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1 Introduction

The electronic structure is a crucial property of every solid. In semiconductors and conven-
tional metals one has a very well established understanding in terms of electronic energy
bands and can describe and predict material properties in quite a unique way. In ma-
terials with open d shells things become more complicated because the bands are very
flat and electrons tend to localize. The theories working well for conventional materials
break down. In general these unconventional materials are denoted as correlated electron
systems, because one electron strongly influences the other ones.
In correlated materials a variety of interesting phenomena has been found. The most

prominent examples are probably the high-temperature superconductivity and the colossal-
magneto resistance [1].
In this study we are concerned with the electronic structure of titanates and single-

layered manganites. They are prototypical examples where the conventional description
in terms of energy bands breaks down: a metallic ground state is predicted for undoped
titanates RTiO3 (R-rare earth) and undoped (single-layered) manganites (e.g. LaSrMnO4)
but they are both found to be insulating. We will investigate their electronic structure
by means of different optical techniques. In addition we are interested in the coupling of
electronic degrees of freedom to additional degrees of freedom like the spin or the lattice.
A competition of those is a generic property of a correlated electron system.
Optical spectroscopy has been proven to be a powerful tool for investigating the elec-

tronic structure. One measures excitations from the ground state of the system to the
excited states. In a non-correlated system the optical spectra represent the folding of the
unoccupied and occupied density of states. In correlated materials, electrons strongly influ-
ence each other which makes this folding procedure not uniquely applicable. Additionally
optical spectroscopy can probe the coupling of the electronic structure to different degrees
of freedom [1]. One can for example observe changes in the optical response at several
eV (∼ 12000 K) when the system changes its magnetic state on a meV scale (∼ 12 K).
The first (major) project in this thesis deals with the investigation of these spin-controlled
bands [2], which are studied as function of temperature and polarization.
In a second project we investigated excitations below the optical gap by means of Raman

spectroscopy1. Here, the goal is to get information on the nature of the underlying ground
state, which has been discussed controversially in the literature [3–16].
This thesis is organized as follows: In the second chapter we will give a brief overview on

correlated electron systems and introduce different models suitable for their description,
e.g. the Hubbard model and extensions of it. In the second part we will discuss which

1in collaboration with C. Ulrich and B. Keimer from the Max-Planck Institute in Stuttgart
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1 Introduction

excitations are expected in a correlated material and how they can be detected by optical
spectroscopies. In the third chapter we will present the experimental techniques used in
this work: Fourier-transform spectroscopy, Raman spectroscopy and ellipsometry. Since
the ellipsometer has been put into operation by my colleague C. Hilgers and myself we
will focus on that topic. We are interested in properties down to liquid-He temperatures.
Therefore, it was the major experimental issue to get the system running down to these
temperatures. In chapter four the single-layered manganites are introduced, i.e. the system
La1−xSr1+xMnO4 for x = 0.0, 0.13, and 0.5. We present the results from Fourier-transform
spectroscopy and ellipsometry and give a detailed analysis of the electronic structure of
this system in terms of multiplets. We focus on the undoped compound with x = 0.0 since
this is the starting point for a deeper understanding of the whole series. In chapter five we
first give the status of the field in the titanates, especially YTiO3, SmTiO3, and LaTiO3,
which have been investigated in this thesis. We proceed with the results from Raman
spectroscopy, where we studied the orbital excitations on LaTiO3 and YTiO3. The last
part of this chapter deals with the electronic structure of the three titanates mentioned
above. The excitation spectrum is measured by spectroscopic ellipsometry. Here, we
concentrate on YTiO3 because we find evidence for an excitonic resonance (Mott-Hubbard
exciton) in this compound. Again we will give an assignment of the peaks observed in
terms of multiplets. We end with a final conclusion and some additional information, like
sample preparation, etc. in the appendix.
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2 Electronic structure of correlated
systems and its observation in
optics

Optical spectroscopy can cover a wide energy range with high resolution. In this thesis
we use different techniques, in particular Raman, Fourier, and ellipsometric spectroscopy
to investigate strongly correlated electron systems. More specifically, we will focus on
the electronic structure of these systems and its relation to the magnetic, orbital and
vibrational degrees of freedom.
This chapter is organized as follows: we will start with the onsite properties of a

transition-metal ion. In the next section we will discuss different models applied to corre-
lated materials, in particular the Hubbard model and different spin-orbital models. The
chapter will end with a brief overview of the excitations in a correlated material and their
observation by optical spectroscopy.

2.1 Onsite properties - lifting the orbital degeneracy
The knowledge of the onsite orbital properties is crucial for a proper understanding of a
solid. Since we are dealing with transition-metal oxides, it is often sufficient to analyze the
properties of the magnetic ions, in the case that the rare-earth ions as well as the oxygen
ions have closed shells. Consider for example the compound YTiO3 with Y3+ = [Kr]4d0,
Ti3+ = [Ar]3d1, and O2− = [He]2s26p6 or LaSrMnO4 with La3+ = [Xe]5d0, Sr2+ = [Kr]5s0,
Mn3+ = [Ar]3d4, and O2−=[He]2s26p6, where the magnetic ions with open shells are Ti3+

and Mn3+. Moreover, the onsite orbital energy scale is often comparable to the intersite
exchange interactions which gives rise to a competition. Additionally the orbital properties
can be regarded as a kind of preselection for the formation of an electronic band: the band
will have the same symmetry as the orbitals forming this band. Orbitals are therefore the
basic building blocks of different bands, e.g. the "valence" and "conduction" band. There
are three effects which can lift the onsite orbital degeneracy (exchange mechanisms will be
discussed below): steric effects, the Jahn-Teller effect, and spin-orbit coupling. All of these
effects can be described by crystal-field theory which will be discussed briefly.
In the perovskites, steric effects are caused by a mismatch of ionic sizes. This will lead to

distortions and rotations (away from a cubic arrangement). The magnetic ion is surrounded
by an electric field produced by the charges of the ligands which lifts the degeneracy of
certain energy levels.

3



2 Electronic structure of correlated systems and its observation in optics

Figure 2.1: For an octahedral crystal field which can be produced for example by a ligand-oxygen
cage the energy levels of a d1 system are split into t2g ≡ (dxy, dxz, dyz) and eg ≡ (dx2−y2 , d3z2−r2)
levels. The energy difference between these levels is 10Dq.

In addition to simple steric effects a possible reason for the lifting of the degeneracy can
be found in the Jahn-Teller effect. The theorem of Jahn and Teller states that "any non-
linear molecular system in a degenerate electronic state will be unstable and will undergo
distortion to form a system of lower symmetry and lower energy thereby removing the
degeneracy" [17]. Presuming Hund’s rules are not violated, a cubic d3, d5, and d8 will not
show a Jahn-Teller distortion, because for an e.g. d5 system all d orbitals are occupied
and thus no orbital degeneracy is present (the same is true for d3 and d8). If the Jahn-
Teller effect is the dominating mechanism a strong coupling to the lattice is expected, i.e. a
mixing of the orbital and lattice degrees of freedom.
A further source for lifting the degeneracy is the spin-orbit coupling. However, for RTiO3

and (La,Sr)2MnO4 this is a rather small correction of the order of ∼ 50 meV [8, 18]. One
could say, that the orbital moment is almost quenched. The natural limit for the lifting of
degeneracy is the Kramers degeneracy.

Crystal-field theory

In the so called crystal-field theory [19–21] the local properties of magnetic ions can be
properly treated. The starting point, of course, is the central magnetic ion which is placed
in the potential of all surrounding ligands. One may assume that the charge distribution on
each ligand is point-like, e.g. for the case of YTiO3 the Ti ion with charge 3+ will be placed
in the origin. It will be surrounded by the O ions with charge 2−, the Y ions with charge
3+, and additional Ti ions. In order to obtain the Madelung potential at the origin, the
summation of all Coulomb contributions is carried out here up to infinity, half in real, half
in reciprocal space (Ewald summation)1. These calculations can be found in the appendix

1The parameters of the Madelung potential have been calculated with a program written by M. Haverkort
[8].
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2.1 Onsite properties - lifting the orbital degeneracy

for the materials discussed later on. Whether the lattice distortions are caused by steric
effects or the Jahn-Teller effect can not be unraveled using crystal-field theory, since the
observed crystal structure has to be used as an input. If necessary, one can treat spin-orbit
coupling as a further perturbation on top of the electrostatic effects. As discussed above
we will omit spin-orbit coupling due to its comparably small magnitude.
As an example, consider a d1 electron in a cubic crystal field as indicated in Fig. 2.1. This

cubic crystal field can e.g. be produced by an oxygen octahedron as found in the perovskite
structure. The five d orbitals are split into t2g and eg orbitals. The energy difference is
commonly denoted by 10Dq. The lobes of the t2g orbitals point towards the median line
between two O ions, while those of the dx2−y2 (eg) orbital for example point directly onto
the oxygen ions. Therefore, the t2g orbitals are lower in energy because electrons can
better avoid each other. For crystals with lower symmetries the degeneracy will be further
reduced. For LaSrMnO4 one finds tetragonal symmetry, while for RTiO3 (R - rare earth)
orthorhombic symmetry has been reported [7, 22, 23]. In the latter case the degeneracy of
all d levels will be lifted. The corresponding level diagram will be shown in chapters 4 and
5.

Multiplets

So far, our discussion is only correct as long as only one electron is put into the crystal-
field levels. For more than one electron, one has to consider the whole multiplet structure.
Because of the antisymmetry of the fermionic wave function, the two-electron wavefunction
is not simply a product of two single-electron wavefunctions. This is taken into account by
using the Slater determinants. The new basis functions in the cubic case are superpositions
of eg and t2g single-electron functions (configuration mixing) [20]. For a d2 system there are
45 basis functions (10 possibilities for the first electron times 9 possibilities for the second
electron - divided by two in order to tackle double counting), 120 basis states for d3, 210
for a d4 system, and so on. In addition to the crystal-field parameter Dq for the t2g − eg
splitting in the cubic case, one has to take the Slater integrals F 0, F 2, and F 4 into account
[1, 19]:

F k = e2

∫ ∞
0

r2
1 dr1

∫ ∞
0

r2
2 dr2

rk<
rk+1
>

R3d(r1)2R3d(r2)2 (2.1)

where R3d represents the radial wavefunction and r< (r>) the minimum (maximum) value
of r1 and r2. This set of parameters describes the repulsion energy between two electrons
which are placed on one ion. The definition of the full crystal-field Hamiltonian can be
found e.g. in Refs. [18–20]. Alternatively to the Slater integrals F 0, F 2, and F 4, one can
use either another set of Slater integrals F0, F2, and F4 or the Racah parameters A, B, and
C. The conversion rules are given in Tab. 2.1. Starting from the full multiplet, as presented
above, there exist several simplifications which are commonly used in the literature. This
is an important issue when comparing for instance values of Hubbard U from different
publications. Different schemes lead to different values of U . Here a brief overview:
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2 Electronic structure of correlated systems and its observation in optics

Table 2.1: Conversion of different multiplet schemes [18–20].

Slater integrals F0 = F 0, F2 = 1
49
F 2, F4 = 1

441
F 4

Racah parameters A = F 0 − 49
441
F 4, B = 1

49
F 2 − 5

441
F 4, C = 35

441
F 4

Simple scheme U simple = F 0, JsimpleH = 1
14

(F 2 + F 4)

Kanamori scheme UKanamori = F 0 + 4
49
F 2 + 36

441
F 4, JKanamoriH = 2.5

49
F 2 + 22.5

441
F 4

Multiplet average Uav = F 0 − 14
441

(F 2 + F 4)

• Simple scheme - In the simple scheme two electrons always repel each other with
an energy U simple regardless in which orbital they reside. If the spins of these two
electrons are parallel one gains an energy JsimpleH . The advantage of the simple scheme
is that one can estimate the energy of a many-electron state just by counting the pairs.
Every pair gets an energy U simple in case of antiparallel spins and U simple − JsimpleH

in case of parallel spins. Consider for example four electrons in a S = 2 state.
One finds six pairs with parallel alignment, which results in an energy of 6U simple −
6JsimpleH (for Dq = 0). The parameters of the simple scheme can be related to the
Slater integrals as indicated in Tab. 2.1. The disadvantage of the simple scheme
is that both multiplet energies and multiplicities differ sometimes significantly from
the full multiplet calculation (see Ref. [18]). However, we will use the simple scheme
occasionally in order to get rough estimates of multiplet energies.

• Kanamori scheme - The Kanamori scheme extends the simple scheme in the following
way: the parameter UKanamori measures the electron repulsion of electrons in the same
orbital, while the repulsion is reduced to UKanamori − 2JKanamoriH if electrons reside
in different orbitals (regardless their spin). UKanamori and JKanamoriH have of course
a different meaning when comparing to the simple scheme. Their relation to the
Slater integrals can be read from Tab. 2.1. Consider again the above example of four
electrons in an S = 2 state (for Dq = 0): the energy reads 6UKanamori− 18JKanamoriH .
The Kanamori scheme conserves more of the multiplet character than the simple
scheme.

• Multiplet average - This is not a scheme. We just wanted to note that the value of
Hubbard U is often given as an average Uav over all multiplets. The relation of Uav

to the Slater integrals is also given in Tab. 2.1.
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2.1 Onsite properties - lifting the orbital degeneracy

Figure 2.2: Sketch of the σ-bonding dx2−y2 (left) and the π-bonding dxy orbitals (right). For
the anti-bonding configuration the phases of all oxygens have to be inverted.

Hybridization

A further improvement of the crystal-field theory is to allow for hopping from the central
transition-metal ion to its ligands. In titanates and manganites these ligands are oxygens,
i.e. one has to consider p orbitals. Depending on the overlap, there will be a sizable admix-
ture of the p wavefunctions. This is commonly denoted by α1|dn〉+α2|dn+1〉L states where
|dn+1〉L is a ligand-hole state. However, the symmetry of the original |dn〉 wavefunctions
will not be changed. This can be seen in Fig. 2.2(left) for the case of the |d1〉 = dx2−y2

orbital. This orbital can only hybridize with combinations of the ligands having the same
symmetry, i.e. an orbital of the form |d2〉L = 1

2
(−p1,x + p3,x + p2,y − p4,y). The overlap

between all kinds of orbitals is tabulated in Refs. [24, 25]. The energy levels obtained
from a purely ionic picture will change when hybridization is switched on. As a rule of
thumb the t2g-eg splitting is increased by a factor of two as shown for the titanates in
Refs. [9, 26, 27]. This is quite obvious because the eg orbitals point with their lobes to-
wards the oxygen neighbors and will thus be more affected by hybridization than the t2g
orbitals. In chapter 5, we will show some results from configuration-interaction calcula-
tions, taking the hybridization to neighboring oxygen ions properly into account. For the
manganites discussed in chapter 4 we carried out crystal-field calculations and used the
crystal-field parameters in an effective manner. We did not use the results from an Ewald
summation (see above) but assumed that the effective crystal-field parameters contain a
covalent part. As mentioned above, this procedure is justified since the hybridization does
not change the symmetry of the wavefunction considered. Due to the different screening
the value of Hubbard U will depend on whether covalency is included or not. We will
discuss this issue in more detail later on.
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2 Electronic structure of correlated systems and its observation in optics

2.2 Intersite properties

2.2.1 Single-band Hubbard model

In the description of transition metals with open d shells, band theory (LDA2) fails in
describing the electronic properties. At half filling these materials are metals within the
LDA, although they are found to be insulators in experiments. The failure of LDA stems
from the simplification to a single-electron picture. This approximation works pretty well
in ordinary semiconductors, but is not justified in the case of correlated systems, where
electrons strongly influence each other. The inclusion of the onsite electron-electron in-
teraction can repair the discrepancy between theory and experiment. The most simple
approach is the single-band Hubbard model [28]. The system Hamiltonian can be written
as follows:

H = −t
∑
〈i,j〉,σ

(c†iσcjσ + h.c.) + U
∑
i

ni,↑ni,↓ (2.2)

Here, niσ ≡ c†iσciσ is the number operator and c†iσ (ciσ) creates (annihilates) an electron on
lattice site i with an a spin σ =↑, ↓. The summation is carried out over nearest neighbors
〈i, j〉. The first term of the Hamiltonian means that an electron can decrease its kinetic
energy by changing its position with an energy gain t. The second term in the Hamiltonian
represents the energy of a double occupancy which is denoted by U . At half filling the
movement of an electron will of the one hand gain the energy t but on the other hand the
electron is hindered by the repulsion U . The singly occupied sites will form the so-called
lower Hubbard band (LHB), while the doubly occupied sites form the upper Hubbard band
(UHB). The band width W = 2zt is determined by the size of the hopping t and the co-
ordination number z. In the limit U/t → 0, the system is metallic because the LHB and
UHB overlap and are half filled. In the other limit U/t → ∞ it is an insulator because
one finds only one electron per site. The energy cost for a double occupancy is very high,
making the electrons immobile. This means LHB and UHB are far away from each other.
Interestingly, one can drive a system from a metallic to an insulating state by changing
the size of U/t. Regarding the magnetic properties, the insulating state (t � U) of the
single-band Hubbard model favors antiferromagnetic arrangement of neighboring spins,
because in this case electrons can gain the antiferromagnetic superexchange J = 4t2/U ,
while in the ferromagnetic case the virtual hopping is blocked by Pauli’s exclusion prin-
ciple. The antiferromagnetic arrangement favored in the Hubbard model is described by
the Goodenough-Kanamori-Anderson rule for 180◦-superexchange. Formally the Hubbard
model can be mapped on an effective spin model, which is known as the Heisenberg model

H = J
∑
〈i,j〉

Si ·Sj (2.3)

2Local Density Approximation.
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2.2 Intersite properties

Within this model, low-energy excitations (∼ meV) such as spin waves can be described3.
When simulating real materials with open d shells in more detail, the one-band Hubbard

model may give erroneous results because "one-band" corresponds to a single orbital,
strictly speaking to an s orbital. The model parameters t and U are of effective nature
since real hopping paths have to be integrated out. Excited orbital states on each site
are omitted within the single orbital picture and interesting phenomena which arise from
degenerate orbitals are not captured. However, the character of the charge excitation gap
can be reproduced quite well for lighter transition metals (Ti, V) but not for the heavier
ones (Co, Ni, Cu) because the oxygen ligands are not included explicitly.

2.2.2 Mott-Hubbard and charge-transfer insulators
One extension to the single-band Hubbard model is the pd model [30]. It includes one or
several oxygen orbital(s) in addition to the transition-metal orbital. This model is widely
used for the description of the CuO2 planes of high-Tc cuprate systems. For our purpose,
the extension leads to a classification scheme for strongly correlated systems, known as the
Zaanen-Sawatzky-Allen scheme [29]. In addition to the parameters t and U , the charge
transfer energy ∆ is taken into account: ∆ = εp−εd where εd is the energy of the transition-
metal d orbital and εp the energy of the oxygen p orbital. Two kinds of excitations are now
possible: one electron can be transferred between two transition metals, or one electron can
be transferred from an oxygen ion to a transition metal. Depending on which excitation is
lower in energy, i.e. if U or ∆ is larger, the insulator is called Mott-Hubbard insulator or
charge-transfer insulator. The gap formed in this insulating state for an n-electron system
is given by the many-body groundstate En and the ionic states given by En+1 and En−1:

Egap = En+1 + En−1 − 2En (2.4)

As an example we will calculate Egap for a Mott-insulating chain of N equal sites filled
with n electrons. The one-electron energy is given by E0. Thus the ground-state energy
at one site is En = nE0 + n(n + 1)/2 U . The term n(n + 1)/2 U counts the onsite
correlations for every electron pair. If one electron is added to one site, one obtains
En+1 = (n + 1)E0 + (n + 1)(n + 2)/2 U . If one electron is removed one finds En−1 =
(n− 1)E0 + (n− 1)n/2 U . Substituting this into Eq. 2.4, the gap results in Egap = U .
We will now discuss the ZSA scheme in more detail, see Fig. 2.3. Apart from the

parameters U and ∆, one has to take a finite band width of the d and p bands into account.
Roughly speaking, the diagram is split into two regions: for ∆ < U the electronic structure
is dominated by the oxygen band (charge-transfer type) and for ∆ > U by the upper 3d
band (UHB). In the first case (panel b) the gap is set by ∆, in the latter case (panel
d) by U . Including a finite bandwidth an insulating state will not be formed under all
circumstances but a metal can exist either in the charge-transfer or in the Mott-Hubbard
region: if the band width of the d band Wd is larger than the onsite repulsion U , a d

3Transformation between Eqs. 2.2 and 2.3 [1]:
S+
i = c†i,↑ci,↓, S

−
i = c†i,↓ci,↑, and S

z
i = 1

2 (ni↑ − ni↓)
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2 Electronic structure of correlated systems and its observation in optics

2p

3d

U < Wd < ∆
Εgap = 0

2p

Wd < U < ∆
Εgap = U - Wd

2p

Wpd < ∆ < U 

Egap = ∆ − Wpd

3d

3d

3d

3d

3d

3d

3d

Wd

∆

U

Wd

∆ < Wpd < U

Egap = 0

∆

U

c)  d metal

2p

UHB

LHB

d)  MH insulator

∆

U

a)  p metal

∆

U

Wpd

b)  CT insulator

Wpd

EF

Figure 2.3: Zaanen-Sawatzky-Allen (ZSA) scheme. The interplay of the Coulomb repulsion U ,
the charge-transfer gap ∆, and the bandwidth W gives rise to different kinds of metallic and
insulating states. Note, that Wpd = 1

2(Wp + Wd). The top panel is the original diagram from
Ref. [29], while the cartoon illustrates the four main parts in a band-like picture. However in the
cartoon representation the hybridization is neglected in order to be more illustrative.
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2.2 Intersite properties

metal is formed in the Mott region because LHB and UHB overlap (panel c). A similar
argumentation leads to a p metal in the charge-transfer region (panel a). Additionally
there are some intermediate regions in the ZSA scheme. For their discussion we refer to
the original paper.

2.2.3 Multi-band Hubbard models

A generalization of the pd model is the multi-orbital Hubbard model, which allows for
different (degenerate) orbitals on each site. The degenerate case is relevant for quasi-
cubic systems because here the orbital degree of freedom is not fully quenched, contrary
to systems with e.g. large crystal-field splitting [1, 31, 32]. The system Hamilton reads as

H =
∑
〈i,j〉
σ,α,α′

tαα
′

ij (c†iσαcjσα′ + h.c.) +
∑
i,α,α′

σ,σ′

(1− δαα′δσσ′)Uαα′niσαniσ′α′

+
∑
〈i,j〉

α,α′,σ,σ′

V αα′

ij niσαnjσ′α′ −
∑
i,α,α′

σ,σ′

Jαα
′

H Siα ·Siα′(1− δαα′) (2.5)

here spin operators are defined as:

S+
iα = Sxiα + iSyiα = c†iα↑ciα↓

S−iα = Sxiα − iS
y
iα = c†αi↓ciα↑

Sziα =
1

2
(niα↑ − niα↓) (2.6)

Again niσ ≡ c†iσαciσα is the number operator, c†iσα (cjσα) creates (annihilates) an electron
in the orbital α on site i with spin σ =↑, ↓. The hopping tαα′ij is now depending on the
orbitals and the lattice sites, and also Uαα′ depends on the orbitals (this corresponds
to the full multiplet, see Sect. 2.1). Additionally a nearest-neighbor interaction V αα′

ij is
now included in order to capture charge-ordering phenomena. This interaction will be of
relevance for the formation of excitons which will be discussed later on. Furthermore an
intrasite exchange, the Hund’s-rule coupling, Jαα′H is also incorporated. Electrons in two
different orbitals with parallel spins are lower in energy than those with antiparallel spins
due to Pauli’s exclusion principle.
Due to the large number of possible states, these models require tremendous computa-

tional effort. The continually growing computer capabilities made it possible to study this
kind of models for real systems exploiting e.g. LDA+DMFT4 [10, 11, 33, 34].
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2 Electronic structure of correlated systems and its observation in optics

b)

a)
0000 −−−− 2222t2 / U

0000 −−−− 2222t2 / U −−−− 2222t2 / U −−−− 2222t2 / (U - JH)

Figure 2.4: (a) For a degenerate spin-orbital model spins tend to align antiferromagnetically,
while (b) in a two-fold orbital degenerate case they are aligned ferromagnetically. The figure is
reproduced from Ref. [35].

2.2.4 Spin-orbital models

Kugel and Khomskii [31, 35] suggested that the degenerate Hubbard model can be mapped
onto an effective spin-orbital model which is formally identical to the Heisenberg model.
Within this model, orbital-ordering phenomena can be understood. Furthermore, this
model shows that the orbital degeneracy of the onsite levels can be lifted by the superex-
change interaction (in addition to steric effects, the Jahn-Teller effect, or spin-orbit cou-
pling, see Sect. 2.1). This mechanism has been discussed earlier (1966) by Roth [36]. First,
we will illustrate the interaction for two degenerate, perpendicular orbitals on each lattice
site filled with one electron. We will make the following assumptions to simplify Eq. 2.5:

tαα
′

ij = tδαα′ , U
αα′ = U simple = U, Jαα

′

H = JsimpleH = JH , V
αα′

ij = 0

The hopping between the two different orbitals is zero and between the same orbitals it has
the magnitude t. For all orbitals the onsite repulsion and Hund’s-rule coupling are assumed
to be equal. The nearest-neighbor coupling V is neglected for a moment. The resulting
spin-orbital Hamiltonian (in its general case known as Kugel-Khomskii Hamiltonian) reads
in the strong coupling limit (t� U ) in second-order perturbation theory as [1, 31, 32, 35]:

H =
2t2

U
(1− JH

U
)
∑
〈i,j〉

Si ·Sj +
2t2

U
(1 +

JH
U

)
∑
〈i,j〉

Ti ·Tj

+
2t2

U
(1 +

JH
U

)
∑
〈i,j〉

(Si ·Sj)(Ti ·Tj) (2.7)

4Dynamical mean-field theory.
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2.2 Intersite properties

Above the so called pseudo-spin operators Ti in addition to the spin operators have been
used. More explicitly:

T+
i = c†iα′↑ciα↑ + c†iα′↓ciα↓

T−i = c†iα↑ciα′↑ + c†iα↓ciα′↓

T zi =
1

2
(niα′↑ + niα′↓ − niα↑ − niα↓) (2.8)

For example T+
i corresponds to an orbital flip on site i without flipping the spin. Formally

the pseudo spin can be treated in the same manner as ordinary spins. But one has to keep
in mind that this is a rough estimate since the orbitals do not have rotational invariance like
the spins, i.e. there are no Goldstone modes in the orbital sector. The pseudo-spin spectrum
is always gapped [37]. The different spin-orbital states are sketched in Fig. 2.4. For non-
degenerate orbitals, the orbital sector is quenched and the system can lower its energy by
an antiferromagnetic arrangement according to the Goodenough-Kanamori-Anderson rule.
In contrast, for the two-fold degenerate orbitals, a ferromagnetic orientation is favored
by Hund’s-rule coupling. In that sense the Kugel-Khomskii model can be regarded as a
generalization of the Goodenough-Kanamori-Anderson rule.
For realistic spin-orbital models, one has to take different hopping paths into account.

The Hamiltonians become rather complicated already for the cubic case. Therefore we
refer to Refs. [1, 31, 35, 38] for further reading. It has been shown that purely electronic
interaction can stabilize orbital ordering in a cubic crystal with one electron or hole in
a degenerate eg orbital. The pattern consists of alternating dx2−z2/dy2−z2 orbitals. This
pattern is indeed realized in the compound KCuF3 [31].
Finally, we discuss the difference between eg and t2g electrons on one particular bond for

the spin-orbital part of the above Hamiltonian. For simplicity we neglect Hund’s coupling
JH , i.e. the above Hamiltonian for one bond reads:

H12 =
2t2

U
(S1 ·S2)(T1 ·T2) (2.9)

(i) degenerate eg orbitals - The eg doublet in cubic symmetry is non-magnetic because it
consist out of the spherical harmonics Yl,m of the form Y2,0 (d3z2−r2) and 1/

√
2(Y2,2 +Y2,−2)

(dx2−y2). This means that one cannot form singlet or triplet states out of the orbital
channel. In the pseudo-spin language, one identifies eg orbitals with T = 1/2 with T z =
1/2 ≡ d3z2−r2 and T z = −1/2 ≡ dx2−y2 . We consider a bond along the z direction as shown
in Fig. 2.5. There is finite hopping between two T z = 1/2 orbitals (see Fig. 2.5(a)), zero
hopping between T z = 1/2 and T z = −1/2 (see Fig. 2.5(b)), and small hopping between
T z = −1/2 orbitals (see Fig. 2.5(c))5. One can directly write down the pseudo-spin part
of Eq. 2.9 for this bond. It is of (T z1 + 1/2) (T z2 + 1/2) type, considering only exchange
of type (a) in Fig. 2.5. The possibilities for the spin-orbital arrangement are fixed: the
ferroorbital configuration combines with the spin singlet (see Fig. 2.5(a) and Fig. 2.4(b)).

5The effective hopping via an oxygen ion it is zero.
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2 Electronic structure of correlated systems and its observation in optics

j+z

j

(c)(a) (b)
Figure 2.5: A bond of two eg electrons along the z direction. Note that the overlap in (b) is
zero. Figure taken from Ref. [39].

If one finds however the orbital configuration (b) of Fig. 2.5 the pseudo-spin part reads
(T z1 − 1/2) (T z2 + 1/2) + (T z1 + 1/2) (T z2 − 1/2) which can only be combined with the spin-
triplet channel. One can show that the latter state becomes lower in energy for finite JH
[31, 40] (see Fig. 2.4(b)).
(ii) degenerate t2g orbitals - In contrast to the eg, orbitals the t2g orbitals are mag-

netic. We again consider a bond in the z direction. The t2g orbitals refer to T = 1 with
T z = 1 ≡ dxz, T z = 0 ≡ dxy, and T z = −1 ≡ dyz. For the bond along z the T z = 0
state has not to be considered because it can not take part in the hopping, as long as one
takes the effective hopping via on oxygen into account. There are now no restrictions to
the orbital channel and the Heisenberg-like form of the pseudo-spin Hamiltonian suggests
the formation of orbital singlet and triplet states. Because the overall wavefunction has
to be antisymmetric, the orbital triplet has to be combined with a spin singlet and vice
versa. Interestingly, both states gain the same energy [37, 42]. Being a pure spin triplet,
a ferromagnet will fluctuate in the orbital sector. A finite JH will unbalance the ferromag-
netic and antiferromagnetic contributions. The formation of this kind of orbital dimers
has been suggested by G. Khaliullin for (quasi-)cubic systems. It is called in the literature
orbital liquid [4, 37, 41–44]. For cubic symmetry, the orbital liquid is sketched in Fig. 2.6.
The formation of dimers along all three cubic directions offers the possibility to lower the
total energy. Two of three t2g orbitals are involved in the superexchange in one particu-
lar direction. Since one t2g orbital contributes in two of three directions, a fixed orbital
pattern will not satisfy all bonds, but the kinetic energy can be lowered simultaneously in
all three directions by orbital fluctuations (see Fig. 2.6). These fluctuations give rise to
an isotropic orbital structure, which leads to an isotropic magnetic exchange coupling in
all three directions. There are several predictions within the orbital-liquid picture for sta-
bilizing different spin-orbital structures: for instance, for large JH ferromagnetism should
be stabilized together with a orbital ordering with principal axis [111]. This scenario has
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2.2 Intersite properties

Figure 2.6: Two of three t2g orbitals are involved in the superexchange in one particular direction,
which may lead to a resonance. Figure taken from [41].

been suggested for YTiO3 [43, 44]. Note that the applicability of the orbital-liquid picture
to the titanates has been discussed controversially in the literature [7–11, 27, 45]. The
majority of research groups favors the description of these systems in a rather conventional
framework. We will come back to this issue in chapter 5. For further information on the
orbital-liquid picture, we refer to a recent review article [37].

2.2.5 Lattice-mediated orbital interaction
There is a second mechanism which leads formally to the same kind of spin-orbital interac-
tion, i.e. the Hamiltonian has the same form. It refers to a coupling via lattice vibrations.
In the first section we discussed the Jahn-Teller effect as a source for lifting of the degen-
eracy on one particular transition-metal site which is surrounded by, e.g., an oxygen O6

octahedron. In the pseudo-spin language, the Jahn-Teller Hamiltonian for an eg electron
on this transition-metal site reads [31, 39]:

HJT = −gQ3T
z +

KQ2
3

2
(2.10)

where g represents a coupling constant, T z the pseudo-spin operator,K the elastic modulus,
and Q3 a 3z2 − r2-like vibrational mode. If one considers now two neighboring transition-
metal octahedra, an effective orbital interaction is induced, mediated by the vibrational
mode [31, 39]. This is the cooperative Jahn-Teller effect

Hi,i+1 =
2g2

3K
T zi T

z
i+1 (2.11)

This Hamiltonian favors the antiferroorbital arrangement of the pseudo-spin, i.e. a d3z2−r2-
dx2−y2 patterning along z. If the system is cubic a similar argumentation leads to a d3x2−r2-
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2 Electronic structure of correlated systems and its observation in optics

dy2−z2 pattern along x6. If no direction is favored in the crystal this leads to an orbital
frustration. In case of LaMnO3, it has been nicely demonstrated that electronic as well as
lattice-mediated orbital interactions are necessary [46]. The cooperative part of the Jahn-
Teller effect is found to be the hidden driving force for the orbital ordering in LaMnO3

[46].
So far we have only considered eg-electron systems. For t2g electrons the same consider-

ations hold true. But things are more complicated because both, t2g and eg phonon modes,
couple to t2g electronic states. Also for t2g systems there is formally no difference between
the lattice-mediated orbital exchange and the spin-orbital superexchange [31, 44]. How-
ever, in the case of the lattice-mediated orbital interaction a term of the form of Eq. 2.10
will also enter the total system Hamiltonian, while it will not appear in a purely electronic
spin-orbital system. This will lead to different ground and excited states.

2.3 On- and inter-site excitations and collective modes
In a semiconductor an optical transition can be expressed as the creation of an electron
and a hole. Due to Blochs theorem electrons and holes are fully delocalized, i.e. one thinks
in k space. Optical transitions can occur between electronic states which have equal ke,
i.e. vertical excitations in an E(ke) band diagram7. In other words, the total wavevector
of the electron-hole pair has to be equal to zero ∆K = ke + kh = 0. We will give an
illustrative picture for optical transitions in real space: one can think of an electron-hole
pair, which is created on two arbitrary sites. Since all electron and all hole states belong
equally to all sites, the electron-hole creation can be thought to be spread over all sites.
In the case of correlated materials the Bloch functions are no longer appropriate (with

Bloch functions a metallic state is found at half filling). It is thus favorable to think in
terms of real space, since the wavefunctions in the insulating ground state are expected
to be rather localized. The optical excitations in a correlated material are sketched in
Fig. 2.7 for the case of a ferromagnetic chain. An optical excitation creates an electron-
hole pair. This can be done on the same site (onsite) or on neighboring sites (intersite).
The onsite electron-hole creation as shown in Fig. 2.7(b) costs an energy of ∆orbital. When
this excitation has a relatively small dispersion when compared to its excitation energy, it
is commonly denoted as a crystal-field excitation or (onsite-)exciton. In contrast, if this
excitation can move through the crystal, i.e. has a significant dispersion8, it is sometimes
termed as an orbital wave [47], in close analogy to spin waves.
The excitations across the conductivity gap are shown in Fig. 2.7(c). The hole refers to

an empty site and the "electron" to a double occupancy. In this case, the double occupancy
lives in the upper Hubbard band, thus this excitation is higher in energy than the onsite
excitation (∆orbital � U). Both, double occupancy and hole can freely move, i.e. they can

6This can be understood within the compass model [31, 39]. The pseudo-spin (T z, T x) plane is invariant
under rotations of 120◦.

7This is due to the large wavelength of visible light when comparing to the lattice spacing.
8The dispersion should be comparable to the excitation energy.
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2.3 On- and inter-site excitations and collective modes
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Figure 2.7: Sketch of possible optical excitations within a 1D chain: a) the ground state, b)
onsite orbital excitation, c) inter-site excitation to an arbitrary site, i.e. the hole (empty site)
and the "electron" (double occupancy) propagate independently, and d) inter-site excitation to a
neighboring site (Mott-Hubbard exciton, bound electron-hole pair).
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2 Electronic structure of correlated systems and its observation in optics

reside on any lattice site. Accordingly, the full bandwidth is observed in photoemission
(PES, probing the single-hole states) and inverse photoemission (IPES, probing the states
of one double occupancy). The conductivity gap corresponds to the difference of these two
bands. It is the difference between the ionization energy EI and the electron affinity EA.
Within our cartoon it corresponds to a transition between two sites which are far apart (so
far that they no longer feel any interaction) as shown in Fig. 2.7(c). In our local cartoon
the energy is thus EA − EI = U + ∆orbital. Things change when the double occupancy
and the hole gain some additional attraction energy V . In this case, electron and hole
may form a bound state and can disperse as only one object. This is also known as an
exciton, but with a different size (see below). In the cartoon the transition energy is only
U − V + ∆orbital (see Fig. 2.7(d)). Taking into account the hopping t, it depends on the
size of U , V and t whether the exciton is found as a truly bound state below the band gap
or as a resonance inside the continuum [48]. In order to discriminate the excitons as found
in semiconductors (Wannier and Frenkel [49]) we will denote the excitons in correlated
materials as charge-transfer or Mott-Hubbard excitons [50]. It is important to note that
optic is sensitive to both unbound electron-hole pairs and to excitons, whereas (I)PES do
not allow for the direct observation of excitons.

2.3.1 Onsite excitations and collective modes
We start with excitations having no dispersion, i.e. crystal-field excitations within the d
shell. We will call them onsite excitations, crystal-field excitations, or orbital excitations.
Consider, e.g., the cubic structure in Fig. 2.1 where the electron resides in the lowest
energy level. Now, a possible excitation is the transfer to a higher level. By analyzing the
absorbed light of a white-light source the energy-level diagram can be measured. Putting
this kind of excitations in the context of band-like solids, they can be regarded as onsite
excitons. In semiconductors this kind of excitons is termed Frenkel exciton (see below).
The bottleneck for the investigation of onsite excitations by optical spectroscopies is (i) the
clear discrimination from other excitations which are simultaneously measured, (ii) in IR
spectroscopy these excitations are parity forbidden and become only weakly allowed by the
simultaneous excitations of a phonon. They can only be observed if they are located below
the charge gap and above the phononic regime, otherwise they are masked by stronger
excitations.
We will elaborate a bit on the first point. It might be that different degrees of freedom

are intimately coupled to each other. In the case of a sizable electron-phonon coupling
the orbital excitations are dressed by vibrational excitations. The combined vibrational-
electronic excitation is called vibron. The underlying principle is the Franck-Condon prin-
ciple [51, 52]. It is sketched in Fig. 2.8. Two parabolas are shown which represent the
lattice potential of the ground state and the electronically excited state. The parabola
of the excited state is shifted to the right due to the increased bond length. Since elec-
tronic transitions are usually much faster than motions of the nuclei (Born-Oppenheimer
approximation), they are indicated as vertical lines, reflecting that the lattice can not
change during the transition. As shown, the transition goes into a state at the side of
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2.3 On- and inter-site excitations and collective modes

Figure 2.8: The Franck-Condon principle illustrates the occurrence of mixed vibrational and
electronic states (vibronic states). The ground state and an electronically excited state of an ion
are indicated by parabolas, where the minimum is shifted to larger bond lengths for the case of
the excited state. Energetically equidistant horizonal lines represent the phonon levels of 1, 2,
3,.... phonons. Because electronic transitions are very fast when compared to the nuclear motions,
they can be indicated as vertical arrows. The absorption is proportional to the overlap between
the vibrational parts of the wave functions of ground and excited state (known as Franck-Condon
factors). As indicated by two exemplary possibilities, e.g., in the left panel the maximum overlap
does not occur between the minima of the two parabolas but from the ground state minimum to
the side of the excited parabola, i.e. additionally to the electronic transition phonons are excited.
The shape of the whole absorption band depends on the orbital and spin selection rules and on
the difference in bond lengths between the ground state and the excited state. A larger difference
results in a symmetric line shape (left), while a smaller difference leads to an asymmetric band
(right). The figure has been taken from Ref. [26].

the parabola, i.e., a state where several phonons are excited. This leads to phononic side
bands, in addition to the pure electronic transition in an absorption spectrum. In crys-
tals several phonons (each with dispersion) may contribute to the Franck-Condon process,
which makes the absorption band rather broad and structureless.
Things are "exciting" when the orbital excitations have a significant dispersion, i.e. they

lose their local character. The excitations we would like to discuss here are those within
the degenerate spin-orbital models. We will call these excitations orbitons or orbital waves.
If a finite crystal field is switched on it will destroy the phenomena arising from degenerate
orbitals when the energy gain due to the fluctuations of the orbitals is much lower than the
size of the crystal field. Experimentally, the task is to find a compound in which the gain
due to orbital fluctuations is larger than or at least comparable to the crystal-field splitting.
However, also for a large crystal field the rather local excitations have a finite dispersion
(Frenkel excitons), but for the low-energy properties the dispersion is only relevant if it is
of the same order as the excitations energies.
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2 Electronic structure of correlated systems and its observation in optics

Figure 2.9: Orbital-wave dispersion as calculated for LaMnO3 (top panel). Sketch of the prop-
agation of an orbital wave for a ferroorbital chain (bottom panel). Picture taken from Ref. [47].

• Orbital waves - We start from an orbitally ordered ground state. Analogous to
spin waves the excitations from this ground state are orbital waves, i.e. propagating
orbital flips. This is shown in Fig. 2.9 for the case of a ferroorbitally ordered chain.
The difference between spin waves and orbital waves lies in the symmetry properties
of the spin and pseudo-spin operators: the spins are rotationally invariant while
orbitals are restricted to certain axes (in cubic symmetry the cubic axes). It follows
that orbital waves always have a gap [37]. Orbital waves have been suggested in
the case of the orbitally ordered compound LaMnO3 (eg-orbital system) [47, 53] as
well as for titanate and vanadate systems [47, 53–58] (see also chapter 5). However,
a clear experimental evidence is still lacking, because the dispersion of the orbital
waves has not been measured and because the orbital character of the observed
excitations has not been demonstrated beyond any doubt. For instance in LaMnO3,
an alternative explanation in terms of multi-phonon absorption has been proposed
[59]. Orbital waves show strongest dispersion when the coupling to the lattice is
weak. The dispersion significantly reduces with increasing electron-phonon coupling
[60, 61]. This might be the reason why so far no clear evidence for this dispersion
has been reported in the literature. Experimentally, k-resolved spectroscopies like
EELS9 or RIXS10 are best suited to track the dispersion. These techniques have
been successfully used in order to determine the exciton dispersion in charge-transfer
systems [62, 63].

9Electron energy loss spectroscopy.
10Resonant inelastic X-ray scattering.
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2.3 On- and inter-site excitations and collective modes

Figure 2.10: Orbiton dispersion as calculated for cubic YTiO3 (right panel). Orbitally-ordered
state, i.e. the electron density (left panel). Picture taken from Ref. [43].

• Excitations from the orbital-liquid state (orbitons) - Starting from an orbitally fluctu-
ating ground state as discussed above, one finds also a dispersing excitation spectrum.
It is shown for the case of cubic YTiO3 in Fig. 2.10. Interestingly although the orbital
ground state is fluctuating different spin orderings can be stabilized and orbital order-
ing can also survive (in the case of YTiO3) [4, 37, 41–44]. Within the orbital-liquid
picture a spin-orbital gap has been found and can be interpreted as the energy cost
to break an orbital dimer. This behavior is similar to the gap formation in spin liq-
uids such as two-leg ladders or dimerized spin-chains. Note, that orbital excitations
always have a gap, in contrast to spin excitations (see above). Due to the strik-
ing similarity between spin and pseudo-spin Hamiltonians two-orbiton excitations
[37, 64] in analogy to two-magnon excitations [65] have been proposed. Features in
optical spectroscopy [26] and Raman scattering [57, 64] in RTiO3 (R=Y, La) have
been assigned to these kind of excitations (with an energy of roughly two times the
spin-orbital gap) [37, 64]. We will comment on this issue in chapter 5.

2.3.2 Band-to-band transitions
In a semiconductor, band-to-band transitions occur with ∆K = 0. One can take a single
electron with ke from the valance band and put it into the conduction band at the same
value of ke. This works only for non- or weakly interacting electrons. In a correlated
insulator the interaction between electrons is strong. One can therefore not simply take one
electron out without influencing the other electrons. Therefore we discuss the excitations in
reals space as shown in Fig. 2.7. We will very briefly illustrate the two kinds of excitations:
the Mott-Hubbard and the charge-transfer excitations. They are sketched in Fig. 2.11.
Consider a Hubbard chain in the strong-coupling limit consisting of a transition-metal ion
having only one orbital and one electron per site which can be either up or down spin.
In between the transition metal ions we place an oxygen orbital which is filled with two
electrons having antiparallel spins (a 1D two-band Hubbard model). We further assume
that the system is antiferromagnetically ordered. The ground state is denoted by d1

i d
1
j .
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2 Electronic structure of correlated systems and its observation in optics

3d 2p    3d   a) 3d    2p 3d   

3d    2p    3d   b) 3d    2p    3d   

Figure 2.11: Sketch of Mott-Hubbard (a) and charge-transfer transitions (b) for the case of an
antiferromagnetic chain.

For an intersite transition one has to remove one electron from one site i and place it
on another site j. This can be done in two ways. Firstly, one can remove an electron
from the transition-metal site and put it on the other transition-metal site. This state
can be denoted as d0

i d
2
j . Secondly, one can remove one electron from the oxygen site, i.e.,

d1
i d

2
jL. This corresponds to two possible optical transitions: a Mott-Hubbard transition

of the from d1
i d

1
j → d0

i d
2
j with an energy E(d2) + E(d0) − 2E(d1) = U , and a charge-

transfer transition d1
i d

1
j → d1

i d
2
jL with an energy E(d2L) − E(d1) = ∆. Depending on

whether ∆ or U is larger, the first observed intersite transition will be of Mott-Hubbard
or charge-transfer type. Once identified one can determine the model parameters U and
∆ from an optical spectrum. As one can see from Fig. 2.11, the oxygen can offer both,
up and down spin, while the transition-metal site can only offer one spin channel in a
magnetically ordered state. This fact makes it possible to disentangle11 Mott-Hubbard
and charge-transfer excitations. One expects changes of the spectral weight of a certain
transition across the magnetic ordering temperature for a Mott-Hubbard insulator, while
magnetism does not affect the charge-transfer transitions [69]. A lucid example for this
behavior is given in Ref. [2] and will be discussed below and in chapter 4. Our above
considerations hold only true if the oxygen band and the transition metal band are well
separated and hybridization is low. There will be mixing of the two types, but one may still
be able to determine the predominant character. In real materials things will become a bit
more complicated because five-orbitals on the transition-metal site have to be considered
for the case of a d-electron system. The onsite degeneracy will be lifted and the levels
are split. The ground state and the final state will become rather complicated multiplets.
The above considerations will not change in principle but one has to take many more
possibilities of transitions into account. There will also be more model parameters, like

11Another possibility to differentiate between charge-transfer and Mott-Hubbard insulators are their dif-
ferent behavior upon electron and hole doping [66–68].
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2.3 On- and inter-site excitations and collective modes

Figure 2.12: Excitons in a 1D extended Mott chain. Left: Mott-Hubbard exciton for a 14 site
Mott-Hubbard ring with U=10 eV and t=1 eV for a one-band model for different values of V .
The upper curves represent the electron removal and addition spectra as measured by PES and
IPES, respectively. The lower curves represent the optical conductivity, where the arrows denote
the zero of the energy, which for clarity is placed at the top of the lower Hubbard band. Figure
taken from Ref. [48]. Right: charge-transfer exciton for a 129 site charge-transfer chain. Figure
taken from Ref. [70].

JH (or more generally speaking the Slater integrals) and the crystal-field parameters (see
above). However, we will demonstrate that a determination of physically meaningful model
parameters is possible from the experiment for the case of LaSrMnO4 (see chapter 4) and
for YTiO3 (see chapter 5). A reference work for materials of Mott-Hubbard and charge-
transfer type as well as their optical spectral can be found in Ref. [1].

2.3.3 Excitons

As already mentioned a bound electron-hole pair is termed an exciton. This pair propagates
through the crystal as one particle with only one wave vector. The excitonic excitations are
commonly found below the band gap of a semiconductor. One defines the binding energy
of the excitons as the energetic distance to the electron-hole continuum. If the binding
energy is low (meV), the exciton extends over many lattice spacings and is called Wannier
exciton. Wannier excitons can be found e.g. in Cu2O or GaAs [71, 72]. They can be
very well described as hydrogen-like bound states, i.e. the energies are En = Eg − Rx/n

2,
where Eg is the optical gap energy (the onset of the electron-hole continuum), Rx the
renormalized Rhydberg constant of the exciton, and n the quantum number.
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2 Electronic structure of correlated systems and its observation in optics

There are also excitons which have a binding energy of the order of eV. One can therefore
conclude that the extension of the pair is very small, e.g. only one site. This kind of excitons
is called Frenkel excitons. Typical examples are rare-gas crystals like Xe, Ne etc. or ionic
crystals like LiF [71]. As discussed above, local dd excitations can also be regarded as
Frenkel excitons (see Fig. 2.7(a)).
For correlated materials the observation of charge-transfer excitons has been reported.

Their binding energies lie in between those of Frenkel and Wannier excitons. In the limit
t/V → 0 they extend over one TM-O bond (TM - transition-metal). The parameter V
measures the nearest-neighbor binding energy but this is not the binding energy of the
exciton [73]. Representative systems are e.g. high-Tc materials [62, 63, 74]. Theoretical
spectra of a charge-transfer exciton are shown in Fig. 2.12.
In Mott-Hubbard insulators one expects Mott-Hubbard excitons because the charge-

transfer band lies lower in energy [50]. Here we mean an exciton which extends over
one TM-O-TM bond (in the limit t/V → 0), i.e. the hole (empty site) and the "electron"
(double occupancy) reside on neighboring TM sites. As pointed out by Essler et al. [75]
the excitonic properties in a correlated system are somewhat different from ordinary Wan-
nier excitons. This is due to the strong electron-electron coupling. Including nearest and
next-nearest neighbor interactions V and V2 in a model Hamiltonian for a 1D chain similar
to Eq. 2.5 they found that the binding energy of the excitons does not change in a simple
way with the nearest-neighbor interaction V . Including only nearest-neighbor interactions
V the charge gap is not affected by a change of V as shown in Fig. 2.12. The class of
Hamiltonians as e.g. used by Essler et al. is referred to as the extended Hubbard model
[76]. As mentioned above the additional parameter to the single-band Hubbard model is
the nearest-neighbor interaction V . The value of V can not be identified with the binding
energy as defined above, because V has to exceed a critical value in order to yield a truly
bound state. This means a Hubbard "exciton" can also be found as a resonance above the
optical gap. This can be understood because the gap is very roughly speaking at U − 2zt
(see Fig. 2.3, z denotes the number of nearest neighbors) and the exciton is located at
U − V . This means the binding energy is roughly V − 2zt which can be positive ore neg-
ative. Such behavior is nicely shown in Fig. 2.12. One can clearly see that an excitonic
resonance resides above the optical gap up to values of V = 2t whereas a truly bound
exciton is observed just below the gap for V = 4t. Note that in 1D our rough estimate of
the binding energy V − 2zt becomes positive for V>4t.
Another interesting aspect has been discussed by Wrobel and Eder [77]. In an anti-

ferromagnetic background, the movement of a hole and/or double occupancy on separate
tracks leaves back a number of misaligned spins. This track can be healed out by emit-
ting magnons, which reduces the bandwidth from t to J . In an excitonic bound state the
double occupancy "follows" the path of the hole, and these misaligned spins are healed
out. This reduces the suppression of the bandwidth, thus the kinetic energy is reduced.
This may contribute to the exciton binding energy. Excitonic binding due to the reduction
of kinetic energy is obviously very different from the conventional mechanism, in which
the potential energy is minimized. The similarity to the binding of electrons or holes in a
two dimensional antiferromagnet (the Cooper-pair formation in the high-Tc materials) has
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2.3 On- and inter-site excitations and collective modes

Figure 2.13: Top panel: nearest-neighbor spin-spin correlation function 〈Si ·Sj〉γ (γ = ab, c) and
the magnetic ordering parameter 〈Sz〉 as a function of temperature for LaMnO3. Bottom panel:
The evolution of kinetic energyKγ/J per Mn-O-Mn bond according to superexchange interactions
for all transitions within the e2

g manifold (dashed curves) and for the lowest transition into the e2
g

high-spin state (solid curves). Taken from Ref. [83].

been pointed out [77]. We will refer to this study in chapter 5.
There are several theoretical studies dealing with excitons on one- and two-dimensional

Hubbard models. To summarize the main features for a fixed Hubbard U � V, t: with
increasing V optical weight is shifted to lower energies. In 1D above a critical value of V
a bound state is formed below the optical gap. Upon a further increase of V the system
enters a charge-density wave state by forming electron-hole droplets or exciton strings
[48, 73, 75, 78–80]. In 2D the optical spectra look similar but in contrast to 1D not
only one but many different eigenstates contribute to the bound state below or within the
electron-hole continuum [81, 82].

2.3.4 The intensity of an optical transition

Optical selection rules will limit the number of observable final states. They can give
valuable information about the spin and orbital states of the observed compound, because
one can test the selection rules for a certain spin-orbital pattern and compare to the
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2 Electronic structure of correlated systems and its observation in optics

measured transitions. However, this does not necessarily lead to clear answers. Additional
information can be gained from the temperature dependence of a certain optical transition
A. One has to monitor the integral over the optical conductivity (called the spectral weight)
as a function of temperature:

SW (T ) =

∫
A

σ1(ω)dω (2.12)

For the following we will only consider electric dipole transitions since magnetic dipole
and electric quadrupole transitions are weak. Relative to the electric dipole transitions
their intensities are reduced by a factor 10−5 − 10−6 [72, 84].
When the electronic wave functions can be written as a product of spin, orbital, and

lattice degrees of freedom12, the selection rules and the temperature dependence of all
contributions can be treated separately. However, especially in correlated materials all
degrees of freedom may be coupled with each other and the above approximation breaks
down. Nevertheless we will start from the most simple case, i.e. a decoupling of all degrees
of freedom.
At first we discuss the vibrational degree of freedom. For parity-allowed transitions

the intensity should be independent of temperature [21, 84]. However, thermal expansion
and electron-phonon-coupling will give rise to a change of the interatomic distances with
temperature, and thus will change the hybridization. Therefore one expects a change in
intensity: if the lattice spacing increases with temperature one generally expects a loss of
intensity in a certain channel of excitations.
For a parity-forbidden transition (e.g. onsite dd transitions) the latter argumentation

remains valid. On top of that an increase of intensity according to the coth-rule is expected
[21, 84, 85]:

I(T ) = I0

√
coth

(
~Ω

2kBT

)
(2.13)

The simultaneous excitation of an odd-parity phonon will lead to an admixture of odd-
parity orbital states (p) to the even-parity electronic orbital wavefunctions (d). This ad-
mixture will scale with the thermal population of the phonons. The formally forbidden
"even-even" transitions become more and more dipole allowed. The same argumentation
holds true for indirect transitions in a band semiconductor.
The spin selection rule limits the number of final states that can be reached. If the orbital

moment is quenched or the spin-orbit coupling is small (as assumed for our systems), then
the total spin of the initial and final state have to be equal, i.e. Szi = Szf . The temperature
dependence arising from the spin selection rule is related to the nearest-neighbor spin-
spin correlation function. This correlation function gives a measure of short-range spin
alignments as function of temperature. Although long-range order is lost at TN or Tc, short-
range "ordering" persists up to temperatures above the magnetic ordering temperature.
12There is also one part referring to the charge degree of freedom. This will not be discussed here because
the major part of the work presented in this thesis deals with compounds which are insulation but not
charge ordered.
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2.3 On- and inter-site excitations and collective modes

In contrast also below TN or Tc one will find a certain amount of "disordered" spins.
In general one expects a redistribution of weight with temperature for the different spin
channels. As an example we have chosen the system LaMnO3, which is an S = 2 system
[2, 83]. Since the orbital ordering temperature in LaMnO3 is known to be located at 780
K (far above TN = 150 K), one can assume that the orbitals are locked in their orbitally
ordered pattern. It is sufficient to take only the spin degree of freedom into account.
The spin-spin correlation function as derived by Oles et al. [83] is plotted in Fig. 2.13.
At low temperatures T � TN the spin-spin correlation function 〈Si ·Sj〉ab → 4, while at
high temperatures 〈Si ·Sj〉ab → 0. This can be understood since within the ab direction
neighboring spins are parallel which yields in a classical treatment a value of four with S =
2. In the paramagnetic state the correlation function should be zero. Similar arguments
yield 〈Si ·Sj〉c → −4 since spins are ordered anti-parallel in this crystal direction. For
the spectral weight in the ab direction this means the following: a transition which is
allowed only for ferromagnetic spin alignment gets suppressed when the system becomes
paramagnetic. In contrast a transition which is allowed only for an antiferromagnetic
alignment becomes more allowed in the paramagnetic state. The precise evolution of the
spin-spin correlation function with temperature shows that even at 2 ·TN the correlation
functions are still ±0.5.
The orbital selection rule takes the overlap between different orbitals into account. There

is for example no overlap between the dxy and dxz orbitals on neighboring sites in a cubic
crystal (see Fig. 2.1). In cubic symmetry t2g orbitals generally only have overlap with
the same t2g orbital, while all eg orbitals overlap with each other. There is no overlap
between t2g and eg orbitals. The temperature dependence arising from the orbital selection
rule is related to the orbital-orbital correlation function. By introducing the pseudo-spin
operators the problem can be dealt with in an analogue fashion as in the spin case. To
be more illustrative: an orbital-ordering pattern can be destroyed by thermal fluctuations.
For LaMnO3 an orbital ordering of the form |±〉 = cos( θ

2
)|d3z2−r2〉 ± sin( θ

2
)|dx2−y2〉 along

the ab direction has been reported [87], whereas ferro-orbital ordering along the c direction
has been proposed. The angle θ is the mixing angle of the two different eg orbitals and has
a value of approximately θ = 108◦ in LaMnO3 [2, 87, 88]. Assuming analogous to the spins
that the pseudo-spins are classical vectors, the correlation function along the ab direction
reads for T � TOO 〈14 − τi · τj〉ab →

1
4
(3

4
+ sin2 θ) [2, 83]. For the para-orbital phase for

T � TOO one expects 〈1
4
− τi · τj〉ab → 1

4
. For the c axis one finds: 〈1

4
− τi · τj〉c → 1

4
(sin2 θ)

(for T � TOO) and 〈14 − τi · τj〉c →
1
4
(for T � TOO). A sizable orbital-lattice coupling will

destroy the spin-orbital correlations because the orbitals will be pinned to the lattice.
In general all different degrees of freedom are not necessarily decoupled. In case of

titanate and vanadate systems the importance of a coupled spin-orbital correlation function
has been pointed out [37, 42, 83, 86]. This leads to corrections in the evolution of spectral
weight with temperature. As an example we plot these corrections as calculated for the
d2 system LaVO3 in Fig. 2.14. In the upper panel one can see that the inclusion of the
spin-orbital nearest-neighbor correlations leads to a further decrease of spectral weight (≡
kinetic energy).
To give a brief conclusion: the temperature dependence of the spectral weight measures
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Figure 2.14: Top panel: Kinetic energy (≡ spectral weight) of a high-spin excitation in a d2

system (here LaVO3) within a classical model and two quantum models with (solid) and without
(dashed) joined spin-orbital correlations. Bottom panel: nearest-neighbor correlation functions,
namely the spin sc = 〈Si ·Sj〉, the orbital τc = 〈τi · τj〉, and the joined spin-orbital correlation
function fij = 〈δ(Si ·Sj)δ(τi · τj)〉. Additionally the orbital order parameter τ is plotted. Taken
from Ref. [86].

the contributions of all different degrees of freedom, spin, orbital, (charge,) and lattice
contributions. In the simplest case these contributions can be treated separately. In the
manganite systems this approach is frequently applied because orbital ordering and mag-
netic ordering temperatures are very different. It depends strongly on the nearest-neighbor
spin-orbital arrangement whether the intensity decreases or increases with temperature.
We will analyze our spectra under the assumption that decoupling of all degrees of freedom
is possible and will see to what extend the data can be understood within this framework.
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3 Spectroscopic techniques

Optical spectroscopy and Raman scattering are widely used techniques in solid state
physics. A large number of excitations, e.g. phonons, magnons, excitons, orbital exci-
tations, etc. can be monitored. Furthermore, optical spectroscopy gives information about
the band structure of solids and the magnitude of the electronic gap.
The quantity of interest in optical spectroscopy is the complex refractive index

N = n+ ik. (3.1)

The real part of N quantifies the ability of a material to change the direction of a light
wave following Snell’s law. The extinction k describes the damping of a light wave in
a material. Via Fermi’s golden rule it is directly related to the transition probabilities
for the excitations mentioned above. Being interested in the microscopic properties and
excitations of a solid, it is the goal to determine k for different frequencies.
The corresponding quantity in Raman spectroscopy is the scattering cross section. It

quantifies the probability, that an incoming light wave is inelastically scattered by an
elementary excitation. For crystals with inversion symmetry, Raman scattering is comple-
mentary to optical spectroscopy, because it probes even-parity excitations, in contrary to
optical spectroscopy, which is sensitive to odd-parity excitations.
The typical energy range of excitations probed by optical spectroscopy and Raman

scattering is meV-eV. Often the energy is given in wavenumbers, sometimes called Kayser:

1 cm−1 = 0.12398 meV = 29.979 GHz (3.2)

The wavenumber will be denoted by ω.
The data presented in this thesis were obtained by three different optical techniques. The

following sections give a brief introduction into these. In the first part, the basics of optical
spectroscopy are summarized. The second part introduces briefly the Fourier transform
spectroscopy. Detailed information about this technique can be obtained from previous
theses [89, 90]. The third part elucidates ellipsometry. In 2004 a Woollam ellipsometer
type VASE has been purchased by the Institute of Physics II of the University of Cologne
and has been put into operation by my colleague C. Hilgers and myself. Therefore, we
place emphasis on the latter section. An exemplary data analysis is shown for the case of
YTiO3 . The last part deals with Raman scattering1.

1The Raman measurements were carried out at the MPI Suttgart in collaboration with C. Ulrich and B.
Keimer. I heartily thank for this fruitful collaboration.
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3.1 Linear response functions and optical constants
An electromagnetic field E evokes a response in a solid. For a homogeneous medium the
linear part of the response can be expressed in terms of the displacement field D, the
current J, or the polarization P of the form:

D(k, ω) = ε0 ε(k, ω) E(k, ω),

J(k, ω) = σ(k, ω) E(k, ω),

P(k, ω) = ε0 χ(k, ω) E(k, ω) (3.3)

where k and ω are the momentum and the frequency. The optical constants ε, σ, and χ
are called dielectric permittivity or dielectric constant, optical conductivity, and electric
susceptibility tensors. They are complex second rank tensors, which have to satisfy the
crystal symmetry. The relation to the index of refraction will be given below. In the further
discussion the following limitations are made, adapted to our case:

1. The solid is a homogeneous medium.

2. Since in optical spectroscopy the wave vectors are close to zero we assume k = 0 and
use ε(0, ω) ≡ ε(ω), σ(0, ω) ≡ σ(ω), and χ(0, ω)e ≡ χe(ω).

3. For optical frequencies it is sufficient to set the real part of the permeability µ1 = 1
and its imaginary part µ2 = 0 [91].

4. We will follow the semiclassical approximation, i.e. the electronic states of the solid
are treated quantum mechanically, while the electromagnetic radiation is treated
classically.

5. The interaction of light with matter (for a one-electron system) can be described by
the following Hamiltonian.

H = H0 +
e

m
A ·p +

�
�

��e2

2m
A2 (3.4)

The system H0 = p2

2m
+V(r) will be perturbed by e

m
A ·p, with A and p being the vec-

tor potential and the momentum operator. Note, that we assume the Coloumb gauge
∇ ·A = 0. The term proportional to A2 is omitted since we will focus on the linear
response. For the vector potential a plane wave A = A0

(
ei(k · r−ωt) + e−i(k · r−ωt)

)
is

assumed. Our experiments are carried out in an energy range of approximately 0.1-
6.0 eV which means k · r ∼ 10−3..10−5 if one assumes a dimension of |k| ∼ 10−10 m.
Therefore one can assume eik · r ' 1 which is called dipole approximation. Equation
(3.4) reduces with E = −∂A

∂t
and [H0, r] = i~

m
p to

H = H0 − e E · r. (3.5)
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3.1 Linear response functions and optical constants

6. The symmetry of the systems investigated within this thesis is orthorhombic or
higher. Therefore the tensor of the optical constants will be diagonal:

ε =

 εxx 0 0

0 εyy 0

0 0 εzz

 ,

σ =

 σxx 0 0

0 σyy 0

0 0 σzz

 ,

χ =

 χxx 0 0

0 χyy 0

0 0 χzz

 . (3.6)

Note, that the tensor axes of εjj, σjj, and χjj coincide with the crystallographic axes.
For lower crystal symmetry than orthorhombic this is not the case.

Under the latter assumptions the optical constants

ε = ε1 + i ε2,

σ = σ1 + i σ2,

χ = χ1 + i χ2,

N = n+ i k (3.7)

can be converted into each other following table (3.1). As a consequence of the law of
causality, it can be shown that real and imaginary part of each optical constant are not
independent of each other. The relationship is called Kramers-Kronig relation. For the
optical constants n and k it has the form [93]:

n(ω) = 1 +
2

π
P
∫ ∞

0

ω′k(ω′)

ω′2 − ω2
dω′

k(ω) = − 2

π ω
P
∫ ∞

0

ω′2(n(ω′)− 1)

ω′2 − ω2
dω′ (3.8)

with P being the Cauchy principal value of the integral. The relationship gives additional
input for the determination of the optical constants from experiments. On the one hand the
knowledge of e.g. the real part of an optical constant over a large energy range is sufficient
in order to get its imaginary part. This is the common procedure for the determination of
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3.2 Fourier-transform spectroscopy

the optical constants from reflectivity measurements alone (see below). On the other hand,
if both the real and imaginary part of an optical constant are determined independently,
the Kramers-Kronig relation can be used as a consistency check of the results. This is done
in the case of ellipsometric measurements (see below).

3.2 Fourier-transform spectroscopy

Fourier-transform spectroscopy is a linear optical spectroscopy, which can be used to de-
termine the reflectivity and the transmittance of a sample2. For the transmittance mea-
surements the samples have to be sufficiently transparent. In practice these two quantities
are obtained by two intensity measurements:

T (ω) =
IT (ω)

I0(ω)
, R(ω) =

IR(ω)

IAu(ω)
(3.9)

The intensity IT (IR) represents the measured intensity when the sample is placed into
the light path, while for the reference intensity I0 (IAu) the transmitted (reflected) light
without a crystal (on an Au mirror) is measured.
In order to obtain the optical constants n and k one should measure on two different

samples of the same batch: one thin sample, which is sufficiently transparent to have a
measurable transmittance, and one semi-infinite sample, where the reflectivity is deter-
mined by a single-interface reflection. In order to probe orbital or spin excitations below
the Mott gap in correlated insulators the thickness has to be of the order of 10-300 µm, in
order to measure a sizable transmittance up to 1 eV. By using the Fresnel equations as well
as the Lambert-Beer absorption law, one gets the following relations between reflectivity,
transmittance and the optical constants n and k [89, 92] 3.

R =
(n− 1)2 + k2

(n+ 1)2 + k2

T =
(1−R)2Φ

1− (RΦ)2

Φ = e−(4π k dω)/104

(3.10)

2The discussion is restricted to a Michelson type spectrometer. Other types like e.g. Mach-Zener can
also measure the phase.

3The equation given here follows from the equation given in Ref. [92] for n � k. If k is too large the
sample would not be transparent.
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From their inversion the optical constants can be obtained:

k =
104

4π dω
ln

−2R2T

(1−R)2 −
√

(1−R)4 + 4R2T 2

n =
1 +R +

√
4R− k2(R− 1)2

1−R
(3.11)

where d denotes the thickness of the sample in µm for the transmittance measurement and
ω the frequency in cm−1. The results of Eq. 3.11 can be converted in every pair of optical
constants using Tab. 3.1.
The transmittance in Eq. 3.10 is obtained by superposing intensities of multiply-reflected

waves up to infinity, interference between these waves is neglected. In practise Fabry-Perot
fringes might be observed for the case of almost parallel back- and front surfaces. If these
fringes are averaged out, Eq. 3.10 can be used again. The observation of fringes with a
frequency distance of ∆ω has the advantage, that the thickness d can be determined by

d =
1

2n∆ω
, [d] in cm. (3.12)

For non-transparent samples, e.g. metals or insulators above their gap, the extinction
is large. This makes a transmission measurement impossible, because the transmission
becomes smaller than the noise levels for a thickness of the order of µm. But one can also
obtain the two optical constants from the reflectivity measurement alone by considering
not only the intensity R and but also phase φr. This can be directly seen in the general
expression for the reflection coefficient r, and its relation to Eq. 3.10:

r =
(n− 1) + ik

(n+ 1) + ik
=
√
Reiφr or ln r = ln

√
R + iφr

R = |r|2 = r r∗ (3.13)

The phase can either be measured or it can be calculated making use of the Kramers-Kronig
relation [92]:

φr(ω) = −ω
π

∫ ∞
0

ln
√
R(ω′)− ln

√
R(ω)

ω′2 − ω2
dω′ (3.14)

Please note, that for an accurate determination of φr the reflectivity has to be measured
over a very broad energy range (strictly speaking 0 to ∞ cm−1). For the determination of
rather strong absorption features, arising e.g. from phonons, this technique gives reliable
results. However, weak absorption peaks of a few Ω−1cm−1 arising from combined excita-
tions, like bimagnon-plus-phonon [94, 95] or orbiton-plus-phonon [26], can not be resolved.
The optical constants presented in this thesis are not based on reflectivity measurements
alone, but on ellipsometry or combined R and T measurements, as discussed above.

34



3.2 Fourier-transform spectroscopy

Figure 3.1: Sketch of the Fourier-transform spectrometer in transmittance configuration (Bruker
IFS 66v). Picture taken from Ref. [89].

3.2.1 Experimental setup

Within a standard setup consisting out of a white-light source and a monochromator the
quantities R and T are determined frequency-wise. In contrast, Fourier-transform (FT)
spectroscopy measures a whole frequency band at once. In the infrared range this has
the great advantage that the intensity at the detector is large, which greatly improves
the signal-to-noise ratio (SNR) and makes this technique extremely fast. Furthermore
the SNR is improved by the large throughput of a FT spectrometer in comparison to a
monochromator, because circular apertures (mm) can be used without losing resolution.
In a monochromator the entrance slits determine the resolution of the measurement and
therefore they usually have to be quite narrow (few hundred µm).
The setup of the FT spectrometer in Cologne (Bruker IFS 66v) is shown in Fig. 3.1.

The light of a broad-band lamp is focussed onto an aperture wheel. A parabolic mirror
makes the light parallel before it passes through the heart of the FT spectrometer, the
Michelson interferometer (see below). From the interferometer the light moves through
a polarizer and is focussed onto the sample, which is located in a He-cooled cryostat.
Temperatures from 4.2-780 K can be achieved. Behind the sample the transmitted light
is focused by several mirrors onto the detector. Depending on the energy range, the
corresponding set of detector, polarizer, cryostat windows, beam splitter and lamp has
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Figure 3.2: Sketch of a Michelson interferometer.

to be adapted. To cover the full energy range of the spectrometer of 10-55000 cm−1

(1.2 meV-6.8 eV), at least five different combinations are needed. For the reflectivity
measurements (not shown) an additional unit containing four mirrors has to be placed
into the spectrometer. The measurements can be carried out under quasi-normal incidence
(11◦). The reflectance/transmittance measurements presented in this thesis were performed
in the mid- and near-infrared regime, i.e. from 650-12000 cm−1 (0.08 eV-1.49 eV). We used
a nitrogen-cooled Mercury Cadium Telluride detector (MCT), a BaF2 polarizer4, KBr
cryostat windows, a Ge/KBr beam splitter and two different lamps (Globar/Tungsten).
The functionality of the Michelson interferometer is sketched in Fig. 3.2: it consists of a

beam splitter and two mirrors, of which one can move back an forth. If the movable mirror
has the same distance x from the beam splitter as the fixed mirror (symmetric position),
there will be no retardation between the two light paths 1 and 2. Regardless of the
wavelength, constructive interference will occur (this position of the mirror is called white-
light position). If the movable mirror is shifted ∆x away from its symmetric position there
will be a retardation 2∆x between the two light paths 1 and 2. One expects constructive
interference only for the positions 2∆x = nλ with n = 1, 2, ... Therefore the measured
(time averaged) intensity for one wavelength λ at the detector will depend on the mirror
position, which results in an intensity distribution [92] I(∆x) = I0

2
(1 + cos(4π∆x/λ)). The

function I(∆x) is called interferogram. A generalization for a whole spectrum yields

I(∆x) =
1

2

∫ ∞
0

I(ω)
(
1 + cos(4π∆xω)

)
dω (3.15)

where the cosine integrand is the Fourier transform of I(∆x) while 1
2

∫∞
0
I(ω)dω gives the

averaged intensity I0/2. Thus, the inverse Fourier transform of I(∆x) yields the frequency-
resolved intensity spectrum I(ω). The latter procedure is exactly applied in FT spectrome-
try. The remaining problem is the determination of the mirror position ∆x. It can be very

4The small polarizer leakage is corrected as described in Ref. [89].
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Figure 3.3: The basic geometry of an ellipsometric measurement.

accurately measured using a He-Ne laser, which also passes the Michelson interferometer.
The resolution of a FT spectrometer is limited by the finite moving path of the mirror.
As a result the interferogram of a monochromatic light wave is not a δ-function, but has
a sin(∆x)/∆x-like form. As a rule of thumb the resolution is given by ∆ω ∼ ∆x−1

max. An-
other problem is induced by the sharp cut off at the turning points of the moving mirror,
which yields a step in the interferogram. This leads to broad artifacts in the spectrum. A
way out is the so called apodization, in which the interferogram is multiplied by an appro-
priate function, which strongly fades out the side bands of the interferogram [96]. For our
spectrometer the best resulting resolution is approximately ∆ω ∼ 0.1 cm−1. For practical
purpose in the mid-infrared region a resolution of 2-5 cm−1 is sufficient. Further details
of the data processing and problems to take care of can be found in former PhD theses
[89, 90].
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3.3 Ellipsometry
Ellipsometry is a very sensitive and widely used technique to study optical properties. It
goes back to Paul Drude [97]. The technique is sensitive to sub-nm thick surfaces and
therefore often used in thin-film characterization. For bulk measurements however, some
care has to be taken, because thin cover layers due to oxides or contaminations may be
present on the sample surface. If there are indications for the presence of a cover layer it
should be included into the data analysis. The main advantage of ellipsometry compared to
standard reflectivity measurements is that it directly measures two independent quantities.
Firstly the ratio of two intensities from the reflected light under two different polarizations
and secondly the relative phase shift between these two reflected waves. Therefore one
need not rely on the Kramers-Kronig analysis, as described in the previous chapter.
In the following the very basics of ellipsometry will be recalled. In Fig. 3.3 a standard

ellipsometric measurement configuration is sketched. An incoming linearly polarized plane
wave Ei with a wave vector ki and frequency ωi meets a surface. This results in a reflected
wave Er with wave vector kr = −ki and frequency ωr = ωi. In order to characterize the
polarization state of the waves the electric field vector can be split into two components,
one parallel the plane of incidence (Ep

i,r) and one perpendicular to it (Es
i,r) [98]:

Ei,r =

(
Ep
i,r

Es
i,r

)
=

(
|Ep

i,r|eiδ
i,r
p

|Es
i,r|eiδ

i,r
s

)
e−i(kz−ωt) = J̃i,re

−i(kz−ωt). (3.16)

The normalized vector Ji,r = J̃i,r/|J̃i,r| is known as the Jones vector. It characterizes the
polarization state of a light wave, e.g.(

0

1

)
,

(
1

0

)
or

1√
2

(
1

i

)
,

1√
2

(
1

−i

)
represent a linearly polarized wave (s and p-polarized) or circularly polarized wave (clock-
wise and counter-clockwise), respectively. In general the reflected light wave Er is ellipti-
cally polarized. Its field vector can be calculated by multiplying the incident Jones vector
with the matrix of the optical system (in this case the sample) [98]:

Er =

(
Ep
r

Es
r

)
=

(
rpp rps

rsp rss

)(
Ep
i

Es
i

)
or Jr = J Ji. (3.17)

The matrix accounting for the change in polarization is the Jones matrix J . The Jones
matrix is related to the components of the dielectric tensor in Eq. 3.6 via the Fresnel
equations. In order to get simple formulas we assume a non-depolarizing material with
orthorhombic symmetry5, which is oriented such that the optical constants are parallel to

5 For monoclinic or even lower symmetric materials there will be off-diagonal elements in the Jones matrix.
Note, that a depolarizing and anisotropic sample can not be properly described by the Jones matrix
formalism, because both effects lead to non-diagonal matrix elements and can not be discriminated. An
extended approach is the Müller-matrix formalism, in which these effects can be distinguished.
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the laboratory system for normal incidence (e.g. p || εx, see Fig. 3.3). This has the great
advantage that the off-diagonal components of the Jones matrix vanish. An additional in-
plane rotation of the laboratory coordinate system yields much more complicated relations
[98, page 355]. The Fresnel equations for the geometry shown in Fig. 3.3 read [98–100]:

rpp =
Ep
r

Ep
i

=

√
εzz − sin2 θ −√εxxεzz cos θ√
εzz − sin2 θ +

√
εxxεzz cos θ

rss =
Es
r

Es
i

=
cos θ −

√
εyy − sin2 θ

cos θ +
√
εyy + sin2 θ

rps =
Ep
r

Es
i

= 0

rsp =
Es
r

Ep
i

= 0 (3.18)

For an isotropic material at normal incidence the well known Eq. 3.10 is recovered. In
general, the measured quantities are the ratios

ρpp =
rpp
rss

= tanψpp e
i∆pp

ρps =
rps
rpp

= tanψps e
i∆ps
(

= 0
)

ρsp =
rsp
rss

= tanψsp e
i∆sp
(

= 0
)
. (3.19)

In an orthorhombic sample the ratios depend on the sample orientation. One already can
recognize that in order to extract six unknown variables (the real and imaginary parts
of εxx, εyy, εzz), at least three different linearly independent sample orientations have to
be measured. The optical constants can be obtained by inserting Eq. 3.18 into Eq. 3.19
and by inverting the resulting equations. This can not be done analytically anymore
in orthorhombic symmetry. The software WVASE32 of the ellipsometer (J.A. Woollam,
VASE) performs a least-square fit based on the latter two equations making use of the
Levenberg-Marquard algorithm. For the isotropic case an analytic relation between the
dielectric constant ε and the ellipsometric parameters ψpp and ∆pp can be found [98, 99].
This is often called pseudo-dielectric function:

ε = εxx = εyy = εzz = sin2 θ + sin2 θ tan2 θ
(1− ρpp

1 + ρpp

)
(3.20)

Aspnes [99] has extended Eq. 3.20 to the case of biaxial samples, i.e. εxx 6= εyy 6= εzz. He
assumed that the optical anisotropies ∆εx,y,z are small variations around a suitable mean
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Figure 3.4: Connection between the measured quantities ψpp an ∆pp and geometrical properties
of the polarization ellipse. The ellipse is fully characterized by its ellipticity α (with tanα = b/a)
and its position angle β.

value εav. It turns out that for large angles of incidence (70◦) and moderately large values of
|εav| = 10 the pseudo-dielectric function is dominated by only one of the three anisotropies.
The other two contributions cancel out approximately. In other words a measurement in a
configuration as drawn in Fig. 3.3 is sensitive only to εxx under the assumptions mentioned
above.
From the parameters ψpp and ∆pp the polarization ellipse can be constructed as shown in

Fig. 3.4. The parameters of the ellipse, namely the principal axes a and b and the position
angle β, can be obtained using the following relations [101, page 21]:

tan 2β = tan 2ψpp · cos ∆pp

tan 2α = ± sin 2ψpp · sin ∆pp (3.21)

The ellipticity α is directly related to the ratio of the principal axes by tanα = b/a. Note,
that tanψpp = |Ep

r |/|Es
r | = |rpp|/|rss|. As an example choose a retardation ∆pp = 0,±π

which yields an ellipticity of zero. This means the reflected light is linearly polarized. For
another example consider a retardation ∆pp = ±π/2 and tanψpp = 1, which produces an
ellipticity of one, i.e. the reflected light is circularly polarized.
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3.3.1 From Jones-matrix to Müller-matrix formalism

The most general case for describing an optical system is the Müller-matrix formalism
[98, 102]. In contrast to the Jones-matrix formalism, the Müller-matrix formalism can
handle depolarizing, anisotropic samples, since the incident beam is fully polarized [98].
Another advantage of this approach is that it describes the transfer of intensities through
an optical system. The determination of the conjugate complex numbers as necessary in
the Jones-matrix formalism can be omitted. Instead of the Jones vectors the Müller-matrix
formalism uses a four-component vector, the Stokes vector. The vector is defined as

S =


S0

S1

S2

S3

 =


I0

Ip − Is
I45◦ − I−45◦

Iσ+ − Iσ−

 (3.22)

where the intensity I can be obtained by four different measurements, namely (i) an unpo-
larized measurement determining I0 = Ip+Is = I45◦+I−45◦ = Iσ+ +Iσ− , (ii) a measurement
with a linear polarizer in p or s polarization determining Ip or Is, (iii) a measurement with
a linear polarizer 45◦ away from the s or p polarization determining I45◦ or I−45◦ , and (iv) a
measurement with a linear polarizer such as in (iii) and a λ/4 retarder, to create circularly
polarized light determining Iσ+ or Iσ− . As an example we will consider the Stokes vectors
for linearly (p, s) and circularly (σ+, σ−) polarized light:

1

1

0

0

 ,


1

−1

0

0

 , and


1

0

0

1

 ,


1

0

0

−1


The degree of polarization can directly be read from the Stokes vector. It is the ratio of the
polarized part of the light divided by the total intensity, which reads as

√
S2

1 + S2
2 + S2

3/S0.
The analogue to the Jones matrix is the Müller matrixM, but it has 16 entries.

M =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 (3.23)

We will briefly illustrate, how a Müller matrix in our case might look like. We will transform
the Jones matrix given in Eq. 3.17 to its corresponding Müller matrix. We will follow the
procedure described in Ref. [98]. In general for a given Jones matrix J the appropriate
Müller matrixM can be derived by
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M = T · (J ⊗ J ∗) · T −1 (3.24)

This description is valid for every Jones matrix. The matrix T transforms the coherency
vector into the Stokes vector. The symbol represent ⊗ the direct product of two matrices6.
The coherency vector is not explicitly needed for the further discussion; we refer to Ref.
[98, page 62] for its definition. The matrix T for the transformation is given by

T =


1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0

 . (3.25)

As mentioned above, assume a reflectivity Jones matrix for a non-depolarizing surface of
a uniaxial crystal (tetragonal symmetry) with complex reflectivity coefficients rpp and rss.
The crystallographic axis should be oriented parallel to the laboratory system. In this case
the Jones matrix has only diagonal entries.

Jtet =

(
rpp 0

0 rss

)
. (3.26)

Using the transformation (3.24) and normalizing to the reflected intensity of unpolarized
light M11 = 1

2
(|rpp|2 + |rss|2) one obtains:

Mtet =


1 m12 0 0

m21 1 0 0

0 0 m33 m34

0 0 m43 m44

 (3.27a)

m12 = m21 =
|rpp|2 − |rss|2

|rpp|2 + |rss|2
(3.27b)

m33 = m44 = 2
Re[rpp]Re[rss] + Im[rpp]Im[rss]

|rpp|2 + |rss|2
(3.27c)

m34 = −m43 = 2
Re[rpp]Im[rss]− Im[rpp]Re[rss]

|rpp|2 + |rss|2
(3.27d)

6If Jij and J ∗kl are the matrix elements of the two Jones matrices the matrix element the direct product
is defined as (J ⊗ J ∗)αβ = Jij · J ∗kl with α = 2(i− 1) + k and β = 2(j − 1) + l.
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From the ellipsometric ratio in Eq. 3.19 one can evaluate:

|rpp|
|rss|

= tan(ψpp) (3.28a)

Re

[
rpp
rss

]
= tan(ψpp) cos(∆pp) (3.28b)

Im

[
rpp
rss

]
= tan(ψpp) sin(∆pp) (3.28c)

In terms of the ellipsometric parameters the normalized Müller matrixMtet from Eq. 3.27
reads:

Mtet =


1 − cos(2ψpp) 0 0

− cos(2ψpp) 1 0 0

0 0 cos(∆pp) sin(2ψpp) sin(∆pp) sin(2ψpp)

0 0 − sin(∆pp) sin(2ψpp) cos(∆pp) sin(2ψpp)

 (3.29)

Only six matrix elements carry information in case of an isotropic or properly oriented
anisotropic sample. Deviations from zero or one in the remaining 10 matrix elements
indicate that (i) the sample surface depolarizes or (ii) the sample is anisotropic and its
crystallographic axes are not parallel to the laboratory system. This matrix in Eq. 3.29
can be decomposed into a linear retarder with the retardation ∆pp and a partial linear
polarizer with relative attenuation

√
Amin/Amax = tan(ψpp) [98, page 491]. Once the

Müller matrix has been determined for different orientations, the Fresnel equations (see
Eq. 3.18) can again be used for relating the matrix elements to the optical constants.

3.3.2 How to measure the Müller matrix?
All measurements are carried out using a Rotating Analyzer Ellipsometer (RAE). We will
briefly show what a RAE can do in order to measure the Müller matrix of an unknown
sample. The details of our setup will be discussed in the next section. For simplicity we
will assume in the following discussion that all optical components are ideal, e.g. there
is no leakage of the polarizers, etc. Simply speaking the RAE consists of the following
components, see Fig. 3.5: the light source emits unpolarized light which becomes linearly
polarized. Furthermore, a retarder of arbitrary angle can be inserted. As shown in Fig. 3.5
this leads to a non-vanishing fourth component of the Stokes vector, i.e. for the creation
of circularly polarized light. After being reflected off the sample surface, the light passes a
rotating analyzer. For the analysis the intensity at the detector is measured versus time,
i.e. only the first component of the Stokes vector. It contains the components Sr0 , Sr1 , and
Sr2 , i.e. information about the first three rows of the Müller matrix (see caption of Fig. 3.5).
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Figure 3.5: Principal optical path of a RAE in terms of the Müller matrix formalism. The Stokes
vector at the detector position can be obtained by multiplying the Stokes vector associated with
the light source, which is assumed to be fully unpolarized, by the Müller matrices of each module
of the optical system. After reflection off the sample surface the components of the Stokes vector
read: Sr0 = 1

2

(
M11 +M12 cos 2P + (M13 cos ∆r −M14 sin ∆r) sin 2P

)
, Sr1 = 1

2

(
M21 +M22 cos 2P +

(M23 cos ∆r−M24 sin ∆r) sin 2P
)
, Sr2 = 1

2

(
M31 +M32 cos 2P + (M33 cos ∆r−M34 sin ∆r) sin 2P

)
,

and Sr3 = 1
2

(
M41 +M42 cos 2P + (M43 cos ∆r −M44 sin ∆r) sin 2P

)
. We used the following para-

meters: the polarizer angle P , the retarder angle ∆r, and the analyzer angle A.
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3.3 Ellipsometry

This means that the last row of the Müller matrix is not accessible by RAE. A reason for
this the missing of a retarder placed between sample and analyzer. The inclusion of the
latter one would make the last row assessable.
This whole setup can be translated into one Müller matrix. One has to multiply the

Müller matrices of all optical components. The resulting Müller matrix can be applied to
the Stokes vector of the incoming light. The result gives the Stokes vector at the detector
position. Mathematically speaking this reads as

SDetector =
[
MAnalyzerMSampleMRetarderMPolarizer

]
Si. (3.30)

We assume that p polarized light corresponds to a polarizer angle of zero degree. The
polarizer angle will be denoted with P , the retarder angle with ∆r, and the analyzer
angle with A. As an example we consider the Müller matrix from Eq. 3.29. We further
assume that ∆r = 0◦. The detector measures only the total intensity SDetector0 , i.e. the
first entry of the Stokes vector. Because the analyzer is continuously in rotation, one
can extract the Fourier components f1 and f2 from the measured intensity SDetector0 (t) =
SDetector,00 (1 + f1 cos 2A(t) + f2 sin 2A(t)). These have to be determined at least for six
different configurations of P and ∆r, in order to extract all 12 measurable matrix elements.
The RAE ellipsometer used within this PhD project measures more than six configurations
of P and ∆r and determines the Müller matrix elements by regression. Using our example
from Eq. 3.29 the intensity at the detector can be written as a function of the parameters
ψpp and ∆pp, which leads to:

SDetector =
1

4
(1− cos 2ψpp cos 2P )

(
1 +

cos 2P − cos 2ψpp
1− cos 2ψpp cos 2P

cos 2A(t)

+
cos ∆pp sin 2ψpp sin 2P

1− cos 2ψpp cos 2P
sin 2A(t)

)
(3.31)

One can directly read off the measured Fourier components f1 and f2:

f1 =
cos 2P − cos 2ψpp

1− cos 2ψpp cos 2P

f2 =
cos ∆pp sin 2ψpp sin 2P

1− cos 2ψpp cos 2P
(3.32)

From these, one can directly extract the ellipsometric parameters:

cos 2ψpp =
cos 2P − f1

1− f1 cos 2P

cos ∆pp =
f2√

1− f 2
1

· sin 2P

| sin 2P |
(3.33)

For one particular orientation of an aligned (with respect to the laboratory system), non-
depolarizing crystal the Müller matrix has now been fully determined via Eq. 3.29. The
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Figure 3.6: Sketch of the ellipsometer (J.A. Woollam, VASE).

determination of the dielectric constants require another additional measurement, i.e. a
second Müller matrix, in case of a tetragonal crystal. With the use of Eqs. 3.18 and 3.19
one can relate Ψpp and ∆pp to εxx and εyy. These equations have do be inverted and one
can determine εxx and εyy. For an orthorhombic the determination of the full dielectric
tensor requires three independent measurements.

3.3.3 Experimental setup

The principal setup of the ellipsometer used is given in Fig. 3.6. It consists of a commer-
cial ellipsometer (VASE, J.A. Woollam) and a liquid-He flow cryostat (KONTI cryostat,
CryoVac). A broad-band Xe lamp (190 nm - 2000 nm) serves as a light source. The light
is dispersed by a double-grating monochromator and coupled into an optical fibre We used
a thickness of 200 µm. The fibre is not transparent in the region 1340-1450 nm (0.86-
0.93 eV); no data is acquired in this energy region. Before entering the fibre, the light is
chopped, in order to make measurements in an illuminated room possible. This is done by
making use of a synchronous detection. Behind the fibre the light passes through a linear
polarizer. The polarizing angle is fixed for each measurement, but it can be varied. Behind
the polarizer an auto-retarder is placed, which imposes a variable retardation between 0-
90◦ on the light wave. This element consists of a MgF2 Berek waveplate. The auto-retarder
increases the accuracy of the measurement because the precision in measuring linearly po-
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larized light, i.e. ∆pp close to 0 or 180◦, is poor7. Furthermore, the inclusion of a retarder
makes it possible to differentiate between ∆pp = δ and ∆pp = 360◦ − δ which is necessary
since ∆ in Eq. 3.19 has this definition range. On top of that, the intensity is small for an
analyzer angle perpendicular to the direction of the nearly linear polarization. Afterwards,
the light shines onto the sample which is situated into the cryostat under a fixed angle of
70◦ (using two other windows also 55◦ and 50◦ are also possible, these configurations have
not been used). Outside the cryostat variable angles between 20−90◦ can be used. Behind
the sample the light passes a continually rotating analyzer. The intensity signal I(t) is
measured by a stacked detector consisting of Si (185-1100 nm) and InGaAs (800-1700 nm);
the detector switches automatically. All components are fully computer-controlled using
the software WVASE32 (J.A. Woollam). The software is used for modeling the optical
constants as well. This will be shown exemplarily for the case of Si and YTiO3 .

3.3.4 Cryostat and bake-out
A crucial issue in ellipsometry is its surface sensitivity. Since our samples are prepared ex
situ we have no chance to avoid surface contaminations. The samples have been prepared
following the recipe described in the appendix. Directly after lift off the sample is glued
on a Cu plate using silver paint. After a drying time of approximately 15 minutes the
plate is mounted on the cold finger of the cryostat. Next to the sample, a piece of a Si
wafer is placed on the cold finger as well. This wafer is used for the calibration routine
(see below). The cryostat is evacuated afterwards until the pressure is below < 10−7 mbar.
It turned out that this pressure is not low enough in order to achieve reproducible results
when varying the temperature. The main problem arises from H2O vapor which leads to
a permanently growing, detectable ice layer below 130-135 K depending on the pressure.
Therefore we applied a bake-out procedure. We started by heating the whole system for
100 h at 400 K. But we found that 50 h heating at 400 K plus 24 h for cooling down are
sufficient to reach an end pressure of approximately 5 · 10−10 mbar at room temperature.
Up from now no growing (ice-)layers have been observed.

3.3.5 Calibration procedure and data acquisition
After the bake-out procedure, one can start with the calibration routine. For every mea-
surement, including the calibration routine, the sample has to be properly aligned with
respect to the incoming beam and the detector.
First, the Si wafer is aligned. A measurement of ψ (= ψpp) and ∆ (= ∆pp) at several

wavelengths is used in order to determine the polarizer azimuth angles and the in-plane
and out-of plane window effects8. This is done by simultaneously fitting the latter effects
together with the parameters of an appropriate model for the Si wafer. This model has been
obtained before by characterizing the wafer outside the cryostat (see below). It consists

7The Fourier component f2 ∝ cos ∆pp. Thus, small variations away from 0 or 180◦ do not change f2
much. In that sense the sensitivity is poor and a retardation of 90◦ should be used.

8The windows slightly modify the polarization state of the incoming and reflected light.
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of a bulk Si substrate and a thin cover layer of SiO2 connected by an interlayer. Only
the thickness of the SiO2 layer is adapted in the calibration routine. The results for the
thickness can be compared to the values determined outside the cryostat as a consistency
check.
Afterwards, the sample is aligned. The first three rows of the Müller matrix can be

measured for a certain sample orientation. This procedure is fully automated.
The sample holder can nominally be cooled down to a temperature of 5 K, but a mea-

surement with an additional thermometer close to the sample shows that this temperature
can not be reached at the sample position, the lowest sample temperature corresponds to
approximately 15 K 9. A temperature calibration for the case of YTiO3 is shown in the
appendix. We will use this calibration for all measurements.

3.3.6 The standard Si wafer

As a first example, we will briefly show the results of a measurement on the Si (111) wafer
mentioned above. Since Si has isotropic optical properties, we could in principle directly
convert the measured quantities into the optical constants. However, Si forms a natural
surface oxide SiO2. This oxide must be taken into account for an accurate description. In
Fig. 3.7, the measured data and results for three different models are shown (purely Si;
Si/SiO2; and Si/interlayer/SiO2). The optical constants for Si, SiO2, and the interlayer
are taken from Ref. [103] and have been kept constant, while for the last two models the
thickness of the SiO2 has been fitted to the measured data. The interlayer thickness has
been kept constant. The analysis shows that, in order to be consistent with literature data
of Si, the inclusion of a SiO2 cover layer is a must for an accurate description of the data.
We used the Si/interlayer/SiO2 model for the calibration routine inside the cryostat since
the results give a slightly better mean squared error (MSE) than the Si/SiO2 model. We
fixed the thickness of the interlayer, because we wanted to keep the number of parameters
as low as possible. An interlayer is physically meaningful, since the optical constants of
two layers, here Si and SiO2 will not change abruptly at their interface. It is a reasonable
approach to average the optical constants of the two layers in a certain region. This is
done in case of the interlayer.

3.3.7 Exemplary data processing for YTiO3

As a second example, we will discuss the determination of an unknown set of optical
constants. The principal procedure for the data processing in this case is indicated in
the flowchart in Fig. 3.8. After the measurement of the Müller-matrix entries, the data
is compared to an appropriate model. One starts from the simplest model, i.e. a model
without any additional assumptions. The optical constants of the model are fitted to the
measured quantities. If one has over-determined the problem, some refinements like surface

9The reason for is the absence of a complete radiation shielding, because we need holes for the incident
and reflected light.
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Figure 3.7: Ellipsometric measurement of the Si standard. The data is fitted by three different
models: pure Si (top panel), Si/SiO2 (middle panel), and Si/interlayer/SiO2 (bottom panel). For
the modeling we used the optical constants for Si (si jaw), SiOO2 (sio2 jaw), and for the interlayer
(intr jaw) from literature [103]. The means squared errors (MSE) are also given for each model.

roughness, cover layers, etc., can be incorporated in the model. These refinements should
improve the quality of the fit, which is given by the mean squared error (MSE, proportional
to χ2), but at the same time should be based on realistic, physical assumptions. Finally
one obtains the results: optical constants, thicknesses of cover layers, surface roughness,
etc.. One can check the optical constants for Kramers-Kronig consistency.
We consider YTiO3 for illustrating the latter procedure. The optical constants of this

compound are not accurately known from the literature, especially not at low tempera-
tures. Also the different components of the conductivity tensor have not been resolved yet.
The goal of this work is to determine all entries of the conductivity tensor as function of
temperature. We will compare those with data from literature.
Since YTiO3 has orthorhombic symmetry, only the diagonal elements σa = σxx, σb = σyy

and σc = σzz of the complex optical conductivity tensor σ(ω) = σ1 +iσ2 are finite. We have
determined σ(ω) from measurements with 4 different orientations, namely with s-polarized
light parallel to the crystallographic a and b (a∗ and c) axes on the ab (a∗c) surface, where
a∗ = (110) within the Pbnm space group. It turned out that a non-absorbing cover layer
(d ≤ 2 nm) has to be assumed in order to achieve a consistent description of the data of
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Model:
• multi-layer withN = n + ik
• thickness, roughness

Measurement:
• rpp / rss = tan(ψpp) exp(i∆pp)
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Figure 3.8: Data processing in ellipsometry.

the two distinct surfaces.
In Figs. 3.9-3.12 the raw data are shown, namely the Müller matrix elements and the

model fits at 15 K for the four configurations mentioned above. For the analysis we
simultaneously fit σa, σb, and σc to the measured data. Please note, that we only used the
elements m12, m21, m33, and m34 (which are normalized with respect to M11, i.e. mij =
Mij/M11) for the determination of σ(ω). These elements contain the main information, if
the sample is oriented along its crystallographic axes (see above) and is non-depolarizing.
The deviations in the other matrix elements from zero or one in Figs. 3.9-3.12 arise from
the cryostat windows. Misalignment of the sample with respect to the laboratory system
of a few degrees has basically no effect on the spectra.
In order to check the reproducibility of our data we tried the same measurement with

new sample preparation several times. It turned out that the spectra did not always
look the same, although always the same recipe of sample preparation has been used.
An extreme example is shown in Fig. 3.13 for the matrix element m34. This is a serious
problem because the temperature dependence of the spectral weight in YTiO3 is rather
small when comparing to e.g. LaSrMnO4 (see chapter 4). Therefore we developed the
following strategy in order to obtain a self-consistent description for all measured data
sets, opening the possibility to a detailed analysis of small changes of the spectral weight
with temperature:

• In order to achieve a self-consistent multi-sample fit a thin cover layer can be included
into the data analysis. Physically this cover layer can take surface roughness, surface
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Figure 3.9: Measured Müller matrix elements of YTiO3 at 15 K (ab surface). The elements
are normalized with respect to the M11 element. The model consists of a Cauchy layer with a
thickness of 0 nm (see text) and a biaxial medium with three different dielectric constants. Data
set 1 (green and red curves, solid) denotes the sample orientation with Es||a, while for data set
2 (cyan and orange curves, dashed) the sample has been rotated by 90◦, i.e. Es||b. Only the
matrix elements m12, m21, m33, and m34 are used for the determination of the optical constants
(green and cyan curves). See also Fig. 3.10. The deviations of m13, m14, m22, m23, m24, m31,
and m32 are entirely due to the window effects. The orientation of the sample with respect to the
laboratory system is also given in terms of three Euler angles (φ, θ, ψ). The laboratory system has
to be rotated around the (z, x′, z′) axis. These rotations have to be carried out in the sequence
from left to right.
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Figure 3.10: Measured Müller matrix elements of YTiO3 at 15 K (ab surface). See also Fig. 3.9.
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Figure 3.11: Measured Müller matrix elements of YTiO3 at 15 K (a∗c surface). The elements
are normalized with respect to the M11 element. The model consists of a Cauchy layer with a
thickness of 2.2 nm (see text) and a biaxial medium with three different dielectric constants. Data
set 1 (green and red curves, solid) denotes the sample orientation with Es||a∗, while for data set 2
(cyan an orange curves, dashed) the sample has been rotated by 90◦, i.e. Es||c. Only the matrix
elements m12, m21, m33, and m34 are used for the determination of the optical constants (green
and cyan curves). See also Fig. 3.12. The deviations of m13, m14, m22, m23, m24, m31, and
m32 are entirely due to the window effects. The orientation of the sample with respect to the
laboratory system is also given in terms of three Euler angles (φ, θ, ψ). The laboratory system has
to be rotated around the (z, x′, z′) axes. These rotations have to be carried out in the sequence
from left to right.
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Figure 3.12: Measured Müller matrix elements of YTiO3 at 15 K (a∗c surface). See also Fig. 3.11.
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Figure 3.13: Top panel: Comparison
of two different spectra (Müller matrix
element m34) measured on freshly pre-
pared surfaces in the same geometry.
The raw data show significant differ-
ences but both data sets can be mod-
eled with the same optical constants as-
suming different thicknesses of the cover
layers. Bottom panel: direct inversion
(determination of the pseudo dielectric
function, see Sect. 3.3 and Eq. 3.20) of
the raw data from the top panel (with-
out any covers layers). The large differ-
ences in the matrix elementm34 directly
translates into large differences in σ1.
Additionally σa1 from the full analysis is
displayed leading basically to the same
results as the direct inversion. This
shows that to a good approximation we
only detect the effect of one component
of the dielectric tensor in one particu-
lar measurement geometry as suggest by
Aspnes [99].

oxidation, or surface contamination from the surface preparation into account. We
tried the following three cover layers:

(i) a surface-roughness layer which consists of a 50% mixture of the material con-
stants and the vacuum optical constants. Only the thickness is fitted for each
surface. This approach is called effective-medium approximation (EMA).

(ii) a layer with normal but fixed dispersion and no absorption. We have chosen
SiO2 as an example (this is suggested in the Woollam user handbook for the
case of unknown cover layers.). Again only the thickness is varied.

(iii) a so-called Cauchy layer with normal dispersion and no absorption:

n(λ) = A+
B

λ2
, k(λ) = 0 (3.34)

The thickness and the parameters A and B are varied.

As shown in Fig. 3.14 for the case of the 15 K data, all three cover layers lead to very
similar results for the optical conductivity. Although the absolute values are slightly
different the evolution with temperature stays almost unaffected. The deviations are
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Figure 3.14: Left column: Optical conductivity of YTiO3 at 15 K extracted from the measured
Müller matrix elements using the three different cover layers: Surface-roughness layer (black),
"SiO2" (red), Cauchy layer (green). For comparison an analysis without any cover layers is
shown (blue). Additionally the mean squared error (MSE) is listed in the plot. Right column:
∆σ1 = ∆σ1(15K)−∆σ1(295K) for the three different cover layers.

56



3.3 Ellipsometry

4

6

8

4

6

1 2 3 4 5
4

6

-0.05

0.00

0.05

-0.05

0.00

1 2 3 4 5
-0.05

0.00

 from KKT
 data analysis

 

 

 
 

 

 

ε 1 
 

c-axis

b-axis

 Energy (eV)

 

 

a-axis

 

 

 

 

 ∆ε
1 /ε

1  

 

 

 Energy (eV)

 

 

Figure 3.15: Left column: the dielectric function ε1 as obtained by the data analysis on YTiO3

at 15 K (blue, dashed) and from a Kramers-Kronig transformation on ε2 (red, solid). Two poles
have been used in order to mimic ε2 outside the measured region. Right column: The relative
error between the two values for ε1

largest in ∆σa, but still the curves exhibit the same characteristics. The analysis for
all temperatures is only performed for the Cauchy layer (iii). The parameters A and
B and the layer thickness d have been determined by a simultaneous fit of the lowest
and the highest temperature data (A = 1.010, B = 0.069) and have afterwards been
kept constant for intermediate temperatures. We also have incorporated an analysis
without any additional cover layers. Its mean squared error (MSE) is 25% larger
without a cover layer than for all models including cover layers. The steep increase
at approximately 4.8 eV in the a and b direction is shifted to 4.5 eV in the c direction.
However, the raw data suggests that for all directions the increase sets in at the same
energy (see discussion below). We conclude that the inclusion of a proper cover layer
greatly improves the description of many data sets with one set of optical constants.

• The imaginary part of the dielectric tensor or equivalently the optical conductivity
σ1 has to be positive: ε2 > 0. This is an important limitation. For the data analysis
on the ab surface, we assumed a thickness of the cover layer of d1=0 nm, while the
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fits for the a∗c surface end up with d2=2.2 nm. This result is not unique. If one
assumes a larger thickness d1 the fit will increase the thickness d2, giving results of
similar MSE and slightly different optical constants. However, if d1 becomes larger
than 0.2 nm the dielectric constant ε2 gets negative which is an unphysical result.

• The measurements on YTiO3 have been carried out on two different surfaces. The
raw data in Figs. 3.9 and 3.10 suggest that for the ab surface all spectra above
4.5 eV should be equal, especially Es || a, b, a∗. This leads to the conclusion that
εa2 = εb2 = εa∗2 in this energy region. For the a∗c surface (see Figs. 3.11 and 3.12)
a similar argumentation applies which results in εa∗2 = εc2. Putting this together
ε2(ω > 4.5 eV) should be isotropic in all three directions. Physically this means that
the excitation causing the steep increase at 4.8 eV (charge-transfer band) should be
almost isotropic. The raw data is in contrary to the expectation anisotropic in this
region. The increase at approximately 4.8 eV is at slightly different energies. We
believe that this discrepancy has to be repaired by assuming different thicknesses
of cover layers for the two different surfaces. As one can see in Fig. 3.14, the data
without a cover layer are not isotropic above 4.5 eV, while the inclusion of a proper
cover layer makes ε isotropic in the high-energy region.

As a check for our model, we analyzed several data sets (the sample has always been
lapped and polished again). All data sets can be described by the model by varying only
the thickness of the Cauchy layer (see Fig. 3.14 and appendix). As a further cross check, the
optical constant ε2 from the data analysis has been compared to the result obtained from
a Kramers-Kronig analysis on the values of ε1 (the software WVASE32 has incorporated a
model layer for doing this calculation). This is necessary since the fit is a point by point
analysis, which has not to be necessarily Kramers-Kronig consistent10. The results are
shown in Fig. 3.15. The overall agreement is always better than 5% (see right panel of
Fig. 3.15).

Comparison to literature

As indicated in Fig. 3.16, the measured data are in excellent agreement with the infrared
transmittance and reflectivity results by Rückamp et al. [26] which revealed an onset of in-
terband excitations at about 0.6 eV. These measurements have been carried out on the same
batch of samples. Moreover, the spectra are consistent with unpolarized room-temperature
data of Refs. [104–106] for the energies E < 2.5 eV. There are deviations to the data of
Okimoto et al. [107] and in general to all data for E > 2.5 eV. The optical conductivity
from Refs. [104–107] has been obtained from reflectivity measurements at room tempera-
ture using the Kramers-Kronig transformation. The discrepancy can be explained either
by errors in our measurement or analysis (due to low signal intensity of our lamp in the
UV range or an improper handling of the thin cover layers in our model, see discussion

10We started our analysis with Drude-Lorentz functions, which are Kramers-Kronig consistent, and used
the point by point analysis (Normal fit) only for the fine tuning.
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Figure 3.16: Optical conductivity
of YTiO3 obtained by ellipsometry in
comparison to other optical spectro-
scopies. Top: unpolarized room tem-
perature spectra obtained from reflec-
tivity measurements using the Kramer-
Kronig transformation [104–107]; Left:
unpolarized low temperature spectra
derived directly from transmission and
reflectivity data measured on the same
sample batch [26].

above), or by errors in the reflectivity measurement or in the extrapolations of the Kramers-
Kronig transformation. Also a difference in the intrinsic sample properties (e.g. oxygen
stoichiometry) may account for the discrepancy. Our samples are high-quality single crys-
tals and their properties, such as the Curie temperature, are comparable to those reported
in the literature [108]. As seen in the inset of Fig. 3.17 the reflectivity data from literature
[105, 107] show striking differences above 5 eV, which of course explains the difference in
conductivity reported by Okimoto et al. [107] and Taguchi et al. [105]. In the energy range
of 0.8 eV < E < 5.8 eV we derived the normal incidence reflectivity from our dielectric
constants and compare it to the literature data, see Fig. 3.17. Up to 4 eV there is good
agreement especially to the data of Taguchi et al. [105]. However, above 4 eV the derived
reflectivity data significantly deviate from the measured reflectivity. The discrepancy van-
ishes if one assumes a thin cover layer (Cauchy layer, see discussion above) present on the
samples measured in Refs. [105, 107]. We simulate the normal incidence reflectivity spectra
for thicknesses of the cover layer of 0, 2, 4, and 6 nm for all polarization directions (three
top panels) and for an unpolarized measurement (bottom panel). The reflectivity data of
Taguchi et al. and Okimoto et al. can very well be reproduced by our optical constants if
one assumes a thickness of 2-4 nm and 6 nm, respectively. On the other hand we note, that
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Figure 3.17: Comparison of measured unpolarized room-temperature reflectance data from
literature [105, 107] and calculated spectra using the results from ellipsometry for 0.8 − 5.8 eV.
From top to bottom: E||a, E||b, E||c, and E unpolarized (average of a, b, and c) for different
thicknesses of the cover layer (see text); inset: reflectance data from literature [105, 107] over a
wide energy range.
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Figure 3.18: Schematic scattering experiment.

it is not possible to describe our ellipsometric data with the same quality over the entire
energy range using the optical constants reported for YTiO3 in the literature, because the
reflectivity does not provide information about a possible cover layer. Our experimental
analysis and the comparison to literature indicate that cover layers, when present, affect
not only ellipsometry but also reflectivity measurements in the UV range. This can lead
to errors in the extracted optical conductivity.

3.4 Raman scattering
Raman scattering is an inelastic light-scattering technique which was named after its in-
ventor C.V. Raman [109]. He observed satellite peaks below and above the elastically
scattered photons (Rayleigh scattering). For his exploration he received the Nobel prize
in 1930. The basics of Raman scattering can be understood by regarding a schematic
scattering experiment, see Fig. 3.18. An incoming light wave Ei with wave vector ki (with
|ki| = 2π

λi
= 2πns

λi,0
=

ni,sωi
c0

, ns - real part of the refractive index of the scattering volume)
and frequency ωi gets linearly polarized in the direction ei and evokes a polarization P
inside the scattering volume (crystal):

P µ(r, t) = ε0
∑
ν

χµν(r, t)Eν
i (r, t) (3.35)

Here χµν represents the components of the electric susceptibility tensor and ε0 is the
permittivity of the vacuum. Following Maxwells’s equations, P produces a scattered light
wave Es with ks and ωs, which can be measured with a detector. The so-called Porto
notation serves as a brief description of the scattering geometry: ki(eies)ks.
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Being an inelastic experiment, incoming and scattered frequency are not equal in Raman
scattering, i.e. ωi 6= ωs. The incoming photon can either create an elementary excitation
(called Stokes scattering) or annihilate an elementary excitation (called Anti-Stokes) in
the scattering volume. The energy of this elementary excitation ωe can be obtained using
energy conservation:

ωe = |ωi − ωs| (3.36)

In practice, ωi is the laser frequency and therefore a known parameter. The scattered
frequency ωs is measured using a dispersive system, e.g. a monochromator. With Eq. 3.36
the frequency of the elementary excitation can be obtained.
The observability of elementary excitations in Raman scattering is limited by certain

conservation laws, which will be briefly discussed for the case of Stokes scattering:

- Spin conservation: When linearly polarized light is used in the experiment, it follows
from spin conservation Si = Ss + Se that the elementary excitation can only be a
Se = 0 excitation. However, this does not mean that excitations with Se > 0 can not
be detected. For example a simultaneous excitation of two S1,2

e = 1 excitations can
be combined to Se = S1

e − S2
e = 0. An example for the observation of a combined

two-particle Sie = 1 excitation is two-magnon light scattering [65, 110–112].

- k conservation: As a result of the conservation of k, namely ki = ks + ke, one can
only probe (one-particle) excitations very close to the Brioullin-zone center, i.e. with
ke ∼ 0. This follows from the fact that visible light for the incident and scattered
light wave have wave vectors of |ki,s| = 2π

λi,s
= 2πns

λ0,i,s
∼ 107 m−1. This is rather small

compared to an excitation from the center to the edge of a Brioullin-zone, which
needs approximately |ke| = π

a
∼ 1010 m−1, where a denotes the lattice constant.

An effective Raman Hamiltonian, which describes the interaction between the scattered
electromagnetic wave Es and the polarization P can be written as:

HRaman =
∑
µν

Eµ
s χ

µν(r, t)Eν
i (3.37)

It arises from second-order perturbation of the A ·p term and from first-order perturbation
of the A2 term in the interaction Hamiltonian of matter and light, see Eq. 3.4 [113].
The observable in Raman scattering is the differential cross section11 d2σ

dΩdω
(not to be

confused with the optical conductivity which is also denoted by σ). It measures the flux
of scattered photons in a certain frequency interval (ωs, ωs + dω) into a spatial angle dΩ
with respect to the flux of incoming photons. For our purpose, it is sufficient to know that

d2σ

dΩdω
∝ ω3

sωiV |
∑
µν

eµsRµνeνi |2, (3.38)

11A quantum-mechanical derivation of the cross section can be found e.g. in Refs. [72, 114], while an
approach based on correlation functions can be found in Refs. [110, 115].
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where ωi,s are again the frequency of the incident and scattered light, V is the scattering
volume, and R the so called Raman tensor [115]. This tensor reflects the symmetry of
the excitation and can be evaluated from the susceptibility tensor, which will briefly be
discussed below for the case of phonons. The Raman tensors for every symmetry are
tabulated for instance in Refs. [115, 116].
Let us refer again to the polarization in Eq. 3.35 which depends on the incident wave

and on the susceptibility. The creation of an elementary excitation gives rise to a time
dependent χ. This is sketched in Fig. 3.19: if χ is constant in time then the polarization has
the same frequency as the incident light wave (Rayleigh scattering). The spectrum shows
a single peak at ωi. On the other hand if χ becomes dependent on time, P gets modulated
in frequency. This yields two satellite peaks at ωi±ωe. Because the modulation amplitude
can be assumed to be small compared to the exciting amplitude, the susceptibility can
be developed into a Taylor series in suitable coordinates around the time-independent
susceptibility. For the case of phonons these coordinates are the normal coordinates Q
(in the case of magnons the spin operators [110]), which results in χµν(Q, t) = χµν0 (Q) +
∂χµν(Q)
∂Q

·Q + .... The polarization from Eq. 3.35 in the harmonic approximation, namely
Q = Q0 cos(ωet) and Ei = E0 cos(ωit), reads as:

P µ = ε0
∑
ν

χµν0 Eν
0 cos(ωit) +

ε0
2

∑
ν

∂χµν(Q)

∂Q
·Q0E

ν
0 cos((ωi ± ωe)t) + ... (3.39)

The first term oscillates with ωi and thus represents Rayleigh scattering, while the second
term oscillates with ωi ± ωe and describes the inelastic scattering in Raman spectra, see
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Figure 3.20: Schematic Raman-scattering setup (Dilor XY, MPI Stuttgart).

Fig. 3.19. The cross section for phononic scattering can be derived with some effort [115]:

d2σStokes
dΩdω

∝ ωiω
3
sV |

∑
µν

eµs
dχµν

dQ
·Q0 e

ν
i |2

~
2ωe

(n+ 1) (3.40)

d2σAnti−Stokes
dΩdω

∝ ωiω
3
sV |

∑
µν

eµs
dχµν

dQ
·Q0 e

ν
i |2

~
2ωe

n (3.41)

where the factor n = (e~ωe/(kBT )−1)−1 reflects the Bose-Einstein statistics. One can directly
read that for a non-vanishing Raman signal ∂χ

µν(Q)
∂Q

6= 0 has to be fulfilled. The derivative
depends on the symmetry of the excitation and therefore on the underlying crystal sym-
metry. Knowing the point-group symmetry of the crystal and the site symmetries of the
atoms, one can directly evaluate the selection rules for the observation of a certain phonon
in a Raman experiment. The corresponding analysis is called factor-group analysis [117].

3.4.1 Experimental setup
The Raman measurements on LaTiO3 and YTiO3 were carried out at the Max-Planck
institute for solid state research in Stuttgart12. The Raman setup, a Dilor 800 XY, is
schematically shown in Fig. 3.20. The power of the incident laser light of an Ar+/Kr+ ion
mixed-gas laser is reduced by grey glasses to 20 mW, which corresponds to a power below
10 mW at the sample position. The light passes a plasma-line filter and then a λ/2 plate in
12in close collaboration with C. Ulrich and B. Keimer
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order to control the polarization state of the incident, linearly polarized light. The beam
is reflected at a prism and focussed by a lens onto the sample. This is either placed inside
a flow cryostat for the low-temperature measurements or on a sample rotator outside the
cryostat. The scattered light is collected in quasi-backscattering (ki = −ks) geometry with
a misalignment below 10◦. The slight deviation of the angle of incidence from the sample
normal strongly reduces the stray light since the directly reflected light from the sample
surface does not meet the lens anymore. The polarization state of the scattered light is fixed
by an analyzer to the direction of highest sensitivity of the spectrometer. The scattered
light is analyzed by a triple-grating spectrometer system in the subtractive mode, i.e. a
double monochromator suppresses the stray light by several orders of magnitude, and the
third monochromator (1200 lines/mm) disperses the light. The detection takes place at a
nitrogen-cooled back-illuminated CCD camera. Typically, recording times of 300 seconds
have been used (typically 10-12 iterations). The measured intensities have been corrected
for the spectrometer response using a calibrated white-light source (Ulbricht sphere); the
measured energies have been checked by a standard Ar-lamp.
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4 Ellipsometry and Fourier
spectroscopy on La1−xSr1+xMnO4
(x=0, 1/8, 1/2)

In this chapter the optical studies on single-layer manganites are presented. It is organized
as follows: in the first section a very brief introduction to the physics of manganites is
given. Using a few examples of optical studies made on these systems in the past we will
show how powerful this technique is in order to study correlation effects. We proceed with
further details on the layered compounds which are necessary for the interpretation of our
data. After that we will review the experimental findings, which are discussed and analyzed
in the following sections. Here the focus is placed on the compound LaSrMnO4, because
it is the undoped d4 mother compound which we wanted to understand in detail before
increasing the complexity. For this compound we performed a multiplet calculation which
we directly compare to our measured data. We also discuss the temperature dependence
of the optical properties. In the last section we compare the doped compounds with the
undoped one.

4.1 Physics of manganites
The physics of manganites became famous due to the discovery of the colossal magneto
resistance (CMR), i.e. an extremely large drop of the resistance when a magnetic field
is applied (see e.g. Refs. [118–121] for an overview). Qualitatively this behavior can be
understood in terms of the double-exchange mechanism between Mn3+ and Mn4+ ions.
The motion of an electron is greatly favored by a ferromagnetic alignment of the spins
of adjacent manganese ions. It turned out that the pure double-exchange model is not
sufficient to explain the magnitude of the CMR effect [119]. One extension of this model
is the inclusion of Jahn-Teller distortions which leads to the formation of lattice polarons
[122]. When an electron moves it now has to "pay" the Jahn-Teller distortion energy (Mn3+

is a Jahn-Teller ion, while Mn4+ is not). This effect greatly enhances the effective mass of
the electron (polaron) and thus the magnitude of the double-exchange effect. However, the
polaronic picture cannot capture the observed phase separation [119, 121]. Thus a deeper
and complete understanding is still lacking. This discussion shows that the inclusion of
lattice and charge degrees of freedom leads to an improved understanding. One might
draw the conclusion that a fundamental study of the coupling between different degrees of
freedom will give further insights to CMR and other phenomena of high complexity.
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4 Ellipsometry and Fourier spectroscopy on La1−xSr1+xMnO4 (x=0, 1/8, 1/2)

Figure 4.1: The spin-orbital structure of LaMnO3. It is found to be ferromagnetically spin and
antiferro-orbitally ordered within the ab planes, while it is antiferromagnetically/ferro-orbitally
ordered between the planes (A-type antiferromagnet, C-type orbital order). Taken from Ref. [2].

Being the mother compound of CMR, LaMnO3 has attracted much interest in the context
of concurring spin, orbital and lattice degrees of freedom. The charge degree of freedom is
quenched here, since only Mn3+ ions are present. LaMnO3 shows A-type antiferromagnetic
order below 140 K and is orbitally ordered below approximately 780 K [87, 123]. The spin-
orbital structure of LaMnO3 is shown in Fig. 4.1. The electronic properties of LaMnO3

have been discussed for a long time in terms of a charge-transfer insulator [1, 69, 104, 124].
In more recent studies it has been claimed that a description as a Mott-Hubbard insulator
is more favorable, since the lowest electronic transition arises from intersite didj-excitations
[2, 125, 126]. We will discuss this below.
The orbital degree of freedom in LaMnO3 has also attracted a lot of interest during the

last years due to the prediction of orbital waves [60], sometimes termed orbitons. These
excitations differ from local crystal-field excitations because they show a significant dis-
persion. Up to now no clear evidence of orbital waves, which means the direct observation
of their dispersion, has been found in any compound. Features observed in LaMnO3 by
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4.1 Physics of manganites

Figure 4.2: Sketch of the charge-exchange (CE) phase, as observed e.g. in La0.5Sr1.5MnO4. It
consists of alternating 3y2 − r2/3x2 − r2 orbitals at the Mn3+ and holes at the Mn4+ sites (large
blue spheres). The spin structure forms ferromagnetic zig-zag chains. This charge/spin/orbital
structure is compatible with super-structure reflections as observed in neutron scattering and by X-
ray diffraction techniques [22, 128–130]. Nore that another orbital pattern, namely x2−z2/y2−z2,
has been suggested giving rise to the same superstructure reflections [131–134]. Also for the charge
pattern an alternative model has been proposed: the charge is not ordered on the manganese sites
but is distributed on the whole Mn-O-Mn bond, forming a Zener polaron [135]. The figure has
been taken from Ref. [134] and has been extended by the spin structure.

Raman spectroscopy were discussed in terms of orbital waves [47] but turned out to be
multi-phonon excitations [26, 59]. Very recently several authors reported on the observa-
tion of orbital waves in YTiO3 and YVO3 by means of Raman spectroscopy [55–58]. For
further general information about the 113 manganites1 we refer to Refs. [1, 127].
Another interesting class of manganites is composed of Mn-O layers2, for example

La1−xSr1+xMnO4. They offer rich physics with respect to all degrees of freedoms. The
fundamentals of, e.g. double exchange, orbital-ordering phenomena, charge ordering, etc.
can be studied within this class of compounds as well. The major number of publications
deals with the doped compound with x = 0.5. Here one can formally assume that the
crystal contains Mn3+ and Mn4+ in a ratio3 of 1:1. Besides antiferromagnetism below ap-
proximately TN = 110 K, charge ordering at TCO = 220 K has been detected by neutron
scattering and X-ray diffraction [128, 129], and in addition orbital ordering at the charge-
ordering temperature TCO = TCO = 220 K [129–134]. The combined charge/orbital/spin
structure is known as the charge-exchange4 (CE) phase [136]. It is sketched in Fig. 4.2
and discussed in more detail in the figure caption. The CE phase is a generic feature of
half-doped manganites since it has been also observed in half-doped 113 manganites [136].

1This abbreviation refers to the class of quasicubic compounds such as R1Mn1O3 (R-rare earth).
2The class of bilayer compounds La2−xSr1+2xMn2O7 will not be discussed.
3In general: Mn4+/Mn3+ = x/(1− x).
4Strictly speaking the abbreviation CE refers only the magnetic part of the charge/orbital/spin structure.
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4 Ellipsometry and Fourier spectroscopy on La1−xSr1+xMnO4 (x=0, 1/8, 1/2)

(a)

0.9         0.8             0.7 0.5
x               

(b)

Figure 4.3: Phase diagrams of La1−xSr1+xMnO4. (a) x = 0.0−1.0 region: from X-ray scattering
(• [137]), neutron scattering (� [137] and ♦ [138]), magnetometry (� [139]) and muon spin rotation
(. [140]) measurements. G-AF: G-type antiferromagnet, CE-AF: CE-type antiferromagnet, SG:
spin glass, COO: charge/orbital order phase, SRO: short-range charge and orbital order. Picture
taken from Ref. [137]. (b) x = 0.5−1.0 region: from transmission microscopy [141]. T: tetragonal,
FD: ferro-distortive, AFD: antiferro-distortive, ICOO: incommensurate charge and orbital order.
The latter three phases have lower symmetry than tetragonal. Since the original graph in Ref. [141]
is based on the formula Lax̃Sr2−x̃MnO4 we changed the axis by x̃ 7→ 1−x in order to be consistent
with the nomenclature used in (a). Diagram taken from Ref. [141]. In contrast to the phase
diagram shown, the SG phase is already present at x = 0 [142, 143].
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(a) (b) (c)

Figure 4.4: Phonon spectra of La0.5Sr1.5MnO4 as a function of temperature. (a) Reflectivity data
[144] and (b), (c) Raman data [145]. Both data sets show a strong loss of intensity (disappearance)
of phonon modes across the charge-ordering temperature.

Very recently several studies investigated the layered manganites La1−xSr1+xMnO4 as
function of x [23, 137, 139, 146–149]. The results are summarized in a phase diagram as
shown in Fig. 4.3. For x = 0 one finds a G-type antiferromagnet (AF) below 130 K. Further-
more soft X-ray linear dichroism experiments at 90 K [150] identified orbital ordering with
3z2 − r2 symmetry. This type of ordering is compatible with the observation of a strongly
elongated MnO6 octahedra along the c axis [148]. With increasing x antiferromagnetism
is suppressed and transformed into a spin-glass (SG) phase below 30 K at x = 0.13 which
extends up to x = 0.6. In contrast to the phase diagram shown, the SG phase is already
present at x = 0 according to Refs. [142, 143]. In the region 0.45 < x < 0.7 the charge- and
orbitally-ordered (COO) phase has been found below approximately 250 K. Very recently
it has been shown that this region extends up to x = 0.85, but with an incommensurate
wave vector. The commensurability is recovered at around x = 0.9 [141], see Fig. 4.3(b).
The symmetry in this phase is no longer tetragonal but orthorhombic, as deduced from
an optical phonon-mode analysis, X-ray and neutron studies [137, 141, 145–147, 151]. For
0.45 < x < 0.5 the CE phase has been found below 130 K (see discussion above). Outside
the COO dome short-range charge and orbital order (SRO) has been suggested.
Manganites have been intensively studied by optical spectroscopy. We would like to

give three short examples showing how powerful optical spectroscopy can be: (a) optical
spectroscopy and charge/orbital ordering, (b) optical spectroscopy and metal-insulator
transitions, and (c) optical spectroscopy and the kinetic energy of the Mott-phase. Note,
that all studies assumed randomly distributed La ions Sr on one crystallographic site.
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(f)

Figure 4.5: Optical conductivity of Eu0.5Ca1.5MnO4 as function of temperature. Data and
sketches taken from Ref. [152]: (a) calculated optical conductivity using the Hartree-Fock method
(b) measured anisotropy between zig-zag chains (x′) and the perpendicular direction (stripes, y′)
(c) CE phase pattern (d),(e) local hopping between adjacent electron-rich (Mn3+) and electron-
poor (Mn4+) sites. There are two hopping paths, one via the dx2−y2 orbital (d) and another
one via the d3z2−r2 orbital (e). Since the current operators5 read Jx′ = (Jx − Jy)/

√
2 and Jy′ =

(Jx + Jy)/
√

2 the contribution of (d) is suppressed in the y′ direction while those of (e) get
suppressed in the x′ direction. Since the state (d) is lower in energy, more weight should be
observed in the x′ direction at lower energies, in accordance with the experiment. (f) Evolution
of the anisotropy between the x′ and y′ directions as function of temperature.

(a) Optical spectroscopy and charge/orbital ordering - Optical spectroscopy is highly
sensitive to the reduction of symmetry (much more sensitive than X-rays). This can be
exploited in several ways, namely by the study of phonons and electronic transitions. The
study of temperature-dependent phonon spectra offers the possibility to determine the
number of optical phonon modes. As the number changes across a certain temperature this
give evidence for a phase transition. The number of modes and their polarization depen-
dence can be compared to the expectations from group theory (factor-group analysis [117]).
As an example we have chosen the orbital/charge-ordering transition in La0.5Sr1.5MnO4 as
depicted in Fig.4.4. In reflectivity data a mode at 0.07 eV disappears at approximately
the charge-ordering temperature of ∼ 220 K, while in the Raman spectra two modes at

5There is in our opinion a mistake in the paper, either in the coordinate system of Fig. 4.5 or in the
definition of the current operator.
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4.1 Physics of manganites

Figure 4.6: Optical conductivity spectra of La1−xSrxMnO3 for x = 0.175 [154]. The ferromag-
netic transition temperature is Tc=240 K.

500 and 700 cm−1 are reduced in intensity towards this temperature. The same effects are
also found by Jung et al. [151], showing further that the evolution of the optical gap with
temperature can be equivalently used in order to visualize the breakdown of charge/orbital
ordering as well as of the spin ordering [153]. Spin transitions can be observed in optics
due to the magneto-elastic or electron-phonon coupling, i.e. via a slight modification of the
bond length at the transition temperature. This modifies the hopping strength and thus
the optical conductivity.
Optical spectroscopy is also highly sensitive to anisotropies arising from orbital ordering.

In the CE phase the orbital pattern along and perpendicular to the zig-zag chains are very
different, see Fig. 4.2. Therefore, one expects a reduction of symmetry at a temperature
T = TCO, TOO. Due to the rearrangement of the orbitals the lattice will form an anisotropy
between x′ = x−y and y′ = x+y directions. This corresponds to a reduction of symmetry
from tetragonal to orthorhombic. The new axes in the orthorhombic space group are
rotated by 45◦ around z with respect to the tetragonal axis. This anisotropy will lead to
a different optical response in the x′ and y′ direction. This behavior is nicely shown in a
very recent paper on Eu0.5Ca1.5MnO4, see Fig. 4.5. Similar behavior has been reported for
La0.5Sr1.5MnO4 [144]. In both studies the optical feature at 1.0-1.5 eV have been explained
in terms of Mn-intersite didj transitions.
In another interesting study the impact of orbital rotations and mixing on the optical

properties on RMnO3 (R=La, Pr, Nd, Gd, Tb) was investigated [88]. Kim et al. found
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4 Ellipsometry and Fourier spectroscopy on La1−xSr1+xMnO4 (x=0, 1/8, 1/2)

Figure 4.7: Effective carrier concentration (Neff ) of the first electronic transition in LaMnO3

derived from (a) an oscillator fit to ε1,2 measured with ellipsometry [2] and (b) an integral over
σ1 up to 2.7 eV obtained from reflectivity measurements [69].

that the spectral weight of the first intersite Mn-Mn transition is increased with increasing
Mn-O-Mn bond angle φ. However, it turned out that this effect alone is not sufficient to
explain the reduction of spectral weight from La (large ionic radius, φ = 155◦) to Tb (small
ionic radius, φ = 145◦). They concluded that the orbital mixing angle θ between dx2−y2

and d3z2−r2 is increased upon decreasing the ionic radius. This example shows again the
high sensitivity of optical studies on the orbital arrangements.
(b) Metal insulator transitions - Especially in the 113 manganites optical spectroscopy

has been used in order to study metal-insulator transitions. As an example we show
the temperature-dependent optical conductivity of La1−xSrxMnO3 for x = 0.175 [154],
see Fig. 4.6. With decreasing temperature a Drude peak develops, a clear signature of
a metallic state. This behavior has been explained by the double-exchange mechanism.
Further information about this topic can be found in Refs. [1, 155].
(c) Optical spectroscopy and the kinetic energy of the Mott phase - The optical conduc-

tivity has been used as a direct measure of the kinetic energy K related to an electronic
transition. For that purpose one defines the effective carrier concentration Neff by the
following relation:

Neff (ωc) =
ma2

0

~2
·K =

2m

πe2N

∫ ωc

0

σ1(ω)dω (4.1)

Here m, a0, N , and ωc represent the electron mass, the ion-ion distance, the density of ions,
and the cut-off frequency. In Fig. 4.7 Neff for the lowest electronic excitation around 2
eV has been plotted from two different studies on LaMnO3. The first one determines Neff

from reflectivity measurements [69] while the second exploits spectroscopic ellipsometry [2].
Tobe et al. [69] argued that the lowest excitation at 2 eV can be assigned to a transition
between an oxygen and manganese site because no change of Neff has been observed across
the magnetic ordering temperature of approximately 140 K. A charge-transfer transition
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4.2 Details on layered manganites

between oxygen and manganese (pd) should not be affected by the spin, because the oxygen
can provide both up and down spins. Their conclusion is that LaMnO3 is a charge-transfer
insulator. In a later study Kovaleva et al. [2] argued that the opposite is true. They
show in a detailed analysis that there is well a redistribution of weight across the magnetic
ordering temperature. The magnitude of the spectral weight is in excellent agreement with
the expectations from the spin-spin correlation function in an orbitally-ordered background
[2, 83]. On the basis of their data they concluded that the lowest transition corresponds
to a high-spin intersite didj excitation and not a pidj transition. Finally they end up with
the conclusion that LaMnO3 is of Mott-Hubbard type.
The discrepancy in the presented data may result from a lack of accuracy in the re-

flectivity measurement R. For determining σ1 one has to rely only on R and use the
Kramers-Kronig transformation for calculating the phase. In ellipsometry one measures
two independent quantities (see chapter 3). The consistency of the data can be checked by
the Kramers-Kronig transformation. Additionally no standard is necessary for the mea-
surement (for the reflectivity one usually takes Au as a reference material). Therefore we
suggest to trust the data of Kovaleva et al..

4.2 Details on layered manganites
We will give the details on the layered manganites La1−xSr1+xMnO4 for the compositions
x = 0.0, x = 0.13, and x = 0.5, which have been measured in this thesis. The focus is laid
upon the weak doping regime.

4.2.1 Crystal structure

The crystal structure of La1−xSr1+xMnO4 is shown in Fig. 4.8. For small x it crystallizes in
a tetragonal structure with space group I4/mmmm [148, 149]. As stated above, the crystal
structure is orthorhombic for x = 0.5 in the CE-phase [144, 146, 147], but a determination
of the space group is still missing. For the following discussion we will assume that all
compounds are tetragonal. The manganese ions are surrounded by oxygen octahedra,
which are elongated along the c axis; the Mn-O bonds coincide with the crystallographic
axes. The nominal valence of the manganese changes with x as Mn+(3+x). The lattice
parameters are summarized in Tab. 4.1. With increasing x the distortion of the octahedra
is strongly reduced: for x = 0.0 the ratio dMn−O(1)/dMn−O(2) is approximately 0.82 while it
increases up to 0.97 for x = 0.5 [148]. As shown in Fig. 4.8 O(1) represents the basal and
the O(2) the apical oxygens in the unit cell.
All crystals measured for this thesis are high-quality single crystals. They have been

grown by M. Benomar (x = 0.0, x = 0.5) [143] and P. Reutler (x = 0.13) [156] using a
mirror furnace. The samples have been characterized by resistivity, magnetic susceptibility,
specific heat and thermal expansion measurements as well as X-ray and neutron scattering
[157]. The details of growth and characterization can be found in their PhD theses [143,
156, 157].
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4 Ellipsometry and Fourier spectroscopy on La1−xSr1+xMnO4 (x=0, 1/8, 1/2)

a
b

c
La/Sr

O
Mn

O(2)

O(1)

Figure 4.8: The unit cell of La1−xSr1+xMnO4 (space group I4/mmmm). It consists of MnO6

octahedra, forming MnO2 layers in the ab plane.
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4.2 Details on layered manganites

Table 4.1: Results of the single-crystal and powder neutron-diffraction experiments on
La1−xSr1+xMnO4 for room temperature (RT) and for low temperature (LT) ∼ 20 K. The Mn
site is at (0,0,0), the O(1) site is at (0,0.5,0), and O(2) and La/Sr are at (0, 0, z). The data are
reproduced from Ref. [148]. They are comparable to those in Ref. [23]. Uiso and Uii represent the
Debye-Waller factors (thermal displacements of the corresponding atoms)

x = 0.0a x = 0.125b x = 0.5a

a (Å) RT 3.786 3.814 3.863
LT 3.768 3.794 3.855

c (Å) RT 13.163 12.938 12.421
LT 13.195 12.985 12.397

V (Å3) RT 188.676 188.204 185.356
LT 187.348 186.879 184.257

Mn Uiso (10−4Å2
) RT 13(3)/68(3)c 15(6) 19(2)/30(3)c

LT 9(3)/30(5)c 5(4) 5(3)/ 5(3)c
La/Sr z RT 0.35598(2) 0.35688(8) 0.35816(3)

LT 0.35564(2) 0.35699(8) 0.35814(4)
Uiso (10−4Å2

) RT 46(8)/38(8)c 34(3) 40(1)/30(1)c
LT 19(1)/17(2)c 18(3) 5(3)/ 5(3)c

O(1) U11 (10−4Å2
) RT 31(1) 46(8) 62(2)

LT 27(2) 63(8) 36(3)
U22 (10−4Å2

) RT 71(1) 46(7) 69(2)
LT 45(2) 24(8) 68(3)

U33 (10−4Å2
) RT 100(2) 74(8) 67(2)

LT 58(3) 62(8) 27(4)
O(2) z RT 0.17221(3) 0.16900(11) 0.16106(8)

LT 0.17270(4) 0.17023(11) 0.16138(10)
U11 (10−4Å2

) RT 179(2) 191(7) 117(2)
LT 131(2) 86(6) 70(2)

U33 (10−4Å2
) RT 74(2) 163(9) 68(2)

LT 51(3) 180(9) 52(3)

Bond length dMn−O(1) (Å) RT 1.89335(1) 1.90714(3) 1.93164(3)
LT 1.88403(8) 1.89684(4) 1.92763(6)

dMn−O(2) (Å) RT 2.2668(4) 2.1873(14) 2.0005(9)
LT 2.2788(5) 2.2104(14) 2.0006(13)

aRefinement of single-crystal data.
bRefinement of powder-crystal data.
cThe single-crystal data refinement allows one to determine anisotropic
thermal parameters on the Mn and La/Sr sites, U11=U22 and U33.
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Figure 4.9: Manganese ion in a tetragonal crystal field: Mn3+ has four valence electrons. In
the presence of a cubic crystal field, the degeneracy of the 3d levels is lifted and the energy levels
are split into t2g ≡ dxy, dxz, dyz and eg ≡ dx2−y2 , d3z2−r2 levels. Starting from cubic symmetry,
an additional tetragonal elongation of the oxygen octahedra along the z axis lifts the degeneracy
within the t2g and eg levels, respectively. The representations in D4h are b1g ≡ dx2−y2 , a1g ≡
d3z2−r2 , b2g ≡ dxy, eg ≡ dxz, dyz.

4.2.2 Manganese ion in a tetragonal crystal field

In a tetragonal crystal field, as present in LaSrMnO4, the energy levels of the Mn3+ ion
are split into four different levels. The crystal field can be characterized by using three
parameters Dq, Ds and Dt [18], describing the cubic and tetragonal contributions of the
crystal field. The levels are shown in Fig. 4.9. If four electrons are filled into these levels
according to Hund’s rules, the highest filled orbital is the d3z2−r2 orbital while the first
unoccupied one is dx2−y2 . Some care has to be taken especially when regarding excited d4

states because configuration mixing has to be taken into account [20]. The crystal-field
picture can already account for the increase of the ratio dMn−O(1)/dMn−O(2) with increasing
x. Enlarging x increases the number of Mn4+ ions. Mn4+ is a d3 system and not Jahn-Teller
active, i.e. the lattice relaxes. This can be seen for example when comparing the lattice
constants of the Jahn-Teller compound LaSrMnO4 (d4) with those of a non-Jahn-Teller
compound, e.g. Cr in LaSrCrO4 (d3). The latter materials shows a ratio of c/a = 3.2 while
the former one has roughly 3.55 [158].
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4.2 Details on layered manganites

4.2.3 Thermal expansion

We show the thermal expansion for the compositions x = 0.0 and x = 0.13 as published in
Ref. [148] in Fig. 4.10. For x = 0.0 the c axis shrinks up to 600 K. Several anomalies can
be observed: one at approximately the Neél temperature of 130 K, one at approximately
220 K, and another one at 600 K. The a axis shows an almost linear increase starting from
100 K. Increasing the doping to x = 0.13 leads to a reduction of the magnetic ordering
temperature to approximately 65 K. The thermal evolution of the lattice constants shows
similar behavior, but the inflection point of the c axis observed at 600 K for x = 0.0 can
now already be seen below 200 K. Both compositions also show a similar behavior in the
thermal expansion coefficients (bottom panel of Fig. 4.10). The ordering temperatures of
the two compounds can be directly read off: TN = 130 K for x = 0.0 and TN = 65 K for
x = 0.13. These results coincide with the temperature dependence of the antiferromagnetic
superstructure reflections.
In order to understand the anomalous contraction of the c axis as well as the x depen-

dency of the lattice parameters, Senff et al. [148] suggested that the orbital mixing angle
θ might change or fluctuate upon doping and temperature. The mixing angle determines
the ground-state wave function of the highest eg electron by |θ〉 = cos(θ/2)|3z2 − x2〉 +
sin(θ/2)|x2 − y2〉. These authors mentioned that this ground state requires a lower sym-
metry than tetragonal (for angles θ 6= n · 120◦). A reduction of symmetry has not been
observed. In a theoretical study of an orbital t-J model adapted to the layered mangan-
ites Daghofer et al. [159, 160] found indeed that the occupation of the in-plane orbitals
is increased with increasing x, at the cost of the occupation of the out-of plane orbitals
as suggested by Senff et al.A similar reorientation has been found Daghofer et al. [160]
for x = 0.0 with increasing temperature. We note again that this reorientation must be
accompanied by a structural phase transition which has not been observed for x < 0.4.
Daghofer et al. assumed a static crystal field splitting Ez between the two eg states of the
order of Ez = 0.5t = 0.25 eV, where t is the Mn intersite hopping which is of the order
of 0.5 eV [38]. For the temperature-dependent study an even lower value Ez = 0.2t = 0.1
eV has been used. From the experiments as presented in this chapter it is evident that Ez
must be at least 0.2-0.5 eV (∼ 1600− 4000 K) for the compound with x = 0.0. This makes
the interpretation of a thermal occupation of a static crystal field level unlikely. However,
the inclusion of phonons would change the picture. If we assume for a moment that the
electron-phonon coupling is strong in this compound, then the orbitals are locked to the
lattice. If one now thermally excites a phonon of A1g symmetry then the electron-phonon
coupling will force electrons into the dx2−y2 orbital, because this is energetically favorable.
In that sense the dx2−y2 orbital gets thermally populated with increasing temperature,
because more A1g phonons get excited. This is physically fundamentally different to the
approach of Daghofer et al. [160], where only a static crystal field has been considered and
phonons have not been included. For the optical experiments a strong electron-phonon
coupling will lead to Frank-Condon like transitions [161].
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Figure 4.10: Top panel: temperature dependence of the lattice constants a and c of
La1−xSr1+xMnO4 for x = 0.0 and x = 0.13 (inset). Bottom panels: thermal-expansion coeffi-
cients and the intensity of an antiferromagnetic superstructure reflection from neutron-scattering
experiments at (0.5,0.5,0.0). Figure taken from Ref. [148].
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Figure 4.11: Left: LDA calculation of LaSrMnO4 (spin up: solid; spin down dashed). Right:
LDA+Ueff calculation with Ueff = U − J = 2 eV. The results are taken from Ref. [162]. We
included the caption of the Mn band symmetries by comparing to a calculation by H. Wu. In
Ref. [162] a precise assignment is only given for the two bands near the fermi edge.

4.2.4 Electronic structure

The major difference between layered manganites and the CMR compounds is that the
layered compounds stay insulating upon doping while the latter ones become metallic (see
above). In order to understand e.g. these difference one has to investigate the electronic
structure. We give in this section a brief overview of results on the layered compounds.
The focus is on the low-doping regime.
We will start with the undoped compound with a doping level of x = 0.0. Band structure

calculations (LSDA) yield a metallic state [162], in contradiction to the insulating ground
state found in experiments. However, LSDA shows that the antiferromagnetic solution
is lower in total energy than the ferromagnetic one6. The wrong prediction of a metallic
ground state points towards correlation effects in this compound. Indeed, the inclusion of
an onsite repulsion U [150, 162] opens a gap in LaSrMnO4, see Fig. 4.11.
One might address the following questions: If the system is a correlated insulator, is it

of Mott-Hubbard or charge-transfer type? This is a crucial issue for the understanding of
the doping dependence because the doped carriers reside either in a Mn 3d band or in an
O 2p band [66]. Which orbitals are occupied and what is their occupation? Which are the

6Calculation carried out by H. Wu.
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excited states? In how far can LDA+U explain the experimental findings? Is it possible
to switch to a localized description?
From the experimental side different X-ray studies measured the occupied and unoccu-

pied bands [23, 149, 150, 163–165]. The studies of Kuepper et al. [164, 165] are concerned
with the compound x = 0.0. They determined the valence band by X-ray photo electron
spectroscopy (XPS) and found a small peak at -0.7 eV and a stronger band centered at -4
eV with a width of 2 eV. By using (resonant) X-ray emission spectroscopy ((R)XES) they
were able to determine the projected density of states for the Mn and O site. The Mn
site shows its prominent contribution at -2 eV and a small shoulder at approximately -0.7
eV, while the O site has a maximum at -3 eV. They compared their data to the density
of states obtained from LDA+Ueff 7 calculations with Ueff = 2 eV and 8 eV [150, 162].
Their data are in agreement with the calculation of Park [162] with Ueff = 2 eV. Their
results suggest that LaSrMnO4 is of the Mott-Hubbard type, because the lower Hubbard
band is located above the oxygen band. By comparing to the LDA+U calculation one can
read that the lower Hubbard band has d3z2−r2 symmetry. Support comes from soft X-ray
linear-dichroism data [132, 150]. The agreement with simulated spectra on the basis of a
multiplet calculation with occupied d3z2−r2 orbitals gives evidence for an orbital ordering
[132, 150].
The unoccupied bands of the x = 0.0 compound have been studied by X-ray absorption

spectroscopy by different groups [23, 132, 149, 150, 163, 165]. In the study of Ref. [165]
no polarization-dependent spectra have been recorded. Thus, we will not discuss this
study in further detail. Note that there exist large differences in the raw data especially
between Ref. [163] and Refs. [23, 132, 149, 150]. We will only refer to the latter studies
since they find similar results. From the anisotropy of the absorption along a and c a
dx2−y2 character of the lowest unoccupied orbital has been deduced [132, 150]. From
near-edge X-ray absorption fine structure (NEXAFS) data Merz et al. [23, 149] suggested
that the occupation of the dx2−y2 orbital is not zero but 15% (and the occupation of
the d3z2−r2 orbital 85%). Furthermore they argued that LaSrMnO4 shows typical charge-
transfer behavior because the "...UHB (upper Hubbard band) is continuously reduced and
the VB (valence band) increases, indicating that holes are created in in-plane and out-
of plane states and that spectral weight is transferred from the UHB to the VB". This
argumentation is not clear to us, since the first peak can also be regarded as a transition
into the upper Hubbard band. This assignment has been done by Wu et al. [150]. Higher
lying peaks are interpretable as higher-lying Hubbard bands.
Optical spectroscopy probes the transitions from the lower to the upper Hubbard band

and from the oxygen band to the upper Hubbard band. For the low-doping regime optical
studies have only been carried out at room temperature for x = 0.0 in comparison to
other layered compounds of the series LaSrMO4 (M=Cr, Mn, Fe, and Co) [158]. The
authors of Ref. [158] analyzed all spectral features of LaSrMnO4 in terms of charge-transfer
excitations. The optical gap has been found at 0.5 eV in agreement with estimates for the
charge-transfer energy from an ionic model.

7The effective onsite Coulomb repulsion is Ueff = Usimple − JsimpleH .
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4.3 Experimental results

For low doping Merz et al. found a large redistribution of weight with increasing x
[23, 149] in NEXAFS (see above) spectra. They suggest that with increasing x electrons
are moved from the d3z2−r2 orbitals into the d3x2−r2/d3y2−r2 orbitals, i.e. the orbitals are
locally arranged in the CE-type pattern, see Fig. 4.2 and its caption. Note, that this breaks
the tetragonal symmetry, which has not been observed in X-ray studies of the structure
[148, 149].
The half-doped compound with x = 0.5 has already been discussed in the introductory

section. Optical spectra have been analyzed in terms of the double-exchange model. The
lowest excitation is observed at approximately 1 eV and has been assigned to intersite didj
transitions between the bonding and non-bonding bands of the Mn3+ and Mn4+ sites [153]
(see also Fig. 4.5 and its caption). Similar features have been observed in the doped 113
manganites and attributed to the same origin [126].
To summarize: LaSrMnO4 is a correlated insulator. In a one-electron language the

lowest unoccupied orbital has predominantly dx2−y2 symmetry and the highest occupied
orbital d3z2−r2 character. LDA+U seems to give a reliable description of the spectroscopic
findings so far. Similar to the discussion in LaMnO3 there is no consensus in literature
that LaSrMnO4 is of the Mott-Hubbard type. Since there have been no temperature- and
polarization-dependent optical studies on LaSrMnO4 we fully determined the optical con-
ductivity tensor as function of temperature. As we will show in this chapter our results give
further experimental evidence for the Mott-Hubbard character of the undoped compound.

4.3 Experimental results
In this section we would like to give an overview of the results obtained on (La,Sr)2MnO4.
We only present the ε1, ε2, and σ1 values obtained from the measured Müller matrix
elements by means of ellipsometry. The spectra have been derived in the same way as
described in chapter 3 for YTiO3. We did not include any cover layers in the analysis
because the surface of the manganites seems to be robust with respect to oxidation etc.
(e.g. we measured the sample again after some time without a new preparation of the
surface and the spectra are simialr and our data are in satisfactory agreement to room
temperature data of Moritomo et al. (see below) for the x = 0.0 compound [158].

4.3.1 LaSrMnO4

We start with the compound with x = 0.0. The dielectric function and optical conductivity
are plotted in Fig. 4.12 in the range from 0.75 to 5.8 eV. We focus the discussion on ε2 (or
σ1) because it is a measure of the absorption. It shows a striking polarization dependence
between the a and c direction. In particular there is only one strong peak at 5.6 eV in the
c direction, while a multi-peak structure is visible in the a direction (peaks at ∼ 2, 3.5,
4.5, 4.9, and 5.5 eV). All peak intensities show a strong temperature dependence, e.g. the
structure ∼ 22 eV in the a direction gain weight with increasing temperature, while the
peaks at 4.5 and 4.9 eV clearly loose weight. We monitor the transfer of spectral weight
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Figure 4.12: Dielectric constant a) and optical conductivity b) of LaSrMnO4 for the a and c
direction between 0.75 - 5.80 eV for different temperatures.
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Figure 4.13: Change of the optical conductivity of LaSrMnO4 in temperature intervals of ap-
proximately 100 K. σ1(120K)-σ1(15K), σ1(230K)-σ1(120K), σ1(330K)-σ1(230K).

(SW) for different temperature ranges in Fig. 4.13. It is remarkable that in the temperature
range 120 K - 230 K the changes in σ1 are most prominent. Some shifts of the SW from
high to low energies can be observed, in particular 3.5 → 3.0 eV and 4.5 → 2.0 eV in the
a-axis spectra.
In order to discuss the development of the spectral weight (SW) in more detail we show

in Fig. 4.14 the effective carrier concentration from the partial sum rule from Equation
4.1. We use as lower limit ωc1 = 0.75 eV instead of ωc1 = 0.0 eV, since the missing weight
between 0 and 0.75 eV is negligibly small. Equation 4.1 translates into the f-sum rule with
ωc2 → ∞ [93]. The overall spectral weight in the measured region (ωc2 = 5.5) decreases
(increases) with increasing T in case of the a (c) direction, as indicated in Fig. 4.14 (top
panel). The overall change between 4 K and 300 K amounts to approximately 10% in
the c axis and 3% in the a axis. It is striking that σ1 in the a direction intersects at
approximately ωi = 4.0 eV for all temperatures. In order to analyze the shift of SW across
this energy we plotted Neff for the a direction, see the middle panel of Fig. 4.14. The SW
increases with increasing temperature below ωi and increases above. It is worth noting
that the change in weight sets in almost 30 K below the magnetic transition temperature
of 133 K, but at approximately TN the curves posses a point of inflection.
We go one step further and assume that the optical spectrum is composed out of a sum
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Figure 4.14: Effective carrier concentration Neff for the a and c direction of LaSrMnO4 as a
function of temperature. Full energy range (top panel), partial energy range with an intermediate
energy of ωi=4 eV (middle panel), and below 4 eV with an intermediate energy of ω′i=2.8 eV
(bottom panel).

of Drude-Lorentz oscillators [93]:

ε(ω) = ε∞ +
∑
j

ω2
p,j

ω2
0,j − ω2 − iγjω

(4.2)

The parameters ω0,j, ωp,j, γj, and ε∞ are the peak frequency, the plasma frequency, the
damping of the jth oscillator and the dielectric constant at "infinite" frequency (outside the
measured region). The great advantage of this function is its Kramers-Kronig consistency,
in contrast for example to a Gauss function. The spectral weight of a single Lorentzian
can be put into relation to the plasma frequency [2, 93]:

Neff =
2mV

π e2

∫ ∞
0

σ1(ω)dω =
mV ω2

p

4π e2
(4.3)
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Figure 4.15: Dielectric constant along the a direction of LaSrMnO4 at 15 K and 330 K (black
dots). Additionally a fit using seven Drude-Lorentz oscillators is shown (solid line). The contri-
butions of the different oscillators to ε2 are also given.

The variables have the following meaning: m is the effective mass (we will set this value
to the electron mass, i.e. m = me), V is the volume of the unit cell per number of ions
that constitute to this particular oscillator, e is the electron charge,

∫∞
0
σ1(ω)dω is the

spectral weight (SW) , and ωp the plasma frequency. All quantities are measured within
the cgs system. For a conversion into the SI system, see Refs. [92, 166]. Figure 4.15 shows
a simultaneous fit8 to the dielectric constants ε1 and ε2 along the a direction using seven
Drude-Lorentz oscillators (see Eq. 4.2). It is necessary to put one strong oscillator outside
the measured region in order to get a good fit. The inclusion of a constant ε∞ is not
sufficient. This procedure is justified since one finds several strong peaks in the room-
temperature optical conductivity reported by Moritomo et al. [158] outside our measured
region. The parameters ω0 and γ of the strong oscillator outside the measured range
have assumed to be constant with temperature. The fit shows that the data obtained
from ellipsometry is Kramers-Kronig consistent, otherwise a satisfactory fit with Drude-
Lorentz functions would not have been possible. Since ellipsometry determines both ε1 and
ε2 independently, the contributions of higher-lying bands to the measured region can be
fixed quite accurately in comparison to, e.g., pure reflectivity measurements. We denote
the oscillators (a) to (g). For the c direction we performed a corresponding fit using two
oscillators at 5.5 and 8 eV; the parameters of the oscillator inside the measured region
are shown in Fig. 4.17(h). The temperature dependence of these seven Drude-Lorentz
oscillators, i.e. their parameters ω0, ωp and γ, has been plotted in Figs. 4.16 and 4.17.

8We used the excellent program "Reffit" by A. Kuzmenko which can be found in the web as freeware.
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4 Ellipsometry and Fourier spectroscopy on La1−xSr1+xMnO4 (x=0, 1/8, 1/2)

Note that we measured at 18 different temperatures. In Fig. 4.12 we have only shown half
of them for clarity. For the fit at different temperatures along the a direction the position
ω0 and the width γ of the highest oscillator (g) as well as the value of ε∞ = 1.22 have
been fixed. The behavior of the three lowest oscillators (a)-(c) is quite robust to the
choice of starting values, because the overlap with other bands is quite small. These bands
lower their peak frequency by approximately 0.2 eV and become significantly broader with
increasing temperature. The bands (a) and (b) clearly gain weight while (c) slightly loses
weight with increasing temperature. The peak frequencies of the higher-lying bands (d)-(f)
remain almost unchanged with temperature. Only band (d) shows systematic broadening
and the weight of band (e) gets suppressed to almost zero with increasing temperature.
The oscillator (h) along the c direction becomes monotonically broader and more intense,
while it resides almost at the same position of 5.55 eV.
In order to get an estimate of the optical gap we also performed transmittance mea-

surements at 5-300 K using a Fourier-transform spectrometer. The sample was approx-
imately 70 µm thick and has been prepared in the same way as briefly described in the
appendix. Figure 4.18a) shows the transmittance (T ) spectra and the calculated quantity
− ln(T ) ∝ σ1 in the energy region from 0.10-0.90 eV. The transmittance is a very sensitive
probe in order to extract the temperature dependence of the onset of the optical gap ∆opt.
From linear extrapolation of − ln(T ) to zero we find ∆a

opt = 0.45− 0.50 eV and ∆c
opt > 0.9

eV at T = 5 K. In order to monitor the temperature dependence of the gap we solve the
equations − ln(T a) = ma and − ln(T c) = mc with ma = 5.0, 4.5 and mc = 0.40, 0.35, 0.30,
respectively, where Ta,c are transmittances along the a and c axes. The results have been
normalized to the values at T = 5 K and are shown in Fig. 4.18b). The evolution of the
gap with temperature changes its slope at TN = 133 K as evident from the derivative plot
in the inset of 4.18b) and from the lower panel (independent of the choice of the constant
ma and mc).

4.3.2 La1−xSr1+xMnO4

We proceed with a comparison of the ellipsometric data for x = 0.0 to the doped samples
with x = 0.13 and x = 0.50. The dielectric constant at T = 295 K is shown in Fig. 4.19
and the optical conductivity in Fig. 4.20 (upper panel). For the discussion we only refer
to the latter figure. Also for the doped samples a strong anisotropy between the a and c
direction has been found. In the a axis again a multi-peak structure has been observed
similar to x = 0.0. One clearly observes a peak at approximately 1.5 eV, which gains weight
with increasing x. Besides the band at 1.5 eV, the peak at 3.5 eV clearly gains weight in
the x = 0.5 sample and the high energy part > 4.5 eV loses weight. The evolution of the
effective carrier concentration with x is shown in Fig. 4.21. The overall spectral weight in
a is almost conserved, while the low-energy peak at 1.5 eV increases in intensity with x. In
the c axis the overall weight in c is increased with x, see Fig. 4.21. A new feature develops
at approximately 3 eV, not being present in the x = 0.0 case. For the higher doped sample
this feature gains weight. The peak at 5.6 eV decreases in intensity while another feature
gain weight at 4.5 eV, see Fig 4.20 (lower panel).
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Figure 4.16: Results of a Drude-Lorentz fit to the measured data ε1 and ε2 of LaSrMnO4.
The parameters ω0 (peak frequency), ωp (strength), and γ (damping) are shown as a function
of temperature. The panels refer to peaks (a)-(d) in Fig. 4.15. In panel (b) we show a fit using
Eqs. 4.18 and 4.20 (see Sect. 4.4.2 below).
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Figure 4.17: Results of a Drude-Lorentz fit to the measured data ε1 and ε2 of LaSrMnO4.
The parameters ω0 (peak frequency), ωp (strength), and γ (damping) are shown as a function
of temperature. Panel (h) contains the parameters of the fit to the c-axis data using only two
oscillators (the 2nd oscillator is placed outside the measured region and is kept fixed in ω0 and γ;
it is not shown). The panels refer to peaks (e)-(f) in Fig. 4.15.
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Figure 4.18: (a) Transmittance T of a thin LaSrMnO4 sample (d∼70µm) and -ln(T ), which is
proportional to σ1, for 5 and 150 K. (b) The evolution of the optical gap as function of temperature.
In order to get a measure of the gap, we take the solution of -ln(T )=m, with ma = 5.0, 4.5 and
mc = 0.40, 0.35, 0.30 for the a and c axes, respectively.

Regarding the temperature dependence for the x = 0.13 compound, a similar trend as
in the x = 0.0 case can be observed, see Fig. 4.22. Weight is shifted from the high-energy
(4.5 eV) region to the low-energy region (2.0 eV). However, the dependence is weaker. It
is also worth noting that the fine structure present in the x = 0.0 sample around 4.5 eV is
washed out.
For x = 0.5 we have also measured the transmittance through a 9µm thick sample

and the reflectivity on a thick sample with a Fourier-transform spectrometer, in order to
estimate the optical gap and to track the peak at almost 1 eV to lower energies. The
data is presented in Fig 4.23. The optical conductivity has been directly calculated from
the measured quantities as presented in chapter 3. The oscillations in the transmittance
are interference fringes from which one can determine the thickness of the sample quite
accurately. The optical gap at low temperatures is approximately 0.55 eV in the a direction
and roughly > 1.0 eV in the c direction, similar to the results on LaSrMnO4. The sample
stays insulating also at room temperature.
Finally we give a comparison of our data to (to best of our knowledge) all published data

for x = 0.0 and x = 0.5. Our room-temperature data agree quite well with the optical
conductivity along the a axis from literature for x = 0.0 and x = 0.5 [144, 151, 153, 158],
see Fig. 4.24. Differences are visible in the c direction of the x = 0.5 compound. We
observed no peak at 1.5 eV in the c direction, in contrast to the data of Ishikawa et al.
[144]. One may speculate whether this peak is due to a leakage from the a axis. Note
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Figure 4.20: Optical conductivity σ1 along the a and c directions of La1−xSr1+xMnO4 at room
temperature for different doping x.
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Figure 4.22: Dielectric constant (a) and optical conductivity (b) for La0.87Sr1.13MnO4 for the a
and c direction between 0.75 - 5.80 eV for different temperatures.
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Figure 4.23: Transmittance, reflectivity and optical conductivity of La0.5Sr1.5MnO4 as function
of temperature measured with a Fourier spectrometer. For the calculation of σ1 we averaged out
the fringes of the transitions measurement.
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Figure 4.24: Room-temperature optical conductivities of La1−xSr1+xMnO4 in comparison to
literature data [144, 151, 153, 158].

that no low-temperature data for x 6= 0.5 have been published in the literature thus far.
Our combined study of the polarization, temperature, and doping dependence over a broad
energy range allows us to unravel the electronic structure in great detail, e.g. to compare
the weight of Mott-Hubbard and charge-transfer bands.

4.4 Discussion and analysis of LaSrMnO4

4.4.1 Multiplet calculation

In order to get more insight into the electronic structure we approach the problem from
the localized limit. This is justified since the bands in transition metal oxides are known
to be narrow. We will only take Mn and O sites into account since these ions should be
responsible for the lowest electronic transitions. As already discussed in the chapter 3,
optical spectroscopy can only probe excitations with ∆k = 0. Interband transitions in
semiconductors produce a free electron-hole pair under the restriction ke + kh = 0, where
ke is the wave vector of the electron and kh the wave vector of the hole. In a correlated
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Figure 4.25: εa1 obtained from a multiplet calculation for LaSrMnO4. The charge-transfer
transitions (CT) have been broadened by 1.10 eV, the Mott-Hubbard transitions (MH) by 0.45
eV (the lowest MH with 0.90 eV). We used ε∞ = 1.37.
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Figure 4.26: εa2 obtained from a multiplet calculation for LaSrMnO4. The charge-transfer
transitions (CT) have been broadened by 1.10 eV, the Mott-Hubbard transitions (MH) by 0.45
eV (the lowest MH with 0.90 eV).
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Figure 4.27: εc1 obtained from a multiplet calculation for LaSrMnO4. The charge-transfer
transitions (CT) have been broadened by 1.10 eV. We used ε∞ = 1.51.
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Figure 4.28: εc2 obtained from a multiplet calculation for LaSrMnO4. The charge-transfer
transitions (CT) have been broadened by 1.10 eV.
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Table 4.2: Parameters of the crystal-field calculation adjusted to the experimental findings. F 2

and F 4 have been scaled by a global factor r with respect to the ionic values. F 0 is assumed
to be equal for the different configurations. The crystal-field parameters 10Dq, ∆t2g, ∆eg of
the d4 configuration have been renormalized in case of the d3 and d5 configurations (see text).
The Slater integrals can be transferred into the commonly used Kanamori parameters [18], the
onsite Coulomb repulsion U = F 0 + 4/49 F 2

d4 + 36/441 F 4
d4 = 2.2 eV and Hund’s coupling

JH = 2.5/49 F 2
d4 + 22.5/441 F 4

d4 = 0.6 eV. Within the simple scheme U simple = F 0 = 1.2 eV and
JsimpleH = 1/14 (F 2

d4 + F 4
d4) = 0.9 eV.

Parameters d3 d4 d5

F 0 (eV) 1.20 1.20 1.20
F 2 (eV) 7.95 7.31 6.60
F 4 (eV) 5.00 4.75 4.11

r 0.64 0.64 0.64〈
r2
〉
(Å2) 0.316 0.371 0.452〈

r4
〉
(Å4) 0.201 0.293 0.475

10Dq (eV) 0.82 1.20 1.95
∆t2g (eV) 0.25 0.20 0.05
∆eg (eV) 1.11 1.40 1.90
∆a (eV) 4.51 4.51 4.51
∆c (eV) 4.13 4.13 4.13

Table 4.3: Overview of the fixed parameters, cycled parameters, and fitted parameters for
calculation the optical conductivity. The fit parameters are determined for each cycle minimizing
χ2.

fixed parameters F 2
dn

F 4
dn

=
F 2,HF
dn

F 4,HF
dn

,
〈
r2
dn

〉
,
〈
r4
dn

〉
, Dqd3,5 , ∆eg ,d3,5 , ∆t2g ,d3,5 ,

pdπa,c
pdσa,c

= − 1√
3
, pdσa, ωHB0 , γHB, γ

MH>
a

γMH<
a

, dc
da

cycle parameters r, F 0, Dqd4 , ∆eg ,d4 , ∆t2g ,d4 , pdσc

fit parameters ∆a,c, γMH>
a , γCT , ωHBp , εa,c∞ , A
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4 Ellipsometry and Fourier spectroscopy on La1−xSr1+xMnO4 (x=0, 1/8, 1/2)

insulator electrons are more localized. For very large values of Hubbard U they are stuck
at one atomic position. In the strong coupling limit (t � U) the probability to create an
electron-hole pair, or better a double occupancy and a hole, on nearest-neighbor sites is
∼ t, on next-nearest neighbor sites ∼ t2/U � t. It is thus more natural to interpret an
interband transition in a correlated material as an excitation between neighboring sites.
Once created the double occupancy might freely propagate in the solid. For the following
discussion we will take transitions between Mn and O site (nearest-neighbor sites) and
between different Mn sites (next-nearest neighbor sites) into account, i.e. the transitions
d4p6 → d5p5 (charge-transfer transitions) and d4d4 → d3d5 (Mott-Hubbard transitions).
We will further assume that the two-site states can be decomposed into d3, d4, d5, p5,
and p6 configurations on one Mn or O site, which equivalently means that we will not
include hybridization between pi and dj states. For the dn configurations we performed a
crystal-field calculation in tetragonal symmetry (see below),9 while we assume degenerate
states in case of the p5 multiplet. The p6 state represents a full shell and does not have to
be considered. In addition we calculated the optical conductivity for a transitions between
a Mn and an O site and between two Mn sites in the a and c directions, by evaluating the
matrix elements between all possible multiplet states.
The main parameters for the crystal-field calculations are the Slater integrals F 0, F 2 and

F 4 and the crystal-field splitting (see e.g. Refs. [18, 20] for their definitions, the relations of
the Slater integrals to the Hund’s rule coupling JH and Hubbard U are given in the caption
of Fig.4.2). We have introduced an overall reduction factor r for the ionic Slater integrals
F 2 and F 4 for all configurations, in order to account for screening of other configurations
which are not explicitly considered (e.g. pd hybridization). The values of F 2 and F 4 in a
crystal are only slightly reduced when comparing to their ionic values, while the parameter
F 0 is strongly screened. The crystal field in tetragonal symmetry can be parameterized by
∆t2g, ∆eg, and 10Dq, representing the splitting of the t2g, eg, and t2g−eg levels, respectively.
The parameter ∆t2g and ∆eg are related to the parameter scheme of Ballhausen, which is
shown in Fig. 4.9, by Dt = 1/35 (3∆eg − 4∆t2g) and Ds = 1/7 (∆t2g + ∆eg) [19]. Since we
fully neglect covalency effects, we use these parameters in an effective manner. As a first
estimate the crystal-field parameters can be obtained from an Ewald summation under a
point-charge approximation. The underlying crystal structure was the room-temperature
data of Ref. [148]. The obtained parameters are ∆t2g = 0.45 eV, ∆eg = 0.81 eV, and
10Dq = 0.60 eV. However, we expect significantly larger values for the effective 10Dq and
∆eg values since the eg orbitals are more affected by the covalency [26]. For the excited
states, i.e. the d3 and d5 configurations, we used renormalized crystal-field parameters
with respect to the d4 configuration to allow for different values of

〈
r2
〉
dn

and
〈
r4
〉
dn

with〈
rk
〉
dn

=
∫
dr r2+k|Rdn|2 and Rdn representing the radial part of the dn wave function. In

general
〈
rk
〉
d3
<
〈
rk
〉
d4
<
〈
rk
〉
d5

because more electrons need simply more space when
filling one particular shell. The change in

〈
rk
〉
dn

directly translates into the a change of

9For the crystal-field calculations we used a Mathematica notepad which was written by Maurits.
Haverkort. We would like to thank Maurits for kindly providing this software as well as his great
assistance in setting up the conductivity notepad.
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the parameters Dq, Ds, and Dt because Dq ∝
〈
r4
〉
, Ds ∝

〈
r2
〉
, and Dt ∝

〈
r4
〉
[19]. For

the radial wave functions we have used values from a Hartree-Fock calculation [18]. The
electronic transitions are known to be much faster than the relaxation of the lattice, thus
we kept the lattice frozen in our approach.
The next step is the calculation of the optical conductivity spectrum within this multiplet-

model. Here we assume that the optical conductivity consists of three parts, the charge-
transfer contributions σl,CT (ω), the Mott-Hubbard excitations σl,MH(ω) and higher-lying
contributions (like Mn(4s), Mn(4p), La(5d), Sr(5s)) with l = a, c for the two different
directions.

σl(ω) = σl,MH(ω) + σl,CT (ω) + σl,higher(ω) (4.4)

The Mott-Hubbard and charge-transfer contributions are calculated separately. For sim-
plicity we neglect charge fluctuations, i.e. the eigenfunctions have either pure d or pure
p character, and the two-site wave functions are a simple product of two single-site wave
functions. This has the great advantage that the two-site matrix elements decay into two
independent one-site matrix elements. The prize one has to pay for neglecting the hy-
bridization is a decrease of the transitions energies of the order of ∼ t2pd/∆ in case of the
charge-transfer and ∼ t4pd/(U ∆2) in case of the Mott-Hubbard transitions. Also the wave-
functions will be modified which will lead to changes in the transitions matrices. However,
the selection rules are unaffected from hybridization. This has to be kept in mind when the
parameters from this study are compared to results from cluster calculations. The conduc-
tivity measured in arbitrary units is calculated by the Kubo formula [93, 120, 167, 168].
The Mott-Hubbard contributions read:

σa,MH(ω) =
4d2

a

N

∑
i,j,k,k′

Ma,MH
i,j,k,k′

EMH
i,j

δ(ω − EMH
ij ) (4.5)

Ma,MH
i,j,k,k′ = | < d5

i d
3
j |
∑
τ,τ ′

ta,MH
τ,τ ′ a†τaτ ′ |d4

kd
4
k′ > |2 (4.6)

= |
∑
τ,τ ′

ta,MH
τ,τ ′ < d5

i |a†τ |d4
k >< d3

j |aτ ′|d4
k′ > |2

EMH
i,j = Ei(d

5) + Ej(d
3)− 2E0(d4) (4.7)

σc,MH(ω) = 0 (4.8)
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For the charge-transfer contributions we obtain:

σl,CT (ω) =
d2
l

M

∑
i,j,k

Ml,CT
i,j,k

ECT
i

δ(ω − ECT
i ) (4.9)

Ml,CT
i,j,k = | < d5

i p
5
j |
∑
τ,ξ

tl,CTτ,ξ a†τaξ|d4
kp

6
1 > |2 (4.10)

= |
∑
τ,ξ

tl,CTτ,ξ < d5
i |a†τ |d4

k >< p5
j |aξ|p6

1 > |2

= |
∑
τ,ξ

tl,CTτ,ξ < d5
i |a†τ |d4

k > δjξ|2

ECT
i = Ei(d

5)− E0(d4) + E(p5)− E(p6) (4.11)

= Ei(d
5)− E0(d5) + ∆l

Here, a†τ,ξ (aτ ′,ξ) creates (annihilates) an electron in the orbital τ, ξ (τ ′) 10, ta,MH
τ,τ ′ and tl,CTτ,ξ

are the dd and pd hopping matrices obtained from the Slater-Koster tabular [24] (see also
Tab. 4.4), N = M = 2 represent the two different spin states in the antiferromagnetic
ground state (d4

↑d
4
↓, d4

↓d
4
↑), for the paramagnetic ground state N = 25 and M = 5 (5-fold

spin degeneracy of the d4(5A1g) ground state), dl is the Mn-O bond distance for the l = a, c
directions, the summation is carried out over all eigenstates d4

kd
4
k′ (see above) to the ground

state eigenenergy E0(d4) and over the excited states d5
i d

3
j and d5

i p
5
j , respectively, with

corresponding energies Ei(d5) +Ej(d
3) and Ei(d5) +E(p5). We defined the charge-transfer

energies as ∆l = Ei(d
5) + E(p5) − E0(d4) − E(p6). Note that Mott-Hubbard transitions

along a are weighted by a factor of four, because the Mn-Mn bond distance equals d = 2da
and σ1 ∝ d2. From σa,MH and σl,CT we calculated εa,MH and εl,CT (in arbitrary units) in
order to adjust to the measured spectrum, see Tab. 4.2. As a broadening function we used a
Drude-Lorentz oscillator (see Eq. 4.2), which is intrinsically Kramers-Kronig consistent and
thus directly yields ε1. The explicit function can be obtained from Eq. 4.2 by normalizing
to the area and with the replacement ω2

p/8 = 4d2a
N

∑
i,j,k,k′M

a,MH
i,j,k,k′/E

MH
i,j (analogous for the

charge-transfer transitions).
The term σl,higher mimics the contributions of higher-lying bands and refers to one addi-

tional oscillator with ωHB0 = 8 eV and γHB = 2.8 eV. A similar oscillator has been used in
the free fit discussed in the previous section. The strength of the oscillator and additionally
the value of ε∞ are varied to fit the experiment.
There are several parameters which are kept fixed and several other ones which are fitted

or cycled in order to get a good description of the data. Tabular 4.3 gives an overview. We
10The two different spin contributions are included in τ , i.e. there are two different τ values for each
orbital. τ is used for d orbitals, while ξ is used for p orbitals.
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tried several thousand possibilities for the parameters F 0, r, 10Dqd4 , ∆eg,d4 , and ∆t2g,d4 , in
order to describe the optical constants of the a direction. The c direction has been fitted
afterwards. It can be described easily because no fine structure is present. The following
parameters have not been varied: the ratios of F 2

dn/F
4
dn = F 2,HF

dn /F 4,HF
dn have been obtained

from ionic Hartree-Fock values [18] (see Tab. 4.2), the radial wave-functions 〈rk〉 (Hartree-
Fock values) [18], the hopping strength11 pdπa = 0.95 eV and pdσa = −1.64 eV and its ratio
[169], the Mn-O bond-length ratio dc/da. As discussed above the crystal field parameters of
the d4 configuration fix the parameters of the d3 and d5 configurations via the radial wave
functions. As also discussed above the damping γHB and the energy ωHB0 of the oscillator
describing the higher bands has been kept constant. The following parameters have been
fitted for each set of cycle parameters (F 0, r, 10Dqd4 , ∆eg,d4 , ∆t2g,d4): the charge-transfer
energy ∆a, the broadening of the Mott-Hubbard transitions12 γMH>

a , the broadening of
the charge-transfer excitations γCT , the value of ωHBp of the oscillator representing the
higher-lying bands, εa∞, and a global scaling factor A since Eq. 4.5 is measured in arbitrary
units.
After we obtained the minimal χ2 for the a direction, the c direction is fitted, by varying

the value of ∆c and εc∞. All other parameters are kept the same as in the a axis. According
to the Harrison rules [169]

pdσa,c = −3
√

15

2π

~2
√
rpr3

d

md4
a,c

, pdπa,c = − 1√
3
pdσa,c (4.12)

the hopping strength for the c direction is pdπc/pdπa = pdσc/pdσa ∼ 0.5, i.e. pdπc ≈ 0.48
eV, because of the large anisotropy in between the Mn-O distances, namely dc/da = 1.2
with da = 1.88 Å and dc = 2.28 Å (rd = 0.8 Å and rp = 4.41 Å have been used for the radii
of Mn and O [169]). It turned out that the overall weight in the c direction is a factor of
∼ 3.2 too small when using the above value. Therefore, we also adjusted pdπc to fit the
measured spectrum and obtained pdπc = 0.86 eV.
The fit must reproduce the pronounced anisotropy, the relative weight of the different

bands, and the peak positions. These restrictions enable us to determine a unique inter-
pretation with a meaningful set of parameters. We would like to stress that although we
have many adjustable parameters their tuning does not give arbitrary results since we have
much fine structure in our data and two independent data sets, ε1 and ε2.
The spectra for the a and c directions obtained for the lowest χ2 are plotted in Figs 4.25-

4.28. The overall agreement is excellent. Additionally, we show the underlying multiplet
energy levels for the d3, d4, and d5 multiplets as a function of the crystal-field parameters
in Fig 4.29. The right-most energy levels in each diagram correspond to the values used
for the spectra.

11We do not use the term hybridization because the two sites considered are not hybridized.
12As a tribute to the very broad low-lying bands ("<") observed we further assumed that the Mott-
Hubbard transitions below 2.6 eV get two times the broadening of higher-lying ones (">"), i.e. we set
γMH<
a /γMH>

a = 2. A physical motivation can be found in the large band width of the upper dx2−y2

band.
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Figure 4.29: Energy-level diagrams within a multiplet calculation for the d3, d4, and d5 con-
figuration as function of 10Dq in Oh and as function of x in D4h for a fixed value of 10Dq. The
control parameter x represents the strength of ∆eg and ∆t2g, unity equals the full strength. The
low-lying multiples are labeled by their irreducible representations in Oh and D4h, respectively,
those being not relevant for the optical transitions are shown in brackets. The parameters used for
the calculation are summarized in Tab. 4.2. Note that the values for the crystal-field parameters
have been renormalized as given in Tab. 4.2 in order to take the different ionic radii of the dn

configurations into account.
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4.4.2 Discussion

As mentioned in the previous section we will differentiate between two kinds of transitions:
(i) the transitions between a ligand oxygen ion and a Mn ion, i.e. the charge-transfer
excitations (CT) Mn(d4)O(p6) → Mn(d5)O(p5), and (ii) the transitions between two Mn
ions, i.e. the Mott-Hubbard excitations (MH) Mn(d4)Mn(d4) → Mn(d5)Mn(d3). Note
that the intensity of the latter is expected to be weaker because it can be regarded as a
Mn(site1)-O and O-Mn(site2) transition, i.e., a second-order process in the Mn-O hopping,
whereas the charge-transfer process is of first order. This difference in intensity can be
observed very clearly in YTiO3 (see chapter 5). In LaSrMnO4 there is an additional way
to discriminate between MH and CT excitations, namely the polarization dependence. Due
to the layered structure we expect no contributions of MH bands in the c direction (for
details, see below). This suggests the following scenario: the peak at ∼ 5.6 eV in the c
direction is a CT excitation, and then the same holds true for the strong excitations in
the same energy range of 5 eV in the a axis. The detailed analysis discussed below will
support the assignment, that the weak features below ∼ 4 eV are MH excitations. But
this analysis will also show that the rough argument on the polarization dependence given
above is not yet sufficient, since some of the CT transitions are forbidden in the c direction.
For the following analysis we will start from a conventional picture neglecting collective

Jahn-Teller phenomena, since the crystal-field splitting between the eg levels is large (∼ 1
eV). Excitations to higher-lying bands, like La(5d), Sr(5s), Mn(4s) and Mn(4p) are not
considered explicitly because they are usually found outside the frequency range considered
here [170]. However, for the simulation it is necessary to include the onset of these bands
in order to achieve a better agreement between theory and experiment13.

Charge-transfer transitions (CT)

Due to the layered structure of LaSrMnO4, the distance between Mn ions in the plane is
much smaller than perpendicular to the planes. Thus, the Mn-Mn hopping is strongly sup-
pressed and Mott-Hubbard transitions can be neglected in the c direction. This gives rise
to the pronounced anisotropy observed experimentally. We attribute the whole spectral
weight (peak at 5.6 eV) in the c direction to charge-transfer and higher-energetic processes.
The increase of spectral weight with temperature (see Fig. 4.14) can be understood qual-
itatively by the evolution of the Mn-O(2) distance d as shown in Fig. 4.10. This distance
decreases from 20 K to 300 K by approximately 0.5% [148], which leads to an increased
hopping and therefore to an increase of the SW. However, this decrease of d can only ac-
count for a change in SW of the order of 3%, in contrast to the observed gain of ∼10%,
see Fig. 4.14. Here we assumed σ1 ∝ d2 · t2pd ∝ d−6 (with tpd ∝ d−4 [169]). Note that this
is not a trivial effect of broadening. The peak frequency hardly changes as a function of
temperature. Since the cut-off frequency of 5.5 eV chosen in Fig. 4.14 is very close to ω0,
the effect of thermal broadening of the peak at 5.55 eV on the SW plotted in Fig. 4.14

13The charge transfer-excitations are calculated up to 8 eV. We checked once that there is practically no
change in weight up to 7 eV when extending the range to 15 eV.
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should be very small. We checked the SW by a fit using a Lorentz profile, see Fig. 4.17(h).
The change in SW is proportional to ω2

p, which changes by ∼ 20%. We will come back to
this point later on. In the a direction a corresponding peak is observed at approximately
at 5.5 eV which we assign to the same CT origin.
To get an idea about the initial and final state of the transitions we assume that the

highest occupied orbital is only of d3z2−r2 type [148, 150] and the lowest unoccupied orbital
is dx2−y2 . This assumption is supported by the tetragonally distorted MnO6 octahedra and
by our multiplet calculation. Within an intuitive two-center picture for a charge-transfer
excitation (in a single-electron approximation), an electron is transferred from a ligand
oxygen to the centering Mn ion. Because all oxygen orbitals px, py and pz are occupied,
the transition and its selection rules are dominated by the Mn d5 final state. In the lowest
d5 state, electrons are in a high-spin configuration following Hund’s rule. For the selection
rules one has to consider the overlap between the oxygen orbitals and dx2−y2 (see Tab. 4.4).
This is only finite along the a direction, but zero along c. Therefore, we cannot identify
the peak at 5.6 eV in the c direction with the lowest CT transition, but with the second
lowest: here the oxygen electron is transferred e.g. into the two degenerate dxz and dyz
orbitals (this is not the only possibility, see below). The overlap is finite, both in a and c
direction.
This picture is strongly supported by our multiplet calculation presented in the previous

section, see Figs. 4.25-4.28. In the c direction only one strong band is visible at 5.6 eV,
while in the a direction another strong band at 4.5 eV is observed. Within this model
the band at 4.5 eV results from a transition into a d5(6A1g) final state, while the band
at 5.6 eV has three multiplet contributions, namely d5(4A2g), d5(4Eg), and d5(4B1g) (see
Fig. 4.29). In the c-direction only transitions into a d5(4Eg) and d5(4B1g) final state are
possible, the d5(6A1g) and d5(4A2g) final states are forbidden. The first state contains
an additional electron in the dx2−y2 the latter one in the dxy orbital with respect to the
d4(5A1g) state. One can read this from the energy diagram in Fig. 4.29 of the d5 state
(right panel). The tetragonal crystal field is given in terms of fractions of the maximal
tetragonal crystal field x = ∆t2g/∆

max
t2g

= ∆eg/∆
max
eg . Starting from a cubic crystal field of

Dqd5 = 0.19 eV an increase of the tetragonal crystal field does not influence the 6A1g and
4A2g states. This indicates that the multiplet center is not influenced, which is the case
for e.g. the |eg↑, eg↑, b2g↑, a1g↑, b1g↑〉 state (notation in D4h, see Fig. 4.9). For the calculation
of ε along c we used different values for the charge-transfer energy (∆a = 4.51 eV and
∆c = 4.13 eV). This treatment is justified because the oxygen in the a direction resides in
another crystallographic position than the one in the c direction [148, 149].
Within our assignment the distance between the two charge-transfer excitations at

ECT
1 = 4.5 eV and ECT

2 = 5.5 eV can be used to get an estimate of JsimpleH within
the simple scheme14: Roughly speaking the difference in energy reads ECT

2 − ECT
1 =

4JsimpleH,d5 −(10Dqd5 + 1
2
∆eg,d5) = 1 eV. If one assumes now that 10Dqd5 + 1

2
∆eg,d5 = 2.9 eV (see

Tab. 4.2), one ends up with a Hund’s rule coupling of JsimpleH,d5 ∼ 0.98 eV. It translates into

14The simple scheme assumes the same Usimple for all electrons, regardless where they reside: in the same
orbital or in another orbital. If two spins are parallel one gains the energy JsimpleH .
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JsimpleH,d4 = (F 2
d4 +F 4

d4)/(F
2
d5 +F 4

d5) J
simple
H,d5 ∼ 1.1 eV). The exact value from our fit to the entire

spectrum is JsimpleH,d4 = 0.9 eV, which shows that the simple considerations have a significant
error. Both values are lower than the atomic value of JsimpleH,d4 = 1/14 (F 2 + F 4) = 1.35
eV obtained from a Hartree-Fock calculation [18]. However, covalency and screening from
higher-lying multiples reduce the value of JsimpleH [163]. For Mn3+ values of JsimpleH between
0.7 and 0.9 eV have been reported [1, 2, 171]. With our value of 0.9 eV (1.1 eV) we are
close to the regime reported in the literature.
Regarding only the transition energies a second assignment for the charge-transfer tran-

sitions is possible: the peak at 3.5 eV could also be assigned to the first allowed charge-
transfer transition. We will argue in the following that this is not the case. Firstly, the
LDA+U calculation of Park [162] shows that a peak at 3.5 eV could very well contain siz-
able amount of O2p character. However, one may speculate (since the optical conductivity
on basis of the LDA+U has not been derived) that a sharp feature can not be expected for
a CT transition because of the large bandwidth of the O2p bands compared to the Mn3d

bands (exception: the x2 − y2 band which is broad). Therefore, we assume that the sharp
features in the spectrum will mainly arise from Mn to Mn transitions due to the flatness of
these bands (sharp peaks in the DOS, see Fig. 4.11). Secondly, according to our multiplet
model the first allowed charge-transfer transition is the strongest one. If one assigns it
to the peak at 3.5 eV (which can be done by turning ∆a to 3.5 eV), one runs into great
difficulties to get sufficient weight from the CT sector into the region at 4.5 eV. From the
comparison of the multiplet model with our data we see evidence that the peak at 3.5
eV can not be regarded as a CT transition, because otherwise we do not get a reasonable
description.
Covalency is not included in the multiplet calculation. The band-structure calculation

of Park [162] shows that the CT bands in the region of -4 eV to -2 eV have comparable
contributions from the O(1) and O(2) sector. For our purpose we can therefore assume that
E(p6) is constant, i.e. the Madelung potentials are almost equal on both crystallographic
sites (from a pure point charge summation one finds EO(1) = −23.5 eV and EO(2) =
−19.9 eV, i.e. a difference of 3.6 eV, this value is obviously too large). This assumption is
compatible with our fit results, because we only obtained slightly different values for ∆a

and ∆c (4.51 eV and 4.13 eV). In a molecular-orbital language a charge-transfer transition
is bonding to non-bonding transitions on a MnO6 cluster. The eigenenergies do not depend
on the direction, i.e. no change in the transition energies is expected in a and c as long as
the Madelung potentials are comparable.
We will briefly discuss the limits of our model. The simulation of both directions requires

the assumption of an almost isotropic hopping pdπa ∼ 0.9 pdπc eV in the a and c direction.
If one strictly refers to the values obtained from Harrison’s rule (see Eq. 4.12), the spectral
weight in the c direction is too low. This is a result of the highly anisotropic bond length
in a and c, leading to anisotropic values of pdπ and pdσ (see Sect. 4.4.1). This shows that
the bond model ends here. A way out might be the treatment of an MnO6 cluster (see for
example Ref. [172] for the case of LaMnO3). However, for the Mott-Hubbard transitions
one has to consider a Mn2O11 cluster, increasing the computational effort tremendously.
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Table 4.4: Two-center overlap integrals for LaSrMnO4 using the Slater-Koster tabular [24]. The
parameter space can be reduced by applying Harrison’s rule pdπa,c = − 1√

3
pdσa,c [169].

a direction (x) a direction (y) c direction (z)

px py pz px py pz px py pz

dxy 0 pdπa 0 pdπa 0 0 0 0 0
dzx 0 0 pdπa 0 0 0 pdπc 0 0
dyz 0 0 0 0 0 V a

pdπ 0 pdπc 0
dx2−y2

√
3

2
pdσa 0 0 0 -

√
3

2
pdσa 0 0 0 0

d3z2−r2 -1
2
pdσa 0 0 0 −1

2
pdσa 0 0 0 pdσc

Mott-Hubbard transitions (MH)

We turn to the transitions observed in the a direction, in particularly the band around 2
eV, a peak at 3.5 eV and some fine structure around 4.5 eV. The two strong bands at 4.5
eV and 5.5 eV already have been discussed above. They have been interpreted in terms
of charge-transfer transitions. From geometrical considerations Mott-Hubbard transitions
are suppressed in the c direction because the Mn ions are far apart.
First we would like to exclude local dd transitions as a source of the low-lying excitations

around 2 eV: the on-site transitions would be very well compatible with the observed energy
scale of approximately 1-2 eV. However, the local dd transitions are parity forbidden within
a dipole approximation, thus one has to simultaneously excite a phonon. This makes these
transitions very weak. Typically, their optical conductivity is of the order of a few Ωcm−1

or less [26]. Experimentally we found that the band at 2 eV is σ1 ∼ 100 Ωcm−1 which make
local dd transitions very unlikely as a source of the 2 eV band. We will omit the on-site
transitions for the following discussion.
We now come back to the intersite didj transition, i.e. the Mott-Hubbard excitations. In

order to interpret the spectral features in terms of multiplets we would like to discuss some
selection rules which have to be kept in mind. Optical transitions do not occur between
every energy level shown in Fig. 4.29. There are basically two selection rules which have to
be considered in this context, the spin and the orbital selection rule. (i) Spin selection rule -
Within the dipole approximation for an optical transition, the spin of an electron cannot be
flipped during the hopping process. The ground state of LaSrMnO4 is a d4(5A1g)d4(5A1g)
state (see Fig. 4.29) which means S1 = 2 and S2 = 2 for two neighboring sites within the
Mn-Mn bond model. For a ferromagnetic alignment of the two sites, only the state with
S1 = 3/2 and S2 = 5/2 and vice versa can be reached since one electron with S = 1/2 is
transferred. For an antiferromagnetic alignment the final states can also have S1 = 3/2
and S2 = 3/2. Note, that also final states with S1 = 3/2 and S2 = 5/2 (Sz = 3/2)
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can be reached from an antiferromagnetic ground state15. Thus for the optical transitions
only these two spin channels have to be taken into account. (ii) Orbital selection rule -
The orbital selection rule is mainly determined by the matrix ta,MH

τ,τ ′ (see Eq. 4.5). It is
a single-electron matrix of rank 10, where one can read whether or not there is overlap
between two d levels via a bridging oxygen. This depends on the magnetic quantum
numbers τ and τ ′ (the quantum numbers count the complex d orbitals). Note, that every
second entry of this matrix is zero because of the spin selection rule. It is obvious that
there is overlap between states with the same quantum numbers τ = τ ′. Here one has to
consider also the matrix elements < d5

i |a†τ |d4
k >< d3

j |aτ ′|d4
k′ >=< d5

i |a†τ |d4
k >< d4

k′|a
†
τ ′ |d3

j >,
which will lead to another restriction: a non-vanishing matrix element is only obtained if
Γd5 ⊗ Γa†τ ⊗ Γd4 ⊃ A1g and Γd3 ⊗ Γaτ ′ ⊗ Γd4 ⊃ A1g. From the multiplet calculation we use
Γd4 = A1g (see Fig. 4.29). For τ = τ ′ the above equations simplifies to Γd5⊗Γa†τ ⊃ A1g and
Γd3 ⊗ Γaτ ⊃ A1g since A1g is the identity. This is equivalent to Γd3 = Γaτ = Γa†τ = Γd5 . As
a rule of thumb one can state the following: as long as a single eg electron (in Oh) hops,
there are two possibilities for the hopping path because the d3z2−r2 on one site has overlap
to both dx2−y2 and d3z2−r2 on the other site. In contrast if a t2g electron (in Oh) hops, there
is only overlap to the same type of t2g orbital. This means as long as an eg electron hops
upon a transition, the d3 and d5 final state can have different symmetries, while a hop of
a t2g electron requires always the same symmetry for the final states. Two brief examples:

• hopping of an eg electron into a different orbital, i.e. a transition to a d3(4B1g)d
5(6A1g)

final state. This transition is allowed.

• hopping of an t2g electron into a different orbital, i.e. a transition d3(4Eg)d
5(4A2g) to

a state. This transition is forbidden.

Unfortunately things are a bit more complicated, because the eigenstates are mixed con-
figurations. As an example we would like to discuss the configuration mixing of the cubic
d5(4T2g) state for the value 10Dq = 1.3 eV. In this state, three configurations are mixed:
|1〉 = t42ge

1
g, |2〉 = t32ge

2
g, and |3〉 = t22ge

3
g. For the lowest d5(4T2g) eigenstate one finds

|d5(4T2g)〉(1)= −0.95 |1〉− 0.25 |2〉− 0.21 |3〉, which shows that the admixture of |2〉 and |3〉
equals approximately 10% and can hence not be neglected. This means: this state might
very well contribute in an eg hopping process (if not prohibited by the spin selection rule
- this is the case for LaSrMnO4).
Now we finally turn to the spectra. We start from a d4(5A1g)d

4(5A1g) ground state.
According to the multiplet calculation the lowest transition over a wide parameter range
is to a d3(4B1g)d

5(6A1g) final state. This transition is sketched in Fig. 4.30. In an anti-
ferromagnetic state the spectral weight of this transition is reduced, because the final d5

15For a ferromagnetic alignment one forces the system to Sz1 = 2 and Sz2 = 2 states. Excited states from
this configuration must have Sz1 = 5/2 and Sz2 = 3/2. With 5 and 3 electrons on site 1 and 2, respectively,
this requires S1 = 5/2 and S2 = 3/2, i.e. the full spin polarization. For an antiferromagnetic alignment
the system is in a Sz1 = 2 and Sz2 = −2 state. An excitation ends in a Sz1 = 3/2 and Sz2 = −3/2 final
state. Again one needs full spin polarization for the site with 3 electrons (site 1), i.e. S1 = 3/2, but for
the site with 5 electrons there are now two possibilities, namely S2 = 3/2 with Sz2 = −3/2 and S3 = 5/2
with Sz2 = −3/2.
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Figure 4.30: Sketch of the lowest high-spin transition in LaSrMnO4 for a ferromagnetic arrange-
ment of two neighboring sites in the strong-coupling limit, i.e. configuration mixing is neglected.
The shown transition is assigned to the spectral features observed around 2 eV in the a direction.

state has S = 5/2. Its spectral weight increases if more neighboring spins are ferromagnet-
ically aligned. The transition is not strictly forbidden because the antiferromagnetic state
contains singlet and triplet contributions. In Figs. 4.13, 4.14, and 4.16 one can clearly
see that the spectral weight increases with increasing temperature in the region around 2
eV. Below, the magnitude of the spectral weight will be compared to the kinetic energy of
this process. This gives experimental evidence for our assignment. Further support comes
from an LDA+U calculation [162]. The lowest occupied band consists of a Mn (d3z2−r2)
band hybridized with O(p) bands, and the highest unoccupied band is a Mn (dx2−y2) band.
Additionally, an analogous assignment for the low-lying transitions has been done for the
sister compound LaMnO3 [2, 125]. Our assignment is also compatible with the X-ray data
of Kuepper et al. [165]: they identified the lowest contribution of Mn states to the lower
Hubbard band at approximately -0.7 eV.
In Fig. 4.26 we show the experiential data at 15 K together with the results of our mul-

tiplet calculation. The agreement is much better above 3 eV than at lower energies. One
reason is the width of the lowest band. The dx2−y2 band is expected to have a large band
width. However, in order to minimize the number of parameters, we used a single param-
eter γMH>

a for the width of all Mott-Hubbard excitations (see Tab. 4.3) and assumed that
the lowest excitation has a width of γMH<

a = 2γMH>
a . Obviously, a physically meaningful

description of the band width cannot be obtained from a local model. What is more im-
portant is that the multiplet calculation underestimates the weight of the lowest transition.
This can be attributed to (i) an underestimation of the hopping strength in our approach.
An increase of pdπ and pdσ increases the relative weight of the Mott-Hubbard transitions
with respect to charge-transfer transitions. (ii) an underestimation of CT background in
this energy region (see below). (iii) small amounts of Mn4+ which contribute to the weight
in this energy region by transitions of the form d4

i d
3
j → d3

i d
4
j (see below). As seen from

the spectra of the doped compounds (see Fig. 4.20), the spectral weight at low energies
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Figure 4.31: Sketch of the lowest low-spin transition in LaSrMnO4 for an antiferromagnetic
arrangement of two neighboring sites in the strong-coupling limit, i.e. configuration mixing is
neglected. The shown transitions are all assigned to the spectral feature around 3.5 eV in the a
direction.

increases with increasing doping. However, the characterization of the samples (e.g. the
Neél temperature) and the comparison of the spectra for different x clearly indicates that
such impurity contributions play only a minor role. (iv) an insufficiency of our model. The
bond model may be at its end here, one has to consider a proper Mn2O11 cluster in order
to properly capture the impact of hybridization.
We continue with the higher-lying levels: as already discussed above, our assignment

favors a Mott-Hubbard transition into a d5 state with S = 3/2 for the peak at 3.5 eV
instead of a charge-transfer process. Referring to our multiplet calculation the peak at
3.5 eV contains several multiplets, in particular d3(4Eg)d

5(4Eg), d3(4A2g)d
5(4A2g), and

d3(4B1g)d
5(4B1g). For the first final-state multiplets an eg electron (in D4h) from the dxz,yz

orbitals is transferred, while a b2g (dxy) and an a1g (dx2−y2) electron are transferred in
the second and third process, respectively. For the strong-coupling limit the multiplet
states are shown in Fig. 4.31. These transitions are favored for antiferromagnetic spin
alignment, since the final d5 state has S=3/2. As one can see in Fig.4.16 this transition
indeed loses weight with increasing temperature. The loss of approximately ω2

p ∼ 20% over
a temperature range of 300 K is not as strong as the gain of the low lying transition (see
Fig. 4.16). On the basis of a change of the spin-spin correlation with temperature [38, 83]
one expects a change of approximately 50% from low to high temperatures.
Our assignment is very well compatible with the results of the LDA+U . Since the cor-

responding bands are rather flat (the dx2−y2 band is not included here), one can directly
discuss the transitions within the DOS scheme. If the bands are broad this is not possible
because one has to consider transitions with ∆k = 0 at every k point of the Brillouin-zone.
One can read from Fig. 4.11 that the filled dxy,xz,yz bands with spin up can be found at ap-
proximately -2 eV, while the unoccupied dxy,xz,yz bands with spin down are at 1.5 eV. The
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transition energy is approximately 3.5 eV (Here, we neglect excitonic effects discussed for
YTiO3 in chapter 5). Transitions between these bands correspond to transitions into our
d3(4Eg)d

5(4Eg) and d3(4A2g)d
5(4A2g) multiplets starting from a d4(5A1g)d

4(5A1g) ground
state. The filled d3z2−r2 spin-up band is found at approximately −0.6 eV, while the un-
occupied spin-down band is located around 2.6 eV, resulting in roughly 3.2 eV transition
energy. If one translates this into the multiplet language a transition between these bands
corresponds to a transition into the d3(4B1g)d

5(4B1g) multiplet. One can also read from
the LDA+U DOS that CT transitions also contribute in this energy region. The back-
ground contribution of the CT transitions might be underestimated in our Lorentz fit (see
above). This could explain the discrepancy between the observed change of weight with
temperature and the expectations from the spin selection rules.
The next group of Mott-Hubbard transitions can be found in the region above 4.5 eV.

Here the transitions are hard to separate from the charge-transfer transitions. However, we
assign the sharp structures at 4.5 eV and 4.9 eV to MH bands, since CT excitations exhibit
a large band width. As an example we would like to give the final state d3(4B2g)d

5(4A1g)
multiplet, which represents the transfer of an a1g (d3z2−r2) electron to a b1g (dx2−y2) state.
This energy is roughly (!) speaking ∆eg higher than the transition into the d3(4B1g)d

5(4B1g)
state. Another multiplet is the d3(4B2g)d

5(4B2g) final state, which only has small weight
because of the contributions of the e2

g (in Oh) sector of the 4T2g cubic state are only small.
We will stop the discussion at this point, because the multiplet calculation makes life
easier and counts all multiplets and all spectral weights for us. The results are shown in
Fig. 4.25-4.28 and show a good agreement to the experimental data.

Kinetic energy of the low-energy high-spin transition in LaSrMnO4

We have calculated the kinetic energy for the low-lying high-spin excitations and com-
pared it to the measured spectral weight. We assume that the redistribution of weight
with temperature can be attributed entirely to a change of the nearest-neighbor spin-spin
correlation function. We follow the lines of Refs. [2, 83]. We have assigned peaks (a) and
(b) of Fig. 4.16 in the a direction to a high-spin transition into the d3(4B1g)d

5(6A1g) state.
From the plasma frequencies of these two peaks one can calculate the effective carrier
concentration Neff using Eq. 4.3. The results are shown in Fig. 4.32.
Analogous to the work on the d4 compound LaMnO3 one can calculate the effective

carrier concentration Neff for a given transition from the kinetic energy. This has been
done by evaluating the magnetic superexchange Hamiltonian, which also gives a measure
of the kinetic energy. For the antiferromagnetic superexchange an electron hops into a
virtual state and then hops back to its origin. The intersite excitations we probe in op-
tical spectroscopy are the real-state counter parts of these virtual states. The hopping
amplitude into both virtual and real states are the same. For the high-spin channel with a
virtual d5 state of 6A1g symmetry, this relation between superexchange and effective carrier
concentration has been calculated [37, 83] for LaMnO3. We recall equation 4.1 from the
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Figure 4.32: Effective carrier concentration Neff of the 2 eV feature in LaSrMnO4 as a function
of temperature. The parameters have been taken from the Drude-Lorentz fits of peak (a) and
peak (b), see Fig. 4.16 for comparison. The horizontal lines indicate Neff calculated from the
kinetic energy of the associated transition in the antiferromagnetic case at low temperatures and
for the paramagnetic case at high temperatures (see text).

introduction between the effective carrier concentration Neff and the kinetic energy K:

Neff =
ma2

0

~2
·K (4.13)

Here a0 represents the Mn-Mn distance and m the free-electron mass. Since the orbital
arrangement in the a direction of LaSrMnO4 is similar to that of LaMnO3 in the c direction,
we can fully adopt the formalism applied to LaMnO3. In particular the ferroorbital bond
in LaSrMnO4 along a with two adjacent d3z2−r2 orbitals is equivalent to the ferroorbital
bond in LaMnO3 along c with two adjacent d3x2−r2 . In order to take this rotation of the
coordinate system into account one has to set θ = 120◦ for the orbital mixing angle. Note,
that orbitals with θ = n · 120◦ fulfill the tetragonal symmetry. In the orbitally ordered
state the kinetic energy is given by [2]:

Ka = (J̃/2)〈~Si~Sj + 6〉 sin2 θ (4.14)

J̃ =
t2

5(U∗ − 3JH + ∆JT )
(4.15)

where i and j denote the nearest-neighbor Mn sites, t the effective Mn-Mn hopping, U∗ =
U − V represents Hubbard U reduced by an electron-hole binding energy V , JH is the
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Hund’s rule coupling within the Kanamori scheme, and ∆JT the Jahn-Teller splitting of the
eg levels. For very low temperatures in the antiferromagnetic state T � TN , 〈~Si~Sj〉 → −4,
while for very high temperatures 〈~Si~Sj〉 → 0. We have chosen the parameters as follows:
the mixing angle is θ = 120◦ (see above), the Mn-Mn bond distance a0 = 3.786 Å [148],
for the effective hopping amplitude we assumed that t = t2pd/ECT = 0.55 eV (and 0.65 eV),
higher than the values16 assumed for LaMnO3 (we neglect the T dependence of t, the error
is less than 0.05.), and ECT = 4.5 eV from our experiment, and for Ueff = U∗−3JH + ∆JT

we determined the center of gravity of peak (a) and (b) by Ueff (T ) = (N
(a)
eff (T )E(a) +

N
(b)
eff (T )E(b))/Neff (T ) which results in UAF

eff (15K) = 2.10 eV and Upara
eff (330K) = 1.76 eV.

Finally one derives:

KAF
a =

3

4
J̃AF = 0.021 (0.030) eV⇒ NAF

eff = 0.040 (0.056) (4.16)

Kpara
a =

9

4
J̃para = 0.077 (0.108) eV⇒ Npara

eff = 0.146 (0.203) (4.17)

The calculated values for the effective carrier concentration Neff are shown together with
the values obtained from the experiment (see Fig. 4.32). For a hopping of t = 0.55 eV
one generally ends up too low in the Neff value. But increasing the hopping to t = 0.65
eV (which is still a reasonable value) leads to a good agreement with our the data from
experiment.
We conclude that the redistribution of spectral weight with temperature could be well de-

scribed in terms of the change of the spin-spin correlation function. A one-to-one adaption
of the correlation function of LaMnO3 is however not possible because the dimensionality
of the layered compound is more 2D, in contrast to 3D in LaMnO3. Qualitatively one
expects for a quasi 2D compound that nearest-neighbor correlations are still strong at
temperatures above TN [173], which means the changes across TN are more gradual. This
is in agreement with our data (Compare Fig. 4.32 with Fig. 4.7 for E || c).

Temperature dependence - the effect of the electron-phonon coupling

The spectra show a rather strong temperature dependence. We quantified these changes
by the parameters ω0, γ, and ωp of the Drude-Lorentz oscillators, see Figs. 4.15 and 4.16.
As pointed out in the section of the charge-transfer transitions, thermal expansion alone
cannot account for the relatively large changes in spectral weight. In the previous section
we have shown that for the Mott-Hubbard transitions a change in the spin-spin correlation
function can explain the change of the intensity. We will now briefly discuss the impact of
electron-phonon coupling on the parameters ω0, γ, and ωp. For this discussion it does not
matter whether we assume a transitions between localized states (Franck-Condon transi-
tions, excitons) or band-like transitions. The physics is in both cases the same and leads
to similar analytic expressions.
We start with the energy shift of ω0 with temperature. For semiconductors one has to

consider a renormalization of the electron-ion potential on top of the thermal expansion.
16This is justified since the magnetic coupling constant J is larger in LaSrMnO4 than in LaMnO3 [2, 137].
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The renormalization is proportional to the mean-squared amplitude 〈u(T )2〉 of the phonon
frequencies [174–176]. Effectively this leads to an additional increase of the lattice constants
and via the hybridization to an energy shift [177].
When the excitations are of localized character, i.e. a self-trapped exciton, then Franck-

Condon like transitions have to be considered [161]. In this scenario the energy shift in
temperature is attributed to a change of the phonon frequencies in the excited states with
respect to the ground state as well as to a change of the anharmonic terms of the electron-
ion potential (i.e. again a renormalization of the electron-ion potential). In fact, also the
first effect is a result of the different anharmonic terms, but it enters the energy shift twice
[85]. We will summarize all effects of the electron-phonon coupling including the thermal
expansion causing to the energy shift in ω0 in one particular parameter ∆ω0. The energy
shift of ω0 with temperature reads [85, 177–179]:

ω0(T ) = ω0(T = 0K)− ∆ω0

exp( ~Ω
kB T

)− 1
(4.18)

The parameter ω0 represents the excitation energy, and Ω denotes the frequency of an
Einstein phonon. Note, that it may be necessary to include more than one Einstein mode,
especially when acoustic and optical phonons have very different frequencies [175, 176].
Electron-phonon coupling will in general (for ∆ω > 0, ∆ω < 0 is also possible [175])
lead to a down-shift in energy. Thermal expansion effects alone can not explain, e.g., the
magnitude of the gap closure with temperature in many semiconductors [175–177]. For
our case it is important to note, that the thermal expansion can either be increased or
compensated by electron-phonon interaction.
The evolution of the damping γ with temperature in an ordinary semiconductor can be

attributed to life-time broadening [179–181]:

γ(T ) = γ1 + γ0

(
1

exp( ~Ω
kBT

)− 1
+

1

2

)
(4.19)

γ1 reflects the broadening due to extrinsic effects as for instance the instrumental resolution
or boundary and defect scattering, and γ0 is the quasi-particle life-time broadening, i.e. the
electron-phonon coupling. In an illustrative picture, the thermal population of phonon
levels leads to a delocalization of the electrons and thus to a broadening of the band or the
exciton levels.
In the Franck-Condon scenario the vibronic states become more extended with temper-

ature. For the damping of the excitations this means [84]:

γ(T ) ≈ γ0

√
coth

(
~Ω

2kBT

)
+ γ1 (4.20)

γ0 ≈ 2~Ω
√

2S (4.21)

The Huang-Rhys parameter S [178] quantifies the difference in the electron-phonon cou-
pling of the ground state and the excited state (e.g. S = 0 means no difference) [84]. γ1
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represents extrinsic broadenings. Both, Eqs. 4.19 and 4.20, lead to an exponential increase
of the broadening with temperature.
Electron-phonon interaction is expected to give much less impact on the intensity. But

it allows for finite intensity in parity-forbidden transitions. The simultaneous excitation
of an even-parity phonon will lead to an admixture of even-parity states to the odd-parity
electronic wave functions. This admixture will scale with the thermal population of the
phonons. The formally forbidden transitions becomes more and more allowed. The same
argumentation holds true for indirect transitions in a band-semiconductors. The latter
effect increases as the phonon occupation increases with temperature following the same
coth-rule as the damping [21, 85].
As an example we fitted the parameters of the Lorentz oscillator (b) given in Fig. 4.16

using the Eqs. 4.18 and 4.20. The fit results are ω(T = 0K) = 2.22 eV, ∆ω0 = 0.36 eV,
Ω = 0.054 eV (439 cm−1), S = 3.41, γ1 = 0.89 eV. For the fit of γ we fixed the Einstein-
phonon frequency. The fit results are in reasonable agreement with the data. The above
model function can well describe the overall trend of all peaks. However, for the peak at
3.5 eV this model is not sufficient. Two Einstein phonons with ∆ω1 > 0 and ∆ω2 < 0 can
do the job.
Coming back to the intensity: as discussed by Biernacki et al. the electron-phonon in-

teraction can be treated as an extra inter-atomic elongation [177] on top of the ordinary
thermal expansion. The intensity of a transition depends on the hopping amplitude, de-
pending itself strongly on the interatomic distance. The effect of thermal expansion on
the hopping may be enhanced or compensated by electron-phonon coupling. It would be
interesting to investigate how strong this effect really is and in how far it contributes to the
observed redistribution of weight of the low-energy region (see previous section). However
it seems unlikely that the electron-phonon coupling alone (without taking into account the
effect of the spin-spin correlation function) can account for the temperature dependence of
the spectral weight, in particular the different sign of the temperature dependence at high
and at low energies.

Optical gap

The onset of the optical gap in the undoped compound amounts approximately 0.45 eV
along the a direction and > 0.90 eV along the c direction (see Fig. 4.18). Similar values
are found in the doped sample with x = 0.5 as one can read from Fig. 4.23. The onset
of the gap should be smaller than the first onsite dd excitations. These weak transitions
can be observed in optics by a simultaneous excitation of a symmetry breaking phonon.
Within our multiplet calculation (see Fig.4.29) the energy of the lowest d4 → d4 excitations
is expected around 1.1 eV + the phonon energy (∼ 0.08 eV). This is compatible to the
finding for the x = 0.0 compound.
As shown in the inset of Fig. 4.18 the evolution of the gap changes its slope approximately

at the magnetic ordering temperature of 130 K. This behavior can be understand because
the lattice constants also shows a change in slope at this temperature (see Fig. 4.10). This
change transfers to a change in transition energy via e.g. the electron-phonon coupling
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(the bond length changes, phonon frequencies will change) or via a change in hybridization
(Harrison rule, see Eq. 4.12).
In order to understand the observed anomalous thermal expansion Daghofer et al. pro-

posed that the reduction of the c axis in LaSrMnO4 can be explained by a thermal occu-
pation of the dx2−y2 orbital (they assumed a static crystal field of 0.1 eV) [159, 160]. As
already pointed out in Sect. 4.2.3 the static crystal-field scenario as presented by Daghofer
et al. sounds very unlikely since 0.20 eV (the onset of the gap value at 300 K, this is a
lower boundary value) amounts to 1600 K. The thermal occupation of the dx2−y2 orbital
at 300 K is only 0.005.
On the other hand, one may speculate that orbitals are intermixed due to a sizable

electron-phonon coupling. We see indications for a sizable electron-phonon coupling in
this compound from the strong shifts in the peak frequencies of our Lorentz oscillators and
their damping (see Sect. 4.4.2 and Fig. 4.16). The latter scenario is very different from the
ansatz of Daghofer et al. because phonons are not included their orbital t− J model.

4.5 Comparison with the doped compounds
Since we only investigated two different doping levels, we will be very brief in this section
and discuss on a rather qualitative level. The investigation of more doping levels offers a
perspective for future studies.
What are the main differences to be explained (see Figs. 4.19, 4.20, and 4.21). Firstly,

there is a feature around 1.0-1.5 eV, which clearly gains weight with increasing x, while
the overall spectral weight is constant in the a direction. For x = 0.13 an increase of this
peak with increasing temperature has been observed (see Fig. 4.22). Secondly, the increase
of spectral weight with increasing x in the region at 3.0-3.5 eV (a and c direction) and
at 4.5 eV (c direction), and the corresponding decrease at higher energies. Thirdly, the
weaker temperature dependence of the x = 0.13 compound when comparing to the x = 0
compound.
In the multiplet language one induces Mn(d3) states into the system by doping it with

x holes. Besides the excitations discussed for the undoped case one expects additional
excitations channels (see Fig. 4.33).

• d3
i p

6
j → d4

i p
5
j : From the results for the c direction one can read that two new transition

channels are opened at approximately 3 eV and 4.5 eV. These results are in reasonable
agreement with measurements of Matsuno et al. [182] on thin films of Sr2MnO4,
i.e. x = 1.0. This system is a pure d3 system, which has been measured up to 4 eV.
In the c direction they found two peaks, one at approximately 3 eV and another one
close to 4 eV. Our peaks are much broader which we trace back to the La/Sr disorder,
but they are approximately located at the same energy positions. Thus we attribute
these new transitions to charge-transfer processes of a Mn4+ site. What are the
expectations for the a direction or more precisely what are the selection rules? This
depends on the d3 initial state. The most likely candidate is the 4B1g state according
to Hund’s rule (three up spins in the t2g level). The d4 final states can be read from
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Figure 4.33: Additional multiplet excitations within the Mott-Hubbard channel for a hole-
doped d4 system. The left-most d4
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j excitation has assumed to be trapped. Otherwise

the excitations energy is zero.
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the level diagram in Fig. 4.29: the first charge-transfer excitation is expected into
a 5A1g final state, allowed in both polarizations. In contrast, starting from a 4Eg
initial state (two up spins in the dxz, dyz, one in the d3z2−r2 levels), the lowest charge
transfer is only allowed in the a direction, because the planar dxy orbital has to be
filled. Indeed, an anisotropy has been observed in the pure d3 compound: a peak at
2 eV in the a direction with no counterpart in the c direction [182]. For doped 113
manganites charge-transfer transitions around 2 eV have also been reported [126]. For
our feature at 1.5 eV this means that a pd charge-transfer may be a possible scenario
requiring however that the d3 ground state has 4Eg symmetry, not 4B2g. On the other
hand for the x = 0.5 compound the spectral feature at 1 eV has been attributed to a
d3
i d

4
j → d4

i d
3
j transition [152, 153]. This will be discussed in the next paragraph. The

low-lying excitation at 2 eV in the a direction in the pure d3 system Sr2MnO4 could
be reinterpreted in terms of a d3

i d
3
j → d2

i d
4
j excitation. This Mott-Hubbard transition

is naturally suppressed in the c direction. An estimate of the transition energy of
E(d4(3Eg)) + E(d2(3Eg)) − 2E(d3(4B2g))=U simple + 2JsimpleH ≈ 3.0 eV17 (using the
parameters from Tab. 4.1) shows that one ends up too high in energy. The transition
is sketched in Fig. 4.33. A finite crystal field and the inclusion of the full multiplet
will decrease the energy to approximately 2.5 eV. Thus, a Mott-Hubbard transition
cannot be excluded.

Note, that one cannot adapt the parameters of the undoped case to the doped sys-
tems. This will lead to erroneous results, since these parameters are effective, i.e. they
include covalent parts. In the undoped system we formally assume that the charge is
3+ on the Mn but we did not care whether the effective charge on the Mn site is lower
than 3+ (as it will be!). We hide this, e.g., in a lower value of F 0 (or U). If the system
is doped, the charge is redistributed. This means that the former d3 final-state mul-
tiplet (from a d4 ground state) is not comparable to the d3 ground state as obtained
by doping because these two states may have a different electron occupation. This
yields different values of F 0 due to different contributions of screening.

We will briefly show that the parameters of the undoped compound cannot directly
be taken for the doped one. We consider only the c direction here: one can assume
that the bands arise from charge-transfer transitions. For the undoped compound we
identified the peak at 5.5 eV along c as a transition into the d5(4E1g) and d5(4B1g)
multiplet. These two multiplets are found at approximately 5.7 eV, as one can read
from Fig. 4.29. The ground state multiplet has the energy 1.0 eV. We assume that
E(p5) − E(p6) = 0.8 eV in order to achieve an excitation energy of 5.5 eV. For the
hole-doped d4 compound a shoulder found at around 3 eV has to be attributed to the
lowest charge-transfer process of the d3 sector. Its finals state multiplet is located at
1.0 eV, the ground state d3(4B1g) at approximately -0.2 eV. The excitation energy
yield 2.2 eV. Thus, the difference of the lowest CT excitation along c between the
Mn3+ and Mn4+ is approximately 3.3 eV. The observed difference is only 2.5 eV. This

17E(d2) = Usimple − JsimpleH , E(d3) = 3Usimple − 3JsimpleH , E(d4) = 6Usimple − 3JsimpleH
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4 Ellipsometry and Fourier spectroscopy on La1−xSr1+xMnO4 (x=0, 1/8, 1/2)

little example shows that the parameters have to be modified probably due to the
change of the covalent parts of F 0. Maybe a proper adaption of the crystal field will
also do the job18. In general the tetragonal crystal field of the d3 sites will be smaller.
Please keep in mind that the numbers given above and below have to be considered
with care and on a rather qualitative level.

• d4
i d

3
j → d3

i d
4
j : If one only considerers two sites of a solid this kind of transition can be

done without paying any energy. However, the d3 ion shows no Jahn-Teller effect and
has thus a smaller crystal-field splitting. We assume for simplicity that the crystal-
field splitting is entirely induced by the Jahn-Teller effect, i.e. the eg levels on the d3

sites are degenerate. For a ferromagnetic alignment of the spins the transfer of an eg
(in Oh) electron will cost half the eg level splitting (see Fig. 4.33). This describes the
formation of a lattice (small) polaron [71]. But if one now takes the whole crystal
into account the polaron can hop from site to site without any cost, giving rise to
a metallic state. This is not observed in the layered manganites. If the polaron is
trapped to an impurity or a precursor of a charge-ordering/orbital-ordering pattern,
the material becomes insulation. The situation can then again very well be sketched
within a two-site model, as shown in Fig. 4.33. There are more of such transitions but
for an antiferromagnetic alignment, which are also shown in Fig. 4.33. Please note
that none of these transitions costs U simple, they are entirely determined by the Jahn-
Teller effect and Hund’s coupling. This kind of excitations has been suggested in order
to explain the low-lying peak in charge-ordered/orbitally-ordered state of the x = 0.5
compound [152, 153], i.e. the low-lying transitions observed in our measurements at
1.0-1.5 eV. Their energies could by estimated by ∆eg ,d4/2 ∼ 0.7 eV, 3JsimpleH ∼ 2.7, and
3JsimpleH + ∆eg ,d4/2 ∼ 3.4 (taking the values form Tab. 4.2). The latter two energies
are too high in order to explain the peak at 1.0-1.5 eV. Regarding the temperature
dependence of these peaks the first one should gain weight with increasing T , while
the remaining peaks should loose weight, because ferromagnetic contributions are
increased when changing from the antiferromagnetic the paramagnetic state. The
overall weight has to be conserved.

• d3
i d

4
j → d2

i d
5
j : The variety of final states is very limited, because in this process only t2g

electrons can be moved. This is of course only valid under the assumption that the d3

ground state is of 4B1g symmetry. Following our multiplet approach this is the case.
The transitions are shown in Fig. 4.33; for the transitions from a d3(4B1g)d

4(5A1g)
ground state the final states are d2(3A2g)d

5(4A2g) and d2(3Eg)d
5(4Eg). Very roughly

speaking these excitations are expected around E(d2) + E(d5) − E(d3) − E(d4) =
2U simple + 2JsimpleH = 4.2 eV using U simple = F 0

d4 = 1.2 eV and JsimpleH = 0.9 eV (see
Tab. 4.1). These excitations are difficult to discriminate experimentally because of
the other contributing multiplets in the same energy region.

18From a pure point charge approximation on an average crystal structure of La0.87Sr1.13MnO4 it follows
that 10Dq remains unaffected while the tetragonal distortion (x, see Fig. 4.29) is reduced by 0.7 with
respect to the undoped compound for the d3 configuration.
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Figure 4.34: Bottom panel: Effective carrier concentration Neff of the low-lying peak of
La1−xSr1+xMnO4 as obtained by a Lorentzian fit as function of temperature for two different
values of x. Top panel: the same data but with rescaled T and Neff axes (only for x = 0.0).

• d3
i d

3
j → d2

i d
4
j : These transitions are unlikely since for x = 0.5 a charge-ordered pattern

is established, i.e. two holes will not reside on sites next to each other. One can of
course not exclude that for low doping levels the holes build clusters or bipolarons.
This might be especially the case for the strong electron-phonon coupling regime.
We sketched the possible multiplets in Fig. 4.33.

The feature around 1.0-1.5 eV - We would like to include the temperature dependence
of this peak into the discussion; it is shown in Fig. 4.34. When comparing the x = 0.0 with
the x = 0.13 compound the starting temperature for the increase of weight of the lowest
excitation is smaller in the latter compound. A similar trend can be found in the evolution
of the lattice constants: the inflection point in the c direction of the doped compound is
found at 200 K (see Fig. 4.10) in contrast to 600 K in the undoped compound. If one
assumes that the spectral weight consists of a temperature-dependent and an independent
part, then the temperature-dependent part of Neff for both doping levels can be scaled
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4 Ellipsometry and Fourier spectroscopy on La1−xSr1+xMnO4 (x=0, 1/8, 1/2)

on top of each other (see Fig. 4.34). The T axis has been renormalized with respect to
the different antiferromagnetic ordering temperatures and Nx=0.0

eff has been rescaled by
Nx=0.0
eff = 0.205 + 2x/(1−2x)Nx=0.13

eff using x = 0.13. The latter scaling assumes that holes
are created on the Mn(d4) site which leads to a loss of two (!) carriers in the effective carrier
concentration of the d4

i d
4
j → d3

i d
5
j channel [66]. This scaling shows that in both samples

the change in spectral weight sets in at approximately TN and one may speculate that the
temperature dependence in Neff is dominated by the d4

i d
4
j → d3

i d
5
j high-spin transition also

for the doped compound.
Finally two different scenarios remain: the peak at 1.0-1.5 eV is a Mott-Hubbard peak or

a charge-transfer peak. From our data alone we cannot draw a final conclusion. Although
we are convinced that the first excitation in the undoped compound is of Mott-Hubbard
type, a broad oxygen band may lie underneath. So the new peak can be very well of
charge-transfer type. From the temperature dependence one may draw the conclusion that
the additional weight arising from the doping is almost temperature independent. This
would favor the charge-transfer scenario. On the other hand, the most likely candidate
for the d3 ground state has 4B1g symmetry, in which case the lowest CT excitations can
be observed in both polarization directions. The 1.5 eV band is only observed in the a
direction. Furthermore, a polaronic excitation (d3

i d
4
j → d4

i d
3
j , Mott-Hubbard type) would

also be temperature independent as long as the three low lying contributions have a large
width and overlap strongly.
Increase of spectral weight in the region at 3.5 eV (a, c direction) and at 4.5 eV (c

direction) and the corresponding decrease at higher energies - As discussed above the new
features along c are new charge-transfer processes of the Mn4+ sites. With increasing x
these new features increase in weight as clearly observed in Fig. 4.20. Corresponding peaks
in a can thus be attributed to the same origin, e.g. the pronounced increase at 3.5 eV, or
parts of it. On the other hand the number of Mn3+ sites is decreased with increasing x
which leads to a decrease in weight in the strong CT excitations above 4.5 eV in the a
direction and at 5.5 eV in the c direction (see Fig.4.20). As shown above several additional
Mott-Hubbard transitions may also contribute to the 3.5 eV feature in the a direction
(Fig. 4.20).
Weaker temperature dependence of the x = 0.13 compound when comparing to the x = 0.0

compound - In general the temperature dependence is much weaker in La0.87Sr1.13MnO4

than in the undoped compound. This behavior is displayed for the weight of the 1.5 eV
feature in Fig. 4.34. The relative change in the doped compound is only ∼ 25% in contrast
to ∼ 50% in the undoped one. Additionally the peak shifts with temperature are not so
pronounced, which can be inspected by eye in the case of the 3.5 eV feature (see Fig. 4.22).
The fine structure above 4.5 eV, attributed to Mott-Hubbard excitations in the undoped
case, are washed out for x = 0.13. A possible reason is an increase of disorder in the system.
Another reason is that new excitation channels are present, which strongly overlap with
the channels of the undoped compound (as suggested for the 1.5 eV feature). Thus the
temperature dependence of e.g. the 3.5 eV feature along a becomes a mixture of different
charge-transfer and Mott-Hubbard contributions, which cannot be separated that well as
in LaSrMnO4. Therefore we are not going to discuss the temperature dependence in detail.
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4.5 Comparison with the doped compounds

Summary

To summarize the main points of this chapter: we have presented optical data from ellip-
sometry and Fourier spectroscopy on the system LaSrMnO4. We find evidence that the
lowest excitation observed at around 2 eV arises from an intersite didj transitions. This
favors a description of LaSrMnO4 in terms of a Mott-Hubbard insulator. This important
result challenges the wide-spread point of view that the manganites are charge-transfer in-
sulators, but is in agreement with several recent publications [2, 125, 162, 164, 165]. Since
band-structure theory fails in explaining the insulating character of LaSrMnO4, we tried
to understand our data in terms of local multiplets. We were able to get a good descrip-
tion of the spectrum by a multiplet calculation using effective parameters for the crystal
field and for the Slater-integrals. We discussed the origin of each spectral feature within
this model and gave a direct comparison to results from LDA+U [162]. The temperature
dependence of the low-lying spectral feature around 2 eV has been explained by a change
of the nearest-neighbor spin-spin correlation function with temperature. The overall evo-
lution of the spectrum with temperature suggests that the electron-phonon coupling has
to be considered. We determined the onset of the optical gap for the a and c direction with
∼0.45-0.50 eV and >0.90 eV at low temperatures. These high values for the optical gap
can rule out the scenario of Daghofer et al. [159, 160], explaining the thermal expansion
by a thermal occupation of dx2−y2 in a static crystal field. We suggest that phonons mix
the two orbital states due to electron-phonon coupling without destroying the tetragonal
symmetry.
We have also shown spectra of doped compounds with x = 0.13 and x = 0.50. We found

a redistribution of weight, in particulary a new peak at approximately 1.0-1.5 eV which
could either be interpreted as a trapped polaronic feature or a charge-transfer excitation of
the Mn4+ state. The redistribution of weight at higher energies could be well explained by
a change in the Mn4+/Mn3+ ratio which leads to a change in weight for the CT excitations
of the d3 and d4 sector.
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5 Ellipsometry and Raman scattering
on YTiO3, SmTiO3, and LaTiO3

5.1 Physics of titanates

The interplay of different degrees of freedom in solids, namely the charge, the spin, the
orbital, and the lattice give rise to a variety of interesting phenomena in transition-metal
oxides.
In the Mott-Hubbard insulators RTiO3 (R - rare-earth ions) the intrinsic properties of a

correlated system can be studied. For example the coupling of the spin degree of freedom to
the lattice manifests in different magnetic ground states. When increasing the ionic radius
from Y to La the magnetic ground state changes from ferromagnetic to antiferromagnetic
[183, 184]. It has been clarified that this change is related to the raising lattice distortions
[12–14, 185–187].
Incorporating spin and orbital degrees of freedom, a novel ground state termed orbital

liquid has been proposed in order to explain the unusual properties of LaTiO3 [3, 4]:
an isotropic spin-wave spectrum on the one hand (suggesting a small anisotropy) and a
strongly reduced magnetic moment on the other hand (suggesting a large anisotropy).
However, the existence of this ground state in LaTiO3 is still under debate [6–10, 15, 16,
26, 27, 41, 64, 188, 189]. The coupling of the orbital degree of freedom and the lattice can
lead to orbital ordering, which was found in YTiO3 [5, 189–191]. However, the orbitally-
ordered ground state seems to be incompatible with the observed nearly isotropic spin
wave spectrum [192]. Therefore, a dominant role of orbital fluctuations has been proposed
also for YTiO3 [43, 44], assuming that the ordered orbital moment is only small. Excellent
reviews concerning the physics of titanates can be found in Refs. [1, 13]. In the following we
focus on the electronic properties in ferromagnetic YTiO3 and antiferromagnetic SmTiO3

and LaTiO3.

5.2 Details on titanates

We will give some further details on the titanates YTiO3, SmTiO3, and LaTiO3. These
compounds have been measured in this thesis. We focus on YTiO3, which has been inves-
tigated in more detail.
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R3+

O2-

Ti3+

O(2)

O(1)

ab

c

FM G-AFM

Figure 5.1: Bottom panel: the unit cell of RTiO3 (space group Pbnm). It consists of TiO6

octahedra distorted according to the GdFeO3 distortion. Upper panel: ferromagnetic ordering as
observed in YTiO3 and G-type antiferromagnetic ordering as found in LaTiO3 and SmTiO3.
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5.2 Details on titanates

Table 5.1: Results of the single-crystal and powder neutron-diffraction experiments on RTiO3

(R=Y, Sm, La). The data for La has been taken from Ref. [7] and the data for Sm and Y
from Ref. [193]. The ordering temperatures have been determined by H. Roth, N. Schittner, and
N. Hollmann by SQUID and thermal-expansion measurements [108, 194].

Y (2 K)a Sm (100 K)b La (8 K)a

a (Å) 5.3226(1) 5.4651(2) 5.6435(1)
b (Å) 5.6952(1) 5.6626(2) 5.5885(1)
c (Å) 7.5962(1) 7.7133(3) 7.9006(2)

dTi−O(1) (Å) 2.021 2.011 2.028
dTi−O(2) (Å) 2.023 2.031 2.032
dTi−O(2) (Å) 2.078 2.069 2.053

αTi−O(1)−Ti (◦) 140.04 147.01 153.78
αTi−O(2)−Ti (◦) 143.76 147.34 152.90

Y (290 K)b Sm (290 K)b La (293 K)a

a (Å) 5.3425(2) 5.4647(2) 5.6336(1)
b (Å) 5.6925(2) 5.6712(2) 5.6156(1)
c (Å) 7.6235(2) 7.7291(3) 7.9145(2)

dTi−O(1) (Å) 2.022 2.018 2.030
dTi−O(2) (Å) 2.027 2.032 2.031
dTi−O(2) (Å) 2.078 2.072 2.057

αTi−O(1)−Ti (◦) 140.90 146.48 154.24
αTi−O(2)−Ti (◦) 143.97 147.29 153.36

magnetic ordering (K) Tc = 27 TN = 48c TN = 146

aRefinement of powder neutron-diffraction data
bRefinement of single-crystal data
cThe SmTiO3 crystal used for the optical studies has TN = 53 K
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5 Ellipsometry and Raman scattering on YTiO3, SmTiO3, and LaTiO3

5.2.1 Crystal structure and magnetism

The crystal structure of RTiO3 (R - rare earth) is shown in Fig. 5.1. All titanates crystallize
in an orthorhombic structure with the space group Pbnm (c > a, b). The Ti ions are
surrounded by distorted oxygen octahedra. The octahedra are tilted and rotated away
from the cubic axes according to the GdFeO3 distortion [7]. The tilting angles increase
from LaTiO3 to YTiO3, see Tab. 5.1. The evolution of the lattice constants for SmTiO3

and YTiO3 with temperature is shown in Fig. 5.2. One can clearly observe an anomaly
around TN in all lattice constants and in the orthorhombic distortion in SmTiO3. In YTiO3

there is hardly any change across Tc.
The magnetic structure in the three compounds will now be discussed. In YTiO3 ferro-

magnetism has been found with a magnetic moment of 0.54µB at 10 K orientated along
the c direction [192]. The structure is more complicated because in addition a G-type
ordering along a (0.08µB) and a C-type ordering along b (0.05µB) has been found [192].
The total moment extrapolated to zero temperature yields 0.72µB. This value is small
when comparing to results of > 0.8µB from SQUID measurements [194–196]. The ordering
temperatures range from Tc = 27 − 30 K [108, 194, 195]. The ferromagnetic coupling
constant is found to be approximately J ≈ −2.75 meV with a very small anisotropy gap
of 0.02 meV [192].
In SmTiO3 antiferromagnetism has been reported with ordering temperatures of about

TN = 50 K [108, 197]. The ordering pattern at 10 K is G-type for the Ti spins with a
magnetic moment of 0.43µB along a and C-type for the Sm spins with a moment of 0.72µB
along c.
For LaTiO3 also G-type antiferromagnetism has been found [198, 199]. The reported

magnetic moment ranges from 0.45µB [3] to 0.57µB [7] and is orientated along the a di-
rection. From neutron scattering an isotropic magnetic coupling of J = 15.5 meV together
with a spin gap of ∆ = 3.3 meV have been found. The latter observation is indeed puzzling.
An isotropic spin-wave spectrum suggests a quenched orbital moment, because otherwise
the symmetry will be broken by spin-orbit coupling and the spin-wave spectrum should
anisotropic. Indeed it has been found in a later study by Haverkort et al. [8] that the
orbital moment is almost quenched. In case of a quenched orbital moment one expects
only a small spin gap. Keimer et al. [3] suggest fluctuations in the orbital sector to be
responsible for the lowering of the moment (orbital liquid, see above and chapter 2). How-
ever, in a crystal-field scenario, the spin moment is reduced from 1µB due to spin quantum
fluctuations, crystal fields, and by spin-orbit coupling to 0.72µB [7]1. The inclusion of
covalency will lower this value further, since one transfers spin to the neighboring oxygen
[7].
As pointed out in the beginning it is believed that the steric effects induced by the

different ionic radii of the rare-earth ions can already account for the observed changes
from ferromagnetism (YTiO3) to antiferromagnetism (LaTiO3) [13].
All crystals measured in this study are high-quality single crystals. They have been grown

1Spin fluctuations reduce the moment to 0.85µB according to the 3D Heisenberg model [14]. A further
reduction of 85% is obtained by crystal fields and spin-orbit coupling [7, 9].

128



5.2 Details on titanates

5.325

5.330

5.335

5.340

5.345

5.690

5.695

5.700

5.705

7.600

7.610

7.620

7.630

5.460

5.465

5.470

5.475

5.480

5.640

5.650

5.660

5.670

7.715

7.720

7.725

7.730

0 100 200

-0.034

-0.033

-0.032

0 100 200 300

-0.018

-0.016

-0.014

T
N

SmTiO
3

 a
 (

Å
)

YTiO
3

T
c

 

 

b
 (

Å
)

 

 

c 
(Å

)

 

a
 (Å

)
b

 (Å
)

 

 

c (Å
)

 

Temperature (K)

 

 

ε

 

ε

 

Figure 5.2: Thermal evolution of the lattice constants a, b, and c of YTiO3 and SmTiO3 as well
as the orthorhombic distortion ε = (a− b)/(a+ b). Reproduced from Ref. [193].
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by M. Cwik (LaTiO3) [7] and H. Roth (LaTiO3, YTiO3, SmTiO3, LaTiO3+δ) [108, 193, 200].
The samples have been characterized by resistivity [200, 201], magnetic susceptibility [108,
194, 200], thermal expansion [200], EDX [108, 200], TGA [108, 200], and X-ray diffraction
measurements [108, 193, 202] as well as by neutron scattering [193, 202]. Details on growth
and characterization can be found in the references given. The most important facts are
summarized in Tab. 5.1.

5.2.2 Titanium ion in an orthorhombic crystal field
The energy levels of the titanium ion in an orthorhombic crystal field are split due to
the electric field of the ligands. In contrast to the tetragonal fields all d orbitals can be
intermixed due to the GdFeO3 distortion. The crystal-field levels are shown in Fig. 5.3.
On the basis of the crystal structure the level splitting has been calculated by different
methods by several research groups. The t2g splitting is roughly 0.25 eV, while the t2g− eg
splitting is of the order of 2.0 eV. An overview is given in Tab. 5.2. The point-charge (pc)
approximation assumes that every lattice site is occupied by a point-like charge (nominal
valence). The crystal field is calculated by an Ewald summation [9, 26, 45]. If hybridization
is switched on (cluster), the t2g-eg splitting is increased by almost a factor of two [9, 26, 45].
The intra-t2g splitting stays almost unaffected. This is obvious because the hybridization
to eg levels is of σ type and thus stronger than hybridization to the t2g levels which is
of π type. Projections of LDA results on a local basis set yield almost the same energy
levels [10, 11, 205]. An exception is the calculation of Solovyev [203, 204] which shows a
significantly smaller splitting.
A large crystal-field splitting is not compatible with the orbital-liquid or fluctuating-

orbital scenarios as proposed in Refs. [3, 4, 37, 43, 44]. In order to be the dominant
contribution for lifting the orbital degeneracy the energy gain from an orbital flip has to
be tremendous to overcome a crystal field of 250 meV. However, there is always a finite
probability of such fluctuations. Pavarini et al. [10, 11] calculated the electron-occupation
within a LDA+DMFT approach. Projecting on the crystal field basis they found that
occupation of the lowest crystal-field orbital amounts 0.96 for YTiO3 and 0.88 for LaTiO3,
i.e. the orbital ordering is almost complete in both compounds for a value of U = 5 eV
(for U = 0 eV the occupation number is only 0.5 electrons). They concluded that orbital
fluctuations are unlikely in YTiO3 and quite weak in LaTiO3. From the experimental
side it has been proposed by Rückamp et al. [26] that the intra-t2g excitations have been
observed by means of infrared spectroscopy. The formally forbidden onsite-dd transitions
are accessible by the simultaneous excitation of a symmetry-breaking phonon. In all three
titanate compounds the peak has been found at approximately 300 meV. This energy is the
sum of the orbital excitation and the medium energy of all symmetry-breaking phonons (40-
80 meV). The energy of 220-260 meV is in good agrement to the calculations summarized
in Tab. 5.2. Furthermore, it has been shown by Haverkort et al. that X-ray absorption
spectra on LaTiO3 could not be fitted accurately without any crystal-field splitting, but
require a crystal-field splitting of the order of 0.15-0.30 eV.
We would like to mention that the above calculations have problems to get the magnetism
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Figure 5.3: Crystal-field splitting of a d1 electron in a GdFeO3-distorted crystal.

Table 5.2: Onsite crystal-field splitting in eV of RTiO3 calculated with different methods: point-
charge model (pc), configuration-interaction cluster (cluster), downfolding from LDA(+U). We
assume E(|1〉) = 0 eV.

Refs. [9, 26, 45] [9, 45] [26] [10, 11] [203] [204] [205]
Method pc cluster LDA(+U)

YTiO3

E(|2〉) (eV) 0.14 0.15 0.14 0.20 0.05 0.10 0.18
E(|3〉) (eV) 0.28 0.26 0.28 0.33 0.08 0.12 0.26

E(|4〉) (eV) 0.87 1.41 2.20
E(|5〉) (eV) 1.00 1.54 2.50

SmTiO3

E(|2〉) (eV) 0.15 0.21
E(|3〉) (eV) 0.26 0.31

E(|4〉) (eV) 0.90 2.20
E(|5〉) (eV) 1.00 2.50

LaTiO3

E(|2〉) (eV) 0.21 0.21 0.21 0.14 0.03 0.23
E(|3〉) (eV) 0.23 0.22 0.31 0.20 0.18 0.27

E(|4〉) (eV) 0.92 1.39 2.20
E(|5〉) (eV) 0.98 1.45 2.40
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b)a)

Figure 5.4: Density of states (DOS) of YTiO3 obtained from a) LDA [206] and b) LDA+U [205].
As there is a finite DOS at the Fermi edge, LDA ends up in a metallic ground state. In contrast,
LDA+U finds a finite gap.

quantitatively correct. Especially in YTiO3 the coupling constants along c and ab are
always calculated as anisotropic [11, 45]. However the magnetic ground state found in
experiments has the lowest total energy in LDA+DMFT and LDA+U calculations [11,
203, 205].
Inspired by the work of Rückamp et al. we performed Raman measurements2 on LaTiO3

and YTiO3 in order to get more insights into the low energy properties (see below). In
crystals having inversion symmetry, Raman scattering is a direct probe of even-even exci-
tations, e.g. local dd excitations will be directly allowed.

5.2.3 Electronic structure

Conventional band-structure theory fails in order to describe the insulating ground state
of all titanates. Exemplarily we show results from LDA [206]. Again the inclusion of U
in a LDA calculation drives the system into the insulating state [205] (see Fig. 5.4). It
is consensus that all titanates are Mott-Hubbard insulators with relatively small gaps of
the order of 0.2-1.0 eV ranging from LaTiO3 to YTiO3 [26, 106]. The titanates can be
driven by doping of e.g. Sr or Ca into a metallic state, which has been nicely shown by
means of optical spectroscopy [1, 106]. Lower and upper Hubbard bands in the undoped
compounds and charge-transfer bands have been found in photoemission [124, 207, 208], X-
ray absorption spectroscopy [8, 190, 191, 209] and optical spectroscopy [104–107]. We will
give the details when discussing our data. In optical spectroscopy a multi-peak structure
has been observed in unpolarized room temperature data in all titanate systems [104–107].
This multi-peak structure contains valuable information about the underlying Hubbard

2in collaboration with the MPI Stuttgart (C. Ulrich and B. Keimer).
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bands of these compounds, i.e. the correlations present. It is our goal to give a meaningful
assignment in terms of the underlying microscopic parameters like U , JH , and ∆. In
the literature the optical data of the titanates have only been analyzed in terms of a
single-band Hubbard model. We will go one step further and try an assignment within a
multi-orbital picture. All data presented in the literature have been measured unpolarized
at room-temperature. We present a detailed study of the temperature and polarization
dependence for YTiO3 and SmTiO3.3 We track the evolution of the multi-peak structures
with temperature. The evolution of spectral weight with temperature is a direct measure of
the kinetic energy of a certain transition (see chapter 4). There are quantitative predictions
for this evolution of the kinetic energy from an orbitally ordered arrangement [83].
We will start with the results from Raman scattering before entering the discussion of

the ellipsometry data.

5.3 Orbital excitations in LaTiO3 and YTiO3: a Raman
scattering study

We performed Raman scattering experiments on three different samples: pure and lightly
doped LaTiO3+δ and pure YTiO3. Most of the results presented have been published in
Ref. [64]. The ordering temperatures are TN = 146 K, 120 K, and Tc = 27 K, respectively.
The LaTiO3+δ crystals were partly twinned, while the YTiO3 crystal is single domain.
The YTiO3 (and also most likely the LaTiO3) crystal was measured on a (100) or (010)
surface within the Pbnm space group. We did not resolve the difference between a and
b since we were interested in the difference between ab (approximate bond direction in
the ab plane) and the c axis. The samples have been lapped and polished as described in
the appendix. Raman spectra have been measured with a triple-monochromator Raman
spectrometer (Dilor xy 800) at the MPI Stuttgart4. The setup is described in more detail
in chapter 3. All spectra have been recorded with a laser power below 10 mW at the sample
position in order to avoid heating. All spectra have been corrected for the spectrometer
response using a calibrated white-light source (Ulbricht sphere). The experiments were
performed in backscattering geometry parallel to the crystallographic b (or a) direction.
The polarizations of incident and scattered photons are specified as (z, z), (x, z), etc., where
z||c (Ti-Ti bond direction) whereas x is along the next-nearest-neighbor Ti-Ti direction
in the ab plane (i.e. the a or b direction). The z′ and x′ directions are rotated by 45◦
from z and x. In an additional experiment (which is not shown in Ref. [64]) we performed
measurements on another piece of an YTiO3 crystal of the same batch, in particular on
a (001) and a (1-10) surface. We performed intensity measurements at a certain energy
(∼ 250 meV) as function of the rotation angle on this sample with respect to the laboratory
coordinate system. This sample has also been measured with spectroscopic ellipsometry.

3Low temperature data is only presented for SmTiO3 and YTiO3 because our LaTiO3 crystals are partly
twinned.

4in collaboration with C. Ulrich and B. Keimer
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Figure 5.5: Raman spectra of LaTiO3 and YTiO3 measured at T = 13 K using the 514.5 nm
laser line of an Ar+/Kr+ mixed-gas laser in (z, z) polarization. The red line shows the calculated
two-phonon density of states [64].

Orbital excitations

Figure 5.5 shows the Raman spectra of LaTiO3 and YTiO3 over a wide energy range.
Below 80 meV the spectra are dominated by one-phonon excitations (see for comparison
Refs. [210, 211]). Up to approximately 170 meV some weak features can be observed which
we attribute to two-phonon processes. The broad peak around 235 meV will be the main
issue of this section.
We will briefly discuss whether the broad feature can be attributed to two-phonon or

higher-order phonon processes. Therefore the two-phonon density of states (2-DOS) of
YTiO3 has been calculated [212]. It is shown together with the data in Fig. 5.5. It
represents the convoluted one-phonon density of states within a shell model. The model
parameters have been adapted by fitting to the observed one-phonon frequencies [212].
The 2-DOS extends to 170 meV. This is in accordance to rough estimates of one-phonon
overtones from IR and Raman spectroscopy. The highest phonon in Raman is found at
approximately 80 meV [211] and in infrared spectroscopy at about 70 meV [90]. Thus, one
expects overtones up to about 160 meV. Therefore we can rule out two-phonon processes as
a source of the 235 meV feature. Higher-order processes like three-phonon or four-phonon
excitations will have less intensity than the two-phonon contributions and can therefore
not account for the large intensity of the 235 meV peak. The sharp feature at 165 meV is
attributed to a two-phonon excitation. A similar Raman mode is also observed in other
transition-metal oxides [47, 111, 210], and has been attributed to a two-phonon excitation
[59, 210].

134



5.3 Orbital excitations in LaTiO3 and YTiO3: a Raman scattering study

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 100 200 300 400 500 600 700
0.0

0.5

1.0

1.5

2.0

 

 

In
te

gr
at

ed
 In

te
ns

ity
   

(a
rb

. u
ni

ts
)

Laser energy  (eV)

T = 13 K
(z,z)

YTiO3

 

 

In
te

ns
ity

   
(a

rb
. u

ni
ts

)

Raman Shift   (meV)

   457.9 nm
   476.5 nm
   488.0 nm
   514.5 nm
   568.2 nm

Figure 5.6: Raman spectrum of YTiO3 measured at T = 13 K for different laser lines. A
frequency-independent background has been subtracted from every profile. The arrows depict the
position of the photoluminescence peak at 2.14 eV for the different laser lines. The inset shows
the integrated intensity of the broad high-energy peak [64].

0 100 200 300 400 500
0.2

0.4

0.6

0.8

1.0

1.2

(z,z)
YTiO3

Laser: 514.5 nm

 
 

In
te

ns
ity

   
(a

rb
. u

ni
ts

)

Raman Shift   (meV)

  T =   13 K
  T =   60 K
  T = 100 K
  T = 200 K
  T = 300 K

Figure 5.7: Temperature dependence of the Raman spectrum of YTiO3 in (z, z) geometry, using
the 514.5 nm laser line.
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The Raman measurements were also performed with different excitation wavelengths
ranging from 457.9 nm up to 568.2 nm. The spectra are shown in Fig. 5.6. Since the
peak position is unaffected by the different excitation wavelengths, photoluminescence
can be ruled out as the origin of the peak at 235 meV. Raman scattering measures the
energetic difference between incident wavelength and scattered wavelength (Raman shift).
A photoluminescence feature will appear shifted when changing the excitation energy.
A weak photoluminescence peak at 2.14 eV with a width of 75 meV is indeed observed
(indicated by arrows). It can explain the increased weight around 50 meV in the spectrum
measured with 568.2 nm (∼ 2.2 eV). As clearly shown the overall spectral shape of the
excitation is almost unaffected by the additional photoluminescence feature. In the inset
of Fig. 5.6 the integrated intensity of the 235 meV peak has been plotted. The mode is
resonantly enhanced at 2.54 eV. In addition a strong temperature dependence is observed
as shown in Fig. 5.7.
The effect of (oxygen) defects has also be considered as a possible source of the peak at

235 meV. We measured another sample of LaTiO3+δ having an oxygen non-stoichiometry
of the order of δ = 0.02 with a significantly lower ordering temperature of TN = 120 K.
As displayed in Fig. 5.5 the feature at 235 meV stays unaffected of the different oxygen
content, i.e. oxygen defects can also be ruled out as a possible explanation for this peak.
Magnons can also be observed in Raman scattering experiments and this peak shows

indeed similarities to the two-magnon peaks as observed in the cuprates (see Ref. [112] as an
overview). However, in the titanates the magnetic coupling constant J is tiny (J = 3− 15
meV) when comparing to the cuprates (J = 100 − 150 meV). A two-magnon mode is
expected at about 5 J in a three-dimensional S = 1/2 system and has indeed been observed
around 80 meV in LaTiO3 [211]. Thus, also a magnetic origin can be excluded for the 235
meV feature.
In Fig. 5.8 the polarization dependence of the 235 meV peak is displayed. The mode

strongly depends on the configuration of polarizer and analyzer, i.e. the mode is reduced
when turning the crystal from (z, z) to (x, x). The Raman intensities for crossed and
parallel polarizations can be expressed by the entries of the Raman tensors of a cubic point
group (Oh), i.e. A1g, Eg and T2g. The relations for this particular geometry read:

Iparallel = (
2

3
− aθ − bθ)Eg + (aθ + bθ)T2g +

1

3
A1g,

Icrossed = bθEg + (
1

2
− bθ)T2g, (5.1)

where θ is the angle between the incident electric-field vector and the c (z) axis, θ = 90◦

corresponds to the a or b (x) axis, and aθ = 1
2

sin2 θ, bθ = 3
8

sin2 2θ. This relation can
describe the observed polarization dependence.
We have also measured the maximum intensity of the 235 meV feature and of the two-

phonon peak at 165 meV on a different piece of sample. The data is displayed in Figs. 5.9
and 5.10. If the sample is rotated from one Ti-Ti bond to another Ti-Ti bond around c
and around b∗ (one of the Ti-Ti bond directions in the ab plane), the uncorrected data
(see below) show roughly cubic behavior. This can be seen by eye since the intensity for
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5.3 Orbital excitations in LaTiO3 and YTiO3: a Raman scattering study

Figure 5.8: Polarization dependence of the Raman spectra of YTiO3 and LaTiO3 at room
temperature. The intensity is symmetric with respect to (α, β)→ (β, α). A frequency-independent
background has been subtracted. Insets: relative scattering intensities for the parallel (�) and
crossed (♦) polarizations as a function of the angle θ (see Eq. 5.1). The experimental intensities
are scaled with respect to the value at θ = 0◦. Solid and dashed lines are obtained from Eq. 5.1,
with relative intensities Eg : A1g : T2g ≈ 1 : 0.3 : 0.1 (1 : 0.5 : 0.1) in YTiO3 (LaTiO3). Note,
that θ = 0◦ corresponds to a Ti-Ti bond direction while θ = 90◦ does not (an isotropy is not
expected).
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all bond directions is approximately the same at θ = 90◦ and θ = 180◦. Note, that we
assume that the width of the excitations does not change under rotating the sample and
that the height is a measure of the peak area. One can observe especially in Fig. 5.9 that
there are clear deviations from the cubic symmetry (compare the blue curve and the red
curve). These deviations reflect the rotated and tilted octahedra.
Several scenarios for the peak at 235 meV have clearly been ruled out above. What

is now the origin of this peak? We attribute this feature to an orbital excitation. A
corresponding feature has been observed by Rückamp et al. in IR spectroscopy, but it is
shifted by the energy of a symmetry-breaking phonon, see Fig. 5.11. From the maximum-
maximum distance between infrared and Raman spectra one can read a difference of 65
meV. This is a very reasonable value for an average phonon frequency. We conclude that
the symmetry of the excitation has to be even, i.e. ground state and excited states have
the same parity. From the resonating behavior of the excitation at 2.5 eV we can conclude
that the intermediate state for the Raman process lies inside the upper Hubbard band
(see Ref. [107] and our data below). This means that the excitation process has to involve
two Ti sites. The electron on one Ti site is transferred to another Ti site which yields a
double occupancy (i.e. an intermediate state in the upper Hubbard band). One of the two
electrons of the double occupancy hops back to the initial site, resulting in either one or
two flipped orbitals.
The question is now how large is the dispersion of these excitations or in other words:

can this excitation propagate? For the further interpretation we will discuss two scenarios
(i) a propagating excitation (orbiton, orbital wave) and (ii) a local crystal-field excitation.
(i) a local crystal-field excitation - The point-charge, cluster, and LDA(+U) calculations

presented above suggest a crystal-field splitting of 250 meV on the titanium site. This is in
excellent agreement with the observed 235 meV and also compatible with the data from IR
spectroscopy [26]. In order to address the polarization dependence of such a transition, we
will discuss the probability of the two-site process mentioned above for a final state with a
single orbital flipped. A double flip would be energetically too high in energy for explaining
our feature at 235 meV and will not be considered. Note, that in a recent Raman study
of Sugai et al. [57] a second peak has been found in YTiO3 at about 0.5 eV for crossed
polarizations. This feature is not present in our data. We will focus on YTiO3 since this
crystal is single domain. We do not know the degree of twinning in the LaTiO3 system5.
Consider two Ti sites i and j, each occupied with one electron. For resonant Raman
scattering there are now three processes which yield a single orbital excitation on site i from
the ground state to the 1st and 2nd crystal field levels [214] (see Fig. 5.12): c†i,2cj,2c

†
j,2ci,1,

c†i,2cj,3c
†
j,3ci,1, and c

†
j,1ci,1c

†
i,2cj,1, where c

†
j,m (cj,m) creates (annihilates) an electron on site j

in the orbital m. As one can see, the first two contributions yield the final state c†i,2ci,1|0〉
while the latter one results in ci,1c†i,2|0〉. One has to commute once which gives the second
process a minus sign due to the commutator relations of fermions. The processes are
sketched in Fig. 5.12 for excitations on site i (site j has to be calculated in an analogous
fashion). The intensity for the transition into the first crystal-field level (1st CF) can be

5Assume the crystal would be fully twinned, then the Raman spectra will be perfectly cubic.
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Figure 5.9: Polarization dependence of the Raman spectra of YTiO3 at room temperature
measured on the ab surface (hh - parallel polarization, hv - crossed polarization). The intensity
at 235 meV (2-orbital) and at 165 meV (2-phonon) is plotted as a function of the sample rotation
angle ξ.

90 100 110 120 130 140 150 160 170 180
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

    (hh)

    (hv)Laser: 514 nm
T = 295 K

 cubic state
 fit (sin2)

YTiO
3

(001) (110)

         a*c - plane
 2-orbital
 2-orbital (corr)
 2-phonon

 

In
te

ns
ity

   
(a

rb
. u

ni
ts

)

Figure 5.10: Polarization dependencies of the Raman spectra of YTiO3 at room temperature
measured on the a∗c surface (hh - parallel polarization, hv - crossed polarization). The intensity
at 235 meV (2-orbital) and at 165 meV (2-phonon) is plotted as a function of the sample rotation
angle ξ.
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Figure 5.11: Comparison of Raman spectra of YTiO3 and LaTiO3 at low temperatures [64] with
optical conductivity spectra [26]. A power-law background has been subtracted from σ1 and the
spectra have been rescaled and shifted for clarity.
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Figure 5.12: Sketch of the different hopping processes contributing to a single orbital excitation
on site i in resonant Raman scattering. Note, that tijnm = tjimn.

140



5.3 Orbital excitations in LaTiO3 and YTiO3: a Raman scattering study

Table 5.3: Matrix elements for resonant Raman scattering.

t matrices from Refs. [45] [11] [204] [213] [54]
ab c ab c ab c ab c ab c

1st CF (×10−4 eV2) 5.38 0.27 1.02 0.07 3.16 0.96 1.36 0.37 - -
2nd CF (×10−4 eV2) 5.92 0.17 4.23 7.08 2.32 0.42 2.05 0.10 - -

I(ab) : I(c) 25:1 0.6:1 4:1 6:1 ∞:1

calculated by |Aij|2 + |Aji|2 with Aij = t12t22 + t13t23 − t21t11 (Aji analogous). We assume
that the two crystal-field levels are degenerate, or that their splitting cannot be resolved.
Thus we will only discuss the total intensity of both excitations. We obtained the results
presented in Tab. 5.3: the matrix elements for the ab and c directions are anisotropic and
depend strongly on the underlying hopping matrices. From the data of Pavarini et al. [11]
we obtain a ratio I(ab)/I(c) = 0.6, while we found I(ab)/I(c) = 25 using the hopping
matrices of Schmitz et al. [45]. Note, that very recently an erratum of the data of Schmitz
et al. has been submitted [213] in which the hopping matrices have been revised. With the
revised matrices6 the ratio reduces to I(ab)/I(c) = 6. This anisotropy (especially in the
old data of Schmitz et al. [45]) seems to be incompatible with the observed isotropy.
However, recently we also measured the optical conductivity of YTiO3 (see below) and

found a sizable anisotropy between the ab and c direction (the in-plane and out-of plane
Ti-Ti bond). In other words, the absorption coefficient is different in ab and c which leads
to a different penetration depth for the light wave. We neglect the anisotropy between a
and b, since it is "only" 1.2. For the Raman experiment the difference in the penetration
depth yields a different scattering volume along ab and c. One has to correct for this
difference since the Raman cross section (see chapter 3) is proportional to the scattering
volume [115]. We found that the ratio of the penetration depth at 514 nm is approximately
dc/dab(2.41eV) ≈ 1.55, i.e. the data along ab has to be multiplied by this factor. The
modified data is also displayed in Fig. 5.10; figure 5.9 has not been modified because the
values at 90◦ and 180◦ will change by the same amount, since both directions contain equal
contributions of the a and b directions. The isotropy between the Ti-Ti bond in c direction
and between the bond in ab is lost. Therefore it is not possible anymore to regard the data
as cubic, in contrast to the statement of our earlier publication [64]. While the uncorrected
spectra yield a ratio between ab and c of 1:1, the correction induces an anisotropy of 1.55:1.
None of the calculated matrix elements can explain the observed ratio in a quantitative
manner. However, with the corrected result of Schmitz et al. [213] the discrepancy between
theory and experiment has become (much) smaller. Originally, these seemed to be a factor
of 25, large enough to rule out the crystal-field scenario. Now the this discrepancy is only
a factor of 6, i.e. the crystal-field scenario is a plausible option again.

6We thank for the kind provision before publication.
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Figure 5.13: Franck-Condon line shape in comparison to the measured Raman spectrum of
YTiO3.

Finally we would like to suggest that the electron-phonon coupling has to be considered
explicitly in order to understand the observed polarization dependence. The admixture
of phonons to the initial and final states will change the transition probabilities. The
line shape and temperature dependence of the Raman response in YTiO3 are typical for a
vibronic transition [84]. We have plotted a Franck-Condon line shape [84] together with the
measured data at low temperatures and got a reasonable agreement (see Fig. 5.13). Due
to phonon-phonon interaction the phonon modes in YTiO3 lose intensity with increasing
temperature. This can explain the intensity loss of the orbital excitation observed in
YTiO3. As an aside the two-phonon mode at 165 meV may be reinterpreted as the zero-
phonon line of the orbital excitation, i.e. the bare electronic excitation.
(ii) A propagating excitation (orbiton) - For a very low splitting of the t2g manifold

(Jahn-Teller effect, 27 meV) Ishihara proposed the existence of orbital waves in YTiO3

[54]. He calculated the Raman response for a spin-orbital Hamiltonian with isotropic
hopping amplitudes also including a small contribution from the Jahn-Teller effect. For
a four-sublattice pattern of the form (xz ± xy)/

√
2 , (yz ± xy)/

√
2 a single orbital flip is

predicted for the ab direction, but a two-orbital flip for the c direction. This selection
rule is in clear contradiction to our findings, where no change of the peak position has
been observed upon a change of the polarization (see Fig. 5.8). However this approach
has been used to describe Raman data similar to ours [57], claiming a good agreement to
the above theory. The selection rule proposed by Ishihara has been ignored. The theory
of Ishihara disregards the steric crystal fields, i.e. the GdFeO3 distortions which lead to a
strong increase of the t2g level splitting. The Jahn-Teller effect has been shown to play a
minor role in the titanates [11].
Another scenario for a dispersing excitation is given in the orbital-liquid model. It
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naturally predicts an isotropic Raman response, i.e. a ratio I(ab) : I(c) = 1 : 1 can be
understood, because no orbital direction is favored. As shown above the Raman data
should be corrected in order to take the anisotropic scattering volumes into account before
entering the discussion. Note, that the conductivity data has not been known when the
Raman study [64] has been carried out. It has been implicitly assumed that the response
is isotropic. Later, it turned out that this is not the case. Thus the orbital liquid picture
predicts an isotropic behavior (1 : 1), the crystal field scenario varies between 0.6 : 1 and
6 : 1, and the experiment gives 1.5:1.
The observed energy of 235 meV is in reasonable agreement with the orbital-liquid model.

It predicts a two-orbiton excitation with an energy of 180 meV [43, 44, 64]. The analogy to
the two-magnon scattering has been pointed out. For a quenched orbital moment the spin
has to be conserved in Raman scattering with linearly polarized light. This is the reason
why only two-magnon scattering is observed in many transition-metal compounds. For the
spin-orbital Hamiltonian one can only flip two orbitals when the excitation process involves
two sites, i.e. one has pseudo-spin conservation. To see this we start from an orbital dimer
with an antiferro-orbital arrangement: one electron resides in the dxz orbital on site 1 and
another one in the dyz orbital on site 2. Since t2g electrons in cubic symmetry can only
hop between t2g orbitals of the same type, one can only induce a two-orbital flip with an
excitation process involving two sites. In IR absorption a single orbital flip (plus phonon)
should be allowed.
To conclude, we observed a peak at 235 meV in LaTiO3 and YTiO3. We see strong

evidence that this peak is an orbital excitation and that the excitation process involves
two Ti sites. In the light of the most recent experimental and theoretical results, i.e. the
"not so cubic" data and "not so anisotropic" results within the crystal-field scenario, it
is not possible to unravel the nature of the ground state, orbitally ordered or orbitally
fluctuating, on the basis of this data alone.

5.4 Electronic structure of YTiO3 probed by ellipsometry

In this section we study optical excitations from the lower to the upper Hubbard band
in YTiO3. Peaks in the optical conductivity at 2.55 and 4.15 eV reflect the existence of
multiple upper Hubbard bands in a multi-orbital system. A temperature-dependent peak
at 1.95 eV is interpreted in terms of a Hubbard exciton, i.e. a charge-neutral (quasi-)bound
state of a hole in the lower Hubbard band and a double occupancy in the upper one.
We suggest that the binding to such a Hubbard exciton may arise both due to Coulomb
attraction between nearest-neighbor sites and due to a lowering of the kinetic energy in an
orbitally-ordered state.
In general, the competition between Coulomb and kinetic energy governs the formation

of bound states. In BCS theory, Cooper pairs are formed due to a reduction of Coulomb en-
ergy, which overcompensates an increase in kinetic energy. The Coulomb energy also drives
the binding of particles and holes to excitons in conventional semiconductors. However,
the physics may be very different in strongly correlated systems. One interesting scenario
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Figure 5.14: Optical conductivity of YTiO3 at 15K. Inset: sketch of the optical excitations from
the lower Hubbard band (LHB) and the oxygen 2p band into the upper Hubbard band (UHB) in
case of a single, half-filled orbital at the transition-metal site.

for high-Tc superconductivity in the cuprates assumes that the formation of Cooper pairs
is based on a reduction of the kinetic energy [215–217]. For the case of a two-dimensional
(2D) antiferromagnetic Hubbard system relevant for the cuprates, Wrobel and Eder [77]
pointed out that the Coulomb energy may neither be crucial for excitons. Instead, the
formation of a Hubbard exciton may be dominated by the kinetic energy and interactions
with the antiferromagnetic spin background, bearing much resemblance to the binding of
holes to Cooper pairs [77].
We report on the observation of an excitonic resonance in the optical conductivity σ(ω)

of the undoped, orbitally ordered Mott-Hubbard insulator YTiO3. Due to the orbital
multiplicity in this d1 spin S = 1/2 compound, the upper Hubbard band (UHB) consists
of a series of multiplets. A peak at 2.55 eV is identified with the lowest multiplet (i.e., the
’lowest UHB’), whereas a strongly temperature-dependent peak at 1.95 eV is attributed
to an excitonic resonance. We point out that the exciton formation in orbitally-ordered
compounds may be similar to the case of a 2D antiferromagnet discussed by Wrobel and
Eder [77]. Our result provides the experimental basis to disentangle the role of Coulomb
and kinetic energy.

5.4.1 Experimental
A single crystal of YTiO3 was grown using the floating-zone technique. The crystal quality
and stoichiometry were checked by X-ray diffraction, EDX, and polarization microscopy.
From SQUID measurements we find that the sample becomes ferromagnetic below Tc ≈ 27
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K. Details of the growth and the characterization can be found in the Diploma thesis of
H. Roth [108]. Four-sublattice orbital order has been reported up to room temperature
[5, 190]. However, no anomaly in the evolution of the lattice constants up to 700 K has
been observed [202] pointing towards an orbital-ordering transition, i.e. YTiO3 may be
orbitally ordered up to the melting temperature.
Generalized ellipsometric data [218] was obtained using a rotating-analyzer ellipsometer

(Woollam VASE) with an angle of incidence of 70◦. Immediately after polishing, the
sample was kept in an UHV cryostat with a pressure < 10−9 mbar. Window effects have
been corrected using a standard Si wafer.
In orthorhombic YTiO3, only the diagonal elements σa, σb and σc of the complex optical

conductivity tensor σ(ω) = σ1 + iσ2 are finite. We have determined σ(ω) from mea-
surements with 4 different orientations, namely with the p-polarized light parallel to the
crystallographic a and b (a∗ and c) axes on the ab (a∗c) surface, where a∗ = (110) within
the Pbnm space group. A non-absorbing cover layer (d ≤ 2 nm) has been assumed in order
to achieve a consistent description of the data of the two distinct surfaces (see chapter 3
for more details). In Fig. 5.14 we plot an overview spectrum of σa1 , σb1, and σc1 from 0.75
to 5.8 eV at 15K.

5.4.2 Results and Discussion

Undoped YTiO3 is a Mott-Hubbard insulator. In the ground state there is a single electron
in the 3d shell at each Ti site. It is well accepted that the absorption above the gap
corresponds to excitations from the LHB to the UHB, i.e. to the creation of an empty and
a doubly occupied site, |d1d1〉 → |d0d2〉. The strong increase of σ1(ω) above≈ 4.5 eV reflects
the onset of charge-transfer excitations from the O2p band to the UHB (|d1p6〉 → |d2p5〉).
The charge-transfer excitations are of first order in the Ti-O hopping tpd, whereas the Mott-
Hubbard excitations are of second order in tpd, which explains the difference in spectral
weight.
Photoemission spectroscopy [124, 207, 208] yields a charge-transfer energy ∆ ∼= 6 eV and

an on-site Coulomb interaction U & 5 eV. Here, U denotes the Coulomb repulsion if both
electrons occupy the same orbital7 (Kanamori scheme). In a single-band Hubbard model,
the splitting between LHB and UHB is given by U (cf. inset of Fig. 5.14). However, for a
quantitative description of σ(ω) one has to take all five 3d orbitals into account [219].
Figure 5.15 focuses on the inter-Hubbard-band excitations below 4.5 eV. Three peaks are

observed at 1.95 (A), 2.55 (B), and 4.15 eV (C). First we address the peak assignment,
the temperature dependence will be discussed below. The excited |d0d2〉 states can be
distinguished according to the d2 sector, because d0 is an empty shell. The d2 sector is

7For a comparison of different results one needs to distinguish between U ≡ UKanamori =F 0 + 4
49F

2 +
36
441F

4 (both electrons occupy the same orbital) and Uav=F 0− 14
441 (F 2+F 4) (averaged over all multiplets)

with the Slater integrals F 0, F 2, and F 4 (see chapter 2 for further details). The value of Uav ∼= 4 eV
reported in Ref. [124] corresponds to UKanamori ≈ 5.3 eV. However, this value is based on a TiO6

configuration-interaction cluster model including covalency. Due to screening effects by O2p orbitals,
the effective value of U is somewhat smaller, in good agreement with U=4.5 eV chosen in Fig. 5.18.
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Figure 5.15: Optical conductivity of YTiO3.

split into a series of multiplets by the electron-electron interaction, the crystal field, and
the hybridization with the ligands [20]. We start from cubic symmetry, in which case the
crystal field and the hybridization give rise to a splitting of the 3d orbitals into a triply
degenerate t2g level and a doubly degenerate eg level at higher energy. The splitting is
denoted by 10Dq, which roughly can be estimated as 2 ± 0.5 eV [26, 45, 190] (see also
Tab. 5.2). The electron-electron interaction within the 3d shell can be parameterized by
the three Slater integrals F 0, F 2 and F 4. Here, F 4/F 2 ≈ 5/8 is determined by an atomic
Hartree-Fock (HF) study and F 2=6.75 eV is characteristic for Ti2+ ions in a crystal [20].
The only parameter that can be adapted is F 0. It drastically deviates from the HF value
due to screening effects.
For F 0 = 3.60 eV (or U ≈ 4.5 eV)7 (see footnote on p. 145) the excitation energies are

given in Fig. 5.18, focusing on the four multiplets lowest in energy: the triplet 3T1, the
singlets 1T2 and 1E, and the triplet 3T2. For an intuitive picture we consider the crystal-
field limit (10Dq� U), in which there is one electron in the t2g level and one in the eg level
in the 3T2 state, whereas both electrons occupy the t2g level in the three other states. It is
common to consider the simplified Kanamori scheme [219] with the Hund on-site exchange
coupling JH ≡ JKanamoriH = 2.5

49
F 2 + 22.5

441
F 4. For Ti2+ one finds JH = 0.6 ± 0.1 eV. For
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U ≡ UKanamori ∼= 4 − 5 eV, the Kanamori scheme predicts the lowest excitation into the
3T1 triplet at U − 3JH ≈ 2− 3 eV, separated from the singlets by 2JH ≈ 1.2 eV (reflecting
Hund’s rule) and from the 3T2 state by 10Dq≈ 2 eV, in qualitative agreement with the
result of the rigorous calculation shown in Fig. 5.18.
The inclusion of the full crystal structure (i.e. deviations from cubic symmetry) as well as

covalency effects do not change our considerations above. In Fig. 5.16 we show the results
of a configuration interaction calculation performed on a TiO6 cluster8. In order to obtain
the Mott-Hubbard transition energies one has to calculate the d0, d1, and d2 configurations.
The energy of the Mott-Hubbard transitions reads EMH = E(d2) + E(d0) − 2E(d1). We
adapted the Slater integrals and the ionic radii of the different configurations according
to the atomic Hartree-Fock values [18]. The energy-level diagram is shown as function
of Udd (= Uav). The red horizonal lines indicate our peaks positions. The dotted line
represents the region at 3.5 eV where weight is clearly gained with increasing temperature.
We assign this region to transitions into low spin states (This line should meet the S=0
excitations). It is difficult to get all lines simultaneously intersecting at one value of Udd.
Nevertheless a reasonable agreement is obtained for 4-4.5 eV, which again is a reasonable
value. For the calculation we have strictly used the Harrison rules [169] for the spatial
dependence of the hybridization. The results for the d1 sector have to reproduce a t2g-level
splitting of 0.25 eV (see above) and a charge-transfer transition at 5.5 eV. Our calculations
yield 10% reduced values for the t2g-eg splitting (see Tab. 5.2). Regarding the d2 sector
the average multiplet splitting between the 3T1 (lowest three S = 1 levels) and 1E/1T2

(lowest five S = 0 levels, one higher level) as well as between the 3T1 and 3T2 (higher S = 1
levels) states are approximately 1 eV and 1.7 eV and are thus comparable to the multiplet
splittings discussed within the cubic scenario. We can therefore restrict ourselves to the
cubic scenario for the following discussion.
Figures 5.18 clearly shows that the 3T1 state is more about 1.0-1.2 eV below the next

multiplet for any reasonable choice of 10Dq. Thus the small splitting of 0.6 eV between
peaks A and B can not be identified with the difference between the 3T1 state and any other
multiplet. We conclude that both peak A and B are related to excitations into the 3T1

state. Peak C can be attributed to the 3T2 state, since only excitations into triplet states
are allowed from a fully polarized ferromagnetic ground state within an electric dipole
approximation. Excitations to the singlet states 1T2 and 1E require a spin flip and thus are
suppressed, at least at low temperatures. This assignment is supported by the observed
temperature dependence. We display in Fig. 5.17 the integrated spectral weight (effective
carrier concentration - Neff , see chapter 4 for details) of certain regions of the spectrum.
Note that the changes are very small, but we think that the values are reliable with an
accuracy of 0.001. Between 1.6-2.6 eV one can clearly observe an anomaly in the a and
b direction approximately (!) at Tc, i.e. an additional increase of weight with decreasing
temperature. Additionally, one finds an anomalous decrease of weight with decreasing
temperature again in a and b in the region between 2.6-3.9 eV. Furthermore, most clearly
observed in c, there is again an increase at approximately Tc between 3.9-4.3 eV. Starting

8We thank A. Tanaka for the kind provision of his configuration-interaction software.
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Figure 5.16: Configuration-interaction calculation for a d0, d1 and d2 configuration for YTiO3.
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transition energy within the tg multiplet (Raman) are shown in the right panel together with the
calculated d1 excitation spectrum.
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from a ferromagnetic ground state, transitions can only occur into a high-spin state (S = 1),
i.e. into the 3T states. Cooling down from a paramagnetic state the latter transitions gain
weight below Tc. In contrast, excitations into a low-spin state (S = 0) will loose weight
at Tc when cooling down. We observe changes in the spectral weight up to temperatures
of roughly 10Tc and indeed smaller changes at approximately 2Tc. The deviation of the
anomaly in spectral weight away from Tc cannot be explained by an uncertainty of the
sample temperature, because it amounts only several K in that temperature region. We
calibrated the sample temperature once with an additional sensor at the sample position
(see appendix). Another, more plausible explanation is that we keep some short-range
ordering above Tc in the same manner as in LaSrMnO4 and LaMnO3 [2]. It has been
proposed by Oles et al. [83] that the change in spectral weight between the paramagnetic
and the ferromagnetic state amounts to 25% in YTiO3 in the ab and c directions. This
can be understood by the evolution of the nearest-neighbor spin-spin correlation function
〈Si ·Sj + 3/4〉. Assuming classical vectors with S = 1/2 one finds 〈Si ·Sj + 3/4〉 = 1 in
the ferromagnetic state and 〈Si ·Sj + 3/4〉 = 3/4 in the paramagnetic state sector, i.e. a
redistribution of 25%. A redistribution of weight of this magnitude is clearly not observed,
especially not in the c direction. The effect described furthermore cannot explain the
change of peak A up to at least 300K & 10 ·Tc (see Fig. 5.15).
In the following, we discuss three scenarios for the splitting between peak A and B:

deviations from cubic symmetry, band structure effects, and an excitonic resonance.
The deviation from cubic symmetry lifts the degeneracy of the t2g orbitals and thereby

also of the 3T1 state. In infrared transmittance [26] and in our Raman measurements
this t2g splitting was found to be ≈ 0.25 eV. This is more than a factor of two too small
to explain the splitting9 between peaks A and B. Also from LDA+U [205] and from our
configuration-interaction calculations (see above), the t2g splitting of the d2 sector is at
most 0.4 eV.
Now we address possible band-structure effects. A LDA+DMFT study of YTiO3, based

on the actual crystal structure, does not show a splitting of the lowest peak in σ1(ω) [11], see
Fig. 5.19. Assuming U=5 eV, this peak in σ1(ω) is found at 3.3 eV. Reasonable agreement
with our data, in particular with the energy of 2.55 eV of peak B and with the onset of
absorption below 1 eV, is obtained by assuming U≈4.3 eV. Note that this calculation finds
a metallic state for U=3.5 eV, thus it is unreasonable to identify peak A at 1.95 eV with
the calculated peak. Furthermore, in photoemission (PES) data of YTiO3 the LHB is a
single peak ≈ 1.3 eV below the Fermi level [207, 208], see Fig. 5.21. In inverse PES on
Y1−xCaxTiO3 (x=0.4 - 0.8) the UHB can be identified with the lowest peak or shoulder
≈ 1.5-2 eV above the Fermi level [208], see Fig. 5.22 . Both PES and inverse PES agree
with the LDA+DMFT result [11] for U = 4 - 5 eV. Finally, U ≈ 5.3 eV7 (see footnote on
p. 145 for a comparison of the different values of U) has been derived from 2p core-level
PES [124]. Altogether, these results support our interpretation that the splitting between

9 The t2g splitting ∆t2g is relevant for a precise determination of U , since the lowest non-excitonic
excitation (peak B) is expected at about U − 3JH + ∆t2g. However, we will neglect this refinement in
the following discussion.
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Figure 5.17: Effective carrier concentration of YTiO3 for different cut-off frequencies (lower limit
ωc1, upper limit ωc2). The unit-cell volume has been kept fixed to the 290 K value (see Tab. 5.1).
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Figure 5.18: Left: Calculated energies for a |d1d1〉 → |d0d2〉 excitation with different d2 final
states in a cubic crystal field [20]. The Slater integrals were chosen as F 0 = 3.60 eV, F 2=6.75 eV,
and F 4=4.55 eV, corresponding to U = 4.5 eV7 (see footnote on p. 145). For 10Dq = 0 the
ionic multiplet structure is obtained. For 10Dq ≈ 1.5 - 1.9 eV (grey) the energy of peak C is
well described by excitations into the 3T2 state. Right: sketch of the orbital occupation in the
crystal-field limit.

peaks A and B does not result from the band structure and that peak B at 2.55 eV is the
dominant excitation. A LDA+U band-structure calculation [205] finds some fine structure
in the 3T1 band. However this splitting is only 0.4 eV. Furthermore the energetic distances
do not fit our experiment. For the t2g splitting of the d2 sector we also find a value of 0.4
eV (see above).
In contrast to (inverse) PES, the optical conductivity reflects particle-hole excitations

and thus is sensitive to interactions between the particle in the UHB (i.e. a double occu-
pancy) and the hole in the LHB. These interactions are also neglected in the LDA+DMFT
calculation of σ(ω) of Ref. [11]. We therefore identify peak B as a particle-hole excitation
in which the particle and the hole are well separated, whereas peak A is interpreted as an
excitonic resonance, where the particle and the hole remain close to each other. Note that
peak A is not lying below the gap, i.e. it is not a truly bound exciton, but a resonance
within the continuum (see chapter 2). Just as in conventional semiconductors, a Hubbard
exciton may arise due to the attractive Coulomb interaction between the particle and the
hole. The nearest-neighbor10 particle-particle repulsion V of the extended Hubbard model
[48] is equivalent to a particle-hole attraction −V . We will give a very rough estimate for
the value of V . It is the energetic distance to the Hubbard-band maximum at 2.55 eV, i.e.
roughly ∼ 0.6 eV. We can not decide whether this is a realistic value for YTiO3. More

10In Mott-Hubbard insulators, the particle and the hole may reside on the same site, albeit with different
spin or orbital quantum numbers. Such a very strongly bound ’exciton’ corresponds to a magnon or an
orbiton, excitations within the spin or orbital channel. There is no doubly occupied site and one does
not have to pay U , in contrast to the excitations discussed here.
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Figure 5.19: Optical conductivity of
YTiO3 from LDA+DMFT with the para-
meters U = 5 eV at kT = 0.1 eV. Note that
all matrix elements are set to unity [11].

Figure 5.20: DOS of YTiO3 from
LDA+DMFT with the parameters U = 3.5
(red), 4.0 (red), 4.5 (green), 4.75 (green), 5.0
(blue), 6.0 (blue) eV at kT = 0.1 eV [11].

detailed theoretical studies are required to decide whether a realistic value of V is sufficient
to explain the splitting of 0.6 eV observed between peaks A and B.
For a 2D Mott-Hubbard insulator with antiferromagnetic (AF) exchange J on a square

lattice, Wrobel and Eder pointed out that exciton formation may be governed by the
interplay between the kinetic energy and the interaction with the AF background [77].
The motion of a single hole doped into the LHB (or equivalently of a double occupancy in
the UHB) is hindered by the interaction of the spin of the hole with the AF background.
This can be described in terms of a spin polaron. Hopping of the bare hole on the energy
scale t results in a trace of misaligned spins. Coherent motion of the dressed polaronic
quasiparticle requires the emission of magnons; i.e. the bare hole band width ∼ t is reduced
to the polaronic band width ∼ J . In this case, the kinetic energy may be lowered by the
formation of spinless excitons below the Mott-Hubbard gap. Interestingly, this mechanism
for exciton formation may be relevant for the formation of Cooper pairs in the case of
superconductivity [77]. One may speculate that a similar mechanism is at work in the case
of antiferro-orbital (AFO) order (see Fig. 5.23). The orbital ordering pattern in YTiO3

is more complex than simple AFO [5, 190, 191]. Still Fig. 5.23 may be relevant for the
ab plane, since hopping from the lowest orbital on one site to the lowest orbital on a
neighboring site is 2-3 times smaller than hopping to the excited states [11, 45].
Finally we address the observed anisotropy between the ab plane and the c direction.

From the matrix elements from Refs. [11, 204, 213] one can estimate the transition prob-
ability by considering that (Na

eff + N b
eff )/(2N

c
eff ) ∝ (tab/tc)

2 = 1.1 [204], 3.5 [11], and
5.1 [213]. Experimentally we find (Na

eff +N b
eff )/(2N

c
eff ) ≈ 2 in the region 1.6-2.6 eV (see

Fig. 5.1), which is in reasonable agreement to the data of Pavarini et al. [11]. Also the peak
at 4.2 eV exhibits an anisotropy between ab and c, and even more pronounced between
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Figure 5.21: PES of YTiO3 [207].
The maximum of the LHB is approx-
imately located at 1.3 eV.

Figure 5.22: IPES of Y1−xCaxTiO3 [208].
The maximum of the UHB is located at 1.5-
2.0 eV. Note that the resolution is only 0.7
eV.

a and b. By using the hopping matrices the anisotropy can be understood qualitatively:
(Na

eff+N b
eff )/(2N

c
eff ) ≈ 0.7 (experiment) and ≈ 0.4 (theory [213]). The difference between

a and b direction is unclear and must be related to a strong orbital selection rule.
In summary, we report on σ(ω) of the inter-Hubbard-band excitations in YTiO3. Taking

into account all 3d orbitals, the peak positions and the anisotropy of σ can be understood
in a local scenario using U ≈ 4.5 eV. The peak assignments are in agreement with pho-
toemission and LDA+DMFT results. Peak B at 2.55 eV is attributed to excitations into
the lowest d2 multiplet (3T1 in cubic symmetry) with an energy of roughly U − 3JH (see
footnote 9 on p. 149). Peak A at 1.95 eV is interpreted as an excitonic resonance. We
suggest that this Hubbard exciton may result both from Coulomb interaction and from a
lowering of the kinetic energy in an orbitally ordered state. A quantitative description of
this binding phenomenon is essential for a consistent explanation of optical and photoe-
mission data and will allow us to extract important information on electronic correlations
in Hubbard systems.
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a)

b)

c)

d)

e)

Figure 5.23: Sketch of the suggested formation of a Hubbard exciton (dashed circle) due to
lowering of the kinetic energy in a state with antiferro-orbital order. Circles and squares denote
two distinct orbitals per site. We assume that hopping is finite only between orbitals of the same
type. Full (open) symbols refer to occupied (empty) orbitals. (a) Excitation from the LHB to the
UHB, |d1d1〉 → |d0d2〉. (b) and (c): Propagation of the hole, i.e. the |d0〉 site. Since the hopping
between circles and squares is zero, this creates a trace of misaligned orbitals (blue), suppressing
the hole motion. (d) and (e): This can be repaired if the doubly occupied site accompanies the
hole, forming a bound state.

5.5 Comparison to SmTiO3 and LaTiO3

In this section we will present ellipsometric data of the antiferromagnetic compounds
SmTiO3 and LaTiO3 and compare them to our measured data of the ferromagnetic com-
pound YTiO3. Ellipsometric measurements have been performed on a (001) surface and
a (100) surface of two SmTiO3 crystals of the same batch (see above). Here we give a
detailed study of the temperature and polarization dependence. The LaTiO3 crystals have
only been investigated at room temperature without any polarization analysis because
they were partly twinned. We also found that the surfaces of LaTiO3 are not stable in
time when comparing e.g. LaSrMnO4 (see appendix). Note that only unpolarized room
temperature data are available in the literature [104, 106, 107]
We start with a comparison of all three titanates at room temperature. Their spectra

are displayed in Fig. 5.24. The onset of the charge-transfer excitations can be found in all
compounds at approximately 4.5 eV. We focus on the Mott-Hubbard bands below 4.5 eV
[104, 107]. Two different spectra of LaTiO3 are shown. They both have nominally a TN
of approximately 150 K. There are significant differences especially in the region around
4.5 eV, which we trace back to the unstable surfaces of LaTiO3. The line shape of both
compounds is similar and also comparable to the optical conductivity (averaged over all
directions) of SmTiO3. YTiO3 differs in line shape, since one can clearly observe three
peaks instead of two in the other compounds. The bandwidth decreases from roughly 3.1
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Figure 5.24: a,c) Comparison of RTiO3 optical conductivity spectra at room temperature. The
two different LaTiO3 spectra are measured on two different crystals which have nominally almost
the same Neél temperature of about 150 K. The SmTiO3 and YTiO3 spectra have been averaged
over all three directions of σ1, because LaTiO3 is (partly) twinned and thus all directions are
measured simultaneously. b) The overall spectral weight of the Mott-Hubbard bands as function
of the averaged Ti-O-Ti bond angle α.

eV (LaTiO3) to 2.8 eV (YTiO3). This behavior can be qualitatively understood because
the hopping in SmTiO3 and LaTiO3 should be larger due to the increased Ti-O-Ti bond
angle α (see Tab. 5.1). However, this is not the full truth because the ground-state orbitals,
presuming orbital ordering, in LaTiO3 and YTiO3 are very different. Considering only t2g
orbitals of the form d1|xy〉+d2|yz〉+d3|zx〉 a ground state wavefunction with d2

1 = 0.6, d2
2 =

0.0 and d2
3 = 0.4 has been reported for YTiO3 [5, 190, 191] and d2

1 = 0.36, d2
2 = 0.15 and

d2
3 = 0.49 for LaTiO3 [13, 14, 220] (SmTiO3 lies in between [13, 14]). The different ground

states will have further influence on the hopping matrices, in particular the reduction of
the prefactor d2 from La to Y gives the major impact on the changes, since the other
prefactors are found to be almost independent on the Ti-O-Ti bond angle [13, 14]. In
addition to the increase in bandwidth we find an increase of the overall spectral weight
from Y to La. The (averaged) effective carrier concentration amounts to roughly 0.14±0.02
(YTiO3), 0.21± 0.02 (SmTiO3), and 0.27± 0.02 (LaTiO3), see Fig. 5.24(b). Qualitatively
this behavior agrees with the magnetic exchange constant obtained from neutron scattering
which decreases from LaTiO3 (|J | = 15.5 meV [3]) to YTiO3 (|J | = 3 meV [192]).
We now discuss the temperature dependence of the optical conductivity of SmTiO3. The

spectra are shown in Fig. 5.25. A multi-peak structure can be clearly observed, one hump
at 1.7 eV and another one at 3.7 eV. The a and c direction are almost identical, but the b
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Figure 5.25: Optical conductivity of SmTiO3.

direction significantly differs. A two-peak structure like in YTiO3 can not be resolved, i.e.
we see no direct experimental evidence of an excitonic resonance in SmTiO3 (and also
LaTiO3). One may speculate that the excitonic resonance is washed out in the latter
compounds because the hopping in ab and c are comparable while they are anisotropic by
a factor of 2-3 in YTiO3 [11, 213]. This yields a more two-dimensional orbital character in
YTiO3. A reduction of the dimensionality will generally sharpen a bound state (this can
e.g. be seen in spatially confined semiconductors [71]).
We have also calculated the spectral weight, i.e. the effective carrier concentration, in

certain regions of the spectrum between the energies ωc1 and ωc2 as a function of tem-
perature. This is displayed in Fig. 5.26. We found a pronounced change exactly at the
magnetic ordering temperature of 53 K. This may give evidence for the Mott-Hubbard
character of these bands. The anomalies observed in the lattice constants at TN can only
account for a change of the order of 1% in spectral weight when applying the Harrison
rules [169] (see also chapter 4), whereas we observe changes of about 5%. It seems that
the weight of the a and c directions predominately changes in the energy region 0.75-3.1
eV, while it changes in the b direction over the entire energy region 0.75-4.3 eV of the
Mott-Hubbard excitations. The temperature dependence is puzzling to us since it con-
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tradicts our expectations in two ways: firstly one would expect a reversed temperature
dependence when comparing to YTiO3 because the magnetic ground states are different,
and secondly one would naively expect changes of the order of 25 % due to the changes
in nearest-neighbor spin-spin correlation function11. An antiferromagnetic ground state
contains singlet and triplet states. This allows for transitions into high-spin (S=2) and
low-spin states (S=0). As already shown in YTiO3 this simple picture can only explain the
temperature changes across Tc but not the overall (stronger) changes in weight above Tc.
For the transitions into a high-spin state (3T1 in cubic symmetry), which should be the first
Mott-Hubbard transition observed, we expect an increase in weight when increasing the
temperature above TN (in contrast to YTiO3 where a decrease is expected above Tc and
also observed.). This increase is only observed for the a direction, the b and c directions
lose weight, in disagreement with our expectations (see Fig. 5.26).
So far we have completely omitted the Sm ion. In contrast to La and Y it does not

have a closed shell and is thus magnetic. It may be that the magnetism of the Sm ion has
some impact on the evolution of the spectral weight with temperature. Note however that
a hopping between Sm and Ti sites can be omitted to good approximation because the f
electrons a very localized when comparing to d electrons.
To conclude this section, we reported on ellipsometric measurements on LaTiO3 and

SmTiO3. We focussed on the SmTiO3 crystal since it is single domain. We found a
pronounced redistribution of weight across the magnetic ordering temperature of TN = 53
K in all three crystallographic directions up to 3.1 eV. This points towards the Mott-
Hubbard character of these bands. However, the sign of the change and the magnitude
contradict the expectations of a "spin-controlled" Mott-Hubbard transition in the fashion
of LaMnO3 [2]. Definitely more theoretical and experimental work on this compound is
needed to get a more quantitative understanding.

Summary

To summarize the main points of this chapter: we have presented a Raman-scattering study
on LaTiO3 and YTiO3, and an ellipsometric study on the compounds LaTiO3, SmTiO3,
and YTiO3.
From the Raman experiment we see strong evidence for an orbital excitation at 235 meV

in both compounds. The excitation is resonantly enhanced at an excitation energy of 2.5
eV, which we trace back to a resonance with the upper Hubbard-band, i.e. the excitation
process for a single or double orbital flip involves two sites.
In YTiO3 we observed a multi-peak structure in the optical conductivity which reflects

multiple-orbital Hubbard bands. We see evidence that the peak observed at 1.95 eV can
be interpreted as a Mott-Hubbard excitonic resonance, i.e. a quasi-bound state inside the
continuum. Furthermore we observed a significant anisotropy between ab and c direction
of YTiO3, which can be understood by the orbital ordering pattern found in the literature
[5, 11, 45, 190, 191, 213]. Regarding the temperature dependence of the spectral weight
11For a transition from an antiferromagnetic state into a high-spin states one finds: 〈SiSj + 3/4〉 → 1/2
(T � TN ) and 〈SiSj + 3/4〉 → 3/4 (T � TN ) for classical spins with S = 1/2.
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Figure 5.26: Effective carrier concentration of SmTiO3 for different cut-off frequencies (lower
limit ωc1, upper limit ωc2). The unit-cell volume has been kept fixed to the 290 K value (see
Tab. 5.1).
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we found small changes across a temperature of ∼ Tc and larger changes up to T > 10Tc.
However, the magnitude of the changes contradicts the expectations from the nearest-
neighbor spin-spin correlation function.
Finally we compare the data of ferromagnetic YTiO3 to those of the antiferromagnetic

compounds SmTiO3 and LaTiO3. The evolution of weight with increasing ionic rare-earth
radius can be qualitatively understood by the evolution of the Ti-O-Ti bond angle and
the change in the (orbitally-ordered) ground states. The spectral weight in SmTiO3 shows
significant changes at TN . Here the expectations from the spin-selection rules completely
fail to describe the observed sign of the change and the magnitude.
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6 Conclusions

Within the scope of this thesis the electronic structure of different transition-metal com-
pounds with open d shells has been investigated. The focus is on Mott-Hubbard insulators
in particular on excitations from the lower to the upper Hubbard band, on the effect of
spin and orbital correlations of these transitions, and on orbital excitations. We used three
different optical techniques for this study, in particular Fourier-transform spectroscopy (for
an energy range of 0.1-1 eV), spectroscopic ellipsometry (0.75-6 eV) and Raman scattering
(0.01-0.6 eV). The spectra have been recorded as a function of temperature and polar-
ization. For the ellipsometry results the spectral features have been analyzed in terms of
multiplets, which reflect multi-orbital Hubbard bands. We check our assignments by testing
the selection rules and by tracking the evolution of these features with temperature.

Ellipsometry setup

An ellipsometer has been put into operation by C. Hilgers and myself. Low-temperature
measurements down to liquid-He temperatures are now possible and well established. A
bake-out procedure is necessary to avoid the formation of ice layers. We were able to
determine the full dielectric (or conductivity) tensor of an orthorhombic sample by mea-
suring the Müller matrix for at least three different orientations of the sample. All data
sets have been analyzed simultaneously. The determination of the Müller matrix allows
for additional model parameters like depolarization, surface roughness, cover layers, etc.

Ellipsometry and Fourier spectroscopy on La1−xSr1+xMnO4

We measured the single-layered manganites La1−xSr1+xMnO4 for the compositions x = 0.0,
0.13, and 0.50. In the x = 0.0 compound a multi-peak structure has been found by
ellipsometry in the energy range between 0.75-5.8 eV in the a direction while there is only
a single peak in the c direction. This reflects the strong anisotropy between the inter-
and intra-layer directions. We were able to identify different charge-transfer and Mott-
Hubbard excitations by comparing the data directly to the optical conductivity obtained
from a multiplet calculation, which is shown to give a good description of the data. The
lowest multiplet around 2 eV is found to be a transition between two manganese sites,
i.e. a Mott-Hubbard transition. We get further evidence for this assignment from the
evolution of the spectral weight with temperature: the spectral weight of this transition
increases with increasing temperature, in contrast to higher-lying excitations which lose
spectral weight. This behavior reflects the change of magnetism from antiferromagnetic
to paramagnetic. We were able to understand the evolution of the spectral weight by
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the evolution of the nearest-neighbor spin-spin correlation. Therefore we conclude that
this compound is predominantly a Mott-Hubbard insulator. This result challenges the
widespread opinion that manganese compounds are always of charge-transfer type, but it
is in agrement with recent studies on the compound LaMnO3 [2, 125, 164, 165]. We also
measured the onset of the optical gap by means of Fourier-transform spectroscopy. No
(onsite) orbital excitation has been found up to 0.55 eV in the ab direction. This shows
that the intra-eg splitting has to be larger than this value.
In the doped compounds we found a redistribution of spectral weight which can be

qualitatively understood by inducing d3 states into the d4 host. A new feature develops at
1.0-1.5 eV which can be assigned to either a polaron or a charge-transfer excitation of the
d3 sector.

Raman scattering on YTiO3 and LaTiO3

We performed Raman scattering experiments1 on the Mott-Hubbard insulators YTiO3

and LaTiO3. We found a broad feature at 235 meV which we interpreted as an orbital
excitation. The intensity of this peak is resonantly enhanced at a laser energy of 2.5
eV. Since this energy lies inside the upper Hubbard band, we believe that the excitation
involves two Ti sites. In the light of the most recent experimental and theoretical results,
it is not possible to unravel the nature of the ground state, orbitally ordered or orbitally
fluctuating on basis of this data alone.

Ellipsometry on YTiO3, SmTiO3 and LaTiO3

In YTiO3 we observed a multi-peak structure in the optical conductivity which reflects
multiple-orbital Hubbard bands. We find evidence that the peak observed at 1.95 eV
can be interpreted as a Mott-Hubbard excitonic resonance, i.e. a quasi-bound state inside
the continuum. Furthermore we observed a significant anisotropy between the ab and c
direction of YTiO3, which can be understood by the orbital ordering pattern reported in
the literature [5, 11, 45, 190, 191, 213]. Regarding the temperature dependence of the
spectral weight we found small changes across a temperature of ∼ Tc and larger changes
up to T � Tc. However, the magnitude of the change contradicts the expectations from
the nearest-neighbor spin-spin correlation function. In contrast, in the manganite system
LaSrMnO4 the observed changes follow the expectations based on the spin-spin correlation
function almost on a quantitative level.
Finally we compare the data of ferromagnetic YTiO3 to those of the antiferromagnetic

compounds SmTiO3 and LaTiO3. The increase of spectral weight with increasing ionic rare-
earth radius can be qualitatively understood by the increase of the Ti-O-Ti bond angle and
the change in the (orbitally-ordered) ground state. The spectral weight in SmTiO3 shows
significant changes at TN . Here the expectations from the spin-selection rules completely
fail to describe the observed sign of the change and the magnitude.

1in collaboration with C. Ulrich and B. Keimer from the Max-Planck institute Stuttgart.
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Comparison of t12g and e1
g systems

If we finally compare the evolution of spectral weight of the lowest electronic excitation in
the prototypical t12g- (YTiO3, SmTiO3) and e1

g-electron (LaSrMnO4) systems with temper-
ature, one finds that the relative changes of the spectral weight are more pronounced in
case of the e1

g systems. This reflects firstly the larger spin value (S=2 compared to S=1/2)
for the e1

g system and secondly a stronger hybridization in the e1
g systems. Both effects

yield a stronger temperature dependence in the e1
g case. As already pointed out the change

of spectral weight in the titanates is lower then the predicted change based on the spin-spin
correlation function. This may indicate that spin and orbital degree of freedom can not be
regarded as decoupled in these systems as it was the case for LaSrMnO4.
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Measurement overview

Table A.1: Measurement overview: ellipsometry (E), Raman scattering (R), and Fourier-
transform spectroscopy (FT).

La1−xSr1+xMnO4 name surface measurements

x = 0.00a MB10 (010) or (100) E, FT
x = 0.125b Zd05 (010) or (100) E
x = 0.50a MB04 (010) or (100) E, FT

RTiO3+δ name surface measurements

Yc (δ < 0.02) HR28/2/3(a) (100) or (010) R
Yc (δ < 0.02) HR28/2/3(b) (001) and (1-10) E, R
Smc (δ ≈ 0.005) HR160/3/3 (-100) E
Smc (δ ≈ 0.005) HR160/3 (001) E
Lad (δ = −0.01) MC33B twinned R
Lac (δ ≈ −0.005) HR96/2 twinned E
Lac (δ ≈ −0.005) HR115/2 twinned E
Lac (δ = 0.04) HR104/3/4 twinnede R
Lac (δ = 0.03) HR104/3/1 twinned E

a Crystal growth by M. Benomar [143].
b Crystal growth by P. Reutler [156, 221].
c Crystal growth by H. Roth [108, 200].
d Crystal growth by M. Cwik [7].
e orientated within the cubic space group.
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Sample preparation
All samples were first orientated by means of Laue X-ray diffraction (see Fig. A.1). After-
wards they were sawed by an inside-hole saw. Then the surfaces were first lapped, then
polished, and finally cleaned.

Lapping

- The sample is heated up to 100◦C and glued with Gatan wax onto the sample holder.

- The sample is lapped for 20 minutes on a Logitech polishing machine (PM2) with a
suspension of Al2O3 (3 µm graining) in distilled water.

- The sample is cleaned with distilled water and ethanol.

Polishing

- Cleaning of the polishing disc.

- The sample is polished for 20 minutes on the Logitech PM2 with the Logitech pol-
ishing suspension SF1.

- If the surface does show any contaminations of SF1 or is not smooth enough the
polishing is continued.

Cleaning

- The sample is removed from the polishing plate by acetone.

- Ultrasonic bath for 3 minutes in fresh acetone.

- Ultrasonic bath for 3 minutes in distilled water.

- Ultrasonic bath for 3 minutes in ethanol.

- Ultrasonic bath for 3 minutes in distilled water.

- The sample is dried in air.

Finally, the sample is glued onto a Cu plate with silver paint and mounted on the cold
finger of a cryostat.
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a) b)

c) d)

SmTiO3
HR 160/3/3

SmTiO3
HR 160/3

Figure A.1: a,b) Exemplarily Laue picture of SmTiO3 (HR160/3) taken with the U = 30 kV,
I = 20 mA, T = 160 s. c,d) The data has been fitted with Clip1 in order to check to orientation.
The orientation along the crystallographic axes is within 3◦.
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Temperature at the sample position
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Figure A.2: The temperature at the sample position on the cold finger Tcold finger deviates from
the temperature at the cooling unit TElli. A calibrated Cernox thermometer has been glued with
GE-kit directly next to the sample (YTiO3 in this case). The maximum difference is 9.5 K at a
nominal temperature of TElli = 5 K.
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Madelung potentials
We give the Madelung potentials [18]

V (r, θ, φ) =
∞∑
k=0

k∑
m=−k

Ak,mr
k

√
4π

2k + 1
Y m
k (θ, φ) (A.1)

of YTiO3 and LaSrMnO4 as calculated by the program Ak,m by M. Haverkort [18]. The
Madelung potential has been expanded in spherical harmonics Y m

k (θ, φ) with the quan-
tum numbers k and l; rk represents the radial part of the wavefunction. The coeffi-
cients Ak,m have been calculated by an Ewald summation under a point-charge approxi-
mation. It is only necessary to determine the coefficients up to k = 4 [222]. Note that
Ak,m = (−1)mAk,−m due to the hermicity of the crystal-field Hamiltonian. For YTiO3 and
LaSrMnO4 we used the room-temperature structural data of Refs. [148, 223].

Table A.2: Madelung potentials for YTiO3 and LaSrMnO4.

Ak,m YTiO3 LaSrMnO4

A0,0 ( 35.11444487, 0.00000000) ( 36.40609517, 0.00000000)
A1,0 ( 0.00000000, 0.00000000) ( 0.00000000, 0.00000000)
A1,1 ( 0.00000000, 0.00000000) ( 0.00000000, 0.00000000)
A2,0 (-0.17991136, 0.00000000) ( -3.43002758, 0.00000000)
A2,1 (-0.57458390, 0.12648298) ( 0.00000000, 0.00000000)
A2,2 ( 0.06304254, -0.16055590) ( 0.00000000, 0.00000000)
A3,0 ( 0.00000000, 0.00000000) ( 0.00000000, 0.00000000)
A3,1 ( 0.00000000, 0.00000000) ( 0.00000000, 0.00000000)
A3,2 ( 0.00000000, 0.00000000) ( 0.00000000, 0.00000000)
A3,3 ( 0.00000000, 0.00000000) ( 0.00000000, 0.00000000)
A4,0 ( 1.64039522, 0.00000000) ( 2.93828254, 0.00000000)
A4,1 ( -1.53545785, -0.43486220) ( 0.00000000, 0.00000000)
A4,2 ( 0.31484023, 0.31204117) ( 0.00000000, 0.00000000)
A4,3 ( -0.55439916, -0.74602701) ( 0.00000000, 0.00000000)
A4,4 ( -1.01435714, -1.16156142) ( 2.55753592, 0.00000000)
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Unstable surface
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Figure A.3: Unstable surface of LaTiO3. The sample has been placed inside a cryostat imme-
diately after polishing. The spectra change in time. The change can be modeled by a growing
non-absorbing cover layer (we have chosen SiO2).
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Ice layer
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Figure A.4: Left panels: At a pressure of 10−7 mbar the measured spectra (i.e. the Müller-matrix
elements m33 and m34) are not reproducible. The second spectrum (vers 19) has been measured
after a heating-cooling cycle (300 K) and does not lie on top of the first spectrum (vers14). We
believe that an ice layer is formed on top of the sample. We modeled the formation of this ice
layer using the optical constants of YTiO3 from the low-pressure measurements (right panel) as
presented in chapter 5 and the optical constants of ice from Ref. [224]. Both data sets can be
described by only varying the thickness of the ice layer. Right panels: At a pressure of 10−10

mbar all spectra fall on top of each other. The spectra do not change after a heating-cooling cycle
(300 K). We conclude that no ice layers are formed.
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Fit of additional data sets of YTiO3

Table A.3: Using the optical constants obtained from the measurements presented in chapter
3 and 5 we are able to model a large number of additional measurements on the same sample of
YTiO3 by only varying the thickness d of the cover layer (Cauchy). We present here a selection
of fit results at room temperature. All spectra can be described by our final set of optical con-
stants. The abbreviations "AOI", "mm", and "iso" denote angle of incidence, "Müller-matrix"
and "isotropic" measurement.

Measurement AOI (◦) surface Euler angles d (nm) Kryo? MSE
(φ, θ, ψ) (◦)

vers2mm 65, 70 ab (45, 0, 0) 0.530 y 10.18
vers4amm 65, 70 ab (0, 0, 0) 0.808 y 3.85
vers4bmm 65, 70 ab (-45, 0, 0) 0.788 y 2.63
vers5mm 65, 70 a∗c (0, 90, -45) 1.292 y 7.14
vers7iso 65, 70 a∗c (90, 90, -45) 0.879 y 0.92
vers7mm 65, 70 a∗c (90, 90, -45) 0.758 y 3.79
vers10iso 70 a∗c (0, 90, -45) 1.946 y 0.86
vers17mm 70 a∗c (0, 90, -45) 1.844 y 2.80
vers35mm 70 a∗c (90, 90, -45) 1.829 y 2.07
vers39mm 70, 75 a∗c (90, 90, -45) 2.016 y 2.60
vers43mm 70 a∗c (90, 90, -45) 2.380 y 3.89
vers65mm 70 a∗c (90, 90, -45) 2.637 y 7.33
vers130mm 70 ab (45, 0, 0) 0.931 y 2.75
vers132mm 70 ab (-45, 0, 0) 0.287 y 1.63
vers135mm 70 a∗c (0, 90, -45) 2.208 y 2.68
vers182mm 20, 45, 70 ab (0, 0, 0) 0.789 n 3.24
vers183mm 20, 45, 70 ab (0, 0, 0) 0.789 n 3.24
vers185mm 20, 45, 70 ab (90, 0, 0) 0.782 n 2.53
vers186mm 20, 45, 70 ab (90, 0, 0) 0.782 n 2.53
vers187mm 20, 45, 70 ab (90, 0, 0) 0.782 n 2.53
vers188mm 20, 45, 70 ab (-45, 0, 0) 0.983 n 3.04
vers189mm 20, 45, 70 ab (-45, 0, 0) 0.983 n 3.04
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Abstract

Within the scope of this thesis the electronic structure of different transition-metal com-
pounds with open d shells has been investigated by three optical techniques. We used
Fourier-transform spectroscopy (energy range: 0.1-1 eV), spectroscopic ellipsometry (0.75-
6 eV) and Raman scattering (0.01-0.6 eV). The focus is on Mott-Hubbard insulators, on
excitations from the lower to the upper Hubbard band, on the effect of spin and orbital
correlations of these transitions, and on orbital excitations. For the ellipsometry results
the spectral features have been analyzed in terms of multiplets, which reflect multi-orbital
Hubbard bands.
The single-layered manganite LaSrMnO4 (d4) has been investigated by spectroscopic

ellipsometry and Fourier-transform spectroscopy. We find a multi-peak structure which
strongly depends on the polarization. We could unravel charge-transfer and Mott-Hubbard
excitations by analyzing both, polarization and temperature dependence, and by comparing
the spectra to a multiplet calculation. We find evidence that the first peak observed at
around 2 eV is a Mott-Hubbard transition. The temperature dependence of this peak
fulfills the expectations based on the nearest-neighbor spin-spin correlation function. We
further investigated the hole-doped La1−xSr1+xMnO4 for x = 0.13 and 0.50. We found a
redistribution of weight induced by the new d3 states in a d4 host.
The titanates (d1) LaTiO3 and YTiO3 have been examined by means of Raman spec-

troscopy1. We found an orbital excitation in both compounds at 235 meV. From the
resonant enhancement of this excitation for a laser energy of 2.5 eV we concluded that the
excitation has to proceed via the upper Hubbard band, i.e. it has to involve two Ti sites.
The compounds YTiO3, SmTiO3, and LaTiO3 have also been investigated by means of

ellipsometry. In YTiO3 we find evidence for the existence of a Mott-Hubbard excitonic res-
onance, i.e. a quasi-bound state inside the continuum of the Hubbard bands. We observed
small changes of the spectral weight around Tc but larger changes up to at least 10Tc. The
relative change in spectral weight with temperature is too small when comparing to the
spin-spin correlation function. Finally we compared the data of ferromagnetic YTiO3 to
those of the antiferromagnetic compounds SmTiO3 and LaTiO3. The evolution of spectral
weight with increasing ionic rare-earth radius can be qualitatively understood by the evo-
lution of the Ti-O-Ti bond angle and the change in the (orbitally-ordered) ground state.
The spectral weight in SmTiO3 shows significant changes at TN . Here the expectations
from the spin-selection rules completely fail to describe the observed sign of the change
and the magnitude. The latter results may indicate the spin-degree of freedom can not
discussed separately without considering the orbital degree of freedom.

1in collaboration with C. Ulrich and B. Keimer (Max-Planck institute, Stuttgart).
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Kurzzusammenfassung

Im Rahmen dieser Doktorarbeit wurde die elektronische Struktur von Übergangsmetall-
oxiden mit offenen d-Schalen untersucht. Der Schwerpunkt liegt auf den Mott-Hubbard
Isolatoren, die Anregungen zwischen unterem und oberem Hubbard Band, dem Effekt
von Spin-Orbital-Korrelationen und orbitalen Anregungen. Hierzu wurden drei spektros-
kopische Techniken eingesetzt: die Fourier-Spektroskopie (Energiebereich: 0.1-1 eV), die
spektroskopische Ellipsometrie (0.75-6 eV) und die Raman-Streuung (0.01-0.5 eV). Die
Ergebnisse der Ellipsometrie wurden mit Hilfe von Multipletts analysiert, wodurch wir
multiorbitale Hubbard Bänder identifizieren können.
Das Schichtmanganat LaSrMnO4 (d4) wurde mit Hilfe der Ellipsometrie und der Fourier-

Spektroskopie untersucht, wobei stark anisotrope optische Eigenschaften beobachtet wer-
den. Diese können direkt auf die anisotrope Kristallstruktur zurückgeführt werden. Aus
dem Temperatur- und Polarisationsverhalten sowie dem direkten Vergleich zu theoretis-
chen Spektren, konnten wir Ladungs-Transfer- und Mott-Hubbard-Übergänge unterschei-
den. Wir identifizieren den ersten Peak bei etwa 2 eV mit einem Mott-Hubbard-Übergang.
Weiterhin haben wir lochdotiertes La1−xSr1+xMnO4 mit x = 0.13 und 0.5 untersucht.
Mit steigender Dotierung erfolgt eine Umverteilung des spektralen Gewichtes, die den d3

Zuständen zugesprochen werden kann.
Die Titanate (d1) LaTiO3 und YTiO3 wurden mittels Raman-Streuung untersucht1. Eine

Anregung bei 235 meV konnte in beiden Systemen beobachtet werden und wird als orbitale
Anregung interpretiert. Da diese Anregung bei einer Laserenergie von etwa 2.5 eV resonant
verstärkt wird, muss der Anregungsprozess über das obere Hubbard-Band verlaufen, d.h.
zwei Ti-Plätze sind beteiligt.
Ellipsometrische Messungen sind an den oben genannten Titanaten und an SmTiO3

durchgeführt worden. In ferromagnetischem YTiO3 interpretieren wir eine Anregung bei
1.95 eV als ein Mott-Hubbard Exziton, ein quasi-gebundener Zustand innerhalb des Kon-
tinuums. Die Temperaturabhängigkeit des spektralen Gewichtes folgt nicht oder nur teil-
weise den Erwartungen, die sich aus der der Spin-Spin Korrelationsfunktion ergeben. Das-
selbe gilt für das ebenfalls untersuchte antiferromagnetische SmTiO3. Dieses könnte darauf
hindeuten, dass der orbitale und der Spin-Freiheitsgrad nicht mehr als entkoppelt angese-
hen werden können, wie im Fall des Schichtmanganats LaSrMnO4.

1in Kooperation mit C. Ulrich und B. Keimer (Max-Planck Institut, Stuttgart).
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