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1. Introduction

The development of quantum mechanics in the beginning of the last century has led to impor-
tant progress in the understanding of the physical behavior of solids. Especially the electronic
properties of solids are governed by quantum mechanics to a large extent. Many insights can
already be gained by treating the electrons as independent particles. The electronic contribu-
tion to the specific heat and the occurrence of energy bands can be explained in this way to
mention but two effects. Including the interactions of the electrons in an average way and using
still a one-particle description yields an excellent description of most band structures in real
crystals [1].

The phenomenology of real crystals is much richer than what can be explained within a one-
particle description. Superconductivity and in particular the properties of the high-Tc materials
cannot be explained without the interaction of the particles. The Mott transition between
an insulator and a metal is also due to interactions. Also the magnetic behavior of solids is
governed by the correlation of the electrons in the crystal to a large extent. Already these
examples show that an appropriate theory of many solids has to deal with the correlations
of electrons. In particular, strong correlations lead to a great variety of phenomena that are
observed in the phase diagrams of solid matter. This explains the need for a quantum theory of
strongly correlated many-body systems.

The complexity found in correlated materials poses a formidable challenge to theoretical
physics. In most cases a detailed description of a certain material is too complicated. There-
fore, theoretical solid state physics studies the behavior of paradigmatic models. These models
are simplifications of the true Hamiltonian of the material or the class of materials of inter-
est. However, they contain the relevant contributions to describe many of the physical effects
qualitatively.

The paradigmatic model for correlated electrons is the Hubbard model. The complicated
Hamiltonian of the crystal is reduced to a model containing only a single localized orbital.
Electrons are allowed to hop between neighboring sites. On the same site they strongly repel
each other. The local interaction accounts for the screened electron-electron interaction. The
competition between kinetic and interaction energy is at the basis of many phenomena found
in strongly correlated materials. The Hubbard model is assumed to describe at least parts of
this phenomenology because it contains these two important ingredients in a simplified form.
Although being very simple this model is very hard to solve. Exact solutions are only possible
in one or infinite dimensions [2, 3].

The Heisenberg model is among the most important models to describe magnetism. It can be
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derived from the Hubbard model for half filling as an effective model describing only the magnetic
degrees of freedom. The Hilbert space is reduced to the subspace with lowest energy. The degrees
of freedom that describe the charge dynamics are neglected. The interactions between the spins
of the electrons are created by virtual charge excitations. Thus, the Heisenberg model deals
only with the magnetic interaction of localized magnetic moments. An exact solution can only
be found in one or infinite dimensions.

A main purpose of quantum many-body theory is to develop techniques to solve these and
other models. The aim is to understand the materials behind the models. At present, there
exists a set of well established techniques in many body theory. Green’s function methods [4] rely
on the calculation of the propagators or susceptibilities. They can be applied in a perturbative
way or by a systematic resummation of selected diagrams to infinite order. The aim is the direct
calculation of the Green’s function which describes the propagation of a particle in the system.
Also susceptibilities can be calculated in this way. Starting from a Hamiltonian the method
provides results that are frequency dependent.

Another very successful approach in many-body theory is the renormalization group [5]. It
has been originally applied in the description of critical phenomena. It focuses on low energy
properties and is therefore especially useful to determine the phase diagram. The renormalization
group has been introduced originally to treat collective bosonic degrees of freedom. In solid
state physics many phenomena are based on the fermionic behavior of the constituents. The
low energy behavior of electrons is strongly influenced by the existence of a Fermi surface. In
recent years the renormalization group has been generalized to fermionic degrees of freedom [6–
9]. This approach is known under the name of ”functional renormalization group”. In the case
of strongly correlated systems the renormalization flow often leads to divergent behavior of the
couplings. Whereas the phase diagram can be determined in a reliable way, the divergence of
coupling constants hinders a quantitative interpretation of the results in the symmetry broken
phase. The continuation of the flow into the symmetry broken phase is the topic of current
research [10]. Renormalization group methods focus on the low energy excitations of the system.

Another approach to many-body systems are numerical methods. In many cases numerical
methods are the first means to obtain information about a complex system. Even for complicated
Hamiltonians numerical analysis yields exact results. The calculations are only restricted by the
computing resources at hand. A drawback of numerical results is that they sometimes allow
only limited insight into the mechanisms that produce the physical behavior.

Our understanding of correlated systems is far from being complete. There is a strong need
for new methods that complement the existing ones. The objective of this thesis is to investigate
a relatively new method, namely continuous unitary transformations (CUTs) [11–15]. The basic
idea is to construct an effective Hamiltonian systematically that describes the original system.
The technical tool for this task is to set up a differential equation describing the evolution
of a set of couplings that are chosen to describe the system. The original and the effective
Hamiltonian are linked by a unitary transformation. Unitary transformations have been used
to derive effective models for a long time. The CUT method puts the derivation of the effective
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model on a systematic basis.

The above mentioned methods are well-established in quantum many-body theory. They have
accumulated an impressive amount of results. The CUT is of course not meant to supersede
these methods. But, the method of CUTs can complement these approaches in some aspects.
It is an advantage that the CUTs yield an effective Hamiltonian. This effective Hamiltonian
allows further calculations. This is not possible for example for the above mentioned Green’s
function methods. The CUT describes processes on all energy scales. It does not focus on
very low energies like renormalization group approaches. It allows insight into the relevant
processes determining the physical behavior. The effective Hamiltonian is given in terms of
certain quasiparticles. Their properties can be analyzed within the one-, two- and higher particle
sectors. The method shows how the final physical behavior is generated. The CUTs give
also access to the description of observables. This is indispensable if one finally aims at the
explanation of experimental results.

The aim of the present thesis is to make a methodological investigation of a special realization
of the CUT method. We apply the CUT in a self-similar fashion just as it has been done in
the original work by Wegner [11]. This means that the coefficients of operators in the CUT
scheme are not given by a perturbative expansion but renormalized according to the differential
equation that defines the CUT. The set of operators in the CUT has to be restricted to keep
the method numerically tractable. In this thesis the couplings to describe the effective model
are chosen according to their locality. The local approach is very common in solid state physics.
The paradigmatic models like the Hubbard and Heisenberg model for strong correlations are
phrased in terms of operators that deal with localized Wannier orbitals.

The aim of the transformation is to map the given Hamiltonian onto an effective Hamiltonian
which is in some sense easier to treat. The use of the Mielke-Knetter-Uhrig (MKU) generator [12,
13] is an important ingredient to simplify the structure of the effective Hamiltonian. The CUT
in the MKU scheme ensures that the effective Hamiltonian is quasiparticle number conserving.
This makes the effective Hamiltonian easily amenable to numerical techniques like Lanczos
diagonalization.

The present approach is a novel realization of the CUT technique. Therefore, we present the
method and its central concepts in detail and discuss the physical motivation of this approach.
The transformation of the Hamiltonian and of observables is discussed. The diagonalization of
the Hamiltonian gives insight in the energy properties of the system. The study of observables
is necessary to understand experimental results that usually probe the system with a certain
observable. To check the reliability of the method we compare its results to perturbative CUT
calculations and other methods. We will not only reproduce known results but we will also
calculate new ones to underline the efficiency of this method.
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Thesis overview

The next chapter, Chap. 2, is devoted to the presentation of the method. Important points of the
concept are discussed in this chapter. The need for a truncation scheme is explained. The notion
of a reference state and the extension of operators are introduced. These concepts are necessary
to define the truncation scheme. Various generators are studied. The MKU generator is used
mostly in this thesis. Its properties, in particular the relation to the quasiparticle concept, are
described. This section defines how the Hamiltonian and observables are transformed according
to the CUT scheme. To this end a simple example and the implementation of this technique on
a computer are described in detail.

Chapter 3 deals with the Hubbard model. There, the CUT method is used to map the
Hubbard model onto an effective Hamiltonian that conserves the number of double occupancies.
The effective model is a generalized t-J model. A worked-out example gives insight into the
functioning of the method. The conditions necessary to carry out the transformation are studied
and the coefficients of the effective model are presented.

The Heisenberg model in one dimension is studied in Chapter 4. It is applied to two differ-
ent geometries, namely ladders and chains. The Heisenberg model on the ladder is treated for
intermediate and large ratios of the leg and the rung coupling. The dispersion and two-particle
properties including bound states are calculated. For the isotropic Heisenberg ladder the conver-
gence of the transformation becomes an issue. It leads us to the study of multi-particle continua.
The overlap of continua of different quasiparticle number plays a crucial role in the question if
the transformation is physically reasonable and possible. For the spin chain we calculate the
one-particle energies for various values of the dimerization. An observable is transformed and
the results for the respective spectral weights are discussed.

Chapter 5 applies the CUTs to the bosonic Hubbard model. Very recently this model has
found an artificial realization in atom traps [16, 17]. This has spurred the research on the bosonic
version of the Hubbard model. The chapter concentrates on the explanation of absorption exper-
iments performed on atom gases in traps. The observable describing the experimental situation
is transformed and the corresponding spectral weights are calculated. The experimental result of
large spectral weight at high energies is explained by considering the effect of finite temperatures
in the trap. These findings are further corroborated using thermodynamic considerations. The
last chapter summarizes the results.
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2. Self-similar continuous unitary

transformations in real space

Continuous unitary transformations (CUTs) are a way to systematically derive effective Hamil-
tonians for many-body problems. The underlying concept of an optimally chosen change of basis
is intuitive. The CUT used in this thesis are non-perturbative and self-similar. The choice of a
suitable generator of the transformation is central in the setup of the flow equation.

The generator that is mostly applied in this thesis is the so-called MKU generator. It allows
to construct a quasiparticle number conserving effective Hamiltonian. The structure of the
Hamiltonian imposed by the quasiparticle concept is of crucial importance for the construction
and the analysis of the effective Hamiltonian.

The second important ingredient in the construction of a CUT is the truncation scheme.
Regarding this point, the guiding idea in this work is to encode the effective Hamiltonian in
operators that are as local as possible. This results in a self-similar realization of the flow
equation. The effective Hamiltonian is incorporated in operators that are chosen mainly by
their locality.

This section is organized as follows. Section 2.1 explains the general properties of CUTs. The
properties of the Wegner and the MKU generator are discussed in Sec. 2.2. A central part of the
thesis is Section 2.3. There, the method is described. The discussion is focused on the version of
the CUT that is used throughout the thesis. A physical motivation of the particular approach is
given and the method is explained in detail. The following Section, Sec. 2.5, presents technical
details of the implementation on a computer. A summary is given in Sec. 2.6.

2.1. CUTs: general concept

The subject of this thesis is the method of continuous unitary transformations (CUTs). The
method has been introduced by Wegner [11] and independently by G lazek and Wilson [18, 19].
This section introduces CUTs in general. Later on, the discussion will specialize on the variant
of CUTs that is used in this work, namely self-similar CUTs in real space.

Unitary transformations are widely used in physics to map a given problem to an effective
Hamiltonian which is simpler, i. e. closer to diagonality. The original problem shall be given
in the form of a Hamiltonian H, the effective Hamiltonian is denoted by Heff. In a one-step
transformation the mapping of H onto Heff is done with a single unitary transformation operator
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U

Heff = UHU−1. (2.1.1)

Since a unitary transformation realizes a change of basis the Hamiltonian H and the effective
Hamiltonian Heff have the same eigenvalues. There are many successful applications of such
one-step unitary transformations. Examples in condensed matter physics include Fröhlich’s
[20] derivation of an effective electron-electron interaction by eliminating the electron-phonon
interaction, the Schrieffer-Wolff transformation [21] to map the Anderson model onto the Kondo
model and the derivation of low energy effective models for the Hubbard model [22–24].

The concept of a one-step transformation is now generalized to a continuous unitary transfor-
mation. The Hamiltonian is considered to depend on the flow parameter l. Its transformation
is governed by the flow equation

∂H(l)
∂l

= [η(l),H(l)]. (2.1.2)

The flow of the Hamiltonian is generated by the anti-hermitian operator η(l). The anti-
hermiticity of the generator η(l) ensures that the transformation of H(l) is unitary. The original
Hamiltonian fixes the initial condition of Eq. (2.1.2)

H(l = 0) = H. (2.1.3)

The flow equation Eq. (2.1.2) produces a whole set of unitarily equivalent Hamiltonians H(l).
For all values of l the transformed Hamiltonian H(l) can be used as an effective Hamiltonian for
the initial problem. Usually, the flow equation is integrated up to l = ∞ and the corresponding
H(∞) is referred to as the effective Hamiltonian

H(l = ∞) = Heff. (2.1.4)

The continuous realization of the unitary transformation can be superior to one-step transfor-
mations. The transformation is permanently adjusted to the flowing Hamiltonian. This leads
to effective Hamiltonians that have less singular interactions than those found by single step
transformations [25].

The aim of the transformation is an effective Hamiltonian which is in some respect simpler than
the original problem. For typical generators this is indeed the case. If one inspects Eq. (2.1.2)
one recognizes that the transformation stops if the generator η and the Hamiltonian H commute

[η(∞),H(∞)] = 0. (2.1.5)

This is only the case if the Hamiltonian has a definite structure. The transformation brings
the Hamiltonian closer to diagonality. The detailed properties of the effective Hamiltonian will
depend on the choice of the generator.

In basic quantum-mechanics one often exploits the fact that the Hamiltonian commutes with
another operator. Then, one can find a common eigenbasis for the operators. One can classify the
eigenstates of the Hamiltonian by the quantum numbers of the other operator. The Hamiltonian
is already block-diagonal with respect to the quantum numbers of this operator. The situation is
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somewhat different in Eq. (2.1.2) because the generator is an anti-hermitian operator. However,
we will also find that the effective Hamiltonian is structured by the relation in Eq. (2.1.5).

Like in any change of basis all operators and hence also observables have to be subjected to
the same transformation. The flow equation for an observable O reads

∂O(l)
∂l

= [η(l),O(l)]. (2.1.6)

While the transformation will simplify the Hamiltonian this is not the case for the observable.
The observable will generally become more complicated. However, the effective observable can
also be classified according to the structure which is imposed on the Hamiltonian. This will be
further explained in Sec. 2.3.5.

The method of CUTs has been invented more than ten years ago and has been applied to
various systems. At this point we want to highlight some references that are connected to the
self-similar approach in real space which is the topic of the present thesis. This list of references
cannot be exhaustive. For further references we refer to two overview articles by Wegner [14, 15].
The different approaches to CUTs can be grouped into perturbative and self-similar treatments.
Perturbative treatments of CUTs are presented in Refs. [13, 26–33]. Their relation to the present
approach is described in Sec. 3.2.3. A self-similar truncation scheme is used in Refs. [31, 34–40].
The method has been applied to a wide range of systems. These include the Hubbard model
(see Refs. [26, 39, 40]) and one-dimensional spin models (see Refs. [13, 41, 42] and references
therein) which are both also treated in the present thesis. Also many other systems have been
the subject of CUT studies, e. g. the Lipkin-Meshkov-Glick model [31–33] or impurity models
Refs. [36, 43–46], to mention only two.

2.2. Generators

The transformation depends crucially on the choice of the generator η. The aim of the transfor-
mation is to bring the Hamiltonian closer to diagonality. Then, the problem is easier tractable
than the starting Hamiltonian. If full diagonalization is not feasible also partial diagonalization
can be a decisive step towards the solution. Partial diagonalization of the Hamiltonian means
the decoupling of certain sectors of the Hilbert space.

Here, two generators are presented, namely the generator originally introduced by Wegner
and the MKU generator. It is also possible to use other generators or variants of the two above
mentioned generators. In addition, one can use different generators, one after the other. The
result of a first transformation is an effective Hamiltonian. One can use this Hamiltonian as the
starting point for a second transformation with another generator.

2.2.1. Wegner’s generator

In Wegner’s original scheme [11] the Hamiltonian is split into a diagonal part Hd and a non-
diagonal part Hnd

H = Hd + Hnd. (2.2.7)
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The splitting of the Hamilton operator into a diagonal part Hd and a non-diagonal part Hnd is
not unique. There is a freedom to define which operators are said to be diagonal and which are
not [14]. The generator ηW is

ηW(l) = [Hd(l),Hnd(l)] = [Hd(l),H(l)] (2.2.8)

and thus the flow equation is

∂H(l)
∂l

= [ηW(l),H(l)] = [[Hd(l),Hnd(l)],H(l)]. (2.2.9)

The right-hand side of the flow equation vanishes if Hd(l) commutes with Hnd(l).
The transformation induced by ηW is quite robust. It has been shown that the choice of ηW as

the generator will lead to diagonalization up to degenerate subspaces. This applies to finite [11]
as well as to infinite matrices [31]. Formally, the Wegner generator solves the problem. However,
in an actual calculation it is possible only in rare cases to take into account all operators that
appear in the flow equation. The set of operators has to be truncated. In such a situation the
choice of ηW might not be optimal.

2.2.2. Mielke-Knetter-Uhrig generator

This section describes the CUT using the generator introduced by Mielke [12] and Knetter
and Uhrig [13]. The fundamental idea is to use a counting operator Q in the definition of the
generator. The operator Q counts the number of quasiparticle excitations. In the following
the CUT approach based on this idea will be labeled with the abbreviation “MKU” standing
for Mielke, Knetter and Uhrig. The quasiparticle number will be the fundamental quantity to
organize the problem in the MKU approach. The choice of the quasiparticle has to be motivated
by the physical situation. If a system can be successfully described in terms of this quasiparticle
depends decisevely on this choice. The analysis of the spectral weight in channels with low
quasiparticle number allows to judge the appropriateness of the quasiparticle picture.

The MKU generator ηMKU is defined using an eigenbasis of Q via its matrix elements [13]

(ηMKU(l))i,j = sgn (qi − qj) Hi,j(l), (2.2.10)

where sgn is the sign-function. The use of an eigenbasis of Q allows to assign the eigenvalue
qi to each state i. An operator in H commuting with Q does not contribute to ηMKU. On the
other hand, operators not commuting with Q contribute to ηMKU. The flow equations using the
MKU generator have been shown to converge for finite matrices [13]. The transformation leads
to an effective Hamiltonian commuting with Q

[Heff , Q] = 0. (2.2.11)

This means that subspaces of different eigenvalues of qi are decoupled. Typically, there exists a
maximum number n by which the number of quasiparticles can be changed by the action of the
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Fig. 2.1: The MKU-generator preserves the block-band structure of the Hamiltonian during the flow. On

the left a schematic picture of the initial Hamiltonian is shown. It gets renormalized during the flow. The

transformation finally yields the effective Hamiltonian on the right. The final Hamiltonian is block-band

diagonal. The blocks group different terms with a definite action on the number of quasiparticles.

Hamiltonian. The initial Hamiltonian has a block-band structure. The MKU generator preserves
this block-band structure [12, 13, 29]. The conservation of the block-band structure is illustrated
in Fig. 2.1. The number n which limits the change of the number of quasiparticles for the initial
Hamiltonian also holds for the flowing Hamiltonian H(l). When full block-diagonalization is
achieved for l = ∞ the effective Hamiltonian does not change the number of quasiparticles any
more. The effective Hamiltonian is block-diagonal.

The conservation of block-band diagonality is an important feature of the MKU generator. It
reduces the number of operators that are involved during the flow. It also imposes a constraint
on their structure. In view of an actual calculation this is a clear advantage.

The effective Hamiltonian conserves the number of quasiparticles. This observation is essential
for the method of MKU flow equations. The problem to solve Heff at the end is simplified by this
quasiparticle conservation. The groundstate of the effective problem is the quasiparticle vacuum.
The one-particle subspace is separated from the remaining Hilbert space. Its diagonalization
yields the one-particle energies. Generally, all n-particle sectors can be treated separately as the
transformation achieves block-diagonality. A mathematically detailed discussion of the structure
of the effective Hamiltonian can be found in Ref. [29].

It is useful to use the language of the counting operator for the whole formalism of the CUT.
Not only the effective Hamiltonian at the end of the flow but also the flowing Hamiltonian is
most conveniently described using the quasiparticle number. It is therefore useful to separate
the operators in the Hamiltonian according to their effect on the quasiparticle number. If an
operator creates i quasiparticles and annihilates j it is said to belong to the {i, j}-block.

A picture illustrating the structure of the Hamiltonian is shown in Fig. 2.2. The structure
is given by the action of the operators in the Hamiltonian on the quasiparticle number. The
terms in the Hamiltonian are grouped into blocks that create and annihilate a definite number of
quasiparticles. The terms in the {0, 0}-block create and destroy zero quasiparticles. For a system
with a unique groundstate the {0, 0}-block is just a single constant, namely the groundstate
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Fig. 2.2: Block-structure of the Hamiltonian. Here, the case of a Hamiltonian changing the quasiparticle

number by at most 2 is shown.

energy. Operators that create quasiparticles out of the vacuum belong to {n, 0}-blocks. In
Fig. 2.2 a Hamiltonian is sketched that changes the number of quasiparticles by at most 2. The
one-particle dispersion is given by operators in the {1, 1}-block, interactions of two particles are
in the {2, 2}-block, and so on.

Note that the illustration in Fig. 2.2 should be viewed as a scheme organizing the structure
of the Hamiltonian rather than a large matrix. For example, the terms belonging to the {1, 1}-
block do not only act on one-particle states. They annihilate the vacuum, but they do not
annihilate states with more than one particle. Therefore, they have to be taken into account when
diagonalizing the two-particle sector. This is evident in the formalism of second quantization.
It is just restated here to avoid confusion in the presentation of the quasiparticle structure of
the Hamiltonian.

The quasiparticle concept is also important for the solution of the effective Hamiltonian Heff .
The operator Heff commutes with Q. It is diagonal up to subspaces with fixed quasiparticle
number. For a non-degenerate ground state the {0, 0}-block is just the energy of the groundstate.
Generally, the derivation of Heff has turned the original problem into a few-body problem. This
has to be contrasted with the many-body problem one usually starts with. The n-particle sector
can be solved within this subspace handling only n particles. It is much easier to deal with
a two-particle problem than to deal with a many-body problem, even though the two-particle
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interaction becomes complicated.

All observables of interest have to be transformed with the same transformation. At the end
of the flow, the observables do not conserve the particle number in general. They create or
destroy particles in the system. The action of the observables can be classified according to
the change of the number of quasiparticles [30, 47, 48]. At zero temperature one has to consider
only those operators which do not annihilate the ground state. Also the calculation of spectral
quantities like spectral densities and spectral weights can be classified according to the number
of quasiparticles involved.

The CUT using the MKU generator reformulates the Hamiltonian in the effective quasiparticle
description. The computational effort to describe many-particle subspaces increases drastically
with the particle number. The reason is that the number of terms that have to be taken into
account increases. Typically, the sectors with low numbers of quasiparticles can be described
with sufficient accuracy. These are the zero-, one- and two-particle subspaces. Also higher
subspaces can be treated [49], however only with increasing efforts. The quasiparticle picture is
most appropriate if the system can be described by the sectors with low quasiparticle numbers.
For a certain observable under study it can be checked how much of the physics is contained
in the n-particle sector. As the observable is classified according to its action on the number
of quasiparticles one can calculate the n-particle spectral weights. If a large part of the total
spectral weight is contained in the lowest sectors the effective picture is appropriate. It describes
the physics of the system under study. Sum rules can be used to check how much of the total
weight is described by a certain quasiparticle sector. In actual calculations it is advisable to use
sum rules to check the quality of the applied quasiparticle picture.

A particular property of MKU flow equations is that they sort the eigenvalues in ascending
order of the quasiparticle number of the corresponding eigenvector [12, 13]. The quasiparticle
number is measured with the counting operator Q. The example presented in the next section
illustrates this fact. This property of MKU flows can lead to convergence problems. If the initial
Hamiltonian has a sequence of multi-particle continua that are not ordered energetically with
respect to the number of quasiparticles it can be impossible to reorganize the Hilbert space such
that the energy levels are sorted according to the eigenvalues of Q. This issue will have to be
discussed in the applications that are treated in the following chapters.

2.2.3. Example: Two-level problem

In this section the two-level problem is considered using CUTs. It is intended to illustrate some
of the concepts discussed so far. It also shows the difference between the MKU and Wegner
generator. The discussion of the two-level problem with a slightly different focus can also be
found in Ref. [31].
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The two-level problem in the language of a system with a single spin 1/2 reads

H2 = E12 −
ω

2
σz +

a

2
σx (2.2.12a)

=

(
E − ω

2
a
2

a
2 E + ω

2

)
. (2.2.12b)

Here, the σi are the Pauli matrices. The model contains an absolute energy constant E. The
level spacing is ω. The size of the off-diagonal term is given by a. The CUT is now used to
eliminate the off-diagonal term and thus to diagonalize the Hamilton.

MKU generator

For the MKU approach the counting operator is chosen to be

Q = (1− σz)/2 =

(
0 0
0 1

)
. (2.2.13)

The first state is the quasiparticle vacuum since it has quasiparticle number q1 = 0. For the
second state, the number of quasiparticles is q2 = 1. Thus, the MKU generator reads

ηMKU(l) = sgn (qi − qj) Hi,j(l) = −a(l)
2

iσy =

(
0 −a(l)

2
a(l)
2 0

)
. (2.2.14)

From
∂H(l)

∂l
= [η(l),H(l)] = −a(l)2

2
σz − ω(l)a(l)

2
σx (2.2.15)

one reads the flow equations by comparing the coefficients on the left- and right-hand side. The
flow equations close. They read

∂lE(l) = 0 (2.2.16a)

∂lω(l) = a(l)2 (2.2.16b)

∂la(l) = −ω(l)a(l). (2.2.16c)

The right-hand side of the flow equation is bilinear. The equations are solved by observing that
a(l)2 + ω(l)2 is a conserved quantity. Since convergence is proven for finite matrices we know
that a(∞) = 0 and therefore

ωeff
MKU = ω(∞) =

√
ω(0)2 + a(0)2. (2.2.17)

The eigenstate with q1 = 0 has energy E − ωeff/2 and the eigenstate with q1 = 1 has energy
E + ωeff/2. Solving the differential equation explicitly yields the l-dependence of the coefficients
ω(l) and a(l). The solution reads

ω(l) = ω(∞) tanh
(

ω(∞)l + arctanh
(

ω(0)
ω(∞)

))
, (2.2.18)

a(l) = sgn(a(0))ω(∞)

√
1− tanh2

(
ω(∞)l + arctanh

(
ω(0)
ω(∞)

))
, (2.2.19)
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where sgn is the sign-function. The explicit solution confirms the exponential decay of the
off-diagonal element a(l) for large values of the flow parameter.

Wegner’s generator

The problem can also be solved using Wegner’s generator. The diagonal part is Hd = E12− ω
2 σz

and thus the generator reads

ηW = −a(l)ω(l)
2

iσy. (2.2.20)

The flow equations read

∂lE(l) = 0 (2.2.21a)

∂lω(l) = w(l)a(l)2 (2.2.21b)

∂la(l) = −ω(l)2a(l). (2.2.21c)

They are cubic in the coefficients. Again, a(l)2 + ω(l)2 is a conserved quantity. The Wegner
flow equations are the same as the MKU flow equations up to a rescaling by ω(l). Therefore,
one finds for the effective Hamiltonian

ωeff
W = ω(∞) = sgn(ω(0))

√
w(0)2 + a(0)2. (2.2.22)

Comparison

Both approaches solve the problem. However, the sorting property of ηMKU leads to a different
sequence of the eigenstates for negative values of ω(0). In the MKU solution, the first state with
q1 = 0 has energy E − ωeff/2 and the state with q1 = 1 has energy E + ωeff/2. The eigenvalues
are sorted according to the quasiparticle number. The value of ω(∞) is always positive.

In the Wegner approach ω(∞) has the same sign as ω(0). The eigenvalues are not sorted. The
off-diagonal term a(l) is a monotonic decaying function as the right-hand side of Eq. (2.2.21c)
has always the opposite sign of a(l).

On the contrary, the behavior of a(l) in the MKU approach can be non-monotonic. This is the
case if ω(0) is negative. Then, the energies are in the wrong order according to the quasiparticle
number of the states. The coefficients a(l) and ω(l) in the MKU-scheme are shown in Fig. 2.3
for various values of ω(0). For all values of ω(0) the coefficient a(l) approaches zero for large
values of the flow parameter. The flow equations converge.

A monotonic decrease of a(l) is found for positive ω(0). If ω(0) is negative the off-diagonal
term displays non-monotonic behavior. The coefficient a(l) has a maximum. The value of the
maximum increases with increasing modulus ω(0). The eigenvalues are sorted according to the
quasiparticle number. As long as ω(l) ≤ 0 the value of a(l) increases. As soon as ω(l) is positive
the correct order of levels is reached. Then, the off-diagonal term becomes smaller.

In more general many-body problems this behavior is also found. The reordering of energies
according to their quasiparticle number will make the transformation more difficult or will even
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Fig. 2.3: Evolution of a(l) and ω(l) in the flow for the MKU generator. The parameters are a(0) = 1

and ω(0) ∈ {1, 0.5,−0.5,−1}. Non-monotonic behavior of a(l) is found for negative values of ω(0).

For ω(0) ≤ 0 the maximal value of the off-diagonal element a(l) increases with decreasing ω(0). The

maximum of a(l) is at the l-value for which ω(l) changes sign.

hinder the transformation from converging. Non-monotonic behavior of the off-diagonal part of
the Hamiltonian is found. All applications that are discussed in the following chapters are not
exactly solvable. The Hamiltonian has to be truncated. In this situation special attention has
to be paid to possible non-monotonic behavior of the off-diagonal elements because increasing
off-diagonal elements imply increasing truncation errors. Therefore, this issue will show up again
in the sections were applications of the CUT are described.

2.3. Self-similar CUTs in real space

Up to now the flow equations and generators have been described in a very general fashion. The
flow equation, Eq. (2.1.2), is written down as a formal expression. We have not discussed so
far the question how to calculate and solve the flow equations. The present section will further
specify the method used in this thesis. It deals with the construction of the flow equation of
the self-similar CUT in real space. As has been mentioned before, the flow equations generally
do not produce a closed set of equations. A truncation scheme is introduced to make the CUT
approach amenable for a numerical solution. The transformation of the Hamiltonian and the
observables is described.
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2.3.1. Physical motivation

Before we turn to the question how to set up the flow equations let us discuss the physical
motivation for the local approach used in this thesis. The starting point of the method is a
Hamiltonian formulated on a lattice. For the method to be applicable this Hamiltonian has to
consist of local terms only. Infinite or long range interactions are beyond the applicability of the
present treatment. In solid state physics local Hamiltonians are of great importance. A wide
range of physical problems is formulated using localized Wannier states and local Hamiltonians
in second quantization [1].

Note that local Hamiltonians do not necessarily describe local physics. An obvious example
is a tight-binding Hamiltonian for non-interacting fermions that contains only hoppings to a
few nearest neighbors. Although the Hamiltonian is very local the eigenstates are extended
momentum eigenstates. If one includes interaction terms in the Hamiltonian a rich variety of
phenomena are described by local Hamiltonians.

The first main concept of the present approach is to transform the Hamiltonian at hand into
an effective Hamiltonian using local terms. This is done using the method of CUTs. They are
a formal procedure to derive an effective Hamiltonian. The effective Hamiltonian given by the
CUT is supposed to be closer to diagonality and thus easier to treat than the original problem.
The effective Hamiltonian will contain additional terms. The local approach assumes that it is
possible to encode the problem truthfully in rather local terms. It is implemented as a real-space
CUT. Operators are denoted in real space and the truncation scheme is based on the locality of
the terms.

The second central concept is the description of the system in terms of quasiparticles. The
choice of the quasiparticles depends on the physical situation. The counting operator of the
quasiparticles defines the MKU generator, see also Sec. 2.2.2. The quasiparticle description gives
a clear physical picture of the transformation and the effective Hamiltonian. The advantages of
the quasiparticle picture inherent to the MKU-CUT has already been described in the preceding
section. The local approach is combined in a natural way with the quasiparticle picture. In
addition, the quasiparticle structure of terms allows a deeper analysis of the effects and of the
relevance of local terms.

In contrast to a perturbative CUT a self-similar strategy is adopted here. The terms that
are included in the Hamiltonian have to be chosen using definite rules. In the self-similar CUT
this is done using the structure of the operators. After the new terms have been included in
the Hamiltonian the CUT represents a transformation within these terms. This motivates the
naming “self-similar”. The differential equation given by the CUT represents flow equations
for the coefficients of the Hamiltonian. This results in a non-perturbative dependence of the
effective coefficients on the system parameters.

This local approach is promising under the following circumstances. The effective model has
to incorporate the physics into local operators. The physically relevant processes have to be of
a certain range only. This is the case for small correlation lengths. For a diverging correlation
length, e. g. at a continuous phase transition, one has to be aware of a possible breakdown of
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the transformation. The mapping might not be possible. This is signalled by a non-convergent
behavior of the flow equation.

The local approach is particularly suited in physical situations with strong correlations. This is
the type of problem where also strong-coupling expansions around the atomic limit are applied.
The reasoning behind the strong-coupling expansion also suggests the use of the local CUT
approach. If the most important terms are local correlations then an expansion using terms
that include these processes is promising. A prominent model describing the physics of local
correlations is the Hubbard model. At large coupling and half filling it describes insulating
systems with short correlation lengths. We will apply the real-space CUT to the fermionic as
well as to the bosonic Hubbard model in Chap. 3 and Chap. 5, respectively. Another application
are spin liquids. These are spin models that display a gap between the groundstate and the first
excited states. Spin liquids are realized by local spin Hamiltonians under certain conditions.
Due to the presence of a gap the correlation length is typically of the order of only a few lattice
spacings. The treatment of the spin ladder and the dimerized spin chain is presented in Chap. 4.
These systems are spin liquids for appropriate choices of the coupling constants.

The formal properties and the implementation of the real space approach to self-similar CUTs
are discussed in the following.

2.3.2. Setup of the flow equations

This section presents the implementation of the CUT approach. The central formula is the flow
equation for the Hamiltonian. It is restated here

∂H(l)
∂l

= [η(l),H(l)]. (2.3.23)

The initial condition for this equation is the original Hamiltonian H(0) = H. The first step is
the calculation of the commutator on the right-hand side. It will contain terms that are present
in the original Hamiltonian and new terms. In most cases the number of newly generated terms
proliferates. The flow equations do not close.

The proliferating number of terms has to be dealt with. The importance of the newly generated
terms has to be judged in a certain way. Then, more important terms are kept and the others
are discarded. One way to do this is to arrange the terms in perturbative order. An expansion
parameter is assigned to the non-diagonal part of the Hamiltonian. Each term is of a certain
order in this expansion parameter. Terms are kept up to a certain order. The resulting effective
Hamiltonian contains coefficients that are given as a power series in the expansion parameter.
This strategy has been successful, see e. g. Refs. [13, 26, 27, 29, 30, 50].

In contrast to this perturbative strategy we follow the self-similar setup of the CUT. As has
been motivated in the preceding section the locality of a term is a measure for its importance if
the correlation length is small. Terms are kept according to a truncation rule that implements
this idea. The commutator on the right-hand side of the flow equation is computed explicitly.
The terms meeting the truncation criterion are included in the Hamiltonian. The flow equation
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constitutes a differential equation for the prefactors of the terms. The example of the two-level
problem treated in Sec. 2.2.3 was our first application of self-similar CUTs.

The real-space implementation of the CUTs uses the locality of operators as the main trun-
cation criterion. Therefore, a measure for the locality of an operator has to be defined. An
indispensable prerequisite is a physically meaningful and in particular unique way to denote the
operators. We define a sort of normal-ordering of the operator products 1. The normal-ordering
will take place with respect to a reference ensemble. If this ensemble is unique it is a single
reference state. If it consists of many states it is a reference ensemble.

First, we discuss the situation of a single reference state. It is constructed using a local
reference state. The choice of this local reference state has to be motivated physically. The
reference state is the state with no excitation present. Deviations from the reference state
represent excitations. The full reference state is constructed as

|ref〉 =
∏

i

|0〉i, (2.3.24)

where |0〉i denotes the local reference state on site i. The case of a reference ensemble is
encountered if there are several local states that have no excitation present. This situation will
be further treated in Chap. 3. The above definition of the reference state is then generalized to
the following expression for the reference ensemble

ρ̂0 :=
∏

i

(
1

Nref

∑
α∈ref

|α〉i i〈α|

)
, (2.3.25)

where the sum extends over all local states that have no quasiparticle excitation present. Their
number is Nref.

A product of n local operators oi1,α1 · ... · oin,αn
is normal-ordered if any expectation value for

m ∈ {1, ..., n}
〈oim,αm

〉ref := Tr(oim,αm
ρ̂0) (2.3.26)

with the reference ensemble vanishes. Here, αm labels the local operators. Local deviations from
the reference ensemble are excitations. The normal-ordered notation as defined by Eq. (2.3.26)
assures that operators really deal with those excitations. The creation and annihilation operators
of the excitations and products of these operators constitute the algebra of local operators.

2.3.3. Formulation with local operators

This section introduces the operator algebra for a finite local Hilbert space for the case of a single
reference state. This formalism is directly applicable to the spin-systems treated in Chap. 4 and
for the bosonic Hubbard system in Chap. 5. In Chap. 3 the case of a reference ensemble is
encountered. The minor modifications to treat this case are discussed in Chap. 3.2.1.
1We use the expression “normal-ordering” while we are aware that we are in general not dealing with conventional

normal-ordering. The applications of the method will not treat non-interacting fermions or bosons. Normal-

ordering in the context of the present work refers to the standardized procedure to represent operators.



26 Self-similar continuous unitary transformations in real space

For illustration, we treat here a local Hilbert space of four states. The formalism is generalized
straightforwardly to any finite number of states. Chapters 4 and 5 will also use a local basis
with four states. Thus, for the sake of concreteness this dimension of the Hilbert space is used.

The four states are labeled |n〉i where n ∈ {0, 1, 2, 3}. The local operators can be denoted
as 4x4 matrices. Next, we construct the basis for the local operator algebra. The state |0〉 is
defined to be the local reference state. The full reference state is the product state

|ref〉 =
∏

i

|0〉i. (2.3.27)

A local operator is normal ordered if

〈oi,α〉ref = 〈0|oi,α|0〉i
!= 0. (2.3.28)

The creation operators of local excitations have the following matrix representations

e†i,1 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0


i

, (2.3.29a)

e†i,2 =


0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0


i

, (2.3.29b)

e†i,3 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


i

, (2.3.29c)

where the basis consists of the states |n〉i with n ∈ {0, 1, 2, 3}. They create local excitations with
flavor α ∈ {1, 2, 3}. The annihilation operators ei,α are the hermitian conjugates of Eq. (2.3.29).
The operators e†i,α correspond to creation operators of hard-core particles. The application of
a creation operator annihilates any singly occupied states. The operators in Eq. (2.3.29) fulfill
the commutation relations of hard-core particles

[
ei,α, e†j,β

]
= δi,j

(
δα,β − e†i,βej,α − δα,β

∑
γ

(e†i,γej,γ)

)
. (2.3.30)

Here, we have assumed that operators on different sites fulfill bosonic commutation relations.
Fermionic operators anti-commute on different sites. Compared to the usual commutation re-
lations of non-interacting particles the above equation contains additional contributions. This
complicates analytical calculations with hard-core operators. For example, a usual Bogoliubov
transformation to diagonalize a bilinear Hamiltonian is not possible for hard-core particles. The
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Bogoliubov transform conserves the commutation relations of non-interacting bosons but not
the one for hard-core particles.

Using the operators in Eq. (2.3.29) one can construct nine additional operators of the type

e†i,αei,β (2.3.31)

where α and β are ∈ {1, 2, 3}. Together with the creation and annihilation operators, e†i,α and
ei,α, this gives fifteen local operators. They are all normal ordered since the expectation value
〈0|oi,α|0〉i vanishes, see Eq. (2.3.26).

The addition of the local four-dimensional identity-matrix Id(4) makes this set of operators a
basis of the operators of the local Hilbert space. Any local operator oi can be decomposed into
a linear combination of the basis{

Id(4), e†i,α, ei,α, e†i,αei,β

∣∣∣α, β ∈ {1, 2, 3}
}

. (2.3.32)

The role played by this basis becomes clear if one notes that the following operator is not
included in the operator basis 

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


i

. (2.3.33)

The reason is that the expectation value in Eq. (2.3.26) does not vanish. This operator projects
onto the reference state, i. e. it does not deal with the excitations defined by Eq. (2.3.29).

If the operator (2.3.33) appears in the calculation it has to be rewritten in the normal-ordered
form

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


i

= Id(4)i −


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


i

−


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


i

−


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


i

= Id(4)i − e†i,1ei,1 − e†i,2ei,2 − e†i,3ei,3. (2.3.34)

The local operators are labeled with a site index when they are used to write down the Hamil-
tonian. Consequently, also products of local normal-ordered operators belonging to different
sites are normal-ordered. The expectation value with respect to the reference ensemble of each
separate factor vanishes.

Terms acting on several sites are composed of the local operator basis in Eq. (2.3.32). As the
operator basis is normal-ordered it is clear that all operators apart from the identity deal with
quasiparticles. As usual in second quantization, the identity operator is dropped when writing
down products of local operators. Then, the distance between the remaining normal-ordered
local operators is a measure for the locality of the induced process. This is further explained in
the next section.
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Fig. 2.4: The operator in Eq. (2.3.35) on a square lattice. Filled sites are affected by the term.

2.3.4. Transformation of the Hamiltonian

The previous section defined a physically motivated unique way to denote operators. This is
necessary to implement reasonable truncation rules for the real-space CUT. The motivation to
use the locality of terms for the truncation scheme has been given in Sec. 2.3. Here, we describe
how this concept is implemented in a CUT calculation as a criterion for the terms that are kept
in the Hamiltonian.

The Hamiltonian is a sum of products that are composed of local operators. Also products
of normal-ordered operators are normal-ordered. The prefactor of a product of local operators
will be called the coefficient of this term.

On the basis of the normal-ordering and of the induced standardized notation we define a
measure for the locality of a term, namely its extension d. Consider the following example in
two dimensions ∑

i

oi,αoi+ex,βoi+ey,γ . (2.3.35)

Local operators are denoted by oi,α. In this notation i is the site index and α labels the
various local operators. The local operators are normal-ordered. The above term is illustrated
in Fig. 2.4. It contains operators that act on three different sites. They are depicted as filled
circles in Fig. 2.4. These sites will be called the cluster belonging to this term. On all other sites
the term acts as the identity. The Hamiltonian is translationally invariant because the term is
summed over the index i.

The maximal taxi cab distance2 d of two sites in this cluster is the extension of this term. This
definition of the extension is applicable in any dimension. In particular, in one dimension the

2The taxi cab distance of two points is the minimal number of bonds on the square lattice that connect these

two points.
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taxi-cab metric coincides with the usual euclidian metric. The extension of the term Eq. (2.3.35)
is d = 2.

The extension of the cluster belonging to a term is the measure of its locality. For a truncation
scheme, a certain maximal extension is defined. Terms that meet this criterion, i. e. which have
an extension smaller or equal to the maximal extension, are kept. If the extension of a term is
larger than the maximal extension this term is discarded.

It has to be emphasized that the use of clusters to define the truncation does not turn our
approach into a finite cluster calculation. It is a self-similar calculation in the thermodynamic
limit. Only the decision which terms are kept is based on their locality. By translational
invariance, the operators appear on the whole lattice as it is denoted by the sum over lattice
sites i in Eq. (2.3.35). There are no such things as finite size effects. The Hamiltonian after the
transformation is the thermodynamically correct effective Hamiltonian.

Additional conditions on the terms retained can be imposed. The maximal size of a calculation
is usually restricted by the computer resources at hand. Therefore, it can be useful to impose
certain additional restrictions on the terms kept. The number of local operators different from
the identity can be restricted to a maximal number. A calculation using this criterion will be
performed in Chap. 3 for the fermionic Hubbard model. One can also impose different maximal
extensions for different blocks of the Hamiltonian. A term is attributed to a certain block
according to its action on the number of quasiparticles, see Sec. 2.2.2. In certain problems it is
necessary to keep one block, e. g. the dispersion terms, to a larger extension than it is possible
for more complicated terms. This can be done using different maximal extensions for different
blocks. This strategy is adopted for the spin systems in Chap. 4.

The complete prescription for the self-similar CUT calculation in real space reads:

• Define a truncation scheme. The truncation scheme is given by a maximal extension and
possibly by additional constraints. Normal-ordered operators that meet the truncation
criteria are kept during the calculation. The truncation rule limits the number of possible
terms. Hence, the flow equation closes.

• Calculate [η(`),H(`)] to obtain the differential equation for the coefficients of the terms in
H. Terms that are not present in the original Hamiltonian start with initial coefficients
zero at ` = 0. The differential equation has to be set up only once for each truncation
scheme. It has to be solved for each set of initial conditions separately.

• The numerical integration of the flow equation yields the effective model. For ` → ∞ it
conserves the number of quasiparticles.

A worked out example for the self-similar CUTs in real space will be given in Sec. 3.2.2. The
various steps in this calculation will be described in detail. It has to be noted that the flowing
Hamiltonian can be used as an effective model for all l ∈ [0,∞]. If the flow equations are not
integrated up to l = ∞ there are terms still present that change the number of quasiparticles.
In this case these terms have to be treated by some other means or they can be neglected if
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they are sufficiently small. This will be the case for the bosonic Hubbard model discussed in
Chap. 5. The integration of the flow equation up to ` = ∞ requires that the flow equation
converges. Generally, non-convergence can be due to an insufficient approximation or due to the
breakdown of the mapping. It can be impossible for given parameters to perform the mapping to
a quasiparticle conserving effective Hamiltonian. This can be due to overlapping multi-particle
continua. It can also be due to a phase transition where the applied quasiparticle picture breaks
down. In these cases the flow equations will not converge.

The flow equations are solved numerically. An analytic solution is usually not feasible because
of the large dimension of the system of differential equations. Using numerical integration the
transformation cannot be carried out until l = ∞. Therefore, one needs to measure the extent
to which the unitary transformation has already eliminated the terms that contribute in the
generator. For the MKU generator these are the terms that change the number of quasiparticles.
The residual off-diagonality (ROD) is defined as the sum of the squares of all coefficients that
contribute to the generator. This definition applies both to the MKU as well as to the Wegner
generator. In a numerical integration of the differential equation the residual off-diagonality will
not vanish exactly. Therefore, a small but non-zero value is defined for which the flow is stopped
as soon as the residual off-diagonality falls below this value.

2.3.5. Transformation of observables

The effective Hamiltonian allows to access energy properties of the system. If one wants to
explain experiments one also has to transform the observables that are relevant for the exper-
iment. The application of the operators that represent the observable introduce excitations in
the system. This allows also the calculation of spectral densities belonging to the susceptibility
of this excitation.

The general setup of the flow equations for an observable is very similar to the previously
described case of the Hamiltonian. The total effect of the observable is a sum of the local
observables

O(l) =
∑
r∈i

O(l, r). (2.3.36)

The observable depends on the flow parameter l. It is transformed with the same generator
as the Hamiltonian, see Eq. (2.1.6). The observable is also formulated using normal-ordered
operators. In this work only observables acting locally or linear combinations of such observables
are considered.

The fact that the observable acts on a definite position necessitates a modification of the
truncation scheme. The truncation scheme for the Hamiltonian is based on the extension of a
term. The way in which the extension is calculated for terms in the Hamiltonian is not directly
applicable for the observable. The motivation to use the local approach to CUTs presented in
Sec. 2.3.1 applies also to the observable. Therefore, the truncation scheme for the observable
will also rely on the locality of the terms. The change in the truncation scheme is the only
difference for the calculation of the effective observable.
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Fig. 2.5: Terms of the local observable O(l, r). The arrow indicates the site on which the local observable

acts. Filled circles: sites on which a non-trivial operator acts; “non-trivial” means that the operator is

different from the identity. Open circles: sites on which the term under study does not act, i.e., the term

acts as the identity on these sites. (a) At l = 0 the observable is composed of local terms that act only

on one site of the lattice. (b) A term acting only at the site r − 2. Its coefficient is different from the

coefficient of the same local operator acting on the site r. The reason is that the local observable acts

at a definite site. (c) and (d) More complicated terms appear during the flow. The observable extension

of the terms in (a)-(d) is dO = 0, 2, 3, 4, respectively. Terms beyond a certain extension are omitted.

The operator of the local observable is bound to a definite site in the system. As an example
we consider a local observable that acts for l = 0 only on one site of the lattice. The discussion
of this section is straightforwardly generalized to bond-centered observables.

Figure 2.5 illustrates the action of the local observable at l = 0. For clarity, a one-dimensional
lattice is shown. The local observable is centered at the site r. The sites on which the observable
acts are shown as filled circles. The state of the sites shown as empty circles is not altered by the
observable. In the course of the flow, contributions to the observable appear which do not act
on the site on which the initial local observable is centered. The initially local process spreads
out in real space for l →∞. Examples are sketched in Fig. 2.5b-d.

The terms in the observable are generally written using the normal-ordered operators intro-
duced in Sec. 2.3.4

O(l, r) =
∑
{i,α}

ĉ(l, {i, α})oi1+r,α1 · · · · · oin+r,αn
(2.3.37)

with the multi-index {i, α} summing over all combinations of site indices {i} and operator indices
{α}. The observable O(l, r) acts on the site r. The coefficient of a term in the observable depends
on its position relative to this site.
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In order to avoid proliferation, also the terms in the observable have to be truncated. Like
for the terms in the Hamiltonian we introduce a measure for the extension of the terms in the
observable. Also for the observable the truncation scheme relies on the locality of the terms. It
has to be taken into account that the local observable has a definite site r on which it acts. The
observable extension of a term in the observable dO is defined as the sum of the distances of all
its local operators to the site r.

Figures 2.5a-d are used to motivate this definition of the observable extension. The terms in
Fig. 2.5a and Fig. 2.5b both act only at a single site. The observable initially acts at site r.
Since the second term acts on a site that is two lattice spacings away from the site r it has to
be generated through multiple application of the commutator to the observable at l = 0. The
observable extension of this term is dO = 2 wheras the term in Fig. 2.5a has dO = 0. The term
in Fig. 2.5c is generated in an even more complicated process. This is reflected in its larger
observable extension dO = 3. The different complexity of the terms Fig. 2.5a and b would not
be captured if only the maximum distance of a local operator to the site r would be taken as a
measure for the observable extension. Finally, the term shown in Figure 2.5c has dO = 4.

The terms appearing in the observable are truncated by chosing a maximum value for the
observable extension dO. In a calculation with maximum observable extension dO = 3 the terms
in Fig. 2.5a through c are kept. The last term in the figure is discarded. This term meets the
truncation criterion only if the maximum observable extension is dO ≥ 4.

Once the local effective observables O(l = ∞, r) are known, the total effective expression
Oeff is given by the sum over all sites, see Eq. (2.3.36). The transformation of observables
completes the description of the method of self-similar CUTs in real space. Before we turn to
the implementation of the method on a computer in Sec. 2.5, the next section discusses the
relation between different unitary transformations.

2.4. Different unitary transformations

The subject of the present section is to briefly discuss the relation of the self-similar CUT
scheme to perturbative schemes. In addition, we will address the question of the uniqueness of
the transformation.

The unitary transformation reaching block-diagonality is not unique. This fact has also been
discussed in the context of perturbative transformations by Stein in Ref. [26]. It can be easily
understood by considering the effective Hamiltonian. Let U0 be the unitary transformation
that transforms the original Hamiltonian H into Heff. An additional unitary transformation
shall be applied. It is given by U1. The transformation U1 does not mix the subspaces with
different quasiparticle number. Such a transformation is given by any basis change within the
quasiparticle subspaces. This is sketched in Fig. 2.6. The successive application of U0 and
U1 to the original Hamiltonian also reaches block-diagonality. Since there are infinitely many
different basis changes within the blocks, there are also infinitely many unitary transformations
that achieve block-diagonality.
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Fig. 2.6: Sketch of a unitary transformation within the blocks of fixed quasiparticle number. Assume

that a transformation U0 has been found that achieves block diagonality of the effective Hamiltonian.

Then, any additional transformation U1 that acts only within the subspaces of fixed quasiparticle number

can be performed after U0. The combined transformation still has the property to block-diagonalize the

given Hamiltonian.

Furthermore, the effective Hamiltonian can be different because the coefficients of the effective
Hamiltonian can be changed by the additional unitary transformation. This has to be kept in
mind when comparing the results of different unitary transformations. An example for this fact
is discussed in Sec. 3.2.4.

The perturbative and the self-similar approaches to CUTs are not completely unrelated3. Per-
turbative CUTs organize the right-hand side of the flow equation using an expansion parameter
that is assigned to the non-diagonal part of the original Hamiltonian. Let us consider one def-
inite parameter of the effective model. A certain set of terms is necessary for the perturbative
derivation of this parameter. The set of terms in the perturbative calculation depends on the
specified parameter and on the order to which it is calculated. A self-similar CUT contains the
results of the perturbative calculation if all operators are taken into account that are necessary
for the perturbative expansion. That means that the series expansion of the coefficients given
by the self-similar transformation coincides with the perturbative CUT result. However, there
are situations where the self-similar approach yields reliable results whereas it is hard to achieve
convergence of the perturbative expansion. In other circumstances the perturbative expansion
is better behaved than the self-similar transformation. Further discussions on how the two
approaches compare are found in Sec. 3.2.3 and Sec. 4.

3For references on perturbative CUTs see e. g. Refs. [13, 26, 27, 29, 30, 50].
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struct op

{
short opno; operator number α

short posx; x-coordinate of position index i

short posy; y-coordinate of i

};

Fig. 2.7: Representation of the local operator oi,α in the programming language C.

2.5. Implementation on a computer

This section presents the central features concerning the computer implementation of the self-
similar real-space CUT. Readers that are not interested in the details of the programming may
skip it. However, it might serve as a resource for someone who implements a CUT calculation.

The basic structure of the programs that perform the calculation is discussed in this section.
The method splits into two steps. First, one has to setup the flow equation and, second, one
has to solve this differential equation. The second step, the solution of the differential equa-
tion is rather straightforward. The implementation of the differential equation solver is briefly
commented in Sec. 2.5.4.

The first step is the computationally more sophisticated one. The flow equation is constructed
by calculating commutators of terms. This requires the implementation of some features of
the algebra of operators. The number of terms in a calculation can be very large. To make
such calculations feasible we point out ways to reduce the computational efforts. The use of
symmetries is one important tool to minimize the actual operations that are needed.

A further motivation to discuss the implementation at some length is the versatility of the
present approach. Each problem that can be treated by a CUT approach and that is formulated
with local operators can be tackled using these programs. All projects of this thesis are solved
using basically the same sort of program. Only certain modifications have been necessary to
accomplish the adjustment to the particular problem.

2.5.1. Program and data structures

The first program constructs the flow equation. It reads in an initial Hamiltonian and generates
the differential equation. Effective Hamiltonians involving a large number of terms have to
be treated in order to achieve a good description of the system. An implementation using a
computer algebra system like Mathematica or Maple is not advisable due to the insufficient
performance of these high level languages. Therefore, an implementation in C/C++ has been
chosen.

To calculate the commutators that determine the flow equation the program has to be able
to perform some algebra with the terms in the Hamiltonian. The basic entities with which
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struct term

{
fraction prefactor;

short rank;

struct op ops[MaxRank];

};

Fig. 2.8: A term is a product of local operators. It consists of a prefactor stored as an exact fraction

and of the array of local operators. The rank is the number of local operators in a term. The maximal

number of operators in a term is given by MaxRank.

the program deals are the local operators oi,α, see Sec. 2.3.4. The terms in the Hamiltonian
are products of local operators. The data structures representing these objects are depicted in
Figs. 2.7 and 2.8.

Local operators are implemented as structures of the type “op”. They consist of the operator
number and the position of the operator. Figure 2.7 displays the corresponding data structure.
This example encodes the position in two indices assuming that the lattice is two-dimensional.
Terms are represented with the data structure “term” shown in Fig. 2.8. Each term has a
prefactor. It is implemented as an exact fraction of two integer values4. It is advisable to keep
exact fractions as prefactors. Then, the resulting flow equations are exact and not affected
by rounding errors. This allows the exact treatment of small systems and, perhaps even more
importantly, simplifies checks of the consistency of the data.

The program is able to multiply, to add, and to sort terms. In addition, equal terms can
be identified and combined. The Hamiltonian and the observables are lists of terms. They are
stored in an array variable in the program. The program appends new terms that meet the
truncation criterion to the existing array during the calculation.

To make extensive calculations possible one has to spend some considerations on efficiency.
The means to increase the efficiency presented here lead to a considerable acceleration of the
calculation process. The speed gains are not marginal but reach orders of magnitude. The use
of these efficiency considerations led to a reduction of the necessary computation time of at least
a factor of 100 for the applications in this thesis.

2.5.2. Symmetries

Before we turn to the actual calculation of the commutators the role of symmetries to minimize
the computational cost is discussed. Terms in the Hamiltonian that are related by symmetry
carry the same coefficient. The use of symmetries reduces the number of terms that have to be
treated. Instead of taking into account all terms of a symmetry class one can instead treat only

4In fact, integers of type “long long int” are used for the numerator and denominator of the fraction.
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one representative.
The symmetry groups of the Hamiltonian and of the observables can be different. However,

the considerations in this chapter apply to observables in exactly the same way if the appropriate
symmetry groups are used. For simplicity, we will discuss the symmetries of the Hamiltonian.

Typical symmetries encountered in solid state physics are spin rotation symmetry, particle-
hole symmetry and the space group of the underlying lattice. For simplicity, this section treats
discrete symmetries5. Let G be the discrete symmetry group of the Hamiltonian. The full
symmetry group G can be a product of various subgroups. The number of group elements is lG.
The Hamiltonian is divided into subsets of terms that are related by symmetry. These subsets
are called classes. For each class one can define a representative. The choice of the representative
has to be unique. Instead of treating all terms in a class separately only the representative has
to be taken into account.

The Hamiltonian is an array of terms. It can be rewritten using representatives

H =
N∑

i=1

fihi =
∑
G

Ns∑
j=1

f̃j h̃j (2.5.38)

where N is the number of terms hi without reduction by symmetry. The coefficient of hi is fi.
The number of representatives is Ns. The representatives are h̃j with coefficients f̃j .

Note that the coefficient of a representative f̃j can be different from the corresponding fi in the
unsymmetrized Hamiltonian. To see this, consider a representative h̃j with coefficient f̃j . Let hi

be the corresponding term in the Hamiltonian. If the sum over the symmetry group contains the
representative several times, the absolute value of the coefficient fj is abs(fj) = abs(f̃jsj). Here,
the factor sj is the multiplicity of h̃j in

∑
G h̃j . This equation only holds for the absolute value of

the coefficient since some symmetry operations can lead to a change of the sign of the coefficient.
This has to be taken into account when retrieving the full set of symmetry related terms from
the representative. As an example consider the unity operator. It transforms identically under
all symmetries. Therefore, fId = f̃IdlG.

The CUT calculation is performed for the representatives only. The reduction of the number
of terms to be treated is significant. The largest calculations in this work could only be done
using the symmetry reduction. For the Hubbard model the value of lG is 64. The number
of terms in the Hamiltonian is not reduced by the same factor. The reduction is nevertheless
significant especially for large calculations.

2.5.3. Calculation of the flow equation

The purpose of the first program is to calculate the differential equations that embody the flow
equation of the coefficients. The central task is the calculation of commutators. Here, the
procedure of setting up the flow equations is described. Some hints are given how to fulfill this
5The technique to reduce the number of terms in the Hamiltonian works also for continuous symmetries, e. g. spin

rotation symmetry. Also continuous symmetries relate only a finite number of terms in the Hamiltonian by

symmetry. The value of lG is in this case the maximum number of symmetry related terms.
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Fig. 2.9: a) Sketch of the representatives. Their local operators act on one site and the nearest neighbor

in x-direction. (b) The commutator involves a sum over the symmetry group. (c) A commutator of the

two representatives will not give the same result.

task efficiently. A MKU CUT is considered first. Then, the small variations are pointed out
that appear for a Wegner generator.

The Hamiltonian is given as an array of terms. Newly generated terms are appended to the
array. In a MKU type of CUT the generator is very similar to the Hamiltonian. One just has
to determine the correct prefactors in Eq. (2.2.10). The generator is not stored separately. The
prefactors are inserted when needed. Thus, one has to calculate the commutators of those terms
in the Hamiltonian that contribute to the generator with the Hamiltonian itself. To make use
of the symmetry one observes that[∑

G

f̃ih̃i,
∑
G

f̃j h̃j

]
=
∑
G

[
f̃ih̃i,

∑
G

f̃j h̃j

]
. (2.5.39)

Since the Hamiltonian itself is a sum over the symmetry group one can drop this sum and
calculate the flow equation only for the representatives.

It is not possible to take the second sum over the symmetry group in Eq. (2.5.39) out of the
commutator and to calculate the commutators only with the representatives. The reason is
explained using Fig. 2.9. Let the terms oi,αoi+ex,α′ and oi,βoi+ex,β′ be two different representa-
tives. These term are shown in Fig. 2.9a embedded in the square lattice. Let the symmetries of
the square lattice constitute the symmetry group G. The correct calculation of the commutator
Eq. (2.5.39) is sketched in Fig. 2.9b. The second term in the commutator is summed over the
symmetry group. The second line shows two terms in this sum. Note especially the second
term which is labeled with β̃. It is directed along the y-direction of the lattice. Therefore, the
result of the commutator will contain terms whose local operators act on sites which are not
collinear. On the other hand, the commutator of the two representatives will only contain terms
on collinear sites in the x-direction. This commutator is sketched in Fig. 2.9c. It cannot give
the correct result for Eq. (2.5.39).

The procedure to calculate the contribution of a pair of terms h̃i and h̃j is sketched in Fig. 2.10.
After taking the representatives h̃i and h̃j one first has to calculate the sum of h̃j over the sym-
metry group. The commutator is calculated and assigned to the variable res. The commutation



38 Self-similar continuous unitary transformations in real space

res=[h  ,     h  ]

Take h  and h  ~ ~

~

~

Find representatives

~

If n=Length(res) n=n+1

ji

j

ji

nAppend res  to H

File contribution to 
differential equation

nIf res  is new

G
Σ

G
Σ

nTake res

n=0

Apply truncation criterion

Calculate h

Fig. 2.10: Schematic representation of the calculation of the commutator of a pair of terms h̃i and h̃j .

procedure also yields terms that do not meet the truncation criterion. These terms are discarded.
In a next step the representatives for all terms in the result are found. It might be necessary to
combine equal contributions after this step.

Next, the result has to be examined in view of its contributions to the flow equation. To
this end, the terms in the result are treated one after the other. If a term is already present
in the Hamiltonian the contribution from the commutator of h̃i and h̃j is filed into the proper
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differential equation. If a term is not yet contained in the Hamiltonian it is appended to it. Then,
the contribution to the differential equation can be stored. In this step one has to take care of
prefactors originating from the definition of the MKU generator, see Eq. (2.2.10). The MKU
generator contains a sign-function that depends on the change of the number of quasiparticles.
If a term decreases the number of quasiparticles its contribution to the generator has to include
an additional minus sign.

In the course of the calculation it frequently happens that terms have to be looked up in
the array representing the Hamiltonian. It has to be checked whether a certain term is already
present or not. In addition, for a given term its position in the array has to be found. As
searching and sorting is computationally quite costly it is favorable to define a hash function
for the terms that are allowed in the Hamiltonian. A hash function attributes a unique hash
value to all terms that are allowed in the Hamiltonian. The hash value is typically an integer
number. Searching for a certain term is easily accomplished if one stores together with each
hash value the position of the corresponding term in the Hamiltonian. This causes some more
implementation work but speeds up the program significantly. In the local approach to CUTs
one has a finite number of local operators. Let n be this number. For the case of a local basis
of four states that was presented in Sec. 2.3.3 n = 16 holds. A hash value in this case can be
defined as an integer in base n where the digits are given by the number of the corresponding
local operator. This hash function has been used in Chap. 3. It is appropriate if all terms that
are taken into account are defined using rather local clusters. In the application to spin systems
in Chap. 4 the terms in some blocks have to be taken into account to larger distance than others.
In this case a hash function is used that is especially adapted to handle this problem. It treats
the terms of different blocks separately.

The calculation of the commutators has to be performed until the whole flow equation is set
up. This is achieved by repeating the above procedure for all terms in the Hamiltonian.

2.5.3.1. Calculation of commutators

What is left to discuss is the computation of a commutator of two operators. The operators are
given as products of local operators. In this part of the program, efficiency is a central issue.
The problem is the calculation of a commutator of local operators

[∑
r

oL
r+i1,α1

· · · oL
r+im,αm

,
∑
r′

oR
r′+j1,β1

· · · oR
r′+jn,βn

]
(2.5.40)

where r and r′ are site indices and αi and βi determine the local operator. The superscripts
mark operators on the left (L) and on the right (R) side of the commutator. The final result is
most efficiently calculated using the product rule for commutators. Using the product rule the
commutators of products are reduced to commutators of elementary local operators. The result
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reads∑
r

∑
r′

∑
k

∑
l

(−1)ξoL
r+i1,α1

· · · oL
r+ik,αk

oR
r+i1,α1

· · · oR
r+il−1,αl−1

[
oL

r+ik,αk
, oR

r+jl,βl

]
ε

× oR
r+jl+1,βl+1

· · · oR
r+jn,βn

oL
r+ik+1,αk+1

· · · oL
r+im,αm

. (2.5.41)

The ξ encodes a possible sign. The symbol [..., ...]ε denotes a commutator or anti-commutator for
ε = 1 and ε = −1, respectively. This (anti-)commutator will produce a Kronecker-symbol for the
positional indices such that one of the sums over r and r′ disappears. The (anti-)commutators
of local operators can be calculated from their representation as finite matrices in Eq. (2.3.29).
These commutators are previously calculated and stored in an array in the program so that they
can be looked up quickly.

The commutator of products of local terms in Eq. (2.5.40) could also be calculated by imple-
menting only the product rule for operators. A recursive application of the product rule yields
the same result as Eq. (2.5.41). However, a recursive implementation is not efficient enough and
therefore not advisable.

If each pair of two local operators on different sites fulfills bosonic commutation relations there
are only commutators in Eq. (2.5.41). Thus ε = 1 holds for all contributions. In addition, the
value of ξ is always zero since the product rule for bosonic operators contains no minus sign.
One can also calculate the value of ξ if local operators with fermionic commutation relations are
present. However, for fermionic operators a, b, and c the following product rule must be used

[a, bc] = {a, b}c− b{a, c}, (2.5.42)

where curly brackets denote the fermionic anti-commutator. Then, also these anti-commutators
can be simplified using product rules. For fermionic operators a and b and a bosonic operator d

the following relations hold

{a, bd} = {a, b}d− b[a, d], (2.5.43)

{a, db} = d{a, b}+ [a, d]b. (2.5.44)

The result in Eq. (2.5.41) for products involving also operators of fermionic type can include a
sign change. The sign encoded in ξ is calculated by tracking how the present term is produced
by the product rules. Note that only the second terms in Eq. (2.5.42) and Eq. (2.5.43) carry a
minus sign. If a commutator or anti-commutator has to be used, can be determined from the
type of operators involved. This determines the value of ε in Eq. (2.5.41).

2.5.3.2. Wegner’s generator

The Wegner generator is given in Eq. (2.2.8). The generator itself involves a commutator.
Again, the right-hand side of the flow equation is given by the commutator of the generator
and the Hamiltonian. A straightforward implementation of the Wegner generator is done as
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follows. The flow equation Eq. (2.2.9) for the Wegner generator reads ∂lH(l) = [ηW(l),H(l)] =
[[Hd(l),Hnd(l)],H(l)]. This can be implemented by the following set of equations

∂H(l)
∂l

= [ηW(l),H(l)] (2.5.45a)

ηW (l) = [Hd(l),Hnd(l)]. (2.5.45b)

Equation (2.5.45a) is a first order differential equation. The equation Eq. (2.5.45b) defining the
generator is a usual equation. It gives the coefficients of the generator as a sum over terms that
are bilinear in the coefficients of the Hamiltonian. Using this implementation of the Wegner
scheme the double commutator in the definition of the flow equation is avoided. The equation
(2.5.45) is set up in the same way as the flow equation for the MKU scheme. The right-hand
side of Eq. (2.5.45a) involves bilinear combinations of the coefficients of the Hamiltonian and
the generator. The flow equation Eq. (2.2.9) involves cubic terms in the coefficients. This cubic
relation has been substituted by the bilinear equations Eq. (2.5.45).

2.5.4. Numerical solution of the differential equation

The final step in the CUT calculation is the solution of the differential equations. The flow
equations are ordinary first order differential equations. Their solution yields the coefficients
of the effective Hamiltonian. In the MKU CUT the right-hand side consists of terms that are
bilinear in the coefficients of the Hamiltonian. If the Wegner scheme is implemented as described
in Sec. 2.5.3.2 the right-hand side consists of products of the coefficients of the Hamiltonian and
the generator. The differential equation for the coefficients of the Hamiltonian is supplemented
by an equation for the generator. The flow equations for an observable Eq. (2.1.6) are also first
order differential equations. They are linear in the coefficients of the observable. They also
contain the coefficients of the generator. Therefore, they have to be solved together with the
flow equations for the Hamiltonian.

A Runge-Kutta method with adaptive step size control is used to solve the differential equa-
tions [51]. The functional behavior of the coefficients is smooth if the mapping to the effective
model works. Divergencies of the coefficients appear if the transformation is not possible. Rea-
sons for such behavior have been discussed in Sec. 2.3.4. The only problem is the large size
of the set of differential equations. They contain up to several ten thousands of coefficients
in the problems treated in this thesis. This leads to a sizeable computational cost for each
Runge-Kutta step. Especially in cases of slow convergence of the CUT this implies long run
times of the numerical integration. The solution of the largest set of differential equations in
this thesis took several days of computing time on Sun UltraSPARC workstations. The compu-
tation time to solve the differential equation is thus comparable to the time it takes to set up
the equations. However, this first step of setting up the flow equation can be done in parallel
on many computers. A parallelization of the differential equation on separate computers is not
possible. Therefore, the programs solving the differential equations took the longest real time.
Technically, it is possible to parallelize the solution of the differential equation using packages
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like OpenMP [52]. This would lead to a substantial increase in the performance of the program.

2.6. Summary

In this section the method of self-similar CUTs in real space was presented. CUTs in general are
an approach to many-body physics that allows to derive effective Hamiltonians that are simpler
to solve than the original problem.

The CUT approach presented here relies on the following prerequisites. Depending on the
physical problem at hand one has to define a reference state or ensemble. Quasiparticles are
elementary deviations from the reference ensemble. The MKU generator induces a transfor-
mation such that the effective Hamiltonian is block-diagonal in the quasiparticle number. The
quasiparticle counting operator Q commutes with Heff.

The real space approach of the CUT was described in detail. It formulates the effective
Hamiltonian using terms that are as local as possible. The reference ensemble defines the
normal-ordering of operators. Normal-ordering is a unique way to denote operators. The physical
situation is reflected in the normal-ordering since the choice of the reference ensemble and the
quasiparticles is motivated by the actual physical situation under study.

We have introduced the extension of a normal-ordered term as a measure for its locality. It is
the central criterion to truncate the proliferating number of terms appearing in the construction
of the flow equation. The truncation scheme applied in this thesis selects terms of a certain
form. The resulting flow equations are self-similar. Their solution yields the coefficients of the
effective Hamiltonian in a non-perturbative way. The residual off-diagonality (ROD) measures
the size of the terms that still contribute to the generator during the flow.

The last section, Sec. 2.5, introduces the computational techniques that are necessary to
implement the flow equation method on a computer. It also describes means to optimize the
efficiency of the calculation. Efficiency is a crucial condition for a good description of the physical
system since this often requires the treatment of effective Hamiltonians with many terms.
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3. Effective t-J-model derived from the

Hubbard model

The Hubbard model is a paradigmatic model in condensed matter physics. It describes the
physics of correlated electrons in a lattice. The very successful determination of energy bands
in solids using band theory relies on an effective one-particle description. The Hubbard model
goes beyond this one-particle description by including a true correlation term. It includes beside
one-particle hopping terms only an additional two-particle on-site interaction. The use of the
Hubbard model aims at situations where correlations are central to the physics of the system and
therefore the one-particle descriptions fail. It was first introduced to describe ferromagnetism
in systems with electron correlations that are not negligible [53–56]. The Hubbard model has
been used to describe the Mott metal-insulator transition [57, 58]. The Mott transition is a
prototypic example for the failure of band theory. Mott insulators have an odd number of
electrons but do not conduct as predicted by band theory. They display gapful behavior that is
caused by the electronic correlation. In the case of strong coupling and half filling the Hubbard
model can be mapped onto a pure spin Hamiltonian. In second order in perturbation theory
one finds an antiferromagnetic Heisenberg model [22, 59]. Although the Hubbard model has
been introduced to describe ferromagnetism it gives more naturally rise to antiferromagnetic
behavior. A prominent application of the Hubbard model in recent years is the description of
the electronic properties of high-Tc cuprates [60].

In this chapter the method of continuous unitary transformations is used to treat the insulating
regime of the Hubbard model. In particular, the aim is to provide a systematic and controlled
non-perturbative derivation of a generalized t-J-model. The t-J-model and its generalizations
describe the physics of the Hubbard model restricted to the subspace of states with smallest
expectation value of the interaction. This is the subspace of states with minimal number of
doubly occupied sites.

A particle number conserving self-similar CUT is used to derive the t-J-model. The truncation
scheme follows the local approach motivated in the previous chapter. The terms retained are
chosen according to their locality. This is appropriate for the insulating regime of the phase
diagram. Also the limits of validity of the mapping itself are studied. The mapping corresponds
to the elimination of charge fluctuations. Whether the mapping is possible depends on the extent
of these charge fluctuations and thus on the energy cost of charge fluctuations.

The focus of this chapter lies on the derivation of the effective model itself. We will not aim
at a solution of the effective model. The step from the Hubbard model to the t-J model is a
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substantial simplification. Nevertheless, the effective Hamiltonian is still very complicated and
its solution is a field of study in its own. The reduction of the Hubbard model to the t-J model
is quite common by now. However, our results reach beyond what has been done before [22–
24, 26, 59, 61]. First, the results are calculated in a non-perturbative way. The coefficients
of the effective model are stable with respect to the truncation scheme. The results for the
effective spin model obtained by perturbative treatments [22–24, 26, 61] are reliable only for very
large interactions. Up to now only the effective spin model has been derived in a systematic
perturbative expansion. Second, matrix elements of hole motion and interaction are discussed in
a systematic way beyond the zeroth order. The present approach is the first to treat the charge
part of the effective model systematically beyond the leading order in perturbation theory. The
main coefficients of the effective model will be given explicitly.

The chapter is organized as follows. First the model is introduced in Sec. 3.1. The description
of the method is placed in Sec. 3.2. It includes a discussion of the relation of the self-similar re-
sults to perturbative results in Sec. 3.2.3 and a remark on the possible difference between various
unitary transformations in Sec. 3.2.4. Section 3.3 presents the properties of the transformation
as well as the results for the effective Hamiltonian. The results of the CUT are discussed in
Sec. 3.4 and finally summarized in Sec. 3.5.

3.1. Fermionic Hubbard model

The Hubbard model1 consists of electrons with spin moving on a lattice [53–56]. The electrons
repel each other if they are on the same site. We will only consider the Hubbard model in two
dimensions on a square lattice. The model is defined by the Hamiltonian

H = HU + Ht (3.1.1)

which is composed of the interaction and the kinetic energy

HU = U
∑

i

(ni,↑ −
1
2

)(ni,↓ −
1
2

) =
U

2

(
D̂ − N

2

)
(3.1.2a)

Ht = t
∑
〈i,j〉,σ

(c†i,σcj,σ + h.c.). (3.1.2b)

where N is the number of sites, c†i,σ, ci,σ are creation and annihilation operators of an electron
on site i with spin σ ∈ {↑, ↓} and ni,σ = c†i,σci,σ is the number operator. Hopping is only possible
between nearest neighbor (NN) sites as indicated by 〈i, j〉 in the sum in Ht. The bare hopping
coefficient is given by t. The bare bandwidth without interactions is W = 2zt where z is the
coordination number. For the square lattice the bandwidth is W = 8t. Later all energies will be
most conveniently given in units of the bandwidth W . HU describes the repulsion of electrons
1In the discussion of the fermionic Hubbard model we will drop the specification ’fermionic’. With ’Hubbard

model’ always the fermionic model is addressed. When the particles involved are bosons we will always write

’bosonic Hubbard model’.
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Fig. 3.1: Schematic phase diagram of the Hubbard model at half filling in higher dimensions d > 2.

The tick labels at the x-axis are indicative only. The bare bandwidth is denoted by W , the Hubbard

repulsion by U , the temperature by T ; PI stands for paramagnetic insulator, PM for paramagnetic metal

and AFI for antiferromagnetic insulator. The dashed line indicates the transition or the crossover from

insulator to metal.

of opposite spin on the same site. The interaction, Eq. (3.1.2a), leads to a complex interplay of
magnetic and charge degrees of freedom. It is useful to rewrite the interaction part using the
operator

D̂ :=
∑

i

[ni,↑ni,↓ + (1− ni,↑)(1− ni,↓)] (3.1.3)

which counts the number of double occupancies (DOs) of particles and holes. The interaction
HU is rewritten using the operator D̂ in Eq. (3.1.2a). In the subsequent sections only the two-
dimensional case is treated. Before, some general comments are made regarding the Hubbard
model also in other dimensions.

Phase diagram

At half filling the Hubbard model displays insulating behavior in the limit of strong interactions.
In the opposite limit of vanishing interaction it describes free electrons and the conductivity is
finite. In-between an intricate metal-insulator transition (MIT) takes place. In one dimension
the Hubbard model can be solved exactly by Bethe ansatz [2, 62]. The transition to the Mott
insulating state takes place already at U = 0. Any non-vanishing interacting makes the system
insulating.

Figure 3.1 shows a schematic phase diagram of the Hubbard model at half filling for dimensions
d > 2. The figure summarizes the currently assumed picture. This picture is motivated by
various mean-field computations, in particular in infinite dimensions [3, 57]. In the limit of
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infinite dimensions, the dynamical mean-field theory (DMFT) allows to make statements about
the value of the critical interaction where the transition from the insulating to the metallic phase
takes place [3, 57, 63, 64].

For large repulsion U , a double occupancy is energetically costly. Therefore, the system is
insulating at half filling. The localized electrons interact only via their spin degree of freedom.
The size of the magnetic exchange J is equal to 4t2/U in lowest order of perturbation theory
in t/U [59]. This magnetic interaction sets the energy scale for the transition between a long-
range antiferromagnetically ordered phase (AFI) and a disordered insulating phase (PI). The
AFI phase stays insulating for larger values of t/U . It is insulating for values of t/U for which
the system is metallic at higher temperatures. The insulating behavior of the AFI phase is due
to the breaking of the translational symmetry. Hence it resembles rather a band insulator than
a genuine Mott-Hubbard insulator [65]. The system undergoes an insulator-metal transition for
increasing bandwidth only for temperatures at which the antiferromagnetic long-range order is
suppressed. The conducting region is a paramagnetic metal (PM). The transition from the PI
to the PM phase is therefore a transition between two phases which are magnetically disordered.
The MIT is a first order transition in infinite dimensions and for not too large temperatures [3].
In finite dimensions, it is possible that the transition is still first order. However, it might also
be the case that the system undergoes a crossover only. In the case of two dimensions there is
no long-range order at finite temperatures due to the Mermin-Wagner theorem [66]. The AFI
phase collapses to the line where T = 0. At finite temperatures, only the disordered phases
exist.

Elimination of charge fluctuations

The aim of the present chapter is to use a CUT to eliminate charge fluctuations. This can be done
only in a certain parameter regime. If the interaction is such that the system is a paramagnetic
metal, charge excitations cost zero energy. The elimination of the charge fluctuations is not
possible. The transformation is only feasible in the range of parameters where the system is
insulating. The phase diagram in Fig. 3.1 shows that the derivation of the effective model
requires a certain minimal value of the interaction U . If the interaction U is too small the
Hubbard model cannot be mapped onto the effective model.

The effective model is a generalized t-J-model. Charge fluctuations involving the change of the
number of DOs are eliminated. The degrees of freedom that are described by the effective model
are those of the spins of the electrons and of doped charge carriers. Although the effective model
is derived at half filling it keeps track of the dynamics of holes and double occupancies. This
is necessary since we have to know how virtual intermediate states evolve and they generically
contain charge excitations. The parts of the effective model which describe the dynamics of holes
apply also to holes inserted externally by doping. In this sense, the effective model describes
also the physics in a vicinity of half filling. The t-J-model describes the remaining degrees of
freedom without the precondition of a certain long range order. The state of the spins and of
doped charges has to remain unspecified. The reference ensemble may not favor a certain spin
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or charge order. These conditions have to be fulfilled in the set up of the CUT.

3.2. Method

In the half filled case, in the limit of infinite U the electrons are fixed on their lattice site by the
constraint of having no DO. Reducing U from this limit the electrons are gradually allowed to
move producing DOs intermediately. But the physics remains still rather local. In the following,
we want to map the Hubbard model for finite U in a systematic way onto an effective model that
conserves the number of DOs. The guiding idea will be that the physics can be incorporated into
an effective model that contains operators that describe rather local processes. The truncation
scheme will rely on the local approach to CUTs described in Chap. 2. The extension of a term
decides if it is kept in the flow equations or not. The discussion in the previous section showed
that the mapping to a DO conserving effective Hamiltonian will break down for too large values
of t/U .

The aim of the transformation is to eliminate charge fluctuations. Charge fluctuations are
local deviations from half filling. Such a deviation is either an empty sites or a doubly occupied
site. Both types of deviations are called double occupancies (DO). The operator D̂ defined in
Eq. (3.1.3) counts the number of DOs. The effective Hamiltonian has to conserve the number
of DOs. Therefore, a MKU CUT is used with the counting operator D̂. The DOs are the
quasiparticles of the MKU scheme. As described in Sec. 2.2.2 the corresponding MKU generator
reads

η(`) = [D̂,H(`)] = 2sgn (qi − qj) Hi,j(l). (3.2.4)

Except for an overall factor [67], the above η coincides with η in Refs. [12, 13], where it was
defined using the sign of the change in the number of quasiparticles.

It is useful to classify the operators in the kinetic part of the Hamiltonian according to their
effect on the number of DOs

Ht = T0 + T+2 + T−2 (3.2.5a)

T0 = t0
∑
〈i,j〉,σ

[
(1− ni,σ)c†i,σcj,σ(1− nj,σ) + ni,σc†i,σcj,σnj,σ + h.c.

]
(3.2.5b)

T+2 = t+2

∑
〈i,j〉,σ

[
ni,σc†i,σcj,σ(1− nj,σ) + nj,σc†j,σci,σ(1− ni,σ)

]
(3.2.5c)

T−2 = t−2

∑
〈i,j〉,σ

[
(1− ni,σ)c†i,σcj,σnj,σ + (1− nj,σ)c†j,σci,σni,σ

]
, (3.2.5d)

where σ = −σ. The projection operators 1− ni,σ and ni,σ ensure that Tn changes the number
of DOs by n. The Hamiltonian, Eq. (3.1.1), changes the number of DOs only by a single, finite
absolute value, namely 2. Thus the MKU generator in Eq. (3.2.4), which is usually defined with
a sign function, can also be expressed as the commutator [D̂,H(`)]. The only difference between
the matrix elements sgn(di − dj)Hij and (di − dj)Hij in an eigenbasis of D̂ is a factor of 2. The
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Fig. 3.2: Illustration of various hopping processes. The change in the number of DOs is given by the

subscript of the operators Tn.

MKU CUT preserves the block-band structure of the Hamiltonian. In the flow equations no
terms will appear that change the number of DOs by a value other than 0, −2 and 2.

The action of the operators T0, T+2 and T−2 is illustrated in Fig. 3.2. A hopping process of a
σ electron does not change the number of DOs if the initial and the final site are both empty or
both occupied by electrons with spin −σ. These are the processes represented by the two terms
in Eq. (3.2.5b). The number of DOs is increased by two if an electron on a singly occupied site
hops onto a site which is occupied by an electron of opposite spin. After this process the initial
site is empty and the final site is doubly occupied. Both contribute one quasiparticle excitation.
The reverse process reduces the number of DOs by two. More complicated terms are created
during the flow. They are also easily classified using the counting operator D̂ of DOs.

3.2.1. Reference ensemble

The local basis consists of four states: the empty site |0〉, two singly occupied states with spin
up and spin down, |↑〉 and |↓〉, and the state with two electrons, |↑↓〉. The two singly occupied
states, | ↑〉 and | ↓〉, are half filled. They form the set of two local reference states. Here
we encounter the case of a true reference ensemble. This possibility has been pointed out in
Sec. 2.3.2. The reference ensemble is represented by the statistical operator

ρ̂0 :=
∏

i

1
2

(|↑〉ii〈↑ |+ |↓〉ii〈↓ |) . (3.2.6)

The index i indicates the site of the local state. The reference ensemble in our approach is
magnetically completely disordered and without any intersite correlations. It contains the up-
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1 n̄ = n↑ + n↓ − 1 σ+ = c†↑c↓ c↓c↑
σz = n↑ − n↓ 2n↑n↓ − n̄ σ− = c†↓c↑ c†↑c

†
↓

(1− n↓)c↑ (1− n↑)c↓ n↑c↓ n↓c↑
(1− n↓)c

†
↑ (1− n↑)c

†
↓ n↑c

†
↓ n↓c

†
↑

Table 3.1: Local operators. The operators in the first two lines have an even number of fermionic

operators, those in the last two lines an odd number of fermionic operators; the usual spin operators

are Sz = σz/2, S± = σ±.

spin and down-spin electrons with the same weight. The reference ensemble constitutes the
quasiparticle vacuum in the calculation. This reference ensemble fulfills the condition that the
effective Hamiltonian must not rely on a certain magnetic order in the subspace without any
DO.

Normal-ordering

The reference ensemble implies the normal-ordered notation of local operators. A local operator
oi is normal-ordered if

〈oi〉ref := Tr(oiρ̂0) =
1
2

(i〈↑ |oi|↑〉i + i〈↓ |oi|↓〉i) (3.2.7)

vanishes. Table 3.1 gives the local operator basis in normal-ordered form. The operator n̄ =
n↑ + n↓ − 1 counts the number of electrons relative to half filling. The Hubbard operator
2n↑n↓ − n̄ counts the number of DOs. The empty state |0〉 and the doubly occupied state | ↑↓〉
yield 〈0|2n↑n↓− n̄|0〉 = 〈↑↓|2n↑n↓− n̄|↑↓〉 = 1 whereas expectation values with |↑〉 or |↓〉 vanish.
For the spin operator σz the sum in Eq. (3.2.7) is zero as well. All other operators in Table
3.1 are non-diagonal in the local basis and thus normal-ordered with respect to the reference
ensemble. Also terms which are products of normal-ordered local operators on different sites are
normal-ordered.

3.2.2. Two explicit examples for self-similar CUTs in real space

The present section gives two examples for the self-similar CUT scheme. It is intended to
illustrate the concepts described in the method section. There are two examples in this section.
The first presents a minimal model that includes the NN effective spin coupling. The second
effective model keeps all the operators on neighboring sites.

3.2.2.1. Minimal truncation

Starting with Ht and HU the generator η reads

η(`) = [D̂,H(`)] = [D̂, T+2 + T−2] = 2T+2 − 2T−2. (3.2.8)
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To set up the flow equation we have to calculate

∂

∂`
H(`) = [η(`),H(`)] = [η(`),HU (`) + Ht(`)]. (3.2.9)

The first contribution to the flow equation

[η(`),HU (`)] = −2U(`)T+2 − 2U(`)T−2 (3.2.10)

produces the suppression of terms changing the number of DOs as intended. The second con-
tribution reads

[η(`),Ht(`)] = [2T+2 − 2T−2, T0 + T+2 + T−2]

= 32t+2t−2 ·
1
2
D̂ (3.2.11a)

+16t+2t−2

∑
〈i,j〉

Si · Sj (3.2.11b)

−4t+2t−2

∑
〈i,j〉

n̄in̄j (3.2.11c)

+8t+2t−2

∑
〈i,j〉

(c†i,↑c
†
i,↓cj,↓cj,↑ + h.c.) (3.2.11d)

+... (three site terms).

Only terms with maximal extension up to d = 1 are kept. The extension of an operator is
defined in Sec. 2.3.4. It measures the maximum taxi cab distance of two local operators in a
term. Terms with extension up to d = 1 are found in Eqs. (3.2.11)a through d. In Eq. (3.2.11)
the terms containing operators on three different sites are omitted. Their extension is d = 2.
The term in Eq. (3.2.11a) will renormalize the strength of the Hubbard interaction U . The next
line, Eq. (3.2.11b), generates the Heisenberg exchange

HNN = J1(`)
∑
〈i,j〉

Si · Sj (3.2.12)

with the initial condition J1(0) = 0. To get a minimal model for the NN exchange we neglect the
terms in Eqs. (3.2.11c) and (3.2.11d). The exchange term HNN will not produce a contribution
to η since it does not change the number of DOs. As a further simplification we neglect the
terms that would arise from the commutator [η, HNN]. The resulting CUT will be called minimal
model.

Exploiting that operators related by hermitian conjugation have the same real coefficient we
know t+2 = t−2. Thus the differential equations for this truncation read

∂`U(`) = 32t+2(`)2 (3.2.13a)

∂`t0(`) = 0 (3.2.13b)

∂`t+2(`) = −2U(`)t+2(`) (3.2.13c)

∂`J1(`) = 16t+2(`)2 . (3.2.13d)
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,

Fig. 3.3: Clusters in the square lattice that define the NN truncation scheme. Filled circles indicate the

two clusters defining the truncation rule of the NN truncation. Only terms fitting on these clusters are

kept.

Using the conserved quantity s =
√

64t+2(`)2 + 4U(`)2 we obtain for this truncation

U(`) =
s

2
tanh(s` + C) (3.2.14a)

t0(`) = t0(0) (3.2.14b)

t+2(`) = t−2(`) = (s/8)
√

1− tanh2(s` + C) (3.2.14c)

J1(`) = s [tanh(s` + C)− 2U0/s] /4 (3.2.14d)

where C = arctanh(2U0/s). The effective model is obtained in the limit ` →∞. Since t+2(∞) =
0 it contains only terms conserving the number of DOs

Heff = T0 + U(∞)
1
2
D̂ + J1(∞)

∑
〈i,j〉

Si · Sj . (3.2.15)

Strictly at half filling, Eq. (3.2.15) reduces to a Heisenberg model with effective coupling J1,eff =
J1(∞)

J1,eff =
U

2

√
1 + 16 (t/U)2 − U

2
(3.2.16a)

=
4t2

U
+O(t4/U3). (3.2.16b)

For small t/U this reproduces the well-known second order result [22, 59] J
(2)
1 = 4t2

U . Note
that the final results are given in t and U denoting the initial, bare values. For clarity we use
t0 = t and U0 = U to denote the initial values while solving the flow equation. The result in
Eq. (3.2.16) coincides with the result one gets from diagonalization of a two-site cluster for the
splitting between the singlet and the triplet state and thus for J . This is purely coincidental.
Taking into account all operators on NN sites in the CUT leads to a different result as is shown
in the following section.

3.2.2.2. The NN truncation

The NN truncation relies only on the extension of the terms that appear in the flow equation.
The extension of a term has been defined in Sec. 2.3.4 as the maximal distance between two
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local operators measured in the taxi cab metric. The maximal extension for the NN truncation
is d = 1. The truncation rule for the NN truncation can be visualized by the two clusters shown
in Fig. 3.3. All terms are kept that contain only local operators on two neighboring sites. Thus,
the terms in Eqs. (3.2.11c) and (3.2.11d) have to be included in the Hamiltonian

HV = V (`)
∑
〈i,j〉

n̄in̄j (3.2.17)

Hpair = Vpair(`)
∑
〈i,j〉

(c†i,↑c
†
i,↓cj,↓cj,↑ + h.c.) . (3.2.18)

HV describes interactions of electrons on NN sites, Hpair the hopping of two electrons between
site i and j. These terms do not change the number of DOs. Thus, they generate no new
contributions in η. Calculating [η, HNN + HV + Hpair] and neglecting again terms that do not
fit on NN sites we obtain the closed flow equation

∂`U(`) = 32t+2(`)2 (3.2.19a)

∂`t0(`) = 0 (3.2.19b)

∂`t+2(`) = −2U(`)t+2(`) + t+2(`) (2V (`)− 2Vpair(`)− 3J(`)/2)) (3.2.19c)

∂`J1(`) = 16t+2(`)2 (3.2.19d)

∂`V (`) = −4t+2(`)2 (3.2.19e)

∂`Vpair(`) = 8t+2(`)2 . (3.2.19f)

The truncation criterion ensures that the flow equations close since only a finite number of terms
can meet the truncation criterion. The solution for J1 is

JNN
1 (`) =

2r

7
tanh(2r` + D)− 2

7
U0 (3.2.20)

where r =
√

28t20 + U0
2 and D = arctanh(U0/r). This yields in the limit ` → ∞ the effective

NN spin-coupling of the NN truncation

JNN
1,eff =

2
7

√
U2 + 28t2 − 2

7
U , (3.2.21)

where the final result is given in the bare parameters recalling t0 = t, U0 = U . As expected
the result is different from the result from the exact diagonalization of a finite two site cluster.
The exact diagonalization deals with a finite system only whereas the CUT is a renormalization
procedure in the thermodynamic limit where the terms kept are chosen according to their locality.

3.2.3. Comparison to perturbation theory

The CUT calculations for the minimal and the NN truncation yield non-divergent results for all
values of t/U . They reproduce the leading order of the perturbative expansion. The result for
J1 up to sixth order in perturbation theory reads

J1 =
4t2

U
− 24t4

U3
+

331t6

U5
+O

(
t8/U7

)
. (3.2.22)
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Fig. 3.4: Results for the Heisenberg coupling J1 from the minimal and the NN truncation compared

to perturbation theory. All curves are plotted relative to J
(2)
1 = 4t2/U . The numbers in the legend

in front of Padé or DlogP indicate the degree of the polynomials in x = t2/U2 in the numerator and

denominator of the Padé approximant. Recall that W = 8t holds.

We have calculated the sixth order term using the perturbation theory presented in Ref. [23]
where the fourth order term is given. Figure 3.4 compares the results for the Heisenberg coupling
J1. All results are given relative to the second order J

(2)
1 = 4t2/U .

The perturbative results are truncated power series in the expansion parameter t/U . They
are shown as gray dotted and dashed-dotted curves. For large values of t/U they are dominated
by the contribution with the highest power of the expansion parameter. They exhibit strongly
divergent behavior even if the fourth and sixth order is included. In addition, Fig. 3.4 shows
the results of various Padé-approximants derived from the series of the perturbation theory [68].
The dashed and the dashed-dotted gray curve represent a 0− 1 and a 1− 1 Padé-approximant,
respectively. The solid gray curve shows a Dlog-Padé-approximant.

The dashed and solid black lines show the result for J1 from the minimal and the NN trun-
cation, respectively. They do not show divergent behavior. The results are meaningful also for
large values of t/U . Already the minimal model correctly reproduces the leading order behavior
of the perturbation theory. The results of the Padé-approximants support that the CUT results
of the minimal and the NN truncation lie in the reasonable range of values. It is remarkable that
CUT calculations with rather few couplings involved produce these results. The result for J1 is
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reasonable for small and also intermediate and rather large values of the bandwidth W . They
reproduce the perturbative behavior for small t/U and they do not show divergent behavior
for large t/U . Thus, the self-similar approach to CUTs provides a tool to derive an effective
Hamiltonian also in cases where perturbative treatments are not easy to control.

The CUT calculation will be further improved by taking into account more terms on more
complex site configurations leading to higher truncation schemes. The agreement of calculations
with various numbers of operators will be a probe for the accuracy of the results.

Generally, the result of a self-similar CUT calculation will reproduce the result for a certain
coefficient of a perturbative calculation if all operators are taken into account that appear in
the intermediate steps of the perturbative derivation of this coefficient. Therefore, the minimal
and the NN calculation reproduce the second order of the expansion of the Heisenberg coupling
J1. Higher orders of the perturbative expansion will be reproduced only if more terms on larger
clusters are taken into account. In Sec. 3.2.5 two higher truncation schemes are introduced that
reproduce the fourth and sixth order of the perturbation theory.

The NN truncation does not give the perturbative result for all terms in second order. Addi-
tional terms on larger clusters are necessary to reproduce all second order processes. The reason
is that we have omitted certain terms in Eq. (3.2.11). There are three site processes that appear
already in second order in t/U . These are truncated in the NN truncation scheme. The set of
terms necessary to reproduce the perturbative result is different for different terms. This has to
be kept in mind when comparing the results of a self-similar CUT to perturbative results.

3.2.4. Comparison of different unitary transformations

In Sec. 2.4 it has been pointed out that the unitary transformation leading to block-band di-
agonality is not unique. Any additional unitary transformation within the blocks conserves
block-band diagonality. This fact has also been observed by Lenz and Wegner in Ref. [25] and
by Stein in Ref. [26]. The effective Hamiltonians of two different unitary transformations are
generically different. This fact is illustrated in the present section by comparing two different
perturbative realizations of unitary transformations. The present section is a digression from the
discussion of the self-similar approach to the Hubbard model. Yet it presents some facts that
are interesting for the application of unitary transformations in general. We will return to the
main track of the discussion in Sec. 3.2.5.

The Hubbard Hamiltonian is separated into an unperturbed part HU and a perturbation V

H0 = HU (3.2.23)

V = Ht = T0 + T+2 + T−2. (3.2.24)

A unitary transformation is constructed which eliminates terms changing the number of double
occupancies to a given order in t/U . The effective Hamiltonian consists of a sum of products
of the operators T0, T+2 and T−2. In the approach followed by Stein in Ref. [26] the effec-
tive Hamiltonian is constructed using a continuous unitary transformation with the generator
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1 3 42

Fig. 3.5: Finite cluster of four linearly arranged sites. Site numbers range from 1 to 4.

Eq. (3.2.4). We will only consider the case of a half filled Hubbard model. Then, the effective
Hamiltonian for the subspace without any DO can be cast into the form of a spin Hamiltonian.
To illustrate the structure of the effective Hamiltonian the leading orders are given explicitly.
The resulting effective Hamiltonian [26] reads in second order in t/U

H
(2)
eff,Stein

1/U
= T2T−2 − T−2T2 (3.2.25)

and in fourth order

H
(4)
eff,Stein

1/U3
=

1
4
T0T0T2T−2 −

1
4
T0T0T−2T2 − T0T2T0T−2 +

1
2
T0T2T−2T0

+T0T−2T0T2 −
1
2
T0T−2T2T0 + T2T0T0T−2 − T2T0T−2T0

+
1
2
T2T2T−2T−2 +

1
4
T2T−2T0T0 − T2T−2T2T−2 − T−2T0T0T2

+T−2T0T2T0 −
1
4
T−2T2T0T0 + T−2T2T−2T2 −

1
2
T−2T−2T2T2. (3.2.26)

Each operator T0, T+2 and T−2 carries a factor of t.

The perturbation theory introduced by Takahashi [23] is a different perturbative unitary
transformation that realizes a mapping onto a DO conserving effective model. There are also
other approaches that can be used, see Ref. [26] and references therein. We will concentrate
on the two methods of Stein and Takahashi because they provide a particularly simple way of
deriving the effective model.

For simplicity, we will consider the Hubbard model at half filling on a finite cluster. The
cluster is shown in Fig. 3.5. It consists of a chain of four sites. The perturbative expansion of
Stein and Takahashi differ in eighth order in the case of half filling. Away from half filling the
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first differences appear already in fourth order. The difference in eighth order reads

H
(8)
eff,Tak −H

(8)
eff,Stein

1/U7
= +

35
16

T−2T2T−2T0T0T2T−2T2 −
35
32

T−2T0T0T2T−2T2T−2T2

−35
32

T−2T2T−2T2T−2T0T0T2 −
7
8
T−2T0T2T−2T2T−2T0T2

+
7
16

T−2T0T2T−2T0T2T−2T2 +
7
16

T−2T2T−2T0T2T−2T0T2

+
17
24

T−2T2T−2T−2T2T2T−2T2 −
17
48

T−2T2T−2T2T−2T−2T2T2

−17
48

T−2T−2T2T2T−2T2T−2T2. (3.2.27)

The difference is written in the complicated form of products of Tn-operators. It is not obvious
if Eq. (3.2.27) is equal to zero or not. Therefore, it is rewritten in the spin language. It reads

H
(8)
eff,Tak −H

(8)
eff,Stein

t8/U7
= −74

3
S1 · S2 +

31
3

S1 · S3 −
62
3

S1 · S4 +
148
3

S2 · S3 +
31
3

S2 · S4

−74
3

S3 · S4 −
124
3

(S1 · S2) (S3 · S4) +
296
3

(S1 · S3) (S2 · S4)

−172
3

(S1 · S4) (S2 · S3). (3.2.28)

Indices denote the sites within the cluster shown in Fig. 3.5. In the spin language it is clear that
the above operator has non-vanishing matrix elements. This implies that also the perturbative
expansion of the spin couplings will be different in the two approaches. For example consider
the coefficient of the following two-spin term

H12 = J12S1 · S2. (3.2.29)

The coefficient J12 differs by −74/3t8/U7 in eighth order in the two perturbative schemes, see
Eq. (3.2.28).

The perturbative expansion of the coefficients of the effective model can be different for differ-
ent unitary transformation. This has to be kept in mind when comparing the results of different
perturbative approaches. In Ref. [26] Stein compares the CUT approach to the perturbative
approach used by MacDonald and coworkers [24]. Also in this case differences are found in the
formulation with T0, T+2 and T−2 operators.

The value of any physical quantity is unique. Its perturbative expansion has unique coef-
ficients. The differences found above in the coefficients of the effective model are compatible
with this statement. We have calculated the eigenvalues of the system using both approaches.
They agree up to the order to which the expansion was carried out. The results of the two
approaches are in agreement with each other and with the expansion of the exact eigenenergies.
However, there are differences in higher orders. The eigenvalues display differences which are of
tenth order in the expansion parameter. Yet this is not in contradiction with the uniqueness of
physical quantities because all reliably determined orders agree.
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Fig. 3.6: Various clusters defining the operators to be kept in the CUT. Only one of the various clusters

that are related by the point group symmetry of the two-dimensional square lattice is shown.

A similar conclusion can be found in the case of the elimination of the electron-phonon coupling
treated by Lenz and Wegner [25]. The resulting electron-electron interaction differs from the one
found by Fröhlich [20]. However, the matrix elements which correspond to physical quantities,
like for instance energies, are the same.

There is a freedom in the choice of a unitary transformation achieving block-diagonality. This
freedom is represented in the operator Eq. (3.2.28). If one adds multiples of this operator to
the effective Hamiltonian the resulting eigenvalues remain unchanged in the given order of the
perturbative expansion. It is an important point that agreement in perturbation theory can only
mean agreement up to a certain order. The addition of Eq. (3.2.28) to the effective Hamiltonian
changes higher orders of physical quantities.

We have tried to exploit this fact by adding multiples of the operator Eq. (3.2.28) to the
effective Hamiltonian. In this way one can adjust for one chosen quantity the next order in the
perturbative expansion to have the correct value. The correct values are known for the finite
system shown in Fig. 3.5. Thus one can tune the eighth order result to contain also the correct
tenth order of the perturbative expansion. However, we did not succeed in defining a precise way
of improving the results in this way. One can only tune the coefficients of a single eigenvalue.
There was no systematic way to improve the result for the whole system. In the end one would
have liked to give a general prescription also for many-body systems where the exact solution is
not known. Since this has not been possible it was decided to stick to the CUTs as defined in
the method section, Sec. 2. They provide a systematic way to derive the effective Hamiltonian
without artificial adjustments.

3.2.5. Higher truncation schemes

The truncation scheme relies on the locality of the terms. Figure 3.6 shows the clusters defining
the various truncation schemes. The sites that belong to the clusters are depicted as filled circles
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Fig. 3.7: A term affecting the filled sites in this graph has extension d = 2. It complies with a truncation

scheme that is defined by a maximal extension 2. Such a term is discarded in the plaquette truncation

scheme.

within the two-dimensional square lattice. Only one representative is shown for different clusters
that are related by the point-group symmetry of the square lattice. We use the clusters that are
necessary for a perturbative derivation of the spin Hamiltonian from the Hubbard model as a
guideline for the choice of the clusters defining the truncation. This leads to a definition of the
truncation scheme which differs slightly from the one relying only on the extension of terms.

In second order the NN Heisenberg exchange is the only effective spin coupling. For its
perturbative derivation a cluster of two neighboring sites is sufficient. Thus, the NN truncation
is defined by the cluster given in Fig. 3.6a. The cluster in Fig. 3.6a represents the two possible
clusters of NN sites on the two-dimensional square lattice. In fourth order in the electron hopping
further hopping processes contribute to the effective spin couplings. The cluster of four sites on
a plaquette of the square lattice and the linear cluster of three sites cover all hopping processes
relevant for the derivation of the spin couplings in fourth order. They are depicted in Fig. 3.6b.

The present truncation scheme is motivated by the correspondence to a perturbative derivation
of the spin couplings. This truncation scheme is not the same as taking all terms with extension
d = 2 into account. This is illustrated by the cluster shown in Fig. 3.7. In the derivation of the
spin couplings only processes contribute that return to a state that has the same local electron
occupation as the initial state. A hopping process in fourth order linking all sites on the cluster
in Fig. 3.7 will not leave the electron occupation unchanged. Therefore it is discarded in the
present truncation scheme that is defined by the clusters in Fig. 3.6b. Yet, there are processes
in fourth order that link the sites of the cluster in Fig. 3.6b. These processes would give a
contribution to a CUT defined only by a maximal extension d = 2.

The double plaquette and the linear chain of four sites depicted in Fig. 3.6c are representatives
for the clusters necessary for accounting fully of the 6th order of the spin Hamiltonian. The
calculation for the clusters in Fig. 3.6c has been the largest possible. To have an additional
comparison, we have also performed calculations keeping only the operators which affect at most
four different sites on the clusters of Fig. 3.6c. In summary, the various truncation schemes are

(i) minimal model: only HU , Ht, HNN

(ii) NN: cluster used in 2nd order perturbation theory, Fig. 3.6a.
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Calculation #operators in H # of terms in DE
(i) minimal 4 3
(ii) NN 6 8
(iii) plaquette 172 10,364
(iv) 2,217 1,341,736
(v) double-plaquette 26,251 304,514,721

Table 3.2: Number of operators in the Hamiltonian reduced by the symmetries given in the main text

for various approximation schemes. This number coincides with the number of differential equations. In

the last column the total number of all bilinear terms on the right-hand side of the differential equations

is listed.

(iii) plaquette and three-site chain: clusters used in 4th order, Fig. 3.6b.

(iv) operators on up to four different sites on the clusters of Fig. 3.6c.

(v) double-plaquette and four site chain: clusters used in 6th order, see Fig. 3.6c.

The NN truncation (ii) yields the leading order result for the NN spin coupling J1, the plaquette
truncation (iii) yields the correct result in 4th order, and the double plaquette truncation (v)
yields the correct result in 6th order. We have confirmed that our implementation complies with
these checks.

The use of symmetries is essential to reduce the computational cost for setting up and solving
the flow equations. For the implementation of symmetries in the CUT scheme see Sec. 2.5.2.
The symmetry group G used for the Hubbard model consists of the point-group symmetry of the
square lattice, i.e., rotations about multiples of π/2 and reflections about the axes and diagonals.
Additionally, terms which are related by hermitian conjugation, by particle-hole transformation,
and by flipping σ → −σ all spin indices carry the same coefficient. The particle-hole symmetry
is only present at half filling. In a calculation for a Hubbard model doped away from half filling
this particular symmetry cannot be used. Table 3.2 shows the number of terms, reduced by the
symmetries, in the Hamiltonian of each calculation. The third column of Tab. 3.2 lists the total
number of all bilinear terms on the right-hand side of the differential equation. The number of
variables and the number of differential equations is growing fast with the size of the cluster
defining the truncation rule. This renders both the set up of the flow equation and its numerical
integration computationally costly.

The double-plaquette calculation takes the largest amount of computation time. As discussed
in Sec. 2.5 it is possible to split the calculation of the flow equation into separate runs. For the
double plaquette, about 65 separate runs have been performed, each with a CPU time below 10
hours and less than 0.5 Gbyte memory on Sun UltraSPARC workstations. The solution of the
differential equation has taken typically 120 hours of CPU time and about 2.5 Gbyte on Sun
UltraSPARC workstations.
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Fig. 3.8: Evolution of the residual off-diagonality in the double-plaquette calculation (v) for various

values of W/U .

3.3. Results

The results of the calculations with various truncation schemes are discussed in this section.
Before the coefficients of the effective Hamiltonian are presented we highlight certain properties
of the CUT. They enable us to analyze the limitations of the construction of the t-J-model.
First, the behavior of the residual off-diagonality is discussed and, second, the importance of
operators of different extension. These quantities give insight in the convergence of the CUT
itself and in the locality of the effective model. For increasing W/U we find that rather extended
terms give sizeable contributions to the effective model.

An additional criterion for the possibility of the mapping to a DO conserving effective model
will be found in the analysis of the apparent gap ∆app. The apparent gap ∆app is the energy cost
that separates quasiparticle excitations from the ground state sector of the Hilbert space. The
sector with zero quasiparticles is not a single state, but an ensemble. Therefore, the calculation
of the gap is more complicated than in a situation with a unique reference state. The operator
Lanczos technique is applied to calculate the separation of different quasiparticle sectors as
function of the hopping parameter.
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Fig. 3.9: Distribution of coefficients as function of W/U according to the spatial extension d of the

respective terms in the double-plaquette calculation (v). The sum of the squares of the coefficients are

plotted relative to the second order Heisenberg exchange J
(2)
1 = 4t2/U .

3.3.1. Properties of the CUT

The residual off-diagonality (ROD) has been defined in Sec. 2.3.4 as the sum of the squares
of all coefficients that change the number of quasiparticles. The ROD measures the extent to
which the unitary transformation has eliminated the terms that change the number of DOs. The
ROD of the calculations with truncation scheme (i) to (iv) show exponential convergence. The
unitary transformation is carried out to very low values of the ROD without problems. Since the
integration is done numerically one cannot perform the transformation until l = ∞. Therefore
the flow is stopped at a value of the flow parameter l where the ROD has fallen below a low
threshold. Typically this value is 10−18U2. The remaining very small coefficients of off-diagonal
terms are neglected.

The ROD of the double-plaquette calculation (v) is shown in Fig. 3.8 for various values of
W/U . It displays non-monotonic behavior for larger values of W/U . At ` = 0 the operators in
T+2 and T−2 in Eq. (3.2.5) contribute to the residual off-diagonality. Written with the operators
in Table 3.1 these are 4∗2 = 8 terms (hopping forth and back in x- and y-direction, with spin up
or down) in T+2 and T−2 each. Therefore the curves in Fig. 3.8 for the residual off-diagonality
start at ` = 0 with the value 8t2+2 + 8t2−2 = 16t2.

The ROD shows exponential decay for values of the bandwidth up to W/U = 1.04. The curve
for W/U = 1.12 displays non-monotonic behavior. It falls below 10−27U2 to rise again up to
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10−3U2 for l ∗ U ≈ 270. Non-monotonic behavior occurs for all values of W/U ≥ 1.12. An
uprise in the ROD has already been observed in the case of the two-level model discussed in
Sec. 2.2.3. The ROD increases if states are not ordered according to their quasiparticle number.
In the present case the uprise signals that the intended transformation cannot be performed in
a well-controlled way. The sectors with different double occupancy cannot be separated. Thus
it is not possible to make the number of DOs a conserved quantity. The next section analyzes
the dependence of the apparent gap on W/U . It will be shown that the non-monotonic behavior
of the ROD appears only in a parameter range where the mapping is no longer possible. For
parameters W/U . 0.9, where the mapping is possible according to ∆app > 0, we find an
exponential decrease of the residual off-diagonality down to values where the calculation is
limited by the numerical accuracy of the computer implementation.

This conclusion is supported by the distribution of coefficients over terms of various extensions
d. The distribution of coefficients on the extensions is a measure of the locality of the effective
model. The truncation scheme limits the maximal possible extension. If the terms with maximal
extension constitute a large fraction of the total coefficients it is doubtful that the effective model
captures all relevant terms. In this case even terms with larger extension should be incorporated
into the effective model.

Figure 3.9 shows the distribution of coefficients over various values of the extension. The
figure shows the sum of the squares of all coefficients Ci of terms with the definite extension
d at the end of the flow. They are given as functions of W/U . The results are given in units
of J

(2)
1 = 4t2/U which is a natural scale for the parameters defining the effective model. The

Hubbard repulsion term HU is the only term with extension d = 0. Its coefficient is large for
small W/U . The relevance of the most local terms with d = 0 and d = 1 decreases for increasing
W/U . Whereas the contribution of terms with extension d = 2 stays fairly constant there is a
clear increase of the d = 3 contribution around W/U = 1.2. This is also the maximal extension
possible in the double-plaquette calculation. The increase of the coefficients with the largest
possible extension indicates that for values larger than W/U = 1.2 one should take into account
even more extended terms. However, the behavior of the ROD and especially the analysis of
the apparent gap in the following section will put more restrictive conditions on the parameter
regime where the mapping to the effective model is possible. Figure 3.9 shows on the other hand
that the double-plaquette calculation includes all relevant terms for values up to W/U = 0.9.
The coefficients with extension d = 3 constitute only a minor contribution in this parameter
range.

Apparent charge gap

In the setup of the CUT for the Hubbard model we have argued that the mapping to a DO
conserving effective model is not possible for large bandwidth W . The behavior of the ROD and
the distribution of coefficients on the extension have supported this view. The present section
studies the possibility of the mapping further. Below we calculate the apparent charge gap ∆app

within the effective model. The apparent charge gap is the energy gap of a DO propagating
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Fig. 3.10: Schematic density of states displaying band tails. An approximate numerical treatment will

find an apparent gap ∆app which is larger than the true gap ∆true. This is due to the appearance of

band tails.

in the spin background given by the reference ensemble. The DO can be a hole or a double
occupation of a site. Since the paramagnetic reference ensemble is not the true ground state
the apparent charge gap ∆app is not the true charge gap. The apparent charge gap measures
the separation of energy scales. This separation governs the convergence of the mapping as it
is performed here. We will discuss this issue and its physical significance in more detail in the
Discussion in Sec. 3.4.

The apparent gap has to be calculated for the effective Hamiltonian given by the CUT. This
effective Hamiltonian is a generalized t-J model including a large number of terms. An additional
complication is that the DO is propagating in a paramagnetic background given by the reference
ensemble.

Before we describe the calculation of the apparent gap it is instructive to look at some results
that are known for related problems. The problem of a single particle propagating in a spin
background has been treated by Brinkman and Rice [69]. In this work the cases of ferromagnetic,
antiferromagnetic and random spin background are treated. The density of states is calculated
within the so-called retraceable path approximation. The authors point out that it is to be
expected that the density of states exhibits Lifshitz tails. A schematic density of states for
this physical situation is shown in Fig. 3.10. There are two Hubbard bands centered at energy
ω = ±U/2. The density of states ρ(ω) consists of a central region and so-called Lifshitz tails [69–
72]. Most of the weight is situated in the central region. The weight in the band tails is small.
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The true gap is labeled with ∆true in Fig. 3.10.
The small weight in the band tails is difficult to describe with an approximate numerical

method. Therefore, it is well possible that a numerical treatment finds a larger value for the
gap, namely an apparent gap ∆app, and not ∆true. Such an approximate treatment correctly
describes most of the weight which is situated in the band center. But it does not capture the
band tails. The band tails can lead to finite lifetime effects if different bands overlap. This
would not be described by the approximate treatment. However, the effect of the band tails is
expected to be small because their spectral weight is small. The appearance of band tails is a
generic feature of the one-particle dynamics in a spin background, see e.g. Refs. [71, 73–76].

Coming back to our present problem, the apparent gap is the lowest energy cost of a DO
moving in the spin background. The dispersion of a single DO is now determined using the
Lanczos method, see Appendix A and Refs. [77, 78]. The spin background is given by the
reference ensemble. It is possible that band tails are present. These band tails contain only
little spectral weight. It is difficult to capture this spectral weight in a numerical treatment
like the Lanczos technique. The small weight in the band tails is only detected in high Lanczos
coefficients. Since the present calculation has to deal with complicated effective Hamiltonians
it is well possible that the band tails are not correctly described. Nevertheless, the Lanczos
calculation gives important insight in the possibility of the mapping to the effective model. For
the same reason that the band tails are hard to detect, namely their low spectral weight, it
is expected that they play only a minor role in the possibility of the mapping. The CUT will
break down if the sectors with different DO overlap considerably. A considerable overlap will be
captured in the following Lanczos calculation.

The Lanczos technique is applied within the Liouville or projection formalism, see Appendix A
and Ref. [79]. This is the appropriate technique in the present situation. One does not have to
deal with simple states in a Hilbert space but with ensembles derived from the paramagnetic
reference ensemble in Eq. (3.2.7) by the application of operators. As usual in the Heisenberg
picture, the dynamics of operators in the frequency domain is captured by the commutation
with the Hamiltonian.

The Lanczos algorithm starts from the operator O0 which generates a single DO with mo-
mentum k

O0 :=
1√
N

∑
r

eikrnr,↓c
†
r,↑ (3.3.30)

where the number of sites is denoted by N and the sum extends over the whole lattice. A real
space representation of the action of this initial operator on the reference ensemble is sketched
in Fig. 3.11a. The operator Eq. (3.3.30) introduces a DO at a certain site in the lattice. This
site is then occupied by a spin-up and a spin-down electron. On the other sites the reference
ensemble is not changed. These sites are depicted by shaded circles in Fig. 3.11a.

The Lanczos method constructs iteratively a series of basis states {On}. This is done by
application of the Liouville operator L := [H, ·] to the operators On. The application of L
derived from the effective Hamiltonian after the CUT does not change the number of DOs.
Hence its action on the initial vector is (i) to shift the DO and/or (ii) to change the spin
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Fig. 3.11: a) Sketch of the action of the initial operator on the reference ensemble. Shaded sites represent

the local reference ensemble. Black arrows indicate spin directions. A hopping process is shown as a

gray (green) arrow. b) Situation after the hopping. For further explanation, see text.

background. The situation after the movement of the DO is shown in Fig. 3.11b in real space.
The DO, which was situated originally on the central site, has moved to the right. Note that it
does not leave the initial site in the reference state. The initial site of the DO is occupied by
an electron with opposite spin of the moving electron. This is one unique state as opposed to
the local reference ensemble. The application of the Liouville operator can also change the spin
background since the effective Hamiltonian does not only consist of pure hopping terms.

The iteratively built basis {On} describes a single DO (charge excitation) at momentum k
including its magnetic dressing. In this basis the Liouville operator is a tridiagonal matrix. The
lowest energy in this subspace defines the (apparent) dispersion Ek of a single charge excitation
relative to the paramagnetic ensemble. Hence the evaluation of the lowest accessible energy in
any truncated subspace of {On} provides an upper bound to Ek. The apparent charge gap ∆app

is finally given by
∆app = 2 min

k
Ek , (3.3.31)

where the factor of 2 is put to account for the creation of a particle and a hole. For vanishing
hopping ∆app = U holds. The apparent charge gap ∆app is not the true charge gap because
the paramagnetic spin background is not the true ground state. But ∆app is a measure of the
separation of energies between sectors of different double occupancy.

Numerically, one has to restrict the above procedure to truncated basis sets. The general
Liouville approach is explained in Appendix A. Here we give the details that are special for the
present problem. We construct a sequence of basis sets, labeled by the integer n, by applying the
Liouville operator L0 := [T0, ·] (cf. Eq. (3.2.5b)) iteratively to the initial operator Eq. (3.3.30).
The first basis n = 1 consists only of the single operator O0. The subsequent basis sets are
generated by applying T0 (n − 1) times. All components of the On are products of the local
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Fig. 3.12: Apparent charge gap as calculated with Lanczos diagonalization. Gray (cyan) lines show the

minimal eigenvalues, black lines the result of a linear extrapolation.

operators in Tab. 3.1. They are independent vectors from the basis of all operators. For each
basis set the lowest eigenvalue of the matrix representation of the Hamiltonian is an upper bound
to the lowest energy Ek of a single DO.

The calculation is done for k-values on the high symmetry lines in k-space from (0, 0) −
(π/a, π/a) − (π/a, 0) − (0, 0). Figure 3.12 shows the results of the Lanczos calculation. The
computational effort grows with the number of terms in the Hamiltonian. For the effective
Hamiltonians (iv) and (v) it has only been possible to do the calculation up to the basis set
n = 6, whereas for the NN (ii) and plaquette (iii) Hamiltonians the n = 7 calculation has
been feasible. In Fig. 3.12 gray (cyan) lines show the smallest eigenvalue found for all momenta
k in the largest possible Lanczos calculation. An additional estimate for the gap is found by
extrapolating the lowest eigenvalues at momentum (π/a, π/a) for each basis set as function of
1/n to n →∞.

The lowest eigenvalue at momentum (π/a, π/a) is usually also the minimum of the dispersion
except for n = 5, 6 or 7 where the whole dispersion becomes very flat. The result from a fit linear
in 1/n is included in Fig. 3.12 by black lines. For the minimal eigenvalues as well as for the
extrapolated ones the result for the Hamiltonian (iv) is covered by the double-plaquette result
(v), since the coefficients of the Hamiltonians nearly coincide. The lowest eigenvalues for the
Hamiltonians (iv) and (v) are larger than the lowest eigenvalues for the Hamiltonians (ii) and
(iii) because larger values of n have been accessible for the latter.
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A first guess for the gap is that it is reduced by the free bandwidth W . This would lead to
∆app/U = 1 − W/U , see e.g. Ref. [57]. So one expects that the gap closes around W/U = 1.
The apparent charge gap calculated within the effective model using Lanczos diagonalization
displays a similar behavior. The gap decreases almost linearly from ∆app/U = 1 at W/U = 0.
There is, however, a certain downward curvature so that it closes at about W/U ≈ 0.9.

We find that the apparent charge gap ∆app becomes even negative for values of W/U & 0.92.
Once excitation energies become negative the CUT does not work because the limit ` →∞ does
not exist any longer. The #DO-changing processes can no longer be eliminated because they
constitute no longer vacuum fluctuations around a stable vacuum. The negativity of excitation
energies signals that the chosen reference ceases to be a physically reasonable reference.

At this point we have to recall that the true minimum might even be lower. The discussion of
Lifshitz tails shows that the density of states in related problems displays tails with low spectral
weight. Also in the present problem band tails are possibly present. They might be detected
only in further iterations within the Lanczos procedure. The linear extrapolation corroborates
the results from the linear eigenvalues to a certain extent. But we could not identify a clear
asymptotic behavior for large values of n. Other extrapolation schemes, for instance as function
of 1/

√
n, point towards an earlier closing of the apparent charge gap. Therefore, the value

W/U ≈ 0.9 for the closing of the gap must be seen as a rough estimate. The determination of
a possible power law, by which the gap closes, is beyond the scope of the present study.

The above findings are discussed in more detail in Sect. 3.4. In the remaining part of this
chapter, we have to keep in mind that the mapping to the effective model conserving the number
of DOs is not possible for W/U & 0.9. For completeness, we will present the coefficients of the
generalized t-J model up to values W/U = 1.6 to illustrate in which way the results are affected
by the breakdown of the mapping. As a reminder of the breakdown, the definitely unphysical
region beyond W/U ≈ 1 will be shaded in the figures.

3.3.2. Effective model

The effective model conserves the number of DOs. This leads to a significant reduction of the
size of the Hilbert space. At half filling the local Hilbert space has two states instead of the four
states included in the original Hubbard model. The number of states grows like 2N instead of 4N

for a lattice of N sites. Also away from half filling the model is considerably simplified. States
with a finite number of DOs are separated from each other. The application of the Hamiltonian
will not produce additional particle-hole pairs. The problem can be solved within the subspace
of a fixed number of DOs. Thus, the conservation of the number of DOs leads to a simplification
of the problem also in the case of the dynamics of charges.

On the other hand the effective Hamiltonian contains more terms. Especially for the double-
plaquette calculation the number of terms is beyond any treatment that does not rely on numer-
ics. However, the derivation of the effective model makes it possible to reduce the problem by
neglecting terms with small coefficients. The quantitative calculation of the effective coefficients
puts this procedure on a firm basis. Before, ad-hoc simplifications had to be made [60].



68 Effective t-J-model derived from the Hubbard model

0.8

0.9

1

J 1 / 
J 1(2

)

(i) min
(ii) NN
(iii) plaqu
(iv)
(v) d-plaqu

0

0.02

0.04

0.06

J 2 / 
J 1(2

)

(iii) plaqu
(iv)
(v) d-plaqu

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

W / U

0

0.02

0.04

0.06

J 3 / 
J 1(2

)

(iii) plaqu
(iv)
(v) d-plaqu

(a)

(b)

(c)

Fig. 3.13: Couplings of two-spin operators relative to J
(2)
1 as function of W/U .

In the following, we will first discuss the effective spin model. Second, the terms relevant for
the one- and two-quasiparticle sector are described. These terms describe the motion of a single
DO and the interaction of two DOs. Of course, the coefficients cannot be discussed exhaustively.
The focus lies naturally on the most relevant coefficients.

3.3.2.1. Effective spin model

At half filling the effective Hamiltonian for the sector with no DO can be put in the form of a
pure spin Hamiltonian. There are various two-spin couplings of the Heisenberg type

H2-spin =
∑
i,j

J|i−j|Si · Sj . (3.3.32)

The coefficients J|i−j| rapidly decrease with increasing distance between the sites i and j. The
largest couplings are found for adjacent sites. Figure 3.13 displays the coefficients of various two-
spin couplings. The Heisenberg NN exchange J1 is shown in Fig. 3.13a, the exchange couplings
between second and third nearest neighbors, J2 and J3, are depicted in Fig. 3.13b and Fig. 3.13c,
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Fig. 3.14: Couplings of four-spin operators relative to J
(2)
1 as function of W/U .

respectively. Second nearest neighbor sites reside on diagonally opposite sites of the plaquettes
of the square lattice. Third nearest neighbor sites are two lattice spacings away from each
other and are connected by two consecutive unidirectional bonds. The coefficients are shown in
units of J

(2)
1 = 4t2/U . The leading order J

(2)
1 of the Heisenberg NN exchange gives a reasonable

energy scale to compare the various contributions to the spin Hamiltonian. Already the minimal
calculation reproduces the correct leading order behavior of the perturbative expansion. For
larger values of W/U the coupling J1 is renormalized slightly to lower values ≈ 0.92J

(2)
1 for

W/U = 1. The perturbative corrections in Fig. 3.4 display a strong influence of higher order
terms. On the contrary, the self-similar CUT calculation displays a regular development of the
results. Already the NN calculation yields a very reasonable result for larger values of W/U .
The results for larger calculations converge with good accuracy to a reliable quantitative result
for J1. The convergence of the various calculations shows that the terms retained are sufficient
to determine J1. Note that the dotted curve of the plaquette calculation (iii) is almost hidden
by the double-plaquette result (v).

The couplings J2 and J3 behave like (t/U)4 for small W/U . Their absolute convergence is as
good as for J1. But due to their small values – both are smaller than 0.02J

(2)
1 for W/U < 1 – the

relative differences between calculations on different clusters are still discernible. In a further
simplification of the effective model these terms could be dropped because of the small size of
their coefficients.

There are not only exchange terms between two spins but also between four or more spins.
Exchange between an odd number of spins is not generated since such terms would change sign
under time reversal. The first term that one encounters in perturbation theory [23] in fourth
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order is the following ring exchange operator

H� = J�

∑
〈i,j,k,l〉

[
(Si · Sj)(Sk · Sl) + (Si · Sl)(Sj · Sk)− (Si · Sk)(Sj · Sl)

]
(3.3.33)

where 〈i, j, k, l〉 label the sites around a plaquette of the square lattice in cyclic order. We
mention that this four-spin operator can be rewritten in the following way

H� =
J�

4

∑
〈i,j,k,l〉

(
Pijkl + P−1

ijkl

)
− J�

2

∑
〈i,j〉

Si · Sj −
J�

4

∑
〈〈i,j〉〉

Si · Sj , (3.3.34)

where Pijkl is the permutation operator. In the literature one also finds the permutation operator∑
〈i,j,k,l〉 Pijkl + P−1

ijkl in parametrizations of effective spin models. In 6th order an additional
independent four-spin operator reads

H× = J×
∑

〈i,j,k,l〉

(Si · Sk)(Sj · Sl). (3.3.35)

The coefficients J� and J× are shown in Fig. 3.14. The ring exchange J� is the most important
modification of the pure NN Heisenberg model. Its value is larger than 0.2J

(2)
1 for W/U = 1.

The relevance of the ring exchange in the CuO2-planes of La2CuO4 was proposed early [80, 81].
First experimental signs of a possible relevance of the ring exchange have been found in the line
shape of infrared absorption experiments [82]. Clear evidence for a significant ring exchange
term in La2CuO4 has been found by inelastic neutron scattering [83]. Theoretically the ring
exchange has been derived from the three-band Hubbard model [84–86] and the single-band
Hubbard model [23, 24]. The influence of ring-exchange on the Raman line shape has been
computed in Refs. [80, 81, 87, 88].

The coefficients of the effective spin model are smooth functions of W/U up to W/U = 1.6.
They do not suffer from the breakdown of the unitary transformation at W/U ≈ 0.9. The
vanishing of the apparent gap ∆app and the slow drop of the residual off-diagonality for W/U & 1
do not give rise to an anomalous behavior of the effective spin coefficients. The effective spin
couplings are determined already for small values of the flow parameter l. They are fixed at
the time the problems for other coefficients set in. The convergence of the results for values
W/U . 1 is very good, i.e., the couplings do not change much as function of the cluster size for
the larger clusters. The results of this section fix the effective spin model quantitatively.

3.3.2.2. Effective charge model

The unitary transformation deals also with the motion and interaction of charges. In the course
of the transformation charge excitations (DOs) are created virtually. After the transformation,
DOs can be introduced externally by doping or thermal fluctuations. Note that generically
the effective model displays a finite U term. So DOs are not suppressed. But due to the
disentanglement of the sectors of different number of DOs there is no direct influence of these
sectors on one another. For instance, the magnetism strictly at half filling is not influenced by
the physics of the sector with a particle-hole pair (two DOs in our counting).
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Fig. 3.15: Effective hopping coefficients between (a) NN sites, (b) NNN sites, (c) spin-dependent NNN

hopping, (d) 3NN sites and (e) spin-dependent 3NN hopping.

Also in an effective model conserving the number of DO the sectors of different DO influence
certain physical quantities. Thermal expectation values are influenced by the presence of sectors
of different number of DOs. Also spectral properties are influenced by the presence of these sec-
tors. The spectral weight will be distributed over a number of sectors. Additional contributions
stem from Hubbard bands corresponding to more than one DO. Besides the lower (one hole)
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and the upper (one electron) Hubbard band there are Hubbard bands with two or more DOs.
Preliminary estimates of the spectral weight in this band indicate that it is below the order of
one percent [89]. Yet it is a strong point of the approach chosen that the concept allows to
discuss such subtle effects.

In the following the most important terms of the effective charge model are presented. One-
quasiparticle terms describe the dynamics of a single hole or doubly occupied site. These terms
build the {1, 1}-block as classified in Sec. 2.2.2. The {2, 2}-block consists of interaction terms of
two DOs. In order not to be lost in a proliferating number of terms we will present results for
terms which are at most of order t2/U in the limit of weak hopping.

Figure 3.15 shows the coefficient of various one-quasiparticle terms. They correspond to
hoppings of DOs. The NN hopping T0 is shown in Fig. 3.15a. All single particle coefficients
are given relative to the initial unrenormalized value t0(0) = t for the NN hopping. The next
relevant processes besides NN hopping are hopping processes between next-nearest neighbor
(NNN) sites and third-nearest neighbor sites (3NN). The NNN sites lie on diagonally opposite
corners of the plaquettes of the two-dimensional square lattice. The NNN hopping T ′

0 reads

T ′
0 = t′

∑
〈〈i,j〉〉;σ

[
(1− ni,σ)c†i,σcj,σ(1− nj,σ)− ni,σc†i,σcj,σnj,σ + h.c.

]
(3.3.36)

where 〈〈i, j〉〉 stands for NNN sites and σ = −σ. The spin-dependent NNN hopping T ′
s,0 reads

T ′
s,0 = t′s

∑
〈i,k,j〉;α,β

{[
(1− ni,α)c†i,ασα,βc

j,β
(1− nj,β)

]
· Sk

+
[
ni,αc†i,ασα,βc

j,β
nj,α

]
· Sk + h.c.

}
(3.3.37)

where 〈i, k, j〉 stands for three sites wherein i and j are NNN and k is a nearest neighbor to both
i and j. The symbol σ = (σx, σy, σz) stands for the vector made out of the three Pauli-matrices;
Sk represents the usual S = 1/2 spin vector at site k. Hopping and spin-dependent hopping
between 3NN is also generated in second order in t/U . A pair of 3NN sites is connected by two
unidirectional consecutive bonds. The distance of two 3NN sites is two lattice spacings. The
couplings read

T ′′
0 = t′′

∑
〈〈〈i,j〉〉〉;σ

[
(1− ni,σ)c†i,σcj,σ(1− nj,σ)− ni,σc†i,σcj,σnj,σ + h.c.

]
(3.3.38)

where 〈〈〈i, j〉〉〉 stands for 3NN sites and

T ′′
s,0 = t′′s

∑
〈〈i,k,j〉〉;α,β

{[
(1− ni,α)c†i,ασα,βc

j,β
(1− nj,β)

]
· Sk

+
[
ni,αc†i,ασα,βc

j,β
nj,α

]
· Sk + h.c.

}
(3.3.39)

where 〈〈i, k, j〉〉 stands for three sites wherein i and j are 3NN and k is a nearest neighbor to
both i and j, so k is just the site between i and j. All these hoppings, Eqs. (3.3.36)-(3.3.39)
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Fig. 3.16: Hubbard repulsion U (a) and NN interaction V (b) and NNN interaction V ′ (c) between holes

or double occupancies.

conserve the number of DOs. Figures 3.15a-e show the coefficients of the NN hopping t0 (T0

from Eq. (3.2.5b)), NNN hopping t′, spin-dependent NNN hopping t′s, 3NN hopping t′′ and
spin-dependent 3NN hopping t′′s , respectively.

The NN hopping t0 shown in Fig. 3.15a remains unchanged from its initial value for the NN
truncation. Including more terms reduces the effective t0. At W/U ≈ 1.36, the double plaquette
calculation (v) shows a sudden change of slope. This is related to the non-monotonic behavior of
the residual off-diagonality. But the value W/U ≈ 1.36 is already beyond the point W/U ≈ 0.9
where the apparent gap ∆app becomes negative and the mapping is no longer possible. The signs
of t′ (NNN hopping) and of t′′ (3NN hopping) are opposite to the sign of t (NN hopping). The
value of t′ is approximately two times t′′ because it is generated from the two possible hopping
processes to go from one corner of a plaquette to the opposite corner. In contrast, there is only
one process to generate t′′ in second order. The results for the calculations (iii)–(v) lie almost on
top of each other for the coefficients t, t′ and t′′ until spurious behavior sets in at larger values
of W/U.
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Fig. 3.17: Further coefficients of interactions of two DO that are of second order in t/U . For explanation,

see text.

The coefficients of the spin-dependent hoppings t′s and t′′s are shown in Fig. 3.15c and e. They
increase quadratically for small W/U just like t′ which leads to the linear behavior in units of
t0 depicted in Fig. 3.15. These hoppings are terms which involve three sites. Their coefficients
have approximately the same value since it does not matter very much whether the three sites
are aligned linearly or form an angle of 90◦. We emphasize that both coefficients t′s and t′′s
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are of similar size as t′. This implies that the commonly used phenomenological description
in terms of a t-t′-J-model is not justified. If an extension of the most simple t-J-model is
used the NNN and 3NN hoppings, t′ and t′′, and the spin-dependent hoppings t′s, t′′s should
all be included. Investigations of the importance of spin-dependent hopping are reported in
e. g. Refs. [90–94]. The spin-dependent hopping is found to influence the dispersion measured
by angle-resolved photoemission [92] and the spectral weight distribution measured by optical
conductivity [90, 93, 94].

Figures 3.16 and 3.17 show the coefficients from the {2, 2}-block. They describe interactions
between quasiparticles. At least two holes or two doubly occupied sites or one hole and one
doubly occupied site must be present for these interactions to be effective. In Fig. 3.16a, the
Hubbard repulsion U is shown in units of its unrenormalized value. All calculations show a
slight increase of the effective U with W/U . It is interesting to note that this basic quantity
neither diverges nor stays constant in the process of the disentanglement of the various sectors
of double occupancy.

The density-density interactions for NN sites is described by

HV = V
∑
〈i,j〉

n̄in̄j (3.3.40)

where n̄i = ni,↑ + ni,↓− 1. Similarly, the operator for density-density interactions for NNN sites
reads

HV ′ = V ′
∑
〈〈i,j〉〉

n̄in̄j . (3.3.41)

The coefficients V and V ′ are shown in Fig. 3.16b and 3.16c. They are given in units of the second
order scale J

(2)
1 = 4t2/U . The attractive interaction V is proportional to −t2/U = −J

(2)
1 /4 as

expected from perturbation theory. It represents a sizeable contribution at all W/U . In contrast,
the parameter V ′ coupling NNN sites, which is of fourth order in t/U , turns out to be very
small [60]. This fact justifies our choice to focus otherwise on the terms which appear already
in second order in t.

There are two additional types of operators that are created in second order in t/U . The first
type consists of operators which destroy or create two electrons at the same site. Figure 3.17a
shows the coefficient Vpair of

Hpair = Vpair

∑
〈i,j〉

(c†i,↑c
†
i,↓cj,↓cj,↑ + h.c.). (3.3.42)

Figure 3.17b and c show the coefficients V ′
pair and V ′′

pair of

H ′
pair = V ′

pair

∑
〈i,k,j〉,σ

[
c†k,σc†k,σ̄ci,σ̄ni,σcj,σ(1− nj,σ̄)

+c†k,σc†k,σ̄ci,σ̄(1− ni,σ)cj,σnj,σ̄ + h.c.
]
, (3.3.43)



76 Effective t-J-model derived from the Hubbard model

and

H ′′
pair = V ′′

pair

∑
〈〈i,k,j〉〉,σ

[
c†k,σc†k,σ̄ci,σ̄ni,σcj,σ(1− nj,σ̄)

+c†k,σc†k,σ̄ci,σ̄(1− ni,σ)cj,σnj,σ̄ + h.c.
]

. (3.3.44)

The operators H ′
pair and H ′′

pair describe processes where two electrons from sites i and j are
transferred to site k. They do not change the number of DOs since at one site (with local
operator ci,σ(1 − ni,σ̄)) a DO is created while at another (ci,σni,σ̄) a DO is annihilated. The
local operator c†k,↑c

†
k,↓ turns an empty site into a doubly occupied site and thus does not change

the number of DOs in our counting. Both the coefficients V ′
pair and V ′′

pair change only slightly on
passing from calculation (iii) to calculation (iv); the difference between (iv) and (v) is minute
so that we consider the final result as reliable for not too large W/U where the mapping to the
generalized t-J models is possible.

The last type of operators created in second order in t/U are correlated hopping terms. We
classify them as interactions because they have a non-vanishing effect only if at least two double
occupancies or holes are present. The operator

V ′
n,0 = V ′

n

∑
〈i,k,j〉;α,β

[
(1− ni,α)c†i,αc

j,β
(1− nj,β)n̄k

+ni,αc†i,αc
j,β

nj,βn̄k + h.c.
]

(3.3.45)

describes a process of a DO hopping between the NNN sites i and j if and only if there is a DO
on the site k. The corresponding operator for a 3NN process is

V ′′
n,0 = V ′′

n

∑
〈〈i,k,j〉〉;α,β

[
(1− ni,α)c†i,αc

j,β
(1− nj,β)n̄k

+ni,αc†i,αc
j,β

nj,βn̄k + h.c.
]
. (3.3.46)

The coefficients V ′
n and V ′′

n are shown in Fig. 3.17d and e.
The above results define the quasiparticle dynamics of the effective Hamiltonian in a systematic

way. Within the {1, 1}-block we emphasize the importance of spin-dependent hoppings. All the
values for the hopping coefficients and the interactions show excellent convergence in the relevant
region up to W/U ≈ 0.9. For values W/U > 0.9 the coefficients display anomalous behavior.
This effect is most striking for the coefficient V ′ of the {2, 2}-block. It is shown Fig. 3.16c. We
attribute this spurious behavior to the breakdown of the mapping of the Hubbard model to a
generalized t-J-model without specifying the state of the spin degrees of freedom.

3.4. Discussion

In the derivation of the effective t-J-model, one does not aim at the solution of the complete
problem of the Hubbard model. The CUT is designed to disentangle the energetically low-lying
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dynamics, i.e., the dynamics of the spins and of the doped holes, from processes involving more
double occupancies. So no particular state in spin space is assumed, but an effective model
without processes changing the number of double occupancies is derived. In this calculation,
the paramagnetic ensemble at half filling serves as the reference ensemble.

The general consideration presented in Sec. 3.1 suggested that the reduction to the effective
model without charge fluctuations cannot be defined for too large W/U . This view is verified
by the actual calculations. The reduction of the Hubbard model to a generalized t-J model is
possible as long as the apparent gap ∆app remains positive. The appearance of negative values
for ∆app is an artefact. It indicates that the paramagnetic reference ensemble does no longer
represent a phase which is stable against fluctuations involving double occupancies. In this case
the reduction to an effective model without virtual double occupancies is no longer possible.

The apparent gap in the present context measures the separation of blocks of different double
occupancy. It is calculated using the reference ensemble. Since the reference ensemble is not
the true ground state the apparent gap is not the energy difference between two eigenstates of
the system. For a qualitative understanding it is helpful to consider a modified system where
the apparent and the true gap coincide. This situation is realized for a Hubbard model on the
Bethe lattice in the limit of infinite coordination number Z →∞, cf. Refs. [3, 57, 63, 64, 95]. For
infinite dimensional lattices it is assumed that long-range order can be completely suppressed
by frustration, e.g., in the generalizations of fcc lattices to infinite dimensions [96, 97]. Since the
magnetic couplings J scale with the inverse coordination number Z−1 there are no magnetic
correlations at all once the static sublattice magnetization is suppressed [98]. The paramagnetic
reference ensemble represents the highly degenerate magnetic ground state in infinite dimensions
without long-range order. The apparent gap and the true charge gap are identical. Their closure
signals a real insulator-to-metal transition. In finite dimensions the closure of the apparent gap
signals only a crossover from well-separated to non-separated energy scales.

The crossover from well-separated energy scales to non-separated energy scales in finite dimen-
sions can be studied in the purified form of a insulator-to-metal phase transition in the infinite
dimensional Hubbard model. Indeed, similar behavior is found. The single-particle gap ∆ van-
ishes in infinite dimensions at about 1.1W −1.2W [63, 95, 99–101]. It disappears roughly linearly
as function of U [63, 95]. These similarities corroborate the view that the infinite dimensional
model is an illustration for the crossover in finite dimensions.

Coming back to the two-dimensional Hubbard model one can still use the apparent gap to
quantify the separation of sectors of different double occupancy. The vanishing of the apparent
gap marks the region of the crossover from insulator to metal. The validity of our approach
is clear for small values of W/U . The only approximation used is the truncation of processes
of a spatial range d ≥ 4. The remaining question is to know up to which ratio of W/U the
results are reliable. Our findings in finite dimensions illustrate that the answer to this question
is difficult already on the conceptual level. The apparent gap ∆app measuring the separation of
energy scales does not compare the energies of real eigenstates. The validity of the mapping of
the Hubbard model to a generalized t-J-model is not limited by a sharply defined transition but
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by a gradual crossover.
An estimate up to which ratio of W/U the mapping is reasonable can be obtained from

the closure of the apparent gap at around W/U ≈ 0.9. A better estimate for the region of
validity should compare ∆app to the size of the coefficients of the neglected operators. But
these coefficients are not available. Hence we take the operators with the maximal extension
considered, that is d = 3, as an estimate for the importance of the neglected operators. The
root mean square of the coefficients of the operators with extension d = 3 is compared to ∆app.
These two quantities become equal for W/U ≈ 0.85. If in addition we take the uncertainty of the
extrapolation procedure into account we arrive at the conservative estimate that the generalized
t-J-model can be used up to W/U ≈ 0.8 which includes the commonly assumed parameters [60]
for cuprate planes t/J ≈ 3 which translates to W/U ≈ 0.7. Up to W/U ≈ 0.8, the quantitative
results provided in Sec. 3.3.2 are reliable.

The possibility to map a Hubbard model in a systematic and controlled way to a generalized t-J
model depends essentially on local physics. The breakdown of this mapping does not represent
a real physical phase transition in finite dimensions. We suppose that the breakdown of the
mapping manifests itself as a crossover in physical properties. It is plausible, for instance, that
the nature of the elementary excitations changes: holes and magnetic modes for large values of
the interaction become fermionic quasiparticles at small values of the interaction.

3.5. Summary and outlook

In this chapter the method of self-similar CUTs in real space was applied to the Hubbard model.
The MKU generator is chosen such that the number of double occupancies is a conserved quantity
in the effective model. The effective Hamiltonian represents thus a generalized t-J model. The
calculation relies on a reference ensemble. The reference ensemble is constructed from the two
local singly occupied states. The vacuum represented by the reference ensemble does not have
any magnetic correlations. The t-J-model is derived without the assumption of a particular
magnetic state. The truncation scheme uses the extension of a term in real space as a measure
for its locality.

The effective model contains spin terms and terms determining the dynamics of doped charge
carriers. Besides the NN Heisenberg exchange further two-spin terms and four-spin terms are
taken into account. It is shown that two-spin couplings other than the Heisenberg term are
small whereas the four-spin ring exchange J� gives a sizeable contribution to the effective spin
model. Results for the size of the coefficients for NN hopping, NNN and 3NN hopping and
spin-dependent NNN and 3NN hopping are obtained. It is found that the spin-dependent NNN
and 3NN hopping is as important as the spin-independent one. This fact should be accounted
for in phenomenological parametrizations of experimental Fermi surfaces. In addition, the size
of the interactions between holes and double occupancies on NN and NNN sites are calculated.
Various truncation schemes show very good convergence of the coefficients of the effective model
in the relevant parameter region W . 0.8U .
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The results of the present chapter are not only concerned with the parameters of the effective
model but also with the possibility of its derivation. The fundamental result is that for U & 1.3W

the mapping of the Hubbard model to a generalized t-J-model is possible. The parameters of
the effective model can be determined reliably by the CUT. They are governed mainly by local
physics. On the other hand, the reduction of the Hubbard model to an effective model without
charge fluctuations is not possible for U . 1.2W . Here, the sectors of different number of double
occupancies cannot be disentangled. The derivation of the effective Hamiltonian for the Hubbard
model represents a successful application of self-similar CUTs in real space. It establishes that
the method developed in Chapter 2 can be applied to many-body problems and provides good
quantitative results.

Further work in this direction could include the effect of doping onto the effective model.
The present treatment contains also the dynamics of double occupancies and holes that are
introduced in the half filled Hubbard model, e.g. by doping. However, it does not treat the
effect of a finite percentage of double occupancies or holes. A systematic treatment of the
influence of doping is lacking at present. An additional focus of future research could be the
relevance of trans-Hubbard bands. The Hubbard model contains not only the dynamics of a
single DO but also the excitation of multiple DOs. Their contribution to the spectral weight is
not yet clear though first estimates indicate that it is very small.
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4. One-dimensional spin systems

Low dimensional spin systems provide a fascinating wealth of phenomena to be studied using
the techniques of quantum many-body physics. This section will apply self-similar CUTs in real
space to two generic one-dimensional spin systems, namely the spin ladder and the dimerized
spin chain. A lot is known about them such that these results can be used to test the CUT
method.

The starting point for the CUT is a representation of the spin systems in a dimer basis.
The isotropic system is found by setting the interaction between the dimers to unity. The
advantage of starting from a dimerized state is that in this case the system has a large gap.
The transformation can be set up without problems. The ladder system is treated in Sec. 4.1.
This section introduces the dimer basis which is used to reformulate the Hamiltonian. Complex
behavior is found if the interaction between the dimers is increased. For the spin ladder we
will investigate the energy properties of one- and two-particle excitations. A comparison to
established results will help to judge the quality of the mapping.

The investigation of the spin chain in Sec. 4.2 is also built upon the dimer basis formulation.
For large dimerization the spin gap is large. The homogeneous limit of the spin chain is gapless.
This limit is very difficult to describe using real space CUTs. For the spin chain the one-triplon
dispersion is calculated. It will be investigated how the convergence properties of the CUT
change if the dimerization is decreased. Using the spectral weight of the transformed observable
Sz we will discuss the lifetime effects resulting from the overlap of different multi-triplon continua.

4.1. Spin ladder

The spin ladder is composed of pairs of spins that are linearly arranged to form a ladder as
shown in Fig. 4.1. The Hamiltonian reads

H = J⊥H⊥ + J‖H‖ (4.1.1)

=
∑

i

[
J⊥S1,iS2,i+J‖ (S1,iS1,i+1 + S2,iS2,i+1)

]
,

where 1 and 2 denote the left and right leg of the ladder. The rung is denoted by the index
i. The spins interact antiferromagnetically. The couplings J⊥ and J‖ are larger than zero.
The spin ladder Hamiltonian is realized in telephone number compounds like Sr14Cu24O41 and
La6Ca8Cu24O41 [102, 103]. The structure of the first of these compounds is shown in Fig. 4.2.
Layers composed out of spin ladders and spin chains are separated by Sr atoms. Adjacent spin
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J
J
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1, i 1, i+1

2, i+12, i

Fig. 4.1: The spin ladder consists of sites on two legs 1 and 2. The index i labels the sites in ladder

direction. The spin coupling of the rungs is given by J⊥, the coupling in leg direction by J‖. A possible

four-spin exchange is given by J�.

ladders in one layer are only weakly coupled due to 90◦ exchange. In addition, the coupling of
a site to the adjacent ladders is frustrated.

The four-spin exchange is an important modification of the Heisenberg model in two dimen-
sions [83]. This has been confirmed in Sec. 3 of the present thesis by a derivation of the effective
spin model from a one-band model. Similar results can be achieved starting from a three-band
model [80, 81, 87, 88, 104]. Experiments on two-dimensional spin systems support the impor-
tance of four-spin exchange terms [83]. In experimental realizations of spin ladders the four spin
exchange is important as well. The analysis of experiments shows that the minimal spin model
contains a four-spin exchange term [48, 103, 105–110]. Its size is typically about 10% − 20% of
the rung coupling J⊥ [108–110]. Theoretical derivations of the effective spin model support this
interpretation of the experiments [84]. The four-spin exchange couples the spins on the corners
of one plaquette. The four-spin term reads

H
�

= J
�

∑
i

[
(S1,i ·S1,i+1)(S2,i ·S2,i+1)+(S1,i ·S2,i)(S1,i+1 ·S2,i+1)−(S1,i ·S2,i+1)(S1,i+1 ·S2,i)

]
.

(4.1.2)

The ladder Hamiltonian Eq. (4.1.1) can be considered in two limits. For small ratio x = J‖/J⊥

it represents weakly interacting rungs. For x = 0 the ground state is the product state of local
rung singlets. The spin gap ∆ is equal to J⊥. Small finite coupling in leg direction introduces
a finite dispersion ∆(k)/J⊥ = 1 + x cos(k) where x is again the ratio of leg and rung coupling.
For J‖ � J⊥ the model Eq. (4.1.1) describes two weakly coupled chains. Keeping this in mind
one can identify some properties of spin chains in the results for larger values of x. The spin
gap is finite for any non-zero value of J⊥/J‖ [111–113]. Therefore there is no phase transition
for any finite value of x in the spin ladder.

If one includes the four-spin exchange Eq. (4.1.2) there are several phase transitions for varying
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Fig. 4.2: Schematic view of the telephone number compound Sr14Cu24O41. The figures are taken from

Ref. [102]. On the left a three-dimensional view on the material is shown. It consists of planes formed

by chain or ladder structures. These structures are shown on the right. In between the layers there are

Sr atoms.

ratio J
�
/J⊥. The spin gap ∆ is reduced for increasing four-spin exchange. At a finite value

of J
�

the spin gap closes and a phase transition from the rung singlet phase to a phase with
dominant staggered dimer correlations occurs [114, 115]. The critical value of J

�
depends on the

ratio of leg and rung coupling x. For x = 1 the transition takes place at x
�

= J
�
/J⊥ ≈ 0.25.

One also finds phases with scalar chiral order, so-called dominant vector chirality and dominant
collinear spin order on varying the size of the four-spin exchange [115].

4.1.1. Method

A local operator basis is used to set up the local approach of the self-similar CUT. The operator
basis is motivated by the rung singlet phase. For x = 0 the ground state is the product state of
local rung singlets. The ground state of a local dimer is the singlet state as we deal with antifer-
romagnetic spin couplings. The local excited states are the three triplets with magnetic quantum
number {1, 0,−1}. For finite leg coupling the local triplets are dressed. These quasiparticles are
called triplons [116].

The local basis consists of four states, namely the singlet and the three local triplets. The
Hamiltonian is now written in this local operator basis [117]. Then, the local CUT approach is
implemented using the techniques described in Sec. 2. For small x and x

�
the spin gap is finite.

The most relevant processes are captured by terms that are rather local. For larger couplings
the description in terms of rather local triplon operators will break down.
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2T0

|t0,±1, s〉 −→ |s, t0,±1〉
|t0, t±1〉 −→ |t±1, t0〉
|t±1, t±1〉 −→ |t±1, t±1〉
|t±1, t∓1〉 −→ |t0, t0〉 − |t±1, t∓1〉
|t0, t0〉 −→ |t1, t−1〉+ |t−1, t1〉

2T2

|s, s〉 −→ |t0, t0〉 − |t1, t−1〉 − |t−1, t1〉

Table 4.1: Matrix elements of the operators Ti in Eq. (4.1.5). The states denote product states on

adjacent rungs. Here, s stands for the singlet state and ti for the triplet with magnetic quantum number

i. Matrix elements of T−2 are fixed by the relation T †
n = T−n.

It is useful to rewrite the Hamiltonian in units of the rung coupling J⊥

H

J⊥
= H⊥ + xH‖ + x

�
H

�
. (4.1.3)

The above Hamiltonian depends on the previously introduced ratios x = J‖/J⊥ and x
�

=
J

�
/J⊥. The operator H⊥ counts the number of local triplets. It is therefore diagonal in the

local basis. In addition, it serves as the counting operator of triplets. This counting operator
defines the MKU generator that is used in the following. The contributions H‖ and H

�
are

non-diagonal in the local basis. The operator H‖ is written as

H‖ = T−2 + T0 + T2 (4.1.4)

where
T0,±2 =

∑
ν

T0,±2(ν), (4.1.5)

and ν sums over all pairs of adjacent rungs. The local operators T0,±2(ν) are defined by their
action on a local basis as given in Tab. 4.1. Correspondingly, the four-spin exchange term is
given by

H
�

= T �
−2 + T �

0 + T �
2 (4.1.6)

where
T �

0,±2 =
∑

ν

T �
0,±2(ν). (4.1.7)

The operators T �
0,±2 are defined by their matrix elements in Tab. 4.2. Table 4.2 shows that the

four-spin exchange has a finite matrix element |s, s〉 → |s, s〉. This means that the energy of
the reference state itself is renormalized by the four-spin exchange in the form Eq. (4.1.6). It is
advantageous to rewrite the four-spin exchange term in the following way. First we define

Hcorr := J
�

∑
i

(
3
2
S1,iS2,i +

9
16

)
. (4.1.8)
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2T �
0

|t0,±1, s〉 −→ |s, t0,±1〉- 3
4 |t

0,±1, s〉
|s, s〉 −→ 9

4 |s, s〉
|t0, t±1〉 −→ 1

4 |t
0, t±1〉

|t±1, t±1〉 −→ 1
4 |t

±1, t±1〉
|t±1, t∓1〉 −→ 1

4 |t
±1, t∓1〉

|t0, t0〉 −→ 1
4 |t

0, t0〉
2T �

2

|s, s〉 −→ −|t0, t0〉+ |t1, t−1〉+ |t−1, t1〉

Table 4.2: The four-spin part of the Hamiltonian H
�

is defined in terms of the operators T �
i . The

matrix elements of T �
i are given in this table.

The term Hcorr is used to compensate the purely local matrix elements in Table 4.2 connecting
|s, s〉 → |s, s〉 and |ti, s〉 → |ti, s〉. The Hamiltonian is then rewritten as

H

J⊥
= (H⊥ − x

�
Hcorr) + xH‖ + (x

�
H

�
+ x

�
Hcorr) (4.1.9a)

= (H⊥ − x
�
Hcorr) + xH‖ + x

�
H̃

�
, (4.1.9b)

where we have introduced H̃
�

= H
�

+ Hcorr. The definition of H̃
�

is

H̃
�

= T̃ �
0 + T̃ �

2 + T̃ �
−2, (4.1.10)

where the operators T̃ �
i are given in Tab. 4.3. The two local matrix elements |s, s〉 → |s, s〉 and

|ti, s〉 → |ti, s〉 are absent in H̃
�

. The Hamiltonian in its final form reads

H

J⊥
= (1− 3x

�
)
[
H⊥ +

x

1− 3x
�

H‖ +
x

�

1− 3x
�

H̃
�

]
(4.1.11a)

= (1− 3x
�

)
[
H⊥ + x̃H‖ + x̃

�
H̃

�

]
. (4.1.11b)

The new variables x̃ and x̃
�

are defined as

x̃ =
x

1− 3x
�

(4.1.12a)

x̃
�

=
x

�

1− 3x
�

. (4.1.12b)

The calculation is performed using the representation in Eq. (4.1.11b).
The operators Ti and T̃ �

i change the number of triplets by i. The parts T0 and T̃ �
0 are thus

diagonal with respect to the counting operator H⊥. The Hamiltonian contains only terms that
change the number of triplets by an even number. Terms that change the number of triplets
by an odd number are odd with respect to a reflection about the centerline of the ladder and
therefore vanish.
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2T̃ �
0

|t0,±1, s〉 −→ |s, t0,±1〉
|t0, t±1〉 −→ 4|t0, t±1〉
|t±1, t±1〉 −→ 4|t±1, t±1〉
|t±1, t∓1〉 −→ 4|t±1, t∓1〉
|t0, t0〉 −→ 4|t0, t0〉

2T̃ �
2

|s, s〉 −→ −|t0, t0〉+ |t1, t−1〉+ |t−1, t1〉

Table 4.3: The table lists the matrix elements of T̃ �
i on product states of adjacent rungs. Remaining

matrix elements can be found by hermitian conjugation.

4.1.1.1. Truncation scheme

In the local approach to CUTs the truncation scheme relies on the extension of the terms.
The truncation scheme is defined by a maximal extension. Terms with a larger extension are
discarded. For the spin ladder it will turn out that it is appropriate to define not only one
maximal extension for all operators but to keep terms of different blocks up to different maximal
extensions. The reason is that one only obtains a good one particle dispersion by including terms
in the {1, 1}-block of an extension which is not too low. But it is not possible to take into account
all blocks that are necessary for a good description of the system up to the same extension.
Therefore, the truncation scheme for the ladder is defined by a set of maximal extensions. Terms
that contain n triplet annihilation or creation operators need to have extension dn or less to be
included in the flow equation. This is illustrated in Fig. 4.3. The flowing Hamiltonian contains
only terms with an even number of triplet operators. The {1, 1}-, {0, 2}- and {2, 0}-blocks are
kept up to extension d2. If one takes into account an off-diagonal block connecting to a N -
particle subspace it is advantageous to include also the {N,N}-block in the calculation. Only
then true N -particle interactions are included. Therefore, an additional truncation criterion is
imposed in order to restrict the size of the block matrix in Fig. 4.3. Thereby, only off-diagonal
blocks are taken into account for which also the corresponding diagonal {N,N}-block is present.
The figure shows a block matrix containing terms with at maximum four triplet annihilation
or creation operators. The truncation criterion for the size of the block matrix is given by an
integer N . In the case of Fig. 4.3, N = 4 holds. A truncation scheme is fully defined by fixing
the size of the blockmatrix N and defining N maximal distances d = {d2, d4, ..., d2N}.

4.1.2. Dispersion

The effective Hamiltonian is block diagonal. The one-triplon energies are given by the coefficients
in the {1, 1}-block. This block contains hopping terms of single triplons. It is diagonalized by a
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Fig. 4.3: The truncation scheme for the spin ladder introduces different maximal extensions for terms

with different number of triplet operators. The figure gives the names of the blocks and the corresponding

maximal extension. Note that the action of the Hamiltonian in the {0, 0}-block is only a number so

that d0 does not matter.

Fourier transform. The dispersion is given by

ω(k) = 〈k|Heff|k〉 − E0 (4.1.13)

where |k〉 is a one-triplon momentum eigenstate with momentum k and E0 is the ground state
energy. The dispersion of the spin ladder has been calculated by various methods [41, 111, 118,
119]. We will discuss the dispersion for two values of x, namely x = 0.5 and x = 1.0. The results
for the one-triplon dispersion for x = 0.5 are shown in Fig. 4.4. The figure includes the result
from a perturbative CUT (PCUT) treatment to high order [120]. The PCUT result is shown
as a thin black line. For the present intermediate values of x = 0.5 the PCUT calculation is
very accurate. Figure 4.4 shows self-similar CUT results from two different truncations, namely
N = 2, d = {d2 = 10, d4 = 6} and N = 3, d = {d2 = 10, d4 = 6, d6 = 3}.

The dispersion for N = 2, d = {10, 6} shows significant deviations from the PCUT result.
Obviously, this calculation omits terms that are necessary to determine the one-triplon energies.
It is not sufficient to relax the truncation criterion for terms with two or four triplet operators.
The result for the truncation N = 2, d = {d2 = 10, d4 = 8} (not shown) lies on top of the
calculation with N = 2, d = {d2 = 10, d4 = 6}.

The result improves if the size of the blockmatrix is increased to N = 3. In the truncation
schemes with blockmatrix size N = 3 also the {1, 3}- and {3, 1}-blocks and true three-particle
interactions in the {3, 3}-block enter in the calculation. These contributions improve the result
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Fig. 4.4: Dispersion of a triplon in the antiferromagnetic Heisenberg ladder. The ratio of leg and rung

coupling is x = 0.5.

for the dispersion. Figure 4.4 depicts the result from the truncation N = 3, d = {d2 = 10, d4 =
6, d6 = 3} as a dashed-dotted line. It is in excellent agreement with the PCUT result.

The dispersion at x = 0.5 displays a global minimum at k = π. The value of the gap is
ω(k = π) = 0.64J⊥. The overall shape of the dispersion is dominated by the first Fourier
coefficient of ω(k). The global maximum is at k = 0 with a value of ω(k = 0) = 1.57J⊥. The
truncations N = 3, d = {10, 6, 4}, N = 3, d = {10, 8, 3} and N = 3, d = {10, 8, 4} yield results for
the dispersion at x = 0.5 that coincide with the result for N = 3, d = {10, 6, 3} within less than
0.1%. Thus, the result for the dispersion does not change any more on changing the truncation
scheme. The self-similar approach to CUTs yields reliable and accurate results for intermediate
values of x.

Next, we consider the situation for a large ratio of J⊥/J‖, namely x = 1. The results for
the corresponding dispersion are shown in Fig. 4.5. The result from the PCUT is included as
a thin solid line. Note that the PCUT result is covered by the other results. It is identified
best in the inset close to the gray (cyan) dashed curve. The inset shows a magnification of the
region of small momentum. The dispersion from the N = 3, d = {10, 6, 4} truncation is shown
as gray (cyan) solid curve. It shows large deviations from the PCUT result. The truncation
N = 3, d = {10, 6, 3} did not converge. This shows that the calculations with blockmatrix size
N = 3 are not sufficient to describe the system at x = 1. Figure 4.5 shows that calculations
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Fig. 4.5: One-triplon dispersion for x = 1.0 in units of the rung coupling J⊥. Various results from the

self-similar CUT scheme are compared to the dispersion given by a perturbative CUT treatment [120].

The inset shows a magnification of the region with small momentum k.

with N = 4 lead to increasing agreement of the self-similar CUT with the PCUT.
The dispersion at x = 1 exhibits a local minimum at k = 0. This dip is caused by the closeness

of the three-particle continuum. This is further explained in Sec. 4.1.4. It can also be viewed as
a precursor of chain physics. In the limit of x → ∞ the two legs of the spin ladder behave like
two independent spin chains. The dispersion of the spin chain is symmetric around k = 0.5 with
a minimum at k = 0 and at k = π. For the homogeneous spin chain the minima have the value
ω(k = 0) = ω(k = π) = 0. The dip at k = 0 for x = 1 in the ladder dispersion is a precursor of
the chain-like behavior for large x. The spin chain is the topic of Sec. 4.2.

The results for N = 4 are in better agreement with the PCUT than the results for N = 3.
The series N = 4, d = {10, 6, d6, 3} and d6 = 3, 4, 5 is shown as dotted, dashed and dashed-
dotted gray (cyan) curves. The dip value at k = 0 increases in this series. The results for
N = 4, d = {10, 6, 4, 3} and N = 4, d = {10, 6, 5, 3} show good agreement with the PCUT result.
However, the largest truncation of this series, namely N = 4, d = {10, 6, 5, 3}, is already above
the PCUT result. In the series N = 4, d = {10, 8, d6, 3} with d6 = 3, 4, 5 we find a similar
behavior in the dip value. These results are shown as black curves in Fig. 4.5. If we compare
the first series with d4 = 6 and the second with d4 = 8 we find that the second series lies
systematically below the results of the first series. Thus the result for N = 4, d = {10, 8, 5, 3}
lies closer to the PCUT result than the result for N = 4, d = {10, 6, 5, 3}. Unfortunately, it is



90 One-dimensional spin systems

0 20 40 60 80 100 120
l·J

1e-12

1e-09

1e-06

0.001

1

R
O

D
(l

)/
R

O
D

(l
=0

)

0 2.5 5
l·J

0

1

R
O

D
(l

) i
n 

2-
4/

R
O

D
(l

)

N=4,d={10,6,4,3} and N=4,d={10,8,4,3}

N=4,d={10,6,5,3} 

N=4,d={10,8,5,3} 

Fig. 4.6: The ROD for various calculations. The truncation schemes with d6 = 5 lead to a pronounced

non-monotonic behavior of the ROD. The inset shows the relative ROD which stems from the coefficients

of terms in the {2, 4}- and {4, 2}-block for the calculations with d6 = 5. These coefficients contribute

almost the total ROD for values of the flow parameter of l/U > 2.5.

computationally costly to increase the value of d8 because the number of possible terms in the
Hamiltonian is growing very fast if d8 is increased.

The self-similar CUT yields good results for a value of x as high as x = 1. However, the
agreement is less good than for the intermediate value x = 0.5. The behavior of the results of
various truncations is encouraging because they appear to converge systematically to the correct
results for increasing maximal extension. However, there are still some differences between the
results of the different truncation schemes. Further caveats are found in the behavior of the ROD.
The ROD is defined as the sum of the coefficients squared that contribute to the generator, see
Sec. 2.3.4. The ROD is shown in Fig. 4.6. It is exponentially decreasing for the calculations
with d6 < 5. This is shown in Fig. 4.6 for N = 4, d = {10, 6, 4, 3} and N = 4, d = {10, 6, 4, 3}.
The exponential decrease of the ROD for these truncations pertains to lowest numerical values.
The calculations N = 4, d = {10, 6, 5, 3} and N = 4, d = {10, 8, 5, 3} both show a non-monotonic
behavior of the ROD. A similar behavior has been found in the Hubbard model for too large
values of the hopping amplitude.

The main contributions to the ROD come from coefficients of the {2, 4}- and {4, 2}-block. The
inset of Fig. 4.6 shows the relative contribution to the ROD of the coefficients in the {2, 4}- and
{4, 2}-blocks. For values of the flow parameter l/U > 2.5 these blocks contain almost the total
ROD. This stems from the fact that the 2- and the 4-particle continuum overlap significantly for
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x = 1.0 as will be further discussed in Sec. 4.1.4. In this case the transformation using the MKU
generator is not well-defined as this generator tries to sort the energy eigenstates according to
their quasiparticle number.

Already the toy model in Sec. 2.2.3 displayed an uprise of the ROD in cases where the eigenen-
ergies were not sorted according to the quasiparticle number. This does not lead to severe prob-
lems if the flow equation is solved exactly. If there are truncations involved the uprise in the
ROD indicates that the results of the transformation have to be interpreted with caution. The
problems in the transformation show up only for larger truncation schemes. These truncations
describe the multi-particle continua more accurately. The transformation is hindered by the
overlap of higher continua.

The coefficients that determine the dispersion are in the {1, 1}-block. They are fixed already
for small values of the flow parameter. The dispersion does not change in the non-monotonic
region of the ROD. The {2, 2}-block and higher diagonal blocks are influenced by the convergence
problems in the {2, 4}- and {4, 2}-blocks. We will see later in Sec. 4.1.3 that these coefficients
change in the non-monotonic region of the ROD.

4.1.2.1. Dispersion with finite four-spin exchange

The inclusion of the four-spin exchange in the Hamiltonian is motivated by experimental obser-
vations, see Ref. [41] and references therein. The experimentally relevant value of the four-spin
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exchange is about x
�

= 0.2. This section is intended to show how the four-spin exchange is
included in the calculation and how it affects the dispersion of the spin ladder.

The four-spin exchange is given in Eq. (4.1.2) in spin language and reformulated in the triplon
basis using Tab. 4.3. Using this basis it can be written in terms of the local operators that are
also used to formulate the Hamiltonian without the four-spin exchange. The matrix elements
in the second and fifth line in Tab. 4.3 are not present in the Hamiltonian without four-spin
exchange. They have to be included in the initial Hamiltonian. Then, the flow equations are
calculated in the very same way as without four-spin exchange. The value of the four-spin
exchange fixes the corresponding initial conditions. From the calculational point of view the
inclusion of new terms in the Hamiltonian corresponds only to a change of the initial conditions
in the flow equation. This flexibility is a major advantage of the self-similar CUT method.

Figure 4.7 compares the results for x = 0.5 and various values of the four-spin exchange to the
findings from the PCUT [120]1. The self-similar CUT calculation is done with the truncation
scheme defined by N = 3, d = {10, 6, 3} which is sufficient for the value x = 0.5. Figure 4.7
shows the excellent agreement with the PCUT result for x = 0.5 and values of the four-spin
exchange x

�
= 0.1 and x

�
= 0.2.

The situation is more complicated for large values of x. The dispersion for x = 1 and finite
four-spin exchange is shown in Fig. 4.8. The figure shows the results for x

�
= 0.1 for three

1Note that our definition of the four-spin exchange coincides with the one in Ref. [41] but differs by a factor of

two from the one in Ref. [120].
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truncations, namely N = 4, d = {10, 6, 3, 3}, N = 4, d = {10, 6, 4, 3} and N = 4, d = {10, 8, 4, 3}.
The calculation for N = 4, d = {10, 8, 3, 3} cannot be carried out since the ROD diverges during
the flow. The three results shown for x

�
= 0.1 agree only for momenta k & 0.6. They show

strong differences especially at k = 0. The reason is again the closeness of the three-particle
continuum. The extrapolations used to determine the PCUT result are also more complicated
for small k values if one includes the four-spin exchange [120]. However, reliable results can still
be extracted from the PCUT at these values of x and x

�
[41]. The self-similar CUT does not

give a conclusive dispersion for x = 1.0 and x
�

= 0.1. The situation is even worse for larger
four-spin exchange. For x

�
= 0.2 the truncation N = 4, d = {10, 6, 4, 3} is the only one of the

above mentioned truncation schemes that converges. It gives a reasonable result in comparison
to the PCUT curve. However, there is no reliable finding within the self-similar CUT scheme
for these parameters because this truncation scheme is the only calculation that converges.

Without four-spin exchange we have found reliable results for the dispersion for x = 1.0. The
inclusion of the four-spin exchange makes the transformation more challenging. For x = 0.5 the
dispersion can be determined up to the experimentally relevant ratio x

�
/x = 0.2. For x = 1.0

there is no conclusive finding for the dispersion already for x
�
/x = 0.1.

4.1.2.2. Dispersion from Wegner’s generator

Most of the results in this thesis are found using the MKU generator. In this section we want
to compare the dispersion of the MKU generator with the one found using Wegner’s generator.
Wegner’s generator is defined in Sec. 2.2.1. The implementation is described in Sec. 2.5. The
results for the dispersion for x ∈ {0.6, 0.8, 1.0} are shown in Fig. 4.9. The figure shows results
from the self-similar CUT using the MKU generator (dashed curves), using the Wegner generator
(dotted curve) and PCUT results (thin solid curves). The self-similar CUT schemes all use the
same truncation scheme N = 3, d = {10, 4, 3}. The Wegner transformation can be truncated
using the same truncation criteria as the MKU transformation. There are additional blocks
in the Hamiltonian because it does not stay band-diagonal as it is the case using a MKU
generator. Nevertheless, all terms can be grouped according to their number of triplet creation
and annihilation operators and then be truncated according to the chosen maximal extensions
dn and size N of the blockmatrix. The PCUT results are taken from Ref. [120]. Recall that the
perturbative approach is also realized using a MKU generator.

Up to x = 0.6 the three approaches coincide. The PCUT and the self-similar CUT with MKU
and with Wegner generator lie on top of each other. For x = 0.8 the dispersion from the Wegner
generator is slightly higher at small k values than the other results. For x = 1.0 the differences
are most drastic. The two MKU approaches yield dispersions that have a dip at k = 0. The
value at k = 0 is ω(k = 0)/J⊥ ≈ 1.8. The difference between the self-similar MKU-CUT and
the PCUT is ≈ 0.15J⊥. The self-similar CUT using Wegner’s generator yields a dispersion for
x = 1 which is much higher in energy.

We will see in Sec. 4.1.4 that at about x = 1 the multi-triplon continua start to overlap.
At this point an important difference in the properties of the MKU and Wegner generator be-
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Fig. 4.9: Comparison of dispersions found using Wegner’s generator and the MKU generator.

comes effective. The MKU generator sorts the energy eigenvalues according to the quasiparticle
number, see Sec. 2.2.2 and Sec. 2.2.3. Therefore, the lowest energy eigenvalue is assigned to a
one-triplon state. The Wegner generator does not have this property. It does not map the low
energy states to the sector with low triplon number. In the Wegner scheme, it is to be expected
that the low lying states at k = 0 are recovered in subsectors with higher triplon number. This
finding underlines the strength of the quasiparticle scheme connected to the MKU generator.
The single-particle states are really the elementary ones because they are energetically the lowest
ones.

The MKU scheme yields a more easily interpretable physical picture. It is more appropriate
for the description also of comparatively high-energy features within the effective Hamiltonian.
An important advantage of the Wegner generator is its robustness [11, 31]. It yields converging
flows also for parameters where the MKU scheme does not converge. Therefore, the Wegner
generator is particularly successful in the determination of phase diagrams [36, 37, 39, 40].

4.1.3. Two-triplon continuum and bound states

Whereas the original Hamiltonian before the transformation is not quasiparticle conserving the
effective model conserves the number of quasiparticles. Thus, the energy of two particles can be
determined strictly within the two-particle subspace. The calculation of the two-triplon energies
relies on the one-particle coefficients in the {1, 1}-block and the true two-particle interactions
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which belong to the {2, 2}-block. A Lanczos algorithm is used to compute the two-triplon
energies. For the description of the Lanczos technique see Appendix A. The accurate numer-
ical calculation of the two-particle energies is decisively simplified by the quasiparticle number
conservation. Otherwise matrix elements connecting to subspaces with different quasiparticle
number would enhance the Hilbert space. This would make it much more difficult to calculate
the eigenenergies.

The results of the Lanczos diagonalization for x = 0.5 are shown in Fig. 4.10. Energies are
given in units of the rung coupling J⊥. The figure shows the lower and the upper bound of the
two-triplon continuum as black solid lines. In between these boundaries there exists a continuous
distribution of two-particle states. The two triplons interact via the two-triplon interaction. The
analysis of the interaction matrix elements shows that two triplons tend to attract each other
and bound states form [106, 121–124].

All two-particle states can be grouped according to their total spin into S = 0, S = 1 and
S = 2 states. For the value x = 0.5 the interactions are sufficiently strong to create an S = 0 and
an S = 1 bound state below the two-triplon continuum [30, 41, 47, 103, 120, 125]. The existence
of the bound states depends on the momentum k. For small k values there are no bound states.
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Fig. 4.11: Energy of the bound states for x = 1.0 for various truncations. (a) S = 1 bound state, (b)

S = 0 bound state. See main text for further explanation.

The S = 0 bound state is present for values k & 0.38π and the S = 1 bound state for values
k & 0.42π. For all momenta the binding energy of the S = 0 bound state is larger than the
binding energy of the S = 1 bound state. Figure 4.10 shows the results for the bound states
of two different truncations, N = 3, d = {10, 6, 3} and N = 4, d = {10, 6, 3, 3}. The results for
the S = 1 bound state of these two calculations and the PCUT calculation of Ref. [120] agree
with each other within the linewidth (for clarity, the PCUT result is not shown in Fig.4.10).
For the S = 0 bound state the truncation scheme N = 3, d = {10, 6, 3} does not describe the
{2, 2}-block accurately enough. The truncation N = 4, d = {10, 6, 3, 3} improves this result and
coincides with the PCUT result within the linewidth. These results show that the self-similar
real space CUT is capable to quantitatively describe the properties of complicated two-particle
properties.

Increasing the leg coupling leads to an increasing dispersion of single triplons. In addition,
the interaction and especially binding effects between two triplons become more pronounced.
The results for the energy of the bound states for the value x = 1.0 are shown in Fig. 4.11. The
figure shows the result of a PCUT calculation [41] together with the self-similar CUT results for
truncations N = 4, d = {10, d4, d6, 3} for d4 ∈ {6, 8} and d6 ∈ {4, 5}. In Fig. 4.6 we have seen
that the ROD for the truncations N = 4, d = {10, 6, 5, 3} and N = 4, d = {10, 8, 5, 3} display
a pronounced non-monotonicity. Therefore, the figure shows two curves for these calculations,
namely before and after the saw tooth in the ROD in Fig. 4.6. The curve labeled N = 4, d =
{10, 6, 5, 3}A is derived from the effective Hamiltonian at l · J⊥ = 30.13 where the ROD falls
below 10−8 times its initial value. The curve N = 4, d = {10, 6, 5, 3}B is found for l ·J⊥ = 161.37
after the maximum in the ROD. At this point the ROD falls below 10−12 times its initial value.
For the truncation N = 4, d = {10, 8, 5, 3} the calculation A is stopped at l · J⊥ = 33.84 and the
calculation B is stopped at l·J⊥ = 233.10. The ROD at these points is ROD/ROD(l = 0) = 10−9

and 10−20, respectively. For not too small values of the flow parameter the complete remaining
ROD is situated in the {2, 4}- and {4, 2}-block, see Fig. 4.6. Therefore, one expects that the
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coefficients of the {2, 2}-block change in the uprise of the ROD found for both truncations
N = 4, d = {10, 6, 5, 3} and N = 4, d = {10, 8, 5, 3}. The energies of the bound state in the
S = 0 sector show that this is indeed the case.

The energy of the S = 1 bound state for x = 1 is shown in Fig. 4.11a. The figure compares
the above mentioned calculations to the result of the PCUT. There is a small change in the
energy of the bound state if we pass from the truncation N = 4, d = {10, d4, 4, 3} to N = 4, d =
{10, d4, 5, 3} for d4 = 6 and d4 = 8. The calculations A and B for d6 = 5 yield coinciding
results. Thus we conclude that the interaction elements in the S = 1 sector are not influenced
by the uprise of the ROD observed in Fig. 4.6. The results for N = 4, d = {10, 6, 5, 3} and
N = 4, d = {10, 8, 5, 3} agree well. They both agree with the PCUT result within 2% accuracy.

The results for the S = 0 bound state are shown in Fig. 4.11b. The truncations N = 4, d =
{10, 6, 4, 3} and N = 4, d = {10, 8, 4, 3} reproduce the PCUT result only qualitatively. In the
case of the S = 0 bound state the calculations A and B before and after the saw tooth in the
ROD display a difference. The dashed curves show the results in the first deep minimum of the
ROD. They agree better with the PCUT result both for the N = 4, d = {10, 6, 5, 3} and the
N = 4, d = {10, 8, 5, 3} truncation. The relative deviation of the N = 4, d = {10, 8, 5, 3} result
from the PCUT result is less than 2%. The energies found for the bound states are confirmed
by density matrix renormalization group (DMRG) calculations [126].

The interaction elements in the S = 0 sector change when the flow equations are integrated
over the hump in the ROD. Figure 4.11b shows the results after the hump as solid curves. The
energy of the S = 0 is pushed to lower values for these calculations. The results for the B

calculations are further away from the PCUT results. We conclude that the CUT cannot be
carried out safely for values of the flow parameter where the pronounced increase in the ROD
is observed. The most reliable results are found by stopping the flow in the minimum of the
ROD and neglecting the small remaining ROD. This is legitimate because the influence of the
neglected matrix elements is small as can be deduced from the smallness of the ROD. We will
apply this strategy also in Chap. 5 in the cases where non-monotonic behavior of the ROD is
found.

The reason for these problems lies in the re-ordering of the two- and four-particle energies.
In the next section, Sec. 4.1.4, we will learn that the two- and four-particle continua have a
considerable overlap for x = 1.0. In this situation it is impossible to sort the eigenenergies
according to the quasiparticle number. The overlap of continua leads to finite lifetime effects
since two-particle states can decay into four-particle states of the same energy.

For the S = 0 bound state the various truncations lead to slightly different results. Therefore,
these results are not fully conclusive. To treat even larger truncations is not only hindered
by the computational costs. A larger truncation scheme would also describe the multi-particle
subspaces more accurately. We suppose that it would lead to more severe problems if one tries
to disentangle the subspaces of especially two and four triplons. As we have seen in the case of
the S = 0 bound state the convergence problems give rise to inaccuracies in the result. Thus, a
larger truncation scheme does not necessarily leed to better results.
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Fig. 4.12: Relative position of multi-triplon continua for x = 0.5. On the left, the sectors with odd

number of triplons are shown. The right plot shows the sectors with even number of triplons. Note that

the Hamiltonian of the spin ladder changes the triplon number only by an even number.

4.1.4. Multi-triplon continua

The Hamiltonian of the spin ladder can change the number of quasiparticles only by plus or
minus two in a single application. This property is conserved during the flow using the MKU
generator. Therefore, we present the one- and the three-particle continuum and the two- and
four-particle continuum in separate graphs. The multi-triplon continua are calculated from the
single triplon dispersion and the energies in the two-triplon sector. This includes also binding ef-
fects of two triplons as shown in the preceding section. True three- and four-particle interactions
are neglected.

The resulting energy bands of the multi-triplon continua are shown in Fig. 4.12 for x = 0.5.
The one- and three-particle sector are well separated. The lower boundary of the three-triplon
continuum is shown as solid gray (cyan) line. It includes binding effects in the two-particle sector.
With binding effects the lower boundary of the continuum may result from the combination of a
two-triplon bound state and a single triplon. Without binding effects the three-triplon energies
are calculated from the one-particle energies only. The dashed line gives the position of the
lower edge without binding effects. Figure 4.12 shows that the substantial binding energy of the
S = 0 bound state leads indeed to a lowering of the edge of the three-triplon continuum at low
momentum values.

The right-hand side of Fig. 4.12 shows the two- and four-triplon continuum. The dashed gray
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Fig. 4.13: Multi-triplon continua for x = 1.0. One- and three-particle continua are shown on the left

plot. Two- and four-triplon continua are shown on the right plot.

(cyan) curve represents the lower edge of the four-triplon continuum without binding effects in
the two-triplon sector. The continua overlap for momenta k . 0.6. However, the preceding
section did not find any effect of this overlap in the transformations for x = 0.5. The ROD
decays monotonically for x = 0.5. A possible reason is that the overlap is quite small. In the
local approach to CUTs operators are represented in real space. Especially the operators dealing
with a larger number of quasiparticles are taken into account only up to a small extension. The
finite range of operators in real space leads to a finite resolution of the k-space properties. In
addition, the weight close to the boundary of multi-particle continua is very small [127]. The
CUT can be carried out for x = 0.5 without problems although the momentum representation
of the multi-triplon continua shows that the two- and four-triplon continua overlap slightly.

The multi-triplon continua for x = 1 are shown in Fig. 4.13. The three-triplon continuum
on the left-hand side of Fig. 4.13 extends to lower energies. It comes close to the one-triplon
dispersion. At low values of k the vicinity of the three-particle continuum pushes the one-particle
energies to lower values. The one-triplon dispersion exhibits a dip at k = 0. The right-hand
side shows the continua with even triplon number. There is a considerable overlap of the two-
and four-triplon sector for all values of the momentum. The MKU generator tries to sort the
energies according to quasiparticle number. However, for x = 1 we find that the continua of
different particle number overlap. This leads to the observed behavior of the ROD in Fig. 4.6
and to the problems in the quantitative determination of the bound state energies.
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4.1.5. Discussion

The present section treats the antiferromagnetic spin ladder starting from the dimerized limit
within a self-similar CUT approach. For an intermediate value of the leg coupling, namely
x = 0.5, we find that a quantitative description of one- and two-particle properties is possible.
Also the determination of the energy of bound states is numerically reliable. For x = 1.0 the one-
particle energies can be calculated with good accuracy. The one- and three-particle states are
still separated by a finite energy gap. The strong overlap of the two- and four-particle continua
hinders the elimination of the operators connecting these sectors of the Hilbert space. Because
truncations have to be applied the transformation cannot be carried out in a well-controlled way.

The self-similar MKU CUT runs into problems in situations where continua of different particle
numbers overlap. The MKU generator tries to sort the eigenvalues according to the quasiparticle
number. This is not possible in the presence of strongly overlapping continua. Such a situation
is found for the spin ladder for the parameter x = 1.0. In this case, states with two and four
triplons have the same energy. This leads to finite lifetime effects because states with two-triplons
can decay into four triplons.

In the PCUT scheme these problems do not hinder the transformation. The reason is that
the perturbative treatment is an expansion around x = 0. Strictly at x = 0, there are no
problems concerning the order of multi-particle continua. An n-particle state has the energy
nJ⊥. Therefore, the series expansion around x = 0 is well-defined. Problems occur if one tries
to extrapolate the series into parameter regimes with overlapping continua [120]. The Padé
extrapolated series have poles and special care has to be taken to extract meaningful results.
The problems related to finite lifetime effects are circumvented by sophisticated extrapolation
techniques.

The self-similar CUT scheme is more susceptible to the problems originating from the overlap
of different continua. The overlap of the continua is not an artefact. Therefore, the MKU scheme
necessarily has difficulties in re-ordering the energy levels according to the quasiparticle number.
In this sense the self-similar CUT scheme has a higher sensibility to capture the issue of the
re-ordering process. It explicitly shows the complex physical situation. The ROD diverges if
the transformation cannot be carried out at all. A strong non-monotonic behavior in the ROD
signals that the transformation is demanding and might be flawed by inaccuracies. On the other
hand the PCUT results might hide in some circumstances fingerprints of actual problems in
the transformation. The overlap of subsectors of different quasiparticle number can lead to a
non-analytic dependence of the energetic position of the continua [128]. Such a behavior cannot
be captured within a perturbative approach. The self-similar approach will at least signal these
problems in the behavior of the ROD. Then, one can devise some of the means described below
to handle the problem.

In general, any system having a finite dispersion will have overlapping many-particle continua.
For small bandwidths the overlap is present only between continua with large particle number.
The crucial question for the present self-similar CUT scheme to work is, whether these continua
have to be included in the derivation of the effective model. For the spin ladder we have seen
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that the inclusion of the three-particle continuum is necessary to produce the dip in the one-
particle dispersion. Correspondingly, four-particle operators have been necessary to find good
results for the description of the two-particle energies. The problem depends of course on the
parameter regime one is interested in. For the spin ladder the transformation is carried out
safely for x = 0.5. The small overlap of the continua, see Fig. 4.12, did not affect the quality of
the effective Hamiltonian. For x = 1.0 the overlap is larger and hinders a reliable determination
of the effective model.

We want to point out some means how one could deal with the convergence problems that
have been one focus of this chapter. The first possibility is to just stop the flow at a minimum of
the ROD and neglect the remaining off-diagonal coefficients. This is legitimate if the remaining
ROD is small. This has been done Sec. 4.1.3. We will also neglect the remaining off-diagonal
coefficients in the case of the bosonic Hubbard model treated in Sec. 5 with the same justification.

Second, there are ways to treat the remaining off-diagonal part of the Hamiltonian after
stopping the flow. For example, one can account for the off-diagonal part by perturbation theory.
In this case, the block-diagonal terms are viewed as the unperturbed part of the Hamiltonian.
Another possibility is to use a numerical technique such as Lanczos diagonalization also in the
case of a non-blockdiagonal Hamilton. The Hilbert space is enlarged because one can not treat
the sectors of different quasiparticle number separately. But, if the off-diagonal elements are not
too large this might still be a viable path.

Finally, the transformation within the MKU scheme can be modified. One excludes from the
generator the sectors that hinder a successful transformation. The transformation can then be
carried out without the convergence problems encountered so far. However, the excluded block
will not be transformed away and will still be present after the CUT. In a second step one
can deal with the problematic block using Wegner’s generator. The Wegner generator is more
robust than the MKU generator and thus one can hope to eliminate the remaining off-diagonal
block safely. In the end the combined transformation again produces a block-diagonal effective
Hamiltonian. This procedure will be applied to the spin chain in the following section, Sec. 4.2.
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4.2. Spin chain

The one-dimensional Heisenberg chain consists of spins of size one-half that are linearly arranged.
Each site is connected to its two nearest neighbors via an isotropic spin coupling. Quantum ef-
fects play a dominant role because of the low dimensionality of the model and the small absolute
value of the spin. Recent progress has been made in the calculation of spectral properties of the
spin chain [129, 130]. These results have revived the discussion about the appropriate quasiparti-
cle picture in this system. The question seemed to be settled with the spinon interpretation of the
energy properties of the spin chain [131–135]. Spinons are excitation carrying spin one-half. In
the spin chain they can only be created in pairs. The spinon formalism describes the continuum
of states in the spectrum of the spin chain as a two-spinon continuum. The spinon language has
been used to derive the spectral weight and the spectral density in the two-spinon channel [129].
An alternative quasiparticle picture has been put forward by Uhrig and Schmidt [130]. They
start from the dimerized spin chain and describe the energy and spectral properties of the spin
chain in terms of triplons. These are excitations of a disordered magnet with spin one2. They
find a surprisingly high spectral weight in the two-triplon channel. Practically the complete
spectral weight is found in the two-triplon sector for the undimerized spin chain. At the same
time the single triplon contribution goes to zero. These results rely on certain extrapolations
that also include assumptions about the system. The dynamics of the system is not included in
the study.

In this section we want to study if the triplon picture can also be constructed within the
self-similar CUT in real space. The starting point is the fully dimerized chain. Then, the
inter-dimer coupling is turned on. The one-triplon dispersion is calculated for various values
of the dimerization. The dispersion relation of the undimerized chain is known exactly. It is
gapless. From the discussion in the preceding section we know that this will cause problems in
the convergence of the transformation. Nevertheless we will study down to which value of the
dimerization one can find quantitative results using the self-similar CUT. The spectral weights
for the observable Sz are calculated and compared to the results from the PCUT.

4.2.1. Model and method

The Hamiltonian of the dimerized spin chain reads

H = J0

∑
i

[
(1 + (−1)iδ)SiSi+1

]
, (4.2.14)

where J0 is the average strength of the magnetic coupling. The dimerization δ leads to an
alternation of strong bonds with coupling J0(1 + δ) and weak bonds with coupling J0(1 − δ).
It is useful to rewrite the above Hamiltonian by separating explicitly the strong and the weak

2Magnons in contrast are excitations of an ordered magnet. In antiferromagnets there are two flavors of a

magnon. The triplon has three flavors coming from the three Sz eigenstates of the underlying triplet excitation.

There is one magnon per site while there are three triplons per two sites.
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Fig. 4.14: Sketch of the spin chain.

bonds
H

J
=
∑

i

[S2iS2i+1 + λS2i−1S2i] . (4.2.15)

where the parameters J and λ are related to J0 and δ by the following relations

J = J0(1 + δ) (4.2.16a)

λ =
1− δ

1 + δ
. (4.2.16b)

The system is sketched in Fig. 4.14. The strong bonds couple pairs of two spins to dimers. These
dimers are connected via a coupling of strength λJ . The value of λ can be restricted to λ ∈ [0, 1]
as one can chose δ to be positive. A sign change in δ corresponds only to the exchange of strong
and weak bonds. The distance between two dimers defines the lattice constant a. Note that
the sites of the original lattice have a spacing of a/2. The dimerized spin chain displays a finite
spin gap for any non-zero value of the dimerization. The spin gap vanishes if the dimerization
is zero.

The starting point of the CUT is the fully dimerized system at λ = 0. The ground state is the
product state of local singlets. This is the reference state for the setup of the self-similar CUT.
Local triplets are excitations which cost the energy J at λ = 0. The gapless system is retrieved
for λ = 1. The triplet number operator serves as a counting operator for the MKU scheme, see
also Sec. 2.

Before the details of the calculation are described we want to give an account of the con-
ventional picture of the excitations of the Heisenberg chain in terms of spinons. Then, the
alternative interpretation in terms of triplon excitations is presented. This interpretation has
been brought up using a perturbative CUT calculation [42, 130]. One aim of this section is to
clarify if the triplon interpretation can also be supported within the present self-similar CUT
scheme.

The homogeneous spin chain is exactly solvable by Bethe ansatz [131, 132, 136–140]. The
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Fig. 4.15: The energies of the excited states of the spin chain as given by Bethe ansatz form a continuum.

solution motivates the spinon picture of the excitations of the spin chain. The Bethe ansatz
solution gives the ground state and the excited states exactly. The support of the excitation
spectrum is shown in Fig. 4.15. The dispersion of a single spinon reads

ω(k) = J
π

2
sin(

a

2
k), (4.2.17)

where the momentum k lies in the interval 0 ≤ k ≤ π/(a/2). Spinons carry a spin 1/2. They do
not interact at δ = 0 at infinite distance. At finite dimerization the spinons are confined by an
attractive potential [141]. The total spin of the full system can only be changed by an integer.
The total spin is fixed to be integer or half-integer. Therefore, a single spinon cannot be excited.
The energies shown in Fig. 4.15 are two-spinon energies. The shaded area is the support of the
two-spinon continuum.

The description in terms of triplons starts from the dimerized system. It is argued that the
triplon description extends to the undimerized system at δ = 0 [42, 130]. The dimerized system is
successfully described in the triplet picture. For small λ or large dimerization already the leading
order in perturbation theory yields the correct qualitative behavior. References [121, 142] show
that the energy properties including the appearance of bound and anti-bound states for the
dimerized system are correctly described by leading order perturbation theory. Using high order
perturbation theory the results can be extrapolated to the undimerized system. This has been
pointed out in Refs. [42, 130] using the PCUT method and has been verified in Refs. [143, 144]
using a linked cluster series expansion.
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The calculation of spectral properties using Bethe ansatz has been presented by Karbach et al.
in 1997, Ref. [129]. This is much more difficult than the determination of the energy levels. The
calculations depend on the studied observable. They describe the outcome of an experiment
in which an external field couples to this observable. Therefore, the spectral quantities give
important insight in the physics of the system including matrix element effects. The spectral
weight in a channel with fixed particle number determines which part of the total weight is
described by this number of particles. The finding of the Bethe ansatz solution is that 72.89%
of the total intensity is found in the two spinon-continuum.

The spectral weight in terms of triplon excitations has been calculated in Refs. [42, 130, 143,
144]. It is found that the weight in the one-triplon channel vanishes upon approaching the
undimerized chain. This behavior of the one-triplon weight is expected. It is found that the
weight is almost completely shifted in the two-triplon channel. The two-triplon weight is larger
than 99% of the total weight. Note that in the Bethe ansatz description the two-particle channel
refers to two spinons whereas the triplon approach refers to two-triplon excitations. This result
is remarkable. It suggests that the triplon approach incorporates more weight than the well-
established spinon description in the channels with low particle number. In addition to the fact
that the two-triplon spectral weight is larger than the two-spinon weight, it also comprises almost
the total weight. This does not imply that one of the pictures – spinon or triplon – is wrong.
Nevertheless, it would be a very interesting finding if triplons provided a valid description of the
spin chain down to vanishing dimerization.

In this section we want to study if the result from the PCUT calculation can be reproduced
within the self-similar CUT approach. The starting point for the self-similar CUT is the dimer-
ized system as it is for the PCUT. The intra-dimer coupling does not conserve the number of
triplons. It has to be transformed away. For finite dimerization δ the system is gapped. This
facilitates the transformation. It is known that the dispersion of the spin chain becomes gap-
less at λ = 1 corresponding to δ = 0. In the preceding section, Sec. 4.1, it has been shown
that the overlap of continua of different quasiparticle number leads to convergence problems.
Therefore, one has to be aware that the transformation will become increasingly challenging
for large λ. Our aim is the calculation of the one-triplon dispersion and the spectral weight.
Spectral densities will not be discussed. The results are compared to the PCUT results taken
from Refs. [42, 120, 130].

4.2.1.1. Implementation of the CUT

The Hamiltonian in Eq. (4.2.15) couples strong bonds between sites 2i and 2i + 1 with coupling
strength J . Weak bonds between sites 2i − 1 and 2i are coupled by λJ . The Hamiltonian is
rewritten in terms of triplet operators on the strong bonds. The implementation of the technique
is very much like the one used in Sec. 4.1 for the spin ladder. The local basis has four states,
the singlet and the three triplets with flavor ∈ {1, 0,−1}. The part of the Hamiltonian acting
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4T a
0

|t0,±1, s〉 → −|s, t0,±1〉
4T b

0

|t0, t0,±1〉 → |t0,±1, t0〉
|t±1, t±1〉 → |t±1, t±1〉
|t±1, t∓1〉 → |t0, t0〉 − |t±1, t∓1〉
|t0, t0〉 → |t1, t−1〉+ |t−1, t1〉

4T1

|s, t1〉, |t1, s〉 → |t1, t0〉 − |t0, t1〉
|s, t0〉, |t0, s〉 → |t1, t−1〉 − |t−1, t1〉
|s, t−1〉, |t−1, s〉 → |t0, t−1〉 − |t−1, t0〉

4T2

|s, s〉 → |t1, t−1〉 − |t0, t0〉+ |t−1, t1〉

Table 4.4: The action of the operators Tj on states on adjacent dimers of the spin chain.

on the strong bonds is
Hstrong

J
=
∑

i

S2iS2i+1. (4.2.18)

Up to a constant this operator counts the triplet number and is therefore diagonal in the triplet
basis. The Hamiltonian on the weak bonds reads

Hweak

J
=
∑

i

λS2i−1S2i. (4.2.19)

It is rewritten in terms of triplet operators as

Hweak

J
=

2∑
n=−2

Tn =
2∑

n=−2

∑
ν

Tn(ν). (4.2.20)

The operators Tn change the number of triplets by n. They are composed of the local operators
Tn(ν) that act on the bond labelled by ν. The operators Tn(ν) are defined in terms of their
matrix elements on the product states of adjacent dimers in Tab. 4.4. Remaining matrix elements
can be determined by hermitian conjugation.

The triplet number is changed by two at most. The Hamiltonian of the spin chain can change
the triplon number also by ±1. This has not been possible in the case of the spin ladder,
see Sec. 4.1. The truncation scheme is defined in the same way as for the ladder system in
Sec. 4.1.1.1. It is illustrated in the sketch of the block structure of the Hamiltonian in Fig. 4.16.
Different maximal extensions are defined for different numbers of triplet operators. The block
with zero triplet operators acts only as a constant. Therefore, there is no need to define a
truncation d0. As the quasiparticle number can be changed also by one there are additional
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Fig. 4.16: The Hamiltonian of the spin chain changes the triplet number by ±1 and ±2. The matrix

sketches the definition of the truncation scheme for the spin chain. It denotes the names of the blocks

together with the corresponding maximal extensions.

blocks. They have to be truncated with a certain maximal extension. Note that there are no
operators with only a single triplet operator due to spin conservation. The maximal size of the
block matrix is fixed by N . The truncation scheme is defined by the size N of the block matrix
and the 2n− 1 maximal extensions d2, ..., d2N .

4.2.1.2. Observable

The local observable that is studied reads

OS=1
loc (r) = Sz

r = T ′S=1
−1 + T ′S=1

0 + T ′S=1
1 . (4.2.21)

The action of the observable is sketched in Fig. 4.17. The local observable acts on one specific
site. This site can be the left or the right site of a strong bond. The parameter r denotes the
site on which the local observable acts.

The observable induces S = 1 excitations. The operators T ′S=1
n are defined via the matrix

elements given in Tab. 4.5. The observable is the sum over the local observables

OS=1 =
∑

r

OS=1
loc (r) =

∑
r

Sz
r . (4.2.22)

The transformation deals with the coefficients of the local observable. The full, translationally
invariant observable is recovered by summation over the lattice sites. The matrix elements
given in Tab 4.5 depend on the site on which the observable acts.



108 One-dimensional spin systems

RL

a

Fig. 4.17: Sketch of the action of the observable. The local observable can act on the left (L) or right

(R) site within a strong bond. The strong bonds are depicted by thick lines.

The general aspects of the transformation of an observable are described in Sec. 2.3.5. The
observable is transformed with the same generator as the Hamiltonian. But, one has to introduce
a separate truncation scheme for the observable. The reason is that the local untransformed
observable is connected to a certain site of the lattice. Contributions to the effective observable
with large distance to this original site are less important. Therefore, the maximum of the sum of
the distances of all local operators within the effective observable is restricted by the observable
extension dO. There are also contributions with a single triplet operator in the observable. The
truncation scheme for the observable is defined by a maximal size NO of the block matrix of the
observable and 2NO maximal observable extensions dO,1, ..., dO,2NO . The maximal observable
extension dO,n restricts the extension of terms with n triplet operators in the observable.

In our study of the Sz observable the quantity of interest is the spectral weight In in the
n-particle channel. At zero temperature one obtains the spectral weights In by summing the
squares of the coefficients of the terms that excite the respective number of particles from the
vacuum. The spectral weights will be discussed in Sec. 4.2.3.

OS=1
loc = Sz

L

2T ′,S=1
0

|t−1〉 → −|t−1〉
|t1〉 → |t1〉

2T ′,S=1
1

|s〉 → |t0〉
|t0〉 → |s〉

OS=1
loc = Sz

R

2T ′,S=1
0

|t−1〉 → −|t−1〉
|t1〉 → |t1〉

2T ′,S=1
1

|s〉 → −|t0〉
|t0〉 → −|s〉

Table 4.5: The observable OS=1 = Sz
r with r ∈ {L, R} is defined by the matrix elements given in this

table. The left panel gives the matrix elements of OS=1 = Sz
L and the right panel those of OS=1 = Sz

R.
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Fig. 4.18: Dispersion for λ = 0.3. The various truncations show excellent agreement between one

another and with the PCUT result. The top graph shows the difference between the self similar CUT

and the PCUT dispersion.

4.2.2. Dispersion

The dispersion consists of the momentum dependent one-particle energies. Within the effective
model the dispersion is fixed by the coefficients of the {1, 1}-block. The hopping amplitudes are
Fourier transformed to obtain the momentum space representation. The results for λ = 0.3 are
shown in Fig. 4.18. The figure shows the dispersion for truncations with N = 2 and N = 3.
For N = 2 the maximal extensions used are d = {6, 6, 6} and d = {8, 8, 8} and for N = 3 the
truncations d = {6, 6, 6, 3, 3} and d = {8, 8, 8, 4, 4} are shown. The dispersion has the overall
shape of a cosine. The minima of the dispersion are found at k = 0 and k = π (in units of a/2).
The mutual agreement of the various calculations is excellent. They agree perfectly with the
PCUT result. The difference of the self-similar calculation and the PCUT is shown in the top
view graph. The truncations with N = 2 and N = 3 lie on top of each other. The deviation of
the N = 2 calculation from the PCUT result is of the order of 0.002J . The N = 3 calculations
practically coincide with the PCUT result. The tiny wiggles around k ≈ 0 and k ≈ π are
extremely small. They are due to the extrapolations used in the PCUT result. For λ = 0.3 the
dimerization is still quite strong. The one-triplon gap is large. Therefore the transformation can
be carried out without any problem.

The results from the same truncations are shown in Fig. 4.19 for the value λ = 0.6. The
shape of the dispersion is still cosine like. With increasing λ the bandwidth increases. The two
calculations with N = 2 and the two calculations with N = 3 lie on top of each other. There
is a small difference between the N = 2 and the N = 3 calculations. The deviation is best
seen in the inset where the difference beween the self-similar results and the PCUT result is
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Fig. 4.19: Dispersion for λ = 0.6. The top graph shows the deviation of the results of the self-similar

CUT from the PCUT result.

plotted. The calculations with N = 2 show a small deviation from the PCUT. The difference is
approximately 0.02J . Increasing the size of the block matrix to N = 3 leads to a nearly perfect
agreement of the self-similar CUT and PCUT results.

Increasing the coupling λ leads to the same problems that we have encountered in the study
of the spin ladder. The bandwidth increases and the energies of the continua with different
quasiparticle number overlap. It becomes problematic to disentangle the sectors with different
quasiparticle number. The situations is more severe for the spin chain because the quasiparticle
number can be changed by one or by two. The one-particle subspace is therefore not only linked
to the three-particle subspace but also to the two-particle subspace. In the case of the spin
ladder the triplon number could be changed only by two. In addition, the dispersion of the spin
chain is gapless for λ = 1.0. At least at this point, the continua of all particle numbers overlap.

The problems are signalled by the behavior of the convergence of the flow equation. While
for λ = 0.3 all flow equations converged exponentially, this is no longer the case for λ = 0.6.
The residual off-diagonality (ROD) is defined in Sec. 2.3.4 as the sum of the squares of all
coefficients that contribute to the generator. The ROD for λ = 0.6 is shown in Fig. 4.20. The
truncations N = 2, d = {6, 6, 6} and N = 2, d = {6, 6, 6} are shown as dotted and dashed
curve, respectively. The ROD for these two truncations lie on top of each other. The ROD for
N = 3, d = {6, 6, 6, 3, 3} is shown as dashed-dotted line. The two truncation schemes with N = 2
and the one with N = 3, d = {6, 6, 6, 3, 3} converge monotonically for λ = 0.6. The ROD for
N = 3, d = {8, 8, 8, 4, 4} shows a pronounced non-monotonic behavior. The ROD decreases by a
factor of 10−8 before it rises again by nearly the same factor. The inset shows the contribution
of coefficients in the {2, 3}-block to the total ROD. Already for not too small values of the flow
parameter l, the main contribution to the ROD results from the {2, 3}-block. The dispersion
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Fig. 4.20: The ROD relative to its initial value ROD(l = 0) for λ = 0.6. The RODs for the two

calculations with N = 2 are on top of each other. The inset shows the contribution of coefficients of the

{2, 3}-block for the N = 3, d = {8, 8, 8, 4, 4} truncation.

does not change anymore for these values of the flow parameter. The dispersion is not influenced
by the convergence problems in the {2, 3}-block. It remains the same if the flow is stopped at
values of the flow parameter around the minimum in the ROD at lJ ≈ 175 or if it is stopped at
larger values.

The convergence problems will become more severe if λ is increased further. At λ = 1.0 the
conditions are most challenging. The exact dispersion is gapless. All multi-particle continua
overlap. Although we do not expect the self-similar CUT to work without problems in this
situation it is now tried to determine the dispersion at λ = 1.0. The flow equations of the
truncation schemes N = 2, d = {6, 6, 6} and N = 2, d = {8, 8, 8} diverge. The truncations
N = 3, d = {6, 6, 6, 3, 3} and N = 3, d = {8, 8, 8, 4, 4} display a pronounced minimum before the
ROD increases again. The ROD is shown in Fig. 4.21. The figure includes the diverging ROD of
the N = 2, d = d = {8, 8, 8} truncation as dotted curve. The contribution of the {2, 3}-block in
the ROD of the N = 3 calculations is shown in the inset. This is the dominant contribution to
the ROD already for small values of the flow parameter l. Therefore, the dispersion is determined
already for small values of l and not influenced by the later occurring convergence problems.

The dispersion for the truncations N = 3, d = {6, 6, 6, 3, 3} and N = 3, d = {8, 8, 8, 4, 4} is
found by stopping the flow at lJ = 100 where ROD/ROD(l = 0) = 7 ·10−5 and at lJ = 60 where
ROD/ROD(l = 0) = 2 · 10−4, respectively. They are shown in Fig. 4.22 as thick dotted and
dashed line. The quality of the result can be judged more easily by looking at the difference to
the exact result ω(k) = J π

2 sin(k). This difference is shown in the upper graph. The deviations
are of the order of 0.05J . For k-values around k = 0.5π the agreement is quite good. The
differences increase towards the values k = 0 and k = π. At these k-points the exact dispersion
is zero. The slope of the dispersion is linear. The self-similar CUT scheme encodes the one-
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Fig. 4.21: ROD for λ = 1.0. The inset shows the relative contribution of the {2, 3}-block to the total

ROD for the calculations with N = 3.
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Fig. 4.22: The dispersion for λ = 1.0. The thin solid line shows the exact result. The results from the

self-similar CUT are shown as thick lines. The inset shows the deviations from the exact result.

particle properties in the hopping amplitudes in the {1, 1}-block. In momentum space they
represent prefactors of cos(nk). The linear behavior at k = 0 and k = π can only be reproduced
if one includes infinitely many of these cosine contributions to the dispersion. This is clearly not
possible within our local approach to self-similar CUTs. Therefore, the deviations are largest
at k = 0 and k = π. Nevertheless the results even for λ = 1.0 agree surprisingly well with the
exact result. However, we assume that the determination of two- and more particle properties
would be plagued by the convergence problems in the {2, 3}-block.
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Fig. 4.23: A sketch to illustrate the passive transformation of the {2, 3}-block. The contribution of

operators in the {2, 3}- and {3, 2}-block to the generator are turned off by hand. This generates operators

belonging to the {0, 3}- and {3, 0}-block because the MKU property is lost.

Passive transformation

The behavior of the ROD in Fig. 4.21 shows that especially the terms in the {2, 3}- and {3, 2}-
block hinder a successful transformation. The energetic situation is such that the MKU scheme
has to rearrange the energies of the states of different quasiparticle number according to their
quasiparticle number. In this process the ROD rises again because the three-triplon sector
overlaps with the two-triplon sector. Now, we present one way to circumvent this problem. The
idea is to delay the transformation of the problematic {2, 3}-block to a later stage. In a first
step we perform a MKU transformation of all blocks except the {2, 3}-block. To this end a
generator of MKU type is used. However, all contributions from operators in the {2, 3}-block to
the generator are set to zero by hand. Therefore, these coefficients will not be transformed to
zero but will be present also at the end of the flow.

As the generator is modified it loses the MKU property. Commutation with the generator
will not only procuce terms that change the quasiparticle number by at most two. There will
be also terms that change the quasiparticle number by more than two. This is illustrated in
Fig. 4.23. The {2, 3}-block which does not contribute to the generator is shaded. In addition,
the newly produced {0, 3}- and {3, 0}-blocks are highlighted. In a truncation scheme with block
matrix size N = 3 these are the only newly generated blocks.

After the transformation the effective Hamiltonian is block-diagonal apart from the terms in
the {2, 3}-block. They have been kept because their diagonalization within a MKU scheme is
problematic. Nevertheless it is advantageous to have a block-diagonal effective Hamiltonian.
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Block diagonality is very convenient for the calculation of spectral weights. Otherwise the
notion of weight in a certain channel defined by a quasiparticle number is meaningless since
the Hamiltonian can transfer weight through terms that are not diagonal in the quasiparticle
number.

The {2, 3}-block will be eliminated using the Wegner generator. From the results of Sec. 4.1.2.2
we know that the transformation using Wegner’s generator is converging slowly but robustly.
This combined transformation technique, using a modified MKU generator and in a second step
Wegner’s generator, and its results will be labeled ’passive’ in the following. Note that the
{2, 3}-block is not neglected. The terms and their coefficients are kept in the Hamiltonian. Only
their contribution to the MKU generator is set to zero. They appear in the flow equation and
are renormalized from contributions of other blocks. Hence the naming ’passive’ transformation
is appropriate. Compared to the plain MKU transformation the passive approach takes a dif-
ferent direction towards block diagonality. First, all blocks except the critical {2, 3}-block are
eliminated. Second, the Wegner generator is used to eliminate the couplings in this block.

A passive transformation has been carried out for the truncation schemes N = 3, d =
{6, 6, 6, 3, 3} and N = 3, d = {8, 8, 8, 4, 4}. In the two steps of the MKU and Wegner trans-
formation the same truncation scheme is used. All calculations converge. The passive treatment
of the {2, 3}-block circumvents the convergence problems observed for the plain MKU transfor-
mation. The results for the passive calculations for the dispersion at λ = 1.0 are contained in
Fig. 4.22. The result for the N = 3, d = {6, 6, 6, 3, 3} truncation using the passive scheme is
shown as dot-dashed line, the one for the N = 3, d = {8, 8, 8, 4, 4} truncation as solid line. The
difference to the exact result is again shown in the top graph. The passive calculations give
results that are slightly superior to the plain MKU results for momenta around k ≈ 0.5π. They
are less accurate at the points k = 0 and k = π for the same reasons as the MKU calculations.
The passive transformation is significantly more robust in the convergence. But, the quantitative
results are not decisively better.

4.2.3. Spectral weight

The passive transformation scheme allows a block-diagonalization of the Hamiltonian. Therefore
the weight of the observable introduced in Sec. 4.2.1.2 can now be analyzed also for larger values
of λ. For a plain MKU calculation this would have been possible only up to intermediate values
of λ.

The observable Sz has been defined in terms of triplet operators in Sec. 4.2.1.2. It is trans-
formed with the same generator as the Hamiltonian. Within the passive scheme this means that
we have to subject the observable in the first step to the modified MKU transformation and in
the second step to the Wegner transformation. The second step eliminates the {2, 3}-block in
the Hamiltonian.

After the transformation the observable is not block-diagonal but creates and annihilates
triplons. The ground state is the triplon vacuum. In this case only the {0, n}-blocks of the
observable are relevant. The weight contained in the n-quasiparticle channel is fixed by the
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coefficients of the {0, n}-block. It is calculated by summing the squares of the coefficients of all
terms in the respective block. The total weight is a conserved quantity.

The results for the relative n-triplon spectral weight In,rel are shown in Fig. 4.24. The sum
of the relative weights should be equal to 1. A deviation from the exact value indicates an
inaccuracy in the relative weights due to truncation. Figure 4.24 shows the results of the
passive self-similar CUT together with results from the PCUT. The first calculation (in the
following calculation A) uses the truncation N = 3, d = {8, 8, 8, 4, 4} for the Hamiltonian and
the observable truncation NO = 2, dO = {8, 8, 6, 6}. The results are shown with blue crosses. The
truncation scheme N = 3, d = {3, 3, 3, 3, 3} for the Hamiltonian and the observable truncation
NO = 2, dO = {8, 8, 2, 2} is shown with red circles (in the following calculation B).

The one-triplon spectral weight exhausts the full spectral weight for λ = 0. It decreases
for increasing λ. The PCUT calculation yields a one-triplon spectral weight that vanishes at
λ = 1.0. The two-triplon spectral weight increases with increasing λ. The surprising result is
that it takes over almost the full weight at λ = 1.0. The three-triplon weight is very small. Note
that the three-triplon weight is multiplied by a factor 1000 in Fig. 4.24. The sum rule is fulfilled
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with good accuracy for all λ.

The one-triplon weight I1,rel for calculation A follows the results of the PCUT calculation for
a wide range of the parameter λ. Even for λ = 0.95 there is good agreement. There is a sizeable
difference for λ = 1.0. This finding agrees with the good results for the dispersion found in
the preceding section. The situation is different for higher triplon channels. The two-triplon
weight I2,rel is close to the PCUT result for λ ≤ 0.5. For larger λ there are sizeable deviations.
At the same time we find a comparably large weight in the three-triplon channel. The PCUT
calculation finds only very little weight in I3,rel.

The plain MKU transformation N = 3, d = {8, 8, 8, 4, 4} exhibits convergence problems for
λ = 0.6, see Fig. 4.20. The passive scheme does not have the convergence problems. The
critical {2, 3}-block is not diagonalized within the MKU scheme, but only later using Wegner’s
generator. The uprise in the ROD can be assigned to a reorganization of energy levels according
to the quasiparticle number. If we circumvent this problem using a passive transformation it is
found that the distribution of weight differs from the one found by the PCUT.

At even larger values of λ ≈ 0.8, non-monotonic behavior of the weights is found. This points
towards a loss of accuracy in the transformation. The sum of the relative weights is less affected
by increasing λ. It stays close to the correct sum rule up to λ ≈ 0.9.

In Sec. 4.1 it has been shown that smaller truncation schemes are less affected by convergence
problems. Therefore, the triplon weights are shown also for truncation B that truncates the
operators already at maximal extension 3. The results do not show the discontinuities of the
calculation B. They are smooth up to λ = 1.0. However, the result for I1,rel deviates from the
PCUT results for smaller λ. The results of I2,rel and I3,rel are not discontinuous and closer to
the PCUT results.

The results shown in Fig. 4.24 have to be interpreted with care. The one-triplon spectral
weight is an experimentally observable quantity if the one-particle energies are separated from
the multi-particle energies. The weight I1,rel is found as the weight in a δ-peak at the position
of the one-particle energy. The one-particle weight I1,rel of calculation A (blue crosses) closely
follows the PCUT result for λ ≤ 0.9. It is closer to the PCUT result than the more restrictive
truncation of calculation B. This improvement of the result for I1,rel is systematic because there
are more terms in calculation A than are in calculation B. The situation is different for the
many-particle weights In,rel where n ≥ 2. For these weights calculation B lies closer to the
PCUT results. However, the weights In,rel where n ≥ 2 are not physically observable if the
energies of the corresponding continua overlap. In this case, n-particle states are allowed to
decay into m-particle states. These lifetime effects shift the weight between channels of different
quasiparticle number. The analysis of the spectral weight shows that these decay processes are
possible for larger λ.

The final distribution of the weight in the two- and three-particle channel is established in
the second step of the transformation using the Wegner generator. The lifetime effects are
only present for overlapping continua at finite λ. These effects are not captured within the
extrapolations of the PCUT approach. Thus, the PCUT produces more continuous results.
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But, it neglects the lifetime effects that are present at large values of λ.
In summary, we state that the transformation of observables can be successfully carried out

within the self-similar CUT scheme. The distribution of weight can be analyzed to judge the
quality of the applied quasiparticle picture. In the case of the spin chain we have seen that there
are problems in the transformation for λ & 0.6. Nevertheless the sum rule is fulfilled by the
weights In,rel with n ≤ 3 also for large λ. The channels with low triplon number carry the most
important contribution to the spectral weight.

4.3. Summary and outlook

In this chapter the self-similar CUT method was applied to one-dimensional spin systems. The
starting point both for the spin ladder and the spin chain was the dimerized system. In this
limit the spectrum is equidistant. In particular, there is a finite gap that separates the vacuum
from the one-particle excitations. The transformation can be applied without problems for
large dimerization. Increasing the coupling between the dimers we have observed convergence
problems in the spin ladder and the spin chain. For the spin ladder the problematic processes
are contained in operators from the {2, 4}-block, for the spin ladder they are situated in the
{2, 3}-block.

For the spin ladder we have calculated the one- and two-triplon energies for x = 0.5 and 1.0.
In the two-triplon sector the energies of bound states of total spin S = 0 and S = 1 have been
calculated. From a methodical point of view, we have not only derived the effective model but
also solved it in the one- and two-quasiparticle sector. The results compare well with the results
found by other methods.

The two- and four-triplon continua of the spin ladder show considerable overlap for x = 1.0.
This induces convergence problems in the transformation. It is an important result of the present
chapter that not only a finite one-particle gap is necessary for the self-similar CUT to work. A
substantial overlap of multi-particle continua will make it difficult as well to carry out a MKU
CUT safely. The MKU transformation sorts the eigenenergies according to the quasiparticle
number. A strong overlap of continua makes the re-ordering impossible. If the flow equation is
truncated, this process will lead to a loss of accuracy of the effective Hamiltonian. Since trunca-
tion is necessary in any real calculation this is an important issue in the context of self-similar
CUTs. In Sec. 4.1.5 we have given some suggestions how to handle this problem. One can stop
the flow at a minimum of the ROD and treat the remaining elements with another method, e. g.
perturbation theory or a numerical technique like Lanczos diagonalization. Another possibility is
to circumvent the convergence problems by modifying the course of the unitary transformation.
This has been done for the spin chain using a passive transformation.

For the chain system we have calculated the dispersion up to the value λ = 1.0 which corre-
sponds to the homogeneous spin chain. The transformation is straightforward for small values
of λ. For larger values convergence problems show up. To circumvent these problems we take
up a strategy proposed in Sec. 4.1.5. In a passive transformation the block that hinders the con-
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vergence is excluded from the generator. It is only taken into account within the Hamiltonian.
In a subsequent step, this block is transformed using a Wegner generator. The passive transfor-
mation converges. However, the passive scheme does not give better results for the dispersion at
λ = 1.0 than the plain MKU scheme that is stopped at a minimum of the ROD. Note that the
second step could be replaced also by some other means to deal with the effective Hamiltonian
given by the transformation in the first step.

The dispersion of the spin chain is quantitatively determined for values up to λ = 0.6. For the
isotropic case, there are sizeable deviations from the exactly known result. The spectral weights
for the observable Sz are calculated using the passive transformation scheme. They coincide
with the ones from PCUT up to λ ≈ 0.5. For larger values the passive transformation yields
less weight in the two-triplon channel.

For large values of λ there is a considerable overlap of continua of different quasiparticle
number. The analysis of the spectral weight for different self-similar transformations shows that
this overlap leads to lifetime effects. Multi-triplon states with different quasiparticle number
are allowed to decay into each other. This leads to a redistribution of spectral weight between
channels of different quasiparticle number.

The transformation of the observable has already been described in the method chapter
Chap. 2. For the spin chain it is carried out for the first time within the framework of the
self-similar CUT in real space. The transformation of observables is an important ingredient to
describe the outcome of experiments. A measured quantity always relates to a certain observ-
able. The following chapter will further pursue this path and compare the results for spectral
weights for the bosonic Hubbard model directly to an experimental result.
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5. Bosonic atoms in an optical lattice

In the last years, ultracold atoms trapped in optical lattices allowed to perform a new kind of
experiments in many-body systems. As the lattice in which the atoms are located is established
through adjustable laser beams the system parameters can be tuned [16, 17, 145–148]. In this way
it is possible to change the tunneling and the interaction parameter. Recent Bragg spectroscopy
experiments [16, 17, 146] found evidence for the transition to a Mott insulating state which is
one of the most prominent phenomena in the field of correlated many-body physics. While the
interpretation of the experiments as a transition to the Mott state is clear, the distribution of
spectral weight on the Hubbard peaks still lacks an explanation.

The aim of this chapter is to explain the distribution of spectral weight on the first and second
Hubbard peak in these experiments. To this end, it is necessary to clarify the significance of
various excitation processes depending on the kinetic and the interaction energy and on the
temperature. A self-similar CUT is used to map the bosonic Hubbard model onto an effective
model conserving the number of elementary excitations. Some contributions that are not particle
number conserving cannot be rotated away. These introduce small but finite life-time effects
that will be neglected. The experimentally relevant observable is transformed. Therewith the
spectral weights of the low-energy excitations are successfully calculated.

It will turn out that the results of the calculation have to be extended to finite temperature
in order to explain the experiment. An approximate thermodynamics for hard-core bosons
is therefore adapted to the present problem. The validity of the approximation is analyzed.
Within this approximation evidence for a significant temperature of the order of the interaction
parameter is found.

Further support for this finding comes from the analysis of the entropy of bosons confined
in optical lattices. This analysis is extended to contain also the Tonks-Girardeau regime of the
bosonic Hubbard model [149–152]. The Tonks-Girardeau regime can be treated by a mapping
onto free fermions. On the other hand, in the CUT calculation the effect of non-commensurate
fillings can be included using the approximate thermodynamics. The temperatures found in this
case are of the order of the hopping amplitude. This gives an explanation of the temperatures
determined by experiments for the Tonks-Girardeau regime [146]. The results of the two ap-
proaches are compared favorably. The obtained results give a consistent picture of the role of
temperature in one-dimensional optical lattices in the Tonks-Girardeau and the Mott-insulating
regime.
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5.1. Bosonic Hubbard model

Bosonic atoms in an optical lattice are described by the bosonic Hubbard model [145]. The
Hamiltonian of this model reads

H = tHt + UHU + µHµ (5.1.1)

= −t
∑

i

(b†i bi+1 + b†i+1bi ) +
U

2

∑
i

n̂i(n̂i − 1)− µ
∑

i

n̂i. (5.1.2)

We will only consider the one-dimensional case. The first term is the kinetic part tHt and the
second term the repulsive interaction UHU with U > 0. The last term accounts for a chemical
potential µ. The bosonic annihilation (creation) operators are denoted by b

(†)
i , the number of

bosons by n̂i = b†i bi . On the same site the bosons repel each other with interaction strength
U . In the limit t/U → 0 a site with n bosons contributes the energy E(n) = (U/2)n(n− 1). A
deviation from uniform filling costs the energy E(n + 1) + E(n− 1)− 2E(n) = U . For large U

and integer filling n it is energetically favorable to put just n bosons on each site. The system
is in an insulating state with an energy gap of the order of U . This situation is quite similar to
the case of the fermionic Hubbard model described in Chapter 3.

In the opposite limit where t/U is large bose condensation occurs at low enough tempera-
tures [153]. The condensated bosons are superfluid. The bosonic Hubbard model and its tran-
sition from a Mott insulator to a superfluid has been studied with various approaches. Among
the extensive literature on the bosonic Hubbard model there are mean-field treatments, e. g.
Refs. [145, 154–156], other analytical investigations, e. g. Refs. [153, 157–159], and numerical
treatments, e. g. Refs. [160–163]. The phase diagram in the t-µ plane consists of a series of Mott
insulating lobes, see Fig. 5.1. The Mott insulating phases correspond to an integer filling per
site.

The present chapter is only concerned with the first lobe of the phase diagram where n = 1.
To set up the self-similar CUT calculation the reference state has to be fixed. For t/U → 0 and
filling n = 1 the groundstate of Eq. (5.1.1) is the product state of precisely one boson per site

|ref〉 = |1〉1 ⊗ |1〉2 . . .⊗ |1〉N , (5.1.3)

where |n〉i denotes the local state at site i with n bosons. We take |ref〉 as the reference state
as described in Sec. 2.3.4. The reference state is sketched in Fig. 5.2. Deviations from |ref〉 are
considered as elementary excitations. The reference state is an eigenstate of HU . For finite t/U

the kinetic part tHt will cause fluctuations around the reference state.
In principle, each site can be occupied by an infinite number of bosons. The local Hilbert

space is infinite dimensional. Consequently, there are also infinitely many linearly independent
local operators on this space. The local Hilbert space has to be truncated to set up a real space
CUT that uses the method as described in Chapter 2. In the calculations in this chapter the
local bosonic Hilbert space is truncated to four local states. Numerical studies using the density-
matrix renormalization group (DMRG) have shown that this does not change the relevant physics
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Fig. 5.1: Sketch of the phase diagram of the bosonic Hubbard model in the (t/U, µ/U) plane [153, 163].

Mott insulating (MI) lobes are surrounded by a superfluid (SF) phase. Inside each MI lobe the filling is

fixed at an integer value. This chapter focuses on the MI lobe with filling n = 1.

[160–162]. As we are interested in the physical behavior in the first MI lobe where n = 1 we will
keep the four local states with smallest boson number. These are the states {|0〉i, |1〉i, |2〉i, |3〉i}.
Besides the local reference state |ref〉i = |1〉i, there are three more states and correspondingly
three local creation operators. They create local excitations. A hole at site i is created by
h†i |1〉i = |0〉i, a particle by p†i |1〉i = |2〉i, and d†i |1〉i = |3〉i induces another kind of particle at site
i. The particle created by d†i corresponds to a local occupation of a site by three bosons. This

(a) (b)

d p p h p

Fig. 5.2: (a) Sketch of the reference state with one atom per site, (b) a process commuting with HU but

not separately conserving the number of h, p and d particles. Starting from a d-excitation one gets to

three p- and an h-excitation. The number of bosons is conserved and both states have the energy 3U .

The implications of such processes are further discussed in Sec. 5.1.2.1.
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is treated as an independent quasiparticle.
The local bosonic operator b†i is thus represented by a four by four matrix

b†i =


0 0 0 0
1 0 0 0
0

√
2 0 0

0 0
√

3 0


i

= hi +
√

2p†i +
√

3d†ipi . (5.1.4)

Equation (5.1.4) implies the representation of the operator bi as the hermitian conjugate of b†i .
Note, that this representation of b†i and bi is an approximation. At this point the infinite local
Hilbert space is truncated to four states.

The explicit definitions of h†i , p†i and d†i with local matrices are

h†i =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


i

, p†i =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0


i

, d†i =


0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0


i

. (5.1.5)

The operators h, p and d obey the general commutation relations for hard-core bosons, see
Eq. (2.3.30) in Sec. 2.3.3. The commutation relations for hard-core bosons differ from those
of non-interacting bosons. We give just one example in the language of the present chapter to
illustrate this difference explicitly[

pi , p
†
j

]
= δi,j(1− h†ihi − 2p†ipi − d†idi ), (5.1.6)

whereas non-interacting bosons obey [bi, b
†
j ] = δi,j .

The Hamiltonian is rewritten using Eq. (5.1.4) as

H = tHt + UHU + µHµ (5.1.7a)

Ht = −
∑

i

(
h†ihi+1 + 2p†ipi+1 +

√
2hipi+1 +

√
2h†i+1p

†
i

+
√

3d†ih
†
i+1pi +

√
3h†id

†
i+1pi+1 +

√
6d†ipipi+1 +

√
6d†i+1pipi+1

+ 3d†ip
†
i+1pidi+1 + h.c.

)
(5.1.7b)

HU =
∑

i

(
p†ipi + 3d†idi

)
(5.1.7c)

Hµ = −L−
∑

i

(
−h†ihi + p†ipi + 2d†idi

)
(5.1.7d)

where L is the number of lattice sites. The hopping part Ht contains terms that are bilinear,
cubic and quartic in the operators h, p and d. The bilinear terms contain hopping and Bo-
goliubov terms involving h- and p-quasiparticles. Bogoliubov terms are those where a h- and a
p-quasiparticle are simultaneously created or annihilated. The cubic and quartic terms always
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involve d-quasiparticles. The interaction part HU takes the form of a bilinear operator in the
representation in Eq. (5.1.7). From this representation of the Hamiltonian the self-similar CUT
is implemented as described in Chap. 2.

In comparison to the CUTs in previous chapters we find common properties as well as dif-
ferences. A local representation of operators is used for the bosonic Hubbard model as well
as for the fermionic Hubbard model and the spin models. This leads in all cases to operators
that fulfill modified local commutation relations. Operators on different sites commute if they
are bosonic or anti-commute if they are fermionic. For the spin model and the present bosonic
Hubbard model there are only bosonic operators. Thus, the commutation relations are those of
hard-core bosons. In the case of the spin models and the fermionic Hubbard model the local
Hilbert space has only four states. There is no need to truncate the local Hilbert space. In
the present case of a infinite dimensional local Hilbert space we have to truncate the basis to
a finite dimension. Concerning the reference state, the situation here is simpler as the one for
the Hubbard model. There, the reference ensemble is constructed from two local states. For
the spin systems in Chap. 4 the CUT is based also on one reference state, the product of local
singlets. The local excitation however has been the local triplet with three flavors. For the case
of the bosonic Hubbard model the local excitations h†, p† and d† are not related by symmetry.

The full CUT calculation is presented in Sec. 5.1.2. Before, an approximate solution of the
problem is given in the next section.

5.1.1. Non-interacting approximation

Inspection of the Hamiltonian (5.1.7) shows that it is bilinear in the p- and h-operators. Cubic
and quartic terms always involve d-operators. In a first approximation all terms containing
d-operators are neglected. The Hamiltonian then reads

H = −t
∑

i

(
h†ihi+1 + 2p†ipi+1 +

√
2hipi+1 +

√
2h†i+1p

†
i + h.c.

)
+
∑

i

(
µh†ihi + (U − µ)p†ipi

)
− µL (5.1.8)

and after Fourier transformation

H = −µL +
∑

k

(
akh†−kh−k + bkp†kpk + ckp†kh†−k + ckpkh−k

)
(5.1.9)

with the definitions

ak = µ− 2t cos(k) (5.1.10a)

bk = U − µ− 4t cos(k) (5.1.10b)

ck = −2
√

2t cos(k). (5.1.10c)

Although this Hamiltonian is bilinear it is not easily solvable because the operators involved
obey hard-core commutation relations. However, as a second approximation we will replace the
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hard-core commutation relations by the commutation relations of non-interacting bosons. The
hard-core property of the operators is neglected. Then, a Bogoliubov transformation can be
employed to diagonalize the Hamiltonian. To this end the operators p and h are rewritten in
terms of new operators p̃ and h̃ as follows

p†k = cosh(αk)p̃†k + sinh(αk)h̃−k (5.1.11a)

pk = cosh(αk)p̃k + sinh(αk)h̃†−k (5.1.11b)

h†−k = cosh(αk)h̃†−k + sinh(αk)p̃k (5.1.11c)

h−k = cosh(αk)h̃−k + sinh(αk)p̃†k. (5.1.11d)

Here, the angle αk is a real parameter depending on the momentum k. With the definitions in
Eq. (5.1.11) the new operators p̃ and h̃ retain the non-interacting commutation relation. For
operators fulfilling hard-core commutation relations it is not possible to set up a Bogoliubov
transformation. That is the reason why the hard-core properties of the original operators have
been neglected in the present approximation.

The Hamiltonian is rewritten using the definitions in Eq. (5.1.11). The Bogoliubov transfor-
mation is realised by demanding that the anomalous terms p†kh†−k and pkh−k vanish. This is
achieved if the condition

tanh(2αk) = − 2ck

ak + bk
(5.1.12)

is satisfied. For each k this defines the angle αk. The transformed Hamiltonian has no anomalous
terms p†kh†−k. It reads

H =
∑

k

(
εhNI(k)h̃†−kh̃−k + εpNI(k)p̃†kp̃k

)
+
∑

k

(
−ak + bk

2
+

1
2

√
(ak + bk)2 − 4c2

k

)
− Lµ. (5.1.13)

where the dispersion of hole-like quasiparticles εhNI(k) and particle-like quasiparticles εpNI(k) are

εhNI(k) =
ak − bk

2
+

1
2

√
(ak + bk)2 − 4c2

k (5.1.14a)

εpNI(k) = −ak − bk

2
+

1
2

√
(ak + bk)2 − 4c2

k. (5.1.14b)

The subscript ”NI” indicates that these are the dispersions for the non-interacting approxima-
tion.

From the dispersion one can infer the phase diagram. As soon as it costs no energy to reduce
or enhance the number of bosons the filling is no longer fixed at the value n = 1. The transition
from the Mott insulating phase to the superfluid phase takes place. The upper boundary of the
MI phase is given by the following condition for the critical chemical potential µc

minkεp(k) = 0 −→ µp
c = ∆p

NI (5.1.15)
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and correspondingly the lower boundary is given by

minkεh(k) = 0 −→ µh
c = −∆h

NI. (5.1.16)

Here we have defined the one-particle gap ∆p/h
NI which is the minimum of the dispersion with

µ = 0
∆p/h

NI := mink{εp/h
NI (k)|µ = 0}. (5.1.17)

The difference in sign in Eqs. (5.1.15) and (5.1.16) stems from the fact that a positive chemical
potential reduces the energy of a particle while it enhances the energy of a hole. Using the
dispersion (5.1.14) one finds

µ
p/h
c

U
=

1− 2 t
U

2
± 1

2

√
1− 12

t

U
+ 4

(
t

U

)2

. (5.1.18)

The Mott insulating region exists only up to a finite value of tc. If the critical chemical potentials
for particles and holes are equal the Mott insulating phase reduces to a single point. The
condition for tc is that µp = µh and we find

tNI
c =

(
3
2
−
√

2
)

U ≈ 0.086U. (5.1.19)

It is surprising that one finds a critical tc for the Mott phase and one therefore can describe the
phase diagram qualitatively. We postpone further discussion of the results to the next chapter.
There, also a comparison to CUT results will be made. The results for the critical chemical
potential Eq. (5.1.18) are also found using mean-field theory [154–156, 159]. The mean-field
theory in the cited references is based on a decoupling of the hopping part of the Hamiltonian.
It introduces a superfluid order parameter. The transition to the Mott phase is defined as the
point where the superfluid order parameter vanishes. It is not obvious why our non-interacting
approximation and the mean-field treatment give the same results. In both approaches the
Hamiltonian is reduced to a bilinear form. This might be the cause for the coinciding results.
Now, we turn to the solution of the full problem using a real space CUT.

5.1.2. CUT treatment

The CUT calculation is based on the Hamiltonian (5.1.7). The only approximation made to
arrive at this Hamiltonian is the restriction of the local Hilbert space to four states. The
hard-core commutation relations are taken into account exactly. The Hamiltonian Eq. (5.1.7)
conserves the number of bosons. But it does not conserve the number of the newly introduced
h-, p- and d-quasiparticles. For example, the application of Ht to the reference state generates
particle-hole pairs. To get rid of the terms that change the number of the h, p and d quasiparticles
a MKU generator is chosen as

ηi,j(l) = sgn (qi − qj) Hi,j(l) (5.1.20)



126 Bosonic atoms in an optical lattice

0 5 10 15 20 25 30

l·U

1e-06

0.0001

0.01

1

R
O

D
/U

2
d=2, t/U=0.1
d=2, t/U=0.2
d=2, t/U=0.25
d=2, t/U=0.3
d=3, t/U=0.1
d=3, t/U=0.2
d=3, t/U=0.25
d=3, t/U=0.3

0 2 4
l·U

0.01

1

Fig. 5.3: Residual off-diagonality for truncations d ∈ 2, 3 and t/U ∈ 0.1, 0.2, 0.25, 0.3. Note that the

vertical axis has logarithmic scale. The inset shows a magnification for small values of the flow parameter

l.

in an eigenbasis of HU ; qi is the corresponding eigenvalue of HU [12, 13]. The choice of this
generator leads to an effective Hamiltonian commuting with HU . The transformation eliminates
most terms that change the number of quasiparticles. However, there are terms that do not
conserve the number of all types of quasiparticles separately, but commute with HU . They are
still present at the end of the flow. These terms are rather complicated and involve at least five
local operators. Their structure will be discussed in Sec. 5.1.2.1.

From Eq. (5.1.20) the flow equations are computed. They do not close and therefore one has
to truncate the proliferating number of terms. A local truncation scheme is used to truncate
the flow equations. The general truncation procedure is described in Sec. 2.3. The maximal
distance between two operators in a term in the Hamiltonian is defined to be its extension. For
the bosonic Hubbard model only the extension is used as a truncation criterion. Terms with
an extension larger than a fixed limit value are discarded. No additional constraint for different
blocks of the Hamiltonian is imposed as it has been done for the spin systems in Chapter 4. The
residual off-diagonality (ROD) is calculated as the sum of the moduli squared of the terms that
change the number of quasiparticles. Figure 5.3 shows the ROD for maximal extension d = 2
and d = 3. For maximal extension d = 2 the ROD is a monotonically decaying function for all
values of t/U . The Hamiltonian can thus be diagonalized by the CUT. In the ROD for maximal
extension d = 3 a different behavior is seen. For values t/U ≥ 0.12 the ROD shows a minimum
at lmin. This signals that the intended transformation cannot be performed completely due to
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overlapping higher continua. Overlapping continua introduce finite life-time effects that hinder
a unitary mapping onto an effective Hamiltonian that conserves the number of quasiparticles.
This effect is also present in the case of the fermionic Hubbard model and in the spin systems,
see also the discussion in Sec. 4.1.4.

Fortunately, reliable and quantitative results can be achieved by stopping the flow in the first
minimum lmin of the ROD. Even for a value as large as t/U = 0.2 the ROD decreases to a value
as low as 0.06 times the initial value at lmin. Each individual coefficient is much smaller. In
addition, by far the largest contribution to the ROD originates from operators which embody
transitions between sectors with high numbers of quasiparticles.

This is clearly seen when the total ROD is classified according to the number of quasiparticles
involved in each process. An off-diagonal operator that creates i quanta and annihilates j quanta
contributes to the ROD of the {i, j}-block. The number of created and annihilated quanta are
counted using HU . Thus, a p† operator creates one HU quantum while a d† operator creates
three HU quanta. The distribution of the ROD over the various blocks is shown in Fig. 5.4 for
extension d = 3 and hopping parameter t/U = 0.15. At l = 0 only the blocks {2, 0}, {4, 2}
and {5, 1} contribute. Their amplitudes decrease quickly and the contribution of other blocks
increases. The minimum of the total ROD is at lmin = 1.358 U . This value is pointed out in
Fig. 5.4 by a thin vertical line. At lmin almost the complete ROD is found in the {7, 5}-block.
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Blocks with small numbers of excitations are reliably separated by the CUT from other blocks.
Therefore it is sufficient for the purpose of the present study to stop the CUT at lmin. Remaining
off-diagonal operators could be treated in perturbation theory. But, they would only have very
small effects because of the small size of the corresponding coefficients.

5.1.2.1. Block-diagonality in a situation with different types of quasiparticles

The MKU generator Eq.(5.1.20) rotates on an effective Hamiltonian that commutes with HU .
Terms in the effective Hamiltonian conserve the eigenvalue q of HU . In a situation with only
one type of quasiparticle, commutation with the corresponding counting operator ensures con-
servation of the quasiparticle number. This is the case for the fermionic Hubbard model that is
studied in Chapter 3. In Chapter 4 the local excitations are the three flavors of a triplet excita-
tion. The excitation of a triplet changes the eigenvalue of the corresponding counting operator
by one. This does not depend on the triplet flavor. Therefore, in the case of the spin system
only the total triplet number is conserved after the CUT.

In the present case, excitations of the different quasiparticles do not change the eigenvalue of
HU by the same value. Here, we want to investigate to what extent the number of the individual
quasiparticles is conserved after the CUT. Let us consider an operator o with (nh, np, nd) creation
operators of h-, p- and d-particles and (mh,mp,md) annihilation operators of h-, p- and d-
particles. Such an operator changes the number of quasiparticles by dh = nh−mh, dp = np−mp,
dd = nd −md. It commutes with HU if

[HU , o] = dp + 3dd = 0. (5.1.21)

An additional constraint on the structure of the operator is given by the conservation of the
atom number. The atom number is conserved if

[Hµ, o] = −dh + dp + 2dd = 0. (5.1.22)

Equations (5.1.21) and (5.1.22) are solved for given dd by

dp = −3dd (5.1.23a)

dh = −dd. (5.1.23b)

The first nontrivial operator is found for dd = 1, dp = −3 and dh = −1. The corresponding
operator is schematically

p†ip
†
jp
†
kh†l dm (5.1.24)

where i, j, k, l, m are position indices. A sketch of this type of process is shown in Fig. 5.2b on
page 121. The only terms which do commute with HU but do not conserve the quasiparticle
number are complicated terms of the type shown in Eq. (5.1.24) or even more complicated
ones for dd > 1. Of course, one also finds similar operators for dd < 0. In the present case
of different quasiparticles the CUT achieves nearly block-diagonality. Only very complicated
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Fig. 5.5: The dispersion of particle-like p-excitations is shown for maximal extensions d ∈ {2, 3} and

various values of t/U .

processes changing the number of excitations survive. Most processes changing the number
of quasiparticles are rotated away. All sectors with up to three particles of p or h type are
separated from the rest of the Hilbert space. In particular, the one p or one h dispersion is
perfectly separated. We note that the presence of a decay process of a d-excitation like in
Eq. (5.1.24) does not influence the results that are presented in the following.

5.1.3. Dispersion and phase diagram

The dispersion is defined as the one-particle energy with the chemical potential µ set to zero.
The dispersion is calculated for extensions d ∈ {2, 3} and t/U ∈ {0.1, 0.15, 0.2, 0.25}. Figure 5.5
shows the dispersion of particle-like p-excitations ωp(k) and Fig. 5.6 the dispersion of hole-like
h-excitations ωh(k). The bandwidth of p-particles is larger than the bandwidth of h-particles.
This is already clear from the hopping matrix elements which are larger for transitions between
states of higher boson occupation, see Eq. (5.1.4).

The results for the p dispersion ωp(k) for t/U = 0.1 for values of the maximal extension d = 2
and d = 3 lie on top of each other. For t/U = 0.15 and 0.2 there are differences especially for
k ∈ [0.5π, 1.0π] where the energy of the particles is high. For t/U = 0.25 there are sizeable
deviations also for smaller k values. At the minimum of the dispersion the agreement of the
calculations with extension d = 2 and d = 3 is very good. The hole dispersion ωh(k) for
t/U = 0.1 coincides well for extensions d = 2 and d = 3. Again, the discrepancies of the various
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truncation schemes become larger for larger values of t/U , especially at higher energies. The gap
value for particle and hole excitations depends only little on the truncation. This observation
is exemplified by the two expressions for the dispersion for t/U = 0.2 for extension d = 2 and
d = 3

d = 2 : ωp(k) = (1.156− 0.706 cos(kπ)− 0.123 cos(2kπ)) U (5.1.25)

d = 3 : ωp(k) = (1.153− 0.680 cos(kπ)− 0.104 cos(2kπ)− 0.0536 cos(3kπ)) U(5.1.26)

and their minimum values at k = 0:

d = 2 : ωp(0) = 0.315U (5.1.27)

d = 3 : ωp(0) = 0.327U. (5.1.28)

The dispersion for extension d = 2 has only two cosine terms. However, their prefactor is
somewhat larger than in the d = 3 result such as to mimic the effect of the third cosine term
in the d = 3 dispersion. Therefore, the agreement of the gap value for different truncations is
much better than the agreement of the coefficients. The states with low energy are energetically
far away from the continua. Their energy is very stable compared to the energy of higher lying
states.

Also the non-interacting approximation presented in Sec. 5.1.1 yields a result for the dispersion.
It is given as an explicit formula in Eq. (5.1.14). Figure 5.7 compares the result of the non-
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Fig. 5.7: Comparison of the quasiparticle dispersion of the non-interacting approximation (NI) and of

the CUT with maximal extension d = 3. (a) Dispersion of particle-like p-excitations, (b) Dispersion of

hole-like h-excitations. Sizeable differences are seen already for small values of t/U .

interacting approximation (NI) to the CUT result. Figure 5.7a shows the dispersion of p-
excitations. For t/U = 0.04 the non-interacting approximation is in good agreement with the
CUT result. Already for t/U = 0.08 the deviations are quite large. The NI dispersion is lower
as the CUT result. This is consistent with the observation of a too low critical tNI

c = 0.086 U

found within the NI approximation. The hole dispersion in Fig. 5.7b compares similarly to the
CUT results. For t/U = 0.04 it is close to, but already below, the CUT-dispersion. Again,
the NI dispersion for t/U = 0.08 is much to low. In particular, the gap value is off by 0.16 U .
Finally, these deviations leed to a vanishing of the energy for a particle-hole excitation already
at tNI

c = 0.086 U .

5.1.3.1. Phase diagram

From the minima of the particle and hole dispersion one can determine the phase diagram, as
it has been described in Sec. 5.1.1. We repeat here the necessary definitions. The one-particle
gap is defined as

∆p/h := mink{ωp/h(k)}. (5.1.29)

Remember that we set the chemical potential to zero in the definition of the dispersion ωp/h.
Therewith the critical chemical potential where particle-like excitations become gapless is defined
as

µp
c = ∆p. (5.1.30)

The solution of this condition gives the upper boundary of the first Mott-insulating lobe. Corre-
spondingly, the lower boundary is given by the condition that the hole-like quasiparticles become
gapless

µh
c = −∆h. (5.1.31)



132 Bosonic atoms in an optical lattice

0 0.05 0.1 0.15 0.2 0.25 0.3
t/U

0

0.2

0.4

0.6

0.8

1
µ/

U
∆p

2

-∆h
2

∆p
3

-∆h
3

Series
DMRG
non-
interactingMI

SF

SF

Fig. 5.8: Phase diagram with Mott insulating (MI) and superfluid (SF) phase in the (t/U, µ/U) plane.

Dotted (dashed) lines show CUT results for maximal extension d = 2 (d = 3). Solid lines (symbols)

show series (DMRG) results from Refs. [157, 162]. The result from the non-interacting approximation

of Sec. 5.1.1 is shown as dot-dashed line.

The definitions of µp
c and µh

c differ in sign because a positive chemical potential reduces the energy
of a particle while it enhances the energy of a hole. This is directly seen in the Hamiltonian,
Eq. (5.1.7). As soon as it costs no energy to reduce or enhance the number of bosons the filling
is no longer fixed at the value n = 1. The transition from the Mott insulating phase to the
superfluid phase takes place.

The reliability of our approach is tested by comparison to results for the phase diagram from
other methods. Figure 5.8 shows the phase diagram of the bosonic Hubbard model obtained
from the CUT calculation as well as data from DMRG and series expansion [157, 162].

The dotted (dashed) curves result from CUTs for maximal extension d = 2 (d = 3). For
d = 2, the CUT can be performed until l = ∞; for d = 3, the flow is stopped at lmin. Solid
curves depict the findings by series expansion, the symbols those obtained by DMRG [157, 162].
The dot-dashed line shows the results from the non-interacting approximation of Sec. 5.1.1.
Quite surprisingly, the non-interacting result shows a phase transition to the superfluid regime
at tNI

c = 0.086 U . Also the slope of the phase boundaries at t/U = 0 is correct in the non-
interacting approximation. However, already for small t/U there are sizeable deviations from
the more accurate results.

The lower phase boundary stemming from the hole dispersion shows that the gap of the hole-
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like excitations depends non-monotonically on the hopping t/U . This is best seen in the inset
of Fig. 5.6. The hole gap for t/U = 0.25 is larger than the one for t/U = 0.2. This translates
into a reentrant behavior in the phase diagram. Increasing t/U at constant chemical potential
µ ≈ 0.19 U , the Mott insulating phase is left and then entered again for larger values of t/U .

The agreement with the other methods is very good in view of the truncation of the Hilbert
space and of the low value of the maximal extension. Note that the d = 3 result agrees better
than the d = 2 result. As expected, the deviations increase for larger values of t/U because
longer-range processes become more important. Yet, the values obtained by the CUT for the
critical ratio xc := t/U , where the MI phase vanishes, are reasonable. We find x

(d=2)
c = 0.271

and x
(d=3)
c = 0.258. By high accuracy density-matrix renormalization xc = 0.297 ± 0.01 was

found, see Ref. [163] and references therein. Series expansion provides xc = 0.26 ± 0.01 which
is very close to our value x

(d=3)
c . This fact underlines the similarity between the real-space

realization of the CUT used here and series expansions.
The transition from the Mott insulator to the superfluid is of the Kosterlitz-Thouless type

[153]. This implies an intricate behavior of the gap ∝ exp( const√
xc−x

). For this reason, also DMRG
calculations cannot detect the phase transition from the gap value [163]. The critical hopping tc

at the tip of the Mott insulator is determined using the properties of correlation functions. The
decay of the correlation functions in the superfluid phase is governed by the Luttinger parameter
K. At the transition it is known that K = 1/2. Therefore, the transition point can be found by
fitting the decay of the correlation functions. In this way the transition point is determined in
DMRG calculations [163].

From the findings for the phase diagram in Fig. 5.8 we see that such a peculiar phenomenon as
the reentrant behavior of the Mott insulating phase is captured by the CUT approach. The CUT
yields quantitative results in a large parameter regime which are in good agreement with the best
numerical tools that are available at present. The CUT results are reliable within the MI phase
at least for t / 0.2U . On the other hand the mapping to the particle-conserving Heff does not
capture the Kosterlitz-Thouless nature of the transition. In the language of the 2D XY-model,
where it was originally found, the Kosterlitz-Thouless transition is an unbinding transition of
vortices [164]. The physics of these complicated objects is not captured by the real space CUT
treatment. The reason is that the real space CUT tries to map the problem to an effective
Hamiltonian which is rather local. The largest maximal extension used is d = 3. The processes
included within this maximal extension do not reproduce the physics of the Kosterlitz-Thouless
transition.

5.2. Experiment and relevant observable

The calculations in this chapter aim to explain the experimental results of Stöferle et al. [17,
148]. This section describes the experiment and explains which observable is the experimentally
relevant one.

In the experiment Rubidium atoms are cooled to very low temperatures until they Bose



134 Bosonic atoms in an optical lattice

y y

potential
trap

Fig. 5.9: Process of loading the bosonic atoms into an optical lattice. On the left the parabolic trapping

potential is shown. In the process of loading an additional modulation of the potential produces an

artificial lattice. The minima of the potential correspond to lattice sites. This situation is sketched on

the right. In the Mott insulating phase the atoms are localized in the minima of the lattice. This is

indicated in the figure by black circles.

condense. They are loaded into a magnetic trap. An artificial lattice is formed by an additional
periodic optical potential. The atoms in this lattice are described by the bosonic Hubbard
Hamiltonian [145]. The dimensionality of the artificial lattice can be tuned by an anisotropic
lattice potential. In the one-dimensional case a potential is produced with large potential depths
in x- and z-directions which produce extremely small tunnelling rates in these directions. In
the y-direction the potential is ramped to a lower value Vax,0. A one-dimensional Bose system
in the tubes along the y-axis is formed. The loading of the atoms into the artificial lattice is
schematically shown in Fig. 5.9. After the preparation of the one-dimensional Bose system the
spectroscopic experiment is performed. Two-photon Bragg spectroscopy is used to measure the
energy-dependent response of the system. The lattice potential Vax,0 is periodically modulated
with amplitude Amod and frequency νmod

Vax(t, y) = (Vax,0 + Amod sin(2πνmodt)) sin2(ky). (5.2.32)

The amplitude of the modulation is Amod = 0.2Vax,0. Thus it represents a large perturbation of
the system. The frequency νmod determines the energy of the excitation. After the modulation
the lattice potential is gradually switched off and an absorption image of the expanding atom
cloud is taken. The width of the central momentum peak is a measure of the spectral weight of
the excitation at the respective energy. The experiment has been performed for several values
of t/U from the superfluid to the Mott insulating regime.

The results for the spectral weights taken from Ref. [17] are shown in Fig. 5.10. One clearly
sees the qualitative change in the measured spectra: from a broad response in the superfluid
phase to a discrete spectrum in the Mott phase. The discrete spectrum consists of two peaks.
The first is close to the energy given by the interaction strength U , the second is at ≈ 1.9 U .
These peaks are the first and second Hubbard peak.
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FIG. 2: The measured excitation spectrum of an array of 1D
gases (V⊥ = 30 ER) is shown in (a) for different values of
Vax,0. The interaction ratios U/J given in brackets are calcu-
lated numerically using a band structure model in the tight-
binding approximation [9]. Spectrum (c) shows the superfluid
to Mott insulator transition in the 3D case (V⊥ = Vax,0). The
crossover region between the one- and the three-dimensional
system (V⊥ = 20 ER) is shown in (b).

In the Mott insulating phase we find the first resonant
peak for all data sets close to the calculated value of U .
A second peak appears at (1.91± 0.04) times the energy
of the first resonance, somewhat smaller than the value of
2 reported in [1]. This resonance might be attributed to
defects where lattice sites with n = 1 atom next to sites
with n = 2 atoms are being excited. For the 1D system
and in the dimensional crossover regime (Fig. 2a and b) a
much weaker resonance appears at (2.60±0.05) times the
energy of the first resonance which could indicate higher
order processes of two atoms tunnelling simultaneously.
In figure 3a we plot the rms width of the first resonance
in the excitation spectrum of the Mott insulating phase
when fitted by a gaussian. In figure 3b we show the
ratio of the amplitudes of the second and the first peak.
Apparently, in the 1D system the first peak is wider and
the second peak more pronounced as compared to the
3D situation, which could be an indication of increased
fluctuations in 1D systems.
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FIG. 3: (a) Width of the first resonance peak in the spectrum
of the Mott insulator. (b) Ratio of the amplitudes of the sec-
ond and the first peak of the spectrum of the Mott insulator.
The error bars mark the error of the gaussian fits.

Compared to the superfluid properties the coherence
properties of the system provide complementary infor-
mation about the state of the gas. They are probed by
studying the matter wave interference pattern [1, 21].
Here we first prepare the array of 1D systems as above
but do not apply our excitation scheme. Instead, af-
ter holding the atoms at the final lattice depth for th =
30 ms, we increase Vax rapidly (< 40 µs) to about 25 ER

and then abruptly switch off all optical and magnetic
trapping potentials. This procedure projects the differ-
ent initial configurations onto the same Bloch state. To
extract the number of coherent atoms Ncoh from the in-
terference pattern, the peaks [23] at 0h̄k, ±2h̄k and ±4h̄k
are fitted by gaussians (Fig. 4b). Incoherent atoms give
rise to a broad gaussian background which dominates for
higher Vax,0. Taking this fit as a measure of the number
of incoherent atoms Nincoh, we calculate the coherent
fraction fc = Ncoh

Ncoh+Nincoh

. As shown in figure 4a, fc de-

creases slowly to zero for increasing values of U/J and
appears almost independent of the dimensionality. This
coincides with the prediction that for strongly interact-
ing Bose gases in optical lattices the superfluid fraction

Fig. 5.10: Figure taken from Stöferle et al. [17]. It shows the experimental result for the excitation

spectrum of bosonic atoms confined to 1D. The values of U/J are given in brackets. Note that t = 2J .

Therefore, the lowest curve corresponds to U/t = 72. One clearly sees the transition from a two peak

structure at small t/U to a broad spectrum at larger t/U .

In the present work, we will only deal with the spectroscopic response in the MI region. For
references dealing with the experiment in the superfluid regime, see Refs. [165–167]. There is
also recent theoretical work dealing with energy absorption experiments in optical lattices in the
MI regime [165, 167, 168]. However, references [165, 168] do not use the observable relevant for
the experiment in Ref. [17]. Therefore, these references can not reproduce the spectral weight
that is present in the experiment. For the MI region, reference [167] deals only with the weight
in the first peak.

The aim of this chapter is to explain the surprisingly large spectral weight in the second
Hubbard peak. We will not discuss the relative position of the two peaks. From the experimental
data shown in Fig. 5.10 the ratio of the weight in the first peak S1 and in the second peak S2

can be estimated to be 0.25 < S2/S1 < 0.5 for values of t/U = 1/46 and t/U = 1/72. It is
absolutely unclear why such small values of t/U should produce so much weight in the second
Hubbard peak.
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Processes contributing to the weight S2 have energy 2U . This energy can be realized either by
additional creation of a particle-hole pair or by higher processes in the action of the observable.
In perturbation theory both contributions are one order smaller in t/U than the leading processes
that give rise to the weight S1. As the experiment is performed at very small t/U the large ratio
of S2/S1 is incompatible with the perturbative reasoning.

For the explicit calculation of the spectral weight in this experiment one first has to find the
relevant observable. The modulation of the lattice potential changes the depth of the wells and
the tunneling rates between adjacent wells of the lattice. Therefore, the observable changes the
microscopic parameters U and t and is of the following form

O ∝ δt Ht + δU HU . (5.2.33)

Since multiples of the Hamiltonian do not induce excitations we consider

O → O − (δU/U)H, (5.2.34)

so that the relevant part of the observable at the beginning of the flow is proportional to the
kinetic part of the Hamiltonian

O(l = 0) ∝ Ht. (5.2.35)

The observable in Eq. (5.2.35) acts on the bonds between two sites. The total effect of the
observable on all bonds is written as a sum of the local observables (see also Sec. 2.3.5)

O(l) =
∑

r∈i+1/2

O(l, r) (5.2.36)

where i denotes lattice sites. For flow parameter l = 0 this is the initial observable, for l = ∞ it
is the effective observable after the transformation. The local observable reads

O(l, r) =
∑
{i,α}

ĉ(l, {i, α})oi1+r,α1 · · · · · oin+r,αn
(5.2.37)

with the multi-index {i, α} summing over all combinations of site indices {i} and operator indices
{α} where we use the notation of Sec. 2.3.5. The right hand side of Eq. (5.2.37) can be rewritten
using the specific quasiparticle creation and annihilation operators

O(l, r) =
∑

{i,i′,j,j′,k,k′}

c(l, {i, i′, j, j′, k, k′}) h†i1+r · ... · h
†
inh

+rhi′1+r · ... · hi′mh
+r ×

p†j1+r · ... · p
†
jnp+rpj′1+r · ... · pj′mp

+r ×

d†k1+r · ... · d
†
knd

+rdk′1+r · ... · dk′md
+r (5.2.38)

where (nh, np, nd) are the number of (h, p, d) quasiparticles created and (mh,mp,md) are the
number of (h, p, d) quasiparticles annihilated. Although the formula is rather lengthy, it allows
to easily read off the type of process described by each term in the observable. The powers of
creation and annihilation operators in (5.2.38) is collected in the type

(n̄; m̄) = (nhh npp ndd; mhh mpp mdd) (5.2.39)
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characterising the operator. The CUT transforms the observable O(l = 0) into the effective
observable Oeff = O(l = ∞).

The flow equation for the observable does not close. The generation of terms contributing to
the effective observable has to be truncated. For the details of the truncation of the observable
see Sec. 2.3.5 where general aspects are explained. Here, we want to repeat just the main
aspects of the truncation procedure for the observable. For the Hamiltonian the largest distance
between two operators in each terms is used as the truncation criterion. This is not possible for
the observable. The local observable Eq. (5.2.37) acts on one definite bond r. Therefore, the
coefficient of a term depends on its position relative to the bond r. This has to be included in the
estimation of the importance of a process. We define an integer dO and compare it to the sum
of the distances of all local operators oi in a certain term in Eq. (5.2.37). If the sum is smaller
than or equal to dO the term is kept, otherwise discarded. The value dO defines the truncation.
For the observable in Eq. (5.2.36) transformations with dO = 2, 3, 4 have been carried out.

5.3. Spectral weights at zero and finite temperature

The momentum and frequency resolved spectral density S(k, ω) for the observable O is defined
as

S(k, ω) = − 1
π

ImG+
O(k, ω) = − 1

π
Im
〈

0
∣∣∣∣O†(k)

1
ω − [H(k)− E0] + i0+

O(k)
∣∣∣∣ 0〉 (5.3.40)

where G+
O is the retarded zero-temperature Green’s function. It describes the response of the

system for positive energy ω at momentum k. The energy of the particles introduced by the
observable O determines the energy dependence of S(k, ω). A quantity that is the result of an
integration of the spectral density is called spectral weight.

In order to explain the experiment the distribution of spectral weight has to be calculated
for the observable Eq. (5.2.36). The observable in Eq. (5.2.36) gives only rise to spectral weight
with momentum k = 0. An observable with a contribution at finite momentum would include a
k-dependent phase factor eikr.

A sketch of the spectral weight S(k = 0, ω) for this observable is shown in Fig. 5.11. There
is a first continuum at U and a second one at 2U . For small t/U they are well separated.
The integral over the spectral density in the first continuum defines the spectral weight S1.
Correspondingly, S2 is the spectral weight in the second continuum. For t/U = 0 the spectral
weight consists of δ-functions at multiples of U . The energy of a process is solely determined by
HU . At finite t/U the δ-peaks are broadened to continua. As we are interested in the regime
of small t/U the continua do not overlap. It is sufficient to take HU to measure the energy of
an excitation to assign its weight to S1 or S2. Here it is important to note that the assignment
to the spectral weight in S1 or S2 can only be done after the CUT. Only then, the effective
Hamiltonian commutes with HU and a fixed HU quantum number can be assigned to every
state.
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Fig. 5.11: Sketch of the distribution of spectral weight S(k = 0, ω). The weight centered around ω = U

is attributed to S1, the weight around ω = 2U to S2.

The aim of the present study is to clarify the distribution of the integrated weights S1 and S2.
For this purpose, it is not necessary to calculate the lineshape of S(k, ω). Of course, the actual
lineshape would be an interesting topic on its own.

To obtain further insight we compute the spectral weight of various processes separately. The
type of an operator in the observable has been defined in the context of Eq. (5.2.38). The
type (n̄; m̄) = (nhh npp ndd; mhh mpp mdd) collects the numbers of creation and annihilation
operators in the term. We define the weight corresponding to a type (n̄; m̄) as

Ieff
(n̄;m̄). (5.3.41)

These weights are calculated after the transformation. Therefore, they carry a superscript ”eff”.
The weight Ieff

(n̄;m̄) is calculated by summing the moduli squared of all coefficients of the given
type (n̄; m̄).

At zero temperature, only processes that do not annihilate the vacuum contribute. They are
of the type (n̄; 0). As the number of bosons is conserved one hole (h-particle) has to be generated
together with each p-particle and two holes together with each d-particle. In the first place, the
observable introduces particle-hole pairs (type (1h 1p; 0)). Their energy is about U . Higher
processes introducing n particle-hole pairs (nhh npp; 0) have the energy nU . The first processes
involving a d particle are of type (2h 1d; 0) at energy 3U . Thus, the relative spectral weight
S2/S1 at zero temperature is calculated from the weights Ieff

(1h 1p;0) and Ieff
(2h 2p;0). These weights

are plotted in Fig. 5.12a for the truncations dO = 2, 3, 4. The convergence with the truncation
criterion dO is very good in both cases. The curve for dO = 4 is on top of the dO = 3 curve. The
spectral weight Ieff

(2h 2p;0) which is situated at an energy of 2U is very small. Note that the curves
for different observable extension are on top of each other. Thus the large experimental value



5.3 Spectral weights at zero and finite temperature 139

0 0.05 0.1 0.15 0.2
t/U

0

1

2

3

4

5

6
Ief

f

Ieff
(hp;0), dO=2

Ieff
(hp;0), dO=3

Ieff
(hp;0), dO=4

Ieff
(2h2p;0), dO=2

Ieff
(2h2p;0), dO=3

Ieff
(2h2p;0), dO=4

(a)

0 0.05 0.1 0.15 0.2
t/U

0

1

2

3

4

5

6

Ief
f

Ieff
(h2p;p)+Ieff

(2hp;h), dO=2

Ieff
(h2p;p)+Ieff

(2hp;h), dO=3

Ieff
(h2p;p)+Ieff

(2hp;h), dO=4

Ieff
(hd;p), dO=2

Ieff
(hd;p), dO=3

Ieff
(hd;p), dO=4

(b)

Fig. 5.12: Spectral weights of various processes for the truncations dO = 2, 3, 4 in dotted, dashed and

full lines, respectively. (a) shows contributions from processes starting from the vacuum: Ieff
(hp;0) which

gives spectral weight at energy U (black line), Ieff
(2h2p;0) with energy position 2U (gray/cyan line). (b)

contributions from processes for one particle present: Ieff
(h2p;p) + Ieff

(2hp;h) (contributes at U) (black line),

and Ieff
(hd;p) (at 2U) (gray/cyan line).

of S2/S1 cannot be explained in a translational invariant system at zero temperature. However,
the experiment is performed in a finite trap. The finite system size leads to an inhomogeneous
distribution of the atoms. The possible implications of the inhomogeneity are discussed later in
this section.

In Fig. 5.12b the contributions to the spectral weight are plotted for processes that start from
one excitation. This excitation can be a particle or a hole. The contributions to the spectral
weight at U are Ieff

(h2p;p) and Ieff
(2hp;h). Their sum is depicted by the black curves. Convergence

is not fully reached but the small difference between the dashed curve for dO = 3 and the solid
curve for dO = 4 indicates that the dO = 4 result is already very close to the true solution. A
large contribution of spectral weight at 2U is found from processes of the type (hd; p). This
channel is a candidate to support the experimental finding of large S2/S1.

Processes of the type (hd; p) contribute spectral weight only if p-excitations are present. This
is not the case for the case of zero temperatures that has been discussed up to now. However,
quasiparticles are present at finite temperatures. At not to high temperatures, independent
particles p and holes h are the prevailing excitations. The presence of p-excitations in the
groundstate at finite temperature can give rise to enhanced spectral weight S2 at 2U . The
increase of spectral weight S2 with increasing temperature is calculated in the next section.
Other excitations, for instance d† or (p†)2, are higher in energy and thus much less likely.

That adjacent pairs of singly and doubly occupied sites are at the origin of the high energy
peak has already been suggested in Refs. [16, 17]. However, the presence of these defects deep
inside the Mott insulating regime has to be explained. At zero or at very low temperature,
the inhomogeneity of the parabolic trap can imply a spacially inhomogeneous distribution of
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the bosons. Plateaus of various occupations 〈n〉 ∈ {0, 1, 2, . . .} are found, depending on the
total filling [169, 170]. The plateaus correspond to local Mott insulating situations with particle
density n = 1, n = 2, and so on. In the transition region from one integer value of 〈n〉 to the next,
defects occur which lead to excitations at 2U . But it is unlikely that this mechanism explains
the experimental finding since the transition region is fairly short at small temperatures T/U

and small values of t/U [169, 170]. The plateaus prevail clearly, while the high energy peak at
2U has only by a factor 2 to 5 less weight than the low energy peak at U . It is not plausible that
these ”steps” govern the behavior of the spectroscopic response of the bulk system. Therefore,
it is unlikely that the inhomogeneity of the trap is sufficient to account for the experimental
finding. At higher temperatures, thermal fluctuations are the likely candidate for the origin of
the defects. The next section is devoted to the calculation of the effect of a finite temperature
on the spectral weights.

5.3.1. Finite temperature

At finite temperatures, the system is not in its T = 0 groundstate. Excitations are present.
This changes the distribution of spectral weight of the effective observable. To quantify the
modification of spectral weight the occupation numbers of the excitations have to be calculated.
The statistics of hard-core particles is complicated and thus a direct evaluation of the partition
function is not easily tractable. Therefore, we will approximate the hard-core statistics in a way
introduced in Ref. [171]. The occupation number of an excitation depends on its energy. As the
one-particle energies are given in momentum space the effective observable has to be Fourier
transformed partially such that it is clear which energy the annihilated particles have.

Approximation for finite temperature

This section will adapt the calculation from Ref. [171] for hard-core boson at finite temperatures
for our purpose. In Ref. [171] the triplet excitations above a singlet product state of a spin
ladder are treated. In our case the relevant excitations are one-particle and one-hole excitations.
Multiple p and h excitations and excitations of d-type are much less relevant because of their
high energy. Therefore, we will neglect d-excitations and correlated excitations of more than
one particle or hole in the following. Uncorrelated multiple excitation of p- and h-excitations
will be taken into account.

We will now use the statistics of non-interacting boson to approximate the statistics of hard-
core bosons. It is a bad approximation to substitute the hard-core statistics by the statistics of
non-interacting boson without any modification because non-interacting bosons have no restric-
tion on the occupation number. An incorrect number of states would contribute in the partition
sum and would lead to an incorrect entropy. The idea is now to reweight all contributions to
the partition sum such that they contribute the correct amount of entropy. Therefore, we have
to calculate the correct number of states with particle and hole excitations.
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The number of possibilities to distribute N bosonic excitations on 2L places is

gB(L,N) =
(

2L + N − 1
N

)
. (5.3.42)

In contrast, the correct number of possibilities of N hard-core excitations of two kinds on L sites
is

g(L,N) = 2N

(
L

N

)
. (5.3.43)

Now, the N -boson part in the partition sum is reweighted such that it contributes the correct
number of states, namely g(L,N). This ensures that the N -particle part of the partition function
contributes the correct entropy. We start from the following partition function for a system of
size L and N particles

Z ′(L,N) =
N∏

j=1

∑
kj

[
exp
(
−β(ωp(kj)− µp)

)
+ exp

(
−β(ωh(kj)− µh)

)]
. (5.3.44)

Here, a chemical potential for particles µp and for holes µh is introduced to keep the notation
transparent. They are defined as

µp = −µh = µ. (5.3.45)

The sum goes over all momenta kj . Here, ωp(kj) is the energy of a particle with momentum kj ,
ωh(kl) the energy of a hole with momentum kl. The partition function in Eq. (5.3.44) contains
(2L)N terms. The reweighted partition function reads

Z̃ =
L∑

N=0

g(L,N)
(2L)N

Z ′(L,N). (5.3.46)

This equation can be rewritten as

Z̃ =
L∑

N=0

(
L
N

)
LN

N∏
j=1

∑
kj

[
exp
(
−β(ωp(kj)− µp)

)
+ exp

(
−β(ωh(kj)− µh)

)]
(5.3.47)

=

1 +
1
L

∑
kj

exp(−β(ωp(kj)− µp)) +
1
L

∑
kl

exp(−β(ωh(kj)− µh))

L

(5.3.48)

where kj and kl run over all particle and hole momenta, respectively. The power (1 + ...)L

reproduces all terms that are present in Eq. (5.3.47) with the correct multiplicity
(

L
N

)
. If we

define a partition function for each type of particle σ ∈ {p, h} as

zσ =
1

2π

∫ 2π

0

e−β(ωσ(k)−µσ)dk, (5.3.49)

equation (5.3.48) reads finally
Z̃ = (1 + zp + zh)L. (5.3.50)
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This approximate partition function in Eq. (5.3.50) has the following properties. For zero doping,
the density of particles and holes vanishes as we approach zero temperature. In the limit of low
particle density the hard-core interaction between the bosons becomes less relevant and they
behave like non-interacting particles. Therefore, the approximate partition function Eq. (5.3.50)
will display the correct behavior for T → 0. For high temperature the reweighting in Eq. (5.3.46)
ensures that the correct number of states contribute. Thus the approximate partition function,
Eq. (5.3.50), has also the correct behavior for T →∞.

For non-zero doping, the particle density does not go to zero for T → 0. Therefore, it is
not ensured that the behavior for low temperatures is correct. Indeed we will see later that
for non-zero doping and at very low temperatures the partition function Eq. (5.3.50) produces
spurious results. The high temperature limit is correct also for non-zero doping.

Although the partition function in Eq. (5.3.50) is correct in certain limits it is only an approx-
imation for hard-core particles. The sum in Eq. (5.3.44) contains contributions from unphysical
states. States with two particles having the same quantum numbers are included in Eq. (5.3.44)
although they are not allowed for hard-core particles. In addition it is assumed that all excita-
tions can be described by non-interacting multi-particle excitations.

The free energy per site f is computed from Eq. (5.3.50) as

f = −T

L
ln Z̃ = −T ln(1 + zp + zh). (5.3.51)

A certain filling is realized by choosing the chemical potential µ appropriately. For filling n = 1,
i. e. zero doping, the chemical potential µ is determined such that as many particles as holes are
excited. The average occupation number nσ

k of the σ ∈ {p,h} excitations with momentum k is

〈nσ
k〉 = − ∂f

∂ωσ(k)
=

e−β(ωσ(k)−µσ)

1 + zp + zh
(5.3.52)

and the probability to find no excitation, and thus the vacuum state, is

〈nvac〉 = 1−
∑

k

〈np
k〉 −

∑
k

〈nh
k〉 =

1
1 + zp(β) + zh(β)

. (5.3.53)

With the knowledge of the occupation numbers the effective spectral weight for finite tempera-
ture is calculated in terms of the T = 0 spectral weight. A contribution to a spectral weight of
type (n̄, 0) = (nhh npp ndd; 0) has to be multiplied by the probability to find nh + np + nd times
the local vacuum state on a site. Only then the corresponding operator does not annihilate
the given state and contributes to the spectral weight. Hence, the effective finite temperature
spectral weights relevant for vacuum processes are

Ieff,T
(n̄;0) = Ieff

(n̄;0)〈n
vac〉nh+np+nd . (5.3.54)

At finite temperature there are excitations present in the ground state. Not only the spectral
weights of processes starting from the vacuum are relevant. There are also contributions from
processes that need to have a particle or hole present in the initial state. The most important
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contributions come from processes that need to have only one quasiparticle present. These are
the spectral weights Ieff,T

n̄,p and Ieff,T
n̄,h . The spectral weight at finite temperature for processes

starting from a one-particle or one-hole state reads

Ieff,T
(n̄;σ) =

〈nvac〉nh+np+nd

2π

∫ 2π

0

Ik,eff
(n̄;σ)〈n

σ
k〉dk. (5.3.55)

The occupation number 〈nσ
k〉 can be calculated from Eq. (5.3.52) using the results for the dis-

persion ωσ(k) from the CUT. The effective spectral weight Ik,eff
(n̄;σ) contains contributions from all

processes that start from a particle of type σ with momentum k and end in a state of type n̄. The
upper index k in the spectral weight Ik,eff

(n̄;σ) indicates the dependence on the momentum of the
annihilated particle. The CUT is implemented in real space. Therefore, the effective observable
Oeff in Eq. (5.2.38) has to be Fourier transformed such that it depends on momentum. Then,
the spectral weight Ik,eff

(n̄;σ) is obtained as the sum of the moduli squared of all contributions with
momentum k that are of type (n̄; σ). It is sufficient to Fourier transform the effective observ-
able partially because only the momentum of the annihilated particle is needed to calculate the
necessary occupation numbers.

Partial Fourier transform

The partial Fourier transform of the observable is exemplified by the (2ph; p) amplitudes. The
local observable for (2ph; p) processes is

O(2p h;p)(r) =
∑

i1,j1,j2,j′1

c(l, i1 − r, j1 − r, j2 − r, j′1 − r)h†i1p
†
j1

p†j2pj′1
. (5.3.56)

The observable O is obtained by summation

O(2p h;p) =
∑

r

O(2p h;p)(r). (5.3.57)

Now, this expression can be rewritten using the coefficients that are Fourier transformed in the
index of the annihilated particle

O(2p h;p) =
∑

r

O(2p h;p)(r) (5.3.58a)

=
∑

r,i1,j1,j2,j′1

c(l, i1 − r, j1 − r, j2 − r, j′1 − r)h†i1p
†
j1

p†j2pj′1
(5.3.58b)

=
∑

k

∑
i1,j1,j2

h†i1p
†
j1

p†j2pk

∑
r,j′1

eikj′1c(l, i1 − r, j1 − r, j2 − r, j′1 − r)

︸ ︷︷ ︸
c̃(i1−r,j1−r,j2−r,k)

(5.3.58c)

=
∑

k

∑
i1,j1,j2

c̃(i1 − r, j1 − r, j2 − r, k)h†i1p
†
j1

p†j2pk. (5.3.58d)

The partially Fourier transformed coefficient used in the last line is defined as

c̃(i1 − r, j1 − r, j2 − r, k) =
∑
r,j′1

eikj′1c(l, i1 − r, j1 − r, j2 − r, j′1 − r). (5.3.59)
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Fig. 5.13: (a) The ratio S2/S1 plotted against temperature for the observable truncation dO = 4. S2/S1

is shown for fixed values of t/U ∈ {0.01, 0.05, 0.1, 0.15}. (b) shows the difference of the result for S2/S1

between the truncation dO = 4 and dO = 3. The difference between the two truncation schemes is very

small. The deviations increase for increasing t/U and for increasing temperature.

From these coefficients, the Ik,eff
(n̄;σ) are obtained as the sum of the moduli squared of all c̃(i1 −

r, j1 − r, j2 − r, k) with momentum k that are of type (n̄; σ). The calculation for processes of
type (p 2h; h) is done in the same way. Using the partial Fourier-transform and Eq. (5.3.55) the
spectral weights Ieff,T

(n̄;σ) at finite temperature can be calculated.

5.3.2. Results

Processes of type (h p; 0), (h 2p; p), and (2h p; h) contribute to the spectral weight at energy U .
The temperature dependent spectral weight at energy U is

S1 = Ieff,T
(h p;0) + Ieff,T

(h 2p;p) + Ieff,T
(2h p;h). (5.3.60)

The spectral weight S2 at 2U is made up of the types (2h 2p; 0) and (h d; p) and therefore the
temperature dependent weight at 2U is

S2 = Ieff,T
(2h 2p;0) + Ieff,T

(h d;p). (5.3.61)

To include the second type of processes (h d; p) is consistent with the approximation for finite
temperature - that included only thermal population of one p- and one h-states - because it
starts from a one-particle state. The d-type particle is created by application of the effective
observable.

The ratio S2/S1 as a function of T/U is shown in Fig. 5.13. Figure 5.13a displays S2/S1 for
fixed values of t/U ∈ {0.01, 0.05, 0.1, 0.15} for the observable truncation dO = 4. Two regimes
can be distinguished in the results for S2/S1. For low values of T / 0.19 U , the ratio S2/S1

increases on increasing t/U because the particle gap ∆p decreases so that 〈np
k≈0〉 grows. For

higher values of T ' 0.19 U , the increase of 〈np
k≈0〉 is overcompensated by the decrease of
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Fig. 5.14: (a) The ratio S2/S1 plotted against the hopping amplitude t/U . S2/S1 is shown for observable

truncation dO = 4 and fixed T/U ∈ {0.1, 0.2, 0.3}. (b) The difference between the truncations dO = 4

and dO = 3 against t/U .

the weights Ieff,T
(2h 2p;0) + Ieff,T

(h d;p) and the increase of the weights Ieff,T
(h p;0) + Ieff,T

(h 2p;p) + Ieff,T
(2h p;h) (see

Fig. 5.12) so that the relative spectral weight decreases on increasing t/U . Around T = 0.19U ,
the ratio is fairly independent of t/U .

Figure 5.13b shows the difference of S2/S1 of the truncations dO = 4 and dO = 3. The
difference between the results are very small. The deviations increase for increasing hopping
and for increasing temperature. Already the sprectral weights of the various processes, shown in
Fig. 5.12, displayed only small deviations between the truncations dO = 3 and dO = 4. The total
spectral weights S1 and S2 are aggregate quantities. They are even less sensible to the truncation
scheme than the spectral weights for the various separate processes shown in Fig. 5.12.

The two regimes with different behavior are also clearly seen in Fig. 5.14a where S2/S1 is
plotted against t/U for fixed temperature. The dashed curve for T/U = 0.2 stays fairly constant.
For a small temperature T/U = 0.1 the relative weight S2/S1 increases with increasing t/U ,
while for T/U = 0.3 the ratio S2/S1 decreases. Figure 5.13b shows the difference of S2/S1

plotted against t/U for different truncations of the observable, dO = 4 and dO = 3. Again, we
see that the deviations are small.

The experimental value of S2/S1 [17] is about 0.2− 0.5 for small values of t/U (t ≤ 0.014 U).
It increases on approaching the superfluid phase. Hence, our estimate for S2/S1 from the results
in Fig. 5.13 implies a significant temperature T ≈ U/3 in the MI phase. We postpone the
discussion of this remarkable result to Sec. 5.5. Before, we try to get further insight into the
temperatures realized in the system by looking at entropy properties.

5.4. Entropy

The temperature of T ≈ U/3 that is found from the analysis of spectroscopic weights is at
first sight surprisingly high. In a correlated solid state system the interaction parameter U is
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typically of the order of several electron volts [60]. A temperature of this size would be far above
the melting temperature of a typical crystal. It has to be checked if a temperature of this size
is reasonable in the systems of optically trapped atoms. To this end, this section investigates
the entropy of the system before and after loading into the optical lattice. Also situations with
fillings different from one particle per site are considered. This calculation will support the
finding that the temperatures in the Mott regime is of the order of the interaction parameter.

This section is organised as follows. First, we analyze the entropy of the bosons in a trap
without lattice potential. Then, we consider the so-called Tonks-Girardeau(TG) limit. The
entropy in this parameter regime is calculated. This leads to an estimation of the temperature
found in the TG limit. Using these results the validity of the approximated thermodynamics
introduced in Chapter 5.3.1 is checked. Finally, the entropy in the Mott regime is calculated.

5.4.1. Entropy in a harmonic trap

In the experiment the gas of atoms is in the beginning confined in a magnetic trap. The trapping
potential is harmonic. Then, the optical lattice is produced by switching on an additional
periodic potential. The loading process is schematical shown in Fig. 5.9 on page 134. The
loading is performed adiabatically [17]. This means that the entropy S/N remains constant
during loading. It is insightful to calculate the entropy of the Bose gas before loading to see at
which temperature this entropy is realized after loading.

The calculation of the entropy of a non-interacting Bose gas in a three dimensional harmonic
oscillator potential is explicitly done in Appendix B. The entropy per particle depends only on
the fraction f0 of bosons that are condensated

S

N
=

2π4

45ζ(3)
(1− f0) (5.4.62)

where ζ(x) is the Riemann ζ-function. The condensate fraction in the experiment [172] is
typically about f0 = 0.9. Therefore, we will discuss in the following condensate fractions f0 ∈
{0.95; 0.9; 0.8}. For these condensate fractions the entropy per particle is {0.09; 0.18; 0.36},
respectively.

5.4.2. Tonks-Girardeau regime

The Tonks-Girardeau (TG) regime of the bosonic Hubbard model is the limit of infinite U at an
average filling of less than one boson per site. The only parameter in the system is the hopping
amplitude t. The TG regime is studied in Ref. [146] where a temperature of multiples of the
microscopic parameter t is found. In the limit of U → ∞ only empty or singly occupied sites
are realized. In one dimension the system of hard-core bosons can be mapped onto a free Fermi
system [146, 150, 173, 174]. This mapping allows to calculate the entropy for the TG regime from
the free Fermi gas. This is done in Appendix B where also the explicit formulae are found.
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Fig. 5.15: Entropy in the Tonks-Girardeau regime for various fillings. The entropy per particle of the

three-dimensional harmonic oscillator for condensate fractions f0 = {0.95; 0.9; 0.8} and f0 = 0.838 is

included as horizontal lines.

The entropy per particle is calculated using the derivative of the free energy per particle f

with respect to temperature
S

N
= − 1

n

∂f

∂T
. (5.4.63)

Here, the number of bosons is denoted by N . The filling n is defined as

n =
N

L
, (5.4.64)

which is the ratio of the number of bosons N and the number of lattice sites L. Figure 5.15
shows the entropy per particle against T/t in the TG regime for fillings n ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.
After a steep increase the entropy approaches its saturation value of

S(T = ∞)
N

= − log(n)− (
1
n
− 1) log(1− n). (5.4.65)

Filling n = 0.5 shows the largest saturation value. It decreases when the filling is increased.
In addition, the entropy per particle of the three-dimensional harmonic oscillator is plotted for

condensate fractions f0 = {0.95; 0.9; 0.8} and f0 = 0.838 as horizontal lines. The conservation
of entropy allows to determine the temperature that results for these condensate fractions after
loading into the optical lattice in the TG regime. For half filling, n = 0.5, the temperatures are
T/t = {0.17; 0.32; 0.61} for f0 = {0.95; 0.9; 0.8}. Also temperatures of multiples of the hopping
parameter are possible, e. g. for f0 = 0.838 and n = 0.8 the temperature is T/t = 2.
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Again, the temperatures are of the size of the microscopic system parameter t. This agrees
well with the temperature estimated in Ref. [146]. There, the temperature has been determined
from the measured momentum profiles. For higher filling the entropy saturates at a lower value.
For filling n = 0.8 it does not rise up to the value of the harmonic oscillator for f0 = 0.8. Thus
in a process of adiabatic loading one can not achieve a filling of n = 0.8 when starting with a
condensate fraction of f0 = 0.8.

5.4.3. Reliability of the approximation for finite temperatures

In Chapter 5.3.1 the zero-temperature results from the CUT have been extended to finite tem-
peratures. An approximate expression for the partition function of the hard-core bosons has
been introduced. This approximate partition function reproduces correctly the high tempera-
ture limit. The low temperature limit is correct only if the number of excitations vanishes for
T = 0. As our reference state is the product state of singly occupied sites this is only the case
if the filling n = 1.

In this section we check the validity of this approximation. The results for the TG regime
from the previous chapter, Sec. 5.4.2, are used as a benchmark. In particular, the quality of the
approximation for low temperatures and fillings n 6= 1 is addressed.

For this purpose, we introduce a toy model which corresponds to the situation in the TG
regime. The approximate thermodynamics has been introduced in Chap. 5.3.1 for the bosonic
Hubbard model in the Mott-insulating regime. The reference state is the product of singly
occupied local states. Above the reference state there exist particle- and hole-like excitations.
These two types of excitations have been included in the approximate partition function.

The toy model includes only hole-like quasiparticle excitations. The free energy from Eq. (5.3.51)
simplifies to the free energy of the toy model

fToy = −T ln(1 + zh). (5.4.66)

where

zh =
1

2π

∫ 2π

0

e−β(ωh(k)−µh)dk. (5.4.67)

Because only hole-like excitations are contained in the toy model the filling is n ≤ 1. The
dispersion contains only one cosine-term

ωh(k) = −2t cos(k). (5.4.68)

This corresponds to hard-core bosons with nearest-neighbor hopping only. With these definitions
the toy model describes the TG regime. For the dispersion in Eq. (5.4.68) the partition function
Eq. (5.4.67) can be evaluated analytically. It reads

zh = eβµh

I0(2βt), (5.4.69)

where In(z) is the modified Bessel function of the first kind. The entropy per particle reads

S

N
= − 1

n

∂f

∂T
= −βeβµh 2tI1 (2βt) + µhI0 (2βt)

n
(
1 + eβµhI0 (2βt)

) +
1
n

log
(

1 + eβµh

I0 (2βt)
)

. (5.4.70)
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Fig. 5.16: (a) Comparison of the entropy per particle at small temperatures calculated for the TG

regime. The entropy of free fermions is shown as black dotted curves. Results from the toy-model

calculation are shown in gray (cyan). (b) Same as (a), however the plotting interval has been changed

such that the low temperature region is better visible.

The total number of hole excitations divided by the number of lattice sites reads

δ = − ∂f

∂µh
=

eβµh

I0(2βt)
1 + eβµhI0(2βt)

. (5.4.71)

Since the excitations are holes the quantity δ is just the amount of doping with holes. It is
related to the filling by

δ = 1− n. (5.4.72)

The doping is determined by the chemical potential. A doping value δ is found for a chemical
potential

µh = T log
(

δ

(1− δ)I0(2βt)

)
. (5.4.73)

The results for the entropy of the toy model are shown in Fig. 5.16 for various fillings. For
comparison, the entropy for the TG regime calculated from the free fermion formula is included in
the figure. Figure 5.16a shows the entropy for temperatures T/t ∈ [0, 5]. After a steep increase
the entropy saturates for high temperatures. The agreement with the free Fermion result is
very good. Also for filling n = 0.8 which corresponds to a rather large doping of δ = 0.2 the
agreement is good for temperatures of the order of the hopping parameter. However, deviations
are found for low temperatures. Therefore, the limit of T/t → 0 is now further investigated.
Figure 5.16b shows the entropy for low temperatures, T/t ∈ [0, 0.5]. In this temperature range
sizeable deviations are found. They appear especially at low temperatures and are increasing
with doping. The entropy even becomes negativ for fillings n = 0.9 and n = 0.8. This behavior
is unphysical. It is an artifact of the approximate thermodynamics for hard-core bosons.

As the deviations are small the relative deviation of the entropy

∆S

S
=

SToy − STG

STG
(5.4.74)
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is plotted in Fig. 5.17a. For n = 0.8 the difference of the entropies has a maximum at T/t ≈
0.08, then it drops and becomes even negative at very low temperatures because Stoy becomes
negative for T → 0. This is an unphysical artifact of the approximate thermodynamics for
hard-core bosons. For n → 1 the maximum of the relative deviation is lower and shifted to lower
temperatures. But artificial negative entropy behavior is still found for very low T .

In Sec. 5.3.1 we argued that the approximate partition function displays the correct zero-
temperature behavior if the particle density vanishes for T → 0. This is not the case for
non-zero doping. Thus, deviations in the entropy are found for T → 0.

To investigate systematically, below which temperature the approximate thermodynamics
becomes significantly wrong, we define the temperature T dev, at which the relative deviation
∆S/S exceeds 10%. It is displayed in Fig. 5.17b as a function of δ2 = (1 − n)2. In addition,
the temperature T neg is shown which is defined as the temperature where the entropy of the toy
model becomes negative. The temperatures T dev and T neg characterize the limit of applicability
of the approximate thermodynamics.

The two temperatures T dev and T neg are compared in Fig. 5.17b to the temperature T clas

which results from equating the thermal de Broglie wave length

λT = ~
√

2π

mkBT
(5.4.75)

to the average distance 1/δ between two hole excitations h. The inverse mass 1/m is given by
2t which is the value of the second derivative at the band minimum. The excellent agreement
in the proportionality T ∝ δ2 and the very good agreement of T clas and T dev clearly show
that the approximate thermodynamics is a classical treatment, which is valid as long as the
gas of excitations is dilute enough. This argument quantifies the limitations of the approximate
thermodynamics that has been introduced in Sec. 5.3.1. For very low temperatures the results
become unphysical. On the other hand, we have shown that the results obtained for intermediate
and high temperatures agree very well with the exact behavior in the TG regime.

5.4.4. CUT treatment

We have already learned that the temperature of the bosons in the optical lattice depends
strongly on the regime of the system (Mott insulator or TG regime). The crucial point is
whether the energetically low-lying states realize the initially present entropy or not. In the
following, we investigate the entropy at finite t/U for the effective model obtained by the CUT
calculation and evaluated at finite temperatures by the approximate statistics for hard-core
bosons.

The CUT has been used in Sec. 5.1.2 to derive an effective quasiparticle conserving model for
the bosonic Hubbard model. The focus of this chapter is on entropy properties calculated using
the CUT results. In Sec. 5.3.1 an approximate formalism has been introduced to describe the
hard-core bosons at finite temperature. The formulae obtained from this approximate formalism
are now evaluated and discussed. The entropy per particle S/N = −∂f/∂T/n has been defined



5.4 Entropy 151

0 0.05 0.1 0.15 0.2 0.25
T/t

-0.1

0

0.1

0.2

0.3

0.4

∆S
/S

n=0.99
n=0.95
n=0.90
n=0.80

(a)

0 0.01 0.02 0.03 0.04

δ2

0

0.05

0.1

0.15

0.2

T
/t Tclas from de Broglie

Tdev from ∆S/S=0.10
Tneg from SToy=0

(b)

Fig. 5.17: (a) Relative deviation ∆S
S

= (SToy − STG)/STG of the entropy of the toy-model from the

TG result. (b) Temperature for which deviations become large plotted against δ2 = (1 − n)2. For

explanation, see text.

in Eq. (5.4.63). The free energy is given by Eq. (5.3.51). The entropy per particle is shown in
Fig. 5.18 for three values of t/U and for fillings n = 1 and n = 0.9. The experimental value of
t/U is ≈ 0.013. The entropy does not change significantly for the values of t/U that are shown
because all of them are still deep in the Mott insulating phase. The entropy per particle before
loading is {0.09; 0.18; 0.36} for condensate fractions f0 = {0.95; 0.9; 0.8}, respectively. These
values are included as horizontal lines in Fig. 5.18.

As the entropy is conserved, the condensate fraction before loading determines the temperature
after loading. For hopping parameter t/U = 0.02 the temperatures are T/U = {0.12; 0.16; 0.27}
for f0 = {0.95; 0.9; 0.8}. This is very much in the range of temperatures that were found by
the analysis of spectral weights in the preceding section. This seemingly large value for the
temperature is needed because the groundstate of the Mott-insulating phase at zero doping is
unique and separated by a large gap from the first excited states. The gap is of the order of
U for small t/U . The entropy has to be produced by the excited states which have an energy
of ≈ U . This is only possible if also the temperature is of the order of U . The temperature
determined from the spectroscopic experiment is T ≈ U/3. This is higher than the temperature
estimated from the entropy. Possible reasons for this deviation are discussed in the next section,
Sec. 5.5. In a recent publication A. M. Rey et al. studied the change of temperature during
the loading [175]. Assuming the conservation of entropy they find results for the temperature
in agreement with the results of this thesis. The authors point out that the superfluid-like
component that is present in finite traps could allow for lower final temperatures.

The CUT calculation yields also results for the TG regime. In the limit of small t/U the
transformation is done without problems. The results for the Mott phase are obtained for
commensurate filling n = 1. Other fillings can be achieved by tuning the chemical potential µ

in Eq. (5.3.49) such that the appropriate numbers of holes and particles are excited. Then, the
entropy is calculated with Eq. (5.4.63). The CUT results are calculated using the reference state
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Fig. 5.18: Entropy per particle as function of temperature for t/U = {0.00, 0.02, 0.05, 0.1} and filling

n = {1.0, 0.9}. In addition the value for the entropy per particle of the three-dimensional harmonic

oscillator with condensate fractions f0 = {0.8, 0.9, 0.95} is given.

in Eq. (5.1.3). Doping is included on the level of the approximated thermodynamics.
Results for filling n = 0.9 are shown in Fig. 5.18 as gray(cyan) curves. In this figure the

temperature is given in units of U . Clearly several differences from the n = 1 result can be
identified. At finite doping and zero hopping the entropy has a plateau at low temperatures.
The reason for this behavior is the degeneracy of the groundstate. This degeneracy stems from
the different possibilities to distribute N atoms on L lattice sites. After the plateau the entropy
increases with temperature and saturates at high temperatures. The fact that the plateau value
is the same as the entropy for condensate fraction f0 = 0.9 is purely coincidental. At finite doping
and small values of t/U remnants of this plateau can still be seen. But, the finite dispersion
leads to a unique groundstate. The groundstate degeneracy is lifted and therefore the entropy
goes to zero for T/U → 0.

Next, we consider again the temperature realized after the loading of the atoms into the
lattice. The conservation of entropy determines this temperature. It can change dramatically
with doping. If the entropy before the loading reaches a value close to the plateau value, the
realized temperature is shifted to significantly lower values. Such a situation can be seen in
Fig. 5.18 for condensate fraction f0 = 0.9 and filling n = 0.9. The temperature after the loading
decreases from a value of the order of U to a value of the order of t. This is the mechanism
which is most probably observed in the experiment in Ref. [146].

The results in the TG regime are now further analyzed. In Figure 5.19 the results for the
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Fig. 5.19: Entropy per particle for t/U = {0.00, 0.02, 0.05, 0.1} and filling n = {1.0, 0.9, 0.8}. The results

for the TG regime are included for comparison. The temperature is given in units of t.

entropy per particle from the CUT are compared with the free fermion results. The temperature
T is given in units of t in this figure. The figure shows results for t/U = 0.01 and t/U = 0.02.
This translates into a parameter γ = U/t where the TG gas is realized [146, 176]. The thick
dotted curve shows the entropy per particle for t/U = 0.01 for filling n = 1. The increase of
entropy with temperature is much slower for n = 1 than for fillings n = 0.9 (black curves) and
n = 0.8 (gray/cyan curves). At incommensurate filling the possible distributions of the particles
introduce additional entropy. For filling n = 0.9 surprisingly good agreement is found for low
temperatures. The CUT results reproduce nicely the entropy in the TG regime. Good agreement
is found up to temperatures of the order of T/t ≈ 10. Here, the TG result has already saturated
at its high temperature limit. On the other hand the CUT results start to feel the presence of
the additional Hubbard bands. Therefore, they deviate from the TG result. A temperature of,
e. g., 10t corresponds to T/U = 0.1 for t/U = 0.01 but to T/U = 0.2 for t/U = 0.02. This is the
reason why the results for t/U = 0.02 show deviations already for T/t ≈ 5. A similar behavior
can be seen for filling n = 0.8. For this filling the approximate treatment of doping shows up in
small deviations also for low temperatures.

The CUT results reproduce what we found for the TG in Sec. 5.4.2. The conclusions of
that section also apply to the CUT calculation. In particular, from the conservation of entropy
we find again temperatures that are of the size of the hopping parameter t. Using self-similar
CUTs in real space we have obtained results which are valid for the TG as well as for the Mott-
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insulating regime. A unifying description of the thermodynamics of the one-dimensional Bose
gas is achieved.

5.5. Discussion

The results of this chapter show that it is realistic to find temperatures of the order of the
microscopic couplings in atomic Bose gases loaded into optical lattices. This has not been
expected. Therefore, we want to recall the conditions under which this result is found.

At first, there are approximations within the calculation. The local Hilbert space has been
restricted to four states. In Refs. [160–162] it has been shown that this approximation is sufficient
to describe the system. In addition, the truncation of the Hamiltonian and the observable are
possible sources of inaccuracies. However, the results for the Hamiltonian in Fig. 5.5 and Fig. 5.6,
and the observable, Fig. 5.12 and Fig. 5.13, show that the results do not depend significantly on
the truncation. The approximate thermodynamics is tested using the exact results for the TG
regime. While there are deviations for very low temperatures the approximate thermodynamics
yields good results for the temperatures that are of interest in the present discussion.

The conservation of entropy enforces a sizeable temperature both in the Tonks-Girardeau
and in the Mott-Hubbard regime. We found a physically relative simple and consistent picture
by more or less purely thermodynamic considerations. The temperature in the undoped Mott
insulator is of the order U . Here, the groundstate is a single state and it can not carry any
entropy. The initially present entropy has to be distributed over excited states which demands
a large temperature of the order of the gap. This is different when studying the doped Mott
insulator. In this case the finite amount of holes or particles to be distributed in the groundstate
contains a finite amount of entropy. At a certain doping level nearly the whole entropy that is
present before the loading process is realized by the groundstate subspace and only a temperature
of the order of t is realized.

From this perspective the temperature found from the calculation of the ratio of spectral
weights S2/S1 at 2U and U is very plausible. It gives a natural explanation of the experimental
results found in Ref. [17]. It also explains why recent QMC results for the dynamic structure
factor do not find appreciable weight at 2U (Ref. [170]). At temperatures at which the QMC
calculation in Ref. [170] is done there is only little weight at 2U , as can be seen Fig. 5.18.
Our result in Fig. 5.18 show also that more weight at 2U and a larger ratio S2/S1 is found at
temperatures T ≈ U/3.

In the experiment the atoms are confined by a harmonic trapping potential. It is beyond the
scope of the present work to treat the combined effect of the optical lattice and the inhomogeneity
of the trap. The trapping potential has definitely some influence on the physical behavior. For
example, the system does not undergo true phase transitions since it is finite [169]. In Sec. 5.3
we have argued that it is not plausible that the inhomogeneity is the source of the large spectral
weight at high energies. The inhomogeneity indeed introduces steps in the local density of
atoms [169, 170]. In the transition regions the occupation changes from one integer value to
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the next. This gives rise to excitations with energy 2U . However, as we are deep in the Mott-
insulating regime the transition regions are very small. It is unlikely that they dominate the
spectroscopic response of the whole system.

Another aspect in the analysis of the Bragg spectroscopy in Ref. [17] is that the system was
shaken fairly strongly. Though it is ascertained that the experiment has been conducted in the
linear regime it might be that the system is heated by the probe procedure. This could be the
reason why the adiabatic estimate results in T ≈ U/6 while the spectroscopic estimate implies
T ≈ U/3.

In view of its pronounced T dependence, see Fig. 5.13, the relative spectral weight in combina-
tion with spectroscopic measurements of good quality can be used as a thermometer for bosons
in optical lattices. In this way the temperature of these artificial condensed-matter systems could
be determined reliably. Therefore, Figure 5.13 provides the calibration of the thermometer to
measure the temperature in Bose gases in the Mott-Hubbard regime.

5.6. Summary and outlook

In this chapter the method of self-similar CUTs in real space has been applied to the problem of
bosonic atoms in an optical lattice. The Mott insulating state with filling one is used as reference
state. The excitations around this state are successfully described by hard-core quasiparticles.

Methodically, this chapter is an application of knowledge gathered in the preceding sections.
The range of small t/U which is relevant for the experiment is safely treated by the CUTs. For
larger truncations the residual off-diagonality displayed non-monotonic behavior. The flow is
stopped in the first minimum of the residual off-diagonality and the corresponding coefficients
are used in the effective Hamiltonian. This is a good approximation since off-diagonal elements
are already very small at this value of the flow parameter. The effective Hamiltonian is already
sufficiently diagonalized. The observable is transformed with the same transformation as the
Hamiltonian. Both, the Hamiltonian and the observable exhibit good convergence with trun-
cation. Overlapping continua have been shown to generically introduce problems in the CUT
treatment. These problems are less harmful in the analysis of the bosonic Hubbard model as
the focus is only on small values of t/U .

The results are extended to finite temperature and non-commensurate filling by an approxi-
mate treatment of the thermodynamics of the hard-core quasiparticles. The approximate ther-
modynamics is tested by comparison with exact results for the TG regime. For very small
temperatures, the approximation leeds to unphysical behavior. However, for the temperatures
of interest to explain the experiment the approximate treatment of the thermodynamics yields
reliable results.

Results are obtained for the dispersion and the spectral weight of the observable describing the
experiment. The phase diagram is in good agreement with high accuracy numerical treatments.
The location of the Kosterlitz-Thouless phase transition is underestimated by about 20%. The
experimental finding of large spectral weight at energy 2U is explained by a temperature of the
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order of U/3. These findings are supported by calculations for the entropy of one-dimensional
bosonic systems. For the Mott-Hubbard regime the conservation of entropy leads to an estimated
temperature of ≈ U/6. The temperature found in the analysis of the spectral weight is higher
than the one found from entropy considerations. The reason could be that the spectroscopic
experiment modulates the lattice quite strongly. In the TG regime temperatures of the size of
the hopping parameter are found in accordance with experiment.

Using the method of CUTs we find a unifying picture of the temperatures found in one-
dimensional Bose gases in the TG and the Mott-insulating regime. Both, the analysis of spectral
weights and of entropy properties give rise to a sizeable temperature that is of the order of the
microscopic parameters.

Further promising investigations are possible in this field of research. At first one could
resolve the energy and momentum dependence of the dynamic structure factor S(k, ω). Also
other observables and thus other experimental setups can be studied. An example is the density
operator n̂. Yet, the operator n̂ yields no response at zero momentum; it gives a finite signal
only at non-zero momentum. The treatment of finite doping could be improved by changing the
CUT to use a doping dependent reference ensemble. However, this is left for future research.
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6. Summary

The present thesis presents the method of self-similar continuous unitary transformations (CUTs)
in real space. In this summary we concentrate on conceptual aspects because the content of each
chapter has already been summarized on its own at the end of the chapter.

In this work we develop a novel realization of the method of CUTs. CUTs are in general
used to derive an effective Hamiltonian systematically. In this thesis the CUT method is used
in a self-similar fashion, i.e. the operators retained in the construction of the flow equation are
kept according to a truncation criterion. The renormalization of the coefficients is determined
by the flow equation. The truncation scheme is based on the locality of operators written in
their second-quantized form. To this end, a reference ensemble is defined. All operators are
normal-ordered with respect to this reference ensemble. The extension of an operator is the
maximal distance of two local operators.

The choice of the reference ensemble is an important step in the calculation. Quasiparticles
are deviations from the reference ensemble. Therefore, the choice of the reference ensemble
also determines the quasiparticles. A successful description of a physical system often relies on
the proper choice of the quasiparticles. The majority of results presented in the present work
are found using the MKU generator. It has the advantageous property to conserve block-band
diagonality within the flow. The effective Hamiltonian is block-diagonal. Thus, the subsectors
with different numbers of quasiparticles are separated. This enables the analysis of the effective
model using the quasiparticle number as a conserved quantity.

In Chapter 2 we present a detailed description how to implement self-similar CUTs in real
space on a computer. Special emphasis is put on how to realize an efficient implementation and
how to take advantage of symmetry properties.

The two-dimensional Hubbard model is the first model to which the self-similar CUT in real
space is applied in this thesis. In Chap. 3 we derive an effective model, namely a generalized
t-J-model, for the Hubbard model that does not change the number of doubly occupied sites.
For half-filling the effective model reduces to a pure spin model. However, our derivation of the
effective model also takes into account the motion and the interaction of charges.

The self-similar CUT gives quantitatively reliable parameters of the effective model in a wide
range of t/U . The results are convergent in the range of applicability while the series given
by perturbation theory is less stable. This shows that the self-similar approach can be used to
determine the effective model reliably in a case where it is hard to find quantitative results by
perturbation theory. The transformation breaks down if the bandwidth of the system becomes
too large. Then, the continua of different quasiparticle number overlap. This hinders the ordering
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of the energy of the states according to their quasiparticle number. It is possible to analyze at
which point the transformation breaks down.

The quasiparticle concept is further exploited in Chap. 4 that deals with one-dimensional
spin systems. The CUT enables the calculation of the energy properties in the one- and two-
triplon sector of the spin ladder. In the two-triplon sector, also the energy of bound states is
determined. For the spin ladder the transformation is only possible for a certain parameter
regime. If the leg coupling is equal to the rung coupling we observe non-monotonic behavior in
the residual off-diagonality. Further analysis shows that the convergence problems are related to
overlapping multi-triplon continua. For the spin ladder the two- and four-triplon continua have
considerable overlap. The degeneracy or nearly degeneracy of levels of different quasiparticle
number is problematic because the MKU generator sorts the energy of the levels according to
their quasiparticle number. Therefore, not only a vanishing one-particle energy will complicate
the transformation. One has to pay attention to the energy situation in higher particle channels
as well.

For the spin chain we calculate the one-triplon dispersion and the spectral weights of the
observable Sz. For the calculation of spectral weights we have used a passive transformation
that first eliminates the unproblematic blocks using a MKU generator and in a second step
eliminates the remaining block using a Wegner generator. The distribution of spectral weight
over channels with different quasiparticle number deviates from the result of a perturbative
CUT. Because the transformation that achieves block-diagonality in the quasiparticle number
is not unique, the CUT finds different spectral weights for different transformations. The issue
of overlapping continua is found to play a role also in this case. In the presence of overlapping
continua lifetime effects can lead to a redistribution of spectral weight. For the spin chain
substantial redistribution of spectral weight is observed between the two- and three-triplon
weights.

The spin systems have been studied extensively within the perturbative approach to CUTs [30,
41]. The PCUT approach combined with extrapolation techniques yields results for parameters
that are not accessible within the present self-similar CUT. The reason lies in the problem of
overlapping continua. The PCUT is not so much affected by the energetic vicinity of different
quasiparticles sectors. The expansion is formally done around a point where there are no over-
lapping continua. The self-similar approach is more sensitive to these problems. The higher
sensitivity is also an advantage. The non-analytic behavior for a certain parameter regime can
be captured in a self-similar approach whereas it cannot be seen in a perturbative treatment.

In Sec. 4.1.5 we point out some means how to deal with the convergence problems. The
remaining off-diagonal elements can be treated by perturbation theory or within a numerical
scheme such as Lanczos diagonalization. Another way is to account for the problematic blocks
in a passive transformation as described in Sec. 4.2. In a second step we treat the remaining
block using a more robust Wegner generator.

In Chap. 5 it has been possible to make direct contact to experimental results that have
been found for atom gases confined in optical lattices. The system is described by a bosonic
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Hubbard model. The spectral weight determined in a spectroscopic experiment is explained
using the self-similar CUT. We find that the temperature in the trapped Bose system is of the
order of the microscopic parameters. The convergence issue is circumvented in this problem by
stopping the flow at a minimum of the residual off-diagonality. The smallness of the remaining
off-diagonal coefficients justifies this procedure. The findings for the temperature in the atom
trap is corroborated by thermodynamic considerations.

In conclusion, the method of self-similar CUTs in real space developed in this thesis has
been proven to yield new and reliable results. Our applications have focused around strongly
correlated systems in low dimensions. However, we stress that the application of the method is
not restricted to such systems. Whenever a problem can be phrased within a local Hamiltonian,
it can be rewarding to tackle the problem by mapping it first onto an effective Hamiltonian using
a self-similar CUT approach in real space.

6.1. Outlook

The topics addressed in the present thesis can be investigated further in many ways. Here, we
want to point out only a few. It is promising to study the derivation of the effective model for
the Hubbard model away from half filling. To this end one has to modify the reference ensemble
as to represent the finite doping level. Studies in this direction are on the way [177].

For the bosonic Hubbard model the calculation of spectral densities can resolve the full
frequency- and momentum-dependence of the spectroscopic experiments. The coefficients of
the effective observable provide all the necessary information to do so. An experimental check
of these results might come into range soon in view of the rapid experimental developments in
this field.

Another issue to be studied further is the problem of overlapping continua. In the present
thesis we have only performed first investigations of ways to circumvent these problems by
applying a passive transformation. Further work in this direction could significantly enhance
the set of problems to which the self-similar CUT scheme is applicable.
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A. The Lanczos technique

The Lanczos technique is an efficient method to calculate numerically physical quantities such
as the ground state energy [77, 78]. It is now commonly used in condensed matter physics
and it will only be described briefly in the present appendix. The Lanczos technique can be
implemented using the Liouville formalism [79]. The problem of a double occupancy moving in a
reference ensemble encountered in Chap. 3 is treated using the Liouville formalism. The reference
ensemble used in Chap. 3 is characterized by a statistical operator. It is not a single state. One
particle electron (hole) excitations are introduced in the reference ensemble by application of a
creation (annihilation) operator to this ensemble. Therefore, it is advantageous to analyze the
energy of these excitation within the Liouville formalism that is applicable to operators. Since
this technique is less common it is briefly presented in this appendix.

The problem under consideration shall be given by its Hamiltonian H. Often a full diagonal-
ization of the Hamiltonian is not feasible even for small finite systems. The Lanczos technique
yields numerical results for eigenvalues and correlation functions. It is especially efficient for
sparce matrices. The starting point is a trial state

|f0〉. (A.1)

Then, one generates a set of orthogonal states that are defined as

|fn+1〉 = H|fn〉 − an|fn〉 − b2
n|fn−1〉, (A.2)

where the coefficients an and bn are defined through the relations

an =
〈fn|H|fn〉
〈fn|fn〉

(A.3)

b2
n+1 =

〈fn+1|fn+1〉
〈fn|fn〉

(A.4)

b0 = 0. (A.5)

The states {|f0〉, H|f0〉 Hn|f0〉} span a subspace of the full Hilbert space. This subspace is
enlarged by successive application of H. The states |fn〉 are mutually orthogonal because of the
implicit Gram-Schmidt orthogonalization in Eq. (A.2). In the basis {|fn〉} the Hamiltonian is a
tridiagonal matrix where the an are the diagonal matrix elements and the bn are the elements
on the secondary diagonal.
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A.1. Liouville formulation of the Lanczos technique

In Chapter 3 the Liouville formalism is appropriate since the problem does not involve simple
states in a Hilbert space. The reference ensemble is a statistical mixture of many states. The
plain Lanczos formalism presented above is not applicable in this case.

The operators Oi correspond to the vectors |fn〉 in the Lanczos technique. The aim is to
follow the dynamics of the excitations induced by Oi. For our application this excitation is a
single double occupancy with momentum k moving in a paramagnetic spin background. The
starting operator is

O0 :=
1√
N

∑
r

eikrnr,↓c
†
r,↑, (A.6)

where the number of sites is denoted by N and the sum extends over the whole lattice. The
effective Hamiltonian acts by commutation as a super-operator on the operators. This defines
the action of the Liouville operator

L := [H, ·]. (A.7)

A “scalar product” is defined as
(A|B) = Tr(A†Bρ̂0). (A.8)

The paramagnetic reference ensemble is built into this scalar product by the statistical operator
ρ̂0. The operator ρ̂0 is defined in Eq. (3.2.6). Note that this scalar product is only positive semi-
definite. There are operators whose norm vanishes. An example for an operator with vanishing
norm is n̄jc

†
i,↑ = (nj,↑ + nj,↓ − 1j)c†i,↑, where we have used the notation introduced in Tab. 3.1

of Sec. 3.2.1. The operator n̄j has non-zero matrix elements only with the empty or doubly
occupied local states. It annihilates the singly occupied states in the local basis. Therefore it
annihilates the reference ensemble and thus its norm is zero. With these definitions the modified
equations read

On+1 = LOn − anOn − b2
nOn−1 , (A.9)

and

an =
(On|LOn)
(On|On)

, (A.10a)

b2
n+1 =

(On+1|On+1)
(On|On)

, b0 = 0 . (A.10b)

They replace A.2 through A.4 of the conventional Lanczos technique. In this basis the Liouville
operator is again a tridiagonal matrix. Note that the application of L derived from the effective
Hamiltonian after the CUT does not change the number of DOs. The application of the Liouville
operator shifts the DO and changes the spin background. The iteratively built basis {On}
describes a single DO (charge excitation) at momentum k including its magnetic dressing.
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B. Entropy of bosons in a

three-dimensional harmonic oszillator

and in the Tonks-Girardeau regime

In this appendix the formulae for the entropy of bosons in a harmonic trap and for the free fermi
gas are derived. The hamiltonian for bosons in a harmonic trap reads (~ = 1)

H = ω0

d∑
j=1

a†jaj . (B.1)

The situation with many bosons loaded in the harmonic trap is considered. The energy ω0 is
small. Therefore, sums over multiples of ω0 can be rewritten as integrals. The groundstate is
macroscopically occupied with a fraction

f0 =
N0

N
, (B.2)

where N is the total number of particles and N0 is the number of bosons in the condensate. The
total number of particles is calculated to be

N = N0 +
∞∑

m=1

nB(mω0)D(mω0) (B.3a)

= Nf0 +
∫ ∞

0

nB(ω)D(ω)dω (B.3b)

with use of the density of states D(ω) and the boson occupation number nB(ω) = 1
eβω−1

. The
density of states counts the number of possible states at a given energy. To realize the energy
mω0 one has to distribute m energy quanta in d oscillators. The number of possibilities is
(consider all arrangements of m bosons and d− 1 walls between them)

D(mω0) =
(

m + d− 1
d− 1

)
=

(m + d− 1)(m + d− 2) · · · (m + 1)
(d− 1)!

(B.4)

which yields

D(ω) =
1

(d− 1)!

(
ω

ω0

)d−1

(B.5)

in leading order in m = ω/ω0 (m � 1). From now on, the special case of d = 3 will be considered.
Equation (B.3b) is rewritten with the previous expression for D(ω) as

N = Nf0 +
T 3

2

∫ ∞

0

x2

ex − 1
dx = Nf0 + T 3ζ(3), (B.6)
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where x = βω and ζ(z) is the Riemann ζ-function. The partition function of a single boson is

Z =
∞∑

n=0

e−nβε =
1

1− e−βε
(B.7)

and the entropy

S = −〈ln ρ〉 = −
∞∑

n=0

pn ln pn = −
∞∑

n=0

e−nβε

Z
(−nβε− ln Z), (B.8)

where ρ is the density operator and the pn the probabilities to find the n-th state. The entropy
can be rewritten as

S = − ln(1− e−βε) + βεnB(ε) (B.9)

such that the total entropy is

Stot = Scond +
∫ ∞

0

S(ε) =
2π4

45
T 3, (B.10)

where we have used integration by parts and the fact that the condensate is one macroscopic
quantum state and therefore has vanishing entropy, Scond = 0. In a last step the entropy per
particle is calculated with Eq. (B.6) to be

S

N
=

2π4

45ζ(3)
(1− f0) ≈ 3.60(1− f0), (B.11)

which is the formula used in Sec. 5.3.2 as Eq. (5.4.62).

Entropy in the Tonks-Girardeau regime

In the discussion in Sec. 5.4.2 also the question of the temperature in the Tonks-Girardeau regime
is adressed. This regime is the limit of infinite U . Only empty and singly occupied sites are
present. In one dimension this problem can be mapped onto the free fermion case [150, 173, 174].
To know which temperature is realized after adiabatic loading into the Tonks-Girardeau regime
one needs to know the entropy of the free fermion gas. The formulae for the free Fermi gas are
given here. In one dimension the dispersion of fermions with only nearest-neighbor hopping is

ε(k) = −2t cos(k). (B.12)

The free energy per site is

f =
F

L
= −kBT

L

∑
k

ln(1 + e−βε(k)) (B.13)

= −kBT

2π

∫ π

−π

ln(1 + e−βε(k))dk, (B.14)
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where L is the number of sites. For N particles on L sites the filling is n = N/L. The entropy
per particle is calculated as the derivative of the free energy with respect to temperature

S

N
=

1
n

S

L
= − 1

n

∂f

∂T
(B.15)

=
1
π

∫ π

−π

(
ln(1 + e−βε(k)) +

ε(k)
T (1 + e−βε(k))

)
dk. (B.16)

This is the formula used to calculate the results for the Tonks-Girardeau regime shown in
Sec. 5.4.2. In the limit of high temperatures the entropy per site is

S

L
= −n log(n)− (1− n) log(1− n), (B.17)

which is just the entropy of one state with occupation probability n. The entropy per particle
is accordingly

S

N
= − log(n)− (

1
n
− 1) log(1− n). (B.18)

This formula explains the saturation value of the entropy shown in Fig. 5.15.
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[94] H. Eskes, A. M. Oleś, M. B. J. Meinders, and W. Stephan, Phys. Rev. B 50, 17980 (1994).

[95] S. Nishimoto, F. Gebhard, and E. Jeckelmann, J. Phys.: Condens. Matter 16, 7063 (2004).

[96] E. Müller-Hartmann, in Proceedings of the V. Symposium “Physics of Metals”, edited by
E. Talik and J. Szade, Symposium “Physics of Metals”,Ustron-Jaszowiec, Poland, page 22,
1991.

[97] G. S. Uhrig, Phys. Rev. Lett. 77, 3629 (1996).

[98] E. Müller-Hartmann, Z. Phys. B 74, 507 (1989).

[99] R. Bulla, T. A. Costi, and D. Vollhardt, Phys. Rev. B 64, 045103 (2001).

[100] D. J. Garcia, K. Hallberg, and M. J. Rozenberg, cond-mat/0403169 (2004).
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Abstract

In this thesis the method of self-similar continuous unitary transformations (CUTs) in real
space is developed. It is applied to various models from the field of strongly correlated solid
state physics and optical lattices.

The CUT method maps a given Hamiltonian to an effective Hamiltonian which is in some
respect simpler. In a self-similar CUT the truncation scheme relies on the structure of the
operators. The real space approach put forward in this thesis truncates the operators according
to their extension in real space. We mainly use a MKU generator to derive an effective model
which is block-diagonal in the number of quasiparticles. We give a detailed description of the
method. The transformation of the Hamiltonian and of the observables is explained. The
implementation on a computer and the optimization of the programs are extensively discussed.

The first application of the method deals with the fermionic Hubbard model. We derive an
effective Hamiltonian, a generalized t-J-model, which conserves the number of doubly occupied
sites. The effective model includes beyond the well-known Heisenberg term also further two-spin
and four-spin terms. In addition, the charge motion and interaction within the effective model
is addressed. In the context of the Hubbard model we discuss the question if an effective model
that conserves the number of double occupancies can be derived in principle.

The antiferromagnetic spin ladder and spin chain are treated from the viewpoint of a dimerized
system. For the spin ladder we calculate the dispersion, the two-particle energies including
bound states and the multi-particle continua. The discussion of multi-particle continua shows
that the order of the energy levels is important for the convergence of the transformation. For
the spin chain the dispersion is calculated. In addition, the transformation of an observable
yields the corresponding spectral weights. The spectral weights are compared to results from a
perturbative CUT.

For the bosonic Hubbard model we calculate the dispersion and determine the phase diagram.
The spectral weight of a certain observable is calculated in order to explain the outcome of a
recent experiment that measures the spectroscopic response of atoms confined in optical traps.
The distribution of spectral weight is analyzed also at finite temperatures. We find evidence for
a substantial temperature of the size of the microscopic parameters. This finding is supported
by purely thermodynamic considerations.
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Zusammenfassung
In der vorliegenden Arbeit wird die Methode der selbstähnlichen kontinuierlichen unitären Trans-
formationen (CUT) im Ortsraum entwickelt. Sie wird auf verschiedene Modelle aus dem Gebiet
der stark korrelierten Festkörpersysteme und der optischen Gitter angewendet.

Die Methode der CUT bildet einen gegebenen Hamiltonoperator auf einen einfacheren ef-
fektiven Hamiltonoperator ab. Eine selbstähnliche Realisierung der CUT verwendet ein Trun-
kierungsschema, das auf der Struktur der auftretenden Operatoren fußt. In dieser Arbeit wird
ein MKU-Generator verwendet, um ein effektives Modell zu erhalten, das Block-diagonal in der
Zahl der Quasiteilchen ist. Die Arbeit enthält eine detaillierte Beschreibung der Methode der
selbstähnlichen CUT im Ortsraum, wobei die Transformation sowohl des Hamiltonoperators als
auch der Observablen besprochen wird. Ein Schwerpunkt der Arbeit ist die Implementierung
der Methode auf dem Computer und die Optimierung der Computerprogramme.

Die erste Anwendung der Methode stellt das fermionische Hubbard-Modell dar. Es wird ein
effektiver Hamiltonoperator konstruiert, der die Zahl der Doppeltbesetzungen im System erhält.
Dieser effektive Hamiltonoperator stellt ein verallgemeinertes t-J-Modell dar. Zusätzlich zum
bekannten Heisenberg-Term enthält das effektive Modell auch Zwei-Spin-Kopplungen von weiter
entfernten Plätzen und Vier-Spin-Terme. Außerdem werden Terme diskutiert, die die Bewegung
und die Wechselwirkung von Ladungen beschreiben. Im Zusammenhang mit dem Hubbard-
Modell wird die Frage der prinzipiellen Möglichkeit der Herleitbarkeit eines effektiven Modells
diskutiert, das die Zahl der Doppeltbesetzungen erhält.

Eine weitere Anwendung sind eindimensionale Spinsysteme. Sie werden vom Standpunkt
vollständig dimerisierter Systeme betrachtet. Für die Spinleiter werden die Dispersion, die Zwei-
teilchenenergien und Vielteilchenkontinua berechnet. Die Berechnung der Zweiteilchenenergien
schließt die Analyse von gebundenen Zuständen mit ein. Die Diskussion der Vielteilchenkontinua
zeigt, dass für die Konvergenz der Methode die Anordnung der Energiezustände mit verschiede-
nen Teilchenzahlen essentiell ist. Im Fall der Spinkette wird die Dispersion berechnet. Die
spektralen Gewichte einer Observablen werden bestimmt und mit den entsprechenden Ergebnis-
sen einer perturbativen CUT verglichen.

Schließlich wird im letzten Abschnitt das bosonische Hubbard-Modell behandelt. Die Disper-
sion der Quasiteilchen und das Phasendiagramm werden berechnet. Die Berechnung spektraler
Gewichte ermöglicht die Erklärung eines aktuellen Experimentes an Atomen, die in einer op-
tischen Falle gefangen sind. Die Verteilung des spektralen Gewichts auch bei endlicher Tem-
peratur gibt Aufschluss darüber, welche Temperatur in dem experimentellen System realisiert
ist. Die Temperatur ist von der Größenordung der mikroskopischen Parameter des Modell-
Hamiltonoperators. Diese Ergebnisse werden untermauert durch weitere rein thermodynamische
Überlegungen.
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