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Abstract

Transcriptional regulation of genes is a crucial process in every living system. The difficulty
of uncovering details of this process increases with the complexity of the analysed species.
The goal of this work is to develop a tool that helps uncovering this process in different
species by localizing those genomic regions which are involved in transcriptional regulation.

We developed two methods addressing this question. Shureg is applicable to all species
but produces results of low quality. CisPlusFinder can only be applied to species, where
enough closely related species are sequenced. The CRM predictions of CisPlusFinder are
of higher accuracy than has generally been acchieved thus far.

We performed a whole genome scan of the species D. melanogaster and concluded the
results with the aim to formulate new hypotheses concerning transcriptional regulation.

We found evidence that transcriptional regulation is of extremely high relevance for
higher organisms and that the extended use of complex gene regulation played a major role
in the split of multicellular organisms from single cell organisms. We could also support
the idea that sequences performing regulatory function shape the genome architecture of D.
melanogaster, which corresponds to a high DNA loss and genome density in this species as
it was stated before.
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Zusammenfassung

Transkriptionelle Genregulation ist ein &usserst wichtiger Prozess jedes biologischen Sys-
tems. Die Komplexitét und Anzahl verschiedener regulatorischer Mechanismen steigt mit
der Komplexitidt des Organismus. Das Ziel dieser Doktorarbeit ist die Entwicklung eines
neuen Computerprogramms, dass bei der Aufklarung der transkriptionellen Regulation ver-
schiedener Spezies hilft, indem es die genomischen Regionen lokalisiert, die in diesen Prozess
involviert sind.

Wir haben zwei Methoden entwickelt, die dieses Problem bearbeiten. Shureg ist auf
alle Sequenzen anwendbar und benutzt keine Informationen, die nicht in der untersuchten
Sequenz enthalten sind. Die Ergebnisse dieser Methode sind sehr ungenau. CisPlusFinder
kann nur auf solche Spezies angewendet werden, fiir die nahe verwandte Spezies sequen-
ziert sind, die Informationen iiber die Sequenzkonservierung zwischen verschiedenen Spezies
liefern. Die Vorhersagen des CisPlusFinders sind von besserer Qualitédt als bis jetzt mit
theoretischen Methoden erreicht werden konnte.

Um neue Hypothesen iiber die Vorgénge der transkriptionellen Regulation formulieren zu
konnen, haben wir CisPlusFinder auf das komplette Drosophilagenom angewendet. Die so
errechneten Vorhersagen wurden ausgewertet. Wir konnten Theorien und Abschitzungen,
die von Wissenschaftlern gemacht wurden, bestitigen und neue Erkenntnisse gewinnen.

Insbesondere weisen unsere Ergebnisse darauf hin, dafl transkiptionelle Regulation eine
immens wichtige Rolle in héheren Organismen inne hat. Die Anwendung komplexer Regu-
lationsmechanismen auf viele Gene scheint mit dem evolutionéren Split zwischen einzelligen
und mehrzelligen Organismen einhergegangen zu sein. Auflerdem kénnen wir die Theorie
unterstiitzen, dafl Sequenzen, die regulatorische Funktionen ausfiihren, die Genomarchitek-
tur von D. melanogaster stark beeinflussen. Diese Idee stimmt mit fritheren Aussagen iiber
einen hohen DNA-Verlust und eine sehr hohen Genomdichte in Drosophila iiberein.
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Chapter 1

Introduction

One of the goals of computational biology is the assignment of biological function to parts of
genomes of all kind of organisms and species. The function of DNA, which was discovered
first, is the protein coding function. By now it is known that many other functions are per-
formed by the DNA. RNAs which catalyse biochemical reactions themselves or accomplish
other enzymes to function are also coded in DNA sequence. At the moment it is known
that a high amount of DNA which was believed to be noncoding until now is transcribed
into RNA. Manak et al. (2006) found that 30% of the DNA which is transcribed during the
first hour of Drosophila development is unannotated. Wong et al. (2001) state that most of
the human genome is transcribed. The role or function of this transcription is not known
yet. Krasilnikov et al. (1999) found that the process of transcription influences the DNA
structure and suggest that this is a further function of DNA transcription.

The function of DNA which is central to this thesis is the transcriptional regulation of
genes. Not all proteins coded in the genome are needed in all tissues at all times during the
life span of an organism. Gene products can even be lethal, if they are present in the wrong
cell. The aim of this thesis is to help to uncover mechanisms of transcriptional regulation by
identifying the genomic regions of the genome where the information about gene regulation
is coded.

1.1 Biological background of transcriptional regulation

The mechanism of transcriptional regulation differs a lot between eukaryotes and prokary-
otes. Prokaryotes have very compact genomes that contain mainly coding regions and short
intergenic regions. The DNA regulating a gene is mainly localized upstream of its transcrip-
tion start sites and downstream of the stop-codon of the previous gene. The polymerase
binding site which is directly upstream of a gene is called “prozimal promoter”. Figure 1.1
shows a very well studied example of prokaryotic transcriptional regulation, the lac-operon.

Jacob & Monod (1961) discovered the coregulation of three genes in the lac-operon and
described the rules of its regulation. The lac-operon encodes three genes whose products are
necessary to catabolise lactose. The genes are arranged on one strand following each other
and transcribed into a single mRNA. Their regulation is performed by a single promoter.
The bacterium needs these genes to be expressed only if lactose is present in the cell. If
lactose is absent the enzymes are dispensable. In the presence of glucose and lactose the
transcription of the lac-operon is disadvantageous for the bacterium, because the glucose
metabolism is more profitable than the lactose-metabolism. Figure 1.1 shows two possible
states of the lac-operon. The first part of Figure 1.1 shows the state of the cell where glucose
is present and lactose is absent. In this case a repressor is bound to the DNA. The repressor
is located downstream of the polymerase binding site and upstream of the first gene at
a position called operator. When the repressor is bound to the operator, the polymerase
cannot bind to its binding site and transcription is suppressed.

The second part of Figure 1.1 shows the case that lactose is present in the cell. In
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Figure 1.1: schematic overview over the regulation of the lac-operon
Source: Access Excellence Resource Center
http://www.accessexcellence.org/RC/VL/GG/induction.html

this case the lactose molecules bind to the repressor molecule and prevents the repressor
from binding to the DNA. The polymerase binding site is then available to the enzyme and
transcription proceeds.

To ensure that the expression of the lac-operon is not activated as long as glucose is
present in the cell there is an additional step of regulation. A binding site for CAP (catabolite
activator protein) is positioned upstream of the polymerase binding site. CAP is a protein
which needs the cofactor cAMP (cyclic Adenosinmonophosphat) to perform DNA binding.
cAMP is accumulated in cells when the glucose level is low. To enable a polymerase binding
at the polymerase binding site CAP needs to be bound to its binding site upstream of the
polymerase binding site. If CAP is not activated by cAMP, which signals a lack of glucose
in the cell, the polymerase cannot bind and the operon cannot be expressed.

The regulation of the lac-operon is a very efficient gene regulation that encounters three
cases. In multicellular organisms like eukaryotes gene regulation is much more complex. The
main part of the genome is non coding in higher eukaryotes. In Drosophila roughly 20%
of the genome is covered by protein coding genes (Halligan & Keightley, 2006). Some of
the long intergenic regions are known to contain cis-regulatory modules (CRMs) to control
the expression of the surrounding genes. A very well explored example of complexly regu-
lated genes is even-skipped (eve). Eve is expressed in the early development of Drosophila
melanogaster and is involved in the segmentation of the embryo. The expression pattern
and the distribution of the regulating modules are shown in Figure 1.2. A misregulation or
a loss of function of eve is lethal for the fruit fly.

As Figure 1.2 shows eve is expressed in seven stripes along the anterior posterior body
axis. Simon et al. (1990) and Celniker et al. (1990) were the first to show the expression
of certain patterns by distinct CRMs in D. melanogaster. Figure 1.2 shows six different
modules to regulate the 7-stripe expression pattern of even-skipped in blue color. CRMs
indicated in a different color drive transcription of this gene at different time points or in
different tissues.

Expression by distinct CRMs means that one CRM acts independently of the other CRMs
regulating the same gene. A reporter gene construct with the stripe-3 enhancer, proximal
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Figure 1.2: scheme of the 7-stripe expression pattern of even-skipped in D. melanogaster
Source: Lecture course: Evolution of regulatory processes (D. Arnosti, Apr. 2004)

promoter and a reporter gene leads to the expression of the reporter gene at the position
of eve stripe-3. Figure 1.2 shows that the regulation of gene expression in Drosophila does
not exclusively take part in the upstream sequence of the gene. CRMs can also be located
downstream of the regulated gene. We assume that CRMs are located downstream of the
stop codon of the previous gene and upstream of the startcodon of the following gene. Hence,
we assume that no coding region is positioned between a CRM and the gene it regulates.

Wide parts of the mechanism of gene regulation are still unknown. The function of
a CRM is determined by the interaction with transcription factors. Every CRM contains
different transcription factor binding sites (TFBS). The concentration of a transcription
factor in the nucleus of a cell and the affinity of the TFBS to its transcription factor result
in a bound TFBS or a free TFBS. The combination of free and bound TFBS result in a
well defined expression pattern. For some well studied cases in the Drosophila development
it is known which transcription factors have to be bound to which TFBS to drive the given
expression pattern. In many cases the details are not known yet. Another open question
in gene regulation is the process which connects the binding of the transcription factors
with the resulting expression of the gene. A conformational change of the DNA to cause a
physical contact between the CRM and the proximal promoter is assumed. But there is no
experimental evidence for this or any other hypothesis.

1.1.1 Segmentation and dorsal-/ventral patterning of
Drosophila melanogaster

The embryonic development of Drosophila melanogaster is a very complex process including
many transcription factors regulating modular expression. This process has been studied
extensively and the regulation of the genes involved in these process are the genes whose
regulation is best known. The studies about this process by C. Niisslein Vollhard, E. Wi-
eschhaus and coworkers (Niisslein-Vollhard & Wieschhaus, 1980) have been honored with a
noble prize in 1995. Large parts of this thesis focus on this well studied process and a short
overview of the principles of this process is given here.

Two very important steps of embryonic development are the formations of two axis.
The anterior posterior axis and the dorsal ventral axis have to be determined in the D.
melanogaster embryo. These axes are determined in the one celled egg by maternal tran-
scription factors.
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Figure 1.3: scheme of the anterior posterior patterning of D. melanogaster
Source: Niisslein-Vollhard (1995)

The anterior posterior axis

A scheme of the determination of the anterior posterior axis is taken from Niisslein-Vollhard
(1995) and shown in Figure 1.3.

The maternal factors are present with a concentration gradient along the embryo. This
concentration gradient and a certain affinity of TFBS result in a defined expression pattern.
The affinity of the TFBS determines the necessary transcription factor concentration to
be bound. The expression of the gene is then enhanced or silenced by the binding of the
maternal transcription factor in the region where the transcription factor concentration
exceeds the required threshold.

The genes directly regulated by maternal factors are called gap genes and are expressed
in large unique regions as shown in Figure 1.3 for the gap gene hunchback. At the moment
fifteen genes are known to perform the function of gap genes. They are called buttonhead
(btd), cap’n’collar (cnc), caudal (cad), knot (kn), crocodile (croc), empty spiracles (ems),
giant (gt), huckebein (hkb), hunchback (hb), knirps (kn), krueppel (kr), orthodenticle (otd),
sloppy paired 1 (slp1), sloppy paired 2 (slp2) and tailless. Because every gap gene is expressed
in a different unique region of the embryo, different parts of the embryo are marked by
different combinations of present and absent gap genes. These different combinations of gap
genes regulate the so called pair rule genes. The pair rule gene example shown in Figure 1.3
and in Figure 1.2 is the gene even-skipped which is one of the most extensively studied genes
in all higher eukaryotes. Other known pair rule genes are called fushi tarazu (ftz), hairy
(h), odd paired (opa), odd skipped (odd), paired (prd), runt (run), sloppy paired (slp) and
Tenascin magjor (Ten-M)

All nine known pair rule genes are expressed in a pattern of seven stripes regularly along
the embryo. The striped patterns of the different pair rule genes differ in stripe-width, inter-
stripe distance and the distance from the first stripe to the anterior border of the embryo
or the distance between the last stripe and the posterior end. The different combinations of
pair rule genes combined with the presence or absence of gap proteins at certain positions
of the embryo subdivide the embryo further and the segment polarity genes are expressed
in 14 stripes along the embryo. Every segment of the Drosophila embryo has a determined
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Figure 1.4: scheme of the dorsal ventral patterning of D. melanogaster

function in the later completely developed Drosophila organism, which has been defined by
the maternal gradient already and is not changed any more.

The dorsal ventral axis

The determination of the dorsal ventral axis is less complex than the segmentation patterning
along the anterior posterior axis. Figure 1.4 shows a scheme describing the regulation of this
process. Only one group of maternal genes is necessary to establish a nuclear localization
gradient of one transcription factor. The maximal concentration of the transcription factor
is at the ventral side of the embryo and the minimal concentration is at the dorsal side of
the embryo. The enhanced target genes of this transcription factor are expressed at the
ventral end of this embryo and at the same time the genes expressed at the dorsal side of
the embryo are silenced by this transcription factor.

1.2 Motivation of the prediction of CRMs

The correct regulation of transcription is of very high importance for a cell. One or multiple
substitutions which change the affinity of one or more TFBS of a CRM in a way that the
expression pattern changes can be lethal for an organism. Many diseases can be caused by
the misregulation of genes. Many Modifications which turn a sane cell into a cancer cell
should induce cell apoptosis of the single cell by upregulating apoptosis factors. A disruption
of this mechanism can lead to the amplification of cancer cells and results in a tumor.

If the function of one transcription factor is modified by a substitution in the coding
sequence the expression pattern of many proteins is effected. These processes cannot be
understood without detailed knowledge about the regulatory processes of a cell.

Another reason to study gene regulation was published by Levine & Tijan (2003). Se-
quencing of many different organisms including nematode worms, mice and humans showed
a much higher conservation of the coding sequences than expected. Vertebrate genomes
have only about twice the number of genes that invertebrate genomes have, and the increase
is primarily due to the duplication of existing genes rather than the invention of new ones.

These little differences can hardly account for the evolutionary differences between these
species. Many differences are believed to be caused by differences in gene regulation. Also
the complexity of the organisms is believed to be reflected in more elaborate regulation of
gene expression instead of a higher complexity of the proteome.

Compared to the importance of gene regulation for different research branches our knowl-
edge about eukaryotic gene regulation is tremendously small. This thesis is concerned only
with transcriptional regulation. It is known that genes are also regulated on the level of
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translation. But even less is known about this process and our target is exclusively the
transcriptional regulation.

All we know about this mechanism is the fact that the expression level of a gene is
determined by the binding of transcription factors to the TFBS located in CRMs. It is only
assumed that this binding causes a conformational change of the DNA to affect the binding
of the RNA-Polymerase to the core-promoter sequence. Neither is anything known about
the conformational changes nor do we have any knowledge about the way bound CRMs
interact with the core promoter.

The current datasets of known CRMs are not sufficient to find new regularities in gene
regulation. Also the definition of a CRM is still fuzzy, since we do not know in which way
it is limited from the surrounding sequence. Capelson & Corces (2004) review about some
CRMs which are limited by boundary elements formed by chromatin structure. Since we are
not able to correlate pure sequence with chromatin structure and do not know a sufficient
number of boundary elements to make any assumption at the moment, we cannot define the
boundaries of CRMs precisely.

Another problem is the lack of knowledge about CRM density along the sequence. Since
we do not know how many CRMs are needed to regulate a gene or to control a certain
expression pattern we cannot tell, if we know all CRMs of a certain region or if another
CRM is located between a CRM and the regulated gene. If we can reproduce the expression
pattern of one gene at a specific stage of the cell, we do not know the expression patterns
at different time points and we do not know, if there are more CRMs active in different cell
stages within the region. We also do not know exactly, if there are CRMs located within
coding region or how frequently they occur.

All these questions have to be answered by further computational and experimental ana-
lysis of transcriptional regulation. The first task is to localize more CRMs to get a sufficient
amount of data to perform significant computational analysis to formulate hypotheses which
can then be tested experimentally. To decrease the cost of experimental CRM detections
good predictions are crucial.

1.3 Known approaches to CRM prediction

Many methods have been developed to solve the problem of CRM identification according
to different initial situations and for different organisms. Given the case that our goal is
to uncover the regulation of one gene we need to choose a method which is adapted to
our information about the gene. Experiments can provide the following different classes of
information to us.

1. Coregulated genes: genes that share the same expression pattern and are likely to be
regulated by the same mechanism

2. Regulating transcription factors: other verified TEBS of the transcription factors reg-
ulating the explored gene

3. Comparative data: homologous genes of the explored gene from other species which
are assumed to be regulated by a conserved mechanism

4. No extrinsic information: The gene and its surrounding intergenic region containing
the CRMs regulating the explored gene.

1.3.1 Analysing coregulated genes

The approach to use coregulated genes to find motifs which are common in their upstream
regions has been successfully used in prokaryotes and lower eukaryotes such as yeast. Many
methods following this approach have been developed. The first published program of
this kind is MEME written by Bailey & Elkan (1994). AlignACE (Hughes et al., 2000) and
Motifsampler (Thisj et al., 2001) were developed to be applicable to sequences of higher
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eukaryotes as well as small genomes. MOPAC (Ganesh et al., 2003) predicts the motifs di-
rectly from microarray data and performs also the clustering of the expression profiles.
BioProspector (Liu et al, 2004) was developed in combination with other programs to
permit a combined analysis of multiple approaches which results in highly evaluated predic-
tions in many cases.

The application of these methods to higher eukaryotes causes different problems. One
problem is the size of the intergenic regions. Prokaryotes and lower eukaryotes have short
well defined intergenic regions which can be completely analysed for CRM prediction. Those
intergenic regions are rarely believed to perform any other functions than gene regulation.
Intergenic regions in higher eukaryotes also code for functional RNA molecules, such as
RNA genes, micro RNAs and others. They contain different origins of replication and some
properties of the 3-dimensional structure of the DNA are also believed to be coded in the
intergenic sequences of higher eukaryotes (Lankas et al., 2000). In eukaryotes CRMs can
be positioned upstream and downstream of the gene, within introns or overlapping coding
regions.

Analysing whole intergenic regions surrounding an eukaryotic gene means analysing long
sequences performing all kinds of known and unknown function. Not only motifs representing
TFBS should be contained in all the sequences, but different motifs performing different
functions are found with this approach. Tompa et al. (2005) tested 13 different programs
using the information from coregulated genes to predict TFBS in eukaryotes and found at
most 22% of all sites found. The highest accuracy measured by the correlation coefficient,
defined by Burset & Guigo (1996) is 0.2. This result shows that the approach to search
common motifs in upstream regions of coregulated genes is inapplicable to CRM prediction
in higher eukaryotes. The approach to find common upstream motifs has been successfully
applied to core-promoter analysis by Ohler (2006). Core-promoter are assumed to be within
several hundred bp upstream of a gene. The sequences which have to be analysed for this
purpose are of processable length.

1.3.2 Analysing the regulation of a gene knowing the regulating
transcription factors

The most promising approach to CRM prediction requires detailed biological knowledge
about the regulation of the analysed gene. If the set of transcription factors which regulate
the gene is known and if other TFBS bound by the used transcription factor are known,
computer programs search for more occurrences of these TFBS.

The databases TRANSFAC (Matys et al., 2003) and JASPAR (Stormo, 2000) are databases
of transcription factors and known sequences of TFBS for different species. These big
collections are crucial for the practicability of this approach. To conclude different TFBS
of the same transcription factor the binding sites have to be aligned. Matrices as shown in
Figure 1.5(b) are calculated from aligned TFBS and PWMs represented by motifs as shown
in Figure 1.5(a) are computed.

Day & McMorris (1992) were the first to implement this approach. They represented
binding sites of a certain transcription factor as a consensus of all known binding sites of
this transcription factor and searched for all motifs matching this consensus in the analysed
sequence. Due to the degeneracy of the TFBS of one transcription factor the consensus
of all binding sites of one transcription factor has many degenerate positions and many
hits which do not overlap a functional TFBS may be found. Osada et al. (2004) compare
the consensus method by Day & McMorris (1992) with two methods using position-weight
matrices (PWMs) (Staden, 1984, Berg & v.Hippel, 1987) and show very clearly that the use
of PWMs improves this approach a lot.

All the methods mentioned so far have been developed and applied to prokaryotic organ-
isms, e.g. E. coli. But a lot of methods following this approach have been implemented for
D. melanogaster and mammals. Rajewsky et al. (2002) developed the method Ahab, applied
it to D. melanogaster and verified some of their predictions experimentally. Also Johansson
et al. (2003), Bailey & Noble (2003) and Frith et al. (2003) developed PWM matching pro-
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Source: TFBS database: Jaspar (Stormo, 2000)

grams for Drosophila. Chan & Kibler (2005) compared these different methods. The results
are shown in Chapter 3 of this thesis.

The difficulty of CRM prediction and TFBS localization increases with genome com-
plexity and the average length of intergenic regions. Therefore the analysis of mammalian
gene regulation is even more challenging compared to insects. Match (Kel et al., 2003),
MatInspector (Cartharius et al., 2005) and AliBaba (Grabe, 2004) are programs which were
developed to locate TFBS in mammals using PWMs. Match and MatInspector are com-
mercialized methods using commercialized databases. AliBaba is freely available. PWMs
are accessed from the freely available TRANSFAC-version or have to be provided to the pro-
gram. The usability of these programs is very much limited by the quality of the PWMs. If
few TFBS of a transcription factor are known the resulting PWM is not sensitive and many
TFEFBS are missed. If the bound TFBS vary in a high degree the resulting PWM is highly
unspecific which results in a lot of false positive results. For this reason Kechris et al. (2004)
assigned informations contents to PWMs and use these to calculate the significance of a hit.

Another method to distinguish true positive matches of PWMs from false positive matches
uses the concept of comparative genome analysis. Comparative analysis of genomic se-
quences assumes that the function of DNA is conserved between species. Blanchette et al.
(2006) developed a program that scans orthologous sequences for matches of PWMs and
increases the score of a hit, if it is conserved between species. This program was applied
to mammals. Moses et al. (2004), Sinha et al. (2004) and Berman et al. (2004) developed
programs following the same approach and applied them to Yeast and Drosophila. This
approach applied to lower organisms resulted in accurate results and the results in higher
eukaryotes were very useful for the design of experiments to identify CRMs.

Another modification of this approach using PWMs was applied by Markstein et al.
(2002) to D. melanogaster. They searched for very well defined modules of TFBS of the
transcription factor dorsael and twist. They score cooccurrences of PWM-hits, which have
a certain distance from each other. They could identify many genes and the according
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CRMs regulated by the given set of transcription factors. Palin et al. (2006) combined this
approach with inter-species conservation of TFBS and applied this approach successfully to
mammals.

1.3.3 Analysing homologous genes from different species

One approach to predict CRMs is based on an idea which has already been successfully
applied to gene prediction and other annotation problems. Loots et al. (2000), Bergman
& Kreitman (2001), Boffelli et al. (2003), Frazer et al. (2004), Johnson et al. (2004) and
Woolfe et al. (2004) showed that conservation of noncoding DNA between genomes is a
good indicator of biological function. Emberly et al. (2003) investigated the conservation of
TFBS between D. melanogaster and D. pseudoobscura using the alignment programs LAGAN
(Brudno et al., 2003) and SMASH (Zavolan et al., 2003). They calculated the overlap between
conserved blocks returned by their alignment programs and annotated TFBS and stated
that the overlap between conserved blocks and TFBS is still statistically significant but not
much greater than by chance. These authors themselves suspected that alignment methods
which are adapted to a conservation of regulatory function could result in a more clear
conservation of regulatory function.

The correlation between sequence conservation and gene regulation is determined by the
following conditions.

e According to Bilu & Barkai (2005) the average length of a TFBS is 12.5bp.

o A TFBS does not have to be perfectly conserved. Some positions can undergo substitu-
tions without causing a difference in the affinity of the binding site to its transcription
factor.

e Wilson (1975), Tautz (2000) and Khaitovich et al. (2006) stated that phenotypic dif-
ferences between species may be attributable to differences in gene regulation.

Hence, signals of conserved gene regulation are short conserved motifs containing mis-
matches. If a pair of closely related species is analysed a signal of a conserved TFBS is
not distinguishable from background conservation, because its difference from background
conservation is not statistically significant. If distantly related species are analysed TFBS
can have undergone too many substitutions to be detectable any more.

In lack of information about the binding transcription factors or coregulated genes se-
quence conservation is still the best approach to predict CRMs and the described problems
are handled in different ways. Grad et al. (2004) developed a method called PFR which
successively searches for conserved non-coding sequences and conserved non-coding subse-
quences between D. melanogaster and D. pseudoobscura. A first oder Markov chain is then
trained with the transitions between the dmer prefix and Smer suffix of all 6mers. This
Markov chain is used to discriminate regulatory and background sequence in non-conserved
non-coding sequences. Additional modules which are not detectable by conservation are
found this way. The results of this method applied to D. melanogaster are shown in Chap-
ter 3. This method misses a high amount of known CRMs. Another problem of this method
is that it is only applicable to genes which are regulated by the same transcription factors.
The 5mers which are found to contribute mainly to the score of a region are contained within
known TFBS. Thus only CRMs of coregulated genes can be found using this method.

Loots & Ovcharenko (2004) developed a method called rVista which identifies conserved
regions between mammals and tests them afterwards for occurrences of known TFBS to
exclude false positive predictions. This method returns high quality results but can only be
applied to cases where the regulating TFBS are known.

1.3.4 ab-intio-prediction of CRMs using only the analysed gene and
the neighbouring intergenic regions

In some cases no additional information than the gene and the neighbouring intergenic
sequence is given. Neither closely related species nor coregulated genes are sequenced and
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no TFBS of the analysed organism are annotated yet. In this case a method has to use
the statistical properties of regulatory DNA to localize CRMs. Since many details of the
process of transcriptional regulation are not yet discovered the presence of TFBS is the
only known reliable property of DNA which has to be detected by an ab-initio method.
Kassis et al. (1989), Stanojevic et al. (1991) and Small et al. (1992) reported the presence of
accessory weak binding sites in the DNA around a functional TFBS. The presence of weak
binding sites combined with the fact, that TFBS are often repeated within a narrow region
leads to redundancy of some motifs in a CRM, which can be detected by looking for locally
overrepresented motifs.

There are two hypotheses why accessory weak binding sites are expected to occur close
to a functional one. Kim et al. (1987), Khory et al. (1990) and Coleman & Pugh (1995)
assume that degenerate binding sites close to a functional TFBS are necessary to guide the
transcription factor to its binding site. Dermitzakis et al. (2003) assume that degenerate
binding sites near or within CRMs build an evolutionary stock and can be substituted into
functional TFBS quickly, if there is a need to adapt to environmental changes or if functional
TFBS get lost by mutation.

Papatsenko et al. (2002) and Abnizova et al. (2005) developed methods following this
approach and faced the following problems. One problem of this approach is the false positive
rate. The DNA contains many motifs, which are overrepresented for various reasons. It is
not possible to decide why a certain motif is overrepresented. Another problem is that the
length and the allowed number of mismatches is not known for overrepresented functional
and degenerate binding sites. These properties probably change for binding sites of different
transcription factors and cannot be generally formulated. An additional problem is that we
do generally not know anything about properties, such as oligo-nucleotide composition, of
the region between TFBS. A CRM contains probably more information than the TFBSs
and their affinities. But we do not exactly know which information they carry or how
it is coded. Long intergenic regions may also carry more functions than we know so far,
which may acquire overrepresented motifs. We can be sure that other proteins in addition
to transcription factors bind specifically to the DNA (e.g. splicing enhancers, replication
factors). We cannot exclude the possibility that a functional binding site for a splicing
enhancer requires degenerate binding sites within the intron and we do not know any way
to distinguish between a TFBS and a binding site for a splicing enhancer in this case.

1.4 Evaluation of CRM predicting methods

Assigning a function to a stretch of DNA or extracting all sequences with a certain function
from a genome by computational methods has been a task since DNA has been sequenced.
Methods have been developed to predict protein coding genes, alternatively spliced exons or
introns, 5’ and 3’ untranslated regions and CRMs. The aim of the first prediction methods
was to predict protein coding genes with exact start and stop codons and precise exon-intron
boundaries.

Different groups have developed a variety of methods. To compare the accuracy of
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different methods the overlap between known annotated genes and predicted genes was
calculated. These calculations have been transferred to the evaluation of CRM prediction by
Chan & Kibler (2005). As it was done for genes, predictions and annotations are partitioned
into TP (true positives), FP (false positives), TN (true negatives) and FN (false negatives).
Predictions are evaluated on CRM and nucleotide level. Annotated CRMs are counted as
TP, if their overlap with a predicted CRM extends 50bp. Otherwise they are counted as
FN. Predicted CRMs are counted as TP, if they overlap an annotated CRM for at least
50bp. Otherwise they are counted as FP. TN cannot be counted on CRM level, because it
is not possible to partition not annotated, not predicted sequence into countable truely not
predicted CRMs.

Figure 1.6 shows the way nucleotides are partitioned into TP, FP, TN and FN. If a
predicted CRM partially overlaps an annotated CRM, the nucleotides within the overlap
are counted as TP. Nucleotides within the predicted CRM but not within the annotated
CRM are counted as FP and predictions within the annotated exon but not within the
prediction are counted as FN. Every nucleotide that is neither overlapped by a prediction
nor by an annotation is counted as TN.

The value to calculate the amount of missed annotations is sensitivity (SN) and the
formula is

SN =TP/(TP + FN) (1.1)

The positive predicted value (PPV) describes the amount of predictions which is true and is
calculated by
PPV =TP/(TP + FP) (1.2)

The amount of false positive predictions within not annotated sequence is computed using
specificity (SP). The according formula is

SP =TN/(TN + FP). (1.3)

PPV, which describes the amount of true predictions within all predictions strongly
depends on the length of the analysed sequence. If the sequence is short the probability of
a false positive prediction is limited by space. For this reason the comparison of the PPV
values of different programs is only possible, if it was calculated on the same datasets. If
programs have been applied to different datasets only SN and SP can be compared. Since SP
can only be calculated on nucleotide level a comparison based on false positive predictions is
only possible, when the performance of different methods is calculated on the same dataset.

The transfer of these measures to the evaluation of CRM predicting methods entails
the following problems. It is possible that annotated CRMs exceed the boundaries of the
functional CRM causing many false negative nucleotides. It is also possible that additional
functional regions of a CRM exist outside an annotated CRM giving rise to nucleotides which
are classified as false positive. More false positive nucleotides and predictions are caused
by the fact that many CRMs are still unknown and not annotated yet. Thus false positive
predictions are expected and high specificity may not necessarily reflect good accuracy of a
program.

Another problem is that the equation one prediction=one CRM is not true for most of
the prediction programs. Some CRMs are hit by two predictions and the mid-part of the
annotation is missed. It is also possible that one prediction hits two or more annotations.
PPV on CRM level is calculated assuming the equation above.

Because of these considerations we developed a standardized version of PPV to train our
method, denoted PPV', which calculates the length-adjusted probability that a prediction
hits an annotated CRM. This measure on the nucleotide level is defined as

TP
PPV'= 15 7p -
P N
where P means the number of nucleotides covered by annotated CRMs and N means the
number of nucleotides not covered by annotated CRMs. In addition penalizing predictions
that overlap annotated CRMs but do not hit the exact boundaries of the annotations should



12 Introduction

be avoided. Thus, for a CRM prediction that hits an annotated CRM, the number of false
positive nucleotides outside of the boundary of the hit annotation should not be used to
calculate PPV’ or SP. Likewise, nucleotides in annotated CRMs outside the boundary of an
overlapping prediction should not counted as false negatives in calculating SN.

The standardized PPV can be used to compare the amount of false positive predictions
on different datasets. It is particularly useful to get an idea of the performance of a method
during its development. The most meaningful measure to evaluate the amount of found
annotations is SN on CRM level.



Chapter 2

Localizing CRMs using
statistical analysis of the DNA
and shortest unique substrings

2.1 Introduction

CRM predicting methods using information about the binding transcription factors or coreg-
ulated genes are limited by the requirement of extrinsic information. To overcome these
limitations we developed a complete ab initio approach which uses exclusively the explored
sequence as input. This method, Shureg, follows the approach 1.3.4, which is based on the
assumption that locally overrepresented strings are caused by the presence of TFBS. There
are two theories which support this approach. Both theories assume that the overrepresen-
tation is caused by repeated degenerate binding sites.

1. The degenerate binding sites in the surrounding of the functional binding site should
bind the transcription factor with low affinity and lead the protein to the functional
binding site.

2. The degenerate binding sites are seen as a repository for new binding sites which can
be made functional through few mutations when adaptation is necessary.

2.2 Shureg

The method Shureg can be partitioned into three large steps.

1. Calculation of the length of local shortest unique substrings (shustrings) and their
neighbours at all positions relative to a defined window.

2. Calculation of P-values

3. Counting extreme shustrings

2.2.1 The concept of shortest unique substrings shustrings

The concept of shustrings was introduced by Haubold et al. (2005) to investigate correlations
between sequence complexity and sequence function in a very efficient manner. Shustrings
are substrings of a sequence which loose their property of uniqueness if they are shortened
by one. A shustring analysis of a sequence can be done in two different ways. Global or local
shustrings can be calculated. Global shustrings are unique relative to the explored sequence
and shortest relative to all other unique substrings of the text. Local shustrings are the

13
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Figure 2.1: Local shustrings of the string ACCG and its complement.

5° COCGGEAAANTTTCTOCT TATAGAGCGUCAAC TG TOG TACGATOGT TGCAGGCTAAGTCACATGACC
3 GGOOCCTT TAAA S AGCAATATCTOGO G TT AT AT CATGC TAGCAACGTCC GATTCAGTGTACTGG 5

=

Windowsize: 66
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e =

Figure 2.2: window of 66bp with shustrings and neighbours of both directions

shortest shustrings starting at a certain position. Shustrings starting at other positions can
be shorter.

We use the text “ACCG” as example to explain this concept. The text “ACCG” has ten
substrings {A, AC, ACC, ACCG, C, CC, CCG, C, CG, G}. Eight substrings are unique. The
substrings “A” and “G” are the shortest unique substrings in the set of unique substrings
and they are called global shustrings. Local shustring lengths are shown in Figure 2.1. A
local shustring length is defined for every position of a sequence and its complement. The
local shustring at position 1 is “A”. The local shustring length at this position is 1. “C”
at position 2 is not unique. We elongate the substring one base and the resulting shustring
“CC” is unique. The local shustring length starting at position 2 is 2. At position 3 the
longest possible substring is “CG”. This word is repeated at position 1 of the complement
string. We cannot elongate the string in a way that it fulfills the unique criteria. For this
reason we put a sentinel at the end of the text. A sentinel is a letter which is not contained
in the text, for example “$”. Then “GC” is elongated to “GC$” and the shustring length
at position 3 is 3.

Another feature than the local shustring length describing the complexity of a sequence
is the number of neighbours of a shustring. Neighbours can be regarded as maximal repeats
contained in the window. When we calculate the length of a shustring, we also know, which
strings are the exact copies of the strings, which are one basepair shorter than the shortest
unique string. The exact copies are called neighbours and their number of occurrences is
called number of neighbours. An example of a text of 66bp is given in Figure 2.2. The local
shustrings starting at the middle position of the window are marked with red letters. The
neighbours of these shustrings are marked with blue letters.

Shureg is a method to measure local representation of patterns. Therefore local shus-
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text: banana$

Figure 2.3: Suffix tree of the string banana - Every suffix of banana is represented as a path
from the root to a leaf.

trings are calculated for every position of the explored sequence relative to a surrounding
window of user defined size. Also the number of neighbours is counted in the local surround-
ing window.

For this purpose a window is shifted in 1bp steps along the sequence. The shustring
length and the number of neighbours is calculated for the middle position of every window
for the backward and the forward strand. Subsequences of 1/2xwindowsize at the beginning
and end of the whole sequence cannot be analysed, because the surrounding window does
not exist completely.

2.2.2 Computation of shustringlength and number of neighbours
using suffix trees

To calculate Shustrings and their numbers of neighbours a suffix tree is built for every excised
window of the analysed sequence. The used algorithm to built suffix trees in linear time
and memory requirements, named Ukkonen algorithm is explained in Gusfield (1997). We
explain an efficient way to read the shustring length and number of neighbours for a certain
position given a tree.

Figure 2.3 shows the suffix tree for the word banana. All 6 suffixes banana, anana,
nana, ana, na and a are represented by paths from the root to leafs. Every leaf represents
one suffix and holds the information about the starting position of the assigned suffix in the
string. Inner nodes show multiple occurrences of the substring starting at the root ending
at the inner node. The number of leafs below an inner node is equal to the number of
occurrences of the represented substring.

Substrings which are unique in the explored string end below the last inner node of
a path from the root to a leaf representing one suffix. To find the minimal length of a
unique substring we have to follow the assigned path through the tree to the last inner node
and elongate this substring by one. The paths representing the shortest unique substrings
starting at positions 3 and 4 of the word banana are shown in Figures 2.4 and 2.5.

The number of neighbours of a shustring corresponds to the number of leafs following
the last inner node in the substring path. These nodes are colored in pink in Figures 2.4
and 2.5. In both demonstrated cases the number of neighbours is equal to one.

The number of steps analysing one position is linear to the user-defined windowsize: The
complexity of an analysis of a sequence of length n with a window size w is then O(n * w).
To implement the program we used a collection of C programs called strmat, which was
initiated by D. Gusfield and developed at the UC Dayvis.
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text: banana$

Figure 2.4: Suffix tree of the string banana - the shustring starting at position 3 is marked
in green. Leafs of paths representing neighbours are marked in pink.

text: banana$

Figure 2.5: Suffix tree of the string banana - the shustring starting at position 4 is marked
in green. Leafs of paths representing neighbours are marked in pink.
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Figure 2.6: Analysis of yeast upstream regions aligned at the TSS of all annotated
yeast genes

black line: Shureg-score summed over all upstream regions.

red line: variation of the Shureg scores along the sequences.

The positions are evaluated based on their distance to the downstream TSS.

2.2.3 Significance of the number of neighbours dependent on the
length of local shustrings

In the second step we calculate one P-value for each direction at every position. One P-
value describes the probability of the shustring to have at least the observed length and
the observed number of neighbours, considering the gc-content of the sequence and the gc-
content of the repeated part of the shustring. The number of neighbours depending on
the length of the shustring is Poisson distributed. Because we calculate the cumulative
probability according to a Poisson distributed probability we use the gamma-function and

the formula is

1 — T(#(neighbours), A
Povalue — & & ¢ ( EZ/\er 1)ours) )

with
A=2x3xwx (0.5 — geb)!en=#9¢ x (geb)#9°,

where w is window size, #gc¢ means the number of Guanines and Cytosines in the shustring,
gcb means the ge-content in the background sequence and len is the shustring length.

We consider positions where the P-value for the shustring and its number of neighbours
is smaller than 0.05 to be a signal of a CRM. We find positions where the shustring is
unexpectedly long which have at least one neighbour and we find short shustrings with an
unexpected high number of neighbours. Both properties represent overrepresentation.

2.2.4 Counting extreme shustrings

The output of Shureg is a curve. The number of positions with P-values smaller than 0.05
in a smoothing window is counted. The window size is a variable parameter. The number
of extreme positions divided by the doubled window size is the score of the position to
be contained in a regulatory region. The window size has to be doubled, because we are
observing forward and backward strand.

2.3 Results

2.3.1 Application to yeast

To calculate the graph shown in Figure 2.6 we applied our method to the whole yeast
genome, aligned the yeast genes at their transcription start sites (7'SS) and added the score
of all positions relative to the TSS. The result is shown in Figure 2.6.
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Figure 2.7: Analysis of CRMs of the gene giant
A) expression patterns of CRMs

C) prediction of Ahab

D) prediction of Shureg

A fact which is clearly shown in Figure 2.6 is that the Shureg score becomes higher the
closer the position is to the TSS. The high scores between 10000bp and 12000bp upstream
are caused by one repeat in the only intergenic region which is of that length. Yeast contains
only one upstream region of this length. Thus, the sum of scores is divided by one at this
position and one repeat can push the score to a huge degree.

2.3.2 Application to Drosophila developmental genes regulated by
well defined CRMs

The program was applied to the intergenic regions surrounding the developmental genes of
Drosophila melanogaster. The regulation of these genes is well known and a lot of experi-
ments have been done to define the regions regulating these genes.

We compared the results of Shureg with the results of Ahab (Rajewsky et al., 2002).
Ahab is a program which matches PWM’s of known transcription factors to the DNA and
scores every region according to the ratio

P(seq|seq matches a PWM)
P(seq|seq is background sequence)

If the score exceeds a certain threshold, the region is considered to be of regulatory function.
The Ahab program cannot be applied to genes whose regulating transcription factors are not
known.

Figures 2.7, 2.8 and 2.9 show the predictions of the regulatory regions of the genes
giant (gt), hairy (h) and short gastrulation (sog). The upstream region of gt contains three
known CRMs. The expression patterns driven by the CRMs are shown in Figure 2.7A.
The enhancer labeled gt_(-1) enhances the early expression pattern. The enhancers labeled
gt_(-3) and gt_(-6) drive the late expression pattern. gt_(-6) effects the expression of the
anterior domain and g¢_(-8) induces one stripe in the posterior part of the embryo.

gt_(-1) is clearly found by Ahab and Shureg. Ahab produces a peak in the region of
gt_(-3) and predicts the enhancer with a low score. Shureg does not find gt_(-3). gt_(-6) is
also predicted by both programs. Both programs predict a large region containing gt_(-6).
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Figure 2.8: Analysis of CRMs of the gene hairy
Prediction of the programs Shureg and Ahab

The prediction of the CRMs of the hairy gene is shown in Figure 2.8. In the hairy up-
stream region five enhancers are experimentally verified (stripe7, stripe6, stripe2, stripes,
stripel). Hairy shows an expression pattern of seven stripes during the Drosophila develop-
ment. Every enhancer drives the expression of one stripe. This is a strong indicator that
there are still unknown enhancers in this region.

Ahab identifies the stripe7 enhancer with very high significance. Also the stripeb and
the stripel enhancers are predicted by Ahab. The overlapping stripe6 and stripe2 enhancers
are missed in the Ahab prediction. Additional to the experimentally verified enhancers Ahab
predicts two CRMs. It is not possible to evaluate the quality of this prediction, because
nothing is known about the regulatory properties of these regions.

Shureg finds highly significant overrepresentation in the enhancers, stripe7, stripe6,
stripe2 and stripe5. The stripel enhancer is also predicted, but not as strong as the oth-
ers. Downstream of the stripel enhancer we find four additional peaks. Another CRM is
predicted between the stripe2 and the stripeb enhancer. This prediction overlaps one of the
additional Ahab predictions. Shureg does not miss one of the known CRMs regulating the
transcription of hairy. But it predicts five more CRMs. It is unlikely that all of these pre-
dictions are true. It is not possible to evaluate these predictions with a reasonable amount
of confirmation.

Figure 2.9 shows the predictions for the region surrounding the gene sog. One CRM is
experimentally verified to regulate the transcription of this gene. This region is marked with
a white square. The two exons including the intron with the CRM are marked by a yellow
and a red square.

In Figure 2.9C the Ahab prediction is shown. The PWM’s, which are experimentally
verified to be transcription factors of sog are given as input for Ahab. The one known
enhancer of sog is clearly found. Additional predictions have a much lower score.

Figure 2.9D shows the Shureg prediction. This prediction is unspecific. We see a peak in
the region of the experimentally verified CRM but almost the whole intron is scored higher
to be a CRM.

In Figure 2.9B another Ahab output is shown. Here we simulate the situation that the
transcription factors of the gene are not known. The input additional to the sequence consists
of all known PWM’s of Drosophila transcription factor binding sites. The Ahab prediction
without the knowledge of the responsible transcription factors is also very unspecific.
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Figure 2.9: Analysis of CRMs of the gene short gastrulation

A) expression patterns of CRMs

B) prediction of the program Ahab using all known PWM’s

C) prediction of Ahab using PWM’s of transcription factors which are known to regulate sog
D) prediction of Shureg

2.4 First Conclusion

The predictions of Ahab match the known enhancers in some cases better than the predictions
of Shureg do. Ahab misses only two of all known enhancers and is able to predict seven
enhancers correctly. Shureg predicts also seven of nine known enhancers. One enhancer is
missed and the prediction for the sog region is not reasonable. Ahab predicts two additional
regulatory regions and Shureg predicts five additional CRMs. As we can see from this
analysis the false positive predictions have to be reduced.

Until this point we ignore one very important fact in the evaluation of the programs. we
do not consider the information about the regulation of the gene which has to be provided to
the programs. If this is considered, we have to evaluate the results differently. Ahab helps to
complete the knowledge about the regulation of a well investigated gene. The transcription
factors, which bind to the CRMs have to be known. Shureg predicts the CRMs based on
the raw sequence data and does not use any extrinsic information.

Regarding this fact Ahab still performs better than Shureg in some well known cases.
When we analyse genes which are not included in a well understood process Ahab cannot be
applied in a meaningful way.

Figure 2.9 shows a case, where neither Ahab nor Shureg are able to locate the CRM, if the
regulating transcription factors are not given to the program. To improve the predictions of
Shureg further analysis was done to find properties of CRMs, which enable us to distinguish
between motifs which are overrepresented because of regulatory function and those which
are overrepresented because of other reasons.

2.5 Further analysis

2.5.1 Method

To improve the method Shureg one of our goals is to distinguish between true positive (TP)
and false positive (FP) predictions. Following this goal, we had to find a bigger dataset to
partition the predictions into TP and FP predictions. The regions which are not predicted
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to be regulatory are partitioned in the true negative (TN) and false negative (FN) set. The
dataset we used was collected by Lifanov et al. (2003). It contains 74 CRMs regulating 20
Drosophila developmental genes.

The analysis is performed in a way that all CRMs are found and that FP are not avoided
to strictly. Then we search for special features of TP peaks which are not present in the FP
peaks.

For the evaluation and partitioning of the peaks every single position is considered . If
the score at one position of a CRM is too low it is considered not to be regulatory even when
all neighbouring positions exceed the threshold. Also at a boundary of a CRM a position
which is evaluated below the score is predicted as a FN. This evaluation is very strict given
the fact that exact boundaries of CRMs are rarely known.

To find the threshold for what score a position is considered to be regulatory or not, we
calculate the mean of the whole region and define the threshold as (1/2 % mean). Despite
the strict evaluation we achieve a sensitivity of 0.8069 and a specificity of 0.1918.

In a next step we analyse the shustrings at the positions in the different sets TP, FP,
TN and FN. First we calculate the base frequencies in all shustrings of the four sets. Here
we find very similar values in all four groups.

In a next step we want to observe the structure of the shustrings. For this purpose we
calculate two properties:

1. number of different bases in a shustring having a base frequency larger than 0.1 in the
shustring.

2. transition probabilities within one sequence

number of different bases in a shustring with a base frequency larger than 0.1

Because we cannot distinguish between the four groups using the base frequencies, we want
to investigate the base distribution of the regions. For this purpose we want to know the
number of different bases in shustrings. In case of low sequence complexity we expect long
shustrings consisting of one or two different bases. In case of high sequence complexity we
expect shustrings containing three or four bases. We did this analysis two times. First we
analysed all found shustrings divided in the four subsets TP, FP, FN and TN. The result is
shown in Table 2.1. In the second analysis we count the number of different bases only in
shustrings with a p-value < 0.05. Table 2.2 shows the result of this analysis.

When we evaluate the results we can cluster the subsets into two groups. We expect the
same results for TP and FN, because these positions are known to be in CRMs and for the
subsets FP and TN, because they are not known to be part of a CRM.

Table 2.1 shows a marginal trend of the known regulatory shustrings to be more complex.
The amount of shustrings representing mainly long stretches of one base is higher in regions
which are not known to be regulatory. Especially FN lack stretches of simple sequence order.
They are enriched in shustrings containing three different bases. This trend is shown more
clearly in Table 2.2.

But also in Table 2.2 we can see only a trend and not a statistically significant difference.
Thus we do further analysis and calculate base transition probabilities in one sequence.

2.5.2 transition probabilities within one sequence

This analysis resembles a Markov model of order 1. We calculate the probability of a base
to occur at a position observing the base at the previous position. The results are shown in
Figure 2.10 and 2.11.

Most of the results do not show a clear difference. Remarkable in all pictures is the fact
that the bar of the subset FP and the bar of the subset TN are of almost identical height
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4 3 2 1
30.48% 52.99% 16.13% 0.40%

™ 18.55% 18.40% 18.46% 17.64%
FP 30.57% 52.78% 16.20%  0.45%
34.83% 34.32% 34.711% 37.24%
FN 30.78% 54.02% 14.96%  0.24%
4.48%  449%  4.09%  2.57%
TN 30.37% 53.11% 16.10%  0.42%

42.87% 42.719% 42.74% 42.55%

Table 2.1: Composition of shustrings from the different subsets TP, FP, FN, TN.
To distinguish between the shustrings from these four subsets, we calculated the base fre-
quencies within every shustring and counted the number of bases with a frequency > 0.1.
These numbers are the headers of the columns. The black row describes the amount of all
shustrings of one subset which contains a certain number of different bases. The values in
the blue row tell the amount of shustrings which contain the certain number of bases in one
subset.

4 3 2 1
TP 28.15% 52.28% 17.88% 1.69%
20.89% 20.65% 19.65% 19.61%
FP 27.59% 51.55% 18.99% 1.87%
37.54% 37.33% 38.28% 39.92%
FN 26.76% 58.41% 14.83% -
1.30%  1.51%  0.19% -
TN 27.64% 51.90% 18.88% 1.76%

40.26% 40.51% 41.00% 40.47%

Table 2.2: Composition of the shustrings with a p-value < 0.05 from the different
subsets TP, FP, FN, TN.

To distinguish between the shustrings which cause peaks from these four subsets, we calcu-
lated the base frequencies within every shustring and counted the number of bases with a
frequency > 0.1. black and blue rows have the same meaning as in Table 2.1
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Figure 2.10: base transition probabilities in all shustrings divided in the four subsets TP,
FP, FN. TN
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Figure 2.11: base transition probabilities of the shustrings with a p-value < 0.05 from the
four subsets TP, FP, FN, TN

in every case. The height of the TP-bar and the height of the FN-bar differ from the FP
and TN values in many cases. But the deviations from these bars do not only differ in
amount but also in leading sign. Only in one case we see a trend in the same direction. The
probability of a cytosine following a thymine is higher in the FN-subset and in the TP-subset
than in the FP-subset and TN-subset. This effect becomes more clear, if we consider only
the shustrings, whose position have a p-value < 0.05, as shown in Figure 2.11.

2.5.3 Analysis of upstream regions of homologous genes

Another possible way to improve the accuracy of our program is to include information
about sequence conservation. Our first result is shown in Figure 2.12. For the right picture
in Figure 2.12 we aligned the fushi tarazu (ftz) region of the D. melanogaster genome with the
ftz region from the D.virilis genome. To compute shustrings we excised two 1000bp windows
around the aligned positions. One window is taken out of the melanogaster sequence and
one window is taken out of the virilis sequence. Now we calculate the shustring starting
at the aligned position according to the forward and backward strand of both sequences
(4000bp). In the next step we calculate a p-value to find a shustring of this length in a
4000bp stretch. Extremely short and extremely long shustrings are evaluated with a small
p-value. In the next step we count the positions with extraordinary shustrings in a 200bp
window and divide the number of positions with a p-value < 0.05 by 200bp.

Figure 2.12 shows clearly that information from a second sequence can improve the
prediction a lot.

2.6 Concluding remarks

Shureg gives high scores to regions, where overrepresented motifs are present. To gain a low
p-value a shustring has to have more neighbours than expected. That means the shustring
without the last position which is a repeat of maximal length has to be repeated more times
than we would expect. A long shustring with one neighbour can also have a low p-value,
because it is unlikely to have an exact repeat of a long stretch in the sequence.

Our results show clearly that CRMs contain overrepresented motifs. In yeast gene regu-
lation is simpler than in higher eukaryotes and CRMs are located in nearby upstream region
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Figure 2.12: 2-dimensional analysis of th CRM of the gene fushi tarazu.

In the left picture we show the same analysis as in Figure 2.7, 2.8 and 2.9. In the right picture
we calculate shustrings in a window, that contains 1000bp of D. melanogaster sequence and
1000bp of D. virilis sequence.

Regulatory regions are marked with a gray background. Blue background shows the location
of the CDS.

of the gene. Figure 2.6 shows that the number of significantly overrepresented patterns
increases when the distance to the gene is decreased.

In Drosophila most CRMs are enriched in shustrings with a high number of neighbours.
But many regions which are not verified to be a CRM contain overrepresented patterns too.
We do not know about the regulatory function and cannot evaluate the quality of these
predictions.

To learn more about the regions which are highlighted by Shureg we did some further
analysis of the data and used an additional nice property of shustrings. Shustrings show
special properties of the DNA more clearly than the raw sequence. If we investigate a GC-
rich sequence, the GC-content is even higher in the shustrings, because GC-rich shustring
are in average longer and have a denser neighbourhood than AT-rich shustrings, because
GC-rich motifs are more likely to occur. This way also other properties of the DNA are
shown more clearly with shustrings and might be found in our analysis.

But also the enhancement of DNA-properties does not show significant differences bet-
ween DNA accomplishing regulatory function and background sequence. These results can
be caused by two different effects of noisy data. One possible reason is just the theoretical
chance to get the result by analysing samples of different size. The other possible reason
is that the known regulatory modules are not minimal. Thus they can contain non CRM
positions at their borders. The other fact is that the sequences contain unknown CRMs.
The positions which are clustered into the false group can destroy or lower the effect.

A first result of this chapter is that CRMs contain overrepresented patterns. But local
overrepresentation can be caused by other reasons and appears also in regions of the DNA,
which accomplishes other functions. Using locally overrepresented patterns as the only sign
of regulatory function leads to a high rate of false positive predictions.

The concluding result is that the current data situation does not allow to develop a
reasonable program to predict CRMs completely ab initio. Figure 2.12 shows that the
information about sequence conservation helps a lot to identify CRMs. Based on this result
we developed the method CisPlusFinder which is explained in Chapter 3.



Chapter 3

Identifying cis-regulatory
modules by combining
comparative and compositional

analysis of DNA

3.1 Introduction

Based on the results of Chapter 2 we decided to develop a method to identify CRMs based
on information about sequence conservation between species. Grad et al. (2004) compare
D. melanogaster with D. pseudoobscura to identify CRMs in highly conserved regions. Bof-
felli et al. (2003) use a method called phylogenetic shadowing which calculates a homology
measure between more than two species to predict functional regions. Methods using con-
servation signals alone face the problem that TFBS conservation necessary to maintain
regulatory function may not be significantly higher than in non-binding sequence (Emberly
et al., 2003) and TFBSs can be gained or lost even when CRM function is conserved (Ludwig
et al., 2000). In addition, sequence conservation depends on the local mutation rate and
selective constraints which vary over the genome.

Here, we show that CRMs can be identified in D. melanogaster by combining conservation
signals with the property of TFBS to contain overrepresented motifs. Our method, called
CisPlusFinder (Pierstorff et al., 2006), locates sequences that are both perfectly conserved
in multiple genomes and contain an overrepresented core motif as signal of a TFBS, and
subsequently clusters sequences with these properties to predict CRMs. We developed and
applied our method in the genus Drosophila, a species group that is well suited for a multi-
way comparative analysis since draft genome sequences are available for D. melanogaster
and 11 other species at http://rana.lbl.gov/drosophila/. Our results indicate that combining
conservation and compositional signals from a set of multiple closely related species which
sum to a sufficiently high substitution rate can lead to better CRM predictions than has
generally been achieved thus far.

3.2 Methods

3.2.1 Overview over CisPlusFinder

The motivating idea behind CisPlusFinder is to find regions in a target genome which
contain a high density of Perfect Local Ungapped Sequences (PLUSs) that are shared among
a set of closely related species. Individual PLUSs are selected on the basis that: (1) the
length of a PLUS is unlikely relative to random occurrence; (2) at least one core motif
contained in a PLUS, which is essential for the binding of the transcription factor, is locally

25
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Figure 3.1: Flowchart describing the CisPlusFinder method.

overrepresented, and (3) some additional PLUSs fulfilling conditions (1) and (2) occur within
the close neighbourhood. Underlying these requirements is the idea that PLUSs contain core
TFBS motifs, and that local clustering of PLUSs represents the comparative genomic signal
of clustered TFBS that typify CRMs.

Figure 3.1 shows a flowchart describing CisPlusFinder. The first section of Figure 3.1
shows the calculation of the nucleotide homology map, which is based on chained blastn-
hits (Altschul et al., 1990). A detailed description of the method is given in Section 3.3.1.
The second part of Figure 3.1 depicts the stepwise calculation of putative PLUSs, which
have a significant length and contain within them a core motif that is overrepresented in a
local window centered on the PLUS. In order to find the set of putative PLUSs suffix trees
are built using Ukkonen’s algorithm (Gusfield, 1997) as explained in Section 3.3.2. The
equations to calculate the significance of the length of a PLUS and the overrepresentation
of possible core motifs are explained in the following Section 3.3.3. The last section of
the flowchart depicts the selection of PLUSs which possess at least the minimal regulatory
potential, and the clustering of PLUSs into CRMs. The clustering process is explained
in Section 3.3.6. King et al. (2005) assign a regulatory potential to a motif according to
supervised machine learning. Their definition of “regulatory potential” is not related to
ours.

3.3 Detailed description of the CisPlusFinder method

3.3.1 Computing the homology map

To locate PLUSs in a set of homologous sequences we calculate a set of pairwise align-
ments in several steps. For each contiguous subsequence of arbitrary length in the target
genome, we obtain orthologous regions for each of the informant species using precomputed
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Figure 3.2: Scheme of homology map as basis for the window analysis. The upper part of
the figure shows chained HSPs indicated as blocks. Regions between HSPs are shown as
lines. The lower part shows an alignment of single positions. Regions outside of HSPs are
paired and gaps are distributed in relative proportions across the segments. Gaps in HSPs
are distributed in relative proportions across the HSP.

pairwise whole genome alignments, such as those produced with Lagan (Brudno et al., 2003)
accessible at the VISTA server (Couronne et al., 2003). These homologous sequences are lo-
cally aligned using default parameters of Blastn (Altschul et al., 1990) and collinear HSPs
are chained with a two-dimensional chaining method (Wiehe et al., 2001). The resulting
pairwise alignments are used to assign every position in the target genome to a homologous
position of the informant sequence to create a nucleotide level homology map as shown in
Figure 3.2. Simple gaps in informant species relative to the target genome are treated by
assigning two target positions to the same position in the informant sequence. Regions
not covered by HSPs (such as those arising from small inversions) are forced to pair in the
nucleotide homology map as shown in Figure 3.2.

3.3.2 Calculating PLUS length for every position using suffix trees

Based on the nucleotide homology maps of the pairwise alignments the following steps are
performed for every position of the target sequence .

1. Extract a window of +/- 500bp around the homologous position in the informant
species.

2. Build a generalized suffix tree of the 1000bp for each informant sequence and its reverse
complement (Gusfield, 1997) as shown in Figure 3.3.

3. Match the target sequence starting at the investigated position against the tree and
find the maximal PLUS which is shared by all species. An efficient way to do this is
demonstrated in Figure 3.4. Only the maximal PLUS is recorded when one PLUS is
totally contained in another one. Partially overlapping PLUSs from different positions
are considered separately.

4. Calculate the significance of the PLUS z dependent on its length, GC-content and the
GC-content of the informant sequence using Equation (3.1). The required significance
level of a PLUS is 0.01.

5. Test all possible core motifs (c-mers covered by a PLUS) if they are locally over-
represented in a user defined window of size w in the target sequence and all informant
sequences.

6. Count significantly long PLUSs containing an overrepresented core in a window of
rbp surrounding the explored PLUS. The PLUS is discarded if less than m — 1 other
PLUSs are found in this window.
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suffixes starting with C:

c$ 3:10
. ccs 3.9
strings: CCGGTTATS 43
ACCGGTTACGS CCGGTTACGS 1:2

CCCGGTTATS 4:2
GAATTCGGTAS s o
CGGTTAATCCS CGGTAS 26

CGGTTATS 4.4
TCCCGGTTATS COETATTS &4
CGGCGGTATTS CGGTTACGS 1.3

CGGTTAATCCS 3;1
CGGCGGTATTS 5;1

Figure 3.3: section of the generalized suffix tree of the five strings in the upper left corner;
The section represents only the suffixes starting with “C”. The leafs of a generalized suffix
tree contain information about the string and the starting position of the suffix.
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matched string:
CGGTAT

Figure 3.4: path along a string through the generalized suffix tree; The path of the string
“CGGTAT” is marked with red letters. A PLUS has to be substring of all species. The
maximal PLUS length is reached, if not one leaf from every string is in the subtree below
the last node of the matching path. The PLUS ends after the fourth position of the target
sequence and is “CGGT”.
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Figure 3.5: Phylogenetic tree of seven Drosophila species, based on non-conserved regions
(data from A. Siepel, pers. comm.) and created with PhastCons (Siepel et al., 2005) based
on a multiple alignment using Multiz (Blanchette et al., 2004)

3.3.3 Significance of perfectly conserved matches in multiple align-
ments

Crucial for the idea of CisPlusFinder is the choice of the informant species according to
the target species. Species should be close enough such that homologous functional sites are
conserved, but distant enough such that PLUSs of the size of a typical binding site, around
10bp in length, are unlikely to be due to common ancestry.

Given an z-mer in a target sequence, let 75°™® be the probability to find in each of a set
of evolutionarily related informant sequences a perfectly matching z-mer. Further let wfnd
be the probability to find a perfectly matching z-mer in a random sequence with the same
GC-content as the informant sequence. Below we show how these two probabilities can be
put in relation to each other.

To test CisPlusFinder we used a subset of twelve currently available assembled genome
sequences of Drosophila species which can be found at http://rana.1bl.gov/drosophila/.
This set of genomic sequences provides an excellent resource to find PLUSs in Drosophila
melanogaster with informant sequences from congeneric species. The phylogenetic relation-
ship between seven Drosophila species is shown in Figure 3.5. The tree is based on distances
in nonconserved regions, which have been compiled by A. Hinrichs and A. Siepel using
PhastCons (Siepel et al, 2005) and a Multiz (Blanchette et al., 2004) multiple alignment.
It agrees with the commonly accepted Drosophila phylogeny (Powell, 1997). Numbers along
the branches denote per-site substitution rates. Since a given site may be affected by mul-
tiple substitution events, the number of mismatches in the underlying alignment usually
underestimates the substitution rate. Models of evolution establish a relationship between
substitution rate, k, and fraction of mismatches, d. Applying the simplest such model, the
Jukes-Cantor model (Jukes & Cantor, 1969), we expect for a substitution rate of k = 0.9
between D. melanogaster and D. virilis a fraction d = (3/4)(1 —exp(—4k/3)) ~ 0.524 of mis-
matches in a pairwise (gap free) alignment. Consequently, one expects a fraction of matches
of 1 —d = 0.476. In the following we call the fraction of matches identity. When consider-
ing more than two species we calculate the expected number of mismatches in the multiple
alignment using the pairwise mismatches. We start with the two most closely related species
and proceed by considering the substitution rate between the internal node joining the for-
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mer two species and the next closely related species (represented by an external node in the
phylogenetic tree). For each such pair we calculate the pairwise identity. The identity of
the complete multiple alignment (the fraction of columns where all nucleotides are identi-
cal) is then approximated by the product of the pairwise identities. For instance, from the
data shown in Figure 3.5, we calculate for the five species D. melanogaster, D. yakuba, D.
ananassae, D. pseudoobscura and D. virilis the following values. di = dmel—yak = 0.199,
dy = da_ana = 0.369, d3 = dp_pse = 0.299 and dy = dc_vir = 0.421. Therefore, the
expected identity in the multiple alignment is

4
id = JJ(1 —di) ~0.205.
i=1

Assuming independence of sites, the probability that an z-mer of D. melanogaster is perfectly
conserved in the other four species is

cons — idil) X

Ty

For instance, the probability of a completely conserved 10-mer is 7{3"* ~ 1.3-10~". In
a sequence of length [, and considering forward and backward strand of the DNA simulta-
neously, the probability to find at least one completely conserved z-mer is

pr=1—(1—gcoms)2, (3.1)
For [ = 1000bp and x = 10, we obtain
prooo = 1 — (1 — m§3™)20% ~ 0.00026 .

In the above calculation we again assume independence of sites. Therefore, the calcula-
tion is only approximately valid. However, it can be shown that the error incurred is very
small as far as first order moments are concerned (Haubold et al., 2005).

To see how the number pyggo &~ 0.00026 above compares with perfect matches in random
sequences we now calculate the background frequency of matches of length z in a second
sequence with a given GC-content P(GC). Considering a specific z-mer which contains at k
(0 < k < z) positions either of the two nucleotides G or C the probability, 75274, to find a
perfect match of this z-mer is

grand _ (1 * P(GC))k % (1 — P(GC)

z—k
z 5 5 )

Here it is assumed that G and C nucleotides and A and T nucleotides each occur with the
same frequency. This is justified by the fact that both strands, forward and backward,
are taken into account and that DNA is complementary. For instance, for a GC-content of
P(GC) = 0.424 (the average GC-content in the D. melanogaster genome) we find that 7t2nd
ranges from 1.83 - 10=7 (for k = 10) to 3.93 - 10~° (for k = 0). The lower value is close to
m$om8 1.3 - 107 calculated above.

Thus, the probability of perfectly conserved 10-mers in the multiple alignment of the five
species considered above is smaller than or similar to the probability of perfect matches of
10bp in two random (i.e. evolutionarily un-related) sequences. Therefore, it is conservative
for this set of species to calculate the significance of a perfectly matching z-mer from a pair-
wise alignment of two random sequences and we use 772" instead of 7™ in Equation (3.1)
to calculate the significance level in step 4 of Section 3.3. This approximation becomes
incorrect if the evolutionary distance between the compared species becomes smaller or if
fewer species are used in the multiple alignment. Figure 3.6 shows the probability for a
sequence fragment of length [ = 1000bp to contain at least one defined 10mer represent-
ing a putative PLUS depending on the GC-content of the background sequence. The figure
also shows the probability for seeing at least one perfectly conserved 10-mer in a multiple
pairwise alignment of the five species mentioned above (black horizontal line).
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Figure 3.6: Probability to find at least one perfectly matching 10-mer in a random sequence
of 1000bp (forward and backward strands) depending of the GC-content of the background
sequence (z-axis). Shown are the probabilities for a 10-mer with ¥ = 0,...,k = 10 of its
nucleotides to be G or C. For a GC-content of 0.424 (the average in the Drosophila genome;
vertical dashed line) the probabilities for a random match of length z = 10 are larger than
the probability for a perfectly conserved 10-mer between the five Drosophila species analysed
(p = 0.00022, horizontal solid line).

3.3.4 Excluding exceedingly long PLUSs

While a minimal length of an acceptable PLUS is given by its p-value shown in Eq. (3.1),
an upper bound of its length is derived from an heuristic argument. Searching only those
PLUSs which possibly contain a core motif of a transcription factor binding site (TFBS)
and attempting to avoid perfectly conserved, but interspersed or simple ubiquitous repetitive
elements we exclude those PLUSs from further consideration which exceed the length of an
average TFBS (12.5bp) (Bilu & Barkai, 2005) by more than 10bp.

3.3.5 Overrepresentation of the TFBS core motif

Several authors (Papatsenko et al., 2002, Abnizova et al., 2005) have noted that TFBSs
often contain substrings which are locally overrepresented compared to random occurrence.
We measure the amount of overrepresentation of a substring of length ¢ by comparing the
observed number of occurrences within a certain region, O, to the expected number of
occurrences, given the GC-content of the region, . Again assuming independence of sites,
the expected value E = E_ , 4 qc is

P(GC)
2

1 - P(cc)

B=( 5

Yok s 2w

) (

where P(GC) is the GC-content and w is the length of the investigated sequence. If the O/E-
ratio of at least one c-mer contained in a PLUS exceeds a certain threshold ¢, the PLUS is
considered to be overrepresented.

3.3.6 Clustering PLUSs into CRMs

To predict CRMs, we clustered all PLUSs with a distance smaller than 250bp into a single
CRM, which may tend to merge neighbouring/overlapping CRMs. The predicted CRM
starts 125bp upstream of a PLUS and ends 125bp downstream of the last PLUS in the
cluster.
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Table 3.1: Summary of CRM datasets used in this study

Papatsenko HexDiff
number of target genes 39 16
number of CRMs 95 52
References Papatsenko et al. (2002)

Chan & Kibler (2005)
Papatsenko & Levine (2005)

REDfly REDfly
(all) (nonredundant)
number of target genes 203 165
number of CRMs 610 386
References
Gallo et al. (2005) Gallo et al. (2005)

3.3.7 Measuring prediction accuracy

To evaluate our CRM predictions we use the measures used by Chan & Kibler (2005): SN
and PPV on nucleotide and CRM level and SP on the nucleotide level. All measures are
already explained in Chapter 1.4. Chan & Kibler (2005) calculated these measures for six
programs and we took their results. To train CisPlusFinder we optimized the performance
indicators SN on CRM level and PPV’, a modification of PPV which is also explained in
Chapter 1.4.

To assure equal conditions for the evaluation by Chan & Kibler (2005) and by us we used
the script by Chan & Kibler (2005) to calculate the performance values for CisPlusFinder
and other methods using sequence conservation as input. This script considers a CRM to
be discovered if the overlap between it and a predicted CRM exceeds 50bp and therefore
excludes CRMs shorter than 50bp from the analysis.

3.3.8 Datasets

To develop and test the algorithm we used three datasets containing CRMs from genes
involved in embryonic patterning in D. melanogaster (Table 3.1).

To develop the CisPlusFinder method and train its parameters we used the combined
datasets from Papatsenko et al. (2002) and Papatsenko & Levine (2005).

To compare results from CisPlusFinder with other CRM detection methods, we used the
dataset and published results of Chan & Kibler (2005). The HexDiff dataset shares 12 genes
with the Papatsenko dataset, and therefore this evaluation dataset is not independent from
our training dataset, as it is the case for many of the PWM-based methods tested in Chan
& Kibler (2005). We also note that the CRM annotation for the HexDiff and Papatsenko
datasets differ for these 12 genes, with 34 of 44 annotated HexDiff CRMs overlapping 35 of
41 annotated Papatsenko CRMs.

To test our method on a dataset of CRMs that is fully independent from the training
data and that covers a wider range of biological processes, we used the REDfly database
curated by Gallo et al. (2005). To construct the REDf1ly nonredundant dataset, we chose
every CRM that is verified by an in vivo reporter construct and regulates a target gene not
found in one of the other CRM datasets used to train and evaluate CisPlusFinder. For
every target gene, the region containing the gene and all annotated CRMs are downloaded
and extended 10kb upstream of the first CRM and 10kb downstream of the last CRM.

As an additional experiment, we tested whether the PLUSs that underlie CRM predic-
tions by CisPlusFinder correspond to annotated TFBSs using the flyreg database curated
by Bergman et al. (2005), which are positioned in CRMs from the HexDiff dataset.
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3.4 Results

3.4.1 Training
Choice of informant species

To train the parameters of CisPlusFinder we attempted not to miss CRMs in case they
are absent from one or more informant sequences. Therefore, we selected manually the
informant species from the set of D. yakuba, D. ananassae, D. pseudoobscura and D. virilis.
Table 3.2 shows which informant species were used for which target gene.

Table 3.2: Usage of species for parameter training. '+’ indicates presence and ’—’ indicates

absence.
target gene D. yakuba D. pseudoobscura D. ananassae D. virilis
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Parameters for Drosophila

For D. melanogaster and the informant species, we systematically varied the following five
parameters, and measured the accuracy (PPV') on the training dataset. For other species
the parameters can easily be retrained. We found the following combination to be optimal:

1. length of overrepresented core of a PLUS: ¢ =5

2. threshold for the minimal O/E-ratio: ¢t = 2

3. window size for measuring overrepresentation: w = 1000
4. window size for measuring regulatory potential: r = 500

5. minimal regulatory potential: m = 3

Accuracy on the training set

With optimized parameters we found 94 of the known 95 CRMs in the Papatsenko dataset.
Only the CRM regulating the gene zen is missing in our prediction, which lacks a third
PLUS to reach the required regulatory potential. Sensitivity on CRM level of our method
is 0.99 and PPV’ is 0.67. Specificity on nucleotide level is 0.60 and sensitivity on nucleotide
level is 0.56.

3.4.2 Comparison with other methods on HexDiff dataset

To compare the performance of CisPlusFinder with other methods, we applied it to the
dataset used by Chan & Kibler (2005). In this study the methods Ahab (Rajewsky et al.,
2002), ClusterBuster (Frith et al., 2003), MSCAN (Johansson et al., 2003), MCAST (Bailey
& Noble, 2003), LWF (Papatsenko et al., 2002) and HexDiff (Chan & Kibler, 2005) were
applied to a set of CRMs active in early Drosophila development and performance measures
of these methods were computed. The results are summarised in Table 3.3. Details on
the parameters used for these method are described in the publication of Chan & Kibler
(2005). A problem of this analysis is that the thresholds chosen by Chan & Kibler (2005)
were optimized to increase specificity according to the HexDiff annotation. Lowering the
thresholds would increase sensitivity and decrease specificity for these methods. We did
not test to lower the thresholds and do not account this fact in our analysis. We added to
these results the published predictions from an additional method developed by Grad et al.
(2004), which uses only comparative data and a training set of known CRMs. Furthermore,
we generated predictions for the HexDiff dataset using Stubb (Sinha et al, 2004) and
ecis-analyst (Berman et al., 2004), both of which use information about conservation of
known TFBSs. To evaluate these methods we used default parameter settings and input
matrices from Chan & Kibler (2005).

Table 3.3 shows that CisPlusFinder has a higher sensitivity on the CRM and nu-
cleotide level than any other method. The second highest sensitivity is achieved by Stubb
which misses five CRMs found by CisPlusFinder. Both CRMs missed by CisPlusFinder
have high local substitution rates, and one CRM missed by CisPlusFinder (regulating the
expression of oc) was also not found by the method of Grad et al. (2004).

Figure 3.5 to 3.21 in the Appendix of this chapter show the predictions of all programs
listed in Table 3.3, the HexDiff annotation and the current REDf1y-based annotation for all
HexDiff regions. Some CRMs are found by all methods, such as the eve-stripe3 enhancer at
position 5,487,313 in Figure 3.9, suggesting that a combined approach to CRM prediction,
as is increasingly used for gene prediction (Allen & Salzberg, 2005), may yield accurate CRM
annotations. Some CRMs are exclusively found by CisPlusFinder, such as the prd PMFE
CRM at position 12,078,033 in Figure 3.18.



CisPlusFinder

36

Table 3.3: Comparison of different CRM prediction methods on the HexDiff dataset - Accuracy of different CRM prediction methods on a set of 52

CRMs active in early Drosophila development. (Results in the top section of the table are taken from Chan & Kibler (2005)).

SN(CRM) PPV(CRM) SP(nuc.) SN(nuc.) PPV(nuc.) hit CRMs missed CRMs
HexDiff 69 34 94 39 36 36 16
Ahab 44 58 98 22 95 23 29
ClusterBuster 60 26 95 34 37 31 21
MSCAN 65 19 91 27 21 34 18
MCAST 83 11 70 48 13 43 9
LWF 52 11 90 13 11 27 25
Stubb (pse-default) 67 24 92 29 24 35 17
Stubb (vir-PhastCons) 87 11 71 43 12 45 7
ecis-analyst 61 65 92 45 33 32 20
CisPlusFinder 96 11 54 60 11 50 2
PFR 23 36 83 10 ) 12 40
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3.4.3 Analysis of false positive predictions

Table 3.3 also shows a relatively low specificity achieved by CisPlusFinder. However it
is obvious from Figures 3.5 to 3.21 that there are predictions made by CisPlusFinder
that do not overlap with the HexDiff-based annotation (black boxes) but do correspond
to annotated CRMs in the REDfly database (gray boxes). To see if the low specificity of
CisPlusFinder results from an incompletely annotated evaluation dataset, we extracted all
CRMs from the REDf1y database that regulate genes in the the HexDiff dataset. The REDf1ly
database contains 125 CRMs for the HexDiff regions in contrast to 52 CRMs currently
annotated, and also has improved annotations for hairy and oc. 120 of the 125 REDf1y CRMs
overlap with our predictions, and 5 of the annotated CRMs cannot be found. The number
of false positive CisPlusFinder CRM predictions is reduced from 408 to 338. The number
of nucleotides in false positive CisPlusFinder CRM predictions is reduced by 15.41% from
296, 005 to 250, 388.

3.4.4 Correlation between PLUSs and known TFBS

To test whether PLUSs are caused by TFBSs, we downloaded all annotated TFBSs that are
found in the HexDiff regions from the flyreg database (Bergman et al., 2005). This resulted
in a dataset of 376 TFBSs regulating 10 target genes bound by 27 different transcription
factors. For 67 of the TFBS, the binding factors are not known. The average length of the
TFBS in our subset is 18bp.

135 TFBS (36%) overlap with 115 PLUSs found by CisPlusFinder. The average length
of a hit TFBS is 19bp and the average length of a hitting PLUS is 14bp. In the 602, 508bp
analysed sequence 4,243 PLUSs are found, covering 8.65% of the sequence. The 376 TFBSs
cover 1.07% of the sequence. The hit TFBSs cover 0.39% of the sequence. The probability
to have this overlap by chance is 3.12% 10~%. These results indicate that while many PLUSs
correspond to TFBSs, many TFBSs do not appear in PLUSs because of the degree of
substitution and turnover in this species set (Emberly et al., 2003, Ludwig et al., 2000).

3.4.5 Application to simulated data

To investigate our predictions in unconstrained sequences we applied it to simulated data.
We simulated the evolution of the 16 HexDiff sequences as ancestral sequences along the tree
shown in Figure 3.5 using the method CisEvolver (Pollard et al., 2006), which can evolve
sequences according to the HKY85-model (Hasegawa et al., 1985) without any selective
constraint. We extracted the simulated sequences of D. melanogaster and the informant
sequences D. yakuba, D. ananassae, D. pseudoobscura and D. wvirilis from the generated
sequences and applied CisPlusFinder to it. CisPlusFinder did not predict any CRM in the
simulated D. melanogaster sequences. Out of 642, 508bp of the simulated D. melanogaster
sequence roughly 60% are covered by chained alignments. No significant PLUS can be found
in these aligned sequences. We conclude that PLUSs occur preferentially in sequences which
are subject to functional constraint.

3.4.6 Application to the REDfly test set

Accuracy on the REDfly test set

The results of CisPlusFinder applied to the REDf1ly CRMs are shown in Table 3.4. Our
method predicts CRMs that overlap 289 of 386 annotated CRMs in the REDf1y dataset. We
compared our results with the output of Stubb using the same set of PWMs as above, which
may limit Stubb to predict CRMs regulated by transcription factors binding the CRMs in
the Chan & Kibler (2005) regions. When D. wirilis is used as a reference species Stubb
predicts CRMs that overlap 236 annotated REDf1ly CRMs.
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Table 3.4: Accuracy of CisPlusFinder and Stubb on the nonredundant REDfly dataset
SN(CRM) PPV(CRM) SP(nuc.) SN(nuc.) PPV(nuc.) hit CRMs missed CRMs

CisPlusFinder 75 13 64 47 19 289 97
Stubb (pse-default) 24 19 94 7 18 92 294
Stubb (vir-PhastCons) 62 12 75 27 16 238 148

38
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Further analysis of false negatives

97 CRMs are missed by CisPlusFinder in the REDfly regions. Assuming that the function
of a CRM is conserved in all informant species, it can be missed by CisPlusFinder for two
reasons. One reason is that the number of TFBSs in this region is lower than the minimal
required regulatory potential. The other reason is that the local substitution rate of a region
is very high, which means that the probability that a TFBS causes a PLUS is reduced.

To understand the basis of false negative predictions, we define missed CRMs as those
which do not overlap at all with any CisPlusFinder prediction. Thus 9 CRMs that overlap
with CisPlusFinder predictions for less than 50bp and were treated as false negatives
above, are treated as true positives in this analysis. One missed CRM is not present in
the chained alignment and excluded from further consideration. For 13 missed CRMs, the
informant sequences contain ambiguous or unassembled sequences, i.e. stretches of Ns. The
very strong requirement, of perfect ungapped alignment makes CisPlusFinder very sensitive
to unassembled sequences and Ns in the sequence. For this reason 6 missed CRMs with a
N-content above 60% are excluded from further consideration. After excluding these 16
exceptions, 81 false negative CRMs are left for further analysis.

To find which CRMs are missed because they do not contain enough PLUSs to give
rise to the required regulatory potential, we chose the subset of missed CRMs that contain
putative PLUSs but are not predicted by CisPlusFinder (named lowRP in the following).
lowRP contains 31 missed CRMs from 26 different regions. The remaining 50 missed CRMs
contain no PLUS and map to 30 different regions. We speculate that these missed CRMs
in no PLUS regions might be caused by a high local substitution rate.

To test this hypothesis, we downloaded the PhastCons scores for multiple alignments of
the D. melanogaster genome with 8 other species D. simulans, D. yokuba, D. ananassae,
D. pseudoobscura, D. virilis, D. mojavensis, A. gambiae and A. mellifera. These alignment
scores are calculated for every position of the genome of D. melanogaster. The average
conservation scores for the different subsets of CRMs are given in Table 3.5, which shows
that many missed CRMs are positioned in regions of the genome that are poorly conserved.
CRMs with lowRP show an intermediate level of conservation, and positively predicted
CRMs show the highest average level of conservation. We suggest that TFBS in the no
PLUS regions have undergone a higher rate of evolutionary turnover because of a high local
substitution rate, and thus CRMs are not identified since the number of PLUSs is too
low. In contrast to positively predicted CRMs both classes of missed CRMs have a lower
conservation score than their surrounding regions.

3.5 Discussion

Table 3.3 shows that CisPlusFinder is able to localize Drosophila CRMs better than the
other methods applied thus far, which were also trained and developed with CRMs involved
in early Drosophila development. The results of CisPlusFinder applied to the REDfly
dataset (Table 3.4) show that CisPlusFinder is not limited to a special group of CRMs,

Table 3.5: Relationship between local conservation score and CisPlusFinder CRM predic-
tion accuracy - Average PhastCons score according to the multiple alignment of 9 insects for
predicted CRMs, CRMs containing putative PLUSs with low regulatory potential (lowRP)
and CRMs where no PLUSs are found. Standard errors are given in brackets.

found lowRP no PLUS
number of CRMs 297 31 50
number of regions 106 26 30
average length of predicted CRM 2444 1194 533

average conservation score of the CRM  0.53 (0.14)  0.40 (0.16)  0.25 (0.19)
average conservation score of the region 0.48 (0.063) 0.46 (0.064) 0.38 (0.10)
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and that our method can predict CRMs that are involved in biological processes different
from those in the training data. This generality of CisPlusFinder results from the fact
that it does not require any a priori knowledge about the binding transcription factors
regulating a target gene and allows a whole genome scan using CisPlusFinder. The whole
genome scan of D. melanogaster was performed for this PhD-thesis. The results are shown
in Chapter 4.

However, we found that the specificity of our method is the lowest compared to those
that condition predictions on TFBS models. To test if CisPlusFinder predicts a high
number of false positives or, more interestingly, a high number of undiscovered CRMs, we
compared our prediction with an updated annotation of the HexDiff regions (section 3.4.3).
These results clearly indicate that the low specificity of CisPlusFinder is in part due to
unannotated CRMs in the HexDiff regions, underlying both the importance of high quality
CRM annotations as well as the difficulty in evaluating the specificity of CRM prediction
methods.

The results reported in Table 3.5 also show that the performance of CisPlusFinder
depends on the local substitution rate of the region investigated. In regions with high
substitution rates, CRMs cannot be identified with the same accuracy as those in regions
with low substitution rates. There may also be cases where the substitution rates are
extremely low such that the probability to find a PLUS by chance is very high. One example
for this case is the surrounding sequence of the gene ems which is shown in Figure 3.8. In
these cases more species should be included in the analysis.

A final result of our study is that PLUSs are valuable signals for predicting CRMs. This
finding is not incompatible with the occurrence of substitutions in TFBS and binding site
turnover (Emberly et al., 2003, Ludwig et al., 2000). PLUSs likely correspond to and are
caused by TFBSs, but not every TFBS causes a PLUS. Hence CisPlusFinder can find
CRMs that may have undergone functional substitutions, when at least some of the TFBSs
are conserved strongly enough to give rise to PLUSs.
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Figure 3.7: targetgene: btd
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Figure 3.8: targetgene: ems

chr3R: | 9715000 | 9720000 | 9725000 | =~ 9730000 | =~ 9735000 | 9740000 | 9745000 | 9750000 |
REDfly CRMs
|
|
hexdiff CRMs
| [ | |
CPE
CisPlusFinder, NN HNIIHN NN NN N I D D D DN e
stubb-vir
stubbviriis/] W M @ M W HEN NHER REN N BN AN I EER NER RERR NN
stubb-pse
stubb default [ ] [ | | B | p. [ | [ | [ | [ | [ |
ecis-analyst
ecis-analyst [ | I [ | [ | [ | [ ]
ClusterBuster
ClusterBuster |
Mscan
Mscan [ RO RN [ A | in 1 N | [ ] 1
Mcast
mcast I I 0 110l (11 WER (D IR iy 1N [0 Wi
LWF

Lwr | (N BN o onnr o rrr o rrr o nn [ I

FlyBase Protein-Coding Genes
ems

FlyReg: Drosophila DNase | Footprint Database
FlyReg 1 L[]]]

Visualization of the predictions of the methods listed in Table 3.3. The top two tracks show the REDf1ly (2006) and HexDiff (2005)
annotations for the genomic regions surrounding the target gene ems using the UCSC Browser (Kent et al., 2002) http://genome.ucsc.edu/.

TopULISNIST)
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Figure 3.10: targetgene: fkh
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Figure 3.11: targetgene: ftz
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Figure 3.13: targetgene: hb
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Figure 3.14: targetgene: hairy
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Figure 3.15: targetgene: kni
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Figure 3.16: targetgene: kr
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Figure 3.17: targetgene: oc
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Figure 3.18: targetgene: prd
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annotations for the genomic regions surrounding the target gene prd using the UCSC Browser (Kent et al., 2002) http://genome.ucsc.edu/.
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Figure 3.19: targetgene: runt
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annotations for the genomic regions surrounding the target gene runt using the UCSC Browser (Kent et al., 2002) http://genome.ucsc.edu/.
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Figure 3.20: targetgene: slp1
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annotations for the genomic regions surrounding the target gene sip1 using the UCSC Browser (Kent et al., 2002) http://genome.ucsc.edu/.
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Figure 3.21: targetgene: tll
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Chapter 4

Whole genome scan of Drosophila
melanogaster using CisPlusFinder

4.1 Introduction

This chapter describes the results of a whole genome scan (WGS) in D. melanogaster. A
CRM prediction along the complete genome of D. melanogaster can fulfill two functions.

1. The results can provide further support to the program CisPlusFinder and prove our
concept.

2. If the predictions are shown to be reasonable further hypotheses concerning gene reg-
ulation can be formulated.

Another question which we would like to answer is if the need and the presence of CRMs in
a genome influence the architecture and structure of the D. melanogaster genome, which is
very compact.

4.2 Methods

To perform a WGS of the Drosophila melanogaster genome we used the pairwise whole
genome alignments accessible at VISTA (Couronne et al., 2003). These alignments were
computed using the software Lagan (Brudno et al., 2003). We downloaded the pairwise
alignments of D. melanogaster with D. yakuba, D. ananassae, D. pseudoobscura and D.
virilis respectively. The pairwise whole genome alignments match the D. melanogaster chro-
mosomes with fragments of the other species. To get four sequences, which represent the
homologues to a complete chromosome we concatenated the fragments into one sequence
and applied CisPlusFinder to D. melanogaster chromosomal sequences downloaded from
NCBI (Benson et al., 2006) using the concatenated homologue sequences parsed out of the
whole genome alignments as informant species. The procedure and the parameters were
exactly the same as described in Chapter 3.

We applied CisPlusFinder to each chromosome separately and analysed the results
separately to get an idea about the consistency of the results.

4.3 Results

4.3.1 Distribution of predicted CRMs along the genome

A biologist expects a meaningful whole genome CRM prediction to result in clusters of CRMs
around genes and long stretches of DNA performing a different function or junk DNA. The
degree of clustering of the predictions is observable when we look at the lengths of sequences
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Table 4.1: Lengths of fragments between predicted CRMs

O(length max(length min(length
chromosome between CRMs) between CRMs) between CRMs
2L 1690.85bp 156,306bp
2L (exons excluded) 1961.29bp 156,306bp
2R, 1811.3bp 265,427bp
2R (exons excluded) 2116.11bp 265,427bp
3L 1923.15bp 1,136,665bp "
3L (exons excluded) 2178.87bp 1,136,665bp P
3R 1726.31bp 983,499bp
3R (exons excluded) 1914.38bp 983,499bp
X 3484.71bp 1,131,842bp
X (exons excluded) 4166.02bp 1,131,842bp

between predicted CRMs. Averages, maxima and minima of the length distribution of
interCRM-distances are given in Table 4.1.

Lunter et al. (2006) compare the distribution of indels along the genome to the geomet-
rical distribution and show that this distribution matches a random distribution of indels
along the genome very well. We assume a random annotation of CRMs to result in the
same distribution as a random annotation of indels. Therefore we expect a geometrical
distribution of the interCRM length in random case. To test this hypothesis we simulated
the random distribution by replacing every predicted region by a single X and shuffling the
sequence of As, Cs, Gs, Ts, Ns and Xs. Then the distances between Xs in the shuffled sequence
were calculated. To compare the random placement of CRMs with a geometrical distribu-
tion, we performed the Kolgomorov-Smirnov-Test. The results are shown in the last two
columns of Table 4.2 and they indicate very clearly that the random distribution matches
the geometrical distribution very well.

The first two columns of Table 4.2 show the Kolgomorov-Smirnov-statistic for the overlap
between the distribution of the predicted CRMs and a geometrical distribution. We can see
that these two distributions deviate significantly from each other as we expected in case of
a meaningful clustered prediction.

To see, if the predicted CRMs are clustered around genes, we computed the correlation
between prediction density and gene density. For this purpose we slided a window of 1Mb
in 500kb steps along the genome and calculated gene and CRM coverage for these windows.
The values are plotted in Figure 4.1. The Pearson-Product-Moment correlation coefficient
between gene density and CRM prediction density is & +0.3. We calculated the significance
of this correlation using a t-test and found that the non-directional probability to find this
correlation coefficient in not correlated data is 0.000006

4.3.2 Genome coverage by CRMs

After we demonstrated that the results of the WGS make sense we estimated the part of the
genome which is responsible for gene regulation. We calculated the coverage of the genome
by predicted CRMs and by found PLUSs. The results are shown in Table 4.3. Information
about the lengths of CRMs and PLUSs are listed in Table 4.4.

Table 4.3 gives an average coverage of the genome by predicted CRMs of 25%. In
Chapter 3 values for the specificity and the PPV of CisPlusFinder are given. If they were
trustworthy, we could calculate the number of false positive predictions and give a corrected
estimation of our prediction. But since we do not know the true annotation of most of the
target regions, we can give a lower boundary and an upper boundary of true CRMs. The
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Table 4.2: Significance of clustering of CRMs

KS-statistic probability  KS-statistic probability
chromosome (real data)  (real data) (randomized) (randomized)
2L 0.165672 0.000000 0.004699 0.989919
2L (exons excluded) 0.146582 0.000000 0.010380 0.358331
2R 0.162417 0.000000 0.008094 0.676163
2R (exons excluded) 0.143028 0.000000 0.009409 0.554876
3L 0.154508 0.000000 0.009584 0.362567
3L (exons excluded) 0.172658 0.000000 0.008253 0.611463
3R 0.183645 0.000000 0.004824 0.948616
3R (exons excluded) 0.147298 0.000000 0.005455 0.902842
X 0.188192 0.000000 0.010567 0.569474
X (exons excluded) 0.166219 0.000000 0.012999 0.399747
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Figure 4.1: Correlation between gene density and CRM density
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specificity on nucleotide level on the HexDiff regions using the new annotation is 25%. If
we conclude that 25% of our predictions are true only 6% of the genome are predicted to
perform regulatory function. Since we do not know the true annotations of the analysed
regions, our lower boundary of the regulatory part of the genome of D. melanogaster is 6%.

To calculate an upper boundary we observe the sensitivity of CisPlusFinder. If we
assume, that we find 96% of all true CRMs the upper boundary for the regulatory part of
the genome of D. melanogaster is 26%.

The amount of coding region within the Drosophila genome is approximately 20%. It
is possible, that the amount of regulatory sequence is of the same size as the amount of
protein coding sequence. Figure 4.1 shows that the CRM prediction density rarely exceeds
0.4. The majority of gene coverage values is larger than 0.4. The gene density grows
approximately three times faster than the more stable prediction density. Even if the gene
coverage corresponds to the CRM coverage the conclusion that the amount of regulatory
DNA for one gene corresponds to its length is probably not true.

4.3.3 Chromosome coverage by CRMs

To observe the consistency of our prediction we analysed every chromosome separately.
Table 4.3 shows the coverage by predicted CRMs respectively for every chromosome. The
results on autosomes are similar to each other. This fact provides further support to our
result. But Table 4.3 also indicates very clearly, that the amount of predicted CRMs on the
X-chromosome is smaller than the amount on autosomes. The amount of the X-chromosome
covered by predicted CRMs is only 54% of the average coverage of the autosomes. In
Table 4.5 we calculate different properties of the chromosomes to explain the difference.

One possible explanation for the lower coverage of the X-chromosomes by predictions
could be a higher substitution rate of the X-chromosome compared to autosomes. Reinhold
(1998) was the first to provide evidence that the X-chromosome has a higher evolutionary
turnover than the autosomes. This idea has been intensely discussed since then. There are
two possible explanations for the increase of the substitution rate in the X-chromosome.

One possible explanation is the lower population size of the X-chromosome compared
to autosomes because of its haploidy in males. The population size of the X-chromosome
is only 3/4 of the population size of autosomes. A smaller population size decreases the
efficiency of purifying selection and therefore leads to an increased substitution rate.

The other theory explaining the higher substitution rate of the X-chromosome is called
the fast-X evolution (Counterman et al., 2003). The fast-X evolution assumes that the
rate of positively selected mutations is higher than the rate of neutral substitutions in the
genome. Because X-chromosomes are haploid in males, advantageous substitutions on the
X-chromosome are carried in the phenotype directly and are fixed more rapidly than on
autosomes.

To test, if the lower coverage of the X-chromosome by CRMs is an effect of a higher
substitution rate, we used the conservation scores calculated using the program PhastCons
(Siepel et al., 2005) downloadable at UCSC (Kent et al., 2002). We averaged the PhastCons-
scores over every chromosome. The results are given in the second column of Table 4.5. The
conservation score of the X-chromosome is in fact 20% smaller than the average autosomal
conservation score. This difference is strong but not sufficient to explain the 46% difference
in coverage of the different chromosomes.

Another explanation for a lower CRM density could be a lower gene density. We cal-
culated the gene densities of the chromosomes and found a lower gene density in the X-
chromosome. The gene density, the gene coverage and the average gene length are given in
Table 4.5 for every chromosome separately. The gene density in the X-chromosome amounts
to 80% of the average gene density in autosomes but the gene coverage adds up to 95% of the
average coverage in autosomes. The average gene length is 15% longer in the X-chromosome
than in the autosomes. To test if the lower amount of genes in the X-chromosome effects the
prediction coverage we calculate the number of predicted CRMs per gene. The number of
predicted CRMs regulating one gene is 77% of the average number of predictions per gene
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Table 4.3: Genome coverage by predicted CRMs

chromosome bp covered % of chromosom bp covered % of chromosom
by CRMs covered by CRMs by PLUS  covered by PLUS
2L 5520339bp 24.64% 841765bp 3.76%
2L
(exons excluded) 4845963bp 21.63% 738208bp 3.19
2R 5054727bp 26.06% 903249bp 4.66%
2R
(exons excluded) 4383366bp 22.60% 668934bp 3.45%
3L 5910440bp 24.86% 938690bp 3.95%
3L
(exons excluded) 5282969bp 22.22% 837093bp 3.52%
3R 7753512bp 27.79% 1227473bp 4.4%
3R
(exons excluded) 7115240bp 25.5% 1119333bp 4.01%
X 3067891bp 13.98% 499301bp 2.25%
X

(exons excluded) 2537541bp 11.42% 408396bp 1.84%

in autosomes. The average number of predictions in intergenic regions adds up to 74% of
the average value in autosomes.

Lower gene density and the higher substitution rate are causing a decrease in prediction
density on the X-chromosome. But we cannot exclude the possibility that additional factors
are influencing the prediction rate.

4.3.4 Correlation between Gene ontologies and CRM density

Nelson et al. (2004) suggest in their publication that long intergenic regions are caused by
the need of a complex regulation of one or both of the neighbouring genes. To support this
hypothesis they showed results which we reproduce in Figure 4.2, where they correlated GO
(gene ontology) terms with the length of the adjacent intergenic regions of D. melanogaster
and Cliona intestinalis. If their hypothesis is true we would expect an enrichment of CRM
predictions in long intergenic regions. To test this we calculated the average length of inter-
genic regions with predictions and compared this value to the average length of intergenic
regions of the whole chromosome in Table 4.6. CRMs tend to be predicted in intergenic re-
gions which are between 4 and 5 times longer than the average intergenic regions. This result
supports the theory that long intergenic regions are essential for the Drosophila organism
to regulate the genes expressed in complex expression patterns.

As a second approach to support or reject the hypothesis that intergenic regions are
hosts of CRMs we downloaded all genes whose functional annotations contained the GO
terms used by Nelson et al. (2004) from flybase (Grumbling et al., 2006). The considered
GO terms and their identification numbers are listed in Table 4.7. To see, if the trend shown
in Figure 4.2 is consistent with the current GO annotation we calculated the mean length
of the intergenic regions per gene. The intergenic regions of one gene include the complete
upstream region starting at the end of the previous gene, the downstream sequence ending at
the start of the following gene and all introns. The mean intergenic length for the GO terms
used by Nelson et al. (2004) are shown by the white bars in the background of Figure 4.3.
The black bars in Figure 4.3 show the mean number of bp covered by CRMs per gene for
the different GO terms. For this value the length of all CRMs between the stop codon of
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Table 4.4: Lengths of predicted CRMs
chromosome number @(CRM length) number @(PLUSlength)

of CRMs of PLUSs

2L 8799 627.38bp 68479 12.29bp
2L

(exons excluded) 7930 611.09bp 60091 12.28bp
2R 7912 638.87bp 74723 12.09bp
2R

(exons excluded) 7090 618.25bp 55352 12.09bp
3L 9239 639.73bp 77029 12.19bp
3L

(exons excluded) 8443 625.72bp 68252 12.26bp
3R 11653 665.37bp 100988 12.15bp
3R

(exons excluded) 10842 656.27bp 91616 12.22bp
X 5494 558.41bp 42138 11.85bp
X 4723 537.27bp 34266 11.92bp

(exons excluded)

the upstream gene and the transcription start site of the downstream gene are summed up
and the average value of all genes of one GO term is calculated.

The general trend in our new results using current GO annotations is consistent with
the results of Nelson et al. (2004). The intergenic length surrounding the genes performing
functions which do not require complex regulation (“ribosomal constituent”, “general tran-
scription factors”) are neighbouring shorter intergenic regions than the genes performing
functions requiring a very complex gene regulation (“receptors”, “embryonic development”,
“cell differenciation”, “specific transcription factors”, “pattern specification”). The results of
genes involved in “metabolism” are not consistent. According to the current GO-annotations
the length of intergenic sequences adjacent to genes performing metabolic functions is nearly
as long as the mean intergenic length of genes involved in embryonic development (white
bars in Figure 4.3). According to the annotation of Nelson et al. (2004) this length was
nearly as short as the length corresponding to “ribosomal constituent” (Figure 4.2).

The black bars of Figure 4.3 show a higher consistency with Figure 4.2. The mean length
of regulatory sequence regulating one gene differs for different GO terms. The longest reg-
ulatory sequences regulate genes performing “pattern specification”. For GO terms which
are correlated to simple expression patterns “ribosomal constituent”, “general transcription
factors” and “metabolism” the mean length or regulatory sequence is smaller than 5.3kb.
“Receptor” genes and genes involved in “embryonic development” are regulated by approx-
imately 10kb. The mean length of regulatory sequences regulating genes involved in “cell
differenciation”, “specific transcription factors” and “pattern specification” is between 15kb
and 30kb.

Another result is shown in Figure 4.4. It shows the amount of bp in the intergenic regions
which are predicted to perform regulatory function. Except for the two outliers “metabolism”
and “ pattern specification” the amount of regulatory sequence is steady in the intergenic
regions. The prediction density is not dependent on the length of the intergenic region or
the GO term of the neighbouring genes.

But since we know that the absolute number of basepairs involved in regulation of genes
with a more complex expression pattern is higher than the number of basepairs involved
in regulation of a gene with a simple expression pattern, we have to ask ourselves, if this
causes the difference in prediction density of the chromosomes. To test this we grouped the
genes of different GO terms according to the chromosomes where they are positioned. The
numbers are given in Table 4.8. According to the lower prediction density of chromosome X
we would expect a lower amount of genes of complex expression pattern on this chromosome.



Table 4.5: General properties of the chromosomes;

This table lists some of the general properties of the chromosomes of Drosophila melanogaster. inter is used as an abbreviation of the word intergenic.
74t (inter CRMs)/# (inter regions)” stands for the number of CRMs predicted in intergenic regions divided by the total number of intergenic regions of
the chromosome.

gene density coverage average #(coding bp) #(inter CRMs)/ #(inter CRMs) / #(all CRMs)/
chromosome PP-score  (gene/bp) by genes (%) genelength (bp) per gene #(inter regions  Finter with pred #genes
2L 0.46 1.23 %1074 o8 4742 852 1.45 5.76 3.20
2R 0.46 1.45 %1074 62 4302 756 0.99 4.42 2.63
3L 0.47 1.19 %1074 60 4991 880 1.99 8.24 3.26
3R 0.48 1.28 x 1074 61 4773 814 1.61 6.83 3.27
X 04 1.05% 104 57 5413 916 1.11 4.99 2.37
average 0.45 1.24 x 1074 60 4844 843.6 1.43 6.05 2.95
X 0.86 0.82 0.95 1.15 1.11 0.74 0.79 0.77

avg(autosome)
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Table 4.6: Length of intergenic regions hosting CRM predictions compared to the average
intergenic length of one chromosome

chromosome length length intergenic with
(intergenic (all prediction /
with prediction) intergenic)  all intergenic
2L 11399 3414 3.34
2R 9836 2591 3.80
3L 17216 3386 5.08
3R 11625 3058 3.80
X 17865 4152 4.30
average 13594 3320 4.06
X /avg(autosome) 1.43 1.33 1.07
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Figure 4.2: Correlation between gene ontologies and the length of the intergenic regions
neighbouring these genes

Table 4.9 shows the ratio
Z genes with complex expression patterns/ Z genes with simple expression patterns

for every chromosome. This ratio is not significantly different in the X-chromosome from
the ratios in the other chromosomes. The chromosome where this rate is clearly lower is the
autosome 2L. But we cannot find a lower prediction density in this chromosome.

4.3.5 Genomic context of predicted CRMs

Another question we address here concerns the genomic context of our predictions. In Sec-
tion 4.3.1 we analyse the predicted CRMs without respect to their genomic context. In
this section we want to observe the genomic context of our predictions. We classified all
predicted CRMs according to their position into the classes “intergenic”, “intron”, “start”,
“stop”, “gene”, “exon”, “acceptor”, “donor” and “inexon”. “intergenic” and “intron” con-
tain CRMs which do not overlap any coding sequence. CRMs in the groups “start” and
“stop” overlap boundaries of genes. CRMs which are classified into “gene” or “exon” cover a
complete gene or complete exon, respectively. “Acceptor” and “donor” mean that the CRMs
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Table 4.7: assignment of GO numbers to GO terms

GO-number GO-term
0003704 specific RNA polymerase transcription factors
0004872 receptor activity
0008152 metabolism
0016251 general Polymerase II TF
0003735 structural constituent of ribosome
0007389 pattern specification
0009790 embryonic development
0030154 cell differenciation

Table 4.8: Number of genes of GO terms on the different chromosomes; the genes were
downloaded from flybase (Grumbling et al., 2006).

chromosome GO:
0003704 0004872 0008152 0016251 0003735 0007389 0009790 0030154
2L 13 19 19 14 29 1 4 2
2R 13 17 16 10 25 1 7 2
3L 8 18 16 12 25 1 8 0
3R 18 19 23 16 39 4 6 6
X 10 22 23 10 22 2 7 2

Table 4.9: Number of genes of complex and simple expression profiles on different chromo-
somes
chromosome ) complex expression pattern ) simple expression pattern ratio

2L 39 62 0.63
2R 40 51 0.78
3L 41 53 0.77
3R 63 78 0.81

X 43 55 0.78
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in these groups overlap the acceptor or donor of an exon. Predicted CRMs are classified as
“inexon”, if they are completely positioned within one exon. The results of this grouping
are given in Table 4.10 and 4.11.

The most peculiar result is the fact that there are still “inexon”-predictions, when all
PLUSs overlapping annotated exons are deleted. This happens, because of inconsistent
annotations which are caused by alternative splicing or annotation errors. To mask out
PLUSs overlapping exons the first annotation of CDS (coding sequence) is taken. Other
overlapping annotations of CDS are disrespected. To calculate the genomic context of a
CRM we test if it overlaps with any exon. For this reason it might be the case that we do
not mask out all PLUSs contained in exons but keep them, if the exons they overlap are
alternatively spliced.

Another result is that these results are consistent for all five chromosomes. We do not
see any extreme outlier values in Table 4.11. This fact backs up our results and we can
assume that the distribution of CRMs across the different groups describing the genomic
context is true. If we assume this and partition the dataset into CRMs overlapping coding
regions and CRMs that are completely located in intergenic regions we find that 26.26% of
the CRMs overlap with coding regions, if we do not discard PLUSs from coding regions.
But even, if we discard PLUSs from coding regions still 18.09% of CRMs overlap exons.
The remaining 81.09% are completely positioned in noncoding sequence meaning intronic
or intergenic sequence.

In prokaryotes and yeast CRMs are mainly positioned upstream of a gene. The fact that
many downstream CRMs are known and experimentally verified in D. melanogaster arises
the question, if there is a tendency of CRMs to be upstream or downstream of the regulated
target gene in D. melanogaster. We tried to address this question by grouping the CRMs and
the intergenic regions which contain predicted CRMs according to the orientation of their
adjacent genes. This grouping is explained in Figure 4.5 and the results are summarized in
the Tables 4.12 and 4.13. The first number in each cell describes the number of CRMs in
the addressed group of intergenic regions. The parenthesized numbers are the total number
of intergenic regions containing predictions with adjacent genes of the described orientation.

To declare a tendency towards a relative position of CRMs to the regulated target genes,
we expect a clear difference between the amount of CRMs in the divergent group and the
amount of CRMs in the convergent group. An optimal example result would be |divergent| >
[tandem — reverse| = |tandem| > |convergent|. As Table 4.13 clearly shows we cannot find
any tendency of the CRMs to be more likely upstream than downstream of any gene and
we assume that there is no preference against one or the other model.

We compared the number of CRMs and the number of intergenic regions to ensure that
our result is not caused by the total number of intergenic regions of these groups in the
D. melanogaster genome. If we did not calculate the number of intergenic regions of the
groups a high amount of tandem-reverse-CRMs could be caused by the fact, that many more
tandem-reverse-intergenic regions contain CRMs. But the consistency of ratios represented
in Table 4.13 shows that this is not the case. To confirm this we calculated the average
number of predicted CRMs per intergenic region with predictions in every group and for
every chromosome and show these results in Table 4.14. Our result remains consistent.
These data show a weak but insignificant trend of CRMs to be positioned upstream of a
gene.

To prove that no tendency can be found in our data we need to exclude one more
possibility to explain our result. Another way of explaining our result is a bias in the
grouping of all intergenic regions of D. melanogaster. If D. melanogaster has a high amount
of intergenic regions of the convergent-group in its genome, the fact that this is not reflected
in the amount of convergent-regions containing CRM predictions would be very striking.
For this reason we calculated the average number of CRM-predictions per intergenic regions
in the genome for each group separately. As Table 4.15 shows no significant tendency can
be found here either.



68 Whole Genome Scan

Table 4.10: Genomic context of CRM predictions (absolute number of CRMs in relative
position to a gene); CRMs are grouped according to their genomic context. The terms
describing the groups are explained in the text.

chromosome inter- intron start stop gene exon donor acceptor inexon
genic

2L 3990 2298 495 460 0 353 248 575 391
2L

(exons excluded) 3989 2308 371 346 0 211 194 401 120
2R 2978 2304 478 495 0 435 225 628 358
2R

(exons excluded) 2990 2310 402 405 0 28 182 436 118
3L 4654 2485 319 304 0 602 224 358 296
3L

(exons excluded) 4659 2495 260 252 0 300 161 236 84
3R 5737 3361 405 367 0 706 287 485 297
3R

(exons excluded) 5752 3373 337 313 0 398 214 345 112
X 2578 1395 171 147 0 368 192 347 298
X

(exons excluded) 2552 1376 120 105 0 177 103 196 98

Table 4.11: Genomic context of CRM predictions (amount of CRMs in relative position to
a gene). The terms describing the groups are explained in the text.

chromosome inter- intron start stop gene exon donor acceptor inexon
genic

2L 0.45 0.26 0.05 0.06 0 0.04 0.03 0.07 0.04
2L

(exons excluded)  0.50 029 0.04 0.06 0 0.03  0.02 0.05 0.02
2R 0.38 0.29 0.05 0.08 0 0.05 0.03 0.08 0.05
2R

(exons excluded)  0.42 0.33 0.04 0.07 0 0.03 0.03 0.06 0.02
3L 0.50 0.27 0.03 0.04 0 0.07  0.02 0.04 0.03
3L

(exons excluded) 0.55 030 0.03 0.03 0 0.04 0.02 0.03 0.01
3R 0.49 0.29 0.03 0.04 0 0.06 0.02 0.04 0.03
3R

(exons excluded)  0.53 0.31 0.03 0.03 0 0.04 0.02 0.03 0.01
X 0.47 0.25 0.03 0.03 0 0.07  0.03 0.06 0.05
X

(exons excluded) 0.54 029 0.02 0.03 0 0.04 0.02 0.04 0.02
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divergent
tandem-
reverse

convergent

Figure 4.5: Illustration of the grouping of intergenic regions; divergent means that the
two adjacent genes to the intergenic regions are oriented with the startcodon towards the
intergenic region. tandem-reverse means that the gene upstream of the intergenic region is
positioned with the startcodon towards the intergenic region and the downstream gene points
the stopcodon in the direction of the intergenic region. tandem means that both adjacent
genes are expressed on the forward strand and convergent means that the upstream and
downstream gene point their stopcodon towards the described intergenic regions.

Table 4.12: absolute number of CRMs in four groups of intergenic regions. The regions are
grouped by the orientation of the surrounding genes. An explanantion of the group labels
is given in Figure 4.5

chromosome divergent tandem-reverse tandem convergent

2L 1338 (195) 690 (141) 818 (160) 1144 (197)

2L (exons excluded) 1340 (198) 682 (139) 817 (161) 1150 (198)
2R 855 (176) 689 (145) 621 (159) 813 (194)

2R (exons excluded) 861 (180) 688 (146) 625 (159) 816 (193)
3L 1124 (181) 1476 (186) 1027 (143) 1027 (177)

3L (exons excluded) 1126 (180) 1480 (187) 1027 (143) 1026 (177)
3R 1598 (230) 1395 (222) 1325 (181) 1419 (207)

3R (exons excluded) 1604 (232) 1402 (224) 1326 (182) 1420 (208)
X 634 (132) 760 (146) 480 (109) 704 (130)

X (exons excluded) 636 (134) 761 (147) 480 (108) 675 (128)

Table 4.13: Number of CRMs in four groups of intergenic regions relative to the total
number of CRMs or intergenic regions on the chromosome. The regions are grouped by the
orientation of the surrounding genes as in Table 4.12

chromosome  divergent tandem-reverse tandem convergent
2L 0.34 (0.28 0.17 (0.20 0.21 (0.23) 0.29 (0.28
2R 0.28 (0.26 0.23 (0.22 0.20 (0.24) 0.27 (0.29

) ) ) )
(0.26) (0.22) (0.24) (0.29)
3L 0.24 (0.26)  0.32 (0.27)  0.20 (0.21) 0.22 (0.26)
3R 0.28 (0.27)  0.24 (0.26)  0.23 (0.22) 0.25 (0.25)
X 0.25 (0.26)  0.29 (0.28)  0.19 (0.21)  0.27 (0.25)
average  0.27 (0.27)  0.25 (0.25)  0.21 (0.22) 0.27 (0.27)
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Table 4.14: Number of predicted CRMs per intergenic regions with prediction. Standard
deviations are given in parentheses.

chromosome  divergent  tandem-reverse tandem convergent

2L 6.86 (8.68) 4.89 (5.56) 5.11 (5.81) 5.81 (8.70)

2R 4.86 (8.11) 4.75 (5.15) 3.91 (5.06) 4.19 (7.76)

3L 6.21 (8.32) 7.94 (12.4) 7.18 (8.86) 5.80 (8.42)

3R 6.95 (10.43) 6.28 (7.79) 7.32 (10.24) 6.86 (11.0)

X 4.80 (4.81) 5.21 (6.37) 4.40 (4.76) 5.42 (4.89)
average 6.07 5.96 5.68 5.63

Table 4.15: number of predicted CRMs per intergenic region

chromosome  divergent tandem-reverse tandem convergent

2L 1.77 (5.33) 1.17 (3.46) 1.24 (3.55) 1.51 (4.70)

2R 1.08 (4.33) 0.94 (3.00) 0.88 (2.90) 1.03 (3.27)

3L 1.53 (4.89) 2.26 (7.37) 1.45 (5.28) 1.39 (4.70)

3R 1.66 (5.88) 1.74 (4.98) 1.37 (5.66) 1.47 (5.06)

X 1.01 (2.94) 1.37 (4.08) 0.94 (2.78) 1.12 (2.60)
average 1.43 1.51 1.25 1.59

4.3.6 The distance between a CRM and the regulated target gene

Another question concerning gene regulation regards the distance between a CRM and its
regulated gene. For D. melanogaster Ochoa-Espinosa et al. (2005) assume that all CRMs
regulating a target gene are positioned within 20kb upstream of the transcription start site
and 20kb downstream of the stop codon. We are not aware of other estimates of this distance
in D. melanogaster.

To measure the distance between the predictions and the closest genes the distances
between the mid-points of the predicted CRMs and the closest genes are calculated. Only
predictions which are positioned completely within an intergenic region are considered.

Figure 4.6 shows that most of the predicted CRMs are positioned closely to genes. To
get a clearer picture the distances of a CRM to the closest genes were grouped according
to their lengths. The result of this analysis is shown in Figure 4.7. The mid point of 51%
of the predicted CRMs is positioned within a 5000bp distance from the closest gene. 90.7%
of all predicted CRMs are found within 20kb around a gene. 3% of the predictions have a
distance higher than 30kb from the closest gene.

Figure 4.1 shows that CRMs are more likely to be predicted near genes than in genomic
regions of low gene density. To see, if CRMs are more likely to be positioned in a certain
part of the intergenic region we calculated the relative distance of CRMs to the nearest
gene. For this purpose the distance between the mid point of a predicted CRM and the
start or stop codon of the nearest gene is calculated and this value is divided by the length
of the intergenic region. The result of this analysis is shown in Figure 4.8. We cannot detect
any preference to any relative position within the intergenic region. CRMs are as likely
to be predicted in the middle of intergenic regions as they are near the edges of intergenic
regions. The drop of the curve towards the relative distance “0” is caused by the fact, that
we observed exclusively intergenic regions. Predictions which have their midpoint very close
to a gene are likely to overlap the gene.

4.4 Discussion

We analysed the results of the WGS considering two questions. One question was, whether
CisPlusFinder is applicable to a complete genome. The other question concerns conclusions
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Figure 4.6: Number of occurrences of absolute distances between CRM and the regulated
gene
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Figure 4.7: Distance between CRM and the regulated target gene; The distances are grouped
into 6 groups (0-5000, 5000-10000, 10000-15000, 15000-20000, 20000-25000, 25000-30000)



72 Whole Genome Scan

8

8

8

8

8

total number of CRMsin relative distance to the closest gene

| | |
0.1 0.2 0.3 0.4 05
realtive distance to closest gene

(=}

o

Figure 4.8: Number of occurrences of relative distances between CRM and the regulated
gene

which can be drawn from a global survey of regulatory sequences.

Acceptance of prediction

In Chapter 3 the method CisPlusFinder was tested on different sets of experimentally
verified CRMs and was shown to be a very valuable predictor of regulatory function within
short genomic sequences. In Section 4.3.1 we showed that the prediction of CisPlusFinder
of the whole genome of D. melanogaster can be regarded as meaningful. Predictions are
nonrandomly distributed along the sequence and their density is significantly positively
correlated with gene density. The proportion of predicted sequence is roughly constant on
the autosomes and the average length of the prediction is within the expected range between
500bp and 1000bp. The average length of PLUSs is approximately 12.5, the average length
of a TFBS calculated by Bilu & Barkai (2005) (see Table 4.4).

Prediction coverage on the X-chromosome

In Section 4.3.3 we noticed a difference in the prediction density of the X-chromosome
compared to the autosomes. We find that the effect can be explained by a combination of
a higher substitution rate and a lower gene density. But 14% weaker sequence conservation
are unlikely to cause 23% less CRMs per gene. To elucidate this we suggest one of the
following explanations.

e Assuming a higher neutral substitution rate of the X-chromosome because of the
smaller population size of this allosome guides us to the following explanation. 57% of
the X-chromosome are covered by genes. The higher evolutionary turnover is mainly
measured in intergenic regions, because substitutions in genes are less likely to be neu-
tral. When we assume that the conservation scores for the regions covered by genes
are similar, the difference in substitution rates has to be higher in intergenic regions
than in average along the whole genome and can probably cause the found difference
in prediction density.
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o If we assume the fast-X evolution, introduced by Counterman et al. (2003), we expect
most substitutions to be functional. The difference in substitution rate is higher within
coding regions than in noncoding regions and the assumption in the last item is wrong
under this explanation. But, if we assume that most substitutions are functional, we
expect a very high turnover of TFBS concentrated on sites, which change the affinity
of the TFBS to the binding transcription factor. If this assumption is true it is very
clear, that TFBS are less likely to cause the occurrence of PLUSSs in the X-chromosome.
This presumption would explain our result as well.

Since it is not known whether the higher substitution rate of the X-chromosome is caused
by a higher rate of neutral or functional substitutions we tried to support one of the hy-
potheses with our result. As explained above the CRMs predicted by CisPlusFinder can
be explained by and support both theories in the same way and we cannot draw further
conclusions.

The correlation between the function and the complexity of the regulation of a
gene

Section 4.3.4 follows up on an idea introduced by Nelson et al. (2004). They found a very
clear relationship between the GO terms assigned to a gene and the lengths of the intergenic
regions adjacent to the gene or introns within the gene (Figure 4.2). Based on this result
they stated that the length of these noncoding regions is necessary within the genome to
host the modules which perform the complex regulation of these genes.

We found evidence which supports their hypothesis. We confirm their trend using current
annotations and find a stable amount of regulatory sequence in intergenic regions indepen-
dent on the length of the intergenic region or the GO term of the gene. This gives evidence
that CRMs need this amount of DNA to code their function and cannot be compressed.
Figure 4.1 indicates as well that an upper limit for the density of CRMs exist. We believe
that the need of complex gene regulation influences the genome architecture and cause long
intergenic regions which are still believed to be nonfunctional by many scientists.

Predicted CRMs and their genomic context

In prokaryotes and yeast most sequences involved in gene regulation are located upstream
of the regulated gene. Some rare cases are known where transcription factor binding sites
are located downstream of the transcription start site. According to this we expect to find a
tendency of CRMs in D. melanogaster to be positioned upstream of the gene they regulate.
This trend would be found by the classification of CRMs in intergenic regions as it was
done in Section 4.3.5. Surprisingly no trend was found in our data. This fact supports
the assumption that an increase in the complexity of gene regulation accompanied the split
between simple organisms such as prokaryotes and yeast and more complex organisms such
as D. melanogaster.

Distance between CRMs and their target gene

To estimate the physical distances between CRMs and the gene they regulate, we calculated
the distances between the mid points of the predictions and the start or stop of the closest
gene. We found that most of the predictions were positioned within a 20kb distance around
the gene.

The maximal distance we could find between the mid point of a CRM and the closest
gene is 125100bp. This distance is much higher than expected and can be explained in
different ways. One explanation is that predictions with such a large distance to the closest
gene are false positive predictions and no functional CRMs. Another possible explanation is
that the chromatin structure of the DNA between the CRM and the closest gene connects
the gene and the CRM to enable their interaction. The structure of the DNA between a
CRM and its gene could also be regulated by binding proteins and this could be a further
mechanism of transcriptional regulation.
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If we assume that this prediction is not caused by a functional CRM, the finding of se-
quence conservation within an intergenic region of this length remains. If a cluster of PLUSs
is found in such a big distance from the gene the probability that this sequence performs a
function is very high. This function could be distinct from transcriptional regulation. The
finding of functional sequence in the middle of extremely long intergenic regions remains
surprising.

Sequence conservation and regulatory function

The regions located by CisPlusFinder are characterized by sequence conservation and sta-
tistical properties of the DNA. Sequence conservation is generally seen to be a signal of
functional DNA (Loots et al., 2000, Bergman & Kreitman, 2001, Boffelli et al., 2003, Frazer
et al., 2004, Johnson et al., 2004, Woolfe et al., 2004). Despite protein coding genes and tran-
scriptional regulation other functions of genomic DNA are known, e.g. non coding RNAs,
origins of replication, regulation of alternatively spliced exons and introns and the definition
of recombination hot spots.

CisPlusFinder tries to exclude these regions by excluding PLUSs whose length exceeds
the length of a TFBS significantly (Chapter 3) and requiring overrepresentation of a core
motif. But we cannot exclude the possibility that we find regions, which are conserved
because of functional constraints different from transcriptional regulation. Especially bi-
ological processes requiring the binding of proteins might misguide our method. A more
detailed analysis of other possible functions of our predictions is a challenging task for the
future.

Summarizing we note that a WGS with CisPlusFinder is possible. This WGS indicates
that the method can be extended from the analysis of short intergenic regions to a large
scale application. Many results of the WGS correspond to the expectations. Therefore
we can assume with a high level of confirmation that the straight forward application of
CisPlusFinder to a complete genome leads to a reasonable prediction which allows to draw
conclusions about general rules of transcriptional regulation.

The most striking result of the WGS is the great relevance of transcriptional regulation
for the complex multicellular organism D. melanogaster. We found further evidence for
the idea that regulatory function influences genome architecture which was believed to be
determined by random genome duplications, insertions and deletions. This result is another
signal of the dense packing of the Drosophila genome caused by the high rate of DNA loss
reported by Petrov & Hartl (1998).

Another aspect which is made clear by this WGS is that the difference between simple
organisms like prokaryotes and yeast and a complex organism like D. melanogaster is ac-
companied by an increase in complexity of transcriptional regulation. The high complexity
of gene regulation has been detected in embryonic development. It is crucial to organize the
complex anatomy of D. melanogaster. This complex gene regulation requires CRMs which
are located upstream or downstream of the gene. We can assume that the DNA between
a CRM and the regulated gene has certain properties concerning structure and bendability
but cannot make any further assumptions about it at this stage.

The occurrence of predictions in great distance from the closest gene are signals of se-
quence conservation within regions where it was completely unexpected. This fact combined
with the high loss of DNA within the Drosophila group supports the idea that the nonfunc-
tional part of the genome of D. melanogaster is very small.
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Conclusion and Perspectives

At the beginning of this thesis the aim was to develop a computational method to identify
CRMs which can be applied to a complete genome. In Chapter 2 we present the method
Shureg, which uses exclusively information from the analysed sequence itself and is therefore
applicable to any sequence from any species. The accuracy of this method is quite low and
cannot be improved at the current data status without using additional information.

Additional information which is not specific to certain genes or groups of genes and which
is available for many sequences can be obtained from sequence comparison between different
species. For this reason we developed the method CisPlusFinder, described in Chapter 3,
which searches for conservation patterns, that are caused by regulatory function. We applied
and evaluated CisPlusFinder on experimentally verified CRMs from D. melanogaster. It
is hard to measure the performance of a method with the current data status, but the
predictions of CisPlusFinder seem to be trustworthy and the number of missed CRMs is
very low.

In Chapter 4 we applied the method CisPlusFinder to the whole genome of D. melano-
gaster and acchieved results that allows us to formulate new hypotheses concerning tran-
scriptional regulation. We used D. yakuba, D. ananassae, D. pseudoobscura and D. virilis as
informant species. The finding of a CRM by this application of the method means that the
found CRM contains at least three TFBS which are perfectly conserved through all these
species beyond a significant length.

Conservation of gene regulation on transcriptional level

Emberly et al. (2003) state that TFBS are significantly conserved between D. melanogaster
and D. pseudoobscura but that this conservation is not much greater than by chance. Der-
mitzakis & Clark (2002) find a very high evolutionary turnover rate within TFBS between
human and rodent species. The reasonable performance of CisPlusFinder shows that
the process of transcriptional regulation of most genes is conserved within the Drosophila
species. We show in Section 3.4.4 that one third of the known TFBS are shown to be highly
conserved.

These statements do not contradict each other. The fact that CRMs cause a sufficient
number of PLUSs does not require that all TFBS are perfectly conserved. The number
of TFBS which are perfectly conserved by selective pressure or by chance need to be high
enough to cause the demanded number of PLUSs. Those TFBS which do not cause PLUSs
might undergo a high turnover.

Regarding the assumptions that only few substitutions within a TFBS change its affin-
ity to the binding transcription factor and that even the change of the binding affinity is
not lethal in most cases the conservation rate of TFBS is still higher than expected. One
reason might be the fact that bound transciption factors protect the DNA from factors that
advance substitutions. Another reason might be that most nonlethal substitutions within
TFBS are negatively selected. The effect of negative selection is much bigger in species
of a high population size like D. melanogaster than in species of small population size like
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most mammals. The probability of a substitution that compensates the disadvantageous
substitution is very small and the disadvantageous allele might be removed from the popu-
lation before the balancing substitution has happened. This explains also the comparatively
high turnover within mammals reported by Dermitzakis & Clark (2002). The population
size of mammals is drastically smaller than the population size of fruit flies. Substitutions
which are weakly negatively selected remain in the mammal populations much longer than
in Drosophila population and the probability that they are compensated by a balancing
substitution is bigger in mammals.

Relevance of the complexity of transcriptional regulation for D.melanogaster

We described already that the high conservation of gene regulation within the rapidly evolv-
ing Drosophila species is surprising. This is a first hint that the process of gene regulation
is of very high relevance for fruit flies. Our analysis brought up more results indicating this
idea.

CRMs regulating the genes of D. melanogaster do not show any preference to a relative
position to the regulated gene. They occur as likely upstream as downstream. Also a
tendency towards a certain relative distance to the gene could not be observed. These
findings present a drastic difference between simple organisms and species of high complexity.
Simple species locate the complete DNA necessary to perform regulatory function upstream
of the DNA and the amount of DNA which is necessary to regulate one gene is rarely
longer than several hundred basepairs. In D. melanogaster 49% of all CRMs are found to
be located more than 5kb distant from the gene they regulate. In mammals the maximal
distance between a CRM and the gene it regulates is believed to be even longer. The
absolute amount of sequence to host the regulatory modules increases with the complexity
of the organism. The extension of a very specific, highly complex mechanism to regulate
the transcription to most of the genes accompanied the split of complex species from simple
species like prokaryotes and yeast. This step seems to be combined to the introduction of
multicellular organisms which assign every cell to a certain tissue.

Another hint for the extremely high relevance of transcriptional regulation is the sup-
port of the theory that transcriptional regulation shapes genome architecture. This theory
was introduced by Nelson et al. (2004) and we could find further evidence supporting it.
This theory reveals that long intergenic regions are protected against the high DNA loss
in Drosophila melanogaster, because they perform regulatory function. We found that long
intergenic regions adjacent to genes which are expressed in complex patterns are hosts of
CRMs. The fact that the CRM coverage is stable in short and long intergenic regions
indicates that there is a maximal coverage by CRMs which cannot be exceeded without
disturbing the function. Given this evidence we assume that these long intergenic regions
are necessary to host all required CRMs and a loss of them is lethal for the fruit fly.

This work gives strong evidence that the increase in genome complexity which is cor-
related to an increase of the complexity of organisms is mainly caused by an increase in
complexity of gene regulation. The mechanism used by higher organisms to regulate gene
expression occupies a large amount of non coding DNA in D. melanogaster. Regulatory
processes have been well maintained and probably improved through evolution. By now we
can have only an idea about the relevance of transcriptional regulation for one species or
the evolution. Further projects in the future will probably provide further evidence to the
immense weight of transcriptional regulation.

Sequence conservation in intergenic sequences

Another result of this thesis is the finding of sequence conservation within very long inter-
genic sequences. Figure 5.1 shows different conservation measures for an intergenic sequence
of length 251418bp. CisPlusFinder predicts CRMs in this region whose distance to the
closest gene is much higher than expected. The maximal distance of a CRM within this
intergenic region to the closest gene is 125100bp. These CRMs are not experimentally tested
yet and the occurrence of sequence rearrangements decreases the trust in this predictions.
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alignment fragments within a conserved intergenic region, which is 251418bp long. This
graphic was generated using the UCSC Browser (Kent et al., 2002) http://genome.ucsc.edu/.
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Figure 5.2: Phylogenetic tree of different plants; Red dots represent whole genome duplica-
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Source: Lockton & Gaut (2005)

But the fact that the finding of sequence conservation between different species is consis-
tent between different methods supports the idea that some function is associated to this
intergenic region.

Predictions of CisPlusFinder are also found in regions, where PhastCons does not
indicate sequence conservation between D. melanogaster and all informant species. This
points to a conservation structure which corresponds to the conservation structure of CRMs.
Rather short motifs have to be perfectly conserved within an environment of low sequence
conservation. Assumptions about the function would be guesses at this moment. We have
to wait until further experiments are done to develop an idea about the incidents in this or
other long, well conserved intergenic regions.

Extending CisPlusFinder to other species

We state in Chapter 3, that the method CisPlusFinder is easily extendible to other species,
if enough species in appropiate evolutionary distance are sequenced. The extension of
CisPlusFinder for the application to different species would be very helpful for the clarifica-
tion of their transcriptional regulation. To test, if our statement proves true, we planned to
apply CisPlusFinder to Arabidopsis thaliana, a small flowering plant and a model organism
in plant genetics.

Figure 5.2 shows a tree of different plant species. Some of them are completely sequenced.
For the other species whole genome sequences will be available in the near future. Every
red dot in Figure 5.2 represents a whole genome duplication. For the purpose of applying
CisPlusFinder we need to chose informant species, where no genome duplication happened
since the split between them and A. thaliana. After a whole genome duplication genes as
well as the regulation of genes are free to undergo functional substitutions as long as one of
both gene copies ensures its functionality. The probability of one or multiple TFBS causing
a PLUS is arbitrarily reduced in this case.

Figure 5.2 shows that no appropriate informant species for A. thaliana is completely se-
quenced at the moment. To test the applicability of CisPlusFinder to A. thaliana in cases,
where enough appropriate informant species are sequenced we analysed one very well ex-
plored gene, the chalcone synthase. Koch et al. (2000) identified a region which is involved in
the transcriptional regulation and obtained sequences for this region from 15 species within
the Arabidopsis and Arabis family and one outgroup from the family of Brassicaceae. The
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Figure 5.3: Alignment of a regulatory region of the chalcon synthase from A. thaliana and 14 informant species; The arrows and red boxes show TFBS
causing PLUSs.
The alignment is taken from Koch et al. (2000).
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Figure 5.4: Phylogenetic tree of human, mouse, rat, chicken and pufferfish based on non-
conserved regions and created with PhastCons (Siepel et al., 2005) based on a multiple
alignment using Multiz (Blanchette et al., 2004)

Source: Siepel et al. (2005)

alignment of the homologue sequences of all species is shown in Figure 5.3. We applied
CisPlusFinder to the set of 15 species from species belonging to the Arabidopsis and Ara-
bis family. We could detect the motifs, which are marked with red boxes as PLUSs of
significant length. This result gives some confidence that the application of CisPlusFinder
combined with the sequencing of closely related species of A. thaliana could help in discov-
ering transcriptional regulation in plants.

Another set of species where the unravelling of transcriptional regulation is a big goal
is formed by mammals. Figure 5.4 shows the phylogenetic tree of humans, rodents, chicken
and pufferfish. The comparison of this tree and the tree of the Drosophila species shown in
Figure 3.5 brings up a striking difference. The substitution rate between the phenotypically
very different mammals Homo sapiens and Mus musculus is approximately equal to the sub-
stitution rate between the phenotypically closely related Drosophila species D. melanogaster
and D. ananassae.

This fact complicates the analysis of mammals. Many species need to be included to
acchieve the required evolutionary distance between the target species and the informant
species. The inclusion of every additional species can effect that a CRM cannot be detected
any more, because it is not present in the added species.

As a first approach to test CisPlusFinder on mammalian sequences we applied it to
a test set of human using the informant species mouse, dog, cow and opossum. 131 ex-
perimantally verified CRMs were downloaded from the database ORegAnno (Montgomery
et al., 2006). The results are shown in Table 5.1. The sensitivity of CisPlusFinder applied
to mammals is very low in comparison to the results in Drosophila. The transcriptional
regulation seems to be less conserved between mammals even when the substitution rate is
decreased. To extend CisPlusFinder in a way that it can be applied to mammals requires
some modifications of the method. The requirement of perfectly conserved TFBS is proba-
bly too strong within this species group. The allowance of mismatches will cause many false
positive predictions, because of the low substitution rate between the species. Pennacchio
et al. (2006) prove experimentally the regulatory function of highly conserved regions of H.
sapiens. We can conclude from their analysis that regulatory function can cause a very
strong conservation signal within mammals, if the function is conserved. The close exam-
ination of these cases could lead to new insights into the conservation of mammalian gene
regulation.

Table 5.1: Accuracy of CisPlusFinder applied to sequences of H. sapiens

SN(CRM) PPV(CRM) SP(nuc.) SN(nuc.) PPV(nuc.) hit CRMs missed CRMs
CisPlusFinder 0.28 0.11 0.14 0.05 0.99 37 94
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