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vorgelegt von

Sebastian Quecke

aus Bonn

Hundt Druck GmbH, Köln
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Abstract

Two new numerical methods for the valuation of American and Bermudan options are
proposed, which admit a large class of asset price models for the underlying. In par-
ticular, the methods can be applied with Lévy models that admit jumps in the asset
price. These models provide a more realistic description of market prices and lead to
better calibration results than the well-known Black-Scholes model. The proposed meth-
ods are not based on the indirect approach via partial differential equations, but directly
compute option prices as risk-neutral expectation values. The expectation values are ap-
proximated by numerical quadrature methods. While this approach is initially limited
to European options, the proposed combination with interpolation methods also allows
for pricing of Bermudan and American options. Two different interpolation methods are
used. These are cubic splines on the one hand and a mesh-free interpolation by radial
basis functions on the other hand. The resulting valuation methods allow for an adap-
tive space discretization and error control. Their numerical properties are analyzed and,
finally, the methods are validated and tested against various single-asset and multi-asset
options under different market models.

Zusammenfassung

Es werden zwei neue numerische Verfahren zur Bewertung von amerikanischen Optionen
und Bermuda-Optionen vorgeschlagen, die eine große Klasse von Aktienkursmodellen
für das zugrundeliegende Wertpapier zulassen. Insbesondere können die Verfahren für
Lévy-Modelle angewendet werden, die Sprünge in den Aktienkursen modellieren. Diese
Modelle sind realitätsnäher und erlauben eine bessere Kalibrierung an Marktdaten als
das bekannte Black-Scholes-Modell. Die vorschlagenen Verfahren folgen nicht dem indi-
rekten Bewertungsansatz über partielle Differentialgleichungen, sondern berechnen die
Optionspreise direkt als risikoneutrale Erwartungswerte. Die Erwartungswerte werden
mit numerischen Quadraturmethoden approximiert. Während dieses Vorgehen zunächst
auf europäische Optionen beschränkt ist, können durch die Kombination mit Interpola-
tionsverfahren auch Bermuda-Optionen und amerikanische Optionen bewertet werden.
Für die Interpolation werden zwei verschiedene Ansätze vorgeschlagen. Zum einen wer-
den kubische Splines verwendet, zum anderen eine gitterfreie Interpolation mit radialen
Basisfunktionen. Die resultierenden Bewertungsmethoden erlauben eine adaptive Dis-
kretisierung und damit eine Fehlersteuerung. Ihre numerischen Eigenschaften werden
untersucht und schließlich werden die Methoden nach einer Validierung an verschiedenen
ein- und mehrdimensionalen Optionen mit unterschiedlichen Marktmodellen getestet.



Introduction

An option is the right, but not the obligation, to do something. In the context of finance,
an option contract is a financial instrument, whose value depends on other securities.
More specifically, a European plain-vanilla call option is a financial instrument that
gives its holder the right to buy an asset at a (contractually) pre-specified time for a
pre-specified price. In contrast to European options, American options are not restricted
to a single point in time but to a period, in which the holder is allowed to exercise the
option. A third kind of options are Bermudan options, which allow a discrete set of
exercise times.

Besides plain-vanilla options, more sophisticated contracts exist. Among these are
options with non-standard payoffs, options which decay worthless if the price of the un-
derlying crosses a pre-specified barrier, and options on several underlyings. For example
basket options grant the right to buy a portfolio of several pre-specified underlyings, and
exchange options grant the right to exchange one pre-specified underlying with another.

In 1973, Black, Scholes [BS73], and Merton [Mer73] published their seminal works
which provided the first theoretically consistent framework for pricing options. In the
Black-Scholes model, the price of the underlying asset is assumed to follow a geomet-
ric Brownian motion. This, among other assumptions, allows for a closed-form pricing
formula for European plain-vanilla options. The price of American and Bermudan op-
tions, however, depends on an optimal exercise strategy and cannot be determined in
closed-form. Thus, Bermudan and American option pricing problems naturally lead to
numerical methods.

Although widely used, the geometric Brownian motion is not a perfect description of
real asset price dynamics. As a result, market option prices can be explained by the
Black-Scholes model only in an inconsistent way, namely by using different volatility
parameters for different option contracts on the same underlying (“volatility smile”).
Independent of the option pricing problem there is also econometric evidence for a sys-
tematic underestimation of the probability of large price movements by the Black-Scholes
model (“fat tails” of return densities). During the last decade, alternative models re-
ceived increasing attention by researchers. One particular class of models that allow
jumps in the asset price is the class of Lévy models, in which the logarithmic asset price
is assumed to follow a stochastic Lévy process. The Black-Scholes model can be seen as
a special Lévy model without jumps.

The aim of the present work is to develop efficient numerical methods for pricing
options with arbitrary payoffs and American or Bermudan exercise structure under
Lévy models for one or several underlyings.
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The pricing methods proposed in this work are not based on an indirect approach via
partial differential equations, but directly compute option prices as risk-neutral expec-
tation values. The expectation values can be expressed by recursive integrals, where the
recursion depth is given by the number of possible exercise times. A straightforward
implementation would lead to exponential computation time and thus would be limited
to Bermudan options with only few exercise times. However, the proposed combination
of numerical quadrature with interpolation methods offers linear computation time and
can hence be applied to Bermudan options with high numbers of exercise times. In
this sense, they can also provide good approximations to American option values. A
convergence result is established and extrapolation techniques are briefly discussed.

For interpolation in the asset price space, two methods are used. These are cubic
splines on the one hand and a mesh-free interpolation by radial basis functions (RBF) on
the other hand. The corresponding pricing methods, in the following called “spline” and
“RBF” method, allow for an adaptive space discretization and error control. Their nu-
merical properties are analyzed, implementations of both methods are validated against
independent results, and finally they are tested for various single- and multi-asset options
under different market models.

The work is organized as follows. Chapter 1 gives a short introduction to risk-neutral
option pricing and a short overview of classical methods. The more closely related liter-
ature is discussed in section 2.5. Chapter 2 proposes an approach for pricing Bermudan
and American options based on a combination of numerical quadrature and interpolation
methods. This approach opens up a new family of valuation methods. Two particu-
lar members, the spline method and the RBF method, are introduced and analyzed
in chapters 3 and 4. An important prerequisite to the application of both methods
is the specification of a market model. Therefore, some current models of Lévy type
are introduced in chapter 5. This chapter is placed behind the derivation of the new
valuation methods intentionally: The methods themselves do not depend on the choice
of a particular model. In fact, the market models are to be understood as “plug-ins”
for the two valuation methods. All properties that characterize market models which
can be employed by the proposed methods are summarized in form of assumptions in
section 2.1. The structural separation of methods and models seems to be unique to this
approach. In chapter 6 the methods are applied to a variety of option types to demon-
strate their flexibility. Where possible, comparisons to results from other methods are
included for validation purposes. Chapter 7 contains a concluding discussion and an
outlook to interesting open problems.

At this point I would like to thank my academic advisor Prof. Dr. R. Seydel for his
continuous support, for many helpful suggestions, and for providing an excellent research
environment. I thank Prof. Dr. C. Tischendorf for serving as a referee for my thesis.
Finally, I wish to thank my colleagues for lively discussions and their support.

Köln, February 2007 Sebastian Quecke
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1. Overview of option pricing

This chapter describes the current methodology for option pricing. Section 1.1 introduces
the basic terminology, section 1.2 contains a brief summary of the concept of arbitrage-
free pricing, and section 1.3 gives an overview of classical numerical pricing methods. A
list of symbols and notation used throughout this work can be found in appendix A.1.

1.1. Options

Options occur in various types and specifications. The lowest common denominator for
a definition is that an option is a financial instrument whose value depends on other
securities.1 Emphasizing this dependence, options are also called derivatives. The most
frequently used options are the “plain-vanilla” options defined as follows.

Definition 1.1 (Plain-vanilla option). A plain-vanilla option is a contract giving its
holder the right, without the obligation, to either buy or sell an underlying asset at a
predetermined price K (the exercise or strike price) up to a specified expiration date T .
If the right granted is to buy, the option is a call option. If the right granted is to sell,
the option is a put option.

The underlying asset is typically a stock. If the holder uses his right to sell (or buy)
the underlying from (or to) the issuer, he exercises the option. Options which can be
exercised at any time until expiry are called American options. There are also contracts
which cannot be exercised at any time t ∈ [0, T ] but only at maturity T . Those options
are called European options. Options that can be exercised at a (pre-specified) discrete
set of times T = {t1, ..., tm} are called Bermudan options. Today the most frequently
traded options are of American type (T = [0, T ]).

Although definition 1.1 fits well the put and call contracts that are traded most com-
monly at the financial markets, for this work it is suitable to use the following, more
general definition.

Definition 1.2 (Option). Let x = x(t) ∈ Rd denote the price of the underlying at time
t ∈ [0, T ], let g : Rd → R be a function of the price of the underlying, and let T ⊂ [0, T ]

1The option value may also depend on values and events which are only observable. These observable
items do not need to be market prices. They can be e.g. weather data. This work focuses on
underlyings that can be described by the asset price models presented in chapter 5; and these are
typically stocks.

1



1.1. Options 2

be a set of times. An option with payoff g and exercise structure T is a contract that
gives the holder the right to exercise the option at a time t ∈ T and thus to receive the
payoff value g(x(t)) from the issuer.

It is convenient to use the log-price x := logS instead of the price S of the underlying.
This notation is used throughout this work. Furthermore, functions that depend on the
price of the underlying, e.g., the payoff, are sometimes regarded as functions of x and
sometimes as functions of S. It should be clear from the context, which notation is
used. How does definition 1.2 relate to 1.1? For an option on a single stock is d = 1
and x = logS, where S is the price of the stock. In the case of a put option the payoff
is g(x) := (K − S)+ = (K − ex)+. This agrees with definition 1.1. Obviously the first
definition is a special case of the second one, admitting solely the payoffs g(x) := (S−K)+

for call options and g(x) := (K−S)+ for put options. Furthermore, definition 1.2 is not
restricted to the one dimensional case.2 For example, for a two-asset exchange option
is d = 2 and x = (x1, x2) = (logS1, logS2), where S1 and S2 are the prices of the two
underlyings. In this case the payoff is g(x) := (c1S1 − c2S2)+ with parameters c1 and
c2 ∈ R describing the amounts of both assets that can be exchanged by exercising the
option. An illustration is given in figure 1.1.

Figure 1.1.: Payoff g(S1, S2) = (S1 − S2)+ of a two-asset exchange option.
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2In this work the “dimension” of an option refers to the dimension of the stochastic process describing
the underlying. Time is not counted as a dimension. This can lead to confusions: For example, the
Black-Scholes equation for one-dimensional European plain-vanilla options is a two-dimensional
PDE.
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Remark 1.3 (Path independence). Definition 1.2 defines a path-independent option,
i.e. an option whose payoff only depends on the price of the underlying at exercise time
and not on the path of the price until exercise time. This work is restricted to path-
independent options. A possible application to Asian (i.e. path-dependent) options is
mentioned later in section 6.5.

Remark 1.4 (Bermudan/American options). The terms Bermudan and American are
not used consistently throughout the literature. One reason is that the American option
can be seen as the limit case of Bermudan options with m equidistant exercise times
for m → ∞ (see section 2.4). Another aspect is that American options are much more
important than Bermudan options with respect to trading volume. Some authors use the
weaker term “American-style security” or “option with early exercise feature” instead of
“Bermudan”. In this work the terms are used precisely.

The price of an option

As the issuer of an option takes an obligation, it is clear that he has to be paid for
signing the contract. If this premium – the option price – is very high, many investors
want to sell the option. If the price is very low, many want to buy the option. The price-
dependent demand leads to a market price characterized by an equilibrium of sellers and
buyers.

One approach to derive a fair price of an option is to construct a hedging portfolio,
i.e., a portfolio that replicates the value of the option perfectly. Then, following the no-
arbitrage principle3, the costs for every hedging portfolio must be equal and thus give a
fair price of the option. This approach has already been used in 1973 by Merton [Mer73]
and is known as dynamic replication. The possibility to represent every contingent
claim as the final value of a self-financing strategy characterizes complete markets.4

The market model used by Black and Scholes in [BS73] is complete and consequently
every option under this model has a uniquely determined fair price. Unfortunately, real
markets are incomplete, as well as the most of the newer market models, e.g., models
with jumps. This is not surprising as market completeness is an unstable property. Given
a complete market model, the addition of a small jump risk destroys its completeness.5

A weaker alternative to the assumption of completeness is the assumption of absence
of arbitrage. This is a reasonable assumption for any market model and is – in contrast
to market completeness – not considered an artificial restriction.

Remark 1.5 (Rational bounds). One can derive “rational” bounds for option values
from the no-arbitrage principle. Such bounds can be found, e.g., in [Kwo98]. They are
more useful for validation purposes than to determine the price of an option exactly.

3The no-arbitrage principle is the assumption that the market is free of arbitrage opportunities, i.e.,
possibilities to make a risk free profit.

4This definition of complete models can be found in [Shr04], p. 231.
5See [CT03], p. 319.
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1.2. Arbitrage-free pricing

In order to outline the basic methodology for pricing in arbitrage-free markets, this
section gives a brief overview following [CT03]. A rigorous treatment of option pricing
theory is rather technical and goes beyond the scope of this work. It can be found in the
original literature [HK79], [HP81], [HP83], [DS94], and [DS98]. It is assumed that the
reader is familiar with the usual notation from probability theory. A good introduction
to probability theory in the context of finance can be found in [Shr04].

Connection between pricing rules and probability measures

Let (Ω,F) be the sample space describing the possible market scenarios in the time
period [0, T ]. Let (Ft)t∈[0,T ] denote the filtration generated by the market history up
to time t. The prices of underlying assets may then be described by a non-anticipating
process6

S : [0, T ]× Ω → Rd

(t, ω) 7→ (S1
t (ω), ..., Sdt (ω)).

In this case any European contingent claim with maturity T can be fully described
by specifying its terminal payoff G(ω) for each scenario ω ∈ Ω. For example, for the
European plain-vanilla put this is G = (K − ST )+. A pricing rule Π is a map which
attributes to each contingent claim G a value Πt(G) at each point in time. Obviously,
any reasonable pricing rule needs to fulfill some technical requirements:

(i) Πt(G) should be non-anticipating, i.e., the value Πt(G) can be determined without
information about the future market development.

(ii) Π should be positive, i.e., a non-negative payoff should have a non-negative value.

(iii) Π should be additive: Πt

(∑
i∈I Gi

)
=
∑

i∈I Πt (Gi), I being an arbitrary index set.

For any event A ∈ F , the random variable 1A is a payoff of a contingent claim, which pays
1 at T , if A occurs and 0 otherwise. In particular 1Ω corresponds to a zero coupon bond7

paying 1 at time T . Assuming a constant discount factor r, its value is Πt(1Ω) = e−r(T−t).
Now the definition

Q : F → R
A 7→ erTΠ0(1A)

6A stochastic process (St) is non-anticipating with respect to the filtration (Ft) if the random variable
St is Ft-measurable for every t.

7A zero coupon bond is a bond which does not pay periodic interests (coupons).
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yields a probability measure on the scenario space (Ω,F). Conversely, every probability
measure Q yields a pricing rule Π by setting

Π0(G) := e−rTEQ(G) (1.1)

for random payoffs of the form G =
∑
ci1Ai and extending this measure (under an

additional continuity property of Π) to arbitrary random payoffs. This short motivation
indicates the connection between pricing rules and probability measures. It is important
that the measure Q does not describe the actual probability of market scenarios, but
can be used for pricing via (1.1).

Arbitrage-free pricing rules and martingale measures

Any reasonable pricing rule should be free of arbitrage opportunities, i.e., the resulting
prices should not allow arbitrage. The absence of arbitrage is also called “no free lunch
with vanishing risk” condition.8 Technically, arbitrage can be defined as follows.9

Definition 1.6 (Arbitrage). An arbitrage is a value process V (t) of a portfolio that is
managed using a self-financing strategy with V (0) = 0 and for some time t > 0

P[V (t) ≥ 0] = 1 and P[V (t) > 0] > 0.

Further analysis of the connection between the measures Q and pricing rules Π reveals
that arbitrage-free pricing rules are connected to martingale measures, also called risk-
neutral measures.

Definition 1.7 (Equivalent martingale measure). A probability measure Q is said to be
an equivalent martingale measure (EMM) to P if

(i) Q is equivalent to P, i.e.,
Q ∼ P :⇔ ∀A ∈ F : Q(A) = 0⇔ P(A) = 0, and

(ii) the discounted stock prices e−rTSiT are martingales under the measure Q, i.e.,
∀i = 1, ..., d : EQ(e−rTSiT |Ft) = e−rtSit .

The following result establishes a link between arbitrage-free pricing rules and equiv-
alent martingale measures.10

Theorem 1.8 (Risk-neutral pricing). In a market described by a probability measure P
on scenarios, any arbitrage-free linear pricing rule Π can be represented as

Πt(G) = e−r(T−t)EQ(G|Ft), (1.2)

where Q is an equivalent martingale measure to P.

8For example, the “NFLVR” condition in [DS98] is a no-arbitrage condition with subtle modifications
(p. 467).

9See [Shr04], p. 230.
10See [CT03], p. 298.
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This theorem is central to the approach used in this work. The following chapters
assume that a martingale measure Q describing the pricing rule is given and Πt(G)
is numerically approximated via the discounted expectation value in (1.2). A more
general theorem establishing a one-to-one correspondence between arbitrage-free pricing
rules and equivalent martingale measures is known as first fundamental theorem of asset
pricing. Unfortunately, it is “quite hard to give a precise version of this theorem”.11

Details can be found in [DS94].

Remark 1.9 (Discounting). In this work a constant discount rate is assumed to simplify
notation. In a more general setting the discount factor e−rt must be replaced by a general
discount factor D(t).

Implications of market (in)completeness

The following result gives an interesting characterization of complete markets. It is also
known as the second fundamental theorem of asset pricing.12

Theorem 1.10 (Second fundamental theorem of asset pricing). Consider a market
model that has a risk-neutral probability measure. The model is complete if and only if
the risk-neutral probability measure is unique.

This implies that in complete markets there is only one possible (arbitrage-free) choice
for option prices. On the other hand in incomplete markets option prices are not uniquely
determined until an equivalent martingale measure is chosen. At first sight this seems
not to be a favorable characteristic of incomplete market models, but in fact this only
reflects that complete models systematically underestimate the risk inherent in writing
an option. In reality as well as in incomplete market models, perfect hedges do not exist.

Choice of an equivalent martingale measure

Incomplete market models require either the choice of the equivalent martingale measure
or the use of nonlinear pricing rules. Some approaches that can be found in the literature
are the following.

(i) Drift correction: The drift of the Brownian motion is changed, but all other in-
gredients are left unchanged. This choice has been proposed by Merton in [Mer76].

(ii) Optimal measure: It is possible to choose the martingale measure by solving an
optimization problem. The objective function can, e.g., measure the deviation of
Q from P. Such a measure is discussed in [FM03].

11See [CT03], p. 299.
12See [Shr04], p. 232.
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(iii) Super-hedging: The option price is chosen to be the cost of the cheapest hedging
strategy that surely dominates the payoff of the option. This approach is discussed
in [Kra96]. It leads to nonlinear pricing rules as the worst scenario is different for
each option. Thus, the pricing rules cannot be described by a martingale measure
in the sense of theorem 1.8.

(iv) Indifference pricing: An investor is assumed to be an expected utility maximizer
(equipped with a utility function) and the indifference price for the investor is
chosen as option price. This approach replaces the choice of a martingale measure
by the choice of a utility function. Most utility functions lead to nonlinear pricing
rules.13

While approaches (i) and (ii) lead to linear pricing rules, approaches (iii) and (iv) lead to
nonlinear pricing rules. It is evident that most market participants assume linear pricing
rules.14 Therefore, this work also assumes a linear pricing rule and, accordingly, that the
pricing rule can be described by an equivalent martingale measure. The corresponding
EMM is chosen by the drift correction approach (i), which leads to the martingale
conditions in chapter 5. The latter choice is not a restriction of the methods proposed
in this work. They can be used for arbitrary choices of the EMM.

1.3. Classical valuation methods

This section gives a short overview of existing (classical) numerical pricing methods in
order to point out the difference between these methods and the methods proposed in
this work. Classical methods mostly assume that the market can be described by the
famous Black-Scholes model (defined in section 5.1.2). Some of them can be extended to
cover incomplete market models. Without going into details, the numerical approaches
to option pricing can roughly be divided into the following classes:

(i) PDE based methods: An application of Itô’s lemma to a hedging portfolio can be
used to derive a partial differential equation (PDE) that describes the risk-neutral
price of European options. The price of American options can be represented as
solution of a linear complementarity problem. Methods that are based on the so-
lution of these problems can be called PDE based methods. Among these methods
are finite differences and finite-element methods and their generalizations. Mar-
ket models with jumps lead to partial integro-differential equations (PIDE) for
European options and partial integro-differential inequalities (PIDI) for American
options.15 A resulting PIDI based numerical method for American options is pro-
posed in [MNS05]. A PIDE based method that uses an additional penalty term

13The only utility function that leads to linear pricing rules is u(x) = −x2 (i.e. quadratic hedging).
14If a single option is sold for V , n options of the same type are usually sold for nV .
15See e.g., [BL84].
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to enforce the optimal exercise strategy is discussed in the working paper [CF05].
The main advantage of PDE based methods is their accuracy and that they are
deterministic. PDE methods are based on a rich theoretical foundation.

(ii) Tree methods: Usually, tree methods construct a binomial or trinomial tree that
approximates the evolution of the price of the underlying and then trace back in
time the risk-neutral value of the option. Supported by the central limit theorem,
this approach is fast and easy to implement for the Black-Scholes model. As it
is difficult to construct trees for more general market models, tree methods seem
to be limited to the Black-Scholes setting. The first binomial tree method has
been proposed in [CRR79]. A more recent approach calibrating trees to implied
volatilities is proposed in [DK94].

(iii) Monte Carlo methods: Monte Carlo methods randomly draw a large number
of elements {ω1, ..., ωn} from the sample space Ω, evaluate the realized payoff G(ω)
for each scenario and take the mean as estimate for the discounted expectation
value in (1.2). It is evident that this blueprint relies on an efficient numerical
evaluation of G(ωi). While this is possible for European options, it is not for
Bermudan and American options, whose value depends on the optimal exercise
strategy. Approaches to make Monte Carlo viable for Bermudan options have
been proposed in [BG97], [BG04] and [LS01]. All of these extensions estimate
the hold value of the option16 to decide, whether (and when) it is optimal to
exercise the option. Concerning the model of the underlying, Monte Carlo methods
are surely the most flexible methods for option pricing.17 Another advantage is
that they allow a straightforward implementation in cases where G(ωi) can be
evaluated directly. On the other hand, there are numerous drawbacks, from low
rates of convergence over discontinuous price surfaces to being non-deterministic
and thus providing only confidence intervals for option prices.18 Nevertheless, for
high dimensional or technically involved models of the underlying, Monte Carlo
methods are often the only available methods.

(iv) “Analytical” methods: In various cases a closed-form19 solution of the option
pricing problem is available. The most prominent example is the Black-Scholes
formula for European options. A collection of further “pricing formulas” can be

16The hold value V H(S, ti) of a Bermudan option at a possible exercise time ti is the value that the
option had if it could not be exercised at ti (see definition on p. 14).

17The pure simulation of trajectories for an arbitrary model is usually not a problem.
18Various extensions of Monte Carlo methods exist but cannot be discussed here. For example, using

quasi random numbers can improve the rate of convergence.
19The question, what a “closed-form solution” is, is a bit philosophical. The Black-Scholes formula

involves the Gauss error function; other pricing formulas involve infinite series (e.g. the formula
for European plain-vanilla option prices under the Merton model in [Hau97]) or improper integrals
(e.g. Heston’s “closed-form solution” from [Hes93]).
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found in [Hau97]. Typically, closed-form solutions exist only for European op-
tions. Another collection of methods that is labeled “analytical” is the collection
of analytically tractable approximations to option pricing problems, e.g. [GJ84].
Such methods can provide (rough) approximations of the value of Bermudan or
American options.

Of course this classification is not complete, nor does it fit every valuation method. In
particular the methods proposed in this work do not fall into one of the above classes.
They can be called quadrature based methods. Before this class is introduced in detail,
the following section gives a short motivation for a new class of methods in form of con-
struction goals. An overview of the more closely related literature and a fine classification
of the methods proposed in this work is deferred to section 2.5.

1.4. Motivation

This section sets the goals for a new valuation approach for American options. Desirable
properties of a valuation method for American options are the following:

(i) The method is flexible with respect to the model for the underlying. In particular
it can price options under exponential Lévy models.

(ii) The model for the underlying is separated from the valuation algorithm and can
be easily exchanged.

(iii) The method is deterministic.

(iv) The method is able to price American/Bermudan options on several underlyings.

(v) The accuracy of the solution can be controlled.

These properties are to be fulfilled by the methods proposed in chapters 3 and 4. The
only “classical” methods that can meet all these goals are the most recent, technically
demanding PIDE based methods, e.g., the extended finite difference scheme proposed
in [CF05].



2. Quadrature based valuation of
Bermudan and American options

This chapter introduces the quadrature approach for pricing Bermudan options. It is
the basis for the pricing methods proposed in chapters 3 and 4. After specifying general
assumptions about the market in section 2.1, a method for pricing European options
with arbitrary payoffs is presented in section 2.2. Based on this method, a framework
for the valuation of Bermudan options is introduced in section 2.3. It can also be used
to approximate the value of American options, which is discussed in section 2.4. Finally,
section 2.5 gives an overview of the most recent related literature and thus discusses
the current state of research in quadrature methods. A short digression in section 2.6
introduces a convolution-based approach for Bermudan options, which is a possible al-
ternative to the quadrature approach and compares both approaches qualitatively.

2.1. Assumptions about the market

Instead of sticking to a particular market model, quadrature methods can be based on a
few, rather general assumptions on the structure of the underlying market model. These
assumptions and their consequences are discussed in this section. They are met by the
Black-Scholes model but admit also a wide range of other market models. Some specific
models of Lévy type are presented later in chapter 5.

Assumption 2.1 (Equivalent martingale measure). Let the market model be described
by a filtered probability space (Ω,F ,P,Ft) and let (Xt) = (log St) denote the stochastic
process of log-prices. It is assumed that the pricing rule can be described by an equivalent
martingale measure Q.

This central assumption does not seem to bear severe restrictions. By theorem 1.8 it is
satisfied for any arbitrage-free linear pricing rule.

Assumption 2.2 (Conditional probability density). It is assumed that Xt has a condi-
tional probability density with respect to Xs for every t > s. The conditional probability
density function (PDF) is denoted by f = fXt|Xs=x(ξ). It is furthermore assumed that
f can be evaluated numerically in an “efficient” way.

Assuming the pure existence of a probability density function is not a restriction in
practice. For instance in the one-dimensional case every distribution with absolutely

10
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Figure 2.1.: Conditional probability density functions fXt|X0=0(ξ) for different models.
The parameter values used for this plot are given in table 5.1 (p. 106).

continuous cumulative distribution function F (x) has a density: Then, F is almost
everywhere differentiable, and its derivative is the probability density of the distribution.
Examples for models that have conditional probability densities are the Black-Scholes
model, variance gamma (VG), normal inverse Gaussian (NIG), and the Merton model.

As the density function is later used for the computation of option prices, it is fur-
thermore necessary that it allows for an efficient numerical evaluation. The models
introduced in chapter 5 possess such density functions; but in general this could impose
restrictions on the market model.1

Remark 2.3 (Density function/Characteristic function). For Lévy processes assump-
tion 2.2 can be replaced by the assumption that the conditional characteristic function
of the Lévy process allows for efficient numerical evaluation. Both functions are related
and, e.g., O’Sullivan demonstrates in [O’S05] that the probability density function can
be computed efficiently out of the characteristic function via fast Fourier transform. The
method is further discussed in section 2.5.

1An example for a stochastic process without known closed form probability density is the “tempered
stable process”.
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Assumption 2.4 (Convergence to Dirac delta function). It is assumed that the condi-
tional probability density function fXt|Xs=x converges to the Dirac delta function δx for
t→ s in the sense that pointwise

lim
t→s

∫
Rd
fXt|Xs=x(ξ)g(ξ) dξ = g(x) for all x ∈ Rd

for every continuous function g ∈ C(Rd,R) (such that the arising integrals exist).

This assumption is required for the proof of convergence of the Bermudan option value
to the American option value (lemma 2.14). It is not needed for the plain valuation of a
Bermudan option with an arbitrary but fixed number of exercise times. For the Black-
Scholes model, where f is the normal density function, this assumption is obviously
fulfilled. For the more general class of Lévy processes, it is guaranteed by the stochastic
continuity property.2

Assumption 2.5 (Space-homogeneity, optional). The price process is assumed to be
space-homogeneous, i.e.

∀c ∈ Rd, 0 ≤ s ≤ t ≤ T : fXt+c|Xs+c=0 ≡ fXt|Xs=0. (2.1)

Lemma 2.6. Under assumption 2.5 the translation of the random variable Xt by c can
be passed over to the argument:

∀ξ ∈ Rd : fXt−c|Xs=0(ξ) = fXt|Xs=0(ξ + c), (2.2)

as the probability densities for Xt − c = ξ and Xt = ξ + c are the same. Consequently,
assumption 2.5 implies

fXt|Xs=c ≡ fXt+c|Xs=0.

Proof. ∀ξ : fXt|Xs=0(ξ)
(2.1)
= fXt−c|Xs−c=0(ξ) = fXt−c|Xs=c(ξ)

(2.2)
= fXt|Xs=c(ξ + c)

⇒ ∀ζ := ξ + c : fXt|Xs=c(ζ) = fXt|Xs=0(ζ − c) (2.2)
= fXt+c|Xs=0(ζ).

The (optional) assumption of space-homogeneity of the log-price seems very natural
in the context of stock prices. It means that the conditional distribution of prices is
invariant under re-scaling (e.g., switching from a dollar- based quote to a cent-based
quote).

To illustrate that this assumption is natural, if the underlying is a stock, consider two
scenarios S0 = 8$ and S0 = 16$. The assumption of space-homogeneity implies that for
both scenarios the probability of the price being at least doubled in a given time interval
is equal: In the first scenario we have X0 = log2 S0 = 3, in the second one X0 = 4.
Space-homogeneity says FXT |X0=4 = FXT−1|X0=5. Thus, the probability for XT ≥ 4

2See definition 5.1, property (iii): “∀ε > 0 : lim∆t→0 P(|Xt+∆t −Xt| ≥ ε) = 0”.
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(ST ≥ 16$ = 2S0) in the first scenario is equal to that for XT ≥ 5 (ST ≥ 32$ = 2S0) in
the second scenario.

This assumption is labeled “optional,” as it is not necessary for the following methods.
It is useful as it leads to simpler notation, allows for considerable speed-up in some
special cases (see section 4.4.2), and is necessary for the convolution-based approach in
section 2.6. The assumption holds for many important models, in particular for those
proposed in chapter 5.

Assumption 2.7 (Minor conventions). Besides the assumptions above, some minor
conventions simplify the notation. They are to be considered preliminary, as they are
not technically required.

(i) A process Xt has stationary increments, if fXt|Xt+∆t=x ≡ fXs|Xs+∆t=x for all times
s, t ∈ R, time increments ∆t > 0, and log-prices x ∈ Rd. The price process is
assumed to have stationary increments.

(ii) A constant discount rate r > 0 is assumed. Throughout this work, discount factors
are expressed by e−r∆t for every time period of length ∆t ≥ 0.

(iii) The underlying pays no dividend. This is only for notational convenience. Both
discrete and continuous dividends can be incorporated easily.

Remark 2.8 (Beyond Lévy processes). Two important properties of Lévy processes
are the stationarity and independence of increments.3 It is important to note that both
restrictions are not necessary for the quadrature methods proposed in this work. As-
sumptions 2.5 and 2.7(i) are made only for notational convenience. An example for a
process which has neither stationary nor independent increments is the CIR process.

2.2. Pricing European options with arbitrary payoffs

The first step in the construction of valuation methods for Bermudan options is the
valuation of European options with arbitrary payoffs (as in definition 1.2) under the
assumptions from section 2.1.

Lemma 2.9 (Integral representation of European option prices). Let V (x, t) denote the
fair value of a European option on the underlying Xt maturing at T . Let g : Rd → R
denote its (arbitrary) payoff function. Under the assumptions above the fair price is

V (x, 0) = e−rT
∫

Rd
fXT |X0=x(ξ)g(ξ) dξ, (2.3)

where f denotes the conditional probability density function.

3Lévy processes are defined later in definition 5.1 (p. 90).
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Proof. Following the risk-neutral pricing theorem 1.8, the price under the equivalent
martingale measure from assumption 2.1 can be written as

Π0(G) = e−rTEQ(G|F0).

In the case of a (path-independent) European option and fixed start price X0 := x this
reduces to a discounted conditional expectation of the terminal payoff g(XT ). Following
assumption 2.2 this expectation can be expressed as the weighted integral above.

It is possible to approximate this integral numerically and thus to compute the fair
value of any European option with arbitrary payoff g in any market model satisfying the
assumptions above. Methods based on this approach can be called “quadrature based
methods for European options”.

Remark 2.10 (Black-Scholes formula). For a plain-vanilla European option in a Black-
Scholes setting, one can rewrite the integral using the Gauss error function4. This leads
to the well-known analytic Black-Scholes formula.

Remark 2.11 (Arbitrary payoff and density). The payoff g does not need to be contin-
uous or even smooth. The integral in equation (2.3) has to be finite, but this is not a
restriction in practice. The density function f prescribed by the model is usually smooth.
In cases of non-smooth functions g or f the numerical quadrature procedure has to de-
compose the domain Rd according to the discontinuities to retain accuracy.

2.3. Pricing Bermudan options by quadrature

This section describes the construction of a valuation procedure for Bermudan options
out of a given valuation procedure for European options with arbitrary payoffs.

Reduction to European options with arbitrary payoffs

The first idea is to consider the Bermudan option piecewise as European options with
special payoffs. It leads to the following representation of the Bermudan option value,
which is also called Snell envelope.

Lemma 2.12 (Reduction principle). Let V (x, t) be the value of a Bermudan option with
m discrete exercise times t1 = 0, ..., tm = T . Under the assumptions above the value of
the Bermudan option at each exercise time ti, 1 ≤ i < m can be written as

V (x, ti) = max
(
g(x), V H(x, ti)

)
, with

V H(x, ti) := e−r(ti+1−ti)
∫

Rd
fXti+1 |Xti=x(ξ)V (ξ, ti+1) dξ, (“hold value”)

and V (x, tm) := g(x) at maturity.

4The Gauss error function is defined e.g. in [AS65], p. 297.
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Proof. In each interval [ti, ti+1] the option can only be exercised at ti and ti+1. Thus in
the interval (ti, ti+1] the value of the Bermudan option equals the value of a European
option with payoff g(x) := V (x, ti+1) at ti+1, which can be written in integral form (2.3).
At ti the option can be exercised. The optimal exercise strategy is to exercise, if and
only if the value of the European option at ti is below the payoff and otherwise hold the
option. Thus the value at ti is the maximum of payoff and European option price.

V

S

tT=t3

t2

t1

K

Figure 2.2.: Bermudan plain-vanilla put option sliced into several European options

Example 2.13. Figure 2.2 illustrates the value of a Bermudan put option with exercise
times t1, t2, and t3. The hold value V H(S, t2) at time t2 (dotted/solid line) corresponds
to the value of a European plain vanilla put with payoff g(S) := (K − S)+ at T = t3.
As at t2 the holder may choose to exercise, the value V (S, t2) of the Bermudan option
at time t2 is the maximum of the hold value and the payoff value (solid line). The
optimal exercise point is marked. At time t1, the hold value V H(S, t1) cannot be described
by a European plain vanilla put but by a European option with maturity date t2 and
payoff g∗(S) := V (S, t2). As the holder may exercise at t1, the resulting option value is
V (S, t1) = max(g(S), V H(S, t1)).

The optimal exercise curve for American options corresponds to a set of discrete op-
timal exercise times for Bermudan options. It is evident that the value of a Bermudan
option is discontinuous with respect to t at the exercise times, and that the partial deriva-
tive ∂V/∂S is discontinuous with respect to S at the optimal exercise points. The latter



2.3. Pricing Bermudan options by quadrature 16

discontinuity requires a special treatment in numerical approximations of the integrals in
lemma 2.12.

While this reduction is quite obvious, it is not easy to transfer it into an efficient
numerical method because of the recursive structure of this representation. For instance
the valuation of Bermudan options proposed in [BG97] does nothing else but use Monte
Carlo quadrature for each of the integrals. Because of the recursion it has an exponen-
tial runtime with respect to the number of exercise times and can be applied only for
small numbers of exercise times.5 Another example for the difficulties caused by the
recursive structure is the analytic formula for American puts proposed by Geske and
Johnson [GJ84]. This formula is an approximation obtained from a Richardson extrapo-
lation of the exact values of three Bermudans with m = 2, 3, 4 exercise times. Already
for m = 4 this involves the evaluation of a three-dimensional integral and with every
additional exercise time the integral dimension increases. Consequently, this formula is
impracticable for large m.

Interpolation of the arising payoffs

What makes the reduction approach viable for efficient numerical valuation schemes
is the use of interpolation for the “inner payoff” V (x, ti+1) in each time slice. This
separates the quadrature rules for different time slices and allows for independent and
adaptive placement of quadrature points. The interpolation breaks down the recursion
and guarantees that the computational complexity increases only modestly with the
number m of exercise times.6

Algorithm 2.1 gives a sketch of an adaptive pricing method using interpolation and
quadrature. It is written in an unusually abstract style: f , gi, V

H
i are functions but are

treated like variables. This can be implemented by using either function pointers (e.g.,
in the programming language C) or function classes (a certain design pattern for object-
oriented languages like C++). The implementation of the subroutines “quadrature” and

5This is meant as an example only. The problem with the exponential runtime can be resolved, e.g.,
in the stochastic mesh method in [BG04], which can be a good choice for high-dimensional pricing
problems.

6Obviously the number of instructions is the same for each time slice. If one could also show that the
computation time in each single time step does not depend on m, the total time complexity would
be linear. This is not possible, as the conditional density function changes with ∆t = T

m and thus
the number of instructions required for the same accuracy can potentially increase with m.
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“interpolation” as well as the grid refinement is left open at this point.

Algorithm 2.1: Bermudan(f, gm,m,∆t, r)

for i← m− 1 to 1
do

choose n := n0 nodes x1, ..., xn ∈ Rd as start discretization
repeat
qi ← Quadrature(f, gi+1,∆t, r, x1, ..., xn)
V H
i ← Interpolation(qi, x1, ..., xn)

where necessary, refine discretization (n;x1, ..., xn)
until local discretization errors below tolerance
gi ← max(gm, V

H
i )

return (g1)

Algorithm 2.2: Quadrature(f, g,∆t, r, x1, ..., xn)

for j ← 1 to n
do{
Rj ← e−r∆t

∫
Rd
fX∆t|X0=xj(ξ)g(ξ) dξ (evaluate integral)

return (result vector R)

Algorithm 2.3: Interpolation(q, x1, ..., xn)

Construct interpolating function to values in vector q and abscissae xi.
return (interpolant)

To keep notation simple the algorithm is formulated for Bermudan options with m
equidistant exercise times (step size ∆t). The other formal parameters are the density
function f , terminal payoff gm, and risk-free interest rate r. n denotes the number of
nodes in the space discretization, x1 < ... < xn, qi denotes the hold value evaluated at
each of the spline nodes, V H

i denotes the interpolating function, and gi the value of the
Bermudan option at time step i. The function “Bermudan” returns an approximation
of the current value of the Bermudan option. For the spline method the subroutines are
specified later in section 3.3. For the RBF method, interpolation and quadrature are
joined (see section 4.1) and the two subroutines do not occur in the explicit form above.

Advantages of the quadrature approach

The main advantage of the quadrature approach lies in its flexibility. It “decouples”
the pricing algorithm from the underlying model: The pricing algorithm for Bermudan
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options uses the pricing algorithm for European options as a subroutine (algorithm 2.2).
All information about the market model is contained in this subroutine. Changing
the market model is thus equivalent to changing a small subroutine. This fact makes
it worthwhile to develop sophisticated methods for Bermudan options based on the
reduction principle.

As already mentioned, this approach can handle Lévy models but is not restricted to
this class. Virtually any model with sufficiently smooth conditional density functions can
be employed, e.g., models for commodity prices, interest rates, temperatures, or other
underlyings. Even if there is no parametric model for the densities, a kernel estimation
approach is possible. This flexibility seemed to be reserved for Monte Carlo methods up
to now.

The approach is also robust with respect to non-smooth (or even discontinuous) pay-
offs. The state space Rd can be decomposed into parts in which the payoff is smooth.
In each part one can use a suitable quadrature method obtaining the full order of con-
vergence. However, such decompositions can be difficult for higher dimensions.

There can also be advantages concerning speed and accuracy, but these strongly de-
pend on the implementation of the approach and on the option type (dimension and
model of the underlying, payoff, and exercise structure of the option). For example, a
very efficient valuation of American single-asset options is possible with a specialized
version of the RBF method.7

7A highly efficient RBF based method for this case is described in chapter 4.
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2.4. Connection to American options

As already mentioned, any valuation method for Bermudan options can also be used
to approximate the value of American options. In this section the corresponding con-
vergence result is established, and the order of convergence is estimated in a numerical
experiment. The convergence result characterizes the relation between Bermudan and
American exercise structures and not a particular numerical method. Consequently,
it is inherited by any numerical method that approximates American option values by
Bermudan option values for a large number of exercise times. This section can be skipped
by readers who are mainly interested in the valuation of Bermudan options.

Convergence result

Lemma 2.14 (Convergence to American options). Let Vm(x, t) denote the value of a
Bermudan option with m equidistant exercise times in [0, T ] and payoff g. Let V denote
the value of an American option in [0, T ] with the same specifications (underlying, payoff,
etc.) as Vm. Under the assumptions in section 2.1

V (x, t) = lim
m→∞

Vm(x, t) for all (x, t) ∈ Rd × [0, T ].

Proof. A proof of convergence in the case that the underlying is driven by a geometric
Brownian motion is provided by Ekström [Eks04]. In the following the proof is extended
to the more general setting of the assumptions in section 2.1.

Let T = {t0, ..., tm} denote the set of possible exercise times for the Bermudan option.
Assume that in a given scenario ω ∈ Ω it is optimal to exercise the American option
at time t = tω and price of the underlying x = xω. Let Lm denote the expected
loss arising from the exercise restriction of the Bermudan option. This gives rise to a
map Lm : Rd × [0, T ] → R+ mapping each possible optimal exercise point (x, t) to the
corresponding expected loss. The value of the American option at point (x, t) is the
payoff g(x). The value of the Bermudan option at this point corresponds to the value of
a European option with payoff V ( . , φm(t)) at maturity time φm(t), where

φm(t) := inf{tj ∈ T |tj > t, j = 1, ...,m}

denotes the next possible exercise time of the m-Bermudan option. The loss Lm is the
difference of both values. Using lemma 2.9 the expected loss can be written as

Lm(x, t) = g(x)− e−r(φm(t)−t)
∫

Rd
fXφm(t)|Xt=x(ξ)︸ ︷︷ ︸

≥ 0

V (ξ, φm(t))︸ ︷︷ ︸
≥ g(ξ)

dξ

≤ g(x)− e−r(φm(t)−t)
∫

Rd
fXφm(t)|Xt=x(ξ)g(ξ) dξ (cf. lemma 2.12)

=: L̃m(x, t).
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What happens for m → ∞? First, as φm(t) → t the discounting factor converges to 1.
Second, assumption 2.4 assures that the conditional probability density function in the
integrand converges to the Dirac delta function δx. This implies

L̃m(x, t)→ g(x)−
∫

Rd
δx(ξ)g(ξ) dξ = g(x)− g(x) = 0 ⇒ lim

m→∞
Lm = 0 pointwise.

We now come back to the American and Bermudan option. Let V and Vm denote
their respective fair values. Following the risk-neutral pricing approach these values are
discounted expectations of the future payoffs under the risk-neutral measure Q. Thus
we can write their difference as discounted expectation, as well:8

0 ≤ V − Vm = EQ[e−rtωLm(xω, tω)] ≤ max(1, e−rT )EQ[Lm],

where (xω, tω) denotes the optimal American exercise point corresponding to a scenario
ω ∈ Ω. It is sufficient to show the convergence EQ[Lm]→ 0 for m→∞. The expectation
value is defined as an integral with respect to the risk-neutral measure. In this situation
Lebesgue’s dominated convergence theorem can be applied in its general form.9

Lm is a function on the domain Rd × [0, T ]. The canonical map ψ : Ω → Rd × [0, T ]
is introduced that assigns the optimal exercise point (x, t) of the American option to
each scenario ω. This makes Lm ◦ ψ : Ω→ R+ a map on the domain Ω of all scenarios.
(Lm ◦ ψ) is a sequence of functions on Ω. The sequence converges pointwise to the
function 0 as shown above. The limit function 0 is Q-measurable. The payoff defines
a Q-integrable function g ◦ ψ : Ω → R+. The consequence from Lebesgue’s theorem is
that the sequence of integrals converges to the integral of the pointwise limit function,
i.e. EQ[Lm]→ 0.

This convergence result is implicitly assumed in many papers which derive valuation
methods for Bermudan options in order to approximate American option values.

Order of convergence

In the following the rate of the convergence Vm → V is estimated numerically. Readers
who are already satisfied by the qualitative convergence result in lemma 2.14 can skip
this section.

For the interpretation of methods for Bermudan options as an approximation to Amer-
ican option values, it is important to estimate the time discretization error ‖V − Vm‖∞.
In the following this error is quantified in an empirical sense. As test options the Bermu-
dan options specified in table 2.1 (p. 22) are used. The number of exercise times for

8Theorem 1.8 (p. 5) describes this approach for European options. Here it is used in the case of a
payoff at time tω due to the early exercise feature. In this case the discounting factor has to be
written into the expectation as it depends on ω.

9The theorem can be found in, e.g., [Els02] or [Alt85].
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each of these options is a power of two, m := 2i (i ∈ N). The option parameters and
the model of the underlying are chosen to match the example in [Sey02], p. 143. For
the valuation of these Bermudan options the RBF method, which is introduced later in
chapter 4 is used.10 This method gives accurate results for the Bermudan options. More
details about this method are not necessary at this point. In fact, for this experiment it
could be replaced by any other valuation method for Bermudan options.

It is evident from table 2.1 that the values Vm are strictly increasing, and that the
difference quotients

Qi :=
V2i − V2i−1

V2i−1 − V2i−2

are approximately the same. Assuming such a quotient q := 1
2

implies

V2i = (1 + q)V2i−1 − qV2i−2 .

The solutions of this linear difference equation are of the form

V2i = c0 + c1q
i

with constants c0, c1. Lemma 2.14 assures the convergence

V2i −→
i→∞

V ⇒ V = c0, and consequently V − V2i = −c1q
i.

Inserting q = 1
2

and m = 2i yields the convergence rate

|V − Vm| = O
(

1
m

)
.

A graphical illustration of the empirical convergence result is given in figure 2.3. Re-
peating this experiment with other options leads to similar results, thus supporting the
following hypothesis.

Hypothesis 2.15 (Order of convergence). The values Vm of the Bermudan options with
m = 2i equidistant exercise times converge linearly in the time step size ∆t := 1

m
to the

value V of the corresponding American option:

|V (x, 0)− Vm(x, 0)| = O(∆t) for all x ∈ Rd

Although the empirical result only indicates pointwise convergence, there is every
reason to believe that the stronger uniform convergence ‖V − Vm‖∞ = O(∆t) applies,
too.

Remark 2.16 (Independence from RBF-method). The experiment above does not de-
pend on the method used for the valuation of the Bermudan options. Other efficient
valuation techniques for Bermudan options could have been used. Hypothesis 2.15 char-
acterizes the relation between Bermudan and American options and not the properties
of a particular numerical method.

10For the RBF method, a space discretization of 3200 equidistant points in the log-price interval [-1,6]
is used. This discretization is fine enough for the space discretization error to be negligible.
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Extrapolations

Linear Extrapolation

Hypothesis 2.15 justifies linear extrapolation to obtain the value of an American option.
Let for this section V (∆t) denote the value of the Bermudan option with time step size
∆t and let V (0) denote the value of the American option. In the case of two Bermudan
options with time step sizes ∆t and ∆t

2
the linear extrapolation specializes to

V (∆t) = V (0) + a∆t, a :=
V (∆t

2
)− V (∆t)

∆t
2
−∆t

⇒ V (0) = 2V (∆t
2

)− V (∆t)

Table 2.2 shows these extrapolations based on the results in table 2.1.

Repeated Richardson extrapolation

For example, Chang et al. [CCS01] propose repeated Richardson extrapolation in the
context of the approximation of American option values by corresponding Bermudan
option values. As this is a numerical standard technique (e.g. [BD72]), it is not discussed
here. It can be applied to any approximation of a function value V (0) by V (∆t), ∆t > 0,
where the expansion of V is

V (∆t) = a0 + a1∆t1 + a2∆t2 + a3∆t3 + ...

with unknown but constant coefficients. Then the function

Wn(∆t) := Wn−1(∆t) +
Wn−1(∆t)−Wn−1(q−1∆t)

q1−n − 1
, W1(∆t) := W (∆t)

Table 2.1.: Values Vm of Bermudan options with equidistant exercise times

parameter value
payoff put
K 10
T 1
model B-S
r 0.25
δ 0.2
σ 0.6
method RBF
n 3200
[a, b] [-1,8]
nGauss 175

i m V2i = Vm(K, 0) Di = V2i − V2i−1 Qi = Di/Di−1

1 21 1.79819989814934
2 22 1.83986252549659 0.04166262734725
3 23 1.86044549274970 0.02058296725311 0.494039108
4 24 1.87113830098689 0.01069280823719 0.519497899
5 25 1.87645648277666 0.00531818178978 0.497360625
6 26 1.87909470521520 0.00263822243853 0.496076017
7 27 1.88040178370384 0.00130707848864 0.495439077
.. .. .. .. ..

12 212 1.88165177423294 0.00003967770763 0.498045902
13 213 1.88167154177403 0.00001976754109 0.498202701
14 214 1.88168142286171 0.00000988108768 0.499864279
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has the expansion

Wn(∆t) = a0 + a(n)
n ∆tn + a

(n)
n+1∆tn+1 + ...,

where a
(n)
n , a

(n+1)
n+1 , ... denote other constant coefficients. This extrapolation gives similar

results as a linear extrapolation. Table 2.3 contains results based on table 2.1. This
result is unexpected. It indicates that repeated Richardson extrapolation is not able to
improve the accuracy substantially over a linear extrapolation.

Table 2.2.: Linear extrapolation for the American option V

i V lin
i := 2V2i − V2i−1 |V lin

i − V lin
i−1|

2 1.88152515284384
3 1.88102846000281 5.0× 10−4

4 1.88183110922407 8.0× 10−4

5 1.88177466456644 5.6× 10−5

6 1.88173292765373 4.2× 10−5

7 1.88170886219248 2.4× 10−5

.. .. ..
11 1.88169176329395 7.6× 10−7

12 1.88169145194056 3.1× 10−7

13 1.88169130931512 1.4× 10−7

14 1.88169130394939 5.4× 10−9

Table 2.3.: Repeated Richardson extrapolation for the American option V . Each row
contains the extrapolation value Wi based on the values V21 , ..., V2i in ta-
ble 2.1.

i Wi |Wi −Wi−1|
2 1.8815251528 8.3× 10−2

3 1.8808628957 6.6× 10−4

4 1.8822751966 1.4× 10−3

5 1.8816689889 6.1× 10−4

6 1.8817156705 4.7× 10−5

7 1.8816963598 1.9× 10−5

8 1.8817024253 6.1× 10−6
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Empirical finding: linear dependence of Vm and 1
m

The above extrapolation results are surprising. They suggest the hypothesis that the
Bermudan option values Vm is linear in the time step size 1

m
:

Vm = V∞ − a
1

m

with a constant a > 0. This hypothesis can be supported by the graphical analysis in
figure 2.3. A linear dependence would be of practical relevance, as it would imply that
highly accurate approximations to American option values can be obtained from highly
accurate approximations to Bermudan options with only a moderate number of exercise
times. A future analysis of this finding could be interesting for future research.

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1/m=1/2i

V
∞

−
V

i

Figure 2.3.: A practical test indicates not only linear convergence of Vm → V∞ in the step
size 1/m, but even linear dependence over several orders of magnitude. For
this illustration, the Bermudan values from table 2.1 have been compared
to the best extrapolation from table 2.2 for the American option value, i.e.,
V∞ ≈ 1.88169130394939.
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2.5. Related methods

This section discusses related deterministic11 methods from the current literature, i.e.,
methods which are also based on the reduction principle in lemma 2.12. This applies
to the following articles: [Sul00], [AWDN03], and [O’S05]. Some remarks on existing
literature beyond this list are given at the end of this section.

Sullivan’s method (2000)

Sullivan [Sul00] proposes a method for the valuation of American plain-vanilla puts in
a Black-Scholes setting. He uses the reduction approach to valuate Bermudan options
for several numbers of exercise times. A Richardson extrapolation then approximates
the American value. In this work, the non-smooth pasting at the exercise points of
Bermudan options is already treated by splitting up the integrals. The integrals are
approximated by Gauss-Legendre quadrature over a finite interval (truncating large val-
ues of x). In each time step the early exercise boundary is determined by a bisection
method.12 Unfortunately, an analysis of the numerical properties of this method is
lacking. The choice of p = 8 nodes for the Chebyshev interpolation seems heuristical.
Although Sullivan observes a stability problem,13 he does not address it, e.g., by adapt-
ing the quadrature scheme to the integrand. A numerical experiment included in the
article indicates that an adequate accuracy can be reached with costs comparable to
the binomial tree method.14 Taking into account the striking simplicity of the binomial
method, this is not a very convincing result.

Remark 2.17. The heading “multidimensional approximation” in [Sul00] (p. 84ff) may
be confusing. In the corresponding section, an interpolant of the option price is con-
structed for a multidimensional parameter region: (S, T, σ) ∈ [32, 52] × [0.1, 5.0] ×
[0.1, 0.5]. As expected, the evaluation of such an interpolant is faster than any other
method (row “four-dimensional” in table 5, p. 92). The model of the underlying is not
“multidimensional”, but the standard Black-Scholes model.

The method of Andricopoulos et al. (2003)

A similar quadrature based method has been proposed by Andricopoulos et al. in
[AWDN03]. The Gaussian quadrature in Sullivan’s method is replaced by a compound

11Non-deterministic methods are not included in this discussion. A non-deterministic method based
on the reduction principle is, e.g., the method of Longstaff and Schwartz [LS01].

12A bisection method is apparently what “by trial and error” ([Sul00], p. 79) means.
13“A larger number of exercise dates require[s] a higher degree of quadrature” ([Sul00], p. 82).
14Experiments indicate that “the extrapolated quadrature method [i.e., a four-point Richardson ex-

trapolation for m = 1, 3, 9, and 27 exercise times] has the best accuracy-speed combination for [a
certain] set of option parameters, performing 15% faster than the binomial method while producing
lower errors on average” ([Sul00], p. 84).
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Simpson rule, which results in a lower convergence order of O(∆x4). This method does
not allow to control the accuracy. Error estimates are lacking. The non-smooth pasting
at the exercise points is treated by placing a node of the discretization at each optimal
exercise point of the Bermudan option.15

From the numerical point of view this method is not an improvement over Sullivan’s
method. The main contribution of the paper [AWDN03] is to emphasize the universal
applicability of quadrature based methods by several examples.

Extension to multiple assets in a Black-Scholes model

In the working paper [ADNW06] Andricopoulos et al. try to extend the method to higher
dimensions. The approach is a straightforward generalization of the one-dimensional case
in [AWDN03]. Unfortunately, the authors do not mention which quadrature rule is used
for the multi-dimensional integrals. As they use Simpson’s rule in the one-dimensional
case, it is presumably a product rule based on Simpson’s rule. A brief review of the
results given in [ADNW06], table 4, follows:

• The “2-underlying down-and-out barrier option” has a discretely monitored barrier
with 12 observation times. The computation of a discrete “out-barrier” option
value is technically the same as pricing a Bermudan option with corresponding
exercise times.

• The “3-underlying American call” is a call with discrete dividends at two dates.
There is no continuous dividend paid between the discrete dividend dates. In this
case, it is not optimal to exercise the American option between the dividend dates.
Consequently, this option reduces to a Bermudan option on three underlyings and
two exercise times. This “American” option turns out to be nearly a European
one.

• The “2-underlying Bermudan put” has 12 exercise times.

It can be summarized that the authors apply their method to Bermudan options in a
Black-Scholes setting with d = 2 underlyings and m ≤ 12 exercise times or d = 3 under-
lyings and m = 2 exercise times. The method seems not suitable for pricing Bermudan
options with a higher number of exercise times.16 This limitation is probably caused
by the increasing peakedness of the multivariate Gaussian normal density function with
decreasing time step size ∆t = 1

m
.17 Non-adaptive low order quadrature rules like Simp-

son’s rule are not suited for highly peaked integrands. The methods that are proposed in

15“The method benefits from the simple and exact placement of ‘nodes’ on boundaries [...], thus re-
moving any nonlinearity error” ([AWDN03], p. 469).

16The same problem can already be observed in the one-dimensional case, although less significant:
The maximal number of exercise times in the examples is m = 125 in [AWDN03], table 2, p. 467f,
and even only m = 20 in the derived paper [O’S05], table 1, “Q-FFT, R20”.

17The increasing peakedness is implied by assumption 2.4 (convergence of PDF to Dirac delta).



2.5. Related methods 27

the following two chapters do not exhibit problems with peaked integrands. The spline
method uses an adaptive quadrature rule and the RBF method uses a quadrature rule
with high polynomial order.18

O’Sullivan’s extension to Lévy processes (2005)

O’Sullivan [O’S05] was the first who proposed a quadrature based pricing method in the
context of Lévy processes. The method is a combination of the method of Andricopoulos
et al. with an FFT based evaluation of the conditional probability density function. The
PDF fXt|X0=x can be constructed as follows out of the conditional characteristic function
(CCF) of the stochastic process. The CCF is defined as

Ψ(φ,∆t;x) := EQ[exp(iφX∆t)|X0 = x] =

∫ ∞
−∞

exp(iφξ)fX∆t|X0=x(ξ) dξ.

The conditional cumulative density function is given by the inverse Fourier transform

P(X∆t < y|X0 = x) =

∫ y

−∞
fX∆t|X0=x(ξ) dξ

=
1

2
− 1

π

∫ ∞
0

Re

(
1

iφ
exp(−iφy)Ψ(φ,∆t;x)

)
dφ.

By definition, the conditional probability density function f is the derivative of the above
expression with respect to y and thus

fX∆t|X0=x(y) =
1

π

∫ ∞
0

Re (exp(−iφy)Ψ(φ,∆t;x)) dφ.

This expression can be evaluated by a fast Fourier transform. The details are skipped
here; but it is important that this technique can be used with any quadrature method,
if the CCF is known in closed form.

O’Sullivan’s extension provides a method for one-dimensional19 Bermudan options
under Lévy processes with time complexity O(mn2), where m is the number of exercise
times and n the number of nodes in the asset space. Although an analysis of accuracy
is still lacking, the paper [O’S05] includes numerical results that are similar to reference
solutions obtained by binomial tree and lattice based methods.

18For example, to obtain the numerical results in chapter 6, a quadrature rule with polynomial order
350 is used in the one-dimensional case and with polynomial order 50 in the higher-dimensional case.

19The dimension refers to the number of underlyings. Time is not counted as a dimension.
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Further remarks

• Parkinson’s method: O’Sullivan writes: “Option pricing using numerical in-
tegration methods was first introduced by Parkinson (1977) [Par77]”.20 This is
misleading. Although Parkinson uses the reduction principle 2.12 and a rectan-
gle approximation to the integral for the derivation of his method,21 the resulting
method is a trinomial tree method. Consequently it has different properties than
quadrature methods.

Quadrature methods allow in particular to choose the time discretization and the
(price-) space discretization independently. They can by design price a Bermudan
option with arbitrary precision using only the time discretization implied by the
Bermudan exercise structure. This is not possible with trinomial tree methods,
where higher precision is by design accompanied by a finer time discretization.

• Huang, Subrahmanyam, and Yu’s method: The method proposed in [HSY96]
uses an integral equation for the American put value. This integral equation
can be solved recursively for each time step to obtain an approximation to the
early exercise boundary. The approximation can in turn be used to evaluate the
American put. Although this paper is cited by Andricopoulos et al. as a method
“using univariate integration”,22 it is not a quadrature method in the above sense.

• Kim’s method: Kim [Kim90] derives an integral equation for the optimal exercise
boundary of a one-dimensional plain-vanilla American option in the Black-Scholes
model. The solution of the integral equation can then be used in a second step to
calculate the value of the option.23 As the derivation uses the closed-form solution
of the Black-Scholes equation, this approach is limited to one-dimensional plain-
vanilla options in the Black-Scholes model. Kim’s method is not a quadrature
method in the above sense, as it does not follow the construction principle in
lemma 2.12.

• Longstaff-Schwartz method: We did not include the method proposed by
Longstaff and Schwartz [LS01] in the historic review above because it is nondeter-
ministic. But in principle it relies on the same ideas. It uses a Monte Carlo method
as valuation procedure for European puts with arbitrary payoffs. Of course Monte
Carlo approximation leads to non-smooth option prices and thus prohibits the use
of interpolation methods. To resolve this problem Longstaff and Schwartz relax
the interpolation to a least-squares regression.

20[O’S05], p. 2
21[Par77], p. 28
22[AWDN03], p. 450
23Kim uses an integration approach for the second step, but other numerical approaches could also

be used, e.g., finite differences: Once the optimal exercise boundary is known, the free-boundary
problem simplifies to a boundary value problem.
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2.6. Convolution-based methods

The reduction principle in section 2.3 allows the construction of valuation methods for
Bermudan options out of valuation methods for European options with arbitrary payoffs.
Although this work focuses on quadrature based methods, the reduction principle is not
restricted to these methods. It can also be applied to any other valuation method
for European options. An alternative idea is the use of convolution methods. In the
following this approach is briefly compared to quadrature based methods. For European
options, a convolution-based method has been proposed by Carr and Madan in [CM99].
As the application of convolution methods to Bermudan options cannot be found in
the recent literature, it is described in appendix A.2. Some differences and similarities
between possible convolution-based methods and quadrature methods are the following.

• The convolution approach requires translation invariance of the conditional prob-
abilities, i.e. assumption 2.5. This assumption holds for most of the current stock
price models. An example without translation invariance is the Heston model with
stochastic volatility. In this model the volatility process is not translation invari-
ant. Another important example for which assumption 2.5 fails are interest rate
models. The mean-reversion incorporated in models like CIR or Vasicek excludes
translation invariance. The requirement of translation invariance can be seen as a
restriction inherent to convolution-based methods.

• Some integrability conditions, e.g. assumption A.1 (p. 148), can impose further
restrictions on the model or option type in practice.

• The computational complexity of the fast Fourier transform is O(n log n), where
n denotes the number of nodes in the discretization. Applying this method in the
context of pricing Bermudan options, the resulting complexity will be O(mn log n),
where m denotes the number of exercise points of the Bermudan option. This is a
good result. However, the RBF method can lead to a complexity of O(mn) in the
same special case of one underlying and equidistant nodes (see section 4.4.2).

• The application to higher dimensional pricing problems would require multivariate
fast Fourier transforms.

In short, the introduction of convolution methods for Bermudan options is given in
appendix A.2. The convolution approach bears some technical difficulties (as the choice
of damping parameters). If these difficulties can be solved, the computational complexity
is competitive. The method is restricted to translation invariant models. In addition an
extension to multivariate options requires multivariate FFT methods.



3. The spline method

This chapter proposes a new method for pricing Bermudan options based on quadrature
and spline interpolation. After a short review of spline interpolation and suitable numer-
ical quadrature methods, the spline method is introduced in section 3.3 for single-asset
options. Its numerical properties are analyzed in section 3.4, and a possible extension
to multi-asset options is discussed in section 3.5. Numerical results are deferred to
chapter 6.

3.1. Spline interpolation

The main motivation for the spline method is online accuracy control. Controlling the
local discretization error allows to minimize the computational costs for a pre-specified
accuracy. Spline interpolation allows for an adaptive placement of nodes. The space
discretization can be refined locally until the local error falls below a given tolerance.

In contrast to other interpolation techniques, as, e.g., polynomial interpolation or
Chebyshev interpolation, splines can be constructed in O(n) (n = number of nodes) and
evaluated in O(1). Fast evaluation of the interpolant is very important, as the quadrature
rule requires possibly a large number of evaluations. For sufficiently smooth functions
the spline converges with decreasing fill distance ‖∆‖ to the interpolated function, and
the interpolation error is of order O(‖∆‖4). In the following some aspects of splines are
briefly reviewed. A more comprehensive introduction can be found in [Gre69].

Definition

A cubic spline is a C2-function which is defined piecewise by cubic polynomials:

Definition 3.1 (Cubic spline). Let ∆ = {a = x0 < x1 < ... < xn = b} be a partition of
the interval [a, b]. A cubic spline with respect to ∆ is a function S∆ ∈ C2[a, b] which is
a cubic polynomial on each interval [xi, xi+1] (i = 0, ..., n− 1).

Although this definition can be generalized to piecewise polynomials of higher orders,
we use only cubic splines in this work.

Definition 3.2 (Interpolating spline). Let f be a function1 on [a, b]. The spline S∆ is
called interpolating spline of f , if S∆(xi) = f(xi) for every i ∈ {0, ..., n}.

1Notational convention: In this section we use f to denote the interpolated function, not the probability
density function as in the rest of this work.

30
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Boundary conditions

In the context of interpolation it can be observed that each of the n cubic polyno-
mials introduces four degrees of freedom. The C2-condition at each of the n − 1 in-
ner nodes requires three degrees of freedom (matching S∆, S ′∆, and S ′′∆). The in-
terpolation condition requires one degree at each of the n + 1 nodes. This leaves
4n − 3(n − 1) − (n + 1) = 2 degrees of freedom. A possible boundary condition is
the natural2 condition S ′′(a) = S ′′(b) = 0. It is not optimal in this case as of interest is
the convergence of the spline instead of minimal curvature. Therefore

S ′(a) = f ′(a) and S ′(b) = f ′(b) (3.1)

is chosen to determine the interpolating spline uniquely.

Construction

The construction of interpolating cubic splines can be divided into two steps. One can
show that a spline is uniquely determined by its moments

mi := S ′′∆(xi) (i = 0, ..., n),

and that these moments are the solution of a tridiagonal system.

Representation by moments

S ′′ is by definition linear in each interval [xi, xi+1]:

S ′′(x) = mi
xi+1 − x
xi+1 − xi

+mi+1
x− xi
xi+1 − xi

Integration gives

S ′(x) = −mi
(xi+1 − x)2

2(xi+1 − xi)
+mi+1

(x− xi)2

2(xi+1 − xi)
+ ci

S(x) = mi
(xi+1 − x)3

6(xi+1 − xi)
+mi+1

(x− xi)3

6(xi+1 − xi)
+ ci(x− xi) + di (3.2)

with integration constants ci and di. They can be determined using the interpolation
conditions S(xi) = f(xi) and S(xi+1) = f(xi+1):

ci =
f(xi+1)− f(xi)

xi+1 − xi
− xi+1 − xi

6
(mi+1 −mi)

di = f(xi)−mi
(xi+1 − xi)2

6
2This condition is called “natural” because the resulting spline S minimizes ‖S′′‖2L2[a,b] under all

interpolating functions in C2[a, b]. For small f ′ this value can be seen as an approximation of the
curvature.
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Substituting the constants in equation (3.2), it is seen that the moments mi (i = 0, ..., n)
uniquely determine the spline function piecewise on each interval [xi, xi+1] and thus
globally on [a, b]. Given the moments mi we can evaluate the spline function in O(1) at
any point x ∈ [a, b] using equation (3.2) for the subinterval [xi, xi+1] 3 x.3

Computation of the moments

The smooth pasting conditions S ′(x−i ) = S ′(x+
i ) at each inner node xi introduce n − 1

linear equations for the inner moments m1, ...,mn−1.

µimi−1 + 2mi + λimi+1 = bi

for i = 1, ..., n− 1 with

λi :=
xi+1 − xi
xi+1 − xi−1

,

µi := 1− λi,

bi :=
6

xi+1 − xi−1

(
f(xi+1)− f(xi)

xi+1 − xi
− f(xi)− f(xi−1)

xi − xi−1

)
.

The boundary conditions (3.1) provide two additional equations of the same form for
i ∈ {0, n} with coefficients µ0 := 0, λ0 := 1, µn := 1, λn := 0, and right hand sides

b0 :=
6

x1 − x0

(
f(x1)− f(x0)

x1 − x0

− f ′(x0)

)
,

bn :=
6

xn − xn−1

(
f ′(xn)− f(xn)− f(xn−1)

xn − xn−1

)
.

Together we have the tridiagonal linear system
2 λ0

µ1 2 λ1

. . .
µn−1 2 λn−1

µn 2



m0

m1

.

.
mn

 =


b0

b1

.

.
bn


Gerschgorin’s circle theorem implies that the system has a unique solution for every
partition ∆.4 Because of the tridiagonal structure it can be solved in O(n) by Gaussian
elimination.

3In fact it is not trivial to obtain O(1): For an arbitrary point x one needs to search the whole partition
∆ for the subinterval [xi, xi+1] which contains x. A simple binary search would lead to O(log n) for
each evaluation. Combining binary search with a “hint parameter” in the quadrature method, one
can reduce the overall search time for each integration to O(n): Although the worst case complexity
for each single searching is O(n), it can be seen that the total complexity for n searchings is also
O(n) in this case.

4Theorem can be found in [SB00], §6.9; here: µi ∈ (0, 1), λi ∈ (0, 1) for 1 ≤ i ≤ n−1 and λ0 = µn = 1.
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Interpolation error

For present purposes the following estimate of the interpolation error is a bit theoretical,
as it expresses the interpolation error only by means of the fill distance ‖∆‖. In practice
we do not consider ‖∆‖ → 0 but refine the spline locally, based on a heuristic error
estimate. The following result can be seen as a worst-case estimate.

Theorem 3.3 (Interpolation error of cubic splines). Let f ∈ C4[a, b] and ‖f (4)‖∞ ≤ L.
Let ∆ = {a = x0 < x1 < ... < xn = b} be a partition of [a, b] and S∆ the corresponding
interpolating cubic spline with S ′∆(a) = f ′(a) and S ′∆(b) = f ′(b). Then

‖f − S∆‖∞ ≤ 5
384
L‖∆‖4,

where ‖∆‖ := max{xi+1 − xi|i = 1, ..., n− 1} denotes the fill distance.

Proof. A proof can be found in [HM76].

3.2. Adaptive quadrature

Our aim is to construct a quadrature based pricing method with accuracy control. This
requires an adaptive quadrature rule. The integrand is the product of a spline function
and a smooth function and thus piecewise C∞[xi, xi+1]-smooth. As the function is only
C2[a, b]-smooth globally, it does not make sense to use high-order quadrature schemes
for the whole interval [a, b]. It is necessary to split up the integration according to the
partition ∆ of the spline function. The subintervals [xi, xi+1] are already small and it
can be expected that only a few quadrature points suffice to achieve high accuracy. The
use of adaptive Romberg quadrature for each subinterval is decided upon.

Remark 3.4 (Special case for Black-Scholes). In the Black-Scholes case the conditional
density function has the form a0e

−a1(x+a2)2
with certain constants a0, a1, a2. The in-

tegrand is piecewise a product of this function with a cubic polynomial. It is possible
to develop a specialized quadrature rule for integrands of the form a0e

−a1(x−x0+a2)2
(x3 +

a3x
2 + a4x+ a5). In this work the focus is on a method that is suitable for other market

models and therefore a “general purpose” quadrature rule is used.

Romberg quadrature

Romberg quadrature is an application of the repeated Richardson extrapolation (RRE)
mentioned in section 2.4 to the trapezoid rule. Assume that it is wished to approximate
an integral over a function f :∫ b

a

f(x) dx, where f ∈ C∞(a, b) is a smooth function.
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In this context, f denotes an arbitrary function and not the probability density as in
chapter 2. Let T (h) be the value of the trapezoid rule

T (h) := h[1
2
f(a) + f(a+ h) + f(a+ 2h) + ...+ f(b− h) + 1

2
f(b)]

with step size h (b− a = kh for an integer k). Using the Euler Maclaurin formula, one
can show that f ∈ C2m+2 T has the expansion

T (h) =

∫ b

a

f(x) dx+ a1h
2 + a2h

4 + a3h
6 + ...+ O(h2m+2)

with constants ai (independent of h). Consequently one can apply RRE to approximate
T (0). Let (hi) be a sequence of decreasing step sizes and Ti,0 := T (hi) denote the
corresponding trapezoid rule approximations of the integral. Then RRE defines the
approximations

Ti,k := Ti,k−1 +
Ti,k−1 − Ti−1,k−1

(hi−k/hi)2 − 1
, for 1 ≤ k ≤ i ≤ m.

Theorem 3.5 (Error estimate for a special Romberg sequence). Let f ∈ C2k+2 and the
sequence of step sizes be hi := hi−1/2, h0 := b− a. Then the integration error is

Ti,k −
∫ b

a

f(x) dx = (b− a)

(
k∏
j=0

h2
i−j

)
(−1)kB2k+2

(2k + 2)!
f (2k+2)(ξ)

for a ξ ∈ (a, b), where B2k+2 denotes the (2k + 2)th Bernoulli number.

Proof. See [BRS63].

This error estimate could be used to estimate the error for a given integrand f an-
alytically. The analysis would depend on both the option type and the model of the
underlying. In practice, a heuristic terminating condition gives satisfactory results. It
observes several successive approximations Tk−2,k−2, Tk−1,k−1, Tk,k for each k to decide if
the required accuracy is already achieved. Of course, this simple terminating condition
can later be replaced by a more sophisticated one.
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3.3. Construction of the valuation method

This section applies spline interpolation in the context of the reduction principle 2.12
(p. 14). The coarse framework for the valuation method has already been described
by algorithm 2.1 (p. 17). The program of this section is, roughly speaking, to specify
the subroutines for quadrature and interpolation and discuss technical details of their
implementation. One goal of the construction is to allow error control. The method
involves three types of errors:

• interpolation,

• truncation, and

• quadrature errors.

Each of these errors has to be controlled in every time step. This section is structured
according to the three types of errors: Subsection 3.3.1 describes the adaptive discretiza-
tion of the spline, which controls the interpolation error. Subsection 3.3.2 describes the
truncation strategy, which determines the truncation error. Finally, subsection 3.3.3
briefly describes how the quadrature error is controlled.

This section considers only a single time step. To simplify notation, the dependence
of all variables on the time step number i is omitted. (That means n is used instead of
n(i), aS instead of aS(i), etc.) Variables from the previous time step are referred to with
the subscript “prev”.

We focus on the one-dimensional situation (d = 1). The notation follows that in
chapter 2, i.e., f denotes the conditional density function, g the payoff, etc.

3.3.1. Adaptive spline discretization

The discretization of the log price space R takes place on two levels.

• The first level is the discretization by the nodes of the interpolating spline. These
nodes are denoted by x1 < ... < xn.5

• The second, finer discretization level is constructed by the quadrature method.

In this subsection only the first discretization level is considered. The second level is
discussed later in subsection 3.3.3.

5Although this is not indicated in the algorithm sketch 2.1, the number of nodes n may vary for each
time step, i.e., n = ni. This detail is omitted in the following to simplify notation.
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Start discretization

The spline is constructed for a finite interval [aS, bS] ⊂ R. The choice of aS and bS is
connected to the truncation error and discussed in subsection 3.3.2. As start discretiza-
tion chosen were n equidistant nodes aS = x1 < ... < xn = bS.6 Because of the following
adaptive refinement procedure, the initial choice of n is not important. In fact the min-
imal start discretization n := 2, x1 := aS, x2 := bS gives good results. The refinement
is not sensitive with respect to the start discretization if the option value function is
convex as it is the case for plain-vanilla payoffs. For other payoffs, a more conservative
choice could be based on the final number of nodes that were used in the previous time
slice, e.g., n :=

√
nprev, with an arbitrary number for the first time slice, e.g., n := 100.

This choice is suitable to reduce the risk of premature termination of the refinement
procedure.

Adaptive refinement of the spline nodes

The adaptive refinement is based on a heuristic error estimate. It is assumed that the
maximal interpolation error between two successive spline nodes xj and xj+1 can be
estimated by the interpolation error at the “test point”

xj+xj+1

2
:

Assumption 3.6 (Estimation of the interpolation error). Let g denote the spline inter-
polant of f with respect to the nodes x1 < ... < xn. The interpolation error between two
nodes xj and xj+1 is estimated as follows:∣∣∣∣f (xj + xj+1

2

)
− g

(
xj + xj+1

2

)∣∣∣∣ ≈ max
ξ∈[xj ,xj+1]

(|f(ξ)− g(ξ)|) (∀j = 1, ..., n− 1)

If the error estimate exceeds the given tolerance, an additional node is placed at
xj+xj+1

2
.

This leads to a new discretization x′1 < ... < x′n′ with n′ ≥ n points. If n′ = n, the
iterative refinement terminates (cf. the corresponding repeat-until-loop in algorithm 2.1).
If n′ > n, the refinement procedure is repeated.

Remark 3.7 (Termination of refinement). In practice the procedure terminates after a
few iterations. To guarantee termination by means of theorem 3.3, it is required that
the fill distance ∆ converges to 0. This is not necessarily the case for the refinement
procedure described above. Therefore, theoretically, the following modification is required:
All intervals [xj, xj+1] with |xj+1 − xj| > b−a√

n
are refined (⇒ ∆→ 0 for n→∞).7

6As x denotes log-prices, the start nodes are not equidistant with respect to the price S of the
underlying. The step size increases with increasing S.

7In practice this modification does not have a strong impact on the algorithm. When using adaptive
nodes, the actual interpolation error is far below the guaranteed error bound from theorem 3.3,
which only estimates the error by means of the fill-distance.
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3.3.2. Control of truncation errors

The subroutine “quadrature” from algorithm sketch 2.1 evaluates the following integral
for all spline nodes (j = 1, ..., n):

V H(xj, ti) := e−r(ti+1−ti)
∫

R
fXti+1 |Xti=xj(ξ)V (ξ, ti+1) dξ, (3.3)

where f is the conditional PDF and V (·, ti+1) is the option value at the next exercise
time ti+1. As the integrand has unbounded support, the integral is improper. It is
approximated by truncating the integral to a finite interval [a, b] and using adaptive
Romberg quadrature for [a, b]. This subsection discusses a suitable choice of a and b.

As the integrand depends on the node xj, the truncation points a = a(xj) = aj and
b = b(xj) = bj also depend on j. In the following we fix one single node xj and only
write a, b instead of aj, bj to simplify notation.

Truncation of the improper integrals

As shown later in lemma 5.10 (p. 104), it is possible for all models considered in chapter 5
and all admissible parameter sets to find a constant α > 1 such that f(x) = O(e−α|x|)
for |x| → ∞.8 In addition to that the following (weak) assumption is needed.

Assumption 3.8. The option price V (x, t) grows at most exponentially in x for all t:

V (x, t) = O(e|x|) for |x| → ∞.

This holds for all option types which arise in practice.9 It is possible to conclude the
following error estimate for a truncation point b� 0 (large enough):∫ ∞

b

f(ξ)V (ξ) dξ ≤
∫ ∞
b

ce(1−α)ξ dξ =
c

α− 1
eb(1−α) (3.4)

with an unknown constant c > 0. The residual of the integral decays exponentially with
increasing b. For the other truncation point a < 0 we get an even better result. Taking
into account that the option price is bounded for ξ � 0 for all usual option types, we
can estimate the error caused by truncation at a� 0 as follows.∫ a

−∞
f(ξ)V (ξ) dξ ≤

∫ a

−∞
ce−α|ξ| dξ =

c

α
eαa (3.5)

8The expression “= O(...) for |x| → ∞” means that the function is in this class for both limit cases
x→∞ and x→ −∞.

9This is a well-known fact for plain-vanilla options in a Black-Scholes setting. For example, for convex
payoffs (plain-vanilla payoffs are convex) this assumption can be reduced to an assumption for
European options and then be verified by the limit behavior of the analytic solution of the Black-
Scholes formula. For all other options that arise in practice, this assumption obviously holds. An
exact specification of these options would introduce an unnecessary formalism.



3.3. Construction of the valuation method 38

with an unknown constant c > 0. Together, this leads to the total error estimate for
truncation at a� 0 and b� 0:∫ ∞

−∞
f(ξ)V (ξ) dξ =

∫ b

a

f(ξ)V (ξ) dξ + O(eαa + eb(1−α))

Basic truncation strategy

Suitable truncation parameters (a, b) can be found by a simple search strategy. We eval-
uate the integrand at a sequence of points (aν , bν) := (−2ν−1, 2ν−1), until f(aν)V (aν) < ε
and f(bν)V (bν) < ε with a sufficiently small tolerance ε ≈ 0. This heuristic strategy
works well in practice.

Improved truncation strategy

An improved truncation strategy can be derived by assuming the following limit behavior
for the integrand:

h(x) := f(x)V (x) ≈ ce(1−α)x for x� 0

with unknown constants c and α.10 The same doubling sequence (aν , bν) as above is
used. Evaluating h at two points bν and bν+1 := 2bν yields

hν = ce(1−α)bν ,

hν+1 = ce(1−α)2bν

⇒ α = 1 + 1
bν

log hν
hν+1

, c = h2
ν

hν+1
.

Substituting α and c into estimate (3.4) of the truncation error leads to the following
terminating condition for the truncation point bν :

c
α−1

ebν(1−α) < ε
2
,

where ε is a prescribed tolerance for the truncation error. The lower truncation point a
can be treated in a similar way by using the approximation h(x) ≈ ceαx for x� 0:

hν = ceαaν ,

hν+1 = ce2αaν

⇒ α = − 1
aν

log hν
hν+1

, c = h2
ν

hν+1

Substituting into eq. (3.5) leads to the terminating condition for the truncation point
aν :

c
α
eαaν < ε

2

10This assumption fails obviously at the first time step of a Bermudan option with plain-vanilla payoff:
At maturity is V (x) = 0 for x � 0 (call) or for x � 0 (put); but in this case the corresponding
truncation is not necessary. For all subsequent times V (x) > 0 is given for all x, as the probability
density function f(x) is strictly positive for all x.
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Choice of the spline interval

For all usual option types (and assuming r > 0) there is one optimal exercise point x∗,
i.e., exactly one solution of

V H(x∗) = g(x∗). (3.6)

In the following we discuss the case of a put (plain-vanilla or binary put).11 Figure 3.1
gives an illustration of a time step ti+1 → ti in this case. For puts we have

V H(x) < g(x) for x < x∗.

Consequently, the option is exercised for x < x∗. The first node of the spline can be
chosen as aS := x∗ and the interpolation function can be continued arbitrarily, e.g., by
setting V H(x) := 0 on (−∞, aS). As the option is exercised for x < aS, the value of the
option does not depend on the hold value in this region. The value aS is then defined by
eq. (3.6) and can be approximated numerically by a Newton method. (Both functions
are smooth in the neighborhood of aS; a good start value is given by aprevS from the
previous time step.) The choice of bS and the continuation of the spline on (bS,∞) are
a bit more complicated. The hold value has the limit behavior V H(x)→ 0 for x→∞.
This justifies the continuation V H(x) := 0 for x > bS. To prevent this choice from
introducing new errors, it must be guaranteed that

bS > B := max
j∈{1,...,n}

(bj). (3.7)

As B is not known in advance when the spline is being constructed, it is assumed
bS ≈ bprevS and the guess

bS := 2bprevS

with a safety factor 2 is used. Later, in the quadrature routine, the new truncation
points bj are known and condition (3.7) can be verified a posteriori. If it is violated, the
spline is rejected and a new spline is constructed with bS := B.

11Call options can be handled analogously.
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eaS = ex* ebS

V=VHV=g V=VH "small"

t

V

ex

ti+1

ti

(spline interpolation) (truncation)

ex

Vprev=g Vprev=VH
prev Vprev "small"

exj

(domain of integration)

a(xj) b(xj)

Figure 3.1.: Interpolation and integration in each time step of the spline method.
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3.3.3. Control of quadrature errors

This subsection briefly describes the discretization for the quadrature method, which
controls the quadrature error.

Splitting up integration

Consider the integrand in (3.3)

h(ξ) := f(ξ)Vprev(ξ) = f(ξ) max(V H
prev(ξ), g(ξ)).

This function is only piecewise C∞-smooth.12 To retain the full (adaptive) order of
the Romberg quadrature, it is necessary to split the interval [a, b] at the spline nodes
xprev1 < ... < xprevn from the previous time slice. Let xprevA denote the first and xprevB the
last node in [a, b]. The truncated integral can then be divided into∫ b

a

h(ξ) dξ =

∫ xA

a

h(ξ) dξ +
B−1∑
ν=A

∫ xν+1

xν

h(ξ) dξ +

∫ b

xB

h(ξ) dξ.

The integrand is C∞-smooth on each of the intervals (a, xA), (xA, xA+1), ..., (xB, b). For
each of these subintervals, Romberg quadrature can be applied.

Adaptive refinement of the discretization (second level)

The discretization implied by the spline interpolation is refined adaptively to control the
quadrature error. On each interval [xν , xν+1] the Romberg method uses 2Nν equidistant
quadrature points. The discretization size Nν is determined by the error estimate in
the Romberg scheme. It is based on the comparison of integral approximations with
several consecutive discretizations (with 2Nν , 2Nν−1, 2Nν−2, ... points, respectively). The
discretization is considered fine enough, if the difference of several consecutive approxi-
mations is below the given error tolerance.

3.3.4. Summary

In this section the subroutines “quadrature” and “interpolation” have been specified.
By construction the three types of errors can be controlled in each time step. A missing
link is the smoothness of the hold value V H . The next section fills this gap and analyzes
the numerical properties of the spline method.

12Here, the density function f is assumed to be piecewise smooth, g is assumed to be piecewise smooth.
It is shown in section 3.4 that V H ∈ C∞ under rather general conditions.
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Illustration of adaptive spline nodes

Figure 3.2 illustrates the adaptive spline nodes generated by the spline method for a
Bermudan plain-vanilla put option. The optimal exercise boundary is given by the
leftmost nodes aS(i). The rightmost nodes are the truncation points bS(i) of the spline
interpolation. The discrete structure of the node distances is caused by the adaptive
spline discretization described in 3.3.1, which inserts new nodes between two existing
nodes. The figure illustrates well that the adaptive spline method automatically places
more nodes near the optimal exercise boundary and near the strike than, e.g., far out of
money.

The option parameters can be found in table 6.7 (p. 124). The exercise structure is
Bermudan with m = 100 equidistant exercise times, error tolerance is ε = 10−6. The
spline method required for this example 9656 nodes, i.e., on average only 96 nodes per
time step. The number of required Romberg integrations for this problem is of order
100× 962 ≈ 1000000.
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Figure 3.2.: Adaptive spline nodes for a Bermudan option.
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3.4. Numerical properties

This section analyzes the numerical properties of the spline method (error control, sta-
bility, and computational complexity). Subsection 3.4.1 shows that the method can be
used to valuate Bermudan options up to an arbitrary prescribed error bound ε. This im-
plies the convergence of the method for ε→ 0. Subsection 3.4.2 unleashes theorems 3.3
and 3.5 by proving that under rather general conditions the hold value of a Bermudan
option is C∞-smooth. Subsection 3.4.3 discusses further stability issues of the valua-
tion algorithm. The computational complexity and numerical efficiency is analyzed in
subsection 3.4.4.

3.4.1. Convergence/error control

The spline method contains two adaptive mechanisms to control the accuracy of the
valuation method. The first one controls the interpolation errors, and the second one
controls quadrature errors. The following result describes how the method can be used
to compute an option value with a given error tolerance.

Theorem 3.9 (Error control). Under the general assumptions from section 2.1, the
spline method can be used to approximate the value V (x, t) of Bermudan plain-vanilla
options within a predetermined absolute error bound ε > 0, i.e., the resulting approxi-
mation W (x, t) satisfies

‖V (x, t)−W (x, t)‖∞ ≤ ε for all t ∈ T ,

where T denotes the set of exercise times.

Proof. By construction: Let T = {t1, ..., tm} denote the set of exercise times of the
Bermudan option including maturity tm = T . It is sufficient to show that ∀ti ∈ T

‖V (x, ti)−W (x, ti)‖∞ ≤
(m− i)ε

m
. (3.8)

Induction i + 1 → i: Assume (3.8) for i + 1. Writing briefly D := e−r(ti+1−ti) for the
discount factor and f(ξ, x) := fXti+1 |Xti=x(ξ) for the conditional density, the exact price
V (x, ti) is (following lemma 2.12):

V (x, ti) = max

(
g(x), D

∫ ∞
−∞

f(ξ, x)V (ξ, ti+1) dξ

)
Let W0 denote

W0(x, ti) := max

(
g(x), D

∫ ∞
−∞

f(ξ, x)W (ξ, ti+1) dξ

)
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The absolute error of W0 summarizes the error arising from previous time steps and can
be estimated as follows.

|V (x, ti)−W0(x, ti)| ≤
∣∣∣∣D ∫ ∞

−∞
f(ξ, x)V (ξ, ti+1) dξ −D

∫ ∞
−∞

f(ξ, x)W (ξ, ti+1) dξ

∣∣∣∣
≤

∫ ∞
−∞

f(ξ, x)|V (ξ, ti+1)−W (ξ, ti+1)| dξ

≤
∫ ∞
−∞

f(ξ, x)
(m− i− 1)ε

m
dξ (induction)

=
(m− i− 1)ε

m

∫ ∞
−∞

f(ξ, x) dξ︸ ︷︷ ︸
=1

=
(m− i− 1)ε

m

for all x. This implies that additive errors in W are not amplified. The value W at time
ti can be written as

W (x, ti) = max
{
g(x), D ·Quadba[f(ξ, x)Wspline(ξ, ti+1)]

}
,

where Wspline denotes the interpolating function and Quadba the quadrature method. The
additional errors introduced by interpolation, truncation, and quadrature at exercise
time ti are:
1. Interpolation error:13

ε1(x) :=

∣∣∣∣∫ ∞
−∞

f(ξ, x)W (ξ, ti+1) dξ −
∫ ∞
−∞

f(ξ, x)Wspline(ξ, ti+1) dξ

∣∣∣∣
≤ ‖W −Wspline‖∞

2. Truncation error:

ε2(x) :=

∣∣∣∣∫ ∞
−∞

f(ξ, x)Wspline(ξ, ti+1) dξ −
∫ b

a

f(ξ, x)Wspline(ξ, ti+1) dξ

∣∣∣∣
3. Quadrature error:

ε3(x) :=

∣∣∣∣∫ b

a

f(ξ, x)Wspline(ξ, ti+1) dξ −Quadba[f(ξ, x)Wspline(ξ, ti+1)]

∣∣∣∣
As discussed in section 3.3, each of these errors can be controlled.14 The interpolation
error ε1 is controlled using the adaptive refinement strategy described in section 3.3.1.
The truncation error ε2 is controlled by the truncation strategy described in section 3.3.2.
Finally, the quadrature error ε3 is controlled by the second level discretization of the

13Here implicitly enters assumption 3.6 (p. 36) for the estimates of the local interpolation errors.
14The assumption V H ∈ C∞ is verified in section 3.4.2.
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Romberg method mentioned in section 3.3.3. The composite error can be estimated as
follows:

|W0(x, ti)−W (x, ti)| ≤
∣∣∣∣∫ ∞
−∞

f(ξ, x)W (ξ, ti+1) dξ −Quadba[f(ξ, x)Wspline(ξ, ti+1)]}
∣∣∣∣

≤ ε1(x) + ε2(x) + ε3(x)

All three types of errors can be controlled15 to satisfy ‖ε{1,2,3}‖∞ < ε
3m

and consequently

‖V (x, ti)−W (x, ti)‖∞ ≤ ‖V (x, ti)−W0(x, ti)‖∞ + ‖W0(x, ti)−W (x, ti)‖∞

≤ (m− i− 1)ε

m
+ ‖ε1‖∞ + ‖ε2‖∞ + ‖ε3‖∞

≤ (m− i)ε
m

.

This proof is based on the fact that for sufficient smoothness of the option’s hold value
in each time slice the errors made by interpolation and quadrature can be controlled.
The smoothness of the hold value is analyzed in the next subsection.

3.4.2. Smoothness of the hold value V H

This section analyzes the hold value of a Bermudan option at exercise time ti

V H(x, ti) := e−r(ti+1−ti)
∫

Rd
fXti+1 |Xti=x(ξ)V (ξ, ti+1) dξ (cf. lemma 2.12)

and shows that V H(x, ti) ∈ C∞(Rd) for each ti ∈ T under rather general conditions.
This is a property of the valuation problem and not a property of the valuation method.
Nevertheless, this result V H(x, ti) ∈ C∞(Rd) is important to guarantee convergence of
the method, as the error estimates in theorem 3.3 and 3.5 apply only to sufficiently
smooth functions.

The integral representation 2.9 suggests the notation of convolutions. Unfortunately,
payoffs and option prices are in general not absolutely integrable functions.16 Therefore
we need to generalize some results for integrable functions to locally integrable functions.

Definition 3.10 (Local integrability). A function f : Rd → R is locally integrable, if
it is integrable on any compact set K ⊂ Rd. The set of locally integrable functions on
Rd is denoted by L1

loc(Rd).

15Using assumptions that will be discussed in the next subsections.
16For example, the payoff of a plain-vanilla call is not absolutely integrable.
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The integral term in the hold value V H can be written as convolution of the conditional
density function f and the option value V at the subsequent exercise time ti+1, and by
lemma 2.6 (p. 12):∫

Rd
fXti+1 |Xti=x(ξ)V (ξ, ti+1) dξ =

∫
Rd
fXti+1 |Xti=0(ξ − x)︸ ︷︷ ︸

=: f̃(x−ξ) ≥ 0

V (ξ, ti+1)︸ ︷︷ ︸
=: g(ξ) ≥0

dξ (lemma 2.6)

=: f̃ ∗ g(x),

where f̃ denotes the mirror function of f . This technical detail is only required to
stay consistent with the usual notation of convolution. As properties like integrability,
smoothness, boundedness, etc., are invariant under mirroring, we can omit the tilde
from f̃ in the following and simply write f . The convolution can be defined formally as
follows.

Definition 3.11 (Convolution). For f, g ∈ L1
loc(Rd) the convolution f ∗ g is given by

f ∗ g(x) :=

∫
Rd
f(x− y)g(y) dy,

if the function f(x− ·)g(·) is integrable and by f ∗ g(x) := 0 otherwise.

For the (standard) case f, g ∈ L1(Rd) one can show f ∗ g ∈ L1(Rd) as well as some
basic properties of the convolution like commutativity, distributivity, and associativity.17

The case f /∈ L1 is not covered by textbooks on functional analysis, but in the following
it is shown that f ∗ g ∈ C∞(Rd) even for f /∈ L1 under the additional premises of
theorem 3.16. First, some prerequisites for the proof of theorem 3.16 are introduced.
These prerequisites are modified versions of theorems from standard textbooks.

Theorem 3.12 (Continuity of translation). Let 1 ≤ p <∞ and f ∈ Lp(Rd). Then the
mapping

θ : Rd → Lp(Rd)

y 7→ f(· − y)

is uniformly continuous.

Proof. A proof of the one-dimensional case d = 1 can be found in [Rud87], p. 182,
theorem 9.5. It is based on the fact that the set of continuous functions with compact
support Cc(Rd) ⊂ Lp(Rd) is dense. The proof can be generalized to d > 1 as follows:

Fix ε ∈ (0, 1). As f ∈ Lp, there exists a continuous function g ∈ Cc with compact
support, such that

‖f − g‖p < ε.

17See e.g., [Els02], p. 193f.
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As the support of g is compact, there exists an A > 0 such that g(x) = 0 for all x with
‖x‖ > A. By uniform continuity of g there exists a δ ∈ (0, A) such that ‖s − t‖ < δ
implies

|g(s)− g(t)| < (3A)−d/pε.

Then for ‖s− t‖ < δ follows that

‖g(· − s)− g(· − t)‖p =

(∫
Rp
|g(x− s)− g(x− t)|p dx

)1/p

=

(∫
B(s,A)∪B(t,A)

|g(x− s)− g(x− t)|p dx

)1/p

<

(∫
B(s,A)∪B(t,A)

(3A)−dεp dx

)1/p

< (3A)−d/pε(2A+ δ)d/p < ε,

where B(s, A) is the ball with center s and radius A. As Lp-norms are translation-
invariant, then

‖f(· − s)− f(· − t)‖p ≤ ‖f(· − s)− g(· − s)‖p + ‖g(· − s)− g(· − t)‖p +

‖g(· − t)− f(· − t)‖p
= ‖f − g‖p + ‖g(· − s)− g(· − t)‖p + ‖g − f‖p < 3ε

for ‖s− t‖ < δ.

Corollary 3.13. If 1 ≤ p ≤ ∞, 1
p

+ 1
q

= 1, f ∈ Lp(Rd) and g ∈ Lq(Rd), then f ∗ g is

uniformly continuous.18

Proof. Let p <∞ (w.l.o.g.). Fix ε > 0. Then for x, x′ ∈ Rd

|f ∗ g(x)− f ∗ g(x′)| =

∣∣∣∣∫
Rd
f(x− y)g(y) dy −

∫
Rd
f(x′ − y)g(y) dy

∣∣∣∣
=

∣∣∣∣∫
Rd

[f(x− y)− f(x′ − y)]g(y) dy

∣∣∣∣
≤ ‖[f(x− ·)− f(x′ − ·)]g(·)‖1

≤ ‖f(x− ·)− f(x′ − ·)‖p ‖g‖q (Hölder’s inequality)

By theorem 3.12 there exists a δ > 0 such that ‖f(x− ·)− f(x′ − ·)‖p < ε/‖g‖q for all
x, x′ with ‖x− x′‖ < δ.

18It is useful to formally include the cases p =∞ and q =∞.
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Definition 3.14. In the following let for sufficiently partially differentiable f : Rd → R

Dαf :=
∂α1

∂xα1
1

◦ ... ◦ ∂αd

∂xαdd
f

denote the partial derivatives of f , where α := (α1, ..., αd) ∈ Nd is a multi-index.

Lemma 3.15 (Smoothness of convolution). Let g ∈ L1(Rd) be bounded and f ∈
C∞(Rd,R). Furthermore, let all derivatives Dαf be uniformly continuous and bounded.
Then

f ∗ g ∈ C∞(Rd,R) and Dα(f ∗ g) = (Dαf) ∗ g for all α.

Proof. Let Djf := ∂
∂xj
f denote the partial derivative with respect to xj. Because of

uniform continuity of Djf for all ε > 0 there exists a δ > 0, such that

|Djf(u)−Djf(v)| < ε for all u, v ∈ Rd

with ‖u− v‖ < δ. Denoting the j-th unit vector of Rd by ej we have for all 0 6= t ∈ R,
|t| < δ and for all x ∈ Rd:∣∣∣∣1t [f ∗ g(x+ tej)− f ∗ g(x)]− (Djf) ∗ g(x)

∣∣∣∣
=

∣∣∣∣∫
Rd
g(y)

1

t

∫ t

0

(Djf(x− y + sej)−Djf(x− y)) ds dy

∣∣∣∣ ≤ ε‖g‖1.

Consequently, f ∗g is partially differentiable and Dj(f ∗g) = (Djf)∗g for all j = 1, ..., d.
Following corollary 3.13 (Djf ∈ L∞, g ∈ L1) this function is uniformly continuous.
As all partial derivatives exist and are continuous, the function f ∗ g is continuously
differentiable. The same arguments can be applied repeatedly to the functions Djf and
g in order to complete the proof for arbitrary higher derivatives Dα(f ∗ g).

Theorem 3.16 (Smoothness of hold value). Let f ∈ C∞(Rd,R) and let all derivatives
Dαf be uniformly continuous and bounded. Let g : Rd → R+

0 be locally bounded and
locally L1-integrable, and let f be fast declining with respect to g, that means let

the integrals in (Dαf) ∗ g and consequently |Dαf | ∗ g exist for all α. (3.9)

Then:{
f ∗ g ∈ C∞ and
Dα(f ∗ g) = (Dαf) ∗ g (3.10)

Proof. The proof is structured as follows. We construct a sequence (gn) of functions and
then prove:
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a) Dα(f ∗ gn) = (Dαf) ∗ gn for all α and all n,

b) |Dαf | ∗ gn → |Dαf | ∗ g pointwise for n→∞ for all α,
(and consequently (Dαf) ∗ gn → (Dαf) ∗ g pointwise)

c) (Dαf) ∗ g is continuous for all α,
(and consequently |Dαf | ∗ g continuous)

d) |Dαf | ∗ gn → |Dαf | ∗ g locally uniformly for n→∞ for all α,

e) Dα(f ∗ gn)→ Dα(f ∗ g) pointwise for n→∞ for all α.

Then a), b), and e) imply Dα(f∗g) = (Dαf)∗g which together with c) implies f∗g ∈ C∞.
d) is a lemma needed to show e).

Now defining a suitable sequence (gn) is the first step. Let gn := g · 1{x∈Rd, ‖x‖≤n}
denote the sequence of functions equal to g on the ball with center 0 and radius n, and
equal to 0 outside. As g is locally L1-integrable, we have gn ∈ L1(Rd) for all n.

ad a)

For every n ∈ N the function gn is bounded being a restriction of a locally bounded
function g to a compact set. Consequently, lemma 3.15 applies to f and gn.

ad b)

This can be proved by Lebesgue’s dominated convergence theorem. For every fixed
x ∈ Rd, α ∈ Nd let (hn)n≥1 denote the sequence of functions defined by

hn(ξ) := |Dαf(x− ξ)|gn(ξ).

As mentioned above, gn is bounded. Furthermore, gn ∈ L1(Rd), Dαf ∈ L∞(Rd), and
thus19 hn ∈ L1(Rd). Let

h(ξ) := |Dαf(x− ξ)|g(ξ).

Then hn → h pointwise, as gn → g pointwise for n → ∞. Function h dominates
the sequence and is integrable itself by condition 3.9. Consequently (by dominated
convergence):∫

Rd
h(ξ) dξ = lim

n→∞

∫
Rd
hn(ξ) dξ (∀x)

⇔ |Dαf | ∗ gn → |Dαf | ∗ g pointwise for n→∞.

19By Hölder’s inequality.
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This also implies

|Dαf | ∗ (g − gn)→ 0

⇒ |(Dαf) ∗ (g − gn)| → 0

⇔ (Dαf) ∗ gn → (Dαf) ∗ g pointwise for n→∞.

ad c)

It is sufficient to show that for each compact set K ⊂ Rd

∃c > 0 ∀x, x′ ∈ K : |(Dαf) ∗ g(x)− (Dαf) ∗ g(x′)| ≤ c‖x′ − x‖.

By definition we have

|(Dαf) ∗ g(x)− (Dαf) ∗ g(x′)|

=

∣∣∣∣∫
Rd
Dαf(x− y)g(y) dy −

∫
Rd
Dαf(x′ − y)g(y) dy

∣∣∣∣
=

∣∣∣∣∫
Rd

[Dαf(x− y)−Dαf(x′ − y)]g(y) dy

∣∣∣∣ .
Next we use an integral representation for the difference of the function values Dαf at
(x− y) and (x′− y) along the path γ(t) := t(x′− y) + (1− t)(x− y) = tx′+ (1− t)x− y,
t ∈ [0, 1]. With γ̇(t) = x′ − x follows:

=

∣∣∣∣∫
Rd
g(y)

∫ 1

0

[∇Dαf(γ(t))]tr(x′ − x) dt dy

∣∣∣∣
Integration over t and y can be swapped (a consequence of Fubini’s and Tonelli’s theo-
rems):

=

∣∣∣∣∫ 1

0

∫
Rd

[g(y)∇Dαf(γ(t))]tr(x′ − x) dy dt

∣∣∣∣
As (x′ − x) does not depend on y and t:

=

∣∣∣∣∫ 1

0

∫
Rd

[g(y)∇Dαf(γ(t))]tr dy dt(x′ − x)

∣∣∣∣
With Dα1f := ∂

∂x1
Dαf, ..., Dαd := ∂

∂xd
Dαf this can be written as

=

∣∣∣∣∣
∫ 1

0

(∫
Rd
g(y)Dα1f(γ(t)) dy, ...,

∫
Rd
g(y)Dαdf(γ(t)) dy

)tr
dt(x′ − x)

∣∣∣∣∣
=

∣∣∣∣∣
(∫ 1

0

h1(t) dt, ...,

∫ 1

0

hd(t) dt

)tr
(x′ − x)

∣∣∣∣∣
with hj(t) := (Dαjf)∗g(tx′+(1−t)x) for j = 1, ..., d. It can be shown that the functions
(Dαjf) ∗ g are bounded on K. The proof is short but a bit technical and is deferred to
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lemma 3.17 (p. 52). Now, with cj := supx∈K |(Dαjf) ∗ g(x)| and by triangle inequality
the estimation below results.

≤
d∑
j=1

cj · |(x′ − x)j|

≤
d∑
j=1

cj‖x′ − x‖∞

≤ d ·max(c1, ..., cd)︸ ︷︷ ︸
=: c

‖x′ − x‖∞ = c‖x′ − x‖

ad d)

The space Rd is locally compact. In locally compact spaces local uniform convergence is
the same as compact convergence.20 Thus it is sufficient to show that for every compact
subset K ⊂ Rd

(|Dαf | ∗ gn)|K → (|Dαf | ∗ g)|K uniformly,

which is a consequence of Dini’s theorem. K is compact, |Dαf | ∗ g is continuous as well
as |Dαf | ∗gn is continuous for all n, (|Dαf | ∗gn)n is a monotonically increasing sequence
of functions, and |Dαf |∗g = supn≥1 |Dαf |∗gn pointwise. Dini’s theorem implies uniform
convergence.

ad e)

First, locally uniform convergence of Dα(f ∗ gn) = (Dαf) ∗ gn is shown for all α.

(Dαf) ∗ gn → (Dαf) ∗ g (locally uniformly)

⇔ (Dαf) ∗ gn − (Dαf) ∗ g → 0 (l.u.)

⇔ |(Dαf) ∗ gn − (Dαf) ∗ g| → 0 (l.u.)

⇔ |(Dαf) ∗ (gn − g)| → 0 (l.u.)

⇐ |Dαf | ∗ (g − gn)→ 0 (l.u.), given by d).

The sequence of functions f ∗ gn ∈ C∞ converges pointwise by b). Its partial deriva-
tives converge locally uniformly as shown above. Then the limit f ∗ g is continuously
differentiable and

Dα(f ∗ g) = lim
n→∞

Dα(f ∗ gn) for all α ∈ Nd.

This completes the proof of theorem 3.16.

20Definitions: A space is locally compact :⇔ every point has a neighborhood whose closure is compact.
fn → f locally uniformly :⇔ for every point there exists a neighborhood on which fn → f uniformly.
fn → f compactly :⇔ fn → f uniformly on every compact set.
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Lemma 3.17 (Technical supplement to step c) of the above proof). Under the condi-
tions of theorem 3.16, the function (Dαf) ∗ g is bounded on each compact set K ⊂ Rd

for all α ∈ Nd.

Proof. (Dαf) ∗ gn is in C∞ for each n (lemma 3.15) and thus bounded on K. Let
cn := supx∈K |(Dαf) ∗ gn(x)|. It is sufficient to show that c := sup{cn} < ∞. Indirect
proof: If not, then there exists a sequence (xn) ⊂ K such that |Dαf ∗ gn(xn)| > n. As
K compact, w.l.o.g.,21 ∃x∗ ∈ K : xn → x∗. The resulting situation is:

∀n : |(Dαf) ∗ gn(xn)| > n and |(Dαf) ∗ gn(x∗)| ≤ |Dαf | ∗ g(x∗) <∞. (3.11)

(Dαf) ∗ gn is differentiable and by a)

Dβ(Dαf ∗ gn) = DβDα(f ∗ gn) = (Dα+βf) ∗ gn for all β ∈ Nd.

Furthermore is

|(Dα+βf) ∗ gn| ≤ |Dα+βf | ∗ gn ≤ |Dα+βf | ∗ g

and thus∣∣Dβ[(Dαf) ∗ gn](x∗)
∣∣ ≤ ∣∣(|Dα+βf | ∗ g)(x∗)

∣∣ < ∞
by condition (3.9). This means that all partial derivatives of (Dαf)∗gn in x∗ are bounded
in contradiction to (3.11).

Application to European options

Theorem 3.16 is an important tool. It obviously covers a large set of payoffs g and
models of the underlying f . For example, it is applicable in the Black-Scholes case
for plain-vanilla puts and calls as well as for binary options. It is also applicable to
some exponential Lévy models, e.g., the NIG model and Merton’s model (introduced
in chapter 5), and for high dimensional underlyings, e.g., rainbow options. In all these
cases theorem 3.16 can be used to show that the value of a European option at any time
t < T is C∞-smooth in x.

Application to Bermudan options

The theorem can also be applied in the context of Bermudan options, starting at maturity
and then proceeding repeatedly backwards in time. Thus, it can be shown for each
interval [ti, ti+1] between two subsequent exercise times that the hold value V H of the
option is C∞-smooth (with respect to x) for every t < T . In the following it is briefly
discussed under which circumstances this “induction” is viable. Given the conditions of

21After switching over to a subsequence, if necessary.
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theorem 3.16 for the payoff g and density f , we get a smooth hold value V H = e−r∆tf ∗g
at the last exercise time before maturity. At this time the value of the Bermudan option
jumps due to the early exercise opportunity:

V (x, t1) = max
(
g(x), V H(x, t1)

)
.

Next we have to apply the theorem to the same density function f but with the new
“payoff” function g̃ := V (·, t1). The question is now, whether the conditions for the
application of the theorem are fulfilled. In particular:

(i) Is g̃ locally bounded and locally L1-integrable?

(ii) Is f fast declining with respect to g̃? I.e. do the integrals in (Dαf) ∗ g̃ exist?

The answer to (i) is yes, as both V H(·, t1) ∈ C∞(Rd) and g are locally bounded and
locally L1 integrable; and so is the maximum of both functions g̃.

The answer to (ii) is more difficult and must be handled for each market model in-
dividually. The following consideration may help to make (ii) plausible. For example,
in the case of the Black-Scholes model, the density looks like f(x) := e−x

2
. The option

value function g̃(x) grows only polynomially with x→ ±∞. It is then clear that for all
derivatives f (α), the function f (α) · g̃ is integrable (and thus Dαf ∗ g̃ exists).
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3.4.3. Further stability issues

Some potential stability problems have been neglected in the previous analysis. The
reasons for them lie in several assumptions made in the construction of the spline method.
Although they do not cause problems in practice, they are briefly mentioned in this
section.

(i) The local interpolation errors are estimated by a heuristic rule based on assump-
tion 3.6. It is intuitively clear that this heuristic works well for the interpolation
of globally convex or concave functions and that it works poorly for oscillatory
functions. Option prices are seldom oscillatory functions. In fact, oscillations are
damped under diffusion.

(ii) The maximal number of iterations of the adaptive Romberg quadrature is usually
limited to ensure termination of the quadrature routine. Such limitations can
result in errors that exceed the prescribed error bound. In practice, extremely
high numbers of iterations cannot be observed.

(iii) Enforcing a minimal distance between neighboring spline nodes can result in er-
rors that exceed the prescribed error bound. In practice, extremely low distances
between the adaptively placed spline nodes cannot be observed.

(iv) The spline does not interpolate the exact hold value function V H(·, ti) ∈ C∞(R)
but an approximation W carrying errors. These errors do not need to be smooth;
It is possible that W /∈ C(R). This can theoretically lead to spline oscillations and
thus instability, as is discussed in the following subsection.

Potential problem: spline oscillations

The error control technique above requires that for fill distance ∆→ 0 the spline inter-
polant converges to the interpolated function. This is provided by theorem 3.3 (p. 33)
for the interpolation of V H ∈ C∞, but in practice the values at the nodes of the spline
are given by approximations W (xi) to the function V H(xi). W (xi) carries an additive

error bounded by tol := (m−i)ε
m

(theorem 3.9). Consequently, the function W lies within
an V H ± tol band but is not necessarily continuous. In the worst case this can lead
to increasing oscillations of the spline for decreasing minimal step size hmin → 0. Fig-
ure 3.3 illustrates a spline interpolant W1 and its refinement W2. Increasing oscillations
are clearly visible.

In order to avoid oscillations it seems reasonable to prevent further refinements, if the
minimal step size hmin falls below, e.g., tol ∗ 10. Fortunately this condition does not
occur in practice.22 There are two possible reasons:

22In fact, if problems due to spline oscillations occur, this strongly indicates bugs in the implementation
of the quadrature or truncation procedures.
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Figure 3.3.: Illustration of possible spline oscillations.

• The error actually behaves more smoothly than indicated in figure 3.3.

• The refinement loop is terminated early enough by the regular termination condi-
tion, i.e., the minimal step size that is required to fulfill the local error bound is
large enough (hmin � tol).

Although oscillations obviously do not occur in practice, this remains a potential stability
problem of the spline method.

3.4.4. Efficiency/computational complexity

As for most adaptive methods it is difficult to give a strict estimate of the computational
complexity for the spline method. In the following, the complexity is analyzed under
the assumptions that the spline interpolant in each time step has the same number of n
nodes and that each Romberg quadrature uses the same number of function evaluations.
m denotes the number of exercise times of the Bermudan option. The computation time
T (m,n) is then linear in m by construction, as each time step requires the same number
of operations:

T (m,n) = O(mT (1, n)). (3.12)

In each time step an adaptive discretization is constructed. The further analysis can
be simplified by the (realistic) assumption that log2(n) refinements are necessary, i.e.,
log2(n) cycles of the repeat-until loop in algorithm 2.1.

For each cycle the quadrature routine is called once. As the maximal number of nodes
processed by the quadrature routine is n, there are O(n log2(n)) evaluations of the inte-
gral in algorithm 2.2 for each time step. The proposed quadrature rule is a compound
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Romberg quadrature rule over n subintervals. Consequently, the computational com-
plexity is that of n Romberg quadratures. To simplify the analysis, the assumption is
made that every Romberg call has the same constant costs c.23 Consequently, the total
costs for quadratures are

Tquad(1, n) = O(cn2 log2 n) = O(n2 log2 n).

Additionally, log2(n) splines are constructed in each time step. Each interpolant requires
the solution of a tridiagonal n × n-system (linear complexity in n). This leads to the
following costs for interpolations

Tinterpol(1, n) = O(n log2 n),

which are dominated by the quadrature costs. In total, the computation time for each
time step is

T (1, n) = O(n2 log2 n)

and thus, following (3.12), for all m time steps

T (m,n) = O(mn2 log2 n). (3.13)

As this result alone yields no information on the efficiency24 of the spline method, it is
useful to relate (3.13) to the convergence properties. Under the (worst-case) assumption
of equidistant spline nodes, theorem 3.3 (p. 33) implies convergence O(n−4) of the spline
interpolation. Stated conversely, a given error bound ε requires n = O(ε−1/4) nodes and
by (3.13) a time complexity of

Tε(m) = O
(
mε−1/2 log2(ε−1/4)

)
. (3.14)

This efficiency results for Bermudan options. For American options section 2.4 indicates
linear convergence in m, i.e., m ≈ ε−1. Thus, the efficiency result for American options
is:

Tε = O
(
ε−3/2 log2(ε−1/4)

)
. (3.15)

The result (3.14) for Bermudan options is competitive. In practice one can expect even
better results because of the adaptivity of the spline method. The efficiency (3.15) for
American options suffers from the linear convergence order of the time discretization.

23This assumption is rather realistic. Empirical tests show that only a few number of Romberg iterations
is necessary. A typical number of function evaluations in each Romberg call is 16. Each function
evaluation is essentially a spline evaluation with complexity O(1).

24Here, “efficiency” means the relation between accuracy and computation time.
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Figure 3.4.: Practical efficiency measurements for the spline method.

Figure 3.4 shows practical results25 that indicate a computational efficiency of the
spline method for Bermudan options of Tε(m) = O(mε−1/3). To illustrate the result
clearly, the figure shows T−3 against ε in a log/log plot, where T is the measured
computation time in seconds and ε is the error bound of the spline method. This
empirical result is one order better than the theoretical result (3.14) which was derived
by neglecting the adaptivity of the spline method.

25To obtain these results an efficient implementation in C++ was used on an Intel T2600 CPU with 2.16
GHz. The option parameters are the same as for the example in figure 3.2 (p. 42). The measured
CPU times are between 0.5s and 9s.
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3.5. Generalization to multi-asset options

Up to now, the spline method can only be used for single-asset options. This section
discusses possible generalizations to multi-asset options. An efficient generalization turns
out to be difficult, as efficient multivariate interpolation and quadrature are demanding
problems. Although the extension of the spline method to multi-asset options in this
section works, the resulting method is not very efficient and the RBF method introduced
in chapter 4 is far superior. Thus, this section is kept short.

Section 3.5.1 discusses suitable multivariate interpolation techniques, section 3.5.2
suitable quadrature techniques, and section 3.5.3 explains the adaptive refinement strat-
egy for the multivariate case, which is slightly more complicated than the bisection
strategy from section 3.3.1.

3.5.1. A suitable multivariate interpolation technique

There are several possible generalizations of one-dimensional splines to higher dimen-
sions. Two examples are briefly introduced in the following.

Tensor product splines

This is the most natural generalization of splines to higher dimensions. Two one-
dimensional spline discretizations x1 < ... < xn1 and y1 < ... < yn2 define a rectangular
grid on A := [x1, xn1 ] × [y1, yn2 ]. The bivariate tensor product spline of degree d1 in x
and d2 in y is a function s(x, y) that

• coincides on each subrectangle [xi, xi+1] × [yj, yj+1] of the grid with a polynomial
of degree d1 in x and d2 in y, and

• is continuous on A, and whose

• partial derivatives ∂i+js/∂xi∂yj ∈ C(A) are continuous for i ≤ d1, j ≤ d2.

Obviously, tensor product splines are restricted to fairly simple grids, like smooth trans-
formations of axis-parallel grids. This restriction disqualifies tensor product splines for
adaptive interpolations.

Powell-Sabin splines

This generalization of univariate splines is defined over a given triangulation ∆. It was
introduced in [PS77]. For a certain refinement ∆∗ that subdivides each triangle of the
triangulation ∆ into six special triangles it is possible to prove existence and uniqueness
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for the interpolation problem

s(xi) = yi,

∂s

∂x
(xi) = ui, and

∂s

∂x
(xi) = vi (for all nodes xi in the triangulation ∆∗)

in the function space

S =
{
s ∈ C(R2,R) : ∀ triangles ρ ∈ ∆∗ ∃ p ∈ Π2 : s|ρ = p

}
,

where Π2 denotes the space of bivariate polynomials with total degree less or equal two.
This approach is not useful for a generalization of the valuation method, as the risk-
neutral valuation approach does not provide any information on the partial derivatives
∂V H/∂x and ∂V H/∂y of the hold value.26

Thin plate splines

The two spline generalizations above indicate the problem of all such generalizations.
They are restricted to structured meshes or require information about derivatives. There-
fore, an alternative interpolation approach is needed. In the following an interpolation
with radial basis functions is briefly introduced, which gives up the restriction that the
interpolant is piecewise polynomial. The so-called “thin plate splines”27 are interpolants
of the form

s(x) :=
n∑
j=1

λjφ(x− xj), (3.16)

with interpolation coefficients λj ∈ R and φ(x) := ‖x‖2
2 · log ‖x‖2. This is a special case

of an interpolation with radial basis functions (RBF). Interpolation with radial basis
functions is introduced in chapter 4. The interpolation condition

s(xj) = f(xj) =: yj (for 1 ≤ j ≤ n)

is equivalent to the linear system Bλ = y with an interpolation matrix

B = (bij) ∈Mn×n defined by bij := φ(‖xi − xj‖).

Existence and uniqueness of the solution as well as the condition of the interpolation
matrix and the interpolation error are discussed, e.g., in [Wen05]. As the efficiency of
the multivariate spline method is not analyzed in the present work, these results are
not introduced. In principle, thin plate splines represent a (with reservations) suitable
interpolation technique for the present purpose.

26Numerical differentiation is prohibitively inefficient for this purpose.
27The name of this interpolation method refers to a physical analogy of bending a thin plate of metal.
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Remark 3.18 (Costs). The construction of the interpolant (3.16) for a given set of nodes
x1, ..., xn ∈ Rd has computational complexity O(n3) due to the linear system Bλ = y and
each evaluation of this interpolant has complexity O(n). This is expensive compared to
cubic splines, which require only O(n) for their construction and O(1) for each evaluation
(see section 3.1).

3.5.2. Multivariate numerical quadrature

Several approaches to construct multivariate numerical quadrature rules are discussed
in, e.g., [DR75]. A straightforward generalization of univariate quadrature methods is
the product rule. It is constructed as follows.

Definition 3.19 (Bivariate product rule). Given two univariate rules on the nodes
X = {x1, ..., xn} ⊂ R and Y = {y1, ..., ym} ⊂ R with corresponding weights w1, ..., wn
and v1, ..., vm, the bivariate product rule on the nodes X × Y is defined by the weights
wij := wivj for all (xi, yj) ∈ X×Y . The integral over a function f : [x1, xn]×[y1, ym]→ R
is then approximated by

R(f) =
n∑
i=1

m∑
j=1

wijf(xi, yj) ≈
∫ xn

x1

∫ ym

y1

f(x, y) dy dx.

Theorem 3.20 (Exactness of bivariate product rule). If the univariate rule R integrates
f(x) exactly over A ⊂ R and the univariate rule S integrates g(y) exactly over B ⊂ R,
then R× S will integrate h(x, y) := f(x)g(y) exactly over A×B.

For the implementation of the multivariate spline method, a quadrature rule is used.
An error estimate for product rules is given in [Hab70]. It is not required here, as the
efficiency of the multivariate spline method is not discussed in detail.

Requirement of adaptive quadrature

Error bounds for the quadrature error can only be given for sufficiently smooth inte-
grands. By construction, the integrands I := max(g, V H) in the spline method are not
smooth. For highly accurate quadrature rules it is thus necessary to decompose the
domain of integration in such a way that I is sufficiently smooth on each subdomain.
While this decomposition was trivial in the univariate case, it is a difficult problem in
the multivariate case.

For the implementation of the multivariate spline method here, the domain of inte-
gration is not adaptively decomposed. Thus, strict error bounds cannot be given. In
this sense, the development of the multivariate spline method in the present work must
be regarded provisional.
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Remark 3.21 (Possible extension: sparse grid quadrature). Quadrature rules on hi-
erarchical “sparse” grids have been proposed by Smolyak in [Smo63]. Error bounds for
integrands in the space Ck(Rd) are given in [NR97]. However, they are exponentially in
the dimension d. The exponential dependence of the error bound on the dimension can
be reduced by restricting the class of integrands to Sobolev spaces W k

∞(Rd) as noted in
[GG98]. The use of sparse grid quadrature can become interesting for applications to
higher dimensions.

3.5.3. Adaptive refinement

In the multivariate case, an adaptive refinement is even more important than in the
univariate case. Although the interpolation with thin plate splines is mesh-free, the
following refinement strategy is based on triangulations. As in the one-dimensional
method, it is assumed that the improper integrals can be approximated by truncation to
a finite (rectangular) region. The initial triangulation is then obtained by a subdivision
of the rectangle into two triangles.

The refinement strategy is a straightforward generalization of the bisection strategy in
the univariate case (section 3.3.1), in which a “test point” between two successive spline
nodes is used to estimate the interpolation error. In the bivariate case the midpoint of
the longest edge of the triangle is chosen as test point. If the estimated local interpolation
error at the test point is too large, the corresponding triangle is divided into two triangles
at the line between the test point and its opposite vertex. This choice guarantees that
the resulting triangles cannot degenerate. Another advantage of this choice is that the
function value at the test point can be reused for the refined interpolant.

The refinement procedure can lead to “hanging vertices” as illustrated in figure 3.5,
step (5)→ (6). As the thin plate spline interpolation does not use the vertex information
of the triangulation, this does not cause discontinuities in the interpolant. Nevertheless,
avoiding hanging vertices leads to a more uniform distribution of interpolation nodes.
Therefore, the corresponding neighboring triangles are subdivided, if a hanging node is
detected (as illustrated by dotted lines in figure 3.5). A criterion for hanging vertices
can be based on the “depth” of each triangle in a binary tree representation of the
triangulation. It is easy to see that hanging nodes occur, if and only if the depths of
neighboring triangles differ by more than one. (For example, in figure 3.5, step (5)→ (6),
a triangle with depth 4 is divided into two triangles with depth 5 neighboring a triangle
with depth 3.)

Illustration

Figure 3.6 shows an adaptively refined triangulation for a two-asset put option. The
value V denotes the option value at a time t < T near maturity. Figure 3.7 shows the
same results after graphical post-processing. For this example, the number of triangles
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Figure 3.5.: Illustration of the adaptive refinement procedure. The test points at which
the interpolation error is still too large are marked red. The test points at
which the desired accuracy has been reached are marked green. In each step,
the triangulation is refined at one of the red nodes. An additional refinement
takes place if hanging nodes have been detected, e.g., at the dashed lines in
step (6). The numbers in the triangles indicate the depth of the triangles in
the corresponding binary tree representation.

generated by the spline method has been reduced artificially to simplify printing. (Some
printers exhibit extreme delays when printing pages with more than 30000 triangles.)

Remark 3.22 (Implementation note). An efficient implementation of triangulations
requires a representation by tree data structures. Such implementations require pointer
arithmetic. This is one reason, why the spline method should be implemented using a
programming language that is compiled to native code.
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Figure 3.6.: Adaptive triangulation for a Bermudan “two-color better-of put” with payoff
g(S1, S2) = (K −max(c1S1, c2S2))+.
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Figure 3.7.: The same results graphically post-processed with MATLAB.
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3.5.4. Numerical properties

The analysis of numerical properties can be carried out analogously to the one-dimen-
sional case, as the important smoothness result from theorem 3.16 is not limited to the
univariate case. Further requirements for a multivariate convergence theorem analogous
to theorem 3.9 would be estimates of the quadrature and interpolation error.

Nevertheless, the multivariate convergence analysis is not carried out here, as the used
interpolation and quadrature methods seem provisional: The computational complexity
of thin plate spline interpolation is by a factor n higher than the cubic spline interpo-
lation. Additionally, the number of nodes n itself vastly increases for the additional di-
mension. A two-dimensional mesh with the same fill distance as a one-dimensional mesh
with n equidistant nodes requires O(n2) nodes. An alternative interpolation technique
could be based on radial basis functions with compact support as analyzed in [Wen96],
but an efficient implementation goes beyond the scope of this work.28

3.6. Conclusion

A first method following the reduction principle in chapter 2 has been derived – the
“spline” method. By construction, this method is capable of pricing Bermudan and
American options with arbitrary payoffs and fairly arbitrary models for the underlying
(in the sense of section 2.1). Its adaptivity makes this method highly suitable for options
with non-smooth payoffs or other sources of discontinuities (e.g., barriers). Another
advantage is that both building blocks of the univariate method, namely, splines and
Romberg quadrature, are well understood numerical tools.

The spline method has also some drawbacks. It does not generalize naturally to higher
dimensions as seen in section 3.5. Of practical relevance is that an efficient implemen-
tation is only possible using compiled languages like C++ or Fortran and not with
interpreter based environments like MATLAB. The reason is the interaction of inter-
polation and quadrature: The quadrature method requires C∞-smooth integrands and
splines are C∞-smooth only between neighboring nodes. That requires all integrals to
be split up along the spline nodes which in turn leads to a high number of elementary
operations. Interpreter based languages are efficient only for operations of large gran-
ularity (such as operations on vectors or matrices) and are inefficient for operations of
small granularity (such as scalar operations like function evaluations).

28An efficient implementation requires efficient data structures for the representation of neighborhood
between nodes and fast search algorithms. These aspects are discussed e.g. in [Wen05], §14.



4. The RBF method

The generalization of the spline method in section 3.5 indicates that the combination of
interpolation and quadrature in several dimensions can be computationally expensive.
This chapter proposes a method that exploits the structure of the interpolant for an
adapted quadrature method. There are two important gains. First, the interpolant does
not need to be evaluated at random points anymore. Second, the quadrature problems
are reduced to globally smooth integrands.

The short discussion of multivariate interpolation methods in section 3.5 suggests an
interpolation by radial basis functions (RBF). In contrast to splines, this interpolation
technique generalizes naturally to higher dimensions. Furthermore, it is known to offer
spectral convergence properties for certain integrands and basis functions.

The pricing method proposed in this chapter is based on radial basis functions and
thus called RBF method. A first motivation is given in section 4.1. Some aspects of
the interpolation by radial basis functions are discussed in section 4.2. As the following
derivation will show, the choice of numerical quadrature routines for the RBF method is
not as critical as for the spline method. Section 4.3 discusses possible approaches. The
numerical properties of the RBF pricing method are analyzed in section 4.4. Practical
validations and examples are given in chapter 6.

4.1. Motivation

The main idea of the method proposed in this chapter is to use RBF interpolation to
solve the recursive integrals in the option price representation of the reduction principle
for Bermudan options (lemma 2.12, p. 14).

In the following one time step tk+1 → tk between two subsequent exercise times of a
Bermudan option is considered. The time index in this derivation is changed to k. This
agreement releases the index i, which can now be used for the space discretization, i.e.,
for node numbering.

Let X := {x1, ..., xn} ⊂ Rd denote a fixed set of nodes in the asset price space. Then,
an interpolant s of the option price function V ( · , tk+1) can be constructed by a function

s(x) = sV,X(x) :=
n∑
j=1

λ
(k+1)
j φj(x− xj),

with interpolation coefficients λ
(k+1)
j ∈ R (for j = 1, ..., n) and radial basis functions

65
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φj : Rd → R, which are specified later (in section 4.2). The coefficients λ
(k+1)
j are

determined by the interpolation condition

s(xi) =
n∑
j=1

λ
(k+1)
j φj(xi − xj)︸ ︷︷ ︸

=: bij

= V (xi, tk+1) (for i = 1, ..., n). (4.1)

This linear system suggests abbreviations

B := (bij)i,j=1...n,

λ(k+1) := (λ
(k+1)
1 , ..., λ(k+1)

n )tr, and

vk+1 := (V (x1, tk+1), ..., V (xn, tk+1))tr.

The interpolation condition (4.1) can now be written as

Bλ(k+1) = vk+1. (4.2)

As B only depends on the basis functions φj (and the location of the nodes x1, ..., xn, but
this is considered fixed here), it will be referred to as the basis matrix (in the literature
on RBF interpolation, this matrix is also called interpolation matrix). By lemma 2.12
(p. 14), the hold value at tk is given as discounted expectation value. Abbreviating the
discount factor by a := e−r(tk+1−tk), we get

1
a
V H(x, tk) =

∫
Rd
fXtk+1

|Xtk=x(ξ)V (ξ, tk+1) dξ

≈
∫

Rd
fXtk+1

|Xtk=x(ξ)s(ξ) dξ (4.3)

=

∫
Rd
fXtk+1

|Xtk=x(ξ)

[
n∑
j=1

λ
(k+1)
j φj(ξ − xj)

]
dξ

=
n∑
j=1

λ
(k+1)
j

∫
Rd
fXtk+1

|Xtk=x(ξ)φj(ξ − xj) dξ (4.4)

⇒ 1
a
V H(xi, tk) =

n∑
j=1

λ
(k+1)
j

∫
Rd
fXtk+1

|Xtk=xi(ξ)φj(ξ − xj) dξ︸ ︷︷ ︸
=: mij

(i = 1, ..., n).

Of course, the decisive step “≈” will be subject to an error analysis later (in section 4.4).
With

M := (mij)i,j=1...n and vHk := (V H(x1, tk), ..., V
H(xn, tk))

tr

the above linear system can be written as

vHk = aMλ(k+1). (4.5)
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As M depends on the model of the underlying (represented by its conditional probability
density f), it is referred to as the model matrix. By equations (4.2) and (4.5) the relation
between the hold values V H(xi, tk) and option values V (xi, tk+1) is

vHk = aMB−1vk+1. (4.6)

At time tk, the option can be exercised and its value jumps to

V (x, tk) = max
(
g(x), V H(x)

)
,

where g denotes the option’s payoff function. The discrete version of this equation is

vk = max(g, vHk ),

where g is to be understood as vector g = (g(x1), ..., g(xn))tr and the maximum is to be
understood componentwise. Inserting (4.6) yields

vk = max
(
g, aMB−1vk+1

)
. (4.7)

By this procedure, the value of the Bermudan option can be computed iteratively back-
wards in time, starting with the payoff vm = g. Of course, the approximation error of
“≈” in (4.3) and the stability of this method have still to be analyzed.

Foreseeable advantages and difficulties

At this point, some key advantages of the RBF method can be foreseen:

+ All integration problems are relocated to the model matrix, which remains constant
as long as the location of nodes remains unchanged. For fixed nodes, the model
matrix needs only to be computed once.

+ The integrands of the integration problems have the form f · φ and are likely to
be “good behaving” functions that facilitate the (numerical) quadratures during the
setup of the model matrix.

+ The interpolant does not need to be evaluated at random points as in the spline
method. Thus, the O(n)-costs for evaluations are irrelevant to the computational
costs of the RBF pricing method.

+ Concerning the model for the underlying, the RBF method is as flexible as the spline
method. The density function f describing the conditional probability densities enters
the setup of the model matrix.

Some difficulties that can be foreseen at this point are:

− The estimation of the approximation error “≈” can be involved.

− The interpolated functions V ( · , tk) are not globally smooth, as is known from sec-
tion 3.5. This can affect the approximation error.

− It is known for RBF interpolations that the condition of B can be problematic.
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4.2. Interpolation by radial basis functions

A recent overview of radial basis function methods can be found in [Buh03]. For the
RBF based pricing proposed in this work, the interpolation aspect is most important.
Generally, a radial basis function interpolant for a function f : Rd → R has the form

sf,X(x) :=
n∑
j=1

λjφj(x− xj), (4.8)

where X := {x1, ..., xn} denotes the set of centers, λ1, ..., λn ∈ R the interpolation
coefficients, and φj : Rd → R are given functions, called radial basis functions. In the
following we consider only the case of a single basis function for all nodes xj, i.e., φj = φ.
Usually, φ is constructed radially symmetric: φ(x) := g(‖x‖2) with a continuous function
g : R+ → R. Typical choices of g are the following:

g(r) parameters interpolation type
r2 log r thin plate splines√
r2 + c2 (c > 0) multiquadrics

e−αr
2

(α > 0) Gaussian
[(1− r)+]4(4r + 1) compactly supported RBF (example)

For the purpose of RBF based option pricing, the Gaussian basis function is preferable,
as this function decays to zero for r → ∞ and, furthermore, this choice simplifies the
integrals arising in the model matrix. The use of compactly supported RBF could be an
interesting alternative but is not considered in the present work. For thin plate splines
and multiquadrics, the step “≈” in (4.3) does not work. Thus, the following discussion
focuses on the properties of Gaussian interpolation.

As mentioned in the previous section,1 the interpolation conditions sf,X(xi) = f(xi)
(i = 1, ..., n) give rise to a linear system

~f = Bλ (4.9)

where ~f := (f(x1), ..., f(xn))tr contains function values of the interpolated function f ,
λ := (λ1, ..., λn)tr denotes the coefficient vector, and B the basis matrix defined as
follows.

Definition 4.1 (Basis matrix/interpolation matrix). The matrix

B := (bij)i,j=1...n with bij := φ(xi − xj)

is called basis matrix or interpolation matrix.

Remark 4.2 (Shape parameter α). The Gaussian basis function uses a shape parameter
α > 0. This parameter is important for the condition of B. Its choice is discussed in
section 4.2.3.

1See equation (4.2), p. 66.
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4.2.1. Unique existence of the interpolant

This section briefly discusses the unique existence of the interpolation, i.e., the question,
whether B is nonsingular. Theorem 4.4 can be found in [Buh03] (prop. 2.1, p. 13). It
was shown first by Schoenberg.

Definition 4.3 (Complete monotonicity). A function g ∈ C∞(R+) is completely mono-
tonic if and only if for all l ∈ N and for all t ≥ 0 : (−1)lg(l)(t) ≥ 0.

In particular, the exponential function g(t) = e−αt is completely monotonic for α ≥ 0.

Theorem 4.4 (Schoenberg). Let g : R+ → R be a continuous, completely monotonic
function. Then, for all finite X ⊂ Rd of distinct points and all n, the matrix B from
definition 4.1 is positive definite for φ(x) = g(‖x‖2

2), unless g is constant. In particular,
the matrix B is nonsingular.

Proof. Can be found, e.g., in [Buh03].

Theorem 4.4 immediately implies that the Gaussian basis function φ(x) = e−α‖x‖
2
2 leads

to an invertible interpolation matrix for any α > 0. Thus, a unique interpolant exists
for any choice of the centers.

4.2.2. Error bounds/convergence

To establish error estimates for any interpolation method, it is necessary to start with
assumptions on the interpolated functions. In the case of radial basis function interpo-
lation, the interpolated functions are assumed to come from the so-called native space
Fφ corresponding to the kernel φ(· − ·). A definition of this space would introduce
unnecessary notations here.2 Instead, we directly give a characterization of the native
space.

Definition 4.5 (Positive definite functions). A function φ : R → R is positive definite,
if for any set of pairwise distinct centers x1, ..., xn ∈ Rd the matrix B := (bij)i,j=1...n with
bij := φ(xi − xj) is a positive definite matrix.

Schoenberg’s theorem 4.4 implies that the Gaussian basis function is positive definite.
The native space of positive definite functions can be characterized as follows:3

Theorem 4.6 (Characterization of the native space). Let φ ∈ C(Rd) ∩ L1(Rd) be a
real-valued positive definite function. Define

G :=

{
f ∈ L2(Rd) ∩ C(Rd) | f̂/

√
φ̂ ∈ L2(Rd)

}
,

2The construction of native spaces is explained in [Wen05], §10.
3See [Wen05], th. 10.12, p. 139.
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where f̂ and φ̂ denote the Fourier transforms of f and φ, respectively. Let this space be
equipped with the bilinear form

(f, g)G := (2π)−d/2
(
f̂/

√
φ̂, ĝ/

√
φ̂

)
L2(Rd)

= (2π)−d/2
∫

Rd

f̂(ω)ĝ(ω)

φ̂(ω)
dω.

Then G is a real Hilbert space with inner product (·, ·)G and reproducing kernel φ(· − ·).
Hence G is the native space of φ on Rd, and both inner products coincide.

Proof. See [Wen05], p. 139.

Characterization 4.6 shows that the native space for Gaussian basis functions is rather
small. The square integrability of the quotient f̂/Φ̂ requires that the Fourier transform
of f decays faster than the Fourier transform of the Gaussian, which is a Gaussian itself,
as the Gaussian function is self-dual with respect to the Fourier transform. Therefore,
convergence results that are restricted to functions from the native space Fφ are not
useful for the interpolation of option price functions. In particular the impressive spectral
convergence result for Gaussian basis functions is of little use here.4

Convergence result for Sobolev spaces

Schaback introduced the idea to consider convergence results for the interpolation of
functions from “foreign” native spaces. In [Sch96], an interpolation of functions from a
native space F0 of a radial basis function φ0 is considered, where a different radial basis
function φ1 is used for the interpolation.5 It is found that “the φ1-interpolants seem to
have more or less the same error on the larger space F0 as the optimal φ0-interpolants”.6

Using this approach, error bounds can be derived that are applicable to the RBF pricing
method. In the following the situation F0 ⊇ F1 is considered, where F1 is the native
space of the Gaussian basis function

φ1(x) := e−α‖x‖
2
2

and F0 is a Sobolev space. As can be shown with theorem 4.6, a radial basis function
φ0, whose native space is the Sobolev space W k

2 (Rd) is the following:

φ0(x) := c · ‖x‖k−d/22 Kk−d/2(π‖x‖2),

where c is a constant, and Kν denotes the modified Bessel function of the second kind.
For this special case, the following error bound holds.

4The spectral convergence result is established in [MN92].
5Similar results can be found in [Yoo01].
6See [Sch96].
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Theorem 4.7 (Error bound for Gaussian interpolation in Sobolev spaces). Let sf,X be
the Gaussian basis function interpolant of the form (4.8) for f ∈ Wm

2 (Rd). Then the
error is bounded as follows:

‖f − sf,X‖∞,Ω ≤ c0 · ‖f‖m,2 · hm−d/2

where c0 > 0 is constant and h denotes a scaling parameter that controls the approxima-
tion quality, namely an upper bound to the local fill distances:

hρ,X(x) := sup
{y : ‖x−y‖2≤ ρ}

min
xj∈X
‖y − xj‖2 ≤ h.

Proof. See [Sch96], theorem 4.5 and §5.

This result can be applied to usual payoffs by an appropriate restriction to compact
supports. E.g. for the plain-vanilla put payoff this theorem guarantees a convergence
O(
√
h) in the supremum norm. However, practical results indicate a better convergence

behavior.

Practical tests of the convergence behavior

In the following practical tests of the convergence behavior for several typical payoffs
are performed. The payoffs are interpolated with Gaussian basis functions on an log-
equidistant S-discretization. The interpolation error is estimated empirically. Concur-
rently, a European option value for a small time step is approximated via equation (4.6).
The exact specification of the model and option parameters is not important here, as
the results are qualitative.

Figure 4.1 illustrates the convergence of the interpolant (dashed line) for a plain-vanilla
payoff g (dotted line). The approximation value Vn of the resulting European option
is plotted as a solid line. Apparently, the local interpolation error is maximal near the
kink. Table 4.1 shows the interpolation errors (left column). In case of a plain-vanilla
put, they decay linearly in the fill distance h = O(1/n). Further, it can be seen that
the approximations of the option values (right column) converge quadratically in h. The
error of the approximation Vn is estimated at the point S = 1. The errors at the border
of the computational domain are due to truncation errors, which are not discussed here.

Figure 4.2 shows the convergence behavior for a binary option as a representative for
discontinuous payoffs. The interpolant of the payoff is plotted as a dashed line, the
payoff itself as a dotted line. Again, the resulting approximation Vn of the European
option value for a small time step is plotted as a solid line. It is clearly visible that
the interpolation error in terms of the supremum norm remains constant, independent
of the fill distance. Table 4.1 contains the interpolation errors for the binary payoff
and the approximation errors |V − Vn| at S = 1.1. As for the plain-vanilla option, the
approximations Vn converge for n→∞ quadratically in the fill distance h = O(1/n).

Similar results for the interpolation of continuous and discontinuous payoffs are found
for higher dimensional options. (See figures 4.3 and 4.4 for an illustration.)
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Figure 4.1.: Convergence of the RBF interpolant for plain-vanilla payoff: The plots show
the payoff and option interpolants for several discretizations.
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Table 4.1.: Convergence for plain-vanilla payoff (left) and binary payoff (right)

n ‖g − Sg,X‖∞ |V (1)− Vn(1)|
10 0.0367 0.02995
20 0.0177 0.00883
40 0.0088 0.00212
80 0.0045 0.00052

160 0.0022 0.00013
320 0.0011 0.00003

n ‖g − Sg,X‖∞ |V (1.1)− Vn(1.1)|
10 0.1371 0.002455
20 0.1334 0.006609
40 0.1333 0.001660
80 0.1333 0.000408

160 0.1333 0.000101
320 0.1333 0.000025
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Figure 4.2.: Convergence of the RBF interpolant for binary payoff in 1D: The plots
show the payoff and option interpolants for several discretizations (n =
10, 20, 40, 80). Apparently, the interpolants of the payoff do not converge
with respect to the supremum norm. Nevertheless, the option value (solid
line) converges quadratically in n. The reason is that high frequencies are
damped out. (See section 4.4.1.)
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Summary

Although classical error bounds for Gaussian interpolation are restricted to a rather
small class of functions, it is possible to obtain error bounds for Sobolev spaces. However,
practical tests indicate a better convergence than the theoretical result. The convergence
of the interpolant to the payoff in the supremum norm seems to be linear for continuous
payoffs. For discontinuous payoffs, the interpolant does not converge in the supremum
norm, but seems to converge in an L1-sense. The approximation error for the option
value is of order O(h2).
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Figure 4.3.: Illustration of interpolants for continuous payoffs (d = 2).

0

5

10

0
2

4
6

8
10

−1

0

1

2

3

4

5

(a) n = 10× 10

0

5

10

0
2

4
6

8
10

−1

0

1

2

3

4

5

(b) n = 20× 20

0

5

10

0
2

4
6

8
10

−1

0

1

2

3

4

5

(c) n = 30× 30

0

5

10

0
2

4
6

8
10

−1

0

1

2

3

4

5

(d) n = 40× 40

0

5

10

0
2

4
6

8
10

−1

0

1

2

3

4

5

(e) n = 60× 60

0

5

10

0
2

4
6

8
10

−1

0

1

2

3

4

5

(f) n = 80× 80



4.2. Interpolation by radial basis functions 75

Figure 4.4.: Illustration of interpolants for discontinuous payoffs (d = 2).
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4.2.3. Structure and condition of the basis matrix B

An interpolation with radial basis functions involves the solution of system (4.9):

~f = Bλ, with B = (bij)i,j=1,...,n, bij := e−α‖xi−xj‖
2
2 (4.10)

Thus, the condition of B is important for the stability of the interpolation method.
The values of B depend on the location of the centers xj ∈ X ⊂ Rd and of the shape
parameter α > 0. In principle, the shape parameter can be chosen individually for each
center xj, but in the following we focus on the case of a homogeneous shape parameter
α.

Special case of equidistant nodes for d = 1

In the case of equidistant nodes with fill distance h it is useful to choose the shape
parameter as follows:

α := −h−2 log β, (4.11)

with a control parameter β ∈ (0, 1). Then, xj+1 − xj = h, and the value of the basis
function for the node xj at the neighboring node xj+1 is

φ(xi − xj) = e−α(h|i−j|)2

= e(h−2 log β)h2|i−j|2 = β|i−j|
2

.

Figure 4.5 gives a geometrical motivation for this choice of α: The dependence between
interpolation coefficients λj, λj+1 for neighboring nodes can be controlled by β. It is
intuitively clear that β ≈ 1 leads to a strong dependence and β ≈ 0 leads to a weak
dependence. This is reflected in a high or low condition number of the basis matrix B.

For the choice (4.11) of the shape parameter in the one-dimensional, equidistant case
the matrix B has the form

B = Bn :=


1 β β4 ... βn

2

β 1 β β(n−1)2

β4 β 1 β(n−2)2

...
. . .

...

βn
2
β(n−1)2

β(n−2)2
... 1

 .

The condition cond(Bn) of the matrices Bn depends on β and n. It is clear that
cond(Bn(β)) → 1 for β → 0 and cond(Bn(β)) → ∞ for β → 1 (for n ≥ 2). For a
fixed β ∈ (0, 1), the condition converges for n→∞ to a constant c = c(β). A choice of
β that leads to a “moderate” condition is, e.g., β = 0.7. The convergence is illustrated
in figure 4.6. In this case, the limit of the 2-norm condition is c(β) ≈ 505.04, which can
be considered “moderate”.7

7Of course, for iterated solutions of eq. (4.10) this condition were to high, but in fact, the iteration
step of the RBF pricing method is (4.6) – and this step is stable (see section 4.4.1, p. 83).
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Figure 4.5.: Controlling the dependence between interpolation coefficients by β.

β

1

xj xj+1

φj(x)

x

Figure 4.6.: Convergence of condition number cond2(Bn) for n→∞.
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Besides the condition number, the structure of B is relevant for an efficient solution of
system (4.9).

Lemma 4.8 (Toeplitz structure of the basis matrix). In the one-dimensional, equidistant
case, i.e., for nodes xj = x1 +h(j−1) ∈ R, the matrix B defined in (4.9) has a Toeplitz8

structure.

Proof. The entries bij = φ(‖xi − xj‖) only depend on xi − xj = h(i− j) and thus, only
on i− j. Thus, B is a Toeplitz matrix.

Lemma 4.9 (Quasi band structure of the basis matrix). For a one-dimensional model
and equidistant centers the matrix B defined in (4.9) has a “quasi band” structure, i.e.,
bij = O(e−|i−j|).

Proof. The entries of B are by definition bij = e−α|xi−xj | = e−α|h(i−j)| = O(e−|i−j|).

This property guarantees, that the basis matrix can be treated as a band matrix by
cutting off all values below a certain threshold. Figure 4.7 illustrates the typical structure
of the basis matrix B graphically.

Figure 4.7.: Example of the structure of B for the one-dimensional case (d = 1) with
equidistant nodes. Large values are displayed black, values near zero are
displayed white. Here, for n = 100× 100, cond2(B) ≈ 505.
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8A matrix A is called Toeplitz matrix, if its entries aij depend only on the difference i − j, i.e., all
entries on (sub-) diagonals are identical.
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Special case of equidistant nodes for d > 1

In the multi-dimensional case d > 1 with a rectangular grid, the structure of B is more
difficult. The structure of B for such an example is illustrated in figure 4.8. It is a regular
pattern of sub-matrices of the same form as the one-dimensional basis matrices. As in
the one-dimensional case, it can be observed empirically that the condition converges
for n→∞.

The matrix B has also a quasi band structure, but the band is by substantially wider
than in the one-dimensional case. Consequently, in the multi-dimensional case B can be
regarded (and treated numerically) as a sparse matrix.

Figure 4.8.: Example of the structure of B for the two-dimensional case (d = 2) with
equidistant nodes. Large values are displayed black, values near zero are
displayed white. Here, for n = 16× 16, cond2(B) ≈ 304.
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Case of non-equidistant nodes

For an adaptive placement of nodes, the structure of B depends on the refinement
procedure. The refinement strategy described for the spline method in section 3.3.1 can
be applied in the context of the RBF method, as well. It leads to basis matrices that
can be regarded as wide band matrices. Figure 4.9 shows a basis matrix that has been
generated for a binary put option.
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Figure 4.9.: Example of the structure of B for the one-dimensional case (d = 1) with
adaptive, non-equidistant nodes. Large values are displayed black, values
near zero are displayed white. In this case, node dependent shape param-
eters αj are used, which are determined by the level of refinement. Here,
cond2(B) ≈ 6.89 · 106 (computed by the condition estimator “condest” in
MATLAB). The option used for this example is the same binary put option
as in figure 4.2.
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General case

The general structure (and thus condition) of the basis matrix depends on the placement
of nodes, choice of shape parameters, and, in the case of adaptive nodes, of the option
type. Consequently, general a-priori bounds on the condition number cannot be made.
Thus, for practical applications of the RBF method it is advisable to estimate the
condition of B automatically for every run of the pricing routine.



4.3. Quadrature rules for the model matrix 81

4.3. Quadrature rules for the model matrix

The quadrature problems that arise for the extension of the spline method to multi-
dimensional underlyings are difficult, as the corresponding integrands are not C∞-smooth.
This is not the case for the RBF method. Due to section 4.1, the integrands occurring
in the entries of the model matrix M = (mij)i,j=1,...,n are of the form

mij :=

∫
Rd
fXtk+1

|Xtk=xi(ξ)φ(ξ − xj) dξ. (4.12)

With the choice φ(x) = e−α‖x‖
2
2 from (4.10), the second factor of the integrand is C∞-

smooth. The first factor, the density function f , is determined by the market model.
For the Black-Scholes model, the Merton model, and NIG model it is C∞-smooth, as
well, as is shown later (in chapter 5). For the univariate VG model the integrand can
be split up according to the singularity.9 The multivariate VG model is not considered
in the present work. In the following the case f ∈ C∞ is considered.

4.3.1. Gauss quadrature

Gauss quadrature is efficient, if many integrals have to be evaluated with the same
weight function ω and if the integrand (without the weight) can be approximated well by
a polynomial. Classical Gauss quadrature can be found in numerical analysis textbooks
and does not need to be discussed here in detail. The following error representation can
be found, e.g., in [Sto99]:

Theorem 4.10 (Approximation error). The approximation error of the Gauss quadra-
ture for each function f ∈ C2n[a, b] can be expressed as∫ b

a

ω(x)f(x) dx−
n∑
i=1

wif(xi) =
f (2n)(ξ)

(2n)!
(pn, pn),

where ω denotes the weight function, wi and xi the n nodes and weights of the quadrature
rule, pn denotes the orthogonal polynomial of order n and ξ ∈ (a, b).

For the RBF pricing method, the weight function ω(x) := e−x
2

(Gauss-Hermite quadra-
ture) is used. It is clear that for an accurate estimation of the quadrature error, the
derivative f (2n) in the error representation above must be estimated. Instead, several
Gauss rules with increasing number n of nodes are used and the remaining error is
estimated heuristically by the difference of two successive approximations.

9See section 5.1.4.
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Implementation for d = 1

An implementation of Gauss-Hermite quadrature can be found, e.g., in [PTVF02]. This
algorithm has been used for the implementation of the RBF pricing method for one-
dimensional underlyings. It allows Gauss quadrature with n = 150 nodes, which cor-
responds to a polynomial order of about 300. This suffices for the present purposes.
Nevertheless, all quadrature results are tested against a second Gauss quadrature with
lower polynomial order to ensure that the required accuracy is reached.

Implementation for d > 1

For multivariate quadrature, a product rule based on Gauss-Hermite quadrature has
been used. For dimensions d = 2 and d = 3 this turned out to be practicable. For higher
dimensions specialized rules for integration over infinite regions with Gaussian weights
have been proposed by Genz and Keister [GK96] based on the prior work [Gen86]. An
implementation in Fortran is available10 and has been used for this work.

4.3.2. Analytical quadrature for Black-Scholes

The RBF method for the Black-Scholes model can be implemented in a very efficient
way. Standard calculus allows for an analytical solution of the integrals (4.12). As the
derivation is technical, only the result is presented, which can be incorporated into the
RBF valuation algorithm for the one-dimensional Black-Scholes model.

Let K1 ∈ R, K2 ≥ 0, K3 ≥ 0, K4 ∈ R be some constants which depend on the model’s
parameters. Let xi, xj ∈ X be two nodes. For each entry of the model matrix M we
need to solve an integral of the form

I :=

∫ ∞
−∞

K4 exp{−K2(K3ξ + xj − xi −K1)2 − 1
2
ξ2} dξ.

The analytic solution is

I =
K4

√
π√

K2K2
3 + 1

2

exp

{
−

1
2
K2[(xj − xi)2 − 2K1(xj − xi) +K2

1 ]

K2K2
3 + 1

2

}
.

Analytic solutions also exist for the multi-variate Black-Scholes models, but are not
included in this work. For convenience, the Gauss-Hermite product rule from section
4.3.1 has been used for d > 1.

10The code can be found on the home page of Alan Genz:
http://www.math.wsu.edu/faculty/genz/homepage.
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4.4. Numerical properties

This section analyzes the numerical properties of the RBF pricing method.

4.4.1. Stability

For each exercise time of the Bermudan option, the RBF method solves step (4.7):

vk = max
(
g, aMB−1vk+1

)
,

where g is the payoff vector, a the discount factor, M the model matrix, B the basis
matrix, vk+1 the option price approximation at time tk+1, and vk the option price ap-
proximation at time tk. As taking the maximum is numerically stable, it suffices to
verify the stability of the iteration

wk = aMB−1wk+1. (4.13)

As seen in section 4.2.3, the condition of B is “moderate” in most cases. Then, the
stability depends on the development of additive errors of wk+1 in each step (4.13), i.e.,
on the spectral radius of A := aMB−1

ρ(A) := max
i=1,...,n

|µi|,

where µ1 > ... > µn denote the eigenvalues of A. An analytical estimation of ρ(A) is not
possible, as A is influenced by numerous factors, e.g., the dimension of the underlying,
the number and location of centers xj, as well as model type and parameters.

Although it is not proved here analytically, for practical tests, e.g., for all examples
in chapter 5, it is found that ρ(A) < 1. The RBF implementation used for this work
monitors the largest eigenvalue automatically. In most cases, the largest eigenvalue is
µ1 ≈ 1 and the following eigenvalues decay fast to zero. In fact, the stability is better
than µ1 ≈ 1 suggests. When using one-dimensional models, the eigenvectors correspond
directly to “eigenfunctions”. It can be observed that the largest eigenvector corresponds
to an oscillation with a long period, and the smaller eigenvectors correspond to oscilla-
tions with short periods. This phenomenon is intuitively clear, as (4.13) approximates
one time step of a diffusion and diffusions damp oscillations. Figure 4.10 provides an
illustration of eigenvectors for several eigenvalues. The figures have been plotted using a
one-dimensional Black-Scholes model with n = 101 equidistant nodes. The consequence
of the described phenomenon is, that non-smooth errors, such as rounding errors, are
strongly damped down.

Summary

The empirical finding of ρ(A) < 1 indicates stability of the RBF method. Although a
proof for some special cases seems possible, it is not contained in the present work.
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Figure 4.10.: Eigenvectors ofA = aMB−1. All components of the eigenvectors for several
eigenvalues µi are displayed. The x-axis shows the component index.
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4.4.2. Computational complexity

The RBF pricing method for Bermudan options involves two steps, namely the setup of
the matrices B and M , and the solution of (4.7) for each time step. The costs for the
computation of the entries of B are negligible, but each entry of M involves the solution
of a quadrature problem. In some cases the structure of the model matrix can be used
to save a large amount of the quadrature costs.

Structure of the model matrix M

Lemma 4.11 (Toeplitz structure of model matrix). In the one-dimensional case with
equidistant centers, the model matrix M has a Toeplitz structure.

Proof. The entries of the model matrix M = (mij) are by definition (p. 66):

mij =

∫
Rd
fXtk+1

|Xtk=xi(ξ)φj(ξ − xj) dξ

(2.2)
=

∫
Rd
fXtk+1

|Xtk=0(ξ − xi)φj(ξ − xj) dξ

=

∫
Rd
fXtk+1

|Xtk=0(ξ)φj(ξ − (xj − xi)) dξ

It should be noted that this is only possible under space homogeneity (assumption 2.5).
For the equidistant case xj = x1 + h(j − 1), φj = φ has been chosen and thus mij

depends only on (xj − xi). As the nodes are equidistant, it depends only on i − j and
consequently, the model matrix M is a Toeplitz matrix.

An n× n Toeplitz matrix M has the structure

M =


m1 m2 m3 ... mn

mn+1 m1 m2 mn−1

mn+2 mn+1 m1 mn−2
...

. . .
...

m2n−1 m2n−2 m2n−3 ... m1

 .

As can be seen directly from this structure, the number of different entries in such a
matrix is 2n − 1 instead of n2 in a general matrix. This fact reduces the number of
necessary quadratures for the setup of the model matrix by a factor n, if M has Toeplitz
structure. The costs for each quadrature are the same and thus the computational
complexity for setting up the model matrix M is for the Toeplitz case O(n).

Special case: One-dimensional model and equidistant centers

In the special case of an one-dimensional model and equidistant centers xj the matrix B
is a Toeplitz quasi band matrix (by lemma 4.8 and 4.9, p. 78). That means, the matrix
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can be approximated well by a band matrix B̃ by “cutting off” the small entries. This
reduces the complexity for the solution of the linear system considerably. It is known
that the LU-decomposition for band matrices gives two band triangular matrices L, U
([GVL96], §4.3):

Theorem 4.12 (Band LU factorization). Suppose A ∈ Rn×n has an LU factorization
A = LU . If A has upper bandwidth q and lower bandwidth p, then U has upper bandwidth
q and L has lower bandwidth p.

In addition, for n � p, q Golub/Van Loan give an algorithm for the LU-factorization
in O(2npq) flops and an algorithm for solving the band triangular systems L and U in
O(2n(p+ q)) flops.11 This is linear complexity in n.

Summary

For one-dimensional models and equidistant nodes the total computational complexity
of the RBF pricing method is O(mn), where m denotes the number of exercise times of
the Bermudan option and n the number of centers.

For multi-dimensional models (or non-equidistant nodes) the costs for an LU-decom-
position of B are O(n3). The costs for the setup of the model matrix are O(n2), and
the costs for the solution of the linear systems are O(mn2). Consequently, the total
computational complexity is O(mn2 + n3).

Remark 4.13 (Sparsity for higher-dimensional models). For higher-dimensional models
the matrices M and B do not have a Toeplitz quasi-band structure but are quasi-sparse,
i.e., many entries are close to zero. Neglecting such entries leads to sparse matrices. Of
course it is difficult to analyze the speed-up in the higher-dimensional case exactly and
this aspect is not discussed here. Nevertheless, the implementation uses sparse matrix
structures and can be switched to iterative solvers.

4.4.3. Convergence

The convergence of the RBF method can, in principle, be established analogously to
the convergence result of the spline method in section 3.4.1 (p. 43). The three kinds
of errors are again interpolation errors, truncation errors, and quadrature errors. In
contrast to the spline method, the quadrature errors are negligible for the RBF method,
as the integrands (4.12) are C∞-smooth (p. 81). The truncation errors can be estimated
analogously to the estimation of the truncation errors for the spline method. Thus, the
convergence depends only on the interpolation error.

The theoretical error bound 4.7 (p. 71) for the Gaussian interpolation can be used to
establish qualitative convergence for, e.g., plain-vanilla options. For binary options it
is useless, as these payoff functions do not live in Wm

2 (Rd). Numerical tests in section

11 See [GVL96], p. 152f.
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4.2.2 indicate that the interpolants do not converge in the L∞-norm but in the L1-norm.
This suggests error bounds for Gaussian interpolation of discontinuous functions in an
L1-sense, but the development of new error bounds for RBF interpolation is beyond the
scope of this work.

To establish a hypothesis on the convergence behavior, numerical experiments have
been performed. For Bermudan options, figure 4.11 illustrates some of these experiments.
The results indicate quadratic convergence for Bermudan options in the number of nodes
n and thus justify the following hypothesis.

Hypothesis 4.14 (Convergence). The RBF based approximation Vm,n(x) of the value of
a univariate Bermudan option with m exercise times and n equidistant centers converges
quadratically in n for every log-price x of the underlying for the models from chapter 5.

Remark 4.15 (Convergence for multivariate models). The above hypothesis cannot be
extended to multivariate models, as the currently available processing power does not
allow for discretizations that are fine enough to draw conclusions about the limit behavior
for n→∞.

4.5. Conclusion

The RBF method is also based on the reduction principle (lemma 2.12, p. 14), and thus
closely related to the spline method. The main idea is to use RBF interpolation for
the option value function. As a by-product of the interpolation the initial quadrature
problem is reduced to a smooth integrand, and thus all errors due to singularities12

in the option price are shifted from quadrature to interpolation. By step (4.4), p. 66,
integration and summation are exchanged and the integration problems are relocated to
the model matrix, which can be build in a preliminary setup step. Consequently, the
quadrature problems must be solved only once, namely during the setup of the model
matrix, and not in every time step as in the spline method. This leads to substantial
performance gains for Bermudan options with high numbers of exercise times. In fact,
options with, e.g., m = 10000 time steps can be priced easily.

By design, the method can be used for pricing Bermudan and American options with
arbitrary payoffs and under fairly arbitrary models. In contrast to the spline method
it generalizes naturally to higher dimensions. However, the computational costs still
considerably increase with the dimension. A technical aspect is that the RBF method is
matrix oriented and thus can be implemented easily in MATLAB or other interpretative
numerical environments.

An important property of the RBF method is order of convergence in n. Empirical
tests indicate quadratic convergence for Bermudan options.

12“Singularity” here refers to non-differentiability or discontinuity.
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Figure 4.11.: Empirical convergence behavior of the RBF method for Bermudan options
with m = 100 exercise times and n centers, n→∞. The illustrations show
log-log plots of 1/n versus the absolute error of the approximation. (The
quadratic convergence can be seen from the asymptotic slope of 2.)
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(a) binary option (B/S)
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(b) plain-vanilla put (B/S)
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(c) plain-vanilla put (Merton)



5. Asset price models

As the value of an option depends on the price of the underlying asset, any option pricing
model must include an asset price model. This chapter introduces asset price models
that can be employed with the spline and RBF method. It is a prerequisite for the
application of the new pricing methods.

The presented models assume that the log-price Xt of the underlying follows a stochas-
tic Lévy process.1 Such models are called exponential Lévy models or just Lévy models .
Already the geometric Brownian motion (GBM) used by Black, Scholes [BS73], and
Merton [Mer73] falls into this class of models. Although this model is widely used, it
does not reproduce the phenomenon of price jumps. In the last decade, models with
jumps received increasing attention. On the one hand, there is empirical evidence for
the occurrence of jumps in real markets.2 On the other hand, calibration results indicate
that models with jumps provide a more realistic description of market prices than pure
diffusion models like the geometric Brownian motion.3

Section 5.1 introduces several one-factor models with jumps from [Mer76], [MS90], and
[Ryd97], and discusses their suitability for the use with quadrature methods. Section 5.2
briefly introduces the multi-factor Black-Scholes model and the notion of copulae, which
allows the construction of multi-factor models with a dependence structure between the
individual factors. Finally, section 5.3 gives an outlook on non-parametric modeling
as an example for a modeling technique that is inaccessible to most other valuation
techniques.

5.1. One-factor models

In the following several asset price models for single assets are introduced and their
relevant properties for an application within quadrature methods are analyzed. Each
model is characterized by the conditional probability density function (PDF) of the asset
price. The most important properties are smoothness and tail behavior of the PDF and
the possibility of its efficient numerical evaluation. The selection of models in this section
follows the current literature on option pricing. The question, whether these models are
good descriptions of market prices or not, is not an issue here and is not critical to the

1See definition 5.1. An introduction to Lévy processes for financial modeling can be found in [CT03].
2Empirical studies and econometric details can be found, e.g., in [CLM97] and [Pag96].
3A calibration of several Lévy models (including B/S, NIG, and VG) to S&P 500 index option prices

is discussed in [Mat05].
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development of the spline and RBF method. If future research discovers better models,
they can be easily attached to existing implementations of the spline or RBF method
by just exchanging a single subroutine.

5.1.1. General assumptions

Usual option pricing models share several basic assumptions. Some of them can be
economically motivated and some of them are purely technical to establish mathematical
tractability. Typical assumptions are the following:

• There are no transaction costs, fees, taxes, etc.

• Transactions have no influence on the market price.

• Any new information becomes simultaneously available to all market participants.

• There are no arbitrage opportunities.

• The interest rates for borrowing and lending are equal.

• The market price of the underlying follows a certain stochastic process (Xt)t≥0.

The asset price models introduced in this section describe only one aspect of the option
pricing model, namely, the stochastic process for the price of the underlying. This work
only considers Lévy processes, which are defined as follows.

Definition 5.1 (Lévy process). A stochastic process Xt on (Ω,F ,P) with values in Rd

such that X0 = 0 is called a Lévy process, if it has the following properties:

(i) Independent increments: For all times t0 < t1 ≤ s0 < s1 the random variables
(Xt1 −Xt0) and (Xs1 −Xs0) are stochastically independent.

(ii) Stationary increments: For all time increments ∆t, the distribution of (Xt+∆t−Xt)
does not depend on t.

(iii) Stochastic continuity: ∀t, ε > 0 : lim∆t→0 P( |Xt+∆t −Xt| ≥ ε ) = 0.

In contrast to the continuity of the Brownian motion, the weaker constraint of stochas-
tic continuity in (iii) allows jumps in the asset price. Property (iii) implies assump-
tion 2.4, property (ii) corresponds to the stationarity assumption 2.7(i), and property (i)
implies that the (optional) space homogeneity assumption 2.5 holds for all Lévy models
with density functions.

Remark 5.2 (Restriction of this work to Lévy models). Although all models introduced
in this section are Lévy models, the spline and RBF methods are not restricted to this
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class of models. One central property of a Lévy process is the independence of incre-
ments (i). This property is not required for the application with quadrature methods.
Examples for stochastic processes which do not have independent increments are pro-
cesses with mean reversion, e.g., the Ornstein-Uhlenbeck process proposed for interest
rate modeling by Vasicek [Vas77] and by Cox, Ingersoll, and Ross [CIR85]. A popular
non-Lévy model that is used for option pricing is the Heston model [Hes93], which is
an extension of the Black-Scholes model by a stochastic volatility (σt) that follows an
Ornstein-Uhlenbeck process. The valuation by quadrature methods in this case leads to a
two-dimensional pricing problem, with one dimension being the asset price (St) and the
other being the stochastic volatility (σt). This additional complexity does also apply to
finite difference methods for the Heston model.

5.1.2. The Black-Scholes model

The following model was used by Black and Scholes in their seminal work [BS73]. As it
is well-known and widely used in practice, this section is kept at a minimum. A more
detailed introduction can be found, e.g., in [Sey02]. In this model the asset price St is
assumed to follow a geometric Brownian motion with drift γ̃ and infinitesimal variance
σ2, i.e.,

dSt = γ̃Stdt+ σStdWt,

where Wt denotes a Wiener process. This representation of the model is equivalent to
the following one for the log-price Xt := logSt:

4

Xt = γt+ σWt

Together with the stationarity property of the Wiener process, this implies that the
log-returns Xt+∆t −Xt are distributed normally with mean γ∆t and variance σ2∆t for
all t and ∆t. The conditional probability density function of the log-price Xt is

fXt|X0=0(x) =
1

σ
√

2πt
exp

{
−(x− γt)2

2σ2t

}
. (5.1)

(In the following the superscripts are omitted, if they are obvious from the context.)
The density function f is C∞-smooth and can be evaluated efficiently in O(1).5 These
properties allow efficient quadrature schemes for the spline and RBF method. The
quadrature problems arising in the RBF method when applied to this model can even
be solved analytically, as is mentioned in section 4.3.2.

4The equivalence can be shown using Itô’s lemma; the drift parameter is changed to γ.
5“In O(1)” means that the computational complexity of the function evaluation is O(1).
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Martingale condition

The Black-Scholes model allows only one choice for the equivalent martingale measure
(EMM).6 The following risk-neutrality condition guarantees that the process St adjusted
for dividends and discounted with the risk-free interest rate is a martingale:

E(St|S0 = 1) = et(r−q) (∀t ≥ 0), (5.2)

where r denotes the risk-free interest rate and q denotes the continuous dividend rate
paid by the asset. The risk-neutrality condition is a consequence of the no-arbitrage
assumption. It implies for the Black-Scholes model:

E(St|S0 = 1) = E(eXt |X0 = 0)

=

∫ ∞
−∞

exfXt|X0=0(x) dx = ... =

= exp

{
t

(
γ +

σ2

2

)}
!

= exp(t(r − q))

This determines the drift that is necessary to satisfy the risk-neutrality condition:

γ = r − q − σ2

2
.

The choice of γ corresponds to the choice of an equivalent martingale measure. In this
case the EMM is uniquely determined, as the Black-Scholes model is a complete model,
i.e., any security can be hedged in this model.

Tail behavior

The tail behavior is important for the truncation of quadrature intervals and for a
classification of the model. The tail behavior of the Black-Scholes PDF in equation (5.1)
can be described as:

f(x) = O(e−αx
2

) for |x| → ∞ (5.3)

for α := 1
2σ2t
− ε > 0, with a small ε > 0.7 Tails of this kind are called thin tails .

Empirical evidence rejects the hypothesis of thin tails for stock and stock index prices.
This property is one of the major drawbacks of the Black-Scholes model. An symptom
of this misbehavior is the volatility smile of implied volatilities.8

6See e.g., [Shr04], second fundamental theorem of asset pricing (theorem 5.4.9, p. 232).
7The notation “= O(...) for |x| → ∞” means that the function is in this class for both limit cases
x→∞ and x→ −∞.

8Calibrating the Black-Scholes model to market prices of options for different strikes K leads to non-
constant volatility σ = σ(K). This phenomenon is well-known as “volatility smile,” as the graph of
σ(K) resembles a smile. This phenomenon is described, e.g., in [Hul00], §17.
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5.1.3. The Merton model

The following generalization of the Black-Scholes model was proposed first by Merton
[Mer76]. It assumes that the dynamics of the log price can be described partly by diffu-
sion and partly by jumps. Furthermore, the occurrence of jumps over time is assumed
to follow a Poisson process, and the jump sizes are assumed to be normally i.i.d. (inde-
pendent and identically distributed). Thus the log-price Xt can be written as

Xt = γt+ σWt +
Nt∑
i=1

Yi,

where γ is a drift parameter, σ is a volatility parameter, (Wt) a Wiener process, (Nt) a
Poisson process counting the jumps in the interval [0, t], and (Yi) is a family of random
variables with Yi ∼ N (µ, δ2) describing the size of the i-th jump. The corresponding
probability density function can be derived by combining the PDFs (fk)k≥0, where each

fk(x) := fXt |X0=0∧Nt=k(x)

is the conditional PDF of the log-price under the additional condition that Nt = k jumps
occur in [0, t]. fk is the Gaussian PDF augmented by the sum of k jumps with jump
sizes distributed as N (µ, δ2):9

fk(x) =
1√

2π(σ2t+ kδ2)
exp

(
−(x− γt− kµ)2

2(σ2t+ kδ2)

)
(5.4)

Each fk must be weighted with the probability P(Nt = k) for the condition Nt = k:

fXt|X0=0 =
∞∑
k=0

P(Nt = k) · fk.

The probability for k Poisson jumps in [0, t] is

P(Nt = k) =
(λt)k

k!
e−λt. (5.5)

Equations (5.4) and (5.5) imply that the PDF has the following series expansion:10

fXt|X0=0(x) =
∞∑
k=0

e−λt(λt)k

k!
√

2π(σ2t+ kδ2)
· exp

(
−(x− γt− kµ)2

2(σ2t+ kδ2)

)
. (5.6)

As explained in lemma 2.6 (p. 12), this defines the general conditional PDF for arbitrary
t > s ≥ 0, x∗ ∈ R via the stationarity property:

fXt|Xs=x
∗
(x) = fXt−s|X0=x∗(x) = fXt−s+x

∗|X0=0(x) = fXt−s|X0=0(x− x∗)
9Remember: A sum of k N (µ, δ2)-distributed i.i.d. random variables has distribution N (kµ, kδ2).

10Compare [CT03], p. 111, eq. (4.12).
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Obviously the function f is C∞-smooth. The terms of the infinite sum decay very fast to
zero for k →∞. Consequently this function can be approximated by adding up only the
first few terms until the required accuracy is reached. As stop criterion it is sufficient to
check the size of the next terms. If they do not change the result up to a given tolerance
level, the series can be truncated. This naive implementation turns out to be efficient
enough in practice.

It is important that for each k the corresponding term of the series allows an ana-
lytic solution of the integral problems arising in connection with the RBF method. The
analytic solution is lengthy but involves only the exponential function and can thus
be evaluated efficiently. It is not included in this work but can be obtained by stan-
dard analysis. As the series converges uniformly, integration and summation can be
interchanged and a series expansion for the integral can be obtained.

Remark 5.3 (Model parametrization). The parametrization of the Merton model in the
literature is not consistent. For example, [Hau97] uses the parameters λ (jump intensity)
and γ (“percentage of the total volatility explained by the jumps”11). The present work
follows the parametrization used in [CT03]:

• σ > 0 is the diffusion volatility,

• λ ≥ 0 is the jump intensity,

• µ ∈ R the mean jump size, and

• δ ≥ 0 the standard deviation of jump size.

The drift rate γ ∈ R is eliminated by the risk-neutrality condition as follows.

Martingale condition

Proposition 3.14 (p. 92) from [CT03] provides an alternative representation of the ex-
pectation value of an exponential Lévy process, namely,

E(eXt) = etΨ(−i),

where Ψ denotes the characteristic exponent12 of the process and i the imaginary unit.
Together with the martingale condition (5.2) this implies

Ψ(−i) = r − q. (5.7)

The characteristic exponent for the Merton model is ([CT03], table 4.3, p. 112):13

ΨMerton(u) = −σ2u2

2
+ iγu+ λ(e−δ

2u2/2+iµu − 1)

11[Hau97], p. 8.
12The characteristic exponent is the exponent of the characteristic function in the representation Φ(z) =

exp(Ψ(z)) and is uniquely determined for any Lévy process ([CT03], (3.15), p. 83).
13The notation of the drift parameter is inconsistent in [CT03]. It is b in table 4.3 and γ on p. 111.
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Consequently, the risk-neutrality condition for this model is:

γ = r − q − σ2

2
− λ(eδ

2/2+µ − 1)

It suffices to choose the drift γ accordingly and thus eliminate one parameter making the
Merton model a four-parametric model.14 This way to establish the martingale property
is called drift correction. As the Merton model is incomplete, alternative choices of the
EMM would be possible, e.g., by adjusting the mean jump size.

Tail behavior

Lemma 5.4 (Infinite tail decay rate for Merton’s model). The Merton model has infinite
exponential tail decay rate, i.e., for every α > 0 the tail decays at least as

f(x) = O(e−α|x|) for |x| → ∞.

Proof. Let α > 0 be an arbitrary but fixed number. As f ≥ 0, lim sup eα|x|f(x) ≥ 0 for
both x→∞ and x→ −∞. It is sufficient to show lim sup eα|x|f(x) <∞ for both limit
cases. As the series representation of f in (5.6) converges uniformly, the order of the
following limits may be reversed.

lim
x→∞

eα|x|f(x) = lim
x→∞

lim
n→∞

eα|x|
n∑
k=0

Ck · exp

(
−(x− γt− kµ)2

2(σ2t+ kδ2)

)
= lim

n→∞
lim
x→∞

eα|x|
n∑
k=0

Ck · exp

(
−(x− γt− kµ)2

2(σ2t+ kδ2)

)
= lim

n→∞
0 = 0,

where Ck denotes constants with respect to x. The limit case x→ −∞ is analogous.

Cont and Tankov characterize the tail behavior of the Merton model as follows: “Tails
are heavier than Gaussian, but all exponential moments are finite.”15

5.1.4. The Variance-Gamma model

This type of asset price model has been proposed by Madan and Seneta in [MS90]. It
has been used for the valuation of European options, e.g., in [MCC98] and [CM99]. The
model is a pure jump model, i.e., the price moves only by jumps (and deterministic
drift). This section mainly follows the results of [MCC98], where a closed form of the
probability density function is derived.

14Not counting the risk-free interest rate r and the continuous dividend rate q. Parameters: (σ, λ, µ, δ).
15[CT03], p. 112.
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Construction

The idea behind the construction of the variance-gamma (VG) model is to evaluate a
Brownian motion (Ws) with drift at a random time (st) that is described by a gamma
process. The random time process is called subordinator . Both processes are assumed
to be stochastically independent. A general introduction to the construction of Lévy
processes by subordination can be found in [CT03], section 4.2.2.

The gamma process is defined as the homogeneous Lévy process (st) for which the
density of s1 is determined by the gamma distribution, i.e., the PDF of z := s1 is
assumed to be the following function:

f s1(z; k, θ) :=
zk−1e−z/θ

θkΓ(k)
,

where k > 0 and θ > 0 denote the two parameters of the distribution and Γ denotes
the gamma function. It is useful to restrict16 this class of processes by the assumption
E(z) = 1 and change the parametrization to κ := var(z).17 This corresponds to the
choices θ = κ = 1/k and leads to the density function

f s1(z;κ) =
z1/κ−1e−z/κ

κ1/κΓ(1/κ)
.

In this special case, the resulting process has three parameters: The volatility σ of the
Brownian motion, the drift θ of the Brownian motion, and the variance κ of the time
process. A possible interpretation of this construction is that the calender time differs
from the “business time” at which new events occur at the market. The additional
parameters allow control of kurtosis18 and skewness of the return density and thus can
lead to better calibration results. As the gamma process used for subordination is a
pure jump process, the resulting variance gamma process is also a pure jump process.

Just as for the Merton model, a drift correction term γt is added to choose the equiv-
alent martingale measure. This drift correction takes place in the non-subordinated
time. Thus, the drift parameter γ has a different meaning than the subordinated drift
parameter θ. The process for the log-price in the VG model is

Xt = γt+ θst + σWst .

Properties

From the construction it is obvious that the VG process Xt reduces to a Brownian motion
with drift γ and infinitesimal variance σ2 for st = t, i.e., in the limit case κ→ 0. In this
spirit the VG model can be regarded as a generalization of the Black-Scholes model.

16Because of certain scaling properties this is not a restriction of the class of processes. Details can be
found in [CT03], p. 116.

17Mean and variance of the gamma distribution are E(z) = kθ, var(z) = kθ2.
18“Kurtosis” is defined as the fourth cumulant divided by the square of the variance of a distribution.

It can be interpreted as a shape parameter of the density function.
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For the application of quadrature methods, the main ingredient is the conditional
PDF of the log-price Xt. As for the Merton model, the PDF can be derived using the
properties of the subordinator process and the subordinated process. The resulting PDF
is19

fXt|X0=0(x) =
2 exp(κ(x− γt)/σ2)

σ
√

2πΓ(t/κ)κt/κ

(
(x− γt)2

2σ2/κ+ θ2

) t
2κ
− 1

4

·

· K t
κ
− 1

2

(
1

σ2

√
(x− γt)2

(
2σ2

κ
+ θ2

))
, (5.8)

where Kν denotes the modified Bessel function of the second kind with index ν := t
κ
− 1

2

and Γ denotes the gamma function. Without loss of generality it can be assumed that
ν ∈ (−1

2
, 0): t, κ > 0 and if ν ≥ 0, n := d2t

κ
e + 1 time steps of size t

n
can be performed

instead of a single t-step. It should be noted that the modified Bessel function of second
kind is symmetric with respect to ν, i.e. Kν = K−ν .

20

This density function is not globally C∞-smooth but piecewise for (−∞, γt) and
(γt,∞).21 It has a singularity at x = γt with f(x) → ∞ for x → γt. See (5.9) be-
low for the asymptotic behavior.

Numerical evaluation

Although technically more involved, this function can be evaluated efficiently in O(1).
In the following some aspects of the implementation are mentioned.

• The singularity must be considered in the quadrature method, e.g., by additive
separation: The Bessel function Kν has the following asymptotic behavior for the
argument y → 0:

for ν 6= 0 : Kν(y)→ Γ(|ν|)
2

(
2

y

)|ν|
(5.9)

The PDF in (5.8) has the structure

f(x) = c1e
c2(x−γt)|x− γt|νKν(c3|x− γt|),

where c1, c2, c3 denote constants. Substituting asymptote (5.9) into this function
leads to the structure (with other constants c̃i)

f̃(x) = c̃1e
c̃2(x−γt)|x− γt|ν · |x− γt|−|ν| = c̃1e

c̃2(x−γt)|x− γt|2ν (ν < 0).

19See e.g., [MCC98], theorem 1; the notation is different: here (σ, θ, κ) =̂ (σ, θ, ν) in [MCC98].
20The index symmetry Kν = K−ν can be found, e.g., in [CT03], appendix A, p. 499, or any formulary.
21Figure 5.1 (p. 105) contains an illustration of the VG density.
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The integrals arising in the RBF method are of the form (compare section 4.1)∫ ∞
−∞

e−λ(ξ−xi)2

f(ξ − xj) dξ

=

∫ ∞
−∞

e−λ(ξ−xi)2

(f − f̃)(ξ − xj)︸ ︷︷ ︸
(∗)

dξ +

∫ ∞
−∞

e−λ(ξ−xi)2

f̃(ξ − xj)︸ ︷︷ ︸
(∗∗)

dξ,

where λ > 0 is the shape parameter of the RBF interpolation, xi and xj are nodes
with index i and j. By construction of f̃ the integrand (*), which involves (f − f̃),
does not have a singularity. Thus, the left integral can be evaluated by numerical
quadrature. The problem is now reduced to the approximation of the right integral
with integrand (**), which involves the function f̃ , i.e., the following integral must
be solved for index ν ∈ (−1

2
, 0):∫ ∞

−∞
e−λ(ξ−xi)2

f̃(ξ − xj) dξ

= c̃1

∫ ∞
−∞

e−λ(ξ−xi)2+c̃2(ξ−γt)|ξ − xj − γt|2ν dξ

= − c̃1

∫ xj+γt

−∞
e−λ(ξ−xi)2+c̃2(ξ−γt)(ξ − xj − γt)2ν dξ

+ c̃1

∫ ∞
xj+γt

e−λ(ξ−xi)2+c̃2(ξ−γt)(ξ − xj − γt)2ν dξ

= + c̃1

∫ xj+γt

−∞

−2λξ + 2λxi + c̃2

2ν + 1
e−λ(ξ−xi)2+c̃2(ξ−γt)(ξ − xj − γt)2ν+1 dξ

− c̃1

∫ ∞
xj+γt

−2λξ + 2λxi + c̃2

2ν + 1
e−λ(ξ−xi)2+c̃2(ξ−γt)(ξ − xj − γt)2ν+1 dξ

− c̃1|...|
xj+γt
−∞ + c̃1|...|∞xj+γt

The last two terms |...|xj+γt−∞ and |...|∞xj+γt vanish; e.g.,

|...|∞xj+γt =
∣∣∣e−λ(ξ−xi)2+c̃2(ξ−γt) 1

2ν+1
(ξ − xj − γt)2ν+1

∣∣∣∞
xj+γt

(λ>0)
= 0.

The remaining integrands do not have singularities (as 2ν + 1 > 0) and can be
solved with numerical quadrature methods.

• After the separation of the singularity, the numerical quadrature must be split up
at x = xj +γt, and for each part x < xj +γt and x > xj +γt the improper integral
must be approximated separately.
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• Computational aspects concerning the modified Bessel function and gamma func-
tion can be found in [PTVF02], p. 249ff. Numerical routines for the approximation
of the modified Bessel function for arbitrary real indices can be found in [ZJ96].

Martingale condition

Analog to the derivation of the Merton model the risk-neutrality condition can be derived
using the characteristic exponent of the process via equation (5.7)

Ψ(−i) = r − q.

The characteristic exponent of the VG process is22

ΨV G(u) = iγu− 1

κ
log

(
1 +

u2σ2κ

2
− iθκu

)
.

And this yields the following risk-neutrality condition for the VG model:

γ = r − q +
1

κ
log

(
1− σ2κ

2
− θκ

)
Obviously such a value γ exists only for

θ <
1

κ
− σ2

2
. (5.10)

Otherwise the expectation value E(St) does not exist (is infinite). In this case the
martingale property cannot be restored by an additional drift term. There could be
alternative approaches, but for this work the model parameters can be restricted to
values which fulfill relation (5.10).23

Tail behavior

The following result can be found in [CT03], §4.4.3 (p. 117).

Lemma 5.5. The log-return probability density of the VG model has exponential tails
with decay rates B − A for x → ∞ and B + A for x → −∞, with A := θ

σ2 and

B :=

√
θ2+2σ2/κ

σ2 .

Lemma 5.6 (Lower bound for right VG tail decay rate). The right tail of the probability
density function f of the VG model (5.8) decays exponentially with decay rate of at least
one, i.e., B − A > 1.

22The characteristic exponent can be found in [CT03], table 4.5, p. 117. It must be augmented here by
the term iγu, as the drift correction term is not included in this table.

23This should not be a problem in practice either; as the calibration procedure does not converge to
parameter values, for which the expectation value of St is infinite.
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Proof. This is a direct consequence of relation (5.10).

B − A =

√
θ2 + 2σ2/κ

σ2
− θ

σ2
> 1

⇔
√
θ2 + 2σ2/κ− θ − σ2 > 0

⇔ θ <
1

κ
− σ2

2
,

which is given for all admissible parameter values from (5.10). The last equivalence can
be shown by case differentiation of θ + σ2 ≥ 0 and θ + σ2 < 0.

5.1.5. The Normal-Inverse-Gaussian model

The Normal-Inverse-Gaussian (NIG) model has been proposed for financial modeling in
[BN97] and [Ryd97]. It is closely related to the VG model and can also be represented
by Brownian subordination.

Construction

For the representation by subordination, an inverse Gaussian process is used as subor-
dinator. The inverse Gaussian process is defined as the homogeneous Lévy process st
where the density of s1 is determined by the inverse Gaussian distribution, i.e., where
the density of z := s1 is24

f s(z; δ, ω) = (2π)−1/2δ exp(δω)z−3/2 exp{−1
2
(δ2z−1 + ω2z)},

where δ > 0 and ω > 0 are parameters of the distribution. Mean and variance are
E(z) = δ/ω and var(z) = δ/ω3. As in the VG construction, this two-parameter family
of processes is restricted to a one-dimensional family by the assumption E(s1) = 1. This
yields δ = ω. In the next step the parametrization is changed to κ := var(z), and thus√
κ = 1/ω. Including a new drift correction term γt, the process for the log-price in the

NIG model has the form

Xt = γt+ θst + σWst

with infinitesimal drift parameter θ ∈ R and variance σ2 > 0 of the Brownian motion.

Properties

The NIG model can also be seen as a generalization of the Black-Scholes model. Again,
in the limit case κ→ 0 the model reduces to the Black-Scholes model. The conditional

24See [BN97], eq. (2.5).



5.1. One-factor models 101

PDF for the NIG model is given by:25

fXt|X0=0(x) = C̃eAx
K1(B̃

√
x2 + t2σ2/κ)√

x2 + t2σ2/κ
, (5.11)

where

A :=
θ

σ2
, B̃ :=

√
θ2 + σ2/κ

σ2
, C̃ :=

t

π
et/κ
√

θ2

κσ2
+

1

κ2
,

and K1 denotes the modified Bessel function of the second kind with index 1. The PDF
is C∞-smooth as K1 ∈ C∞(0,∞). It can be evaluated efficiently in O(1).26

Martingale condition

The martingale property can be restored similarly as for the VG model. The character-
istic exponent of the NIG model is27

ΨNIG(u) = iγu+ 1
κ
− 1

κ

√
1 + u2σ2κ− 2iθuκ.

Inserting u = −i and using equation (5.2) yields the following risk-neutrality condition:

γ = r − q − 1
κ

+ 1
κ

√
1− σ2κ− 2θκ

The required drift parameter γ has a real value only for

θ ≤ 1

2κ
− σ2

2
. (5.12)

Again, this condition can be interpreted economically: If the drift θ of the subordinated
process is too large, the risk-neutrality cannot be restored by adding a drift term γt.

Tail behavior

The modified Bessel K1 has the following asymptotic behavior:28

K1(y)→
√

π
2y
e−y for y →∞

Inserting this asymptote for argument y = B̃
√
x2 + t2σ2/κ into (5.11) yields the tail

behavior of the NIG model

f(x)→ C̃

√
π

2B̃(x2 + t2σ2/κ)3/2
exp(Ax− B̃

√
x2 + t2σ2/κ) for x→ ±∞.

25This result can be found in [CT03], p. 117
26Computational aspects concerning the modified Bessel function can be found in [PTVF02], p. 249ff.
27The characteristic exponent can be found in [CT03], table 4.5, p. 117. It must be augmented here by

the term iγu as the drift correction term is not included in this table.
28This result can be found e.g., in [AS65], 9.7.4 (p. 378).



5.1. One-factor models 102

The asymptotic behavior is dominated by the exponential term. As

y =
√
x2 + t2σ2/κ→ |x| for |x| → ∞

it follows that

f(x) ∈ O(eAx−B̃|x|) for |x| → ∞.

This means that the NIG model has exponential tails with decay rates B̃ − A > 0 for
x > 0 and B̃ + A > 0 for x < 0. (The case B̃ = A cannot occur as σ > 0.) These tails
are heavier than the tails in the Black-Scholes model.29 It should be noted that the NIG
model is able to reproduce different decay rates for negative and positive returns, thus
posing the question, how “heavy” the tails can be. In the following a lower bound for
the decay rate B̃ − A is given.

Lemma 5.7 (Lower bound for NIG tail decay rate of positive returns).

B̃ − A > 1

Proof. The lower bound is a consequence of relation (5.12), which specifies the admissible
parameters:

B̃ − A =

√
θ2 + σ2/κ

σ2
− θ

σ2
≥ 1

⇔
√
θ2 + σ2/κ− θ − σ2 ≥ 0

⇔ θ ≤ 1

2κ
− σ2

2
(relation (5.12))

Again, the last equivalence can be shown by case differentiation of θ + σ2 ≥ 0 and
θ + σ2 < 0.

Remark 5.8. This is the “best” tail behavior that can be expected for a reasonable model,
as section 5.1.7 shows. Interestingly, the corresponding lower bound for the left tail decay
rate is zero. Because of the limit behavior θ → −∞ ⇒ B̃ + A → 0, the left tail can be
made arbitrarily “heavy” (while still decaying exponentially). The possibility to model
heavier left tails than right tails is an important feature, as empirical results indicate
that large negative jumps occur more frequently than large positive jumps.

5.1.6. Other models

The following list contains some prominent models that are not discussed in this work.

29The B/S model has infinite tail decay rates; see e.g., (5.14) on p. 104.
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• The Kou model: The Kou model falls into the class of jump-diffusion models.
It has been proposed in [Kou02]. It is closely related to the Merton model but as-
sumes an asymmetric exponential distribution of the jump sizes. The asymmetric
exponential distribution introduces an additional model parameter, making cali-
bration more difficult. We omit this model because of its structural similarity to
the Merton model and as there is no closed form of the probability density function
f available in current literature.

• The Heston model: This stochastic volatility model was introduced in [Hes93].
It can be used with quadrature method as a two-dimensional model with variables
(St, σt). The Ornstein-Uhlenbeck process for the volatility exhibits mean reversion
and is therefore not a Lévy process (its increments are stochastically dependent).
This is not a problem for quadrature methods but for the convolution approach,
since the assumption of space-homogeneity fails. The long-term behavior of the
Heston model can be described as a one-dimensional model (see [DY02]), but this is
a different model which may not be mixed up with the original stochastic volatility
model.

• The CGMY model has been proposed by Carr et al. in [CGMY02]. It is a
generalization of the VG model allowing jumps of both finite and infinite activity.

• The FMLS model: The Finite Moment Log Stable (FMLS) process is introduced
by Carr and Wu in [CW03]. It assumes a self-similar Lévy process for the asset
price. The authors motivate this model by empirical observations for U.S. equity
index options. As the proposed process is a Lévy α-stable process, the conditional
return distribution does not converge to a normal distribution. In principle, this
model can be used with quadrature methods.

Remark 5.9 (Possible extension: specialized models). This work only uses models that
are available from current literature. For practical applications these models are not nec-
essarily the best choice for quadrature methods. It could be useful to employ specialized
asset price models designed to facilitate numerical quadrature or even allow analytic so-
lutions of the arising integrals. When designing such models, it seems important to retain
the property of infinite divisibility, which is also given for any Lévy process. Constraints
for any density function candidate would be:

(i) Normalization: ‖fXt|X0‖L1 = 1

(ii) Risk-neutrality: ‖ exp ·fXt|X0‖L1 = 1

(iii) Infinite divisibility:

F(fXt|X0) = F(fXt|X(n−1)t/n) · F(fX(n−1)t/n|X(n−2)t/n) · ... · F(fXt/n|X0) (∀n).
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5.1.7. Summary of tail behavior

Because of the truncation of the computational domain, the tail behavior of the con-
ditional density functions is important for the accuracy of both the spline and RBF
method. This section summarizes the tail behavior of the introduced models.

The lowest possible exponential decay rate for the right tail of log-returns Xt is one
for any reasonable model. Otherwise the expectation value E(St) would be infinite:

Assuming for notational convenience S0 = 1, then S is written for the relative price
St/S0, and x for the log-return log(St/S0). The transformation theorem leads to the
following relation between the density function f(S) of S and the density function f(x) of
x := log(S):

f(x)(x) = f(S)(e
x)ex

Consequently, the expectation value of S can be written as

E(S) = E(ex) =

∫ ∞
−∞

exf(x)(x) dx =

∫ ∞
−∞

e2xf(S)(e
x) dx =

∫ ∞
0

Sf(S)(S) dS.

Assuming that f is strictly monotone for x� 0, a necessary condition for this improper
integral to exist is

f(x)(x) = O(e−x) for x→∞, or f(S)(S) = O(S−2) for S →∞, respectively. (5.13)

Therefore the right tail of the log-return density decays exponentially with a decay rate
of at least one in any model with finite expectation of St. For the models introduced in
this chapter the decay rate is even strictly greater than one:

Lemma 5.10 (Common lower bound for exponential decay rates). The probability den-
sity f(x) of log-returns x for each of the models {Black-Scholes, VG, and Merton} decays
at least exponentially for |x| → ∞ with decay rate α > 1, i.e.,

f(x) = O(e−α|x|) for |x| → ∞ for an α > 1.

For the NIG model the tails decay for x→ +∞ with decay rate α > 1 and for x→ −∞
with decay rate α > 0.

Proof. For the Black-Scholes model we have for |x| → ∞

f(x)(x)
(5.3)
= O(e−αx

2

) for a α > 0⇒ f(x)(x) = O(e−α̃|x|) for all α̃ > 0, (5.14)

particularly for any α̃ > 1. VG: The decay rate is at least B−A, and lemma 5.6 ensures
B−A > 1. NIG: The positive tail decay rate is B̃−A, and B̃−A > 1 has been shown in
lemma 5.7. For the Merton model the result has already been shown in lemma 5.4.
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Figure 5.1.: Probability densities f(x) of log-returns for different models. The parameter
values (table 5.1) are close to typical calibration results.
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(b) Variance Gamma (VG)
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(c) Normal Inverse Gaussian (NIG)
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(d) Merton

Tail index

To indicate empirical tail behavior the notion of a tail index is introduced in the follow-
ing.

Definition 5.11. The tail index ι of a random variable S is defined as

ι := sup(q ∈ R+ | E(|S|q) <∞).
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parameter value
∆t 0.2
r 0.03
σBS 0.24
µBS 0.03
σV G 0.2
θV G -0.2
κV G 0.5

parameter value
σNIG 0.24
θNIG -0.38
κNIG 0.62
σMerton 0.14
λMerton 0.32
µMerton -0.34
δMerton 0.18

Table 5.1.: Parameter values used for illustration 5.1.

Empirical studies indicate a tail index ι of certain stock returns between 2.5 and 5.30

The tail index ι is related to the tail decay rate α as follows. The tail behavior f(S)(S) =
O(S−(1+α)) or f(x)(x) = O(e−αx), respectively, leads to a tail index ι = α+ 1. Following
equation (5.14) the Black-Scholes model has tail index ι =∞, which is a long way from
empirical evidence. Other models in this chapter, e.g., the NIG model, are capable to
reproduce finite tail indices.31

5.2. Multi-factor models

For quadrature methods the specification of models for several underlyings corresponds
to the specification of the joint conditional probability density function of their prices. It
is important that the joint density function is sufficiently smooth and can be evaluated
efficiently. How this function is constructed is secondary from the numerical point of
view. In this section the multi-dimensional Black-Scholes model is mentioned explicitly.
Further, the notion of copulae is introduced to illustrate how multivariate models can
be constructed out of one-dimensional models.

5.2.1. Multi-factor Black-Scholes

A Black-Scholes model for several underlyings can be used with quadrature methods
by “inserting” the multivariate normal density as conditional PDF for the log-price.
Using the vector notation Xt := (X1(t), ..., Xn(t)) for a process with n underlyings, the
multivariate normal density is

fXt|X0=0(x) :=
1√

(2π)n det Σ
exp

(
−1

2
(x− µ)trΣ−1(x− µ)

)
, (x ∈ Rn)

where µ = (µ1, ..., µn)tr denotes the mean vector and Σ ∈ Mn×n denotes the (positive
definite) covariance matrix. As in the one-dimensional case, this density function is

30This result can be found in [Pag96] for intraday returns.
31The NIG model has decay rate λ = B̃ −A and thus tail index ι = B̃ −A+ 1 <∞.
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optimally suited for the application with quadrature methods: It is C∞(Rn)-smooth,
can be evaluated efficiently, and all integrals arising in the RBF method can be solved
analytically.32 The martingale condition and tail behavior are analogous to the one-
dimensional case.

5.2.2. Copulae

The copula of a multivariate distribution characterizes the dependence structure between
the different random variables. It does not depend on the marginal distributions. An
introduction to copulae can be found in [Nel98].

Definition 5.12 (Copula). A copula is a multivariate cumulative distribution function
defined on [0, 1]n such that every marginal distribution is uniform on the interval [0, 1].

Important to the theory of copulae is the following theorem which guarantees their
existence and uniqueness for continuous marginal distributions.

Theorem 5.13 (Sklar’s theorem). Let F be a distribution function with margins F1, ..., Fn.
Then there exists a copula C : [0, 1]n → [0, 1] such that for all x ∈ Rn

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)). (5.15)

If all margins F1, ..., Fn are continuous then C is unique. Conversely, if C is a copula
and F1, ..., Fn are distribution functions, then the function F defined by (5.15) is an
two-dimensional distribution function with margins F1, ..., Fn.

Example 5.14. For n = 2 the bivariate Gaussian copula is defined as

Cρ(x1, x2) = N2,ρ(N
−1(x1), N−1(x2)),

where N2,ρ denotes the bivariate normal distribution function with correlation ρ and N
denotes the univariate standard normal distribution function.

This indicates that a multi-dimensional distribution can be constructed out of one-
dimensional distributions by specifying a copula C. Unfortunately, this construction
leaves the class of Lévy processes as the resulting distribution is not necessarily infinitely
divisible.33

For quadrature methods, however, this is not a problem. Under the assumption of
equidistant time steps, the multivariate process described by the conditional density of
(X1(∆t), ..., Xn(∆t)) can be calibrated to market prices and used for risk-neutral option
valuation.

32Despite the availability of an analytic solution, the model matrices for all multi-dimensional examples
in chapter 6 have been computed using numerical quadrature.

33An approach to utilize the notion of copulae for Lévy processes is discussed in [CT03], §§5.5, 5.6.
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5.3. Non-parametric modeling

The density function used for quadrature methods must not necessarily be given in a
parametric form. For arbitrary underlyings a density estimate can be obtained by the
method of kernel density estimation proposed in [Par62]. This method constructs a
density estimate f̂ from a finite sample of realizations of a random variable.

Definition 5.15 (Kernel density estimate). For a sample x1, ..., xn ∈ R of a random
variable X, the kernel density approximation of the probability density function of X is

f̂(x) :=
1

n

n∑
i=1

1

λi
K

(
x− xi
λi

)
,

where K is some kernel function and λi > 0 are smoothing parameters (“bandwidths”).
A typical choice of K is the Gaussian kernel

K(x) := 1√
2π
e−

x2

2 .

The method is mentioned here to indicate possible applications of quadrature methods
that are inaccessible to other valuation methods. A detailed discussion of kernel density
estimation techniques and their convergence properties would go beyond the scope of
this work and can be found in the literature.

Figure 5.2 illustrates a density estimate obtained from historical prices of “Deutsche
Post AG” shares.34 The density estimates for the first and second half of the time series
are plotted separately (“estimate 1” and “estimate 2”) to illustrate the time dependence
of the estimate. For this example variable bandwidths λi depending on the distance
between neighboring sample points have been used. The bandwidths included in the
plot are scaled by c := max(f̂(x))/max(λi). The clustering of data points is caused
by the decimal notation of stock prices. It requires to limit the bandwidth from below.
The resulting density estimate could be used to valuate fairly arbitrary options for the
underlying, including, e.g., American barrier options.

The valuation of such options based on density estimation was restricted to Monte
Carlo methods up to now. This possible application shows the flexibility of the quadra-
ture approach quite plainly.

Remark 5.16. Although the time series in figure 5.2 is taken from stock quotes, this is
only meant to be an example for any other observable underlying. The time series does
not need to represent market prices. It could be, e.g., temperatures, economic variables,
error rates, etc.

34Source: http://www.boersen-zeitung.de
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Figure 5.2.: Example for a non-parametric density estimate from historical prices.
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6. Numerical examples

The purpose of this chapter is threefold. First, it provides a systematic validation of
the methods proposed in chapters 3 and 4. Numerical experiments in section 6.1 show
that the implementations are correct in the sense that they can reproduce independently
obtained results. Second, this chapter illustrates the broad range of possible applications
by a collection of examples in sections 6.2 (single-asset options) and 6.3 (multi-asset
options). Section 6.4 contains comparisons of the spline and RBF method to other
methods. Finally, section 6.5 discusses applications which are not covered by the given
examples.

Unfortunately, one important advantage of quadrature methods does not become ev-
ident in this chapter. It is the possibility to change the model of the underlying asset
by just modifying a single subroutine, namely, the evaluation of the probability density
function. This allows a direct application of the spline and RBF method to models with
jumps, which leads to a better calibration to market data. As this work does not contain
calibration experiments, this advantage cannot not be illustrated clearly. Nevertheless,
an example for models with jumps is included in section 6.2.4.

6.1. Validation

This section validates the methods in an experimental sense. We choose problems for
which highly accurate reference solutions can be provided by other (independently im-
plemented) numerical methods or by analytical solutions and then compare the corre-
sponding solutions of the spline or RBF method to them.

6.1.1. European plain-vanilla put under B/S model

Consider the following European option under a Black-Scholes model:

Option:
type plain-vanilla put
exercise European
payoff g(S) = (K − S)+

maturity T = 1
strike K = 1

Model:
class GBM
volatility σ = 0.3
return r = 0.1
dividend q = 0

110
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It represents the simplest type of valuation problem. The payoff is of type “plain-
vanilla put”, the exercise right is European, and the model for the underlying security is
a Geometric Brownian motion (GBM). For this case the option value solves the Black-
Scholes PDE and an “analytic” solution is available: the “Black-Scholes formula”.1

Table 6.1.: Results of different methods for a European plain-vanilla put

method discretization result V (1) absolute error CPU time
spline n = 140 (tol. 10−5) 0.07217906735137 3.13 · 10−7 < 0.01s
spline n = 259 (tol. 10−7) 0.07217876221641 8.36 · 10−9 < 0.01s
spline n = 1037 (tol. 10−10) 0.07217875388664 2.68 · 10−11 0.04s
spline n = 1695 (tol. 10−11) 0.07217875386158 1.76 · 10−12 0.08s
RBF n = 100 (log-eqd.) 0.07182316336727 3.56 · 10−4 0.26s
RBF n = 1000 (log-eqd.) 0.07217520417552 3.55 · 10−6 0.32s
RBF n = 627 (adaptive) 0.07217875105209 2.81 · 10−9 1.97s
RBF n = 1473 (adaptive) 0.07217875294318 9.17 · 10−10 5.96s
“analytic” n/a 0.07217875385982 0 < 0.01s

This first practical test validates the implementation of the methods for the single-
asset Black-Scholes case: The results and computation times2 for different discretiza-
tions are given in table 6.1. They obviously approximate the exact solution. Parts
of the algorithms which are not covered by this validation are the exercise strategy
for Bermudan/American options, the implementation of alternative (non-Black-Scholes)
densities from chapter 5, as well as the implementation for multi-dimensional options.
These parts are validated in the following, starting with a simple option with American
exercise rights.

6.1.2. Non-European exercise rights

The example specified in table 6.2 for an American plain-vanilla put is taken from [IV05]
(p. 109, example 8.3.2). It is used to validate the exercise strategy for non-European
options.

As there is no analytical solution for this problem, the exact solution cannot be ob-
tained as a reference solution. Therefore we use a numerical solution with a very fine

1The PDE and its solution can be found, e.g., in [Sey02], §A.3. The solution involves the error function
“erf” and has to be evaluated numerically. This has been done here with Maple V.

2All computations have been performed on the same CPU, an Intel T2600 with 2.16 GHz. This applies
to all CPU times given in this chapter. In table 6.1 the given CPU time for the spline and RBF
method is the time needed to compute V (S) for all S ∈ [0.01, 5], while the analytic solution has
only been evaluated at S = 1.
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Table 6.2.: American option.

Option:
type plain-vanilla put
exercise American
payoff g(S) = (K − S)+

maturity T = 1
strike K = 1

Model:
class GBM
volatility σ = 0.3
return r = 0.1
dividend q = 0

discretization as “exact” reference solution and calculate the absolute error with respect
to that solution.

Figure 6.1 shows the absolute error of the RBF method for two different discretizations:
n = 1000 and n = 2000 log-equidistant nodes for the space discretization and m = 10000
and m = 20000 time steps, respectively. Figure 6.2 shows the absolute error of the
binomial tree method3 for American options with n = 50000 steps in both space and
time. For these discretizations the errors of both methods are similar. Both errors peak
at about 10−6 near the exercise boundary. The oscillating errors in the exercise region of
the option are caused by the truncation of small entries in the model matrix. They could
be eliminated by using a lower cutoff threshold, but this is not considered a problem
as in the exercise region the value of the option is its payoff. On the other hand the
undesirable oscillatory behavior of the binomial tree solution in the hold region is more
problematic. It makes extrapolation techniques unfeasible for the binomial tree method.

Table 6.3 shows the results and CPU times needed to compute 500 option values
V (S) for S ∈ [e−2, e2] with different methods. The column “absolute error” reflects the
difference to the result of a binomial tree method with a high number of time steps. The
column “tolerance” contains the corresponding input parameter for the adaptive spline
method.

In case of the binomial method the tree has been rebuilt for each option value. The
computation times for the binomial method are given only for the sake of completeness
and not as a reference for comparison. An accurate reference solution could have been
obtained also by finite difference or finite element methods in a fraction of the time
needed for 500 binomial trees.

The results for the spline method indicate that this method is not suitable for an
approximation of American options prices. It is efficient only for Bermudan options with
a modest number of exercise times, e.g., m = 100. The reason is that the computational
costs of the spline method are proportional to the number of exercise times. Each step
requires the approximation of O(n) integrals. Although the RBF method is also linear
in the number of exercise times, it requires only the solution of a linear system in each

3The binomial tree method is introduced in [CRR79].
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time step. All integrations are performed in the setup of the model matrix.

Table 6.3.: Results and computation times for the American option specified in table 6.2

method discretization tol. result V (1) abs. err. CPU time
spline 293× 100 10−5 0.08325389905 1.2 · 10−4 2.0s
spline 1164× 100 10−6 0.08325997100 1.2 · 10−4 21.7s
spline 1903× 100 10−7 0.08325997105 1.2 · 10−4 55.0s
spline 311× 300 10−5 0.08334177003 3.5 · 10−5 2.5s
spline 543× 500 10−5 0.08335334251 2.3 · 10−5 19.4s
spline 1003× 1000 10−5 0.08336509932 1.2 · 10−5 56.2s
RBF 1000× 1000 n/a 0.08336424416 1.3 · 10−5 2.5s
RBF 1000× 10000 n/a 0.08337422258 2.7 · 10−6 15.3s
RBF 2000× 20000 n/a 0.08337580976 1.1 · 10−6 65.5s
binomial tree 500002 n/a 0.08337690822 n/a 4312.5s
binomial tree 1000002 n/a 0.08337688124 n/a 17210.6s
binomial tree 2000002 n/a 0.08337686754 n/a 93961.3s
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Figure 6.1.: Absolute error estimates for the RBF method with n = 1000 and n = 2000
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Figure 6.2.: Absolute error estimate for the binomial tree method with n = 50000

10
0

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

S

"a
bs

ol
ut

e 
er

ro
r"



6.1. Validation 115

6.1.3. Non-Black-Scholes models

This section validates the implementation of the non-Black-Scholes models from chap-
ter 5. It starts with a verification of the put-call parity and normalization of the proba-
bility density functions. It proceeds with a comparison of results for an explicit example
for the Merton model to independent results. Although the validation is done only
for European options with plain-vanilla payoffs, this validation in connection with sec-
tion 6.1.2 implies the validation for non-European options, too, since the implementation
of the exercise strategy does not depend on the model for the underlying.

Test of put-call parity

A (partial) validation which does not require reference values is based on the put-call
parity for European plain-vanilla options.

Lemma 6.1 (Put-call parity). For European options under any market model that ex-
cludes arbitrage opportunities, the following relation between plain-vanilla put and call
prices holds (see, e.g., [Wil98], section 2.12):

Vcall(S) = Vput(S) + S −Ke−rT (6.1)

This relation between puts and calls can be derived using purely no-arbitrage argu-
ments and thus holds for any reasonable market model. It can be used for a pre-validation
of the implementation for non-Black-Scholes models without requiring any external ref-
erence values. Some results are given in table 6.4. The values Vcall(S) and Vput(S) have
been computed in separate runs of the valuation method. The model parameters are not
included as the put-call parity does not depend on parameter values. All values have
been computed with the RBF method with n = 2000 log-equidistant nodes. The spline
method would lead to similar results. (Actually both methods use the same quadrature
code and the same implementation for the density functions.) The small residuals con-
firm that the put-call parity (6.1) holds for the resulting option prices. This indicates
in particular that the drift correction terms are correct.

Table 6.4.: Verification of put-call parity for the implementations of different models.

model class S K rT Vcall(S) Vput(S) residual of eq. (6.1)
B/S 1000 1000 0.006 45.72310 39.74107 1.2107 · 10−11

Merton 1000 1000 0.006 52.90871 46.92667 9.3365 · 10−12

Merton 800 1000 0.006 0.76225 194.78021 6.1555 · 10−10

VG 1000 1000 0.006 37.32835 31.34631 1.0105 · 10−5

NIG 1000 1000 0.006 49.39185 43.40981 2.8377 · 10−8
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Remark 6.2 (Computational domains for models with jumps). The first tests with non-
Black-Scholes models indicated that the results were far less accurate than for the Black-
Scholes model. The reason is that for the first tests the same computational domains
as for the B/S model had been used. After adjusting the computational domains the
accuracy was of the same order as for B/S. Although apparent it seems noteworthy
that models with jumps require larger computational domains. The reason is the larger
influence between distant regions compared to models where jumps do not occur.

Test of normalization

The value of an option with payoff g ≡ 1 under any model is V ≡ e−rT . This option
allows a normalization test, which essentially verifies that the L1-norms of the conditional
probability density functions are

‖fXt|X0=x‖L1 = 1 for all x ∈ Rd. (6.2)

Table 6.5 shows the numerical results of the normalization test using the RBF method for
r = 0 and x = 0.4 The model parameters used for this test are not included, as the test is
independent of these parameters. The discretization was a standard discretization of n =
2000 log-equidistant nodes on the S-interval [1, 10]. The results verify the normalization
condition (6.2). The larger errors for the VG and NIG norms are probably caused by
the implementations of the Gamma function and/or the modified Bessel functions.

Table 6.5.: Norms of the probability density functions for different models.

model class ‖f‖L1

B/S 1.00000000
Merton 1.00000000
VG 0.99999987
NIG 0.99999919

Validation of the Merton model

The results of the RBF method for European put and call options on an underlying
described by the Merton model are compared to results of the Fast Fourier transform
method for European options in [CM99]. The reference results have been obtained from
Achim Dahlbokum.5 The options and the underlying are specified in table 6.6.

4Again, a separate test for the spline method is not required, as the quadrature codes and implemen-
tations of the probability density functions are the same as for the RBF method.

5Personal communication, November 2006. The model parameters are results of a calibration to
market data for certain DAX index options. The calibration has also been performed by Achim
Dahlbokum.
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Table 6.6.: Test option for the validation of the Merton model.

Put/call option:
type plain-vanilla put
exercise European
payoffs gput(S) = (K − S)+

gcall(S) = (S −K)+

maturity T = 1.5
strikes K ∈ [650, 1350]

Model:
class Merton (section 5.1.3)
volatility σ = 0.14
return r = 0.03
jump intensity λM = 0.32
mean jump size µM = −0.34
std. dev. of jump size δM = 0.18

Figure 6.3 illustrates the relative difference between the RBF solution and the ref-
erence values for both options. It is of order 10−5, which is the estimated accuracy of
the reference values. As the reference values have been obtained from an independent
implementation of a different method, this validates the implementation of the Merton
model, i.e., the implementation of the corresponding probability density and proper use
of integration techniques.

Figure 6.3.: Relative difference between the RBF and FFT solutions for the price V (S)
of a put and call option evaluated at S = 1000 for different strikes K.
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Validation of VG and NIG model

We skip the explicit validation of the VG model and NIG model against independent
results. Nevertheless they can be regarded as validated by means of the validation of
the Merton model. The only difference between the Merton model, VG model, and
NIG model are the probability density functions which have been introduced in chap-
ter 5. Although the implementations of the VG and NIG density functions involve the
evaluation of the Gamma function and Bessel functions of second kind, both density
functions can be evaluated numerically in an efficient way. The tests of the put-call
parity and normalization of the density functions exclude virtually any possible errors
in the implementation.

6.1.4. Options on several underlyings

Options on several underlyings require an additional validation as these types of options
involve multi-dimensional quadrature rules. This validation is performed by comparison
of the solutions for the two examples in sections 6.3.1 and 6.3.2 to independent results.
These results have been obtained by an (independent) implementation of an analytic so-
lution or binomial tree approximation, respectively. Figure 6.4 shows the corresponding
screen shots of the software contained in [Hau97].

Figure 6.4.: Screen shots of implementations provided by [Hau97].

(a) Analytic solution for the 2D-binary
option from section 6.3.1

(b) Binomial tree solution for the American
two-asset rainbow option from section 6.3.2
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6.2. Single-asset options

6.2.1. European binary option

Option:
type Binary6

exercise European
payoff g(S) = 1{S>K}
maturity T = 0.5
strike K = 0.5

Model:
class GBM
volatility σ = 0.5
return r = 0.1
dividend q = 0

Method/discretization:
method RBF
space discretization n = 1000, log-eqd.
time discretization m = 200, eqd.
computational domain [0.1, 5]

Results:
V(0.5) 0.4622006

This example can be found in the preprint [KVY], section 5.1. The parameters above
match the parameters that have been used for figures 4 and 5 in this [KVY] (p. 15).
Figure 6.5 shows the evolution of the option price in time.

The results in tables 1 and 2 of the same preprint refer to a different option with
T = 0.25, r = 0.05, and σ = 0.2 (values given on p. 14). The reason for using two
different parameter sets may be that the unrealistic high volatility of σ = 0.5 leads to a
clearer illustration.

Comparison with analytic solution

The value of this European binary option is known analytically:7

V (S, t) = e−r(T−t)N(d2) with d2 =
log(S/K) + (r − 1

2
σ2)(T − t)

σ
√
T − t

,

where N(·) denotes the cumulative standard normal distribution function:

N(x) =
1√
2π

∫ x

−∞
exp(− t2

2
) dt = 1

2
(1 + erf( x√

2
))

For the parameters (T = 0.25, r = 0.05, σ = 0.2) the analytic solution is8

V (0.5) = 0.52331021191 (all printed digits exact).

6An option is called binary, if its payoff only takes two different values (here 0/1).
7This formula is analogous to the Black-Scholes formula for plain-vanilla puts/calls. Its derivation is

straightforward, as the value of this special option corresponds to the probability for S(T ) ≥ K at
maturity.

8Evaluated using “Maple V”.
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Figure 6.5.: Evolution in time of the value V (S, t) of a European binary option.
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The RBF method for these parameters with a log-equidistant S-discretization of 5000
nodes in the interval [Sl, Su] = [0.2, 1] results in

Ṽ (0.5) = 0.52331022462 (matching digits underlined).

Result for a coarse discretization of 100 log-equidistant nodes on the same interval:

Ṽ (0.5) = 0.52334208693.

Remark 6.3 (Placement of nodes). If the nodes for the RBF method are placed non-
adaptive (e.g., log-equidistant), the placement of nodes in the neighborhood of the dis-
continuity is very important for accuracy. The best approximation is achieved by placing
the discontinuity in the middle between two neighboring nodes (experimental experience).
This is not an issue, if adaptive discretization is used, as the distance between the nodes
in the neighborhood of the discontinuity is many magnitudes smaller than in the non-
adaptive case.
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6.2.2. American binary option

Option:
type Binary
exercise American
payoff g(S) = 1{S>K}
maturity T = 0.5
strike K = 0.5

Model:
class GBM
volatility σ = 0.5
return r = 0.1
dividend q = 0

Method/discretization:
method RBF
space discretization n = 5000, log-eqd.
time discretization m = 1000, eqd.
computational domain [0.05, 1]

Results:
V(0.5) 1.0000000
V(0.4) 0.4944380
V(0.3) 0.1318085
V(0.2) 0.0079269

This is the same option as in the European case but now with American exercise rights.
For this case there is no known analytic solution. The pre-print [KVY] does not provide
results for American options, as the Padé schemes are not directly applicable to American
options. Figure 6.6 illustrates the results of the RBF method.

Figure 6.6.: Evolution in time of the value V (S, t) of an American binary option.
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6.2.3. European double-barrier option

We now come to a more complicated example of a European double-barrier option with
two types of barriers. This example is described in the pre-print [KVY]. The outer
barriers B1 and B2 are of Down-And-Out and Up-And-Out type, respectively. They are
continuously monitored. The two inner barriers B3 and B4 are discretely monitored and
apply at five equidistant times until maturity.

Figure 6.7 shows the evolution of the option value in time. The option for this illus-
tration has been computed with a larger volatility than the result in the table below.

Option:
type “Double-barrier”
exercise European
payoff g(S) = 1
maturity T = 0.5
barriers continuously monitored:

DAO at B1 = 90, UAO at B2 = 115.
discretely mon. at t ∈ {0.1, 0.2, .., 0.5}:
DAO at B3 = 95, UAO at B4 = 110.

Model:
class GBM
volatility σ = 0.2
return r = 0.05
dividend q = 0

Method/discretization:
method RBF
space discretization n = 500, log-eqd.
time discretization m = 2000, eqd.
computational domain [90, 115]

Result:
V(100) 0.518997

Remark 6.4 (Examples in pre-print [KVY]). The pre-print [KVY] contains several
other examples for European options with different kinds of payoffs in a Black-Scholes
setting. All of these options can also be priced by the spline or RBF method. This is not
surprising, as the options considered in this pre-print are only “exotic” in the sense of
unusual payoffs but not in the sense of path-dependency.

Although the pre-print provides results for some of these options, a direct comparison
is not possible as the specifications of the corresponding options are not precise enough.
For example, for the “double-barrier” option ([KVY], §5.4) the type of payoff (plain-
vanilla put/call, binary or other) is not mentioned; it is not specified when the discrete
barriers are applied; the apparently continuously applied outer barriers are not mentioned
at all.
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Figure 6.7.: Evolution in time of the value V (S, t) of a European double-barrier option.
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6.2.4. Options under different market models

This section illustrates the applicability of the proposed methods to a wide range of
market models. The same option is valued under different market models from chapter 5.
Table 6.7 specifies the test option and three different market models. The results of the
two valuation methods are displayed in figure 6.8. It is clearly visible that the option
price decays slower (for S → ∞) for the two models with jumps than for the Black-
Scholes model. The decay rates correspond to the tail behavior of the probability density
functions of the models. (Compare the left tails on figure 5.1, p. 105.)

Table 6.7.: Specification of the test option and three different market models.

Test option:
type plain-vanilla put
exercise American
payoff g(S) = (K − S)+

maturity T = 1
strike K = 1

GBM model:
class GBM
volatility σ = 0.3
return r = 0.03
dividend q = 0

Merton model:
class Merton
volatility σ = 0.14
return r = 0.03
dividend q = 0
jump intensity λ = 0.32
mean jump size µ = −0.34
std. dev. j. size δM = 0.18

NIG model:
class NIG
volatility σ = 0.24
return r = 0.03
dividend q = 0
drift θ = −0.38
variance of κ = 0.62
subordinator

The option values have been computed using the RBF method with a log-equidistant
discretization of n = 4000 points on the S-interval [e−5, e4] and m = 100 equidistant
exercise times in [0, 1]. The same test option has been valuated by the spline method
(using tolerance tol = 10−5 and identical time discretization) and the results are identical
for all printed digits in table 6.8. Therefore, an additional illustration for the spline
results is not given.

In principle all other examples in this section can be valuated as well under the models
from chapter 5. However, the computational effort increases by a constant factor as
the evaluation of the density functions of the Merton, VG, and NIG model is more
expensive than the evaluation of the Black-Scholes density function.9 Table 6.8 contains

9Remember from chapter 5: The density functions of Merton, VG, and NIG involve the approximation
of an infinite series, evaluation of the Gamma function, and/or Bessel functions of second kind,
respectively. The evaluation of the Black-Scholes density only involves an exponential function.
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Figure 6.8.: Option value V (S) at t = 0 for a test option under different market models.
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CPU times to illustrate the additional computational effort. The CPU time for the
Black-Scholes model is considerably lower, as for this model the subroutine that builds
the model matrix uses an analytical solution of the integrals and thus skips the numerical
quadrature.10

Table 6.8.: Results and CPU times for different models.

model V (1) CPU time
B/S 0.10605 3.8s
Merton 0.07924 35.3s
NIG 0.11241 30.5s

Unfortunately, this academic example cannot clearly illustrate the benefits of models
with jumps. They would become evident for a calibration to market data, but this is
beyond the scope of this work.11

10Compare section 4.3.2.
11For example, a calibration of several Lévy models (including B/S, NIG, and VG) to S&P 500 index

option prices is discussed in [Mat05]. (Index options are typically of European style.)
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6.3. Multi-asset options

This section contains some examples for options on two underlyings. Although it is the-
oretically possible to value options on three or more underlyings with the RBF method,
it turns out to be impracticable for the standard LU decomposition with usual desktop
CPU resources.12

6.3.1. European multi-asset binary option

Option:
type Two-asset binary put
exercise European
payoff g(S1, S2) = 1{max(S1,S2)<K}
maturity T = 1
strike K = 5

Model:
class GBM with corr.
volatility σ1 = 0.2, σ2 = 0.3
correlation ρ = 0.3
return r1 = r2 = 0.1
dividend q1 = q2 = 0

Method/discretization:
method RBF
space discretization n = 50, log-eqd.
time discretization m = 1 (European!)
computational domain [1, 6]× [1, 6]

Results:
V(5,5) 0.1737

This example is used for validation purposes only. The result V (5, 5) = 0.1737 of the
RBF method can be compared to the analytical solution taken from [Hau97] (cf. fig-
ure 6.4): VHaug(5, 5) = 0.1734. The relative difference is about 0.17%, which corresponds
to the expected accuracy for the chosen discretization. Figure 6.9 shows the solution
V (S1, S2).

12An alternative could be the use of an incomplete LU decomposition.
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Figure 6.9.: Value V (S1, S2) of a European two-asset binary put at t = 0.
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6.3.2. American rainbow minimum put

Option:
type Rainbow minimum put
exercise American
payoff g(S1, S2) = (K −min(S1, S2))+

maturity T = 1
strike K = 5

Model:
class GBM with corr.
volatility σ1 = 0.2, σ2 = 0.3
correlation ρ = 0.3
return r1 = r2 = 0.1
dividend q1 = q2 = 0

Method/discretization:
method RBF
space discretization n = 150, log-eqd.
time discretization m = 150, eqd.
computational domain [0.5, 20]× [0.5, 20]

Results:
V(5,5) 0.521123

This option can also be found in [IV05], p. 130, where a non-linear programming ap-
proach is used to approximate the value of American options. The parameter values are
identical.13 The value V (5, 5) can be compared to a reference value V (5, 5) = 0.522177
provided by Rainer Int-Veen (personal communication). The relative difference to the
value computed by the RBF method is about 0.2%. A second reference value can be ob-
tained by a binomial tree method contained in [Hau97] (cf. figure 6.4): V (5, 5) = 0.5218.
The relative difference to this value is about 0.07%. This corresponds to the expected
accuracy for the chosen discretization.

Discussion of the error estimate

For an empirical error estimate we use two different discretizations. We assume the
results from the fine discretization to be correct. Then we can estimate the error of
the results from the coarse discretization. Of course this can only lead to a rough
approximation, but it is sufficient to see where the errors are localized and of which
magnitude they are. This is done in figure 6.11. The coarse discretization is (n1,m1) =
(50, 50), and the fine discretization is (n2,m2) = (100, 100). The absolute and relative
“errors” are displayed. Apparently the absolute error is localized along the edges of the
payoff. Of course, the relative error is also large in the area where the option value is
close to zero. The largest error is located at the payoff’s edge, which is parallel to the
S2 axis. This was also expected as S1 has lower volatility, and therefore this edge is
smoothed out more slowly with increasing time to maturity.

We can summarize that the absolute error of V100 is of order 10−3 and that the relative
error is below 1% in most areas. Qualitatively we have seen that high volatility can
reduce the negative impact of non-smooth payoffs on accuracy.

13Note: Here r1 = r2 = 0.1 is used instead of 0.15 as in [IV05], p. 130. The parameter value 0.1 has
been used for the computation of the reference value.
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Figure 6.10.: Payoff g(S1, S2) and option value V (S1, S2) at t = 0.
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Figure 6.11.: Absolute and relative difference of option values computed with two differ-
ent discretizations (n,m) = (50, 50) and (n,m) = (100, 100).
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Mesh free test with nodes placed by Halton sequence

The RBF method is mesh free by design. To demonstrate this property we next use nodes
generated by a Halton sequence.14 For the placement of the nodes, a two dimensional
Halton sequence has been generated in the (x1, x2)-domain of computation and then
transformed into the (S1, S2)-plane. Figure 6.12 illustrates the result. For illustration
purposes the RBF nodes have been plotted as points into this figure.

Figure 6.12.: Option price surface computed with Halton nodes.
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Remark 6.5 (Artefacts). There are some artefacts in figure 6.12. First, the triangula-
tion used to plot the value surface has been generated using the Halton points. Therefore
there are coarse triangles in regions where only a few points are located. Second, some
points, especially near the diagonal S1 = S2, seem to be hidden by the surface. This is
an artefact of the plotting software.

14The Halton sequence is a low-discrepancy sequence. The use of such a sequence has the advantage
that the distribution in space is more even. For an introduction of the Halton sequence in the
context of option pricing see, e.g., [Sey02], §2.4.
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6.3.3. American rainbow binary option

Option:
type Rainbow binary option
exercise American
payoff g(S1, S2) = 1[0,Ku]2\[0,Kl]2

maturity T = 1
strikes Kl = 5, Ku = 7

Model:
class GBM with corr.
volatility σ1 = 0.2, σ2 = 0.3
correlation ρ = 0.3
return r1 = r2 = 0.1
dividend q1 = q2 = 0

Method/discretization:
method RBF
space discretization n = 140, log-eqd.
time discretization m = 140, eqd.
computational domain [0.5, 20]× [0.5, 20]

Results:
V(3,3) 0.120933
V(4,4) 0.615592
V(6,6) 1.0
V(8,8) 0.181623

This option on two assets S1, S2 can be exercised at any time, paying 1, if both 5 < S1,
5 < S2 and S1 < 7, S2 < 7 (and 0 otherwise). This type of option does not arise in
practice so far, but from the numerical view point it is an interesting worst-case example.
Not only the payoff is discontinuous, but also the location of the discontinuity is not
differentiable.

Discussion of the error estimate

Figure 6.14 illustrates an estimate of the absolute and relative error. We see that the
error is comparatively large and peaks at about 10% at the inner edge of the payoff
profile. The relative error increases for small values S1 and S2 to a maximum of about
40%. The reason for these large errors lies in the discontinuous payoff. The discretization
contains only a few nodes near the edges of the payoff profile. Better results will be only
available through an adaptive placement of nodes.
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Figure 6.13.: Payoff g(S1, S2) and option value V (S1, S2) at t = 0.
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Figure 6.14.: Absolute and relative difference of option values computed with two differ-
ent discretizations (n,m) = (70, 70) and (n,m) = (140, 140).
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6.3.4. European basket barrier option

Option:
type Basket15 call with barriers
exercise European
payoff g(S1, S2) = (S1 + S2 −K)+

barriers (cont.) S1 + S2 > Bu : up-and-out
S1 + S2 < Bd : down-and-out

maturity T = 1
strike/barriers K = 5, Bd = 5, Bu = 10

Model:
class GBM with corr.
volatility σ1 = 0.2, σ2 = 0.3
correlation ρ = 0.3
return r1 = r2 = 0.1
dividend q1 = q2 = 0

Method/discretization:
method RBF
space discretization n = 140, log-eqd.
time discretization m = 140, eqd.
computational domain [0.5, 10]× [0.5, 10]

Results:
V(3,3) 1.27747
V(4,4) 1.56239
V(6,2) 1.70626
V(4,2) 1.33825

This example is a European basket option with two continuously applied linear barriers.
It is similar to that in [PFVS00] (p. 19, figs. 11+12), where the efficiency gains by
unstructured meshing for finite element methods are discussed. Figure 6.15 illustrates
the payoff at maturity and the current value at t = 0. The obvious inaccuracy at the
barriers is caused by the fact that the barriers are not parallel to the S1/S2 axes. The
discretization of a line which is not parallel to the axes in a rectangular grid is not
smooth.

Error estimate

Figure 6.16 shows an estimate for the absolute error. As expected it is seen that the
maximal errors occur at the barriers. The mountain-like appearance of the error estimate
stems from the fact that the barriers are not reproduced exactly by the (non-adaptive
log-equidistant structured rectangular) space discretization. An adaptive (unstructured)
discretization would provide much better results. The estimated relative errors |V140 −
V70|/|V140| for this example are not displayed. Of course they have huge peaks near the
barriers as in this region V ≈ 0.

15Basket options are options on the weighted average of several underlyings.
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Figure 6.15.: Payoff g(S1, S2) and option value V (S1, S2) at t = 0.
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Figure 6.16.: Difference of option values at t = 0 computed with two different discretiza-
tions (n,m) = (70, 70) and (n,m) = (140, 140).
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6.3.5. Three or more underlyings

Examples with three or more underlyings are problematic because for reasonable dis-
cretizations these problems cannot be solved with the currently available resources (usual
desktop PC).

The reason is the well-known “curse of dimension”: A set of nodes with fill distance h
in dimension d has n = O(h−d) elements. A usual discretization for the single-asset case
is n = 100 nodes. The corresponding problem in three dimensions requires n3 = 1000000
nodes and leads in case of the RBF method to a sparse 106× 106 matrix. Whether such
matrices can be handled with iterative solvers (such as GMRES16 with preconditioning
by incomplete LU decomposition) depends heavily on the number of non-zero elements.

Example: Bermudan maximum call on three assets

The following example is a maximum call on three underlyings with a Bermudan exercise
structure of 10 equidistant exercise times. The example is similar to those in [BG04],
tables 4ff., but here we use only three underlyings, as the computation of options on five
underlyings is too expensive for the RBF method.

Option:
type Rainbow maximum call
exercise Bermudan (10 eqd.)
payoff g(S1, S2, S3) = (max(Si)−K)+

maturity T = 3
strike K = 100

Model:
class GBM uncorrelated
volatility σ1 = σ2 = σ3 = 0.2
return r1 = r2 = r3 = 0.05
dividend q1 = q2 = q3 = 0

Method/discretization:
method RBF
space discretization n = 18, log-eqd.
time discretization m = 10, eqd.
computational domain [20, 200]3

Results:
V(100,100,100) 18.53
V(150,100,100) 50.61
V(50,100,100) 13.80
V(50,150,100) 50.51

Figure 6.17 illustrates the results of the computation with a coarse discretization. The
resulting nodes (S1, S2, S3, V ) have been projected to the hyperplane S3 = 0 and plotted
without any graphical post-processing. For this computation the sparse basis matrix B
is of size 5832 × 5832 and contains nnz(B) = 7334872 non-zero entries (this is 21.6%).
The high density is a result of the coarse discretization. The usual density for a typical
discretization is below 1%.

Remark 6.6 (Accuracy). Of course the accuracy for this coarse discretization is lim-
ited, but this is also the case for confidence intervals from stochastic mesh simulations.

16GMRES: Generalized minimal residual method; cf. [Saa03].



6.3. Multi-asset options 139

Example for such an interval from [BG04], table 4, first row: The option value V is in
the interval [15.804, 16.177] (relative error of 1.2%) with a probability of 90%.

Figure 6.17.: Projection of points (S1, S2, S3, V ) to the hyperplane S3 = 0, where V is the
value at t = 0 of a Bermudan maximum call option on three underlyings.
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6.4. Comparisons

Practical comparisons to other methods are difficult. The reason is that a fair comparison
has to be performed under uniform conditions (on the same workstation) and, what is
even more important, all methods must be implemented efficiently. In this spirit, the
comparisons in this section must be treated carefully.

(i) Comparison to a finite difference method: The American option problem
from section 6.1.2 is the same as problem 8.3.2 in [IV05], where finite difference
methods are used to solve an equivalent linear complementarity problem. The
methods in [IV05] require 86s CPU time for an accuracy of 10−4 and 300s CPU
time for an accuracy of 10−5. (Compare [IV05], figure 8.2 and table 8.1.) For
the same problem the spline method requires 2s for an accuracy of 10−4 and 56s
for an accuracy of 10−5. The RBF method requires 2.5s for an accuracy of 10−5

and 65s for an accuracy of 10−6. (Compare table 6.3.) Even if one considers a
compensatory factor of 10 for a slower CPU or suboptimal implementation, the
RBF method is still by a factor of 10 faster. This indicates that the spline and
RBF methods are at least competitive compared to finite difference methods in a
Black-Scholes setting. For models with jumps we expect even better results, as the
PDE approach then turns into a more expensive PIDE17 approach.

(ii) Comparison to a binomial tree method: As mentioned in section 6.1.2, a
comparison to the binomial tree method is difficult, as each run of this method can
only approximate a single option value V (S). Indeed, for this task the binomial
method is one of the fastest methods available. This can be illustrated by a test for
the example from section 6.1.2. An efficiently implemented binomial tree method
needs about 2s CPU time to achieve an accuracy of 10−6 (thereby using n = 25000
nodes). This is a factor 30 faster than the RBF method (on the same equipment).
But the binomial tree does not provide the whole option price surface in time and
space, which can, e.g., be used to compute the Greeks18. Another drawback of the
Binomial method is its restriction to the Black-Scholes model.

(iii) Comparison to the Monte Carlo approach: It is well-known that for option
types which admit deterministic valuation methods, Monte Carlo is typically not
the best choice. There is no need for numerical tests to confirm this. On the
other hand, high-dimensional pricing problems are only accessible to Monte Carlo
methods. Originally section 6.3.5 was meant to provide a comparable example for
a high-dimensional problem, but options on five underlyings as in [BG04] turned
out to be intractable for the RBF method.

17PIDE=partial integro-differential equation
18The most commonly used derivatives of the option value V are called the Greeks, as they are denoted

traditionally by Greek letters, e.g., ∆ := ∂V/∂S, Γ := ∂2V/∂S2, and Θ := ∂V/∂t.
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(iv) Comparison between the spline and RBF method: The results from sec-
tion 6.1.2, table 6.3 indicate that the RBF method is better suited for the approxi-
mation of American option values than the spline method. Additional experiments
confirmed this observation. However, for Bermudan options with only a few exer-
cise times the spline method provides better results.

These short comparisons indicate that the RBF method is more efficient than the spline
method. For those options which can be valuated with the RBF method this seems a
good and flexible choice.

Remark 6.7. A comparison of several tree and analytical methods for American plain-
vanilla options in a Black-Scholes setting can be found in [AC97].

6.5. Further range of application

This section outlines the range of application for the proposed valuation methods. The
options that can be valuated using quadrature methods embrace

(i) Single-asset options with European, Bermudan, or American exercise rights,
arbitrary payoffs, knock-out19 barriers, and continuous or discrete dividends;

(ii) Multi-asset options, where the joint probability density function can be evalu-
ated efficiently; this comprises combinations of the Lévy models in chapter 5 with
a dependence structure modeled by copulae (section 5.2) but is not restricted to
such models. For the application of quadrature methods the models presented in
chapter 5 are not optimal. Models with density functions that can be evaluated
more efficiently would be more favorable.

(iii) Composed options, i.e., contracts that can be decomposed into several standard
valuation problems. Three examples are:

• Option on options (compound options and multiply compounded options);
The corresponding valuation problem can be decomposed into several stan-
dard valuation problems that can be solved subsequently backwards in time
where the “payoff” for each valuation problem is a linear function of previous
results.

• Chooser options, i.e., options that give the purchaser the right to decide at
a fixed point t∗ in time whether the derivative will be either a plain-vanilla
call or put. The decomposition is as follows. For the interval [t∗, T ] compute
both call and put option values. The value of the chooser option at t∗ is the
maximum of both. This value can be used as “payoff” for the computation
of the chooser option value for the remaining interval [0, t∗].

19Options with knock-in barriers cannot be valuated directly.
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• Some Asian options, e.g., options whose payoff depends on a discretely
sampled arithmetic average of the price of the underlying; The resulting two-
dimensional20 problem can be solved with quadrature methods analogously
to the PDE approach (see, e.g., [Sey02], §6.2).

These types of options can also be valuated by other methods, e.g., tree or finite
difference methods.

(iv) Cross options, i.e., options on an underlying in one currency with a strike de-
nominated in another currency; The pricing of such options is possible but com-
putationally more expensive. The reason is that exchange rate models usually
incorporate mean reversion features which violate the space homogeneity assump-
tion 2.5. For models without space homogeneity, lemma 4.11 does not apply, and
consequently the model matrix M does not have a Toeplitz structure.

(v) Weather derivatives. The model of the underlying is described by a condi-
tional probability density function. If for any underlying such a density can be
estimated, the quadrature approach can valuate options on that underlying. The
usual approach for stock options is parameter based: A model is specified and the
parameters are estimated by a calibration to market data. For quadrature meth-
ods, it is possible to use a non-parametric estimation of the density function as
well. For example, for weather derivatives (options with a payoff depending on
temperatures), a kernel density estimate21 could be performed based on historic
temperature data.

The previous sections cover various combinations from (i) and (ii). Examples for (iii)
would be technically involved but little surprising. The remaining cases (iv) and (v)
are very interesting but demand additional prerequisites which are not included in this
work, namely, exchange rate models for (iv) and kernel estimation techniques for (v).

20The variables are price S and average A.
21See e.g., [Sil86] for an introduction to density estimation.



7. Conclusion

In this work, two new pricing methods for Bermudan options have been proposed. Al-
ready in the univariate Black-Scholes setting, these methods are the first being capable
of pricing Bermudan options with a high number of exercise times in an efficient man-
ner. Furthermore, they can be used to price options with arbitrary payoffs under fairly
arbitrary market models. However, the main contribution of this work can be seen in an
exploration of the new class of quadrature based pricing methods. Potentials and limits
of this approach can now be estimated.

The valuation of American options is possible by means of a qualitative convergence
result (lemma 2.14, p. 19). Empirical results indicate linear convergence of the values
Vm of Bermudan options with m equidistant exercise times for m → ∞. In fact, the
results even indicate a linear relation between Vm and 1

m
. Such a relation would imply

that a highly accurate valuation of American options is possible by a highly accurate
valuation of Bermudan options with only a moderate number of exercise times. Thus, a
thorough analysis of the relation between the value of American and Bermudan options
could be useful.

Concerning the space discretization, mixed results have been found. A structural
difference between the spline and RBF method is that the spline method interpolates
the hold value of an option, while the RBF method interpolates the option value itself. As
shown in section 3.4.2, the hold value is smooth under rather general conditions. Thus,
for the spline method the interpolated functions are smooth, whereas the integrands
have singularities. Contrariwise, for the RBF method all integrands are smooth, whereas
the interpolated functions have singularities. As the space discretization error depends
on the smoothness of both the integrands and interpolated functions, the challenge in
the spline method is primarily to use quadrature methods that respect the structure
of the interpolant, while the challenge in the RBF method is primarily to construct
an adaptive RBF interpolant that simultaneously provides low interpolation errors and
favorable structures of basis and model matrix.

Both problems have been solved satisfactorily for the univariate case. It is shown that
the univariate spline method has at least quadratic convergence in the computation time.
Empirical results indicate an actually cubic convergence. For the RBF method, empirical
results indicate quadratic convergence for both binary and plain-vanilla options. These
results are based on equidistant nodes. For adaptively placed nodes, better results can
be expected.

In the multivariate case, the efficiency of the spline method suffers from costly evalua-
tions of the interpolant on the one hand and from the inherent difficulty of multivariate
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quadrature over nonsmooth integrands on the other hand. An efficient implementation
of the multivariate spline method requires an efficient management of adaptive triangu-
lations which is a nontrivial task. For the RBF method, the multivariate implementation
is straightforward. However, the costs increase considerably with the dimension of the
underlying. There are two reasons. First, in the multivariate case, nd centers are re-
quired to reach the same accuracy as with n centers in the univariate case. Second, the
quasi-band structure of the basis matrix gets lost.

In a direct comparison, the RBF method seems preferable. All integrals can be ap-
proximated in a single setup step. Furthermore, the integrands are for many models
globally smooth, which enables the use of high-order quadrature rules. In some cases,
the integrals can even be solved analytically or approximated efficiently with adapted
quadrature rules. Last but not least, the method is mesh-free, which simplifies the loca-
tion and management of nodes, as no triangulation structure on the nodes is required.

There are numerous open problems and interesting directions of future research. Par-
ticularly important seems to be an efficient extension to high-dimensional underlyings.
In principle, the RBF approach is suitable for this purpose, but due to vastly increasing
costs for higher dimensions it is – in its current form – limited to d ≤ 3. The central
issue is that RBF interpolation is, in a formal sense, a global method. Thus, an attempt
to localize the method in order to avoid huge linear systems seems promising.



A. Appendix

A.1. Notation

( · )+ ( · )+ := max( · , 0)
‖f‖∞ supremum norm of f
E(X) expectation of X
F(f) Fourier transform of function f
L1(Rk) space of absolutely integrable functions on Rk

O(f) Landau symbol: f ∈ O(g) :⇔ 0 ≤ lim supx→∞ |f(x)/g(x)| <∞
Q equivalent martingale measure to P
var(X) variance of random variable X
α exponential tail decay rate of probability density functions
αi shape parameters for interpolation
B base matrix B ∈ Rn×n, B is symmetric by definition
d dimension of the model’s price space
fX probability density function of the stochastic variable X
g payoff function
K strike price of an option
λi interpolation coefficients λi ∈ R
L, U LU decomposition of B
µ drift parameter (model parameter)
M model matrix M ∈ Rn×n (RBF method)
n number of interpolation nodes
Ω set of possible scenarios which can occur in the market
φ radial basis function, in this work Gaussian kernel function
q continuous dividend rate paid by an asset
r risk-free interest rate
σ volatility (model parameter)
S price of the underlying
t current time to maturity in the valuation process, t ∈ [0, T ]
T time to maturity of an option
T set of exercise times of a Bermudan option
V H hold value of an option (see p. 14)
x log-price of the underlying (x = logS)
xi interpolation nodes xi ∈ Rd, where xij = log(Sij)
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A.2. Convolution-based methods

This section proposes an alternative valuation method for European options with arbi-
trary payoffs that can also be used to build valuation methods for Bermudan options.
It has not yet appeared in the recent literature. It is included in the present work only
to allow the short discussion in section 2.6 (p. 29).

Carr and Madan [CM99] propose a method for pricing European plain-vanilla options
by fast Fourier transform. While this method is restricted to plain-vanilla options, a
similar idea leads to a method for options with arbitrary payoffs and can thus serve as
basis for Bermudan pricing methods.

A method for European options with arbitrary payoffs

Consider a European option. Let Xt ∈ R be the stochastic process describing the log-
price of the underlying and V the price of an option on this underlying. The process Xt is
assumed to be translation invariant (assumption 2.5). While this assumption is optional
for quadrature methods, it is mandatory for convolution-based methods. Assumption 2.5
implies for the conditional probability density function:

fXt|X0=x(ξ) = fXt|X0=0(ξ − x)

In this case, the conditional probability can be described by a single univariate function
f := fXt|X0=0 and for the rest of this section we simply write f . As before, the option
price V (x) can be represented as a discounted risk-neutral expectation value

V (x) = e−rT
∫ ∞
−∞

f(ξ − x)g(ξ) dξ,

where g is an arbitrary terminal payoff. For notational convenience in the following
f̃(x) := f(−x) is defined. This leads to

erTV (x) =

∫ ∞
−∞

f̃(x− ξ)g(ξ) dξ = (f̃ ∗ g)(x),

which is the convolution of the two functions. Following the convolution theorem, the
convolution corresponds to the product of the Fourier coefficients.1 Let F(g) denote the
Fourier transform of a function g. Applying the Fourier transform to both sides we get

F(erTV ) = F(f̃ ∗ g) = F(f̃)F(g).

The pointwise product can be evaluated in O(n) for a discretization with n points. The
fast Fourier transformation can be performed in O(n log n) in both directions, leading
to total costs of O(n+n log n) = O(n log n) for the computation of the European option
price.

1The convolution theorem can be found in [Bra99], for instance.
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Existence of the Fourier transform

The above motivation ignores that the Fourier transform F(g) does not necessarily exist.
A sufficient condition for its existence is that g is absolutely integrable. While the density
function f meets this requirement by definition, it is not guaranteed for the payoff g. In
the following two approaches are introduced which can reduce the pricing problem to
one with an absolutely integrable g.

Difference pricing

The first idea requires that the option price is known for a payoff function g0 such that
(g − g0) is absolutely integrable. Then one can compute the difference price

V (x)− V0(x) = e−rT
∫ ∞
−∞

f̃(x− ξ)[g(ξ)− g0(ξ)] dξ.

Using the valuation procedure for (g − g0) yields the difference V − V0 and thus V . For
the pricing of Bermudan options via the reduction principle 2.12 this idea is applicable
for plain-vanilla payoffs. In this case, V := V H is the hold value of the Bermudan option
at the next time step. V0 can be chosen to be the European plain-vanilla option price,
which can be approximated by a valuation method for European options. Then, V − V0

is absolutely integrable.

Shift in frequency domain

A more elegant idea is to introduce a shift in the frequency domain, i.e., to compute
F(V )(ω + c) instead of F(V )(ω) (with a constant c ∈ C). A shift in the frequency
domain corresponds to a factor e−ict in the time domain:2

F(e−ictf(t))(ω) = F(f(t))(ω + c) for any function f with existing F(f)

Using a shift by c := iβ, where β ∈ R is a constant parameter, leads to

F(erT eβxV (x))(ω) = F(erTV (x))(ω + iβ)

= F(f(x))(ω + iβ)F(g(x))(ω + iβ)

= F(eβxf(x))(ω)F(eβxg(x))(ω)

This allows to “damp” the functions for either positive or negative x, depending on the
sign of β. The following additional assumption ensures integrability.

2This holds for the unitary version of the Fourier transform.
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Assumption A.1 (Weighted integrability). There exists a constant β ∈ R, such that
both the risk-neutral density function f and the payoff function g are absolutely integrable
with respect to the weighting function eβx:

∃β ∈ R :

∫ ∞
−∞

eβxf(x) dx <∞ and

∫ ∞
−∞

eβxg(x) dx <∞

Example A.2. Whether assumption A.1 holds or not depends on both the density f
and the payoff g. For example, consider a plain-vanilla put. In this case it is g(x) = 0
for x � 0 and g(x) = O(1) for x → −∞. It suffices to choose β < 0. More critical is
the case of a plain-vanilla call, where g(x) = 0 for x� 0 and g(x) = O(ex) for x→∞.
In this case it is necessary to choose β < −1. Now consider the integrability of eβxf(x)
for the Black-Scholes model. Its density function has the form3

f(x) =
1

σ
√

2πt
exp

(
−

(x− (µ− σ2

2
)t)2

2σ2t

)
,

which is in O(e−α|x|) for |x| → ∞ for every α > 1 (lemma 5.10) – particularly for
α := 1−β. Then eβxf(x) = O(e−x) for x→ −∞ and consequently eβxf(x) is absolutely
integrable. Thus, for the Black-Scholes model it is possible to find a suitable damping
parameter β.

For an arbitrary model, especially for one with “heavy tails”, assumption A.1 is not
guaranteed. Later, section 5.1.7 shows that the right tail of the log-return PDF of any
reasonable model decays at least with exponential decay rate 1, i.e., f(x) ∈ O(e−x) for
x → ∞. Unfortunately, a similar restriction cannot be derived for the left tail, and
although all models considered in chapter 5 have exponentially decaying left tails, the
behavior f(x) /∈ O(e−|x|) for x→ −∞ is possible. The weighted integrability assumption
fails for plain-vanilla calls under such models. Consequently the convolution approach
with frequency shifting cannot be used in this case.

Comparison to quadrature based valuation methods

A short discussion of differences and similarities between convolution-based methods
and quadrature methods can be found in section 2.6 (p. 29).

3 σ and µ are model parameters (volatility and drift), and t denotes the size of the time steps of the
Bermudan exercise structure.
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A.3. Implementation notes

This section contains technical remarks on some details of the implementation.

Choice of suitable programming environments

The algorithms have been implemented in parts using Microsoft Visual C/C++ (ver-
sion 8.0) and in parts using MATLAB (version 7.2.0). In addition to that, high order
quadrature code written in Fortran 77 has been used.

All parts that involve many elementary operations have been implemented in C/C++.
This applies to the spline method and to the setup of the basis and model matrices in the
RBF method. This kind of operations cannot be implemented efficiently by interpreted
MATLAB code and benefits a lot from optimized compilation to native code.

The remaining parts of the algorithms involve only a few large-scale operations (typ-
ically linear algebra for large matrices). They have been implemented using MATLAB.
The interaction between both parts of the program has been implemented following the
“MATLAB Applications Program Interface” (MATLAB API).4

The Fortran 77 code for the quadrature methods has been linked against the C/C++
code. It is used in the setup of the model matrix for the RBF method.

Creating sparse matrices for MATLAB

MATLAB stores matrices in a column wise manner. Sparse matrices use an array sr
where the (real) non-zero elements are stored. Two additional arrays irs and jcs contain
information about the location of the non-zero elements in the matrix. Non-zero elements
are arranged column-wise from left to right. irs[k] contains the row number of the k-th
non-zero element, jcs[j] contains the total number of all non-zero elements in columns
with index less than j.

As the parts of the program that are written in C create large sparse matrices
(e.g. 100000×100000-matrices), it is important to take this structure into account when
generating these matrices. As the number of non-zero elements is not known a priori, the
following allocation algorithm is used: For an n× n-matrix we first assume a density of
1% (i.e. n2/100 non-zero elements). While the elements are computed and the matrix is
filled, the amount of memory allocated is monitored. Whenever the number of non-zero
elements exceeds the amount of allocated memory, a reallocation takes place, using the
estimation nnz ∗n/j, where j is the number of columns that are already computed, nnz
is the number of non-zero elements encountered so far, and n is the total number of
columns. This allocation algorithm reduces the amount of necessary reallocations.

4This API is documented in [Mat98].
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Possible parallelization

The setup of the model matrix for the RBF method can be perfectly parallelized for
several concurrent processors, as the computation of its entries are mutually independent.
For each processor, a single thread is spawned and each thread is assigned to fill a certain
sub matrix of the model matrix. When all threads have finished, the sub matrices are
assembled into the result matrix. This multi-threading approach can be implemented in
the C++ part, such that it is transparent for MATLAB.

Structure of the code

The methods proposed in this work have been implemented by the author. The imple-
mentation consists of three independent program packages, namely

(i) the spline method – univariate case –,

(ii) the spline method – multivariate case –, and

(iii) the RBF method.

The codes (i) and (ii) are written purely in C++, and (iii) is written partly in C++
and partly in MATLAB. While the first two programs are compiled to stand-alone
executables, the third “program” consists of a collection of subroutines that can be
called from the MATLAB environment. In the following, the structure and some key
elements of these codes are briefly described.

Spline method, univariate case

For the spline method, an abstract class Fn is used to represent a function. Classes for
special functions, namely spline interpolants, payoff functions, European option value
functions, etc. are derived from Fn. This structure allows for an convenient handling of
the spline functions and avoids long lists of parameters describing a single interpolant.
Furthermore, every subroutine that takes an parameter of type Fn* can be invoked with
any kind of function.

Listing A.1: Fn.h

class Fn : public : : Object { // a g e n e r a l f u n c t i o n .
public :

virtual double operator ( ) ( double x ) const = 0 ;
virtual double i n t e g r a t e ( double x0 ,

double x1 , double t o l ) const ;
virtual void p lo t ( const char∗ f i l ename ) const ;
virtual void support ( double& x0 , double& x1 ) const ;
virtual bool getNextSing ( double ∗x , int∗ hint ) const ;

} ;
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An important feature of the class Fn are the member functions support and get-
NextSing, which can be used to get the support and singularities of the function. This
allows a convenient way of handling singularities – especially in the quadrature routine,
which has to respect the spline nodes as singularities.

Of course, a key role in this program plays the class FnStoredSpline, which repre-
sents a spline interpolant. Its most important member function is the constructor, which
adaptively places the nodes as described in section 3.3.1 for the function parameter fn.
(The type SP<Fn> is essentially a “smart” pointer with garbage collection.)

Listing A.2: FnStoredSpline.h

class FnStoredSpl ine : public Fn {
public :

FnStoredSpl ine ( const SP<Fn>& fn , double t o l ) ;
[ . . . ]

} ;

The main routine of the univariate spline program first constructs the payoff function,
then a European option value function with this payoff, which enters the constructor of
the first spline instance. The spline can then be used with for building the maximum
function with the payoff, and finally enters again a European option value function, etc.
The model of the underlying occurs in the implementation of the class FnEuropean.
A for loop iterates over all exercise times, and several outputs are written in files for
graphical post processing.
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Spline method, multivariate case

For the multivariate spline method, essentially the same function framework is used as
in the univariate case. However, in its current version, singularities are not respected.
A specific feature that does not occur in the program for the univariate case is the
management of the triangulation by the class Mesh.

Listing A.3: Mesh.h

class Mesh {
public :

Mesh ( ) ;
bool r e f i n eS imp l ex ( int idxSimplex ,

Function∗ f , I n t e r p o l a n t ∗ i n t e rpo l an t ,
double t o l ) ;

void f indS implex Ignore ( Simplex∗ in ,
const double∗ x , Simplex∗∗ simplex ,
Simplex∗ i gno r e ) ;

void f indSimplex ( const double∗ x , Simplex∗∗ s implex ) ;
bool i s InS implex ( const double∗ x , Simplex∗ s implex ) ;
void r e s i z eData ( int m ) ;
void r e s i z e V e r t i c e s ( int m ) ;
void r e s i z e S i m p l i c e s ( int m ) ;

double∗ data ;
int∗ v e r t i c e s ;
Simplex∗ s i m p l i c e s ;
int n , nData , szData ;
int nVert ices , s z V e r t i c e s ;
int nSimpl ices , s z S i m p l i c e s ;

} ;

This class cannot be discussed in detail on a few pages. The most important function
is refineSimplex, which refines the simplex specified by parameter idxSimplex as
described in section 3.5.3. Although mathematically simple, an efficient implementation
is quite difficult, as the triangles cannot be represented by instances of classes (as one
would expect in C++). That was the first implementation approach and it turned out to
slow down the computation due to the memory management routines of C++. Classes
are not suitable for a huge number of tiny objects, which are created dynamically. To
overcome this problem, the memory allocation for the triangulation objects (vertices,
simplices, and their relation) had to be implemented manually.
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RBF method

The C++ based part of the RBF implementation consists of two C++ modules basis-
matrix.c and modelmatrix.c, which construct the basis matrix B and model matrix
M from chapter 4. The MATLAB based part of the RBF implementation consists of
several auxiliary functions, such as payoff.m, and a main function for each number
of dimensions d = 1, 2, 3. There are different implementations, as the dimension is not
handled in a generic way. Probably it would be possible to write a single main function
for all dimensions. In the following listing, some lines from the main function for d = 2
are printed. The listing is not complete, but it should suffice to indicate how the different
modules work together.

Listing A.4: main2d.m (first part)

function [M B x i lambda alpha ]=main2d ( n , m )
[ . . . ]

% genera te n∗n e q u i d i s t a n t nodes on the square [−a , a ] x[−a , a ]
for i =1:n

for j =1:n
x i ( ( i −1)∗n+j , 1 ) = a0 + ( a1−a0 )∗ ( i −1)/(n−1);
x i ( ( i −1)∗n+j , 2 ) = a0 + ( a1−a0 )∗ ( j −1)/(n−1);

end
end
[ . . . ]

% c o n s t r u c t b a s i s matrix v i a C++ s u b r o u t i n e :
B=bas i smat r ix (2 , length ( x i ) , xi , alpha ) ;
[ . . . ]

% LU decomposi t ion o f b a s i s matrix :
i f u s e s p a r s e==0

[ L ,U,P,Q]= lu (B) ;
else

[ L1 , U1]= l u i n c (B, t o l ) ;
end
[ . . . ]

% s p e c i f y market model by v e c t o r Theta :
Theta = [ 0 , dt ,mu, de l ta , sigma ] ; % B/S
% c o n s t r u c t model matrix :
M=modelmatrix (2 , length ( x i ) , xi , alpha , Theta ) ’ ;
[ . . . ]

% e v a l u a t e p a y o f f a t matur i ty ( parameters K1,K2 ) :
y=payo f f 2d ( xi , K1 ,K2 ) ;
[ . . . cont inued on next page . . . ]
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Listing A.5: main2d.m (second part)

[ . . . cont inued from prev ious page . . . ]
% I t e r a t e backwards through time :
for k=1:(m−1)

v2=exp(−dt∗ r )∗ (M∗ lambda ) ;
v2=max( y pay , v2 ) ;
i f u s e s p a r s e==0

lambda = (Q∗(U\(L\(P∗( v2 ) ) ) ) ) ;
else

lambda = gmres (B, v2 , r e s t a r t , to l , maxit , L1 , U1 , lambda old ) ;
lambda old=lambda ;

end
end
[ . . . here p l o t t i n g commands . . . ]
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L-stable Padé schemes. to appear in the Journal of Banking and Finance.

[Kwo98] Y.-K. Kwok. Mathematical Models of Financial Derivatives. Springer, New
York, 1998.

[LS01] F. A. Longstaff and E. S. Schwartz. Valuing American options by simula-
tion: A simple least-squares approach. The Review of Financial Studies,
14(1):113–147, 2001.

[Mat98] MathWorks. MATLAB Application Program Interface Guide. The Math-
Works, Inc., 1998.
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