Synthese von Perfluororganylsilber(I)-Verbindungen und deren Nutzung als oxidative Transmetallierungsreagenzien

INAUGURAL-DISSERTATION

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von

Said Aboulkacem

aus Tagadirt / Marokko

Berichterstatter:

Prof. Dr. D. Naumann

Prof. Dr. A. Klein

Tag der mündlichen Prüfung: 11. Dezember 2006

Danksagung

Die vorliegende Arbeit wurde in der Zeit von November 2002 bis September 2006 am Lehrstuhl II für Anorganische und Analytische Chemie der Universität zu Köln unter der Leitung von

Herrn Prof. Dr. D. Naumann

angefertigt, dem ich für die interessante Themenstellung, seine großzügige Unterstützung und die große Freiheit bei der Ausfertigung dieser Arbeit vielmals danke.

Mein ganz besonderer Dank gilt Herrn Dr. Wieland Tyrra für seine hervorragende Betreuung, die Aufnahme zahlreicher NMR-Spektren, seine immer vorhandene Hilfsbereitschaft und die Durchsicht dieser Arbeit.

Ebenso gilt mein Dank Herrn Prof. Dr. A. Klein für die Übernahme des Korreferates, Herrn Prof. Dr. B. Tieke für die Übernahme des Prüfungsvorsitzes, und Herrn K. Glinka für die Übernahme des Prüfungsbeisitzes.

Besonderer Dank gilt Herrn Dr. Ingo Pantenburg, der alle Einkristalluntersuchungen - vom Selektieren der Einkristalle bis zur Strukturlösung - durchgeführt hat.

Besonderer Dank gilt ebenfalls meinen Laborkolleginnen Frau S. Buslei und Frau Silke Kremer für die Ausführung einiger präparativer Arbeiten und die sehr angenehme Arbeitsatmosphäre.

Frau Daniela N. und Herrn Dr. Harald Scherer danke ich vielmals für die NMR-Messungen.

Herrn Dr. M. Schäfer aus dem Institut für Organische Chemie und Frau Astrid Baum danke ich für die Aufnahme der Massenspektren.

Ferner danke ich meinen Laborkollegen Alfred Kremer, Holger Weigand, Hendrik Fischer, Alex von Foullon und Harald Schmidt für die sehr freundliche Arbeitsatmosphäre, sowie allen Mitarbeitern des Institutes für Anorganische Chemie der Universität zu Köln, die zum Gelingen dieser Arbeit beigetragen haben und hier namentlich nicht erwähnt sind.

Für meine kleine und meine große Familie

Verzeichnis der verwendeten Abkürzungen

NMR-Spektroskopie:

Allgemein:

S	Singulett	RT	Raumtemperatur
d	Dublett	Kap.	Kapitel
t	Triplett	h	Stunde
q	Quartett	d	Tag
qi	Quintett	Lit.	Literaturstelle
sep	Septett	LM	Lösungsmittel
m	Multiplett	Lsg.	Lösung
br	breit	Gl.	Gleichung
δ	chemische Verschiebung	Tab.	Tabelle
J	Kopplungskonstante	Abb.	Abbildung
		EI	Elektronenstoß-Ionisation
		ESI	Elektrospray-Ionisation

Restgruppen und Substanzen:

Me	Methyl
Et	Ethyl
Ph	Phenyl
$R_{\rm f}$	Perfluorierter Organylrest
C ₅ F ₄ N	2,3,5,6-Tetrafluorpyridyl
D	Donor-Ligand
DMAP	4-Dimethylaminopyridin
DMF	Dimethylformamid
DMSO	Dimethylsulfoxid
PNP	Bis(triphenylphosphoranyliden)ammonium
dppe	1,2-Bis(diphenylphosphino)ethan
THF	Tetrahydrofuran
TMS	Tetramethysilan
Glyme	1,2-Dimethoxyethan
bipy	2,2-Bipyridin
TMTU	Tetramethylthioharnstoff ("Tetramethylthiourea")
Diox	Dioxan

Inhaltsverzeichnis

1	Einleitung und Aufgabenstellung	1
2	Diskussion der Ergebnisse	5
2.1	Darstellung neuer sowie bereits bekannter Perfluororganylsilber(I)-Verbindungen	5
2.1.1	Umsetzungen von Me ₃ SiC ₂ F ₅ mit AgF und die Kristallstruktur von [PNP][Ag(C ₂ F ₅) ₂]	5
2.1.2	Darstellung von 4-Tetrafluorpyridylsilber(I), AgC5F4N	9
2.1.3	Darstellung und Kristallstruktur von [PNP][Ag(C5F4N)2]	10
2.1.4	Versuch zur Darstellung von [PNP][Ag(C_6F_5) ₂]. Kristallstruktur von [PNP] ₂ [Ag ₂ Cl ₄]	13
2.1.5	Umsetzung von Me ₃ Si(C ₂ F ₃) mit AgF	15
2.2	Umsetzungen von Perfluoralkylsilber(I)-Verbindungen mit Zinn	17
2.2.1	Umsetzung von $Ag(C_2F_5)$ ·EtCN mit Sn	17
2.2.2	Umsetzung von AgC ₃ F ₇ ·EtCN mit Sn	20
2.2.3	Umsetzung von AgC ₄ F ₉ ·EtCN mit Sn	23
2.3	Umsetzungen von "AgSn(R_f) ₃ " mit Quecksilber ($R_f = C_2F_5$, n-C ₄ F ₉)	25
2.3.1	Umsetzung von "AgSn(C_2F_5) ₃ " mit Hg	25
2.3.2	Umsetzung von "AgSn(n-C ₄ F ₉) ₃ " mit Hg	27
2.4	Umsetzungen von AgC5F4N mit den Elementen der 12. Gruppe	28
2.4.1	Umsetzung von AgC ₅ F ₄ N mit Zink	28
2.4.2	Umsetzung von AgC ₅ F ₄ N mit Cadmium	29
2.4.3	Darstellung und Kristallstruktur von Hg(C5F4N)2	30
2.5	Umsetzungen von AgC5F4N mit Elementen der 13. Gruppe	33
2.5.1	Darstellung und Kristallstruktur von Ga(C5F4N)3·EtCN·H2O	33
2.5.2	Darstellung und Kristallstruktur von In(C5F4N)3·2EtCN	36
2.6	Umsetzungen von AgC5F4N mit Germanium, GeCl2·Diox, Zinn und Blei	39
2.6.1	Umsetzungen von AgC ₅ F ₄ N mit Ge bzw. mit GeCl ₂ ·Diox	39
2.6.2	Darstellung und Kristallstruktur von Sn(C5F4N)4	41
2.6.3	Umsetzung von AgC ₅ F ₄ N mit Pb	43
2.7	Umsetzungen von AgC5F4N mit Elementen der 15. Gruppe	44
2.7.1	Darstellung und Kristallstruktur von As(C5F4N)3	44
2.7.2	Umsetzung von AgC5F4N mit Antimon	47
2.7.3	Umsetzung von AgC ₅ F ₄ N mit Bismut	48
2.8	Umsetzungen von AgC5F4N mit Elementen der 16. Gruppe	49
2.8.1	Umsetzung von AgC ₅ F ₄ N mit Schwefel	49
2.8.2	Darstellung und Kristallstruktur von Se(C5F4N)2	5(

2.8.3	Darstellung und Kristallstruktur von $Te(C_5F_4N)_2$	54
2.8.4	Kristallstrukturen von Se(C ₅ F ₄ N)·DMSO und Te(C ₅ F ₄ N) ₂ ·DMSO	57
2.8.5	Kristallstruktur von Te(C_5F_4N) ₂ ·TMTU	60
3	Darstellung und Reinigung der Ausgangsverbindungen	62
4	Analyse- und Meßmethoden	65
5	Experimenteller Teil	67
5.1	Versuche zur Darstellung neuer sowie bereits bekannter Perfluororganylsilber(I)-	
	Verbindungen	67
5.1.1	Umsetzungen von $Me_3Si(C_2F_5)$ mit AgF in Propionitril und in Triethylamin	67
5.1.2	Darstellung und Kristallisation von [PNP][Ag(C ₂ F ₅) ₂]	69
5.1.3	Darstellung von 4-Tetrafluorpyridylsilber(I), AgC_5F_4N	70
5.1.4	Darstellung und Kristallisation von [PNP][Ag(C ₅ F ₄ N) ₂]	71
5.1.5	Versuch zur Darstellung von [PNP][Ag(C ₆ F ₅) ₂]	72
5.1.6	Umsetzung von Me ₃ Si(C ₂ F ₃) mit AgF	73
5.2	Umsetzungen von Perfluoralkylsilber(I)-Verbindungen mit Zinn	74
5.2.1	Umsetzung von AgC ₂ F ₅ ·EtCN mit Sn	74
5.2.2	Umsetzung von Ag(n-C ₃ F ₇)·EtCN mit Sn	76
5.2.3	Umsetzung von Ag(n-C ₄ F ₉)·EtCN mit Sn	77
5.3	Umsetzungen von "AgSn(R_f) ₃ " mit Quecksilber ($R_f = C_2F_5$, n-C ₄ F ₉)	79
5.3.1	Umsetzung von "AgSn(C_2F_5) ₃ " mit Hg	79
5.3.2	Umsetzung von "AgSn(n-C ₄ F ₉) ₃ " mit Hg	80
5.4	Umsetzungen von AgC5F4N mit den Elementen der 12. Gruppe	81
5.4.1	Umsetzung von AgC ₅ F ₄ N mit Zink	81
5.4.2	Umsetzung von AgC ₅ F ₄ N mit Cadmium	82
5.4.3	Darstellung (neue) von $Hg(C_5F_4N)_2$	82
5.5	Umsetzungen von AgC5F4N mit Elementen der 13. Gruppe	84
5.5.1	Umsetzung von AgC ₅ F ₄ N mit Gallium	84
5.5.2	Darstellung von In(C ₅ F ₄ N) ₃ ·2EtCN	85
5.6	Umsetzungen von AgC5F4N mit GeCl2·Diox, Sn und Pb	86
5.6.1	Umsetzungen von AgC ₅ F ₄ N mit GeCl ₂ ·Diox	86
5.6.2	Darstellung von $Sn(C_5F_4N)_4$	87
5.6.3	Umsetzung von AgC ₅ F ₄ N mit Pb	89
5.7	Umsetzungen von AgC ₅ F ₄ N mit Elementen der 15. Gruppe	90
5.7.1	Darstellung von $As(C_5F_4N)_3$	90
5.7.2	Umsetzung von AgC ₅ F ₄ N mit Antimon	91

5.7.3	Umsetzung von AgC ₅ F ₄ N mit Bismut	92
5.8	Umsetzungen von AgC_5F_4N mit Elementen der 16. Gruppe	93
5.8.1	Umsetzung von AgC ₅ F ₄ N mit Schwefel	93
5.8.2	Darstellung von $Se(C_5F_4N)_2$	94
5.8.3	Darstellung von $Te(C_5F_4N)_2$	95
5.8.4	Kristallisation von $Te(C_5F_4N)_2$ ·DMSO und $Se(C_5F_4N)_2$ ·DMSO	97
5.8.5	Kristallisation von Te(C_5F_4N) ₂ ·TMTU	97
6	Zusammenfassung und Ausblick	98
7	Literaturverzeichnis	107
Anha	ng	112

1 Einleitung und Aufgabenstellung

1948 publizierten H. J. Emeléus et al. mit Trifluoriodmethan, CF_3I , und ein Jahr später mit Bis(trifluormethyl)quecksilber, $Hg(CF_3)_2$, die ersten Perfluororganylelement-Verbindungen [1, 2]. Seit dieser Zeit hat sich die Chemie teil- und perfluorierter Organylelement-Verbindungen rasant entwickelt, und bis heute ist eine Vielzahl von Perfluororganylelement-Verbindungen bekannt, von denen einige als Perfluororganylgruppenüberträger auf andere Elemente oder organische Verbindungen Verwendung finden [3-5].

Durch die Einführung von teil- oder perfluorierten organischen Gruppen entstehen Stoffe mit zum Teil ungewöhnlichen physikalischen und chemischen Eigenschaften, die durch die elektronischen Eigenschaften der perfluorierten Gruppen hervorgerufen werden [6]. Beispielsweise wird die CF₃-Gruppe auf Grund ihrer hohen Gruppenelektronegativität zwischen 3,35 und 3,49 in der Pauling-Skala [7] häufig als Pseudohalogen eingestuft und deren induktiver Effekt mit dem des Br- bzw. Cl-Liganden verglichen, z. B. [8].

Als Perfluororganylgruppenüberträger haben sich insbesondere donorstabilisierte Bis(perfluororganyl)cadmium-Komplexe wie z. B. $Cd(CF_3)_2 D$ [9] oder $Cd(C_6F_5)_2 D$ [10], Bis(trifluormethyl)quecksilber, Hg(CF₃)₂ [11], das System Zn(CF₃)Br·D/Zn(CF₃)₂·D [12] und die Reagenzkombination CF₃Br/P(Et₂N)₃, bekannt als das Ruppert-Reagenz [13], bewährt. Bei den meisten der entsprechenden Perfluororganylgruppenübertragungen handelt es sich um polare Austauschreaktionen zwischen dem Perfluororganylgruppenüberträger und Elementhalogeniden EX_n, für die D. Naumann et al. 1991 am Beispiel von Cd(CF₃)₂·D ein Modell zur polaren Trifluormethylierung im Sinne des Pearsonschen HSAB-Konzeptes postulierten [14]. Die Nachteile dieser "klassischen" Synthesemethoden liegen einerseits in der Toxizität (Cd(CF₃)₂·D, Hg(CF₃)₂) und andererseits in der präparativ aufwendigen Handhabung der verwendeten Reagenzien.

Als häufig genutzte Perfluororganylgruppenüberträger gelten seit Beginn der 90er Jahre Trimethyl(perfluororganyl)silane, Me_3SiR_f , die erstmals von I. Ruppert et al. 1984 am Beispiel des Me_3SiCF_3 [13] dargestellt und deren Reaktionsverhalten gegenüber funktionellen Gruppen später von G. K. S. Prakash et al. und anderen Arbeitsgruppen in Fluoridioneninitiierten Reaktionen systematisch untersucht wurden, z. B. [5, 15, 16]. Im Jahr 1970 berichteten K. K. Sun und W. T. Miller erstmals über ausgezeichnete Pentafluorphenylsilber(I), Eigenschaften von AgC_6F_5 , als nukleophiles C_6F_{5} -Übertragungsreagenz auf Metallhalogenide (ZnI₂, CuCl, HgBr₂) und organische Halogenverbindungen (Me₃SiCl, MeI, PhI, PhCH₂I, MeCOCl) in Diethylether [17]. Weitere Beispiele, bei denen die Eignung von AgC₆F₅ als wirksamer C₆F₅-Überträger in polaren Austauschreaktionen demonstriert wird, sind die Darstellung von $Te(C_6F_5)_4$ aus AgC₆F₅ und TeCl₄ in Propionitril bei -78 °C [18] und die kürzlich publizierten Untersuchungen über die Reaktionen von AgC₆F₅ mit RCOCl (R = $4-NO_2C_6H_5$, $4-ClC_6H_5$, C_6F_5 , 2-Thiophen, CH=CHPh) [19].

Mitte der 90er Jahre untersuchten D. Naumann et al. polare Übertragungsreaktionen von langkettigen Perfluoralkylsilber(I)-Verbindungen am Beispiel von Pentafluorethylsilber(I) mit einer Reihe von Elementhalogeniden und Halogenverbindungen in DMF und Triethylamin [20, 21]. Dabei werden lediglich die durch das Gleichgewicht zwischen neutralen und ionischen Spezies (Gl. 1-1) freigesetzten Silberionen ausgefällt. Übertragungen gelangen dabei nur in DMF und nur mit Hg^{II}-Salzen, Cl₂, I₂ und ICl unter Bildung der entsprechenden Pentafluorethylelement-Verbindung, z. B. Gl. 1-2

$$\{AgC_2F_5\}_n \xrightarrow{\leftarrow} n AgC_2F_5 \xrightarrow{\leftarrow} n/2 Ag^+ + n/2 [Ag(C_2F_5)_2]^- Gl. 1-1$$

$$2 \operatorname{AgC}_2F_5 + \operatorname{HgCl}_2 \rightarrow 2 \operatorname{AgCl} + \operatorname{Hg}(\operatorname{C}_2F_5)_2$$
 Gl. 1-2

Sie zogen daraus den Schluss, dass der Einsatz von Perfluoralkylsilber(I)-Verbindungen als Perfluoralkylierungsreagenzien in polaren Austauschreaktionen keine allgemein anwendbare Synthesemethode für Perfluoroalkylelement-Verbindungen darstellt. Die nicht erfolgreichen C_2F_5 /Halogen-Austauschreaktionen sind offensichtlich auf die dort gewählten Reaktionsbedingungen und eingesetzten Elementhalogenverbindungen zurückzuführen (ungeeignete Lösungsmittel, relativ hartes Metallzentrum in EX_n). Vor allem die Reaktionsbedingungen sollten einen entscheidenden Einfluss auf die Lage des dynamischen Gleichgewichtes haben, in dem neben anderen die R_f -übertragende Silberspezies vorliegt.

W. Tyrra nutzte hingegen auf der Basis vorhergehender Untersuchungen [21, 22] die potentiellen oxidativen Eigenschaften von Perfluororganylsilber(I)-Verbindungen aus (+306 mV für AgC₆F₅ und +156 mV für [Ag(C₆F₅)₂]⁻), indem er AgCF₃- und AgC₆F₅- Lösungen aus dem entsprechenden Trimethyl(perfluororganyl)silan und Silber(I)fluorid in Propionitril herstellte und sie mit Elementen der Gruppen 12 bis 16 zu entsprechenden Trifluormethylelement- und Pentafluorphenylelement-Verbindungen umsetzte [23-26], z. B.:

AgF
$$\xrightarrow{Me_{3}Si(C_{6}F_{5})}{-Me_{3}SiF} \xrightarrow{AgC_{6}F_{5}} \xrightarrow{E} E(C_{6}F_{5})_{n}$$

$$E = Zn, Cd, Hg, Se und Te für n = 2$$

$$E = Ga, In, As, Sb und Bi für n = 3$$

$$E = Sn für n = 4$$
(Gl. 1-3)

Damit wurde ein neuer und - abgesehen von der präparativ aufwendigen Herstellung einiger Trimethyl(perfluororganyl)silane - sehr einfacher Syntheseweg sowohl für Perfluororganylsilber(I)- als auch für Perfluororganylelement-Verbindungen geebnet.

In Fortführung dieser Untersuchungen soll diese oxidative Perfluororganylierungsmethode auf weitere perfluorierte Liganden ausgeweitet werden, um neue Perfluororganylelement-Verbindungen zu synthetisieren und zu charakterisieren, und somit um zu überprüfen, ob sie im Gegensatz zu den oben erwähnten polaren Austauschreaktionen zwischen AgR_f und EX_n eine allgemein anwendbare oxidative Synthesemethode für Perfluororganylelement-Verbindungen darstellt.

Das Hauptaugenmerk bei der vorliegenden Arbeit wird sich auf die Darstellung und kristallographische Charakterisierung von neutralen Elementverbindungen mit dem 2,3,5,6-Tetrafluorpyridyl-Liganden, $E(C_5F_4N)_n$, richten. Diesem Liganden wird auf der Basis theoretischer Rechnungen eine höhere Gruppenelektronegativität als die des isolobalen C_6F_5 -Liganden zugeschrieben [27]. In diesem Zusammenhang ist es von Interesse, inwieweit die Substitution der C_6F_5 - gegen die C_5F_4N -Gruppe Einfluss auf die Bindungsverhältnisse und die Stabilität der entsprechenden neutralen Elementverbindungen, $E(C_5F_4N)_n$, ausübt.

Ein spezieller Teil dieser Arbeit wird sich mit Reaktionen von den langkettigen Perfluoralkylsilber(I)-Verbindungen AgC_2F_5 , $Ag(n-C_3F_7)$ und $Ag(n-C_4F_9)$ mit dem Element Zinn beschäftigen.

Auf Grund der Licht-, Luft- und Feuchtigkeitsempfindlichkeit der Perfluororganylsilber(I)-Verbindungen [28], aber vor allem auf Grund der Tatsache, dass sie in Lösung, ähnlich den Silberhalogeniden [29] in dem oben erwähnten, von vielen Faktoren abhängigen dynamischen Gleichgewicht (Temperatur, Lösungsmittel, Silberionenkonzentration) vorliegen [20, 21, 30], ist die Isolierung einer nicht salzartigen Perfluororganylsilber(I)-Verbindung als Feststoff und Strukturbestimmung nur in deren kristallographische wenigen Fällen gelungen (Ag(i-C₃F₇)·CH₃CN [30], $[AgC(CF_3)=CFCF_3]_4$ [31]. $AgC_{6}F_{5}(CH_{2}PPh_{3})$ [32], $Ag(C_6F_5)\cdot C_2H_5CN$ [25]). Daher wird auch in dieser Arbeit versucht, die ohnehin aus den entsprechenden Silanen und AgF sehr leicht zugänglichen und hier hauptsächlich als "in situ-Perfluororganylsilber(I)-Verbindungen Edukte" eingesetzten zu kristallisieren und röntgenographisch zu charakterisieren.

2 Diskussion der Ergebnisse

2.1 Darstellung neuer sowie bereits bekannter Perfluororganylsilber(I)-Verbindungen

In der Literatur werden bislang vier spezifische Reaktionstypen zur Darstellung von Perfluororganylsilber(I)-Verbindungen beschrieben. Ein zusammenfassender Überblick darüber findet sich in einem von W. Tyrra und D. Naumann 2004 veröffentlichten Übersichtsartikel [26]. Aufbauend auf der in der Einleitung bereits erwähnten, einfachsten Darstellungsmethode, die von dem entsprechenden Silan, Me₃SiR_f, und Silber(I)fluorid ausgeht [23-26], werden im Folgenden einige neue ($R_f = C_5F_4N$, C_2F_3), aber auch einige bereits bekannte Perfluororganylsilber(I)-Verbindungen ($R_f = C_2F_5$, C_6F_5) synthetisiert und zum Teil als stabile Bis(triphenylphosphoranyliden)ammonium-Argentate, [PNP][Ag(R_f)₂], isoliert und röntgenographisch untersucht.

$$Me_{3}SiR_{f} + AgF \rightarrow AgR_{f} + Me_{3}SiF$$

$$\{AgR_{f}\}_{n} \stackrel{\leftarrow}{\rightarrow} n AgR_{f} \stackrel{\leftarrow}{\rightarrow} n/2 Ag^{+} + n/2 [Ag(R_{f})_{2}]^{-}$$

$$Ag[Ag(R_{f})_{2}] + [PNP]C1 \rightarrow [PNP][Ag(R_{f})_{2}] + AgC1$$

2.1.1 Umsetzungen von Me₃Si(C₂F₅) mit AgF und die Kristallstruktur von [PNP][Ag(C₂F₅)₂]

Das System $Ag(C_2F_5)\cdot D/[Ag\cdot nD][Ag(C_2F_5)_2]$ (ganz allgemein: $AgR_f \cdot D/[Ag\cdot nD][Ag(R_f)_2]$, $R_f = CF_3$, C_2F_5 , $n-C_3F_7$, $i-C_3F_7$, $n-C_4F_9$, C_6F_5 ; D = DMF, NEt₃) und die damit verbundenen, dynamischen Austauschprozesse zwischen den verschiedenen Formen der Perfluoralkylsilber(I)-Verbindungen wurden bereits von D. Naumann et al. ¹⁹F- und ¹⁰⁹Ag-NMR-spektroskopisch eingehend in Lösung untersucht [20, 21]. Es wird daher im Folgenden lediglich auf einige Gemeinsamkeiten bzw. Besonderheiten eingegangen.

Bei der eigenen Darstellung von $Ag(C_2F_5)$ ·EtCN aus $Me_3SiC_2F_5$ und AgF in Propionitril werden nahezu die gleichen ¹⁹F-NMR-Ergebnisse wie in [20, 21] erhalten. Beispielsweise beträgt das relative Verhältnis von $[Ag(C_2F_5)_2]^-$ zu $Ag(C_2F_5)$ ·EtCN in Propionitril bei Raumtemperatur 2,3 : 1 und ist damit vergleichbar mit dem dort für das System $[Ag(C_2F_5)_2]^{-}/Ag(C_2F_5) \cdot DMF$ in DMF bei -30 °C gefundenen (2 : 1).

Eine nicht unwesentliche Nebenreaktion, die hier in Propionitril immer auftritt und in [20, 21] bei der Darstellung von AgC₂F₅·D aus Cd(C₂F₅)₂-Komplexen und AgNO₃ in DMF oder in Et₃N nicht beobachtet wurde, ist die Zersetzung der neutralen Ag-Spezies, AgC₂F₅·EtCN, zu einem CF₃-Derivat, das im ¹⁹F-NMR-Spektrum Resonanz bei δ (CF₃) = -73,6 (s) mit ¹J_{CF} \approx 290 Hz und ²J_{CF} \approx 36 Hz zeigt, und bei dem es sich um Silbertrifluoracetat, AgOCOCF₃, handeln könnte [33]:

$$CF_3CF_2Ag + H_2O \rightarrow CF_3COOAg + 2 HF$$

Dieser Abbau der C_2F_5 -Gruppe ist wahrscheinlich in erster Linie auf die Art des Lösungsmittels zurückzuführen, da er in eigenen Untersuchungen in Triethylamin nicht beobachtet wird. Es kann also vermutet werden, dass Propionitril im Vergleich zu DMF und $(C_2H_5)_3N$ die neutrale Silberverbindung nicht elektronisch genug stabilisiert und nicht sterisch wirkungsvoll gegen Angriffe durch O-Nukleophile (z. B. H₂O) abschirmt. Dies lässt sich mit den Donorzahlen (EtCN: 16, DMF: 24, $(C_2H_5)_3N$: 32) [34] sowie mit den unterschiedlichen Raumbeanspruchungen dieser drei Lösungsmitteln erklären.

Der Versuch, $Ag(C_2F_5)$ in Propionitril mit Triphenylphosphan zu komplexieren und somit als $Ag(C_2F_5)\cdot P(C_6H_5)_3$ zu isolieren, gelingt entgegen Literaturangaben [35] nicht und führt vielmehr zur Verstärkung der oben beschriebenen Zersetzung. Dies dürfte ebenfalls an dem gewählten Lösungsmittel oder an im Triphenylphosphan eventuell enthaltenden Verunreinigungen liegen. Weitere Versuche, einen elementaranalysierbaren Feststoff oder gar Einkristalle einer neutralen Verbindung aus dem Gleichgewichtssystem $Ag(C_2F_5)\cdot D/[Ag\cdot nD][Ag(C_2F_5)_2]$ zu isolieren, blieben erfolglos.

Wie aber in der Literatur bereits berichtet wurde, können derartige Gleichgewichte - bei denen auch das Vorliegen polymerer Aggregate angenommen wird - durch so genannte Strukturbrecher [30] oder durch geeignete, große und schwach koordinierende Kationen [23] auf die Seite des Argentates unter Umständen komplett verschoben und somit handhabbare und kristallisierbare Formen, [Kat][Ag(R_f)₂], isoliert werden.

Bei der Umsetzung von (AgF/Me₃SiC₂F₅) mit [PNP]Cl in einem molaren Verhältnis von ca. 2 : 1 in Propionitril konnte nach Trennung des ausgefallenen AgCl ein farbloser und teilweise einkristalliner Feststoff aus der Reaktionslösung erhalten werden. Das ¹⁹F-NMR-Spektrum dieses Feststoffes in DMF-d₇ zeigt neben den Signalen für das oben als AgOCOCF₃ postulierte Zersetzungsprodukt hauptsächlich vier Signale für zwei Pentafluorethylsilber(I)-Verbindungen (Tab. 2-1), von denen eine mit Hilfe einer Röntgenstrukturanalyse als $[PNP][Ag(C_2F_5)_2]$ identifiziert werden konnte (s. u.). Die Frage, ob es sich bei der zweiten C₂F₅-Verbindung um ein gemischtes Argentat ([PNP][Ag(C₂F₅)Cl]) oder, in Folge erneuter Gleichgewichtseinstellung beim Auflösen in DMF, um die neutrale Form $Ag(C_2F_5)$ handelt, kann auf Grund der vorliegenden ¹⁹F-NMR-Spektren nicht beantwortet werden. Auch der Vergleich eigener ¹⁹F-NMR-Daten mit denen aus der Literatur [20, 21] kann diese Frage nicht eindeutig klären, da die Reaktions- und Messbedingungen nicht identisch sind (hier: Umsetzungen ausschließlich in EtCN und ¹⁹F-NMR-Messungen in DMF-d₇ bei RT; dort: DMF als Lösungsmittel und ¹⁹F-NMR-Messungen in DMF-d₇ bei -30 °C). Gegen die Hypothese der neutralen Pentafluorethylsilber-Verbindung spricht jedoch das hier aus dem ¹⁹F-NMR-Spektrum berechnete relative Verhältnis von 1 zu weniger als 1, während Ag(C_2F_5) und $[Ag(C_2F_5)_2]^{-1}$ in stark polaren Lösungsmitteln wie DMF [20, 21] und EtCN in der Regel in einem Verhältnis von ca. 1 : 2 im Gleichgewicht vorliegen.

δ [ppm]	rel. Integ.	Kopplung [*] [Hz]	Zuordnung
-83,2 (-83,6)	0,96	$^{3}J_{AgF}\approx7$ (7)	$[Ag(CF_2C\underline{F}_3)_2]^-$
-83,5 (-83,7)	1,36	${}^{3}J_{AgF} = (8)$	AgCF ₂ C \underline{F}_3 ·D oder [Ag(CF ₂ C \underline{F}_3)Cl]
-106,7 (-108,2)	1 (1)	$^{2}J_{AgF} \approx 63 \ (62)$	$AgC\underline{F}_2CF_3$ ·D oder $[Ag(C\underline{F}_2CF_3)Cl]$
-111,5 (-111,8)	0,7 (2)	${}^{2}J_{AgF} \approx 47 \ (51)$	$[Ag(C\mathbf{F}_2CF_3)_2]^{-1}$

Tab. 2-1: ¹⁹F-NMR-Daten des kristallinen Feststoffes in DMF-d₇, gemessen bei RT

In runden Klammern sind die entsprechenden Literaturdaten für $AgC_2F_5/[Ag(C_2F_5)_2]^-$ gegenübergestellt [20, 21] (gemessen bei -30 °C in DMF-d₇ nach Fällung der "freien" Ag-Ionen mit RbI). * ⁿJ(¹⁰⁹Ag-¹⁹F)

Allerdings sei noch mal darauf verwiesen, dass diese Vergleiche - auf Grund der Temperatur-, Lösungsmittel- und Silberionenkonzentrationsabhängigkeit dieses Gleichgewichtes - nur bei sehr vergleichbaren Reaktions- und Messbedingungen zulässig sind.

Abb. 2-1: Molekülstruktur des Anions von [PNP][Ag(C₂F₅)₂]

Abb. 2-2: Projektion der Elementarzelle von [PNP][Ag(C₂F₅)₂] entlang [100]

Die Kristallstruktur von [PNP][Ag(C₂F₅)₂] (a = 1983,3(2) pm, b = 1160,0(2) pm, c = 1708,3(2) pm, β = 109,66(1)°, Z = 4) ist in der Raumgruppe P2₁/c (Nr. 14) gelöst worden. Das [PNP]-Kation zeigt keine strukturellen Besonderheiten. Die Anionen sind in einem für [PNP]-Salze typischen Kationen-Netzwerk ohne signifikante F-H-Wechselwirkungen eingelagert.

Wie aus Abbildung 2-1 ersichtlich ist und analog zu den bisher in der Literatur strukturell beschriebenen Perfluororganylsilber(I)-Verbindungen (s. Kap. 2.1.3, Tab. 2-2), sind die Ag-Atome, hier mit einem (C-Ag-C)-Bindungswinkel von 176,9°, nahezu linear von zwei perfluorierten Liganden koordiniert. Die Ag-C-Abstände liegen mit 212 und 213 pm ebenfalls in einem charakteristischen Bereich, woraus sich schließen lässt. dass die Elektronendichteverteilung an einem Silberatom in derartigen Perfluororganvlsilber(I)-Verbindung unabhängig von der Art der kovalent gebundenen perfluorierten Reste ist (ausgewählte interatomare Abstände und Bindungswinkel: s. Tabelle A1-2 im Anhang). Abweichungen in den C-F-Abstände (129-156 pm) können, obwohl die Messung bei 150 K erfolgte, auf die hohe thermische Beweglichkeit der elektronenreichen Fluoratome in den C₂F₅-Einheiten zurückgeführt werden. Dies schlägt sich in den nicht besonders guten R-Werten der Strukturverfeinerung nieder.

2.1.2 Darstellung von 4-Tetrafluorpyridylsilber(I), AgC₅F₄N

Bei der Reaktion von AgF mit (CH₃)₃Si(C₅F₄N) im molaren Verhältnis 1 : 1,05 werden im ¹⁹F-NMR-Spektrum der Propionitril-Lösung neben den Resonanzen für (CH₃)₃SiF (δ = -157,0 (m)), für das Hydrolyseprodukt C₅HF₄N (δ (F-2,6) = -92,7 (s, breit), δ (F-3,5) = -140,0 (m)) und für überschüssiges (CH₃)₃Si(C₅F₄N) (δ (F-2,6) = -94,7 (m), δ (F-3,5) = -130,8 (m)), die Signale für eine "einheitliche" Ag(C₅F₄N)-Verbindung bei δ (F-2,6) = -98,9 (m) und δ (F-3,5) = -114,1 (m) mit ¹J(¹³C-¹⁹F) = 228 Hz detektiert.

$$(CH_3)_3Si(C_5F_4N) + AgF \rightarrow Ag(C_5F_4N) + (CH_3)_3SiF$$

Im Gegensatz zu den Perfluoralkylsilber(I)-Verbindungen [20, 21, 30] und ähnlich AgC_6F_5 [21] oder "Ag(CF=CF₂)" (s. Kap. 2.1.5), wird hier weder eine Dublettierung der Signale durch eine Silber-Fluor-Kopplung noch das Auftreten einer weiteren Signalgruppe beobachtet. Offensichtlich erfolgen die Austauschprozesse ($2AgR_f \leftrightarrows Ag^+ + [Ag(R_f)_2]$) bei Perfluoraryl- und Perfluoralkenylsilber(I)-Verbindungen noch viel schneller auf der NMR-Zeitskala als bei den Perfluoralkylsilber(I)-Verbindungen.

Der aus der Reaktionslösung nach Entfernen aller flüchtigen Bestandteile im Vakuum (Me₃SiF, C₅HF₄N, EtCN) zurückbleibende, farblose, nicht kristalline und in Dichlormethan schlecht lösliche Feststoff ist im Gegensatz zu AgC₆F₅·EtCN [25] sehr licht-, luft- und

feuchtigkeitsempfindlich. Er verfärbt sich an der Luft rasch gelb, später schwarz. Dies ist nicht verständlich, wenn man bedenkt, dass die homologe C_6F_5 -Verbindung, Ag C_6F_5 ·EtCN, im Feststoff relativ stabil und in Propionitril sehr kristallisationsfreudig ist und, dass zwischen den beiden Aryl-Liganden, C_6F_5 und C_5F_4N , keine gravierenden Unterschiede in den elektronischen und sterischen Eigenschaften bestehen. Es ist nach zahlreichen, fehlgeschlagenen Kristallisationsversuchen zwar gelungen, Einkristalle davon aus einer gesättigten Propionitril-Lösung zu ziehen, deren röntgenographische Untersuchung blieb jedoch erfolglos.

Das ¹³C-NMR-Spektrum des Feststoffes in (CD_2Cl_2/CD_3CN^*) weist mit folgenden Resonanzen und ¹³C-¹⁹F-Kopplungen stark auf das Propionitril-Addukt, Ag(C₅F₄N)·EtCN, hin:

δ [ppm]	Aufspaltung	Kopplung [Hz]	Zuordnung
152,0	t	$^{2}J(^{13}C-^{19}F) = 76$	C-4
145,8	dm	$^{1}J(^{13}C-^{19}F) = 228$	C-3,5
142,5	dm	$^{1}J(^{13}C-^{19}F) = 247$	C-2,6
121,3	t		CH ₃ CH ₂ CN
10,7	tq		$CH_3 \underline{C}H_2 CN$
10,1	qt		$\underline{\mathbf{C}}$ H ₃ CH ₂ CN

Der Probe wurden einige Tropfen CD₃CN zugesetzt, da der Feststoff in CD₂Cl₂ schwerlöslich ist.

Das negative ESI-Massenspektrum von $Ag(C_5F_4N)$ in MeCN zeigt eindeutige Isotopenmuster für $[Ag_2(C_5F_4N)_3]^-$ (m/z: 665 (100 %)) und $[Ag(C_5F_4N)_2]^-$ (m/z: 407 (76 %)). Ein sehr schwacher Peak bei m/z: 924 (3 %) deutet auf das Ion $[Ag_3(C_5F_4N)_4]^-$ hin. Diese massenspektrometrischen Befunde weisen auf eine polymere Struktur bzw. auf komplexe Austauschprozesse in Lösung hin. Eine oligomere bzw. polymere Struktur im Festkörper wird durch die Kristallstrukturen von $[AgC_6F_5 \cdot EtCN]_n$ [25] und $[AgC(CF_3)=CFCF_3]_4$ [31] gestützt.

2.1.3 Darstellung und Kristallstruktur von [PNP][Ag(C₅F₄N)₂]

Wird eine Lösung von $Ag(C_5F_4N)$ ·EtCN in Propionitril unmittelbar nach deren Herstellung mit [PNP]Cl im molaren Verhältnis 2 : 1 umgesetzt, findet eine nahezu vollständige Umsalzung zu dem feuchtigkeits- und hydrolysestabilen Argentat [PNP][Ag(C_5F_4N)_2] statt (Ausbeute von ca. 96 %, bezogen auf AgF). Aus dieser hohen Ausbeute lässt sich für die Bildung des als Feststoff nicht isolierbaren "Ag (C_5F_4N) ·EtCN" auf einen quantitativen Umsatz schließen.

Die ¹⁹F-NMR-Resonanzen für [PNP][Ag(C₅F₄N)₂] in Propionitril (δ (F-2,6) = -99,4 (m), δ (F-3,5) = -114,8 (m) mit ¹J(¹³C-¹⁹F_{3,5}) = 230 Hz) sind gegenüber denen für (Ag(C₅F₄N)/Ag[Ag(C₅F₄N)₂]) im gleichen Lösungsmittel (δ (F-2,6) = -98,9 (m) und δ (F-3,5) = -114,1 (m) mit ¹J(¹³C-¹⁹F_{3,5}) = 228 Hz) lediglich um ca. 0,6 ppm zu hohem Feld verschoben, was die Vermutung nahe legt, dass 4-Tetrafluorpyridylsilber(I) in Propionitril primär in ionischer Form, Ag[Ag(C₅F₄N)₂], vorliegt.

Farblose Einkristalle von $[PNP][Ag(C_5F_4N)_2]$ wurden durch Umkristallisation aus $CH_2Cl_2/(C_2H_5)_2O$ und Lagerung über einige Tage bei -20 °C erhalten.

Abb. 2-3 : Molekülstruktur des Anions von [PNP][Ag(C₅F₄N)₂]

Die Kristallstruktur von [PNP][Ag(C₅F₄N)₂] (a = 983,0(1) pm, b = 1890,1(1) pm, c = 2403,8(2) pm, β = 114,24(1)°, Z = 4) ist in der Raumgruppe P2₁/c (Nr. 14) gelöst worden. Das [PNP]-Kation zeigt keine strukturellen Besonderheiten. Die Anionen sind auch hier in den Kanälen des für [PNP]-Salze typischen Kationengitter ohne signifikante F-H-Wechselwirkungen eingelagert.

Analog zu den anderen Perfluororganylsilber(I)-Verbindungen (s. Tab. 2-2) sind die Ag-Atome in dem $[Ag(C_5F_4N)_2]^-$ Anion nahezu linear von den beiden perfluorierten Pyridylringen koordiniert, was sich in dem Winkel C-Ag-C von 173° widerspiegelt (Abb. 2-3) Hierbei sind die beiden Aryl-Liganden in einem Torsionswinkel von ca. 83° zueinander angeordnet. Der interatomare Abstand Ag-C liegt mit 211 pm ebenfalls in einem für Perfluororganylsilber(I)-Verbindungen typischen Bereich (ausgewählte interatomare Abstände und Bindungswinkel: siehe Tabelle A2-2 im Anhang).

Das $[Ag(C_5F_4N)_2]^-$ Anion zeigt damit nahezu den gleichen strukturellen Aufbau wie in einer der beiden kristallographisch unabhängigen Einheiten des isovalenten Hg-Derivates, Hg(C_5F_4N)_2 (Kap. 2.4.3).

Verbindung	Ag-C [pm]	C-Ag-C [°]	Literatur
Ag(i-C ₃ F ₇)·MeCN	210		[30]
$[Rh(dppe)_2][Ag(i-C_3F_7)_2]$	201 / 219	170	[30]
AgC ₆ F ₅ (CH ₂ PPh ₃), triklin	210 / 214	178	[32]
AgC ₆ F ₅ (CH ₂ PPh ₃), monoklin	210 / 213	175	[32]
$[AgC(CF_3)=CFCF_3]_4$	210	167	[31]
Ag(C ₆ F ₅)·EtCN	213	180	[25]
[PNP][Ag(CF ₃)Cl]	207	177 (C-Ag-Cl)	[23]
$[PNP][Ag(C_2F_5)_2]$	212 / 213	177	[*]
$[PNP][Ag(C_5F_4N)_2]$	211	173	[*]

Tab. 2-2: Ausgewählte Bindungslängen und -winkel kristallographisch charakterisierter Perfluororganylsilber(I)-Verbindungen

[*] vorliegende Arbeit

2.1.4 Versuch zur Darstellung von [PNP][Ag(C₆F₅)₂]. Kristallstruktur von [PNP]₂[Ag₂Cl₄]

Obwohl Ag(C₆F₅) und einige Salze mit dem $[Ag(C_6F_5)_2]^-$ Anion seit 1970 bekannt sind [17, 22, 36], sind bisher keinerlei Hinweise auf die Struktur des $[Ag(C_6F_5)_2]^-$ Anions in der Literatur zu finden. Es konnten bislang nur die Kristallstrukturen der neutralen Verbindungen AgC₆F₅(CH₂PPh₃) [32] und Ag(C₆F₅)·EtCN [25] gelöst werden. Unter Berücksichtigung der erfolgreichen Kristallisation von [PNP][Ag(C₅F₄N)₂] (Kap. 2.1.3) wird hier in einer Testreaktion versucht, Einkristalle des homologen C₆F₅-Argentates zu erhalten und röntgenographisch zu untersuchen.

In einem analogen Versuch wie in Kapitel 2.1.3, diesmal aber mit (AgF/Me₃SiC₆F₅) und [PNP]Cl und in einem anderen molaren Verhältnis als dort (2 : 1,5 statt 2 : 1), entsteht nach einer Reaktionszeit von ca. 16 Stunden in Propionitril neben sehr geringen Mengen eines C₆F₅-Argentates (δ (F-2,6) = -106,4 (m), δ (F-4) = -161,2 (t), δ (F-3,5) = -162,5 (m)) hauptsächlich das Fluor-freie Argentat [PNP]₂[Ag₂Cl₄], dessen Struktur kristallographisch gelöst werden konnte (s. u.).

Auf Grund des Chloridionen-Überschusses und in Anlehnung an die Ergebnisse der analogen Reaktion von AgCF₃ mit [PNP]Cl [23, 24] könnte es sich bei dem C₆F₅-Argentat, außer dem erhofften [PNP][Ag(C₆F₅)₂], auch um das heteroleptische Argentat [PNP][Ag(C₆F₅)Cl] handeln. Das kovalent gebundene Silber(I) hat sich hier offensichtlich zum größten Teil aus dem System (AgC₆F₅/Ag[Ag(C₆F₅)₂]) abgelöst und mit dem gefällten Silberchlorid das stabilere Chloroargentat [PNP]₂[Ag₂Cl₄] gebildet:

$$3 \operatorname{AgC}_{6}F_{5} + 3 \operatorname{[PNP]Cl} \rightarrow \operatorname{[PNP]}[\operatorname{AgCl}_{2}] + \operatorname{[PNP]}[\operatorname{Ag}(\operatorname{C}_{6}F_{5})_{2}] + \operatorname{[PNP]}[\operatorname{Ag}(\operatorname{C}_{6}F_{5})\operatorname{Cl}] \quad (?)$$

Die Ursachen für diese unselektive Umsalzung zum [PNP][$Ag(C_6F_5)_2$] sind, abgesehen von der Gleichgewichtsproblematik der Silber(I)-Verbindungen [20, 30], auf die gewählten Reaktionsbedingungen zurückzuführen, nämlich auf den Überschuss an [PNP]Cl und auf die lange Reaktionszeit. Zudem war das eingesetzte Silan nicht von Wasser und anderen Verunreinigungen frei, was möglicherweise dazu führte, dass [PNP]Cl in einem noch größeren Überschuss vorgelegen haben könnte.

Abb. 2-4: Molekülstruktur des Anions von [PNP]₂[ClAg(µ-Cl)₂AgCl]

Die Kristallstruktur von $[PNP]_2[ClAg(\mu-Cl)_2AgCl]$ (a = 1954,0(1) pm, b = 1592,6(1) pm, c = 2016,0(1) pm, Z = 8) ist in der orthorhombischen Raumgruppe Pbca (Nr. 61) gelöst worden. Die Anionen sind in dem [PNP]-Kationennetzwerk ohne signifikante Anion-Kation-Wechselwirkungen eingelagert.

Wie Abbildung 2-4 zeigt, liegt das $[AgCl_2]^-Anion dimer vor; hierbei wird das Silberatom von zwei verbrückenden und einem terminalen Cl-Liganden verzerrt trigonal koordiniert. Die zwei Ag-Atome – mit einem interatomaren Ag···Ag-Abstand von 334,1 ppm - spannen mit den verbrückenden Cl-Liganden einen Rhombus auf, in dessen Zentrum sich ein Inversionszentrum befindet, wodurch die terminalen Cl-Liganden ineinander überführt werden können. Der terminale Ag-Cl-Bindungsabstand ist mit 241,7 pm kürzer als die Ag-Cl-Kanten des Parallelogramms (249,1 pm und 265,5 pm). Die Verzerrung des <math>[Ag_2Cl_2]^-$ Parallelogramms wird mit den inneren Bindungswinkel von 80,9° (Ag-Cl-Ag) und 99,1° (Cl-Ag-Cl) dokumentiert (ausgewählte interatomare Abstände und Bindungswinkel: s. Tabelle A1-3 im Anhang). Der strukturelle Aufbau des $[ClAg(\mu-Cl)_2AgCl]^{2-}$ -Anions ist mit denen in $[Kat]_2[ClAg(\mu-Cl)_2AgCl]$ vergleichbar (Kat: PPh4 [37], AsPh4 [38], Bi(4-Me_2NC_6H_4)4 [39]).

2.1.5 Umsetzung von Me₃Si(C₂F₃) mit AgF

Obwohl zahlreiche Trifluorvinylelement-Verbindungen [40] und Perfluororganylsilber(I)-Verbindungen [20-25, 30-32, 41] in der Literatur beschrieben und eingehend untersucht worden sind, ist Trifluorvinylsilber(I) bislang unbekannt. Das Cu-Homologe, <CuCF=CF₂>, ist hingegen bereits ¹⁹F-NMR-spektroskopisch charakterisiert und als sehr wirksames intermediäres Trifluorvinylierungsmittel beschrieben worden [42].

Bei der Umsetzung äquimolarer Mengen von AgF mit Me₃Si(CF=CF₂) in Propionitril wird im ¹⁹F-NMR-Spektrum der Reaktionslösung nach einer Reaktionszeit von ca. 2 Stunden bei Raumtemperatur die selektive Bildung einer AgC₂F₃-Spezies beobachtet.

$$Me_3Si(CF=CF_2) + AgF \rightarrow ,,Ag(CF=CF_2)'' + Me_3SiF$$

Nach vollständiger Vakuumdestillation aller flüchtigen Bestandteile (Me₃SiF, CHF=CF₂ und EtCN) bleibt ein weiß-gelblicher, in CD₂Cl₂, CDCl₃, THF-d₈ und CD₃CN schwerlöslicher Feststoff zurück.

In den ¹⁹F-NMR-Spektren dieses Rückstandes in EtCN, THF-d₈ bzw. CDCl₃ werden neben ganz schwachen Signalen für das Hydrolyseprodukt CHFCF₂ die in Tabelle 2-3 aufgeführten Resonanzen (Dubletts von Dubletts) mit den entsprechenden Fluor-Fluor-Kopplungen detektiert.

LM	$\delta (F^a / F^o / F^c)$ in ppm	$J_{ab} / J_{ac} / J_{bc}$ in Hz	
EtCN	-77,0 / -114,9 / -173,0	62 / 39 / 102	F ^c F ^a
THF-d ₈	-73,3 / -114,1 / -175,7	54 / 39 / 103	
CDCl ₃	-61,9 / -106,1 / -175,8	35 / 38 / 105	Ag ́F⁵

Tab. 2-3: ¹⁹F-NMR-Daten von "Ag(C_2F_3)" in verschiedenen Lösungsmitteln

Auffällig ist die signifikante Lösungsmittelabhängigkeit der ¹⁹F-NMR-Daten, insbesondere für das zum Silberatom trans-stehende Fluoratom. Beim Übergang von Chloroform zu Propionitril wird für F^a eine Hochfeldverschiebung von 15 ppm sowie eine Vergrößerung des Betrages der ²J(F^a-F^b)-Kopplungskonstanten um 27 Hz beobachtet. In Anlehnung an die für

Perfluoralkylsilber(I)-Verbindungen bekannte Lösungsmittelabhängigkeit des Gleichgewichtes (2 $AgC_{2n}F_{2n+1} \leftrightarrows Ag^+ + [Ag(C_{2n}F_{2n+1})_2]^-)$ [20, 30], liegt hier die Vermutung nahe, dass Trifluorvinylsilber(I) in unpolaren, nicht solvatisierenden Lösungsmitteln wie CHCl₃ ebenfalls in einer neutralen Form vorliegt, während in schwach bis sehr polaren Lösungsmitteln mit Donoreigenschaften die ionische Spezies $[Ag(C_2F_3)_2]^-$ überwiegt. Wie bei AgC_6F_5 [21] und AgC_5F_4N (Kap. 2.1.2) ist aber das sonst ¹⁹F-NMR-spektroskopisch stets beobachtete Gleichgewicht zwischen den verschiedenen Formen der Perfluoralkylsilber(I)-Verbindungen hier nicht detektierbar. ¹⁹F-NMR-Messungen bis -100 °C in THF-d₈ lassen zwar keine Silber-Fluor-Kopplungen erkennen, die Verbreiterung der Signale sowie das Auftreten neuer, sehr intensitätsschwacher und breiter Signale dicht neben den Hauptsignalen bei Messtemperaturen unterhalb von -70 °C können jedoch als Indizien für extrem schnelle Austauschprozesse ($2 AgC_2F_3 \leftrightarrows Ag^+ + [Ag(C_2F_3)_2]^-$) angesehen werden.

Des Weiteren zeigt das ¹H-NMR-Spektrum des stark getrockneten Rückstandes in CDCl₃ deutlich die Signale für EtCN, was auf ein Propionitril-Addukt hinweist, wie dies bei sämtlichen, bislang bekannten donorstabilisierten Perfluororganylsilber(I)-Verbindungen der Fall ist. Die entsprechenden ¹³C-Signale für EtCN werden jedoch im ¹³C-NMR-Spektrum in THF-d₈ nicht detektiert, was vielleicht auf die sehr geringe Löslichkeit dieser Verbindung in schwach polaren Lösungsmitteln zurückzuführen ist.

Das EI-Massenspektrum des Feststoffes weist mit den schwachen Peaks für $[Ag_4(C_2F_3)_4]^+$ (m/z: 756 (10 %)), $[Ag_4(C_2F_3)_3]^+$ (m/z: 675 (6 %)), $[Ag_3(C_2F_3)_3]^+$ (m/z: 567 (1 %)), $[Ag_3(C_2F_3)_2]^+$ (m/z: 485 (8 %)) und $[Ag_3(C_2F_3)]^+$ (m/z: 405 (2 %)) auf eine tetramere Struktur im Feststoff hin, wie sie bereits für die analogen, in der Literatur bislang kristallographisch beschriebenen Tetrameren $[AgC(CF_3)=CF(CF_3)]_4$ [31] und auch $[Cu(C_6F_5)]_4(\eta^2$ -Toluol) [43] gefunden wurde.

Es konnten zwar farblose Einkristalle aus Propionitril erhalten werden; eine kristallographische Untersuchung war auf Grund deren Empfindlichkeit jedoch nicht möglich.

Weitere Untersuchungen zur eindeutigen Identifizierung dieser Perfluorvinylsilber-Verbindung wurden im Rahmen dieser Arbeit nicht mehr durchgeführt, so dass zum jetzigen Zeitpunkt keine gesicherten Aussagen über ihre genaue Zusammensetzung gemacht werden können.

2.2 Umsetzungen von Perfluoralkylsilber(I)-Verbindungen mit Zinn $(R_f = C_2F_5, n-C_3F_7, n-C_4F_9)$

In der Perfluororganylzinn(IV)–Chemie sind nur wenige homoleptische Stannane, $Sn(CF_3)_4$ [44], $Sn(n-C_3F_7)_4$ [45], $Sn(C_6F_5)_4$ [46-49] und $Sn(C_2F_3)_4$ [50], bekannt. Daher sollten in einem Teil dieser Arbeit Versuche unternommen werden, z. B. die fehlenden Glieder $Sn(C_2F_5)_4$ und $Sn(n-C_4F_9)_4$ oxidativ aus den entsprechenden Perfluoralkylsilber(I)-Verbindungen, AgR_f, und Zinn zu synthetisieren und weitgehend zu charakterisieren.

 $4 \ AgR_f \ \ + \ \ Sn \ \ \rightarrow \ \ Sn(R_f)_4 \ \ + \ \ 4 \ Ag$

Wie aber im Folgenden beschrieben wird, reichen die Oxidationspotentiale der eingesetzten Perfluororganylsilber(I)-Verbindungen offensichtlich nicht aus, um Zinn unter schonenden Reaktionsbedingungen bis zur formalen Oxidationsstufe IV zu oxidieren. Die in den folgenden Kapiteln beschriebenen Reaktionen von AgR_f ($R_f = C_2F_5$, n- C_3F_7 , n- C_4F_9) mit Zinn und die daran anschließenden Folgereaktionen mit Quecksilber liefern unabhängig von dem Perfluoralkylrest C_nF_{2n+1} sehr vergleichbare Ergebnisse und werden daher nur für $R_f = C_2F_5$ ausführlich diskutiert. Die analoge Umsetzung mit der Perfluorarylsilber-Verbindung AgC₅F₄N wird in Kapitel 2.6.2 gesondert diskutiert.

2.2.1 Umsetzung von Ag(C₂F₅)·EtCN mit Zinn

Bei der Umsetzung von Ag(C₂F₅)·EtCN mit α-Zinn in einem molaren Verhältnis von ca. 4 : 1 werden im ¹⁹F-NMR-Spektrum der Propionitril-Lösung, neben den äußerst schwachen Signalen für das Hydrolyseprodukt CHF₂CF₃, hauptsächlich die Signale für eine neue Pentafluorethylzinn-Verbindung bei δ (CF₃) = -83 (s) mit ³J(¹⁹F- ¹¹⁹Sn) = 42 Hz und δ (CF₂) = -116,3 (s) mit ²J(¹⁹F- ¹¹⁹Sn) = 143 Hz detektiert. Bei den meisten Ansätzen werden allerdings dicht neben diesen Hauptsignalen oft zwei weitere, intensitätsschwache Signale für ein "zweites" C₂F₅-Zinnderivat beobachtet (δ (CF₃) = -82,1 (s) und δ (CF₂) = -116,7 (s) mit ²J(¹⁹F- ¹¹⁹Sn) = 121 Hz). Die Reaktion ist also nicht immer reproduzierbar und scheint von der eingesetzten Zinn-Menge und/oder von der Zinn-Modifikation abhängig zu sein. Abbildung 2-5 zeigt ein ¹⁹F-NMR-Spektrum des Produktes, das sich bei einem von zahlreichen Ansätzen nahezu und ausnahmsweise selektiv gebildet hat. Die Verbindung fällt als rotbraunes Öl an, ist nur in Lösung und unter Schutzgasatmosphäre handhabbar und ist somit und auch wegen des oben erwähnten "Nebenproduktes" für eine Elementaranalyse nicht geeignet.

Abb. 2-5: ¹⁹F-NMR-Spektrum von "AgSn(C₂F₅)₃" (CD₂Cl₂, RT)

Tetrakis(pentafluorethyl)zinn(IV), Sn(C₂F₅)₄, wird auf Grund der hier gefundenen (143 Hz in EtCN, 159-162 Hz in THF-d₈ und CD₂Cl₂) und für Sn(IV)-Verbindungen atypischen ${}^{2}J({}^{119}Sn-{}^{19}F)$ -Kopplungskonstanten ausgeschlossen. Diese beträgt bei dem in der Literatur beschriebenen homologen Sn(n-C₃F₇)₄ 387 Hz [45] und ist bei CF₃-substituierten Sn(IV)-Derivaten noch viel größer (über 540 Hz) [51]. N. Jahn beobachtete im Rahmen seiner Dissertation ein ähnliches Verhalten der ${}^{2}J({}^{119}Sn-{}^{19}F)$ -Kopplungskonstante beim Übergang von CF₃-substituierten Stannanen zu den entsprechenden Stannat(II)-Komplexen [Sn(CF₃)₃]⁻ (64 Hz) und [Ag(Sn(CF₃)₃)₂]⁻ (140 Hz) [52].

Die Tatsache, dass die ¹⁹F-NMR-Spektren auch bei Messungen bis -70 °C keine ²J-Fluor-Silber-Kopplungen mehr erkennen lassen, spricht, neben dem Auftreten von Zinn-Satelliten, eindeutig für die formale Insertion des Sn-Atoms in die Ag-C-Bindung der Pentafluorethylsilber-Verbindung. Offensichtlich bleibt die Oxidation des Zinns trotz längerer Reaktionszeiten und erhöhter Temperatur auf einer in Lösung relativ stabilen Sn(II)-Zwischenstufe stehen, die als donorstabilisiertes Tris(pentafluorethyl)stannylsilber, $AgSn(C_2F_5)_3$ ·EtCN, und/oder - auf Grund der Gleichgewichtseinstellung bei Silber(I)-Komplexen - als Silberbis[tris(pentafluorethyl)stannyl]argentat, $Ag[Ag(Sn(C_2F_5)_3)_2]$, postuliert werden kann:

$$3 \operatorname{Ag}(C_2F_5) + \operatorname{Sn} \longrightarrow \operatorname{AgSn}(C_2F_5)_3 + 2 \operatorname{Ag}$$
$$2 \operatorname{AgSn}(C_2F_5)_3 \longrightarrow \operatorname{Ag^+} + [(C_2F_5)_3\operatorname{SnAgSn}(C_2F_5)_3]$$

Auch die Temperaturabhängigkeit der ¹⁹F-NMR-Daten der CF₂-Gruppe (s. Tab. 2-4), die verbreiterten Sn-Satelliten in den ¹⁹F-NMR-Spektren und die komplexen Multipletts in den ¹¹⁹Sn-NMR-Spektren (z. B. Abb. 2-6) deuten auf dynamische Austauschprozesse zwischen neutralen und ionischen Ag-Spezies hin, die auch bei -70 °C nicht eingefroren werden können.

Tab. 2-4: Temperaturabhängige ¹⁹F-NMR-Daten der CF₂-Gruppe in "AgSn(C₂F₅)₃" (THF-d₈):

T [°C]	-70	-60	-50	-40	-30	-20	-10	0	10	23
$\delta(CF_2)$	-117,0	-116,8	-116,7	-116,6	-116,4	-116,3	-116,2	-116,0	-115,9	-115,8
$^{2}J_{SnF}[Hz]$	130	133	137	141	144	147	150	154	156	159

- 51.0-52.0-53.0-54.0-55.0-56.0-57.0-58.0-59.0-60.0-61.0-62.0-63.0-64.0 (ppm)

Abb. 2-6: ¹¹⁹Sn-NMR-Spektrum von "AgSn(C₂F₅)₃" (CD₂Cl₂, RT); δ = -57,5 ppm

Des Weiteren wird das Vorliegen in Lösung von Komplexionen wie $[Ag(Sn(C_2F_5)_3)_2]^-$ durch massenspektrometrische Untersuchungen unterstützt (neg. ESI). Diese zeigen unter anderen einen intensiven Peak bei m/z: 1097 (96 %) mit einem für eine C₂F₅-substituierte AgSn₂-Spezies sehr charakteristischen Isotopengatter ($[Ag(Sn(C_2F_5)_3)_2F_2]^-$?). Der Peak bei m/z: 1059 (74 %) entspricht zwar der Ionenmasse von $[Ag(Sn(C_2F_5)_3)_2]^-$, zeigt aber kein charakteristisches AgSn₂-Isotopengatter. Der intensivste Peak (m/z: 696 (100 %)) wird eindeutig dem Fragmention $[CF_3CO_2AgSn(C_2F_5)_3]^-$ zugeordnet. Eine derartige Zersetzung von Pentafluorethylelement-Derivaten zu einem Trifluormethylacetylderivat wurde bereits bei der Ausgangsverbindung $AgC_2F_5^{-19}F$ -NMR-spektroskopisch beobachtet (Kap. 2.1.1).

Das Fragmentierungsmuster im EI-Massenspektrum deutet seinerserseits mit den Peaks für $[Sn_2(C_2F_5)_5]^+$ (m/z: 832 (3 %)), $[Sn_2(C_2F_5)_4F]^+$ (m/z: 832 (6 %)) und für $[Sn_2(C_2F_5)_3F_2]^+$ (m/z: 632 (100 %)) auf eine Zersetzung im Massenspektrometer zum Distannan $Sn_2(C_2F_5)_6$ hin. Ähnliche Fragmentierungsmuster wurden in den EI-Massenspektren der homologen n-C₃F₇-, n-C₄F₉- und C₅F₄N-Derivaten beobachtet, was dazu Anlass gab, das thermische Verhalten dieser Verbindungen zu untersuchen. Hierfür wurden entsprechende Thermolysereaktionen mit dem C₃F₇-Derivaten (Kap. 2.2.2) bzw. mit dem C₅F₄N-Derivaten (Kap. 2.6.2) durchgeführt.

2.2.2 Umsetzung von Ag(n-C₃F₇)·EtCN mit Zinn

Die Umsetzung von Sn mit Ag(n-C₃F₇) in EtCN bei Raumtemperatur verläuft analog zu der mit dem homologen C₂F₅-Derivat (Kap. 2.2.1), was durch eine vergleichbare ${}^{2}J({}^{19}F-{}^{119}Sn)$ -Kopplungskonstante des dabei gebildeten Hauptproduktes gestützt wird (s. Tab. 2-5 in Kap. 2.2.3).

Im ¹⁹F-NMR-Spektrum der im Vakuum eingeengten Reaktionslösung (Abb. 2-7) zeigt das Hauptprodukt (ca. 70 %) Resonanz für die CF₃-Gruppe bei δ = -79,5 (t), für die (α -CF₂)-Gruppe bei δ = -113,6 (m) mit ²J(¹⁹F-¹¹⁹Sn) \approx 130 Hz und für die (β -CF₂)-Gruppe bei δ = -121,1 (m) mit ³J(¹⁹F-¹¹⁹Sn) \approx 110 Hz. Dass es sich dabei nicht um das bereits in der Literatur beschriebene Sn(n-C₃F₇)₄ [45] handelt, wird hier durch Vergleich der entsprechenden ²J(¹⁹F-¹¹⁹Sn)-Kopplungskonstanten eindeutig belegt (387 Hz.). Zudem ist die ³J(¹⁹F-¹¹⁹Sn)- Kopplungskonstante von ca. 110 Hz im Vergleich zu der für Sn(n-C₃F₇)₄ ungewöhnlich groß (15 Hz). Wie im vorherigen Kapitel argumentiert, kann auch hier als Produkt "AgSn(n-C₃F₇)₃" und/oder "Ag[Ag(Sn(n-C₃F₇)₃)₂]" postuliert werden.

Abb. 2-7: ¹⁹F-NMR-Spektrum von "AgSn(n-C₃F₇)₃/Ag[Ag(Sn(n-C₃F₇)₃)₂]"

Das EI-Massenspektrum zeigt im Wesentlichen den Peak für $[Sn_2(C_3F_7)_5]^+$ (m/z = 1082 (100 %)). Der äußerst schwache Peak bei m/z: 1284 (2 %) kann bis auf eine Abweichung von 0,2 % dem Distannan-Fragmention $[Sn_2(C_3F_7)_6]^+$ zugeordnet werden.

Um die hier vermutlich im Massenspektrometer stattgefundene Zersetzung von "AgSn(n-C₃F₇)₃" zum Distannan Sn₂(n-C₃F₇)₆ zu überprüfen, wird das Reaktionsprodukt aus Ag(n-C₃F₇) und Sn in einer Sublimationsapparatur einer Thermolyse bei ca. 140 °C im Vakuum unterzogen. Das dabei an dem Sublimationsfinger niedergeschlagene "Sublimat" (rotbraunes Öl) zeigt im ¹⁹F-NMR-Spektrum in CD₃CN drei Signale für eine neue C₃F₇-Zinnverbindung. Die entsprechenden Resonanzen sind denen der Ausgangsverbindung zwar ähnlich, die ²J(¹⁹F-¹¹⁹Sn)-Kopplungskonstante deutet jedoch mit 474 Hz (vgl. ca. 130 Hz für die Ausgangsverbindung bzw. 387 Hz für Sn(n-C₃F₇)₄) auf eine völlig andere C₃F₇-²J(F-Sn)-Kopplungskonstante Zinnverbindung hin. Eine vergleichbare $(^{2}J(^{19}F^{-119/117}Sn) = 511/487$ Hz) wurde bereits für das symmetrische CF₃-Distannan, Sn₂(CF₃)₆, gefunden [52]. Einen weiteren, jedoch schwachen Hinweis darauf, dass es sich bei diesem Thermolyseprodukt um das analoge C₃F₇-Distannan, Sn₂(n-C₃F₇)₆, handeln könnte, liefert das in Abbildung 2-8 dargestellte zweidimensionale ¹¹⁹Sn/¹⁹F-NMR-Spektrum. Es zeigt zwei Korrelationspeaks bei $\delta(^{119}\text{Sn}) = -545 \pm 1$ ppm mit Satelliten in einem Abstand von 1340 ± 100 Hz, welcher einer ${}^{1}J({}^{119}Sn{}^{-117}Sn)$ -Kopplung in dem Isotopomer $(C_{3}F_{7})_{3}{}^{117}Sn{}^{119}Sn(C_{3}F_{7})_{3}$ zugeschrieben werden kann.

Abb. 2-8: ¹¹⁹Sn/¹⁹F-korreliertes NMR-Spektrum von (CF₃CF₂C<u>F</u>₂)₃Sn-Sn(C<u>F</u>₂CF₂CF₃)₃

Im EI-Massenspektrum des Thermolyseproduktes wird der bereits im Massenspektrum der Ausgangsverbindung ("AgSn(n-C₃F₇)₃") detektierte Peak für $[Sn_2(C_3F_7)_5]^+$ wieder beobachtet, jedoch nur mit einer geringen relativen Intensität (< 2 %). Intensive Peaks zeigen die für $[(C_3F_7)_2SnF]^+$ (42 %), $[SnF]^+$ (68 %), $[C_3F_7]^+$ (100 %) und $[C_3F_6]^+$ (36 %).

2.2.3 Umsetzung von Ag(n-C₄F₉)·EtCN mit Zinn

Analog zu den in den vorherigen zwei Kapiteln beschriebenen Reaktionen, verläuft die entsprechende Umsetzung von Ag(n-C₄F₉) mit Sn nahezu selektiv unter Bildung einer Verbindung von offensichtlich ähnlichem Typ, "AgSn(C₄F₉)₃/Ag[Ag(Sn(C₄F₉)₃)₂]", was durch vergleichbare ${}^{2}J({}^{19}F-{}^{119}Sn)$ - und ${}^{3}J({}^{19}F-{}^{119}Sn)$ -Kopplungskonstanten sowie ${}^{119}Sn$ -NMR-Resonanzen belegt wird (s. Tab. 2-5). Auch hier fällt das Reaktionsprodukt als rotbraune, viskose und nur in Lösung und unter Schutzgasatmosphäre handhabbare Flüssigkeit an. Das Produkt ist in Propionitril weitgehend thermisch stabil (bis ca. 100 °C).

Im ¹⁹F-NMR-Spektrum der im Vakuum stark eingeengten Propionitril-Reaktionslösung (Abb. 2-9) zeigt das Produkt Resonanz für die CF₃-Gruppe bei δ = -81,3 (m), für die (α -CF₂)-Gruppe bei δ = -113,1 (s) mit ²J(¹⁹F- ¹¹⁹Sn) = 130 Hz, für die (β -CF₂)-Gruppe bei δ = -125,8 (t).

Abb. 2-9: ¹⁹F-NMR-Spektrum von "AgSn(n-C₄F₉)₃"

Im neg. ESI-Massenspektrum einer hoch verdünnten Acetonitril-Lösung konnte ein Peak bei m/z: 777 (12 %) detektiert und dessen Zuordnung zu dem Stannat(II)-Fragment $[Sn(C_4F_9)_3]^-$ im Vergleich mit einem berechneten Isotoppengatter bestätigt werden. Als intensivster Peak wird derjenige bei m/z: 545 (100 %) dem $[Ag(C_4F_9)_2]^-$ Anion eindeutig zugeordnet.

Der Peak für das $Sn(C_4F_9)_3$ -Fragment wird ebenfalls im entsprechenden EI-Massenspektrum detektiert ($[Sn(C_4F_9)_3]^+$, m/z: 777 (8 %)).

Das entsprechende ¹¹⁹Sn-NMR-Spektrum in CD₃CN (s. Abb. 2-10) zeigt ein hoch aufgespaltetes, komplexes Multiplett bei -35,3 ppm mit der bereits aus dem ¹⁹F-NMR-Spektrum entnommenen ${}^{2}J({}^{19}F-{}^{119}Sn)$ -Kopplungskonstanten von 130 Hz.

Abb. 2-10: ¹¹⁹Sn-NMR-Spektrum von "AgSn(n-C₄F₉)₃"

Es sei darauf verwiesen, dass diese ¹¹⁹Sn-NMR-Spektren auf Grund der hier vermuteten Austauschprozesse und der zahlreichen magnetisch inäquivalenten F-Atome in der C₄F₉– Kette (ähnliches gilt für R_f = C₂F₅) nicht überinterpretiert werden dürfen. Dafür sind ganz spezielle ¹¹⁹Sn-NMR-Untersuchungen nötig. Eine homoleptische Sn(IV)-Verbindung ist aus den in Kap. 2.2.1 und Kap. 2.2.2 genannten Gründen und wegen der hier gefundenen ¹¹⁹Sn-NMR-Verschiebung auszuschließen. Die literaturbekannten δ (¹¹⁹Sn)-Werte für homoleptische Sn(IV)-Verbindungen liegen je nach Lösungsmittel zwischen -500 und -200 ppm (Sn(n-C₃F₇)₄ [45], Sn(CF₃)₄ [51], Sn(C₆F₅)₄ [53]).

Tab. 2-5: Zusammenstellung der ¹⁹F- und ¹¹⁹Sn-NMR-Daten für das jeweilige Reaktionsprodukt aus AgR_f ($R_f = C_2F_5$, n-C₃F₇, n-C₄F₉) und Sn - gemessen in EtCN bei RT

Produkt	CF ₃	α -CF ₂	β-CF ₂	γ -CF ₂	$\delta(^{119}\text{Sn})$
$,,AgSn(C_2F_5)_3``$	δ = -83,0	$\delta = -116,3$			-57,5 ^a
	$^{3}J_{SnF} \approx 42 \text{ Hz}$	$^{2}J_{SnF} \approx 143 \text{ Hz}$			
"AgSn(n-C ₃ F ₇) ₃ "	δ = -79,5	δ = -113,6	δ = -121,1		
		$^{2}J_{SnF} \approx 130 \text{ Hz}$	$^{3}J_{SnF} \approx 110 \text{ Hz}$		
"AgSn(n-C ₄ F ₉) ₃ "	δ = -81,4	$\delta = -113, 1$	δ = -117,2	δ = -125,9	-35,3 ^b -47,0 ^c
		$^{2}J_{SnF} \approx 130 \text{ Hz}$	${}^{3}J_{SnF} \approx 117 \text{ Hz}$		

^a in CD₂Cl₂. ^b in CD₃CN. ^c in C₆D₆

2.3 Umsetzungen von "AgSn(R_f)₃" mit Hg ($R_f = C_2F_5$, n-C₄F₉)

2.3.1 Umsetzung von "AgSn(C₂F₅)₃" mit Quecksilber

Wenn es sich bei dem Reaktionsprodukt aus AgC_2F_5 und Sn tatsächlich um einen Silber(I)-Komplex handelt, dann müsste dieser über einen Rest an Oxidationsvermögen, zumindest gegenüber leicht oxidierbaren Elementen, noch verfügen. Dies und der Wunsch, eine formale Sn^{II}(C₂F₅)₃-Einheit in dem oben schwer zu charakterisierenden und als "AgSn(C₂F₅)₃/Ag[Ag(Sn(C₂F₅)₃)₂]" postulierten System nachzuweisen, gaben Anlass, Folgereaktionen mit dem erfahrungsgemäß ([23-25] bzw. Kap. 2.4.3) durch Ag^IR_f-Verbindungen leicht oxidierbaren Quecksilber zu untersuchen.

Hierbei scheidet sich kurz nach der Hg-Zugabe ein grauschwarzer Feststoff aus (Ag), welcher aus der Reaktionsmischung durch Amalgambildung mit überschüssigem Hg so gebunden wird, dass sich die rotbraune Reaktionslösung leicht abtrennen lässt. Die ¹⁹F-, ¹⁹⁹Hg{¹⁹F}und ¹¹⁹Sn{¹⁹F}-NMR-Spektren des öligen Reaktionsproduktes belegen das vollständige Abreagieren der Pentafluorethylstannylsilber(I)-Verbindung und die Bildung des erwarteten Bis[tris(perfluorethyl)stannyl]quecksilbers, Hg[Sn(C₂F₅)₃]₂, als Hauptprodukt. Als Nebenprodukt (ca. 30 %) entsteht dabei ein weiteres HgSn(C₂F₅)-Derivat, welches nicht näher identifiziert werden konnte. Die Zuordnung der NMR-Signale für Hg[Sn(C_2F_5)₃]₂ wurde mit Hilfe berechneter NMR-Spektren (Abb. 2-11 und 2-12) sowie durch Vergleich mit dem NMR-Datensatz für Hg[Sn(CF_3)₃]₂ [52] unterstützt. Somit wird die oben postulierte Zusammensetzung für das Reaktionsprodukt aus AgC₂F₅ und Sn, "AgSn(C_2F_5)₃", gestützt:

 $,,AgSn(C_2F_5)_3" + Hg \rightarrow Ag + (C_2F_5)_3SnHgSn(C_2F_5)_3 + ?$

Abb. 2-11: Experimentelles (oben) und berechnetes (unten) 19 F-NMR-Spektrum von Hg[Sn(C \underline{F}_2 CF₃)₃]₂

Tab. 2-6: NMI	R-Daten von	Hg(Sn($C_{2}F_{5}(x_{3})_{2}$	(CD_3CN_1)	RT)

Kern	δ	Kopplung [Hz]	Zuordnung
¹⁹ F	-82,5		$Hg[Sn(CF_2CF_3)_3]_2$
	-110,5	2 J(19 F- $^{119/117}$ Sn) $\approx 236/233$	$Hg[Sn(CF_2CF_3)_3]_2$
		${}^{4}J({}^{19}F-{}^{119}Sn) = 39$	
		$^{3}J(^{19}F^{-199}Hg) = 121$	
¹¹⁹ Sn	72,1	$^{1}J(^{119}Sn-^{199}Hg) = 29435$	$Hg[Sn(CF_2CF_3)_3]_2$
		$^{2}J(^{119}Sn-^{117}Sn) = 10515$	
¹⁹⁹ Hg	-743,6	1 J(199 Hg- $^{119/117}$ Sn) $\approx 29391/28186^{*}$	$Hg[Sn(CF_2CF_3)_3]_2$

^{*} Das durch den Quotienten der gyromagnetischen Konstanten (γ (¹¹⁹Sn) / γ (¹¹⁷Sn) = 1,0465) gegebene Verhältnis der Kopplungskonstanten J(¹¹⁹SnE) / J(¹¹⁷SnE) wird hier nahezu erfüllt (¹J(¹¹⁹SnHg) / ¹J(¹¹⁷SnHg) \approx 1,0427) und unterstützt damit die Zuordnung.

Abb. 2-12: Experimentelles (oben) und berechnetes (unten) 119 Sn{ 19 F}-NMR-Spektrum von Hg[Sn(CF₂CF₃)₃]₂ (s. dazu Tab.2-6)

2.3.2 Umsetzung von "AgSn(n-C₄F₉)₃" mit Quecksilber

Wie bei der Reaktion mit dem homologen C_2F_5 -Derivat (Kap. 2.3.1) liefert auch hier das oxidative Verhalten des Reaktionsproduktes aus Ag(n-C₄F₉) und Sn gegenüber Hg einen weiteren Hinweis dafür, dass es sich bei dieser Verbindungsklasse um Silber-Komplexe des Typs "AgSn(R_f)₃" oder "Ag[Ag(Sn(R_f)₃)₂]" handelt:

 $,,Ag(Sn(C_4F_9)_3)^{\prime\prime} + Hg \rightarrow (C_4F_9)_3SnHgSn(C_4F_9)_3 + Ag + ?$

 $Hg(Sn(C_4F_9)_3)_2$ fällt, ähnlich dem homologen C_2F_5 -Derivat, als rotbraunes Öl an. Es ist jedoch im Unterschied dazu kaum mischbar mit den Nitrilen MeCN und EtCN.

 $Hg(Sn(C_4F_9)_3)_2$ konnte ebenfalls durch ¹⁹F-, ¹⁹⁹Hg{¹⁹F}- und ¹¹⁹Sn{¹⁹F}-NMR-Untersuchungen (s. Tab. 2-7) und zusätzlich durch eine Elementaranalyse charakterisiert werden. Die CHN-Elementaranalyse deutet jedoch auf ein Propionitril-Addukt der Zusammensetzung Hg(Sn(C_4F_9)_3)_2·EtCN hin.

Kern	δ	Kopplung [Hz]	Zuordnung
¹⁹ F	-83,0		CF ₃
	-107,9	$^{2}J(^{19}F-^{119}Sn)\approx 236$	α -CF ₂
		$^{3}J(^{19}F-^{199}Hg) \approx 122$	
	-116,8		β -CF ₂
	-127,3		γ -CF ₂
¹¹⁹ Sn	86,5	$^{1}J(^{119}Sn-^{199}Hg) = 27709$	
		$^{2}J(^{119}Sn-^{117}Sn) = 10581$	
¹⁹⁹ Hg	-713,1	$^{1}J(^{199}Hg-^{119/117}Sn) \approx 27715/26487$	

Tab. 2-7: NMR-Daten von $Hg(Sn(n-C_4F_9)_3)_2$ (THF-d₈, RT)

2.4 Umsetzungen von AgC₅F₄N mit den Elementen der 12. Gruppe

Über Bis(2,3,5,6-tetrafluor-4-pyridyl)element-Verbindungen, $E(C_5F_4N)_2$ (E = Zn, Cd, Hg), wurde bereits 1967 von R. D. Chambers et al. [54] und 1973 von P. Sartori und H. Adelt [55] berichtet. Diese Verbindungen wurden in sehr guten Ausbeuten erhalten, aber lediglich elementaranalytisch und massenspektrometrisch als donorfreie Komplexe charakterisiert, so dass hier eine neue Darstellung über die entsprechende Silberverbindung mit anschließender NMR-Charakterisierung und mit dem Ziel, röntgenkristallographisch geeignete Einkristalle zu erhalten, von Interesse ist.

2.4.1 Umsetzung von AgC₅F₄N mit Zink

Die Umsetzung von AgC₅F₄N mit Zn in EtCN verläuft im Unterschied zu der mit Hg (Kap. 2.4.3) wesentlich langsamer. Nach einer Reaktionszeit von ca. 16 Stunden bei Raumtemperatur bildet sich ein C₅F₄N-Elementderivat, dessen ¹⁹F-NMR-Resonanzen $(\delta(F-2,6)/\delta(F-3,5) = -98,6/-116,0)$ zwar im Verschiebungsbereich der Ausgangsverbindung AgC₅F₄N (-98,9 ppm/-114,1 ppm) liegen; die entsprechenden Signale sind jedoch zum Teil sehr breit und zeigen zudem keine Aufspaltung. Wahrscheinlich handelt es sich bei dieser Zwischenstufe um ein Zinkargentat des Typs "Zn[Ag(C₅F₄N)₂]₂".

Wird die Reaktionsmischung auf 75 °C erwärmt und bei dieser Temperatur über Nacht weiter gerührt, so reagiert diese Zwischenstufe vollständig und selektiv zugunsten eines $C_5F_4N_-$

Zinkderivates ab. Dieses zeigt nun im ¹⁹F-NMR-Spektrum der Reaktionslösung scharfe Resonanzsignale bei $\delta(F-2,6) = -98,2$ (m) und $\delta(F-3,5) = -123,4$ (m), welche in Anlehnung an die zahlreichen, literaturbekannten Untersuchungen über analoge Zn(R_f)₂-Verbindungen in Gegenwart von Komplexbildner, z. B. [25, 56-59], einem 1:2-Addukt von Bis(2,3,5,6tetrafluor-4-pyridyl)zink mit Propionitril, Zn(C₅F₄N)₂·2EtCN, zugeordnet werden.

Das Reaktionsprodukt fällt nach Vakuumdestillation der flüchtigen Bestandteile (EtCN und C_5HF_4N) als farbloser, wachsartiger und feuchtigkeitsempfindlicher "Feststoff" an. Durch Umkristallisation aus verschiedenen Lösungsmitteln (EtCN, CH₂Cl₂, Et₂O) konnten keine für eine Kristallstrukturbestimmung geeigneten Einkristalle gewonnen werden.

Weitere Untersuchungen zur eindeutigen Identifizierung dieser Verbindung konnten im Rahmen dieser Arbeit nicht mehr durchgeführt werden.

2.4.2 Umsetzung von AgC₅F₄N mit Cadmium

Die Umsetzung von AgC₃F₄N mit Cd wird unter den gleichen Reaktionsbedingungen wie die mit Zn durchgeführt und verläuft auch völlig analog. Ein Zn-analoges Intermediat bildet sich ebenfalls nach einer Reaktionszeit von ca. 16 Stunden, zeigt im ¹⁹F-NMR-Spektrum der Reaktionslösung breite Signale bei δ (F-2,6) = -98,1 (s) und δ (F-3,5) = -117,8 (s, sehr breit) und kann wie beim Zn-Derivat einer salzartigen Verbindung des Typs "Cd[Ag(C₅F₄N)₂]₂" mit Vorbehalt zugeschrieben werden. Nach einer Reaktionszeit von ca. 16 weiteren Stunden bei 75 °C geht dieses Intermediat vollständig und selektiv in ein neues C₅F₄N-Cadiumderivat über. Dieses zeigt im ¹⁹F-NMR-Spektrum der Reaktionslösung Resonanz bei δ (F-2,6) = -97,6 (t) und δ (F-3,5) = -119,2 (t). Daneben werden intensive Signale für C₅HF₄N detektiert, was auf eine hohe Hydrolyseempfindlichkeit der Cd-Verbindung zurückzuführen ist.

Elementaranalytische und massenspektrometrische Untersuchungen zur eindeutigen Identifizierung dieser Verbindung konnten angesichts der zahlreichen, erfolglosen Kristallisationsversuchen nicht mehr durchgeführt werden, so dass das gelbliche, nicht kristalline Reaktionsprodukt nur in Anlehnung an die literaturbekannten Erkenntnisse über analoge Cd(R_f)₂-Komplexe, z. B. [9, 25, 59, 60], als ein 1:2-Addukt von Bis(2,3,5,6-tetrafluor-4-pyridyl)cadmium mit Propionitril, Cd(C_5F_4N)₂·2EtCN, postuliert werden kann.
2.4.3 Darstellung und Kristallstruktur von Hg(C5F4N)2

Bis(2,3,5,6-tetrafluor-4-pyridyl)quecksilber, Hg(C₅F₄N)₂, lässt sich leicht und sehr selektiv aus AgC₅F₄N und Hg in EtCN herstellen. Die Reaktion ist im Gegensatz zu denen mit Zn und Cd bereits nach 45 Minuten abgeschlossen. Neben den Resonanzen für Hg(C₅F₄N)₂ bei δ (F-2,6) = -94,2 (m) mit ⁴J(¹⁹⁹Hg-¹⁹F) = 108 Hz und δ (F-3,5) = -123,5 (m) mit ³J(¹⁹⁹Hg-¹⁹F) = 370 Hz werden im ¹⁹F-NMR-Spektrum der Reaktionslösung lediglich die Signale für das Hydrolyseprodukt C₅HF₄N (δ (F-2,6) = -92,9 (s, breit); δ (F-3,5) = -140,9 (m)) detektiert. Nach Vakuumdestillation aller flüchtigen Bestandteile und Vakuumsublimation des zurückbleibenden Rückstandes wird das Produkt analytisch rein in einer Ausbeute von 45 % (bezogen auf AgF) als farbloser Feststoff erhalten. Weitere Charakterisierung erfolgte durch CHN-Elementaranalyse, NMR-Spektroskopie, Massenspektrometrie und Röntgenstrukturanalyse.

In den ¹³C- und ¹³C{¹⁹F}-NMR-Spektren von Hg(C₅F₄N)₂ in CD₃CN wird für das C-4-Atom ein Triplett bei 153 ppm mit ²J(¹³C-¹⁹F) = 46 Hz und ¹J(¹³C-¹⁹⁹Hg) = 1734 Hz detektiert. Die zwei Resonanzen bei 144 ppm und 143,8 ppm können durch Vergleich der entsprechenden ⁿJ_{C,Hg}-Konstanten (³J(¹³C-¹⁹⁹Hg) = 60 Hz bzw. ²J(¹³C-¹⁹⁹Hg) = 130 Hz) eindeutig den C-2,6bzw. den C-3,5-Atome zugeordnet werden. Die ¹J(¹³C,¹⁹F)-Kopplungskonstanten können einerseits wegen der Überlagerung der Multipletts der beiden Dubletts im ¹³C-NMR-Spektrum und andererseits wegen der Überlagerung der ¹³C- mit den ¹⁹⁹Hg-Satelliten im entsprechenden ¹⁹F-NMR-Spektrum nicht abgelesen werden.

Das ¹⁹⁹Hg-NMR-Spektrum von Hg(C₅F₄N)₂ in CD₃CN liefert bei -1029 ppm das in Folge der ¹⁹F-¹⁹⁹Hg-Kopplungen erwartete Quintett von Quintetts und bestätigt die Richtigkeit der aus dem entsprechenden ¹⁹F-NMR-Spektrum abgelesenen ⁴J(¹⁹⁹Hg-¹⁹F)- und ³J(¹⁹⁹Hg-¹⁹F)- Konstanten (108 Hz und 370 Hz).

Im EI-Massenspektrum von Hg(C₅F₄N)₂ werden ausschließlich der Molpeak (m/z: 501 (100 %)), der Peak für [Hg(C₅F₄N)]⁺ (m/z: 351 (25 %)) und der für [C₅F₄N]⁺ (m/z: 150 (50 %)) detektiert.

Einkristalle von $Hg(C_5F_4N)_2$ werden durch Umkristallisation aus Dichlormethan oder n-Pentan in Form farbloser Nadeln erhalten.

Hg(C₅F₄N)₂ kristallisiert in der monoklinen Raumgruppe P2₁/c (Nr. 14) mit 8 Formeleinheiten pro Elementarzelle (a = 1079,5(1) pm, b = 593,1(1) pm, c = 3494,1(5) pm, $\beta = 90,46(1)^{\circ}$).

Abb. 2-13: Molekülstruktur von Hg(C₅F₄N)_{2.}

Abb. 2-14: Ausschnitt aus der Zick-Zack-Kette von Hg(C₅F₄N)₂

Wie aus Abbildungen 2-13 und 2-14 hervorgeht, liegt $Hg(C_5F_4N)_2$ im Kristall polymer in Form paralleler, unendlicher Zick-Zack-Ketten von zwei kristallographisch unabhängigen Molekülen vor. Diese polymere Struktur kommt dadurch zustande, dass jedes Hg-Atom einer $Hg(C_5F_4N)_2$ -Einheit einen signifikanten, unterhalb der Summe der van der Waals-Radien von Hg und N (310 pm [61]) liegenden Kontakt zu einem N-Atom des benachbarten Moleküls ausbildet (284,8 bzw. 287,0 pm). Daraus resultiert für jedes Hg-Atom eine verzerrte T-förmige Koordination mit (C-Hg-N)-Bindungswinkel von 89,1° bis 98,3°, wie sie beispielsweise für die Mercurate [Kat][Hg(R_f)₂X] (R_f = CF₃, C₆F₅; X = Br, I, SCN) gefunden wurde [62, 63] (ausgewählte interatomare Abstände und Bindungswinkel: siehe Tabelle A2-3 im Anhang).

In den zwei kristallographisch unabhängigen Einheiten unterscheiden sich die Torsionswinkel zwischen den beiden am Hg-Atom kovalent gebundenen Pyridylringen signifikant voneinander: Bei dem einen Molekül (Hg2) sind die (C_5F_4N)-Ringe nahezu koplanar zueinander angeordnet, was durch ein Torsionswinkel von ca. 4,5° dokumentiert wird, während sie bei dem anderen (Hg1) - analog dem Hg(C_6F_5)₂ [64, 65] oder dem isovalenten Argentat [Ag(C_5F_4N)₂]⁻ (Kap. 2.1.3) - um einen Torsionswinkel von ca. 60° gegeneinander verdrillt sind. Die (C-Hg-C)-Bindungswinkel weichen jedoch nur unwesentlich von der Linearität ab (C-Hg2-C: 172,1° und C-Hg1-C: 175,6°).

Auffällig und unerwartet ist die Tatsache, dass die Hg-C-Abstände in der nahezu koplanaren Einheit (206,1 und 207,3 pm) um ca. 3 pm kürzer sind als in der Einheit mit den verdrillten Tetrafluorpyridylringe (209,3 und 209,9 pm). Das Gegenteil wäre auf Grund engererer Kontakte zwischen den ortho-Fluoratome (F-3,5) in der nahezu koplanaren Einheit zu erwarten. Daher sind diese Unterschiede in den Torsionswinkeln und in den Hg-C-Bindungsabständen vermutlich auf Packungseffekte zurückzuführen. Die Hg-C-Abstände sowie die (C-Hg-C)-Bindungswinkel liegen im für Diarylquecksilber-Verbindungen typischen Bereich (s. Tab. 2-8).

In Folge der bekannten Affinität von Hg^{II} zu N-Donor-Liganden, z. B. [66], sorgt hier die in sehr geringem Maße noch vorhandene Lewis-Basizität am sp²-hybridisierten N-Atom für die Erhöhung der Koordinationszahl des Hg-Atoms auf 2 + 1.

HgR ₂	d ₁ (Hg-C)	d ₂ (Hg-C)	C1-Hg-C2	Torsionswinkel	Literatur
$Hg(C_6H_5)_2$	209	209	180°	0°	[67]
$Hg(2,6-F_2C_6H_3)_2$	206	209	177°	88°	[68]
$Hg(2,4,6-F_3C_6H_2)_2$	205	205	180°	0°	[68]
$Hg(2,3,4,6-F_4C_6H)_2$	205	205	180°	0°	[68]
Hg(2,3,5,6-F ₄ C ₆ H) ₂	208	208	180°	0°	[68]
$Hg(2,3,4,5-F_4C_6H)_2$	210	210	180°	0°	[69]
$Hg(C_6F_5)_2$	210	210	176°	60°	[64]
	204,7	205,2	178,8°	58°	[65]
$Hg(C_6H_4OMe-4)(C_6F_5)$	205,7	206,8	178,1°	81,6°	[70]
$Hg(C_5F_4N)_2$ $Hg2:$	206,1	207,3	172°	4°	[*]
Hg1:	209,3	209,9	175,6°	60°	

Tab. 2-8: Ausgewählte interatomare Abstände und Winkel einiger Diarylquecksilber-Verbindungen

[*] vorliegende Arbeit

2.5 Umsetzungen von AgC₅F₄N mit Elementen der 13. Gruppe

Im Folgenden werden nur die Reaktionen von Ag(C_5F_4N) mit Gallium bzw. Indium beschrieben. Die analoge Reaktion mit nicht aktiviertem Aluminium führt zu keinem Umsatz (Passivierung). Eine mit Thallium bei ca. 80 °C durchgeführte analoge Reaktion liefert dagegen ein komplexes Produktgemisch, dessen ¹⁹F-NMR-Untersuchung auf eine unerklärliche Defluorierung des C_5F_4N -Liganden hindeutet.

2.5.1 Umsetzung von AgC₅F₄N mit Gallium, Kristallstruktur von Ga(C₅F₄N)₃·EtCN·H₂O

Im Unterschied zu der Reaktion von Ag(C₅F₄N) mit Indium (s. u.) führt die analoge Umsetzung mit Gallium nicht zur selektiven Bildung einer entsprechenden Galliumverbindung. Nach einer Reaktionszeit von drei Stunden bei Raumtemperatur liegt neben noch nicht abreagiertem Ag(C₅F₄N) ein einziges Ga(C₅F₄N)-Derivat mit den ¹⁹F-NMR-Resonanzen δ (F-2,6) = -96,9 und δ (F-3,5) = -127,0 vor (Derivat I).

Wird die Reaktionsmischung weitere drei Stunden gerührt (oder schwach erwärmt), reagiert zwar Ag(C₅F₄N) vollständig ab, es entsteht aber u. a. eine zweite Ga(C₅F₄N)-Verbindung (Derivat II) mit den ¹⁹F-NMR-Resonanzen δ (F-2,6) = -95,4 und δ (F-3,5) = -127,8 (s. Abb. 2-

15). Diese Resonanzen sind, verglichen mit denen für das Hauptprodukt, um 1,5 bzw. 0,8 ppm zu tiefem bzw. zu hohem Feld verschoben. Das Integrationsverhältnis der beiden $Ga(C_5F_4N)$ -Derivate I und II wird aus dem ¹⁹F-NMR-Spektrum der Reaktionslösung zu 100 : 20 bestimmt.

Abb. 2-15: ¹⁹F-NMR-Spektrum der Reaktionslösung von AgC_5F_4N mit Ga nach 3 h (oben) und nach weiteren 3 h (unten) Reaktionszeit - abgebildet ist nur der Verschiebungsbereich der ortho-Fluoratome.

Bei dem Hauptprodukt (Derivat I) könnte es sich in Analogie zu den homologen C₆F₅-Derivaten des Galliums [71, 72] bzw. des Indiums [73] entweder um ein Gallat des Typs Ag[Ga(C₅F₄N)₄] oder um einen höher koordinierten Komplex der Zusammensetzung Ga(C₅F₄N)₃·2EtCN handeln. In [71-73] wurde oft eine vergleichbare Tieffeldverschiebung der ortho-Fluorresonanzen (1 bis 1,5 ppm) beim Übergang von neutralen zu salzartigen Pentafluorphenylgallium- bzw. Pentafluorphenylindium-Verbindungen oder zu donorstabilisierten Addukten beobachtet. Ein weiterer Hinweis auf den Gallat-Charakter des Hauptproduktes ist die Linienverbreiterung dessen (F-3,5)-Signals (Verlangsamung der Quadrupolrelaxation des ⁷¹Ga-Kerns in Folge der tetraedrischen Symmetrie im [Ga(C₅F₄N)₄]⁻-Anion). Eine Trennung der Verbindungen gelang nicht. Bei einer der beiden Verbindungen muss es sich um das erwartete 1:1-Addukt $Ga(C_5F_4N)_3$ ·EtCN handeln, welches vermutlich erst bei den Kristallisationsversuchen einen H₂O-Liganden anlagert (s. Abb. 2-16), da die meisten bisher literaturbekannten C₆F₅-Homologen in der Regel als 1:1-Addukte anfallen [25, 71, 72, 74].

Im EI-Massenspektrum des hier erhaltenen weiß-braunen Feststoffes werden die Peaks für $[Ga(C_5F_4N)_3]^+$ (m/z: 519 (56 %)), für $[Ga(C_5F_4N)_2]^+$ (m/z: 369 (28 %)), für $[C_5HF_4N]^+$ (m/z: 151 (100 %)), für $[EtCN]^+$ (m/z: 54 (14 %)) und für Ga⁺ (m/z: 69 (4 %)) detektiert.

Die Kristallstruktur von $Ga(C_5F_4N)_3$ ·EtCN·H₂O (a = 1245,6(7) pm, b = 872,5(4) pm, c = 2014,0(12) pm, β = 92,47(5)°, Z = 4) ist in der monoklinen Raumgruppe gelöst worden (P2₁/c, Nr. 14). Beispiele von kristallographisch charakterisierten Gallium(III)-Verbindungen mit mehr als zwei perfluorierten Liganden sind selten und bisher auf die tetraedrischen Addukte Ga(C₆F₅)₃·THF [75, 76] und Ga(C₆F₅)₃·Et₂O [76] sowie auf Pentafluorphenylgallate beschränkt [72, 77-80], so dass die hier vorgestellte Struktur die erste einer neutralen Perfluororganylgallium(III)-Verbindung mit einem fünffach koordinierten Ga-Zentrum darstellt.

Abb. 2-16: Molekülstruktur von $Ga(C_5F_4N)_3$ ·EtCN·H₂O – aus Gründen der Übersichtlichkeit sind die Fluoratome nicht eingezeichnet.

Wie in Abbildung 2-16 zu sehen ist, besetzen die Tetrafluorpyridyl-Liganden die äquatorialen Positionen einer leicht verzerrten trigonalen Bipyramide (Summe der drei (C-Ga-C)-Bindungswinkel: 359,9°), während die Donoratome eines H₂O- und eines EtCN-Liganden mit einem (O-Ga-N)-Bindungswinkel von 177,4° nahezu linear auf den axialen Positionen stehen. Die Ga-C-Abstände (199,4 / 199,5 / 199,9 pm) liegen im Bereich kovalenter 2-Zentren-2-Elektronen-Bindungen [72, 75-80], während der Ga-O-Abstand mit 222 pm um ca. 10 % gegenüber denen in den tetraedrischen Motiven Ga(C₆F₅)₃·THF [75, 76], Ga(C₆F₅)₃·Et₂O [76] und {[Ga(C₆F₅)₃]₂(μ -OH)}⁻ [72] verlängert ist. Der Ga-O-Abstand und insbesondere der Ga-N-Abstand (227 pm) sind aber immer noch deutlich kürzer als die jeweiligen van der Waals-Abstände (GaO: 339 pm, GaN: 342 pm [61]). Es werden weder intra- noch intermolekulare Ga-F-Kontakte beobachtet (ausgewählte interatomare Abstände und Bindungswinkel: siehe Tabelle A3-2 im Anhang).

Wie bereits oben erwähnt, weisen alle bisher kristallographisch charakterisierten Pentafluorphenylgallium(III)-Verbindungen ein vierfach koordiniertes Ga-Atom auf. Die Anlagerung eines Wassermoleküls als zusätzlichem Liganden und die daraus resultierende und seltene Pentakoordination können mit einem größeren Elektronendefizit am Lewis-sauren Ga-Zentrum erklärt werden, der auf die im Vergleich zum C₆F₅- etwas höhere Gruppenelektronegativität des isolobalen C₅F₄N-Liganden zurückzuführen ist [27]. Das Elektronendefizit in Ga(C₅F₄N)₃·EtCN wird also hier durch den H₂O-Liganden weiter kompensiert. Wasser wird trotz seiner gegenüber Propionitril geringeren Basizität bevorzugt, da es sterisch weniger anspruchsvoll ist.

2.5.2 Darstellung und Kristallstruktur von In(C5F4N)3·2EtCN

Durch Versetzen einer Propionitril-Lösung von AgC₅F₄N mit elementarem Indium im Überschuss wird bereits nach drei Stunden Rühren bei Raumtemperatur die selektive Bildung einer C₅F₄N- Indiumverbindung mit den Resonanzen δ (F-2,6) = -95,3 und δ (F-3,5) = -123,6 ¹⁹F-NMR-spektroskopisch beobachtet.

Das Reaktionsprodukt wurde mit Hilfe einer CHN-Elementaranalyse und einer Röntgenstrukturanalyse der aus Propionitril erhaltenen Einkristalle als monomeres, donorstabilisiertes Tris(2,3,5,6-tetrafluor-4-pyridyl)indium(III), In $(C_5F_4N)_3$ ·2EtCN, identifiziert. Der homologe Pentafluorphenyl-Komplex dagegen, In $(C_6F_5)_3$ ·D, wurde in der Literatur sowohl als 1:1-Addukt (D = MeCN, EtCN, Et₂O, Glyme, DMAP) [10, 25, 81] als auch als 1:2-Addukt (D = 2 DMSO, 2 THF, 2 bipy) [82] beschrieben.

 $In(C_5F_4N)_3$ ·2EtCN wurde nach einer Soxhlet-Extraktion mit Dichlormethan analytisch rein in einer Ausbeute von ca. 35 % (bezogen auf AgF) als farbloser, feuchtigkeitsstabiler und in Dichlormethan und Benzol schwerlöslicher Feststoff erhalten.

Im ¹³C-NMR-Spektrum von In(C_5F_4N)₃·2EtCN in Aceton-d₆ werden für die C-2,6- und die C-3,5-Atome jeweils ein Dublett von Multipletts bei 145,6 ppm und 143,6 ppm mit einer identischen ¹J_{C,F}-Kopplung von ca. 247 Hz detektiert. Das breite Singulett bei 121,6 ppm kann sowohl dem C-4-Atom als auch dem nitrilischen C-Atom der Donorliganden zugeordnet werden. Die Methylen- und die Ethylgruppe des Propionitrils zeigen Resonanz bei 10,8 ppm (tq) und 10,7 ppm (qt).

Im entsprechenden ¹H-NMR-Spektrum zeigt $In(C_5F_4N)_3$ ·2EtCN Resonanz bei 2,45 ppm (q, CH₃C<u>H</u>₂CN) und 1,24 ppm (t, C<u>H</u>₃CH₂CN) mit ³J(¹H-¹H) = 7,7 Hz.

Im EI-Massenspektrum von $In(C_5F_4N)_3 \cdot 2EtCN$ (20 eV) kann der Molekülpeak nicht beobachtet werden. Das donorstabilisierte Molekül spaltet dabei zuerst Propionitril ab und fragmentiert zum donorfreien Molekülion $[In(C_5F_4N)_3]^+$ (m/z: 565 (26 %)). Dieses zerfällt dann hauptsächlich in das dem $Hg(C_5F_4N)_2$ isovalente Fragment $[In(C_5F_4N)_2]^+$ (m/z: 415 (100 %)) und $[C_5HF_4N]^+$ (m/z: 151 (17 %)).

 $In(C_5F_4N)_3$ ·2EtCN schmilzt zwischen 126 und 130 °C unter Verlust von EtCN und zersetzt sich mit beginnender Braunfärbung ab 140 °C. Dieses bei der Schmelzpunktbestimmung und bei der massenspektrometrischen Untersuchung beobachtete thermische Verhalten weist darauf hin, dass die Verbindung möglicherweise durch Vakuumsublimation donorfrei darstellbar ist.

Obwohl zahlreiche Untersuchungen zur Perfluororganylindium-Chemie in der Literatur beschrieben wurden, z. B. [10, 14, 81-85], sind Kristallstrukturen von homoleptischen, donorstabilisierten Derivaten der Zusammensetzung $In(R_f)_3$ ·D bislang unbekannt. Die hier unten vorgestellte Struktur stellt daher das vierte Beispiel zu den bislang kristallographisch charakterisierten Perfluorarylindium-Verbindungen $In(C_6F_5)Br_2$ ·2THF [84], $In(C_6F_5)_2(CH_2)_3NMe_2$ [85] und [PNP][$In(C_6F_5)_4$] [10] dar. Sie ist zugleich die erste Kristallstruktur einer neutralen Indium(III)-Verbindung mit drei Perfluoraryl-Liganden.

Die Kristallstruktur von In(C₅F₄N)₃·2EtCN (a = 988,0(1) pm, b = 902,9(1) pm, c = 2793,6(1) pm, β = 97,17(1)°, Z = 4) ist in der monoklinen Raumgruppe P2₁/c (Nr. 14) gelöst worden und ist der von Ga(C₅F₄N)₃·EtCN·H₂O sehr ähnlich.

Abb. 2-17: Molekülstruktur von In(C₅F₄N)₃·2EtCN

Die In(C₅F₄N)₃·2EtCN-Moleküle liegen im Kristall monomer vor. Wie aus Abbildung 2-17 ersichtlich ist, liegt das In-Atom im Zentrum einer leicht verzerrten trigonalen Bipyramide (Summe der drei (C-In-C)-Bindungswinkel: 359,1°). Die drei Tetrafluorpyridyl-Ringe besetzen die äquatoriale Ebene mit einem mittleren (C-In-C)-Bindungswinkel von 109,7°, während die Propionitril-Liganden nahezu linear mit einem (N-In-N)-Bindungswinkel von 176° auf den axialen Positionen stehen. Diese axiale Anordnung der Liganden mit den elektronegativeren Atome entspricht dem nach dem VSEPR-Modell Erwarteten [86] (ausgewählte interatomare Abstände und Bindungswinkel: siehe Tabelle A3-3 im Anhang). Die In-N-Abstände (238 und 244 pm) sind deutlich kürzer als die Summe der van der Waals-Radien von In und N (≈ 353 pm [61]), liegen aber um ca. 18 bzw. 24 pm oberhalb der Summe der entsprechenden Kovalenzradien (220 pm [87]), so dass hier ein gewisser Kovalenzanteil in den In-N-Bindungen nicht überbewertet und die Verbindung anstelle von "hypervalent" lediglich als hyperkoordiniert bezeichnet werden kann. Die In-C-Abstände (216,6–217,6 pm) im erwarteten Kovalenzbereich. Hier wird liegen dagegen wie schon in In(C₆F₅)Br₂·2THF [84] und In(C₆F₅)₂(CH₂)₃NMe₂ [85] ebenfalls eine fünffache Koordination für das In-Atom gefunden.

2.6 Umsetzungen von AgC₅F₄N mit Ge, GeCl₂·Diox, Sn und Pb

2.6.1 Umsetzungen von AgC₅F₄N mit Ge bzw. mit GeCl₂·Diox

Zwischen $Ag(C_5F_4N)$ und elementarem Germanium findet in Propionitril keine Reaktion statt. Auch nach einer Reaktionszeit von 18 Stunden bei 60 °C liegt das Edukt $Ag(C_5F_4N)$ unverändert vor. Dies ist offensichtlich der allgemein bekannten kinetischen Reaktionsträgheit der elementar vorliegenden Tetrele zuzuschreiben. Beispielsweise mussten oxidative Additionen von Alkylhalogeniden an Silizium und Germanium bei drastischen Bedingungen und unter Zusatz eines Cu-Katalysators durchgeführt werden [88]. Die Synthese des amorphen, für eine Oxidation durch Perfluororganylsilber(I)-Verbindungen möglicherweise besser geeigneten Germaniums, konnte entgegen Literaturvorschriften [89] nicht reproduziert werden. Daher wurden als Alternative Austauschreaktionen zwischen $Ag(C_5F_4N)$ und dem kommerziell erhältlichen Dioxankomplex GeCl₂·Diox untersucht.

Bei der Umsetzung von Ag(C₅F₄N) mit GeCl₂·Dioxan in einem molaren Verhältnis von ca. 4 : 1 in Propionitril fällt ein weißer Niederschlag aus, dessen violette Verfärbung nach dem Filtrieren als Indiz für die erwartete Bildung von AgCl angesehen werden kann. Das ¹⁹F-NMR-Spektrum der farblosen Reaktionslösung zeigt einen 50 %igen Umsatz unter Bildung einer einzigen Ge(C₅F₄N)-Verbindung mit den Resonanzen δ (F-2,6) = -95,3 (m) und δ (F-3,5) = -128,4 (m, ¹J_{C,F} \approx 248 Hz). Obwohl die ortho-Fluorresonanz mit der für Ge(C₆F₅)₄ sehr vergleichbar ist (-127,8 ppm [90]), wird hier eine oxidative C₃F₄N-Übertragung auf das Ge(II)-Zentrum unter Bildung einer erwartungsgemäß stabilen Ge(IV)-Verbindung dadurch ausgeschlossen, dass keine Ag-Abscheidung beobachtet werden konnte. Auch die Beobachtung, dass die Reaktionslösung sich beim geringsten Kontakt mit der Luft sofort trübt (weißer Niederschlag), spricht dagegen und deutet vielmehr auf einen zwar in Lösung etwas donorstabilisierten, jedoch sehr hydrolyse- und luftempfindlichen Ge(II)-Komplex hin, etwa der Zusammensetzung "Ge(C_5F_4N)₂·Diox" oder "Ge(C_5F_4N)Cl·Diox":

$$4 \operatorname{AgC}_{5}F_{4}N + \operatorname{GeCl}_{2} \cdot \operatorname{Diox} \longrightarrow \operatorname{Ge}(\operatorname{C}_{5}F_{4}N)_{4} + 2 \operatorname{AgCl} + 2 \operatorname{Ag}$$

$$2 \operatorname{Ag}(\operatorname{C}_{5}F_{4}N) + \operatorname{GeCl}_{2} \cdot \operatorname{Diox} \longrightarrow \operatorname{Ge}(\operatorname{C}_{5}F_{4}N)_{2} \cdot \operatorname{Diox}^{"} + 2 \operatorname{AgCl}$$

$$\operatorname{Ag}(\operatorname{C}_{5}F_{4}N) + \operatorname{GeCl}_{2} \cdot \operatorname{Diox} \longrightarrow \operatorname{Ge}(\operatorname{C}_{5}F_{4}N)\operatorname{Cl} \cdot \operatorname{Diox}^{"} + \operatorname{AgCl}$$

Die Verlängerung der Reaktionszeit um mehrere Stunden sowie die Erhöhung der Reaktionstemperatur bis auf 90 °C führen laut ¹⁹F-NMR-Spektren zu keinem weiteren Umsatz. Der oben erhaltenen Reaktionslösung wird daher soviel von einer Lösung von GeCl₂·Diox in Propionitril unter Rühren zugetropft, bis kein AgCl mehr ausfällt. Das ¹⁹F-NMR-Spektrum der Reaktionslösung zeigt nun die Signale des Eduktes Ag(C₅F₄N) nicht mehr, es werden aber neben den (F-3,5)-Resonanzen für das oben postulierte Ge(II)-Derivat (δ (F-3,5) = -128,4 (m)) weitere (F-3,5)-Signale für mindestens zwei Ge(C₅F₄N)-Derivate bei -126,1 ppm ("t") und -125,2 ppm ("t") detektiert. Das relative Verhältnis der drei Ge-Verbindungen kann aus dem ¹⁹F-NMR-Spektrum zu etwa 60 : 40 : 20 geschätzt werden.

Bei einem weiteren Ansatz von Ag(C₅F₄N) mit GeCl₂·Dioxan im molaren Verhältnis von ca. 2 : 1 wird im ¹⁹F-NMR-Spektrum die Bildung von mindestens fünf Ge(C₅F₄N)-Derivaten mit zum Teil sehr ähnlichen Resonanzen beobachtet, und bei denen das in dem 4:1-Ansatz beobachtete Derivat das Hauptprodukt mit einem Anteil von ca. 60 % darstellt. Versuche, das Hauptprodukt aus diesem komplexen Reaktionsgemisch abzutrennen, erschienen als wenig erfolgreich. Die Reaktionsbedingungen zur Erhöhung der Selektivität der Reaktion scheinen aber optimierbar zu sein.

Darüber hinaus ist dies eine weitere Bestätigung dafür, dass Perfluororganylsilber(I)-Verbindungen, zumindest Perfluorarylsilber(I)-Verbindungen, wohl als wirksame nukleophile R_f -Übertragungsreagenzien auf bestimmte Elementhalogenide geeignet sind (s. Einleitung, Kap. 1). Daher und nicht zuletzt wegen der nicht eingehend erforschten Chemie niedervalenter Organogermanium-Spezies sind hier weitere Untersuchungen von Interesse.

2.6.2 Darstellung und Kristallstruktur von Sn(C5F4N)4

Bei der Umsetzung einer propionitrilischen Lösung von $Ag(C_5F_4N)$ mit elementarem Zinn bleibt die Oxidation trotz mehrerer Tage Rührens bei Raumtemperatur auf einer Stufe stehen, die – wie bei den analogen Reaktionen mit Perfluoralkylsilber(I)-Verbindungen (Kap. 2.2.1-2.2.3) – einem Tris(tetrafluorpyridyl)stannylsilber "AgSn(C₅F₄N)₃·EtCN" und/oder einem Bis[tris(tetrafluorpyridyl)stannyl]argentat "Ag[Ag(Sn(C₅F₄N)₃)₂]" zugeordnet werden kann.

Was Sn(C₅F₄N)-Derivate betrifft, zeigt das ¹⁹F-NMR-Spektrum der Reaktionslösung (Abb. 2-18) das (F-2,6)-Signal für eine verschwindend kleine Menge an Sn(C₅F₄N)₄ bei -91,2 ppm und vier Signale für die oben postulierte(n) Zwischenstufe(n), wobei die F-2,6-Atome zwei getrennte Multipletts aufweisen (-95,2 und -95,6 ppm), während die Signale der F-3,5-Atome sich nahezu vollständig überlagern (-123,4 und -123,8 ppm; Multiplett mit "Schulter").

Abb. 2-18: ¹⁹F-NMR-Spektrum der Reaktionslösung (a: $Sn(C_5F_4N)_4$, b: C_5HF_4N , e: $Me_3SiC_5F_4N$, c/d: "AgSn $(C_5F_4N)_3$ /Ag $[Ag(Sn(C_5F_4N)_3)_2]$ ")

Die Erhöhung der Reaktionstemperatur bis auf ca. 85 °C führt zu keinem nennenswerten Fortschreiten der Bildung von $Sn(C_5F_4N)_4$. Wird aber die Reaktionslösung des RT-Ansatzes im Vakuum bis zur "Trockene" eingeengt und der gelbliche, klebrige Rückstand einer Thermolyse unter gleichzeitiger Vakuumsublimation unterzogen, wird, wenn auch in einer geringen Ausbeute von 10 %, analysenreines $Sn(C_5F_4N)_4$ erhalten. Der Rückstand der Thermolyse/Sublimation (schwarzer und weißer Feststoffe) enthält laut ¹⁹F-NMR-Untersuchungen in EtCN nicht sublimiertes $Sn(C_5F_4N)_4$ als Hauptprodukt und ein weiteres $Sn(C_5F_4N)$ -Derivat ($\delta(F-2,6) = -92,0$ (m) und $\delta(F-3,5) = -126,7$ (m)), bei dem es sich auf Grund einer vor der Pyrolyse durchgeführten massenspektrometrischen Untersuchung (EI) um das Distannan $Sn_2(C_5F_4N)_6$ handeln könnte.

 $Sn(C_5F_4N)_4$ kristallisiert wie die bisher bekannten $Si(C_6F_5)_4$ [91], $Ge(C_6F_5)_4$ [49], $Sn(C_6F_5)_4$ [49], $Pb(C_6F_5)_4$ [92], $Pb(C_6H_5)_4$ [93], $Sn(3,5-Me_2C_6H_3)_4$ [94] und $Sn(C_6H_5)_4$ [95] tetragonal in der gleichen Raumgruppe wie die drei letztgenannten (P -4 2₁ c, Nr. 114).

Abb. 2-19: Projektion der Molekülstruktur von $Sn(C_5F_4N)_4$ entlang [001] – mit dem Bezeichnungsschema für die Atome (nicht bezeichnete Atome stellen durch Symmetrie erzeugte Atome dar)

Abb. 2-20: Elementarzelle von $Sn(C_5F_4N)_4$ - aus Gründen der Übersichtlichkeit sind nur die Sn- und die C_{ipso} -Atome eingezeichnet.

Der Kristall besteht aus diskreten $Sn(C_5F_4N)_4$ -Molekülen, in denen das Sn-Atom von vier Tetrafluorpyridyl-Liganden nahezu ideal tetraedrisch koordiniert ist (Abb. 2-19 und 2-20). Die Molekülstruktur lässt sich auf Grund der tetragonalen Symmetrie durch drei Parameter vollständig charakterisieren, nämlich durch zwei C-Sn-C-Bindungswinkel von 106,5(2)° (2x) und 111,0(1)° (4x) und einen Sn-C-Bindungsabstand von 215,5(4) pm (4x). Dieser Abstand ist um ca. 3 pm länger als in der homologen C₆F₅-Verbindung [49], liegt aber immer noch unterhalb der Summe der Kovalenzradien von C und Sn (217 pm [87]). Die C-Sn-C-Bindungswinkel sind dagegen sehr vergleichbar mit denen in Sn(C₆F₅)₄ (weitere, ausgewählte Bindungsabstände: siehe Tabelle A4-2 im Anhang).

2.6.3 Umsetzung von AgC₅F₄N mit Blei

Die Umsetzung von AgC₅F₄N mit Blei führt nach einer Reaktionszeit von 2 Stunden bei Raumtemperatur selektiv zu einem C₅F₄N-Elementderivat, dessen ¹⁹F-NMR-Resonanzen $(\delta(F-2,6)/\delta(F-3,5) = -98,8/-115,4)$ zwar im Verschiebungsbereich der Ausgangsverbindung Ag[Ag(C₅F₄N)₂] (-98,9 ppm/-114,1 ppm) liegen; die entsprechenden Signale sind wie bei den in Kapitel 2.4 postulierten Zn- und Cd-Argentaten jedoch sehr breit und zeigen keine Aufspaltung. Wahrscheinlich handelt es sich hierbei um ein Bleiargentat des Typs "Pb[Ag(C₅F₄N)₂]₂·2EtCN", wie dies auch für die analoge Reaktion von AgC₆F₅ mit Blei postuliert wurde [25]. Dieses Intermediat ist aber im Gegensatz zu denen von Zn und Cd in Lösung weitgehend thermisch stabil. Auch der Versuch, "Pb[Ag(C₅F₄N)₂]₂·2EtCN" durch Pyrolyse in Pb(C₅F₄N)₄ zu überführen, gelang im Unterschied zu "Pb[Ag(C₆F₅)₂]₂·2EtCN" nicht und führte vielmehr zu einer Zersetzung zu 4,4'-Oktafluorbipyridin, (C₅F₄N)₂, und Ag[Ag(C₅F₄N)₂].

2.7 Umsetzungen von AgC₅F₄N mit Elementen der 15. Gruppe

2.7.1 Darstellung und Kristallstruktur von As(C5F4N)3

Bei der Umsetzung von Ag(C₅F₄N) mit elementarem Arsen in EtCN bei ca. 80 °C wird Tris(2,3,5,6-tetrafluor-4-pyridyl)arsen(III), As(C₅F₄N)₃, selektiv gebildet. Nach anschließender Extraktion mit CH₂Cl₂ der im Vakuum getrockneten Reaktionsmischung wird As(C₅F₄N)₃ analysenrein in einer Ausbeute von 45 % als farbloser Feststoff erhalten.

$$3 \operatorname{AgC}_{5}F_{4}N + \operatorname{As} \xrightarrow{\text{EtCN}} \operatorname{As}(C_{5}F_{4}N)_{3} + 3 \operatorname{Ag}$$

 $As(C_5F_4N)_3$ ist im Gegensatz zu den noch unten zu beschreibenden homologen Sb- und Bi-Verbindungen (Kap. 2.7.2 und 2.7.3) hydrolysestabil. Hinsichtlich dieser Stabilität ist $As(C_5F_4N)_3$ mit dem homologen C_6F_5 -Derivat, $As(C_6F_5)_3$ [96], vergleichbar.

Im ¹⁹F-NMR-Spektrum der Reaktionslösung werden die zwei Resonanzen für As $(C_5F_4N)_3$ bei $\delta(F-2,6) = -91,3$ (m) und $\delta(F-3,5) = -129,7$ (m) detektiert.

Im ¹³C-NMR-Spektrum von As(C₅F₄N)₃ in CD₃CN werden die drei erwarteten Signale detektiert, von denen aber nur das Triplett bei 126,9 ppm mit ²J(¹³C-¹⁹F) \approx 27 Hz dem C-4-Atom eindeutig zugeordnet werden kann. Eine Unterscheidung zwischen den C-2,6- und C-3,5-Atomen kann dagegen nicht getroffen werden, da sich die Multipletts der beiden entsprechenden Dubletts bei 144,4 ppm und 144,0 ppm (beide mit ¹J(¹³C-¹⁹F) \approx 255 Hz) völlig überlagern.

Das EI-Massenspektrum von As(C₅F₄N)₃ (70 eV) zeigt den Molpeak als intensivsten Peak an (100 %). Weitere wesentliche Peaks werden für $[As(C_5F_4N)_2]^+$ (44 %), $[C_{10}F_6N_2]^+$ (36 %), $[C_{10}F_5N_2]^+$ (52 %), $[As(C_5F_4N)]^+$ (17 %) und $[AsF_2]^+$ (?) (40 %) detektiert.

As(C₅F₄N)₃ kristallisiert monoklin in der Raumgruppe P2₁/c (Nr. 14) mit a = 1045,3(1) pm, b = 1176,6(1) pm, c = 1360,3(1) pm, β = 98,74(1)° und Z = 4.

Abb. 2-21: Molekülstruktur von As(C₅F₄N)₃

Wie Abbildung 2-21 zeigt und wie es bei sämtlichen bislang strukturell charakterisierten Triarylpnictogen-Verbindungen der Fall ist, ist das $As(C_5F_4N)_3$ -Molekül ψ -tetraedrisch gebaut mit dem As-Atom im Zentrum einer stark verzerrten trigonalen Pyramide. Diese nach dem VSEPR-Modell zu erwartende Abweichung vom idealen Tetraederwinkel zeigt der mittlere C-As-C-Bindungswinkel mit 98,8(1)°. Der mittlere As-C-Bindungsabstand beträgt 197,1(2) pm und ist nur geringfügig länger als der für die homologe C₆F₅-Verbindung gefundene (196,5(2) pm) [97] (ausgewählte interatomare Abstände und Bindungswinkel: siehe Tabelle A4-3 im Anhang).

Abb. 2-22: Ausschnitt aus der Polymerstruktur von $As(C_5F_4N)_3$ - aus Gründen der Übersichtlichkeit sind die Fluoratome nicht eingezeichnet.

Interessant und bei den bislang literaturbekannten Strukturen von Triarylpnictogen-Verbindungen nie beobachtet, ist hier die gegenseitige Ausrichtung der Tetrafluorpyridylringe von benachbarten As $(C_5F_4N)_3$ -Molekülen im Kristall und die damit verbundenen π - π - und π -N-Wechselwirkungen (s. Abb. 2-22): Die Ringe 34 und 34^m sind mit einem interplanaren Abstand von 353,1(2) pm etwas versetzt übereinander gestapelt. Diese Stapelung stellt eine Grenze zwischen den im Englischen mit "offset-stacking" und "face-to-face-stacking" bezeichneten Geometrien dar (s. Abb. 2-23, (b) und (c)) [98] und wird in der Literatur mit Abständen von bis zu 360 pm als "positive" π - π -Wechselwirkung bezeichnet, z. B. [70, 98, 99]. Zusätzlich zeigt jedes N24- und jedes N34-Atom senkrecht auf das Zentrum des Ringes 14 mit Abständen von jeweils 308,3(2) und 314,6(2) pm, woraus sich eine doppelte "Ecke-zu-Fläche"-Stapelung ergibt ("edge-to-face stacking", (a) in Abb. 2-23). Diese beiden π -N-Abstände müssen signifikant kürzer sein als die Summe der van der Waals-Radien von N (154 pm [87]) und einem perfluorierten Pyridinring. Für diesen Vergleich wird der von L. Pauling 1942 angegebene van der Waals-Radius von 170 pm für C₆H₅ herangezogen [100]. Während die Wechselwirkung N34-Ring14 hauptsächlich für dimere Einheiten zwischen zwei Nachbarmolekülen sorgt, führt die Wechselwirkung N24-Ring14 zu einer Vernetzung dieser Dimere zu unendlichen Ketten.

Abb. 2-23: Geometrien von aromatischen Wechselwirkungen. (a) edge-face; (b) offsetstacked; (c) face-to-face stacked – entnommen aus [98]

Da diese Packungsarten auch bei dem homologen P-Derivat, $P(C_5F_4N)_3$, beobachtet wurden [101], dagegen aber nicht bei den bislang bekannten Strukturen von nicht heteroaromatischen Triarylpnictogen-Verbindungen, können sie nicht nur auf eventuelle Packungseffekte, sondern auch auf die "freie" Koordinationsstelle am N-Atom des Tetrafluorpyridyl-Liganden zurückgeführt werden. Diese Art intermolekularer van der Waals-Wechselwirkungen im Kristall ist offensichtlich eine Ursache dafür, dass As(C₅F₄N)₃ und P(C₅F₄N)₃ um ca. 60 °C bzw. 50 °C höher schmelzen als die entsprechenden C₆F₅-Derivate (106 °C für As(C₆F₅)₃ [96] und 117 °C für P(C₆F₅)₃ [102].

2.7.2 Umsetzung von AgC₅F₄N mit Antimon

Die Reaktion von Ag(C₅F₄N) mit elementarem Antimon in EtCN bedarf vergleichbarer Reaktionsbedingungen wie die analoge Reaktion mit Arsen (ca. 48 Stunden bei ca. 90 °C). Die Reaktion führt selektiv zu einem C₅F₄N-Antimonderivat. Nach Aufarbeitung der Reaktionslösung lässt sich der erhaltene farblose Feststoff nicht mehr in EtCN und anderen polaren Lösungsmitteln vollständig lösen (!). Das Reaktionsprodukt scheint im Gegensatz zu As(C₅F₄N)₃ und dem relativ stabilen Sb(C₆F₅)₃ [96] luft- und feuchtigkeitsempfindlich zu sein. Das Reaktionsprodukt konnte nur ¹⁹F-NMR-spektroskopisch und massenspektrometrisch als $Sb(C_5F_4N)_3$ identifiziert werden.

Sb(C₅F₄N)₃ zeigt im ¹⁹F-NMR-Spektrum des Feststoffes in CD₃CN Resonanz bei δ (F-2,6) = -92,2 (m) und δ (F-3,5) = -124,2 (m) mit ¹J(¹³C-¹⁹F) = 250 Hz. Daneben werden die Signale für das Hydrolyseprodukt C₅HF₄N mit einer relativen Intensität von ca. 28 % detektiert.

Im Massenspektrum von Sb(C₅F₄N)₃ (70 eV-EI in MeCN) wird der Molpeak als Peak größter Masse detektiert (m/z: 571 (48 %)). Als weitere intensive Peaks werden die für $[HC_5F_4N]^+$ (m/z:151 (100 %)), für $[C_{10}F_5N_2]^+$ (m/z: 243 (81 %)) und für $[SbF_2]^+$ (?) (m/z:159 (45 %)) detektiert.

Auf Grund der oben erwähnten Empfindlichkeit und geringen Löslichkeit von $Sb(C_5F_4N)_3$ wurden hier keine Kristallisationsversuche unternommen.

2.7.3 Umsetzung von AgC₅F₄N mit Bismut

Die Darstellung von $Bi(C_5F_4N)_3$ aus $Ag(C_5F_4N)$ und Bismut bedarf im Gegensatz zu den analogen Reaktionen mit Arsen und Antimon keiner erhöhten Reaktionstemperatur. Bi(C₅F₄N)₃ bildet sich selektiv bei Raumtemperatur nach einer Reaktionszeit von ca. 24 Stunden. Es ist jedoch, ähnlich der homologen Sb-Verbindung, sehr luft- und feuchtigkeitsempfindlich und unterscheidet sich in dieser Hinsicht von der homologen C₆F₅-Verbindung, Bi $(C_6F_5)_3$ [103, 104]. Diese extreme Empfindlichkeit von Bi $(C_5F_4N)_3$ zeigt sich weiterhin beim Versetzen der propionitrilischen Reaktionslösung mit O-Donorlösungsmitteln wie DMSO oder DMF. Hierbei scheidet sich augenblicklich ein farbloser bis gelblicher (mit DMF) bzw. bräunlicher (mit DMSO) Feststoff ab; die ¹⁹F-NMR-Spektren der entsprechenden überstehenden Lösungen zeigen nur noch die Signale für das Hydrolyseprodukt C₅HF₄N. Der Feststoff wurde nicht untersucht; es kann sich aber dabei nur um ein Oxid bzw. Hydroxid handeln (Bi(OH)3 oder BiO(OH)). Dagegen bleibt die Reaktionslösung beim Versetzen mit den N-Lewis-Basen Pyridin und 4-Dimethylaminopyridin klar und die entsprechenden ¹⁹F-NMR-Spektren weisen mit einer sehr geringen Hochfeldverschiebung aller F-Resonanzen (ca. 0.4 ppm) auf die Bildung eines entsprechenden Lewis-Säure/Base-Adduktes hin. Ein Kristallisationsversuch des DMAP-Adduktes von $Bi(C_5F_4N)_3$ lieferte nur Einkristalle von reinem DMAP.

Des Weiteren konnte Bi $(C_5F_4N)_3$ massenspektrometrisch eindeutig nachgewiesen werden. Das entsprechende EI-Massenspektrum des Feststoffes zeigt im Wesentlichen den Molpeak (m/z: 659 (100 %)) und die Peaks für die Fragmente $[Bi(C_5F_4N)_2]^+$ (m/z: 509 (58 %)), $[Bi(C_5F_4N)]^+$ (m/z: 359 (9 %)) und $[C_5HF_4N]^+$ (m/z: 151 (14 %)).

Der Unterschied zwischen As-, Sb- und $Bi(C_5F_4N)_3$ besteht darin, dass die Reaktionsbedingungen für ihre Bildung von As zum Bi hin weniger drastisch werden, während deren Stabilität gegenüber Feuchtigkeit (generell gegenüber O-Nukleophilen) beim Übergang vom As zu Sb drastisch abnimmt. Offensichtlich durch die stärkere elektronenziehende Wirkung des C_5F_4N -Liganden bedingt, nimmt also die Lewis-Acidität in dieser Verbindungsklasse von As zum Bi hin zu, was zwanglos mit dem stark zunehmenden metallischen Charakter dieser Elemente sowie mit der Zunahme deren Atomradien in dieser Reihenfolge erklärt werden kann.

2.8 Umsetzungen von AgC₅F₄N mit Elementen der 16. Gruppe

2.8.1 Umsetzung von AgC₅F₄N mit Schwefel

 $S(C_5F_4N)_2$ ist schon seit längerem bekannt [105] und wurde erst kürzlich NMRspektroskopisch charakterisiert [106]. Die Kristallstruktur der Verbindung ist bislang unbekannt.

Durch Umsetzung von Schwefel mit AgC₅F₄N in Propionitril bei ca. 50 °C konnte ein C₅F₄N-Schwefelderivat als farblose, wachsartige Substanz isoliert werden, dessen ¹⁹F- und ¹³C-NMR-Daten in CDCl₃ mit den Literaturdaten für $S(C_5F_4N)_2$ [106] nicht vollständig übereinstimmen (s. Tab. 2-9). Während die (F-3,5)-Resonanzen nahezu identisch sind, weichen die ¹⁹F-Resonanzen für die (F-2,6)-Atome mit 2,2 ppm deutlich voneinander ab.

Kern	δ	Aufspaltung	Kopplung [Hz]	Zuordnung
¹⁹ F	-88,3 (-90,5)*	m (m)*		F-2,6
	-135,4 (-135,2)*	m (m)*		F-3,5
¹³ C	143,4 (144,3)*	$dm (dm)^*$	${}^{1}J({}^{13}C-{}^{19}F) = 249 (245)^{*}$	C-2,6
	141,2 (143,2)*	$dm (dm)^*$	${}^{1}J({}^{13}C-{}^{19}F) = 262 (260)^{*}$	C-3,5
	123,8 (125,2)*	t (m)*	$^{2}J(^{13}C-^{19}F) = 17$	C-4

Tab. 2-9: Vergleich der NMR-Daten des Reaktionsproduktes mit den Literaturdaten für $S(C_5F_4N)_2$ in CDCl₃

Literaturdaten für S(C₅F₄N)₂ in CDCl₃ [106]

Entweder sind diese Unstimmigkeiten in den NMR-Daten auf apparativ unterschiedliche Messbedingungen zurückzuführen, was eigentlich unwahrscheinlich ist, oder es handelt sich hier, wie bei dem Nebenprodukt der analogen Reaktion mit Selen bei erhöhter Reaktionstemperatur (s. u.), um das Disulfan S₂(C₅F₄N)₂. Gegen die Annahme des Sulfans spricht jedoch die wachsartige Konsistenz des hier erhaltenen Produktes, da das literaturbekannte Sulfan als gelblicher Feststoff mit einem Schmelzpunkt zwischen 43 °C und 56 °C (!) [105, 106] beschrieben wurde. Aber auch gegen das Disulfan spricht die große Übereinstimmung der (F-3,5)-Resonanzen mit den Literaturdaten für $S(C_5F_4N)_2$, da die entsprechenden ortho-Fluorresonanzen für die homologen C₆F₅-Chalkogenund Dichalkogen-Verbindungen, $E(C_6F_5)_2$ und $E_2(C_6F_5)_2$, in der Regel einen Unterschied von mindestens 1 ppm untereinander aufweisen (1,7 ppm für S [107], 1 ppm für Se [108] und 1,4 ppm für Te [109, 110]). Daher und auf Grund der starken Tendenz zur Kettenbildung beim Schwefel ist hier die Bildung eines höheren Sulfanes, $S_n(C_5F_4N)_2$ (n > 2), auch denkbar. Alle Bemühungen, für eine Strukturbestimmung geeignete Einkristalle aus dem wachsartigen Reaktionsprodukt zu erhalten, blieben ohne Erfolg.

2.8.2 Darstellung und Kristallstruktur von Se(C5F4N)2

Die Umsetzung von AgC₅F₄N mit rotem Selen in Propionitril verläuft bei Raumtemperatur noch langsamer als die mit Tellur (s. u.). Eine vollständige und selektive Reaktion wird erst nach zwei Tagen Rühren ¹⁹F-NMR-spektroskopisch festgestellt:

$$2 \operatorname{AgC}_{5}F_{4}N + \operatorname{Se} \xrightarrow{\operatorname{EtCN}} \operatorname{Se}(\operatorname{C}_{5}F_{4}N)_{2} + 2 \operatorname{Ag}$$

Nach Vakuumdestillation aller flüchtigen Bestandteile und Vakuumsublimation des zurückbleibenden Rückstandes wird $Se(C_5F_4N)_2$ analysenrein in einer Ausbeute von 53 % (bezogen auf AgF) als farbloser, luft- und feuchtigkeitsstabiler Feststoff isoliert. Weitere Charakterisierung erfolgte durch CHN-Elementaranalyse, NMR-Spektroskopie, Massenspektrometrie und Röntgenstrukturanalyse.

Wie bei der homologen Te-Verbindung (s. u.) wird auch hier eine Hochfeldverschiebung der (F-2,6)-Resonanzen (2,2 ppm) sowie eine Tieffeldverschiebung der (F-3,5)-Resonanzen (1,7 ppm) beim Übergang von unkomplexiertem $Se(C_5F_4N)_2$ zum DMSO-Addukt beobachtet (s. Tab. 2-10), die mit einer Verlagerung der durch diesen Donor-Liganden gelieferten Elektronendichte in den Bereich um das N-Atom des C₅F₄N-Ringes gedeutet werden können.

T 1	1 10 T			1 19r ND		G (
I ab.	2-10: L	osungsmitte	labhangigkeit	aer F-NN	/IK-Daten	von Se	$(5F_4N)_2$
		0	00			(<i>v</i> .)=

LM	δ (F-2,6)	δ (F-3,5)	Zuordnung
CDCl ₃	-88,9	-130,7	$Se(C_5F_4N)_2$
DMSO-d ₆	-91,1	-129,0	Se(C ₅ F ₄ N) ₂ ·DMSO
EtCN	-91,1	-130,0	"Se(C ₅ F ₄ N) ₂ ·EtCN"

Im ¹³C-NMR-Spektrum von Se(C₅F₄N)₂ in CDCl₃ werden drei Signale detektiert, von denen aber nur das "Singulett" bei 119,5 ppm dem C-4-Atom eindeutig zugeordnet werden kann. Eine Unterscheidung zwischen den C-2,6- und C-3,5-Atomen kann dagegen nicht getroffen werden, da sich die Multipletts der beiden entsprechenden Dubletts bei 143,3 ppm und 141,4 ppm (¹J(¹³C-¹⁹F) \approx 250 Hz bzw. \approx 260 Hz) sehr überlagern.

Im entsprechenden ⁷⁷Se-NMR-Spektrum in Aceton zeigt Se(C₅F₄N)₂ statt einer in Folge der ³J(Se-F)- und der ⁴J(Se-F)-Kopplungen zu erwartenden Aufspaltung in ein Quintett von Quintetts nur ein Quintett bei 192 ppm mit ³J(⁷⁷Se-¹⁹F) = 12 Hz.

Im EI-Massenspektrum werden im Wesentlichen die Peaks für $[Se(C_5F_4N)_2]^+$ (100 %) und für $[Se(C_5F_4N)]^+$ (16 %) detektiert.

Möchte man wie bei der analogen Reaktion mit Tellur die Reaktion durch Temperaturerhöhung beschleunigen und führt daher die Umsetzung bei 50 °C durch, reagiert AgC₅F₄N nach ca. fünfstündigem Rühren zwar vollständig ab; es bildet sich aber neben dem Hauptprodukt Se(C₅F₄N)₂ ein zweites Se(C₅F₄N)-Derivat (ca. 20 %), dessen (F-3,5)-Resonanz relativ zu der von Se(C₅F₄N)₂ um 0,7 ppm tieffeldverschoben ist. Die (F-2,6)-Resonanzen der beiden Produkte sind dagegen nahezu identisch. Aus dem ähnlichen Verhalten der ortho-Fluorresonanzen für die literaturbekannten, homologen Verbindungen Se(C₆F₅)₂ und Se₂(C₆F₅)₂ ($\Delta\delta$ (ortho-F) = 1 ppm, [108]) lässt sich vermuten, dass es sich bei diesem Nebenprodukt um die Diselenverbindung Se₂(C₅F₄N)₂ handelt. Das farblose, kristalline Hauptprodukt, Se(C₅F₄N)₂, lässt sich aber von dem bräunlichen öligen Nebenprodukt durch Vakuumsublimation oder Kristallisation aus Dichlormethan leicht abtrennen. Untersuchungen zur Aufklärung der genauen Zusammensetzung des Nebenproduktes wurden nicht unternommen.

AgC₅F₄N + Se
$$\xrightarrow{\text{EtCN}}$$
 Se(C₅F₄N)₂ + Se₂(C₅F₄N)₂ + Ag
 80% 20%
 $\delta(F-2,6): -91,1$ -91,3
 $\delta(F-3,5): -130,0$ -129,3

 $Se(C_5F_4N)_2$ kristallisiert in der monoklinen Raumgruppe $P_{2_1/c}$ (Nr. 14) mit a = 2074,6(2) pm. b = 732.0(1) pm, c = 1557.1(2) pm, $\beta = 107.13(1)^{\circ}$ und Z = 8. Se(C₅F₄N)₂ liegt im Kristall monomer mit zwei kristallographisch unabhängigen Molekülen vor (s. Abb. 2-24). Die C₅F₄N-Gruppen sind mit C-Se-C-Bindungswinkel von 95,47° und 96,16° V-förmig angeordnet. Die Verringerung der C-Se-C-Bindungswinkeln sowie die damit gekoppelte Verlängerung der Se-C-Abstände (191,4-192,0 pm) gegenüber denen im homologen Se(C₆F₅)₂ [108] sind nicht so ausgeprägt wie beim Übergang von Te(C₆F₅)₂ [109] zu $Te(C_5F_4N)_2$ (s. u.). Die Unterschiede betragen hier im Durchschnitt lediglich 0,8° bzw. 0,6 pm (weitere ausgewählte interatomare Abstände und Bindungswinkel: siehe Tabelle A5-2 im Anhang). Analog zu $Te(C_5F_4N)_2$ sind auch hier die Moleküle einer kristallographisch unabhängigen Einheit jeweils derart zueinander angeordnet, dass dort schwache Se--N-Wechselwirkungen angenommen werden können (s. Abb. 2-25). Die entsprechenden Se-N-Abstände liegen mit 314,6 pm (Se2-N224') und 321,7 pm (Se1-N114') etwas deutlicher innerhalb des van der Waals-Abstandes von 345/354 pm [61, 87] als bei der homologen Te-Verbindung, so dass sich hier eine schwache polymere Struktur vermuten lässt, während bei $Te(C_5F_4N)_2$ schwache "Assoziate" formuliert nur werden können. Dafür sprechen die nahezu linearen NSeC-Fragmente mit den Bindungswinkeln 170,7° (N114'-Se1-C111) und 171,9° (N224'-Se2-C121).

Abb. 2-24: Molekülstruktur von Se(C₅F₄N)₂

Abb. 2-25: Projektion der Elementarzelle von Se $(C_5F_4N)_2$ entlang [010] - aus Gründen der Übersichtlichkeit sind die Fluoratome nicht eingezeichnet.

2.8.3 Darstellung und Kristallstruktur von Te(C5F4N)2

Durch Versetzen einer Propionitril-Lösung von AgC_5F_4N mit elementarem Tellur wird das vollständige Abreagieren von AgC_5F_4N unter selektiver Bildung von $Te(C_5F_4N)_2$ erst nach einer Reaktionszeit von mindestens 16 Stunden bei Raumtemperatur ¹⁹F-NMR-spektroskopisch nachgewiesen. Die Reaktionszeit kann aber im Unterschied zu der analogen Reaktion mit dem Selen auf 4 bis 5 Stunden durch Erwärmen der Reaktionsmischung auf 50 °C verkürzt werden, ohne dass eine Nebenreaktion eintritt.

Te(C₅F₄N)₂ zeigt in Propionitril ¹⁹F-NMR-Resonanzen bei δ (F-2,6) = -92,3 (m) und δ (F-3,5) = -120,0 (m). Auf Grund der beobachteten Lösungsmittelabhängigkeit dieser Resonanzen (s. Tab. 2-11) und der Tatsache, dass Te(C₅F₄N)₂ in Gegenwart von Komplexbildnern wie Dimethylsulfoxid (DMSO) oder Tetramethylthioharnstoff (TMTU) im Kristall als Addukt vorliegt (s. Kap. 2.8.4 und 2.8.5), ist davon auszugehen, dass Te(C₅F₄N)₂ hier ebenfalls als Propionitril-Addukt vorliegt. Propionitril ist jedoch schwächer als DMSO oder TMTU gebunden (s. u.) und wird bereits bei Raumtemperatur im Vakuum abgespalten.

LM	δ (F-2,6)	δ (F-3,5)	Zuordnung
CDCl ₃	-89,0	-121,0	$Te(C_5F_4N)_2$
DMSO-d ₆	-92,3	-119,2	$Te(C_5F_4N)_2$ ·DMSO
EtCN	-92,3	-120,0	"Te(C ₅ F ₄ N) ₂ ·EtCN"

Tab. 2-11: Lösungsmittelabhängigkeit der ¹⁹F-NMR-Daten von Te(C₅F₄N)₂

Die Hochfeldverschiebung der (F-2,6)-Resonanzen von 3,3 ppm sowie die Tieffeldverschiebung der (F-3,5)-Resonanz von 1,8 ppm beim Übergang vom donorfreien $Te(C_5F_4N)_2$ zum DMSO-Addukt deuten auf eine Verlagerung der Elektronendichte in den Bereich um das N-Atom des C_5F_4N -Liganden hin.

Wie bei den meisten in dieser Arbeit dargestellten (C_5F_4N)-Elementverbindungen ist auch hier eine Unterscheidung zwischen den C-2,6- und C-3,5-Atomen bei der ¹³C-NMRspektroskopischen Charakterisierung von Te(C_5F_4N)₂ in CDCl₃ kaum möglich, da sich die Multipletts der beiden entsprechenden Dubletts bei 142,8 und 142,7 ppm völlig überlagern. Auch die Ähnlichkeit der entsprechenden ¹J(C, F)-Kopplungskonstanten (ca. 250 und 255 Hz) und die teilweise Überlagerung der ¹³C- mit den ¹²⁵Te-Satelliten in den ¹⁹F-NMR-Spektren erschweren eine eindeutige Zuordnung. Das Triplett bei 106,6 ppm mit ${}^{2}J({}^{13}C-{}^{19}F) = 28$ Hz und ${}^{1}J({}^{13}C-{}^{125}Te) = 370$ Hz kann dagegen leicht dem C-4-Atom zugeordnet werden.

Im entsprechenden ¹²⁵Te-NMR-Spektrum in CDCl₃ zeigt Te(C₅F₄N)₂ ein durch die ³J(Te, F)und die ⁴J(Te, F)-Kopplungen bedingtes Quintett von Quintetts bei 426,8 ppm mit ³J(¹²⁵Te-¹⁹F) = 25 Hz und ⁴J(¹²⁵Te-¹⁹F) = 3,5 Hz.

Im EI-Massenspektrum werden ausschließlich die Peaks für $[Te(C_5F_4N)_2]^+$ (m/z: 430 (100 %)), $[Te(C_5F_4N)]^+$ (m/z: 280 (32 %)) und für $[C_5HF_4N]^+$ (m/z: 151 (1 %)) detektiert.

Die Kristallstruktur von Te(C₅F₄N)₂ (a = 2548,7(3) pm, b = 590,8(1) pm, c = 1602,4(1) pm, $\beta = 104,56(1)^{\circ}, Z = 8$) ist in der monoklinen Raumgruppe P2₁/c (Nr. 14) gelöst worden.

Abb. 2-26: Molekülstruktur von Te(C₅F₄N)₂

Genauso wie Se(C_5F_4N)₂ liegt Te(C_5F_4N)₂ im Kristall monomer mit zwei kristallographisch unabhängigen Molekülen vor (Abb. 2-26). Die C_5F_4N -Gruppen sind jeweils mit nahezu rechtwinkligem C-Te-C-Bindungswinkel (90,85° und 91,73°) ebenfalls V-förmig angeordnet. Verglichen mit denen in Te(C_6F_5)₂ [109], sind diese Bindungswinkel um etwa 2-2,6° kleiner, woraus sich nach dem VSEPR-Modell [86] schließen lässt, dass die Gruppenelektronegativität des C₅F₄N- etwas höher ist als die des C₆F₅-Liganden (Abnahme der Valenzwinkeln mit steigender Elektronegativität der Substituenten). Die Verlängerung der Te-C-Bindungsabstände beim Übergang von Te(C_6F_5)₂ (209,4 und 210,1 pm) zu Te(C_5F_4N)₂ (211-213 etwa 2,4 pm ist offenbar eine mit pm) um weitere, der Bindungswinkelverkleinerung gekoppelte Folge dieser Elektronegativitätsdifferenz, die bereits von B. Hoge et al. an Hand quantenmechanischer Rechnungen postuliert wurde [27]. Vergleichbare Tendenzen in den C-E-C-Winkel und E-C-Abstände werden, wenn auch in unterschiedlicher Ausprägung, ebenfalls beim Vergleichen weiterer $C_5F_4N_-$ Elementverbindungen mit ihren C₆F₅-Homologen beobachtet (s. Tab. 2-12) und unterstützen somit das bisher Gesagte. Des Weiteren werden wie bei Se(C₅F₄N)₂ schwache Te···N-Kontakte (Te2: 312,4 pm; Te1: 327,7 pm) jeweils zwischen den Molekülen einer kristallographisch unabhängigen Einheit beobachtet (s. Abb. 2-27). Diese können aber, obwohl sie deutlich innerhalb des van der Waals-Abstandes (361-374 pm [61, 87]) liegen, nicht wie beim $Hg(C_5F_4N)_2$ als strukturbestimmend angesehen werden. Es handelt sich hierbei lediglich um schwache "Assoziate", während beim $Hg(C_5F_4N)_2$ eine "echte" polymere Struktur vorliegt (vgl. mit Abb. 2-14 in Kap. 2.4.3). Weitere ausgewählte interatomare Abstände und Bindungswinkel: siehe Tabelle A5-3 im Anhang.

Abb. 2-27: Projektion der Kristallstruktur von Te(C₅F₄N)₂ entlang [010]

ER _n	$R = C_5 F_4 N$	$\mathbf{R} = \mathbf{C}_6 \mathbf{F}_5$
HgR ₂	209,6 pm / 174,6°	204,9 pm / 178,8° [65]
	206,7 pm / 172,0°	
SnR_4	215,5 pm / 106,5° u. 111,0°	212,6 pm / 105,5° u. 111,5° [49]
PR ₃	184,4 pm / 94,8-105,8° [101]	183,0 pm / 99,6-106,0° [111]
AsR ₃	197,0 pm / 91,2-103,5°	196,5 pm / 96,1°-102,4° [97]
SeR ₂	191,7 pm / 95,8°	191,1 pm / 96,61° [108]
TeR ₂	212,2 pm / 91,3°	209,7 pm / 93,3° [109]
TeR ₂ ·TMTU	215,4 pm / 87,7°	214,5 pm / 90,6° [112]

Tab. 2-12: Gegenüberstellung der mittleren E-C-Abstände / C-E-C-Bindungswinkel in ER_n (R = C₅F₄N, C₆F₅)

2.8.4 Kristallstrukturen von $E(C_5F_4N)_2$ ·DMSO (E = Se, Te)

 $Se(C_5F_4N)_2$ und $Te(C_5F_4N)$ reagieren mit den Lewis-Basen Dimethylsulfoxid (DMSO) und Tetramethylthioharnstoff (TMTU; Kap. 2.8.5) unter Ausbildung von Lewis-Säure/Base-Addukten des Typs $E(C_5F_4N)_2$ ·D.

 $Se(C_5F_4N)_2$ ·DMSO und $Te(C_5F_4N)_2$ ·DMSO kristallisieren isotyp in der monoklinen Raumgruppe $P2_1/c$ (Nr. 14). (Se/Te: a = 958,6(2)/969,1(1) pm, b = 1794,5(2)/1778,2(2) pm, c = 898,3(2)/928,2(1) pm, $\beta = 96,35(1)/98,52(1)^{\circ}$, Z = 4). Da die beiden Addukte isostrukturell sind, werden ihre Molekülstrukturen im Folgenden gemeinsam diskutiert und nur am Beispiel der Te-Verbindung abgebildet. In Abbildung 2-28 ist exemplarisch die Molekülstruktur von Te(C₅F₄N)₂·DMSO dargestellt. Wie diese zeigt, ist das Chalkogen-Atom in $E(C_5F_4N)_2$ ·DMSO (E = Se, Te) nahezu planar von zwei C_5F_4N - und zwei DMSO-Liganden koordiniert, wobei der zweite DMSO-Ligand von einem Nachbarmolekül stammt. Die nahezu ideale Planarität wird mit einer Winkelsumme von 359,70° (Se) bzw. 359,95° (Te) dokumentiert. Die Anordnung der Valenzelektronen entspricht nach dem VSEPR-Modell einem stark verzerrten Oktaeder mit den nichtbindenden Elektronenpaare in den axialen Positionen (AX₄E₂-Typ). Aus der vierfachen Koordination des Chalkogen-Atoms resultiert für E(C₅F₄N)₂·DMSO im Kristall eine polymere Struktur mit parallel angeordneten und unendlichen E-O-Ketten (s. Abb. 2-29 und 2-30). Hierbei sind die durchschnittlichen E-O-Bindungslänge (SeO: 289,2 pm / TeO: 284,9 pm) wesentlich kleiner als die Summe der jeweiligen van der Waals-Radien (SeO/TeO: 340/360 pm [87]), so dass man hier relativ

dative E-O-Bindungen annehmen kann. Die Verkürzung starke dieser dativen Bindungslängen um 4,3 ppm vom Se zum Te korreliert zwar nicht mit dem Größenverhältnis dieser beiden Atomen (r(Se/Te)_{kov}: 117/137 pm [87]); sie steht jedoch in Einklang mit der in den Kapiteln 2.8.2 und 2.8.3 an Hand der Hochfeldverschiebungen der (F-2,6)-Resonanzen postulierten Verlagerung der Elektronendichte in den Bereich um das N-Atom, die in der Tat etwas ausgeprägter bei Te(C_5F_4N)₂·DMSO sind (Se/Te: 2,2/3,3 ppm). Mit anderen Worten: $Te(C_5F_4N)_2$ ist Lewis-azider als $Se(C_5F_4N)_2$. Die mittleren E-C-Bindungsabstände (SeC/TeC: 193,1/213,5 pm) liegen alle im erwarteten Bereich derartiger kovalenter Bindungen. Die Verringerung der C-E-C-Bindungswinkel um ca. 3,7° (Se) bzw. 4,5° (Te) sowie die geringe Verlängerung der E-C-Abstände um ca. 1,4 pm gegenüber denen in den unkomplexierten Verbindungen lassen sich neben dem sterischen Anspruch der DMSO-Liganden mit dem Übergang vom AX₂E₂- zum AX₄E₂-Typ mit 3-Zentren-4-Elektronen-Bindungen (C-Te-O bzw. C-Se-O) erklären. In Tabelle 2-13 sind die wichtigsten Bindungsparameter einiger Diarylchalkogen(II)-Verbindungen zusammengestellt (weitere, ausgewählte interatomare Abstände und Bindungswinkel für $E(C_5F_4N)_2$ ·DMSO (E = Se, Te): siehe Tabellen A6-2 und A6-3 im Anhang).

Abb. 2-28: Koordination von Te^{II} in Te(C_5F_4N)₂·DMSO – analoges gilt für Se(C_5F_4N)₂·DMSO.

Abb. 2-29: Projektion der Kristallstruktur von Te $(C_5F_4N)_2$ ·DMSO entlang [100] - aus Gründen der Übersichtlichkeit sind die Fluoratome der C₅F₄N- und die Methylgruppen der DMSO-Liganden nicht eingezeichnet.

Abb. 2-30: Ausschnitt aus der polymeren Struktur von Te $(C_5F_4N)_2$ ·DMSO - aus Gründen der Übersichtlichkeit sind nur die Te-, die O- und die C_{ipso}-Atome eingezeichnet.

	E-C [pm]	C-E-C [°]	E·D ^{**} [pm]
$Se(C_5F_4N)_2$	191,7	95,81	
$Se(C_6F_5)_2$ [108]	191,1	96,61	
$Se(C_5F_4N)_2 \cdot DMSO$	193,1	92,13	289,2
$Te(C_5F_4N)_2$	212,1	91,29	
$Te(C_6F_5)_2$ [109]	209,7	93,30	
Te(C ₅ F ₄ N) ₂ ·DMSO	213,5	86,82	284,9
Te(C ₅ F ₄ N) ₂ ·TMTU	215,4	87,69	316,2
Te(C ₆ F ₅) ₂ ·TMTU [112]	214,5	90,63	324,6

Tab. 2-13: Gegenüberstellung ausgewählter Bindungsparameter^{*} einiger Diarylchalkogen-Verbindungen und deren DMSO- bzw. TMTU-Addukten

^{*} Durchschnittswerte. ^{**} D: O beim DMSO- und S beim TMTU-Addukt

2.8.5 Kristallstruktur von Te(C₅F₄N)₂·TMTU

Die Kristallstruktur von Te(C₅F₄N)₂·TMTU (a = 1062,5(1) pm, b = 2032(1) pm, c = 901,4(1) pm, β = 90,59°, Z = 4) ist in der monoklinen Raumgruppe P2₁/c (Nr. 14) gelöst worden.

Abb. 2-31: Koordination von Te^{II} in Te(C₅F₄N)₂·TMTU

Die in Abbildung 2-31 dargestellte Molekülstruktur von $Te(C_5F_4N)_2$ ·TMTU ähnelt denen von $Se(C_5F_4N)_2$ ·DMSO und $Te(C_5F_4N)_2$ ·DMSO so sehr, dass das im vorhergehenden Kapitel Gesagte zum größten Teil sich hier übertragen lässt:

- Analoge polymere Struktur aus Te-S-Ketten (wie in Abb. 2-29 und 2-30)
- Pseudo-oktaedrische Anordnung der Valenzelektronen (AX₄E₂-Typ)
- Nahezu ideale Planarität des C₂TeS₂-Strukturfragmentes (Winkelsumme von 359,90°)

Die interatomaren Abstände Te-C liegen mit 215,2 und 215,6 pm knapp oberhalb der Summe der Kovalenzradien von 214 pm [87]. Die Te-S-Bindungslängen (Te1-S31: 317,4 pm; Te-S31': 315,1 pm) sind wesentlich kleiner als die Summe der van der Waals-Radien von 386-405 pm [61, 87]), so dass man hier analog zu den E-O-Bindungen in Se(C_5F_4N)₂·DMSO und Te(C_5F_4N)₂·DMSO relativ starke dative Te-S-Bindungen annehmen kann.

Zum Vergleich der Bindungsverhältnisse bietet sich am besten die Molekülstruktur der analogen C_6F_5 -Verbindung, Te(C_6F_5)₂·TMTU [112], an: Dass die elektronenziehende Wirkung des C_5F_4N - etwas stärker ist als die des C_5F_6 -Liganden, wird hier erneut dokumentiert, nämlich durch die Verringerung des CTeC-Winkels um 3°, die Verlängerung des mittleren C-Te-Abstandes um 1 pm und insbesondere durch die Verkürzung der dativen Te-S-Bindungslänge um ca. 8,4 pm beim Übergang von Te(C_6F_5)₂·TMTU zu Te(C_5F_4N)₂·TMTU (s. Kap. 2.8.4, Tab. 2-13). Die Strukturparameter der TMTU-Liganden sind jedoch in beiden Addukten nahezu identisch (Weitere, ausgewählte interatomare Abstände und Bindungswinkel: siehe Tabelle A7-2 im Anhang).

3 Darstellung und Reinigung der Ausgangsverbindungen

Substanz	Herkunft
AgF	Apollo Scientific Ltd, Bredbury, UK
C_2F_5I	ABCR GmbH, Karlsruhe
Pentafluorpyridin	ABCR
[PNP]Cl	Aldrich GmbH, Taufkirchen
Trimethylchlorsilan	Bayer AG, Leverkusen (Hochschullieferung)
Zink	Merck KgaA, Darmstadt
Cadmium	Merck
Quecksilber	Riedel-de-Haen AG, Seelze-Hannover
Aluminium (Pulver)	Unbekannt
Ga	ABCR
In (In-Shot 1-3 mm)	Heraeus, Karlsruhe
Thallium	Merck
Germanium (lump)	Ventron, Karlsruhe
GeCl ₂ ·Diox	Gelest, Inc.
Zinn (Folie)	Merck
Blei (Staub)	Merck
Arsen	Merck
Antimon	Merck
Bismut	Acros
Schwefel	Unbekannt
Tellur	Merck

Kommerziell erworbene Chemikalien:

Die folgenden Edukte wurden von Herrn Dr. Wieland Tyrra und seinen technischen Assistentinnen, Frau S. Buslei und Frau Silke Kremer, nach Literaturvorschriften dargestellt und freundlicherweise zur Verfügung gestellt:

(CH₃)₃Si(C₂F₃) (CH₃)₃Si(n-C₃F₇) (CH₃)₃Si(n-C₄F₉) (CH₃)₃Si(C₆F₅) P(N(C₂H₅)₃)₃ α -Zinn Se (rot)

Substanz	Literatur
$4H-C_5F_4N$	[113]
$(CH_3)_3Si(C_2F_5)$	[114]

In Anlehnung an Literaturvorschriften hergestellte Ausgangsverbindungen:

Herstellung von Trimethyl(2,3,5,6-tetrafluorpyridyl)silan, Me₃SiC₅F₄N

Die Darstellung von Me₃SiC₅F₄N, erfolgt in zwei Schritten:

- Reduktion von C_5F_5N mit Zn / NH₃ / H₂O zu 4H-C₅F₄N in Anlehnung an [113]

- Lithierung von HC_5F_4N mit BuLi in Et_2O und anschließende Trimethylsilylierung mit Me₃SiCl.

In einem 500 mL-Rundkolben mit Wasserabscheider und Rückflusskühler werden 26,4 g (404,45 mmol) Zn und 135 mL halbkonzentrierte NH₃-Lösung vorgelegt. Dazu werden dann 13 mL (112,4 mmol) C_5F_5N bei 0 °C und unter Rühren gegeben. Nach 5 Stunden Rühren bei dieser Temperatur wird die Reaktionsmischung weitere 12 h bei RT gerührt, mit Wasser verdünnt und langsam auf 110 °C erwärmt. Die organische Phase (untere im Wasserabscheider) wird abgetrennt, mit 2,5 %iger Salzsäure neutralisiert, mit wasserfreiem Na₂SO₄ getrocknet und anschließend abdestilliert (Siedepunkt: 102 °C).

Ausbeute: 14,7 g HC₅F₄N (97,7 mmol, 87 % bezogen auf C_5F_5N)

Kern	δ	Aufspaltung	Kopplung [Hz]	Zuordnung
¹⁹ F	-94,1	s, "br"		F-2,6
	-142,2	m	$^{1}J(^{13}C-^{19}F) = 259$	F-3,5
¹³ C	146,1	dm	$^{1}J(^{13}C-^{19}F) \approx 244$	C-2,6
	144,6	dm	$^{1}J(^{13}C-^{19}F) = 259$	C-3,5
	121,8	dtt	$^{1}J(^{13}C-^{1}H) = 170$	C-4
			$^{2}J(^{13}C-^{19}F) = 21$	
			$^{3}J(^{13}C-^{19}F) = 3,5$	
$^{1}\mathrm{H}$	6,7	m	$^{1}J(^{1}H-^{13}C) = 170$	

NMR-spektroskopische Daten von HC_5F_4N (ohne Lösungsmittel, Aceton-d₆ als externes Lockmittel)

14,5 g HC₅F₄N (97 mmol) werden in 80 mL Diethylether bei –60 °C vorgelegt und dazu 48,5 mL einer 2M Pentanlösung von BuLi (97 mmol) in einem Tropftrichter unter Rühren langsam zugetropft. Nach einer Stunde Rühren bei dieser Temperatur wird die gelbliche Reaktionsmischung auf -40 °C gebracht und mit 12,3 mL (97 mmol) frisch destilliertem Me₃SiCl tropfenweise versetzt. Man lässt die Reaktionsmischung auf RT auftauen, filtriert vom ausgefallenen LiCl ab und entfernt die leichtflüchtigen Bestandteile (Et₂O, Pentan und HC₅F₄N) am Rotationsverdampfer (bis ca. 116 °C).

Der Rückstand (bräunliche, dicke Flüssigkeit) wird mit Na₂SO₄ versetzt und einer fraktionierten Destillation im Vakuum unterzogen.

Siedepunkt: 130 °C bei ca. 0,1 mbar. (Lit. [115]: 40 °C bei ca. 0,6 mbar)

Ausbeute: 16,8 g (CH₃)₃SiC₅F₄N (75,2 mmol, 77 % bezogen auf C₅HF₄N)

NMR-spektroskopische Daten von $(CH_3)_3SiC_5F_4N$ (ohne Lösungsmittel, Aceton-d₆ als externes Lockmittel)

Kern	δ	Aufspaltung	Kopplung [Hz]	Zuordnung
¹⁹ F	-94,2	m	$^{1}J(^{13}C-^{19}F)\approx 250$	F-2,6
	-131,3	m	$^{1}J(^{13}C-^{19}F) \approx 250$	F-3,5
¹³ C	143,8	dm	$^{1}J(^{13}C-^{19}F) = 251$	C-2,6
	142,5	dm	$^{1}J(^{13}C-^{19}F) = 247$	C-3,5
	132,2	t	$^{2}J(^{13}C-^{19}F) = 30$	C-4
	-2,3	q	$^{2}J(^{13}C-^{1}H) = 121$	$(\underline{\mathbf{C}}H_3)_3\mathrm{SiC}_5\mathrm{F}_4\mathrm{N}$
$^{1}\mathrm{H}$	0,5	S	$^{2}J(^{1}H-^{29}Si) \approx 122$	$(C\underline{H}_3)_3SiC_5F_4N$

4 Analyse- und Meßmethoden

Kernresonanzspektren

Die NMR-Spektren wurden mit den NMR-Spektrometern AC 200, AMX 300 und AVANCE 400 der Firma Bruker, Analytische Messtechnik GmbH, Karlsruhe, aufgenommen. Alle ¹⁹F-NMR-Spektren der Reaktionslösungen wurden in 4 mm Innenröhrchen gemessen. Als Locksubstanz diente deuteriertes Aceton, welches sich in einem 5 mm Außenröhrchen befindet. Bei den isolierten Produkten wurden die Proben unter Schutzgas in deuterierten, über Molsiebe getrockneten Lösungsmitteln aufgenommen und gemessen. Messfrequenzen und Standardsubstanzen sind in Tabelle 4-1 aufgeführt. Die Spektren wurden, wenn nicht anders beschrieben, bei Raumtemperatur aufgenommen. Hochfeldverschobene Signale sind mit negativem, tieffeldverschobene mit positivem Vorzeichen relativ zum entsprechenden externen Standard angegeben. Alle chemischen Verschiebungen werden in ppm angegeben. Kopplungskonstanten werden ohne Berücksichtigung der Vorzeichen in Hz angegeben. Die Simulation der Spektren erfolgte mit dem Programm gNMR 4.1.0 für Windows der Firma Ivory Soft, im Vertrieb der Cherwell Scientific Publishing.

Kern	Spektr	Referenzsubstanz		
	AC 200	AMX 300	AVANCE 400	
$^{1}\mathrm{H}$	200,13	-	-	TMS
¹³ C	50,35	75,40	100,61	TMS
¹⁹ F	188,31	282,35	376,49	CCl ₃ F
¹⁹⁹ Hg	-	53,51	71,66	$Hg(CH_3)_2$
¹¹⁹ Sn	-	111,92	149,21	Sn(CH ₃) ₄
¹²⁵ Te	-	-	126,24	$Te(CH_3)_2$
⁷⁷ Se	-	57,24	-	$Se(CH_3)_2$

Tab. 4-1: Messfrequenzen und Standardsubstanzen für die NMR-Spektren

Massenspektren

Die EI-Massenspektren wurden mit den Massenspektrometern CH 5 DE und Thermo Quest Finnigan MAT 95 der Firma Finnigan MAT GmbH, Bremen, aufgenommen. Es wurde das Elektronenstoßionisationsverfahren mit 20 eV verwendet. Die Quellentemperatur betrug 160 °C.
Die ESI-Massenspektren wurden mit einem Massenspektrometer MAT 900S der Firma Finnigan MAT GmbH, Bremen, aufgenommen (3 kV an der Kapillare, MeCN als Solvens, Flussrate 2 µl/min.).

Alle angegebenen Intensitäten beziehen sich auf den intensivsten Peak im Isotopengatter. Die Berechnung der Isotopengatter erfolgte mit dem Programm ISOPRO [116].

Elementaranalysen

Die C, H, N-Analysen wurden mit einem Gerät vom Typ CHNO Rapid der Firma Heraus und einem CHNS Euro Elementaranalysator 3000 der Firma Hekatech durchgeführt. Trägergas ist in beiden Fällen Helium.

Schmelzpunkte

Die Schmelzpunktbestimmungen erfolgten mit einem Schmelzpunktbestimmungsgerät vom Typ MFB-595-010M der Firma Gallenkamp, England sowie mit einer Schmelzpunktbestimmungsapparatur vom Typ Stuart SMP10 der Firma Bibby Sterlin LTD, England.

Röntgenstrukturanalyse

Die Sammlung der Röntgenbeugungsdaten erfolgte mit einem Flächenzähler-Diffraktometer (IPDS II, Stoe & Cie., Mo K $_{\alpha}$, $\lambda = 71,073$ pm, 50 kV, 40 mA, Graphitmonochromator [002]). Für die Röntgenstrukturanalyse wurde jeweils ein Einkristall unter dem Polarisationsmikroskop in ein Markröhrchen überführt und mit wenig Schliffett fixiert. Schwingungsellipsoide in den Abbildungen der Molekülstrukturen sind mit einer Wahrscheinlichkeit von 50 % gezeichnet.

5 Experimenteller Teil

Alle Umsetzungen wurden mit Schlenk- und Standardvakuum-Techniken unter Luft- und Feuchtigkeitsausschluss in einer Stickstoffatmosphäre durchgeführt.

Allgemeine Synthesevorschrift für Perfluororganylsilber(I)-Lösungen in Propionitril:

Die Herstellung der Propionitril-Lösungen von Perfluororganylsilber(I)-Verbindungen erfolgt in Anlehnung an [25]. Bei allen unten durchgeführten Ansätzen wird, wenn nicht anders beschrieben, in einem Maßstab von 2 mmol gearbeitet.

Zu einer gerührten Suspension von 0,25 g (2,0 mmol) AgF in ca. 6 ml Propionitril werden bei Raumtemperatur 2,2 mmol Me₃SiR_f auf einmal gegeben. Bei den meisten Ansätzen wird kurz nach der Zugabe des Silans eine leicht exotherme Reaktion und eine von der Bildung eines Silberspiegels begleiteten Schwarzfärbung der Reaktionsmischung beobachtet. Nach ca. 2 Stunden Rühren wird das entstandene Me₃SiF und der eventuell noch vorhandene Überschuss an Me₃SiR_f im Vakuum destillativ entfernt. Die so erhaltenen, farblosen Lösungen werden von dem schwarzen Bodenkörper abpipettiert oder abdekantiert und ohne weitere Reinigung für weitere Umsetzungen verwendet. Für die direkten Umsetzungen mit den Elementen (Kap. 5.2-5.8) wird auf diese Trennung verzichtet.

5.1 Versuche zur Darstellung neuer sowie bereits bekannter Perfluororganylsilber(I)-Verbindungen

5.1.1 Umsetzungen von Me₃Si(C₂F₅) mit AgF in Propionitril und in Triethylamin

Ansatz in Propionitril:

Die Umsetzung erfolgt aus 2 mmol AgF und 2,2 mmol $Me_3Si(C_2F_5)$ nach der oben beschriebenen Arbeitsvorschrift. Nach einer Reaktionszeit von ca. 2 Stunden wird die Reaktionslösung ¹⁹F-NMR-spektroskopisch bei Raumtemperatur untersucht.

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
-73,6	S	0,12	$^{1}J(^{13}C-^{19}F) = 290^{**}$	AgOCOCF ₃
			$^{2}J(^{13}C-^{19}F) = 36^{**}$	
-75,1	S	0,01		?
-75,3	S	0,01		?
-81,8	S	0,05		?
-82,7	S	0,04		?
-84,3 / -84,6	s, br	2,22*		$Ag(CF_2C\mathbf{F}_3)$ und
				$[Ag(CF_2C\underline{F}_3)_2]^-$
-85,7	q	0,36	$^{3}J(^{19}F-^{19}F) = 3$	$CHF_2C\underline{F}_3$
-86,6	S	0,05		?
-109,0	s, br	0,55		$Ag(C\underline{F}_2CF_3)$
-110,9	q	0,05	$^{3}J(^{19}F-^{19}F) = 19$?
-112,6	d	1,00	$^{2}J(^{109}Ag-^{19}F) \approx 46$	$[Ag(C\underline{F}_2CF_3)_2]^-$
-118,7	S	0,03		?
-121,5	S	0,01		?
-138,9	S	0,07		?
-139,2	dq	0,23	$^{3}J(^{19}F-^{19}F) = 3$	$CH\underline{F}_2CF_3$
			$^{2}J(^{19}F-^{1}H) = 51$	
-157,2	m	0,56	${}^{1}J({}^{29}Si{}^{-19}F) = 274$	Me ₃ SiF

¹⁹F-NMR-Spektrum der Reaktionslösung nach 2 h Rühren bei RT

*Da sich die zwei Resonanzen überlagern, werden die Signale gemeinsam integriert.

** Entnommen aus einem anderen Spektrum in CD₃CN

Ansatz in Triethylamin:

Bei diesem Ansatz ginge es nur darum, zu überprüfen, ob die in der analogen Reaktion in Propionitril beobachtete Zersetzung zu AgOCOCF₃ (s. Kap. 2.1.1) ebenfalls in Triethylamin eintritt. Die Umsetzung erfolgt aus 3 mmol AgF und 3,2 mmol Me₃Si(C₂F₅) analog der allgemeinen Arbeitsvorschrift auf Seite 67. Nach 2 Stunden Rühren wird die Reaktionslösung ¹⁹F-NMR-spektroskopisch bei Raumtemperatur untersucht.

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
-82,6	S	0,04		$Me_3SiCF_2C\mathbf{F}_3$
-85,1	d	1,46	$^{3}J(^{109}Ag-^{19}F) \approx 8$	AgCF ₂ C <u>F</u> ₃ ·NEt ₃
			$^{1}J(^{13}C-^{19}F) = 280$	
			$^{2}J(^{13}C-^{19}F) = 55$	
-86,6	q	0,01	$^{3}J(^{19}F-^{19}F) = 3$	$CHF_2C\mathbf{F}_3$
-103,6	m (8 Linien)	0,02	${}^{n}J(?-?) = 7$?
-109,2 (-109,6)*	dm	1,00 (1,00)*	2 J(109 Ag- 19 F) ≈ 66	AgC <u>F</u> ₂ CF ₃ ·NEt ₃
			$^{1}J(^{13}C-^{19}F) = 302$	
-111,7 (-112,1)*	d	0,01 (0,04)*	$^{2}J(^{109}\text{Ag-}^{19}\text{F})\approx 50$	$[Ag(C\underline{F}_2CF_3)_2]^-$
-129,3	m	0,03		$Me_3SiC\underline{F}_2CF_3$

¹⁹F-NMR-Spektrum der Reaktionslösung

* Literaturdaten [20]

5.1.2 Darstellung und Kristallisation von [PNP][Ag(C₂F₅)₂]

Eine Lösung von Ag(C₂F₅) in EtCN - hergestellt aus 2 mmol AgF und 2,2 mmol Me₃Si(C₂F₅) nach der allgemeinen Arbeitsvorschrift auf Seite 67 - wird zu einer Lösung von 0,7 g [PNP]Cl (1,22 mmol) in 5 ml EtCN unter Rühren gegeben. Die überstehende Lösung wird durch Abpipettieren vom ausgefallenen AgCl getrennt und im Vakuum bis zur Trockene eingeengt. Es bleibt ein farbloser, kristalliner Feststoff zurück, welcher in DMF-d₇ ¹⁹F-NMR-spektroskopisch untersucht wird.

¹⁹F-NMR-Spektrum des Rückstandes in DMF-d₇, gemessen bei RT

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
-73,2	S	2,95	$^{1}J(^{13}C-^{19}F) = 295$	AgOCOCF ₃
			$^{2}J(^{13}C-^{19}F) = 34$	
-83,2	m	0,96	$^{3}J(^{109}Ag-^{19}F) \approx 7$	$[\operatorname{Ag}(\operatorname{CF}_2\operatorname{C}\mathbf{\underline{F}}_3)_2]^-$
-83,5	S	1,36		$AgCF_2C\underline{F}_3$ ·D oder $[Ag(CF_2C\underline{F}_3)Cl]^-$
-83,6	S	0,08		?
-83,9	S	0,08		?
-85,0	q	0,22		$\mathrm{CHF}_2\mathrm{C}\mathbf{\underline{F}}_3$
-106,7	d	1,00	$^{2}J(^{109}Ag-^{19}F)\approx 63$	$AgC \underline{F}_2 CF_3 \cdot D \text{ oder } [Ag(CF_2 CF_3)Cl]^-$
-111,5	dq	0,70	$^{2}J(^{109}Ag-^{19}F)\approx 47$	$[Ag(C\underline{F}_2CF_3)_2]^-$
-113,9	S	0,10		?
-139,0	dq	0,09		$CH \underline{F}_2 CF_3$
-139,6	m	0,08		?
-174,0	s, br	2,21		"HF" [117]

Farbloses und zum Teil einkristallines Material wurde durch langsames Aufkondensieren von Et_2O aus der bei Raumtemperatur stehenden Hälfte eines H-Rohrs auf die andere Hälfte, in der eine gesättigte EtCN-Lösung bei -60 °C vorliegt, erhalten. Es wurden Einkristalle von [PNP][Ag(C₂F₅)₂] erhalten und röntgenographisch untersucht (Kristalldaten und Einzelheiten zur Kristallstrukturbestimmung: siehe Tabelle A1-1 im Anhang).

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
-73,0	S	1,90	$^{1}J(^{13}C-^{19}F) = 294$	AgOCOCF ₃
-83,2	S	1,30		$[Ag(CF_2C\underline{F}_3)_2]^-$
-83,6	S	1,44		$AgCF_2C\underline{F}_3$ ·D oder $[Ag(CF_2C\underline{F}_3)Cl]^-$
-83,9	S	0,05		?
-85,0	m	0,11		$CHF_2C\mathbf{F}_3$
-106,7	s, br	1,00		$AgC\underline{F}_2CF_3$ ·D oder $[Ag(C\underline{F}_2CF_3)Cl]^-$
-111,6	d	0,90	$^{2}J(^{109}Ag-^{19}F) \approx 46$	$[Ag(C\mathbf{F}_2CF_3)_2]^-$
-113,9	S	0,06		?
-139,0	dm	0,01		$CH\underline{F}_2CF_3$
-139,6	m	0,05		?
-176,9	s, br	1,60		"HF" [117]

¹⁹F-NMR-Spektrum des Kristallisates in DMF-d₇, gemessen bei RT

5.1.3 Darstellung von 4-Tetrafluorpyridylsilber(I), AgC₅F₄N

Zu einer Suspension von 0,25 g (2,00 mmol) AgF in 5 ml EtCN werden 0,46 g (2,10 mmol) $Me_3Si(C_5F_4N)$ gegeben und es wird 2 Stunden bei Raumtemperatur gerührt. Anschließend wird die farblose Reaktionslösung von dem schwarzen Bodenkörper (Ag, sehr wenig) abpipettiert und im Vakuum bis zur Trockene eingeengt. Es bleibt ein farbloser, nicht kristalliner Feststoff zurück (licht- und hydrolyseempfindlich, schlecht löslich in CD_2Cl_2).

¹⁹F-NMR-Spektrum der Reaktionslösung nach 2 h Rühren bei RT

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
-92,7	s, br	0,06		F-2,6 / C ₅ HF ₄ N
-94,7	m	0,03		F-2,6 / Me ₃ SiC ₅ F ₄ N
-98,9	m	0,99		F-2,6 / Ag(C ₅ F ₄ N)·EtCN
-114,1	m	1,00	$^{1}J(^{13}C-^{19}F)\approx 228$	F-3,5 / Ag(C ₅ F ₄ N)·EtCN
-130,8	m	0,04		F-3,5 / Me ₃ SiC ₅ F ₄ N
-140,7	m	0,07		F-3,5 / C ₅ HF ₄ N
-157,0	m	0,37		Me ₃ SiF

δ	Aufspaltung	Kopplung [Hz]	Zuordnung
152,0	t	$^{2}J(^{13}C-^{19}F) = 76$	C-4
145,8	dm	$^{1}J(^{13}C-^{19}F) = 228$	C-3,5
142,5	dm	$^{1}J(^{13}C-^{19}F) = 247$	C-2,6
121,3	t		CH ₃ CH ₂ CN
10,7	tq		CH ₃ <u>C</u> H ₂ CN
10,1	qt		<u>C</u> H ₃ CH ₂ CN

¹³C-NMR-Spektrum von $Ag(C_5F_4N)$ ·EtCN in (CD_2Cl_2/CD_3CN^*)

* Der Probe wurden einige Tropfen CD₃CN zugesetzt, da der Feststoff in CD₂Cl₂ schlecht löslich ist.

Massenspektrum von AgC₅F₄N·EtCN (neg. ESI in Acetonitril)

m/z	rel. Intensität [%]	Zuordnung
924	3	$[Ag_3(C_5F_4N)_4]^{-*}$
665	100	$[Ag_2(C_5F_4N)_3]^-$
541	2	?
407	76	$[Ag(C_5F_4N)_2]^2$

^{*} Keine 100 %ige Übereinstimmung der detektierten mit den berechneten Isotopengattern

5.1.4 Darstellung und Kristallisation von [PNP][Ag(C₅F₄N)₂]

Eine Lösung von $Ag(C_5F_4N)$ in EtCN (hergestellt aus 2 mmol AgF und 2,20 mmol Me₃Si(C₅F₄N) nach der allgemeinen Synthesevorschrift auf Seite 67) wird zu einer Lösung von 0,64 g [PNP]Cl (1,00 mmol) in 6 ml EtCN unter Rühren gegeben. Es fällt augenblicklich ein weißer Feststoff aus (AgCl), welcher im Anschluss daran abfiltriert wird. Das Filtrat wird im Vakuum bis zur Trockene eingeengt. Der zurückbleibende Feststoff wird mit Pentan dreimal gewaschen und erneut im Vakuum getrocknet.

Farblose Einkristalle von $[PNP][Ag(C_5F_4N)_2]$ werden durch Umkristallisieren aus $CH_2Cl_2/(C_2H_5)_2O$ und Lagerung über mehrere Tage bei -20 °C erhalten (Kristalldaten und Einzelheiten zur Kristallstrukturbestimmung: siehe Tabelle A2-1 im Anhang).

Ausbeute: 0,91g [PNP][Ag(C₅F₄N)₂] (0,96 mmol, 96 % bezogen auf AgF)

Elementaranalyse (berechnet): C 58,36 (57,64), H 3,20 (3,44), N 4,44 (3,55)

δ	Aufspaltung	Integral	Zuordnung
-92,8	m	0,01	F-2,6 / C ₅ HF ₄ N
-99,4	m	1,00	F-2,6 / [PNP][Ag(C ₅ F ₄ N) ₂]
-114,8	m	0,97	F-3,5 / [PNP][Ag(C ₅ F ₄ N) ₂]
-140,8	m	0,01	F-3,5 / C ₅ HF ₄ N

¹⁹F-NMR-Spektrum von [PNP][Ag(C₅F₄N)₂] in EtCN

5.1.5 Versuch zur Darstellung und zur Kristallisation von [PNP][Ag(C₆F₅)₂]

Eine Lösung von $Ag(C_6F_5)$ in EtCN - hergestellt aus 2 mmol AgF und 2,2 mmol Me₃Si(C₆F₅) nach der allgemeinen Arbeitsvorschrift auf Seite 67 - wird zu einer Lösung von 1,43 mmol (0,82 g) [PNP]Cl in 5 ml EtCN unter Rühren gegeben. Dabei wird im Unterschied zu der Umsetzung mit AgC₃F₄N keine augenblickliche Fällung von AgCl beobachtet. Da nach einigen Minuten Rühren nur eine ganz schwache Trübung auftritt, wird der Ansatz über Nacht weiter gerührt. Danach wird die überstehende, schwach bräunliche Lösung vom schwarzen Bodenkörper abpipettiert, im Vakuum eingeengt und ¹⁹F-NMR-spektroskopisch untersucht.

Δ	Aufspaltung	Integral	Zuordnung
-106,4	m	1,89	$F-2,6 [Ag(C_6F_5)_2]^{-} / [Ag(C_6F_5)Cl]^{-}$
-139,3	m	0,15	F-2,6 / C ₆ F ₅ H
-155,0	t	0,09	$F-4 / C_6 F_5 H$
-161,1	t	1,00	$F-4 [Ag(C_6F_5)_2]^- / [Ag(C_6F_5)Cl]^-$
-162,5	m	1,96	$F-3,5 [Ag(C_6F_5)_2]^- / [Ag(C_6F_5)Cl]^-$
-163,0	m	0,16	F-3,5 / C ₆ F ₅ H

¹⁹F-NMR-Spektrum der Reaktionslösung nach 16 h Rühren bei RT

Die Reaktionslösung wird anschließend im Vakuum bis zur Trockene eingeengt. Der dadurch zurückbleibende, etwas bräunliche Feststoff wird mit kaltem Pentan solange gewaschen, bis er farblos wird.

¹⁹F-NMR-Spektrum des Feststoffes in DMF-d₇, gemessen bei RT

δ	Aufspaltung	Zuordnung
-105,5 (-105,5)*	m, scharf	F-2,6 $[Ag(C_6F_5)_2]^{-}/[Ag(C_6F_5)Cl]^{-}$
-160,6 (-160,0)*	t t, scharf	F-4 $[Ag(C_6F_5)_2]^{-} / [Ag(C_6F_5)Cl]^{-}$
-162,0 (-161,4)*	m, scharf	F-3,5 $[Ag(C_6F_5)_2]^{-} / [Ag(C_6F_5)Cl]^{-}$

Literaturdaten für [Ag(C₆F₅)₂]⁻ in DMF-d₇, gemessen bei -60 °C [21]

Farbloses, einkristallines Material wurde durch langsames Aufkondensieren von Et₂O aus der bei Raumtemperatur stehenden Hälfte eines H-Rohrs auf die andere Hälfte, in der eine gesättigte EtCN-Lösung bei -10 °C vorliegt, erhalten. Es wurden Einkristalle von [PNP]₂[Ag₂Cl₄] erhalten und röntgenographisch untersucht (Kristalldaten und Einzelheiten zur Kristallstrukturbestimmung: siehe Tabelle A1-1 im Anhang).

5.1.6 Umsetzung von Me₃Si(C₂F₃) mit AgF

Zu einer Suspension von 0,74 g (5,83 mmol) AgF in 15 ml EtCN werden 0,46 g (6,00 mmol) $Me_3Si(C_2F_3)$ gegeben und die Reaktionsmischung wird 2 Stunden bei Raumtemperatur gerührt. Die überstehende, leicht bräunliche Reaktionslösung wird vom schwarzen Bodenkörper abpipettiert und ¹⁹F-NMR-spektroskopisch untersucht.

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung	Lit.
-77,0	dd	0,96	$^2J(F^a-F^b) = 62$	F ^a / AgCF=CF ₂	
-100,5	m	0,02		F ^a / CHF=CF ₂	[117]
-114,9	dd	1,00	${}^{3}J(F^{b}-F^{c}) = 101$	F ^b / AgCF=CF ₂	
-125,9	m	0,02		F ^b / CHF=CF ₂	[117]
-138,3	d	0,12		Me_2SiF_2 (?)	
-157,2	m	0,62		Me ₃ SiF	
-173,0	dd	1,03	$^{3}J(F^{c}-F^{a}) = 39$	$F^{c} / AgCF = CF_{2}$	
-204,7	m	0,02		F ^c / CHF=CF ₂	[117]

¹⁹F-NMR-Spektrum der Reaktionslösung nach 2 h Rühren bei RT

Die Reaktionslösung wird im Vakuum bis zur Trockene eingeengt. Der dadurch zurückbleibende weiß-gelbliche Feststoff wird über zwei Tage im Vakuum weitgehend getrocknet und anschließend NMR-spektroskopisch untersucht.

NMR-Daten des getrockneten Reaktionsproduktes in CDCl₃

Kern	δ	Aufspaltung	Kopplung [Hz]	Zuordnung
¹⁹ F	-61,9 (-73,3) [*]	dd	$^{2}J(F^{a}-F^{b}) = 35(54)^{*}$	$F^a / AgCF = CF_2$
	-106,1 (-114,1)*	dd	${}^{3}J(F^{b}-F^{c}) = 105 (102)^{*}$	$F^{b} / AgCF = CF_{2}$
	-175,8 (-175,7)*	dd	${}^{3}J(F^{c}-F^{a}) = 38(39)^{*}$	$F^{c} / AgCF = CF_{2}$
${}^{13}C$ **	170,0	ddd	¹ J _{CF} : 270 / 334	$AgCF = \underline{C}F_2$
			² J _{CF} : 31	
	131,6	ddd	${}^{1}J_{CF}$: 290	Ag <u>C</u> F=CF ₂
			² J _{CF} : 95 / 15	
$^{1}\mathrm{H}$	2,38	q		CH ₃ C <u>H</u> ₂ CN
	1,29	t		$C\underline{H}_{3}C\overline{H}_{2}CN$
*	**			

In THF-d₈. In (CDCl₃/THF-d₈)

m / z	rel. Intensität [%]	Zuordnung
756	10	$[Ag_4(C_2F_3)_4]^+$
675	6	$[Ag_4(C_2F_3)_3]^+$
567	1	$[Ag_3(C_2F_3)_3]^+$
485	8	$[Ag_3(C_2F_3)_2]^+$
405	2	$[Ag_3(C_2F_3)]^+$
181	100	$[C_4F_7]^+$?
162	72	$[C_4F_6]^+$?
131	48	$[C_3F_5]^+$?
93	24	?
69	8	$\left[\mathrm{CF}_3\right]^+?$

EI-Massenspektrum des Feststoffes (20 eV)

5.2 Umsetzungen von Perfluoralkylsilber(I)-Verbindungen mit Zinn

5.2.1 Umsetzung von Ag(C₂F₅)·EtCN mit Sn

Zu einer Lösung von Ag(C₂F₅) in EtCN - hergestellt aus 0,76 g (6,00 mmol) AgF und 1,20 g (6,20 mmol) Me₃Si(C₂F₅) nach der allgemeinen Synthesevorschrift auf Seite 67 - werden 0,23 g (2,00 mmol) α -Zinn bei 0 °C unter Rühren gegeben. Die Reaktionsmischung wird dann über einen Zeitraum von ca. 3 h allmählich auf Raumtemperatur erwärmt und weitere 16 h gerührt. Die überstehende gelbliche Lösung wird von dem grauen, metallisch aussehenden Bodenkörper abpipettiert und ¹⁹F-NMR-spektroskopisch untersucht. Der metallische Rückstand besteht neben sehr wenig Zinn (ca. 4 %) zum größten Teil aus Silber, welches durch einen Lösungsversuch in konzentrierter Salpetersäure und nachfolgende Fällung mit HCl-Lösung als AgCl nachgewiesen wird.

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
-82,9	S	1,41	$^{3}J(^{19}F-^{119}Sn) = 42$	$[\operatorname{Ag}(\operatorname{Sn}(\operatorname{CF}_2\operatorname{C}\underline{\mathbf{F}}_3)_3)_2]^{-1}$
-85,8	q	0,03		$CHF_2C\underline{F}_3$
-16,3	S	1,00	$^{2}J(^{19}F-^{119}Sn) = 143$	$[\operatorname{Ag}(\operatorname{Sn}(\operatorname{C}\mathbf{F}_2\operatorname{CF}_3)_3)_2]^{-1}$
			${}^{1}J({}^{19}F-{}^{13}C) = 305$	
-139,2	dq	0,05		$CH\underline{F}_2CF_3$

¹⁹F-NMR-Spektrum der Reaktionslösung nach ca. 16 h Rühren bei RT

Nach Abkondensieren der flüchtigen Bestandteile im Vakuum bleibt ein rotbraunes Öl zurück.

δ	Aufspaltung	Kopplung [Hz]	Zuordnung
-83,8	S	$^{3}J(^{119}Sn-^{19}F) = 40$	$[\operatorname{Ag}(\operatorname{Sn}(\operatorname{CF}_2\operatorname{C}\underline{\mathbf{F}}_3)_3)_2]^{-1}$
		${}^{1}J({}^{13}C-{}^{19}F) = 284$	
-116,0	S	$^{2}J(^{119}Sn-^{19}F) = 162$	$[Ag(Sn(C\underline{\mathbf{F}}_2CF_3)_3)_2]^{-1}$
		$^{1}J(^{13}C-^{19}F) = 304$	

¹⁹F-NMR-Daten des Reaktionsproduktes in CD₂Cl₂

¹¹⁹Sn-NMR-Spektrum von "AgSn(C₂F₅)₃" (CD₂Cl₂, RT): Multiplett (mindestens 24 Linien) bei -57,5 ppm

Massenspektrum von "AgSn $(C_2F_5)_3$ " (neg. ESI in CH₃CN)

m/z	rel. Intensität [%]	Zuordnung
1365	30	$[Ag_2Sn_3(C_2F_5)_4(C_2F_4)_2]^{-}(?)$
1279	20	?
1097	96	$[Ag(Sn(C_2F_5)_3)_2F_2]^-(?)^*$
1059	74	$[Ag(Sn(C_2F_5)_3)_2]^{-}(?)^{**}$
996	28	?
898	22	?
784	16	?
696	100	$[CF_{3}CO_{2}AgSn(C_{2}F_{5})_{3}]^{-***}$
606	20	?
506	10	?
413	4	?
227	4	?
101	2	$[HC_2F_4]^-$

* Auf jeden Fall eine C₂F₅-substituierte AgSn₂-Spezies ** Berechneter und detektierter Isotoppengatter stimmen miteinander nicht vollständig überein.

**** 100 %ige Übereinstimmung der detektierten Isotopengattern mit den berechneten

m / z	rel. Intensität [%]	Zuordnung
54	46	$\left[\mathrm{C_{2}H_{4}CN}\right]^{+}$
100	64	$[C_2F_4]^+$
295	32	?
239	18	?
377	14	?
632	100	$[Sn_2(C_2F_5)_3F_2]^+$
732	6	$[Sn_2(C_2F_5)_4F]^+$
832	3	$\left[\operatorname{Sn}_2(\operatorname{C}_2\operatorname{F}_5)_5\right]^+$

EI-Massenspektrum von "AgSn(C₂F₅)₃" (20 eV)

5.2.2 Umsetzung von Ag(n-C₃F₇)·EtCN mit Sn

Zu einer Lösung von Ag(n-C₃F₇) in EtCN - hergestellt aus 0,76 g (6 mmol) AgF und 1,5 g (6,20 mmol) Me₃Si(n-C₃F₇) nach der allgemeinen Synthesevorschrift auf Seite 67 - werden 0,23 g (2,00 mmol) α -Zinn bei RT unter Rühren gegeben. Die Reaktionsmischung wird weitere 16 h gerührt. Anschließend wird die überstehende gelbliche Lösung von dem grauen, metallisch aussehenden Bodenkörper abpipettiert und im Vakuum vom Lösungsmittel und den anderen flüchtigen Bestandteilen befreit. Es bleibt ein rotbraunes Öl zurück.

¹⁹F-NMR-Spektrum der Reaktionslösung nach ca. 16 h Rühren bei RT

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
-79,8	t	1,38		$CF_3 / ,,AgSn(C_3F_7)_3$ "
-79,9	t	0,36		CF ₃ / ?
-113,8	m	1,00	$^{2}J(^{19}F-^{119}Sn) = 130$	α -CF ₂ / ,,AgSn(C ₃ F ₇) ₃ "
-114,9	S	0,30	$^{2}J(^{19}F-^{119}Sn) = 94$	α -CF ₂ /?
-121,3	m	0,98	$^{3}J(^{19}\text{F-}^{119}\text{Sn}) = 110$	β -CF ₂ / "AgSn(C ₃ F ₇) ₃ "
-122,3	S	0,34	$^{3}J(^{19}F-^{119}Sn) = 70$	β -CF ₂ / ?

EI-Massenspektrum des öligen rotbraunen Rückstandes (20 eV)

m / z	rel. Intensität [%]	Zuordnung
1248	2	$[Sn_2(C_3F_7)_6]^+(?)$
1098	5	$[Sn_2(C_3F_7)_5F]^+$
1082	100	$[Sn_2(C_3F_7)_5]^+$
967	8	?

Eine Probe von dem oben erhaltenen rotbraunen Öl wird in einem Schlenkrohr mit Kühlfinger bis auf 140 °C im Vakuum langsam erhitzt. Hierbei schlägt sich ein rotbraunes Öl an dem Kühlfinger nieder. Im Schlenkrohr bleibt ein schwarzer Feststoff zurück, welcher nicht weiter untersucht wurde. Das "Sublimat" wurde ¹⁹F-, ¹¹⁹Sn-NMR-spektroskopisch und massenspektrometrisch untersucht.

δ	Aufspaltung	Kopplung [Hz]	Zuordnung
-79,8	t	${}^{3}J({}^{19}F-{}^{19}F) = 19$	$Sn_2(CF_2CF_2C\underline{F_3})_6$
-113,2	S	$^{2}J(^{19}F-^{119}Sn) = 474$	$Sn_2(C\underline{F}_2CF_2CF_3)_6$
-121,3	S		$Sn_2(CF_2C\underline{F}_2CF_3)_6$

¹⁹F-NMR-Daten des Thermolyseproduktes (CD₃CN)

¹¹⁹Sn-NMR-Daten (CD₃CN): $\delta(^{119}Sn) = -545 \pm 1 \text{ ppm}, \ ^1J(^{119}Sn-^{117}Sn) = 1340 \pm 100 \text{ Hz}.$

m / z	rel. Intensität [%]	Zuordnung
1098	4,5	$[Sn_2(C_3F_7)_5F]^+$
1082	< 2	$[Sn_2(C_3F_7)_5]^+$
782	4	$[(C_3F_7)_3Sn_2F_2]^+$
760	9	?
626	5	$[(C_3F_7)_3Sn]^+$
477	42	$\left[(C_3F_7)_2SnF\right]^+$
150	36	$[C_3F_6]^+$
139	68	$[SnF]^+$
131	100	$[C_3F_5]^+$
55	77	$[EtCN]^+$

EI-Massenspektrum des Thermolyseproduktes (20 eV)

5.2.3 Umsetzung von Ag(n-C₄F₉)·EtCN mit Sn

Die Umsetzung und die Aufarbeitung erfolgten wie für das C_3F_7 -Derivat bereits beschrieben (Kap. 5.2.2). Auch hier wird ein rotbraunes Öl erhalten.

δ	Aufspaltung	Kopplung [Hz]	Zuordnung
-81,3	t		$CF_3 / [Ag(Sn(C_4F_9)_3)_2]^-$
-113,1	S	$^{2}J(^{19}F-^{119}Sn) = 130$	α -CF ₂ / [Ag(Sn(C ₄ F ₉) ₃) ₂] ⁻
-117,2	S	$^{3}J(^{19}F-^{119}Sn) = 117$	β -CF ₂ / [Ag(Sn(C ₄ F ₉) ₃) ₂] ⁻
-125,8	t		γ -CF ₂ / [Ag(Sn(C ₄ F ₉) ₃) ₂] ⁻
Vier weitere.	, äußerst schwache	Signale, werden dem Hydro	plyseprodukt C_4F_9H zugeordnet.

¹⁹F-NMR-Spektrum der Reaktionslösung nach ca. 16 h Rühren bei RT

δ	Aufspaltung	Kopplung [Hz]	Zuordnung
-82,4	t	${}^{3}J({}^{19}F-{}^{19}F) = 10$	$CF_3 / [Ag(Sn(C_4F_5)_9)_2]^-$
		${}^{1}J({}^{19}F-{}^{13}C) = 286$	
-113,7	S	$^{2}J(^{19}F-^{119}Sn) = 133$	α -CF ₂ / [Ag(Sn(C ₄ F ₅) ₉) ₂] ⁻
-118,0	S	$^{3}J(^{19}F-^{119}Sn) = 116$	β -CF ₂ / [Ag(Sn(C ₄ F ₅) ₉) ₂] ⁻
-126,7	t	${}^{3}J({}^{19}F-{}^{19}F) = 11$	γ -CF ₂ / [Ag(Sn(C ₄ F ₅) ₉) ₂] ⁻

¹⁹F-NMR-Spektrum des Öls in CD₃CN

¹¹⁹Sn-NMR-Spektrum von "AgSn(C₄F₉)₃" (CD₃CN, RT): Multiplett bei -35,3 ppm mit ²J(¹⁹F-¹¹⁹Sn) \approx 130 Hz

Massenspektrum von "AgSn(n-C₄F₉)₃" (neg. ESI in Acetonitril)

m/z	rel. Intensität [%]	Zuordnung
546	100	$[Ag(C_4F_9)_2]^{-*}$
776	12	$[Sn(C_4F_9)_3]^{-*}$

100 %ige Übereinstimmung der detektierten mit den berechneten Isotopengattern

m / z	rel. Intensität [%]	Zuordnung
1333	50	$[Sn_2(C_4F_9)_5]^+$
933	86	$[Sn_2(C_4F_9)_3F_2]^{+*}$
911	13	?
777	8	$[Sn(C_4F_9)_3]^{+*}$
593	40	?
577	28	$\left[\operatorname{Sn}(\operatorname{C_4F_9})_2\operatorname{F}\right]^+$
295	12	?
181	100	$\left[\mathrm{C}_{4}\mathrm{F}_{7}\right]^{+}$
139	48	?
44	76	$[\mathrm{CO}_2]^+$

EI-Massenspektrum von "AgSn $(C_4F_9)_3$ " (20 eV)

* 100 %ige Übereinstimmung der detektierten mit den berechneten Isotopengattern

5.3 Umsetzungen von "AgSn(R_f)₃" mit Quecksilber ($R_f = C_2F_5$, n-C₄F₉)

5.3.1 Umsetzung von "AgSn(C₂F₅)₃" mit Hg

Zu einer in Kap. 5.2.1 erhaltenen Lösung von "AgSn(C_2F_5)₃" in EtCN wird elementares Quecksilber im Überschuss zugegeben. Nach ca. 5 Minuten Rühren scheidet sich ein grauschwarzer Feststoff aus (Ag), welcher dann aus der Reaktionsmischung durch Amalgambildung mit dem überschüssigem Hg so gebunden wird, dass sich die rotbraune Reaktionslösung durch Abdekantieren leicht abtrennen lässt. Nach Abkondensieren der leichtflüchtigen Bestandteile und des Lösungsmittels im Vakuum bleibt ein rotbraunes Öl zurück.

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
-82,1	S			CF ₃ / ?
-82,2	d			CF ₃ / ?
-82,5	,, t ''		$^{3}J(^{19}F-^{19}F) = 16$	$CF_3 / Hg[Sn(C_2F_5)_3]_2$
-83,3	S		$^{?}J(^{19}F-?) = 70$	CF ₃ / ?
-83,6	S		$^{?}J(^{19}F-?) = 71$	CF ₃ / ?
-107,7	S	0,02	$^{9}J(^{19}F-^{119/117}Sn) \approx 178/172$	CF ₂ / ?
-110,0	S	0,04		CF ₂ / ?
-110,5	S	1,00	2 J(19 F- $^{119/117}$ Sn) $\approx 236/233$	$CF_2 / Hg[Sn(C_2F_5)_3]_2$
			$^{3}J(^{19}F-^{199}Hg) = 121$	
			${}^{4}J({}^{19}F-{}^{119}Sn) = 39$	
-110,6	S	0,06		?
-111,6	S	0,33	$^{?}J(^{19}F-?) = 61$	CF ₂ / ?

¹⁹F-NMR-Spektrum der Reaktionslösung

¹¹⁹Sn{¹⁹F}-NMR-Spektrum des Öls in CD₃CN

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
88,0	S	0,24	$^{1}J(^{119}Sn-^{199}Hg) = 17559$?
			$^{?}J(^{119}Sn-?) = 6145$	
72,1	S	1,00	$^{1}J(^{119}Sn-^{199}Hg) = 29435$	$Hg[Sn(C_2F_5)_3]_2$
			$^{2}J(^{119}Sn-^{117}Sn) = 10515$	
			$^{?}J(^{119}Sn-?) = 2037$	
			$^{?}J(^{119}Sn-?) = 206$	
30,6	m	0,05		?

δ	Aufspaltung	Kopplung [Hz]	Zuordnung
-192,5	S	$^{1}J(^{199}Hg-^{119/117}Sn) = 17554 / 16778$?
-743,6	s, br	$^{1}J(^{199}\text{Hg-}^{119/117}\text{Sn}) \approx 29391/28186$	$Hg[Sn(C_2F_5)_3]_2$

¹⁹⁹Hg{¹⁹F}-NMR-Spektrum des Öls in CD₃CN

5.3.2 Umsetzung von "AgSn(n-C₄F₉)₃" mit Hg

Die Umsetzung und die Aufarbeitung erfolgten wie für das C_2F_5 -Derivat bereits beschrieben wurde (Kap. 5.3.1). Auch hier wird ein rotbraunes Öl erhalten.

CHN-Analyse (ber. für Hg(Sn(C₄F₉)₃)₂·EtCN): N 0,85 (0,77), C 17,61 (17,94), H 0,26 (0,27)

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
-82,8	t			CF ₃ / ?
-83,0	t			$CF_3 / Hg(Sn(C_4F_9)_3)_2$
-107,9	S	1,00	$^{2}J(^{19}F-^{119}Sn) \approx 235$	$\alpha\text{-}CF_2 / Hg(Sn(C_4F_9)_3)_2$
			$^{3}J(^{19}F-^{199}Hg)\approx 122$	
-112,5	S	0,20	$^{2}J(^{19}F^{-119}Sn) \approx 441$	α -CF ₂ / ?
-116,8	S			$\beta\text{-}CF_2 / Hg(Sn(C_4F_9)_3)_2$
-118,9	S			β -CF ₂ / ?
-127,2	t			γ- CF ₂ / ?
-127,3	t			γ -CF ₂ / Hg(Sn(C ₄ F ₉) ₃) ₂

¹⁹F-NMR-Spektrum des Öls in THF-d₈

 $^{119}\text{Sn}\{^{19}\text{F}\}\text{-NMR-Spektrum des \"Ols in THF-d}_8$

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
103,5	S	0,14	$^{1}J(^{119}Sn-^{199}Hg) \approx 17044$?
			$^{?}J(^{119}Sn-?) \approx 6435$	
86,5	S	1,00	$^{1}J(^{119}Sn-^{199}Hg) = 27709$	$Hg[Sn(C_4F_9)_3]_2$
			$^{2}J(^{119}Sn-^{117}Sn) = 10581$	
			$^{?}J(^{119}Sn-?) = 2033$	
			$^{?}J(^{119}Sn-?) = 476$	
37,8	S	0,07		?

δ	Aufspaltung	Kopplung [Hz]	Zuordnung
-210,5	S	$^{1}J(^{199}Hg-^{119/117}Sn) = 17036 / 16281$?
-713,1	s, br	$^{1}J(^{199}Hg-^{119/117}Sn) \approx 27715/26487$	$Hg[Sn(C_4F_9)_3]_2$

¹⁹⁹Hg{¹⁹F}-NMR-Spektrum des Öls in THF-d₈

5.4 Umsetzungen von AgC₅F₄N mit den Elementen der 12. Gruppe

5.4.1 Umsetzung von AgC₅F₄N mit Zn

Zu einer Lösung von Ag(C₃F₄N) in EtCN - hergestellt aus 2 mmol AgF und 2,10 mmol Me₃Si(C₃F₄N) nach der allgemeinen Vorschrift auf Seite 67 - wird Zn-Pulver im großen Überschuss gegeben. Die Reaktionsmischung wird ca. 16 h bei RT gerührt. Die farblose überstehende Lösung wird ¹⁹F-NMR-spektroskopisch untersucht. Die Reaktionsmischung wird weitere 16 h bei 75 °C gerührt und die Reaktionslösung erneut ¹⁹F-NMR-spektroskopisch untersucht. Anschließend wird die überstehende Lösung durch Abpipettieren vom schwarzen Bodenkörper getrennt und im Vakuum bis zur "Trockene" eingeengt. Der dadurch zurückbleibende, farblose und wachsartige Rückstand wird dreimal mit CH₂Cl₂ extrahiert. Durch Umkristallisation aus verschiedenen Lösungsmitteln (EtCN, CH₂Cl₂, Et₂O) konnten keine für eine Kristallstrukturbestimmung geeigneten Einkristalle gewonnen werden.

δ	Aufspaltung	Integral	Zuordnung
-92,9	s, br	0,14	F-2,6 / C ₅ HF ₄ N
-98,6	s, br	1,04	F-2,6 / ,,Zn[Ag(C ₅ F ₄ N) ₂] ₂ "
-116,0	s, sehr br	1,00	F-3,5 / ,,Zn[Ag(C ₅ F ₄ N) ₂] ₂ "
-140,8	m	0,12	F-3,5 / C ₅ HF ₄ N

¹⁹F-NMR-Spektrum der Reaktionslösung nach ca. 16 h Rühren bei RT

¹⁹F-NMR-Spektrum der Reaktionslösung nach weiteren 16 h Rühren bei 75 °C

δ	Aufspaltung	Integral	Zuordnung
-92,9	s, br	0,10	F-2,6 / C ₅ HF ₄ N
-98,2	m	1,00	F-2,6 / Zn(C ₅ F ₄ N) ₂ ·2EtCN
-123,4	m	1,00	F-3,5 / Zn(C ₅ F ₄ N) ₂ ·2EtCN
-140,9	m	0,13	F-3,5 / HC ₅ F ₄ N

5.4.2 Umsetzung von AgC₅F₄N mit Cd

Zu einer Lösung von Ag(C₅F₄N) in EtCN - hergestellt aus 2 mmol AgF und 2,10 mmol Me₃Si(C₅F₄N) nach der allgemeinen Vorschrift auf Seite 67 - wird Cd-Pulver im großen Überschuss gegeben und die Reaktionsmischung wird ca. 16 h bei RT gerührt. Die überstehende Lösung wird ¹⁹F-NMR-spektroskopisch untersucht.

δ	Aufspaltung	Integral	Zuordnung
-92,9	s, br	0,25	F-2,6 / C ₅ HF ₄ N
-98,1	s, br	1,06	F-2,6 / ,,Cd[Ag(C ₅ F ₄ N) ₂] ₂ "
-117,8	s, br (sehr)	1,00	F-3,5 / ,,Cd[Ag(C ₅ F ₄ N) ₂] ₂ "
-140,9	m	0,22	F-3,5 / C ₅ HF ₄ N

¹⁹F-NMR-Spektrum der Reaktionslösung nach ca. 16 h Rühren bei RT

Nach weiteren 16 h Rühren bei 75 °C wird die überstehende Lösung erneut ¹⁹F-NMRspektroskopisch untersucht.

δ	Aufspaltung	Integral	Zuordnung
-92,9	S	0,52	F-2,6 / C ₅ HF ₄ N
-97,6	t	1,01	F-2,6 / Cd(C ₅ F ₄ N) ₂ ·2EtCN
-119,2	t	1,00	F-3,5 / Cd(C5F4N)2·2EtCN
-140,9	m	0,49	F-3,5 / C ₅ HF ₄ N

¹⁹F-NMR-Spektrum der Reaktionslösung nach weiteren 16 h Rühren bei 75 °C

5.4.3 Darstellung von Hg(C₅F₄N)₂

Zu einer Lösung von Ag(C₅F₄N) in EtCN - hergestellt aus 2 mmol AgF und 2,20 mmol Me₃Si(C₅F₄N) nach der allgemeinen Vorschrift auf Seite 67 - wird Hg im großen Überschuss gegeben. Die Reaktionsmischung wird einige Minuten bei RT gerührt. Die überstehende Lösung wird abpipettiert und im Vakuum bis zur Trockene eingeengt. Das Produkt wird anschließend durch Vakuumsublimation (ca. 150 °C / 0,01 Torr) gereinigt.

Einkristalle von $Hg(C_5F_4N)_2$ werden durch Umkristallisation aus Dichlormethan oder n-Pentan in Form farbloser Nadeln erhalten (Kristalldaten und Einzelheiten zur Kristallstrukturbestimmung: siehe Tabelle A2-1 im Anhang).

Ausbeute: 0,45g Hg(C₅F₄N)₂ (0,90 mmol, 45 % bezogen auf AgF)

Schmelzpunkt: 195-196 °C (Literatur: 201-202 °C [54], 193 °C [55])

Elementaranalyse (berechnet): C 32,58 (31,68), N 7,28 (7,39) %

¹⁹F-NMR-Spektrum der Reaktionslösung nach ca. 45 Minuten Rühren bei RT

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
-92,9	s, br	0,12		F-2,6 / C ₅ HF ₄ N
-94,2	m	1,06	${}^{4}J({}^{199}Hg-{}^{19}F) = 108$	F-2,6 / Hg(C ₅ F ₄ N) ₂
-123,5	m	1,00	$^{3}J(^{199}Hg-^{19}F) = 370$	F-3,5 / Hg(C ₅ F ₄ N) ₂
-138,8	m	0,02		?
-140,9	m	0,11		F-3,5 / C ₅ HF ₄ N
-145,4	m	0,02		?

NMR-Daten von Hg(C₅F₄N)₂ in CD₃CN

Kern	δ	Aufspaltung	Kopplung [Hz]	Zuordnung
¹⁹ F	-93,8 (-90,6)*	m	${}^{4}J({}^{199}Hg-{}^{19}F) = 109(92)^{*}$	F - 2,6
	-123,2 (-124,0)*	m	${}^{3}J({}^{199}Hg-{}^{19}F) = 371 (347)^{*}$	F-3,5
¹³ C	153,0	t	$^{2}J(^{13}C-^{19}F) = 46$	C-4
			$^{1}J(^{13}C-^{199}Hg) = 1734$	
	144,0	dm	$^{3}J(^{13}C-^{199}Hg) = 60$	C-2,6
	143,8	dm	$^{2}J(^{13}C-^{199}Hg) = 130$	C-3,5
¹⁹⁹ Hg	-1029	qiqi	${}^{4}J({}^{199}Hg-{}^{19}F) = 109$	$\underline{\text{Hg}}(C_5F_4N)_2$
			$^{3}J(^{199}Hg-^{19}F) = 370$	

^{*} in CDCl₃.

EI-Massenspektrum von Hg(C₅F₄N)₂ (20 eV, 120 °C)

m / z	rel. Intensität [%]	Zuordnung
501	100	$[Hg(C_5F_4N)_2]^+$
351	25	$\left[\mathrm{Hg}(\mathrm{C}_{5}\mathrm{F}_{4}\mathrm{N})\right]^{+}$
150	50	$\left[C_{5}F_{4}N\right]^{+}$

5.5 Umsetzungen von AgC₅F₄N mit Elementen der 13. Gruppe

5.5.1 Umsetzung von AgC₅F₄N mit Gallium

Zu einer Lösung von Ag(C₅F₄N) in EtCN - hergestellt aus 4 mmol AgF und 4,20 mmol Me₃Si(C₅F₄N) nach der allgemeinen Vorschrift auf Seite 67 - wird bei 40 °C geschmolzenes Gallium im großen Überschuss unter Rühren zugetropft. Die Reaktionsmischung wird ca. 6 h bei RT gerührt. Ein Teil der Reaktionslösung wird abpipettiert und im Vakuum stark eingeengt. Daraus wurden farblose Einkristalle von $Ga(C_5F_4N)_3 \cdot EtCN \cdot H_2O$ nach mehreren Wochen Lagerung bei -28 °C erhalten (Kristalldaten und Einzelheiten zur Kristallstrukturbestimmung: siehe Tabelle A3-1 im Anhang).

Der Rest der Reaktionslösung wird abpipettiert und im Vakuum bis zu Trockene eingeengt. Es bleibt ein weiß-brauner Feststoff zurück, welcher massenspektrometrisch untersucht wird.

δ	Aufspaltung	Integral	Zuordnung
-92,9	s, br	0,40	F-2,6 / C ₅ HF ₄ N
-93,6	m	0,03	F-2,6 / Ga(C ₅ F ₄ N)-Derivat III (?)
-95,4	m	0,20	F-2,6 / Ga(C ₅ F ₄ N)-Derivat II
-96,9	m	0,96	F-2,6 / Ga(C ₅ F ₄ N)-Derivat I
-127,0	,, t ''	1,00	F-3,5 / Ga(C ₅ F ₄ N)-Derivat I ^{a)}
-127,8	m	0,20	F-3,5 / Ga(C ₅ F ₄ N)-Derivat II ^{a)}
-128,3	m	0,03	F-3,5 / Ga(C ₅ F ₄ N)-Derivat III (?)
-140,9	m	0,38	F-3,5 / C ₅ HF ₄ N

¹⁹F-NMR-Spektrum der Reaktionslösung nach 6 h Rühren bei RT

a) $Ga(C_5F_4N)_3$ ·EtCN oder Ag[Ga(C_5F_4N)_4]

EI-Massenspektrum des weiß-braunen Feststoffes (20 eV)

m / z	rel. Intensität [%]	Zuordnung
519	56	$\left[\operatorname{Ga}(\operatorname{C}_5\operatorname{F}_4\operatorname{N})_3\right]^+$
428	7	?
369	28	$\left[Ga(C_5F_4N)_2\right]^+$
243	13	?
151	100	$[C_5HF_4N]^+$
54	14	$[EtCN]^+$
69	4	Ga^+

5.5.2 Darstellung von In(C₅F₄N)₃·2EtCN

Zu einer Lösung von $Ag(C_5F_4N)$ in EtCN - hergestellt aus 4 mmol AgF und 4,20 mmol $Me_3Si(C_5F_4N)$ nach der allgemeinen Vorschrift auf Seite 67 - wird elementares Indium im großen Überschuss gegeben und die Reaktionsmischung wird ca. 3 h bei RT gerührt. Die Reaktionsmischung wird im Vakuum bis zur Trockene eingeengt und der Rückstand in einer Soxhlet-Apparatur mit Dichlormethan extrahiert.

Farblose Einkristalle wurden aus konzentrierter EtCN-Lösung nach mehreren Tagen bei – 28 °C erhalten (Kristalldaten und Einzelheiten zur Kristallstrukturbestimmung: siehe Tabelle A3-1 im Anhang).

Ausbeute: 0,94 g In(C₅F₄N)₃·2EtCN (35 % bezogen auf AgF)

Schmelzpunkt: 126-130 °C (Verlust von EtCN, beginnende Braunfärbung bei 140 °C)

CHN-Elementaranalyse (berechnet): C 36,64 (37,36), N 9,46 (10,37), H 1,28 (1,49) %

¹⁹F-NMR-Spektrum der Reaktionslösung nach 3 h Rühren bei RT

δ	Aufspaltung	Integral	Zuordnung
-92,9	s, br	0,06	F-2,6 / C ₅ HF ₄ N
-95,3	m	0,99	F-2,6 / In(C ₅ F ₄ N) ₃ ·2EtCN
-123,6	m	1,00	F-3,5 / In(C5F4N)3·2EtCN
-140,9	m	0,07	F-3,5 / C5HF4N

¹⁹F-NMR-Spektrum von $In(C_5F_4N)_3$ ·2EtCN in Aceton-d₆ (bzw. in CH₂Cl₂)

δ	Aufspaltung	Kopplung [Hz]	Zuordnung
-95,3 (-94,6)	m		F-2,6
-122,3 (-123,9)	m	$^{1}J(^{13}C-^{19}F)\approx 238$	F-3,5

¹³C-NMR-Spektrum von In(C₅F₄N)₃·2EtCN in Aceton-d₆

δ	Aufspaltung	Kopplung [Hz]	Zuordnung
145,6	dm	$^{1}J(^{13}C-^{19}F)\approx 247$	C-2,6
145,2	S		?
144,2	S		?
143,7	dm	$^{1}J(^{13}C-^{19}F) \approx 247$	C-3,5
121,6	br		CH ₃ CH ₂ CN und C-4
10,8	tq	$^{1}J(^{13}C-^{1}H) = 136$	CH ₃ <u>C</u> H ₂ CN
10,7	qt	$^{1}J(^{13}C-^{1}H) = 130$	\underline{C} H ₃ CH ₂ CN

δ	Aufspaltung	Kopplung [Hz]	Zuordnung
2,45	q	$^{3}J(^{1}H-^{1}H) = 7,7$	$CH_3C\underline{H}_2CN$
2,07	m		$(CD_3)_2CO$
1,24	t	$^{3}J(^{1}H-^{1}H) = 7,7$	C <u>H</u> ₃ CH ₂ CN

¹H-NMR-Spektrum von In(C₅F₄N)₃·2EtCN in Aceton-d₆

EI-Massenspektrum von $In(C_5F_4N)_3$ ·2EtCN (20 eV)

m / z	rel. Intensität [%]	Zuordnung
565	26	$\left[\ln(C_5F_4N)_3\right]^+$
415	100	$\left[\ln(C_5F_4N)_2\right]^+$
151	17	$[C_5 HF_4 N]^+$
207	10	?
115	< 1	In^+
284	4	$[In(C_5F_4N)F]^+$
355	5	?
55	*	$[EtCN]^+$

* Nur am Anfang der Ionisierung als einziger Peak detektierbar (100 %)

5.6 Umsetzungen von AgC₅F₄N mit GeCl₂·Diox, Sn und Pb

5.6.1 Umsetzung von AgC₅F₄N mit GeCl₂·Diox

Zu einer Lösung von $Ag(C_5F_4N)$ in EtCN - hergestellt aus 2 mmol AgF und 2,2 mmol Me₃Si(C₅F₄N) nach der allgemeinen Vorschrift auf Seite 67 - wird eine Suspension von 116 mg (0,5 mmol) GeCl₂·Diox in 5 ml EtCN unter Rühren gegeben. Es fällt augenblicklich ein weißer Niederschlag aus (AgCl), welcher nach zweistündigem Rühren abfiltriert wird. Das farblose Filtrat wird ¹⁹F-NMR-spektroskopisch untersucht:

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
-92,8	s, br	0,13		F-2,6 / C ₅ HF ₄ N
-95,3	m	1,02		F-2,6 / Ge(C ₅ F ₄ N)-Derivat I [*]
-99,1	m	0,57		F-2,6 / AgC ₅ F ₄ N
-114,3	m	0,56		F-3,5 / AgC ₅ F ₄ N
-128,4	m	1,00	$^{1}J(^{13}C-^{19}F)\approx 248$	F-3,5 / Ge(C ₅ F ₄ N)-Derivat I [*]
-140,8	m	0,13		F-3,5 / C ₅ HF ₄ N

¹⁹F-NMR-Spektrum der Reaktionslösung

Vermutlich $Ge(C_5F_4N)_2$ ·Diox oder $Ge(C_5F_4N)Cl$ ·Diox

Zu dem Filtrat oben wird soviel von einer Lösung von GeCl₂·Diox in Propionitril unter Rühren zugetropft, bis kein AgCl mehr ausfällt. Es wird filtriert und die Lösung erneut ¹⁹F-NMR-spektroskopisch untersucht:

δ	Aufspaltung	Integral	Zuordnung
-91,5	m	0,27	F-2,6 / ?
-92,9	m	0,65	F-2,6 / C5HF4N
-94,8	m	0,28	F-2,6/??
-95,3	m	0,84	F-2,6 / Ge(C ₅ F ₄ N)-Derivat I [*]
-125,2	,,t	0,22	F-3,5 / ??
-126,1	"t"	0,39	F-3,5 / ?
-128,3	m	1,00	F-3,5 / Ge(C ₅ F ₄ N)-Derivat I [*]
-140,7	m	0,55	F-3,5 / C5HF4N

¹⁹F-NMR-Spektrum der Reaktionslösung

5.6.2 Darstellung von Sn(C₅F₄N)₄

Zu einer Lösung von $Ag(C_5F_4N)$ in EtCN - hergestellt aus 4 mmol AgF und 4,20 mmol $Me_3Si(C_5F_4N)$ nach der allgemeinen Vorschrift auf Seite 67 - wird Zinn im großen Überschuss (ca. 4 mmol) gegeben. Die Reaktionsmischung wird ca. 16 h bei RT gerührt. Anschließend wird die gelbliche Reaktionslösung vom schwarzen Bodenkörper abpipettiert und im Vakuum bis zur "Trockene" eingeengt. Es bleibt ein gelblicher und etwas klebriger "Feststoff" zurück, welcher massenspektrometrisch (EI) untersucht wird.

δ	Aufspaltung	Integral	Zuordnung
-91,2	s, br	< 0,10	$F-2,6 / Sn(C_5F_4N)_4^{**}$
-92,9	s, br	0,07	F-2,6 / C ₅ HF ₄ N
-94,5	m	0,02	F-2,6 / Me ₃ SiC ₅ F ₄ N
-95,2/-95,6	m / m	1,00*	F-2,6 / ,,AgSn(C ₅ F ₄ N) ₃ " oder
			,,Ag[Ag(Sn(C ₅ F ₄ N) ₃) ₂]" (?)
-123,4/-123,8	m / br	1,00*	F-3,5 / "AgSn(C ₅ F ₄ N) ₃ "
			oder ,, $Ag[Ag(Sn(C_5F_4N)_3)_2]^{"}(?)$
-130,9	m	0,02	F-3,5 / Me ₃ SiC ₅ F ₄ N
-140,9	m	0,06	F-3,5 / C ₅ HF ₄ N

¹⁹F-NMR-Spektrum der Reaktionslösung nach ca. 16 h Rühren bei RT

^{*} Da sich jeweils die Signale überlagern, werden sie gemeinsam integriert.

** Die Zuordnung konnte hier erst nach Isolieren von reinem $Sn(C_5F_4N)_4$ getroffen werden.

m / z	rel. Intensität [%]	Zuordnung
1137	24	$[Sn_2(C_5F_4N)_6]^+$
720	74	$[Sn(C_5F_4N)_4]^+$
570	100	$[Sn(C_5F_4N)_3]^+$
300	6	$[(C_5F_4N)_2]^+$
151	10	$[C_5HF_4N]^+$

EI-Massenspektrum des klebrigen Rückstandes (20 eV)

Der gelbliche klebrige Rückstand wird in einer Sublimationsapparatur im Vakuum (ca. 0,1 mbar) bis ca. 230 °C langsam erhitzt. Hierbei tritt Schwarzfärbung auf und am Sublimationsfinger schlägt sich reines $Sn(C_5F_4N)_4$ als farbloser Feststoff nieder.

Farblose Einkristalle werden durch Umkristallisieren aus heißer EtCN/Hexan-Lösung im Becherglas in Form sehr dünner Nadeln erhalten (Kristalldaten und Einzelheiten zur Kristallstrukturbestimmung: s. Tabelle A4-1 im Anhang).

Ausbeute: $0,15 \text{ g Sn}(C_5F_4N)_4$ (10 % bezogen auf AgF)

Elementaranalyse (berechnet): N 7,82 (7,79), C 33,59 (33,41) %.

Schmelzpunkt: 275 °C

¹⁹F-NMR-Spektrum des farblosen Feststoffes in EtCN

δ	Aufspaltung	Zuordnung
-91,4	m	$F-2,6 / Sn(C_5F_4N)_4$
-123,7	m	$F-3,5 / Sn(C_5F_4N)_4$

EI-Massenspektrum von Sn(C₅F₄N)₄ (20 eV, 130 °C)

m / z	rel. Intensität [%]	Zuordnung
720	100	$\left[\mathrm{Sn}(\mathrm{C}_{5}\mathrm{F}_{4}\mathrm{N})_{4}\right]^{+}$
570	42	$\left[\mathrm{Sn}(\mathrm{C}_{5}\mathrm{F}_{4}\mathrm{N})_{3}\right]^{+}$
151	16	$[C_5HF_4N]^+$

¹⁹F-NMR-Spektrum des Rückstandes der Thermolyse/Sublimation (in EtCN)

δ	Aufspaltung	Integral	Zuordnung
-91,5	m	1,07	$F-2,6 / Sn(C_5F_4N)_4$
-92,0	m	0,24	$F-2,6 / Sn_2(C_5F_4N)_6$ (?)
-92,9	s, br	0,26	F-2,6 / C ₅ HF ₄ N
-123,9	m	1,00	$F-3,5 / Sn(C_5F_4N)_4$
-126,7	m	0,24	$F-3,5 / Sn_2(C_5F_4N)_6$ (?)
-140,9	m	0,30	F-3,5 / C5HF4N

 13 C- sowie 119 Sn-NMR-Untersuchungen blieben auf Grund der sehr geringen Löslichkeit von Sn(C₅F₄N)₄ in gebräuchlichen Lösungsmitteln bei Raumtemperatur ohne Erfolg.

5.6.3 Umsetzung von AgC₅F₄N mit Blei

Zu einer Lösung von Ag(C₅F₄N) in EtCN - hergestellt aus 2 mmol AgF und 2,20 mmol Me₃Si(C₅F₄N) nach der allgemeinen Vorschrift auf Seite 67 - wird Bleistaub im Überschuss (ca. 2 mmol) gegeben. Die Reaktionsmischung wird ca. 2 h bei RT gerührt. Anschließend wird die gelbliche Reaktionslösung vom schwarzen Bodenkörper abpipettiert und im Vakuum bis zur Trockene eingeengt. Der gelbliche Rückstand wird anschließend in einer Sublimationsapparatur im Vakuum (ca. 0,1 mbar) bis ca. 240 °C langsam erhitzt. Hierbei tritt Schwarzfärbung auf und am Sublimationsfinger schlägt sich ein farbloser Feststoff nieder. Das Sublimat und der Rückstand der Pyrolyse werden ¹⁹F-NMR-spektroskopisch untersucht.

δ Zuordnung Aufspaltung Integral "s", br -92,9 0,04 $F-2,6 / C_5 HF_4 N$ -94,9 F-2,6 / Me₃SiC₅F₄N 0,07 m -98,8 $F-2,6/, Pb[Ag(C_5F_4N)_2]_2 \cdot 2EtCN''$ s, br 1,01 $F-3,5 / ,Pb[Ag(C_5F_4N)_2]_2 \cdot 2EtCN''$ -115,4 1,00 s, br -130,9 0,08 F-3,5 / Me₃SiC₅F₄N m -140,9 0,05 F-3,5 / C₅HF₄N m

¹⁹F-NMR-Spektrum der Reaktionslösung

¹⁹F-NMR-Spektrum des farblosen Feststoffes in EtCN

δ	Aufspaltung	Integral	Zuordnung
-90,1	m	0,92	F-2,6 / (C ₅ F ₄ N) ₂
-92,9	"s", br	1,09	F-2,6 / C ₅ HF ₄ N
-138,8	m	0,88	F-3,5 / (C ₅ F ₄ N) ₂
-140,9	m	1,00	F-3,5 / C ₅ HF ₄ N

δ	Aufspaltung	Integral	Zuordnung
-89,5	m	0,03	$F-2,6/(C_5F_4N)_2$
-92,4	m	0,10	F-2,6 / C ₅ HF ₄ N
-98,0	m	0,88	$F-2,6 / [Ag(C_5F_4N)_2]^-$
-112,9	m	1,00	$F-3,5 / [Ag(C_5F_4N)_2]^-$
-137,7	m	0,04	F-3,5 / (C ₅ F ₄ N) ₂
-139.7	m	0,13	F-3,5 / C ₅ HF ₄ N

¹⁹F-NMR-Spektrum des Rückstandes der Thermolyse/Sublimation (in DMSO-d₆):

5.7 Umsetzungen von AgC₅F₄N mit Elementen der 15. Gruppe

5.7.1 Darstellung von As(C₅F₄N)₃

Zu einer Lösung von $Ag(C_5F_4N)$ in EtCN - hergestellt aus 2 mmol AgF und 2,20 mmol Me₃Si(C₅F₄N) nach der allgemeinen Vorschrift auf Seite 67 - werden Arsen-Stücke im großen Überschuss (ca. 5 mmol) gegeben. Da nach 4 Tagen Rühren bei RT keine Reaktion beobachtet werden kann, wird die Reaktionsmischung weitere 2 Tage bei ca. 80 °C gerührt. Die Reaktionsmischung wird im Vakuum bis zur Trockene eingeengt und der Rückstand in einer Soxhlet-Apparatur mit Dichlormethan extrahiert. Man erhält nach Trocknen des Extraktes im Vakuum einen farblosen, kristallinen und in Dichlormethan und Chloroform schwerlöslichen Feststoff. Farblose Einkristalle werden durch Umkristallisation aus heißer Dichlormethan/Hexan-Lösung und Lagerung über Nacht bei -28 °C erhalten (Kristalldaten und Einzelheiten zur Kristallstrukturbestimmung: s. Tabelle A4-1 im Anhang).

Ausbeute: 0,47 g As(C₅F₄N)₃ (45 % bezogen auf AgF).

Schmelzpunkt: 165-166 °C (reversibel, ohne sichtbare Zersetzung unterhalb von 176 °C) CHN-Elementaranalyse (berechnet): C 34,82 (34,31), N 7,92 (8,00) %

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
-91,3 (-89,3)*	m	1,05	$^{1}J(^{13}C-^{19}F)\approx 247^{*}$	F-2,6 / As(C ₅ F ₄ N) ₃
-92,9	s, br	0,23		F-2,6 / C ₅ HF ₄ N
-95,0	m	0,04		F-2,6 / Me ₃ SiC ₅ F ₄ N
-129,7 (-129,8)*	m	1,00	$^{1}J(^{13}C-^{19}F) \approx 250^{*}$	F-3,5 / As(C ₅ F ₄ N) ₃
-130,9	m	0,03		F-3,5 / Me ₃ SiC ₅ F ₄ N
-140,9	m	0,18		F-3,5 / C ₅ HF ₄ N

 $^{19}\text{F-NMR-Spektrum}$ der Reaktionslösung nach ca. 48 h
 Rühren bei 80 °C

¹⁹F-NMR-Daten des Feststoffes, gelöst in CH₂Cl₂

δ	Aufspaltung	Kopplung [Hz]	Zuordnung	
126,9	tm	$^{2}J(^{13}C-^{19}F)\approx 27$	C-4	
144,0 / 144,4	dm / dm	$^{1}J(^{13}C-^{19}F) \approx 255/255$	(C-3,5 / C-2,6) *	

¹³C-NMR-Daten von As(C₅F₄N)₃ in CD₃CN

^{*}Eine eindeutige Zuordnung ist nicht möglich, da sich die Multipletts der beiden Dubletts vollständig überlagern.

m / z	rel. Intensität [%]	Zuordnung
525	100	$[As(C_5F_4N)_3]^+$
431	7	?
375	44	$[As(C_5F_4N)_2]^+$
362	36	?
325	24	?
262	36	$[C_{10}F_6N_2]^+$
243	52	$[C_{10}F_5N_2]^+$
225	17	$\left[\mathrm{As}(\mathrm{C}_{5}\mathrm{F}_{4}\mathrm{N})\right]^{+}$
193	10	?
151	2	$[C_5HF_4N]^+$
113	40	$[AsF_2]^+(?)$

EI-Massenspektrum von As(C₅F₄N)₃ (70 eV)

5.7.2 Umsetzung von AgC₅F₄N mit Antimon

Zu einer Lösung von $Ag(C_5F_4N)$ in EtCN - hergestellt aus 2 mmol AgF und 2,20 mmol $Me_3Si(C_5F_4N)$ nach der allgemeinen Vorschrift auf Seite 67 - wird Antimon-Pulver im großen Überschuss (ca. 5 mmol) gegeben. Die Reaktionsmischung wird ca. 48 h bei ca. 90 °C gerührt. Im Anschluss daran wird die Reaktionslösung abpipettiert (dabei scheidet sich ein farbloser Feststoff ab) und im Vakuum bis zu Trockene eingeengt. Es bleiben 0,23 g eines farblosen Rückstandes zurück, welcher sich in EtCN und anderen polaren Lösungsmitteln nur noch sehr gering löst.

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
-92,2 (-92,5)*	m			F-2,6 / Sb(C ₅ F ₄ N) ₃
-92,6	s, br			F-2,6 / C ₅ HF ₄ N
-124,2 (-124,6)*	m	1,00 (1,00)*	$^{1}J(^{13}C-^{19}F) = 250$	F-3,5 / Sb(C ₅ F ₄ N) ₃
-140,5	m	0,28 (0,15)*		F-3,5 / C ₅ HF ₄ N
* in EtCN				

¹⁹F-NMR-Spektrum des Feststoffes in CD₃CN

m / z	rel. Intensität [%]	Zuordnung
571	48	$\left[\mathrm{Sb}(\mathrm{C}_5\mathrm{F}_4\mathrm{N})_3\right]^+$
421	16	$\left[\mathrm{Sb}(\mathrm{C}_5\mathrm{F}_4\mathrm{N})_2\right]^+$
243	81	$[C_{10}F_5N_2]^+$
159	45	$[SbF_2]^+$?
151	100	$[C_5HF_4N]^+$
69	29	CF_{3}^{+} ?

EI-Massenspektrum des Reaktionsproduktes in CH₃CN (70 eV)

5.7.3 Umsetzung von AgC₅F₄N mit Bismut

Zu einer Lösung von $Ag(C_5F_4N)$ in EtCN - hergestellt aus 2 mmol AgF und 2,20 mmol $Me_3Si(C_5F_4N)$ nach der allgemeinen Vorschrift auf Seite 67 - wird Bismut-Pulver im großen Überschuss (ca. 5 mmol) gegeben und die Reaktionsmischung wird ca. 16 h bei RT gerührt. Die Reaktionslösung wird an der Luft oder beim Versetzen mit O-Lösungsmitteln (DMF, DMSO) sofort trüb. Die Reaktionslösung wird abpipettiert und im Vakuum bis zu Trockene eingeengt. Es bleibt ein farbloser Rückstand zurück, welcher sich in EtCN und anderen polaren Lösungsmitteln nur noch sehr gering löst.

δ	Aufspaltung	Integral	Kopplung [Hz]	Zuordnung
-93,1*	m	1,22*		F-2,6 / Bi(C ₅ F ₄ N) ₃
-93,8*	m			F-2,6 / C ₅ HF ₄ N
-94,9	m	0,14		F-2,6 / Me ₃ SiC ₅ F ₄ N
-120,7	m	1,00	$^{1}J(^{13}C-^{19}F) = 247$	F-3,5 / Bi(C ₅ F ₄ N) ₃
-130,9	m	0,13		F-3,5 / Me ₃ SiC ₅ F ₄ N
-140,9	m	0,20		F-3,5 / C ₅ HF ₄ N

¹⁹F-NMR-Spektrum der Reaktionslösung nach ca. 16 h Rühren bei RT

^{*}Da sich die zwei Resonanzen überlagern, werden die entsprechenden Signale gemeinsam integriert.

m / z	rel. Intensität [%]	Zuordnung
659	100	$[Bi(C_5F_4N)_3]^+$
509	58	$\left[\mathrm{Bi}(\mathrm{C}_{5}\mathrm{F}_{4}\mathrm{N})_{2}\right]^{+}$
359	9	$\left[\mathrm{Bi}(\mathrm{C}_{5}\mathrm{F}_{4}\mathrm{N}) ight]^{+}$
300	3	$[(C_5F_4N)_2]^+$
282	2	$[C_{10}F_7N_2]^+$?
209	4	${ m Bi}^+$
151	14	$\left[\mathrm{C_{5}HF_{4}N} ight]^{+}$

EI-Massenspektrum von $Bi(C_5F_4N)_3$ (20 eV)

5.8 Umsetzungen von AgC₅F₄N mit Elementen der 16. Gruppe

5.8.1 Umsetzung von AgC₅F₄N mit Schwefel

Zu einer Lösung von Ag(C₅F₄N) in EtCN - hergestellt aus 2 mmol AgF und 2,20 mmol Me₃Si(C₅F₄N) nach der allgemeinen Vorschrift auf Seite 67 - wird elementarer Schwefel im Überschuss (ca. 2 mmol) gegeben. Die Reaktionsmischung wird 1 Stunde bei Raumtemperatur gerührt. Da nach dieser Zeit keine Reaktion ¹⁹F-NMR-spektroskopisch festgestellt werden konnte, wurde die Reaktionsmischung über Nacht bei 50 °C gerührt.

δ	Aufspaltung	Integral	Zuordnung
-90,5	m	1,04	$F-2,6 / S_x(C_5F_4N)_2$
-92,9	,,m", br	1,06	F-2,6 / C5HF4N
-93,6	m	0,08	$F-2,6 / S_y(C_5F_4N)_2$
-94,9	m	0,06	F-2,6 / Me ₃ SiC ₅ F ₄ N
-130,9	m	0,06	F-3,5 / Me ₃ SiC ₅ F ₄ N
-135,0	m	1,00	$F-3,5 / S_x(C_5F_4N)_2$
-135,8	m	0,05	$F-3,5 / S_y(C_5F_4N)_2$
-140,9	m	1,04	F-3,5 / C ₅ HF ₄ N

¹⁹F-NMR-Spektrum der Reaktionslösung nach ca. 16 h Rühren bei 50 °C

Die bräunliche Reaktionslösung wird abgetrennt und im Vakuum bis zur "Trockene" eingeengt. Anschließend wird der zurückbleibende Rückstand einer Vakuumsublimation bei ca. 55 °C unterzogen. Das Sublimat, ein farbloses Wachs, wird in CDCl₃ ¹⁹F- und ¹³C-NMR-spektroskopisch untersucht

Kern	δ	Aufspaltung	Kopplung [Hz]	Zuordnung*
19 F	-88,3	m		F-2,6
	-135,4	m		F-3,5
¹³ C	143,4	dm	$^{1}J(^{13}C-^{19}F) = 249$	C-2,6
	141,2	dm	$^{1}J(^{13}C-^{19}F) = 262$	C-3,5
<u>.</u>	123,8	t	$^{2}J(^{13}C-^{19}F) = 17$	C-4

NMR-Spektren des Produktes in CDCl₃

 $S_x(C_5F_4N)_2, x = ?$

Weitere Untersuchungen konnten auf Grund der zahlreichen misslungenen Kristallisationsversuche nicht mehr unternommen werden.

5.8.2 Darstellung von Se(C₅F₄N)₂

Ansatz 1:

Zu einer Lösung von Ag(C₃F₄N) in EtCN - hergestellt aus 1 mmol AgF in 5 mL EtCN und 1,4 mmol Me₃Si(C₃F₄N) - wird rotes Selen im großen Überschuss (2 mmol, 0,2 g) gegeben und die Reaktionsmischung wird zwei Tage bei RT gerührt. Die überstehende Lösung wird abpipettiert und im Vakuum bis zur Trockene eingeengt. Es bleibt ein farbloser, kristalliner Feststoff zurück. Das Rohprodukt wird anschließend durch Vakuumsublimation (ca. 60 °C / 6 mbar) gereinigt. Farblose, nadelförmige Einkristalle wurden durch Kristallisation des Sublimates aus CH₂Cl₂ und Lagerung bei -20 °C über einige Tage erhalten. Auch die Sublimation liefert röntgengeeignete Kristalle (Kristalldaten und Einzelheiten zur Kristallstrukturbestimmung: s. Tabelle A5-1 im Anhang). Ausbeute: 0,20 g Se(C₅F₄N)₂ (53 % bezogen auf AgF)

Schmelzpunkt: 87 °C (ohne sichtbare Zersetzung)

Elementaranalyse (berechnet): C 32,58 (31,68), N 7,28 (7,39) %

δ	Aufspaltung	Integral	Zuordnung
-91,1	m	1,06	$F-2,6 / Se(C_5F_4N)_2$
-92,9	,,m", br	0,15	F-2,6 / C ₅ HF ₄ N
-95,0	m	0,30	F-2,6 / Me ₃ SiC ₅ F ₄ N
-130,0	m	1,00	$F-3,5 / Se(C_5F_4N)_2$
-130,9	m	0,33	F-3,5 / Me ₃ SiC ₅ F ₄ N
-140,9	m	0,13	F-3,5 / C ₅ HF ₄ N
-157,3	m	0,24	Me ₃ SiF

¹⁹F-NMR-Spektrum der Reaktionslösung nach 2 Tagen Rühren bei RT

NMR-spektroskopische Daten von Se(C₅F₄N)₂ in CDCl₃

Kern	δ	Aufspaltung	Kopplung [Hz]	Zuordnung
¹⁹ F	-88,5 (-91,1)*	m	$^{1}J(^{13}C-^{19}F)\approx 250$	F-2,6
	-130,7 (-129,0)*	m	$^{1}J(^{13}C-^{19}F) \approx 255$	F-3,5
¹³ C	143,3	dm	$^{1}J(^{13}C-^{19}F)\approx 250$	C-2,6 oder C-3,5 ^{***}
	141,4	dm	$^{1}J(^{13}C-^{19}F)\approx 260$	C-3,5 oder C-2,6 ^{***}
	119,5	"S"		C-4
⁷⁷ Se	192**	qi	$^{3}J(^{77}\text{Se-}^{19}\text{F}) \approx 12$	$\underline{Se}(C_5F_4N)_2$

^{*} In DMSO-d₆. ^{***} In Aceton-d₆. ^{***} Eine eindeutige Zuordnung ist nicht möglich, da sich die Signale vollständig überlagern.

m / z	rel. Intensität [%]	Zuordnung
380	100	$\left[\operatorname{Se}(\operatorname{C}_5\operatorname{F}_4\operatorname{N})_2\right]^+$
230	16	$\left[\operatorname{Se}(\operatorname{C}_5\operatorname{F}_4\operatorname{N})\right]^+$
151	1	$[C_5HF_4N]^+$

EI-Massenspektrum von $Se(C_5F_4N)_2$ (20 eV)

Ansatz 2:

Zu einer Lösung von $Ag(C_5F_4N)$ in EtCN - hergestellt aus 1 mmol AgF in 5 mL EtCN und 1,50 mmol Me₃Si(C₅F₄N) - wird rotes Selen im großen Überschuss (2 mmol, 0,2 g) gegeben und die Reaktionsmischung wird ca. 5 h bei 50 °C gerührt. Die überstehende Lösung wird abpipettiert und im Vakuum bis zur Trockene eingeengt. Es bleibt neben einem bräunlichen Öl ein farbloser, kristalliner Feststoff zurück. Das Rohprodukt wird anschließend durch Vakuumsublimation (ca. 60 °C/6 mbar) gereinigt. In einem weiteren Ansatz konnte die ölartige Verunreinigung auch durch Umkristallisieren des Rohproduktes aus CH₂Cl₂ entfernt werden.

δ	Aufspaltung	Integral	Zuordnung
-91,1	m	1,08	$F-2,6 / Se(C_5F_4N)_2$
-91,3	m	0,18	$F-2,6 / Se_2(C_5F_4N)_2$ (?)
-92,9	s, br	0,26	F-2,6 / C ₅ HF ₄ N
-95,0	m	0,44	F-2,6 / Me ₃ SiC ₅ F ₄ N
-129,3	m	0,20	$F-3,5 / Se_2(C_5F_4N)_2$ (?)
-130,0	m	1,00	$F-3,5 / Se(C_5F_4N)_2$
-130,9	m	0,44	F-3,5 / Me ₃ SiC ₅ F ₄ N
-140,9	m	0,24	F-3,5 / C ₅ HF ₄ N

¹⁹F-NMR-Spektrum der Reaktionslösung nach ca. 5 h Rühren bei 50 °C

5.8.3 Darstellung von Te(C₅F₄N)₂

Zu einer Lösung von Ag(C₅F₄N) in EtCN - hergestellt aus 2 mmol AgF in 5 mL EtCN und 2,50 mmol Me₃Si(C₅F₄N) - wird Tellur im großen Überschuss gegeben (3 mmol; 0,4 g) und die Reaktionsmischung wird ca. 16 h bei RT (oder ca. 5 h bei 50 °C) gerührt. Die überstehende gelbliche Lösung wird ¹⁹F-NMR-spektroskopisch untersucht.

δ	Aufspaltung	Integral	Zuordnung
-92,2	m	1,05	$F-2,6 / Te(C_5F_4N)_2$
-92,9	s, br	0,16	F-2,6 / C ₅ HF ₄ N
-93,7	m	0,06	F-2,6 / ?
-94,9	m	0,07	F-2,6 / Me ₃ SiC ₅ F ₄ N
-120,0	m	1,00	$F-3,5 / Te(C_5F_4N)_2$
-120,7	m	0,04	F-3,5 / ?
-130,9	m	0,06	F-3,5 / Me ₃ SiC ₅ F ₄ N
-140,9	m	0,11	F-3,5 / C5HF4N
-157,2	m	0,12	Me ₃ SiF

¹⁹F-NMR-Spektrum der Reaktionslösung

Die überstehende Reaktionslösung wird abpipettiert und im Vakuum bis zur Trockene eingeengt. Es bleibt ein farbloser bis hellgelber Feststoff zurück, welcher anschließend durch Vakuumsublimation (80-85 °C/10 mbar) gereinigt wird. Das Sublimat wird in verschiedenen Lösungsmitteln NMR-spektroskopisch untersucht. Einkristalle von Te(C_5F_4N)₂ werden durch Umkristallisieren aus Dichlormethan oder n-Pentan in Form farbloser bis blassgelber Nadeln erhalten (Kristalldaten und Einzelheiten zur Kristallstrukturbestimmung: s. Tabelle A5-1 im Anhang).

Ausbeute: 0,35 g Te(C_5F_4N)₂ (82 % bezogen auf AgF).

Schmelzpunkt: 79-81°C (ohne sichtbare Zersetzung).

Elementaranalyse (berechnet): C 28,51 (28,08), N 6,27 (6,54) %.

Kern	δ	Aufspaltun	Kopplung [Hz]	Zuordnung
¹⁹ F	-89,0 (-92,3* / -92,3**)	m	$^{1}J(^{13}C-^{19}F)\approx 250$	F - 2,6
	-121,0 (-120,0* / -119,2**)	m	$^{1}J(^{13}C-^{19}F)\approx 255$	F-3,5
¹³ C	142,8 (143,3**)	dm	${}^{1}J({}^{13}C-{}^{19}F) = 246^{**}$	C-2,6 od. C-3,5***
	142,7 (141,8**)	dm	${}^{1}J({}^{13}C-{}^{19}F) = 246^{**}$	C-3,5 od. C-2,6***
	106,6 (116,1**)	t	$^{2}J(^{13}C-^{19}F) = 28 (32^{**})$	C-4
			$^{1}J(^{13}C-^{125}Te) = 370$	
¹²⁵ Te	426,8	qiqi	$^{3}J(^{125}Te-^{19}F) = 25$	$\underline{\text{Te}}(\text{C}_5\text{F}_4\text{N})_2$
			$^{4}J(^{125}\text{Te-}^{19}\text{F}) = 3,5$	

NMR-spektroskopische Daten von Te(C₅F₄N)₂ in CDCl₃

^{*} In EtCN. ^{**} In DMSO-d₆. ^{***} Eine eindeutige Zuordnung ist nicht möglich, da sich die beiden Signale vollständig überlagern.

m / z	rel. Intensität [%]	Zuordnung
430	100	$\left[\mathrm{Te}(\mathrm{C}_{5}\mathrm{F}_{4}\mathrm{N})_{2}\right]^{+}$
280	32	$[\mathrm{Te}(\mathrm{C}_5\mathrm{F}_4\mathrm{N})]^+$
151	1	$\left[\mathrm{C}_{5}\mathrm{HF}_{4}\mathrm{N} ight]^{+}$

EI-Massenspektrum von $Te(C_5F_4N)_2$ (20 eV)

5.8.4 Kristallisation von Te(C₅F₄N)₂·DMSO und Se(C₅F₄N)₂·DMSO

Farblose Einkristalle von Te $(C_5F_4N)_2$ ·DMSO und Se $(C_5F_4N)_2$ ·DMSO wurden jeweils aus DMSO_{d6}-NMR-Proben nach Stehen an der Luft über mehrere Wochen erhalten (Kristalldaten und Einzelheiten zur Kristallstrukturbestimmung: s. Tabelle A6-1 im Anhang).

5.8.5 Kristallisation von Te(C₅F₄N)₂·TMTU

Zu einer NMR-Probe von $Te(C_5F_4N)_2$ in CDCl₃ (5er Röhrchen) werden einige Tropfen Tetramethylthioharnstoff (TMTU) gegeben und das Röhrchen kräftig durchgeschüttelt. Nach ca. vier Wochen Lagerung bei -28 °C konnten farblose Einkristalle von der gelblichen überstehenden Lösung getrennt und röntgenographisch untersucht werden (Kristalldaten und Einzelheiten zur Kristallstrukturbestimmung: s. Tabelle A7-1 im Anhang).

6 Zusammenfassung und Ausblick

Ziel dieser Arbeit war es, in Analogie zu den oxidativen C_6F_5 - und CF_3 -Übertragungen auf Elemente der Gruppen 12-16 über die entsprechenden Silber(I)-Verbindungen Ag C_6F_5 und Ag CF_3 [23-25], neue Perfluororganylelement-Verbindungen zu synthetisieren und deren Strukturen möglichst röntgenographisch aufzuklären.

AgF
$$\xrightarrow{Me_3SiR_f}$$
 AgR_f \xrightarrow{E} E(R_f)_r
 $R_f = C_5F_4N, C_2F_3, C_2F_5, n-C_3F_7, n-C_4F_9.$
E = Element der Gruppen 12-16

Da sich die hierfür benötigten Perfluororganylsilber(I)-Verbindungen leicht und selektiv aus Silber(I)fluorid und den entsprechenden Silanen, $(CH_3)_3SiR_f$, in Propionitril herstellen lassen, und da Kristallstrukturen von nicht salzartigen Perfluororganylsilber(I)-Verbindungen bislang nur an wenigen Beispielen bestimmt werden konnten, wurde während dieser Arbeit versucht, z. B. das bereits bekannte AgC_2F_5 [20] sowie zwei neue Perfluororganylsilber(I)-Verbindungen ($R_f = C_5F_4N$, C_2F_3) als Feststoffe zu isolieren und zu kristallisieren, was jedoch nicht gelang. Es konnten stattdessen die anionischen Ag-Spezies [$Ag(C_2F_5)_2$]⁻ und [$Ag(C_5F_4N)_2$]⁻ in Form ihrer Bis(triphenylphosphoranyliden)ammonium-Argentate, [PNP][$Ag(C_2F_5)_2$] (1) bzw. [PNP][$Ag(C_5F_4N)_2$] (2), isoliert und deren Molekülstrukturen kristallographisch aufgeklärt werden.

Im Gegensatz zu dem sehr kristallisationsfähigen $[AgC_6F_5 \cdot EtCN]_n$ [25], zeigt das analoge, in dieser Arbeit nicht isolierte, jedoch ¹⁹F-, ¹³C-NMR-spektroskopisch und massenspektrometrisch (neg. ESI) charakterisierte C₅F₄N-Derivat, "AgC₅F₄N·EtCN", überraschenderweise nur geringes Kristallisationsvermögen. Eine Ursache hierfür wird darin vermutet, dass das 4-Tetrafluorpyridylsilber(I), sowohl in Lösung als auch im Feststoff, primär als ionische Spezies, Ag⁺/[Ag(C₅F₄N)₂]⁻, vorliegt. Diese Vermutung wird ¹⁹F-NMRspektroskopisch sowie massenspektrometrisch (neg. ESI) gestützt.

Wie bei sämtlichen bisher kristallographisch charakterisierten Perfluororganylsilber(I)-Verbindungen, sind auch hier die Ag-Atome in den monomeren $[Ag(C_2F_5)_2]^-$ und $[Ag(C_5F_4N)_2]$ -Anionen mit C-Ag-C-Bindungswinkel von 177° bzw. 173° nahezu linear von zwei perfluorierten Liganden koordiniert. Auch die Ag-C-Abstände liegen mit 211-213 pm in für kovalente Ag-C-Bindungen charakteristischen Größenordnungen.

Im Gegensatz zu (1) und (2) konnte das analoge C₆F₅-Salz nicht erhalten werden. Die Umsalzung von AgC₆F₅·EtCN mit [PNP]Cl verlief unselektiv und lieferte hauptsächlich das Fluor-freie Argentat [PNP]₂[Ag₂Cl₄] (3), dessen Struktur kristallographisch gelöst werden konnte. Der strukturelle Aufbau des über Cl-Liganden verbrückten, dimeren $[ClAg(\mu-Cl)_2AgCl]^2$ -Anions ist mit denen in $[Kat]_2[ClAg(\mu-Cl)_2AgCl]$ (Kat: PPh₄ [37], AsPh₄ [38], Bi(4-Me₂NC₆H₄)₄ [39]) vergleichbar.

Des Weiteren konnte durch Umsetzung von Trimethyl(trifluorvinyl)silan, Me₃Si(C₂F₃), mit AgF in Propionitril eine neue AgC₂F₃-Verbindung synthetisiert werden. Die Verbindung fällt als weiß-gelblicher, in CH₂Cl₂, CHCl₃, THF und CH₃CN schwerlöslicher Feststoff an und untersucht $(^{19}$ F-. ¹³C-. ¹H-NMR-spektroskopisch wurde soweit und EImassenspektrometrisch), dass man sie in Anlehnung an die literaturbekannten $[AgC(CF_3)=CF(CF_3)]_4$ [31] und $[Cu(C_6F_5)]_4(\eta^2$ -Toluol) [43], zumindest im Feststoff, als tetrameres Propionitril-Addukt, "[Ag(C₂F₃)]₄(EtCN)_n", postulieren darf. AgC₂F₃ scheint im Gegensatz zu dem homologen Cu-Derivat, $\langle CuC_2F_3 \rangle$ [42], wesentlich stabiler zu sein. Untersuchungen entsprechender Fähigkeiten als Trifluorvinylierungsmittel stehen noch aus.

Tetrakis(perfluoralkyl)zinn(IV)-Verbindungen, $Sn(R_f)_4$ ($R_f = C_2F_5$, n- C_3F_7 [45], n- C_4F_9), sind durch Reaktionen der entsprechenden Perfluoralkylsilber(I)-Verbindungen mit Zinn in Propionitril unter normalen Bedingungen nicht zugänglich. Stattdessen entstehen dabei nahezu selektiv und unabhängig von der Kettenlänge des Perfluoralkyl-Liganden anscheinend sehr ähnliche Verbindungen (sehr vergleichbare ²J(¹⁹F-¹¹⁹Sn)-Kopplungskonstanten), die als rotbraune, nicht analysenreine Öle anfallen. Ihre genauen Zusammensetzungen konnten im Rahmen dieser Arbeit nicht bestimmt werden. Die jeweiligen gefundenen ²J(¹⁹F-¹¹⁹Sn)-Kopplungskonstanten liegen je nach Lösungsmittel mit 130 bis 162 Hz in einem für mehrfach perfluoralkylierte Sn(IV)-Verbindungen [45, 51] atypischen Bereich. Ebenso sind die ³J(¹⁹F-¹¹⁹Sn)-Kopplungskonstanten für $R_f = n-C_3F_7$ und $n-C_4F_9$ mit 110-117 Hz im Vergleich zu denen in Sn(IV)-Verbindungen ungewöhnlich groß. Die jeweiligen drei Verbindungen werden an Hand massenspektrometrischer Untersuchungen (Nachweis des $[Sn(C_4F_9)_3]$ -Fragmentes bzw. von C₂F₅-substituierten AgSn₂-Spezies aus den jeweiligen neg. ESI-Massenspektren) sowie durch Folgereaktionen Ouecksilber mit (s. u.) als

"[Ag(EtCN)_x][Ag(Sn(R_f)₃)₂]" und/oder - auf Grund der Gleichgewichtseinstellung bei Silberkomplexen - als "AgSn(R_f)₃·EtCN" postuliert. Analoges wird im Falle R_f = C₅F₄N postuliert (s. u.). Gestützt wird diese Annahme durch das von N. Jahn in seiner Dissertation beschriebene, ähnliche Verhalten der ²J(¹⁹F-¹¹⁹Sn)-Kopplungskonstante beim Übergang von CF₃-substituierten Stannanen zu den Stannaten(II) [Sn(CF₃)₃]⁻ (64 Hz) und [Ag(Sn(CF₃)₃)₂]⁻ (140 Hz) [52].

$$3 \operatorname{AgR}_{f} + \operatorname{Sn} \longrightarrow \operatorname{AgSn}(\operatorname{R}_{f})_{3} + 2 \operatorname{Ag}$$

$$2 \operatorname{AgSn}(\operatorname{R}_{f})_{3} \longrightarrow \operatorname{Ag}^{+} + [\operatorname{Ag}(\operatorname{Sn}(\operatorname{R}_{f})_{3})_{2}]^{-}$$

$$\operatorname{R}_{f} = \operatorname{C}_{2}\operatorname{F}_{5}, \operatorname{n-C}_{3}\operatorname{F}_{7}, \operatorname{n-C}_{4}\operatorname{F}_{9}, \operatorname{C}_{5}\operatorname{F}_{4}\operatorname{N}$$

Die ¹¹⁹Sn-NMR-Untersuchungen lieferten - offensichtlich auf Grund hier ablaufender Austauschprozesse und wegen der zahlreichen magnetisch inäquivalenten F-Atome in der R_f-Kette - keine eindeutig interpretierbaren Spektren. Die gefundene Größenordnung für die ¹¹⁹Sn-NMR-Verschiebungen (-57 bis -35 ppm) spricht jedoch eindeutig gegen Sn(R_f)₄-Verbindungen (-200 bis -500 ppm). Darauf aufbauend sollten diese Verbindungen durch spezielle ¹¹⁹Sn- und ¹⁰⁹Ag-NMR-Untersuchungen weiter zu charakterisieren sein.

"AgSn(n-C₃F₇)₃" und "AgSn(n-C₄F₉)₃" aber auch "AgSn(C₃F₄N)₃" sind in Propionitril weitgehend thermisch stabil (bis ca. 90 °C). Die Pyrolyse der lösungsmittelfreien C₃F₇-Verbindung führt zu einem öligen, sublimierbaren Zersetzungsprodukt, welches ¹⁹F-, ¹¹⁹Sn-NMR-spektroskopisch und massenspektrometrisch als Sn₂(n-C₃F₇)₆ formuliert werden kann. Im Unterschied dazu führt die Pyrolyse der homologen C₅F₄N-Verbindung hauptsächlich zu Sn(C₃F₄N)₄ (**4**), welches in einer Ausbeute von ca. 10 % analytisch rein isoliert, ¹⁹F-NMRspektroskopisch, massenspektrometrisch sowie röntgenographisch charakterisiert werden konnte. Sn(C₅F₄N)₄ ist ein farbloser, sehr feuchtigkeitsunempfindlicher und schwerlöslicher Feststoff mit einem Schmelzpunkt von 275 °C. Es kristallisiert wie alle bisher literaturbekannten Tetrakis(aryl)element(IV)-Verbindungen der 14. Gruppe in einem tetragonalen Kristallsystem. Der Kristall besteht aus diskreten Sn(C₅F₄N)₄-Molekülen, in denen das Sn-Atom nahezu ideal tetraedrisch von vier C₃F₄N-Liganden koordiniert ist. Der Sn-C-Bindungsabstand von 215,5(4) pm (4x) ist um ca. 3 pm länger als in der homologen C₆F₅-Verbindung [49]. Des Weiteren konnte das Postulieren der Zusammensetzung "AgSn(R_f)₃" durch Folgereaktionen von "AgSn(C₂F₅)₃" bzw. "AgSn(n-C₄F₉)₃" mit Quecksilber in Propionitril unterstützt werden. Hierbei findet analog zu den Reaktionen von AgCF₃ [23, 24], AgC₆F₅ [25] und AgC₅F₄N (s. u.) mit Hg eine oxidative <Sn^{II}(R_f)₃>-Übertragung auf das Hg-Atom unter Ag-Abscheidung und nahezu selektiver Bildung von Verbindungen der Zusammensetzung Hg[Sn(R_f)₃]₂ statt. Diese Verbindungen konnten ¹⁹F-, ¹⁹⁹Hg- und ¹¹⁹Sn-NMR-spektroskopisch eindeutig charakterisiert werden.

Schema 1: Zusammenstellung der in dieser Arbeit durchgeführten Umsetzungen von Perfluororganylsilber(I)-Verbindungen mit Zinn.

Durch Umsetzungen von AgC_5F_4N mit Elementen der Gruppen 12-16 in Propionitril konnten in dieser Arbeit die in Tabelle 6-1 aufgeführten 4-Tetrafluorpyridylelement-Verbindungen dargestellt und zum größten Teil weitgehend charakterisiert werden.
Е	Т	RktZeit	Produkt(e)	Ausbeute	Struktur/Nr.
Zn	75 °C	16 h	$"Zn(C_5F_4N)_2$ ·2EtCN"		
Cd	75 °C	16 h	$\text{``Cd}(C_5F_4N)_2\text{'}2EtCN\text{''}$		
Hg	21 °C	< 1 h	$Hg(C_5F_4N)_2$	45	xx (5)
Al	100 °C		k. R.		
Ga	21 °C	> 6	$Ga(C_5F_4N)_3$ ·EtCN·H ₂ O + ?		xx (6)
In		3 h	In(C ₅ F ₄ N) ₃ ·2EtCN	35	xx (7)
Tl	80 °C	48 h	??		
Ge	60 °C	>18 h	k. R.		
GeCl ₂ ·Diox	21 °C	sofort	$Ge(C_5F_4N)_2 \cdot Diox'' + ???$		
Sn	bis 85 °C	>18 h	"AgSn(C ₅ F ₄ N) ₃ "		
	230 °C*		$Sn(C_5F_4N)_4$	10	xx (4)
Pb	21 °C	2 h	"Pb[Ag(C_5F_4N) ₂] ₂ ·2EtCN"		
	240 °C*		$(C_5F_4N)_2 + M[Ag(C_5F_4N)_2]_x$		
As	80 °C	48 h	$As(C_5F_4N)_3$	45	xx (8)
Sb	90 °C	48 h	$Sb(C_5F_4N)_3$		
Bi	21 °C	<24 h	$Bi(C_5F_4N)_3$		
S	50 °C	16 h	$S_{x}(C_{5}F_{4}N)_{2}$, $x \ge 2$		
Se	21 °C	24 h	$Se(C_5F_4N)_2$	53	xx (9)
			Se(C ₅ F ₄ N) ₂ ·DMSO ^{**}		xx (11)
Te	21 °C	> 16 h	$Te(C_5F_4N)_2$	82	xx (10)
			$Te(C_5F_4N)_2 \cdot DMSO^{**}$		xx (12)
			Te(C ₅ F ₄ N) ₂ ·TMTU ^{**}		xx (13)

Tab. 6-1: Reaktionsbedingungen, Produkte und Ausbeuten der Umsetzungen von AgC_5F_4N mit Elementen der Gruppen 12-16 in Propionitril

k. R.: keine Reaktion; Die in Anführungszeichen stehenden Zusammensetzungen konnten nicht als solche zweifelfrei identifiziert werden. Alle Ausbeuten sind auf AgF bezogen. xx: Kristallstruktur bestimmt; * Pyrolyse der jeweiligen Zwischenstufe im Vakuum; ** Erhalten durch Komplexierung der donorfreien Verbindung

<u>Gruppe 12</u>: Die Produkte aus den Reaktionen von AgC_5F_4N mit Zn bzw. mit Cd in Propionitril fallen als hydrolyseempfindliche, nicht kristalline Stoffe an. Sie konnten lediglich ¹⁹F-NMR-spektroskopisch charakterisiert werden. Sie werden jeweils als "Zn(C₅F₄N)₂·2EtCN" und "Cd(C₅F₄N)₂·2EtCN" postuliert, da fast alle literaturbekannten Bis(perfluororganyl)zink- und Bis(perfluororganyl)cadmium-Verbindungen in Gegenwart von donorstabilisierenden Komplexbildner als 1:2-Addukte beschrieben werden (Zn: [25, 56-59], Cd: [9, 25, 59, 60]). Hg(C₅F₄N)₂ (**5**) [54, 55] lässt sich im Gegensatz zu den homologen Cdund Zn-Verbindungen glatt und selektiv aus AgC₅F₄N und Hg in EtCN herstellen. Es konnte als kristalliner und hydrolysestabiler Feststoff in einer Ausbeute von 45 % isoliert und erstmals NMR-spektroskopisch und röntgenographisch charakterisiert werden. Es liegt im Kristall polymer in Form unendlicher Zick-Zack-Ketten von zwei kristallographisch unabhängigen Molekülen vor. Die polymere Struktur kommt dadurch zustande, dass jedes von zwei Pyridyl-Liganden nahezu linear koordinierte Hg-Atom einen signifikanten Kontakt zu einem N-Atom des benachbarten Moleküls ausbildet (285-287,0 pm). Daraus resultiert für jedes Hg-Atom eine leicht verzerrte T-förmige Koordination, wie sie beispielsweise für die Mercurate [Kat][Hg(R_f)₂X] (R_f = CF₃, C₆F₅; X = Br, I, SCN) gefunden wurde [62, 63]. Als Ursache für die Hg···N-Wechselwirkung wird die allgemein bekannte Affinität von Hg^{II} zu N-Donor-Liganden angenommen, z. B. [66].

Gruppe 13: Während nicht aktiviertes Aluminium mit AgC_5F_4N nicht reagiert (Passivierung), führt die analoge Reaktion mit Gallium im Wesentlichen zu zwei Ga(C₅F₄N)-Derivaten. Bei dem Hauptprodukt könnte es sich um ein Gallat des Typs "Ag[Ga(C₅F₄N)₄]" und weniger um das erhoffte Ga(C5F4N)3·EtCN handeln. Aus dem Produktgemisch wurden luftstabile Einkristalle von $Ga(C_5F_4N)_3$ EtCN·H₂O (6) erhalten. Die Reaktion mit Indium führt dagegen ausschließlich zu $In(C_5F_4N)_3$ ·2EtCN (7), welches in einer Ausbeute von 35 % isoliert und weitgehend charakterisiert werden konnte. Die geringe Selektivität der Reaktion mit Gallium auf die ausgeprägte Lewis-Acidität von Ga(III)-Verbindungen mit stark wird elektronenziehenden Substituenten sowie auf die thermodynamische Stabilität von Gallaten zurückgeführt. Auf Grund der potentiellen Eignung von $[Ga(C_5F_4N)_4]^-$ als schwach koordinierendes Anion und der damit verbundenen Anwendungen, z. B. zur Stabilisierung von reaktiven Kationen [118], scheinen hier weitere Untersuchungen von Interesse zu sein. (6) und (7) kristallisieren in sehr ähnlichen Strukturen. Sie stellen jeweils die erste Kristallstruktur einer neutralen Perfluororganylgallium(III)-Verbindung mit einem fünffach koordinierten Ga-Zentrum bzw. einer neutralen Indium(III)-Verbindung mit drei Perfluoraryl-Liganden dar. Beide Verbindungen liegen im Kristall jeweils monomer in Form einer leicht verzerrten trigonalen Bipyramide vor (AX₅-Typ), wobei die Pyridyl-Ringe die äquatoriale Ebene besetzen und die Donor-Liganden nahezu linear (176°-177°) auf den axialen Positionen stehen. Während die E-C-Bindungsabstände im Bereich kovalenter (2z-2e)-Bindungen liegen, können die E-N-Bindungen und die Ga-O-Bindung nur als schwache dative Bindungen aufgefasst werden (schwache Addukte). Da sämtliche bisher strukturell

untersuchten Ga(C_6F_5)-Verbindungen [72, 75-78] ein vierfach koordiniertes Ga-Atom aufweisen, wird die Erhöhung der Koordinationszahl in (6) auf 4+1 auf die höhere Gruppenelektronegativität des isolobalen C_5F_4 N-Liganden [27] zurückgeführt.

<u>Gruppe 14</u>: Nicht amorphes Germanium lässt sich mit AgC_5F_4N nicht oxidieren. Die alternative Austauschreaktion von AgC_5F_4N mit $GeCl_2$ ·Diox in Propionitril verläuft unselektiv unter Abscheidung von Silberchlorid und Bildung von mindestens drei $Ge(C_5F_4N)$ -Verbindungen, von denen das Hauptprodukt einen Anteil von ca. 60 % ausmacht und als eine donorstabilisierte Ge(II)-Spezies, " $Ge(C_5F_4N)_2$ ·Diox" oder " $Ge(C_5F_4N)Cl$ ·Diox", mit Vorbehalt postuliert wird. Die Reaktion von AgC_5F_4N mit Zinn wurde bereits oben besprochen. Die Reaktion mit Blei bei Raumtemperatur verläuft selektiv unter Bildung einer Zwischenstufe, die als "Pb $[Ag(C_5F_4N)_2]_2$ ·2EtCN" formuliert werden kann. Ein Versuch, sie durch Pyrolyse in Pb $(C_5F_4N)_4$ zu überführen, gelang im Unterschied zu der analogen Reaktion von AgC_6F_5 mit Blei [25] nicht.

<u>Gruppe 15</u>: $E(C_5F_4N)_3$ (E = As (8), Sb, Bi) werden ebenfalls durch Oxidation der entsprechenden Elemente mit AgC₅F₄N als farblose Feststoffe erhalten. Während die luftstabile As-Verbindung isoliert und weitgehend charakterisiert wurde, konnten die extrem luft- und hydrolyseempfindlichen Sb- und Bi-Verbindungen lediglich ¹⁹F-NMRspektroskopisch und massenspektrometrisch identifiziert werden. Sb(C₅F₄N)₃ und Bi(C₃F₄N)₃ scheinen in dieser Hinsicht (generell gegenüber O-Nukleophilen) noch empfindlicher zu sein als die homologen C₆F₅-Verbindungen (Sb [96], Bi [103, 104]). Ein hierfür verantwortliche Ausmaß an Lewis-Acidität, begünstigt durch den zunehmenden metallischen Charakter von As zum Bi hin, wird erneut auf die stärkere elektronenziehende Wirkung des C₅F₄N-Liganden zurückgeführt. Die Kristallstruktur von As(C₃F₄N)₃ zeigt eine durch π - π - und π -N-Wechselwirkungen hervorgerufene polymere Struktur an. Das Ausmaß der entsprechenden interatomaren Abstände (353,1(2) pm für das "offset-stacking" bzw. 308,3(2) und 314,6(2) pm für das "edge-to-face-stacking"[98]) wird diskutiert.

<u>Gruppe 16</u>: Das literaturbekannte $S(C_5F_4N)_2$ [105, 106] konnte durch Oxidation von elementarem Schwefel mit AgC₅F₄N in EtCN nicht erhalten werden. Bei dem dabei gebildeten, wachsartigen Feststoff könnte es sich um ein höheres Sulfan ($S_x(C_5F_4N)_2$, x > 2) handeln. Bei dem Nebenprodukt (20 %) der entsprechenden Reaktion mit Selen bei leicht erhöhter Reaktionstemperatur handelt es sich sehr wahrscheinlich um die Diselenverbindung

 $Se_2(C_5F_4N)_2$. Eine selektive Bildung der erhofften Diarylchalkogen(II)-Verbindungen $Se(C_5F_4N)_2$ (9) und $Te(C_5F_4N)_2$ (10) wird für Se nur bei Raumtemperatur, für Te sogar bis 50 °C erzielt. Diese Abnahme der Selektivität liegt in der zunehmenden Tendenz zur Kettenbildung von Te zum S hin begründet. (9) und (10) konnten in mäßigen bis guten Ausbeuten von 53 % bzw. 82 % isoliert, ¹⁹F-, ¹³C-, ⁷⁷Se-, ¹²⁵Te-NMR-spektroskopisch, massenspektrometrisch sowie durch Röntgenstrukturanalvsen charakterisiert werden. Sie kristallisieren nahezu isotyp mit jeweils zwei unabhängigen Molekülen. Hierbei sind die C₅F₄N-Liganden jeweils mit nahezu rechtwinkligen C-Te-C-Bindungswinkeln V-förmig angeordnet. Die Verringerung der C-E-C-Bindungswinkel um ca. 2-2,5° sowie die damit gekoppelte Verlängerung der E-C-Abstände um ca. 2,4 pm gegenüber denen in den homologen C₆F₅-Verbindungen [108,109], stehen im Einklang mit dem VSEPR-Modell [86] und bestätigen erneut den auf der Grundlage quantenmechanischer Rechnungen postulierten Elektronegativitätsunterschied zwischen dem C_6F_5 - und dem isolobalen C_5F_4N -Liganden [27]. In beiden Verbindungen werden schwache intermolekulare E…N-Wechselwirkungen beobachtet, wobei die letzten in (9) etwas ausgeprägter sind, so dass sich dort eine schwache polymere Struktur vermuten lässt.

Des Weiteren zeigten Röntgenstrukturanalysen, dass die Komplexierung von (**9**) und (**10**) mit den O- und S-Donor-Liganden Dimethylsulfoxid (DMSO) und Tetramethylthioharnstoff (TMTU) zu polymeren, sehr ähnlichen Strukturen mit relativ starken dativen E-D-Bindungen im Kristall führt (E-D-Ketten, D = O für DMSO und D = S für TMTU). In allen drei 1:1-Addukten, Se(C₅F₄N)₂·DMSO (**11**), Te(C₅F₄N)₂·DMSO (**12**) und Te(C₅F₄N)₂·TMTU (**13**), liegt das jeweilige Chalkogen-Atom vierfach koordiniert im Zentrum eines nahezu ideal planaren C₂ED₂-Strukturfragmentes (Pseudo-oktaedrische Anordnung der Valenzelektronen, AX₄E₂-Typ). Bei der Bildung dieser Lewis-Säure/Base-Addukte ergeben sich durch den sterischen Raumanspruch der Donor-Liganden die erwarteten strukturellen Veränderungen für das E(C₅F₄N)₂-Fragment (Verlängerung des E-C-Bindungsabstandes und Verringerung des (C-E-C)-Bindungswinkels). Unerwartet ist jedoch die in Abhängigkeit vom Zentralatom E festgestellte, geringfügige Zunahme der E(C₃F₄N)₂/DMSO-Wechselwirkung von Selen zum Tellur (Abnahme der E-O-Bindungslänge um 4,3 ppm).

Insgesamt weist AgC_5F_4N ein dem AgC_6F_5 [25] sehr vergleichbares Oxidationsverhalten gegenüber Elementen der Gruppe 12 bis 16 auf. Die Substitution der C₆F₅- gegen die elektronegativere C₅F₄N-Gruppe übt jedoch einen deutlichen Einfluss auf die Bindungsverhältnisse (Verlängerung des E-C-Bindungsabstandes) und die Stabilität (gegenüber Hydrolyse) der entsprechenden neutralen Elementverbindungen, $E(C_5F_4N)_n$, aus. Dass die C_5F_4N -Elementverbindungen thermisch stabiler sind als ihre C_6F_5 -Homologen, wird durch höhere Schmelzpunkte dokumentiert (s. Tab. 6-2) und liegt neben dem niedrigeren Fluorierungsgrad in den oben beschriebenen schwach polymeren Strukturen begründet.

$\mathbf{R} = \mathbf{C}_5 \mathbf{F}_4 \mathbf{N}$	$\mathbf{R} = \mathbf{C}_6 \mathbf{F}_5$	ΔF_p
195-196	141-142 [68, 119]	+ 54
275	221 [48]	+ 54
168 [101]	117 [102]	+ 51
165-166	106 [96]	+ 59
87	76-77 [108]	+ 10
79-81	57-58 [109]	+ 22
	$R = C_5 F_4 N$ 195-196 275 168 [101] 165-166 87 79-81	$R = C_5F_4N$ $R = C_6F_5$ 195-196141-142 [68, 119]275221 [48]168 [101]117 [102]165-166106 [96]8776-77 [108]79-8157-58 [109]

Tab. 6-2: Vergleich der Schmelzpunkte (°C) von ER_n (R = C₅F₄N, C₆F₅)

7 Literaturverzeichnis

- [1] A. A. Banks, H. J. Emeléus, R. N. Haszeldine, V. Kerrigan, J. Chem. Soc. (1948) 2188.
- [2] H. J. Emeléus, R. N. Haszeldine, J. Chem. Soc. (1949) 2948 und 2953.
- [3] D. J. Burton, Z.-Y. Yang, Tetrahedron **48** (1992) 189.
- [4] M. A. McClinton, D. A. McClinton, Tetrahedron 48 (1992) 6555.
- [5] G. K. S. Prakash, A. K. Yudin, Chem. Rev. 97 (1997) 757.
- [6] Zum Beispiel: J. G. Weers, J. Fluorine Chem. **64** (1991) 73.
- [7] a) J. E. Huheey, J. Phys. Chem. 69 (1965) 3284;
 b) S. G. Bratsch, J. Chem. Educ. 62 (1985) 101.
- [8] a) R. Eujen, H. Bürger, Spectrochim. Acta 35 A (1979) 549;
 b) J. E. Drake, R. Eujen, K. Gorzelska, Inorg. Chem. 21 (1982) 558 und 1784.
- [9] a) L. J. Krause, J. A. Morisson, J. Am. Chem. Soc. 103 (1981) 2995;
 b) H. Lange, D. Naumann, J. Fluorine Chem. 26 (1984) 1.
- [10] Z.-H. Choi, W. Tyrra, A. Adam, Z. Anorg. Allg. Chem. **625** (1999) 1287.
- [11] a) S. Herberg, D. Naumann, Z. Anorg. Allg. Chem. 402 (1982) 95;
 b) E. A. Ganja, C. D. Ontiveros, J. A. Morrison, Inorg. Chem. 27 (1988) 453;
 c) R. Eujen, U. Thurmann, J. Organomet. Chem. 433 (1992) 63.
- a) D. Naumann, W. Tyrra, B. Kock, W. Rudolph, B. Wilkes, J. Fluorine Chem. 67 (1994) 9;
 b) W. Tyrra, D. Naumann, J. Prakt. Chem. 338 (1996) 283.
- [13] I. Ruppert, K. Schlich, W. Volbach, Tetrahedron Lett. 25 (1984) 2195.
- [14] D. Naumann, W. Strauß, W. Tyrra, J. Organomet. Chem. 407 (1991) 1.
- [15] G. K. S. Prakash, R. Krishnamurti, G. A. Olah, J. Am. Chem. Soc. 111 (1989) 393.
- [16] N. Maggiarosa, Dissertation, Universität zu Köln, 1999.
- [17] K. K. Sun, W. T. Miller, J. Am. Chem. Soc. 92 (1970) 6985.
- [18] D. Naumann, W. Tyrra, R. Herrmann, I. Pantenburg, M. S. Wickleder,Z. Anorg. Allg. Chem. 628 (2002) 833.
- [19] M. M. Kremlev, W. Tyrra, D. Naumann, Y. L. Yagupolskii, J. Fluorine Chem. 126 (2005) 9.
- [20] D. Naumann, W. Wessel, J. Hahn, W. Tyrra, J. Organomet. Chem. 547 (1997) 79.
- [21] W. Wessel, Dissertation, Universität zu Köln, 1996.
- [22] F. Trinius, Dissertation, Universität zu Köln, 1993.

- [23] W. Tyrra, J. Fluorine Chem. **112** (2001) 149.
- [24] W. Tyrra, Heteroat. Chem. **13** (2002) 56.
- [25] W. Tyrra, M. S. Wickleder, Z. Anorg. Allg. Chem. 628 (2002) 1841.
- [26] W. Tyrra, D. Naumann, J. Fluorine Chem. **125** (2004) 823.
- [27] B. Hoge, C. Thösen, T. Hermann, P. Panne, I. Pantenburg, J. Fluorine Chem. 125 (2004) 831.
- [28] J. G. Noltes und G. van Koten in G. Wilkinson, "Comprehensive Organometallic Chemistry", Band 2, Pergamon Press, Oxford (1982) S. 709.
- [29] a) J. I. Kim, H. Duschner, J. Inorg. Nucl. Chem. **39** (1977) 471;
 b) F. A. Cotton, G. Wilkinson, "Anorganische Chemie", 4. Auflage, VCH, Weinheim (1982) S. 985.
- [30] R. R. Burch, J. C. Calabrese, J. Am. Chem. Soc. 108 (1986) 5359.
- [31] P. M. Jeffries, S. R. Wilson, G. S. Girolami, J. Organomet. Chem. 449 (1993) 203.
- [32] R. Usón, A. Laguna, A. Usón, P. G. Jones, K. Meyer-Bäse, J. Chem. Soc., Dalton Trans. (1988) 341.
- [33] a) persönliche Mitteilung von W. Tyrra;b) D. Naumann, W. Tyrra, T. Lewe, J. Fluorine Chem. 84 (1997) 69.
- [34] a) V. Gutmann, The Donor Acceptor Approach to Molecular Interactions, Plenum, New York, 1978;
 b) R. W. Taft, N. J. Pienta, M. J. Kamlet, J. Org. Chem. 46 (1986) 66.
- [35] W. Wessel, Diplomarbeit, Universität zu Köln, 1993.
- [36] V. B. Smith, A. G. Massey, J. Organomet. Chem. 23 (1970) C9-C10.
- [37] G. Helgesson, S. Jagner, J. Chem. Soc., Dalton Trans. (1988) 2117.
- [38] G. Helgesson, S. Jagner, J. Chem. Soc., Dalton Trans. (1990) 2413.
- [39] A. Hassan, S. R. Breeze, S. Courtenay, C. Deslippe, S. Wang, Organometallics 15 (1996) 5613.
- [40] A. K. Brisdon, K. K. Banger, J. Fluorine Chem. **100** (1999) 35.
- [41] a) W. T. Miller, R. J Burnard, J. Am. Chem. Soc. 90 (1968) 7367;
 b) W. T. Miller, R. H. Snider, R. J. Hummel, J. Am. Chem. Soc. 91 (1969) 6532;
 c) K. K. Sun, W. T. Miller, J. Am. Chem. Soc. 92 (1970) 6985.
- [42] a) D. J. Burton, S. W. Hansen, J. Am. Chem. Soc. 108 (1986) 4229;
 b) M. Yamamoto, D. J. Burton, D. C. Swenson, J. Fluorine Chem. 72 (1995) 49.
- [43] A. Sundararaman, R. A. Lalancette, L. N. Zakharov, A. L. Rheingold, F. Jäkle, Organometallics 22 (2003) 3526.
- [44] a) R. A. Jacob, R. J. Lagow, Chem. Commun. (1973) 104;
 b) R. J. Lagow, L. L. Gerchman, R. A. Jacob, J. A. Morrison, J. Am. Chem. Soc. 97 (1975) 518.

- [45] D. Seyferth, F. Richter, J. Organomet. Chem. **499** (1995) 131.
- [46] J. M. Holmes, R. D. Peacock, J. C. Tatlow, Proc. Chem. Soc. (1963) 108.
- [47] C. Tamborski, E. J. Soloski, S. M. Dec, J. Organomet. Chem. 4 (1965) 446.
- [48] R. D. Chambers, T. Chivers, J. Chem. Soc. (1964) 4782.
- [49] A. Karipides, C. Forman, R. H. P. Thomas, A. T. Reed, Inorg. Chem. 13 (1974) 811.
- [50] H. D. Kaesz, S. L. Stafford, F. G. A. Stone, J. Am. Chem. Soc. 82 (1960) 6232.
- [51] Zum Beispiel: R. Eujen, N. Jahn, U. Thurmann, J. Organomet. Chem. 465 (1994) 153.
- [52] N. Jahn, Dissertation, Universität-GH Wuppertal, 1994.
- [53] H. Berwe, A. Haas, Chem. Ber. **120** (1987) 1175.
- [54] R. D. Chambers, F. G. Drakesmith, J. Hutchinson, W. K. R. Musgrave, Tetrahedron Lett. 18 (1967) 1705.
- [55] P. Sartori, H. Adelt, J. Fluorine Chem. **3** (1973/74) 275.
- [56] H. Lange, D. Naumann, J. Fluorine Chem. **26** (1984) 435.
- [57] D. Naumann, C. Schorn, W. Tyrra, Z. Anorg. Allg. Chem. 625 (1999) 827.
- [58] C. Schorn, D. Naumann, H. Scherer, J. Hahn, J. Fluorine Chem. 107 (2001) 159.
- [59] a) S. Aboulkacem, W. Tyrra, I. Pantenburg, Z. Anorg. Allg. Chem. 629 (2003) 1569.
 b) S. Aboulkacem, Diplomarbeit, Universität zu Köln, 2002.
- [60] D. Naumann, K. Glinka, W. Tyrra, Z. Anorg. Allg. Chem. **594** (1991) 95.
- [61] A. Bondi, J. Phys. Chem. **68** (1964) 441.
- [62] F. Schulz, I. Pantenburg, D. Naumann, Z. Anorg. Allg. Chem. 629 (2003) 2312.
- [63] D. Naumann, F. Schulz, I. Pantenburg, W. Tyrra, Z. Anorg. Allg. Chem. 630 (2004) 529.
- [64] N. R. Kunchur, M. Mathew, Chem. Comm. (1966) 71.
- [65] D. L. Wilkinson, J. Riede, G. Müller, Z. Naturforsch. **46b** (1991) 285.
- [66] G. Meyer, P. Nockermann, Z. Anorg. Allg. Chem. **629** (2003) 1447.
- [67] D. Grdenic, B. Kamenar, A. Nagl, Acta Cryst. **B33** (1977) 587.
- [68] D. Naumann, F. Schulz, Z. Anorg. Allg. Chem. 631 (2005) 122.
- [69] D. S. Brown, A. G. Massey, D. A. Wickens, J. Organomet. Chem. **194** (1980) 131.
- [70] G. B. Deacon, P. C. Junk, J. Chem. Crystallogr. **33** (2003) 605.
- [71] K. Ludovici, Diplomarbeit, Universität zu Köln, 1991.
- [72] F. Conrad, Dissertation, Universität zu Köln, 1996.
- [73] Z.-H. Choi, Dissertation, Universität zu Köln, 1996.
- [74] K. Ludovici, W. Tyrra, D. Naumann, J. Organomet. Chem. 441 (1992) 363.

- [75] A. H. Cowley, C. L. B. Macdonald, J. S. Silverman, J. D. Gorden, A. Voigt, Chem. Commun.(2001) 175 (die darin zitierte Literaturstelle [5]; CCDC 137250).
- a) C. Meyer, Dissertation, Universität Düsseldorf, 1994;
 b) F. Conrad, Z.-H. Choi, K. Ludovici, W. Tyrra, in: Proceedings of the 11th European Symposium on Fluorine Chemistry, Bled, Slovenia, 1995, Abstract 116.
- [77] K.-F. Tebbe, T. Gilles, F. Conrad, W. Tyrra, Acta Cryst. C52 (1996) 1663.
- [78] I. A. Guzei, S. Dagorne, R. F. Jordan, Acta Cryst. C56 (2000) e134.
- [79] B. L. Kaafarani, H. Gu, A. A. Pinkerton, D. C. Neckers, J. Chem. Soc., Daltons Trans. (2002) 2318.
- [80] M.-C. Chen, J. A. S. Roberts, T. J. Marks, Organometallics 23 (2004) 932.
- [81] J. L. Pohlmann, F. E. Brinckmann, Z. Naturforsch. 20b (1965) 5.
- [82] G. B. Deacon, J. C. Parrott, Inorg. Nucl. Chem. Lett. 7 (1971) 329.
- [83] M. A. Guerra, T. R. Bierschenk, R. J. Lagow, Rev. Chim. Min. 23 (1986) 701.
- [84] W. Tyrra, M. S. Wickleder, J. Organomet. Chem. 677 (2003) 28.
- [85] H. Schumann, O, Just, Th. D. Seus, F. H. Görlitz, R. Weimann, J. Organomet. Chem. 466 (1994) 5.
- [86] R. J. Gillespie, E. A. Robinson, Angew. Chem. **108** (1996) 539.
- [87] J. Emsley, The Elements, 2nd Edition, Oxford University Press, Oxford, 1992.
- [88] a) J. J. Zuckermann, Adv. Inorg. Chem. Radiochem. 6 (1964) 383;
 b) E. G. Rochow, J. Chem. Educ. 43 (1966) 58;
 - c) H. Schmidbauer, J. Rott, Z. Naturforsch. 44 (1989) 285.
- [89] a) S. Schlecht, Angew. Chem. 114 (2002) 1237;
 b) S. Schlecht, M. Yosef, M. Fröba, Z. Anorg. Allg. Chem. 630 (2004) 864.
- [90] K. W. Jolley, L. H. Sutcliffe, Spectrochimica Acta, 24 (1968) 1191.
- [91] A. Karipides, B. Foerst, Acta Cryst. **B34** (1978) 3494.
- [92] T. M. Klapötke, B. Krumm, M. Niemitz, K. Polborn, C. M. Rienäcker, J. Fluorine Chem. 104 (2000) 129.
- [93] H. Preut, F. Huber, Acta Cryst. C49 (1993) 1372.
- [94] I. Wharf, F. Bélanger-Gariépy, Acta Cryst. E59 (2003) m661.
- [95] L. M. Engelhardt, L.-P. Leung, C. L. Raston, A. H. White, Aust. J. Chem. 35 (1982) 2383.
- [96] M. Fild, O. Glemser, G. Christoph, Angew. Chem. Int. Ed. **3** (1964) 801; Angew. Chem. **76** (1964) 953.
- [97] H. Mahalakshmi, V. K. Jain, E. R. T. Tiekink, Z. Kristallogr. NCS 218 (2003) 67.
- [98] M. L. Waters, Curr. Opin. Chem. Biol. 6 (2002) 736.
- [99] a) C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. **112** (1990) 5525;

b) C. A. Hunter, K. R. Lawson, J. Perkins, C. J. Urch, J. Chem. Soc., Perkin Trans. 2 (2001) 651.

- [100] L. Pauling, "The Nature of the Chemical Bond", Cornell University Press, Ithaca 1942.
- [101] W. Tyrra, S. Aboulkacem, B. Hoge, W. Wiebe, I. Pantenburg, J. Fluorine Chem. 127 (2006) 213.
- [102] L. A. Wall, R. E. Donadio, W. J. Pummer, J. Am. Chem. Soc. 82 (1960) 4846.
- [103] G. B. Deacon, I. K. Johnson, Inorg. Nucl. Chem. Lett. 8 (1972) 271.
- [104] D. Naumann, W. Tyrra, J. Organomet. Chem. **334** (1987) 323.
- [105] L. S. Kobrina, G. G. Furin, G. G. Yakobson, J. Gen. Chem. Russ. (Eng. Transl.) 38 (1968) 505.
- [106] a) P. L. Coe, A. J. Rees, J. Wittaker, J. Fluorine Chem. 107 (2001) 13;
 b) D. V. Davydov, I. P. Beletskaya, Russian Chemical Bulletin 52 (2003) 278.
- [107] R. Minkwitz, H. Preut, J. Sawatzki. Z. Anorg. Allg. Chem. 569 (1989) 158.
- [108] T. M. Klapötke, B. Krumm, K. Polborn, Eur. J. Inorg. Chem. (1999) 1359.
- [109] T. M. Klapötke, B. Krumm, P. Mayer, K. Polborn, O. P. Ruscitti, Inorg. Chem. 40 (2001) 5169.
- [110] R. Kasemann, D. Naumann, J. Fluorine Chem. 48 (1990) 207.
- [111] A. Karipides, C. Miller Cosio, Acta Cryst. C45 (1989) 1743.
- [112] W. Tyrra, unveröffentlichte Ergebnisse.
- [113] S. S. Laev, V. D. Shteingarts, Tetrahedron Lett. 38 (1997) 3765.
- [114] a) W. Volbach, I. Ruppert, Tetrahedron Lett. 24 (1983) 5509;
 b) R. Krishnamurti, D. R. Bellew, G. K. S. Prakash, J. Org. Chem. 56 (1991) 984.
- [115] R. E. Banks, R. N. Haszeldine, E. Philips, I. M. Young, J. Chem. Soc. C (1967) 2091.
- [116] M. Senko, ISOPRO 3.0, Shareware, Sunnyvale, CA.
- [117] S. Berger, S. Braun, H.-O. Kalinowski, NMR-Spektroskopie von Nichtmetallen, Band 4, ¹⁹F-NMR-Spektroskopie, Thieme Verlag, Stuttgart (1994).
- [118] I. Krossing, I. Raabe, Angew. Chem. 116 (2004) 2116.
- [119] A. E. Jukes, H. Gilman, J. Organomet. Chem. 17 (1969) 145.
- [120] X-RED 1.22, Stoe Data Reduction Program © 2001 Stoe & Cie GmbH Darmstadt.
- [121] X-Shape 1.06, Crystal Optimisation for Numerical Absorption Correction © 1999 STOE& Cie GmbH Darmstadt.
- [122] A. Altomare, G. Cascarano, C. Giacovazzo, A. Gualardi, J. Appl. Cryst. 26 (1993) 343.
- [123] G. M. Sheldrick, SHELXS-97-Program for Crystal Structure Analysis, Göttingen (1998).
- [124] G.M. Sheldrick, SHELXL-93-Program for Crystal Structure Refinement, Göttingen (1993).

Anhang

Auflistung der im Anhang befindlichen Tabellen mit Kristalldaten und Einzelheiten zur Strukturbestimmung sowie ausgewählten interatomaren Abständen und Winkeln.

Tabelle	Verbindung	Seite
Tabelle A1-x	$[PNP][Ag(C_2F_5)_2]$ (1) und $[PNP]_2[ClAg(\mu-Cl)_2AgCl]$ (3)	113 ff
Tabelle A2-x	$[PNP][Ag(C_5F_4N)_2]$ (2) und $Hg(C_5F_4N)_2$ (5)	115 ff
Tabelle A3-x	$Ga(C_5F_4N)_3$ ·EtCN·H ₂ O (6) und In(C ₅ F ₄ N) ₃ ·2EtCN (7)	117 ff
Tabelle A4-x	$Sn(C_5F_4N)_4$ (4) und $As(C_5F_4N)_3$ (8)	119 ff
Tabelle A5-x	$Se(C_5F_4N)_2$ (9) und $Te(C_5F_4N)_2$ (10)	121 ff
Tabelle A6-x	Se(C_5F_4N) ₂ ·DMSO (11) und Te(C_5F_4N) ₂ ·DMSO (12)	123 ff
Tabelle A7-x	$Te(C_5F_4N)_2 \cdot TMTU (13)$	125 ff
Tabelle A3-x Tabelle A4-x Tabelle A5-x Tabelle A6-x Tabelle A7-x	Ga(C ₅ F ₄ N) ₃ ·EtCN·H ₂ O (6) und In(C ₅ F ₄ N) ₃ ·2EtCN (7) Sn(C ₅ F ₄ N) ₄ (4) und As(C ₅ F ₄ N) ₃ (8) Se(C ₅ F ₄ N) ₂ (9) und Te(C ₅ F ₄ N) ₂ (10) Se(C ₅ F ₄ N) ₂ ·DMSO (11) und Te(C ₅ F ₄ N) ₂ ·DMSO (12) Te(C ₅ F ₄ N) ₂ ·TMTU (13)	117 119 121 123 125

Die Kristallstrukturen von (1) und (3) sind publiziert in:

S. Aboulkacem, W. Tyrra, I. Pantenburg, J. Chem. Crystallogr. 36 (2006) 141.

Die Kristallstruktur von (8) ist publiziert in:

W. Tyrra, S. Aboulkacem, B. Hoge, W. Wiebe, I. Pantenburg, 127 (2006) 213.

Die Kristallstrukturen von (2), (4), (5), (6), und (7) sind publiziert in: W. Tyrra, S. Aboulkacem, I. Pantenburg, J. Organomet. Chem. **691** (2006) 514.

Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können als CIF-Files beim Cambridge Crystallographic Data Centre (CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44 1223 336003; e-mail: <u>deposit@ccdc.cam.ac.uk</u>)) unter Angabe der jeweiligen CCDC-Hinterlegungsnummer angefordert werden.

	(1)	(3)
Summenformel	$C_{40}H_{30}NF_{10}P_2Ag$	C ₃₆ H ₃₀ NCl ₂ P ₂ Ag
Formelmasse [g mol ⁻¹]	884,46	717,32
Messgerät	STOE Image Plate	Diffraction System II
Strahlung	Mo-Kα (Graphit-Monoc	chromator, $\lambda = 71,073$ pm)
Messtemperatur [K]	150(2)	170(2)
Indexbereich h _{min/max}	-23/23	-24/24
k _{min/max}	-13/13	-20/20
l _{min/max}	-20/20	-25/25
Messgeometrie	$0^{\circ} \le \omega \le 180^{\circ}, \psi = 0^{\circ}$	$0^{\circ} \le \omega \le 180^{\circ}, \psi = 0^{\circ}$
	$0^{\circ} \le \omega \le 148^{\circ}, \psi = 90^{\circ}$	$0^{\circ} \le \omega \le 88^{\circ}, \psi = 90^{\circ}$
	$\Delta \omega = 2^{\circ}$	$\Delta \omega = 1^{\circ}$
	164 Bilder	268 Bilder
Belichtungszeit [min]	12	3
Detektorabstand [mm]	120	120
Messbereich 2θ [°]	2,1-25,0	1,9-27,1
gemessene Reflexe	39913	70197
unabhängige Reflexe	6522	6895
beobachtete Reflexe	3605	5710
R _{merg}	0,1044	0,0336
Absorptionskorrektur	numerisch, nach Kristallg	estaltoptimierung [120, 121]
Transmission T _{min/max}	0,7654/0,9610	0,6336/0,8542
Kristallgröße [mm]	0,3 · 0,3 · 0,2	$0,2 \cdot 0,2 \cdot 0,1$
Form, Farbe	Polyeder, farblos	Polyeder, farblos
Kristallsystem	monoklin	orthorhombisch
Raumgruppe	$P2_1/c$ (Nr. 14)	Pbca (Nr. 61)
Zellparameter a/b/c [pm]	1983,3(2)/1160,0(2)/1708,3(2)	1954,0(1)/1592,6(1)/2016,0(1)
β [°]	109,66(1)	
Zellvolumen [10 ⁶ pm ³]	3700,8(7)	6273,6(3)
Formeleinheiten	4	8
Dichte (berechnet) [g cm ⁻³]	1,587	1,519
Absorptionskoeffizient μ [mm ⁻¹]	0,713	0,942
F(000)	1776	2912
Strukturlösung/-verfeinerung *	SIR-92 [122] und SHELX-	97 [123]
Anzahl Parameter	519	500
$R_1/wR_2 \ [I > 2\sigma(I)]$	0,0551/0,1309	0,0288/0,0770
R_1/wR_2 (alle Daten)	0,1067/0,1529	0,0363/0,0792
S ₂ (alle Daten)	0,956	1,058
$\Delta \rho_{min/max} [e \ 10^{-6} pm^{-3}]$	-1,056/0,685	-1,045/0,715
Hinterlegungsnummer	CCDC-266005	CCDC-266006

TabelleA1-1:KristalldatenundEinzelheitenzurStrukturbestimmung $[PNP][Ag(C_2F_5)_2]$ (1)und $[PNP]_2[ClAg(\mu-Cl)_2AgCl]$ (3)

 $\begin{array}{l} F_{0} \text{ und } F_{c} \text{ entsprechen den beobachteten und berechneten Strukturfaktoren. Es gilt: } R_{1} = \Sigma \mid |F_{o}| - |F_{c}| \mid / \Sigma \mid F_{o}|, \\ wR_{2} = [\Sigma w (|F_{o}|^{2} - |F_{c}|^{2})^{2} / \Sigma w (|F_{o}|^{2})^{2}]^{1/2}, \\ S_{2} = [\Sigma w (|F_{o}|^{2} - |F_{c}|^{2})^{2} / (n-p)]^{1/2}. \\ \text{Die minimierte Funktion ist} \\ w (|F_{o}|^{2} - |F_{c}|^{2})^{2} & \text{mit dem Gewichtsschema } w = 1 / [\sigma^{2} (F_{o})^{2} + (0,0830 \cdot P)^{2}] \\ \text{für (1) und} \\ w = 1/[\delta^{2}(F_{O})^{2} + (0.0521P)^{2} + 0.5755P] \\ \text{für (3), jeweils mit } P = (F_{o}^{2} + 2F_{c}^{2}) / \\ 3. \\ \text{Die sekundäre Extinktion wird } \\ \text{über } F_{c}^{*} = k \\ F_{c} [1+0,001 \cdot |F_{c}|^{2} \\ \lambda^{3} / \sin(2\theta)]^{-1/4} \\ \text{berücksichtigt.} \end{array}$

^{*} Für Verbindung (1) wurden die H-Atome der Fourier-Karte entnommen und verfeinert. Für Verbindung (3) wurden die H-Atome geometrisch berechnet.

von

$\mathbf{L} = \mathbf{J} \mathbf{L} = \mathbf{D} (-2 - 3) \mathbf{Z} \mathbf{J}$			
Atome 1,2	Abstand	Atome 1,2	Abstand
Ag1—C11	2,131(10)	C21—F211	1,321(8)
Ag1—C21	2,122(6)	C12—F121	1,535(13)
C11—C12	1,356(12)	C12—F123	1,347(11)
C21—C22	1,464(11)	C12—F122	1,308(11)
C11—F111	1,423(10)	C22—F223	1,287(8)
C11—F112	1,561(12)	C22—F222	1,349(8)
C21—F212	1,454(9)	C22—F221	1,354(8)
Atome 1,2,3	Winkel		
C11—Ag1—C21	176,8(4)		
Ag1-C11-C12	122,8(6)		
Ag1—C21—C22	121,3(4)		

Tabelle A1-2: Sämtliche Abstände [Å] sowie ausgewählte Winkel [°] des Anions von $[PNP][Ag(C_2F_5)_2]$

Tabelle A1-3: Ausgewählte Abstände [Å] und Winkel [°] des Anions von $[PNP]_2[ClAg(\mu-Cl)_2AgCl]$

Atome 1,2	Abstand	Atome 1,2,3	Winkel
Ag1—Cl1	2,418(1)	Cl1—Ag1—Cl2'	116,5(1)
Ag1—Cl2'	2,655(1)	Cl1—Ag1—Cl2	144,0(1)
Ag1—Cl2	2,491(1)	Cl2—Ag1—Cl2'	99,1(1)
Agl—Agl'	3,341(1)	Ag1—Cl2—Ag1'	80,9(1)

	(2)	(5)
Summenformel	$C_{46}H_{30}N_3F_8P_2Ag$	$C_{10}N_2F_8Hg$
Formelmasse [g mol ⁻¹]	946,54	946,54
Messgerät	STOE Image Plat	te Diffraction System II
Strahlung	Mo-Kα (Graphit-Mon	ochromator, $\lambda = 71,073$ pm)
Messtemperatur [K]	170(2)	170(2)
Indexbereich h _{min/max}	$-12 \le h \le 12$	$-12 \le h \le 12$
k _{min/max}	$-24 \le k \le 23$	$-6 \le k \le 7$
l _{min/max}	$-30 \le l \le 30$	$-41 \le l \le 41$
Messgeometrie	0°≤ω≤180°; ψ=0°	0°≤ω≤180°; ψ=0°
	0°≤ω≤14°; ψ=90°	0°≤ω≤86°; ψ=90°
	$\Delta \omega = 2^{\circ}$	$\Delta \omega = 2^{\circ}$
	97 Bilder	133 Bilder
Belichtungszeit [min]	12	7
Detektorabstand [mm]	120	140
Messbereich 2θ [°]	1,9 - 54,8	1,6 - 50,5
gemessene Reflexe	33700	18567
unabhängige Reflexe	9036	3945
beobachtete Reflexe	5508	2827
R _{merg}	0,0579	0,0605
Absorptionskorrektur	numerisch, nach Kristal	lgestaltoptimierung [120, 121]
Transmission T _{min/max}	0,8251/0,9336	0,1012/0,2583
Kristallgröße [mm]	0,2 · 0,2 · 0,15	$0,2 \cdot 0,2 \cdot 0,1$
Form, Farbe	Polyeder, farblos	Platte, farblos
Kristallsystem	monoklin	monoklin
Raumgruppe	$P2_1/c$ (Nr. 14)	$P2_1/c$ (Nr. 14)
Zellparameter a/b/c [pm]	983,0(1)/1890,1(1)/2403,8(2)	1079,5(1)/593,1(1)/3494,1(5)
β [°]	114,24(1)	90,46(1)
Zellvolumen [10 ⁶ pm ³]	4072,4(7)	2237,0(5)
Formeleinheiten	4	8
Dichte (berechnet) [g cm ⁻³]	1,544	2,973
Absorptionskoeffizient μ [mm ⁻¹]	0,648	13,864
F(000)		
Strukturlösung/-verfeinerung*	SHELXS-97 [123] ur	nd SHELXL-93 [124]
Anzahl Parameter	662	380
$R_1/wR_2 [I > 2\sigma(I)]$	0,0461/0,1072	0,0322/0,0742
R_1/wR_2 (alle Daten)	0,0865/0,1208	0,0514/0,0799
S ₂ (alle Daten)	0,938	0,890
$\Delta \rho_{\min/\max} \left[e \ 10^{-6} \text{pm}^{-3} \right]$	-1,034/1,755	-1,390/1,574
Hinterlegungsnummer	CCDC-272520	CCDC-272522

Tabelle A2-1: Kristalldaten und Einzelheiten zur Strukturbestimmung von $[PNP][Ag(C_5F_4N)_2]$ (2) und $Hg(C_5F_4N)_2$ (5)

$$\begin{split} R_{1} &= \Sigma \mid |F_{o}| - |F_{c}| \mid / \Sigma \mid F_{o}|, \ wR_{2} = [\ \Sigma \ w \ (\ |F_{o}|^{2} - |F_{c}|^{2} \)^{2} / \ \Sigma \ w \ (\ |F_{o}|^{2} \)^{2} \]^{1/2}, \ S_{2} = [\ \Sigma \ w \ (\ |F_{o}|^{2} - |F_{c}|^{2} \)^{2} / \ (n-p)]^{1/2}, \ mit \\ w &= 1 \ / \ [\sigma^{2} \ (F_{o})^{2} \ + \ (0,0669 \cdot P)^{2}] \ fur \ (2) \ und \ w = 1 \ / \ [\sigma^{2} \ (F_{o})^{2} \ + \ (0,0523 \cdot P)^{2}] \ fur \ (5), \ jeweils \ mit \\ P &= (F_{o}^{\ 2} + 2F_{c}^{\ 2}) / \ 3. \ F_{c}^{*} = k \ F_{c} \ [1+0,001 \cdot |F_{c}|^{2} \ \lambda^{3} / \sin(2\theta)]^{-1/4}. \end{split}$$

* Für Verbindung (2) wurden die H-Atome der Fourier-Karte entnommen und verfeinert.

Atome 1,2	Abstand	Atome 1,2	Abstand
Ag1—C11	2,108(4)	N14—C15	1,301(7)
Ag1—C21	2,112(4)	C23—N24	1,312(4)
C11—C12	1,365(6)	N24—C25	1,317(7)
C21—C22	1,376(7)	C12—F12	1,366(4)
C11—C16	1,377(5)	C16—F16	1,366(5)
C21—C26	1,379(5)	C22—F22	1,362(4)
C12—C13	1,375(7)	C26—F26	1,365(6)
C22—C23	1,371(6)	C13—F13	1,348(7)
C15—C16	1,382(7)	C15—F15	1,344(4)
C25—C26	1,361(7)	C23—F23	1,352(6)
C13—N14	1,318(6)	C25—F25	1,355(4)
Atome 1,2,3	Winkel	Atome 1,2,3	Winkel
C11—Ag1—C21	173,0(1)	N14—C15—C16	124,2(1)
C12—C11—C16	112,4(1)	C13—N14—C15	115,0(1)
C11—C16—C15	122,1(1)	C12—C13—N14	123,7(1)

Tabelle A2-2: Ausgewählte Abstände [Å] und Winkel $[\circ]$ des Anions von [PNP][Ag(C₅F₄N)₂]

Tabelle A2-3: Ausgewählte Abstände [Å] und Winkel [°] von $Hg(C_5F_4N)_2$

Atome 1,2	Abstand	Atome 1,2	Abstand
Hg1—C111	2,094(1)	C112—C113	1,374(1)
Hg1—C121	2,099(1)	C115—C116	1,386(1)
Hg2—C211	2,074(1)	C113—N114	1,302(1)
Hg2—C221	2,062(1)	N114—C115	1,316(1)
Hg2—N114	2,848(1)	C112—F112	1,353(1)
Hg1—N224	2,870(1)	C116—F116	1,351(1)
C111—C112	1,370(1)	C115—F115	1,343(1)
C111—C116	1,354(1)	C113—F113	1,348(1)
Atome 1,2,3	Winkel	Atome 1,2,3	Winkel
C111—Hg1—C121	175,6(3)	N224—Hg1—C121	94,6(2)
C221—Hg2—C211	172,1(3)	N114—Hg2—C211	98,3(2)
N224—Hg1— C111	89,6(2)	N114—Hg2—C221	89,1(2)

	(6)	(7)
S		
Summenformel	$C_{18}H_7N_4F_{12}OGa$	$C_{21}H_{10}N_5F_{12}In$
Massacrät	STOE Imaga Blata	075,10 Diffraction System II
Strohlung	STOE IIIage Flate	2 - 71 - 71 - 71 - 71 - 72 - 71 - 72 - 71 - 72 - 71 - 72 - 71 - 72 - 71 - 72 - 71 - 72 - 72
Strannung Maastamparatur [K]	Mo-Kα (Graphit-Mono	150(2)
Indevelopmentatur [K]	150(2)	150(2)
Index defetch In _{min/max}	$-16 \le n \le 15$	$12 \le n \le 12$
K _{min/max}	$-11 \le K \le 11$	$-11 \le K \le 11$
I _{min/max}	$-26 \le 1 \le 25$	$-35 \le 1 \le 33$
Messgeometrie	$0^{\circ} \le 0 \le 180^{\circ}; \psi = 0^{\circ}$	$0^{\circ} \le \omega \le 180^{\circ}; \psi = 0^{\circ}$
	$0^{\circ} \le \omega \le 158^{\circ}; \psi = 90^{\circ}$	$0^{\circ} \le \omega \le 94^{\circ}; \psi = 0^{\circ}$
	$\Delta \omega = 2^{\circ}$	$\Delta \omega = 1^{\circ}$
	169 Bilder	2/4 Bilder
Belichtungszeit [min]	4	
Detektorabstand [mm]	120	120
Messbereich 2θ [°]	1,9 – 54,8	1,9 – 54,8
gemessene Reflexe	30785	29497
unabhängige Reflexe	4830	5494
beobachtete Reflexe	3727	4362
R _{merg}	0,1456	0,0476
Absorptionskorrektur	numerisch, nach Kristallg	gestaltoptimierung [120, 121]
Transmission T _{min/max}		0,7582/0,8963
Kristallgröße [mm]	0,1456	$0,25 \cdot 0,25 \cdot 0,05$
Form, Farbe	Quader, farblos	Platte, farblos
Kristallsystem	monoklin	monoklin
Raumgruppe	$P2_{1}/c$ (Nr. 14)	$P2_1/c$ (Nr. 14)
Zellparameter a/b/c [pm]	1245,6(7)/872,5(4)/2014,0(12)	988,0(1)/902,9(1)/2793,6(1)
β[°]	92,47(5)	97,17(1)
Zellvolumen $[10^6 \text{ pm}^3]$	2187,0(2)	2472,5(1)
Formeleinheiten	4	4
Dichte (berechnet) [g cm ⁻³]	1,801	1,814
Absorptionskoeffizient μ [mm ⁻¹]	1,379	1,067
F(000)	1160	1312
Strukturlösung/-verfeinerung*	SHELXS-97 [123] u	nd SHELXL-93 [124]
Anzahl Parameter	336	355
$R_1/wR_2 \ [I > 2\sigma(I)]$	0,0438/0,1023	0,0466/0,1263
R_1/wR_2 (alle Daten)	0,0570/0,1130	0,0568/0,1317
S ₂ (alle Daten)	1,051	1,045
$\Delta \rho_{\min/\max} [e \ 10^{-6} pm^{-3}]$	-0,415/0,572	-1,194/3,683
Hinterlegungsnummer	CCDC-274915	CCDC-272521

TabelleA3-1:Kristalldaten und Einzelheiten zur Strukturbestimmung von $Ga(C_5F_4N)_3$ ·EtCN·H2O (6) und In(C5F4N)3·2EtCN (7)

$$\begin{split} R_{1} &= \Sigma \mid |F_{o}| - |F_{c}| \mid / \Sigma \mid F_{o}|, \ wR_{2} = [\ \Sigma \ w \ (\ |F_{o}|^{2} - |F_{c}|^{2} \)^{2} / \Sigma \ w \ (\ |F_{o}|^{2} \)^{2} \]^{1/2}, \ S_{2} = [\ \Sigma \ w \ (\ |F_{o}|^{2} - |F_{c}|^{2} \)^{2} / (n-p) \]^{1/2}, \ mit \\ w &= 1 / \left[\sigma^{2} \ (F_{o})^{2} + (0.0464 \cdot P)^{2} + (0.9379 \cdot P) \right] \ fur \ (6) \ und \ w = 1 / \left[\sigma^{2} \ (F_{o})^{2} + (0.0939 \cdot P)^{2} \right] \ fur \ (7), \ jeweils \ mit \\ P &= \left(F_{o}^{2} + 2F_{c}^{2} \right) / 3. \ \ F_{c}^{*} = k \ F_{c} \ [1+0.001 \cdot |F_{c}|^{2} \ \lambda^{3} / \sin(2\theta)]^{-1/4} \end{split}$$

* Die Protonen der Wassermoleküle in (6) wurden der Fourier-Karte entnommen und verfeinert. Die Protonen von EtCN in (6) und (7) wurden geometrisch berechnet.

Atome 1,2	Abstand	Atome 1,2	Abstand
Ga1—O51	2,219(11)	C13—N14	1,312(5)
Ga1—C11	1,994(19)	N14—C15	1,315(4)
Ga1—N41	2,270(7)	C12—F12	1,365(4)
Ga1—C31	1,999(17)	C16—F16	1,353(3)
Ga1—C21	1,995(3)	C13—F13	1,341(4)
C11—C16	1,385(4)	C15—F15	1,346(4)
C11—C12	1,375(4)	N41—C42	1,124(4)
C12—C13	1,3745(4)	C42—C43	1,468(5)
C15—C16	1,365(4)	C43—C44	1,499(6)
Atome 1,2,3	Winkel	Atome 1,2,3	Winkel
C11—Ga1—C21	121,1(1)	C11—Ga1—N41	90,1(1)
C21—Ga1—O51	92,2(1)	N41—Ga1—O51	177,4(1)
C31—Ga1—O51	88,0(1)	C21—Ga1—C31	122,5(1)
C31—Ga1—N41	89,6(1)	C11—Ga1—C31	116,4(1)

Tabelle A3-2: Ausgewählte Abstände [Å] und Winkel [°] von Ga(C₅F₄N)₃·EtCN·H₂O

Tabelle A3-3: Ausgewählte Abstände [Å] und Winkel [°] von $In(C_5F_4N)_3 \cdot 2EtCN$

Atome 1,2	Abstand	Atome 1,2	Abstand
In1—C11	2,172(4)	C12—F12	1,346(6)
In1—C21	2,176(3)	C16—F16	1,341(6)
In1—C31	2,165(4)	C15—F15	1,357(8)
In1—N41	2,381(4)	C13—F13	1,359(7)
In1—N51	2,445(4)	N41—C42	1,133(6)
C11—C12	1,371(6)	N51—C52	1,142(5)
C11—C16	1,377(7)	C42—C43	1,496(8)
C12—C13	1,397(7)	C52—C53	1,455(5)
C15—C16	1,362(7)	C43—C44	1,469(9)
C13—N14	1,308(10)	C53—C54	1,502(7)
N14—C15	1,280(8)		
Atome 1,2,3	Winkel	Atome 1,2,3	Winkel
C11—In1—C31	120,5(1)	C21—In1—N51	88,2(1)
C21—In1—C31	121,2(1)	C31—In1—N51	86,1(1)
C11—In1—C21	117,6(1)	N41—In1—N51	176,0(1)
C11—In1—N41	95,1(1)		

 $\Delta \rho_{min/max} [e \ 10^{-6} pm^{-3}]$

Hinterlegungsnummer

	(4)	(8)			
Summenformel	$C_{20}N_4F_{16}Sn$	$C_{15}N_3F_{12}As$			
Formelmasse [g mol ⁻¹]	718,93	525,10			
Messgerät	STOE Image Plate Diffraction System II				
Strahlung	Mo-K α (Graphit-Monochromator, $\lambda = 71,073$ pm)				
Messtemperatur [K]	293(2)	170(2)			
Indexbereich h _{min/max}	$-15 \le h \le 15$	$-14 \le h \le 14$			
$k_{min/max}$	$-15 \le k \le 14$	$-16 \le k \le 16$			
$l_{min/max}$	$-9 \le l \le 9$	$-18 \le l \le 18$			
Messgeometrie	$0^{\circ} \le \omega \le 180^{\circ}; \psi = 0^{\circ}$	$0^{\circ} \le \omega \le 180^{\circ}; \psi = 0^{\circ}$			
	$0^{\circ} \le \omega \le 126^{\circ}; \psi = 90^{\circ}$	$0^{\circ} \le \omega \le 180^{\circ}; \psi = 90^{\circ}$			
	$\Delta \omega = 2$				
	153 Bilder	180 Bilder			
Belichtungszeit [min]	4	5			
Detektorabstand [mm]	120	100			
Messbereich 2θ [°]	1,9 - 54,8	2,2-59,5			
gemessene Reflexe	14180	32019			
unabhängige Reflexe	1264	4641			
beobachtete Reflexe	965	3669			
R _{merg}	0,0367	0,0426			
Absorptionskorrektur	numerisch, nach Kristallgestaltoptimierung [120, 121]				
Transmission T _{min/max}	0,7742/0,8749	0,4835/0,7332			
Kristallgröße [mm]	0,2 · 0,05 · 0,05	0,2 · 0,2 · 0,15			
Form, Farbe	Säule, farblos	Polyeder, farblos			
Kristallsystem	tetragonal	monoklin			
Raumgruppe	P -4 2 ₁ c (Nr. 114)	$P2_1/c$ (Nr. 14)			
Zellparameter a/b/c [pm]	1222,7(1)/-/751,6(1)	1045,3(1)/1176,6(1)/1360,3(1)			
β [°]		98,72(1)			
Zellvolumen $[10^6 \text{ pm}^3]$	1123,5(2)	1653,7(2)			
Formeleinheiten	2	4			
Dichte (berechnet) [g cm ⁻³]	2,125	2,109			
Absorptionskoeffizient μ [mm ⁻¹]	1,289	2,194			
F(000)	2904	1008			
Strukturlösung/-verfeinerung	SHELXS-97 [123] und	SIR-92 [122] und			
	SHELXL-93 [124]	SHELXS-97 [123]			
Anzahl Parameter	94	281			
$R_1/wR_2 [I > 2\sigma(I)]$	0,0307/0,838	0,0318/0,0710			
R_1/wR_2 (alle Daten)	0,0412/0,890	0,0441/0,0750			
S ₂ (beob./alle Daten)	1,073	1,047			

Tabelle A4-1: Kristalldaten und Einzelheiten zur Strukturbestimmung von $Sn(C_5F_4N)_4$ (4) und $As(C_5F_4N)_3$ (8)

$$\begin{split} R_{1} &= \Sigma \mid |F_{o}| - |F_{c}| \mid / \Sigma \mid F_{o}|, \ wR_{2} = [\ \Sigma \ w \ (\ |F_{o}|^{2} - |F_{c}|^{2} \)^{2} / \Sigma \ w \ (\ |F_{o}|^{2} \)^{2} \]^{1/2}, \ S_{2} = [\ \Sigma \ w \ (\ |F_{o}|^{2} - |F_{c}|^{2} \)^{2} / (n-p) \]^{1/2} \ mit \\ w &= 1 / \ [\sigma^{2} \ (F_{o})^{2} + (0.0579 \cdot P)^{2} + (0.1387 \cdot P)] \ fur \ \textbf{(4)} \ und \ w = 1 / \ [\sigma^{2} \ (F_{o})^{2} + (0.0359 \cdot P)^{2} + (0.9123 \cdot P)] \ fur \ \textbf{(8)}, \\ jeweils \ mit \ P &= (F_{o}^{2} + 2F_{c}^{2}) / \ 3. \ F_{c}^{*} = k \ F_{c} \ [1+0.001 \cdot |F_{c}|^{2} \ \lambda^{3} / \sin(2\theta)]^{-1/4} \end{split}$$

-0,655/0513

CCDC-275841

-0,415/0,532

CCDC-272519

Atome 1,2	Abstand	Atome 1,2	Abstand
Sn1—C1 (4x)	2,155(1)	N4—C5	1,295(1)
C1—C2	1,366(1)	C2—F2	1,339(1)
C1—C6	1,353(1)	C3—F3	1,328(1)
C5—C6	1,393(1)	C5—F5	1,325(1)
C2—C3	1,375(1)	C6—F6	1,332(1)
C3—N4	1,311(1)		
Atome 1,2,3	Winkel		
C1—Sn1—C1 (2x)	106,5(2)		
C1—Sn1—C1 (4x)	111,0(1)		

Tabelle A4-2: Ausgewählte Abstände [Å] und Winkel [°] von $Sn(C_5F_4N)_4$

Tabelle A4-3: Ausgewählte Abstände [Å] und Winkel [°] von $As(C_5F_4N)_3$

Atome 1,2	Abstand	Atome 1,2	Abstand
As1—C11	1,974(1)	C12—F12	1,344(2)
As1—C21	1,958(2)	C16—F16	1,334(2)
As1—C31	1,980(2)	C13—F13	1,335(2)
C11—C12	1,380(3)	C15—F15	1,336(2)
C11—C16	1,383(3)	C13—N14	1,311(3)
C12—C13	1,378(3)	N14—C15	1,310(3)
C15—C16	1,382(3)		
Atome 1,2,3	Winkel		
C11—As1—C21	103,5(1)		
C21—As1—C31	101,9(1)		
C11—As1—C31	91,2(1)		

	(9)	(10)	
Summenformel	$C_{10}F_8N_2Se$	$C_{10}F_8N_2Te$	
Formelmasse [g mol ⁻¹]	379,08	427,72	
Messgerät	STOE Image Plate	e Diffraction System II	
Strahlung	Mo-Kα (Graphit-Mono	ochromator, $\lambda = 71,073$ pm)	
Messtemperatur [K]	170(2)	120(2)	
Indexbereich h _{min/max}	$-26 \le h \le 26$	$-31 \le h \le 32$	
$\mathbf{k}_{\min/\max}$	$-8 \le k \le 9$	$-7 \le k \le 6$	
$l_{min/max}$	$-19 \le l \le 20$	$-20 \le l \le 20$	
Messgeometrie	$0^{\circ} \le \omega \le 180^{\circ}; \psi = 0^{\circ}$	$0^{\circ} \le \omega \le 180^{\circ}; \psi = 0^{\circ}$	
	$0^{\circ} \le \omega \le 160^{\circ}; \psi = 90^{\circ}$	$0^{\circ} \le \omega \le 62^{\circ}; \psi = 90^{\circ}$	
	$\Delta \omega = 2^{\circ}$	$\Delta \omega = 2^{\circ}$	
	170 Bilder	121 Bilder	
Belichtungszeit [min]	5	8	
Detektorabstand [mm]	120	120	
Messbereich 2θ [°]	1,9 – 54,8	1,9 - 54,8	
gemessene Reflexe	32426	22330	
unabhängige Reflexe	5042	5189	
beobachtete Reflexe	3745	3752	
R _{merg}	0,0748	0,0436	
Absorptionskorrektur	numerisch, nach Kristallg	gestaltoptimierung [120, 121]	
Transmission T _{min/max}	0,3345/0,7046	0,4727/0,7847	
Form, Farbe	Säule, farblose	Säule, farblos	
Kristallsystem	monoklin	monoklin	
Raumgruppe	$P2_1/c$ (Nr. 14)	$P2_1/c$ (Nr. 14)	
Zellparameter a/b/c [pm]	2074,6(2)/732,0(1)/1557,1(2)	2548,7(3)/590,8(1)/1602,4(1)	
β [°]	107,13(1)	104,56(1)	
Zellvolumen $[10^6 \text{ pm}^3]$	2259,8(4)	2335,6(4)	
Formeleinheiten	8	8	
Dichte (berechnet) [g cm ⁻³]	2,228	2,433	
Absorptionskoeffizient μ [mm ⁻¹]	3,425	2,646	
F(000)	1440	1584	
Strukturlösung/-verfeinerung	SIR-92 [122] ur	nd SHELX-97 [123]	
Anzahl Parameter	380	380	
$R_1/wR_2 \ [I > 2\sigma(I)]$	0,0340/0,0813	0,0361/0,0854	
R_1/wR_2 (alle Daten)	0,0489/0,0863	0,0565/0,0968	
S ₂ (alle Daten)	1,003	1,041	
$\Delta \rho_{\text{min/max}} [e \ 10^{-6} \text{pm}^{-3}]$	-0,582/0,800	-0,804/0,939	
Hinterlegungsnummer	CCDC-283849	CCDC-283850	

Tabelle A5-1: Kristalldaten und Einzelheiten zur Strukturbestimmung von $Se(C_5F_4N)_2$ (9) und $Te(C_5F_4N)_2$ (10)

$$\begin{split} R_{1} &= \Sigma \mid |F_{o}| - |F_{c}| \mid / \Sigma \mid F_{o}|, \ wR_{2} = [\ \Sigma \ w \ (\ |F_{o}|^{2} - |F_{c}|^{2} \)^{2} / \Sigma \ w \ (\ |F_{o}|^{2} \)^{2} \]^{1/2}, \ S_{2} = [\ \Sigma \ w \ (\ |F_{o}|^{2} - |F_{c}|^{2} \)^{2} / (n-p) \]^{1/2}, \ mit \\ w &= 1 / \ [\sigma^{2} \ (F_{o})^{2} + (0.0478 \cdot P)^{2}] \ f\ddot{u}r \ (\textbf{9}) \ und \ w = 1 / \ [\sigma^{2} \ (F_{o})^{2} + (0.0564 \cdot P)^{2} + 0.3578 \cdot P] \ f\ddot{u}r \ (\textbf{10}), \ jeweils \ mit \\ P &= (F_{o}^{\ 2} + 2F_{c}^{\ 2}) / 3. \\ F_{c}^{*} &= k \ F_{c} \ [1+0,001 \cdot |F_{c}|^{2} \ \lambda^{3} / \sin(2\theta)]^{-1/4} \end{split}$$

Atome 1,2	Abstand	Atome 1,2	Abstand
Se1—C111	1,916(1)	Se2—F222	3,132(1)
Se1—C121	1,920(1)	Se2—F226	3,085(1)
Se1—N114'	3,217(1)	C111—C116	1,387(1)
Se2—C211	1,913(1)	C111—C112	1,387(1)
Se2—C221	1,920(1)	C115—C116	1,367(1)
Se2—N224'	3,145(1)	C112—C113	1,375(1)
Se1—F116	3,086(1)	N114—C115	1,320(1)
Se1—F112	3,165(1)	C113—N114	1,317(1)
Se1—F122	3,115(1)	C116—F116	1,336(1)
Se1—F126	3,115(1)	C112—F112	1,337(1)
Se2—F216	3,110(1)	C113—F113	1,331(1)
Se2—F212	3,117(1)	C115—F115	1,335(1)
Atome 1,2,3	Winkel	Atome 1,2,3	Winkel
C111—Se1—C121	96,1(1)	C211—Se2—C221	95,4(1)
N114'-Se1-C121	74,6(1)	C211—Se2—N224'	81,6(1)
C111—Se1—N114'	170,7(1)	C221—Se2—N224'	171,9(1)

Tabelle A5-2: Ausgewählte Abstände [Å] und Winkel [°] von $Se(C_5F_4N)_2$

Tabelle A5-3: Ausgewählte Abstände [Å] und Winkel [°] von $Te(C_5F_4N)_2$

Atome 1,2	Abstand	Atome 1,2	Abstand
Te1-C111	2,131(5)	Te2—F222	3,273(3)
Te1-C121	2,110(6)	Te2—F226	3,276(3)
Te1—N114'	3,278(5)	C111—C116	1,391(7)
Te2—C211	2,120(4)	C115—C116	1,367(7)
Te2—C221	2,126(5)	N114—C115	1,316(6)
Te2—N224'	3,123(5)	C113—N114	1,310(7)
Te1—F116	3,256(3)	C112—C113	1,380(7)
Te1—F112	3,276(3)	C116—F116	1,350(5)
Te1—F115	4,206(3)	C112—F112	1,346(6)
Te1—F113	3,736(3)	C113—F113	1,340(5)
Te2—F212	3,274(3)	C115—F115	1,347(6)
Te2—F216	3,237(3)		
Atome 1,2,3	Winkel	Atome 1,2,3	Winkel
C111—Te1—C121	90,8(2)	C211—Te2—N224'	76,6(1)
C211—Te2—C221	91,7(2)	C111—Te1—N114'	162,7(1)
N114'—Te1—C121	72,7(1)	C221—Te2—N224'	167,3(1)

	(11)	(12)		
Summenformel	$C_{12}H_6N_2OF_8SSe$	$C_{12}H_6N_2OF_8STe$		
Formelmasse [g mol ⁻¹]	457,21	505,85		
Messgerät	STOE Image Plate Diffraction System II			
Strahlung	Mo-K α (Graphit-Monochromator, $\lambda = 71,073$ pm)			
Messtemperatur [K]	150(2)	150(2)		
Indexbereich h _{min/max}	$-12 \le h \le 12$	$-13 \le h \le 13$		
$\mathbf{k}_{\min/\max}$	$-22 \le k \le 22$	$-24 \le k \le 24$		
$l_{min/max}$	$-11 \le l \le 11$	$-12 \le l \le 12$		
Messgeometrie	$0^{\circ} \le \omega \le 180^{\circ}; \psi = 0^{\circ}$	$0^{\circ} \le \omega \le 180^{\circ}; \psi = 0^{\circ}$		
	$0^{\circ} \le \omega \le 96^{\circ}; \psi = 90^{\circ}$	$0^{\circ} \le \omega \le 180^{\circ}; \psi = 90^{\circ}$		
		$0^{\circ} \le \omega \le 180^{\circ}; \psi = 135^{\circ}$		
	$\Delta \omega = 2^{\circ}$	$\Delta \omega = 2^{\circ}$		
	138 Bilder	270 Bilder		
Belichtungszeit [min]	5	3		
Detektorabstand [mm]	120	100		
Messbereich 2θ [°]	1,9 – 54,8	2,2 - 59,5		
gemessene Reflexe	16540	35962		
unabhängige Reflexe	3411	4449		
beobachtete Reflexe	2825	3235		
R _{merg}	0,0355	0,0808		
Absorptionskorrektur	numerisch, nach Kristallg	gestaltoptimierung [120, 121]		
Transmission T _{min/max}	0,4068/0,7388	0,2663/0,7105		
Form, Farbe	Polyeder, farblos	Quader, farblos		
Kristallsystem	monoklin	monoklin		
Raumgruppe	$P2_1/c$ (Nr. 14)	$P2_1/c$ (Nr. 14)		
Zellparameter a/b/c [pm]	958,6(1)/1794,5(2)/898,3(2)	969,1(1)/1778,3(2)/928,2(1)		
β[°]	96,35(1)	98,52(1)		
Zellvolumen $[10^6 \text{ pm}^3]$	1535,8(3)	1581,9(3)		
Formeleinheiten	4	4		
Dichte (berechnet) [g cm ⁻³]	1,977	2,123		
Absorptionskoeffizient μ [mm ⁻¹]	2,674	2,103		
F(000)	888	960		
Strukturlösung/-verfeinerung	SIR-92 [122] und SHELX-97 [123]			
Anzahl Parameter	228	251		
$R_1/wR_2 \ [I > 2\sigma(I)]$	0,0376/0,0897	0,0419/0,1069		
R_1/wR_2 (alle Daten)	0,0472/0,0942	0,0571/0,1124		
S ₂ (alle Daten)	1,065	1,026		
$\Delta \rho_{min/max} \left[e \ 10^{-6} pm^{-3} \right]$	-0,444/0,475	-0,864/1,057		
Hinterlegungsnummer	CCDC283851	CCDC-283852		

Tabelle A6-1: Kristalldaten und Einzelheiten zur Strukturbestimmung von $Se(C_5F_4N)_2$ ·DMSO (11) und $Te(C_5F_4N)_2$ ·DMSO (12)

$$\begin{split} R_{1} &= \Sigma \mid |F_{o}| - |F_{c}| \mid / \Sigma \mid F_{o}|, \ wR_{2} = [\ \Sigma \ w \ (\ |F_{o}|^{2} - |F_{c}|^{2} \)^{2} / \Sigma \ w \ (\ |F_{o}|^{2} \)^{2} \]^{1/2}, \ S_{2} = [\ \Sigma \ w \ (\ |F_{o}|^{2} - |F_{c}|^{2} \)^{2} / \ (n-p) \]^{1/2}, \ mit \\ w &= 1 / \ [\sigma^{2} \ (F_{o})^{2} + (0.0427 \cdot P)^{2} + 2.0475 \cdot P] \ für \ (\textbf{11}) \ und \ w = 1 / \ [\sigma^{2} \ (F_{o})^{2} + (0.0679 \cdot P)^{2} + 0.4147 \cdot P] \ für \ (\textbf{12}), \\ jeweils \ mit \ P &= (F_{o}^{\ 2} + 2F_{c}^{\ 2}) / \ 3. \\ F_{c}^{*} &= k \ F_{c} \ [1+0,001 \cdot |F_{c}|^{2} \ \lambda^{3} / \sin(2\theta)]^{-1/4} \end{split}$$

Atome 1,2	Abstand	Atome 1,2	Abstand
Se1—C11	1,931(3)	N14—C15	1,304(1)
Se1—C21	1,932(1)	C15—C16	1,364(2)
Se1—O1	2,898(2)	C11—C16	1,379(2)
Se1—O1'	2,886(4)	S1—O1	1,497(2)
C11—C12	1,384(1)	S1—C2	1,745(2)
C12—C13	1,379(2)	S1—C1	1,731(1)
C13—N14	1,306(2)		
Atome 1,2,3	Winkel	Atome 1,2,3	Winkel
C11—Se1—C21	92,1(4)	Se1—O1—S1	103,4(4)
01—Se1—01'	114,7(3)	Se1—O1—S1	127,8(6)
C11—Se1—O1	76,3(3)	O1—S1—C2	107,0(6)
C21—Se1—O1'	76,6(3)	01—S1—C1	108,6(4)
C21—Se1—O1	168,2(3)	C1—S1—C2	96,0(3)
C11—Se1—O1'	168,0(5)		

Tabelle A6-2: Ausgewählte Abstände [Å] und Winkel [°] von Se(C₅F₄N)₂·DMSO

Tabelle A6-3: Ausgewählte Abstände [Å] und Winkel [°] von Te(C₅F₄N)₂·DMSO

Atome 1,2	Abstand	Atome 1,2	Abstand
Tel—C11	2,136(4)	C12—C13	1,363(6)
Te1—C21	2,132(4)	C11—C12	1,386(5)
Te1—O1	2,848(3)	C12—F12	1,338(5)
Tel—Ol'	2,850(3)	C13—F15	3,444(6)
C11—C16	1,386(6)	S1—01	1,516(3)
C15—C16	1,378(6)	S1—C1	1,782(6)
N14—C15	1,306(6)	S1—C2	1,783(7)
C13—N14	1,327(7)		
Atome 1,2,3	Winkel	Atome 1,2,3	Winkel
C11—Te1—C21	86,8(11)	Te1—O1—S1	124,0(10)
01—Te1—01 [°]	118,3(8)	Te1—O1'—S1	106,4(11)
C11—Te1—O1	79,0(10)	01—S1—C1	106,5(12)
C21—Te1—O1'	75,7(10)	01—S1—C2	106,7(12)
C21—Te1—O1	165,2(10)	C1—S1—C2	96,9(13)
C11—Te1—O1'	162,5(10)		

	$Te(C_5F_4N)_2$ ·TMTU
Summenformel	$C_{15}H_{12}N_4F_8STe$
Formelmasse [g mol ⁻¹]	559,95
Messgerät	STOE Image Plate Diffraction System II
Strahlung	Mo-K α (Graphit-Monochromator, $\lambda = 71,073$ pm)
Messtemperatur [K]	170(2)
Indexbereich h _{min/max}	$-13 \le h \le 12$
$\mathbf{k}_{\min/\max}$	$-25 \le k \le 26$
$l_{min/max}$	$-11 \le 1 \le 10$
Messgeometrie	$0^{\circ} \le \omega \le 180^{\circ}; \psi = 0^{\circ}$
	$0^{\circ} \le \omega \le 50^{\circ}; \psi = 90^{\circ}$
	$\Delta \omega = 1^{\circ}$
	230 Bilder
Belichtungszeit [min]	3
Detektorabstand [mm]	120
Messbereich 20 [°]	1,9 - 54,8
gemessene Reflexe	19191
unabhängige Reflexe	4224
beobachtete Reflexe	3992
R _{merg}	0,0296
Absorptionskorrektur	numerisch, nach Kristallgestaltoptimierung [120, 121]
Transmission T _{min/max}	0,5289/0,8513
Form, Farbe	Quader, farblos
Kristallsystem	Monoklin
Raumgruppe	$P2_{1}/c$ (Nr. 14)
Zellparameter a/b/c [pm]	1062,5(1)/2031,9(1)/901,5(1)
β[°]	90,59(1)
Zellvolumen [10 ⁶ pm ³]	1946,1(2)
Formeleinheiten	4
Dichte (berechnet) [g cm ⁻³]	1,911
Absorptionskoeffizient µ [mm ⁻¹]	1,719
F(000)	1080
Strukturlösung/-verfeinerung	SIR-92 [122] und SHELX-97 [123]
Anzahl Parameter	311
$R_1/wR_2 \ [I > 2\sigma(I)]$	0,0195/0,0485
R_1/wR_2 (alle Daten)	0,0211/0,0495
S ₂ (alle Daten)	1,071
$\Delta \rho_{\min/max} \left[e \ 10^{-6} pm^{-3} \right]$	-0,586/0,473
Hinterlegungsnummer	CCDC-283854

Tabelle	A7-1:	Kristalldaten	und	Einzelheiten	zur	Strukturbestimmung	von
Te(C ₅ F ₄ N	D2·TMTU	J (13)					

$$\begin{split} R_{1} &= \Sigma \mid |F_{o}| - |F_{c}| \mid / \Sigma \mid F_{o}|, \ wR_{2} = [\ \Sigma \ w \ (\ |F_{o}|^{2} - |F_{c}|^{2} \)^{2} / \Sigma \ w \ (\ |F_{o}|^{2} \)^{2} \]^{1/2}, \ S_{2} = [\ \Sigma \ w \ (\ |F_{o}|^{2} - |F_{c}|^{2} \)^{2} / \ (n-p) \]^{1/2}, \ mit \\ w &= 1 / \left[\sigma^{2} \ (F_{o})^{2} + (0.0233 \cdot P)^{2} + 1.1399 \cdot P \right], \ wobei \ P = (F_{o}^{2} + 2F_{c}^{2}) / \ 3. \\ F_{c}^{*} &= k \ F_{c} \ [1+0,001 \ \cdot |F_{c}|^{2} \ \lambda^{3} / \sin(2\theta)]^{-1/4}. \end{split}$$

Atome 1,2	Abstand	Atome 1,2	Abstand
Te1—C11	2,156(2)	C16—F16	1,341(3)
Te1—C21	2,152(2)	C15—F15	1,342(3)
Te1—S31	3,174(5)	C13—F13	1,339(2)
Te1—S31'	3,150(5)	C3—S31	1,710(2)
C11—C12	1,379(3)	C3—N5	1,345(2)
C11—C16	1,375(3)	C3—N4	1,344(2)
C12—C13	1,378(3)	N5—C52	1,453(3)
C15—C16	1,384(3)	N5—C51	1,464(4)
C13—N14	1,307(3)	N4—C41	1,457(3)
N14—C15	1,297(3)	N4—C42	1,466(3)
C12—F12	1,344(3)		
Atome 1,2,3	Winkel	Atome 1,2,3	Winkel
C11—Te1—C21	87,68(6)	Te1—S31—C3	112,0(1)
C11—Te1—S31	84,77(5)	Te1—S31—C3	99,7(1)
S31—Te1—S31'	108,09(1)	C41—N4—C42	113,6(1)
C21—Te1—S31'	79,36(4)	N4—C3—N5	117,2(1)
C11—Te1—S31'	166,73(5)	C51—N5—C52	113,8(2)
C21—Te1—S31	172,31(4)		

Tabelle A7-2: Ausgewählte Abstände [Å] und Winkel [°] von Te(C₅F₄N)₂·TMTU

Kurzzusammenfassung

Gegenstand der vorliegenden Arbeit sind Untersuchungen zum oxidativen Verhalten von Perfluororganylsilber(I)-Verbindungen, AgR_f ($R_f = C_5F_4N$, C_2F_3 , C_2F_5 , $n-C_3F_7$, $n-C_4F_9$), gegenüber Elementen der Gruppen 12-16. Die dabei entstehenden Perfluororganylelement-Verbindungen, $E(R_f)_n$, sowie die hierfür aus den entsprechenden Silanen (CH₃)₃SiR_f und Silber(I)fluorid synthetisierten AgR_f-Verbindungen sollen isoliert und möglichst röntgenographisch charakterisiert werden.

AgC₂F₅- und AgC₅F₄N-Derivate konnten erstmalig als [PNP][Ag(C₂F₅)₂] (**1**) bzw. [PNP][Ag(C₅F₄N)₂] (**2**) isoliert und röntgenographisch charakterisiert werden. AgC₂F₃ konnte ebenfalls erstmalig dargestellt, ¹⁹F-NMR-spektroskopisch und massenspektrometrisch charakterisiert werden. Die Umsalzung von AgC₆F₅ mit [PNP]Cl lieferte anstelle des erhofften [PNP][Ag(C₆F₅)₂] lediglich das Fluor-freie Argentat [PNP]₂[Ag₂Cl₄] (**3**), welches röntgenographisch charakterisiert werden konnte. Wie bei allen bisher in der Literatur strukturell beschriebenen Perfluororganylsilber(I)-Verbindungen, sind auch hier die Ag-Atome in den Anionen von (**1**) und (**2**) nahezu linear mit charakteristischen Ag-C-Abständen koordiniert.

Die Umsetzungen von AgR_f (R_f = C₂F₅, n-C₃F₇, n-C₄F₉) mit elementarem Zinn lieferten anstelle der erhofften homoleptischen Zinn(IV)-Verbindungen neuartige Verbindungen, für die die Zusammensetzung "AgSn^{II}(R_f)₃" oder "Ag[Ag(Sn^{II}(R_f)₃)₂]" postuliert werden kann. Für R_f = C₅F₄N konnte die entsprechende Zwischenstufe durch Pyrolyse in das Sn(C₅F₄N)₄ (4) überführt werden.

Folgereaktionen von "AgSn^{II}(R_f)₃" ($R_f = C_2F_5$, n-C₄F₉) mit Hg führten zu Hg[Sn(R_f)₃]₂, welche ¹⁹F-, ¹⁹⁹Hg- und ¹¹⁹Sn-NMR-spektroskopisch eindeutig charakterisiert werden konnten.

Durch weitere Umsetzungen von AgC₅F₄N mit Elementen der Gruppen 12-16 konnten folgende 4-Tetrafluorpyridylelement-Verbindungen dargestellt und größten Teils weitgehend charakterisiert werden: Hg(C₅F₄N)₂ (**5**), Ga(C₅F₄N)₃·EtCN·H₂O (**6**), In(C₅F₄N)₃·2 EtCN (**7**), $E(C_5F_4N)_3$ (E = As (**8**), Sb, Bi), Se(C₅F₄N)₂ (**9**), Te(C₅F₄N)₂ (**10**), Se(C₅F₄N)₂·DMSO (**11**), Te(C₅F₄N)₂·DMSO (**12**) und Te(C₅F₄N)₂·TMTU (**13**).

Die Molekülstrukturen von (**4–13**) werden beschrieben und mit denen literaturbekannter C_6F_5 -Homologen verglichen. Der Einfluss des elektronegativeren C_5F_4 N-Liganden sowie dessen "freien" Koordinationsstelle am N-Atom auf die Bindungsverhältnisse und die Stabilität dieser Verbindungen wird diskutiert.

Abstract

The present dissertation deals with investigations on the oxidative properties of perfluoroorgano silver compounds, AgR_f ($R_f = C_5F_4N$, C_2F_3 , C_2F_5 , $n-C_3F_7$, $n-C_4F_9$), towards elements of groups 12-16. The expected perfluoroorgano element compounds, $E(R_f)_n$, and the corresponding silver derivatives prepared from (CH_3)₃SiR_f and AgF should be isolated and, if possible, studied by XRD methods.

AgC₂F₅ and AgC₅F₄N derivatives were isolated for the first time as [PNP][Ag(C₂F₅)₂] (**1**) and [PNP][Ag(C₅F₄N)₂] (**2**) and their structures elucidated by X-ray structure determinations. AgC₂F₃ was prepared for the first time and characterized by NMR spectroscopic and mass spectrometric means. The reaction of AgC₆F₅ and [PNP]Cl led to the fluorine-free argentate, [PNP][Ag₂Cl₄] (X-ray structure) and not to the expected salt, [PNP][Ag(C₆F₅)₂]. As in all structures of perfluoroorgano silver compounds described so far, silver atoms in the anions $[Ag(C₂F₅)₂]^{-}$ and $[Ag(C₅F₄N)₂]^{-}$ are nearly linear co-ordinated with characteristic Ag-C bond lengths.

Reactions of AgR_f (R_f = C₂F₅, n-C₃F₇, n-C₄F₉) with elemental tin yielded instead of the expected homoleptic tin(IV) compounds, novel derivatives of the postulated composition ,,AgSn^{II}(R_f)₃" or ,,Ag[Ag(Sn^{II}(R_f)₃)₂]". With R_f = C₅F₄N this intermediate was converted into Sn(C₅F₄N)₄ (**4**) via pyrolysis.

Consecutive reactions of $,AgSn^{II}(R_f)_3$ ($R_f = C_2F_5$, n-C₄F₉) with Hg gave Hg[Sn(R_f)₃]₂ which was characterized definitely by ¹⁹F, ¹⁹⁹Hg and ¹¹⁹Sn NMR spectroscopic means.

Further reactions of AgC_5F_4N with elements of groups 12-16 yielded the following 4-tetrafluoropyridyl element compounds which were extensively chracterized:

Hg(C₅F₄N)₂ (**5**), Ga(C₅F₄N)₃·EtCN·H₂O (**6**), In(C₅F₄N)₃·2 EtCN (**7**), E(C₅F₄N)₃ (E = As (**8**), Sb, Bi), Se(C₅F₄N)₂ (**9**), Te(C₅F₄N)₂ (**10**), Se(C₅F₄N)₂·DMSO (**11**), Te(C₅F₄N)₂·DMSO (**12**) and Te(C₅F₄N)₂·TMTU (**13**).

The molecular structures of (4-13) are described and compared with those of the homologue C_6F_5 derivatives known from the literature. The influence of the more electronegative C_5F_4N ligand as well as its "free" coordination site at the N-atom on the bonding situation and the stability of these compounds is discussed.

Erklärung

"Ich versichere, dass ich die von mir vorgelegte Dissertation selbstständig angefertigt habe, die benutzen Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie – abgesehen von unten angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. D. Naumann betreut worden."

Zur Wahrung der Priorität wurden Teile dieser Arbeit bereits publiziert:

• W. Tyrra, S. Aboulkacem, I. Pantenburg, "Silver compounds in synthetic chemistry. Part 3. 4-Tetrafluoropyridyl silver(I), AgC_5F_4N - A reagent for redox transmetallations with group 12-14 elements" J. Organomet. Chem. **691** (2006) 514.

• W. Tyrra, S. Aboulkacem, B. Hoge, W. Wiebe, I. Pantenburg, "Silver compounds in synthetic chemistry, Part 4. 4-Tetrafluoropyridyl silver(I), AgC_5F_4N in redox transmetallations – possibilities and limitations in reactions with group 15 elements" J. Fluorine Chem. **127** (2006) 213.

• S. Aboulkacem, W. Tyrra, I. Pantenburg, "Crystal structure analyses of bis(triphenyl-phosphoranyliden)ammonium bis(pentafluoroethyl)argentate, $[Ph_3P=N=PPh_3][Ag(C_2F_5)_2]$ and bis[bis(triphenylphosphoranyliden)ammonium]tetrachlorodiargentate, $[Ph_3P=N=PPh_3]_2[ClAg(\mu-Cl)_2AgCl]$ " J. Chem. Crystallogr. **36** (2006) 141.

Said Aboulkacem

Lebenslauf

Persönliche Daten

Name	Said Aboulkacem
Anschrift	August von Willich Str. 105, 50827 Köln
Geburtsdatum	7.3.1962
Geburtsort	Tagadirt-Iouzioua (Marokko)
Staatsangehörigkeit	deutsch
Familienstand	verheiratet (seit 1998)
	eine Tochter (3 Jahre alt)

Schule

1970-1976	Grundschule in Marrakech (Marokko)
1977-1983	Gymnasium in Marrakech (Marokko)
	Abschluss: allgemeine Hochschulreife Ausland

Studium

1983-1988	Physik/Chemie-Grundstudium an der Universität Cady Ayad
	Marrakech (Marokko)
09/1990-03/1991	Deutschkurs an der Universität zu Köln
04/1991	Immatrikulation im Fach Chemie an der Universität zu Köln
02/1997	Diplom-Chemiker-Vorprüfung
02/2002	Diplom-Chemiker-Hauptprüfung
03/2002-10/2002	Diplomarbeit am Institut für Anorganische Chemie der Universität zu Köln
10/2002-12/2006	Promotion am Institut für Anorganische Chemie der Universität zu Köln