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Chapter 1

Introduction

The thesis is devoted to a mathematically challenging issue: stimulus-locked
transient responses of oscillators coupled with delay. Apart from the purely
mathematical aspects, this work is relevant from a medical point of view:
(i) for the development of novel brain stimulation techniques and
(ii) for the analysis of evoked brain responses, both for basic research and clinical
diagnosis.

Brain stimulation: In several neurological diseases like Parkinson’s disease
(PD) or essential tremor the brain function is severely impaired by synchro-
nization processes [10]. Parkinsonian resting tremor appears to be caused by a
population of neurons located in the thalamus and the basal ganglia, where the
pathologically strongly synchronized neurons fire in a synchronized and intrinsi-
cally periodical manner at a frequency similar to that of the tremor [32, 40, 30].
In contrast, under physiological conditions these neurons fire incoherently [39].
In patients with PD this neuronal cluster acts like a pacemaker and activates
premotor areas and the motor cortex [71], where the latter synchronize their
oscillatory activity [56].

In patients with advanced PD or essential tremor who do not respond to
drug therapy any more, depth electrodes are permanently implanted in target
areas like the thalamic ventralis intermedius nucleus or the subthalamic nucleus
[3, 6]. Electrical deep brain stimulation (DBS) is performed by administering a
permanent high-frequency (HF) (> 100 Hz) periodic pulse train via the depth
electrodes [3]. However, HF DBS may lead to side effects like dysarthria, dyses-
thesia or cerebellar ataxia [72]. On the other hand, 11-15 % of PD patients have
unsatisfactory outcomes in spite of proper electrode placement [31].

To improve deep brain stimulation novel stimulation protocols have been de-
veloped with methods based on statistical physics and nonlinear dynamics (see
[57, 46, 21]). The goal of these techniques is to selectively counteract the patho-
logical synchronization processes. On this way, uncovering the mechanisms of the
pathological neuronal synchrony represents a challenging task in the development
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of novel deep brain stimulation techniques for the therapy of such diseases.

Evoked brain responses: Transient responses of coupled oscillators to pulsatile
stimuli are relevant in several other fields of the natural sciences. Such responses
are typically studied by experimentalists to obtain information on dynamical
systems and to characterize the system’s inventory of reactions. For example,
in neurology stimulus evoked electroencephalography responses are a standard
tool for clinical diagnosis, where transient short-term brain responses evoked by
sensory stimuli play a key role in the study of cerebral information processing
and diagnosis. A stimulus-locked response of a neuronal population is typically
analyzed with a cross-trial averaging (CTA), where an ensemble of post-stimulus
responses is averaged across trials [9, 18]. However, as has been shown in the
recent studies [58] based on a stochastic phase resetting approach [57], the CTA
techniques may lead to misinterpretations or even artifacts, and a detailed study
of stimulus-locked system responses is required. In particular, this concerns com-
plex systems and systems with delay which are inevitably present in nature.

In the thesis two systems of two phase oscillators coupled with delayed self-
feedback (see chapters 2,3) and coupled with delay (see chapter 4) are considered.
Both systems are subject to an external stimulation. Different phenomena in the
dynamics of coupled oscillators are studied intensively. Phase oscillators belong
to one of the simplest classes of oscillators, but nevertheless, as we shall see,
they demonstrate a rich variety of dynamic regimes and thus can help to model
different aspects of reality.

The first part of the thesis (chapters 2,3) explains the formation of complex
transient responses of two phase oscillators coupled with delayed feedback in the
presence of stimulation and noise. We study the influence of the strong external
stimulation on the system. We show that, depending on the dynamical regime,
responses of the system on the stimuli can follow different scenarios. They can
vary from two-cluster responses for stimulated phase-locked regime, as has been
found for coupled phase oscillators without delay [58], to multicluster responses
for the case of periodically modulated phase synchronization. The stimulation
can induce switching between different stable synchronized states for multistable
regime. Stimulation can even completely change the type of long-term dynamics
of the system, e.g., from synchronized to desynchronized one, if the corresponding
multistable regime is stimulated. We also investigate how the in- and post-
stimulus system transients depend on system and stimulation parameters. We
explore the mechanism of the maximal post-stimulus transient and clustering and
determine optimal values of stimulation parameters.

In the second part of the thesis (chapter 4) we study the transmission of a
stimulus effect from the first, directly stimulated oscillator to the second non-
stimulated oscillator. This type of transmission is fundamental for communi-
cation of networks of oscillators, e.g., in networks of neuronal populations with
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rhythmic activity. In that case a single oscillator serves as a macroscopic model
for a neuronal population. The estimation of transmission times is of great im-
portance in neuroscience and neurology:
(i) Transmission times provide the functional roles of different brain areas and
constitute the so-called mental chronometry (see [51], chapter four), according to
which sensory information is subsequently processed in different brain areas and
is transmitted from an active area to next areas.
(ii) The estimation of transmission times is a routine procedure in clinical di-
agnosis, used to detect delays in neuronal pathways, which are increased due to
diseases like multiple sclerosis (see [64]) etc.
(iii) There is an elaborated standard procedure for the estimation of transmis-
sion times. Identical stimuli are administered repetitively, and the neuronal re-
sponses are registered, e.g., with electroencephalography (EEG) or magne-
toencephalography (MEG). To extract what is supposed to be the actual stim-
ulus evolved response, one averages over an ensemble of single responses [7, 9].
The assumption behind this procedure is that a single response is of the form
x(t) = r(t) + ξ(t), where r is a stereotypical response, and ξ is noise (e.g., Gaus-
sian white noise). With increasing number of single responses the noise cancels
out, and the averaged response 〈x〉 converges to r(t). The transmission time
between two neuronal populations (1 and 2) is then determined as time elapsing
between the extrema of the corresponding averaged responses 〈x1〉 and 〈x2〉.

The results presented here clearly demonstrate that the timing sequence ob-
tained with cross-trial averaging may not correlate at all with the actual trans-
mission of a stimulus’ effect within a pathway. In contrast, the phase resetting ap-
proach, exploited in the thesis, enables a reliable detection of transmission times.

1.1 Mathematical modeling of neuronal dynamics

Mathematical modeling is playing an increasingly important role in the brain
sciences. Since J. Hopfield introduced his new type of neurons combined in a
neural networks [22], neuronal network have occupied one of the leading places in
neuronal modeling. Up to now, a tremendous number of different investigations
has been undertaken in neuronal networks. Different types of models of neurons
were considered, different network architectures were proposed and tested. A
huge variety of tasks confronts the researcher, ranging from pure dynamical and
phenomenological tasks up to the understanding of processes of learning and
cognition in the brain. Different levels of modeling are by convention split into
macro- and microscopic levels.

On the microscopic level, the object of the investigations is a neuron. Several
models serve as a simple approximation of its dynamics. One of the most popular
models of this type is the famous Hodgkin-Huxley model[23]. In it ion channels
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and currents are represented by appropriate variables and their interaction is
described by four differential equations. This system of equations describes one
hypothetical neuron: an input signal influences the neuron (synaptic activation),
which may cause firing of the neuron (spike generation, bursting). Using these
neurons, the researcher can also build networks.

On the macroscopic level of modeling many neurons are considered together.
Some common features of neurons are studied (for examples the number of
synapses), but other characteristics of neurons are neglected. This type of model-
ing helps in situations when one needs to describe the behavior of a large amount
of neurons, i.e., neuronal populations. In this case a neuronal population is often
considered as a whole. There are two main approaches to modeling neuronal
populations: either primarily to describe an element of the population (neuron)
by some dynamical model and secondarily to fix the number of these elements
close to a thermodynamical limit or directly to describe a population by some
system of equations. In our work we prefer the latter approach.

We are interested in the rhythmic activity of the brain. Moreover, we study
the interaction between two hypothetical neuronal populations. Any rhythmic
activity could be correspondingly modeled by oscillatory systems. Many impor-
tant classes of oscillators are well known. Of these we will just mention limit-cycle
oscillators, relaxation oscillators, Lorenz and Rössler oscillators, phase oscillators
etc. Each such oscillator could serve as a model of rhythmic activity of a neuronal
population. The interaction between populations could be modeled by a specific
coupling in a system. Lorenz and Rössler oscillators are of a special type and we
will not discuss them here. Limit-cycle and phase oscillators can model a wider
class of objects in nature.

For example, recently extensive studies have been made of coupled limit-cycle
oscillators by Reddy V. Dodla et al. (see [47, 48]). In [48] periodic forced response
of a system of two limit-cycle oscillators was investigated. These oscillators in-
teracted via a delayed coupling. The authors aimed to find the conditions of
the appearance of synchronization in the system. Coupling in the system is lin-
ear through the complex variable Z(t). Many bifurcation diagrams and a deep
analysis provide an description of the dynamics in the system.

In general, the presence of coupling in a system incites a researcher towards
the analysis of the appearence of synchronization in a system. The remarkable
book by Kuramoto ”Chemical Oscillations, Waves and Turbulence” [28] deals
with oscillating fields of different types. It gives numerous asymptotic methods
for analyzing the dynamics in such systems. Among the systems considered,
Kuramoto derived a system of phase oscillators globally coupled via a mean field:

ψ̇α(t) = ωα +
K

N

N∑
α′=1

sin(ψα − ψα′) (1.1)

where N is a number of oscillators, ψi, i = 1, N are phase variables of each
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oscillator, ωi, i = 1, N are natural frequencies of oscillators, K is a coupling
parameter. In this book it was analytically shown that there is a critical value of
coupling Kc such that for K > Kc full synchronization of all N oscillators takes
place in the system.

Extensive studies of dynamics in the Kuramoto model for a finite number of
phase oscillators is found in [45]. The authors showed that already for N = 4
for some parameter sets chaos enters the system. Many other dynamical regimes
were investigated, also for some symmetric cases.

Synchronization plays an important role in the transmission of information
in the brain. It is well known that in the brain a certain rhythmic activity is
always present (for example α rhythm) where millions of neurons interact with
each other and as result of their interaction a common rhythmic signal evolves.
The transmission of a signal from one neuron to another occurs according to a
certain time sequence.

In our work we try to model a phenomenon which seems to take place in
Parkinson disease, where two neuronal populations interact and one of them (driv-
ing) generates a pathological rhythm at which the other (driven) oscillates. Our
main goal is to determine the parameter values at which synchronization occurs
and how to break this synchronization.

One of the examples of how the theory of synchronization works in practice is
given by the experiments done on the paddlefish (see [37]). The paddlefish has a
long rostrum (i.e. ”nose”) with a spot of nervous receptors on it. This makes the
fish an ideal object for experiments. The fish is stimulated through some spots by
an external periodic force and the synchronization of different nervous receptors
is studied. As a result a good agreement of n to m frequency entrainment between
theory and practice was observed.

Wider classes of problems are also considered. The authors of [24] propose
a method of detection for mutual phase synchronization in multivariate signals.
Moreover, they test their method on ensembles of phase oscillators and on weakly
coupled Lorenz systems. The novelty of their method is that synchronization
indices take into account the spatio-temporal structure of data and thus are
bivariate, which facilitates the detection of phase synchronization.

However, in ensembles of interacting oscillators in nature, communication
between the individual elements inevitably takes place with some delay in time.
This can be caused by a finite transmission speed of a signal, by a finite distance
between oscillators, etc.. There are two pioneering articles in which systems of
phase oscillators with a time-delayed coupling were considered.

One of them [52] was written in 1989 by Schuster and Wagner. Therein two
phase oscillators interact with delay in such a way that the signal from the one
oscillator influences the dynamics of the other oscillator after τ delay time and
vice versa. The authors analyzed the appearance of synchronized states in the
system as a function of the coupling strength K and delay τ parameters. They
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reported the coexistence of many stable synchronous states as K grows. We use
their model in chapter 4 adding a stimulation term to it. There we study the
stimulus transmission between two oscillators.

The other article [73] written by Yeung and Strogatz in 1999 deals with a
population of N phase oscillators with a time delayed coupling. Their model
reads

θ̇i(t) = ωi +
K

N

N∑
j=1

sin(θj(t− τ) − θi(t) − α) (1.2)

where θi, i = 1, N are phase variables of each oscillators, ωi, i = 1, N are natural
frequencies of oscillators, K is a coupling parameter, τ is a delay parameter, α is
a ”phase frustration” parameter. The authors determine stability regions (ana-
lytically and numerically) of incoherent (desynchronous) states in the system for
certain distributions of natural frequencies at limit where N → ∞. The stability
regions of the incoherent states become smaller and smaller as the coupling and
the delay parameters grow. Some other examples of systems of phase oscillators
coupled with a time delay can be found in [8, 38].

Wiener postulated in [65] that every cybernetic system should have some
feedback loop in it. This is especially pertinent in the neuronal sciences, where
not only a whole brain but even small neuronal systems demonstrate the ability
to learn. That is why many neuronal models have feedback signals. We mention
a few interesting articles.

In [54] scientists consider a model of two neurons which interact with each
other with delays τ1 and τ2. Additionally, self-feedback loops with delay τs are
present. The authors studied the stability of a trivial solution of their model
in a parameter space of time delays and coupling. They showed that the triv-
ial fixed point can lose stability in five different ways: either through a pitchfork
bifurcation or a Hopf bifurcation or three other types of codimension-two bifurca-
tions. In our model (see chapter 2) we construct a similar model with a different
dynamical description of a single newron and negligibly small τ1, τ2.

In another important paper [1], possible architectures which dominate in the
nervous system and are suitable for a neuronal computing are discussed on the-
oretical and experimental levels. The authors first consider two known cases,
feed forward and recurrent network architectures. After that they come to the
surprising conclusion that studies of sensorimotor networks reveal a third im-
portant class of architecture - architecture where computations depend on long-
scale feedback loops. A comprehensive scheme of interaction was given between
thalamico-cortical brain areas and muscles nerves. Using the language of au-
tomatic control theory, the scientists built closed-loop contours representing a
nervous signal propagation. In our model in chapter 2, we model a brain-
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muscle contour of a similar kind.

The last important aspect of our models concerns a stimulation of the system.
In practice, functioning of the brain is mostly studied in two ways either by a
lesioning or by an application of external stimuli (visual, audio, electrical etc.)
with further registration of a brain activity. We used the second approach. This
area is extremely rich in scientific publications, we mention just a few of them
relevant for us.

The chapter by Lopes da Silva ”Event-related Potentials: Methodology and
Quantification” in [33] deals with the problem of the relation of a measured brain
signal to a real brain response (reaction) on a stimulus. It is postulated that the
measured signal could be considered as the sum of a real signal and noise. Then
by a simple averaging of many trials one can reconstruct the real signal since
the noisy part is diminished due to averaging. The authors also speculate about
the possibility of extracting of the real signal from a frequency domain of the
transformed measured signal. Such a simplicity of the method, however, does not
necessary leads to a true result. In contrast, Tass shows in [59] models of possible
interaction between neuronal populations and demonstrates that averaging is not
always a clue to the problem. Among the models used, Tass employs a model of
coupled phase oscillators. As we also have similar models, we used his type of
stimulation in both our models.

Under direction of Tass and in collaboration with him many other different
models in different areas of science were developed and a large variety of effective
stimulations were applied. Thus, for example in [75] the authors apply a pulse
stimulation to the system of chemical oscillators arranged over grid nodes of
an 8 x 8 squared array. It is possible by means of the stimulation to suppress
the synchrony level in the system. Different initial phases and protocols of the
stimulation were tested. Another intelligent technique of a desychronization of
phase oscillators is proposed in [58]. Here the author demonstrates the benefits
of using double-pulse stimulation, where the first pulse brings the system to some
predefined state and the second impulse hits the system at the most appropriate
moment. The concept of how to stimulate ”intelligently” biological systems is to
be found in [60]. Therein some algorithms of a stimulus application are discussed
and illustrated.

Two other good examples of a stimulus application in oscillatory systems are
described in [46] and [21]. The first article is devoted to a consideration of an
ensemble of limit-cycle oscillators. Global coupling in the ensemble is introduced.
Two different nonlinear stimulations using delayed feedback are considered: the
individual case, where every oscillator is stimulated by its own stimulus; and
the global case, where all oscillators are stimulated by a common stimulus. It is
shown that the application of the proposed stimulations not only desynchronizes
the ensemble, but forces every oscillator to return to its natural frequency (or close
to it). The second article deals with two models: a system of phase oscillators
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and a system of Morris-Lecar equations, modeling neurons from the subthalamic
nucleus. The authors base their stimulation technique on the so-called slaving
principle (see [19]). They stimulate the whole oscillator population through four
stimulation sources (four electrodes) and by means of this divide all N oscillators
into four subpopulations. The scientists showed that after such a procedure
resynchronization takes a considerable amount of time in comparison to a simple
stimulation by one electrode. Other examples of systems with delayed feedback
can be found in physics [69, 47, 73, 50], lasers [70, 26, 13], neural networks [35, 74],
biology [12, 11], and medicine [5, 55].

In chapter 4, we study transmission of a stimulus from one stimulated oscilla-
tor to another coupled to it, but not stimulated. In the literature there are several
main approaches how to estimate a transmission time. One of them is based on
the assumption, that peaks in averaged signals of both oscillators correspond to
moments of maximal effect of a stimulation. Such an estimate we will call the
average transmission time. The other approach the reader can find in [68]. In
this paper, the author proposed to calculate some quantity which characterizes a
system and is obtained using some information from a gliding window of measure-
ments. The time τ of the centre of that window which maximizes the quantity
above determines a transmission delay in the system. We call such an approach
the correlation like estimate. As the last approach we shall use intensively in our
work is a resetting transmission time estimate, which is introduced by Tass in
[61]. Here the maximal effect of a stimulation is associated with the maximal
reset of trials of each oscillator. The maximal reset of trials in its turn is deter-
mined by phase resetting analysis indices (see Appendix). The latter approach is
robust with respect to parameter changes and reveals some interesting properties
of a dynamical system considered (for details see chapter 4).

1.2 Outline of the thesis

The main goals of the dissertation are:
- to understand the dynamics of the models of phase oscillators using both ana-
lytical and numerical methods;
- to find out the effects of an external stimulation on the oscillators dynamics;
- to determine the role of a time delay in a system quantitatively and qualita-
tively;
- to test different approaches of the cross trial analysis in application to stimula-
tion trials.
To fulfill these goals the thesis is divided into the following parts.

After the introduction (chapter 1), there are three main chapters in which two
different systems of phase oscillators are considered. In chapters 2, 3 the system
of two phase oscillators is presented. The interaction between the oscillators is
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assumed to be instantaneous. However, each oscillator is influenced by a delayed
self-feedback, which is present in a coupling term. The coupling with delayed
self-feedback causes different dynamical regimes in the dynamics of the system.
We give a short description of them. The system is investigated under the impact
of a stimulation. The clustering phenomena are observed and their formation is
explained. Moreover, the question of a possible effective reset by the stimulation
is answered.

In the next chapter (chapter 4) a complementary system of two phase oscilla-
tors is presented. Complementary in the sense that now an interaction between
oscillators takes place with a time delay. In contrast to the previous case each
oscillator ”feels” itself instantaneously. This system without stimulation was
considered by Schuster and Wagner in [52]. The system again is subject to an ex-
ternal stimulation. Now only the first oscillator is stimulated. The transmission
time of a stimulus to the second oscillator is investigated. Different cross-trail
analysis techniques were used to determine this time.

After the three main chapters, we give an overview of possible prospects for
the work dealt in the dissertation.

Discussion and conclusions complete the thesis.



Chapter 2

System of two phase oscillators
coupled with delayed feedback:
The dynamics

In this chapter we introduce a system of two phase oscillators coupled with a
delayed feedback. The proposed system models some aspects of brain dynamics,
namely the interaction of two neuronal populations in a brain, sending and receiv-
ing electrochemical signals to each other and the periphery. We are interested in
this interaction because in a brain of patients suffering from Parkinson’s disease
such a situation hypothetically exists where two neuronal populations express
some pathologic rhythmic activity. Our goal is to try to model this phenomenon,
to understand the possible mechanisms behind it and, by means of an exter-
nal stimulation of the system to eliminate the undesired activity. Therefore two
chapters (including this) deal with the same model. In the second chapter, the
theoretical effect of a stimulation is discussed, and this chapter contains results
of the stimulation of the system from the first chapter, obtained during computer
simulations.

The structure of the first chapter is as follows: we formulate a problem in
the first section and derive an appropriate model. In the second section the dy-
namics in the proposed model is extensively described. In the first subsection of
the second section, we study a general bifurcation scenario in the system when
the coupling strength K grows. There is a wide variety of different dynamical
regimes depending on the coupling value. As one of our main goals is to investi-
gate a rhythmic activity in the system we specify for each of the regimes whether
it is synchronous or desynchronous. So for the small coupling K desynchronous
dynamics is preserved. After some threshold for K the first pair of phase-locked
states appears through a saddle-node bifurcation. These phase-locked states be-
long to a special kind of limit cycle. One of them is stable and loses its stability
via a Hopf bifurcation as the coupling increases further and thus a stable limit
cycle comes into the dynamics of the system. The following pairs of phase-locked
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states appear at larger coupling and the stable pairs in their turn undergo Hopf
bifurcation. Finally with the growth of K stable limit cycles develop through
a cascade of bifurcations to a chaotic attractor and chaotic synchronization is
observed. At last the chaotic attractor undergoes crisis bifurcation and becomes
desynchronous. Therefore for sufficiently large K the dynamics in the system
surprisingly returns to the desynchronous state.

After the subsection describing the bifurcation scenario in the system, we
concentrate our attention to phase-locked states. We show diagrams in the τ -
K plane (τ is a delay in the system) in which the curves of the appearance of
phase-locked states are depicted. Moreover, stability regions corresponding to
each stable phase-locked state are plotted. For some parameters it was possible
to find analytic results about phase-locked states. These results are formulated
as theorems. The section ends with a review of which bifurcation mechanism
causes the appearance-disappearance of phase-locked states depending on smooth
changes of parameters K and τ .

The last subsection in the second section gives a comparison of two systems:
two coupled phase oscillators (described above) and a system of two coupled
limit-cycle oscillators. We consider in parallel a bifurcation scenario in both
systems as a function of the coupling parameter K. We only compare phase
dynamics of systems, neglecting the amplitude dynamics of coupled limit-cycle
oscillators. Similarities are evident concerning the origin of phase-locked states
and their further evolution via a Hopf bifurcation. The ways of developing to
chaotic attractors in the two systems are different. Thus the system of two limit-
cycle oscillators coupled with delay could serve as a prototype for our system
of two phase oscillators coupled with delay in some interval of coupling K, but
outside this interval the dynamics could be essentially different.

2.1 Derivation of the model

The main idea behind the consideration of the proposed system is to model the
interaction between two neuronal populations in the brain which interact with
each other and the peripheral nervous system. Similar models have been consid-
ered in [1], where large-scale feedback loops in the brain of human and rat are
extensively studied. For example, Fig. 2.1(a),(b) gives a schematic representation
of possible loops in the nervous system, which solve a simple task of maintaining
of the muscles tone in a human being’s elbow.

The main control parameter of the system is θ, which represents the absolute
position of the joint. The whole scheme is based on a comparison principle.
A descending command θ0 on each step is compared in the block Δ with the
feedback signal of the control parameter θ. The parameter θ is proportional to a
position of the joint. As result of the comparison, the control signal ±G(θ − θ0)
is generated which imposes changes in θ according to the law dθ/dt = G(θ − θ0)
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Figure 2.1: Feedback control in the spinal innervation of the muscles in a human
being’s elbow joint.

(see Fig.2.1(b)). In this way, the brain accomplishes the motor control task of
keeping the absolute angle of the elbow joint at a certain value by means of closed
neuronal loops.

We see that the variable θ is used both for generating a control task (θ0)
and for checking whether the results of the control task are fulfilled satisfactorily
(G(θ− θ0)). The whole system can be represented by a chain: brain-hand-brain.

In our model, we consider a similar system where two loops brain-hand-brain
(left and right ones) interact with each other and are supposed to fulfill their
tasks of maintaining the muscle tone. We first denote ψ1 = θ1 and ψ2 = θ2 which
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are control parameters of the left and right loops, respectively. If we assume that
in an external loop signals ψ1 and ψ2 are not changed, but just return to the brain
with a time delay then analogously to Fig.2.1(b) ψ1(t) = θ0

1(t),ψ2(t) = θ0
2(t) and

ψ1(t− τ) = θ1(t),ψ2(t− τ) = θ2(t), where τ is the time delay.
Thus signals from both populations in the brain ψ1(t) and ψ2(t) are sent

to a periphery (elbows), and afterwards return to the brain with some delay
in the form ψ1(t − τ) and ψ2(t − τ). The other delay of interaction between
the populations is considered to be negligibly small. In this way we consider the
control law (the law how ψ̇1 and ψ̇2 change), which incorporates an instantaneous
signal of the neighboring population and the delayed signal of the population
itself. Such a system models parallel work of both elbows. For example a situation
where a person holds a wooden beam horizontally matches our model. Schematic
representation of the model is shown in Fig. 2.2.

Figure 2.2: Scheme of interaction of two neuronal populations.

The ”cross” blocks in Fig.2.2 denote the coupling between populations 1 and
2. The macroscopic dynamics of each population is modeled by a single phase
oscillator. Thus we, consider a system of two coupled phase oscillators:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ̇1(t) = ω1 +
K

2
sin[ψ2(t) − ψ1(t− τ)] +X(t)I cos(ψ1(t) − θ1) + F1(t),

ψ̇2(t) = ω2 +
K

2
sin[ψ1(t) − ψ2(t− τ)] +X(t)I cos(ψ2(t) − θ2) + F2(t)

(2.1)
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where K is a coupling parameter, ωi, i = 1, 2 are natural frequencies of oscillators,
τ is a time delay, and

Si(t) = X(t)I cos(ψi(t) − θi) + Fi(t), (2.2)

i = 1, 2 are stimulation terms (see [57, 58]).
We study the response of system (2.1) to a strong external stimulation. Strong

external stimuli are applied to each oscillator. Here, X(t) = 1 or 0 is a stimulus
trigger controlling on- and offset of the stimulation, I is a stimulus intensity,
θi are stimulation phase shifts, and Fi(t) is a Gaussian δ-correlated noise with
〈Fi(t)〉 = 0 and 〈Fi(t)Fj(t̃)〉 = Dδijδ(t−t̃), where D is a constant noise amplitude.

Transient responses of coupled oscillators to pulsatile stimuli are relevant in
several fields of the natural sciences. Such responses are typically studied by ex-
perimentalists to obtain information about dynamical systems and to characterize
the system’s inventory of reactions. For example, in neurology stimulus-evoked
electroencephalography responses are a standard tool for diagnosis, where tran-
sient short-term brain responses evoked by sensory stimuli play a key role in the
study of cerebral information processing and diagnosis [7].

2.2 Dynamics of the model: Bifurcation analysis

In this section, we explore the main dynamical regimes of the two phase oscillators
coupled with delay (2.1) in the absence of stimulation.

In subsection 2.2.1, we explain the bifurcation mechanism of the delay-induced
synchronization and desynchronization when the coupling strength between os-
cillators increases. We give numerical evidence of the coexistence of different
stable synchronized regimes supported by phase-locked solutions (see below),
limit cycles, or chaotic attractors, and determine the corresponding regions in
the parameter space of the system (2.1).

Subsection 2.2.2 contains a detailed analysis of the appearance of phase-locked
states in the system. We investigate here the structure of the parameter regions
of stable phase-locked states of system (2.1) and, following smooth parameter
changes (K or τ), describe bifurcations resulting in the appearance and disap-
pearance of phase-locked states.

In the last subsection 2.2.3, we compare in detail the dynamics of two phase
oscillators (2.1) with the dynamics of two coupled limit-cycle oscillators (2.33).
We show that a system of two limit-cycle oscillators coupled with delay could
serve as a prototype for our system of two phase oscillators coupled with delay
in some interval of coupling K, but outside this interval the dynamics could be
essentially different.
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2.2.1 Coupled phase oscillators.

In this subsection we discuss a general bifurcation scenario in system (2.1) when
the coupling strength K grows and a stimulation is not applied (X(t) = 0,
∀t ≥ 0). For a further analysis, additionally to the phase variables ψj , we
introduce a phase difference ϕ1 and a mean phase ϕ2:{

ϕ1(t) = ψ2(t) − ψ1(t),
ϕ2(t) = (ψ2(t) + ψ1(t))/2,

(2.3)

so that system (2.1) without the stimulation reads⎧⎪⎪⎨
⎪⎪⎩

ϕ̇1(t) = Δ1 −K sin

(
ϕ1(t) + ϕ1(t− τ)

2

)
cos(ϕ2(t) − ϕ2(t− τ)),

ϕ̇2(t) = Δ2 +
K

2
cos

(
ϕ1(t) + ϕ1(t− τ)

2

)
sin(ϕ2(t) − ϕ2(t− τ)).

(2.4)

Here, Δ1 = ω2 − ω1 is a natural frequency mismatch, and Δ2 = (ω2 + ω1)/2 is a
mean natural frequency. In the uncoupled regime for K = 0 each phase ψj grows
with its own frequency ωj such that the phase difference ϕ1(t) has the frequency
Δ1.

As the coupling strength grows in the system different dynamical regimes
appear in the dynamics. An exemplary one dimensional bifurcation diagram is
plotted in Fig.2.3(a) where the phase difference ϕ1 is shown versus K. Here
stable/unstable dynamical states are depicted by solid/dashed lines, correspond-
ingly. In the diagram phase-locked states (fixed points [see below]) appear at
saddle-node bifurcations at Ksn, K

′
sn, the stable ones bifurcate via Hopf bifurca-

tions at KH , K ′
H . At K big enough chaos comes into the system. For K < Ksn

and for K big enough there are desynchronous oscillations. For further details
please read the current section up to the end.

We extensively use the following definition of a phase synchronization given
in [41] (chapter 4, formula (4.1)):

Definition 2.1 We say that two oscillators (2.1) are synchronized if for their
phases ψ1(t), ψ2(t) holds |ϕ1(t)| = |ψ2(t)−ψ1(t)| < C, where C is some constant.

A desynchronous dynamics, where the phase difference ϕ1 exhibits unbounded
rotations, is preserved in system (2.4) for small values of K provided that Δ1 �= 0.
In what follows we will use the notion of a phase-locked state, which one finds in
the book [41] (chapter 3, formula 3.1).

Definition 2.2 A solution (ϕ1(t), ϕ2(t)) of system (2.4) is called a phase-locked
state if the phase difference ϕ1 is constant and if the mean phase ϕ2 grows linearly
with the frequency Ω (Ω is constant):

ϕ1(t) = ϕ∗
1 = const, ϕ2(t) = Ωt+ Const. (2.5)
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ϕ (t−τ)
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Figure 2.3: (a) Dynamical regimes of the phase difference ϕ1 in system (2.4) ver-
sus the coupling strength K. When the coupling increases, system (2.4) under-
goes a sequence of bifurcation transitions from the desynchronization via stable
phase-locked and periodically modulated synchronized states to the chaotic phase
synchronization and, finally, to the desynchronization again. The stable and un-
stable phase-locked states are depicted by solid and dashed curves, respectively.
For oscillatory regimes (limit cycles and chaotic attractors) only local maxima
and minima of trajectories are plotted. Ksn, K

′
sn and KH , K ′

H are the bifurcation
values of K of the saddle-node (sn) and Hopf (H) bifurcations.
(b) Corresponding frequencies Ω of the phase-locked states (2.5) versus K.
In plots (c) and (d) examples of limit-cycle oscillations for K = 0.8 and a chaotic
attractor for K = 1.34 are shown in the (ϕ1(t − τ), ϕ1(t))-phase space, respec-
tively. Parameters Δ1 = 0.2, Δ2 = 3.0, and τ = 4.0.

We also call the phase-locked states fixed points denoted by (ϕ∗
1,Ω). Evidently if

the oscillators (2.1) are in a phase-locked state they are synchronized.
As shown in Fig. 2.3(a), when the coupling parameter K increases, a stable

phase-locked state P and a saddle phase-locked state Q are born in a saddle-node
bifurcation (see below) at K = Ksn, where Ksn ≈ 0.235 in Fig. 2.3(a).

The birth of the phase-locked states P and Q is induced by an emergence
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of a pair of frequencies ΩP and ΩQ see Fig. 2.3(b). According to Eq. (2.5),
ΩP and ΩQ are the mean frequencies of the two oscillators (2.1) in the phase-
locked states P and Q, respectively. Numerical evidence suggests that the fixed
point P is stable for K ∈ (Ksn, KH), where at KH ≈ 0.61 a Hopf bifurcation
occurs [Fig. 2.3(a)]. At K = KH the fixed point P looses its stability and a
stable limit cycle γ emerges [Figs. 2.3(a) and 2.3(c)]. After the bifurcation, the
phase difference ϕ1(t) of trajectories attracted by γ is not constant any more
and exhibits periodic oscillations. It is still bounded and, thus, a regime of a
periodically modulated phase synchronization is established in system (2.1).

The number of different fixed points (ϕ∗
1,Ω) grows as the parameter K in-

creases. For example, after the emergence of the first pair of frequencies ΩP and
ΩQ corresponding to the phase-locked states P and Q, the second pair ΩP ′ and
ΩQ′ appears at K = K ′

sn ≈ 0.92 giving birth to a new stable phase-locked state P ′

and a saddle phase-locked state Q′ of system (2.1) [Figs. 2.3(a) and 2.3(b)]. The
fixed point P ′ is stable for K ∈ (K ′

sn, K
′
H) and loses its stability with increasing

K at K = K ′
H ≈ 0.985 via a Hopf bifurcation. In this bifurcation a stable limit

cycle γ′ emerges [Fig. 2.3(a)]. With a further increase of the coupling new pairs
of stable and saddle phase-locked states appear. The stable phase-locked states
exist in narrow intervals of the parameter K values, and bifurcate with increas-
ing K via a supercritical Hopf bifurcations, lose their stability, and give birth to
stable limit cycles.

At larger values of K the periodic motion in system (2.4) turns into a chaotic
motion [Fig. 2.3(a) and 2.3(d)]. The phase difference ϕ1 still remains bounded,
which indicates an emergence of a chaotic phase synchronization according to
the definition in Ref. [49]. Further, if K reaches some critical value K = Kcr, an
attractor of the chaotic phase synchronization undergoes a crisis and the system
(2.1) returns to a desynchronized state, where the phase difference ϕ1(t) displays
unbounded rotations [Fig. 2.3(a)].

Stable phase-locked states of system (2.1) may coexist, leading to multista-
bility. This takes place when the next stable phase-locked state, say P ′, is born
before the previously emerged phase-locked state, say P , loses its stability via
a Hopf bifurcation. An example of two coexisting stable phase-locked states is
illustrated in Fig. 2.4.

Here, both states P and P ′ are in-phase locked states with ϕ∗
1 = 0 with

different frequencies ΩP = 5.12 and ΩP ′ = 3.96, respectively. Both states are
realized in system (2.1) for the same parameter values but for different initial
conditions.

The multistability phenomenon emerges in system (2.1) not only between sta-
ble phase-locked states, but also between other synchronous and desynchronous
states. For instance, in Fig. 2.3(a) one can see that the stable fixed point P ′ can
coexist with the stable limit cycle γ and also two stable limit cycles γ, and γ′ can
coexist.

For some other set of parameter values, a stable desynchronous dynamics,
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Figure 2.4: Coexistence of two stable in-phase-locked states P and P ′ with the
same phase difference ϕ∗

1 ≡ 0, but with the different frequencies ΩP = 5.12 and
ΩP ′ = 3.96, respectively. Time courses of the mean phase ϕ2 are shown for stable
states P (bold line) and P ′ (thin line). Parameters Δ1 = 0.0, Δ2 = 4.5, τ = 1.4,
and K = 1.6.

where the phase difference ϕ1 exhibits unbounded rotations, and a stable syn-
chronous state with bounded ϕ1 can coexist in system (2.1), as illustrated in
Fig. 2.5. A region in (τ,K)-parameter plane, where a stable synchronous state
coexists with a stable desynchronous limit cycle is depicted in Fig. 2.5(a). The
lowest curve corresponds to the moment of the birth of a stable phase-locked state
P . As K increases this point then bifurcates into a stable synchronous limit cycle
γ via a Hopf bifurcation (middle curve). For parameter values of the gray region
between the ”Phase-locking” and the ”Desynchronization” curves, system (2.1)
displays a stable synchronized motion, where the phase difference ϕ1 is bounded.

On the other hand, the hatched region corresponds to parameter values, where
a stable desynchronous limit cycle μ exists, characterized by unbounded rotations
of ϕ1 on the torus. An example of the stable fixed point P coexisting with the
stable desynchronous limit cycle μ is illustrated in Fig. 2.5(b) for parameter values
indicated by the point A in Fig. 2.5(a). Depending on initial conditions, system
(2.1) displays one or the other stable dynamics.

In sections 3.2, 3.3, 3.4 we study responses of system (2.1) under stimulation
in the following four dynamical regimes: (i) a single stable phase-locked state
(section 3.2), (ii) a stable, periodically modulated synchronization (section 3.3),
(iii) bistability of two phase-locked states, and (iv) a regime of bistability of a
phase-locked state and a desynchronous limit cycle (section 3.4).

For the stable phase-locked state we explore the intertrial clustering of the
oscillators’ responses emerging during in- and post-stimulus transients. Optimal
parameter values are detected, where a recovery time (i.e. a duration) of the
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Figure 2.5: Coexistence of stable synchronized and desynchronized states.
(a) The bifurcation diagram in (τ ,K)-parameter plane. The gray and hatched
regions correspond to an existence of stable synchronized and desynchronized
states, respectively.
(b) Example of the coexistence of the stable desynchronous limit cycle μ and
the stable phase-locked state P (asterisk) for parameters K = 0.28 and τ = 7.2
indicated by the point A in (a). Other parameters Δ1 = 0.2 and Δ2 = 0.1.

post-stimulus transient gets maximal. We also uncover the mechanism of such
a maximal transient. For the periodically modulated synchronized state we an-
alyze the post-stimulus transient and compare it with that of the phase-locked
state. Finally, for the stimulated multistable regimes we provide an evidence of a
stimulus-induced switching between synchronized and desynchronized motions.

2.2.2 Phase-locked states

In the previous subsection we gave a brief review of the main dynamical regimes
in our system. The purpose of this subsection is to investigate under which
conditions phase-locked states appear in the system, to determine their stability,
to describe bifurcations which occur if we change the main parameters K and τ .
In the first part we classify fixed points of system (2.1) and describe a structure of
their stability regions in (τ,K) plane. The second part contains a detailed study
of bifurcation mechanisms causing appearance, loss of stability and disappearance
of fixed points.

2.2.2.1 Stability regions of stable phase-locked states in K-τ plane.

Substituting expressions defining a phase-locked state (2.5) into Eqs. (2.4) of
the initial system in variables ϕ1, ϕ2, and solving them for ϕ∗

1 and Ω one obtains
that phase-locked states of system (2.1) have the following coordinate ϕ∗

1



2.2 Dynamics of the model: Bifurcation analysis 24

ϕ∗
1 =

⎡
⎢⎢⎣

arcsin

[
Δ1

K cos(Ωτ)

]

π − arcsin

[
Δ1

K cos(Ωτ)

] , with ϕ∗
2 = Ωt+ Const, (2.6)

where the mean frequency Ω is determined by the following transcendental equa-
tion:

f(Ω) := −Ω + Δ2 ± K

2
sin(Ωτ)

√
1 − Δ2

1

K2 cos2(Ωτ)
= 0. (2.7)

Later we will refer to the branch of f(Ω) with the plus sign at the term starting
with K as f+(Ω) and to the branch with the minus sign as f−(Ω), correspond-
ingly. In this way, any frequency Ω found from Eq. (2.7) defines a single phase-
locked state with ϕ∗

1 of the form (2.6), where the first and the second values in the
expression for ϕ∗

1 correspond to the sign ”+” and ”-” in Eq. (2.7), respectively.
We also call solutions (2.6) of system (2.4) fixed points or steady states because
the phase difference ϕ1(t) = ϕ∗

1 remains constant. Note that the mean phase ϕ2

can also be constant only for the case Δ2 = 0, where the trivial solutions Ω = 0
of Eq. (2.7) exists for K ≥ Δ1. Only under this condition, system (2.1) can
exhibit an oscillation death, where both phases would stop to rotate if they were
attracted by a steady-state solution (2.6) with Ω = 0.

A detailed analysis of Eq. (2.7) shows that an increase of the coupling K or
the delay τ leads to an emergence of new solutions Ω and, as a result, to the
emergence of new fixed points (2.6) [see also Ref. [52]]. To illustrate the existence
of multiple solutions of Eq. (2.7) the graphs of the function f(Ω) are shown in
Fig. 2.6(a) for a few values ofK. One can see that with increasing K new solutions
of Eq. (2.7) appear in pairs, where the loops of the graphs, first, touch and then
intersect the zero axis f(Ω) = 0 in two points which are solutions of Eq. (2.7).
This is caused by increase of the ”amplitude” of loops, which is induced by an
increase of K. On the other hand, for a given K, an increase of delay τ results in
an increase of the ”frequency” of the loops, where the number of loops increases
with increasing τ . This leads to the appearance of new intersections of the graphs
with the zero axis and, as a result, to the emergence of new phase-locked states
of system (2.1).

Each new frequency Ω gives birth to a new phase-locked state (2.6). Since the
frequencies emerge in pairs, the same also holds for the phase-locked states. In
other words, the fixed points (2.6) appear in pairs via saddle-node bifurcations
as parameter K increases. This process is illustrated in Figs. 2.6(b) and 2.6(c),
where the frequencies Ω, solutions of Eq. (2.7), and coordinates ϕ∗

1 of the cor-
responding fixed points (2.6) are depicted versus K, respectively. As numerical
evidence suggests, in saddle-node bifurcations one stable and one unstable fixed
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Figure 2.6: Phase-locked states of system (2.1). (a) Graphs of the function f(Ω)
(2.7) for three values of K. (b),(c) Phase-locked states (Ω,ϕ∗

1) of system 2.1
appears in pairs. Stable ones are depicted by bold lines, unstable- by dashed
lines. (d),(e) Eigenvalues for the fixed point P , Q, respectively. Eigenvalues are
shown for two coupling strength K = 0.25 and K = 0.8. Parameters Δ1 = 0.2,
Δ2 = 3, and τ = 4.

points are born [Fig. 2.11].

We address a stability issue of the fixed point with the use of the linear
stability theory [20, 2]. For this, we consider a characteristic equation for fixed
points (2.6) of system (2.4). We follow the equation (4.2) on the page 17 in [20]
(see also Lemmas and Theorems there after)
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det[λI − A− Be−λτ ] = 0, (2.8)

where I is the identity matrix, and A and B are the Jacobian matrices of Eq. (2.4)
with respect to the instant and delayed variables, accordingly. Solutions λ of
Eq. (2.8) are complex eigenvalues of the corresponding fixed points. The signs of
real parts of λ determine the stability of the fixed points such that a fixed point
is stable if all its eigenvalues have negative real parts. If a fixed point has an
eigenvalue with a positive real part, it is unstable [2]. Calculating the matrices
A and B in Eq. (2.8) on the coordinates (ϕ∗

1,Ω) of fixed points (2.6) we obtain
the following characteristic equation:

λ2+ K cos(ϕ∗
1) cos(Ωτ)λe−λτ+

K2

4
cos(Ωτ − ϕ∗

1) cos(Ωτ + ϕ∗
1)(e

−2λτ − 1) = 0.
(2.9)

One can see that λ = 0 always is a solution of Eq. (2.9). However, this eigenvalue
is connected with an invariance of phase-locked states (2.6) with respect to a
constant shift in the variable ϕ2, and, thus, it does not influence the stability of
the fixed points. The other solutions of Eq. (2.9) can be calculated numerically.

Let us consider, for example, the first pair of the fixed points, denoted by
P and Q, which are born in the first saddle-node bifurcation as K grows. For
the parameter values as in Fig. 2.6 the bifurcation takes place at K = Ksn ≈
0.236 [Fig. 2.6(b) and 2.6(c)]. We found that P is stable and the other fixed
point Q is unstable. Just after the bifurcation, the stable fixed point has three
real eigenvalues: one eigenvalue is zero and the other two are negative [circles
in Fig. 2.6(d) for K = 0.25]. The remaining eigenvalues (infinitely many) are
complex conjugate with negative real parts.

The unstable fixed point Q is of a saddle-focus type having one real positive
eigenvalue, one zero eigenvalue (see above), and the others are complex conjugate
with negative real parts [circles Fig. 2.6(e) for K = 0.25]. With further increase
of the coupling strength K, the two negative real eigenvalues of P approach
each other, meet, diverge from the real axis, and become complex conjugate with
negative real parts. Further, these eigenvalues cross imaginary axis atK = KH ≈
0.61, and attain positive real parts. Therefore, the fixed point P undergoes Hopf
bifurcation at K = KH and becomes an unstable focus. The eigenvalues of the
fixed points P and Q after the bifurcation are depicted for K = 0.8 by triangle
marks in Fig. 2.6(d) and Fig. 2.6(e), respectively.

The same bifurcation scenario takes place for other fixed points emerging
in consecutive saddle-node bifurcations as K further increases. The newly-born
stable fixed points, have the corresponding K-intervals of stability, after they
undergo Hopf bifurcations and become unstable foci. The intervals of stability of
a few fixed points are indicated in Figs. 2.6(b) and 2.6(c) by the bold solid curves
and the vertical dotted lines. One can see that these intervals shrink in size and
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become smaller for each next pair of fixed points born for larger K. In particular,
the stability intervals are difficult to resolve with the resolution in Figs. 2.6(b)
and 2.6(c) already for the third, the fourth, etc. pairs of fixed points.

To explore a structure of stable phase-locked states of system (2.1) we calcu-
late regions of stability of fixed points (2.6) versus the parameters τ and K. The
stability regions are shown in Fig. 2.7.

The whole complicated set of parameters (τ,K), where system (2.1) has stable
phase-locked states can be classified into infinitely many separated regions which
are depicted by gray of different intensity in Fig. 2.7(a).

A single stability region is depicted in Fig. 2.7(b). Its shape strongly re-
sembles the form of stability regions of periodic cycles in cubic and quadratic
two-dimensional maps called swallows or shrimps [36, 14]. However, the novelty
and difference of the ”swallows” shown in Fig. 2.7(b) is that (i) they represent
stability regions of phase-locked states of the system of two coupled phase oscil-
lators with delay and (ii) their individual structure and their global arrangement
with respect to each other are different from those observed in maps.

The lowest curve in Fig.2.7(b) represents the appearance of a pair of fixed
points in the τ -K plane resulting from saddle-node bifurcations which occur in

the system (2.1). For τ =
3

2
T and K = Δ1 the point (τ,K) (the lowest point of

the ”swallow”) belongs this curve.

Definition 2.3 For each ”swallow” and ∀τf fixed ∃Kc that Kc is infimum on K
of all points which belong to the ”swallow”. These points (τf , Kc) form curves

which are called swallow birth curves.The points (τv, Kv) (τv =
T

2
n, n ∈ Z and

Kv = Δ1) belong to the swallow birth curves and we will refer to them as to the
vertexes of the ”swallows” (see diagram Fig.2.7(a),(b)).

To find a moment of bifurcation (parameters τ and K) we need to find those
parameters when maxima or minima of f touch Ω-axis. Then one needs to solve
the following system of equations:{

f(Ω) = 0,
f ′(Ω) = 0.

(2.10)

Its solutions (if there are some) are points of a birth of new pairs of phase-locked
states. Thus we get sufficient condition of the appearance of phase-locked states
belonging to the swallow birth curves. If we solve first the second of Eqs.(2.10)
and find its solutions Ωf and substitute them into the first of Eqs.(2.10) then the
latter will be the equation defining the swallow birth curves. Doing this, after
some algebra we end up with the following equation for the extrema of f :

t4K4 − t3K4 − t2K2Δ2
1 + Δ2

1 = 0, (2.11)
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Figure 2.7: (a) The first five ”swallows” of stability regions’ family are shown.
Each region of the same color starts from below with a curve of a birth of a
stable phase-locked state and is bounded from above with a curve, when stable
fixed point loses its stability. (b) One exemplary ”swallow” is shown in details.
Parameters Δ1 = 0.2, Δ2 = 3.0.

where t = cos2(Ωτ). As it is known the equation of forth degree could always
be solved analytically. Since analytics in this case is too cumbersome, we just
remark that in the general case solutions Ωf could be derived analytically and,
thus, we could get at least implicit equation for parameters of the appearance of
stable phase-locked states.
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Instead we find a good approximate solution of this problem. The following
theorem is valid:

Theorem 2.1 Let g(Ω) = f(Ω) + Ω − Δ2, where f is defined by Eq. (2.7).
Let Ωf denote an exact solution of the Eq. (2.10) which corresponds to some of
the phase-locked states belonging to one of the swallow birth curves. Then there
exists a solution Ωg of the equation g′(Ω) = 0 which approximates Ωf , satisfying
the estimate:

|Ωg − Ωf | ≤ 1

τ

∣∣∣∣∣arccos

(
Δ1

K

)
− arccos

(√
Δ1

K

)∣∣∣∣∣. (2.12)

Using this theorem, we build approximate swallow birth curves in the following
way: we find Ωg, which are solutions of g′ = 0, and after that substitute them into
the first of Eqs.(2.10) and get formula f(Ωg) = 0. Having done this we obtain
that the approximate curves are written:

τ =

(± cos−1

(√
Δ1

K

)
+ πn)

±Δ1−K
2

− Δ2

, (2.13)

where n ∈ Z. In Fig.2.8 for the first five ”swallows” we compare the approximate
curves from (2.13) (inner dashed curves) with the numerically determined ones
(solid curves).

Proof: To prove the fact stated in the theorem, we need first to consider the
properties of functions f and g. The function g reads

g(Ω) := ±K
2

sin(Ωτ)

√
1 − Δ2

1

K2 cos2(Ωτ)
. (2.14)

Later we will refer to the branch of g(Ω) with the plus sign at the coupling term
K as g+(Ω) and to the branch with the minus sign as g−(Ω), correspondingly.
Evident is that g(Ω) is periodic with period 2π/τ . The branch g− is shifted on
π/τ in comparison to g+. Indeed − sin((Ω + π/τ)τ) = sin(Ωτ). So to gain a full
information about g+ = 0 one could consider it together with g− on a half-period
interval. Also g+ and g− are symmetric around abscissa Ω = 0 what implies
g− = −g+. This also means that maximal points of g+ are minimal point of g−

and vice versa. And absolute values of corresponding maximum and minimum
are equal. The domain of definition of g are those intervals of Ω where under-root
expression is non-negative. This give us
Ω ∈ [(−arccos(Δ1/K) + πn)/τ ; (arccos(Δ1/K) + πn)/τ ]∪
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Figure 2.8: An analytical approximation of the swallows birth curves. The black
solid curves represent experimental values. The green and blue curves are ap-
proximate values. Parameters Δ1 = 0.2, Δ2 = 3.0.

[(−arccos(Δ1/K) + π(n+ 1))/τ ; (arccos(Δ1/K) + π(n+ 1))/τ ],
n is any even integer (n ∈ 2Z). For every n a junction of two intervals above gives
a whole one-period interval of Ω. As we consider both branches of the g only on
a half-period interval we put for simplicity n = 0 and take just the first interval
from domain: [−arccos(Δ1/K)/τ ; arccos(Δ1/K)/τ ]. Then in this interval the
function g+ crosses Ω = 0 axis at the points Ωl = −arccos(Δ1/K)/τ , Ωz = 0,
Ωl = −arccos(Δ1/K)/τ , where letters l, c and r denote left, center and right,
correspondingly. For Ω ∈ (Ωl; Ωc) and Ω ∈ (Ωc; Ωr) g

+ (g−) preserve its sign.
At the central point g+ ′(Ωc) > 0 (g− ′(Ωc) < 0), what means g+ increases (g−

decreases) in the central point (see equation for g′(Ω) below).

g′(Ω) = ± Kτ(K2 cos4(Ωτ) − Δ2
1)

2K2 cos3(Ωτ)
√

1 − Δ2
1/(K

2 cos2(Ωτ))
(2.15)

Moreover, in each interval (Ωl; Ωc) and (Ωc; Ωr) there exists exactly one solu-
tion of equation g+ ′(Ω) = 0 (g− ′(Ω) = 0) which gives us extremal points of g+

(g−). Taking into consideration that on the ends of interval [Ωl; Ωc] g
+(.) = 0

and at the center it is increasing then an extremum in this interval is a minimum
(for g− maximum). In a similar way in the interval [Ωc; Ωr] function g+ has a
maximum (g− has a minimum). The graphs of the both branches of g are shown
in Fig. 2.9 and join each other in the horizontal ”eight”. For example g+ starts
at Ωl, goes down to the minimum and after that increases up to the maximum
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passing through zero at Ωc. From the maximum the function decreases again and
is zero at Ωr.

Ωg(   )

f(   )Ω

Ωg

O

O

A
B

B

A

Ω

Ω

C

f

Figure 2.9: Two ”eights” are depicted, which are the graphs of the functions f(Ω)
and g(Ω). The invariant in abscissa points are shown: centers O and O′ coincide
in abscissa, the length of both ”eights” is the same (points B and B′ lie on the
same vertical line), extremal points of g(Ω) are also abscissa of the tangent points
(points A and A′) of f(Ω) with the lines l(Ω) = −Ω + Δ2 ± (K/2 − Δ1/2) (one
of these lines is depicted in red). Parameters Δ1 = 0.2, Δ2 = 0.5, τ = 4.0 and
K = 0.4.

Let us denote a minimal point of g+ by Ω+
min and its maximal point Ω+

max.
Analogously Ω−

min and Ω−
max are minimal and the maximal points of g−. It is

true that Ω−
min > Ω+

min and Ω−
max < Ω+

max, g
+(Ω+

min) = g−(Ω−
min) and g+(Ω+

max) =
g−(Ω−

max). For every point g(Ω) it is valid that f(Ω) = −Ω + Δ2 + g(Ω), where
for Ω with upper index + is taken the function g+, and for Ω with upper index
− - the function g−, respectively. Then for all four extremal points of g we have:

f(Ω−
min) = −Ω−

min + Δ2 + g(Ω−
min)

f(Ω+
min) = −Ω+

min + Δ2 + g(Ω+
min)

f(Ω−
max) = −Ω−

max + Δ2 + g(Ω−
max)

f(Ω+
max) = −Ω+

max + Δ2 + g(Ω+
max)

(2.16)

and we have that f(Ω−
min < f(Ω+

min) < f(Ω+
max) < f(Ω−

max). Now we come
back to the primary problem to find solutions of the equation f(Ω) = 0, which
denote an appearance of phase-locked states belonging the swallow birth curves.
At these points extrema of f touches abscissa. Points f(Ω+

min) and f(Ω+
max)

would not touch it before the other two points f(Ω−
min) and f(Ω−

max) would do
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(see the relationship between them above). So they could give birth only to the
second or further pairs of phase-locked states which can not be on the any of the
swallow birth curves, and, thus, we exclude these two points from the further
consideration.

Let function f attain the maximal value at some Ωf , Ωf ∈ [Ωl; Ωr]. For
every Ω is true: g(Ω) ≤ g(Ω+

max), where g(Ω+
max) = K/2 − Δ1/2. Let us take

the upper line lg(Ω) = K/2 − Δ1/2, which bounds horizontal ”eight”. It is true
that g(Ω) ≤ lg(Ω), ∀Ω ∈ [Ωl; Ωr]. Then g(Ω) + Ω − Δ2 = f(Ω) ≤ lf (Ω) =
lg(Ω)+Ω−Δ2 and function f(Ω) is under the line lf(Ω), which again bounds the
whole inclined ”eight” (see Fig. 2.9). It holds that lf(Ωc) > lf(Ω), ∀Ω ∈ (Ωc; Ωr]
and lf (Ω

−
max) = f(Ω−

max) > lf (Ωc). The last inequalities mean that the maximal
point lies somewhere in [Ωl; Ωc). Moreover as f ′(Ω−

max) = −1 < 0 and f is smooth,
then Ωf lies to the left from Ω−

max. The domain of definition of f is the same like
for g and function f is defined at Ωl as at the most left point. We call Ω−

max = Ωg,
substitute the value of Ω−

max (which immediately follows from Eq. 2.15), and get
the following formula:

|Ωg − Ωf | ≤ 1

τ

∣∣∣∣∣arccos

(
Δ1

K

)
− arccos

(√
Δ1

K

)∣∣∣∣∣. (2.17)

As one can see Ωg → Ωf as K → ∞ or τ → ∞.
An estimate for a minimal point of f(Ω) is obtained in a similar way. On the

next half-period interval graphs of g+ and g− interchange and extremal points of
g+ will play a role of estimates of some other Ωf . The theorem is proved.

It is possible to find Ωf and its ϕ∗
1, i.e. to determine phase-locked states

analytically, for some certain pairs of (τ,K). The following theorem solves this
problem for the minimal points of the swallow birth curves (see Fig.2.7).

Theorem 2.2 For τ =
Tn

2
, n = 0, 1, . . . and |K| ≥ |Δ1| in the dynamics of

system (2.4) two phase-locked states S=(ϕS1 ,ΩS) and R=(ϕR1 ,ΩR) exist. Here
ΩS = ΩR = Δ2 and ϕS1 = (−1)narcsin [Δ1/K] and ϕR1 = π− (−1)narcsin [Δ1/K].
Furthermore for n even S is stable for K ∈ [Δ1, Kpf ] and for n odd R is stable
for K ∈ [Δ1, Kpf ], where Kpf is given by the following formula:

Kpf =

√
4

τ 2
+ Δ2

1. (2.18)

The fixed point R is unstable for n even, and the fixed point S is unstable for n
odd.

Proof: We remark first that τ =
Tn

2
=

2π

Δ2

n

2
= πn. To check if ΩS and ΩR

are solutions of Eq. (2.7) we put Ω = Δ2 and substitute all other parameters into
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it. Then noting τΩ = πn and cos(πn) = (−1)n we have:

f(Δ2) := −Δ2 + Δ2 ± K

2
sin(πn)

√
1 − Δ2

1

K2(−1)2n . (2.19)

and thus Δ2 are solutions of f+ and f−, what implies an existence of two phase-
locked states S and R with the same frequency for |K| ≥ |Δ1|. Moreover, it is easy
to see that Eq. (2.7) has no solutions for |K| < |Δ1| and for any τ ≥ 0. Therefore,
with increasing |K| from zero, the very first pair of the phase-locked states (2.6)
S and R emerges. Substituting the values of the frequencies ΩS and ΩR into 2.6
we obtain the phase differences ϕ1 of these states ϕS1 = (−1)narcsin [Δ1/K] and
ϕR1 = π− (−1)narcsin [Δ1/K]. Existence of the phase-locked states mentioned in
the theorem is proved.

To investigate their stability we consider characteristic equation 2.9 computed
using coordinates of the phase-locked states and parameters as in the theorem:

λ2+ K cos(ϕ∗
1)(−1)nλe−λτ +

K2

4
cos2(ϕ∗

1)(e
−2λτ − 1) = 0. (2.20)

The further analysis we provide in the case Δ1 ≥ 0 and K ≥ 0. The other
cases can be treated with the same arguments used below. We see that equation
2.20 is dependent on a value of n. So in following we consider two cases n is
even and n is odd. It is so that for both n (even and odd) cos(ϕS1 ) ≥ 0 and
cos(ϕR1 ) ≤ 0.

For the case n is even the characteristic equation is split into two:⎡
⎢⎣ λ = −K

2
cos(ϕ∗

1)(e
−λτ + 1),

λ = −K
2

cos(ϕ∗
1)(e

−λτ − 1).
(2.21)

For the case n is odd the characteristic equation also is split into two:⎡
⎢⎣ λ =

K

2
cos(ϕ∗

1)(e
−λτ + 1),

λ =
K

2
cos(ϕ∗

1)(e
−λτ − 1).

(2.22)

From now on we consider the case n is even only. The case n is odd is treated
analogously.

Representing complex variable λ as λ = x + iy, where x, y ∈ R1, we rewrite
the first of the two complex variable equations (2.21) as a system of two real
variable equations: ⎧⎪⎨

⎪⎩
x = −K

2
cos(ϕ∗

1)(e
−xτ cos(yτ) + 1),

y =
K

2
cos(ϕ∗

1)e
−xτ sin(yτ).

(2.23)
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If we now examine stability of the fixed point S and remember cos(ϕS1 ) ≥ 0 we
obtain that for all x ≥ 0 and any K r.h.s. of the first of Eqs. (2.23) is non-
positive. Indeed for x ≥ 0 e−xτ cos(yτ) + 1 ≥ 0 and stated above becomes true
for any K ≥ 0. So no eigenvalue with positive real part for the phase-locked state
S satisfies the first of Eqs. (2.21).

Now we show that from the second equation of Eqs. (2.21) for the phase-locked
state S an eigenvalue with a positive real part can exist only from K ≥ Kpf . For
this we rewrite this equation as a system of two real variable equations:⎧⎪⎨

⎪⎩
x = −K

2
cos(ϕ∗

1)(e
−xτ cos(yτ) − 1),

y =
K

2
cos(ϕ∗

1)e
−xτ sin(yτ).

(2.24)

The fixed point S can lose stability via two scenario:
a) one real eigenvalue crosses the imaginary axis, in this case y = 0 holds;
b) two complex conjugated eigenvalues cross the imaginary axis.
Consider first the case a). y = 0 satisfies the second equation of Eqs. (2.24).
We denote h(x) = 2x + K cos(ϕ∗

1)(e
−xτ − 1) and then the first of Eqs. (2.24)

becomes h(x) = 0. The last equation has always a trivial root x = 0. To find
other possible roots we need to analyze the function h(x). Its extremal points
are solutions of h′(x) = 0 so we have:

h′(x) = 2 − τK cos(ϕ∗
1)e

−xτ = 0 (2.25)

and an extremal point is x∗ = −1

τ
ln

2

τK cos(ϕ∗
1)

. The point x∗ is a minimal point

of h(x) because h′′(x∗) > 0. Moreover:

h(x∗) = −2

τ
ln

2

τK cos(ϕ∗
1)

+
2

τ
−K cos(ϕ∗

1) ≤ 0 (2.26)

The last inequality is equivalent to 1+ ln(x) ≤ x which is a standard one. So the
minimum of h(x) lies below or on the line x = 0. The position of x∗ provides an
answer how many roots the equation h(x) = 0 has. Thus if x∗ < 0 there is one
negative root besides the trivial root. If x∗ > 0 there is one positive root besides
the trivial root. This means that the phase-locked state S loses its stability. At
x∗ = 0 h(x∗) = 0 and there is no root except the trivial one. So the value x∗ = 0
is critical, after which S loses its stability. To find Kpf one needs to solve the

equation x∗ = −1

τ
ln

2

τK cos(ϕ∗
1)

= 0. This results in the equation:

2

τK cos(ϕ∗
1)

= 1 (2.27)

Remembering that ϕS1 = (−1)narcsin [Δ1/K] and that n is even we come to the
following equation:
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K

√
1 − Δ2

1

K2
=

2

τ
(2.28)

and finally we have:

Kpf =

√
4

τ 2
+ Δ2

1 (2.29)

Therefore for K > Kpf x∗ > 0 and S loses stability.
Now we return to the case b) where S could lose its stability by means of a

couple of complex conjugate eigenvalues crossing the imaginary axis. To check
this we substitute into the second of Eqs. (2.24) x = 0 and try to find a non-trivial
solution for y > 0:

y =
K

2
cos(ϕ∗

1) sin(yτ) (2.30)

Let us consider the function w(y) = y−K
2

cos(ϕ∗
1) sin(yτ). The equation Eq. (2.30)

has more than one solution (non-trivial solution) if the function w(y) is non-
monotonic and has extrema. It is true because w(y) = 0 is equivalent to Eq. (2.30)
and w(0) = 0. The extrema of w(y) are determined by w′ = 0:

1 − Kτ

2
cos(ϕ∗

1) cos(yτ) = 0 or cos(yτ) =
2

Kτ cos(ϕ∗
1)

(2.31)

The last equation imposes a constraint
2

Kτ cos(ϕ∗
1)

≤ 0. If we compare it to

Eq. (2.27) we immediately get that the constraint above means K ≥ Kpf . So we
come to the conclusion that for the Eq. (2.30) to have a non-trivial solution the
coupling should be at least K = Kpf . Summarizing we see that the fixed point
S does not lose its stability either via scenario a) or b) before coupling strength
reaches Kpf .

If we now examine the stability of the fixed pointR and remember cos(ϕR1 ) ≤ 0
we obtain that the r.h.s. of the first of Eqs. (2.23) is nonnegative. So x could
be only equal or greater then zero. If we consider just the case y = 0 then

even schematic graphs of the functions −K
2

cos(ϕ∗
1)(e

−xτ + 1) and x and their

monotonicity reveal a presence of a non-trivial solution x > 0 for K > Δ1.
The case n is odd is treated in a similar manner. The theorem is proved.

2.2.2.2 The bifurcation mechanisms of the birth and destabilization
of the phase-locked states.

In this part of the current subsection we explore in detail the bifurcation
mechanisms of the birth and the destabilization of phase-locked states of system
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Figure 2.10: A few one-parameter bifurcation diagrams for Ω (left column) and ϕ∗
1

(right column) versus parameters K and τ are shown. Stable and unstable phase-
locked states depicted by black solid and dashed curves, respectively. (a),(b) K
is changed from 0 to 1.4 for fixed τ = 3T/2 = π. (c),(d) K is changed from 0 to
1.4 for fixed τ = 3.18 > π. (e),(f) τ is changed from 2.2 o 4.2 for fixed K = 1.15.

(g): one of the ”swallows” (with the vertex τ =
3

2
T and K = Δ1) is shown. The

lines A1A3 and B1B4 demonstrate how parameters K and τ are varied in (a),(b)
and (e),(f), respectively. The other parameters Δ1 = 0.2 and Δ2 = 3.0.
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(2.1). For this, we describe the bifurcations which occur at the entering or leaving
the ”swallow” stability regions.

In Fig. 2.10, a few one-parameter bifurcation diagrams are shown, which cor-
respond to various parameter pathways crossing the ”swallow” region in different
places as indicated by the dashed lines in Fig. 2.10(g). The first pair of bifurcation
diagrams is plotted in Figs.2.10(a),(b) for fixed τ = π and varying K ∈ (0, 1.4)
[line A1A3 in Fig. 2.10(g)]. For the case Δ2 = 3.0 the value of τ is τ = π = 3T/2,
where T = 2π/Δ2 is the mean period of system (2.1) without coupling (K = 0).
The second pair of diagrams is plotted in Figs.2.10(c),(d) for fixed τ = 3.148
and varying K ∈ (0, 1.4) [not shown in Fig. 2.10(g)]. The latter calculation
is performed to show how the bifurcation scenario changes if the values of the
parameter τ slightly differ from the former, ”special” value of τ = π = 3T/2.
The third pair of diagrams is plotted in Figs.2.10(e),(f) for the fixed K = 1.15
and varying τ ∈ (2.2, 4.2) [line B1B4 in Fig. 2.10(g)]. For all three parameter
scans we only consider the fixed points connected with the ”swallow” shown in
Fig. 2.10(g). The other fixed points which the system (2.4) can have for these
parameter values will be ignored.

For the first run for fixed τ = 3T/2 = π, the bifurcation diagrams are shown
in Fig. 2.10(a) and 2.10(b), where the frequencies Ω and coordinates ϕ∗

1 of the
fixed points (2.6) are depicted versus K, respectively. To find the first bifurca-
tion moment as K increases, we substitute τ = 3T/2 = 3π/Δ2 into Eq. (2.7).
Then one finds that for K ≥ Δ1 Eq. (2.7) has two solutions ΩS = ΩR = Δ2

(see the theorem 2.2). So we found that the fixed point S is born stable for even
n = 0, 2, 4, . . . , whereas the fixed point R is born stable for odd n = 1, 3, 5, . . . .
Further, the corresponding fixed point remains stable for K ∈ (Ksn, Kpf), where
Ksn = Δ1, as mentioned above. Substituting the corresponding values of the
delay τ = πn/Δ2, n = 0, 1, 2, . . . into the equation for Kpf , we obtain the bi-
furcation values of K = Kpf , where the corresponding phase-locked state S (for
even n) or R (for odd n) loses its stability (e.g., Kpf ≈ 0.66 in Fig. 2.10(a) and
2.10(b)). This value of K = Kpf defines the K-coordinate of the point A2 in
Fig. 2.7(b).

At the bifurcation at K = Kpf , a real negative eigenvalue of the stable fixed
point S (or R) crosses zero and becomes positive. The fixed point undergoes a
pitchfork bifurcation and loses its stability, and two new phase-locked states, de-
noted by S ′ and R′, are born. These newly-born states are depicted in Fig. 2.10(a)
and 2.10(b) for K > Kpf . Note that S ′ and R′ have different frequencies ΩS′ and
ΩR′ symmetrically located with respect to Ω = Δ2 [Fig. 2.10(a)]. On the other
hand, the ϕ1-coordinates of S ′ and R′ are the same [Fig. 2.10(b)], which also
follows from Eq. (2.6) provided that |ΩS′ −Δ2| = |ΩR′ −Δ2| and τ = πn/Δ2. De-
pending on the initial conditions, the trajectories of system (2.4) will be attracted
to the stable phase-locked state S ′ or R′ exhibiting the same ϕ1 but rotating with
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distinct frequencies ΩS′ or ΩR′ , respectively.
If the coupling K further increases, the fixed points S ′ and R′ also lose their

stability. This takes place at K = KH , where two complex conjugate eigenvalues
of each point S ′ and R′ cross the imaginary axis and attain positive real parts.
For parameter values as in Fig. 2.10(a) and 2.10(b), KH ≈ 1.0 defines the K-
coordinate of the point A3 in Fig. 2.7(b). At K = KH , the fixed points S ′ and
R′ simultaneously undergo supercritical Hopf bifurcations and two stable limit
cycles are born. After the bifurcation the phase difference ϕ1(t), attracted by the
stable limit cycle, exhibits periodic oscillations and remains bounded.

The occurrence of the pitchfork bifurcation in system (2.4) is strongly con-
nected to the particular values of τ = Tn/2, n = 0, 1, 2, . . . . The bifurcation
scenario described above will change for other values of τ , where the pitchfork
bifurcation will be replaced by a generic saddle-node bifurcation. This is illus-
trated in Fig. 2.10(c) and 2.10(d), where one-parameter bifurcation diagrams
are presented for fixed τ = 3.148 and varying K. One can see that two fixed
points, denote the stable fixed point P and unstable fixed point Q, are born at
K = Ksn ≈ 0.21 in a saddle-node bifurcation. These fixed points correspond to
the fixed points R and S above. The difference is that P and Q already have
distinct frequencies ΩP and ΩQ, respectively [Fig. 2.10(c)].

With increasing K, the stable fixed point P does not destabilize via a pitchfork
bifurcation [like R does as shown above, see Fig. 2.10(b)], but remains stable up to
the moment of a Hopf bifurcation at K = KH ≈ 0.998. Instead of the pitchfork
bifurcation, a saddle-node bifurcation occurs at K = K ′

sn ≈ 0.72, where an
unstable Q′ and a stable P ′ fixed points are born [Fig. 2.10(c) and 2.10(d)]. The
latter is then stable up to K = K ′

H ≈ 1.16, where it undergoes a Hopf bifurcation
in its turn. With even larger deviations of τ from Tn/2, n = 0, 1, 2, . . . , the
bifurcation sequence of the phase-locked states attains the form as illustrated in
Fig. 2.6. With increasing K, an unstable and a stable phase-locked states emerge
in pairs via saddle-node bifurcations, and then the stable states lose their stability
via Hopf bifurcations.

Following the evolution (birth, (de)stabilization, and disappearance) of phase-
locked states connected with the ”swallow” region shown in Fig. 2.10(g), we per-
form the third parameter scan for the fixed K = 1.15 and varying τ [line B1B4 in
Fig. 2.10(g)]. The evolutions of the frequencies Ω and the phase differences ϕ∗

1 of
the corresponding phase-locked states are illustrated in one-parameter bifurcation
diagrams in Fig. 2.10(e) and 2.10(f) versus τ , respectively. With increasing delay
τ , the scanning (K, τ)-parameter point enters the ”swallow” through the point
B1 [Fig. 2.10(g)], where two fixed points, one stable P and one unstable Q are
born via a saddle-node bifurcation at τ = τsn ≈ 2.366 [Fig. 2.10(e) and 2.10(f)].
The fixed point P then loses its stability via a supercritical Hopf bifurcation at
τ = τH ≈ 2.463, where the scanning parameter point leaves the left ”wing” of
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the ”swallow” region. After the bifurcation, the parameters are located out of
the stability region and both fixed points are unstable.

With further increase of τ the next pair of the fixed points, stable P ′ and
unstable Q′, emerges via a saddle-node bifurcation at τ = τ ′sn ≈ 3.01. At this
moment the scanning parameter point enters the ”swallow” through the point B2

of the left branch of the ”tail” [Fig. 2.10(g)]. The fixed point P ′ is stable up to
τ = τ ′H ≈ 3.07, where it undergoes supercritical Hopf bifurcation corresponding
to the moment, where the scanning parameter point leaves the left branch of the
”swallow’s tail”.

The fixed points P , Q, P ′, and Q′ of the system (2.4) can exist only for pa-
rameter values within the inner domain of the ”swallow” region confined between
the left and right ”wings” of the ”swallow” [Fig. 2.7(b)]. More precisely, all four
points exist only for parameter values within the inner domain of the ”swallow’s
tail” confined between left and right branches of the it. This is illustrated in
Fig. 2.10(e) and 2.10(f), where the interconnections between the fixed points are
shown.

With increasing τ the fixed point P stabilizes via an inverse supercritical
Hopf bifurcation, approaches Q′ and then both fixed points meet and annihilate
in inverse saddle-node bifurcation. These bifurcations take place when the point
(K, τ) first enters the right branch of the ”tail” and then escapes from it through
point B3 [Fig. 2.10(g)]. The analogous bifurcations take place for the remaining
fixed points Q and P ′ with the further increase of τ : P ′ gets stabilized in its turn
via an inverse Hopf bifurcation and then the fixed points Q and P ′ meet and
disappear in inverse saddle-node bifurcation. These bifurcations take place when
the scanning parameter point first enters the right ”wing” of the ”swallow” and
then escapes from it through point B4 [Fig. 2.10(g)]. None of the fixed points
above exists out of the inner domain of the ”swallow”.

2.2.3 Coupled limit-cycle oscillators

Looking for a generalization of the system of two coupled phase oscillators (2.1)
we come to the following system of two coupled limit-cycle oscillators:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Ż1(t) = (a1 + iω1 − |Z1(t)|2)Z1(t) +

K

2
Z1(t)Z2(t)Z

∗
1(t− τ),

Ż2(t) = (a2 + iω2 − |Z2(t)|2)Z2(t) +
K

2
Z2(t)Z1(t)Z

∗
2(t− τ).

(2.32)

Here, Z1, Z2 are complex variables. The first part of the right-hand side is a
normal form of the supercritical Hopf bifurcation ([29]). The second part starting
from K

2
is a coupling in the system. In the absence of the coupling, i.e., K = 0,

Zj uniformly rotate over circles with radii
√
aj and with natural frequencies ωj.

The coupling term consists of a cubic non-linearity where instantaneous signals
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of both oscillators are multiplied by a delayed feedback signal of the oscillator
itself. The asterisk denotes complex conjugacy.

We have chosen such a special form of the non-linearity because the phase
dynamics of the two limit-cycle oscillators will be similar to the one of the system
(2.1). In polar coordinates the complex variable of each oscillator can be rewritten
as: Zj(t) = Rj(t)e

iψj(t), where Rj(t) denotes the amplitude, ψj(t) is the phase. If
we write the above system in new coordinates we get for the first oscillator:⎧⎨

⎩ Ṙ1 = (a1 − R2
1)R1 +

K

2
R1R2R1(t− τ) cos[ψ2(t) − ψ1(t− τ)]

ψ̇1 = ω1 +
K

2
R2R1(t− τ) sin[ψ2(t) − ψ1(t− τ)]

(2.33)

The equation for the phase ψ1 repeats in its form the one for the first phase
oscillator from Eqs. (2.1). However, in the equations 2.33 amplitudes of both
oscillators additionally amplify the coupling strength K. Therefore, the phase
dynamics of the two systems (2.1) and (2.33) can be equivalent if R1 = const and
R2 = const. Assuming that the amplitudes Rj(t) of the limit-cycle oscillators
remain constant or close to that, one can neglect the amplitude dynamics and
consider the phase equations only. The latter then attain the form (2.1). However,
the above assumption does not hold always and the amplitudes play an essential
role in the dynamics of system (2.32). Nevertheless, as we show below, the system
of two coupled limit-cycle oscillators reflects essential dynamical features of the
system of two coupled phase oscillators.

In Fig. 2.11, one-parameter bifurcation diagrams of systems (2.32) [Fig. 2.11(a)]
and (2.1) [Fig. 2.11(b)] are presented. More precisely, the local extrema (maxima
and minima) of the trajectories ϕ1(t), t > 0 considered on the interval [−π, π]
(mod 2π) are depicted versus the coupling parameter K. Analyzing the diagrams
one concludes that two coupled oscillators of both systems remain desynchronized
for small values of the coupling parameter 0 ≤ K < Ksn, which is because of the
different natural frequencies. With increasing K, a saddle-node bifurcation oc-
curs at K = Ksn [Ksn ≈ 0.235 in Fig. 2.11], where a stable phase-locked state is
born. One can see in Fig. 2.11 that for K ∈ (Ksn, KH) [KH ≈ 0.58 in Fig. 2.11(a)
and KH ≈ 0.6 in Fig. 2.11(b)] the phase difference ϕ1(t) approaches stationary
regimes of phase-locked states in systems (2.32) and (2.1).

Further, the phase-locked states lose their stability at K = KH (KH as above)
via a Hopf bifurcation and stable limit cycles are born. The phase difference
periodically oscillates and remains bounded. Therefore, the systems of coupled
phase and limit-cycle oscillators exhibit regimes of the periodically modulated
phase synchronization.

The limit cycles of the phase difference ϕ1 undergo a series of bifurcations as
K increases, which are different for systems (2.32) and (2.1) (see the diagrams
in Figs. 2.11(a) and 2.11(b)). For example, in system (2.32), the limit cycle
undergoes a cascade of period-doubling bifurcation [Fig. 2.11(a), range of K ∈
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Figure 2.11: Attracting states of (a) system (2.32) and (b) system (2.1) are de-
picted in the phase difference variable ϕ1 = ψ2−ψ1 versus the coupling parameter
K. The only local maxima and minima of the trajectories ϕ1(t) are plotted after
a skipped transient. Ksn and KH denote parameter K values of the saddle-node
and the Hopf bifurcations of phase-locked states, respectively. In (c)-(e) attrac-
tors of system (2.32) are shown in (ϕ1(t− τ), ϕ1(t))-plane for (c) K = 1.02, (d)
K = 1.58, and (e) K = 1.6. System (2.32) is simulated using the amplitude
(R1 and R2) and phase (ψ1 and ψ2) variables. Parameters τ = 4.0, Δ1 = 0.2,
Δ2 = 3.0.

(0.8, 1.2)] transforming into a chaotic attractor. The ”period-4” limit cycle of
system (2.32) born after the second period-doubling bifurcation is depicted in
Fig. 2.11(c) for K = 1.02. In the phase dynamics given by system (2.1) there are
no corresponding bifurcations of period-doubling cascade [Fig. 2.11(b)].

Nevertheless, as K further increases, both systems exhibit a similar jump in
the ϕ1 variable to a stable phase-locked state at K ≈ 1.164 in Fig. 2.11(a) and at
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K ≈ 0.978 in Fig. 2.11(b). This indicates that one stable state of the periodically
modulated phase synchronization and one stable phase-locked state can coexist.
The latter, in its turn, undergoes a Hopf bifurcation and loses its stability as
K increases. The newly born limit cycle initiates a cascade of period-doubling
bifurcations in both system and a chaotic attractor is born.

An example of the chaotic attractor in system (2.32) is illustrated in Fig. 2.11(d)
for K = 1.58. One can see that, in-spite of a chaotic dynamics of the phase
difference ϕ1, it remains bounded. Therefore, a regime of the chaotic phase syn-
chronization takes place. A similar regime of the chaotic phase synchronization
is observed in the coupled phase oscillators.

The next important bifurcation transition takes place in the system of coupled
limit-cycle oscillators as well as in the system of coupled phase oscillators when
the coupling grows again. The chaotic attractor undergoes a boundary crisis and
the phase difference starts to exhibit unbounded rotations. This indicates an
onset of the desynchronization in both systems. An example of desynchronized
dynamics in system (2.32) is illustrated in Fig. 2.11(e) for K = 1.6.

Summarizing to this moment, we note that the impact of the delayed feed-
back in the form (2.32) on the dynamics of coupled oscillators has a twofold
effect. On the one hand, the coupling between the oscillators leads to the syn-
chronization and a stable phase-locked state emerges for an intermediate range
of the coupling strength. On the other hand, if the coupling strength increases
further, the phase-locked states lose stability via Hopf bifurcations giving birth
to states of the periodically modulated phase synchronization and then to the
chaotic phase synchronization. The latter undergoes crisis bifurcation at a larger
value of the coupling parameter and the coupled oscillators desynchronize. Such
synchronization-desynchronization transitions take place in the system of the cou-
pled limit-cycles oscillators (2.32) as well as in the system of the coupled phase
oscillators (2.1).

In what follows, we focus on the dynamics of system (2.1). The next chapter
answers the question how the stimulation effects our model. There it will be
shown that a strong and sufficiently long stimulus resets phases of both oscilla-
tors. Moreover, the stimulation causes clustering of trials; hence the stimulation
enables switching between stable regimes in multistable cases.



Chapter 3

Stimulation in different regimes

This chapter describes the results of a stimulation of system (2.1) in different
dynamical regimes. By means of the stimulation we model a situation where
two neuronal populations undergo an external stimulation (visual, audio, and
etc.). In this way we study responses of the brain and obtain conclusions about a
propagation of signals in the brain. First in the section (3.1) we study in theory
how a strong and sufficiently long stimulus influences the dynamics of our system.
The next three sections are dedicated to the consideration how the stimulation
effects the system in a regime of a stable phase-locked state (section 3.2), in a
regime of a periodically modulated phase synchronization (section 3.3) and in
multistable regimes (section 3.4). These sections include results of computer
simulations of system (2.1) at the presence of stimuli.

3.1 Effect of stimulation (theory)

In this section we consider system (2.1) when the stimulation is turned on (X(t) =
1):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ̇1(t) = ω1 +
K

2
sin[ψ2(t) − ψ1(t− τ)] +X(t)I cos(ψ1(t) − θ1) + F1(t),

ψ̇2(t) = ω2 +
K

2
sin[ψ1(t) − ψ2(t− τ)] +X(t)I cos(ψ2(t) − θ2) + F2(t).

(3.1)
The stimulation signals

Sj(t) = X(t)I cos(ψj(t) − θj) + Fj(t),

j = 1, 2, govern the dynamics in the system when the stimulation is strong
(I � K, I � ω1 and I � ω2) and long (at least Tst > τ) enough, as we see
later. Here, X(t) = 1 or 0 is a stimulus trigger controlling on- and off-set of the

43
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stimulation, I is the stimulus intensity, θj are stimulation phase shifts, and Fi(t)
is a Gaussian δ-correlated noise.

Without loss of generality, in this work we consider the case θ1 = 0 (a simple
change of variables ϕnew1 = ϕ1 + θ1 and ϕnew2 = ϕ2 + θ1 let’s neglect in S1 the
phase shift θ1 and we could consider equivalent system with one parameter of the
stimulation θ = θ2 − θ1). In this case only the second oscillator ψ2 is stimulated
with the non-vanishing phase shift θ = θ2 ∈ [0, 2π] which is considered below to
be a main stimulation parameter.

Such a stimulation is supposed to effect the primary system, and evokes
changes in its dynamics (responses). Strong external stimuli are administered
to each oscillator. If a strong stimulus (2.2) (I � ωj, I � K) is applied to sys-
tem (2.1), a phase reset occurs. This means that in a short transient after onset
of the stimulus, the stimulation shifts both phase oscillators to a stimulus-locked
state, where both phases (ψ1 and ψ2) become constant. Consider system (2.1) in
variables ϕ1 (the difference of phases), ϕ2 (the mean phase) when stimulation is
on (X(t) = 1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̇1(t) = Δ1 −K sin

(
ϕ1(t) + ϕ1(t− τ)

2

)
cos(ϕ2(t) − ϕ2(t− τ))−

−2I sin(
ϕ1(t) − θ

2
) sin(ϕ2(t) − θ

2
),

ϕ̇2(t) = Δ2 +
K

2
cos

(
ϕ1(t) + ϕ1(t− τ)

2

)
sin(ϕ2(t) − ϕ2(t− τ))+

+I cos(
ϕ1(t) − θ

2
) cos(ϕ2(t) − θ

2
).

(3.2)

Phase reset by the stimulation means nothing else that system 3.2 has stable
fixed point(s). Let us show that the condition that stimulus is strong (K � I and
Δj � I) allows to neglect own dinamics of the system performing the analysis
for coordinates of the stable reset states. Suppose the system above has some
fixed point (ϕ1, ϕ2) = (C1,C2). Substituting the coordinates of this point into
3.2 we obtain:⎧⎪⎨

⎪⎩
0 = Δ1 −K sin(C1) − 2I sin(

C1 − θ

2
) sin(C2 − θ

2
),

0 = Δ2 + I cos(
C1 − θ

2
) cos(C2 − θ

2
).

(3.3)

Remembering now that the stimulus is strong and dividing both parts of 3.3
on I we easily notice that during the stimulation one can neglect terms with the
coupling and the natural frequencies. Therefore coordinates of the reset states
could be found from a new system, where only stimulation terms are preserved
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from 3.2: ⎧⎪⎨
⎪⎩

˙̃ϕ1(t) = −2I sin(
ϕ̃1(t) − θ

2
) sin(ϕ̃2(t) − θ

2
),

˙̃ϕ2(t) = I cos(
ϕ̃1(t) − θ

2
) cos(ϕ̃2(t) − θ

2
),

(3.4)

where the variables ϕ̃i approximate the variables ϕi defined by Eq. (3.2). For a
strong enough stimulus (2.2), system (3.4) governs the in-stimulus dynamics of
Eq. (2.1). To be able to estimate to what reset state a trajectory comes after a
stimulus onset we investigate steady states of system (3.4).

Lemma 3.1 System (3.4) has the following steady states (ϕ̃1(t), ϕ̃2(t)) = (ϕ̃∗
1, ϕ̃

∗
2):

ϕ̃∗
1 = θ + 2πn, ϕ̃∗

2 =
θ

2
+
π

2
+ πm,

and

ϕ̃∗
1 = θ + π + 2πn, ϕ̃∗

2 =
θ

2
+ πm, n,m ∈ Z.

(3.5)

All steady states can be split into two groups:

a) ϕ̃∗
1 = θ+2πn and ϕ̃∗

2 =
θ

2
+
π

2
+πm. For n+m is even the fixed points of the

first family are stable nodes, otherwise (n+m is odd) they are unstable nodes.

b) ϕ̃∗
1 = θ+π+2πn and ϕ̃∗

2 =
θ

2
+πm. The second family of fixed points consists

of saddles only.

Proof: To find steady states of system 3.4 one puts the r.h.s. of these equa-
tions equal to zero. After straight forward calculations one obtains the coordi-
nates of fixed points as in Eqs. (3.5).

To determine if some of these phase locked solutions are stable we solve the
characteristic equation for system 3.4. For this purpose we calculate the Jacobi
matrix:

J(ϕ̃1(t), ϕ̃2(t)) =

(
f1,1(t) f1,2(t)
f2,1(t) f2,2(t)

)
(3.6)

Where:

f1,1(t) = −I cos(
ϕ̃1(t) − θ

2
) sin(ϕ̃2(t) − θ

2
),

f1,2(t) = −2I sin(
ϕ̃1(t) − θ

2
) cos(ϕ̃2(t) − θ

2
),

f2,1(t) = −I
2

sin(
ϕ̃1(t) − θ

2
) cos(ϕ̃2(t) − θ

2
),

f2,2(t) = −I cos(
ϕ̃1(t) − θ

2
) sin(ϕ̃2(t) − θ

2
).
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Examining first the points ϕ̃∗
1 = θ+ 2πn and ϕ̃∗

2 =
θ

2
+
π

2
+ πm for a stability

we find that: J(ϕ̃∗
1, ϕ̃

∗
2) =

(
I(−1)n+m+1 0
0 I(−1)n+m+1

)
.

In this case both eigenvalues of the system are equal λ1,2 = I(−1)n+m+1. For
n + m even they are negative and thus the corresponding fixed point (ϕ̃1, ϕ̃2) is
of a stable node type, then all points corresponding to (n,m − 1), (n,m + 1),
(n− 1, m) and (n+ 1, m) are unstable nodes.

In opposite, the second family of fixed points (3.5) ϕ∗
1 = θ + π + 2πn and

ϕ∗
2 =

θ

2
+ πm consists only of saddles. In fact we have:

J(ϕ̃∗
1, ϕ̃

∗
2) =

(
0 2I(−1)n+m+1

I/2(−1)n+m+1 0

)
and λ1,2 = ±I. The lemma is

proved.

Since system (3.4) is 4π-periodic in ϕ̃1 and 2π-periodic in ϕ̃2, it has 8 different
fixed points (3.5) in the [0; 4π)×[0; 2π)-phase space (n = 0, 1 and m = 0, 1).
Therefore in a basic rectangle [0; 4π)×[0; 2π) in (ϕ̃1, ϕ̃2) plane there are two stable
nodes A=(θ, θ/2 + π

2
) and B=(θ+2π, θ/2 + 3π

2
), two unstable nodes (θ, θ/2 + 3π

2
)

and (θ+2π, θ/2+ 5π
2

), and four saddles (θ+ π+ 2πn, θ/2+ πm) with n,m = 0, 1
(the coordinates should be normed to the range above).

For the following analysis we give definitions of stable and unstable manifolds
of a saddle fixed point, which one finds in [63], pages 94-96.

Definition 3.1 The stable manifold M(s) of a saddle point S is a differentiable
manifold that is tangent to the stable subspace Es at S and such that all orbits
in M(s) are asymptotic to S as t → +∞. The stable subspace Es is a sub-
space spanned by those eigenvectors s1, s2, . . . , sns of S whose eigenvalues have a
negative real part.

Definition 3.2 The unstable manifold M(u) of a saddle point S is a differen-
tiable manifold that is tangent to the unstable subspace Eu at S and such that all
orbits in M(u) are asymptotic to S as t → −∞. The unstable subspace Eu is
a subspace spanned by those eigenvectors u1, u2, . . . , unu of S whose eigenvalues
have a positive real part.

In Fig. 3.1 the phase portrait of system the (3.4) with fixed points (3.5) and
with stable and unstable manifolds of the saddles is shown for θ = 4.11. The grid
formed by the stable manifolds of the saddle points (dashed lines with arrows [see
theorem 3.2 below]) divides the whole (ϕ̃1,ϕ̃2)-phase plain into basins of attraction
of the stable fixed points A (white regions) and B (gray regions). Therefore, for
t ≥ 0 a generic trajectory (ϕ̃1(t), ϕ̃2(t)) of system (3.4) will be attracted by either
the stable fixed point A or B, depending on the basin of attraction in which the
trajectory starts, as given by initial conditions (ϕ̃1(0), ϕ̃2(0)). During stimulation
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the phases ψi of system (2.1), (2.2) approach a stationary reset state: both phases
become approximately constant The corresponding coordinates (ϕ1, ϕ2) in the
reset state are approximated by the coordinates of the stable fixed points A and
B of the approximate system (3.4).

We give two following definitions used in the theorem about stable and un-
stable manifolds of the saddle points of system (3.4).

Definition 3.3 The nearest unstable nodes to the saddle point S = (ϕ̃S1 , ϕ̃
S
2 ) of

system (3.4) are two unstable nodes U1 and U2 whose coordinates differ from ϕ̃S1
on ±π and from ϕ̃S2 on ±π/2.

Definition 3.4 The nearest stable nodes to the saddle point S = (ϕ̃S1 , ϕ̃
S
2 ) of

system (3.4) are two stable nodes S1 and S2 whose coordinates differ from ϕ̃S1 on
±π and from ϕ̃S2 on ±π/2.

Figure 3.1: Fixed points of system (3.4) induced by the stimulation. Black filled
circles (points A and B) indicate stable nodes, empty circles indicate unstable
nodes, and diamonds indicate saddles. Dashed and solid lines depict stable and
unstable manifolds of the saddles, respectively. Basins of attraction of the stable
fixed points A and B are indicated by white and gray areas, respectively. The
vertical dotted line shows the ϕ1-coordinate ϕ

(s)
1 of the stable phase-locked state of

system (2.1) and corresponds to the initial conditions of system (2.4) at stimulus
onset. Parameters: θ = 4.11, Δ1 = 0.2, Δ2 = 3.0, K = 0.4, and τ = 4.0.

We also shall need some known fact about a saddle equilibrium formulated in
the following theorem (see [42], pp.209-217):

Theorem Consider a system of differential equations of the form{
ẋ = f(x, y),
ẏ = g(x, y).

(3.7)
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where f(x, y) and g(x, y) are at least twice differentiable. Let the equilibrium
point O = (0, 0) of this system be a saddle (see Fig.3.2). Let P be the line
passing through O in direction of the eigenvector of the matrix A (the matrix of
r.h.s. of linearized system (3.7)) which corresponds to the negative eigenvalue,
and let Q be the line passing through the point O in direction of the eigenvector
of the matrix A which corresponds to the positive eigenvalue. Then there exist
exactly two trajectories U1 and U2 of system (3.7) which for t→ ∞ asymptotically
approach to the point O. These trajectories compose together with the point O
continuous differentiable curve U which is tangent to the line P at O . Similar
there exist exactly two trajectories V1 and V2 of system (3.7) which for t → −∞
asymptotically approach the point O. In their turn these trajectories compose
together with the point O continuous differentiable curve V which is tangent to
the line Q at O. The other trajectories of system (3.7) near the point O behave
essentially in the same way like in a case of a linear system{

ẋ1 = a1
1x

1 + a1
2x

2,
ẋ2 = a2

1x
1 + a2

2x
2.

(3.8)

where a1
1, a

2
1, a

1
2 and a2

2 are constant coefficients.

U1

V2

V1

U2
O

Q

P

Figure 3.2: Illustration to the theorem about trajectories near a saddle.

Exploiting the theorem above and given definitions we formulate and prove
the following theorem:

Theorem 3.2 Let the point S be a saddle point of system (3.4) (see Fig.3.3).
Then the stable and unstable manifolds of S in the phase space (ϕ̃1, ϕ̃2) are seg-
ments of straight lines connecting S with the nearest unstable nodes U1 and U2
(stable manifolds) and connecting S with the nearest stable nodes S1 and S2
(unstable manifolds), correspondingly.
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Figure 3.3: Illustration to the theorem about manifolds of a saddle.

Proof: Since the right-hand side of system (3.4) is 4π-periodic in ϕ̃1 and
2π-periodic in ϕ̃2, it is sufficient to consider the system in its phase space in
the basic rectangle [0; 4π)×[0; 2π). In this rectangle there are eight fixed points.
Let us consider a saddle S = (θ + π + 2π, θ/2 + π) and a stable node S1 =
(θ + 2π, θ/2 + 3π

2
) (see lemma 3.1). and suppose that θ ∈ [0, π]. For such θ

points S and S1 lie in the basic rectangle. For other θ either S or S1 (or both)
is out of the rectangle and we need to take some other pair of saddle and stable
fixed points inside the basic rectangle. But the whole algorithm of the proof is
the same. Moreover from now we concentrate our attention on the segment SS1
only, the other segments SS2, SU1 and SU2 are to be considered in the similar
manner.

We need to prove that SS1 segment of the line SS1 belongs to the unstable
manifold M(u) of saddle S. All points on the line SS1 satisfy the equation:

ϕ̃2 = −ϕ̃1

2
+ θ +

5

2
π. We supplement by this equation system 3.4 and solving the

system of three equations come to a new system:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

˙̃ϕ1(t) = −2I sin(
ϕ̃1(t) − θ

2
) cos(

ϕ̃1(t) − θ

2
),

−1

2
˙̃ϕ1(t) = I sin(

ϕ̃1(t) − θ

2
) cos(

ϕ̃1(t) − θ

2
),

ϕ̃2 = −ϕ̃1

2
+ θ +

5

2
π

(3.9)

The first two equations of system (3.9) are the same. Thus, we end up with
equations: ⎧⎪⎨

⎪⎩
˙̃ϕ1(t) = −2I sin(

ϕ̃1(t) − θ

2
) cos(

ϕ̃1(t) − θ

2
),

ϕ̃2 = −ϕ̃1

2
+ θ +

5

2
π.

(3.10)
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They have continuous right parts, which also have continuous derivative of an
arbitrary order. That means that for any initial conditions which are on the line
SS1 there exist a solution of system 3.4 which belongs the line SS1. If we take
initial conditions on the segment SS1 at a point Sε = (θ+ π+ 2π−2ε, θ/2+ π+ε),
where 0 < ε < π/2 (excluding S and S1), then a solution from Sε stays on SS1
forever and SS1 segment is invariant. To determine asymptotic behavior of this
solution we just solve system (3.10) for initial conditions (ϕ̃0

1, ϕ̃
0
2) = Sε then we

get: {
ϕ̃1(t) = 2arctan(e−I(C+t)) + θ + 2πn,

ϕ̃2(t) = −ϕ̃1

2
+ θ +

5

2
π.

(3.11)

where C(ϕ̃0
1) = −1

I
ln tan(π+ π/2− ε) is constant and −∞ < C < +∞ (0 < ε <

π/2) and n ∈ Z. If we take limit t → −∞ then ϕ̃1(t) → θ + π + 2πn. We saw
that the point (ϕ̃1(t), ϕ̃2(t)) should belong the segment SS1 that is why we take
n = 1. Therefore we obtain that (ϕ̃1(t), ϕ̃2(t)) → S as t→ −∞.

The saddle S according to the lemma above has a positive eigenvalue I and
an eigenvector corresponding to it is a solution of the equation:

J(S)x =

(
0 −2I
−I
2

0

)
x = Ix (3.12)

where x is the required eigenvector. We obtain x2 = −x1/2, where x1, x2 are
the components of x. Evidently the line SS1 touches x at S. According to the
definition above the segment SS1 ∈ M(u). Furthermore according to theorem
above there are only two trajectories approaching S in reverse time. The second
one is the segment SS2 (the proof is very similar). Therefore unstable manifold
of the saddle S is a junction of two segments M(u) = SS1 ∪ SS2. An existence
and a structure of the stable manifold M(s) is proved analogously. Since the
saddle S was arbitrary in the basic rectangle the theorem is proved.

Studying the stimulation of our system in a stable phase-locked state (see sub-
section 3.2.1) we shall use the result, formulated in the theorem below. Namely,
if we have that trajectories (trials) split into clusters (for example two clusters)
then we introduce the clustering number H defined as:

Definition 3.5 The clustering number H is a quantity defined as a relative num-
ber of trajectories (trials) within the smallest cluster over the number of all tra-
jectories (trials).

If for example we have two clusters only with N1 and N2 trials, correspond-

ingly, then H = min

{
N1

N1 +N2
;

N2

N1 +N2

}
. Evidently, H ∈ [0; 0.5] for two
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clusters. The following theorem gives us an estimate of the clustering number H
for trials of system (3.4) for the case when number of trials goes to infinity:

Theorem 3.3 If initial conditions ϕ̃1(0), ϕ̃2(0) of all trajectories of system (3.4)

belong to the segment ϕ
(s)
1 × [0; 2π) in the basic rectangle in the phase space

(ϕ̃1, ϕ̃2), where ϕ
(s)
1 ∈ [0; 2π] and is constant, and there are N trials, N → ∞,

and all N initial conditions are uniformly distributed over the whole segment, then
all N trajectories, originating from these initial conditions, split into two clusters
and clustering number H(θ) is given by the following formula:

H(θ) = −
∣∣∣∣∣−[(θ − ϕ

(s)
1 ) mod 2π] + π

2π

∣∣∣∣∣ + 1

2
(3.13)

Proof: In the dynamics of system 3.4 there are two stable fixed points A and B
in the basic rectangle (see above). The other stable nodes in the (ϕ̃1, ϕ̃2) space
are mapped by transform modulo 2π either to A or to B.

Points A and B have their own basins of attraction. Vertical line of initial
conditions ϕ

(s)
1 × [0; 2π] (see Fig.3.4) crosses both basins. The clustering number

H(θ) of system 3.4 is calculated trough determining the relative number of trials
attracted by different fixed points (A or B). For uniformly distributed magnitude
a number of trials in a certain range is proportional to the length of the range
and, thus, a relative number of trials in this range is equal to the ratio of the
length of the range over 2π (the whole interval of changes of variable ϕ̃2). As
N → ∞ this trials fill dense range [0; 2π] and instead of relative number of trials
we are able to use relative range length. All we need now is to find the low how
relative range lengths in ϕ2 variable corresponding to the fixed points A and B
depend on θ.

In the figure below we show all fixed points and stable/unstable manifolds
connecting them for system 3.4 in the basic rectangle in (ϕ̃1, ϕ̃2) plane where
θ = 0. For positive θ the whole picture (except the initial segment) is shifted

linearly to the right and up. Let us also fix first ϕ
(s)
1 = 0 and consider H0(θ) =

H
ϕ

(s)
1 =0

(θ). Then for θ = 0 line ϕ
(s)
1 ×[0; 2π] lies completely in a basin of attraction

of A and no clustering occurs. This imposes H0(0) = 0. For θ = π the line of
initial conditions would be divided into halves between A and B basins and
H0(π) = 0.5. For intermediate values of θ ∈ [0; π] values of H0(θ) would belong
to the line connecting H0(0)-H0(π) because the structure of fixed points moves
linearly in dependence on θ. Further consideration gives us for the clustering
number periodic curve shown bold in the Fig. 3.5. As one notices H0(θ) is 2π
periodic, that is why H0(θ) = H0(θ mod 2π). We obtain that H0(θ) is piecewise

linear for the case ϕ
(s)
1 = 0.

For non-zero ϕ
(s)
1 the line of initial conditions shifts horizontally, but this

shift does not influence the structure of fixed points of system 3.4 and, thus,



3.1 Effect of stimulation (theory) 52

0 1π 2π 3π 4π0

π

2π

ϕ2

ϕ1

A

B

ϕ1
(s)

Figure 3.4: Fixed points of system (3.4) induced by stimulation. Black filled
circles (points A and B) indicate stable nodes, empty circles indicate unstable
nodes, and diamonds indicate saddles. Dashed and solid incline lines depict stable
and unstable manifolds of the saddles, respectively. The vertical dashed line
represents the initial segment for non-zero ϕ

(s)
1 . Parameters: θ = 0.0, Δ1 = 0.2,

Δ2 = 3.0, K = 0.4, and τ = 4.0.

0 1π 2π 3π 4π0

0.5

Η(θ)

θ
Figure 3.5: The clustering number H(θ) for the cases θ = 0 (bold line) and θ > 0
(dashed line). Other parameters as in Fig.3.4.

H
ϕ

(s)
1

(θ) should be also piecewise linear and 2π periodic. For example for positive

ϕ
(s)
1 ∈ (π; 2π) and for θ = 0 from the Fig. 3.4 the line of initial conditions crosses

both basins of attractions of A and B, respectively, and thus H
ϕ

(s)
1

(0) > 0, but

for θ = ϕ
(s)
1 H

ϕ
(s)
1

(θ) = 0 and from those θ value on H
ϕ

(s)
1

(θ) again is 2π periodic

(see dashed line in Fig. 3.5). In this case ϕ
(s)
1 plays a role of a phase along cyclic

H
ϕ

(s)
1

(θ) function and the following equality holds:
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H(θ) = H
ϕ

(s)
1

(θ) = H0(θ − ϕ
(s)
1 ).

0 1π 2π0

0.5

=
θ

0 1π 2π0

0.5

+ 
θ

− 1
2

Figure 3.6: Geometrical (and algebraic) identities for a piecewise linear function.

Eventually, knowing form and properties ofH(θ), we come to the final formula
through a chain of simple geometric transformations (see figure 3.6). Here we first
obtain formula for H0(θ) on interval θ ∈ [0; 2π] (one period).

For that we just notice that according to the geometric identities (Figs. 3.6)
both linear pieces of H0(θ) could be given by one formula including the absolute

value operation: H0(θ) = −
∣∣∣∣−θ + π

2π

∣∣∣∣ + 1

2
. Incorporating now the periodicity of

H(θ) and its dependence on non-zero ϕ
(s)
1 we come to the formula:

H(θ) = −
∣∣∣∣∣−[(θ − ϕ

(s)
1 ) mod 2π] + π

2π

∣∣∣∣∣+ 1

2
. The theorem is proved.

3.2 Stimulation of phase-locked states

This section deals with a stimulation of system (2.1) in a phase-locked state.
We discuss results of numerical simulation of system (2.1) and their agreement
with the theory (see chapter 2 and section 3.1). The resetting effect of the
stimulation is explained in detail. The clustering processes of trials during the
stimulation (in-stimulus) and after the stimulation (post-stimulus) are qualified
and the mechanisms underlying them are investigated. Moreover, we obtain
an optimal value of stimulation parameter θ = θmax necessary for the longest
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transient time from a perturbed state back to a synchronous one.

In the framework of a statistical approach to a transient stimulus-locked dy-
namics [55], [57] (see also Appendix) we consider the following stimulation proto-
col: a series of N identical stimuli (2.2) is administered consecutively one stimulus
after the other (see Fig.3.7(a)). Each stimulus acts only during a short time in-

Figure 3.7: Schematic representation of a stimulation protocol. (a): Repetitive
application of N stimuli is shown. This protocol holds for all phases. (b): The
process of cross-trial diagram formation is illustrated. All N trials of each phase
are depicted simultaneously versus time. (c): In a cross trial diagram every
phase (ψ ∈ ψ1, ψ2, ϕ1, ϕ2) is normed to the range [0; 2π]. After this operation one
exemplary trial is transformed as it is shown in the plot (c).

terval of duration Tst. The length of the interstimulus intervals is stochastically
varied from one stimulus to another and is large enough to let the system return
to its own dynamical regime, before the next stimulus is applied. Around each
stimulus a time window of the length Tw is attached, in which the evaluation
of the trajectories of system (2.1) is performed across trials (see Fig.3.7(a),(b)).
During a post-stimulus transient, when stimulation is off (X(t) = 0), system
(2.1) relaxes towards its stable state displaying different kinds of responses to the
stimulation. These post-stimulus responses are the subject of our study.

Let system (2.1) be first stimulated in a regime, with only one stable phase-
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locked state. For this, the values of the parameters are chosen such as in Fig. 2.11(a),
where a stable fixed point P and a saddle point Q exist. Generic system responses
extracted from N = 300 stimulation trials with a stochastic phase resetting anal-
ysis [58] are presented in Fig. 3.8. In this figure one can see typical diagrams how

α
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1

,1

2π stimulus post−stimulus
pre− in−stimulus

(a)

ψ

ρ
(b)

δ

(f)

(e)

ϕ

σ

1

1

,1

2π stimulus post−stimulus
pre− in−stimulus

α
2

2

t

,

2ψ

ρ
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(d)

2π

δ

ϕ

σ

2

(g)

(h)

2

2

t

,

2π

Figure 3.8: Stimulus-locked responses of system (2.1) stimulated in the phase-
locked regime. Cross-trial distributions of the phases ψ1, ψ2, the phase difference
ϕ1, and the mean phase ϕ2 are shown in (a), (c), (e), and (g), respectively,
where the density of trajectories is encoded by a gray scale (minimum is white,
maximum is black). All phases are taken modulo 2π. Onset (at time t = 0) and
offset of the stimuli are indicated by vertical red lines. Characteristic features of
the stimulus-locked dynamics as revealed by cross-trail indices (see Appendix and
Ref. [58]): The resetting indices ρ1 and ρ2 and the clustering indices α1 and α2 of
the phases ψ1 and ψ2 are shown in (b) and (d); the synchronization indices σ1 and
σ2 and the clustering indices δ1 and δ2 of the phase difference ϕ1 and the mean
phase ϕ2 are shown in (f) and (h). The resetting/synchronization indices (green
curves) and the clustering indices (blue curves) detect whether the corresponding
cross-trial distribution has one pronounced peak or two pronounced anti-phase
peaks. Number of stimuli N = 300. Parameters: Δ1 = 0.2, Δ2 = 3.0, K = 0.4,
τ = 4.0, and θ = 2.075.

the phases behave before, during and after stimuli during time window Tw. We
use cross-trial distributions of the variables ψ1,2 and ϕ1,2 [Fig. 3.8(a),(c),(e),(g)]
and the corresponding stimulus-locked indices [Fig.3.8(b),(d),(f),(h)] (see Ap-
pendix) to study the stimulus-locked dynamics. The phases ψ1,2 and ϕ1,2 are
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taken modulo 2π and belong to the interval [0; 2π).

Before stimulus onset the phases ψ1 and ψ2 are uniformly distributed in [0, 2π)
since stimuli are administered at random times which obey uniform distribution.
Accordingly, both resetting indices ρj and clustering indices αj, j = 1, 2, are close
to 0.

A stimulus rapidly resets the phase of the jth oscillator to the phase ψres1 and
ψres2 , in such a way, that the phase difference ϕ1 = ψres2 − ψres1 and the mean
phase ϕ1 = (ψres2 + ψres1 )/2 are equal to the coordinates of the stable fixed points
A or B (see Fig. 3.1 and description there) of system (3.4).

Hence, at stimulus offset the resetting indices ρ1 and ρ2 are close to 1, which
indicates a complete reset of the phases. The phases ψ1 and ψ2 are reset to partic-
ular values ψres1 (tE) and ψres2 (tE) irrespective of their initial values at stimulus on-
set, where tE denotes time moments of stimulus offset. Note, ψres1 (tE) �= ψres2 (tE)
due to the non-vanishing shift term θ of the stimulus.

Before stimulus onset the two oscillators are strongly synchronized with a non-
vanishing phase difference ϕ1 [Fig. 3.8(e)]. This stereotypical phase relationship
between the two oscillators shows up as a dirac-type pre-stimulus distribution of
ϕ1 and, thus, the synchronization index σ1 is close to 1, where the value of the
phase difference ϕ1 remains fixed within the entire pre-stimulus interval. The
stimuli reset the oscillators in a way that their phase difference is set to a value
different to that of the pre-stimulus range [Fig. 3.8(e)]. This processes is reflected
by a quick decrease and subsequent reincrease of the synchronization index σ1,
which occurs directly after stimulus onset [Fig. 3.8(f)].

After the stimulus offset the oscillators relax back to their stable pre-stimulus
phase difference. This is achieved in two different ways: one of the oscillators
speeds up relative to the other one [Fig. 3.8(a),(c)]. Accordingly, the phase dif-
ference either increases (mod 2π) or decreases [Fig. 3.8(e)]. This two-branch
type resynchronization process of ϕ1 shows up as a transient epoch of desynchro-
nization, where the synchronization index σ1 of ϕ1 decreases [Fig. 3.8(f)]. The
clustering index δ of the phase difference ϕ1 gets maximal when the two branches
are in anti-phase position.

A further consequence of the two branches of transient trajectories is the emer-
gence of a response clustering of both oscillators ψ1 and ψ2: After stimulus offset
the oscillators restart from the reset state [Fig. 3.8(a),(c)], the resetting indices
ρ1 and ρ2 decrease, whereas the clustering indices α1 and α2 increase above the
pre-stimulus level, indicating an anti-phase response clustering [Fig. 3.8(b),(d)].
Put otherwise, after an initial reset each oscillator displays two anti-phase types
of responses across trials. This corresponds to the cross-trail distribution of ψj
having two anti-phase peaks [Fig. 3.8(a),(c)] (see Appendix).

Additionally, there is a clustering process of the mean phase ϕ2 [Fig. 3.8(g),(h)].
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As one can see in Fig. 3.8(g), this clustering process occurs already during stimu-
lation, directly after stimulus onset, where two anti-phase clusters of the variable
ϕ2 are formed. During the post-stimulus transient these clusters get slightly
smeared. Correspondingly, the pre-stimulus resetting and clustering indices σ2

and δ2 of the mean phase are close to zero because of the randomized stimulus
administration [Fig. 3.8(g)]. The clustering index δ2 first quickly increases after
stimulus onset, and then, after a transient slight decrease, finally remains above
the prestimulus level, as soon as the resynchronization is achieved [3.8(e),(f)].

The combination of increased σ2 and δ2 is indicative of two asymmetric anti-
phase peaks of the cross-trial distributions of ϕ2 with one peak being large, the
other one being small [Fig. 3.8(g), see also [58]]. The numbers of trials in each
cluster (i.e. peak of the bimodal cross-trial distribution of ϕ2) are 252 and 48,
out of a total N = 300 stimulation trials. In contrast, in [Fig. 3.8(a), 3.8(c), and
3.8(e)] the phase variables ψ1 and ψ2, and the phase difference ϕ1 simultaneously
split into two anti-phase clusters with 143 and 157 trials, respectively. There-
fore, the clustering of the variable ϕ2 does not correspond to the post-stimulus
clustering of the other variables, as we will also show below (see the subsection
3.2.2).

We consider the formation of the response clusters in more detail in the subsec-
tions 3.2.1, 3.2.2. We show that the response clustering of the phase difference ϕ1

plays an important role in the formation of the response clustering of the phases
ψ1 and ψ2. For this, we first investigate the dynamics of system (2.1) during
stimulation, i.e., the in-stimulus dynamics. Secondly, we study the post-stimulus
transient.

3.2.1 In-stimulus clustering

In the current and in the next subsections we discuss two types of a clustering
of response trials observed in our system due to the stimulation. First we define
and investigate an in-stimulus clustering.

Definition 3.6 In-stimulus clustering is a clustering of trials into two clusters
during the stimulation. Two trajectories Tra(t) = (ϕa1(t), ϕ

a
2(t)) and Trb(t) =

(ϕb1(t), ϕ
b
2(t)) belong to different clusters if at the end of the strong and long

enough stimulation at the time tE Tra(tE) ≈ (ϕ̃A1 , ϕ̃
A
2 ) and Trb(tE) ≈ (ϕ̃B1 , ϕ̃

B
2 ),

where A = (ϕ̃A1 , ϕ̃
A
2 ) and B = (ϕ̃B1 , ϕ̃

B
2 ) are stable steady states induced by the

stimulation (see Fig. 3.1).

The splitting of the trajectories of system (2.1) between the basins of attrac-
tion of the reset states A and B is the mechanism which causes the in-stimulus
clustering (see Fig. 3.1).

The clustering phenomenon for the in-stimulus transient of system (2.1) is
illustrated in Fig. 3.9, where transients towards A and B are shown for a few
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selected trajectories of Eqs. (2.1).
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Figure 3.9: The in-stimulus clustering illustrated for a few trajectories of the
stimulated system (2.1) with different initial conditions. Variables ϕ1(t), ϕ2(t),
ψ1(t), and ψ2(t) are separately shown on each plot. The in-stimulus clustering is
induced by an attraction of different reset states A or B [Fig. 3.1]. Two selected
trajectories belonging the different clusters are denoted by numbers 1 and 2. The
on- and off-sets of stimulation are indicated by vertical dashed lines. θ = 4.11
and the other parameters are as in Fig. 3.8.

Trajectories like #1 are attracted by A and their coordinate ϕ1 increases,
whereas trajectories like #2 are attracted by B and ϕ1 decays. Note, the two
reset states given by the fixed points A and B of Eq. (3.4) are indistinguishable
when considering cross-trial distributions of the variables ψi, j = 1, 2, and ϕ1

taken modulo 2π [Fig. 3.8]:

(ψ1, ψ2) ≈ (π/2, θ + π/2) corresponds to
(ϕ1, ϕ2) ≈ (θ, θ/2 + π/2) (A) and
(ϕ1, ϕ2) ≈ (θ, θ/2 + 3π/2) (B)

(3.14)

The twofold convergence of trajectories of system (2.1) to the reset states
A and B constitutes the in-stimulus response clustering of the mean phase ϕ2

[Fig. 3.8(g)].

Moreover, we are able to estimate analytically the clustering number H(θ) for
trials of system (2.1) for in-stimulus clustering.

As interstimulus interval is uniformly varied, that means, that in a stable
phase-locked state at the beginning of the stimulus each trial has the following
coordinates: ϕ1(t

j
0) = ϕ

(s)
1 and ϕ2(t

j
0) ∼ Ωtj0, where tj0 is the begin time of a stim-

ulus number j. The value ϕ2(t
j
0) is proportional to the time tj0 and for uniformly

distributed tj0 the phase ϕ2(t
j
0) is also uniformly distributed. If we take ϕ2(t)

mod 2π then normed ϕ2(t) is also uniformly distributed in the [0; 2π] interval.
This situation was modelled in our simulations. At the beginning and during the
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stimulation the dynamics in system (2.1) is approximated by the dynamics in
system (3.4) (see the section 3.1). The initial conditions (ϕ̃1(0), ϕ̃2(0)) of system

(3.4) equal to the values of the variables (ϕ
(s)
1 , ϕ2(t

j
0)) at the stimulus onset.

For all N trials (N tends to ∞) initial conditions (ϕ̃1(0), ϕ̃2(0)) fill uniformly

the vertical segment (an initial segment) ϕ
(s)
1 × [0; 2π) in the phase space (see in

Fig. 3.1 dotted line). The fixed points A andB of Eq. (3.4) are located on different
sides with respect to the initial segment above (when consider a lift of the torus
[0; 2π) × [0; 4π) to R

2), i.e., on different sides with respect to the initial phase

shift ϕ̃1(0) = ϕ
(s)
1 . Therefore, during in-stimulus transient on the way towards the

fixed point A (B), the phase difference ϕ̃1(t) increases (decreases). Furthermore,
during the in-stimulus transient ϕ̃2 approaches either A or B, accordingly.

We are able to apply the theorem 3.3 and the in-stimulus clustering num-
ber H(θ) for the in-stimulus clustering in dependence on the parameter θ reads

H(θ) = −
∣∣∣∣∣−[(θ − ϕ

(s)
1 ) mod 2π] + π

2π

∣∣∣∣∣+ 1

2
.

As a result we observe that the graph of the theoretical in-stimulus clustering
number H given by Eq. (3.13) (solid line in Fig. 3.10) is in a good agreement
with the values of H obtained by simulating system (2.1) (crosses in Fig. 3.10).

ϕ(s)
1 ϕ(s)

1 +πθ

H

Figure 3.10: The clustering number H , i.e., the relative number of trajectories in
the smallest cluster during in-stimulus clustering versus stimulation phase shift
θ. Solid line shows the theoretical estimation according to Eq. (3.13) and crosses

show results of series of numerical simulations for different values of θ. ϕ
(s)
1

denotes the ϕ1-coordinate of the stable fixed point of system (2.4). Parameters:
Δ1 = 0.2, Δ2 = 3.0, K = 0.4, τ = 4.0 and N = 1300.
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There is an optimal value of the parameter θ = θcl = (ϕ
(s)
1 + π) mod 2π,

where the in-stimulus clustering is maximal, i.e., the two emerging clusters are of
equal size. This situation occurs if the ϕ̃1-coordinates of the saddle fixed points
of system (3.4), which are θ+ π+ 2πn, n = 0, 1, coincide with the ϕ1-coordinate

ϕ
(s)
1 of the stable fixed point P . In this case equally long fractions of the segment

ϕ
(s)
1 × [0; 2π) belong to the basins of attractors A and B, respectively, as shown

in Fig. 3.1.
The in-stimulus clustering determines the post-stimulus clustering of the mean

phase ϕ2 [Fig. 3.8], where the clusters of trajectories emerging during the stimu-
lation are preserved during the post-stimulus transient.

Below we explore in which way the global structure of the phase space of
system (2.4) influences the post-stimulus clustering in system (2.1).

3.2.2 Post-stimulus clustering

Definition 3.7 Post-stimulus clustering is a clustering of trials into two clusters
after the stimulation offset. Two trajectories Tra(t) = (ϕa1(t), ϕ

a
2(t)) and Trb(t) =

(ϕb1(t), ϕ
b
2(t)) belong to two different clusters if |ϕb1(t) − ϕa1(t)| → 2π as t → +∞

and ϕa1(t) mod 2π → ϕ
(s)
1 and ϕb1(t) mod 2π → ϕs1 as t → +∞, where ϕs1 is the

phase difference of the stable phase-locked state of system (2.1).

The clustering of post-stimulus responses can easily be seen in Figs. 3.8(a),
3.8(c), 3.8(e), and 3.16(b). The clustering number H in variable ϕ1 for the post-
stimulus transient is plotted in Fig. 3.11 versus the stimulation phase shift θ.
Maximal clustering is attained at θ = 1.87 which we also call θmax. One notices
that θmax �= ϕ

(s)
1 . This phenomenon is connected with the properties of the

stable manifold M(s) of the saddle-focus fixed point Q. This manifold serves as
a separator between two different kinds of the post-stimulus transients of system
(2.4). In this connection, the optimal value θmax can also be referred to as a
separator of the post-stimulus trajectories of system (2.4) and θmax is very close
to M(s) (see the next section).

Indeed, as mentioned below, for the stimulation phase shift θ ≈ θmax the
trajectories starting very close to M(s) approach M(s), follow it towards Q and
stay there for a long time. After a long attraction stage they will be repelled
from Q and attracted by the stable fixed point P .

On the other hand, if θ �= θmax then the trajectory will be directly attracted
by P or by a copy of P shifted by 2π without or with an additional rotation on the
torus, respectively. For example, for parameter values as in Fig. 3.11, stimulation
with θ < θmax leads to a simple post-stimulus transient, where trajectories are
directly attracted by P . In contrast, stimulation with θ > θmax results in that
post-stimulus trajectories perform one rotation in ϕ1 on the torus and will be
attracted by a copy of P shifted by 2π and, thus, the post-stimulus clustering
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Figure 3.11: Post-stimulus clustering number H in variable ϕ1 versus the stimu-
lation phase shift θ. System (2.1) is simulated with Gaussian white noise of an
amplitude D = 0.002. The width of the peak of the clustering number depends
on the amplitude of the noise and grows with an increase of the noise amplitude.
Number of stimuli N = 100, stimulus length Tst = 5, and other parameters:
Δ1 = 0.2, Δ2 = 3.0, τ = 4.0, and K = 0.4.

takes place (see definition above). In this way, when stimulating with θ ≈ θmax
in the presence of noise, there will be trajectories relaxing to P after a stimulus
offset according to the first scenario (θ < θmax), and there will be trajectories
relaxing to P according to the second scenario (θ > θmax).

This explains the formation of the post-stimulus clustered responses of the
variable ϕ1 (see Fig. 3.8). Simultaneously with the formation of the post-stimulus
response clusters for the variable ϕ1, clusters also emerge for the phase variables
ψ1 and ψ2, see Fig. 3.8. Variable ϕ2, in its turn, gets clustered during stimulation
and keeps being clustered after the stimulus offset. In the time course after
the stimulus offset, the response clusters in variable ϕ1 are suppressed when the
trajectories are attracted by the stable phase-locked state, see also Fig. 3.16(b).
In contrast, the clusters in the phase variables ψ1 and ψ2 are preserved for the
whole post-stimulus transient period.

The clustering of the variable ϕ1 means that some trajectories are approaching
the value ϕ

(s)
1 , and the others are approaching ϕ

(s)
1 ± 2π, where ϕ

(s)
1 is the ϕ1-

coordinate of the stable fixed point P . Taken mod 2π these clusters are not seen in
Figs. 3.8(e) and 3.16(b). Simultaneously, across trials the variable ϕ2 attains two
different values from Eq. (3.14) at stimulus offset. Assuming that the clustering
in ϕ2 is preserved, with a simple calculation one arrives at the conclusion that
the clustering in variable ϕ1 determines the clustering of the phase variables ψ1
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and ψ2:

Two trajectories from different clusters in ϕ1 are also from different clusters
in the phase variables ψ1,2 and vice versa.

Moreover, the ”distance” between the clusters in the phase variables is π and
the clusters are clearly observed in the cross-trial diagram in Fig. 3.8(a) and
3.8(c).

Therefore, the optimal stimulation phase shift θmax serves for the maximal
post-stimulus response clustering of the system (2.1), but as well it serves for the
maximal post-stimulus transient time of trials (see the next section).

3.2.3 Maximal transient time

Stimuli of sufficient strength and duration shift the trajectories of system (2.1)
very close to the reset state (3.14), where they remain till the end of the stimu-
lation. After the stimulus offset system (2.1) returns to its own stable state. In
this section we are continuing to study the post-stimulus transients of the system
in the phase-locked regime. Surprisingly we found out that the phase shift θmax
besides the feature that it is the point of the maximal post-stimulus clustering
has another important property. This value of θ is an optimal parameter which
allows the stimulation to evoke the longest transient of perturbed trajectories to
a synchronized state.

This optimal value θmax is very important for applications in practice. If an
external stimulation of a patient shifts his/her nervous system functioning closer
to its normal regime, then the duration how this state is preserved after a stimulus
offset determines an efficiency of the stimulation.

Let us, as before, consider the case, where system (2.1) has just one stable
phase-locked state P . After a stimulus offset, trajectories relax from the stimulus-
induced reset state (3.14) towards the phase-locked state P . An example of such
a transient is shown in the cross-trail distributions in Fig. 3.8.

We define the transient time Ttr as the time it takes a trajectory after the
stimulus offset to permanently enter an ε-vicinity of the stable phase-locked state,
averaged over the ensemble of N stimuli. We study how Ttr depends on the
stimulation phase shift θ for long and strong enough stimuli.

An example of the transient time Ttr calculated for the stimulated system
(2.1) without delay, i.e., for τ = 0, is shown in Fig. 3.12(a) versus θ. One can
see that there are two critical values of the stimulation phase shift θmax and
θmin, where the transient time attains its maximum and minimum, respectively.
Moreover, the stimulus length Tst has a minor influence on the transient time Ttr,
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Figure 3.12: Transient time Ttr for the post-stimulus relaxation of system (2.1),
necessary to reestablish its stable phase-locked state, versus stimulation phase
shift θ. Delay: (a) τ = 0 and (b) τ = 4.0. In both plots three graphs are shown
for different stimulus lengths Tst = 0.75 (blue), Tst = 2.25 (red) and Tst = 4.75
(green). Coinciding curves in (a) are indicated by a black curve. Maxima of blue

and red curves in (b) are indicated by ”1” and ”2”, respectively. ϕ
(s)
1 and ϕ

(u)
1

indicate the ϕ1-coordinates of the stable and unstable fixed points of system (2.4),
respectively. Number of stimuli N = 200 and ε = 0.05. Parameters: Δ1 = 0.2,
Δ2 = 3.0, K = 0.4, I = 30.0.

as demonstrated for Tst = 0.75, 2.25, and 4.75 in Fig. 3.12(a) three curves for
the different stimulation times just coincide.

The critical values θmin and θmax correspond to the stable P and the unstable
Q fixed points of system (2.4) without delay with ϕ1-coordinates ϕ

(s)
1 ≈ 0.52

and ϕ
(u)
1 ≈ 2.62, respectively. Evidently, in order to obtain the longest post-

stimulus transient in system (2.1) without delay, the stimulation has to shift the
trajectories towards the unstable fixed point of Eq. (2.4). This can be done by
a proper choice of the stimulus phase shift θ, namely, θ has to be taken equal to
the ϕ1-coordinate ϕ

(u)
1 of the unstable fixed point Q.

The situation is different if the stimulated system has a significant time delay.
This is illustrated in Fig. 3.12(b), where the transient time Ttr is plotted versus θ
for the delay τ = 4.0 and for the same three values of the stimulus length as above
Tst = 0.75, 2.25, and 4.75. For the parameter values as in Fig. 3.12(b), system

(2.4) has two fixed point: stable P and saddle Q with coordinates ϕ
(s)
1 ≈ 0.997

and ϕ
(u)
1 ≈ 2.583, respectively, see Fig. 2.11(a).

If the stimulation time Tst is relatively small (in comparison with the delay τ),
the transient time Ttr still has a maximum, which is not directly located at the
coordinate ϕ

(u)
1 of Q but close to it [maximum 1 in Fig. 3.12(b)]. The dependence

of the transient time on the phase shift θ undergoes a significant change when Tst
increases: The maximum of Ttr is shifted to the left [maximum 2 in Fig. 3.12(b)]
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and finally saturates at a critical point θmax, located between the stable fixed
point P and the unstable fixed point Q [Fig. 3.12(b)].

Therefore, in order to obtain the maximal post-stimulus transient time in sys-
tem with delay (2.1), one has to stimulate the system into a neighborhood of an
optimal point θmax which is different from the ϕ1-coordinate of the unstable fixed
point.

We investigate the properties of this optimal point of the maximal transient
in more detail. Let us consider a stimulation which is long and strong enough.
If system (2.1) is reset for a time longer than the delay τ , the initial condition
of system (2.1) at stimulus offset can be approximated by constants of the form
(3.14) [see Sec. 3.1]. Thus, the strong reset constitutes an initial value problem
for system (2.4) with initial values (3.14). Therefore we study the transient post-
stimulus dynamics of the stimulus-free system (2.4) towards its stable phase-

locked state for constant initial conditions ϕ1(t) = ϕ
(0)
1 = θ and ϕ2(t) = ϕ

(0)
2 =

(θ+π)/2+πn, n = 0, 1, t ∈ [−τ ; 0]. It is easy to see that the dynamics of system

(2.4) does not depend on the constant initial value ϕ
(0)
2 . Hence, we fix it ϕ

(0)
2 = 0.

In Fig. 3.13(a) the transient time Ttr is plotted versus the initial condition

ϕ
(0)
1 = θ. One can see that there is one minimum and one maximum of the

transient time, which correspond to those in Fig. 3.12(b). The mismatch between

θmax (where the maximum of Ttr is achieved) and coordinate ϕ
(u)
1 of the unstable

fixed point Q becomes more significant with the increasing time delay τ . The
difference ϕ

(u)
1 − θmax is depicted by plus signes in Fig. 3.13(b) versus τ for fixed

K. One can see that the difference grows approximately proportionally to τ . The
slope of the straight line Fig. 3.13(b) is 0.8/4.5.

The coordinates ϕ
(s)
1 and ϕ

(u)
1 of the stable fixed point P and of the unstable

fixed point Q of system (2.4) as well as values of θmax are plotted in Fig. 3.13(c)
versus τ and indicated by dots, crosses and circles, respectively. The correspond-
ing transient time Ttr for constant initial conditions with ϕ

(0)
1 = ϕ

(s)
1 , ϕ

(u)
1 , and

θmax is depicted in Fig. 3.13(d) by the same symbols, respectively.
When τ is small, the optimal value of the stimulation phase shift θmax is

located close to the value of ϕ
(u)
1 [see also Fig. 3.12(a)]. With increasing τ , θmax

moves from ϕ
(u)
1 towards the ϕ1-coordinate ϕ

(s)
1 of the stable fixed point P . It

is a generic situation that the values of θmax separate the fixed points P and Q
and can even be located closer to the stable fixed point than to the unstable one
[Figs. 3.12(b) and 3.13(c)].

We explore now what a difference is in the dynamics of system (2.4) for the

two distinct constant initial conditions ϕ
(0)
1 = ϕ

(u)
1 and ϕ

(0)
1 = θmax. These initial

conditions corresponds to the stimulation which brings trajectories of system
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Figure 3.13: The transient time Ttr for system (2.4) for constant initial conditions

ϕ1(t) = ϕ
(0)
1 and ϕ2(t) = ϕ

(0)
2 = 0, t ∈ [−τ ; 0]. (a) Ttr versus ϕ

(0)
1 for τ = 4.0.

θmax indicates the value of the initial phase shift ϕ
(0)
1 for a post-stimulus transient

of maximal duration. (b) Differences between ϕ1-coordinate ϕ
(u)
1 of the unstable

fixed point Q of system (2.4) and the phase shift θmax versus the delay τ . (c)

Coordinates ϕ
(s)
1 and ϕ

(u)
1 of the stable fixed point P and the unstable fixed

point Q of system (2.4), respectively, and the optimal initial phase shift θmax are
depicted versus τ by points, crosses, and circles, correspondingly. In the lower
plot (d) the transient times Ttr are depicted by the same symbols as in (c) for

initial condition ϕ
(0)
1 = ϕ

(s)
1 , ϕ

(u)
1 , and θmax, respectively. Parameters Δ1 = 0.2,

Δ2 = 3.0, and K = 0.4.

(2.1) into a vicinity of the unstable phase locked state Q or the optimal point
θmax of the maximal transient, respectively. Figure 3.14(a) illustrates the time
course of trajectories originating from such initial conditions.

The difference in the transient time for both cases is obvious: The trajectories
enter an ε-neighborhood of the stable fixed point P after transient time Ttr ≈ 65
for ϕ

(0)
1 = ϕ

(u)
1 and Ttr ≈ 125 for ϕ

(0)
1 = θmax (with ε = 0.01). Moreover, in

the latter case the trajectory spends a long time in an almost stationary regime,
where ϕ1(t) closely approaches the coordinate ϕ

(u)
1 of the unstable fixed point Q.

The transients in the (ϕ1(t − τ), ϕ1(t))- projection of the phase space are
illustrated in Fig. 3.14(b)-(d) for these two initial conditions. In the first case

depicted in Fig. 3.14(b), where ϕ
(0)
1 = ϕ

(u)
1 , the trajectory leaves a vicinity of

Q and directly spirals to the stable fixed point P which is a stable focus. In
the second case depicted in Fig. 3.14(c) [with enlargements in Figs. 3.14(d) and
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Figure 3.14: (a) Transients of system (2.4) towards the stable fixed point P

occurring for two different constant initial conditions: ϕ
(0)
1 = 2.58 ≈ ϕ

(u)
1 (thin

line) and ϕ
(0)
1 = 1.86 ≈ θmax (bold line). ϕ

(s)
1 and ϕ

(u)
1 are the ϕ1-coordinates of

the stable P fixed point and the saddle fixed point Q, respectively. Transients
from ϕ

(u)
1 and from θmax are shown in (b) and (c), respectively, in the (ϕ1(t −

τ), ϕ1(t))-projection of the phase space. (d),(e) Successive enlargements of (c)

around the ϕ1-coordinate ϕ
(u)
1 of the unstable fixed point Q. Parameters: Δ1 =

0.2, Δ2 = 3.0, τ = 4.0, and K = 0.4.

3.14(e)], where ϕ
(0)
1 = θmax, the trajectory exhibits a different itinerary: The

trajectory starting at the optimal value of the initial condition ϕ
(0)
1 = θmax, first,

very closely approaches the unstable fixed point Q and stays there for a long time
before it is finally attracted by P . Such kind of a transient demands longer time
than that in the first case of ϕ

(0)
1 = ϕ

(u)
1 [Fig. 3.14(a) and 3.14(b)].

The unstable fixed point Q = (ϕ1(t), ϕ2(t)) of system (2.4) has the follow-
ing coordinates in the infinite-dimensional functional phase space of Eq. (2.4):

ϕ1(t) = ϕ
(u)
1 and ϕ2(t) = ΩQt + const, where ϕ

(u)
1 ≈ 2.58 and ΩQ ≈ 3.06 for

parameter values as in Fig. 3.14. As mentioned above, a long and strong stim-
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ulation (2.2) results in an almost complete reset of system (2.1), such that the
post-stimulus transient of system (2.1) starts from almost constant initial condi-

tions with ϕ
(0)
1 = θ and ϕ

(0)
2 = Const.

But the steady initial conditions are still far from the coordinates of the
unstable fixed point Q (due to mismatch in ϕ2) even if θ is taken equal to ϕ

(u)
1 .

Therefore, if the stimulus shifts ϕ1 into a vicinity of ϕ
(u)
1 , i.e., if θ ≈ ϕ

(u)
1 , the

fixed point Q has a minor influence on the post-stimulus dynamics of system (2.1)
and the transient time appears to be relatively small [Fig. 3.14(a),(b)]. This is
in contrast with the stimulation of coupled oscillators without delay, where the
maximal transient time is attained for stimulation with θ = ϕ

(u)
1 [Fig. 3.12(a) and

Ref. [58]].
For system with delay (2.1), there is another optimal value of the stimulation

phase shift θ = θmax, at which the transient time is essentially larger than that
for the other values of θ and attains its maximum [Figs. 3.13 and 3.14]. At this
optimal value the unstable fixed point Q significantly affects the post-stimulus
transient dynamics, although the initial conditions of system (2.1) for the post-
stimulus transient for θ = θmax seem to be even more remote from Q than those
for θ = ϕ

(u)
1 .

The fixed point Q of system (2.4) is of a saddle-focus type. Its eigenvalues are
depicted in Fig. 3.15(a). Q has one real positive eigenvalue, one zero [62], and
the others are complex conjugate with negative real parts. Therefore, the fixed
point Q has a one-dimensional unstable manifold corresponding to the positive
eigenvalue and an infinite-dimensional stable manifold M(s) corresponding to
the complex eigenvalues with negative real parts. If a trajectory of system (2.4)
comes close to M(s), it will then follow the manifold and approach the saddle
point Q very closely, spending a long time there. Approaching the fixed point
Q, the trajectory comes close to the unstable manifold of Q and, thus, it will
eventually be repelled from Q by its unstable manifold and finally be attracted
by the stable fixed point P .

This situation is realized during the post-stimulus transient of system (2.1)
for the stimulation phase shift θ = θmax or close to that. This can be seen in
Fig. 3.14(c)-(e), where the trajectory of Eq. (2.4) spirals to Q following M(s),
thereby exploring a characteristic focus shape of the stable manifold of Q, and
only thereafter that being attracted by P .

The itinerary of the trajectory shown in Fig. 3.14(c)-(e) reflects the property
of the saddle fixed point Q that its stable manifold M(s) has an intersection with
a class of constant initial conditions of the system (2.4).

To illustrate this fact, consider the following class of linear functions:

ψ1(t) = Ωt− α/2, ψ2(t) = Ωt+ α/2. (3.15)
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Figure 3.15: (a) A few eigenvalues λi with the largest real parts of the saddle-
focus fixed point Q are depicted by empty circles in the complex plane. (b)
Intersection of the stable manifold M(s) of the saddle-focus fixed point Q with
the class of functions (3.15) depicted by dashed curve in the (α,Ω)-parameter
plane. The stable fixed point P and the saddle fixed point Q are shown by filled
and empty circles, respectively. The stable manifold intersects the axis Ω = 0 at
the point θmax ≈ 1.86. Parameters Δ1 = 0.2, Δ2 = 3.0, τ = 4.0, and K = 0.4.

Taking functions (3.15) as initial conditions for system (2.1) we find regions in the
(α,Ω)-parameter space, where the trajectories demonstrate different transients
on their ways towards the stable fixed point P born in a saddle-node bifurcation
together with Q. The transients differ with respect to whether or not the variable
ϕ1 rotates once through a cycle of 2π before being attracted by P. In other words,
we find a boundary between the basins of attraction of P and its copy shifted by
2π. This boundary is depicted in Fig. 3.15(b) by a dotted curve in the (α,Ω)-
parameter plane. It goes through the saddle fixed point Q and is the intersection
of the stable manifold M(s) of Q with the class of functions (3.15).

The manifold serves as separator between two different kinds of post-stimulus
transients of system (2.1). The stable manifold also intersects with the axis Ω = 0,
i.e., it intersects with the class of constant initial conditions of the system (2.1),
which we have at the end of each stimulus. The intersection point α = θmax ≈
1.86 is the phase shift of the maximal post-stimulus transient considered above
[Figs. 3.13 and 3.14]. This demonstrates the central role of the stable manifold
M(s) of the saddle pointQ in the post-stimulus dynamics of the stimulated system
(2.1).

The existence of the intersection point θmax of the line {Ω = 0} with the
stable manifold of Q [Fig. 3.15(b)] means that for a long and strong stimulation
of system (2.1) there exists an optimal value of the stimulation phase shift θmax
such that for θ ≈ θmax a very long post-stimulus transient occurs. Theoretically,
Ttr → ∞ as θ → θmax, and when the post-stimulus initial conditions directly
fit the stable manifold M(s) of the fixed point Q. The trajectory will then be
directly attracted by Q and will never relax to the stable fixed point P . Put
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otherwise, the trajectory gets trapped by the stable manifold M(s).

(a)

t

ϕ1

(b)

t

ϕ1

Figure 3.16: Post-stimulus transients of system (2.1) stimulated with (a) θ =

2.583 ≈ ϕ
(u)
1 and (b) θ = 1.87 ≈ θmax and with a Gaussian white noise with

D = 0.001. Parameters I = 15.0, Tst = 4.5, Δ1 = 0.2, Δ2 = 3.0, τ = 4.0, and
K = 0.4. The number of stimuli N = 15 in both plots.

However, this limiting case is difficult to realize in practice, because of the
inevitable noise and the mismatches in the stimulus-induced reset. Nevertheless,
even with noise, the transient time at θ = θmax or close to θmax is significantly
larger than that for the other values of θ. This is illustrated in Fig. 3.16, where a
few trajectories of the system (2.1) stimulated with noise and stimulation phase

shifts θ = ϕ
(u)
1 [Fig. 3.16(a)] or θ = θmax [Fig. 3.16(b)] are plotted. Comparing the

results of the calculations shown in Fig. 3.16 with those in Fig. 3.14, one finds
that the trajectories still follow the corresponding itineraries as in the case of
ideal constant initial conditions, which provides an evidence for longer transients
for the optimal value of the stimulation phase shift θ = θmax.

At this moment we stop to consider the stimulation of our system in the
stable phase-locked state and proceed to the other dynamical regimes emerging
with increase of the coupling K.

3.3 Stimulation of periodically modulated syn-

chronized states

A phase-locked state of system (2.1) is stable only for a finite interval of the
parameter K values. The exemplary phase-locked states P and Q [Fig. 2.11(a)]
have been considered above. When the coupling K increases, the stable fixed
point P loses its stability via a supercritical Hopf bifurcation at which a stable
limit cycle γ is born [Fig. 2.11(a) and 2.11(c)]. The limit cycle γ is stable within
a range of the coupling strength. In this regime, called the periodically mod-
ulated phase synchronization, the phase difference ϕ1, being attracted by γ, is
periodically oscillating and is bounded between its maximal ϕmax1 and minimal
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ϕmin1 values [Fig. 2.11(a),(c)]. In this section we study the influence of the stim-
ulation in system (2.1) in the dynamical regime of periodically modulated phase
synchronization.

An example of the cross-trial distributions and the corresponding stimulus
locking indices typical for the stimulation in this regime is shown in Fig. 3.17.
Due to the randomized stimulus administration, in the pre-stimulus time interval
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Figure 3.17: Stimulus-locked responses of system (2.1) stimulated in a periodi-
cally modulated synchronized regime. Cross-trials of the phases ψ1, ψ2, the phase
difference ϕ1, and the mean phase ϕ2 are shown in (a), (c), (e), and (g), respec-
tively, where the density of trajectories is encoded by an intensity of gray. All
phases are taken modulo 2π. Onsets and offsets of stimuli are indicated by verti-
cal red lines. The features of stimulus-locked dynamics as revealed by cross-trail
indices (see Appendix and Ref. [58]): The resetting indices ρ1, ρ2 and the cluster-
ing indices α1, α2 of the phases ψ1 and ψ2 are shown in (b) and (d); the resetting
indices σ1 and σ2 and the clustering indices δ1 and δ2 of the phase difference ϕ1

and the mean phase ϕ2 are shown in (f) and (h). The resetting/synchronization
indices (green curves) and the clustering indices (blue curves) detect unimodal
and anti-phase bimodal cross-trial distributions, respectively. The number of
stimuli N = 300. Parameters Δ1 = 0.2, Δ2 = 3.0, τ = 4.0, K = 0.7, and
θ = 2.27.

the phase difference ϕ1 fills the whole segment [ϕmin1 , ϕmax1 ]. A strong and long
enough stimulus (2.2) results in the phase reset as described in Sec. 3.1. The
coordinates of the reset states (3.14) are determined by the stimulation phase
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shift θ and are independent on the underlying dynamics of system (2.1). For the
considered case of a stimulated limit cycle, the in- and post-stimulus transients
are more complicated than those for the case of stimulated phase-locked states
considered above.

For the in-stimulus transient, for instance, the analysis similar to that from
Sec. 3.1 can be applied. The difference here is that the initial conditions of system
(2.4) summed over all stimulation trials at the stimulus onsets fill the whole strip
[ϕmin1 , ϕmax1 ] × [0, 2π) in the phase space in Fig. 3.1. This strip intersects the
basins of attraction of the stable reset states A and B of system (3.4) and, hence,
a more complicated clustered in-stimulus transient can be observed.

When the stimulation is off, the trajectories of system (2.1) relax from the
reset state to the stable limit cycle γ. As discussed above, the stable manifold
M(s) of the saddle-focus fixed point Q of the system (2.4) serves as a separator
of two kinds of a post-stimulus dynamics of system (2.1) when it is stimulated
in a phase-locked state, see Sec. 3.2.3. The same holds for the stimulated regime
of periodically modulated phase synchronization, since the saddle fixed point
Q coexists with the limit cycle γ. The difference here is that the trajectories
of Eq. (2.4) will be attracted after a stimulus offset by the limit cycle. This
is illustrated by Fig. 3.17, where system (2.1) is stimulated with an optimal
stimulation phase shift θ ≈ θmax.

One can see that there are two different groups of trajectories splitting from
each other when the stimulus is off. The ϕ1-coordinate of one of them is de-
caying, so that the trajectories are directly attracted by γ. The other group of
trajectories exceeds the value ϕ1 = 2π and is attracted by a copy of γ shifted
by 2π. This mechanism, which is similar to the case of stimulated phase-locked
states, generates two stereotypical post-stimulus responses.

With a more detailed consideration of the post-stimulus dynamics of sys-
tem (2.4) one observes another important phenomenon. For the post-stimulus
responses, besides splitting trajectories into two post-stimulus clusters, there is
also an additional spreading of them within each of the clusters of variable ϕ1

[Fig. 3.17(e)]. Such a kind of a spreading can also be observed for a stimulated
phase locked-state in a short time interval after stimulus offset, see Figs. 3.8(e)
and 3.16(b).

However, for the stimulated phase-locked states, in the course of the post-
stimulus transient these broad clusters of variable ϕ1 are suppressed, when the
trajectories are attracted by a stable fixed point. For the case of the stimulated
periodically modulated synchronized state, the clusters of the variable ϕ1 are
preserved for the whole post-stimulus transient period. Moreover, the spreading
of trajectories within the clusters is preserved as well [Fig. 3.17(e)]. This phe-
nomenon is strongly related to the properties of a dynamics on the limit cycle.

The initial conditions of system (2.4) at a stimulus offset slightly differ from
each other because of a noise, mismatches in reset states, and the time delay (if
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the phases are reset for a time shorter than delay). Therefore, each trajectory
spends a different amount of a time during a post-stimulus transient before it is
attracted by the limit cycle γ. This causes the trajectories approaching γ attain
different phase shifts along the limit cycle with respect to each other. Since there
is no contraction or expansion along γ, the trajectories will preserve their phase
shifts after a full rotation around γ, which can clearly be seen in Fig. 3.17(e).
This explains the mechanism of a creation of the multicluster stimulus response
of system (2.1) stimulated at the periodically modulated synchronized state.

The phenomena above are clearly reflected by the resetting and clustering
indices depicted in Fig. 3.17. Indeed, these indices of the phases ψ1 and ψ2 as
well as of the phase difference ϕ1 (see Appendix) exhibit periodic oscillations
preserved for the whole post-stimulus transient period. Such periodic oscillations
of the stimulus locking indices are caused by periodic oscillations of clusters of
trajectories of system (2.1) on the limit cycle γ. Within a period of rotation on
γ, the projections of the response clusters on the corresponding axes demonstrate
a subsequent gathering and separation of the clusters, leading to an anti-phase
oscillation of the resetting and clustering indices, respectively. Such a dynamics of
stimulus locking indices of the phases ψ1 and ψ2 can be seen in Fig. 3.17(b),(d).
The state of clusters and values of stimulus locking indices are repeated after
each period of the oscillations of trajectories on γ. In general, this results in a
periodic behavior of the indices with the same period as that of the limit cycle γ
[Fig. 3.17(b) and 3.17(d)].

3.4 Stimulation of multistable regimes

Multistability is a common phenomenon in complex systems, in particularly, in
systems with delay [73, 11, 52, 27]. In this section we consider an impact of the
stimulation on system (2.1) stimulated in dynamical regimes, where more than
one stable state exists.

We are interested in the stimulation of the multistable states because of very
simple reason which could be of a big use in medical applications: If in the
neuronal dynamics of a brain there are several stable states which coexist, then
it would be of the great benefit to be able by means of a stimulation to switch
between them and thus shift the neuronal dynamics to the stable state which is
the closest to the state of the normal functioning of a brain.

3.4.1 Bistability of phase-locked states

The first example is the case of the two coexisting stable phase-locked states,
denoted by P and P ′, shown in Fig. 2.4. In both states the phases are in-phase
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locked with ϕ∗
1 = 0. However, P and P ′ have different frequencies: ΩP ≈ 5.12

and ΩP ′ ≈ 3.96, respectively. Depending on initial conditions, a trajectory of
system (2.1) will be attracted either by P or by P ′.

We calculate the basins of attraction of P and P ′ for the class of initial
conditions of the form (3.15) [see also Ref. [52]]. The parameters to be varied
here are the phase shift α and the frequency Ω. In Fig. 3.18, the basins of
attraction of the fixed points P [white region] and P ′ [gray regions] are shown in
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Figure 3.18: Basins of attraction of the two stable phase-locked states P (white
region) and P ′ (gray regions) of system (2.1) calculated for initial conditions of
the form (3.15) in the (α,Ω)-parameter plane. (b) Enlargement from (a). The
stable fixed points P and P ′ are indicated by filled circles and the saddle fixed
points Q and Q′ are indicated by empty circles. Γ is the basin boundary of P ′

and αΓ = Γ
⋂{Ω = 0}, αΓ ≈ 0.95 and αΓ ≈ 2π − 0.95. The vertical dashed

line shows the intersection of the stable manifold of Q with the class of functions
(3.15), where θmax = π. Parameters: Δ1 = 0.0, Δ2 = 4.5, τ = 1.4, and K = 1.6.

the (α,Ω)-parameter plane. The stable fixed points are depicted by black filled
circles and the corresponding saddle fixed points Q and Q′, which are born with
P and P ′ in saddle-node bifurcations, respectively, are depicted by empty circles.

As mentioned above, after the long and strong enough stimulation a post-
stimulus transient in system (2.1) starts from almost constant initial condition
[see Sec. 3.1]. Therefore, the post-stimulus initial conditions of Eq. (2.1) are
located in Fig. 3.18 within a small strip with Ω ≈ 0 and with the phase shift
α = θ. By choosing an appropriate stimulation phase shift θ one can put the
post-stimulus initial conditions of system (2.1) into the one or the other basin of
attraction. In this way the stimulation can redirect trajectories from the one to
the other stable state, e.g., from the phase-locked state P to P ′ and vice versa.

This is illustrated in Fig. 3.19, where the stimulation is performed with two
different phase shifts θ = 0.9 and θ = 1.0 resulting in different synchronized dy-
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namics after an stimulus offset, respectively. Note, the stimulus-induced switch-
ing between the states P and P ′ does not manifest itself in a change of a synchro-
nization properties from the pre- to the post-switching dynamics of the system
(2.1): In both states the oscillators are in-phase synchronized. However, after a
switching of the mean frequency the synchronized state is significantly different.

(a)

t

ΩP

Ω
in

st

ΩP

(b)

t

ΩPΩ
in

st
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Figure 3.19: Stimulus-induced switching between the two stable in-phase-locked
states P and P ′ from Fig. 2.4: (a) Stimulation phase shift θ = 0.9 induces a
transition from P with frequency ΩP ≈ 5.12 to P ′ with frequency ΩP ′ ≈ 3.96,
and (b) stimulation phase shift θ = 1.0 induces the inverse transition from P ′

to P . The vertical axis stands for the an instantaneous mean frequency Ωinst =
ϕ̇2. Stimulation epochs are indicated by black bars at the top of the graphs.
Parameters: I = 15, Tst = 2.0, Δ1 = 0.0, Δ2 = 4.5, τ = 1.4, and K = 1.6.

The basin boundary Γ [boundary between gray and white regions in Fig. 3.18]
plays an important role in the structure of the basin of attraction. Taking ini-
tial conditions close to Γ, one observes that the trajectory of the system (2.4)
approaches very close the unstable fixed point Q′. For such initial conditions the
transient dynamics is very similar to that discussed in Sec. 3.2.3, see Fig. 3.14.

As mentioned above, the fixed point Q′ is born in a saddle-node bifurcation
with P ′ and is of a saddle-focus type. Q′ has one real positive eigenvalue, one
zero, and the others are complex conjugate with negative real parts. The point
Q′ is placed on Γ and thus, its stable manifold M (s)(Q′) contributes to the basin
boundary and serves as a separator between the basins of attraction of the two
different stable phase-locked states P and P ′. In this way, the basin boundary
Γ shown in Fig. 3.18 represents an intersection of the stable manifold M (s)(Q′)
with a class of functions (3.15). Therefore, analogously to the case considered
in Sec. 3.2.3, one may expect that a very long post-stimulus transient in system
(2.1) may occur also for the case illustrated in Fig. 3.18.

Indeed, from Fig. 3.18 it follows that the basin boundary Γ intersects the line
Ω = 0 in the points denoted by αΓ. Since the post-stimulus initial conditions
very close approach constant functions, they can be adjusted to approach very
close the point αΓ ∈ Γ [Fig. 3.18]. This can be achieved by a strong and long
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enough stimulation with a phase shift θ ≈ αΓ. Then, during the post-stimulus
transient, the trajectories of system (2.1) will follow the stable manifold M (s) of
Q′ approaching the saddle point Q′ and spend a long time there before being
attracted by one of the stable fixed points P or P ′.

For the parameter values as in Fig. 3.18, there exists another saddle-focus fixed
point Q which is born simultaneously with P . The stable manifold M (s)(Q) of
the fixed point Q also has an intersection with the class of initial functions (3.15)
and with the line Ω = 0 [dashed line in Fig. 3.18(b)], which has been discussed in
Sec. 3.2.3. Therefore, there is another optimal value of the phase shift α = θmax
such that the stimulation with the phase shift θ ≈ θmax brings the post-stimulus
initial conditions of system (2.1) close to M (s)(Q). The corresponding post-
stimulus trajectories then approach the saddle fixed point Q, which results in a
long post-stimulus transient towards the stable phase-locked state P , similar to
that illustrated in Fig. 3.14.

θ
θmax

(1) θmax θmax
(2)

Ttr

Figure 3.20: Mean post-stimulus transient time Ttr versus the stimulation phase
shift θ calculated for system (2.1). Three local maxima are observed for θ = θ

(1)
max,

θmax and θ
(2)
max, corresponding to the three points which closely approach the stable

manifolds of the saddle fixed points Q (θmax) and Q′ (θ
(1)
max and θ

(2)
max) [see also

Fig. 3.18]. The number of stimuli N = 100. Parameters Δ1 = 0.0, Δ2 = 4.5,
τ = 1.4, K = 1.6, I = 25, and Tst = 2.5.

The length of the mean post-stimulus transient time Ttr calculated for system
(2.1) for parameter values from Fig. 3.18 is depicted in Fig.3.20 versus stimulation

phase shift θ. One can see that there are three optimal values of θ = θ
(1)
max, θ

(2)
max,

and θmax, where the transient time Ttr attains local maxima. These are the points,
where the post-stimulus initial conditions of system (2.1) come close to the stable
manifolds M (s)(Q′) and M (s)(Q) of the fixed points Q′ and Q, respectively.
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More precisely, the optimal phase shifts θ
(1,2)
max correspond to the phase shifts

αΓ [Fig. 3.18], which are placed on the basin boundary Γ and, thus, belong to
the stable manifold M(s)(Q′). The stimulation with such phase shifts directs
the trajectories during the post-stimulus transient to the saddle fixed point Q′.
The optimal phase shift θmax corresponds to the stable manifold M (s)(Q), and
a stimulation with such a phase shift directs the trajectories to the saddle fixed
point Q, see also Sec. 3.2.3.

3.4.2 Bistability of synchronous and desynchronous dy-

namics

Multistability occurs not only between synchronized states, but also between
synchronized and desynchronized states, as shown in Sec. 2.2 [see Fig. 2.5]. An
example of a stable phase-locked state P which coexists with the stable desyn-
chronized limit cycle μ is shown in Fig. 2.5(b). In this section we consider the
impact of the stimulation (2.2) on the dynamics of system (2.1) when it exhibits a
multistable regime with the stable point P and a cycle μ. We consider parameter
values indicated by the point A in Fig. 2.5(a).

α

P Q
Ω

Figure 3.21: Basins of attraction of the stable phase-locked state P (gray regions)
and the stable desynchronous limit cycle μ (white regions) [Fig. 2.5(b)] calculated
for initial conditions of the form (3.15) in the (α,Ω)-parameter plain. The black
filled circle indicates the stable fixed point P and the empty circle indicates the
saddle fixed point Q. Parameters Δ1 = 0.2, Δ2 = 0.1, τ = 7.2, and K = 0.28.

With the use of the class of linear functions (3.15), in Fig. 3.21 the basins of
attraction of the stable phase-locked state P (gray regions) and the desynchronous
limit cycle (white region) are shown in the (α,Ω)-parameter plane. Stimulation
resets the variables of system (2.1) to the almost constant functions (Sec. 3.1).
Therefore, as before, the initial conditions for the post-stimulus transient are
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located close to the line Ω = 0 with α = θ in the (α,Ω)-parameter plane in
Fig. 3.21. By varying the stimulation phase shift θ ∈ [0; 2π), the initial conditions
can be placed at any point on the horizontal axis Ω = 0. As one can see, this line
intersects both basins of attraction in Fig. 3.21 and, thus, the stimulation with
an appropriate phase shift θ can redirect the dynamics of the system from one
stable state to the other.

(a)

t

ϕ1

(b)

t

ϕ1

Figure 3.22: Stimulus-induced switching between the stable phase-locked state P
and the stable desynchronous limit cycle μ [Fig. 2.5(b)]: (a) Stimulation phase
shift θ = 2.3 induces a transition from P to μ, and (b) stimulation phase shift
θ = 2.2 induces an inverse transition from μ to P . Stimulation onsets and offsets
are indicated by vertical dashed lines. Parameters: I = 15.0, Tst = 8.0, Δ1 = 0.2,
Δ2 = 0.1, τ = 7.2, and K = 0.28.

The switching between synchronized and desynchronized states caused by the
stimulation is illustrated in Fig. 3.22. Starting in a synchronized phase-locked
regime, stimulation can effectively desynchronize system (2.1) [Fig. 3.22(a)]. On
the other hand, starting from the desynchronized dynamics, the stimulation can
also induce phase-locked synchronization [Fig. 3.22(b)].

Applying multiple stimuli one can end up with two different situations: (i)
All trajectories before and after stimulation will exhibit the same synchronized
or desynchronized dynamics, respectively; or (ii) there will be a mixture of tra-
jectories, attracted by both stable synchronized and desynchronized states. In
the case (i) the stimulation phase shift θ has to be chosen from the inner part
of the corresponding basin of attraction. In the case (ii) the switching between
different stable states can be achieved by values of θ close to the basin boundary,
and enforced by noise which is inevitably present in natural systems.



Chapter 4

System of two phase oscillators
coupled with delay

The communication among elements of complex systems inevitably takes place
with some delay in time. This might be caused by the finite transmission speed
of the signals, non-zero activation time of the elements of the system and many
other factors. Transmission time is always of great interest, but it is often difficult
to determine. The usually unknown structure of the system, communication
paths between elements, latency times necessary for an element to respond to
a transmitted signal, and many other confounding factors interplay with each
other and make it impossible to reveal true sources of a delay in the system.
Little is known about the transmission of stimulus effects in oscillators coupled
with delay. To approach this issue, we study the transmission of stimulus-locked
responses in a generic model studied by Schuster and Wagner [52]. This model
consists of two phase oscillators interacting through a delay in time. We add a
standard stimulation term S [Winfree 1980, Tass 1999] to one of the oscillators
proposed by Schuster&Wagner [52] and, therefore, obtain Eq. (4.1)⎧⎪⎨

⎪⎩
ψ̇1(t) = ω1 +

K

2
sin [ψ2(t− τ) − ψ1(t)] + S(ψ1, t),

ψ̇2(t) = ω2 +
K

2
sin [ψ1(t− τ) − ψ2(t)] .

(4.1)

where K is a coupling parameter, ω1 and ω2 are natural frequencies of the oscil-
lators, and τ is a time delay.

S(ψ1, t) = X(t)I cos(ψ1(t) − θ) (4.2)

S(ψ1, t) is the stimulation signal. X(t) = 1 or 0 if the stimulus is on or off.
I is a constant stimulus intensity, and θ is a constant phase shift parameter.
The stimulation function is the first term of the Fourier expansion of a periodic
function, and represents the phase-dependence of the oscillator’s response to a

78
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stimulus, which is a typical occurrence in numerous systems and quasi generic in
biology [Winfree 1980, Tass 1999].

We study a transmission of a stimulus effect from the first, directly stimulated
oscillator to the second not stimulated oscillator. This type of the transmission
is fundamental for communication of networks of oscillators, e.g., in networks
of oscillatory neuronal populations. In that case a single oscillator serves as a
macroscopic model for a neuronal population. The estimation of transmission
times is of great importance in neuroscience and neurology: Transmission times
provide the functional roles of different brain areas and constitute the so-called
mental chronometry (see [51], chapter four), according to which sensory informa-
tion is subsequently processed in different brain areas and is transmitted from an
active area to the next.

4.1 Dynamics of the model. Effect of the stimulation.

In this section we briefly overview the dynamics of the system. In addition
the effect of the stimulation is briefly discussed. A more detailed study of the
dynamics of this system without stimulation is reported elsewhere [52].

We introduce first two new variables: a phase difference ϕ1 and a mean phase
ϕ2 ⎧⎨

⎩
ϕ1(t) = ψ2(t) − ψ1(t),

ϕ2(t) =
1

2
(ψ2(t) + ψ1(t)),

(4.3)

which will be used in the synchronization analysis. We also norm all phases ψ1, ψ2,
ϕ1 and ϕ2 to the interval [0; 2π]. The dynamics in the system is asynchronous if
the phase difference ϕ1 exhibits unbounded rotations. In the case of phase-locked
synchronization (see below) ϕ1 is a constant. We also use the following notations:
Δ1 = ω2 − ω1 is a natural frequency mismatch, and Δ2 = (ω2 + ω1)/2 is a mean
frequency.

In the uncoupled regime (K = 0) each phase in the system grows with its
own frequency ωi such that the phase difference ϕ1(t) has the frequency Δ1. A
desynchronized dynamics is preserved in the system for small values of K. One
can see this in Fig. 4.1(a). With increasing values of K the first pair of phase-
locked states appears (see Fig. 4.1).

According to authors of [52] a phase-locked state is:

Definition 4.1 A solution (ψ1(t), ψ2(t)) of system (4.1) is called a phase-locked
state if both phases ψ1(t) and ψ2(t) linearly grow with the frequency Ω (Ω is
constant) and the phase difference ψ2(t) − ψ1(t) is preserved equal to α and is
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constant: ⎧⎨
⎩
ψ1(t) = Ωt− α

2
,

ψ2(t) = Ωt+
α

2
.

(4.4)

We also call phase-locked states fixed points. An equivalent form of a phase-
locked state (see chapter 2) reads:{

ϕ1(t) = α,

ϕ2(t) = Ωt+ C
(4.5)

To characterize any such fixed-point it is sufficient to indicate its frequency
Ω and a constant phase difference α. The constant C is determined by initial
conditions.

K

Ω

(a)

α

(b)

K
Figure 4.1: Appearance of phase-locked states in the dynamics of the system ver-
sus coupling parameter K. (a) Pairs of oscillation frequencies Ω are depicted. (b)
Corresponding constant phase shifts α are depicted. Frequencies (phase shifts)
appear in pairs. Red curves denote stable phase-locked states, black dashed
curves - unstable ones. The first pair of phase-locked states has the same fre-
quency Ω = 2π. Parameters: τ = 2, Δ1 = 0.4, Δ2 = 2π.

As K increases pairs of frequencies Ω appear (see Fig. 4.1) which indicates
that the number of phase-locked states is increasing. Some of these fixed-points
are stable. In general at larger K there are multiple stable phase-locked states.

Now we investigate how the stimulation affects system (4.1). We suppose that
the stimulus is strong, i.e., I � ω1, I � ω2 and I � K. Then for such a stimulus
during stimulation system (4.1) reads⎧⎨

⎩
ψ̇1(t) ≈ I cos(ψ1(t) − θ)

ψ̇2(t) = ω2 +
K

2
sin [ψ1(t− τ) − ψ2(t)] .

(4.6)
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To find fixed points, induced by the stimulation, one should put ψ1(t) = C1

and ψ2(t) = C2, where C1, C2 are constants, and solve system (4.6) using this
conditions. Doing this we have:⎧⎨

⎩
0 = I cos(C1 − θ)

0 = ω2 +
K

2
sin [C1 − C2] .

(4.7)

We see that the phase ψ1 is always reset by the strong stimulus to constant values
ψ∗

1 = C1 = θ + π/2 + πn, where n ∈ Z. But the stimulation resets the second
phase ψ2 only if stimulus is also long enough (Tst � τ) and the coupling K is
large enough (K ≥ 2|ω2| [the second of Eqs.(4.7) has a solution]). In this case we
have that ψ2 is also reset by the stimulation to a constant value C2. The next
equation give us values C1 and C2 in the case of full reset:

ψ∗
1 = θ + π/2 + πn, ψ∗

2 =

⎡
⎢⎢⎣

ψ∗
1 + arcsin

[
2ω2

K

]
+ 2πm

ψ∗
1 − π − arcsin

[
2ω2

K

]
+ 2πm

(4.8)

where n,m ∈ Z.

To summarize at this point we remark that a complete reset of both phases is
possible only for sufficiently strong coupling K ≥ 2|ω2| for a long and strong stim-
ulus. If at least one of the mentioned conditions is violated then only the phase
of the first oscillator is reset by the stimulus, the second oscillator exhibits just
some changes in its phase dynamics which start after τ time from the beginning
of the stimulus.

4.2 Transmission time indices

Here we discuss two approaches to determine the transmission time of a stimulus
from the first oscillator to the second one, based on both cross-trial analysis and
standard averaging techniques.

The cross-trial analysis is performed as follows: The system is stimulated
repetitively N times, with the interval between stimuli being stochastically var-
ied, and always taken long enough to let the system return to its unperturbed
behavior. For each stimulus we look at a time window which begins and ends
at a fixed time before and after the stimulus. Cross-trial diagrams can then be
compose by plotting the distribution of the phases of the oscillators, taken over
all trials, as a function of time, relative to the beginning of the stimulus. Var-
ious indices can then be calculated from these distributions, which are used to
investigate phase-resetting and clustering of trials.
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One of these indices which reveals a clustering of trials is the order parameter
of ν-order:

λν(ψ(t)) =

∣∣∣∣∣ 1

N

N∑
k=1

exp(iνψk(t)

∣∣∣∣∣ , (4.9)

where k indicates the stimulus number, N is the number of stimuli, and ψ is a
phase variable which could be any of {ψ1, ψ2, ϕ1, ϕ2}.

The resetting index is defined as:

ρj(t) = λ1(ψj(t)) (4.10)

The resetting index indicates how stereotypical the behavior of the system
is across trials. Prior to a stimulus each trial will exhibit a different phase as
a function of time, which will be uniformly distributed on the circle due to the
stochastic timing of the stimuli. The stimulus will cause the oscillators to move
towards a specific phase, which depends on a specific nature of the stimulus. This
means that the cross-trial distribution of the phases, as a function of time, will no
longer be uniformly distributed on the circle post stimulus. The resetting allows
us to quantify the degree to which this distribution forms a single peak. It is
equal to 0 when at time t the phases over all trials are uniformly distributed over
the interval [0; 2π], and 1 when the distribution of phases across all trials forms
a single δ peak. The time tjre when maximum of ρj occurs is thus associated with
the time of maximal effect of a stimulus on the oscillator j.

A long enough and strong stimulus results in ρj ≈ 1, which means that a
full reset of the phase ψj occurs. In the case where only one of the oscillators is
stimulated, that oscillator is fully reset, and coupling brings the second oscillator
to a partial reset after a certain time. We define the resetting transmission time
of the stimulus as:

tre = t2re − t1re (4.11)

where tjre are defined as above.

Standard averaging techniques are based on the concept that each of the N
trials of the phases represents the true signal plus additive noise. In that case by
a simple averaging of trials as N tends to infinity, one should be able to extract
the true signal. We take each trail number k of the form

xkj (t) = cos(ψkj (t)). (4.12)

The averaged signal of the jth oscillator is:

xj(t) =
1

N

N∑
k=1

xkj (t) (4.13)

The averaged signal may take on values ranging from −1 to 1. We denote
tj,min
av and tj,max

av as times when xj(t) attains its minimum and maximum over



4.3 Convergence of the phase reset transmission time index 83

trials. For the oscillator #1 xmax
1 indicates the maximal effect of a stimulus. This

was arranged by an appropriate choice of θ, which determines the position of
the reset state so as to have cos(ψk1,reset) ≈ 1 and thus x1 to be maximal at the
end of the stimulus. It is supposed that one of the events xmin

2 or xmax
2 indicates

the maximal effect of stimulus on the oscillator 2. Following that, we define two
transmission time indexes based on the averaged signal:

tmax
av = t1,max

av − t2,max
av ,

tmin
av = t1,max

av − t2,min
av .

(4.14)

4.3 Convergence of the phase reset transmission

time index

First we want to identify how the transmission indices let us estimate the trans-
mission time of the stimulus in the system. For that purpose we fix the delay
parameter τ and fix the rest of the parameters (ωj , I, θ). The only parameter
that is varied is K. In Fig. 4.2 all three transmission times are depicted versus
K.
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Figure 4.2: The transmission time indexes tre (black), tmax
av (red) and tmin

av (green)
versus K. Parameters: τ = 2, Δ1 = 0.4, Δ1 = 2π, I = 100 and θ = 4.78.

One can see that the transmission time tre is changing gradually as K in-
creases. When the coupling strength is large tre converges to a value close to
τ .

For small K (K < 2|ω2|) the tmax
av and tmax

av indices are changing gradually as
well. On the other hand, as the coupling increases, tmax

av jumps from an initial
value close to τ = 2, to a value of approximately 7, and with growth of K to
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even higher values of approximately 14, and so on. In this case one can not speak
about a convergence to a finite value.

In Fig. 4.3 the results of the transmission time calculation are shown for an-
other parameter set of system (4.1). Here we see that for K ranging from 0 to
2.5, all three transmission time indexes demonstrate gradual behavior. After-
wards tre continues to converge to τ = 1.7. However tmin

av exhibits discontinuities.
As K grows tmin

av becomes negative and diverges from τ . The index tmax
av also

exhibits discontinuities for intermediate coupling. For larger coupling strengths
tmax
av comes closer to τ and convergence to τ may be possible.

Simulation with other parameter sets confirms the hypothesis that for large
enough values of K, the resetting transmission index tre converges to the value of
the delay τ in a communication between the oscillators. We prove now this fact
analytically.
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Figure 4.3: The transmission time indexes tre (black), tmax
av (red) and tmin

av (green)
versus K. Parameters: τ = 1.7, Δ1 = 0.4, Δ1 = 2.4, I = 25 and θ = 1.78.

Consider the second of Eqs. (4.1), where ψF = ψ1(t− τ) is the instantaneous
value of ψ1 (after a short transient time ψF becomes approximately constant
during a strong stimulus):

ψ̇2(t) = ω2 +
K

2
sin(ψF − ψ2(t)) (4.15)

For coupling strength K > 2|ω2| solving Eq. (4.15) we obtain:

ψ2(t) = 2 tan−1

(
exp(−p(t+ C))(K

2
+ p) − K

2
+ p

ω2(exp(−p(t+ C)) − 1)

)
+ ψF , (4.16)
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where p =
√

K2

4
− ω2

2, and C is a constant value determined by initial conditions.

At the end of a strong stimulus the first oscillator is reset in such a way
that all trials ψ1 attain the same value ψF . Exactly at this moment we observe
a maximum of ρ1. After time τ all trials of phase ψ2 obtain this value of ψ1.
The phase ψ2 then exponentially quick converges across trials to a single value
according to Eq. (4.16). For large K the convergence time tends towards 0. This
means that the maximum of ρ2 occurs after the stimulus occurrence with offset
equal the delay τ .

We proved analytically that resetting transmission time index converges to the
communication delay time τ in the system as coupling grows. Hence if one is
able to change a coupling in a system our method allows to determine the delay
in the system.

4.4 Behavior of the averaged transmission time

indices

Now we consider how the averaged transmission time indices behave as K grows.
First let us denote that in case of multistability the averaged transmission time
indices are not a simple superposition of analogous indices calculated for each
stable phase-locked state separately. For example, if at some fixed K value we
have M groups of trials belonging to M different stable phase-locked states, then
to find maxima of an averaged signal xj one should solve following equation:

ẋj(t) =
M∑
i=1

Ni

N
ẋij(t) (4.17)

where Ni is the number of trials in ith phase-locked state, and xij is the averaged
signal over trials from ith group. To find tmax

av and tmin
av , one should find extremal

points of the averaged signal (such a method is common among neurologists).
One can see that the averaged transmission time for each group of trials

calculated separately does not necessarily constitute a solution of Eq. (4.17).
Thus we can not speak about superposition of them and study transitionM → ∞.
But nevertheless relying on Eq. (4.17) we can illustrate the mechanism of an
averaged transmission time index formation. To do this consider results of the
simulation of the system in the multistable regime at K = 8:

At this coupling strength we have the situation that all trials are distributed
among two stable phase-locked states (Ω1, α1) and (Ω2, α2). Here Ω1 = 2π,
α1 = 0.0, Ω2 ≈ 4.9 and α2 ≈ 3.2.
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The maximum of the averaged signal of x1(t) is determined in this case by
the stimulation. Therefore we provide an analysis of the extrema of the signal
x2(t) only. Let us separate trials of ψ2 into two groups, 1 and 2, each belonging
to a different stable state, and calculate the averaged signal x2 for each of them.
Figure 4.4(a) demonstrates all four signals x1(t), x2(t), x

1
2(t) and x2

2(t).

Figure 4.4: Averaged signals and resetting indexes for a fixed coupling K value.
Vertical black lines show the onset and offset of stimuli. (a) Two upper plots:
averaged signals x1(t) and x2(t). Two lower plots: all trials of the second oscillator
are split into two groups 1 and 2. For every group the averaged signals x1

1(t) and
x2

2(t) are shown. (b) Resetting indexes ρ1(t) and ρ2(t). Parameters: τ = 2,
Δ1 = 0.4, Δ1 = 2π, K = 8, I = 100 and θ = 4.78.

The maximum of x1(t) occurs at the end of stimuli at t ≈ 2.42. For x2(t) the
maximum occurs at t ≈ 9.37 and the minimum occurs at t ≈ 4.95. That gives
tmax
av ≈ 6.95 and tmin

av ≈ 2.53. The first stable phase-locked state has period of os-
cillations T1 = 1 and the second one - T2 ≈ 1.28, correspondingly. The minimum
of x2(t) coincides in time with the minima of both x1

2(t) and x2
2. Likewise for the

maximum of x2(t). In this case Eq. (4.17) has a simple solution. We just find
absolute minimum and maximum of x1

2 and x2
2, and they give us desirable tmin

2

and tmax
2 . This occurs because the stimuli reset ψ2 in such a way that at the end

of the stimuli x1
2 has a local maximum and x2

2 has a local minimum. After 2.53
time units x1

2 makes 2.5 cycles and attains a minimum, and during the same time
x2

2 performs 2 cycles and also attains a minimum. This resonance of minima gives
the absolute minimum of x2. The analogous mechanisms explains the formation
of the maximum of x2.

How to explain ”jumps” in the staircases in Figs.4.2, 4.3? We see that every
”jump” increments or decrements tminav and tmaxav on ≈ 4-5 time units, which does
not coincide with any of periods of stable phase-locked states. To answer this
question we need consider not only timing of peaks in the averaged signals, but
try to explain dynamically their formation for example through presence of an
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amplitude dynamics of the averaged signals. The amplitude dynamics of oscil-
lations of all four averaged signals x1, x2, x

1
2, and x2

2 is more interesting and is
stimulus induced.

For example at K = 9.7 all trials in experiment distribute among two stable
phase-locked states (Ω1, α1) and (Ω2, α2). Here Ω1 ≈ 3.45, α1 = 0.05, Ω2 ≈ 4.85
and α2 ≈ 3.18. Figure 4.5(a) shows frequencies of three exemplary trials of the

Ωk

t

(a)

measx2

t

(b) (c)

x
recon
2

t

Figure 4.5: (a) Oscillations in frequencies of three exemplary trials in (Ω2, α2)
phase-locked state after stimulus. Dashed curves provide envelope for amplitude
decay. (b) x2

2 averaged signal as it results from the stimulation (”meas” stands
for ”measured”). (c) x2

2 averaged signal reconstructed using suggestions about
frequencies of every trial. Parameters: τ = 2, Δ1 = 0.4, Δ1 = 2π, K = 9.7,
I = 100 and θ = 4.78.

second oscillator in (Ω2, α2) phase-locked state after stimulus. Instantaneous fre-
quencies oscillate around Ω2 = 4.84 with period T ≈ 4.4. Such an oscillation of
frequencies is induced by the stimulation and has period which coincides neither
with T1 (1.82) nor T2 (1.29). As the stable phase-locked state (Ω, α2) attracts
the oscillators a phase itinerary is spiraling to it. Taking this into considera-
tion, a period of oscillations of frequencies is determined by an eigenvalue of the
stable phase-locked state with the maximal positive real part λmax = μ + iν
(μ = max

i
Re(λi)). Therefore ν gives us an estimate of the period above, namely

T ≈ 2π
ν

. For the case depicted in Figure 4.5 λmax = −0.02+i1.41 and T ≈ 4.41
(see value above). The real part μ of λmax gives us an amplitude decay of oscil-
lations of frequencies for each trial: A(t) ≈ eμt. In figure 4.5(a) the amplitude
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decay is shown by dashed lines. Below an equation of a hypothetical dependency
of frequency of each trial is shown:

Ωk(t) = Ak(t0)e
μ(t−t0) cos(νt+ ωk(t0)) (4.18)

where t0 is time, from which on frequency is supposed to be approximated by
equation (4.18), Ωk(t) is a frequency of the trial number k, Ak(to) is amplitude
of oscillations of frequencies of the trial k measured at time t0 and ωk(t0) is a
measured phase of frequency’s oscillation at time t0.

Having information about the behavior of the frequencies of every trial we
made surrogate averaged signal according to the formula

xrecon2 (t) =
1

N

N∑
k=1

cos(Ωk(t) + Ω2t+ ψk2(t0)) (4.19)

where the summation is taken over all N trials, Ω2 is the frequency of the stable
phase-locked state, ψk2(t0) is an initial phase of the kth trial of the second oscillator
measured at time t0.

We show signal xrecon
2 reconstructed according to the equations 4.18, 4.19

in comparison to the real averaged signal (see Fig.4.5(b),(c)). They are in an
agreement to each other. We observe that peaks in the averaged signals x2 and
xrecon

2 follow one another with period sometimes 4 sometimes 5 time units, which
are the nearest periods multiples of T1 and T2 close to T ≈ 4.4. When the coupling
K increases distribution of trials between the different stable phase-locked states
changes and one of the peaks in averaged signals becomes more prominent. In
such a way staircases attain ”jumps” near 4-5 time units as K grows.

We described how the stimulation disturbs own dynamics of the system and
modulates oscillations of each trial of the signals of the oscillators. The resulting
averaged signals have period of oscillations determined by a stability of the phase-
locked state. Averaged transmission time indices reflect these oscillatory processes
of the signals, but not directly a transmission time of the stimulus.



Chapter 5

Prospects

Beyond the scope of present work for this dissertation there are some aspects,
which deserve the interest of researchers and could be studied in the future.

Coming back to the dynamics of system (2.1), we see that all phase-locked
states are classified and belong to one of the swallow regions in the τ−K parame-
ter space. We derived the equation which defines swallow birth curves (see 2.2.2),
but did not solve it. It is possible to solve this equation and, in that way, to find
coordinates of some phase-locked states analytically. Moreover, we estimate the
stability range for the parameter K of the stable phase-locked states belonging
to the swallow birth curves for some pairs of (τ,K) parameters. Knowing the
coordinates of all stable phase-locked states on these curves it might be possible
to determine their stability ranges in K or τ parameters.

Besides the fixed points of the system (2.1) on the swallow birth curves there
are those fixed points, which originate in pitchfork bifurcations. It is an open
question whether their coordinates and stability ranges could be derived ana-
lytically. Answers to the questions above could probably give us a scaling law
accoding to which one ”swallow” is mapped onto the other.

We omitted in our work the stimulation of system (2.1) in regimes of the
coexistence of two stable limit cycles, the chaotic phase synchronization, etc.
These regimes might reveal some new and unknown aspects of the stimulation.

In the last chapter (chapter 4) we saw that the reset stimulus transmission
time index Tre converges gradually to the delay time τ in the system as coupling
strength K increases. In practice we often cannot change the coupling K in a
system. If we knew the law according to which convergence occurs then for a
given K and a measured Tre we would be able to estimate the delay time in
the system. Furthermore, it seems to be useful to test the proposed stimulus
transmission time index Tre on other different systems and discover whether a
convergence Tre → τ also takes place in them as soon K → ∞. This index may
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need to be modified or somehow generalized.

It would be of great interest to test our results in practice to try to verify our
model by choosing physiological values of parameters and comparing the outcome
of the models with raw data, obtained from experiments conducted on humans,
rats, etc.



Chapter 6

Conclusions

The thesis contains results of consideration of the two systems of two coupled
phase oscillators each. By means of these systems we modeled different aspects of
an oscillatory dynamics in nature. One of the most interesting field for application
of the theory discussed here is neurology. We supposed that each oscillator in
this case models the dynamics of a single neuronal population. These populations
interact via the coupling which includes a delayed self-feedback in the first system
and a delayed signal in the second system. We studied the dynamics of both
models to be able answer the question what kind of dynamical regime is present
in the systems for given to parameter values.

The question how the brain reacts on an external stimulation is for a neuro-
physiologist of a particular interest. Knowing this a researcher investigates brain
functioning. In our models we stimulated oscillators (both in the first system
and one in the second system) with a strong and sufficiently long stimulation.
As results (similar to real world systems) different transient responses to stimuli
were observed. A presence of a delay involved multistability phenomena in the
dynamics of the oscillators, which demonstrated a rich variety of responses. In
the following we discuss the main results for each system separately.

For the first system we presented a detailed study of stimulus-locked responses
of two coupled phase oscillators with delayed feedback. If compared to the stim-
ulation of coupled oscillators without delay [58], one finds that stimulated sys-
tem (2.1) in its turn demonstrates two-cluster response on the stimulation. We
observed two types of clustering of trials: in-stimulus clustering (during a stimu-
lus) and post-stimulus clustering (after the stimulus). By applying the stochastic
phase resetting approach [57, 58] and the bifurcation theory we explain the forma-
tion of in- and post-stimulus clustering of phase variables in stable phase-locked
states.

Thus for sufficiently strong stimulation, the in-stimulus clustering is com-
pletely determined by the form of the stimulation. In application to the brain
sciences it means that some stimulations may result in a clustering of registered
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evoked potentials, but in fact this clustering does not correspond to different
responses of the brain itself, but rather is an induced artifact.

However, the post-stimulus dynamics of the system is strongly related to the
global structure of the phase space of the initial system. We uncover the role of
the stable manifolds of saddles (which are very common in systems with delayed
variables) in the maximal post-stimulus transients and maximal post-stimulus
clustering.

Considering the stimulation phase shift θ as the main parameter, we deter-
mined the optimal value θmax which is responsible for the longest post-stimulus
transient and for the maximally pronounced post-stimulus clustering of the stimulus-
locked system responses.

Post-stimulus clustering of trials can give a key for a neurophysiologist, who
as a rule is occupied by a pattern recognition of evoked brain potentials. Our
explanation of the post-stimulus clustering mechanism can help to distinguish
two different stereotypical brain responses. Since θmax does not coincide with
a coordinate of an unstable state in the system (but is determined by it!) an
unexperienced researcher, which expects this equality to be true, would be dis-
appointed by his observation. The other meaning of θmax is very important in
practice and is that the stimulation with the optimal value of the parameter
θ provokes the longest transient response in time, which should be exploited in
DBS (deep brain stimulation) and similar techniques, which are supposed to keep
an effect of the stimulation during the possibly longest time between successive
stimuli.

We also studied the impact of the stimulation on the periodically modulated
synchronized regime supported by a stable limit cycle. We showed that the stereo-
typical stimulus-locked system responses exhibit periodic oscillations established
and preserved after stimulus offset. In addition, the system responses to the stim-
ulation demonstrate an persistent spreading of trajectories within the clusters,
which is connected to the properties of the limit cycle.

We illustrated the stimulus-induced switching between coexisting stable syn-
chronized states and also between coexisting stable synchronized and desynchro-
nized states. The multistability is a generic phenomenon in complex systems
and systems with delayed variables and, thus, is expected to be a common in
the nature. We showed that the stimulation can induce frequency change in a
phase-locked synchronized regime. The stimulation can also completely change
the long-term system dynamics from synchronized to desynchronized due to the
stimulation at the coexistence of corresponding stable regimes.

Surprisingly, we found that stimulation can induce a frequency change in the
multistability regime of stable phase-locked states. Stimulation can also completely
change the long-term system dynamics from synchronized to desynchronized when
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the corresponding stable states coexist in the system.

This property of the stimulation could be of great importance in medical ap-
plication, where stimulation, for instance, can bring system from a pathologically
synchronous state to a normal, desynchronized state. This study contributes to a
better understanding and correct interpretations of the observed stimulus-locked
responses widely used in experimental studies of complex neuronal systems.

In the second system, we examined the transmission of a stimulus from one
stimulated oscillator to the other non-stimulated oscillator. Three different trans-
mission time indices were used in the investigations: two averaged transmission
time indices and the resetting transmission time index. This investigations are
in a tight connection to practice, namely to the brain chronometry, the signal
propagation and the signal processing investigations. Let a neurologist stimulate
some brain areas and register afterwards an increased activity in other areas.
How to verify if these splashes of activity are occasional or related? For this one
needs a tool which surely detects transmission of a stimulus over neurons.

We studied how transmission time indices were changing in a transition of the
coupling K from 0 to +∞. The first two of them, averaged transmission time
indexes, behaved irregularly as the coupling parameter K increases, their values
formed the staircases which either led up or down with an increase of K. In
contrast, the resetting transmission time index gradually changed with a smooth
change of K and finally converged to the delay time τ in the system. We proved
that averaged transmission time indices did not reflect the delay in communica-
tion in the system, but rather wer determined by the oscillatory dynamics of the
averaged signals.

Unlike the averaged transmission time indices, the resetting transmission time
index tre reflects changes in the distribution of trials, and when a reset of the first
oscillator is transmitted to the second oscillator it is detected by tre.

Such a powerful tool as the resetting transmission time index should be tested
and verified on the other oscillatory systems. Also an algorithm how to estimate
the delay time τ using tre could be developed. These can help to estimate latency
times in the brain and, thus, to gain a new information about true parameter
values in the dynamics of the neurons.

The two systems considered are complementary with respect to the role of the
delay in the dynamics: each oscillator can obtain either a delayed signal from a
neighbouring oscillator or a delayed self-feedback signal. We can therefore utilize
them as basic elements and construct more realistic and viable models, using the
benefits of delayed loops of both types.



Appendix A

Stimulus locking indexes

To quantify the extent of stimulus locking of the variables ψ1,2 and ϕ1,2 of sys-
tem (2.1), (2.2), following Ref. [58] we consider time-dependent stimulus locking
indices

λν(x(t)) =

∣∣∣∣∣ 1

N

N∑
k=1

eiνx
(k)(t)

∣∣∣∣∣ . (A.1)

The time t here is the relative time within the stimulation windows considered
around each stimulus. The averaging is performed over N stimulation trials, i.e.,
k is the stimulus number. The variable x(t) in Eq. (A.1) is one of ψ1, ψ2, ϕ1,
or ϕ2 and x(k)(t) indicates the corresponding variable in the stimulation window
around the kth stimulus. Integer ν is the order of indices corresponding to the νth
Fourier mode of the phase distributions over trials, which reflects an emergence
of a ν-cluster state of the stimulus-induced system responses.

Further, we define resetting indices:

ρj(t) = λ1(ψj(t)),
σj(t) = λ1(ϕj(t)), j = 1, 2,

(A.2)

and clustering indices

αj(t) = λ2(ψj(t)) − λ1(ψj(t)),
δj(t) = λ2(ϕj(t)) − λ1(ϕj(t)), j = 1, 2.

(A.3)

One can see that the resetting indices attain large values close to 1 if the distri-
bution of the corresponding variable of system (2.1), (2.2) over stimulation trials
exhibits a single sharp peak. On the other hand, for two peaks in the distribution
with distance between them close to π, the reseting indices will be small, whereas
the second order indices λ2 will be large. The clustering indices will thus be also
large indicating a two-cluster state of the distribution of the corresponding vari-
able. For the higher-order clustering states up to a uniform distribution of the
phases, both indices λ1 and λ2 are small and so are the resetting and clustering
indices.
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Stimulus Induced Desynchronization of Oscillators Coupled with Delay: 
Theory and Application to neurological Patients 

 
Valerii Krachkovskyi (v.krachkovskyi@fz-juelich.de) 

 
 In a proposed dissertation work author studies several systems of phase 
oscillators coupled with delay. Systems were written in a form of differential equations. 
These systems serve as models of certain aspects of neuronal dynamics in brain. They 
were subjects to an external stimulation. The stimulation is represented through 
additional term in equations. Possible dynamical regimes of the systems were 
investigated, using analytical methods, bifurcation theory and computer simulations; 
synchronization in the systems was one of main targets of research.   
 In the first system was considered two phase oscillators modeling the phase 
dynamics of two instantaneously interacting functional units, accompanied by a delayed 
feedback of each oscillator onto itself. This system is subject to external short-pulse 
stimulation and noise. The strong stimulus induces a phase reset of the oscillations 
followed by the transient dynamics leading towards multiple synchronized states. It is 
studied the stimulus-induced transient response of the oscillators in different 
synchronous regimes emerging in the considered system. It is shown that depending on 
the stimulation parameters used the response of the system to the stimulus may result 
in qualitatively different types of behavior ranging from cross-trial phase clustering to 
complete desynchronization. The mechanisms of in- and post-stimulus clustering of the 
system responses are explained. Author also emphasizes the role of the stable manifold 
of a saddle-focus fixed point on the cluster formation process.   
 The second model considered is a system of two phase oscillators modeling 
phase dynamics of two neuronal populations interacting with delay. The one of two 
oscillators is a subject to external short-pulse stimulation and both oscillators are 
subjects to noise. It is studied the response of the stimulated oscillator to the 
administered stimulation as well as a transmission of the stimulus to the second 
oscillator. Author proposes a novel technique for evaluation of the stimulus-induced 
responses and transmission time and compares it with established standard methods 
based on averaging procedures. It is shown that the standard techniques refer not to the 
transmission phenomenon itself but rather to oscillatory dynamics of the oscillators. In 
contrast, the suggested method based on the phase-resetting analysis is able to give a 
good estimate not only to stimulus transmission time but can estimate the delay time in 
the system. 
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Stimulus-induzierte Desynchronisation von gekoppelten Oszillatoren mit 
Zeitverzögerung: Theorie und Anwendung bei neurologischen Patienten  

 
Valerii Krachkovskyi (v.krachkovskyi@fz-juelich.de) 

 

 Der Verfasser untersucht in dieser Dissertation Systeme von Phasenoszillatoren, 
welche miteinander mit einer Zeitverzögerung gekoppelt sind. Die Systeme werden in Form von 
Differentialgleichungen beschrieben. Diese Systeme dienen als Modelle gewisser Aspekte der 
neuronalen Prozesse bei neurologischen Patienten (z.B. bei Parkinson Erkrankung). Sie werden 
mittels einer externen Stimulation kontrolliert, wobei die Stimulation durch einen zusätzlichen 
Glied in den Gleichungen repräsentiert wird. Mögliche dynamische Regime werden mit der Hilfe 
analytischer Methoden, z.B. der Bifurkationstheorie, und Computersimulationen untersucht; die 
Erforschung der Synchronisation ist eines der Hauptziele.   
 Im ersten Teil der Arbeit werden zwei Phasenoszillatoren betrachtet, die die 
Phasendynamik von zwei instantan interagierenden Funktionseinheiten mit zeitverzögerter 
Selbstkopplung modellieren. Dieses System wird mittels einer externen Kurzpuls-Stimulation 
beeinflusst. Der starke Reiz ruft einen Reset der Phasen hervor, gefolgt von weiteren 
Übergangsprozessen zu mehreren synchronen Zuständen. Die reizinduzierte, transiente Antwort 
der Dynamik der Oszillatoren in den verschiedenen synchronen Regimen wird untersucht. Es 
wird gezeigt, dass in Abhängigkeit von den Stimulationsparametern, die Reizantwort des Systems 
verschiedene Formen annehmen kann: von einer Klusterbildung der Reizantwort bis zur einer 
kompletten Desynchronisation. Die Mechanismen der Klusterbildung der Reizantwort während 
und nach der Stimulation werden erklärt. Die Rolle der stabilen Mannigfaltigkeit des Sattelpunkts 
in der Klusterbildung wird erläutert. Die stimulus-induzierte Umschaltung zwischen 
koexistierenden, stabilen, synchronen Zuständen und auch desynchronen Zuständen wird 
illustriert.   

Das zweite Modell, das betrachtet wird, ist ein System von zwei gekoppelten 
Oszillatoren, die die Phasendynamik von zwei interagierenden neuronalen Populationen mit einer 
Zeitverzögerung modellieren. Nur einer der Oszillatoren wird mittels einer externen 
Kurzpulse-Stimulation stimuliert und beide Oszillatoren werden von Rauschen beeinflusst. 
Untersucht werden die Reizantwort des stimulierten Oszillators und die Reiztransmission an den 
zweiten Oszillator (zwischen zwei beispielhaften Gehirnarealen). Der Autor schlägt die neue 
Technik für die Auswertung von stimulus-induzierten Antworten und der Transmissionszeit vor. 
Diese Technik wird mit den Standardmethoden, welche auf Mittelungsprozeduren basieren, 
verglichen. Es wird gezeigt, dass sich die Standardtechniken eher auf die oszillatorische Dynamik 
beziehen als auf Transmissionsphänomen. Im Gegensatz zur Standardtechnik ist die 
vorgeschlagene Methode nicht nur für die Ermittlung der Transmissionszeit sondern auch für die 
Ermittlung der Zeitverzögerung im System geeignet. 
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