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Abstract

The basis of locomotion is the rhythmic activity of locomotor organs. During walking,

rhythmic alternating bursts occur in leg motoneurons which result from the integration

of signals from central pattern generators, sense organs and coordinating signals from

neighboring segments. The rhythmic bursting pattern is shaped by rhythmic excitatory

and inhibitory drive, as well as a long lasting (tonic) depolarizing modulation.

This dissertation investigates the mechanisms that underlie the tonic modulation of neu-

ronal activity, which is the basis of the rhythmic activity. A single-legged preparation of

the stick insect was used, that allows the analysis of neuronal activity in mesothoracic

motoneurons during front leg stepping, without the influence of local sense organs. In-

tracellular recordings of the membrane potential in flexor motoneurons ipsilateral and

contralateral to the stepping front leg revealed a mean tonic membrane depolarization of

1.8 ±1.1 mV that could outlast the stepping sequence by several seconds. Furthermore,

a phasic modulation of membrane potential occurred on top of the tonic depolarization,

which was variably coupled to front leg steps. The tonic depolarization was associated

with a decrease in input resistance, its amplitude depended on membrane potential and

its mean reversal potential was found to be −41 mV. These properties of the tonic de-

polarization indicate that it is based on a nonselective cation conductance or a mixed

inward and outward current through different channels. Furthermore, the tonic depolari-

zation increased the excitability of the membrane to depolarizing input and was found

to have long repolarization time constants (τ̄=800 ms).
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Pharmacological experiments were performed to identify the participating transmitter(s)

and to test for a possible involvement of second messengers. Flexor motoneurons were

recorded intracellularly while superfusing pharmacological agents, which were restricted

to the mesothoracic ganglion. The muscarinic antagonist atropine decreased the tonic de-

polarization amplitude, thus indicating a role for acetylcholine in mediating the tonic de-

polarization via metabotropic receptors. Other transmitters/receptors might be involved

too, as octopamine increased the tonic depolarization amplitude. This was supported by

the reduction of the tonic depolarization amplitude by an octopaminergic antagonist (mi-

anserin). Serotonin had an opposing effect on the tonic depolarization amplitude. It was

shown that serotonin increased, but also decreased the tonic depolarization amplitude in

different experiments.

Several second messenger pathways might be involved in mediating the tonic depolari-

zation, one of which seems to include calcium in the flexor motoneurons. Furthermore,

the increase of the tonic depolarization amplitude by 8-Br-cAMP suggests a role for

cAMP in mediating the tonic depolarization. An involvement of an IP3/DAG pathway

was indicated by the increase in tonic depolarization in the presence of neomycin and

U-73122.

Additional experiments addressed the role of the brain (supraesophageal ganglion) in

controlling neuronal activity in the mesothoracic ganglion induced by front leg stepping.

Especially the relevance of the brain for generating the tonic depolarization was tested

in lesion experiments. Brain removal decreased the tonic depolarization amplitude, thus

indicating a role for descending pathways in influencing the tonic depolarization. An-

other preparation was used to investigate the neuronal activity in neck connectives dur-

ing front leg stepping. The neuronal activity increased and was correlated to front leg

stepping velocity. In brainless animals, however, the increased activity in neck connec-

tives was diminished.



Zusammenfassung

Fortbewegung beruht auf der rhythmischen Aktivität der Fortbewegungsorgane. Wäh-

rend des Laufens treten rhythmisch alternierende Aktionspotentialsalven in Beinmo-

toneuronen auf, die aus der Integration von Signalen zentraler Rhythmusgeneratoren,

Sinnesorganen und koordinierenden Signalen aus benachbarten Segmenten resultieren.

Das rhythmische Muster von Aktionspotentialsalven wird durch rhythmisch erregende

und hemmende Eingänge, sowie durch eine lang anhaltende (tonische) depolarisierende

Modulation strukturiert.

Die vorliegende Dissertation untersucht die der tonischen Modulation neuronaler Ak-

tivität unterliegenden Mechanismen, welche die Basis der rhythmischen Aktivität sind.

Es wurde ein Einbein-Präparat der Stabheuschrecke verwendet, welches die Analyse

neuronaler Aktivität in mesothorakalen Motoneuronen ohne die Einflüsse der lokalen

Sinnesorgane während des Vorderbein-Laufens erlaubt. Intrazelluläre Ableitungen des

Membranpotentials von Flexor Motoneuronen ipsi- und kontralateral zum laufenden

Vorderbein zeigten eine mittlere tonische Depolarisation der Membran von 1.8 ±1.1 mV,

welche die Schrittsequenz um mehrere Sekunden überdauern konnte. Außerdem trat

eine phasische Modulation des Membranpotentials auf, die variabel an Vorderbeinschritte

gekoppelt war. Die tonische Depolarisation ging mit einer Abnahme des Eingangswider-

stands einher, ihre Amplitude hing vom Membranpotential ab und das Umkehrpotential

lag bei −41 mV. Diese Eigenschaften der tonischen Depolarisation weisen darauf hin,

dass sie entweder auf einer unselektiven Kationen-Leitfähigkeit oder einem gemischten
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Einwärts- und Auswärtsstrom durch verschiedene Kanäle basiert. Außerdem steigerte

die tonische Depolarisation die Erregbarkeit der Membran für depolarisierende Eingänge

und zeigte lange Repolarisations-Zeitkonstanten (τ̄= 800 ms).

Es wurden pharmakologische Experimente durchgeführt um die beteiligten Transmit-

ter zu identifizieren und die mögliche Mitwirkung von second messengern zu testen.

Während einer auf das mesothorakale Ganglion beschränkten Applikation von Phar-

maka wurde intrazellulär von Flexor-Motoneuronen abgeleitet. Der muskarinerge An-

tagonist Atropin reduzierte die Amplitude der tonischen Depolarisation und deutet auf

eine Rolle von Acetylcholin bei der Übertragung der tonischen Depolarisation über meta-

botrope Rezeptoren hin. Es scheinen aber auch andere Transmitter bzw. Rezeptoren

beteiligt zu sein, da Oktopamin die Amplitude der tonischen Depolarisation vergrößerte.

Die Reduktion der Amplitude der tonischen Depolarisation durch den oktopaminer-

gen Antagonisten Mianserin unterstützte diesen Befund. Serotonin hatte gegensätzliche

Wirkung auf die Amplitude der tonischen Depolarisation. Es wurde gezeigt, dass Sero-

tonin die Amplitude der tonischen Depolarisation in verschiedenen Experimenten ver-

größerte oder reduzierte.

Verschiedene second messenger Wege könnten an der Übertragung der tonischen Depo-

larisation beteiligt sein, möglicherweise unter Nutzung von Calcium in den Motoneu-

ronen. Eine Erhöhung der tonischen Depolarisation durch 8-Br-cAMP weist zudem auf

eine Beteiligung von cAMP bei der Übertragung der tonischen Depolarisation hin. Eine

Beteiligung eines IP3/DAG Weges lässt der Anstieg der tonischen Depolarisation in Ge-

genwart von Neomycin und U-73122 vermuten.

Ergänzende Experimente behandelten die Rolle des Gehirns (Oberschlundganglion) bei

der Kontrolle neuronaler Aktivität im mesothorakalen Ganglion, die durch Schreiten des

Vorderbeins induziert wurde. Speziell die Relevanz des Gehirns für die Erzeugung der

tonischen Depolarisation wurde in Läsionsexperimenten untersucht. Das Entfernen des

Gehirns reduzierte die Amplitude der tonischen Depolarisation, und deutet damit auf

eine Rolle deszendierender Bahnen bei der Beeinflussung der tonischen Depolarisation

hin. In einer weiteren Präparation wurde die neuronale Aktivität in Halskonnektiven

während Schreitens des Vorderbeins untersucht. Die neuronale Aktivität zeigte eine mit
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der Schreitgeschwindigkeit des Vorderbeins korrelierte Zunahme. In gehirnlosen Tieren

war der Aktivitätsanstieg in den Halskonnektiven vermindert.
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CHAPTER 1

Introduction

Throughout the animal kingdom, movement through the environment - locomotion - is

a necessary part of behaviors such as foraging, escape or reproduction. Different forms

of locomotion have evolved, such as walking, running, flying, swimming and crawling.

Rhythmic muscle contractions lead to movements of limbs or appendages respectively,

and/or the body itself. In vertebrates and invertebrates, these movements are controlled

by central pattern generator networks (CPGs), that lead to coordinated, repetitive con-

tractions of antagonistic muscles (Pearson 1993; Grillner 2003; Selverston 2005; Büschges

2005; Marder et al. 2005). Motor rhythms are the expression of oscillatory discharges from

an ensemble of neurons wired together to generate a coherent motor output.

Rhythmic motor patterns play also a crucial role in nonlocomotory systems as respira-

tion, heartbeat, chewing or saccadic eye movements (Pearson 1993; Calabrese et al. 1995;

Grillner 2006). Interaction of the centrally generated activity and sensory information

from various sense organs leads to a functional motor output (e.g., reviewed in Grillner

and Wallen 2002; Fouad et al. 2003; Pearson 2004; Zill et al. 2004; Büschges 2005). Sense



14 1 INTRODUCTION

organs ensure a functionally, coordinated and efficient behavior by monitoring and ad-

justing it to the actual environment. The degree of sensory information needed depends

on the complexity of the locomotor organs and on the properties of the environment

through which the animal moves (Orlovsky et al. 1999). Furthermore, central commands

and neuromodulators influence the patterns produced by CPGs.

1.1 Descending control of motor activity

Motor activity can be influenced in its initiation, maintenance and adaptation by descend-

ing signals from the brain. In the lamprey, the transition from the quiescent to the active

state is induced by activation of the reticulospinal system (RS) via mesencephalic (MLR)

and diencephalic locomotor regions (Deliagina et al. 2002; Grillner et al. 1998; Grillner

and Wallen 2002). The RS is the main descending system and activates glutamatergic

receptors on both excitatory and inhibitory interneurons and the output motoneurons

(MNs) in the spinal cord. Furthermore, a range of behaviors that include coordinated

motor activity, can be elicited by stimulation of discrete brain regions in vertebrates and

invertebrates. Stimulation of the MLR in cats activates RS neurons and evokes locomo-

tion (Mori et al. 1998; Jordan 1998), and wing flapping in birds can be induced by stimu-

lating brainstem regions (Steeves et al. 1987).

Stimulation of single neurons was shown to evoke motor activity in invertebrates, such

as the activation of swimmerets in the crayfish (Hughes and Wiersma 1960; Wiersma and

Ikeda 1964). Those neurons were termed "command neurons" by Wiersma and Ikeda

(1964), and Kupfermann and Weiss (1978) defined them to be both, necessary and suffi-

cient for evoking a motor act. Only few examples are known up to now that meet both

criteria, for example the dorsal ramp interneuron in Tritonia that elicits the swim motor

program due to stimulation above a certain frequency (Frost and Katz 1996). In general,

these neurons usually act parallel with other elements of the network, thus distributing

the command properties. Leech swimming can be initiated and terminated/suppressed

by trigger neurons located in the subesophageal ganglion (SEG) (Tr1 and Tr2, respec-

tively; Kristan and Weeks 1983; Brodfuehrer et al. 1995; Taylor et al. 2003). Evidence

for descending influences on motor activity in insects was obtained from several species
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(e.g., cockroach walking, flight: Gal and Libersat 2006; Ridgel and Ritzmann 2005; cricket

walking, mating and stridulation: Böhm and Schildberger 1992; Matsumoto and Sakai

2000; Hedwig 2000; locust walking: Kien 1983). In stick insects, the influence of higher

brain centers on walking activity was analyzed by the means of lesion experiments.

According to these experiments, transection of head-connectives suggests an inhibitory

influence of the supraesophageal ganglion (brain) on spontaneous walking activity and

an opposing effect of the SEG (Graham 1979a;b; Bässler 1983; Graham 1985). Up to now,

nothing is known about the activity of single descending interneurons (DINs) in stick in-

sects, but Altman and Kien (1979) showed that locusts’ DINs in the SEG are active during

leg movements with varying response properties.

1.2 Modulatory influences

Neuronal networks have to produce flexible outputs for behaviors adapted to varying

environments. There are several ways of altering the motor output, for example by sen-

sory and descending influences (see above) or neuromodulatory action. Furthermore, the

output of the motor network depends on the interplay of all involved neurons (synaptic

interaction) and of course on intrinsic membrane properties of single neurons. The lat-

ter is determined by channel function, and involves the generation of plateau potentials,

post-inhibitory rebound spiking and spike frequency adaptation. All these aspects can

be subject to modulation by several neuroactive substances.

1.2.1 Intrinsic properties

Neurons with plateau potentials make rapid transitions between two relatively stable

membrane potentials (Marder 1991). The ability to produce a plateau potential depends

on the respective status of the neuron, but usually it can be induced by brief excitation

(from an electrode respectively synaptic input) and terminated by a short hyperpolariza-

tion. Once a plateau potential is initiated, the neuron can fire action potentials without

continuous excitation. Modulation of plateaus can influence for example specific phase

relationships in a rhythmic motor pattern or influence frequencies. Several neuroactive
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substances promote plateau potentials in MNs, for example serotonin (crab: Zhang and

Harris-Warrick 1995, snail: Arshavsky et al. 1998, turtle: Hounsgaard and Kiehn 1989,

cat: Hounsgaard et al. 1988), and influencing actions of glutamate, ACh and GABA were

shown for spinal MNs (Alaburda et al. 2002). In locusts, octopamine causes plateau po-

tentials in flight interneurons (Ramirez and Pearson 1991a). Plateau properties were also

shown for neurons in the cockroach and moth (Hancox and Pitman 1991; Mills and Pit-

man 1997; Mercer et al. 2005). Although up to now, there is no evidence for plateau po-

tentials in stick insect neurons, sustained depolarizations were observed in motor- and

interneurons associated with motor activity (Büschges et al. 2004; Ludwar et al. 2005b).

One mechanism by which plateau potentials are generated is a persistent inward current

(PIC). PICs are depolarizing currents that are generated by voltage-sensitive channels,

which stay open as long as the membrane potential is above the threshold for their ac-

tivation (Heckmann et al. 2005). The threshold for a PIC is usually close to the voltage

for initiating action potentials and most of the PIC is generated in dendritic regions. In

vertebrate MNs, sodium or calcium ions play an important role in generating the PIC

(e.g., turtle MNs: Hounsgaard et al. 1984). Evidence for PICs in invertebrates comes from

studies on leech interneurons, and from MNs in the stomatogastric ganglion (STG) of

the lobster (Lu et al. 1999; Elson and Selverston 1997). Furthermore, PICs are subject to

neuromodulation, as shown for serotonergic modulation of spinal MNs by DINs in cats

(Hyngstrom et al. 2007).

Neurons with post-inhibitory rebound (PIR) properties show increased excitability af-

ter inhibition. It can be produced by several mechanisms, such as activation of hyper-

polarization-activated depolarizing conductances (Ih, e.g., snail MNs: Straub and Ben-

jamin 2001, mice brainstem neurons: Sekirnjak and du Lac 2002) or deinactivation of

depolarization-activated inward currents. For leech swim MNs PIR is the product of a

combination of low-threshold sodium and calcium currents (Angstadt et al. 2005). PIR

plays an important role in locomotor rhythms, e.g., in the spinal cord (lamprey: Mat-

sushima et al. 1993, xenopus: Roberts and Tunstall 1990, the crustacean STG: Hooper

and DiCaprio 2004, or leech heartbeat and swimming: Calabrese et al. 1995; Angstadt

and Friesen 1993a;b). Evidence for PIR in insects comes from studies on locusts, Manduca
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sexta and stick insects (dorsal unpaired median (DUM) neurons: Heidel and Pflüger 2006,

antennal lobe neurons: Mercer et al. 2005; sag potential in fast flexor MNs: Schmidt et al.

2001). Serotonin modulates PIR responses in leech swim neurons (Angstadt et al. 2005)

and dopamine enhances the PIR property in pyloric neurons of lobsters (Harris-Warrick

et al. 1995). Spike frequency adaptation (SFA) is known to influence the final output

of many neurons, for example by determination of burst duration in MNs of vertebrates

(lamprey: el Manira et al. 1994, rat: Sawczuk et al. 1995; reviewed in Hultborn et al. 2004)

and invertebrates (crab: Krans and Chapple 2005, stick insect: Schmidt et al. 2001). In-

terneurons involved in motor acts can also exhibit SFA and are subject to modulatory

action (e.g., interneuron C2 in Tritonia: Katz and Frost 1997). SFA can result from an out-

ward current that develops during the spike train and causes spike frequency to decrease.

These outward currents are often expressed as postspike afterhyperpolarization (AHP)

occurring after stimulus termination, but there is also evidence for AHP-independent

SFA in other neuronal types (rat: Melnick et al. 2004; mouse: Fleidervish et al. 1996).

1.2.2 Neuroactive substances

Most neuroactive substances can exert their effects via ionotropic and metabotropic re-

ceptors, which are divided into two distinct superfamilies. Ionotropic receptors are li-

gand-gated ion channels that are responsible for fast neurotransmission (milliseconds),

whereas metabotropic receptors are linked with ion-channels and exert their effect via

signal transduction cascades (seconds to minutes).

The major neurotransmitter in the nervous system of vertebrates and invertebrates is

acetylcholine (ACh). It acts on distinct receptors, which are named according to their

activation by the respective agonist, nicotinic and muscarinic ACh receptors (n- and

mAChRs). A third receptor type shows mixed pharmacological properties (mixed nico-

tinic/muscarinic receptor). nAChRs usually mediate rapid and short-lived depolariza-

tions, whereas mAChR activation exerts slow and prolonged effects (Gundelfinger and

Schulz 2000; Felder 1995). ACh is an excitatory transmitter in insects, and is not involved

in neuromuscular transmission (Sattelle 1980). Several studies revealed ACh as a trans-
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mitter between sensory- and interneurons, or sensory- and motoneurons respectively

(e.g., cricket: Meyer and Reddy 1985, locust: Parker and Newland 1995, Manduca sexta:

Trimmer and Weeks 1989). There is also evidence that ACh is released by DINs, thereby

effecting interneurons in the locust (Baines and Bacon 1994). In the insect nervous system,

nAChRs are found in high density and far exceed the number of mAChRs (Breer 1981;

Orr et al. 1991), whereas for both, different receptor subtypes were identified (Benke and

Breer 1989). A functional role for nAChRs in synaptic transmission was found in sev-

eral neuron types (cockroach: David and Sattelle 1984; Grolleau et al. 1996, Manduca

sexta: Waldrop and Hildebrand 1989, cricket: Cayre et al. 1999, honey bee: Goldberg

et al. 1999). A postsynaptic effect for nAChRs was found for the fast coxal depressor

MN in cockroaches (Butt and Pitman 2005). In insects, mAChRs exert their effect pre-

or postsynaptically. Presynaptic mAChRs can act as negative feedback autoreceptors

(in Breer and Sattelle 1987; Osborne 1996). Postsynaptic mAChRs mainly regulate spike

threshold and excitability of moto- and interneurons (Trimmer 1995). Evidence for coup-

ling of mAChRs to second messenger pathways is found in a range of different species.

Muscarinic stimulation can lead to increased excitability and membrane depolarizations

(Trimmer 1994; David and Pitman 1996), which could be mediated by activation of phos-

pholipase C (PLC). An inhibitory action of mAChRs was found in locust synaptosomes,

where they presynaptically inhibited transmitter release by reducing the cyclic adenosine

monophosphate (cAMP) level (Knipper and Breer 1988).

The function of insect mAChRs might be in the rhythm-generating networks, since ap-

plication of the muscarinic agonist pilocarpine induces rhythmic activity in MNs in stick

insects (Büschges et al. 1995), locusts (Ryckebusch and Laurent 1993) and Manduca sexta

(Johnston and Levine 1996). Rhythmic activity influenced by pilocarpine was also shown

in some crustacean preparations, for example in the STG (Marder and Hooper 1985).

Trimmer and Weeks (1993) and Wenzel et al. (2002) suggest a functional role for mAChRs

as being the basis for specific arousal.

In some studies, receptors were found which were equally affected by nicotinic and mus-

carinic agonists, e.g., in cockroach DUM neurons (Lapied et al. 1990) or in housefly brains

(Eldefrawi and O’Brien 1970).
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Another important neuroactive substance in invertebrates is octopamine, which was first

described in the salivary glands of Octopus (Erspamer and Boretti 1951). Due to the simi-

lar chemical structure and effects, it is thought that the octopaminergic system is homolo-

gous to the noradrenergic system of vertebrates. The respective receptors are G-protein

coupled. Actions of octopamine are versatile, as it plays a role as neurotransmitter, neu-

rohormone and neuromodulator (Orchard 1982; Roeder 1999).

In the insect central nervous system octopamine is involved in flight and walking initia-

tion (locust: Sombati and Hoyle 1984) and in memory processes (honey bee: Menzel et al.

1990). In the periphery it modulates muscle contraction and functions of the oviduct and

fatbody. In the locust extensor tibiae muscle preparation, octopamine presynaptically

modulates the release of transmitters from MNs (Evans and O’Shea 1977), whereas octo-

pamine affects muscle fibers postsynaptically. Octopamine release into the hemolymph

due to stress exerts neurohormonal effects, for example in the locust, cockroach and

honey bee (Davenport and Evans 1984; Hirashimai and Eto 1993; Harris and Woodring

1992) and an aggression related role was described by Stevenson et al. (2005) in crick-

ets. In the thoraco-abdominal nervous system, octopamine is synthesized and released

by DUM and VUM (ventral unpaired median) neurons, which for example supply leg

and flight muscles in locusts (Hoyle and Barker 1975; Morton and Evans 1984). Mentel

et al. (2003) showed that locust flight muscles are poised for flight activity by the release

of octopamine from DUM neurons, and Ramirez and Pearson (1991a;b) described octo-

pamine induced bursting and plateau potentials. The only known effect of octopamine

in stick insects so far is a suppression of the pathways involved in the resistance reflex

of the femur-tibiae control loop (Ramirez et al. 1993; Büschges et al. 1993). Responses in-

duced by octopamine last from milliseconds to seconds and the effect of octopamine is

known to be mainly mediated by activation of adenylate cyclase (AC), but in some sys-

tems also other second messenger pathways play a role. Rhythmic motor behavior can be

influenced by octopamine, as shown for eliciting complete flight motor output in an iso-

lated metathoracic ganglion in locusts (Stevenson and Kutsch 1986) or the mesothoracic

ganglion in Manduca sexta (Claassen and Kammer 1986).

The neuroactive substance serotonin (5-hydroxytryptamine, 5-HT) is known to play an
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important role in modulating feeding, postural and aggressive behaviors, and generally

arousal levels in vertebrates and invertebrates (Weiger 1997). The effects of serotonin, as

those of octopamine, include that of a neurotransmitter, neuromodulator and neurohor-

mone. Modulatory action of neuronal activity was shown in context with learning and

memory in Aplysia (Kandel 2001). Serotonin influences rhythmic motor behaviors, e.g.,

the expression of swim activity in the leech is facilitated amongst others by serotonin

(Brodfuehrer et al. 1995), although also an inhibitory influence was described by Crisp

and Mesce (2003) when applied only to the brain. In the swim CPG of Tritonia a role for

serotonergic receptors is suggested (Clemens and Katz 2001). With the exception of one

receptor type (5-HT3, which is known to induce quick opening of an ion channel), all

serotonin receptors are G-protein coupled and mediate their effects by second messen-

gers (Hoyer et al. 1994; Barnes and Sharp 1999).

In insects, serotonin affects neurons in the central nervous system, the periphery and

neuromuscular junction. Brain structures, such as the optic and antennal lobes, mush-

room bodies and the central body, show intense serotonin immunoreactivity (see review

by Osborne 1996). Within the central nervous system it antagonizes the effects of other

transmitters in the control of rhythmic behaviors, e.g., suppression of the dopamine in-

duced production of flight motor output in Manduca sexta (Claassen and Kammer 1986).

Application of serotonin to the nerve cord of Drosophila stimulates locomotion (Yellman

et al. 1997), and Lundell and Hirsh (1998) could show that mutants with reduced num-

bers of serotonin cells in the ventral nerve cord are inactive. Isolated neuronal somata

of locusts respond with three different membrane currents to serotonin application, thus

indicating different receptor subtypes (Bermudez et al. 1992). Furthermore, Parker (1995)

showed that properties of leg MNs in the locust are modulated by serotonin, which leads

to a potentiation of synaptic transmission between MNs.

1.2.3 Second messenger pathways

The activation of a second messenger system leads to a cascade of intracellular events

that induce delayed effects on neurotransmission. The involved receptors usually acti-

vate guanosine nucleotide-binding proteins (G-proteins), which causes the synthesis of
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second messengers, such as cAMP, inositol trisphosphate (IP3) and diacylglycerol (DAG)

or arachidonic acid metabolites. Besides channel modification, second messengers influ-

ence enzyme production, protein synthesis and regulate genes (Kandel et al. 1996). NO

and CO are membrane permeable second messengers and influence guanylyl cyclase in

the cytoplasm.

In second messenger systems, the binding of a first messenger (neurotransmitter) to

the receptor induces a range of events. In most cases, the receptor interacts with the

G-protein and this binds to its effector enzyme:

1) In the cAMP cascade, AC is activated (or inhibited) due to interaction with the G-

protein. The function of AC is to convert adenosine triphosphate (ATP) to adenosine

diphosphate (ADP). The latter is metabolized to cAMP, and activation of another en-

zyme or protein kinase occurs. This, in turn, can lead to phosphorylation of ion chan-

nels or transcription factors. The involvement of cAMP pathways was shown for many

systems, as for the other second messengers. One example is the modulation of respira-

tory MNs in rats by cAMP-dependent protein kinase A (Bocchiaro et al. 2003), another

comes from insects, where mAChRs mediate excitation in the grasshopper brain by an

AC/cAMP/PKA dependent pathway (Wenzel et al. 2002).

Two other second messenger pathways involve the hydrolysis of phospholipids in the

inner leaflet of the plasma membrane. The hydrolysis is catalyzed by phospholipase C

and A2.

2) Phospholipase C produces IP3 or DAG. IP3 serves as another second messenger and in-

duces the release of calcium from internal stores (endoplasmatic reticulum). DAG on the

other hand remains within the plasma membrane and activates protein kinase C (PKC).

Furthermore, the activation of protein kinase C also requires phospholipids. The active

form of PKC is translocated to the membrane and forms an active complex with DAG,

thus phosphorylation of proteins in the cell is possible. Genetic studies from vertebrate

and invertebrate model systems suggest that coordinated rhythmic motor functions are

most susceptible to changes in intracellular Ca2+, released from internal stores (endo-

plasmatic reticulum) by IP3 receptors (in Banerjee and Hasan 2005). Levi and Selverston

(2006) showed that lobster gastric mill neurons are excited by metabotropic glutamate
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receptors acting via phospholipase and IP3, and Qazi and Trimmer (1999) investigated

the role of inositol signaling in the central nervous system of larval Manduca sexta.

3) Receptors that activate phospholipase A2 induce the release of arachidonic acid from

the cell membrane, which is rapidly converted into eicosanoid metabolites.

The different second messengers can interact with each other, their synthetic pathways

are intertwined. Thus a combination of different modulators can act together, the level of

one second messenger may for example influence the response mediated by another one,

which gives rise to a large range of behavioral possibilities.

1.3 Stick insect walking

The muscles of the three leg pairs of stick insects are innervated by MNs from the re-

spective thoracic ganglia. The stick insect leg is divided into five segments, whereas only

three proximal leg joints are crucial for walking movements. A single step consists of the

so called stance and swing phase. During stance phase the animal is pushed forward by

developing force with the leg towards the ground. The leg is then lifted during swing

phase and moves forward to the starting position for the next step. A characteristic mo-

toneuronal and muscle activity pattern can be attributed to each phase (Graham 1985;

Fischer et al. 2001; Büschges 2005). There is strong evidence that each leg joint is asso-

ciated with an individual CPG (Büschges et al. 1995). Sensory information from several

sources is involved in inter- and intra-leg coordination, e.g., femoral chordotonal organ

(fCO) and campaniform sensilla (CS) (Akay et al. 2004; Akay and Büschges 2006). The

fCO is a stretch receptor that provides information about angle and movement of the

femur tibia joint, whereas CS are strain sensors that report signals about the load of the

leg.

The rhythmic bursting pattern observed in leg MNs during walking is due to an alternat-

ing rhythmic (phasic) excitation and inhibition (Schmidt et al. 2001; Gabriel 2005), and an

additional long-lasting (tonic) depolarization (Ludwar 2003; Büschges et al. 2004; Gabriel

2005; Ludwar et al. 2005b). Phasic excitatory input seems to originate from sensory or-

gans in the leg (Akay et al. 2001). It is suggested, that the phasic inhibition as well as
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tonic excitation can be attributed to the activity of CPGs. In the deafferented thoracic

nerve chain rhythmic activity in tibial MNs could be evoked by mechanical stimulation

of head or abdomen, and was based on phasic inhibition with an underlying tonic exci-

tation (Büschges et al. 2004). Furthermore, the pilocarpine induced rhythmicity in MNs

is also based on a phasic inhibitory and tonic excitatory input (Büschges 1998).

Previous studies using the single-legged preparation showed, that the activity in meso-

thoracic MNs increased during stepping sequences of the ipsilateral front leg (Ludwar

2003). Furthermore, intracellular recordings revealed that this increased activity consists

of a phasic and tonic modulation (depolarization). The phasic modulation was usually

coupled to front leg steps and the tonic depolarization outlasted the complete stepping

sequence. Recently, Borgmann (2006) could show that the activity in ipsi- and contralate-

ral coxae MNs of all thoracic ganglia is increased during stepping sequences of a single

leg.

1.3.1 Objectives

The focus of this thesis was on the state-dependent, long-lasting tonic depolarization

observed in leg MNs during walking in stick insects. In the light of recent studies, the

tonic depolarization became of particular interest, because it might be ubiquitous during

locomotion.

All experiments were conducted on reduced preparations. The single-legged preparation

of the stick insect allowed an analysis of activity in the mesothoracic segment induced by

front leg stepping, without sensory influence from other segments. The experiments were

conducted solely on flexor MNs and should shed light onto the following issues:

1. Characterization of the membrane potential modulation in contralateral mesothora-

cic flexor MNs during front leg stepping and analysis of the properties of the tonic

depolarization.

2. Pharmacological analysis of the tonic depolarization to answer the following ques-

tions:

a) Which are the involved transmitters / receptors, that participate in the tonic

depolarization?
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b) Are second messengers involved in mediating the tonic depolarization?

3. Analysis of the influence of lesions (of the brain or connectives) on neuronal activity,

especially on the tonic depolarization.



CHAPTER 2

Materials and Methods

2.1 Experimental animal

The experiments were carried out on adult female stick insects of the species Carausius

morosus (syn. Dixippus morosus) and Cuniculina impigra (syn. Baculum extradentatum) from

a colony maintained at the University of Cologne. The colonies were kept at temperatures

between 20°C and 25°C and at an artificial light/dark rhythm. The forage plant for the

colony was blackberry (Rubus fructiosus).

Carausius morosus and Cuniculina impigra belong to the phylum: arthropoda, class: in-

secta, subclass: pterygota, superorder: orthopteroidea, order: phasmida, family: phas-

matidae, subfamily: phasmatinae. Both are wingless, nocturnal animals. The native place

of Carausius morosus is southern India, adults grow up to 8 cm and the reproduction is

generally parthenogenetic. The origin of Cuniculina impigra is Vietnam, females grow up

to 10 cm, males up to 7 cm (but they are seldom). The lifetime is 12 to 14 months. The
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A

B

Figure 2.1: Stick insects on blackberry leafs. A: Cuniculina impigra and B: Carausius morosus

body is divided into three main parts - head, thorax and abdomen, whereas the head

consists of six segments and carries the brain, sense organs, antennae and mouthparts.

The thorax is divided into pro-, meso- and metathorax, and each segment carries a leg

pair. The abdomen serves for reproduction and digestion and consists of 11 segments.

The central nervous system (CNS) is composed of the ventral nerve cord (including the

subesophageal ganglion = SEG) and the dorsally positioned brain (supraesophageal gan-

glion). The brain is a fused ganglion composed of the protocerebrum, deutocerebrum

and tritocerebrum. The anterior three pairs of ganglia in the ventral chain are also fused,

forming the cephalic SEG. The brain and the SEG are linked via the circumoesophageal

connectives, whereas the SEG is linked to the prothoracic ganglion via the neck connec-

tives.

2.2 Preparation and experimental setup

This chapter describes first the general preparation which had to be performed for all

experiments. Then slight differences for the individual experiments are listed.
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2.2.1 General preparation

The experiments were carried out under dimmed light conditions at room temperature

(20-25°C). A semi-intact preparation was used with one intact front leg walking, while all

other legs were amputated at the level of the mid-coxa. The thorax was fixed ventrally on

a platform using dental cement (PROTEMP, 3M ESPE, Seefeld, Germany). The cuticule

was cut dorsally and removed from the middle of the mesothorax to the middle of the

metathorax. The gut was left intact, moved aside and the cavity was filled with saline

(composition according to Weidler and Diecke (1969), see chapter 2.4, table 2.1). Connec-

tive tissue and fat were removed to allow access to the mesothoracic ganglion and leg

nerves. Care was taken to leave as much as possible trachea intact, and cut main trachea

were exposed to air. All lateral nerves but the nervus cruris (ncr, nomenclature accord-

ing to Graham 1985; Marquardt 1940) ipsi- or contralateral to the remaining leg were cut

near the mesothoracic ganglion to exclude sensory input in this segment. In most cases

the tissue between the two connectives had to be carefully cut with fine scissors to al-

low lifting of the mesothoracic ganglion on a movable waxed platform. The surrounding

connective tissue was pinned down with small cactus spines (Nopalea dejecta) to stabilize

the ganglion for penetration with sharp microelectrodes.

2.2.2 Non-pharmacological experiments

For recording of mesothoracic MNs the ganglion sheath had to be softened to allow pen-

etration of intracellular electrodes. Therefore saline was quickly removed from the cavity

and the ganglion sheath was treated with crystals of a proteolytic enzyme (PRONASE E,

MERCH, Darmstadt, Germany) for 60-90 s. The enzyme was thoroughly washed out and

saline was applied again.

2.2.3 Pharmacological experiments

The ganglion sheath in stick insects serves as a blood-brain barrier and displays there-

fore a diffusion barrier for ions (Schofield 1979; Dörr et al. 1996) and pharmacological

agents. Due to that, the first step to be able to perform pharmacological experiments in
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Figure 2.2: Split-bath preparation of the experimental animal. A: Picture of the split-bath preparation. B:

Schematic of a split-bath setup. A-B: Rostral and caudal of the mesothoracic (meso) ganglion silicon-gel

barriers are built to allow superfusion with saline containing drugs of only the mesothoracic ganglion.
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behaving stick insects was to establish a preparation in which the ganglion sheath of the

segment in focus could be removed without destroying nerve cells or losing stability for

intracellular recordings. Tissue and fat along the connectives were removed toward the

pro-and metathoracic ganglion. Saline was removed from the cavity and silicon-gel bar-

riers (BAYSILONE-PASTE, hochviskos, Bayer AG, Leverkusen) were quickly built with

a modified syringe (Fig. 2.2). Three separate compartments were formed, one rostral and

caudal to the mesothoracic ganglion and one around the ganglion. This allowed a sep-

arate superfusion of drugs only to the mesothoracic ganglion. Then saline was added

again (chapter 2.4, table 2.1), and the superfusion system was adjusted and started. Be-

fore desheathing the ganglion it was made sure that the system worked and the gan-

glion was completely covered with saline because exposure of the desheathed ganglion

to air would damage the nerve cells immediately. By using very fine scissors (SuperFine

VANNAS SCISSORS straight, Harry Fein WORLD PRECISION INSTRUMENTS, Berlin,

Germany) a first cut was made along the midline from posterior to anterior of the gan-

glion, then the sheath was cut either towards the ipsi- or contralateral side. The loosened

sheath was fixed with fine forceps and finally removed by a third cut. In this way at least

one third of the ganglion was desheathed. The solutions were exchanged by a gravity

driven perfusion system, positioned 50 cm above the platform and conducted via a tube

system toward the cavity (0.75 mm inner diameter of the inflow tube). The flow rate was

2 ml/min, and it took 20 s for a new solution to enter the cavity. The volume of the cavity

was 100 µL, the volume was therefore exchanged 20 times per minute. A continuous flow

rate was achieved by an adequate positioning of the outflow.

2.2.4 Lesion experiments

In one set of experiments, it was necessary to have access to the supraesophageal gan-

glion (brain) during recording from mesothoracic flexor MNs. Therefore the head was

stabilized with plasticine while the cuticule of the head capsule was carefully cut with a

sharp razor blade and removed to expose the brain. The cuts ran between the eyes along

the front rim and bilateral toward the posterior end of the head. During the experiment,

care was taken to add saline into the cut regularly. Referring to Graham (1979a), immobile
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antennae indicated a successful preparation. The animal was then prepared according to

chapter 2.2.3. As soon as the intracellular recording of a flexor MN was stable, modula-

tion in its membrane potential was recorded during a few stepping sequences of the front

leg. Then the brain was removed by holding it with fine forceps and cutting the connec-

tives with sharp scissors. Care was taken to induce as less perturbations as possible and

not to lose the intracellular recording. If the lesion was successful and the quality of the

intracellular recording did not change, again the membrane potential was recorded dur-

ing stepping sequences of the front leg. Successful experiments were analyzed according

to chapter 2.6.1.

2.2.5 Connective recordings

To perform extracellular recordings from both, the ipsi- and contralateral neck connec-

tives (connectives between the prothoracic ganglion and the SEG) the general prepara-

tion was extended. The cuticule was cut dorsally and removed from the middle of the

mesothorax towards the headcapsule. The gut was moved aside and the cavity was filled

with saline. One front leg performed stepping sequences on a treadmill.

2.3 Treadmill

A lightweight low-friction treadmill (Gabriel et al. 2003) was used, which consisted of

two styrofoam drums (∅ 40 mm; width 28 mm), each mounted on a micro DC-motor

(DC1516, FAULHABER, Schönaich, Germany), that had a center distance of 50 mm (Fig-

ure 2.3 A). A belt made of light crêpe paper was placed around the styrofoam drums. The

tangential force that had to be applied to overcome belt friction was 4.0 ± 0.3 mN. The

moment of inertia of the system, which is determined by the effective mass of the tread-

mill was 1.1 g and thus approximately equal to the mass of an adult animal (Gabriel et al.

2003). One DC-motor served as a tachometer, with the other belt friction could be var-

ied. The tachometer signal was digitized with a MICRO1401 A/D converter (sampling

rate: 6.5 kHz) and recorded with SPIKE2 software (both CAMBRIDGE ELECTRONIC

DESIGN, Cambridge, UK) on a personal computer. The treadmill was positioned 45° be-
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Figure 2.3: Treadmill. A: Tachometer. The signal from the tachometer was filtered and digitized prior to

recording. A current could be applied to the other motor to decrease or increase belt friction. (Picture

modified after Gabriel et al. 2003). B: Tachometer trace.

low the intact leg, and the height was adjusted so that the animal could easily pull the

belt and performed walking like movements. The tachometer trace in combination with

the flexor EMG (see chapter 2.5.1) allowed determining the stance phase of a step (Fig. 2.3

B). The beginning of stance was defined as the beginning of activity in the flexor EMG.

The end of stance was defined as the last maximum of the trace before it decreases back

to zero. The falling edge is just determined by the inertia of the treadmill and does not

contain any information about the status of the step. In all experiments, not single steps

were used for analysis but stepping sequences. A stepping sequence was defined as a

minimum of three consecutive steps that had a maximum temporal distance of 3.5 s.

2.4 Solutions

The composition of the physiological saline is listed in table 2.1. Different saline com-

positions were used in non-pharmacological (chapter 2.2.3) and pharmacological experi-

ments, both with a pH of 7.2 (chapter 2.2.2). A different saline composition was necessary

in those experiments where the ganglion was desheathed.
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A

Substance [mM]

NaCl 178.5

KCl 17.6

CaCl2 * 2 H2O 7.3

MgCl2 * 6 H2O 25

HEPES 10

B

Substance [mM]

NaCl 180

KCl 4

CaCl2 * 2 H2O 5

MgCl2 * 6 H2O 1

Saccharose 30

HEPES 10

Table 2.1: Saline composition used in A: non-pharmacological experiments according to Weidler and Diecke

(1969), and B: pharmacological experiments; saline modified after Schmidt.

Drugs for pharmacological experiments were dissolved in saline prior to the experiment

or added as aliquots, stored at −20° C and thawed prior to the experiment. H-89 and

U-73122 were dissolved in DMSO, mianserin was dissolved in ethanol and verapamil in

methanol, whereas the solvents had a final concentration in the experiment of less than

1 %. This solvent concentration in saline alone had no effect on membrane potential of

flexor MNs. All drugs were obtained from SIGMA (Sigma-Aldrich, Schnelldorf, Ger-

many) with the exception of verapamil (FLUKA, Switzerland). The chemical structures

of the drugs are shown in figure 2.4.

2.5 Electrophysiology

2.5.1 Extracellular recordings and electromyograms

Extracellular recordings were made from a lateral nerve or from connectives with mo-

nopolar hook electrodes (custom built, modified after Schmitz et al. (1988; 1991)) filled

with silicon-gel (BAYSILONE-PASTE, hochviskos, Bayer AG, Leverkusen). Recordings

were made from the mesothoracic leg nerve ncr (nervus cruris), ipsi- or contralateral to

the intact front leg. The ncr contains the axons of flexor motoneurons (MNs). In another

set of experiments, different connectives were recorded.

Electromyograms (EMGs) were recorded with two twirled copper wires (∅ 50 µm), which
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short term chemical name/source

8-Br-cAMP 8-Bromoadenosine 3’,5’-cyclic monophosphate sodium salt

Atropine Atropine sulfate salt monohydrate

BAPTA 1,2-Bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid

tetrapotassium salt

H-89 N-[2-(p-Bromocinnamylamino)ethyl]-5-iso-

quinolinesulfonamide dihydrochloride

Mianserin 1,2,3,4,10,14b-Hexahydro-2-methyl-

dibenzo[c,f]pyrazino[1,2-a]azepine hydrochloride

Neomycin Neomycin trisulfate salt hydrate

±Octopamine (±)-1-(4-Hydroxyphenyl)-2-aminoethanol hydrochloride

Riluzole 2-Amino-6-(trifluoromethoxy)benzothiazole

Serotonin 5-Hydroxytryptamine hydrochloride

SQ22,536 9-(Tetrahydro-2-furanyl)-9H-purin-6-amine

U-73122 1-[6-[((17ß)-3-Methoxyestra-1,3,5[10]-trien-17-

yl)amino]hexyl]-1H-pyrrole-2,5-dione

±Verapamil 5-[N-(3,4-Dimethoxyphenylethyl)methylamino]-2-(3,4-

dimethoxyphenyl)-2-isopropylvaleronitrile hydrochloride

(Fluka)

Table 2.2: Drugs used in the experiments. All drugs were obtained from Sigma if not indicated differently.
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Figure 2.4: Chemical structures of the used drugs. The molecular weight varied between 190 and 909.
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were insulated except for the tips. The cuticule above the proximal prothoracic flexor

muscle was perforated in two locations closely together with the tip of a small insect pin

(∅ 0.1 mm). The copper wires were inserted and fixed with dental cement.

Both the extracellular recordings and the EMG recordings were amplified and filtered

(250 Hz - 5 kHz, 50 Hz - 1 kHz).

2.5.2 Intracellular recordings

Intracellular recordings from flexor MNs were made using thin-walled glass microelec-

trodes (GC100TF-10, HARVARD APPARATUS ltd, Edenbridge, Kent, UK), which were

pulled on a P-97 filament puller (SUTTER INSTRUMENTS, Novato, USA). Microelec-

trodes were filled with a solution of 3 M potassium acetate (KAc) and 0.1 M potassium

chloride (KCl) or 1.5 M KAc and 1.5 M KCl. The electrode resistances were 15-25 MΩ. The

recordings were made from the aborizations of the flexor MNs in the neuropilar region

of the mesothoracic ganglion (ipsi- or contralateral to the walking front leg). An SEC-10L

amplifier (NPI, Tamm, Germany) was used to amplify the signals in bridge or discon-

tinuous current clamp (DCC) mode (switching frequency 12-25 kHz). The DCC mode

was used during current injections. The MNs were identified by a one-to-one relation-

ship of intracellularly recorded spikes with spikes in the appropriate extracellular nerve

recording. Recordings were made from fast, semi-fast and slow flexor MNs, whereas no

discrimination were made for data analysis.

Recordings where no stable membrane potential was reached or where the input resis-

tance decreased without external stimulus were discarded. A total of 77 flexor MNs for

non-pharmacological experiments and 67 flexor MNs for pharmacological experiments

were recorded in 144 animals.

2.5.3 Experimental setup

The equipment (platform, electrodes etc.) was placed on an air table (MICRO-g, TMC,

Peabody, MA, USA), which was surrounded by a Faraday cage. Thus vibrations and

movements of the recording electrodes relative to the animal were minimized. Depend-

ing on the experimental conditions, next to the platform where the animal was fixed the
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following devices were positioned: three micromanipulators for the extracellular elec-

trode, the ganglion holder and the outflow, a flexible magnetic stand for the inflow, and

a micromanipulator for the intracellular electrode (LEICA Micromanipulators, Wetzlar,

Germany). A lamp with optical fibers illuminated the setup during the preparation. A

treadmill was positioned next to the platform under the front leg of the animal in an ap-

proximately 40° angle to the animal as this corresponds to the mean position of the front

leg in a standing animal (Cruse 1976).

2.6 Data recording and evaluation

The voltage output of the treadmill and the electrophysiological data were recorded us-

ing a MICRO 1401 A/D converter and SPIKE 2 data-acquisition/analysis software (ver-

sions 3.13 - 4.12, CAMBRIDGE ELECTRONIC DESIGN, Cambridge, UK) and a personal

computer. The second DC-motor of the treadmill was connected to a voltage-current con-

verter. A SPIKE 2 sequencer script was written to apply continuous current to the motor.

For the A/D conversion of electrophysiological data, a sampling rate of 12.5 kHz was

used for extracellular, and of 6.25 kHz for intracellular data.

The extracellular recordings and the tachometer trace were preprocessed in SPIKE2 for

further data evaluation. Neuronal activity of the extracellular recordings (only for con-

nective recordings) and beginning and end of a stance phase in the tachometer trace were

displayed as event channels.

Some data were analyzed with respect to the start of the front leg stance phase, to describe

the modulation in membrane potential in mesothoracic flexor MNs. A time window of

1 s before and after the beginning of each stance phase was analyzed. The animals some-

times performed spontaneous stepping sequences, but generally they had to be elicited

by gently touching the abdomen with a paintbrush. The paintbrush was removed as soon

as the animal started a sequence of stepping movements. Steps that were elicited due to

stimulation with a paintbrush were discarded for the analysis of the phasic modulation.

In order to estimate the gross activity of a connective recording, it was rectified and

smoothed (first order low pass filter, time constant τ = 0.07 s). Custom SPIKE2 script

programs were written to analyze the recordings.
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Layout editing was achieved using Corel-Draw 11 (COREL CORPORATION, Ottawa,

ON, Canada), and statistical analysis and plots were rendered using Excel (MICRO-

SOFT) and Microcal Origin (version 6.0, ORIGINLAB CORPORATION Northampton,

MA, USA).

2.6.1 Analysis of intracellular recordings

The analysis in this thesis focuses mainly on the tonic membrane potential modulation

in mesothoracic MNs, namely the tonic depolarization. This tonic depolarization is only

induced by a behavior of the animal itself and did not occur in resting animals nor could

it be induced artificial by current injection or the like. Flexor MNs exhibited the tonic

depolarization either during stepping sequences of the front leg on a treadmill, or it oc-

curred during searching movements (Büschges et al. 2004) of the front leg. The latter

was not included in the analysis of this thesis, because without reference to steps, there

was no evidence of comparing the amplitudes of the tonic depolarization in different

sequences. If possible, the amplitude of the tonic depolarization was measured and com-

pared during similar stepping sequences. Once a stable intracellular recording could be

established, the success of an experiment depended on the behavior of the animal.

The determination of the amplitude of the tonic depolarization is shown in figure 2.5.

It was measured as the offset between the resting membrane potential before onset of a

stepping sequence and the lower edge of the phasic modulation during a stepping se-

quence. One could argue, that this is an underestimation of the real amplitude of the

tonic depolarization. It is possible that the tonic depolarization amplitudes are higher

than determined in this thesis, but I wanted to exclude a contamination by any phasic

modulation. This was achieved in all probability by using this analysis (see also discus-

sion, chapter 4.1.1).

Each data point in the graphics (see e.g., Fig. 3.10) represents the amplitude of the tonic

depolarization in membrane potential induced by one complete stepping sequence (3 to

20 steps) of the front leg at certain times. For the pharmacological experiments, it was
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Figure 2.5: Determination of the tonic depolarization amplitude. The tonic depolarization shift (∆V) was

measured as the offset between the voltage baseline (dashed line: resting membrane potential) before onset of

a stepping sequence and the lower edge of the phasic modulation (dotted line) during a stepping sequence.

not possible to analyze and compare the amplitudes in different experiments at a partic-

ular time: for the above described reasons a stepping sequence of the animal could not

be induced at any time. To analyze if a certain drug influenced the tonic depolarization,

the mean amplitude before superfusion of the drug was measured. Then each tonic de-

polarization amplitude induced by a stepping sequence during superfusion of the drug

was plotted against time. These data were fitted using linear regression and the levels of

significance were analyzed according to chapter 2.6.2.

2.6.2 Statistics

In text and figures, N is the number of experiments and n is the sample size (number of

stepping sequences). Values were compared using a t-test, shown as mean ±SD. Means

and samples were regarded as significantly different at p < 0.05. The level of statistical

significance was indicated by the following symbols: (n.s.) not significant; (*) 0.01 ≤
p < 0.05; (**) 0.001 ≤ p < 0.01; (***) p < 0.001. For significance tests of coefficients of

correlation, the significance test for Pearson’s r was used that is computed as follows:

t̂ =
r
√

n − 2√
1 − r2

r is Pearson’s correlation, and n is the number of pairs of scores that went into the com-

putation of r, which were tested for significance with the Fisher test (Sachs 1974).
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For significance test of regression coefficients, the coefficients were compared as follows:

t̂ =
|b1 − b2|

√

s2
y1x1(n1−2)+s2

y2x2(n2−2)

n1+n2−4

[

1
Qx1

+ 1
Qx2

]

With b1, b2 as regression coefficients, s standard deviation, Q sum of the squared differ-

ences (Qx = ∑(x − x̄)2). For unequal remaining variances i.e.:
s2

y1x1

s2
y2x2

> F(n1−2;n2−2;0.10) the

calculation was performed approximatively with:

ẑ =
|b1 − b2|

√

s2
y1x1

Qx1
+

s2
y2x2

Qx2





CHAPTER 3

Results

3.1 Activity in mesothoracic flexor MNs during walking of the

contralateral front leg

In previous studies, it was shown that stepping sequences of a single front leg influence

the activity of ipsilateral mesothoracic motoneurons (MNs) (Ludwar 2003). Ipsilateral

mesothoracic MNs of antagonists of all three joints show an increase in spike activity

and a clear coupling of activity to front leg stepping (Ludwar et al. 2005a). Analysis of

intracellular recordings revealed that the membrane potential of ipsilateral mesothoracic

MNs is phasically modulated and tonically depolarized by 0.5 to 5 mV (Ludwar 2003;

Ludwar et al. 2005b). Borgmann (2006) showed in extracellular recordings that activity

in pro- and retractor MNs increased in all thoracic segments during stepping of a sin-

gle front, middle or hind leg. These observations lead to the question of whether the

observed membrane potential modulation in ipsilateral mesothoracic MNs is a general

phenomenon associated with walking movements. To tackle this question, in the first
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part of my thesis the activity in mesothoracic flexor MNs was analyzed during stepping

sequences of the contralateral front leg.

In this part, a semi-intact preparation was used according to the procedures in chap-

ter 2.2, where the right front leg performed stepping movements on a treadmill and all

other legs were cut off. The activity of contralateral flexor MNs was recorded extracel-

lularly from the lateral nerve ncr (nervus cruris), that contains the axons of flexor MNs,

retractor unguis MNs as well as sensory axons.

Intracellular recordings from neuropilar regions of contralateral flexor MNs were per-

formed according to chapter 2.2.2. Stepping sequences of the front leg were evoked

by briefly touching the animal’s abdomen with a paintbrush. The stepping sequences

consisted of typically 5 to 20 consecutive steps. Occasionally spontaneous stepping se-

quences occurred without external stimulation. No differences between tactile elicited or

spontaneous stepping sequences were detected, this was also reported by Ludwar (2003)

and Ludwar et al. (2005b).

Figure 3.1 shows the typical activity in a contralateral flexor MN recorded during a step-

ping sequence of the front leg. Stance phase of the front leg was determined by a flexor

EMG and acceleration of the treadmill, which corresponds to an increase in velocity in

the tachometer trace. With the beginning of the stepping sequence, activity in the me-

sothoracic flexor nerve increased. The increase in activity lasted during the stepping

sequence and ceased 2 s after the last step of the front leg. The simultaneous intracellular

recording of a flexor MN showed two distinct changes in membrane potential with onset

of the stepping sequence. Contralateral flexor MNs showed a tonic depolarization and a

rhythmic modulation in membrane potential. This was also shown for ipsilateral MNs.

The characteristics of these two types of changes in membrane potential are analyzed in

the following (chapter 3.1.1, 3.1.2).

3.1.1 Tonic depolarization in membrane potential in contralateral flexor MNs

As shown in figure 3.1, contralateral flexor MNs exhibited a tonic depolarization in mem-

brane potential with onset of walking movements of the front leg. The amplitudes of the

tonic depolarization were determined by obtaining the voltage difference between the
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Figure 3.1: Contralateral mesothoracic flexor MN depolarized tonically and showed phasic membrane po-

tential modulation during a front leg stepping sequence. 1st trace: Treadmill velocity (tachometer). A

rising tachometer trace, indicating treadmill acceleration, was used to define the stance phase of the leg.

2nd trace: Electromyographic (EMG) recording of the front leg flexor tibiae muscle. 3rd trace: Extracel-

lular recording from nerve ncr that contains the axons of flexor MNs. 4th trace: Intracellular recording

of a flexor MN. Action potentials truncated. The dashed line indicates the resting membrane potential as

given by numbers, the dotted line indicates the lower edge of the phasic modulation. Arrow indicates tactile

stimulation.

resting potential (chapter 2.6.1, Fig. 2.5) and the lower edge of the phasic modulation.

From a mean resting potential of −57.5 ±4.6 mV the membranes tonically depolarized by

1.7 ±1.2 mV (range: 0.6 to 4.3 mV, N=21/24). In three contralateral flexor MNs no tonic

depolarization in membrane potential was obvious at their resting membrane potential.

The amplitude and sign of the tonic voltage shift was dependent on membrane potential.

In figure 3.2 the membrane potential of a contralateral flexor MN was manipulated by

constant current injection. The tonic shift was hyperpolarizing at a potential of −42 mV,

depolarizing at its resting potential of -58 mV (0.8 mV), and at a membrane potential of

−78 mV the depolarization was increased (5.4 mV).

The dependence of the tonic shift on membrane potential is shown in figure 3.3. Measure-

ments of tonic voltage shifts were taken at different membrane potentials in current-

clamp mode. The measurements at different membrane potentials were pooled together



44 3 RESULTS

-42.1 mV

p
ro

m
e
s
o

tacho-
meter

2 s

5 mV

p

m

A

-58.0 mV

p
ro

m
e
s
o

tacho-
meter

2 s

5 mV

B

-77.9 mV

p
ro

m
e
s
o

tacho-
meter

2 s

5 mV

C

Figure 3.2: Reversal of the tonic depolarization in a contralateral flexor MN. A: A stepping sequence of

the front leg (tachometer) induced a slight tonic hyperpolarization at a depolarized membrane potential of

-42 mV (constant current injection). B: At its resting membrane potential of -58 mV, the tonic shift was

depolarizing during front leg stepping. C: The amplitude of the tonic depolarization was increased during

constant hyperpolarization.
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and data were fitted using linear regression. The correlation coefficient (r=−0.648) was

significant at the 0.1 % level for contralateral flexor MNs. The reversal potential of the

tonic depolarization was calculated from graph fitted equation and was found to be

−40.7 mV. Thus the calculated reversal potential is 17 mV more positive than the mean

resting potential.

As in ipsilateral MNs, the tonic depolarization was associated with a decrease in in-

put resistance (Fig. 3.4). Changes in input resistance (membrane resistance) reflect a

change in membrane conductance due to the opening/closing of ion channels in the

membrane. The input resistance was measured by injection of constant hyperpolariz-

ing current pulses of 300 ms duration. The amplitude of the voltage deflection upon

current injection is a measure of the membrane resistance. Thus if the voltage deflection

upon current injection decreases, the input resistance decreases due to the opening of ion

channels (excitatory or inhibitory). In seven contralateral flexor MNs, the input resistance

was measured during stepping activity of the front leg. The mean decrease in input re-

sistance was 12.4 ±3.5 %. Measurements were taken between actual stepping movements

or at the end of the stepping sequence to avoid contamination by phasic synaptic input.

Figure 3.4 B shows a reduction in current induced voltage deflection that is equal to a

reduction from 8.5 M Ω (value at rest) to 6.7 MΩ at the end of the stepping sequence.

The reduction in input resistance that is generally observed in MNs throughout a step-

ping sequence of an ipsi- or contralateral front leg might somewhat reduce the respon-

siveness of the neurons to incoming depolarizing input. This assumption was tested in

flexor MNs contralateral to the walking front leg by injecting depolarizing current pulses

of 300 ms duration that evoked one or two spikes before onset of walking movements.

In 73 % of the flexor MNs that were tested (N=11), the number of spikes per pulse more

than doubled at comparable membrane potentials, indicating an increased responsive-

ness (Fig. 3.5).

In two of these recordings, increased responsiveness outlasted the stepping sequence by

tens of seconds. In two of eleven MNs, the responsiveness was reduced, possibly by

current shunt, because in both neurons the input resistance decrease was exceptionally

high (30 %) during walking sequences. One MN did not exhibit a consistent activity
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Figure 3.3: Dependence of the tonic membrane potential shift that was induced by front leg stepping on

membrane potential in contralateral mesothoracic flexor MNs (N=24, n=40; r=-0,648***). The arrow

indicates the mean resting membrane potential of −57.5 ±4.6 mV.

pattern on current injection. During four stepping sequences, the responsiveness was

reduced and no tonic depolarization was observed; during one stepping sequence, the

responsiveness was enhanced while the membrane potential was tonically depolarized

by 1.3 mV.

In figure 3.6, two recordings of contralateral flexor MNs are shown, which demonstrate

different shaping of their activity during front leg stepping. Although both showed a

clear tonic depolarization in membrane potential during a stepping sequence of the front

leg (3.4 and 2.3 mV), only in the first (Fig. 3.6 A) a distinct phasic membrane potential

modulation was visible, while the membrane potential in the second (Fig. 3.6 B) did not

hyperpolarize between steps. Coupling of phasic modulation in membrane potential to

front leg stepping will be discussed later in this chapter (see 3.1.2). The repolarization to

resting membrane potential values took 550 ms in this recording (Fig. 3.6 A; τ=290 ms

respectively). In figure 3.6 B the repolarization to resting values took 3 s (respectively 6 s

after the last step was performed; with τ=1.6 s). Long repolarization time constants were

found in several recordings, where repolarization to resting values took up to 30 s.
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Figure 3.4: Input resistance in a mesothoracic flexor MN was reduced during a stepping sequence of the

contralateral front leg. A: Stepping sequence of 7 steps (1st trace) evoked increased motor activity recorded

extracellularly (2nd trace). Current pulses of −1 nA (4th trace) were injected into a flexor MN (3rd

trace) that was recorded intracellularly. B: Clipping from A with an extended time scale as indicated.

Voltage deflections on current injection were decreased even when no steps were performed (horizontal

dashed lines). Thus the tonic response is based on a decrease in input resistance.
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Figure 3.5: Increased membrane responsiveness during tonic depolarization of contralateral mesothoracic

flexor MNs. Short current pulses (5th trace) that depolarized the flexor MNs (4th trace) just above

threshold were injected. A: Before and after a front leg stepping sequence (1st trace) each current pulse

induced 1 or 2 spikes in a flexor MN (see clipping B1). During a stepping sequence of the front leg, the

number of current induced spikes increased (see clipping B2).
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Figure 3.6: Different shapings of activity in mesothoracic flexor MNs contralateral to the stepping front

leg. 1st and 2nd trace: Treadmill velocity (tachometer) and EMG recording of the stepping leg’s flexor

tibiae muscle. 3rd trace: Extracellular recording from the contralateral mesothoracic ncr. A: 4th trace:

A flexor MN showed a tonic depolarization as well as pronounced membrane potential modulation during

front leg stepping. The tonic depolarization repolarized to resting values after 550 ms. B: 4th trace:

Flexor MN showed a tonic depolarization but no apparent membrane potential modulation during front leg

stepping. Thus, the tonic depolarization appears to be largely independent of the actual stepping movement.

The repolarization in membrane potential took ~3 s. Dashed lines indicate resting membrane potentials,

dotted lines indicate the lower edge of the phasic modulation.
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3.1.2 Rhythmic modulation in mesothoracic flexor MNs

Phasic membrane potential changes in contralateral flexor MNs during front leg step-

ping sequences were coupled to movements of the front leg in 16 of 24 recordings. Two

different coupling patterns were observed in these 16 flexor MNs: in 12 flexor MNs a

depolarization in membrane potential with a mean peak-to-peak amplitude of 2.8 ±1.5

mV was observed, which began approximately 200 ms before onset of front leg stance

phase (Fig. 3.7 A). The depolarization reached a maximum during stance phase and be-

gan to decline at the end of stance phase. Figure 3.7 B shows a different coupling pattern

with similar peak-to-peak amplitudes that was observed in four flexor MNs. The mem-

brane potential began to decline from a maximum some 100 ms before onset of stance

and reached a minimum during the first half of the stance phase. In the other 33 % of the

recordings (N=8/24; Fig. 3.7 C), no phasic modulation of the membrane potential that

was coupled to front leg steps was observed.

Ludwar et al. (2005b) described the phasic modulation of ipsilateral MNs, including the

phasic modulation of flexor MNs. They described that in four out of five ipsilateral flexor

MNs from the most hyperpolarized potential around onset of front leg stance the mem-

brane potential depolarized (peak-to-peak amplitudes ~4 mV, peak depolarization after

stance phase). This resembles the phasic modulation observed in 17 % of contralateral

flexor MNs (Fig. 3.7 B). In another ipsilateral flexor MN no step coupled phasic mod-

ulation could be detected. Due to the fact that contralateral flexor MNs exhibited three

distinct types of phasic modulation, the question arose whether this holds true also for

ipsilateral flexor MNs if a comparable population is analyzed. Therefore a population

of 27 ipsilateral flexor MNs was analyzed and figure 3.8 shows that three types of pha-

sic modulation occurred. In 15 % of the recordings (N=4/27), the onset of a membrane

depolarization was ~0.05 s before onset of front leg stance phase. The depolarization

reached a maximum at the end of stance phase (Fig. 3.8 A). Mean peak-to-peak am-

plitudes were 2.2 ±1.0 mV. The most prominent type (52 %, N=14/27) is shown in fig-

ure 3.8 B. The membrane potential began to decline from a maximum some 200 ms be-

fore onset of stance and reached a minimum during the first 100 ms of the stance phase.

During stance, the membrane potential repolarized. Mean peak-to-peak amplitude was
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Figure 3.7: Phasic modulation in membrane potential in contralateral flexor MNs during front leg step-

ping. A-C: overlays (gray area) and averages (solid lines) of 6 to 8 sweeps triggered by the onset of stance

phase (1st vertical solid lines and black arrowheads). Mean end of stance phase is indicated by open ar-

rowheads and 2nd solid line, dashed lines indicate SD. A: Depolarization of the membrane in a flexor MN

started ~200 ms before onset of front leg stance phase and reached its peak depolarization with onset of

stance (observed in 12 of 24 experiments). The membrane remained depolarized during stance. B: Hy-

perpolarization of the membrane in a different flexor MN started ~200 ms before onset of front leg stance

phase and reached its minimum ~100 ms after onset of stance (N = 4/24). During stance, the membrane

repolarized. C: In a different flexor MN, there is no obvious coupling of membrane potential modulation to

front leg steps (N = 8/24).
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2.6 ±0.6 mV. Similar to contralateral flexor MNs, the other 33 % of the ipsilateral record-

ings showed no phasic modulation of the membrane potential coupled to front leg steps

(Fig. 3.8 C).

3.1.3 Summary

In this chapter, I analyzed the activity of mesothoracic flexor MNs during front leg step-

ping sequences. The motoneuronal activity in the extracellular nerve recordings was in-

creased during contralateral front leg stepping and intracellular recordings revealed two

distinct modulations in membrane potential: a tonic depolarization and a phasic modu-

lation that was mostly coupled to front leg steps. The tonic depolarization was associated

with a decrease in input resistance. The amplitudes were dependent on membrane po-

tential, revealing a reversal potential of −40.7 mV. These properties indicate that either

the tonic depolarization is based on nonselective cation conductance (e.g., for Na+ and

K+) or it is a heterogeneous product of currents through different channels. The respon-

siveness of contralateral flexor MNs was enhanced during front leg stepping sequences,

and the tonic depolarization could outlast the stepping sequence up to 30 s. The prop-

erties of the tonic depolarization lead to the question of which transmitters/receptors

might be involved in mediating this effect. The prolonged hyperexcitability indicates a

role for metabotropic receptors in mediating the tonic depolarization. Involvement of

second messengers seems also to be possible, due to the long repolarization time con-

stants. These assumptions are partly tested and discussed in chapter 3.2 and 3.3.

Three distinct types of phasic modulation in membrane potential in flexor MNs were

revealed, both for ipsi- and contralateral flexor MNs. Two types showed a phasic mod-

ulation that was coupled to front leg steps: 1) 15 % of ipsilateral flexor MNs showed a

depolarization of membrane potential that started ~50 ms before onset of stance phase

and reached its peak at the end of stance. A similar phasic modulation with a slightly

shifted time course was observed in 50 % of contralateral flexor MNs. The onset of mem-

brane potential depolarization was ~200 ms before onset of front leg stance phase and

reached its peak with the onset of stance. 2) In 52 % of ipsilateral and 17 % of contralate-

ral flexor MNs a hyperpolarization of membrane potential started ~200 ms before onset
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Figure 3.8: Phasic modulation in membrane potential in ipsilateral flexor MNs during front leg stepping.

A-C: Overlays (gray area) and averages (solid lines) of 8 to 15 sweeps triggered by onset of stance phase

(1st vertical solid lines and black arrowheads). Mean end of stance phase is indicated by open arrowheads

and 2nd solid line, dashed lines indicate SD. A: Depolarization of the membrane of a flexor MN started

~50 ms before onset of front leg stance phase and reached its peak during stance (observed in 4 of 27 experi-

ments). The membrane potential declined after the end of stance. B: Hyperpolarization of the membrane in

a different flexor MN started ~200 ms before onset of front leg stance phase and reached its minimum ~100

ms after onset of stance (N = 14/27). During stance, the membrane repolarized. C: In a different flexor

MN, there was no obvious coupling of membrane potential modulation to front leg steps (N = 9/27).

of front leg stance phase and reached its minimum approximately 100 ms after onset of

stance. 3) No obvious coupling of phasic modulation to front leg steps was observed in

33 % of ipsi- and contralateral flexor MNs.
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3.2 Transmitters

The properties of the tonic depolarization in mesothoracic flexor MNs that are observed

during front leg stepping indicate that it is based on a nonselective cation conductance

and possibly involves metabotropic receptors and second messengers (chapter 3.1). The

presence of several neuroactive substances was shown for insect nervous systems. These

are for example acetylcholine, glutamate, GABA (γ-amino butyric acid), biogenic mono-

amines (octopamine and serotonin) and peptides as proctolin (see review by Pichon and

Treherne (1972) and references therein). By the use of pharmacological means the role of

certain neurotransmitters and modulators in mediating the tonic depolarization of meso-

thoracic flexor MNs was investigated while the front leg performed stepping sequences

on a treadmill. In stick insects, the ganglion sheath is a diffusion barrier (Pichon and

Treherne 1972). Diffusion of pharmacological agents is blocked to the same degree as

for ions. This problem is bypassed by desheathing the ganglion, and thus allowing the

diffusion of substances. Based on the single-legged preparation, the mesothoracic gan-

glion was desheathed and superfused separately (due to silicon-gel barriers) with drug

containing solutions (see materials and methods, chapter 2.2.3).

3.2.1 Role of Acetylcholine

Acetylcholine (ACh) appears to be the dominant neurotransmitter in the central nervous

system of insects (Osborne 1996; Breer and Sattelle 1987). The action of ACh in insects

is mediated by either nicotinic or muscarinic receptors (Breer 1981; Breer and Sattelle

1987). With few exceptions muscarinic ACh receptors (mAChRs) are present only in a

low density in the insect nervous system compared to nicotinic ACh receptors (nAChRs)

(Knipper and Breer 1988; Trimmer and Weeks 1993). This is in contrast to vertebrates,

where the action of ACh is mainly transduced by mAChRs (Birdsall and Hulme 1976).

Furthermore, no evidence was found for insect mAChRs in mediating effects at the neu-

romuscular synapse (Sattelle 1980). Evidence for mAChRs mediating effects at other

synapses was found for several insect species: Locusta migratoria, Manduca sexta, Peri-

planeta americana, Drosophila melanogaster, honey bee and housefly (detailed references in

Trimmer and Weeks 1993; Bai and Sattelle 1994).
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Figure 3.9: Atropine decreased the tonic depolarization in mesothoracic flexor MNs during front leg

stepping. A: Saline: With front leg stepping the activity in the ipsilateral mesothoracic nerve recording

(ncr) was increased and the intracellular recording of a flexor MN showed a distinct tonic depolarization

(~5 mV). B: Nerve activity as well as the amplitude of the tonic depolarization was decreased to 2.1 mV

during superfusion of atropine (7 min) C: Control (15 min normal saline) showed a partial recovery of the

amplitude of the tonic depolarization (2.5 mV).

Metabotropic receptors might be involved in mediating the tonic depolarization in mem-

brane potential. This is based on the observation that the responsiveness of the mem-

brane is enhanced despite the decrease in input resistance (chapter 3.1, Fig. 3.5), and that

this increased responsiveness could outlast the stepping sequence for tens of seconds.

Trimmer and Weeks (1989) showed for Manduca MNs increased excitability that was me-

diated by mAChRs, however, the voltage sensitivity of this current differs from the tonic

depolarization in stick insects.

Evidence for a role of mAChRs in stick insect motor acts comes from experiments using

the muscarinic agonist pilocarpine which induces in MNs a rhythmic bursting pattern

on top of a tonic depolarization (Büschges 1998). The antagonistic effect of atropine on

mAChRs in insects was shown for the fast coxal depressor MN and a ventral giant in-

terneuron in cockroaches (Bai and Sattelle 1994; le Corronc and Hue 1993) and in stick

insects, atropine inhibited the pilocarpine induced rhythm in pro- and retractor MNs

(Büschges et al. 1995). The effect of atropine on the tonic depolarization was analyzed, to

test whether mAChRs might play a role in mediation of the tonic depolarization.

Figure 3.9 shows the effect of atropine on flexor spike activity, as recorded from nervus

cruris and the membrane potential of a middle leg flexor MN during ipsilateral front

leg stepping. In saline (control, Fig. 3.9 A) the activity in the nerve recording (ncr) was

increased and the intracellular recording of a flexor MN showed a tonic depolarization

of approximately 5 mV during a stepping sequence of eight front leg steps. On top of the

tonic depolarization this flexor MN showed an additional phasic modulation with spike

activity. The activity in the nerve recording was reduced during superfusion with 500 µM

atropine (7 min, Fig. 3.9 B). Furthermore, the amplitude of the tonic depolarization was
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decreased (by ~2 mV) during the stepping sequence. After rinsing 15 minutes with saline

the recording showed a partial recovery in the tonic depolarization amplitude, to ~2.5 mV

(Fig. 3.9 C).

In eight of nine recorded flexor MNs, the tonic depolarization amplitude was decreased

after 5 min superfusion with atropine by 39.9 ±16.5 % (range −16.7 to −61.5%, values de-

termined from linear fits in figure 3.10 B). A detailed analysis for a single experiment is

shown in figure 3.10 A. The amplitude of the tonic depolarization (∆V) is plotted against

time. In saline (control,#), the tonic depolarization amplitude was 4.1 ±0.2 mV (n=3) and

decreased during superfusion of atropine ( ) to 2.1 mV (9 min). During wash with saline

(#), the tonic depolarization recovered to a value of 2.5 mV after 9 minutes. The corre-

lation coefficient for the linear fit in this experiment was significant at the 0.1 % level. In

figure 3.10 B all nine experiments are shown, each experiment represented by a different

symbol. For the sake of clarity data points are not shown during atropine superfusion

(n=3 to 8). Four flexor MNs were successfully recorded during wash and the individ-

ual amplitudes of these tonic depolarizations during wash are shown as data points. A

partial recovery of the tonic depolarization amplitude was observed. In five of nine ex-

periments the correlation coefficient was significant (at least at the 5 % level), in four

experiments no significance could be detected. The degree of reduction in the tonic de-

polarization amplitude during atropine superfusion could be dependent on the value of

the amplitude under control conditions (in saline). The slopes of linear fits (see Fig. 3.10 B)

were plotted against the mean amplitudes of the tonic depolarization obtained in saline.

The linear fit of this relationship was significant at the 5 % level (Fig. 3.10 C). Thus,

there could be a dependency of the height of the control value of the tonic depolarization

amplitude and the decrease caused by atropine. A combined analysis of all data points

from all experiments would therefore implicit first to normalize the data to the control

values. The normalized data points from all experiments showed a high correlation for

the reduction of the tonic depolarization amplitude over time (data not shown). The cor-

relation coefficient differed only slightly from that obtained from the unnormalized plot

(r=0.529 and 0.501), therefore the original data are shown in figure 3.10 D.
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Figure 3.10: Tonic depolarization amplitude over time during atropine superfusion. A: Detailed analysis

for a single experiment. From a control value of 4.1 ±0.2 mV (n=3, #) the tonic depolarization amplitude

(∆V) decreased to 2.1 mV after 9 min superfusion with 500 µM atropine ( ). During wash (#) ∆V

recovered to a value of 2.5 mV. Data points are fitted by linear regression (n=6). B: Time course for all

experiments (N=9). Only linear fits are shown for ∆V during atropine superfusion (n=3 to 8). Solid

lines: level of significance at least 5 %, dashed lines: no significance. Same symbol is one experiment.

Open symbols indicate control values (from n=2 to 8 stepping sequences). C: To analyze if there is a

dependency between the height of the control value of the tonic depolarization amplitude and the degree of

decrease during superfusion with atropine, regression coefficients of the linear fits were plotted against ∆V

in control condition. The plot shows a linear relationship (*). D: Plot of ∆V obtained from all stepping

sequences during atropine superfusion showing a high correlation (***) level of significance P < 0.001

(N=9, n=45)

3.2.2 Effect of Octopamine

Although in chapter 3.2.1 a possible role for ACh as a transmitter was shown (or at least

a role for mAChRs in mediating the tonic depolarization), this does not eliminate the

possibility that other transmitters and neuromodulators are also involved. Cotransmis-

sion is known in many systems. In rats glycine and GABA cotransmission occurs in brain

stem MNs and spinal interneurons (Wu et al. 2002). In the stomatogastric nervous system

of the crab, Cancer borealis, proctolin and GABA are found in the modulatory proctolin

neuron (Blitz and Nusbaum 1999). In locusts, proctolin acts as a cotransmitter with oc-

topamine and probably glutamate in nerves supplying the oviduct (Lange 2002). Until

now, nothing is known about cotransmission in stick insects, but an independent inter-

action of transmitters seems possible, if one bears in mind that the tonic depolarization

could be the product of the activity of different channels.

There is no detailed knowledge about the role of octopamine in stick insects, but previ-

ous studies have shown that octopamine injection into the hemolymph of intact, inactive

stick insects caused an activation of the animal and suppressed pathways involved in the

resistance reflex (Büschges et al. 1993; Ramirez et al. 1993). Generally, in insects, octopa-

mine can act as a neurotransmitter, neurohormone and neuromodulator (Orchard 1982).

It is the invertebrate counterpart of noradrenaline. Octopamine has several physiologi-
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cal roles in insects, such as modulating the activities of sense organs, or neurons within

the brain (Roeder 2002). These effects are usually mediated by metabotropic receptors.

Sombati and Hoyle (1984) showed that injection of octopamine into the locust nervous

system elicited behaviors such as flight or running.

In this set of experiments it was analyzed if octopamine influences the tonic depolari-

zation in mesothoracic flexor MNs. Different concentrations of octopamine were used,

ranging from 0.25 to 1 mM. In summary, ten of eleven flexor MNs exhibited an in-

creased tonic depolarization during superfusion of octopamine (0.25 to 1 mM). In one

experiment, octopamine (1 mM) reduced the tonic depolarization in one flexor MN, and

showed a decrease in the amplitude. A representative experiment for the increase of the

tonic depolarization amplitude is shown in figure 3.11. In saline, the activity in the nerve

recording was increased and a clear tonic depolarization (2.3 mV, Fig. 3.11 A) was visi-

ble in a flexor MN during a stepping sequence of the ipsilateral front leg (10 steps). The

flexor MN generated spikes throughout the stepping sequence. After 9 min superfusion

of 500 µM octopamine, the tonic depolarization amplitude increased to 4.3 mV during a

sequence of 8 steps (Fig. 3.11 B). The spike activity in the flexor MN as well as the activity

in the nerve recording was slightly increased. Phasic inhibition as seen in this flexor MN

in saline (Fig. 3.11 A) seemed to be less pronounced in the presence of octopamine.

Figure 3.12 A shows a detailed analysis for a single experiment. The amplitude of the to-

nic depolarization (∆V) is plotted against time. In control conditions, ∆V was 2.5 ±0.4 mV

(n=8) and increased during superfusion of octopamine (500 µM) to 4.3 mV (9 min). The

amplitude of the tonic depolarization increased further during wash with saline. The cor-

relation coefficient for the linear fit in this experiment was significant at the 0.1 % level

(n=11). The effect of 500 µM octopamine was tested in four of eleven experiments. The

analysis for these experiments together with a single experiment using 250 µM octopa-

mine is shown in figure 3.12 B. The positive slopes of all the linear fits indicate an increase

of the tonic depolarization by octopamine. One flexor MN was recorded successfully

during wash and the individual amplitudes are shown as data points. The correlation

coefficient was significant in three of four experiments (n=5 to 13). In one experiment
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Figure 3.11: Octopamine increased the tonic depolarization in mesothoracic flexor MNs during front leg

stepping. A: Saline: A sequence of 10 steps led to an increased activity in the ipsilateral mesothoracic nerve

recording (ncr), as well as a clear tonic depolarization (~2.3 mV) in a flexor MN. This flexor MN showed

spike activity (action potentials truncated) throughout the stepping sequence. B: The tonic depolarization

amplitude was increased during superfusion of 500 µM octopamine (9 min, 4.3 mV). Nerve activity as well

as spike activity in the flexor MN was slightly increased.
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Figure 3.12: Tonic depolarization amplitude over time during octopamine superfusion. A: Detailed analysis

for a single experiment. From a control value of 2.5 ±0.4 (n=6, �) ∆V increased to 4.3 mV after 9 min

superfusion with 500 µM octopamine (�). During wash (�), ∆V increased further (5.6 mV, 15 min wash).

Data points are fitted by linear regression (n=11). B-D: Same symbol is one experiment. Solid lines: level

of significance at least 5 %, dashed lines: no significance. Only linear fits are shown for ∆V during

octopamine superfusion. B: Time course for experiments during superfusion of 500 µM octopamine (N=4,

n=5-13), and for one experiment using 250 µM octopamine (D, n=8). C: Time course for experiments

during superfusion of 1 mM octopamine with increased ∆V (N=5/6, n=4-32). D: Time course for one

experiment with decreased ∆V during superfusion of 1 mM octopamine (N=1/6, n=17). E: Plot of ∆V

obtained from all stepping sequences during superfusion of 500 µM octopamine showing no correlation

(N=4/n=34; r=−0.07). F: Plot of ∆V obtained from all stepping sequences during superfusion of 1 mM

octopamine showing a high correlation (r=0.664***), level of significance p < 0.001 (N=5, n=70).
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it was not significant, as well as in the experiment using 250 µM octopamine (n=8). A

concentration of 1 mM octopamine induced in five of six experiments an increase in the

amplitude of the tonic depolarization (n=4 to 32; Fig. 3.12 C), whereas the correlation co-

efficient was significant in three experiments. In one experiment, the same concentration

led to a decrease in the tonic depolarization (n=17; Fig. 3.12 D), which was not significant.

Slopes of linear fits from figures 3.12 B and 3.12 C were plotted against the mean ampli-

tudes obtained in saline (data not shown). No linear correlation was observed. Thus, all

tonic depolarization amplitudes obtained during octopamine superfusion were plotted

over time, for 500 µM and 1 mM octopamine respectively (Figs. 3.12 E, 3.12 F). Although

for some experiments, the correlation coefficient was significant during superfusion of

500 µM octopamine (*, ***), the plot for all amplitudes showed no significant correlation

(Fig. 3.12 E). This is different from experiments where 1 mM octopamine was superfused.

A high correlation for the increase in the amplitude of the tonic depolarization over time

was observed (r=0.664***).

In summary, the tonic depolarization amplitude increased during superfusion of 500 µM

octopamine by 88.9 ±73.9 %, range 19 to 180 % (0.7 ±0.4 mV, range 0.3 to 1.1 mV; N=4)

and during superfusion of 1 mM octopamine by 108.6 ±179.9 %, range −6.9 to +425 %

(0.6 ±0.8 mV, range −0.2 to+ 1.7 mV; N=5).
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3.2.3 Effect of Serotonin

The presence of serotonin (5-hydroxytryptamine, 5-HT) in the CNS has been shown for

several insect species, including the locust, the cockroach and the honey bee (see Nässel

(1988) and references therein). Serotonin functions as a neurotransmitter and neuromod-

ulator (Roeder 1994). Immunoreactivity was shown for locust ascending interneurons

(Tyrer et al. 1984) and a modulatory role was shown for tibial MNs in the metathoracic

ganglion (Parker 1995). The only described effect of serotonin in stick insects is that of

the control of salivary glands secretion (Ali 1997).

The effect of serotonin on the tonic depolarization in mesothoracic flexor MNs during

front leg stepping was analyzed in six animals. Concentrations ranging from 0.5 to 4 mM

were tested. Serotonin showed contrary effects: in four of six experiments, the amplitude

of the tonic depolarization was increased. Figure 3.13 shows a representative experiment.

Under control conditions in saline, the activity in the nerve recording was increased but

no tonic depolarization was visible in this flexor MN during a stepping sequence (10

steps, Fig. 3.13 A). A tonic depolarization of 1.3 mV during a sequence of 12 steps was

apparent in the presence of 1 mM serotonin (Fig. 3.13 B). The spike activity in the nerve

recording was largely increased. The effect was reversible, no tonic depolarization was

detectable after 9 min wash with saline (Fig. 3.13 C). In this experiment, serotonin was

superfused a second time (4 mM, Fig. 3.13 D) and again showed an increased tonic de-

polarization (1.2 mV). This flexor MN exhibited pronounced IPSPs in saline (Fig. 3.13 A,

C), which were less obvious during superfusion of serotonin (Fig. 3.13 B, D).

The time course for this single experiment is shown in figure 3.14 A. The tonic depolari-

zation amplitude (∆V) is plotted against time. In this experiment, ∆V in saline was 0 mV

(n=7). A tonic depolarization was not visible until superfusion of 1 mM serotonin. The

amplitude was 1.3 mV after 37 min (n=16). During wash, ∆V decreased to control values

and a second superfusion of serotonin induced a tonic depolarization during stepping

sequences of up to 1.6 mV. The correlation coefficient for the linear fits in this experiment

is significant at the 1 % (1 mM) and 5 % (4 mM) level.

A range of different serotonin concentrations was used in six experiments. The following

concentrations were used: 0.5 mM (N=1, n=4), 1 mM (N=3, n=12 to 16) and 4 mM (N=3,
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Figure 3.13: Serotonin increased the tonic depolarization in mesothoracic flexor MNs during front leg

stepping. A: During a stepping sequence of the front leg (10 steps), no tonic depolarization was visible in an

ipsilateral mesothoracic flexor MN (control in saline). Nerve activity throughout the stepping sequence was

increased. B: A distinct tonic depolarization was visible during superfusion of 1 mM serotonin (12 steps;

20 min, 1.3 mV), as well as pronounced increased nerve activity. C: During wash, the tonic depolarization

recovered to control value (9 steps; 9 min). D: Superfusion of 4 mM serotonin induced a pronounced tonic

depolarization during a sequence of 10 steps (5 min, 1.2 mV).
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Figure 3.14: Tonic depolarization amplitude over time during serotonin superfusion. A: Detailed analysis

for a single experiment. 1 mM serotonin increased the tonic depolarization from a control value of 0 mV

(n=7, ▽) to 1.3 mV (20 min, H). During wash (▽) the amplitude of the tonic depolarization recovered to

0.3 ±0.6 mV (n=3). Superfusion of 4 mM serotonin induced an increase in the tonic depolarization in the

same flexor MN to 1.6 mV (7 min). Data points are fitted by linear regression (1 mM serotonin: n=16;

4 mM serotonin: n=4). B-C: Same symbol is one experiment. Solid lines: level of significance at least 5 %.

Only linear fits are shown for ∆V during serotonin superfusion. B: Time course for experiments during

superfusion of serotonin with increased ∆V (n=4-16). The concentrations are labeled as follows: 0.5 mM:

 ; 1 mM: L, �; 4 mM: �. In four experiments serotonin increased the tonic depolarization (linear fits,

filled symbols) compared to control (open symbols). Three flexor MNs were successfully recorded during

wash, two showed a partial recovery in the tonic depolarization amplitude. C: Time course for experiments

during superfusion of serotonin with decreased ∆V (n=8-13). Serotonin (1-4 mM) decreased the tonic

depolarization in two experiments. Wash with saline was successfully performed in one experiment and

showed a recovery.

n=4 to 10). In general, a specific concentration was superfused only once in one animal

or during the recording of a single flexor MN respectively. An exception is shown in fig-

ures 3.13 D and 3.14 A, where 1 mM and 4 mM serotonin were superfused successively

during the same recording. Serotonin showed two opposing effects on the tonic depolari-

zation amplitude. Therefore, the analysis was performed separately for both. Serotonin

increased the tonic depolarization amplitude in four of six experiments (Fig. 3.14 B). In

all these different concentrations serotonin increased the amplitude significantly. Figure

3.14 C shows that serotonin induced the opposite effect in two experiments (1 and 4 mM),

the correlation coefficient was significant at least at the 1 % level (n=8-13). In summary,

the increase in the tonic depolarization amplitude by serotonin was 0.4 to 1.9 mV (with-

out consideration of the used concentrations), the decrease was 0.7 and 1.0 mV.
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3.2.4 Effect of Mianserin

In vertebrates, mianserin acts as a serotonergic antagonist. Invertebrate studies revealed

that mianserin acts as an inhibitor of octopamine receptors in the locust extensor tib-

iae neuromuscular preparation (Evans 1981), and Nickisch-Rosenegk von et al. (1996)

showed an antagonistic action in the moth. However, there is also evidence that mi-

anserin might antagonize serotonergic receptors (Barrett and Orchard 1990; Baines and

Downer 1991).

In six of seven animals, mianserin (100 µM) decreased the tonic depolarization observed

in contralateral flexor MNs during stepping sequences of the front leg. Figure 3.15 shows

a representative experiment. In saline (Fig. 3.15 A), a sequence of seven front leg steps

led to an increased nerve activity and a tonic depolarization in a flexor MN of 2.9 mV. In

a comparable stepping sequence (six steps), a pronounced decrease in the tonic depolari-

zation was observed during superfusion of mianserin (Fig. 3.15 B) to a value of 0.5 mV

after 12 min. In addition, the nerve recording showed also decreased spike activity. This

flexor MN showed a recovery of 80 % after a 10 min wash (Fig. 3.15 C).

A detailed analysis for a single experiment is shown in figure 3.16 A. The amplitude of

the tonic depolarization (∆V) is plotted against time. In saline ∆V was 3.1 ±0.1 mV and

decreased during superfusion of mianserin to 0.9 mV (12 min). During wash with saline,

the tonic depolarization recovered to a value of 1.4 mV (25 min). The correlation coeffi-

cient for the linear fit in this experiment is significant at the 0.1 % level. In figure 3.16 B, all

seven experiments are shown, each experiment represented by a different symbol. Five

flexor MNs were successfully recorded during wash, and the amplitudes during wash

are shown as data points. In six of seven experiments the correlation coefficient was sig-

nificant (at least at the 5 % level, n=4 to 10).

Again, it was tested whether the amount of decrease in the tonic depolarization ampli-

tude depended on the respective control value. Therefore, the slopes of the linear fits

were plotted against the amplitudes in saline. This relationship is shown in figure 3.16

C, the slopes of regression increased with increased control values. Thus, a normaliza-

tion of the data points was necessary to plot values from all seven experiments (data not

shown). The normalized plot, as well as the plot shown in figure 3.16 D comprises the
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Figure 3.15: Mianserin decreased the tonic depolarization in mesothoracic flexor MNs during front leg

stepping. A: A sequence of 7 steps induced a tonic depolarization of 2.9 mV in a contralateral mesothoracic

flexor MN (control in saline). Nerve activity throughout the stepping sequence was increased. B: A pro-

nounced decrease in the tonic depolarization was visible during superfusion of 100 µM mianserin (12 min,

0.5 mV), as well as a decrease in nerve activity. C: During wash, the tonic depolarization and the nerve

activity partially recovered (2.3 mV, 10 min).
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Figure 3.16: Tonic depolarization amplitude over time during mianserin superfusion. A: Detailed analysis

for a single experiment. The amplitude of the tonic depolarization (∆V) decreased to 0.9 mV after 12 min

superfusion of mianserin (N, n=10). (Control in saline: 3.1 ±0.1 (n=8, △). During wash ∆V recovered to

a value of 1.4 mV after 25 min. Data points are fitted by linear regression (n=10). B: Time course for all

experiments (N=7, n=4-10). Only linear fits are shown for ∆V during mianserin superfusion. Same symbol

is one experiment. Solid lines: level of significance at least 5 %, dashed line: no significance. C: Slopes

of linear fits plotted against ∆V in control condition show a linear relationship. D: Plot of ∆V obtained

from all stepping sequences during mianserin superfusion showing a high correlation (r=−0.778***; N=7,

n=57).

data points from all experiments and showed a high correlation for the reduction of the

amplitude of the tonic depolarization over time (r=−0.778 and −0,654).

In summary, the amplitude of the tonic depolarization was decreased by 31.2 ± 18.0 %

after 5 min superfusion of mianserin (N=6/7, values calculated from linear fits in fig-

ure 3.16 B, range −15.2 to −62.8 %).
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3.2.5 Summary

In this chapter the influence of a variety of transmitters and a receptor antagonist on the

tonic depolarization amplitude was investigated. A role for metabotropic receptors was

already indicated by prolonged hyperexcitability during the tonic depolarization (see

chapter 3.1.1 and Ludwar et al. 2005b). The mAChR antagonist atropine decreased the

tonic depolarization in mesothoracic flexor MNs by ~40 % in eight of nine experiments,

indicating that ACh might acts as a transmitter in mediating the tonic depolarization.

The increase in tonic depolarization amplitude by octopamine (500 µM: ~89 % and 1 mM:

109 % respectively) indicates that other transmitters/modulators might be involved as

well. The effect of octopamine was not consistent, as in one experiment a slight decrease

in the tonic depolarization amplitude was observed. Additional evidence for a role of oc-

topaminergic receptors comes from experiments where mianserin induced a pronounced

decrease in tonic depolarization amplitude by ~31 % in six of seven experiments.

The effect of serotonin was dual and opposing, as it increased the tonic depolarization

amplitude in four of six experiments (up to 1.9 mV) and decreased it in two experiments

(up to 1.0 mV) independent of concentration.

An interaction of more than one transmitter/neuromodulator seems possible, if one bears

in mind that cotransmission occurs in most systems. Furthermore, it is not known wheth-

er any of these neuroactive substances act directly on the flexor MNs, or if their effect is

mediated via pre-motor interneurons, whereas intersegmental signals might affect MNs

directly or indirectly as well.



3.3 SECOND MESSENGERS 75

3.3 Second messengers

The long repolarization time constants (τ ranging from 120 ms to 3.7 s, e.g., Fig. 3.6) of the

tonic depolarization indicate, that second messengers might be involved in mediating the

tonic depolarization in mesothoracic flexor MNs during front leg stepping. Furthermore,

neuroactive substances like ACh, octopamine and serotonin seem to have an effect on

the tonic depolarization (see chapter 3.2). These substances mostly act via metabotropic

receptors and therefore can involve a range of second messenger pathways. This chapter

analyses the influence of different drugs that act on second messenger pathways that

might be utilized in forming the tonic depolarization in flexor MNs.

3.3.1 Role of Calcium

Elevation of intracellular calcium in cells is induced for example by acetylcholine receptor

activation as shown for a cloned mAChR in a Drosophila cell line (Millar et al. 1995), but

also other receptor types can exhibit their effects via calcium (Ca2+) dependent pathways.

Although most known octopamine receptors (OARs) are coupled to the activation of

adenylate cyclase (AC), one class of OARs mediates its action via the IP3-system and

activates Ca2+-release from internal stores (Roeder 1999). The same is true for one type

of serotonin receptors, e.g., in salivary glands of the blowfly (Berridge and Heslop 1981;

Berridge 1981).

A possible involvement of Ca2+ as a second messenger mediating the tonic depolari-

zation was analyzed by supplementation of BAPTA to the electrode electrolyte solution.

BAPTA is a fast Ca2+-chelator. Chelating of intracellular Ca2+ may affect the amplitude

of the tonic depolarization. Effective chelation of Ca2+ by BAPTA was shown for cock-

roach MN somata (Mills and Pitman 1997).

For analysis of the effect of BAPTA on the tonic depolarization, 200 mM BAPTA was

applied through the electrolyte and eight flexor MNs were recorded. Different from the

other sets of experiments, BAPTA was present in the electrode from the beginning, so

it was not possible to obtain control recordings without BAPTA. Therefore the ’control’

value used was the amplitude of the tonic depolarization during the first stepping se-

quence that could be elicited and it was assumed that the effect of BAPTA was rather
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Figure 3.17: BAPTA decreased the tonic depolarization in mesothoracic flexor MNs during front leg step-

ping. A: A sequence of 8 steps induced a tonic depolarization of 2.2 mV in an ipsilateral mesothoracic flexor

MN (2 min recording with 200 mM BAPTA containing electrode). B: The tonic depolarization decreased

during recording with the BAPTA containing electrode (1.4 mV, 76 min).
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Figure 3.18: Tonic depolarization amplitude over time during recording with BAPTA containing elec-

trodes. A: Detailed analysis for a single experiment. The tonic depolarization amplitude (∆V) decreased

during recording with 200 mM BAPTA containing electrodes (n=12). B: Time course for all experiments

(N=8, n=6-34). Only linear fits for ∆V are shown. Solid lines: level of significance at least 5 %, dashed

line: no significance. C: Slopes of linear fits plotted against ∆V in ’control’ condition show no significant

linear relationship. D: Plot of ∆V obtained from all stepping sequences during recording with BAPTA con-

taining electrodes showing a high correlation (r=−0.436***, p < 0.001; N=8, n=128). E: Input resistance

increases over time during recording with BAPTA containing electrodes.

small. For the same reason no wash could be performed in this set of experiments. A

representative experiment is shown in figure 3.17. The ’control’ condition shows that af-

ter 2 min recording with 200 mM BAPTA containing electrodes, the tonic depolarization

amplitude was 2.2 mV during a stepping sequence of 8 steps (Fig. 3.17 A). After 76 min,

the amplitude was decreased to 1.4 mV during a sequence of nine steps (Fig. 3.17 B).

The time course for one experiment is shown in figure 3.18 A. The amplitude of the

tonic depolarization (∆V) is plotted against time. At the beginning of the recording in

figure 3.18 A ∆V was 5.9 mV and decreased during recording with a BAPTA containing

electrode to 2.0 mV (38 min). The correlation coefficient for the linear fit in this experi-

ment was significant at the 0.1 % level (n=12). In figure 3.18 B, all eight experiments are

shown, each experiment represented by a different symbol. In all experiments the tonic

depolarization amplitude decreased with time. In seven of eight experiments the correla-

tion coefficient was significant (at least at the 5 % level, n=6 to 34). The decrease in tonic

depolarization amplitude does not appear to depend on the ’control’ value as shown in

figure 3.18 C. Slopes of the linear fits were plotted against the amplitude in ’control’. Fig-
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ure 3.18 D shows a summarizing plot of all obtained values (N=8, n=128) with BAPTA

containing electrodes. It shows a high correlation (r=−0.436***) for the reduction of the

amplitude of the tonic depolarization over time.

The question was if the observed decrease in amplitude was due to the effect of BAPTA

or to an increasing leakiness of the cell membrane. Therefore the input resistance was

measured between the stepping sequences at resting potential and plotted against time

(Fig. 3.18 E). With decreasing tonic depolarization amplitudes, the input resistance in-

creased over time. Thus the decrease in amplitude was at least not due to a decrease in

input resistance.

In summary, the tonic depolarization amplitude was decreased by 7.8 ±3.9 % (N=7/8,

range −4 to −14.3 %) after 5 min recording with BAPTA containing electrodes (values

calculated from linear fits in figure 3.18 B).

3.3.2 Role of cAMP

The possible involvement of Ca2+ as a second messenger in mediating the tonic depolari-

zation amplitude described in chapter 3.3.1 does not rule out an additional action via

other second messenger pathways, for example involving cAMP. Complex interaction

between different pathways in arthropods are hypothesized, e.g., for the modulatory ef-

fect of serotonin in crayfish command neurons (Teshiba et al. 2001) or on pheromone sen-

sitivity in silkmoths (Gatellier et al. 2004). cAMP triggers a variety of responses in insect

tissue, and mAChRs for example are usually coupled to AC/cAMP-signaling pathways,

in which cAMP levels are typically reduced (locust: Knipper and Breer 1989), but also ex-

citatory responses due to activation of AC, increased levels of cAMP and stimulation of

PKA (protein kinase A) are possible (Wenzel et al. 2002). Furthermore, responses induced

by serotonin (Baines et al. 1990; Parker 1995) or octopamine (Han et al. 1998; Walther and

Zittlau 1998) involve cAMP-pathways. In this chapter, the effects of a range of neuroac-

tive drugs on the tonic depolarization amplitude are analyzed, which act on different

steps in a cAMP signaling cascade.
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3.3.2.1 Effect of 8-Br-cAMP

Elevation of cAMP by 8-Br-cAMP (a membrane permeable cAMP analog) was shown in

several invertebrate preparations, as in the lobster stomatogastric ganglion (STG) (Flamm

et al. 1987) but also in insects (grasshopper brain: Heinrich et al. 2001, locust DUM (dor-

sal unpaired median) neurons: Lundquist and Nässel 1997). To examine the possible

involvement of cAMP in mediating the tonic depolarization, the effect of 8-Br-cAMP was

tested. A representative experiment is shown in figure 3.19. The tonic depolarization in

saline was 1.2 mV in an ipsilateral flexor MN during a stepping sequence of five steps

(Fig. 3.19 A). Superfusion of 500 µM 8-Br-cAMP increased the amplitude of the tonic

depolarization to a value of 2.2 mV (8 min, Fig. 3.19 B).

The analysis for a single experiment is shown in figure 3.20 A. The amplitude of the tonic

depolarization (∆V) is plotted over time. In this experiment, ∆V in saline was 2.0 ±0.1 mV

(n=6) and increased during superfusion of 500 µM 8-Br-cAMP to 4.9 mV (26 min). During

wash with saline, the tonic depolarization recovered only slightly to a value of 4.5 mV

(9 min). The correlation coefficient for the linear fit in this experiment is significant at

the 0.1% level (n=22). In figure 3.20 B all seven experiments are shown, each experiment

represented by a different symbol, with control values obtained from two to six stepping

sequences. The results from six experiments confirm that 8-Br-cAMP increases the tonic

depolarization amplitude. In three of seven experiments the correlation coefficient was

significant (at least at the 5 % level, n=5 to 22 for a given experiment). Four flexor MNs

were successfully recorded during wash, and the individual amplitudes of tonic depo-

larizations are shown as data points. Wash with saline led to a partial recovery in two

of four experiments. In one experiment, the slope of regression was negative (N in fig-

ure 3.20 B). This is due to the fact that during the first three minutes of the experiment,

the tonic depolarization increased from 1.4 mV to values of 2.5 mV but then declined to

control values of 1.6 mV after 7 min. Thus, the tonic depolarization increased in this ex-

periment as well. In another experiment, no linear fit could be calculated due to too few

data points ( , n=2), which showed an increase in the tonic depolarization. The increase

in the tonic depolarization amplitude during superfusion of 8-Br-cAMP was indepen-

dent of the control value (Fig. 3.20 C), shown by plotting the slopes of linear fits against
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Figure 3.19: 8-Br-cAMP increased the tonic depolarization in mesothoracic flexor MNs during front leg

stepping. A: Control in saline. Throughout a sequence of 5 steps, the ipsilateral mesothoracic flexor MN

shown, exhibited a tonic depolarization of 1.2 mV. B: During superfusion of 500 µM 8-Br-cAMP the

amplitude of the tonic depolarization during a stepping sequence of the front leg (4 steps) increased (8 min,

2.2 mV).
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Figure 3.20: Tonic depolarization amplitude over time during 8-Br-cAMP (500 µM) superfusion. A:

Detailed analysis for a single experiment. Control in saline: the amplitude of the tonic depolarization (∆V)

was 2.0 ±0.1 mV (open stars; n=6) and increased to 4.9 mV after 26 min superfusion of 8-Br-cAMP (⋆).

During wash with saline, the tonic depolarization recovered slightly to a value of 4.5 mV (9 min). Data

points are fitted by linear regression (n=22). B: Time course for all experiments (N=7). Control (open

symbols) obtained from n=2 to 6 stepping sequences. Only linear fits are shown for ∆V during 8-Br-

cAMP superfusion (n=5 to 22). Same symbol is one experiment. Solid lines: level of significance at least

5 %, dashed line: no significance. C: Slopes of linear fits plotted against ∆V in control condition show

no significant linear relationship. Plot includes slopes from five of seven experiments. In one experiment

no linear fit was possible, in another, the slope was negative (see text). D: Plot of ∆V obtained from all

stepping sequences during 8-Br-cAMP superfusion showing a significant correlation (r=0.403**, level of

significance 0.1 %; N=7, n=54).

the amplitude in saline (five of seven experiments). Values obtained from the other two

experiments were excluded due to the above mentioned reasons. A summarizing plot of

the obtained tonic depolarization amplitudes during superfusion of 8-Br-cAMP is shown

in figure 3.20 D. The plot shows a high correlation (r=0.403**) for the increase in tonic

depolarization over time.

In summary, the amplitude of the tonic depolarization increased after 5 min of superfu-

sion with 8-Br-cAMP by 0.8 ±0.5 mV (range 0.3 to 1.5 mV; data calculated from linear

fits, N=5/7, see also Fig. 3.20 B). A percentaged increase could not be calculated for each

single experiment, as the tonic depolarization in saline (control) was zero in two experi-

ments. Therefore, the percentaged increase was calculated from the mean increase after

five minutes in relation to the mean amplitude in control condition. The percentaged

increase calculated in this way was about 56 %.

3.3.2.2 Effect of H-89 and SQ22,536

The experiments using 8-Br-cAMP indicated that cAMP might play a role in mediating

the tonic depolarization. This finding should be clarified by some preliminary experi-

ments, in which the effect of substances influencing the cAMP pathway at different steps
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were investigated (Fig. 3.21). Two substances were tested, H-89 and SQ22,536.

In general, it is thought that the signaling pathway of cAMP is mediated through the

activation of PKA. H-89 is a well-known inhibitor of PKA, and its effectiveness in insects

was shown by its inhibitory effect in the grasshopper brain (Wenzel et al. 2002), further

evidence comes from the locust muscle (Walther and Zittlau 1998).

In two experiments, the effect of H-89 on the tonic depolarization in mesothoracic flexor

MNs was analyzed. One of which is shown in figure 3.22. From a control value of

3.0 mV, the tonic depolarization amplitude decreased to 0.9 mV after 16 min superfusion

of 100 µM H-89 (Fig. 3.22 A, 3.22 B). The mesothoracic ncr recording during superfu-

sion of H-89 also showed a decreased activity during front leg stepping. In this flexor

MN large EPSPs occurred in saline and vanished in the presence of H-89. Figure 3.22

C shows no recovery in the amplitude of the tonic depolarization, but the mesothoracic

nerve activity was slightly increased.

The analysis for both experiments is shown in figure 3.23. In one ipsilateral flexor MN the

amplitude of the tonic depolarization in saline was 3.2 ±0.2 mV and decreased to 2.5 mV

after ~5 min in H-89. Details for the other flexor MN recording were described in the text

above and in figure legends 3.22 and 3.23.

SQ22,536 is known to inhibit adenylate cyclase (AC) which catalyzes the synthesis of

cAMP from ATP (Fig. 3.21). In some invertebrate preparations, SQ22,536 was success-

fully used to reduce cAMP-dependent effects (e.g., leech: Britz et al. 2004, grasshopper:

Heinrich et al. 2001; Wenzel et al. 2002, crayfish: Araki et al. 2005).

The effect of SQ22,536 on the tonic depolarization amplitude in ipsilateral mesothoracic

flexor MNs was analyzed in two experiments. One experiment is shown in figure 3.24.

The amplitude of the tonic depolarization during front leg stepping increased to a value

of 1.3 mV after 11 min superfusion of 500 µM SQ22,536 (Fig. 3.24 B), whereas under

control conditions in saline, no tonic depolarization was visible (Fig. 3.24 A). The meso-

thoracic nerve recording showed no significant difference in activity during superfusion

of SQ22,536.

Figure 3.25 shows the analysis for both experiments. In one ipsilateral flexor MN, the
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Figure 3.21: cAMP pathway. Activation of a G-protein coupled receptor activates adenylate cyclase (AC),

which catalyses the synthesis of cAMP. The membrane permeable cAMP analog 8-Br-cAMP increases the

intracellular cAMP-level. The AC inhibitor SQ22,536 leads to a decreased cAMP-level. H-89 inhibits

protein kinase (PKA). Crosses mark an inhibitory effect. Schematic altered after textbook figures.

amplitude of the tonic depolarization in saline was 1.3 ±0.1 mV and increased only slight-

ly to 1.5 mV after 14 min superfusion of SQ22,536. Details for the other flexor MN were

described in the text above and in figure legends 3.24 and 3.25.

In summary, 8-Br-cAMP was shown to increase the tonic depolarization amplitude, thus

indicating a role for cAMP in mediating the tonic depolarization. The experiments using

H-89 and SQ22,536, although preliminary, might support this finding. H-89 decreased

the tonic depolarization amplitude by 33 and 22 % (data calculated from linear fits after

5 min, respectively mean value, see figure 3.23). The amplitude of the tonic depolari-

zation increased in the presence of SQ22,536 by 0.2 and 0.8 mV (data calculated from

linear fits after 5 min, see figure 3.25).

3.3.3 Role of IP3/DAG

For several transmitters a link to the IP3-system has been described (see references in

Berridge 1984). In the locust, a linkage of muscarinic-like receptors to the phosphatidyli-

nositol metabolism was proposed by Trimmer and Berridge (1985). Another example

comes from the blowfly, where serotonin receptors on the salivary gland are coupled

amongst others to the IP3-pathway (Berridge and Heslop 1981). IP3 also acts in parallel

to cAMP in affecting molting in Drosophila (Venkatesh et al. 2001). In this chapter the ef-
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Figure 3.22: H-89 decreased the tonic depolarization in an ipsilateral mesothoracic flexor MN during front

leg stepping. A: The amplitude of the tonic depolarization in an ipsilateral mesothoracic flexor MN was

3.0 mV (10 steps, control in saline). B: During superfusion of 100 µM H-89, the amplitude of the tonic

depolarization during a stepping sequence of the front leg (9 steps) decreased (16 min, 0.9 mV). C: During

wash with saline, the tonic depolarization amplitude remains decreased (17 steps; 6 min, 1 mV).

D
V

 [
m

V
]

time [min]

wash

control

H89

0

1

2

3

4

0 4 8 12 16 20 24

Figure 3.23: Tonic depolarization amplitude over time during H-89 (100 µM) superfusion. The details for

both performed experiments are shown. Controls in saline: the amplitudes of the tonic depolarization were

3.0 mV (2, n=2) and 3.2 ±0.2 mV (⊲, n=5). The tonic depolarization (∆V) decreased to 0.9 mV (16 min,

�) and to 2.5 mV ±0.1 mV (◮) during superfusion of H-89. Data points are fitted by linear regression

(n=9). Same symbol is one experiment. Solid line: level of significance 0.1 %. During wash the amplitude

of the tonic depolarization remains decreased (�, n=6).
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Figure 3.24: SQ22,536 increased the tonic depolarization in an ipsilateral mesothoracic flexor MN during

front leg stepping. A: During a stepping sequence in saline no tonic depolarization was visible. B: During

superfusion of 500 µM SQ22,536 (11 min) the flexor MN exhibited a tonic depolarization of 1.3 mV during

a sequence of 6 steps of the front leg.
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Figure 3.25: Tonic depolarization amplitude over time during SQ22,536 superfusion. Details for both

performed experiments are shown. Controls in saline 1.3 ±0.1 mV (#, n=2) and 0 mV (�, n=3): the

amplitudes of the tonic depolarization increased to 1.5 mV after 14 min (1 mM SQ22,536,  ) and to

0.8 mV after 24 min (500 µM SQ22,536, �). Data points are fitted by linear regression (n=4 and 8). Same

symbol is one experiment. Dashed lines indicate no significance in the correlation coefficients.

fects of neomycin and U-73122, both known to inhibit PLC (phospholipase C) synthesis

(Fig. 3.26), on the tonic depolarization were tested.

3.3.3.1 Effect of Neomycin

Suarez-Kurtz (1974) showed that the aminoglycoside antibiotic neomycin reduced the

amplitude of graded membrane responses in crab muscle fibres and in the crayfish stretch

receptor neuron it depressed cell discharge activity (Nation and Roth 1988). Neomycin

reduces PLC activity by binding to the enzyme’s substrate, PIP2, and was shown to re-

duce the muscarine-stimulated stridulation in the grasshopper brain (Wenzel et al. 2002).

To investigate a possible involvement of IP3 in mediating the tonic depolarization in a

first step neomycin was superfused. The effect of neomycin on the tonic depolarization

amplitude in mesothoracic flexor MNs was tested in five animals. Concentrations of

neomycin ranged between 0.8 and 2 mM. In four out of five experiments the amplitude

of the tonic depolarization was increased. Figure 3.27 shows a representative experiment.

Under control conditions in saline the tonic depolarization in this flexor MN was 2.5 mV
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Figure 3.26: IP3-pathway. Activation of a G-protein coupled receptor activates phospholipase C (PLC),

which leads to the synthesis of IP3 and DAG via PIP2. IP3 induces calcium release from internal stores

(ER = endoplasmatic reticulum). Neomycin and U-73122 inhibit phospholipase C. The cross marks an

inhibitory effect. Schematic altered after textbook figures.

during a stepping sequence of the front leg (7 steps, Fig. 3.27 A). During superfusion of

800 µM neomycin the amplitude of the tonic depolarization increased to 4.7 mV (Fig. 3.27

B).

The time course for a single experiment is shown in figure 3.28. The amplitude of the

tonic depolarization (∆V) is plotted against time and was 2.2 ±0.3 mV (control, Fig. 3.28

A). During superfusion of 2 mM neomycin the amplitude increased to 3.4 mV (after

17 min). The correlation coefficient for the linear fit in this experiment was significant at

the 5 % level. A range of different neomycin concentrations was used in the experiments

(Fig. 3.28 B). The following concentrations were used: 0.8 mM (N=1), 1 mM (N=3) and

2 mM (N=1). In all these different concentrations neomycin increased the amplitude of

the tonic depolarization in four of five experiments. One experiment showed a signifi-

cant increase in the tonic depolarization amplitude. Three more experiments support this

finding, however, their correlation coefficient was not significant. In one experiment no

change in the amplitude of the tonic depolarization was observed during superfusion of

neomycin.

In summary, the tonic depolarization amplitude increased by up to 84 % (range 4 to 84 %,

data calculated from linear fits after 5 min, see figure 3.28 B).
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Figure 3.27: Neomycin increased the tonic depolarization in ipsilateral mesothoracic flexor MNs during

front leg stepping. A: Control in saline. Throughout a sequence of 7 steps an ipsilateral mesothoracic flexor

MN exhibited a tonic depolarization of 2.5 mV. B: During superfusion of 800 µM neomycin the amplitude

of the tonic depolarization during a stepping sequence of the front leg (5 steps) increased (23 min, 4.7 mV).
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Figure 3.28: Tonic depolarization amplitude over time during neomycin superfusion. A: Detailed analysis

for one experiment. Control in saline: 2.2 ±0.3 mV (△, n=2). The amplitudes of the tonic depolarization

increased to 3.4 mV after 17 min (2 mM neomycin, N). Data points are fitted by linear regression (n=5).

B: Time course for all experiments (N=5). The concentrations are labeled as follows: 0.8 mM:  ; 1 mM:

�, �, �; 2 mM: N. Only linear fits are shown for ∆V during neomycin superfusion for four experi-

ments (n=4-11). In the fifth experiment the two obtained data points are shown (�). Same symbol is one

experiment. Solid line: level of significance 5 %, dashed lines: no significance.
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3.3.3.2 Effect of U-73122

The involvement of IP3 in mediating the tonic depolarization was also analyzed by su-

perfusion of U-73122, which inhibits (like neomycin) triggering of stridulation in the

grasshopper brain by application of muscarine (Wenzel et al. 2002). In three animals the

tonic depolarization was analyzed during superfusion of U-73122. The concentration of

U-73122 ranged between 75 µM and 250 µM. In all experiments the amplitude of the tonic

depolarization was increased during superfusion of U-73122. In these experiments, no

flexor MN could be recorded successfully during wash with saline. Figure 3.29 shows one

representative experiment. Under control condition in saline, the tonic depolarization in

this flexor MN was 2.4 mV during a stepping sequence of the front leg (6 steps, Fig. 3.29

A). During superfusion of 250 µM U-73122 the tonic depolarization amplitude increased

to 3.7 mV (6 steps, Fig. 3.29 B).

Figure 3.30 shows the analysis for all three experiments. The amplitudes of the tonic

depolarization increased by 25 % during superfusion of 75 µM U-73122 and by 58 %

during superfusion of 125 and 250 µM. The data were calculated from linear fits after

5 min.

3.3.4 Summary

This chapter deals with the question of which second messengers play a role in medi-

ating the tonic depolarization. A participation of second messengers was indicated by

long repolarization time constants of the tonic depolarization (see chapter 3.1, Ludwar

et al. 2005b). Experiments using BAPTA as Ca2+-chelator showed a decrease in the tonic

depolarization amplitude by approximately 8 %. Thus, Ca2+ might act as a second mes-

senger in mediating the tonic depolarization. Furthermore, the cAMP analog 8-Br-cAMP

induced an increase in the tonic depolarization amplitude by approximately 0.8 mV, in-

dicating a role for cAMP in mediating the tonic depolarization. This result is supported

by preliminary results showing that H-89, which inhibits PKA, decreased the tonic de-

polarization.

The type of the mediation remains unclear, as preliminary results show that the AC in-

hibitor SQ22,536 seems to increase the tonic depolarization amplitude (see discussion
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Figure 3.29: U-73122 increased the tonic depolarization in a mesothoracic flexor MN during front leg

stepping. A: The tonic depolarization in saline was 2.4 mV during a stepping sequence of the front leg

(6 steps). B: During superfusion of 250 µM U-73122 the amplitude of the tonic depolarization during a

sequence of 6 steps increased (10 min, 3.7 mV).
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Figure 3.30: Tonic depolarization amplitude over time during U-73122 superfusion. Details for all experi-

ments are shown. Controls in saline: 1.2 ±0.1 mV (�, n=6); 2.4 ±0.1 mV (△, n=4); 2.4 ±0.1 mV (#, n=3).

The tonic depolarization amplitudes increased to 1.8 mV after 6 min (75 µM, �), to 4.2 mV after 5 min

(125 µM, N) and to 3.7 mV after 10 min (250 µM,  ). Data points are fitted by linear regression (n=5-6).

Same symbol is one experiment. Solid lines: level of significance at least 5 %, dashed line: no significance.

4.2.3, Fig. 4.2). A reduction in the amplitude would have been expected because SQ22,536

catalyzes the synthesis of cAMP (Fig. 3.21).

A role of an IP3-pathway cannot be excluded either, as the PLC inhibitors neomycin and

U-73122 increased the tonic depolarization amplitude by up to 84 % and 58 %. The en-

hancement of the tonic depolarization amplitude by these substances points to an indirect

influence on mesothoracic motoneurons, possibly by a reduction of an inhibitory input

mediated by interneurons that employ PLC in a second messenger pathway (see discus-

sion chapter 4.2.3, Fig. 4.2). An opposing effect of these neuroactive drugs would have

been expected if they act directly on flexor MNs (Fig. 3.26).

The results indicate a role for calcium, cAMP and IP3 in mediating the tonic depolari-

zation, whereas no distinction can be made if some of the actions of cAMP and IP3 might

be due to indirect influences (via pre-motor or intersegmental interneurons). In addition,

an interaction between different second messenger pathways seems possible.
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Summary for pharmacological experiments

Table 3.3.4 summarizes the results of the pharmacological experiments, described in

chapter 3.2 and 3.3. The general effect for each substance as well as the effect on the

tonic depolarization amplitude is listed. The column labeled ’N’ indicates the number

of cells, that showed the effect (calculated after 5 minutes) in relation to the total num-

ber of cells tested. For these values no difference was made between a significant or no

significant effect.
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depolarization
N

Octopamine

Serotonin Neurotransmitter

Neurotransmitter

1 - 4

1

Atropine Muscarinic acetylcholine receptor antagonist 0.5 8/9

4/6

10/11

BAPTA

Neomycin

Riluzole

H-89

SQ22,536

8-Br-cAMP cAMP analog

Inhibitor of phospholipase C

Calcium chelating reagent

Inhibitor of persistent sodium channels

Inhibitor of cAMP-dependent protein kinase

Adenylyl cyclase inhibitor

0.5

0.4 - 1.6

200

0.025-0.2

0.2

0.2 - 1

6/7

4/5

7/8

3/4

1/4

2/2

2/2

U-73122 0.2 3/3Inhibitor of phospholipase C

Mianserin Octopaminergic/Serotonergic Antagonist 0.1 6/7

0.5 - 4

2/6

1/11

0.25 - 1

Figure 3.31: Effect of the used drugs on the tonic depolarization amplitude in mesothoracic flexor MNs during front leg stepping. All drugs but BAPTA were

bath applied. BAPTA was added to the electrolyte solution in the recording electrode. The arrows indicate an increase or decrease of the tonic depolarization

amplitude. N indicates the number of cells that showed the corresponding effect without consideration of significance (number of cells that showed the

effect/total number). Note that the effect of riluzole is described only in the appendix.
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3.4 Neuronal activity in lesioned animals

Lesion experiments have ever since been a favored tool in investigating the influence

of higher brain centers on the initiation of locomotion, such as flight, swimming and

walking. For example, the flight performance in locusts is still possible in decerebrated

animals (Wilson 1961). The initiation of swimming in leeches is controlled by pathways

emanating from the head ganglion (Brodfuehrer et al. 1995) and ablation of these ganglia

revealed their role in setting the level of arousal and general activity (see Cornford et al.

(2006) and references therein). The initiation of walking in insects may involve a brain

command system, and recent results indicate such a role for descending interneurons

(DINs) in crickets, called CNW (Zorovic and Hedwig 2007). In locusts, there are about

440 neurons DINs that project from head to thoracic ganglia, and lesion studies revealed

that some of them may be involved in initiation of walking (Kien 1983; 1990). Walking

and righting behavior in brainless stick insects was described by Graham (1979a;b), and

even decerebrated animals are capable of walking-like movements after an appropriate

stimulation (Bässler 1986).

The tonic depolarization in mesothoracic MNs described in this thesis is at least corre-

lated to stepping movements of the front leg, but nothing is known about how this infor-

mation is transferred or if other sources (e.g., head ganglia) play a role in influencing this

membrane potential modulation.

The first part of this chapter investigates, if and how brain (supraesophageal ganglion)

removal influences the tonic depolarization in mesothoracic flexor MNs. Then a few pre-

liminary experiments are presented, in which connectives were transected to see in a first

attempt, whether the neuronal information is redundant in both connectives and if the

tonic depolarization is affected. The second part analyzes the neuronal activity extracel-

lularly in neck connectives during front leg stepping to unravel a possible correlation.

Furthermore, these results are compared to those of brainless animals.

3.4.1 Tonic depolarization in lesioned animals

In a first set of experiments the effect of brain removal on the tonic depolarization ampli-

tude was analyzed. Therefore, the activity in flexor MNs was recorded in four animals
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before (’intact’) and after removal of the brain (brainless).

The preparation of the animal was performed according to chapter 2.2.3 with an addi-

tion in which the brain was exposed before recording intracellularly from flexor MNs

(see details in chapter 2.2.4). For each experiment a stable intracellular recording of a

contralateral flexor MN was established and the amplitude of the tonic depolarization

was recorded during at least two stepping sequences of the front leg. During the respec-

tive recording, the brain was carefully removed and the tonic depolarization was again

recorded during stepping sequences.

In general, brain removal led to an increased stepping activity in most animals (N=5/7,

Fig. 3.32). Figure 3.32 A shows a stepping sequence of 12 steps that led to increased

spike activity in the mesothoracic flexor nerve recording. After removal of the brain,

the same animal performed 37 steps after tactile stimulation (Fig. 3.32 B). Although the

activity in the nerve recording increased compared to the level at rest, it was decreased

compared to the situation in the ’intact’ animal. ’Intact’ animals performed on average 8

steps per stepping sequence of the front leg, after brain removal an increase to 16 steps

(mean) was observed. For ’intact’ and brainless animals five stepping sequences at a

time were analyzed. This increase was significant in 5 of 7 animals (Fig. 3.33). Stance

duration as well as the step cycle period (begin stance to begin stance) were determined

for these experiments (data not shown). In five of seven experiments, duration of stance

phase was decreased in brainless animals, whereas this decrease was significant in three

experiments. A significant increase was observed in a sixth experiment, and the seventh

experiment showed no changed in stance duration. The cycle period increased in five of

seven experiments after brain removal, which was significant in two experiments. Two

animals showed a decreased cycle period, but this change was not significant.

Figure 3.34 shows the influence of brain removal on the tonic depolarization. During

a stepping sequence of the front leg, a tonic depolarization of 5.5 mV was visible in

a contralateral flexor MN and the nerve activity increased (Fig. 3.34 A). Figure 3.34 B

shows the same recordings after brain removal. The nerve activity decreased, and the

tonic depolarization amplitude showed a pronounced decrease as well (1.4 mV, 4 min
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Figure 3.32: Brain removal increased stepping activity A: A stepping sequence of the front leg (12 steps)

after tactile stimulation showed increased activity in the contralateral mesothoracic nerve recording. B:

After brain removal the animal performed 37 consecutive steps due to a comparable tactile stimulation. The

activity in the nerve recording increased compared to rest, but was less pronounced compared to the ’intact’

animal (A). Arrows indicate tactile stimulation.



3.4 NEURONAL ACTIVITY IN LESIONED ANIMALS 101

0

10

20

30

40

s
te

p
 n

u
m

b
e
r

“intact”

“brainless”

experiment

1 2 43

**

**

*

**

5 6 7

*
n.s.

n.s.

Figure 3.33: Step number per stepping sequence in ’intact’ and brainless animals. In five of seven exper-

iments, the animal performed significantly more steps after brain removal (n=5 stepping sequences were

analyzed in ’intact’ and brainless animals). Asterisks on top mark the level of significance: (n.s.) no

significance; (*) 0.01 ≤ p < 0.05; (**) 0.001 ≤ p < 0.01; (***) p < 0.001.

after brain removal). The tonic depolarization was significantly decreased in all experi-

ments (at least at the 1 % level, Fig. 3.35 A). The maximum tachometer trace showed no

difference in three of four experiments, in one experiment the values were significantly

decreased after brain removal.

To analyse if the decrease in the tonic depolarization amplitude after brain removal was

only a short-term effect, the amplitude was plotted over time, shown in figures 3.35 B,

3.35 C. At least during a period of 16 min after brain removal no significant change in the

amplitude of the tonic depolarization was observed.

In two experiments the effect of cutting the connective ipsilateral to the stepping front leg

(between the pro- and mesothoracic ganglion) on the tonic depolarization amplitude was

tested. The result for one experiment is shown in figure 3.36. In the ’intact’ condition the

tonic depolarization amplitude was 1.3 mV (Fig. 3.36 A) and decreased to 0.8 mV after

cutting the ipsilateral connective (Fig. 3.36 B). The activity decrease was also visible in

the nerve recording. The tonic depolarization amplitude decreased by 39 % and 64 % and

this decrease was significant for both experiments (p < 0.001).
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Figure 3.34: Tonic depolarization in brainless animals. A: During a stepping sequence of the front leg (6

steps), the activity in the contralateral mesothoracic nerve recording increased. Throughout the stepping

sequence a pronounced tonic depolarization was visible in a flexor MN (5.5 mV). B: After brain removal

the same flexor MN showed a decreased tonic depolarization amplitude (1.4 mV) during a sequence of 12

steps of the front leg. The nerve recording showed also decreased activity.
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Figure 3.35: The tonic depolarization amplitude was decreased in brainless animals. A: Comparison of

the amplitude of the tonic depolarization (∆V) in ’intact’ (white bars) and brainless (black bars) animals.

Asterisks on top mark the level of significance: (**) 0.001 ≤ p < 0.01; (***) p < 0.001. B: Detailed analysis

for one experiment. The amplitude of the tonic depolarization is plotted over time. In this experiment the

amplitude of the tonic depolarization in the ’intact’ animal was 3.6 mV (n=2, △) and decreased to 1.9 mV

after removal of the brain (N). No significant change in the amplitude over time could be detected (dashed

line). C: Analysis for all four experiments. The amplitude of the tonic depolarization decreased after brain

removal and showed no significant change over time.

Similar experiments were performed by cutting the ipsilateral neck connective. In one

of two experiments the animal performed no stepping sequences after the lesion, the

second experiment is shown in figure 3.37. The tonic depolarization amplitude in the

’intact’ animal was 2.9 mV and decreased to 0.7 mV after cutting the connective between

the pro- and subesophageal ganglion (Fig. 3.37 B). The decrease in the tonic depolari-

zation amplitude was significant at the 0.1 % level (68 %). Strong phasic depolarizations

were observed after brain removal, that might resemble twitching observed in brainless

animals (Graham 1979a).

In summary, brain (supraesophageal ganglion) removal decreased the tonic depolari-

zation significantly by 59.8 ±9.9 %. A decrease in the tonic depolarization amplitude was

also observed by transecting the connective between pro- and mesothoracic ganglion or

the neck connective. The decrease ranged between 39 % and 68 %.
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Figure 3.36: Effect of ipsilateral connective lesion between the pro- and mesothoracic ganglion on the tonic

depolarization. A: During a stepping sequence of the front leg (10 steps) the activity in the ipsilateral

mesothoracic nerve recording increased. Throughout the stepping sequence a tonic depolarization was

visible in a flexor MN (1.3 mV). B: Cutting the ipsilateral connective between the pro- and mesothoracic

ganglion showed a decrease in the nerve recording and in the tonic depolarization amplitude to 0.8 mV

during a front leg stepping sequence (7 steps).
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Figure 3.37: Effect of ipsilateral neck connective lesion on the tonic depolarization. A: During a stepping

sequence of the front leg (4 steps), the tonic depolarization in a flexor MN was 2.9 mV. B: Cutting the

ipsilateral connective between the pro- and subesophageal ganglion showed a pronounced decrease in the

tonic depolarization amplitude to 0.7 mV during a sequence of 9 steps. Throughout the stepping sequence

the flexor MN showed strong phasic depolarization in membrane potential.
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3.4.2 Activity in neck connectives

Borgmann (2006) showed that the neuronal activity in ipsilateral connectives between

thoracic ganglia is dependent on front leg stepping. The activity not only increased but

appeared to be phasically modulated. It was shown, that the stepping velocity was in

most cases related to the neuronal activity in the connectives.

This raised the question, if this dependency is also represented at a higher level, for exam-

ple in the neck connectives. Therefore, in a first attempt the ipsi- and contralateral neck

connectives were recorded extracellularly during front leg stepping. Figure 3.38 shows

a representative experiment with recordings of both connectives. Under resting condi-

tions the connective recordings showed a basic level of neuronal activity, that increased

with the onset of a stepping sequence of the front leg (Fig. 3.38 A). According to the

experiments performed by Borgmann (2006) not single action potentials were of interest

but the course of the mean neuronal activity, therefore the rectified and smoothed (τ =

0.07 s) traces of the respective extracellular recordings are also presented. In this record-

ing, the activity increase and time course in the connectives was almost identical for the

ipsi- and contralateral neck connective (Fig. 3.38 B). The rectified and smoothed extra-

cellular recordings showed two components (Fig. 3.39), a phasic and a tonic component,

which were also shown in thoracic connectives in experiments performed by Borgmann

(2006). The analysis of the activity increase in neck connectives during front leg stepping

was performed in reference to the tonic component (Fig. 3.39). The increase was deter-

mined for each stepping sequence in four experiments (18 to 45 sequences). The activity

increase in ipsilateral neck connectives was between 40.8 % and 68.9 %, in contralateral

neck connectives between 39.2 % and 55.1 % (Fig. 3.40 A, 3.40 B). The increase was sig-

nificantly (p < 0.001) different from zero for all four experiments. A comparison of the

activity increase in ipsi- and contralateral connectives showed a difference in one of four

experiments (Fig. 3.40 C). In this experiment, the activity increase was higher in the ipsi-

lateral neck connective. In the experiment shown in figure 3.38, the activity in the neck

connectives increased by 40.8 ±11.6 % (ipsilateral) and by 39.2 ±13.6 % (contralateral) and

was not significantly different between the connectives (23 stepping sequences).

The performed experiments were further analysed to show if there is a dependency of
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Figure 3.38: Extracellular recordings of the ipsi- and contralateral neck connectives during front leg step-

ping. The neuronal activity in ipsi- and contralateral neck connectives increased during a front leg stepping

sequence. The rectified and smoothed (τ = 0.07 s) extracellular recording is presented below the respective

original recording. B: Overlay of both rectified and smoothed extracellular neck connective recordings. The

time course of the activity is almost identical in both connectives.
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Figure 3.40: Activity increase in neck connectives. A: Relative tonic activity increase during front leg

stepping in A: ipsilateral neck connectives and B: contralateral neck connectives. C: Comparison of activity

increase in ipsi- and contralateral neck connectives. Asterisks on top mark the level of significance: (n.s) no

significance, (***) p < 0.001.
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activity in neck connectives and front leg stepping, e.g. stepping velocity. The detailed

analysis for one experiment is shown in figure 3.41 A. The mean neuronal activity in

the connectives, determined as integral under the rectified and smoothed extracellular

recording for each step cycle, was normalized by respective step cycle period.

The normalized integral was plotted against the mean treadmill velocity, which was de-

termined as the integral under the tachometer trace during stance phase and normalized

by stance duration. The experiment showed that a linear dependency existed for both, the

ipsilateral and contralateral neck connective (data obtained from 23 stepping sequences

including 260 steps). This dependency was observed in all four experiments, as shown in

figure 3.41 B, where a high correlation was detected for both, the ipsi- and contralateral

connectives (18-38 stepping sequences including 131-274 steps, table 3.1). Analysis and

comparison of the regression coefficients for the ipsilateral and contralateral neck connec-

tives revealed a significant higher coefficient in three of four experiments: the coefficient

was significantly higher in the ipsilateral connective in two experiments, in the third the

coefficient for the contralateral connective was significantly higher (table 3.2).

Furthermore, the influence of brain removal on the activity in neck connectives was ana-

lyzed. Neck connective recordings in a brainless animal are shown in figure 3.42. These

recordings were obtained from the same animal shown ’intact’ in figure 3.38. An increase

in the neuronal activity of the ipsi- and contralateral connective was induced during a

front leg stepping sequence, which was less pronounced in comparison to the intact ani-

mal (see below). The activity increase and its time course in the connectives was similar

for the ipsi- and contralateral recording (Fig. 3.42 B). One of four animals performed

no stepping movements after removal of the brain, thus only three experiments were

analyzed. The activity increase after brain removal is shown in figure 3.43. Ipsilateral

neck connectives showed an increase of 21.0 % to 35.0 % (Fig. 3.43 A), in contralateral

connectives it was 18.0 % to 47.1 % (Fig. 3.43 B).

These values were significantly (***) different from zero in all experiments (data obtained

from 15 to 22 stepping sequences). The tonic activity increase in the experiment shown

in figure 3.42 was 21.0 ±4.8 % in the ipsilateral, and 18.0 ±4.4 % in the contralateral neck

connective (15 stepping sequences). A comparison of the tonic activity increase in both



3.4 NEURONAL ACTIVITY IN LESIONED ANIMALS 111

0

0.1

0.2

0.3

0.4

0.5
n
e
u
ro

n
a
l 
a
c
ti
v
it
y

0 2 4 6 8

mean velocity

0.6

10 12

***

***

n=23; 260 stepsA

0

0.1

0.2

0.3

0.4

0.5

n
e
u
ro

n
a
l 
a
c
ti
v
it
y

0 2 4 6 8

mean velocity

0.6

10 12

***
***

***

***

***

***
***

***

B

Figure 3.41: Correlation of the mean activity in neck connectives and the mean velocity of the treadmill.

A: Plot of the mean activity (integral/step duration) per step of the ipsi- and contralateral neck connective

vs. the mean velocity of the treadmill (both in arbitrary units) for one experiment. Data fitted by linear

regression. B: Linear fits of the mean activity (integral/step duration) per step of the ipsi- and contralateral

connective vs. the mean velocity of the treadmill (both in arbitrary units). Black lines: ipsilateral connec-

tives, grey lines: contralateral connectives. n= 18-38 stepping sequences, including 131-274 steps. The

asterisks mark the level of significance:(***) p < 0.001.
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Figure 3.42: Extracellular recordings of the ipsi- and contralateral neck connectives during front leg step-

ping in a brainless animal. The neuronal activity in the ipsi- and contralateral neck connectives increased

slightly during a front leg stepping sequence, but was decreased in comparison to ’intact’ animals (see

Fig. 3.38). The rectified and smoothed (τ = 0.07 s) extracellular recording is presented below the original

recording. B: Overlay of the rectified and smoothed extracellular recordings of the ipsi- and contralateral

neck connectives. The time course of the activity is almost identical in both connectives.
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Figure 3.43: Activity increase in neck connectives in brainless animals. Relative tonic activity increase

during front leg stepping in A: ipsilateral neck connectives and B: contralateral neck connectives. C:

Comparison of activity increase in ipsi- and contralateral neck connectives. Asterisks on top mark the level

of significance: (n.s) no significance, (***) p < 0.001.

’intact’

experiment ipsilateral contralateral

1 0.256 0.216

2 0.513 0.324

3 0.508 0.671

4 0.363 0.290

Table 3.1: Correlation coefficients for the dependence of mean neuronal activity and stepping velocity in

’intact’ animals, calculated for ipsi- and contralateral neck connectives.

’intact’

experiment ipsilateral contralateral

1 0.00826 0.00385

2 0.01703 0.00715

3 0.03438 0.05913

4 0.00725 0.00883

Table 3.2: Regression coefficients for the dependence of mean neuronal activity and stepping velocity in

’intact’ animals, calculated for ipsi- and contralateral neck connectives.
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connectives showed a significant higher increase in contralateral neck connectives in two

of three experiments (Fig. 3.43 C).

The tonic activity increase in neck connectives was compared between ’intact’ and brain-

less animals in all experiments (Fig. 3.44). After brain removal the activity increase was

significantly less pronounced in ipsilateral neck connectives (Fig. 3.44 A). The analysis

for the contralateral neck connectives showed this significant difference in two of three

experiments (Fig. 3.44 B).

As in ’intact’ animals, it was analyzed whether a correlation between stepping velocity

of the front leg and the neuronal activity in neck connectives exists. Figure 3.45 shows a

linear dependency between the mean velocity and mean activity in ipsi- and contralateral

connectives in two of three experiments (15 to 22 stepping sequences, 109 to 228 steps, see

also correlation coefficients in table 3.3). In the third experiment there was no significant

relationship in the ipsilateral neck connective. Comparison of the regression coefficients

for ipsi- and contralateral neck connectives revealed no significant difference (table 3.4).

The regression coefficients were also compared between ’intact’ and brainless animals (ta-

bles 3.2, 3.4): coefficients obtained for ipsilateral neck connectives showed a significant

difference in all three experiments (level of significance at least 0.1 %). The regression co-

efficient obtained for the contralateral neck connective was significantly different in one

of three experiments (level of significance 0.1 %). Thus in ’intact’ animals the neuronal

activity increase seemed to be higher during comparable stepping velocities.

3.4.3 Summary

In this chapter the neuronal activity in ’intact’ and lesioned animals was analyzed and

compared. The first part analyzed the influence of lesions on the tonic depolarization,

which was described in detail in ’intact’ animals in chapter 3.1.1. Brain (supraesophageal

ganglion) removal decreased the tonic depolarization amplitude significantly by ~60 %.

Thus, the brain might be important for induction of the tonic depolarization. A decrease

was also observed by transection of the ipsilateral connective between the pro- and meso-

thoracic ganglion (up to 64 %) and by transection of the ipsilateral neck connective (68 %).

Furthermore, these experiments showed an additional activity decrease in the extracel-



3.4 NEURONAL ACTIVITY IN LESIONED ANIMALS 115

experiment
1 2 3 4

0

30

90

.

a
c
ti
v
it
y
 i
n
c
re

a
s
e
 [
%

]

60

.

***
*** ***

‘intact’
brainless

A

experiment
1 2 3 4

0

30

90

.

a
c
ti
v
it
y
 i
n
c
re

a
s
e
 [
%

]

60

.

***
***

‘intact’
brainless

n.s.

B

Figure 3.44: Comparison of activity increase in neck connectives in ’intact’ and brainless animals. Rela-

tive tonic activity increase during front leg stepping before and after brain removal in A: ipsilateral neck

connectives and B: contralateral neck connectives. Asterisks on top mark the level of significance: (n.s) no

significance, (***) p < 0.001.
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Figure 3.45: Correlation of the mean activity in neck connectives and the mean velocity of the treadmill in

brainless animals. Linear fits of the mean activity (integral/step duration) per step of the ipsi- and contra-

lateral connective vs. the mean velocity of the treadmill (both in arbitrary units). Black lines: ipsilateral

connectives, grey lines: contralateral connectives. n= 15-22 stepping sequences including 109-228 steps.

The asterisks mark the level of significance: (n.s.) no significance, (*) 0.05 < p < 0.01, (**) 0.01 < p < 0.001,

(***) p < 0.001
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brainless

experiment ipsilateral contralateral

1 - -

2 0.280 0.415

3 0.173 0.189

4 0.258 0.250

Table 3.3: Correlation coefficients for the dependence of mean neuronal activity and stepping velocity in

brainless animals, calculated for ipsi- and contralateral neck connectives. In the first experiment the animal

performed no stepping sequence after brain removal.

brainless

experiment ipsilateral contralateral

1 - -

2 0.00515 0.00706

3 0.00820 0.00754

4 0.00259 0.00565

Table 3.4: Regression coefficients for the dependence of mean neuronal activity and stepping velocity in

brainless animals, calculated for ipsi- and contralateral neck connectives. In the first experiment the animal

performed no stepping sequence after brain removal.
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lular nerve recording. This indicates that the tonic depolarization might be transmitted

by parallel pathways from the adjacent segments and that it is influenced by information

from one or both head ganglia.

In the second part of this chapter the neuronal activity in neck connectives during front

leg stepping was analyzed in ’intact’ and brainless animals. In ’intact’ animals, the to-

nic neuronal activity was significantly increased by 39.2 % to 68.9 %. This increase was

not significantly different between the ipsi- and contralateral connectives. A dependency

of neuronal activity in neck connectives and front leg stepping velocity was observed.

Although a significant difference in the regression coefficients was observed between

ipsi- and contralateral connectives, no preference for a stronger activity increase was de-

tectable for the one or the other connective.

In brainless animals, the neuronal activity increased significantly during front leg step-

ping as well. The tonic increase ranged between 18.0 % and 47.1 % and was significantly

higher in contralateral neck connectives.

It was shown, that the tonic neuronal activity increase was significantly higher in ’intact’

animals. The correlation of neuronal activity in neck connectives and stepping velocity

observed in ’intact’ animals persisted after brain removal. The regression coefficients

were significantly higher in ’intact’ animals, thus brain removal seems to reduce the ob-

served neuronal activity during respective velocities.





CHAPTER 4

Discussion

Membrane potential modulation in stick insect mesothoracic flexor MNs during single

front leg stepping has been investigated in this thesis. Properties of a tonic depolarization

associated with stepping behavior were described in detail, as well as effects of a range

of drugs acting on different receptors and second messenger pathways. Furthermore, the

influences of lesions (for example brain removal) on neuronal activity were investigated.

4.1 Activity in mesothoracic flexor MNs during walking of the

contralateral front leg

Activity in the main leg nerve (nervus cruris, ncr) increased in the middle leg contralate-

ral to the stepping front leg. The activity increase is indicative for spike activity in flexor

MNs because their axons run through ncr. Intracellular recordings from these flexor MNs

revealed, that the membrane potential shows two distinct changes during front leg step-

ping (see e.g., Fig. 3.6): 1) A tonic depolarization, that began with the onset of stepping
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activity of the front leg and repolarized after the last step was performed. The repolariza-

tion to resting membrane potential could outlast the stepping sequence by up to several

seconds. 2) A phasic membrane potential modulation that was coupled to front leg stance

phase.

4.1.1 Tonic depolarization

The membrane potential in contralateral flexor MNs depolarized tonically by 1.7 mV

±1.2 mV (N=24) during front leg stepping. In few cases flexor MNs showed no tonic

depolarization at resting membrane potential, but it was revealed by injection of hyper-

polarizing current. This supports the hypothesis that the tonic depolarization is a gen-

eral phenomenon. Previous studies showed a tonic membrane potential modulation in

all mesothoracic MNs ipsilateral to the walking front leg, as well as in MNs recorded in

the single middle leg preparation (Gabriel 2005; Ludwar et al. 2005b). Furthermore, in

a recent study by Borgmann (2006), extracellular recordings showed an increase in MN

spike activity in all segments during stepping sequences of a front, middle or hind leg.

Determination of the tonic depolarization amplitude

The tonic depolarization was defined as the difference between the resting membrane

potential and the lower edge of the phasic modulation (Fig. 4.1, see also chapter 2.6.1).

The tonic depolarization might be sculpted by phasic inhibitory input, in this case the

"real" amplitude would be underestimated by the chosen method (’B’ in Fig. 4.1). But if

the tonic depolarization is sculpted by phasic excitatory input then the lower edge of the

BA

Figure 4.1: Determination of the tonic depolarization amplitude. The tonic depolarization amplitude (∆V)

can be measured as the offset between the voltage baseline (lower dashed line: resting membrane potential)

and the lower edge of the phasic modulation (dotted line, ’A’) or the upper edge of the phasic modulation

(upper dashed line, ’B’). Amplitudes calculated according to ’A’ exclude shaping of the tonic depolarization

by possible phasic excitatory input, whereas it would be an underestimation if phasic inhibitory input

shapes the tonic depolarization.
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modulation would give the right amplitude (’A’). Thus the chosen method seems justi-

fied and was confirmed by the fact that only slight variations in control values occurred

(shown throughout the results).

Reversal potential

The amplitude of the tonic depolarization was dependent on membrane potential, with

increasing amplitudes at more hyperpolarized potentials, whereas it reversed at more de-

polarized potentials. The reversal potential was approximately −41 mV (Fig. 3.3). The to-

nic depolarization amplitude in all ipsilateral leg MNs described by Ludwar et al. (2005b)

ranged from 0.5 to 5 mV and the mean reversal potential was found to be −38 mV. In my

experiments, the mean amplitude of the tonic depolarization in ipsilateral flexor MNs

was 1.9 mV ±1.2 mV (N=27) and these values were not significantly different from those

obtained from contralateral flexor MNs (see above). Thus, the obtained values for contra-

lateral flexor MNs are comparable to ipsilateral MNs. The variability in reversal potential

is likely to result from the variability in depolarization amplitudes that in turn is likely

due to the circumstance that tonic responses were not evoked by a standardized stimu-

lation protocol but by the execution of a highly variable locomotor behavior. Different

amplitudes in tonic depolarization in different recordings/animals might occur through

a variable activation of the underlying current(s), which in turn depends on the amount

of released transmitter. Nevertheless, tonic depolarization amplitudes within one experi-

ment were relatively stable, usually with standard deviations of 0.1 to 0.2 mV.

Furthermore, the tonic depolarization was associated with a decrease in input resistance

by about 12 %, which was in the same range as for ipsilateral MNs. The decrease in

input resistance, respectively the increase in conductance, as well as the reversal potential

suggest that the tonic depolarization could be caused by an excitatory, nonselective cation

conductance. This might be a mixed conductance for example for sodium and potassium,

although also a conductance through separate channels for sodium and potassium seems

possible.

The reversal potential of the tonic depolarization is more depolarized than the value for

spike threshold in flexor MNs (−51 mV to −47 mV (Gabriel et al. 2003)). A possible func-

tion of the tonic depolarization could be to bring the membrane potential closer to spike
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threshold and thereby increase the sensibility of the membrane for excitatory inputs.

Enhanced responsiveness

In general, a decrease in input resistance would hinder spike generation by shunt-inhi-

bition and thus counteract the suggested role for the tonic depolarization (see above). I

could show, that injection of depolarizing current evoked one to two spikes in control

conditions at rest, whereas the number of spikes was more than doubled throughout a

stepping sequence. Thus the responsiveness was enhanced (in 73 % of the recordings,

see also Fig. 3.5), which indicates that the current shunt due to increased conductance is

more than compensated by the tonic depolarization.

Although these results indicate a mechanism that serves the enhancement of excitability

of MNs, this seems to be a mechanism that allows fine tuning of MN activity. This as-

sumption is based on two experiments, in which the responsiveness was decreased. In

these experiments decrease in input resistance was exceptionally high (30 %). The differ-

ent adjustment of this mechanism was particular prominent in an experiment, where no

enhanced responsiveness was obvious throughout four stepping sequences, in which no

tonic depolarization was visible. In the same flexor MN, throughout a fifth stepping se-

quence, the membrane tonically depolarized and responsiveness to depolarizing pulses

was enhanced. Different channels are known to affect the excitability of membranes. The

hyperpolarization activated Ih current plays a role in several vertebrate and invertebrate

preparations. It contributes to pacemaker activity of the heart or modulates rhythmic

activity in respiratory circuits in the mice (DiFrancesco 1993; Thoby-Brisson et al. 2000).

Interestingly, Ih selectively conducts both Na+ and K+ ions and the reversal potential

for Ih currents can be −25 to −40 mV, depending on the ratio for Na+ and K+ perme-

abilities (Robinson and Siegelbaum 2003). Although the tonic depolarization seems not

to be a voltage dependent mechanism, a mechanism similar to Ih mediated depolari-

zation cannot be excluded, because increased excitability could be due to a presynaptic

Ih mediated effect. Furthermore, Ih is subject to amine modulation in the neurons of the

lobster STG, that leads to an increase of Ih at less-hyperpolarized voltages (Peck et al.

2006). A possible influence of amines is also indicated by the effect of serotonin on the

tonic depolarization in stick insect MNs (see discussion in chapter 4.2). Another exam-



4.2 PHARMACOLOGICAL EXPERIMENTS 123

ple for increased excitability during rhythmic activity comes from turtle MNs, which are

part of the scratch-like motor network (Alaburda and Hounsgaard 2003). The underly-

ing current is mediated by metabotropic glutamate receptors whose activity facilitates

L-type Ca2+-channels. The increased excitability could outlast the motor activity for tens

of seconds, similar to the effect observed in stick insect MNs. Increased excitability was

also shown for the proleg retractor MNs in the tobacco hornworm Manduca sexta, where

it is due to a long-lasting depolarization from mechanosensory planta hairs (Trimmer

1994). In this system, mAChRs play a role in mediating the increased excitability and the

responsible inward current increases with depolarization, thus exhibiting regenerative

properties (Trimmer and Weeks 1993). This inward current is predominantly carried by

Na+, but possible additional changes in K+ or Cl− were not excluded (Trimmer 1994, see

discussion "Metabotropic acetylcholine receptors"). The author suggested, that this current

affects the time-course and strength of the response in the MN to all incoming inputs,

thus acting as a form of motor arousal.

The increased excitability observed during stepping activity in stick insect MNs, as well

as the finding that the muscarinic agonist pilocarpine induced a tonic depolarization

(Büschges 1998), indicates a role for metabotropic receptors in mediating the tonic de-

polarization. A possible involvement of mAChRs was investigated by using the antago-

nist atropine (see chapter 3.2.1), which partly reduced the tonic depolarization amplitude

(see discussion below; chapter 4.2.1).

Due to the shown properties of the tonic depolarization, the function of the tonic de-

polarization might be to bring a neuron closer to spike threshold, and thereby increasing

the effectiveness of phasic depolarizing inputs in eliciting spikes. This suggests, that the

tonic depolarization represents a state of arousal that reflects activation of the animal (this

thesis, Ludwar et al. 2005b).

4.2 Pharmacological experiments

The influence of several neuroactive substances on the tonic depolarization in flexor MNs

was investigated. The experiments were performed in the semi-intact preparation with
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one intact front leg, and recordings were made from either ipsi- or contralateral meso-

thoracic flexor MNs. This preparation enabled an easier and in-depth analysis of the

tonic depolarization, as the phasic modulation in membrane potential was rather small

compared to that of MNs innervating the walking leg (see discussion 4.3 and Gabriel

2005; Fischer et al. 2001; Schmidt et al. 2001). Furthermore, the activity observed in me-

sothoracic MNs was evoked by neurons that are involved in the control of walking, and

was not induced pharmacologically, e.g., by pilocarpine. In the chosen preparation, the

use of pharmacological agents did not affect the stepping leg, as the superfusion was re-

stricted to the mesothoracic segment by silicone-gel barriers. The removal of the ganglion

sheath allowed a better diffusion of the superfused substances, and seemed to have no

effect on the vitality and activity of the recorded flexor MNs.

4.2.1 Involved transmitters/receptors

By using a range of neuroactive substances, it was investigated which transmitters, re-

spectively receptors might be involved in mediating the tonic depolarization in MNs.

Due to the shown properties of the tonic depolarization, for example the long lasting

excitability, the focus was on substances that mainly exert their effects through metabo-

tropic receptors.

Metabotropic acetylcholine receptors

Experiments using the mAChR agonist pilocarpine in stick insects indicated a role for

mAChRs in locomotor networks, because it induced a rhythmic bursting pattern in MNs

that was inhibited by atropine (Büschges et al. 1995; Büschges 1998). A role for ACh as

a transmitter mediating the tonic depolarization was shown indirectly by the decrease

in tonic depolarization amplitude in the presence of atropine, which is an antagonist

of ACh on mAChRs. The tonic depolarization amplitude decreased after 5 minutes by

around 40 % in eight of nine experiments.

It is not known whether the inhibiting effect of atropine on mAChRs is exerted pre- or

postsynaptically. In insects, mAChRs are found pre- and postsynaptically, whereas the

latter regulate mainly the excitability of neurons (Trimmer 1995). The presynaptic func-

tion of a mAChR is usually that of an autoreceptor and inhibits transmitter release (Breer
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and Sattelle 1987; Trimmer 1995; Osborne 1996). Trimmer (1994) described an increased

excitability of proleg retractor MNs in Manduca sexta induced by the muscarinic agonist

oxotremorine-M (oxo-M), which is thought to mimic an afferent-induced long-lasting de-

polarization (see discussion "Enhanced responsiveness"). The action of oxo-M is mediated

by mAChRs and mainly carried by Na+. The author suggested a postsynaptic localiza-

tion of the responsible mAChRs. Although the underlying current showed some differ-

ences, for example its voltage-sensitive properties, it seems possible that the tonic de-

polarization is mediated by mAChRs similar to the described ones in Manduca, and thus

localization on flexor MNs seems possible. On the other hand changes in excitability of

neurons mediated by mAChRs can be achieved by activation or inactivation of several

other currents. For example an inhibition of the so-called M-current (IM) is known to in-

crease excitability in vertebrates (frog sympathetic neurons: Brown and Adams 1980). IM

is a voltage-dependent K+ current which is activated with depolarizing potentials and

induces thereby a decrease in responsiveness to depolarizing input (Brown and Adams

1980; McCormick 1992). Interestingly, stimulation of serotonin or muscarinic receptors

can lead to a suppression of IM and these receptor types seem also to play a role in me-

diating the tonic depolarization in flexor MNs (see also discussion "Serotonin"). But an

inhibition of IM is accompanied by an increase in input resistance in the respective cell,

which is in contrast to the observed decrease in input resistance during the tonic de-

polarization in flexor MNs. At least no IM current in the flexor MNs seems to be involved

in increasing the excitability observed during the tonic depolarization.

The concentration of 500 µM atropine used in my experiments might appear rather high,

but even higher concentrations of atropine (1 mM) were used by David and Sattelle (1984)

to analyze its effect on ionotophoretically injected ACh on the fast coxal depressor MN

of the cockroach. Similar to the experiments in my thesis, they also bath applied at-

ropine to the desheathed ganglion. The effectiveness of 500 µM atropine was also shown

for the proleg retractor MN of Manduca, where it inhibited at least 50 % of the ampli-

tude of an afferent induced EPSP, which is therefore thought to be mediated by mAChRs

(Trimmer and Weeks 1993). In the mentioned study, the use of a quite high concentra-

tion of another substance, a muscarinic agonist (McN-A-343) is discussed. The latter was
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effective only at very high concentrations, which is explained by possible secondary ef-

fects such as metabolic inactivation or sequestration. In general, besides atropine, also

other substances were used at rather high concentrations. Although the ganglion sheath,

known as a diffusion barrier in insects (Pichon and Treherne 1972), was removed and

should have eased diffusion, the substances still had to diffuse through the neuropile to

their sites of action. It is not known how permeable the neuropile is for the different

substances. Reflecting the experiments performed in this thesis, the partial inhibition

of the tonic depolarization by atropine (40 %) could be due to a concentration that was

not high enough for complete suppression, or that atropine is not a potent inhibitor of

the involved mAChR type, that mediates the tonic depolarization in this system. On the

other hand, in none of the performed recordings a steady-state of the tonic depolarization

amplitude was reached during atropine superfusion, which leads to the suggestion, that

the used concentration might have had a more potent effect over time. Furthermore, it is

not known which concentration of atropine or of any other used substance is present at

the location where it exerts its effect.

The degree of reduction in tonic depolarization amplitude (40 %) was calculated from the

linear fits (see figure 3.10 B) after 5 minutes superfusion with atropine. This analysis was

chosen due to the fact, that it was difficult to elicit stepping sequences to a defined point

in time in the individual recordings. The last value for the tonic depolarization in each ex-

periment was not statistically analyzed and not further mentioned in the results, because

intracellular recordings varied in duration and thus a statistical comparison of these val-

ues was not feasible. Nevertheless, the decrease in the tonic depolarization amplitude in

the presence of atropine was up to 80 % if calculated from the latest value measured in

each recording, indicating a more potent effect of atropine over time.

Although atropine is known as an mAChR antagonist, there is some evidence that it

competitively inhibits currents through nAChR in insects (e.g., Kenyon cells, honey bee:

Wüstenberg and Grünewald 2004). Benson (1992) reported a concentration dependent

inhibition of different receptor types by atropine in isolated locust neuronal somata. At

low concentrations atropine was a potent inhibitor of the induced muscarinic response

(EC50 ~ 10−8 mol/l), but showed moderate inhibition of the nicotinic response at higher
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concentrations (EC50 ~ 10−5 mol/l). On the one hand, it cannot be excluded, that atropine

exerted its effect by acting on nicotinic and muscarinic ACh receptors in stick insect MNs.

But then a possible action of atropine on nicotinic receptors should influence rather fast

effects, such as the phasic modulation in membrane potential. The action on muscarinic

receptors should influence slower effects, such as the tonic depolarization in flexor MNs.

On the other hand, other studies of insect preparations showed that nicotinic currents

are not atropine sensitive, e.g., in cockroach sensory- and interneurons (Blagburn and

Sattelle 1987; Buckingham et al. 1997).

Furthermore, the existence of ’mixed nicotinic/muscarinic’ receptors was discussed in

several insect species, where the pharmacological profile showed sensitivity for agonists/

antagonists of both receptor types (review by Osborne 1996, for example cockroach DUM

neurons: Grolleau et al. 1996).

Octopamine

Octopamine was shown to increase the tonic depolarization amplitude in ten of eleven

experiments, whereas the tonic depolarization amplitude was almost doubled (see chap-

ter 3.2.2). In a range of invertebrate preparations, octopamine exerts a multitude of ef-

fects, by acting as a neurotransmitter, -modulator or -hormone (Orchard 1982; Roeder

1999). In the locust, central and peripheral modulatory effects of octopamine have been

shown. A prominent example for the peripheral action of octopamine is the locust exten-

sor tibiae muscle, where octopamine modifies the contraction properties of the muscle

(Evans and O’Shea 1977). In general, octopamine is known to interfere with the ini-

tiation and maintenance of various rhythmic behaviors in the insect CNS. Injection of

octopamine into specific areas of thoracic ganglia leads to an initiation or suppression of

different rhythmic behaviors (Sombati and Hoyle 1984).

Metathoracic flexor tibiae MNs in locust depolarized by a few millivolts and showed in-

creased excitability in the presence of octopamine, whereas the membrane potential of the

fast extensor tibiae (FETi) MN was not influenced (Parker 1996). The efficacy of synap-

tic inputs was affected differently in fast and slow flexor MNs by octopamine. The FETi

evoked EPSP depended furthermore on the used concentration of octopamine. Bath ap-

plication of 1 mM octopamine decreased the EPSP amplitude in slow flexors and caused
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an increase of the EPSP in the fast flexor MNs. A concentration of 10 mM octopamine

also decreased the EPSP amplitude in slow, but had variable effects on the EPSP in fast

flexor MNs.

In the experiments performed for my thesis, octopamine seemed to have no obvious ef-

fect on spike activity in the nervus cruris and flexor MNs in the resting animal (this was

not analyzed statistically), and seemed to exert its effect only during stepping activity of

the front leg, namely on the tonic depolarization. Despite the well known influence of

octopamine in other insect species, very little is known about its effects in stick insects.

Ramirez et al. (1993) and Büschges et al. (1993) described a role in the resistance reflex

of the femur-tibiae control loop and an octopaminergic modulation of the fCO. Injection

of octopamine into the hemolymph of intact stick insects led to an initial activation, fol-

lowed by a phase where the animals were inactive (Büschges et al. 1993). Interestingly,

octopamine modulates intrinsic properties in locust interneurons that are involved in

the flight system (Ramirez and Pearson 1991a;b), where it induced bursting and plateau

potentials. The tonic depolarization in stick insect MNs is less likely caused by intrin-

sic properties. So far, injection of a depolarizing current into stick insect neurons was

never followed by plateau potentials. Furthermore, plateau potentials can be generated

by persistent inward currents (PICs), and the persistent sodium channel blocker riluzole

increased the tonic depolarization amplitude (see appendix A). This effect was in con-

trast to the expected decrease in the tonic depolarization amplitude in flexor MNs, if PICs

carried by sodium were involved.

In insects, dorsal unpaired median (DUM) and ventral unpaired median (VUM) neurons

are known to contain and release octopamine and are believed to be the most important

sources for octopamine in the thoracic and abdominal nervous system (Roeder 1999).

Periphal tissues such as flight and leg muscles are densely innervated by octopaminergic

DUM neurons. Although the actions of specific sets of DUM neurons seem to be coupled

to a given behavior, by now there is no evidence of a direct activation of different motor

systems via thoracic DUM neurons, but a parallel activation seems possible (Burrows

and Pflüger 1995). Discernible output structures of the segmental efferent DUM neurons

within the metathoracic ganglion of the locust are missing (Watson 1984). Furthermore,
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somata of DUM/VUM neurons are also found in the subesophageal ganglion, which

innervates all major neuropils in the brain (Bräunig 1991), whereas a different group of

DUM neurons has descending axons that project to the ventral nerve cord (Bräunig et al.

2004). These descending DUM neurons are putatively octopaminergic and have no direct

peripheral targets. Although it is not known if those DUM neurons are also existent in

the stick insect they could be possible candidates for the release of octopamine, which

might be involved in the modulation of synaptic transmission in thoracic ganglia, and

thereby influencing the tonic depolarization.

A role of octopamine receptors in mediating the tonic depolarization may be supported

by the finding, that the octopamine receptor antagonist mianserin decreased the tonic

depolarization amplitude in six of seven experiments by about 31 % (Fig. 3.16). Again,

the values were calculated after 5 minutes superfusion of the substance. A comparison

of the respective last value of the tonic depolarization in each experiment was not pos-

sible due to the above mentioned reasons (see discussion in "Metabotropic acetylcholine

receptors"). But these values showed that the decrease in tonic depolarization amplitude

could be even higher over time (up to 69 %). In the literature, the reference to mianserin

is in most cases that of an octopaminergic antagonist, and in several papers it was even

used to pharmacologically discriminate different octopaminergic receptors (e.g., Evans

1981; Roeder 1991; 1994). A concentration of 100 µM mianserin was sufficient to antag-

onize octopaminergic autoreceptors on an identified DUM neuron in the locust (Howell

and Evans 1998). The possibility of mianserin acting as a serotonergic receptor antagonist

cannot be neglected, as it was also described as an antagonist of these receptors in some

vertebrate and invertebrate preparations (Schmidt and Jordan 2000; Dringenberg 2000;

Tierney 2001).

High concentrations of neuroactive substances can induce unselective effects of the re-

spective substance on other receptors. The effect of octopamine (up to 1 mM) seemed

quite consistent and might exclude an unselective action of octopamine. Furthermore,

Parker (1996) pointed out, that he used relatively high concentrations of octopamine

(1 mM) in a preparation of the locust metathoracic ganglion and argued, that the ganglion

sheath limits the entry of drugs (the ganglion was only softened with an enzyme and not
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desheathed), and that specific uptake and degradation mechanisms reduce the concentra-

tion in the neuropil. Furthermore, he cites a result described in Stevenson (1989), where

bath application of 100 mM octopamine was needed to mimic the effect of 1 µM released

into the neuropil. Thus, in the light of these observations and the rather distinct effect

of octopamine on the tonic depolarization, the used concentrations of octopamine seem

justified.

Serotonin

Serotonin showed two opposing effects on the tonic depolarization, as it increased the

tonic depolarization amplitude in four of six experiments, and decreased it in two ex-

periments (see Fig. 3.14). Multiple effects of serotonin were also described in other in-

vertebrate systems, where the excitatory or inhibitory effect depended for example on

the concentration, rate and time course of exposure or even on the social status of the

animal (Teshiba et al. 2001; Yeh et al. 1996). The opposing effect of serotonin in the ex-

periments shown in this thesis depended less likely on the applied concentration. At

least no correlation between the concentration in the superfusate and the sign of the ef-

fect was observed, as concentrations of 1 mM and 4 mM were able to induce opposing

effects in different experiments. Teshiba et al. (2001) argued that an inhibitory effect of

serotonin on the lateral giant neurons in the crayfish occurs when high concentrations

are reached rapidly, and contrarily, excitatory effects of serotonin are observed when the

final concentration (low or high) is reached gradually. The conditions in my experiments

were very similar, concerning perfusion rate, the volume in the split bath configuration

and so forth. Therefore the different effects of serotonin on flexor MNs might not be due

to these ’external’ conditions. Nevertheless, slight differences in diffusion of serotonin

through the neuropil might have influenced how fast and concentrated serotonin could

exert its effect. Teshiba et al. (2001) suggested furthermore, that serotonin might activate

two parallel intracellular pathways, which in turn are activated either by different levels

of a common initial second messenger and/or different receptor types (see also Bear 1995;

Gatellier et al. 2004). Thus, the opposing effects of serotonin in stick insect MNs could

also be due to an activation of parallel second messenger pathways. Depending on the

strength of activation of either second messenger pathway, different effects of serotonin
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could be induced.

Le Bon-Jego et al. (2004) performed experiments analyzing the effect of serotonin on the

resistance reflex in crayfish legs. They found a variability in the serotonin induced re-

sponses in intracellular recorded depressor MNs. On the one hand, they try to explain

these differences with inter-individual sources, as either all recorded depressor MNs in

one animal displayed an increase of the resistance reflex or none were affected. Edwards

et al. (2002) also described differences of serotonin induced effects depending on the so-

cial status of the animal. On the other hand Le Bon-Jego et al. (2004) suggest an inter-

motoneuron variability. An inter-individual dependence of the serotonin induced effect

on the tonic depolarization in flexor MNs in stick insects is less likely, as social status in

stick insects is probably irrelevant. The inter-motoneuron variability might be excluded

as an interpretation, as all recorded flexor MNs expressed tonic depolarization at rest-

ing membrane potential (with few exceptions where the tonic depolarization was only

visible during injection of constant hyperpolarizing current). In the above mentioned pa-

per, the authors found a serotonin induced tonic depolarization in depressor MNs, the

function of which is thought to bring the membrane potential closer to spike threshold

and causing an increased firing rate. Although a similar function of the tonic depolari-

zation in stick insects is suggested (Ludwar 2003; Ludwar et al. 2005b; Gabriel 2005), the

mechanisms underlying the tonic depolarization seem only partially comparable. First,

in contrast to the effect on crayfish MNs, serotonin alone induced no tonic depolarization

in stick insect MNs. Second, the serotonin induced tonic depolarization in crayfish de-

pressor MNs was accompanied by an increase in input resistance, which is in contrast

to the properties of the tonic depolarization in stick insect flexor MNs. The differences

in input resistance can only be compared with reservations, as it is not known how the

input resistance in flexor MNs is influenced during a stepping sequence in the presence

of serotonin.

Co-transmission and neuromodulation

A role for metabotropic ACh receptors in mediating the tonic depolarization was pro-

posed due to experiments using pilocarpine (previous studies) and the decrease induced
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by atropine (this thesis, chapter 3.2.1). But also octopamine and serotonin seemed to in-

fluence the tonic depolarization, although the effect of serotonin was ambiguous. This

raised the question, how can the tonic depolarization be influenced by several neuroac-

tive substances? Up to now, nothing is known about co-transmission in stick insects,

but speculation about such a mechanism causing the observed effect on the tonic de-

polarization might be possible. Co-transmission was shown for a range of vertebrate

and invertebrate systems (Lundberg 1996; Nusbaum et al. 2001; Burnstock 2004). In most

cases, classical neurotransmitters are co-released with neuropeptides, ATP and other sub-

stances (e.g., octopamine and proctolin in the locust oviduct or GABA and proctolin in

the crab STG (Lange 2002; Blitz and Nusbaum 1999)). In general, little is known about

co-transmission in insects. At least there are some studies of co-localization of several

neuroactive substances in the locust brain (e.g., Würden and Homberg 1995; Homberg

et al. 1999), although that is not necessarily proof for co-transmission. Co-transmission

can occur through several mechanisms. First, two transmitters can be released from all

presynaptic terminals of one neuron, and all postsynaptic sites of another neuron can con-

tain receptors for both. Second, a presynaptic neuron releases two transmitters, and each

postsynaptic terminal expresses receptors for only one transmitter. Third, the presynaptic

neuron releases co-transmitters, but only one transmitter is released at different processes

(e.g., in Marder et al. (1995); Marder (1999)). One of these mechanisms of co-transmission

might lead to the different, and in some cases opposing effects of neuroactive substances

in stick insect MNs.

The tonic depolarization in flexor MNs might be induced by an action of ACh and octo-

pamine, although that does not necessarily imply a co-release from the same presynaptic

neuron. Another possibility includes the release of these neuroactive substances from

different presynaptic neurons, acting directly or indirectly on the flexor MNs.

As for co-transmission, neuromodulation in stick insects has not been described up to

now. In the cockroach, octopamine as well as serotonin are known to have neuromod-

ulatory properties, for example in the fast coxal depressor MN, where they reversibly

suppressed the ACh induced responses (Butt and Pitman 2002). The authors suggest

that the analyzed amines (including dopamine) share a common mechanism, in relation
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either to receptors or second messenger pathways. Although this implies an opposing

effect of ACh and the amines, it is at least an indication for a possible interaction of these

neuroactive substances in insect MNs.

In the light of previous studies on different invertebrates, the observed effects of octo-

pamine and serotonin on the tonic depolarization described in my thesis do not exclude

each other. Octopamine and serotonin can have antagonistic, but also agonistic effects.

Antagonistic action relates to aggression behavior in crustaceans, where serotonin in-

creases the willingness to fight and octopamine causes a submissive posture (Harris-

Warrick and Kravitz 1984; Harris-Warrick 1985). Similar effects of octopamine and sero-

tonin were found in Drosophila, where both stimulated locomotion and grooming (Yell-

man et al. 1997), and in crayfish both substances increased the excitability of lateral giant

interneurons to sensory stimulation (Araki et al. 2005). Furthermore, there is some evi-

dence that serotonin might affect octopaminergic receptors, as it had affinity to a cloned

cockroach octopamine receptor (Bischof and Enan 2004). Thus it seems possible, that

both substances can have a similar, that is, an enhancing effect on the tonic depolari-

zation amplitude in stick insect MNs (shown for octopamine in 91 %, and for serotonin

in 66 % of the experiments). The increase induced by both substances might be explained

for example by an action of serotonin on octopaminergic receptors (see discussion above).

But the opposing effect of serotonin in 33 % of the experiments should also be taken into

account for interpretation. The opposing effect of serotonin might be induced by a state

dependent action.

In summary, a modulatory influence of octopamine and/or serotonin on the tonic de-

polarization seems possible, because it only increased or decreased the amplitude and

exerted no obvious effect on membrane potential. This is in contrast to the effect of pi-

locarpine, which elicited rhythmic membrane potential modulations on top of a tonic

depolarization. Octopamine and/or serotonin may modulate ACh receptors, as a possi-

ble role for mAChRs was indicated by the action of pilocarpine and the decrease by the

antagonist atropine.

Further experiments are needed to clarify and to confirm the results obtained in this the-

sis, especially the role of octopamine and serotonin in mediating the tonic depolarization
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should be investigated in more detail, for example by simultaneous superfusion of both

substances to see whether the effect is additive.

4.2.2 Second messenger pathways

In several sets of experiments, neuroactive substances that interact with different second

messenger pathways were analyzed to investigate which second messengers might be

involved in mediating the tonic depolarization (chapter 3.3). A participation of second

messengers was indicated by quite long repolarization time constants, lasting up to sev-

eral seconds (chapter 3.1.1, Fig. 3.6).

Calcium

Calcium plays an important role in several intracellular signaling cascades and is known

to influence a range of cellular functions. It acts over a wide dynamic range, exerting

effects in microseconds or even hours (Berridge et al. 2003). The influence of calcium on

the tonic depolarization was tested by using BAPTA in the electrode electrolyte solution

to chelate intracellular calcium. The amplitude of the tonic depolarization decreased in

these experiments by 8 % after 5 minutes (Fig. 3.18 B). This appears to be a rather small

effect, taking into account that BAPTA is a fast calcium chelator. The concentration of

200 mM should be high enough, as even 100 mM BAPTA were sufficient to decrease

Ca2+-induced responses for example in the horseshoe crab or the lamprey (Frank and

Fein 1991; Di Prisco et al. 2000). It is not known, whether the recording site was near

the location where synaptic inputs generate the tonic depolarization in flexor MNs, thus

diffusion of BAPTA might have not reached these locations. At least the experiments in-

dicate that part of the tonic depolarization amplitude might be due to calcium dependent

pathways.

cAMP

Evidence that the tonic depolarization is mediated by a second messenger pathway that

involves cAMP comes from the experiments shown in chapter 3.3.2.1, where the superfu-

sion with the membrane permeable cAMP analog 8-Br-cAMP led to an increase of the to-

nic depolarization amplitude of about 56 % (chapter 3.3.2.1, Fig. 3.20 B). A role for cAMP
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in mediating the tonic depolarization is supported by the results of preliminary experi-

ments using H-89, an inhibitor of PKA (shown in Walther and Zittlau 1998 and Wenzel

et al. 2002), that reduced the tonic depolarization amplitude (Figs. 3.24, 3.22). Thus, a

pathway involving cAMP/PKA might mediate the tonic depolarization. As discussed

in chapter 4.2.1, mAChRs are possible candidates for mediating the tonic depolarization

in flexor MNs (indicating that ACh might act as transmitter), and furthermore an effect

of octopamine and serotonin was shown. All these transmitters can exert their effects

by activating a second messenger pathway that involves cAMP, for example octopamine

receptors were shown to activate AC and increase cAMP concentration, leading to the

activation of PKA in the wandering spider Cupiennius salei (Widmer et al. 2005). Eleva-

tion of cAMP was also shown to be induced by serotonergic receptors (Parker 1995), and

finally, Wenzel et al. (2002) could show a positive coupling of mAChRs to AC, leading to

an increased cAMP level in the grasshopper brain.

However, the preliminary results using the AC inhibitor SQ22,536 (see e.g., Heinrich

et al. 2001, Araki et al. 2005) are controversial, as they show an increase in the tonic de-

polarization amplitude (Fig. 3.24, chapter 3.3.2.2). Assuming that SQ22,536 inhibits AC,

and that the tonic depolarization amplitude is mediated via an AC/cAMP pathway, this

should have led to a decrease in amplitude (Fig. 3.21). The opposing effect of SQ22,536

on the tonic depolarization is hard to explain. In the literature, SQ22,536 is solely referred

to as an inhibitor of AC, thus an activation by this neuroactive substance in flexor MNs

seems unlikely. A possible explanation for the observed effect is that SQ22,536 inhibits

AC in a presynaptic neuron that usually has an inhibitory effect on the tonic depolari-

zation which involves AC (Fig. 4.2). An explanation, why SQ22,536 exerts an effect on

AC in some other neuron but is ineffective with AC in flexor MNs might be, that a cAMP

pathway is not involved in mediating an effect in these neurons. Further experiments are

needed to see whether these preliminary effects of SQ22,536 will be confirmed.

IP3/DAG

A possible involvement of an IP3-pathway was investigated by inhibiting phospholipase

C (PLC) with either neomycin or U-73122 (Fig. 3.26). The effectiveness of these substances

on neurons was shown for example in the grasshopper brain and for a central snail neu-
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ron (Wenzel et al. 2002; Lin et al. 2005). With the assumption that the tonic depolarization

might be mediated by a second messenger pathway that involves IP3, the expected ef-

fect on the tonic depolarization in flexor MNs was a decrease in amplitude (chapter 3.3.3,

Fig. 3.26). But both substances induced an opposing effect. Neomycin increased the to-

nic depolarization amplitude by up to 84 % (Fig. 3.28 B), whereas U-73122 induced an

increase by up to 58 % (Fig. 3.30). The enhancement of the tonic depolarization seems to

be explainable, if one assumes that in some other neuron an IP3-pathway is inhibited by

neomycin and U-73122 acting on PLC, which usually exerts an inhibitory effect on flexor

MNs. This inhibitory input might be reduced to some extent and could have led to the

observed increase (Fig. 4.2, see also discussion in chapter 4.2.3).

Interaction of second messenger pathways

The results showed, that participation of more than one second messenger pathway is

possible. This is not remarkable, as it is known for example from STG neurons, that

one neuroactive substance can induce activation of different second messengers and ion

channels (Selverston et al. 1998). Furthermore, several neuroactive substances, as well as

second messenger pathways can interact. Thus, a role for more than one second messen-

ger in mediating the tonic depolarization seems possible, this might be an interaction of

second messenger pathways in one cell or by separate action in different cells.

4.2.3 Direct or indirect influences?

For none of the investigated neuroactive substances (transmitters or second messengers)

it is known, whether they act directly on the flexor MNs (Fig. 4.2). Some of the obtained

effects rather point to an indirect influence, but which cells might be possible candidates

for mediating such an indirect effect? In the locust, some intersegmental interneurons

may play a role in transmitting coordinating information, or at least information from

sense organs such as the fCO, from one segment to a neighbouring one. These neurons

make direct synaptic connections with MNs and interneurons in the adjacent segment

(Laurent and Burrows 1989a;b). Büschges (1989) showed that spiking interneurons re-

spond to stimulation of the fCO in the stick insect and Brunn and Dean (1994) recorded

from metathoracic interneurons that code for position and movement of joints of the
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Figure 4.2: Schematic diagram of possible pathways influencing the tonic depolarization. Motoneurons

might be affected directly by the drugs or via pre-motor interneurons. Correspondingly, an intersegmental

signal could affect MNs directly and/or via pre-motor interneurons. Dashed line indicates segmental border.

mesothoracic segment. A transmission of the tonic depolarization by graded transmit-

ter release seems possible, as spiking neurons may not be able to achieve a high enough

spike frequency to sustain such a tonic signal. Graded synaptic transmission allows the

required, increased transmission rate, as it was shown for photoreceptors and interneu-

rons of the fly compound eye (Laughlin et al. 1998).

At the segmental level, nonspiking interneurons are known to process sensory signals

from the middle leg in local reflex pathways (Büschges 1995; Stein et al. 2006). Interest-

ingly, spike frequency alteration of front leg extensor MNs were reflected in membrane

potential oscillation in an identified nonspiking interneuron (E4) in the mesothorax (Lud-

war et al. 2005b). This nonspiking interneuron showed also a tonic depolarization in

membrane potential throughout the stepping sequence.

The connectivity of nonspiking interneurons indicates that they may serve the integra-

tion of local and intersegmental signals and play a role in transmitting informations to

MNs, as it was shown for the locust (Laurent and Burrows 1989a;b). One problem might

be, that Wildman et al. (2002) describe that the main transmitter in locust nonspiking

interneurons seems to be GABA. But the authors discuss that some neurons may use

an excitatory transmitter, as both excitatory and inhibitory effects of these neurons are

known. An interesting effect of GABA was shown in some STG neurons of the crab, Can-
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cer borealis. In this system GABA can have both, an excitatory and inhibitory effect on

these neurons by activating permeabilities for different ions (Swensen et al. 2000). Fur-

thermore, Nagayama (2002) showed that nonspiking local interneurons in the crayfish

are either depolarized or hyperpolarized by serotonin, with amplitudes of 10 to 30 mV.

These interneurons might contribute to the level of tonic excitation of the described uro-

pod MNs. Thus, at least from arthropod studies several alternatives can be derived on if

and how nonspiking neurons might contribute to the tonic depolarization.

Tonic signals may also originate from descending brain neurons, which were shown to

be tonically active during initiation and generation of locomotor activity in locusts (Kien

1990).

4.3 Rhythmic modulation

In addition to the tonic depolarization, the membrane potential of mesothoracic flexor

MNs was phasically modulated, which was usually coupled to front leg steps.

Contralateral flexor MNs

Phasic membrane potential changes in contralateral flexor MNs showed three distinct

types of coupling to front leg stepping (N=16/24, Fig. 3.7). In most experiments (50 %),

flexor MNs exhibited a phasic modulation pattern that showed maximum activity with

the onset of the front leg stance phase. In 17 % of the recordings, contralateral flexor MNs

reached the maximum depolarization after the end of front leg stance phase, whereas in

33 % the observed phasic modulation was not coupled to front leg stepping at all.

Ipsilateral flexor MNs

Although the phasic membrane potential modulation in ipsilateral flexor MNs during

front leg stepping was already described by Ludwar et al. (2005b), the variability found

for contralateral flexor MNs led to the assumption, that this might be similar in ipsila-

teral flexors. In the previous study, a rather small sample size was analyzed and only

two different types of phasic modulation were found for ipsilateral flexor MNs. A pop-

ulation of five ipsilateral flexor MNs was investigated and revealed, that in four flexors
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a maximum depolarization occurred after stance phase, and the fifth flexor showed no

step coupled phasic modulation.

In this thesis, 27 ipsilateral flexor MNs were recorded and revealed three distinct types

of phasic modulation in membrane potential (Fig. 3.8), that were already described for

contralateral flexor MNs. In 52 % of the recordings, ipsilateral flexor MNs showed a

maximum depolarization after the end of front leg stance phase, whereas in 15 % the

maximum activity was reached during stance. As in contralateral flexor MNs, no ob-

vious coupling of the phasic modulation to front leg stepping was observed in 33 % of

the recordings. A difference between the types of phasic modulation in ipsi- and contra-

lateral flexor MNs was found only in the reversed frequency of percental occurrence of

the other two types of modulation. The finding of three instead of two different types is

not inconsistent with the data from Ludwar et al. (2005b), rather the higher sample size

analyzed in my thesis brought up coupling patterns that do not often occur.

Amplitude of the phasic modulation

In general, the observed phasic modulation amplitude was rather small (around 3 mV)

compared to amplitude estimated from single-leg preparations with intact middle legs

(Schmidt et al. 2001; Gabriel 2005), where usually amplitudes of up to 17 mV were ob-

served. This might be also due to missing sensory input (see above), which sculpted the

activity pattern in the above mentioned preparations.

Coordinated walking pattern

In my thesis, the most prominent type (50 %) of phasic modulation in contralateral flexor

MNs showed maximum activity during front leg stance phase, this pattern of activity

was also described for ipsilateral extensor MNs (see Ludwar et al. 2005b). In 52 % of the

recordings, ipsilateral flexor MNs did not show a maximum depolarization until the end

of front leg stance phase. This indicates, that in most cases (~50 %) an activity pattern of

ipsilateral and contralateral flexor MNs occurred that excluded in-phase coupled activ-

ity, which resembles alternating activity. Furthermore, 17 % of contralateral flexor MNs

did not show a maximum depolarization until the end of front leg stance phase, while

15 % of ipsilateral flexor MNs showed maximum activity during front leg stance. Thus,
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although this pattern implies antagonistic movements of both middle legs in presumably

67 % of the experiments, a co-activation of flexor MNs that innervate the left and right

leg appears possible. Nevertheless, simultaneous intracellular recordings from ipsi- and

contralateral flexor MNs would be necessary to confirm these interpretations. Ludwar

et al. (2005a;b) already described that the patterning of extra- and intracellular recorded

activity in mesothoracic MNs is inconsistent with a functional inter-leg coordination dur-

ing walking. Up to now it is not known how MNs are coordinated between the ipsi- and

contralateral side. Possible mechanisms include an influence by sensory organs, as for ex-

ample in active stick insects, fCO (femoral chordotonal organ) stimulation in one middle

leg induces transitions from flexor to extensor activity and vice versa in the contralate-

ral leg (Stein et al. 2006). Local sensory information was excluded in my preparation,

as it was completely deafferented. Thus, any sensory information that might serve as

coordinating information between both hemi-ganglia was absent and might explain the

variability in the observed phasic modulation patterns (see also below).

In general, sensory signals are important for intra-leg coordination, which was shown in

behavioral and amputation studies on stick insects (see e.g., Bässler and Büschges 1998,

Büschges 2005). Campaniform sensilla (CS) are known to influence the local control of

leg movements in stick insects and cockroaches (Ridgel et al. 2000; Akay et al. 2004; 2007).

Intersegmental influences of CS were recently described by Borgmann (2006). She showed

in her thesis, that stimulation of middle leg CS, which signal cuticular strain as induced

by load on the leg, induced an increase in front leg depressor MNs, and a decrease in

front leg levator MN activity during front leg stepping. Similar results were obtained for

protractor (decreased) and retractor (increased) MN activity.

In addition, the fCO is known to influence inter-leg coordination. Stimulation of the fCO

mimics flexion (e.g., of the front leg), which occurs at the start of the front leg stance

phase during walking. Signals from the fCO did not affect motoneuronal activity in

neighboring legs in resting animals. In contrast, fCO stimulation in active animals in-

duced increased activity in mesothoracic flexor MNs, as well as in retractor MNs, but

decreased the activity in protractor MNs (Ludwar et al. 2005a). During front leg step-

ping, mesothoracic retractor and protractor MNs showed a comparable activity pattern
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as during stimulation of the fCO of the front leg. The observed increase in flexor MN

activity during fCO stimulation was opposing. Thus, at least part of the sensory infor-

mation needed for a coordinated walking pattern is due to the activity of the fCO, but

additional information from other sensory sources or the integration of intersegmental

and local information might be necessary to ensure a functional coordination. The ob-

served influence of the fCO seemed to be more specific for information transfer from the

front to the middle leg, as no comparable effect was found in hind leg MNs by stimula-

tion of the middle leg fCO (Ludwar 2003).

A difference in gating of intra- or intersegmental information might be another explana-

tion for the observed variations in the phasic modulation in flexor MNs, which implicates

an inconsistent coordination pattern. It might depend on the activity state of the animal if

local or intersegmental sensory information is sufficient to influence MNs. A recent study

by Stein et al. (2006) revealed that picrotoxin, a blocker of GABA-ergic inhibition, led to

responses of tibial MNs of all legs after stimulation of the middle leg fCO. Furthermore,

in the presence of picrotoxin, stimulation of the fCO elicited tibial forces that would lead

to an alternating activity of ipsi- and contralateral legs (Stein et al. 2006). In the same

study, nonspiking interneurons that are part of the pre-motor network, were shown to

integrate sensory signals from local proprioceptors (fCO) and those of other legs.

Evidence that phasic modulation of mesothoracic MNs is not due to activity of prothora-

cic CPGs comes from experiments in which the latter were activated by superfusion with

pilocarpine. Activity in mesothoracic MNs was not coupled to rhythmic activity in pro-

thoracic pro- and retractor MNs (Ludwar et al. 2005a). Further evidence that interseg-

mental coordination does not depend on central coupling between legs comes from ex-

periments, in which five legs of a stick insect walked on one treadmill, while one leg

walked on another. The treadmills differed in velocity, but all six legs were still coordi-

nated and adapted to the respective treadmill velocity (Foth and Bässler 1985a;b).

One could argue, that the different types of phasic modulation relate to the different

MNs within the flexor MN pool (slow, fast, semi-fast), but this is not very likely for the

following reasons: The mean resting membrane potential of the three flexor MNs types

differs (fast MNs: −67 mV, semi-fast: −51 mV, slow MNs: −62 mV; mean values in the
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single middle-leg preparation analyzed by Schmidt et al. 2001; Gabriel 2005). But flexor

MNs receive common synaptic drive during walking and are recruited differently due to

the differences in resting membrane potential (Gabriel 2005; Gabriel and Büschges 2007).

Furthermore, my results showed no clear correlation of the three types of phasic modu-

lation to the different MN types. In general, the identification of a flexor MN occurred by

a one-to-one correlation of spikes in the extracellular ncr recording, which were induced

by intracellular current injection. A clear discrimination of the three flexor MN types

is more difficult in the intersegmental preparation, because no reference to movements

of the leg due to current injection as in the middle leg preparation was possible. But at

least the resting membrane potential and the action potential size in the nerve record-

ing allowed the distinction of fast and slow MNs. An additional argument comes from

Ludwar (2003), who already described two types of modulation patterns for ipsilateral

mesothoracic depressor MNs, that were not specific for fast or slow MNs from the same

MN pool.

4.4 Neuronal activity in lesioned animals

In several sets of experiments the influence of lesions on the neuronal activity in stick

insects was investigated. These experiments could contribute to clarify, e.g., the influ-

ence of the brain on neuronal activity in neck connectives and especially on the tonic

depolarization.

4.4.1 Influence of lesions on the tonic depolarization

The experiments performed in this thesis showed, that removal of the brain had a pro-

nounced effect on the tonic depolarization amplitude in flexor MNs. The tonic depolari-

zation amplitude decreased by approximately 60 % immediately after brain removal

(chapter 3.4.1, Figs. 3.34, 3.35). This suggests, that the mechanisms leading to the tonic

depolarization in mesothoracic flexor MNs during front leg stepping include descending

signals from the brain. The tonic depolarization was not completely absent after brain

removal, so maybe the SEG also contributes to the tonic depolarization amplitude (see
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below). The projections from descending brain neurons run through or terminate in the

SEG (Heinrich 2002; Gal and Libersat 2006). Thus, it is possible that the tonic depolari-

zation is influenced indirectly by descending brain neurons that shape activity of neurons

in the SEG, which in turn descend to thoracic ganglia.

The reduced amplitude does not imply that the tonic depolarization is generated by de-

scending information from the brain, a feedback mechanism might be disturbed that is

processed in the brain that in turn influences the tonic depolarization. My suggestion

for such a feedback mechanism is, that descending neurons from the SEG are involved

in the generation of the tonic depolarization, thus information from the SEG descends

to the thoracic MNs. Then ascending neurons in the thoracic ganglion send information

about the initiated tonic depolarization to the brain, which in turn is able and possibly

even necessary to modulate (for example by increasing the amplitude) the tonic depolari-

zation.

Removal of the brain clearly reduces signals from head sense organs, for example from

the antennae or eyes. Can this reduction of sensory information be related to the de-

crease in tonic depolarization amplitude? The answer might be no, because the tonic

depolarization seems not to rely mainly on sensory information, but is generated by cen-

tral mechanisms. For example in this thesis, local sensory information was excluded by

deafferentation. Nevertheless, if one argues that information of sense organs from the

front leg might contribute to the tonic depolarization, then there is the argument that the

stepping front leg usually did not exert less force, as shown by the EMG activity and

treadmill velocity in figure 3.32. In five of seven analyzed experiments, the maximum

treadmill velocity was unchanged in ’intact’ and brainless animals. Thus, the transmit-

ted information from sense organs should be in the same range. Furthermore, Kien (1983)

described that brainless locusts show changes in walking speed, which could also not be

related to loss in sensory input.

Despite the decrease in tonic depolarization amplitude, brain removal led to an increased

front leg stepping activity (Figs. 3.32, 3.33). This is in agreement with previous studies.

Roeder (1937) described that mantids were rather ’restless’ after brain removal, and lo-

comotion was long-lasting after stimulation. Such an enhanced ability to produce motor
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activity was also reported for decerebrated locusts, cockroaches and stick insects (Kien

1983; Ridgel and Ritzmann 2005; Graham 1979a;b). Furthermore, decapitated insects

(brain and SEG removed) did not walk well and initiated no spontaneous locomotor

activity. It was suggested, that the brain has a rather inhibitory influence on locomotor

activity, whereas the SEG expresses excitatory influences (Roeder 1937; Kien 1983; Ridgel

and Ritzmann 2005; Graham 1979a;b).

It might appear contradictory, that removal of the brain leads to a decrease in tonic de-

polarization amplitude, that is, less responsive MNs, and to an increase in locomotor

activity at the same time. It was suggested, that the tonic depolarization in stick insect

MNs reflects a state of arousal of the animal (this thesis and Ludwar et al. 2005b; Gabriel

2005). The initial hypothesis was, that during an increased stepping activity after brain

removal the tonic depolarization might be increased, or at least no change in amplitude

should occur in comparison to ’intact’ animals. In my experiments, brainless animals

seemed to be in a state of increased responsiveness concerning their willingness to per-

form stepping sequences. I hypothesize, that the decrease in the tonic depolarization

amplitude and the increase in stepping activity after brain removal are based on two

independent influences. One involves the removal of an inhibitory influence on the ini-

tiation of locomotor activity from the brain. Behavioral studies on stick insects indicated

a role for the SEG in initiation and termination of a stepping sequence, as well as on the

walking direction (Bässler et al. 1985). Thus, the SEG was able to display its excitatory

influence after brain removal. The other influence involves the removal of a suggested

excitatory, descending influence on the tonic depolarization. It is possible, that neurons

in the brain generate the tonic depolarization or contribute to it in the ’intact’ animal (see

also discussion 4.2.3), these neurons would be absent due to brain removal. Thus, quite

different sets of descending neurons could be responsible for the observed effects on the

tonic depolarization and the willingness to perform stepping sequences.

These different sets of descending neurons would therefore serve for an explanation of

the apparent contradiction. Gronenberg and Strausfeld (1990) described three major

functional classes of descending neurons: ’trigger’, ’driver’ and ’modulator’ neurons.

’Trigger’ neurons initiate or release motor activity, and respond to distinctive stimulus
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combinations that dictate their tuning. Such trigger neurons are for example found in the

locust or crickets: the descending contralateral movement detector (DCMD) in locusts

triggers the extension of hind legs resulting in a jump (e.g., in O’shea and Rowell 1976;

Heitler and Burrows 1977), and in crickets, a descending interneuron called CNW seems

to be involved in the initiation of walking (Zorovic and Hedwig 2007). The ’driver’ class

of descending neurons contributes to a distributed network, which generates and main-

tains motor activity (Gronenberg and Strausfeld 1990). The activity of these descend-

ing neurons is similar to motor activity and accompanies it. Pheromone-sensitive mul-

timodal descending neurons start and maintain wingbeat oscillations in moths, which

play an important role in courtship (Kanzaki and Shibuya 1986). Both, wing flapping fre-

quency and descending neurons show the same dose-response relationship and interest-

ingly, both outlast the pheromone stimulus by several seconds. ’Modulator’ descending

neurons can modulate ongoing motor activity, they change for example the strength, di-

rectional or temporal properties of the motor output (Gronenberg and Strausfeld 1990).

The tritocerebral commisure giant (TCG) in the locust is an example for a ’modulator’

descending neuron. TCG feeds back integrated information about air currents perceived

by sensory organs (antennae and head hairs) and contributes to flight stabilization (Ba-

con and Möhl 1983). For example wing depressor MN activity can be advanced or reset

by TCG activity, the role of TCG might be that of a "course-deviation-detector" (Möhl

and Bacon 1983). In summary, the hypothesized descending interneuron(s) that might be

responsible for or generate(s) the tonic depolarization in leg MNs, could act as a ’driver’

or ’modulator’ neuron.

Another possibility to decrease the tonic depolarization amplitude is that some gating

dependent mechanism is hindered which in the ’intact’ animal leads to the generation

of the tonic depolarization. Similar suggestions derive from experiments with locusts

and crickets, where the influence of descending neurons might be limited by a gating

mechanism that is differently expressed during separate behavioral contexts (Steeves and

Pearson 1982; Staudacher and Schildberger 1998). State dependent changes in response

behavior are also known from the resistance reflex in stick insects (Bässler 1993; Driesang

and Büschges 1996; Stein et al. 2006).
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Preliminary results support the idea of a descending influence on the tonic depolari-

zation. Transection of an ipsilateral connective between the pro- and mesothoracic gan-

glion or one neck connective during front leg stepping decreased the tonic depolarization

amplitude by up to 68 % (Figs. 3.36, 3.37). Furthermore, signals that contribute to the to-

nic depolarization seem to be at least partially redundant in both connectives, because the

tonic depolarization was not completely abolished. Similar results were obtained from

locust flight, where transection of one connective between the meso- and metathoracic

ganglion was not sufficient to abolish flight capability (Ronacher et al. 1988).

4.4.2 Correlation of neuronal and stepping activity

Borgmann (2006) showed in her thesis, that information about activity of front leg step-

ping is transferred in thoracic connectives. She used the rectified and smoothed connec-

tive recordings to analyze the information transfer during front leg stepping, because

single action potentials were not of interest but the course of the mean neuronal activity.

In these rectified and smoothed recordings she found that the neuronal activity increased

tonically and was phasically modulated. In general, the activity increase was stronger

and was correlated to front leg stepping velocity in the connective between the pro- and

mesothoracic ganglion (Borgmann 2006). Activity in the connectives is thus represen-

tative of walking activity of the front leg. Furthermore, Borgmann (2006) showed that

the tonic increase in neuronal activity could partially be related to the activity of pattern

generating networks, whereas the phasic modulation seemed to be shaped by sensory

signals of the front leg. In my thesis, I analyzed the neuronal activity in neck connec-

tives during front leg stepping to see whether activity of the front leg is represented in a

similar way in these connectives.

Smoothed recordings surely could mask distinct signals, depending on the chosen time

constant (see chapter 2.6). Thus it is possible, that an apparently tonic signal occurs, but

the underlying activity was phasic activity with a rather high cycle period. Furthermore,

action potentials that occur at the same time sum up in the extracellular recording and

mask relevant signals, but nevertheless, the results in my thesis as well as in experiments

from Borgmann (2006) were very consistent and showed a similar recurring behavior to
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comparable stimuli.

Activity in neck connectives in ’intact’ animals

Extracellular recordings from neck connectives revealed an increased neuronal activity

during front leg stepping (chapter 3.4.2, Fig. 3.38). The activity increase showed two

components, a tonic and a phasic component, which was also described for connectives

between thoracic ganglia by Borgmann (2006, see above).

There might be no causal relationship between the tonic activity increase in connectives

and the intracellular recorded tonic depolarization, but it is another example for the oc-

currence of a tonic increase associated with stepping activity. That supports the idea, that

the tonic increase might be a general phenomenon (this thesis and Büschges et al. 2004;

Ludwar et al. 2005b; Gabriel 2005; Borgmann 2006).

I could show in my experiments, that the tonic activity increase (measured in the recti-

fied and smoothed recording) was similar in ipsi- and contralateral neck connectives and

reached values up to 69 %. The simultaneous increase in neuronal activity might suggest

that ascending and descending signals are transferred in parallel in both connectives. A

correlation of front leg velocity and the activity increase was observed in both connec-

tives, that means a higher mean velocity of the front leg was associated with a stronger

neuronal activity (integral under the rectified and smoothed extracellular recording for

each step cycle) in the connectives. It was analyzed, if this correlation is more obvious for

ipsilateral neck connectives by comparison of the regression coefficients. The assumption

was, that this correlation might be stronger in the connective ipsilateral to the stepping

leg. This was only partially supported by a comparison of the regression coefficients,

which revealed a significant higher correlation in the ipsilateral neck connective (in two

of four experiments). Thus, the correlation between stepping velocity and neuronal activ-

ity seems to be equally represented in both connectives. Due to the equal representation,

information about the actual speed might be at least also provided to the contralateral

leg, which in turn might serve the adaptation of legs to an equal stepping velocity.



148 4 DISCUSSION

Activity in neck connectives in brainless animals

In brainless animals, the activity in neck connectives increased during front leg stepping,

but analysis of the tonic activity increase revealed that it was less pronounced compared

to ’intact’ animals. The tonic activity increase ranged between 18.0 and 47.1 %. This sug-

gests, that part of the increase observed during stepping in the ’intact’ animals is due

to information descending from both head ganglia. The increase observed in brainless

animals might be therefore attributed to information descending from the SEG and/or

information ascending from the thoracic ganglia. Although a correlation of stepping ve-

locity of the front leg and neuronal activity was also observed in brainless animals, this

correlation was stronger in ’intact’ animals (the regression coefficients had significant

higher values). Thus, during comparable velocities less activity was observed in brain-

less animals. This supports the idea, that the general activity increase in neuronal activity

was less pronounced in brainless animals (see above).

The results further indicate, that the influence of the brain might not be necessary for the

animal to induce different stepping velocities, because a correlation between neuronal

activity and stepping velocity was still present in brainless animals (see also discussion

below). A less prominent role for the brain in influencing velocity is supported by sug-

gestions derived from studies on lesioned cockroaches (Ridgel and Ritzmann 2005). The

authors suggest that the SEG in cockroaches could provide tonic signals that control

stepping speed. These tonic signals might be generated by tonically firing neurons in

the SEG, which could not be detected in the rectified and smoothed connective recording

analyzed in my experiments, as it is the sum of a presumably rather high amount of neu-

rons (around 2000 axons in each connective (Leslie 1973)). Ridgel and Ritzmann (2005)

also stated that the SEG may have an important role in maintaining intersegmental co-

ordination and that the latter could be a secondary effect of speed control. That only the

SEG plays a role in the control of velocity and not the brain is somewhat challenged by

findings in the cricket, where descending brain interneurons might control direction and

velocity and many descending neurons act in concert to enable a variable motor output

(Böhm and Schildberger 1992; Staudacher and Schildberger 1998; Heinrich 2002; Zorovic

and Hedwig 2007).
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Concerning the single leg, influences on stepping velocity can be achieved by changing

the cycle period or the step length; a combination of both seems also possible. In stick in-

sects, it seems to be primarily the decrease in cycle period that increases stepping velocity

(Wendler 1964; Graham 1972; Gabriel and Büschges 2007). In general, the descending sig-

nals rather determine the strength of muscle contractions (Shik et al. 1966) and do only

indirectly control the cycle period, which suggests that an afferent feedback from the

limb might be responsible for changes in cycle period (Orlovsky et al. 1999). Descending

tonic excitation might be responsible for generating changes in stepping velocity in stick

insects, and recent studies showed with intracellular recordings from MNs, that exten-

sors and flexors are not affected in a similar way during changes in stepping velocity

(Gabriel 2005; Gabriel and Büschges 2007).

4.5 Conclusions

My results show that not only ipsilateral mesothoracic MNs but also mesothoracic flexor

MNs contralateral to the stepping front leg generate a tonic depolarization of the mem-

brane. The results are in line with previous conclusions, which suggested that the tonic

depolarization might be a general phenomenon in stick insect neurons involved in lo-

comotion (Ludwar 2003; Ludwar et al. 2005b; Gabriel 2005). The shown properties of

the tonic depolarization suggest that it is based on a nonselective cation conductance or

a mixed inward and outward current through different channels, and that the tonic de-

polarization might represent a state of arousal that is generated with activation of the an-

imal. The tonic depolarization is sculpted by phasic membrane potential changes, which

are variably coupled to front leg stepping.

Pharmacological experiments indicate a role for acetylcholine in mediating the tonic de-

polarization via metabotropic receptors. Further experiments show an additional influ-

ence of octopamine and serotonin, which suggests a role for co-transmission or neuro-

modulation. My results indicate an influence of several second messenger pathways,

including an involvement of calcium, cAMP and phospholipase C.

In my experiments, removal of the brain (supraesophageal ganglion) decreased the tonic

depolarization, indicating a role of the brain in either the generation or maintenance of
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the tonic depolarization.

Although the question "Which are the involved transmitters or receptors?" could be par-

tially answered, my results raise new questions, for example if the analyzed substances

act directly on flexor MNs or not? Furthermore, the finding that second messenger are

involved in mediating the tonic depolarization has to be analyzed in more detail, as some

of the observed effects are contradicting and point to an indirect influence. Experiments

need furthermore to clarify the origin of the tonic depolarization, because a role of other

sources than the brain cannot be excluded.
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Appendix

A Effect of Riluzole on the tonic depolarization

Riluzole is known to have a variety of effects in vertebrate systems, for example, it was

shown to cause a rapid and sustained plateau increase in calcium (Ca2+) in human os-

teosarcoma cells (Jan et al. 2002). In the mentioned study it was suggested, that the in-

crease in intracellular Ca2+ was caused by stimulation of extracellular Ca2+-influx and

intracellular Ca2+-release from the endoplasmatic reticulum. At low concentrations (0.5

to 20 µM), riluzole seems to selectively block the persistent sodium current (Negro et al.

2002; Urbani and Belluzzi 2000).

Using riluzole, it was investigated if a persistent sodium current might contribute to the

tonic depolarization. The effect of riluzole on the tonic depolarization in mesothoracic

flexor MNs was tested in four animals. The concentrations of riluzole ranged from 25

to 150 µM. Riluzole induced in three of four experiments an increase in the amplitude

of the tonic depolarization. Figure I shows a representative experiment. Under control

condition in saline the tonic depolarization in an ipsilateral flexor MN was 2 mV (7 steps,

Fig. I(a)). Superfusion of 100 µM riluzole increased the tonic depolarization amplitude to

2.5 mV during a sequence of 5 steps (Fig. I(b)).

The time course for another experiment is shown in figure II(a). The amplitude of the to-

nic depolarization is plotted against time. In saline (control, #), the tonic depolarization
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Figure I: Riluzole increases the tonic depolarization in ipsilateral mesothoracic flexor MNs during front

leg stepping. A: The tonic depolarization in saline was 2.0 mV during a stepping sequence of the front leg

(7 steps). B: During superfusion of 100 µM riluzole the amplitude of the tonic depolarization during a

sequence of 5 steps increased (6 min, 2.5 mV).
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amplitude was 2.8 ±0.1 mV and increased during superfusion of 150 µM riluzole ( ) to

3.8 mV (6 min). The coefficient of correlation for the linear fit in this experiment was sig-

nificant at the 5 % level. The analysis for all experiments is shown in figure II(b)). Differ-

ent concentrations of riluzole were used: 25 µM (N=1), 100 µM (N=1) and 150 µM (N=2).

In three experiments riluzole increased the tonic depolarization amplitude by 25 % (range

7 to 43 %), in one experiment a decrease by 75 % during superfusion of 150 µM riluzole

was observed (data calculated from linear fits). One flexor MN was successfully recorded

during wash and showed a partial recovery of the tonic depolarization amplitude.

In summary, riluzole had an opposing effect on the tonic depolarization in flexor MNs.

In three of four experiments, riluzole increased the tonic depolarization amplitude by up

to 43 %, in the fourth experiment a decrease by 75 % was observed.
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Figure II: Tonic depolarization amplitude over time during riluzole superfusion. A: Detailed analysis for

one experiment. Control in saline: 2.8 ±0.1 mV (n=2). The amplitude of the tonic depolarization increased

to 3.8 mV after 6 min superfusion of 150 µM riluzole. Data points are fitted by linear regression (n=5), p <

0.5. B: Time course for all experiments. Riluzole increased the tonic depolarization in three of four animals.

In the fourth experiment riluzole had the opposite effect (�). The concentrations are labeled as follows:

25 µM �; 100 µM N; and 150 µM  , �. Only linear fits are shown for ∆V during riluzole superfusion.

Same symbol is one experiment. Solid line: level of significance 5 %, dashed lines: no significance.
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B Spike frequency adaptation

A fundamental property of many classes of neurons, e.g. MNs, is the exhibition of a

time-dependent decrease in action potential (AP) discharge rate, which is termed spike

frequency adaptation (SFA). A function of SFA in MNs might be to increase the speed of

force generation in muscle fibres which can be sustained with lower frequencies (Stein

and Parmiggiani 1979).

The mechanism that generates SFA could be slow activation of outward currents, a re-

duction in the availability of fast inactivating sodium channels or a summation of the

slow afterhyperpolarization. A calcium-dependent potassium current causes SFA in e.g.

MNs in the lamprey locomotor network, whereas SFA is thought to play a critical role in

burst termination (el Manira et al. 1994). Stick insect MNs also show SFA (Schmidt et al.

2001). How SFA is generated in stick insect neurons is not known. In preliminary experi-

ments the effect of verapamil on SFA in flexor MNs was analyzed. The phenylalkylamine

verapamil is known to inhibit K+-induced increase of intracellular calcium, for example

in the leech (Dierkes et al. 2004), and Benquet et al. (1999) showed that verapamil acts as

a non-selective blocker of voltage activated calcium channel currents in cockroach brain

neurones. Thus, if SFA in stick insect bases on an increased calcium entry during repet-

itive firing, that causes greater activation of Ca2+-dependent K+-channels which in turn

leads to greater interspike intervals, verapamil might reduce SFA.

The effect of verapamil on SFA was analyzed in three experiments, one of which is shown

in figure III. In saline, a flexor MN showed SFA during injection of a depolarizing current

(2 s, Fig. III(a)), which was decreased during superfusion of verapamil (Fig. III(b)). After

several minutes wash in saline, SFA increased slightly (Fig. III(c)).

The adaptation of the instantaneous spike frequency over time for one flexor MN is

shown in figure IV. The initial frequency in this flexor MN was on average approxi-

mately 40 Hz on onset of a depolarizing current pulse (2 nA, Fig. IV(a),(b)). The spike

frequency reached a steady state about 500 ms after stimulus onset, whereas the instan-

taneous spike frequency was reduced by 58 % when reaching the steady state (17 Hz).

During superfusion of 200 µM verapamil the initial frequency was increased to approx-

imately 55 Hz on onset of a depolarizing current pulse (2 nA, Fig. IV(c),(d)). The steady
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Figure III: Spike frequency adaptation in a flexor MN. DCC recordings of repetitive firing elicited by

current injection (2 nA, 2 s duration) in A: control, B: during superfusion of 200 µM verapamil and C:

during wash. Spike frequency was increased after 3 min superfusion of verapamil (B).
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state was reached about 600 ms after stimulus onset. The frequency during the steady

state was reduced to approximately 22 Hz (60 %). Compared to control values in saline,

the initial frequency in this flexor MN was increased by 27 % in the presence of vera-

pamil. Furthermore, also the steady state was increased by 29 % compared to control in

saline.

In summary, the initial spike frequency in flexor MNs was increased by 27 % to 146 %

during superfusion of verapamil (N=3). The steady state of the instantaneous spike fre-

quency was increased up to 60 % (38 ±19 %) compared to control in saline. A delay in

reaching a steady state was observed in the presence of verapamil in all three experi-

ments (range 13 % to 89 %). Thus verapamil seems to decrease SFA, indicating that SFA

in flexor MNs might include the activation of Ca2+-dependent K+-channels.
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Figure IV: Plots of spike frequency over time in a flexor MN. A,B: Control in saline. A: SFA during

one current pulse (2 nA). B: Overlay of frequencies during five current pulses. A flexor MN showed

an initial instantaneous spike frequency of approximately 40 Hz during a depolarizing current pulse. The

instantaneous spike frequency was reduced by ~58 % when reaching the steady state after 500 ms (~17 Hz).

C,D:: SFA during superfusion of 200 µM verapamil. C: SFA during one current pulse (2 nA) and D:

Overlay of frequencies during five current pulses. The initial instantaneous spike frequency increased on

average to approximately 55 Hz during a depolarizing current pulse. A steady state of the instantaneous

spike frequency was reached after ~600 ms (22 Hz).
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fCO Femoral chordotonal organ
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