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1 Introduction 

1.1 Organization of the nuclear envelope  
In eukaryotic cells, the interphase nucleus is surrounded by the 

nuclear envelope (NE) that functions as a barrier separating the nuclear and 

the cytoplasmic compartment. The NE is a highly specialized membrane 

system composed of the morphologically distinct outer and inner nuclear 

membrane (ONM, INM), the nuclear pore complexes (NPCs) and the nuclear 

lamina (Figure 1A). The ONM is contiguous with the rough endoplasmic 

reticulum (rER) that is decorated with ribosomes (Franke et al., 1981; Gerace 

and Burke, 1988; Newport and Forbes, 1987; Watson, 1955) and joins the INM 

at the sites of the nuclear pore membrane within the NPCs (Figure 1B). Further, 

the INM is supported by the nuclear lamina, a dense network consisting of the 

intermediate filaments lamins and lamin-associated proteins which confers 

mechanical stability to the nucleus and provides an anchor for integral proteins 

of the INM (Gruenbaum et al., 2005; Holmer and Worman, 2001).   

 

A B Nuclear pore
membraneInner nuclear

membrane
Outer nuclear

membrane

Nuclear lamina

 
Figure 1: Composition of the nuclear envelope in eukaryotic cells. A. The nuclear envelope is 

a system of nuclear membranes continuous with the rough endoplasmic reticulum. B. 
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The inner nuclear envelope is supported by the nuclear lamina and joins the outer 
nuclear membrane at the sites of the nuclear pore complex (Horton et al., 2002). 

 

 

1.2 Nuclear positioning 
The well-defined position of the nucleus within a cell is essential for 

many processes such as mitosis, meiosis, fertilization as well as cell migration, 

differentiation and polarization which represent the repertoire of all eukaryotic 

cells (Morris, 2000). However, nuclear positioning and migration requires a 

concerted action of the cytoskeleton that includes the actin filaments (F-actin), 

microtubules (MTs) and intermediate filaments (IFs), to which the nucleus must 

be connected. In recent years, two conserved nuclear envelope protein 

families, the KASH domain proteins and the SUN domain proteins have been 

described as molecular linkers connecting the nuclear envelope and the 

cytoskeleton.     

 

 

1.2.1 KASH domain proteins in the ONM  
Although the ONM is contiguous with the tubular system of the rER 

and allows integral proteins to diffuse to both membranes (Ellenberg et al., 

1997; Lippincott-Schwartz et al., 2000), they possess distinct protein 

compositions. A new protein family termed the KASH domain proteins is mainly 

localized in the ONM and has been proposed to connect the nucleus to the 

different cytoskeletal elements. These proteins can be divided into three 

groups based on their interaction with (1) F-actin: Anc-1 of Caenorhabditis 

elegans (Hedgecock and Thomson, 1982; Starr and Han, 2002), Msp-

300/Nesprin in Drosophila melanogaster (Rosenberg-Hasson et al., 1996; Volk, 

1992; Zhang et al., 2002), as well as Nesprin-1 and 2 (synonym Syne, Myne, 

Enaptin and NUANCE) in mammals (Apel et al., 2000; Padmakumar et al., 

2005; Zhang et al., 2001; Zhen et al., 2002); (2) IFs: Nesprin-3 in mammals 

(Wilhelmsen et al., 2005); (3) centrosome and/or MTs: Zyg-12 (Fridkin et al., 
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2004; Malone et al., 2003) and UNC-83 in worms (Malone et al., 1999; Reinsch 

and Gonczy, 1998) and Klarsicht in flies (Fischer-Vize and Mosley, 1994; 

Patterson et al., 2004).   

All KASH domain proteins reported so far possess a highly conserved 

C-terminal region referred to as the Klarsicht/Anc-1/Syne-1 homology (KASH) 

domain harboring a single transmembrane domain and a short tail sequence of 

approximately 35 amino acids (Starr and Han, 2005; Wilhelmsen et al., 2006). 

Regardless of the KASH domain, the three groups of KASH domain proteins 

differ in their N-terminal domain organization that is specialized for the 

connection to the different cytoskeletal components (Figure 2).  
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Figure 2: Proposed model for nuclear positioning and migration. SUN domain proteins, e.g. 

UNC-84, reside in the inner nuclear membrane (INM) by interaction with the nuclear 
lamina or lamin-binding proteins. The SUN domain of UNC-84 binds directly to the 
KASH domain proteins (UNC-83- or Nesprin-related protein), which are retained 
specifically in the outer nuclear membrane (ONM). UNC-83-related proteins connect 
the nucleus to microtubules, whereas Nesprin-related proteins link the nucleus to actin 
filaments (Wilhelmsen et al., 2006). 
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1.2.1.1 Nuclear positioning on F-actin and IFs  

The F-actin binding KASH domain proteins contain two N-terminally 

located calponin-homology (CH) domains followed by a central stretch of 

spectrin-like repeats and the KASH domain, giving rise to the giant molecules 

of up to 1 MDa. Anc-1 is unique as it harbors six interspersed coiled-coil 

repeats in its elongated domain. Worms, carrying mutated anc-1 (nuclear 

anchorage defective, expressed as a 950 kDa protein) failed to position the 

nuclei and mitochondria correctly and the nuclei floated freely in the cytoplasm 

(Hedgecock and Thomson, 1982; Starr and Han, 2002).  

In agreement, flies generated with the germ-line specific msp-300SZ-75 

allele for a mutated 300 kDa muscle-specific protein were observed with 

defective nuclear positioning during oogenesis (Yu et al., 2006). Moreover, 

binding of Msp-300/Nesprin to F-actin in vivo is essential for myogenesis in 

Drosophila embryos, as the lethal msp-300SZ-75 mutation caused defects in 

myotube migration, attachment and contraction (Rosenberg-Hasson et al., 

1996; Volk, 1992).  

In mammals, Nesprin-1 and 2 occur as diverse isoforms generated by 

alternative splicing, transcription initiation and termination of the genes syne-1 

and syne-2 (Warren et al., 2005), whereas the giant Nesprin-1 and Nesprin-2 

isoforms Enaptin and NUANCE (976 and 764 kDa) encompass completely the 

CH domains and the KASH domain and can potentially reach out 500 nm from 

the nuclear envelope into the cytoplasm (Starr and Han, 2005). Similar to Msp-

300/Nesprin in flies, Nesprin-1 (Myne-1) was first found to position the 

postsynaptic nuclei at neuromuscular junctions and within myocytes, but is also 

expressed in other cell types (Apel et al., 2000; Mislow et al., 2002; 

Padmakumar et al., 2005; Zhang et al., 2001; Zhen et al., 2002). Nevertheless, 

Nesprin-1 may have other functions despite of nuclear positioning, e.g. when 

overexpressed in epithelial cells it acted as a dominant-negative inhibitor for 

the morphology of the Golgi apparatus that collapsed into a condensed 

structure near the centrosome (Gough et al., 2003).         

Additionally, the mammalian Nesprin-3, a protein of 110 kDa, lacking a 

calponin homolgy domain interacts with plectin a protein that in turn is capable 
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to cross-link cytoplasmic intermediate filaments and F-actin as it also harbors 

an F-actin binding domain. This indicates that the small Nesprin isoform can 

also contribute to nuclear positioning (Wilhelmsen et al., 2005).        

 

  

1.2.1.2 Nuclear positioning on centrosome and microtubules  

Evidently, positioning and migration using F-actin and IFs may be 

assisted by the additional connection of the nucleus to the centrosomes and 

microtubules, a property attributed to the second group of KASH domain 

proteins including Zyg-12 and UNC-83 in C. elegans and Klarsicht in D. 

melanogaster.  

In detail, worm embryos with the zygote defective (zyg-12) genetic 

background die owing to chromosome segregation defects caused by the 

nucleus-centrosome detachment (Malone et al., 2003). Notably, Zyg-12 binds 

to dynein and is a member of the Hook protein family that has been suggested 

to link membrane compartments and microtubules (Walenta et al., 2001). 

However, of the three Zyg-12 isoforms (A, B and C) derived from alternative 

splicing of a single gene the isoforms B and C are localized at the ONM, 

whereas A lacking a KASH domain is associated with the centrosome. In the 

proposed two-step model, all Zyg-12 isoforms migrate on microtubules in a 

dynein-dependent manner, but Zyg-12B and C are localized at the nuclear 

envelope and Zyg-12A is attached to the centrosome. Once the nucleus and 

centrosome are located in close proximity the connection is provided by 

heterodimerization of Zyg-12B and/or C with Zyg-12A (Malone et al., 2003).  

Comparable to Zyg-12, Klarsicht of D. melanogaster participates in 

nuclear migration from the basal compartment to the apex of the imaginal disc 

during the compound eye development by attachment of the nucleus to the 

centrosome and microtubules (Fischer et al., 2004; Fischer-Vize and Mosley, 

1994; Patterson et al., 2004). Distinctly different from Zyg-12, Drosophila 

embryos bearing a null mutation in the gene klarsicht are viable and fertile 

regardless of the misshapen photoreceptors.  
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UNC-83 is essential for the nuclear migration in certain tissues during 

embryonic development of the worm, such as the hypodermal cells and the 

intestine. Interestingly, though mutations in the unc-83 gene abrogated nuclear 

migration, the nucleus-centrosome connection was not disrupted hinting at a 

putative function of UNC-83 in nuclear migration along microtubules, but not 

essential for the connection to centrosomes yet to be uncovered (Lee et al., 

2002; Starr et al., 2001; Sulston and Horvitz, 1981). In summary, KASH 

domain proteins of the ONM engage in interactions with different cytoskeletal 

elements to allow the processes nuclear positioning and migration and are thus 

essential both for the embryonic development and the organization of the 

cytoplasm.     

 

 

1.2.2 SUN domain proteins in the INM  
As the integral proteins can diffuse laterally throughout the rER and 

the ONM, specific mechanisms are required to retain distinct proteins at the 

ONM. Studies on the KASH domain proteins revealed that they are recruited to 

the ONM by the SUN domain proteins, a new INM protein family.  

The first SUN domain protein UNC-84 was identified in C. elegans. 

Mutants exhibiting an uncoordinated movement due to the defects in nuclear 

positioning and migration resulted from alterations in the gene unc-84 (Horvitz 

and Sulston, 1980; Malone et al., 1999; Sulston and Horvitz, 1981). 

Interestingly, the phenotype of the unc-84 mutation resembles that of the unc-

83 worms indicating that both proteins are involved in a common mechanism 

(Starr et al., 2001). The N-terminal domain of UNC-84 containing several 

putative transmembrane domains does not show sequence or domain 

similarities with any known proteins whereas a C-terminal region of 

approximately 120 amino acids shares a significant homology with the C-

terminus of the spindle pole body protein Sad1 in Schizosaccharomyces 

pombe (Hagan and Yanagida, 1995). Therefore it was designated as the 

Sad1/UNC-84 (SUN) domain (Malone et al., 1999; McGee et al., 2006). As 

illustrated in Figure 3, further database searches discovered two SUN domain 
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proteins in D. melanogaster and D. discoideum (termed Dd Sun-1 and Dd Sun-

2) and four in mammals (Crisp et al., 2006; Dreger et al., 2001; Hasan et al., 

2006; Jaspersen et al., 2006; Malone et al., 1999; Padmakumar et al., 2005). 

The presence of SUN domain proteins across many species and their 

propensities to interact with KASH domain proteins indicate a conserved 

mechanism for nuclear positioning and migration.   
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Dd Sun2

Dd Sun1

 
Figure 3: Phylogeny of SUN domain proteins (Jaspersen et al., 2006). SUN domain proteins 

are present throughout various species. Based upon the sequence homology in the 
SUN domains, SUN domain proteins are grouped into subfamilies. D. discoideum Sun-
1 is grouped into the SUN3 subfamily, whereas D. discoideum Sun-2 is grouped into 
the subfamily of the SUN-like proteins (SLP).    
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1.2.2.1 Domain architecture of SUN domain proteins  

In metazoa, SUN domain proteins interact with the nuclear lamina, 

whereas the conserved C-terminal SUN domain is responsible for the binding 

to the KASH domain proteins. Despite of these characteristics, they exhibit 

great variabilities in their N-terminal domain architecture that appear to contain 

functionally related domains. In general, most of these proteins possess at 

least one transmembrane domain, e.g Sad1 and human Sun-3 (Crisp et al., 

2006; Hagan and Yanagida, 1995), whereas some may have multiple 

transmembrane domains as nine hydrophobic domains were pedicted for 

UNC-84 and three for human Sun-1 (Malone et al., 1999; McGee et al., 2006; 

Padmakumar et al., 2005). Extraordinarily, none of the two uncharacterized 

SUN domain proteins in D. melanogaster possess a transmembrane domain. A 

further feature of the SUN domain proteins is the presence of at least one 

coiled-coil domain that may promote dimerization or oligomerization (Crisp et 

al., 2006).  

 

1.2.2.2 INM targeting of SUN domain proteins  

In general, integral proteins of the INM are translated on the rER and 

diffuse along the ONM to the INM by passing the highly curved nuclear pore 

membrane of the NPCs which occurs in an ATP-dependent and temperature-

sensitive manner (Ohba et al., 2004; Soullam and Worman, 1993; Soullam and 

Worman, 1995). According to the “Diffusion-Retention” model implying that 

INM proteins may be trapped in there by interaction with lamins or chromatin-

binding proteins or both  (Ellenberg et al., 1997; Ohba et al., 2004; Ostlund et 

al., 1999; Smith and Blobel, 1993; Worman and Courvalin, 2000), SUN domain 

proteins may be targeted to the INM and retained there by interaction with 

lamins, as C. elegans UNC-84 and matefin/Sun-1, mammalian Sun-1 and Sun-

2 colocalize with lamins (Crisp et al., 2006; Fridkin et al., 2004; Hodzic et al., 

2004; Lee et al., 2002; Padmakumar et al., 2005). Interestingly, the N-termini 

of matefin/Sun-1 and mammalian Sun-1 and Sun-2 bind to lamins in vitro, but 

this interaction is not essential in vivo since they localized to the INM in the 
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absence of lamins (Crisp et al., 2006; Fridkin et al., 2004; Haque et al., 2006; 

Hasan et al., 2006; Padmakumar et al., 2005). On the contrary, though UNC-

84 does not bind to lamin, it is localized to the INM in a lamin-dependent 

fashion (Lee et al., 2002) suggesting that an alternate mechanism for INM 

retention may exist.  

 

 

1.2.2.3 Interaction of the SUN with the KASH domain proteins   

In the nuclear envelope, the SUN and the KASH domain proteins 

interact with each other by projection of their C-termini into the perinuclear 

space, connecting the nucleoskeleton with the cytoskeleton (Figure 2). The 

combination of the SUN domain proteins with various KASH domain proteins 

gives rise to a great repertoire linking the nucleus silmultaneously to different 

cytoskeletal elements: (1) combinations of UNC-84 with Anc-1 or UNC-83 

provide nuclear positioning on F-actin or migration along MTs (Lee et al., 2002; 

Starr and Han, 2002; Starr et al., 2001); (2) interaction of mammalian Sun-1 

and Sun-2 with Nesprin-1/Nesprin-2 or Nesprin-3 contribute to the nuclear 

positioning on F-actin or Ifs (Crisp et al., 2006; Haque et al., 2006; 

Padmakumar et al., 2005; Wilhelmsen et al., 2005); (3) the complex formed by 

matefin/Sun-1 and Zyg-12 is capable to transport the nucleus on MTs towards 

the centrosome and maintain their proximity (Fridkin et al., 2004; Malone et al., 

2003). Likewise, interaction of Sad1 with Kms1, which is a KASH domain 

protein in S. pombe, is required for the localization of Sad1 at the spindle pole 

body, the centrosome equivalent of yeast (Niwa et al., 2000).  

Based on their location and their interactions SUN domain proteins as 

linker proteins in the INM may transduce mechanical signals originating in the 

cytoplasm to the nucleus that responds with biochemical processes. Despite of 

the important role of the SUN domain proteins in nuclear positioning and 

migration, non-mechanical roles such as influencing the fat metabolism, 

germline cell proliferation/maintenance and telomere clustering has become 

evident (Fridkin et al., 2004; Greer and Brunet, 2005; Niwa et al., 2000).     

 



1 Introduction 
 

12 

1.3 The model system Dictyostelium discoideum  
Dictyostelium discoideum is a haploid eukaryote with a simple but fast 

and well-defined life-cycle which facilitates genetic, biochemical and cell 

biological studies. The social amebae feed on bacteria, and live as single cells 

that develop into multicellular organisms in response to starvation. During the 

development, cells migrate chemotactically following a central cAMP source to 

form aggregates (slugs) that induce the expression of cell-cell adhesion 

molecules establishing the mound structures. The mounds differentiate into the 

terminal fruiting bodies composed of a head filled with spores supported by a 

stalk of vacuolated cells (Figure 4).   

D. discoideum shares several features with mammalian cells, thus it is 

a well-accepted model to study many processes such as chemotaxis, cell-cell 

adhesion and morphogenesis. As nuclear positioning and migration is 

important for the development of various tissues in worm, fly and mammals, we 

set out to examine the new field of nuclear envelope proteins in D. discoideum.    

 

 
Figure 4: Development of D. discoideum from single-cell ameba into the multicellular fruiting 

bodies (courtesy of M. Grimson, R. Blanton, Texas Tech University).  
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1.3.1 Aim of the study 
To date, the organization and function of the nuclear envelope is not 

understood in D. discoideum, this challenged us to shed light onto these 

aspects. The first nuclear envelope protein described so far, interaptin (Rivero 

et al., 1998), may function as a KASH domain protein as suggested by the 

findings in higher eukaryotes.  

The prediction of two SUN domain proteins (Sun-1 and Sun-2) in the 

D. discoideum proteom prompted us to investigate the function of the SUN 

domain proteins using biochemical and cell biological approaches. In this study, 

we focus on the proteins Sun-1 and interaptin. Particularly, we are interested in 

(1) whether Sun-1 is targeted to the inner nuclear membrane in the absence of 

lamins, as reported for other SUN domain proteins; (2) whether Sun-1 interacts 

with interaptin in a manner similar to mammalian SUN domain proteins and the 

Nesprins to connect the nucleus to the elements of the cytoskeleton; (3) 

whether these proteins have evolved other functions in the ameba. 
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2 Material and Methods   

2.1 Materials 
Standard laboratory reagents and materials were obtained from local 

suppliers, fine chemicals from Sigma if not otherwise indicated and 

instruments were supplied by the Departmental facility. 

 

2.1.1 Kits 
Nucleobond AX 100 Macherey Nagel 
NucleoSpin Extraction Kit Macherey Nagel 
Qiagen RNeasy Mini Kit Qiagen 
pGEM-T easy Cloning Kit  Promega 

 

2.1.2 Enzymes, antibodies and antibiotics 

2.1.2.1 Enzymes for molecular biology purposes 

Calf intestinal alkaline phosphatase (CIP)  Roche 
Klenow fragment Roche 
Lysozyme Sigma 
M-MLV reverse transcriptase Promega 
Proteinase K Merck 
Restriction endonucleases New England Biolabs 
Ribonuclease A (RNase A) Sigma 
Ribonuclease H (RNase H) Boehringer 
T4 DNA ligase Invitrogen 
Taq polymerase  Amersham Pharmacia 

 

 

2.1.2.2 Primary antibodies 

Mouse monoclonal anti-actin antibody  
(Act1-7) 

(Simpson et al., 1984) 

Mouse monoclonal anti-GFP antibody  
(K3-184-2) 

(Noegel et al., 2004) 

Rabbit polyclonal anti-GFP antibody  Gift from M. Schleicher 
Rabbit polyclonal anti-GST antibody Unpublished 
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Mouse monoclonal anti-interaptin antibody  
(260-60-10) 

(Rivero et al., 1998) 

Mouse monoclonal anti-PDI-1 antibody  
(221-135-1) 

(Monnat et al., 1997) 

Mouse monoclonal anti-Sun-1 antibody  
(K55-432-2), western blot analysis 

This study 

Mouse monoclonal anti- Sun-1 antibody  
(K55-460-1 and K55-450-1), 
immunofluorescence,   
(chromatin) immunoprecipitation  

This study 

Mouse monoclonal anti-Spermatozopsis αβ-
tubulin antibody (D. discoideum centrosome) 
 (K29-359-31)  

Gift from K. Herkner 

Mouse monoclonal anti-α-tubulin antibody  
(6-11B1)  

(Piperno and Fuller, 1985) 
(Generous gift from 
Michael Koonce) 

Rat monoclonal anti-α-tubulin antibody 
(YL1/2) 

Kilmartin et al., 1982 

 

2.1.2.3 Secondary antibodies 

Goat anti-mouse IgG, peroxidase conjugated  Sigma 
Goat anti-rabbit IgG, peroxidase conjugated   Sigma 
Goat anti-mouse IgG, Cy3 conjugated   Sigma 
Goat anti-mouse IgG, Cy5 conjugated   Sigma 
Goat anti-mouse IgG, Alexa 568 conjugated   Molecular probes 
Goat anti-rat IgG, Alexa 568 conjugated   Molecular probes 

 

2.1.2.4 Antibiotics 

Ampicillin    Gruenenthal 
Blasticidin S ICN Biomedicals 
G418 Sigma  
Dihydrostreptomycinsulfate Sigma 
Tetracyclin Sigma 
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2.2 Media and buffers 
All media and buffers were prepared using deionized water, filtered 

through an ion-exchange unit (Membra Pure). All media and buffers were 

sterilized by autoclaving at 120°C; the antibiotics were added to the media 

after cooling to approx. 50°C. Agar plates were prepared using a semi-

automatic plate-pouring machine (Technomat). 

 

2.2.1 Media and buffers for Dictyostelium culture    
AX2 medium, pH 6.7  
(Claviez et al., 1982) 
 

7.15 g yeast extract 
14.3 g peptone (proteose) 
18.0 g maltose 
0.486 g KH2PO4 
0.616 g Na2HPO4x2H2O  
ad 1liter H2O  

Soerensen phosphate buffer, 
pH 6.0 (Malchow et al., 1972) 

2 mM Na2HPO4, 
14.6 mM KH2PO4                 

Phosphate agar plates, pH 6.0 9 g agar 
ad 1 liter Soerensen phosphate 
buffer  

SM agar plates,  
pH 6.5 (Sussman, 1951) 

9 g agar 
10 g peptone 
10 g glucose 
1 g yeast extract 
1 g MgSO4x7H2O  
2.2 g KH2PO4  
1 g K2HPO4 
ad 1 liter H2O   

 

2.2.2 Media for Escherichia coli culture    
LB medium, pH 7.4 (Sambrook et al., 1989) 
SOC medium, pH 7.0 (Sambrook et al., 1989) 

 

2.2.3 Buffers     
10x MOPS (pH 7.0 or pH 8.0)  41.9 g MOPS 

7 ml 3 M sodium acetate 
20 ml 0.5 M EDTA 
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ad 1 liter H2O    
10x NCP (pH 8.0)  12.1 g Tris/HCl, pH 8.0 

87.0 NaCl 
5 ml Tween 20 
ad 1 liter H2O  

1x PBS (pH 7.4)  8.0 g NaCl  
0.2 g KH2PO4  
1.15 g Na2HPO4   
0.2 g KCl  
ad 1 liter H2O   

20x SSC (pH 7.0)  3 M NaCl 
0.3 M sodium citrate 

TE buffer (pH 8.0)  10 mM Tris/HCl, pH 8.0 
1 mM EDTA 

10x TAE buffer (pH 8.3) 27.22 g Tris 
13.6 g sodium acetate 
3.72 g EDTA 
ad 1 liter H2O   

 

2.2.4 Biological materials     
Bacterial strains  
E. coli DH5α (Hanahan, 1983) 
E. coli XL1 Blue Bullock et al., 1987 
Klebsiella aerogenes (Williams and Newell, 

1976) 
D. discoideum  strains  
AX2-214, an axenically growing derivative of 
wild strain NC-4, commonly referred to as 
AX2 

(Wallraff et al., 1986) 

abpD- (AX2 strain carrying a disrupted locus 
of interaptin) 

(Rivero et al., 1998) 

abpD+ (AX2 strain overexpressing interaptin) (Rivero et al., 1998) 
MAD-GFP (AX2 overexpressing the C-
terminal region of interaptin, referred to as 
GFP-IntCT in this study) 

(Rivero et al., 1998) 

 

2.2.5 Plasmids and constructs     
pGEM-T easy  Promega 
pGEX-4T2 
pGEX-4T3 

 
Clontech 

pDEX-GFP79  
pGEX-4T2-SunCT1 Amino acid 411 to 572, overlapping the 

coiled-coil domains located between the 
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transmembrane domain and the SUN 
domain (cloned into pGEX4T2 using 
XmaI/XhoI) 

pGEX-4T2-SunCT2   Amino acid 700 to 905, overlapping the SUN 
domain  
(cloned into pGEX4T2 using XmaI/XhoI) 

pDEX-GFP79-∆NSun-1   Amino acid 283 to 905 overlapping the 
transmembrane domain, coiled-coil domains 
and SUN domain (cloned into pDEX-GFP-79 
using ClaI) 

 

2.2.6 Oligonucleotides     
SunCT1    
Xma-SunCT1-For 5'-CCCGGGGCATCATCAAACATTTTACACAATAGAT 

TTAGTAATAGTA 
Xho-SunCT1-Rev 5'-CTCGAGACTACCATAATAAAAGTTTTTCCATGGG 

TCTC 
SunCT2  
Xma-SunCT2-For  
 

5'-CCCGGGGCTACAAAT TGGATATTCCCACAACCA 
AAA 

 
SunCT2-Xho-Rev  
 

5’-CTCGAGCTCTTGAATAATTTGTATTTGTTCTTGTT 
CTGGAT 

GFP-∆NSun-1   
ClaI-∆NSun-1-For 5’-ATCGATAAAGTTAATTTTAAACAAGCTATTTGGAT 

TTTC 
∆NSun-1-ClaI-Rev 5’-ATCGATATCGATTTATAATTCATCAGATTGTTGTT 

G 
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2.3 Methods 
Standard molecular biology techniques were performed as described 

in “A Laboratory Manual. Cold Spring Harbor Laboratory Press, NY, Vol 1-3 

(Sambrook et al., 1989). 

 

2.3.1 Generation of cDNA   
For the generation of cDNA, 1-5µg of total RNA was incubated with 

the M-MLV reverse transcriptase in each reaction as recommended in the 

manufacturer’s protocols.     

2.3.2 Plasmid DNA and total RNA isolation  
Plasmid DNA from bacteria and total RNA from vegetative AX2 cells 

(shaking culture) were extracted using Nucleobond AX 100 and Qiagen 

RNeasy, repectively, following the manufacturer’s instructions. The plasmid 

DNA was used for transfection of AX2 cells; RNA samples were used in for 

reverse transcription and subsequent cDNA generation.   

 

 

2.3.3 Constructs  

2.3.3.1 GST-SunCT1 fusion vector  

The two coiled-coil domains amino acid 412 to 571 is encoded in the 

cDNA position 1223 to 1710 bp. A PCR fragment extending from DNA 

position 1220 to 1713 (overlapping amino acid 411 to 572) was generated 

with a 5’-XmaI and a 3’-XhoI, the fragment was cloned as into the expression 

vector pGEX4T2 using XmaI/XhoI. The resulting vector GST-SunCT1 was 

expressed in the E. coli strain XL1 Blue. 
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2.3.3.2 GST-SunCT2 fusion vector  

The SUN domain spans the amino acid 712 to 859 that corresponds 

to the position 2133 to 2877 in the cDNA. We have cloned the downstream 

conding region from position 1885 to 2718 bp including both the SUN domain 

and the ER retention signal (amino acid 608 to 905) XmaI/XhoI into the 

expression vector pGEX4T2. Expression of the recombinant fusion protein 

GST-SunCT2 was carried out in the E. coli strain XL1 Blue. 

2.3.3.3  GFP-∆NSun-1 fusion construct  

A DNA fragment from position 853 to 2718 bp of the encoding region, 

corresponding to the amino acid position 283 to 905, was cloned into the 

vector pDEX-GFP79 using ClaI. After tranfection of the construct lacking the 

N-terminus (GFP-∆NSun-1) into AX2 cells, positive clones were obtained by 

addition of G418 (0.4µg/ml) as a selection drug.  

 

2.4 Biochemical methods 

2.4.1   Preparation of total lysates and intact nuclei  
Total cell lysates were prepared from vegetative cells or at the 

indicated time points. After washing twice with Soerenen buffer, cells were 

resuspended in TMS buffer containing: 

 50 mM Tris/HCl pH 7.4 

 100 mM NaCl 

 5 mM MgCl2 

 250 mM Sucrose 

 1 mM EDTA 

 1 mM EGTA 

 1 mM DTT 

 1 mM Benzamidine 

 1 mM PMSF 
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Total cell lysates were obtained by passing through Nuclepore 

membrane (5µm diameter, Whatman) and used in further experiments.  Intact 

nuclei were isolated from vegetative cells. Nuclei were collected after lysis 

through Nuclepore membrane by spinning for 5 min at 4000 g.  

 

2.4.2   Gel electrophoresis and immunoblotting  
Cells were resupended and lysed in TMS buffer in a concentration of 

2x106/ml. Protein samples were separated on 10% polyacrylamide gels 

(SDS-PAGE), then either stained with Coomassie Brillant Blue, or transferred 

onto nitrocellulose membranes (Schleicher and Schuell) semi-dry and wet 

blotting transfer systems, respectively. After electro-transfer, the membranes 

were blocked with 5% (w/v) milk in 1x NCP prior to the appropriate antibody 

detections. The primary antibodies were detected using the according 

peroxidase-conjugated secondary antibodies and visualized by ECL (enzyme 

chemiluminescence) reactions. ECL reactions on the nitrocellulose 

membranes were documented on X-ray films.   

2.4.3 Proteinase K protection assay 
Intact nuclei were isolated from AX2 cells and incubated in 

proteinase K protection assay buffer (10mM Tris/HCl pH7.4, 250mM sucrose, 

1µg/ml proteinase K) without and as a positive control for the enzyme activity 

with 0.5(v/v)% Triton X-100 on ice. Samples were collected from both 

reactions after 5, 10, 30, 45 min and the activity of proteinase K was 

immediately stopped by adding PMSF to a final concentration of 1mM and 

boiling (95°C, 5 min) in SDS sample buffer. The samples were further 

analyzed by SDS-PAGE and western blot.  
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2.4.4 Chromatin immunoprecipitation (ChIP)    
Vegetative AX2 cells were harvested and lysed in TMS buffer in a 

density of 5x107 cells per ChIP reaction. To reduce the viscosity of genomic 

DNA and disrupt the nuclear envelope, total cell lysates were sonified (10 

impulses, each of the twice repeated procedure was paused for 10 sec). The 

appropriate mAb was coupled to protein A-beads and PBS was used as a 

negative control (1hr, 4°C).  

The beads were washed three times with PBS then incubated with 

sonified total cell lysate (2hrs on a vertical rotator, 4°C). Unspecific protein 

and DNA bindings were removed by five times washing with PBS and once 

with TE buffer and divided into two aliquotes.  

One aliquote of the each ChIP reaction was used for elution of DNA 

by adding 100 µl of TE buffer containing 1% SDS. After Phenol/Chloroform 

and ethanol precipitation DNA was resuspended in 50µl aqua bidest, 5µl of 

this DNA was subsequently used for PCR amplification to detect the 

presence or absence of coprecipitated DNA. To the second aliquote 20 µl 

SDS sample buffer was added and subjected to SDS-PAGE and western 

blotting. 

 

2.4.5 Preparation of GST fusion proteins     
Recombinant GST-u84CT1 expression was induced in E. coli strain 

XL1-Blue by 0.3 mM IPTG for 5h at room temperature. Cells were harvested 

by centrifugation at 5000 g, 4°C for 15 min (Beckman) and resuspended in 

TM buffer (TMS without sucrose). After sonification the soluble fraction of the 

bacterial lysate was obtained by centrifugation at 13000 g, 4°C for 30 min. 

The GST-u84CT1 was isolated from the supernatant by incubating with 

glutathione agarose beads (4°C, 16 h). Glutathione agarose beads coupled 

with GST-u84CT1 was washed five times with PBS (500 g, 4°C, 10 min) 

before performing thrombin cleavage (4°C, 16 h) or incubating with AX2 total 

cell lysate.   
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2.4.6 GST pull-down assay    
Total cell lysate of AX2 was prepared as described above. 

Glutathione agarose beads coupled with GST-SunCT1 (see above) were 

incubated with total cell lysate at 4°C for 5 h. The beads were washed three 

times with PBS (500 g, 4°C, 1min) and boiled in SDS sample buffer (95°C, 5 

min). Samples were analyzed using 10% SDS polyacrylamide gels and 

stained with Coomassie Brilliant Blue. Protein bands of interest, when 

indicated, were excised from gels and subjected to peptide sequencing by 

MALDI.     

2.4.7 In vitro cross-linking experiment 
To address protein-protein interaction, the GST tag of the 

recombinant fusion proteins was removed by thrombin cleavage. 10 µg of the 

protein of interest was incubated in the phosphate potassium buffer (pH7.4) 

containing 0.001(v/v)% glutaraldehyde at room temperature, samples were 

taken at the time points 5, 10 and 20 min. The reaction was stopped by 

quenching the cross-linker glutaraldehyde with glycin (added to a final 

concentration of 0.1M). All samples were subsequently investigated by SDS-

PAGE and western blotting.     

2.4.8 Indirect immunofluorescence microscopy    
Approximately 1x106 cells were transferred onto each coverslip 

(10mm diameter) and allowed to adhere to the surface for 20 min at room 

temperature.  

 Pre-incubation buffer: 1x PBS containing 25mM glycine 

 Blocking solution: 1x PBS containing 0.5 (w/v)% BSA and 

0.1 (v/v)% fish gelatine 

If not mentioned otherwise, standard immunofluorescence stainings 

were carried out using ice-cold methanol as fixative (5 min, -20 °C) prior to 

incubation with the pre-incubation buffer (three times, 5 min, room 

temperature) and blocking solution (two times, 15 min, room temperature). 

The appropriate antibodies were diluted in the blocking solution to the 
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working concentration and applied for 1hr at room temperature; the excess of 

antibodies was removed by washing with the blocking solution prior to the 1hr 

of incubation with the according secondary antibodies. Nuclear DNA was 

stained with 4’-6-diamidino-2-phenylindole (DAPI) or ToPro-3 (Invitrogen).  

For sequential digitonin/Triton X-100 permeabilization experiments, 

cells adhered on the coverslips were fixed by application of 4% (w/v) 

paraformaldehyde for 20 min. After three times washing with PBS, cells were 

first permeabilized by short incubation with prechilled 10µg/ml digitonin 

solution in PBS (5 min, on ice) and washed five times with PBS. Blocking 

reaction and incubation with the primary antibodies was performed as 

described above. After removal of excess of the primary antibodies (six 

washes with PBS), cells were permeabilized by application of 0.2% Triton X-

100 in PBS (10 min, room temperature). The permeabilized nuclear envelope 

was blocked before probing with the second epitope-specific antibodies. The 

two specific primary antibodies were finally visualized by simultaneous 

incubation of the according secondary antibodies. 

Confocal images were acquired with an inverted Leica LSM 410 

laser-scanning microscope using 40x and 100x Neofluar oil immersion 

objectives.             

2.4.9 Electron microscopy 
Intact nuclei were isolated GFP-∆NSun-1 cells following the 

procedure described above and fixed with 4% (w/v) formaldehyde prior to 

blocking and immunogold labeling using polyclonal rabbit anti-GFP 

antibodies for subsequent electron microscopy studies. 

2.4.10 Metaphase arrest of cell division  
Cells were placed on a culture dish covered with converslips and 

allowed to attach to that for 2hrs before adding nocodazol to a final 

concentration of 33µm in the media. The incubation with nocodazole was 

maintained for 4hrs at room temperature that increased cells arrested in the 

metaphase of mitotsis. Chromosome structures were then fixed on the 
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coverslips in ethanol/acetic acid (volume ratio 3/1) for 1hr on ice, followed by 

a change of fresh chromosome fixative for an additional 10 min on ice, before 

proceeding with DAPI staining.        

 

 

2.5 Growth and development of D. discoideum  
The strain AX2 was either grown in liquid media at 22°C and shaking 

at 160 rpm or on SM agar plates along with Klebsiella aerogenes. To allow 

development, AX2 cells grown to the density of 2x to 3x 106/ml and washed 

twice with Soerensen phosphate buffer (500 g, 4°C, 2 min). 1x 108 cells were 

spread on one phosphate agar plate and incubated at 22°C during 

development. 
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3 Results  

3.1 SUN domain proteins in Dictyostelium  

3.1.1 Sun-1 and Sun-2 in Dictyostelium  
In D. discoideum, two SUN domain proteins, Sun-1 (dictybase 

accession code DDB0219949) and Sun-2 (DDB0186751), are predicted in 

the database, each encoded by a single-copy gene in the genome.  

The gene sun-1 is located on chromosome 2 at the coordinates 

2044015 to 2046802 overlapping 2788 bp of the Crick strand. The genomic 

locus of sun-1 consists of two exons, the first spans 1075 bp which is 

intercalated by an intron of 69 bp from the second exon initiating from 

position 1146 encoding for a mRNA of 2718 bp, accordingly a protein of 905 

amino acids.  

The gene sun-2 is located on chromosome 4 spanning the genomic 

coordinates 3835569 to 3839405 on the Watson strand and does not 

contain introns, resulting in a coding region of 3837 bp and a protein of 1278 

amino acids.     

 

 

3.1.2 Domain architecture of Sun-1 and Sun-2  
In D. discoideum, Sun-1 comprises 905 amino acids giving rise to a 

protein of 105 kDa. Analysis of the domain structure using the program 

SMART revealed an N-terminal coiled-coil domain (amino acids 170 to 221), 

a single transmembrane domain (amino acids 291 to 313), followed by a 

pair of coiled-coil domains (amino acids 412 to 457 and 507 to 571). 

Additional analysis of the primary protein sequence with the program 

InterProScan revealed a C-terminal SUN domain (amino acid 712 to 859), 

which terminates with a putative ER retention signal SDEL (Figure 5A). The 

presence of an ER retention signal in Dictyostelium Sun-1 is unique for a 
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SUN domain protein, since ER retention signals were not found in SUN 

domain proteins from other species. Sun-1 resembles features found in 

different SUN domain protein homologues: (1) it shares the single 

transmembrane domain with the C. elegans UNC-84 and the S. pombe 

Sad1. (2) Like the mammalian SUN domain proteins, Sun-1 possesses 

coiled-coil domains, that are absent in Ce UNC-84 and Sp Sad1 (Hagan and 

Yanagida, 1995; Malone et al., 1999).   

Sun-2 represents the second SUN domain protein in D. discoideum 

containing 1278 amino acids with a molecular weight of 146 kDa. The 

program SMART predicted an N-terminal transmembrane domain (amino 

acids 7 to 25), a long coiled-coil domain (amino acids 177 to 360) and a C-

terminal histone deacetylase (HDAC) interaction domain at the amino acid 

position 842 to 914 of Sun-2 (Figure 5B). Further, the program InterProScan 

identified a centrally located SUN domain (amino acids 534 to 657). The 

domain architecture of Sun-2 is atypical compared to the common domain 

architecture of SUN domain proteins from other subfamilies. Thus proteins 

with a central SUN domain are termed as the SUN-like proteins (SLP), 

which are also present in the proteom of yeast and flies. Due to the central 

SUN domain Sun-2 represents rather a putative SUN-like protein than an 

orthologue of the mammalian Sun-2. The outstanding domain architecture of 

the SUN-like proteins demonstrates that this subfamily diverged from other 

SUN domain proteins early during evolution. However, SUN domain 

proteins, reported to be involved in nuclear positioning and migration, 

possess a C-terminal SUN domain. Hence, SUN-like proteins may function 

in other cellular mechanisms yet to be identified. One considerable 

functional aspect of Sun-2 in D. discoideum may be the regulation of gene 

expression or the modification of chromatin due to a putative HDAC 

interaction domain.   
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A
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Figure 5: Primary structure of Sun-1 and Sun-2 in D. discoideum. The domain predictions 

were obtained using the programs SMART and InterProScan. The putative 
domains are highlighted: coiled-coil domains (blue), SUN domain (pink box) and 
transmembrane domain (grey box). A. Sun1 possesses an additional ER retention 
signal at the C-terminus (green box). Monoclonal antibodies were raised against 
the pair of coiled-coil domains (underlined). B. Sun-2 encompasses an N-terminal 
transmembrane domain, a putative coiled-coil domain, a centrally located SUN 
domain and a histone deacetylase (HDAC) interaction domain (yellow box). 
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3.1.3 Multiple alignment of the SUN domains  
In C. elegans, D. melanogaster and mammals SUN domain 

proteins bind directly or indirectly to the KASH domain proteins forming a 

molecular bridge between the INM and the ONM. The SUN domain is of 

high biological relevance for the binding to KASH domain proteins. Thus, we 

analyzed the SUN domain of Sun-1 and Sun-2 in detail. The SUN domain of 

Sun-1 shares 28% homology with the SUN domain of Ce UNC-84 (Figure 6). 

Although D. discoideum is a lower eukaryote and diverged in the 

evolutionary tree before the fungi (Eichinger et al., 2005), the SUN domain 

of Sun-1 is closer related to human SUN proteins (39% identity to SUN-1, 

38% identity to SUN-2) than to SUN proteins in yeast (27% identity) or worm 

(28% identity). In the evolution, D. discoideum represents an intermediate 

organism between yeast and mammals therefore proteins from D. 

discoideum show higher homology to mammalian proteins. With respect of 

the overall structure and sequence homology Sun-1 belongs to the 

subfamily of SUN3 proteins along with mouse and human Sun-3. Due to the 

domain architecture, Sun-1 may be involved in the organization of the 

nuclear envelope in D. discoideum. 

The centrally located SUN domain of Sun-2 shared sequence 

homology with the SUN domains of SUN-like proteins found in S. cerevisiae, 

S. pombe, and D. melanogaster, demonstrating that Sun-2 belongs to the 

subfamily of the SUN-like proteins (Figure 6). However, the SUN domain 

sequences of SUN-like proteins are distinct from those of other SUN domain 

proteins, suggesting that the SUN-like proteins are specific for other 

conserved cellular processes than organization of the nuclear envelope  
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Figure 6: Sequence homology of SUN domains of D. discoideum Sun-1 (DDB0219949), 

human Sun-1 (NP 079430), S. pombe Sad1 (Q09825), C. elegans Sun-1 (Q20924) 
and UNC-84 (Q20745), D. discoideum Sun-2 (DDB0186751), S. cerevisiae Slp1p 
(Q12232), S. pombe Slp1p (O59729), D. melanogaster Q7YU09 and O. sativa 
Q8LJA6.    

 

 

3.2 Generation of Sun-1 monoclonal antibodies 
To address the biochemical and the functional aspects of Sun-1, we 

generated monoclonal antibodies against the amino acids 337 to 671 

spanning the two coiled-coil domains (SunCT1) that are located between 

the transmembrane domain and the SUN domain. We targeted the coiled-

coil domains of Sun-1 due to (1) the uniqueness of the protein sequence in 

the D. discoideum proteom and (2) the higher solubility during heterologous 

protein expression. The DNA sequence encoding the two coiled-coil 

domains (SunCT1) was cloned into the bacterial expression vector pGEX-

4T2. The 65 kDa fusion protein GST-SunCT1 was purified from the 
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Escherichia coli strain XL1-Blue and the GST tag was subsequently 

removed by thrombin cleaveage. After thrombin digestion the SunCT1 had 

an apparent molecular weight of 40 kDa (Figure 7A). Two naïve mice were 

immunized with 10 µg of the purified SunCT1. After three weeks the mice 

were boosted twice with 10 µg SunCT1 and the mouse with higher 

antiserum titer was sacrificed for isolation of spleen cells, which were fused 

to the myeloma cell lines AG8 and PAI, respectively (Figure 6B).  
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Figure 7: Generation of monoclonal antibodies against Sun-1. A. The fusion protein GST-

SunCT1 (GS) was purified from bacterial cell lysate. The 40 kDa SunCT1 (S, lane 1) 
was cleaved from the GST moiety (G) prior to immunization of the mice. B. Scheme 
illustrating the process of monoclonal antibody generation (Genetech, 1999). Mice 
were immunized with purified SunCT1. Spleen cells from the mouse with the 
highest serum titer were isolated and fused to myeloma cells AG8 and PAI, 
respectively, giving rise to hybridoma clones. The immortalized hybridoma clones 
were screened for specificity to Sun-1 by ELISA and western blots.     
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Immunoreactivity of the hybridoma clones for SunCT1 was 

screened by ELISA assay and on western blot stripes. Promising clones 

were subjected to single-cell subcloning. In the screening experiments, 

three single-cell subclones were identified to be specific for biochemical or 

cell biological studies, i.e. K55-432-2, K55-450-1 and K55-460-1. Each of 

the single-cell clones recognized specifically the endogenous Sun-1 in 

western blot screening experiments. Further screenings of these clones by 

immunofluorescence and immunoprecipitation assays revealed that the 

clones K55-450-1 and K55-460-1 were suitable for immunolocalization and 

immunoprecipitation studies of Sun-1.  

The monoclonal antibody (mAb) K55-432-2 detected Sun-1 in the 

AX2 total cell lysate with the expected molecular mass of 105 kDa. In a 

crude fractionation experiment, K55-432-2 localized the endogenous Sun-1 

specifically to the nuclear fraction but not to the cytoplasmic fraction (Figure 

8A), indicating that Sun-1 is a protein associated with the nuclear 

compartment. To monitor the efficiency of the fractionation procedure, the 

samples were probed with monoclonal antibodies against α-tubulin (mAb 6-

11B1, Piperno and Fuller, 1985, a kind gift from Michael Koonce). The 51 

kDa protein α-tubulin was found both in the total cell lysate and in the 

cytoplasmic fraction (Figure 8A). However, low amount of α-tubulin was also 

detected in the nuclear fraction, which may be derived from the microtubule 

(MT) tips associated with the microtubule organization center (MTOC) at the 

centrosome. Since the mAb K55-432-2 displayed the highest 

immunoreactivity in western blot analysis, this clone was used for all 

biochemical studies. 

In cell biological screening, the mAb K55-432-2 failed to stain Sun-1 

by indirect immunofluorescence. The inability of mAb K55-432-2 to detect 

Sun-1 in AX2 cells may be due to the specificity of mAb K55-432-2 for 

denatured Sun-1 protein. In further immunofluorescence screenings, a 

second mAb clone, K55-460-1, localized the endogenous Sun-1 to the 

nuclear envelope and some cytoplasmic compartments in AX2 cells (Figure 

8B). To confirm the nuclear envelope localization, nuclei of AX2 cells were 

stained with ToPro-3 to visualize the DNA. In a merged image, Sun-1 
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surrounded the nucleus in a rim-like pattern, demonstrating that mAb K55-

460-1 recognizes specifically the native epitope of Sun-1 in vivo. 

Subsequently, mAb K55-460-1 was used for all cell biological analyses.  

Interaptin has been reported to be a nuclear envelope protein in D. 

discoideum (Rivero, et al., 1998). Thus, the localization pattern of the 

endogenous Sun-1 was compared to that of interaptin. The mAb 260-60-10 

localized interaptin predominantly to the nuclear envelope but also to further 

cytoplasmic compartments, most likely the peripheral ER. However, the 

cytoplasmic staining of Sun-1 in vivo may be derived from unspecific 

antibody binding, since endogenous Sun-1 was not distributed to the 

cytoplasmic fraction as shown in the crude AX2 cell lysate fractionation 

experiment (Figure 8A). 
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Figure 8: Screenings of monoclonal antibodies against Sun-1. A. The mAb K55-432-2 

detected endogenous Sun-1 in the AX2 total cell lysate (L) and in the nuclear 
fraction (N) but not in the cytoplasmic fraction (C). The mAb 6-11B1 (Piperno and 
Fuller, 1985), a kindly gift from Michael Koonce, monitored α-tubulin in the AX2 
total cell lysate (L). In the crude fractionation experiment, α-tublin was associated 
with the nuclear fraction to some extent (N), but enriched in the cytoplasmic fraction 
(C). B. The mAb K55-460-1 localized the endogenous Sun-1 to the nuclear 
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envelope and some cytoplasmic compartments. The mAb 260-60-10 stained 
interaptin at the nuclear envelope, as well as some cytoplasmic compartments. 
Indirect immunofluoresence (Cy3 conjugated anti mouse IgG, red), DNA was 
visualized by ToPro-3 (blue).     

 

 

3.3 Biochemical properties of Sun-1   

3.3.1 Sun-1 is restricted to the nucleus 
To examine the subcellular localization of endogenous Sun-1 in 

more detail, cellular components were isolated by ultracentrifugation on 

discontinuous sucrose gradients. In brief, 5x108 AX2 cells were lysed in 5ml 

TMKS buffer by passing through a Nucleopore filter (5µm pore diameter, 

Whatman). To reduce the loading volume from 5ml to 1ml, the total cell 

lysate was spun for 30 min at 15000 g. After centrifugation, the pellet 

containing all cellular organells was resuspended in 1ml of TMKS buffer and 

was separated on a discontinuous sucrose gradient ranging from 0.85M to 

2.49M of sucrose. Samples were analyzed on western blots.   

To test the accuracy of the fractionation procedure, the samples 

from all gradients were probed with antibodies against interaptin (mAb 260-

60-10) and protein disulfide isomerase 1 (PDI-1, mAb 221-135-1), 

respectively. To some extent, interaptin was localized with the ER marker, 

PDI-1, to the low-density sucrose gradient fractions two and three 

confirming that interaptin is partially targeted to the peripheral ER (Figure 9, 

fractions 2 and 3). As a nuclear envelope protein, the majority of 

endogenous interaptin was predominantly localized to the high-density 

sucrose fractions corresponding to the nuclear fractions (Figure 9, fractions, 

9 to 11). However, PDI-1 was also found in high-density fractions, 

correlating to the rough ER, which is contiguous with the nuclear envelope 

(Figure 9, fractions 7 to 11). Comparable to the nuclear envelope marker 

interaptin and the ER marker PDI-1, Sun-1 was recovered in the high-

density sucrose fractions representing the nuclear fractions (Figure 9, 

fractions 8 to 11). Distinct from the localization pattern of interaptin and PDI-
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1, the endogenous Sun-1 was exclusively found in the nuclear fractions and 

was absent from the peripheral ER. These data indicate that the distribution 

of Sun-1 is limited to the nuclear envelope. Thus we conclude that the 

cytoplasmic staining observed in the immunfluorescence experiment may be 

derived from non-specific interaction of mAb K55-460-1. 
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Figure 9: Localization of Sun-1 to the nuclear compartment. Total cell lysate of AX2 was 

separated on a discontinuous sucrose gradient. Interaptin is localized to peripheral 
ER (Fraction 2 and 3) and to the nuclear compartment (Fraction 9 to 11) 
overlapping with the distribution pattern of PDI (mAb 221-135-1). Colocalizing with 
the nuclear envelope marker interaptin, Sun-1 is limited to the high-density fractions 
representing the nuclear fractions (Fraction 8 to11). 
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3.3.2 Sun-1 is an integral membrane protein 
Analysis of the Sun-1 primary protein sequence using the program 

SMART revealed one putative transmembrane domain. To examine, 

whether Sun-1 exhibits properties of a transmembrane protein, extraction 

experiments were carried out. Application of alkali (0.1M NaOH) or high salt 

(1M KCl) extracts peripheral membrane proteins from cytoplasmic and 

nuclear membranes. Wildtype AX2 cell lysates were obtained by filtration of 

cells through Nucleopore membranes (5µm pore diameter, Whatman). Intact 

nuclei were isolated from the cell lysate by 10 min spinning at 3000 g.  

Addition of alkali (0.1M NaOH) or high salt (1M KCl) to the nuclei 

led to some degradation of Sun-1. However, Sun-1 was not extracted from 

the nuclear membrane fraction by alkali or high salt indicating that Sun-1 is 

not peripherally anchored on the surface of nuclear membranes. Moreover, 

Sun-1 was only partially solubilized from the nuclear membranes in the 

presence of 1% Triton X-100 or 8M Urea or a combination of both reagents, 

demonstrating that Sun-1 is highly hydrophobic (Figure 10B). 

Hydrophobicity and nuclear membrane association of Sun-1 agreed with the 

properties observed for interaptin (Rivero et al., 1998), thus Sun-1 is a 

putative integral protein of the nuclear membranes in D. discoideum.  
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Figure 10: Sun-1 is a putative integral nuclear membrane protein. AX2 cells were lysed by 

filtration through Nucleopore membrane (5µm pore diameter, Whatman). Intact 
nuclei were isolated from the cell lysate by centrifugation for 10 min at 3000 g. A. 
Sun-1 was resistant to extraction with alkali (0.1M NaOH) or high salt (1M KCl) and 
remained membrane-associated. The endogenous Sun-1 was partially degraded 
due to alkali or high salt extraction. B. The intact nuclei (N), obtained after filtration 
through Nucleopore membrane (5µm pore diameter, Whatman), were used for 
further extractions. Sun-1 was partially solublilized from nuclear membranes by 
addition of 1% Triton X-100 (NS and NP), 8M Urea (NS and NP) or a combination 
of both reagents (NS and NP). Western blots were probed with mAb K55-432-2.  

 

 

3.3.3 Sun-1 oligomerizes via the coiled-coil domains 
As mentioned above, two putative coiled-coil domains were 

predicted between the transmembrane domain and the SUN domain of Sun-

1 by the program SMART. The first coiled-coil domain spans the amino 

acids 412 to 457, whereas the second coiled-coil domain extends from 

amino acid 507 to 571 (Figure 11A). As coiled-coil domains represent 

oligomerization motives, we tested whether the coiled-coil domains of Sun-1 

are capable to oligomerize. For this purpose, recombinant SunCT1 

overlapping the amino acid 419 to 578 bearing the two coiled-coil domains 

was expressed as GST fusion protein and purified from E. coli using GST-

Sepharose beads (Amersham). To eliminate the chance of unspecific 
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protein dimerization via the GST moiety, GST was removed from SunCT1 

by thrombin cleavage.  

The native protein, SunCT1, occurs as a monomer of approximately 

40 kDa. Notably, low amount of dimeric (80 kDa) and trimeric (120 kDa) 

SunCT1 was not dissociated into monomers under denaturating and 

reducing conditions (Figure 11A). The presence of dimeric and trimeric 

SunCT1 after addition of 1% SDS and 0.1% β-Mercaptoethanol to the 

sample buffer indicate a strong affinity within the dimers and trimers. The 

strong affinity within the dimers and trimers may result from covalent bonds 

given by intermolecular disulfide bridges, thus we sought for cysteine 

residues within the protein sequence of the coiled-coil domains. Unlike 

mouse Sun-1 (unpublished data from our lab), Dictyostelium Sun-1 does not 

harbor any cysteine residue in these coiled-coil domains. Thus, the dimers 

and trimers were not stabilized by disulfide bonds, which can be reduced in 

presence of β-Mercaptoethanol. The affinity between the subunits of a dimer 

or a trimer may be a consequence of strong association of intermolecular 

hydrogen bonds, salt bridges, aromatic and/or hydrophobic interactions 

inducing conformational changes within the coiled-coil domains that were 

not taken apart by denaturation, i.e. boiling in 1% SDS containing sample 

buffer.   

The amount of dimers and trimers observed in SDS polyacrylamide 

gels were enriched by incubation of 5µg purified SunCT1 with the cross-

linker glutaraldehyde that stabilizes oligomers by creating covalent bonds 

between the interacting subunits. In a time-dependent fashion, an increase 

of SunCT1 dimers, trimers, tetramer and pentamer was observed 20 min 

after addition of 0.001% glutaraldehyde to the native SunCT1 (Figure 11B). 

The stabilized SunCT1 dimers and trimers resembled with respect to their 

migration behaviour those detected in the absence of glutaraldehyde hinting 

to a specific cross-linking of SunCT1 dimers and trimers (Figure 11B).   
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Figure 11: Recombinant SunCT1 forms oligomers in vitro. A. The recombinant GST-

SunCT1 harbors the two predicted coiled-coil domains (amino acids 419 to 578). B. 
The native SunCT1 occurs as a 40 kDa monomer (Mo), whereas low amounts of 
dimers (80 kDa, Di) and trimers (120 kDa, Tri) were detected under denaturating 
and reducing conditions. 5µg of SunCT1 was incubated with 0.001% 
glutaraldehyde. At the indicated time points, the cross-linking reaction was stopped 
by addition of 1M glycine to a final concentration of 0.1M. The amount of dimers, 
trimers, tetramers (160 kDa, Tet) and pentamers (200 kDa, Pen) were increased 20 
min after addition of glutaraldehyde. C. Gel filtration of native SunCT1 (N) and 
cross-linked SunCT1 (X). 10µg of native or cross-linked SunCT1 were analyzed by 
size-exclusion chromatography using a Sephadex G75 column. The native SunCT1 
trimers (Fraction 9), dimers (Fraction 10) and monomers (Fraction 11) were eluted 
from the column. Cross-linked SunCT1 trimers and dimers were recovered in 
fraction 10, whereas the monomeric SunCT1 was found in fraction 11. Western 
blots were probed with mAb K55-432-2. 

 

 

To confirm the presence of SunCT1 oligomers under native 

conditions, 10µg of native and cross-linked SunCT1 protein was also 

subjected to gel filtration chromatography on a size-exclusion column. On a 

size-exclusion column, high-molecular weight proteins pass through the 

Sepharose beads faster than low-molecular weight proteins, since the 

diffusion of low-molecular weight proteins is retarded. Due to the high 

molecular mass of the SunCT1 trimers, the complex was eluted in fraction 9, 
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whereas fraction 10 contained dimeric and trimeric forms (Figure 11C, 

crosslinked material) and fraction 11 the monomer. A comparison of the 

elution behaviour of the native and the crosslinked material shows that in 

both cases the majority of the protein elutes in a fraction which contains 

dimers and trimers (Figure 11C). Remarkably, a certain amount of high 

affinity SunCT1 trimers resistant to the denaturating and reducing conditions 

was observed in the fraction 10, whereas high affinity dimers were not 

detected. These observations suggest that the trimeric complex may exhibit 

higher affinity and stability. Taken together, recombinant native SunCT1 

occurs as dimers and trimers in vitro. Further, the majority of the dimers and 

trimers can be disassembled into monomers under denaturing and reducing 

conditions.  

Analysis of the cross-linked SunCT1 on a size-exclusion column 

revealed a reduction of monomeric SunCT1 (Figure 11C, right panel, 

fraction 11) due to the increase of the dimeric and trimeric complexes. 

Unfortunately, the cross-linked SunCT1 trimers were present in the same 

fraction as the dimers owing to the limited resolution capacity of the gel 

matrix, which failed to separate the cross-linked trimers from the dimers 

accurately.       

 

 

3.3.4 Sun-1 may form dimers and trimers in vivo 
Given the evidence that the coiled-coil domains mediate the 

dimerization and trimerization of Sun-1, the recombinant GST-SunCT1 may 

also interact with the endogenous Sun-1 from D. discoideum. In a pulldown 

experiment, GST-SunCT1 was immobilized on Glutathione-Sepharose 

beads and incubated with AX2 total cell lysate. A 200 kDa protein band 

precipitated by GST-SunCT1 was subjected to MALDI mass spectrometry 

(Figure 12A). The peptide sequences of the precipitated protein matched 

significantly to the protein sequence of Sun-1, indicating an interaction of the 

recombinant SunCT1 with the endogenous Sun-1 (Figure 12B). Interestingly, 

the precipitated Sun-1 was found at the position of about 200 kDa, whereas 
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the molecular mass of the monomeric Sun-1 protein is 105 kDa. Further, we 

have identified the amino acid residues arginine, tyrosine, phenylalanine, 

histidine and methionine within the pair of coiled-coil domains which are 

reported as conserved residues to promote strong protein-protein 

interactions (Bogan and Thorn, 1998; Brinda and Vishveshwara, 2005). 

Additionally, the cluster of amino acids contributing to the strong affinities 

was supported by further cluster of leucines and isoleucines that forms weak 

protein-protein interactions (Brinda and Vishveshwara, 2005). By 

combination of the amino acid clusters for strong and weak intermolecular 

dimerization in the coiled-coil domains, the 200 kDa band may be derived 

from a stable dimer that was not disassembled under the denaturating and 

reducing conditions during SDS-PAGE. The fact that a Sun-1 dimer was 

precipitated by the recombinant SunCT1 indicates that Sun-1 may also form 

higher oligomers.  
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Figure 12: Pulldown experiment using GST-SunCT1. A. Recombinant GST-SunCT1 was 

immobilized on GST-Sepharose and incubated with AX2 total cell lysate. In control 
reactions, AX2 total cell lysate was incubated with GST immobilized on GST-
Sepharose beads and GST-Sepharose beads alone. The samples were subjected 
to SDS-PAGE (10% acrylamide) and the gel was stained with Coomassie Brilliant 
blue. B. The scheme of Sun-1 depicts the region that matched the peptide 
sequences obtained from MALDI. Single peptide matches are underlined (red), 
overlapping peptide matches are double underlined (red). The amino acids within 
the coiled-coil domains conferring strong and weak dimer interactions are 
highlighted in yellow and blue. Partially shown the transmembrane domain 
sequence is highlighted by grey box and the initiation of the SUN domain by the 
pink box, 

 

 

3.3.5 Sun-1 is a type II transmembrane protein  
Transmembrane proteins are grouped into four classes due to their 

membrane topology: (1) Type I transmembrane proteins possess an N-

terminal signal peptide, targeting the protein to ER or Golgi. Thus the N-

terminus is located in the lumen of the ER/Golgi or on the extracellular 

surface, whereas the C-terminus of the protein is exposed to the cytoplasm. 

(2) Type II proteins exhibit the C-terminus to the lumen of ER/Golgi or the 

extracellular surface and the N-terminus to the cytoplasm. (3) The N-
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terminus of type III membrane proteins faces the lumen of ER/Golgi or the 

extracellular surface, comparable to the type I membrane proteins, with the 

exception, that a signal peptide is absent in type III proteins. (4) Type IV 

comprises the seven-transmembrane proteins with a cytoplasmic C-

terminus.         

To determine the topology of Sun-1 in the nuclear envelope, intact 

nuclei were isolated from AX2 and treated with proteinase K, which is an 

unspecific proteinase. On a western blot, mAb K55-432-2 detected a protein 

of 70 kDa in the proteinase K treated nuclei, correlating with the molecular 

mass derived for the amino acids 291 to 905 extending from the 

transmembrane domain to the C-terminus of Sun-1 (Figure 13A and B), 

suggesting that this part projects into the perinuclear space (PNS) between 

the inner and outer nuclear membrane (INM and ONM) and is protected 

from proteolysis. Moreover, finding a 70 kDa protein fragment after 

exposure of the intact nuclei to proteinase K confirmed that Sun-1 

possesses a single transmembrane domain. Unfortunately, this experiment 

does not indicated whether the N-terminal domain of Sun-1 faces the 

cytoplasm or the nucleoplasm, as proteinase K (24 kDa) is capable to 

diffuse through the nucleopores into the nucleoplasm and degrade protein 

epitopes within the nucleoplasm. The fact that the C-teminal moiety of Sun-1 

was protected from the proteinase K digestion suggests that the C-terminus 

of Sun-1 projects into the perinuclear space (PNS) between the INM and 

ONM. Conversely, the N-terminus was degraded by the proteinase K 

implying that the N-terminus of Sun-1 faces the cytoplasm and/or the 

nucleoplasm. In conclusion, Sun-1 is a single-pass nuclear membrane 

protein and adopts the membrane topology of the type II transmembrane 

proteins.  

 



3 Results 
 

44 

A B

5´   45´5´   45´

Triton X-100

Proteinase K 

105-

70-

kDa L      N

INM
ONM

Sun-1

SUN
SUN

PNS

70 kDa

SUN
SUN

 
Figure 13: The C-terminus of Sun-1 is located in the perinuclear space (PNS). A. Intact 

nuclei from AX2 cells were treated with 1µg proteinase K for 5 or 45 min, giving rise 
to a protein fragment of 70 kDa. Addition of the membrane detergent Triton X-100 
led to complete degradation of Sun-1. B. The protein fragment (amino acid 291 to 
905) including the transmembrane domain and the whole C-terminus has an 
expected molecular mass of 70 kDa. Combining the data from the cross-linking 
experiment and the proteinase K protection assay, Sun-1 may reside in both the 
inner and/or the outer nuclear membrane (INM, ONM) whereas the C-termini of the 
dimers are located in the perinuclear space (PNS). 

 

 

3.3.6 Sun-1 associates with chromatin  
In C. elegans, D. melanogaster and mammals, SUN domain 

proteins are targeted to the INM. By binding of the SUN domain proteins to 

nuclear lamins and KASH domain proteins the nuclear skeleton is 

connected to the cytoskeleton.  

We are motivated to examine the localization of Sun-1 specifically 

to the INM and/or the ONM. To distinguish the INM from the ONM 

localization of Sun-1, additional INM and ONM markers were required for 

colocalization studies. Since the research on the nuclear envelope proteins 

is a new field in D. discoideum, nuclear envelope markers are not available. 

So far, interaptin is the only nuclear envelope protein described in D. 

discoideum, but the localization to either the INM or the ONM was not 
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determined (Rivero et al., 1998). Further on, Dictyostelium lacks nuclear 

lamins, leading to the most interesting question which nuclear component 

interacts with Sun-1. Given the evidence from the proteinase K protection 

assay, Sun-1 may expose the N-terminus both to the cytoplasm and the 

nucleoplasm. We hypothesize, if Sun-1 is targeted to the INM, then it may 

be capable to interact with chromatin. 

To test our hypothesis, chromatin immunoprecipitation (ChIP) 

experiments were carried out. For each ChIP reaction, AX2 cells (2x108) 

were resuspended in the chromatin immunoprecipitation buffer and lysed by 

addition of Triton X-100 to the final concentration of 0.1%. Owing to the high 

viscosity of chromatin as such, it can be attached unspecifically to the 

protein A-Sepahrose beads during the immunoprecipitation reaction. Thus, 

the chromatin in the AX2 lysate was fragmented by sonification prior to 

immunoprecipitation using antibodies against Sun-1 (K55-460-1), α-tubulin 

(6-11B1, Piperno and Fuller, 1985; a kind gift from Michael Koonce) and 

protein A-Sepharose beads only. Immunoprecipitated Sun-1 was analyzed 

by western blotting; chromatin fragments were eluted from the protein A-

Sepharose beads in presence of 1%SDS. Subsequently, the presence or 

absence of chromatin was examined by PCR amplification of a 

housekeeping gene such as actin-8. Strikingly, chromatin was 

coprecipitated with the endogenous Sun-1, whereas the α-tubulin antibody 

or the protein A-Sepharose beads were not associated with chromatin 

(Figure 14). These data support our hypothesis that Sun-1 is targeted to the 

INM and associates with chromatin or chromatin-binding proteins. By 

extension, chromatin or chromatin-binding proteins may compensate for the 

lack of nuclear lamins for anchoring Sun-1 to the INM of D. discoideum.  
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Figure 14: Chromatin immunoprecipitation (ChIP). Genomic DNA isolated from AX2 was 

used as positive control for PCR of the act8 gene. Chromatin immunoprecipitation 
was carried out using antibodies for Sun-1 (K55-460-1) or α-tubulin (6-11B1, 
Piperno and Fuller, 1985; a kind gift from Michael Koonce). Protein A-sepharose 
beads were used as a negative control. The endogenous Sun-1 was precipitated 
the by the Sun-1 antibody (western blot). Antibody heavy chain (AB Fhc) was 
displayed as a loading control. 

 

 

       

3.4 Sun-1 and the KASH domain protein 
interaptin  

3.4.1 The KASH domain protein homolog interaptin 
In worm, flies and mammals, the nucleus is connected to the 

cytoskeleton by interaction of the SUN domain proteins with a family of giant 

ONM proteins, referred to as the KASH domain proteins (Hodzic et al., 2004; 

Padmakumar et al., 2005; Crisp et al., 2006).  

The first giant ONM proteins reported to provide a connection of the 

nucleus to the cytoskeleton are C. elegans Anc-1, D. melanogaster Klarsicht 

and human Syne1 and 2 (synonym Nesprin, Myne, Enaptin and NUANCE). 

The domain architecture of these giant proteins is conserved in all species 

and consists of three functional domains: (1) An N-terminal actin-binding 
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domain (Calponin homology domain) for F-actin-binding. (2) A central 

stretch of multiple coiled-coil domains (C. elegans Anc-1) or spectrin repeats 

(mammalian Nesprins). (3) A C-terminal domain resuming a single 

transmembrane domain and a short peptide tail. Functional and homology 

studies on these proteins revealed that the highly conserved 

transmembrane domain and the peptide tail is essential for the ONM 

targeting, subsequently termed as the KASH (Klarsicht-Anc1-Syne-

Homology) domain. Once targeted to the ONM, the KASH domain proteins 

expose their N-terminus to the cytoplasm, whereas the C-terminal tail is 

located in the PNS. Within the C-terminal tail of the KASH domain of 

mammalian Nesprin-1 and 2 and Dm Nesprin, the final amino acid 

consensus motif G-P-P-P-(T/L) promote the interaction with the SUN 

domain proteins. Here, the G-P-P-P-(T/L) motif is referred to as the KASH 

motif. Distinct from the mammalian KASH domain proteins, Ce Anc-1 

possesses a KASH motif terminating with a phenyalanine (G-P-P-P-F). 

In D. discoideum interaptin may represent a candidate KASH 

domain protein. Interaptin encompasses 1737 amino acids resulting in a 

protein of 200 kDa (Rivero et al., 1998). The domain architecture of 

interaptin is similar to that of other KASH domain proteins: It possesses an 

N-terminal calponin homology domain and a central stretch of coiled-coil 

repeats, whereas the C-terminal domain harbors a single transmembrane 

domain and a 16 amino acids short tail.  

As the C-terminal KASH domain is involved in the interaction with 

SUN domain proteins, we analyzed the C-terminal domain of interaptin from 

the transmembrane domain to the tail. Owing to the short sequence of the 

transmembrane domain (12 amino acids) and the C-terminus tail (16 amino 

acids), the software ClustalW failed to align the sequence of interaptin to the 

KASH domains of other species. Thus, we compared the C-terminal tail of 

interaptin with those of C. elegans Anc-1, D. melanogaster Msp-300/Nesprin, 

mammalian Nesprin-1 and 2 (Figure 15A). The C-terminal tail of interaptin 

shares higher homology with Anc-1 (12%) and Msp-300/Nesprin (12%) than 

with mammalian Nesprins (6%) (Figure 15B). However, the C-terminal tail of 

interaptin does not contain the complete KASH motif G-P-P-P-(T/L) though 
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the final pair of amino acids P-T of interaptin resembles the final amino 

acids P-T of human and mouse Nesprin-2 (Figure 15A). With respect to the 

extremely short C-terminus of interaptin, we propose that the final two amino 

acids P-T may be sufficient to function as a KASH motif in D. discoideum.  
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Figure 15: Multiple alignments of C-terminal tail sequences of interaptin and KASH domain 

proteins of human Nesprin-1 and -2, D. melanogaster Nesprin, mouse Nesprin-1 
and -2, and C. elegans Anc-1. A. KASH domain proteins from mammals and flies 
possess a highly conserved KASH motif G-P-P-P-(T/L) at the C-termini (red bar), 
whereas C. elegans Anc-1 contains a KASH motif ending with a phenylalanine. The 
C-terminal tail of interaptin containing 16 amino acids terminated with the amino 
acids P-T, which represent a putative KASH motif. B. Percentage of homology 
between the KASH domains is summarized in the table. The C-terminal tail of 
interaptin shares higher homology with D. melanogaster Nesprin and C. elegans 
Anc-1 than with mammalian Nesprins.   
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3.4.2 Expression profile of Sun-1 and interaptin  
To investigate the regulation of gene expression for Sun-1 and 

interaptin, we first focused on their expression profile during the 

development of D. discoideum. Sun-1 was expressed constitutively in all 

stages of development, with a slight increase in the expression level after 8 

hr (t8) of starvation and a drop at the end of development when fruiting 

bodies were formed (Figure 16A). However, interaptin occurs in two 

isoforms, a 160 kDa and an approximately 200 kDa molecule due to 

alternate mRNA splicing. The domain structure of the 160 kDa isoform is not 

defined. Rivero et al. (1998) speculate that the alternative splice acceptor 

site may be located to the 5´end of the mRNA, thus it may lack the N-

terminal actin-binding domain either completely or partially, whereas the C-

terminus is intact. In D. discoideum, the 160 kDa isoform is expressed 

constitutively, whereas the 200 kDa isoform is developmentally regulated. 

The expression of the large isoform of interaptin is induced 8 hr (t8) after 

entering development (Figure 16A). 

Next we compared the expression profile of Sun-1 to that of 

interaptin, to examine whether Sun-1 might influence the expression pattern 

of interaptin or vice versa. We noted an increase of Sun-1 expression at 

time point t8 coinciding with the onset of the expression of the large isoform 

of interaptin, indicating that interaptin may influence the expression level of 

Sun-1. Therefore, we monitored the Sun-1 protein expression in an 

interaptin-overexpressing and an interaptin-deficient mutant (Rivero et al., 

1998). In the interaptin-overexpressing or interaptin-deficient mutant, the 

expression level of Sun-1 remained unaffected, demonstrating that both 

proteins are independently regulated (Figure 16B). 
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Figure 16: Sun-1 and interaptin are independently expressed in AX2. Protein samples were 

separated on 10% SDS-polyacrylamide gels. A. Expression profile of endogenous 
Sun-1 and interaptin in AX2 cells during development (Scheme, (Siu et al., 2004). 
AX2 cells were starved on phosphate agar plates to induce the development. AX2 
cells were harvested at the indicated time points of development by resuspending 
the cells in phosphate buffer. Interaptin was detected by mAb 260-60-10. Sun-1 
was probed for mAb K55-432-2. During the development of AX2, Sun-1 and the 
small isoform of interaptin (160 kDa) were constitutively expressed. The large 
isoform of interaptin was upregulated 8 hrs after the onset of development. B. Sun-
1 expression was not affected upon alteration of the expression level of interaptin. 
As a loading control actin is displayed using mAb Act1-7. 

 

     

 

3.4.3 Localization of Sun-1 and interaptin  
To study the in vivo localization of endogenous Sun-1 and interaptin, 

an immunofluorescence analysis was carried out. In AX2 cells, interaptin 

localized to the nuclear envelope in a rim-like pattern as reported by Rivero 

et al. (1998) (Figure 17A and A´). Distinct from the localization of interaptin, 

Sun-1 was not only localized to the nuclear envelope, but also inside the 

nuclei (Figure 17B). Additionally, Sun-1 accumulated at one pole of the 

nuclei (Figure 17B and B´, arrows), suggesting an association of Sun-1 with 
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organelles attached to the nucleus such as the centrosome or the Golgi 

apparatus.  

We observed that alteration of the interaptin expression level did 

not affect the expression of Sun-1. Subsequently, we addressed the 

question, whether alteration in the interaptin expression level affects the 

localization of the endogenous Sun-1 in vivo. In the absence of interaptin 

(Figure 17C and C´), Sun-1 was localized properly to the nuclear envelope 

and accumulated at one pole of the nuclei (Figure 17D and D´, arrows). 

When compared to the wildtype AX2, Sun-1 seems to be enriched in the 

nuclear membranes as well as in cytoplasmic membranes, probably ER 

membranes of the interaptin-deficient cells. The nuclear membrane 

localization of Sun-1 in the interaptin-deficient mutant is comparable to that 

of AX2 cells, demonstrating that interaptin was not required for the nuclear 

membrane targeting of Sun-1. However, overexpression of interaptin led to 

an accumulation of the protein in the nuclear and ER membranes (Figure 

17E and E´). As a consequence of the interaptin overexpression, Sun-1 was 

displaced from the nuclear membranes and was redistributed to cytoplasmic 

compartments, most likely to the ER membranes (Figure 17F and F´). In 

stark contrast to the mammalian model, implying the essential role of SUN-1 

for recruiting Nesprin-2 to the ONM (Padmakumar et al., 2005), our findings 

indicate a competition between Sun-1 and interaptin for the localization to 

the nuclear membranes in D. discoideum.  
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Figure 17: Subcellular localization of Sun-1 in AX2 cells, interaptin over-expressing (abpD+) 
and interaptin knockout (abpD-) strains using mAb K55-460-1 against Sun-1 or 
mAb 260-60-10 against interaptin (red). The secondary antibodies, goat-anti-
mouseIgG, were conjugated with Cy3 (red). Nuclear DNA was visualized by DAPI 
staining (blue). A and A’: In AX2 cells, interaptin was predominantly localized to the 
nuclear envelope. B and B’: Sun-1 was localized to the nuclear envelope and also 
to the nucleoplasm. At distinct sites, Sun-1 accumulated at one pole of the nuclear 
envelope (arrows). C and C’: In the interaptin deficient strain, the protein was 
absent from the nuclear membranes. D and D’: Nuclear envelope localization of 
Sun-1 was unaffected in the absence of interaptin. To some extent, Sun-1 
appeared to be enriched in the nuclear envelope compared to that observed in AX2. 
The accumulation of Sun-1 to a pole in the nuclear envelope was also observed 
(arrows).  E and E’: Due to the overexpression, interaptin was accumulated both in 
the nuclear and ER membranes. F and F’: In interaptin overexpressing cells, Sun-1 
was displaced from the nuclear membranes and accumulated in peripheral ER 
membranes.  
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3.4.4 The KASH motif of interaptin is required for 
nuclear membrane targeting 
In previous studies, the C-terminal domain (amino acid 1441 to 

1737) spanning the transmembrane domain and the C-terminal tail of 

interaptin has been demonstrated to be sufficient for nuclear envelope 

targeting (Rivero et al., 1998) which is in line with the fact that KASH domain 

proteins are targeted to the nuclear envelope by their KASH domains. 

Particularly, the conserved KASH motif G-P-P-P-(T/L) interacts with SUN 

domain proteins thus is important for nuclear envelope targeting of the 

KASH domain proteins. Comparison of the interaptin C-terminal tail with 

those from C. elegans Anc-1, D. melanogaster Msp-300/Nesprin and 

mammalian Nesprin-1 and 2 revealed that the terminal two amino acids P-T 

may represent a putative KASH motif in interaptin. To address the putative 

KASH motif of interaptin, two peptides were expressed in AX2 cells (Figure 

18A): (1) GFP tagged C-terminal tail lacking the final amino acids P-T, 

designated as GFP-IntCT-∆PT. (2) GFP tagged C-terminal tail bearing an 

amino acid exchange of proline (1736) to alanine, termed GFP-IntCT-P/A.  

The terminal amino acids PT play an important role in the nuclear 

envelope targeting of interaptin, as both GFP-IntCT-∆PT and GFP-IntCT-

P/A failed to localize to the nuclear envelope and accumulated in 

cytoplasmic compartments such as the peripheral ER and Golgi apparatus 

(Figure 18B, middle and bottom panel). Conversely, the endogenous 

interaptin bearing the functional KASH motif as well as the wildtype C-

terminal domain, GFP-IntCT (Rivero et al., 1998) were recruited to the 

nuclear envelope (Figure 18B, top and middle panel). Thus, we conclude 

that the proline 1736 is involved in nuclear envelope targeting of interaptin. 

Furthermore, expression of GFP-IntCT-P/A may have mild effects on the 

targeting of the endogenous interaptin, since the latter was localized in the 

nuclear envelope in a punctuated fashion and some amount of the protein 

was observed in the peripheral ER and Golgi apparatus.   
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Figure 18: Localization of KASH motif mutants in AX2 cells. A. GFP tagged KASH domain 
of interaptin (GFP-IntCT, Rivero et al., 1998). GFP tagged KASH domain lacking 
the KASH motif P-T (GFP-IntCT-∆PT). GFP tagged KASH domain with an amino 
acid exchange of proline 1736 to alanine (GFP-IntCT-P/A). B. GFP-IntCT was 
localized to the nuclear envelope displacing the endogenous interaptin from there. 
GFP-IntCT-∆PT mislocalized to peripheral ER and Golgi apparatus and did not 
interfere with the nuclear envelope localization of the endogenous interaptin. GFP-
IntCT-P/A was retained in the Golgi apparatus. To some extent, GFP-IntCT-P/A 
affected the localization of endogenous interaptin that was found in the Golgi 
apparatus and stained in a punctuated fashion in the nuclear envelope. DNA was 
stained with DAPI. 
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3.4.5 The KASH motif of interaptin competes with 
Sun-1 for the nuclear membrane localization 
In stark contrast to the models proposed for C. elegans, D. 

melanogaster and mammals, interaptin competes with Sun-1 for the nuclear 

envelope localization in D. discoideum. Probably, interaptin and Sun-1 bind 

competitively to a common unknown binding partner. To investigate whether 

the C-terminal KASH motif P-T of interaptin is involved in the competition 

with Sun-1, localization of endogenous Sun-1 was studied in AX2 cells 

expressing GFP-IntCT, GFP-IntCT-∆PT and GFP-IntCT-P/A using 

immunofluorescence. 

However, mislocalization of Sun-1 in cells expressing GFP-IntCT 

correlated with the increase in the expression level of GFP-IntCT: In cells 

overexpressing GFP-IntCT, Sun-1 was partially displaced from the nuclear 

envelope contrasting with proper nuclear envelope localization Sun-1 when 

GFP-IntCT was expressed at a reduced level indicates that the C-terminal 

domain of interaptin competes with Sun-1. (Figure 19A-D, arrow). 

Remarkably, the KASH motif P-T is involved in the competition between 

interaptin and Sun-1, since Sun-1 was found in the nuclear envelope if GFP-

IntCT-∆PT and GFP-IntCT-P/A were mislocalized to the peripheral ER and 

Golgi apparatus (Figure 19E-H and I-L). Additionally, in some cells 

expressing GFP-IntCT-∆PT and GFP-IntCT-P/A Sun-1 was localized to the 

nuclear envelope though punctuated (Figure 19B, F and J, arrowheads), but 

exhibited a rim-like pattern (Figure 19B, arrows). The punctuated nuclear 

envelope staining of Sun-1 in GFP-IntCT-∆PT and GFP-IntCT-P/A 

expressing cells may be explained by the presence of the endogenous 

interaptin in the nuclear envelope. Due to the competition of the 

endogenous interaptin or GFP-IntCT with Sun-1, it failed to localize to the 

nuclear envelope in a rim-like fashion.  

Taken together, these observations demonstrate (1) that the 

interaptin C-terminus exert a dominant-negative effect on the nuclear 

envelope localization of Sun-1 and (2) that the KASH motif of is involved in 

this competition of interaptin and Sun-1 for a common binding partner.    
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Figure 19: KASH domain of interaptin is capable to displace the endogenous Sun-1 from 
the nuclear envelope. A. GFP-IntCT containing the interaptin C-terminal 
transmembrane domain and the KASH motif localized to the nuclear envelope. B. 
Overexpression of GFP-IntCT displaced the endogenous Sun-1 from the nuclear 
envelope, whereas Sun-1 was not mislocalized in cells expressing low amounts of 
GFP-IntCT (arrow). C. Merged image of GFP-IntCT and Sun-1 staining. D. DNA 
was stained with DAPI (blue). E. GFP-Int∆PT truncated in the C-terminal KASH 
motif accumulated in the peripheral ER and Golgi apparatus. F. Sun-1 was 
localized in a rim-like pattern to the nuclear envelope in GFP-IntCT-∆PT (arrow). In 
some cells, Sun-1 was also found in a punctuated pattern (arrowheads). G. Merged 
image of GFP-IntCT-∆PT and Sun-1 staining. H. DNA was stained with DAPI. I. 
GFP-IntCT-P/A, carrying an amino acid exchange P 1736 to A, was restricted to 
the Golgi apparatus. J. Sun-1 was detected both in a rim-like pattern (arrow) and in 
a punctuated pattern (arrowheads) in the nuclear envelope of GFP-IntCT-P/A cells. 
K. Merged image of GFP-IntCT-P/A and Sun-1 staining. L. DNA was stained with 
DAPI. Indirect immunofluorescence was carried out using K55-460-1, secondary 
antibodies goat-anti-mIgG was conjugated with Cy3. Images were acquired using 
confocal microscopy.  
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3.5 N-terminal truncation of Sun-1   

3.5.1 Expression of GFP-∆NSun-1 deforms the 

nucleus  
Evidences from proteinase K protection assay demonstrated that 

the endogenous Sun-1 adopts the membrane topology of type II 

transmembrane proteins, exposing the N-terminus to the nucleoplasm. 

Combining the results from the proteinase K protection assay with that 

obtained from the chromatin immunoprecipitation assay, it is likely that 

chromatin association of the N-terminus may be required for the INM 

targeting of Sun-1 in D. discoideum. To validate the function of the N-

terminus of Sun-1 in nuclear envelope targeting, a construct, encoding an N-

terminal truncation (GFP-∆NSun-1), was expressed in AX2 cells.   

However, truncation of the N-terminus did not abrogate the nuclear 

envelope localization of GFP-∆NSun-1 (Figure 20D-F) that is comparable to 

the endogenous Sun-1 in wildtype AX2 cells (Figure 20A-C), demonstrating 

that the N-terminus is dispensable for the nuclear envelope targeting of Sun-

1. In parallel, this finding suggests that the C-terminal ER retention signal 

(SDEL) may be sufficient to target GFP-∆NSun-1 to the rough ER from 

which GFP-∆NSun-1 was further distributed to the nuclear envelope. 

Intriguingly, we observed frequently membrane blebs in the nuclear 

envelope, which did not contain DNA, hinting at deformations caused by 

GFP-∆NSun-1 expression (Figure 20D and F, arrows). Additionally, a small 

population of GFP-∆NSun-1 expressing cells (ca. 10% cells) exhibited 

increased cell size due to enlargement of the nuclear volume and cytoplasm 

suggesting that GFP-∆NSun-1 cells suffer from cytokinesis defects that led 

to chromosome abberations.   
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Figure 20: GFP-∆NSun-1 caused nuclear envelope deformations. A. In wildtype AX2 cells, 

Sun-1 is localized to the envelope (mAb K55-460-1, red). B. DNA stained by 
ToPro-3 (blue). C. Merged image of Sun-1 (red) and DNA (blue). D. GFP-∆NSun1 
is targeted to the nuclear envelope (green). Expression GFP-∆NSun-1 caused 
nuclear envelope deformations (arrows) and an increase of the nuclear volume. E. 
DNA stained by ToPro-3 (blue). F. DNA was absent from the nuclear envelope 
blebs (arrows).  

 

 

3.5.2 GFP-∆NSun-1 causes aneuploidy 

The GFP-∆NSun-1 expressing cells may suffer from cytokinesis 

defects that led to formation of huge nuclei, indicating a tendency for 

polyploidy. To evaluate the karyotype, condensed chromosomes were 

arrested in the metaphase by addition of the mitotic spindle depolymerizing 

drug nocodazole (Figure 21A). The karyotype of wildtype AX2 cells and 

GFP-∆NSun-1 expressing cells was evaluated for 400 nuclei; the evaluation 

was repeated in three individual experiments. 

The haploid genome of wildtype AX2 cells is constituted by six 

chromosomes per nucleus (Figure 21A, circles), which was found in 83% of 
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the cells though occasionally, seven chromosomes were observed that 

encodes the ribosomal DNA (rDNA) (Figure 21B). In GFP-∆NSun-1 

expressing cells, the ratio of the nuclei displaying the wildtype karyotype of 

six chromosomes (Figure 21A, boxes) was reduced to 30% of the nuclei 

(Figure 21B). Accordingly, nuclei containing five (Figure 21A, circle), four 

and three chromosomes were found in 25%, 20% and 10% of the nuclei 

(Figure 21B). The increased amount of nuclei containing less than six 

chromosomes indicate, that GFP-∆NSun-1 expressing cells exhibited a 

tendency for aneuploidy but not polyploidy. The observation of aneuploidy 

due to GFP-∆NSun-1 expression is surprising, since enlargement of the 

nuclei hint at polyploidy. Hence, GFP-∆NSun-1 expression may lead to a 

loss of the tension in the nuclear envelope that caused nuclear deformations 

and also expansion of the nuclear volume, which was not compensated by 

the endogenous Sun-1.           
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Figure 21: GFP-∆NSun-1 cells exhibited aneuploidy. The percentage of chromosomes per 

nuclei was calculated from 400 nuclei each in three independent evaluations. A. 
AX2 and GFP-∆NSun-1 cells were treated with 10µg/ml nocodazole to visualize the 
chromosomes, stained using DAPI. The haploid genome of AX2 cells constituted 
by six chromosomes and an additional chromosome encoding rDNA (circles, 
enlarged white box), whereas some cells expressing GFP-∆NSun-1 displayed a 
tendency for aneuploidy with five chromosomes (boxes, enlarged green box). B. 
Evaluation of the karyotypes in AX2 cells and GFP-∆NSun-1 cells. The majority of 
nuclei in AX2 cells contained six chromosomes (83%, blue). In GFP-∆NSun-1 cells, 
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the karyotype varied form three to six chromosomes (10%, 20%, 25% and 30%), 
indicating a tendency for aneuploidy (green).  

 

 

3.5.3 GFP-∆NSun-1 accumulated at the ONM         
To address the mechanism underlying the effect of aneuploidy in 

GFP-∆NSun-1 cells, we set out to determine the topology and the 

localization of GFP-∆NSun-1 in the nuclear envelope taking advantage of 

two available epitopes on GFP-∆NSun-1: (1) GFP at the N-terminus and (2) 

coiled-coil domains located C-terminal to the transmembrane domain.  

For this purpose, GFP-∆Sun-1 cells were permeabilized 

sequentially using digitonin and Triton X-100 prior to immunofluorescence 

staining (Figure 22). Upon digitonin treatment, only the plasma membrane 

was permeabilized, the anti GFP-specific polyclonal rabbit antibody (pAb 

GFP) detected GFP-∆NSun-1 demonstrating that GFP-∆NSun-1 was 

localized in the ONM exposing the N-terminus to the cytoplasm (Figure 22B). 

Conversely, mAb K55-460-1 failed to detect the coiled-coil domains of GFP-

∆Sun-1 and the endogenous Sun-1 after digitonin treatment, as the nuclear 

envelope was intact and the C-terminal epitope was inaccessible (Figure 

22F). The absence of mAb K55-460-1 staining after digitonin application 

was in line with the findings from the proteinase K protection assay, 

confirming that both Sun-1 and GFP-∆NSun-1 projects the C-terminus into 

the perinuclear space thus both possess the identical membrane topology. 

Moreover, the conserved membrane topology of GFP-∆NSun-1 and the 

endogenous Sun-1 underline the potential of the C-terminal ER retention 

signal S-D-E-L for nuclear envelope targeting.    

However, both GFP-∆NSun-1 and the endogenous Sun-1 possess 

the pair of coiled-coil domains, to which the mAb K55-460-1 is targeted. 

Thus, after Triton X-100 permeabilization, the distribution pattern of GFP-

∆NSun-1 and the endogenous Sun-1 in the nuclear envelope was 

indistinguishable by immunofluorescence staining using mAb K55-460-1 

(Figure 22C). Nevertheless, merging the images obtained from pAb GFP 
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staining after digitonin treatment with those from mAb K55-460-1 after Triton 

X-100 enabled a discrimination of the INM and the ONM.  

At the sites of nuclear envelope blebs, the endogenous Sun-1 was 

targeted to the INM and was also enriched in the nucleoplasm in the cells 

expressing GFP-∆NSun-1 (Figure 22D, arrow); whereas GFP-∆NSun-1 

accumulated at the ONM (Figure 22D, arrowhead). As a control, the pAb 

GFP predominantly localized the GFP-∆NSun-1 in the nuclear envelope 

after Triton X-100 permeabilization (Figure 22G and H). However, to some 

extent GFP-∆NSun-1 was also found within the nucleoplasm, which may be 

translocated there as a heterodimeric/oligomeric complex with the 

endogenous Sun-1. The reduced localization of GFP-∆NSun-1 within the 

nucleoplasm when compared to that of the endogenous Sun-1 implies that 

GFP-∆NSun-1 was accumulated in the ONM.  

In conclusion, the N-terminus of Sun-1 may be required for the INM 

targeting by binding to chromatin, chromatin-associated proteins or other 

nucleoplasmic proteins. Although the N-terminus is dispensable for nuclear 

envelope localization of GFP-∆NSun-1, which may probably be engaged 

by the C-terminal ER retention signal, the majority of the protein failed to 

localize to the INM and accumulated in the ONM.  
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Figure 22: GFP-∆NSun-1 was accumulated in the ONM. Sequential Digitonin/Triton X-100 

permeabilization of cellular membranes was carried out prior to 
immunofluorescence. GFP-∆NSun-1 was localized to the nuclear envelope (A and 
E). The N-terminal GFP tag was exposed to the cytoplasm that was proved by the 
staining using pAb for GFP (B). As digitonin does not permeabilize the nuclear 
envelope the mAb K55-460-1 failed to detect the coiled-coil domains of GFP-
∆NSun-1 and the endogenous Sun-1 in the perinuclear space (F). Finally, the 
nuclear envelope was permeabilized by application of Triton X-100. Consequently, 
both the pAb GFP antibody and the mAb K55-460-1 detected GFP-∆NSun-1 and 
the endogenous Sun-1 (C and G). The endogenous Sun-1 is targeted to the INM 
(D, arrow), whereas GFP-∆NSun-1 is accumulated in the ONM (D, arrowhead). 

 

 

To further confirm the ONM localization of GFP-∆NSun-1, nuclei 

were isolated from cells expressing GFP-∆NSun-1 and stained with gold-

labeled pAb GFP (Figure 23). Strikingly, GFP-∆NSun-1 accumulated at 

distinct sites of the ONM, whereas the INM was not decorated with gold 

particles (Figure 23, bows). This supports the proposal that the N-terminus 

of Sun-1 may participate in the INM targeting by interaction with chromatin 

or chromatin-associated proteins. Interestingly, at some sites a separation of 

the INM and ONM was observed that may represent the nuclear envelope 

blebs as described above. However, those blebs were also found in nuclei 
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isolated from AX2 cells (data not shown), thus future stastitical evaluations 

are required to exclude the probability of experimental artifacts. In addition 

to that, condense chromatin structures were frequently found within the 

nuclei from GFP-∆NSun-1 cells (Figure 23, asterisks), of which the nature is 

not clear yet.  

Notably, finding gold-labeled pAb GFP in the INM strengthened our 

hypothesis that GFP-∆NSun-1 may be translocated to the INM in a complex 

along with the endogenous Sun-1 (Figure 23, arrowheads). Finally, we 

speculate that the heterogeneous complex (composed of GFP-∆NSun-1 and 

Sun-1) is functional to bridge the INM and the ONM as nuclear envelope 

blebs were limited to some sites. In contrast to the endogenous Sun-1, 

GFP-∆NSun-1 may be unable to interact with chromatin or chromatin-

associated proteins due to the truncation of the N-terminus, thus 

contributing to an expansion of the nuclear volume. 
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Figure 23: Electron micrograph of a nucleus isolated from GFP-∆NSun1 expressing cells. 

GFP-∆NSun-1 was labeled with gold conjugated pAb against GFP. At distinct sites, 
GFP-∆NSun1 accumulated in the ONM (bows), whereas reduced amounts were 
also detected at the INM (arrowheads) that may be recruited to the INM by 
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dimerization with the endogenous Sun-1. Within the nucleoplasm, some 
subdomains contained condensed chromatin (asterisks). On occasion, nuclear 
envelope protrusions were observed to emerge from the ONM of the GFP-∆NSun-1 
cells (green arrow). The nuclear envelope near the nuclear pore (NP, black arrow) 
is shown in detail in the inserted box. 

 

 

3.5.4 GFP-∆NSun-1 cells formed protrusion to the 

centrosome  
To address the nuclear envelope protrusion seen in the electron 

micrograph (Figure 23, green arrow), we screened the GFP-∆NSun-1 cells 

for protrusions and investigated whether the endogenous Sun-1 is recruited 

to these sites.  

To our surprise, GFP-∆NSun-1 and/or the endogenous Sun-1 were 

not detected at the tip region of the protrusions using the mAb K55-460-1 

(Figure 24A-D, arrowheads and magnified box). Given the evidence that the 

mAb K55-460-1 detected GFP-∆NSun-1 in the proximal region of the 

nuclear envelope from which the protrusion emerged (Figure 24A-D, 

magnified box) we suggest that the tip of the protrusion may be decorated 

with an amount of GFP-∆NSun-1 that was beyond the detection limit of the 

mAb K55-460-1. Alternatively, GFP-∆NSun-1 may undergo dramatic 

conformational changes when localized to the nuclear envelope protrusion 

and thereby masking the epitope for the antibodies. 

From the immunofluorescence experiments in interaptin mutants we 

suggested a competitive localization of Sun-1 and interaptin in the nuclear 

envelope. In concordance to that, overexpression of GFP-∆NSun-1 

displaced the endogenous interaptin from the nuclear envelope (Figure 24E-

H). Furthermore, the dose-dependent competition between Sun-1 and 

interaptin became more evident as when GFP-∆NSun-1 was expressed at 

low levels interaptin was localized to the nuclear envelope comparable to 

that in wildtype AX2 cells (Figure 24F, arrow), but overexpression of GFP-

∆NSun-1 caused the absence or a punctuated pattern of interaptin in the 
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nuclear envelope. Further, interaptin was apparently absent from the 

nuclear envelope protrusions (Figure 24A-D, arrowheads). 

Taking into account that SUN domain proteins also interact with 

microtubule-associated KASH domain proteins to connect the nucleus to 

centrosomes, GFP-∆NSun-1 may nuclear envelope protrusions to provide a 

connection to the centrosomes. Strikingly, in 90% of GFP-∆NSun-1 cells the 

centrosomes were located far away from the nuclei and when protrusions 

were observed, they were attached to the centrosomes (Figure 24, I-L). 

Regarding the absence of these protrusions in wildtype AX2 cells and the 

interaptin mutants, these structures may specifically enable the GFP-

∆NSun-1 expressing cells to connect their nuclei to the centrosomes, though 

the distance between the two organelles was dramatically increased. 

Notably, GFP-∆NSun-1 was not localized within the centrosome body 

(Figure 24K, magnified boxes), but was attached to the periphery of the 

centrosomes hinting at a putative protein complex in which GFP-∆NSun-1 in 

involved to connect the nuclear envelope protrusion to the centrosome.             
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Figure 24: GFP-∆NSun-1 cells form nuclear envelope protrusions disassociating the 
nucleus-centrosome proximity. DNA was visualized by DAPI (D, H and L). A-D. 
GFP-∆NSun-1 was partially recognized in the proximal region of the nuclear 
envelope by mAb K55-460-1. At the tip of the protrusions, mAb K55-460-1 failed to 
detect GFP-∆NSun-1, probably due to limited antibody sensitivities or epitope 
inaccessibility (arrowheads and box). E-H. Mislocalization of interaptin by GFP-
∆NSun-1 occurred in a dose-dependent fashion; overexpression of GFP-∆NSun-1 
displaced interaptin from the nuclear envelope, whereas basal expression of GFP-
∆NSun-1 did not (arrows). Notably, interaptin was not localized to the nuclear 
envelope protrusion (arrowheads). I-L. The nuclear membrane protrusion in GFP-
∆NSun-1 cells was connected to the centrosomes with an dramatically increased 
distance (mAb K29-359-31).  

 

 

3.5.5 GFP-∆NSun-1 disconnected the nucleus from 

centrosomes  
As described before, a subpopulation of GFP-∆NSun-1 cells (10%) 

exhibited severely enlarged and deformed nuclei we addressed the 

centrosome connection in these cells and compared to the phenotype in 

wildtype AX2 cells in which each nucleus was located in close proximity of 
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one centrosome during the interphase (Figure 25A-C) and nuclear envelope 

protrusions were absent..  

In regular-sized GFP-∆NSun-1 cells, the centrosomes were 

maintained in a central position within the cytoplasm and the nucleus 

number correlated with that of the centrosome (Figure 25D-F), which is 

comparable to the phenotype in AX2 cells. In sharp contrast, all huge cells 

with enlarged and deformed nuclei were disassociated even from closely 

located centrosomes (Figure 25D-F, magnified box) which were mislocated 

in the cell periphery and accompanied by an amplification of the centrosome 

number that did not correlate with the nuclear number (Figure 25D-F). 

Regardless of the cell and nucleus volume, these data clearly demonstrate 

that truncation of the Sun-1 N-terminus drives the centrosomes away from 

the nucleus and that Sun-1 may confer the proximity between the nucleus 

and the centrosome that probably determine the proper position of both 

organelles. 

In correlation with the previous findings, GFP-∆NSun-1 remained in 

the ONM and may bypass the bridge between the endogenous Sun-1 and a 

centrosome-linker leading to the formation of nuclear envelope protrusions. 

Probably, these protrusions were unable to withstand the mechanical force 

between the nucleus and the centrosome, thereby disconnecting the 

nucleus and centrosome in some cells, which led to the peripheral 

disposition of the centrosome. Consequently, division of the nucleus and 

centrosome occurred uncoordinated, resulting in an imbalance of the 

nucleus-centrosome ratio. In addition, centrosome amplification may impair 

the nuclear division, causing an enlargement of the nucleus. Taken together, 

these data indicate that (1) Sun-1 is involved in bridging the INM to a 

centrosome-linker in the ONM and (2) the connection of the nucleus to the 

centrosome is required for the accuracy of centrosome duplication in D. 

discoideum.  

In contrast to other eukaryotic systems, D. discoideum undergoes a 

so-called closed mitosis, i.e. the duplicated chromosomes are segregated 

within the nucleoplasm that does not require a classical mitotic spindle 

formation within the cytoplasm. Nevertheless, the proximity between the 
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nucleus and the centrosome seemed important as GFP-∆NSun-1 cells 

displayed a retarded growth rate when compared to AX2 cells (data not 

shown).    
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Figure 25: GFP-∆NSun-1 expression abrogated the proximity between the nucleus and 

centrosome. Sun-1 was detected by mAb K55-460-1; α-tubulin was stained using 
rat monoclonal antibodies YL1/2 and centrosomes using mAb K29-359-31. 
Secondary antibodies goat-anti-mouse IgG were conjugated with Cy3 and goat-
anti-rat IgG was coupled with Cy5. A. In wildtype AX2 cells, Sun-1 was localized to 
the nuclear envelope. B. α-tubulin staining displayed the central position of the 
microtubule organization center (MTOC) in wildtype AX2 cells. C. Merged image of 
Sun-1 and α-tubulin staining depicts that each nucleus was located in close 
proximity to one centrosome. D. A small population of GFP-∆NSun-1 cells (10%) 
exhibited increased nuclear and cellular volume with nuclear envelope 
deformations. E. The centrosomes colocalized with the MTOC in GFP-∆NSun-1 
cells. F. Merged image of centrosome staining and GFP-∆NSun-1 demonstrating 
that regular-sized nuclei were connected to the centrally positioned centrosome by 
nuclear envelope protrusions (arrow) whereas the huge nuclei were disconnected 
even from closely located centrosomes (magnified box). Enlargement of the 
nuclear and cell volume was accompanied by multiple centrosomes located in the 
cell periphery. 
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To validate the imbalance in the nucleus-centrosome ratio in GFP-

∆NSun-1 cells, approximately 400 cells were counted in three independent 

experiments. The average of all counting experiments was plotted in a 

diagram (Figure 26).  

In wildtype AX2 cells, the majority of cells contained one (60.9%) or 

two (31.9%) nuclei whereas some were found with three (5.7%) or four 

(1.5%) nuclei. Independent from the total nucleus number per cell, each 

nucleus was associated with one centrosome in AX2 cells, demonstrating 

that the nucleus number correlated with the centrosome number (Figure 

26B). In general, the majority of GFP-∆NSun-1 expressing cells was 

represented by a population of single (total 63.7%), double (total 29.9%), 

triple (4.8%) and quadruple (2.0%) nucleated cells. The nucleus number in 

GFP-∆NSun-1 cells is comparable to that in the wildtype cells, albeit various 

combinations of the nucleus and centrosome number were only found in 

GFP-∆NSun-1 cells. In rare cases, cells with one nucleus contained up to 

eight centrosomes due to GFP-∆NSun-1 expression (Figure 26B). In 

conclusion, loss of the proximity between the nucleus and centrosome in 

GFP-∆NSun-1 cells caused an imbalance of the nucleus and centrosome 

ratio.  
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Figure 26: Imbalance of nucleus and centrosome ratio. A. The table summarizes the 

average percentage of nucleus and centrosome number in 400 cells, evaluated in 
three independent experiments including standard deviations. B. The average 
percentage of nuclei and centrosomes per cell was plotted in a three dimensional 
diagram. The ratio of nucleus and centrosome per cell correlates in wildtype AX2 
(light and dark blue). In GFP-∆NSun-1 cells, the distribution of nuclei and 
centrosomes displayed various combinations, e.g. some single-nucleated cells 
contained up to ten centrosomes (light and dark green).    
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3.5.6 GFP-∆NSun-1 deformed the nucleus during 

intracellular movement 
In C. elegans, mutations in the SUN domain protein UNC-84 or in 

the KASH domain protein Anc-1 lead to uncoordinated nuclear movement. 

To study the motility of the deformed nuclei, live-cell imaging experiments 

were performed.  

The nuclear motility in GFP-intCT cells was not affected by the 

absence of the endogenous interaptin in the nuclear envelope and 

maintained a rounded shape during nuclear movement (Figure 27). This 

indicates that interaptin is not essential for the nuclear movement. According 

to the model proposed by Starr and Han (2002), interaptin bearing an actin-

binding domain may be involved in nuclear positioning, a mechanism 

independent from nuclear movement that requires a connection of KASH 

domain proteins to microtubules.    

Comparable to the GFP-IntCT cells, nuclei in GFP-∆NSun-1 cells 

were capable to move within the cells, which may be compensated by the 

presence of the endogenous Sun-1 in GFP-∆NSun-1 cells. Notably, the 

nuclei of GFP-∆NSun-1 cells were dramatically deformed during nuclear 

movement, e.g. the nuclear envelope was stretched and squeezed to a high 

extent (Figure 28, arrowheads) indicating that the nuclei in GFP-∆NSun-1 

cells are exposed to higher physical stress during the nuclear movement 

which may be attributed to the accumulation of GFP-∆NSun-1 in the ONM. 

Further on, the nuclear envelope formed temporary protrusions in GFP-

∆NSun-1 cells that may hint at a connection to the centrosomes at distinct 

sites (Figure 28, arrows). However, such protrusions were not observed in 

GFP-IntCT expressing cells, indicating that the endogenous Sun-1 and 

GFP-∆NSun-1 may provide a link to microtubules or centrosomes in which 

interaptin is not required.        
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Figure 27: Live-cell imaging of GFP-IntCT expressing cells. Images were acquired every 10 
sec over a time period of 15 min and 50 sec. To summarize the time period, images 
with a time lapse of 50 sec were displayed. The nuclei of GFP-IntCT cells were 
motile within the cytoplasm and maintained a rounded shape during the nuclear 
movement. 
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Figure 28: Nuclei in GFP-∆NSun-1 cells experience higher mechanical stress during the 
intracellular movement. Live-cell images were acquired every 10 sec for a total time 
of 15 min 50 sec. Representative images with a 50 sec time lapse were displayed. 
In GFP-∆NSun-1 expression did not affect the nuclear motility but the nuclei were 
deformed to a high extent when moving within the cells (arrowheads). Moreover, 
the nuclear membrane formed distinct protrusions (arrows), probably a connection 
to centrosomes.  
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4 Discussion 

4.1 SUN domain proteins in D. discoideum  
Analysis of the genome revealed the presence of two single-copy 

genes located on chromosome 2 and 4, respectively, encoding for the 

putative SUN domain proteins in the D. discoideum proteom, termed Sun-1 

and Sun-2. To gain insight into the domain architecture of Sun-1 and Sun-2, 

the protein sequences were analyzed using the programs SMART and 

InterProScan.  

Sun-1 contained an N-terminal coiled-coil domain, one 

transmembrane domain, a further pair of coiled-coil domains followed by a 

C-terminal SUN domain (Figure 5A). Based on the homology in the SUN 

domains, SUN domain proteins form three major groups: SUN domain 

proteins, SUN-like proteins and HECD1. Sun-1 of D. discoideum shares high 

homology with C. elegans UNC-84, mammalian Sun-1 and Sun-2 and is thus 

included in the group of the classical SUN domain proteins. Remarkably, the 

final amino acids S-D-E-L at the C-terminus of Sun-1 represent an ER 

retention signal, which was not found in SUN domain proteins from other 

eukaryotes and is therefore unique for Sun-1 of D. discoideum. In worm and 

mammals, the N-terminal domain of SUN domain proteins appears to be 

responsible for the INM targeting and interacts with lamins, which form the 

major component of the nucleoskeleton (Crisp et al., 2006; Grady et al., 

2005; Haque et al., 2006; Malone et al., 1999; Padmakumar et al., 2005). 

Contrasting the higher eukaryotes, D. discoideum lacks lamins. Thus, the 

presence of an ER retention signal in the C-terminus of Sun-1 may be 

required for ER targeting from which integral proteins are supposed to 

diffuse into the nuclear envelope (Soullam and Worman, 1995). Further, in 

the absence of lamins, Sun-1 may interact with lamin-like nucleoskeleton 

components yet to be elucidated. Alternatively, Sun-1 may also be an ER 

resident protein as some SUN domain proteins, such as human Sun-3, 

appeared to be targeted predominantly to the ER, though an ER retention 
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signal was absent (Crisp et al., 2006). So far, the function of the ER-

associated SUN domain proteins remains unclear, but may be distinct from 

that of the classical SUN domain proteins UNC-84 and matefin/Sun-1 

(Malone et al., 1999; Fridkin et al., 2004), mammalian Sun-1 and 2 (Crisp et 

al., 2006; Haque et al., 2006; Padmakumar et al., 2005).  

The overall structure Sun-2 in D. discoideum is constituted of an N-

terminal transmembrane domain, a coiled-coil domain, a central SUN 

domain and a C-terminal histone-deacetylase (HDAC) interaction domain 

(Figure 5B). Although SUN domain proteins display great varieties in their 

domain structure, the majority possesses a C-terminally located SUN 

domain. However, proteins containing a centrally located SUN domain are 

not only found in D. discoideum but also in S. pombe, S. cerevisiae, D. 

melanogaster and O. sativa. Due to the unusual domain architecture, these 

proteins are designated as the SUN-like proteins (SLP). Further, the putative 

HDAC interaction domain in Sun-2 is a unique and interesting feature 

suggesting a function in gene regulation. Recently, (Tzur et al., 2006) 

proposed new non-mechanical roles for the SUN domain proteins: Apart 

from the function as a mechanical nuclear envelope receptor connecting the 

nucleoskeleton to the cytoskeleton, SUN domain proteins may play a role in 

germline cell proliferation, germ-cell maintenance (Fridkin et al., 2004) and 

activation of the apoptotic pathways (Tzur and Gruenbaum, unpublished 

oberservations). By extension of this speculation, Sun-2 may modulate the 

gene expression as an integral nuclear envelope protein in D. discoideum 

transducing cytoplasmic signals into the nucleoplasm and vice versa.  
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4.2 Subcellular localization of Sun-1  
To study the Sun-1 in D. discoideum, mouse monoclonal antibodies 

were raised against the two coiled-coil domains located between the 

transmembrane domain and the SUN domain. The endogenous Sun-1 was 

localized in the nuclear envelope both in biochemical experiments (crude 

and discontinuous sucrose gradient fractionation assays) and in indirect 

immunofluorescence staining in wildtype AX2 cells (Figure 8 and Figure 9). 

However, the endogenous Sun-1 was not predominantly localized in the ER 

as reported for human Sun-3 (Crisp et al., 2006), but was detected in the 

nuclear envelope of D. discoideum which was comparable to that observed 

for UNC-84 and matefin/Sun-1 in C. elegans, as well as mammalian Sun-1 

and Sun-2 (Malone et al., 1999; Fridkin et al., 2004; Padmakumar et al., 

2005; Crisp et al., 2006).  

To confirm that Sun-1 is a transmembrane protein of the nuclear 

envelope, intact nuclei were isolated from wildtype AX2 cells and subjected 

to several extraction experiments. As shown in Figure 10, the endogenous 

Sun-1 was resistant to alkali (0.1M NaOH) and high salt (1M KCl) extraction 

indicating that Sun-1 is not peripherally anchored to the nuclear envelope. 

Similarly, interaptin, the first identified nuclear envelope protein in D. 

discoideum was also reported to be resistant to alkali and high salt extraction 

(Rivero et al., 1998). Further on, when isolated nuclei were treated with 

Triton X-100 or urea, only small amounts of Sun-1 were extracted from the 

nuclear membranes, whereas a combination of the detergent and urea 

increased the amount of extracted Sun-1 to some extent. The strong 

hydrophobicity of Sun-1 is comparable to the biochemical properties of 

human Sun-2, which was only extracted from the nuclear envelope in the 

presence of both detergent and urea indicating that the insolubility was due 

to the direct binding to the nuclear lamina, a stable network composed of 

lamin A/C (Hodzic et al., 2004). Nevertheless, alternative mechanisms to 

immobilize the SUN domain proteins in the INM are considerable, as C. 

elegans matefin/Sun-1 mammalian Sun-1 and Sun-2 can localize to the 
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nuclear INM in the absence of lamins (Crisp et al., 2006; Fridkin et al., 2004; 

Haque et al., 2006; Padmakumar et al., 2005). In this aspect, elucidating the 

mechanism for the nuclear envelope localization of the D. discoideum Sun-1 

may uncover an alternate retention of the SUN domain proteins in the INM.  

 

 

4.3 Sun-1 forms dimers and trimers in vitro 
By the fact that coiled-coil domains are likely motifs to mediate 

oligomerization, we studied the two coiled-coil domains located between the 

transmembrane domain and the SUN domain of Sun-1. Our data obtained 

from cross-linking experiments using glutaraldehyde demonstrated that 

these coiled-coil domains of Sun-1 formed homodimers and homotrimers in 

vitro (Figure 11B). Moreover, when the recombinant coiled-coil domains 

SunCT1 was analyzed by SDS-PAGE under denaturing conditions, low 

amounts of stable dimers and trimers were observed in western blots 

suggesting that dimers and trimers exhibited a high affinity. To verify the 

presence of SunCT1 dimers and trimers, untreated and and chemically 

cross-linked SunCT1 were analyzed by liquid chromatography on a gel 

filtration column (Figure 11C). The fraction eluted from the column contained 

trimers, dimers and monomers in both the untreated and the cross-linked 

samples SunCT1 demonstrating that these two coiled-coil domains are 

capable to promote dimerization and trimerization. In addition, we addressed 

the question whether the recombinant SunCT1 is able to interact with the 

endogenous Sun-1 from AX2 total cell lysate using GST pull-down 

experiments. Surprisingly, the peptide sequences of a 200 kDa band 

coprecipitated with GST-SunCT1 matched significantly the sequence of Sun-

1 (Figure 12). As a monomeric Sun-1 polypeptide is 105 kDa, we conclude 

that the protein of 200 kDa represents an endogenous Sun-1 dimer. 

Apparently, the endogenous Sun-1 formed dimers with high affinity, which 

were not disassembled under the denaturating and reducing conditions of 

the SDS polyacrylamide gel. 
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The strong affinity between the endogenous Sun-1 dimers was not 

derived from covalent disulfide bonds, since the coiled-coil domains do not 

harbor any cysteine residues. Instead, we identified clusters containing 

arginine, tryptophane, tyrosine, phenyl alanine, histidine and methionine in 

the coiled-coil domains which are conserved amino acid residues promoting 

high affinity interface association during dimerization (Bogan and Thorn, 

1998; Brinda and Vishveshwara, 2005). Furthermore, these above- 

mentioned residues, were interspersed by several leucines and isoleucines. 

Though promoting weak interface association, they may trigger the strength 

of the dimeric and trimeric complexes along with the residues for the high 

affinity interactions. 

Given the evidences that the recombinant SunCT1 may interact with 

an endogenous dimer, we suggest that Sun-1 may form functional 

homodimers and/or homotrimers in vivo. The formation of functional dimers 

or trimers may indicate a further feature of SUN proteins, as both 

mammalian Sun-1 and Sun-2 containing putative coiled-coil domains 

between the transmembrane domain and the SUN domain are proposed to 

occur as homodimers or heterodimers in vivo (Crisp et al., 2006) which is in 

line with our findings. However, the affinity of the mammalian Sun-1 and 

Sun-2 dimers was not determined yet, but mammalian Sun-1 is likely to form 

stable dimers due to the presence of four cysteine residues within the coiled-

coil domains (unpublished data from our laboratory). The common feature of 

the SUN domain proteins to dimerize and/or trimerize may provide multiple 

binding sites for the KASH domain proteins, thereby enhance the efficient 

transmission of the mechanical force to the nucleus during nuclear 

positioning and migration.          
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4.4 Sun-1 is a type II nuclear envelope protein 
and associated with chromatin  
So far, most of the INM localized SUN domain proteins, such as C. 

elegans matefin/Sun-1, mammalian Sun-1 and Sun-2, bind with their N-

terminus to Ce-lamin and lamin A, respectively, in vitro suggesting an INM 

retention mechanism which requires a common membrane topology of a 

nucleoplasmic N-terminus and a lumenal SUN domain (Fridkin et al., 2004; 

Padmakumar et al., 2005; Crisp et al., 2006; Haque et al., 2006). 

Nevertheless, lamins may assist other players or vice versa to constitute the 

INM retention of the SUN domain proteins in vivo, as C. elegans UNC-84 

though not binding to the Ce-lamin requires that for the nuclear envelope 

localization (Lee et al., 2002). Alternatively, a lamin-independent mechanism 

of INM retention may also be considered for the SUN domain proteins since 

C. elegans matefin/Sun-1 localized to the nuclear envelope in the absence of 

Ce-lamin as well as mammalian Sun-1 and Sun-2 when simultaneously 

depleted of lamin A, C and B1 (Fridkin et al., 2004; Padmakumar et al., 2005; 

Crisp et al., 2006; Hasan et al., 2006).  

Contrasting the higher eukaryotes, D. discoideum does not contain 

lamins hence we were curious about the membrane topology of the 

endogenous Sun-1. The data obtained from the proteinase K protection 

assays using intact nuclei from wildtype AX2 demonstrate that C-terminus of 

Sun-1 is located in the perinuclear space, thereby was protected from 

proteinase K (Figure 13). Hence, the endogenous Sun-1 is a type II integral 

protein of the nuclear envelope and adopts the identical topology of C. 

elegans matefin, mammalian Sun-1 and Sun-2. Considering that the N-

terminal domains of all SUN domain proteins protein do not share any 

sequence homology, this consistent membrane topology of D. discoideum 

Sun-1, C. elegans matefin, mammalian Sun-1 and Sun-2 may be a common 

feature of the SUN domain proteins. Owing to the capability of proteinase K 

to diffuse through the NPCs and digest nucleoplasmic proteins, we were 

unable to distinguish whether Sun-1 is predominantly located in the INM or 

ONM or in both membranes. 
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To shed light into the localization of the endogenous Sun-1 in the 

INM and/or ONM, we needed to overcome the unavailability of markers for 

these subdomains of the nuclear envelope in D. discoideum. Inspired by the 

observation that the N-terminus of C. elegans matefin/Sun-1 may be 

associated with chromatin and that downregulation of the corresponding 

gene mtf-1 by RNAi led to abnormally condensed chromatin (Fridkin et al., 

2004), we addressed whether Sun-1 is an INM protein that interacts with 

chromatin and whether this interaction is an alternate lamin-independent 

mechanism for INM retention in D. discoideum. Indeed, genomic DNA was 

coprecipitated with the endogenous Sun-1 by the mAb K55-460-1 in 

chromatin immunoprecipitation (ChIP) experiments (Figure 14). Remarkably, 

a putative histone-deacetylase (HDAC) interaction domain was found in the 

C-terminus of Sun-2 whereas binding motifs for DNA or chromatin-

associated proteins were not predicted for Sun-1. However, the interaction of 

Sun-1 with chromatin appeared to be specific as chromatin was not 

coprecipitated with α-tubulin specific antibodies or the protein A-Sepharose 

beads. Thus, the N-terminus of Sun-1 may harbor a cryptic domain for the 

interaction chromatin or chromatin-associated proteins that needs to be 

uncovered in the future.  

With respect to the evidences from the proteinase K experiments 

Sun-1 is likely localized in the INM with its N-terminus facing the 

nucleoplasm, which allows an interaction with chromatin. Moreover, we 

hypothesize that Sun-1 may not have preferences for specific DNA 

sequences in the chromatin, since this interaction may confer an alternate 

lamin-independent mechanism for the retention of Sun-1 in the INM of D. 

discoideum. Speculatively, the conserved membrane topology of D. 

discoideum Sun-1, C. elegans matefin/Sun-1, mammalian Sun-1 and Sun-2 

suggests that SUN domain proteins of higher eukaryotes may also have the 

propensity to interact with chromatin or chromatin-associated proteins.  
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4.5 Sun-1 and interaptin compete for the 
nuclear membrane localization  
In eukaryotic cells, positioning and migration of the nucleus on the 

cytoskeleton is proposed to occur by the interaction of the INM SUN domain 

proteins with the giant ONM KASH domain proteins (Starr and Han, 2002). 

This conserved interaction involves a binding of the C-terminal SUN domain 

(worm) or a region upstream to that (mammals) with the KASH motif G-P-P-

P-(T/L) in the short C-terminal tail of the KASH domain proteins (Malone et 

al., 1999; Padmakumar et al., 2005).  

In D. discoideum, interaptin has been reported to be a nuclear 

envelope protein of 200 kDa composed of an N-terminal actin-binding 

domain, centrally located coiled-coil domains and a C-terminal 

transmembrane domain including a rather short peptide tail of 16 amino 

acids (Rivero et al., 1998). The overall domain architecture of interaptin 

resembles that of the KASH domain proteins found in C. elegans, D. 

melanogaster and mammals leading to the hypothesis that interaptin 

represents a candidate KASH domain protein in D. discoideum. Further, the 

dominant-negative effect of the interaptin C-terminal transmembrane domain 

including the tail sequence to localize to the nuclear envelope and displace 

the endogenous interaptin is in line with the features of the KASH domain of 

the C. elegans Anc-1 and UNC-83, D. melanogaster Klarsicht, and murine 

giant Nesprin-1 (Grady et al., 2005; Guo et al., 2005; McGee et al., 2006; 

Rivero et al., 1998; Starr and Han, 2002; Zhang et al., 2001). The analysis 

the interaptin C-terminal tail revealed that the final two amino acids P-T 

resemble the final amino acids in the KASH motif of D. melanogaster Msp-

300/Nesprin, mouse and human Nesprin-2 indicating that these two amino 

acids P-T may function as a KASH motif in interaptin, though not containing 

the complete C-terminal amino acids G-P-P-P-T. Given the similar domain 

architecture and a putative KASH motif, interaptin represents a potential 

binding partner of Sun-1 to connect the nucleus with F-actin.  

As Anc-1 is a downstream partner of UNC-84 in C. elegans, 

mutations in the gene anc-1 do not affect the expression or the localization 
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of the UNC-84 (Lee et al., 2002), therefore we analyzed the effect of 

interaptin on the expression and the localization of Sun-1 in D. discoideum 

by comparison of (1) the expression profile of interaptin with that of Sun-1 

during the development and (2) the cellular localization of Sun-1 upon the 

alteration of the interaptin expression level. The two interaptin isoforms (160 

and 200 kDa) derived from the single copy gene abpD through alternate 

mRNA splicing are expressed differently during the development (Rivero et 

al., 1998). Although the small interaptin isoform and Sun-1 were expressed 

constitutively, the upregulation of the large interaptin isoform 8 hr after 

initiation of the development coinciding with a minor increase of Sun-1 hinted 

at a role of the large interaptin in the regulation of the Sun-1 expression 

(Figure 16). Thus, we addressed the Sun-1 protein level in an interaptin-

deficient and an overexpressing mutant. To some extent, the amount of Sun-

1 was increased in the interaptin-deficient strain when compared to that in 

the interaptin-overexpressing mutant suggesting that the absence of 

interaptin may enhance the Sun-1expression. As overexpression of 

interaptin did not deplete Sun-1 we suggest that interaptin does not strictly 

affect the Sun-1 expression per se but may modulate the level. 

Further, we investigated the subcellular localization of Sun-1 upon 

alteration of the interaptin expression level (Figure 17). In wildtype AX2 cells, 

both Sun-1 and interaptin were localized in the nuclear envelope, whereas 

interaptin is not required for the localization of Sun-1, since it was 

accumulated in the nuclear envelope in the absence of interaptin. 

Surprisingly, Sun-1 mislocalized to the cytoplasm when interaptin and the 

interaptin KASH domain (GFP-IntCT, Rivero et al., 1998) were 

overexpressed, whereas basal expression levels of GFP-IntCT did not. 

These observations suggest a competitive localization of between Sun-1 and 

interaptin KASH domain in the nuclear envelope, probably by interaction with 

a common partner that may be quenched by high amounts of the KASH 

domain.  
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To test whether the KASH motif is required for the nuclear envelope 

targeting of interaptin and whether this motif competes with Sun-1, GFP-

IntCT (Rivero et al., 1998) was truncated in the amino acids P-T (GFP-IntCT-

∆PT), alternatively the proline (1736) was mutated to alanine (GFP-IntCT-

P/A). Intriguingly, GFP-IntCT-∆PT and GFP-IntCT-P/A abrogated the 

targeting of the interaptin C-terminus to the nuclear envelope instead these 

proteins localized to the Golgi apparatus confirming that the final amino 

acids P-T as a functional KASH motif (Figure 18 and Figure 19). Taking into 

account that the endogenous Sun-1 and interaptin were localized to the 

nuclear envelope in GFP-IntCT-∆PT and GFP-IntCT-P/A expressing cells, 

we suggest that Sun-1 competes with the KASH motif of interaptin in a dose-

dependent manner, thus strengthening our hypothesis that Sun-1 and 

interaptin compete for the nuclear envelope localization.   

The competition in D. discoideum contrasts with the findings that 

overexpression of the KASH domain from C. elegans Anc-1 and UNC-83, D. 

melanogaster Klarsicht and mammalian Nesprin-1 did not mislocalize their 

appropriate SUN domain proteins (Starr and Han, 2002; McGee et al.,2006; 

Guo et al., 2005; Grady et al., 2005; Zhang et al., 2001). Further, our 

observations conflicts with the common model proposed which says that 

SUN domain proteins of worm and mammals bind directly or indirectly to the 

KASH domain proteins in the nuclear envelope during nuclear positioning 

and migration (Starr and Han, 2002; Starr and Fischer, 2005; Wilhelmsen et 

al., 2006; Tzur et al., 2006).  

With respect to our observations that the interaptin-deficient and 

overexpressing mutants do not exhibit nuclear positioning defects, we 

suggest that Sun-1 and interaptin may be involved in two independent 

mechanisms for the nuclear positioning in D. discoideum, which are capable 

to substitute their functions mutually: in the absence of interaptin, Sun-1 may 

interact with other KASH domain proteins in the nuclear envelope to 

establish nuclear positioning compensating the loss of interaptin, whereas 

overexpression of interaptin shifted the equilibrium to the interaptin-mediated 

nuclear positioning leading to mislocalization of Sun-1 from the nuclear 

envelope. The possibility of alternate mechanisms for nuclear positioning in 
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D. discoideum underscores the importance to define the nuclear position as 

postulated for worms, flies and mammals. 

 

 

4.6 The N-terminus of Sun-1 confers INM 
localization  
As demonstrated by the chromatin immunoprecipitation experiments, 

the endogenous Sun-1 may bind to chromatin (Figure 14); with respect of 

the topology determined by proteinase K protection assays (Figure 14), the 

N-terminus may be responsible for this interaction. To elucidate the function 

of the chromatin association, the Sun-1 N-terminus was replaced by a GFP 

tag (GFP-∆NSun-1) and expressed in AX2 cells (Figure 20). GFP-∆NSun-1 

was localized at the nuclear envelope suggesting that the N-terminus is not 

essential for the nuclear envelope targeting. It might well be that the ER 

retention signal uniquely found in Sun-1 of D. discoideum confers nuclear 

envelope localization of GFP-∆NSun-1.  

As SUN domain proteins described so far and Sun-1 in D. 

discoideum do not possess any INM-specific signals (Lee et al., 2002; 

Fridkin et al., 2004; Hodzic et al., 2004; Padmakumar et al., 2005; Crisp et 

al., 2006) their INM localization may occur as proposed in the “Diffusion-

Retention” model suggesting that INM proteins diffuse freely along the rER 

and nuclear pore membranes into the INM where they are retained by stable 

interactions with the nuclear lamina, chromatin or both (Ellenberg et al., 1997; 

Ohba et al., 2004; Ostlund et al., 1999; Smith and Blobel, 1993; Worman 

and Courvalin, 2000).The intriguing accumulation of GFP-∆NSun-1 in the 

ONM as verified by electron microscopy using immunogold labeling as well 

as the selective digitonin permeabilization prior to immunofluorescence 

stainings proved that GFP-∆NSun-1 exhibits the identical topology as 

suggested for the endogenous Sun-1 and that the truncation of the N-

terminus prevents the INM localization (Figure 22 and Figure 23).  
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In conclusion, the endogenous Sun-1 may be retained in the INM by 

interaction with chromatin whereas GFP-∆NSun-1 is not. The few 

immunogold particles observed in the INM may result from the diffusion of 

GFP-∆NSun-1 into the INM or from the incorporation of GFP-∆NSun-1 into a 

dimeric and oligomeric complex with the endogenous Sun-1 which is 

subsequently escorted into the INM and retained there. As matefin in C. 

elegans and mammalian Sun-1 and Sun-2 localize to the INM when lamins 

are depleted (Crisp et al., 2006; Fridkin et al., 2004; Haque et al., 2006; 

Hasan et al., 2006; Padmakumar et al., 2005) we propose that SUN domain 

proteins of higher eukaryotes may also engage chromatin binding for INM 

retention.  

 

 

4.6.1 GFP-∆NSun-1 affects the nuclear shape 

Loss of GFP-∆NSun-1 in the INM was frequently accompanied with 

dramatic changes in the nuclear morphology and an increase of the nuclear 

and cell volume in approximately 10% of cells (visual inspect, Figure 20). In 

these huge cells containing enlarged nuclei, we noticed nuclear envelope 

blebs that may result from a separation of the INM and ONM as observed in 

the sequentially digitonin/Triton X-100 permeabilized cells and electron 

microscopy. Interestingly, similar results were reported for mammalian cells 

devoid of both Sun-1 and Sun-2 (Crisp et al., 2006). However, the blebs 

were limited to some sites of the nuclear envelope implying that the effect 

of GFP-∆NSun-1 on the nuclear morphology may be partially compensated 

by the endogenous Sun-1. As some separation of the INM and ONM was 

also observed in electron microscopy on nuclei isolated from wildtype AX2 

cells (data not shown), further evaluations of the frequency are required to 

rule out the probability of experimental artifacts. 

In concordance to the mislocalization of Sun-1 in the interaptin 

mutants, analysis of interaptin in GFP-∆NSun-1 expressing cells confirmed 

the competition of these proteins for the nuclear envelope localization in a 
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dose-dependent manner, as interaptin was detected in the nuclear 

envelope of cells with a low level of GFP-∆NSun-1, whereas the rim-like 

pattern of interaptin was abolished when GFP-∆NSun-1 was overexpressed 

(Figure 24E-H). Occasionally, we noticed a protrusion emerging from the 

nuclear envelope of GFP-∆NSun-1 expressing cells exhibiting a regular cell 

size comparable to that of wildtype AX2 cells (Figure 24). Paradoxically, the 

nuclear envelope protrusions were partially recognized by the mAb against 

Sun-1 (K55-460-1) but not at the tip of this protrusion, which may be due to 

the sensitivity of the antibodies. Another possibility is that the conformation 

or affinity of GFP-∆NSun-1 dimers and/or oligomers in the tip of the 

protrusions may be distinct from those composed of the endogenous Sun-1 

leading to inaccessibility for the antibodies. Collectively, nuclear envelope 

protrusions were not found in wildtype AX2 cells, the interaptin mutants and 

in GFP-∆NSun-1 cells interaptin was absent from the whole protrusion, 

indicating that this phenotype is specific for the GFP-∆NSun-1 expression 

and interaptin did not participate in the formation of these structures.  

However, Zyg-12, a KASH domain protein in C. elegans, interacts 

with matefin/Sun-1 to provide the nucleus-centrosome attachment during 

embryonic development. Mutations in zyg-12 are lethal for the embryos due 

to the centrosome disconnection that causes chromosome segregation 

defects (Fridkin et al., 2004; Malone et al., 2003). Likewise, Sun-1 may 

probably interact with a centrosome-attached KASH domain protein in the 

nuclear envelope to juxtapose the nucleus and centrosome. Accumulation 

of GFP-∆NSun-1 in the ONM may bypass the connection to this 

centrosome linker, consequently causing the formation of nuclear envelope 

protrusions. Thus, finding a homolog of Zyg-12 is the key to prove a Sun-1-

mediated connection to the centrosome.  
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4.6.2 GFP-∆NSun-1 causes centrosome amplification  

As the nuclear envelope protrusions in GFP-∆NSun-1 cells seemed 

to be connected to a defined cellular element we set out to identify whether 

they are attached to the centrosomes. Indeed, the protrusions were 

oriented towards the centrosomes and colocalized with the pericentriolar 

material (Figure 24I-L). The formation of these protrusions caused a distal 

position of the nucleus to the centrosome in regular-sized cells, contrasting 

with the juxtaposition of the nucleus and centrosome in wildtype AX2 cells 

(Figure 25). Regardless of the nucleus-centrosome distance the number of 

nuclei correlated with that of the centrosomes in regular-sized GFP-∆NSun-

1 cells and wildtype AX2 cells implying that a physical connection regulate 

a coordinated replication of these organelles.  

Interestingly, in huge cells with misshapen nuclear morphologies 

centrosomes were frequently found with an increased number (up to eight 

per cell) and were misplaced in the cell periphery instead of a central 

position as in wildtype cells (Figure 25). As nuclear envelope protrusions 

were absent in these huge cells, an imbalance of nucleus and centrosome 

number may be a consequence of the dissociation of nucleus-centrosome 

connection (Figure 26). Although Dictyostelium performs a closed mitosis 

that does not require a mitotic spindle formation, the nucleus-centrosome 

proximity is important for proper chromosome segregation and 

chromosome stability as demonstrated by an increase in aneuploidy in 

GFP-∆NSun-1 expressing cells, which was not compensated by the 

endogenous Sun-1. Notably, aneuploidy in GFP-∆NSun-1 expressing cells 

seemed to correlate with a retarded single cell growth and development 

(data not shown) demonstrating that an alteration of cell proliferation and 

apoptosis may be due to the loss of chromosomes. However, the extent 

and significance of the delayed growth and development need to be 

evaluated in the future.  

When addressed the important aspect whether an increased 

nucleus-centrosome distance affects nuclear migration in living cells, both 

the huge and the regular-sized nuclei were not affected in their intracellular 
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motility, but their morphology was abnormal during the movement (Figure 

28). In contrast, the nuclei of GFP-IntCT cells remained their rounded 

shape during intracellular translocation in the absence of interaptin in the 

nuclear envelope, thus demonstrating that interaptin may play a role in 

nuclear positioning, but not directly involved in nuclear migration (Figure 27). 

Apparently, the nuclei experienced dramatic deformations and failed to 

withstand the mechanical force transduced from the cytoskeleton implying 

that GFP-∆NSun-1 expression may impair the nuclear stiffness or nuclear 

resistance to mechanical stress.  

Our findings agreed well with the neoplastic characteristics of 

malignant tumors, in which centrosome amplification was always 

associated with aneuploidy (Boveri, 1914; Fukasawa, 2005; Hollander and 

Fornace, 2002; McKusick, 1985; Nigg, 2006; Zhu et al., 2005). To date, the 

mechanisms for centrosome amplification is not completely understood, but 

the most prevalent possibilities are (1) centrosome overduplication: A 

consequence of dissociation of the DNA replication cycles and the 

centrosome duplication combined with the loss of a centrosome-intrinsic 

inhibition of reduplication (Iarmarcovai et al., 2006). The well-characterized 

transcription factors Rb and p53 regulate the centrosome duplication by 

transcriptional repression of their appropriate downstream targets cyclin A 

and p21Cip/waf1 (Mantel et al., 1999; Meraldi et al., 1999; Tarapore et al., 

2001). (2) Centriole de novo genesis: A mechanism related to 

overduplication favored by the absence of “template” centrioles, which may 

kinetically dominate the duplication machinery. In particular, de novo 

centriole generation as occurring in specialized multiciliated epithelia was 

mimicked by removal of centrioles in cultured cells using laser ablation or 

microsurgery (Khodjakov et al., 2002; La Terra et al., 2005; Shang et al., 

2005). (3) Division failure: This theory suggest a dysfunction of mitotic 

progression and impaired DNA/chromatin metabolism could give rise to 

abortive mitosis with centrosome amplification as a secondary 

consequence that was reported for aneuploid breast cancers 

overexpressing of the mitotic kinase Aurora A (Ewart-Toland et al., 2003; 

Meraldi et al., 2004; Storchova et al., 2006).  
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In addition to these theories, we speculate that the physical 

attachment and the nucleus-centrosome proximity may coordinate the 

nuclear and centrosome replication in a concerted fashion and that Sun-1 in 

association with further centrosome-specific proteins of the ONM may 

provide the centrosome attachment in D. discoideum. Furthermore, we 

suggest that the nucleus-centrosome proximity may be important for the 

shuttling of regulatory cell cycle proteins between these organelles, given 

the evidences that nuclear proteins (p53, Orc2, Ocr6, RAD51) localize to 

and function at the centrosome (Daboussi et al., 2005; Prasanth et al., 2004; 

Prasanth et al., 2002; Tarapore et al., 2001), reversely, the centrosome 

protein centrin does so in the nucleus (Araki et al., 2001; Keryer et al., 

2003).       

Finally, SUN domain proteins are not only involved in the 

mechanical connection of the nucleus to the cytoskeleton. More diverse 

functions in cellular processes are attributed to these proteins, such as 

organization of the chromosomes, physiological influences on the fat 

metabolism, apoptosis and germline maturation (Chikashige et al., 2006; 

Fridkin et al., 2004; Greer and Brunet, 2005; Horvitz and Sulston, 1980). In 

addition to an alternate chromatin-mediated retention of Sun-1 in the INM, 

we propose that (1) interaction of Sun-1 with chromatin support the stiffness 

of the nucleus during intracellular migration; (2) Simultaneously, Sun-1 may 

provide binding sites for centrosome-linkers tethering the nucleus and 

centrosome in close proximity; (3) The nucleus-centrosome proximity in 

turn contribute to a central cytoplasmic position of the centrosome as well 

as chromosome stability and accuracy of chromosome segregation.   

 

 



4 Discussion 
 

91 

4.7 Proposed model for the function of Sun-1 in 
D. discoideum  
Taken together, our data suggest that Sun-1 may form dimers or 

higher oligomers in vivo, which may be retained in the INM by binding to 

chromatin. The combined data of the proteinase K protection assay, the 

immunofluorescence and the electron microscopy experiments suggest that 

Sun-1 adopts the membrane topology of the type II integral proteins, thus the 

N-terminus is likely to interact with chromatin. The Sun-1 C-terminus projects 

into the perinuclear space, probably to interact directly or indirectly with a 

centrosome-specifc linker to constitute the close proximity of nucleus and 

centrosome; Alternatively, Sun-1 may bind indirectly to interaptin to position 

the nucleus on F-actin (Figure 29A).  

Truncation of the Sun-1 N-terminus abrogates the INM localization 

of GFP-∆NSun-1. To some extent, low amount of GFP-∆NSun-1 can be 

escorted in a complex with the endogenous Sun-1 to the INM whereas the 

majority of GFP-∆NSun-1 accumulates in the ONM and counteracts the 

connection of the centrosome linker with the endogenous Sun-1 resulting in 

the formation of protrusions emerging from the nuclear envelope (Figure 

29B). Subsequently, increase in nucleus-centrosome distance may lead to 

loss of the centrosome connection promoting the centrosome amplification 

and genome instability such as aneuploidy.  
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Figure 29: Proposed model for the function of Sun-1 in the INM. A. Sun-1 dimers may 

interact with chromatin to be retained in the INM. The SUN domain of Sun-1 may 
form a complex with centrosome linker proteins of the ONM (X) in the perinuclear 
space (PNS) to juxtapose the nucleus to the centrosome. Furthermore, Sun-1 may 
connect the nucleus to F-actin by indirect interaction with the interaptin KASH motif 
(PT) via a linker (Y). B. Truncation of the Sun-1 N-terminus abolished the INM 
retention of GFP-∆NSun-1 that accumulated in the ONM. GFP-∆NSun-1 can bypass 
the connection between the endogenous Sun-1 and the centrosome interaction of 
the SUN domain with the centrosome linker (X) leading to the formation of nuclear 
envelope protrusions and an increase in nucleus-centrosome distance. Loss of the 
nucleus-centrosome proximity results in aneuploidy caused by chromosome 
instability.           
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5 Summary 
In worms, flies and mammals, the nucleus is attached to the 

cytoskeleton by binding of the SUN domain proteins to the KASH domain 

proteins in the outer nuclear membrane that connects the nucleus to either F-

actin or microtubules. The association of the SUN domain proteins with both 

the nuclear lamina and the KASH domain proteins is attributed as a molecular 

bridging complex required for intracellular positioning and migration of the 

nucleus.  

In this study, we investigated the role of Sun-1 and interaptin, a SUN 

and a KASH domain protein in Dictyostelium discoideum in nuclear 

positioning. In marked contrast to the model proposed for higher eukaryotes, 

Sun-1 and interaptin localized to the nuclear envelope in a competitive 

fashion, which may be due to a competitive binding to a yet unknown partner. 

Distinct from the higher eukaryotes, which engage the nuclear lamina for INM 

retention of the SUN domain proteins, an alternative mechanism may be 

considered for D. discoideum that lacks lamins. We provided evidence that 

Sun-1 can be immobilized in the INM by binding to chromatin probably via its 

N-terminus. The association of Sun-1 with chromatin may not only contribute 

to the formation of a bridging complex, but also control the juxtaposition of the 

nucleus and centrosome, as the truncation of the Sun-1 N-terminus 

disconnected the nucleus and the centrosome. Consequently, the 

disconnection may lead to chromosome instability as indicated by: (1) Nuclear 

envelope deformations (2) Enlargement of the nuclear and cell size (3) 

Tendencies for aneuploidy and (4) Amplification of the centrosome number. 

These data suggest that Sun-1 may regulate the nuclear shape, chromosome 

stability and the connection of the nuclei to the centrosomes.  
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6 Zusammenfassung 
Untersuchungen in den eukaryotischen Modellen, Wurm, Fruchtlfiege 

und Säuger, haben gezeigt,  daß zwei konservierte Familien von 

Kernmembranproteinen für die definierte Position und die Translokation des 

Zellkerns innerhalb einer Zelle verantwortlich sind. Die Familie der KASH-

Domänen Proteine sind vorwiegend in der äußeren Kernmembran verankert, 

wobei ihre N-Termini mit Zytoskelettstrukturen interagieren. Die zweite 

Familie, die SUN-Domänen Proteine, sind durch Bindung an die Kernlamina 

in der inneren Kernmembran verankert. Beide Vertreter dieser Famile 

strecken ihre C-Termini in das perinukläre Lumen zwischen der inneren und 

der äußeren Kernmembran und interagieren mit einander, wodurch der 

Zellkern an Actinfilamenten sowie Intermediärfilamenten befestigt und/oder 

entlang den Mikrotubuli transportiert werden kann. 

Um die Verankerung und den intrazellulären Transport des Zellkerns 

in D. discoideum aufzuklären haben wir die Funktion der Proteine Sun-1 und 

Interaptin untersucht, die eine SUN- bzw. ein KASH-Domäne enthalten. Im 

Gegensatz zu den Tiermodellen haben wir eine kompetitive Lokalisation von 

Sun-1 und interaptin gezeigt, die vermutlich auf eine Bindung an einen 

unbekannten gemeinsamen Interaktionspartner zurückzuführen ist. Da D. 

discoideum keine Kernlamina enthält, müssen die Proteine der inneren 

Kernmembran über einen Alternativmechanismus spezifisch dorthin dirigiert 

werden. Unsere Versuche haben gezeigt, daß die Interaktion von Sun-1 mit 

DNA die spezifische Lokalisation bestimmt, wobei der N-Terminus vermutlich 

essentiell ist, weil Sun-1 mit deletiertem N-Terminus in der äußeren 

Kernmembran verbleibt. Ähnlich wie in Invertebraten und Vertebraten bildet 

Sun-1 Dimere und höhere Oligomere in vivo und stellt eine Verbindung mit 

weiteren noch unbekannten Proteinen zum Zentrosom her, welche sowohl die 

Distanz und eine koordiniete Zytokinese des Zellkern und Duplikation der 

Zentrosomen bestimmt, wodurch die Morphologie der Kernmembran und des 

Zytoplasmas sowie die Stabilität der Chromosomen und Zentrosomen 

erhalten wird. 
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General abbreviations 
% Percent 
° Degree  
∅ Diameter 
A Ampere or nucleotide Adenosine 
aa Amino acid(s)  
Amp Ampicilline 
APS Ammonium persulfate 
Aqua dest. Aqua destillata, destilled water 
ATP Adenosine triphosphat 
bp Base pair(s) 
BSA Bovine serum albumine 
C Celsius or nucleotide Cytosine 
ca.  Circa, approximately 
CIP Calf intestine alcaline phosphatase 
cm  centimeter 
DMEM  Dulbecco´s Modified Eagle Medium 
DMSO  Dimethylsulfoxide 
DNA  Deoxyribonucleic acid 
dNTP Desoxyribonucleotidetriphosphat  
DTT Dithiothreitol 
E. coli Escherichia coli 
EDTA Ethylen-Diamine-Tetra-acetate 
rER Rough endoplasmatic retikulum 
EtBr Ethidiumbromide 
EtOH Ethanol 
FCS Fetal calf serum)  
G Glycine or nucleotide guanosin 
g Gramm 
g Relative centrifugation force 
GFP Green fluorescence protein of Aequorea victoria 
hr Hour(s) 
HEPES N-(2-Hydroxyethyl)piperazin-N´-2-ethansulfonsäure 
INM Inner nuclear membrane 
KASH Klarsicht/Anc-1/Syne homology 
kDa Isopropyl-β-D-thiogalaktopyranoside 
kb Kilo base 
kDa Kilo dalton 
λ Wave length 
M Molar 
mAb Monoclonal antibody 
MDa Megadalton 
min Minute 
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µg Microgramm 
ml      Milliliter 
µm Micrometer  
µl Microliter 
mM Millimolar 
mRNA Messenger Ribonucleic acid  
NE Nuclear envelope 
ng Nanogramm 
nm Nanometer 
ONM Outer nuclear membrane 
ORF Open reading frame 
ori Origine of replication 
pAb Polyclonal antibody 
PAGE Polyacrylamide gel electrophoresis 
PBS Phosphat buffered saline 
PCR Polymerase chain reaction 
PNS Perinuclear space 
RNA Ribonucleic acid 
rpm Rounds per minute 
RT Room temperature 
SDS Sodium dodecyl sulfate 
sec Second 
SUN Sad1/UNC-84 homology 
TAE Tris-Acetate-EDTA  
Taq Thermus aquaticus 
TBE Tris-Borate-EDTA  
TE Tris-EDTA  
TEMED N,N,N´,N´-Tetramethyl-ethylendiamin 
Tris Trishydroxyaminomethan 
U Unit 
UV Ultraviolet light  
V Volt 
v/v  Volume per volume 
w/v Weight per volume 
X-Gal 5-Bromo-4-chlor-3-indolyl-β-D-galactopyranoside 
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