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Abstract  

 

The Endosomal Sorting Complex Required for Transport (ESCRT) regulates important 

functions in the secretory system of yeast and animals. The main responsibilities that have 

been described so far are sorting of biosynthetic cargo and receptor-downregulation. The 

scope of my PhD thesis was the analysis of the Arabidopsis ELCH protein that is similar to 

Vps23p and TSG101. These proteins represent the core components of ESCRT I complex in 

yeast and animals. I could show that ubiquitin binding and complex formation is conserved 

between Arabidopsis, yeast and animals, supporting the idea that ESCRT mediated protein 

sorting is a general strategy in eukaryotic organisms. New ELCH/ESCRT-I interacting 

proteins were isolated by immunoprecipitation and subsequent mass spectrometry. By this 

approach a plant specific protein containing a UBiquitin Associated (UBA) domain and 

several subunits of the vacuolar (H+)-ATPase were identified. The VHA-a3 subunit of the 

vacuolar (H+)-ATPase was analysed in more detail for ubiquitin modifications because mono-

ubiquitination constitutes the sorting signal for the ESCRT pathway. Two colour western 

analysis showed that VHA-a3 is mono-ubiquitinated indicating that VHA-a3 might be a target 

of ELCH/ESCRT-I. Similar to the ESCRT pathway the V-ATPase is involved in the sorting 

of biosynthetic cargo and receptor-downregulation in yeast. No interaction between the 

ESCRT pathway and the V-ATPase has been reported so far.  

A T-DNA mutation in the ELCH gene of Arabidopsis results in multiple nuclei in a minority 

of epidermal cells. As multinucleated cells can be an indication for a cell division defect, 

trichomes, pavement cells and stomata were examined in respect to incomplete cell walls. 

Cell wall stubs were observed in pavement cells and stomata but not in trichomes. Similar 

defects have not been observed in yeast vps23 but the multinucleated phenotype of elch 

resembles the phenotype observed in TSG101 mutant cell lines. Furthermore cytokinesis 

defects are reported in Arabidopsis mutants lacking the VHA-E subunit of the V-ATPase. 

Plants mutant for VHA-E are embryonic lethal and display incomplete cell walls, multiple 

nuclei and aberrant vacuoles (Strompen et al., 2005). Although mutations in ELCH, TSG101 

and VHA-E cause a similar phenotype only vague ideas exist why compromising the ESCRT 

pathway or the V-ATPase lead to cell division defects. A cue was provided by genetic 

analysis, which suggests that ELCH influences cell division by regulating microtubules. This 

is apparent because a double mutant with tubulin-folding cofactor a (tfc-a) shows a strong 

synergistic phenotype. Cell wall development during plant cell division depends heavily on a 

plant specific structure, the phragmoplast. The secretory system and microtubules are the 



  

 VIII

main components of the phragmoplast. Therefore it seems reasonable to assume that subtle 

protein sorting defects, mislocalization of membranes or misregulation of microtubules can 

lead to the observed cell division defect. 
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A. Introduction 

A 1.The secretory system 

Eukaryotic cells share several elements like the plasma membrane, the endoplasmic 

reticulum, various endosomes, the golgi system and a vacuole/lysosome equivalent that are 

collectively referred to as the “secretory system”. The term secretory system was derived 

from the observation in yeast that many mutants defective in protein sorting secrete proteins 

(Johnson et al., 1987; Klionsky and Emr, 1990; Valls et al., 1987). The endosome is a 

vesicular compartment that is involved in the transport of internalised ligands from the plasma 

membrane to lysosomes. Moreover it has been implicated in intracellular transport from the 

golgi system to lysosomes. A lysosome is an acidic compartment that contains digestive 

enzymes that are responsible for the degradation of various macromolecules. All cells depend 

on membrane structures that establish compartments for various cellular functions. 

Furthermore, membrane vesicles are part of the transportation system that connects different 

organelles.  

 
Figure A1: Overview of the cellular 

endomembrane system. Most membrane 
compartments are conserved in eukaryotic 
organisms or have equivalent structures. 
The yeast vacuole for example fulfils 
similar functions than the lysosomes in 
animals. The phragmoplast is a plant 
specific organelle required during plant 
cell division. There is no obvious 
equivalent for the phragmoplast in 
animals as different strategies of cell 
division have evolved. Vesicle movement 
from the endoplasmic reticulum (ER) via 
the golgi system towards vacuole or 
plasma membrane is called anterograde 
transport (i.e. biosynthetic cargo). The 
opposite direction is termed retrograde 
transport (i.e. maintaining membrane 
equilibrium). Recently more evidence 
became available that golgi derived 
vesicle are important for scission during 
late stages of animal cytokinesis. This 
indicates that the secretory system is more 
important for animal cytokinesis than 
thought previously. 
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Intracellular transport is accomplished mainly by small transport vesicles that bud from donor 

compartments and travel along the cytoskeleton to an acceptor vesicle or organelle. 

Membrane fusion then leads to the delivery or exchange of cargo between the fusing vesicles 

or compartments. Two main directions are defined for vesicle transport: Anterograde and 

retrograde transport. Anterograde transport originates at the endoplasmatic reticulum, travels 

through the golgi system and flows towards plasma membrane and vacuole/lysosome. While 

anterograde transport is mainly of biosynthetic nature, retrograde transport redirects vesicles 

and ensures that membrane equilibrium is maintained. Retrograde transport therefore has 

opposite directionality with vesicle flow from the plasma membrane or vacuole to the golgi 

system and the endoplasmic reticulum.  Important regulatory functions such as receptor 

down-regulation from the plasma membrane are mediated by retrograde transport (for 

reference see Sanderfoot and Raikhel, 2003). 

 

A 2.The ESCRT pathway 

The secretory system of the unicellular organism Saccharomyces cerevisae is a model system 

for protein sorting. Large collections of yeast mutants were screened for aberrant 

endomembrane structures (Bankaitis et al., 1986; Banta et al., 1988) and classified into 

subclasses A to F (Raymond et al., 1992). The analysis of class E mutants revealed a pathway 

that specifically sorts proteins destined for the vacuolar lumen, a process that has been termed 

ESCRT pathway (Endosomal Sorting Complex Required for Transport) (Babst et al., 2002a; 

Babst et al., 2002b; Katzmann et al., 2001). The ESCRT pathway is responsible for sorting 

proteins labeled with a single ubiquitin moiety and delivering them to the vacuole in yeast 

(Babst, 2005; Odorizzi et al., 1998). In the vacuolar lumen the proteins are accessible to 

proteases and become subsequently degraded. Three fundamental steps are required for this 

process. The initial step in this sorting pathway is the recognition of mono-ubiquitinated 

proteins by Vps27p and Vps23p (Bilodeau et al., 2002; Bilodeau et al., 2003). VPS23, the 

ortholog of the Arabidopsis ELCH gene, is a component of the ESCRT-I complex that is 

located at the late endosome, also referred to as multivesicular body (MVB) (Katzmann et al., 

2001). In a second step, vesicles invaginate from the outer membrane of the late endosome 

into the lumen. Proteins that are targeted to the MVB membrane by Vps27p and Vps23p 

become internalized with the help of ESCRT-II and ESCRT-III complexes (Babst et al., 

2002a; Babst et al., 2002b; Katzmann et al., 2001). In step three the MVBs fuse with the 

vacuole where the cargo becomes degraded (Odorizzi et al., 1998). This sorting pathway 

specifically recognizes proteins marked with a single ubiquitin. This model is supported by 
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the observation that the precursor of carboxypeptidase S (pCPS) is misguided to the vacuolar 

membrane after mutating the N-terminal lysine to which ubiquitin is normally bound 

(Katzmann et al., 2001). Conversely, proteins that are normally not targeted into the vacuole 

are transported to the lumen when linked to a single ubiquitin moiety (Urbanowski and Piper, 

2001). The ESCRT pathway is not fungi specific but is also found in animals. Homologs of 

all components of yeast ESCRT-complexes have been identified in animals (Katzmann et al., 

2002). The human orthologue of VPS23 was shown to be TSG101 (Babst et al., 2000) and the 

equivalent compartment to the yeast vacuole is the lysosome in animals. The ESCRT pathway 

in yeast and animals sorts mainly two classes of proteins. As discussed above one targeted 

protein class is biosynthetic cargo like pCPS in yeast and lysosomal acid phosphatase (LAP) 

in animals.  

 

Figure A2: Overview of ESCRT 

dependent protein sorting. (A) Over-
view of the ESCRT machinery in eu-
karyotes as reviewed by Winter and 
Hauser, 2006. Proteins upstream of 
ESCRT-I presumably recruit targets 
together with VPS23/ELCH to the 
ESCRT complexes. The mechanism of 
cargo concentration, deubiquitination, 
budding and complex breakup is still 
under investigation. (B) Main stages of 
receptor mediated endocytosis and 
degradation in the yeast vacuole. 
Activated Ste2p receptor initiates a 
signal cascade. To inactivate the 
receptor he is monoubiquitinated, 
endocytosed and sorted by the ESCRT 
pathway into the vacuole for 
degradation. Not shown is transport of 
biosynthetic cargo but the principle of 
MVB sorting is the same. pCPS 
originates at the endoplasmic reticulum 
and travels through the golgi system to 
the late endosome (MVB). Fusion of 
MVBs with the vacuole results in the 
processing of pCPS by other proteases 
to its active form. 
 

 

 

Both proteins are transported to the lumen of the vacuole/lysosome where they are processed 

to their active form (Babst et al., 2000). The other class of proteins sorted by the MVB 

pathway are plasma membrane proteins. The -factor receptor Ste2p is transported via 

endosomes through the prevacuolar compartment into the yeast vacuole (Mulholland et al., 

1999). Class E VPS genes are essential for this process (Katzmann et al., 2002; Odorizzi et 



                                                                                                                               Introduction 

 4

al., 1998). In animals, the plasma membrane receptor Notch and the receptor-tyrosine-kinase 

Epidermal Growth Factor Receptor (EGFR) are sorted by the ESCRT pathway. Receptor-

mediated endocytosis removes Notch and EGFR from the plasma membrane by internalising 

them into late endosomes. The acidic environment in these compartments causes dissociation 

of receptor ligand complexes (Geuze et al., 1983). Receptor and ligand are sorted apart and 

either subject to lysosomal degradation or receptor recycling to the plasma membrane (Bache 

et al., 2004; Futter et al., 1996; Giebel and Wodarz, 2006; Herz et al., 2006; Thompson et al., 

2005; Vaccari and Bilder, 2005). The ESCRT machinery not only sorts cellular proteins but is 

also exploited by enveloped viruses to exit their host cell. Human Immunodeficiency Virus 

(HIV) or Ebola produce enveloped particles through ESCRT mediated membrane budding, a 

reaction that is topologically equivalent to endosomal membrane invagination (Patnaik et al., 

2000). Cells depleted of TSG101 or mutant for VPS4, another class E protein, prohibit 

efficient viral particle budding (Garrus et al., 2001). For review of ESCRT mediated viral 

budding see (Pornillos et al., 2002). A general overview of the ESCRT pathway and its cargo 

for yeast and animals is reviewed in (Katzmann et al., 2002).  

The plant vacuole is considered to be equivalent to animal lysosomes (Vitale and Galili, 2001; 

Vitale and Raikhel, 1999). Furthermore, the class E genes found in yeast and animals are also 

present in Arabidopsis (Winter and Hauser, 2006), suggesting that the ESCRT machinery is 

functional in plants as well. However, no role has been assigned to ELCH so far and it is 

unclear whether ESCRT-like machinery in plants executes similar functions to those found in 

yeast and animals. 

 

A 3.The vacualor ATPase 

Vacuolar (H+)-ATPases (V-ATPases) reside not only in the vacuolar membrane as the name 

suggests, but are found throughout the secretory system. They acidify intracellular 

compartments in eukaryotic cells translocating protons from the cytosol into the lumen of 

various organelles. The V-ATPase is a multi subunit complex consisting of a membrane 

based V0 complex and a cytosolic V1 complex. Together, V0 and V1 form a stalk and ball 

like structure (Figure A3 A). In plants the V1 complex consists of eight subunits that are 

sequentially named VHA-(A to H). The V0 complex is composed of five subunits that are 

termed VHA-a, VHA-c, VHA-c’, VHA-c’’ and VHA-d. The V0 subunits form the proton 

translocation channel and parts of the stalk to which the cytosolic V1 unit is attached (Sze et 

al., 2002). The mechanism of proton translocation was elucidated in yeast and is driven by 

rotational movement of subunits of the cytosolic V1 sub complex dependent on ATP 
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hydrolysis (Hirata et al., 2003). Vacuolar (H+)-ATPase is reported to localize to the plasma 

membrane and a variety of intracellular compartments, including endosomes, lysosomes and 

secretory vesicles (Figure A3 B). The respective localisation and density of V-ATPases is 

highly cell type specific and varies enormously between different organisms. V-ATPases 

function in a variety of processes such as receptor-mediated endocytosis and intracellular 

sorting of lysosomal enzymes (Bowman and Bowman, 2000; Forgac, 1999; Geuze et al., 

1983; Klionsky et al., 1992a; Klionsky et al., 1992b; Nishi and Forgac, 2002; Stevens and 

Forgac, 1997). Receptor-mediated endocytosis provides a mechanism by which eukaryotic 

cells selectively internalize macromolecules (Mellman, 1996a; Mellman, 1996b; Trowbridge 

et al., 1993). The most well understood endocytotic mechanism is clathrin-mediated 

endocytosis. Clathrin-mediated endocytosis mediates the internalization of plasma membrane 

proteins such as receptors. In this process, ligand-receptor complexes become clustered in 

specialised regions of the plasma membrane where they form clathrin-coated pits. Receptors 

that are to be internalised associate with clathrin via interaction with a family of adaptor 

proteins that bridge the cytoplasmic tails of receptors with the heavy chain of clathrin (Pearse 

and Robinson, 1990).  

 

Figure A3: Structure and functions of the vacuolar ATPase. (A) The vacuolar ATPase is a multimeric 
protein complex that forms a stalk and ball like structure. The membrane integral V0 subcomplex forms the 
proton channel whereas the ball is cytosolic and provides the ATP dependent rotational force that pumps protons 
across the membrane. (B) The V-ATPase is important for endocytosis and intracellular targeting. Acidification 
of early endosomes is required for dissociation of internalized ligand–receptor complexes and recycling of 
receptors to the plasmamembrane. Acidification of late endosomes is required for release of lysosomal enzymes 
from mannose 6-phosphate receptors (MPR) and recycling of these receptors to the trans-Golgi network (TGN). 
Yellow indicates neutral pH and red indicates acidic pH (adopted from Nishi and Forgac, 2002). 
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The budding of coated pits from the plasma membrane is a complex process that requires 

several steps (van der Bliek et al., 1993) and gives rise to clathrin-coated vesicles. These 

vesicles rapidly lose their clathrin coat to form uncoated endosomes (Rothman and Schmid, 

1986). Fusion of endosomes with each other results in the delivery of ligand receptor 

complexes to an acidic endosomal compartment, where the low pH activates release of 

ligands from their receptors (Geuze et al., 1983). This process allows recycling of unoccupied 

receptors to the cell surface and targeting of the released ligands to lysosomes (Figure A3 B). 

Another well-studied process that depends on the V-ATPase is intracellular sorting of 

proteins from the biosynthetic pathway. Lysosomal enzymes like protease precursors use 

anterograde transport within the secretory system to reach the vacuolar lumen. Disruption of 

V-ATPase subunits in yeast led to the missorting of these proteins (Klionsky et al., 1992a; 

Klionsky et al., 1992b; Matsuoka et al., 1997). Yeast strains mutant for V-ATPase subunits 

were unable to acidify their vacuolar lumen and accumulated and secreted precurser forms of 

carboxypeptidase Y (CPY) and proteinase A (Klionsky et al., 1992a). 

Like the ESCRT machinery, certain functions of the V-ATPase seem to be exploited by 

enveloped viruses.  Lentiviruses like HIV or SIV (Simian immunodeficiency) depend on the 

vacuolar ATPase. This is indicated by physical interaction between the VHA-H subunit and 

the HIV accessory protein Nef. Nef is required for efficient viral infectivity and pathogenicity 

(Geyer et al., 2002; Lu et al., 1998).  

 

A 4. Cytokinesis in plants 

Like all cellular organisms plants grow and reproduce by dividing existing cells. The main 

stages of the cell cycle are S-phase (synthesis phase) where the DNA is replicated and M-

phase (mitotic phase) when the DNA is divided between the two nuclei. Cytokinesis takes 

place during the second part of M-phase after DNA segregation where the two daughter 

nuclei are separated by a new cell wall. Cell division is a process that is common to all 

eukaryotes, however the way it is achieved differs, especially between animals and plants. 

Animal cells divide by pinching off daughter cells with the help of a contractile ring (Glotzer, 

2001). This ring is attached to the plasma membrane in the plane of division leading either to 

equal or unequal divisions. Plant cells have evolved different mechanisms of cytokinesis, 

probably due to the limitations posed by the rigid cell wall. Conventional cytokinesis in plants 

is characterized by nuclear division followed by immediate cell wall formation between the 

sister nuclei. In contrast, during non-conventional cytokinesis nuclear divison and cytokinesis 

are uncoupled leading to multinucleated cells. The cell wall is then established at later stages 
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(Otegui and Staehelin, 2000). Although there are differences in detail, both division modes 

utilize a common structure called phragmoplast to create the new cell wall (Figure A4). 

Microtubules, microfilaments and membranous elements are the predominant structural 

elements of the phragmoplast that is established in the plain where the new cell wall will 

form. The plain of division is marked by two elements that become apparent during 

cytokinesis. The preprophase band (PPB) is a ring like structure, consisting of microtubules 

and actin filaments, where a large proportion of the otherwise distributed microtubules is 

concentrated (Samuels et al., 1995). The other element is the golgi belt, an accumulation of 

golgi stacks that forms after nuclear division and also serves as a marker for the position of 

the emerging cell wall (Nebenfuhr et al., 2000).  

 

Figure A4: Cell division in plants. (A) 
Rearrangement of microtubules and formation 
of the preprophase band that will mark the site 
of future cytokinesis. (B) Rearrangement of 
microtubules and spindle formation. The 
chromosomes are segregated in late anaphase. 
(C) In late telophase mitosis is completed and 
cytokinesis starts by cell plate formation. 
Spindle microtubules are rearranged and form 
the phragmoplast that guides vesicle transport to 
the forming cell plate in the cell plate assembly 
matrix. (D) The cell plate contacts and fuses 
with the old cell wall thereby separating the two 
daughter cells. Microtubules rearrange to their 
normal state again (from “The cell cycle: 
Principles of control” by David O. Morgan).  
 

 

The golgi stacks provide the materials needed to build the new cell, wall while phragmoplast 

microtubules provide the infrastructure that transports the golgi derived vesicles to the 

forming cell plate (Figures A4 and A5). As a general principle, plant cells assemble a new cell 

wall by accumulating transport vesicles with cell wall material in the plane of division 

(Staehelin and Hepler, 1996). Recent evidence suggests that the aspect of vesicle trafficking, 

which dominates plant cytokinesis, also plays a critical role in animal cytokinesis (Albertson 

et al., 2005). Vesicle trafficking during plant cytokinesis could therefore serve as a model for 

similar processes in animal cytokinesis. Vesicle fusion forms the tubulo-vesicular-network 

(TVN) that is subsequently reduced through the tubular network (TN) to a planar fenestrated 

sheet (PFS). The PFS matures to the cell plate that will give rise to the new cell wall 

(Staehelin and Hepler, 1996). The aquisition of cell wall material is coupled to an 

accumulation of membranes but it is estimated that about 75 % of the golgi derived 

membranes involved in cell plate formation are recycled (Otegui et al., 2001). Although the 

mechanisms are only roughly defined, the reduction seems to be mediated by budding of 
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clathrin coated vesicles (CCV) from the TVN that are speculated to feed the endosomal/MVB 

pathway (Jurgens, 2005; Samuels et al., 1995; Segui-Simarro et al., 2004). The MVB is then 

thought to distribute membranes back to the different compartments of the endo-membrane 

system similar to the way it does during endocytosis (Figure A5). This is apparent as the 

number of MVBs is increased during cytokinesis compared to none dividing cells (Segui-

Simarro and Staehelin, 2005). The phragmoblast disassembles once the forming cell wall has 

completed making contact to the old cell walls. 

 

Figure A5: Modell of plant 

cytokinesis. The phragmoplast 
guides golgi-derived vesicles 
towards the cell plate assembly 
matrix (CPAM). These vesicles 
fuse and form the tubulo-vesicular 
network. Fusion and maturation 
gradually forms the cell plate via 
the tubular network and the planar 
fenestrated sheet. The 
accumulation of membranes at the 
CPAM is balanced by budding of 
clathrin coated vesicles and 
presumably redistribution of 
membranes to the plasma 
membrane, golgi and other 
compartments of the secretory 
system. The accumulation of 
CCVs and MVBs during 
cytokinesis suggests that these 
vesicles are involved in membrane 
redistribution. 

 
 

 

In contrast to the mitotic cell cycle, mitosis and cell division are bypassed during 

endureduplication. Endoreduplicating cells undergo multiple rounds of DNA replication 

without intervening mitosis thereby amplifying the DNA content of individual cells. Mitotic- 

and endoreduplication cycle utilize the same cellular machinery and probably evolved from 

each other (Edgar and Orr-Weaver, 2001). This is apparent because a mutation in the siamese 

gene in Arabidopsis is sufficient to change cells that normally endoreduplicate to undergo cell 

division (Schnittger et al., 2002; Walker et al., 2000). Similar, ectopic expression of 

CYCLIN-B in unicellular trichomes is sufficient to induce cell divisions (Schnittger et al., 

2002). Cells whose function requires high biosynthetic activity or fast growth frequently have 

endoreduplicated DNA. Therefore the biological sense of endoreduplication seems to be the 

generation of cells with more copies per gene that are larger and more productive than diploid 

cells. 
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A 5. The Arabidopsis elch mutant 

The elch mutant was initially identified in a T-DNA collection from Versailles by Hilmar 

Ilgenfritz on the basis of a subtle leaf hair phenotype. Leaf hairs or trichomes of Arabidopsis 

are large epidermal cells that protrude from the leaf surface and are most likely a protection of 

the meristem against small herbivores (Figure A6 A). Wild type trichomes consist of one stem 

with several branches (Figure A6 B). By contrast elch mutants (elc) possess a small number 

of trichomes that show two or more stems originating from a single cell and are called 

trichome cluster. The splitting of stems close to the leaf surface gives these clusters a moose 

or elk horn like appearance (Figure A6 C). The mutant was therefore coined elch (Hulskamp 

et al., 2000). Previous work indicated that the phenotype is caused by a single T-DNA 

insertion (Dr S. Schellmann, personal communication; appendix E6) 

 

 

Figure A6: Trichome cluster phenotype of the Arabidopsis elch mutant. (A) Rosette with third and fourth 
leaf covered with trichomes (picture A is a courtesy of Katja Wester). The arrow marks the position of the shoot 
apical meristem from where new leafs develop. This area is densely covered with trichomes. (B) A single wild 
type trichome. (C) Trichome cluster of the elch mutant. Two stem like structures emerging from the base of the 
cell give the cluster a moose or elk like appearance. (D) Leaf section with the epidermal cell types used in this 
study (trichomes, pavement cells and stomata). (E) Typical pavement cells displaying their lobed shaped outline. 
(F) Section of a leaf with three stomata. These cells mediate gas exchange between atmosphere and the inner 
tissues of the leaf. (A) Picture was taken with a stereo microscope. (B-C) Leafs were DAPI-stained, whole 
mounted and observed by epi-fluorescence microscopy. 
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These trichome clusters are frequently multinucleated. Trichomes are used as a model to 

study developmental processes such as cell morphogenesis, patterning and cell cycle 

regulation in plants (Hulskamp, 2004). The current model of trichome development defines 

several distinct steps like trichome selection, switch from mitosis to endoreduplication, 

trichome differentiation, branching and expansion growth. Trichome development is most 

likely not affected in the elch mutant demonstrated by genetic analysis with mutants from 

different developmental processes (Spitzer, 2002; diploma thesis). A detailed dissection of 

trichome development is reviewed in Hulskamp, 2004. The cloning of the ELCH gene 

revealed that ELCH is similar to the VPS23 gene in yeast (Spitzer et al., 2006). None of the so 

far cloned genes implicated in trichome development has similarity to VPS genes although 

some might have functions in the secretory system. ANGUSTIFOLIA (AN) has been 

implicated in golgi-related functions, however the molecular function of AN is still under 

investigation (Folkers et al., 2002; Kim et al., 2002). Arabidopsis lines that are mutant for 

WURM (WRM) and DISTORTED1 (DIS1) show aberrant vacuolar fusions and cell shape 

alterations (Mathur et al., 2003). Both genes encode subunits of the Arabidopsis ARP2/3 

complex that has central functions in actin regulation. The double mutant elc/dis1 showed an 

additive phenotype indicating that there is no direct interaction between ELCH and actin 

related processes.  

 

Figure A7: Cloning of the ELCH 

gene. (A) Rescue of the elch 
mutant by a genomic fragment of 
At3g12400 that includes 600 bp 
upstream of the ATG and 1100 bp 
downstream of the stop codon 
showed that ELCH encodes a 
VPS23 homolog. Left border 
sequence was found downstream 
of At3g12390 and in the open 
reading frame of At3g12400 
indicating multiple head to head 
insertions of the T-DNA.  B) 
Because of the T-DNA insertion in 
the ELCH gene the transcript is 
truncated in the elch mutant. 
Translation of this transcript would 
result in a partial ELCH protein 
that is truncated in the coiled coil 
domain.  

 

The phenotype of elch and the molecular nature of the mutation (Figure A7) indicate that elch 

is not a complete knockout but rather a hypomorphic allel. This is apparent because only a 

small number of trichomes form clusters while the majority of elch trichomes is 
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indistinguishable from wild type. The elch mutant allel used in this study is a T-DNA line 

where vector sequence was found to be inserted 786 base pairs after the start codon. The 

mutation leads to a truncated transcript and a protein lacking the carboxy-terminal 166 amino 

acids (Spitzer et al., 2006). Approximately 2% of all leaf hair trichomes display the cluster 

phenotype while the remainder are indistinguishable from wild type. Next to trichomes other 

epidermal cell types are affected by the cytokinesis defect as well. In this study pavement 

cells (Figure A6 E) and stomata (Figure A6 F) are examined. Pavement cells establish the 

outer layer of arial plant organs. They strengthen the plant structure and protect the plant 

against desiccation. Stomata mediate gas exchange between atmosphere and inner plant 

tissue. 

 

 

 

 

Aim 

 

During my diploma thesis I cloned the ELCH gene and analysed the morphology of trichome 

clusters in the elch mutant. The presence of multinucleated cells in the elch mutant suggested 

that the phenotype is related to cytokinesis. Nevertheless it was not possible to provide 

experimental evidence at that time. Therefore one object of this PhD thesis was to determine 

whether cell division defects contribute to the multinucleated phenotype. To address this 

question further epidermal cell types were analysed in respect to incomplete cell walls that are 

characteristic for cytokinesis mutants. In a simple model the development of clusters will be 

explained. The main focus was laid on the biochemical characterization of the ELCH protein. 

The aim of these experiments was to establish whether an ESCRT-like pathway exists in 

Arabidopsis. Therefore an HA-tagged ELCH was investigated for interacting proteins that are 

part of the ESCRT machinery. The analysis of a putative ESCRT pathway was deliberately 

restricted to ESCRT-I as ELCH is assumed to be a component of this complex. Based on 

these studies was the approach to identify interacting proteins or targets of ELCH. A potential 

target, the vacuolar ATPase, is integrated into a plant specific variation of the ESCRT 

pathway. 
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B. Results 

 

The existence of an ESCRT-like pathway in Arabidopsis is just emerging. In this pathway the 

ELCH gene is likely an important component and was therefore characterized in more detail. 

The biochemical properties of ELCH were tested with regard to ubiquitin-binding and 

complex formation. One of the ELCH/ESCRT-I interacting proteins that were found in this 

study is VHA-a3, which is a putative target of the ESCRT pathway. VHA-a3 was therefore 

analysed in more detail in regard to its modification with ubiquitin.  

Previous studies provided evidence that compromising ELCH function leads to cytokinesis 

defects. This was confirmed by the finding of incomplete cell walls in different epidermal cell 

types. To substantiate the cytokinesis defect elch was crossed to the tubulin-folding cofactor A 

mutant (tfc-a) that has cell division defects (Kirik et al., 2002). The double mutant elch tfc-a 

shows a strong synergistic phenotype supporting the idea that ELCH is important during 

cytokinesis. Furthermore this result implies that ELCH regulates microtubules or microtubule 

dependent processes during cytokinesis.  

The understanding of cluster morphology was advanced by showing experimentally, that 

clusters are single celled structures and consist of two or more stems emerging from one cell. 

It was shown that endoreduplication is not affected in multinucleated clusters demonstrating 

that elch induced defects occur during an early stage of trichome development.  
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B 1.The elch cluster consists of a single cell with multiple stems. 

The elch mutant has an inconspicuous phenotype. General growth behaviour of wild type 

plants and elch mutant plants is indistinguishable and no penetrant phenotype is observed in 

epidermal tissues. The most obvious phenotype was found in trichome clusters that appear 

with a frequency of 1,93% on true leaves three and four (Tab. 1). In addition, these clusters 

were found to be multinucleated with up to four nuclei per cell (Figure 2 B-F). Trichome 

clusters are characteristic for the elch mutant and not found in Wassilewskija 2 wild type 

background (Ws2). 

Figure B1: Trichome clusters consist of a single cell with multiple stems emerging from a single cell. A 
small number of elch trichomes has two stems that emerge from a single cell. (A) Wild type trichome compared 
to elch trichome in B and C. (D) Unbranched stichel trichome compared to elch/stichel trichome in E. The 
double mutant between unbranched sti and elch retains the basal splitting. This indicates that branching is not 
involved in cluster formation. (F) Overview of an elch trichome cluster expressing the EYFP-peroxy construct. 
(G-I) Time lapse observation of peroxisomes indicate that a cluster consists of a single cell. All pictures are from 
whole mounted leafs. (A-B) light-microscopy. (C-I) epi-fluorescence microscopy. (C-E) DAPI-staining. 
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The Landsberg erecta (Ler) ecotype is known to form occasional trichome nests that resemble 

clusters. However these are more likely patterning defects as no multinucleated trichomes 

have been observed (Table 1). The appearance of trichome clusters raised the question of 

whether the basal splitting constitutes an early branching event or whether two stems protrude 

from one cell. To address this question genetic and cell biology approaches were chosen. The 

elch mutant was crossed with stichel, a mutant that is epistatic to most trichome mutants 

(Folkers et al., 1997). Furthermore, genetic and morphologic analysis of the elc/sti146 double 

mutant indicated that ELCH acts independently from STICHEL (Spitzer C., 2002; diploma 

thesis). Several stichel alleles exist that are less branched than wild type. Trichomes of sti146 

are unbranched, indicating that it is a strong allel (Table 1) and therefore appropriate to this 

analysis. The multinucleated clusters found in the double mutant retained the basal splitting 

that is characteristic for elch clusters. This strongly argues against the branching model 

(Figure B1 E). To rule out the possibility that a patterning defect leads to two trichomes 

directly adjacent to each other, cytoplasmic streaming within elch clusters was monitored. To 

visualize cytoplasmic streaming between two stems in a cluster elch was crossed with a line 

expressing a marker that labels peroxisomes with YFP (Mathur et al., 2002). Peroxisomes 

were observed by epi-fluorescence microscopy and were shown to pass from one stem of a 

cluster into the other. As the peroxisomal size is beyond the exclusion limit for passing 

through plasmodesmata this observation confirmed that a trichome cluster consists of a single 

cell. 

 

 

 

 

Table 1: Cluster frequency, stems per cluster, branchpoints and nuclei per cluster in wild type plants, elch 

and stichel 146. 

 cluster frequency stems/cluster branchpoints Nuclei/cluster n 

Ws2 0% 1 -- 1,62+-0,50 2 -- 2971 

Ler 0% 1 -- 1,99+-0,21 2 -- 2253 

elch (Ws2) 1,93% 2,03+-0,17 1,04+-0,69 3 1,97+-0,34 3529 

elch (Ler)
 4
 1,66% 2,13+-0,34 1,92+-0,29 3 1,87+-0,52 963 

stichel146 0%  0+-0 -- 463 

stichel146/elch 1,07% 2+-0 0,04+-0,30 3 1,85+-0,6 2060 
1   trichomes without multinucleated stems were not considered as clusters 
2   branchpoint number of wild type trichomes; 3   branchpoint number of clustered trichomes  
4   F2 cross elch to Ler 
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B 2.The elch mutant develops nuclear abnormalities in epidermal tissue 

The trichome cluster is the only morphological difference that is obvious at low 

magnification. The nuclear phenotype found in trichome clusters was dissected in more detail; 

other epidermal cell types were also included in this study. The multiple nuclei phenotype is 

not trichome specific but was observed in different epidermal cell types. Multiple nuclei in 

subepidermal cells were observed but are not accessible by whole mount observation. 

 

B 2.1.Multinucleated trichomes form clusters 

To visualise leaf trichomes and DNA simultaneously the dye 4',6-Diamidino-2-phenylindol 

(DAPI) was applied. DAPI is a nucleic acid specific dye but stained cell walls as well under 

the applied conditions. True leaves three and four (The leaves that appear after the seed 

leaves, or cotyledons) were stained and trichomes visualised by epi-fluorescence microscopy. 

2.3% of all trichomes had more than one nucleus (n=3529) compared to 0% in the wild type 

(n=2971). The multinucleated phenotype coincides with the cluster like trichome structure 

(Figure B2 B-E). Only 0,4% of all multinucleated trichomes display the wild type 

morphology (Figure B2 F; Tab. 2). Incomplete cell walls were not observed in wild type and 

elch trichomes. 

 

B 2.2.Multinucleated pavement cells display cytokinesis defects at low 

          frequency 

True leaves three and four were stained with DAPI and the DNA was visualized by epi-

fluorescence microscopy. Pavement cells were scored for multiple nuclei and incomplete cell 

walls. In elch 0,67% of all pavement cells are multinucleated (n=3448). Cell shape seems 

unaffected but 17% of all multinucleated pavement cells show incomplete cell walls (Figure 

B2 H-I), that are characteristic for mutants defective in cytokinesis or cell plate formation 

(Nacry et al., 2000). In wild type plants the number of multinucleated cells is lower with a 

frequency of 0,22%. Incomplete cell walls have not been observed in Ws2.  

 

B 2.3.Stomata in elch develop cluster and cytokinesis defects at low frequency 

Arabidopsis stomata consist of two guard cells that flank the pore and lack any distinct 

accessory cells. Patterning mechanisms ensure that stomata are not in contact with each other 

but are equally distributed among the leaf surface (Geisler et al., 1998). True leaves three and 

four were stained with DAPI and nuclei visualized by epi-fluorescence microscopy. Stomata 
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Figure B2: Nuclear phenotype of elch in comparison to wild type in different epidermal cell types. (A) Wild 

type trichome with single stem and one nucleus. (B-E) Trichomes mutant for ELCH with two or more stems and 
multiple nuclei or with a single stem but two nuclei (F). (G) Nuclear phenotype of leaf pavement cells in wild 
type showing characteristic lobbing of the cell wall. (H-I) Multinucleated pavement cell with cell wall stubs in 
elch. Cell wall stubs are characteristic for cell division mutants. (J-K) Phenotype of stomata in wild type. Next to 
normal stomata that are separated by at least one cell (J) stomata cluster are found with up to two stomata 
touching each other (K). (L-O) In elch the number of stomata cluster is raised compared to wild type. Three 
different classes of trichome cluster were defined. Class I cluster in L, class II cluster in M and class III cluster in 
N and O. Leafs were DAPI-stained, whole mounted and observed by epi-fluorescence microscopy. 

 

were scored for multiple nuclei and cytokinesis defects. More than 21000 stomata were 

analysed and the occurence of only one multinucleated guard cell was observed in elch. In 

wild type plants no multinucleated guard cells were observed (n = 25000). In this study a low 

number of stomata clusters (0,03%) was observed in wild type (Figure B2 K). The stomata 

clusters in wild type are restricted to two stomata adjacent to each other. These clusters were 

termed class I cluster while in elch two more classes were observed. These are three stomata 

adjacent to each other without cytokinesis defects (class II cluster) and stomata cluster with  

 

Table 2: Multinucleated cells are predominantly found in trichomes and pavement cells.  

 trichome cells pavement cells Stomata 

multinucleated cells in Ws2 0% 

(0) 

0,221% 

(4) 

0% 

(0) 

n 2971 1807 25691 

multinucleated cells in elch 2,30% 

(81) 

0,667% 

(23) 

0,0047% 

(1) 

n 3529 3448 21052 

 

 

Table 3: elch stomata show a phenotypic series of cytokinesis defects. Frequency of different stomata 

cluster in wild type and elch. 

  

      

 class I* 

 

          

class II 

 

       

class III 

 

 

total** 

 

N 

Ws2 

n 

0,03% 

(8) 

0 % 

(0) 

0% 

(0) 

0,03% 

(8) 

(100%) 

25691 

elch 

n 

0,27% 

(58) 

0,05% 

(10) 

0,04% 

(9) 

0,36% 

(77) 

(100%) 

21052 

*The mutant shows significantly higher frequencies than wild type ( 99%, odds ratio test). 
**The mutant shows significantly higher frequencies than wild type ( 99%, odds ratio test). 
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Figure B3 I: Class I/II/III stomata 

cluster constitute a phenotypic series. 
(A-D) Incomplete cell walls are found 
in class I and class II like stomata 
cluster. (A-C) Unusual arrangement of 
nuclei in class II like cluster. (B-C) 
Missing cell wall between two guard 
cells. (D) Class III like cluster with two 
guard cells missing a dividing cell wall. 
The third stomata of this cluster 
appears to be separated by a complete 
cell wall. All clusters shown in A-D 
were considered class III clusters due to 
obvious cytokinesis defects (Table 3). 
Leafs were DAPI-stained, whole 
mounted and observed by epi-
fluorescence microscopy. These 
pictures suggest that stomata clusters in 
general are an aftereffect of cell 
division defects. In class I and II 
clusters these defects are not visible. 
 
 
 
 
Figure B3 II: elch stomata clusters 

are similar to tmm2 clusters. 

(E-J) Comparison elch stomata (E) with 
elch stomata cluster (F) and stomata 
clusters in the two many mouth mutant2 
mutant (tmm2). (G) wild typic tmm2 
stomata. (H-J) Stomata cluster in tmm2. 
tmm2 is defective for a leucine-rich 
repeat receptor-like protein that is 
implicated in the regulation of 
orientated cell division. Clusters that 
consist of two or three stomata are 
indistinguishable from elch stomata 
cluster. Class III like clusters that have 
incomplete cell walls and abnormal 
distributions of nuclei have not been 
observed in the tmm2 mutant. Cluster 
that consist of more than three stomata 
are observed frequently in this mutant 
but are absent in elch. Leafs were 
DAPI-stained, whole mounted and 
observed by epi-fluorescence 
microscopy. 
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cytokinesis defects (class III). In the elch mutant the number of all classes is increased to 

0,36%. Class II and III have not been found in wild type (Tab.3). Comparison of different 

class III clusters suggests that they constitute a phenotypic series (Figure B3). Class III 

stomata with cytokinesis defects sometimes resemble class I or class II cluster due to the 

number of stomata involved. These clusters display unusual arrangement of nuclei like two 

nuclei per guard cell or no nucleus at all (A-D). The left stomata in figure B3A seems to have 

a complete cell wall but lacks a nucleus. The neighbouring stomata has two nuclei and one of 

them appears to belong to the left stomata. This indicates that the cell wall in this regions has 

a hole that is not visible when looking from above. The majority of trichome clusters has no 

visible cytokinesis defects. In some cases parts of the cell wall are clearly missing (Figure B3 

B-D). 

 

 

 

B 2.4. DNA content is not altered in multinucleated trichomes 

Trichome clusters frequently have two or more nuclei. An obvious question is whether DNA 

content is altered in multinucleated clusters. During wild type development, trichome cells 

proceed through four endoreduplication cycles resulting in a final DNA content of 32 C 

(Hulskamp et al., 1994). If ELCH acts at the switch from mitosis to endoreduplication, either 

of two scenarios could occur in elch mutants. Either an incomplete cell division could take 

place instead of the first endoreduplication cycle. In this case the DNA content of each of the 

two nuclei should be 16C and the total cellular DNA content would amount to 32C. 

Alternatively, the first incomplete cell division is followed by the normal trichome 

differentiation program. In this case each of the two nuclei is 32C and the total DNA content 

is doubled. When measuring the DNA content of nuclei in elch mutants individual nuclei in 

bi-nucleated elch trichomes had a DNA content of approximately 32C (Figure B4) suggesting 

that the second scenario is true. This result also indicates that the defect occurs at a very early 

stage during trichome development as the switch from mitosis to endoreduplication itself is 

considered to take place after trichome selection (Hulskamp, 2004).  

 



                                                                                                                                      Results 

 20

Figure B4: DNA content of 

single nuclei in wild type, elch 

trichomes and multinucleated 

elch clusters is not changed. 
Comparison of DNA content 
between wild type trichomes 
(top), elch trichomes (one stem. 
one nucleus) (middle) and elch 
clusters with multiple nuclei 
(bottom). Whole leafs were 
DAPI-stained, observed by epi-
fluorescence microscopy and 
photographed. The pictures were 
analysed by marking single 
nuclei and recording the pixel 
intensity (fluorescence intensity 
is considered to be linear to 
DNA-content). The intensity of 
single nuclei was compared to 
fluorescence of stomata nuclei. 
Stomata do not endoreduplicate 
and therefore have a DNA 
content of 2C.   
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

B 3.Molecular analysis of the ELCH gene 

The ELCH protein is similar to yeast Vps23p. VPS23-like genes are found in different 

animals and plants indicating a conserved function of this gene. ELCH expression level was 

determined in elch mutant plants and compared with wild type and lines overexpressing 

ELCH. An HA-tagged ELCH protein was expressed in elch mutant background and used for 

the biochemical analysis of ELCH. The construct is functional as it can rescue the cluster 

phenotype of elch.  
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B 3.1. ELCH encodes an UEV domain containing protein 

Sequence analysis of At3g12400 revealed moderate similarity to the VPS23 gene in yeast 

(VACUOLAR PROTEIN SORTING GENE 23) and TSG101 gene from mammals (TUMOR 

SUSCEPTIBILITY GENE 101). On protein level ELCH, Vps23p and TSG101 share 60% 

positives and 11% identical amino acids.  In contrast to human TSG101 the ELCH gene has 

no introns. (Figure B5 A). Although overall similarity is not high, the proteins of the three  

 

 

Figure B5: Sequence alignment of UEV domain containing proteins that are similar to ELCH.  
(A) Alignment of six UEV domain containing proteins from different species show moderate overall similarity 
but the same domain arrangement. ELCH (At3g12400) and ELCH-like (At5g13860) from Arabidopsis thaliana, 
ELCH from Oriza sativum (BAD28453), yeast Vps23 (Af004731), human TSG101 (U82130) and drosophila 
TSG101 (NM_079396). Letters in a black background indicate identity, dark grey backgrounds indicate strong 
similarity and a light grey background indicates weak similarity. (B) Schematic presentation of the protein 
domain arrangement of ELCH, TSG101 and Vps23. The characteristic absence of a cystein that is conserved in 
UBC domains is depicted below. Multiple sequence analysis was performed with CLUSTALW at the NPS 
server (Combet et al., 2000). 
 

genes share the same size and conserved domain arrangement (Figure B5 A). At the N-

terminus Vps23p, TSG101 and ELCH have an ubiquitin conjugating enzyme variant (UEV) 

domain that is missing a cystein conserved in all ubiquitin conjugating enzyme (UBC) 

domains. The UEV domain shows high similarity to UBC domains that are a common feature 

to all E2. E2 enzymes are known from the proteasom pathway and are required for the 

covalent attachment of ubiquitin to substrate proteins (Pickart and Rose, 1985).  
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Table 4: Core components of ESCRT-I,-II, -III complexes are found in Arabidopsis, yeast and mammals. 
The amino acid sequence of ESCRT components from yeast was searched in mammalian and Arabidopsis 
databases. The ten core proteins are conserved to an equal extent between yeast, mammals and Arabidopsis. For 
a detailed analysis of all known ESCRT components see (Winter and Hauser, 2006) 

 

 

 

The covalent attachment depends on a conserved cystein in the UBA domain of E2 proteins 

(Sancho et al., 1998). In the central region of the protein a coiled-coil domain is found 

according to homology comparison and the COILS program (Lupas et al., 1991). At the 

carboxy terminus a conserved domain is found that has been named steadiness box because it 

is involved in the control of the stability of TSG101 (Feng et al., 2000) and the interaction 
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with Vps28p and Vps37 in yeast (Kostelansky et al., 2006). Figure B 5 B shows the domain 

arrangement of UEV domain containing proteins and the position of the conserved cystein in 

UBC domains. A similar degree of conservation is found in other plant and animal species. 

TSG101 from the invertebrate Drosophila and ELCH from the monocotelydon Oryza (rize) 

share the same domain organisation (Figure B5 A). The Arabidopsis genome contains a close 

homolog of ELCH (72% identity) sharing the same domain structure and also lacking the 

critical cystein in the UEV domain. The main differences are two small deletions in the first 

half of the protein that do not affect the UEV- or the coiled-coil domain. 

Vps23p and TSG101 do not act independently but have been shown to form a complex 

together with Vps28p and Vps37p. ESCRT-I interacts with components of ESCRT-II and 

ESCRT-III. Like ELCH, TSG101 and Vps23p the other ESCRT components do not share 

high similarity but are approximately equally conserved. The percentage of identical amino 

acids ranges from approximately 10 - 30% (Table 4). 

 

B 3.2.The elch mutant is rescued by a CaMV 35S::ELCH-HA construct  

As a tool for biochemical analysis of ELCH a tagged version of ELCH was overexpressed in 

plants. Expression in planta was chosen because no information was available about 

posttranslational modifications of the ELCH protein. In an attempt to determine whether 

overexpression of ELCH results in additional phenotypes the open reading frame of ELCH 

was cloned under the control of the Cauliflower mosaic virus 35S promoter (CaMV35S or 

35S) that is constitutive active in most plant tissues. This construct was transformed into the 

elch mutant background. From three independent transformation events five transgenic plants 

were obtained that all showed rescue of the cluster phenotype in the T1 generation. Two of 

these lines (T2-12 and T2-14) were followed up in the T2 generation and segregated into 

mutant phenotype and wild type. Line T2-12 yielded two plants with mutant phenotype and 

16 plants that were wild type. Line T2-14 segregated into seven mutant and 23 wild type 

plants. No additional phenotypes were observed. The expected segregation ratios for a single 

T-DNA insertion are three wild type and one mutant plant in the T2 generation (see 

Discussion). Line T2-14 was used to test expression levels of 35S::ELCH in comparison to 

elch and wild type by semi-quantitive RT-PCR. Primers for cDNA synthesis and RT-PCR 

were designed to discriminate ELCH and ELCH-LIKE and at the same time to detect a 

putative truncated elch transcript (Figure B6A). The RT-PCR showed that higher levels of 

ELCH are detected in the overexpression lines compared to wild type.  
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Figure B6: Expression analysis of 

ELCH. (A) DNA structure of ELCH-

LIKE, ELCH and elch. ELCH-LIKE has 
two deletions between UEV and coiled 
coil domain. Primer CSP171 used for 
cDNA synthesis and RT-PCR anneals 
in ELCH and elch but not in ELCH-

LIKE. CSP171 was designed for the 
region upstream of the T-DNA inser-
tion thereby allowing amplification of 
elch transcript (563 bp). (B) Expression 
analysis of ELCH in comparison with 
wild type elch and CaMV35S::ELCH by 
semi-quantitive RT-PCR. As negative 
control isolated RNA was used for 
cDNA sythesis without reverse tran-
scriptase. Transcript of At3g12400 is 
abundant in the elch mutant though at 
lower levels compared to wild type. (C) 
ELCH-HA protein is expressed in elch 
mutant background and detected by 
anti-HA antibody. In contrast to the 
calculated size of 46 kDa the ELCH-Ha 
protein runs on denaturing SDS gels at 
approximately 49 kDa. This observa-
tion is consistent with experiments done 

with TSG101 in mammals. 
  

Furthermore it was possible to show that a certain level of elch RNA is abundant in the elch 

mutant (Figure B6B). To determine whether overexpression in addition to wild type levels of 

ELCH yields overexpression effects wild type Ws2 plants were transformed with the same 

construct. Two independent transformation events yielded ten transgenic plants. All of them 

were indistinguishable from the wild type in the T1 generation. Five of the ten T1 plants were 

followed up into the T2 generation. No difference from wild type was observed.  For 

biochemical analysis of ELCH a similar construct was cloned with the hemagglutinin 

sequence of influenza virus (HA-tag) fused to the C-terminus of ELCH for detection and 

purification. Therefore the open reading frame of ELCH was fused to the HA-tag and 

expressed ectopically under the CaMV::35S promoter. The HA-tag was selected because its 

short sequence likely does not interfere with protein function of ELCH. Furthermore small 

fusion proteins tend to express better than large ones. The use of the CaMV 35S promoter 

promised high protein expression in planta that is desirable for protein work. The 

functionality of the construct was tested by transformation into the elch mutant. The 

35S::ELCH-HA construct rescues the cluster phenotype in T1 plants. Expression of HA-

tagged ELCH was determined by western blotting with anti-HA antibody resulting in a clear 

signal that is absent in lanes loaded with wild type protein (Figure 6 C). The ELCH-HA 

protein runs at 49 kDa slightly higher than its calculated size of 46 kDa. This is consistent 
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with observations with the TSG101 antibody in animals (Bishop and Woodman, 2001) and 

human cell lines (see appendix E1). The line that was transformed with the CaMV 

35S::ELCH-HA construct will be referred to as ELCH-HA line or ELCH-HA plants. 

 

 

 

 

 

 

 

 

 

 

B 4. Biochemical analysis of ELCH 

In order to determine whether an ESCRT-like pathway is conserved in Arabidopsis known 

properties of yeast Vps23p and ESCRT-I were analysed. The HA tagged ELCH was used in 

several experiments to determine binding capacity, complex formation and ELCH/ESCRT-I 

interacting proteins. Ubiquitin-binding capacity was shown in vitro and in vivo. Complex 

formation was indicated by gelfiltration and verified by immunoprecipitation of ELCH-HA 

proteins. Putative targets or interacting proteins of ELCH/ESCRT-I were isolated by 

coimmunoprecipitation and identified by mass spectrometry. 

 

 

B 4.1. ELCH-HA protein binds to Ubiquitin in vitro 

The central role of VPS23/TSG101 in the ESCRT-I complex appears to be the binding of 

ubiquitinated target proteins from other upstream-acting VPS proteins. To test whether ELCH 

has the ability to bind to ubiquitin, pull-down experiments were performed with ubiquitin 

agarose (Figure B7). Protein extracts from ELCH-HA plants were incubated with ubiquitin 

agarose and protein G agarose as a negative control. ELCH-HA binds to ubiquitin but not 

protein G agarose. To exclude unspecific binding of random protein to the ubiquitin agarose 

protein extact from elch mutant plants was incubated with ubiquitin and protein G agarose. In 

both cases no signal was obtained. 
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Figure B7: ELCH-HA binds Ubiquitin 

in vitro. ELCH-HA pulldown assay with 
ubiquitin agarose and protein G agarose 
as negative control. Ubiquitin and 
protein G beads were incubated with 
protein extracts from plants expressing 
the ELCH-HA constructs and elch 
plants. The faint lower bands are HA 
antibody cross-reacting with protein G. 
The HA antibody recognizes specifically 
ELCH-HA as can be seen in the control 
experiment with protein extract from 
elch plants not carrying an HA construct. 

 

 

 

 

 

 

 

 

 

 

 

B 4.2 ELCH-HA protein binds ubiquitinated proteins in vivo 

The ELCH-HA construct was used to test whether ELCH binds ubiquitinated proteins in vivo. 

ELCH-HA was isolated by imunoprecipitation from plant extracts and the eluate was probed 

for ubiquitinated proteins. Extracts from ELCH-HA were incubated with basic beads (no 

antibody) or HA antibody beads. Western blotting shows the cross reaction band of the light 

antibody chain at 26kDa and signals from ubiquitinated proteins in particular around 100 kDa. 

No signal was detected with the control basic beads (Figure B8 A). Basic beads and HA beads 

were loaded with 3 mg of protein. The signal is specific for ubiquitin as control FLAG-tagged 

ubiquitin produces a specific band around 10 kDa (see appendix E2). To exclude unspecific 

binding to the antibody itself wild type (3,4 mg) and ELCH-HA extracts (4,9 mg) were 

incubated with HA beads only. Next to the cross reacting band from the light antibody chain a 

signal was either detected in the input or the eluate containing ELCH-HA. No signal was 

detected in the wild type control (Figure B8 B). 
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Figure B8: ELCH-HA binds ubiquitinated proteins in vivo. (A) Protein extract from ELCH-HA expressing 
plants was incubated with basic beads and HA beads. (B) To exclude unspecific binding of ubiquitinated 
proteins to the antibody itself HA beads were incubated with protein extract from wild type and ELCH-HA 
expressing plants. Equal amounts of protein from wild type and 35S::ELCH-HA separated by PAGE and stained 
with coomassie. Ubiquitinated proteins were detected by western blotting anti ubiquitin. 

 

 

B 4.3 ELCH-HA protein is part of a high molecular weight complex 

The ESCRT pathway in yeast and mammals was shown to consist of a protein network with 

distinct sub-complexes. To determine whether ELCH is part of a complex ELCH-HA extract 

was examined by gelfiltration. ELCH eluted in early fractions between 200 and 600 kDa 

indicating that ELCH is part of a high molecular weight complex (Figure B9 A). To verify 

this observation ELCH-HA was immunoprecipitated from plant extracts, separated by PAGE 

and visualised by silver staining. Bands from proteins that coprecipitated were cut out and 

analysed by MALDI-TOF mass spectrometry. Under stringent washing conditions a 49 kDa 

band was identified as ELCH (At3g12400) while two bands of approximately 24-26 kDa 

turned out to be VPS28 and VPS37 (Figure B9 B). Peptides of two isoforms of VPS28 were 

found [VPS28-1 (At4g21580) / VPS28-2 At4g05000)] as well as two isoforms of VPS37 

[VPS37-1 (At3g53120) / VPS37-2 (At2g36680)]. The result of the mass spectrometry data is 

summarised in Table 5. The isoforms of VPS28 and VPS37 respectively are highly similar 

and differ in only few amino acid residues. The amino acid sequences of At4g05000 and 

At4g21580 are 91% identical while At3g53120 and At2g36680 share 84% identical amino 

acid residues. 
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Table 5: ESCRT-I components identified with MALDI-TOF mass spectrometry. Shown is the locus 
number, the internal identification number of the mass spectrometry data and the score for each hit. A score 
greater than 60 is considered significant. Some proteins were identified more than once in independent 
immunoprecipitation experiments. For identified peptides and further details see Appendix E3. 
 

# Protein MS-ID  Score 

1 ELCH               At3g12400 4487 183 

2 ELCH               At3g12400 4493 213 

3 ELCH               At3g12400 4692 192 

4 VPS28/1           At4g21560 4557 127 

5 VPS28/1           At4g21560 4485 79 

6 VPS28/2           At4g05000 4557H a 82 

7 VPS37/1           At3g53120 4556H1 119 

8 VPS37/2           AT2g36680 4556H 2 102 

9 Ig kappa chain constant region 4486a_seq 86 

 

 

Figure B9: ELCH is part of a high molecular 

weight complex. (A) Gelfiltration assay using 
protein extract from transgenic CaMV 
35S::ELCH-HA plants. Protein size markers are 
indicated in the top in kilodaltons. The expected 
size of ELCH-HA is approximately 49 kD 
judged from SDS PAGE. The column was 
calibrated with 1. thyroglobulin (660 kDa), 2. ß-
amylase (200 kDa), 3. alcohol-dehydrogenase 
(140 kDa), 4. ovalbumin (43 kDa). (B) 
Immunoprecipitation assay of ELCH-HA. HA 
antibody beads were incubated with protein 
extract from wild type and transgenic CaMV 
35S::ELCH-HA plants. Marked bands were 
identified by mass spectrometry as components 
of ESCRT-I. VPS37 co-migrates with the light 
chain of the HA antibody. Mass spectrometry 
analysis identified peptides of the antibody and 
both isoforms of VPS37 as well as both 
isoforms of VPS28 in band three. Equal 
amounts of extract from wild type and 
35S::ELCH-HA was stained with coomassie as 
loading control. 
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B 5. ESCRT-I interacting proteins in Arabidopsis 

In order to determine unknown interactors or putative targets of ELCH/ESCRT-I 

immunoprecipitation of ELCH-HA was performed. Besides the bands that were identified as 

ESCRT-I components a number of bands were observed that seem to interact with 

ELCH/ESCRT-I (Table 6). Mass spectrometry revealed a 26 kDa protein with unknown 

function that contains an UBA domain while the others are subunits of the vacuolar ATPase. 

 

Table 6: Putative targets/associated proteins of ELCH/ESCRT-I identified with MALDI-TOF mass 

spectrometry. Shown is the locus number, the internal identification of the mass spectrometry data and the score 
for each hit. A score greater than 60 is considered significant. For DET3 (10610) a score greater than 78 is 
significant. Some proteins were identified more than once in independent immunoprecipitation assays. For 
identified peptides and further details see Appendix E4. 
 

# Protein MS-ID  Score 

10 UBA domain protein AT5g53330 4486 85 

11 UBA domain protein AT5g53330 4497H 162 

12 VHA-a3 AT4G39080 4491Re 64 

13 VHA-a3 AT4G39080 4491UBQ* 54 

14 VHA-A AT1G78900 4492 254 

15 VHA-B AT1G76030 4457 127 

16 DET3 AT1G12840 10610 101 

* mass spectrometry data was reanalysed with regard to ubiquitin modification. Mascot analysis of VHA-a3 with   
   regard to ubiquitin modification was performed by Stephan Müller (Center for Molecular Medicine Cologne) 

 

 

B 5.1.Arabidopsis ESCRT-I complex is associated with a UBA domain protein 

A band slightly larger than 26 kDa was identified as At5g53330 (Figure B10 A). At5g53330 

is listed as unknown protein in NCBI and is predicted to have a pI of 6,37 and a molecular 

weight of 24,3 kDa. It consists of 221 amino acids and is prolin rich (11.8%). In contrast to all 

ESCRT proteins it has no coiled coil domain (Lupas et al., 1991). A search for potential trans 

membrane domains of At5g53330 adduced negative results. Besides its high prolin content 

the only other known feature is a UBiquitin-Accociated (UBA) domain at its carboxy 

terminus (aa 180-216). The UBA domain was predicted by InterPro (EMBL-EBI). At5g53330 

is a single copy gene in Arabidopsis and no orthologs in other organisms have been identified 

by sequence analysis. Blast search in the mouse proteom found very weak similarity to 

UBAP1 (UBiquitin-Associated Protein1) mostly due to the UBA domain. The function of 

UBAP1 is unknown but it has been implicated in tumor suppression (Qian et al., 2001). A 
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known protein containing a functional UBA domain is RAD23. Its UBA domain has been 

shown to bind ubiquitin (Chen et al., 2001). The sequence alignment of the UBA domain of 

UBAP1, At5g53330 and Rad23 shows 11% identical, 31% strongly similar and 4,4% weakly 

similar amino acids (Figure B10 B).  

 
Figure B10: UBA domain protein 

At5g53330 coimmunoprecipitates with 

ELCH-HA. A) Immunoprecipitation 
assay of ELCH-HA. HA antibody beads 
were incubated with protein extract from 
ELCH-HA plants. The marked band was 
identified by mass spectrometry as UBA 
domain protein At5g53330. B) Alignment 
of the UBA domain of At5g53330 (aa 
180-216), UBAP1 (aa 459-498) and 
Rad23 (aa 351-395). Identical: black 
(11%); strongly similar: dark grey (31%); 
weakly similar: light grey (4,4%). 
Multiple sequence alignment was done 
with CLUSTALW at the NPS server 
(Combet et al., 2000). 

 

 

 

 

 

 

 

 

 

B 5.2. Subunits of V-ATPase coimmunoprecipitate with ESCRT-I complex 

Two additional bands were identified in the complex purification experiment next to ELCH, 

VPS28 and VPS37. Mass spectrometry analysis showed that these bands correspond to two 

subunits of the vacuolar ATPase (Figure B10 A). The vacuolar ATPase in Arabidopsis consist 

of 14 subunits ranging from seven to 110 kDa in size. The smaller subunits have been 

observed but have not been identified by mass spectrometry. The 110-120 kDa band was 

identified as VHA-a3, the largest subunit of the vacuolar ATPase. VHA-a3 is one of three 

isoforms in the Arabidopsis genome and was shown to localize to the tonoplast (Dettmer et 

al., 2006). The 69 kDa band yielded VHA-A, one of three identical subunits that are part of 

each V1 subcomplex. VHA-A has ATP binding capacity and forms together with VHA-B a 

large proportion of the cytosolic ball-like structure.  
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Figure B11: Subunits of the V-ATPase coimmunoprecipitate with ELCH-HA. Immunoprecipitation assay of 
ELCH-HA and VHA-a3-GFP. (A) Protein from wild type plants (8 mg), 35S::ELCH-HA plants (l5 mg) or 
buffer alone were incubated with HA antibody coated beads. VHA-a3 and VHA-A coimmunoprecipitated with 
ELCH-HA. (B) VHA-B and DET3 were identified in this assay. The column was loaded with 15,4 mg protein. 
(C) Extracts from 35S::ELCH-HA and VHA-a3::VHA-a3-GFP were incubated with HA/GFP antibody coated 
beads or with basic beads as control in parallel and run on the same gel. In both cases protein was extracted from 
0,9 g plant material. The eluates were subjected to PAGE and silver stained. A similar band pattern suggests that 
bands of the ELCH-HA coimmunoprecipitation that were not identified by mass spectrometry are subunits of the 
V-ATPase as well. Horizontal orientation bars indicate same size. On the right side known V-ATPase subunits 
are listed together with the VHA-H subunit that was identified by mass spectrometry (asterisk) 
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Further immunoprecipitations using higher input levels and adjusted washing conditions 

revealed a band pattern that is characteristic for the vacuolar ATPase (Arai et al., 1988). Two 

of these bands were identified as subunits VHA-B and VHA-C/DET3 (Figure B11 B) that are 

both part of the cytosolic V1 complex. VHA-A, VHA-B and DET3 were identified with 

moderate to high scores well above significance value (Table 5). The score of VHA-a3 

(4491Re) is low and just above significance level probably due to its amino acid composition 

and topology. VHA-a3 is an integral membrane protein whose amino acids 1 – 405 make up 

the main cytosolic domain while amino acids 406 – 821 hold nine transmembrane domains 

that contain fewer Trypsin cutting sites (Trypsin cuts after lysine and arginine unless the next 

amino acid is a proline).  There are 53 Trypsin sites in the first 405 amino acids (seven 

recovered peptides) with only 22 in the remaining 438 amino acids of the protein (2 recovered 

peptides). Although most theoretical subunits of the V-ATPase were observed, only four were 

identified by mass spectrometry due to low protein levels. To support the idea that these are 

indeed subunits of the V-ATPase, immunoprecipitation with VHA-a3-GFP (Dettmer et al., 

2006) was performed in parallel together with ELCH-HA and separated on the same gel. The 

band pattern of proteins that coprecipitate with VHA-a3-GFP resembles the one obtained 

from the ELCH-HA precipitation  assay (Figure 11 C) and the pattern described in literature 

(Arai et al., 1988). Exemplary the 49 kDa band was isolated and analysed by mass 

spectrometry. Peptides from VHA-H were identified indicating that other VHA subunits 

coprecipitate with VHA-a3-GFP (Figure 11C, Table 7). 

 

 
Table 7: VHA-H coimmunoprecipitates with VHA-a3:GFP. For identified peptides and further details see  

 Appendix E5. 
 

# Protein MS-ID  Score 

17 VHA-H 10632 149 
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B 5.3. VHA-a3-GFP of the V0 subcomplex is ubiquitinated 

The VHA-a3 subunit of the V-ATPase coprecipitates with the ESCRT-I complex. As VHA-

a3 is a trans-membrane protein with cytosolic domains it represents a putative target of the 

MVB pathway. VHA-a3 was therefore investigated for ubiquitin modification. Analysis by 

mass spectrometry revealed two amino terminal peptides whose masses differ in a way 

characteristic for ubiquitin modification. Trypsin digestion prior to MALDI-TOF mass 

spectrometry of ubiquitinated proteins leaves two glycins of the Ubiquitin corboxy-terminus 

bound to the target protein. This leads to a characteristic mass difference of 114 between the 

observed and theoretical mass value which is used to identify ubiquitinated peptides. The 

mass spectrometry data indicates that lysin 56 (K56) and lysin 68 (K68) of VHA-a3 are 

putative acceptor sites for ubiquitination (Tab. 8). Both lysins are located in the cytosolic 

amino terminal region of VHA-a3 (Kluge et al., 2004; Nishi and Forgac, 2002).  

 

 

Table 8: Mass spectrometry analysis indicates that VHA-a3 is ubiquitinated. Theoretical peptide masses and 
observed masses of trypsin digested VHA-a3 after MALDI-TOF mass spectrometry. The mass difference of 114 
suggest that K56 and K68 are ubiquitinated.  
 

Position Sequence calculated mass* 

MH+ 

observed mass 

m/z 

mass difference source** 

51 – 61 DLNSEKSPFQR 1320.6542 1320.57 0.08 4491UBQ 

51 – 61 DLNSEKSPFQR 1320.6542 1434.72 114.0658 4491UBQ 

57 – 68 SPFQRTYAAQIK 1409.7535 1523.87 114.1165 4491UBQ 

62 – 69 TYAAQIKR 950.5418 1064.56 114.0182 4491UBQ 

*   mass calculated with Expasy tool PeptideMass  (Wilkins et al., 1997) 
** see appendix E3 

 

 

To confirm that VHA-a3 is ubiquitinated, a GFP tagged version of VHA-a3 (Dettmer et al., 

2006) was immunoprecipitated with GFP antibody beads and probed with ubiquitin and GFP 

antibodies. To monitor Ubiquitin- and GFP signals simultaneously two-color western analysis 

was performed using near infrared imaging (Odyssey®). The secondary antibodies were 

coupled to dyes that emit light at 700 nm and 800 nm respectively thereby allowing the 

discrimination of two signals on the same blot. Proteins marked with Ubiquitin antibodies and 

coomassie stained proteins were detected in the 700 nm channel giving a red signal (Figure  

 



                                                                                                                                      Results 

 34

 

Figure B12: VHA-a3 is 

modified with Ubiquitin. 
VHA-a3-GFP was immuno-
precipitated and probed with 
antibodies against Ubiquitin 
and GFP. Two-colour 
Western analysis of VHA-
a3-GFP detected ubiquitin at 
700 nm (red, A) and GFP at 
800 nm (green, B). The 
merged image shows VHA-
a3-GFP at 130 kDa in yellow 
(C) indicating that VHA-a3 
is ubiquitinated. The size and 
the fact that only one distinct 
band is visible indicates that 
VHA-a3 is monoubiquiti-
nated. In this assay basic 
beads and GFP beads were 
incubated with 8,2 mg pro-
tein each. 

 

 

 

B12 A) while GFP marked protein was detected at 800 nm giving a green signal (Figure B12 

B). Merging of both pictures revealed a yellow band at 130 kDa showing that VHA-a3GFP is 

ubiquitinated (Figure B12 C). The calculated mass of VHA-a3-GFP is approximately 

120kDa. Modification with a single Ubiquitin would lead to an approximate weight of 130 

kDA which is observed in silver stained gels (Figure B11 C) and on Western blots (Figure 

B12 B - C). Next to the 130 kDa band a strong signal is detected below 26 kDa which 

represents the cross-reaction with the light chain of the antibody used for 

immunoprecipitation.  

 

 

 

B 6.The ELCH pathway and microtubule dependent processes are closely linked 

The cytokinesis phenotype of elch is reminiscent to the phenotype of the tfc-a mutant that has 

cell division defects (Kirik et al., 2002). tfc-a mutants have smaller under-branched trichomes 

that form multinucleated clusters (Table 8). Other cell types are multinucleated as well (Kirik 

et al., 2002; Steinborn et al., 2002b). To examine whether elch is involved in microtubule 

dependent processes the double mutant elc/tfc-a was made and the cellular morphology 

compared to the single mutants. Growth behavior of wild type and elch was compared under 
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different concentrations of microtubule modulating drugs Furthermore the microtubule 

arrangement of trichomes and dividing pavement cells was analysed for obvious changes.  

 

B 6.1. Genetic interaction of ELCH and Tubulin-Folding Cofactor A 

Tubulin Folding Cofactor A (TFC-A) or KIESEL (KIS) belongs to the PILZ group genes 

(Steinborn et al., 2002b). Like the other members of this group KIS/TFC-A encodes a 

chaperone important for supporting the correct formation of assembly competent /  tubulin 

heterodimers (Dobrzynski et al., 1996; Lewis et al., 1996; Martin et al., 2000; Tian et al., 

1996). Strong kis mutants have multiple nuclei and are embryo lethal (Steinborn et al., 

2002a). For the genetic analysis the weak kis-T1 mutant was used that displays a mild growth 

defect, slightly reduced cell division frequency, reduced trichome branching and cells with 

multiple nuclei (Kirik et al., 2002). The double mutant shows a synergistic phenotype: Plants 

are smaller than the single mutants, leaf edges are bend downwards and the leaf surface is 

disturbed (Figure B13 A-C). The frequency of trichomes with more stems is drastically 

increased (16,29%; n=743) as compared to elch (1,93%; n=3529) and tfc-a (0,81%; n=1356) 

(Table 9). For observation on the cellular level whole leafs were stained with propidium 

iodide (PI) embedded in agarose, sectioned and visualized by confocal laser scanning 

microscopy (CLSM). Epidermal pavement cells are reduced in size (Figure B13 G-H), the 

leaf architecture is grossly disturbed (Figure B13 J-L) and a large number of cells contain 

multiple nuclei. Some cells display abnormal nuclear morphology such as nuclear bridges that 

connect two or more nuclei. (Figure B13 M-O). 

 

 

Table 9: The cluster frequency is raised in the tfc-a/elc double mutant.   

 cluster frequency stems/cluster Branchpoints Nuclei/cluster N 

Ws2 0% 1 -- 1,62+-0,50 2 -- 2971 

elch (Ws2) 1,93% 2,03+-0,17 1,04+-0,69 3 1,97+-0,34 3529 

tfc-a (Ws2) 0,81% 2,09+-0,3 0+-0 2,27+-0,65 1356 

tfc-a/elch 16,29% 2,13+-0,43 0,32+-0,52 3 2,43+-0,59 743 
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Figure B13: Genetic analysis of elch and tfc-a mutant. Comparision of tfc-a (A), elc (B) and tfc-a/elc (C) 
mutant rosette leaves. Comparision of tfc-a (D), elc (E) and tfc-a/elc (F) mutant trichomes. Note that the cluster 
frequency is strongly enhanced in the double mutant. Comparision of tfc-a (G), elc (H) and tfc-a/elc (I) mutant 
epidermal pavement cells. Cell size is reduced in the double mutant. Comparision of tfc-a (J), elc (K) and tfc-

a/elc (L) sections of rosette leaves. The integrity of the leaf is strongly disturbed in the double mutant. Higher 
magnification of propidium iodide stained leaf sections of tfc-a/elc double mutant (M-O). Multinucleated cells 
are frequently observed in the tfc-a/elc double mutants. Nuclear anomalies like nuclear bridges (M) and high 
numbers of nuclei per cell (N) are found frequently. In very rare cases multinucleated stomata with incomplete 
cell walls were observed (O). (A-F) young plants were observed under a stereomicroscope. (G-O) Whole leafs 

were stained with propidium iodide embedded in agarose, sectioned and visualized by CLSM. 
 

 

 

B 6.2. The elch mutant is hypersensitive to taxol 

To support the genetic evidence that microtubules influence the ESCRT pathway drug studies 

were undertaken using agents that influence microtubules in various ways: Paclitaxcel (Taxol) 

stabilizes microtubules leading to grave disturbance especially in dividing cells (Jordan et al., 

1998; Schiff et al., 1979). While wild type plants are still able to grow on 3 M paclitaxel 

growth of the elch mutant is completely abolished (Figure B14). This experiment was 

repeated three times with the first two showing this effect while the third experiment had no 

effect at all. It is assumed that the paclitaxel used had decayed and this experiment has to be  

 

Figure B14: The elch mutant is 

hypersensitive to paclitaxcel (Taxol). 
elch and wild type plants were grown 
together on MS plates containing 0, 1, 
2 and 3 M paclitaxel. Growth 
differences are observed at 2 and 3 M 
paclitaxel. The elch mutant does not 
survive 3 M of this drug. 

 

 

 

 

 
 
 
 
 
 
 

 

confirmed. The second drug used is Oryzalin that in contrast to Paclitaxcel destabilizes 

microtubules by slowing down microtubule assembly (Hugdahl and Morejohn, 1993). Growth 
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on 0,2-0,5 M oryzalin had no different effect on elch and wild type. At 0,5 M growth of 

elch and wild type was strongly retarded and both died after three weeks (data not shown). 

The third drug that was used has a similar effect like Oryzalin. Nocodazole is known as 

antimitotic agent that disrupts microtubules by binding to -tubulin and preventing formation 

of some of the disulfide linkages (Luduena and Roach, 1991). Wild type and elch was grown 

on 0, 10, 100 and 1000 M nocodazole. No difference was observed between wild type and 

elch mutant but both lines showed slight growth retardations at 1000 M of the drug (data not 

shown). 

 
 

 

B 6.3.  Microtubule organization of elch trichomes and dividing cells is not  

 visibly altered  

 
The genetic studies and the drug experiment suggest that microtubules are more directly 

involved in a putative ESCRT-like pathway in Arabidopsis. To examine microtubule 

organization a MAP4-GFP construct that decorates microtubules was introduced into elch 

mutant background using a previously established transgenic line (Mathur and Chua, 2000). 

The elch/MAP4-GFP line was compared to wild type plants transformed with Map4-GFP by 

confocal laser scanning microscopy (CLSM). As defects are most prominent in trichomes, 

cluster and morphological normal elch trichomes were compared with wild type trichomes. 

Multinucleated cluster (Figure B15 B-D) and elch trichomes with normal morphology (E-F) 

show a similar microtubule organization like wild type (A). Both, fine and thick microtubule 

strands were observed in wild type and elch. The phenotype of pavement cells (Figure B15 H-

I) and stomata (Figure B15 L-O) shows that elch is a cytokinesis mutant. Trichomes on the 

other hand do not divide anymore and very early stages that might still undergo mitotic 

divisions are difficult to identify. Therefore pavement cells were examined during early leaf 

development when cell division is frequently observed (Figure B15 G-O). It was possible to 

see new cell walls and cells in various division stages. Newly formed cell walls are decorated 

more heavily by microtubules compared to established cell walls (J). Dividing cells with two 

nuclei and spindle were observed in wild type (G-I) and elch mutant (K). Leafs were 

counterstained with DAPI and mitotic figures like condensed chromosomes were observed 

(L-O). Neither in trichomes nor in dividing pavement cells an obvious difference could be 

determined. 
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Figure B15: Microtubule arrangement appears normal in the elch mutant. Microtubules were visualized by 
crossing a Map4-GFP line to elch and observed in mature trichomes and early leaf epidermal cells. Compared to 
wild type (A & G-J) no obvious effects was found in elch trichomes (B-F) and young pavement cells of elch (K-
O). B-D) Base of an elch cluster with nuclear pockets. E-F) Base of an elch trichome with wild type morphology. 
G-L) Wild type and elch plants expressing MAP4-GFP were counterstained with DAPI. G-I) Mitotic wild type 
cell with two nuclei and spindle. Young cell walls are recognized because they are more heavily associated with 
microtubules compared to older cell walls (J, see arrows).  K-L) Mitotic pavement cells of the elch mutant. K) 
Mitotic cell with two nuclei and spindle. L) Cell, presumably with forming spindle. M-O) Time lapse series of a 
mitotic cell (arrow). Chromosoms are condensed and arrange at the future plane of division. No abnormalities 
were observed in mitotic cells.  
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C. Discussion 

 

Genetic analysis of the elch mutant has shown previously that ELCH acts independently from 

known trichome developmental processes. Furthermore the nuclear phenotype of elch 

trichomes was described in my diploma thesis though it was not possible to provide 

experimental evidence for a defect in cytokinesis. With the cloning of the Arabidopsis ELCH 

gene the exploration of the ESCRT pathway in plants is just in the early stages (Spitzer et al., 

2006). In the available study experimental evidence is provided that characteristic features of 

yeast and animal ESCRT-I complex are conserved in Arabidopsis. In addition, a putative and 

so far unknown link between ESCRT-I and the vacuolar ATPase, another component of the 

secretory system is shown in this study.  

 

C 1. A defect in the ELCH gene disrupts cytokinesis 

The Arabidopsis elch mutant harbours a T-DNA insertion in the gene At3g12400 that is 

similar to the VACUOLAR PROTEIN SORTING 23 gene (VPS23). Although the insertion site 

was characterised on the molecular level it is not clear how severe the effect of the mutation 

is. Three lines of evidence indicate that elch is a hypomorphic allel. First, even the most 

obvious phenotype that is found in leaf hairs or trichomes are subtle clusters that appear at a 

frequency of 2%. The remaining trichomes are indistinguishable from wild type as is the 

overall growth of the mutant. Second, the analysis of the mutation revealed that the T-DNA is 

inserted 786 bp after the start codon of ELCH (Spitzer et al., 2006). As the total sequence of 

ELCH has a length of 1194 bp it is conceivable that two thirds of the wild type gene, 

including the promoter is intact in elch and might be transcribed. Third, comparative RT-PCR 

between wild type and mutant indicated that a partial ELCH transcript is expressed in elch 

although the amount is strongly reduced (figure B6 B). The strategy chosen allowed the 

discrimination between ELCH and ELCH-LIKE and simultaneously the detection of elch 

mutant transcript. It is important to notice that a truncated transcript is most likely unstable as 

is also indicated by the lower expression level. The phenotype and the abundance of a 

transcript that is missing only the last third of the coding sequence make it conceivable that a 

truncated protein is synthesised. This protein might retain partial functions. Alternatively it is 

possible that ELCH and ELCH-LIKE act redundantly and the truncated elch protein interferes 

with ELCH-LIKE function. A way to address this question could be the overexpression of a 

truncated version of ELCH. Ideally this construct should have exactly the same 3’ sequence 

that was left by the T-DNA insertion in elch.  
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The elch mutant displays a subtle phenotype in trichomes. The cluster morphology and the 

nuclear phenotype of trichomes prompted the analysis of other epidermal cell types in the elch 

mutant. Whereas the morphological phenotype is most obvious in trichomes, the analysis of 

pavement cells and stomata revealed more information concerning a disruption of cytokinesis. 

Scoring of multinucleated pavement cells showed that a fraction of the examined cells has cell 

wall stubs that are characteristic for cytokinesis mutants (Nacry et al., 2000). Cell wall stubs 

are found in multinucleated cells only with a frequency of 17 %. If multinucleated cells are a 

consequence of incomplete cell divisions a higher frequency of cells with cell wall stubs 

would be expected. However incomplete cell walls are not necessarily visible. Defects during 

cell division lead to holes in the cell wall between two cells. The cell wall margins of an 

opening could obscure observation of the cell wall stubs. This holds especially true if cell 

division is aborted at a very late stage, which would cause only a small hole. This would 

result in two cytoplasmic connected pavement cells with overall wild type morphology. 

Another cell type analysed for cytokinesis defects were stomata. Their analysis resulted in an 

additional phenotype that has not been observed before. It was found that 0,36 % of all 

stomata in the elch mutant are not separated from each other by pavement cells (Figure B 2; 

table 3). These stomata clusters resemble a phenotype that has been observed in the too many 

mouth (tmm) mutant (Geisler et al., 2000; Geisler et al., 1998; Nadeau and Sack, 2002). In 

contrast to the tmm mutant a phenotypic series was observed in elch stomata (Figure B 3). 

This series ranges from two and three stomata adjacent to each other (class I and class II 

clusters) to stomata with incomplete cell walls (class III cluster). Class I and class II clusters 

are indistinguishable between both mutants (Figure B 2 L-M and B 3 H-I). Cytokinesis 

defects like those found in class III clusters have not been reported for tmm. On the other hand 

tmm tends to form clusters with more than three stomata involved (Figure B3 J), which is not 

the case in the elch mutant. The crucial event that causes cluster phenotypes in elch seems to 

be the failure to close the cell wall gap between dividing cells during early stomata 

development. This is apparent by the phenotypic series in the elch mutant that highlights a 

relationship between stomata clusters and cell division defects in stomata. This cell division 

defect model for cluster formation in trichomes and stomata is summarised in Figure C 1. A 

cell that has adopted a certain fate produces determinants that initiate cell specific 

morphogenesis. These determinants can spread through the cytoplasmic connection between 

two cells and will cause both cells to adopt the same fate. This model has one weak point. So 

far it was not possible to proof the existence of incomplete cell walls in trichomes. It is 

assumed that the applied observation method actually prohibits the view to the base of the  
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Figure C1: Cell division defect model for trichome and stomata cluster development in the elch mutant. 
(A) According to the mutual inhibition model a trichome precurser cell promotes its own trichome fate and 
inhibits that of the neighbour cells (Hulskamp, 2004). If the cytoplasm of two cells is connected by cell wall 
gaps the positive regulators are able to promote the fate of both cells while neighbouring cells are inhibited. It 
has to be noted that incomplete cell walls have not been observed in clusters so far. (B) Stomata are separated 
from each other by cell lineage and orientated cell division. Stomata cluster develop after incomplete cell 
division allows the flow of determinants from the stomata cell to its sister cell.  

 

trichome cell where incomplete cell walls most likely are situated. When observing trichomes 

the stems are bend onto the leaf surface by the coverslip. In this position the trichome base is 
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obscured by the accessory cells that support the trichome stem. A different technique like 

sectioning of embedded clusters or optical sections by CLSM could be used to make the 

trichome base accessible.Also the presented model explains the different phenotypes observed 

in trichomes and especially in stomata another possibility exists. In this model TMM is a 

target of the ESCRT pathway. The TOO MANY MOUTH gene encodes a leucine-rich repeat 

receptor-like protein that localises to the plasma membrane. TMM has been implicated in 

stomata development where it regulates stomata patterning. The underlying mechanism 

depends on orientated cell division that places the developing stomata away from the 

meristemoid mother cell (MMC). The MMC is able to produce further stomata by unequal 

cell division (Geisler et al., 2000). The potential function of TMM as a receptor and the 

similar phenotype found in elch mutant plants makes TMM a potential target for an ESCRT-

like pathway. In this case, the stomata cluster phenotype observed in elch could be a 

consequence of mislocalisation or impaired downregulation of the TMM receptor. To support 

this model the cluster phenotype of tmm should be studied in more detail in case cytokinesis 

defects have been missed. A genetic dissection by double mutant analysis is necessary to 

determine how both pathways are connected. As tmm mutants are induced mostly in 

backgrounds that are devoid of trichomes it will be interesting to study leaf hairs in the double 

mutant.  Biochemical analysis of TMM in regard to ubiquitin modification could support the 

role of TMM as a target of the ESCRT pathway.  

If there is a link between trichome clusters, stomata clusters and cell division defects there is 

still the problem why trichomes seem to be affected more often compared to other cell types. 

Both models do not address this question, especially because no data exists for trichomes in 

the tmm mutant background. The higher cluster frequency observed in trichomes could be a 

function of cell size and DNA content. Both decrease from trichomes over pavement cells to 

stomata. Higher DNA content is an indication for faster growth, which in turn might be the 

reason for more cytokinesis defects in endoreduplicated cells. However a prerequisite is that a 

still dividing trichome precurser cell already growth faster than pavement cells and stomata. 

Otherwise the same frequency of cluster formation would be expected. However it will be 

important to determine whether incomplete cell walls exist in elch trichome clusters at all. 

Furthermore the tmm mutation should be induced in lines that have trichomes and can be 

examined for cluster formation. 
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C 2. The ELCH pathway and microtubule dependent processes are linked 

Two different lines of experiments indicate that ELCH or ESCRT dependent processes 

require an intact microtubule system: The cytokinesis defect of elch is strongly enhanced in 

elc/tfc-a double mutants and elch is hypersensitive to microtubule stabilization. 

These results seem to oppose each other. The impairment of TUBULIN-FOLDING 

COFACTOR A (TFC-A) suggests that less assembly competent /  tubulin heterodimers are 

abundant in the mutant (Dobrzynski et al., 1996; Lewis et al., 1996; Martin et al., 2000; Tian 

et al., 1996). Less /  tubulin heterodimers should therefore lead to microtubule 

destabilisation or at least a slow down in microtubule dynamics. The observation that the 

double mutant is much more affected than the single mutants implicates that elch is sensitive 

to microtubule destabilization. This is difficult to understand as the effect of paclitaxcel 

(taxol) demonstrates that elch is hypersensitive to microtubule stabilisation. A possible 

explanation is that the right balance of microtubule polymerisation/depolymerisation is 

crucial. Both experiments show that the elch mutant is sensitive to changes of the proper 

microtubule balance. 

Observation of microtubules in trichomes and dividing pavement cells did not reveal any 

abnormalities of the microtubule cytoskeleton. Defects that occurred during cell division are 

probably not visible anymore in mature trichomes as the microtubule system changes 

considerately during trichome development (Mathur and Chua, 2000). Dividing cells in wild 

type and elch failed to show any difference as well. Possibly the defects are hardly visible at 

early stages but the effects become more obvious with progressing cell growth in affected 

cells. 

The synergistic phenotype observed in the elc/tfc double mutant as well as the observation 

that elch is hypersensitive to microtubule stabilisation raises the question, which processes are 

involved that enhance the phenotype to this extent. Obviously the secretory system depends 

on the cytoskeleton to move vesicles throughout the cytosol to their destination. So far 

experimental data is very limited in literature and only recently more evidence has become 

available that endosomes travel bidirectional along microtubules (Lenz et al., 2006). However 

it is known that both, the secretory system as well as microtubules have a dominant role 

during plant cytokinesis. Close interaction between both, for instance by microtubule 

dependent vesicle transport could be an explanation for the synergistic phenotype of the 

elch/tfc-a double mutant or the hypersensitivity of elch towards taxol.  
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An obvious experiment will be the visualisation of microtubules in elch, tfc-a and the double 

mutant elch/tfc-a. The higher frequency of cluster formation and abberant cell morphology 

compared to the single mutants should facilitate the determination of differences. 

 

C 3. The ESCRT-I complex in Arabidopsis 

A first indication that the ESCRT machinery exists in Arabidopsis was the discovery that the 

VPS genes that are known from yeast and animals are found in the Arabidopsis genome as 

well (Table B4). In a separate more detailed study it was shown that this is true for many 

eukaryotic organisms (Winter and Hauser, 2006). In independent experiments it was 

established that the Arabidopsis ELCH protein binds ubiquitin and is part of a high molecular 

weight complex (Spitzer et al., 2006).  

The experiments are based on an HA-tagged ELCH that was overexpressed in planta. 

Preparatory experiments showed that overexpression of ELCH in elch mutant background is 

able to rescue the cluster phenotype in the T1 generation. One of the analysed lines (line T2-

14) showed the expected three to one segregation ratio in the T2 generation. Out of 30 T2 

plants 23 were rescued in respect to the cluster phenotype (expected were 22.5 plants) with 

seven showing clusters. Analysis of line T2-12 resulted in an odd segregation ratio of 14 

rescued plants out of 16 in the T2 generation. These ratios were not analysed any further but a 

possible explanation could be that multiple T-DNA insertions occurred. In neither case any 

additional phenotypes were observed indicating that overexpression of ELCH in elch mutant 

background results in a functional substitution for native ELCH protein. Therefore an HA-

tagged version of the 35S::ELCH construct was introduced in elch mutant background and 

analysed for rescue and expression. The complementation in the T1 generation and western 

analysis showed that the fusion protein is functional and expressed. The line with the highest 

ELCH-HA expression was used for further biochemical assays.  

Gel filtration indicated that ELCH-HA is incorporated into a complex with a molecular 

weight between 200 and 600 kDa. This data was supported by immunoprecipitation of the 

ELCH-HA fusion protein that revealed interactions with the Arabidopsis orthologs of Vps28p 

and Vps37p (Spitzer et al., 2006). The Arabidopsis genome contains at least two copies of 

VPS28 and VPS37. Peptides that are specific for both isoforms of VPS28 and VPS37 

respectively have been identified by mass spectrometry showing that both are part of an 

Arabidopsis ESCRT-I-like complex (Table 5). Their high homology makes it difficult to 

judge whether they act redundantly or have divergent functions. It is also possible that the 

isoforms of VPS28 and VPS37 are expressed tissue specific as lysates from whole plants were 
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used for these experiments. Genetic analysis of vps28 and vps37 mutants should help to 

clarify this question. Gelfiltration suggests that plant ESCRT-I has a molecular weight of 

approximately 350 kDa. This result corresponds to observations in yeast (Katzmann et al., 

2001). Nevertheless 350 kDa appear to be too much for a complex of ELCH, VPS28 and 

VPS37. Although this is a rough estimation, the sum of the molecular weights of ELCH, 

VPS28 and VPS37 amounts to less than 100 kDa. A solution could be that one or more 

subunits are represented more than once in ESCRT-I complex (Katzmann et al., 2001).  In 

contrast to this model the recently resolved crystal structure of the core ESCRT-I in yeast 

suggests that Vps23p, Vps28p and Vps37p are abundant in a 1:1:1 stoechiometry 

(Kostelansky et al., 2006). Moreover, no signs were detected for di- or oligomerization of the 

single components. However, Hurley and co-workers discuss the possibility that 

Vps23p/Vps28p/Vps37p complexes might dimerize (Kostelansky et al., 2006). Conversely 

another group reported that the amino-terminal part of Vps28p (residues 1-113) contains a 

dimerization domain and is able to form Vps28p dimers. Their data is supported by 

gelfiltration of purified Vps28p and crosslinking experiments (Pineda-Molina et al., 2006). 

Extensive posttranslational modifications of ELCH or TSG101 does not contribute to the 

considerable size discrepancy as ELCH separated by SDS-PAGE runs at 49 kDa (see Figure 

B6 C; Appendix E1). 

TSG101 has been reported to bind Ubiquitin directly (Bishop et al., 2002).  

Furthermore ubiquitination has been shown to serve as a signal for ESCRT dependent protein 

sorting in yeast (Katzmann et al., 2001). ELCH shares the ubiquitin enzyme variant domain 

with Vps23p and TSG101 and binds ubiquitin in vitro and in vivo (Figure B7-B8). In 

summary these data provide for the first time experimental evidence that the ESCRT-I 

machinery is conserved in Arabidopsis.  

 

C 4. The ESCRT pathway in plants  

Two main functions of the ESCRT pathway are known from yeast and animals: sorting of 

biosynthetic cargo to the vacuolar lumen and the downregulation of plasma membrane 

receptors. Based on the similarity of the involved components in yeast, animals and plants 

both pathways are most likely needed in Arabidopsis as well. The plant vacuole shares 

characteristics with the yeast vacuole and the lysosome in animals (Vitale and Galili, 2001; 

Vitale and Raikhel, 1999). In general the plant vacuole and the animal lysosome are 

considered to be their equivalent. Proteases are resident in the plant vacuole (Bethke et al., 

1996) and a pathways depending on BP-80/AtELP has been described that sorts proteins into 
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the vacuolar lumen (Ahmed et al., 1997; Paris and Neuhaus, 2002). These studies however are 

by far less advanced than in yeast. In yeast and animals, plasma membrane receptors play an 

important role in cell communication and some of them such as EPIDERMAL GROWTH 

FAKTOR RECEPTOR (EGFR) or the -factor receptor Ste2p are targets of the ESCRT 

pathway (Katzmann et al., 2001; Lu et al., 2003). Probably these are no exceptions but 

represent a large number of plasma membrane proteins that are sorted by the ESCRT pathway 

(Scott Emr, personal communication). Plasma membrane receptors are abundant in plants 

such as the leucin-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1 

(BRI1). BRI1 has been shown to undergo endocytosis (Russinova et al., 2004) but the 

regulation of this process is still under investigation. 

Both, the biosynthetic and receptor downregulation pathways converge at the multi-vesicular 

body. Here the decision is converted whether cargo is redirected to the plasma membrane, the 

vacuolar membrane or the vacuolar lumen (Hicke, 2001). All known genes of the ESCRT 

machinery reported in yeast are present in Arabidopsis but nevertheless it remains difficult to 

predict whether function is conserved as well. ESCRT-II and ESCRT-III-like complexes still 

have to be identified in Arabidopsis. More importantly, it was so far not possible to determine 

proteins that are sorted by an ESCRT-like pathway. The identification of ESCRT targets 

would allow to track sorting events or missorting in mutants. In the elch mutant the 

identification of targets is complicated by its phenotype that is difficult to access by 

conventional screens. A suppressor screen is impracticable as the mutant itself is hard to 

recognize. An enhancer screen is difficult assuming that ELCH is involved in MVB sorting 

and vacuolar degradation like Vps23p and TSG101. If a target protein is knocked out, for 

example a receptor that is not efficiently downregulated in the elch mutant, this knock out 

would probably not enhance the elch phenotype. Gain of function mutations that result in 

higher expression of the receptor are more likely to enhance the phenotype. Gain of function 

mutations on the other hand are seldom although not impossible to achieve. Another well 

established method for the identification of interacting proteins is the yeast two-hybrid screen. 

Yeast two-hybrid screening might produce candidates that interact with ELCH itself and are 

part of the sorting machinery. An ESCRT target on the other hand is recognized by its 

monoubiquitin modification. The correct recognition and ubiquitination of a plant target in 

yeast is rather unlikely. Therefore the yeast two-hybrid system is not ideal for this purpose. 

Another method to identify interacting proteins is the biochemical isolation of the protein of 

interest. Proteins that interact with the protein of interest can be copurified and identified by 

mass spectrometry. For this method stability and amount of the involved proteins is crucial. 
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Furthermore binding strength between an ELCH/ESCRT-I complex and its target needs to be 

sufficient for purification.   

Although no target has been analysed so far the abundance of the ESCRT machinery, the 

ESCRT-I complex and the assumed requirement for multi-vesicular body sorting in 

Arabidopsis provides well founded evidence that an ESCRT-like pathway exists in plants.  

 

C 5. Relevance of the putative targets and ELCH/ESCRT-I interacting proteins 

The identification of ELCH/ESCRT-I targets was attempted using biochemical methods. The 

coimmunoprecipitation experiments resulted in the identification of expected ESCRT-I 

components (VPS28 and VPS37) as well as in a number of proteins that are new to the 

ESCRT pathway in yeast and animals. Two groups of new interactors were isolated: One is 

the V-ATPase with several components of this protein complex while the other consists of the 

UBiquitin Associated domain containing protein At5g53330. The UBA domain is the only 

feature that indicates putative functions of this otherwise unknown protein. The result that not 

only unexpected proteins but also ESCRT-I components were precipitated enhances the 

credibility of the V-ATPase components and At5g53330 as targets or ELCH/ESCRT-I 

interacting proteins. The UBA domain of At5g53330 indicates that this protein could be 

involved in a mono-ubiquitin dependent ESCRT pathway. It is a single copy gene in 

Arabidopsis and has no homologs in other organisms. The analysis of a plant specific protein 

could reveal new ESCRT functions or a plant specific component of the ESCRT machinery. 

The V-ATPase on the other hand has been studied in great detail, showing that it is involved 

in different functions within the secretory system in all eucaryotes (Kane, 1999; Nishi and 

Forgac, 2002; Schumacher, 2006). Although the V-ATPase has been implicated in a variety 

of pathways the ESCRT machinery is not among them. Extensive genetic studies that were 

done in yeast resulted in the isolation and identification of more than 30 complementation 

groups (Robinson et al., 1988) and most of these genes are by now identified and were 

themselves subject to genetic studies. The classE genes, that comprise the members of the 

ESCRT pathway total at least 13 genes (Raymond et al., 1992). The V-ATPase comprises 14 

subunits but this number varies depending on the studied organism. It seems unlikely that 

there is an interaction between two pathways with nearly 30 genes altogether that has not 

been discovered. This holds especially true in an organism that is easily accessible to genetic 

manipulation such as yeast. An intriguing possibility is of course that the V-ATPase is only a 

target of the ESCRT pathway in plants and is regulated differently in yeast and animals. 

Although this is highly speculative it has to be remembered that ESCRT and V-ATPase are 
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involved in functions of an organelle that evolved additional functions in plants. The plant 

vacuole is considered equivalent to the yeast vacuole and the aninmal lysosome. Nevertheless 

obvious additional functions like turgor maintenance or waste disposal might have required 

the recruitment of established components of the secretory system.  

Nevertheless besides the functional analysis of these proteins independent evidence should be 

provided to support the biochemical interaction. A genetic analysis of the ESCRT pathway on 

one side and the V-ATPase pathway and At5g53330 on the other is necessary to determine 

the biological relevance of the interaction. 

 

C 6. Vacuolar ATPase and ESCRT functions overlap to considerable extent  

The vacuolar ATPase has been implicated in a variety of functions including sorting of 

biosynthetic cargo and receptor mediated endocytosis (Nishi and Forgac, 2002). The ESCRT 

pathway is involved in both functions by internalizing cargo proteins from endosomes into 

luminal vesicles. Acidification of these vesicles is needed to release ligands or process 

biosynthetic cargo (Geuze et al., 1983; Morano and Klionsky, 1994). The V-ATPase acidifies 

various organelles by translocating protons from the cytosol into the lumen of these endosoms 

(Nishi and Forgac, 2002). Sorting of biosynthetic cargo has been shown to be compromised in 

V-ATPase mutants in yeast (Banta et al., 1988; Morano and Klionsky, 1994). Careful control 

of pH at various stages of protein transport seems to be necessary for successful protein 

sorting. Nevertheless the reason why pH is important for sorting is still illusive. V-ATPase- 

and ESCRT complexes are clearly involved in similar processes but so far no direct 

interaction has been shown. 

The physical interaction of ELCH with subunits of the V-ATPase was shown in co-

immunoprecipitation assays. Next to VPS28 and VPS37 further bands were observed and four 

were identified as subunits of the V-ATPase by mass spectrometry. As not all subunits were 

verified by mass spectrometry the V-ATPase was isolated by immunoprecipitation of 

VHAa3-GFP and the band pattern compared to immunoprecipitation of ELCH-HA. The 

similar band pattern suggests that several weak bands that were not accessible by mass 

spectrometry from the ELCH-HA immunoprecipitation are subunits of the V-ATPase. There 

are at least two possibilities for the V-ATPase to interact with ELCH/ESCRT-I. An intriguing 

possibility is that the V-ATPase is a target of the ESCRT pathway. Known targets from yeast 

and animals are either vacuolar proteins like proteolytic enzymes or plasma membrane 

receptors that are monoubiquitinated and endocytosed. Mass spectrometry data indicates that 

two amino terminal lysins (K56 and K68) are ubiquitinated. VHA-a3 is not necessarily 
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ubiquitinated on both lysins simultaneously. Corresponding peptides were found with and 

without ubiquitin modification (Table 8). Western analysis of VHA-a3 suggests that only one 

lysine is ubiquitinated as one discreet band is found at 130 kDa. VHA-a3 is a transmembrane 

protein but it does not localize to the plasma membrane like Ste2p or EGFR, two well-studied 

targets of the ESCRT pathway in yeast and animals respectively. Arabidopsis contains three 

isoforms of VHA-a that have been reported to localize to different endomembrane 

compartments. While VHA-a1 is found mainly at the trans-Golgi network, VHA-a2 and -a3 

localize to the tonoplast (Dettmer et al., 2006). This observation is in concord with yeast 

studies demonstrating that VPH1 localizes to the vacuole whereas STV1 containing 

complexes are found at the late Golgi (Kawasaki-Nishi et al., 2001). VPH1 and STV1 are 

isoforms of the VHA-a subunit from the yeast V0 subcomplex. The observation that VHA-a3-

GFP is exclusively found at the tonoplast contradicts the idea that this protein is a 

conventional ESCRT target. A model that includes the biochemical interaction from this 

study and localization data of VHA-a3-GFP is based on the assumption that the ESCRT 

pathway is not restricted to biosynthetic cargo and plasma membrane proteins. In addition 

tonoplast derived vesicles containing V-ATPase complexes in their membrane are processed 

by the ESCRT machinery as well. Multi-vesicular bodies (MVBs) that originate from 

tonoplast budding could then distribute membranes and proteins much like conventional 

MVB sorting does. This could be internalisation of proteins and subsequent vacuolar 

degradation (Figure C2 I), delivery back to the tonoplast (Figure C2 II) or membrane transfer 

to other secretory compartments (Figure C2 III). A model in which membranes are removed 

from the vacuole is conceivable because the tonoplast receives membranes by vesicle fusions 

and thereby has to reduce membranes again to keep the equilibrium. Multi-vesicular bodies 

are frequently found in close association with the vacuole but they are regarded as pre-

vacuolar compartments that are about to fuse with the vacuole (Prescianotto-Baschong and 

Riezman, 2002). The close association of MVBs with the vacuole and their capability to 

direct membranes to different locations makes them suitable candidates for a membrane 

reduction process. Regulation of the V-ATPase by vacuolar degradation has not been 

described. A way to support this model could be ultrastructure analysis in combination with 

immunogold labelling against the V-ATPase. If the discussed model is correct it should be 

possible to find V-ATPase positive MVBs in close association with vacuoles. In contrast to 

the hypothesis that the V-ATPase is a target of the ESCRT pathway it is conceivable that 

ELCH/ESCRT-I interacts direct and not via monoubiquitination with the V-ATPase. A 

possibility is that the V-ATPase is involved in the ESCRT sorting machinery and the binding 
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is mediated by protein-protein interaction.  

 

 

Figure C 2: A model for ESCRT mediated degradation of V-ATPase complexes. The ESCRT pathway not 
only downregulates plasmamembrane receptors but also tonoplast intrinsic proteins (I). Furthermore this model 
shows an option how proteins are recycled back to the tonoplast (II) or how membranes are removed from the 
tonoplast (III). The assumed mechanisms are the same that act at the plasmamembrane and are known from 
yeast. As clathrin mediated vesicle budding has not been observed at the vacuole other mechanisms might 
regulate this process. 
 

Binding might be mediated via the coiled coil domains that are found in ELCH, VPS37, 

DET3 and VHA-a3 with the COILS program (Lupas et al., 1991) Weaker coiled coil scores 

were found for VHA-A and VHA-B. It has to be considered that the coiled coil domains 

found in VHA-a3 and DET3 are probably needed for complex formation of the V-ATPase 

itself and not necessarily for interaction with other proteins. ESCRT-I proteins are involved in 

late endosom/MVB formation (Razi and Futter, 2006). Furthermore it was shown that early- 

to late endosomes develop decreasing pH values (Clague et al., 1994). Therefore an 

interaction between the sorting machinery and the pH controlling system would make sense. 

On the other hand the observed localization at the vacuolar membrane of VHA-a3 contrasts 

sharply with the localization of ELCH or its yeast homolog Vps23p. Both are found at 

vesicular structures (Spitzer et al., 2006) and MVBs respectively. If a direct protein protein 

interaction of ESCRT and V-ATPase components  is true colocalisation would be expected. 
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Therefore this model seems more unlikely. 

The reported localisation of VHA-a3-GFP indicates that this protein is not a target in the 

sense of known ESCRT mediated sorting. The idea that ESCRT mediated sorting in plants 

includes tonoplast proteins requires more experimental data. One approach would be a 

detailed genetic dissection of ESCRT and V-ATPase components. Mutants from different V-

ATPase proteins i.e. det3 (Schumacher et al., 1999) are available or can be screened in 

various T-DNA collections. The cytokinesis phenotype observed in vha-E mutants could be 

an indication that the cell division defect observed in elch mutant plants is a result of V-

ATPase misregulation. If VHA-a3 is interacting directly with ELCH/ESCRT-I the elch 

phenotype should be enhanced in mutants compromised in ELCH and VHA-a3. If the target 

hypothesis is true an enhancement of the elch phenotype is only expected if VHA-a3 is 

expressed at higher levels. Higher amounts of VHA-a3 would put more strain on the 

(presumably) already compromised ESCRT machinery in elch mutants. Co-localisation 

studies should be made using the CaMV 35S::CFP-ELCH construct (Spitzer et al., 2006) and 

the VHA-a3::VHA-a3-GFP construct (Dettmer et al., 2006). The possibility to use 

ultrastructure analysis in combination with immunogold techniques was already discussed. 

An obvious experiment would be to introduce point mutations at K56 and K68 in a VHA-a3-

GFP construct and introduce it into vha-a3 mutant background. These lines should be 

analysed for rescue and localization of VHA-a3-GFPK56,68R. A similar experiment described 

in yeast lead to cargo mislocalisation (Katzmann et al., 2001). The ubiquitination pattern of 

VHA-a3-GFPK56,68R would be interesting as well. 

 

C 7. Putative requirement for ESCRT function during cytokinesis 

The ESCRT pathway has so far not been implicated in cytokinesis. However multi-vesicular 

bodies seem to be important during the late stages of cytokinesis, especially during cell plate 

formation. This has been shown by quantifying numbers and volume of MVBs during 

different mitotic stages (Segui-Simarro and Staehelin, 2005). Number and volume of MVBs 

as well as clathrin coated vesicles (CCV) density were increased at the same time during cell 

plate formation. This supports the hypothesis that accumulation of membranes due to vesicle 

fusion during cell plate formation is balanced by clathrin mediated vesicle budding from the 

cell plate. MVB formation during this period might be needed to redistribute membranes 

again to different compartments, presumably especially to the golgi system. The process of 

membrane reduction from the cell plate is topological equivalent to receptor-mediated 

endocytosis where the function of the ESCRT pathway is established (Katzmann et al., 2001; 
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Katzmann et al., 2003). The primary purpose of this process seems to be the sorting of 

peptides and proteins however it equals the redistribution of membranes. For that reason the 

ESCRT pathway is a likely candidate for a player in membrane recycling and redistribution 

during cell plate formation.  

 

C 8. Putative requirement for V-ATPase function during cytokinesis 

The observation that vha-A and vha-E mutants show multinucleated cells and incomplete cell 

walls (Dettmer et al., 2005; Strompen et al., 2005) demonstrates that the V-ATPase is 

required during cytokinesis. It has been show that impaired V-ATPase function leads to 

disorders in the secretory system. As the secretory system plays a key role during plant 

cytokinesis this observation makes sense. However it is not clear what precisely this role is. Is 

the V-ATPase important for maintaining the structure of the secretory system in general? 

Does the V-ATPase regulate protein sorting specifically (Banta et al., 1988; Matsuoka et al., 

1997; Morano and Klionsky, 1994)? Does the V-ATPase only acidify certain compartments 

needed for protein processing or receptor ligand dissociation (Geuze et al., 1983)? Each of 

these steps can be imagined to lead to cell division defects as cytokinesis depends on many 

processes. Evidence for a general role of the V-ATPase in maintenance of the secretory 

system is found in vha-E/tuff mutants. Mutations in the VHA-E gene result in disturbed golgi 

organisation (Strompen et al., 2005). V-ATPase subunits localise to different membranes of 

the secretory system. These are for example the plasma membrane (Frattini et al., 2000), the 

trans-golgi network (Dettmer et al., 2006), MVBs, endosoms and other compartments 

(Stevens and Forgac, 1997). Localisation in the golgi has not been reported, indicating that 

the golgi system is influenced by V-ATPase defects in other compartments.  

Interactions with cellular components that are needed for cell division might unravel more 

specific functions for the V-ATPase during cell division. The interaction with ELCH/ESCRT-

I indicates that the V-ATPase is involved during multi-vesicular body formation (Razi and 

Futter, 2006). As multi-vesicular bodies are more numerous during cytokinesis (Segui-

Simarro and Staehelin, 2005) the V-ATPase might be involved in cell division during multi-

vesicular body formation.  
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Outlook 
 
Although the analysis of the first plant component of ESCRT-I showed that this pathway 

likely operates in plants a number of basic questions still remain. It will be interesting to 

identify other ESCRT mutants and determine their phenotype. The creation of double mutants 

might result in more penetrant phenotypes that, unlike elch, are accessible to genetic screens. 

The analysis of the ELCH-LIKE gene in combination with ELCH itself could answer open 

questions: So far it is not clear whether both act redundanly, are expressed differentially or 

have different functions altogether. Promoter studies and genetic analysis of both could be 

used to address some of these questions. 

With more and more evidence that the ESCRT machinery is functional in plants the main 

tasks for coming projects will be the determination of whether Arabidopsis ESCRTs fulfil 

similar functions like yeast or animal ESCRTs. In a next step it will be important to work out 

differences between plants and other systems. 

In this study the central component of ESCRT-I was analysed biochemically and first 

evidence was provided for new interacting partners. These interactors have to be verified by 

genetic means. If these proteins are targets of the plant ESCRT pathway it might be possible 

to study ESCRT mediated sorting in plants. This is especially interesting as the identified 

proteins are either plant specific or have not been implicated in ESCRT mediated sorting. 
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D. Material and Methods 
 

D 1. Chemicals 

All chemicals were purchased from Sigma-Aldrich (Taufkirchen), Boehringer Mannheim 

(Mannheim),  Serva (Heidelberg), Merck (Darmstadt),  Qiagen (Hilden), Roth 

(Karlsruhe),  

 

D 2. Material 

 

D 2.1. Enzymes for DNA manipulation 

 All restriction enzymes were purchased from Fermentas  

 

D 2.2. Primer        

 CS023  5’ggggacaagtttgtacaaaaaagcaggct caagcaggagtgtctagg 

 CS038  5’ggggaccactttgtacaagaaagctgggt gttgaggaatgtatgggc  

 CS063  5’aagggcccgtcgaccatggttcccccgcc 

 CS064  5’tagggcccgcggccgcTCAAGCGTAATCTGGAACATCATA 

TGGGTAcctacctgcgatggctgc 

 IMZ003 tgcgacaatggaactggaatg 

 IMZ004 ggatagcatgtggaagtgcatac  

 CSP171 ggtggtgaacatgctgcacttgcacc 

 CSP174 ttcagtcccctacgaagagtc 

 

Gene specific sequence is underlined, the HA coding sequence is capitalized. 

 

D 2.3. Vectors 

 pCAMBIA1300 (Genbank accession number AF234296) 

 pBinAR (Höffgens and Willmitzer, 1990). 

 into pGEMTEasy, Promega 

 

D 2.4. Antibiotics 

 Ampicillin (Amp) 100 mg/ml in H2O 

Gentamycin (Gent) 15 mg/ml in H2O 

Kanamycin (Kan) 50 mg/ml in H2O 
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Rifampicin (Rif) 100 mg/ml in DMSO 

Those stock solutions (1000x) stored at –20ºC. Aqueous solutions were sterile 

filtrated. 

 

D 2.5. Bacterial strains 

DH5a: 80lacZ M15, recA1, endA1, gyrA96, thi-1, hsdR17 (rB-, mB+), supE44, 

relA1, (lacZYA-argF)U169; Bachmann (1983,1990), Sambrook J.et al.(1989). 

E.coli 

 

GV3101: A.tumefaciens  

 

 

D 2.6. Plant lines 

 Arabidopsis thaliana ecotype Ws2 

 

 Arabidopsis thaliana ecotype Ler 

 

The elch allel was isolated from a T-DNA-transformed Ws2 ecotype population     

generated at the INRA, Versailles (Spitzer et al., 2006).  

 

sti146 (Ilgenfritz et al., 2003) 

 

The tfc-a allel was isolated from a T-DNA-transformed Ws2 ecotype population 

 generated at the INRA, Versailles (Kirik et al., 2002). 

 

GFP::MAP4 (Mathur and Chua, 2000)  

  

ELCH::ELCH in elch background (Spitzer et al., 2006) 

 

CaMV35S::ELCH in elch background (Spitzer et al., 2006) 

  

CaMV35S::ELCH-HA in elch background (Spitzer et al., 2006) 

  

VHAa3::VHA-a3-GFP (Dettmer et al., 2006) 
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CaMV35S::EGFP-peroxi (Mathur et al., 2002) 

 

D 2.7. Biochemicals 

 Complete Protease Inhibitor   Roche (11873580001) 

 Protein G agarose    Roche (11719416001) 

 Ubiquitin agarose    Sigma (U5632) 

 Basic beads     Miltenyi (130-048-001) 

 Anti HA protein isolation kit   Miltenyi (130-091-122) 

 Anti GFP protein isolation kit  Miltenyi (130-091-125) 

 SuperoseTM 6 10/300 GL   Amersham (17-5172-01) 

 Flag::Ubiquitin    Alexis Biochemicals (BST-U-120-M001) 

Protein marker (PAGE RULER)  Fermentas (SM0671; lot: 13809) 

 Blocking buffer for IRDyes   Rockland (MB-070)  

 Blocking buffer    Skimmed milk powder (Sucrofin) 

  

  

D 2.8. Antibodies 

 rat anti HA antibody    Roche (1867423) 

 mouse anti Ub antibody   Santa Cruz (SC8017) 

 mouse anti GFP antibody   Roche (11814460001) 

 rabbit anti GFP antibody   Millipore (AB3080) 

 

 goat anti rat HRP    Jackson Immuno Research (112-035-003) 

 goat anti mouse HRP    Jackson Immuno Research (115-035-003) 

 goat anti mouse IRDye® 700DX  Rockland (610-130-007)  

  

 goat anti rabbit IRDye® 800CW  Licor (926-32211) 

 

 

D 2.9. Accession numbers 

Arabidopsis ELCH (NP_566423) 

Arabidopsis ELCH-LIKE (NP_196890) 

Rice ELCH BAD28453 ()  
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yeast VPS23 (Accesion number AF004731) 

 human TSG101 (Accesion number U82130). 

 Drosophila TSG101 (NP_524120) 

 

 

D 3. Methods 

 

D 3.1. Maintenance and cultivation of Arabidopsis thaliana 

Soil grown conditions: Arabidopsis seeds were germinated by sowing directly onto 

moist soil. Seeds were cold treated by placing pots on a tray covered with a lid and 

incubated in the dark at 4ºC for three to four days. Trays were subsequently transferred 

to a controlled environment growth chamber, covered with a propagator lid and 

maintained under long day conditions (16 h photoperiod and 24ºC). Propagator lids 

were removed when seeds had germinated. 

  

In vitro culture: Seeds were preincubated for five minutes in 95% Ethanol and then 

sterilized for 15 minutes in a 3% NaClO3 solution containing 0.1% triton X-100. After 

removing the sterilization solution seeds were washed three times with sterile water 

and than plated. MS-agar-plates (1% Murashige-Skoog salts, 1% sucrose, 0.7% plant 

agar, pH 5.7) were either used without antibiotic or with kanamycin (50* g/ml) or 

hygromycin (25* g/ml). Plants were grown under long day conditions (16 h 

photoperiod and 22ºC) for 20 days and then stored at 8ºC for protein work.  

  

 Plants were protected from various herbivores by applying 10 mg/l Confidor® WG 70 

(Bayer, Germany). The solution was applied by watering the plants.  

 

 

D 3.2. Crossing of Arabidopsis thaliana 

Flower buds were carefully opened with a pair of fine tweezers and immature stamens 

were removed. Carpels were immediately covered with ripe pollen from donor plant. 

Untreated buds were removed and plants placed back into the growth chamber for 

seed ripening. F1 and F2 plants were germinated under appropriate selection and 

analysed. 
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D 3.3. Microscopy and cell biology 

DNA was stained with 4',6-Diamidino-2-phenylindol (DAPI). Solid DAPI was diluted 

to 10 mg/ml in H20 (stock solution). For DAPI stainings leafs were incubated in DAPI 

solution (40 g/ml final concentration) for 15 minutes under vacuum (0,6 bar). Leafs 

were washed in 70% EtOH at 4ºC to reduce background and visualized by epi-

fluorescence microscopy [excitation filter (BP 340-380), emission filter (LP425)]. 

Microscopy was done with a LEICA DMRE equipped with a high-resolution KY-F70-

3CCD JVC camera and a frame grabbing DISKUS software.  

Confocal microscopy was done using a TCS SP2, Leica, Wetzlar, Germany.  Leaf 

sections were stained with 500 g/ml propidium iodide and infiltrated for 15 min at 

0,9 bar. After staining, leaves were embedded in 5% low meltin agarose and sectioned 

with a razor blade. Images were processed using the Adobe Photoshop 6.0 software.  

 

D 3.4. Nuclear DNA measurements 

Whole leafs were DAPI-stained, mounted on a slide and observed by epi-fluorescence 

microscopy (see also D 3.3). The C value of trichome nuclei was determined using the 

DISCUS software package (Carl H. Hilgers-Technisches Büro, Königswinter, 

Germany). The fluorescence intensity of DAPI stained nuclei was determined and set 

into proportion to the intensity of stomata nuclei. Stomata nuclei have a DNA content 

of 2C (Galbraith et al., 1991).  

 

D 3.5. Basic DNA manipulation techniques  

(Plasmid preparation from bacteria, DNA digest, agarose gel electrophoresis, etc) 

See “Molecular Cloning: A Laboratory Manual (Third Edition) By Joseph Sambrook, 

Peter MacCallum Cancer Institute, Melbourne, Australia; David Russell, University of 

Texas Southwestern Medical Center, Dallas” 

 

 

 

 

 

 

 



                                                                                                                  Material and Methods 

 61

D 3.6. Polymerase chain reaction conditions 

To amplify the ELCHgenomic region for the pCAMBIA1300-DM-CS023-038 

construct the following PCR conditions were used: 

 

Initial denaturation 96ºC 

 

Denaturation  96ºC    

Annealing  58ºC   Annealing gradient: 58±5ºC 

Elongation  72ºC   Number of cycles: 32 

 

End-elongation  72ºC 

 

The different DNA products from the gradient PCR were combined and gel purified. 

 

 

To amplify the ELCHgenomic region for the pGEMT::CS063-064 construct the 

following PCR conditions were used: 

 

Initial denaturation 96ºC 

 

Denaturation  96ºC    

Annealing  58ºC   Annealing gradient: 58±5ºC 

Elongation  72ºC   Number of cycles: 32 

 

End-elongation  72ºC 

 

 The different DNA products from the gradient PCR were combined and gel purified. 
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D 3.7. Constructs 

 pCAMBIA1300-DM-CS023-038 (this construct rescues the elch mutant) 

the ELCH genomic region was amplified with Expand High Fidelity Polymerase 

(Roche) from the P1 clone MQC3 using primers CS023 and CS038. The 2.9kb PCR 

product was gel purified and ligated blunt into the Ecl136II restriction site of 

pCAMBIA1300 (Genbank accession number AF234296). 

  

pBinAR::35S-ELCH (this construct rescues the elch mutant) 

The ELCH gene was excised from pCAMBIA1300-DM-CS023-038 using MluI and 

BspHI. The 1.3kb fragment was gel purified and ligated blunt into the SmaI site of 

pBinAR (Höffgens and Willmitzer, 1990). 

 

pGEMT-CS063-064  

The ELCH Gen was amplified using Tag polymerase from pCAMBIA1300-DM-

CS023-038 using primers CS063 and CS064. Primer CS064 contains the sequence of 

the HA tag. The 1.2kb fragment was gel purified and subcloned into pGEMTEasy 

(Promega) by AT cloning.  

 

pBinAR::35S-ELC-HA (this construct rescues the elch mutant) 

The ELC::HA sequence was excised from pGEMT::CS063-CS064 using Sal I and 

NotI, blunt-ended and ligated into the SalI site of pBinAR (Höffgens and Willmitzer, 

1990). 

 

 

D 3.8. Blunt-end ligation 

For blunt-end ligations the DNA was either cut with blunt-cutters or DNA overhangs 

were filled in with T4 Polymerase. The vector was cut with a blunt-cutter and gel-

purified. After the fill-in reaction the fragment was ligated into the blunt site of the 

vector RT over night. Additionally 0,1 units of the enzyme, used to digest the vector, 

was added. The ligase was inactivated by heating the reaction to 65ºC and 0.5 units of 

the enzyme, used to digest the vector, was added and incubated at optimal 

temperature. As negative control the same reaction with all conditions preserved was 

done in parallel but the insert was replaced by water.  
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D 3.9. Transformation of Agrobacterium tumefaciens 

Agrobacteria were transformed via electroporation using a MicroPulser Electroporator 

from BioRad (165-2100) according to the manufactures instructions. Procedure was 

performed in 2 mm MicroPulser Cuvettes (165-2086). 

 

D 3.10.Plant transformation 

Transgenic plants were generated by Agrobacterium mediated T-DNA transformation 

(Koncz et al., 1989; Zambryski et al., 1983). The selection marker, the gene of interest 

and its regulatory elements are cloned into the T-DNA vector that harbours the 

essential elements needed by Agrobacterium tumefaciens for DNA transfer into the 

plant genome. Transformation of germ line cells results in transgenic seed that can be 

screened for the selection marker. 

 

Stable transformations of Arabidopsis were generated by the “floral dip” method 

(Clough and Bent, 1998). Plants were grown at 16ºC until inflorescences with buds of 

various stages had developed. The Agrobacterium strain GV3101 carrying the T-DNA 

vector was grown in YEB media containing the appropriate antibiotics for two days at 

28ºC. Bacteria were pelleted at 7000g and resuspended in 5% sucrose with 500 l 

Silvett L-77. Influorescences of T0 plants were submerged in this media under slight 

agitation for 30 seconds and placed under a hood at 16ºC. After two days plants were 

transferred to 23ºC for seed ripening. These T1 seeds were germinated on media under 

selective pressure and transformants were singled out and propagated for further 

analysis. 

 

D 3.11.Isolation of genomic DNA from Arabidopsis 

Genomic DNA was isolated with the CTAB method (Rogers et al., 1988). 

Modifications are described. A small amount of fresh tissue (half a cotyledon to one 

leaf) was ground in 200 l 2xCTAB buffer (2 % Cetyltriethylammoniumbromid; 100 

mM Tris-HCl (pH 8,0); 20 mM EDTA; 1,4 M NaCl; 1 % Polyvinylpyrolidon) mixed 

thoroughly and incubated for at least one hour under agitation at 65°C. 200 l of CI 

(Chloroform:Isoamylalcohol, 24:1) was added, mixed thoroughly and centrifuged for 

15 minutes. 150 l of the upper phase was transferred to a new 1.5 ml reaction tube, 

mixed with 200 l 2-Propanol and incubated for five minutes at RT. DNA is 

precipitated at 13000 x g, washed in 70% EtOH for 5 minutes at 13000 x g and air 
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dried until no traces of EtOH are left. It is not recommended to dry the pellet 

extensively. DNA is resuspended in an appropriate amount of H2Odest (5-50 l). 

 

D 3.12.Isolation of RNA from plants 

RNA was isolated according to the TrizolR protocol from Invitrogen (Cat. No. 15596-

026). TriReagentR from Molecular Research Center (TR 118) was used instead of 

Trizol. All material used was treated to prevent RNA contamination. 100mg of wild 

type, elch and 35S::ELCH plants was ground in liquid nitrogen and processed 

according to the manufactures instructions. The RNA was dissolved in 50 l of DEPC 

water and treated with RNAse inhibitor from the Fermentas cDNA synthesis kit (Cat# 

K1612) and DNAse from Ambion (Cat# 1906).  

 

D 3.13.Reverse transcription 

Equal amounts of RNA from wild type, elch and 35S::ELCH (approximately 8 g of 

total  

RNA) were used for first strand synthesis using the Invitrogen SuperScript™ First-

Strand Synthesis System (Cat# 11904-018) according to the manufactures instructions. 

Primer IMZ004 was used to transcribe the ACT7 gene and CSP171 for transcription of 

the ELCH gene. CSP171 is complementary to the region that is deleted in ELC-LIKE 

and still intact in the elch mutant allel. As there is no intron in the ELCH gene RNA 

from all three lines was used in three separate reaction without reverse transcriptase. 

The “cDNA” of these reactions was used as negative control to determine whether 

there is genomic contamination in the isolated RNA. 

 

D 3.14.Semiquantitive RT-PCR 

To amplify the ACT7 gene as loading control and the ELCH fragment the following 

PCR conditions were used: 

Initial denaturation 94ºC/2min 

 

Denaturation  94ºC/30sec   

Annealing  54ºC/30sec Annealing gradient: 58±5ºC 

Elongation  72ºC/1min Number of cycles: 18,19,21,23,30 

          (see Fi. B5 A) 

End-elongation  72ºC 
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The volume of cDNA used for wild type, elch and 35S::ELCH was adjusted in a way 

that the intensity of the ACT7 control is approximately equal. The volume of cDNA 

used for ACT7 and wild type/ACT7 and elc/ACT7 and 35S::ELCH was kept equal. 

 

D 3.15.Basic protein techniques (SDS-PAGE, Western blotting) 

See “Molecular Cloning: A Laboratory Manual (Third Edition) By Joseph Sambrook, 

Peter MacCallum Cancer Institute, Melbourne, Australia; David Russell, University of 

Texas Southwestern Medical Center, Dallas” 

 

D 3.16.Denaturing protein extraction 

A plant sample (one to several leafs) were ground in Cracking buffer [60mM 

Tris/HCl, pH 8;1% Mercaptoethanol;1% SDS;10% glycerol;0,01% bromphenol-blue] 

and heated to 99ºC for 10 minutes. Cell debris was pelleted and supernatend 

transferred to a fresh reaction tube. One to 15 l were used for SDS-PAGE. 

 

D 3.17.Native protein extraction 

Ubiquitin binding assay: All steps at 4ºC. Four plants (4-5th leaf) from selection plates 

were ground in PPB [50 mM Phosphate buffer,150mM NaCl; 0,5% NP40/CA630; 

0,5mM DTT; 2,5% Complete] and centrifuged at 500 x g for one minute. 

  

gel filtration: All steps at 4ºC. Nine plants (4-5th leaf) from selection plates were 

ground in 600 l P150 [50 mM Phosphate buffer,150mM NaCl]. 200 l Complete-150 

(one tablet Complete in 2ml P150) was added immediately. The homogenate was 

centrifuged at 16000 x g for two minutes. Supernatent was transferred to a fresh tube 

and centrifuged two more times for 37 and 5 minutes respectively. Each time a fresh 

tube was used. 

 

Immunoprecipitation: All steps at 4ºC. Protein was extracted from 0,3 to 1 g plant 

material. Plants were ground in 1.4 ml lysis buffer [50 mM TrisHCl (pH 8.0), 150 mM 

NaCl, 1% Triton X-100] complemented with 100 l protease inhibitor (one tablet 

Complete Protease Inhibitor in 2 ml lysis buffer) and 17.5 l 1 M DTT.  
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D 3.18.Ubiquitin binding assay 

All steps at 4ºC. Equal amounts of Ubiquitin- and Protein G agarose (approximately 

70 l) were equilibrated. The beads were centrifuged at 500 x g and resuspended in 

100 l PPB (repeat three times). 80 l of PPB and 150 l of native protein extract was 

added and incubated for 3 hours under slight agitation. Beads were centrifuged at 500 

x g and resuspended carefully in 100 l PPB (repeat three times). 50 l cracking 

buffer was added, heated to 99ºC for 10 minutes and used for SDS-PAGE. PAGE was 

performed using 12% polyacrylamide gels.  

 

D 3.19.Size exclusion chromatography (gel filtration) 

The SuperoseTM 6 10/300 GL column was equilibrated with two column volumes of 

P150. The column was then stepwise calibrated with 50 l of thyroglobulin (20mg/ml), 

50 l ß-amylase (16mg/ml), alcohol dehydrogenase (5mg/ml) and ovalbumin 

(20mg/ml). After washing with three column volumes of P150, 50 l of native protein 

extract was loaded and run under the same conditions like the standard (25ml, 

0,35ml/min). Fractions of a volume of 0,4 ml were collected precipitated with 

trichloroacetic acid and resuspended in cracking buffer. The column was connected to 

a BioLogic DuoFlowTM FPLC machine from BioRad placed in a fridge at 4ºC. PAGE 

was performed using 12% polyacrylamide gels.  

 

D 3.20.Immunoprecipitation 

All steps at 4ºC if not indicated otherwise. For Immunoprecipitation a 1 ml aliquot of 

the native extract was used with 120 l anti-HA MicroBeads (Miltenyi Biotec) 

according to the manufacturer’s instructions with the following modifications: the 

column was rinsed five times with 200 l Wash Buffer 2, and the protein was eluted 

with 60 l Elution Buffer heated to 95ºC. The elution step was performed at RT. 

PAGE was performed using 12% polyacrylamide gels.  

 

D 3.21.Antibody detection 

Protein was blotten on Roti®-PVDF membranes from Roth (Cat# A147.1). Blots were 

blocked in 5% skimmed milk powder in PBT (PBS, 0,1% Tween®20). Primary 

antibody was incubated overnight at 4ºC under agitation and washed three times in 

PBT. Secondary antibody was incubated for 90 minutes at RT and washed three times 

with PBT.  
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   antibody    dilution 

   rat anti HA antibody   1:2000   

   mouse anti Ub antibody  1:1000-1500 

   mouse anti GFP antibody  1:2000 

   rabbit anti GFP antibody  1:2500 

   goat anti rat HRP   1:3000  

   goat anti mouse HRP   1:3000 

   goat anti mouse IRDye 680  1:3000     

   goat anti rabbit IRDye  1:3000 

 

For detection the ECL™ System from Amersham Bioscience was used. Blots were 

placed between transparent foils and incubated with ECL™ Western Blotting 

Detection solution (RPN2109) according to the manufactures instructions. Hyperfilm 

ECL™ (RPN1674K) were exposed between 2 minutes and eight hours depending on 

signal strength. Films were developed by hand [eukobrom B/W paper developer (cat# 

100294) and superfix plus rapid fixer (cat# 102760) from Tetenal] according to the 

manufactures instructions. 

 

D 3.22.Silverstaining 

For mass spectrometry compatible protein detection a silver staining protocol from 

Blum (Blum et al., 1987) was adopted. After PAGE the gel was fixed in 50% MeOH, 

5%HAc for 20 minutes and washed in 50% MeOH for 10 minutes. Gel was washed in 

distilled water overnight, sensitized in 0,02% Natrium Thiosulphate for one minute 

and washed two times in water for one minute. For staining the gel was incubated at 

room temperature for 20 minutes in 0,15% silver nitrate/0,4% formalin. The gel was 

washed two times in distilled water for one minute and developed in 2% sodium 

carbonate/0,07% formalin until the staining was sufficient. Staining was stopped with 

5% HAc. Bands were cut out and analyzed by Maldi-TOF mass spectrometry (Center 

for molecular medicin Cologne – Bioanalytical Laboratory). 

 

D 3.23.Two colour western analysis 

A method to detect two different proteins simultaneously with fluorescence marked 

antibodies. For detection the Odyssey Infrared Imaging System from Licor was used. 

The Odyssey scanner is equipped with two infrared channels for direct fluorescence 
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detection on membranes and discriminates the signals from two fluorescence marked 

antibodies.  The blot was blocked in Rockland blocking solution for one hour. Mouse 

anti ubiquitin and rabbit anti GFP antibody were incubated overnight at 4ºC under 

agitation in PBT (PBS, 0,2% Tween20, 5% skimmed milk powder. The blot was 

washed three times in PBT (0,2% Tween20). The blot was incubated with goat anti 

mouse IRDye 700 and goat anti rabbit IRDye 800 in PBT (PBS, 0,2% Tween20, 5% 

skimmed milk powder) at RT for 90 minutes. The blot was dried between Whatman 

paper in the dark and scanned with the Odyssey scanner. An overlay of the 700 and 

800 nm channel was generated by the Licor software that also controls the scanner. 

 

 

D 3.24.Image processing 

 All images were processed using Adobe Photoshop 6.0 software. 

 

D 3.25.Sequence analysis 

DNA and protein sequence analysis was performed using the Vector NTI® software 

from invitrogen™. Multiple sequence alignment was done using CLUSTALW from 

the NPS@ Web server. NPS@ is part of the Pôle Bioinformatique Lyonnais. For 

coiled coil domain analysis the COILS program was used (Lupas et al., 1991). 

 

http://www.invitrogen.com 

http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_clustalw.html 

http://www.ch.embnet.org/software/COILS_form.html 
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E. Appendix  

E 1. TSG101 has a size of 49 kDa on PAGE 
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E 2. SC8017 anti-Ubiquitin is specific for ubiquitin 
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E 3. Mass spectrometry data of ESCRT-Icomponents 

 

ELCH At3g12400 4487 
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ELCH  At3g12400 4493 
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ELCH  At3g12400 4692 
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VPS28/1 At4g21560 4557 
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VPS28/1 At4g21560 4485 
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VPS28/2 At4g05000 4557Ha 
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VPS37/1 At3g53120 4556H1 
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VPS37/2 At2g36680 4556H2 
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Ig kappa chain constant region 4486a_seq 
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E 4. Mass spectrometry data of ELCH/ESCRT-I interacting proteins 

 

UBA domain protein   At5g53330 4486 
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UBA domain protein   At5g53330 4497H 
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VHA-a3 At4g39080 4491RE 
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VHA-a3 At4g39080 4491UBQ 

 

 

 



                                                                                                                                  Appendix 

 86

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                  Appendix 

 87

VHA-A At1g78900 4492 
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VHA-B At1g76030 4691H1 
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DET3  At1g12840 10610 
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E 5. Mass spectrometry data of VHA-a3-GFP interacting proteins 

VHA-H  At3g42050 10632 
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E 6. Number of T-DNA insertions in the used elch mutant line 

 

Southern blotting and hybridisation was performed by a student of the University of Tübingen 

as part of a student practical laboratory course supervised by Dr. Swen Schellmann. 

 
 

 
The elch mutant line 

harbours only one T-DNA 

insertion. 

DNA from wild type and elch 
was digested with EcoRI, 
BamHI and XhoI and separated 
by agarose gelelectrophoresis. 
After southern blotting the 
DNA was hybridysed with 
probes specific for left and 
right border of the T-DNA. The 
result indicates that only one T-

DNA insertions causes the 
observed mutation and the 
phenotype
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Zusammenfassung  

 

Innerhalb des Sekretorischen Systems von Hefen und Tieren reguliert der Endosomal Sorting 

Complex Required for Transport (ESCRT) wichtige Aufgaben. Dazu gehört die Sortierung 

von Biosynthese-Produkten und die Regulation von Plasma Membran Rezeptoren. Das Ziel 

meiner Doktorarbeit war die Untersuchung des ELCH Proteins aus Arabidopsis welches 

Ähnlichkeit zu Vps23p und TSG101 aufweisst. Diese Proteine bilden die Kernkomponenten 

des ESCRT-I Komplexes in Hefen und Tieren. Ich konnte zeigen, dass die Ubiquitinbindung 

und Komplexbildung zwischen Arabidopsis, Hefen und Tieren konserviert ist. Dies stützt die 

These, dass die ESCRT vermittelte Proteinsortierung eine allgemeine Strategie 

eukaryontischer Organismen ist. Mit ELCH bzw. ESCRT-I interagierende Proteine wurden 

durch Immunoprecipitation und anschliessender Massenspektrometrie identifiziert. Mit dieser 

Vorgehensweise wurde ein Protein mit UBiquitin-Assoziierter  Domäne, sowie mehrere 

Untereinheiten der vakuolären ATPase isoliert. Die VHA-a3 Untereinheit der vakuolären 

ATPase wurde genauer auf eine mögliche Modifizierung mit Ubiquitin untersucht da Mono-

Ubiquitinierung das Erkennungssignal des ESCRT Proteinsortierungsweges ist. Mittels 

Infrarot Fluoreszenz konnte gezeigt werden das VHA-a3 mono-ubiquitiniert wird was darauf 

hindeutet das dieses Protein von den ESCRT Komplexen sortiert wird. Die vakuoläre ATPase 

ist, ähnlich wie die ESCRT Komplexe, an der Sortierung von Biosynthese-Produkten und der 

Regulation von Plasma Membran Rezeptoren beteiligt. Eine Interaktion zwischen einem 

ESCRT Komplex und der V-ATPase konnte bisher nicht gezeigt werden.   

Eine T-DNA Insertion im ELCH Gen von Arabidopsis führt dazu, dass eine geringe Anzahl 

von Zellen mehr als einen Zellkern aufweisen. Da mehrkernige Zellen auf Zellteilungsdefekte 

hinweisen, wurden Trichome, Blattepidermiszellen und Stomata auf unvollständige 

Zellwände untersucht. Diese konnten in Stomata und Blattepidermiszellen nachgewiesen 

werden, nicht aber in Trichomen. Zellteilungsdefekte wurden bisher nicht in vps23 Mutanten 

beobachtet, sie erinnern jedoch an mehrkernige Zellen welche in TSG101 mutanten Zelllinien 

vorhanden sind. Ferner sind Arabidopsis Linien, die Mutationen in der Untereinheit E der 

vakuolären ATPase aufweisen, embryonal lethal. Sie zeigen Zellteilungsdefekte, sowie eine 

gestörte Vakuolen Morphologie (Strompen et al., 2005). Obwohl Mutationen in ELCH, 

TSG101 und VHA-E ähnliche Phänotypen hervorrufen, konnte bisher nicht ermittelt werden 

warum Störungen des ESCRT Systems oder der vakuolären ATPase zu Zellteilungsdefekten 

führen. Genetische Analysen mit der tubulin-folding cofactor A (tfc-a) Mutante legen nahe, 



    

 

dass ELCH die Zellteilung durch Regulation von Mikrotubuli beeinflusst. Zellteilung in 

Pflanzen ist im hohen Maße von einer pflanzenspezifischen Struktur, dem Phragmoplast 

abhängig. Dessen Hauptbestandteile sind Mikrotubuli und Vesikel. Störungen im 

Zusammenspiel dieser Komponenten können mit hoher Wahrscheinlichkeit zu den 

beobachteten Zellteilungsdefekte führen. 
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