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Summary 

 

The study of pattern formation in insects is the main source of our current 
understanding of the genetic processes underlying the development of an organism. 
Ontogeny has been thoroughly studied in the model organism Drosophila 

melanogaster, where a set of transcription factors and signaling molecules pattern the 
fly embryo through a segmentation gene cascade. Over the past 20 years, this model 
has been compared to different organisms throughout the Metazoa. Here I describe 
the functional analysis of genes and gene regulatory network controlling segmentation 
in the short germ beetle Tribolium castaneum.  
 
The hunchback gene is one of the major early determinants in the Drosophila 
segmentation cascade, where it serves an instructive role in patterning the entire body 
plan. In several insects, the role of hb in patterning body compartments (cardinal 
regions) is conserved. However, in hemimetabolous insects developing as short germs 
hb role has been reported to differ from the canonical gap function described in 
holometabolous insects. In the first chapter I describe the role of hb in Tribolium, a 
holometabolous insect developing as short germ. This analysis revealed that Tc’hb has 
an indirect effect in segmentation, mediated by other gap genes like giant, and a most 
likely a direct effect in the segment identity specification, by setting the anterior 
border of thoracic and abdominal Hox genes. This finding suggests an ancestral role 
of hb as a cardinal gene within insects and allows the reinterpretation of the canonical 
gap phenotype described in the fly. 
 
The expression analysis of ESTs in Tribolium identified a putative non-coding RNA 
showing a gap-like expression pattern during segmentation. In the second chapter I 
describe the functional analysis of this gene, named mille-pattes. This analysis 
defined Tc’mlpt as a novel segmentation gene in Tribolium, which controlls trunk 
segmentation in a cross-regulatory network among gap genes and regulates the 
expression domains of Hox genes. Strikingly, mlpt does not code for a transcription 
factor, but instead, encodes several small peptides, which are conserved among mlpt 
homologues in various insects. 
 
As a model, the gene regulatory network controlling segmentation in Drosophila has 
been thoroughly tested in many other organisms, revealing a surprising plasticity of 
the developmental mechanism controlling segmentation among insects. In order to 
identify the regulatory interactions among the gap genes that are controlling 
segmentation in Tribolium, I further characterized the gap gene cross-regulatory 
network in Tribolium and their interaction with pair rule genes. This analysis provided 
a powerful data set on the regulatory interactions among gap genes and their 
interactions with pair rule genes in Tribolium. 
 
Finally, the concomitant characterization of segmentation genes presented in this 
thesis allowed the reinterpretation of the role of hunchback among insects, specially 
the canonical gap phenotype described for Tribolium and Drosophila. Furthermore, 
by studying the interactions between gap and Hox genes in Tribolium it was possible 
to propose a model for the regulation and function of Tc’Antp and for the regulation 
of the Hox genes along the AP axis in Tribolium. 
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Zusammenfassung 

 
Die Studien zur Musterbildung in Insekten ist die Hauptquelle unseres heutigen 
Verständnisses der zugrunde liegenden genetischen Prozesse während der 
Entwicklung eines Organismus. Die Ontogenie des Modellorganismus Drosophila 

melanogaster, bei der der gesamten Embryo über eine hierarchische Kaskade von 
Transkriptionsfaktoren und Signalmoleküle „gestaltet“ wird, wurde extensiv 
untersucht. Über die letzten 20 Jahre hinweg wurde dieses Modell mit der 
Entwicklung von verschiedenen Metazoen Organismen verglichen. Hier beschreibe 
ich die funktionelle Analyse von Genen und regulatorischen Netzwerken welche die 
Segmentierung der Kurzkeim Embryos von Tribolium castaneum steuern. 
 
Das Gen hunchback ist eines der frühen Hauptdeterminanten in der 
Segmentierungskaskade von Drosophila, wo es eine vornehmlich leitende Rolle 
während der Musterbildung des gesamten Anlageplans vollführt. Die Funktion von 
hunchback während der „Musterbildung“ scheint zudem in verschiedenen Insekten 
konserviert zu sein. In kurzkeimenden hemimetabolen Insekten, wurde jedoch 
herausgefunden, dass sich die Rolle von hunchback von der kanonischen Funktion 
eines Gapgens, wie es in holometabolen Insekten beschrieben wurde, unterscheidet. 
Im ersten Kapitel beschreibe ich die Funktion des hunchback Gens im kurzkeimenden 
Holometabolen Insekt, Tribolium castaneum. Die Analyse hat gezeigt dass hunchback 
einen indirekten Effekt auf die Segmentierung zeigt, der möglicherweise über andere 
Gapgene wie giant vermittelt wird und wahrscheinlich einen direkten Einfluss auf die 
Spezifikation der Segmentidentität besitzt, in dem es die anteriore Grenze für 
thorakale und abdominale Hox Gene spezifiziert. Diese Ergebnisse legen eine 
anzestrale Funktion für hunchback als Kardinal Gen innerhalb der Insekten nahe und 
erlaubt eine Neuinterpretation des kanonischen Gapgen Phänotypen wie er in 
Drosophila beschrieben wurde.  
 
Die Expressionsanalyse von ESTs in Tribolium führte zu der Identifikation einer 
vermeintlich nicht kodierenden RNA mit einer Gapgen typischen Expression während 
der Entwicklung. Im zweiten Kapitel dieser Arbeit beschreibe ich die funktionelle 
Analyse dieses Gens, milles-pattes. Die Ergebnisse dieser Analyse erlauben die 
Klassifikation von Tc’mlpt als neues Segmentierungsgen in Tribolium, das als Teil 
eines regulatorischen Netzwerks von Gapgenen an der Segmentierung der 
„Rumpfsegmente“ beteiligt ist und zudem die Expressionsdomänen von Hox Genen 
spezifiziert. Auffallend ist hierbei das Tc’mlpt nicht für einen Transkriptionsfaktor 
kodiert, sondern stattdessen für mehrere kurze Peptide kodiert die in mlpt Homologen 
aus verschiedenen Insektenspezies konserviert sind.  
 
Das Modell des regulatorischen Netzwerkes dass die Segmentierung von Drosophila 

melanogaster leitet wurde in verschiedenen Organismen ausgiebig getestet und 
enthüllte eine erstaunliche Plastizität der entwicklungsbiologischen Mechanismen 
welche die Segmentierung in Insekten kontrollieren. Um die regulatorischen 
Interaktionen der Gapgene, die die Segmentierung von Tribolium steuern, zu 
identifizieren, habe ich weiterhin das regulatorische Netzwerk der Gapgene in 
Tribolium analysiert, sowie deren Interaktion mit den Paarregelgenen. Diese Analyse 
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bietet einen umfangreichen Datensatz zu den regulatorischen Interaktionen zwischen 
Gapgenen sowie deren Wechselwirkung mit den Paarregelgenen in Tribolium. 
 
Die begleitende Charakterisierung der Segmentierungsgene die in dieser Arbeit 
vorgestellt wurden, erlaubt eine Neuinterpretation der Funktion des hunchback Gens 
in Insekten, und im besonderen des kanonischen Gapgen Phänotyps wie er für 
Tribolium und Drosophila zuvor beschrieben wurde. Desweiteren erlaubte die 
Untersuchung der Wechselwirkungen zwischen Gap- und Hox-Genen in Tribolium 
ein Modell für die Regulation und Funktion des Hox Gens Tc’Antp, sowie der 
Regulation von Hox Genen entlang der AP-Achse im Allgemeinen, abzuleiten. 
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Introduction 

 

The generation of complex body plans from very simple biological structures 

has been one of the greatest mysteries of life on earth. How can a single cell divide 

and differentiate into the approximately 100 trillion cells that form our complex 

body?  

Advances in developmental genetics and molecular biology over the past 30 

years have revealed that development depends on key regulatory genes, which are 

surprisingly conserved among most metazoans. The wide conservation of this ‘genetic 

toolkit’ has allowed molecular comparison between close and distant related 

organism. This molecular comparative embryology has developed into the modern 

concept of Evolutionary Developmental biology (Evo-Devo), and has been proven to 

be a powerful approach to identify how genes and modules are differently used 

through evolution to control development and to generate the past and present 

morphological diversity. 

The study of pattern formation in insects is responsible for a great deal of our 

current understanding of the genetic processes underlying the development of an 

organism. The fruit fly Drosophila melanogaster represents the best-characterized 

developmental model, where a restricted amount of transcription regulators 

orchestrate embryonic patterning by controlling when and where RNA molecules and 

proteins will be produced or inhibited. Many of the genes originally characterized as 

patterning genes in Drosophila were later found to play essential roles during 

vertebrate development (e.g. hairy, hedgehog, the Hox genes, etc). The comparison of 

these genes throughout the Metazoa has provided a valuable source of evolutionary 

scenarios controlling the developmental mechanisms underlying the diversity of body 

plans. 

Most of the genes involved in segmentation in Drosophila have already been 

characterized in other insects. Yet, the mode of embryogenesis observed in 

Drosophila represents a highly derived developmental feature. 
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Modes of Embryogenesis  

 

Prior to the development of genetic screens and molecular markers, 

embryologists already described key developmental traits essential for studying Evo-

Devo in insects. By the use of ablation and transplantation techniques, the 

embryology of insects was classified with respect to the portion of the egg at the 

blastoderm stage, committed to become the germ rudiment (Krause, 1939). As a more 

recent and generally accepted terminology, this classification can be divided into two 

types: the long germ mode, where the entire egg length is occupied by a large (long) 

germ rudiment and all body segments are specified at the syncytial blastoderm stage 

(syncytial segmentation); and the short germ mode, where a small (short) germ 

rudiment is formed at the posterior pole of the egg and only the more anterior 

segments are patterned at blastoderm stage, with the remaining segments being 

patterned after the onset of gastrulation (syncytial/cellularized segmentation) (Roth, 

2004; Tautz and Friedrich M., 1994; Tautz and Sommer, 1995).  

Variations of the short germ mode, the so-called intermediate germ mode, are 

common among insects, in which more or less segments, compared to the short germ 

mode, are patterned in the blastoderm. However, the most prominent distinction 

between embryology modes among insects is the use of a secondary phase of 

development that patterns the remaining segments in a cellularized environment. This 

secondary segmentation phase is dispensable for long germ insects and shared in both 

short and intermediate germ insects. Therefore, short germ mode is used hereafter to 

indicate ‘syncytial/cellularized segmentation’ (which includes the intermediate mode) 

while long germ to indicate ‘syncytial segmentation’. 

The phylogenetic distribution of the different germ modes suggests that the 

last common ancestor of insects was of the short germ type (Davis and Patel, 2002). 

While the short mode is found in all insect orders except dipterans, the long germ 

mode is restricted to more derived insects displaying holometabolism (presence of 

metamorphosis) as well as meroistic ovaries (presence of nurse cells). Another 

argument for the ancestral short germ condition comes from the fact that the pattern 

of early embryogenesis of crustaceans bears significant resemblance to the short germ 

mode of development in insects (Davis and Patel, 2002). Plylogenetic studies have 
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suggested that crustaceans are the sister group of insects (Blaxter, 2001; Friedrich and 

Tautz, 1995; Giribet et al., 2001; Hwang et al., 2001). 

Although shared by most of the insects, little information is available on the 

molecular basis of short germ embryogenesis when compared to the detailed 

knowledge of the long germ development of the model insect Drosophila 

melanogaster. 

 

The segmentation cascade in the long germ insect Drosophila 

 

A systematic genetic screen performed in the late 70’s (Nüsslein-Volhard and 

Wieschaus, 1980) and the compiling of molecular data from almost 30 years of 

research have revealed a surprisingly restricted set of genes controlling segmentation 

in Drosophila embryos. When these genes are mutated in the fly, severe segmentation 

defects are observed in embryonic region where the gene is expressed in the wild type 

embryo. The authors divided these genes into the classes of maternal mutants 

(maternal lethal effect), gap mutants (deletion of adjacent segments), pair rule mutants 

(deletion of double segmental periodicity) and the segment polarity mutants (deletion 

of segment compartments). This work proposed a segmentation gene cascade, which 

patterns the Drosophila embryo from head to tail before cellularization takes place in 

the early blastoderm (top-down segmentation) (Figure 1) (Tautz, 2004). 

By the onset of cellularization, at the stage where the segment polarity genes 

start to be expressed, a series of segmental units is established along the 

anteroposterior (AP) axis (segmentation). The regional expression of the Hox genes at 

this stage controls the further differentiation of these compartments into segments of 

distinct identity. The formation of body segments in Drosophila can therefore be 

subdivided into two separate, but not independent, patterning processes: the 

metamerization of repeated units along the AP axis (segmentation genes) and the 

segment-specific morphogenesis specifying distinct identity within this array of 

metameres (Hox genes) (Figure 1) (Akam, 1987). 
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Figure 1. Schematic drawing of the Drosophila segmentation cascade illustrating the 

hierarchy of the processes (left) and the class of segmentation genes (right). Arrows indicate 

regulation (directional) between classes of segmentation genes. Strength of the arrows 

indicates strength of the regulation. For example, the major role of the gap genes in regulating 

the pair rule genes compared to a minor regulation of Hox genes is depicted. 

  

Segmentation 

 

In Drosophila, the segmentation cascade controlling the metamerization 

process is initiated with the diffusion of maternally provided transcripts located at the 

anterior and posterior pole of the egg. After fertilization, the translation of these 

transcripts generates protein gradients that provide the first positional information 

(morphogen) in the egg. For example, while the protein product of the bicoid 

(Dm’bcd) gene is translated at the anterior pole and diffuses towards posterior, the 

protein products of nanos (Dm’nos) are translated at the posterior pole and diffuse 

towards anterior (Driever and Nusslein-Volhard, 1988; St Johnston and Nüsslein-

Volhard, 1992). Two additional morphogen gradients are formed by the translation of 

hunchback (Dm’hb) and caudal (Dm’cad) transcripts. In contrast to Dm’bcd and 

Dm’nos, the maternally provided Dm’hb and Dm’cad transcripts are uniformly 

distributed in the egg. Their gradients are therefore formed by differential translation 

along the AP axis. While Dm’Bcd represses the translation of Dm’cad at the anterior 
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pole (Dubnau and Struhl, 1996; Rivera-Pomar and Jackle, 1996), Dm’Nos prevents 

the translation of Dm’hb at the posterior pole (Hülskamp et al., 1989; Irish et al., 

1989a; Tautz, 1988). Together, these morphogen gradients generate a patterning field 

controlling the expression of the genes belonging to the next level of the segmentation 

cascade, the gap genes.  

As the first zygotic genes to be transcribed in the egg, the gap genes interpret 

the differential concentration of the maternal factors within this patterning field. 

When high levels of Dm’Bcd and Dm’Hb are present (anterior pole), the expression 

of the anterior gap genes such as orthodenticle (Dm’otd), giant (Dm’gt) and Dm’hb 

itself are activated (Gao and Finkelstein, 1998; Simpson-Brose et al., 1994). The 

expression of Krüppel (Dm’Kr) domain is activated when the levels of Dm’Bcd and 

Dm’Hb start to decline (central region) (Schulz and Tautz, 1994). At the posterior 1/3 

of the egg, the posterior gap genes, such as knirps (Dm’kni) and Dm’gt are activated 

by high levels of Dm’Cad (Schulz and Tautz, 1995). The positional information from 

the maternal system also provides negative input in the regulation of the gap genes. 

Ubiquitous expression of Dm’Hb results in the repression of of Dm’kni and Dm’gt 

posterior domains (Hülskamp et al., 1990). 

Therefore, following the positional information of the maternal genes along 

the AP axis, the regulation of the gap genes convert the positional information 

provided by the long range gradients of the maternal system into a series of 

overlapping short range gradients covering the entire embryonic axis. These gap gene 

domains are further refined and maintained by cross-interactions among the gap genes 

(Gaul and Jäckle, 1990; Jäckle et al., 1986; Struhl et al., 1992). For example, after the 

Dm’Kr expression is established in the central region of the egg, this domain is further 

maintained by the repression of Dm’Hb and Dm’Gt at the anterior border and the 

Dm’Kni and Tailless (Dm’Tll) at the posterior border (Harding and Levine, 1988; 

Jäckle et al., 1986). This differential distribution of gap genes along the AP axis 

regulates the next level of the segmentation cascade, the pair rule genes. 

The expression of the pair rule genes are the first metameric pattern in the 

developing embryo and represent the transition from the aperiodic pattern of the gap 

genes to double-segmental periodicity of stripes. The transcription of the pair rule 

genes is very dynamic with some genes initially expressed in broad domains. The pair 

rule genes hairy (Dm’h), even-skipped (Dm’eve) and runt (Dm’run) are described as 
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primary pair rule genes since they are regulated by maternal and gap genes. The seven 

stripes of the primary pair rule genes are independently patterned by characteristic 

combinations of gap genes. The pair rule genes fushi tarazu (Dm’ftz), odd paired 

(Dm’opa), odd skipped (Dm’odd), paired (Dm’prd), sloppy-paired (Dm’slp), and 

Tenascin major (Dm’Ten-m) are described as secondary pair rule genes, since they are 

regulated by the primary pair rules. Working as transcriptional repressors, the cross-

regulatory interactions among the pair rule genes maintain and refine these series of 

seven or eight stripes with double-segmental periodicity into segmental stripes. This 

expression regulates the last level of the segmentation cascade, the expression of the 

segment polarity genes (Baker, 1988; DiNardo and O'Farrell, 1987; Ingham, 1988; 

Lawrence et al., 1987). 

After cellularization, the expression of the segment polarity genes, as 

engrailed (Dm’en) and wingless (Dm’wg), determines the different compartments 

within each of the segments, specifying the locating and polarity of parasegment 

boundaries in the embryo. The parasegments is the basic developmental unit seen in 

the expression patterns of the pair rule and segment polarity gene as well as in the 

early morphological feature, parasegmental groves, observed prior germ band 

retraction. The parasegments are offset from the segment boundaries and disappear 

during germ band retractions, when the segmental grooves become obvious in the 

embryo (Ingolia, 2004). 

By this stage, the readout of the segmentation cascade provides the patterning 

of 14 undifferentiated segments. The head segments are patterned by head gap genes 

but are independent from the pair rule gene expression. Without additional 

information, the embryo would consist of pre-gnathal segments followed by a set of 

14 undifferentiated segments. However, the expression domains of the segmentation 

genes also control another set of genes responsible for specifying the identity of these 

segments, the homeotic genes. 

 

Specification of segment identity 

 

The assignment of distinct morphology to each of the undifferentiated 

segments is performed by a class of homeobox-containing transcription factors known 

as the homeotic genes (Lewis, 1978). These genes work as genetic switches along the 
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AP axis that turn on or off different programs of cellular differentiation in many 

metazoans (Carroll, 2002). They are commonly referred to as Hox genes. When a 

certain Hox gene is depleted in a certain segment, another Hox gene is expressed 

instead, leading to the specification of another body structure in this segment. A 

classical example is the work of Struhl (1982), that showed that when Ultrabithorax 

(Dm’Ubx) is ectopically expressed in the T3 in Drosophila, an extra pair of wings is 

formed in this dipteran.  

An additional feature of the Hox gene is co-linearity. The arrangement of the 

Hox genes on the chromosome (Hox cluster) displays the same order in respect to 

their expression along the AP axis. Hox genes located at first positions (5’) in the 

cluster are expressed at more anterior positions along the embryonic AP axis.  

The primary expression of the Hox genes in Drosophila is governed by 

segmentation genes from different levels of the cascade hierarchy. The repressive 

activity of the gap genes sets the expression borders of the trunk Hox genes (e.g. 

Dm’hb regulating Dm’Ubx), while pair rule genes act as activators to specify peaks of 

expression of the Hox genes in specific segments (e.g. Dm’ftz regulation of Dm’Scr, 

Dm’Antp and Dm’Ubx) (Ingham and Martinez-Arias, 1986; Irish et al., 1989b). 

Within each segment, the segment polarity genes and unknown tissue specific factors 

further resolve the expression of the Hox genes (Rusch and Kaufman, 2000).  

An additional source of regulation comes from the epistatic effect that Hox 

genes have on more anteriorly expressed ones, effect known as posterior prevalence 

rule in vertebrates (Duboule, 1991). The activity of a more posteriorly-acting Hox 

gene can not only prevent the transcription of more anteriorly-acting hox genes, but 

also block its activity in case both genes are co-expressed (González-Reyes et al., 

1990; Mann and Hogness, 1990). 

With the onset of gastrulation, the activity of the segmentation genes decays 

and the expression domains of the Hox genes are maintained by an additional 

mechanism involving the products of the Polycomb group genes (Mann and Hogness, 

1990; Zhang et al., 2005).  

In summary, the segmentation cascade in Drosophila represents a highly 

specific mechanism to control both the metamerization of the embryo into segments 

and to control segment-specific morphogenesis. 
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However, the long germ mode of embryogenesis found in Drosophila, where 

segments are patterned almost simultaneously, is thought to be a developmental 

innovation restricted to higher dipterans and hymenopterans (see below) and 

represents a highly derived mode of development. Nevertheless, functional analysis of 

the orthologs of the Drosophila segmentation genes in other insects with different 

germ band modes has contributed to our understanding of the genetic mechanisms 

involved in the segmentation of other animals as well as to reveal how this network 

has changed during the course of evolution. 

 

The segmentation cascade in insects 

 

Most of the genes responsible for segmenting the Drosophila embryo have 

been characterized in several other insects (reviewed in Damen, 2007; Davis and 

Patel, 2002; Tautz and Sommer, 1995). One of the first questions addressed was to 

which extent the segmentation cascade of the long germ Drosophila embryo would 

apply to the segmentation of short germ insects and non-insect arthropods (Patel et al., 

1989a; Patel et al., 1989b). These works were the first demonstration of the highly 

conserved expression pattern of the segment polarity genes among arthropods. In 

general, the segmentation genes operating close to the phylotypic stage, an early stage 

where all arthropod embryos converge into a very similar morphology, as the segment 

polarity and Hox genes, tend to be highly conserved at the expression pattern and 

sequence levels among insects and arthropods (Anderson, 1973; Slack et al., 1993). 

On the other hand, this conservation is reduced for the genes located at higher 

positions in the segmentation hierarchy, such as gap and maternal genes. 

While there are only few cases were the function of orthologs of the 

Drosophila maternal factors was analyzed in other insects, most of the genes 

belonging to the gap gene class have been described as essential segmentation genes 

among insects (Bucher and Klingler, 2004; Cerny et al., 2005; Copf et al., 2004; He et 

al., 2006; Liu and Kaufman, 2004a; Liu and Kaufman, 2004b; Lynch et al., 2006a; 

Lynch et al., 2006b; Mito et al., 2006; Mito et al., 2005; Pultz et al., 2005; Schroder, 

2003; Shinmyo et al., 2005). In general, the role of the gap genes exhibits intriguing 

variations.  
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In the long germ parasitic wasp Nasonia vitripennis, embryos mutant for the 

gap genes Nv’otd, Nv’hb and Nv’gt display the canonical gap phenotype where 

adjacent segments are missing at the cuticular level (Brent et al., 2007; Lynch et al., 

2006b; Pultz et al., 2005). While in Drosophila this phenotype is a result of the 

essential role of the gap genes in regulating pair rule genes (Carroll and Scott, 1986), 

the extent to which the gap genes regulate pair rule genes in Nasonia remains 

unknown. Intriguingly, reconstruction of the insect phylogeny based on molecular 

data, has recently placed the order Hymenoptera branching at the base of 

holometabolous insects phylogenetic tree (Savard et al., 2006c). A consequence of 

this finding is that the long germ development found in Nasonia would have evolved 

independently from the long germ mode of Drosophila. Nevertheless, the molecular 

fate map of segmentation genes described for both species is remarkably similar 

(Brent et al., 2007; Pultz et al., 2005).  

In hemimetabolous insects displaying the short germ mode, the central role of 

the gap genes seems to be the regulation of the Hox genes. RNAi silencing 

experiments for hb, Kr and gt in several insects result in homeotic transformations of 

segments in the region where the silenced gene is expressed in the wild type (Liu and 

Kaufman, 2004a; Liu and Kaufman, 2004b; Mito et al., 2006; Mito et al., 2005). Their 

expression is nevertheless essential for the regulation of pair rule genes, since the 

knockdown embryos display defects in segmentation. Intriguingly, these effects lie 

outside of the expression domain of the depleted gene in the wild type, and the nature 

of this regulation is still largely unknown.  

The pair-rule class of segmentation genes shows a wide variety of expression 

patterns among insects. In Tribolium, the orthologs of the pair rule genes Tc’eve, 

Tc’run, Tc’odd, Tc’prd and Tc’slp constitute a gene regulatory circuit crucial for the 

sequential formation of segments (Choe et al., 2006). Interestingly, although the 

orthologs of the pair rule genes Tc’h and Tc’ftz are also expressed in a pair rule 

fashion in Tribolium, their function seems to be unlinked with the segmentation 

process, contrasting with the canonical pair rule phenotype observed for these genes 

in Drosophila. 

In hemimetabolous insects, the ortholog of the Drosophila secondary pair rule 

gene, prd, is expressed in a pair rule fashion in Schistocerca and Oncopeltus, while 

the primary pair rule gene eve is not expressed in a pair rule pattern neither in 
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Schistocerca nor in Oncopeltus (Davis et al., 2001; Liu and Kaufman, 2005; Patel et 

al., 1992). It is still not clear, however, to which extend the pair rule regulatory 

networks known from Drosophila and Tribolium would be functional in more basal 

insects.  

Although no functional analysis have been done for the class of segment 

polarity genes outside Drosophila, their conserved expression patterns allow to 

assume similarity of the segmentation processes among animals (Patel, 1994; Patel et 

al., 1989a; Patel et al., 1989b). One example of a segmental polarity gene is en, which 

is expressed in the posterior compartment of every segment in every arthropod 

studied to date.  

 

The segmentation cascade in the short germ insect Tribolium 

 

The flour beetle Tribolium castaneum has emerged as a powerful model 

organism to study the molecular mechanisms underlying insect development 

(Klingler, 2004). Most of the genetic and molecular approaches developed for 

Drosophila can be directly applied to Tribolium, with the advantage of the powerful 

technique to easily knockdown gene function via systemic RNA interference (Bucher 

et al., 2002). 

For developmental studies, Tribolium is thought to be a more representative 

model organism for insect development, since it displays the more basal short germ 

type of embryogenesis shared by most of the insects (see above) (Tautz, 2004). 

Additionally, the genome of Tribolium presents the lowest rates of evolution among 

the insects studied so far, eminent in a 3-fold reduction compared to Drosophila 

(Savard et al., 2006b). This steady rate of divergence allows a better identification of 

ancestral genes in the Tribolium genome, shared by distantly related species like our 

own. For example, the Tribolium genome possesses orthologs of several ancestral 

signaling molecules involved in the segmentation of vertebrates such as Wnt, Fgf, 

gremlin, bambi, BMP10, that were lost in the lineage leading to Drosophila.  

All major segmentation genes described in Drosophila have orthologs in 

Tribolium and occupy similar positions in the segmentation gene hierarchy. Several 

Drosophila gap gene homologues, such as hb, Kr, gt and tll, have been already 

characterized in Tribolium (Bucher and Klingler, 2004; Cerny et al., 2005; Schroder 
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et al., 2000; Wolff et al., 1995). Their expression domains are roughly comparable to 

Drosophila. However, the borders of the expression domains in the trunk are shifted 

towards anterior (Bucher and Klingler, 2004). Thus, some abdominal segments in 

Tribolium are not covered by any of the known Drosophila gap gene orthologs 

analyzed in the beetle.  

Functional analysis of Tc’Kr and Tc’gt in Tribolium has revealed that their 

inactivation leads to homeotic transformations with secondary effects on the 

metamerization process (Bucher and Klingler, 2004; Cerny et al., 2005). Analysis of 

Hox gene expression in Tc’Kr mutant embryos revealed the misregulation of Hox 

genes in these embryos (see General Discussion) (Cerny et al., 2005).  

Although the role of hb in anterior patterning was already described in 

Tribolium (Schroder, 2003), its characterization in the gap gene network is still 

largely unknown. In the fly, Dm’hb acts as a canonical gap gene (see above) and 

regulates other gap genes such as Dm’Kr as well as pair rule and Hox genes. Recent 

discoveries in Oncopeltus fasciatus and Gryllus bimaculatus suggest, however, that 

the ancestral role of this gene differs from a canonical gap function described in 

Drosophila development; although the regulatory interactions of hb in these two short 

germ insects have not yet been fully characterized (Liu and Kaufman, 2004a; Mito et 

al., 2006). 

In general, the analysis of the Drosophila segmentation genes in other insects 

has provided a valuable source of genetic information on the evolution of the 

segmentation process. The candidate gene approach allows the comparison of a 

genetic component in a distinct genetic and cellular context. This analysis provides 

information on the developmental machinery underlying segmentation, and also helps 

us to understand the evolutionary mechanism underlying the genetic variation among 

species that by different genetic means produces similar morphological outcomes.  

 

The aim of this work is to shed light on the evolution of the gene regulatory 

network controlling trunk segmentation in insects. This work involves (1) the 

functional analysis of the anterior patterning gene Tc’hb; (2) the functional analysis of 

a novel segmentation gene showing a gap-like expression pattern and (3) the cross-

regulatory interactions among gap genes and the regulation of target genes in the 

segmentation process in Tribolium. 
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Material and Methods 

 
Rearing 

 

Beetle stocks of the Tribolium castaneum strain San Bernardino were reared 

on white flour supplemented with brewer’s yeast at 30°C (Berghammer et al., 1999). 

Flour stock were kept O/N at 65°C for parasitic disinfection. The pupae for injections 

were obtained by collecting eggs in a 9h interval and leaving them for about 25 days 

at 30°C to develop.  

 

In vitro transcription of antisense RNA probes and double stranded RNA 

 
The DNA clones of the target genes contained promoter sites (T7, T3 or Sp6) 

flanking the target gene sequences. The templates for the RNA probes were generated 

by PCR amplification of the clones using primers for the flanking promoter site (T3 

and T7, or Sp6 and T7). The templates for double stranded RNA were generated by 

PCR amplification of the clones using the T7 primer with either a T7T3 fused primer 

or a T7Sp6. The template will therefore contain T7 promoter sites in both sides. 

In vitro transcription of the antisense RNA probes were carried using T3, T7 

or Sp6 polymerase (Roche) depending on the orientation of the target gene sequence 

in the vector. In vitro transcription of the double stranded RNA molecules was carried 

using the T7 MEGAscript RNAi Kit (Ambion) with precipitation with Lithium 

Chloride. 

 
Parental RNAi 

 
Parental RNA interference essays were performed as described in Bucher et al. 

(2002) with modifications. Approximately 200 female pupae were used in each 

experiment. The pupae were fixed (ventral up) by their posterior most abdominal 

segments onto microscope slides by using double sided tape (Scotch 665). Double-

stranded RNA was injected into pupae at a concentration of 2 !g/!l. We found this 

concentration ideal to obtain maximum penetrance for most genes. After injection, the 

pupae were taken off of the slides and transferred to “culture vials” containing full 

grain flour in order to facilitate eclosion and reared under standard conditions (see 
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above). Wild type males pupae were add to the vials in a ration of 1 male to 3-5 

females. The first egg collection was performed 5 days after injection and the eggs 

were kept at 30°C to monitor RNAi penetrance at the cuticular level. The strengh of 

the phenotype decays with the age of the female after injection, providing thus a 

phenotypic series. Knockdown embryos were collected every second day and one 

collection per week was kept at 30°C to monitor the cuticular phenotype. The 

collections were performed until the phenotypic effect had decreased significantly. 

Embryos for in situ hybridizations were taken from females showing a very high 

penetrance as judged by the parallel analysis of cuticle phenotypes. 

 

Embryonic RNAi 

 

Double-stranded RNA was injected into 2 to 4 hours after laying Tribolium 

eggs at a concentration of 2 !g/!l. The adult stock was cleaned from laid eggs by 

sieving procedure and let at 30ºC for egg lay. After one hour the eggs were collected 

and washed for one min in 10% and for 2 min in running water to soften the chorion. 

The eggs were then lined up onto the longer edge of microscopic slides with the 

anterior pole pointed towards the outside of the slide. Prior injection, the embryos 

were covered by a thin layer of Halo Carbon oil. The injection solution (10% phenol 

red, 2 !g/!l of dsRNA diluted in water) was centrifuged for at least 30 min at full 

speed and kept in ice during the injection procedure. The embryos were injected in 

their anterior pole with a standard microscope and a Eppendorf FemtoJet injection 

device set to manual in order to optimize the injection volume. The injected embryos 

were kept in a closed plastic box with moist paper towels to prevent desiccation. 

Hatched larvae were collected for after 5 days and processed for cuticle preparation.  

 

Cuticle preparation 

 
The eggs were sieved from the flour and washed for 1 min in 50% bleach 

solution and 2 min in running water to remove the chorion. The eggs were transferred 

to an embryo dish containing 1:1 Hoyer’s medium and Lactic Acid solution and 

incubated overnight at 65°C (Berghammer et al., 1999). 
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The cuticles were mounted onto microscope slides with two cover slips each 

side of the samples and one cover slip on top of it. This way the samples maintained 

their three-dimensional shape. Pictures were taken with a confocal microscope. 

 

Embryo fixation 

 

The eggs were sieved from the flour and washed for 1 min in 50% bleach 

solution and 2 min in running water to remove the chorion. The fixation was 

performed in a scintillation vial with 3 ml PBS, 6 ml Heptane and 4% formaldehyde 

for 30 min. The eggs were then devitellinized by replacing the aqueous phase with 8 

ml of Methanol and by shaking thoroughly for 30 sec. The eggs that lose the vitelline 

membrane become hydrophilic and move from the interphase to the hydrophilic phase 

(MeOH). After several washes with MeOH they were transferred to Eppendorf vials. 

The remaining eggs were passed through a 0.9 mm needle until all vitelline 

membranes were removed. 

 
In situ hybridization 

 
Gene expression profiles were obtained by whole mount in situ hybridization 

as previously described (Tautz and Pfeifle, 1989). For double staining essays, 

digoxygenin- or fluorescein-labeled probes were detected using alkaline phosphatase-

coupled antibodies and INT/BCIP (red) or NBT/BCIP (blue) substrates. 
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Chapter I – A cardinal role of hunchback in Tribolium 

 

Introduction 

 

The hb gene was first characterized as a gap gene in the fly Drosophila 

melanogaster (Bender et al., 1988; Lehmann and Nusslein-Volhard, 1987; Tautz, 

1988; Tautz, 1987; White and Lehmann, 1986). Loss of zygotic Dm’hb in Drosophila 

results in a “gap” phenotype that includes the loss of labial and thoracic segments in 

addition to the fusion of the abdominal segments 7 and 8 (Figure 2).  

The activity of Dm’hb is firstly established during early oogenesis when the 

translation of Dm’hb maternal transcripts is prevented by Dm’Nos at the posterior 

pole of the egg (see above). Dm’Hb protein therefore forms an anterior to posterior 

gradient in the egg with higher levels in the anterior and lower to undetectable levels 

in the posterior (Dahanukar and Wharton, 1996; Payre et al., 1994; Wang and 

Lehmann, 1991). A second anterior Dm’Hb gradient is formed by the activation of its 

zygotic expression by the anterior morphogen Dm’bcd (Driever and Nusslein-

Volhard, 1989; Driever et al., 1989; Struhl et al., 1989). The activities of both Dm’Hb 

gradients seem to have a partially redundant function (Hülskamp et al., 1990). 

Additionally, Hb is also expressed in the extraembryonic epithelial tissues and the 

developing nervous system in the zygote (Patel et al., 2001). 

Notably, for at least one decade after the original study, the magnitude of the 

function of Dm’hb was mis-interpreted due to the difficulty of uncoupling the 

maternal (hb
mat) and zygotic (hb

zyg) effects (Simpson-Brose et al., 1994). The 

possibility of removing both, Dm’hb
mat and Dm’hb

zyg activities revealed that Dm’Hb 

is essential for the activation of all known target genes of the anterior morphogen 

Dm’bcd. Additionally, the expression of the anterior domain that generates the 

Dm’Hb gradient is also dependent on its maternal product. When Dm’hb
mat is 

removed, the Dm’hb
zyg expression is drastically reduced and shifted anteriorly 

towards regions of higher levels of Dm’Bcd activity (Simpson-Brose et al., 1994).  

Accordingly, it has also been shown that the role of Dm’bcd is to provide the 

correct long-range polarity to the embryo by regulating Dm’hb
zyg activity (Hülskamp 

et al., 1990; Simpson-Brose et al., 1994; Struhl et al., 1992). Without Dm’hb activity, 

Dm’bcd is only able to specify the most terminal head structures formed under high 
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concentrations of Dm’bcd in the wild type. Therefore Dm’bcd does not act 

autonomously in the anterior half of the embryo in the absence of Dm’hb. On the 

other hand, Dm’hb has an instructive role in patterning the entire Drosophila body 

plan. 

Taken together, these findings demonstrate that Dm’hb is an important 

morphogen in the Drosophila segmentation cascade and that it is crucial for 

organizing the embryonic AP axis. Together with Dm’bcd, the primary role of Dm’hb 

is performed by (1) providing the primary positional information via its maternal 

activity and (2) by transferring the positional information of the maternal patterning 

systems to the subsequent levels of the segmentation cascade. Following the decay of 

Dm’Hb levels along the AP axis, the domains of expression of anterior, central and 

posterior gap genes are established. 

The expression of Dm’hb is further refined into three stripes, two lying in 

thoracic segments and one in the seventh and eighth abdominal segments. These 

stripes of expression are derived from separate promoters and regulated by other gap 

genes (Tautz, 1987). These secondary stripes are essential for the metamerization of 

the second thoracic (Parasegment 4 – PS4) as well as the seventh and eighth 

abdominal segments (PS13) (Lehmann and Nusslein-Volhard, 1987; Tautz, 1987). 

The primary effect of removing Dm’hb
zyg activity is the incorrect 

interpretation of the underlying signals provided by the maternal systems, causing 

strong disarrangements of gap gene expression (Gaul and Jäckle, 1990). Given that 

Dm’hb
zyg activates anterior and represses posterior downstream targets, the lack of 

Dm’hb
zyg leads to loss of gap gene expression in the head and anterior thoracic 

regions while posterior thoracic and abdominal gap gene expression expands towards 

anterior (Hulskamp et al., 1994; Hülskamp et al., 1990; Schulz and Tautz, 1994). This 

misexpression of gap genes affects the expression of the pair rule genes, which in turn 

leads to metamerization defects in the gnathal, thoracic and first abdominal segment 

primordia (Hulskamp et al., 1994; White and Lehmann, 1986). These effects are 

intensified when Dm’bcd and the Dm’hb
mat product are also mutated, since Dm’bcd 

acts synergistically with Dm’hb during anterior patterning (Hülskamp et al., 1990; 

Simpson-Brose et al., 1994). In such a mutant, only three segments displaying a 

mirror image and abdominal identity (A7/A8, A6, A7/A8) are formed. 
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In summary, the wild type function of Dm’ is to sets the primary borders of 

gap gene expression that are further refined by their cross-regulatory interactions. The 

gap genes regulate the primary expression of the pair rule genes that is also refined 

via cross-regulatory interactions among pair rule genes. The refined patterns of pair 

rule genes define the 14 stripes of the segment polarity genes at the onset of the 

gastrulation.  

In addition to the role of Dm’hb during metamerization, a secondary effect 

caused by the lack of Dm’hb activity is the misregulation of abdominal Hox genes 

(e.g. Qian et al., 1991; White and Lehmann, 1986; Zhang and Bienz, 1992). The 

anterior domain of Dm’hb limits the anterior expression borders of the Dm’Ubx and 

Dm’Antp domains (Irish et al., 1989b; Lehmann and Nusslein-Volhard, 1987; Qian et 

al., 1991; White and Lehmann, 1986; Zhang and Bienz, 1992). When Dm’hb activity 

is removed, the expansion of Dm’Ubx and Dm’Antp expression towards more anterior 

segments leads to homeotic transformations of head and thoracic segments towards 

abdominal ones (Irish et al., 1989b; Lehmann and Nusslein-Volhard, 1987; White and 

Lehmann, 1986). This phenotype is, however, only observed for three neomorphic 

alleles, which carry a mutation in either the C or the D box domains (Hulskamp et al., 

1994). The C and D box are functional domains originally defined by their 

conservation between Drosophila and Musca domestica (Hulskamp et al., 1994). In 

amorphic Dm’hb alleles the homeotic transformations are concealed by the gap 

phenotype, where the segments that are transformed in neomorphic mutants are 

deleted (Lehmann and Nusslein-Volhard, 1987). Thus, the Dm’hb gene acts as an 

essential morphogen in early embryogenesis to control proper metamerization via the 

regulation of segmentation genes and to assure the differentiation of these metameres 

into proper segment identity. 

This essential role of hb in development substantiates its evolutionary 

conservation. The identification of a putative vertebrate homolog of hb, named Ikaros, 

suggests that the origin of the hb gene predates the split of the deuterostome and 

protostome phyla (Georgopoulos et al., 1992; Sun et al., 1996). Although the ancestral 

function seems to be distinct between vertebrate and protostomes, several features of 

the hb expression domains, like the maternal supply of transcripts and the expression 

in extra-embryonic cells and in the CNS, are shared by two of the metazoan 

superphyla, ecdysozoans and lophotrochozoans (Pinnell et al., 2006). 
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The role of hb in segmentation most likely evolved within arthropods (Pinnell 

et al., 2006). Among insects, hb plays an essential role in the segmentation process of 

all species where functional analyses are available (He et al., 2006; Liu and Kaufman, 

2004a; Mito et al., 2005; Pultz et al., 2005; Tautz, 1987). In all the cases, hb was 

found to acts as an anterior patterning gene. As in Drosophila, lack of hb activity in 

other insects leads to a phenotype where only the anterior head and fewer abdominal 

segments are formed (Figure 2).  

In Nasonia lose of Nv’hb function leads to deletion of the segments expressing 

Nv’hb in the wild type (Pultz et al., 2005). Although more segments are deleted in 

Nasonia, this phenotype is equivalent to the canonical gap phenotype described in 

Drosophila. In Tribolium, a previous study suggested that the Tc’hb phenotype is also 

caused in the same way as in Drosophila, i.e. by the deletion of posterior head and 

thoracic segments (Schroder, 2003). This finding would infer a conserved role of hb 

as a canonical gap gene among holometabolous insects, despite the distinct mode of 

embryogenesis between the short germ band of Tribolium and the long germ band of 

Drosophila and Nasonia (see above).  

 

 
 

Figure 2. Phylogeny of insect orders discussed in the text showing distribution of the 

hb expression patterns and the cuticular phenotype after hb depletion in Drosophila, 

Tribolium, Oncopeltus and Gryllus. Phylogeny modified from Peel (2004). Oncopeltus 

pictures from (Liu and Kaufman, 2004a) and Gryllus pictures from (Mito et al., 2005). 
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Intriguingly, the loss of head and thoracic segments in the hb phenotype is 

caused by different means in hemimetabolous insects. In Gryllus and in Oncopeltus, 

the anterior expression of hb seems to be dispensable for the metamerization of the 

segments in which hb is expressed, with no segment deletions observed in head and 

anterior thoracic segments. On the other hand, the specification of segment identity 

seems to depend on the repressive function of hb on the expression of abdominal Hox 

genes. In these two short germ insects, however, it seems that the more evident role of 

hb is in the establishment of segment identity via the regulation of Hox genes. 

Nevertheless, hb also plays a role in the metamerization process of these insects, since 

the phenotype also displays segment deletions. Conversely to Drosophila, the 

segment deletions observed in Gryllus and Oncopeltus are of much less extent and lie 

in segments where hb is not expressed in the wild type. 

Taken together, these findings would suggest (1) that the ancestral role of hb 

within insects was most likely the regulation of Hox genes with only a minor role in 

metamerization and (2) that most likely the canonical gap role of hb has evolved in 

the lineage leading to holometabolous insects.  

Intriguingly, the holometabolous insect Tribolium shares the same short germ 

mode of embryogenesis as the hemimetabolous insects. Furthermore, the expression 

pattern of Tc’hb is also more comparable to other short germ insects then to 

Drosophila. Therefore, it would be hard to conceive that the role of hb was 

fundamentally changed between insects sharing the same embryogenesis mode (e.g. 

Tribolium and Gryllus) while conserved between species displaying distinct 

developmental mechanisms (Tribolium and Drosophila).  

In this chapter, I describe the functional characterization of the segmentation 

gene hb in Tribolium through the use of morphological and molecular markers as well 

as the analysis of candidate target genes of Tc’hb known from Drosophila and 

propose a new interpretation of the Tc’hb phenotype in Tribolium and an evolutionary 

scenario for the role of hb in insects. 
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Results 

 

Injection of double stranded RNA into Tribolium pupae (pRNAi) generates 

females lacking both maternal and zygotic Tc’hb function (Bucher et al., 2002). In 

order to characterize the role of Tc’hb in Tribolium segmentation, embryos depleted 

for Tc’hb (Tc’hb
pRNAi embryos) were generated.  

 

Morphological characterization 

 

The role of hunchback in segmentation 

 
Loss of Tc’hb function does not affect the pre-gnathal segments labrum (lab), 

antenna (an) and mandible (md). All other segments bare no appendages and appear 

to have abdominal identity (Figure 3C). This phenotype was originally interpreted as 

a canonical gap phenotype in which the maxillary (mx), labial (lb) and thoracic (T#) 

segments are deleted (Schroder, 2003).  

The intermediate Tc’hb
pRNAi phenotypes indeed show larvae with abdominal 

segments beyond the md, which could be interpreted as segments formed after the 

deletion of the gnathal and thoracic segments. However, the number of visible 

abdominal segments in these larvae is at least 10 (counting the fusion point as two 

segments), while the expected number of abdominal segments is eight (Figure 3C). In 

addition, the partial segment fusions in these embryos are observed around the 4th to 

5th post-mandibular segment, hence outside of the Tc’hb expression domain 

(arrowhead in Figure 3C).  

Weak Tc’hb
pRNAi phenotype larvae display the total number of segments as in 

the wild type, but all segments posterior to the md display abdominal identity (Figure 

3B). In some larvae, an underdeveloped limb bud in the segment corresponding to the 

second (T2) and third (T3) thoracic segment in wild type larvae can be observed 

(arrow in Figure 3B). The detailed view in Figure 3 shows that the gnathal and 

thoracic segments are not deleted in Tc’hb
pRNAi larvae, but are instead transformed 

into abdominal identity (Figure 3D and 3E). 
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Figure 3. Cuticular preparation of (A, D) wild type larvae and depleted larvae 

showing (B, E) weak and (C) strong Tc’hb
pRNAi phenotype. (B) All body segments are formed 

but gnathal and thoracic segments transformed to abdominal segments. (Arrow in B) 

Underdeveloped limbs in T3. (C) Larva displaying approximately 10 segments showing 

abdominal identity and (arrowhead) fusion of segments. (D-E) Detailed view of the homeotic 

transformations observed in Tc’hb
pRNAi larva. (D) Wild type larvae with normal head and 

thoracic segments. (E) Weak Tc’hb
pRNAi phenotype larva displaying the transformation of 

segments after the md segment. (E) Primorida of (an) antenna, (mx) maxilla, (lb) labial and 

the (T1) first, (T2) second and (T3) third thoracic as well as the (A1) first and (A2) second 

abdominal segments are depicted.  
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The strongest Tc’hb
pRNAi phenotype (Figure 3C) was originally interpreted as a 

lack of anterior abdominal segments, in addition to the gnathal, thoracic deletions 

(Schroder, 2003). However, based on the homeotic transformation of the thoracic 

segments, as well as the fact that segment loss progresses from the point where the 

segmental fusions are seen in the weak phenotypes, the strongest Tc’hb
pRNAi 

phenotype can be characterized as a progressive loss of posterior abdominal segments 

(further discussed in General Discussion). 

These results indicate that the loss of hb function in Tribolium leads to (1) 

metamerization defects and (2) transformation of segment identities.  

 

The role of hunchback in extraembryonic membranes  

 
Maternal Tc’hb (Tc’hb

mat) transcripts are loaded into the Tribolium oocyte , 

where they are ubiquitously distributed (Wolff et al., 1995) and translated after 

fertilization. As in Drosophila and in Grasshoppers, the Tc’hb
mat seems to be 

translationally repressed from the posterior pole of the egg by a so far unknown 

mechanism. By the end of the blastoderm stage, Tc’hb expression is restricted to an 

anterior domain where the cells are going to be specified to become the serosa. This 

domain is co-localized with the expression of zerknüllt (Tc’zen1), an essential factor 

for the specification of extraembryonic tissue (van der Zee, personal communication).  

In order to investigate a possible early function of the Tc’hb
mat and/or anterior 

cap expressions I analyzed Tc’hb
pRNAi embryos using fluorescent DAPI (4',6-

diamidino-2-phenylindole) staining. Here I demonstrate that Tc’hb has an early role in 

the specification of the germ rudiment.  

At the “differentiated blastoderm stage” (Roth, 2004), Tc’hb
pRNAi embryos 

display no distinction between serosa and the germ rudiment nuclei (more detailed, 

size of nuclei etc.) (Figure 4B). This phenotype is nevertheless observed only in ca. 

10% of the analyzed embryos.  

With the onset of gastrulation, Tc’hb seems to play an additional role during 

germband invagination. As in wild type, the primitive pit is formed at the posterior 

pole of Tc’hb
pRNAi eggs, however the invagination appears to be abnormal in these 

embryos (Figure 4D). In addition, the position of the germband in relation to the egg 

seems to be affected. (Figure 4F, H). The embryo displays segmental groves 

characteristic of the abdomen of a fully elongated germband (arrows in Figure 4H), 
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but instead it occupies only the ventral-posterior portion of the egg (compare Figure 

4H with G). This late effect is most probably caused by the arrest of segmentation in 

Tc’hb
pRNAi embryos (see below).  
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Figure 4. DAPI staining of Tribolium (A, B, E, F) wild type and (C, D, G, H) 

Tc’hb
pRNAi embryos. (A) Blastoderm stage of a wild type embryo showing the distinction 

between embryonic and serosal cells. (B) Tc’hb
pRNAi embryo at similar stage as A, showing no 

distinction between embryonic and serosal cells. (C) Wild type embryo at the stage of 

embryonic cells condensation and posterior pit formation. (D) Tc’hb
pRNAi embryo with 

distinction between embryonic and serosal cells to a lesser extent compared to C, but 

displaying failure of the germband invagination (arrowhead). (E) Wild type and (F) 

Tc’hb
pRNAi embryos during germ band elongation. (G) Fully extended germband of a wild 

type embryo. (H) Tc’hb
pRNAi embryo displaying segmental groves characteristic of the wild 

type abdominal segments (compare arrows between G and H). These embryos (H) represents 

the strong Tc’hb
pRNAi phenotype, where only four segments are formed afther the mandibule 

(see text). The wild type pictures are from Beermann (2006). 
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Maternally provided hunchback in Tribolium 

 

In order to determine the role of Tc’hb
mat in Tribolium I performed an 

embryonic RNA interference (eRNAi) experiment. Since the eRNAi does not deplete 

the maternal transcripts, the observation of indistinguishable phenotype between 

eRNAi and pRNAi at the cuticular level would rule out a separate effect of the 

maternal product. On the other hand, any variation in the phenotype would suggest 

that Tc’hb
mat transcripts would contribute to the Tc’hb

RNAi phenotype. 

Although no difference in the character of the Tc’hb phenotype was observed, 

a much higher occurrence of the weak phenotype showing more normally formed 

segments of abdominal identity was observed in the Tc’hb
eRNAi embryos. For 

example, the weakest class of Tc’hb
eRNAi phenotype displaying the total number of 

segments with underdeveloped limbs (Figure 3B) is only observed in eRNAi 

experiments. The weakest phenotype observed after pRNAi is depicted in figure 3C, 

displaying segment fusions and ten abdominal segments. 

These observations have limitations because of the time that the RNAi takes to 

silence the target gene. A late RNAi effect would deplete the transcripts when its 

early function was already accomplished. However, all other genes analyzed with 

eRNAi showed identical or stronger phenotypes compared to the pRNAi experiment 

(bucher). Although this observation cannot be considered as conclusive the weaker 

effect observed when the maternal product is not depleted (eRNAi) could indicate that 

the maternal expression of hb plays a role in Tribolium as it does in Drosophila. 

 

Molecular Characterization 

 
In order to characterize the segmental function of Tc’hb at the molecular level 

Tc’hb
pRNAi embryos were analyzed for the expression of candidate target genes of 

Tc’hb. To assess the segmental register in these embryos, the Tribolium ortholog of 

the segment polarity gene gooseberry (Tc’gsb) was used as marker. Double staining 

with Tc’en shows that Tc’gsb is expressed at the posterior border of every segment, 

thus overlapping with Tc’en expression (Figure in supplementary data).  
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Figure 5. Expression of Tc’gt (blue) in (A, B) wild type and in (C, D) Tc’hb

pRNAi 

embryos. The embryos are double stained for Tc’gsb (red). Although the anterior domain is 

not significantly affected, the posterior expression of Tc’gt in T3 and A2 (arrows in B) is 

absent in Tc’hb
pRNAi embryos. (D) The segments where Tc’gt should have been expressed are 

fused in Tc’hb
pRNAi embryos, visible by the fusion of the Tc’gsb stripes (arrowheads in D).  
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Figure 6. Expression of Tc’Kr in (A, C, E) wild type and in (B, D, F) Tc’hb

pRNAi 

embryos. The central Tc’Kr expression is completely absent in Tc’hb
pRNAi embryos (B, D). 

With further development the secondary expression of Tc’Kr (F) is seen in these embryos. 



Chapter I – A cardinal role of hunchback in Tribolium 

  

 39 

hunchback regulates the expression domains of gap genes 

 
In Drosophila, the Dm’Hb gradient is required to regulate other gap genes, in 

particular Dm’Kr and Dm’gt (Hulskamp et al., 1994; Hülskamp et al., 1990; Struhl et 

al., 1992). In Tribolium, the location of the fused stripes in the Tc’hb
pRNAi phenotype 

correspond to the segments where Tc’Kr and Tc’gt are expressed in wild type 

embryos. To understand the basis of the segment deletions observed in Tc’hb
pRNAi 

embryos, these embryos were analyzed for the expression of Tc’Kr and Tc’gt as 

putative target genes. 

Consistent with the interpretation of the cuticular phenotype, normal Tc’gsb 

stripes are formed in Tc’hb
pRNAi embryos up to the 4th post-mandibular stripe, where 

a partial fusion with the following stripe occurs (Figure 5D). Adjacent to this, a 

segment showing normal width between Tc’gsb stripes is formed, followed by another 

pair of partially fused stripes (Figure 5D). In strong Tc’hb
pRNAi phenotype, no further 

segmental stripes are visible posterior to this point.  

Tc’gt is initially expressed in a broad domain during blastoderm stage, 

covering the future head and gnathal segments but excluding the lb (Bucher and 

Klingler 2004). The trunk expression appears during germband elongation (Figure 

5A) and converges into two stripes in T3 and second abdominal (A2) segments 

respectively (Figure 5B - Bucher and Klingler 2004). In Tc’hb
pRNAi embryos, the 

anterior Tc’gt domain is not visibly affected (Figure 5C, D), while the posterior Tc’gt 

stripes are not formed (Figure 5C, D). Later, it becomes apparent that the segments 

that should have expressed Tc’gt are fused, as evidenced by the Tc’gsb expression 

(Figure 5D). These experiments suggest that Tc’hb possibly acts as an activator of 

Tc’gt, in contrast to its role in Drosophila, where it acts as a repressor (Struhl et al., 

1992). 

Tc’Kr expression starts at the blastoderm stage with a broad domain at the 

posterior pole (Figure 6A) (Sommer and Tautz, 1993), which covers the three thoracic 

segments in the early germband (Cerny et al., 2005). In hb
pRNAi embryos this domain 

is absent (Figure 6B, D), indicating that Tc’hb is required for its activation. There is a 

secondary segmental expression of Tc’Kr, which is generated during segment 

differentiation (compare Figure 6E and F) (Cerny et al., 2005). This expression is not 

affected in Tc’hb
pRNAi embryos, although fewer segmental stripes are generated 

(compare Figure 6F), which is consistent with the loss of segments in such embryos. 
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Thus, Tc’Hb is required for the activation of the early Tc’Kr domain. The regulation 

of Kr by hb appears to be conserved between Tribolium and Drosophila (Hulskamp et 

al., 1994; Hülskamp et al., 1990; Struhl et al., 1992).  

These results suggest that in Tribolium, the Tc’hb gene acts as a general 

activator of the Tc’Kr and Tc’gt trunk domains. 

 

hunchback interacts with the pair rule circuit via giant 

 

In Drosophila, the segmentation defects observed in gap gene mutants are a 

reflection of the misregulation of their targets: the gap genes themselves and the 

periodically expressed pair rule and segment polarity genes. 

In Dm’hb mutant embryos, Dm’Kr expression is expanded anteriorly and the 

striped pattern of the pair rule genes is severely affected (Hulskamp et al., 1994; 

Hülskamp et al., 1990; Kraut and Levine, 1991a; Kraut and Levine, 1991b). This 

expansion leads to the formation of two enlarged metameres comprising the cells that 

would normally form around 4-6 metameres (White and Lehmann, 1986). These 

enlarged metameres undergo a resizing process, via cell death, acquiring normal 

width by the end of embryogenesis (See General Discussion). 

In Tribolium, the orthologs of the pair rule genes have been shown to form a 

genetic circuit that plays an essential role in the metamerization process (Choe et al., 

2006). Disruption of the orthologs of Tc’run, Tc’eve and Tc’odd leads to almost 

completely asegmental embryos (Choe et al., 2006). 

To test whether the segmentation defects observed in the Tc’hb
pRNAi 

phenotype could be due to misregulation of pair rule genes, the expression of Tc’run 

and Tc’eve was analyzed in Tc’hb
pRNAi embryos. 

The anterior stripes of Tc’run and Tc’eve in gnathal segments appear to be 

unaffected in Tc’hb
pRNAi embryos (not shown). More posterior stripes, however, are 

not properly separated and both genes are expressed in a broad domain covering the 

growth zone (Figure 7B, G). In wild type, these stripes are within the region where 

segment deletions are observed in Tc’hb
pRNAi embryos. 

Since the effects observed in the expression pattern of the pair rule genes lie 

outside the Tc’hb expression domain, this effect could indicate a misregulation of 

Tc’Kr or Tc’gt in Tc’hb
pRNAi embryos. Cerny and colleagues (2005) already showed 
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that Tc’Kr has no effect on Tc’eve stripes in the segments where Tc’Kr is expressed in 

the wild type; therefore the expression of the pair rule genes Tc’run and Tc’eve were 

analyzed in Tc’gt
pRNAi embryos. In accordance with the lack of Tc’gt in Tc’hb

pRNAi 

embryos, Tc’gt
pRNAi embryos display fusions of Tc’run (Figure 7C) and Tc’eve 

(Figure 7H) stripes in the trunk segments T3 and A2, where Tc’gt is expressed in wild 

type embryos (Figure 7E, J). 

Depletion of Tc’hb leads to the loss of the Tc’gt trunk stripes, resulting in 

ectopic expression of the pair rule genes Tc’eve and Tc’run and subsequently to the 

metamerization defects observed in the trunk segments of Tc’hb
pRNAi and Tc’gt

pRNAi 

embryos (Figure 10). 
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Figure 7. Expression of the pair rule genes (A-D) Tc’run and (F-I) Tc’eve in embryos 

depleted for the gap genes. (A, F,) Wild type embryos, (B, G) Tc’hb
pRNAi embryos, (C, H) 

Tc’gt
pRNAi embryos, (D, I) Tc’Kr

pRNAi embryos are depicted. (E, J) Wild type Tc’gt expression 

for comparison with the gap gene depleted embryos. Effects observed on pair rule genes 

seems to lye in the segments were Tc’gt is expressed in the wild type. 
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hunchback regulates trunk Hox genes 

 

In parallel to the role in metamerization via pair rule genes regulation, Tc’hb 

seems also to affect the expression of Hox genes in Tribolium. 

Embryos depleted for Tc’hb develop into larvae displaying normal segment 

identity until the md. The subsequent segments however, appear to have abdominal 

identity.  

To test whether these abdominal segments are the result of an expansion of 

abdominal Hox gene expression up to the md, I analyzed the expression of the gnathal 

hometic genes, Tc’Dfd and Tc’Scr as well as the trunk Hox genes Tc’Antp, Tc’Ubx 

and Tc’AbdA in Tc’hb knockdown embryos. In Drosophila, Dm’hb regulates 

Dm’Antp, Dm’Ubx and Dm’AbdA by repressing their expression in anterior segments 

(Casares and Sánchez-Herrero, 1995; Irish et al., 1989b).  

In wild type Tribolium embryos, Tc’Dfd is expressed in the md and mx 

(Figure 8A) followed by the expression of Tc’Scr in the lb (Figure 8C). Although 

Tc’Dfd expression is not strongly affected in Tc’hb
pRNAi embryos (Figure 8B), Tc’Scr 

is completely absent (Figure 8D). 

Tc’Antp is expressed in all thoracic and abdominal segments in wild type 

embryos (Figure 8E). After the germ band completed elongation, Tc’Antp shows an 

increased level of expression in the thoracic region (arrows in Figure 8E). In 

Tc’hb
pRNAi embryos, Tc’Antp expression is prematurely activated and covers all 

segments formed after the md (Figure 8F). Although ectopically expressed, the 

Tc’Antp domain does not show enhanced expression in specific segments as observed 

in thoracic regions in wild type embryos (compare Figure 8E and F). Additionally, the 

Tc’Antp expression domain is also expanded posteriorly covering the growth zone in 

Tc’hb
pRNAi embryos (Figure 8F). 

The domains of the abdominal Hox genes Tc’Ubx and Tc’AbdA, normally 

expressed in the abdomen (Figure 8G, I), are also expanded towards anterior in 

Tc’hb
pRNAi embryos, expressed in all segments posterior to the md segment (Figure 

8H, J). 

The fact that the expansion of Hox genes in Tc’hb
pRNAi embryos does not 

extend into the anterior head segments indicates that additional factors are responsible 

for repressing trunk Hox genes in segments anterior to the md. Although the 
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expansions correspond to different segments, similar effects on Antp, Ubx and AbdA 

expression domains are also observed in Dm’hb mutants in Drosophila (Casares and 

Sánchez-Herrero, 1995; Irish et al., 1989b). 
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Figure 8. In situ hybridization of Hox genes in (A, C, E, G, I) wild type and in (B, D, 

F, H, J) Tc’hb
pRNAi embryos. Tc’Dfd expression domain seems to be smaller in Tc’hb

pRNAi 

embryos (B) compared to wild type (A). (D) Tc’Scr is not expressed in Tc’hb
pRNAi embryos. 

(F) Tc’Antp is shifted anteriorly in Tc’hb
pRNAi embryos but its strong expression observed in 

the wild type thoracic region (E) is not observed in Tc’hb
pRNAi embryos. Tc’Ubx and Tc’AbdA 

are shifted anteriorly in Tc’hb
pRNAi embryos. 
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Discussion 

 

hunchback function in Tribolium 

 
Molecular comparative analysis between long and short germ insects has 

revealed fundamental variations in the function of the gap genes. While their 

expression domains cover comparable segments in both long and short germ insects, 

the phenotypes observed after functional disruption differs significantly. 

In this chapter I described the morphological and molecular characterization of 

the function of Tc’hb and provide a reinterpretation of the canonical gap function 

previously reported (Schroder, 2003). The results demonstrate that the Tc’hb
pRNAi 

phenotype can be interpreted as a deletion of segments formed outside of the Tc’hb 

expression domain followed by the homeotic transformation of the remaining post-

mandibular segments. 

In addition to the role in segmentation, the Tc’hb gene is also involved in early 

morphogenesis at the blastoderm and early gastrula stages in Tribolium.  

 

Extra-embryonic membranes in Tribolium: assigning fate out of the embryo 

 

Although hb orthologs have been analyzed in many insects and other 

arthropods, an early function of hb on the specification of extraembryonic membranes 

and early germ band morphogenesis has never been reported for any other organism. 

A possible role in differentiating extraembryonic membranes from the germ rudiment 

was already suggested for the hb ortholog in the Grasshopper (Patel et al., 2001). 

The undifferentiated blastoderm formed in Tc’hb
pRNAi embryos (Figure 4A, B) 

indicates that Tc’hb is involved in the assignment of extra-embryonic fate to cells 

located within its anterior cap of expression. This effect is comparable to the loss of 

Tc’zen1 function, where no serosal fate is established in the egg and all nuclei 

integrate into the germ rudiment (van der Zee et al., 2005). Interestingly, the 

commitment of more anterior cells to an embryonic fate in Tc’zen1
pRNAi embryos 

leads to the development of a head region containing an increased number of 

unpatterned cells. Although this intermediate stage (enlarged head) is somehow 
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rescued later in development (van der Zee et al., 2005), no embryos displaying 

enlarged head region are observed in Tc’hb
pRNAi embryos. 

Tc’hb expression has been shown to co-localize with Tc’zen in most of the 

insects analyzed so far (Patel, van der Zee, Lynch, personal communication). Our 

results represent the first proof that this co-localization might be functional in insects, 

corroborating with its strong conservation throughout the Insecta.  

The low frequency observed for this phenotype might indicate that the role of 

Tc’hb in patterning extraembryonic tissue requires only very low levels of the Tc’Hb 

protein, perhaps still present in most of the Tc’hb
pRNAi embryos. 

The lack of evidence for this early function of hb in other insects (e.g. cricket) 

might be due to the limitation in accessing early steps of embryogenesis for molecular 

stainings (Taro Mito, personal communication). 

An additional effect observed in DAPI stained Tc’hb
pRNAi embryos is the 

failure of proper germband invagination. In wild type embryos, the formation of the 

germband is initiated with the onset of gastrulation, when the primitive pit is formed 

at the posterior pole of the egg (Figure 4C; Handel et al., 2001). Amniotic cells 

located at the posterior pole of the egg and at the anterior part of the head lobes fold 

towards the ventral side of the embryo forming the serosal window (ventral region of 

the embryo between both amniotic folds not covered by amniotic cells). When the 

serosal window closes, the elongating germ anlage is ventrally covered by a 

membrane composed of amniotic cells (Handel et al., 2001). 

In Tc’hb
pRNAi embryos, the posterior amniotic cells seem to be unable to fold 

ventrally over the germ rudiment. The germ anlage is therefore abnormally formed 

and much shorter as in the wild type. Figure 4H shows a Tc’hb
pRNAi embryo 

displaying segmental groves characteristic of the wild type abdominal segments 

(compare arrows between G and H). Nevertheless, the early effect in Tc’hb
pRNAi 

embryos at blastodermal stage (Figure 4B, D) is observed only at low frequencies. 

One explanation would be that this effect represents a stronger class of phenotype, 

where the loss of Tc’hb function would cause the embryos to fail further development.  
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The role of hunchback in Tribolium: patterning segment formation and differentiation 

 

When compared between insects, the larval phenotype observed after 

disruption of the hb function is remarkably similar (Figure 2). In flies, beetles, wasps, 

crickets and bugs, strong hb phenotypes lead to the development of larvae displaying 

normal anterior head segments followed by a series of abdominal segments (Lehmann 

and Nusslein-Volhard, 1987; Liu and Kaufman, 2004a; Mito et al., 2005; Pultz et al., 

2005; Schroder, 2003). 

The mechanism underlying this phenotype has been exhaustively 

characterized in the long germ insect Drosophila melanogaster. In the fly, Dm’hb 

operates as a crucial anterior morphogen in the early embryo activating anterior gap 

and pair rule genes while repressing posterior ones (Hulskamp et al., 1994; Hülskamp 

et al., 1990; Struhl et al., 1992). Dm’hb mutant larvae display deletions of the 

segments were Dm’hb is expressed in the wild type (Figure 2).  

The “head plus abdomen” phenotype obtained after hb depletion is caused by 

different means in basal insects. In contrast to the situation in Drosophila, the loss of 

hb function leads to segmentation defects in the posterior thoracic and abdominal 

segments, which do not express hb in wild type embryos. Segments lying anterior to 

this defective region are metamerized as in the wild type. Although normally formed, 

these segments lack the expression of hb, which leads to the ectopic expression of 

abdominal Hox genes, resulting in the assignment of abdominal identity to segments 

specified as head and thoracic in the wild type.  

In Tribolium, Tc’hb was originally described as a canonical gap gene 

(Schroder, 2003). However, larvae cuticles displaying a phenotypic series of the 

Tc’hb phenotypes suggest a different interpretation. 

These results show that Tc’hb plays a very similar role to its counterparts in 

other short germ insects. Therefore, the ancestral role of the hb gene might have 

consisted of major regulation of Hox genes and minor effects on pair rule genes 

(Figure 9). In the lineages leading to long germ insects, hb evolved a major role in 

metamerization by increasing its regulatory influence on the expression of pair rule 

genes. 

The morphological characterization of the Tc’hb
pRNAi

 phenotype raised a series 

of fundamental questions concerning the Tc’hb function in Tribolium and the 
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evolution of body patterning among insects and arthropods. Why are the segments 

expressing Tc’hb still formed after depletion of Tc’hb? Which factors are involved in 

the metamerization of the defective segments after Tc’hb knockdown? Is it an 

ancestral feature of gap genes to mainly affect Hox gene expression? To answer these 

questions I approached the molecular basis of the Tc’hb
pRNAi phenotype by analyzing 

the genetic interactions between Tc’hb and some of the candidate target genes of hb 

described in Drosophila. 
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Figure 9. Schematic drawing illustrating the comparison of the segmentation cascade 

between Drosophila (left panel) and Tribolium (right panel). Arrows indicate regulation 

(directional) between classes of segmentation genes. Contransting with the situation in 

Drosophila, the Tribolium gap genes perform a more proeminent function in the regulation of 

Hox genes with minor control of the pair rule genes. The extent to which maternal 

determinants are controlling gap genes as well that pair rule genes are controlling Hox genes 

in Tribolium is still unknown (dashed arrows). Black line within the eggs depicts the divition 

between extraembryonic and embryonic tissue (dorsal up and anterior to the left). For 

Tribolium, the expression domains of the segmentation and Hox genes do not correspond to 

the region depicted to be the embryo in the scheme. 
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The role of hunchback in Tribolium: interplay among gap genes 

 

The early establishment of the expression domains of the gap genes is the first 

zygotic activity. Gap gene regulatory regions are able to interpret the relatively crude 

positional information from the maternally provided factors, thus creating cardinal 

regions along the anteroposterior axis of the embryo (Meinhardt, 1986). Together 

with Dm’Bcd, Dm’Hb acts as a morphogen along the embryonic axis regulating the 

expression of gap and pair rule genes involved in the formation of head, thoracic and 

abdominal segments (Simpson-Brose et al., 1994; Wimmer et al., 2000). 

The molecular characterization of the Tc’hb phenotype in Tribolium revealed 

interesting similarities and variations compared to the regulatory model described for 

Dm’hb. 

As in Drosophila, Tc’hb expression is essential for the activation of the Tc’Kr 

thoracic domain in Tribolium (Figure 6). However, the nature of the interaction 

between Tc’hb and Tc’Kr remains unknown. Although the maternal product of Tc’hb 

is ubiquitously distributed in the early blastoderm, the zygotic expression of Tc’hb 

and Tc’Kr does not seem to overlap in the embryo.  

Tc’hb is also required for the activation of the Tc’gt expression in T3 and A2 

(Figure 5). This interaction is also most likely indirect since Tc’hb is not expressed in 

thoracic and anterior abdominal segments until late in segmentation (Wolff et al., 

1995). Furthermore, Dm’hb acts as a repressor of the posterior Dm’gt expression 

domain in Drosophila (Struhl et al., 1992). 

Although not conclusive, the observation that depleting both, Tc’hb
mat and 

Tc’hb
zyg yielded stronger phenotypes compared to depletion of solely Tc’hb

zyg could 

suggest a role for the maternal transcript in activating early Tc’Kr and Tc’gt 

expression in Tribolium. 

Taken together, this analysis suggests that Tc’hb is a general activator of the 

Tc’Kr and Tc’gt trunk domains in Tribolium (Figure 20). Interestingly, the deleted 

region showing fusions of Tc’gsb stripes in Tc’hb
pRNAi embryos correspond to the 

trunk segments that express Tc’gt in the wild type (T3 and A2). 

Noteworthy, Oncopeltus and Gryllus hb knockdown embryos show fusion of 

the segmental markers Tc’wg and Tc’en at a very similar position as observed in 



Chapter I – A cardinal role of hunchback in Tribolium 

  

 52 

Tribolium (Liu and Kaufman, 2004a; Mito et al., 2005). However, no information is 

available on the function or expression of gt in this species. 

 

Segmentation in Tribolium: gap gene regulation of the pair rule circuit 

 

Recent analysis of the Tribolium pair rule gene orthologs revealed a self-

maintaining regulatory circuit responsible for the metamerization of segments before 

and after the cellularization of the blastoderm. Disturbance of the expression of 

primary pair rule genes (Tc’eve, Tc’run and Tc’odd) results in asegmental embryos, 

while disruption of secondary pair rule genes (Tc’prd and Tc’slp) leads to the 

canonical pair rule phenotype known from Dm, in which segments are deleted in a 

double segmental periodicity (Choe and Brown, 2006; Choe et al., 2006).  

The analysis of the Tribolium orthologs of the pair rule genes Tc’eve and 

Tc’run in Tc’hb
pRNAi embryos revealed that indeed their periodic patterning is 

disrupted in the region where the segmentation defects are observed (Figure 7). Since 

these regions lie outside of the Tc’hb wild type expression domain I investigated 

whether the effect on pair rule gene expression would be mediated by the loss of Tc’gt 

expression in T3 and A2. Indeed, Tc’gt knockdown embryos show disruption of 

Tc’eve and Tc’run expression in the segments were Tc’gt is expressed in the wild type 

(Figure 7). 

Taken together, these results indicate that the metamerization defects observed 

in Tc’hb
pRNAi embryos are achieved by interfering with the first level of the proposed 

pair rule gene circuit (Choe et al., 2006), most likely via the misregulation of Tc’gt in 

these embryos (Figure 10). Additionally, it raises the question whether the similar 

segmentation defects observed in hb knockdown embryos in the basal insects 

Oncopeltus and Gryllus might also be mediated by gt. 
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Figure 10. Schematic drawing of the segmentation cascade in Tribolium. (A) 

Wild type (B) Tc’hb pRNAi. (A) The wild type function of Tc’hb in segmentation is 

mediated via the activation of Tc’gt. (C) In Tc’hb
pRNAi embryos, the trunk Tc’gt 

stripes are missing, which leads to the fusion of Tc’eve and Tc’run stripes in this 

region.   (B) The major role of Tc’hb is to regulate the expression domains of trunk 

Hox genes, partially mediated by the activation of Tc’Kr. (D) In Tc’hb
pRNAi embryos, 

the lack of Tc’Kr result in the anterior expansion of abdominal Tc’Ubx and Tc’AbdA 

that repress Tc’Scr and the thoracic Tc’Antp domain. The gap and Hox gene 

misexpression in Tc’hb
pRNAi embryos results in a phenotype where only anterior head 

is normally formed with posterior head and thoracic segments transformed into 

abdominal identity and most of the abdominal segments not formed. 
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Abdominal identity in Tribolium: prohibitory role of hunchback 

 

The most evident characteristic of the hb phenotype in insects is the generation 

of mainly abdominal segments posterior to the pre-gnathal segments. Ironically, this 

obvious lack of post-gnathal and thoracic segments might be a source of ambiguous 

interpretation.  

There are two distinct, and at a certain level independent, ways of interfering 

the generation of a specific segment. In the natural conditions, the insect body plan is 

morphologically subdivided into undifferentiated segmental units, also called 

metameric units. Depending on their position along the embryonic AP axis, each of 

the metameres will be assigned a specific identity, generating the distinct head, 

thoracic and abdominal segments (Akam, 1987). Therefore, it is possible, for 

example, to prevent the formation of thoracic segments by either (1) affecting the 

genes necessary for the metamerization of segments located at central positions in the 

embryo (e.g. Dm’Kr) or (2) affecting the genes required for assigning thoracic identity 

(e.g. Dm’Antp).  

The distinction between the segmentation process and establishment of 

segment identity is therefore crucial for the proper interpretation of phenotypes 

obtained after depletion of gap gene transcripts, especially in short germ insects. 

The specification of segment identity in the insect body plan depends on the 

expression of Hox genes (Carroll, 2002). Genes belonging to the Antennapedia 

complex (ANT-C) and the bithorax complex (BX-C) are known to be required for the 

proper identity of trunk segments (post-gnathal, thorax and abdomen) in insects. In 

Drosophila, Dm’hb is essential for the establishment of the expression domain of the 

trunk Hox genes Dm’Antp, Dm’Ubx and Dm’AbdA (Casares and Sánchez-Herrero, 

1995; Irish et al., 1989b; White and Lehmann, 1986).  

Staining Tc’hb
pRNAi embryos for the expression of Tc’Antp, Tc’Ubx and 

Tc’AbdA revealed that the role of hb in repressing the trunk Hox genes is conserved 

between Tribolium and Drosophila (Figure 8). The ectopic expression of the 

abdominal genes Tc’Ubx and Tc’AbdA in Tc’hb
pRNAi embryos (Figure 8H, J) leads to 

the homeotic transformation of gnathal and thoracic segments into abdominal identity. 

This transformation of thoracic to abdominal identity occurs despite the expression of 

Tc’Antp in these segments(Figure 8F). Notably, this co-localization of Tc’Antp, 
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Tc’Ubx and Tc’AbdA is also observed in the abdominal segments in wild type 

embryos, where Tc’Antp expression is weaker when compared to the thoracic domain 

(compare Figure 8E, G, I). The function of Tc’Ubx and Tc’AbdA were shown to be 

required for patterning abdominal segments in the Tribolium embryo (Bennet et al., 

1999; Lewis et al., 2000). Additionally, the expansion of Tc’Antp domain in 

Tc’hb
pRNAi embryos most likely leads to the repression of Tc’Scr (Figure 8D), since 

Dm’Antp is known to have an epistatic effect (posterior prevalence) on Dm’Scr in 

Drosophila (Carroll et al., 1988; Pelaz et al., 1993). 

The primary wild type function of Tc’hb is therefore to provide the positional 

information in gnathal and thoracic segments. This positional information is essential 

for the metamerization process, through the regulation of the gap and pair rule genes 

and for the specification of segment identity, through the repression of the trunk Hox 

genes (Figure 10). When Tc’hb is depleted in Tribolium, thoracic and abdominal 

segments are fused while ghantal and thoracic segments develop as abdominal 

segments (Figure 10). 

In support to these findings, in addition to the similar cuticular phenotype, 

hb
pRNAi embryos in Oncopeltus and in Gryllus also display segment fusions and 

anterior shifts of trunk Hox genes strikingly similar to those observed in our analysis 

(Liu and Kaufman, 2004a; Mito et al., 2005). Taken together, these observations 

suggest that the role of Tc’hb described here most likely represents the ancestral state 

of the hb function shared by the last common ancestor of insects. Thus, the canonical 

gap function of hb described in Drosophila and Nasonia is so far restricted to 

holometabolous insects developing as long germ embryos, and might represents a 

derived state of the role of the hb gene among insects (see General Discussion). 
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Chapter II – mille-pattes: a novel segmentation gene in Tribolium 

 

Introduction 

 

The identification of the first orthologs of the Drosophila segmentation genes 

in other insects, showing high sequence conservation and similar expression patterns 

led to the assumption that the mechanism underlying the syncytial segmentation 

patterning in the fly could be functional in several other instances where segmentation 

happens under cellularized conditions. However, further embryological and molecular 

analysis in an increasing number of model systems has revealed significant 

differences in the mechanism of embryonic axis pattering among insects (Lynch and 

Desplan, 2004; Tautz and Sommer, 1995). The embryonic fate map during the 

blastoderm stage illustrates precisely such differences. According to the distinctions 

between the fate map of short and long germ insects, genes expressed in anterior and 

central regions of long germ insects are expressed in central and posterior regions of 

short germ insects, respectively. Genes expressed in the posterior half of the egg of 

long germ insects are therefore not present in the syncytial blastoderm of short germ 

insects (Tautz and Sommer, 1995). These genes are thus expressed only after the 

onset of gastrulation. Nevertheless, the expression domains of those genes are often 

found in homologous segments in insects displaying short or long germ mode. The 

head gap gene orthodenticle is zygotically expressed in the ocular segment in insects 

irrespective of their type of embryogenesis, whilst Kr, a gene expressed in the 

thoracic segments in Drosophila, is also expressed in those segments in every insect 

in which its expression has been analyzed (Cerny et al., 2005; Finkelstein and 

Perrimon, 1990; Gaul et al., 1987; Liu and Kaufman, 2004b; Lynch et al., 2006b; 

Mito et al., 2006; Preiss et al., 1985; Schroder, 2003; Sommer and Tautz, 1993).  

Remarkably, genes showing both, an anterior and a posterior expression 

domain at the blastoderm stage of Drosophila, such as gt and hb also show an anterior 

and posterior expression domain in Tribolium, however the second domain is formed 

in a cellular environment (Bucher and Klingler, 2004; Wolff et al., 1995). 

Furthermore, the expression of at least one gap gene is found in all segments 

formed at the blastoderm stage in both, short germ and long germ insects. Conversely, 
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some segments without any gap gene expression are seen in the abdominal segments 

of short germ insects, which are formed after cellularization.  

These findings suggest that additional segmentation genes patterning trunk 

segments remain to be identified in insects developing as short germ. Despite genetic 

(Maderspacher et al., 1998; Sulston and Anderson, 1998; Sulston and Anderson, 

1996) and EST (Savard, 2004) screens in short germ insects, over the past 15 years, 

molecular comparative embryology has been heavily based on the candidate gene 

approach with no additional discoveries of novel genes playing a role in 

segmentation. 

To further understand the role of gap genes in Tribolium, as well as to identify 

new factors involved in segmentation, I decided to characterize the function of a novel 

gene, mille-patte, (mlpt) identified in a Tribolium EST expression screen and which is 

expressed in head and abdominal segments (Savard, 2004). 

In this chapter I describe the morphological and molecular characterization of 

Tc’mlpt. First, I generated embryos carried out RNAi knockdown of this gene and 

analyzed the phenotype at the cuticular level. Next, I asked whether Tc’mlpt would 

interact with the orthologs of the Tribolium gap genes. Finally, I investigate whether 

the phenotype observed was achieved via the regulation of the Tribolium orthologs of 

the gap genes.  
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Results 

 

Morphological characterization of mille-pattes 

 

Cuticle phenotype 

 

In order to assess the loss of function phenotype of mille-pattes (Tc’mlpt) I 

performed parental RNAi as described in Bucher et al. (2002). The phenotype was 

primarily characterized with cuticle preparations of 1st instar larvae (see material and 

methods). The pRNAi experiments yielded a consistent phenotype, with strength 

varying slightly depending on the age of the injected female on the egg lay (see 

Material and Methods for phenotypic series). The knockdown larvae display a loss of 

abdominal segments with additional generation of up to seven pairs of legs in the 

most severe cases, hence the name milles pattes  (Figure 11B-E; Savard et al., 2006a). 

In Tc’mlpt
pRNAi larvae, the head, gnathal and the three thoracic segments are formed 

like in the wild type (Figure 11; detain in 11G). The posterior abdominal segments 

display thoracic identity and segment losses. Weak Tc’mlpt
pRNAi phenotypes display 

deletions of a few posterior segments, including the terminal structures pygodopes 

and urugomphi (Savard et al., 2006a), while stronger phenotypes display deletion of 

most of the abdominal segments therefore fewer leg baring segments (Figure 11B, D). 

The larval cuticles showed in Figure 11C and E represents an intermediate phenotype, 

where more abdominal segments are formed. In addition to the segment deletions and 

transformations, strong Tc’mlpt
pRNAi phenotype fail to develop the more distal 

segment of the antenna (arista) (Figure 11B, D; detail in 11G). Once again, the larval 

cuticles showed in Figure 11C and E display an intermediate state of the ‘aristaless’ 

phenotype, where the aristae are only reduced. Furthermore, all appendages formed in 

Tc’mlpt larva appear compacted (Figure 11).  

The identity of the transformed thoracic segments can be addressed since wild 

type larvae have a pair of tracheal pits on the lateral sides of the second thoracic and 

all abdominal segments (arrows in Figure 11A). The additional thoracic segments in 

Tc’mlpt larvae show tracheal pits in alternating odd numbered segments (arrows in 

Figure 11B, C), suggesting a transformation of abdominal segments into a sequence 
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of T2 and T3. This effect is however variable with some larvae showing adjacent 

segments displaying or lacking tracheal pits (arrows in Figure 11D, E).  

In view of the pRNAi phenotypes obtained for Tribolium orthologs of the gap 

genes and their expression pattern (this thesis; Bucher and Klingler, 2004; Cerny et 

al., 2005), the segment deletions and transformations observed in Tc’mlpt
pRNAi larvae, 

together with the “gap” like expression pattern, suggest that Tc’mlpt plays a role in 

segmentation that is similar to the orthologs of the gap genes, however, unlike these 

other genes, mlpt does not encode a transcription factor.  
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Figure 11. Cuticular preparations of (A,F) wild type and (B, C, D, E, G) Tc’mlpt
pRNAi 

larvae. Wild type larva displaying head, thoracic and abdominal segments. (B-E) Tc’mlpt
pRNAi 

larva displaying head segments and thoracic segments apparently normal. The abdominal 

segments are transformed into thoracic segments and posterior abdominal segments are 

deleted. The transformed thoracic segments can be distinguished by the presence of tracheal 

pits (arrows in B-E), characteristic of wild type T2 and abdominal segments (arrows in A). 

Tc’mlpt
pRNAi larvae also fail to develop aristae. (F) Detailed view of a wild type head. Wild 

type aristae are depicted (arrows). (G) Detailed view of a strong Tc’mlpt
pRNAi ‘aristaless’ 

phenotype (arrowhead). The ‘aristaless’ phenotype can also be observed in B-E, varing in 

respect to the strength of the RNAi effect. 
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Molecular Characterization 

 

In order to verify whether Tc’mlpt function is achieved by interaction with 

other gap genes, Tc’mlpt expression was analyzed in embryos depleted for Tc’hb, 

Tc’gt and Tc’Kr as well as their own expression patterns in Tc’mlpt
pRNAi embryos. 

The phenotype was further characterized with respect to the expression of the trunk 

Hox genes Tc’Antp, Tc’Ubx and Tc’AbdA. 

 
Gap genes regulate mille-pattes expression 

 
Embryos depleted for hb, gt and Kr (Tc’hb

pRNAi, Tc’gt
pRNAi, and Tc’Kr

pRNAi 

embryos, respectively) were stained for Tc’mlpt (Figure 12). The ortholog of the 

segment polarity gene gooseberry (Tc’gsb) was used for double staining as a 

segmental reference. The early Tc’mlpt blastodermal expression domain in the 

anterior head and mandibular segments is not significantly altered in any of the three 

gap gene knockdown embryos. However, clear effects on the Tc’mlpt trunk 

expression domains become apparent during germband growth.  

In Tc’hb
pRNAi embryos, the first Tc’mlpt trunk domain appears to form 

normally at first and exhibits the wild type anterior border (Figure 12A). However, 

this domain does not become properly established and eventually fades (Figure 12B, 

C). The second Tc’mlpt trunk domain in A7 is still visible in these embryos, 

indicating that its regulation is independent of the proper progression of trunk 

segmentation (Figure 12C). 

The first Tc’mlpt trunk domain is initially only weakly visible in Tc’Kr
pRNAi 

embryos and appears to be shifted towards posterior (Figure 12D). At later stages, the 

domain is completely lost (Figure 12E). As in Tc’hb
pRNAi embryos, the second 

Tc’mlpt trunk domain is formed in Tc’Kr
pRNAi embryos (Figure 12F). 

In Tc’gt
pRNAi embryos, the first Tc’mlpt trunk domain is expressed more 

strongly than in the wild type and its anterior border is shifted anteriorly by one 

segment, i.e., overlapping with the fourth Tc’gsb stripe instead of forming posterior to 

the fifth stripe (Figure 12G). The strong expression is retained during further 

development (Figure 12H, I). The second Tc’mlpt trunk domain also forms in these 

embryos (Figure 12I). 
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Figure 12. Tc’mlpt expression pattern in in embryos depleted for the gap genes. (A-C) 

In Tc’hb
pRNAi embryos, Tc’mlpt trunk expression fails to be properly established while the 

posterior abdominal domain is formed. (D-E) In Tc’Kr
pRNAi embryos, Tc’mlpt trunk 

expression is strongly reduced while the posterior domain seems to form in these embryos. 

(G-I) In Tc’gt
pRNAi embryos, the Tc’mlpt trunk expression is expanded towards anterior and 

posterior. 
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Figure 13. Expression patterns of gap genes in (A, F, K) wild type and (B-E, G-J, L-

O) Tc’mlpt
pRNAi embryos. (A-E) Tc’hb expression is normally formed Tc’mlpt

pRNAi embryos 

except for the posterior abdominal domain, which appears later (E) compared to the wild type 

(A). (G-J) The anterior Tc’gt domain is properly established in Tc’mlpt
pRNAi embryos but the 

posterior T3 and A2 stripes are missing. (L-O) Tc’Kr expression domain is expanded towards 

posterior in Tc’mlpt
pRNAi embryos. 
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mille-pattes regulates other gap genes 

 

To determine whether Tc’mlpt is acting at the same level of the segmentation 

gene hierarchy as the other gap genes, the expression of Tc’hb, Tc’gt and Tc’Kr was 

assessed in Tc’mlpt
pRNAi embryos (Figure 13).  

The extra-embryonic expression (not shown) as well as the anterior hb domain 

in the gnathal segments is not significantly affected in Tc’mlpt
pRNAi embryos (Figure 

13B). Wolff et al. (1995) have mapped the border of the anterior hb domain to the 

border between the gnathal and thoracic segments. Double staining with Tc’gsb shows 

that the hb border overlaps with the fifth stripe (Figure 13B), i.e. in approximately the 

same location. On the other hand, a clear effect is evident on the formation of the 

posterior hb domain. This should already be present in an embryo of the age shown in 

Figure 13C, however in Tc’mlpt
pRNAi embryos it is initially absent and eventually 

forms with some delay at a late stage (Figure 13E). 

Tc’gt is expressed in the early blastoderm in the head segments up to the 

maxillal segment, refining later into a stripe in this segment (Bucher and Klingler, 

2004). During germband extension, Tc’gt is expressed in two stripes in T3 and A2, 

respectively (Figure 13F; Bucher and Klingler, 2004). Tc’mlpt seems not to affect the 

blastodermal expression of Tc’gt, however the trunk domains are clearly disrupted 

(Figure 13G-J). Both Tc’gt stripes lie within the Tc’mlpt expression domain found in 

wild type embryos. In Tc’mlpt
pRNAi embryos the two Tc’gt stripes are completely 

absent (Figure 13G-J), suggesting that Tc’mlpt acts as an activator of this domain.  

In line with the role of mille pattes as a gap gene in Tribolium, the Tc’Kr 

expression domain is also affected Tc’mlpt knockdown embryos. Cerny et al. (2005) 

mapped the wild type Tc’Kr domain to the three thoracic segments, which would 

correspond to the Tc’gsb stripes five to eight. The anterior border of the Tc’Kr domain 

in Tc’mlpt
pRNAi embryos starts with Tc’gsb stripe five (Figure 13L), but extends 

clearly beyond stripe eight (Figure 13L-N). Thus, Tc’mlpt appears to be required for 

setting the posterior border of Tc’Kr expression. At later stages, Kr shows a weak 

expression in most segments in wild type embryos (Cerny et al., 2005), which is also 

normally formed in Tc’mlpt
pRNAi embryos (Figure 13O). 
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mille-pattes regulates trunk Hox genes 

 

In order to reveal the molecular scenario responsible for the changes of 

segment identity in the Tc’mlpt phenotype I decided to investigate the expression 

domains of Hox genes in Tc’mlpt
pRNAi embryos. Since these changes involve thoracic 

and abdominal segments, only the expression of the trunk Hox genes Tc’Antp, Tc’Ubx 

and Tc’AbdA, were assessed in Tc’mlpt
pRNAi embryos (Figure 14). 

In Tribolium, antennapedia expression starts during germ band elongation 

posterior to the Tc’gsb labial stripe, i.e., in the first thoracic segment (not shown), 

This expression expands posteriorly, during germ band elongation, in each subsequent 

segment formed from the growth zone (Figure 14A). According to its role in the 

specification of thoracic identity in insects, Tc’Antp expression is expression is 

increased in the thoracic segments at later stages, just prior to the development of the 

limbs (arrows in Figure 14A). In Tc’mlpt
pRNAi embryos, the initial expression of 

Tc’Antp is apparently unaffected, initially expressed in T1 like in the wild 

typem(Figure 14B). However, after germband extension, the level of Tc’Antp 

expression in the entire embryonic trunk is comparable to the stronger expression 

domain in the thoracic region in the wild type (compare Figure 14A and B). 

The expression of the abdominal Hox genes Tc’Ubx and Tc’AbdA, normally 

covering all abdominal segments (Figure 14C, G), is drastically reduced and in some 

cases absent in Tc’mlpt
pRNAi embryos (Figure 14D, H). Interestingly, although Tc’Ubx 

expression is observed in some Tc’mlpt
pRNAi embryos at later stages, the increased 

level of Tc’Ubx expression observed in the A1 segment is found in the posterior most 

segments in these embryos.  
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Figure 14. Expression pattern of Hox genes (red) and Tc’gsb (blue) in (A, C, E ,G) 

wild type and (B, D, F, H) in Tc’mlpt
pRNAi embryos. Expression of Tc’Antp in (A) wild type 

and (B) Tc’mlpt
pRNAi embryos. Although the anterior Tc’Antp expression border is established 

as in wild type, the increase level of Tc’Antp expression, found in wild type thorax, is 

observed in all abdominal segments formed in Tc’mlpt
pRNAi embryos (compare arrow areas in 

A and B). Expression of Tc’Ubx in (C, E) wild type and (D, F) Tc’mlpt
pRNAi embryos. During 

germband elongation the Tc’Ubx expression is drastically reduced a shifted posteriorly (D). In 

later stages, the anterior Tc’Ubx expression border is observed in similar region as in wild 

type, however the increased expression observed in wild type A1 is found in the posterior 

most segments of Tc’mlpt
pRNAi embryos (compare arrows in E, F). Expression of Tc’AbdA in 

(G) wild type and (H) Tc’mlpt
pRNAi embryos. Expression of Tc’Ubx is drastically reduced and 

shifted towards posterior in Tc’mlpt
pRNAi embryos. 
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Discussion 

 

Functional analyses of gap genes in Tribolium, Gryllus and in Oncopeltus 

have suggested that the “gap” function is a feature restricted to their orthologs in 

higher dipterans. The main ancestral role of the gap genes in insects, and perhaps also 

in arthropods, is to provide positional information along the embryonic AP axis for 

the establishment of the expression domains of the Hox genes (see above). The gap 

genes have nevertheless an important role in metamerization, since knocking down 

their function in Tribolium, Gryllus and Oncopeltus leads to segment deletions and a 

breakdown of segmentation. In the previous chapter, I demonstrated that at least in 

Tribolium, segmentation defects observed in Tc’hb
pRNAi, Tc’Kr

pRNAi and Tc’gt
pRNAi 

embryos can be explained by misexpression of the Tc’gt trunk domain in these 

embryos. 

In this chapter, I describe the characterization of the novel segmentation gene 

mille-pattes in Tribolium (Tc’mlpt). Tc’mlpt is expressed in a contiguous abdominal 

domain. This region is primarily affected by loss of function of Tc’mlpt, where 

homeotic transformations and segment fusions are observed. As for the depletion of 

Tc’hb, Tc’Kr and Tc’gt, the segments lying beyond the Tc’mlpt expression domain are 

also affected after depletion of Tc’mlpt, either by transformation or by segmental loss. 

Furthermore, the function of Tc’mlpt not only involves the regulation of Hox genes, 

but is also most likely accomplished by cross-regulatory interactions with at least 

Tc’hb, Tc’Kr and Tc’gt in Tribolium. In this analysis, it was possible to observe an 

additional role of Tc’mlpt in specifying the most distal segment of the antenna (arista), 

structure that is missing in strong Tc’mlpt phenotypes.  

Surprisingly, sequence analysis revealed that the Tc’mlpt gene represents a 

novel class of eukaryotes genes, coding for multiple conserved peptides (Savard et al., 

2006a). 

 

Cross-regulation between mille-pattes and gap genes: a new fellow 

 

In wild type embryos, Tc’mlpt is co-expressed in the T2 with Tc’Kr, in T3 

with Tc’Kr and Tc’gt, and in A2 only with Tc’gt. In the segments A1 and A3, Tc’mlpt 
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is the only gap gene playing a role in segmentation known to be expressed in this 

region (Savard et al., 2006a). 

Consistent with the co-localization, Tc’mlpt regulates the trunk expression 

domains of both Tc’Kr and Tc’gt. While Tc’mlpt expression is essential for activating 

the T3 and A2 Tc’gt stripes, it is required to repress Tc’Kr expression in the 

abdominal segments, the latter being most likely indirect since both genes show 

overlapping expression in wild type. 

Although no effect is observed on the blastodermal expression of Tc’hb in 

Tc’mlpt
pRNAi embryos, the temporal expression of the posterior Tc’hb domain seems 

to be affected in these embryos. This domain seems to form slightly later (about two 

segments posteriorly) in Tc’mlpt
pRNAi embryos when compared to the wild type. In the 

wild type, both posterior domains of Tc’hb and Tc’mlpt seem to co-localize in the A6 

and A7 segments. However, it is difficult to determine their precise localization since 

both domains start to be expressed in the growth zone, region where no segmental 

marker is expressed. The lack of effect on the anterior expressions of Tc’hb and Tc’gt 

is expected since both domains are known to be strictly regulated by maternal factors 

in Drosophila and in Nasonia (Brent et al., 2007; Kraut and Levine, 1991b; Tautz, 

1988). 

Taken together, these results prove that Tc’mlpt acts at the same level as the 

gap genes in Tribolium and not only at a subsequent stage.  

Tc’mlpt plays therefore a role in the segmentation process via cross-regulatory 

interactions with other gap genes and in the specification of proper identity for those 

segmental units formed within its expression domain. 

 
Regulation of Hox genes by mille-pattes: assuring abdominal fate. 

 
The novel segmentation gene Tc’mlpt indeed mimics all features of the 

orthologs of the gap genes in Tribolium. In addition to the cross-regulatory 

interactions with the gap genes, Tc’mlpt is essential for the proper expression patterns 

of the Hox genes.  

The wild type expression domain with high levels of Tc’Antp in the thoracic 

region is expanded towards posterior segments in Tc’mlpt
pRNAi embryos (compare 

Figure 14A with B). This effect coincides with the expansion observed for Tc’Kr in 
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Tc’mlpt
pRNAi embryos (Figure 13L-O) as well as the transformation of anterior 

abdominal segments towards thoracic identity in these embryos (Figure 11). 

Consistent with the reduced number of abdominal segments observed in 

Tc’mlpt
pRNAi embryos, the expression of the abdominal Hox genes Tc’Ubx and 

Tc’Abd-A are drastically reduced and even absent in some embryos (Figure 14D, H). 

In summary, the essential role in the regulation of Hox genes further supports 

the nomination of Tc’mlpt as a novel gap gene in Tribolium. 

 

mille-pattes: a polycistronic peptide coding RNAs (‘‘ppcRNAs’’) 

 
By far the most unexpected feature of the Tc’mlpt gene is that, in contrast to 

all gap genes as well as most of the segmentation genes described so far, Tc’mlpt does 

not code for a transcription factor. Instead, it has a coding capacity for three small 

peptides repeated in tandem, containing a conserved LDPTGXY motif of 7 aa. 

Additionally, a fourth, larger arginine rich peptide is found downstream of the repeats 

(Savard et al., 2006a). While no sequence similarity at the nucleotide level is found in 

any other organism, the amino acid sequences of the peptides as well as their order 

along the transcript is conserved among several insects of different insect orders. 

Therefore, the evolutionary constraint acting only at the amino acid level over more 

than 260 million years (evolutionary distance between Tribolium and Drosophila) 

strongly suggests that Tc’mlpt peptides are being translated and play an essential role 

in those organisms. 

The analysis of the ortholog of the Tc’mlpt gene in Drosophila (Dm’mlpt/tal 

from tarsalless) revealed that the gene has indeed an important function throughout 

development controlling embryonic development, such as tracheal development and 

denticle belts pattern, as well as in the formation of the tarsal segment of the adult leg 

(van der Zee, unpublished; Galindo et al., 2007) The analysis of rescue constructs 

containing only some of the peptides in tal mutants suggests that only one of the 

LDPTGXY motif-containing pepetides (type-A peptides) provides the tal function 

and that the arginine-rich peptide (type-B peptides) is indispensable for the fly 

development. The work further shows that the type-A pepetides are translated both in 

vivo and in vitro (Galindo et al., 2007).  

It is interesting to observe that, although Dm’mlpt/tal is expressed in a pair 

rule stripes early in embryogenesis, no effect is observed in Dm’mlpt/tal mutants on 
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the expression of any of the tested patterning gene (van der Zee, Wurm and Aranda 

unpublished; Galindo et a., 2007). As discussed in Savard et al., (2006a), one possible 

reason that mlpt is not playing a role in Drosophila segmentation as it is in Tribolium, 

is the distinct mode of embryogenesis displayed by these two insects (see above). 

While the early steps of the Drosophila embryogenesis is regulated by diffusing 

gradients of large transcription factors in a syncytium, it is still unclear how these 

protein gradients would be functional in Tribolium, where most of the segments are 

patterned in a cellularized environment. The discovery of small peptides that are 

apparently able to cross cell membranes and transport cargo proteins several folds 

bigger then their own sizes (Lindgren et al., 2000; Rohrig et al., 2002) led to the 

speculation that in Tribolium, the function of the peptides encoded by Tc’mlpt would 

be to provide morphogentic gradients that, instead of diffusible as in Drosophila, 

would be carried through cell membranes. The fourth peptide (C-terminal) coded by 

Tc’mlpt shows a conserved core of four arginines very similar to a class of cell 

penetrating arginine-rich peptides (Savard et al., 2006a). 

Interestingly, the most obvious feature of the Tc’mlpt function presented here 

is the regulation of gap and Hox genes in segments patterned after cellularization. The 

suggestion that the fourth arginine-rich peptide encoded by Dm’mlpt/tal is not 

functional in Drosophila (Galindo et al., 2007), might indeed indicate that in the 

lineage leading to in higher dipterans, the cell penetrating function of mlpt became 

dispensable for the patterning in syncytial blastoderm. Therefore one might expect 

that the reduced selective pressure on the sequence of this peptide would allow the 

accumulation of deleterious mutations during the hundreds of million years separating 

Tribolium from Drosophila. Nevertheless, the arginine-rich core of the fourth peptide 

is highly conserved between Tc’mlpt and Dm’mlpt/tal genes. Therefore further studies 

will be needed to test the function of this mlpt arginine-rich peptided in Tribolium.



Chapter III – Gap and pair rule gene interactions in Tribolium  

  

 74 

Chapter III – Gap and pair rule gene interactions in Tribolium 

 

Introduction 

 

Although orthologs of segmentation genes have been identified throughout the 

Arthropoda, the function of this class of genes in other organisms seems to vary 

significantly from the one described in Drosophila. Since many of the regulatory 

factors are highly conserved proteins among organisms, it has been proposed that 

evolutionary changes occur primarily by substitutions in cis-regulatory sequences 

rather than in the proteins themselves (Averof et al., 1996).  

The detailed characterization of the regulatory interactions among regulatory 

factors has been fundamental to the establishment of the Drosophila segmentation 

cascade as one of the best-understood developmental models. These analyses have 

revealed the maternal morphogen gradients regulating the dynamic expression of the 

gap genes (Gaul and Jäckle, 1989; Grossniklaus et al., 1994; Hülskamp et al., 1989; 

Lehmann and Nuesslain-Volhard, 1986; Lehmann and Nuesslain-Volhard, 1991; 

Tautz, 1988), the precise regulation of individual stripes of pair rule genes by specific 

combination of gap genes (Arnosti et al., 1996; Hader et al., 1998; Riddihough and 

Ish-Horowicz, 1991; Small et al., 1992; Stanojevic et al., 1991) as well as many other 

genetic interactions underlying the synchronous genetic patterning of the Drosophila 

embryo (reviewed in Ingham, 1988). 

As a model, these genetic interactions have been thoroughly tested in many 

other organisms and have revealed a surprising plasticity of the developmental 

mechanism controlling segmentation among insects. One example comes from the 

analysis of orthologs of the genes regulated by Dm’bcd in organisms without a bcd 

ortholog. The anterior hb and the central Kr expressions described in Drosophila are 

formed in strikingly similar regions in the embryos from Nasonia and Clogmia 

albipunctata, a dipteran displaying features of short and long germ modes. Further 

surprising was the finding that the Dm’Bcd regulates the expression of the 

homologues of caudal and hb from Tribolium. While Dm’Bcd and Dm’Cad activate 

the transcription of Tc’hb, Dm’Bcd represses the translation of Tc’cad (Wolff et al., 

1998).  
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This flexibility of the gene regulatory network controlling segmentation in 

insects is also evident when the regulation of the pair rule gene eve is compared 

between Drosophila and the mosquito Anopheles gambiae (Goltsev et al., 2004). 

Although the dynamic pattern of eve is mainly conserved, the expression patterns of 

the maternal factors and gap genes vary significantly between both species. In 

Drosophila, the posterior domain of Dm’hb sets the posterior border of the stripes 6 

and 7 while in Dm’gt sets the posterior border of the stripe 5. In anopheles, the 

posterior expression of Ag’hb and Ag’gt are inverted compared to Drosophila.  

(posterior Dm’gt domain forms anteriorly to Dm’hb while the posterior Ag’hb forms 

anteriorly to Ag’gt). Therefore, it is likely that the posterior border of Ag’eve stripe 5 

is regulated by the posterior Ag’hb expression while Ag’gt, probably in concert with 

Ag’tll, regulates the posterior border of the stripes 6 and 7 in Anopheles (Goltsev et 

al., 2004).  

Taken together, these observations indicate that although the expression 

patterns of essential genes need to be conserved (phylotypic stage), the regulatory 

input responsible for establishing these patterns can be significantly modified over the 

time. Additionally, since several patterning genes involved in segmentation has been 

described to play a role in ancestral developmental mechanism such as neurogenesis, 

it is likely that this plasticity of regulatory interactions was essential for the 

recruitment of ancestral patterning genes into a role in segmentation.  

In order to identify the regulatory interactions among the gap genes that are 

controlling segmentation in Tribolium I further characterized orthologs of the gap 

genes in Tribolium in their regulatory context.  
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Results 

 

giant represses Krüppel but does not regulate hunchback. 

 

Embryos depleted for Tc’gt show no significant change in the expression 

pattern of Tc’hb (Figure 15A-D). Although the posterior expression appears to be 

activated a bit prematurely, this impression might be caused by the deletion of 

segments observed in Tc’gt
pRNAi embryos (arrows in Figure 15D). On the other hand, 

the lack of Tc’gt leads to an expansion of the thoracic Tc’Kr domain, shifting its 

anterior border to the mx (Figure 15F). The expression of Tc’Kr is also expanded 

posteriorly in these knockdown embryos (Figure 15H).  

 

Krüppel represses hunchback and giant expression 

 
In Tc’Kr

pRNAi embryos, the blastodermal Tc’hb expression does not clear from 

the posterior pole of the egg. However, given the overlapping expression of maternal 

and zygotic transcripts at the blastoderm stage it is not possible to show this 

unequivocally. A major effect is observed with the formation and elongation of the 

germ band. In the early wild type germ-band, the anterior Tc’hb expression is 

converged into a stripe in the lb (Figure 16). Thoracic and abdominal segments do not 

express Tc’hb and the posterior domain arises only in A7, showing stronger intensity 

compared to the gnathal stripe (Figure 16). In Tc’Kr
pRNAi embryos, Tc’hb is expressed 

throughout the extending germ band starting from the lb (Figure 16). This ectopic 

expression shows a strong intensity and is similar to the expression level of the 

posterior Tc’hb domain in the wild type (compare Figure 16) that suggests that the 

ectopic expression of Tc’hb in Tc’Kr
pRNAi embryos is caused by a premature initiation 

of the posterior Tc’hb domain. This effect results in the overlapping expression of the 

posterior Tc’hb domain with the gnathal domain (Figure 16). Thus, Tc’Kr acts 

formally as a repressor on the posterior Tc’hb domain, a role that is not known from 

Drosophila. 
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Figure 15. (A-D) Expression patterns of Tc’hb (brown) and Tc’gsb (red) in (A, C) 

wild type and (B, D) in Tc’gt
pRNAi embryos. (E, H) Expression patterns of Tc’Kr (brown) and 

Tc’gsb (blue) in (E, G) wild type and (F, H) in Tc’gt
pRNAi embryos. Expression of Tc’hb is not 

significantly affected in Tc’gt
pRNAi embryos (B, D). Fusion of segments in Tc’gt

pRNAi embryos 

are depicted (arrowheads in D). Expression of Tc’Kr is expanded towards anterior and 

posterior in Tc’gt
pRNAi embryos (F, D). 
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Tc’Kr
pRNAi embryos were then analyzed for the expression of gt. Cerny et al. 

(2005) have already shown that the most posterior gt stripe is missing in Tc’Kr
pRNAi 

embryos. One can therefore assume that the absence of abdominal Tc’gt stripes in 

Tc’hb
pRNAi embryos (Figure 5, chapter I) is not a direct effect of Tc’hb function, but 

an indirect effect caused by the loss of Tc’Kr expression in these embryos. Cerny et 

al. (2005) also observed that two ectopic stripes of expression appear in the T1 and T3 

in Tc’Kr
pRNAi embryos. Figure 16 shows a double staining with Tc’gsb at this stage. 

The positions of the two ectopic stripes correspond to the segments transformed into 

mx identity in Tc’Kr
pRNAi embryos (Cerny et al., 2005). It therefore seems likely that 

these stripes do not correspond to abdominal stripes, but to duplicated head stripes. 

Nevertheless, in Tc’hb
pRNAi embryos the lack Tc’gt expression in T3 and A2 segments 

leads to the deletion of these segments via the misregulation of the pair rule circuit 

(Chapter I). In Tc’Kr
pRNAi embryos, however, the ectopic expression of Tc’gt shifts 

the trunk stripes two segments towards anterior, now expressed in T1 and T3 

(compare Figure 16). Therefore, while the T3 segment retains Tc’gt expression and is 

normally formed, the A2 segment lacks the expression of Tc’gt and is deleted in these 

embryos (Figure 16). Expression analysis of the pair rule genes in Tc’Kr mutants 

indeed shows normal patterning of Tc’eve, Tc’run and Tc’h only until their fifth stripe 

of expression (Cerny et al., 2005 and own observations).  

Together with the Tc’hb regulatory interactions described in Chapter I, these 

results provide a genetic regulatory scenario that reveals a cross-regulatory network 

among gap genes in Tribolium (resumed in Figure 17). While Tc’hb expression 

activates the Tc’Kr and Tc’gt trunk domains, Tc’gt expression domains are required to 

repress Tc’Kr in the thoracic regions of the embryo. Furthermore, the central Tc’Kr 

domain acts as a repressor in the establishment of the Tc’hb and Tc’gt expression 

borders. 
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Figure 16. (A-D) Expression patterns of Tc’hb (brown) and Tc’gsb (red) in (A, C) 

wild type and (B, D) in Tc’Kr
pRNAi embryos. (E, H) Expression patterns of Tc’gt (blue) and 

Tc’gsb (red) in (E, G) wild type and (F, H) in Tc’Kr
pRNAi embryos. Tc’hb is expressed 

ubiquitously in a strong domain posterior to the mx segment in Tc’Kr
pRNAi embryos (B, D). 

The anterior Tc’gt expression is no strongly affected in Tc’Kr
pRNAi embryos however the trunk 

Tc’gt stripes are shifted anteriorly by two segments (F, H; compare arrows in G and H). 

Segment fusion observed in Tc’Kr
pRNAi embryos is depicted (arrowhead in H). 
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Figure 17. Schematic drawing of the cross-regulatory interactions among gap genes in 

Tribolium and their role in regulating the pair rule circuit. Tc’hb activates Tc’Kr central 

domain and Tc’gt expression in T3 and A2 (orange arrows). Tc’Kr represses Tc’hb in the 

thoracic and anterior abdominal segments and is important for the proper expression of the T3 

and A2 Tc’gt stripes (gray arrows). Tc’gt sets the borders of Tc’Kr expression and is the 

regulatory link betheen the gap and the pair rule genes (red arrows). The primary pair rule 

genes of the Tribolium pair rule circuit (Choe et al., 2006) are depicted. Regulation among 

pair rule genes is depicted with brown arrows.  
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Hierarchical test: Gap gene expression independent of the pair rule genes  

 

In the hierarchical segmentation cascade described in Drosophila, genes 

belonging to the downstream levels of the cascade do not regulate the expression of 

upstream ones (Ingham, 1988). For instance, a maternally provided gene can be 

required for the regulation of genes from any of the downstream levels of the cascade, 

however a segment polarity gene is never required for the regulation of pair rule genes 

and so on.  

Intriguingly, in the short germ insect Oncopeltus fasciatus depletion of Of’eve 

function leads to severe effects on the expression of the gap genes Of’hb and Of’Kr, 

resulting in a severe head-only phenotype (Liu and Kaufman, 2005). 

Given that both, Tribolium and Oncopeltus share the same mode of 

embryogenesis i.e., short germ band, it is tempting to assume that Tc’eve is also 

required for the early regulation of gap genes in the beetle. 

I therefore analyzed the effects of pair rule genes on the regulation of gap 

genes in Tribolium. Embryos depleted for Tc’eve were generated and analyzed for the 

expression of different gap genes (Figure 18).  

This analysis revealed that, although the morphology of embryos depleted for 

Tc’eve is strongly affected, the expression patterns of Tc’hb (Figure 18A-D), Tc’gt 

(Figure 18E, F) and Tc’Kr (Figure 18G, H) reveals that the expression of the gap 

genes seems to be properly established.  The embryos depicted in Figure 18E and F 

are double stained for Tc’gt and Tc’gsb. The strength of the phenotype can be 

observed by the severe effect on the Tc’gsb, as it is expressed in broad domains in 

different regions of the asegmental embryo (Figure 18F). As in Drosophila, the 

expression of the gap genes in Tribolium seems to be independent of the expression of 

the pair rule genes. 
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Figure 18. Hierarchical test of the segmentation cascade in Tribolium. Expression 

patterns of gap genes in Tc’eve
pRNAi embryos. The expression of Tc’hb in Tc’eve

pRNAi embryos 

(B, D) is formed similarly as in wild type embryos (A, C). The expression of Tc’gt (F) and 

Tc’Kr (H) are also not significantly affected in Tc’eve
pRNAi embryos when compare to Tc’gt 

(E) and Tc’Kr (G) wild type expressions. 
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Pair rule gene circuit: a model without gaps?  

 

In Drosophila, the hierarchy among the pair rule genes is defined by their 

regulatory input and their influence on each others expression. Primary pair rule genes 

are regulated exclusively by maternal or gap genes and regulate the expression of the 

secondary pair rule genes. The secondary are regulated by the primary pair rule genes 

and provide the link to the regulation of the segment polarity genes (Hartmann et al., 

1994). The effects observed for the gap gene class of mutant phenotypes in 

Drosophila is therefore a result of the misregulation of the pair rule genes and 

consequently of the segment polarity genes. 

In other to further characterize the segmentation cascade in Tribolium the 

cross-regulatory interactions between pair rule genes were assessed in Tribolium.  

For this analysis, Tc’eve and Tc’run depleted embryos were generated via 

pRNAi and the expression of these genes were analyzed in each other’s knockdown 

embryos. The morphological phenotypes observed for both genes were 

undistinguishable from the ones reported in Choe et al. (2006). However, the effects 

observed in the expression analysis of knockdown embryos are not fully equivalent 

with the previously reported ones. 

In the model of Choe et al. (2006) model, the hierarchy among the pair rule 

genes was determined from the embryonic phenotype observed for each of the genes 

analyzed. Tc’eve, Tc’run and Tc’odd, which generate severely truncated embryos 

when knocked down, were classified as primary pair rule genes. The unaffected 

expression of these genes in knockdown embryos for other pair rule genes supports 

this classification. The other two pair rule genes analyzed, Tc’prd and Tc’slp, were 

classified as secondary pair rule genes, since their expressions depend on the 

regulation of the primary pair rule genes Tc’eve, Tc’run and Tc’odd. Accordingly, 

Tc’prd and Tc’slp do not regulate the expression of any of the primary pair rule genes. 

Interestingly, since Tc’prd and Tc’slp also do not regulate each other, a clear 

canonical pair rule phenotype (loss of alternating segments) is observed after pRNAi 

experiments for either Tc’prd or Tc’slp (Choe et al., 2006). 

The regulatory interactions among the primary pair rule and on the secondary 

pair rule genes lead the authors to suggest a genetic circuit where Tc’eve is required 

for the activation of Tc’run, which, in turn, is required for the activation of Tc’odd. 
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Furthermore, the activation of Tc’odd by Tc’run is essential for the repression of 

Tc’eve in its interstripes regions (Figure 20). The authors also demonstrated that the 

effects on the regulation of the secondary pair rule by the primary pair rule genes are 

most likely mediated by Tc’run. Therefore in Tribolium, Tc’eve and Tc’odd would be 

required for the proper establishment of run expression in stripes, resulting in proper 

metamerization via the regulation of the secondary pair rule genes by Tc’run. 

In the results presented here, the expression pattern of eve is clearly disrupted 

in Tc’run
pRNAi embryos, at the blastoderm stage (not shown). However, Tc’eve 

expression refines into stripes during further development (Figure 19B, D, F), even in 

embryos displaying the most severe phenotype as reported by Choe et al. (2006) 

(compare Figure 19F with Figure 2M in Choe et al., 2006). 

Furthermore, the expression of Tc’run was reported to be dependent on Tc’eve 

activation (Choe et al., 2006). Conversely, in embryos displaying the strongest 

Tc’eve
pRNAi phenotype Tc’run is still expressed (Figure 19H, J, L). The ectopic 

expression of Tc’gsb, which is seen as a broad domain in these embryos, serves as a 

control for the penetrance of the phenotype (Figure 19H, J, L) 

It is unlikely that the expression pattern presented here represent any 

contamination or unspecific detection methods during the in situ hybridization, since 

these effects would result in a reduced detection of expression.  

It has already been observed that injections of dsRNA experiments for 

different target genes might lead to the contamination of the injection tool, thus 

resulting in a combined effect of both genes in the knockdown embryos (Bucher and 

Schroder personal communication and own observations). When the expected 

phenotypes are distinct, such an incident can be discriminated on the resulting 

phenotype. In this case, the phenotypes observed after knockdown of either Tc’eve or 

Tc’run can be morphologically almost indistinguishable (compare Figure 19D with J) 

even at the cuticular level (Figures 1b and c in Choe et al., 2006). 

Therefore, a combined effect of these genes would also lead to highly similar 

embryo morphology. In case one of the genes is not completely dependent on the 

other gene (as we suggest for the effect of Tc’eve in Tc’run); a combined effect would 

abolish the remaining expression of the co-injected gene in these embryos without 

changing significantly the embryonic or cuticular phenotype. 
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Nevertheless, results presented here do not invalidate the model proposed by 

Choe et al. (2005), but our findings that stripes of expression are still seen for Tc’run 

and Tc’eve in each other’s knockdown suggest that the factors involved in the 

reported analysis do not completely explain the proposed model. The effects observed 

on pair rule stripes in embryos depleted for gap genes might indeed indicate that the 

circuit need gap gene input, perhaps in the transition from syncytial to cellularized 

segmentation. 
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Figure 19. Analysis of the expression of Tc’eve in (A, C, E) wild type and (B, D, F) 

Tc’run
pRNAi embryos. Expression of Tc’run in (G, I, K) wild type and (H, J, L) Tc’eve

pRNAi 

embryos. Stripes of Tc’eve expression is observed in Tc’run
pRNAi embryos after blastoderm 

stage (D, F). Expression of Tc’run is still visible in Tc’eve
pRNAi embryos and expression 

stripes are visible in J. (G-L) Embryos double stained for Tc’run (blue) and Tc’gsb (red). (H, 

J, L) Tc’eve
pRNAi embryos displaying expression of Tc’gsb in a broad central domain, 

indicating strong effect in the segmentation process in these embryos. 
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Discussion 

 

The analysis of gap gene orthologs in short germ insects has so far been 

mainly restricted to single gene functions, characterized by the use of molecular 

markers. One exception is the recent study on the orthologs of the pair rule genes in 

Tribolium that provided regulatory information leading to the suggestion of a pair rule 

gene circuit (Choe et al., 2006).  

This thesis represents the first extensive analysis of gap gene orthologs in a 

short germ insect. The simultaneous analysis of an extensive number of segmentation 

genes provides a powerful data set on the regulatory interactions among segmentation 

genes, (1) contributing to a working model for the regulatory network of segmentation 

genes in Tribolium and (2) enabling consistent interpretation of loss of function 

phenotypes in Tribolium. 

 

Cross-regulation among gap genes: same affairs, different intentions  

 

Several interactions among gap genes observed in Tribolium seem to be 

conserved from the ones described in Drosophila and in Nasonia. Tc’hb acts as an 

activator of Tc’Kr expression (Figure 10), while Tc’gt act as repressor of Tc’Kr 

(Figure 20). Additionally, the expression of Tc’Kr in the trunk is required for the 

repression of Tc’hb in this region (Figure 21). Nevertheless, the results showed that 

Tc’Kr represses the posterior Tc’hb domain, a role that is not known from Drosophila. 

This negative effect of Tc’Kr on the posterior Tc’hb domain could be indirect, due to 

the distinct spatiotemporal expression of both genes. However, at the blastoderm 

stage, Tc’Kr is expressed in the posterior egg pole, in the cells that will give rise to the 

growth zone. It is possible, therefore, that in these cells the expression of Tc’Kr acts 

directly on the Tc’hb locus to silence the expression of Tc’hb until later stages of 

germ band elongation. In Drosophila, Dm’hb has been shown to act directly as a 

“long range” silencer of Dm’Ubx by recruiting PcG proteins that maintain, throughout 

development, the repression domain established by Dm’hb at the blastoderm stage 

(Kehle et al., 1998; Zhang and Bienz, 1992). In Tribolium, one can speculate that 

Tc’Kr might repress Tc’hb in a similar way. At later stage during germ band 
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elongation, additional factor(s) would suppress the silencing effect, activating Tc’hb 

expression in the posterior abdominal segments. 

In summary, the interactions among the Tc’hb, Tc’Kr and Tc’gt observed in 

Tribolium are specified in different regions of the embryo compared to Drosophila 

and Nasonia. While in Drosophila the gap genes interactions are essential for the 

regulation of the pair rule genes, in Tribolium these interactions are important for the 

regulation of the Hox genes (Figure 23). 

Interestingly, anterior patterning in Drosophila and Nasonia has been recently 

shown to be established by two independent mechanisms, despite the similar 

expression pattern of the genes involved in these mechanisms (Brent et al., 2007). In 

Drosophila, the anterior Dm’hb domain is formed by a combined input of Dm’Bcd 

and Dm’Hb (Simpson-Brose et al., 1994). The central Dm’Kr domain is in turn 

established by the activation by Dm’Bcd and Dm’Hb and responds to in a 

concentration-dependent maner to levels of Dm’Hb expression (Schulz and Tautz, 

1994). In Nasonia, the anterior expression domain of Nv’hb is established by a 

combination of the instructive role of Nv’otd1 in activating Nv’hb in the anterior 

domain and the permissive role of Nv’gt in repressing Nv’Kr that would otherwise 

repress Nv’hb. In spite of the distinct gene combinations use for anterior patterning in 

both organisms, both mechanisms involve the localization of maternally provided 

RNA. It was therefore proposed, based on the basal phylogenetic position of Nasonia 

(Savard et al., 2006c), that the mechanism involving the bcd gene in the fly took over 

the ancestral role of gt and otd as maternal determinants, thereby restricting gt and otd 

to zygoti gap genes in the fly (Brent et al., 2007).  

These observations corroborate the assumption that the genetic toolkit 

controlling insect segmentation, and most of the developmental processes, would 

consist of essentially the same set of genes displaying precise and at the same time 

flexible interaction ability that can be recruited for different developmental tasks.  

Based on these observations, an evolutionary scenario can be proposed for the 

role of hb. Among protostome (nematodes, annelids and arthopods), hb is expressed 

in extraembryonic epithelium and in the nervous system (Fay et al., 1999; Savage and 

Shankland, 1996; Werbrock et al., 2001). Within arthropods, this expression was co-

opted into the anterior ‘gap’ expression. This anterior expression became then 

essential for patterning the AP embryonic axis in insects through the regulation of 
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other gap genes and Hox genes. In the lineage leading to the higher dipterans, the role 

of hb became essential for the regulation of the pair rule and segment polarity genes 

controlling the metamerization process.  
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Figure 20. Schematic drawing of the segmentation cascade in Tribolium. (A) 

Wild type (B) Tc’gt pRNAi. (A) The wild type function of Tc’gt in the segmentation 

process is to regulate pair rule genes in thoracic and anterior abdominal segments. (C) 

In Tc’gt
pRNAi embryos, the expression of Tc’eve and Tc’run are affected in this region.   

(B) The role of Tc’gt in segment identity specification is mediated via Tc’Kr. (D) In 

Tc’gt
pRNAi embryos, Tc’Kr expression expands and represses the abdominal homeotic 

genes Tc’Ubx and Tc’AbdA. The Tc’Kr expansion leads to the expassion of the 

thoracic domain of Tc’Antp, resulting in homeotic transformation of gnathal and 

abdominal segments into thoracic. No data is available for the expression of Tc’AbdA 

in Tc’gt
pRNAi embryos. 
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Figure 21. Schematic drawing of the segmentation cascade in Tribolium. (A) 

Wild type (B) Tc’Kr pRNAi. (A) The wild type function of Tc’Kr in the segmentation 

process is mediated via Tc’gt. (C) In Tc’Kr
pRNAi embryos, the lack of the A2 Tc’gt 

stripe leads to the misexpression of Tc’eve and Tc’run are affected in this region.   (B) 

The role of Tc’Kr in segment identity specification is performed by the repression of 

Tc’hb expression in thoracic and anterior abdominal segments as well as the proper 

expression of Tc’gt. (D) In Tc’Kr
pRNAi embryos, Tc’hb ubiquitous expression 

represses the thoracic domain of Tc’Antp as well as the expression of Tc’Ubx and 

Tc’AbdA. The repression of posterior homeotic genes leads to the posterior expansion 

of anterior homeotic genes (elimination of the posterior prevalence). The ectopic 

expression of Tc’hb and Tc’gt in Tc’Kr
pRNAi embryos lead to the ectopic expression of 

Tc’Dfd and Tc’Scr in alternating trunk segments. 
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General Discussion 

 

In the work of von Baer (1828), on the history of animal development, he 

postulated that the general features of a broad animal type appear earlier in the 

embryo than the special features (Translation in Gould, 1992). In other words, a 

feature conserved among all individuals of a group of animals tends to take place 

earlier in development when compared to more specialized ones. Therefore 

embryogenesis, the first steps of animal development, retains similar features among 

related organisms regarding the embryo formation. Specifically, embryogenesis in 

different species within a phylum pass through an early stage where all embryos are 

converged into a very similar morphology, the phylotypic stage. In insects, this stage 

corresponds to the fully extended and segmented germ band (Anderson, 1973). 

Accordingly, the genes expressed and operating at this stage show high sequence 

similarities and conserved expression patterns throughout Arthropoda. 

The beetle Tribolium castaneum has become an attractive model organism for 

developmental biologists since it shares the short germ embryogenesis mode with 

most other insects. Although most of the regulatory genes described in Drosophila 

have been already identified in Tribolium, their functional characterization has usually 

been done as single gene analysis using molecular and morphological markers. One 

exception is the recent characterization of the pair rule gene orthologs (Choe et al., 

2006). In this work, the simultaneous analysis of the orthologs of the Drosophila pair 

rule genes in Tribolium revealed the genetic interactions of the pair rule patterning in 

Tribolium and enabled the authors to propose a gene circuit model for the role of the 

pair rule genes in the segmentation of Tribolium. 

Similarly, the concomitant analysis of segmentation genes described in this 

thesis revealed the genetic interactions underlying the regulatory network controlling 

trunk segmentation in Tribolium. Furthermore, it demonstrates that the expression 

domains of the gap genes, although conserved among insects, diverge significantly 

between short and long germ insects in respect to their role at distinct steps of the 

segmentation process. 
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The cardinal information of the gap genes 

 

The gap gene definition was originally assigned to the segmentation genes 

that, when mutated in Drosophila, lead to “one continuous stretch of segments 

deleted” in the larval cuticle (Nüsslein-Volhard and Wieschaus, 1980). Although 

often exceeding their expression domains, the deletion of segments observed in gap 

gene mutants always coincides with the expression domains of the respective gene in 

the wild type.  

In the late 80’s, the identification of segmentation genes acting at the same 

level of the gap genes in the segmentation cascade and regulating pair rule gene 

expression without showing a gap phenotype at the cuticular level, was the fisrt 

evidence that the term “gap gene” could be misleading as a general concept (Gaul and 

Jäckle, 1990). From the 14 segmentation genes currently classified as having a gap 

gene function (The Interactive Fly), the majority of them (around 10) display no 

continuous stretch of segments deleted when mutated in Drosophila. Instead, these 

genes were classified as gap genes due to their role within the segmentation hierarchy 

in providing positional cues for the regulation of pair rule genes. Whether the genes 

classified as gap genes truly lead to a gap phenotype in the larva, seems to depend on 

the extent to which these genes are regulating the pair rule genes. In other words, 

mutations in segmentation genes that regulate adjacent pair rule gene stripes would 

result in the deletion of adjacent segments.  

The expression pattern of the Drosophila gap genes as well as their level in the 

segmentation hierarchy seems to be conserved among insects. Although the cuticular 

phenotype observed after depletion of gap genes superficially display a continuous 

stretch of missing segments, this impression results from a combination of 

transformation as well as segment deletions whereby the missing segments often lie 

outside of the expression domain of the knockdown gene in the wild type (this thesis;  

Liu and Kaufman, 2004; Mito et al., 2006). 

Compared to other insects, the results presented here further support the 

assumption that all the segmentation genes expressed in broad domains prior to, and 

regulating the expression of the pair rule genes (classified as gap genes), share a 

common feature; they provide refined positional information along the AP axis that 

serves as essential molecular cue for the expression of downstream genes. The lack of 
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this positional information results in pattern disturbance that might, or might not, lead 

to a loss of adjacent segments (classical gap phenotype). In most of the cases, 

disruption of gap gene function results in the loss of single or few segments and 

subsequent homeotic transformations. 

This essential role of the gap genes in establishing positional information 

along the embryonic AP axis led Mainhardt (1986) to suggest the term ‘cardinal’ to 

define the function of this class of genes. The short-range gradient formed by gap 

gene proteins would form cardinal regions with adjacent gap genes overlapping their 

borders of expression. Therefore the distribution of the cardinal regions and their 

overlapping borders along the AP axis would provide the necessary positional cue for 

the regulation of the double segmental expression pattern of the pair rule genes 

(Meinhardt, 1986; Ingham et al., 1986). 

This terminology was further supported by Akam (1987) who suggested the 

use of the term ‘cardinal gene’ to describe this class of segmentation genes.  

This thesis provides further support for the use of the ‘cardinal gene’ 

definition to specify the class of segmentation genes that are maternally activated, 

display cross-regulatory interactions and regulate primary pair rule and hox gene 

expression. 

 

The cardinal function of hunchback in the beetle Tribolium castaneum 

 

The molecular and morphological characterizations of the Tc’hb gene 

presented here provide the base for a reinterpretation of the ancestral role of hb in 

holometabolous insects. The extensive regulation of hox genes and the probably 

indirect regulation of pair rule genes, reject the canonical gap function previously 

suggested for Tc’hb. The results present here corroborate with the universal role of the 

genes hb, Kr and gt as ‘cardinal genes’, providing compartments with positional 

information along the AP axis during early steps of embryogenesis in all insects.  

 

A cardinal function of hunchback in Drosophila? 

 

As proposed in this thesis, the main evolutionary difference between the roles 

of hb in short and long germ insects lies in the regulatory interactions between the gap 
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genes and their target genes (see above). While the lack of Dm’hb and Dm’Kr in 

Drosophila results in misregulation of the pair rule stripes within their expression 

domains, in short germ insects, depletion of these genes cause no effect on the pair 

rule pattern where hb or Kr are expressed in the wild type (Chapter I, Cerny et al., 

2005).  

In this section I would like to review the phenotype described for the Dm’hb 

gene based on the results presented by White & Lehmann (1986). In this work, the 

authors describe an interesting phenomenon during the development of the Dm’hb 

phenotype, which is observed only during embryogenesis. Immunohistochemical 

analysis of these embryos using an antibody against Dm’Ubx, allows visualization of 

the metameric pattern in the developing embryo as it is first established (Figure 22). 

In class III (weak) Dm’hb mutants, the region where four metameres should 

have formed (corresponding to two thoracic and two abdominal segments), only two 

large metameres spanning this entire region are formed. Due to a resizing process via 

cell death, these two enlarged metameres approach wild type width later in 

development (White and Lehmann, 1986). Since Dm’Ubx is ubiquitously expressed in 

these embryos, the two enlarged metameres, although containing primordial cells of 

the thoracic segments, are specified as abdominal segments. The phenotype is 

therefore characterized as a loss of T2 and T3 (Lehmann & Nuesslein-Volhard, 1986). 

Therefore, the canonical gap phenotype described for Dm’hb is not a result of 

the deletion of gnathal and thoracic segments. Instead, the cells forming each of these 

segments in the wild type are incorrectly patterned as part of two large metameres and 

the deletion occurs through loss of cells that are distributed throughout these enlarged 

metameres (Figure 22).  

Intriguingly, the posterior border of the anterior Dm’hb expression domain is 

thought to lie around the (PS4), i.e. between the T1 and T2 segments. This posterior 

border slightly overlaps with the anterior border of the Dm’Kr domain. In wild type, 

Dm’Kr is expressed in the primordia of the three thoracic and the first five abdominal 

segments (Hoch et al., 1990). Notably, as in short germ insects, the fusion of thoracic 

and abdominal segment primordia seems to lay outside of the wild type Dm’hb 

expression domain. While in Tribolium the segmentation role of Tc’hb is most likely 

mediated via the regulation of Tc’gt, in Drosophila, this role could be indirectly 

mediated via the regulation of the central Dm’Kr domain. In Dm’hb mutant embryos, 
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the central expression of Dm’Kr is expanded anteriorly. In stronger phenotypes, the 

additional deletion of segments could therefore be caused by the increased expansion 

of Dm’Kr towards anterior. Noteworthy, it has been shown that the Dm’eve stripe 2 

enhancer contains one Dm’Hb binding site that was experimentally proven to be 

necessary for the activation of this stripe. 

One way to test the hypothesis presented here could be by introducing a copy 

of a Dm’hb-independent Dm’Kr gene in Dm’hb mutant embryos. If the gap phenotype 

observed in Dm’hb mutants is indirectly mediated via regulation of Dm’Kr, one 

would expect that the resulting phenotype from the proposed transgenic line would 

reflect a major homeotic transformations and minor segmentation defects. 

Alternatively, embryos carrying the homeotic Dm’hb alleles could be analyzed 

for the expression of Dm’Kr. These alleles are mutated only in the conserved domains 

involved in the repression of trunk Hox genes (C and D boxes). The functional Dm’hb 

domains that have been shown to mediate Dm’Kr expression are unaltered in these 

mutant embryos (Hulskamp et al., 1994). 

Similarly, the segmentation defect observed in posterior segments (PS13) in 

Dm’hb mutant embryos could be indirectly mediated by the posterior shift of the 

Dm’gt posterior domain in these embryos. This effect would be similar to the one 

reported for Tc’hb (Chapter I). If this is hypothesis is correct, than the main difference 

between the roles of hb in Tribolium and Drosophila would be the change in the 

regulation of pair rule genes by Kr in Drosophila.  
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Figure 22. Schematic drawing of the development of a Dm’hb mutant phenotype. In 

Dm’hb mutants thoracic and anterior abdominal segments are formed as part of two enlarged 

metameres. By a segment resizig mechanism the cells that should formed the primordia of T2, 

T3, A1 and A2 in the wild type are formed as A1 and A2 in Dm’hb mutants, due to the 

segment fusions and the ectopic expression of Dm’Ubx in the Dm’hb mutants embryos. 
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A cardinal function of hunchback in Nasonia? 

 

The proposal of a reinterpretation of the function of Dm’hb raised the question 

whether the Nasonia hb (Nv’hb) phenotype could help to clarify the role of hb in long 

germ insects. The recently proposed new phylogenetic position of Nasonia at the base 

of the holometabolous insects suggests that the long germ mode of embryogenesis 

found in Nasonia has evolved independently from the one found in Drosophila. 

The molecular characterization of the phenotype of the Nv’hb mutant embryos 

was performed by the analysis of the patterns of Nv’Ubx and Nv’Abd-A. The 

phenotype displays loss of head and thoracic segments as well as the three most 

posterior segments (Pultz et al., 2005). Although more extensive than in Drosophila, 

the deletions observed in Nv’hb mutant embryos were interpreted as the deletions of 

the segments where Nv’hb is expressed (canonical gap). 

As in Drosophila and in all insects analyzed, the lack of Nv’hb leads to the 

expansion of Nv’Ubx expression towards anterior segments. However, the formation 

of the metameric pattern during the development of the Nv’hb mutant embryos was 

not analyzed using molecular or morphological markers. It is therefore tempting to 

ask whether the deletions observed in the Nv’hb phenotype are indeed restricted to the 

segments were Nv’hb is expressed in the wild type. With the ubiquitous expression of 

Nv’Ubx in Nv’hb mutant embryos, any segment formed in these embryos, no matter if 

head or trunk, would display abdominal identity at later stages as observed in all other 

insects. 

Based on the cardinal role of Tc’hb described here, it is nevertheless likely that 

the hb gene present in the last common ancestor of Drosophila and Nasonia was a 

cardinal gene involved in the regulation of Hox genes with a minor role in regulating 

pair rule genes.  

The analysis of pair rule genes in Nv’hb mutant embryos could shed light on 

the role of Nv’hb in the segmentation process in this insect and further test the 

homology of the segmentation process between these two long germ insects.  
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The genes hunchback and orthodenticle substitute for bicoid in Tribolium  

 

Anterior patterning in Drosophila is performed by a synergistic activity of the 

genes Dm’Bcd and Dm’Hb (Simpson-Brose et al., 1994). The activation of head and 

thoracic gap genes by Dm’Bcd is also dependent on the expression of Dm’Hb. 

Although hb orthologs have been identified in all arthropods analyzed so far, bcd 

orthologs are only present in higher dipterans (Brown et al., 2001). This evolutionary 

paradigm has long stimulated the identification of genes and gene regulatory 

interactions that might establish anterior patterning in the absence of a bcd ortholog 

(Lynch et al., 2006b; Schroder, 2003; Wolff et al., 1998). 

The hb gene is a good candidate for this role due to its conservation among 

arthropods and the fact that several experiments in Drosophila have shown that 

Dm’hb can rescue gnathal and thoracic segments in Dm’bcd mutant embryos 

(Hülskamp et al., 1990; Schulz and Tautz, 1994; Struhl et al., 1992; Wimmer et al., 

2000). The rescue is however never complete, supporting the synergistic role between 

Dm’hb and Dm’bcd genes (Wimmer et al., 2000). Another candidate to replace bcd is 

the otd gene. Also conserved throughout metazoa, otd encodes for a homeodomain 

protein that contains a lysine at position 50 (K50), which is also present in the bcd 

gene and is required for its DNA and RNA biding specificity (Gao and Finkelstein, 

1998). 

In Tribolium, the genes Tc’otd and Tc’hb were suggested to act synergistically 

in the formation of almost all body segments (Schroder, 2003). While RNAi 

experiments for either Tc’otd or Tc’hb lead to the deletion of head and thoracic 

segments, double knockdown of Tc’otd and Tc’hb results in deletion of head, thoracic 

and almost all abdominal segments, resembling the strong Dm’bcd mutant 

phenotypes. Based on the results described here, I propose an additive instead of a 

synergistic effect in the phenotype observed in Tc’otd and Tc’hb double knockdown 

embryos.  

Strong depletion of Tc’otd leads to the loss of all head segments and the first 

thoracic segment. All segments after T2 are normally formed in these larvae. Weaker 

Tc’otd phenotypes display the additional formation of more anterior segments 

(Schroder, 2003). In contrast to this, the strongest phenotype described here for Tc’hb, 

forms anterior segments normally up to the thorax with and no further segments 
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posterior to T3 and A2. Weaker Tc’hb phenotypes display the additional formation of 

more posterior segments (Figure 3B). 

When both gene functions are disrupted, the segmentation of the head up to T1 

is affected by the lack of Tc’otd activity while the segmentation of T3 and most of the 

abdominal segments is affected by the lack of Tc’hb, with only T2 and A1 segments 

being patterned independently. With the ubiquitous expression of Tc’Ubx and 

Tc’AbdA in these embryos, both remaining segments (T2 and A1) would be specified 

as abdominal segments. This hypothesis explains the germ band shown by Schroeder 

(2003), which displays a strong Tc’hb+otd
pRNAi phenotype, with only two abdominal 

engrailed stripes formed, with the anlage for the hindgut and the malpighian tubules 

posterior to it. These structures are also observed in the strongest phenotypes for 

Tc’hb alone (not shown). 

Therefore, I propose that Tc’otd and Tc’hb are responsible for patterning 

adjacent, but not overlapping regions along the Tribolium embryo. Noteworthy, the 

synergistic effect proposed for Dm’Hb and Dm’Bcd is still not fully demonstrated and 

further experiments involving promoter analysis with combinations of binding sites 

for Dm’Hb and Dm’Bcd would need to be performed (Tautz, personal 

communication). 

 

Thoracic identity in Tribolium: differential levels of Antennapedia expression 

 

The Hox gene Dm’Antp is required for the proper development of thoracic 

segments. Dm’Antp loss-of-function alleles result in homeotic transformations of 

thoracic segments into structures characteristic of more anterior segments (Abbott and 

Kaufman, 1986; Schneuwly et al., 1987; Struhl, 1981; Wakimoto and Kaufman, 

1981). Ectopic expression of Dm’Antp in more anterior segments results in the 

transformation of the adult antennae by thoracic structures (e.g., Schneuwly et al., 

1985). Outside Drosophila, the function of Antp orthologs is so far unclear. 

Nevertheless, Antp expression has been widely used together with other Hox genes in 

segment homology studies among arthropods (Averof and Akam, 1993; Averof and 

Akam, 1995; Hughes and Kaufman, 2002; Walldorf et al., 2001; Walldorf et al., 

1989; Zhang et al., 2005).  
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Here I propose a model for the regulation and function of Tc’Antp in 

Tribolium, based on analyses of the Tc’Antp expression in several gene silencing 

experiments and the resulting phenotypes observed. 

In wild type embryos, Tc’Antp is expressed in the entire thoracic and 

abdominal regions (Figure 8E or Figure 14A). After the germband extension is 

completed, the level of Tc’Antp expression increases in the entire thoracic region, 

preceding the development of the limbs (Figure 8E or Figure 14A). With the 

expansion of the Tc’Antp domain in Tc’hb
pRNAi embryos, expression of Tc’Antp is still 

observed in the entire abdominal trunk (Figure 8E), even though no segment with 

thoracic identity is formed in these embryos (Figure 3C). Notably, when compared to 

the different levels of Tc’Antp expression in the wild type, it is evident that the ectopic 

expression observed in Tc’hb
pRNAi embryos is comparable to the abdominal 

expression observed in wild type embryos (Figure 8E, F). Therefore one can conclude 

that the enhanced thoracic expression of Tc’Antp is absent in Tc’hb
pRNAi embryos.  

The enhanced expression of Tc’Antp is shifted posteriorly in Tc’mlpt
pRNAi 

embryos (Figure 14A,B) is analogous to the effects of Tc’Antp in the Tc’hb
pRNAi 

phenotype. This posterior shift of Tc’Antp results in the transformation of anterior 

abdominal segments into segments of thoracic identity (Figure 11). 

This observations lead to the hypothesis that the development of thoracic 

segments in Tribolium does not depend solely on the presence of Tc’Antp expression, 

but needs a certain threshold of Tc’Antp activity to be triggered. When Tc’Antp is 

expressed at low levels, thoracic development is suppressed (wild type abdomen and 

Tc’hb
pRNAi embryos; Figure 3). When Tc’Antp is expressed at high levels, thoracic 

development is triggered (wild type thorax and Tc’mlpt
pRNAi embryos; Figure 11). 

Further support for this theory comes from the analysis of Tc’gt
pRNAi embryos. 

Embryos depleted of Tc’gt display homeotic transformation of gnathal and abdominal 

segments towards thoracic identity (Bucher and Klingler, 2004). Once again, the 

strong expression domain of Tc’Antp is expanded in gnathal and abdominal segments 

(Cerny et al., 2005). 

To further strengthen this hypothesis, I suggest two possible alternatives for 

the regulation of Tc’Antp.  

First, the expression of the gap gene Tc’Kr would be required to increase 

Tc’Antp expression in the thoracic region. However, although Tc’Kr expression starts 
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at the blastoderm stage, when the increased Tc’Antp expression in the thorax is 

observed, the thoracic expression of Tc’Kr is no longer detectable (compare Figures 

6E and Figure 14A).  

Therefore, the role of Tc’Kr on activating Tc’Antp could be indirect via 

repressing the repressors of Tc’Antp in the thoracic region. 

Indeed, the gene hb acts as a repressor of Antp several insects (this thesis; Irish 

et al., 1989b; Mito et al., 2005). In Tc’Kr
pRNAi embryos, the ubiquitous expression of 

Tc’hb would result in the repression of Tc’Antp.  

A second source of repression of Tc’Antp would come from the posterior 

prevalence rule among Hox genes (see above). In Tc’hb
pRNAi embryos, the expressions 

of Tc’Ubx and Tc’AbdA are shifted anteriorly (Figure 8H, J). This shift would lead to 

the repression of Tc’Antp in these embryos. Likewise, in Tc’mlpt
pRNAi embryos, the 

expressions of Tc’Ubx and Tc’AbdA are drastically reduced or absent (Figure 14D, 

H), therefore allowing the expansion of the strong expression of Tc’Antp in abdominal 

segments (Figure 14B). 

Therefore the wild type function of Tc’Kr would be to prevent the expression 

of Tc’hb and the Hox genes Tc’Ubx and Tc’AbdA in the thoracic region allowing the 

increased levels of Tc’Antp necessary for triggering thoracic morphogenesis in these 

segments (Figure 21). 

Still, it is very likely that as in Drosophila, these repression domains 

established by Tc’hb and Tc’Kr are being maintained throughout development by the 

recruitment of additional factors as the PcG proteins (Lewis, 1978; Struhl 1981; 

Struhl & Akam 85; Breen & Ducan, 86; Juergens, 85; Soto, 95).  

 

Hox genes domains in Tribolium: between legs and mouth, a gap choice 

 

In Tribolium, Tc’Kr mutant larva display normal head and gnathal segments 

(Cerny et al., 2005). The following four to six segments, however, are transformed 

into a series of alternating mx and lb. At the molecular level, this phenotype is 

generated by the misexpression of the gnathal Hox genes Tc’Dfd and Tc’Scr. In 

addition to the wild type expression of Tc’Dfd and Tc’Scr in the mx and lb, 

respectively, both genes are ectopically expressed in a double segmental periodicity in 

the thorax and abdomen of Tc’Kr mutant embryos. The effect on Tc’Dfd and Tc’Scr 
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expressions observed in Tc’Kr mutants was suggested to involve an underlying pair 

rule mechanism generating the double segmental expression (Cerny et al., 2005). 

Remarkably, the analysis of the cross-regulatory interactions among gap genes 

and their influence on Hox gene expression provide an attractive explanation for the 

effects observed in the Tc’Kr mutant phenotype. 

In wild type Tribolium embryos, the gnathal and trunk Hox genes are 

expressed as the following: Tc’Dfd expression in the md and mx, Tc’Scr expression in 

the lb, high levels of Tc’Antp expression in the next three segments and the remaining 

segments express lower levels of Tc’Antp expression, together with Tc’Ubx and 

Tc’AbdA expressions (Figure 21). 

In Tribolium, it has been shown that the gap genes act as the additional 

repressors on the expression of Hox genes (this thesis; Cerny et al., 2005). By 

modifying the configuration of the gap gene expression in the Tribolium embryo via 

pRNAi it is possible to shift back and forth the expression pattern of the several Hox 

genes. 

The expression patterns of the gap genes in Tc’Kr
pRNAi embryos (Figure 21) 

suggest a possible repressive scenario involving cross-regulation among gap genes 

combined with the posterior prevalence rule among Hox genes. 

In Tc’Kr
pRNAi embryos, Hox genes specifying gnathal structures are expressed 

in more posterior segments (Figure 21). Due to posterior prevalence, the posterior 

expansion of gnathal Hox genes requires the suppression of more posterior Hox genes 

in these segments. This effect is achieved by the ubiquitous expression of Tc’hb in 

these embryos (Figure 16B, D), resulting in the repression of the trunk Hox genes 

Tc’Antp, Tc’Ubx and Tc’AbdA (Figure 21). But how would the double-segmental 

periodicity of Tc’Dfd and Tc’Scr be established in these embryos? 

To approach this question, I observed the expression of the gap genes in the 

segments expressing Tc’Dfd and Tc’Scr in the wild type, the mx and lb, respectively. 

Tc’gt expression in the head region shows a stripe of increased expression in the mx 

already at the blastoderm stage (Figure 21). In the lb, only Tc’hb is expressed (Figure 

21). Considering a posterior prevalence of Tc’Scr on the expression of Tc’Dfd, one 

could hypothesize that Tc’gt could act as a repressor of Tc’Scr in the mx, thus 

allowing Tc’Dfd to be expressed.  
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Based on these observations and the results presented here, the wild type 

expression domains of the Hox genes in Tribolium would be established as the 

following (Figure 23): In the mx, Tc’gt expression represses Tc’Scr, establishing the 

Tc’Dfd domain; in the lb, Tc’hb expression represses Tc’Antp, establishing the Tc’Scr 

domain; and finally, in the thoracic segments, Tc’Kr expression represses Tc’Ubx and 

Tc’AbdA, establishing the Tc’Antp domain. 

Therefore in Tc’Kr
pRNAi embryos, the ubiquitous expression of Tc’hb represses 

Tc’Antp, Tc’Ubx and Tc’AbdA from the thoracic and anterior abdominal segments. 

Consequently, the more anterior Hox gene, Tc’Scr, is expressed in these segments. 

However, Tc’Kr
pRNAi embryos show ectopic expression of Tc’gt in T1 and T3, where 

Tc’gt expression would repress Tc’Scr. In the segments where Tc’Scr is repressed, the 

anterior Hox gene Tc’Dfd is then expressed (Figure 23).  

These observations suggest that a repressive scenario involving the gap genes 

Tc’hb, Tc’gt and Tc’Kr establishes the domains of the Hox genes along the AP axis in 

Tribolium. The model does not explain, however, the differential expression of the 

Hox genes within segments, like for example the stronger expression of Tc’Ubx in A1 

(arrowhead in Figure 8G) and some interactions assumed here, like the repression of 

Tc’Scr by Tc’gt, are speculative.  
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Figure 23. Schematic drawing of the establishment of Hox genes expression in 

Tribolium by gap gene regulation. The expression domain of Tc’Kr sets the anterior 

border of Tc’AbdA and Tc’Ubx, leading to the strong expression of Tc’Antp in the 

segments formed within the Tc’Kr domain.The expression of Tc’gt, and perhaps the 

high levels of Tc’hb, sets the anterior border of Tc’Kr and therefore of Tc’Antp. The 

next anterior segment, where only Tc’hb is expressed (from the one analyzed here), 

the Tc’Scr expression domain is formed with the posterior border formed by the 

posterior prevalence of Tc’Antp while the anterior border is formed by repression of  

Tc’gt. The anterior Tc’Scr border sets then the posterior border of the Tc’Dfd 

expression domain that expands until the mandible. 
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Conclusions 

 

The best way of noticing that something is important for you is when you, in 

need, cannot find it. The analysis of gene function has mainly been performed by 

“preventing” an organism to use a certain gene. This can be achieved by techniques 

such as mutagenesis and RNA interference. Another way to understand the 

organization of a certain genetic process is to change the spatiotemporal expression of 

genes by expressing them ectopically. The morphological consequence of the gene 

loss, the lack-of-function phenotype, or the gene disturbance, gain-of-function 

phenotype, will reveal to which developmental process their function is important.  

With the development of molecular probes, these phenotypes could be 

analyzed for the effects that the missing gene causes on the spatiotemporal expression 

of other genes. Since then, molecular characterizations of gene function have 

uncovered the tip of an endless iceberg of gene regulatory interactions involved in all 

biological processes. 

This thesis represents the first characterization of the gene regulatory network 

among the gap genes known from Drosophila in the beetle Tribolium castaneum. The 

analysis involved the orthologs of the gap genes; hb, gt and Kr, pair rule genes; eve 

and run and Hox genes; Dfd, Scr, Antp, Ubx and AbdA. The results demonstrate that 

in Tribolium, these genes are involved in the patterning of similar embryonic regions 

as their homologues among insects. However, significant changes are observed in the 

way these genes are interacting within the network and important implications can be 

derived from this. 

One evolutionary change that can illustrate the plasticity of the segmentation 

system is the role of hb in the metamerization process in Tribolium and Drosophila. 

In the beetle, this role is most likely mediated by the regulation of Tc’gt, with no 

direct effects of Tc’hb on pair rule genes. I therefore hypothesize that the canonical 

gap function described for Dm’hb could be instead mediated by the regulation of 

Dm’Kr and Dm’gt, with no (or little) direct effect of Dm’hb on the regulation of pair 

rule genes. Therefore, Hunchback in both species would form cardinal regions along 

the AP axis, essential for the proper expression of other gap genes.  

But why then does depletion of hb in Tribolium and Drosophila lead to the 

deletion of different segment primordia? Considering that hb is expressed in similar 
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embryonic regions and interacts with similar gap genes in both species, the answer to 

this question might lie in the role of the target genes of hb. In Tribolium, Tc’Kr has no 

effect on the pair rule genes expressed within the expression domain of Tc’Kr in the 

wild type (Cerny et al., 2005). Additionally, I proposed here that the effects on pair 

rule genes observed in Tc’hb, Tc’gt and Tc’Kr depleted embryos, can be explained by 

the lack of the posterior Tc’gt expression in these embryos. In Drosophila, depletion 

of Dm’Kr leads to severe defects on the expression pattern of pair rule genes (Carroll 

and Scott, 1986). Additionally, Dm’gt mutants also display misregulation of pair rule 

genes. In both cases, the effects on the pair rule genes, leading to segment deletions, 

are observed for the pair rule stripes expressed within the respective expression 

domains of Dm’Kr and Dm’gt. Therefore the distinct regions of the embryo affected 

by depletion of hb in Tribolium and in Drosophila could be explained by the role of 

Dm’Kr in the regulation of pair rule genes. 

As previously suggested, the transition from short to long germ mode most 

likely involved changes in the regulatory regions of pair rule genes, allowing that 

successive increase of gap gene input, like in case of Dm’Kr, in the regulation of the 

pair rule stripes (Peel, 2004).  

But which genes are regulating the pair rule stripes in short germ insects? A 

recent analysis of the orthologs of the pair rule genes in Tribolium revealed that this 

class of genes is forming a gene regulatory circuit controlling segmentation. The 

model presents several variations from the model described in Drosophila (Jaynes and 

Fujioka, 2004). For example, essential primary and secondary pair rule genes from 

Drosophila, like h and ftz, are not involved in the Tribolium pair rule gene circuit. 

Nevertheless, the regulatory variations between both gene networks converge into the 

expression of Tc’en and Tc’wg in the same compartments within the parasegmental 

units in both species, anterior and posterior, respectively. 

It is still not clear whether the pair rule gene circuit observed in Tribolium is 

conserved in hemimetabolous insects. Nevertheless, even-skipped, a primary pair rule 

gene in both Tribolium and Drosophila, is not expressed in a pair rule pattern in 

Schistocerca and Oncopeltus (Liu and Kaufman, 2005; Patel et al., 1992).  

Among non-insect arthropods, there is no evidence that such a pair rule system 

would pattern the early embryo. Instead, most of the orthologs of the pair rule genes 
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analyzed in chelicerates and myriapods are expressed in segmental stripes (reviewed 

in Damen, 2007). 

An alternative system for the metameric pattern formation in non-insect 

arthropods comes from the analysis of orthologous genes of the Notch-Delta signaling 

pathway in the spider Cupiennius salei. Similarly to its role in the vertebrate 

segmentation clock, in this spider, the expression pattern of the ortholog of hairy 

(Cs’h) is severely affected in embryos depleted for the spider orthologs of Notch and 

Delta (Stollewerk et al., 2003). This finding suggests that the striped expression of 

Cs’h is established in the spider in the same way as it is in vertebrates.  

Taken together, these finding suggest that the mechanism controlling the 

formation of segments exhibit high plasticity allowing adaptive changes during 

evolution. On the other hand, the selective constraint on the expression of the segment 

polarity genes and Hox genes assures that all the essential segment units and identities 

are properly formed in arthropods as distinctive as mites and lobsters. 
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