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Abstract 

The WD repeat protein FAN is a member of the family of TNF receptor adapter pro-

teins that are coupled to specific signalling cascades. In contrast to the other known 

adapter proteins that bind to the death domain of TNF-RI, FAN has been shown to in-

teract with a membrane-proximal NSD domain. Though initially shown to promote 

nSMase activation by TNF, the precise functional involvement of FAN in specific cellu-

lar responses upon TNF stimulation remained unclear. In this work the role of FAN 

during TNF signalling was analysed. The data presented here show that FAN is in-

volved in TNF-induced filopodia formation which is dependent on the activation of 

Cdc42. The N-terminal fold of FAN was identified in this study as a PH domain which 

specifically binds to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P) and targets 

FAN to the plasma membrane. Site-specific mutagenesis revealed that the ability of 

FAN to mediate filopodia formation was blunted either by the destruction of the 

PtdIns(4,5)P binding motif, or by the disruption of intramolecular interactions between 

the PH domain and the adjacent BEACH domain, suggesting a functional contribution 

of the BEACH domain. In order to mediate TNF-induced actin reorganisation, FAN 

was shown to interact with the actin cytoskeleton in TNF-stimulated cells by binding 

directly to F-actin, thus providing a scaffold linking TNF signalling to actin reorganisa-

tion. FAN deficiency affected TNF-induced fibroblast motility and in vivo migration of 

Langerhans cells demonstrating the impact of FAN-mediated actin reorganisation for 

TNF-stimulated motility. The results of this study identify FAN as a central mediator of 

TNF-induced actin reorganisation and show that PH-mediated plasma membrane target-

ing of FAN is critically involved in linking TNF signalling to actin cytoskeleton reor-

ganisation.  
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Zusammenfassung 

Das WD Protein FAN gehört zur Familie der TNF-Rezeptor Adapterproteine, die an 

spezifische Signaltransduktionskaskaden gekoppelt sind. Im Gegensatz zu den anderen 

bekannten Adapterproteinen, die an die Death Domain des TNF-Rezeptors I binden, 

interagiert FAN mit der membranproximalen NSD Domäne. Obwohl anfangs schon 

gezeigt wurde, dass FAN an der durch TNF stimulierten Aktivierung der nSMase betei-

ligt ist, ist die genaue Funktion von FAN bei den spezifischen zellulären Effekten von 

TNF nicht bekannt. In dieser Arbeit wurde die Rolle von FAN im TNF Signalweg un-

tersucht. Die hier vorgestellten Daten zeigen, dass FAN an der TNF-induzierten Bil-

dung von Filopodien über die Aktivierung von Cdc42 beteiligt ist. Der N-terminale Be-

reich von FAN wurde in dieser Arbeit als eine PH Domäne identifiziert, die spezifisch 

an Phosphatidyl-Inositol-4,5-Phosphat (PtdIns(4,5)P) bindet und FAN an die Plasma-

membran rekrutiert. Die gezielte Mutagenese der FAN Primärstruktur zeigte, dass die 

Funktion von FAN bei der TNF-induzierten Bildung von Filopodien von der 

PtdIns(4,5)P-Bindung oder der intramolekularen Interaktion zwischen der PH und der 

BEACH Domäne abhängig ist, was eine funktionelle Beteiligung der BEACH Domäne 

vermuten lässt. Es wurde außerdem gezeigt, dass FAN über direkte Bindung an F-Aktin 

mit dem Aktinzytoskelett interagiert, um TNF-induzierte Aktinreorganisation zu modu-

lieren. So kann eine Plattform gebildet werden, die TNF-Signale mit der Reorganisation 

des Aktinzytoskeletts verbindet. Das Fehlen von FAN beeinträchtigte die TNF-

induzierte Motilität von Fibroblasten und auch die Migration von Langerhanszellen in 

vivo, was die Bedeutung der durch FAN vermittelten Reorganisation des Aktinzytoske-

letts für die TNF-induzierte Zellmotilität unterstreicht. Die Ergebnisse dieser Arbeit 

identifizieren FAN as zentralen Faktor bei der TNF-induzierten Aktinreorganisation und 

zeigen, dass die PH-vermittelte Rekrutierung von FAN an die Plasmamembran für die 

Verknüpfung der TNF-Signalkaskade mit der Reorganisation des Aktinzytoskeletts 

notwendig ist.  
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Abbreviations 

Only abbreviations are listed that have not been described in the text 
aa amino acids 
bp basepares 
BSA bovine serum albumin 
C-terminal carboxyterminal 
DMSO dimethylsulfoxide 
E.coli Escherichia coli 
DTT Dithiothreitol 
EDTA ethylene diamine tetraacetic acid 
EGTA ethylene glycol tetraacetic acid 
FBS fetal bovine serum 
GFP green fluorescent protein 
FITC fluorescein-5-isothiocyanat 
GDP guanosine bisphosphate 
GST glutathione S-transferase 
GTP guanosine triphosphate 
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
hr hour  
HRP horse radish peroxidase 
IF immunofluorescence 
IB immunoblot 
IL-1 interleukin-1 
IPTG Isopropyl β-D-1-thiogalactopyranoside 
kb kilo base 
kDa kilo dalton 
LPS lipopolysaccheride 
min minute 
N-terminal aminoterminal 
ORF open reading frame 
MEFs mouse embryonic fibroblasts 
MHC major histocompability complex 
NA numerical aperture 
NaOVa Sodium orthovanadate 
ON over night 
PBS phosphate buffered saline 
PCR polymerase chain reaction  
PMSF phenylmethanesulphonyl fluoride 
rpm rotations per minute 
RT room temperature 
SDS sodiumdodecylsulfat 
SDS-PAGE SDS polyacrylamid gel electrophoresis 
sek second 
TEMED N,N,N’,N’-tetramethyl diamine 
Tris/HCl tris[hydroxymethyl]aminoethane 
TRITC tetramethylrhodamine isothiocyanat 
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Introduction 

TNF signalling – a double-edged sword 

TNF (tumour necrosis factor) is a pleiotropic and broadly active cytokine exerting 

its effects on many cell types inside and outside of the immune system. Originally iden-

tified as a factor inducing necrosis in tumours, TNF has now been recognised as a major 

proinflammatory mediator involved a wide range of biological functions including host 

defence against intracellular pathogens, wound healing and tumour defence (Locksley et 

al., 2001; Wajant et al., 2003). However, several pathologic effects like septic shock, 

development of autoimmune diseases and rheumatoid arthritis are also associated with 

TNF, making research on TNF signalling important for therapeutic approaches (Choo-

Kang et al., 2005). TNF is mainly produced by macrophages, but also by a variety of 

other tissues including lymphoid cells, mast cells, endothelial cells, fibroblasts and neu-

ronal tissue. TNF is primarily produced as a transmembrane protein that is released via 

proteolytic cleavage by the metalloprotease TACE (TNF alpha converting enzyme). 

TNF exerts an extreme spectrum of biological responses, and most cells show at least 

 
Fig. 1. Balance between life and death mediated by TNF-superfamily members. The com-
position and activation status of TNF receptor adapter proteins and additional downstream fac-
tors determines the outcome of TNF superfamily signalling. From (Aggarwal, 2003) 
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some TNF responsiveness. A general aspect of signal transduction of all TNF super-

family members is the delicate balance between proliferative signalling and the induc-

tion of apoptosis, which is modulated by the unique composition of adapter proteins 

(Fig. 1).  

Two distinct cell surface receptors have been identified for TNF, TNF-RI (TNF-

receptor I) and TNF-RII (TNF-receptor II). TNF-RII expression is limited to cells of the 

immune system and tightly regulated. In contrast, TNF-RI can be found on many differ-

ent cell types, albeit with great variations in receptor numbers on the cell surfaces 

(Pfeffer et al., 1993; Vandenabeele et al., 1995). TNF-RI plays a crucial role in the ma-

jority of biological effects promoted by TNF (Neumann et al., 1996; Wiegmann et al., 

1992), and signalling mechanisms of TNF-RI have been studied most extensively.  

Signalling is triggered by binding of TNF to the receptors at the cell surface. A 

common feature of the receptors of the TNF superfamily is their lack of enzymatic ac-

tivity.  Signal transduction cascades are initiated by recruiting adapter proteins to the 

intracellular domains which translate the signalling events to specific cellular responses. 

Despite the initial thought that binding of TNF induces receptor trimerisation as a key 

activation event during TNF signalling, more recent work has shown TNF-receptors and 

other members of the TNF superfamily to rather form preassembled complexes. These 

complexes undergo further conformational change upon ligand binding leading to initia-

tion of the downstream signalling events (Chan et al., 2000).  

 

Signal transduction pathways controlled by TNF-RI – a question of 

adapters 

By binding to TNF-RI, TNF induces diverse cellular effects ranging from inflam-

matory responses and proliferative signals to apoptosis by modulation of various cellu-

lar signal transduction cascades. How these divergent responses mediated by one single 

type of receptor are discriminated is not fully understood yet. The effect of TNF stimu-

lation on intracellular signalling pathways depends on the composition of distinct 

adapter proteins forming the TNF-RI signalling complex (Fig. 2). Recruitment of 

TRADD (TNF receptor-associated death domain protein) to the death domain of TNF-

RI provides a scaffold for binding of TRAF2 (TNF receptor-associated factor 2) and 

RIP (receptor-interacting kinase) leading to activation of the NF-κB (nuclear factor 
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kappa B) pathway. In an uninduced state, NF-κB dimers are complexed with I-κB (in-

hibitor of NF-κB) proteins that mask their nuclear localisation sequence, thereby retain-

ing NF-κB proteins in the cytoplasm.  

For activation and nuclear translocation of NF-κB, TNF stimulates proteosomal 

degradation of I-κB by recruiting and activating the IKK (I-κB kinase) complex 

(Perkins, 2000). Activated IKK complex is able to phosphorylate the regulatory domain 

of I-κB leading to its degradation and subsequent liberation of NF-κB proteins. Activa-

tion of NF-κB can lead to activation of a huge number of inflammatory-related genes 

 
 

Fig. 2. TNF-RI signals via two complexes. After binding of TNF to TNF-RI, TRADD, RIP 
and TRAF2 are recruited. The membrane-bound complex I signals for NF-kB activation leading 
to inflammatory responses and cell survival, whereas complex II, which is formed after disso-
ciation from the receptor and recruitment of FADD and caspase-8, induces apoptosis. Modified 
from (Micheau and Tschopp, 2003).  
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and has been implicated in most of the TNF-mediated responses.  

Recruitment of TRAF2 to the death domain also induces activation of MAP (mito-

gen-activated protein) kinases and the distantly related JNK (c-Jun N-terminal kinase) 

kinases. By interacting with MKK7 (MAP kinase kinase 7), TRAF2 can stimulate phos-

phorylation of JNK leading to the translocation of phospho-JNK into the nucleus and 

subsequent activation of the transcription factors c-Jun and ATF2. Although JNK acti-

vation has been implicated in TNF-induced apoptosis (Varfolomeev and Ashkenazi, 

2004) as well as in upregulation of collagenases and E-selectin, the importance of this 

pathway for TNF-mediated cellular responses remains unclear (Wajant et al., 2003). 

Additional recruitment of RIP to TRAF2 leads to activation of the p38 MAPK signal-

ling pathway as an important event in TNF-mediated inflammatory responses resulting 

in upregulation of IL-1 and IL-6 production.  

As member of the death domain containing receptors, TNF-RI is able to trigger the 

apoptotic machinery in a variety of cell lines. In contrast to other related death receptors 

like CD95, the apoptosis-inducing capability of TNF-RI is masked by strong NF-κB 

activation, both pathways being inhibitory to each other. When NF-κB signalling is 

blocked, TNF-RI can signal apoptosis by recruiting TRADD and FADD (Fas-associated 

death domain) and caspase-8 to the death domain which leads to downstream initiation 

of the apoptotic cascade. Recent studies added a further level of complexity to the mo-

lecular signal transduction mechanisms of TNF-RI by showing that the association of 

the adapter protein complex with the receptor also determines the signal outcome 

(Muppidi et al., 2004). Association of the TNF-RI signalling complex at the cell mem-

brane favours NF-κB activation, but subsequent dissociation of the adapter complex 

from the receptor probably after endocytosis induces recruitment of the apoptosis-

inducing factors leading to apoptosis (Fig. 2).  

TNF also modulates activity of sphingomyelinases (SMases), enzymes that hydro-

lyse the membrane lipid sphingomyelin (SM). Cleavage of SM produces ceramide, a 

neutral lipid implicated in diverse signalling pathways. Ceramide has been shown to be 

involved in stress responses, apoptosis and inflammation, but the underlying mecha-

nisms remain elusive (Andrieu-Abadie and Levade, 2002; Kolesnick and Krönke, 

1998). TNF-induced ceramide generation can contribute to activation of caspases and 

also lysosomal proteases like cathepsins (Heinrich et al., 1999). Both sphingomyelin 

and ceramide are important for membrane dynamics and lipid raft generation. Many 
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signalling proteins have been shown to either reside or be translocated into lipid rafts 

during signal transduction, and modulation of lipid rafts plays a critical role regulating 

CD95 capping and TNF-RI signalling (Cremesti et al., 2002).  

TNF-RI induces activation of acidic and neutral SMases (aSMase and nSMase) via 

its two distinct cytoplasmic domains. ASMase activation is mediated by the death do-

main of TNF-RI, and is implicated as cell-type specific modulator of TNF-induced cell 

death (Adam-Klages et al., 1998). One aSMase, SMPD1, is localised to lysosomes and 

plasma membrane, and its genetic deficiency is responsible for development of the 

Niemann-Pick disease (Ferlinz et al., 1991; Schuchman et al., 1991). Activation of 

nSMase by TNF is transduced by the nSMase activation domain (NSD) of TNF-RI 

(Adam et al., 1996) and has been implicated in TNF-mediated inflammatory responses 

and induction of apoptosis (Andrieu-Abadie and Levade, 2002; Cremesti et al., 2002). 

Recently, one nSMase, nSMase3 or SMPD4, has been cloned that is responsive to TNF 

(Krut et al., 2006). However, the role of nSMase3 during TNF signalling still remains 

largely undefined.  

 

The adapter protein FAN 

The majority of the known effects of TNF are initiated by binding of different 

adapter proteins to the cytoplasmic death domain of TNF-RI (Chen and Goeddel, 2002; 

Wajant et al., 2003). However, TNF-RI binds additional factors that may be important 

for TNF signalling (Adam-Klages et al., 1998; Boldin et al., 1995). The more mem-

brane-proximal NSD of TNF-RI has previously been recognised as a distinct functional 

domain for the activation of nSMase (Adam et al., 1996).  

The only protein identified so far that binds to the NSD is the adapter protein FAN 

(factor associated with nSMase activity) (Adam-Klages et al., 1996). Overexpression of 

full-length FAN enhanced nSMase activity in TNF-treated cells, while truncated mu-

 
 

Fig. 3. Domain structure of FAN. Besides the seven C-terminal WD repeats that have been 
shown to mediate interaction with TNF-RI, FAN contains a BEACH domain with unknown 
function. Structural analysis identified a N-terminal PH-like fold which is associated with the 
BEACH domain. Numbers indicate amino acid positions. 
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tants of FAN produced dominant-negative effects. Bioinformatic analysis classified 

FAN as a WD-repeat-containing protein, a growing family of regulatory proteins that 

are involved in signal transduction. Besides a C-terminal cluster of WD repeats which 

are necessary for binding to the NSD of TNF-RI (Adam-Klages et al., 1996), FAN also 

contains a BEACH (beige and Chediak-Higashi) domain with unknown function 

(Fig. 3). Structural analysis of neurobeachin (Nbea), a protein that contains a BEACH 

domain homologous to the BEACH domain of FAN, revealed that this domain is asso-

ciated with a novel, weakly conserved pleckstrin-homology (PH) domain (Jogl et al., 

2002). Biochemical studies and structural analysis suggested that the PH and BEACH 

domains interact to function as a single unit forming a prominent groove at the interface 

that may be used for the recruitment and interaction with downstream binding partners 

(Jogl et al., 2002).  

PH domains have been first described as internally repeated motifs of the haemato-

poietic protein pleckstrin (Tyers et al., 1988). Despite low sequence homology PH do-

mains share a common protein structure which is composed of a seven-stranded β-

sandwich terminated with a C-terminal α-Helix. (Lemmon and Ferguson, 2000). Many 

proteins that have been identified to contain PH domains are involved in regulatory and 

signal transduction pathways. A prominent feature of many PH-domains is their ability 

to interact with phospholipids at cellular membranes which is mediated by conserved 

basic residues inside the β-sheets of the PH domain. This enables for signal-dependent 

targeting of proteins to different membrane compartments inside the cell (Cozier et al., 

2004). In addition, binding of the PH domain to membrane lipids can induce a confor-

mational change influencing the activation of the host protein (Cozier et al., 2004; 

Welch et al., 2002). The role of the putative PH-domain of FAN has not been investi-

gated yet.  

 

Functional implications of FAN action 

Originally shown to mediate TNF-induced activation of nSMase, FAN has been 

suggested to play an important role in the regulation of major inflammatory cellular 

responses to TNF (Fig. 4) (Adam-Klages et al., 1996). However, mice deficient for 

FAN do not exhibit any striking abnormalities except a delay in cutaneous barrier re-

covery, suggesting a physiological role of FAN in epidermal barrier repair (Kreder et 
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al., 1999). In addition, studies with FAN-deficient mouse embryonic fibroblasts (MEFs) 

have implicated FAN in TNF and CD40 mediated apoptosis (Segui et al., 1999; Segui et 

al., 2001) but failed to shed light on the molecular mechanisms of FAN action. Simi-

larly, use of truncated FAN or FAN-deficient MEFs has suggested the involvement of 

FAN in several different processes like IL-6 secretion (Malagarie-Cazenave et al., 

2004), regulation of cardiac cell death (O'Brien et al., 2003), lysosomal permeabilisation 

(Werneburg et al., 2004) and lysosomal size (Möhlig et al., 2007). However, mechanis-

tic insights into FAN function in TNF-RI signalling are still missing.  

Previously, the involvement of the membrane proximal region of TNF-RI in TNF-

induced actin polymerisation has been suggested (Peppelenbosch et al., 1999). As this 

 
 

Fig. 4. Role of FAN in TNF-RI signalling. FAN binds to the plasma membrane with its N-
terminal PH domain and is associated with the NSD of TNF-RI. TNF stimulation leads to acti-
vation of nSMase via FAN action, leading to the generation of ceramide which has been impli-
cated in modulating TNF-induced apoptosis. Whereas apoptotic and inflammatory signalling are
dependent on adapter proteins like TRADD, TRAF2 and RIP binding to the DD, the pathways
how TNF regulates actin reorganisation remain elusive.  
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membrane proximal region included the NSD, the FAN binding site, we hypothesised 

that FAN is involved in TNF-mediated reorganisation of the actin cytoskeleton. 

 

Actin cytoskeleton reorganisation – dynamically shaping the cell 

The cytoskeleton which comprises a network of three types of protein filaments 

(actin, microtubules and intermediate filaments) is constantly remodelled as the cell 

communicates with its environment. Networks of actin filaments localised prominently 

at the cell periphery are especially sensitive to signals at the membrane-cytoplasm inter-

face, and reorganisation of the actin cytoskeleton is crucial for many cellular processes 

including cytokinesis, endocytosis, vesicle trafficking, cell morphology, polarisation 

and motility. Remodelling of the actin cytoskeleton is driven by continuous polymerisa-

tion and depolymerisation of actin filaments and is controlled by many different actin-

binding proteins (ABPs) that initiate or terminate polymerisation, sequester monomeric 

actin and link filaments to each other or to the membrane (Winder and Ayscough, 

2005). Intracellular and extracellular signals which are transduced by receptors and 

downstream signalling cascades influence reorganisation of the actin cytoskeleton lead-

ing to complete cellular responses like cell migration (Pollard and Borisy, 2003). 

Migration of cells is a multistep process, which starts with protrusion of the leading 

edge and formation of stable attachments near the leading edge. These focal complexes 

which mature into focal adhesions then serve as traction points to generate the propul-

sive force needed for subsequent retraction of the cell rear and forward movement of the 

cell (Fig. 5) (Webb et al., 2002). Protrusion of the leading edge is driving by actin po-

lymerisation resulting in the formation of lamellipodia and filopodia. Lamellipodia are 

broad flat structures composed of a branched network of actin filaments and are neces-

sary to generate the traction force at the leading edge (Small et al., 2002). In contrast, 

filopodia contain long, unbranched, bundled actin filaments forming thin finger-like 

protrusions that dynamically extend and retract from the cell body. Filopodia function in 

sensing environmental cues to guide directed migration of cells or axons (Wood and 

Martin, 2002).  
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Central regulators of actin reorganisation are the small GTPases of the Rho family. 

By cycling between an active GTP-bound and an inactive GDP-bound state, GTPases 

act as molecular switches to control complex cellular processes. Action of a small num-

ber of Rho GTPase family proteins is regulated by an increasing number of activators 

(guanine nucleotide exchange factors, GEFs) and inactivators (GTPase-activating pro-

tein, GAPs) which convey spatial and temporal specificity (Etienne-Manneville and 

Hall, 2002; Hall, 1998). Of the more than 20 members of the Rho family of small 

GTPases Cdc42, Rac and Rho have been initially identified to regulate actin reorganisa-

tion and are best characterised (Nobes and Hall, 1995). Studies in Swiss 3T3 fibroblasts, 

which show very low background actin polymerisation in a serum-starved state and are 

thus suitable for actin studies showed that each GTPase mediates actin polymerisation 

into a specific structure. Injection of Cdc42 induces formation of filopodia, Rac lamelli-

 

Fig. 5. Model of a migrating fibroblast. During cellular migration a network of branched actin 
filaments are formed at the leading edge leading to broad protrusion of the membrane forming a
lamellipodium. Filopodia are formed containing long actin bundles with VASP and additional
proteins located at their tips. Focal contacts and focal adhesions provide the adhesion at filopo-
dia and lamellipodia necessary for retraction of the cell body. Stress fibers contain actin fila-
ments and myosin II providing the contractile tension for cell body retraction. Modified from 
(Nicholson-Dykstra et al., 2005) 
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podia and Rho stress fibers, long contractile bundles of actin filaments and myosin. 

However, since then more GTPases and several isoforms (Rac 1, 2, 3 and Rho A, B, C) 

have been identified with overlapping roles in the formation of the different actin struc-

tures (Aspenström et al., 2004). For example, formation of filopodia can be regulated 

independently of Cdc42 by the recently identified Rho GTPase Rif (Pellegrin and Mel-

lor, 2005).  

The formation of filopodia is crucially dependent on the presence of Ena/VASP 

proteins. The Ena/VASP family includes three mammalian members, Mena (Mammal-

ian enabled), VASP (Vasodilator-stimulated phosphoprotein) and EVL (Ena-VASP-

like), which bind polymerised actin (F-actin) and are localised to places of growing ac-

tin filaments like the distal tips of lamellipodia and filopodia. Initially thought to pro-

mote actin-driven motility, the role of the Ena/VASP family proteins remains contro-

versial. On a molecular level, however, the picture emerges that Ena/VASP proteins, by 

associating with actin filaments, promote filament elongation by anti-capping and bun-

dling activity, thus favouring formation of long, unbranched filaments like those needed 

for filopodia formation (Krause et al., 2002; Schirenbeck et al., 2006). 

 

 
 

Fig. 6. The Rho GTPase cycle. The GTPases cycle between an inactive GDP-bound and an 
active GTP-bound conformation. In the active state, they interact with downstream effectors.
Rho GTPase activity is tightly regulated by a large number of proteins which fall into three 
classes. GEFs (guanine nucleotide exchange factors) catalyse exchange of GDP for GTP thus
promoting activitation of the GTPases. GAPs (GTPase-activating protein) enhance GTP hy-
drolysis leading to inactivation of the GTPases, and GDIs (ganine nucleotide exchange inhibi-
tors) inhibit GTPase activation by blocking membrane association. From (Etienne-Manneville 
and Hall, 2002). 
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TNF-induced actin reorganisation – shaping the immune system 

In contrast to the well-studied role of TNF as key player in innate immunity, little is 

known about the actin-modulatory capacities of TNF. However, complete immune re-

sponses include processes like wound healing and chemotaxis which require reorganisa-

tion of the actin cytoskeleton to influence cell shape, cell polarisation and motility. TNF 

has been shown to modulate motility and chemotaxis by reorganisation of the actin cy-

toskeleton in different cell types ranging from keratinocytes, epithelial cells, endothelial 

cells and fibroblasts to immune cells like neutrophils and dendritic cells (Banno et al., 

2004; Cumberbatch et al., 1997; Kutsuna et al., 2004; Lokuta and Huttenlocher, 2005; 

Postlethwaite and Seyer, 1990; Wojciak-Stothard et al., 1998). It remains largely un-

clear, however, how TNF influences actin reorganisation on a molecular level. Also, the 

participation of actin reorganisation itself for signal transduction events during TNF 

receptor signalling as has been shown for apoptosis induction by CD95 remains unclear 

(Fais et al., 2005).  

Cytokines like TNF and IL-1 have been shown to induce the formation of filopodia 

in fibroblasts (Puls et al., 1999). Filopodia formation by TNF seems to be mediated by 

Cdc42, but the signalling events leading to Cdc42 activation are unknown. Activation of 

Cdc42 appears to be independent of classical TNF-activated signalling pathways like 

JNK and NF-κB. Also, the adapter proteins TRADD, RIP and TRAF2, which bind to 

the death domain of TNF-RI, have been excluded to participate in TNF-mediated actin 

reorganisation (Puls et al., 1999). Rather, the involvement of the membrane proximal 

region of TNF-RI including the FAN binding site in TNF-induced actin polymerisation 

has been suggested (Peppelenbosch et al., 1999), thus making FAN an interesting can-

didate to signal TNF-mediated actin reorganisation.  

 

Aim of the study 

The function and molecular mode of action of the TNF-RI-interacting adapter pro-

tein FAN still remain elusive. As TNF is involved in a variety of central immune re-

sponses and resulting diseases, further elucidation of the signalling mechanisms under-

lying TNF action are of great interest. Reorganisation of the actin cytoskeleton is central 

to many processes involved in cellular immune responses, but little is known about 

modulation by cytokines like TNF. Despite previous studies suggesting involvement of 
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FAN in a variety of cellular processes, details of FAN function in TNF-RI signalling are 

missing. This work aimed to unravel the molecular mechanisms and function of FAN 

during TNF signalling. Using FAN-deficient MEFs, TNF-dependent actin reorganisa-

tion and subcellular localisation of FAN and different FAN variants were investigated. 

Interaction studies with overexpressed or recombinantly expressed FAN were applied in 

order to decipher the molecular mechanisms of FAN action. In order to gain insight into 

the role of the different domains of FAN, deletion mutants were examined for their sub-

cellular localisation and actin reorganisation capacity. The results of this study identify 

FAN as mediator of TNF-induced actin reorganisation important for cell polarisation 

and motility. By interacting with membrane phospholipids, the TNF-RI and the actin 

cytoskeleton machinery FAN links TNF-RI signalling to reorganisation of the actin cy-

toskeleton.  
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Materials and Methods 

Cell culture and transfection 

Mouse embryonic fibroblasts (MEFs), Swiss 3T3 fibroblasts and COS-7 cells were cul-

tured at 37°C in DMEM (Biochrom, Berlin, Germany) and 10% fetal bovine serum. 

HEK 293FT cells were cultured as described above in DMEM / 10% fetal bovine serum 

supplemented with 2 mM L-glutamine, non-essential amino acids and 10 mM sodium 

pyruvate (Biochrom). Cells were transfected using ExGENE (Fermentas, St. Leon-Rot, 

Germany) (MEFs) or the calcium phosphate method (COS-7 and HEK 293FT cells) 

(Wigler et al., 1978).  

 

Antibodies and Reagents 

All chemicals were purchased from Sigma (München, Germany) or Roth (Karlsruhe, 

Germany) unless indicated otherwise.  

 

Table 1. Antibodies used in western blotting 
 
antibody isotype supplier dilution 
GST rabbit polyclonal Amersham Biosciences (Freiburg, 

Germany) 
1:3000 

JNK / p-JNK rabbit polyclonal Cell Signaling Technology (Dan-
vers, USA) 

1:1000 

TNF-RI rabbit polyclonal Santa Cruz Biotechnologies (Hei-
delberg, Germany) 

1:200 

Cdc42 rabbit polyclonal Santa Cruz Biotechnologies  1:200 
Rac1 mouse mono-

clonal 
Upstate (Dundee, UK) 1:1000 

RhoA rabbit polyclonal Santa Cruz Biotechnologies  1:200 
p-Paxillin rabbit polyclonal Santa Cruz Biotechnologies  1:200 
His mouse mono-

clonal 
Quiagen (Hilden, Germany) 1:1000 

Bax rabbit polyclonal BD Biosciences (Heidelberg, Ger-
many) 

1:2000 

VASP rabbit polyclonal Axxora (Lörrach, Germany) 1:2000 
GFP mouse mono-

clonal 
BD Biosciences  1:1000 
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Table 2. Antibodies used in immunofluorescence 
 
antibody isotype supplier dilution
Myc mouse mono-

clonal 
Invitrogen (Karlsruhe, Germany) 1:200 

VASP rabbit polyclonal Axxora (Lörrach, Germany) 1:500 
Paxillin mouse mono-

clonal 
BD Biosciences  1:500 

I-Ad (MHC-II) 
(FITC conju-
gated) 

mouse mono-
clonal 

BD Biosciences  1:200 

TNF-RI (PE con-
jugated) 

mouse mono-
clonal 

R&D Systems (Wiesbaden, Ger-
many) 

1:50 

 

 

DNA constructs 

For construction of FAN-GFP-fusion proteins, open reading frames (ORF) encoding 

human FAN and different variants of FAN were amplified by PCR and cloned into 

pEGFP-C3 vector (Invitrogen, Karlsruhe, Germany). For production of recombinant 

GST-tagged FAN full length protein, the ORF of FAN was cloned into the prokaryotic 

 
 
Fig.  7.  FAN deletion constructs and mutations used in this study. Numbers indicate ami-
nacid positions.  
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expression vector pGEX-4T3  (Amersham Corp., Freiburg, Germany). Similarly, the 

part of the FAN ORF coding for the PH-domain (aa 1-275)  of FAN or different mu-

tants were cloned into pET-20b vector (Novagen/Merck Biosciences, Darmstadt, Ger-

many). FAN-GST fusion proteins for eukaryotic expression and GST-pull down ex-

periments were constructed by cloning the ORFs of different FAN-mutants into pRK-

GST vector. All constructs were verified by sequence analysis. An overview of the 

ORFs used in this study is given in Fig. 7.  

 

Table 3. DNA constructs used in this work 
pEGFP-C3 (EGFP n-term., eukaryot. expression) 

ORF name amino 
acids 

MW 
(kDa)

size 
(bp) 

5’ primer 3’ primer 

FAN-fl 1-917 90 2751 FAN-XhoIfl-5’ FAN-HindIII-3’ 
FAN-ΔPH 275-917 64 1926 FAN-XhoI-dlI-5’ FAN-HindIII-3’ 
FAN-ΔBeach Δ280-579 62 1854 FAN-dBEACH-5’ 

FAN-XhoIfl-5’ 
FAN-HindIII-3’ 
FAN-dBEACH-3’

FAN-ΔWD  181-579 40 1197 FAN-XhoIfl-5’ FAN-HindIII-
dWD2 

FAN-PH 179-279 10 294 FAN-XhoI-dl-5’ FAN-PH-3’ 
FAN-mut10 (K199A) 179-279 10 294 FAN-XhoI-dII-5’ 

FAN-mut10-5’ 
FAN-mut10-3’ 
FAN-PH-3’ 

FAN-mut11 (H212A) 179-279 10 294 FAN-XhoI-dII-5’ 
FAN-mut11-5’ 

FAN-mut11-3’ 
FAN-PH-3’ 

FAN-mut12 (K199A/ 
H212A) 

179-279 10 294 FAN-XhoI-dII-5’ 
FAN-mut11-5’ 
(Template FAN-
mut11) 

FAN-mut11-3’ 
FAN-PH-3’ 

FAN-mut13 
(K199A/H212A) 

1-917 90 2751 FAN-XhoIfl-5’ 
FAN-mut13-5’ 

FAN-mut13-3’ 
FAN-HindIII-3’ 

FAN-mut4 (N328A) 1-917 90 2751 From (Jogl et al., 
2002) 

 

 
pRK-GST (GST n-term, eukaryot. expression) 

ORF name amino 
acids 

MW 
(kDa)

size 
(bp) 

5’ primer 3’ primer 

FAN-fl 1-917 90 2751 FAN-XbaI-fl-5’ FAN-HindII-3’ 
FAN- ΔPH 275-917 64 1926 FAN-XbaI-dII-5’ FAN-HindIII-ph-

3’ 
FAN- ΔBeach Δ280-579 62 1854 FAN-XbaI-fl-5’ 

(Template FAN- 
ΔBeach-GFP) 

FAN-HindII-3’ 

FAN- ΔWD 1-579 58 1737 FAN-XbaI-fl-5’ FAN-HindIII-
dWD2 
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pET-20b (His-tag c-term., prokaryot. expression) 

ORF name amino 
acids 

MW 
(kDa)

size 
(bp) 

5’ primer 3’ primer 

FAN-PH 179-279 10 294 FAN-HindIII-dII-
5’ 

FAN-PH-XhoI-3’ 

FAN-mut10 (K199A) 179-279 10 294 FAN-HindIII-dII-
5’ (template 
FAN-mut10-
GFP) 

FAN-PH-XhoI-3’ 

FAN-mut11 (H212A) 179-279 10 294 FAN-HindIII-dII-
5’ (template 
FAN-mut11-
GFP) 

FAN-PH-XhoI-3’ 

FAN-mut12 (K199A/ 
H212A) 

179-279 10 294 FAN-HindIII-dII-
5’ (template 
FAN-mut12-
GFP) 

FAN-PH-XhoI-3’ 

 

pGEX-4T3 (GST-tag n-term., prokaryot. expression) 

ORF name amino 
acids 

MW 
(kDa)

size 
(bp) 

5’ primer 3’ primer 

FAN-fl 1-917 90 2751 FANfl-XhoI-5’ FAN-Not1-3’ 
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Table 4. List of primers used to generate DNA-constructs used in this work 
 
Primer name Sequence (5’-3’) 
FAN-dBEACH-3’ CAAACTTTTTAGCTATGTGGCAATGTA 
FAN-dBEACH-5’ ACATACCTAAAAAGTTTGTCCCAGACC 
FAN-HindIII-3’ CCCCCCCCCAAGCTTTTAATACTGCAATTTCCA-

GAATAT 
FAN-HindIII-dWD2 CCCCCCAAGCTTTTAAAACTTTGGGGTGATCCTTCG 
FAN-HindIII-ph-3’ CCCCCCCCCAAGCTTTTAATCTCTATCTTGAGGTT-

CATAG 
FAN-mut10-3’ CACCATTTCTGCTGCGCATTCCAT 
FAN-mut10-5’ ATGGAATGCGCAGCAGAAATGGTG 
FAN-mut11-3’ CGTGATGCACACTGCTCCAGGATT 
FAN-mut11-5’ AATCCTGGAGCAGTGTGCATCACG 
FAN-mut13-3’ GGTAGATGTCGGAACACAGATC 
FAN-mut13-5’ GATCTGTGTTCCGACATCTACC 
FAN-Not1-3’ CCCCCCCCCGCGGCCGCTTAATACTGCAATTTCCA-

GAAT 
FAN-PH-3’ CCCCCCCCCAAGCTTGATCTCTATCTTGAGGTTCATAG 
FAN-PH-XhoI-3’ CCCCCCCCCCTCGAGATCTCTATCTTGAGGTTCATAG 
FAN-XbaI-dII-5‘ CCCCCCCCCTCTAGAATGCAAGATAGAGATGATCTC-

TAT 
FAN-XbaI-fl-5’ CCCCCCCCCTCTAGAATGGCGTTTATCCGGAAGAAG 
FAN-XhoI-dI-5’ CCCCCCCCCCTCGAGATGAGAACAT-

CATTTGACAAAAACAGG 
FAN-XhoI-dII-5’ CCCCCCCCCCTCGAGATGCAAGATAGAGATGATCTC-

TAT 
FAN-XhoI-fl-5’ CCCCCCCCCCTCGAGATGGCGTTTATCCGGAAGAAG 

 

 

Western blotting 

Samples were heated in SDS sample buffer for 5 minutes at 100°C and centrifuged 2 

min at 20,000 x g. Polyacrylamid gels (10 – 12 %) were started at 120 mV and contin-

ued at 180 mV in SDS running buffer. After blotting gels on nitrocellulose membranes 

(Protran, Schleicher & Schuell) for 90 min in blot transfer buffer, membranes were 

blocked for 30 min in blocking buffer and incubated with primary antibody for one 

hour. After washing and incubation with secondary antibody for one hour, signals were 

detected on film (Amersham Inc.) using enhanced chemiluminescence (ECL reagent, 

Pierce). If appropriate, signals were quantified using AlphaEasy FC software (Alpha 

Innotech, San Leandro, USA).  
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Table 4. Buffers used for western blot 
 
SDS sample buffer (5x) 25% glycerol 

0.6 M Tris-HCl 
144 mM SDS 
0.1% brome phenol blue 

Blot transfer buffer  25 mM Tris-HCl 
190 mM glycine 
20% methanol 

S-PBS 120 mM NaCl 
10 mM NaH2PO4 
30 mM K2HPO4 
pH 7,6 

Blocking buffer 10 mM Tris-HCl 
150 mM NaCl  
5% milk powder 
2% BSA  
0,1% Tween-20  
pH 7,4-7,6 

SDS running buffer (1000 ml) 190 mM glycine 
20 mM Tris-Base 
0,1% SDS 

 

 

Immunofluorescence 

Cells grown on coverslips were stimulated with TNF (100 ng/ml) for 10 minutes and 

washed twice with cold PBS. Cells were then fixed with 3% paraformaldehyde/PBS for 

20 min and blocked with 3% bovine serum albumin in PBS for 30 min. For staining of 

surface TNF-RI, cells were incubated with PE-conjugated TNF-RI specific antibody for 

1 hr without permeabilisation and washed twice with PBS. For intracellular staining, 

cells were permeabilised with 0.1% saponin during blocking, and incubated with the 

appropriate primary and secondary antibodies in PBS/0.1% saponin for 1 hr each. For 

F-actin staining, cells were incubated with AlexaFluor568- or AlexaFluor488-

conjugated phalloidin in PBS/0.1% saponin for 30 min. Cells were mounted on glass 

slides and examined using an Olympus IX81 fluorescence microscope (Objective: 60x 

PLAPO oil, NA 1.4) or a Leica DMIRE2 confocal microscope. If appropriate, images 

were processed using CellP deconvolution software (Olympus SIS). For quantification 

of filopodia, >100 cells were evaluated under the microscope, and the percentage of 

cells that showed more than five filopodia was calculated (Gadea et al., 2004). 
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Paxillin and JNK phosphorylation 

After stimulation with TNF, MEFs were washed twice in PBS, scraped off the plate and 

lysed in TNE buffer (50 mM Tris-HCl, 100 mM NaCl, 0.1 mM EDTA, 1% NP40, 10 

mM β-glycerophosphate, 1 mM sodium orthovanadate, pH 7.4) for 30 min on ice. After 

clearing by centrifugation, equal amounts of lysate were analyzed by SDS-PAGE and 

western blotting using phospho-specific antibodies against phosphorylated paxillin or 

phosphorylated JNK. 

 

GTPase activation assay 

To assess activated GTPases in cell lysates, an assay was used which exploits the spe-

cific binding of the CRIB domain from human PAK1 to GTP-bound Cdc42 and Rac1 

(Malliri et al., 2002; Sander et al., 1998).  Cells were treated with TNF (100 ng/ml), 

PDGF (20 ng/ml), bradykinin (400 ng/ml) or left untreated, and were lysed by scraping 

cells from the plate in lysis buffer (25 mM HEPES, 1% NP40, 10 mM MgCl2, 100 mM 

NaCl, 5% glycerol, 5 mM NaF, 1 mM NaOVa, 1 mM PMSF, 1 µg/ml aprotinin, 

pH 7.5). Lysates were cleared shortly by centrifugation at 20,000 x g for 5 min. All 

steps were done on ice due to the instability of the GTP bound to the GTPases. Equal 

amounts of lysate were incubated for 30 min with 20 µg GST-CRIB fusion protein, 

which was recombinantly expressed in E.coli (O/N at 30°C) and coupled to glutathione-

sepharose beads (Amersham Corp., Freiburg, Germany). After precipitation by cen-

trifugation, beads were washed four times with wash buffer (25 mM HEPES, 1% NP40, 

30 mM MgCl2, 40 mM NaCl, 1 mM DTT, pH 7.5), eluted in SDS-sample buffer and 

subjected to SDS-PAGE and western blot. GTP-bound and total Cdc42 or Rac1 levels 

were then detected using specific antibodies. For RhoA activation, the same principle 

was applied using the RhoA-binding domain of Rhotekin (Ren et al., 1999) and RhoA-

specific antibody for immunoblot analysis.  

 

Protein expression and purification 

For expression of the FAN-PH domain fused to a His tag, the part of FAN containing 

the PH domain (residues 1-275) was cloned into the pET20b vector (Novagen/Merck 

Biosciences, Darmstadt, Germany) and expressed in E.coli BL21 at 37°C for 3h with 

0.1 mM IPTG. After resuspension of bacterial pellet in lysis buffer (20 mM Tris, 
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500 mM NaCl, 10 mM imidazole, 1% Triton X100, pH 7.5) and subsequent lysis using 

a combination of lysozyme treatment (1 µg/ml for 30 min) and sonication (3 x 30 sec), 

lysates were cleared by centrifugation at 20,000 x g for 30 min. Soluble protein was 

bound to nickel-agarose affinity beads (Novagen/Merck Biosciences, Darmstadt, Ger-

many) and after thorough washing eluted as described by the manufacturer in a buffer 

containing 20 mM Tris-HCl (pH 7.5), 500 mM NaCl, 1 mM PMSF and 100 mM imida-

zole.  

For GST-FAN expression, the ORF of FAN was cloned into the pGEX-4T3 vector 

(Amersham Biosciences (Freiburg, Germany), and protein expression was induced in 

E.coli BL21 with 0.1 mM IPTG at 30°C for 5 h. Cells were resuspended in lysis buffer 

(50 mM Tris, 270 mM sucrose, 1 mM EDTA, 1 mM EGTA, 10 mM β-ME, 1% Triton 

X100), lysed as described above, and cleared lysates were incubated with glutathione-

sepharose beads. After washing in lysis buffer containing 500 mM NaCl, bound protein 

was eluted in a buffer containing 50 mM Tris (pH 7.5), 270 mM sucrose, 10 mM β-ME, 

0.1 mM EGTA and 20 mM glutathione.   

 

Protein-lipid overlay assay 

The protein-lipid overlay assay was performed as described previously (Dowler et al., 

2000). A nitrocellulose membrane spotted with 1 µl of lipid solution containing 

0.5 nmol of phospholipids was blocked for 1 hr in 3% BSA in TBST (50 mM Tris-HCl, 

pH 7.5, 150 mM NaCl, 0.1% Tween 20) and incubated overnight with approximately 

0.1 µg/ml of the indicated His-fusion proteins. After washing in TBST, membranes 

were incubated with monoclonal anti-His antibody and secondary HRP-conjugated an-

tibody. Bound protein was detected by enhanced chemiluminescence.  

 

GST pull down assay 

3x106 HEK 293FT cells were transiently transfected with the DNA constructs coding 

for the indicated GST fusion proteins. After 24 hrs cells were stimulated with TNF (100 

ng/ml) for 10 min or left untreated, lysed in 50 mM Tris-HCl, 15 mM EGTA, 100 mM 

NaCl, 0.1% Triton-X100, 1 mM DTT and 1mM PMSF at pH 7.5 for 30 min on ice, and 

centrifuged for 30 min at 20,000 x g. Supernatants were incubated with 25 µl glu-

tathione-sepharose 4B beads (Amersham Corp., Freiburg, Germany) for 1 hr at 4°C. 
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Beads were washed extensively, resuspended in SDS sample buffer and analysed by 

SDS-PAGE and immunoblotting.  

 

Immunoprecipitation 

3x106 HEK 293FT cells were transiently transfected with the DNA constructs coding 

for the indicated fusion proteins. After 24 hrs cells were stimulated with TNF (100 

ng/ml) for 10 min or left untreated, lysed in TNE lysis buffer (50 mM Tris-HCl, 100 

mM NaCl, 0.1 mM EDTA, 1% NP40, protease inhibitor cocktail (Roche, Darmstadt, 

Germany), pH 7.4) for 30 min on ice, and centrifuged for 30 min at 20,000 x g. 600 µg 

of supernatants were incubated with the indicated primary antibodies (2 µg (VASP, ac-

tin), 1 µg (Bax)) for 2 hrs at 4°C. After addition of 25 µl of GammaBind Sepharose 

Beads (Amersham Corp., Freiburg, Germany) and incubation for 1 hr at 4°C, beads 

were extensively washed, resuspended in SDS sample buffer and analysed by SDS-

PAGE and immunoblotting.  

 

Cell polarity determination  

Cell polarity was examined by analysing reorientation of the Golgi apparatus in a 

wound-scratch test (Kupfer et al., 1982; Nobes, 2000). MEFs were grown on 6-well 

plates to confluent monolayers. After inducing a scratch using a white pipette tip, MEFs 

were immediately incubated with TNF (100 ng/ml) and fixed after incubation for the 

indicated times using 3% paraformaldehyde for 20 min. The Golgi apparatus was 

stained using anti-Rab6 antibody, and nuclei were counterstained using Hoechst 33258. 

The percentage of cells with their Golgi orientated towards the wound was evaluated 

under a fluorescent microscope. Numbers represent means of triplicates of three inde-

pendent experiments each with > 100 cells counted.  

 

F-actin cosedimentation assay 

The F-actin cosedimentation assay was performed using the Actin Binding Protein Bio-

chem Kit (Cytoskeleton, Inc., Denver, USA) according to the manufactures instructions. 

Non-muscle actin was polymerised for 1 hr at room temperature in actin polymerisation 

buffer. Polymerised actin (23 µM) was incubated with approximately 0.5 µg recombi-

nant FAN-GST or control GST protein for 30 min at room temperature and centrifuged 
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at 150,000 x g for 90 min. FAN-GST and GST protein was detected in supernatants and 

pellets using anti-GST antibody after immunoblotting.  

 

Migration of Langerhans cells out of mouse ear epidermal sheets 

Emmigration of Langerhans cells (LCs) from the mouse ear epidermis after injection of 

TNF was measured indirectly by staining LCs in the ear epidermis and measuring their 

density (Cumberbatch et al., 1994). Male and female BALB/c mice (n=10 (wt), n=9 

(FAN-/- MEFs)) were anesthetised, and approximately 25 µl (50 ng) TNF in 

PBS/0.1% BSA or PBS/0.1% BSA as negative control was injected intradermally into 

the ear. After 2 hrs ears were harvested and split into dorsal and ventral halves. The dor-

sal halves were incubated with 0.2 mM EDTA in PBS at 37°C for 1.5 hr to separate the 

epidermis from dermis. After preparation of the epidermis using forceps, epidermal 

sheets were fixed in cold acetone at -20°C for 20 min. LCs in epidermal sheets were 

stained for 30 min using FITC-conjugated anti-MHC-II antibody (anti-I-Ad) diluted 

1:200 in PBS/0.1% BSA. Stained epidermis was mounted on glass slides in PBS and 

analysed using an Olympus IX81 confocal microscope (UPLSAPO 60 x water objec-

tive, NA 1.2). Due to the relative thickness of the epidermal sheets, z-stacks of 12 im-

ages were generated and images are displayed as total intensity projections of all 12 

images of the z-stack. For quantification, LCs were counted in epidermal sheets in trip-

licates for each sample (n=10 (wt), n=9 (FAN-/-)). LC density was calculated as number 

of LCs/mm2 and expressed as changes in percent of control.  

 

Motility analysis using time-lapse video microscopy  

MEFs were seeded on 12-well plates O/N and imaged at 37°C using a Leica inverted 

microscope DMIRE2 with CO2 supply and capture software FW4000. Phase contrast 

pictures were taken every 15 min over 10 hrs, and movies were generated from the 

pictures using the microscope software. Migration paths of individual cells were tracked 

in the movies using DIAS Analysis software (Soll Technologies Inc., Iowa, USA). 

From the migration paths total path length, net path length and overall speed were 

calculated using DIAS software. For each condition, at least 12 cells were tracked in 

four independent experiments. 
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Electrophoretic Mobility Shift Assay (EMSA) (NF-κB activity) 

Electrophoretic mobility shift assays were performed by Katja Wiegmann as described 

previously (Kashkar et al., 2006) using the NF-κB-specific oligonucleotides (Applied 

Biosystems, Darmstadt, Germany) end-labeled with γ-32P-ATP (Amersham Corp., 

Freiburg, Germany). 
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Results 

Filopodia formation is impaired in FAN-deficient fibroblasts 

TNF has been shown to induce reorganisation of the actin cytoskeleton and the 

formation of filopodia (Puls et al., 1999). To determine if FAN is involved in TNF-

induced actin cytoskeleton reorganisation, serum-starved subconfluent MEFs from wild 

type (wt) and FAN-deficient (FAN-/-) mice (Kreder et al., 1999) were stimulated with 

TNF for 10 minutes and stained for polymerised (filamentous) actin (F-actin) using  

 
Fig. 8. Impaired filopodia formation in FAN-/- MEFs after TNF stimulation. A, TNF-induced filo-
podia formation in FAN wildtype (wt) MEFs. FAN wildtype (wt) and FAN-/- MEFs were stimu-
lated with TNF for 10 minutes or left untreated and stained for F-actin using AlexaFluor568-
conjugated phalloidin. Insets are enlargements of the boxed area. Bar = 20 µm. B, Cells of (A) 
were quantified for filopodia formation. Cells were scored positive when presenting at least five 
filopodia. For each experiment, >100 cells were evaluated, and values are represented as mean ±
SD of at least three independent experiments. 
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Fig. 9. Filopodial markers identify TNF-induced protrusive structures as filopodia.
FAN wt and FAN-/- MEFs were stimulated with TNF for 10 minutes and stained for F-actin 
(red) and VASP (A) or paxillin (B) using specific antibodies (green). Bar = 20 µm. C, Z-stack 
of a TNF-treated FAN wt fibroblast. MEFs were treated with TNF for 10 minutes and stained
with for F-actin (green) to visualise filopodia. Confocal pictures along the z-axis were taken to 
exclude that the protrusions are adherent to the substrate and thus rather represent retraction 
fibers than filopodia. 
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labelled phalloidin. Both wild type and FAN-deficient cells contain little polymerised 

actin without TNF stimulation (Fig. 8A). In wild type MEFs, TNF treatment induced 

the formation of protrusive structures resembling filopodia (Fig. 8A-B) (Kozma et al., 

1995; Nobes and Hall, 1995). In contrast, strongly decreased filopodia formation was 

observed in TNF-treated FAN-/- MEFs upon TNF treatment (Fig. 8A-B), suggesting an 

involvement of FAN in the formation of these protrusive structures.  

To confirm the filopodia phenotype of the thin protrusive structures seen after TNF 

treatment, FAN wt MEFs were stained for the filopodial protein VASP and for paxillin, 

which localises to focal complexes associated with protrusive structures like filopodia 

(Fig. 9A-B). Localisation of VASP and paxillin in the observed TNF-induced structures 

 
Fig. 10 FAN deficiency specifically affects TNF-induced actin reorganisation.  
A, FAN deficiency does not affect TNF-induced NF-κB activation. 5x106 FAN wt or FAN-/-

MEFs were stimulated with TNF for the indicated times and analysed for NF-κB binding activ-
ity. B, FAN deficiency does not affect TNF-induced JNK activation. 105 FAN wt or FAN-/-

MEFs were stimulated with TNF for 15 minutes, and total cell lysates were used for im-
munoblotting (IB) and probed for phosphorylated and total JNK using specific antibodies. C, 
Overexpression of FAN restores TNF-induced filopodia formation in FAN-/- MEFs. FAN-/-

MEFs were transfected with pEGFP-FAN (green), stimulated with TNF for 10 minutes and
stained for F-actin (red). Bar = 20 µm. D, Quantitation of FAN-/- MEFs transfected with 
pEGFP-FAN or pEGFP empty vector bearing filopodia. For each experiment, >100 transfected
cells were evaluated, and values are represented as mean ± SD of three independent experi-
ments. 
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identified them as filopodia (Hall, 1998; Kaverina et al., 2002; Mejillano et al., 2004; 

Puls et al., 1999). By using confocal microscopy, a z-stack of a TNF-stimulated cell was 

generated to exclude that the structures represent retraction fibers, actin-containing 

structures which resemble filopodia but remain adhesive to the substratum after cell 

body retraction (Fig. 9C) (Mitchison, 1992).  

It is important to note that FAN deficiency does not lead to a general inability to re-

spond to TNF. Both wildtype and FAN-/- MEFs show equal activation of classical TNF-

inducible targets like NF-κB (Fig. 10A) and JNK (Fig. 10B) in response to TNF stimu-

lation. This is in line with previous observations showing also unaffected MAP kinase 

signalling in FAN-/- cells (Lüschen et al., 2000).  

If FAN is specifically involved in TNF-induced filopodia formation, expression of 

FAN in FAN-/- MEFs should restore the capability of TNF to induce filopodia. When 

FAN-/- MEFs were transfected with a GFP-FAN expression plasmid which lead to a 

transient expression of GFP-FAN, TNF-induced filopodia formation was only observed 

in GFP-FAN transfected FAN-/- MEFs, which could be identified by GFP fluorescence 

(Fig. 10C). Quantification of cells bearing filopodia showed that transient expression of 

FAN in FAN-/- MEFs could restore the capability of TNF to induce filopodia formation 

almost completely. These findings identify FAN as an important mediator of TNF-

induced actin reorganisation and filopodia formation. 

 

FAN signals upstream of Cdc42 in TNF-induced filopodia formation 

Actin reorganisation is controlled by members of the Rho family small GTPases 

(Bishop and Hall, 2000; Nobes and Hall, 1999). Cdc42 has been implicated as a crucial 

effector molecule downstream of TNF initiating actin reorganisation and particularly 

the formation of filopodia (Gadea et al., 2004; Puls et al., 1999). Indeed, transient ex-

pression of a dominant-negative form of Cdc42, Cdc42N17, abrogated filopodia forma-

tion in wildtype MEFs after TNF stimulation underscoring the central role of Cdc42 in 

this process (Figs. 11A-B). These data indicate that FAN acts upstream of Cdc42. Thus, 

wildtype and FAN-/- MEFs were examined for activation of Cdc42 after treatment with 

TNF using a pull down assay which specifically detects GTP-bound Cdc42. Unlike in 

wildtype MEFs, TNF treatment failed to induce Cdc42 activation in FAN-/- MEFs (Figs. 

11C-D), indicating that FAN is required for TNF-induced activation of Cdc42.  
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To exclude a defect in filopodia formation downstream of Cdc42 in FAN-/- MEFs, a 

constitutively active form of Cdc42 (Cdc42L61) was introduced (Puls et al., 1999). As 

Cdc42 also activates Rac1, cotransfection of dominant negative Rac1 (RacN17) is 

necessary to avoid extensive formation of lamellipodia (Fig. 12C) (Nobes and Hall, 

1995). Expression of constitutively active Cdc42 lead to the formation of filopodia in 

both wildtype and FAN-/- cells (Figs. 12A-B) confirming an intact actin cytoskeleton 

machinery in FAN-/- cells downstream of Cdc42.  

Fig. 11. FAN signals upstream of Cdc42 in TNF-induced filopodia formation.  
A, Cdc42N17 abrogates TNF-induced filopodia. FAN wt MEFs were transfected with a myc-
tagged version of dominant-negative Cdc42 (Cdc42N17), treated with TNF for 10 minutes or 
left untreated and stained for F-actin (red) to visualize filopodia and anti-myc to visualize myc-
tagged Cdc42N17 (green).  
B, Quantitation of FAN wt MEFs bearing filopodia transfected with Cdc42N17 or GFP and 
stimulated with TNF. For each experiment, >100 transfected cells were counted, and results are
represented as mean ± SD of at least three independent experiments. 
C, TNF-induced activation of Cdc42. 4x106 FAN wt or FAN-/- MEFs were stimulated with TNF 
for 5 minutes or left untreated. Activated GTP-bound Cdc42 was precipitated from total lysates 
and detected on western blot using a Cdc42-specific antibody. An aliquot of the total lysate used 
for precipitation was analysed for total Cdc42 content in cell lysates.  
D, Cdc42 activation after TNF stimulation was quantified at indicated times by western blotting.
Data are shown as mean ± SD of three independent experiments.  
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Fig. 12. FAN specifically mediates TNF-induced activation of Cdc42. A, Constitutively ac-
tive Cdc42 overcomes the defective TNF-induced filopodia formation in FAN-/- MEFs. FAN wt 
and FAN-/- MEFs were transfected with a myc-tagged constitutively active Cdc42 (Cdc42L61-
myc) and stained for F-actin (red) and myc-Cdc42L61 (green). Cells were cotransfected with 
dominant-negative RacN17 to avoid Rac activation by Cdc42 (see also C). B, Quantitation of 
FAN wt and FAN-/- cells bearing filopodia transfected with Cdc42L61 or GFP as in (A). C, 
Transfection of Cdc42L61 without RacN17 results in formation of extensive lamellipodia due to 
Rac activation by Cdc42L61. D, Quantification of FAN wt and FAN-/- cells bearing filopodia
after bradykinin treatment (400 ng/ml) for 10 minutes. E, Activation of Cdc42 by PDGF and 
bradykinin. FAN wt and FAN-/- MEFs were stimulated with PDGF (20 ng/ml) or bradykinin for 
10 minutes or left untreated. Activated GTP-bound Cdc42 was detected as in Fig. 4C and quan-
tified as in Fig. 4D. E, TNF-induced activation of Rac1 and RhoA. FAN wt and FAN-/- MEFs 
were stimulated with TNF for 10 minutes or left untreated, and activated GTP-bound GTPases 
were precipitated from total lysates and detected on western blot using specific antibodies. Re-
sults were quantified as in (E). 
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To test if FAN deficiency does also affect filopodia formation induced by different 

stimuli other than TNF, FAN wt MEFs and FAN-/- MEFs were stimulated with 

bradykinin, a well established inducer of Cdc42-dependent filopodia in fibroblasts 

(Kozma et al., 1995). Bradykinin could equally induce filopodia in FAN-/- MEFs and 

FAN wt MEFs, showing that FAN deficiency has no effect on bradykinin-induced 

filopodia formation (Fig. 12A). Similarly, activation of Cdc42 after treatment with 

bradykinin or PDGF was not impaired in FAN-/- MEFs, whereas TNF could not activate 

Cdc42 (Fig. 12B). It is important to note that the loss of FAN did not affect the 

activation of other Rho GTPases such as Rac1 and RhoA by TNF. Both wildtype and 

FAN-/- MEFs showed activation of Rac1 and RhoA after treatment with TNF (Fig. 12F). 

These data reveal a specific role for FAN only in TNF-induced activation of Cdc42.  

 

Defective Cdc42 activation in FAN-/- MEFs also affects cell polarisation 

Besides its role in filopodia formation, Cdc42 has been shown to play a central role 

in regulating cell polarity (Etienne-Manneville, 2004). Polarisation of cells for forward 

movement can be assessed by analysing reorientation of the Golgi apparatus in the 

direction of movement (Etienne-Manneville and Hall, 2001; Nobes and Hall, 1999). As 

activation of Cdc42 is impaired in FAN-/- cells, a possible impact of FAN deficiency on 

cell polarity was examined by analyzing Golgi reorientation in a wound-scratch test.  

After staining of the Golgi apparatus and the nucleus, the percentage of cells with 

the Golgi facing towards the wound was evaluated at indicated time points. As TNF 

treatment enhances reorientation of the Golgi (Fig. 13D) and FAN function depends on 

TNF, cell polarisation of FAN wt and FAN-/- MEFs was compared in the presence of 

TNF. Indeed, reorientation of the Golgi apparatus after TNF treatment was markedly 

reduced in FAN-/- MEFs compared to FAN wt MEFs (Fig. 13B-C).  

These data show that the TNF-dependent enhancement of cell polarisation is 

abolished in FAN-/- MEFs, which is consistent with a defective TNF-induced activation 

of Cdc42 in these cells. 
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The PH domain targets FAN to the plasma membrane via binding to 

PtdIns(4,5)P 

The identification of FAN as a mediator of TNF-induced filopodia formation al-

lowed us to assess selectively the functional roles of the single domains of FAN using 

several deletion mutants (Fig. 7 in Materials and Methods). Besides the WD-repeats that 

are essential for TNF-RI interaction, crystal structure determination of neurobeachin 

and sequence comparison with FAN identified the N–terminal part of FAN as a novel, 

weakly conserved PH domain which is associated with the neighbouring BEACH do-

main (Jogl et al., 2002). However, the functional significance of these two domains has 

not yet been elucidated.  

 
Fig. 13. Impaired Golgi apparatus reorientation in FAN-/- MEFs. A, To quantify Golgi re-
orientation, cells were divided into 120° sections and scored positive when the Golgi was inside
the section facing towards the wound. B, Golgi reorientation in a scratch-wound test. After 
scratching of confluent layers of FAN wt and FAN-/- MEFs (0 hr), cells were immediately 
treated with TNF and stained after the indicated times for the Golgi apparatus using anti-Rab6 
antibody and Hoechst 33258 to visualize the nuclei. The dotted line indicates the direction of
the wound. C, Quantification of Golgi reorientation in FAN wt and FAN-/- MEFs. Cells with the 
Golgi orientated towards the wound were scored positive at the indicated times. For each ex-
periment, >100 cells were evaluated. Results are represented as mean ± SD of at least three in-
dependent experiments. D, Golgi reorientation is enhanced in the presence of TNF. FAN wt
MEFs treated with TNF or left untreated were quantified for Golgi reorientation as in (C).  
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One of the important features of actin modulating proteins is membrane localisation 

in order to integrate membrane receptor signals to actin cytoskeletal reorganisation 

(Sechi and Wehland, 2000). Often, membrane targeting of actin modulating proteins is 

achieved by binding to phosphoinositides via PH or PH-like domains (Canton et al., 

2005; Hogan et al., 2004; Olsten et al., 2004). When FAN is expressed as GFP-fusion 

protein, colocalisation with TNF-RI at the plasma membrane can be observed (Fig 14A, 

upper panel). In order to investigate the possible role of the PH-domain in targeting 

FAN to the plasma membrane, deletion mutants lacking either the PH domain or differ-

 
 
Fig. 14. The PH domain directs FAN to the plasma membrane. A, Colocalization of 
plasma membrane TNF-RI and FAN. COS cells were transfected with pEGFP-FAN or 
pEGFP-FAN-ΔPH (green) and TNF-RI lacking a functional death domain to avoid toxic 
effects (Tcherkasowa et al., 2002). Cells were stained for membrane or intracellular TNF-RI 
(red), and analysed by confocal microscopy. B, Membrane localisation of FAN. Confocal 
images of COS cells expressing pEGFP-FAN or different deletion mutants of FAN. Arrows 
indicate membrane staining of pEGFP-FAN. For quantification of membrane staining, inten-
sity profiles along the indicated white lines were generated using ImageJ (Abramoff et al., 
2004) 
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ent parts of FAN were expressed in COS-7 cells as GFP fusion proteins.  

Confocal microscopy revealed that removal of amino acid residues 1-275 which in-

 

 
Fig. 15. The PH domain of FAN specifically binds PtdIns(4,5)P. A, Expression and purifica-
tion of recombinant His-tagged FAN-PH proteins. FAN-PH and FAN-PHK199A/H212A were re-
combinantly expressed and affinity-purified. Equal amounts were analyzed by SDS-PAGE fol-
lowing silver staining or immunoblot (IB) analysis with anti-His antibody. B, Lipid overlay 
assay using purified FAN-PH protein. The recombinantly expressed PH domain of FAN was
incubated with a nitrocellulose membrane spotted with different phopholipids. Bound protein 
was detected using anti-His antibody. C, Lipid overlay assay as in (B) using purified FAN-PH 
and FAN-PHK199A/H212A protein. Equal amounts of protein were incubated with phospholipid-
spotted membranes and detected using anti-His antibody. D, Membrane localisation of FAN-PH 
depends on PtdIns(4,5)P binding. Confocal images of COS cells expressing pEGFP-FAN-PH or 
different point mutantions of FAN. Arrows indicate membrane staining of pEGFP-FAN. Inten-
sity profiles along the white line were generated as in Fig. 14B. PI, phosphatidylinositol, PE, 
phosphatidylethanolamine, PtdIns(4)P, phosphatidylinositol-4-phosphate, PtdIns(3,4)P, phos-
phatidylinositol-3,4-phosphate, PtdIns(4,5)P, phosphatidylinositol-4,5-phosphate, 
PtdIns(3,4,5)P, phosphatidylinositol-3,4,5-phosphate, Ins(1,4,5)P, inositol-1,4,5-phosphate 
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clude the N-terminal PH domain abrogates membrane association of FAN and colocali-

sation with TNF-RI at the plasma membrane (Fig. 9A, lower panel). Rather, FAN-ΔPH 

colocalises with intracellular TNF-RI, which is localised into vesicles {Bradley, 1995 

#59, thus showing that deletion of the PH domain does not affect the overall ability of 

FAN to interact with TNF-RI. Deletion of the C-terminal WD-repeats or the BEACH 

domain had no effects on the subcellular distribution and plasma membrane association 

of FAN (Fig. 14B). These findings show that the N-terminal part containing the novel 

PH domain is necessary for plasma membrane association of FAN.  

Many PH domains are known for their ability to bind to distinct phosphoinositides 

which is often utilised in combination with additional protein-protein interaction as a 

mechanism for signal-dependent membrane targeting. To test if the N-terminal part of 

FAN has phospholipid binding ability, recombinant FAN-PH was expressed in E.coli as 

His-tag fusion protein and affinity-purified (Fig. 10A). In a lipid overlay assay, mem-

branes spotted with different lipids were incubated with recombinant FAN-PH protein, 

and bound protein was detected by western blot using anti-His antibody. As shown in 

Fig. 10B, the recombinant FAN-PH-domain protein bound specifically to PtdIns(4,5)P. 

No binding could be observed either to related phosphoinositides or to different phos-

pholipids like phosphatidylcholin or phosphatidylethanolamine.  

It has been proposed that positively charged conserved residues in the basic binding 

pocket of several PH domains mediate the interaction of PH domains with phospho-

inositides (Cozier et al., 2003; Edlich et al., 2005; Lemmon and Ferguson, 2000). There-

fore, mutations in the residues K199 and H212 of FAN were introduced that are located 

in the basic binding pocket of the FAN PH domain, which was determined by sequence 

alignment with PH domains of well-characterised proteins like phospholipase C 

(Lemmon et al., 1995). After expression and purification of the FAN-PH domain har-

bouring the two mutations (FAN-PHK199A/H212A) (Fig. 15A), the recombinant FAN PH 

protein and the mutated protein were tested for their lipid binding ability in a lipid over-

lay assay. In contrast to wild type FAN-PH protein, FAN-PHK199A/H212A protein failed to 

bind to PtdIns(4,5)P (Fig. 15C), indicating that the mutated basic residues are essential 

for phospholipid binding of the PH domain of FAN.  

PtdIns(4,5)P is mainly located at the plasma membrane and serves as anchor for 

membrane targeting of proteins (Lemmon et al., 1996). Confocal microscopy of FAN-

GFP expressing cells revealed that the membrane localisation observed with FAN-PH 
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and FAN-full length (fl) expressing cells is reduced in cells expressing the PH double 

mutant of FAN either as PH domain alone (FAN-PHK199A/H212A) or as full-length protein 

(FANK199A/H212A) (Fig. 15D). A control mutation located outside the PH domain (N328) 

had no effect on membrane localisation. Thus, the weakly conserved PH domain of 

FAN displays PtdIns(4,5)P binding properties characteristic of classical PH domains, 

which are necessary and sufficient for plasma membrane association of FAN. 

 

Plasma membrane association of FAN is indispensable for TNF-

induced filopodia formation  

To address the functional significance of plasma membrane targeting by the PH 

domain, PH deletion mutants of FAN were investigated for mediating TNF-induced 

filopodia formation. FAN-/- MEFs were transfected with FAN-GFP or with the PH dele-

tion mutant, FAN-ΔPH-GFP, stimulated with TNF and stained for F-actin to visualize 

filopodia. As already shown in Fig. 10C, expression of full-length FAN in FAN-

deficient cells lead to the induction of filopodia after TNF stimulation. In contrast, FAN-

/- MEFs expressing FAN-ΔPH did not form filopodia after TNF stimulation (Figs. 16A-

B). Furthermore, reconstitution of FAN-deficient cells with the double mutant 

FANK199A/H212A did not rescue filopodia formation. As FANK199A/H212A is a loss-of-

function-mutant with regard to both PtdIns(4,5)P binding and plasma membrane target-

ing (Figs. 15C-D), this observation suggest a causative link of PH-directed plasma 

membrane targeting of FAN and TNF-induced filopodia formation.  

Finally, a possible contribution of the BEACH domain to TNF-induced filopodia 

formation was examined. By NMR analysis we have previously suggested that the 

BEACH domain and the PH domain interact to form a functional unit (Jogl et al., 2002). 

Indeed, as shown in Fig. 16B, FAN devoid of the BEACH domain (FAN-ΔBEACH) 

failed to restore filopodia formation after TNF treatment of FAN-deficient cells. Simi-

larly, an internal BEACH mutation (FANN328A) that has been shown to disrupt the 

BEACH / PH interaction (Jogl et al., 2002) did not rescue filopodia formation 

(Fig. 16B). Thus, the PH domain modulates TNF-induced filopodia formation not only 

by plasma membrane association but also through cross-talk with the BEACH domain. 
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Fig. 16. Plasma membrane association of FAN is indispensable for TNF-induced filopodia 
formation. A, TNF-induced filopodia formation depends on the PH-domain. FAN-/- MEFs 
transfected with pEGFP-FAN or pEGFP-FAN-ΔPH (green) were stimulated with TNF for 10 
minutes or left untreated. Cells were stained for F-actin (red) to visualize filopodia. Insets are 
enlargements of the boxed area. Bar = 20 µm. B, Quantification of filopodia formation after 
TNF treatment. FAN-/- MEFs transfected with the indicated pEGFP-FAN fusion constructs were 
stimulated with TNF for 10 minutes or left untreated. Cells were stained for F-actin and quanti-
fied for filopodia formation. For each experiment, >100 transfected cells were counted, and 
results are represented as mean ± SD of three independent experiments.
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FAN connects the plasma membrane to the actin cytoskeleton 

A fundamental property of many plasma membrane associated proteins including 

ERM (ezrin-redaxin-moesin) and WASP (Wiskott-Aldrich syndrom protein)-WAVE 

(WASP-family verprolin homologous protein) protein families is their association with 

the actin cytoskeleton (Bretscher et al., 2002; Takenawa and Suetsugu, 2007). Thus, we 

hypothesised that FAN as an adaptor protein associated with both TNF-RI and the 

plasma membrane might interact with the actin cytoskeleton complex in order to pro-

vide a regulated link from plasma membrane-associated TNF-RI to cortical filamentous 

actin.  

To determine the possible interaction partners of the actin cytoskeleton machinery, 

HEK 293 cells were transiently transfected with FAN-GST or GST alone, and examined 

by GST pull-down assays. As shown in Fig. 17, actin was co-precipitated upon TNF 

treatment with ectopically expressed GST-FAN but not GST. Additionally, weak co-

precipitation of VASP was observed, a member of the ENA/VASP family of actin-

associated proteins which is located at filopodial tips and has recently been shown to 

promote F-actin bundling required for filopodia formation (Reinhard et al., 2001; 

Schirenbeck et al., 2006). As this effect was dependent on TNF treatment, these results 

suggest that the interaction between FAN and the actin cytoskeleton is regulated by 

 
 
Fig. 17. Actin and VASP coprecipitate with FAN. GST pull down assay after TNF treatment. 
HEK 293 cells were transiently transfected with FAN-GST or GST alone and stimulated with 
TNF for 10 minutes or left untreated. Cells were lysed after 24 hrs and subjected to a GST pull 
down assay. Precipitates and total cell lysate were immunoblotted and probed with the indicated 
antibodies (IB) to detect coprecipitated proteins.  
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TNF. Consistently, immunoprecipitation of actin and VASP resulted in coprecipitation 

of ectopically expressed GST-FAN after TNF treatments, corroborating the interaction 

observed in the GST pull down assay.  

GST-FAN, VASP or actin did not coprecipitate with Bax (pro-apoptotic Bcl2 pro-

 
 
Fig. 18. FAN interacts with the actin cytoskeleton. A, Immunoprecipitation (IP) of VASP and 
actin after TNF treatment. Cells were transiently transfected with FAN-GST or GST alone and 
stimulated with TNF for 10 minutes or left untreated. Cells were lysed after 24 hrs, and IP was 
carried out using specific antibodies against actin, VASP or Bax. Precipitates and total cell lys-
ate were immunoblotted and probed with the indicated antibodies. Asterisks (*) represent actin 
band recognised by actin-specific antibody before reprobing with VASP-specific antibody. B, 
IP after TNF treatment using FAN-GFP fusion proteins. Cells were transiently transfected with 
DNA constructs coding for FAN-GFP, stimulated with TNF for 10 minutes or left untreated. 
Lysates were immunoprecipitated as in (B).  



Results 

 45

tein) excluding immunoprecipitation conditions which favour non-specific binding (Fig. 

18A). Furthermore, GFP-tagged FAN was immunoprecipitated in the same fashion as 

GST-tagged FAN, thus excluding any side effects of the protein tag in the precipitation 

assay (Fig. 18B).  

In order to unravel the nature of FAN interaction with the actin cytoskeleton ma-

chinery, direct interaction of FAN with F-actin was analyzed in an in vitro F-actin bind-

ing assay using recombinant FAN-GST and F-actin. As shown in Fig. 19A, FAN-GST 

but not GST alone cosedimented with F-actin demonstrating direct F-actin binding of 

FAN. The observed interactions provide a functional link between FAN and the actin 

cytoskeleton machinery which may result in coprecipitation of proteins involved in filo-

podia formation like VASP as shown in Figs. 17-18.  

As deletion of the PH domain of FAN abrogated membrane localisation and TNF-

induced filopodia formation, the impact of the PH domain on the actin binding proper-

ties of FAN was investigated. Deletion of the PH domain also abolished the interaction 

of FAN with actin in a GST pull down assay whereas binding to TNF-RI remained un-

 
Fig. 19. The interaction of FAN with actin is dependent on the PH domain. A, F-actin 
cosedimentation assay. FAN-GST or control GST proteins were subjected to a F-actin sedimen-
tation assay as described in Materials and Methods. Supernatants (S) and Pellets (P) were ana-
lysed by immunoblot (IB) using anti-GST and anti-β-actin antibodies. Samples without F-actin 
were included as binding control. B, GST pull down assay with cells ectopically expressing
TNF-RI. HEK 293 cells were transiently cotransfected with full-length TNF-RI together with 
FAN-GST, FANΔPH-GST, FAN-PH-GST, or GST alone. After 24 hrs cells were lysed and 
subjected to a GST pull down assay.  
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affected (Fig. 19B). The PH domain alone does not interact with actin suggesting that 

PH modulates FAN actin binding by promoting correct subcellular localisation at the 

plasma membrane.  

 

FAN deficiency affects TNF-dependent motility 

Our data show that FAN connects the TNF-RI signalling complex to the actin cy-

toskeleton in order to transduce signals by TNF. Actin reorganisation and filopodia 

formation are essential processes during cellular motility (Ridley et al., 2003). As FAN-

deficient cells show defects in activation of Cdc42 after TNF treatment leading to im-

paired filopodia formation and cell polarisation, motility of MEFs was analysed using 

live cell imaging. Migration of FAN wt and FAN-/- MEFs was monitored at 15 minutes 

intervals over 10 hours with an inverted microscope with CO2 supply at 37°C. The mi-

gratory paths of individual cells were tracked to visualise motility of the cells. When the 

migratory paths of FAN wt and FAN-/- cells in the absence of TNF were compared, 

similar weak spontaneous migration was observed (Fig. 20A). TNF treatment increased 

random migration in wildtype fibroblasts, whereas FAN-/- cells did not display enhanced 

motility in response to TNF. Specifically, total path length, net path length and overall 

speed increased in FAN wt MEFs after TNF stimulation but not in the FAN-/- cells 

(Fig. 20B). These findings indicate that the defects in actin reorganisation and polarisa-

tion in FAN-/- cells affect cellular motility in response to TNF. 

The regulation of cellular motility and focal complex turnover is linked to phos-

phorylation of paxillin (Petit et al., 2000; Tsubouchi et al., 2002), which is inducible by 

TNF (Brown and Turner, 2004; Fuortes et al., 1994; Hanna et al., 2001). As shown in 

Fig. 20C, western blot analysis using an antibody specific for tyrosine-phosphorylated 

paxillin revealed that TNF induces paxillin phosphorylation in wildtype cells, which 

was hardly discernible in FAN-/- cells. This observation confirms at the molecular level 

the FAN dependent phenotype of TNF-induced cellular motility.  
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TNF-dependent cell motility is especially important during an immune response. 

To analyse the effect of FAN deficiency on motility of immune cells in an in vivo situa-

tion, migration of Langerhans cells (LCs) was analysed in FAN-/- mice. LCs are a subset 

 
 
Fig. 20. Reduced random motility and paxillin phosphorylation in FAN-/- fibroblasts. A, 
Migratory behaviour of FAN wt and FAN-/- MEFs stimulated with TNF or left untreated. 
Pictures were taken every 15 min for 10 h at 37°C using a Leica inverted microscope with CO2
supply. Representative migration tracks of individual FAN wt and FAN -/- MEFs are shown. B,
Quantitation of migratory behaviour. Parameters from migration tracks were computed using
DIAS software. Each bar represents the mean ± SD of at least four independent experiments.
Total path length represents the length of the track, whereas net path length is the distance
between starting and end point of a track. Significance was measured using a Student’s t-test. * 
p<0.05, ** p<0.01. C, Impaired paxillin phosphorylation in FAN-/- MEFs. FAN wt and FAN-/-

MEFs were stimulated with TNF for the indicated times, and phosphorylated paxillin was
detected in total cell lysates by immunoblotting (IB) using phospho-specific anti-paxillin 
antibody. Actin reprobing ensured equal loading.  
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of dendritic cells residing in the epidermis. They are thought to function as first line 

defence in the skin sensing infection and emigrating into draining lymph nodes to elicit 

the appropriate immune response. This migration is dependent on TNF and IL-1 pro-

duced by keratinocytes, and injection of TNF into mouse ear epidermis has been used to 

study the migratory behaviour of LCs (Cumberbatch et al., 1997; Cumberbatch et al., 

1994).  

To analyse the impact of FAN during TNF-induced LC migration, wildtype and 

FAN-/- mice were injected with TNF or PBS into both ears, and ear epidermis was pre-

pared after 2 hrs. Epidermal sheets were stained for MHC-II to visualise LCs 

(Fig. 21A). Both wildtype and FAN-/- ear epidermis contained comparable amounts of 

LCs without TNF treatment (Figs. 21A-B). Injection of TNF resulted in lower numbers 

of LCs in ear epidermis from wild type mice indicating migration of LCs out of the epi-

dermis into draining lymph nodes. In contrast, TNF did not lead to emigration of LCs 

from  ear epidermis from FAN-/- mice indicating a defect in TNF-induced LC motility. 

Thus, FAN deficiency also affects motility of immune cells like LCs in a physiological 

context.  

  

 
Fig. 21. Impaired TNF-dependent migration of Langerhans cells (LCs). A, Staining of LCs 
in mouse ear epidermis. Epidermal sheets of FAN wt and FAN-/- mice injected with TNF or 
PBS as control were stained with anti-MHC-II antibody to visualise LCs. Pictures represent 
total intensity projections of z-stacks taken with a confocal micrsocope. B, Quantification of 
LCs in epidermal sheets. Numbers are represented as mean number of LCs/mm2 ± SD (n=10 
(wt), n=9 (FAN-/-)) and expressed as changes in percent of control.  



Discussion 

 49

Discussion 

In contrast to other TNF receptor adapter proteins such as TRADD, FADD, RIP or 

TRAF2, FAN does not bind to, or interact with death domains, and its precise function 

in specific cellular responses to TNF remained largely unclear. Here we show that FAN 

is crucial for the formation of filopodia and actin cytoskeleton reorganisation induced 

by TNF. A major finding of this study identifies the N-terminal domain of FAN as a 

PH-like domain which specifically binds PtdIns(4,5)P. This lipid interaction is essential 

for targeting FAN to the plasma membrane and for FAN-mediated TNF-induced actin 

reorganisation. FAN interacts with F-actin and VASP upon TNF treatment, thus linking 

TNF-RI signalling to the actin cytoskeleton machinery. FAN-PH mutants with a non-

functional PtdIns(4,5)P binding site were unable to mediate TNF-induced filopodia 

formation. Furthermore, disruption of the intramolecular interaction between the PH 

and BEACH domains abrogated the actin modulatory function of FAN without affect-

ing membrane localisation. Thus, the molecular mode of PH domain action in FAN sig-

nalling is defined by two independent functional features, that is, targeting of FAN to 

the plasma membrane and correct inter-domain interaction between BEACH and PH 

regulating FAN function. 

This study identified FAN as mediator of TNF-induced actin reorganisation and 

links the NSD of TNF-RI and FAN to a function in actin reorganisation. One of the cen-

tral findings of this study demonstrates the crucial role of FAN in TNF-induced filopo-

dia formation. The formation of filopodia seems to be a pivotal characteristic of actin 

reorganisation in fibroblasts induced by TNF (Gadea et al., 2004; Puls et al., 1999; Su-

gihara et al., 2002). Our data show that FAN-deficient MEFs exhibit reduced filopodia 

formation after stimulation with TNF compared to wild-type MEFs (Fig. 8). Some re-

sidual TNF-dependent induction of filopodia could still be observed in FAN-/- MEFs 

which may be attributed to a FAN-independent mechanism of TNF action. MAPK sig-

nalling has been implicated in TNF-induced actin reorganisation (Gadea et al., 2004; 

Kutsuna et al., 2004). It has been shown that TNF-induced MAPK signalling (Lüschen 

et al., 2000) and JNK activation (Fig. 10) remain unaffected by FAN deficiency which 

could account for the observed residual FAN-independent actin reorganisation.  How-

ever, the considerably large reduction of filopodia formation in FAN-/- MEFs can be 

restored by reintroduction of FAN clearly identifying FAN as the main mediator of 
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TNF-induced filopodia formation and actin reorganisation. Although many studies dem-

onstrate the various effects of TNF on actin reorganisation, specific downstream effec-

tors which couple TNF signals to RhoGTPase activation and actin reorganisation have 

not been identified. A previous study already excluded the participation of the classical 

TNF-RI adapter proteins TRADD, RIP and TRAF2 which bind to the death domain of 

TNF-RI (Puls et al., 1999). A role for the membrane proximal domain of TNF-RI in 

actin reorganisation has been suggested in macrophages (Peppelenbosch et al., 1999). 

Using TNF receptor mutants, overall decrease in F-actin was attributed to both the death 

domain and the membrane proximal domain, whereas TNF-induced cortical actin reor-

ganisation was dependent on the membrane proximal domain including the FAN bind-

ing site NSD. Here we provide evidence that identifies FAN as the first TNF-RI inter-

acting adapter protein that has been directly linked to actin reorganisation induced by 

TNF.  

It has already been suggested that TNF modulates actin reorganisation and filopo-

dia formation by activation of Cdc42 (Gadea et al., 2004; Peppelenbosch et al., 1999; 

Puls et al., 1999). We show that FAN is crucial for TNF-induced activation of Cdc42, 

and specifically mediates activation of Cdc42 only by TNF but not by other stimuli like 

bradykinin and PDGF (Fig. 12). Whereas TNF-induced activation of Cdc42 was abro-

gated in FAN-/- cells,  FAN deficiency did not seem to affect the activation of Rac1 and 

RhoA in TNF-treated MEFs. This implicates FAN as a TNF signalling factor selectively 

operating in the Cdc42 activation pathway. However, we cannot exclude cell type spe-

cific effects due to the complex and tissue-specific regulation and interplay of the 

RhoGTPases in different signalling cascades. Further experiments are needed to clarify 

the mode of Rho and Rac activation by TNF and FAN.  

Cdc42 is an important mediator of filopodia formation and cell polarisation which 

are both important steps during cell migration (Etienne-Manneville, 2004). FAN-

mediated activation of Cdc42 induced by TNF subsequently affects filopodia formation 

and cell polarisation (Fig. 8 and 13). Mice lacking FAN show a delay in cutaneous bar-

rier repair which could indicate problems in wound closure, a process where TNF is 

crucially involved. We show in an in vitro wound/scratch assay that FAN mediates po-

larisation of cells which is an important prerequisite for wound closure (Fig. 13). This 

indicates that FAN could be important for TNF-mediated wound healing processes. 

Further experiments assessing polarisation and migration of keratinocytes and wound 
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closure in FAN-deficient mice are needed to reveal the role of FAN during wound heal-

ing.   

 Up to now only the C-terminal WD repeats of FAN have functionally character-

ised. The relevance of the recently identified BEACH domain and the proposed adjacent 

weakly conserved PH-like domain had not been resolved (Jogl et al., 2002). Here we 

show for the first time that the N-terminal fold next to the BEACH domain in FAN has 

features of a classical PH domain. By in vitro lipid interaction assays and subcellular 

localisation, the N-terminal fold of FAN was shown to specifically bind to PtdIns(4,5)P 

and target FAN to the plasma membrane (Fig. 15). Thus, despite low sequence homol-

ogy to other PH domains, the lipid binding and membrane targeting properties identify 

the N-terminal fold of FAN as a PH domain. Analysis of FAN deletion mutants and PH 

mutants with disrupted phospholipid binding capacity demonstrate that the phospho-

inositide interaction and membrane localisation are crucial for FAN-mediated TNF-

induced filopodia formation. Several proteins involved in modulating the actin cy-

toskeleton via regulation of Rho GTPases contain PH or PH-like domains with lipid 

binding properties (Bellanger et al., 2000; Ohta et al., 2006) which enable these proteins 

to localise correctly to the plasma membrane (Cozier et al., 2004; Lemmon, 2004). 

PtdIns(4,5)P has been shown to directly interact with a large number of regulators of the 

actin cytoskeleton and control their activity at the plasma membrane (Hilpela et al., 

2004). Accumulating evidence also suggests PtdIns(4,5)P as a spatial marker to direct 

actin polymerisation close to the plasma membrane (Insall and Weiner, 2001) and as an 

factor regulating the adhesion of the actin cytoskeleton to the plasma membrane 

(Raucher et al., 2000). FAN utilises its PtdIns(4,5)P-binding ability to associate with the 

plasma membrane (Fig. 14), where interaction with membrane TNF-RI and possibly 

additional proteins can occur (Tcherkasowa et al., 2002).  

In this context, the PH domain may modulate the actin binding capacity of FAN in 

a dual way: first by correct subcellular localisation of FAN, and second by promoting a 

conformational change of FAN induced by binding to PtdIns(4,5)P, a mechanism which 

has been also described for N-WASP (neural Wiskott-Aldrich Syndrome Protein) and 

ERM (ezrin-radixin-moesin) proteins (Bretscher et al., 2002; Prehoda et al., 2000). This 

conformational change could have a liberating effect on the adjacent BEACH domain 

which is associated in close contact with the PH domain leading to activation of FAN 

(Jogl et al., 2002). Our results support this idea by showing that TNF-induced filopodia 
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formation requires the presence of the BEACH domain (Fig. 16). Most importantly, a 

mutation in FAN that has been shown to interfere with the interactions between the PH 

and BEACH domains can still localise to the plasma membrane (Fig. 15) but is not able 

to mediate TNF-induced filopodia formation (Fig. 16), demonstrating that the PH-

BEACH interaction is important for TNF-induced actin reorganisation. Structural data 

of the FAN protein itself and further interaction studies with isolated FAN variants will 

shed more light on the interdomain interactions and its importance for FAN function.   

In our data a direct interaction of FAN with Cdc42 could not be detected. Since 

FAN does not contain any known structural features that would suggest GTPase regula-

tory functions like GEF or GAP activity, actin reorganisation and Cdc42 activation by 

FAN seems to be modulated through a different mechanism. As shown in Figs. 17-19, 

FAN appeared as a functionally dormant, plasma membrane associated protein without 

actin cytoskeleton binding property. Upon TNF stimulation FAN interacted with the 

actin cytoskeleton machinery demonstrated by coprecipitation with actin and VASP. 

FAN binds directly to F-actin as demonstrated in an in vitro F-actin cosedimentation 

assay (Fig. 19). A fundamental property of many actin cytoskeleton modulators includ-

ing proteins of the ERM and WASP/WAVE (WASP family verprolin homolgous) fam-

ily is their association with the plasma membrane and the underlying cytoskeleton, con-

 
Fig. 22. Model of FAN-mediated TNF-induced actin reorganisation. In an uninduced state, 
FAN is localised to the plasma membrane by association with PtdIns(4,5)P but does not interact
with the actin cytoskeleton. Upon TNF stimulation FAN interacts with the actin cytoskeleton 
leading to the formation of a signalling complex that links the TNF-RI to the cytoskeleton ma-
chinery. Cdc42 could be activated by FAN via local recruitment of one ore more unknown
modulators leading to actin polymerisation and filopodia formation which is supported by the 
presence of VASP.  
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necting the plasma membrane and plasma membrane proteins to the cortical cytoskele-

ton (Bretscher et al., 2002; Takenawa and Suetsugu, 2007). These proteins are mainly 

activated by extracellular signals, undergo conformational change and bind to the actin 

cytoskeleton. Though ERM proteins were implicated very early as linkers between 

plasma membrane and microfilaments, no direct association with the actin cytoskeleton 

of the isolated protein could be detected at first. Subsequent research revealed that the 

F-actin-binding ability is masked in the dormant protein by association of the N- and C-

terminal domains. PtdIns(4,5)P interaction and phosphorylation induces a conforma-

tional change leading to dissociation of the domains and F-actin binding (Bretscher et 

al., 2002). Similarly, FAN binds TNF-RI, associates with the plasma membrane via 

PtdIns(4,5)P binding (Fig. 15) and interacts with actin cytoskeleton machinery upon 

TNF treatment (Figs. 17-19). By linking the actin cytoskeleton machinery to TNF-RI, 

FAN could form a signalling platform which locally modulates TNF-induced actin re-

organisation in a phosphoinositide-dependent fashion (Fig. 22). A similar mechanism 

has been recently shown for Toll-like receptor signalling where sorting of distinct 

adapter proteins is used to define the signalling pathways to be activated. The adapter 

protein TIRAP (TIR-domain-containing adaptor protein) has been shown to bind to 

PtdIns(4,5)P and selectively recruits the adapter protein MyD88 (myeloid differentia-

tion primary-response protein 88) but not TRIF (TIR-domain-containing adaptor protein 

inducing IFN-β) to specialised regions of the plasma membrane where signalling com-

plexes are assembled (Kagan and Medzhitov, 2006).  

FAN was found to coprecipitate with the actin-binding protein VASP (Figs. 17-18). 

Recent evidence suggests VASP as an important factor to direct actin polymerisation to 

form filopodia instead of lamellipodia by its anti-capping and bundling activity 

(Mejillano et al., 2004). Thus, the presence of VASP could specifically favour filopodia 

induction at sites of TNF-induced actin reorganisation. Association with ENA/VASP 

proteins to mediate filopodia formation has also been shown for IRSp53 (insulin recep-

tor substrate p53) which forms a complex with Mena leading to enhanced formation of 

filopodia (Krugmann et al., 2001). In contrast to IRSp53 that binds to Cdc42, we could 

not detect coprecipitation of Cdc42 with FAN. If FAN does not interact with Cdc42, 

activation of Cdc42 and subsequent actin reorganisation could also be induced by lo-

cally recruiting Cdc42-specific GEFs by FAN-mediated formation of the actin cy-

toskeleton-TNF-RI signalling scaffold. The identification of these yet unknown factors 
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will be an important step towards a more thorough understanding of the molecular ac-

tion of FAN during TNF-induced activation of Cdc42.  

Our results show that FAN binds directly to F-actin (Fig. 19A). However, FAN 

does not contain any known actin binding domains. As the considerably well-studied 

PH domains and WD-repeats are not known for their actin binding ability, the BEACH 

domain of FAN remains as candidate for mediating F-actin binding. BEACH domains 

have been found in proteins from all eukaryotes but little is known about their function 

(De Lozanne, 2003). The BEACH-containing protein LYST (lysosomal trafficking 

regulator, also known as Chediak-Higashi syndrome protein (CHS)) seems to be in-

volved in lysosomal trafficking as cells defective in this protein display enlarged ly-

sosomes and secretory effects, resulting in a rare lysosomal storage disorder (Chediak-

Higashi syndrome) (Ward et al., 2002). A recent study showed that FAN-deficient fi-

broblasts also exhibited enlarged lysosomes (Möhlig et al., 2007). Vesicular trafficking 

is dependent on reorganisation of the actin cytoskeleton and also on Cdc42 activity 

(Ridley, 2006). Thus further experiments addressing the F-actin binding capacity of the 

BEACH domain of FAN and other BEACH proteins will be central to unravelling the 

function of BEACH domains in general.  

Cellular motility is essentially involved in immune reactions, and actin reorganisa-

tion plays an important role in cellular motility. TNF-induced cell migration is impor-

tant during an inflammatory response and affects also processes like chemotaxis of im-

mune cells. As a central mediator of TNF-induced actin reorganisation, FAN was 

shown to affect TNF-induced motility of MEFs (Fig. 20). FAN deficiency results in 

ineffective interplay between membrane TNF-RI and the actin cytoskeleton which may 

lead to impaired actin reorganisation and migration. Furthermore, actin reorganisation 

and filopodia formation by Cdc42 are essential steps for migration of cells (Ridley et 

al., 2003). Impaired Cdc42 activation and subsequent filopodia formation in FAN-/- 

MEFs could also lead to reduced TNF-induced motility.  

Dendritic cells are important mediators of the early phases of the inflammatory re-

sponse as they take up antigen in the periphery and migrate to draining lymph nodes 

where they activate circulating T-cells (Mellman and Steinman, 2001). Migration of 

Langerhans cells (LCs), epidermal dendritic cells, from the epidermis of mouse ears 

into draining lymph node has been widely used as an in vivo model for dendritic cell 

migration during skin irritations (Cumberbatch et al., 1997). As shown in Fig. 21, FAN 
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is required for TNF-induced emigration of LCs from the ear epidermis, clearly placing 

the observed in vitro effects of FAN-mediated TNF-induced actin reorganisation in a 

physiological context. Although it is still the subject of discussion if LCs directly acti-

vate T-cells or have rather regulatory functions (Kissenpfennig and Malissen, 2006), 

these data show the impact of FAN on leukocyte motility under inflammatory condi-

tions. It will be interesting to test the consequences of FAN-deficiency during migration 

of other immune cells, e.g. motility of isolated dendritic cells, neutrophils or macro-

phages in boyden chambers. In addition, analysis of FAN deficiency during murine in-

fection models like experimental leishmaniasis (von Stebut, 2007) are important for 

further characterising the involvement of FAN-mediated migration in immune re-

sponses.  

It has been proposed that PtdIns(4,5)P accumulates at plasma membrane lipid mi-

crodomains like lipid rafts, where it modulates the activity of proteins involved in regu-

lating the actin cytoskeleton (Chong et al., 1994; Honda et al., 1999; Laux et al., 2000). 

Sphingolipids are known to form liquid-ordered microdomains that segregate from the 

more fluid regions of membranes. In particular, sphingomyelin (SM) has been shown to 

form tight hydrophobic interactions with cholesterol and to play a key role in the forma-

tion of lipid rafts (Barenholz, 2004). FAN has been initially identified as the factor asso-

ciated with nSMase activity, an enzyme belonging to the family of sphingomyelinases 

that hydrolyze SM to ceramide (Cer) and thereby alter membrane lipid composition 

(Cremesti et al., 2002). A recently identified novel nSMase3 was shown to be TNF re-

sponsive in a FAN dependent manner (Krut et al., 2006) and to localise to the plasma 

membrane (Wiegmann and Krönke, unpublished data). By modulating nSMase3 activ-

ity, FAN could influence membrane lipid composition and PtdIns(4,5)P distribution and 

thus modulate the dynamics of membrane microdomains and lipid rafts. Furthermore, 

lipid rafts have been implicated in modulation of cell motility (Golub and Caroni, 2005) 

and have been shown to be sites of enhanced actin polymerisation (Rozelle et al., 2000). 

Filopodia formation requires deformation and tubulation of the plasma membrane 

(Mattila et al., 2007). Thus, FAN-mediated modulation of nSMase activity resulting in 

subsequent alteration of membrane microdomains and fluidity could contribute to pro-

trusion formation and motility induced by TNF.  

It is not clear in which way FAN-mediated nSMase activation and actin reorganisa-

tion are connected. Either FAN-induced assembly of an actin-based signalling platform 
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at the sites of TNF stimulation could lead to local activation of nSMase and concomi-

tant  modulation of membrane dynamics important for protrusion formation. The effects 

of actin reorganisation on nSMase activation could be tested by disrupting the signalling 

platform using inhibitors of actin polymerisation and measuring activation of nSMase 

after TNF treatment. More evidence though point to an upstream or parallel function of 

nSMase activation during FAN-mediated actin reorganisation. As rafts have been 

shown to modulate cytoskeletal-membrane communication as well as TNF-RI signal-

ling (Meiri, 2004; Muppidi et al., 2004), modulation of membrane lipids via FAN-

dependent nSMase activity could participate in linking TNF signals to actin reorganisa-

tion. This is supported by a study from Hanna and coworkers who have previously re-

ported that exogenous sphingomyelinase and synthetic C2-ceramide induce membrane 

association of Rho GTPases like Cdc42 and phosphorylation of paxillin and focal adhe-

sion kinase (Hanna et al., 2001). Also, mutations of the PH or BEACH domains of FAN 

that disrupt the interaction between the PH and BEACH domains not only block TNF-

induced filopodia formation but also destroy FAN-mediated activation of nSMase (Jogl 

et al., 2002). Thus, it will be interesting to test a functional link between FAN and 

nSMase3 in TNF-induced actin reorganisation. For example, examining actin dependent 

responses like motility and chemotaxis in a nSMase deficient background will reveal 

the impact of nSMase3 on TNF signalling.  

Reorganisation of the actin cytoskeleton in response to cytokines like TNF plays a 

central role in modulating the shape and behaviour of cells during immune responses. 

Cellular motility modulated by TNF has been shown to be especially important in epi-

dermal repair, wound healing and chemotaxis (Banno et al., 2004; Cumberbatch et al., 

1997; Lokuta and Huttenlocher, 2005). The identification of FAN as a mediator of 

Cdc42 activation, cell polarisation and cell migration closes an important gap in our 

understanding of TNF-induced molecular pathways regulating cytoskeletal reorganisa-

tion. 
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