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Abstract.� In this thesis, we analyze and explain various properties of stock
price changes.
The change of a stock price in a given time interval is composed of many price
changes resulting from single trades. Thus, the up and down movements of a
stock price can be seen as analogous to the classic di�usion of a particle: if the
particle moves due to random collisions with other particles, the displacement
after some time is determined by the sum of the displacements between the
collisions.
Under certain conditions, the values of such sums are Gaussian distributed. In
contrast, extreme price movements such as those of �Black Monday� in 1987,
when the S&P500 index fell by about 20% within one day, are so much larger
than ordinary price movements that they cannot be accounted for by a Gaussian
distribution. One could classify such events as �outliers� that re�ect an abnormal
market behavior. However, our empirical analysis reveals self-similar features
in the time series of price changes, meaning that price changes exhibit similar
characteristics on many scales. In particular, a huge price change induces a
series of large price changes whose rate decreases over the following months. In
a similar way, some of these subsequent large price changes themselves induce
further series of intermediate price changes in the following days. Hence, the
mechanisms connected to huge price changes seem to be similar for smaller price
changes, raising the possibility that these same mechanisms might also underlie
ordinary price movements. This picture is supported by the widely accepted
�nding that the tail of the distribution of stock returns, i.e. changes of the
logarithm of the stock price, follows a power law that describes intermediate
returns as well as extreme events.
Though extreme returns seem to be �ordinary� in the sense that they are con-
nected to the same mechanisms as smaller returns, it is still an open question
how returns can occur that are much larger than can be accounted for by a
Gaussian distribution. In �xed time intervals, where the large price movements
described above take place, the return is determined by two factors: the number
of trades in the respective interval and the magnitude of the returns due to single
trades (tick returns). In order to better distinguish between these two e�ects,
we focus on intervals with a �xed number of trades, rather than on intervals
de�ned by their actual length in units of time. Interestingly, also here we �nd
unusually large returns, resulting from the concurrence of two things: (i) in the
respective interval, the average tick return is large and (ii) most trades change
the price in the same direction. We show that a statistical model incorporat-
ing the average tick return and the direction of tick returns can reproduce the
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distribution of stock returns in the studied intervals.
While this analysis explains in detail how large stock returns are composed, we
examine in a further study why these strong returns occur. It is a reasonable
assumption that, besides the in�uence of news, prices change in response to
an imbalance between supply and demand. This imbalance can be quanti�ed
by volume imbalance, de�ned as the di�erence between the volume (number
of shares) of buy and sell orders in a given time interval. On a given volume
imbalance, the stock price reacts with a price change that is determined by the
price impact function. We reconstruct this function in each time interval from
data containing information about all orders present in the market. Here, we
show that the time-varying slope of the price impact function is responsible for
very large returns. Though in each time interval the price moves due to the
volume imbalance, extremely large returns occur only when the price impact
function is steeper than average.
If prices change in response to trades, there seems to be a paradox: the signs
of orders, indicating whether it is a buy or a sell order, are long-term corre-
lated, whereas the returns resulting from the execution of these orders exhibit
only short-term correlations with a characteristic time of a few minutes. In
order to understand this paradox, we model trading strategies and show that
uncorrelated stock price changes appear naturally as soon as someone uses the
correlations in the orders to make pro�t.
After studying time correlations in the returns, we also investigate a tool that
can be used to analyze cross-correlations between �nite time series. Since
their length is limited, even uncorrelated time series exhibit spurious cross-
correlations resulting from random co-movements that do not re�ect the real
interactions. We show that a hypothesis test based on random matrix theory
can distinguish spurious correlations from real correlations, which we demon-
strate using numerical simulations.
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Zusammenfassung.� Diese Dissertation untersucht und erklärt verschiedene
Eigenschaften von Aktienkursänderungen.
Die Gesamtänderung eines Aktienkurses in einer gewissen Zeit setzt sich aus vie-
len Preisänderungen zusammen, die durch einzelne Transaktionen hervorgerufen
werden. Somit können die Auf- und Abbewegungen eines Aktienkurses mit
der klassischen Di�usion eines Teilchens verglichen werden: Stöÿe mit anderen
Teilchen führen hier zu einer zufälligen Bewegung, wobei die nach einer gewissen
Zeit zurückgelegte Strecke durch die Summe der Strecken zwischen den einzelnen
Stöÿen bestimmt ist.
Unter bestimmten Voraussetzungen sind die Werte einer solchen Summe gauÿ-
verteilt. Im Gegensatz dazu stehen extreme Kursänderungen, die so viel gröÿer
sind als alltägliche Kursschwankungen, dass sie nicht von einer Gauÿverteilung
beschrieben werden können. Man könnte solche Beispiele wie den �Schwarzen
Montag� im Jahr 1987, als der S&P500-Index innerhalb eines Tages um etwa
20% �el, für Ausreiÿer halten, die ein unnatürliches Verhalten des Marktes
widerspiegeln. In einer empirischen Analyse �nden wir allerdings selbstähn-
liche Merkmale in der Zeitreihe von Aktienkursänderungen, die also auf vie-
len Skalen ähnliche Eigenschaften aufweist: Eine riesige Kursänderung verur-
sacht eine Reihe weiterer groÿer Kursänderungen, deren Rate in den folgenden
Monaten langsam abfällt. Auf ähnliche Weise bewirken einige dieser nachfolgen-
den groÿen Kursänderungen wiederum mittlere Kursänderungen, deren abfal-
lende Rate für einige Tage nachweisbar ist. Die Mechanismen in Verbindung mit
extremen Kursausschlägen scheinen also ähnlich denen von mittleren Schwan-
kungen zu sein, was vermuten lässt, dass sich auch alltägliche Kursänderungen
auf ähnliche Weise verhalten. In dieses Bild passt die bekannte, auf breite
Akzeptanz stoÿende Entdeckung, dass der Rand der Verteilung von Renditen,
d.h. Änderungen des logarithmierten Aktienkurses, wie ein Potenzgesetz abfällt,
welches mittlere Renditen genauso beschreibt wie Extremereignisse.
Obwohl also Extremereignisse �normal� zu sein scheinen in dem Sinne, dass
sie mit den gleichen Mechanismen zusammenhängen wie kleinere Kursbewe-
gungen, ist es noch immer eine ungeklärte Frage, wie Renditen entstehen, die
viel gröÿer als in einer Gauÿverteilung sind. In festen Zeitintervallen, in de-
nen die oben beschriebenen Kursschwankungen statt�nden, hängt die Kursän-
derung von zwei Beiträgen ab: von der Anzahl der Transaktionen im Zeitin-
tervall und von der Gröÿe der Kursänderungen infolge einzelner Transaktionen.
Um zwischen diesen E�ekten besser trennen zu können, untersuchen wir zuerst
Intervalle mit einer konstanten Anzahl von Transaktionen, im Gegensatz zu
einer festen Länge in der Zeit. Interessanterweise �ndet man hier noch immer
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ungewöhnlich groÿe Kursänderungen, die aus dem gleichzeitigen Auftreten von
zwei Dingen resultieren: (i) in dem jeweiligen Intervall ist die mittlere Preisän-
derung durch eine einzelne Transaktion (die Tickpreisänderung) besonders groÿ,
und (ii) die meisten Transaktionen ändern den Preis in die gleiche Richtung. Die
Verteilung der Gesamtrenditen in den untersuchten Intervallen kann von einem
statistischen Modell reproduziert werden, das auf den Verteilungen der mittleren
Tickpreisänderung und der Richtung der Tickpreisänderungen basiert.
Während diese Analyse im Detail beschreibt, wie sich groÿe Aktienkursän-
derungen zusammensetzen, arbeiten wir in einer weiteren Untersuchung heraus,
warum es zu diesen groÿen Kursänderungen kommt. Eine mögliche Annahme
ist, dass Preise sich, neben dem Ein�uss von Nachrichten, als Antwort auf ein
Ungleichgewicht in Angebot und Nachfrage ändern. Dieses Ungleichgewicht
lässt sich durch das Volumenungleichgewicht quanti�zieren, welches die Dif-
ferenz zwischen dem Volumen (Anzahl von Aktien) an Kauf- und Verkaufaufträ-
gen (Orders) in einem Zeitintervall beschreibt. Der Aktienkurs reagiert auf ein
gegebenes Ungleichgewicht durch eine Preisänderung, welche durch die Preis-
einwirkungsfunktion bestimmt ist. Wir rekonstruieren diese Funktion in je-
dem Zeitintervall aus Daten über alle im Markt vorhandenen Orders. Dabei
zeigen wir, dass die zeitlichen Änderungen der Preiseinwirkungsfunktion für das
Auftreten auÿergewöhnlich groÿer Kursänderungen verantwortlich sind. Obwohl
zu jedem Zeitpunkt die Kursänderung durch das Volumenungleichgewicht her-
vorgerufen wird, treten besonders groÿe Kursänderungen nur dann auf, wenn
die Preiseinwirkungsfunktion überdurchschnittlich steil ist.
Wenn Aktienkurse sich als Antwort auf das Ausführen von Orders ändern,
scheint ein Paradoxon zu entstehen: Orders, bzw. deren Vorzeichen, die angeben,
ob es sich um Kauf- oder Verkauf-Orders handelt, sind langreichweitig korreliert,
wohingegen die durch die Orders hervorgerufenen Kursänderungen lediglich
kurzreichweitige Korrelationen aufweisen. Um dieses Paradoxon zu lösen, mod-
ellieren wir Handelsstrategien und zeigen, dass unkorrelierte Aktienkursänderun-
gen aus korrelierten Orders auf natürliche Weise entstehen, sobald jemand die
Korrelationen in den Orders zur Steigerung seines Gewinns verwendet.
Nach der Untersuchung zeitlicher Korrelationen von Kursänderungen analysieren
wir auch Kreuzkorrelationen zwischen endlichen Zeitreihen. Auf Grund ihrer be-
grenzten Länge führen zufällige Gleichbewegungen zwischen den Zeitreihen zu
künstlichen Korrelationen, die nicht die tatsächlichen Wechselwirkungen wider-
spiegeln. Wir stellen einen auf Zufallsmatrixtheorie basierenden Test vor, der
zwischen echten und unechten Korrelationen in endlichen Zeitreihen unterschei-
den kann, was mit numerischen Simulationen demonstriert wird.
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1 Introduction

In recent years, the stock market has received a great deal of attention from the
general public. Since the �New Economy� boom in the late 1990s [1, 2, 3, 4],
the values of the world's major stock market indices have become a common
feature on daily news shows, and many people pay close attention to the ups
and downs of the �Dow Jones�, �Nikkei�, or �DAX�.
The usual motivation for investing in the stock market is a desire to obtain
a return that is larger than the return yielded by a riskless investment such
as government bonds. However, this additional return can be gained only by
exposing one's investment to the risk that is inherent in large �uctuations of the
stock price [5]. For example, market crashes such as those of October 1929 or
1987 show that stock prices can fall drastically within a matter of hours, which
might be dangerous not only for individual investors but even for the economy
as a whole [6, 7, 8, 9, 10, 11]. The mechanisms underlying such large price
changes are thus an important object of research.
Economists as well as physicists have studied stock price movements in the past,
revealing many properties of stock price changes [12, 13]. Of particular interest
for physicists was the discovery of power law tails in the distribution of stock
returns (i.e. changes of the logarithm of the price) [14, 15, 16, 17], that describe
also extreme price movements such as stock market crashes.
In physics, power laws appear when a system is close to a phase transition [18,
19]. For example, when a magnet is cooled down so that its temperature ap-
proaches the critical (Curie) temperature, long-range correlations emerge so that
the magnetizations of a large number of subsystems are coupled. The resulting
collective behavior of the subsystems leads to large global �uctuations and a
strong response to an external in�uence such as a magnetic �eld. This response
is quanti�ed by the susceptibility, which, together with other quantities, diverges
according to a power law when the temperature of the system approaches the
critical temperature. The existence of power laws in critical phenomena sug-
gests that there might also be such fundamental mechanisms in the stock market
causing the discovered power law distribution of returns.
In this thesis, we analyze large stock price changes, �rst from a descriptive
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point of view and then with a more explanatory approach using the concept of
response functions. Here, we study the price impact function [20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31], which quanti�es how the price changes in response to
trades. In addition, we focus on correlations in the return time series of single
stocks and indices as well as correlations between returns of di�erent stocks.

1.1 Properties of stock returns

In the following, we describe in more detail some of the manifold patterns that
have been found in stock price movements. These patterns pertain to the dis-
tribution of stock returns as well as time correlations in the return time series.

1.1.1 Distribution of stock returns

Returns on a �macroscopic� scale such as days are the sum of many returns
on smaller scales, i.e. minute returns or even returns due to single trades (tick
returns). When a variable is calculated by the summation of many random num-
bers, the central limit theorem states that this variable will be asymptotically
distributed like a Gaussian if the summands are independent and have a �nite
variance. Hence, the Gaussian (or normal) distribution is a reasonable starting
point when studying such variables. Indeed, more than one hundred years ago
Bachelier [32] modeled price changes as independent, normally distributed ran-
dom numbers. Later, it was found that price changes are better described by a
log-normal distribution, which means that changes of the logarithm of the price,
i.e. returns, are normally distributed. The assumption of such a distribution led,
for example, to the famous Black-Scholes formula [33] for option pricing 1.
However, market crashes like the ones in 1929 or 1987 show that there are �uc-
tuations much larger than those found in a normal distribution. These extreme
price movements used to be called �outliers� since they did not agree with ex-
isting theory. This is in striking contrast to physics, where a theory must be
valid for all data points � an outlier (if it is not due to a measurement error)
that contradicts the theory is not to be discarded, but it is rather the reason
for attempts to create a better theory that can also explain this outlier. In-
deed, many studies show that the distribution of stock returns exhibits fat tails,
indicating that large returns are much more probable than in a Gaussian distri-
bution [14, 15, 16, 17, 34, 35, 36, 37, 38, 39, 40, 41]. In addition, the functional
1The Black-Scholes formula dating from 1973 has since been adapted to many �stylized facts�
of �nancial markets, including non-Gaussian returns. An overview of these more recent
advances in option pricing is given in [5].
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form of the distribution stays similar (stable) if the return is aggregated on very
di�erent time scales from seconds to months.
These �ndings led to the idea that stock returns might have a Lévy stable
distribution [14, 37, 42, 43]. Such a distribution corresponds to the generaliza-
tion of the central limit theorem [44], which also applies to random processes
with in�nite variance. In particular, if a random process has power law tails
P (x) ∼ x−(α+1) with α < 2, summation of these (independent) random variables
leads to a distribution that converges to a Lévy-stable process characterized by
α. For α > 2, the variance exists and the limiting distribution is a Gaussian.
In a Lévy-stable process, which is also called �Lévy �ight� or �stable Paretian�,
the tail of the distribution of the sum is determined by large events in the un-
derlying process, i.e. a large jump of the sum results from an extreme jump in
one of the summands.
In contrast to the idea of a Lévy-stable process, later empirical studies �nd
evidence that the distribution of stock returns has a �nite variance and a tail
that follows a power law P (x) ∼ x−(α+1) with α ≈ 3, suggesting that the
distribution is not a stable Paretian [16, 17, 35, 36, 39, 45, 46, 47, 48, 49, 50]. In
addition, for very large time scales, the return distribution seems to approximate
a Gaussian [39]. Though the tail of the return distribution is currently the object
of great interest [27, 51, 52, 53], there is still no general consensus about the
�true� mechanism behind large returns.

1.1.2 Stock return correlations

One condition of the aforementioned limit theorems is that the underlying sto-
chastic processes are independent. Indeed, it has been known for a long time
that returns have only weak linear correlations, which was later quanti�ed as
an exponential decay with a characteristic time of around four minutes [65, 66].
In the light of these small correlations, assuming that returns are independent
seems to be a good �rst order approximation.
Though the return itself has only weak autocorrelations, it has been found that
returns are in fact not independent: absolute or squared returns, which in eco-
nomics are measures of volatility, exhibit long-term memory [15, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]. Returns seem to remember
their past (absolute) value, resulting in time periods of high volatility and other
periods when the volatility is low. In economics, this phenomenon is called
�volatility clustering�. The long-term memory has been known qualitatively for
some time, as it was found that the autocorrelation function of absolute returns
has a �slow� [57] or �very slow� [58] decay in time. More recently, attempts
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were made to quantify this slow decay. For example, Ding et al. [62] �t the
autocorrelation function of the absolute daily S&P500 index return with a com-
bination of an exponential function and a power law, while Dacorogna et al. [63]
�nd a power law exponent between 0.2 and 0.3 for absolute 20 minute returns
of di�erent exchange rates. Liu et al. [65, 66] study the absolute one-minute
S&P500 index return in a 13-year period. Using detrended �uctuation analysis
and power spectrum analysis, the authors �nd that the autocorrelation function
can be described by two di�erent power laws with a crossover time of about 1.5
days.

1.2 Cross-correlations and portfolio optimization

Understanding the distribution of price �uctuations and the correlations within
the return time series is only part of the picture. If one wants to estimate the
risk of an investment, it can be indeed important to know the return distribution
in order to prepare for a certain risk so that large price changes do not lead to
bankruptcy. However, when managing a portfolio of a variety of stocks, it is
possible to actually lower the overall risk of the portfolio.
To this end, it is important to correctly estimate and then minimize the corre-
lations between the stocks. For instance, if the portfolio consists exclusively of
stocks from the energy sector, a drop in the price of oil could lower the pro�ts of
every company in the portfolio, resulting in a collective drop of their stock prices.
In contrast, if one also holds stocks from other sectors that are less in�uenced
by the price of oil, then the loss will be small in relation to the entire invested
capital. Hence, when correlations are minimized, so too is the likelihood that a
single market event will drastically decrease the value of the portfolio. In other
words, minimizing the correlations in a portfolio by diversifying (i.e. investing
in many di�erent assets with small cross-correlations), substantially reduces the
risk for the invested capital.
A theoretical basis for diversi�cation has been established by Markowitz in his
pioneering work on the calculation of e�cient investments in the stock mar-
ket [71]. According to Markowitz, an investment is e�cient if for a given return
the risk for the invested capital is minimal. Here, �risk� refers to the variance
of the portfolio, as opposed to the risk of an extreme price change as discussed
above. For e�cient diversi�cation and thus a minimal risk, one has to evaluate
the cross-correlations between the price changes of all stocks in the portfolio,
since these correlations determine the variance, and thus the risk, of the portfolio
as a whole.
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In order to estimate the correlations within the portfolio, one can calculate
its correlation matrix from historical data, which contains the correlation co-
e�cients between all the portfolio's stocks. However, when estimating these
correlations, one has to deal with the �curse of dimensionality�: if one has only
short time series so that their length is comparable to the number of considered
stocks, the number of input parameters is of the same order as the number of
estimated correlation coe�cients, resulting in large estimation errors. This leads
to a dilemma: on the one hand, one needs su�ciently long time series to have
enough data for a reliable calculation of the correlations. On the other hand,
correlations change over time so that one cannot extend the calculation over a
long period. For short time series, even totally uncorrelated returns lead to a
correlation matrix that deviates signi�cantly from the unit matrix. Hence, due
to the limited length of the considered time series, random co-movements of the
stock prices lead to spurious correlations that do not re�ect the real interactions.
Random matrix theory [72] can help distinguish these arti�cial correlations from
�real� correlations by comparing the empirically found correlations with corre-
lations of randomly generated time series of the same length.

1.3 Organization of the chapters

In the beginning of this thesis, we study large price �uctuations from macro-
scopic to more microscopic points of view in order to reveal information about
the underlying mechanisms.
In chapter 2, we analyze time periods after stock market crashes. Similar to
the Omori law for earthquakes, a shock (i.e. a large price change) is followed by
aftershocks, and the rate of aftershocks larger than a given threshold decreases
over time according to a power law with exponent one. Surprisingly, some of
these aftershocks themselves initiate a similar power law decay on a smaller
scale. This occurrence of crashes on all scales, where each crash is followed by
its own aftershocks, can be related to the memory in volatility.
This similarity between price changes on di�erent scales suggests that they are
connected to the same mechanisms. Hence, the study of large price changes
might reveal information about the general mechanisms underlying the move-
ments of stock prices. In chapter 3, we examine the factors that lead to large
price changes in intervals with a �xed number of trades. By using such intervals
rather than �xed time intervals, we eliminate the direct in�uence of the trading
frequency, thereby isolating other factors for a more detailed study. We show
that large price movements can be modeled using the average tick return and



6 Introduction

the di�erence between the number of positive and negative tick returns in the
respective interval.
In chapter 4, we change the point of view. Instead of describing how large
returns are composed from the microscopic quantities, we focus on the question
why these large returns occur. To this end, we analyze response functions in
time intervals of �ve minutes. Here, we calculate the expected price impact
of an order, measuring how the price changes in reaction to a certain buy or
sell volume (i.e. the number of traded shares). Unlike in chapter 3, we study
not only the price change induced by a trade, but also take into account the
whole order book, including complete information about all orders present in
the market at a given time. We show that �uctuations of the price impact play
an important role in the occurrence of large price changes.
Chapter 5 seeks to explain why returns are basically uncorrelated. This lack of
correlations is surprising because prices change as a result of order execution,
and order signs, indicating buy or sell orders, are strongly (long-term) corre-
lated [31, 73]. In this chapter, we analyze two di�erent trading strategies and
show that uncorrelated stock returns emerge from correlated orders when the
order correlations are used to increase the pro�t of the trader.
In chapter 6, we study a method of testing whether an empirical correlation ma-
trix contains signi�cant correlations as opposed to spurious correlations caused
by the limited length of empirical time series. The test compares properties
of the empirically found correlation matrix with average properties of random
matrices. We analyze this test by the use of Monte Carlo simulations and show
that its properties for �nite samples can be improved by adjustments obtained
from the numerical simulations.
Appendix A gives detailed information about the data sets studied and the
programming methods used for this work.
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2 Crashes and subcrashes � Omori
law on all scales

In this and the following two chapters, we will try to understand the mechanisms
underlying stock price movements by studying large price changes from di�erent
points of view. While in chapter 3 and 4 we will analyze large price changes on
relatively short scales of single trades or �ve minute intervals, in this chapter we
focus on market crashes and their e�ects on the price movements in the months
after the crash.
Such time periods after major stock market crashes were relatively recently
studied by Lillo and Mantegna [74] who �nd that here the stock market behaves
similar to earthquakes: the rate of volatilities (i.e. absolute returns) larger than
a given threshold q decreases like a power law with an exponent close to one,
analogous to the classic Omori law describing the aftershocks following a large
earthquake [75].
In this chapter, we show that the Omori law holds not only after signi�cant
market crashes, but also after �intermediate shocks�. Moreover, we �nd self-
similar features in the volatility. Speci�cally, within the aftercrash period (called
�Omori process� as it is characterized by the Omori law) there are smaller shocks
that themselves behave like the Omori law on smaller scales. We call these
shocks subcrashes, which can be considered as �new crashes on a smaller scale�,
followed by their own aftershocks [76].
Our results suggest that Omori processes might be present on all scales and
therefore constitute an important part of the mechanism underlying price �uc-
tuations. Having this in mind, we study the relation between Omori processes
and the long-term memory in volatility. Here, we do not only analyze the
volatility itself, but focus on volatility return intervals, the time between two
consecutive events with volatilities larger than a given threshold. Recent stud-
ies [77, 78, 79, 80] show that this analysis can reveal more information about
the temporal structure of the volatility time series. They �nd that, similar to
the volatility, return intervals display memory and volatility clustering, and also
scaling properties for di�erent thresholds, which seem to be universal for di�er-
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ent time scales and markets [77, 78, 79, 80]. This behavior is similar to what is
found in earthquakes [81] and climate [82, 83]. Due to the scaling properties, it
is possible to analyze the statistics of return intervals for di�erent thresholds by
studying only the behavior of small �uctuations occurring very frequently, which
have good statistics. The results can then be applied to the more interesting
but rare extreme events.
Our analysis shows that the memory in volatility return intervals after large
market crashes is indeed related to the Omori law. Speci�cally, if we perform
appropriate detrending, the return intervals show signi�cantly less memory, but
some memory still exists, independent of the large market crash. We also show
that at least part of this �remaining memory� can be described by the self-similar
subcrashes: if we remove also Omori processes due to subcrashes, the memory
is further reduced. We also analyze the memory in the volatility time series and
show that removing the in�uence of the major crash and some of its subcrashes
reduces the memory in the data set. However, some memory still remains so
that these crashes cannot account for the entire memory, raising the possibility
that the �remaining memory� is due to other subcrashes whose in�uence was
not removed.
This chapter is organized as follows. Section 2.1 presents information about
the analyzed data. In section 2.2 we show and discuss the mechanism based
on Omori processes on di�erent scales. In section 2.3 we study the memory in
return intervals induced by large and intermediate shocks. In section 2.4 we
analyze the in�uence of crashes on the volatility memory, and section 2.5 gives
a summary of the results.

2.1 Description of data sets

In order to capture a variety of market crashes, we analyze three di�erent data
sets. More speci�c information about the studied data sets is given in appen-
dix A.

• (i) We study the one minute return time series of the S&P500 index from
1984 to 1989. Here, we analyze the aftercrash period in the 15,000 trading
minutes (approximately two months) after �Black Monday�, 19 October
1987, as well as after a smaller crash on 11 September 1986. We also
analyze the time after several other smaller market crashes within the
entire data set.

• (ii) The second data set consists of the TAQ data base of the year 1997
which is provided by the NYSE and contains all trades and quotes for
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all stocks traded at NYSE, NASDAQ, and AMEX. We choose the 100
most frequently traded stocks and calculate an index by a summation
of the normalized prices of each stock. From this index, we calculate a
one minute return time series for our analysis, which we analyze in the
approximately two months after the crash on 27 October 1997.

• (iii) As an example of a crash that is clearly due to an external event, we
also study the one minute return series of General Electric (GE) stock in
the three months after 11 September 2001.

For all three data sets, we calculate the volatility as the absolute value of the
one minute return

G∆t = ln S(t + ∆t)− ln S(t) (2.1)

with ∆t = 1min, normalized by the standard deviation

σG =
√
〈G2〉 − 〈G〉2 (2.2)

of the entire period. Hence, in this chapter the volatility and also the threshold
q, as well as many quantities in the following chapters, are measured in units of
the standard deviation σG.

2.2 Omori law on di�erent scales

Lillo and Mantegna [74] showed that the Omori law [75] for earthquakes also
holds after crashes of large magnitude in �nancial markets, so that the rate n(t)
of events with volatility larger than a given threshold q decays as a power law

n(t) = kt−Ω , (2.3)

where Ω is around one for large q and k is a parameter characterizing the
amplitude of the rate n(t). For estimating the parameter k and the exponent
Ω, we use the cumulative number N(t) of events larger than q, given by

N(t) =
∫ t

0
n(t′)dt′ = k

1
1− Ω

t1−Ω . (2.4)

We study the Omori law on di�erent time scales. Figure 2.1 shows the cumula-
tive rate N(t) above (a) q = 3 and (b,c) q = 4 compared to the volatility in time
periods following three signi�cant market crashes in (a) 1986, (b) 1987, and (c)
1997. The volatility is smoothed by a moving average over 60 minutes in order
to remove insigni�cant �uctuations. The large shock in the beginning of the
time interval is followed by aftershocks, which induces an Omori-like behavior
of N(t) (Omori process), shown by the dashed lines representing a power law
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Figure 2.1: Comparison between volatility and the cumulative rate N(t) of
volatilities (absolute one minute returns) larger than a threshold q. The plots
show the 15,000 minutes (approximately two months) after the market crashes
on (a) 11 September 1986, with q = 3, (b) 19 October 1987, with q = 4, and
(c) 27 October 27 1997, with q = 4. The volatility is displayed as a moving
average over 60 minutes in order to suppress insigni�cant �uctuations. The
insets show the self-similarity of the data set, meaning that while the big
crash in the beginning induces a behavior following the Omori law, some of
the aftershocks induce again a similar behavior on a smaller scale.
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�t. However, as seen in the insets of Fig. 2.1 many of these aftershocks seem
to behave like �real� crashes with their own aftershocks (subcrashes), but on a
smaller scale (shown by vertical lines). The insets show that a closer look into
many of these subcrashes reveals a similar pattern as the Omori law on large
scales. The exponent Ω is often smaller after smaller crashes, which is consis-
tent with the �nding that the power law decay of the volatility after smaller
shocks has a smaller exponent than after large crashes [84]. Below we explore
the possibility that the self-similarity of the volatility (where the Omori law is
present on di�erent scales) is directly related to the memory.

2.3 Return interval memory after crashes and
subcrashes

In order to explore the memory e�ects of the Omori law, we �rst analyze time
periods after very large market crashes. Speci�cally, we study the memory
in the volatility return intervals, which form a sequence of time intervals τ(t)
between two consecutive events with volatilities larger than a given threshold q

[77, 78, 79, 80]. We next show that the in�uence of the Omori law on τ(t) can
be estimated by comparing the original τ(t) with a detrended time series τ̃(t)
which is independent of the market crash. We �t the cumulative rate N(t) in
the period after a market crash with a power law according to Eq. (2.4), thus
obtaining the parameter k and the exponent Ω for the rate n(t) [74]. Using n(t),
we can detrend the return interval time series τ(t) by rescaling by n(t) [85]

τ̃(t) = τ(t)n(t) . (2.5)

The rational for this detrending is the following: immediately after the crash
we have a large rate n(t) of high volatilities so that the return intervals τ(t) are
very short. Later, the rate of high volatilities becomes small while the return
intervals get large. According to Eq. (2.5), high (low) rates and small (large)
return intervals cancel each other so that τ̃(t) is detrended and thus independent
of the existence of the crash, since the trend caused by the crash is no longer
present.
The relation between the Omori law and the short-term memory in the return
interval time series can be studied by analyzing the conditional expectation value
〈τ(t)|τ0〉 of the return interval series τ(t) conditioned on the previous return
interval τ0 [77, 78], for both the original return intervals τ(t) and the detrended
time series τ̃(t). In Fig. 2.2 (left column), 〈τ(t)|τ0〉 is plotted against τ0. Both
quantities are normalized by the average return interval 〈τ〉, for return intervals
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Figure 2.2: Memory in volatility return intervals for di�erent thresholds before
(left column) and after (right column) detrending the time series according to
Eq. (2.5). The analysis is shown for (a) the S&P500 index in the two months
after the crash on 19 October 1987 and (b) an index calculated from the 100
most frequently traded stocks from the TAQ data base after the crash of 27
October 1997. Removing the Omori law reduces the memory in the data sets,
but some memory still exists.

after the crashes in (a) October 1987 and (b) October 1997. The deviations
from a horizontal line at 〈τ(t)|τ0〉 = 1 for all thresholds show memory: large
(small) values of τ0 are more likely to be followed by large (small) values of τ(t).
The slopes of the curves for the detrended time series τ̃ are signi�cantly less
steep (right column), indicating that detrending the Omori law from the time
series signi�cantly reduces the memory, but some of the memory still remains,
which might be due to the Omori process still present on smaller scales (see
Fig. 2.1).
In addition to the e�ect of the major crash, we can also analyze the in�uence of
Omori processes after subcrashes on smaller scales. To this end, we further
detrend the time series by removing some subcrashes and test whether the
memory is further reduced. After identifying the subcrashes 1, we detrend the
1To properly identify subcrashes that can be removed from the records, we �lter the time
series with an appropriate criteria for each data set. For the S&P500 index time series,
including the crashes from 1986 and 1987, we de�ne a subcrash as an event where the
60 minute moving average of the one minute volatility exceeds one standard deviation
(corresponding to a much larger one minute volatility burst). We also require at least
500 minutes to the next subcrash (events within 100 minutes are considered as the same
subcrash). For the data from 1997, we analyze the ten minute moving average, and a
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Figure 2.3: Memory in volatility return intervals for threshold q = 3 for (a)
the S&P500 index in the two months after the crash on 19 October 1987
and (b) for an index calculated from the 100 most frequently traded stocks
from the TAQ data base after the crash of 27 October 1997. The conditional
expectation value 〈τ |τ0〉 / 〈τ〉 conditioned on the previous return interval τ0 is
smaller than one if τ0 is below the median while 〈τ |τ0〉 / 〈τ〉 > 1 if τ0 is above
the median, indicating the memory in the records (circles). The e�ect weakens
upon detrending the time series by removing the in�uence of the major crash
(squares) and even further when removing some subcrashes (diamonds).

return intervals τ(t) by removing the Omori process due to the major crash as
well as the Omori processes induced by the subcrashes. To this end, we estimate
the parameters k and Ω in Eq. (2.3) for the rate n(t) after the major crash as
well as for the rate ns(t) in the 1000 minutes following each subcrash (or the
time to the next subcrash, if smaller). Note that ns(t) is calculated from the
detrended return intervals τ̃(t). Then, the double detrended return interval time
series is given by

˜̃τ(t) =

{
ns(t)τ̃(t) in time following a subcrash

τ̃(t) otherwise.
(2.6)

In order to improve the statistics for testing the e�ect of removing also sub-
crashes on the memory, we plot in Fig. 2.3 the conditional expectation value

subcrash has to exceed 2.5 standard deviations. The other parameters are the same as for
the S&P500 data.
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Figure 2.4: Probability P (t|τ0) that after a return interval τ0 the next volatil-
ity larger than a threshold q = 4 (q = 3 in (d)) occurs within time t. Here,
τ0 belongs to either the 25% smallest values (τ−0 , circles) or the 25% largest
values (τ+

0 , squares) of τ . The memory in the original time series (�lled sym-
bols) is reduced after removing the in�uence of the major crash by detrending
according to Eq. (2.5) (open symbols), but some of the memory still remains.
The results are shown for (a) the S&P500 index after a crash on 11 September
1986, (b) the S&P500 index after the crash on 19 October 1987, (c) an index
created from the 100 most frequently traded stocks from the TAQ database
after the crash on 27 October 1997 and (d) GE stock after 11 September 2001.

〈τ |τ0〉 / 〈τ〉 for only two τ0 intervals: τ0 below and τ0 above the median of τ .
We see in Fig. 2.3 that when τ0 is below the median, 〈τ |τ0〉 / 〈τ〉 < 1, while
〈τ |τ0〉 / 〈τ〉 > 1 for τ0 above the median. This indicates the memory in the
records, and also shows that the memory in the original records (circles) weak-
ens upon detrending the time series by removing the in�uence of the major
crash (squares) and further weakens when also some subcrashes are removed
(diamonds). Hence, not only a large market crash but also smaller subcrashes
contribute to the memory in return intervals.
To further investigate the e�ect of removing the memory induced by aftershocks,
we analyze the probability P (t) that after an event larger than a certain volatility
q the next volatility larger than q appears within a time t [79, 81, 83]. In order to
study the memory, we plot the conditional probability P (t|τ0) for di�erent values
of the preceding return interval τ0. Figure 2.4 shows P (t|τ0) for q = 2 under
the condition that the preceding return interval τ−0 belongs to the smallest 25%
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Figure 2.5: Autocorrelation function of the return interval time series for
threshold (a,c) q = 1 and (b,d) q = 2. The �rst row (a,b) shows results
from the S&P500 index in the three months after the market crash on Octo-
ber 19, 1987, while the second row (c,d) results from an index created from the
100 most frequently traded stocks from the TAQ database after the crash on
27 October 1997. The Omori law due to the market crash (original data, solid
lines) induces correlations leading to an o�set in the autocorrelation function
which is removed in the detrended τ̃ (dashed lines), but the data still shows
some long-term correlations even after removing the in�uence of the Omori
law. However, after further detrending with respect to some subcrashes (dot-
ted line), the autocorrelation is further reduced. All lines are smoothed by a
moving average over ten return intervals.

of the return intervals or that the preceding return interval τ+
0 belongs to the

largest 25%. The memory in the time series leads to a splitting of the curves
because after larger return intervals (squares) the time to the next volatility
above q is usually large, while it is short after small return intervals (circles).
After removing the in�uence of the major crash by detrending, the curves get
closer, indicating a reduced memory, but also here some memory still remains.
To test the long-term memory e�ects of the Omori process on the volatility
return intervals we study their autocorrelation function. For two di�erent time
series x(t) and y(t), the correlation function quanti�es the correlations at a time
lag ∆ as

c(x(t), y(t),∆) =

〈
x(t)y(t + ∆)

〉−〈
x(t)

〉〈
y(t)

〉

σxσy
, (2.7)

where σx and σy denote the standard deviations of x(t) and y(t). If the time
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one minute time series of the years 1984 to 1989. The data for each shock
is normalized by N(1000) in order to make di�erent shocks comparable irre-
spective of the current trading activity. The cumulative rate can be well �tted
by a power law according to Eq. (2.4). The exponent grows from Ω = 0.05 to
Ω = 0.45 for q = 1 . . . 6.

series x(t) and y(t) are identical, one obtains the autocorrelation function

c(x(t), ∆) =

〈
x(t)x(t + ∆)

〉−〈
x(t)

〉2

σ2
x

. (2.8)

Figure 2.5 shows the autocorrelation function of return intervals after the market
crashes in 1987 and 1997 for two di�erent thresholds q = 1 and q = 2. For both
thresholds, we see that there exists a signi�cant correlation even between return
intervals 100 steps apart, which corresponds to approximately 2−5 days in 1987
(0.5−2 days in 1997) since the average return intervals are 〈τ(q = 1)〉 = 6.33min
and 〈τ(q = 2)〉 = 17.4min in 1987 and 〈τ(q = 1)〉 = 2.47min and 〈τ(q = 2)〉 =
7.66min in 1997. If we now remove the e�ect of the Omori process due to the
market crash by detrending according to Eq. (2.5), the memory in the detrended
sequence τ̃ is reduced signi�cantly, as we see in the dashed curves of Fig. 2.5. The
dotted lines show that removing also the in�uence of some subcrashes according
to Eq. (2.6) further reduces the memory.
So far, we showed indications that within the time period after a big crash
there might exist smaller crashes that behave in a similar way. The question
arises whether such subcrashes are only typical after a big crash or whether
they appear in all time periods independent of the existence of a big crash. To
test this, we study 22 crashes of sizes between 11 and 16 standard deviations
in the S&P500 time series from 1984 to 1989. These crashes are considerably
smaller than the huge crashes of more than 30 standard deviations in a one
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minute interval studied above. We analyze the cumulative rate N(t) in the
1000 trading minutes following these smaller crashes. In order to make di�erent
crashes comparable irrespective of the current trading activity, we normalize
the cumulative rate N(t) by N(1000). Figure 2.6 shows this normalized rate
N(t)/N(1000) averaged over all aftershock periods 2. For di�erent thresholds q,
N(t)/N(1000) can be �t with a power law, Eq. (2.4). The exponent Ω increases
with the threshold, but is generally smaller than the exponents found after very
large shocks. Our results for the rate decay are analogous to volatility studies
[84, 86] where the exponent characterizing the volatility decay depends on the
magnitude of the shock [84]. These results indicate that relatively small crashes
have similar Omori processes which may lead to memory e�ects.

2.4 Memory in Volatility after crashes and subcrashes

In the previous sections, we showed that the memory in return intervals de-
creases when we remove e�ects due to Omori processes. Since the studied return
intervals τ(t) are derived from the volatility time series v(t), it would be inter-
esting to test whether the memory in v(t) is also a�ected by Omori processes.
Thus, we next analyze the memory in the volatility time series directly. It is
known that a market crash induces a power law decay of the approximate form

vPL(t) ≡ v0t
−β (2.9)

with an exponent β ≈ 0.2− 0.3 [74, 84]. In order to study the memory induced
by this decay, we compare the original time series v(t) to a detrended one

ṽ(t) ≡ v(t)
vPL(t)

(2.10)

so that ṽ(t) does not depend on the market crash.
We use second order detrended �uctuation analysis (DFA2) [87, 88, 89] to study
the long-term memory in the volatility [15, 54, 55, 56, 58, 57, 59, 60, 61, 62,
63, 64, 65, 66, 67, 68, 69, 70]. In DFA2, the deviations F (s) (root mean square
�uctuations) from a second degree polynomial �t of the pro�le

y(t) =
t∑

t′=0

v(t′) (2.11)

as a function of di�erent scales s (time windows) reveal information about the
memory. If F (s) ∼ sα, the autocorrelation exponent γ of the time series is
2The average only includes crashes where the volatility exceeds the threshold q at least �ve
times during the studied time period of 1000 minutes. For e.g. q = 6, there are 11 crashes
that satisfy this criteria.
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Figure 2.7: Root mean square �uctuation F (s) obtained by the second order
DFA method (DFA2) for the volatility in the 15,000 minutes following market
crashes in (a) the S&P500 index on 11 September 1986 and (b) on 19 October
1987, as well as (c) the market crash on 27 October 1997 for an index created
from TAQ-data for 100 stocks. F (s) is divided by s0.5 to clarify the deviation
from uncorrelated data. Compared to the original volatility v(t) (circles), the
memory is reduced in the detrended records ṽ(t) (squares), and even further
after also detrending some subcrashes in ˜̃v(t) (diamonds).
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related to the exponent α by α = 1 − γ/2. For α > 0.5, the time series is
long-range correlated, it is anti-correlated for α < 0.5, and α = 0.5 indicates no
long-range correlations. Figure 2.7 shows log(F (s)/s0.5) plotted against log s for
15,000 trading minutes after three di�erent market crashes of 1986, 1987, and
1997. With no long-term correlations, the function would be constant, while a
positive slope indicates long-term correlations. For all crashes, the original time
series (circles) shows an increased slope on large time scales. After detrending
according to Eq. (2.10) and replacing v(t′) by ṽ(t′) in Eq. (2.11), the curve
(squares) gets less steep, indicating a reduction of the memory (the curves are
shifted so that they start at the same point).
As described before, there are also subcrashes which may induce their own power
law decay on a smaller scale � not only in the rate, but also in the volatility. In
order to analyze the memory due to these subcrashes, we further detrend the
time series and test whether the memory is reduced even further. To this end,
we �t the detrended volatility ṽ(t) in the 1000 minutes following each subcrash
(or the time to the next subcrash, if shorter) with a power law ṽPL according
to Eq. (2.9). Then, we further detrend ṽ(t) in these regions using Eq. (2.10)
for ṽ(t) instead of v(t). The DFA2 curve for the double detrended time series
˜̃v(t) ≡ ṽ/ṽPL is also shown in Fig. 2.7. The decrease in the slope shows that
the memory is further reduced after removing the in�uence of the subcrashes.
However, we clearly see that removing the trends induced by a market crash as
well as subcrashes only slightly reduces the memory in the volatility on quite
small scales (s < 60min).
The e�ect of removing subcrashes on the long-term correlations of volatility
is seen better in Fig. 2.8. Here, we compare the autocorrelation functions of
the detrended volatility ṽ(t) and the double detrended volatility ˜̃v(t) after also
removing subcrashes. It is seen that generally the autocorrelation of ˜̃v(t) is
smaller than of ṽ(t), which indicates that the Omori processes after subcrashes
also contain some memory. Our results are in agreement with the �ndings of
Borland and Bouchaud [90], who recently presented a multi-timescale model
that can account for both volatility clustering and Omori type laws.
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Figure 2.8: Autocorrelation function of the volatility time series after detrend-
ing. Compared to the volatility time series after only detrending the major
crash (circles), detrending subcrashes (squares) further reduces the autocor-
relations. The results are shown for (a) the S&P500 index after a crash on 11
September 1986, (b) the S&P500 index after the crash on 19 October 1987,
(c) an index created from the 100 most frequently traded stocks from the TAQ
database after the crash on 27 October 1997. The autocorrelation function
of the original volatility time series is not shown because it is not meaningful
as it is dominated by the in�uence of the market crash.
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2.5 Summary

We �nd that Omori processes after market crashes exist not only on very large
scales, but a similar behavior is also induced by less signi�cant shocks. Moreover,
we �nd that such Omori processes on di�erent scales can occur within the same
time period. This leads to self-similar features of the volatility time series,
meaning that some of the aftershocks of a large crash can be considered as
subcrashes that themselves initiate Omori processes on a smaller scale.
This result suggests a mechanism that might be present on all scales, not only
after large market crashes. Indeed, we �nd that a signi�cant amount of memory
is induced by this self-similarity with crashes and subcrashes, which suggests
that a large part of the memory in volatility might be due to Omori processes
on di�erent scales.
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3 Analysis of aggregated tick returns

In the previous chapter, we studied Omori processes after huge market crashes,
a�ecting the volatility over several months. We found that these crashes have an
equivalent on smaller scales, suggesting that there might be a generic mechanism
that can be related to the memory in volatility. In the present chapter, we want
to focus on a much smaller scale and study not the time after large price changes,
but try to understand the mechanism that leads to such large returns.
In the introduction of this thesis, we already described the practical as well as
theoretical relevance of the fat tailed distribution of stock price changes. In
practice, using the correct distribution can help �nd more accurate models and
can lead to a better risk estimation when the probability for extreme events is
known [12, 5]. From a theoretical point of view, the power law distribution is
reminiscent of critical phenomena and universality, suggesting that there might
be a universal mechanism leading to this distribution. Finding this mechanism
could lead to a better understanding of �nancial markets and reveal important
constraints for modeling �nancial time series.
In this chapter, we focus on the analysis of tick returns, i.e. returns due to a
single trade. Farmer et al. �nd that the distribution of tick returns is similar to
the distribution of returns aggregated on longer time scales, exhibiting power
law tails P (x) ∼ x−(α+1) with the same tail exponent [52]. Although the expo-
nent is outside the Lévy regime 0 < α < 2, the authors argue that similar to a
Lévy �ight, both distributions are caused by the same microscopic mechanism,
so that large aggregate returns are due to single exceptionally large tick returns.
Plerou et al. describe the price movements as a di�usion process with a �uctu-
ating di�usion constant and relate the distribution of aggregate returns to the
distribution of the variance of the tick returns [91].
We investigate the transition from tick returns to returns aggregated in intervals
with a larger number of trades. It is well documented (e.g., in [92, 93]) that the
number of trades in a time interval is an important determinant of the aggregate
return. However, the trading frequency alone cannot account for the observed
fat tailed distribution of aggregate returns [91, 94]. Thus, we remove the direct
in�uence of the trading frequency by analyzing intervals with a constant number
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of trades so that e�ects due to other quantities like the absolute tick return are
more clearly visible.
Similar to the work of Plerou et al. [91], this study examines price movements
as a di�usion process [95]. Our results for intervals with a constant number of
trades con�rm some of their �ndings for time intervals, speci�cally the result
that the mean square of the tick return (here the mean absolute tick return) is
an important determinant for large aggregate returns. However, our study goes
considerably beyond this work. While Plerou et al. compare the exponents of
the distributions and conclude that the power law tails of the aggregate return
are due to the distribution of the variance of the tick returns, we actually study
the intervals with the largest aggregate returns and check which quantities lead
to these speci�c events. In this way, we can directly study the in�uence of each
quantity on the aggregate return. Using this information, we also present a
statistical model illustrating the mechanism leading to large price �uctuations.
Moreover, we �nd that the tick return size (absolute tick return) can well char-
acterize an interval of many trades because it is long-term correlated in tick
time (compare [62, 63, 65, 66, 67, 68, 96, 97, 98, 99]). According to the central
limit theorem, independent tick returns would in aggregation lead to Gaussian-
distributed returns, but due to the correlations, the �uctuations of the mean
tick return size lead to the non-Gaussian behavior of the aggregate return. In
this picture, large aggregate returns do not occur because of a few very large tick
returns, but rather when the average tick return is large, so that even Gaussian
�uctuations in the direction of the trades can lead to aggregate returns larger
than in a Gaussian distribution.
The remainder of this chapter is organized as follows. Section 3.1 shows our
model for the price di�usion process, in section 3.2 we describe the data set
used for this study, section 3.3 shows the in�uence of the tick return size on
the aggregate return while section 3.4 focuses on the in�uence of di�erences
in the direction of tick returns (number di�erence). Section 3.5 compares the
number di�erence and the �ow of market orders and in section 3.6 we present a
statistical model which approximates the distribution of aggregate returns. We
conclude with a discussion of our results in section 3.7.

3.1 Model

We study intervals with a �xed number of N = 100 trades. If the price of a
stock before the ith trade is si, we de�ne the return due to a single trade, the
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tick return, as
δgi = ln(si+1)− ln(si) . (3.1)

The interval Ij contains all N trades with index i between jN and (j + 1)N , so
the aggregate return Gj is given by the sum over all δgi with iεIj :

Gj =
∑

iεIj

δgi . (3.2)

We want to discuss two special cases in order to analyze the mechanism leading
to large aggregate returns Gj . In the �rst case, Gj is dominated by one (or a
few) extremely large δgmax

i0
, so that

Gj = δgmax
i0 +

∑

iεIj ,i6=i0

δgi ≈ δgmax
i0 . (3.3)

Thus, Gj becomes large if δgmax
i0

is exceptionally large.
In the second case, we assume that there is no extremely large tick return
dominating the aggregate return, so that we focus on the average size ∆gj of
the non-zero tick returns, which is de�ned by

∆gj =
1
nj

∑

δgi 6=0,iεIj

|δgi| . (3.4)

Here, nj is the number of δgi 6= 0 in the interval Ij . Neglecting asymmetries
in the δgi, we can replace all δgi 6= 0 by sgn(δgi)∆gj and approximate the
aggregate return by

Gj ≈ ∆gj

∑

δgi 6=0,iεIj

sgn(δgi) = ∆gj∆Nj , (3.5)

where ∆Nj =
∑

δgi 6=0,iεIj
sgn(δgi) is the number di�erence. Similarly, Gj can

be described as a di�usion process with
〈
G2

j

〉 ≈ DjN , (3.6)

where the di�usion constant Dj = nj

N ∆g2
j varies due to the varying step width

∆gj and the number nj of nonzero tick returns.
In the approximation given by Eq. (3.5), we can study the in�uence of the
mean size of the tick returns as well as asymmetries in their direction. A large
aggregate return can occur if the price moves more often in one direction than
in the other. Thus, with large temporary correlations between the signs, even
small tick returns could compose a large Gj . On the other hand, if ∆gj is larger,
even a small asymmetry in the signs can lead to a large return.
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The two approximations given in Eqs. (3.3) and (3.5) are analyzed in sections 3.3
and 3.4 of this chapter, but in section 3.6 we also consider the error term ne-
glected in Eq. (3.5). An exact formulation is written

Gj = ∆gj∆Nj +
2n+

j n−j
nj

(∆g+
j −∆g−j ) (3.7)

where ∆g+
j and ∆g−j are the average tick returns in the positive and negative

directions while n+
j and n−j are the numbers of non-negative tick returns in the

positive and negative directions.

3.2 Data analysis

We analyzed the order book data of the year 2002 from Island ECN for the
ten most frequently traded stocks [100]. Since the Island ECN is a secondary
market where only part of the whole stock volume is traded, we also studied
the index fund QQQ which was mainly traded via Island until September 2002.
Since our results for the ten stocks and QQQ are similar, we �nd no evidence
that secondary market characteristics of Island a�ect our analysis negatively.
More detailed information about the studied data set is given in appendix A.
In an electronic market place like Island, people can place limit orders to buy
or to sell at a given or better price (limit price), which is speci�ed in the order.
These orders are stored in the order book, and they are only executed when the
actual stock price reaches the limit price. A trade is initiated by a market order
indicating that someone wants to buy or sell immediately at the best available
price. Such a market order executes the limit orders o�ering the best prices
until the number of shares speci�ed in the market order is traded.
Our data set contains information about every limit order so that we are able to
reproduce the market situation at each instant of time. We combine those limit
order executions with identical time stamps as they re�ect the same market
order. Therefore, we can analyze the impact of each single market order on
the price. In this analysis, the price si is de�ned as the midquote price si =
1
2(sbid

i + sask
i ), which is the mean of the quotes, i.e. the best available buy limit

price sbid
i (bid price) and sell limit price sask

i (ask price). We study intervals
with a �xed number of N = 100 market orders and have approximately 100,000
intervals in our data set for ten stocks. Thus, on average a 100 trade interval
corresponds to about ten minutes, but the trading frequency �uctuates strongly
so that 100 trades can correspond to time intervals with very di�erent lengths.
We determine the midquote price si just before the execution of the ith market
order. Since most trades change the price just by the size of the gap between
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Figure 3.1: Five largest price changes (a) δgmax+
j and (b) δgmax−

j due to a single
trade with (a) the same and (b) the opposite sign as the aggregate return in
that 100 tick interval, plotted against the rank of the corresponding aggregate
return |Gj | for the combined data of ten Nasdaq stocks in 2002 (smoothed by
averaging over 100 intervals). For large |Gj |, the size of the δgmax+

j increases
by a factor of two while the increase in the δgmax−

j is slightly smaller. The sum
over all �ve δgmax+

j reaches more than three standard deviations for intervals
with extremely large |Gj |, but the �uctuations in the opposite direction are
almost equally large.

the best and second best limit prices [52], the tick return δgi corresponds to
the gap size. We note that the price can (and often does) change between two
consecutive market orders due to placement or cancelation of limit orders so
that δgi does not provide a direct estimate of the gap size. We normalize the
tick returns δgi by the standard deviation of the aggregate return Gj for each
stock individually so that we can combine the results for di�erent stocks.
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Figure 3.2: Density plot of the 100-trade return |Gj | of ten Nasdaq stocks
against the average return of a single trade ∆gj for each interval. The Points
are coded from light gray to black indicating the number of events from 1
to more than 500. A linear regression has only a small correlation coe�cient
R2 = 0.07.

3.3 In�uence of the size of tick returns

First, we investigate the question whether large tick returns caused by large
gaps in the order book can be responsible for large aggregate returns. To this
end, we start with the approximation shown in Eq. (3.3) where a few extremely
large tick returns (corresponding to some very large gaps in the order book) lead
to a very large aggregate return Gj . In order to test this hypothesis, we analyze
the �ve largest tick returns δgmax+

j with the same sign as the aggregate return
Gj (i.e. the �ve largest positive δgi if Gj > 0 and the �ve largest negative δgi

for Gj < 0) in each time interval. To this end, we sort the intervals by |Gj | and
plot the δgmax+

j against the rank of the interval according to its return |Gj |.
Figure 3.1(a) shows the values of these δgmax+

j in intervals with small Gj ≈ 0
on the left while the values for large returns exceeding �ve standard deviations
can be found on the right. Since there are large �uctuations in the data, we
smoothed the curves by averaging over 100 intervals. The δgmax+

j grow by a
factor of two between small and very large returns |Gj |. When aggregated, these
�ve largest δgmax+

j can reach about three standard deviations, which is almost
half of the largest aggregate returns.
In Fig. 3.1(b), we plot the �ve largest tick returns δgmax−

j with the opposite
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Figure 3.3: Black curve: average tick return ∆gj of ten Nasdaq stocks plot-
ted against the rank of the corresponding aggregate return |Gj |, smoothed
by averaging over 100 intervals. Going from the smallest returns |Gj | ≈ 0
to returns larger than �ve standard deviations, the mean tick return ∆gj in-
creases by a factor of two. Light gray curve: after shu�ing the tick returns for
each stock, the same curve is only slightly increased for the largest aggregate
returns, the e�ect is much smaller than for the original data. Blue curve (or
dark gray): the simulation according to the statistical model discussed in sec-
tion 3.6 shows a similar behavior as the empirical data, but in the simulation
∆gj is a little larger than the empirical one except for the largest |Gj | where
the simulated ∆gj is slightly smaller than the empirical mean tick return.

direction as the aggregate return against their rank. The δgmax−
j behave simi-

larly to the δgmax+
j , though the increase for large aggregate returns is slightly

weaker. However, even for the largest aggregate returns the di�erence between
the δgmax+

j and δgmax−
j is rather small, so that in addition to the large tick

returns in the direction of the aggregate return there are also large tick returns
with the opposite sign, reducing the aggregate return.
Our �ndings suggest that in the data set studied single exceptionally large tick
returns might not be the generic mechanism leading to large aggregate returns.
This result seems to contradict the experience that there often are price �jumps�
due to new public information, e.g. earnings announcements or monetary policy
announcements. However, these jumps usually appear together with a largely
increased trading activity (volume), so that there are many trades occurring
within a short time. Hence, a 100-tick interval could correspond to a rather
short time period, so that its aggregate return might look like a price �jump�



In�uence of the size of tick returns 29

1 10 100 1000
time lag [tick time]

0.02

0.1
au

to
co

rr
el

at
io

n 
of

 |δ
g i|

~ x
-0.16

Figure 3.4: Autocorrelation function of the absolute value of the tick return
|δgi| averaged over the data of ten Nasdaq stocks in 2002. The function shows
a power law decay in tick time proportional to ∆i−0.16 for large ∆i.

in real time but actually consists of many not too large tick returns, which is
visible in tick time. This interesting subject could be investigated in a further
analysis.
In the following, we want to focus not on the extreme tick returns, but on
the in�uence of their mean value. More precisely, we analyze Eq. (3.5) and
the mean tick return ∆gj of all non-zero |δgi| in the interval Ij as de�ned in
Eq. (3.4). A density plot of |Gj | against ∆gj is shown in Fig. 3.2. It seems
that extremely large returns Gj correspond to larger average tick returns ∆gj ,
but the broad distribution suggests that the explanatory power of ∆gj alone
for the aggregate return Gj is small, which is con�rmed by the low correlation
coe�cient R2 = 0.07 of a linear regression.
In order to clarify the relation between the extreme values of |Gj | and ∆gj ,
we sort the intervals by |Gj | and plot ∆gj against the rank of the interval
according to its return |Gj |. In Fig. 3.3 (black curve), we see that large returns
|Gj | coincide with larger tick returns as ∆gj changes by a factor of two from
very low aggregate returns to large returns of several standard deviations. In
comparison with the largest tick returns δgmax+

j shown in Fig. 3.1, the change
of a factor of two is similar, but the mean ∆gj is two to four times smaller than
the largest tick returns.
This �nding can be explained by the presence of autocorrelations in the time
series of δgi, which can be illustrated when we shu�e the data for each stock
by exchanging each tick return with another tick return randomly chosen from
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Figure 3.5: Density plot of the aggregate return |Gj | against the di�erence
∆nj between the number of tick returns with the same and with the opposite
direction as the aggregate return, for ten Nasdaq stocks. The points are coded
from light gray to black indicating the number of events from 1 to more than
600. A linear regression has a large correlation coe�cient R2 = 0.32.

the entire time series. The light gray curve in Fig. 3.3 shows that for shu�ed
data ∆gj increases only marginally for large aggregate returns, suggesting that
autocorrelations of the tick returns have a strong in�uence on the mean tick
return size ∆gj . Indeed, we �nd that the absolute values |δgi| of the tick return
are long-range correlated in tick time with a correlation function decaying like
∆i−0.16 for large time lags ∆i = |i1 − i2|, as shown in Fig. 3.4. If these correla-
tions are destroyed by shu�ing, in each interval of 100 trades only a few large
tick returns remain so that the average over these 100 tick returns approximates
the global mean of all tick returns in the data set.
In contrast, in the empirical, unshu�ed data correlations lead to intervals where
many tick returns are large, so that the average tick return size is also large.
The average tick return size ∆gj can well characterize the interval only because
these autocorrelations exist. It turns out that the increase of ∆gj by a factor
of two is the main e�ect where the original empirical data deviate signi�cantly
from shu�ed data. Hence, we suggest that �uctuations of the tick return size
are responsible for the non-Gaussian �uctuations of the aggregate return.
Using Eq. (3.5), we can estimate whether the change by a factor of two of the
average tick return alone is enough to explain large aggregate returns Gj of more
than �ve standard deviations. To this end, we focus on the intervals with the
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Figure 3.6: Black curve: the sign-adapted number di�erence ∆nj is plotted
against the rank according to the aggregate return |Gj | for ten Nasdaq stocks,
smoothed by averaging over 100 intervals. ∆nj grows from zero to 18. The
relation between ∆nj and the rank seems to be linear except for the largest
15% of the aggregate returns. A simulation [blue curve (or dark gray)] using
a normal distribution for ∆Nj leads to nearly the same dependance on the
rank. For shu�ed data (light gray curve), the curve is slightly �atter, but the
di�erence is not large.

50 largest aggregate returns ranging from approximately four to almost eight
standard deviations. Here, we �nd that ∆gj �uctuates between 0.14 and 0.35.
Assuming uncorrelated returns, ∆Nj should be of the order

√
N ≈ 10 if each

trade would lead to a price change, but normal �uctuations could well lead to
∆Nj twice as large as

√
N , so that large tick returns together with �uctuations

in the number di�erence could explain the large aggregate returns we �nd in
our data set.
Thus, we �nd that in intervals with 100 trades large |Gj | do not mainly depend
on single extremely large tick returns. It rather turns out that correlations
between the tick returns lead to large average tick returns ∆gj in an interval,
and the �uctuations of ∆gj can account for the non-Gaussian distribution of
the aggregate returns.
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3.4 Number di�erence

The di�usion process of aggregate returns is not only in�uenced by the step
width (i.e. the tick return size), but also by the direction of the steps. Therefore,
we now analyze the in�uence of the number di�erence ∆Nj in Eq. (3.5). In order
to treat positive and negative aggregate returns in the same analysis, it is useful
to replace ∆Nj by the sign-adapted number di�erence

∆nj = sgn(Gj)∆Nj . (3.8)

A positive value of ∆nj indicates that the price tends to move in one speci�c
direction leading to an aggregate return with the same sign. ∆nj can be negative
if there are a few large tick returns determining the direction of the aggregate
return, but also many small tick returns with the opposite direction which do
not a�ect the aggregate return very much. Figure 3.5 shows a density plot of
the aggregate return |Gj | against the sign-adapted number di�erence ∆nj . A
linear regression yields an R2 of 0.32, a large correlation coe�cient con�rming
the visual impression that ∆nj and |Gj | are strongly connected. We can also
see that ∆nj is mostly positive for large returns Gj , so that each large price
change is accompanied by a certain sign-adapted number di�erence ∆nj .
We now plot, in Fig. 3.6, ∆nj against the rank according to |Gj |. We �nd that
except for the largest (approximately 15%) of the aggregate returns, ∆nj grows
linearly with the rank while in Fig. 3.3 ∆gj remained almost constant in that
region. For the largest ranks, ∆n increases more rapidly, so that all in all the
smoothed curve (averaged over 100 intervals) grows from zero to 18 between very
small and extremely large aggregate returns. Thus, in intervals with very large
returns there are approximately 18 trades pushing the price in one direction
(assuming that all other trades cancel each other), so that even with rather
small tick returns this can lead to large returns in aggregation. Focusing on the
50 largest Gj , we �nd that ∆nj ranges from 4 to 41, most of them clearly above
the expected standard deviation of 10 when assuming uncorrelated returns and
nj = N .
Thus, the �uctuations of ∆nj around the mean value are crucial for getting
large aggregate returns. The number di�erence seems to be the main mechanism
a�ecting the aggregate return since it changes much more drastically than the
tick return size when the aggregate return increases. On the other hand, when
we compare the results to the analysis with shu�ed data (light gray curve in
Fig. 3.6), it turns out that this e�ect is very similar to what happens with
random price changes. Hence, the basic movement of the aggregate return
seems to depend mostly on the number di�erence, but the non-Gaussian large
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Figure 3.7: Comparison between sign-adapted number di�erence ∆nj and mar-
ket order di�erence ∆nm

j for ten Nasdaq stocks. The Points are coded from
light gray to black indicating the number of events from 1 to more than 200.
The correlation coe�cient of a linear regression yields R2 = 0.29, thus there
is a strong connection between the two quantities. On the other hand, the
events scatter widely so that small ∆n are often linked with large ∆nm

j and
vice versa.

aggregate price changes only occur if the tick returns are large.

3.5 Market order signs and direction of tick returns

It is known that the signs of market orders are strongly correlated [31, 73] which
means that there is a large probability that a buy market order will be followed
by another buy market order. Thus, it is probable that large number di�erences
in the direction of tick returns are caused by large numbers of equally signed
market orders. In order to analyze the relation between the number di�erence
and the market order �ow, we de�ne the di�erence ∆nm

j between the number
nm+

j of market orders with the same direction as Gj and the market orders with
opposite direction nm−

j :

∆nm
j = nm+

j − nm−
j . (3.9)

In Fig. 3.7 we plot the sign-adapted number di�erence ∆nj against the market
order di�erence ∆nm

j . We �nd a strong correlation between ∆nj and ∆nm
j ;

a linear regression yields a correlation coe�cient R2 of 0.29. However, there
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are also large �uctuations suggesting that the number di�erence is also due to
order book dynamics, namely limit order placement and cancelation as well
as asymmetries in the order book. A model for price formation due to these
quantities was recently proposed by Mike and Farmer [101].

3.6 Distribution of aggregate returns and a statistical
model

In the �rst part of this chapter, we analyzed the mechanism leading to large
aggregate returns and showed that the varying step width ∆gj accounts for
the non-Gaussian behavior of the di�usion process of price movements. Now
we want to use our results in a statistical model and reproduce the cumulative
distribution function of the absolute value of the aggregate return |Gj |.
The model given by Eq. (3.5) belongs to the well-known class of stochastic
volatility models (see e.g. [12]) consisting of a noise term multiplied by a time-
dependent volatility giving the magnitude of the �uctuations. In the present
chapter, the model is based on a microscopic description of the price process,
so that we can �t the microscopic quantities determining the aggregate return
in order to estimate the parameters of the model. In this approach the model is
parameter free in the sense that there are no parameters �tting the aggregate
returns directly, though we �t the distributions of its determinants like the step
width ∆gj and the number di�erence ∆Nj . We also discuss corrections to the
model by including the tick return asymmetries according to Eq. (3.7).
We �rst analyze the distributions of ∆gj and ∆Nj . Figure 3.8(a) shows the
cumulative distribution of ∆gj in a log-linear plot. The approximately straight
line suggests that the tail follows an exponential distribution which can be well
�tted with P (x > ∆gj) = e−a(x−x0)/∆ḡ where ∆ḡ ≈ 0.12 is the average of all
∆gj and the parameters are a = 3.6 and x0 = 0.094. In the region of the
smallest values of ∆gj . x0, the limited tick sizes of the di�erent stocks lead to
a plateau. In section 3.4 we already found evidence that ∆Nj behaves similarly
to uncorrelated data since in Fig. 3.6 the shu�ed data shows almost the same
dependence on the rank of the corresponding |Gj |. Figure 3.8(b) shows that
indeed ∆Nj can be well described by a Gaussian noise with mean 0.24 and
standard deviation 9.0.
In order to analyze the accuracy of the approximation given in Eq. (3.5), we
simulate two independent time series according to the �tted functions for ∆gj

and ∆Nj and build the aggregate return Gj as the product of ∆gj and ∆Nj .
In Figure 3.9 we can compare the empirically found cumulative distribution
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Figure 3.8: Estimation of the parameters for the simulation (results shown as
dotted lines) from empirical data for ten Nasdaq stocks. (a) The tail of the
cumulative distribution of ∆gj (line) can be well �tted with P (x > ∆gj) =
e−a(x−x0)/∆ḡ where ∆ḡ ≈ 0.12 is the average of all ∆gj and the parameters
are a = 3.6 and x0 = 0.094. For ∆gj . x0 the limited tick size leads to
a plateau. (b) The probability distribution of ∆Nj (line) follows in good
approximation a normal distribution with mean 0.24 and standard deviation
9.0. (c) As a rough approximation, the average of the cumulative distribution
of the positive (line) and negative (dashed line) values of ∆g+

j − ∆g−j are
parameterized proportional to two exponential functions e−a1,2x/∆ḡ for |∆g+

j −
∆g−j | ≶ 0.1, with a1 = 8.0 and a2 = 4.8 (dash-dotted line). The simulation
(dotted line) uses the adapted a1 = 9.0 and a2 = 2.0 in order to compensate
the change in the distribution after taking into account

〈
∆g+

j −∆g−j
〉

∆gj∆Nj

.
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Figure 3.9: Cumulative distribution of the empirical aggregate return (circles)
obtained from ten Nasdaq stocks in comparison with di�erent simulations.
(i) The simulation according to Eq. (3.5) (triangles) leads to a reasonable ap-
proximation of the empirical data, but it overestimates the probability of large
returns. (ii) The distribution becomes a little broader if we add the tick re-
turn asymmetry ∆g+

j −∆g−j according to Eq. (3.7) and simulate independent
quantities (diamonds). (iii) The simulation (squares) matches the empiri-
cal data very well if we incorporate correlations by generating ∆g+

j − ∆g−j
according to the conditional expectation value

〈
∆g+

j −∆g−j
〉

∆gj∆Nj

.

of aggregate returns |Gj | (circles) to the results of this simulation (triangles).
The simulation of Eq. (3.5) leads to a reasonable agreement with the actual
aggregate return, but it overestimates the probability of large aggregate returns.
We note that the parameters of the simulation are completely determined by
the empirically found distributions of ∆gj and ∆Nj , so that in this sense the
simulation of |Gj | has no free parameters.
In the following, we want to address the remaining deviations of the simulation
from the empirical data. Eq. (3.7) gives an exact formula for Gj and provides
a good parametrization for the error term which reads

Gj −∆gj∆Nj =
2n+

j n−j
nj

(∆g+
j −∆g−j ) (3.10)

We �nd that the term 2n+
j n−j /nj has no systematic in�uence on the aggregate

return since it shows almost no dependence on the rank according to the ag-
gregate return. In the following, we thus approximate it by its average value
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〈
2n+

j n−j /nj

〉
= 28.7, so that the error term is determined by the asymmetries

∆g+
j −∆g−j in the mean tick return size.

The cumulative distribution of ∆g+
j −∆g−j is shown in Fig. 3.8(c). The main part

of the distribution could be well �tted by an exponential function, but in the tail
the distribution becomes broader. Thus, we add the term with ∆g+

j −∆g−j to our
simulation by creating a third independent time series according to the empirical
distribution of ∆g+

j −∆g−j . Figure 3.9 (diamonds) shows that this leads to an
even broader distribution of the aggregate return. Since the di�erence to the
distribution according to Eq. (3.5) is small, the tick return asymmetry seems to
have only a small in�uence on the aggregate return.
A more accurate agreement with the empirical data can be obtained by taking
into account correlations between the quantities involved in the process. The
correlation coe�cients between them are shown in the following table where the
correlations between the absolute values are shown in brackets:

∆Nj ∆g+
j −∆g−j ∆gj∆Nj

∆gj -0.02 (-0.07) -0.01 (0.37) -0.01 (0.34)
∆Nj 1 -0.35 (0.01) 0.95 (0.87)

∆gj∆Nj 0.95 (0.87) -0.41 (0.02) 1

∆gj and |∆Nj | show slightly negative correlations which might suggest that
people act more cautiously when large tick returns indicate a low liquidity.
In these times, traders try not to place too many consecutive orders with the
same sign because they know that it could lead to a large price change and
increased trading costs. Furthermore, the strong anti-correlations between ∆Nj

and ∆g+
j −∆g−j also indicate cautious traders: If there are large asymmetries, so

that e.g. the positive tick returns are much larger than the negative ones, people
tend to use the higher liquidity in negative direction so that in these times they
sell more often than they buy. For an analysis of the relation between liquidity
imbalance and market e�ciency, see e.g. [102]. The large correlations between
∆gj and |∆g+

j −∆g−j | show that we can expect large variations of the tick return
in the positive and negative directions when the tick return is in general large.
We now want to incorporate correlations in our simulation. The strongest non-
trivial correlations appear between ∆gj∆Nj and ∆g+

j − ∆g−j including also
some of the correlations between ∆g+

j − ∆g−j and ∆gj as well as ∆Nj . How-
ever, it turns out that the conditional expectation value

〈
∆g+

j −∆g−j
〉

∆gj∆Nj
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Figure 3.10: Conditional expectation value
〈
∆g+

j −∆g−j
〉

∆gj∆Nj

plotted
against ∆gj∆Nj (circles), obtained from the data of ten Nasdaq stocks. A
�t leads to

〈
∆g+

j −∆g−j
〉

∆gj∆Nj

≈ −0.0057 · sgn(∆gj∆Nj) · (∆gj∆Nj)1.59

(dashed line). The tick return asymmetry ∆g+
j −∆g−j is strongly correlated

with the mean tick return size ∆gj and strongly anti-correlated with the
number di�erence ∆Nj . Using the conditional expectation value in the sim-
ulation incorporates these correlations which allows the reproduction of the
distribution of aggregate returns.

is nonlinear, as seen in Fig. 3.10 (circles) where it is plotted against ∆gj∆Nj .
The function can be well �tted by −sgn(x)α|x|β with α = 0.0057 and β = 1.59
(dashed line).
In order to incorporate this conditional expectation value into the simulation,
we �rst create three independent time series for ∆gj , ∆Nj , and ∆g+

j − ∆g−j .
Then, for each j we add the conditional expectation value

〈
∆g+

j −∆g−j
〉

∆gj∆Nj

to ∆g+
j −∆g−j , according to the value of ∆gj∆Nj for that j. This method leads

to a di�erent distribution for ∆g+
j −∆g−j than the initial one, so that we can

not anymore generate ∆g+
j −∆g−j from the unconditional empirical distribution.

As a rough approximation, we parameterize this distribution by two exponential
functions e−a1,2x/∆ḡ for ∆g+

j −∆g−j ≶ 0.1. Then, we adapt the factors in the
exponent in such a way that the resulting unconditional distribution �ts the
empirical one (a �t to the empirical distribution yields a1 = 8.0 and a2 = 4.8, for
the simulation we use the adapted a1 = 9.0 and a2 = 2.0, compare Fig. 3.8(c)).
The resulting distribution of Gj does not depend very much on the exact values
of a1,2.
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The e�ect of the correlations represented by the conditional expectation value〈
∆g+

j −∆g−j
〉

∆gj∆Nj

is very large and leads to a cumulative distribution of
|Gj | (squares in Fig. 3.9) very similar to the empirical one (circles). It is
worth noting that now the largest events are not anymore necessarily the ones
with the largest values of ∆gj∆Nj . Due to the anti-correlations expressed in〈
∆g+

j −∆g−j
〉

∆gj∆Nj

, very large values of ∆gj∆Nj can lead to relatively large

values of ∆g+
j −∆g−j of the opposite sign reducing the aggregate return.

In addition to the distribution of the aggregate return, the simulation also agrees
with other properties of the empirical data we found earlier in this chapter. In
Fig. 3.3 and 3.6 we also plotted the data from the simulation against the rank
according to the aggregate return |Gj |. For ∆Nj the simulation matches the
empirical data very well, while in Figure 3.3 we see that the simulated ∆gj shows
the same dependence on the rank as the empirical data, but it is generally a little
larger than the real one except for the largest aggregate returns, which might
be due to the cuto� around 0.094 we used in the simulation of the distribution
of ∆gj . We also �nd that the role of ∆g+

j −∆g−j in determining large aggregate
returns is a little overestimated by our simulation, but the simulation covers the
main features of the empirical data although we neglected many of the subtle
relations between the di�erent quantities.

3.7 Discussion and Conclusion

Our �ndings presented in this chapter can be divided into two parts: First, we
showed that the movement of stock prices in intervals with a constant number
of trades can be understood as a di�usion process with a varying step width,
similar to the �ndings of Plerou et al. for time intervals [91]. While Plerou et
al. use the shape of the distribution of mean squared tick returns to explain
the distribution of aggregate returns, we render this picture more precisely by
speci�cally studying the intervals with the largest aggregate returns. By ana-
lyzing how each aggregate return is actually composed, we �nd that Gaussian
�uctuations of the number di�erence determine the basic price movement, but
the non-Gaussian large price changes occur only if a large number di�erence
coincides with a large mean tick return size. Though the mean tick return size
is not exclusively responsible for the occurrence of large returns, we con�rm the
result of [91] that the non-Gaussian shape of the mean tick return size is an im-
portant determinant of non-Gaussian aggregate returns. We also �nd that the
large in�uence of the tick return size is caused by its autocorrelations assuring
that in a 100 tick interval one can �nd many large tick returns so that the mean
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value of the tick return can be large.
In the second part of this chapter, we found that the distribution of aggregate
returns can be reasonably approximated by simulating the microscopic quanti-
ties mean tick return size and number di�erence according to their empirically
found distributions. A more accurate agreement can be obtained by taking
into account asymmetries in the tick return size in the positive and negative
directions as well as correlations between the di�erent quantities.
In summary, we found evidence that price �uctuations in intervals with a con-
stant number of trades can be described by a di�usion process with a varying
step width. The long-term autocorrelations in the tick return size make sure
that periods, where the price change due to a trade is large, last long enough to
cause large aggregate returns in intervals with many trades. Our results suggest
that the power law distribution of aggregate returns might not be universal but
rather depends on a more complicated mechanism which is a combination of
the dynamics of the trading frequency, the dynamics of the step width and the
Gaussian process of the step direction.
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4 Price impact, liquidity, and large
stock price changes

In the previous chapter, we performed a statistical analysis of the tick return
time series, leading to a better understanding of the mechanisms behind large
aggregate returns. We studied the �uctuations of the mean tick return size
and the number di�erence in order to model the �uctuations of the aggregate
return. In this way, we described how large price changes emerge from an
interplay between these quantities together with asymmetries between positive
and negative tick returns in the respective time interval.
When studying �nancial data sets, people often focus on the description of
�uctuations, for instance when describing the stock return distribution [14, 15,
16, 17, 35, 36, 37, 38, 39, 40, 41]. In the present chapter, we use a di�erent
approach to further analyze the occurrence of large stock price changes. Instead
of a descriptive study, we investigate the reasons that lead to large returns.
Hence, we do not ask how large returns are composed, but why these large
returns occur.
Besides the in�uence of news, a reasonable assumption is that price movements
are caused by an imbalance between supply and demand: if there are more
people who want to buy than to sell, prices will move up. This phenomenon
can be quanti�ed by the price impact function [20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31], which describes the price change as a conditional expectation
value of volume imbalance, i.e. the di�erence between the volume of buy and
sell market orders in a given time interval. Hence, it quanti�es the price impact
as it happened on average in response to a certain volume imbalance.
The price impact function is a response function, which in physics describes the
response of a system to an external in�uence. For instance, the susceptibility
quanti�es how the magnetization changes in response to a magnetic �eld. If the
system is cooled down and its temperature approaches the Curie temperature,
the correlation length becomes very large so that the magnetizations of many
subsystems are coupled. The resulting collective behavior of the subsystems
lead to large global �uctuations as well as a strong response to an external
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in�uence. Hence, resulting from the divergent correlation length, the suscep-
tibility diverges, which for both quantities can be described by a power law.
Hence, from physics one knows a mechanism that generates power laws and
large �uctuations, so the study of response functions is a promising approach
for the explanation of large price changes.
Indeed, the theory of Gabaix et al. [27] uses the price impact function to �nd
a quantitative explanation for large price �uctuations. After approximating
the price impact function with a time-independent square root function, these
authors conclude that the power law distribution of returns with exponent three
derives from the cumulative distribution of the order �ow (i.e. the volume traded
in a given time interval), which can be described by a power law with exponent
1.5 [106]. In this model, a large order �ow leads to large volume imbalances
that cause large price changes via the price impact function.
The model has been criticized by Farmer et al. [53], who questioned the square
root �t of the price impact function, as this function varies for di�erent assets
and the test method used by Gabaix et al. to estimate the �tting might not be
appropriate in the presence of correlations. There is also a discussion about the
nature of price impact [31, 73, 102], asking whether it is �xed and temporary [31]
or variable and permanent [73, 102]. This question becomes important if one
tries to explain how uncorrelated returns can emerge from long range correlated
orders [31, 73, 102], which will be discussed in the next chapter. If the order
imbalance would permanently change the price via a �xed price impact function,
the return would inherit the order correlations and would be long-term corre-
lated as well. Bouchaud et al. [31] argue that a �xed price impact function can
be reconciled with uncorrelated returns if the price impact is only temporary,
so that the price change due to an order vanishes some time after due to market
mechanisms. In contrast, the authors of [73, 102] show that a permanent price
impact does not contradict uncorrelated returns if the price impact is variable
and changes over time.
Here, we want to study price impact in detail to understand the mechanism
leading to large price �uctuations [103, 104]. To this end, we use the same data
as in chapter 3, containing all orders from the Island ECN order book in the
year 2002 for the ten most frequently traded Nasdaq stocks [100]. In contrast
to the previous chapter, we do not focus on the tick return time series obtained
from this data, but use the additional information about the trade volume and
complete information about all orders present in the market.
The remainder of this chapter is organized as follows. Section 4.1 studies the
average price impact function calculated from market orders, which in section 4.2
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Figure 4.1: The price impact function Imarket(Q) describes returns between
the beginning and end of �ve minute intervals in response to the volume
imbalance in the same time interval. It is a monotonously increasing and
concave function of the signed market order volume. A logarithmic plot (inset)
shows that the function can be �tted by a power law. Adapted from [30].

is compared to di�erent de�nitions of a virtual price impact function calculated
from limit orders in the order book. In section 4.3, we use the average price
impact function to show that a large volume imbalance alone cannot explain
the occurrence of very large price changes. This explanation is provided in
Section 4.4 where a time-varying price impact function is de�ned. We conclude
with a discussion of the results in section 4.5.

4.1 Price impact of market orders

In order to describe how on average the price reacts to a traded volume, one
de�nes the price impact function of market orders as the conditional expectation
value

Imarket(Q) = 〈G∆t(t)〉Q . (4.1)

It describes the average relation between the return G∆t(t) = ln S(t + ∆t) −
lnS(t) in a given interval of ∆t = 5min and the volume imbalance Q in the
same time interval 1. In contrast to the previous chapter, we now analyze
time intervals of ∆t = 5min length. Though the analysis of intervals with a
constant number of trades has the great advantage that one has not to deal with
1We do not include market orders executing �hidden� limit orders in the de�nition of Q(t)

as we want to compare our results with the order book that only contains �visible� orders.
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the trading frequency so that the in�uence of other quantities is more clearly
visible, it is also reasonable to study real time intervals since they agree with
our �natural� experience. After all, people think and act in real time instead of
ticks.
The volume imbalance Q in a time interval is the sum of all signed market order
volumes executed between t and t+∆t. For the order book data, the sign of an
order is stored in the data set indicating whether it is a buy or sell order. We
also want to study the TAQ data base for the 44 most frequently traded Nas-
daq stocks, which does not contain information about the direction of a trade.
However, the sign of a transaction can be determined by the Lee and Ready
algorithm [105], which compares the transaction price to the midquote price
SM(t) = 1

2(Sbid(t) + Sask(t)). The sign is positive for buy orders (transaction
price larger than midquote price) and negative for sell orders (transaction price
smaller than midquote price). With the order book data, we tested the accu-
racy of the Lee and Ready algorithm by �rst computing the results using the
algorithm and then performing the same analysis with respect to the buy and
sell information contained in the order book data base. On the level of single
events, the transaction directions from the Lee and Ready algorithm deviate
from the exact ones, but upon averaging both methods yield a nearly identical
price impact function.
For the analysis of TAQ data, we choose S(t) as the price at which the last
transaction before time t took place. For the analysis of order book data, S(t)
is chosen as the midquote price SM(t) as we want to make comparisons to
hypothetical price impacts calculated from the order book.
Similar to the previous chapters, returns G are normalized by their standard
deviation σG which is well de�ned because the cumulative distribution function
of returns follows a power law with exponent larger than two. Since trading
volume is described by a cumulative distribution with power law exponent ζV =
1.5 [106], its standard deviation is not well de�ned. Hence, the volume imbalance
Q is normalized by its �rst centered moment σQ = 〈|Q− 〈Q〉|〉.
The functional form of Imarket(Q) for the Island order book data is shown in
Fig. 4.1. In order to get good statistics especially for large volume imbalances,
we aggregate Eq. (4.1) over all ten stocks in our data set. The shape of the
price impact function is in general agreement with the results [22, 23, 24, 26],
we �nd that Imarket(Q) is a concave function of volume imbalance [20], which
can be well �tted by a power law G = 0.48 Q0.76.
Earlier studies show that the power law exponent characterizing the price impact
function depends on the time horizon as well as on the market studied. Plerou et
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al. [23] �nd that the exponent generally tends to increase for an increasing time
horizon. On very small scales, i.e. on a tick by tick basis, the exponent is very
small [26] or the price impact function can be characterized by a logarithm [28].
On an intermediate scale, the exponent was found to be 0.5 for 15 minute
intervals [23, 27]. This value of 0.5 is also predicted by Zhang [107] using a
simple market maker model.
Analyzing the TAQ data base for the year 1997 instead of the years 1994 and
1995 as in [23, 27] and for time intervals of �ve minutes as compared to the
�fteen minute intervals in [23, 27], we �nd an exponent 0.58 for transaction
price changes and 0.75 for midquote price changes. For the Island ECN data,
the exponent is 0.76 for midquote returns and 0.73 for transaction returns, both
calculated on a time scale of �ve minutes. The larger exponent for midquote
prices compared to the exponent for transaction prices seems to contradict the
intuition that the price impact for transaction prices should be larger than the
one for midquote prices. However, most volume imbalances in a �ve minute in-
terval are smaller than Q = 1, and on a logarithmic scale these values constitute
a large part of the bins used for a �tting, so that values of Q < 1 contribute
signi�cantly to a logarithmic �t. For Q < 1, one has |Q|α > |Q|β for α < β, and
the price impact for transaction prices is indeed stronger than the price impact
for midquote prices, in agreement with the intuition.
The concave shape of the function is very surprising: This type of price impact
would theoretically be an incentive to make large trades as they would be less
costly than many small ones. In contrast, a convex price impact would encourage
a trader to brake up a large trade into several smaller ones, which is what
actually happens.

4.2 Order book and virtual price impact

The above de�nition of the price impact function for market orders could be
called an ex-post de�nition, since it calculates the price impact from information
about how the price actually changed in the past. Next, we want to use order
book information to �nd an ex-ante de�nition, allowing to forecast the expected
price change from a virtual price impact function [30]. These results might help
understand the counterintuitive convex shape of Imarket(Q).
To make the order book information amenable to a statistical analysis, we cal-
culate at the beginning of each time interval and for each stock k the current
order book as a density function ρk

book(γi, t). Due to the complexity of this cal-
culation, we use a discrete coordinate γi to obtain the order book from the data



46 Price impact, liquidity, and large stock price changes

structure by sorting orders with respect to their limit prices and aggregating the
number of shares on a lattice with spacing ∆γ. For each price Slimit, at which
a limit order is placed, the coordinate γi is de�ned as

γi =

{
[(ln(Slimit)− ln(Sbid))/∆γ]∆γ limit buy order
[(ln(Slimit)− ln(Sask))/∆γ]∆γ limit sell order

. (4.2)

Here, the function [x] denotes the smallest integer larger than x. We de�ne
the density function such that ρk

book(i∆γ, t)∆γ is the total volume in the price
interval [(i−1)∆γ, i∆γ] in the order book, where i is an integer. In our analysis,
we chose ∆γ = 0.3 σG as a compromise between computational speed and
accuracy. We note that throughout the chapter γ is measured in units of σG.
Next, we want to compare the actual price impact Imarket(Q) to a virtual
price impact function calculated from the average order book ρ〈book〉(γi) =
〈ρk

book(γi, t)〉, where 〈...〉 denotes an average over both time t and di�erent stocks
k. The average order book is characterized by a �at maximum at γi ≈ 1 and a
slow decay for large γi. Its overall shape agrees with the results of [108, 109, 110].
In order to obtain a price impact function from the average order book, we
calculate the market depth for a given return and invert this relation. Market
depth is a liquidity measure that denotes the order �ow innovation needed to
change the price a given amount. We imagine a trader who wants to buy a
volume Q of stocks and has only o�ers from the order book available. Beginning
at the ask price, she executes as many limit orders as necessary to match her
market order, and changes the ask price by an amount G. Traded volume (or
market depth) Q〈book〉(G) and return G are related by

Q〈book〉(G) =
∑

γi≤G

ρ〈book〉(γi)∆γ . (4.3)

By inverting Eq. (4.3), we de�ne the virtual price impact I〈book〉(Q) with respect
to the average order book. Here, we assume that the bid-ask spread remains
constant and that the midquote price changes by the same amount as the ask
price. According to the above de�nition, the virtual price impact I〈book〉(Q)
describes the price change due to a single market order of arbitrary size. Now,
we want to compare the virtual price impact with Imarket(Q), calculated as a
function of the volume imbalance Q(t) aggregated over a �ve minute interval.
Predicting a return due to a time aggregated volume imbalance by using the
virtual price impact function is an approximation that is only justi�ed if (i) the
order book is symmetric with respect to its buy and sell side and if (ii) the
in�uence of its nonlinearities on the �nal result is small. The assumption of a
buy-sell symmetry of the order book is justi�ed for the average price impact,
and Fig. 4.2 shows that the nonlinearity of the virtual price impact is weak.
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Figure 4.2: The average virtual price impact function 〈Ibook〉(Q) (full squares)
is steeper than the typical virtual price impact 〈Ibook〉median (open squares)
calculated by taking the median instead of the average. The virtual price im-
pact I〈book〉(Q) calculated from the average order book (full circles) is weaker
than the other two. Adapted from [30].

We �nd that the virtual price impact I〈book〉(Q) is four times stronger than the
price impact of actual market orders (see Fig. 4.1 and Fig. 4.2, as well as [30]),
a volume imbalance of 5σQ causes a virtual price change of 8σG but only an
actual price change of 2σG. In addition, I〈book〉(Q) is a convex function that can
be �tted by a power law I〈book〉(Q) = 1.22 Q1.19, and not a concave function as
Imarket(Q).
When we calculate the average order book in order to get the average virtual
price impact by inversion, we do not get the �true� average virtual price impact.
Instead, one should calculate the virtual price impact for each time interval and
for each stock separately and average over these functions afterwards. To this
end, we de�ne a time resolved and per stock depth

Qbook(G, t, k) =
∑

γi≤G

ρk
book(γi, t)∆γ . (4.4)

By inverting this relation at each instant of time and for each stock, we obtain
the virtual price impact Ibook(Q, t, k). We �nd that this function �uctuates
strongly in time and that its average over time and di�erent stocks 〈Ibook〉(Q)
is dominated by rare events with low liquidity when only few orders are stored
in the order book.
These strong �uctuations of Ibook(Q, t, k) make the calculation of 〈Ibook〉(Q)
somewhat subtle. In time intervals with very low liquidity, the domain of



48 Price impact, liquidity, and large stock price changes

Ibook(Q, t, k) does not even extend up to 0.5σQ since the amount of limit orders
stored in the order book is too small. In this case, the return caused by an
order with signed volume Q > 0.5σQ would be unde�ned and the average over
all time intervals would be unde�ned as well. In order to expand the domain
of 〈Ibook〉(Q) to at least 3.5σQ, we extrapolate the depth linearly by connecting
the last de�ned data point (with largest Q and G) with the origin. Since this
procedure is necessary only for few time intervals, our extrapolation method
does not disturb the �nal result. We checked this by using di�erent methods,
e.g. by continuing the depth function by a horizontal line instead of a linear
extrapolation. The in�uence of the choice of a speci�c extrapolation method
is clearly visible only for large volumes Q > 4σG. The average of 〈Ibook〉(Q)
is calculated on an equidistant grid on the Q-axis, the values of the individual
functions Ibook(Q, t, K) at these grid points are calculated by interpolation.
In doing so, one obtains 〈Ibook〉(Q) as a convex function of signed either buy
or sell order volume which is much steeper than the average price impact, see
Fig. 4.2. To reduce the in�uence of low liquidity periods on the virtual price
impact, we have calculated a typical price impact 〈Ibook〉median(Q) by replacing
the average over time and di�erent stocks by the median. For large trading
volumes, 〈Ibook〉median(Q) is considerably smaller than 〈Ibook〉(Q), see Fig. 4.2.
〈Ibook〉median(Q) is also a convex function of signed volume and quite similar to
I〈book〉(Q).
All three virtual price impact functions studied here show a convex shape, in
contrast to the concave shape of Imarket(Q). Hence, these virtual price impact
functions correspond with reality in the sense that they encourage traders to
place many small orders instead of a few large ones to reduce the costs due
to the price impact, which is what actually happens. However, these functions
describe a price impact that is much larger than the price impact Imarket(Q)
actually measured on average in �ve minute intervals. If one wants to �nd an
explanation for the di�erence between Imarket(Q) and the virtual price impact
functions, one should use I〈book〉(Q) as a starting point for the analysis, due to
the in�uence of discretionary trading: with discretionary trading, large orders
are placed only when there is enough liquidity present in the order book to
match these orders. This behavior is best represented by the �attest curve
I〈book〉(Q), while 〈Ibook〉(Q) is dominated by few periods of low liquidity, where
one expects little trading activity. The typical price impact 〈Ibook〉median(Q) is
less in�uenced by discretionary trading than 〈Ibook〉(Q), but it is still steeper
than I〈book〉(Q). Based on my diploma thesis, the empirical study [30] presented
an explanation for the shape of the actual price impact function Imarket(Q).
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Figure 4.3: (a) Average price impact function for the 44 most frequently traded
NASDAQ stocks in the year 1997 with standard deviation of the mean. Price
changes larger than �ve standard deviations cluster in the region of small
volume imbalance, all of them are clearly outside the error bars. (b) Same
as (a) but for 2002 data from the Island ECN order book for the ten most
frequently traded stocks.
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Here, we �nd that one needs to take into account the additional limit order �ow
arriving in a �ve minute interval as well as a feedback mechanism: large price
changes lead to an increased �ow of limit orders that reduce the virtual price
impact. These anticorrelations between returns and limit orders are part of the
study in the next chapter.

4.3 Price impact and large price changes

After studying the time-independent price impact function in the �rst part of
this chapter, we ask whether extremely large price changes can be described by
Imarket(Q). To this end, we �lter the time series for time intervals with returns
|G| ≥ 5σG. A detailed description of this procedure including the �ltering of
data errors is given in appendix A.
The events with price changes larger than �ve standard deviations are shown in
Fig. 4.3, together with the price impact function Imarket(Q). We �nd 1198 such
events for the TAQ data base and 210 for the Island ECN data. For some of these
events the sign of Q and G do not agree. We believe that this disagreement is
(i) caused by the inaccuracy of the Lee and Ready algorithm, as such situations
are less frequent for the order book data, and (ii) due to the analysis of intervals
with a �xed length rather than the analysis of individual transactions. From the
shape of the price impact function, one would expect these events to appear at
very large volume imbalance Q. However, Fig. 4.3 shows that these events have
a broad distribution centered at intermediate values of Q, well outside the error
bars of Imarket(Q), which is signi�cantly below G = 5σG. One could argue that
this result is not very surprising as the price impact function is an average so
that large events scatter naturally around this average. Nevertheless, the result
shows that (i) large returns occur at quite small volume imbalances and (ii) that
the average price impact function cannot be used for a satisfactory prediction
of the price change (especially large ones) from the volume imbalance, as it was
proposed by Gabaix et al. [27].
We conclude that a large volume imbalance alone cannot be responsible for the
occurrence of large price changes. An obvious reason for the inaccuracy of the
forecast given by the average price impact is that the market does not behave
like the average all the time. We already discussed in the �rst part of the chapter
that it is di�cult to calculate an average virtual price impact function since the
price impact Eq. (4.4) �uctuates strongly over time. This suggests that the
price impact might be stronger than average in times when large price changes
occur, corresponding to a low liquidity. In the following, we will analyze the
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liquidity in these time intervals with large returns and show that this is indeed
the correct explanation.
Various transactional properties of markets can be described by the concept of
liquidity [111]. Resiliency is the speed at which prices recover from a random
uninformative shock. While the market depth that we already mentioned above
denotes the order �ow innovation needed to change the price a given amount,
the tightness is the cost for a round trip, i.e. buying and selling a given amount
of shares within a short time period.
Kyle [111] examines the liquidity characteristics of a speculative market within
a dynamic model of insider trading and sequential auctions, �nding that here
both market depth and volatility are constant in time. Glosten [112] derives
the equilibrium price schedule in an open limit order book and shows that the
limit order book can well compete with other methods of exchanging securi-
ties. Madhavan et al. [113] study intraday patterns in volatility, bid-ask spreads
and transaction costs empirically. Using a linear parametrization for the price
impact of individual trades, they �nd that decreasing reliance on the signal
content of order �ow results in a sharp drop of price impact after the �rst half
trading hour, while there is a slight increase at the end of the day. Chordia et
al. [114] discover a weekly seasonality of liquidity and trading activity. These
quantities also change depending on market trends or recent market volatility,
or prior to major macroeconomic announcements. In an analysis of the limit
order book of the Stockholm Stock Exchange [115], Sandas shows that the price
impact calculated from the order book is signi�cantly larger than what is ex-
pected from a regression model. As a possible explanation he suggests that price
impact changes with time-varying market conditions. Similarly, a di�erence be-
tween hypothetical and actual price impact [116] is considered as evidence for
discretionary trading, i.e. large trades are more likely to be executed in time
periods with su�cient liquidity. Recently, Beltran et al. [117] studied the rela-
tion between volatility and liquidity for the Euronext trading platform. Using a
two-state Markov switching process, they �nd that the liquidity is signi�cantly
higher in the high-volatility state, but their analysis based on a VAR model is
not conclusive in whether volatility seriously impacts liquidity.
In order to have a theoretical framework in which we can discuss the mechanism
underlying large stock price changes, we set up a price equation

Si = Si−1 + ci + λiQi + ui . (4.5)

in the spirit of [118]. Here, the index i labels successive transactions at times
ti, Si is the transaction price, ci the transitory spread component, λt the slope
of the virtual price impact at time ti, and ui is a white noise which describes
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the fact that prices change not only due to trading but also due to the arrival
of new public information. As we will mostly be concerned with the analysis of
midquote price changes, we let ci ≡ 0 in the following. For the price change in
an interval with a �xed length ∆t one �nds [119]

S(t + ∆t)− S(t) =
∑

ti∈[t,t+∆t]

λtiQti +
∑

ti∈[t,t+∆t]

uti . (4.6)

In this framework, the order book density is approximated as constant so that
the depth de�ned in Eq. (4.4) would be Qbook(G, t, k) = G/λt. Here, the price
impact of an order volume Qti according to Eqs. (4.5), (4.6) is permanent but
variable due to the t-dependence of λt. Hence, this framework agrees with the
view of [73, 102] when one tries to reconcile uncorrelated returns and correlated
order �ow.
In the light of Eqs. (4.5), (4.6) there are three possible causes for large price
changes: (i) large order �ows Qti , (ii) large price impacts (small liquidities)
λti , and (iii) public information uti . In this context, it can be confusing to
precisely distinguish between volume imbalance and order �ow, since Qti can
represent single orders, only buy or sell volume or the volume imbalance. For
the sake of simplicity and readability, we use the expression �order �ow� where
its sometimes multiple meaning is clear from the context.
We saw that large order �ow alone cannot explain large price changes, so that
in the following we want to analyze the in�uence of a time-varying liquidity.

4.4 Time varying price impact

The time varying liquidity becomes manifest in the strong �uctuations of ρbook(Q).
When we want to use these �uctuations to explain large price changes, we have
to take into account that here the assumptions of (i) a symmetric order book
and (ii) negligible nonlinearities are generally not satis�ed, in contrast to the
analysis of the average price impact function. For this reason, we will consider
either the buy or the sell volume Q̃ in a given �ve minute interval, depending
on the direction of the return in the respective interval. In this way, Q̃ is equal
to the volume of buy market orders if G∆t > 0 in that �ve minute interval.
For G∆t < 0 on the other hand, Q̃ is equal to the volume of sell market orders
and has a negative sign. We have recalculated Imarket as a function of Q̃ by
averaging with respect to either the sell or the buy volume. This new Ĩmarket is
quite similar to the original one.
We try to �nd a quantitative explanation of extreme price changes by taking
into account not only order �ow but also market liquidity as described by market
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Figure 4.4: Ratio of actual price change to predicted price change plotted
against the inverse market depth for large �ve minute returns contained in
the 2002 Island data. A linear regression (line) yields a correlation coe�cient
R2 = 0.14.

 0

 2

 4

 6

 8

 10

 0  5  10  15
 0

 2

 4

 6

 8

 10

 0  5  10  15

p
re

d

_
T / T

G
 / 

G

Figure 4.5: Ratio of actual price change to predicted price change plotted
against the inverse market tightness for large �ve minute returns contained in
the 2002 Island data. A linear regression (line) yields a correlation coe�cient
R2 = 0.11.
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depth and market tightness in the beginning of a given time interval. The depth
D is the size of a market order required to change the price by a given amount
5σG and is obtained from Eq. (4.4). The tightness T is the cost of a round
trip (buying and selling a volume of 2σQ within a short period of time). To
determine the tightness for a given time interval, we calculated the virtual price
impact Ibook(Q̃) by inverting the relation Eq. 4.4 and de�ne the tightness as

T =
1

|Ibook(2σQ)|+ |Ibook(−2σQ)| . (4.7)

In the framework of the model Eq. (4.5), the order book density is approximated
as constant and the tightness would be just T = 1/(4σQλt).
We compare the ratio of the actual price change G∆t(t) and the predicted price
change

Gpred(t) = Ĩmarket(Q̃(t)) (4.8)

to the inverse liquidity as described by the inverse depth and the inverse tight-
ness. Using the average depth D and the average tightness T calculated from the
average order book, we normalize both liquidity measures depth and tightness.
Since the statistics is insu�cient for |Q̃| > 18σQ, we computed Ĩmarket(Q̃(t)) up
to |Q̃| = 18σQ to calculate Gpred. For this reason, we had to discard eleven
events with |Q̃| > 18σQ from this analysis. In addition, for eight events the
tightness T could not be computed because the order book did not contain
enough limit orders to trade a volume of 2σQ. These events are excluded in
the analysis of the inverse tightness as liquidity measure. For reasons of consis-
tency, we also removed two events with D/D > 30 in Figure 4.4. A scatter plot
for events with |G∆t| > 5σG is shown in Figs. 4.4 and 4.5. In contrast to the
expectation that small liquidity can explain the ratio of actual and predicted
price change, there is only a moderate correlation between returns and liquidity
for both depth and tightness. This visual impression is con�rmed by correlation
coe�cients R2 = 0.14 and R2 = 0.11 for depth and tightness, respectively.
In the light of these results, the explanatory power of liquidity for large aggregate
returns seems to be weak. However, the problem is that it is not su�cient to
take into account only the order book density ρbook(γi, t) at one instant of
time when one studies the price impact of order �ow in a whole time interval.
Earlier in this chapter we showed that the virtual price impact of a given order
volume is roughly four times stronger than the actual one and pointed out
that this di�erence is due to the additional orders placed in reaction to a price
change [30]. Hence, one has to include dynamical e�ects, i.e. changes in the
order book within the time interval, to correctly calculate the price impact and
understand the occurrence of large price changes.
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Figure 4.6: Price change as a function of buy or sell volume for ten of the
largest price changes in the Island ECN data.

When we calculate the density of limit orders arriving in a given time interval,
we want to do it in such a way that it is compatible with the density ρbook(γi, t)
recorded in the beginning of the time interval. However, during �ve minutes bid
and ask price can change signi�cantly, so that an order placed close to the bid
price at the end of the time interval can be far away from the bid price recorded
in the beginning. In order to deal with this problem, we �x a reference frame by
the bid and ask price in the beginning of the interval, so that arriving limit orders
are not counted according to the current bid and ask price, but to this reference
frame. Sell limit orders arriving at a price lower than the reference ask price are
counted as if they were arriving at this ask price, vice versa for buy limit orders.
Similar to the density ρbook(γi, t) of limit order volume at a depth γi recorded in
the beginning of the time interval [t, t + ∆t], we de�ne another density function
ρflow(γi, t, ∆t) describing the density of limit order volume placed at a depth γi

minus the limit order volume removed during this time interval with

ρflow(γi) = 〈Qadd
∆t (γi)−Qcanc

∆t (γi)〉 . (4.9)

In Eq. (4.9), Qadd
∆t (γi) is the volume of limit orders added to the book at a

depth γi, and Qcanc
∆t (γi) is the volume of orders canceled from the book. Thus,

ρflow(γi, t)∆γ is the net limit order volume arriving in the time interval [t, t+∆t]
and in the price interval [(i − 1)∆γ, i∆γ]. The total density of limit orders
available for transactions is then given by

ρ(γi, t) = ρbook(γi, t) + ρflow(γi, t, ∆t) . (4.10)
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Figure 4.7: Price change as a function of buy or sell volume averaged over
all time intervals with returns larger than 5σG (connected black circles). The
price change averaged over all transactions (connected gray circles) is much
smaller than that for the extreme events.

The density ρ(γi, t) is related to the order �ow Q̃ as

Q̃(G) =
∑

γi≤G

ρ(γi, t)∆γ . (4.11)

By inverting this relation we calculate a price impact function Iactual(Q̃). The
sell order side of this function for ten events with price changes larger than
5σG is shown in Figure 4.6. In Figure 4.7, the average over all such events is
compared to the average price impact function Ĩmarket(Q̃). Figure 4.7 shows
that the slope of Iactual(Q̃) is much larger than the slope of Ĩmarket(Q̃). As a
consequence, in these time intervals with large price changes there are less limit
orders available than on average. Hence, we suggest to use the slope of the
actual price impact function as a measure of market liquidity.
The price impact functions displayed in Figure 4.6 look quite linear, and the
average of the Iactual for all large events (see Figure 4.7) is approximately linear
as well 2. Accordingly, we expect that the actual strength of the price impact
can be well described by a linear �t to the actual price impact functions. Hence,
for each time interval with |G∆t| > 5σG, we de�ne a susceptibility χ(t) by a
2We tested Iactual(Q̃) for each time interval with price change larger than 5σG for nonlin-
earities. As a simple descriptive method we �tted these curves with power laws. The
exponents we found vary between 0.15 and 2.35 with a mean of 1.32 and they scatter with
a standard deviation of 0.41. On the other hand, a power law �t to the average of Iactual

for all such events yields an exponent of 1.03, which is approximately linear.
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Figure 4.8: Ratio of actual price change to predicted price change plotted
against the slope of the actual price impact function normalized by the slope
of the average price impact function. The data points cluster in the vicinity
of a linear �t with an R2 = 0.79.

linear �t through the origin to the actual price impact function Iactual(Q̃) up to a
return G = 5σG or G = −5σG, depending on the sign of G∆t. The susceptibility
χ(t) can formally be identi�ed with λt, though in the simple model Eq. (4.5)
the order book density is approximated as constant and dynamical e�ects are
not included. Liquidity is measured by the inverse 1

χ(t) . In this way, a large
slope of the price impact function corresponds to a low liquidity.
In Figure 4.8 the ratio of Gpred and G∆t is plotted against the susceptibility
χ/χ for all events with |G∆t| > 5σG. The susceptibility χ is normalized by
χ, the slope of a linear �t to the average price impact function Ĩmarket up to
|G∆t| = 5σG. We removed one event with extremely small liquidity (χ/χ > 60)
to make this analysis consistent with the analysis of tightness and depth. The
data points in Figure 4.8 cluster in the vicinity of a linear �t with an R2 = 0.79.
In comparison with the two liquidity measures studied above, this result is a
considerable improvement. We believe that this improvement is due to the fact
that the susceptibility χ takes into account the order book dynamics, which is
important for describing liquidity. From this analysis, we conclude that liquidity
de�ned as the time dependent slope of the price impact function has a large
explanatory power for the occurrence of extreme price changes.
As additional evidence for the idea that the return in a given time interval is
caused by a combination of the order �ow and the time varying liquidity, we
discuss returns as a function of both order �ow Q̃ in the direction of the price
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Figure 4.9: Expected return 〈G∆t(t)〉Q̃,χG/χG
as a function of order �ow Q̃ and

liquidity χG/χG. For every combination of Q̃ and χG/χG we plotted (i) the
average return if there is more than one matching time interval, (ii) the return
if there is only one event or (iii) nothing if the combination never occurred.
The magnitude of the return is coded from bright gray for small returns to
black for the largest ones.

change and the susceptibility χ/χ. Above, the susceptibility χ was de�ned by a
linear �t to the actual price impact function Iactual(Q̃) up to a return |G| = 5σG.
Now, we want to study also returns smaller than G∆t < 5σG where the order
book density at a depth γi > G∆t does not a�ect the price dynamics. This
e�ect would weaken the explanatory power of χ for these time intervals thus we
de�ne a new susceptibility χG by a linear �t through the origin to the actual
price impact function Iactual(Q̃) up to the actual return G∆t. In time intervals
with |G∆t| < 1σG, the linear �t extends up to σG sgn(G∆t) in order to include
enough data points for a reliable �t.
Figure 4.9 displays the average return plotted as a function of both market order
�ow and liquidity measured by χG/χG. The magnitude of returns is coded in
a gray scale from bright gray for small returns to black for the largest ones.
One observes quite sharp borders between regimes of di�erent expected returns
demonstrating again that for a given order �ow the magnitude of the return
depends on liquidity. In addition, one sees that even very large volumes can
lead to small returns, while large returns occur only if the liquidity is below
average.
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4.5 Discussion

We showed that �uctuations of the liquidity have a large in�uence on stock
price changes, as large returns occur mostly in time periods with low liquidity.
Together with the order �ow, liquidity provides for a quantitative explanation of
large price changes. However, so far we discussed only part of the terms in the
standard pricing model Eqs. (4.5),(4.6). The white noise term ut describes the
in�uence of new public information, e.g. earnings announcements or monetary
policy announcements, accounting for 35% to 46% of the volatility of transaction
price movements, according to [113]. The experience is that such news can lead
to price �jumps�, and thus can in�uence also large stock price changes. However,
although we did not include public information in our analysis explicitly, one
can argue that the order book description contains this information. News
announcements lead to reactions of the market participants, possibly prompting
them to place or cancel orders. If there is good news, for instance, people would
cancel their sell limit orders and place additional buy orders. In our liquidity
measure 1/χ(t), this would lead to a reduction of the liquidity, so that also in
this case a large price change would correspond to a low liquidity. In this sense,
our liquidity measure describes the combined in�uence of order book depth,
resiliency, and public information.
In the previous chapter, we showed that in intervals with large aggregate returns
the average tick return size is signi�cantly larger than average. This can be
seen as another manifestation of low liquidity: though liquidity measures like
the market depth or the inverse slope of the actual price impact function involve
the number of shares, it has been shown [52] that the traded volume usually
matches the volume available at the bid or ask price. Thus, the return due to a
single trade corresponds to the gap between the best price and the second best
price [52], which in turn corresponds to the slope of the price impact function.
In this sense, the average tick return size can be seen as an (inverse) liquidity
measure, so that our results suggest that the di�usion process of stock returns
depends largely on �uctuations in the liquidity.
We have argued that large stock price changes can be explained by periods of
low liquidity. However, so far we did not discuss the possibility of an inverse
causality, leading from large return to low liquidity. A recent study [120] of the
market crash in October 1997 showed that the spread increased signi�cantly on
October 28th, the day after the market drop on October 27th. Hence, this study
suggests that large returns can cause a low liquidity. We cannot exclude the
possibility that the periods of low liquidity detected in our analysis are caused
by large returns in previous time intervals, but our analysis shows that in the
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intervals with the large price change the liquidity is low, causing an intermediate
volume to create a large return.
In summary, we studied the mechanisms leading to large price �uctuations and
showed that they cannot be related to only one single e�ect. A large trading
volume changes the price, which can be quanti�ed in the average price impact
function. This e�ect might be analogous to the number imbalance studied in the
previous chapter, which there accounted for the basic price movements. We �nd
little evidence that this e�ect alone can be responsible for extreme price changes,
which can only be explained by a combination of relatively large trading volume
and low liquidity. The liquidity can be measured as the dynamically changing
slope of the actual price impact function, but can be also related to the average
tick return size from the previous chapter.
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5 Trading strategies and
uncorrelated stock returns

So far, we have analyzed extreme price changes in order to examine the under-
lying mechanisms. In the previous chapter, we saw that dynamic properties of
the order book can be used to �nd an appropriate liquidity measure as well as to
understand the di�erence between the actual price impact of market orders and
the virtual price impact calculated from the limit order book [30]. While the
average order book and thus the virtual price impact discussed in the previous
chapter can be described by �zero intelligence models� [110, 121], in which orders
are placed randomly, the order book dynamics might in fact be related to �in-
telligent� behavior of market participants. In the present chapter, we study this
intelligent behavior in terms of trading strategies to explain further empirical
�ndings about stock returns.
The behavior of traders directly determines the movement of stock prices via
the trading process, where the buy and sell orders of many traders are matched
against each other. Recent studies [31, 73] show that order signs, indicating buy
or sell orders, are long-range correlated, so that for example a buy order leads
to a prediction of many subsequent buy orders. From these results one would
expect that through trading the correlations in the order signs would lead to
similar long-range correlations in the returns, but surprisingly the returns are
uncorrelated and thus not predictable. From a theoretical point of view, one
can argue that this indicates market e�ciency [122], stating that the market
adjusts automatically so that easy opportunities for making pro�t (�arbitrage�)
are absent. However, this does not explain how the correlations disappear during
the trading process.
In the previous chapter, we pointed out that a �xed price impact as it would
be given by the average price impact function could not explain uncorrelated
returns if the price impact would be permanent: if each market order changes
the price permanently, the market order correlations lead to returns that are
long-term correlated as well. Our �nding of a strongly �uctuating price impact
function presented above is compatible with the idea of a price impact that
might be permanent, but not �xed.
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Similarly, Lillo and Farmer [73] argue that the market compensates the correla-
tions in the order �ow by adjusting its properties such as liquidity. The authors
show empirically that the probability of a market order to change the price de-
creases for larger predictability of the orders. In times of large predictability,
market orders are smaller than average or the volume at bid or ask price is
higher, lowering the probability of a price change.
Bouchaud et al. [31] present a di�erent approach that explains uncorrelated
returns with a �xed price impact, in contrast to the variable price impact used
in the work of Lillo and Farmer. However, the price impact of Bouchaud et
al. is only temporary, meaning that the price change caused by a market order
vanishes after some time due to mechanisms of the market. The model is related
to a trading strategy: liquidity providers give trading possibilities to both buyers
and sellers. If the stock price stays constant, they can make pro�t by buying at
the best bid and selling at the lowest ask price, pro�ting from the spread (i.e. the
di�erence between these two). In order to keep prices constant, these liquidity
providers try to mean revert the price. This mean reverting is supported by the
empirically found anticorrelations between market orders and limit orders [30],
so that limit orders are placed in response to market orders and thus compensate
their price impact.
Based on statistical properties found empirically, Mike and Farmer [101] propose
a model whereby di�erent order types are represented by long-range correlated
processes, which are then combined with a model for order cancelation due to
asymmetries in supply and demand. In this model, returns exhibit no long-range
correlations, though they do persist longer than in reality, as the autocorrelation
function exhibits values of the order of 1% for about 50 time steps.
In this chapter, we model two di�erent trading strategies and analyze their pro�t
in the light of correlated orders. While in the model of Bouchaud et al. liquidity
traders are afraid of price changes and try to act against the correlated order
signs, we study a mechanism where traders use these correlations to increase
their pro�t. Under the simpli�cation of exponentially decaying correlations in
the order signs, we show that correlations between returns vanish due to the
studied trading strategy, and in addition, we qualitatively reproduce the cross-
correlations between returns and both market orders and limit orders, which
were presented in a previous work [30] and accounted for the connection between
the actual price impact function of market orders and the virtual price impact
calculated from the order book.
This chapter is organized as follows: in section 5.1, we describe the model we
study, section 5.2 analyzes the trading strategy of a liquidity provider while in



Description of the model 63

section 5.3 we study a �front runner� strategy. Section 5.4 gives a summary and
discussion of the results.

5.1 Description of the model

In order to keep our model as simple as possible, we simulate only one trader.
This trader is acting in an environment with two basic properties summarizing
the actions of all other traders: �rst, there is a �ow of market orders m(t) which
is due to a stochastic process and independent of the price movement or the
behavior of the trader. Second, there is a 'background liquidity', meaning that
independent of the simulated trader there is always a certain amount of limit
orders in the market, so that any market order m can be executed with a price
impact λm proportional to the volume |m| of the market order. The simulated
trader can place market orders as well as limit orders.
If the trader in this model would not do anything, each market order would
directly in�uence the price, so that the price S(t) at time step t would change
according to

S(t + 1) = S(t) + λm(t) . (5.1)

In this way, the time series of returns would be basically the same as the time se-
ries of market orders, so that it would also inherit the market order correlations,
in striking contrast to reality. Hence, we suggest that the loss of correlations in
stock price changes is due to the behavior of traders following certain strategies
in order to optimize their pro�t.
The autocorrelation function of empirical market orders c(memp(t),memp(t), τ)
(compare Eq. (2.8)) follows a power-law with an exponent smaller than one [31,
73]. This leads to the problem that the correlation function is not integrable, so
that the number of predicted subsequent market orders is in�nite. However, we
can estimate the integral over the autocorrelation function of market orders for
certain time intervals. Figure 5.1 shows this integral for data of Cisco (CSCO),
a typical stock from the Island ECN in the year 2002. Here, a power law �t
with 1

1−θβτ1−θ yields β = 0.26 and θ = 0.73. Measuring the time in such
a way that each time step corresponds to a new market order, we �nd that
(excluding the value 1 for time lag 0) this integral is around 4 after 250 time
steps (corresponding to about 20 minutes), around 5.9 after 750 steps (≈ one
hour), and around 9.4 after 4875 steps (≈ one trading day). Though this integral
keeps growing in�nitely for larger time windows, in this study we focus on a
short time horizon and approximate the empirical market order time series by
an AR(1) process with exponentially decaying correlations. In this model, a
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Figure 5.1: Cumulative correlations of market orders at a time lag τ (solid
line). A power law �t with 1

1−θβτ1−θ yields β = 0.26 and θ = 0.73.

market order m at time t is given by

m(t) = %m(t− 1) + ε(t) =
∞∑

j=0

%jε(t− j) . (5.2)

Thus, a market order consists of an unpredictable part with the normally distrib-
uted random number ε(t) with zero mean and variance one, and a predictable
part %m(t−1) depending on the last order m(t−1) and the parameter %, which
determines the strength of the correlation. For % = 0.8, the overall prediction
of market orders in a time interval of 20 minutes (corresponding to about 250
market orders) is the same as in the empirical data, whereas % = 0.9 would cor-
respond to the correlations of one trading day. This simpli�cation gives us the
opportunity to study the market in a very simple model in order to understand
the in�uence of order strategies on the market.
The relevant parameters for this model are: (i) the spread s and the coe�cient λ

for the price impact, which together determine the scale on which the price and
the trader's capital change. (ii) The inventory limit Imax de�nes the maximum
number of shares hold by the trader, which can be positive as well as negative
(meaning that the trader can sell borrowed shares hoping to buy them back later
at a lower price). (iii) The correlation coe�cient % determines the correlations
in the market orders.
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5.2 Liquidity provider strategy

The �rst strategy we want to analyze is mentioned by Bouchaud et al. [31]
supporting their explanation for the absence of correlations in stock returns. In
this strategy, a trader places both buy and sell limit orders. Due to the spread,
the trader makes pro�t at each round-trip when she buys shares at the bid price
and sells them at the higher ask price. However, this strategy guarantees save
pro�t only if the price stays constant. For instance, if the price rises after the
trader sold some shares at the ask price, she cannot buy them back at the old
bid price, but has to buy them at the new raised bid price. This price may be
higher than the price the trader got for selling the stocks, so changing prices can
cause losses for the trader who follows this strategy. Bouchaud et al. argue that
for this reason such a trader would try to prevent the price from moving far from
an estimated 'fair' price by placing limit orders that compensate the impact of
market orders. In the following, we want to analyze the pro�t of this strategy
under the assumption of uncorrelated as well as correlated market orders.
In the framework of our model, this strategy can be implemented as follows: in
each time step t, there is a new market order m(t). Instead of letting the trader
place or cancel limit orders, we only give her the two choices either to match
the market order (meaning that she placed some limit orders before) or to do
nothing (meaning that she canceled all her limit orders before). If she matches
the order, the price stays constant but her inventory changes. Otherwise, the
market order changes the price according to Eq. (5.1).
If the trader would have an unlimited inventory, she could match all incoming
market orders. When buying shares at the bid price and selling them in the
next step at the higher ask price, she gains half the spread s for each traded
share. Hence, if she has enough time to wait for her inventory to neutralize,
after N time steps she gains

N

2
〈|m|〉 s (5.3)

with this strategy.
On the other hand, if we want to calculate the pro�t after a given number of
time steps N , we assume that the trader has to close her positions at step N

by placing market orders, leading to costs depending on the number of shares
she is holding in her inventory. This is reasonable because many traders have a
certain time horizon, so that e.g. day-traders close their positions at the end of a
day avoiding bad surprises happening overnight. Assuming uncorrelated market
orders, the number of shares in her inventory would grow with the number of
time steps N like 〈|m|〉√N .
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If we assume that the trader's market order mtr (e.g. a sell order) executes
several limit orders at di�erent price levels until the entire order is ful�lled, the
total cost C for the traded shares is given by

C = mtrSsell = mtr(S +
1
2
(sgn(mtr)s + λmtr)) (5.4)

The sign of the total cost depends on the sign of the order mtr of the trader, so
that negative costs indicate that the trader is selling shares and getting money,
while she is buying with positive costs. Considering a round trip where the
trader �rst buys a certain amount of shares at the bid price and then sells
them again using market orders, we can calculate the loss resulting from this
action. Before, she bought the shares using limit orders at the price Sbuy =
S + 1

2sgn(mtr)s, so now she realizes a loss L of

L = mtr(Ssell − Sbuy) =
λ

2
m2

tr . (5.5)

The Loss L is always positive, irrespective of the sign of mtr.
Given the win the liquidity provider makes when buying and selling stocks at
the bid and ask price and the loss when closing her positions, her expected pro�t
after N time steps is given by

〈prLP〉 =
N

2
〈|m|〉s− λ

2
〈I2〉 . (5.6)

Uncorrelated market orders

We can estimate for which parameters the strategy can be expected to be prof-
itable, assuming uncorrelated Gaussian distributed market orders m(t) with
〈m〉 = 0,

〈
m2

〉
, and thus 〈|m|〉 =

√
2
π . After N time steps the square of the in-

ventory I2(t) has the expectation value
〈
I2(N)

〉
= N , so that selling or buying

these shares at time step N reduces the pro�t by λN/2 according to Eq. (5.5).
Thus, the total pro�t of the liquidity provider after N time steps is

〈pruncorr
LP 〉 =

N

2
〈|m|〉 s− λ

2
〈I2〉 =

N

2

(√
2
π

s− λ

)
. (5.7)

Hence, this strategy leads to pro�t if 0.8s & λ so that the spread is of the order
of the price impact. A similar argument was given by Wyart et al. [123] who
in addition showed empirically that spread and price impact are usually of the
same order. The di�erence to their model is that here we describe a model for
�all� liquidity providers, represented by the one trader we simulate, while Wyart
et al. model only a small fraction of the liquidity providers in the market. They
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take into account the price impact due to the action of other traders and its
temporal structure, whereas our model includes the price impact when a large
position is closed.

Short-term correlated market orders

The liquidity provider's pro�t changes drastically if there are correlations present
in m(t). For instance, if m(t) follows an AR(1) process Eq. (5.2) with 〈m2〉 =

1
1−%2 and 〈|m|〉 =

√
2

π(1−%2)
, the pro�t Eq. (5.6) changes due to the change in

〈|m|〉 and 〈I2〉. Here, 〈I2〉 is given by

〈I2〉 =

(
N∑

i=1

m(i)

)2

=
N∑

i,j=1

〈m(i)m(j)〉

= N〈m2〉+ 2
N∑

i=1

(N − i)〈m(t)m(t− i)〉

= N〈m2〉+ 2〈m2〉
N∑

i=1

(N − i)c(m(t),m(t), i) (5.8)

where c(m(t),m(t), i) = %i is the correlation function for the AR(1) process.
Thus, if N À 1 we have for the inventory

〈I2〉 = N〈m2〉
(

1 + 2
%

1− %

)

= N
1

1− %2

(
1 + %

1− %

)
= N

1
(1− %)2

. (5.9)

Hence, the pro�t for the liquidity provider strategy with the exponentially de-
caying correlations of the AR(1) process is given by

〈prexp
LP 〉 =

N

2
〈|m|〉s− λ

2
〈I2〉

=
N

2
s

√
2

π(1− %2)
− λ

2
N

1
(1− %)2

=
N

2

(
s

√
2

π(1− %2)
− λ

1
(1− %)2

)
. (5.10)

Figure 5.2 illustrates the dependence of the pro�t on the parameters of the
model. The pro�t is displayed as the pro�t per normalized market order, calcu-
lated by dividing the pro�t by N 〈|m|〉. Each line shows this pro�t as a function
of the market order correlation coe�cient % for di�erent choices of the spread
s, while λ = 0.1 for all curves. Figure 5.2(a) displays the average pro�t after
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Figure 5.2: Pro�t per normalized market order in the liquidity provider strat-
egy for di�erent spreads. The price impact coe�cient is hold constant at
λ = 0.1. (a) From 100 simulations with N = 100, 000 time steps each, the
average pro�t at the end is divided by N 〈|m|〉 in order to obtain the pro�t per
normalized market order. Figure (b) shows the normalized pro�t per market
order obtained from the analytical result Eq. (5.10). The deviations of the
simulations from the analytical result are due to strong �uctuations of the
inventory after N time steps.
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100 simulations with N = 100, 000, whereas in Fig. 5.2(b) the analytical result
Eq. (5.10) divided by N 〈|m|〉 is shown. The displayed deviations of the simula-
tions from the analytical result are due to strong �uctuations of the inventory
after N time steps.
The �gure shows that the liquidity provider strategy works well for weak cor-
related market orders, but with increasing correlations the increasing inventory
leads to losses, even for large spreads when the correlations are strong. From
the analytical result Eq. (5.10), one can expect a positive pro�t if

s

λ
>

1
1− %

√
π(1 + %)
2(1− %)

. (5.11)

For correlations with % = 0.8 (corresponding to the empirical correlations within
20 minutes), the strategy is pro�table if the spread s is about 19 times the price
impact λ. With these strong correlations, this strategy can only be pro�table for
extremely large spreads. Though it is reasonable that with correlated market
orders the spread is increased in order to compensate the risk of large price
movements, this value is very high so that the strategy as it is presented here
would usually not lead to pro�t without adaptions of the model.

Long-term correlated market orders

If we consider power law correlations instead of the exponentially decaying corre-
lations of an AR(1) process, the liquidity provider's pro�t for large N becomes
even smaller. For power law correlated m(t) with 〈m(t)2〉 = 1, 〈m(t)〉 = 0,
and correlation function c(m(t),m(t), τ) = 1

(1+τ)θ , the expected inventory I =
∑N

i=1 m(i) after N time steps is

〈I2〉 = N + 2
N∑

i=1

(N − i)c(m(t),m(t), i)

= N + 2
N∑

i=1

(N − i)
1

(1 + i)θ

≈ N + 2
∫ N

1
dt(N − t)

1
(1 + t)θ

= N +
2

(θ − 2)(θ − 1)

(
(N + 1)−θ + 2N(N + 1)−θ +

+N2(N + 1)−θ − 21−θθ + 21−θNθ − 22−θN

)
. (5.12)
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For N À 1 and θ < 1, we collect all terms with N ζ for ζ > 0 and replace N + 1
by N , so that

〈I2〉 ≈ N +
2

(θ − 2)(θ − 1)

(
2N1−θ + N2−θ + 21−θθN − 22−θN

)

= N +
2

(θ − 2)(θ − 1)

(
N2−θ + 22−θ(

θ

2
− 1)N + 2N1−θ

)
(5.13)

For normally distributed market orders with 〈|m(t)|〉 =
√

2
π , the win due to

the spread grows with N like N
2 s

√
2
π , i.e. with a power of one. In contrast, the

highest power of N in the expected inventory is 2− θ > 1 since θ < 1 (θ ≈ 0.73
in Fig. 5.1). Hence, this strategy can lead to pro�t only for very short time
horizons or very large spread s

λ À 1.

Cross-correlations

In the model described above, the liquidity provider matches every market order
so that the price will not move at all. However, in reality a trader has to deal with
certain limitations Imax of the inventory. So, if the inventory is full (meaning
that the absolute di�erence between the number of bought and sold shares is
larger than Imax), she cannot match any more incoming market orders. In this
case, she has to let the orders move the price while she has to wait for orders
with the opposite direction in order to close her positions. Hence, the trader
matches only very few market orders (if Imax <<

√
N) and waits for the right

orders in the rest of the time. Thus, together with the inventory, the risk is
limited by Imax, but also the possible pro�t.
Although this is a parsimonious model, our simulations can lead to qualitative
results which can be compared to empirical data if we include inventory limita-
tions so that the price can move during the simulation. At this point, we want
to recall some results from my diploma thesis, which were published in [30]. Fig-
ure 5.3 displays the cross-correlations between returns and the �ow of (a) market
orders and (b) limit orders, obtained as an average of ten Nasdaq stocks from
the year 2002. The vanishing correlations for market order and limit order �ow
preceding returns for more than 50 seconds indicate market e�ciency, meaning
here that returns cannot be predicted over extended periods of time. For other
time lacks, market orders (a) exhibit positive correlations with returns that are
strongest when the time intervals for returns and order �ow overlap (shaded
region). In the non-overlapping region, the correlations decay slowly, which is
probably due to the strong autocorrelations of market orders [20, 29, 73].
Surprisingly, the correlation function for limit orders with returns, shown in
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Figure 5.3: Correlation functions between return and signed order �ow (buy
minus sell orders), obtained as an average from order book data of ten Nasdaq
stock from the year 2002. (a) Market orders and returns show strong positive
equal time correlations (shaded region) decaying slowly to zero. (b) Limit or-
ders preceding returns have weak positive correlations with them, while equal
time correlations (shaded region) are strongly negative. Adapted from [30].

Fig. 5.3(b), exhibits strong equal time anticorrelations. These anticorrelations
can be interpreted as an indication that rising prices cause an increased number
of sell limit orders whereas falling prices induce additional buy limit orders. In
this way, price changes seem to be counteracted by an orchestrated �ow of limit
orders.
The results for the cross-correlations obtained from the simulation of the liquid-
ity provider strategy are in striking contrast to these empirical results. Figure 5.4
shows the cross-correlations between returns and market orders (circles) as well
as limit orders (squares), and in addition the autocorrelations of returns (dia-
monds), for parameters s = 0.1, λ = 0.1, Imax = 30. The smaller the inventory
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Figure 5.4: Correlations obtained from the simulation of the liquidity provider
strategy with parameters s = 0.1, λ = 0.1, % = 0.8 and Imax = 30. Market
orders and returns are highly correlated (circles), and the market order corre-
lations show up in the returns (diamonds) almost unchanged, so that returns
are still strongly predictable, in contrast to the empirical results shown in
Fig. 5.3. The anticorrelations between returns and limit orders (squares) are
somewhat arti�cial, because the limit order placement is calculated from the
market orders by inversion.

limit Imax, the more often the trader has to let the price move, so that with rel-
atively small Imax the market order correlations show up in the returns almost
unchanged. Hence, returns are still highly predictable, in contrast to reality.
The anticorrelations between returns and limit orders are somewhat arti�cial,
because the limit order placement is calculated from the market orders directly
(the simulation assumes that there was a limit order placed before so that the
market order can be matched).
In summary, the liquidity provider strategy leads to pro�t due to the spread,
but the price impact when closing the positions can lead to losses. Especially
with large correlations in the market orders the inventory can grow so large that
severe losses are very likely with this strategy. A better strategy should involve
a mechanism to limit the inventory without destroying the possibility of making
pro�t. However, the liquidity provider strategy as it is presented here does not
seem to explain the correlations and cross-correlations found empirically.
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5.3 Front runner strategy

Instead of considering the correlations in market orders as a potential danger,
the second strategy presented here uses these correlations for the prediction of
future orders in order to optimize the pro�t. This idea is based on the basic
strategy called 'front running' [124]: a front runner knows for some reason that
someone wants to place a large market order, say a buy market order. Then, she
himself buys this number of shares before the foreseen market order is placed.
Due to the market order of the front runner, the price changes to a higher level
according to Eq. (5.1). Now, she places sell limit orders at the increased price
and waits for the expected buy market order. If this order is actually placed,
the front runner can sell the just bought shares at a higher price.
In our model, the front runner uses the correlations between the market orders to
predict future market orders. These correlations can be explained qualitatively
by order splitting [73]: people split large orders into several smaller pieces and
place them consecutively over a larger time period in order to a�ect the price
not too much. Thus, the front runner can step between these split orders and
perform her strategy.
According to Eq. (5.2) with 〈ε(t + 1)〉 = 0, the market order mpred(t + 1) pre-
dicted for the next time step is

mpred(t + 1) = %m(t) (5.14)

which leads to the overall expected future order �ow

Mpred(t) =
∞∑

j=1

mpred(t + j) = m(t)
∞∑

j=1

%j =
m(t)%
1− %

. (5.15)

If the trader follows her front runner strategy, each incoming market order
m(t) = %m(t−1)+ ε(t) is split into two parts: the predicted part %m(t−1) due
to the previous order is matched against limit orders placed by the trader in the
previous time step and thus does not change the price, so that her inventory I(t)
is reduced to I(t)− (m(t)− ε(t)). On the other hand, the innovation part due
to the random number ε(t) leads to a new prediction of the future market order
�ow, and the trader adjusts her inventory by immediately buying (or selling)
some shares in order to hold exactly the predicted market orders. Thus, the
di�erence between the new inventory I(t + 1) and the inventory I(t) before the



74 Trading strategies and uncorrelated stock returns

arrival of the current market order is

∆I(t) = I(t + 1)− I(t) = ε(t)
∞∑

j=1

%j

︸ ︷︷ ︸
new prediction

− (m(t)− ε(t))︸ ︷︷ ︸
executed via
limit orders

. (5.16)

In order to adapt her inventory, the front runner places market orders

mFR(t) = ε(t)
∞∑

j=1

%j . (5.17)

At the same time, the trader also adapts her limit orders to match the predicted
market orders for the next time step according to Eq. (5.14).
The price changes due to the innovation and the market orders of the trader:

S(t + 1)− S(t) = λ(ε(t) + mFR) = λ
1

1− %
ε(t) . (5.18)

Contrary to the liquidity provider strategy of the previous section, the spread
constitutes a cost for the front runner instead of an opportunity. In order to
adapt her portfolio to the predicted order �ow, she constantly has to buy and
sell shares using market orders. This leads to losses analogous to Eq. (5.3),
depending on the average market order 〈|mFR|〉 she has to place.

Pro�t estimation

The front runner's pro�t can be approximated by dividing the process into two
parts: The win the front runner would make if everything would match her
prediction, and the loss due to the spread when trading mFR in order to adapt
to the innovation.
The win and loss are given by the di�erence between the buy and the sell price
for all traded shares. As an example, we consider a positive (buy) innovation
ε(t) > 0. The front runner buys the prediction Vbuy = ε(t)%

1−% at price Sbuy =

S(t) + s
2 + λ

2
ε(t)%
1−% , causing a price impact of ∆S = λ ε(t)%

1−% . If we neglect future
innovations, the front runner can sell her shares Vsell = Vbuy at Ssell = Sbuy+ ∆S

2 ,
leading to a win

wFR = SsellVsell − SbuyVbuy =
∆S

2
ε(t)%
1− %

=
λ

2

(
%

1− %

)2

ε(t)2 . (5.19)

Since 〈ε2(t)〉 = 1, the expected win after N time steps is

〈wFR〉 = N
λ

2

(
%

1− %

)2

. (5.20)
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Figure 5.5: Pro�t per normalized market order in the front runner strategy for
di�erent spreads. The price impact coe�cient is hold constant at λ = 0.1. (a)
From 100 simulations with N = 100, 000 time steps each, the average pro�t
at the end is divided by N 〈|m|〉 in order to obtain the pro�t per normal-
ized market order. Figure (b) shows the normalized pro�t per market order
obtained from the analytical result Eq. (5.22).
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On the other hand, the front runner has to face losses due to the spread when
changing her strategy because of new innovations. In the worst case, she buys
Vbuy = ε(t)%

1−% shares that she has to sell in the next time step because the inno-
vation ε(t + 1) has a di�erent sign. So, every two time steps she buys and sells
Vbuy loosing sVbuy. Hence, the expected loss after N time steps is given by

〈lFR〉 = N
s

2
%

1− %

√
2
π

(5.21)

which leads to the expected pro�t

〈prFR〉 = 〈wFR〉 − 〈lFR〉 =
N

2
%

1− %

(
λ

%

1− %
− s

√
2
π

)
. (5.22)

Figure 5.5 illustrates the dependence of the front runner's pro�t on the parame-
ters of the model, analogous to Fig. 5.2. Since the trader only acts on forecasts,
she does not trade at all if the correlations (resp. %) are zero, which always
leads to no pro�t. However, when % is increased, the front runner starts to take
action in the market: the larger the correlations, the more she trades. Now,
the front runner looses money due to the spread, but she also wins money from
the correlated market orders. For small correlations, this usually leads to losses,
but for % = 0.8 ( corresponding to the empirical correlation in a time horizon of
20 minutes) only very large spreads (eight times the price impact) prevent this
strategy from being successful.
The agreement between the simulation results in Fig. 5.5(a) and the analytical
result Eq. (5.22) shown in Fig. 5.5 is quite good. However, one sees deviations
especially for large values of s, indicating that the approximation Eq. (5.22)
overestimates the negative in�uence of the spread.

Cross-correlations

The front runner strategy agrees much better with empirical data than the
strategy of a liquidity provider. Figure 5.6 shows that because of the action of
the front runner following her strategy, the correlations between market orders
do not show up in the returns (diamonds). This is not surprising because only
the unpredictable part of the market order leads to a price change. For empirical
data, the return shows a small anticorrelation in very short times, which is
known as the 'bid-ask-bounce'. This phenomenon is not featured by our model.
However, the empirically found cross-correlations [30] between the return and
the market orders as well as the limit orders, which are shown in Fig. 5.3, can
be reproduced qualitatively in our model. Figure 5.6 also shows that returns
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Figure 5.6: Correlations obtained from simulation of the front runner strategy
with parameters s = 0.1, λ = 0.1, and % = 0.8. Due to the action of the
front runner, the correlations in the return (diamonds) disappear. There are
no correlations between returns and market orders (circles) or limit orders
(squares) for negative time lags, so that returns cannot be predicted from the
order �ow.

are not correlated with preceding market (circles) and limit orders (squares), so
that a prediction of returns due to the order �ow is not possible, in agreement
with reality.
After the price change, there are positive correlations between returns and mar-
ket orders, but we also see anticorrelations between the return and following
limit orders. This phenomenon was described in [30] as a feedback mechanism
reducing the price impact of an order. A possible explanation for this feedback
mechanism is that traders hide their large orders because they do not want to
provide liquidity to other traders. If the price changes due to a market order,
the hidden orders are placed in the order book in expectation of many consecu-
tive market orders. In this way, these market orders do not have a price impact
anymore.
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5.4 Discussion

We analyzed two di�erent trading strategies that have a very di�erent relation
to correlations of market orders. The liquidity provider strategy works against
these correlations, leading to losses due to the huge inventory after a certain
number of time steps. Possibly, the model proposed here misses features of the
market that are important for limiting the inventory. Figure 5.3 showed that
a price change has a huge impact on the order �ow, which has been shown to
account for the quite �at shape of the price impact function of market orders [30].
Thus, rising prices should lead to reactions of the market participants that limit
the price change due to an order. Hence, the model could be expanded in such
a way that deviations from a reference price (e.g. given by a running average
of past prices) lead to an increased �ow of market orders that mean revert the
price. However, this is not included in the model since we wanted to show that
the front runner strategy can qualitatively generate the empirical correlations,
which would be meaningless if we put these correlations in the model from the
beginning.
The analysis in this chapter showed that by using the correlations in a successful
strategy, their in�uence on returns is destroyed, which then exhibit the empiri-
cally observed lack of correlations. Though the presented front runner strategy
is somewhat arti�cial, it illustrates how market e�ciency can take place, so that
arbitrage opportunities disappear as soon as someone takes advantage of them.
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6 Test for statistical signi�cance of
empirical correlation matrices

So far, we have analyzed the autocorrelations in the return time series and
studied the mechanisms underlying large stock returns. In this chapter, we
do not focus on the risk inherent in single large price movements, but rather
concentrate on the risk associated with the statistical uncertainty of the return
of a portfolio [5]. This uncertainty is measured by the volatility, which is here
de�ned as the variance of the portfolio.
Markowitz investigated the selection of an e�cient portfolio that has minimal
risk for a given expected return [71]. Such a portfolio can be obtained by
appropriate diversi�cation, meaning that one invests in a large number of stocks
with weak cross-correlations. In this way, the loss of some of the stocks can be
compensated by the gains of others. In order to be e�cient, such diversi�cation
has to lead to a minimal variance and thus a minimal risk of the portfolio. Since
the variance of the portfolio is determined by the cross-correlations between the
return time series of all involved stock, one has to evaluate these correlations in
order to calculate the risk.
The estimation of cross-correlations between a large number of time series can
be very di�cult due to the �curse of dimensionality�: If the number of time series
is of the same order as their length, a calculation of the correlation coe�cients
results in large errors, since in this case the number of calculated values is
comparable to the number of data points available for their calculation. On
the other hand, cross-correlations change over time so that one may have to
study rather short time series. If one simulates a random market of N totally
uncorrelated time series with a length T ≈ N , the resulting correlation matrix
will deviate signi�cantly from the unit matrix. In the same way, the cross-
correlations calculated from empirical time series contain spurious correlations
that can make a precise risk estimation di�cult.
In physics, correlations can be related to the interactions of particles. If a
physical system is too complex so that the interactions cannot be estimated
precisely, one uses random matrices to obtain information about the properties
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of the system [72]. For instance, the excitation spectra of nuclei on low-energy
levels can be explained by considering a model of independent particles with an
average potential [126, 127]. For intermediate energies, the interactions between
the nucleons cannot anymore be described correctly with an average potential,
and it is impossible to explain the individual states [72]. Therefore, instead
of trying to describe the individual states, one focuses on estimating average
properties of the system by using a statistical theory where the Hamiltonian is
described by a random matrix. Random matrix theory has also been successfully
applied to economics to study correlations between �nancial time series [128,
129].
In this chapter, we want to use random matrices for studying correlation ma-
trices of �nite time series. We analyze a hypothesis test [125] that can distin-
guish spurious correlations from real correlations. Speci�cally, it tests whether
the matrix contains statistically signi�cant correlations or whether it is equiv-
alent to the unit matrix. For covariance matrices, such tests were formulated
by [130, 131] and later generalized to the degenerate case N > T , where the
matrix dimension exceeds the time series length [132].
This chapter is organized as follows. In section 6.1 we de�ne the test statistics
and calculate its T�limiting distribution. The properties of the test for �nite
samples are analyzed in section 6.2, and a summary is given in section 6.3.

6.1 De�nition of the test

We consider N time series Xi(t) of length T , which are normally distributed
with population mean µi and population correlation matrix C. For each time
series Xi(t), we de�ne a new normalized time series xi(t) with zero mean as

xi(t) =
Xi(t)−Xi

si
, (6.1)

where Xi and s2
i = 1

T−1

∑T
t=1(Xi(t) − Xi)2 are the mean and the variance of

the sample Xi(t). Due to the normalization, the population covariance matrix
of the {xi} is given by C as well.
We denote the sample correlation matrix of the time series xi(t) by

C̃ij =
1

T − 1

T∑

t=1

xi(t)xj(t) . (6.2)

The correlation matrix C̃ of the sample will generally be di�erent from the
true correlation matrix C if the considered time series have a �nite length. The
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question we want to answer in this chapter is whether it is possible to distinguish
between spurious and real correlations if one only knows the sample correlation
matrix, e.g. from an empirical data set. In particular, we want to test if a given
sample correlation matrix is compatible with the null hypothesis of uncorrelated
time series, i.e. a population correlation matrix C equivalent to the unit matrix.
A statistical test usually decides whether or not a given hypothesis is to be
rejected, which then means that the hypothesis is false with a given probability.
In our case, where we are looking for correlations in the time series, the null
hypothesis corresponds to the absence of correlations. If now the test rejects
this hypothesis, this can indicate that the alternative is true, i.e. that there are
correlations. However, it is possible that both the hypothesis and the alternative
are rejected, so that a rejection of the hypothesis does not necessarily mean that
the alternative is true.
A test is characterized by size and power, which quantify how often the test
correctly decides to reject or not reject the hypothesis. The size is the probability
for rejecting the null hypothesis when it is true. Hence, if the size is zero, the
test result is always correct if there are no real correlations in the data. A
larger size indicates less accurate test results, so that sometimes the test rejects
the null hypothesis although there are indeed no correlations. However, the
size alone is insu�cient for characterizing a test, since a test with arbitrary
size could be easily created by simply rejecting every hypothesis with a given
probability. Hence, the size is meaningful only in conjunction with the power,
which characterizes the test in the presence of correlations: the power is the
probability of rejecting the null hypothesis if there are correlations. Here, large
values indicate that the test has a good capability of detecting correlations.

6.1.1 Test statistics

For the present test, we analyze the test statistics

R =
1
N

tr
[
C̃2

]
− 1 , (6.3)

allowing to distinguish true correlations from spurious correlations that result
from a �nite time series length.
The test is based on the knowledge about the expected distribution of R for
many random matrices with a given N and T . Then, one can test if the value
of R obtained from an empirical sample matrix agrees with the distribution. In
order to get the binary result whether or not the hypothesis has to be rejected,
one de�nes a signi�cance level corresponding to a critical value Rcrit of the test
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statistics. The empirical R can be compared to Rcrit, so that the hypothesis is
rejected if R > Rcrit.
If one wants to show analytically that the test statistics exhibits the desired
properties, one �rst has to show that R is (N, T )�consistent, i.e. that the power
of the test to separate the null hypothesis from the alternative converges to one
as N and T go to in�nity together. Speci�cally, one has to prove that the ex-
pectation value of the test statistics under the joint limit T →∞, N →∞, and
T/N = Q uniquely allows to decide whether the population correlation matrix
di�ers from the unit matrix. Next, one calculates the T�limiting distribution
and shows that its (N, T ) asymptotics is indeed the true (N, T ) asymptotics of
R.
For a similar test for covariance matrices, this procedure was successfully per-
formed by Ledoit and Wolf [132]. For correlations matrices, the normalization
Eq. (6.1) of the time series xi(t) leads to additional problems. Speci�cally, while
the time series Xi(t) are independent with 〈Xi(t1)Xi(t2)〉 = 0 for t1 6= t2, the
normalization creates correlations in the xi(t). One has

〈xi(t1)xi(t2)〉 = 〈(Xi(t1)−Xi)(Xi(t2)−Xi)
1

T−1

∑T
k=1(Xi(k)−Xi)2

〉 (6.4)

= 〈 1
1

T−1

∑T
k=1 X2

i (k)− 1
T (T−1)

∑T
p,q=1 Xi(p)Xi(q)

(
Xi(t1)Xi(t2)

− 1
T

[
Xi(t1) + Xi(t2)

] T∑

l=1

Xi(l) +
1
T 2

T∑

m,n=1

Xi(m)Xi(n)
)
〉

Since the sums run over all t = 1 . . . T , there are products of Xi(t)Xi(t) for the
same time t, which lead to a �nite contribution to the expectation value. One
gets

〈xi(t1)xi(t2)〉 = − 1
T

. (6.5)

6.1.2 T�limiting distribution

In this thesis, we will focus on the numerical properties of the test and not prove
its consistency, which is done in [133]. However, in order to make the test useful
for empirical studies, we �rst have to �nd the T�limiting distribution. For this
calculation, we can neglect the correlations Eq. (6.5) between the xi(t) since
they vanish in the limit of large T . Hence, we focus on uncorrelated xi(t) with
〈xi(t1)xi(t2)〉 ≈ 0 for t1 6= t2 in order to derive a solution for the T�limiting
distribution under the assumption that the true correlation matrix C is the
identity.
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Figure 6.1: Comparison of di�erent factors α(N, T ) = 1
T−m

2
N (corresponding

to β = 0 in Eq. (6.12)), m = 0, . . . , 7 and N = 16 for the T�limiting dis-
tribution of the test statistics R. The mean square di�erence between the
probability density function of Rα and χ2

N(N−1)/2 decreases for increasing T .
The best �t (i.e. smallest error) for small T is obtained with α = 2

N(T−1) . The
curves are shown for 10,000 simulations.

We introduce the random variables ηij(t) by decomposing

1
T − 1

T∑

t=1

xi(t)xj(t) = Cij +
1√
T

ηij . (6.6)

The newly de�ned random variables ηij have expectation value zero and variance

Var(ηij)2 =

{
1 for i 6= j

0 for i = j
. (6.7)

With these variables, we can rewrite

1
N

Tr[C̃2] =
1
N

N∑

i,j=1

C̃2
ij =

1
N

N∑

i,j=1

(Cij +
1√
T

ηij)2 (6.8)

=
1
N

N∑

i,j=1

(C2
ij +

1√
T

Cijηij +
1
T

η2
ij) (6.9)

= 1 +
2

NT

∑

i<j

(ηij)2 . (6.10)

The second term in Eq. (6.10) is the sum of N(N − 1)/2 squares of standard
normal distributed variables and hence follows a χ2

N(N−1)/2�distribution. We
conclude that the T�limiting distribution of the test statistics R is given by

R D→ 2
TN

χ2
N(N−1)/2 . (6.11)
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Figure 6.2: Comparison of di�erent factors α(N, T ) = (T−n)β

(T−m)β+1
2
N for the T�

limiting distribution of the test statisticsR. The �gure shows the mean square
di�erence (MSE) between the probability density function of Rα and χ2

N(N−1)/2

depending on T . Shown are the eight curves with the lowest average error
〈MSE(PR, Pχ2 , T )〉 for T = max(1,m, n), . . . , 100 . The best �t (i.e. smallest
error) for small T is again obtained with α = 2

N(T−1) . The curves are shown
for 10,000 simulations with N = 16.

6.2 Test properties for �nite samples

The test proposed above is supposed to distinguish spurious correlations from
real correlations in empirical time series. Such a test is of particular interest if
the data sets are small so that one can only analyze short time series, since here
the e�ect of spurious correlations is large. Therefore, it is important to analyze
the properties of the test for �nite samples, which we will do in the following
using numerical simulations.

6.2.1 Finite size properties of T�limiting distribution

The T�limiting distribution is only exact for large T , so it is not clear whether
the prefactor 2

TN in Eq. (6.11) is a good approximation for small and inter-
mediate T where corrections of the order 1

T can be important. By simulating
10,000 random matrices in order to obtain good statistics for R, we compare
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the prefactor 2
TN to other factors α of the form

α =
(T − n)β

(T −m)β+1

2
N

. (6.12)

To this end, we calculate the probability density functions (PDF) of R
α for

di�erent α and compare them with χ2
N(N−1)/2. The mean square error MSE

between the PDF PR of Rα and the PDF Pχ2 of χ2
N(N−1)/2 is given by

MSE(PR, Pχ2) = 〈(PR(y)− Pχ2(y))2〉 (6.13)

where y runs from 0 to 10N(N − 1) in steps of 0.1. Since here many values are
almost zero in both distributions, the MSE gets generally quite small. However,
we only want to compare the distributions for di�erent α so that only their
relative MSEs are important. In Fig. 6.1 we show the results depending on T

for α(N,T ) = 1
T−m

2
N (corresponding to β = 0 in Eq. (6.12)), m = 0, . . . , 7

and N = 16. Although for large T all shown distributions converge to the χ2�
distribution, there are signi�cant di�erences for small T . The curve with m = 1
is clearly the best one, while m = 0 and m ≥ 2 lead to larger deviations. This
indicates that a corrected prefactor 2

(T−1)N could lead to better test results for
�nite T . For very small T , where the T�limiting distribution should not be very
accurate, even for the best prefactor 2

(T−1)N the MSE is indeed one magnitude
larger than for large T , but the error becomes smaller very fast.
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T
4 8 16 32 64 128 256

4 0.01 0.03 0.04 0.05 0.05 0.05 0.05
8 0.02 0.03 0.04 0.05 0.05 0.05 0.05
16 0.02 0.03 0.04 0.04 0.05 0.05 0.05

N 32 0.02 0.03 0.04 0.05 0.05 0.05 0.05
64 0.02 0.03 0.04 0.05 0.05 0.05 0.05
128 0.02 0.04 0.04 0.05 0.05 0.05 0.05
256 0.02 0.03 0.04 0.04 0.04 0.05 0.05

Table 6.1: Size of the testR from simulation of 10,000 Monte Carlo simulations
for each pair (N, T ). The null hypothesis is rejected when the test statistics
exceeds the cuto� Rcrit obtained from the chi squared approximation with
α = 2

N(T−1) . For T ≥ 32, the actual size agrees well with the nominal size for
all values of N .

We did not �nd any other combination of m,n, β = 0, . . . , 7 that leads to a
better agreement between the simulated distribution of R and the distribution
of αχ2

N(N−1)/2. Since we cannot plot all curves for all combinations of m,n, β,
we show in Fig. 6.2 only the eight best �tting curves, meaning that for these
curves the average error 〈MSE(PR, Pχ2 , T )〉 for T = max(1,m, n), . . . , 100 is
minimal. Also in this �gure, the factor α = 2

N(T−1) clearly shows the best
results, especially for small T .
Though there might be other pefactors of a di�erent form �tting the real distri-
bution of R better, we conclude that the prefactor α = 2

N(T−1) leads to a good
�t of that distribution. In the following, we will use this corrected prefactor
instead of the one obtained above for the T�limiting distribution.
In order to illustrate the �nite sample properties of the test statistics with
the corrected α = 2

N(T−1) , we compare the PDF of 1
2RN(T − 1) for N = 16

and di�erent T with the PDF of χ2
N(N−1)/2. The PDFs are shown in Fig. 6.3,

where the curves are smoothed by a moving average. The approximation looks
reasonable already for very small T = 4, becoming very good for larger T . For
T = 100 (not shown here), the agreement is almost perfect.
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T
4 8 16 32 64 128 256

4 0.02 0.08 0.20 0.44 0.77 0.98 1.00
8 0.04 0.17 0.43 0.79 0.98 1.00 1.00
16 0.09 0.35 0.74 0.97 1.00 1.00 1.00

N 32 0.18 0.57 0.92 1.00 1.00 1.00 1.00
64 0.33 0.77 0.99 1.00 1.00 1.00 1.00
128 0.48 0.90 1.00 1.00 1.00 1.00 1.00
256 0.63 0.96 1.00 1.00 1.00 1.00 1.00

Table 6.2: Power of the test from simulation of 10,000 correlated matrices.
The data is generated from a factor model with one factor, thus gi(t) =
0.5∗f(t)+ εi(t) for each time series. The null hypothesis is rejected when the
test statistics exceeds the 95 % cuto� point obtained from the chi squared
distribution with α = 2

N(T−1) (approximated by a Gaussian for N ≤ 64 with
an error of ∼ 0.1 percent).

6.2.2 Size and power of the test

In order to analyze the �nite sample properties of the test statistics R with the
adapted distribution αχ2

N(N−1)/2 given by

2
(T−1)N

χ2
N(N−1)/2 , (6.14)

we study size and power, the standard measures characterizing a statistical test.
First, we study the test size, i.e. the probability for rejecting the null hypothesis
when it is true. We simulate N i.i.d. and normally distributed time series Xi of
length T . For each simulation run, we compute the sample correlation matrix
C̃ and calculate the test statistics R from Eq. (6.3). The critical value Rcrit is
obtained from the upper 5% quantile of the T�limiting distribution, so that 5%
of the R would be rejected even with no correlations in the data and with a
perfect agreement of this distribution and the real distribution of R. This value
of 5% is called nominal size, because the size should approximate this value for
T if the test works correctly.
Table 6.1 shows the results of 10,000 simulations for both N and T from the
set {4, 8, 16, 32, 64, 128, 256}. For each (N,T ), we compare the test statistics R
with a critical value Rcrit that is calculated for this (N,T ) from the T�limiting
distribution. For T ≥ 32, the test works very well and the actual size agrees well
with the nominal size, independent of N . For T ≤ 16, the actual size is smaller
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Figure 6.4: Power of the test with α = 2
N(T−1) for di�erent correlation

strengths. The values are obtained from 10,000 simulations of time series
according to Eq. (6.15) with γ varying from 0.05 to 0.5. The results are
displayed for N = T = 32.

than the nominal size, i.e. Rcrit is too large so that the test rejects more than
5% of the simulations. This suggests that for small T the test is too restrictive,
which might also in�uence the power of the test to detect correlations.
In order to analyze the power of the test, we turn to simulate correlated time
series so that the null hypothesis should be rejected. We start with a one factor
model, where each time series X1

i is generated by

X1
i (t) = γ ∗ f(t) + εi(t) (6.15)

with i = 1, ..., N , t = 1, ..., T , and γ = 0.5. While the normally distributed
random numbers εi(t) are generated for each time series, the also normally
distributed random numbers f(t) are the same for every time series in one
time step. Thus, with this choice of γ = 0.5 the simulation generates strong
correlations. We apply the test to the correlation matrices of 10,000 simulations
for di�erent combinations of N and T (Table 6.2). In contrast to the size, which
mostly depends on T , the power increases with both increasing T and N since
the eigenvalue due to the common factor is larger if there are more time series
with this factor.
The power of the test to detect correlations depends largely on the strength
of the correlations in the considered time series. By adjusting the prefactor γ

of the common factor in Eq. (6.15), one can generate correlations of di�erent
strengths. The dependence of the power from these correlations is displayed in
Fig. 6.4 for N = T = 32. One �nds that the power is very good for γ & 0.4,
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T
4 8 16 32 64 128 256

4 0.03 0.12 0.45 0.89 1.00 1.00 1.00
8 0.03 0.13 0.44 0.92 1.00 1.00 1.00
16 0.04 0.14 0.45 0.94 1.00 1.00 1.00

N 32 0.04 0.14 0.46 0.95 1.00 1.00 1.00
64 0.05 0.15 0.46 0.95 1.00 1.00 1.00
128 0.04 0.15 0.47 0.95 1.00 1.00 1.00
256 0.05 0.15 0.47 0.95 1.00 1.00 1.00

Table 6.3: Power of the test from simulation of 10,000 correlated matrices.
The data is generated such that half of the eigenvalues of the correlation
matrix are equal to 0.5 and the other half equal to 1.5. The null hypothesis is
rejected when the test statistics exceeds the 95 % cuto� point obtained from
the chi squared distribution with α = 2

N(T−1) (approximated by a Gaussian
for N ≤ 64 with an error of ∼ 0.1 percent).

but vanishes if the correlations are too small. Larger values of N and T allow
the detection of smaller correlations.
In a further analysis using di�erent correlations, the time series are generated
such that half of the eigenvalues of the correlation matrix are 0.5 and the others
are 1.5. The time series are pairwise given by

Xcorr
2i−1(t) = ε2i−1(t) (6.16)

Xcorr
2i (t) =

√
3X2i−1(t) + ε2i(t) (6.17)

where i = 1, ...N/2. This de�nition generates rather small correlations, which
are di�cult to detect for the test. Hence, the power of the test for small T is
quite weak, which is displayed in table 6.3. Reasonable power is only obtained
for T ≥ 16, but the test works perfectly if T is large enough (T > 32). The
in�uence of N on the power is only weak, larger N only lead to a slight increase
of the power.
In Fig. 6.3 we saw that for very small T there are signi�cant deviations between
the distribution of R and the χ2�distribution Eq. (6.14). This suggests that
the cut-o� point Rcrit derived from the T�limiting distribution might also not
be appropriate for small T . This is also indicated by the results displayed in
table 6.1, showing that for T < 32 the cuto� point obtained from the T�limiting
distribution is too large since too few simulations are rejected. Thus, an adapted
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T
4 8 16 32 64 128 256

4 0.10 0.20 0.50 0.90 1.00 1.00 1.00
8 0.09 0.19 0.48 0.93 1.00 1.00 1.00
16 0.09 0.18 0.48 0.94 1.00 1.00 1.00

N 32 0.09 0.18 0.50 0.95 1.00 1.00 1.00
64 0.09 0.18 0.50 0.95 1.00 1.00 1.00
128 0.09 0.19 0.48 0.96 1.00 1.00 1.00
256 0.09 0.18 0.50 0.96 1.00 1.00 1.00

Table 6.4: Power of the test with from simulation of 10,000 correlated matri-
ces. the data is generated such that the correlation matrix has half of the
eigenvalues equal to 0.5 and the other half equal to 1.5. The null hypothesis
is rejected when the test statistics exceeds the 95 % cuto� point, which is
here not obtained from the chi squared distribution Eq. (6.14) but is adapted
so that always 5% of the simulations of uncorrelated time series are rejected,
even for small T .

cuto� point would be smaller and the test would reject the null hypothesis for
more simulations, possibly resulting in a better power for correlated time series.
In order to improve the power for small values of T , we adjust the cuto� point
Rcrit so that the size is 0.05 also for small T , i.e. that 5% of the simulations of
uncorrelated time series are rejected.
The results with adapted Rcrit can be seen in table 6.4. Though one �nds a
slight improvement of the power, the corrections are quite small. The e�ect
is strongest for T = 4, where the power increases from values around 0.04 to
values around 0.09, but the power of the test remains weak. For larger T ,
the improvement becomes quite small. This is not surprising because also the
correction of Rcrit is small for these T , since the distribution of R is close to the
distribution Eq. (6.14) for large T , as shown in Fig. 6.3.

6.3 Summary

We developed and studied numerically a hypothesis test that is able to dis-
tinguish between spurious and real correlations. We calculated the T�limiting
distribution analytically and used Monte Carlo simulations to adapt its pref-
actor in order to obtain a better agreement with the data for small T . This
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prefactor leads to a signi�cantly better agreement with the real distribution of
the test statistics for small samples. Using the corrected prefactor, the studied
signi�cance test generally leads to very good results for numerous (large N)
as well as long samples (large T ). However, if the sample length is very short
(T . 32), the power and the size of the test decrease. One reason might be that
the obtained value of α is still not the best choice for small samples. Possibly,
the corrections due to the correlations of order 1

T that we neglected in the limit
of large T might be important at small T . However, even if we use the simu-
lated distribution of the test statistics R to adapt Rcrit so that the actual size
matches the nominal size, the power for small T remains weak. Nevertheless,
even with these limitations for very short time series the test could be a useful
tool to analyze �nancial as well as physical time series.
In summary, this thesis studied various phenomena of stock returns. First, we
found self-similar features in the time periods following large and intermediate
crashes, and this self-similarity could be related to memory in the volatility.
Then, we studied the mechanisms leading to large returns. We found that
large returns are not due to one single e�ect, but rather depend on several
quantities: In intervals with a �xed number of trades, the concurrence of a
large number di�erence and a large mean tick return size leads to non-Gaussian
returns. By analyzing the price impact function in time intervals, we showed
that its time-varying slope can be a measure for liquidity, which together with
the volume imbalance can explain large returns. In this picture, large price
changes occur because in the respective time interval the liquidity is low, so
that an intermediate volume can cause a very large return.
The notion that traded volume moves the price seemed to be paradoxical: the
signs of orders are strongly correlated, but uncorrelated returns appear when
these orders are executed. We showed that this lack of correlations in the returns
can be explained by a trading strategy that uses the order sign correlations for
an increased pro�t. Finally, we turned from the analysis of time correlations to
studying cross-correlations between di�erent time series. We presented a test
that can distinguish spurious correlations from real correlations in the correla-
tion matrix of �nite samples. In a further study, this test could be applied to
empirical correlation matrices in order to estimate their real correlations.
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A Appendix: Data sets and analysis
methods

In this appendix, we want to give an overview and more detailed information
about the data sets studied in this thesis. We also want to explain the �ltering
methods used to remove recording errors and their in�uence on the results.
Moreover, we describe the programming methods and how these programs can
be used for future research.

A.1 Data sets and �ltering

For this thesis, we studied four di�erent �nancial data sets:

• (i) the one minute return time series of the S&P500 index from 1984 to
1989,

• (ii) the TAQ data base of the year 1997 for the 100 most frequently traded
stocks,

• (iii) the one minute return series of General Electric (GE) stock from the
TAQ data base of 2001, and

• (iv) complete order book information from the Island ECN for the ten
most frequently traded stocks in 2002.

In the following, we will give detailed information about the data sets.
(i) The S&P500 index is composed of 500 stocks of mostly US-American com-
panies that are traded at major US stock exchanges. Along with the Dow Jones
Industrial Average and the Nasdaq Composite Index it is one of the most impor-
tant indices in the US. The data set studied provides the index value in every
minute of a trading day, so that a time series of one minute returns can be
created. In the last hour of the trading day, the data set sometimes contains no
records, so that these parts were excluded from the analysis (instead of �lling
them with zero returns). All in all, the whole data set contains about 500,000
data points for the time period 1984 to 1989.
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(ii) The Trades And Quotes (TAQ) data base is provided by the New York Stock
Exchange (NYSE) and contains data for all stocks traded at NYSE, Nasdaq,
and American Stock Exchange (AMEX). In our data set for the year 1997, for
each month the data set consists of two �les: the �rst �le contains all trades,
i.e. the transaction price, the number of shares (volume) traded, and the time
when the trade took place. The other �le gives information about the quotes,
which includes the bid and ask price, the volume present at bid and ask price,
and a time stamp for the quote. Using the time stamps of the recorded trades
and quotes, one can match all trades with the respective quotes which are chosen
as the last quote before the trade happened. The quotes are used to calculate
the midquote price but also for the Lee and Ready algorithm [105] that labels
trades as buyer or seller initiated, depending on whether the transaction price
is larger or smaller than the midquote price.
Unfortunately, this data set exhibits some recording errors: First, there are
obvious misrecordings due to typos, so that sometimes the price jumps from 10
to 100 and immediately back to 10. On other occasions, in one trade the price
changes by for example 20%, stays at this level for a few trades and jumps back
exactly to the old price. When these events happen, the quotes do not change at
all, which indicates that these jumps are arti�cial and do not re�ect the natural
behavior of price changes.
In order to remove these errors from the data set, we used the algorithm of
Chordia et al. [114], which discards all trades for which the di�erence between
trade price and midquote price is larger than four times the spread. After
applying the �lter algorithm, we checked visually the return and trading volume
time series surrounding the largest price changes and found no evidence for
remaining recording errors.
The �lter algorithm is quite restrictive and removes about one percent of all
transactions. This has a signi�cant e�ect on the cumulative distribution function
P (G > x) of returns. We already pointed out that it is a common assumption
that the tail of the return distribution follows a power law with P (G > x) ∼ x−α,
where α is around three. Here, we do not want to contribute to the discussion
whether a power law is the best description of the return distribution, and which
exponent is the correct one. However, one can use a power law �t to describe
the changes caused by the �ltering. For the raw data without any �ltering, we
�nd α = 2.1, after applying the �lter we �nd α = 3.9 by �tting a straight line
in a double logarithmic plot.
We note that the applied �ltering algorithm removes not only the obviously
erratic events described above, but also strong oscillations of several standard
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deviations that are probably due to the combination of di�erent ECNs: a large
price change might not be reported by all ECNs at the same time. If the price
changes on the leading ECN, there might still be limit orders at smaller ECNs
providing opportunities to trade at the old price. Arbitrage traders exploit these
remaining orders, so that some time after the �true� price change, there are still
records of trades occurring at the old price. Though these oscillations are not
due to recording errors, they are an artifact of the trading system and thus
rightly removed by the �ltering method.
(iii) The TAQ data for 2001 appears to have less recording errors than the data
from 1997, so that we only needed to discard the �rst and last 15 minutes of
a trading day to get rid of unusual (i.e. arti�cial) price �uctuations. Since we
did not use this data set for studying single extreme price �uctuations, possible
recording errors still contained in the data set have no negative in�uence on the
results.
(iv) The entire market information of the Island ECN is stored in text �les.
We processed the 60GB of raw data in order to extract the data for the ten
most frequently traded stocks [100] in one �le for each stock and trading day.
In these �les, each line represents a message of one of the four major types: add
limit order, cancel limit order, execute limit order, or trade message. The �rst
three types allow a complete reconstruction of the order book at every instant of
time, whereas �trade message� announces the execution of hidden orders which
are not visible in the order book.
Each message contains all necessary information: The ticker symbol of the re-
spective stock, the time past midnight in milliseconds, the number of shares,
the limit price, an indicator whether it is a buy or sell order, and a unique order
reference number. We use this number as a key to store and identify each order
in our data structure and perform (partial) executions and cancelations until
an order is completely executed or canceled. Since all open orders are purged
from the book every evening, we can process the data day by day starting with
an empty book each morning. The order book data contains only data about
limit orders, but the placement of market orders is displayed indirectly by the
execution of one or several limit orders. Limit order executions with the same
time stamp are probably due to the same market order, which we take into
account when studying tick returns.
For each stock, the database for the entire year contains about one to four
million messages. We exclude "hidden" limit orders from our analysis because
our data base contains no information about their placement. We have checked
that on the level of the average price impact function Imarket(Q) in Eq. (4.1)
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our results do not change if we include hidden limit orders, since the additional
order volume is accounted for by the change in the normalization σQ.
This data set is from an electronic market place, where all orders are given and
thus recorded via computers, so that we �nd no evidence for recording errors.
We checked this visually by looking at the largest price changes, but also by
consistency tests, e.g. verifying that the bid price is always lower than the ask
price.

A.2 Programming methods

Except for the Monte Carlo simulations presented in chapter 6, which were
performed using Octave, most programs for this thesis have been written in
Perl. A Perl program is (usually) not compiled but uses an interpreter, and it is
much slower than e.g. a C++ program (about a factor of two to ten, depending
on the task). However, for most purposes in this thesis the programs run less
than one hour, mostly only a few seconds, so that the speed of the program does
not play a major role. An exception are the simulations of the trading strategies
in chapter 5, which are very time consuming because of the complicated trading
process simulated.
Usually much more time consuming than the actual execution of the program
is the programming part, where Perl is a very useful language. On the one
hand, it provides helpful tools for manipulating strings, so that processing the
various data �les is rather simple. On the other hand, it has easily accessible
and adaptable data structures, that allow a fast storing and manipulating of
the data. For instance, in the Island order book data, each order has an order
reference number that can be used as a unique key to identify the order in a hash
table, together with its data such as the limit price or the amount of shares.
Though such data structures can also be created in other languages like C++,
Perl provides them with a minimal amount of code. In this way, programs can
be written quite fast and can be quickly adapted to a new analysis.
For the documentation of the programs, we used POD (Plain Old Documenta-
tion). This documentation is included in the program �les and can be extracted
to various formats like HTML, PDF, or a Unix man page using commands such
as pod2html or pod2pdf. In this way, the documentation can be maintained in
conjunction with the program. We developed a program that runs recursively
through the �le system of this thesis and automatically creates an HTML doc-
umentation of all program �les and self-written modules that can be displayed
in a browser.
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The �le system for this thesis is organized in four main folders:

• data � In this folder, all the data sets are stored in one subfolder for each
time period studied.

• scripts � Here one �nds all the programs. For each chapter of this thesis,
the programs are stored in a single subfolder. Many functions that are
used in more than one program are collected in modules that are stored
in a subfolder named Modules. There is also a subfolder for tools that
are used in more than one chapter, e.g. the ones for processing the data
�les in order to create the return time series from the raw data. In this
subfolder, one also �nds the program for creating the documentation.

• results � Results from calculations are saved in this folder, again with
one subfolder for each chapter. Also the data for plots is saved here in
subfolders called data.

• plots � Here, we save the plots that are created by the programs using
gnuplot. For each postscript �le, there is also a text �le that contains
the commands for gnuplot to create the plot. However, many plots are
created with xmgrace using the data stored in the result path.
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