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Deutsche Zusammenfassung

Durch die Entwicklung von Hochdurchsatztechniken hat sich der Fokus biologischer For-
schung in den letzten Jahrzehnten von der Untersuchung einzelner Zellkomponenten zu
einen systemorientierten Ansatz hin verschoben, der versucht, Wechselwirkungen zwischen
diesen Komponenten zu erfassen. Diese Zielsetzung erfordert Modellierungsansätze und
Analysemethoden zur Beschreibung solcher regulatorischer Netzwerke.

In dieser Arbeit werden Mechanismen untersucht, die mit qualitativen dynamischen
Verhaltensweisen in Zusammenhang stehen. Hierzu verwenden wir ein Differenzialglei-
chungsmodell, das auf chemischen Bindungsreaktionen basiert, und schätzen Parameter
aus Zeitreihenkonzentrationsdaten. Im ersten Teil zeigen wir Anwendungen auf regula-
torische Subsysteme mit qualitativ unterschiedlichem Verhalten: Die Antwort des My-
cobacterium tuberculosis auf Beschädigung der DNA wird durch Relaxation des Systems
zu seinem Fixpunkt nach Störung beschrieben. Die spezifische Regulierung von Genen
in Escherichia coli durch das globale Regulatorprotein H-NS wird durch das Zusammen-
wirken mehrerer Rückkopplungsmechanismen erklärt. Um das für das Lernen biologischer
Netzwerke aus experimentellen Daten typische Problem des “Overfitting” zu vermeiden,
stellen wir einen Bayes’schen Ansatz vor, der zusätzliches Wissen über das System in Form
von Wahrscheinlichkeitsverteilungen einbindet. Dieser wird auf simulierten Daten und auf
einem Datensatz des Saccharomyces cerevisiae Zellzyklus getestet.

Motiviert durch eine Analyse des gelernten Hefezellzyklusmodells beschäftigt sich der
zweite Teil mit der Robustheit periodischen Verhaltens in regulatorischen Netzwerken.
Das vorgestellte Modell gehört zu einer Differenzialgleichungsklasse, deren Lösung im all-
gemeinen zu einem Gleichgewicht konvergiert. Periodisches Verhalten ist nicht robust
gegenüber Parameteränderungen. Wir erklären dieses Phänomen mit einer Bifurkations-
analyse und einer Analyse der Stabilität von Fixpunkten. Es wird gezeigt, dass große
Zeitskalenunterschiede und Zeitverzögerungen periodisches Verhalten stabilisieren können
und somit eine wichtige Rolle in biologischen Oszillatoren spielen.
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Abstract

Facilitated by the development of high-throughput techniques, the focus of biological re-
search has changed in the last decades from the investigation of single cell components to
a system-level approach, which aims at an understanding of interactions between these cell
components. This objective requires modeling and analysis methods for these regulatory
networks.

In this thesis, we investigate mechanisms causing qualitative dynamic behaviors of reg-
ulatory subsystems. For this purpose, we introduce a differential equation model based
on underlying molecular binding reactions, whose parameters are estimated using time
series concentration data. In the first part, the model is applied to subsystems with qual-
itatively different dynamic behaviors: The response of the Mycobacterium tuberculosis to
DNA damages is described as the relaxation of a system to its steady state after external
perturbation. Specific repression of genes in Escherichia coli by the global regulator pro-
tein H-NS is explained by the interrelation of feedback mechanisms. In order to prevent
overfitting, a typical problem in network inference from experimental data, we introduce
an approach based on Bayesian statistics, which includes prior knowledge about the system
in terms of prior probability distributions. This approach is applied to simulated data and
to the regulatory network of the Saccharomyces cerevisiae cell cycle.

Motivated by results on the yeast cell cycle, the second part of this thesis investigates
the robustness of periodic behavior in regulatory networks. The model presented belongs
to a class of differential equations whose solutions tend to converge to a steady state.
Accordingly, periodic behavior is not robust with respect to parameter variations. We
explain this phenomenon by applying a bifurcation analysis and investigating the stability
of steady states. It is shown that large time scale differences and an inclusion of time-delays
can stabilize sustained oscillations, and we postulate that they are important to maintain
oscillations in biological systems.
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Meine Promotion war eine sehr schöne und auch lehrreiche Zeit. Hierzu haben viele Men-
schen wesentlich beigetragen, bei denen ich mich an dieser Stelle bedanken möchte. Allen
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Foreword

The ultimate goal in systems biology is the in silico reconstruction of biological systems,
enabling the simulation of, for example, metabolic pathways, regulatory networks or whole
cells. In silico means that the behavior of a system is analyzed by computer simulations.
Thus, in silico cellular models allow to carry out experiments entirely on a computer. This
can revolutionize the drug discovery field since it lowers the risk and financial burden
of clinical trials [7, 16]. Potential drugs are traditionally found by testing chemical sub-
strates on animals, frequently with a trial and error method. Understanding regulation
mechanisms of metabolic or signaling pathways related to diseases can highly facilitate
the discovery of new drug targets [7]. Drugs are designed to bind specifically to these
biological targets and thus to affect their activity. Thereby, regulatory pathways involving
the target are inhibited or promoted. Besides drug design, systems biology approaches are
also applied in plant breeding or in the industrial production of amino acids. Objectives
are the determination of genetic markers which enhance a desired performance feature of a
plant, such as resistance against vermins, or an increase in the productivity of amino acids
required for animal feed, food and pharmaceutical products [93].

In silico models require a detailed understanding of regulation processes at the molec-
ular level. This can only be achieved by interdisciplinary cooperations between biologists,
mathematicians and computer scientists. The basis for such an understanding is provided
by recent advances in experimental techniques. These commence the -omics area, which
comprises genomics, transcriptomics, proteomics and metabolomics. Modern DNA se-
quencing methods analyze large DNA sequences within a reasonable time. They provide
the basis to find sequences encoding genes, and thus to determine the potential components
of these regulatory networks. The genomes of prokaryotes such as Escherichia coli and My-
cobacterium tuberculosis have already been sequenced in the 90ies. The yeast genome was
the first completely sequenced eukaryotic genome in 1996. Today, six years after the com-
pletion of the human genome project in 2001 [112, 202], the sequences of many genomes
such as that of chimpanzees, sea urchins, honey bees and bovines are known and stored in
databases. High-throughput techniques allow to measure concentrations of all gene prod-
ucts of a cell simultaneously. The transcriptome can be measured with DNA-microarrays
and provides information about the activity of genes. High-throughput techniques for pro-
teins and metabolites are gradually becoming feasible [73]. A lot of different databases
have been created in the last decades to store the large amounts of data produced with
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2 Foreword

these techniques. Sequence information is stored in the sequence database GenBank1, the
protein database PDB2 contains information about proteins, and BRENDA3 lists infor-
mation about enzymes and metabolic pathways, to mention only a few of them. Defining
standard formats, which allow a rapid extraction of information from these databases, is
still in progress.

Using these data to build models which can predict the global behavior of a biologi-
cal system poses a great challenge for the future. Many top down approaches have been
developed for this task in the last years. These approaches start with very general and
abstract models to describe interaction processes between components of the system. Sub-
systems are defined afterwards in greater detail. This is contrary to conventional bottom
up approaches, which start with a detailed description of subsystems and extend these suc-
cessively to obtain a comprehensive model of the system. In top down approaches, high-
throughput measurements, usually microarray measurements, are used to fit the models to
the observed behavior, and to infer interactions between cell components. Fitting is formu-
lated as an optimization problem. Typically, the datasets are sparse, meaning that many
components are measured under only few conditions. This leads to ill-posed optimization
problems. Various regularization methods have been proposed to prevent overfitting in this
setting. However, results are often not satisfactory, and many false positive interactions
are predicted. Consequently, questions such as “how does a bacterium respond to a new
medium?” or “how does a mutation of a gene affect the phenotype of a cell?” can frequently
not be answered yet. One of the main reasons for this is the simplicity of model classes
used in these top down approaches, which allow to recognize at most rough structures of
the interaction networks. Thus, in order to obtain reliable predictions, these models have
to be complemented with specific biological knowledge. Furthermore, certain dynamic be-
haviors can only be explained by quantitative models that are based on underlying reaction
kinetics. Usually, the behavior of a regulatory network is determined by the interplay of
various regulation mechanisms acting at the transcriptional and post-transcriptional level.

In this thesis, we use a differential equation model based on Michaelis Menten kinetics
to describe the dynamic behavior of biochemical networks. Applications to three regulatory
subsystems are shown: the response of the DNA repair mechanism of the Macobacterium
tuberculosis to DNA damages, the specific repression of genes by the protein H-NS in
Escherichia coli and regulation mechanisms in the Saccharomyces cerevisiae cell cycle. An
analysis of results of the inferred cell cycle network leads to the second, more theoretical
part of this thesis, the investigation of mechanisms related to the robustness of periodic
behavior in regulatory networks. The contents of this thesis are outlined in more detail in
the following section.

1GenBank: (http://www.ncbi.nlm.nih.gov/Genbank)
2PDB: (http://pdb.org)
3BRENDA: (http://www.brenda.uni-koeln.de)
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Structure of the thesis

An introduction to regulation processes in the cell is given in Chapter 1. Here, we will
also present different modeling approaches for these processes and discuss methods to esti-
mate the corresponding model parameters from experimental data. This chapter intends to
give an insight into the variety of currently used model classes and approaches to fit these
models to experimental data. Much of the contents presented is taken from [7, 92, 104].

Chapter 2 focuses on modeling gene regulatory networks with ordinary differential
equations. Terms and theorems from the theory of dynamical systems, which will be used
throughout this thesis, are introduced in this chapter. Most of the definitions listed can
be found in [147].

We derive a model based on chemical reaction kinetics. Regulation processes are de-
scribed as reversible chemical reactions in this model, leading to sigmoidal dependences
between activities of regulators and the effect on the regulated components. This model
was inspired by the work of Yagil and Yagil [213] and Jacob and Monod [101]. It pro-
vided the basis to develop a piecewise linear differential equation model, which was done
in collaboration with my colleague Jutta Gebert and was published in [77].

Our non-linear model is compared with the frequently used class of linear models.
The latter have some advantages concerning the estimation of parameters, since there
exist various regression methods for linear objective functions. However, they cannot
capture complex dynamic behavior such as stable oscillations, multi-stationarity, switch-
like behavior or hysteresis, which are essential to model biological phenomena.

In collaboration with biological experts, we applied the model to three regulatory sub-
systems. The aim was to build models that reflect the biological knowledge about the
systems at hand, and to answer specific questions, which were developed with our cooper-
ation partners. All models demonstrate that by the inclusion of biological knowledge one
can obtain quantitative statements about the systems in spite of a very limited number of
data points available.

Two of these models are presented in this thesis. The third one can be found in
[74, 75, 76]. This model describes the dynamic response of Corynebacterium glutamicum
to varying external nitrogen concentrations and has been built in cooperation with Prof.
Dr. Andreas Burkovski (Institute of Biology, University Erlangen-Nürnberg).

The dynamic response of M. tuberculosis to a treatment with DNA damaging drugs is
modeled in Chapter 3. This work was a collaboration with Dr. Christian Forst (Bio-
science Division, Los Alamos National Laboratories). If a bacterium’s DNA is damaged
to a certain extent, it reacts by increasing the production rate of so-called SOS proteins.
These proteins are required to repair the damages and make sure that cell division is tem-
porarily suspended. Some regulation mechanisms of this repair system are known from
studies in the model organism E. coli, but in general little is known yet about which genes
are involved and how they interact. We present a statistical analysis, which uses corre-
lations between gene expression patterns and interaction data, in order to find potential
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candidate genes. A subsequent parameter estimation and simulation indicates that the
gene Rv2719c might play an important role in this repair system. This result was pub-
lished in [155]. Independently, our hypothesis was experimentally confirmed by Chauhan
et al. [28] and Brooks et al. [20] in the meantime.

Chapter 4 presents a model that seeks to explain the highly specific silencing of a
group of commonly regulated genes in E. coli. These genes encode proteins which are
involved in the uptake and fermentation of aryl-β-glucosidic sugars. In wild type strains,
expression of these genes is highly repressed through binding of a global regulatory pro-
tein, H-NS, to specific binding sites at the DNA, whereas this repression is relieved in
hns mutants lacking the protein H-NS. Together with Prof. Dr. Karin Schnetz (Institute
of Genetics, University of Cologne), we built a model for this repression, and estimated
parameters using concentration measurements in wild types and hns mutants. According
to our model, the specific repression is explained by the interplay of two positive feedback
loops in the corresponding interaction graph. A publication of results is under way [154].

Together with Dr. Lars Kaderali (Viroquant Research Group Modeling, University of
Heidelberg), we developed a new top down approach to estimate parameters of the dif-
ferential equation model from time series concentration data. This approach is presented
in Chapter 5. We apply a Bayesian learning approach, in which a restriction of the
parameter space is achieved by specifying a priori probability distributions over network
parameters. These distributions reflect our expectation of outcome and thus provide a
framework to include biological knowledge into the estimation process. We evaluate our
approach on simulated data and on a publicly available microarray dataset on the yeast cell
cycle. Results on simulated data show that the Bayesian approach presented can improve
parameter estimation compared to a maximum likelihood estimation, in particular, when
only a few noisy time points are available. This is the typical case in microarray studies.
Accordingly, we concluded that the presented approach provides an appropriate framework
to analyze microarray data. An analysis of regulations in the yeast cell cycle shows that
our method is able to reveal several main regulations between gene products. The method
and results are published in [156].

Simulations using the inferred model parameters indicate that capturing the periodic
behavior of cell cycle genes is much more difficult than just inferring interactions between
genes. Hence, the focus of Chapters 6, 7 and 8 is on the problem to infer an oscillating
differential equation model for regulatory networks. We will make use of the theory of
dynamical systems in these chapters, and they are of more theoretical nature than the
previous Chapters 3 and 4.

Chapter 6 starts with some theoretical aspects of our differential equation model,
which affect the inferred model for the yeast cell cycle. With a few exceptions, the model
belongs to the class of differential equation systems which have Jacobian matrices with
constant signs. Such systems have been shown to tend to converge to unique steady states
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[96]. Feedback mechanisms are a necessary condition for more complex dynamic behavior
such as oscillations and multi-stationarity [84, 169, 191]. We use these results to extend
our model. A core network for the yeast cell cycle is presented which is able to show
periodic behavior. Oscillations in this core model occur within a certain parameter range
bounded by saddle-node and Hopf bifurcations. The model shows some characteristics that
are typical for many differential equation models used to describe oscillating behavior. We
will discuss these in this chapter as well. Parameters for this core network are obtained
from experimental data using a maximum likelihood estimation.

In Chapter 7, the Bayesian approach is used to extend the inferred core model by
further components and regulations. We are able to infer an oscillating network for the
yeast cell cycle from experimental data. Simulations using the inferred model are in good
accordance with experimental data. These results have been published in [157].

However, this extension also indicates that the oscillations obtained with the core model
are structurally not stable. The qualitative behavior of the system is very sensitive to pa-
rameter changes, and periodic behavior is thus difficult to learn. Results on simulated data
give an impression of the size of the dataset required to capture the periodic behavior with
the presented core model. A subsequent bifurcation analysis of the core network supports
our observation that the oscillations are not robust.

The results from the analysis in Chapter 7 are in contrast to oscillating biological sys-
tems. Most of them seem to be structurally extremely stable and function in a wide range
of parameters or under considerable stochastic influences and varying external conditions
[8, 203]. Chapter 8 addresses this contradiction and investigates some theoretical aspects
of modeling structurally stable oscillations with differential equations. In order to capture
structurally stable periodic behavior, the core network has to be modified. We show that
the structural stability of oscillations can be increased by an increase of time scale differ-
ences for the two variables or by an inclusion of time-delays. These results might hint that
time delays, for example caused by transport and diffusion processes or by the duration of
gene expression, are important to maintain robustness of the cell cycle. Moreover, since
statements are based on rather general properties of the core model, they hold as well
for similar models used to describe other oscillating regulatory networks. This chapter
concludes with an extension of principles to a system of more than just two components.

In the end of each Chapter, we summarize results and discuss specific, mainly technical
improvements and extensions. The thesis concludes with an overall more general summary
of the main results and perspectives for future work in Chapter 9.
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Chapter 1

Introduction

This chapter introduces regulation processes in gene expression and gives an overview
of frequently used approaches to infer such regulatory interactions. Section 1.1 provides
a description of gene expression regulation at different levels. Much of the information
given here can be found in [2, 12, 41, 42]. Different modeling and inference approaches
of these regulation processes from experimental data are discussed in Section 1.2. This
section loosely follows [104]. Good reviews about modeling gene networks and network
reconstruction from experimental data are for example [7, 15, 48, 92, 99, 181, 209].

1.1 Biological background

1.1.1 Gene expression

Proteins are key elements in the organization of different processes within a cell. Proteins
are macromolecules consisting of long folded chains of amino acids. They carry out vari-
ous functions essential for the survival of the cell: They participate in transport processes
such as oxygen transport in the blood, regulate the ion concentration in the cell as ion
channels, and thus influence the activity of nerves and muscles, catalyze chemical reac-
tions as enzymes, transmit external signals, or act as antibodies in the immune system.
Deoxyribonucleic acid (DNA) encodes the entirety of proteins a cell can produce. DNA
is a sequence of four different nucleotides. Genes are segments of this sequence which en-
code proteins. The order of nucleotides in a gene contains the information to produce a
functional protein.

The process of protein production is called gene expression. It is a two-step procedure.
During transcription, the nucleotide sequence of a gene is transcribed into an intermediate
product called messengerRNA or short mRNA. This mRNA serves as a template to produce
a protein in a second step, the translation. The expression rate of a gene and hence the
synthesis rate of the corresponding protein is highly regulated at different levels and can
vary in a wide range. This enables the cell to flexibly adapt to external conditions such as
nutrition supply, salinity and temperature. Moreover, regulation of gene expression allows

7
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cells to respond to perturbations, such as heat shock or treatment by various drugs, and
to maintain basic metabolic processes necessary for survival. A snapshot of gene product
(mRNA or protein) concentrations is a gene expression pattern. The expression pattern of
a cell is determined by the tissue and can be influenced by external conditions. We refer
to a typical mRNA expression pattern for an organism or a tissue as transcriptome. The
transcriptome of stem cells gives insights into the process how cells differentiate [132, 159].
Furthermore, it is known that the concentration of some genes is up- or down-regulated
in cancer cells ([103] and references therein). These genes are said to be differentially
expressed. A protein concentration pattern is called proteome.

Organisms are distinguished according to their cell types: A prokaryote is an organism
consisting of one or more prokaryotic cells. These are cells lacking a cell nucleus. Most
prokaryotes are bacteria. Contrary, cells of an eukaryote contain a nucleus. Animals and
plants belong to this class. Prokaryotic and eukaryotic cells differ in many aspects, includ-
ing, for example, their structure, size, and consistence of the cell membrane. Eukaryotic
cells are larger and have a complex cell structure divided into different cell compartments.
Protein concentrations can vary in a wide range within an eukaryotic cell. Hence diffusion
and transport processes might affect regulatory mechanisms in eukaryotic cells [142, 177],
whereas their influence is less important in prokaryotes. Both organisms also differ in their
genome and the regulation of gene expression. Nearly the whole genome of a prokaryotic
cell encodes proteins or exhibits a control function. In contrast, over 90% of the human
genome, for example, consists of non-coding regions, whose function is not yet completely
identified.

1.1.2 Regulation of gene expression

Regulation of transcription

In the following, we describe regulation mechanisms of gene expression. Here, we focus on
transcriptional regulation, which is probably the most important mechanism in prokaryotes
[208]. It affects directly the concentrations of mRNAs, which are measured in microar-
ray experiments. Mostly, transcription regulation happens at the transcription initiation.
Transcription initiation is triggered by an enzyme called RNA polymerase (RNAP), which
binds to the promoter, a regulatory region upstream of a gene’s coding region. The affinity
of the RNAP to the promoter is affected by binding of proteins to specific binding sites
at the DNA [168], frequently located within the promoter region. Proteins which bind
to the DNA and influence transcription are called transcription factors. In prokaryotes,
2-3%, and in eukaryotes, 6-7% of all genes encode DNA binding proteins [197]. They can
either positively or negatively influence gene expression. Different transcription factor dis-
tributions within cells have been shown to determine cell differentiation, development and
evolution [150, 159, 168].

A lot of efforts have been made in order to understand binding mechanisms of tran-
scription factors and how they can efficiently search for specific binding sites. Generally,
transcription factors interact unspecifically with nucleotides of the DNA and are assumed
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to be weakly bound to the DNA most of the time [78, 178, 206]. This unspecific binding
is caused by displacements of ions from DNA phosphate groups by positively charged pro-
tein side chains [206]. This results in an electrostatic force. Models give evidence that a
transcription factor searches for its specific binding site mainly by moving along the DNA
and jumping from one DNA site to another [78]. If a specific binding site is recognized, the
transcription factor presumably undergoes a conformational change, which allows for addi-
tional hydrogen bonds further stabilizing the complex [206]. The stability of the complex
depends on the sequence of nucleotides [197, 206]. A transcription factor favors binding to
short specific sequences of 6-20 nucleotides [56].

Besides the promoter there exist further regulatory regions on the DNA called enhancers
or silencers. All these regions direct the expression level of a gene in concert. Models which
capture regulation of transcription initiation by binding of proteins to the DNA are called
gene regulatory networks.

In prokaryotes, genes which encode proteins involved in the same metabolic processes
are frequently organized in operons. Genes in an operon are located side by side on the
DNA. They are commonly regulated by the same promoter and are even sometimes tran-
scribed into a single mRNA. Their expression patterns are thus highly correlated. An
example is the lac operon in E. coli. It consists of three genes responsible for the transport
and metabolism of lactose. The expression of these genes depends among other factors
on the availability of glucose and lactose in the bacterium’s environment. In Chapter 4,
we investigate the E. coli bgl operon. Genes in this operon are needed for the uptake and
fermentation of aryl-β-glucosidic sugars.

Transcription factors also sometimes affect the process of RNA production, the tran-
scription elongation, by inducing conformational changes of the DNA. An example for such
a regulation is also given in Chapter 4.

Transcription factors do not always act independently, but can influence each other.
Some transcription factors even become active only in a complex. Frequently appearing
complexes are homo-dimers consisting of two equal proteins, hetero-dimers consisting of
two different proteins, and tetramers which contain four subunits [3, 168, 181]. Mutual
enhancement is also due to electrostatic attraction between a transcription factor bound
to the DNA and an unbound one. If several transcription factors compete for the same
binding site or if their corresponding binding sites overlap, they inhibit each other.

Post-transcriptional regulation

Regulation of gene expression also happens after mRNA production. We refer to this as
post-transcriptional regulation. An example is a protein that changes the secondary struc-
ture of an mRNA molecule, thereby stabilizing it or marking it for degradation. Analo-
gously, regulation of the protein concentration after translation is called post-translational
modification. This level of regulation includes among others complex formations or chem-
ical modifications, which cause a conformational change and thereby activate or inhibit a
protein. Many transcription factors taking part in signal transduction pathways are chem-
ically activated by an external signal. Examples are the activation of the protein RecA
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in M. tuberculosis in case of a DNA damage described in Chapter 3, or the modification
of the protein GlnK in C. glutamicum to respond to nitrogen starvation in the environ-
ment [24, 25, 186]. Chemical modifications happen at a much faster time scale than gene
expression [3] and thus enable the organism to respond quickly to environmental changes.

Models which include not only the regulation of transcription initiation, but also post-
transcriptional or post-translational regulation mechanisms, are denoted biochemical net-
works. Thus, a biochemical network is a generic term for a gene regulatory network.

Regulation mechanisms in eukaryotes are more complex than in prokaryotes. Post-
transcriptional regulations are more important here and cannot always be neglected. For
example, the proteins are often regulated by phosphorylation. This is a reversible chemical
modification of a protein, which affects the proteins activity by inducing conformational
changes, which alter binding properties or subcellular locations. Phosphorylation or de-
phosphorylation is often done by macromolecules called kinases or phosphatases. A single
kinase is able to activate many proteins, and thus they can quickly amplify an external
signal. Phosphorylation plays a role in all signal transduction pathways. A famous example
is the phosphorylation of the tumor suppressor protein p53 when the cell is damaged. In
its active state, p53 stimulates transcription of genes that suppress the cell cycle. Activity
control of proteins by phosphorylation also plays a crucial role in the regulation of the cell
cycle.

In eucaryotes, genes are usually not organized in operons, but regulated separately.
Moreover, a process called alternative splicing enables eukaryotes to produce different pro-
teins from the same mRNA and hence additionally affects protein concentrations after
transcription.

1.2 Modeling cells as systems

In a systems biology approach, cells or cellular subsystems such as gene regulatory networks
are understood as systems S consisting of n different interacting molecular components.
S is assumed to be fully characterized by a state x = (x1, . . . , xn), whose components
correspond to states xi ∈ Ωi of each component of S. In the following, we refer to these
states xi as variables of S. The state space Ω = (Ω1, . . . , Ωn) describes the set of possible
states. An observation x̃ = (x̃1, . . . , x̃n) is an element of Ω.

In deterministic models, the behavior of the system is assumed to be characterized by
a function f : Ω× T → Ω, which assigns each tuple (x, t) ∈ Ω× T an element in the state
space Ω. The set T can generally be associated with any conditions influencing the system.

In autonomous dynamic models, the states x depend on time, x = x(t), and the set T
describes a set of different time points. In time-discrete models, T = {t0, . . . , tN} contains
a set of discrete time points, in time-continuous models, T is usually chosen to be the set
of real numbers, T = IR. The function f can be specified to be

f : Ω× T → Ω, x(t) = f(t, x(t0)). (1.1)
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Thus, we assume a functional relation between the state x(t) of the system at time t and
the state x(t0) of the system at a previous time point t0.

In stochastic models with discrete state space, states x of the system are described by
probability distributions p,

p : Ω× T → [0, 1], p(x̃, t̃) = Pr(x1 = x̃1, . . . , xn = x̃n, t = t̃). (1.2)

In case of continuous state spaces, states are described by probability density functions
p : Ω× T → IR0,+ with

∫

Ω

∫

T
p(x, t)dtdx = 1.

1.2.1 Network inference

Formulation as an optimization problem

We are given a state space Ω, a set T of conditions and a model set F of functions
f : Ω × T → Ω. Moreover, a set x̃(t′) of states has been observed for different conditions
t′ ∈ T ′ ⊆ T . The number of elements in the set T ′ is assumed to be finite, T ′ = {t0, . . . , td}.
All d observations are collected in a dataset D = {x̃(t0), . . . , x̃(td)}. The network inference
problem aims to select a function f̂ ∈ F that best fits the dataset D. Fitness is described
by a real valued function F : F × D → IR, frequently denoted error function, and the
network inference problem is formulated as an optimization problem

f̂ = arg min
f∈F

F (f,D). (1.3)

The functions f ∈ F might be given in parameterized form. Hence, each model is charac-
terized by a parameter vector ω.

A common choice for the objective function of a deterministic model is the sum of
squared errors (MSE) between measurements and model predictions, which is minimized
with respect to ω, to obtain an estimator ω̂MSE:

ω̂MSE := arg min
ω

(

FMSE(ω,D) :=
n∑

i=1

d∑

z=1

‖ xi(tz, ω)− x̃i(tz) ‖2
)

(1.4)

In stochastic model approaches, such as Bayesian networks, the traditional estimator
is the maximum likelihood estimator. Here, the data are interpreted as samples drawn
from an underlying distribution. The best model parameter ω̂MLE is assumed to be the
one which maximizes the probability p(D|ω) to obtain the observed dataset D given a
parameter vector ω. This objective function is denoted likelihood function LD(ω):

ω̂MLE := arg max
ω

p(D|ω) = arg max
ω
LD(ω) (1.5)

Maximum likelihood estimation will be used in Chapter 5.
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Regularization

In the following, we concentrate on modeling gene regulatory networks by systems. Here,
the variables xi describe concentrations of gene products, that are mRNAs or proteins, and
the dataset D contains microarray gene expression measurements. Typically, the dataset
D is sparse. That means, the number n of network components is large, often mRNA
concentrations of several hundreds or thousands of genes have been measured, whereas
the number d of different conditions/time points is small at the same time. Thus ω has
many components, and we have to fit a high-dimensional function to only a few data
points. The corresponding optimization problems are ill-posed, and ω may be adjusted
to specific random features of D, which are not necessarily related to the problem [163].
Accordingly, the model ω̂ fits the dataset D used for learning very well in this case, but
shows bad performance on new datasets. Regularization methods have been developed to
face this problem. Well-known regularization methods for stochastic models are the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC). They are used
in case that the model set F contains models ωk that differ in their numbers k ∈ IIN of
parameters. Both, AIC and BIC, include the negative logarithm of the likelihood function
LD(ω) and a term which penalizes models having a large number of parameters. They are
used as objective functions to be minimized with respect to model parameters:

ω̂k
AIC := arg min

ωk

[
FAIC(ωk) := −2 lnLD(ω) + 2k

]
(1.6)

ω̂k
BIC := arg min

ωk

[
FBIC(ωk) := −2 lnLD(ω) + k ln d

]
(1.7)

Both, ω̂k
AIC and ω̂k

BIC have been used to infer cell cycle networks in yeast [31, 136]. More bi-
ologically motivated approaches restrict the parameter space by including biological knowl-
edge into the optimization process. This can be obtained by introducing constraints to the
optimization problem such as, for example, upper bounds for single parameters. Alterna-
tively, similar to the AIC and the BIC, penalty terms that favor networks with only few
edges are added to the likelihood function (see for instance [114, 184, 200]). An example
for the latter regularization approach is presented in Chapter 5.

1.2.2 Boolean networks

Boolean networks are deterministic dynamic models. The state space consists of binary
vectors of length n, Ω = IFn

2 . Boolean functions

f : Ω× T → Ω, x(tk+1) = f(x(tk)), x(tk) ∈ IFn
2 , k ∈ IIN (1.8)

are used to update the state of the system at each time point.
Kauffman [106] first introduced Boolean networks to model gene regulation in 1969.

Since that time, these models have frequently been used to describe the dynamic of gene
regulatory networks [1, 16, 116, 118, 176, 189]. Boolean networks can show a rich variety
of dynamic behaviors such as convergence to a stable steady state, multi-stationarity,
oscillations, switch-like behavior or hysteresis [192, 193].
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The simplicity of a Boolean description makes Boolean networks useful to analyze
large networks containing several hundreds or thousands of genes. This is a clear advantage
compared to more complex models. Moreover, Boolean functions include mutual influences
of different regulators, whereas in most other models different regulators are assumed to act
independently in order to keep the model tractable. However, a description of expression
values as binary variables and synchronous updates are of course very strict assumptions,
which are not biologically reasonable. Thus Boolean networks allow at most for qualitative
statements.

When learning a Boolean network from experimental time series data, the data have
to be binarized in a preprocessing step. Thereby, much of the information contained in
the data is lost [114]. Often the results depend considerably on the threshold values used.
Moreover, it has been shown that the qualitative dynamic behavior of Boolean networks
and corresponding differential equations are not always consistent [79, 181]. Steady states
of Boolean networks correspond to steady states of an equivalent differential equation
model, but the reverse does not necessarily hold [79]. On the other hand, limit cycles in
the Boolean model do not always occur as limit cycles in the continuous model. This also
restricts the utility of Boolean networks, even if the focus is on the qualitative dynamic
behavior.

Finally, Boolean networks belong to the class of deterministic models. Hence they
cannot capture the stochastic nature of gene expression and do not account for noise in
the measurements.

Several extensions of Boolean networks have been proposed in order to overcome some
of the limitations mentioned [114, 140, 185, 192, 193]. The most prominent among these
are probabilistic Boolean networks [174, 175]. In these networks, a set of Boolean functions
is randomly chosen for the transition x(t) 7→ x(t + 1) in each time step according to a
probability distribution over a set of possible functions. This extension was developed to
account for stochastic fluctuations in the regulation processes.

1.2.3 Bayesian networks

A Bayesian network is a stochastic system with a set V = {x1, . . . , xn} of n variables and a
state space Ω that is assumed to be discrete for our purposes here. Bayesian networks are
static models, and we assume the set T to be empty in the following. The joint probability
distribution p : Ω → [0, 1] consists of a set of local conditional probability distributions
p(xi|par(xi)) combined with a set of conditional independence assertions that allow the
construction of a global probability distribution from the local distributions:

p(x̃1, . . . , x̃n) =

n∏

i=1

p(x̃i| ˜par(xi)). (1.9)

The set par(xi) ⊆ V \ {xi} is called the parent set of xi, and p(x̃i| ˜par(xi)) = {x̃j |xj ∈
par(xi)}. The independence assertions state that a variable xj which is a successor of a
variable xi cannot at the same time be a predecessor of xi. Otherwise, Table 1.1 illustrates
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Table 1.1: System of two variables x1 and x2. If x1 ∈ par(x2) and vice versa, equation
(1.9) for the joint distribution p(x̃1, x̃2) is not properly be defined.
x̃1 x̃2 p(x̃1|x̃2) p(x̃2|x̃1)
0 0 0 1
1 0 1 0
0 1 1 0
1 1 0 1

that the joint probability distribution cannot be properly defined. Here, we consider two
variables x1 and x2 with par(x1) = {x2} and par(x2) = {x1}. The state space is chosen to
be IF2

2, and the local distributions are listed in the table. Although these conditional dis-
tributions are well-defined, using equation (1.9) to calculate the joint distribution p(x̃1, x̃2)
for this system would lead to p(x̃1, x̃2) = 0 for all observations x̃1, x̃2 ∈ IF2. This example
demonstrates that the Bayesian network must have variables xi with empty parent sets.
The local probability distributions for these variables are said to be unconditional.

A Bayesian network can graphically be represented as a directed acyclic graph (DAG)
G(V, E) with nodes corresponding to system variables. There is an edge ej→i in this
DAG, if xj is a parent of xi, xj ∈ par(xi). Equation (1.9) is based on Bayes’ formula:
p(A, B) = p(B|A)p(A) = p(A|B)p(B).

Murphy and Mian [133] were among the first who modeled gene interactions with a
Bayesian network. Bayesian networks are still frequently used to reconstruct interactions
between genes from expression data [13, 22, 70, 90, 100, 146]. Learning a Bayesian net-
work from experimental data corresponds to estimating the joint probability distribution
p(x1, . . . , xn), which defines the structure of the DAG. It is usually not possible to infer a
unique DAG. While arcs describe conditional dependencies, a DAG can also be considered
to represent conditional independencies, which are defined by the term d-separation:

Definition 1.2.1 [d-separation [144]] Two variables xi and xj of a Bayesian network are
d-separated by a given set S ⊆ V \ {xi, xj} if and only if xi and xj are conditionally
independent given values of the variables in S.

D-separation includes not only direct dependencies, but describes also indirect ones, which
are for example represented by a directed path between two variables in the DAG containing
at least one intermediate variable. According to Definition 1.2.1, the variables x1 and x3

are d-separated by variable x2 in all three DAGs x1 → x2 → x3, x1 ← x2 ← x3 and
x1 ← x2 → x3. Thus, x1 and x3 are conditionally independent given the value of x2.

Two DAGs are said to be equivalent if they represent the same independence structure.
The best we can hope to learn from data is a Bayesian network which is in the same
equivalence class as the real network [145].

Similar to network inference approaches based on correlations between variables, it is
not always possible to get information about the direction of an edge.

Compared to deterministic models, Bayesian networks consider stochastic effects and
can thus account for stochastic fluctuations in regulation processes and noisy measure-
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ments, which are presumably related to different phenotypes [129]. However, they have
two main drawbacks, which make them inappropriate for our purposes: First, they are
static models and do not incorporate evolution over time. Second, the underlying in-
teraction graph has to be acyclic in order to obtain a well-defined joint probability dis-
tribution. This is a major limitation, since circuits in the interaction graph are neces-
sary to model complex phenomena such as oscillations, multi-stationarity and hysteresis
[92, 99, 163, 181, 192, 193].

To overcome both limitations, several authors have suggested to use dynamic Bayesian
networks [71, 100, 132, 133, 145, 216]. In these networks, the local probabilities depend on
time.

1.2.4 Differential equations

The state space of ordinary differential equations (ODEs) is the set IRn. ODEs offer a
deterministic time and state continuous description of a system. The evolution of the state
of a system is specified by a function

Φ : IRn × IR→ IRn, x(t) = Φ(x(t0), t), (1.10)

which is assumed to be the solution of an initial value problem

ẋ(t) = f(x(t)), x(t0) = x0 (1.11)

with given state x0 ∈ IRn at a time t0 and a continuously differentiable function f ∈
C1(IRn → IRn).

ODEs have been established in recent years to model the dynamic behavior of gene
regulatory networks quantitatively. Several parameterizations of the function f(x(t)) have
been suggested. Chen et al. [34] first proposed a linear ODE model to reconstruct inter-
actions between genes from expression data. The behavior of linear models is discussed in
Chapter 2. We will also present a non-linear approach, which is based on chemical reaction
kinetics. A further popular model class for gene regulatory networks are synergistic sys-
tems, shortly denoted S-systems [204]. In these models, regulatory influences are described
by power law functions:

ẋi(t) = αi

n∏

j=1

xj(t)
gij − βi

n∏

j=1

xj(t)
hij (1.12)

The kinetic orders gij and hij and the rate constants αi and βi have to be estimated in
these models. The first term in equation (1.12) describes the effect of positive regulators,
the second one refers to inhibitors. S-systems can capture many relevant types of biological
dynamics [107]. Steady states of these systems can be calculated analytically, making these
models attractive for network inference [37, 107, 204].

Minimization of the objective function FMSE(ω,D) in the optimization problem (1.4)
requires a solution of the system of differential equations. For most models, this cannot be
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done analytically, but the system has to be integrated numerically. When problem (1.4) is
solved heuristically, numerical integration has to be carried out several times and is often
the most time consuming part of the parameter estimation procedure [205]. Hence, it can
be useful to define an objective function that contains directly the time derivatives instead
of concentrations, for example

F ∗(ω,D) :=
n∑

i=1

T∑

t=1

‖ ẋi(ω, t)− ˙̃xi(t) ‖2 . (1.13)

Here, ˙̃xi(t) denotes the time derivative of variable xi at time t, which has to be estimated
using the dataset D. T corresponds to the number of observed time points. We will use
this modified objective function in Chapter 3.

In contrast to Boolean networks, ODE models provide a quantitative description of a
system’s dynamic behavior. The consequence is that network inference from microarray
data can only be done for regulatory subnetworks of at most a few tens of components,
assuming that these subnetworks are relatively independent from the rest of the network.
In comparison to Boolean and Bayesian networks, differential equation models lead to a
better understanding of underlying mechanisms causing certain kinds of dynamic behav-
iors. One reason for this is that ODE models are built on chemical reaction mechanisms.
Thus, model parameters correspond directly to reaction rates, binding affinities or degra-
dation rates. This is helpful for both, a reasonable restriction of the parameter space and
the interpretation of inference results. This interpretation is a great advantage of ODE
models, as will be demonstrated in various examples in this thesis. We will also exploit the
well-established theory of differential equations in order to analyze the dynamic behavior
of our models. This leads to interesting questions and conclusions about the robustness of
qualitative dynamic behaviors.

Finally, extensions of ordinary differential equation models include stochastic kinetic
approaches, partial differential equations and delay differential equations [104]. In stochastic
kinetic approaches, concentrations are discrete and change according to some probability
distribution. They have been developed to explain the observed variety in experiments,
in particular, in case that the number of molecules is small [48, 92, 125, 181]. Partial
differential equations include derivatives with respect to time and space. They are used
to account for spatial inhomogeneities within a cell and to model diffusion processes [48].
In delay differential equations, the temporal change of a variable xi at time t, ẋi(t), is a
function of the states of the system at some previous time points x(t−τ). Such time delays
might be important if the system includes processes at different time scales, or if reactions
are delayed by transport processes [26, 165]. All these approaches require information
that is not included in microarray studies. Hence they do not belong to frequently used
model classes for network inference from microarray data. However, all of these extensions
can alter the qualitative dynamic behavior of a system compared to corresponding ODE
systems. We will see in Chapter 8 that an inclusion of a time-delay τ into a differential
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equation model can increase the robustness of sustained oscillations.



18 CHAPTER 1. INTRODUCTION



Chapter 2

Modeling Regulatory Networks with
Differential Equations

In this chapter, we use dynamical systems, which can be described by ordinary differen-
tial equations (ODEs), to model regulatory networks. This is a rather technical chapter,
because we define a lot of terms which will be used throughout this thesis. We start ex-
plaining the relation between a system of first order ordinary differential equations and
dynamical systems in Section 2.1. A parameterization for an additive ODE model for gene
regulatory networks is specified. Section 2.2 focuses on linear additive models. The main
statement of this section is that the qualitative behavior of linear systems ẋ = Ax + b can
be classified in terms of the eigenvalues of the matrix A. Table 2.1 illustrates this classifi-
cation for a two-dimensional system and thus represents this main statement. Section 2.3
introduces a non-linear differential equation model for gene regulatory networks based on
chemical reaction kinetics, which is used in all subsequent chapters. In the beginning of
this section, we discuss the analysis of limit sets of non-linear systems. We explain how
the stability of an equilibrium point can be determined, and we connect periodic behavior
of dynamical systems to stable periodic orbits. We will need these concepts in Chapters
6, 7 and 8, where mechanisms causing periodic behavior in chemical reaction systems are
discussed.

2.1 Introduction: Dynamical systems

We assume that the temporal behavior of a state x(t) of a system that is used to model a
regulatory network is given as a function Φ(x(0), t) of the initial state x(0) and the time
t. Moreover, we assume that x(t) satisfies an initial value problem of the form

ẋ(t) = f(x(t)), x ∈ E, x(0) = x0, (2.1)

where E is an open subset of IRn and the function f ∈ C1(E → IRn) is a continuously
differentiable function. That is, all partial derivatives of f with respect to xj , ∂fi/∂xj ,
i, j = 1, . . . , n, exist and are continuous. This guarantees the existence of a unique solution
x(t) in a time interval [−a, a], given an initial state x(0).

19



20 CHAPTER 2. DIFFERENTIAL EQUATION MODELS

Theorem 2.1.1 (Fundamental Existence-Uniqueness Theorem [147]) Let E be an
open subset of IRn containing x0 and assume that f ∈ C1(E). Then there exists an a > 0
such that the initial value problem

ẋ(t) = f(x(t))

with initial value x(0) = x0 has a unique solution x(t) on the time interval [−a, a].

Subsequently, we will abbreviate the vector x(t) with x and keep in mind that it is in fact
a function of time t.

With our assumptions, the solution of system (2.1) is related to a dynamical system,
which provides a functional description of the solution of the system. Therefore, we first
give a formal definition of a dynamical system and reveal the connection to system (2.1)
afterwards.

Definition 2.1.2 [Dynamical System [147]] A dynamical system on E is a C1-map

Φ : IR× E → E, (2.2)

where E is an open subset of IRn, and if Φt(x) := Φ(t, x) then Φt satisfies

1. Φ0(x) = x for all x ∈ E and

2. Φt ◦ Φs(x) = Φt+s(x) for all s, t ∈ IR and x ∈ E.

For fixed x0 ∈ E, Φ(t, x0) corresponds to the solution of the initial value problem in
Theorem 2.1.1. The first property in Definition 2.1.2 assures that the initial condition
x(0) = x0 is fulfilled. The second one states that the evolution of the system is uniquely
determined for every t′ ∈ IR if the state x of the system at any time t is known. This means
that solution curves in the state space cannot intersect, since otherwise the time evolution
of the system would not be unique at the intersection point. More precisely, we state the
following relation between a dynamical system and an initial value problem:

When Φ(t, x) is a dynamical system defined on E ⊆ IRn, then

f(x) =
d

dt
Φ(t, x)

∣
∣
∣
t=0

(2.3)

defines a C1-vector field on E, and for each x0 ∈ E, Φ(t, x0) solves the initial value problem
(2.1). Furthermore, a solution of the initial value problem (2.1) exists for every t ∈ IR,
meaning that for each x0 ∈ E, the maximal interval of existence of Φ(t, x0) is the time
interval I(x0) = (−∞,∞). Thus, each dynamical system is related to a C1-vector field f ,
and the dynamical system describes the solution set of the differential equation defined by
this vector field. Conversely, given a differential equation ẋ = f(x), x ∈ E with f ∈ C1(E)
and E an open subset of IRn, the solution Φ(t, x0) of the initial value problem (2.1) with
x0 ∈ E will be a dynamical system on E if and only if for all x0 ∈ E, the maximal
interval of existence I(x0) of Φ(t, x0) is (−∞,∞). In this case, we say that Φ(t, x0) is the
dynamical system on E defined by the differential equation ẋ = f(x) [147]. Φ(t, x0) can
also be regarded as the motion of the set E through the state space. It is therefore also
called flow of the differential equation:
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Definition 2.1.3 [Flow [147]] Let E be an open subset of IRn and let f ∈ C1(E). Let
Φ(t, x0) with x0 ∈ E be the solution of the initial value problem (2.1) defined on its
maximal interval of existence I(x0). Then for t ∈ I(x0), the mapping Φt : E → E defined
by

Φt(x0) := Φ(t, x0) (2.4)

is called the flow of the differential equation ẋ = f(x); Φt is also referred to as the flow of
the vector field f(x).

In subsequent chapters, we will often consider only the time dependence of Φ(t, x0) for a
fixed initial concentration vector x0, which is given by the experimental time series. We
will therefore use the short hand notation x, which corresponds to Φ(t, x0) for this fixed
x0 and t ∈ I(x0). The mapping Φ(·, x0) : I(x0) → E defines a solution curve or trajectory
Γ(x0) of the system ẋ = f(x) through the point x0:

Γ(x0) := {x ∈ E|x = Φ(t, x0), t ∈ IR}. (2.5)

The positive half-trajectory Γ+(x0) is the solution curve for positive time t ≥ 0 that starts
in x0:

Γ+(x0) := {x ∈ E|x = Φ(t, x0), t ≥ 0}. (2.6)

2.1.1 Differential equation models for gene regulatory networks

In gene regulatory networks, the components of the vector x correspond to concentrations
of network components. In this thesis, we use the term ‘network component’ as a general
term for all components whose dynamic behavior is described by differential equations.

One usually assumes a linear dependence between mRNA and protein concentrations in
order to infer model parameters from microarray data. Thus the experimentally available
mRNA concentrations are assumed to be a measure for the actual regulators, which are
proteins. In other words, the main regulations, which determine the behavior of the system,
are assumed to take place at the transcriptional level. All post-transcriptional regulations
are neglected. Consequently, we interpret the networks inferred from microarray data as
projections of the whole regulatory networks onto the space of transcriptional regulations.

Let’s go back to equation (2.1). Although this approach looks rather general, it pre-
sumes a functional relation between the temporal change ẋ of concentrations at time t and
the concentration vector x. This means that the temporal change of x is uniquely deter-
mined by x itself at any given time point t ∈ IR. Thus, there is already a strong assumption
behind the general modeling approach (2.1), which is also made in most approaches that
aim at learning gene regulatory networks from time series concentration data. In Section
2.3, we will see that this assumption implies a quasi-steady state approximation for the
differential equations which will be derived here.
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When describing gene regulatory networks with differential equations, a frequently used
form for the vector field f is (see for example [210])

ẋi = si − γixi + gi(x) =: fi(x) i = 1, . . . , n, (2.7)

where si ∈ IR0,+ is a basal synthesis rate and γixi a first order degradation term with
degradation rate γi ∈ IR+. The function gi(x) accounts for influences of regulators acting
on component i. The index i runs over all n network components. The terms si and γi

determine the dynamic behavior of xi in case that there are no regulators, that is gi(x) ≡ 0.
In this case, component i exponentially approaches a constant value xi,s, which is given by
the ratio of synthesis and degradation rates,

xi,s =
si

γi

, i = 1, . . . , n. (2.8)

When extracting cell components like mRNA or proteins from the cell, they usually degrade
after some time. In model (2.7), this is described by the degradation term:

ẋi = −γixi ⇒ x = e−γitx0, (2.9)

where x0 is the amount right after extraction. Here, we define the half life Ti,1/2 of com-
ponent i as the time after which half of the initial amount x0 still exists,

xi = e−γiTi,1/2xi,0
!
=

xi,0

2
. (2.10)

Degradation rate γi and half life Ti,1/2 are thereby connected via

Ti,1/2 =
ln 2

γi
. (2.11)

The half life of proteins or mRNAs is sometimes experimentally accessible and can thus
directly be included into our model according to equation (2.11).

Additive models

Coupling of the differential equations is expressed by the function gi(x), which depends
on concentrations of all regulators acting on component i. Most models of the form (2.7)
are additive models [34, 53, 201]. In these models, different regulators are supposed to act
independently, and the total effect on xi is the sum of single influences,

gi(x) =
n∑

j=1

rij(xj). (2.12)

Here, the regulation function rij describes the change of concentration of component i
under the influence of regulator j. The assumption of additivity of single influences is
a simple way to choose a parameterization of the function gi. It is, however, a rigorous
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restriction for the model. We have seen in Section 1.1 that different regulators can in fact
influence one another, for example by competing for the same binding site or by forming
complexes. Certainly, these effects cannot always be neglected. On the other hand, for
interaction networks of moderate and large size, for which the structure of the network
is not yet known, it is often the only way to keep quantitative models of the form (2.7)
tractable. Without this assumption, the regulation functions would be multi-dimensional.
They would depend on several input concentrations, since effects of different regulators
could not be regarded separately. This means, one would have to specify how to describe
interactions between regulators, and it is not always clear how to do this in a general way
without adapting the model to specific systems. In Chapter 6, we will overcome this strict
limitation, when we consider a regulatory core network of the yeast cell cycle, and explicitly
model interactions between several regulators. In this context, we will also see that these
interactions can be important for the qualitative dynamic behavior of the model. However,
such a detailed modeling is only possible because the cell cycle mechanisms are well-known,
and we include a lot of biological knowledge into our model. In the present chapter, we
will focus on additive regulation functions.

Equation (2.12) decouples the total influence of all regulators acting on i into one-
dimensional regulation functions, and this entails a great advantage for the network infer-
ence problem: The form of a single regulation function is accessible through experiments
and has been in the focus of theoretical and experimental studies already several years ago
[101, 213].

In the following sections, we will consider two additive model classes: simple linear
models are highlighted in Section 2.2, and Section 2.3 focuses on more advanced non-linear
equations with sigmoidal regulation functions. A parameterization of the latter class is
derived from chemical reaction kinetics. Concepts from an analysis of the former linear
models can partially also be used for the analysis of non-linear systems.

Before we go into detail with specific models, we make a further general assumption,
which has, in contrast to the additivity assumption, a comprehensive biological justifica-
tion. A regulator j is supposed to have either an activating or an inhibiting effect on the
regulated component. This ’OR’ is an exclusive ’OR’, such that the regulation function
rij(xj) is either monotonically increasing, namely if j activates i, or, if j is inhibiting,
rij(xj) monotonically decreases.

Our model can now be written as

ẋi = si − γixi +

n∑

i=1

rij(xj) si ∈ IR0,+, γi ∈ IR+ (2.13)

with monotone functions rij : IR→ IR. This so defined general additive model for gene regu-
latory networks can graphically be represent as a directed graph G(V, E) with a set of nodes
V = {v1, . . . , vn} and a set of edges E ⊂ V × V , where eij := (i, j) ∈ E ⇔ j regulates i.
Nodes correspond to network components, and a directed edge from j to i indicates that
j is a regulator of i. Furthermore, we have a labeling c : E → {+,−} of the edges, where
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Figure 2.1: An example for a gene regulatory network with three components. Left:
Protein 1 inhibits expression of genes 1 and 2 by binding to an operator site. Protein 2
binds to the promoter of protein 3 and activates expression of gene 3, and protein 3 in turn
activates gene 1 by the same mechanism. Right: Interaction graph of the sample network.
Here, mRNA and the corresponding protein are represented by one common node, and
regulations of gene expression are represented as directed sign-labeled edges.

c(eij) =′ +′ if j activates i and c(eij) =′ −′ in case of an inhibition. This so defined inter-
action graph encodes qualitative information about the regulation functions rij(xj), that
is, the structure of the coupling between network components or the topology of the graph
G(V, E), respectively. It does not provide any information about quantitative values and
synthesis or degradation rates. The interaction graph can also contain circuits of length one
in case that a cell component regulates its own expression. This is called auto-regulation.

A small sample gene regulatory network with three components is shown in Figure
2.1. Three genes are expressed and act as transcription factors. Protein 1 binds to an
operator which inhibits expression of the two genes 1 and 2. Protein 2 binds to the
promoter of gene 3 and has an activating effect on the expression of gene 3. The same
holds for protein 3, which binds to promoter 1 and thus promotes transcription of gene 1.
The corresponding interaction graph is shown on the right hand side of Figure 2.1. Here,
assuming a linear relation between the concentrations of mRNA and protein, both are
represented as one single component. According to this, an influence on an expression rate
by binding of a protein to a promoter region of a gene is represented by an edge between
the two corresponding nodes. Hence, the influence of protein 2 on protein 3, which is
represented by two solid grey lines in the figure on the left hand side, has been shrunken
to one single line from node 2 to node 3 in the gene regulatory network on the right hand
side.

2.2 Linear models

In this section, we examine linear regulation functions of the form

rij(xj) = kijxj kij ∈ IR, (2.14)
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and work out general properties of the resulting differential equation (2.13), which can be
written as a simple linear system. We will consider the solutions of these systems, and
thereby introduce basic terms of dynamical systems, which will be needed in subsequent
chapters. Moreover, we will investigate the stability of fixed points of linear systems, since
results can be transferred to analyze the stability of fixed points of non-linear systems as
well. This is assured by the Hartman-Grobman Theorem [147], which states that near an
hyperbolic equilibrium point xs, a non-linear system has the same qualitative structure as
the linear system that is obtained by a linearization about xs.

For our purposes, it is sufficient to illustrate the dynamic behavior of linear differen-
tial equations for planar systems. In IR2, eigenvalues can be calculated analytically, and
trajectories can graphically be represented in a two-dimensional coordinate system. Ba-
sic concepts concerning the stability of fixed points can, at least theoretically, easily be
extended to higher dimensions.

Inserting equation (2.14) into (2.13), ẋi becomes a linear function of xj with slope kij,
which will subsequently be denoted regulation strength. Accordingly, the whole system can
be written as a system of coupled linear differential equations:

ẋ =








s1

s2
...
sn








︸ ︷︷ ︸

s

+



















k11 k12 . . . k1n

k21 k22 . . . k2n
...

. . .
...

kn1 . . . . . . knn








︸ ︷︷ ︸

K

−








γ1 0 . . . 0
0 γ2 0 . . .
...

. . .
...

0 . . . . . . γn








︸ ︷︷ ︸

G












x (2.15)

Summarizing the matrices K and G into one single matrix A := K −G, system (2.15) can
shortly be written as

ẋ = Ax + s, s ∈ IRn
0,+, A ∈ IRn×n. (2.16)

It can easily be seen by setting ẋ = 0 that xs = −A−1s is the only point where the vector
field f(x) vanishes. This holds in the generic case when the matrix A is invertible, what is
assumed here. Such a point xs is called equilibrium point. Formally, it is defined as

Definition 2.2.1 [Equilibrium point [147]] A point xs ∈ IRn is called an equilibrium point
of a system ẋ = f(x) if f(xs) = 0. An equilibrium point xs is called a hyperbolic equilibrium
point if none of the eigenvalues of the Jacobian matrix Jf(xs) has zero real part. The linear
system ẋ = Jf(xs)x is called the linearization of (2.1) at xs.

If xs is an equilibrium point of ẋ = f(x) and Φt is the flow of the system, then Φt(xs) = xs

for all t ∈ IR. We call xs also a fixed point of the flow Φt or a steady state. Fixed points
are important for the long term behavior of a dynamical system. A fixed point xs is stable
if trajectories near xs stay in a neighborhood of xs for positive time t. More formally, we
refer to the following definition:

Definition 2.2.2 [Stability of an equilibrium point [147]] Let Φt(x) denote the flow of the
differential equation ẋ = f(x) defined for all t ∈ IR. An equilibrium point xs of this system
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Figure 2.2: Stability of a fixed point in the state space. Left: The fixed point xs of a
system ẋ = f(x) is stable if for all ǫ1 > 0 there is a δ1 > 0, such that every trajectory
starting in the neighborhood Nδ1(xs) never leaves Nǫ1(xs). Right: The neighborhood
Nδ(xs) depends on the neighborhood Nǫ(xs).

is stable if for all ǫ > 0 there exists a δ > 0 such that for all x ∈ Nδ(xs) and all t ≥ 0 we
have

Φt(x) ∈ Nǫ(xs). (2.17)

The equilibrium point xs is unstable if it is not stable. And xs is asymptotically stable
if there exists a neighborhood Nδ(xs) of xs such that the system approaches xs for all
x0 ∈ Nδ(xs):

Definition 2.2.3 [Asymptotic stability of an equilibrium point [147]] An equilibrium point
xs of a system ẋ = f(x) is asymptotically stable if there exists a δ > 0 such that for all
x ∈ Nδ(xs) we have

lim
t→∞

Φt(x) = xs. (2.18)

An asymptotically stable equilibrium point is stable. Figure 2.2 illustrates that the sta-
bility of a fixed point is a property which refers to the state space. Figure 2.3 shows an
asymptotically stable fixed point xs. Every initial point x0 in the neighborhood Nδ(xs)
approaches xs as t → ∞. In contrast to Figure 2.2, there is a time T ∗ ≥ 0 such that the
flow Φt(x) even stays within Nδ(xs) for t > T ∗.
An investigation of equilibrium points and their stability is essential to analyze the global
dynamic behavior of a dynamical system. Linear systems are particularly easy to analyze,
since they can be solved analytically with classical methods1(see for example [85, 147]).
The solution x of system (2.16) is the sum of the general solution for the corresponding
homogeneous equation

ẋh = Axh (2.19)

and a special solution for the inhomogeneous equation (2.16).

1You can write down an analytic expression for the flow Φt(x0) in terms of eigenvalues and eigenvectors
of the matrix A. In n > 3 dimensions, eigenvalues usually have to be determined numerically.
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Figure 2.3: Asymptotic stability of a fixed point. The fixed point xs is asymptotically
stable if there exists a neighborhood Nδ(xs) such that every trajectory starting in Nδ(xs)
eventually approaches xs as t→∞.

2.2.1 Homogeneous system

According to the Fundamental Theorem for linear systems, for any initial concentration
vector x0, the solution of (2.19) is given by

xh = eAtx0, (2.20)

where the linear operator eAt is defined by its Taylor series

eAt :=

∞∑

k=0

(At)k

k!
. (2.21)

In [147] it is shown that this operator is well-defined, and it can be computed in terms
of the eigenvalues and eigenvectors of A. The idea is to decouple the equations by a
transformation, such that A has Jordan canonical form. The qualitative behavior of the
system is solely determined by the eigenvalues and eigenvectors of A.

For planar systems, any matrix A can be transformed into one of the following matrices
[147]:

B =

[
λ1 0
0 λ2

]

, B =

[
λ 1
0 λ

]

or B =

[
b −a
a b

]

(2.22)

with λ1, λ2, λ ∈ IR being eigenvalues of the matrix A and a, b ∈ IR. B is determined by a
linear transformation with an invertible matrix T ∗ ∈ IR2×2:

B = (T ∗)−1AT ∗. (2.23)

The matrix T ∗ ∈ IR2×2 contains two linearly independent eigenvectors of A in the first case
and one eigenvector and the first generalized eigenvector in the second case. In the third
case, matrix A has two complex conjugate eigenvalues λ and λ̄ and eigenvectors v and v̄.
The transformation matrix T ∗ contains the linear combinations 1

2
(v + v̄) and 1

2i
(v − v̄),

which have real entries. For more details see [147]. The solution of the transformed system

ẏh = Byh with ẏh = (T ∗)−1ẋh, yh = (T ∗)−1xh (2.24)
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is given by
yh = eBty0. (2.25)

Inserting (2.22) into (2.21), the matrix eBt is specified to have one of the following forms:

[
eλ1t 0
0 eλ2t

]

, eλt

[
1 t
0 1

]

or ebt

[
cos(at) − sin(at)
sin(at) cos(at)

]

, (2.26)

respectively. In the first case, the components of yh decrease or increase exponentially,
depending on the signs of λ1 and λ2:

y1,h(t) = eλ1ty1(0) (2.27)

y2,h(t) = eλ2ty2(0) (2.28)

In the second case, a linear term is added to the exponential function in the first component,

y1,h(t) = eλt (y1(0) + ty2(0)) (2.29)

y2,h(t) = eλty2(0). (2.30)

The third case describes an exponentially damped oscillation in case of λ < 0 and oscilla-
tions with exponentially increasing amplitude for λ > 0:

y1,h(t) = ebt [cos(at)y1(0)− sin(at)y2(0)] (2.31)

y2,h(t) = ebt [sin(at)y1(0) + cos(at)y2(0)] (2.32)

Table 2.1 shows the various phase portraits that result from these solutions. The phase
portrait of a system of differential equations is the set of all solution curves of the system in
the state space. Note that the only equilibrium point of a homogeneous linear system is the
origin. Solutions of the original system (2.19) are obtained by a linear transformation of
coordinates, and thus its phase portrait is linearly equivalent to one of the phase portraits
shown in Table 2.1. If the matrix A has real eigenvalues, the origin can either be a stable
or an unstable node or a saddle with a stable and an unstable manifold, which are spanned
by the eigenvectors that correspond to the negative and positive eigenvalues, respectively.
In case of two conjugate complex eigenvalues, the origin is a focus or a center. Trajectories
spiral towards a stable focus if the real parts of the eigenvalues are negative, and the
system shows damped oscillations. In case of positive real parts, the system oscillates
with exponentially increasing amplitude. If A has purely imaginary eigenvalues, the origin
is a center. In this special case, according to Definition 2.2.2, the origin is stable, but
not asymptotically stable. In all other cases, the origin is either asymptotically stable
or unstable. In the special case that matrix A has an eigenvalue λ = 0, the origin is a
degenerate equilibrium point.

The classification of solutions of two-dimensional linear systems in terms of eigenvalues
and eigenvectors of the matrix A can offhand be extended to n ≥ 3 dimensions. To do
so, we have to calculate eigenvalues of an n × n-matrix, that is, search for the zeros of
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eigenvalues of A =

(
a11 a12

a21 a22

)

real eigenvalues complex eigenvalues

eigenvalues λ1 6= λ2 λ1 = λ2 = λ λ1,2 = λ± ib

eigenvectors v1 6= v2 ∈ IR2 v1 6= v2 ∈ IR2 v1 ∈ IR2 v1, v̄1 ∈ C2

matrix B

(
λ1 0
0 λ2

) (
λ 0
0 λ

) (
λ 1
0 λ

) (
λ −b
b λ

)

matrix eB

(
eλ1t 0
0 eλ2t

)

eλt

(
1 0
0 1

)

eλt

(
1 t
0 1

)

eλt

(
cos(bt) − sin(bt)
sin(bt) cos(bt)

)

sign σ(λ) λ1,2 < 0 λ1,2 > 0 λ1 > 0,
λ2 < 0

λ < 0 λ > 0 λ < 0 λ > 0 λ < 0 λ > 0 λ = 0

fixed point stable
node

unstable
node

saddle stable
node

unstable
node

stable
node

unstable
node

stable
focus

unstable
focus

center

phase portrait

Table 2.1: Eigenvalues and singularities of two-dimensional linear systems ẋ = Ax. Axes in the phase portraits correspond
to eigenvectors of the matrix A.
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Figure 2.4: A gene regulatory network of two components

a polynomial of degree n. For n ≥ 4, this can usually only be done numerically. Hence
linear systems can only partly be solved analytically. For planar systems, it was possible
to distinguish between three different forms of the transformed matrix B. For higher
dimensional systems, we have to generalize this and consider a Jordan canonical form of
the matrix A (see [147]).

2.2.2 Inhomogeneous system

A special solution of the inhomogeneous linear system (2.16) is given by

xinh = T
(
J−1(eJt − In)

)
s, (2.33)

with the matrix T containing the Jordan basis of A and In denoting the n×n-unit matrix.
Matrix J is the Jordan canonical form of the matrix A in system (2.16).

The general solution of system (2.16) is the sum of the solution of the homogeneous
system and a special solution of the inhomogeneous system:

x = xh + xinh (2.34)

Example 2.2.4 [Analyzing the phase portrait of a linear system] We present an example
for a classification of the phase portrait of a two-component system using Table 2.1. Com-
ponent x1 regulates x2 negatively with regulation strength k21 = −1. Component x2 in
turn is an activator of x1 with strength k12 = 2. The gene regulatory network is shown in
Figure 2.4. Degradation and synthesis rates are set to si = γi = 1 for both components.
The corresponding system of differential equations reads

ẋ =

(
−1 2
−1 −1

)

︸ ︷︷ ︸

A

x +

(
1
1

)

︸ ︷︷ ︸

s

. (2.35)

The fixed point of system (2.35) is given by xs = −A−1s = (1, 0). Matrix A has two
complex conjugate eigenvalues λ1,2 = −1± i

√
2 with negative real parts. Hence, according

to Table 2.1, xs is specified as a stable focus. The corresponding phase portrait is shown
in Figure 2.5.
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Figure 2.5: Phase portrait of system (2.35). The fixed point xs = (1, 0)T is a stable focus.

2.2.3 Linear models and gene regulation

To our knowledge, Chen and Church first proposed to model gene regulation with linear
differential equations of the form

ẋ = Ax, x ∈ IRn, A ∈ IRn×n (2.36)

in 1999 [34]. D’Haeseler et al. [53], van Someren et al. [201] and Wu et al. [211] used
a discretized linear model to infer the structure of regulatory networks. In spite of the
limited dynamics linear models can show, they are still frequently used to infer regulations
among cell components (see for example [39, 87, 88, 110, 162, 198, 200, 211, 215]). In
most of these and related works, a main goal was the inference of the structure of the
interaction graph rather than capturing the dynamic behavior. Gustafsson et al. [87] argue
that regulation functions can often be quite accurately approximated by their linearization
about a specific working point. Thus, a linear model could provide a good starting point
for further considerations. Sanguinetti et al. [164], who also used linear models to infer
gene regulations, summarizes benefits and drawbacks of linear models for gene regulatory
networks as follows:

Perhaps the most glaring assumption we make is that an additive linear model
is appropriate to describe a complex biological process, such as transcription.
While this is clearly not the case, a linear model should still capture the most
prominent features of the system. Although nonlinear models do obtain better
results [. . . ], their computational complexity rules out inference on a genome-
wide scale, thus providing a serious limit to their usefulness in exploratory
studies.

Linear models have several advantages concerning the parameter estimation from exper-
imental data [87]. The number of parameters is usually smaller than for more compli-
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cated models. Moreover, they are analytically solvable, and the minimization of the sum
of squared errors between measurements and model predictions is an optimization prob-
lem with a quadratic objective function. However, linear models cannot capture a lot
of dynamic behaviors observed in regulatory networks such as periodic behavior, multi-
stationarity and hysteresis. Examples for the occurrence of these behaviors in biological
systems are given in the end of this chapter and throughout the thesis. We have seen
that linear models have only one single isolated equilibrium point which can be stable or
unstable. When it is stable, it is globally stable, and the system eventually converges to
this equilibrium point from all initial conditions. Furthermore, a linear system is unstable
in the sense that it does not exclude unbounded solutions. An example to demonstrate
this is a single component that promotes its own expression with regulation strength k:

ẋ = s− γx + kx = s + (k − γ)x (2.37)

The solution for given x0 is

x = e(k−γ)tx0 +
s

k − γ

(
e(k−γ)t − 1

)
. (2.38)

Here, x grows exponentially when k > γ, that is, the auto-regulation is stronger than the
degradation.

Trajectories of linear systems that start with positive initial values, x0 ∈ IRn
+, do not

always stay positive. This means, IRn
+ is not an invariant set, and thus one can also get

solutions with negative components. A state space of a biologically plausible model for
gene regulatory networks should be restricted to IRn

+, and the model should assure, at
least for the range of interest, that trajectories never leave this region. This can only
be achieved for linear models if all regulations are activating, and this is definitely not a
realistic constraint.

2.3 Nonlinear models based on chemical reaction ki-

netics

In this section, we derive a biologically motivated model for the regulation functions rij(xj)
in equation (2.13). For this purpose, we consider the binding of a transcription factor to a
specific binding site in the promoter region of the regulated gene as a reversible chemical
reaction in equilibrium. This leads to a parameterization of rij(xj) with a sigmoidal func-
tion. Boundedness and monotonicity of each regulation imply that the model is stable in
the sense that the solutions are bounded as well. Moreover, the constraints which assure
that the positive orthant IRn

+ is an invariant set are less restrictive than for linear models.
Complex dynamic behaviors such as sustained oscillations, hysteresis or multi-stationarity
are non-linear phenomena and can thus only be captured with non-linear equations. In
Chapter 6, we will actually show that systems of differential equations of the form (2.13)
with monotone regulation functions mostly cause the system to converge towards a stable
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fixed point. This raises the interesting question about mechanisms leading to more complex
dynamic behaviors, which will also be taken up in this thesis for oscillating behavior.

We start this section by taking up some concepts and definitions of differential equa-
tions, which have already been introduced in the last section. These will be generalized
and extended for non-linear systems. In Subsection 2.3.2, we use chemical reaction kinetics
to derive parameterizations for the regulation functions. Properties of the resulting model
will be discussed, and biological examples for certain dynamic behaviors will be given.

2.3.1 Analyzing non-linear models

Let us again consider a dynamical system Φ(t, x) defined by

ẋ = f(x), x ∈ E (2.39)

with an open subset E ∈ IRn and a vector field f ∈ C1(E). In general, such a system
is analytically not tractable. An analysis usually starts locally around limit sets, which
determine the long-term behavior of the system.

Stability of hyperbolic fixed points

The Hartman-Grobman Theorem and the Stable Manifold Theorem state that the local
behavior around a hyperbolic fixed point xs is topologically equivalent to the corresponding
linearized system

ẋ = Jf(xs)(x− xs). (2.40)

Throughout this section, we assume that the equilibrium point xs under consideration has
been translated to the origin.

Theorem 2.3.1 (Hartman-Grobman Theorem [147]) Let E be an open subset of IRn

containing the origin, let f ∈ C1(E), and let Φt be the flow of the non-linear system (2.39).
Suppose that f(0) = 0 and that the matrix A = Jf (0) has no eigenvalue with zero real
part. Then there exists a homeomorphism H of an open set U containing the origin onto
an open subset V containing the origin such that for each x0 ∈ U , there is an open interval
I0 ⊂ IR containing zero such that for all x0 ∈ Uand t ∈ I0

H ◦ Φt(x0) = eAtH(x0); (2.41)

that is, H maps trajectories of (2.39) near the origin onto trajectories of (2.40) near the
origin and preserves the parameterization.

The Hartman-Grobman Theorem is an important result in the local qualitative theory
of ordinary differential equations. It provides a simple way to examine the stability of
equilibrium points. According to this theorem, a given equilibrium point xs is stable if all
eigenvalues of the Jacobian matrix Jf(xs) have negative real parts. It is a saddle point if
there are eigenvalues with both positive and negative real parts, and it is unstable in case
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that at least one eigenvalue has a positive real part. We will make use of this theorem in
Chapters 6, 7 and 8.

In this context, the Routh-Hurwitz method is very useful, in particular, for high-dimensional
systems. It provides a method to determine the number of roots of a polynomial that have
positive real parts using only the coefficients in the polynomial [38, 135].

A hyperbolic fixed point is either asymptotically stable or unstable. In case that the
Jacobian has an eigenvalue λ with ℜ(λ) = 0, the fixed point is non-hyperbolic, and the
Hartman-Grobman Theorem cannot be used to analyze its stability. We will see in Chapter
7 that non-hyperbolic equilibrium points are particularly interesting in bifurcation theory,
where the qualitative dynamic behavior of the system is considered subject to varying
model parameters.

The Stable Manifold Theorem further details the connection between the original sys-
tem (2.39) and the linearized system (2.40):

Theorem 2.3.2 (Stable Manifold Theorem [147]) Let E be an open subset of IRn

containing the origin, let f ∈ C1(E), and let Φt be the flow of the non-linear system
(2.39). Suppose that f(0) = 0 and that Jf(0) has k eigenvalues with negative real part and
n − k eigenvalues with positive real part. Then there exists a k-dimensional differentiable
manifold S tangent to the stable subspace ES of the linear system (2.40) at 0 such that for
all t ≥ 0, Φt(S) ⊂ S and for all x0 ∈ S,

lim
t→∞

Φt(x0) = 0; (2.42)

and there exists an n − k dimensional differentiable manifold U tangent to the unstable
subspace EU of (2.40) at 0 such that for all t ≤ 0, Φt(U) ⊂ U and for all x0 ∈ U ,

lim
t→−∞

Φt(x0) = 0. (2.43)

For an example, we go back to Table 2.1. In case that the origin is a stable equilibrium
point, the stable subspace is the whole IR2. The saddle point in this classification scheme
has a one-dimensional stable subspace , the x-axis, and a one-dimensional unstable sub-
space, the y-axis. A non-linear two-dimensional system with f(0) = 0 and a Jacobian
matrix Jf(0) with two real eigenvalues of opposite sign has, according to Theorem 2.3.2, a
one-dimensional stable manifold, which is tangent to the x-axis at xs, and a one-dimensional
unstable manifold tangent to the y-axis.

A stability analysis of an equilibrium point xs by linearizing about xs and calculating
the eigenvalues of the corresponding Jacobian matrix Jf(xs) does not provide any infor-
mation about the neighborhood in which the system is topologically equivalent to the
linearized system. It should also be mentioned that a stability analysis of a non-hyperbolic
equilibrium point is more involved. It can sometimes be done via searching for a Liapunov
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function for the system [122]. Here, it is also possible to draw conclusions about the neigh-
borhood U in Theorem 2.3.1. We will give an example for a Liapunov function in Chapter
8.

Limit sets and their stability

So far, we have only considered fixed points of a dynamical system and the local behavior
in a neighborhood of these points. However, the long term behavior of a dynamical system
can also be determined by other attracting sets, and thus we generalize the definition of an
asymptotically stable equilibrium point xs. Remember that if the point xs is asymptotically
stable, every trajectory that contains a point x0 near xs converges to xs for t → ∞.
More generally, if there exists a sequence tn of successive time points for which the system
approaches a certain point p in the state space, then p is called a limit point. We distinguish
between ω- and α-limit points:

Definition 2.3.3 [Limit point of a trajectory [147]] A point p ∈ E is an ω-limit point of
the trajectory Φ(·, x) of system (2.39) if there is a sequence tn →∞ such that

lim
n→∞

Φ(tn, x) = p. (2.44)

Similarly, if there is a sequence tn → −∞ such that

lim
n→∞

Φ(tn, x) = q, (2.45)

with q ∈ E, then q is called an α-limit point of the trajectory Φ(·, x) of (2.39). The entire
set of all ω- and α-limit points of a trajectory Φ(·, x) = Γ(x) is called the ω-limit set ω(Γ(x))
and the α-limit set α(Γ(x)), respectively. The union of both sets, ω(Γ(x))∪α(Γ(x)), is the
limit set of Γ(x).

In Table 2.1, for example, a stable node is an ω-limit point of all trajectories Γ(x), x ∈ IR2.
Similarly, an unstable node is an α-limit point of Φ(t, x) for all x ∈ IR2. The saddle in this
scheme is an ω-limit point of Γ(x) for all x lying on the stable manifold, here the x1-axis,
and it is at the same time an α-limit point for all vectors x on the unstable manifold, the
x2-axis.

For our work, periodic behavior of a dynamical system is of particular importance.
Oscillating behavior of components of x corresponds to closed curves in the state space:

Definition 2.3.4 [Periodic Orbit [147]] A cycle or periodic orbit of (2.39) is any closed
solution curve Γ◦ of system (2.39) in the state space which is not an equilibrium point of
(2.39).

Thus, starting with an initial state x0 ∈ Γ◦, the system eventually returns to x0 after some
time T , called the oscillation period:

T := min
t∈IR+

{t|Φ(t, x0) = x0, x0 ∈ Γ◦} (2.46)
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In this connection, we also define the oscillation amplitude ai for each variable xi, i =
1, . . . , n as the difference between the minimum and the maximum value of xi on the
periodic orbit Γ◦:

xmin
i (Γ◦) := min

xi∈Γ◦

xi (2.47)

xmax
i (Γ◦) := max

xi∈Γ◦

xi (2.48)

ai(Γ
◦) := d(xmax

i (Γ◦), xmin
i (Γ◦)) (2.49)

Similar to the stability of an equilibrium point, we can define the stability of a periodic orbit
Γ◦. Γ◦ is said to be stable if trajectories through points near Γ◦ stay in a neighborhood of
Γ◦ for t > 0:

Definition 2.3.5 [Stability of a periodic orbit [147]] A periodic orbit Γ◦ is called stable
if for each ǫ > 0 there is a neighborhood U of Γ◦ such that for all x ∈ U and t ≥ 0,
d(Φ(t, x), Γ◦) < ǫ. If a periodic orbit is not stable, it is unstable. Γ◦ is asymptotically stable
if for all x in a neighborhood U of Γ◦

lim
t→∞

d(Φ(t, x), Γ◦) = 0. (2.50)

An asymptotically stable periodic orbit is the ω-limit set of all trajectories Φ(·, x0) with
x0 in the neighborhood U specified in Definition 2.3.5.

Note that linear systems cannot have asymptotically stable periodic orbits. Stable fixed
points or stable periodic orbits are sets the system eventually evolves to. Such sets are
called attractors of a dynamical system. We will not give a formal definition here and
refer to [85] or [147]. Besides fixed points and periodic orbits, an attractor can also be
a manifold or a strange attractor. Attractors are invariant sets under the vector field f .
This means that for an attractor A and an x ∈ A, Φ(t, x) ∈ A for all t ∈ IR+. The set of
all points x for which Φ(x, t) approaches A as t → ∞ build the basin of attraction of A.
For linear systems, the basin of attraction of a stable node is the whole state space.

In the following subsection, we turn back to our model (2.13) for gene regulatory net-
works.

2.3.2 Sigmoidal regulation function

We recall our general additive model (2.13), where the temporal change of concentration
of network component i is described by a basal synthesis rate si, a first-order degradation
term −γixi, and the sum of all influences of regulators acting on i:

ẋi = si − γixi +

n∑

j=1

rij(xj), i = 1, . . . , n. (2.51)
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Considering the binding of a transcription factor to a specific binding site at the DNA
a reversible chemical reaction in equilibrium, we will derive a non-linear parameterization
of the regulation functions rij(xj). Therefore, we will exploit the theory of Michaelis and
Menten, which actually describes the kinetics of enzymes and substrates [68]. The result is
a hyperbolic regulation function, which equals the well-known Michaelis-Menten equation
(see for example [196]). Taking cooperative effects between single transcription factors into
account, the function becomes sigmoidal. In this form it is also known as Hill equation.

In Chapter 1, we saw that transcription was initiated when the RNA polymerase binds
to the promoter region of a gene. Binding of transcription factors to specific binding sites
can influence the affinity of this binding reaction. In the following, we examine the effect
of transcription factors on the transcription of the regulated gene.

2.3.3 Reactions on different time scales

A transcription factor TF can bind to a specific DNA binding site BS and form a stable
complex C. This is assumed to be a reversible reaction with rate constants k1 and k−1:

TF + BS
k
⇋
k−1

C (2.52)

The rate constants are measures for the probabilities that the corresponding reaction takes
place in the next time unit, normalized to the density of the reactants. Thus k1 and k−1

do not depend on the total concentrations of reactants and products and are constant
with respect to these parameters. Actually, they can vary with external conditions such
as temperature and binding energy [149], which is frequently described by the Arrhenius
equation (Appendix A).

In a gene regulatory network, we consider reaction processes on two different time
scales: The fast time scale is defined by the binding reaction (2.52), which reaches an
equilibrium state within a few seconds [3, 168]. On this time scale, the total concentration
of transcription factors, which changes on the slow time scale of minutes or hours [3], is
assumed to be constant. Contrary, if we are interested in the evolution of the system on the
slow time scale, we can reduce the number of variables by a quasi-steady state approximation
(QSSA), assuming that the fast reactions are in a slowly changing equilibrium state. The
slow time scale is the important scale to infer gene regulatory networks from microarray
data. In the following, we describe reactions on the fast time scale. Then we formulate
our final model by applying a QSSA for this fast time scale.
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The fast time scale

Given all concentrations of reactants and products, the change in concentration of all
particles involved in reaction (2.52) can be written as a system of differential equations,

d

dt
[TF ](t) = −k1[TF ](t)[BS](t) + k−1[C](t)

d

dt
[BS](t) = −k1[TF ](t)[BS](t) + k−1[C](t) (2.53)

d

dt
[C](t) = k1[TF ](t)[BS](t)− k−1[C](t),

where [X](t) denotes the concentration of component X at time t. Here, the underlying
assumption is that the reactions proceed quickly, and intermediate products do not occur.
Furthermore, the probability that a transcription factor and a binding site ‘collide’ is
assumed to be proportional to the product of their concentrations. Inserting

[BS](t) = [BS](0) + [TF ](t)− [TF ](0) (2.54)

[C] (t) = [C](0) + [TF ](0)− [TF ](t) (2.55)

into the first equation of (2.53) leads to a quadratic differential equation for [TF ]:

d

dt
[TF ](t) =− k1[TF ](t) ([BS](0) + [TF ](t)− [TF ](0))

+ k−1 ([C](0) + [TF ](0)− [TF ](t))
(2.56)

Equation (2.56) can be solved analytically by separating the variables (see [19]). The
solution describes on the fast time scale how binding of a transcription factor to its binding
site reaches an equilibrium state.

The slow time scale - Quasi-steady state approximation

However, we are not interested in the general solution of equation (2.56), since we want to
describe the system on the slow time scale. We consider the binding reaction (2.52) in a
chemical equilibrium, in which the average concentrations of reactants and products do not
change over time. Such an equilibrium exists for an arbitrary reversible chemical reaction
described by the same kind of kinetics as above, and it converges to a globally stable
steady state of the corresponding differential equation system. In a chemical equilibrium,
the number of complexes that are formed per unit time equals on average the number of
complexes that dissociate, and there is no net reaction.

The equilibrium assumption or QSSA can be justified from a biological and a mathe-
matical point of view:

1. The reaction is still in equilibrium even if variables, which might have an influence on
the equilibrium of the system, change on a very slow time scale. This could be, for
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example, a slightly varying temperature, which affects the reaction rate constants,
or a change in the protein concentrations over time. A reaction on the fast time
scale has always time to adapt to slow changes and hence converges rapidly to its
slowly changing steady state. The QSSA can reduce the dimension of the problem by
eliminating variables [68, 203]. We will see further examples in Chapter 6, where we
model mechanisms of the yeast cell cycle including reactions on different time scales,
and in Chapter 8, where a time-scale parameter is explicitly included into the model.
When analyzing the dynamic behavior of gene regulatory networks, we are interested
in the evolution of the system on the time scale of changes in protein and mRNA
concentrations. These are minutes or hours, whereas binding of a transcription factor
to its binding site often reaches an equilibrium state within a few seconds [3, 168].

2. Mathematically, a description of the system under consideration without the QSSA
would be much more complex. A lot of specific knowledge about single reaction rates
or measurements on both, the slow and the fast time scale, are needed to estimate
all model parameters. The QSSA in turn only requires ratios of rate constants, as we
will see in the following. Usually, time series measurements of mRNA concentrations
are collected at the slow time scale and thus do not allow for such a detailed descrip-
tion. The QSSA is necessary to obtain a functional relation between the change of
concentrations, ẋ, and the concentration vector x, as it is postulated in our general
model (2.1). It is the basis to justify a description of gene regulatory networks with
ordinary differential equations.

To consider the regulatory system on the slow time scale, we go back to system (2.53)
and set the derivatives with respect to time to zero. This leads to the steady state concen-
trations [X]s of the reaction system (2.53):

0 = −k1[TF ]s[BS]s + k−1[C]s

0 = −k1[TF ]s[BS]s + k−1[C]s

0 = k1[TF ]s[BS]s − k−1[C]s

These equations give rise to define the equilibrium constant of the chemical reaction as the
ratio of product and reactant concentrations:

K :=
k1

k−1
=

[C]s
[TF ]s[BS]s

(2.57)

According to equation (2.57), the ratio of products and reactants in chemical equilibrium
is determined by the ratio of k1 and k−1, and knowledge about the values of both vari-
ables separately is not required. K determines the direction of the net reaction for given
initial concentrations: For [C]0/([TF ]0[BS]0) < K the system favors the right hand side
of reaction (2.52), and the concentration of the complex C increases until it has reached
its steady state concentration [C]s and vice versa. A constant K ≫ 1 means that the
equilibrium is ‘on the right hand side’. Roughly speaking, the number of products far
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exceeds the number of reactants in this case. Note that the equilibrium constant, simi-
lar to the reaction constants, actually depends on temperature, as described in Appendix A.

Rewriting (2.57) and substituting the complex concentration by the difference of the
total concentration of binding sites, [BS]t, and that of free binding sites, [C]s = [BS]t −
[BS]s, leads to

1− [BS]s
[BS]t

=:
[BS]b
[BS]t

=
[TF ]s

[TF ]s + K−1
. (2.58)

The fraction [BS]b of occupied binding sites increases hyperbolically with the transcription
factor concentration.

At first glance, the notation [BS] can be misleading, because we usually refer to only
one or two specific binding sites for a transcription factor within a promoter region of a
gene. But this is not a problem for our formalism. For one single binding site, the left
hand side of equation (2.58) can be interpreted as the probability of this site to be bound
by a transcription factor [168]. Therefore, if the number of unbound transcription factors
far exceeds the number of bound ones, [TF ]s ≈ [TF ]t, the probability Pc of the binding
site to be bound can be written in terms of [TF ]t:

Pc([TF ]t) =
[TF ]t

[TF ]t + K−1
(2.59)

This is a reasonable approximation, since the number of specific binding sites for a tran-
scription factor is usually much smaller than the number of transcription factors. This
probability is proportional to the change in concentration of the regulated network com-
ponent i, provided that mRNA half life and translation rates are constant, leading to the
following parameterization for the regulation function rij(xj):

rij(xj) = kij
xj

xj + θij
(2.60)

Function (2.60) is a hyperbolically increasing function in case that the regulation strength
is positive, kij > 0, and it is decreasing for negative strengths, kij < 0. The threshold value
θij is related to the reaction constant K (see equation (2.59)). If the concentration of the
regulator j equals θij , the regulation reaches half of its maximal strength. Contrary to the
linear regulation functions introduced in Section 2.2, function (2.60) is bounded by 0 and
kij. The regulation strength kij is the expression rate that is reached if the binding site is
bound by a transcription factor all the time, that is, Pc = 1.

The concept of chemical equilibrium of reversible reactions can be generalized to arbi-
trary reactions of the form

m∑

i=1

νiXi

K
⇋

n∑

j=1

µjYj (2.61)



2.3. NONLINEAR MODELS BASED ON CHEMICAL REACTION KINETICS 41

Here too, the reaction constant K is given by the ratio of products and reactants. This
can easily be seen by writing down the corresponding differential equations and setting the
time derivatives to zero. The stoichiometric coefficients νi and µj appear as exponents:

K =

∏m
j=1 [Yj]

µj

∏n
i=1 [Xi]

νi
(2.62)

Relation (2.62) is also known as law of mass action.

2.3.4 Cooperative regulation - Hill equation

So far, we treated every transcription factor independently. This is not always realistic,
since many transcription factors actually appear as protein complexes. Complex formation
of identical proteins can be included into our model by assuming that the binding reaction
happens with n transcription factors. The corresponding chemical reaction then reads:

nTF + BS
k
⇋
k−1

C (2.63)

Here, the stoichiometric coefficient for the transcription factors is n, that for the binding
sites and the complexes is 1, and, according to the law of mass action (2.62):

K =
[C]s

[TF ]ns [BS]s
. (2.64)

With the same substitutions and transformations as above, we arrive at a regulation func-
tion of the form

rij(xj) = kij

x
mij

j

x
mij

j + θ
mij

ij

, (2.65)

also known as Hill equation [3]. Here, the exponent mij equals the number of transcription
factors, n, in reaction (2.63). In the literature, it is frequently denoted by Hill-coefficient.

The Hill-coefficient does not need to be an integer. The Hill function also provides a
phenomenological description of interactions between transcription factors in general. For
instance, binding of a transcription factor can sometimes be facilitated if another transcrip-
tion factor has already bound to the DNA. This is expressed by a Hill-coefficient mij > 1,
and the two transcription factors are said to act in cooperation. In case that binding is pre-
vented by another transcription factor, the proteins interact competitively and 0 < mij < 1.

Figure 2.6 illustrates equation (2.65) with different Hill-coefficients for an activating
regulation. The regulation function is sigmoidally dependent on the regulator concentration
xj and converges to its maximum value kij as xj →∞. At the threshold θij , the influence
reaches half of its maximal strength for all curves. The slope of the curve is determined
by the Hill-coefficient. A coefficient mij = 1 corresponds to the case of independent
transcription factors (equation (2.60)), and the corresponding regulation function increases
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Figure 2.6: Sigmoidal regulation function according to equation (2.65).

hyperbolically. For competitive interactions between transcription factors, indicated by
mij = 0.5 in the figure, the influence exceeds the independent case for low regulator
concentrations xj < θij and falls below the independent curve for xj > θij . This is reversed
in case of a cooperative interaction.

2.3.5 Piecewise linear models

Several modifications of equation (2.65) have been proposed. The most prominent among
these are probably the piecewise linear differential equations (PLDE), which have been in-
vestigated by Mestl et al. [131] and de Jong and coworkers [49, 50, 51]. Here, the sigmoidal
regulation (2.65) is replaced by a step function, which is zero for regulator concentrations
below a threshold value θ ≥ 0 and kij for concentrations greater than θ. This description
leads to a partition of the state space into cuboids, whose boundaries are given by the
threshold values. Within such a cuboid, the system of differential equations is linear and
thus analytically solvable. Moreover, the matrix in equation (2.16) is a diagonal matrix,
and hence the equations are already decoupled. However, PLDEs of this form can cause
difficulties at the thresholds. These can contain artificial steady states or limit cycles. An
analysis of the dynamic behavior of PLDEs can thus be far more complicated than for
simple linear equations. We proposed a piecewise linear model with logoid regulation func-
tions in [75, 77]. A logoid regulation function rij(xj) is zero for regulator concentrations xj

below a threshold value θ1,ij , increases or decreases linearly between the first threshold θ1,ij

and a second threshold θ2,ij > θ1,ij and equals a constant value kij for xj > θ2,ij . Unlike
step functions, logoid regulation functions are continuous. This prohibits non-transparent
threshold hyper-planes, but requires a diagonalization of the equations in order to solve
the system. A detailed analysis of differential equations with logoid regulation functions
can be found in [74].
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2.3.6 Properties of the derived model

Inserting the sigmoidal regulation function into our system (2.51), we arrive at the following
model for gene regulatory networks, upon which our work is build:

ẋi = si − γixi +
n∑

j=1

kij

x
mij

j

x
mij

j + θ
mij

ij

, xi ∈ IR i = 1, . . . , n (2.66)

with parameters γi, mij , θij ∈ IR+, si ∈ IR0,+ and kij ∈ IR. Here, we point out some basic
properties of system (2.66) and show the main differences to linear models. First of all,
boundedness of the regulation functions rij(xj) is sufficient to stabilize our model in the
sense that there exists a bounded trapping region in the state space, which eventually
attracts every trajectory. Every single regulation function rij(xj) is bounded by 0 and
the regulation strength kij. Thus the sum over all regulation functions in system (2.66)
is bounded above by the sum of positive regulation strengths, and bounded below by the
sum of negative strengths. It is easy to show that

ẋi ≤ 0 for xi ≥
1

γi



si +
∑

kij∈IR+

kij



 =: xmax
i ,

and ẋi ≥ 0 for xi ≤
1

γi



si +
∑

−kij∈IR+

kij



 =: xmin
i .

(2.67)

Hence the cuboid which is bounded by xmin
i and xmax

i , i = 1, . . . , n, is a trapping region
for system (2.66). Every trajectory eventually reaches this region and never leaves it any
more. The trapping region is an invariant set of the system. This is a biologically plausible
property on the one hand, and it facilitates the analysis of the system’s global behavior
on the other hand, since we can concentrate our analysis of the long-term behavior on the
trapping region.

According to (2.67), the condition

si >
∑

−kij∈IR+

kij, (2.68)

which means that the basal synthesis rate si compensates for all negative regulations, is
sufficient for IRn

+ to be an invariant set. With this condition, system (2.66) is a positive
system (definition according to [52]). This condition is less restrictive than for linear regu-
lation functions, where we have to exclude all negative regulations in order to get a positive
system.

Our model is able to capture complex dynamic behaviors. Multiple steady states, for
example, can already be achieved by a single component x that positively regulates itself.
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Figure 2.7: Vector field f(x) of system (2.69), which has two stable steady states x1,s and
x3,s and an unstable steady state x2,s.

This phenomenon is denoted multi-stationarity. It is related to cell differentiation and
memory [191, 193].

Example 2.3.6 [Multi-stationarity] We consider the system

ẋ = f(x) = 0.1− 0.5x +
x5

x5 + 1
. (2.69)

As can be seen in Figure 2.7, this system has three steady states x1,s ≈ 0.2, x2,s ≈ 0.9 and
x3,s ≈ 2.2. The states x1,s and x3,s are stable, x2,s is unstable. The system converges to
one of the two stable states, depending on the initial concentration x0: For x0 > x2,s it
converges to the upper equilibrium x3,s, whereas for x0 < x2,s, the system tends to the lower
stable fixed point x1,s. Thus, the system can also switch between these two stable steady
states when it is disturbed. This so-called switch-like behavior is observed, for instance, in
in the switch between a lysogenic and lytic state in viruses [92].

We come back to this example in the next chapter, in which we model a regulatory subsys-
tem in E. coli. Here too, a positive auto-regulation causes the system to show a phenomenon
called hysteresis, which is related to multi-stationarity.

We do not get the advantages of non-linear models for free. First of all, we have
seen that non-linear models are not analytically solvable any more. We have to apply
numerical methods in order to simulate the behavior of the system. A detailed analysis of
auto-regulating components shows that a large Hill-coefficient is required to obtain multi-
stationarity. However, sigmoidal regulation functions with large Hill-coefficients are very
steep about their threshold value θ. This means that we have to deal with stiff differential
equations, which are described in more detail in Chapter 8.
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2.4 Summary

In this chapter, we described modeling of the dynamic behavior of gene regulatory net-
works by ordinary first order differential equations. The basis for this description is the
assumption that transcription factor concentrations uniquely determine the regulatory pro-
cesses. For the sake of simplicity and generality, we concentrated on additive models. In
these models, regulatory effects caused by different transcription factors are assumed to
be independent. As a consequence, the total effect on the regulated component equals the
sum of single effects. Two important classes of additive models were introduced: Simple
linear models are favorable concerning parameter estimation from experimental data, in
particular if the number of network components is large. Thus they are frequently used for
this purpose. However, we have seen that they are not always appropriate to capture the
dynamic behavior of biological networks. Phenomena such as multi-stationarity, switch-
like behavior or sustained oscillations, which are observed in biological systems [36], cannot
be modeled with linear differential equations.

Nevertheless, the theory about the stability of solutions of linear models can also be
used for non-linear models. This is ensured by the Hartman-Grobman Theorem. In Sec-
tion 2.3.2, we derived a parameterization for a non-linear additive model. Regulation of
gene expression through binding of a transcription factor to the DNA was described as
a reversible chemical reaction in equilibrium. This approach is based on a quasi-steady
state approximation. This approximation does not only reduce the number of variables
in the model, but is also necessary to preserve the functional relation between ẋ and x.
A monotone and bounded regulation function was derived, which offers a more realistic
description of gene regulatory networks than linear models. Trajectories eventually reach
a trapping region, such that concentrations are bounded in this non-linear model.

Generally, non-linear terms in the system of differential equations are needed to cap-
ture complex dynamic behavior. The inference of parameters of these non-linear models
from experimental data can be more complicated than for linear models. Apart from the
regulation strengths kij, which appear as linear parameters in the model, the regulation
functions also contain two non-linear parameters mij and θij .

In the following chapters, we will use the non-linear additive model (2.66) to infer regula-
tory networks from experimental data. The model is used to explain the observed dynamic
behavior quantitatively and qualitatively. The model in Chapter 3 shows the response of
the system to a temporary external perturbation, which could also, at least qualitatively,
be described by simple linear systems, whereas our non-linear model is required to ex-
plain the dynamic behavior of regulatory subsystems in E. coli and in S. cerevisiae. In
Chapter 4, we will introduce a model which explains an experimentally observed threshold
phenomenon by a switch of the system between different stable steady states. This is an
example for multi-stationarity. The focus of the remaining Chapters 6, 7 and 8 is to explain
mechanisms causing sustained oscillations, which are related to an asymptotically stable
periodic orbit.
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Chapter 3

Modeling the SOS Repair System in
Mycobacterium tuberculosis

The focus of the following study is on modeling the SOS repair system in Mycobacterium
tuberculosis (Mtb). Mtb is the causative agent of tuberculosis, an airborne infection with a
world-wide incidence rate of more than three million cases a year [62]. The genome of the
bacterium was completely sequenced in 1998 [40], providing the basis for a comprehensive
understanding of the pathogenity of Mtb. However, little is known yet about specific regu-
latory mechanisms in this bacterium in comparison to other bacteria such as, for example,
E. coli or C. glutamicum. The whole genome of Mtb is estimated to contain approximately
4000 genes, but only about 350 of them have so far been identified [127] (data from 2005).
The reason for this lack of knowledge is that Mtb is a very slowly growing bacterium. It
only divides every 22-24 hours [153]. This is about 70 times slower than the cell cycle of E.
coli. Thus, the duration of experiments is also much longer. Mtb has some characteristic
features that make this bacterium resistant to several drugs. It has a very robust cell wall,
and it is able to shift between two physiologically distinct growth states: an active state,
in which the cells grow and divide, and a dormant non-replicative state [62, 214]. This
dormant state enables the bacterium to survive in a host cell for a long time and to become
active only when the immune system is weakened. The DNA repair system of Mtb is essen-
tial for its survival in hostile environments, for example induced by anti-microbial drugs.
An understanding of regulatory mechanisms in the SOS repair system at the molecular
level may also contribute to the fight against various drug-resistant strains, which have
emerged in the last years [127].

The SOS repair system is a mechanism of bacteria to respond to damages in the DNA
that are, for example, caused by pathogenesis radiation or drugs. Double strand breaks
frequently serve as a stimulating signal for the response of the organism, resulting in an
up-regulation of genes involved in DNA repair and a disruption of the cell division process.
A well-conserved SOS core system containing the regulatory genes recA and lexA exists
in several bacteria, including E. coli and Mtb [158]. The regulatory mechanisms in this
core system are well-known due to extensive studies in E. coli (see for example [207])

47
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and can be transfered to the Mycobacterium as well [47, 158]. Aside from the recA-lexA
mechanism, experiments give evidence for an alternative DNA repair system in Mtb, which
is independent of recA and lexA [20, 47, 158]. So far, little is known about the genes
involved in this alternative mechanism. Related to this lack of knowledge, the aim of our
modeling is two-fold:

1. Finding genes potentially participating in this alternative regulatory mechanism and
which are somehow related to the core mechanism. For this purpose, we use an
algorithm developed by Cabusora et al. [27], which uses multiple data sources, and
analyze the output of this algorithm statistically.

2. Building a model that explains the dynamic response of the system to DNA dam-
ages. The model should include known regulations among the well-known recA-lexA
core mechanism and hypothetical regulations between potential candidate genes rep-
resenting the alternative mechanism.

For our analysis, we use gene expression data of the whole Mtb genome. The interaction
graph considered here represents a biochemical rather than a gene regulatory network.
Some of the edges stand for transcriptional regulations, and others represent regulations
affecting the activity of proteins. Therefore, some of the nodes in this network correspond
to proteins, and the corresponding variables in the system describe their activities. For
these nodes, the assumption of a linear relation between concentrations of mRNA and pro-
teins does not hold. We incorporate this into the model by explicitly including biological
knowledge about the regulation mechanisms.

This chapter is structured as follows: A core model representing the recA-lexA core
mechanism is introduced in Section 3.1. This model is extended by further components
representing the alternative mechanism in Section 3.2. Section 3.3 presents simulations
with the extended model. Parameters are estimated using gene expression time series
data. Finally, results are discussed in Section 3.4.

3.1 Core model

3.1.1 Interaction graph

The main components of the recA-lexA core system are the proteins RecA and LexA.
Together, they regulate about 35-40 genes in Mtb. LexA is a repressor protein that binds
to specific binding sites on the DNA, called SOS boxes. It represses the transcription of
the so-called SOS genes. These are genes containing an SOS box in their promoter region.
When the DNA is damaged, the protein RecA binds to single-stranded DNA and causes
the auto-catalytic cleavage of LexA. Thereby, LexA is prevented from binding to the SOS
boxes, and consequently, expression of the SOS genes increases. An SOS gene is said to
be up-regulated or induced by DNA-damage. SOS boxes are also found in the promoter
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regions of lexA and recA. This enables the bacterium to rapidly react to damages of the
DNA. Rand et al. [158] conducted experiments with wild types and recA mutants (∆recA)
lacking the protein RecA. They identified genes which are DNA-damage-inducible even
in recA mutants. Thus, these SOS genes are assumed to be regulated by an alternative
mechanism independent of RecA and LexA, and the SOS genes can be categorized into
three groups:

• Group 1: Genes that are solely regulated by RecA and LexA. They have an SOS
box in their promoter region and, in case of a DNA damage, are not up-regulated in
recA mutants.

• Group 2: Genes that are solely regulated by the alternative mechanism and are
independent of RecA and LexA. These genes lack an SOS box in their promoter
region. When the DNA is damaged, they are up-regulated to the same extend in
wild types and recA mutants.

• Group 3: Genes which are regulated by both mechanisms. After DNA damage,
genes belonging to this group are fully induced in wild types, but only partially in
recA mutants.

We include the gene linB as a representative of group 1 into our model [158]. The gene ruvC
represents the genes in group 3, which are regulated by both mechanisms [158]. Group two
is disregarded, since genes in this group are not related to the lexA-recA system.

Figure 3.1 shows the interaction graph of the recA-lexA core network model. The active
protein LexA, denoted by LexASOS, is bound to SOS boxes and thereby represses tran-
scription of the SOS genes ruvC, linB, recA and lexA. This is indicated by negatively labeled
edges from LexASOS to these genes. The SOS response is activated if single stranded DNA,
emerging from breaks of double strands, functions as a signal, which activates the protein
RecA. Accordingly, RecA stimulates the auto-catalytic cleavage of the active protein Lex-
ASOS. Thus, RecA negatively regulates LexASOS. The amount of LexASOS also depends
on the total amount of LexA, which will be approximated by its mRNA concentration in
our model. In Figure 3.1, this dependence is indicated by a positive regulation from LexA
to LexASOS.

Both proteins, RecA and LexA, are regulated at the transcriptional and post-transcriptional
level. Even so, we use one single variable RecA for the total amount of the protein RecA,
given by the corresponding amount of mRNA, and the fraction of active protein. This sim-
plification does not affect the dynamic of the network considerably. The same procedure
is not convenient for the protein LexA. Here, a distinction of the fraction of active protein
LexA, LexASOS, and the total amount of the protein is necessary to capture the dynamic
behavior of the system.

3.1.2 Parameter estimation

In order to model the dynamic response of this network to DNA damage, we estimate pa-
rameters using a gene expression dataset accessible through the Gene Expression Omnibus
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Figure 3.1: Core network of the Mtb SOS repair system. A DNA-damage signal acti-
vates RecA to stimulate the auto-catalytic cleavage of the repressor LexASOS. Conse-
quently, LexASOS becomes inactive and the SOS genes (ruvC, linB, recA and lexA) are
up-regulated. LexA denotes the total amount of the protein LexA, that is, the sum of
active protein LexASOS and inactive protein.

Table 3.1: SOS response of core network genes to a treatment with 0.2 µg/ml mitomycin
C. Shown are normalized ratios of expression values of treated cells and control cells.
gene/time [h] 0.5 1.25 1.5 2 4 6 8 12
recA 0.73 1.0 0.94 2.96 3.62 11.26 9.12 10.29
lexA - 1.54 - - 1.04 3.84 5.03 3.52
ruvC 0.84 0.56 0.84 1.53 1.17 1.69 1.89 2.44
linB 0.83 0.97 0.98 1.41 1.57 11.54 4.76 3.53

at NCBI (GEO;http://www.ncbi.nlm.nih.gov/-geo) with GEO platform accession number
GPL1396. Additional information about background intensities has been made available by
Helena Boshoff (National Institute of Allergy and Infectious Diseases in Rockville, USA).
Details can also be found in [17].

This dataset contains gene expression values of about 4000 Mtb genes and includes
16 experiments that show the response of Mtb cells to an exposure to mitomycin C, an
antibiotic drug causing damages to the DNA. These 16 measurements are used in our
study. Gene expression was measured at 0.5, 1.25, 1.5, 2, 4, 6, 8 and 12 hours after
treatment. The raw dataset, which includes measurements of treated cells and untreated
control cells as well as background intensities for both, were preprocessed using BRB
ArrayTools. This is an open access package for the visualization and statistical analysis
of DNA microarray gene expression data developed by Dr. Richard Simon and Amy Peng
Lam (http://linus.ncbi.nih.gov/BRB-ArrayTools.html). We used no filters and normalized
the data by subtracting the median log-ratio of treated and control cells for each array,
such that the median of the log-ratios of the normalized array is zero. Expression values
of genes in the core network are listed in Table 3.1. Means were used for all time points
which have been measured several times. We build our model according to the non-linear
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additive model derived in Chapter 2:

ẋi = si − γixi +

n∑

j=1

kij

x
mij

j

x
mij

j + θ
mij

ij

i = 1, . . . , n, (3.1)

with parameters si, γi, mij , θij ∈ IR+ and kij ∈ IR. In order to be able to estimate param-
eters with only 8 time points, we replace the sigmoidal regulation functions by Boolean
functions:

kij

x
mij

j

x
mij

j + θ
mij

ij

≈
{

0 xj ≤ θij

kij xj > θij
=: kijbθij

(xj) (3.2)

Inserting these Boolean functions into (3.1), the threshold values θij partition the state
space into cuboids. Within each of these cuboids, the corresponding system of differential
equations becomes linear. Moreover, the differential equations are not coupled any more,
since for fixed threshold θij the regulation function bθij

is constant and does not depend
on the concentration xj of the regulator.

Including the information provided by the interaction graph in Figure 3.1, our model
is written as

RecA : ẋ1(t) = s1 − γ1x1(t) + k1,5bθ1,5(x5) + as(t) (3.3)

LexA : ẋ2(t) = s2 − γ2x2(t) + k2,5bθ2,5(x5) (3.4)

ruvC : ẋ3(t) = s3 − γ3x3(t) + k3,5bθ3,5(x5) (3.5)

linB : ẋ4(t) = s4 − γ4x4(t) + k4,5bθ4,5(x5) (3.6)

with synthesis and degradation rates si, γi ∈ IR+, regulation strengths kij ∈ IR− and a
parameter a ∈ IR+ for the strength of the signal. The signal s(t) is assumed to increase
linearly until t = 6h and is set to zero afterwards. The index 5 refers to the active fraction
of the protein LexA, LexASOS. The influence of this variable has to be set manually. We
couple its concentration to the course of expression values and the signal: The data show
that Mtb responds to the treatment only after 2-4 hours. Thus we assume that LexA
becomes inactive four hours after treatment and resumes its function as a repressor four
hours later, when the DNA-damage signal has disappeared. The corresponding system is
described by

For 0h ≤ t ≤ 4h or t > 8h :

RecA : ẋ1(t) = s1 − γ1x1(t) + as(t) (3.7)

LexA : ẋ2(t) = s2 − γ2x2(t) (3.8)

ruvC : ẋ3(t) = s3 − γ3x3(t) (3.9)

linB : ẋ4(t) = s4 − γ4x4(t) (3.10)
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For 4h < t ≤ 8h :

RecA : ẋ1(t) = s1 − γ1x1(t) + k1,5 + as(t) (3.11)

LexA : ẋ2(t) = s2 − γ2x2(t) + k2,5 (3.12)

ruvC : ẋ3(t) = s3 − γ3x3(t) + k3,5 (3.13)

linB : ẋ4(t) = s4 − γ4x4(t) + k4,5 (3.14)

with a signal

s(t) =

{
t t ≤ 6h
0 t > 6h

(3.15)

Parameters ω of the model are estimated by minimizing the sum of squared errors between
time derivatives ˆ̇xi(t), estimated from the data, and the corresponding time derivatives
ẋi(t, ω), predicted by the model, with respect to ω. Here, ω is defined by

ω := (a, s1, s2, s3, s4, γ1, γ2, γ3, γ4,−k1,5,−k2,5,−k3,5,−k4,5). (3.16)

The resulting optimization problem is

min
ω

8∑

z=1

4∑

i=1

‖ ẋi(tz, ω)− ˆ̇xi(tz) ‖2 subject to ω ∈ IR13
+ . (3.17)

Time derivatives ˆ̇xi(t) are estimated by polynomial interpolation. We approximate the
derivative of xi(t) by the derivative of the polynomial p(t) of degree two, fitted to expression
values of three consecutive time points xi(t− 1), xi(t) and xi(t + 1). This leads to

ˆ̇xi(t) =
xi(tk−1)

(tk−1−tk)(tk−1−tk+1)
(tk − tk+1)

+ xi(tk)
(tk−tk−1)(tk−tk+1)

(2tk − tk−1 − tk+1) (3.18)

+
xi(tk+1)

(tk+1−tk−1)(tk+1−tk)
(tk − tk−1).

The optimization problem (3.17) is under-determined, and we further restrict the parameter
space by fixing the degradation rates to γi = 0.1h−1, i = 1, . . . , 4. These values are chosen
to be approximately of the same order of magnitude as the expression values of the involved
genes. A comparison of results using several other values for these rates shows that results
depend only weakly on these parameters. In addition, we expect the ratio of concentrations
of treated cells and control cells to converge to 1 for t → ∞, assuming that the treated
cells have successfully repaired all DNA damages after a while. This expectation can be
formulated as a constraint for the synthesis rates si. The steady states xi,s for untreated
cells are obtained by setting the left hand sides of equations (3.11), (3.12), (3.13) and (3.14)
to zero and resolving each for xi,s. The steady states are given by the ratios of production
rates si + ki,5 and degradation rates γi,

xi,s =
si + ki,5

γi

!
= 1 i = 1, . . . 4. (3.19)
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Table 3.2: Estimated parameter values for the recA-lexA core network.
model parameter a s1 s2 s3 s4 γ1 γ2

estimated value [h−1] 0.55 0.10 1.00 0.27 0.92 0.10 0.10

model parameter γ3 γ4 −k1,5 −k2,5 −k3,5 −k4,5

estimated value [h−1] 0.10 0.10 0.00 0.90 0.17 0.82

Hence the synthesis rates si are given by the difference of the degradation rates γi and the
regulation strengths ki,5, si = γi − ki,5.

To solve the optimization problem with respect to all constraints, we use the Generalized
Reduced Gradient (GRG2) algorithm, a nonlinear optimization code which is implemented
in Excel. This algorithm was developed by Lasdon and Waren [113] and exhibits a local
search. It has been shown to solve constrained non-linear optimization problems robustly
and efficiently. In this implementation, derivatives with respect to model parameters are
numerically calculated by slightly varying each parameter and calculating finite differences
in the objective function. Estimated parameter values are listed in Table 3.2. The reg-
ulation of RecA by LexASOS has not been identified, −k1,5 = 0, inhibition of LexA and
linB by LexASOS, described by the regulation strengths k2,5 and k4,5, respectively, are of
the same order of magnitude. Compared to these two regulation strengths, expression of
the gene ruvC depends only moderately on LexASOS, indicated by a value −k3,5 that is
smaller than −k2,5 and −k4,5.

3.1.3 Simulation

We use an Euler integration, which approximates the time derivatives in the differential
equations with a difference quotient, and a time step ∆t = 0.5h, to simulate courses of all
four network components. The results along with experimental data are shown in Figure
3.2. Expression of RecA increases immediately after treatment due to coupling to the
signal s(t) and reaches its maximum of approximately ten-fold expression after six hours.
Then the concentration falls back and converges slowly to its steady state. A compari-
son with the experimental data indicates that the fast increase in the first six hours after
treatment is captured by the inferred model, whereas after six hours, the experimental
RecA concentration seems to remain higher as predicted by the model. The genes lexA,
ruvC and linB are up-regulated only four hours after treatment, when the protein LexA
becomes inactive. They reach their maxima eight hours after drug treatment and decrease
thereafter due to anew inhibition through LexA. Maximal expression levels of both lexA
and linB correspond to an approximately four-fold increase, whereas ruvC increases only
marginally. Comparing model predictions with experimental data and interpreting the
high concentration of linB at t = 6h as an outlier, the qualitative courses of LexA and linB
are satisfactorily captured, albeit the simulated courses slightly underestimate the corre-
sponding experimental data. Similar to RecA, the response of the gene ruvC is predicted to
abate 8 hours after treatment, whereas experimental values indicate that the concentration
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Figure 3.2: Dynamic response of the inferred SOS repair core network (lines) along with
experimental data (rectangles). Initial concentrations were set to xi(0) = 1, i = 1, . . . , 4.

still increases after 12 hours.

3.2 Searching for candidate genes

In this Section, we address the question how the SOS repair core network should be ex-
tended by other genes, which potentially play a role in the DNA repair system and are
related to the core network. For this purpose, we use an algorithm developed by Cabusora
et al. [27]. Input of this algorithm is a set of seed genes, a table of interaction information
about Mtb genes provided by Dr. Christian Forst, and gene expression data.

We use the genes recA, lexA, ruvC and linB as seed genes. In the first step, the
table of interaction information is used to construct an interaction graph. Edges in this
graph correspond to various interactions between Mtb genes listed in the table, for example
protein-protein interactions, metabolic reactions or collective transcriptional regulations
(for more details see [27, 127]). This graph contains about 1000 Mtb genes and about
70.000 interactions. In a subsequent step, a subgraph is created by calculating the k-
shortest paths between every pair of seed genes. The method used for this setting is
motivated and explained in Jiménez and Marzal [102] and Hershberger et al. [94]. The
distance dij between two nodes vi and vj is determined by the correlation coefficient τij of
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their expression values,
dij = Φ−1(1− |τij|), (3.20)

where Φ−1 is the inverse of the cumulative normal distribution. The user has to specify
a cutoff value l for the path length, motivated by the assumption that short paths are
preferred by the cell, and fix the number k of shortest paths. We apply the Kendall
correlation coefficient

τij =
P − I

√
(

n(n−1)
2
− Ti

)(
n(n−1)

2
− Tj

) . (3.21)

Here, each pair of expression values for gene i and times t and t̃, (xi(t), xi(t̃)), is compared
with the corresponding pair of expression values of gene j, (xj(t), xj(t̃)). A proversion
is a homogeneous change in both variables, that is xi(t) < xi(t̃) and xj(t) < xj(t̃) or
xi(t) > xi(t̃) and xj(t) > xj(t̃). P is the number of proversions in equation (3.21). If
both variables change in opposite directions, this is called an inversion. I denotes the
total number of inversions. Ti and Tj are the numbers of bindings, that is, the number
of pairs (xi(t), xi(t̃)) with xi(t) = xi(t̃) or xj(t) = xj(t̃), respectively. In comparison to
the frequently used Pearson correlation coefficient, the Kendall correlation coefficient can
discover general monotonous relations between two variables, not only linear ones. More-
over, it is less sensitive to outliers. Both properties make it appropriate to analyze gene
expression data. First, the relations are expected to be non-linear, and second, these data
are usually quite noisy.

The output of the algorithm is an undirected subgraph containing the seed genes and
candidate genes along the k-shortest paths between two seed genes. Figure 3.3 shows the
output for the SOS repair system with seed genes recA, lexA, ruvC and linB and parame-
ters k = 4 and l = 10. Edges are labeled with the Kendall correlation coefficients. All seed
genes, which are marked in grey, are connected with one another in Figure 3.3. Partic-
ularly high correlations can be found between recA, linB and ruvC, which are commonly
regulated by LexA and RecA. Thus the output of the algorithm reflects the structure of the
core network. The set of candidate genes consists of the genes infB, dnaE2 and Rv2719c.
These candidate genes are assumed to be potentially involved in the SOS repair system,
and we will further analyze their expression patterns statistically.

We introduce a method which assigns significance levels to correlation coefficients shown
in the subgraph in Figure 3.3. These levels are used to decide whether an edge is statistically
significant and should be included into the extended network model. Therefore, we calculate
correlation coefficients of the seed genes to all remaining measured genes in the organism.
The set of these correlation coefficients is assumed to represent the real distribution D
of correlations within the whole gene regulatory network of Mtb during SOS response.
The whole dataset contains about 4000 genes. Thus, the representation of D is build on
approximately 4 ·4000 correlation coefficients. Figure 3.4 shows the observed frequencies of
these coefficients. We apply a two-tailed test. Therefore, we define two subsets Smin and
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Figure 3.3: Output of the algorithm developed by Cabusora et al. [27]. The seed genes
recA, lexA, ruvC and linB are marked in grey. Shown are the 4-shortest paths with maximal
path length l = 10. Edges are labeled with Kendall correlation coefficients.
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Figure 3.4: Frequencies of Kendall correlation coefficients. Included are correlations of the
seed genes to all other genes in Mtb.
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Table 3.3: Kendall correlation coefficients for each pair of genes in the subgraph (Figure
3.3). Significant values according to a significance level α = 5% are marked in bold.

genes lexA recA ruvC linB infB dnaE2 Rv2719c
lexA 1.00 0.33 0.33 0.67 -0.67 1.00 0.00
recA 1.00 0.71 0.79 0.21 0.62 0.86
ruvC 1.00 0.64 0.50 0.81 0.71
linB 1.00 0.29 0.71 0.79
infB 1.00 0.62 0.36
dnaE2 1.00 0.52
Rv2719c 1.00

Smax according to a cutoff value α for the significance levels: The subset Smin contains α%
of all coefficients τij with the smallest values and Smax contains the same fraction with the
largest values. The maximum of Smin, τmin, and the minimum of Smax, τmax, define cutoff
values for the significance of an edge eij:

eij is significant :⇔ (τij ≤ τmin or τij ≥ τmax) (3.22)

The significance level α determines the sparseness of the network and is set to α = 0.05.
The corresponding thresholds for correlation coefficients are τmin = −0.71 and τmax = 0.71.
Significant correlations in the subgraph according to our analysis are marked in bold in
Figure 3.5. According to Table 3.3 and Figure 3.5, we exclude the gene infB from our
extended model, because it shows no significant correlations to other genes in the network.
The gene dnaE2 has an SOS box and is not induced in recA mutants [158]. It belongs to the
first group of genes, which are solely regulated by recA and lexA. Therefore, it is assumed
to give no information about the unknown mechanism. Moreover, its maximum expression
ratio is only about two, a value which often marks a significance limit for biologists, and it is
thus excluded as well. The gene Rv2719c shows a 12-fold up-regulation, and its expression
values correlate significantly with these of the genes recA and ruvC (see Figure 3.5). Thus
we conclude that the gene Rv2719c might play an important role in the SOS repair system
and has to be included into the model. This result is in accordance with the analysis of
SOS genes described by Dullaghan et al. [61], who also suggested Rv2719c to take part in
the DNA repair mechanism.

3.3 Extended model

3.3.1 Comparison with the core model

We extend our core model by the gene Rv2719c in the following way: Rv2719c has been
shown to have an SOS box in its promoter region [61]. It is thus controlled by LexA-
SOS, indicated by a negative regulation in the interaction graph in Figure 3.6. We make
the strong assumption that Rv2719c represents the alternative mechanism. As we do not
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Figure 3.5: Significant correlations (bold lines) in the subgraph shown in Figure 3.3.

Table 3.4: Expression values of the gene Rv2719c
time in h 0.5 1.25 1 2 4 6 8 12
Rv2719c 0.85 1.39 0.87 1.84 2.4 8.78 6.09 12.73

know anything about regulation mechanisms acting on Rv2719c, we include it as an ex-
ternal variable into the model and use directly the experimental expression values for the
parameter estimation. These are shown in Table 3.4. The genes recA and ruvC belong to
the third group of genes, which are regulated by RecA and LexA and by the alternative
mechanism [158]. Thus we propose a positive regulation from Rv2719c onto both genes.
These regulations have already been found to be significant in Figure 3.5. In contrast, nei-
ther lexA nor linB are up-regulated in recA mutant strains [158]. Hence they are assumed
to be regulated solely by RecA and LexA and are independent of Rv2719c, a result, which
is also reflected by our analysis shown in Figure 3.5. The system of differential equations
which describes the dynamic behavior of the network is modified accordingly:

RecA : ẋ1(t) = s1 − γ1x1(t) + k1,5bθ1,5(x5) + as(t)

+k1,6bθ1,6(x6) (3.23)

LexA : ẋ2(t) = s2 − γ2x2(t) + k2,5bθ2,5(x5) (3.24)

ruvC : ẋ3(t) = s3 − γ3x3(t) + k3,5bθ3,5(x5)

+k3,6bθ3,6(x6) (3.25)

linB : ẋ4(t) = s4 − γ4x4(t) + k4,5bθ4,5(x5) (3.26)
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Figure 3.6: Extended network of the Mtb SOS repair system. The gene Rv2719c was added
and assumed to regulate recA and ruvC. Rv2719c is itself regulated by LexASOS.

Table 3.5: Estimated parameter values for the extended network.
model parameter a s1 s2 s3 s4 γ1 γ2 γ3

estimated value [h−1] 0.51 0.10 1.00 0.11 0.92 0.10 0.10 0.10

model parameter γ4 −k1,5 −k2,5 −k3,5 −k4,5 k1,6 k3,6

estimated value [h−1] 0.10 0.00 0.90 0.01 0.82 0.46 0.23

Here, the new terms are marked in bold. The regulation strengths k1,6 and k3,6 ∈ IR+

account for the influence of Rv2719c (variable x6) on recA and ruvC, respectively. The
thresholds θ1,6 and θ3,6 are set to be reached after six hours, when gene Rv2719c first
shows a significant, 8-fold, up-regulation (see Table 3.4).

Optimization of model parameters yields the values shown in Table 3.5. In comparison
to the parameters of the core network (Table 3.2), the signal strength a has slightly de-
creased. The new gene Rv2719c has a considerable influence on RecA. The gene ruvC is
also mainly regulated by Rv2719c in the extended model, whereas regulation by LexASOS
is predicted to be very weak. Parameters referring to RecA and linB are the same as in
the core model, since the corresponding equations have not been changed in the new model.

A simulation with the corresponding parameters is shown in Figure 3.7. Up to six
hours after treatment, all courses are very similar to the courses of the core network in
Figure 3.2. Thereafter, the expression values of recA and ruvC are higher than in the core
network due to the positive influence of Rv2719c on both genes. Moreover, ruvC has not
yet reached its maximum within 14 hours. Courses of both genes in the extended network
indicate that the response persists for a longer time than in the core network. This seems
to be in better accordance with the experimental data. Thus, these results suggest again
that the gene Rv2719c may play an important role in the SOS response of Mtb.
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Figure 3.7: Simulated courses of the extended network model including the gene Rv2719c.
Continuous lines correspond to predictions with the extended model, dashed lines refer to
the core model. Both models differ for RecA and ruvC. Experimental data are plotted as
rectangles.
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3.4 Discussion and concluding remarks

We have introduced a quantitative model for the response of Mtb to DNA damage. Param-
eters were estimated using gene expression measurements after treatment of the bacterium
with the DNA-damaging agent mitomycin C. We built a core model, which represents a
core mechanism of the SOS repair system found as well in many other bacteria. This
model includes the two main regulatory proteins RecA and LexA and the genes ruvC and
linB, which are both regulated by RecA and LexA. Regulation mechanisms of this core
system are well-known due to extensive studies in E.coli, and results of these studies can
be transfered to Mtb. However, in recent years the existence of an alternative mechanism
in Mtb, which is independent of RecA and LexA, has been suggested. Brooks et al. [21]
conducted experiments which show the existence of genes that are up-regulated although
they lack an SOS box in their promoter region. They concluded that these genes are regu-
lated by an alternative mechanism. Rand et al. [158] confirmed this result by an analysis
of microarray measurements in wild types and recA mutants. They concluded that most of
the inducible DNA repair genes in Mtb are regulated independently of RecA, emphasizing
the importance of this alternative mechanism in Mtb.

We focused our modeling on this alternative mechanism. The main regulators of this
mechanism are not yet known. Thus, in order to find potential candidate genes that
have to be included into the model of the SOS repair system, we applied an algorithm
developed by Cabusora et al. [27]. This algorithm starts with a set of seed genes belonging
to a special regulatory subsystem. For our purpose we used components of the recA-lexA
mechanism. Interaction information of Mtb genes and gene expression measurements were
used to determine an interaction graph which includes the seed genes as well as some other
genes, whose expression values are highly correlated with these seed genes. The output of
this algorithm was further investigated using a statistical analysis of correlation coefficients
in the network.

We found the gene Rv2719c to be significantly correlated with some of the seed genes.
Moreover, this gene is strongly up-regulated in cells treated with DNA-damaging agents.
We suggested that Rv2719c might play an important role in the DNA repair system of
Mtb. This result is in accordance with results in Dullaghan et al. [61]. They conducted
experiments with mutations in the SOS boxes of genes, which prevent binding of LexA, and
predicted the gene Rv2719c to be involved in the DNA repair mechanism. We extended the
core model for Rv2719c, using biological knowledge to define a plausible network structure
in advance. Estimation of parameters and a comparison of simulations with experimental
data supported the assumption that Rv2719c is important in the SOS response of Mtb.

The set of parameters estimated for the extended model can be used to predict the
maximal expression levels of the genes recA and ruvC in wild types and in recA mutants
which lack the functional protein RecA. These levels correspond to the fixed points of the
differential equations, which are given by the ratios of production rates and degradation
rates (compare equation (3.19)). We compare the results with experiments shown in Rand
et al. [158]. In this study, expression values of Mtb genes were measured 24 hours after
a treatment of the cells with mitomycin C (0.2µg/ml). Results are shown in Table 3.6.
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Table 3.6: Maximal concentrations relative to control experiments of the genes recA and
ruvC in wild types and recA mutant strains (∆recA) are compared with microarray mea-
surements shown in Rand et al. [158].

recA ruvC
wild type, model (s1 + k1,6)/γ1 = 5.6 (s3 + k3,6)/γ3 = 3.4
wild type, Rand et al. 11.4± 3.4 5.3± 0.8
∆recA, model (s1 + k1,5 + k1,6)/γ1 = 5.6 (s3 + k3,5 + k3,6)/γ3 = 3.3
∆recA, Rand et al. 4.4± 0.9 2.1± 0.3

For both genes, the maximal expression levels in the wild types are lower in our model
compared to the experimental values in Rand et al. [158]. Conversely, for the recA mu-
tant the values predicted by the model are both larger than the experimental values. This
might indicate that the regulation of recA and ruvC by RecA and LexA is actually stronger
than predicted by the model. The model compensates this with a too strong regulation
of both genes by Rv2719c. Further experiments could help to clarify this contradiction.
For example, a comparison of the dynamic response in wild types and recA mutants to a
treatment with mitomycin C could be used to estimate the relative influences of RecA and
the alternative mechanism on the expression of recA and ruvC.

Finally, two recent publications help to clarify the function and regulation of Rv2719c.
Both appeared in 2006, after we had published our results about the SOS repair system.
Brooks et al. [20] confirm the presence of inducible promoters independent of LexA and
RecA, in particular, the promoters of recA and Rv2719c. Moreover, they show experimental
evidence that Rv2719c is up-regulated to the same extend in wild types and recA mutants,
although its promoter region contains an SOS box. Chauhan et al. [28] supposed Rv2719c
to be a regulator of the Mtb cell division. Consequently, it plays a role in the transition
of the bacterium from the latent to the metabolically active growth state, which involves
the regulation of cell division. This potential function supports the predicted importance
of Rv2719c in the SOS response. If the DNA is damaged, the cell division is blocked until
the DNA is repaired. Rv2719c could possibly be involved in this blockage.



Chapter 4

Effective Repression of the Escherichia
coli bgl Operon by the Protein H-NS

In this chapter, we model the specific repression of the E. coli β-glucoside (bgl) operon
by the histone-like nucleoid structuring protein H-NS. According to our model, specific
repression of the bgl operon is caused by the interplay of two positive feedback loops in the
regulatory network. Feedback loops can essentially influence the behavior of a regulatory
network. Thus, before we provide details about the biological part of this chapter, we
discuss some general aspects about the role of feedback loops in regulatory networks. We
have already seen in Chapter 2 that a positive auto-regulation can cause the existence of
multiple steady states. This is also the case in our model of the bgl operon, as we will see in
Section 4.3. Generally, a feedback loop can contain more than one component. We define
it as a circuit in the interaction graph of the regulatory network. The product of all edge
labels in a circuit is defined as the sign of the circuit. Hence, a feedback loop or circuit is
positive if it contains an even number of negatively labeled edges and negative otherwise.
This sign has an intuitive interpretation: An external up-regulation of a component in a
positive feedback loop is amplified, and it is inhibited if the sign of the loop is negative.
The concept of feedback loops will again appear in Chapter 6 and will be elucidated with
respect to different aspects.

Before we start modeling, we give a general remark about the experimental data: We
do not model the temporal behavior of the system under consideration, since time series
measurements are not available. All measurements are assumed to represent steady states
of the system, in which the activities xi,s, i = 1, . . . , n, are constant. Setting the time
derivatives in our general model

ẋi(t) = si − γixi(t) +

n∑

j=1

rij(xj) (4.1)

to zero leads to a set of algebraic equations of the form

xi,s =
si +

∑n
j=1 rij(xj,s)

γi

=
production rate of variable x1

degradation rate of xi

i = 1, . . . , n. (4.2)

63
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For some proteins, it is experimentally difficult to measure their concentrations directly.
In our case, we measure concentrations of bgl-lacZ gene reporter fusions in wild types (wt)
and hns mutants (∆hns), which lack the protein H-NS. The bgl-lacZ reporter fusions are
parts of the DNA including genes of our system together with their regulatory regions. The
genes to be measured are replaced by the gene lacZ, which encodes for β-galactosidase.
β-galactosidase can easily be detected. The transcription rate of lacZ equals the transcrip-
tion rate of the gene of interest in these constructs. Thus, according to equation (4.2), the
amount of β-galactosidase is proportional to the amount of the protein under considera-
tion. The variables in our model are transcription rates and not steady state concentrations
xi,s of gene products. This has a technical reason: Equal β-galactosidase concentrations
measured in different reporter fusions, which refer to different genes, indicate equal tran-
scription rates of these genes, but not automatically equal steady state concentrations,
since the degradation rates can be different.

We start with a biological introduction in Section 4.1. The model is introduced in
Section 4.2, and results are shown in Section 4.3. The chapter concludes with a discussion
in Section 4.4.

4.1 Biological introduction

Many Enterobacteria such as E. coli are flexible and adapt to changes in environmental
conditions. This adaptation is controlled by a network of pleiotropic regulators which reg-
ulate the production of many gene products at the same time. One of these regulators is
the protein H-NS, an abundant prokaryotic transcription factor that affects expression of
approximately 5% of all genes in E. coli [123]. Regulation mechanisms of these pleiotropic
regulators are poorly understood. H-NS, for instance, represses some genes very efficiently,
although its binding specificity is rather low. It is an open question by which mechanisms
this efficiency is achieved. Prominent paradigms for such specific H-NS regulations are the
Salmonella typhimurium proU operon and the E. coli bgl operon. The proU operon encodes
a high affinity uptake system for osmoprotectants [44, 45]. H-NS efficiently represses this
operon at low osmolarity. At high osmolarity, repression is relieved, and the operon is
approximately 200-fold induced.

Here, we address the question of specific pleiotropic control by modeling the repression
of the E. coli bgl operon by the protein H-NS. The genes of the bgl operon encode proteins
needed for the fermentation of aryl-β,D-glucosidic sugars [151, 166]. The operon is silent
in wild type strains. This means, the genes are only expressed in a negligible amount
[124, 171] due to repression by H-NS [58, 59, 123]. Silencing is relieved in hns mutants,
which lack the protein H-NS [171]. Expression of genes in the operon is controlled by sev-
eral regulation mechanisms at different levels during transcription and translation. Details
of these inhibition mechanisms are not yet completely understood [59], not only for the
bgl operon, but for all genes regulated by H-NS or related pleiotropic regulators. Thus, an
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Figure 4.1: Regulation mechanisms of the E. coli bgl operon containing the genes bglG, bglF
and bglB. The protein H-NS can bind upstream and downstream of the promoter. Two
terminators t1 and t2 are RNA structures which can abort transcription elongation.

investigation via modeling these regulation processes might generally help to gain a deeper
understanding about mechanisms of expression regulation that go beyond regulation of
transcription initiation.

We focus our modeling on an observed phenomenon concerning measurements of the bgl
operon: Expression of the operon does not correlate linearly with its cellular transcription
rate. Within a range of promoter activities, a moderate, three-fold, increase in the promoter
activity can result in 100-fold higher concentrations of operon proteins [58, 59, 95, 170].
Our model explains this threshold phenomenon by the interplay of two positive feedback
loops. The first loop includes a binding site for H-NS located within bglG, the first gene
in the operon. The influence of this loop on the transcription is amplified by a second
loop, a positive auto-regulation of the gene product BglG. This auto-regulation also causes
switch-like behavior and multi-stationarity.

4.2 Model

The bgl operon contains six genes bglG, bglF, bglB, bglH, bglI and bglK. The first three
genes are required for the sugar metabolism [57]. We focus solely on the regulation of the
first gene bglG. Figure 4.1 shows a scheme of the operon containing bglG, bglF and bglB.
The regulations that we include in our model can be seen in Figure 4.2. Both figures are
explained in the following. H-NS can bind to two specific binding sites: The first binding
site, called upstream silencer (us), is located upstream of the promoter, the second one,
called downstream silencer (ds), is located within the gene bglG. Binding of the catabolite
regulator protein CRP to its CRP binding site facilitates binding of the RNA polymerase
and thus transcription initiation. The affinity of the promoter to the RNA polymerase is
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Figure 4.2: Simplified scheme of the regulations that are considered in our model. The
transcription rate R1 is affected by the promoter activity α and the silencers us and ds.
The transcription rate R2 influences the repression caused by binding of H-NS to the
downstream silencer. Terminator t1 can abort transcription and thus negatively regulates
R2. The active protein BglG, whose amount is approximated by R2, acts in turn as an
antiterminator and destroys the terminator structure. Upstream and downstream silencers
mutually enhance each other.

denoted by α in Figure 4.2, and we refer to it as promoter activity.
Binding of H-NS to the DNA leads to structural changes, which affect transcription

of the operon: An upstream silencer bounded by H-NS presumably prevents access to the
promoter for CRP and the RNA polymerase [59]. Binding of H-NS at the downstream
silencer is assumed to cause an RNA loop structure, which also inhibits transcription
initiation [59, 123]. Both silencers mutually enhance each other: Repression of the operon
is much more efficient when both silencers are bound, since binding of H-NS to close
binding sites probably causes the formation of a DNA loop by ‘zipping’ the two sites
together [59, 123, 170].

The model includes two different transcription rates: The transcription initiation rate
R1 downstream of the promoter and the transcription rate R2 behind the gene bglG. Repres-
sion of transcription by H-NS is indicated by two negative regulations from the upstream
and downstream silencers to R1. The double arrow connecting upstream and downstream
silencers accounts for their mutual enhancement.

Two transcriptional terminators t1 and t2 enclose bglG. A terminator is an RNA struc-
ture that can abort transcription. The protein BglG acts in turn as an antiterminator,
which can destroy the terminator structure, by binding to specific RNA motifs called
RAT [59, 83, 86, 172, 173]. The transcription rate R2 is a measure for the concentration
of the antiterminator BglG. Thus, the interaction graph contains a feedback loop: R2

acts negatively on t1 and t1 inhibits R2. Both regulations are summarized to a positive
auto-regulation of R2. Here, a threshold behavior is observed: BglG is limiting at low
transcription rates, preventing expression of the operon, whereas above a threshold tran-
scription rate, BglG efficiently antiterminates transcription [58]. The auto-regulation is
thus modeled as a threshold regulation described by a Boolean function.

Efficiency of repression by the downstream silencer depends on the amount of incoming
transcript [137, 138]. The higher R2, the less efficient is the H-NS-downstream silencer
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complex. This dependence defines the second positive feedback loop containing two nega-
tive regulations, from R2 to the downstream silencer and from the downstream silencer to
R1. R2 in turn increases with increasing transcription initiation rate R1.

The second terminator t2 and the two remaining operon genes bglF and bglB are not
contained in the bgl-lacZ reporter fusions. The gene bglF encodes the enzyme EIIBgl. This
is a membrane transport protein, which negatively regulates BglG by phosphorylation and
is itself controlled by the presence or absence of β-glucosidic substrates [33, 120, 173].

In the experiments used for parameter estimation, only parts of the regulatory network
shown in Figure 4.2 are active. The remaining regulations are turned off, for example, by
mutations. Thus it is possible to estimate parameters for our model successively, using
different experiments for different regulation functions.

4.2.1 Regulation of the transcription rate R2

We start modeling the positive auto-regulation of transcription rate R2 including the termi-
nator t1. For reporter fusions which lack t1, according to our regulatory network shown in
Figure 4.2, there is no difference between the transcription initiation rate R1 and transcrip-
tion rate R2. Otherwise, R2 is assumed to be proportional to R1, with a proportionality
factor ct1 ∈ [0, 1] depending on the activity of the terminator. Taking the known thresh-
old behavior in this regulation into account, we model ct1 as a Boolean function with a
threshold value Rth

2 :

R2 (R1, t1(R2)) =







R1 without t1
cmin
t1

R1 with t1 and R2 ≤ Rth
2

cmax
t1 R1 with t1 and R2 > Rth

2

(4.3)

The structure of t1 and hence its negative effect on the transcription can be deleted by a
mutation that stabilizes the BglG binding motif RAT. This mutation renders transcription
of the operon independent of the terminator. Figure 4.3 shows a scheme of the experi-
ments used for estimation of cmin

t1
and cmax

t1
. The bgl-lacZ reporter fusion consists of the

constitutive UV5 promoter PUV 5, the terminator and the reporter gene lacZ. Activity of β-
galactosidase was measured in Miller units (MU), a standardized amount of β-galactosidase
activity. In experiment 1C the terminator t1 is RAT stabilized and thus inactive. We use
this experiment as a reference, since R2 = R1 = 4775 MU in this case. In experiment 1A,
the amount of the antiterminator BglG is low, and t1 is assumed to be fully active. Hence,
according to equation (4.3), transcription rate R2 is given by R2 = cmin

t1
R1. We measure a

β-galactosidase activity of 1490 MU, and the factor cmin
t1 is the ratio

cmin
t1

=
β-galactosidase activity in exp. 1A

β-galactosidase activity in exp. 1C
=

1490 MU

4775 MU
≈ 0.3. (4.4)

In experiment 1B, BglG is induced into the cell and effectively inhibits the terminator.
Therefore the activity of t1 is assumed to be reduced and R2 = cmax

t1
R1. The corresponding
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Figure 4.3: A lacUV5 promoter, t1, lacZ fusion was integrated into the chromosomal attB-
site, and the expression was determined of cells grown in minimal M9 glycerol medium
supplemented with casaminoacids and B1 chromosome as described in [58]. BglG was
provided in trans using plasmid pKESK18, and bglG expression was induced with 1 mM
IPTG [58]. As a control, a construct with a lacUV5 promoter and a RAT stabilized
terminator t1 was used, in which terminator t1 was mutated by stabilization of the BglG
binding motif RAT [138]. β-galactosidase activities were measured in Miller units and
determined at least three times independently. Standard deviations were less than 10%.

measurements show that approximately 90% of the transcript passes t1 and

cmax
t1 =

β-galactosidase activity in exp. 1B

β-galactosidase activity in exp. 1C
=

4385 MU

4775 MU
≈ 0.9. (4.5)

These experiments do not provide any information about the threshold value Rth
2 . A value

has to be set manually in our simulations. Results for different threshold values indicate
that within a certain range, this value does not affect the qualitative results. Here, we
demonstrate this for two threshold values. A more detailed analysis of the dependence of
results on the threshold Rth

2 is provided in [154].

4.2.2 A positive feedback loop including the downstream silencer

Binding of H-NS to the downstream silencer causes a conformational change, which com-
plicates transcription initiation. The activity of the silencer depends on the amount of
incoming transcript, R2 in this case [137]. This can be seen in the experiments in Figure
4.4. As no measurements for the amount of incoming transcript are available, we approx-
imate this amount by the measurements in hns mutants. In the experiments shown in
Figure 4.4, measurements were done using three reporter fusions with promoters PlacI ,
PUV 5 and Ptac. PlacI is the weakest and Ptac the strongest promoter. The DNA fragments
contain the gene bglG including the downstream silencer and the reporter gene lacZ. β-
galactosidase activity was measured in wild types (left column) and in hns mutants ∆hns
(right column). The experiments characterize the positive feedback loop including R1, R2
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Figure 4.4: bgl-lacZ reporter fusions with three different promoters PlacI , PUV 5 and Ptac.
All constructs contain the genes bglG and lacZ. β-galactosidase activity was measured in
wild type and hns mutant. Detailed information about growth medium and plasmids are
provided in [137, 138].

and the downstream silencer. As the terminator is missing here, R1 equals R2. The in-
fluence of the downstream silencer on R1 is described by a R2-dependent repression factor
cds(R2) ∈ [0, 1]:

R1(α, ds(R2)) = cds(R2)α (4.6)

The factor cds(R2) is described by a function that increases linearly with R2 for small
transcription rates and saturates at 1 for transcription rates exceeding an upper limit R∗

2,
at which the downstream silencer becomes inactive:

cds(R2) =

{
aR2 + b wild type and R2 ≤ 1−b

a
=: R∗

2

1 hns mutant or R2 > R∗
2

(4.7)

Using the least squares method, which minimizes the sum of squared errors between re-
pression factors cds(R2) predicted by the model and the experimental values, the regression
parameters a and b are estimated to be

a ≈ 3 · 10−4 and b ≈ 0.1. (4.8)

The corresponding upper limit R∗
2 is given by R∗

2 = 3000. Figure 4.5 shows the regression
function (continuous line) and the experimental values (dots) for cds(R2), which equals the
ratio of R1 measurements in the wild type and in the hns mutant, in dependence of the
incoming transcription rate in the hns mutant.

4.2.3 Regulation of the transcription initiation rate R1

The regulatory network in Figure 4.2 indicates that R1 is regulated by binding of H-NS to
the two silencers and the promoter activity α. Equation (4.6) presumes already a linear
relation between R1 and α. We assume independent binding of H-NS to upstream and
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of the downstream silencer (see Figure 4.4). Increasing transcription rates R2 lower the
efficiency of the downstream silencer. We describe this by a linear relation between R2

and the repression factor cds(R2) and an upper limit R∗
2, at which the downstream silencer

becomes inoperative.

downstream silencers and factorize their effects into a factor cus describing the influence of
the upstream silencer and a factor cds(R2) that refers to repression through the downstream
silencer. Mutual enhancement of both silencers is described by an additional repression
factor ccoop. The parameterization for R1 then reads:

R1 (α, us, ds(R2)) =







α no silencers/hns mutants
cusα us, ¬ ds
cds(R2) ¬ us, ds
cuscds(R2)ccoopα both silencers present,

(4.9)

with repression factors cus, ccoop ∈ [0, 1]. We use the two experiments shown in Figure
4.6 to estimate the repression factors cus and ccoop. Four DNA fragments with missing or
inactive terminators are investigated in wild types (left column) and hns mutants (right
column). The reporter construct in experiment 3B consists of the upstream silencer, the
bgl promoter Pbgl and the gene lacZ. According to equation (4.9), the factor cus is given by
the ratio of the β-galactosidase activities in the wild type and in the hns mutant in this
construct:

cus
(4.9)
=

β-galactosidase activity in wt in exp. 3B

β-galactosidase activity in ∆hns in exp. 3B
=

128

278
≈ 0.5 (4.10)
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Figure 4.6: Measurements of β-galactosidase activity in wild type and hns mutant. Exper-
iment 3A: bgl-lacZ fusion with promoter Pbgl, RAT stabilized (i.e. inactive) terminator,
gene bglG including ds and reporter gene lacZ. Experiment 3B: bgl-lacZ fusion lacking the
terminator and the gene bglG. More details about the experiments are given in [137, 138].

The first construct in Figure 4.6, experiment 3A, contains both silencers. The ratio of the
amount of β-galactosidase in the wild type and in the hns mutant is given by

β-galactosidase activity in wt in exp. 3A

β-galactosidase activity in ∆hns in exp. 3A
=

16

533

(4.9)
= cuscds(R2)ccoop

≈ 0.5
︸︷︷︸

cus

(
3 · 10−4 · 0.5 · 533 + 0.1

)

︸ ︷︷ ︸

cds

ccoop
(4.11)

Here, we have approximated R2 by the β-galactosidase activity in the hns mutant reduced
by the factor cus. Resolving equation (4.11) for ccoop yields a value ccoop ≈ 0.3.

4.2.4 Final model

Now we have everything at hand to specify equations for R1 and R2 in wild types with
both silencers and terminator t1:

R1 =

{
cusccoop (aR2 + b) α R2 ≤ R∗

2

cusccoopα R2 > R∗
2

(4.12)

R2 =







R1 without terminator
cmax
t1 R1 R2 ≤ Rth

2

cmin
t1

R1 R2 > Rth
2

(4.13)

Inserting equation (4.13) into (4.12) leads to

R1 =







cusccoop (aR1 + b) α no terminator and R2 ≤ R∗
2

cusccoop

(
acmin

t1 R1 + b
)
α R2 ≤ R∗

2 and R2 ≤ Rth
2

cusccoop

(
acmax

t1 R1 + b
)
α R2 ≤ R∗

2 and R2 > Rth
2

cusccoopα R2 > R∗
2

(4.14)



72 CHAPTER 4. THE ESCHERICHIA COLI BGL OPERON

Table 4.1: Estimated values for the model of bgl operon regulation
parameter cus ccoop cmin

t1 cmax
t1 a b R∗

2

estimated value 0.5 0.3 0.3 0.9 3 · 10−4 0.1 3000

Resolving (4.14) for the transcription rate R1, we obtain R1 as a function of the promoter
activity α:

R1 =







cusccoopbα
1−cusccoopaα

no terminator and R2 ≤ R∗
2

cusccoopbα

1−cusccoopacmin
t1

α
R2 ≤ R∗

2 and R2 ≤ Rth
2

cusccoopbα
1−cusccoopacmax

t1
α

R2 ≤ R∗
2 and R2 > Rth

2

cusccoopα R2 > R∗
2

(4.15)

The corresponding transcription rate R2 is given by equation (4.13). Estimated parameters,
which were used to carry out simulations in the following section, are listed in Table 4.1.

4.3 Results and discussion

4.3.1 Mutual enhancement of two feedback loops causes specific
repression

We simulated the behavior of the transcription rate R2 as a function of increasing promoter
activity α in the wild type with upstream and downstream silencers (Figure 4.7). Figure
A shows the behavior for a construct lacking the terminator, Figures B and C represent
constructs including the terminator with threshold values Rth

2 = 100 and Rth
2 = 50, re-

spectively. The non-linear increase up to R2 = 3000 in all three plots is caused by the
feedback loop including the downstream silencer. When this silencer becomes inactive for
R2 > 3000, R2 is regulated solely by the terminator and the upstream silencer, which were
modeled to have constant influences. Hence, R2(α) is a linear function in this range. When
the threshold Rth

2 is reached, the terminator causes an additional jump in R2 in Figures B
and C.
In order to explain the immense, 100-fold, increase in transcription rate R2, which comes
along with a three-fold increase in the promoter activity α, we calculated the ratio of R2(3α)
and R2(α) again as a function of α. Figure 4.8 shows the predictions for a bgl-lacZ reporter
fusion without terminator (Figure A) and with terminator and Rth

2 = 100 (Figure B) and
Rth

2 = 50 (Figure C). In the construct without terminator, the ratio increases rapidly up to
a maximum where R2(3α) is about 20 times larger than R2(α). A further increase in the
promoter activity renders the downstream silencer inactive, and thus the positive feedback
loop is turned off for transcription rate R2(3α). Hence the ratio R2(3α)/R2(α) decreases
until the downstream silencer is as well turned off for transcription rate R(α). Then, both
transcription rates are linearly related to α, and hence the ratio is 3 independent of α. In
constructs containing the terminator, the maximal ratio is about 80 and thus four times
higher than in the first figure lacking the terminator. For small promoter activity α, the
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Figure 4.7: Transcription rate R2 for increasing promoter activity α. The non-linear
increase is caused by the feedback-loop including the downstream silencer. R2 increases
linearly when this silencer becomes inoperative, that is, when the upper limit R∗

2 = 3000 is
exceeded. A: without terminator. B: with terminator and threshold Rth

2 = 100. C: with
terminator and threshold Rth

2 = 50.
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ratio increases only moderately. A jump is observed when R2(3α) reaches the threshold
value Rth

2 = 100 or Rth
2 = 50, respectively, because R2(3α) rapidly increases at this point.

The ratio increases further until the positive feedback loop with the downstream silencer is
turned off for R2(3α). The second and third figures show high plateaus where the ratio does
not change very much. On this plateaus, the terminator is only partly active for the high
transcription rate R2(3α), ct1(R2(3α)) = cmax

t1
, and fully active for the low transcription

rate R2(α), ct1(R2(α)) = cmin
t1 . The effect of both feedback mechanisms mutually enhance

each other on this plateau. Thus, in constructs with terminator, this enhancement results
in a four times higher ratio compared to the construct without terminator. The range of
the promoter activity α in which this plateau is observed, is determined by Rth

2 , as can
be seen in the Figure. The ratio decreases when also the lower transcription rate R2(α)
reaches the threshold Rth

2 , and it is the constant value 3 when the downstream silencer is
inactive for both transcription rates, R2(3α), R2(α) > R∗

2.

4.3.2 Positive auto-regulation of the gene bglG leads to hysteresis

The non-linear positive feedback loop including t1 entails an interesting property of our
system: There exist two solutions for the transcription rates R1 and R2 in an interval
[αmin, αmax], a property called multi-stationarity. The system can switch between these
two solutions when disturbed. Such a behavior is called switch-like behavior. A necessary
condition for a system to show switch-like behavior is a non-linear positive feedback loop
[43, 84, 188], as already demonstrated in example 2.7 in Chapter 2. We will once again
return to this point in Section 6.

In one of the solutions, the terminator is fully active, in the second one, it is only
partially active. Which of the solutions is realized depends on the direction of change in
the promoter activity α and, so to speak, on the history of the system.

Figure 4.9 shows R2 as a function of increasing and decreasing α, respectively, for wild
type cells (left) and hns mutants (right) and two threshold values Rth

2 = 100 (top) and
Rth

2 = 50 (bottom). The system exhibits hysteresis: For increasing α, the transcription rate
R2 increases moderately until Rth

2 is reached at a promoter activity αmax. This causes a
jump in R2, which feeds back to amplify the effect of the positive feedback loop including the
downstream silencer in the wild type. Accordingly, both transcription rates increase rapidly
at this point. Contrary, when we start with a large α and slowly decrease the promoter
activity, R2 remains high and only falls below at a lower promoter activity αmin < αmax.
The size of the interval [αmin, αmax] depends on Rth

2 , as can be seen in the Figure.

4.4 Concluding remarks

We have introduced a model for the specific repression of the bgl operon in E. coli by the
protein H-NS. H-NS binds to two binding sites upstream and downstream of the promoter.
Repression is further enhanced by RNA structures which terminate transcription elonga-
tion. Experiments in Dole et al. [59] indicate that transcription of genes in the operon
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Figure 4.9: Change in transcription rate R2 for increasing (black dotted line) and decreasing
(grey solid line) promoter activity α. The system has two stable steady states and shows
hysteresis. A: wild type, Rth

2 = 100, B: hns mutant, Rth
2 = 100, C: wild type, Rth

2 = 50,
D: hns mutant, Rth
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does not correlate linearly with promoter activity: A three-fold increase in the promoter
activity can, for a certain range of promoter activities, lead to a 100-fold increase in the ex-
pression rate. According to our model, this non-linear behavior is ascribed to the interplay
of two positive feedback loops including one of the silencers and a terminator structure.
We used very simple regulation functions in our model. Nevertheless, the model is able to
explain the observed behavior and, moreover, it is robust to changes in the parameteriza-
tion. Important features that are needed to explain the behavior described above are the
dependence of the repression by the downstream silencer, cds, on the transcription rate R2,
and the mutual enhancement of both feedback loops. A second property of our model is
the ability to show hysteresis, which is due to the threshold regulation of the terminator
on R2.

Although our model is able to explain the observed non-linearity, the effect is less
pronounced than in the experiment. The predictions show at most an 80-fold increase.
However, we made several simplifying assumptions, most of which reduce the threshold
phenomenon. In particular, the model could be extended with respect to the following
aspects, provided that data are available for parameter estimation:

1. There are some publications indicating that the positive influence of the protein BglG
on the expression of the operon is two-fold: It functions as an antiterminator and
destroys terminator structures, and it is assumed to stabilize its own RNA [58, 59, 86].
The first function is well-known and already included in our model, whereas the
second one is not assured and we neglect it1. Inclusion of this additional stabilizing
function would lead to a further increase in the ratio R2(3α)/R2(α).

2. The influence of the upstream silencer on the transcription initiation rate R1 was
modeled as a constant cus. This is a simplification that neglects competitive binding
of the RNA polymerase and H-NS. Increasing the promoter activity α would actually
favor binding of the polymerase rather than binding of H-NS upstream. Accordingly,
the efficiency of the upstream silencer should decrease with increasing promoter ac-
tivity. Including this dependence into the model would again increases the ratio
R2(3α)/R2(α).

3. Finally, if both silencers become less efficient when the promoter activity increases,
this should decrease as well their mutual enhancement, expressed by the repression
factor ccoop in the model. This factor was assumed to be constant in our model, even
for promoter activities where the downstream silencer is inoperative.

Finally, we remark that we can in fact hope that our results about repression mechanisms
by H-NS are transferable to other genes regulated by H-NS. Concerning the proU operon,
for example, mechanisms have been shown to be very similar to bgl regulation [46, 141],
and interestingly, repression of the operon also involves upstream and downstream binding
sites for H-NS.

1Personal communication with Prof. Dr. Karin Schnetz, Cologne.
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Chapter 5

A Bayesian Regularized Approach
for Network Inference

This chapter introduces an approach based on Bayesian statistics to infer gene regulatory
networks from time series data. Chapters 3 and 4 have shown that an inclusion of biologi-
cal knowledge into the model can lead to biologically meaningful quantitative conclusions
in spite of small datasets available for parameter estimation. In this chapter, we show
a different way to deal with sparse data. Rather than adapting our model to a certain
regulatory subsystem by including specific biological knowledge, we present an inference
approach which restricts the parameter space by taking into account general properties of
biological networks.

In a Bayesian learning approach, model parameters are described as random variables
having some known prior distribution, in case of continuous variables usually given as a
probability density function, which reflects ‘degrees of belief’ due to decision theoretic
rather than the classical frequentistic interpretation. Experimental data influence this be-
lief. Therefore, these data are used to convert the prior distribution into an a posteriori
probability distribution (posterior), thereby revising our opinion about the true parameter
values [60]. This posterior is usually also given as a density function. Bayesian learning
investigates this posterior, which can, according to Bayes’ formula, be calculated in terms
of the prior distribution and the likelihood function determined by the experimental data.
In order to apply a Bayesian learning approach, we have to embed our deterministic dif-
ferential equation model into a stochastic framework and specify a prior distribution over
model parameters. This distribution is chosen to reflect our expectation of outcome. We
will use a hierarchical distribution over regulation strengths, which is specifically designed
to favor sparse networks with only a few significant regulations. This prior distribution
drastically reduces the parameter space and thus successfully avoids the typical problem
of overfitting. The aim of our approach is to reconstruct the interaction graph from time
series data. Moreover, our approach can provide estimates for kinetic parameters that are
not yet experimentally accessible.

Bayesian approaches have frequently been used during the last few years, since they

79
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can take advantage of several theories. They take into account the probabilistic nature of
regulatory processes and handle noisy datasets. Moreover, any knowledge about the sys-
tem at hand can in principle be included into the inference process by specifying degrees
of belief in form of appropriate prior distributions. This knowledge can exist in terms of
data from previous experiments, or in form of information from experts, such as statistical
properties of the systems. Modeling this information with probability distributions does
not require to fix certain values, but to express the uncertainty about this information in
form of a distribution. Therefore, a Bayesian approach enables the modeler to weight the
information according to their belief. So, in contrast to a maximum likelihood estimation,
the result of a Bayesian approach depends on the subjective perception of the modeler
about the reliability of the information included into the learning process.

Bayesian approaches have been established in recent years to infer regulatory networks
from experimental data [10, 11, 13, 117, 160]. Beal et al. [10], for example, use linear state
space models, a class of dynamic Bayesian networks, to reverse engineer transcriptional
interactions from time series microarray data. They applied the method to the response
of a human T-cell line to drug treatment. Rogers et al. [160] apply a sparse Bayesian
regression algorithm to reconstruct network topologies from knock-out experiments, in
which a set of genes is inoperative. They use a linear model and an a priori probability
distribution that restricts the number of regulators for each gene in the network. The work
of Bernard and Hartemink [13] is especially interesting, since they integrate multiple types
of data into the inference process. Gene expression data are used to define the likelihood
function, and transcription factor binding location data are modeled as prior probability
distributions over edge weights. They showed that the inclusion of both data types could
considerably improve the results compared to maximum likelihood estimates which include
only one single data type.

All works mentioned use Bayesian networks or related models to describe gene regu-
latory networks. Bayesian networks are not offhand appropriate to describe the dynamic
behavior of these networks, as described in Chapter 2. In contrast, differential equations
are particularly suited for this task. In this chapter, we present a new inference approach
which combines both, a differential equation model and a Bayesian approach.

Before we embed our differential equation model into a stochastic framework in Sec-
tion 5.2, we start with a general introduction into Bayesian learning methods in Section
5.1. The approach is evaluated on a simulated and a real dataset in Sections 5.3 and 5.4,
respectively. A comparison with a maximum likelihood estimation shows that a Bayesian
approach with appropriate prior distributions over model parameters can prevent the typ-
ical problem of overfitting. Therefore, it improves network inference, in particular, if the
data is noisy and only few time points are available, which is the typical setting when
analyzing microarray data.

An introduction into statistical methods including Bayesian methods can be found in
[14, 60, 66, 115]. Examples for applications in bioinformatics are given in Ewens and
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Grant [66]. The book of Leonard and Hsu [115] also provides a practical guidance for the
application of Bayesian techniques, in particular for numerical sampling methods. Duda
et al. [60] embed the Bayesian learning approach into more general pattern classification
approaches. This book also contains a comparison of maximum likelihood and Bayesian
parameter estimation as well as examples for commonly used prior distributions. Basic
terms of measure theory, which are defined in Section 5.1, are explained in [64].

5.1 Probability and measure theory - Basic terms

Definition 5.1.1 [σ-algebra] Let Ω be a set and Σ a set of subsets of Ω with the following
properties:

1. Ω ∈ Σ

2. A ∈ Σ⇒ Ā := Ω \ A ∈ Σ

3. An ∈ Σ, n ∈ IIN⇒ ⋃

n∈IIN An ∈ Σ

Then, Σ is denoted σ-algebra over Ω.

Σ is a set of subsets of a set Ω, which contains the set Ω itself and is closed under com-
plementation and countable unions of its elements. Properties 1 and 2 imply that Σ must
also contain the empty set, ∅ ∈ Σ. A tuple F = (Ω, Σ) of a set Ω and a σ-algebra Σ over
Ω is called a measurable space.

Definition 5.1.2 [Measure, probability measure] A measure is a function µ : Σ → IR0,+

with

1. µ(∅) = 0

2. µ(∪iAi) =
∑

i µ(Ai) for a countable set of pairwise disjoint sets Ai ∈ Σ

If additionally µ(Ω) = 1 holds, then µ is a probability measure.

Definition 5.1.3 [Measure space, probability space] A triple (Ω, Σ, µ) of a set Ω, a σ-
algebra Σ over Ω and a measure µ is called a measure space. If µ is a probability measure,
then (Ω, Σ, µ) is called a probability space.

In a probability space, elements of the set Ω describe observations or possible outcomes of
a chance experiment, and we also refer to Ω as the sample space of this experiment. The
set Σ is the set of events, and the function µ assigns probabilities to these events.

An important example is the probability space (Ω, Σ, µ) with Ω = IR and the following
types of events:

• Point set event: The experimental outcome takes a specific real value v.
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• Half-space event: The outcome takes a value in an open or closed half-space, that is,
(−∞, w), (v,∞), (−∞, w] or [v,∞).

• Interval event: The outcome takes a value in an interval limited by two real numbers
v and w. As for half-space events, this interval can be open, closed, or half-open.

The Borel algebra B(IR) is the smallest σ-algebra of the set of real numbers which contains
such interval events. Its elements are called Borel sets. We take µ to be the Lebesgue
measure, which assigns an interval (a, b) with a, b ∈ IR its length |b− a|.

The concept of random variables is needed, if elements of the set Ω are not real numbers.
A real valued random variable is a function which assigns real numbers to outcomes of a
chance experiment. We need two more definitions for a formal introduction of a random
variable:

Definition 5.1.4 [Measurable set] A subset A of a set Ω with σ-algebra Σ is measurable,
if A ∈ Σ.

For example, elements of the Borel set are Lebesgue-measurable.

Definition 5.1.5 [Measurable function] A function X : Ω1 → Ω2 between two measurable
spaces F1(Ω1, Σ1) and F2(Ω2, Σ2) is measurable, if

∀A ∈ Σ2 : X−1(A) ∈ Σ1. (5.1)

Definition 5.1.6 [Random variable] Let (Ω1, Σ1, µ) a probability space and (Ω2, Σ2) a
measurable space. A random variable X is a measurable function X : Ω1 → Ω2.

In case of real valued random variables, the range of X is the set of real numbers, and the
corresponding σ-algebra is B(IR). Here, we give an alternative definition for real valued
random variables:

Definition 5.1.7 [Real valued random variable] Let (Ω, Σ, µ) a probability space. A real
valued random variable is a function X : Ω→ IR with the property that for an a ∈ IR, the
set of observations with X(ω) ≤ a is an element of Σ:

∀a ∈ IR : {ω|X(ω) ≤ a} ∈ Σ (5.2)

In the following, we assume that all random variables are real valued random variables.

Now we can ask about the probability of events such as Pr(ω ∈ Ω : X(ω) ∈ [a, b]).
These probabilities are defined on the range IR of the random variable X, and thus it is
convenient to write shortly Pr(X ∈ [a, b]), which equals µ([a, b]). A probability distribution
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assigns probabilities to every event. This distribution can be described by the cumulative
distribution function

FX(x) := Pr(X ≤ x) = µ((−∞, x]), (5.3)

or by the Lebesgue-integrable probability density function (density) fX(x), which, if it
exists, determines the probability of X to take a value in the interval [x, x + dx] for small
dx,

fX(x)dx := P (x ≤ X ≤ x + dx) = µ([x, x + dx]). (5.4)

This implies that fX(x) ≥ 0 for all x ∈ Ω, and the integral over the whole sample space Ω
sums to one: ∫

Ω

fX(x)dx = µ(IR) = 1. (5.5)

The set of all x such that fX(x) > 0 is defined as the support of fX(x). The cumulative
distribution FX(x) and the density fX(x) are related via

FX(x) =

∫ x

−∞
fX(x′)dx′. (5.6)

The expected value of a function g(x) defined on the range of X under the distribution
fX(x) is given by

E(g(x)) :=

∫

Ω

g(x)fX(x)dx. (5.7)

In particular, the expected value of the identity function g(x) = x is the mean mX of
fX(x),

mX :=

∫

Ω

xfX(x)dx. (5.8)

Similarly, the variance is defined by

σ2
X :=

∫

Ω

(x−mX)2fX(x)dx. (5.9)

Two well-known probability distributions are the Normal or Gaussian distribution and the
gamma distribution. The density of the Normal distribution is given by

fX : IR→ (0,
1√
2πσ

], fX(x) =
1√
2πσ

exp

[

−1

2

(
x−mX

σX

)2
]

, (5.10)

with mean mX and variance σ2
X . For a normally distributed random variable X, we will

use the common notation X ∼ N (mX , σ2
X). The density of the gamma distribution is

given by

gX : IR→ IR0,+, gX(x) =

{ 1
Γ(α)

λαxα−1e−λx for x ≥ 0

0 for x < 0
(5.11)
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Figure 5.1: Gamma distributions gX(x) with different shape and rate parameters.

with shape parameter α > 0 and rate parameter λ > 0. Γ(α) denotes the Gamma function,
which is for positive α defined by

Γ(α) :=

∫ ∞

0

e−ttα−1dt. (5.12)

The gamma distribution is skewed with mean mX = α
λ

and maximum xM = α−1
λ

. The
variance is σ2

X = α/λ2. Figure 5.1 shows gamma distributions for different shape and rate
parameters. These distributions can qualitatively be distinguished according to their shape
parameter: limx→0 gX(x) = ∞ for distributions with α < 1 and gX(0) = 0 if α > 1. A
shape parameter α = 1 corresponds to an exponential distribution.

Given a set of n real valued random variables X1, . . . , Xn, we can define a probability
density function that is associated to the set as a whole, the joint probability density
function fX1,...,Xn(x1, . . . , xn). This function assigns a probability to an observation of
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these random variables x̃ := (X1 = x̃1, . . . , Xn = x̃n) to be in a domain D ⊆ IRn,

Pr(x̃ ∈ D) =

∫

D

fX1,...,Xn(x̃1, . . . , x̃n)dx̃1 . . . dx̃n. (5.13)

The probability density function fXi
(x̃i) that is associated to one single Xi, the marginal

probability density function, can be deduced from the joint distribution by integration over
the remaining variables:

fXi
(x̃i) =

∫

fX1,...,Xn(x̃1, . . . , x̃n)dx̃1 . . . dx̃i−1dx̃i+1 . . . dx̃n. (5.14)

The variables X1, . . . , Xn are independent, if their joint probability density function equals
the product of the marginal density functions:

X1, . . . , Xn independent ⇔ fX1,...,Xn(x̃1, . . . , x̃n) =

n∏

i=1

fXi
(x̃i) (5.15)

Finally, the conditional probability density function fX|Y (x̃|ỹ) of two real random variables
X and Y represents the probability density of x̃ given that Y = ỹ. For constant ỹ,
fX|Y (x̃|ỹ) defines a probability density function over x̃. If in turn x̃ is constant, fX|Y (x̃|ỹ)
is the likelihood function L(ỹ) over ỹ. For fY (ỹ) 6= 0, the conditional probability density
is defined by the ratio of the joint probability density fX,Y (x̃, ỹ) and the marginal density
fY (ỹ),

fX|Y (x̃|ỹ) :=
fX,Y (x̃, ỹ)

fY (ỹ)
. (5.16)

Writing equation (5.16) with exchanged random variables X and Y and eliminating fX,Y (x̃, ỹ)
leads to Bayes’ formula:

fX|Y (x̃|ỹ) =
fY |X(ỹ|x̃)fX(x̃)

fY (ỹ)
(5.17)

with a marginal density

fY (ỹ) =

∫

fY |X(ỹ|x̃)fX(x̃)dx̃. (5.18)

Equation (5.17) relates the two conditional probability densities fX|Y (x̃|ỹ) and fY |X(ỹ|x̃).
In many books, Bayes’ formula is derived for discrete random variables, and the function
f denotes a probability rather than a density. A proof that it also holds for densities can
be found in [143]. Moreover, it also holds for vectorial random variables X, Y ∈ IRn.

In the following, we will shortly write p(x) for fX(x) and p(x|y) for fX|Y (x|y). Equations
are given for continuous random variables, and to obtain the corresponding equations for
discrete variables, integrals have to be replaced by sums.
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5.1.1 Maximum likelihood and Bayesian parameter estimation

In a Bayesian learning approach, we are given a setM of models and a setD of experimental
data. In addition, prior information about these models is encoded in an a priori probability
distribution (prior) p(m), m ∈ M. This prior reflects our expectation of outcome before
we have seen the data. Elements in D are understood as realizations of random variables,
whose distributions p(D|m) are conditional on the underlying model m. Bayes’ formula is
then used to express the conditional probability distribution of a model m given the data
D, p(m|D), in terms of the likelihood function LD(m) = p(D|m) and the prior p(m),

p(m|D) =
p(D|m)p(m)

p(D)
=
LD(m)p(m)

p(D)
. (5.19)

The left hand side of equation (5.19) is called a posteriori probability distribution (poste-
rior). It is proportional to the product of the conditional probability distribution p(D|m)
and the prior p(m). The denominator is given by marginalizing overM,

p(D) =

∫

M
p(D|m)p(m)dm, (5.20)

and denoted evidence. It states to which degree the data reflects the model class M and
the prior distribution p(m). In the worst case, if p(D|m) and p(m) have non-overlapping
supports, the integral becomes zero and equation (5.19) does not hold any longer.

The evaluation of the integral in equation (5.20) often is the computationally most
difficult task of a Bayesian approach [14]. It is usually performed numerically with Monte
Carlo techniques [60].

The set M of models is frequently restricted to contain only functions which have the
same parameterization, and a model m is characterized by a parameter vector ω. This
converts the problem of learning a probability density function to one of estimating this
vector ω. In a maximum a posteriori (MAP) approach, the posterior (5.19) is maximized
with respect to ω, which leads to a point estimator ω̂MAP :

ω̂MAP := arg max
ω

p(ω|D) (5.21)

(5.19)
= arg max

ω

LD(ω)p(ω)

p(D)
(5.22)

= arg max
ω
LD(ω)p(ω) (5.23)

= arg min
ω

(− lnLD(ω)− ln p(ω)) (5.24)

In the MAP approach, a calculation of the evidence is not required, since it appears as
an ω-independent scaling factor in equation (5.19). It is often convenient to minimize the
negative logarithm of the posterior, in particular, if the posterior is given by a product of
independent distributions, since in this case products convert into sums.
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We compare the results of our Bayesian approach with results of the standard maximum
likelihood estimation (MLE), in which the optimal parameter ω̂MLE is assumed to maximize
the likelihood function LD(ω),

ω̂MLE := arg max
ω
LD(ω) (5.25)

= arg min
ω

(− lnLD(ω)) . (5.26)

Comparing both estimators, ω̂MLE and ω̂MAP , the logarithm of the prior p(ω) over
network parameters functions as an additional penalty or regularization term in equation
(5.24).

5.2 A Bayesian learning framework

We will use the idea of Bayesian learning to estimate parameters for our gene regula-
tory network model described in Chapter 2. We are given a dataset D = {x̃(t)} t=z·∆t

z=0,...,T
,

x̃(t) = (x̃1(t), . . . , x̃n(t)) ∈ IRn of gene expression values of n genes and T + 1 equally
distant time points. Expression values x̃i(t) are interpreted as random variables, which
originate from an underlying deterministic process, and are randomly disturbed during the
measurement process. The deterministic system is described by the ODE model in our
approach. Elements of the dataset D are determined by the model and a stochastic noise
term, which corresponds to random perturbations due to measurement errors.

We start with the ODE model derived in Chapter 2,

ẋi(t) = si − γixi(t) +
n∑

j=1

kij
xj(t)

mij

xj(t)mij + θ
mij

ij

i = 1, . . . , n. (5.27)

This system contains 2n + 3n2 parameters, namely synthesis and degradation rates si and
γi for each component, and, for each of the n2 possible regulations, regulation strength kij,
Hill-coefficient mij and threshold value θij . These parameters are collected in a parameter

vector ω ∈ IR2n+3n2

.
In order to compare model predictions and experimental data, we have to evaluate the

solutions xi(t) of system (5.27) for given initial concentrations x̃i(0). For this, we integrate
equation (5.27) numerically, using Euler integration, where time derivatives of the left hand
side in equation (5.27) are approximated by difference quotients:

ẋi(t) ≈
xi(t + ∆t)− xi(t)

∆t
. (5.28)

Resolving for xi(t+∆t) yields a recursive formula for the expression level of gene i at time
t + ∆t:

xi(t + ∆t) = xi(t) + ∆t

[

si + γixi(t) +
n∑

j=1

kij
xj(t)

mij

xj(t)mij + θ
mij

ij

]

︸ ︷︷ ︸

=:hi(ω,x(t))

(5.29)
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To indicate that xi(t) depends on the model parameters ω to be estimated, we will use
the notation hi(ω, x(t)) for the expression on the right hand side of equation (5.29) in the
following. To model elements of the dataset D, we add a noise term ηξ to this expression,
which converts the deterministic differential equation model into a stochastic model,

x̃i(t + ∆t) = hi(ω, x̃(t)) + ηξ. (5.30)

We assume that all noise terms for each network component and every time point are
uncorrelated and normally distributed with mean zero and variance σ2

ξ , ηξ ∼ N (0, σ2
ξ).

Thus, the variables x̃i(t + ∆t) in equation (5.30) are realizations of independent real val-
ued random variables . These variables are drawn from a Normal distribution with mean
hi(ω, x̃(t)) defined by the discretized differential equation and the measurement x̃(t) at the
precedent time point, and a variance σ2

ξ , x̃i(t + ∆t) ∼ N (hi(ω, x̃(t)), σ2
ξ ). We will subse-

quently refer to the corresponding standard deviation σξ as ‘noise level’. The assumption
of independence is motivated by the assumption that the noise stems from several different,
independent sources. Here, as stated in the beginning of this section, we neglect intrinsic
noise due to stochastic regulation processes, and implicitly assume that the system acts de-
terministically, and that the variance observed in the data results solely from independent
measurement errors.

The corresponding likelihood function LD(ω) is given as a product of individual prob-
abilities over T + 1 time points and all network components,

LD(ω) =
∏n

i=1

∏T
t=0 p(x̃i(t)|ω) (5.31)

= p(x̃(0))
∏n

i=1

∏T−1
t=0

1√
2πσξ

exp

[

−1
2

(
hi(ω,x̃(t))−x̃i(t+∆t)

σξ

)2
]

. (5.32)

The probability density p(x̃(0)) over the initial concentration vector x̃(0) is assumed to be
a product of n delta functions which peak at x̃i(0):

p(x̃(0)) =

n∏

i=1

p(x̃i(0)) =

n∏

i=1

δ(x̃i(0)). (5.33)

The maximum likelihood estimator ω̂MLE, which maximizes equation (5.32), also min-
imizes the sum of squared errors between model predictions hi(ω, x̃(t)) and experimental
data x̃i(t + ∆t), i = 1, . . . , n and t = 0, . . . , T − 1:

ω̂MLE = arg min
ω

(− lnLD(ω)) (5.34)

= arg min
ω

n∑

i=1

T−1∑

t=0

[hi(ω, x̃(t))− x̃i(t + ∆t)]2 (5.35)

This can easily been seen by taking the logarithm of equation (5.32).
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5.2.1 Prior distribution over network parameters

We express our prior belief about the real parameter values by a joint distribution p(ω),
which is given as the product of independent distributions over each model parameter,

p(ω) =
n∏

i=1

p(si)
n∏

i=1

p(γi)
n∏

i=1

n∏

j=1

p(kij)
n∏

i=1

n∏

j=1

p(θij)
n∏

i=1

n∏

j=1

p(mij). (5.36)

This prior reflects that our prior belief about a model parameter is not affected by the
value of a second parameter.

Prior distributions over synthesis and degradation rates

We use independent gamma distributions for the parameters si and γi, i = 1, . . . , n, with
a shape parameter α > 1 and a rate parameter λ > 0 (see Figure 5.1). These distributions
reflect our expectation that both parameters, synthesis and degradation rates, are positive
and should not become too large. The assumption of independence is reasonable also from
a biological point of view. The basal synthesis rate si and the degradation rate γi are model
parameters which determine the behavior of gene product i in case that all regulators of
i are absent. The basal synthesis rate si describes the activity of the RNA polymerase
without any transcription factors bound to the promoter region of gene i. Thus, si does
not depend on other network components. Degradation is also assumed to depend solely on
the concentration of gene product i itself and is therefore not affected by further network
components.

Prior distributions over threshold values and Hill-coefficients

We use delta prior distributions for the threshold values θij and the Hill-coefficients mij ,

effectively fixing these parameters to constant values θ̂ij and m̂ij . Both parameters appear
as non-linear terms in our model (5.27). If only few data points are available, we observed
that they are hard to learn from a numerical point of view. In particular, large Hill-
coefficients increase the stiffness of the differential equation system. We will detail this
aspect later in Chapter 8. In principle, both parameters could also be described by gamma
distributions, and they can be integrated in the optimization process as well, if the dataset
is sufficiently large. However, it is not a difficult task to find biologically plausible limits
for both parameters. In Chapter 2 we have seen that mij corresponds to the number
of proteins forming a complex. Most proteins are known to act as monomers, dimers or
tetramers [121]. Thus mij is assumed to lie within an interval [1, 4]. A variation of mij

within this interval does not have much effect on the model, since mij only determines
the slope of the regulation function about the threshold value θij (see Chapter 2). Values
mij > 1 accounting for cooperative interaction among transcription factors are in fact
interesting for a theoretical investigation of the model, since they can alter its qualitative
dynamic behavior. We will see an example in Chapter 8.
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Threshold values θ̂ij are set within the range of observed expression values of gene j,
assuming that the regulation is active in the observed network. Microarray measurements
are usually given as normalized log-ratios with mean 0. In our model, the observations
x̃(t) are directly the ratios of concentrations. Thus the mean 0 of the log-ratios transforms
to 1, and we choose θ̂ij = 1 for all i, j = 1, . . . , n in this case.

Prior distributions over regulation strengths

For the regulation strengths kij , a specifically designed prior distribution is used [105]. This
distribution favors sparse networks, in which most of the edges correspond to very small
interaction strengths, and kij only differs significantly from zero when the data warrants
it. This is obtained with a hierarchical prior distribution. The regulation strengths kij,
i, j = 1, . . . , n are assumed to be normally distributed with mean zero and a variance σ2,
kij ∼ N (0, σ2). The standard deviation σ is itself modeled as a random variable, hence the
whole distribution is called hierarchical. For σ we use a gamma distribution, which has its
maximum close to zero and rapidly decreases for increasing values. This is achieved with
a shape parameter 1 < α < 1 + ǫ. Accordingly, the marginal probability for a regulation
strength kij can be calculated by integrating over the range of the random variable σ (see
also [103]),

p(kij) =

∫ ∞

0

p(kij|σ)p(σ)dσ (5.37)

=

∫ ∞

0

1√
2πσ

exp

(

− k2
ij

2σ2

)
λασα−1e−λσ

Γ(α)
dσ (5.38)

=
λα

√
2πΓ(α)

∫ ∞

0

σα−2 exp

(

−λσ − kij

2σ2

)

dσ. (5.39)

5.2.2 Optimization problem

We have specified the likelihood function LD(ω) and the prior p(ω). The resulting objective
function FMAP , the negative logarithm of the posterior, which has to be minimized with
respect to ω in order to obtain ω̂MAP , is given by

FMAP (ω)
(5.24)
= − lnLD(ω)− ln p(ω)

= −
n∑

i=1

T∑

t=1

ln p(x̃i(t)|ω)

︸ ︷︷ ︸

log likelihood

−
(

n∑

i=1

ln p(si) +

n∑

i=1

ln p(γi) +

n∑

i=1

n∑

j=1

ln p(kij)

)

︸ ︷︷ ︸

log prior

(5.40)
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with probability densities

p(x̃i(t)|ω) =
1√

2πσξ

exp

[

−1

2

(
hi(ω, x̃(t))− x̃i(t + ∆t)

σξ

)2
]

, (5.41)

p(si) =
1

Γ(αsi
)
λ

αsi
si s

αsi
−1

i exp(−λsi
si), (5.42)

p(γi) =
1

Γ(αγi
)
λ

αγi
γi γ

αγi−1

i exp(−λγi
γi), (5.43)

and p(kij) =
λα

√
2πΓ(α)

∫ ∞

0

σα−2 exp

(

−λσ − kij

2σ2

)

dσ. (5.44)

The first term in equation (5.40) corresponds to the logarithm of the likelihood function (log
likelihood). It is a sum over all data points, which is weighted by the inverse of the variance
σ2

ξ (compare equation (5.32)) and fits the parameter vector ω to the data D. The remaining
terms refer to the logarithm of the prior distributions (log prior). In comparison to the
maximum likelihood objective function (equation (5.35)), these terms act as regularization
terms, which penalize parameter vectors ω∗ with small prior densities p(ω∗). For increasing
sample size, the log likelihood becomes the dominating term in equation (5.40), and hence
the difference between the two estimates ω̂MLE and ω̂MAP decreases.

5.3 Results on simulated data

5.3.1 Data simulation

We simulated time series for a network of seven genes with interaction graph G = (V, E)
as shown in Figure 5.2. This network was designed according to the cell cycle network in
the yeast S. cerevisiae, which is used as a reference network in the following Section 5.4.
Parameters used in the simulation were si = 1 and γi = 0.1 for i = 1, . . . , n. Parameters
of the regulation functions were set to kij = ±2 with signs according to the edge labels in
the graph in Figure 5.2, θij = 5 and mij = 2 for i, j = 1, . . . , n.

Data simulation was carried out with time steps ∆t = 1. We used the discretized
model (5.30) to simulate several time series with different initial concentration vectors
x(0) and three time points each. Initial concentrations xi(0), i = 1, . . . , n, were drawn
from a uniform distribution over the interval [0, 5]. We varied the noise level σξ and the
number of time points used for learning.

5.3.2 Parameter estimation

Conjugate gradient descent was carried out to minimize the objective function FMAP (ω)
(5.40). For more details see also [60, 67, 103, 152]. Derivatives of the log likelihood in
FMAP with respect to model parameters ω were included into this program and are listed
in Appendix B. Derivatives of the log prior are given in [103]. The integrals in the prior
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Figure 5.2: Structure of the network that was used to simulate datasets according to
equation (5.30)

distributions over regulation strengths (equation (5.39)) had to be carried out numerically
(see [103]).

The threshold values θij and the Hill-coefficients mij were fixed to values θ̂ij = 5 and
m̂ij = 2 for i, j = 1, . . . , n. To test how strongly results depend on these parameters,
we compared results using several different values, and observed no significant differences.
Gradient descent was started with si = γi = 0.1. All regulation strengths kij were initially
set to 0. Parameters for gamma distributions over synthesis and degradation rates were
set to αsi

= 2, λsi
= 1, αγi

= 1.0001 and λγi
= 2 for i = 1, . . . , n. Parameters for the

gamma distribution over standard deviations σ in equation (5.39) were set to α = 1.2 and
λ = 1.5.

Figure 5.3 shows mean squared errors per estimated model parameter, i.e. synthesis
and degradation rates si and γi and interaction strengths kij. The ML was compared with
the MAP estimation for different noise levels and 40 time points (left) and 70 time points
(right) used for learning. Shown are mean squared errors for synthesis and degradation
rates in % (top) and mean squared errors for estimated interaction strengths (bottom),
given as absolute values. It can be observed that ω̂MAP outperforms ω̂MLE especially for
higher noise levels.

5.3.3 Inferred network structure

Since our method aims at the inference of the network structure and the estimation of
parameters simultaneously, we performed a receiver operator characteristics (ROC) anal-
ysis to score the inferred regulations. For this, we set a threshold value z for absolute
values of the regulation strengths kij and assume a regulation from j to i to be present if
|kij| ≥ z. ROC curves are obtained by varying z from 0 to max{|kij| | i, j = 1, . . . , n} and
calculating the proportion of true positives among all positives (sensitivity) and the propor-
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Figure 5.3: Mean squared errors (MSE) for estimated model parameters, ω̂MLE and ω̂MAP .
Top: MSE for synthesis and degradation rates si and γi are given in %. Bottom: MSE
for interaction strengths kij are given as absolute values.

tion of true negatives of all negatives (specificity) for the corresponding network structures.

Figure 5.4 shows ROC curves for noise levels σξ = {2, 3} and 40 and 70 time points,
respectively. As a high sensitivity and specificity are desirable, a good classifiers’ ROC
curve would be positioned in the upper left corner of the graph. Guessing would on
average lead to a diagonal, where sensitivity equals 1-specificity.
Figure 5.4 indicates that MLE fails in case of 40 time points. Here, the corresponding
ROC curves are not better than choosing edges randomly, whereas MAP is able to infer
parts of the network structure. Not surprisingly, both approaches perform better when
using 70 time points compared to the results obtained with 40 time points, and also here
MAP outperforms MLE. Figure 5.5 shows the inferred networks for the ML (left) and the
MAP (right) approach for a noise level σξ = 2 and 70 time points. The 17 edges with
highest weights are marked in bold. Solid lines indicate true positives, dashed lines false
positives, and thin lines false negatives. Both approaches reveal many true regulations, 12
of 17 edges are true positives for MLE, 14 are found in the MAP approach.

The overall ROC performance can be represented by the area under the curve (AUC).
This value is independent of the threshold z. The AUC lies between 0 and 1 and increases
with increasing performance of the classifier. Random guessing whether an edge is present
or not would on average yield an AUC value of 0.5. AUC values for ω̂MLE and ω̂MAP for
different noise levels and a varying number of time points can be seen in Figure 5.6. The
left plot shows how performance deteriorates with increasing noise level, for a fixed dataset
size of 70 time points. The right plot shows the performance for an increasing number of
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Figure 5.4: ROC curves for the Bayesian and the ML approach
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Figure 5.5: The 17 identified regulations with the highest regulation strengths for the MLE
(left) and the MAP (right) approach. True positives are marked in bold, false positives are
marked with bold dashed lines, false negatives correspond to thin lines. 70 time points were
used for learning, the noise level σξ was set to σξ = 2.
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Figure 5.6: AUC values for the ML and MAP approach, with respect to varying noise
levels (left, T = 70) and varying number T of time points (right, with noise level σξ = 2).

time points and a fixed noise level σξ = 2. Although the ROC analysis is a very coarse-
grained method to evaluate the performance of our approach, since it does not consider
exact parameter values and even neglects values for several model parameters as synthesis
or degradation rates, the AUC value turns out to be a good measure of the method’s overall
performance. Performance in ROC analysis correlates very well with mean squared errors
of learned network parameters.

We conclude from our analysis of the simulated dataset that a Bayesian approach with
an appropriate prior distribution improves network inference compared to a ML approach,
especially in case of noisy datasets with only a few time points, typical for microarray
measurements. Moreover, as seen in Figure 5.6, it reduces the minimal number of time
points needed to draw meaningful conclusions.

5.4 Results on the yeast cell cycle

The cell cycle is one of the best known regulatory mechanisms. A proper function of the
cell cycle machinery is essential for organisms to survive. Dysfunctions often lead to pro-
grammed cell death or to phenotypes that are not able to survive for a longer time or show
significant changes in the cell cycle. As the cell cycle is highly conserved among eukary-
otes, many key regulatory processes in yeast are also found in higher organisms, and it is
often possible to draw conclusions from yeast experiments to higher eukaryotes. Surveys
of control mechanisms of the yeast cell cycle can be found in [6, 30].

We applied our approach to a dataset of Spellman et al. [183], who measured gene
expression values of the whole yeast genome containing about 6000 genes. They conducted
a cluster analysis and reported approximately 800 genes to be cell cycle regulated. The
dataset consists of log-ratios between synchronized cells and control experiments and con-
tains 69 time points in total. These are divided into different time series due to three
independent cell synchronization methods.

We analyzed measurements of eleven genes including Cln1, Cln2, Cln3, Clb5, Clb6,
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Figure 5.7: Regulatory network of the yeast cell cycle, which was used as a reference to
evaluate our results. A descriptions for each interaction is given in Table C.1 in Appendix
C.

Cdc20, Cdc14, Clb1, Clb2, Mcm1 and Swi5, which are known to be involved in the cell
cycle [116]. In this and the following chapters, we will use the standard names for genes
of the S. cerevisiae cell cycle. The corresponding systematic names and name descriptions
are given in Table C.2 in Appendix C.

The reference network in Figure 5.7 was used for evaluation. It is a reduction of the
regulatory network specified in Li et al. [116]. Details about this reduction and each single
interaction of the reference network used here are detailed in Appendix C. Nodes which
contain more than one gene were represented by their means, missing values were replaced
by means of concentrations of consecutive and subsequent time points.

Gradient descent was started with si = γi = 0.1, i = 1, . . . , n. All regulation strengths
kij were initially set to 0. Parameters for gamma distributions over synthesis and degra-
dation rates were set to αsi

= αγi
= 0.01, λsi

= λγi
= 0.1, i = 1, . . . , n. Parameters for

the gamma distribution over standard deviations σ in equation (5.39) were set to α = 1.7
and λ = 5. Threshold values and Hill-coefficients were set to θ̂ij = 1 and m̂ij = 2 for
i, j = 1, . . . , n.

Figure 5.8 shows ROC curves for ω̂MLE and ω̂MAP . The corresponding AUC values are
0.61 and 0.68, respectively. This plot shows that both, MLE and MAP, are slightly better
than guessing on average and reveal some of the main regulatory interactions. Inferred
networks for the ML (top) and the MAP approach (bottom) can be seen in Figure 5.9.
The 16 edges with highest inferred weights are shown in bold. True positives are indicated
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by continuous bold lines, dashed bold lines correspond to false positives, thin lines are
referenced in the literature, but were not revealed in our approach. Many true regulations
are revealed in both approaches. The MAP estimate identifies more true regulations than
MLE between different genes. Interestingly, it reports a couple of auto-regulations, which
are not contained in the reference network. It is not clear whether these regulations are
artifacts resulting from strong prior distributions over synthesis and degradation rates, or
if they are not yet stated in the literature.

5.5 Concluding remarks

This chapter presented a combination of an ODE model and a Bayesian learning approach.
The method is generally able to infer dynamic phenomena of regulatory networks and to
account for stochastic fluctuations. A Bayesian parameter estimation approach was defined,
using prior distributions over model parameters. These distributions are used to integrate
prior knowledge about the system into the inference process. In particular, we specified
a hierarchical distribution over regulation strengths, which drives the solution to sparse
networks. An analysis of simulated data indicates that the approach is able to prevent
overfitting. Quantitative model parameters were correctly identified, and results are much
better than maximum likelihood estimation, especially for few time points and a high
noise level. Moreover, the underlying network structure was almost correctly identified.
Hence, we concluded that the approach presented can deal with sparse data and provides
an appropriate framework to analyze high-throughput data.

An application to a real-world dataset shows, here as well, that the Bayesian approach
outperforms maximum likelihood estimation. However, although main regulations are
revealed, the results are not as good as those for the simulated data. This becomes apparent
in the ROC curves, which are worse than for the simulated dataset, and also, when taking
the signs of edges into account, which have not been considered in the ROC analysis. Signs
of inferred regulations using simulated data are conform with the real signs. However,
some of the activating regulations in the yeast reference network have been identified as
inhibitions in the inferred networks. The reasons for these differences between simulated
and real data are manifold:

• First, the reference network does not only contain regulations via transcription fac-
tors, but also degradation control mechanisms and chemical modifications. These
are not always reflected by mRNA concentrations. An improvement concerning this
problem can only be reached by an inclusion of further information about regulation
mechanisms at the post-transcriptional level. Such information can be information
about transcription factor binding sites or protein-protein interaction data. In prin-
ciple, the Bayesian approach provides a natural framework to include several data
sources through prior distributions.

• The second problem is related to the kind of data used for estimation. The dataset
consists of seven periodically expressed genes or gene clusters. The corresponding
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trajectory in the state space of the system covers only a small fraction of the whole
state space. In principle, if we do only know the behavior of a system in such a small
region of the state space, there might be several distinct networks which can all be
used to generate very similar datasets. Thus, for network inference, it is generally
better if the data points are distributed over a large range of the state space rather
than concentrated in a small region [163]. Such data can for example be knock-out
or mutant experiments, or measurements under different external conditions. In ad-
dition to this, biological networks are known to be redundant. This means, they
contain many alternative mechanisms, such as different proteins which can take the
same function, or alternative metabolic pathways. These alternative mechanisms
make organisms flexible and robust against perturbations and dysfunctions. We will
see in Chapter 7 that it is in fact possible to reproduce experimental gene expres-
sion time series using an inferred network whose structure differs from the reference
network.

• Third, the Bayesian approach contains many parameters which have to be set man-
ually. These include the noise level σξ and the parameters of the prior distributions.
The noise term σξ corresponds to the noise due to the measurements. In the objective
function FMAP , the inverse of σξ appears as a prefactor in the log likelihood, which
weights this term relative to the log prior. The higher this noise is set, the more is
the inferred parameter vector ω̂MAP determined by the prior distribution, and the
dataset D becomes less important.

Parameters of the prior distributions can be interpreted in a similar way. They also
have an indirect influence on the ‘importance’ of the log likelihood and the log prior in
equation (5.40) relative to each other. Two extreme cases are flat prior distributions,
which express that we have no prior knowledge about the system at hand, and delta
distributions, which reflect that we are sure about model parameters even without
having seen the dataset D. In the first case, both estimators ω̂MLE and ω̂MAP are
equal. In the second case, the posterior distribution equals the prior distribution,
and ω̂MAP does not depend on the dataset D.

An appropriate choice of all these parameters is a technical issue. In general, of
course, the better the prior information which is used for adjusting these values, the
more can the result be improved compared to the maximum likelihood estimation.
Obviously, it is more difficult to find appropriate parameters of prior distributions
for the yeast cell cycle network than for the simulated datasets.

There is no standard method how to choose prior distributions in a Bayesian ap-
proach. Methods to estimate parameters of these distributions from datasets, known
as empirical Bayesian methods, have been developed [126]. In addition, a comparison
between the prior and the posterior distribution can be helpful to gain experience in
this setting: If the prior is ‘strong’ and differs much from a flat distribution, then
prior and posterior distributions are very similar. The estimated parameter vector
ω̂MAP mainly reflects the prior knowledge and does not contain much information
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provided by the data. Contrary, if the prior is ‘weak’ because of lack of reliable
prior knowledge, ω̂MAP is mainly determined by the data D. If D is sparse, a weak
prior distribution cannot prevent overfitting. In this case, we have to find a trade-off
between the bias of the result caused by the prior and the expected variance of the
result when using different datasets.

Finally, the evidence gives information to which degree the data reflects the prior
knowledge. A small evidence indicates that the dataset does not support prior hy-
potheses, whereas a value around 1 means that prior information and information
about the system provided by the dataset D are very conform. This can also be a
useful information in the Bayesian setting.

• Finally, we have made some model assumptions which might be additional error
sources. A derivative of the parameterized system of differential equations and the
underlying assumptions such as additivity of regulatory influences, chemical equilib-
rium or first order degradation processes, have already been discussed in Chapter 2.
The here suggested embedding of this model into a stochastic framework assumes
independence of noise terms for all variables and also for consecutive time points.
This neglects internal noise, which propagates over time. Similar to the postulated
additive influence of different regulators, this assumption can also be seen as a trade-
off between model complexity and tractability. We only consider noise due to the
measurement process and assume that the system can still be described by a de-
terministic differential equation system. Thus, the presented framework does not
contradict the assumptions and simplifications made to describe regulatory networks
by ordinary differential equations. However, in principle it is possible to extend the
model and include internal noise which affects consecutive time points. Such intrinsic
noise is sometimes included in single cell models, which require single measurements
of different cells to estimate parameters.

All in all, we conclude that a Bayesian approach in combination with a dynamic model
provides an appropriate framework to analyze high-throughput data in general. In the
future, the approach presented can technically be improved and extended in several ways.
Dependence of the optimization on the initial parameter vector, for example, can be over-
come by more exhaustive search algorithms such as genetic algorithms or simulated an-
nealing [60]. Next, instead of maximizing the posterior, the whole distribution can be used
to get information about the variance of the estimated parameters [103]. This is a major
advantage of Bayesian methods compared to many other approaches, which usually lead
to point estimates.

Numerical integration of the hierarchical prior distribution over regulation strengths
is very time consuming. In future work, one could use a refined distribution with similar
shape, which does not require this numerical integration. This would also allow to apply
the approach to larger networks.

Last, statistical properties of gene regulatory networks can be included into the prior
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distribution. Such networks are, for example, known to be scale-free [87]. This means,
the degrees of nodes are exponentially distributed. Few genes, called hub genes, encode
global regulators, which influence the expression of many other genes, whereas most of the
genes have only marginal influences on other genes. Such properties are as well especially
interesting for larger networks. Here, the random variables corresponding to regulation
strengths are not mutually independent any longer.



Chapter 6

Circuits and Core Mechanisms

In Chapters 1 and 2 we have outlined the potential of differential equations to give insights
into underlying mechanisms causing certain dynamic behaviors. In contrast to Boolean
or Bayesian networks, ODE models for gene regulatory networks are based on underlying
chemical binding processes. This allows to interpret results concerning qualitative dynamic
behaviors in terms of these molecular processes, and to associate qualitative changes with
kinetic rates. In this chapter, we will elucidate some concepts and results of the theory of
ordinary differential equations and connect them to gene regulatory networks. In particu-
lar, we will focus on mechanisms which cause periodic behavior. We will introduce a core
network model for the periodic expression of yeast cell cycle genes in Section 6.2, which
will be analyzed afterwards.

Before we start introducing this model, Section 6.1 shows the tendency of our general
model introduced in Chapter 2 to converge to a stable steady state. Results shown here
are deduced from rather general properties of our system. Thus, they apply for a wide
range of differential equation models proposed to describe regulatory networks. We will
explain why circuits in the interaction graphs are a necessary condition for oscillations and
multiple steady states.

The intention of this chapter is to show how an analysis of differential equations can
facilitate the understanding and interpretation of observed dynamic phenomena. The
results are very general and can be transferred to similar models for oscillating biological
systems (see for example [72, 81, 167, 169, 194]).

The idea of core mechanisms which lead to complex dynamic behavior is not new
[72, 81, 169]. A lot of different core networks have been proposed to describe various dy-
namic phenomena in biological systems. For example, the switch-like response of MAP
kinase cascades has been explained by a positive auto-regulation [38, 69], and cellular
rhythms such as the cell cycle or circadian oscillations have been described by differential
equation models ([38] and references therein). Most of these models are two-component
systems, which are much easier to analyze with respect to certain properties than systems
with three or more variables [135]. The reason is that they are planar and have a two-
dimensional state space. The existence of a periodic orbit is frequently shown using the

103
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Poincaré-Bendixson Theorem [147], which is based on planar systems [203]. Generaliza-
tions of results obtained for two-component systems can be difficult. Thus, the behavior of
differential equation systems with more than two variables can often only be investigated
by means of simulations. This is the reason why most of the core models are reduced to
two dimensions. Our core model for the yeast cell cycle also consists of two components,
the periodically expressed cyclin-types CLN and CLB. We will further detail the difference
between planar systems and higher dimensional systems in Chapter 9.

Of course, a reduction to two components poses a restriction to biological systems, and
this is the main criticism of these models from many biologists. Thus, we start with a more
comprehensive model of cell cycle regulations and show how it can, at least mathematically,
be reduced to two dimensions. We will give reasons why such simplified models can be
useful to describe mechanisms related to qualitative dynamic phenomena.

6.1 Convergence to a steady state

In this section, we discuss the importance of circuits for multi-stationarity and oscillations.
We start with the ODE model derived in Chapter 2,

ẋi = fi(x) = si − γixi +
n∑

j=1

kij

x
mij

j

x
mij

j + θ
mij

ij
︸ ︷︷ ︸

rij(xj)

x ∈ U ⊆ IRn, i = 1, . . . , n (6.1)

and parameters si ≥ 0, γi, mij, θij > 0 and kij ∈ IR. For this chapter, we set the domain
U to be the positive orthant, U = IRn

+. In Chapter 2, we graphically represented system
(6.1) by an interaction graph G(V, E), whose nodes correspond to variables, and an edge
eij indicates a regulation from variable j to variable i. Edges in this graph are labeled
according to the signs of the regulation strengths kij in equation (6.1):

c(eij) =

{
+ if kij > 0
− if kij < 0

∀eij ∈ E (6.2)

Subsequently, we will use the following properties of the system:

1. Monotonicity of the regulation functions: A regulator j has either an activating
or an inhibiting effect on component i, it cannot exert both. Thus, a regulation
function rij(xj), i 6= j is either monotonically increasing or monotonically decreasing:

activation: kij > 0 ⇒ drij(xj)

dxj
> 0

i6=j⇒ ∂fi(x)

∂xj
> 0 ∀xj ∈ IR+ (6.3)

inhibition: kij < 0 ⇒ drij(xj)

dxj
> 0 ⇒ ∂fi(x)

∂xj
< 0 ∀xj ∈ IR+ (6.4)
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2. Boundedness of regulation: All regulation functions are bounded by 0 and the
regulation strength kij. We have already seen that this boundedness leads to a
trapping region in the state space (Chapter 2).

3. The domain U is an open convex set: System (6.1) is defined on the positive
orthant IRn

+, which is an open convex set in IRn.

The first property leads to a Jacobian matrix

Jf (x) =

(
∂fi(x)

∂xj

)

i,j=1,...,n

=: (aij(x))i,j=1,...,n (6.5)

which has constant signs almost everywhere in U . According to (6.3) and (6.4), the signs
of the off-diagonal elements (i 6= j) are constant for all x ∈ U . The diagonal elements
(i = j) are negative due to degradation for almost all x ∈ U . The only exception is a
positive auto-regulation of a component i, which might exceed degradation and lead to a
positive diagonal element aii > 0 in some interval [xmin

i , xmax
i ]. We will see an example in

Section 6.2. For the current section, we concentrate on systems with constant sign Jacobian
matrices.

According to the Hartman-Grobman-Theorem (see Chapter 2), the stability of a hy-
perbolic fixed point xs of (6.1) is determined by the eigenvalues of the Jacobian matrix
Jf(xs). A hyperbolic steady state is asymptotically stable if the real part of all eigenvalues
λ of Jf (xs) is negative, ℜ(λ) < 0. The eigenvalues of a steady state and thus its stability
are determined solely by the circuits in the interaction graph [84]. This can be seen by
the determinant of Jf(xs). For this, we introduce the following definitions for an interac-
tion graph G(V, E) with sign-labeled edges. Corresponding definitions for matrices can be
found in a more general form in [128].

Definition 6.1.1 [Circuit] A circuit C of an interaction graph G(V, E) is a connected (not
necessarily induced) subgraph G′ = (V ′, E ′) with vertices V ′ = {vi1 , . . . , vik}. Each vertex
in G′ has degree two, and (viz , viz+1

) ∈ E ′ for z = 1, . . . , k − 1 and (vik , vi1) ∈ E ′.

We have also frequently used the term feedback loop for a circuit in previous chapters.

Definition 6.1.2 [Semicircuit] A semicircuit of an interaction graph G(V, E) is a circuit
in the corresponding undirected graph, that is, a subgraph G′ = (V ′, E ′) with vertices
V ′ = {vi1 , . . . , vik}, such that each vertex has degree two and viz is adjacent to viz+1

for
z = 1, . . . , k − 1 and vik is adjacent to vi1.

Definition 6.1.3 [Full circuit] A full circuit of an interaction graph G(V, E) is a set SC

of circuits in G(V, E), such that each node v ∈ V belongs to exactly one of the circuits in
SC .

Definition 6.1.4 [Sign of a circuit] The sign σC of a circuit C is defined as the sign of
the product of edge labels in the circuit:

σC :=
∏

eij∈C

c(eij) (6.6)
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According to this definition, a circuit is negative, if the number of negatively labeled edges
is odd.

Finally, we need

Definition 6.1.5 [Weight of an edge, weight of a circuit] The weight weij
(x) of an edge

eij in an interaction graph G(V, E) at a state x ∈ U is defined as

weij
(x) := aij(x). (6.7)

The weight wC(x) of a circuit C at a state x ∈ U is given by the product of weights weij
(x)

of the edges in the circuit:

wC(x) :=
∏

eij∈C

weij
(x) (6.8)

Signs and weights of semicircuits are defined analogously. Note that the sign of the weight
of a circuit equals the sign of the circuit and is constant for systems with constant sign
Jacobian matrices. Thus, we can talk about positive and negative circuits in the interaction
graph, independent of the state x.

The determinant of the Jacobian matrix Jf(x) at a state x is determined by the weights
of the full circuits of the corresponding interaction graph, as illustrated in Figure 6.1 for
three variables:

det (Jf(x)) =
∑

P∈Sn

(

sgn(P)

n∏

i=1

ai,P(i)(x)

)

(6.9)

= a11(x)a22(x)a33(x) + a21(x)a32(x)a13(x) + a31(x)a23(x)a12(x)

−a31(x)a13(x)a22(x)− a21(x)a12(x)a33(x)− a11(x)a32(x)a23(x)

The equality in equation (6.9) is the Leibniz formula for the determinant of squared ma-
trices. P denotes an element in the set Sn of permutations of the numbers 1, . . . , n .

Two important statements about dynamical systems ẋ = f(x) with constant sign Jaco-
bian matrices Jf(x) and a convex open domain U ⊆ IRn have been made by Thomas [190].
We will explain both in the following. Compact proofs of these statements were also given
independently by Gouzé [84] and Snoussi [182].

Proposition 6.1.6 (Positive circuits [190]) If the interaction graph contains only cir-
cuits with non-positive weights, and there is at least one full circuit with weight 6= 0, then
the system cannot have multiple steady states.

The proposition states that the existence of a circuit C with strictly positive sign, σC > 0,
in the interaction graph is a necessary condition for the existence of multiple steady states.

Proof [84]. We show that, if all circuits in the interaction graph are non-positive and
there is at least one negative full circuit, the vector field f(x) is injective. This implies
proposition 6.1.6, since the equation f(x) = 0 has at most one solution in this case.
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Figure 6.1: All possible full circuits and the corresponding weights of an interaction graph
with three components. The characteristic polynomial of the Jacobian matrix Jf (x) is
given in terms of these weights.

First, we claim that if the interaction graph contains only non-positive circuits, then
all terms in equation (6.9) have, independent of the number of variables, the same sign.
If, moreover, the graph has at least one full circuit with weight 6= 0, then det (Jf(x)) 6= 0,
and Jf(x) is not singular in this case. In our model, such a full circuit is guaranteed by
the degradation terms −γixi, which correspond to the first circuit in Figure 6.1.

Assume that there exist x, y ∈ U , x 6= y and f(x) = f(y). It can easily be seen by
integrating along the segment sxy connecting x and y, which can be parameterized by
sxy = (1− α)x + αy, α ∈ [0, 1], that this leads to a contradiction:

0 = f(y)− f(x) =

∫ 1

0

Jf((1− α)x + αy)(y − x)dα =: A(x, y)(y − x) (6.10)

Equation (6.10) implies that the matrix A(x, y) is singular. But the entries of the matrix
A(x, y) have the same signs as corresponding entries of Jf(x), since the signs of the en-
tries of Jf (x) are constant along sxy, which means that both matrices represent the same
interaction graph. As the interaction graph of f(x) was assumed to have at least one full
circuit with weight 6= 0 and no positive circuits, all terms in det(Jf(x)) and in det(A(x, y))
have the same signs. Thus, det(A(x, y)) 6= 0 and hence A(x, y) is not singular, which is a
contradiction. �

Here, the convexity of the domain U is needed to guaranty that the path between the
two states x and y lies entirely in U .

Proposition 6.1.7 (Negative semicircuits [190]) The existence of a semicircuit of length
at least two with strictly negative weight is a necessary condition for the existence of a stable
periodic orbit.

This proposition can be proven by showing that each interaction graph with non-negative
semicircuits is similar to a cooperative system [179]. A cooperative system is a system
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which has a Jacobian matrix whose off-diagonal elements are non-negative, or, in other
words, an interaction graph whose edges between different nodes are positively labeled.
Many properties of such systems have been shown (see for example [96, 179, 180]). The
most important property is that cooperative systems have a monotonous flow with respect
to the partial ordering in IRn [96, 179]. This property can be generalized for systems with
non-positive semicircuits [179]: These systems have a monotonous flow with respect to the
partial ordering induced by some orthant K of the coordinate system. We will illustrate
this in the following. Any orthant K of IRn can be written as

K = {x ∈ IRn : (−1)mixi ≥ 0, i = 1, . . . , n}, mi ∈ {0, 1}, (6.11)

and corresponds to a cone in IRn, which, as such, generates a partial ordering ≤K in the
usual fashion [179],

x ≤K y ⇔ y − x ∈ K. (6.12)

Definition 6.1.8 [Order preserving flow [179]] A flow Φt(x) preserves the partial ordering
≤K in IRn if the following implication holds:

x, y ∈ E and x ≤K y ⇒ Φt(x) ≤K Φt(y) ∀t ≥ 0. (6.13)

Systems with an order preserving flow do not have stable periodic orbits [179].

Example 6.1.9 [Order preserving flow] As an example, we consider the interaction graph
G(V, E) shown in Figure 6.2 (left), whose semicircuits of length ≥ 2 are non-negative.
The system might also include positive or negative auto-regulations, which are irrelevant
here, and are thus not shown in Figure 6.2. A flow of a corresponding differential equation
system preserves a partial ordering with respect to the following cone:

K = {x ∈ IR8 : (−1)mixi ≥ 0, i = 1, . . . , 8}, m = (1, 0, 1, 1, 0, 0, 1, 0) (6.14)

We consider the corresponding undirected interaction graph (Figure 6.2 right). The set of
nodes V can be partitioned into two groups, such that edges between two different nodes
in the same group are positively labeled in this undirected graph, and edges between the
two groups are negatively labeled [84, 128]. The signs of auto-regulations can either be
positive or negative. In the graph on the right hand side in Figure 6.2, the partition is
indicated by white and grey nodes. Furthermore, we re-index the variables, such that the
k variables in the first group become variables x1, . . . , xk, and the remaining n−k variables
in the second group become variables xk+1, . . . , xn. The corresponding signed-adjacency
matrix M , which we define for the undirected graph as

(mij)i,j=1,...,n :=







+ positively labeled edge between i and j
− negatively labeled edge between i and j
0 no edge between i and j

, (6.15)
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Figure 6.2: Left: An interaction graph G(V, E) with non-negative circuits. The set V of
nodes can be partitioned into two groups, such that edges between two nodes in the same
group are positively labeled, and edges between these two groups are negatively labeled.
Right: Corresponding undirected graph with re-indexed nodes and a partition indicated
by white and grey nodes.

has the following sign pattern:

M =















? + 0 0 − 0 0 0
+ ? 0 0 0 0 − 0
0 0 ? + − − − 0
0 0 + ? 0 0 0 0
− 0 − 0 ? 0 0 0
0 0 − 0 0 ? + +
0 − − 0 0 + ? +
0 0 0 0 0 + + ?















=:

(
A −B
−C D

)

(6.16)

The matrices B and C are non-negative, and the matrices A and D correspond to coop-
erative systems. Going back to a directed graph, which is related to our model (6.1), M
defines the signs in the corresponding Jacobian matrix Jf(x) for the directed interaction
graph which has two edges ei→j and ej→i iff eij is present in the undirected graph. Note
that deleting one of the two edges in each pair {ei→j, ej→i} does not change the properties
of the system needed here to transform it into a cooperative system.

Changing signs of the variables in the second group (white nodes) transforms our system
into a cooperative system:

(
I 0
0 −I

)(
A −B
−C D

)(
I 0
0 −I

)

=

(
A B
C D

)

(6.17)

If additionally all trajectories of such systems are bounded, as it is the case for our system
(6.1), then almost every trajectory converges towards an equilibrium [84, 96]. ‘Almost’
means that all remaining trajectories have Lebesgue measure 0 [96]. Thus, from a practical
point of view, every trajectory goes to an equilibrium1.

1Interestingly, similar to the statements here, some relations between eigenvalues of the adjacency
matrix of a graph and its structure have been stated in [199].
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Propositions 6.1.6 and 6.1.7 emphasize the importance of circuits in regulatory systems.
They are built on very general properties of the system of differential equations, and thus
hold for many different models, also, for example, for non-additive regulation functions.
Here, edge labels are defined as the signs of the corresponding entries in the Jacobian ma-
trix. Thus, positive circuits generally account for multi-stationarity, and negative circuits
are needed to show sustained oscillations.

In models for biological systems, multi-stationarity has been used to describe the pro-
cesses of cell differentiation and switch-like behavior. Typically, a system with multiple
steady states originating from a positive circuit can exhibit hysteresis. An example was
given in the model for the regulation of the E. coli bgl operon in Chapter 4. Here, for a
certain range of promoter activities, two stable steady states exist for the transcription
rate R2, and the behavior of the system at a previous time determines to which of these
two states the system converges. Thus, the long-term behavior of the system depends
on its history. This phenomenon is also named memory of the system [38]. In case of
gene regulatory networks, temporary external influences can sometimes lead to permanent
changes in expression patterns, which are inherited to the next generations. One refers to
this mechanism as epigenetic effect [38]. Negative circuits are not only related to periodic
behavior. They have also been shown to stabilize a steady state with respect to external
influences. This phenomenon is known as homeostasis [38], and it is a fundamental char-
acteristic of living organisms.

6.1.1 Analyzing circuits

After we pointed out how circuits can determine the qualitative behavior of a system,
we justify the reduction of a system to a two-component circuit. For this, we consider
once again systems with constant sign Jacobian matrices and a bounded trapping region
in the state space. Moreover, we assume that external influences are not time-dependent,
such that the system can be described by a system of autonomous first order differential
equations. We will explain in which cases circuits can separately be analyzed, which can
drastically reduce the dimension of the system under consideration. We will not give formal
proofs, as this would go beyond the scope of this thesis, but only illustrate arguments. In
the following, we partition the set of nodes V of the interaction graph into a group V C of
nodes belonging to a circuit, denoted by circuit nodes, and the group V NC of remaining
nodes not belonging to a circuit, called non-circuit nodes. More specifically, we consider
the following groups of non-circuit nodes:

1. Group 1: Non-circuit nodes that do not (directly or indirectly) influence circuit
nodes. This means, there is no directed path from these nodes to any circuit node
in the interaction graph. An example is illustrated in Figure 6.3. We consider a
network of three nodes and an interaction graph shown in Figure 6.3 (left). Here,
V C = {x1, x2} and V NC = {x3}. A trajectory of this system lies on a two-dimensional
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Figure 6.3: An example for a system with variable x3 belonging to group 1 of non-
circuit nodes. A trajectory of a corresponding differential equation system lies in a two-
dimensional manifold perpendicular to the x1, x2-plane. The qualitative dynamic behavior
of the system is solely determined by V C = {x1, x2}.

manifold in the state space. Variable x3 has no influence on the circuit variables x1

and x2, and hence the projection of the trajectory onto the x1, x2-plane does not
dependent on x3. Here, the subsystem with variables x1 and x2 can separately be
analyzed.

2. Group 2: Non-circuit nodes that are not (directly or indirectly) influenced by cir-
cuits, but have themselves an influence on circuits. This means there are no directed
paths from circuit nodes to these nodes, but there are in turn paths from these nodes
to circuit nodes in the interaction graph. These nodes eventually converge to con-
stant values in the trapping region. If their temporal behavior x(t) is known, their
influence can equivalently be described as an external influence when analyzing the
dynamic behavior of the circuits. An example is shown in Figure 6.4. A non-circuit
variable x3 influences the circuit variables x1 and x2. Variable x3 will converge to a
constant value, and the trajectory of the system eventually lies on a two-dimensional
manifold parallel to the x1, x2-plane. If the course x3(t) is known, it can be used
to model the influence of x3 on x1 and x2 as a time-dependent, but eventually con-
stant, external signal, and the circuit containing x1 and x2 can be analyzed as a
two-dimensional system.

3. Group 3: Nodes that lie on a path connecting two or more circuits. These nodes
function as ’signal transmitters’ between different circuits. However, also here it is
sometimes possible to analyze the dynamic behavior of the circuits separately [169,
191]. An example is illustrated in Figure 6.5. Variable x lies on a path connecting two
circuits C1 and C2. C1 is independent of the rest of the graph and can be analyzed
separately. Knowing the behavior of x, we can also analyze circuit C2 separately by
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Figure 6.4: Non-circuit variable x3 that belongs to group 2. It regulates the circuit variables
x1 and x2 and eventually converges to a constant value. Thus, its influence on x1 and x2

can be described as an eventually constant external influence.
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xC1 C2
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external time

dependent influence C2
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dependent influence

Figure 6.5: Variable x lies on a path connecting two circuits C1 and C2. It belongs to group
3 of non-circuit nodes. Circuit C1 does not depend on x and can be analyzed separately
(compare Figure 6.4). Also circuit C2 can separately be analyzed provided that x(t) can
be determined in advance. In this case, the influence of x can be described as an external
influence acting on nodes belonging to circuit C2.

describing the influence of x as an external influence. Unlike the external influence
representing nodes belonging to group 2, this external influence does not necessarily
converge to a constant value here, since it is influenced by other circuits.

Note that the differential equation systems which describe the circuits containing x1 and
x2 in Figure 6.4 and the circuit C2 in Figure 6.5 are potentially non-autonomous. Variables
x3 and x, which are modeled as external influences acting on the systems, may vary with
time.

The examples discussed to analyze parts of a regulatory network separately can simplify
the analysis, in particular, for systems that have disjoint circuits of at most two variables.
Provided that the course of a node influencing a circuit can be determined in advance,
the circuit can individually be analyzed as a planar system. However, it is only possible
to determine the course of such nodes in advance, if the interaction graph contains no
semicircuits. This is illustrated in Figure 6.6. Here, the two circuits C1 and C2 are
interconnected by a semicircuit containing the variables x1, x2, x3 and x4. For an individual
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Figure 6.6: Two circuits C1 and C2 which are interconnected through a semicircuit with
variables x1, x2, x3 and x4. These circuits cannot separately be analyzed.

analysis of circuit C1, the course of x3 has to be known, which is determined by circuit
C2. To analyze C2 in turn, the behavior of variable x2 is needed. Here, the two circuits
cannot be analyzed separately. The situation is also more complex in case that circuits
contain more than two components, or if several circuits are interlocked, that is, they have
common nodes. In the first case, nodes in the circuit are frequently shrunken, such that the
new circuit again contains at most two variables, and statements for planar systems can be
used (see for example [32]). If the system comprises reactions at different time scales, such
a reduction of variables can be achieved by a quasi-steady state approximation [68, 203].
If this is not the case, time delays are sometimes used to describe indirect regulations
as time-delayed direct ones [194]. Time delays can be a major source of instabilities in
negative circuits and have been shown to efficiently cause oscillations in biological systems
[54, 167, 196]. An example for interlocked circuits has already been given in Chapter 4
of this thesis. Here, two positive feedback loops (circuits) with a common node mutually
enhance each other. We will use several of these dimension reduction methods in the
following section, where we will derive a core model for the yeast cell cycle.

6.2 An oscillating core model for the yeast cell cycle

Chemical reaction systems can be expected to have one or more steady states [194]. Bio-
chemical oscillations that are built on such reaction kinetics usually arise when a trapping
region in the state space contains one single steady state that is unstable [194]. An asymp-
totically stable limit cycle encloses this unstable steady state. According to the Hartman-
Grobman Theorem introduced in Chapter 2, the stability of a steady state xs is determined
by the eigenvalues of the Jacobian matrix Jf(xs). For a system with two variables,

Jf(xs) =

(
a11(xs) a12(xs)
a21(xs) a22(xs)

)

, (6.18)

the eigenvalues λ1,2 can be expressed in terms of the determinant det(Jf (xs)) and the trace
tr(Jf(xs)),

λ1,2(xs) =
tr (Jf(xs))

2
±
√
(

tr (Jf (xs))

2

)2

− det (Jf(xs)). (6.19)

The steady state is unstable if at least one eigenvalue has a positive real part. In chemical
reaction systems the elements on the diagonal are usually negative, reflecting degradation
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or, in case of enzymatic reactions, transformations from one species to anything else [194].
For two-component systems, we have two characteristic sign patterns for Jacobian matrices
Jf(xs) which can lead to unstable fixed points and thus cause oscillations [194]. These are

J1(xs) =

[
+ +
− −

]

and J2(xs) =

[
+ −
+ −

]

. (6.20)

Oscillators with the first pattern are called substrate-depletion oscillators, the second pat-
tern characterizes an activator-inhibitor oscillator. In both oscillators the two compo-
nents are involved in a negative circuit, and the first component exhibits a positive auto-
regulation. In this section, we derive an activator-inhibitor core model for the cell cycle
of the budding yeast S. cerevisiae. Similar to the core model for the SOS response in M.
tuberculosis in Chapter 3 and the model for the regulation of the E. coli bgl operon in Chap-
ter 4, the circuits related to the dynamic behavior of the system comprise regulations on
transcriptional and post-transcriptional level. Thus, the regulatory network includes mech-
anisms on different time scales. These differences can in fact stabilize periodic behavior,
as we will demonstrate in Chapter 8 for the core network of the yeast cell cycle.

6.2.1 Model

Regulation mechanisms in the S. cerevisiae cell cycle

We start by considering the main regulations in the cell cycle of eukaryotic organisms,
which are described for example in [2]. The cell cycle consists of four phases: During the
S-phase, the DNA is duplicated, and in the M-phase the cell divides into two daughter cells.
Between these phases, the cell persists in the genetically resting phases G1 and G2. In the
phase G1, cells increase in size and produce mRNAs and proteins. The G1 checkpoint, a
cell cycle control mechanism, is activated during G1 to ensure that the cell can enter the
S-phase. During G2, the cell continues to grow and produces new proteins. At the end of
this phase, initiation of cell division is regulated by a second control mechanism, the G2
checkpoint. Thus, the two checkpoints coordinate cell growth with the DNA cycle. The
cell cycle mechanisms are organized in a complicated regulatory network of cyclin depen-
dent kinases (CDKs) and their cyclin partners. Binding of a cyclin to a CDK activates the
kinase and leads to the phosphorylation of proteins that participate in different phases of
the cell cycle. CDKs are permanently present in excess, whereas their cyclin partners are
periodically accumulated and degraded during the cell cycle [194].

There is only one class of CDKs in budding yeast, denoted Cdc28. Cdc28 initiates entry
into the S- or M-phase, depending on the class of cyclins bound to it. Nasmyth [139] has
shown that the cell cycle in budding yeast is intimately connected to dynamic interactions
between the class of G1-specific cyclins (CLN) and the class of mitotic cyclins (CLB). Thus,
we build our model on interactions between these two classes. Regulation mechanisms are
illustrated in Figure 6.7 and described in the following. A detailed description of regulation
processes during the cell cycle in budding yeast can be found in [6, 30]. Expression of
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Figure 6.7: A scheme of the regulatory mechanisms during the cell cycle in budding yeast:
During the phase G1, the active CLN/Cdc28 complex activates the transcription factor
complexes SBF and MBF and inhibits Cdh1. In the G2/M phase, the CLB/Cdc28 complex
inhibits SBF. This results in a decreased expression of S-phase genes.

the G1-specific cyclins Cln1, Cln2 and Cln3 (CLNs) peaks during the G1-phase, and the
CLN/Cdc28 complex provides activation of the G1-specific transcription factor complexes
MBF, a dimer consisting of the proteins Mbp1 and Swi6, and SBF, a complex of the
proteins Swi4 and Swi6. MBF and SBF in turn regulate genes which act during the S-
phase. As SBF also promotes transcription of the cyclins Cln1 and Cln2, CLN regulates
itself auto-catalytically. Furthermore, CLN/Cdc28 inhibits the proteolytic enzyme Cdh1,
which accelerates degradation of the mitotic cyclins Clb1 and Clb2 (CLB) by activating
the anaphase promoting complex (APC). The mitotic cyclins Clb1 and Clb2 (CLB) are
specifically expressed during the transition from the G2 to the M-phase, and form active
heteromers with Cdc28. SBF is down-regulated by the CLB/Cdc28 complex.

We simplify these regulatory processes in the following way:

• We neglect the transcription factor complex MBF and the genes needed during the
S-phase, which have no influence on the two cyclin classes CLN and CLB. All these
components do not affect the dynamic behavior of the system, since they have no
influence on any circuit in the regulatory network in Figure 6.7. According to our
model, they belong to group 1 of the non-circuit nodes.

• The cyclin dependent kinase subunit Cdc28 is always present in excess, and its con-
centration can be assumed to be constant [6]. Processes are solely controlled by the
concentration of CLN and CLB, which activate Cdc28. Thus, we also neglect Cdc28
and assume that the concentration of active cyclin/Cdc28 complexes is uniquely de-
termined by the concentrations of the two cyclin classes CLN and CLB.

• The interaction graph on the left hand side in Figure 6.8 shows the remaining reg-
ulations. It consists of four components CLN (x1), CLB (x2), SBF (x3) and Cdh1
(x4), which are involved in two circuits: The negative feedback loop including all four



116 CHAPTER 6. CIRCUITS AND CORE MECHANISMS

CLN (x1) CLB (x2)

-

+

+

Cdh1(x4)

SBF (x3)

-

-

CLN (x1) CLB (x2)

-

+

+

Cdh1(x4)

SBF (x3)

-

-
-

CLN(x1) CLB(x2)

+

+

-

CLN(x1) CLB(x2)

+

+

Figure 6.8: Simplified scheme of regulation mechanisms of the budding yeast cell cycle.
The cyclin class CLN activates itself auto-catalytically by activating its own transcription
factor SBF, and it is indirectly inhibited by CLB due to the negative regulation of CLB
on SBF. CLB is indirectly activated by CLN, since CLN/Cdc28 inhibits Cdh1, which in
turn promotes degradation of CLB. Left: Simplified network of four components. Right:
Two-component core model.

components (x1
−−→ x4

−−→ x2
−−→ x3

+−→ x1) and the positive feedback loop including

x1 and x3 (x1
+−→ x3

+−→ x1). In the following, we will use the quasi-steady state
approximation to simplify this network to a two-component network with interaction
graph as shown in Figure 6.8 (right). Here, the two negative regulations from x1 to
x4 and from x4 to x2 have been summarized to a single positive regulation from x1 to
x2, and the positive regulation from x2 to x3 and the negative regulation from x3 to
x1 appear as a single negative regulation from x2 to x1. Moreover, the two positive
regulations between x1 and x3 are modeled as a positive auto-regulation of x1.

We use the following equations to describe the dynamic behavior of the four component
system shown in Figure 6.8 (left):

ẋ1(t) = s1 − γ1x1(t) + r1,3(x3) (6.21)

ẋ2(t) = s2 − γ̃2(x4)x2 (6.22)

x3(t) = r3,12(x1, x2) (6.23)

x4(t) = r4,1(x1) (6.24)

Here, the temporal change of variable x1 is described by a basal synthesis rate, a first
order degradation term and a regulation function r1,3(x3), which refers to transcriptional
regulation through x3. Component x2 is produced with a basal rate s2. Also here, degra-
dation is modeled as a first order process proportional to x2. Degradation control through
x4 is expressed by a degradation rate γ̃2(x4) which depends on x4. Variables x3 and x4

describe activities of SBF and Cdh1, respectively. According to the interactions we include
in our model, both components are solely regulated through chemical modification. These
alter the activity, but have no direct influence on the amount of SBF and Cdh1 in the
cell. Thus, the total concentration of both components is assumed to be constant, which
is also verified in [6]. Equations (6.23) and (6.24) suggest that both variables are uniquely
determined by x1 and x2, which is described by the regulation functions r3,12(x1, x2) and
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r4,1(x1). We will verify these regulation functions later. This assumption includes a quasi-
steady state approximation. Chemical modification of both components by x1 and x2 is
fast compared to the time scale of the system, which is determined by the transcriptional
regulation of x1 and the degradation control of x2. Thus, these modifications are described
as a chemical reaction in equilibrium. We have already introduced a QSSA in Chapter 2 for
gene regulatory networks. Here, we assumed binding of a transcription factor to its specific
DNA binding site to be fast compared to the process of gene expression. Analogously to
the reaction kinetics which we used to model gene regulatory networks, we describe the
probabilities of a single transcription factor complex SBF (x3) to undergo a reaction with
the cyclins CLN (x1) or CLB (x2), respectively, by sigmoidal functions. Binding of x1 to x3

leads to an activation of SBF through phosphorylation. This activation can be abolished
by binding of x2. Thus, the probability of a transcription factor complex to be active,
denoted P a

3 (x1, x2), can be written as

P a
3 (x1, x2) = P3(x1 has bound)− P3(x1 and x2 have bound). (6.25)

Assuming that binding of x1 and binding of x2 to SBF are independent processes, which is
the case if they have non-overlapping binding sites, the second term in equation (6.25) is the
product of the two probabilities P3(x1 has bound) and P3(x2 has bound), and P a

3 (x1, x2)
is given by

P a
3 (x1, x2) = P3(x1 has bound) [1− P3(x2 has bound)] (6.26)

=
xm31

1

xm31

1 + θm31

31

(

1− xm32

2

xm32

2 + θm32

32

)

(6.27)

∝ xm31

1

xm31

1 + θm31

31

· 1

xm32

2 + θm32

32

. (6.28)

As already done in Chapter 2, we assume P a
3 (x1, x2) to be a measure for the effect of x3

on x1, r1,3(x3) := k13P
a
3 (x1, x2). The QSSA states that x3 can be expressed in terms of x1

and x2, and thus variable x3 is eliminated in our model.

The QSSA is also used to eliminate variable x4. Cdh1 is involved in the degradation of
x2. Its activity is inhibited by x1. However, it only binds the APC, which is responsible
for x2-degradation, during G1. For the rest of the cell cycle, Cdh1 is inhibited through
phosphorylation by the kinase Cdc28. The probability P a

4 (x1) for a single enzyme Cdh1
(x4) to be active is modeled by

P a
4 (x1) =1− P4(x1 has bound)

=1− xm41

1

xm41

1 + θm41

41

∝ 1

xm41

1 + θm41

41

,

(6.29)

which is taken as a measure for the amount of active Cdh1 and for the effect on the
degradation of x2, γ̃2 := γ2P

a
4 (x1). The QSSA effectively summarizes the two negative
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regulations in the four-component interaction graph in Figure 6.7 to one single positive
regulation from x1 onto x2.

Final core model

To introduce our final two-component core model, we set the Hill-coefficients to m31 =
m41 = 2 and m32 = 1, suggesting that CLN binds as a dimer and CLB as a monomer.
These Hill-coefficients are copied from a similar model in [194]. Our final core model, which
contains the two cyclins CLN (variable x1) and CLB (variable x2), is written as

ẋ1 = s1 + k11
x2

1

x2
1 + θ2

11

1

θ12 + x2
− γ1x1

ẋ2 = s2 − γ2
1

θ2
21 + x2

1

x2.

(6.30)

Here, we have changed the indices of the regulation strength k31 to k11 and of the threshold
values θ41 and θ32 to θ21 and θ12, respectively, to adapt the originally four-component
model to the two-component model. The corresponding interaction graph is shown on
the right hand side in Figure 6.8. The positive auto-regulation of component x1 due to
the positive feedback loop between CLN and SBF is inhibited by x2. Degradation of x2,
which is promoted by the enzyme Cdh1, is prevented by x1 by phosphorylation and thereby
activation of the enzyme.

6.2.2 Properties of the core model

In this subsection, we analyze the dynamic behavior of the core model (6.30). We use the
Poincaré-Bendixson Theorem to demonstrate that the model can show periodic behavior
for certain parameter vectors

ω := (s1, s2, γ1, γ2, k11, θ11, θ12, θ21) ∈ IR8
+. (6.31)

For the following theorem, we remember that a trajectory Γ(x0) is uniquely defined by an
initial state x0 ∈ E, and the forward trajectory Γ+(x0) corresponds to the set of states of
the system for given x0 and positive time t ∈ IR+ (Chapter 2).

Theorem 6.2.1 (Poincaré-Bendixson Theorem [147]) Suppose that f ∈ C1(E) where
E is an open subset of IR2 and that the system ẋ = f(x) has a trajectory Γ(x0), x0 ∈ E,
with Γ+(x0) contained in a compact subset F of E. Then if ω(Γ(x0)) contains no fixed
point of the system, ω(Γ(x0)) is a periodic orbit.

Trapping region in IR2
+

According to the Poincaré-Bendixson Theorem, in order to prove the existence of a periodic
orbit for our system, we have to show the existence of an initial state x0 ∈ E, whose forward
trajectory Γ+(x0) is contained in a compact subset F ∈ IR2

+ in the state space, and whose
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Figure 6.9: Every trajectory of the core network model (6.30) eventually reaches the trap-
ping region F , which is bounded by xmin

1 , xmax
1 , xmin

2 and xmax
2 . These bounds partition

the state space into regions which can be characterized by the signs of the vector field
components, as indicated here by arrows.

ω-limit set ω(Γ(x0)) does not contain any fixed points. The initial state x0 belongs to the
basin of attraction of the periodic orbit ω(Γ(x0)). In fact, if such an F exists, the basin of
attraction is the whole state space in our model. We first show the existence of a compact
trapping region for system (6.30). We have already shown that a trapping region exists
for the additive model introduced in Chapter 2. The bounds of the trapping region in
the core model cannot be calculated separately for each component. They are mutually
dependent due to degradation of x2, which is controlled by x1. The idea is illustrated in
Figure 6.9. We show the existence of lower and upper bounds xmin

i and xmax
i for each

component i = 1, 2, such that whenever xi(0) < xmin
i or xi(0) > xmax

i , then ẋi(t) > 0 or
ẋi(t) < 0, respectively, and the system moves towards these bounds. These bounds are
determined by the following estimations for ẋ1 and ẋ2 in system (6.30):

ẋ1 = s1 − γ1x1 + k11
x2

1

x2
1 + θ2

11

1

x2 + θ12
︸ ︷︷ ︸

≥0

≥ s1 − γ1x1. (6.32)

Thus, if x1 < xmin
1 := s1

γ1
, then ẋ1 > 0, and the trajectory moves towards this lower bound.

For an upper bound xmax
1 we have

ẋ1 = s1 − γ1x1 + k11
x2

1

x2
1 + θ2

11
︸ ︷︷ ︸

≤1

1

x2 + θ12
︸ ︷︷ ︸

≤θ−1
12

≤ s1 − γ1x1 +
k11

θ12
. (6.33)

If we insert an x1 > xmax
1 := 1

γ1

(

s1 + k11

θ12

)

into our core model (6.30), then ẋ1 < 0, and

the x1-component of the corresponding forward trajectory Γ+(x) decreases monotonically.
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Similarly, we can find a lower bound for x2:

ẋ2 = s2 − γ2
1

x2
1 + θ2

21

x2

︸ ︷︷ ︸

≤θ−2
21

≥ s2 −
γ2

θ2
21

x2. (6.34)

Hence, a lower bound for x2 is given by xmin
2 :=

s2θ2
21

γ2
, and ẋ2 > 0 if x2 < xmin

2 .
The upper bound for x2 depends on x1.

ẋ2 = s2 − γ2
1

x2
1 + θ2

21

x2, (6.35)

which is, for fixed x1, negative if

x2 > xmax
2 (x1) :=

s2

γ2

(
x2

1 + θ2
21

)
. (6.36)

Thus, the bound xmax
2 (x1) increases with x2

1. We know that x1 is eventually bounded. This
means, for every x0 there exists a t∗(x0) > 0, such that for all t > t∗(x0) x1(t) < xmax

1 .
Thus for all t > t∗(x0), whenever x2 > xmax

2 (xmax
1 ), then ẋ2 < 0, and xmax

2 (xmax
1 ) is the

desired upper bound. Note that both lower bounds are positive, and the core model is a
positive system.

A limit cycle around an unstable fixed point

All trajectories eventually converge to the trapping region bounded by xmin
i and xmax

i ,
i = 1, 2. Hence, the ω-limit sets of the system, which determine the long-term behavior,
are contained in F . To investigate these limit sets, we calculate the nullclines of our
system, which are given by setting ẋ1 and ẋ2 in system (6.30) independently to zero and
resolving for x2. We will denote the x1-nullcline by xa

2(x1) and the x2-nullcline by xb
2(x1),

respectively:

ẋ1(t)
!
= 0 ⇒ xa

2(x1) = k11

γ1x1−s1

x2
1

x2
1
+θ2

11

− θ12 x1-nullcline (6.37)

ẋ2(t)
!
= 0 ⇒ xb

2(x1) = s2

γ2
(θ2

21 + x2
1) x2-nullcline (6.38)

Note that it is not always possible to resolve the corresponding equations for x2.
Nullclines can help to investigate fixed points of planar dynamical systems. The course

of the x1-nullcline gives information about fixed points of x1 for given x2 and vice versa.
Thus, the fixed points of a differential equation system are intersections of nullclines.
Moreover, along the x1-nullcline ẋ1 = 0, and the vector field is parallel to the x2-axis.
Analogously, the vector field is parallel to the x1-axis on the x2-nullcline. Nullclines par-
tition the state space into regions in which the signs of vector field components do not
change. Figure 6.10 shows the trapping region and the nullclines xa

2(x1) and xb
2(x1) of

system (6.30) in the state space. The x2-nullcline monotonically increases, which reflects
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Figure 6.10: Nullclines of the core model (6.30). They partition the state space into
regions in which two components of the vector field have constant signs, as indicated by
the arrows. The system has an unstable fixed point xs in the trapping region. A = (xA

1 , xA
2 )

and B = (xB
1 , xB

2 ) denote the local minimum and maximum of the x1-nullcline.

the positive regulation from x1 to x2. The x1-nullcline increases between A and B due to
the positive auto-regulation. For x1 < xA

1 or x1 > xB
1 , degradation dominates the positive

auto-regulation, and xa
2(x1) decreases in this regions. Here, the sign of a11 in the Jacobian

matrix depends on the state x. Arrows in Figure 6.10 represent the signs of the two vector
field components. Here, the system has a single fixed point xs. The sign pattern of the
Jacobian matrix Jf(xs) is

Jf(xs) =

[
+ −
+ −

]

, (6.39)

which can also be seen in Figure 6.10. The condition a11 = ∂f1

∂x1
> 0, which is due to

the auto-regulation of component x1, is necessary for xs to be unstable. This means,
the intersection of the two nullclines must be between the two local extrema of the x1-
nullcline. If we assume that such an unstable xs exists for a parameter set ω, which
will subsequently be verified by a concrete example, the Poincaré-Bendixson Theorem
guarantees the existence of a stable periodic orbit.

The basin of attraction of the limit cycle in our system is the whole IRn
+, and the

system shows periodic behavior for an arbitrary initial condition x0. This can be seen in
Figure (6.10): We have shown that every trajectory reaches the trapping region limited by

x
min/max
i , i = 1, 2. Further, the system has only one single fixed point, which was assumed

to be unstable. Hence, the Poincaré-Bendixson Theorem states that ω(Γ(x0)) is a periodic
orbit for each x0 ∈ U .
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A parameter set ω for which xs is indeed unstable is given by

ω = (0.038, 0.072, 0.38, 0.0072, 3.8, 1.0, 1.0, 0.1). (6.40)

This parameter vector has been adapted from the model in [194], and we will see in the
following chapter that the oscillating region in the parameter space is rather small. The
corresponding courses for the two components x1 and x2 are shown in Figure 6.11. For
the simulation, we used Euler integration with a time step ∆t = 1. The origin of these
oscillations is intuitively clear. Component x1 increases auto-catalytically when x2 is small.
Abundant x1 stimulates accumulation of x2, which in turn inhibits the production of x1.
Thus x1 disappears and hence also x2 decreases. This enables x1 to increase again.

Inference of an oscillating core model

In this subsection, we provide the basis to infer an oscillating regulatory network for the
yeast cell cycle from experimental data. We will estimate parameters for the core model
(6.30) using the dataset introduced in Chapter 5. For this, we embed the core model into
a stochastic framework, as we have shown in Chapter 5. We will maximize the likelihood
function LD(ω) with ω ∈ IR8

+ to obtain parameters ω̂MLE, which will be used as a starting
point to extend the network by further components and regulations in Chapter 7. We start
with the discretized core model

x1(t + ∆t) = x1(t) + ∆t

[

s1 + k11
x1(t)

2

x1(t)2 + θ2
11

1

θ12 + x2(t)
− γ1x1(t)

]

︸ ︷︷ ︸

=:h1(ω,t,x0)

(6.41)

x2(t + ∆t) = x2(t) + ∆t

[

s2 − γ2
1

θ2
21 + x1(t)2

x2(t)

]

︸ ︷︷ ︸

=:h2(ω,t,x0)

(6.42)

and describe time series measurements of x1 and x2 as random variables by adding normally
distributed noise terms to the hypotheses hi(ω, t, x0), i = 1, 2:

x̃i(t + ∆t) = hi(ω, t, x0) + ηξ, ηξ ∼ N (0, σ2
ξ), t = 0, . . . , T − 1. (6.43)

The corresponding likelihood function is given by

LD(ω) =

2∏

i=1

T−1∏

t=0

1√
2πσξ

exp



−1

2

(

hi(ω, t, x0)− x̃i(t + ∆t)

σ2
ξ

)2


. (6.44)

In contrast to the likelihood function introduced in the previous chapter, the mean hi(ω, t, x0)
of the normal distribution over the random variable x(t + ∆t) is recursively defined. This
increases the computing time for the optimization and is thus not appropriate for larger
networks. However, the objective function (6.44) is better suited to capture the temporal
evolution of the system.
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Figure 6.11: System (6.30) shows periodic behavior for the parameter vector ω given in
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We used the α-factor synchronization experiments in the dataset of Spellman et al.
[183]. The time series in this experiment contains 18 time points, measured every seven
minutes over two cell cycles. Variable x1 was represented by the mean of the Cln1 and
Cln2 concentrations, variable x2 by the mean of the Clb1 and Clb2 concentrations. The
correlation of both pairs is very high in all four time series. Missing values were replaced
by means of expression values of precedent and subsequent time points. The initial con-
centration vector x0 was set to x̃0. Note that we have to approximate the concentration
of the cyclins by their mRNA concentrations, which is certainly not a good approximation
for CLB.

For the maximization of equation (6.44), we used the Generalized Reduced Gradi-
ent (GRG2) algorithm. We started the optimization with a converging model ωinitial =
(0.01, 0.01, 0.001, 0.001, 0, 1, 1, 0.1) with stable steady state (x1,s, x2,s) = (10, 10.1). The
inferred parameter vector ω̂MLE is

ω̂MLE = (0.0, 0.0544, 0.3636, 0.0399, 2.1032, 0.0, 1.1703, 0.1). (6.45)

A simulation using the inferred parameter vector ω̂MLE (continuous lines) along with the
experimental data (dots) is shown in Figure 6.12. The ML approach was able to infer a core
model that shows sustained oscillations. While the course of CLN is in good agreement
with the experimental data, the simulated course of CLB seems to be shifted to the left,
and also the oscillation amplitude is smaller than the experimental data suggest. The
result of the optimization depends on the initial vector, which has been chosen somewhat
arbitrarily here. Oscillating behavior is not learned for all initial parameter sets. The
reason for this will be investigated in the following chapter.

6.3 Concluding remarks

In the first part of this chapter, we investigated some general properties of differential equa-
tion models for regulatory networks. We concentrated on systems of differential equations
which have constant sign Jacobian matrices and are stable by means of the existence of a
bounded trapping region in the state space. Thus, linear models as introduced in Chapter 2
are excluded. Systems which belong to this class, such as the non-linear model introduced
in Chapter 2, tend to converge to a unique steady state. Circuits in the corresponding
interaction graph are necessary to capture more complex dynamic behaviors. In particu-
lar, a positive circuit is required for multi-stationarity, and a negative circuit of at least
two nodes can cause periodic behavior [190]. Circuits determine the qualitative dynamic
behavior of the network. Moreover, we illustrated why disjoint circuits in an interaction
graph can be analyzed separately, which can drastically reduce the number of variables of a
dynamic system. In Section 6.2, we used the results from the previous Section 6.1 to derive
a core model for cell cycle regulations in budding yeast. Variables of this model are the G1
specific cyclins, which accumulate during G1 and initiate entry into the S-phase, and the
mitotic cyclins, which promote initiation into the M-phase. Based on chemical reaction
kinetics and a QSSA, we derived a two-component differential equation system with a sign
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Figure 6.12: Course of inferred core network of the yeast cell cycle (continuous lines) along
with experimental data (dots). Top: Course of CLN. Bottom: Course of CLB.
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pattern of the Jacobian matrix typical for an activator-inhibitor oscillator. This model
was analyzed in the state space. It is able to capture the observed periodic expression of
the two cyclin classes. Similar to Chapter 5, we embedded this model into a probabilistic
framework and used the α-factor-synchronization experiments of the microarray dataset
from Spellman et al. [183] to estimate model parameters by maximizing the likelihood
function. This inferred core model will be used as a starting point to extend the network
in the following chapter.

Regulation mechanisms of the yeast cell cycle have extensively been studied experi-
mentally, and different models for these regulations have been proposed (see for exam-
ple [29, 30, 148, 161, 195]). Many of these models are far more complex than the two-
component model introduced here. The model of Chen et al. [30] for example contains
about 30-40 variables. However, a comparison is difficult, since parameter estimation in
[30] was mainly done using knockout experiments, which are not publicly available. One
can distinguish between two model classes: Models which explain the periodic behavior by
a stable limit cycle in the state space [80, 109], and models which are based on bistability
phenomena [9, 91, 195]. For the latter models, different steady states correspond to dif-
ferent cell cycle phases. A varying external parameter, which is related to the mass of the
cell, causes the system to switch between these states. Our model belongs to the class of
limit cycle models. Both model classes are not necessarily contradictory [161]. They can
be closely related [148]. Modeling variable x2 in our model (6.30) as an external parameter,
our model also shows bistable behavior. This can be seen in Figure 6.10. The x1-nullcline
has two stable steady states separated by an unstable steady state between A and B. We
will return to this point in the following section.

Although our core model introduced here is built on regulations of the S. cerevisiae
cell cycle, it has many characteristic properties that are common for models of cellular
rhythms [81]. The course of the nullclines, for example, is typical for many models used
to explain period behavior in regulatory networks. The underlying mechanisms causing
the periodic behavior of these models is usually a destabilization of a steady state [23, 81],
which requires feedback loops in the interaction graph, non-linear regulation functions
and cooperative regulations, corresponding to Hill-coefficients greater than 1 [63, 81, 167].
Thus, the analysis of our model gives general insights into possible mechanisms causing
periodic behavior or multi-stationarity.



Chapter 7

About Learning Oscillating Gene
Networks: Difficulties and Problems

The Bayesian approach introduced in Chapter 5 aims at the inference of the interaction
graph of a regulatory network. Here, prior distributions over network parameters were
defined to prevent overfitting and to drive the solution to sparse networks in which most
of the interaction strengths are in the proximity of zero. An analysis of simulated data
has shown that this approach can outperform the classical maximum likelihood estimation
in case of sparse and noisy datasets. However, the inferred models tend to converge to a
steady state and are thus not appropriate to capture the dynamic behavior of the system.
Reasons for this have been investigated in the previous Chapter 6. Moreover, the impor-
tance of circuits has been discussed, and we derived a core model for the yeast cell cycle.
This core model is assumed to explain the underlying mechanisms of periodic expression of
genes involved in the cell cycle. The model was built on two components, and oscillations
arise around an unstable steady state. A necessary condition for the existence of a limit
cycle is the existence of a negative circuit of at least two components and a non-linear pos-
itive auto-regulation of one of the components. Here, we exploit the theory of differential
equations in order to understand mechanisms causing certain kinds of dynamic behaviors.
Usually, most of these models are built on only two components and thus neglect many
regulations of the system. We have seen in Chapter 6 that this can be a reasonable start
to understand dynamic phenomena.

This chapter combines the approaches from Chapter 5 and Chapter 6 in order to infer
regulatory networks of more than two components, which show periodic behavior. We start
with the maximum likelihood estimation for the core model and extend this for further
components and regulations using the Bayesian approach. Thus, we hope to infer a model
which reliably predicts important interactions among cell components and at the same
time captures the system’s dynamic behavior. The method is explained in Section 7.1.
We will show results on a simulated dataset. An extension of the core network for further
components poses interesting new problems concerning the robustness of oscillations. Small
perturbations of the core network in terms of variations of parameter values or of additional

127
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external influences can easily stabilize the unstable steady state and thus destroy the limit
cycle. We will apply a bifurcation analysis in order to explain this phenomenon in Section
7.2. Here, the limit sets of a system of differential equations are studied in dependence of
model parameters. A comprehensive analysis of the core model helps to understand why
it is difficult to infer an oscillating system.

Finally, results of network inference on the Spellman dataset [183] are shown in Section
7.3. The chapter ends with a summary and conclusions in Section 7.4.

7.1 Inference of an oscillating network

7.1.1 Method

We consider a model which consists of the core network for the Saccharomyces cerevisiae
cell cycle introduced in Chapter 6 and is extended by further regulations and components:

ẋ1 = s1 − γ1x1 + k11
x2

1

x2
1 + θ2

11

· 1

θ12 + x2
+

n∑

j=3

k1j

x
m1j

j

x
m1j

j + θ
m1j

1j

(7.1)

ẋ2 = s2 − γ2
1

x2
1 + θ2

21

x2 +
n∑

j=3

k2j

x
m2j

j

x
m2j

j + θ
m2j

2j

(7.2)

ẋi = si − γixi +

n∑

j=1

kij

x
mij

j

x
mij

j + θ
mij

ij

i = 3, . . . , n (7.3)

Systems (7.1), (7.2) and (7.3) describe a regulatory network of n components (Figure 7.1).
Equations (7.1) and (7.2) consist of the core network from Chapter 6, which is extended
by further sigmoidal regulations from the remaining components x3, . . . , xn. System (7.3)
corresponds to the model introduced in Chapter 2 and describes the temporal behavior of
the remaining network components. The qualitative behavior of the network is assumed to
be determined by the core network, indicated by bold arrows between the core variables x1

and x2 and from the core network to the remaining nodes. This core network is assumed
to act relatively independent from the rest of the network, meaning that the regulation
strengths kij are small for i = {1, 2} and j = 3, . . . , n and for i, j ≥ 3, indicated by thin
lines in Figure 7.1. This assumption justifies the network inference in two separate steps de-
scribed below. In the following, we will use the subscript ‘core’ to refer to the core network.

To infer an oscillating regulatory network, we proceed in a two step process. First,
we estimate parameters for the core model (7.1) and (7.2) with a predefined structure.
As described in the previous chapter, this is done by maximizing the likelihood function
LDcore(ωcore) given in (6.44) with respect to the parameters

ωcore := (s1, s2, γ1, γ2, k11, θ11, θ12, θ21) ∈ IR8
+ (7.4)
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Figure 7.1: Extended network described by equations (7.1), (7.2) and (7.3). The core
variables x1 and x2 are assumed to determine the qualitative behavior of the cell cycle
network. Accordingly, the bold arrows between x1 and x2 and from the core network
to remaining nodes indicate strong regulations, whereas thin lines from the remaining
nodes x3, . . . , xn to the core network and between remaining nodes correspond to weaker
regulations.

of the core model:

ω̂core = arg max
ωcore

LDcore(ωcore) subject to ωcore ∈ IR8
+. (7.5)

Here, the subset Dcore ⊂ D contains the experimental data of the core network, that is,
concentration time series of the two cyclin classes CLN (variable x1) and CLB (variable
x2).

The vector ω̂core is used as a starting point to extend the core network by further
components and interactions in a second step. The structure of the extended interaction
graph is unknown and should be learned from the data. Therefore, we use the Bayesian
approach explained in Chapter 5 to obtain a parameter vector ω̂ for the extended network.
In comparison, results of the maximum likelihood estimation are shown as well.

7.1.2 Results on simulated data

Data simulation

We simulated a network with seven components and an interaction graph given in Figure
5.2. For the core network including the variables x1 and x2 we used the parameter vector

ωcore = (0.038, 0.072, 0.38, 0.0072, 3.8, 1, 1, 0.1), (7.6)

which has already been used in the previous section.
Parameters for components x3, . . . , x7 in system (7.3) were set to si = 0 and γi = 1.9

for i = 3, . . . , 6, s7 = 3.8 and γ7 = 0.38. Regulation strengths, Hill-coefficients and
threshold values were set to kij = ±3.8 for j = {1, 2} and i 6∈ {1, 2}, i.e. edges from core
network components to remaining nodes, and kij = ±0.38 for the remaining regulations.
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This parameter choice for the regulation strengths reflects the assumption that the core
network components are the main regulators (Figure 7.1). Hill-coefficients and thresholds
were set to mij = 2 and θij = 1. For these parameters, the seven-component network
shows periodic behavior. The noise level σξ was set to 0.1 and 0.5, respectively.

For inference of the parameter vector ω̂core, we used a single time series. We show results
for 50 and 70 time points and noise levels σξ = 0.1 and σξ = 0.5. As already observed
before, a single time series is not appropriate to infer parameters ω̂ for the extended
network. Thus, we simulated 50 and 200 time series consisting of two time points each.
Initial concentrations xi(0) were randomly chosen from a uniform distribution over the
interval [0, 5].

Core model

We start the optimization process with ωcore,initial = (0.1, 0.1, 0.1, 0.1, 0, 1, 1, 1). For this
parameter set, the system converges quickly to its steady state xcore,s := (x1,s, x2,s) = (1, 2).

Simulations using the estimated model parameters ω̂core are shown in Figure 7.2. The
oscillating behavior is learned in all four cases. However, the inferred models show signif-
icant differences in the oscillation amplitudes of both components. For a low noise level,
σξ = 0.1, the inferred models have a limit cycle around an unstable fixed point and show
sustained oscillations, whereas for higher noise levels, σξ = 0.5, the fixed points are stable,
and the oscillations are damped. Figure 7.2 also gives an impression of the amount and
quality of data needed to infer parameters which cause the system to exhibit sustained
oscillations.

Extended model

As a starting point for the optimization of the posterior distribution, for the parameters
of the core network, we used the maximum likelihood estimator ω̂core, which was obtained
using the dataset with 70 time points and a noise level σξ = 0.1 (Figure 7.2(b)):

ω̂core = (0.0178, 0.0850, 0.3957, 0.0088, 4.2356, 0.9770, 1, 0) (7.7)

Starting points for the remaining parameters were set to si = 0.01, γi = 0.1, kij = 0,

θ̂ij = 1 and m̂ij = 2. Synthesis and degradation rates were learned without prior distribu-
tion. Parameters for the prior distributions over regulation strengths were set to λ = 1.3
and α = 10. In the first two steps of the optimization process, the prior distribution was
not taken into account. The gradient descent stops when the error change is three times
smaller than 10−5 or when a maximum number of 300 steps is reached. The noise level for
the optimization was set to σnoise = 0.1.

First, we observe that the datasets used for learning provide enough information to re-
construct the interaction graph. The inferred network structure fits the original structure
very well, and the corresponding AUC values are close to 1 for all four datasets.
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Figure 7.2: Simulations with the estimated parameter vector ω̂core and different noise levels
σξ and numbers of time points used for the estimation. Left: Courses of x1 (grey line)
and x2 (black line) along with the data used for the parameter estimation (grey and black
crosses, respectively). Right: Trajectories in the state space.
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Figure 7.3: Behavior of the simulated network. Shown is the course of the model without
noise (dotted line), the course with parameters derived with MLE (grey line) and the
corresponding course with the Bayesian approach (black continuous line). Top: Course of
x1. Bottom: Projection of the trajectory onto the x1-x2-plane.

Now we concentrate on the inferred dynamic behavior. Figure 7.3 shows a comparison
between the MAP and the MLE approach for different noise levels and numbers of time
points used for learning. The upper figures show the inferred course of x1 for the MLE
(grey line) and the MAP approach (black line) along with course of the undisturbed original
model (black dotted line). A projection of the trajectory onto the x1-x2-plane is shown in
the lower graphs. We observe no significant difference between both approaches for low
noise and 100 time points used for learning, but the MAP approach outperforms MLE in
the case of higher noise, as both oscillation periods and amplitudes better fit the course of
the original model. Courses of other network components show a similar behavior.

The results indicate that the inference of a large oscillating network from experimental
data is much more difficult than the reconstruction of the network structure. While the
network structure is perfectly learned from the dataset used here, results on the core
network already indicate that much larger datasets are needed to learn periodic behavior
with our model. The qualitative dynamic behavior of the model seems to be sensitive to
parameter changes. An explanation for this is provided in the following Section.
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7.2 Bifurcation analysis

A concept of stability which refers to a property of a system in the parameter space is
investigated in the bifurcation theory of differential equations. Here, we ask about changes
of the qualitative behavior of a differential equation system ẋ = f(x) when changing the
vector field f . We will refer to this stability concept as structural stability or robustness.
Parameter sets for which f is not structurally stable are called bifurcation sets. The
idea of structural stability was first formulated by Andronov and Pontryagin in 1937 [147].
Loosely speaking, a vector field f is structurally stable, if for any vector field g near f , both
vector fields are topologically equivalent (for further details about topological equivalence
see [85, 147]). In this section, we will apply methods from bifurcation theory to our core
network model and use the results to explain why it is difficult to infer an oscillating
network. We will see that a stable limit cycle only exists in a small region of the parameter
space. Before we show results for the core model in Subsection 7.2.2, we will introduce
the two most important bifurcations which occur in our core model in Subsection 7.2.1,
saddle-node and Hopf bifurcations.

7.2.1 Saddle-node and Hopf bifurcation

We consider the stability of the phase portrait of a differential equation

ẋ = f(x, µ), x ∈ E, µ ∈ J, f ∈ C1(E × J) (7.8)

with E being an open subset of IRn, J ∈ IR an interval and µ the bifurcation parameter.
A value µ0 ∈ J is a bifurcation value, if f(x, µ0) is not structurally stable [147]. This
means, the qualitative dynamic behavior of the system changes in a small neighborhood
around µ0. Such a change can be caused by different mechanisms. We will explain two of
these, saddle-node and Hopf bifurcations. Both are local bifurcations, which occur near an
equilibrium point or a periodic orbit.

Saddle-node bifurcation

The Hartman-Grobman Theorem introduced in Chapter 2 states that the stability of a
hyperbolic fixed point xs(µ) is determined by the signs of the real parts of the eigenvalues
of Jf(xs(µ)). It is stable if all real parts are negative. Thus, a stable fixed point xs(µ)
becomes unstable when an eigenvalue λ∗(xs(µ)) of Jf(xs(µ)) crosses the imaginary axes,
that is, if xs(µ) is non-hyperbolic, because ℜ(λ∗(xs(µ)) = 0. A saddle-node bifurcation
occurs at µ0 if Jf(xs(µ0)) has a simple eigenvalue λ∗(xs(µ0)) with zero real part. An
example is the system

ẋ = µ− x2 x, µ ∈ IR. (7.9)

It has a stable and an unstable fixed point xs(µ) = ±√µ for µ > 0. These collide at
µ0 = 0, and xs(µ0) = 0 is a non-hyperbolic equilibrium point. The system does not have
any fixed points for µ < 0.
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Hopf bifurcation

A Hopf bifurcation occurs if the change of stability of xs(µ) is caused by a simple pair of
purely imaginary eigenvalues. Here, xs(µ) looses stability, and a periodic orbit is created.
An example is given by the differential equation system

ẋ = −y + x(µ− x2 − y2)

ẏ = x + y(µ− x2 − y2).
(7.10)

This system has a single equilibrium point xs(µ) = 0, which is stable for µ < 0 and unstable
for µ > 0. Hence, µ0 = 0 is the bifurcation value. In system (7.10), a stable limit cycle
occurs when µ passes the bifurcation value µ0. We distinguish between supercritical and
subcritical Hopf bifurcations. The Hopf bifurcation at µ0 in system (7.10) is supercritical.
In contrast, at a subcritical Hopf bifurcation an unstable limit cycle is created.

Bifurcation diagram

The behavior of a differential equation system can graphically be represented by a bifur-
cation diagram. Here, the limit sets of the differential equation system are plotted as a
function of the bifurcation parameter µ. If the state space has dimension ≥ 2, one coor-
dinate of the limit sets is usually depicted for graphical representation. Figure 7.4 shows
bifurcation diagrams of system (7.9) (Figure 7.4(a)), system (7.10) (Figure 7.4(b)) and a
subcritical Hopf bifurcation (Figure 7.4(c)). System (7.9) has a stable and an unstable
fixed point for µ > 0 and no fixed points for µ < 0. System (7.10) has a stable fixed
point xs = 0 for µ < 0, which becomes unstable for µ > 0. A stable limit cycle occurs at
the bifurcation value µ0 = 0. Here, minimum and maximum values of the x-component
of this limit cycle are shown. The Hopf bifurcation of system (7.10) is supercritical. In
comparison, the typical bifurcation diagram of a subcritical Hopf bifurcation at µ0 = 0
is shown in Figure 7.4(c). As before, the stable fixed point x0 = 0 becomes unstable at
µ0 = 0. An unstable and a stable limit cycle exist in an interval [a, 0]. The stable one
continues for µ > 0. Thus, there are two different ω-limit sets in the interval [−a, 0], and
the systems can exhibit hysteresis: Starting in the steady state xs(µ) = 0 for a bifurcation
parameter µ < 0 and increasing µ, the system rests in this state until it becomes unstable
at µ0 = 0. Here, the system jumps to the stable limit cycle and starts to oscillate. In
contrast, starting with a bifurcation parameter µ > 0, the system only converges to the
stable fixed point xs(µ) = 0 when the stable limit cycle disappears at a < 0. The unstable
limit cycle separates the basins of attractions for the two ω-limit sets of the system.

Usually, bifurcation diagrams have to be created numerically. A bifurcation program is
started in an ω-limit set, which is continued by small variations of the bifurcation param-
eter. The stability of the limit set is determined in each step. Courses of two limit sets
emanating from the same bifurcation value µ0 have to be continued separately in these
programs. A bifurcation diagram consists of sets of numerically calculated points. Most
programs have an implemented algorithm, which adapts the step size ∆µ automatically.



7.2. BIFURCATION ANALYSIS 135

saddle-node bifurcation

-1

-0,5

0

0,5

1

-0,5 0 0,5 1

bifurcation parameter

stable fixed point

unstable fixed point

no fixed point

m

x

(a) saddle-node

-1

-0,5

0

0,5

1

-0,5 0 0,5 1

bifurcation parameter

stable limit cycle

stable f.p. unstable fixed point

m

x

supercritical Hopf bifurcation

(b) supercritical Hopf

bifurcation parameter

stable l.c.

unstable f.p.stable f.p.

unstable l.c.

m

x

subcritical Hopf bifurcation

a

(c) subcritical Hopf

Figure 7.4: Bifurcation diagrams for 7.4(a) a saddle-node bifurcation (system (7.9)), 7.4(b)
a supercritical Hopf bifurcation (system (7.10)) and 7.4(c) a subcritical Hopf bifurcation.

0

1

2

3

4

5

6

x2

0 1 2 3 4 5 6
x1

x
s

u

Figure 7.5: Phase portrait of core model described by equations (7.1) and (7.2) and pa-
rameters given in equation (7.6). A globally stable limit cycle exists around an unstable
fixed point xu

s . Nullclines of the system are drawn as dotted lines.

Thus, if the step size is large, a limit set in a bifurcation diagram is displayed as a set
of points rather than a function of µ. This can also be seen in the bifurcation diagrams
shown in the following subsection.

7.2.2 Bifurcation analysis of the core model

Now we apply a bifurcation analysis to our core system (7.1) and (7.2) with parameter
vector ω̂core specified in (7.6). For this parameter set, the system exhibits sustained oscilla-
tions. The corresponding stable limit cycle and the vector field of the system are shown in
Figure 7.5. The nullclines of the system are shown as well (dotted lines). The fixed point
xu

s , given as the intersection of these nullclines in the interior of the limit cycle, is unstable.

In the following subsections, we consider the influence of each model parameter on the
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qualitative behavior of equations (7.1) and (7.2) separately, and use them consecutively as
bifurcation parameters. In order to understand these bifurcation diagrams, it is convenient
to consider the dependence of intersections of the nullclines on the bifurcation parameters.
According to the Poincaré-Bendixson Theorem, a unique unstable fixed point guarantees
the existence of a stable limit cycle for our system. In the parameter ranges where these
oscillations occur, we will also look at the oscillation period.

Analysis is carried out with the open source program XPPAUT, a tool for simulations
and analysis of dynamical systems [65]. The bifurcation diagrams show limit sets of variable
x1 in the core system described by (7.1) and (7.2).

Basal synthesis rate s1

Figure 7.6 shows the behavior of the system in dependence of the basal synthesis rate s1.
The bifurcation diagram is shown in Figure 7.6(a). We detect a saddle-node bifurcation at
sSN
1 and a Hopf bifurcation at sHB

1 . For s1 < sSN
1 , the system has a stable steady state xs

s

and two unstable steady states xu
s . The stable steady state is globally stable and attracts

all trajectories. The corresponding phase portrait is shown in Figure 7.6(c). At a value
sSN
1 , a saddle-node (SN) bifurcation occurs, and the stable steady state xs

s and one of the
unstable steady states xu

s disappear. The system shows periodic behavior and oscillates
around the remaining unstable steady state. The period T of these oscillations is shown in
Figure 7.6(b). A further increase of s1 leads to a decrease of the period and the amplitude
of the oscillations. Finally, the single unstable steady state xu

s becomes stable at a Hopf
bifurcation value sHB

1 , and the limit cycle disappears (Figure 7.6(d)).

Basal synthesis rate s2

The behavior of the system for varying basal synthesis rate s2 can be seen in Figures 7.7
and 7.8. For small s2, the system has a unique fixed point xs. This fixed point becomes
unstable between a supercritical and a subcritical Hopf bifurcation at sHB1

2 and sHB2
2 ,

respectively. Hence, the system oscillates in this interval (Figure 7.7(a)). Figure 7.7(b)
shows the oscillation period T. The nullclines and their intersection xs are shown in Figure
7.8 for three parameter values s2 = 0.02 < sHB1

2 , s2 between the two bifurcation values,
sHB1
2 < s2 = 0.072 < sHB2

2 , and a value s2 = 0.3 > sHB2
2 . Only variable x2 and thus only

the x2-nullcline depend on s2. The Figure shows that the larger the synthesis rate s2, the
larger is the x2-coordinate of the fixed point, xs

2, for given x1.

Degradation rate γ1

The bifurcation parameter in Figure 7.9 is the degradation rate γ1. For small degradation
rates γ1, the system has a unique stable fixed point xs, which decreases with increasing γ1

(Figure 7.9(a)). This fixed point becomes unstable at a Hopf bifurcation value γHB
1 , and the

system oscillates between this Hopf bifurcation (HB) and a saddle-node bifurcation (SN) at
γSN

1 . The period of this oscillation can be seen in Figure 7.9(b). For γ1 > γSN
1 , the system

has a globally stable fixed point xs
s. Figures 7.9(c) and 7.9(d) show the intersections of
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Figure 7.6: Behavior of core system (equations (7.1) and (7.2) in dependence of the degra-
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Figure 7.9: Behavior of the core system (equations (7.1) and (7.2)) in dependence of the
degradation rate γ1. Figure 7.9(a): Bifurcation diagram. Figure 7.9(b): Oscillation
period. Figure 7.9(c): Intersection of the nullclines for parameter values γ1 = 0.2 < γHB

1 ,
γHB

1 < γ1 = 0.38 < γSN
1 and γ1 = 0.75 > γSN

1 . Figure 7.9(d): Course of the nullclines in
the neighborhood of the saddle-node bifurcation.

nullclines for different degradation rates γ1. The region γ1 < γHB
1 is represented by γ1 = 0.2

in Figure 7.9(c), the value γ1 = 0.38 refers to the oscillating region between the Hopf and
the saddle-node bifurcations, and γ1 = 0.75 represents the region γ1 > γSN

1 . Figure 7.9(d)
explains the appearance of the saddle-node bifurcation in Figure 7.9(a) at a larger scale.
For γ1 = 0.6 < γSN

1 , the unique fixed point is unstable. The course of the x1-nullcline
drops with increasing γ1, whereas x2 and thus also the x2-nullcline is independent of γ1.
In a very small region, the nullclines intersect three times, and the system has three fixed
points. The system has a unique stable fixed point for both values γ1 = 0.65 and γ1 = 0.75.

Degradation rate γ2

Figure 7.10 shows the behavior of the system with bifurcation parameter γ2. Also here,
oscillations occur between two Hopf bifurcations HB1 and HB2 at γHB1

2 and γHB2
2 , respec-
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Figure 7.10: Behavior of the core system (equations (7.1) and (7.2)) in dependence of
the degradation rate γ2. The system has a stable limit cycle between a subcritical and
a supercritical Hopf bifurcation HB1 and HB2. Figure 7.10(a): Bifurcation diagram.
Figure 7.10(b): Oscillation period. Figure 7.10(c): The Hopf bifurcation HB1 at γHB1

2

is subcritical and the system has two ω-limit sets for γ2 ∈ [a, γHB1
2 ]. Figure 7.10(d):

Phase portrait for γ2 ∈ [a, γHB1
2 ]. The system has a stable steady state and a stable limit

cycle. The basins of attraction are separated by an unstable limit cycle.

tively (Figure 7.10(a)). HB1 is subcritical. Accordingly, different limit sets coexist for an
interval γ2 ∈ I := [a, γHB1

2 ], which is indicated in Figure 7.10(c). The phase portrait for
an s2 ∈ I is shown in Figure 7.10(d). The two basins of attraction for the stable steady
state xs

s and the limit cycle are separated by an unstable limit cycle around xs
s.

Parameters of the regulation functions

Bifurcation diagrams and oscillation periods for the remaining parameters in the core
system (equations (7.1) and (7.2)) are illustrated in Figures 7.11, 7.12, 7.13 and 7.14. Also
here, the parameter regions in which the system shows oscillations are limited by Hopf
bifurcations.
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Cooperative interaction is required for periodic behavior

Figure 7.15 shows the bifurcation diagram with Hill-coefficient m11, which was set to
m11 = 2 in the core system, as the bifurcation parameter. The interval in which a limit cycle
exists is limited by a supercritical Hopf bifurcation at mHB

11 and a saddle-node bifurcation at
mSN2

11 . Outside this interval, the system converges to a stable fixed point. Two unstable and
one stable steady state exist between the two saddle-node bifurcations at mSN2

11 and mSN1
11 .

Figure 7.16 shows the nullclines for different bifurcation parameters. For m11 = 1.7 < mHB
11

(grey continuous lines) and m11 = 4.2 > mSN2
11 (grey dashed lines), the system has a single

stable fixed point. The parameter m22 = 2 lies between mHB
11 and mSN1

11 and represents
the oscillating region (black continuous lines). Here, the nullclines intersect in a single
point that is unstable. Finally, there are three intersections of the nullclines in the interval
[mSN1

11 , mSN2
11 ], represented by m11 = 3 in the Figure (black dashed lines). Two of them are

unstable, the third one is globally stable.

Independent of all other parameters of the core network, a Hill-coefficient m11 > 1
is a necessary condition for the existence of periodic solutions. We will show this in the
following.

A necessary condition for Jf (xs) to have purely imaginary eigenvalues and thus to
undergo a Hopf bifurcation required for oscillations is a11(xs) > 0 [194], as already demon-
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Figure 7.16: Nullclines of the core model for different Hill-coefficients m11.For m11 = 1.7 <
mHB

11 (grey continuous lines), the nullclines intersect once, which is a stable fixed point xs
s

of the system. The system oscillates for values m11 between the Hopf bifurcation value
mHB

11 and the saddle-node bifurcation at mSN2
11 , represented by m11 = 2 (black continuous

lines). Here, the nullclines intersect in a single unstable fixed point xu
s . The system has

two unstable and a stable fixed point between two saddle-node bifurcations mSN2
11 and

mSN1
11 , here represented by m11 = 3 (black dashed lines). The stable fixed point is globally

attracting. Finally, there is one single stable fixed point for values m11 > mSN1
11 , here

m11 = 4.2 (grey dashed lines).
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strated in Chapter 6. Since xs lies on the x1-nullcline, which is given by

xa
2(x1, m11) =

k11

γ1x1 − s1

xm11

1

xm11

1 + θm11

11

− θ12, (7.11)

the derivative of xa
2(x1, m11) with respect to x1 has to be positive for some value x1 in the

trapping region F , which is bounded by xmin
i and xmax

i , i = 1, 2,

∃x1 ∈ I :=

(

xmin
1 =

s1

γ1
, xmax

i =
s1 + k11

γ1

)

:
∂xa

2(x1, m11)

∂x1
> 0. (7.12)

This derivative is given by

∂xa
2(x1, m11)

∂x1
=− k11γ1

(γ1x1 − s1)2

xm11

1

xm11

1 + θm11

11

+
k11

γ1x1 − s1

∂

∂x1

xm11

1

xm11

1 + θm11

11

=
k11

γ1x1 − s1

[

− γ1

γ1x1 − s1

xm11

1

xm11

1 + θm11

11

+
∂

∂x1

xm11

1

xm11

1 + θm11

11

]

.

(7.13)

It is a continuous function in I. Moreover,

lim
x1→(xmin

1
)+

∂xa
2(x1, m11)

∂x1
→ −∞. (7.14)

Hence, in order to fulfill condition (7.12), the intermediate value theorem states the exis-
tence of an x∗

1 that is a zero of (7.13),

∂xa
2(x1, m11)

∂x1

∣
∣
∣
x∗

1

= 0. (7.15)

This leads to

− k11γ1

(γ1x∗
1 − s1)2

(x∗
1)

m11

(x∗
1)

m11 + θm11

11

+
k11

γ1x∗
1 − s1

∂

∂x1

xm11

1

xm11

1 + θm11

11

∣
∣
∣
x∗

1

= 0. (7.16)

Inserting
∂

∂x1

xm11

1

xm11

1 + θm11

11

∣
∣
∣
x∗

1

=
m11θ

m11

11

x∗
1((x

∗
1)

m11 + θm11

11 )

(x∗
1)

m11

(x∗
1)

m11 + θm11

11

(7.17)

into equation (7.16) yields

− k11γ1

(γ1x∗
1 − s1)2

(x∗
1)

m11

(x∗
1)

m11 + θm11

11

+
k11

γ1x∗
1 − s1

m11θ
m11

11

x∗
1((x

∗
1)

m11 + θm11

11 )

(x∗
1)

m11

(x∗
1)

m11 + θm11

11

= 0, (7.18)

which, by multiplying with
(γ1x∗

1−s1)2((x∗

1)m11+θ
m11
11 )2x∗

1

(x∗

1)m11k11γ1
, becomes

(x∗
1)

m11+1 − (m11 − 1)θm11

11 x∗
1 + m11θ

m11

11

s1

γ1
︸ ︷︷ ︸

=:f(x∗

1,m11)

= 0. (7.19)
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For 0 < m11 ≤ 1, f(0, m11) > 0 and for x∗
1 ≥ 0, ∂f(x∗

1, m11)/∂x∗
1 ≥ 0. Thus, there is

no real solution for x∗
1 in this case. Accordingly, cooperative interaction expressed by a

Hill-coefficient m11 > 1 is necessary for a Hopf bifurcation and thus for oscillating behavior
in our model.

In summary, the bifurcation analysis of the core model shows that, for each network
parameter, the oscillating region is only a small interval bounded by Hopf and saddle-node
bifurcations. This certainly complicates the inference of an oscillating network. It also
raises the question about mechanisms stabilizing oscillating expression of cell cycle genes.
However, it is possible to infer an oscillating network with our approach using the Spellman
dataset, as will be shown in the following section.

7.3 Results on the yeast cell cycle

In this section, we show results for the yeast cell cycle and point out additional difficulties,
which do not occur when analyzing simulated data, and which are thus related to the
real dataset and the model. For parameter estimation of the yeast cell cycle network, we
used the alpha-factor synchronization experiments of the Spellman dataset [183], which
we already used for the inference of the core model in the previous chapter. Parameters
ω̂core inferred in Chapter 6 were taken as a starting point for the optimization of the pos-
terior distribution for the extended network. Remaining parameters were set to si = 0.01,
γi = 0.1, kij = 0, θ̂ij = 1 and m̂ij = 2. Synthesis and degradation rates were learned
without prior distribution. Parameters for the prior distributions over regulation strengths
were set to λ = 1.3 and α = 5. In the first two steps of the optimization process, the prior
distribution was not taken into account. Gradient descent stops when the error change is
three times smaller than 10−3 or when a maximum number of 300 steps is reached. The
noise level for the optimization was set to σξ = 0.2.

Figure 7.17 shows the inferred network structure. The 21 edges with strongest interac-
tion strengths are marked in bold. Bold continuous lines correspond to true positives, bold
dashed lines to false positives. Thin lines indicate false negatives. 15 of 21 true regulations
are revealed. These include the three regulations x1 → x1, x1 → x2 and x2 → x1 of the core
network, which were already fixed in advance. Figure 7.18 shows inferred courses (dashed
lines) for all seven network components, together with the linearly interpolated experimen-
tal data (+). Our inferred model fits the amplitudes of most genes very well, whereas the
oscillation periods of the experimental data is approximately 10-20 minutes longer than
the period of the inferred model. The reason for this requires further investigation.
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Figure 7.17: Network structure of the inferred yeast cell cycle network. The 21 regulations
with the strongest interaction strengths are marked in bold. 15 of them are true positives
(bold continuous lines), 6 are false positives (bold dashed lines), and thin lines appear in
the reference network, but are not revealed in our approach.

7.4 Concluding remarks

Differential equations are frequently used to infer gene regulatory or, more general, bio-
chemical networks. However, linear models, which have severe limitations concerning their
qualitative dynamic behavior, are the most often used models for network inference. Eval-
uation of results frequently focuses on a comparison of the inferred interaction graph with
a reference network from literature, as it was also done in Chapter 5. However, differential
equation models are very detailed compared to other model classes introduced in Chapter
1. Thus, we can hope to learn more than just the interaction graph. They can also pro-
vide an explanation for the observed dynamic behavior in terms of quantitative reaction
parameters. Differential equation models also have often been used for this purpose, but
frequently only with models of two or three components. These models are assumed to rep-
resent very simplified core mechanisms in living systems, which determine the qualitative
dynamic behavior. We motivated in Chapter 6 why a reduction to only two components
can be useful to get insights into mechanisms causing qualitative behaviors. However, an
interesting question is how these core models can be extended to obtain a more realistic
model of the system under consideration, which includes for example more components or
more interactions. Here, we presented such an extension of our core model. The aim was to
infer a regulatory network which captures periodic behavior and at the same time reveals
interactions between network components. For this purpose, we used the core model de-
rived in Chapter 6, which was assumed to determine the qualitative behavior of the system,
and extended this model for further regulations and components using the Bayesian ap-
proach described in Chapter 5. This approach tries to combine the advantage of differential
equation models to explain dynamic behaviors and the advantage of a Bayesian approach
to deal with sparse datasets. However, results on simulated data show already that, using
the introduced model, it is difficult to infer a large oscillating network from ‘experimen-
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Figure 7.18: Simulated courses (dashed lines) with inferred model parameters of all seven
genes included in our model and interpolated experimental values which were used for
learning (crosses). Time is given in minutes.
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tal’ data. We are only able to capture the periodic behavior when using large datasets
with a small noise level. With these datasets, the interaction graph is already perfectly
reconstructed. The behavior of the core model is very sensitive to parameter changes. In
order to explain this sensitivity, we applied a bifurcation analysis. Here, the parameters
of the core network were consecutively used as bifurcation parameters, and the qualitative
behavior of the system was analyzed with respect to variations in these parameters. We
observed for all parameters that a limit cycle only exists in a small interval, which is lim-
ited by Hopf and saddle-node bifurcations. Outside this interval, the system converges to
a steady state. This analysis shows that a negative feedback loop in the interaction graph
is in fact a necessary condition for a stable periodic orbit, but it is by no means sufficient.
The quantitative parameter values are important for periodic behavior in our model. The
bifurcation diagrams provide an explanation why it is difficult to learn periodic behavior.
Additionally, they give information about the dependence of the oscillation amplitude on
the model parameters. Generally, within the parameter regions in which the core network
oscillates, the amplitude varies in a wide range, whereas the oscillation period is relatively
insensitive to parameter changes. This is a typical property of both, activator-inhibitor
and substrate-depletion oscillators.

We used the microarray dataset from Spellman et al. [183] to infer a regulatory network
for the yeast cell cycle with our approach. Here, we were able to infer an oscillating
regulatory network. However, there are several problems which, together with the results
of the core network analysis, raise interesting questions:

First, results are more sensitive to changes in parameters of the prior distributions used
in the Bayesian approach than results for the simulated datasets. This makes inference dif-
ficult on the one hand, and it also raises doubts about the reliability of estimation results for
real datasets on the other hand. These doubts affect the model, since the approach works
much better on simulated data. It probably indicates that the dynamics of cell processes
is much more complicated than suggested in the presented model and as can be learned
from microarray data. Further mechanisms such as the interrelation of transcriptional and
post-transcriptional regulation processes or transport processes are probably important to
stabilize periodic behavior. Thus, it is an interesting question to what extend microarray
studies alone can be used to learn something about the dynamic behavior of biochemical
networks.

The objective function that was optimized in order to estimate model parameters in
the Bayesian approach in Chapter 5 does not seem to be appropriate to learn the dynamic
behavior of the system. The optimization problem interprets measurements of consecutive
time points, x(t) and x(t + ∆t), as a set of independent input-output pairs. The temporal
order of all these pairs is not taken into account. However, already in Chapter 6, when
inferring parameters for the core model, it turns out that it is difficult to learn oscilla-
tions with this objective function. Therefore, we introduced another objective function,
which includes the temporal order of all measurements in the time series and which fa-
cilitates the learning of periodic, or any other dynamic behavior. The corresponding new
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optimization problem is much harder in terms of computational costs, and it is thus not fea-
sible for networks of more than two or three components. This raises the question how the
optimization problem has to be formulated in order to learn qualitative dynamic behaviors.

A comparison of the inferred time series for the yeast genes with the inferred network
structure uncovers a further problem of network inference from experimental data: The
inferred model is able to reconstruct the experimentally observed courses, although the
corresponding inferred interaction graph differs from the reference network. Contrary to
the simulated dataset, a satisfying simulation of the dynamic behavior does not necessarily
imply a correctly learned interaction graph. This can probably also be explained with the
kind of data used for learning: The simulated dataset contains many short time series with
different initial conditions, whereas the real dataset only represents a limit cycle, which
provides less information about the underlying dynamical system. Thus, the size of the
dataset that is required to get reasonable results depends considerably on the kind of data.
Measurements on the system for varying conditions or experiments on mutants probably
provide much more information than a single time series measured in a properly working
cell.

Finally, we have seen in the bifurcation diagrams that oscillations only occur in a small
region of the parameter space. They are thus sensitive to parameter changes, which makes
inference difficult. On the other hand, the cell cycle, as many other biological oscillators,
has to work properly for varying conditions [203]. For example, binding energies vary
with temperature and pressure, and binding of transcription factors is actually a discrete
stochastic process underlying fluctuations [203]. Thus, biological oscillators seem to be
more robust than our core model. Which mechanisms are important for this robustness
in a cell and how can we modify our model accordingly to account for these mechanisms?
These questions will be taken up in the following chapter.



Chapter 8

Robustness of Oscillations

At the beginning of this chapter, we recapitulate results of the previous chapters that are
relevant to motivate the following work. In Chapter 2 we derived a model for regulatory
networks. This model is characterized by monotonous bounded regulation functions and
first order degradation terms. These properties ensure that all trajectories eventually reach
a bounded trapping region in the state space. Moreover, the model belongs to differential
equation systems which have constant sign Jacobian matrices almost everywhere in the
state space. Accordingly, we have illustrated in Chapter 6 that our model has the ten-
dency to converge to a steady state. Circuits in the interaction graph are related to more
complex dynamic behavior such as multi-stationarity and oscillations. These behaviors
typically occur through a destabilization of the steady state, which can result in multiple
steady states or in a limit cycle. A negative semicircuit containing at least two components
is necessary for a limit cycle. In a two-component network, we need additionally a positive
auto-regulation of at least one of the two components. We introduced an activator-inhibitor
oscillator for the yeast cell cycle. Given parameters for this model which guarantee the
existence of a limit cycle, the periodic behavior of the system is very stable, since the
basin of attraction for this limit cycle is the whole state space. This is one possible way to
define stability of the long-term behavior of a system. Here, the system is analyzed in the
state space, and the stability of limit sets is related to the size of the basins of attraction
of these sets. However, regarding the parameter estimation problem, it is convenient to
introduce a different stability concept. Since initial conditions are usually specified by the
experimental data used for estimation, but in turn the parameters of the model are not
known, stability of dynamic behaviors should refer to the parameter space rather than to
the state space. We refer to this concept of stability as structural stability or robustness.
According to this, a limit set of a differential equation system is stable if the region in the
parameter space in which this limit set exists is large.

Looking at the bifurcation diagrams in Chapter 7, we can imagine that an objective
function used for the parameter estimation is generally smoother in regions in which the
system’s qualitative behavior does not change than around bifurcation values. The tem-
poral behavior of the system, and thus also the value of the objective function, changes
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abruptly, for example, at a subcritical Hopf bifurcation. This complicates parameter esti-
mation and, in case of local search methods, emphasizes the dependence of the estimation
result on the initial parameter vector ωinit. Thus, we can expect the result ω̂ to be more
robust when increasing the neighborhood of ω̂ in which the qualitative behavior does not
change. On the other hand, this conception of robustness also relates inference results to
variations due to noise in the datasets used. Ideally, ω̂ should be robust with respect to
small variations in the dataset. This is the case if ω̂ is far away from bifurcation values.
Since the region for oscillations are rather small in our core model, structural stability
poses a problem here. Although we were able to reconstruct an oscillating model in the
previous chapter, results are structurally not very stable and depend considerably on initial
parameter vectors ωinit and on the datasets used. A bifurcation analysis discloses reasons
for this. This brought up interesting questions:
Which mechanisms lead to structurally stable oscillations in a cell, and how do we have to
modify our models to account for these stabilizing mechanisms?
The current chapter addresses these questions and discusses different mechanisms to in-
crease the robustness of oscillations. We illustrate ideas and concepts using the core model
derived in Chapter 6, but statements and concepts can also be transfered to other oscil-
lating regulatory network models with limit cycles emanating from Hopf bifurcations and
are not specific for the yeast cell cycle.

In Section 8.1, we explicitly model time scale differences between the temporal changes
of network components and show that these can affect both the robustness and the am-
plitude of oscillations. Section 8.2 shows that oscillations can also be made more robust
by an inclusion of time-delays. Both sections are inspired by Chen and Aihara [32], who
set up an activator-inhibitor model for a genetic regulatory system and investigated the
effect of time scale differences and time delays on the periodic behavior of this system. All
statements given in [32] refer to their two-component model, which includes time scale dif-
ferences and which is analyzed using first order perturbation theory. However, the proofs
given in [32] are based on rather general properties of their specific model and can thus
be generalized and applied to other oscillating regulatory systems as well. In particular,
contrary to [32], we do not consider time scale differences in Section 8.2.

In Section 8.3, we investigate a system of interlocked negative circuits of more than two
components. This section can be seen as an excursion towards additional difficulties when
increasing the number of variables. We use the stability theory of Liapunov in order to
show that the system has a unique steady state, which is globally attracting for a large set
of parameters. The construction of the Liapunov function is copied from Mees and Rapp
[130]. This result emphasizes again the tendency of the introduced model to converge to
a steady state. Finally, the chapter concludes with a summary and a discussion of results
in Section 8.4.

We start again with the two-component core model, which was introduced in Chapter
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6 and which will be extended in Sections 8.1 and 8.2:

ẋ1 = f1(x) = s1 + k11
x2

1

x2
1 + θ2

11

1

θ12 + x2
− γ1x1

ẋ2 = f2(x) = s2 − γ2
1

θ2
21 + x2

1

x2,

(8.1)

with domain E = IR2
+ and a parameter vector

ω := (s1, s2, γ1, γ2, k11, θ11, θ12, θ21) ∈ IR8
+. (8.2)

8.1 Different time scales - Relaxation oscillations

In Chapters 6 and 7 we have analyzed the nullclines of system (8.1). Intersections of these
nullclines correspond to steady states of the system. A necessary condition for a steady
state xs of our model to be unstable is ∂f1

∂x1
= a11(xs) > 0. In the following, we will show

that this becomes a sufficient condition if the temporal change of both variables happens
on different time scales. This is the case when the production and/or degradation rate of
one of the components is much smaller than the corresponding rates of the second compo-
nent. Examples for such differences are manifold. Consider for instance two genes which
are regulated by the same transcription factor. Binding of this transcription factor to the
promoter region of the first gene is highly specific (which corresponds to a small threshold
value θ in the sigmoidal regulation function), whereas binding to the specific site in the
promoter region of the second gene is unspecific (the threshold value which corresponds
to this regulation is much higher). The transcription factor will much more often bind to
the first binding site, and thus the effect on the expression of the first gene is much higher
than on the second one. The protein concentration of the first gene is much more sensitive
to changes in the transcription factor concentration than the second one, in particular in
case that the transcription factor concentration is low. Thus, when changing the transcrip-
tion factor concentration, the first gene is the fast variable and the second gene the slow
variable. In general, in a chemical reaction system, different time scales can be associated
with different binding affinities or reaction rates, which can also affect post-transcriptional
regulations.

Subsection 8.1.1 discusses the effect of time scale differences on the eigenvalues of the
Jacobian matrix Jf(xs) at a fixed point xs. This concept is applied to our core model in
Subsection 8.1.2. Stiffness of a system of differential equations in connection with large
time scale differences is finally discussed in Subsection 8.1.3.

8.1.1 Linear stability analysis in two dimensions

Consider a two-dimensional model with a fast and a slow component, which is assumed to
have a fixed point xs. We account for time scale differences by introducing a time scale
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parameter ǫ, which represents the ratio of the slow and the fast time scales. Thus, the
larger the difference between the two time scales, the smaller is ǫ. Variable x1 is assumed
to represent the fast component, and our model is written as

ẋ1 = f1(x)

ẋ2 = ǫf2(x)
(8.3)

with continuously differentiable functions f1(x) and f2(x). The factor ǫ accounts for the
time scale differences between these two components and is denoted time scale parameter.
It is chosen such that the order of magnitude of f1(x) is supposed to be the same as the
order of magnitude of f2(x). For small ǫ, the temporal changes of x1 and x2 happen on dif-
ferent time scales. On the slow time scale ∆t appropriate to describe the change of variable
x2, we can apply the quasi-steady state approximation to x1 and set ẋ1 ≈ 0, which was
done for the binding reaction of transcription factors to DNA in Chapter 2. The change of
x1 has to be considered on the fast time scale, given by time steps of order ǫ∆t. On this
time scale, the change of the slow variable x2 is only marginal between two time steps, such
that we can set ẋ2 ≈ 0. This was also done in Chapter 2, when we considered the binding
reaction of transcription factors and the DNA to derive the sigmoidal regulation function.
Here, we assumed the total transcription factor concentration [TF ]t to be constant.

The nullclines, given by ẋ1 = 0 and ẋ2 = 0, respectively, and therefore also the set of
steady states, are independent of ǫ and are thus the same as in the core system without
time scale differences, that is, system (8.3) with time scale parameter ǫ = 1. However,
their stability and hence the qualitative dynamic behavior depends on ǫ.

The Jacobian matrix Jf(xs) of the steady state xs of system (8.3) is written as

Jf (xs) =

(
a11(xs) a12(xs)
ǫa21(xs) ǫa22(xs)

)

(8.4)

with eigenvalues

λ1,2(xs) =
tr (Jf(xs))

2
±
√
(

tr (Jf (xs))

2

)2

− det (Jf(xs))

=
a11(xs) + ǫa22(xs)

2

±
√
(

a11(xs) + ǫa22(xs)

2

)2

− (ǫa11(xs)a22(xs)− ǫa12(xs)a21(xs)).

(8.5)

Now we investigate the stability of the fixed point xs for large time scale differences. In
the limit ǫ → 0, we can use singular perturbation theory to analyze system (8.3) [32]. We
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linearize the eigenvalues λ1,2(xs) about ǫ = 0:

λ1(xs) = a11(xs) +
a12(xs)a21(xs)

a11(xs)
ǫ +O(ǫ2) (8.6)

λ2(xs) =

(

a22(xs)−
a12(xs)a21(xs)

a11(xs)

)

ǫ +O(ǫ2). (8.7)

For small ǫ, a11(xs) is the dominating term in (8.6). Thus, if ǫ is sufficiently small, the sign
of λ1(xs) is determined by the sign of a11(xs). Moreover, |λ2(xs)| ≪ |λ1(xs)| in the limit
ǫ→ 0, since λ1(xs) = O(1) and λ2(xs) = O(ǫ). These properties of λ1 and λ2 are used to
draw conclusions for our model in the following subsection.

8.1.2 Application to our model

Our core model (8.1) has at least one fixed point xs, since the x1-nullcline xa
2(x1) :

(xmin
1 , xmax

1 ) → IR+ is surjective, which guarantees an intersection with the x2-nullcline
xb

2(x1) : IR+ → IR+. We have already illustrated this in Chapters 6 and 7. Including the
time scale parameter ǫ, our core system is written as

ẋ1 = f1(x) = s1 + k11
x2

1

x2
1 + θ2

11

1

θ12 + x2

− γ1x1

ẋ2 = f2(x) = ǫ

[

s2 − γ2
1

θ2
21 + x2

1

x2

]

.

(8.8)

In our model (8.1), and hence also in (8.8), the product a12(x)a21(x) is negative for all
x ∈ E. This product is the weight of the negative feedback loop including both variables
x1 and x2. Furthermore, due to the degradation term −γ2(x1)x2, a22(x) < 0 everywhere
in the state space. Thus, the condition a11(xs) < 0 implies that tr(Jf(xs)) < 0 and
det(Jf(xs)) > 0. In this case, the real parts of both eigenvalues are negative, and xs

is stable independent of ǫ. Hence, in our system (8.1), a11(xs) > 0 is necessary for the
occurrence of a Hopf bifurcation and thus for the existence of a stable limit cycle.

For small ǫ, a11(xs) is the dominating term in (8.6). Thus, if ǫ is sufficiently small, then
a11(xs) > 0 implies λ1(xs) > 0, which states that in the limit ǫ→ 0, a11(xs) > 0 is indeed
a sufficient condition for xs to be unstable. As a consequence, whenever the core system
has a single fixed point between the minimum A and the maximum B of the x1-nullcline
(Figure 6.10), this fixed point can be destabilized and hence oscillating behavior can be
induced by decreasing the time scale parameter ǫ.

To illustrate the influence of ǫ on system (8.3), we apply a bifurcation analysis with
bifurcation parameter ǫ and model parameters

ω̂core = (0.038, 0.072, 0.38, 0.0072, 3.8, 1, 1, 0.1). (8.9)

We have already used this parameter set in the bifurcation analysis in Chapter 7. For these
parameters and an ǫ = 1, the system has a single steady state at xs = (0.66, 4.41).
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Figure 8.1: Bifurcation diagram for system (8.1) with time scale parameter ǫ and model
parameters given in equation (8.9). The system undergoes a supercritical Hopf bifurcation
at ǫHB = 4.3.

The bifurcation diagram is shown in Figure 8.1. The steady state xs of the system is
independent of ǫ and thus parallel to the x-axis. However, its stability depends on ǫ. A
supercritical Hopf bifurcation occurs at ǫHB ≈ 4.3. For ǫ < ǫHB, xs is unstable and the
system exhibits stable oscillations. The smaller ǫ, the larger is the oscillation amplitude.
When ǫ > ǫHB, xs becomes globally stable.

Figure 8.2 shows the long-term behavior of the system for different values of ǫ. The
limit cycle and the nullclines of the system are shown on the left hand side, corresponding
courses for variable x1 are shown on the right hand side. The larger ǫ, the smaller are
amplitude and period of the oscillation. For large time scale differences, represented by
ǫ = 0.1 in Figure 8.2, the system exhibits so-called relaxation oscillations: It moves slowly
along the x1-nullcline where x1 is in a quasi-steady state, and the system is determined
by the dynamics of x2. At the points where the steady state of x1 vanishes, the system
quickly ‘jumps’ to the new steady state. The system is determined by the fast time scale
during this transition. This is also reflected in Figure 8.2: The increase of variable x1

from its lowest to its highest value is very fast, as can be seen in the course on the right
hand side for ǫ = 0.1. The slow component x2 on the other hand does not change much
during this transition, indicated by the course of the limit cycle for ǫ = 0.1 in the Figure
on the left hand side, which proceeds almost parallel to the x1-axis during this transition.
Subsequently, the system evolves along the x1-nullcline, where x1 slowly decreases and
x2 increases. When the system reaches the local maximum of the x1-nullcline, the stable
steady state for x1 vanishes when x2 increases further, and the system undergoes a second
fast transition during which x1 decreases.
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Figure 8.2: Dependence of the amplitude and the period of the oscillations on the time
scale parameter ǫ. Left: Limit cycles and nullclines of system (8.1) in the state space for
different time scale parameters ǫ = 0.1, 1, 3. Right: corresponding courses of component
x1. The smaller ǫ, the smaller are amplitude and period of the oscillations.

8.1.3 Stiffness due to time scale differences

Large time scale differences can lead to stiff differential equation systems. Stiffness, similar
to the stability of a fixed point, refers to properties of real parts of eigenvalues of the
Jacobian matrix Jf (x), which is constant only for linear systems. Accordingly, the term
stiffness is only ‘globally’ defined for linear differential equations. Stiffness refers to the ratio
of the real parts of the smallest and the largest eigenvalue. A linear system ẋ(t) = Ax(t) is
said to be stiff, if all real parts of eigenvalues of A are negative and differ in several orders
of magnitude, that is, if this ratio is ≫ 1,

maxλ∈Λ(A) |ℜ(λ)|
minλ∈Λ(A) |ℜ(λ)| ≫ 1. (8.10)

Here, Λ(A) is the set of eigenvalues of the matrix A, called the spectrum of A. In Chapter
2 we have seen that the solution of the linear system is a linear combination of exponential
functions eλt. Thus, a trajectory of the system rapidly moves towards the linear subspace
spanned by the eigenvector corresponding to the eigenvalues with large absolute value of
the real parts, and then slowly moves on this subspace towards the fixed point xs = 0.
The system is first determined by the fast time scale until the fast components are in a
quasi-steady state. Then, the system evolves on the slow time scale. Numerical integration
methods with a fixed step size ∆t are not appropriate for such stiff systems, since a suitable
∆t for the slow movement is larger than a suitable ∆t for the fast movement of the system.

For non-linear systems, stiffness is not globally defined, but refers to the linearization
ẋ ≈ Jf(x

∗)(x − x∗) about a state x∗. In our general model introduced in Chapter 2 and
also in the core model (8.1), stiffness is very sensitive to changes of the Hill-coefficients. A
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small increase of the Hill-coefficient mij in a regulation function

rij(xj) ∝
x

mij

j

x
mij

j + θ
mij

ij

(8.11)

leads to a large change of the derivative ∂rij(xj)/∂xj around the threshold value θij . This
affects the entry aij of the Jacobian matrix Jf (x) and hence the eigenvalues of the system.
The sensitive dependence of the eigenvalues on the Hill-coefficients mij and the thresh-
old values θij might be the reason for the observed numerical problems in Chapter 5 when
including both parameters as variables to be optimized into the conjugate gradient descent.

Summary
We have investigated how the stability of a fixed point xs of a planar system depends on
time scale differences between the two variables. In the limit of large time scale differences,
which corresponds to ǫ→ 0 in our model, we can linearize the eigenvalues of the Jacobian
matrix Jf(xs) about ǫ, which differ in one order of magnitude. Thus, large time scale
differences are related to stiffness of the system. The dynamic behavior of our core model
depends on this time scale parameter. We demonstrated this for a fixed parameter vector
ω̂core. Here, both oscillation amplitude and period increase when ǫ decreases. Moreover,
the system undergoes a Hopf bifurcation at which the unstable fixed point xs becomes
globally stable. Finally, we could show that the condition a11(xs) > 0, which is in our core
model necessary to destabilize a stable fixed point, becomes a sufficient condition in the
limit ǫ→ 0.

8.2 Time-delays

In this section, we account for time-delays, which refer, for example, to transcription, trans-
lation and translocation processes in a cell. Time-delays become important in biochemical
networks that include regulations on transcriptional and post-transcriptional level. Gene
expression is a slow process compared to a chemical modification of a protein such as
phosphorylation. This can be described by a time-delay τ accounting for the duration
between binding of a transcription factor to its binding site and the effect it has on the
concentration of the corresponding protein.

Time-delays have been shown to efficiently cause oscillations in biological systems (see
for example [23, 32, 167, 191, 194], [38] and references therein). Similar to a time scale
parameter ǫ, a time-delay τ can destabilize a stable steady state xs of a system via a
Hopf bifurcation, since the eigenvalues of the Jacobian matrix Jf(xs) depend on τ [82,
89, 111]. We start this section with an introduction about linear stability analysis of a
delay differential equation system in Subsection 8.2.1. The concepts are used to analyze
the stability of fixed points of our core model (8.1). In Subsection 8.2.2, we show that
time-delays can in fact cause a Hopf bifurcation in our system and hence lead to periodic
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behavior. An introduction to delay differential equations is given in [82, 89, 111]. Parts of
the contents in Subsection 8.2.1 can be found in [111].

8.2.1 Linear stability analysis in delay differential equations

A delay differential equation (DDE) is written as

ẋ(t) = f(x(t), z(t)), (8.12)

where z(t) is a functional of the past history of x(t) [194]. We concentrate on discrete
time-lags of the form

z(t) = x(t− τ). (8.13)

In contrast, for a distributed time-lag, z(t) is a weighted integral over previous states of
the system. In the following, we use the common short notations x for x(t) and xτ for z(t).

In order to get a unique solution of an ordinary differential equation ẋ = f(x), x ∈ IRn

and f ∈ C1, one has to specify an initial state vector x(0) ∈ IRn of n components. In
contrast, in order to solve a DDE system with discrete time-lag of the form (8.13), one
has to specify an initial function f0(t) : [−τ, 0]→ IRn, which describes the behavior of the
system in the time interval [−τ, 0]. Thus, a DDE system maps functions defined on a time
interval [t− τ, t] onto functions on the interval [t, t + τ ] [111]. A global analysis of a DDE
is more difficult than of the corresponding ODE with time-delay τ = 0. However, some
analysis techniques of finite-dimensional systems can be adapted to infinite-dimensional
systems. In particular, a DDE and its corresponding ODE have the same set of steady
states, and we can apply the Hartman-Grobman Theorem to analyze the stability of a
steady state xs in terms of the real parts of its eigenvalues for both systems [82]. For this,
the system has to be linearized about xs. The response to a small perturbation ∆x(t) of
the system in the state xs, which persists over a time interval of length τ , is described by

d

dt
∆x(t) = f(xs + ∆x, xs + ∆xτ ) ≈ Jf (xs)∆x + Jτ

f (xs)∆xτ . (8.14)

Here, ∆x = x− xs is the perturbation of the system at time t, and ∆xτ = xτ − xs denotes
the perturbation at time t− τ . The Jacobian matrices Jf(xs) and Jτ

f (xs) are defined as

Jf(xs) :=

(
∂fi(x, xτ )

∂xj

∣
∣
∣
xs

)

i,j=1,...,n

=: (aij(xs))i,j=1,...,n (8.15)

and Jτ
f (xs) :=

(
∂fi(x, xτ )

∂xτ
j

∣
∣
∣
xs

)

i,j=1,...,n

=:
(
aτ

ij(xs)
)

i,j=1,...,n
. (8.16)

Inserting the ansatz
∆x = eλtv (8.17)

into (8.14) leads to
λv =

[
Jf(xs) + e−λτJτ

f (xs)
]
v. (8.18)
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Thus, v is an eigenvector of the matrix
[
Jf (xs) + e−λτJτ

f (xs)
]

with associated eigenvalue
λ, which is characterized by the characteristic equation

χ(λ) = det
[
Jf (xs) + e−λτJτ

f (xs)− λI
]

= 0. (8.19)

Different from the characteristic equation of an ODE, which is a polynomial in λ, the char-
acteristic equation of a DDE contains exponential functions, here the term e−λτJτ

f (xs), and
can have an infinite number of roots [111].

We consider the characteristic polynomial χ(λ) for a steady state xs of a two-component
system of the form

ẋ1 = f1(x1, x
τ
2)

ẋ2 = f2(x1, x2)
(8.20)

with a variable x1 that depends on the state of variable x2 at a previous time t − τ .
In biochemical networks, this is for example the case when protein concentrations are
regulated by binding of transcription factors to their promoter regions. Here, the time-
delay τ corresponds to the time between binding of the transcription factors and the effect
it has on the concentration of the active protein. In eukaryotic cells, such time-delays can
also be used to incorporate transport or diffusion processes into the model.

For system (8.20), the Jacobian matrices Jf (xs) and Jτ
f (xs) in equation (8.19) are given

by

Jf =





∂f1(x1,xτ
2 )

∂x1

∣
∣
∣
xs

∂f1(x1,xτ
2)

∂x2

∣
∣
∣
xs

∂f2(x1,x2)
∂x1

∣
∣
∣
xs

∂f2(x1,x2)
∂x2

∣
∣
∣
xs



 =

(
a11 0
a21 a22

)

(8.21)

Jτ
f =





∂f1(x1,xτ
2)

∂xτ
1

∣
∣
∣
xs

∂f1(x1,xτ
2)

∂xτ
2

∣
∣
∣
xs

∂f2(x1,x2)
∂xτ

1

∣
∣
∣
xs

∂f2(x1,x2)
∂xτ

2

∣
∣
∣
xs



 =

(
0 aτ

12

0 0

)

. (8.22)

Here, we have dropped the dependence of the matrix entries aij on the steady state xs.
Inserting these matrices into (8.19) leads to

χ(λ) = (a11 − λ)(a22 − λ)
︸ ︷︷ ︸

=:f(λ)

− e−λτaτ
12a21

︸ ︷︷ ︸

=:gτ (λ)

= 0. (8.23)

A zero λ of χ(λ) is given as the intersection of the two functions f(λ) and gτ (λ). In order to
investigate the influence of a time-delay τ > 0 in comparison to the corresponding ordinary
differential equation with τ = 0 on the stability of a fixed point xs, we have to consider
how the signs of the real parts of λ depend on τ . For this, we write gτ (λ) as a function
g(λ, τ) of the two variables λ and τ and calculate the derivative of equation (8.23) with
respect to λ:

df(λ)

dλ
− dg(λ, τ)

dλ
= 0 (8.24)
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Inserting

df(λ)

dλ
= 2λ− (a11 + a22) (8.25)

and
dg(λ, τ)

dλ
=

∂g(λ, τ)

∂τ
· dτ

dλ
+

∂g(λ, τ)

∂λ

= −λaτ
12a21e

−λτ

(
dτ

dλ

)

− τaτ
12a21e

−λτ (8.26)

= e−λτaτ
12a21

[

−λ

(
dτ

dλ

)

− τ

]

(8.27)

into (8.24) and resolving for the derivative dτ/dλ leads to

dτ

dλ
=
−2λ + (a11 + a22)

λaτ
12a21

eλτ − τ

λ
. (8.28)

Since we are interested in the change of ℜ(λ) in dependence of τ , described by dℜ(λ)/dτ ,
we consider the real parts of both sides in equation (8.28), which have to be equal,

ℜ
[
dτ

dλ

]

= ℜ
[−2λ + (a11 + a22)

λaτ
12a21

eλτ − τ

λ

]

. (8.29)

Expressing the derivative dλ/dτ in polar corrdinates, dλ/dτ := R exp(iΦ), the real part of
the left hand side of (8.28) evolves to

ℜ
[
dτ

dλ

]

= ℜ
[(

dλ

dτ

)−1
]

= ℜ
[

1

Reiφ

]

=
1

R2
ℜ
[
Reiφ

]

=
1
∣
∣dλ
dτ

∣
∣2
ℜ
[
dλ

dτ

]

=
1
∣
∣dλ
dτ

∣
∣2

dℜ(λ)

dτ
.

(8.30)

Taking the real part of the right hand side of equation (8.28), we obtain the following
relation:

ℜ
[
−2λ+(a11+a22)

λaτ
12a21

eλτ − τ
λ

] /

· λ̄
λ̄

= ℜ
[
−2λλ̄+(a11+a22)λ̄

λλ̄aτ
12

a21
eλτ − τλ̄

λλ̄

] /

λλ̄ = |λ|2

= 1
|λ|2ℜ

[
−2|λ|2+(a11+a22)λ̄

aτ
12a21

eλτ − τ λ̄
]

= 1
|λ|2

(
1

aτ
12a21
ℜ
[(
−2|λ|2 + (a11 + a22)λ̄

)
eλτ
]
− τℜ(λ̄)

)

(8.31)

Inserting (8.30) and (8.31) into (8.29) and multiplying both sides by
∣
∣dλ
dτ

∣
∣
2
, the derivative

dℜ(λ)/dτ is given by

dℜ(λ)

dτ
=

∣
∣dλ
dτ

∣
∣
2

|λ|2
︸ ︷︷ ︸

=:c>0

·
(

1

aτ
12a21

ℜ
[(
−2|λ|2 + (a11 + a22)λ̄

)
eλτ
]
− τℜ(λ̄)

)

. (8.32)
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Inserting λ = iv into (8.32), we show that this derivative is positive for all λ in a neigh-
borhood of the imaginary axis:

dℜ(iv)

dτ
=

c

aτ
12a21

[
−2v2 cos(vτ) + (a11 + a22)v sin(vτ)

]
. (8.33)

The sin- and cos-terms can be eliminated by calculating the real and imaginary parts of
χ(iv) (equation (8.23)), which both have to become zero, and resolving for cos(vτ) and
sin(vτ), respectively:

ℜ(χ(iv)) = 0 ⇒ cos(vτ) =
a11a22 − v2

aτ
12a21

(8.34)

ℑ(χ(iv)) = 0 ⇒ sin(vτ) =
v(a11 + a22)

aτ
12a21

(8.35)

Finally, we get the following expression for an eigenvalue λ = iv on the imaginary axis:

dℜ(iv)

dτ
=

c

(aτ
12a21)2

[
2v4 + v2(a2

11 + a2
22)
]

> 0 (8.36)

This is a very nice result. It states that if the time-delay τ in system (8.20) is increased
and causes an eigenvalue λ of the Jacobian matrix Jf(xs) to cross the imaginary axis,
this crossing always happens from left to right. Hence, an unstable fixed point xu

s of an
ordinary differential equation can never be stabilized through a time-delay τ . However, a
fixed point xs that is stable in the ODE system can become unstable through a time-delay.

8.2.2 Application to our model

We include a time-delay τ into our core model (8.1) and show how it influences the behavior
of the system. Variable x1 is assumed to depend on the state of variable x2 at a previous
time point x2(t− τ) (Figure 8.3):

ẋ1 = f1(x1, x
τ
2) = s1 − γ1x1 + k11

x2
1

x2
1 + θ2

11

1

θ12 + xτ
2

ẋ2 = f2(x1, x2) = s2 − γ2
x2

x2
1 + θ2

21

(8.37)

Figure 8.4 shows the influence of τ on the limit cycle in the state space for parameter
ω̂core given in equation (8.9). Initial conditions were set to (x1, x2) = (0, 0) for t ∈ [−τ, 0].
The amplitudes of both variables increase with increasing τ . Corresponding time courses
for both variables are shown in Figure 8.5. It can be seen that also the oscillation period
increases with increasing delay τ .

Next, we demonstrate that a time-delay τ > 0 can indeed destabilize a stable fixed point
xs in our model by causing two complex conjugate eigenvalues to cross the imaginary
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Figure 8.3: Interaction graph of the two-component model (8.8). Variable x1 depends on
its own state and on the state of x2 at time t− τ . Variable x2 is negatively influenced by
x1.
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Figure 8.4: Effect of the time-delay τ in system (8.37) for values τ = 0, 10, 20. Initial
conditions were set to (x1, x2) = (0, 0) for t ∈ [−τ, 0]. The oscillation amplitude increases
with increasing time-delay τ . Transients are not shown.
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Figure 8.5: Effect of the time-delay τ in system (8.37) on the courses of variables x1 (left)
and x2 (right). The oscillation period and the amplitude increase with increasing parameter
τ . Transients are not shown.
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Figure 8.6: A time-delay can destabilize a stable fixed point xs of a planar system and
can lead to sustained oscillations. Here: Convergence of system (8.37) for τ = 0 (top)
and periodic behavior for τ = 20 (bottom). Parameters are given in equation (8.9), s2 was
changed to s2 = 0.03. Initial conditions were set to (x1, x2) = (0, 0) for t ∈ [τ, 0] in both
simulations. In the lower figures, the transients are not shown.

axis from left to right, which corresponds to a Hopf bifurcation. For this, we set the
synthesis rate s2 to s2 = 0.03, which causes the system to converge to a stable fixed point
xs = (1.04, 4.53). The corresponding courses of x1 and x2 are shown in Figure 8.6 (top).
For τ = 20, xs is unstable and the system shows periodic behavior (Figure 8.6 (bottom)).
Thus, there is a critical time-delay 0 < τcrit < 20 at which xs looses its stability. The
condition a11 > 0 can also be overcome by a time-delay τ . This means, positive auto-
regulation of one of the two components is no longer necessary for oscillations in DDEs.
In fact, a11(xs) < 0 for the parameters used in the above described example. This can be
seen by calculating a11(xs) and inserting the values given in equation (8.9) and the fixed
point xs = (1.04, 4.53):

a11(xs) =
∂f1(x1, x

τ
2)

∂x1

∣
∣
∣
xs

= −γ1 + k11
2x1,sθ

2
11

(x2
1,s + θ2

11)
2

1

θ12 + x2,s

= −5.01 · 10−2 (8.38)

Summary
In this Section, we have shown that time-delays can destabilize a fixed point xs of a
planar system. Applying these results to the core model, we demonstrated that amplitude
and period of the oscillation increase with increasing time-delay. Moreover, the condition
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a11 > 0 required for a Hopf bifurcation in the core model can be overcome by a critical
time-delay τ crit, whose value depends on the model parameters ω̂core. We concluded that
the inclusion of a time-delay τ is an efficient way to increase robustness of oscillations.

8.3 An excursion to higher dimensions

This section shall give an insight how higher dimensional systems can be analyzed. Here
again, we concentrate on the determination of fixed points and a method to analyze their
stability using Liapunov functions.

We consider the following system, which corresponds to the general additive model
derived in Chapter 2 with an interaction graph shown in Figure 8.7:

ẋ1 = s1 + k1,1
x

m1,1

1

x
m1,1

1 + θ
m1,1

1,1

+ k1,n
x

m1,n
n

x
m1,n
n + θ

m1,n

1,n

− γ1x1

=: g1(x1, xn)− γ1x1

ẋi = si + ki,i
x

mi,i

i

x
mi,i

i + θ
mi,i

i,i

+ ki,i−1

x
mi,i−1

i−1

x
mi,i−1

i−1 + θ
mi,i−1

i,i−1

+ ki,n
x

mi,n
n

x
mi,n
n + θ

mi,n

i,n

− γixi

=: gi(xi−1, xi, xn)− γixi i = 2, . . . , n− 1

ẋn = sn + kn,n
x

mn,n
n

x
mn,n
n θ

mn,n
n,n

+ kn,n−1

x
mn,n−1

n−1

x
m1,n−1

n−1 + θ
mn,n−1

n,n−1

− γnxn

=: gn(xn−1, xn)− γnxn

(8.39)

with si, γi > 0, ki,i, ki,n ≤ 0 for i = 1, . . . , n, ki,i−1 > 0 for i = 2, . . . , n and k1,n < 0.
Moreover, in order to restrict the domain of system (8.39) to be IRn

+, we set |s1| > |k1,n|,
|s2| > |kj,n| and |sn| > |kn,n|. We will also use the short hand notation

ẋ = g(x)−Gx, x ∈ IRn
+, (8.40)

with g : IRn
+ → IRn

+, g(x) := (g1, . . . , gn) and G is the n×n diagonal matrix which contains
the degradation rates on the diagonal, G := diag(γi).

The interaction graph in Figure 8.7 consists of interlocked negative circuits, each of
which contains exactly one negative regulation. The conditions for the parameters state
that the weight of edge e1,n is non-zero, we1,n 6= 0, whereas the remaining inhibitions are
allowed to have weight 0. The same holds for all auto-regulations, which have to be non-
positive, wei,i

≤ 0.

In Chapter 2, we have already shown the existence of a trapping region for system
(8.40). Here, lower and upper bounds are given by

xmin
1 = 1

γ1
(s1 + k1,1 + k1,n) xmax

1 = s1

γ1

xmin
i = 1

γj
(si + ki,i + ki,n) xmax

i = 1
γi

(si + ki,i−1)

xmin
n = 1

γn
(sn + kn,n) xmax

n = 1
γn

(sn + kn,n−1).

(8.41)
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Figure 8.7: Interaction graph of multiple interlocked negative circuits. We describe this
system by the general model derived in Chapter 2. The corresponding differential equation
system is given in (8.39), and as a short version in (8.40). Continuous lines have non-zero
weights, the weights of the dashed lines are also allowed to be zero.

In the following, we show that system (8.40) has a unique equilibrium xs ∈ IRn
+ within

this trapping region. This equilibrium is globally stable for a large region in the parameter
space. As we have seen in Chapter 6, uniqueness of xs also follows from the fact that the
interaction graph does not contain positive circuits. To show that xs is globally stable,
we will construct an appropriate Liapunov function for this system. Its existence implies
that no periodic solution can exist [130]. Here, we will also see that periodic behavior is
promoted by slow degradation processes. The proofs shown here are adapted to our system
from Mees and Rapp [130], who give general results for multiple loop feedback inhibition
systems.

We will need the concept of Liapunov functions and understand how they are related to
the stability of a fixed point xs of a system ẋ = f(x). This is explained in Subsection 8.3.1.
The existence of a unique fixed point is shown in Subsection 8.3.2. Finally, in Subsection
8.3.3, we present a Liapunov function to investigate the stability of this unique fixed point.

8.3.1 Liapunov functions

The Hartman-Grobman Theorem, which was introduced in Chapter 2, allows to charac-
terize the stability of steady states in terms of eigenvalues of the linearization about these
fixed points. This is only possible if the steady state xs is hyperbolic, that is, all eigenval-
ues of the Jacobian matrix Jf (xs) have eigenvalues λ with non-zero real part, ℜ(λ) 6= 0.
Liapunov’s method is an alternative method to investigate the stability of a fixed point
xs, which does not require to calculate the eigenvalues of Jf(xs) and is also applicable
for non-hyperbolic fixed points. The method relies on finding a positive definite function
V : U → IR0,+, called Liapunov function, which decreases along solution curves of the
differential equation [85]. This function can be used to determine if xs is stable or asymp-
totically stable. Moreover, it can provide information about the basins of attraction for
asymptotically stable fixed points [5, 85, 97].

Theorem 8.3.1 (Liapunov’s method [97]) Let xs be a fixed point for a differential
equation of the form ẋ = f(x), x ∈ IRn and a smooth function f : U ⊆ IRn → IRn.
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Let V : W → IR be a differentiable function defined on some neighborhood W ⊆ U of xs

such that:
(P1) V (xs) = 0 and V (x) > 0 ∀x 6= xs

(P2) The orbital derivative, that is, the derivative along the solution curve x(t), is non-
positive:

V̇ (x) :=

n∑

i=1

∂V (x)

∂xi
· ẋi =

n∑

i=1

∂V (x)

∂xi
fi(x) ≤ 0 in W \ {xs}. (8.42)

Then xs is stable. Moreover, if strictly
(P3) V̇ (x) < 0 in W \ {xs},
then xs is asymptotically stable. If W = U in condition (P3), then xs is said to be globally
asymptotically stable.

A function V which fulfills conditions (P1) and (P2) is called a smooth weak Liapunov
function in the small. It can be used to show that trajectories in a neighborhood W of
xs remain in a neighborhood for t ≥ 0. If the stricter condition (P3) holds, then V is a
smooth strict Liapunov function in the small. Its existence states that trajectories in a
neighborhood W of xs converge to xs for t ≥ 0. The neighborhood W of a smooth strict
Liapunov function belongs to the basin of attraction of xs, which is stated by the following
theorem:

Theorem 8.3.2 (Basin of attraction [97]) Let xs ∈ U be a fixed point of a dynamical
system ẋ = f(x) with a continuously differentiable function f : U → IRn and U ⊆ IRn an
open subset of IRn. Let furthermore V : W → IR be a Liapunov function for xs, defined on
a neighborhood W of xs. Let P ⊂W be a neighborhood of xs which is closed in U . Suppose
that P is positively invariant, i.e. for x ∈ P , the forward trajectory Γ+(x) ∈ P , and that
there is no trajectory in P \{xs} on which V is constant. Then xs is asymptotically stable,
and P is contained in the basin of attraction of xs, P ⊂ B(xs).

Thus, if the neighborhood W equals the domain of the differential equation, and (P1) and
(P3) are fulfilled, we refer to V as a global strict Liapunov function. The existence of
such a global strict Liapunov function implies global asymptotic stability of xs, and every
trajectory approaches xs for t→∞ [97].

Example 8.3.3 [Liapunov function] As an example, we construct Liapunov functions for
the one-dimensional system

ẋ = f(x) = 0.1− 0.5x +
x5

x5 + 1
x ∈ IR+, (8.43)

which describes a system with linear degradation and positive sigmoidal auto-regulation.
The fixed points of this system have already been investigated using the Hartman-Grobman
Theorem in Chapter 2. It has two stable fixed points x1

s and x3
s and an unstable fixed point

x2
s. Figure 8.8 shows the function f(x) and three functions V 1, V 2 and V 3 for each fixed
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point, respectively:

V 1(x) : (0, x2,s)→ IR0,+ : x 7→ (x− x1,s)
2, (8.44)

V 2(x) : (x1,s, x3,s)→ IR0,+ : x 7→ (x− x2,s)
2 (8.45)

V 3(x) : (x2,s,∞)→ IR0,+ : x 7→ (x− x3,s)
2 (8.46)

We consider the stable fixed point x1,s and the corresponding function V 1(x). V 1 is
a Liapunov function for x1,s. Condition (P1) is fulfilled, and in the domain of V 1(x),
∂V 1(x)/∂x and f(x) have opposite signs: For x < x1,s, ∂V 1(x)/∂x < 0 and f(x) > 0, for
x > x1,s, ∂V 1(x)/∂x > 0 and f(x) < 0. Hence, according to equation (8.42), V̇ 1(x) < 0,
and x1,s is asymptotically stable. The basin of attraction includes the interval (0, x2,s),
which is the domain of V 1. It is also the maximal domain and therefore the whole basin
of attraction of x1,s, which can in this example easily be read off the signs of the vector
field f(x). We can analogously show that x3,s is stable as well. V 3 is the corresponding
Liapunov function for x3,s. Also here, (x2,s,∞) is the basin of attraction of x3,s. Contrary,
the signs of ∂V 2(x)/∂x and f(x) are both negative for x < x2,s, and they are both positive
for x > x2,s. Thus, V̇ 2(x) > 0, and V 2(x) is not a Liapunov function for x2,s. Indeed, x2,s

is unstable. This can be seen, since V 2(x) is a Liapunov function for the stable fixed point
y2,s of the system ẏ = −f(y) with reversed vector field. Stable fixed points of this system
are unstable in the original system ẋ = f(x)1.

In general, finding a suitable Liapunov function can be a hard task. The norm ‖x− xs‖2,
which was also used in our example, is often a good candidate, since it fulfills condition
(P1). It is, however, not always appropriate to verify the conditions (P2) or (P3). For our
system (8.40), we use a more general scalar product as a Liapunov function.

8.3.2 Existence of a unique fixed point in IRn
+

System (8.40) has a unique fixed point xs ∈ IRn
+. We show this for each single variable. A

fixed point xs of system (8.40) is characterized by ẋs,i = 0, which leads to g(x) = Gx. For
variable x1 we have

∀xn =: κ ∈ IR+ : g1(0, κ) = s1 + k1,n
κm1,n

κm1,n + θ
m1,n

1,n

> 0. (8.47)

Moreover, g1(x1, κ) is monotonically decreasing with respect to x1,

∂g1(x1, κ)

∂x1
= k1,1

∂

∂x1

(

x
m1,1

1

x
m1,1

1 + θ
m1,1

1,1

)

≤ 0, (8.48)

since k1,1 ≤ 0 and x
m1,1

1 /(x
m1,1

1 + θ
m1,1

1,1 ) is a monotonically increasing function. Thus,
g1(x1, κ) = γ1x1 has a unique solution xκ

s,1 for each value xn = κ ∈ IR+. Moreover,
∂xκ

s,1(κ)/∂κ < 0, because of the negative regulation strength k1,n < 0.

1Personal communication with Dr. Daniel Weiss, Mathematical Institute, University of Cologne.
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Figure 8.8: Function f(x) in system (8.43) (black continuous line). It has three zeros x1,s,
x2,s and x3,s, which correspond to fixed points of system (8.43). The quadratic functions
V 1, V 2 and V 3 are candidates for Liapunov functions of x1,s, x2,s and x3,s, respectively,
since they fulfill condition (P1) in Theorem (8.3.1). Additionally, condition (P3) holds
for V 1 and V 3, which identifies both functions as Liapunov functions for x1,s and x3,s,
respectively. Hence, these two fixed points are asymptotically stable. V 2 is not a Liapunov
function for x2,s, since neither (P2) nor (P3) are fulfilled.
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Figure 8.9: The fixed point xκ
s,1 is the intersection of γ1x1 and g1(x1, κ). Here, xκ

s,1 is
shown for two different values κa and κb > κa. Increasing κ shifts g1(x1, κ) downwards. As
a consequence, xκ

s,1 decreases.

Figure 8.9 illustrates the fixed point xκ
s,1, which is the intersection of γ1x1 and g1(x1, κ),

as a function of x1 for two different values κa and κb > κa. Increasing κ shifts g1(x1, κ)
downwards. As a consequence, xκ

s,1 decreases.

Similarly, for fixed xn = κ, g2(x
κ
s,1, x2, κ) = γ2x2 has a unique solution xκ

s,2, which
decreases with increasing κ, ∂xκ

s,2(κ)/∂κ ≤ 0. This can be continued to obtain xκ
s,j for

j = 3, . . . , n − 1. Finally, using the same arguments, also gn(x
κ
n−1, κ) = γnκ has a unique

solution κ̂. The unique fixed point is given by xs = (xκ̂
s,1, x

κ̂
s,2, . . . , x

κ̂
s,n−1, κ̂).

8.3.3 Stability of the fixed point

We present a global strict Liapunov function V (x) for system (8.39), which shows that xs

is globally attracting in case of sufficiently large degradation rates [130].

Let

V (x) :=
1

2

〈
∆x, G−1∆x

〉
with ∆x := x− xs. (8.49)

We have to show that the so defined function V (x) fulfills the properties (P1) and (P3)
with domain W = IRn

+. For this purpose, we write V (x) as

V (x) =
1

2

n∑

i=1

1

γi

(xi − xi,s)
2. (8.50)

It is easy to see that V (xs) = 0, V (x) > 0 for all x ∈ IRn
+ \ {xs} and V (x) ∈ C1(IRn

+). To
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show V̇ (x) < 0, we calculate

V̇ (x) = 〈∇V (x), f(x)〉 (8.51)

=

〈
n∑

i=1

(
∆xi

γi

)

ei, f(x)

〉

(8.52)

=

n∑

i=1

(
∆xi

γi

)

· fi(x). (8.53)

Inserting
f(x) = ẋ = ẋ− ẋs = g(x)− g(xs)

︸ ︷︷ ︸

=:∆g

−G ·∆x (8.54)

into (8.53) leads to

V̇ (x) =

[
n∑

i=1

(
∆xi

γi

)

ei

]

· (∆g −G ·∆x)

=

n∑

i=1

(
∆xi

γi
∆gi

)

−
n∑

i=1

(∆xi)
2

=
〈
∆x, G−1∆g

〉
− 〈∆x, ∆x〉 .

(8.55)

This expression is negative if
〈
∆x, G−1∆g

〉
< 〈∆x, ∆x〉 . (8.56)

The Cauchy-Schwarz inequality states that
〈
∆x, G−1∆g

〉
≤ ‖∆x‖ · ‖G−1∆g‖, (8.57)

and thus it is sufficient to show

‖G−1∆g‖ < ‖∆x‖. (8.58)

For this, we use a generalization of the mean value theorem, which estimates the difference
between f(x) and f(y) with the supremum of derivatives on the segment joining two points
x ∈ IRm and y ∈ IRm for a continuous function f : IRm → IRn2.

Theorem 8.3.4 (Mean value theorem [55]) Let f : IRm → IRn be a continuous func-
tion defined on a neighborhood of a segment S joining two points x0 and x0 + t of IRm. If
f is differentiable at every point of S, then

‖f(x0 + t)− f(x0)‖ ≤ ‖t‖ sup
0≤ξ≤1

‖f ′(x0 + ξt)‖. (8.59)

2The Theorem is more generally defined on two Banach spaces, which are vector spaces V over the
real or complex numbers and a norm ‖ · ‖, such that every Cauchy sequence in V has a limit in V . For
our purposes, it is sufficient to consider the vector space IRn with a vector norm ‖ · ‖V , for example the
Euclidean norm ‖x‖2 =

√∑n

i=1
|xi|2, and an operator-norm for a linear operator f induced by this vector

norm through ‖f‖ := sup‖x‖V =1
‖f(x)‖.
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If we identify x0 + t in Theorem 8.3.4 with x and x0 with xs, then t corresponds to ∆x.
Furthermore, we set f := G−1g, which is smooth in IRn

+, and obtain the following estimate
according to Theorem 8.3.4:

‖G−1∆g‖ ≤ ‖∆x‖ sup
0≤ξ≤1

‖JG−1g(xs + ξ∆x)‖. (8.60)

Thus, xs is globally asymptotically stable if

sup
0≤ξ≤1

‖JG−1g(xs + ξ∆x)‖ < 1 ∀x ∈ IRn
+. (8.61)

This can always be fulfilled, for example, by increasing the degradation rates γi in system
(8.40). For this, we consider the Jacobian matrix JG−1g(x) of the function G−1g(x):

G−1g(x) =








1
γ1

g1(x1, xn)
1
γ2

g2(x1, x2, xn)
...

1
γn

gn(xn−1, xn)








, (8.62)

which is given by

JG−1g(x) =












1
γ1

∂g1(x1,xn)
∂x1

0 . . . . . . 1
γ1

∂g1(x1,xn)
∂xn

1
γ2

∂g2(x1,x2,xn)
∂x1

1
γ2

∂g2(x1,x2,xn)
∂x2

0 . . . 1
γ2

∂g2(x1,x2,xn)
∂xn

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 . . . 1
γn

∂gn(xn−1,xn)
∂xn−1

1
γn

∂gn(xn−1,xn)
∂xn












. (8.63)

Equation (8.63) shows that ‖JG−1g(x)‖ decreases with increasing degradation rates for all
x ∈ IRn

+. Thus, condition (8.61), which assures global asymptotic stability of xs, can always
be fulfilled by multiplying G with a sufficiently large number α ∈ IR+, since

G2 = αG1 ⇒ ‖JG−1
2 g(x)‖ =

1

α
‖JG−1

1 g(x)‖. (8.64)

This shows that whenever system (8.40) oscillates, these oscillations can be destroyed by
increasing the degradation rates. For single loop systems, it has been shown that an unsta-
ble fixed point xs is a sufficient condition for system (8.40) to show periodic behavior [130].
Unfortunately, Liapunov’s method only provides sufficient conditions for xs to be stable.
So, even if condition (8.61) is not fulfilled for the fixed point xs, this does not necessarily
mean that xs is unstable3.

3Actually, Liapunov functions can also be used to show that a fixed point is unstable [4], but this is
beyond the scope of this thesis here.
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Summary
In this section, we considered a system of n components with an interaction graph of
interlocked negative circuits shown in Figure 8.7. This system has a unique fixed point xs.
We presented a Liapunov function for the system and showed that xs is globally stable for
sufficiently large degradation rates. In contrast to an analysis of the stability of a fixed
point xs via linearizing about xs, the fixed point does not need to be hyperbolic, and the
eigenvalues of Jf (xs) do not have to be calculated. Albeit the fixed point xs is not explicitly
given here, the Liapunov function allows for conclusions about the stability xs.

8.4 Concluding remarks

We investigated some theoretical aspects of differential equation models with monotonous
bounded regulation functions, which are related to the robustness of periodic behavior. We
have shown two different model extensions to increase this robustness, time scale differ-
ences and time-delays. Both extensions aim at the destabilization of a stable fixed point
xs, whose stability is characterized by properties of the Jacobian matrix Jf(xs). Thus,
we concentrated our analysis on the effect of time scale differences and time-delays on the
characteristic equation of Jf(xs). Both extensions were investigated for two-dimensional
systems, and we illustrated effects on the core model derived in Chapter 6.

In Section 8.1, we included a time scale parameter ǫ into the model, which accounts
for time scale differences in the temporal change of system variables. If the time scale
differences in a dynamical system are sufficiently large, which corresponds to a small value
ǫ ≪ 1, singular perturbation theory can be used to describe the dynamic behavior of
the system. We used a Taylor expansion for the eigenvectors of the Jacobian matrix
and demonstrated that the condition a11(xs) > 0, which corresponds to a positive auto-
regulation of component x1 in our core system and which is necessary for the system
to show sustained oscillations, becomes a sufficient condition when ǫ is sufficiently small.
According to this mechanism, for any system with the same qualitative course of nullclines,
if it has a single stable fixed point xs between minimum and maximum of the x1-nullcline,
xs can be destabilized, causing the system to oscillate, by choosing ǫ sufficiently small.

A bifurcation analysis with bifurcation parameter ǫ and numerical simulations have
shown that both amplitude and period of the oscillations can be increased by decreasing
ǫ. We also observe a change in the dynamic of the system, which is typical for systems
with different time scales: The variables of the system change on two different time scales,
which causes a ‘jumping dynamic’, and which is denoted by relaxation oscillation. Most
of the time, the system evolves on the slow time scale. Here, the fast variables are in a
quasi-steady state all the time. When this steady state vanishes at certain points in the
state space, the system undergoes a transition to a new stable steady state. During this
transition, the changes of the variables are determined by the time scale of the fast vari-
ables, and thus the states change rapidly until the new steady state for the fast variables
is reached. From here on, the system continues again to move unhurriedly along the slow
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manifold.

A duration between a cause and its effect on the temporal change of a variable was
incorporated into our model in Section 8.2. Here, the system of ordinary differential equa-
tions becomes a time-delayed differential equation system, which complicates an analysis of
the system in general. Fortunately, the stability of a fixed point xs can still be investigated
via the characteristic equation of the Jacobian matrix Jf(xs). Different to ordinary dif-
ferential equation systems, the characteristic equation is not a simple polynomial in terms
of eigenvalues λ, but contains additional exponential terms. These terms can complicate
the stability analysis. However, an inclusion of time-delays has turned out to be a very
efficient way to increase the robustness of oscillations with respect to parameter variations.
Similar to an increase in time scale differences, a time-delay can increase both, amplitude
and period of the oscillation. In contrast to the first extension, the condition a11(xs) > 0,
positive auto-regulation which exceeds degradation for component x1 in the steady state
xs, is not even necessary in a time-delayed system. We demonstrated this with a concrete
example using again the two-dimensional core system.

Finally, Section 8.3 analyzes the stability of a fixed point xs of a system with more than
two variables. The general additive model derived in Chapter 2 was used to describe this
regulatory network. This system has a predefined interaction graph, which consists of in-
terlocked negative circuits. Here, analysis methods that were useful in order to understand
phenomena in the planar core system can no longer be used. For example, a determination
of fixed points, which has been done by searching for intersections of nullclines in the two-
dimensional system, is more difficult here. Moreover, the Poincaré-Bendixson Theorem,
which was used to prove the existence of a limit cycle in Chapter 6, is based on planar
systems. Thus, a change from a two-variable system to higher dimensions can pose some
difficulties, as will also be outlined in Section 9. However, monotonicity of the regulation
functions in our general model and the special structure of the interaction graph considered
here allowed to prove the existence of a unique fixed point xs. Furthermore, we discussed
the concept of Liapunov functions, which is an alternative way to investigate the stability
of fixed points. We constructed a Liapunov function for our model which emphasizes the
maintenance of the global asymptotic stability of the system’s fixed point by fast degra-
dation processes. In particular, in case that xs is not stable, increasing the degradation
rates γ has always a stabilizing effect. We conclude that periodic behavior is maintained
by small degradation rates.

All extensions discussed in this chapter are biologically motivated. Time scale differ-
ences and time-delays become especially important in models for biochemical networks,
which comprise transcriptional and post-transcriptional regulation processes. Here, we
have to describe chemical modifications, which happen on a fast time scale, and at the
same time regulation of gene expression via binding of transcription factors to the DNA,
which are much slower. In addition, non-zero concentration gradients and transport pro-
cesses via diffusion or active transport from the nucleus to the cytoplasm are important in
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eukaryotic cells. Thus, although we have illustrated concepts with the core model, which
was actually specifically derived for the yeast cell cycle machinery, results presented here
can also be embedded into a more general framework.
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Chapter 9

Conclusions

In the last chapter we will point out essential aspects of this work. A short summary and a
discussion of results as well as technical improvements concerning the approaches used have
already been addressed in the conclusion sections of each chapter. The main statements of
this thesis are summarized in Section 9.1. In Section 9.2, we will retrospectively respond
to consequences for the ultimate goal of constructing in silico models. Finally, Section 9.3
discusses perspectives for future work, which arise from the precedent conclusions.

9.1 Summary

In this thesis, we inferred biochemical networks from experimental data with the focus to
investigate mechanisms related to the network’s dynamic behavior. An introduction into
this field was given in Chapter 1. Here, we described cellular regulation processes and
frequently used approaches for network inference.

In Chapter 2, we developed a model for gene regulatory networks which interprets
these networks as homogeneous chemical reaction systems. The system’s dynamic was
described by chemical reaction kinetics, resulting in a system of ordinary differential equa-
tions. More specifically, the expression rate of a gene was described to be regulated through
binding of a transcription factor to a specific DNA binding site in the promoter region of
this gene. This binding was modeled as a reversible binding reaction in chemical equilib-
rium, which comprises a quasi-steady state approximation. The resulting average number
of transcription factor-binding site complexes was taken to be a measure for the effect on
the expression rate of the regulated gene, resulting in a sigmoidal dependence of a gene’s
expression rate on the concentration of its transcription factors.

Given initial concentrations of all network components, this approach presumes that
the temporal behavior of these concentrations is uniquely determined by a parameterized
function, the unique solution of the differential equation system. This assumptions allows
to use time series concentration data to estimate model parameters and is thus the basis
for network inference with microarray data. The model was applied to three regulatory

177
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subsystems in Chapters 3, 4 and 5.

Chapter 3 focused on the response of the Mycobacterium tuberculosis DNA repair
system. When the bacterium’s DNA is damaged, a signal transduction pathway induces
expression of SOS genes. These SOS genes are responsible to stop cell division and to
repair DNA breaks before cell division continues. Besides a well-known core mechanism
regulating these genes, an alternative mechanism specific for the Mycobacterium is assumed
to act in concert with this core mechanism. Our study focused on this alternative core
mechanism, whose components are not yet completely known. We built a model of the
core network and estimated model parameters using gene expression time series of the
bacterium’s response to a treatment with DNA damaging drugs. Interaction information
from literature and pairwise correlations of gene expression values were used to extend this
network by further components and regulations. The behavior of the resulting extended
network was compared with the core network, and we concluded that the gene Rv2719c,
whose function was not yet annotated at that time, might play an important role in the
DNA repair system. Further work supporting this hypothesis has independently been
published by other groups in the meantime [20, 28].

Mathematically, the model describes the relaxation of a differential equation system to
a stable fixed point after a temporary external perturbation, which is related to the DNA
damaging signal. Such a relaxation can satisfactorily be captured by the model class used
here.

Mechanisms of specific regulation by pleiotropic regulators in bacteria, which are known
to bind unspecifically to the DNA, were addressed in Chapter 4. Specific repression of the
Escherichia coli bgl operon by the global regulator protein H-NS, which was investigated
here, serves as a paradigm for this specific control. The bgl operon encodes proteins for
the fermentation of a certain sugar, and its expression is repressed by binding of H-NS
to two DNA binding sites. Although binding of H-NS is relatively unspecific, repression
of the operon is highly effective. The expression rate of the operon in hns mutants is
about 100 times higher than expression in the wild type. Further, experiments indicate a
threshold regulation: Within a certain range of promoter activities, the 100-fold repression
can be released by a moderate (3-fold) increase in the promoter activity. We set up a
model for this repression and used measurements of bgl lacZ reporter fusions to estimate
parameters. According to the inferred model, specificity of repression is caused by the
mutual enhancement of two interlocked positive circuits in the corresponding interaction
graph. One of these circuits reflects the influence of aborting transcription elongation on
transcription initiation via forming DNA loop structures. The second one includes the
antiterminator protein BglG, a product of one of the operon genes, which can destroy
DNA structures called terminators, thereby promoting the expression of the operon.

Due to these positive feedback loops, the model can show complex dynamic behav-
ior. Such positive feedback loops are generally related to hysteresis and multi-stationarity.
The observed threshold phenomenon is described by switches between two different stable
steady states of the model.
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While Chapters 3 and 4 addressed questions related to the systems under study, and
the models include a lot of specific biological knowledge, Chapter 5 deals with the typical
problem to have many parameters to be estimated but at the same time only few measure-
ments available. A formulation of the parameter estimation problem as an optimization
problem is severely under-determined. Thus, it entails a restriction of the parameter space
in order to formulate the parameter estimation problem as a well-defined optimization
problem. We introduced a new Bayesian approach to reconstruct gene regulatory networks
from time series concentration data. For this, the model was embedded into a proba-
bilistic framework, interpreting the measured concentration values as random variables.
Prior distributions over model parameters, formulated as probability density functions,
were specified to prevent overfitting. In particular, a hierarchical distribution over inter-
action strengths favors small regulation strengths. Thus, it drives the solution to sparse
networks, in which only few interactions have strengths differing considerably from zero.
Parameters were estimated by maximizing the posterior probability with respect to model
parameters. We compared results obtained with the Bayesian approach and the classical
maximum likelihood estimation. Evaluation was done by means of a receiver operator char-
acteristic analysis, which compares the structure of the inferred network with a reference
network. Results on simulated data showed that the Bayesian approach can outperform
maximum likelihood estimation, in particular in case of sparse and noisy datasets, which
is the typical setting in microarray studies. An application on a real dataset of the Sac-
charomyces cerevisiae cell cycle showed that also here the Bayesian approach was better
than maximum likelihood, and we revealed some of the main interactions of the cell cycle
network. However, an analysis of this dataset turned out to be more difficult, and results
are worse than on simulated datasets of the same size. We discussed several reasons for this.

An analysis of the networks inferred with the Bayesian approach revealed an interesting
phenomenon, which was further investigated in the following chapters: While the struc-
ture of the networks were successfully learned, at least for the simulated data, most of the
inferred models converge quickly to a steady state for both, the simulated and the yeast
cell cycle network. Thus, although performing reasonable in the receiver operator charac-
teristic analysis, the model seems not to be appropriate to capture the periodic expression
of cell cycle genes. The theory of dynamical systems was used to explain this phenomenon
and to investigate mechanisms causing oscillating behavior in chemical reaction systems.
Our model, as well as many other systems of differential equations used to model reg-
ulatory networks, can be assigned to a class of dynamical systems having constant sign
Jacobian matrices. Solutions of these systems tend to converge to steady states, which was
explained in Chapter 6. According to this, circuits in the interaction graph are the most
interesting structures related to dynamic behaviors such as multi-stationarity, hysteresis
and oscillations. A positive circuit is necessary for a system to have more than just one
steady state, and a negative circuit is required for a system to show periodic behavior.
An example of a positive circuit causing multi-stationarity had already been given in the
model for the regulation of the bgl operon in E. coli in Chapter 4.
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Consequently, we introduced a two-component activator-inhibitor model, which was
derived according to regulations of the yeast cell cycle. It comprises a negative circuit
and a positive auto-regulation and is able to show sustained oscillations. This model was
assumed to be the core mechanism that determines the system’s qualitative dynamic be-
havior. According to this core model, periodic behavior of network components is related
to a stable limit cycle in the corresponding differential equation system. Using microarray
data of the yeast cell cycle, we were able to infer an oscillating model with a maximum
likelihood estimation.

In Chapter 7, we extended the core model by further components and regulations us-
ing the Bayesian approach introduced in Chapter 5. In this connection, it turned out that
the qualitative dynamic behavior of the core model is structurally not stable. Oscillations
are sensitive to changes of model parameters. Results on simulated data gave an impression
of the quality of datasets needed to capture oscillating behavior. The datasets have to be
much better with respect to size and noise level compared to the data needed to infer the
interaction graph. Although we were able to infer an oscillating seven-component network
for the yeast cell cycle, also here results are quite sensitive to parameter variations. In this
connection, a bifurcation analysis of the core network showed that a negative circuit in
the interaction graph is far from sufficient to guarantee periodic behavior. This raised the
question about mechanisms leading to robust sustained oscillations in a living organism
and how to include these into the model.

Finally, extensions of the core model addressing these questions were proposed in Chap-
ter 8. These extensions go beyond ordinary differential equations. We showed how differ-
ent time scales and an inclusion of a time-delay, respectively, can increase the robustness
of oscillations in the core network. The underlying mechanism in both extensions is the
destabilization of a steady state that is stable in the original model, since the existence of a
single unstable steady state implies the existence of a stable limit cycle in our model. This
allowed to examine the system’s temporal behavior by investigating solely the linearization
about this steady state, which facilitated the analysis considerably, in particular, for delay
differential equations. In case of large time scale differences, we used a Taylor expansion
to analyze the qualitative behavior in terms of the eigenvalues of the linearization in the
limit of large time scale differences. According to the Hartman-Grobman Theorem, eigen-
values are related to the stability of steady states, and thus they determine the qualitative
temporal behavior of the system. Theoretical results and an application to the core model
for the budding yeast cell cycle indicate that time scale differences and time-delays can
maintain sustained oscillations of activator-inhibitor oscillator models and therefore might
also play a role in stabilizing periodic behavior in general.

Chapter 8 also gave an insight into the analysis of higher-dimensional systems. We
considered a system of n components and interlocked negative circuits and showed that this
system has a unique steady state, which is stable if degradation is not too slow. Stability
was investigated here using Liapunov’s method. We presented a Liapunov function, which
allowed to analyze the stability of a fixed point without the need for explicitly linearizing
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the system and calculating eigenvalues. Once more, results provided an explanation why
it is difficult to model periodic behavior with autonomous chemical reaction systems.

9.2 In silico models - The ultimate goal

Here, we come back to the ultimate goal of systems biology, the in silico reconstruction
of cellular systems, which was outlined in the beginning of this thesis. A realization of
such in silico models requires an understanding of interactions between cell components.
This can be achieved at different levels, and we will classify these into a qualitative level
of an understanding about interactions of cell components, an understanding of the dy-
namic behavior and, finally, an understanding about the relation of experimental data and
phenotypes, which is most interesting for medical practice.

9.2.1 Qualitative analysis

A first step from the characterization of single cell components towards a system-level
understanding is the investigation of relations between these components. Microarray
data are currently most often used for this purpose. Methods have been proposed to find
genes which are differentially expressed under different conditions or in different probes and
tissues. Results can help to group genes into functional modules, which refer to different
regulation processes in the cell.

A further step is to describe functional dependencies between these components. In
recent years, many top down approaches have been developed to infer regulatory networks.
The main problem in this setting is to get biologically reasonable results in spite of sparse
datasets, which renders classical regression methods useless. Thus, in order to formulate
the parameter estimation problem as a well-defined optimization problem, the models
are usually kept simple, meaning that they consist of preferably few parameters. Such
simplified models are not always based on underlying regulation mechanisms.

The inferred networks reflect regulation processes which affect the amount of mRNAs.
These are mainly transcriptional regulation processes, for example, transcription factors
binding to specific binding sites in the promoter region of the regulated gene. Thus,
microarray data provide insights into the regulation of transcription initiation. These top
down approaches might be appropriate to reveal rough structures of the systems. For
example, global transcription factors that regulate many genes or groups of commonly
regulated genes might be detected. Thus, such approaches can provide a good starting
point for further investigations.

9.2.2 Capturing the dynamic behavior

Learning the dynamic behavior of regulatory networks is often more complicated than the
reconstruction of the interaction graph only. In general, neither the simplified models nor
microarray data alone are sufficient to obtain an in-depth understanding of a system’s
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behavior or to predict complex behaviors [108]. Often, the observed dynamic behavior
can only be explained by the interrelation between various regulation processes acting at
the transcriptional and at the post-transcriptional level. All applications presented in this
thesis are biochemical networks, which include transcriptional and post-transcriptional reg-
ulations. These post-transcriptional regulations affect the dynamic behavior of the systems
considerably. Hence, they have to be included into a dynamic modeling approach.

A detailed understanding of dynamic cell processes poses a challenge in many aspects:
First, it requires larger amounts of and, in particular, more accurate data compared to
the datasets required to infer interactions between cell components. Second, mRNA con-
centration data have to be supplemented by further data containing information about
post-transcriptional and post-translational regulation mechanisms. Both goals are per-
haps beyond the scope of current experimental practices [108] and give thus the direction
for future research. Third, the corresponding models generally have to be built in terms
of underlying reaction processes. Moreover, since post-transcriptional regulation processes
such as chemical modifications are fast processes compared to the regulation of transcrip-
tion, the models have to include processes on different time scales, which has extensively
been discussed in this thesis.

Consequently, a detailed analysis of the dynamic behavior of a regulatory network
usually focuses on subnetworks of 10-15 components at most.

9.2.3 Relevance for medical applications

Finally, the highest level of understanding is the characterization of the phenotype from
experimental data and the ability to predict the system’s response to interventions. This
level is required for applications in medical practice such as drug design, an investigation
of side effects or personalized therapies on the basis of genome and proteome data. Some
successes have already been achieved in this field: Herceptin, for example, is a drug against
breast cancer, which is effective for only 16% of the patients. However, Herceptin is highly
efficient for these patients. Gene tests are used to identify if a patient is among these 16%.
Another example is the pain reliever Codein, which cannot be converted by about 10% of
patients due to a lack of an enzyme and is thus useless for these patients.

Since drugs are related to an understanding of regulation mechanisms in eukaryotes, it
is probably most important to go beyond mRNA data and investigate post-transcriptional
and post-translational regulations, which characterize the proteome. In Chapter 1 we
pointed out some differences between eukaryotes and prokaryotes concerning the regulation
of gene expression. It is known that the main difference of both is not the number of genes,
but the various regulation mechanisms, which are far more complex in eukaryotes. Thus,
while using mRNA concentrations to characterize the proteome in prokaryotes might be
reasonable, this is generally not the case in eukaryotes.

First, an eukaryotic cell has a complex spatial structure divided in different compart-
ments, and concentrations are determined by diffusion and transport processes. Such
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processes can result in a delayed reaction and might have a considerable influence on the
system’s dynamic behavior, as investigated in Chapter 8. Also transcription and trans-
lation happen spatially separated. Experimental techniques which provide information
about protein concentrations within the cell are only gradually becoming feasible.

Second, only little is known so far about several post-transcriptional regulation mecha-
nisms such as alternative splicing or the function of non-coding RNAs, which are assumed
to influence gene expression as well. But many diseases such as Alzheimer’s disease for
example are related to defects in the proteome, such that high-throughput techniques and
analysis methods that can accurately capture the proteome are required in the future.

A further difficulty poses the difference between experiments in test tubes (in vitro) and
in living organisms (in vivo). A gene’s function depends among other factors on the stage of
development in which the gene is active. To investigate mechanisms in vivo, methods have
been developed to manipulate the genome in mice. The aim of the International Mouse
Mutagenesis Consortium (IMMC), an international project of genome research institutes,
is the complete characterization of gene functions and the storage in public databases
within the next decades.

9.3 Perspectives for future work

9.3.1 Top down approaches and multiple data sources

Resulting from the fact that the temporal behavior of most cellular regulatory systems is
determined at the transcriptional and at the post-transcriptional level, microarray data
presumably have to be supplemented by other data sources, which provide information
about post-transcriptional and post-translational regulation processes. In Chapter 3, we
have used an algorithm to extract regulatory subnetworks, which includes interaction infor-
mation and gene expression data at the same time. Results indicate that this combination
is indeed useful to facilitate network inference. Only recently, a couple of publications
appeared, which propose inference approaches including multiple data sources such as
literature information, transcription factor binding site data and gene expression measure-
ments [13, 162, 187, 212, 215]. Many of these methods are multi-step procedures.

Bayesian approaches are particularly useful in this setting. As explained in Chapter
5, they provide a natural framework to include information from multiple data sources
[13, 162, 187]. Thus, any knowledge about the system at hand can in principle be included
into a Bayesian inference approach, which can lead to integrated models on the one hand,
and which also helps to restrict the search space in order to formulate the parameter
estimation problem as a well-defined problem on the other hand.
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9.3.2 An analysis of core mechanisms

We pointed out the importance of circuits in the interaction graph for the qualitative
behavior of the system. Many core networks based on positive and negative feedback
mechanisms have already been proposed to explain the underlying mechanisms causing
phenomena such as multi-stationarity and periodic behavior [8, 43, 203]. Most of them
are two-component models. Activator-inhibitor or substrate-depletion oscillator models are
used in order to explain sustained oscillations in biological systems. However, we have seen
that these simplified models are not always structurally stable. This complicates network
inference on the one hand, and it comprises a contradiction to robust dynamic behaviors in
living organisms on the other hand. Thus, it is an interesting questions how these models
can be extended in order to make qualitative dynamic behaviors more robust.

Here, we have investigated the robustness of oscillations and showed that large differ-
ences in the changing rates of system variables, expressed by small time scale parameters
in the activator-inhibitor model presented, can destabilize a stable fixed point and thus
lead to oscillations. The inclusion of a time-delay into the model seems to be even more
effective in extending the region in the parameter space in which the system has a stable
limit cycle, thereby stabilizing the periodic behavior.

Parameter estimation for these extensions, which go beyond ordinary chemical reaction
systems, require spatiotemporal data to describe diffusion and transport processes. Fur-
ther, an estimation of stochastic fluctuations in the regulation of gene expression is only
possible with single cell experiments.

Questions concerning such extensions can be formulated more generally: To what ex-
tend is the simplified description of cellular systems as chemical reaction systems justified?
And what are the limitations of this modeling in terms of capturing and unraveling dy-
namic phenomena? Once again, these questions are related to the question about what we
can hope to learn from microarray data alone, independently from the sparsity problem.

9.3.3 From planar systems to higher dimensions

Most analyses presented in Chapters 6, 7 and 8 concentrate on the two-dimensional core
network derived in Chapter 6. We have also argued in Chapter 6 that it is in some cases
possible to analyze each circuit in the interaction graph separately and to reduce a single
circuit to a two-component system.

While such planar systems are easier to analyze than higher-dimensional systems from
a mathematical point of view, an extension by further variables might be desirable from a
biological point of view. This is not always an easy task, and we will mention some difficul-
ties here. Of course, planar systems have the advantage of a two-dimensional state space,
which allows for a good graphical representation. Fixed points are given as intersections
of nullclines, which partition the state space into regions in which the signs of the vector
field components are constant. This has extensively been used throughout the thesis.

Eigenvalues of the Jacobian matrix Jf(xs) of a fixed point xs are solutions of a poly-
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nomial of degree two, and hence, the stability of xs can easily be determined. Eigenvalues
for Jacobian matrices of higher-dimensional systems usually have to be determined numer-
ically.

Moreover, the IR2 is topologically not equivalent to the IRn for n ≥ 3 [147]. For planar
systems, the Jordan curve Theorem, which states that any simple closed curve γ separates
the IR2 into two disjoint open connected sets having γ as their boundary, is frequently
used to proof theorems about flows of planar systems. These proofs cannot be directly
transfered to systems of higher dimension.

In general, the determination of the nature of limit sets of non-linear systems with more
than two variables is still a challenging field, whereas the theory for planar systems is more
complete [85, 147]. Peixoto’s Theorem [85], for example, provides necessary and sufficient
conditions for a planar system to be structurally stable. Also the Poincaré-Bendixson The-
orem, which has been used to show the existence of a limit cycle for the core system, makes
statements about planar systems. Here, we could even show that if a limit cycle exists,
its basin of attraction is the whole state space. In contrast, one of the few methods of
reliably establishing the existence of limit cycles in higher-dimensional systems is the Hopf
bifurcation Theorem [98], which assures the existence of a limit cycle in a neighborhood
of a Hopf bifurcation value µ0. However, this theorem, as well as the Hartman-Grobman
Theorem, makes statements about a system’s local behavior in a neighborhood of a limit
set. They give no information about the basin of attraction.

Albeit these mathematical challenges, it would be interesting to investigate the relation
between systems of interlocked feedback loops and the dynamic behavior. An extension
of two component feedback loop models for further components have already been shown
to affect the qualitative dynamic behavior. An example has been given in this thesis: In
Chapter 4, we demonstrated that two interlocked positive circuits acting in concert can
amplify switch-like behavior. This is in accordance with related work, in which a combi-
nation of two positive circuits was shown to accelerate switches and increase robustness
[16, 18, 35]. Extensions of oscillatory models for further components have also already been
investigated [119, 134]. For example, adding further components to a negative feedback
loop can create an effect similar to the time-delay investigated in Chapter 8 [134]. We have
shown that the inclusion of a time-delay can make the positive auto-regulation, which was
necessary for destabilizing a stable fixed point in a two-component model, dispensable. A
well-known oscillator model of ordinary differential equations without time-delays is the
Goodwin oscillator [68]. This model consists of a single negative feedback loop of three
components. A model of two interlocked circuits is also considered in [130]. In this model,
oscillations can occur even without cooperative regulations, that is, with Hill-coefficients
equal to one.

9.3.4 Robustness of regulatory networks

Robustness is an essential property of many biological systems, which has probably not
emerged by chance, but is a result of evolution. Robustness of biological systems is phe-
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nomenologically expressed by, for example, the adaptation of organisms to environmental
changes and the insensitivity to specific kinetic rates. From the modeling point of view,
robustness is related to negative feedback control mechanisms, redundancy, structurally
stable intrinsic mechanisms and modularity, that is, the physical or functional insulation
of subsystems, such that failure in one module does not affect other cell processes [108].

Thus, an understanding of mechanisms and principles underlying robustness of regula-
tory networks is essential for a system-level understanding of cellular networks.

Here, we have investigated robustness in terms of structural stability of qualitative
dynamic behaviors with respect to parameter variations. This was exemplarily done for
an oscillating system. For this purpose, we applied a bifurcation analysis, which is a
powerful method to obtain statements about this robustness in dependence of only one or
two variables at the same time. Programs for this already exist and are applicable if the
model is built on only a few, say less than ten, parameters.

However, the creation of a single bifurcation diagram can computationally be very
expensive. Moreover, variations of model parameters that reflect noise due to the mea-
surement procedures or stochasticity of cell processes are more realistically modeled by
small random perturbations of many parameters simultaneously. Accordingly, a bifurca-
tion analysis is thus not always practicable to analyze the robustness of models containing
a lot of variables and parameters.

Statistical models, which allow to vary several parameters simultaneously, would be
desirable in this setting. This also raises the necessity of methods which can automatically
classify models according to their qualitative behavior. Some work has already been done
in this field [8, 43, 72, 203]. Vilar et al. [203], for example, investigated the noise resistance
in a model for circadian oscillations. This model can, similar to the core model introduced
in this thesis, exhibit hysteresis-based oscillations, and also here, in comparison to the
oscillation period, the amplitude has been shown to be relatively insensitive to parame-
ter variations. Craciun et al. [43] investigated conditions for a reaction network to show
switch-like behavior. In Lu et al. [121], robustness was defined in terms of distances from
the model parameter vector ω to a bifurcation hyperplane.

Finally, to broaden the current understanding of regulation processes in a cell and to
take advantage also for medical applications is a high demand for the following decades. It
requires further research in several directions comprising experimental techniques as well
as analysis methods and can only be obtained by interdisciplinary cooperations between
researchers.
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Dependence of the chemical
equilibrium on temperature -
Arrhenius equation

Throughout this thesis, we assume constant equilibrium constants K for all binding inter-
actions. This assumption only holds if all external conditions like temperature or pH-values
are constant. Thus, it is usually not possible to directly compare results from different ex-
periments. The temperature dependence of a chemical reaction is often described by the
Arrhenius equation,

K(∆G, T ) ∝ e−
∆G
T . (A.1)

Here, ∆G denotes the free enthalpy of the binding reaction. Its sign characterizes whether
a reaction in a test-tube happens spontaneously, which is the case if ∆G < 0. Actually,
the enthalpy is itself dependent on temperature. But equation (A.1) is often used as an
empirical relation, and the dependence of ∆G on T is neglected. In this form, it states
that an increase in temperature or a decrease in the free enthalpy, for example caused by
a catalyst, increases the rate of the reaction exponentially. This empirical equation (A.1)
has already been used to describe binding processes of transcription factors to the DNA
[56, 78, 168].

A derivation of the exact form of (A.1) is provided by the theory of statistical mechan-
ics, which describes many-body systems with measurable thermodynamic variables such as
pressure, temperature, chemical potential, entropy, volume or the number of particles. A
set of these variables, which give a complete description of the system, is called macro-state
of the system. This theory assumes that the system can be described by averaging over
different micro-states, which provide the most detailed description of the system. For ex-
ample, for an ideal gas, which consists of non-interacting, point-like particles, a micro-state
is the information about space and momentum for each single particle, which corresponds
to a point in the phase space of the system. The macro-state of the system includes
knowledge about the number of particles, the volume and the temperature. A measurable
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macro-state usually corresponds to many micro-states, but we do not know anything about
these micro-states. We describe this lack of knowledge by an ensemble of systems with the
same macro- but different micro-states. Thermodynamic variables correspond to averages
over all systems in this ensemble. The exact dependence of K on T and ∆G is obtained
by minimizing the total entropy S, which is here defined as S := E/T with inner energy
E, with respect to constant temperature and pressure.

This theory is similar to the assumptions underlying our model for gene regulatory
networks derived in Chapter 2. Micro-states correspond to reaction processes between
transcription factors and DNA binding sites in single cells. We observe a macro-state,
which is assumed to be an average over many binding reactions. With this assumption,
the system is described deterministically, although the underlying processes are in fact of
stochastic nature.
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Bayesian learning approach –
Derivatives of the likelihood function

ω̂MLE = arg min
ω
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A necessary condition for a vector ω to minimize the objective function FMLE(ω) is that
all partial derivatives with respect to ωa, a = 1, . . . , 2n + 3n2 vanish:
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This leads to the following equations:
Derivatives with respect to synthesis rates sl, l = 1, . . . , n:
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Inserting

∂

∂sl

(hl(ω, x̃(t))− x̃l(t + ∆t))

=
∂

∂sl

(

x̃l(t) + ∆t

[

sl − γlx̃l(t) +
n∑

j=1

rlj(x̃j(t))

]

− x̃l(t + ∆t)

)

= ∆t

into (B.2) leads to

∂FMLE(ω)

∂sl
=

∆t

σ2
ξ

T−1∑

t=1

(hl(ω, x̃(t))− x̃l(t + ∆t))

=
∆t

σ2
ξ

T−1∑

t=1

(

x̃l(t) + ∆t

[

sl − γlx̃l(t) +
n∑

j=1

rij(x̃j(t))

]

− x̃l(t + ∆t)

)

.

Derivatives with respect to degradation rates γl, l = 1, . . . , n:
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Derivatives with respect to regulation strengths klz, l, z = 1, . . . , n:
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Inserting

∂
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into (B.4) leads to
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Derivatives with respect to threshold values θlz, l, z = 1, . . . , n:
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into (B.5) leads to
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Appendix C

Reference network

The Saccharomyces cerevisiae cell cycle - Reference network The reference network used
to evaluate results of the Bayesian approach in Chapter 5 is shown in Figure C.2. It was
deduced from the network shown in Li et al. [116] (Figure C.1) in the following way:
The transcription factor complexes SBF and MBF, which are post-transcriptionally mod-
ified by Cln3 and which active Cln1 and Cln2 and Clb5 and Clb6, respectively, were

omitted. The paths Cln3
+−→ SBF

+−→ Cln1/2 and Cln3
+−→ MBF

+−→ Clb5/6 appear in

our reference network as direct paths Cln3
+−→ Cln1/2 and Cln3

+−→ Clb5/6. Similarly, we

summarized the regulations Clb1/2
−−→ SBF

+−→ Cln1/2 and Clb1/2
+−→ MBF

+−→ Clb5/6 to

a single negative regulation Clb1/2
−−→ Cln1/2 and a single positive regulation Clb1/2

+−→
Clb5/6, respectively. We omitted the two proteins Cdh1 and Sic1 as well, and summarized
corresponding regulations in the same way.
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Figure C.1: Regulatory network of the budding yeast Saccharomyces cerevisiae, copied
from Li et al. [116]. The cyclin Cln3 is assumed to be regulated by the cell size, which
is described as a checkpoint in [116]. Further details about single interactions and corre-
sponding references can be found in the supplement of [116]. A reduced version of this
network was used as a reference to evaluate results of the Bayesian approach in Chapter 5.
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Figure C.2: Reduced regulatory network of the yeast cell cycle which was used as a reference
network for the Bayesian approach. Interactions are deduced from the network in Figure
C.1, and corresponding descriptions are provided in Tables C.1 and C.2.
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Table C.1: Regulations in the reference network of the yeast cell cycle. Most descriptions
and corresponding references are listed in the supplement of Li et al. [116].
Regulation Description
Cln3 → Cln1/2 The Cln3/Cdc28-complex activates the transcription factor

complex SBF by phosphorylation. SBF acts as a transcrip-
tion factor for Clb1/2.

Cln3 → Clb5/6 The transcription factor complex MBF is activated by Cln3
and facilitates transcription of Clb5/6.

Cln1/2 → Cln1/2 Cln1/2 activates its own transcription factor complex SBF.
Cln1/2 → Clb5/6 Cln1/2-Cdc28-complex triggers degradation of Sic1, which in

turn inactivates the Clb5/6-Cdc28 complex.
Cln1/2 → Clb1/2 Twofold regulation: Cln1/2-Cdc28-complex inhibits Cdh1,

which accelerates degradation of Clb1/2. Moreover, Cln1/2-
Cdc28 phosphorylates Sic1 for degradation, which in turn in-
activates Clb1/2-Cdc28 by binding.

Clb1/2 → Cln1/2 Clb1/2 inactivates the transcription factor complex SBF,
which triggers transcription of Cln1/2

Clb1/2 → Clb1/2 Twofold regulation: Clb1/2 phosphorylate Sic1, which in turn
inactivates Clb1/2. Additionally, Clb1/2 inactivates Cdh1 by
phosphorylation, which in turn controls degradation of Clb1/2.

Clb1/2 → Clb5/6 Clb1/2 phosphorylates Sic1, which inactivates the Clb5/6-
Cdc28-complex. Maybe there is a further negative regulation
from Clb1/2 to MBF, the transcription factor of Clb5/6.

Clb1/2 → Mcm1/SFF Clb1/2 phosphorylates the complex.
Clb1/2 → Swi5 Clb1/2 phosphorylates Swi5 such that it cannot enter the nu-

cleus.
Clb1/2 → Cdc20 Cdc20 is a subunit of the anaphase promoting complex (APC),

which is activated by Clb1/2 by phosphorylation.
Clb5/6 → Clb1/2 Twofold regulation: Clb5/6 phosphorylate Sic1 and Cdh1,

which both inhibit Clb1/2.
Clb5/6 → Clb5/6 Clb5/6 phosphorylates Sic1, Sic1 in turn inhibits the Clb5/6-

Cdc28-complex.
Clb5/6 → Mcm1/SFF Clb5/6 initiate DNA replication. In this phase G2/M,

Mcm1/SFF is activated via binding of Ndd1.
Cdc20/14 → Clb1/2 Direct interaction: Cdc20/APC degrades Clb1/2. Twofold

indirect interaction: Cdc14 can dephosphorylate and thus ac-
tivate Sic1 and Cdh1, which inhibit Clb1/2.

Cdc20/14 → Clb5/6 Cdc20 presents Clb5/6 to the APC for ubiquination. More-
over, Cdc14 dephosphorylates Sic1, which inhibits Clb5/6.

Cdc14 → Swi5 Cdc14 dephosphorylates and thus activates Swi5.
Mcm1/SFF → Clb1/2 Mcm1/SFF is the transcription factor of Clb1/2.
Mcm1/SFF → Cdc20 Transcription control is assumed to depend on Mcm1/SFF.
Mcm1/SFF → Swi5 Mcm1/SFF is the transcription factor of Swi5.
Swi5 → Clb1/2 Swi5 is the transcription factor of Sic1, which inhibits Clb1/2.
Swi5 → Clb5/6 Swi5 is the transcription factor of Sic1, which inhibits Clb5/6.
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Table C.2: Yeast cell cycle genes included in our analysis. Information is copied from the
Saccharomyes genome database SGD (http://www.yeastgenome.org).
Standard name systematic name name description
Cdc14 YFR028C Cell division cycle
Cdc20 YGL116W Cell division cycle
Cdc28 YBR160W Cell division cycle
Cdh1 YGL003C Cdc20 homolog
Clb1 YGR108W Cyclin B
Clb2 YPR119W Cyclin B
Clb5 YPR120C Cyclin B
Clb6 YGR109C Cyclin B
Cln1 YMR199W Cyclin
Cln2 YPL256C Cyclin
Cln3 YAL040C Cyclin
MBF Mlul cell cycle box Binding Factor

Transcription factor complex of Mbp1 and Swi6
Mbp1 YDL056W Mlul-box binding protein
Mcm1 YMR043W Minichromosome maintenance
SBF Swi4/Swi6 cell cycle box Binding Factor

Transcription factor complex of Swi4 and Swi6
Swi4 YER111C Switching deficient
Swi5 YDR146C Switching deficient
Swi6 YLR182W Switching deficient
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[50] H. de Jong, J.-L. Gouzé, C. Hernandez, M. Page, T. Sari, and J. Geiselmann. Quali-
tative simulation of genetic regulatory networks using piecewise-linear models. Bull.
Math. Biol., 66(2):301–340, 2004.

[51] H. de Jong and M. Page. Qualitative simulation of large and complex genetic reg-
ulatory systems. In W. Horn, editor, Proceedings of the 14th European Conference
on Artificial Intelligence (ECAI2000), Berlin, pages 191–195, Amsterdam, 2000. IOS
press.

[52] P. De Leenheer and D. Aeyels. Stability properties of equilibria of classes of cooper-
ative systems. IEEE Transactions on Automatic Control, 46(12):1996–2001, 2001.



BIBLIOGRAPHY 201

[53] P. D’Haeseler, X. Wen, S. Fuhrman, and R. Somogyi. Linear modeling of mRNA
expression levels during cns development and injury. Pac. Symp. Biocomp., pages
41–52, 1999.

[54] B.F. Dibrov, A.M. Zhabotinsky, and B.N. Kholodenko. Dynamic stability of steady
states and static stabilization in unbranched metabolic pathways. J. Math. Biol.,
15:51–63, 1982.
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Differential-Systems. Ber. Math. Phys., 94:1–22, 1942.

[99] S. Huang. Gene expression profiling, genetic networks, and cellular states: an in-
tegrating concept for tumorigenesis and drug discovery. J. Mol. Med., 77:469–480,
1999.

[100] D. Husmeier. Sensitivity and specificity of inferring genetic regulatory interactions
from microarray experiments with dynamic Bayesian networks. Bioinformatics,
19(17):2271–2282, 2003.

[101] F. Jacob and J. Monod. Genetic regulatory mechanisms in the synthesis of proteins.
J. Mol. Biol., 3:318–356, 1961.
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