this theorem must be adapted to the present
situation by using that V̂ is a fibre bundle over N associated with O(N) , namely via the map
ρV̂ : O(N)× TG`

m(Rn
k) → V̂ , (u,w) 7→ ρ̂u ∗w with ρ̂u := ρ̂(u, ·) : G`

m(Rn
k) → N̂ (notice (151)).

21Of course, in Section 6 it would be possible also to associate the bundle τ with the principal bundle O(N)
as was described in Remark 20; but there we prefered the association with the full frame bundle L(N) , since
we liked to refer to this general situation when we introduced the Tsukada distribution D for an affine manifold
(N,∇N) in Section 10 before Proposition 19.
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As the bundle space P coincides with the bundle space O(N) and the projection of the latter
bundle is exactly τ ◦πP , we find that V̂ is a vector bundle over N̂ associated with the principal
bundle P via the restriction ρV̂

∣∣(P × TV0G
`
m(Rn

k)) . Replacing the map θ from the proof of
Theorem 4 by the H-equivariant isomorphism θ : m → TV0G

`
m(Rn

k) from above we can now
follow the proof of Theorem 4.

Because of Theorem 4 the tangent bundle TN̂ can be considered as being associated with P
(with typical fibre Rn ⊕m ) via the map ρTN̂ described in (89) and (90). Therefore, also in the
present situation the manifold N̂ bears a linear connection ∇̂ which comes from the connection
HP . It is characterized by the statement (91). Proposition 10 describing the properties of ∇̂ and
Proposition 10 characterizing the geodesics of (N̂ , ∇̂) remain valid. But instead of Corollary 7
we have only the following version:

Corollary 13. For every pseudoriemannian symmetric space N the associated space N̂ is
geodesically complete.

Proof. According to Corollary 12 all maximal helical arcs are defined on R . Now use Proposi-
tion 11.

Now we can follow Section 6 to show that Theorem 6 is true for the second fundamental form
of the Gauß map ξM of every pseudoriemannian submanifold M ⊂ N of index ` , and that
Corollary 10 characterizes as well the II-parallelity of an isometric immersion f : M → N from
a pseudoriemannian manifold M of index ` .

Ad Section 7. Without any change we can define the distinguished subspaces Tb ⊂ TW N̂ for
all b ∈ B (W ∈ N̂) such that Proposition 13, Proposition 14 on the invariance properties of
these subspaces and Proposition 15 on the parallelity of the map b 7→ Tb hold. Furthermore, for
each pseudoriemannian submanifold M ⊂ N of index ` its Gauß map satisfies ξM∗ TpM = ThMp

for every p ∈ M (see Example 10), and the Remark 15 on the van der Waerden-Bortolotti

connection and the general Remark 16 on the P-morphism T : B → ˆ̂
N remain valid. However,

Theorem 8 on the construction of a II-parallel immersion f : M → N by projecting an affine
immersions ξ : M → N̂ requires an additional statement, namely that f∗〈· , ·〉N really is a
pseudoriemannian metric of index ` ; this follows easily from the fact that ξ is the Gauß map
of f ; apart from that one can follow the proof of Theorem 8. Finally, the prolongation of a
triple (q,W, b) (with W ∈ G`

m(TqN) ) in direction of a vector u ∈ W can be defined as in
Definition 7; then Remark 18 and Proposition 17 are true without any change.

Ad Section 8. Now, we can follow the proof of Theorem 1; the following ingredients, justified
above, (and no others) are used: Proposition 8, Lemma 5, Proposition 13, Proposition 14, The-
orem 8, Definition 7 and Proposition 17. Hence, Theorem 1 holds also in the pseudoriemannian
situation.

Ad Section 9. Concerning the pseudoriemannian globalization of Theorem 1 it is clear that
the subspaces W in the triples (q,W, b) ∈ BN are now supposed to be non-degenerate and of
index ` and that Definition 9(b) of geodesically closed II-parallel isometric immersions can be
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generalized to the pseudoriemannian case in an obvious way. But notice that for such an immer-
sion the geodesical completeness of M can only be deduced in the case of a pseudoriemannian
symmetric space N (by means of Corollary 12); insofar Remark 19 is only valid partially.

The main assertion of Theorem 9 remains valid, if we replace the terms “riemannian” and
“complete” by “pseudoriemannian” and “geodesically complete”. However the completeness
assertion is only valid (as geodesical completeness) for pseudoriemannian symmetric ambient
spaces N . With the same modifications also Theorem 10 on the geodesical completion of II-
parallel submanifolds of pseudoriemannian symmetric spaces remains true. It should be noticed
that the affine version of Lemma 9 was cited at the end of Section 9 in order to have no difficulties
in handling the pseudoriemannian situation here.

Ad Section 10. In the situation, where the ambient manifold N is pseudoriemannian, it is
natural to restrict the consideration to such strips ξ : M → TN along maps f : M → N , for
which the subspaces ξ(p) ⊂ Tf (p) are non-degenerate; if M is connected, then the index of these
subspaces is the same for all p ∈ M ; in order to integrat the consideration into the framework
of the present Graßmann bundle τ : N̂ → N , we should suppose always that this index is ` .
With these modifications in mind the whole content of Section 10 (in particular, Theorem 11 on
strips which oscualte II-parallel submanifolds) remains valid in the pseudoriemannian theory.

12 II-parallel isometric immersions adapted to special
riemannian geometries

In this section we will suppose that the manifold N is eqipped with a additional geometric
structure and we will ask for the existence of II-parallel submanifolds of N , which in some sense
are compatible with this structure. For simplicity we assume again that the riemannian metric
of N is positive definite.

Let V be a euclidean vector space, K a closed subgroup of O(V ) and m an integer with
1 ≤ m < dimV .

Then certain linear subspaces W ∈ Gm(V ) are distinguished:

Definition 11. We say that a subspace W ∈ Gm(V ) is adapted to the subgroup K , if the
reflection σW : V → V in the subspace W satisfies

σW ◦K ◦ σ−1
W = K . (152)

Proposition 21. Let W0 ∈ Gm(V ) be a subspace, which is adapted to K .

(a) Every element of the orbit

KW0 = { g(W0) ∈ Gm(V ) | g ∈ K }

is also adapted to K .

(b) If K is connected, then KW0 is a symmetric subspace of the riemannian symmetric space
Gm(V ) and therefore a compact totally geodesic submanifold of Gm(V ) .
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Proof. For (a). For W := g(W0) with g ∈ K one has σW = g ◦ σW0 ◦ g−1 . This implies the
assertion.

For (b). Σ : O(V ) → O(V ) , g 7→ σW0 ◦ g ◦ σ−1
W0

is the involution defining the symmetric space
structure of Gm(V ) with respect to the reference point W0 . Because of (152) (applied to
W = W0 ) therefore Σ|K is an involution of the subgroup K endowing the orbit KW0 with
the structure of a symmetric subspace.

In the examples of this section each of the subgroups K ⊂ O(V ) is constructed by means of a
tensor j of some type (k, r) on V , namely by

K(j) := { g ∈ O(V ) | g · j = j } , (153)

where O(V ) acts on the space T k,r(V ) of tensors of type (k, r) canonically from the left;22

obviously K(j) is the isotropy group of this action for the element j .

Lemma 10. Suppose that j is symmetric resp. antisymmetric with respect to a subspace
W ∈ Gm(V ) , i.e,

σW · j = j resp. σW · j = −j .

Then W is adapted to the subgroup K(j) and also to its neutral connected component K0(j) .

The elementary proof is left to the reader.

Example 14. (a) Suppose that V even is a unitary space with complex structure J ∈
End−(V ) :

J2 = −idV and ∀x, y ∈ V : 〈Jx, Jy〉 = 〈x, y〉 .

Then K(J) is the unitary group U(V ) , and J is symmetric resp. antisymmetric with
respect to a subspace W ∈ Gm(V ) if and only if W is a complex resp. a Lagrangian
subspace; the latter means JW = W⊥ , what only is possible for m = n . Notice, that
also in this situation Gm(V ) denotes the real Graßmann manifold. By means of Lemma 10
the complex and the Lagrangian subspaces are adapted to the subgroup U(V ) .

(b) Let N be a simply connected riemannian symmetric space, p ∈ N , V := TpN and j
the curvature tensor RN

p of N at p . The tensor RN
p is symmetric with respect to a

subspace W ∈ Gm(TpN) (in the sense of the preceding Lemma) if and only if W is
strongly curvature invariant, i.e., both W and W⊥ are RN

p -invariant (the implication
“⇒” is trivial, and for the implication “⇐” one uses the symmetry properties of RN

p ).
By means of Lemma 10 the strongly curvature invariant subspaces of TpN are adapted
to the subgroup K(RN

p ) and also to its neutral component K0(RN
p ) (see (156)). – Now

let I(N) denote the isometry group of N and I(N)p its isotropy group at the point p .
Since we obiously have

K(RN
p ) = { g ∈ O(TpN) | ∀u, v, w ∈ TpN : g

(
RN

p (u, v)w
)

= RN
p (gu, gv)gw } ,

the Theorem of Cartan-Ambrose-Hicks implies that the map

I(N)p → K(RN
p ) , f 7→ Tpf (154)

22A special case was already used in the preparations of Theorem 2, where we considered the action (g,R) 7→
gCR of O(V ) on the space C(V ) of curvature like tensors.
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is a Lie group isomorphism. Furthermore, if G denotes the neutral connected component of
I(N) and Gp ⊂ G its isotropy group at p , then obviously the neutral component (I(N)p)0
of I(N)p is contained in G and therefore we have (I(N)p)0 ⊂ Gp ⊂ I(N)p . Thus the
induced map G/(I(N)p)0 → G/Gp is a connected covering of the simply connected space
G/Gp

∼= N . Consequently we get

(I(N)p)0 = Gp (155)

and therefore
K0(RN

p ) = {Tpf | f ∈ Gp } . (156)

Remark. After the above discussion we see that for every subspace W ∈ Gm(TpN) the
following assertions (i) –(v) are pairwise equivalent:
(i) W is strongly curvature invariant.
(ii) W⊥ is strongly curvature invariant.
(iii) RN

p is symmetric with respect to W⊥ .

(iv) The reflection σW⊥ ∈ O(TpN in the subspace W⊥ is contained in the subgroup
K(RN

p ) .
(v) There exists an isometry σ̄W ∈ I(N)p with Tpσ̄p = σW⊥ .

The equivalence (i) ⇔ (v) in the previous remark is of interest in the theory of extrinsic sym-
metric submanifolds, as one can see from the following definition, which can be found at the
beginning of [Na1].

Definition 12. Let N be a simply connected riemannian symmetric space. A quasiregular23

submanifold M ⊂ N is said to be extrinsic symmetric, if for every point q ∈M there exists an
isometry σ̄q ∈ I(N)q such that Tqσ̄q ∈ O(TqN) is the reflection σ⊥qM in the normal space ⊥qM
and σ̄q(M) = M . (Then M also is a symmetric space, namely with the geodesic symmetries
σq = σ̄q|M .) Thus one defines more generally: An isometric immersion f : M → N is said to
be extrinsic symmetric, if

(i) M is a riemannian symmetric space with the geodesic symmetries σq (q ∈M) ,

(ii) for each point q ∈ M there exists an isometry σ̄q ∈ I(N)f(q) such that Tf(q)σ̄q ∈
O(Tf(q)N) is the reflection σ⊥qf in the normal space ⊥qf := (f∗TqM)⊥ , and

(iii) the isometries σq and σ̄q from (i) and (ii) satisfy f ◦ σq = σ̄q ◦ f .

Proposition 22. If N is a simply connected riemannian symmetric space, then the following
assertions are true:

(a) Every extrinsic symmetric immersion f : M → N is II-parallel.

(b) If f : M → N is a II-parallel isometric immersion from a connected riemannian sym-
metric space M (see Corollary 2 and Theorem 10), then f is extrinsic symmetric if and
only if the images f∗TqM (q ∈M) are strongly curvature invariant 24.

23Notice, a submanifold M ⊂ N is said to be quasiregular, iff every differentiable map f : L → N with
f(L) ⊂M is also differentiable as a map into M .

24Because of Proposition 5(a) this condition is already satisfied, if all normal spaces ⊥qf := (f∗TqM)⊥ are
curvature invariant.
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For the sake of completeness I will give a proof, although the proposition is well known (see
[Na1], p. 218). – It is worth to be mentioned that Definition 12 can also be applied in the situation
of an arbitrary riemannian manfiold N and that then Proposition 22(a) remains valid.

Proof. For (a). Let be given an extrinsic symmetric immersion f : M → N , a point q ∈ M
and vector fiedls X,Y, Z ∈ Γ(TM) , and let σ := σq and σ̄ := σ̄q denote the isometries
from the items (i) and (ii) of Definition 12. Using item (iii) of this definition we deduce from
σ̄∗∇N

Y f∗Z = ∇N
Y σ̄∗f∗Z by means of the Gauß equation

σ̄∗ h
f(Y, Z) = hf(σ∗Y, σ∗Z) .

Continuing analogously with the Weingarten equation we furthermore derive

σ̄∗∇⊥
Xh

f(Y, Z) = ∇⊥
Xh

f(σ∗Y, σ∗Z) .

Combining these two results we get

σ̄∗ (∇hf)(X,Y, Z) = (∇hf)(σ∗X,σ∗Y, σ∗Z) .

Evaluating this equation at the point q we get (∇Xqh
f)(Yq, Zq) = −(∇Xqh

f)(Yq, Zq) , i.e.
(∇Xqh

f)(Yq, Zq) = 0 . Hence, f is II-parallel.

For (b): Let a II-parallel isometric immersion f : M → N be given and assume that M is a
riemannian symmetric space. Thus condition (i) of Definition 12 is satisfied for f and condition
(ii) is equivalent to the strong curvature invariance of the spaces f∗TqM (q ∈M) by means of
the remark in Example 14(b). Therefore, it suffices to deduce condition (iii) from (ii) using the
II-parallelity of f . For that define the two II-parallel immersions f1 := f ◦ σq and f2 := σ̄q ◦ f
for an arbitrary point q ∈M ; they have the same geometric 2-jet at q : f1(q) = f(q) = f2(q) ,
Tqf1 = −Tqf = Tqf2 and hf1

q = hf
q = hf2

q . By generalizing Corollary 4 to II-parallel immersions
we find f1 = f2 , q.e.d.

Now, we will introduce the notion ofK-structures on N . A good idea is to do this via a reduction
of the linear frame bundle. Nevertheless, I will give another definition, which is more flexible
for our purpose. In the following remark we will see how Definition 13 can be subordinated
to the usual definition. – As before, V denotes a euclidean vector space, but now we suppose
dimV = dimN . And we will not work with a closed subgroup K of O(V ) , but more generally
with a faithful (= injective) representation ψ : K → O(V ) from a connected, compact Lie group
K , the Lie algebra of which is denoted by k .

Definition 13. A K-structure on N is defined to be a principal fibre bundle K with struc-
ture group K such that TN is an associated vector bundle with typical fibre (V, ψ) via an
appropriate association map

ρ : K× V → TN ,

the maps ρu : V → TpN (u ∈ Kp , p ∈ N) of which are linear isometries; furthermore, the Levi
Civita connection on TN shall be induced by some K-invariant connection HK on K .

Notice, in this case the characteristic equation of association maps says

∀ (u, g, x) ∈ K×K × V : ρ(ug, x) = ρ(u, ψ(g)x) . (157)
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Of course, the Graßmann bundle τ : N̂ → N , too, is associated with K , namely via the map

ρ̂ : K×Gm(V ) → N̂ , (u,W ) 7→ ρu(W ) ,

(notice that K acts on Gm(V ) canonically via ψ ) and the connection Ĥ on the bundle τ
(described in the beginning of Section 6) is then also deduced by HK , namely by Ĥρ̂(u,W ) =
ρ̂W
∗ HK

u .

Remark 21. If K is a reduction of the orthonormal frame bundle O(N) to a connected, closed
subgroup K ⊂ O(Rn) and if the canonical connection of O(N) induces a connection H̃ on
K (by restriction), then we obtain a K-structure on N in the sense of Definition 13 by the
following choices: V := Rn and ρ : K×V → TN , (u, x) 7→ u(x) . – Conversely, in the situation
of Definition 13 choose a linear isometry Φ : Rn → V . Then P := { ρu ◦Φ ∈ O(N) |u ∈ K } is a
reduction of the orthonormal frame bundle O(N) to the closed subgroup Φ−1 ◦K ◦Φ ⊂ O(Rn) ,
and if we pull back the connection of K via Φ onto P , then the latter is the restriction of the
canonical connection of O(N) .

Example 15. (a) Let N be a Kähler manifold of complex dimension n (notice that here we
diverge from our usual meaning of n ). Then the hermitian frame bundle U(N) defines a
U(n)-structure according to the recipe of Remark 21. Notice, that because of the parallelity
of the complex structure of N the Levi Civita connection of N is induced by a U(n)-
invariant connection of U(N) .

(b) In the situation of Example 14(b) let φ : G × N → N with G := I0(N) denote the
canonical action, fix a reference point p ∈ N , choose V = TpN and K := Gp and let
ψ : Gp → O(TpN) be its isotropy representation f 7→ Tpf ; notice that Gp is connected
because of (155). Then the principal fibre bundle φp : G → N together with the associ-
ation map ρ : G × TpN → TN , (f, v) 7→ f∗v is a Gp -structure on N . By formula (14)
in the proof of Proposition 3 there was described a Gp-invariant connection of the fibre
bundle φp : G→ N , which induces the canonical connection on the symmetric space N ;
this connection coincides with the Levi Civita connection. Furthermore, notice that we
have ψ(Gp) = {Tpf | f ∈ Gp } = K0(RN

p ) by means of (156).

From now on we suppose the situation of Definition 13.

The following simple construction of new bundles associated with K will become of importance
for us. Let FB(E) → N be a fibre bundle with typical fibre E which is associated with K by
a map ρE : K×E → FB(E) ; saying this we incorporate that the group K acts on E from the
left. If E′ is a K-invariant submanifold of E , then FB(E′) := ρE(K × E′) is a submanifold
of FB(E) and with the canonically induced projection FB(E′) → N we obtain a subbundle
of FB(E) → N , which is also associated with K . With respect to the connection HFB(E) of
FB(E) → N induced by HK the subbundle FB(E′) → N is parallel, i.e., FB(E′) is invariant
with respect to the parallel transport in FB(E) along arbitrary curves α : J → N :( t1

‖
t0

α
)FB(E)(FB(E′)α(t0)

)
= FB(E′)α(t1) for all t0, t1 ∈ J ;

in other words: The connection HFB(E′) induced by HK on the subbundle FB(E′) is given by

HFB(E′)
a = HFB(E)

a for all a ∈ FB(E′) . (158)
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Example 16. (a) The Lie group bundle O(TN) → N (with fibres O(TN)q = O(TqN) ) is
canonically associated with K . It is subordinated to the preceding consideration by E :=
O(V ) , on which K acts by (k, g) 7→ ψ(k) ◦ g ◦ ψ(k)−1 , and by ρE(u, g) = ρu ◦ g ◦ ρ−1

u .
Furthermore, K ′ := ψ(K) is a K-invariant Lie subgroup of O(V ) . Thus, we obtain a
parallel Lie group subbundle FB(K ′) → N of the bundle O(TN) → N . We abbreviate

Kq := FB(K ′)q and have Kq = ρu ◦K ′ ◦ ρ−1
u with u ∈ Kq . (159)

(b) The Lie algebra bundle End−(TN) → N (with fibres End−(TN)q = End−(TqN) ) is
canonically associated with K . It is subordinated to the preceding consideration by E :=
End−(V ) , on which K acts by (g,A) 7→ ψ(g)◦A◦ψ(g)−1 , and by ρE(u,A) = ρu◦A◦ρ−1

u .
Furthermore, the Lie algebra k′ ⊂ End−(V ) of K ′ = ψ(K) is a K-invariant Lie subalgebra
of End−(V ) . Thus, we obtain a parallel Lie algebra subbundle FB(k′) → N of the bundle
End−(TN) → N , therefore being also parallel in the vector bundle End(TN) → N . We
abbreviate

kq := FB(k′)q and have kq = ρu ◦ k′ ◦ ρ−1
u with u ∈ Kq . (160)

Obviously kq is the Lie algebra of the Lie group Kq introduced in (a).25

(c) As already mentioned above the Graßmann bundle τ : N̂ = Gm(TN) → N is associated
with K . Let us fix some subspace W0 ∈ Gm(V ) which is adapted to K ′ = ψ(K) .
Obviously, the orbit K ′W0 is a K-invariant submanifold of the typical fibre Gm(V ) of
τ . Thus, we obtain a parallel subbundle

N̂(W0) := FB(K ′W0) → N

of the bundle τ : N̂ → N . Let us fix a point q ∈ N and an element u ∈ Kq and put
Wu := ρu(W0) . As ρu : V → TqN is an isometry, we derive from the situation in the
typical fibre V :

(i) The fibre N̂(W0)q := FB(K ′W0)q is a symmetric subspace of the symmetric space
N̂q = Gm(TqN) ; see Proposition 21(b).

(ii) Kq = ρu ◦K ′ ◦ ρ−1
u is a closed subgroup of O(TqN) (see (a)).

(iii) The subspace Wu ∈ N̂(W0)q is adapted to the subgroup Kq .

(iv) The fibre N̂(W0)q coincides with the orbit KqWu .

Furthermore, we have

(v) N̂(W0) = { ρu ◦ ψ(g)(W0) |u ∈ K , g ∈ K } .

Moreover, Proposition 21(a) and the previous statements show that every subspace W ∈
N̂(W0)q also is adapted to Kq . If we repeat the proof of Proposition 21(b) in the situation
(iv), we find that the Cartan decomposition of kq corresponding to the symmetric space
N̂(W0)q at a reference point W ∈ N̂(W0)q is

kq =
(
kq ∩HW

)
⊕

(
kq ∩MW

)
(see (b)) ;

25Let gK denote the Lie algebra bundle over N whose fibre gK
q is the Lie algebra of vector fields X ∈ Γ(TKq)

satisfying Rg∗X = X ◦Rg for all g ∈ K . This bundle is canonically associated to K ; its typical fibre is (k,Ad) .
Since the faithful representation ψ : V → O(V ) delivers a K-equivariant Lie algebra isomorphism k → k′ , this
isomorphism furthermore induces a Lie algebra bundle isomorphism gK → FB(k′) .
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for the meaning of HW and MW see (54) and (55). From this equation we immediately
obtain that the tangent spaces of the submanifold N̂(W0)q ⊂ N̂q are given by

TW

(
N̂(W0)q

)
= ΘW (kq ∩MW ) for all W ∈ N̂(W0)q , (161)

with the isomorphism ΘW : MW → TW Gm(TqN) defined in (60). Let us also repeat the
statement (158) in the present situation:

HN̂(W0)
W = ĤW for all W ∈ N̂(W0) . (162)

Finally notice that the submanifold N̂(W0) is closed and regular in N , as can be seen
easily by use of local trivializations of the bundle τ and the compactness of the orbit
K ′W0 .

Proposition 23. At every “point” W ∈ N̂(W0)q the tangent space of the entire submanifold
N̂(W0) ⊂ N̂ is given by

TW N̂(W0) = { v̂ ∈ TW N̂ | ν̂(v̂) ∈ kq } .

Proof. The connection of the fibre bundle N̂(W0) → N gives the splitting

TW N̂(W0) = TW

(
N̂(W0)q

)
⊕HN̂(W0)

W =
(161),(162)

ΘW (kq ∩MW )⊕ ĤW . (163)

Now we split an arbitrary vector v̂ ∈ TW N̂ according to the splitting TW N̂ = V̂W ⊕ ĤW , i.e.:
v̂ = ν(v̂) + η(v) (see the beginning of Section 6). Because of (163) we see: v̂ ∈ TW N̂(W0) if
and only if ΘW ◦ ν̂(v̂) = ν(v̂) ∈ ΘW (kq∩MW ) ; here we have made use of Theorem 4. Therefrom
we derive the assertion immediately.

Proposition 24. N̂(W0) is an affine (=autoparallel) submanifold of N̂ .

Proof. Let X̂, Ŷ ∈ Γ(TN̂(W0)) and Z ∈ Γ(E) be given. Notice that Z also can be considered
as a vector field of N along τ . Then we calculate:(

ν̂(∇̂X̂ Ŷ )
)
Z =

(92)

(
∇M

X̂ ν̂(Ŷ )
)
Z =

(70)
∇E

X̂(ν̂(Ŷ )Z)− ν̂(Ŷ )(∇E
X̂Z)

=
(74)

∇N

X̂(ν̂(Ŷ )Z)− ν̂(X̂)ν̂(Ŷ )Z − ν̂(Ŷ )
(
∇N

X̂Z − ν̂(X̂)Z
)

=
(
∇End(TN)

X̂ ν̂(Ŷ )− [ν̂(X̂), ν̂(Ŷ )]
)
Z .

As ν̂(Ŷ ) is a section in the vector bundle FB(k′) because of Proposition 23, we obtain
from Example 16(b) ∇End(TN)

X̂ ν̂(Ŷ ) = ∇FB(k′)
X̂ ν̂(Ŷ ) ∈ Γ(FB(k′)) ; moreover, we also have

[ν̂(X̂), ν̂(Ŷ )] ∈ Γ(FB(k′)) , as FB(k′) is a Lie algebra bundle. Thus we have derived ν̂(∇̂X̂ Ŷ ) =
∇FB(k′)

X̂ ν̂(Ŷ ) − [ν̂(X̂), ν̂(Ŷ )] ∈ Γ(FB(k′)) . Applying Proposition 23 again we therefore obtain
∇̂X̂ Ŷ ∈ Γ(TN̂(W0)) . This characterizes N̂(W0) as being an affine submanifold.

Theorem 12. If f : M → N is an II-parallel isometric immersion from an m-dimensional
connected riemannian manifold M and if for some point p ∈M its Gauß map ξ := ξf : M →
N̂ , p 7→ f∗TpM satisfies W := ξf(p) ∈ N̂(W0) and ξf∗TpM ⊂ TW N̂(W0) , then ξf is a C∞

map into N̂(W0) .
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Proof. As stated in Example 16(c) the submanifold N̂(W0) of N̂ is closed and regular. There-
fore, bearing Proposition 24 in mind we can apply the two parts of Lemma 8 to the affine
immersion ξf (see Corollary 10).

We will give now two applications of the previous proposition.

First, we assume that N is a Kählerian manifold with complex structure J . Then a submanifold
M ⊂ N is said to be complex resp. Lagrangian iff for every p ∈ M the tangent space TpM
is a complex resp. Lagrangian subspace of the hermitian vector space TpN . By means of the
Gauß and Weingarten equation one deduces immediately: If M is a complex resp. Lagrangian
submanifold of N , then the second fundamental form hM resp. the shape operator SM of M
satisfy

J hM(X,Y ) = hM(X, JY ) resp. J hM(X,Y ) = −SMJYX

for all vector fields X,Y ∈ Γ(TM) .

Corollary 14. For every connected II-parallel submanifold M of a Kählerian manifold N (with
complex structure J ) the following assertions are true:

(a) If at some point p ∈ M the tangent space TpM is a complex subspace of TpN and we
have

∀u, v ∈ TpM : J hM(u, v) = hM(u, Jv) , (164)

then M is a complex submanifold of N .

(b) If at some point p ∈M the tangent space TpM is a Lagrangian subspace of TpN and we
have

∀u, v ∈ TpM : J hM(u, v) = −SMJvu , (165)

then M is a Lagrangian submanifold of N .

Proof. We use the notations of the Examples 15(a) and the results of Example 14(a). Further-
more we use that for every hermitian frame u of N at p we have ρu = u . Therefore, we obtain
from Example 16(a) and (b): Kp = u ◦ U(n) ◦ u−1 = U(TpN) = { g ∈ O(TpN) | g ◦ J = J ◦ g } ,
hence kp = {A ∈ End−(TpN) |A ◦ J = J ◦ A } . Let us abbreviate W := TpM = ξM(p) and
b := hMp .

For (a). Suppose that the complex dimension of TpM is m . The subspace W0 := Cm × {0}
of the typical fibre V = Cn is adapted to the subgroup U(n) ⊂ O(V ) . One sees immediately
that N̂(W0)q is the subset of all complex linear subspaces ⊂ TqN of complex dimension m
for every q ∈ N . Therefore, M is a complex submanifold of N , if ξM(M) ⊂ N̂(W0) holds.
From the hypothesis we know W ∈ N̂(W0) . Thus, according to Theorem 12 it is sufficient
to deduce ξM∗ TpM ⊂ TW N̂(W0) from Equation (164). Now this equation implies also ∀ z ∈
W⊥ : SJz = J Sz . Because of Example 2(a) we therefore get: ∀u ∈ W : Ab

u ◦ J = J ◦ Ab
u ,

that means ν̂(ξM∗ u) = Ab
u ∈ kp ; for the preceding equation we have used (79). Thus we obtain

ξM∗ TpM ⊂ TW N̂(W0) by means of Proposition 23.

For (b). Suppose dimTpM = m . The subspace W0 := Rn of the typical fibre V = Cn is
adapted to the subgroup U(n) ⊂ O(V ) . As U(n)W0 is the subset of all Lagrangian subspaces
of Cn , we find that N̂(W0)q is the subset of all Lagrangian subspaces ⊂ TqN for every q ∈
N . Therefore, M is a Lagrangian submanifold of N , if ξM(M) ⊂ N̂(W0) holds. From the
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hypothesis we know W ∈ N̂(W0) . Thus, according to Theorem 12 it is sufficient to deduce
ξM∗ TpM ⊂ TW N̂(W0) from Equation (165). Because of Example 2(a) this equation can be
formulated as ∀u, v ∈W : J Ab

uv = Ab
uJv . Substituting z := Jv ∈ ⊥pM in this equation, we

find ν̂(ξM∗ u) = Ab
u ∈ kp as in the proof of (a); thus we complete the argumentation.

For the second application of Theorem 12 we make some preparation:

Lemma 11. Let N be a complete riemannian manifold, G := I0(N) the neutral component
of its isometry group and Gp its isotropy group at a point p ∈ N . Then the Lie algebra of
G resp. of Gp can be identified with the Lie algebra g of the Killing vector fields on N (see
[KN], p. 239) resp. with its subalgebra gp = {X ∈ g |Xp = 0 } . Moreover, the linearization
ψL : gp → End−(TpN) of the isotropy representation ψ : Gp → O(TpN) , f 7→ Tpf is given by

ψL(X) = ∇NX
∣∣TpN : v 7→ ∇N

vX . (166)

Proof. For gp = {X ∈ g |Xp = 0 } : Let X ∈ g be given and let ΦX denote its flow. Then we
have the following sequence of equivalences: X ∈ gp ⇔ ∀ t ∈ R : ΦX(t, p) = p ⇔ Xp = 0 .

For ψL : Let X ∈ gp and ΦX be as before, fix some v ∈ TpN and choose a vector field
Y ∈ Γ(TN) with Yp = v . Using the definition of ψ and ΦX(t, p) ≡ p we get

ψ(ΦX
t )v =

(
TpΦX

t

)
Yp = Φ−X

−t∗ Y ◦ Φ−X
t (p) ,

thus

ψL(X)v = d
dt

∣∣
t=0

(
ψ(ΦX

t )v
)

= [−X,Y ]p = ∇N
vX −∇N

Xp=0Y = ∇N
vX .

Now, we assume that N is a simply connected riemannian symmetric space. we fix some point
p ∈ N and a strongly curvature invariant subspace W0 ⊂ Gm(TpN) and use the notations of
the Examples 14(b), 15(b) and 16(a) – (c). We get:

(i) W0 is adapted to K ′ = ψ(Gp) = {Tpf | f ∈ Gp } (see Example 14(b) and 15(b)),

(ii) Kp = Gp (see the definition of K in Example 15(b)),

(iii) Kp = K ′ (see formula (159) and the definition of ρ in Example 15(b)),

(iv) kp = {∇NX|TpN | X ∈ Γ(TN) a Killing field with Xp = 0 }
= {A ∈ End−(TpN) |ACR

N
p = 0 } (see Example 16(b), (i), (iii), Lemma 11 and (156)),

remember that AC denotes the action of A as a derivative on the vector space C(TpN)
of algebraic curvature tensors; see formula (39).

(v) N̂(W0) = GW0 := { (Tpf)(W0) | f ∈ G } with G := I0(N) (see assertion (v) in Exam-
ple 16(c).

Now we introduce two subsets Besym(N) and B0
esym(N) of the set BN defined in Definition 8,

which will become of importance immediately:

Besym(N) := { (p,W, b) ∈ BN |W ∈ N̂p strongly curvature invariant and ∀u ∈W : Ab
u ∈ kp }
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and
B0

esym(N) := { (p,W, b) ∈ Besym(N) | b is RN
p -semiparallel } .

Example 17. If N is a real space form, then every subspace W ⊂ TpN is strongly curvature
invariant and we have ACR

N
p = 0 for every element A ∈ End−(TpN) . Therefore, we get

Besym(N) = BN and B0
esym(N) = { (p,W, b) ∈ BN | b is RN

p -semiparallel } .

Corollary 15. For every II-parallel isometric immersion f : M → N from a connected
riemannian symmetric space M (see Corollary 2) into a simply connected riemannian sym-
metric space N the following three assertions are pairwise equivalent:

(a) M is an extrinsic symmetric submanifold of N .

(b) For every point p ∈M the triple (f(p), f∗TpM, ĥfp) belongs to the set B0
esym(N) .

(c) There exists a point p ∈ M such that the triple (f(p), f∗TpM, ĥfp) belongs to the set
Besym(N) .

Remember, ĥf is the section in B along the Gauß map ξf : p 7→ f∗TpM characterized by

ĥfp(f∗v, f∗w) = hfp(v, w) for all v, w ∈ TpM (p ∈M) (see Remark 13(c) ).

Proof. Obviously it suffices to prove the implications (a) ⇒ (b) and (c) ⇒ (a).

For (a) ⇒ (b). Fix some point p ∈ M and put W0 := f∗TpM and b := ĥfp . If (a) is satisfied,
we know from Proposition 22(b) that W0 is strongly curvature invariant; hence we can work
with the notations and the assertions, which are formulated above in the items (i) – (v). In
particular, N̂(W0) is the orbit GW0 .26 We will now show

ξf(M) ⊂ N̂(W0) . (167)

For that let p̃ ∈M be another point, choose a geodesic c : R →M with c(0) = p and c(2) = p̃ ,
put q := c(1) and let σq and σ̄q be the isometries described in Definition 12. Then we have
σq(p) = p̃ and therefore also σq∗TpM = Tp̃M . Consequently we get:

ξf(p̃) = f∗Tp̃M = (f ◦ σq)∗TpM = (σ̄q ◦ f)∗TpM = σ̄q∗(W0) = (σ̄q ◦ σ̄p)∗(W0) .

As γ : t 7→ σ̄c(t) ◦ σ̄p is a continuous curve in I(N) with γ(0) = idN (even more, on page 219
of [Na1] is shown that γ is a differentiable 1-parameter subgroup of I(N) ), we find γ(R) ⊂ G .
In particular we have γ(1) ∈ G , hence ξf(p̃) = (Tpγ(1))(W0) ∈ GW0 = N̂(W0) ; thus (167)
is proved. As N̂(W0) is a regular submanifold of N̂ , (167) implies that ξf is a differen-
tiable map into N̂(W0) . Hence we get ξf∗TpM ⊂ TW0N̂(W0) . Therefore, Proposition 23
and Formula (79) yield Ab

u = ν̂(ξf∗u) ∈ kp for every u ∈ TpM . Thus we have obtained
(f(p), f∗TpM, ĥfp) ∈ Besym(N) . Eventually, the II-parallelity of f implies the semiparallelity of
b (see Proposition 5(b)).

For (c) ⇒ (a). Assume the situation of (c). Then W0 := f∗TpM is strongly curvature invariant;
and b := ĥfp satisfies ∀u ∈ W0 : ν̂(ξf∗u) = Ab

u ∈ kp . By means of Proposition 23 we get

26Some authors denote such an orbit by O and say that a submanifold M ⊂ N is a O-submanifold, if TpM ∈ O
for every p ∈M .
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ξf∗TpM ⊂ TW0N̂(W0) . Therefore we can apply Theorem 12 and find that ξf is a map into
N̂(W0) , i.e.: ∀ q ∈ M : f∗TqM ∈ N̂(W0) . As all subspaces W ∈ N̂(W0) = GW0 are strongly
curvature invariant, Proposition 22 implies assertion (a).

The previous Example 17 shows that the following theorem is a strong generalization of the
Addendum to Theorem 9 concerning II-parallel submanifolds in spaces of constant curvature
(see also Corollary 5). Notice, that II-parallel isometric immersions from a symmetric space into
a real space form automatically are extrinsic symmetric (see [F, Ta, BR]).

Theorem 13. If N is a simply connected riemannian symmetric space, q a point in N , W an
m-dimensional subspace of TqN and b : W ×W → W⊥ a symmetric bilinear map, then there
exists an extrinsic symmetric immersion f : M → N from a connected riemannian symmetric
space M such that f(p) = q , f∗TpM = W and ĥf

p = b hold for some point p ∈M if and only
if

(a) W is strongly curvature invariant,

(b) (Ab
u)CR

N
q = 0 for all u ∈W , and

(c) b is RN
q -semiparallel.

It should be mentioned that Naitoh has given another algebraic description of the initial data
(q,W, b) of extrinsic symmetric immersions in [Na1] and that the articles [NT, B-T] are based
on his description.

Proof. First notice that the conditions (a) – (c) exactly mean (q,W, b) ∈ B0
esym(N) . Therefore,

Prop 22(a) and the implication (a) ⇒ (b) of Corollary 15 show that these conditions are nec-
essary for the existence of the extrinsic symmetric immersion f . Now we prove that they are
also sufficient: For that let M̃ = MU (q,W, b) = expb(U) be the helical umbrella described in
Proposition 8. For any fixed vector u ∈W the function Ru(t) defined in Remark 6 is constant,
namely ∀ t ∈ R : Ru(t) = RN

q , because of condtion (b) and Equation (40); thus the conditions
(CI’) and (SP’) of Remark 6 are satisfied because of (a) and (c), whence M̃ is a II-parallel
submanifold.

Applying Theorem 10 we find that there exists a II-parallel isometric immersion f : M → N
from a symmetric space M such that f(p) = q , f∗TpM = W and ĥf

p = b hold for some
point p ∈M . Eventually, the implication (c) ⇒ (a) of Corollary 15 implies that f is extrinsic
symmetric.
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Zusammenfassung in deutscher Sprache

In einer riemannschen Mannigfaltigkeit N sind die totalgeodätischen Untermannigfaltigkeiten
diejenigen, welche man als ungekrümmt bezeichnen kann. Im Allgemeinen kommen total-
geodätische Untermannigfaltigkeiten einer Dimension ≥ 2 und < dimN sehr selten vor.
Bezüglich der Existenzfrage hat É. Cartan folgendes Kriterium bewiesen:

Theorem (É. Cartan). Gegeben seien ein Punkt p ∈ N , ein linearer Unterraum V $ TpN
einer Dimension ≥ 1 und eine sternförmige Umgebung U von 0 in V , so daß die Exponen-
tialabbildung expNp von N in p auf U definiert ist und dabei eine injektive Immersion in N
ist. Dann ist das “Geodätischen-Schirmchen” MU (p, V ) := expNp (U) eine totalgeodätische Un-
termannigfaltigkeit von N genau dann, wenn für jedes u ∈ U die Parallelverschiebung Vu von
V längs des geodätischen Bogen cu : [0, 1] → N , t 7→ expNp (tu) ,

Vu := (
1

‖
0
cu )N(V ) ⊂ TexpNp (u)N

krümmungsinvariant ist (“Integrabilitäsbedingung”), das heißt R(v, v′)v′′ ∈ Vu für alle
v, v′, v′′ ∈ Vu . Man beachte: Es ist p ∈MU (p, V ) und Tp(MU (p, V )) = V .

Ein bekannter Spezialfall dieses Theorems ist die Beziehung zwischen Lietripel-Systemen und
totalgeodätischen Untermannigfaltigkeiten in der Theorie der symmetrischen Räume. – In dieser
Doktorarbeit wird das analoge Problem für Untermannigfaltigkeiten mit paralleler zweiten Fun-
damentalform, in der Literatur auch parallele Untermannigfaltigkeiten genannt, gelöst; in dieser
Arbeit wird die Terminologie II-parallele Untermannigfaltigkeit bevorzugt, welche explizit auf
die zweite Fundamentalform hinweist. Eine Übersicht von Resultaten über II-parallele Unter-
mannigfaltigkeiten findet man in [L].

In reellen Raumformen wurden die II-parallelen Untermannigfaltigkeiten durch Ferus,
Takeuchi, Backes and Reckziegel [F, Ta, BR] klassifiziert; inbesondere wurde gezeigt,
daß diese stets offene Teilmengen vollständiger II-paralleler Untermannigfaltigkeiten sind, und
daß letzere gerade die (extrinsisch) symmetrischen Untermannigfaltigkeiten im Sinne von
Ferus [F] sind. In symmetrischen Räumen wurden die symmetrischen Untermannigfaltigkeiten
durch Naitoh, Takeuchi, Berndt, Eschenburg, Tsukada und andere klassifiziert (siehe
[NT, B-T]), nachdem Naitoh schon in [Na1] gezeigt hatte, daß symmetrische Untermannig-
faltigkeiten stets II-parallel sind.

Falls M ⊂ N eine II-parallele Untermannigfaltigkeit ist, so ist jede Geodätische von M eine
Helix im umgebenden Raum. (Unter dem Begriff Helix sind Geodätische, Kreise und Schrauben-
linien eingeschlossen.) Daher sollte das Geodätischen-Schirmchen aus Cartans Theorem für das
in dieser Arbeit behandelte Problem durch ein Helix-Schirmchen MU (p,W, b) ersetzt werden
(siehe Proposition 8); dabei ist p ein beliebiger Punkt in N , W ⊂ TpN der vorgeschriebene
Tangentialraum für die gesuchte II-parallele Untermannigfaltigkeit M , b : W×W →W⊥ ist die
vorgeschriebene zweite Fundamentalform für M in p und U eine geeignet kleine sternförmige
Umgebung von 0 in W . In der Tat realisiert das Helix-Schirmchen stets die Anfangsbedingung
(p,W, b) ; falls W krümmungsinvariant ist, so verschwindet außerdem die kovariante Ableitung
der zweiten Fundamentalform von MU (p,W, b) zumindest in p (siehe Proposition 8).
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Um etwas Einblick in das Hauptresultat (Theorem 1) zu bekommen, werde der Raum
End−(TpN) der schiefadjungierten Endomorphismen von TpN eingeführt und sein linearer
Unterraum

MW := {A ∈ End−(TpN) |A(W ) ⊂W⊥ und A(W⊥) ⊂W } .
Definition 1 assoziiert mit b eine lineare Abbildung Ab : W → MW , u 7→ Ab

u . Als Analogon zu
den Geodätischen in Cartans Theorem wird dann für jedes u ∈ W die Helix cu unter Zuhil-
fenahme der 1-Parameter-Untergruppe t 7→ Exp(t Ab

u) ∈ SO(TpN) definiert (siehe Definition 3);
diese Konstruktion läßt den “Schraubenlinien-Charakter” der Helices deutlich hervortreten. Das
Helix-Schirmchen wid nun durch

MU (p,W, b) := { cu(1) |u ∈ U }

definiert. Es sollte noch erwähnt werden, daß eine II-parallele Untermannigfaltigkeit M zu den
Anfangsdaten (p,W, b) im Falle ihrer Existenz stets ein solches Helix-Schirmchen MU (p,W, b)
als offene Teilmenge enthält (siehe Proposition 5(c) und Corollary 4).

Lemma 4 zeigt, wie die zweite Fundamentalform einer Untermannigfaltigkeit M ⊂ N die “Be-
wegung” der Tangentialräume von M in TN längs einer Kurve c : J → M mit c(0) = p
bestimmt: Indem man die zweite Fundamentalform von M längs c zurück nach TpN paral-
lel verschiebt (und die oben erwähnte Abbildung b 7→ Ab benutzt) erhält man eine Funktion
A : J → End−(TpN) , und ist dann g : J → SO(TpN) die Lösung der Differentialgleichung
g′(t) = g(t)◦A(t) mit g(0) = idTpN , so wird TpM (bzw. ⊥pM ) von der die linearen Isometrie

ϕ(t) = (
t

‖
0
c )N ◦ g(t) : TpN → Tc(t)N (t ∈ J)

via Paralleltransport in M (bzw. im Normalenbündel ⊥M ) auf Tc(t)M (bzw. auf ⊥c(t)M )
abgebildet. Ist cu eine Geodätische einer II-parallelen Untermannigfaltigkeit mit ċu(0) = u , so
stellt sich heraus, daß dieser “an M gespaltene Paralleltransport” von TpN längs cu für jedes
t ∈ J gerade die Isometrie

ϕb
u(t) = (

t

‖
0
cu )N ◦ Exp(t Ab

u) : TpN → Tcu(t)N

ist (siehe Proposition 5(c)). Daher ist in Cartans oben erwähntem Theorem der Paral-
leltransport längs cu durch diese Isometrien ϕb

u(t) zu ersetzen; weiterhin sollte Vu durch
ξu(t) := ϕb

u(t)(W ) ersetzt werden; und zusätzlich hat man eine bilineare Abbildung hu(t) :
ξu(t) × ξu(t) → ξu(t)⊥ zu konstruieren, indem man nämlich b via ϕb

u(t) nach Tcu(t)N trans-
portiert. Nun besagt Theorem 1:

Das Helix-Schirmchen MU (p,W, b) ist genau dann II-parallel wenn für alle u ∈ W die
Unterräume ξu(t) krümmungsinvariant und die bilinearen Abbildungen hu(t) semiparallel
sind (siehe Definition 1(b)).

In [PR2] haben Pawel und Reckziegel schon das analoge Problem für sphärische Unterman-
nigfaltigkeiten (einer Unterklasse der II-parallelen Untermannigfaltigkeiten) gelöst, indem sie
ein sogennantes “Kreislinien-Schirmchen” (circular umbrella) konstruiert haben.

Aus Korollar 5 erkennt man, daß in einem Raum konstanter Krümmung genau dann eine
II-parallele Untermannigfaltigkeit zu den Anfangsdaten (p,W, b) existiert, wenn b RN

p -
semiparallel ist. Nun gibt es eine wohlbekannte andere tensorielle Bedingung für die Exis-
tenz II-paralleler Untermannigfaltigkeiten in Standardräumen, die von D.Ferus für den Fall
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N = Rn in [F] entdeckt und später für die anderen Standardräume konstanter Krümmung
in [BR] ausgeweitet wurde, daß nämlich eine gewisse bilineare Abbildung L : W×W → End(W ) ,
die mit dem Tripel (p,W, b) assoziiert wird, ein sogenanntes euklidisches Jordan-Tripel-System
ist. In Abschnitt 4 werden Ferus Rechnungen auf eine solche Weise präsentiert, daß man die
Übereinstimmung seiner und unserer Resultate erkennen kann (siehe Theorem 3).

Zum Beweis von Theorem 1 in Abschnitt 5 wird zur Behandlung der Differentialgeometrie
(bis zu zweiter Ordnung) von beliebigen m-dimensionalen Untermannigfaltigkeiten M ⊂ N
ein Kalkül entwickelt, der zunächst “frei von Untermannigfaltigkeiten” ist. Da die Spaltung
TpN = TpM ⊕ ⊥pM für das Studium einer Untermannigfaltigkeit M in einem Punkt p ∈ M
entscheidend ist, werden das Graßmannbündel τ : N̂ → N (dessen Fasern die Graßmann-
mannigfaltigkeiten N̂p := Gm(TpN) sind) und folgende Bündel über N̂ betrachtet: das
zurückgezogene Tangentialbündel E := N̂ ×N TN → N̂ (dessen Faser über W ∈ N̂ Tτ(W )N

ist), die kanonische Spaltung E = >>⊕⊥⊥ , die in einem “Punkt” W ∈ N̂p durch TpN = W⊕W⊥

gegeben ist, das Hauptfaserbündel P der angepaßten orthonormalen Basen von E , das Vek-
torbündel B der “möglichen” zweiten Fundamentalformen, welches durch BW := L2(W,W⊥)
gegeben wird, und das Vektorbündel M , dessen Fasern MW schon weiter oben beschrieben wur-
den. Das Bündel P ist auf kanonische Weise mit einem linearen Zusammenhang HP versehen,
welcher eine ausgezeichnete kovariante Ableitung auf den assoziierten Vektorbündeln E , B and
M induziert. Insbesondere ist die Parallelverschiebung in E eine “universelle gespaltene Paral-
lelverschiebung”, sie beschreibt also die “an M gespaltene Parallelverschiebung” für beliebige
m-dimensionale Untermannigfaltigkeiten M . Wird weiterhin die zweite Fundamentalform einer
m-dimensionalen Untermannigfaltigkeit M als Schnitt in B längs der Gaußabbildung betra-
chtet, so stimmt ihre kovariante Ableitung (die gerade erwähnte) mit derjenigen überein, die
gewöhnlicherweise in der Untermannigfaltigsgeometrie verwendet wird. Das Schlüsselobjekt in
dieser Arbeit ist eine gewisse 1-Differentialform ν̂ auf N̂ mit Werten im Bündel M , die die
zweite Fundamentalform beliebiger m-dimensionaler Untermannigfaltigkeiten von N “enthält”;
mit ihrer Hilfe lassen sich universelle Gauß- und Weingartengleichungen formulieren und eine
universelle Formel, die die Krümmungsgleichungen von Gauß, Codazzi and Ricci zusammenfaßt
(siehe (75), (78) und Example 9).

Andererseits ist für jedes q ∈ N und W ∈ N̂q die Einschränkung ν̂|TW N̂q der wohlbekann-
te Isomorphismus zwischen dem Tangentialraum des symmetrischen Raumes Gm(TqN) im
“Punkt” W und dem Unterraum MW der Liealgebra End−(TqN) der Transformationsgruppe
O(TqN) (siehe Remark 7 und Theorem 4). Diese Tatsache ermöglicht die Konstruktion eines li-
nearen Zusammenhangs ∇̂ (mit Torsion) auf der Manigfaltigkeit N̂ (siehe Abschnitt 6), welcher
– für das behandelte Problem – optimal an die Geometrie des Graßmannbündels angepaßt zu
sein scheint. In der Tat wird für jede m-dimensionale Untermannigfaltigkeit M eine Beziehung
zwischen der kovarianten Ableitung ihrer zweiten Fundamentalform und der zweiten Fundamen-
talform der Gaußabbildung ξM von M (siehe Theorem 6) hergeleitet; als ein Korollar dieses
Theorems erhält man die folgende geometrische Einsicht:

M ist genau dann II-parallel, wenn ξM eine affine Abbildung in (N̂ , ∇̂) ist.

Das eben erwähnte Theorem und das Korollar verallgemeinern Vilms wohlbekannte Resultate
aus [V2] bezüglich Untermannigfaltigkeiten im euklidischen Raum.

Weitere Objekte, die in dieser Arbeit eine entscheidende Rolle spielen, sind die mit den bi-
linearen Abbildungen b ∈ BW assoziierten m-dimensionale Unterräume Tb ⊂ TW N̂ (siehe
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Abschnitt 7). Für m-dimensionale Untermannigfaltigkeiten spielen diese ausgezeichneten Un-
terräume eine ähnliche Rolle wie die Beschleunigungsvektoren ∈ T (TN) für Kurven in N ,
die ebenfalls nicht das gesammte Tangentialbündel zweiter Ordnung von N ausfüllen (siehe
Theorem 7). Solche “Tangentialräume höherer Ordnung” von Untermannigfaltigkeiten wurden
bereits von Ambrose in [A] untersucht; der Vergleich seiner Untersuchung und meiner Ergeb-
nisse wird in Theorem 7 und Proposition 16 dargestellt. Als Nebenprodukt erhalte ich ein neues
Kriterium für dir Involutivität einer Distribution (siehe Corollary 11).

Nun läßt sich schließen: Die Konstruktion einer Untermannigfaltigkeit M ⊂ N mit par-
alleler zweiter Fundamentalform zu vorgegebenen Anfangsbedingungen (p,W, b) ist äquivalent
zur Konstruktion, einer affinen (=autoparallelen) Untermannigfaltigkeit M̂ in (N̂ , ∇̂) zu den
Anfangsbedingungen (W, Tb) . Als einziger Kandidat für M̂ kommt nur das Geodätischen-
Schirmchen aus Cartans Theorem in Frage. Wie in [PR1] gezeigt wurde bleibt dieses
Theorem in jeder “affinen” Mangfaltigkeit (N̂ , ∇̂) gültig, solange man nur die Bedingung
“Vu ist krümmungsinvariant” durch “Vu ist krümmungs- und torsionsinvariant” ersetzt. In
Proposition 14 werden diese “Integrabilitätsbedingungen” für die Affinität des Geodätischen-
Schirmchens in N̂ in Integrabilitätsbedingungen für die Parallelität der zweiten Fundamental-
form des Helix-Schirmchens MU (p,W, b) übersetzt. Danach ist der Beweis des Hauptresultats
schnell erbracht (siehe Abschnitt 8).

Ist der Inhalt von Theorem 1 rein lokaler Natur, so wird in Abschnitt 9 eine globale Ver-
sion dieses Theorems bewiesen. Ist insbesondere N ein symmetrischer Raum, so existiert zu
vorgeschriebenen Anfangsdaten (p,W, b) schon eine II-parallele isometrische Immersion von
einer vollständigen riemannschen Mannigfaltigkeit in N , falls nur ein beliebig kleines Helix-
Schirmchen MU (p,W, b) II-parallel ist. Diese lokale Bedingung kann an Hand von endlich
vielen tensoriellen Gleichungen getestet werden (siehe Theorem 2).

Der Einfachheit halber habe ich in der Regel in dieser Arbeit angenommen, daß die riemann-
sche Metrik von N positiv definit ist. Im Falle einer pseudoriemannschen Mannigfaltigkeit N
vom Index k ∈ {1, . . . ,dimN − 1} darf der vorgeschriebene Tangentialraum W ∈ Gm(TpN) in
Theorem 1 nicht (bezüglich der Metrik von N ) ausgeartet sein; falls dieser pseudoeuklidische
Vektorraum den Index ` ∈ {0, . . . ,min{m, k}} hat, so muß das Graßmannbündel τ : N̂ → N
auf die Menge dieser gleichartigen Unterräume beschränkt werden. In Abschnitt 11 werden
diese Tatsache und die notwendigen Abänderungen der Argumentation beschrieben. Hier will
ich nur eine Tatsache erwähnen. In einer vollständigen riemannschen Mannigfaltigkeit sind die
maximalen Helices auf der ganzen reellen Achse R definiert. Im pseudoriemannschen Fall ist
dies nicht unbedingt wahr, da eine geodätisch vollständige pseudoriemannsche Mannigfaltigkeit
im allgemeinen nicht total vollständig ist; in Proposition 3 wird eine wesentliche Ausnahme
beschrieben, wenn nämlich N ein pseudoriemannscher symmetrischer Raum (allgemeiner ein
reduktiver homogener Raum mit seinem kanonischen Zusammnenhang) ist; obwohl diese Tat-
sache bekannt ist, gebe ich einen Beweis hierfür, da ich in den Lehrbüchern keinen finden konnte.

Soweit wurde der Inhalt dieser Arbeit in Bezug auf Theorem 1, das Analogon zu Cartans
am Anfang dieser Zusammenfassung zitiertem Theorem, beschrieben. In der Tat besteht das
Ziel meiner Arbeit auch darin, tieferen Einblick in die Geometrie II-paralleler Untermannig-
faltigkeiten zu geben. Zum Beispiel scheinen die Beschreibung der Helices in Definition 3
und die Bewegung der Tangentialräume einer II-parallelen Untermannigfaltigkeit längs einer
Geodätischen in Proposition 5 (diese Ergebnisse wurden schon in [JR] präsentiert) neu zu sein.
Tatschlich kann ich dieses Verhalten der Tangentialräume in einer etwas allgemeineren Situation
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beweisen (siehe Proposition 6 und Corollary 3). Weiterhin zeigt Corollary 4, daß die wohlbekann-
te Starrheit II-paralleler Untermannigfaltigkeiten auf solche Untermannigfaltigkeiten zutrifft, in
denen nur eine k-te kovariante Ableitung der zweiten Fundamentalform identisch verschwindet.
Corollary 2 sollte ebenfalls erwähnt werden; es besagt daß eine II-parallele Untermannigfaltigkeit
eines lokalsymmetrischen Raumes wieder lokalsymmetrisch ist, ein Resultat das in [Na1] ohne
Beweis erwähnt wird. Da die zweite Fundamentalform hM einer Untermannigfaltigkeit M das
primäre Objekt dieser Arbeit ist, möchte ich auf Proposition 1 hinweisen, in der ich eine Interpre-
tation von hM über das infinitesimale Kippen der Tangentialräume von M längs Kurven gebe.
In Abschnitt 6 wird gezeigt, daß dieser Sachverhalt auch unter Zuhilfenahme der “universellen
zweiten Fundamentalform ” ν̂ aus einer sehr allgemeinen Beobachtung (assoziierte Faserbündel
betreffend) folgt (siehe Lemma 6).

Genauso gut hätte ich die Verallgemeinerung von Vilms Resultat (Theorem 6 und Corol-
lary 10) als zentrales Objekt meiner Dissertation bezeichnen können. Daher ist es interes-
sant, den linearen Zusammenhang ∇̂ mit dem Levi-Civita Zusammenhang ∇LC der kanoni-
schen riemannschen Metrik des Graßmannbündels zu vergleichen; in Proposition 12 werden die
Haupteigenschaften von ∇LC beschrieben; in Kapitel 6 (Theorem 5, Corollary 8 und 9) findet
man den Vergleich der beiden Zusammenhänge.

Der letzte Abschnitt behandelt den Fall, daß die riemannsche Mannigfaltigkeit N mit einer
zusätzlichen “parallelen” geometrischen Struktur versehen ist (siehe Definition 13). Dann kann
man die Frage stellen, wann II-parallele Untermannigfaltigkeiten mit dieser Struktur verträglich
sind. Startet man mit einem ausgezeichneten Unterraum W0 ∈ N̂ , so läßt sich ein paralleles Un-
terbündel N̂(W0) → N von τ : N̂ → N konstruieren, dessen Fasern symmetrische Unterräume
der Fasern von τ sind und dessen Bündelraum dann auch eine affine Untermannigfaltigkeit
von (N̂ , ∇̂) ist (siehe Punkt (i) von Example 16(c) und Proposition 24). Eine m-dimensionale
II-parallele isometrische Immersion f : M → N wird als kompatibel mit der Zusatzstruktur auf
N angesehen, wenn die Gaußabbildung ξf die Bedingung ξf(M) ⊂ N̂(W0) erfüllt; und dies
ist schon dann der Fall, wenn nur der 1-Jet von ξf in einem Punkt p ∈ M die entsprechende
Bedingung erfüllt (siehe Theorem 12). Daß diese abstrakte Theorie wirklich Sinn macht, wird
an zwei Beispielen verdeutlich, nämlich an komplexen und Lagrangen II-parallelen Unterman-
nigfaltigkeiten in Kählermannigfaltigkeiten (siehe Corollary 14) und an extrinsch symmetrischen
Untermannigfaltigkeiten in symmetrischen Räumen (siehe Corollary 15 und Theorem 13).

Zuletzt sind noch einige Worte zu Abschnitt 10 angebracht. Darin wird die Theorie der II-
parallelen Untermannigfaltigkeiten auf Streifen längs beliebiger differenzierbarer Abbildungen
f : M → N verallgemeinert. (Streifen sind als natürliche Verallgemeinerung von Immersio-
nen anzusehen, da doch die Gaußabbildung einer Immersion ein Streifen ist.) Aufgrund der
in dieser Dissertation entwickelten Theorie kann man damit sehr einfach das Hauptergebnis
der Arbeit [R] beweisen; dies ist ein Kriterium dafür, wann eine differenzierbare Abbildung in
eine gegebene II-parallele Untermannigfaltigkeit hinein abbildet (Theorem 11); dieses Resultat
enthält insbesondere Erbachers Theorem über die Reduktion der Kodimension für isometrische
Immersionen in reellen Raumformen (siehe [E]).
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