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Abstract

We show that in f ≤ 3 dimensions, the spectral statistical properties of a certain en-
semble of quantum mechanical systems, chosen such that these systems share the same
classical limit, are universal provided that the underlying classical dynamics is chaotic.
These universal properties are faithful to random matrix theory up to universal correc-
tions due to quantum interference effects, which stem from the Heisenberg uncertainty
relation. In addition, we explain the formation of a universal gap in the electronic spec-
trum of a normal conducting chaotic system when the latter is brought in contact with
a superconductor. This gap opens in the vicinity of the Fermi surface and its universal
width is also set by quantum uncertainty. The method which we employ is the ballistic
σ–model, a quantum field theory which is known for ten years now but whose evaluation
was to date only possible with additional assumptions which we identify to be dispens-
able upon closer inspection. The insights gained enable us to draw novel parallels to the
semiclassical approach and to the theory of dynamical systems.

Zusammenfassung

Wir zeigen, daß in f ≤ 3 Dimensionen die Spektralstatistik eines gewissen Ensembles
quantenmechanischer Systeme, die den gleichen klassischen Limes haben, universell ist,
sofern die zugrundeliegende klassische Dynamik chaotisch ist. Insbesondere deckt sich
dieses universelle Verhalten mit dem von Zufallsmatrixensembles bis auf universelle Kor-
rekturen, die durch Quanteninterfenzeffekte entstehen und auf die Heisenbergsche Un-
schärferelation zurückzuführen sind. Darüberhinaus erklären wir die Entstehung einer uni-
versellen Lücke im elektronischen Spektrum eines normalleitenden chaotischen Systems,
sobald dieses in Kontakt mit einem Supraleiter gebracht wird. Diese Lücke entsteht in der
Nähe der Fermikante, und ihre universelle Breite wird ebenfalls durch Quantenunschärfe
gesetzt. Als Methode verwenden wir das ballistische σ–Modell, eine Quantenfeldtheorie,
die seit zehn Jahren bekannt ist, deren Auswertung bisher aber nur mithilfe zusätzlicher
Annahmen möglich war, die wir durch eine sorgfältigere Betrachtung als entbehrlich
herausstellen. Durch die gewonnenen Erkenntnisse sind wir in der Lage, neue Parallelen
zum semiklassischen Ansatz und zur Theorie dynamischer Systeme zu ziehen.
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Chapter 1

Quantum chaos and universality

This chapter provides the background needed to place this thesis into context. The
first section 1.1 is dedicated to explaining the term ‘quantum chaos’ and some of its
most prominent universal features. The subsequent two sections serve as introductions
to later chapters: while section 1.2 briefly sets the historical stage for the physics of
the proximity effect to be discussed in chapter 3, section 1.3 reviews the basics of the
semiclassical approach to quantum chaos. The latter section is a bit more detailed than
the other introductory sections as it serves as a primer for chapter 5, where we are going
to elaborate on the parallels between the semiclassical approach and the field theoretical
formalism presented in this thesis.

1.1 Introduction

In the last century, it has become clear that there are two radically different types of
classical Hamiltonian motion: regular and chaotic dynamics.1 Perhaps the most easily
accessible difference between these two classes is the sensitivity to deviations of the initial
conditions. While the final deviation of two originally close–by states only grows linearly
in time in a regular system, the same error grows exponentially in chaotic systems.
Accordingly, regular systems are analytically under control. In fact, the semiclassical
approximation is perfectly understood and exact for regular systems, and it is the Bohr–
Sommerfeld quantization scheme which led to an extrapolation of the quantum laws from
the macroscopic world. The high degree of symmetry which stems from the independent
integrals of motion manifests itself in the quantum spectrum through the independence of
disjoint spectral series. In fact, at sufficiently large energies, the eigenvalues of a regular
quantum system are completely randomized and appear to be Poisson distributed over the
energy axis. Of course, the complexity of chaotic motion leaves one helpless in the first
place. How would one establish a semiclassical correspondence? There is no such vehicle
as the action–angle variable pairs which allows a neat classification of orbits. Quite on
the contrary, the chaotic dynamics will eventually bring each orbit close to any other
orbit, and these ‘spaghetti’ of trajectories are rather perplexing. One might then think
that one just has to accept that there is no remedy but to merely take the quantum laws
which one has guessed successfully from the classical world and to quantize the chaotic

1For a more profound introduction to the topics covered here we refer to the textbooks [1, 2, 3].

7



8 Quantum chaos and universality

Hamiltonian at hand. No need for a semiclassical correspondence in the ‘generic’ case
beyond this.

Interestingly, however, it turns out that the qualitative difference of chaotic dynamics
leaves characteristic footprints in the quantum world: these quantum signatures of chaos
are commonly termed ‘quantum chaos’. Let us start our journey in the late 1950s/early
1960s, when Wigner and Dyson successfully applied statistical methods in order to de-
scribe the spectra of heavy nuclei, systems beyond the reach of standard quantum mech-
anical methods [4, 5, 6]. These latter methods are known to always rely on some high
degree of symmetry and can at most deal with small perturbations of some primitive
reference system such as a harmonic oscillator, a hydrogen atom, or some free particle or
spin. However, by the experience from statistical mechanics, the complexity of chaotic
dynamics represents a promising weak spot. Inspired by that observation, Wigner and
Dyson modeled nuclei by statistical ensembles of random Hamiltonian matrices which
respect the basic symmetries such as rotational or time reversal symmetry and are oth-
erwise maximally entropic. This so–called random matrix theory (RMT) allows a very
accurate prediction of the statistical spectral properties of sufficiently complex quantum
systems. The characteristic feature of the resulting quantum spectra is a high degree
of regularity : the eigenlevels tend to repel each other and to arrange themselves on a
one–dimensional lattice with fluctuations about the equilibrium value which are universal
in the sense that (upon proper rescaling of energies in units of the local mean level
spacing) they only depend on the underlying symmetries of the given system.

While anyone who has had some exposition to standard statistical mechanics might
say now that this universality is not very surprising at all, it is indeed very striking inas-
much as there is no proper explanation as to how this universality arises in an individual
system. Quantum mechanics is a linear theory and therefore apparently ignorant of the
non–linear complexity which is characteristic for classical chaos. It took twenty years
to distill the criterion which is responsible for universality. Based upon empiric results,
Bohigas, Giannoni, and Schmit (BGS) formulated a conjecture in 1984 [7]:

• If the underlying classical dynamics of a quantum system displays ‘generic’ chaos,
then the statistical spectral properties of that system are universal and depend
only on the symmetries of that system.

This celebrated conjecture is infamous inasmuch as it has kept a whole industry of
‘quantum chaologists’ busy ever since.2 The 1980s and early 1990s brought a wealth
of experimental results which substantiated the BGS conjecture and illustrated how
deviations from RMT may arise [8, 9, 10]. Universal spectral statistics of the RMT
type has been observed in totally different systems ranging from the energy levels of
heavy nuclei, highly excited (so–called Rydberg) atoms, and mesoscopic structures such
as two–dimensional electron gases, up to microwave modes in quasi two–dimensional
cavities and ordinary sound modes in rigid bodies. RMT statistics even serves as a
null model for the eigenvalues of stock–market price covariance matrices and helps to
identify non–trivial correlations, say, among different industry sectors. As a more abstract
phenomenon, also the zeroes of the Riemann zeta function display RMT statistics, and
the mathematicians hope to find a physical system (the ‘Riemannium’) whose spectrum
coincides with these zeros. In contrast to this, positive theoretical progress towards a

2For a review and a wealth of references cf. the monographies by Stöckmann [1] and Haake [2].



1.1 Introduction 9

proof of the BGS conjecture went rather stagnant. As a first line of research, there
is the semiclassical approach which employs the Gutzwiller trace formula in order to
express spectral properties in terms of classical dynamical quantities. The semiclassical
branch will be reviewed in some detail in subsection 1.3. As an orientation as to how
slow progress went, the milestones date to 1985 (Berry [11]), 1996 (Bogomolny &
Keating [12]), and 2001 (Sieber & Richter [13]). The work by Sieber & Richter (SR)
took quantum uncertainty3 into account and ignited a wave of publications [18, 19, 20,
21, 22, 23, 24, 25] which culminated in a fairly complete semiclassical understanding of
spectral correlations.

An alternative approach dates back to 1983, a time even prior to the BGS conjecture,
when Efetov employed field theoretical methods to prove that the statistical spectral
properties of disordered systems are faithful to RMT [26]. Efetov’s theory was formulated
in terms of the so–called diffusive non–linear σ–model. The name alludes to the fact
that a perturbative evaluation of this model is formulated in terms of a diffusion–type
propagator (Dq2 − iω/~)−1. In a system of finite extension L, this propagator displays
a gap of the order of the Thouless energy Ec ≡ ~D/L2; that is, for energies below
this threshold only the homogeneous (q = 0) configuration remains dominant while
inhomogeneous configurations become strongly suppressed. The effective low–energy
theory is thus governed by the so–called ‘zero–dimensional’ σ–model, which is just jargon
for a reduced field space which is structureless in configuration space. Efetov employed
the supersymmetric formulation of the zero–dimensional σ–model and showed how to
derive the RMT answer from it. While this seminal result is not directly applicable to
the realm of clean chaotic systems, it illustrates how powerful field theoretical methods
are in deriving universal properties.

Tempted by that promise and as late as 1995, Muzykantskii & Khmel’nitskii formu-
lated the counterpart of the diffusive σ–model for clean systems [27]. In field theory
jargon, clean is synonymous to ‘ballistic’,4 and consequently the resulting field theory
was termed the ballistic σ–model. This model is the central object of interest to this
thesis. It is formulated in terms of fields which reside on classical phase space, and
its perturbative evaluation is formulated in terms of the Liouville propagator of phase
space densities. The ballistic σ–model therefore promises to even allow a systematic
study of non–universal properties of clean systems. Perhaps yet more attractive is that
a reduction of its field space to those configurations which are homogeneous on phase
space again yields the zero–dimensional σ–model and hence the RMT answer. That
this expectation once might prove successful is backed up by the fact that the Liouville
propagator of chaotic systems is highly unstable against noise. Namely, in the presence of
noise, the Liouville propagator acts on a reduced space of smooth phase space densities.
The resulting object is called the Perron–Frobenius propagator and is known to display
a gap ~/tmix against the homogeneous configuration, just like its diffusive cousin.5 Inter-

3Quantum uncertainty is reflected in a finite so–called Ehrenfest time, the time it takes to amplify
quantum details to classical size by means of Lyapunov expansion. This time scale was first identified
by Larkin & Ovchinnikov in the 1960s [14, 15]. It was again (Aleiner and) Larkin [16, 17] who in 1996
first identified the Ehrenfest time to play a pivotal role in quantum chaos.

4This terminology alludes to the ballistic (diffusive) motion of electrons in a clean (disordered)
system.

5In fact and as a crucial point of this thesis, the propagator of the ballistic σ–model turns out to be
indeed the Perron–Frobenius propagator, but may not be evaluated in the näıve sense that it becomes
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estingly, taking the long–time limit first, this gap even prevails in the limit of vanishing
noise. This is one of the rare (but usually fundamental) cases in physics where two limits
— in the case at hand the long–time limit and the limit of vanishing noise — do not
commute. Altogether this field theory was very appealing to condensed matter physicists
and promised them a way to explain how universality emerges in quantum chaos.

So it took only another year until Andreev et al. proposed a derivation of the ballistic
σ–model in their seminal works [28, 29]. Building upon the observation that it always
takes some statistical ensemble to average over in order to derive an effective field theory,
they took advantage of the fact that spectral correlations are invariant under translations
of the spectrum. Averaging over this reference energy, Andreev et al. were able to derive
the action by Muzykantskii & Khmel’nitskii from first principles. In the following years
and even in the original works, however, a number of drawbacks were identified which
plagued both the derivation and the evaluation of the effective theory [28, 29, 30, 31, 32].
Apart from the phenomenological (nevertheless very insightful) works by Larkin and
collaborators [16, 17, 33, 34] and Altland & Taras–Semchuk [35] on the topic of quantum
interference effects, it is safe to say that the drawbacks of the ballistic σ–model have
remained unresolved to date. This thesis aims to reconsider these problems in depth and
to cure most of them.

But before, let us provide some more background on universality in quantum chaos
in the remainder of this introductory chapter. First, we are going to give a brief account
of the history of the ‘proximity effect’, a term for the anomalous properties which nor-
malconducting systems inherit from an adjacent superconductor. After that we aim to
review the basic ideas entering the semiclassical approach to universal spectral correla-
tions. These ideas rely on the phenomenon of quantum interference, hence the title of
that section. We conclude with an outline of this thesis.

1.2 The proximity effect

It was as early as in the 1960s [36] that superconductors were found to tend to export
some of their anomalous properties to adjacent normal conducting materials.6 This
so–called ‘proximity effect’ has been of great interest to mesoscopic physics ever since.
Perhaps the most direct manifestation is the suppression of the density of states (DoS) in
the vicinity of the Fermi surface. More importantly to us, depending on the nature of the
underlying classical dynamics of the normal region, this suppression falls into one of only
two qualitatively different categories [41, 42]: while the suppression is approximately
linear in the integrable case, the DoS displays a finite ‘Andreev’ gap otherwise. This
result has been experimentally tested on normalconducting films on superconducting
substrates [43]. While no gap was observed in the clean case, a gap opened in the
presence of disorder. Yet, for clean systems which are non–integrable merely due to their
chaotic classical dynamics, the formation of a gap is to date but an expectation backed up

homogeneous for times scales in excess of tmix. It is more adequate to think of it as a discretized version
of the Liouville propagator, where the discretization length scales (due to quantum uncertainty) as ~;
this object is protected against decay to universality up to the Ehrenfest time (cf. the discussion in
section 1.3 and chapter 4), and only after this delay time has elapsed, it decays on the time scale set
by tmix.

6For extensive reviews cf. [37, 38, 39, 40].



1.3 Quantum interference: Semiclassical background 11

by numerical results while an experimental verification is still lacking (cf. the review [40]).
Due to technological progress experiments might nevertheless soon come into reach. For
example it is possible to fabricate billiards of almost ballistic two–dimensional electron
gases which are coupled to a superconductor (cf. [44] and references therein).

We already have encountered a spectral ‘litmus test’ for classical chaos in the in-
troduction, namely the formation of non–trivial and universal spectral correlations. In
contrast to the latter, the proximity effect is based on the DoS itself. Similar to the BGS
conjecture, the Andreev gap turned out to be recalcitrant to theoretical explanation. An
important step was taken by Lodder & Nazarov (LN), who built upon the Eilenberger
equation to relate the DoS to the distribution of lengths of classical paths in the normal
region [45]. They found that since paths of any length (and thus of arbitrarily long
flight time) exist there are states down to even the lowest energies. In other words, they
could not confirm the formation of a gap in the DoS. This is not what one expects since
quantum uncertainty sets a minimal resolution in phase space below which the notion
of individual trajectories loses its meaning. Indeed, in chaotic systems, the quantum
uncertainty is amplified to classical dimensions after the so–called Ehrenfest time tE, so
trajectories longer than tE should have established contact to the superconductor and
not contribute to the DoS any more. Correspondingly, LN themselves already conjec-
tured the presence of a gap of the order of ~/tE.7 This conjecture was substantiated
phenomenologically by Taras–Semchuk & Altland [35] and Vavilov & Larkin [33] and
has been tested numerically [41, 42]. Nonetheless, the question remains how quantum
uncertainty enters the ‘hard–core’ quasiclassics à la LN. Building upon the basic field
theoretical framework developed in chapter 2, we will turn to this question in chapter 3.

1.3 Quantum interference: Semiclassical background

In this section we review the semiclassical results for the behavior of globally hyper-
bolic (chaotic1) quantum systems at time scales t larger than the mixing time tmix yet
smaller than the Heisenberg time tH ≡ 2π~/∆. While the first condition implies that
non–universal aspects of the classical dynamics are inessential, the second ensures that
concepts of perturbation theory (in the parameter τ ≡ t/tH) are applicable. If not men-
tioned explicitly otherwise, the results covered here are a strongly simplified condensate
of recent publications by the Haake group [22, 23].

To describe correlations in the spectrum of the system we consider the two–point
correlation function

R2(ω) ≡ ∆2
〈
ρ(E + ω/2)ρ(E − ω/2)

〉
E
− 1 (1.1a)

and its Fourier transform

K(t) ≡ 1

∆

∫
dω e−

i
~ωtR2(ω), (1.1b)

7If the Ehrenfest time is finite, the gap is ∼ min{~/tD, ~/tE}, where tD is the dwell time of the
normalconducting region [40].

1In fact, all results apply to general mixing rather than just uniformly hyperbolic systems. The point
is that mixing implies ergodicity and non–integrability, and hence any mixing system will appear to have
constant global Lyapunov exponents when evaluated on time scales t� tmix.
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the spectral form factor. Here, ρ(E) is the energy dependent DoS, and
〈
· · ·

〉
E

denotes
the average over a sufficiently large portion of the spectrum centered around some refer-
ence energy E0. In semiclassics, one makes use of the representation of the (oscillatory
part of the) DoS by means of the Gutzwiller trace formula [46, 47]

ρ(E)−
〈
ρ(E)

〉
E
∼ 1

π~
Re

∑
γ

Aγe
iSγ/~ (1.2)

to express the spectral form factor as

Ksc(τ) =
〈∑
γγ′

AγA
∗
γ′e

i(Sγ−Sγ′ )/~δ
(
τ − Tγ + Tγ′

2tH

)〉
, (1.3)

where the sums are over periodic orbits γ and γ′, Sγ the classical action of the orbit γ,
Tγ its revolution time, and Aγ its classical stability amplitude.

Before turning to a more detailed discussion let us briefly summarize the main results
recently obtained for the semiclassical form factor: for times τ < 1, Ksc can be expanded
in a series in τ . As shown by Berry [11], the dominant contribution to this expansion,

K
(1)
sc = 2τ , is provided by pairs of identical (γ = γ′) or mutually time reversed (γ = T γ′)

paths.8 All corrections to the leading contribution K
(1)
sc hinge on the mechanism of

quantum interference. E.g., the sub–dominant contribution K
(2)
sc to the form factor

is provided by pairs (γ, γ′) that are nearly identical except for one ‘encounter region’:
in this region, one of the paths self–intersects9 while its partner just so avoids the
intersection (cf. figure 1.1). Alternatively, one may think of two trajectories that start
out nearly identical, then split up and later recombine to form an interfering Feynman
amplitude pair. The two paths are, thus, topologically distinct yet may carry almost
identical classical actions [16]. Specifically, SR [13] have shown that for sufficiently
shallow self intersections (crossing angle in configuration space of O(~)) the action
difference |Sγ − Sγ′| . ~. For these angles, the duration of the encounter process is of
the order of the Ehrenfest time

tE ≡
1

λ
ln
c2

~
(1.4)

where λ is the phase space average of the dominant Lyapunov exponent of the system and
c a classical reference scale (see below) whose detailed value is of secondary importance.
This identifies tE as the minimal time required to build up quantum corrections to the
form factor (as well as to other physical observables [16]). Throughout we shall assume
t > tmix and the hierarchy tmix � tE � tH, where the condition tmix � tE is imposed to
guarantee that for time scales t ∼ tE, the system already behaves universally.10

Summation over all SR pairs [13] leads to the universal result Ksc ' K
(1)
sc +K

(2)
sc =

2τ − 2τ 2, which is consistent with the short time expansion of the random matrix form

8For the sake of simplicity, we focus on the case of f = 2 dimensions and of time reversal and spin
rotational invariant systems (orthogonal symmetry) in this section. All results generalize to an arbitrary
number f of degrees of freedom and general symmetry classes.

9Notice that in f = 2 dimensions a path of duration t � tmix typically has many self–intersections
in configuration space.

10For tmix > tE, the time window tE < t < tmix is characterized by the prevalence of correlations that
are non–universal yet quantum mechanical in nature.
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~

c

Figure 1.1: Cartoon of a pair of topologically distinct paths (γ, γ′) contributing to the
first quantum correction to the spectral form factor. Notice that γ and γ′ differ in
exactly one intersection region (crossing vs. avoided crossing). Inset: blow–up of the
intersection region.

factor11

KRMT(τ)
τ<1
= 2τ − τ ln(1 + 2τ) = 2τ − 2τ 2 + · · · . (1.5)

At higher orders in the τ–expansion, orbit pairs of more complex topology enter the
stage. (For some families of pairs contributing to the next–to–leading correction, K

(3)
sc ,

see figure 1.2.) The summation over all these pairs [23] — feasible under the presumed
condition t > tmix — obtains an infinite τ–series which equals the series expansion of the
RMT result (1.5). It is also noteworthy that both the topology of the contributing orbit
pairs and the combinatorial aspects of the summation are in one–to–one correspondence
to the impurity–diagram expansion [48] of the spectral correlation function of disordered
quantum systems.12

Central to our comparison of semiclassics and field theory below will be the un-
derstanding of the encounter regions where formerly pairwise aligned orbit stretches
reorganize. The analysis of these objects is greatly facilitated by switching from the con-
figuration space representation originally used by SR to one in phase space [19, 20, 21].
In the following we briefly discuss the phase space structure of the regions where peri-
odic orbits rearrange. In chapter 5 we will compare these structures to the (somewhat

11For the sake of completeness, we report the full random matrix result, which reads

KRMT(τ) =

{
2τ − τ ln(1 + 2τ), τ < 1,
2− τ ln 2τ+1

2τ−1 , τ > 1

in the orthogonal case, while in the unitary case the form factor is given by

KRMT(τ) =

{
τ, τ < 1,
1, τ > 1.

12Due to the notorious non–analyticity of KRMT(τ) at τ = 1 [3], the form factor at times τ > 1 was
until very recently believed to be beyond the reach of semiclassical summation schemes. For τ > 1,
however, there is another expansion scheme which is organized in terms of orbit/‘pseudo–orbit’ pairs
and yields the τ > 1 expansion of the form factor [25]. These orbit/pseudo–orbit pairs have also been
shown to be related term by term to a disorder diagram expansion about an additional ‘non–standard’
saddle–point.
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Figure 1.2: Cartoon of three classes of orbit pairs that contribute to the expansion of the
form factor at order τ 3. (The triple–encounter region shown in the two figures on the
right is the analog of the Hikami hexagon familiar from the impurity diagram approach
to disordered systems.) The existence of the middle pair does not rely on time reversal
invariance.

different) field theoretical variant of encounter processes.

Considering the correction K
(2)
sc as an example, we note that the encounter region

contains four orbit stretches in close proximity to each other (cf. figures 1.1, 1.3): two
segments x(t1) and x′(t1) of the orbits γ and γ′ traversing the encounter region and
the (close to) time reversed13 x(t1 + t2) and x′(t1 + t2) of these trajectory segments
reentering after one of the loops adjacent to the encounter region has been traversed
(t2 is the duration of the loop traversal, and t1 parameterizes the time during which the
encounter region is passed). To describe the dynamics of these trajectory segments, it
is convenient to introduce a Poincaré surface of section S transverse to the trajectory
x(t1). For the sake of simplicity, let us consider a system with two degrees of freedom
(a billiard, say), in which case S is a two–dimensional plane slicing through the three–
dimensional subspace of constant energy in phase space. We chose the origin of S such
that it coincides with x(t1). Introducing coordinate vectors eu and es along the stable
and unstable direction in S, the three points x̄(t1 + t2), x′(t1) and x̄′(t1 + t2) are then
represented by the coordinate pairs (u, s), (u, 0), and (0, s), respectively. (Notice that
the trajectory γ′/T γ′ traverses the encounter region on the unstable (s = 0)/stable
(u = 0) manifold thus deviating from/approaching the reference orbit γ.)

s

u

x(t1)

tenc

tin tout

γ

γ′

x′(t1)
γ′

x(t1) x′(t1)

x̄(t1 + t2)
x̄′(t1 + t2)

x′(t1 + t2)

x(t1 + t2)

Figure 1.3: The structure of the encounter region. The picture on the right shows how
the parallelogram spanned by the four points evolves in time t1, while its symplectic area
us is conserved.

The above coordinate system is optimally adjusted to a description of the two main
characteristics of the encounter region: its duration tenc and the action difference Sγ−Sγ′ .
Indeed, it is straightforward to show that the total action difference is simply given
by the area of the parallelogram spanned by the four reference points in phase space,

13In a position–momentum representation, x = (q,p), time reversal is defined as x̄ ≡ (q,−p).
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Sγ − Sγ′ = us [21]. As for the encounter duration, let us assume that the distance
between the orbit points may grow up to a value c before they leave what we call the
‘encounter region’. (It is natural to identify c with the typical phase space scale up to
which the dynamics can be linearized around x(t1); however, any other classical scale
will be just as good.) After the trajectory γ has entered the encounter region, it takes a
time tin ∼ λ−1 ln(c/s) to reach the surface of section and then a time tout ∼ λ−1 ln(c/u)
to continue to the end of the encounter region. (Here, λ is the Lyapunov exponent
of the system. Thanks to the assumption tmix � tE, λ may be assumed to be a ‘self
averaging quantity’, constant in phase space.) The total duration of the passage is
thus given by tenc(u, s) ≡ tout + tin ∼ λ−1 ln(c2/(us)). The action difference of orbit
pairs contributing significantly to the double sum must be small, |Sγ − Sγ′| = us . ~.
Consequently, tenc & λ−1 ln(c2/~) ≡ tE, where tE is the Ehrenfest time introduced above.
(Notice that both Sγ−Sγ′ and tenc depend only on the product us. While the individual
coordinates u and s depend on the positioning of the surface of section, their product
us is a canonical invariant and, therefore, independent of the choice of S.)

Having discussed the microscopic structure of the encounter region, we next need
to ask a question of statistical nature: given a long periodic orbit γ of total time
t, what is the number N(u, s, t) du ds of encounter regions with Poincaré paramet-
ers in [u, u + du] × [s, s + ds]? (To each of these encounter regions there will be
exactly one topologically distinct partner orbit γ′ that is identical to γ in all other
(N − 1) encounters. Thus, N(u, s, t) du ds is the number of SR pairs for a given
parameter configuration and

∫
du dsN(u, s, t) is the total number of SR pairs.) Since

the times t1 and t2 defining the two traversals of the encounter region are arbitrary
(except for the obvious condition |t1 − t2| > tenc), N is proportional to the double
integral N(u, s, t) du ds ∝ 1

2

∫ t

0,|t2−t1|>tenc
dt1 dt2 Pret(u, s, t2) du ds. The integrand Pret

is the probability to propagate from point (0, 0) in the Poincaré section to the time
reverse of (u, s) in the time t2. Since t2 > tenc � tmix, this probability is constant and
equals the inverse of the volume Ω = 2π~ tH of the energy shell, Pret(u, s, t2) = Ω−1.
Thanks to the constancy of Pret, the temporal integrals can be performed and we obtain
N(u, s, t) ∝ t(t − 2tenc)/(2Ω). The normalization of N is fixed by noting that the
temporal double integral weighs each encounter event with a factor tenc. The appropri-
ately normalized number of encounters thus reads N(u, s) = t(t−2tenc)

2tencΩ
. Substitution of

N(u, s, t) into the Gutzwiller sum obtains

K(2)(τ) =
∑
γ

|Aγ|2δ
(
τ − Tγ

tH

) ∫ c

−c
du dsN(u, s, t)2 cos(us/~)

=
τ 2

2π~

∫ c

−c
du ds

( t

tenc(u, s)
− 2

)
cos(us/~)

~→0
= −2τ 2, (1.6)

where we used the sum rule
∑

γ |Aγ|2δ(τ − Tγ/tH) = τ of Hannay and Ozorio de
Almeida [49] and noted that in the semiclassical limit the first term in the integrand
does not contribute (due to the singular dependence of tenc on ~).

Before closing this section, let us discuss one last point related to the semiclassical
approach: the analysis above hinges on the ansatz made for the classical transition
probability Pt(x,x

′) between different points in phase space. Specifically, a näıve inter-
pretation of ergodicity — Pt(x,x

′) = Ω−1 = const. for times t > tmix — is too crude



16 Quantum chaos and universality

to obtain a physically meaningful picture of weak localization. One rather has to take
into account that the unstable coordinate, u(t), separating two initially close (u(0)� c)
points x and x′ grows as u(t) ∼ u(0) exp(λt). For sufficiently small initial separation,
the time it takes before the region of local linearizability is left,

1
2
tE(x,x

′) ≡ 1

λ
ln

c

u(0)
, (1.7)

may well be larger than tmix. This is important because during the process of exponential
divergence, the probability to propagate from x to the time reverse x̄′ is identically zero.
(Simply because the proximity of x and x′ implies that x and x̄′ are far away from
each other.) Only after the domain of linearizable dynamics has been left, this quantity
becomes finite and, in fact, constant:

Pt(x, x̄
′) =

1

Ω
Θ

(
t− tE(x,x′)

)
, if |x− x′| � c. (1.8)

This concludes our brief survey of the semiclassical approach to quantum coherence. It
will be the purpose of this thesis to discuss the corresponding field theoretical formulation.
By chapter 5, we will have obtained a sufficient grip on the field theory to discuss its
structural parallels to the semiclassical formalism just presented.

1.4 Outline of this thesis

In chapter 2 we start out reviewing the known facts about the field theory approach
to quantum chaos. Since the field theory in question — the ballistic σ–model — is
plagued by a number of problems, we will stress the delicate points which were missed
to date. Doing so, we show how to solve some of these problems in chapters 3 and 4.
As our knowledge how to evaluate the field theory grows, applications are discussed
along the way. In particular, we present a consistent semiclassical approach to the
proximity effect in chapter 3. We give an explanation of the proximity gap in chaotic
SN structures and confirm the conjecture by LN that the width of this gap is set by
the inverse Ehrenfest time. Chapter 4 is dedicated to developing a consistent evaluation
scheme of the ballistic σ–model based upon a regularization procedure. We show how a
variant of the BGS conjecture may be derived from first principles, which does not hold
for individual systems, but rather for an ensemble of quantum systems which share the
same classical limit. In chapter 5, we show how the quantum interference corrections
to universal statistics found by the Haake group [24] are obtained from the field theory.
We take this example to explain how the field theory approach presented in this thesis
compares to the semiclassical approach which we discussed in section 1.3. We draw our
conclusions and give an outlook in chapter 6.



Chapter 2

Field theory: The ballistic σσσ–model

In this chapter we review the original derivation of the ballistic σ–model by Andreev et
al. in the seminal papers [28, 29]. We lay particular emphasis on the subtleties which one
might miss when extracting a semiclassical theory from an underlying quantum theory
and which were overlooked by the original authors. We close with a discussion of the
principal and ostensible problems of the ballistic σ–model which kept and keep puzzling
the semiclassical and condensed matter community to date.

2.1 Derivation of the effective field theory

This introductory section consists of a review of the standard derivation of the ballistic
σ–model by Andreev et al. until the point where the authors introduce the quasiclassical
approximation. Starting from rather general assumptions, we obtain an effective (still
quantum) field theory.

2.1.1 Representation of observables: An example

Since it is our aim to apply field theoretical methods to examine spectral properties we
have to give a representation of spectral quantities amenable to field theory. To that
end we write

ρ(E) =
1

π
Im trG−(E) =

1

2πi
tr

(
G−(E)−G+(E)

)
, (2.1)

for the DoS, where the generalized retarded (+) and advanced (−) Green functions are
defined as

G±(E) ≡
(
E −H ± i0)−1. (2.2)

In order to obtain a field theoretical representation we employ the generating functional1

Z(E, ω) ≡
∫
D[ψ̄, ψ] eiψ̄G

−1(E)ψ, G−1(E) ≡ E − 1
2
ω+σar

3 −H, (2.3)

where the ψ–fields are Grassmann–valued vectors in advanced/retarded (ar), N–dimen-
sional Hilbert space, and R–dimensional replica space; since observables are represented

1As a side remark, we mention that for discrete time quantum maps it is possible to formulate an
analogous field theory by means of the color–flavor transformation [50].

17
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by logarithmic derivates of the generating functional, the auxiliary R–fold replication of
the theory serves to ensure proper normalization by means of the identity

ln z = lim
R→0

zR − 1

R
.

As an example of relevance to us, we want to consider the spectral two–point correlation
function, R2, which was defined in (1.1a). In terms of Green functions, R2 can be
represented as

R2(ω) =
∆2

2π2
Re

〈
trG+(E + ω/2) trG−(E − ω/2)

〉
E,c
,

where
〈
AB

〉
c
≡

〈
AB

〉
−

〈
A

〉〈
B

〉
denotes the connected average. To derive this

representation from (2.1) we used that
〈
G+(E1)G

+(E2)
〉
E

=
〈
G+(E1)

〉
E

〈
G+(E2)

〉
E

(and + 
 −). R2 is then obtained by two–fold differentiation of the averaged generating
functional, Z(ω) ≡

〈
Z(E, ω)

〉
E
, according to

R2(ω) = −∆2

2π2
lim
R→0

1

R2
Re ∂2

ωZ(ω).

This follows from the fact that (by construction)

Z(ω1 − ω2) =
〈
det[iG+(E + ω1)]

R det[iG−(E + ω2)]
R
〉
E
.

It is then straightforward to verify that

lim
R→0

1

R2
Re ∂2

ω1−ω2
Z(ω1 − ω2) = −Re

〈
tr G+(E + ω1) tr G−(E + ω2)

〉
E,c

= −2π2

∆2
R2(ω1 − ω2).

In terms of the dimensionless variables s ≡ πω/∆ and τ ≡ t/tH, the field theoretical
representations of R2 and the form factor read

R2(s) = − lim
R→0

1

R2
Re ∂2

sZ(s), (2.4a)

K(τ) = (2τ)2 lim
R→0

1

R2
ReZ(τ). (2.4b)

2.1.2 Energy average

Given the conditions that the width Eav of the energy window is much larger than ∆
yet much smaller than the width of the spectrum, R2 is translationally invariant under
shifts of the center–of–mass energy E within this window, and therefore the result does
not depend on the precise form of the distribution which is used to perform the energy
average in (1.1a). Assuming these conditions to be given we are thus free to employ a
Gaussian average, 〈

· · ·
〉
E

= (2πE2
av)
− 1

2

∫
dE e−

1
2(

E−E0
Eav

)
2

(· · · ), (2.5)
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which induces an interaction term ∝ (ψ̄ψ)2,

Z(ω) =

∫
D[ψ̄, ψ] eiψ̄G

−1(E0)ψ−E2
av
2

(ψ̄ψ)2 .

The interaction term is invariant under unitary transformations

ψ 7→ T ψ, ψ̄ 7→ ψ̄T †, T ∈ U(2RN2), (2.6)

a symmetry which is broken by the other terms in the action, ω · ψ̄σar
3 ψ and ψ̄Hψ. We

may decouple the interaction by means of a Hubbard–Stratonovich transformation2

e−
E2

av
2

(ψ̄ψ)2 =

∫
DQ̃e−

1
2

tr Q̃2+Eavψ̄Q̃ψ.

The invariance of the interaction term has to be respected by the term ψ̄Q̃ψ. Accordingly,
the symmetry transformation (2.6) induces the transformation

Q̃ 7→ T Q̃T −1

on the Hubbard–Stratonovich field Q̃. Performing the (now Gaussian) integral over the
ψ–fields we find that the partition function is given by

Z(ω) =

∫
DQ̃ e−

1
2

tr Q̃2+tr ln(G−1[Q̃]− 1
2
ω+σar

3 ), G−1[Q̃] ≡ E0 −H − iEavQ̃. (2.7)

2.1.3 Saddle–point equation

Varying the action of the effective generating functional (2.7) w.r.t. Q̃ and neglecting
terms of order ω, one obtains the saddle–point equation

Q̃0 = −iEavG[Q̃0]. (2.8)

Applying an ansatz for Q̃0 which is diagonal in the ‘internal’ (that is, all but the Hilbert
space) indices, one finds the solutions

Q̃0(H) = −iE0 −H
2Eav

+ Λ

√
1−

(E0 −H
2Eav

)2

,

where Λ is an arbitrary traceless diagonal matrix with entries ±1.

2.1.4 Effective field theory

These solutions are in fact but some of a whole manifold of solutions, which is understood
as follows: as we have seen above, the Q̃-field transforms according to Q̃ 7→ T Q̃T −1.
We see that for ω = 0, the subgroup of transformations for which [H, T ] = 0 leaves the
action invariant. Hence, for ω = 0, these transformations give rise to a whole manifold
of saddle–points. If ω or [H, T ] are non–zero, the T -fields generate the low–energy

2The missing i in the decoupled term is due to the anticommutativity of Grassmann fields,
viz. − tr(ψ̄ψ)2 = + tr(ψψ̄)2, which is decoupled as − tr(Q̃ψψ̄) = ψ̄Q̃ψ.
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configurations Q̃ = T Q̃0T −1. The transformations for which [T , Q̃0] = 0 have to
be factored out since these do not give rise to new configurations Q̃. We note that
the first term of Q̃0 is diagonal in the internal indices and therefore contributes only a
constant to the soft mode action and that configurations with matrix elements Tαα′ for
which |E0−Eα| > 2Eav result in a purely imaginary contribution which is exponentially
suppressed. It is therefore allowed to effectively replace the saddle–point by

Q̃0(H) = πEavΛδEav

(
E0 −H

)
, δEav(E) ≡ 1

πEav
Re

√
1−

( E

2Eav

)2

. (2.9)

The ‘delta function’ is in fact a normalized semicircle distribution and Eav denotes (a
quarter of) its width. Keeping only the configurations which are soft and do not leave
Q̃0 invariant, the effective action reads (modulo inessential additive constants)

S[T ] = −β
2

tr ln
(
G−1[Q̃]− 1

2
ω+σar

3

)
= −β

2
tr ln

(
G−1[Q̃0]− 1

2
ω+T −1σar

3 T − T −1[H, T ]
)
. (2.10)

For the explanation of the factor of β/2, note that we so far only considered the case
of no discrete symmetries whatsoever (unitary symmetry class, β = 2). In appendix B
we review the necessary modifications to take time reversal invariance into account
(orthogonal symmetry class, β = 1), which roughly speaking leads to another doubling
of field space by a ‘time reversal’ (tr) sector and an additional symmetry obeyed by the
fields.3 Further evaluation of this effective quantum field theory is possible only with
additional assumptions as will become clear momentarily.

2.2 Semiclassical representation

This rather formal section serves to introduce a semiclassical expansion scheme of
quantum theories which will later be employed to semiclassically evaluate the quantum
action (2.10). The insights gained are nevertheless crucial for this work since they lay
the ground for an adequate treatment of quantum uncertainty and other subtleties which
tended to be obfuscated in the conventional field theory approach to quantum chaos.

2.2.1 Stratonovich–Weyl correspondence

A Stratonovich–Weyl correspondence is a family (parameterized by s ∈ R) of one–to–

one linear maps associating to each Hilbert space operator A a function f
(s)
A on phase

space Γ — called the symbol of the operator A — satisfying

(i) f
(s)

A† =
[
f

(s)
A

]∗
(reality)

(ii)
∫

dx f
(s)
A (x) = trA (standardization)

(iii)
∫

dx f
(s)
A (x)f

(−s)
B (x) = tr(AB) (traciality)

3For more complicated symmetry classes we refer the reader to [51].
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along with covariance properties ensuring that the symbols transform properly when a
quantum mechanical system is rotated, boosted, etc. [52, 53]. These conditions ensure
that quantum mechanical expectation values — which are of the form tr(ρA) — may
be interpreted as statistical expectation values of phase space observables. Together
with traciality, standardization ensures that the unit operator is mapped to the constant
function 1.4 The operator product maps to the star product(

f
(s)
A ? f

(s)
B

)
(x) ≡ f

(s)
AB(x).

Being the symbol of an operator product, the star product inherits associativity and
non–commutativity.

2.2.2 Standard phase space and the Wigner symbol

In the remainder of this work we want to restrict ourselves to standard phase space
Γ = Rf × Rf . The general case is discussed in [53] and applies, e.g., to the case
Γ = S2 of quantum mechanical spin [54]. We want to parameterize Γ using rescaled
dimensionless phase space variables,

x =

(
q
p

)
7→

(
q/q0
p/p0

)
,

which we will again denote by x. Here, q0 (p0) is some classical and otherwise inessential
constant of dimension length (momentum), say the system size (Fermi momentum).
Whenever we talk about ~ in the following we actually mean ~eff ≡ ~/(q0p0). This
non–canonical rescaling allows a notion of Euclidean distance on phase space,5

|x− x′| ≡
√

(q− q′)2 + (p− p′)2.

While the s 6= 0 members of the Stratonovich–Weyl correspondence for standard phase
space are of importance in different contexts as well,6 we will only make use of the s = 0
member, the so–called Wigner symbol

A(x) =

∫
d∆q e−

i
~p·∆q〈q + 1

2
∆q|A|q− 1

2
∆q〉. (2.11)

The corresponding star product is called Moyal product [56] and affords the two altern-
ative representations7

(AB)(x) =

∫
dx1

(π~)f
dx2

(π~)f
e

2i
~ xT

1 Ix2A(x + x1)B(x + x2) (2.12a)

= A(x)e
i~
2

←−
∂ T
x I
−→
∂xB(x), (2.12b)

4The phase space integral is normalized to unity.
5Due to the Theorem of Darboux [55], there exist coordinates such that the symplectic form reads

ω =
∑

i dqi ∧ dpi, which induces a Euclidean metric.
6In particular, the (s = ±1)–pair of Husimi and Cahill–Glauber symbols.
7These and other properties of the Wigner symbol are verified in appendix C.
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where I ≡ ( 1
−1 ) is the symplectic unit operator. To obtain a convenient representation

of the product of more than two operators, we iteratively apply the prototype formula
equation (2.12a). A straightforward calculation then yields the general product formula

(A1 · · ·A2n)(x) =

∫ 2n∏
i=1

dxi
(π~)f

e
i
~S(x1,...,x2n)A1(x + x1) · · ·A2n(x + x2n), (2.13)

where the multilinear form S(x1, . . . ,x2n) ≡ 2
∑

i<j(−)i+j+1xT
i Ixj. A view at (2.12a)

reveals that the oscillatory term kills all contributions outside a box where xT
i Ixj . ~,

i.e. it nails the phase space arguments onto each other only in the semiclassical limit
~ → 0. One of the most important messages to take home from this work may be
formulated at this early stage already: the fuzziness of the coordinates in the Moyal
product formula (2.12a) at finite values of ~ stems from the non–commutativity of
quantum operator products and is therefore a direct manifestation of the uncertainty
principle. Finally, the Moyal commutator is given by(

[A,B]
)
(x) = 2iA(x) sin

(~
2

←−
∂ T

x I
−→
∂ x

)
B(x)

= i~{A(x), B(x)}+ . . . , (2.14)

where {f, g}x is the Poisson bracket. A priori , the omitted terms are by no means
small. This apparently trivial point and the quantum uncertainty inherent to the Moyal
product have already been understood in several different contexts [57, 58, 59, 60]. They
have nevertheless so far been overlooked in the semiclassical treatment of the ballistic
σ–model; yet, they are crucial for its adequate derivation and evaluation. In that sense
it is fair to call them novel achievements of this thesis, a predicate which also applies to
the findings in the following subsections which deal with the regularity properties of the
field degrees of freedom.

2.2.3 Off–shell structure of the fields

With this background we are in shape to construct a semiclassical representation of
the action (2.10). To that end let us decompose phase space into one energy variable
E = H(x) and (2f − 1) variables which parameterize the shells Γ(E) of constant
energy E. According to the Theorem of Darboux, it is locally possible to decompose
these variables into one variable t canonically conjugate to E which represents the travel
time along the flow and 2(f − 1) canonical pairs denoted by y = (u, s) (standing for
unstable/stable) which parameterize the cross–section transversal to the flow. These
coordinates are taylor–made to reveal the features of the Hamiltonian flow.

Let us now turn to the phase space structure of the fields T rotating the reference
point Q̃0 in (2.9). We start out representing these fields as T = 11 +W , where the
generatorsW obey the condition [W , Q̃0]+ = 0 (since a component commuting with Q̃0

would not effect a rotation). Choosing [W ,Λ]+ = 0,8 it follows thatW has to commute
with the Hilbert space content of Q̃0, [W , δEav(E0−H)] = 0. Using the Moyal product
formula (2.12a) plus the decomposition xT

1 Ix2 = yT
1 Iy2 +E1t2−E2t1 of the symplectic

8That is, W is block off–diagonal w.r.t. an ordering (+1, . . . ,+1,−1, . . . ,−1) of the entries of Λ.



2.2 Semiclassical representation 23

product, and transforming to a frequency representation, f(ε) ≡ (2π~)−1
∫

dt e
i
~ εtf(t),

it is straightforward to verify that

[
δEav(E0 −H)W

]
(E, ε,y) =W(E, ε,y)δEav

( ε
2
− (E − E0)

)
[
WδEav(E0 −H)](E, ε,y) =W(E, ε,y)δEav

( ε
2

+ (E − E0)
)
.

Obviously, only those generators span up the field manifold which do not annihilate the
saddle–point, implying that neither of these terms must vanish. On the other hand, the
commutator [δEav(E0 −H),W ] does have to vanish, that is

0 =W(E, ε,y)
{
δEav

( ε
2
− (E − E0)

)
− δEav

( ε
2

+ (E − E0)
)}
.

Taken together, these requirements amount to the restrictions

|E − E0| ≤ Eav, |ε| ≤ Eav − |(E − E0)| ≤ Eav,

which are easily verified to carry over to arbitrary powers ofW . Altogether, we see that a
given width Eav of the energy window does not only nail the support of the fields down to
a window of width of order Eav about the energy shell; it also induces an uncertainty of
the T –fields in the t–direction on the scale tav ≡ 2π~/Eav. In order to resolve all details,
tav necessarily has to be smaller than any other relevant time scale of the system. Since
the smallest such time scale is certainly classical (typically, it is set by the Lyapunov time
tL), it suffices to take tav much smaller yet still classical. We then find that averaging
over an energy window as narrow as Eav ∼ ~ suffices to resolve all details of interest,
and we will stick to this choice throughout the remainder of this work.9

2.2.4 Regularity of the field space

Having understood that all Wigner symbols appearing in the action (2.10) are confined
to a small neighborhood of the energy shell, the following important observation applies:
let the support of both A(x) and (AB)(x) be classically finite. Then, the Moyal product
effects a smoothing of scales scaling smaller than ~. To see this, define the convolution
of an operator A with a Gaussian,

〈
A

〉
~α(x) =

∫
dx′A(x′)g~α(x− x′),

where g~α stands for a unit normalized isotropic Gaussian with width σ ∼ ~α. It is then
easy to see that the Moyal product is invariant under smoothing in the sense that

AB = A
〈
B

〉
~α =

〈
AB

〉
~α , α > 1. (2.15)

9In contrast to our findings, Efetov et al. [61] obtain an infinitely thin energy shell. It is unclear to
us how the authors can do so without losing the resolution in direction of the flow.
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This is shown as follows: an application of the integral formula (2.12a) gives(
A

〈
B

〉
~α

)
(x) =

∫
dx1

(π~)f
dx2

(π~)f

∫
dx′ e

2i
~ xT

1 Ix2A(x + x1)B(x′)g~α(x + x2 − x′)

=

∫
dx1

(π~)f
dx′

(π~)f
e

2i
~ xT

1 I(x
′−x)A(x + x1)B(x′)

∫
dx2 e

2i
~ xT

1 Ix2g~α(x2)

=

∫
dx1

(π~)f
dx′

(π~)f
e

2i
~ xT

1 Ix
′
A(x + x1)B(x + x′)e−(x1~α−1)2 = (AB)(x).

These equations should be read bottom up. In the crucial last line, finiteness of x and
x+x1 implies that x1 is also finite, which in turn means (since α > 1) that the Gaussian
is effectively unity. Summarizing, we may a priori restrict ourselves to a field space
consisting only of those Wigner symbols which display no features smaller than ~.

2.3 The ballistic σσσ–model

Having understood about the subtleties of the Wigner representation we now continue
our review of the derivation by Andreev et al. We start out with a bona fide review
of their last steps towards the ballistic σ–model (2.18); this serves to put the reader
into the position of the perplexed reader of the original works. After a discussion of the
problems of which the ballistic σ–model suffers if taken at face value, we outline how a
regularization scheme would resolve one major drawback.

2.3.1 The original derivation of the ballistic σσσ–model

Let us assume that an (a priori formal) expansion of the effective action (2.10) in the
terms ω tr(σar

3 Q̃) and [H, T ] that break the symmetry of the action is justified. We are
then led to

S0[T ] =
iβπ

2∆

∫
dx

Ω
tr

(
1
2
ω+σar

3 Q− T Q0[H, T −1]
)
,

where use of Weyl’s law Ω∆ = (2π~)f was made and all products are understood as
Moyal products. We further made use of the saddle–point equation (2.8), and spurious
normalization factors were absorbed by letting

Q ≡ (πEav)
−1Q̃. (2.16)

Let us further assume that the commutator can be replaced by the Poison bracket
according to

[H, T −1] 7→ i~{H, T −1}. (2.17)

This replacement results from a (once again just formal) truncation of the expansion
(2.14) at first order. In addition — and, as will turn out shortly, closely related to the
‘quasiclassical’ truncation (2.17) — let us assume ‘mode locking’, i.e. that the fields
T (x) do not depend on the energy variable E = H(x) on their support (which is
concentrated to the energy shell of classically vanishing width Eav ∼ ~). We then arrive
at the celebrated ballistic σ–model action

S[T ] =
βπ~
2∆

∫
(dx) tr

(iω+

2~
σar

3 Q+ TΛ{H,T−1}
)
, (2.18)
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where
∫

(dx) ≡ Ω−1
∫

dx δ(E0−H(x)) stands for the unit normalized integral over the
energy shell, Q = TΛT−1 denotes the reduced10 field, the products are ordinary local
products in the variables (E, t) and — a novel point of this work — Moyal products in
the transversal directions y.

2.3.2 Problems of the original model

In order to put ourselves in the perspective of the discussion which followed up the
publications by Andreev et al. we want to emphasize the oversimplifications of their
semiclassical expansion scheme. The authors falsely alleged the validity of the quasiclas-
sical replacement (2.17). Apart of that, all products were taken to be ordinary local
products, and the presence of the intrinsic UV cut–off on phase space scales of order ~
which we discussed in the preceding section 2.2 was missed. Taken at face value, the
ballistic σ–model (2.18) then apparently suffers from a number of problems:

(i) A look at the quantum action (2.10) at ω = 0 reveals that it possesses a host
of N exact zero modes, where N ≡ Eav/∆ denotes the (effective) dimension of
Hilbert space. These are given by the field configurations which are diagonal in
an eigenbasis of the Hamiltonian and therefore commute with the latter. In the
semiclassical limit (N → ∞) this instability foils any low–energy expansion [31].
Relatedly, the mode locking assumption and the quasiclassical replacement (2.17)
of the von Neumann commutator by the Liouville bracket remain uncontrolled
without regularization. We want to stress that these drawbacks are inescapable
and principal in any (not only in the present field theoretical) approach without
some additional regularization procedure. This point was first mentioned by Zirn-
bauer [31], while a partial aspect of this problem was already identified in the
original work by Andreev et al. [29]: since the latter authors were not aware of
the UV cut–off they were confronted with the pathological feature of the Liouville
operator that it does not couple at all among different trajectories and disjoint
energy shells.11

(ii) Due do the fact that different trajectories do not seem to couple and the fields
seem to resolve infinitely small details it is not obvious how Ehrenfest time effects
related to quantum uncertainty emerge from the theory. A phenomenological
answer to this problem was proposed by Larkin and collaborators [16, 17, 34]. They
introduced a regulator term in order to phenomenologically model the quantum
uncertainty which underlies the Ehrenfest time physics. How quantum uncertainty
is intrinsic to the ballistic σ–model remained nevertheless obscure.

(iii) The theory fails to reproduce the leading ‘diagonal approximation’ to the form
factor due to an overcounting of periodic orbits. For a discussion of this so–called
‘repetition problem’ cf. the review by Mirlin [32].

In this work, we propose affirmative answers on how to solve problems (i) and (ii),
while we have no solution to offer for the repetition problem (iii). We will not approach

10In the sense that the field structure in the E–direction has become trivial.
11However, Andreev et al. did not recognize the fundamental need for regularization.
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the regularization issue (i) straight ahead, but we find it more instructive to take a detour
in chapter 3 to address problem (ii) before. The merit of doing so is that we understand
how the Ehrenfest time is intrinsic to the field theory, simply because of the principal
regularity of the fields on linear scales ~ which constitutes an important modification
w.r.t. the original work by Andreev. Problems (i) and (ii) therefore turn out to be
largely independent inasmuch as the Ehrenfest time physics well relies on the validity of
the quasiclassical replacement12 (2.17) but not on the strength of the regulator which
ensures this validity. The concrete implementation of a regularization procedure and its
physical interpretation will be postponed to chapter 4.

2.3.3 Effects of regularization

Let us nevertheless briefly discuss the consequences of regularity of the fields below some
cut–off scale larger than ~:

• Since the window about the energy shell is narrower than this cut–off scale, mode
locking would be ensured. In addition, the Moyal products would become local
(up to a sufficiently fine resolution tav) in the time direction.

• Turning to the directions y transversal to the flow, a look at (2.12b) reveals that
the expansion of the Moyal product could be terminated at lowest non–vanishing
order. In particular, the quasiclassical truncation (2.17) of the von Neumann
operator to the Liouville operator would become well–controlled.

• As a ‘byproduct’, the Liouville operator would only act on functions which are
coarse–grained over scales ~. Since for a chaotic system, the resulting propagator
eventually decays to the homogeneous mode (a point to be discussed in chapter 4),
universality would come into reach.

Summarizing, regularization would provide a cure for problem (i) and a justification for
the assumptions that entered the derivation of the ballistic σ–model (2.18) as presented
in subsection 2.3.1.

2.4 Summary

In this section we have not only reviewed the original work by Andreev et al. but also
gained a number of additional insights. Specifically, we gave an account on the semi-
classical representation of quantum theories sufficiently detailed to reveal a number of
aspects which have so far been neglected in the literature of the ballistic σ–model, namely

• a precise statement on the minimal requirement to stabilize the quasiclassical
truncation (2.17) which, as a byproduct, led to the insight that the mode locking
mechanism is but another side of the same coin,

• the identification of a principal lower bound of order ~ on fluctuations of the field
configurations, and

12Which allows to talk about classical dynamics in the first place.
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• of the non–local nature of the transversal Moyal products appearing in the ballistic
σ–model action (2.18).

The first point is the key for identifying a regularization procedure which is minimally
invasive13 and ensures sufficient regularity to justify the ballistic σ–model action (2.18);
this will be the topic of chapter 4. The last two points are related to quantum uncertainty
and allow an understanding of the Ehrenfest time physics, the issue of point (ii) to which
we will now turn.

13At least it is the minimal intrusion which allows for the quasiclassical truncation (2.17).
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Chapter 3

The proximity effect in SN systems

In this chapter we show that any quasiclassical approach — be it field theoretical or not
— to SN systems principally leads to contradictions. We show that these inconsistencies
can be overcome by the observation that quantum uncertainty effectively averages the
kinetic term in the Eilenberger equation. With this modification, the quasiclassical ansatz
leads to a solution which turns out to be both self–consistent and unique. As a result,
we find that the DoS of the chaotic normalconducting component displays a gap which
is of the order of the inverse Ehrenfest time. Moreover, this chapter serves to gain some
intuition for section 4.2 where we will formalize some of the ideas developed here.

3.1 Field theoretical formulation

We follow Taras–Semchuk & Altland [35] and represent the DoS as a derivative of the

generating functional Z(E) =
∫
DΨ eiΨ̄G

−1
E (ε+)Ψ for the retarded Gor’kov Green function

G−1
E (ε+) = E−(ε++∆̂)σph

3 −H. Outsourcing notations and conventions to appendix D,
we want to say here no more than that the superscript ‘ph’ refers to the particle–hole
doubling of the field space which stems from the Nambu spinor representation of the
Hamiltonian of the composite SN system, H is the Hamiltonian describing the dynamics
of the normal conducting component, ∆̂ is the matrix representation of the superconduct-
ing order parameter, and E stands for the Fermi energy. Using the freedom to choose
a gauge we take the superconducting order parameter to be real and, for simplicity but
without loss of generality, to be homogeneous in the superconductor,

∆̂(q) =

{
∆σph

1 , q ∈ S,
0, q ∈ N.

Since the spectrum, when measured w.r.t. the Fermi surface, is invariant under trans-
lations of the latter, we may invoke the energy average which is essential for the con-
struction of an effective field theory; we merely have to replace E0 in (2.5) by EF, the
latter being some arbitrary but classically large energy which will again be called the
Fermi energy. Notice that in contrast to the standard ballistic σ–model as discussed in
chapter 2, the energy variable ε has a different meaning; while in the context of spectral
correlations of normal systems it measured the distance between energy levels, it stands
here for the offset w.r.t. the Fermi surface. The derivation of the effective field theory

29
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then proceeds entirely analogous along the lines of chapter 2 — the only differences
being that E0, ω/2, and the ar–sector are replaced by EF, (ε + ∆̂), and the ph–sector,
respectively. Assuming mode locking we obtain the effective action1

S0[T ] = iπν

∫
(dx) tr

(
(ε+ + ∆̂)σph

3 Q+ TΛ[H,T−1]
)
, (3.1)

which is identical to the standard ballistic σ–model action (2.18) up to the minor modi-
fications mentioned above.

We stress that we do not make explicit use of a regulator (apart from the mode locking
property) in this chapter, as it is our aim to show that the UV cut–off of order ~ alone
suffices to smooth the quasiclassical solution, which will turn out to be singular otherwise.
For clarity of this argument, we did not yet replace the von Neumann commutator by the
Liouville bracket as in (2.17). As reference point of the non–linear field Q, we choose
Λ = σph

3 . The observable of interest, namely the DoS at energy ε w.r.t. the Fermi surface,
is obtained from the Gor’kov Green function as

ν(ε) = − 1

2π
Im

〈
tr

(
G(E, ε+)σph

3

)〉
E

= − lim
R→0

ν

2R

∫
(dx) Re

〈
tr

(
Qσph

3

)〉
Q
, (3.2)

where we made use of (D.1) in the first equality and of the saddle–point equation (2.8)
in the second. Having thus constructed an effective field theory for SN systems, we
finally vary the effective action (3.1) w.r.t. the soft–mode fields T to obtain the mean
field equation [

(ε+ + ∆̂)σph
3 −H, Q̄

]
= 0, Q̄2 = 1. (3.3)

3.2 Solution of the mean field equation

In this section, we reiterate the quasiclassical approach to the mean field equation (3.3)
due to Lodder & Nazarov (LN) in order to demonstrate how any quasiclassical approach
is doomed to fail. The reason is found to lie in the breakdown of the quasiclassical
approximation at the Ehrenfest time and is traced back to the fact that, as it stands, the
quasiclassical scheme is ignorant of quantum uncertainty. We then invoke the UV cut–
off of chapter 2 to construct a unique and self–consistent ‘semiclassical’2 solution which
basically consists of a quasiclassical solution to the coarse–grained mean field equation.
This solution is found to imply a gap in the DoS which is of the order of the inverse
Ehrenfest time.

1Since the letter ∆ is reserved to the order parameter, we use ν for the inverse level spacing: the
average DoS. Since we are working on phase space, ν deviates from the standard notation in fermionic
theories inasmuch as it is not divided by the configuration space volume.

2In this chapter, we mean by ‘semiclassical’ (in parentheses) ‘quasiclassical plus quantum uncertainty’.
This has to be distinguished from the common terminology where the word semiclassical (which we also
use, but without parentheses) indicates the use of a stationary phase approximation to the Feynman
propagator in order to obtain a description in terms of, say, the Gutzwiller trace formula. An example
is the semiclassical approach to spectral statistics of section 1.3.
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3.2.1 The quasiclassical approach

LN analyze equation (3.3) in the quasiclassical approximation which relies on the as-
sumptions that

(A) the quantum von Neumann commutator can be substituted by its quasiclassical
limit, the Poisson bracket, [H, Q̄] 7→ i~{H, Q̄}, and that

(B) the condition Q̄2(x) = 1 is taken to be local, [Q̄(x)]2 = 1.

The resulting equation is called the Eilenberger equation [62]. These assumptions were
found in chapter 2 to be justified only if Q̄(x) is sufficiently a smooth function on phase
space Γ; but for the time being let us take them for granted. Restricting our attention
to the normal region, the quasiclassical solution is constructed as follows:

(i) To a given phase space point x ∈ Γ (of the N region) one associates the classical
trajectory γ through x. Each orbit γ starts and ends at the SN interface Σ and
has a length3 T (x) ≡ Tγ. Since the classical dynamics is assumed to be chaotic
and hence ergodic, the set of all orbits γ constitutes the entire phase space of the
N component.

(ii) Following LN one solves the mean field equation on each orbit γ. The solutions
are given by

Q̄γ(τ) = sin θγ

(
sin

ε(t− tγ)
~

σph
1 + cos

ε(t− tγ)
~

σph
2

)
+ cos θγ σ

ph
3 , (3.4)

where t is a time variable parameterizing the orbit. In the regime ε/∆ � 1,
continuity of Q̄γ(t) at the interfaces (t = ±Tγ/2) fixes the parameters according
to

tγ = 0, cos θγ = −i tan ε
+Tγ
~

.

Evaluating (3.2) in a saddle–point approximation at the quasiclassical solution Q̄, and
using that Im tanx+ = −π

∑
n∈Z δ

(
x− (n+ 1

2
)π

)
, one obtains the ‘Bohr–Sommerfeld’

result

ν̄(ε) = πν

∫
(dx)

∑
n∈Z

δ
(εT (x)

~
− (n+ 1

2
)π

)
. (3.5)

Thus, in order to compute the DoS one needs to determine the distribution of path
lengths for the given system. For a chaotic system this distribution decays exponentially
on the scale of the dwell time of the N component [45, 63], which in turn implies a small
but finite (gapless!) contribution at arbitrarily small energies.

3.2.2 Breakdown of quasiclassics

So far, we have merely reiterated the quasiclassical treatment, which to date represented
the only viable approach to the DoS of an SN system. In this subsection we point out the

3We identify lengths and times by means of the Fermi velocity, L = vFT .
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principal inconsistency of this approach. To be specific, let us check whether the quasi-
classical solution (3.4) constitutes a self–consistent solution of the actual quantum equa-
tion (3.3), i.e., whether it is sufficiently regular to justify the assumptions (A) and (B) of
the quasiclassical approximation which we mentioned in subsection 3.2.1. From chapter 2
we know that condition (A) is satisfied whenever Q̄ possesses no details as fine as ~,4

while condition (B) asks for Q̄ to be approximately constant on any surface of area
δu · δs ∼ ~ transversal to the flow.5

Our strategy to check these conditions is the following: given the solution (3.4) of
the quasiclassical version of the mean field equation (3.3) on all trajectories, we state
that for conditions (A) and (B) to be applicable, the solution (3.4) should be constant
over all sections transversal to the classical flow which are (A) as wide as ~ in any
transversal direction and (B) of the canonically invariant transversal area δu ·δs = ~. To
check whether this consistency condition is obeyed, we choose an (arbitrary but fixed)
orbit γ and form a bundle of all trajectories γ′ which end at the interface Σ± together
with γ in a continuous fashion. As the solution for one trajectory is uniquely determined
by the trajectory length and the trajectories within each bundle are by construction
of approximately the same length, the quasiclassical solution (3.4) does not fluctuate
over transversal sections of these bundles; hence, we will call the bundles ‘protected
regions’, namely, protected against field fluctuations transversal to the flow. By means
of the criterion for applicability of the quasiclassical approximation, we understand how
the Ehrenfest time enters the stage here: the protected region of an orbit γ of length
Tγ & tE necessarily acquires a diameter smaller than ~, cf. Fig. 3.1. This implies that
any protected region around a long6 orbit gets ‘squeezed’ within the background of short
orbits (which make up the overwhelming fraction of phase space). Therefore, the orbit
lengths (and hence the quasiclassical solution (3.4)) vary significantly on scales of order
~, which implies that condition (A) is violated. The main conclusion is thus that the field
configuration (3.4) obtained by LN is not consistent with the quasiclassical approximation
and therefore does not solve the original quantum equation (3.3). In fact, we also see
that in any quasiclassical treatment of the quantum equation, talking of orbits longer
than the Ehrenfest time is meaningless. In the next subsection we discuss to what
extent the classical dynamics can nonetheless be employed to construct a self–consistent
solution to (3.3).

3.2.3 Self–consistent solution of the quantum equation

Having understood that any quasiclassical treatment inevitably leads to contradictions,
we now employ our findings about the smoothness properties of the Q̄–field to try
and find a solution which is ‘semiclassical’ in the weaker sense that the ansatz of the
quasiclassical replacement (A) only holds on average over the minimal grain size,

[H, Q̄]
(2.15)
=

〈
[H, Q̄]

〉
~α

(A)
= i~

〈
{H, Q̄}

〉
~α , α > 1. (A’)

Note that the inconsistency with the quasiclassical assumptions only arose for long orbits.
Motivated by this observation we define the set Γ̃ ≡ {γ|Tγ & tE} of exceptionally long

4Recall the differential version of the Moyal product (2.12)
5In this chapter, we restrict ourselves to the case f = 2.
6‘Long’/‘short’ refers to longer/shorter than tE.
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tE
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Σ+Σ−
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u

Figure 3.1: Construction of the protected region about a long orbit. The shaded region
marks the ~–threshold. The segment within the dashed lines is protected (in the sense
that its ~–neighborhood contains only long orbits) while the complement has established
contact to the background of short orbits.

orbits and state that for x ∈ Γ\ Γ̃, Eq. (3.4) constitutes the unique solution to the mean
field equation (3.3, A’) and is consistent with conditions (A) and (B). Thus, on Γ \ Γ̃
a ‘semiclassical’ solution has to be identical to the solution by LN. On the long orbits,
x ∈ γ ∈ Γ̃, choose x outside the dashed lines of Fig. 3.1 and consider an ~–neighborhood
U of x.7 The smallest transversal extension of the protected component U ∩ Γ̃ of U
scales as e−λ(Tγ/2+|t|), where t denotes the time–like coordinate of x = γ(t) (cf. Fig. 3.1).
This means that for |t| > tE − Tγ/2, this diameter is smaller than the diameter ~ of U
by a factor which scales as a positive power of ~. Thus, the protected component of the
~–neighborhood U makes up a negligible fraction.8 With this knowledge, we may now
rewrite the mean field equation (3.3, A’) at the point x according to

[ε+σph
3 , Q̄]

(3.3)
= [H, Q̄]

(A’)
= i~

〈
{H, Q̄}

〉
U
≈ i~

〈
{H, Q̄}

〉
U\Γ̃

(3.3)
=

〈
[ε+σph

3 , Q̄]
〉
U\Γ̃.

The first equality is the mean field equation. Secondly, we applied the modified ‘semi-
classical’ ansatz (A’). The third step is valid because U ∩ Γ̃ by construction makes up a
vanishingly small fraction of U . In the last step we used that the quasiclassical solution
Q̄|Γ\Γ̃ is self–consistent and therefore also a solution of the full mean field equation.

We are now able to formulate the central result of this chapter: wherever the protec-
ted region has become negligibly thin, the ‘semiclassical’ solution is uniquely obtained as
the mean value (over an ~–neighborhood) of its quasiclassical value on the background
of short orbits,

Q̄ =
〈
Q̄|Γ\Γ̃

〉
~. (3.6)

7In the sense that U is of linear dimensions scaling as ~α, α↘ 1.
8Think of U as of a ball and of its protected component U ∩ Γ̃ as of a pancake within this ball which

is very thin in comparison to the ball’s diameter.
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3.2.4 The Ehrenfest gap

For energies ε ≤ π~/(2tE), the short orbits stay clear of the resonance condition (3.5),
which implies that no contributions to the DoS are formed. Furthermore, the mean
field assumes the approximate value σph

2 on these orbits which coincides with the bulk
value of Q̄ deep inside the superconductor. Due to equation (3.6), the same holds for
those protected regions which have become negligibly thin. Note that for orbits with
length tE < Tγ < 2tE, there remains a protected region of short length 2tE − Tγ < tE
(cf. figure 3.1); yet, this region is indistinguishable of a short protected region which
has its ends attached to the background σph

2 of generic trajectories, that is, to the
superconducting bulk. Thus, also on Γ \ Γ̃, and hence everywhere

Q̄ ≈ σph
2 . (3.7)

We stress once more that (3.7) is the unique low–energy solution which is consistent with
the ‘semiclassical’ approximation scheme. If no other solutions exist, the DoS in an SN
system will display a gap of width π~/(2tE). Orbits of length in excess of the Ehrenfest
time are always dominated by the background of short orbits; the contact to the shorter
neighbors is established on the Lyapunov time scale tL = λ−1, so we conclude that at
finite ~ the gap is not hard but the DoS exponentially decays at ~/tE on a scale ~tL/t2E.
However, the quotient of this scale and the gap width is given by tL/tE and goes to zero
in the semiclassical limit.

In principle there are solutions to the mean field equation (3.3) which are quantum
in the sense that they cannot be identified by ‘semiclassical’ means. These solutions can
only be discarded with an additional regulator which ensures the quasiclassical trunca-
tion (A), but we stress that quantum uncertainty alone sets the lower bound for the size
of the gap, and not the precise form or strength of the regulator.

3.3 Summary

In this chapter we have shown how the quasiclassical approximation leads to contradic-
tions at times in excess of the Ehrenfest time. This failure was traced back to the missing
account for quantum uncertainty in the quasiclassical approach. We then invoked the
smoothness properties of the Wigner symbol which in chapter 2 were found to stem
from the non–commutativity of quantum mechanics. This way we were able to cure the
inconsistencies of the quasiclassical approach and to obtain a unique and self–consistent
‘semiclassical’ solution. For energies below the inverse Ehrenfest time, this solution was
found to be given by the superconducting bulk value and thus responsible for the form-
ation of a gap in the DoS. This gap was seen to rely upon the presence of a regulator
only implicitly, in the sense that the gap size is set by quantum uncertainty alone.



Chapter 4

Perturbation theory I: Regularization
and universality

Building upon the field theoretical framework of chapter 2 we construct a perturbation
theory. As seen with the Andreev billard in the preceding chapter, any quasiclassical
field theory of chaotic systems will generate arbitrarily small details due to Lyapunov
contraction. We propose a regularization scheme which consists of introducing a small
amount of diffusion into the dynamics which counteracts the Lyapunov contraction, and
which we argue to be physically reasonable in f ≤ 3 dimensions since it does not force
an integrable system into RMT statistics. We point out that we do not succeed to justify
a regularization scheme which would leave the spectrum of an individual system intact;
but we are able to derive a regulator from an averaging procedure over an ensemble of
quantum systems all of which share the same classical limit. An analogous argument was
earlier given by Zirnbauer [31], yet we are able to weaken his assumptions significantly;
in particular, the influence of the regulator is so weak that quantum uncertainty is still
intrinsically manifest.

In the last and rather formal section, we invoke classic and mathematically rigorous
results from ergodic theory whose precise statements in our opinion are too little known
at least in the condensed matter community. In order to apply these results appropriately
we present a small dictionary which translates them to the field theoretical context. As
one byproduct, it turns out that a proper understanding of these results resolves the
apparent paradox that the propagator of the field theory decays on the classical time
scale tmix on one hand, which is subject to a delay until the quantum Ehrenfest time
tE (associated to the coarse graining due to quantum uncertainty) has elapsed, on the
other. As another byproduct, we cite a concrete notion of what is meant by ‘generic’
chaos in mathematics nowadays. We finally argue that establishing the universal regime
at energies below the inverse Ehrenfest time amounts to an explanation of universal
spectral correlations and hence of BGS spectral statistics for our ensemble.

4.1 Regularization

In order to describe spectral statistics in chaotic systems, we tie in with the field theory
developed in chapter 2 and construct a perturbation theory. In the subsequent chapter 5,
the resulting perturbative expansion will turn out to be equivalent to the semiclassical
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short time expansion of the form factor we learned about in section 1.3. We propose a
regularization scheme, discuss the resulting propagator of the perturbation theory, and
give a prescription for its evaluation. Finally, we argue that we are unable to justify
the presence of the regulator for an individual system, but rather for an ensemble of
classically equal quantum systems.

4.1.1 Perturbative action

Let us evaluate the field integral with effective action (2.18). We focus here on the
orthogonal (β = 1) variant of the field theory. The evaluation of the field theory
relies on a perturbative expansion of the effective field which is organized about the
reference point1 Λ = σar

3 and is most conveniently performed using the so–called ‘rational’
parameterization of the coset–valued field T . This parameterization is defined by T =
1 +W , where

W =

(
B

−B†
)

ar

(4.1)

is a matrix which anti–commutes with the saddle–point Λ introduced above. Its off–
diagonal blocks satisfy the constraint B† = Bτ , where Bτ denotes the generalized
transposition associated to time reversal defined in appendix B. The principal advantage
of the rational parameterization is that the Jacobian of the transformation from the
T–matrices to the linear space of B–matrices is unity:

∫
DT =

∫
DB. Substituting this

representation into the action (2.18) we obtain a series expansion S[B] =
∑∞

n=1 S
(2n)[B],

where2

S(2n)[B] =
tH
2

∫
(dx) tr

[
(−B†B)n−1B†LωB

]
(4.2)

is of 2n–th order in B. Here, Lω ≡ −iω/~− [H, ] stands for the von Neumann operator
which generates the time evolution of quantum density operators. In order to ensure
regularity of the field space, we introduce a small amount of diffusion ∼ tr(∂xQ)2, to
be discussed in detail momentarily. For now let it suffice to say that it effects both
mode locking and the truncation (2.17) of the von Neumann operator to the Liouville
operator Lω ≡ −iω/~ − {H, } which generates the time evolution of classical phase
space densities. Anticipating this result, the quadratic action reduces to

S(2)[B] =
tH
2

∫
(dx) tr

[
B†Lω,regB

]
, (4.3)

where the subscript ‘reg’ indicates that we added a small diffusion term ∼ ∂2
x to the

Liouville operator.

1In fact, the perturbative evaluation method may be performed (with minor modifications which do
not affect the arguments of this chapter) about any reference point Λ = Rσar

3 R
−1 which is obtained

from σar
3 by means of a homogeneous rotation R. In fact, we may define the field space by an integral

over all uniform rotations R plus fluctuations W . Since the latter form a linear matrix space, their
Wigner symbols are well–defined.

2Here, we already tacitly assume that mode locking will be ensured self–consistently.
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4.1.2 Perturbative terms and contraction rules

To compute the perturbative expansion we need to consider the non–linear contributions
S(2n>2) to the perturbative action, as given in (4.2). We recall that all products of B–
matrices have to be understood as Moyal products in the transversal directions y, while
they are local in the (E, t)–sector, so we have3

(B†B)2n(x) =

∫ 2n∏
j=1

dyj
(π~)f−1

e
i
~S(y1,...y2n)B†(x + y1) · · ·B(x + y2n). (4.4)

In view of the quadratic action (4.3), the contraction rules [29] employed in calculating
integrals over products of B matrices read〈

tr(B(x)A) tr(B†(x′)A′)
〉
B

=
Ω

tH
Pω(x,x

′) tr(AA′)〈
tr(B(x)AB†(x′)A′)

〉
B

=
Ω

tH
Pω(x,x

′) tr(A) tr(A′)〈
tr(B(x)A) tr(B(x′)A′)

〉
B

=
Ω

tH
Pω(x, x̄

′) tr(AA′τ )

−
〈
tr(B(x)AB(x′)A′)

〉
B

=
Ω

tH
Pω(x, x̄

′) tr(AA′τ ),

(4.5)

where Pω ≡ L−1
ω,reg denotes the regularized propagator, and A and A′ are arbitrary fixed

matrices. To compute the integral over an arbitrary product of traces of B–matrices, one
first forms all possible total pairings B—B†, B—B, and B†—B†, and then computes
individual pairings by means of (4.5). Each contraction reduces the number of matrices by
two. Eventually, one obtains an expression ∼ (tr 11)k = (2R)k≥2, where all contributions
with k > 2 vanish in the replica limit. By elementary power counting, each matrix B
scales as (symbolic notation) ∼ (Lω)−

1
2 ∼ ω−

1
2 ∼ s−

1
2 . Therefore, each vertex S(2n)

contributes a factor ∼ (B†B)n−1B†LωB ∼ s−n+1 to the functional integral.
From the traciality property of the Wigner representation4 we see that the quadratic

action is local in phase space. On the other hand, a view at the integral representa-
tion (4.4) of the Moyal product reveals that the field coordinates in the perturbative
(n > 1) terms of the action (4.6) are fuzzy on the Planck cell scale xT

i Ixj . ~. The
latter feature is a direct manifestation of quantum uncertainty and will be of high import-
ance in the following. As a side (nevertheless important) remark, we want to mention
that at this stage it becomes most transparent why the Wigner representation is suited
best for the questions at hand: its self–duality5 allows to treat all fields on equal footing
and clearly separates

(i) the linear scales ~ related to the breakdown of the quasiclassical approxima-
tion (2.17) — and therefore to the regulator — on one hand

3Here, we are a bit sloppy adding 2f–dimensional objects x and 2(f − 1)–dimensional objects y,
but the notation should be obvious.

4Cf. section 2.2.
5Namely, +s = −s in the traciality property (iii) in subsection 2.2.1; this property is exclusive to the

s = 0 member of a Stratonovich–Weyl correspondence, which in the case of the standard representation
is just the Wigner symbol.
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(ii) from the aspects of quantum uncertainty to be associated to the symplectic area
~, which are manifest in the perturbative terms (n > 1) on the other hand.

The linear scales associated to the latter are typically much larger than the former (since
~δ ·~δ′ = ~ typically implies δ, δ′ < 1). The separation of the aspects of regularization (i)
and of quantum uncertainty (ii) has already been observed in the discussion of the
Andreev billard in chapter 3 and tends to be concealed in, say, the Husimi/Cahill–Glauber
representation (s = ±1) due to the fact that Husimi symbols are smooth over much

larger linear scales ~ 1
2 . We see that in the perturbative terms, the derivatives of the

regulator act on propagators whose arguments are averaged over Planck cells and hence
smooth enough to render these derivatives negligible, so we find that the perturbative
terms of the action (4.2) are simplified according to

S(2n>2)[B] =
tH
2

∫
(dx) tr

[
(B†B)n−1B†LωB

]
, (4.6)

keeping in mind, of course, that the product is given by (4.4).

4.1.3 Regularization in the chaotic case

Näıvely, one might hope that in order to achieve the reduction (2.17) it suffices that in the
present context the initial distributions in phase space are sufficiently smooth;6 however,
what complicates the problem in the case of chaotic dynamics is that the generator
{H, } of classical evolution by itself leads to the dynamical buildup of singularities due
to Lyapunov contraction, no matter how smooth the initial distribution was. Eventually
the quasiclassical approximation will break down, a phenomenon we already came across
in the context of the proximity effect in chapter 3. Namely, linearizing the flow around a
given reference trajectory, the equations of motion controlling the evolution of a phase
space distribution ρ assume the form ρ̇ = {H, ρ} = λs∂sρ+. . . , where s is the coordinate
which contracts strongest, λ the corresponding Lyapunov exponent, and the ellipses
indicate derivatives in other coordinate directions. After a time λ−1 ln(δx0/~), where
δx0 denotes the characteristic initial extension of the distribution, structures in the s–
direction fluctuating on scales . ~ will have formed implying that the higher–order
derivatives acting in s–direction can no longer be neglected. This complication may
be removed by adding to the generator of classical time evolution an elliptic operator
∼ D∂2

x, where D is a constant [58]. Indeed, it is straightforward to show (by dimensional
analysis or by explicit calculation) that for the regularized operator λs∂s + D∂2

s the

initial contraction halts at a characteristic scale s ∼ (D/λ)
1
2 . Choosing D ∼ ~2α, where

α ∈ (0, 1),7 it is guaranteed that the distribution will not build up structure on scales
~, i.e. that the quantum corrections to classical dynamics remain negligible. In fact, we
will stick to the weakest possible choice of α↗ 1, since this will help us to separate the
effects which stem from quantum uncertainty (coarse graining over Planck cells of area
~, but of linear dimensions which are much larger than ~) from the effects of a regulator
cutting off details at ‘some quantum scale ~α’. To understand the implications of the

6Namely, owing to the averaging of the propagator arguments, smooth over Planck cells of area ~,
and thus over linear scales larger than ~.

7The condition α > 0 ensures that the regulator term is classically negligible.
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presence of such a regulator, let us discuss the propagator Pω ≡ L−1
ω,reg. Importantly, Pω

is not strictly inverse to the bare Liouville operator (i.e. the Liouville operator acting in
the space of unregularized functions), LωPω(x,x′) 6= δ(x − x′), but rather acts on a
space of functions which are smooth below some cut–off scale ~. Accordingly, its time
Fourier transform, Pt(x,x

′) = δ(x− x(t)), can resolve the definite dynamical evolution
generated by the Liouville operator only up to times

t̃E ≡
2

λ
ln
c

~
∼ 2tE,

where the factor of 2 stems from the fact that the propagator possesses two legs, each
leg departing from a patch of linear size ~. Thereafter, the limited resolution of the
boundary conditions (the effect of smoothing) renders the dynamics unpredictable and
rapid mixing settles in.8 Taken together, we find

Pt(x,x
′) =

{
δ̃(x− x′(t)) , t < t̃E,

Ω−1 , t > t̃E,
. (4.7)

where the ‘delta function’ is not a mathematical delta function but a wave packet of
classically negligible extension. The crossover between the two regimes takes place over
time scales ∼ max{δt̃E, tmix}, where δt̃E � t̃E is the uncertainty in t̃E caused by an
eventual non–uniformity of the Lyapunov expansion.9 Notice that in previous discussions
of the ballistic σ–model the propagator Pω was (correctly) identified with the Perron–
Frobenius operator, which was mostly (and too näıvely, it turns out) considered as an

object which describes relaxation into a uniform configuration, Pt(x,x
′)
t>tmix= const. over

classically short times. However, while the former identification is correct, it is impossible
to reconcile the latter behavior with the indispensable condition that10

Pt(x, x̄
′)
t<tE(x,x′)

= 0 for |x− x′| � c, (4.8)

implying that the propagator must be able to resolve fine structures in phase space over
times parametrically larger than the relaxation time of the Perron–Frobenius operator.
(In view of the phase space structure of the vertices (4.4), however, we see that the

8For a more rigorous argument, cf. the discussion of section 4.2.
9The results above apply to uniformly hyperbolic systems. In the case of non–uniformly hyperbolic

systems, local fluctuations in the Lyapunov expansion rate λ(x) need to be taken into account. The
logarithmic mismatch y(x, t) = ln(u(t)/u(0)) between two trajectories starting at x and x + u(0)eu,
respectively, grows as ẏ = λ(x(t)). (eu is the locally most unstable direction in phase space.) Due to
inhomogeneities in the expansion rate, y(x, t) is a fluctuating quantity with mean y(t) and a certain
width δy(t). Importantly, an upper bound on fluctuations in y is imposed by Oseledec’s theorem [64]
which states that the phase space average λ of the Lyapunov expansion rate equals the long–time
expansion rate of individual trajectories almost everywhere: y(x, t)/t → λ for t → ∞ for almost all
x. Consequently, δy(t) ∼ tη grows at a rate η < 1. (E.g., the model of statistically independent
Gaussian fluctuations of the local expansion rate employed by AL [16] leads to η = 1

2 .) By definition
of t̃E, a phase space distribution of initial extension ∼ ~2f has expanded to classical dimensions when
y(t) = λt̃E. Defining δt̃E as the time uncertainty in t̃E (due to fluctuations in the local expansion
rate), we obtain the estimate δt̃E ∼ δy(t̃E)/λ ∼ t̃ηE. This means that δt̃E/t̃E ∼ t̃η−1

E vanishes in the
semiclassical limit. For finite ~, the effective relaxation rate of the system is set by max{δt̃E, tmix}.

10Recall our discussion of the semiclassical treatment of weak localization in section 1.3, in particular
the result (1.8) for the classical transition amplitude between almost time reversed phase space points.
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center–of–mass argument x of the involved propagators always appears to be averaged
such that the situation (4.8) is the only case where the deviation from the uniform
configuration plays a role.) Referring to section 4.2 for a more substantial resolution to
this paradox, we here only state that equation (4.7) is motivated by the structure of the
action and does resolve the classical phase space dynamics (and therefore preserves the
condition (4.8)) up to t̃E. Due to quantum uncertainty, however, the initial conditions of
the fields always appear to be averaged over Planck cells (with typical linear dimensions in
excess of ~), so relaxation settles in already long before the threshold time t̃E associated
to the UV cut–off of the fields.11 In any case, the delay time will still be of the order
of tE, so the separation of the (small, of order tmix) time scale over which relaxation
takes place and the (large, of order tE) delay time is still intact, and the relaxation can
be considered to be completed instantaneously once it has begun. Thus, the theory
has long become quantum–unpredictable at a time t̃E where the artificially introduced
smearing would become virulent, and we conclude that the strength of the regulator does
not explicitly enter the results of the theory.

4.1.4 Regularization in the integrable case

It is necessary to investigate the impact of the proposed regularization scheme on an
integrable system. We aim to show now that in integrable systems, the regulator enforces
the universal regime only at energies which scale as ~3, which in f ≤ 3 dimensions is of
the order of (or even smaller than) the level spacing ∆ ∼ ~f , the barrier below which
perturbative evaluation schemes fail anyway.12

Recall that an integrable system possesses f independent constants of motion, the
action variables I, along with canonically conjugate angle variables φφφ which move with
constant velocities ωωω(I) = ∂IH. The Hamiltonian H = H(I) is a function of the
constants of motion alone. The question is now how large is the gap of the integral
kernel of the quadratic action. To that end, consider the eigenvalue equation

−iω
~
ρω =

[
−ωωω(I) · ∂φφφ +D∂2

x

]
ρω.

which governs the propagator of the regularized action. For a finite and classically
large energy shell, the diffusion operator possesses eigenvalues whose spacing scales as
D/L2 ∼ ~2. Low–lying modes with eigenvalues of this size are, for instance, given by
configurations which are independent of the angle variables and depend on the action
variables only on classical length scales. We conclude that the gap in ω scales no larger
than ~3, which in f ≤ 3 dimensions is at most of the order of the level spacing.

4.1.5 Microscopic justification for the regulator

There are several ways to justify a regularization as introduced above. They usually
consist of introducing an ensemble of random perturbations, H 7→ H+V , to the original
Hamiltonian. Examples are stochastic disorder potentials or a random Aharonov–Bohm

11Cf. the discussion of section 5.1.2, where we substantiate this heuristic argument by a calculation.
12Recall the non–analyticity of the form factor at τ = 1 (cf. section 1.3) which is associated to a

breakdown of perturbation theory at ω ∼ ∆.
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flux [65, 66, 67, 68], or a sum of Hamiltonians which generate motion along all 2f
directions of phase space [31]. Generically, an average over the corresponding ensemble
yields a correction13

δSreg ∼
〈
tr(T Q0[V, T −1]T Q0[V, T −1]

〉
V

→ c

∫
(dx)

∫
(dx′) tr

(
Q(x)Q(x′)

)
f̃(x− x′)

→ c

∫
(dx)

(~
ξ

)2

(∂xQ)2.

to the action. In the second line of this symbolic calculation, all integrals and the
correlation function f have been normalized to unity and all numerical factors have been
absorbed in the constant c. In the third line we assumed that a gradient expansion is valid
self–consistently.14 We want to keep the effect of the regulator term as weak as possible
and therefore restrict ξ to classical values. Note that the unperturbed action (2.18) is of
order ω/∆. Thus, in order not to significantly affect the spectrum of the Hamiltonian
H, we would have to demand that the theory is stabilized against the appearance of
quantum corrections to the dynamics if c . 1. On the other hand, we read off (4.3) that
c ∼ ~/∆� 1.15 In other words, an ensemble which leaves the spectrum of an individual
system intact is not sufficient to derive a regulator for the ballistic σ–model in the way
described above,16 and we see no other way than to introduce a larger ensemble, which
certainly implies that all statements to be derived in this work hold only on average over
this ensemble and not for individual systems. A convenient17 ensemble was proposed by
Zirnbauer [31], who considered perturbations

H 7→ H + V, V =

2f∑
j=1

ξjXj,

to the original HamiltonianH, where the ξj are independent Gaussian distributed random
variables with variance ε, and the Xj are quantizations of classical Hamiltonian functions

13A term [tr(QV )]2 also arises, but since Q has no preferred basis, all matrix elements are of the
same order, and the term tr(QV QV ) which we kept here consists of much more summands. In any
case, the latter term does the job, and the two terms do not cancel each other.

14A straightforward calculation reveals that f̃ is the (normalized) symplectic Fourier transform of
f(x− x′) =

〈
V (x)V (x′)

〉
V

, viz.

Sreg[T ] = −βπ
2

4
〈
tr(QV )2

〉
V

= −βπ
2

4

∫
dx

(2π~)f

∫
dx1

(2π~)f
tr

(
Q(x)Q(x + x1)

) ∫
dx2

(2π~)f
e

i
~ xT

1 Ix2f
(x2

ξ

)
,

hence the notion ~/ξ for the correlation length.
15From our discussion of the regularized dynamics in subsection 4.1.3 we also know that this choice

of c ensures the validity of the gradient expansion: indeed, the regulator smoothes the dynamics at
scales ~α, α ↗ 1, before the dangerous scales ~/ξ (which for classical ξ are of O(~)) build up where
the gradient expansion would break down.

16This does not exclude more sophisticated regularization schemes which systematically keep track
of both the classical dynamics and quantum corrections. A promising direction of research seems to be
the recent work by Dittrich et al. on the Wigner representation of the von Neumann propagator [69].

17The reader can convince himself that Gaussian distributed stochastic disorder with classically large
(phase space) correlation length ξ will do equally well.
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with associated linear independent Hamiltonian vector fields Ξj. In fact, we are free to
choose the phase space coordinates Xj = xj as perturbations. These have the virtue
to be linear, implying that the expansion (2.14) always terminates at leading order,
[xj, ] = i~{xj, }, which is just a partial derivative w.r.t. the coordinate conjugate to xi.
Expanding the action (2.10) to second order in the perturbation and averaging, we find
a correction

Sreg = −βπ
2

4

〈
tr

(
T Q0[V, T −1]T Q0[V, T −1]

)〉
V

=
β(π~)2

4

∫
dx

(2π~)f

2f∑
j=1

ε tr
(
T Q0{Ξj, T −1}T Q0{Ξj, T −1}

)
=
β(π~)2

4Eav∆

∫
(dx)

2f∑
j=1

ε tr(TQ0∂xT
−1)2,

where we carried out the Gaussian average to obtain the second line, and we assumed
mode–locking to be self–consistently given in the third line.18 There are two factors
of E−1

av ∼ ~−1 coming from the saddle points Q0; one got absorbed into the integral
measure, while the other one remains uncompensated (cf. the discussion of section 2.3).
Comparing with the unperturbed action (2.18) and counting powers of ~, we find that
the variance ε can be identified (up to classical constants) with the diffusion constant
D of the regulator. Zirnbauer was led to the same identification, but note that he
postulated ε ∼ ~α, while we find that a much smaller variance ε ∼ ~2α suffices,19 since
all we require is the suppression of the quantum corrections to the expansion (2.14)
of the von Neumann commutator. Similarly to Zirnbauer, Aleiner & Larkin [16, 17]
postulated a phenomenological ‘quantum scattering potential’ of strength ε ∼ ~ much
larger than ours. We finally perform a straightforward expansion in the generators B to
readily obtain the postulated Gaussian action (4.3).

It remains to investigate the effect of the regulator upon those modes B which
commute with the Hamiltonian. To that end, consider the expansion of Sreg to quadratic
order in the B–fields and represent the action w.r.t. an eigenbasis H|α〉 = εα|α〉 of the
Hamiltonian, which reads (up to constants of order unity)〈

tr(QVQV )
〉
V
→ 1

E2
av

[〈
VαγVγα

〉
V

tr(B̄αβBβα)−
〈
VβγVδα

〉
V

tr(B̄αβBγδ)
]

→ 1

E2
av

(〈
VαγVγα

〉
V
δαβ −

〈
VαβVβα

〉
V

)
tr(B̄ααBββ).

Recall that the saddle–point (2.9) projects onto the energy window [E0−Eav, E0 +Eav],
so the summations are restricted to those states whose energy lies within this range.
In the second line we restricted ourselves to the modes Bαα which commute with the
Hamiltonian. The matrix Mαβ coupling these modes has the following properties:

(i) M is symmetric.

18In fact, the expansion relies on the validity of a gradient expansion to omit higher order terms. As
already explained, our final tuning of the strength parameter ε will ensure this.

19In both cases, α ∈ (0, 1), and we always take α↗ 1.
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(ii)
∑

αMαβ = 0.

(iii) Since H is chaotic, the eigenbases of V and H are generically uncorrelated It
follows that the diagonal entries of M are approximately equal and of size Mαα ∼
Eav/λ ·

〈
(V 2)αα

〉
V
/E2

av ∼ ~,20 while its off–diagonal entries are random numbers
which are smaller than the diagonal entries by a factor of 1/N .

Matrices of this type are known [70] to possess one non–degenerate eigenvalue zero and

(N−1) eigenvalues of orderMαα(1−N−
1
2 ). Comparing with the magnitude ω/Eav of the

unperturbed action, we conclude that the modes which commute with the Hamiltonian
are no longer zero modes of the regularized theory but acquire a mass ∼MααEav ∼ ~2

— except for the single universal mode B ∝ 11 which is an exact zero mode of the action.
This ensures the suppression of all modes Bαα but the universal mode at energies of the
order of the level spacing21 even in the lowest possible dimension f = 2.

Let us finally comment on the effect of the ensemble average to the semiclassical
approach to spectral correlations as reviewed in section 1.3. As we have just seen, this
ensemble consists of systems whose Hamiltonians differ from the reference Hamiltonian
H by a correction V = ~v, where v is a classical operator. The effect of such a correction
is that the action of the Gutzwiller trace formula (1.2) has to be modified according to

Sγ 7→ Sγ + δSγ, δSγ =

∫
dt V (γ(t)),

while the sum is still over the periodic orbits of the unperturbed Hamiltonian flow [47].
For a single DoS, a disorder average leads to an exponential suppression of contributions
of orbits whose length Tγ exceeds some classical threshold time T ∗,22 which just means
that the resolution of single levels is limited to scales ~/T ∗. In contrast to this, the
semiclassical evaluation of the form factor is insensitive to any such perturbation, as we
will now show: as we have learned in section 1.3, the partner orbits γ, γ′ are identical
outside encounter regions, so it remains to check that δSγ − δSγ′ � ~ also inside an
encounter region. But even inside an encounter region, there is always a stretch of γ′ to
each stretch of γ such that their mutual distance δx . ~ 1

2 (cf. Fig.1.3), and thus

δSγ − δSγ′ . tE δx · ∂xV . | ln ~| ~
3
2 � ~,

which completes our argument that perturbations V = ~v leave the semiclassical form
factor invariant. The semiclassical approach selects terms which do contribute coher-
ently to the form factor without justifying systematically why the omitted terms do not
contribute. This forbids to call the semiclassical result in favor of BGS statistics of in-
dividual chaotic systems more than a ‘physicist’s proof’. In particular, it will turn out
in the following chapter that the semiclassical and the field theoretical formalism are by

20The factor Eav/λ, where λ denotes the (classical) width of the spectrum of H, accounts for the
restriction of the summation over β in

∑
β |Vαβ |2 ∼ Eav/λ · (V 2)αα to the energy window.

21Which is the relevant energy regime for these modes; indeed, the Bαα ∼ |α〉〈α| project onto the
shell of energy εα, thus they parameterize those modes which are homogeneous over individual energy
shells but still display transversal fluctuations and are therefore are interesting only for the question of
mode–locking in the universal regime.

22For classically smooth Gaussian disorder in a fermionic billard, the condition for suppression is〈
(δSγ/~)2

〉
V
∼ v2Tγξ/vF � 1 [66].
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and large equivalent. Since equivalent approaches should usually face similar problems,
the question remains open whether the field theorists are just too ignorant to find a more
sophisticated regularization scheme or if semiclassics is overlooking something.

4.2 Universality: A step towards mathematical rigor

In this section we aim to resolve the paradox of subsection 4.1.3, namely how to reconcile
the classical gap of the Perron–Frobenius propagator with the existence of Ehrenfest time
effects. To that end, we need to somewhat formalize our language in order to be able
to reconsider the original works by Bowen and Ruelle which date back to the 1970s. It
turns out that these classic works already bear the key to resolving this puzzle. As a
byproduct, we build a bridge to the current state of debate in ergodic theory and report
what mathematicians mean today by the (still controversial) term ‘generic’ in the BGS
conjecture. Relying on this definition, we derive universal spectral correlations from the
regularized ballistic σ–model.

4.2.1 Setup: What is ‘generic’ chaos?

As before, we shall consider closed quantum systems whose classical dynamics displays
‘generic’ chaos. Certainly, the flows under consideration shall be exponentially mixing,

lim
t→∞

∣∣∣∣∣
∫

(dx) f(x)g(x(t))−
∫

(dx) f(x) ·
∫

(dx) g(x)

∣∣∣∣∣ ≤ Cf,g · e−t/tmix . (4.9)

The identification of a ‘generic’ class of flows satisfying the property of exponential
decay of correlations is a rather difficult and controversial topic. Usually, people resort
to the ‘harmonic oscillators’ of chaos, maps which satisfy the so–called Axiom A.23 Let
us mention that while the qualitative mixing property is well–established for Axiom A
flows and maps, and exponential decay of correlations in Axiom A maps was established
in the 1970s in a series of papers by Sinai, Bowen and Ruelle, the question regarding
the speed of mixing of flows is subject to fruitful research to date. The main difficulty
for flows in contrast to maps is the neutral direction along the flow. Dolgopyat [72]
proposed a notion of ‘generic’ suspension flows over a subshift of finite type for which
he proved exponential decay of correlations. In order to give the term ‘generic’ a well–
defined meaning, we want to stick to Dolgopyat’s definition. Roughly speaking, we are
dealing with flows admitting a Poincaré section S (with sufficiently regular first return
time function τ whose expectation value τ0 sets the discrete time scale) such that the
discrete time dynamics induced by the map Φ : S → S of first return to S allows a
representation in terms of a symbolic dynamics (ΣA, σ) with finite grammar.24 The less
ambitioned reader might think of a member of this certainly non–empty class as of a
‘generic’ chaotic billiard and of the (usually short and certainly classical) time τ0 as of
the flight time across that billiard.

23That is, uniformly hyperbolic. For recent results on partial or non–uniformly hyperbolic systems,
see the survey [71] and references therein.

24For details consult the pedagogic survey [73], which we follow — at times verbatim — in notation
and argumentation.



4.2 Universality: A step towards mathematical rigor 45

4.2.2 Ehrenfest time and universality: A mathematics dictionary
for physicists

We discussed in section 4.1 that the appearance of Moyal products in the perturbat-
ive action implies an average of the field coordinates over Planck cells.25 Thus, the
perturbative expansion consists of the basic building block〈

B(x)B†(x′)
〉
B

=
Ω

tH
Pω(x,x

′),

where Pω(x,x
′) is the Fourier transform of the propagator Pt(x,x

′) of the classical
Hamiltonian flow, and the coordinates x and x′ are averaged implicitly over Planck cells.
We therefore proposed the prescription (4.7). We experienced that parts of the physics
community (including us) found it hard to reconcile the spectral gap of the Perron–
Frobenius operator which implies exponential decay of correlations in chaotic systems on
a classical time scale tmix intrinsic to the flow with the existence of the Ehrenfest time,
up to which the relaxation of (4.7) is prohibited, and which may become arbitrarily large
in the semiclassical limit ~ → 0. The resolution to this paradox is found in a classical
theorem by Ruelle [74]. Since this theorem is formulated in the language of symbolic
dynamics and the ‘thermodynamic formalism’ for ergodic systems, we try and establish
a rudimentary dictionary translating between our field theoretical language and ergodic
theory.

The crucial tool we need is symbolic dynamics: let us consider the Poincaré map
Φ : S → S associated to our ‘generic’ flow. By virtue of the assumptions made above it
is possible to find a suitable partition R = {R1, . . . , Rm} of S into cells, corresponding
to the letters {1, . . . ,m} of an alphabet, together with a transition matrix A with entries

Aij =

{
1, if Ri ∩ Φ−1(int Rj) 6= ∅,
0, otherwise.

.

The latter defines a so–called ‘topological Markov chain’ (TMC)

ΣA =
{
ω = (· · ·ω−1ω0ω1 · · · ), ωi ∈ {1, . . . ,m}, ∀i ∈ Z : Aωiωi+1

= 1
}

together with a left shift σ : ΣA → ΣA defined by σ(ω)i = ωi+1. (A finite word is
understood to be periodically continued.) Our setup implies that this TMC (ΣA, σ) is
mixing, i.e., that some positive power Anmix of the transition matrix contains no zeroes.
The words ω ∈ ΣA correspond to points x ∈ S by means of the identification

x ≡ π(ω) =
⋂
n∈Z

Φ−n(Rωn),

and one has π ◦ σ = Φ ◦ π. Let −∞ < m < n <∞ and ω[m,n] = ωmωm+1 · · ·ωn be an
admissible word. The set

C(ω[m,n]) =
{
ω′ ∈ ΣA| ∀m ≤ i ≤ n : ω′i = ωi

}
25In a more conservative discussion, we should replace Planck cells by coarse grains of linear dimension

~ and the Ehrenfest time tE by t̃E > tE, respectively. This difference is inessential for the present
discussion, since the relative size of these times is of order unity, and we are ultimately interested in the
universal regime of energies ω � ~/tE.
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is called an (m,n)–cylinder. It can be shown that cylinders are equivalent to balls in
phase space, and that the length of a cylinder needed to specify a ball of diameter ε is
proportional to nε ∼ 2

S
ln(c/ε), where S is the so–called entropy of the map, which by

Pesin’s formula is just the sum of the (positive) Lyapunov exponents.26 The logarithmic
dependence is intuitively clear: if one imagines the energy shell of volume c2f−1 to
be discretized by a mesh of size ε, then one will need ∼ (c/ε)2f−1 cells which may
be numbered by ∼ ln(c/ε) digits; in symbolic dynamics, these digits are realized as a
substring specifying a cylinder of length nE. A special case of importance to us is the
time needed to specify a Planck cell, that is ε ∼ ~ 1

2 , which naturally is equal to the
Ehrenfest time

tE =
1

S
ln
c2

~
. (4.10)

Note that in the case f = 2, we have S = λ, and we find back the estimate (1.4).
Summarizing, it is sometimes useful to think of a point x ∈ S as of a generalized

word or decimal fraction (the ‘rationals’ being periodic orbits) and to identify a phase
space cell with a cylinder or finite substring.

4.2.3 Delay of mixing and universality

In the present context, a theorem due to Ruelle [74] applies, according to which there
are constants c > 0, d ∈ (0, 1) such that for any two cylinders C = C(ω[0,r]) and
D = D(ω[0,s]) we have

|ρ(C ∩ σ−nD)− ρ(C)ρ(D)| ≤ cρ(C)ρ(D)dn−s, n ≥ 0.

Here, ρ is the lift of the Liouville measure to (ΣA, σ). Note that (n − s) is the gap
between the intervals on which the cylinders C and σ−nD are based. Thanks to our
dictionary, we may translate this rather abstract statement into ‘everyday’ language.
Namely, comparing this result with the definition (4.9), we see that our ‘generic’ flows
enjoy an exponential mixing property. We now recall that Planck cells are equivalent to
cylinders. Since the time needed to specify the Planck cells is given by the Ehrenfest
time (4.10), the corresponding cylinders have length nE = tE/τ0, and we conclude that
mixing settles in only after the Ehrenfest time. In other words, we have proven the validity
of our prescription (4.7). The paradox which was mentioned above is now resolved as
follows: while the physicist associates the term ‘exponential decay with a rate t−1

mix’ to
an immediate decay of any initial distribution, the mathematician means an exponential
upper bound to correlations — the prefactor in (4.9) may well be large. Indeed, in
the case of f, g being characteristic functions of Planck cells, Cf,g ∼ etE/tmix , so mixing
remains invisible before the Ehrenfest time has elapsed.

Let us now recall27 that all perturbative terms consisted of propagators with the same
energy ω. Thus, we only have to transform (4.7) back to frequency space to obtain

Pω(x,x
′) ∼ i~

ω+

(
1 +O(ωtE/~)

)
,

26For a more precise discussion of this result, consult [75]. The factor of two stems from the time
needed to approach a given trajectory and to leave it again.

27Cf. the discussion of perturbation theory in section 4.1.



4.3 Summary 47

where the error accounts for contributions from the non–universal integration interval
(0, tE). We conclude that for energies ω � ~/tE, the error becomes small, and only the
zero–mode survives. In this low–energy regime, the ballistic σ–model action (2.18) thus
collapses to the zero–mode action

S0[Q] =
iβπs+

4
tr(Qσar

3 ), Q = Tσar
3 T
−1, (4.11)

which is known to reproduce universal spectral statistics [76, 77]. One might object
the validity of our argument, since the replica treatment is restricted to perturbative
evaluations. Yet, note that the replica structure is inessential to the arguments above,
so the supersymmetry result [26] applies equally well. We have therefore shown how to
obtain universal spectral statistics from the regularized ballistic σ–model.

4.3 Summary

In this chapter we developed a consistent evaluation scheme for the ballistic σ–model
of ‘generic’ chaotic systems. We have seen that any regularization scheme which keeps
track of the classical dynamics by cutting off quantum corrections as in (2.17) strongly
distinguishes among chaotic and integrable dynamics; more precisely, we found that in
chaotic systems, the universal RMT limit is enforced at comparatively high energies ω ∼
~/tE ∼ ~/ ln ~, while in integrable systems the corresponding energy scales as ~3, which
in f ≤ 3 dimensions is at most of the order of the level spacing. We argued that the field
theory may at present (i.e., without a better semiclassical understanding of the evolution
of quantum density matrices, which might hint at a more sophisticated regularization
scheme) not justify BGS for individual systems, but rather for an ensemble of quantum
systems which all share the same classical limit; such an ensemble was proposed before by
Zirnbauer [31], yet we were able to significantly reduce the strength of the perturbations,
which allowed us to separate aspects of regularization from those of intrinsic quantum
uncertainty. We further demonstrated that a variation of the Hamiltonian within the
ensemble leaves the semiclassical form factor invariant. Finally, we translated well–
established mathematical results about mixing properties to the present context. As a
result, we understood how universality emerges (only) after the Ehrenfest time, and we
were able to derive universal spectral correlations for the mentioned ensemble. As a
byproduct, we gave a proper definition to the term ‘generic’ in the BGS conjecture.

Summarizing, we have proposed an ensemble average which is sufficient to ensure
regularization of the ballistic σ–model and to yield RMT spectral statistics. We cannot
prove, however, that an average over such a large ensemble is necessary , i.e. we cannot
exclude that the von Neumann propagator could be destabilized by other means —
maybe even by an intrusion which is small enough not to affect the spectrum of an
individual system.
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Chapter 5

Perturbation theory II: Quantum
interference and parallels to
semiclassics

In this chapter we shall explain how corrections to the universal behavior of spectral cor-
relations of chaotic systems arise and how these compare to the semiclassical approach.
Building upon the field theoretical framework of chapters 2 and 4 we find how quantum
interference may be explained, i.e. effects which are related to the recombination of clas-
sical paths due to quantum uncertainty. Within the ballistic σ–model this question —
termed ‘problem (ii)’ in chapter 2 — was so far only answered phenomenologically by
Larkin and collaborators [16, 17, 34]. In accord with our experience from the preced-
ing chapters it is once again the Moyal product which makes the quantum uncertainty
manifest. We demonstrate the ease of the field theoretical description on the example
of the leading (in a short time expansion) quantum interference correction to the form
factor K(τ) — the famous Sieber–Richter term. We benefit from the insights we gained
from our discussion of semiclassical methods in section 1.3 and point out how far the
analogies between field theory and semiclassics reach for the Sieber–Richter term and
beyond.

5.1 Application to quantum interference

Having derived a perturbation theory and understood how to evaluate it, we now turn
to a discussion of the results which readily follow. As long as we restrict ourselves to
perturbative operations, i.e. an expansion of the two–level correlation function (1.1a) in
a series

R2(s)
s>1
= Re

∞∑
n=2

cn(is
+)−n (5.1)

of powers of the dimensionless energy variable s = πω/∆, the replica limit R → 0 is
well–defined. A straightforward Fourier transformation, K(τ) = π−1

∫
ds e−2isτR2(s),

shows that the coefficients cn are related to the coefficients dn of the spectral form factor
K(τ) ≡

∑∞
n=1 dnτ

n through

dn = −(−2)n

n!
cn+1. (5.2)

49
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In fact, however, there are much further–reaching analogies between the temporal and
the frequency representation of spectral correlations: at every given order n, various
topologically distinct families of orbit/partner orbit pairs (‘diagrams’) contribute to the
coefficient dn. Likewise, the expansion coefficients cn obtain as sums of Wick contrac-
tions of the generating functional Z(ω). We shall see that there is an exact correspond-
ence between field theoretical and semiclassical diagrams (both in topological structure
and numerical value) which simply means that the two approaches describe spectral cor-
relations in terms of the same semiclassical interference processes. We begin with the
leading ‘Berry’ term (of order τ) and a brief discussion of the problem of repetitions.
We continue to elaborate the perturbation theory on the paradigmatic example of the
‘Sieber–Richter’ (SR) term (of order τ 2) and then proceed to the terms of order τ 3.
Building upon that experience we claim that this procedure finds a generalization to
arbitrarily high orders.

5.1.1 The Berry term and problem of repetitions

Let us now turn to the perturbative expansion of the functional integral. The dominant
contribution to the series (5.1) obtains by integration over the quadratic action:

R
(2)
2 (s) = −1

2
lim
R→0

1

R2
Re ∂2

s

∫
DBe−S

(2)[B] = −1
2

Re lim
R→0

1

R2
∂2
s (detPω)

2R2

=

= Re ∂2
s ln det(P−1

ω )
ω�~/tmix' Re (is+)−2. (5.3)

This result implies (cf. equations (5.1, 5.2)) d1 = 2 in accord with the semiclassical
analysis, where the corresponding term is called the ‘diagonal approximation’ or ‘Berry
term’ [11]. It is worthwhile to notice that the agreement between semiclassics and field
theory does not pertain to times t < tmix: for these times short periodic orbits traversed
more than once influence the behavior of the form factor. For reasons that are only partly
understood the σ–model fails to correctly count the integer statistical weight associated
to the repetitive traversal of periodic orbits. The essence of the problem [32] is that the
degrees of freedom of the σ–model (the B’s) describe the joint propagation of amplitudes
locally paired in phase space. However, an n–fold repetitive process is governed by the
local correlation of 2n Feynman amplitudes. Perturbative approaches to the problem fail
to correctly describe these correlations, which is termed the ‘problem of repetitions’ and
was mentioned in chapter 2 as problem (iii). Interestingly, a non–perturbative evaluation
of the functional integral — feasible in the artificial case of the harmonic oscillator —
leads to the correct result [78].

5.1.2 The Sieber–Richter term

The dominant correction (∼ s−3) to the leading contribution (5.3) obtains by first order
expansion in the vertex S(4):

R
(3)
2 (s) = −Re lim

R→0

tH
(2R)2

∂2
s

∫
(dx)

〈
tr(B†BB†LωB)

〉
B
. (5.4)
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We first notice that the trace of the product (2.13) of four operators reduces to the
expression1

tr(A1A2A3A4) =

∫
dx

(2π~)f

∫
dx1 dx2

(2π~)2f
e

i
~xT

1 Ix2×

× A1

(
x + 1

2
x1)A2(x + 1

2
x2)A3(x− 1

2
x1)A4(x− 1

2
x2).

Inserting this result into (4.4), applying the contraction rules (4.5), and taking the replica
limit we obtain

R
(3)
2 (s) = Re

Ω2

tH
∂2
s

∫
(dx)

∫
dy1 dy2

(π~)2(f−1)
e

i
~yT

1 Iy2×

× Pω(x + y1/2,x− y1/2)Lω,x−y2/2Pω(x− y2/2,x + y2/2),

where the coordinate subscript in Lω,x indicates the argument on which the Liouvillian
acts. The physical meaning of this expression is best revealed by switching to the Fourier
conjugate picture. Inserting the definition (1.1b) of the form factor, we obtain

K(2)(τ) = −2τ 2Ω2 Re

∫
(dx)

∫
dy1 dy2

(π~)2(f−1)
e

i
~yT

1 Iy2×

×
∫ t

0

dt′ Pt−t′(x + y1/2,x− y1/2)Lt′,x−y2/2Pt′(x− y2/2,x + y2/2), (5.5)

where Lt,x ≡ ∂t − {H, }. The result obtained for K(2)(τ) critically depends on the
behavior of the propagator Pt at times t ∼ tE, cf. equations (1.7, 1.8). Namely, the
total time which has to elapse before a non–vanishing contribution is possible is given
by2

tE(
1
2
y1,−1

2
y1) + tE(

1
2
y2,−1

2
y2) =

2

λ
ln

c

u1

+
2

λ
ln

c

s2

' 2

λ
ln
c2

~
= 2tE,

where we restricted ourselves to the case of f = 2 dimensions to facilitate compar-
ison with the semiclassical results of section 1.3. To understand the meaning of the
approximation of the delay time tE,2 of the second propagator, notice that once the
distance between the stretches which form the legs of the propagators has acquired
classical dimensions, the fraction of the Planck cell yT

1 Iy2 . ~ which has not yet
been transported out of the linearization regime3 about the orbit x(t) shrinks exponen-
tially on the classical Lyapunov scale λ−1 � tE. This means that the approximation
tE,2 ' 2tE − tE,1 holds up to an insignificant uncertainty of O(λ−1). We may hence use

1This expression holds for arbitrary operators, so the (E, t)–sector is still present in this identity.
2At any rate, the individual propagators relax at times 2δtE (or 2(1 − δ)tE), 0 < δ < 1, which is

typically long before the time t̃E ∼ 2tE associated to the regulator has elapsed, cf. the discussion of
subsection 4.1.3.

3Notice that a shift x → x + y2/2 of integration variables in (5.5) eliminates the dependence of
the first argument of the second propagator on y2. At the same time, the first propagator Pt−t′(x +
(y1 + y2)/2,x− (y1 − y2)/2) ' Θ(t − t′ − tE(y1/2,−y1/2)) remains invariant under this shift, and
the integral over y2 may be carried out (which otherwise would be hindered by the presence of the
Poisson bracket), revealing the second argument of the second propagator to be effectively averaged
over scales (u2, s2) . (~/u1, ~/s1) (which span the Planck cell yT

1 Iy2 . ~) and hence to effectively
depend only on tE,1.
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that ∂tPt(x, x̄
′) = Ω−1δ(t− (2tE− tE,1)), where δ(t) is some smeared δ–function whose

detailed functional structure is not of much importance.4 Turning to the Poisson bracket
component of the Liouville operator, we note that the second propagator depends only
on the delay time tE,2 ' 2tE − tE,1, and hence only on the coordinate y1. We conclude
that the action of the Poisson bracket on the second propagator gives only a negligible
contribution. Inserting these results into (5.5), as well as the normalization relations∫

(dx) = 1 and
∫

dy1 dy2e
i
~yT

1 Iy2 = (2π~)2(f−1), we obtain

K(2)(τ) ' −2τ 2

∫ t

0

dt′Θ(t− t′ − tE,1)δ
(
t′ − (2tE − tE,1)

)
= −2τ 2Θ(t− 2tE)

in agreement with the result of the semiclassical analysis. In fact, equation (5.5) makes
the analogies (as well as a number of differences) between the semiclassical and the field
theoretical description of quantum corrections explicit: central to both approaches are
two semi–loops shown schematically in figure 1.1 on page 13. In either case, the proximity
of these loops is controlled by phase factors which contain the coordinates of the end
points (in a canonically invariant manner) as their arguments. However, unlike with
semiclassics, equation (5.5) does not relate the unification of the two semiloops to specific
periodic orbits. Rather, the two halves are treated as independent entities, each described
in terms of its own probability factor P . It is nevertheless straightforward to identify
periodic orbit partners γ, γ′ with revolution times Tγ = Tγ′ = t which asymptotically
travel along the semiloops and switch in the encounter region at x. These orbits pierce
the Poincaré surface of section through x at appropriately chosen intersections of the
stable and unstable manifolds of x ± yi/2, cf. figure 5.1 and the similar construction
which was applied in section 1.3 in order to identify the partner orbit γ′ of γ. The
action difference Sγ − Sγ′ = u1s2 is equal to the shaded area in figure 5.1. This result
violates an apparent symmetry among y1 and y2, yet note that this symmetry is broken
by causality:5 indeed, if both retarded propagators are traversed in the causal direction,
the corresponding semi–loops shadow the orbit γ, and the order of traversal of the
loop is (−1 → 1 → 2 → −2 → −1), whereas if one of the semi–loops (the second,
say) is time reversed in order to shadow the partner orbit γ′, the order of traversal is
(−1 → 1 → −2 → 2 → −1). At any rate, the propagators in (5.5) depend only on
u1 and s2. Consequently, the integral over the transversal coordinates in (5.5) is in fact
reduced according to∫

dy1 dy2

(2π~)2(f−1)
e

i
~yT

1 Iy2 . . .→
∫

du1 ds2

(2π~)f−1
e

i
~u1s2 . . .

Relabeling (u1, s2) 7→ (u, s), the action difference of the corresponding orbit partners is
equal to us and manifests itself in a phase factor exp(ius/~), just as in the semiclassical
expression (1.6) in section 1.3.

4All we shall rely upon is
∫

dt′ f(t′)δ(t − t′) ' f(t) for functions which vary slowly on the scales
where δ(t) varies.

5In fact, we have come across this asymmetry already when we calculated the delay times tE,1 and
tE,2.



5.1 Application to quantum interference 53

2̄

−2

1̄

−1

x

γ γ′

2

−2

−1

1
x

γ

γ

s

u

γ′

γ′

u1s2

Figure 5.1: Identification of the periodic orbit partners γ, γ′ pertaining to the semiloops
1 (green) and 2 (red). As in figure 1.3 on page 14, the upper sketch is drawn in
configuration space, while the lower sketch depicts the (phase space) Poincaré surface
of section through x. The latter corresponds to the vertical line in the upper picture,
and the points in the two pictures are identified by colours and labels, where −1 is a
shorthand for x− y1/2, 1̄ for x + y1/2, and similarly for 1 
 2.

5.1.3 Higher orders of perturbation theory

What happens at higher orders in perturbation theory in the parameter s−1? Before turn-
ing to the problem in full, it is instructive to have a look at the zero mode approximation
to the model. The action of the zero mode configuration — formally obtained by setting
T (x) ≡ T = const. — is given by (4.11). Parameterizing the matrix T = 1 +W as in
(4.1), an expansion in the generators B obtains the expression

S0[B] =
∞∑
n=1

S
(2n)
0 [B], S

(2n)
0 [B] = −is+ tr(−B†B)n.

It is known [26] that, term by term in an expansion in s−1, the zero mode functional
reproduces the RMT approximation to the correlation function R2(s). Second, there
exists a far–reaching structural connection between the perturbative expansion of the
zero mode theory on one hand and the Gutzwiller double sum on the other.6 More
specifically, to each term contributing to the Wick contraction of〈

(S
(4)
0 [B])m2 (S

(6)
0 [B])m3 . . .

〉
0

(5.6)

6In fact, the correspondence Gutzwiller sum ↔ zero dimensional σ–model ↔ RMT played a pivotal
role in the proof that the semiclassical expansion coincides with the RMT result [23, 24, 25].
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there corresponds precisely one semiclassical orbit/partner orbit pair (or ‘diagram’).
Counting powers one finds that this diagram contributes to the correlation function
at order s−2−

P
n mn(n−1). For every value of n = 2, 3, . . . , it contains mn encounter

regions where n orbit segments meet and
∑

n nmn inter–encounter orbit stretches. The
topology of the diagram is fixed by the way in which the B matrices are contracted.7

Importantly, the minimum time required for the buildup of a diagram (i.e., the time
required to traverse the

∑
nmn encounter regions) is given by tE ×

∑
n nmn.

Turning back to the full problem, let us consider the analog of the zero dimensional
expression (5.6),

〈(S(4)[B])m2 (S(6)[B])m3 . . . 〉, (5.7)

where S(2n) is given by (4.6) and the average is over the full quadratic action. It
is natural to expect that the unique correspondence between Wick contractions and
semiclassical diagrams carries over to the full model. If so, individual contractions should
vanish/reduce to the universal RMT result for times shorter/much larger than t < tE ×∑

n nmn. In subsection 5.1.2 this correspondence was exemplified for the simplest non–
trivial example, the SR diagram 〈S(4)[B]〉.
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Figure 5.2: Two representatives of the ‘clover leaf’ diagram class contributing to the
form factor at O(τ 3). Discussion, see text.

Perhaps unexpectedly, the straightforward one–to–one correspondence outlined above
does not pertain to higher orders in perturbation theory. To anticipate our main findings,
it turns out that at order (s−4 ↔ τ 3) in the series expansion, propagators of short
duration Pt<tE — absent in the (s−3 ↔ τ 2) term considered above — begin to play a
role. This implies that individual contractions may relate to more than one semiclassical
diagram class. Nonetheless, integration over all time parameters obtains a universal
result.

By way of example, let us consider the (1 − 3, 2 − 6, 4 − 8, 5 − 7) contraction of
〈tr(B†BB†B) tr(B†BB†B)〉. For generic values (ti ∼ tH � tE) of the time arguments
carried by the four resulting propagators the contraction corresponds to the orbit pair
shown in figure 1.2 (left) on page 14. However, the integration over times ti also extends
over exceptional values where one of the two propagators connecting the two encounter
regions ((2 − 6) or (4 − 8)) is of short duration < tE. Such a short time propagator
connects two distinct vertices.8 This results in a structure as shown in figure 5.2 right,
where the two clusters of dots indicate the eight phase space arguments of the B–fields,

7For example, the first of the diagrams shown in figure 1.2 on page 14 corresponds to the contraction
(1 − 3, 2 − 6, 4 − 8, 5 − 7) of tr(B†BB†B) tr(B†BB†B), the second diagram to the contraction
(1− 4, 2− 5, 3− 6) of tr(B†BB†BB†B), etc.

8While, in principle, the theory also permits the formation of short time propagators connecting two
phase space points of a single vertex, these contributions are practically negligible: imagine a propagator
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the straight line–pair represents the short propagator, and the box indicates that all
phase space points lie in a single encounter region. Evidently, this structure corresponds
to a pair of orbits visiting a single encounter region twice. Diagrams of this structure are
canonically obtained by contraction of a ‘Hikami hexagon’ tr(B†BB†BB†B), as indic-
ated in figure 5.2 left. Fortunately, the absence of a unique assignment to semiclassical
orbit families, does not significantly complicate the actual computation of the diagrams:
closer inspection shows that taking the Liouville operators involved in the definition of
the Hikami boxes into account and integrating by parts,9 we again obtain the universal
zero–mode result.

Summarizing, we have seen that at next to leading order in perturbation theory short
time propagators begin to play a role. While this complication prevents the assignment of
Wick contractions to orbit pairs of definite topology, the results obtained after integration
over all temporal configurations remain universal (agree with the RMT prediction). We
trust that the structures discussed above are exemplary for the behavior of the ballistic
σ–model at arbitrary orders of perturbation theory, i.e. that after integration over all
intermediate times, each contraction contributing to (5.7) produces the universal result
otherwise obtained by its zero dimensional analog equation (5.6).

5.2 Summary

In this chapter we took a closer look at the perturbative expansion of the ballistic σ–model
of chaotic systems. We have shown how the results about universal spectral correlations
and their quantum interference corrections for τ < 1 compare to the semiclassical ap-
proach. We found quantitative agreement between field theory and semiclassics, and we
pointed out the structural similarities and differences.

Pt(x,x′) returning after a short time to its point of departure (|x− x′| ∼ ~δ). Since t is much shorter
than the Ehrenfest time, all other propagators departing from the concerned Hikami box will essentially
follow the trajectory traced out by the return propagator, and, after a time t, also return to the departure
region. In semiclassical language, we are dealing with an orbit that traverses a loop structure in phase
space repeatedly. It is known, however, that for large time scales, the probability to find repetitive orbits
is exponentially small (in the parameter exp(−λt)), i.e. short self–retracing contractions are negligible.

9‘Integrating by parts’ is the classical counterpart of the identity tr(A[H,B]) = − tr([H,A]B).
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Chapter 6

Conclusions and remarks

In this thesis we treated the ballistic σ–model in order to reconsider some of the problems
that prevent its proper understanding and evaluation.

In particular, we proposed a regularization scheme which strongly destabilizes the
quantum theory of an ensemble of classically equal chaotic systems towards the universal
random–matrix regime, which implies that the BGS conjecture holds on average over this
ensemble. The destabilization towards RMT takes place already at comparatively high
energies below the inverse Ehrenfest time, ω . ~/tE ∼ ~/ ln ~, while for integrable
systems universality is enforced only at parametrically much lower energies ∼ ~3, which
in f ≤ 3 dimensions is at most of the order of the level spacing. We have demonstrated
that the semiclassical form factor is invariant under perturbations by members of our
ensemble, and since the semiclassical approach relies on an uncontrolled choice of relevant
terms, the question remains open whether the BGS conjecture is true for individual
systems. While we found that BGS for individual systems cannot be proven within
the field theory approach by quasiclassical means (i.e. by simply cutting off quantum
corrections according to (2.17)), there is still scope for a more sophisticated approach
to the evaluation of the fundamental building block of the field theory, the Wigner
propagator of density operators. There is a promising novel approach by Dittrich et
al. to this object which allows to separate classical dynamics from quantum coherence
effects [69]. Maybe this approach leads to a better understanding of both universal and
non–universal features of the theory.

Nevertheless, our careful analysis of the semiclassical correspondence allowed us to re-
veal the mechanisms responsible for the manifestation of quantum uncertainty. This put
us in the position to provide a solution to an open problem of quantum chaos, namely
the proximity gap in ballistic SN structures. Second, we presented a field theoretical
explanation of the short time quantum interference corrections to universal spectral cor-
relations and the parallels to the semiclassical approach. We stress that our conclusions
are drawn from first principles. We only rely on the validity of the effective quantum
field theory.

We have thus partly rehabilitated the ballistic σ–model as an important and promising
tool to face all kinds of problems related to quantum chaos. It is also possible to extend
the results presented here to non–standard symmetry classes and discrete time systems.
Due to the far–reaching parallels to semiclassics it should be straightforward to translate
all universal results obtained by semiclassical methods to the field theory and vice versa
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— at least if they are perturbative in nature: as an example, a semiclassical treatment
of the proximity effect is missing so far.

An open issue remains the non–universal short time regime. Plagued by the problem
of repetitions, the ballistic σ–model can so far not be considered reliable to describe
non–universal corrections. As an additional problem in the short time regime, we want
to mention a discrepancy among the results of Tian & Larkin [34] and ours (which agree
with the findings of the Haake group [24]). This discrepancy is explained easiest on the
τ 3–correction to the unitary form factor. As we laid out in subsection 5.1.3, we find an
exact cancellation of this correction due to the fact that two 4–vertices merge in the
presence of a short time propagator to form a 6–vertex, cf. figure 5.2 on page 54. Tian &
Larkin disagree on this inasmuch as their theory does not allow for short time propagators
at all. Brouwer et al. very recently added a new perspective to the semiclassical side
of the coin by their treatment of universal short time corrections to the form factor,
taking into account also repetitions. While the trust in the semiclassical result makes
me believe that our result is correct as long as repetitions are neglected, the problems
of the ballistic σ–model concerning the correct counting of repetitions prevent me from
taking up the cudgels for the field theory when it comes to short time effects. This is
a grave drawback as the attractiveness of the ballistic σ–model stems not only from its
effortless description of universal effects, but also from its potential to be a ‘theory of
everything’. I conjecture that in the non–universal regime of the short time expansion,
the reference point Λ = σar

3 is ill–chosen, and that instead mean fields (similar to those
of the Andreev billard in chapter 3) which reflect strong fluctuations on individual orbits
should be investigated.



Appendix A

Classical chaos

In this appendix we present some rudimentary vocabulary about classical chaotic mechan-
ics. While every physics student learns in her or his first course in theoretical mechanics
what an integrable system is, it is not so clear what a chaotic system should be. ‘Chaos’
is stronger a property than ‘non–integrability’. In order to provide the reader with some
intuition we present two properties which express a certain degree of stochasticity, er-
godicity and mixing. We further explain hyperbolicity, another feature charasteristic
to non–integrable systems. For supplementary reading we refer to the monograph by
Gaspard [79].

A Hamiltonian system consists of a phase space Γ and some flow Φt(x) ≡ x(t) which
preserves energy and the Liouville measure µ(x) = Ω−1δ(E0−H(x)), where H(x) is the
Hamiltonian and Ω is the volume of the shell of constant energy E0. Probably the first
property one would instinctively associate with chaos is ergodicity. A system is called
ergodic if for any every observable f , the average w.r.t. the Liouville measure and the
long time average along the trajectory departing from µ–almost every x0 coincide,

lim
T→∞

1

T

∫ T

0

dt f(x0(t)) =

∫
(dx) f(x) for µ–a.e. x0,

where (dx) ≡ dµ(x). Note, however, that ergodicity does not even imply non–integrabi-
lity as the following counterexample shows: take the (integrable) flow describing the
free motion of a particle with initial velocity v = (v1, v2) on the unit 2–torus. If the
quotient v1/v2 is rational, the orbit will eventually close and the corresponding motion is
of course not ergodic. If, on the other hand, that quotient is irrational, any orbit fills the
torus densely, and the motion is ergodic. Having said that, we certainly need a stronger
property to characterize chaos. The criterion we are looking for is the mixing property,
which says that the correlations of any two observables1 f, g decay,

lim
t→∞

∣∣∣∣∣
∫

(dx) f(x)g(x(t))−
∫

(dx) f(x) ·
∫

(dx) g(x)

∣∣∣∣∣→ 0. (A.1)

We say that a system is exponentially mixing if this decay happens to take place expo-
nentially fast. When we talk about a chaotic system, we will always assume it to be
exponentially mixing.

1The function space from which the observables are chosen has to be specified in order to give this
definition a well–defined meaning. Usually, this space is strictly smaller than L2(Γ).
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Another property which is attributed to chaotic dynamics is the strong sensitivity to
a variation of the initial conditions. Linearizing the flow about some general reference
trajectory and fixing a time t, the differential dΦt(x) is said to be hyperbolic if all its
eigenvalues have a modulus different from unity. Since the differential of a Hamiltonian
flow is symplectic, its eigenvalues come in conjugate pairs (Λ,Λ−1).2 The information
about exponential instability may be filtered from the dynamics as follows: locally, one
may define stretching rates λi(x(t)), which are accompanied by squeezing rates−λi(x(t))
and, taken together, form the spectrum of dt ln dΦt(x). The long time averages are
called the local Lyapunov exponents λi(x). According to the theorem of Oseledec [64],
their long time averages are µ–almost everywhere well–defined in an ergodic system and
are called the Lyapunov exponents. In a uniformly hyperbolic system, all local stretching
rates are uniformly bounded away from zero. There are also several kinds of weaker
hyperbolicity properties, such as partial or non–uniform hyperbolicity, which will play no
role in this thesis.

2If Λ is complex, also (Λ̄, Λ̄−1) are eigenvalues.



Appendix B

Time reversal invariant systems

In this appendix we want to summarize the modifications which are necessary for time
reversal invariant systems. For the understanding of the derivation of the ballistic σ–
model, these modifications are immaterial, and this subsection can be skipped at first
reading. Time reversal invariance implies a symmetry H = HT of the Hamiltonian. To
safely encapsulate this feature in the field theory, one introduces a further doubling of
the field space: to that end, we write

ψ̄Hψ = 1
2
(ψ̄Hψ − ψTHψ̄T) ≡ Ψ̄HΨ,

where we introduced the fields

Ψ̄ ≡ 1√
2
(ψ̄,−ψT)tr, Ψ ≡ 1√

2

(
ψ
ψ̄T

)
tr

,

which obey the time reversal symmetry

Ψ̄ = (CΨ)T, C ≡ iσtr
2 . (B.1)

Replacing ψ → Ψ, the calculations are analogous to the unitary case. The energy
average (2.5) results in an interaction with a different symmetry than in the unitary case.
Transforming Ψ 7→ T Ψ, the time reversal symmetry relation (B.1) fixes the action of T
on Ψ̄. Now, the transformations leaving the interaction invariant fulfill the condition

T TCT = C or T ∈ Sp(4RN2).

The decoupling of the interaction is somewhat more subtle. Consider the position repres-
entation 〈q+ 1

2
∆q|Q̃|q− 1

2
∆q〉 of the Hilbert space operator Q̃. In chapter 2 we lay out

that the low–energy configurations are varying slowly — in the sense that they do not
display details on length scales smaller than ~ — w.r.t. the center–of–mass coordinate
q, so one has to explicitly separate such contributions. This is achieved turning to the
momentum representation,

Sint[Ψ̄,Ψ] =
E2

av

2
(Ψ̄Ψ)2 ≈ E2

av

2

∑
P,p

(
Ψ̄PΨ−PΨ̄P+pΨ−P−p + Ψ̄PΨ−PΨ̄−P−pΨP+p

)
,
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where p is restricted by some classical bound. Using the time reversal symmetry relation
one sees that these terms are equal, which leads to a factor of two and thus a modified
decoupling

e−Sint[Ψ̄,Ψ] =

∫
DQ̃e−

1
4

tr Q̃2+EavΨ̄Q̃Ψ.

where Q̃ is now of dimension 4RN2 and restricted to be slowly varying w.r.t. to its center–
of–mass coordinate q. Again, the invariance of tr(Ψ̄Q̃Ψ) requires that Q̃ transforms as
Q̃ 7→ T Q̃T −1 and satisfies the symmetry constraint

Q̃ = CQ̃TCT ≡ Q̃τ .

Carrying out the Gaussian integral over the Ψ–fields we find the effective partition func-
tion

Z(ω) =

∫
DQ̃ e−

1
4

tr Q̃2+ 1
2

tr ln(G−1(E0)− 1
2
Ω+σar

3 ), G−1(E0) ≡ E0 −H − iEavQ̃.

Note the factor of 1
2

in front of the logarithm in the action reflecting the fact that due
to time reversal symmetry, the number of integration variables is reduced by one half.
One may summarize the modifications as follows: the action differs from its unitary
counterpart by a global factor 1

2
which compensates the doubled rank of the matrix

fields in the action. In the sequel we will thus explicitly notate a factor β/2, where
β = 1 (2) in the orthogonal (unitary) case and implicitly keep in mind that the field space
is characterized by an auxiliary tr–sector and a symplectic symmetry in the orthogonal
case.



Appendix C

Wigner representation

The aim of this appendix is to summarize and check some properties of the Wigner
symbol (2.11) to which we refer repeatedly in the main text. Here, the matrix I is
defined through xT Ix′ ≡ q · p′ − p · q′. The key relation for the proof of all these
identities is the completeness relation of Fourier transformation,∫

dp

(2π~)f
e

i
~p·q = δ(q). (C.1)

Let us begin with the characteristic properties

(i) Reality:

(
A(x)

)∗
=

∫
d∆q e+ i

~p·∆q〈q− 1
2
∆q|A†|q + 1

2
∆q〉 = (A†)(x) �

(ii) Normalization: ∫
dx

(2π~)f
A(x) =

∫
dq 〈q|A|q〉 = trA �

(iii) Traciality:∫
dx

(2π~)f
A(x)B(x) =

∫
dx

(2π~)f

∫
d∆q

∫
d∆q′ e

i
~p·(∆q+∆q′)×

× 〈q + 1
2
∆q|A|q− 1

2
∆q〉〈q + 1

2
∆q′|B|q− 1

2
∆q′〉

=

∫
dq+

∫
dq− 〈q+|A|q−〉〈q−|B|q+〉 = tr(AB) �

These properties are characteristic inasmuch they define — together with a covariance
condition which relates a transformation on phase space to a transformation on Hil-
bert space, examples being the well–known Hilbert space representations of the Galilei
group — uniquely define the Weyl symbol [53, 54]. The Moyal product formula (2.12b)
for the case n = 1 is proven as follows: a straightforward application of the defining
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relation (2.11) gives∫
dx1

(π~)f

∫
dx2

(π~)f
e

2i
~ xT

1 Ix2A(x + x1)B(x + x2)

=

∫
dx1

(π~)f

∫
dx2

(π~)f
e

2i
~ (x1−x)TI(x2−x)A(x1)B(x2)

=

∫
dx1

(π~)f

∫
dx2

(π~)f

∫
d∆q1

∫
d∆q2 e−

i
~ (p1·∆q1+p2·∆q2)e

2i
~ (x1−x)TI(x2−x)×

× 〈q1 + 1
2
∆q1|A|q1 − 1

2
∆q1〉〈q2 + 1

2
∆q2|A|q2 − 1

2
∆q2〉,

where the first step consists of a shift xi → xi − x of the integration variables. The
integrals over p1, p2 can be performed yielding

1
2
∆q1 = q− q2,

1
2
∆q2 = −q + q1.

Carrying out the integrals over q and ∆q, and writing q± ≡ q1 ± 1
2
∆q1, we find that∫

dx1

(π~)f

∫
dx2

(π~)f
e

2i
~ xT

1 Ix2A(x + x1)B(x + x2) =

=

∫
dq+

∫
dq− e−

i
~p·(q+−q)〈q+|A|q−〉〈q−|B|2q− q+〉 = (AB)(x). �

The differential formula (2.12b) follows — after another application of the completeness
relation (C.1) — from the Taylor formula f(x + ∆x) = e(∆x)T∂xf(x). The integral
formula (2.13) for general n is obtained straightforwardly by induction over n.



Appendix D

Gor’kov Hamiltonian

The dynamics of a composite superconducting/normalconducting (SN)–system which
is also known as Andreev billiard is described by the so–called Gor’kov Hamiltonian.
Deferring for a detailed discussion of this topic to the literature [80, 81, 82] we here just
state its Nambu representation,

ĤGor’kov = (c†↑, c↓)ph

(
H − EF ∆

∆† −(H − EF)

)
ph

(
c↑
c†↓

)
ph

,

where the decomposition is into a particle–hole sector1 (ph) and EF denotes the Fermi
energy. The spectral properties are as usually encoded in the Green functions (2.2).
Inserting the Gor’kov Hamiltonian, one finds by standard methods of fermionic many–
particle physics that the DoS at energy ε w.r.t. the Fermi energy is given by

ν(ε) = ∓ 1

2π
Im tr

(
GGor’kov(ε

±)
)
, (D.1)

where the factor of 1
2

is traced back to the doubling of field space and the Gor’kov Green
function is defined by

GGor’kov(ε) ≡
(
−ε− (H − EF) −∆

−∆† −ε+H − EF

)−1

.

Both, writing down a generating functional for the Gor’kov Green function and the
replacements w.r.t. normal systems is straightforward and described in chapter 3 of the
main text. Note that in the main text we modify our definition of the Gor’kov Green
function by multiplication by σph

3 from the left which the reader finds reflected in the
emergence of an additional σph

3 in the formula (3.2) for the DoS.

1Order of indices in this additional space is (1, 2) = (p, h).
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benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit —
einschließlich Tabellen, Karten und Abbildungen, die anderen Werken im Wortlaut oder
dem Sinn nach entnommen sind — in jedem Einzelfall als Entlehnung kenntlich gemacht
habe; daß diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung
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