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Zusammenfassung 

Dem biologischen Artkonzept zufolge werden Arten als Gruppen von Individuen 

definiert, die sich miteinander fortpflanzen und von anderen Gruppen reproduktiv 

isoliert sind. Eine verbreitete Form reproduktiver Isolation im Tierreich ist 

intrinsische postzygotische Isolation durch Hybridensterilität oder erhöhte 

Hybridensterblichkeit. Der allgemeinen Überzeugung zufolge werden Fehlfunktionen 

in Hybriden durch epistatische Interaktionen zwischen inkompatiblen elterlichen 

Allelen verschiedener Loci (sogenannte Dobzhansky-Muller-Inkompatibilitäten) 

verursacht. Die Identifizierung von Genen, die zur reproduktiven Isolation von Taxa 

beitragen, ist wichtig für das Verständnis des Artbildungsprozesses, allerdings hat 

sich dies in der Vergangenheit als schwierig erwiesen.  

Bei der Entstehung postzygotischer Isolation scheint die Evolution von 

Genregulation eine wichtige Rolle zu spielen. Deshalb wurden in der vorliegenden 

Studie mittels Microarrays genomweite Genexpressionsdaten erhoben, um 

regulatorische Unterschiede zwischen drei Unterarten der Hausmaus, Mus musculus 

musculus, M. m. domesticus und M. m. castaneus, zu identifizieren. Die Analyse von 

drei verschiedenen Organen (Gehirn, Leber und Testis) der jeweiligen Unterarten und 

ihrer reziproken Hybriden erlaubte die Bestimmung des Vererbungsmodus für 

Genexpressionsunterschiede in den F1-Hybriden. Der gröβte Teil der Transkripte 

zeigt additive Expression in den Hybriden; nur wenige sind dominant oder 

überdominant exprimiert, mit Ausnahme einer Kreuzung, die viele missexprimierte 

Gene im Testis aufweist. Drei verschiedene Analysemethoden sowie 

Kontrollexperimente bestätigen, dass additive Vererbung von Genexpressions-

unterschieden vorherrschend zu sein scheint. Gene, die differentiell exprimierten 

Transkripten zugrunde liegen, sind vielversprechende Kandidaten, die zu 

reproduktiver Isolation durch regulatorische Inkompatibilitäten beitragen könnten.  

Einge Transkripte mit Expressionsunterschieden zwischen M. m. musculus und 

M. m. domesticus wurden für weiterführende Untersuchungen ausgewählt. Die 

Validierung der Expressionsniveaus dieser Gene mittels quantitativer Real-Time PCR 

hat die Notwendigkeit verdeutlicht, Microarray-Daten durch unabhängige Methoden 

zu konfirmieren. Die Ergebnisse zeigen klar, dass Expressionsdaten, auch beim 

Vergleich sehr nah miteinander verwandter Taxa, durch Unterschiede in der 
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Gensequenz beeinflusst werden können, wobei dies für Microarray-Daten 

gleichermaβen gilt wie für nachfolgende Validierungsmethoden. 

Unterschiede in der Evolution von Genexpression zwischen Taxa sind nicht 

zwangsläufig funktional bedingt. Aus diesem Grund wurde in der vorliegenden Studie 

versucht, funktionale Konsequenzen solcher Unterschiede mittels der Analyse von 

Individuen aus der natürlichen musculus-domesticus Hybridzone in Bayern für zwei 

ausgewählte Kandidaten-Gene nachzuweisen. Für diese zwei Gene, die einen groβen 

Expressionsunterschied zwischen den Elternarten zeigen, konnte kein Anzeichen 

dafür festgestellt werden, dass sie einen Beitrag zur reproduktiven Isolation der 

beiden Unterarten leisten, da sie in Bezug auf Introgression nicht limitiert zu sein 

scheinen. Die Kombination der Hybridzonenuntersuchung mit Ergebnissen aus 

populationsgenetischen Analysen lässt vermuten, dass eine adaptive Introgression der 

Allele, die das hohe Expressionslevel verursachen, wahrscheinlicher ist. Für beide 

Gene konnte nachgewiesen werden, dass der Phänotyp, der mit einem hohem 

Expressionsniveau einhergeht, das abgeleitete Merkmal darstellt und mit reduziertem 

Nucleotid-Polymorphismus und negativen Tajima’s D-Werten assoziiert ist. Die 

Evolution von regulatorischer und Protein-kodierender Sequenz scheint für beide 

Gene voneinander entkoppelt und die Expressionsunterschiede ein Resultat von cis- 

und nicht trans-regulatorischen Änderungen zu sein.  
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Abstract 

Under the Biological Species Concept species are groups of interbreeding individuals 

that are reproductively isolated from other such groups. A common form of isolation 

in animals is intrinsic postzygotic isolation via hybrid sterility/inviability. There is a 

strong consensus that hybrid dysfunctions are caused by epistatic interactions between 

incompatible alleles from different loci (Dobzhansky-Muller incompatibilities). The 

identification of genes that contribute to reproductive isolation between taxa is critical 

to the understanding of the process of speciation, but identifying such genes has 

proven to be difficult.  

It appears that regulatory evolution might play an important role in postzygotic 

isolation and the formation of species. The present study employs a whole genome 

microarray approach to identify genes with regulatory differences between three 

subspecies of the house mouse, Mus musculus musculus, M. m. domesticus and  

M. m. castaneus. The within-locus mode of inheritance for gene expression was 

assessed for three different tissues (brain, liver and testis) by studying the subspecies 

and their male reciprocal F1 hybrids. The vast majority of transcripts are additively 

expressed in the hybrids with only few transcripts showing dominance or 

overdominance in expression except for one direction of one cross, which shows large 

misexpression in the testis. The reliability of the observed pattern was ensured by 

three different analysis methods as well as control experiments. The results suggest 

that additivity is the general mode of inheritance regarding gene expression changes 

between house mouse subspecies. Differentially expressed transcripts provide 

promising candidate genes that could be related to reproductive isolation through 

regulatory incompatibilities.  

Several transcripts with expression differences between M. m. musculus and  

M. m. domesticus were selected for further investigation. A validation approach using 

quantitative Real-Time PCR strongly emphasizes the need for confirmation of 

microarray candidate genes. The results show that sequence differences even between 

closely related taxa have the potential to influence expression data from both 

microarray and follow-up validation approaches.  

As divergent gene expression evolution between taxa may be entirely neutral, 

samples from a transect of the natural musculus-domesticus hybrid zone in Bavaria 
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were analyzed in order to assess functional consequences for two candidate genes. 

Both genes show large expression differences between the subspecies. The analysis 

revealed that it is unlikely that the two genes contribute to reproductive isolation 

between the subspecies as no sign of limited introgression is evident. Rather, the 

hybrid zone approach in combination with population genetic analyses suggests 

adaptive introgression of those alleles that are associated with high expression levels. 

In both cases, the high expression phenotype represents the derived state and is 

associated with reduced levels of nucleotide polymorphism and a negative Tajima’s 

D. For both genes, regulatory and protein-coding evolution is decoupled and the 

expression difference results from cis- rather than trans-acting changes. 
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General Introduction 1 

1 General Introduction 
 

1.1 Species, speciation and the evolution of reproductive isolation 

The definition of a species and the question of how speciation – the splitting of one 

species into two – takes place has been discussed intensively and controversial since 

the publishing of Darwin’s “The origin of species” (1859), the book which set the 

basis for the Modern Synthesis. The founders of the Modern Synthesis substantially 

changed our understanding of what a species is and therefore what speciation means. 

Dobzhansky and Mayr in particular promoted the “Biological Species Concept” 

(BSC). Mayr provided the most famous definition of the BSC, which in its latest 

version states that “species are groups of interbreeding natural populations that are 

reproductively isolated from other such groups” (Mayr 1995). Thus, species are 

characterized by reproductive isolation instead of being defined by morphological 

differences. This species concept is in large parts a result of Dobzhansky’s 

observation that hybrids between Drosophila sibling species display hybrid sterility, 

hybrid inviability and assortative mating (Dobzhansky 1937); an observation which 

laid the foundation for the formulation of his reproductive isolation species concept, 

which was later incorporated into Mayr’s definition of a species (Mayr 1942). 

Reproductive isolation is associated with isolating barriers, “those biological features 

of organisms that impede the exchange of genes with members of other populations” 

(Coyne and Orr 2004, p. 29), which can be divided into premating isolation and 

postmating isolation, while the latter furthermore discriminates prezygotic and 

postzygotic barriers. All forms, which include various mechanisms, ensure the genetic 

distinctness of species and that they can undergo independent evolutionary fates (Orr 

and Presgraves 2000). Postzygotic isolation refers to sterile or inviable hybrids 

between two species, while the other forms prevent the occurrence of interspecies 

hybrids. The BSC has been widely understood as requiring absolute barriers to gene 

flow between taxa, i.e. no fertile hybrids exist (e.g. Mayr 1963, Barton and Hewitt 

1985). Other scientists consider species as entities, which retain their distinctness in 

sympatry even if occasional hybridization takes place (Grant 1971, Wright 1978). 

Coyne and Orr (2004) suggest using a “sliding scale” to define the species status. 

Taxa with substantial gene flow (despite morphological distinctness) are not seen as 
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species, but “as reproductive barriers become stronger, taxa become more and more 

“species-like”” until reproductive isolation is complete and taxa are “good species”. 

This requires, as they admit themselves, somewhat subjective decisions about the 

species status. However, the primary aim of speciation studies is to understand the 

underlying mechanisms of the speciation process. Therefore the question if a species 

is a “good species” may be of secondary interest.  

Since the early 1980’s the interest in speciation studies has shifted towards a 

genetical perspective of how speciation can be understood (Orr and Presgraves 2000, 

Orr et al. 2004, Wu and Ting 2004, Mallet 2006). Most studies that are aimed at 

uncovering genes which are involved in the process of speciation deal with the 

analysis of intrinsic postzygotic reproductive isolation, i.e. the occurrence of sterile or 

inviable hybrids between two species. The term “speciation gene” has been widely 

applied for genes that cause intrinsic postzygotic reproductive isolation and is 

somewhat unfortunately named, since it strongly implies that genes that reduce hybrid 

fitness are the cause of speciation (Mallet 2006, Orr 2005). It has been suggested that 

reproductive isolation evolves as a by-product of differential adaptation of 

populations (Mayr 1963), which would mean that “speciation genes” are genes that 

represent aspects of differential adaptation (driven by natural or sexual selection 

(Albert and Schluter 2005)) which then reduce fitness of hybrids (Wu 2001). Orr and 

Presgraves (2000) suggest using the term “speciation gene” for any gene that reduces 

hybrid fitness, as many of the hybrid problems accumulate after the attainment of 

complete reproductive isolation, since it has been demonstrated that assortative 

mating, hybrid sterility and inviability increase gradually with genetic distance 

(Coyne and Orr 1997). Analysis of such genes nevertheless will help to shed light on 

the “mystery” of speciation.  

How is intrinsic postzygotic isolation caused on a genic basis? Dobzhansky 

(1937) and Muller (1940) presented experimental evidence that sterility and 

inviability in certain crosses of species crosses is caused by incompatibilities between 

different loci. Today a large body of evidence has been obtained that shows that 

hybrid dysfunctions are indeed due to interactions of different loci (e.g. Orr and 

Coyne 1989, Wittbrodt et al. 1989, Gadeau et al. 1999, Presgraves 2003, Sweigart et 

al. 2007). The Dobzhansky-Muller model explains how such between-locus 

incompatibilities between populations can evolve within populations without 
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selection acting against any intermediate step. Incompatibilities arise as pleiotropic 

by-products of the divergence of genomes of geographically separate lineages: alleles 

from different loci that increase fitness in a pure-species genetic background fail to 

interact properly when brought together in a hybrid genomic background (Figure 1.1). 

In each of the two populations displayed in Figure 1.1, a different mutation occurs and 

goes to fixation, each yielding a fully viable and fertile genotype. Brought together in 

a hybrid genome, there is no guarantee that the combination of these alleles functions 

correctly, as they have never been tested in combination by natural selection. The 

combination may result in sterility or inviability. A distinct feature of hybrid 

incompatibilities therefore is that they require epistasis: nonadditive interactions 

between alleles at different loci (Dobzhansky 1936A, 1937, Muller 1940, 1942). It is 

important to note that a two-locus incompatibility would be the simplest case: many 

more loci might be necessary to cause sterility/inviability. Furthermore a genic 

incompatibility may only have slight effects and complete reproductive isolation may 

require the cumulative effect of many incompatibilities (Coyne and Orr 2004).  

 

aabb

aaBbAabb

AAbb aaBB

Hybrid = AaBb

aabb

aaBbAabb

AAbb aaBB

Hybrid = AaBb  

Figure 1.1: The Dobzhansky-Muller 
model. The common ancestor of the two 
species is shown at the bottom, time 
runs upwards. The model shows how a 
genic incompatibility between two loci 
can evolve unopposed by natural 
selection. Figure adapted from Coyne 
and Orr 2004. 

 

 

To understand the genetic architecture of intrinsic postzygotic isolation, one has 

to identify the interacting genes that cause hybrid sterility or inviability. Despite much 

effort, only recently genes have been identified. The reason for the difficulties in 

identifying such genes is that “the traits of interest, hybrid sterility and inviability, are 

by their nature barriers to crossing and thus are refractory to standard genetic 

approaches” (Presgraves 2003). Only since actual genes have been identified, it is 

possible to address fundamental questions about the factors that cause reproductive 

isolation like “which normal function have these genes within species?”, “do they 

typically belong to a specific class?”, “are they rapidly evolving?”, “are they 
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adaptively evolving?”, and so on (Orr et al. 2004). Four of the five identified hybrid 

incompatibility genes were found in Drosophila (see Orr et al. 2004, Wu and Ting 

2004, Orr 2005 for a review and Masly et al. 2006). OdsH, an X-linked homeobox 

gene (a presumed transcription factor), is misexpressed in the testes of D. simulans x 

D. mauritiana hybrids and causes male sterility in backcrossed hybrids (Ting et al. 

1998, Sun et al. 2004, Ting et al. 2004). Hmr, which encodes a transcriptional 

regulator of or related to the MYB family, causes male lethality and female sterility in  

D. melanogaster x D. simulans hybrids, likely due to disrupted gene regulation 

(Barbash et al. 2003). Lhr has been identified as an interacting partner, but the 

interaction of two genes alone is insufficient to cause hybrid lethality, additional 

genes seem to be involved (Brideau et al. 2006). The D. simulans allele of Nup96, a 

nuclear pore protein, causes lethality when combined with a hemizygous  

D. melanogaster X-chromosome (Presgraves 2003). JYAlpha (encoding a male 

fertility-essential Na+-K+ ATPase) was recently found to cause sterility in  

D. melanogaster x D. simulans hybrids (Masly et al. 2006). The only gene causing 

postzygotic isolation identified in a vertebrate so far is Xmrk-2 in hybrids of Xiphorus 

maculatus and X. helleri. Xmrk-2 encodes a novel receptor tyrosine kinase, which is, 

while found as a duplicate gene on the X. maculatus X-chromosome, absent from the 

X. helleri X-chromosome (Malitschek et al. 1995, Wittbrodt et al. 1989, Schartl et al. 

1999). Xmrk-2 is misexpressed in hybrids, causing tumor formation and ultimately 

lethality. What is missing to date is evidence that the identified “speciation genes” did 

play a role in the early stages of speciation or if incompatibilities have accumulated 

subsequent to the species split.  

Genes involved in hybrid sterility and inviability are characterized by special 

dominance relations. There is good evidence that the genes causing reproductive 

isolation are, on average, partially recessive as predicted by the dominance theory of 

Haldane’s rule (see for example Orr 1997, Coyne and Orr 2004). For hybrid 

inviability the evidence for recessivity is strong (Orr 1993, Presgraves 2003). In an 

extensive deficiency mapping experiment for hybrid inviability in Drosophila, it was 

shown that recessive-recessive interactions highly outnumber dominant ones 

(Presgraves 2003). Also for hybrid sterility evidence for recessive action of genes has 

been obtained (Orr 1992, 1997, Hollocher 1996, Sawamura 2000). Recessive 

speciation genes can obviously only contribute to the sterility and inviability of F2 or 
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backcross hybrids (when genes have become homozygous), unless the 

incompatibilities involve X-linked genes. The dominance theory is now widely 

accepted to explain the phenomenon of Haldane’s rule (Haldane 1922), the 

observation that the heterogametic sex suffers from more severe hybrid problems than 

the homogametic sex. As long as some fraction of the genes causing hybrid problems 

is recessive and also X-linked genes are involved, hybrid males should fare worse 

than hybrid females in cases for males are the heterogametic sex. They are afflicted 

by all X-linked genes involved in hybrid incompatibilities (dominant and recessive) 

whereas females are affected only by those that are fairly dominant (Coyne and Orr 

2004).  

Several conclusions can be drawn from the few “speciation genes” identified so 

far, although it is hard to generalize from a sample of that size. All these genes have 

normal functions within the species. No evidence has been obtained so far that 

reproductive isolation involves novel genetic factors like e.g. repetitive DNA 

sequences (Orr 2005). Furthermore, genes causing intrinsic postzygotic isolation seem 

not to belong to a single functional class. Although some of them are involved in 

transcriptional regulation (OdsH, Hmr) – and it remains possible that disruption of 

gene regulation is a common cause of hybrid problems – some are not. They are also 

not invariably duplicated genes; sometimes they are members of duplicate gene 

families (Xmrk-2, OdsH) sometimes they are single-copy genes. Additionally, 

speciation genes seem to be rapidly evolving (Orr 2005). This is what one would 

expect assuming that genes that cause disruptions in hybrids are those, which have 

diverged most between species. Even more important, it could be demonstrated for 

three of the genes that they diverge due to positive selection (Ting et al. 1998, 

Presgraves 2003, Barbash et al. 2004), which supports one of the central tenets of the 

neoDarwinian view of speciation – that reproductive isolation results from natural 

selection within species. 



General Introduction 6 

  

1.2 Hybrid incompatibilities associated with gene expression differences 

Genome-wide expression profiling by microarrays provides new insights about 

mechanisms that lead to evolutionary changes (Ranz and Machado 2006). It has long 

been speculated that many species differences arise from regulatory differences (King 

and Wilson 1975) and despite the limited information concerning patterns, rates and 

mechanisms of change at the regulatory level it is at least obvious that changes in 

transcriptional regulation comprise a quantitatively and qualitatively significant 

component of the genetic basis for evolutionary change (Wray 2007). Theoretical and 

empirical studies give support to the hypothesis that failures in the regulation of gene 

expression may contribute to hybrid dysfunctions (Orr and Presgraves 2000, Ortíz-

Barrientos et al. 2007). Such regulatory incompatibilities in hybrids arise from 

differences that have accumulated in the regulatory sequences between different 

lineages due to compensatory mutations in order to maintain constant levels of gene 

expression (Ranz et al. 2004). In a hybrid genetic background, where these alleles 

have not previously occurred together, such changes do not longer compensate and 

the interaction may produce novel expression patterns (Landry et al. 2007), i.e. over- 

or under-expression (misexpression). Many parameters affect the level of 

transcription, such as number of transcription factor binding sites, abundance of 

transcription factors and their affinity to binding sites and their interactions. Thus, 

there are multiple opportunities for the accumulation of changes between species. 

Such failures seem to be disproportionally greater in regulatory pathways containing 

rapidly evolving genes, particularly those involved in transcription factor-binding site 

interactions (Ortíz-Barrientos et al. 2007). Also, simulations by Johnson and Porter 

(2000) suggest that hybrid incompatibilities often arise as a consequence of 

divergence of regulatory genetic pathways between populations, due to adaptation 

processes. Empirically, it has been shown that three of the five genes associated with 

hybrid sterility and inviability appear to be related to regulatory changes (Malitschek 

et al. 1995, Ting et al. 1998, Barbash et al. 2003). Furthermore, several recent studies 

of genome-wide patterns of gene expression in pure species and sterile male hybrids 

suggest that hybrids show disruptions in gene expression (Michalak and Noor 2003, 

Ranz et al. 2004, Haerty and Singh 2006, Moehring et al. 2007, see Landry et al. 2007 

for a review). Particularly, male biased genes have repeatedly shown to have erratic 
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gene expression patterns in hybrids (Michalak and Noor 2003, Ranz et al. 2004, 

Haerty and Singh 2006). It has been shown that sex-biased genes, especially male-

biased genes with testis specificity or relation to accessory gland proteins, evolve 

exceptionally rapidly at the expression level in Drosophila (Meiklejohn et al. 2003, 

Ranz et al. 2003, Nuzhdin et al. 2004). Therefore it can be expected that the 

regulation of such genes exhibits greater regulatory incompatibilities in hybrids than 

other genes. Vice versa, the observation that male-biased genes are disproportionally 

affected by gene expression disruption emphasizes the importance of rapid evolution 

in the divergence of species and the acquisition of reproductive isolation (Ranz et al. 

2004). 

Microarray analysis, as a reverse-genetics approach, offers an alternative or 

supplement to classical forward-genetics approaches in identifying genes which are 

involved in reproductive isolation. Genome-wide expression profiling can rapidly 

assay many genes in the genome simultaneously for their expression levels and 

identify potential genes and genetic pathways responsible for hybrids’ misregulation. 

Recent analyses have shown that microarrays are highly instrumental in identifying 

regulatory differences between species and their hybrids (e.g. Michalak and Noor 

2003, Ranz et al. 2004, Haerty and Singh 2006) and that many of the identified genes 

are likely to be involved in the generation of reproductive barriers (e.g. Michalak and 

Noor 2004). However, such distorted patterns of gene expression do not necessarily 

contribute to fitness reduction and reproductive isolation; they may also yield 

innovative phenotypes (Landry et al. 2007). Nevertheless, it seems likely that the 

accumulation of regulatory incompatibilities due to divergence and the architecture of 

transcriptional networks can directly influence the process of speciation (Porter and 

Johnson 2002, Johnson and Porter 2007). 

1.3 The house mouse 

The house mouse Mus musculus is one of the best studied model systems and 

particular well suited for evolutionary genetics studies. First, the complete genome 

sequence of a laboratory strain is available (Waterston et al. 2002) and second, 

various aspects like development, anatomy, pathology, behavior and ecology are 

intensively studied so that inferences between genomic and phenotypic patterns can 

be made (Galtier et al. 2004). Besides laboratory strains, wild-derived mouse strains 
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can be kept in the laboratory (Guénet and Bonhomme 2003) allowing assessment of 

naturally occurring genetic variation.  

The mouse phylogeny and colonization history is well documented (e.g. Boursot 

et al. 1993). The genus Mus is thought to have emerged ~ 3 million years ago (Guénet 

and Bonhomme 2003) and the house mouse Mus musculus, a polytypic species, split 

up into the different subspecies less than one million years ago (Figure 1.2). It is 

thought that these subspecies originated on the Indian subcontinent from which they 

radiated outwards (Din et al. 1996) and have now spread across the world. Best 

known and described are the three subspecies M. m. musculus, the central house 

mouse, M. m. domesticus, the western house mouse and M. m. castaneus, the eastern 

house mouse, which can be distinguished morphologically (Boursot et al. 1993). They 

have been described as subspecies because they are only partially reproductively 

isolated from each other and hybrid zones exist in regions of secondary contact. M. m. 

musculus is found in northern Asia as well as in Eastern Europe. M. m. domesticus is 

found in Western Europe and was introduced through human transport to Africa, 

America and Australia. The habitat of M. m. castaneus spans from Sri Lanka to South 

East Asia, including the Indian-Malayan archipelago (Figure 1.3). Due to competition 

in areas of sympatry with other rodents, house mice occur mainly in association with 

humans. Only in areas where other mouse species are absent they are able to exist in 

feral populations. M. m. castaneus is the only subspecies which lives exclusively 

commensal (Sage 1981, Boursot et al. 1993). Today’s distribution of the house mouse 

is clearly connected to the migration of the humans over the world. America and 

Australia as well as many islands lacked mice before humans started to enter those 

regions. Since Europeans have extensively roamed the oceans, the western house 

mouse, M. m. domesticus, is particular widespread over the world, though long-

distance passive transport of mice is not restricted to M. m. domesticus (Boursot et al. 

1993). 

The genome of the sequenced laboratory strain C57/BL6J is a mixture of the 

three subspecies, M. m. domesticus, M. m. musculus and M. m. castaneus (Wade et al. 

2002, Yang et al. 2007). According to the most recent analysis, M. m. domesticus 

provides up to 92% of the genome, musculus <7% and castaneus <1% (Yang et al. 

2007).  
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Figure 1.2: Evolutionary tree of the genus Mus. The last node refers to the polytypic species  
Mus musculus (Figure from Guénet and Bonhomme 2003). 
 

The fact that the house mouse subspecies are not completely reproductively isolated 

from each other makes them ideal for speciation studies. To study the origin and the 

evolution of reproductive barriers, it is intuitive to focus on study systems that are not 

completely isolated. Thereby it can be discriminated between causes and 

consequences of the genetic isolation (Macholán et al. 2007). Several areas of 

secondary contact – hybrid zones – occur between the subspecies (Figure 1.3).  

M. m. musculus and M. m. domesticus meet in Europe, in the Caucasus, and in a 

region southeast of the Caspian Sea. For M. m. musculus and M. m. castaneus a 

contact zone in China and Japan has been described. In Japan, these two subspecies 

have hybridized extensively, giving rise to a unique population often referred to as  

M. m. molossinus (Yonekawa et al. 1988).  
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Figure 1.3: Geographical distribution of the different species of the genus Mus and routes of 
colonization. Mice of the American and Australian continents were imported by humans during 
colonization (Figure from Guénet and Bonhomme 2003). 
 

The European hybrid zone between domesticus and musculus stretches from the 

Jutland peninsula to the Bulgarian coast of the Black sea (Boursot et al. 1993, Sage et 

al. 1993). It has formed as a consequence of the movement of M. m. domesticus into 

Western Europe within the last 3000 years (Cucchi et al. 2005). Several transects 

along the 2,400 km length of the hybrid zone have been studied (e.g. Hunt and 

Selander 1973, Sage et al. 1986, Tucker et al. 1992, Dod et al. 1993, 2005, Prager et 

al. 1993, Payseur et al. 2004, Raufaste et al. 2005, Macholán et al. 2007, Teeter et al. 

2007), which has yielded insights into the genetic basis of reproductive isolation 

between the two subspecies. Heterogeneity in levels of introgression between 

genomic regions has been shown (Tucker et al. 1992, Boursot et al. 1993, Dod et al. 

1993, Sage et al. 1993, Payseur et al. 2004); thus the genome of the house mouse 

seems to be “semipermable”, with some regions tolerant of gene flow between species 

and others not (Payseur et al. 2004). Particular for the X chromosomes limited 

introgression was found (Tucker et al. 1992, Payseur et al. 2004, Macholán et al. 

2007). Changes in allele frequency at diagnostic markers occur very rapidly relative 
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to the geographic extent of the species ranges (Tucker et al. 1992, Dod et al. 1993, 

Payseur et al. 2004), which suggests that the hybrid zone is maintained by a balance 

between selection against hybrids and dispersal (Barton and Gale 1993). Secondary 

contact of the subspecies seems to have occurred recently (3000-10,000 years ago 

(Auffray et al. 1990, Cucchi et al. 2005)) in relation to the estimated divergence time, 

which is thought to be consistent with the accumulation of reproductive isolation in 

allopatry according to the Dobzhansky-Muller model (Payseur and Hoekstra 2005).  

For hybrids between musculus and domesticus in the natural hybrid zone, 

elevated parasite loads, suggesting general reduced fitness, have been observed (Sage 

et al. 1986, Moulia et al. 1991, 1993) and reduced testis size has been documented 

(Britton-Davidian et al. 2005). Complementary to hybrid zone studies, several 

laboratory experiments with both inbred and wild outbred mice showed that M. m. 

domesticus and M. m. musculus are isolated by hybrid male sterility (Forejt and Ivanyi 

1975, Alibert et al. 1997, Storchová et al. 2004, Britton-Davidian et al. 2005, 

Vyskocilová et al. 2005, Good et al. 2007). In some cases, crosses between the 

subspecies produce fully fertile hybrid males (Vanlerberghe et al. 1986) or variation 

in the strength of sterility occurs (Alibert et al. 1997, Britton-Davidian et al. 2005). 

Furthermore evidence exists that male F1 hybrid sterility is asymmetric, depending on 

the origin of the X chromosome (Britton-Davidian et al. 2005, Good et al. 2007). For 

some crosses there is also evidence for female sterility (Britton-Davidian et al. 2005). 

Another contributor to reproductive isolation between musculus and domesticus may 

be assortative mating. Mate choice experiments hint to behavioral differences 

between the subspecies which may be important in preventing hybridization in some 

crosses (Smadja and Ganem 2002, Ganem et al. 2005). The genetic basis of male 

hybrid sterility seems to be fairly complex (Good et al. 2007). Studies which involve 

classical inbred domesticus strains identified two sets of Dobzhansky-Muller 

incompatibilities between the two subspecies. One set of dominant-autosomal 

interactions, which include one or more tightly linked loci on chromosome 17 (Hst1, 

Forejt and Ivanyi 1975, Vyskocilová et al. 2005). The other set involves the 

interaction of the X and autosomes (Storchová et al. 2004, Britton-Davidian et al. 

2005, Oka et al. 2007), suggesting a crucial role of the X chromosome in reproductive 

isolation between M. m. domesticus and M. m. musculus. Only recently, Good et al. 

(2007) discovered that at least a third set of Dobzhansky-Muller incompatibilities 
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occurs in wild derived strains of M. m. musculus and M. m. domesticus. Hybrid zone 

analyses have identified multiple markers on the X-chromosome with reduced gene 

flow across the zone (Tucker et al. 1992; Dod et al. 1993; Payseur et al. 2004, 

Macholán et al. 2007). These regions probably harbor genes involved in reproductive 

isolation. Only recently, in a detailed genetic survey, Teeter et al. (2007) identified 

several regions in the genome which may be involved in reproductive isolation. They 

found genes associated with a variety of biological processes, including such as 

reproductive physiology, behavior and physiological and immune response. So far, no 

specific gene has been identified that contributes to reproductive isolation between 

house mouse subspecies. For hybrids between M. m. domesticus and M. spretus a 

strong hybrid sterility candidate locus has been identified. Dnahc8, an axonemal 

dynein protein expressed in the testis, has been mapped to the site of the hybrid 

sterility locus 6, which has been shown to be involved in hybrid sterility between the 

two species (Fossella et al. 2000).  
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1.4 Aim of the study 

The study seeks to identify genes that are involved in postzygotic reproductive 

isolation in the house mouse Mus musculus with a genome wide expression screen. 

The house mouse is particularly suited for studying the early stages of speciation, 

since reproductive isolation is not complete yet and natural hybrids occur. I used a 

combination of two classical approaches: a survey of laboratory F1 hybrids between 

taxa and an analysis of animals from a natural hybrid zone. An Affymetrix 

GeneChip® expression analysis of three house mouse subspecies in comparison to 

their reciprocal F1 hybrids for three different tissues was conducted to identify 

candidate genes for regulatory hybrid incompatibilities. Transcripts with expression 

differences between the parental subspecies, and between the hybrids and their 

parents, respectively, are candidates which might be involved in reproductive 

isolation. After validation of candidate genes with enlarged datasets, a hybrid zone 

analysis was intended to infer if expression differences between parental subspecies 

and their hybrids are connected to a reduction in fitness, i.e. to be of functional 

consequence. Samples from a transect of the natural hybrid zone of M. m. musculus 

and M. m. domesticus in Bavaria were used to make inferences about the fitness 

effects of specific gene combinations in a hybrid genomic background by considering 

the introgression of “expression phenotypes” across the hybrid zone. Genes with 

negative fitness effects should not spread very far across the hybrid zone in 

comparison to neutral genes. Additionally, sequence based population genetic 

analyses for chosen candidate genes were applied to evaluate the genetic basis and 

evolutionary forces that might contribute to differences in gene expression.  
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2 Genome wide expression patterns in house 
mouse subspecies and their F1 hybrids  

 

2.1 Introduction 

Microarray-based gene expression profiling has become widely applied as tool to 

uncover the genetic architecture of quantitative traits in the past several years. 

Transcript levels are treated as phenotype and their intermediate position between 

DNA sequence polymorphism and organismal phenotype can be seen as “bridge” 

between the two in mapping studies (Rockman and Kruglyak 2006). The genetic 

correlation between expression levels and an organism’s phenotype points to 

underlying molecular pathways. A co-localization of QTLs for expression and the 

organism’s phenotype facilitate the identification of causal mutations. “Expression 

quantitative trait locus” mapping (eQTL) is therefore highly suited to answer basic 

questions about the number of loci underlying variation in expression phenotypes, the 

proportion of heritable variance and the genetic complexity of traits (Brem et al. 2002, 

Schadt et al. 2003, Morley et al. 2004, Brem and Kruglyak 2005, West et al. 2007). 

Despite of the usefulness in medical and agricultural genetics, uncovering general 

principles of the genetic architecture of expression traits will be helpful to reveal the 

basic forces responsible for phenotypic variation and evolution. In contrast to classical 

QTL mapping studies, eQTL mapping allows the assessment of thousands of traits 

simultaneously (Cui et al. 2006, Rockman and Kruglyak 2006). Therefore, a detailed 

description of possible architectures can be made and an unbiased set of traits in 

comparison to pre-selected single traits is provided. EQTL mapping studies can also 

be applied to assign variation in transcript abundance to differences in cis- respective 

trans-acting sites (Schadt et al. 2003, Yvert et al. 2003, Morley et al. 2004). 

Significant levels of cis-polymorphism, controlling individual genes have been 

detected as well as evidence for clustered trans-eQTLs that simultaneously regulate a 

large fraction of the transcriptome has been revealed in yeast, mice and humans. 

Recent studies indicate that expression levels are heritable and can be under 

multigenic control (Brem et al. 2002, Schadt et al. 2003, Brem and Kruglyak 2005). 

Despite much effort, the relationship between transcript level-variation and 

downstream organismal phenotypic trait variation is not well understood (Mackay 
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2001, Gibson and Weir 2005).  

Two approaches are used to uncover the genetic basis of expression traits. One 

relates DNA polymorphism to differences in expression levels (Brem et al. 2002, 

Schadt et al. 2003, Doss et al. 2005, Storey et al. 2005). These studies revealed that 

expression traits are often affected by multiple underlying loci and interactions among 

them (Rockman and Kruglyak 2006). In yeast, the complex inheritance of transcript 

levels has been uncovered by detecting significant levels of nonadditive genetic 

variance, epistatic interactions and transgressive segregation (Brem and Kruglyak 

2005). The second approach determines the within-locus mode of inheritance by 

comparing the transcript abundance of F1 hybrids to that of the parents and assesses if 

the expression is intermediate (additive) to that of the parents or not. A prevalence of 

nonadditively over additively expressed transcripts would suggest complex 

inheritance of expression traits. Recent studies treating this issue have come to 

inconclusive results concerning the prevalence of additivity and nonadditivity, 

respectively. Several studies found pervasive within-locus additivity of expression 

traits in F1 hybrids of laboratory mice, Drosophila and maize (Cui et al. 2006, 

Hughes et al. 2006, Stupar and Springer 2006, Swanson-Wagner et al. 2006). In 

contrast, two studies found most transcripts to be nonadditively expressed in 

Drosophila (Gibson et al. 2004) and the Pacific Oyster (Hedgecock et al. 2007), a 

third one reported similar numbers of additivity and non-additivity in Arabidopsis 

(Vulysteke et al. 2005), suggesting to consider epistasis as pervasive aspect of genetic 

architecture.  

Comparative gene expression profiling of hybrids and their parents has also been 

applied to identify genes which have the potential to cause hybrid dysfunctions via 

regulatory incompatibilities. It is generally assumed that divergent evolution in two 

lineages leads to coevolution of genes and that crosses between species can reveal 

such coevolution (Landry et al. 2007). The formation of hybrids combines alleles that 

have not been previously occurred together and the interaction may generate new 

phenotypes. Uncovering the molecular basis of such nonadditive, epistatic 

interactions is central to the understanding of the evolution of hybrid incompatibilities 

(Dobzhansky-Muller incompatibilities (Dobzhansky 1937, Muller 1940). Theoretical 

and empirical studies suggest the importance of gene regulation for hybrid 

incompatibilities (Orr and Presgraves 2000, see Ortíz-Barrientos et al. 2007 for a 
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review). Regulatory incompatibilities are defined as interactions of the transcriptional 

networks that lead to novel expression phenotypes in interspecific hybrids (Landry et 

al. 2007). Several studies in Drosophila show that disruptions in transcriptional 

regulation may indeed be associated with hybrid incompatibilities such as hybrid 

sterility (Michalak and Noor 2003, 2004, Ranz et al. 2004, Haerty and Singh 2006, 

Moehring et al. 2007). Michalak and Noor (2003, 2004) for example found several 

genes severely underexpressed in hybrids between D. simulans and  

D. mauritiana, which are associated with spermatogenesis and other male-specific 

phenotypes. Still in the 5th generation of backcross hybrids, sterility and 

misexpression of these transcripts was strongly correlated, which makes it possible 

that genes involved in spermatogenesis cause sterility in these hybrids. Interestingly, a 

large proportion of transcripts with disrupted expression in hybrids do not show 

expression level divergence between the parental species, suggesting that these genes 

are under stabilizing selection (Ranz et al. 2004, Haerty and Singh 2006). This finding 

underlines that species often accumulate divergent cryptic genetic changes in coding 

regions as well as regulatory regions that are revealed only if the two divergent 

regulatory architectures are brought together in a single individual (Moehring et al. 

2007, Ortíz-Barrientos et al. 2007). If such disruptions in gene expression are the 

cause and not the consequence of hybrid incompatibilities, high-throughput “reverse 

genetics” approaches, like microarray analyses, have the potential to identify 

candidate genes or pathways that contribute to reproductive isolation via regulatory 

incompatibilities and thus to speciation (Noor and Feder 2006).  

The present analysis was conducted to assess the within-locus mode of 

inheritance of expression differences between three subspecies of the house mouse,  

M. m. domesticus, M. m. musculus and M. m. castaneus. Differentially regulated 

transcripts between the subspecies and between the F1 hybrids and their parents, 

respectively, provide candidate genes, which can be involved in regulatory hybrid 

incompatibilities. Transcripts with expression levels in the hybrids significantly over- 

or under-expressed in comparison to the parents may be particular interesting with 

regard to hybrid incompatibilities. It has to be stressed that a hybrid incompatibility 

gene is any gene that contributes to reduced fitness in hybrids (Orr and Presgraves 

2000). 
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2.2 Materials and Methods 

2.2.1 Animals 

Wild-derived strains of M. m. domesticus, M. m. musculus and M. m. castaneus were 

used for the microarray analysis. For M. m. musculus, strain JPC 2821 from the Czech 

Republic, for M. m. domesticus, strain JPC 2705 from Germany and for  

M. m. castaneus, strain CIM (from India), was used for the experiments. Animals 

from domesticus and musculus were collected in the wild and inbred by brother-sister 

matings for ~13 generations in the laboratory of J. Pialek in the Department of 

Population Biology in Studenec (Czech Republic). The castaneus strain was provided 

by A. Orth and F. Bonhomme and has been kept in the Laboratory of Genome, 

Populations, Interactions, Adaptation, Montpellier in France for more than 30 

generations. Reciprocal crosses between the wild-derived-inbred subspecies were set 

up to obtain F1 hybrids (Table 2.1). M. m. musculus will be abbreviated as mus,  

M. m. domesticus as dom and M. m. castaneus as cas in figures and tables in the 

following. 

Table 2.1: Breeding setup for F1 hybrids. 

mother  father F1 hybrid 

M. m. musculus  x M. m. domesticus mus-dom 

M. m. domesticus x M. m. musculus  dom-mus 

M. m. castaneus x M. m. musculus  cas-mus 

M. m. musculus x M. m. castaneus  mus-cas 

 

Three tissues each (brain, liver, testis) of two males each cross and direction and each 

of the parental pure subspecies were used for the experiment (see Supplement 1). 

Altogether 42 microarray experiments were performed; 14 animals were analyzed for 

three tissues each. All mice were raised under identical standard laboratory conditions 

and were sacrificed at the age of 6-8 weeks. 

2.2.2 Sample preparation 

Animals were sacrificed using CO2. Organs were excised and immediately snap 

frozen in liquid nitrogen. RNA was extracted using Trizol® (Invitrogen, Carlsbad, 

CA) following the manufacturer’s protocol. Quality and integrity of the total RNA 
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was controlled by using the Agilent Technologies 2100 Bioanalyzer and the RNA 

6000 Nano LabChip® Kit (Agilent Technologies Waldbronn, Germany). Only 

samples with RNA integrity numbers (RIN) >8.0 were used for analysis. 

2.2.3 Microarray analysis 

Expression profiles were determined for over 39,000 mouse transcripts using the 

Mouse Genome 430 2.0 Affymetrix GeneChip®. The biotin-labeled target synthesis 

started from 1 µg of total RNA following the Ambion Message Amp II aRNA 

amplification Kit protocol. After hybridization the GeneChips® were washed, using an 

Affymetrix GeneChip® fluidic station 450, stained with SA-PE (Streptavidin R-

phycoerythrin conjugate) and read using an Affymetrix GCS 300 G scanner.  

2.2.4 Data analysis 

Data processing and statistical analyses were performed using the statistical language 

R. Raw signal intensities were normalized and summarized according to the standard 

Affymetrix MA Suite 5.0 algorithm using the program Bioconductor 

(http://www.bioconductor.org/). Signal intensities were ln-transformed prior to 

statistical analyses. MA Suite 5.0 expression values have been submitted to the Gene 

Expression Omnibus (accession number GSE9338). All analyzed samples were 

defined as “groups”; a “group” consisting of either domesticus, musculus, castaneus, 

F1 hybrids from one direction of the cross, or F1 hybrids from the other direction of 

the cross. Transcripts are defined as “expressed” in a group if the average expression 

level among the replicate samples within a group is >500. Applying a threshold of 

>500 yields about 11,000 expressed transcripts per group and tissue, a value that 

corresponds to previous studies (Su et al. 2004). The expression levels in the hybrids 

were determined as additive or nonadditive for two different groups: 

1.  transcripts that are differentially expressed between the parental subspecies 

(see Figure 2.1 a, b) 

2.  those transcripts, which do not differ in expression between the parental lines, 

but which are expressed differently in the F1 hybrids relative to both parents 

(Figure 1c):  
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Figure 2.1: Schematic representation of within-locus modes of gene action in the comparison between 
house mouse subspecies and their F1 hybrids. Sp = subspecies, F1 = F1 hybrid. 

Additivity/nonadditivity of transcripts differentially expressed between subspecies 

To identify differentially expressed transcripts between each parental comparison 

(domesticus vs. musculus and musculus vs. castaneus), a standard One-Way ANOVA 

was performed for each tissue, applying a False Discovery Rate (FDR; (Reiner et al. 

2003)) of <10%. A FDR of <10% corresponds to a threshold of p<0.0000053 in the 

brain, p<0.00025 in the liver and p<0.002 in the testis for the domesticus-musculus 

comparison. For the musculus-castaneus comparison this corresponds to p<0.002 in 

the testis and no transcript at all is significant in brain and liver under this criterion 

(see results). Since preliminary experiments using quantitative real-time-PCR of one 

gene differentially expressed between musculus and domesticus in the liver (Ces1) 

suggest that transcripts up to a p-value level of 0.06 on the microarray can be 

confirmed on independent samples (data not shown), the selection of differentially 

expressed genes for each tissue was repeated using arbitrarily significance values of 

p<0.01 and p<0.05.  

Significant transcripts were considered separately according to whether they were 

expressed (>500) in both subspecies or just in one of the subspecies within a given 

comparison. Since expression levels <500 likely include transcripts that are not 

expressed at all, additivity of transcript expression cannot be revealed in these cases. 



Gene expression analysis  20 

 

However, if the transcript is absent in one parental subspecies but present in the other, 

it can at least be determined whether the expression status in the hybrid is consistent 

with dominance or not.  

Three methods were used to determine the mode of inheritance in the hybrids for 

the transcripts differentially expressed between the parental subspecies for all tissues 

separately. The average expression level across replicates of the subspecies with 

lower expression is defined as x, the average expression level of the subspecies with 

higher expression as y, and the expression in the hybrid as h. The analysis was 

performed with untransformed signal intensity values for all three methods. 

Fixed threshold method 

Following Gibson et al. (2004), additivity is defined as y / 1.25 > h > x * 1.25, for all 

h. Dominance is defined as 1.25 * x > h > x / 1.25 or 1.25 * y > h > y / 1.25 for all h, 

and overdominance as h < x / 1.25 or h > y * 1.25 for all h. Using this model, only 

transcripts with an expression difference of >2.5 can show additivity and analysis is 

restricted to only these transcripts.  

The fixed threshold method yields the problem that as the fold difference 

between two subspecies increases, the zone where additivity will be accepted also 

becomes larger. To correct for that bias, a second method was applied. 

Fractional threshold method 

This method is based on the relative difference in expression levels between the 

parental subspecies. Additivity is defined as (x+y)/2 - ε < h < (x+y)/2 + ε, for all h, 

where ε was set to 5%, 10%, 15% and 20% of the difference between x and y (e.g., ε 

= (y-x)*0.15). Dominance was set to be x - ε/2 < h < x + ε/2  or y - ε/2  < h < y + ε/2 

for all h, so that for each transcript the interval over which either dominance or 

additivity is accepted is equivalent. Overdominance was set to be outside of the range 

of dominance, i.e., h < x - ε/2 or h > y + ε/2 for all h. Only genes with an expression 

difference of >2.5 were included in the analysis to make the fractional threshold 

method comparable with the fixed threshold method.  

For both methods the mode of inheritance in F1 hybrids was determined by  

1. treating F1 hybrids from both directions of the cross together (i.e., all four 

replicates had to be consistent) and  

2. treating both directions of the cross separately to account for possible maternal 
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effects, sex-linkage and directional dominance.  

Distribution of dominance effects 

Additionally to the classification of transcripts into arbitrary mode-of-inheritance 

classes, the distribution of dominance effects was determined for both comparisons 

(domesticus vs. musculus and musculus vs. castaneus). It was calculated as “d/a”, 

where “a” is half the difference in expression level between the parental strains and 

“d” is the difference in expression level between the F1 hybrid (average across 

replicates independent of the direction of cross) and the average of the parental strains 

(Falconer and Mackay 1996; Gibson et al. 2004). If the expression level of the 

transcript in the hybrid is exactly intermediate between the parental strains d = 0. A 

d/a value of 0 corresponds to perfect within-locus additivity, |d/a| = 1 to complete 

dominance and |d/a|>1 to overdominance. All differentially expressed transcripts 

between the parental strains (p<0.01 and p<0.05), with average expression levels 

>500 in at least one of the parental subspecies, were considered. In contrast to the 

analyses where transcripts are assigned to discrete additive and nonadditive classes, it 

is not required that the differentially expressed transcript shows a fold-change >2.5 

between the parental subspecies.  

Nonadditive expression of transcripts not differentially expressed in the subspecies  

Pairwise Tukey post hoc tests were used to assess parent-F1 hybrid offspring 

expression differences for the transcripts, which are not differentially expressed 

between the parental subspecies. Only those transcripts were selected in which F1 

hybrids have significant (p<0.05) and 1.25-fold higher or lower expression compared 

to both parents. This analysis was performed for F1 hybrids from both directions of 

the cross together as well as from each direction of the cross separately. For 

transcripts with expression levels <500 in both of the parental subspecies, only those 

crosses were analyzed in which the F1 hybrids from at least one direction of the cross 

had average expression levels >500.  

Contribution of sequence divergence to expression difference: Determination of 
subspecies origin of each probe set 

The probe sets of the Mouse Genome 430 2.0 Affymetrix GeneChip® are designed 

based on the sequence of the laboratory inbred strain C57BL/6J. The genome of this 

strain represents a mixture of genetic contributions from three subspecies M. m. 
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musculus, M. m. domesticus and M. m. castaneus (Wade et al. 2002, Yang et al. 

2007), whereas M. m. domesticus provides up to 92% of the strain C57BL/6J 

sequence, musculus <7% and castaneus <1% (Yang et al. 2007). Therefore it is 

possible that sequences differences (i.e. SNPs, Single Nucleotide Polymorphisms) 

between the wild subspecies translate into differences in hybridization efficiency 

(elevated or decreased signal intensities) of specific probe sets; i.e. one can expect 

that a probe set hybridizes more efficiently with that subspecies the particular probe 

set sequence was derived from. Although sequence divergence between the 

subspecies is generally low (typically 1% for non-coding DNA at autosomal loci 

(Harr 2006)) it could potentially enhance or alleviate expression differences. This 

problem is probably most serious if other subspecies are compared to domesticus, 

since domesticus contributed most of the genetic material to C57BL/6J. Therefore this 

problem was specifically investigated with respect to the domesticus-musculus 

comparison. To get an estimate about the contribution of such subspecies sequence 

differences to expression data, probe sets were assigned to a “subspecies” status and 

analyses were performed considering this status. More than eight million SNP loci 

distributed all over the genome were downloaded from the Perlegene website 

(http://mouse.perlegen.com/mouse/download.html). These SNPs have been typed in 

15 commonly used inbred strains of the laboratory house mouse. The data from these 

strains can be combined with the known sequence of strain C57BL/6J (Waterston et 

al. 2002) at the respective SNP position. Two out of the 15 strains are so-called “wild-

derived” strains, one of which belongs to musculus (PWD/PhJ) and one to domesticus 

(WSB/EiJ). SNPs that distinguish the musculus from the domesticus strain were used 

to assign the subspecies origin of each probe set in the C57BL/6J strain. The 

frequency of musculus-like or domesticus-like SNPs in a 20 kb region surrounding the 

location of the transcript that is targeted by a specific probe set was calculated. A 

probe set was called musculus-like if >60% of the SNPs in the region matched the 

musculus strain and domesticus-like if >60% of the SNPs matched the domesticus 

strain.  

Data were divided into two sets:  

1. transcripts that are located in “musculus-like” regions but show higher 

expression in M. m. domesticus and  

2. transcripts which are located in “domesticus-like” regions but show higher 
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expression in M. m. musculus.  

For these transcripts, sequence divergence is unlikely to explain the expression 

differences, thus representing a measure for the contribution of sequence divergence 

to differences in signal intensities. Because no wild-derived strain of castaneus is 

available from the Perlegene dataset, genomic regions in the genome of C57BL/6J 

that stem from castaneus could not be assigned. Since only a small proportion of the 

genome originates from castaneus, one can assume this limitation to be not serious. 

Functional annotation 

“PANTHER” (http://www.pantherdb.org/tools/genexAnalysis.jsp) was used to find 

overrepresentation of biological functions relative to the full gene content of the house 

mouse genome. This analysis was conducted for transcripts differentially expressed 

between the two subspecies (fold change >2.5, p<0.05), identified by the fractional 

method (15%). Analysis was performed for two groups: 

1. transcripts additively expressed in F1 hybrids from both directions of the cross  

2. transcripts differentially expressed between the parents independent of 

expression status in F1 hybrids.  
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2.3 Results  

2.3.1 Number of differentially expressed genes 

About half of all the transcripts (20,811) represented on the Affymetrix GeneChip® 

have signal intensities >500 and are therefore called “expressed” in at least one of the 

three tissues in at least one of the groups (domesticus, musculus, castaneus, dom-mus, 

mus-dom, cas-mus, mus-cas), ca. 1/4 (12,130) is called expressed in at least one of the 

tissues in at least one of the three subspecies. Transcript numbers are quite similar 

among tissues with brain 13,584, liver 11,637 and testis 12,130 expressed transcripts 

in at least one of the subspecies. Comparing the number of expressed transcripts 

among the three subspecies reveals almost identical values for the three different 

tissues (Table 2.2). 

Table 2.2: Number of transcripts showing signal 
intensities >500 in the different subspecies for brain, liver 
and testis. 

tissue M. m. 

domesticus 

M. m. 

musculus 

M. m. 

castaneus 

brain 12,142 12,248 12,183 

liver 10,083 10,243 10,101 

testis 10,552 10,480 10,774 
    

Table 2.3 shows transcripts differentially expressed between M. m. domesticus and  

M. m. musculus and between M. m. musculus and M. m. castaneus for different 

significance levels. At significance level of p<0.05 and considering all transcripts 

irrespective of the fold change, approximately similar numbers of differentially 

expressed transcripts in each of the three organs are found. Assuming an average of 

~12,000 transcripts expressed in at least one subspecies and tissue, 600 should be 

assigned significantly different by chance at p<0.05. Instead roughly three times as 

many significant different transcripts in each tissue occur. The number of transcripts 

differentially expressed between the subspecies drops noticeably when only 

transcripts with a larger than 2-fold change are considered. For brain 445, liver 683 

and testis 847 transcripts are differentially expressed between the domesticus and 

musculus. Between musculus and castaneus, 435 transcripts are differentially 

expressed in the brain, 691 in liver and 827 in testis. But even for 5-fold expression 
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difference between the subspecies, a relatively large number of significantly different 

transcripts can be identified.  

Table 2.3: Number of transcripts differentially expressed between the parental subspecies  
M. m. domesticus and M. m. musculus, and M. m. castaneus and M. m. musculus at different 
ANOVA p-value thresholds and at different magnitudes of change. 

tissue Magnitude 

of change 

ANOVA 

p<0.05 

ANOVA 

p<0.01 

ANOVA 

p<10% FDR 

ANOVA 

p<0.05 

ANOVA 

p<0.01 

ANOVA 

p<10% FDR 

  domesticus vs. musculus castaneus vs. musculus 

brain all 1943 573 1 1819 516 0 

 2-fold 445 208 0 435 192 0 

 2.5-fold 274 146 0 281 137 0 

 5-fold 96 63 0 98 54 0 

liver all 1777 490 9 1808 463 0 

 2-fold 683 249 7 691 228 0 

 2.5-fold 465 182 6 464 164 0 

 5-fold 179 90 3 185 85 0 

testis all 2563 882 218 2514 822 215 

 2-fold 847 431 128 827 401 131 

 2.5-fold 568 355 104 546 295 106 

 5-fold 218 151 55 197 132 61 
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Differences between the tissues are apparent if the significance level is reduced 

(Figure 2.2); for p equal to the False Discovery Rate of 10%, a strong 

overrepresentation of differentially expressed transcripts in the testis is apparent. 

While only one transcript is differentially expressed in the brain and nine in the liver, 

218 transcripts show up different in the testis between domesticus and musculus. For 

the castaneus-musculus comparison significant different transcripts were only found 

in the testis (213).  

 

 

 

Figure 2.2: Number of all differentially expressed transcripts between M. m. domesticus and  
M. m. musculus, and M. m. castaneus and M. m. musculus for different tissues and significance 
levels. 

 

Most of the transcripts are differentially expressed in just one tissue within a 

comparison (Figure 2.3), even though about half of the differentially expressed 

transcripts in each tissue are detectably expressed in at least one additional tissue. 

This means that a large proportion of differentially expressed genes are not tissue 

specific (data not shown).  
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Figure 2.3: Overlap of transcripts differentially expressed between parental subspecies (p<0.01, 
fold-change >2.5) among the different tissues. 

Figure 2.4 shows the overlap of differentially expressed transcripts between the 

subspecies comparisons (i.e. domesticus-musculus and castaneus-musculus) for the 

three tissues. Interestingly, between one third and one half (depending on the tissue) 

of the transcripts differentially expressed between M. m. domesticus and  

M. m. musculus are also differentially expressed between M. m. castaneus and  

M. m. musculus. This suggests that the expression phenotype of these transcripts is 

musculus-specific.  
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Figure 2.4: Overlap of differentially 
expressed transcripts between M. m. 

domesticus and M. m. musculus, and  
M. m. castaneus and M. m. musculus 
within a tissue (p<0.01, fold-change 
>2.5 for each comparison). 
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2.3.2 Additivity/nonadditivity of transcripts differentially expressed between the 
subspecies 

Three different methods were used to infer the mode of inheritance (i.e. additivity, 

dominance, and overdominance) for the analyzed transcripts.  

Fixed/fractional threshold method 

Table 2.4 and Table 2.5 show the number of transcripts identified for each class for 

the fixed threshold method and the fractional threshold method (ε corresponds to 15% 

of the parental difference in expression). Numbers are shown separately for transcripts 

with expression levels of >500 in both parental strains and those with an expression 

level of >500 in one of the two parents. For this group, additive expression in the F1 

hybrid can not be unambiguously determined, since expression level <500 may mean 

no expression at all in one of the parental subspecies. Therefore, those putatively 

additively expressed transcripts are depicted in brackets in the tables. 

Table 2.4: Number of additively, dominantly and overdominantly expressed transcripts among 
the differentially expressed transcripts between M. m. musculus and M. m. domesticus in different 
tissues (fold-change >2.5, ANOVA p<0.05). Numbers in brackets indicate that additive 
expression of a transcript cannot unequivocally be identified as the transcript has signal 
intensities <500 in one of the subspecies and may therefore be not expressed. 

 
Additive Dominant Overdominant 

 dom-mus mus-dom 

mus-dom 
AND   

dom-mus dom-mus mus-dom 

mus-dom 
AND   

dom-mus dom-mus mus-dom 

mus-dom  
AND         

dom-mus 

Fixed threshold method, expressed transcripts in domesticus AND musculus 

Brain 39 41 31 5 5 1 0 0 0 
Liver 104 113 84 17 10 1 2 1 0 
Testis 97 104 80 11 10 4 1 0 0 

Fixed threshold, expressed transcripts in domesticus OR musculus 

Brain (112) (108) (96) 2 14 0 0 1 0 
Liver (137) (135) (112) 13 8 2 1 2 0 

Testis (276) (278) (244)  13 15 4 0 2 0 
Fractional threshold (15%), expressed transcripts in domesticus AND musculus 

Brain 27 20 13  0 0 0 0 0 0 

Liver 57 56  24 6  2  0 2 1 0 

Testis 58 66 39 0 1 0 1 0 0 
Fractional threshold (15%), expressed transcripts in domesticus OR musculus 

Brain (67) (60)  (34) 3 3 0 0 0 0 

Liver (74) (63) (36) 2 3 0 3 1 1 
Testis (148) (146) (80) 0 1 0 1 2 0 
          

Dominant and overdominantly expressed transcripts are rare; most transcripts show 

additivity in expression. In general, fewer transcripts that can be classified in either of 

the modes of inheritance are observed with the fractional threshold method. 
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Nevertheless, the fraction of additive versus nonadditive effects is almost identical for 

both methods, and changes little with varying values of ε in the fractional method 

(data not shown). In all cases, transcripts were classified into the same mode-of-

inheritance categories by both methods. The relative frequency of additive effects is 

independent of whether it was identified in F1 hybrids from one or both directions of 

the cross combined. Furthermore the percentage of transcripts showing additivity was 

similar across tissues: more than 80% of the transcripts are additively expressed and 

<10% dominantly and overdominantly, respectively. One exception is present: in the 

musculus-mother x castaneus-father cross solely for the testis, a much higher fraction 

of nonadditively expressed transcripts occurs. Between 30% and 65% of the assigned 

transcripts are either dominantly or overdominantly expressed, depending on the 

method.  

Table 2.5: Number of additively, dominantly and overdominantly expressed transcripts among 
the differentially expressed transcripts between M. m. castaneus and M. m. musculus in different 
tissues (fold-change >2.5, ANOVA p<0.05). Numbers in brackets indicate that additive 
expression of a transcript cannot unequivocally be identified as the transcript has signal 
intensities <500 in one of the subspecies and may therefore be not expressed. 

 
Additive Dominant Overdominant 

 cas-mus mus-cas 

cas-mus 
AND   

mus-cas cas-mus mus-cas 

cas-mus 
AND   

mus-cas cas-mus mus-cas 

cas-mus 

AND         
mus-cas 

Fixed threshold method, expressed transcripts in castaneus AND musculus 

Brain 36 38 25 5 2 0 0 1 0 
Liver 100 95 70 15 14 5 0 3 0 
Testis 76 55 36 12 24 4 1 11 1 

Fixed threshold, expressed transcripts in castaneus OR musculus 
Brain (199) (179) (151) 15 17 3 0 1 0 

Liver (301) (282) (226) 37 35 10 0 3 0 
Testis (388) (264) (214)  30 88 7 2 26 1 

Fractional threshold (15%), expressed transcripts in castaneus AND musculus 
Brain 15 25 4 0 1 0 0 1 0 
Liver 28 33 13 1 2 0 1 4 1 

Testis 34 17 8 4 9 0 1 22 1 
Fractional threshold (15%), expressed transcripts in castaneus OR musculus 

Brain (104) (89) (47) 1 2 0 1 2 0 
Liver (96) (100) (42) 6 10 0 9 1 1 

Testis (192) (65) (34)  8 32 0 2 55 1 
          

The analysis of transcripts with signal intensities >500 in only one of the parental 

subspecies yields similar results. Dominance and overdominance are rare and most 

transcripts show additivity in expression. This large fraction of transcripts with 

putatively intermediate expression suggests that transcripts with expression levels 
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<500 are more likely very low expressed rather than absent. 

Distribution of dominance effects 

Also the analysis which considers the distribution of dominance values shows a 

preponderance of additive gene expression. Most of the d/a values fall into the -0.5 to 

+0.5 interval (Figure 2.5). This analysis considers all transcripts which are 

differentially expressed at the given p-values, not only those with >2.5 fold difference 

between the parental subspecies (like for the fixed and fractional threshold method). 

 

M. m. domesticus / M. m. musculus

d/a

p<0.01

d/a

p<0.05

d/a

M. m. castaneus / M. m. musculus
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d/a
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M. m. domesticus / M. m. musculus

d/a

p<0.01

d/a

p<0.05

d/a

M. m. castaneus / M. m. musculus

p<0.01

d/a

p<0.05

 

Figure 2.5: Distribution of dominance values in F1 hybrids for differentially expressed transcripts 
between M. m. domesticus and M. m. musculus, and M. m. castaneus and M. m. musculus for ANOVA p 
value of <0.01 and p<0.05, respectively. A d value of 0 indicates exact intermediacy of expression. 

2.3.3 Nonadditive expression in F1 hybrids at transcripts that are not 
differentially expressed between the parents 

This analysis considers all transcripts that did not show a significant difference in 

expression between the parental subspecies. To be included in the analysis the 

transcripts had to have signal intensities >500 in at least one of the classes (i.e. one of 

the parental subspecies or at least one of the cross directions). As an average of 

11,000 transcripts is called expressed in each tissue and ca. 2,000 of them are 
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differentially expressed between the two subspecies at p<0.05, ~ 9,000 transcripts per 

tissue are included in this analysis. Only very few transcripts in F1 hybrids are found 

to differ significantly (p<0.05) at least 1.25 fold from the parental subspecies (Table 

2.6), less than 0.05%. Thus, also this analysis shows that nonadditive transcript 

expression is rare except again for the musculus-mother x castaneus-father cross in 

the testis, where ca. 1/3 of the transcripts show significant non-additivity. 

Table 2.6: Number of transcripts nonadditively expressed in F1 
hybrids compared to the parental subspecies. 

 dom-

mus 

mus-

dom 

dom-mus  

AND   

mus-dom 

mus-

cas 

cas-

mus 

cas-mus  

AND   

mus-cas 

Brain 7 19 1 23 3 2 

Liver 23 44 5 15 33 7 

Testis 
15 17 3 2798 12 16 

 

      

Summarizing, all analyses yield the same result: additivity is most common and non-

additivity is rare, with the exception of one cross in the testis (musculus-mother x 

castaneus-father). 

2.3.4 Contribution of sequence divergence to expression change 

If sequence divergence between M. m. domesticus and M. m. musculus had the 

potential to influence the microarray result, one would expect that probe sets 

hybridize more efficiently to domesticus in all regions with sequence differences, 

since the Affymetrix probe sets are based predominantly on domesticus DNA 

(C57BL6/J strain). To elucidate this potential problem, differentially expressed 

transcripts were counted separately for cases where musculus shows higher expression 

than domesticus and vice versa (Table 2.7). At low significance levels, no difference 

between the numbers is apparent. For high significance values, more transcripts in 

domesticus show higher expression than in musculus. This suggests that sequence 

divergence may influence the detection of differentially expressed transcripts.  
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Table 2.7: Number of transcripts differentially expressed between the parental subspecies,  
M. m. musculus and M. m. domesticus at different p-value thresholds and at different magnitudes 
of change, separately for the cases where domesticus shows higher expression than musculus 
(domesticus > musculus) and vice versa (musculus > domesticus). 

tissue Magnitude 

of change 

ANOVA p<0.05 ANOVA p<0.01 ANOVA p<10% FDR 

  mus>dom dom>mus mus>dom dom>mus mus>dom dom>mus 

brain all 
956 987 267 306 1 0 

 2-fold 
159 286 69 139 0 0 

 2.5-fold 
90 184 45 101 0 0 

 5-fold 
29 67 21 42 0 0 

liver all 
913 864 253 237 3 6 

 2-fold 
315 369 112 137 2 5 

 2.5-fold 
210 255 98 66 2 4 

 5-fold 
81 98 42 48 2 1 

testis all 
1269 1294 417 465 87 131 

 2-fold 
331 516 164 267 41 87 

 2.5-fold 
209 360 124 211 33 71 

 5-fold 
76 142 56 95 17 38 

  

      

To test for this potential bias, each probe set was assigned as domesticus- or 

musculus-like and analysis was restricted to two sets of transcripts. The first consists 

of differentially expressed transcripts which have a musculus-like probe set but high 

expression in domesticus, and the other with domesticus-like probe set but high 

expression in musculus. For both cases, expression differences are highly unlikely 

explained by sequence divergence. Table 2.8 shows additivity, dominance and 

overdominance for this subset of transcripts. The result is similar to the analysis 

including all transcripts: additivity is the predominant mode of in heritance.  
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Table 2.8. Number of additively, dominantly and overdominantly expressed transcripts among 
the differentially expressed transcripts between M. m. musculus and M. m. domesticus (fold-
change >2.5, ANOVA p <0.05) in different tissues, considering the “musculus”/“domesticus”-
likeness of the probe set. Numbers in brackets indicate that additive expression of a transcript 
cannot unequivocally be identified as the transcript is not expressed in one of the subspecies. 

 
Additive Dominant Overdominant 

 dom-mus mus-dom 

mus-dom 
AND   

dom-mus dom-mus mus-dom 

mus-dom 
AND   

dom-mus dom-mus mus-dom 

mus-dom  
AND         

dom-mus 

Fixed threshold method, expressed transcripts in domesticus AND musculus 

Brain 12 13 11 1 3 1 0 0 0 
Liver 45 45 39 9 3 0 0 0 0 
Testis 39 39 33 2 3 2 0 0 0 

Fixed threshold, expressed transcripts in domesticus OR musculus 

Brain (67) (71) (60) 2 6 1 0 0 0 
Liver (127) (123) (102) 22 12 4 0 2 0 
Testis (165) (166) (142) 6 12 4 1 1 0 

Fractional threshold (15%), expressed transcripts in domesticus AND musculus 

Brain 8 10 7 0 0 0 0 0 0 
Liver 24 17 8 4 1 0 0 0 0 
Testis 20 24 13 0 0 0 1 0 0 

Fractional threshold (15%), expressed transcripts in domesticus OR musculus 

Brain (40) (45) (22) 1 1 0 0 0 0 
Liver (52) (41) (20) 8 4 1 3 4 2 
Testis (70) (80) (38) 0 0 0 1 1 0 

          

The comparison of castaneus and musculus can be considered as a second test to see 

if sequence divergence influences the outcome of the analysis. Both subspecies are 

more closely related to each other than they are to M. m. domesticus (Prager et al. 

1998) therefore they are equally diverged from the subspecies that provides most of 

the genome of C57BL/6J. Thus, the analysis should not be severely affected by 

sequence differences. The result of this comparison (Table 2.5) shows that most 

transcripts are additively expressed (with the exception of the musculus-mother x 

castaneus-father cross in testis).  

Summarizing, the surplus of additively expressed genes in hybrids of subspecies of 

the house mouse seems not to be substantially affected by sequence divergence 

between them. 

Transcripts differentially expressed between the parental subspecies were 

analyzed with respect to maternal or paternal effects. Therefore both directions of the 

cross were analyzed separately and only those transcripts were considered that were 

dominantly expressed in both directions of the cross. If the expression level in the F1 
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hybrids always matched that of the mother this was classified as maternal effect. The 

expression level of a F1 hybrid for a paternal-effect transcript had to match that of the 

father. This analysis was restricted to transcripts that are not sex-linked. One region 

on chromosome 7 (~59 Mb, NCBI Build 36, gene Snrnp) seems to show a paternal 

effect in the brain of F1 hybrids from both the musculus-domesticus and the 

musculus-castaneus cross. The musculus-domesticus cross shows the same paternal 

effect also in the liver. No maternal-effect transcripts were found.  

2.3.5 Functional categories of transcripts 

For the transcripts additively expressed as assessed by the fractional threshold method 

(p<0.05, fold change >2.5, ε = 15%), no overrepresentation of certain biological 

processes was found in brain and testis. For liver, metabolic functions were 

significantly overrepresented in domesticus-musculus hybrids, for the castaneus-

musculus hybrids, oxygenase and acetyltransferase were overrepresented (after 

Bonferroni correction). 

For transcripts differentially expressed between the two subspecies (p<0.05, fold 

change >2.5) independent of the expression status in the F1 hybrids (i.e. all 

differentially expressed transcripts are considered), significant overrepresentation of 

certain biological processes are found in all three tissues and in both comparisons of 

the subspecies (Supplement 2, Supplement 3). For the domesticus-musculus 

comparison, similar biological processes are overrepresented in brain and testis 

(transcripts involved in intracellular protein traffic); in liver a high preponderance of 

transcripts involved in lipid, fatty acid and steroid metabolism is apparent 

(Supplement 2). Similar patterns are obvious in the liver for the castaneus-musculus 

comparison. For brain and testis different patterns of overrepresentation are found, 

like carbohydrate metabolism in brain and detoxification in testis (Supplement 3).  

The analysis for overrepresentation of certain biological processes was also 

conducted for the large number of transcripts nonadditively expressed in the 

musculus-mother x castaneus-father cross (Supplement 4) in the testis. Various 

processes are overrepresented. Interestingly, “spermatogenesis and motility” and 

“gametogenesis” are overrepresented with high significance values (p = 5 x 10-6). 
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2.4 Discussion 

The expression levels in subspecies of the house mouse and their reciprocal F1 

hybrids were assayed in three different tissues (brain, liver and testis). These tissues 

were chosen as representatives of different aspects of an organism’s phenotype. 

Voolstra et al. (2007) suggested that expression differences in the brain may reflect 

behavioral differences, changes in the liver general metabolic differences and changes 

in testis differences in reproduction. For all analyzed tissues and both subspecies-

cross comparisons (with the exception of the musculus-mother x castaneus-father 

cross), the analysis of within-locus mode of inheritance shows substantial 

overrepresentation of genes additively expressed in F1 hybrids in comparison to the 

parental subspecies, if transcripts with a significant expression difference between the 

parental subspecies are considered. Three different methods were applied to infer the 

mode of inheritance and all of them yielded the same result. The fixed threshold 

method has the tendency to shift the results towards detecting more additively 

expressed transcripts if the fold change between the parental subspecies becomes 

higher; the fractional method in contrast yields the potential to assign more 

overdominance with decreasing fold changes between the parental subspecies. Since 

both methods yield the same results although they would affect the results in opposite 

directions and the third method, which assesses the distribution mode of inheritance 

classes, is also consistent with a preponderance of additivity, it is likely that the 

pattern is real rather than a methodological or technical effect. Furthermore, a control 

experiment was performed to ensure that observed effects do not result from sequence 

divergence between the subspecies, since it is known that there is potential of 

sequence differences to result in lower hybridization efficiency (Chismar et al. 2002, 

Gilad et al. 2005, Ji et al. 2004). Also this experiment confirmed that additivity is the 

prevalent mode of inheritance. In addition, for genes showing no expression 

difference between the parental subspecies, only a negligible proportion of transcripts 

show nonadditive gene expression in hybrids.  

Functional annotation of the additively expressed transcripts did not reveal an 

overrepresentation of certain functional categories. While there is an 

overrepresentation of metabolic functions for additively expressed transcripts in the 

liver, the same overrepresentation is also found if all transcripts that are differentially 

expressed between the parents are considered. This suggests that this 
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overrepresentation is a liver-specific phenomenon rather than attributed to additivity.  

Studies which have addressed the question of additivity/nonadditivity of gene 

expression systematically come to inconclusive results. Two found evidence for 

substantial nonadditivity in gene expression (Gibson et al. 2004, Hedgecock et al. 

2007), four found pervasive additivity (Cui et al. 2006, Hughes et al. 2006, Stupar and 

Springer 2006, Swanson-Wagner et al. 2006) and one similar numbers of additively 

and dominantly expressed transcripts (Vuylsteke et al. 2005). Hughes et al. (2006) 

suggested two explanations for the discrepancy of results of their Drosophila study to 

those of Gibson et al. (2004). One reason could be that differences occur because of 

inbreeding. Natural populations of D. melanogaster (Hughes et al. 2006) show a 

preponderance of additivity while strongly inbred lines (Gibson et al. 2004) show 

nonadditivity to be prevailing. It seems plausible to relate overdominant or dominant 

gene expression to heterosis, a phenomenon which describes the better performance 

of crosses between inbred strains with regard to e.g. biomass, speed of development 

and fertility than both parents (Comings and MacMurray 2000). Heterosis is most 

commonly attributed to dominance (masking of recessive deleterious alleles in the 

heterozygous) or overdominance (superiority of heterozygous at loci affecting 

fitness). However, this seems not to be a general explanation for the disagreement of 

the studies, since other studies also used highly inbred lines despite observing 

nonadditivity (Cui et al. 2006, Stupar and Springer 2006, Swanson-Wagner et al. 

2006). Secondly, it might be that the genetic architecture depends in the taxonomic 

level at which the variation is investigated. Hughes et al. (2006) assume that the more 

diverged the parents are the greater the nonadditivity in gene expression becomes. 

While this might to some extend contribute, it does not solely explain differences, 

since within-species studies have documented frequent nonadditivity (Gibson et al. 

2004, Hedgecock et al. 2007, Vuylsteke et al. 2005). However, it seems equally likely 

that, as taxa diverge and a trait becomes influenced by more and more genes, 

additivity of expression becomes more and more prevalent, provided that no direct 

dominance occurs. This would apply up to some certain threshold after which 

incompatible alleles lead to massive misexpression in F1 hybrids.  

The most plausible explanation for the differences in genetic architecture between 

the different studies seems to be the analysis method of gene expression, since several 

methodological differences are relevant. One critical point is that the definition of 
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additivity depends on the measurement scale, such that on certain scales a transcripts’ 

expression level might be different from others. Indeed, the different studies apply 

various measurement scales. To minimize this effect in the present analysis, three 

different analysis methods have been used, which gave similar results. While only a 

small number of replicates was used in the current study, the result was also very 

robust with respect to changes in p-values and fold change levels (data not shown). 

Thus, the preponderance of additive gene action in the house mouse seems convincing 

and not due to measurement artifacts. A second critical point may be difference in the 

used biological material; some studies use single organs while others pool different 

tissues by using whole organisms. That differences in tissues indeed might have an 

effect is illustrated by the study of Ranz et al. (2004), who found a high proportion of 

nonadditivity in D. melanogaster x D. simulans hybrids when comparing the whole 

body of the flies and more additivity if only the head was surveyed. However, the 

differences in used tissue are no general explanation since also Hughes et al. (2006) 

used the whole body and found additivity to be prevalent. A third factor is that studies 

differ due to differences in the technical setup. The most critical point here is the used 

microarray platform. Recent studies comparing the performance of platforms come to 

inconsistent results. Patterson et al. (2006) do not find differences in performance 

among platforms while other studies conclude that one-color microarray generally 

outperform two color-microarrays (De Reynies et al. 2006, Kuo et al. 2006).  

Supplement 5 list studies that have systematically assayed patterns of inheritance 

in gene expression plus four additional studies, which have less rigorously treated this 

issue but allow a qualitative evaluation. Neither the level of inbreeding nor 

differences in divergence times are systematically associated with the frequency of 

additivity, although all might contribute to the differences in the mode of inheritance. 

The most striking correlate of additivity is the analysis platform used. None of the 

four studies, which have found a preponderance of nonadditivity, used Affymetrix 

microarrays, but two-color microarrays or sequence based expression measures. 

Therefore, methodological difference may be a major factor responsible for different 

results concerning genome-wide inheritance patterns. This would imply that additivity 

may be a general attribute of most (but not all) genes differentially expressed between 

taxa and that divergence level, degree of inbreeding and most probably also the 

complexity of tissues is no major contributor.  
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The screen of expression patterns of inter-subspecies hybrids was conducted to 

identify appropriate candidate genes, which might be involved in reproductive 

isolation. Based on the theory of regulatory incompatibilities in hybrids (see Landry et 

al. 2007 for a review), strongly misregulated genes, i.e. over- or undertranscribed in 

comparison to both parents (Moehring et al. 2007), are most promising since those 

genes suggest regulatory failures in the F1 hybrid generation. The analysis of 

expression patterns did reveal only few misregulated genes. This result is independent 

of whether the parents differ in expression or not (1 to 16 genes, if both hybrid 

combinations have to differ from both parents, depending on tissue and comparison). 

Only one exception occurs that is the cross of musculus-mother x castaneus-father, 

for which a relative large proportion of nonadditively expressed genes have been 

observed (~30% of the ~9,000 expressed transcripts that do not differ between the 

parents and 10-20% (depending on method) of the ~300 transcripts that show a 

difference between the parents).  

Studies examining gene expression to uncover regulatory incompatibilities in 

hybrids and their parents have mainly focused on Drosophila crosses (Michalak and 

Noor 2003, 2004, Ranz et al. 2004, Haerty and Singh 2006, Moehring et al. 2007). 

These studies find at least in part large proportions of misexpressed genes (5-65% of 

all expressed transcripts) in the hybrids in comparison to the parents; especially male-

biased genes are disproportionally misexpressed (Michalak and Noor 2003, 2004, 

Ranz et al. 2004, Haerty and Singh 2006). Specifically, these studies suggest that a 

significant fraction of the divergence in gene expression is cryptic, with more 

differences present between hybrids and the parents at the regulatory level as 

predicted from the examination of parental phenotypes only (True and Haag 2001). 

Therefore, the relative low number of misexpressed genes in house mouse hybrids is 

rather unexpected. However, several factors have to be considered when comparing 

such studies and thinking about regulatory incompatibilities in general. First, 

microarrays merely score a new phenotype – the amount of transcripts in individuals 

– and the connection of this trait to genotype and the final phenotype (like e.g. hybrid 

sterility) is unclear (Ortíz-Barrientos et al. 2007). A large difference in expression (or 

many differentially expressed genes) does not necessarily indicate that theses genes at 

the same time cause problems in hybrids. Similarly, some hybrid dysfunctions may 

not be associated with any expression difference. Furthermore, the number of 
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incompatibilities, even if many misexpressed genes have been identified, is not 

automatically large. Numerous changes could be due to few major regulatory genes 

whose effects cascade through the gene expression (Landry et al. 2007). Therefore, 

the few identified over- or underexpressed transcripts in the house mouse hybrids may 

be major contributors to F1 hybrid unfitness.  

An important difference between the studies in Drosophila and the present study 

is that Drosophila between-species hybrids display sterility, respectively that they do 

not hybridize in nature. Therefore it seems intuitive to find misregulated genes with 

effect on hybrid fitness, especially those related to reproduction. In contrast, the 

reproductive status of house mouse hybrids is not clear; fertility of the used crosses 

has not been tested. Male hybrid sterility has been demonstrated in natural hybrids 

and in laboratory crosses between both inbred and wild outbred mice (Forejt and 

Ivanyi 1975, Storchová et al. 2004, Britton-Davidian et al. 2005, Vyskocilová et al. 

2005, Good et al. 2007), whereas crosses with other laboratory strains yield fully 

fertile offspring or display variation in strength of sterility (Vanlerberghe et al. 1986, 

Forejt 1996, Alibert et al. 1997, Britton-Davidian et al. 2005). Thus, reproductive 

isolation through hybrid sterility frequently occurs but is not complete. Furthermore, 

different hybrid sterility genes segregate within geographical separate populations. 

This indicates that hybrid male sterility emerges frequently in M. musculus 

populations and that the genetic basis of reproductive isolation depends on the 

population and even the individual tested (Vyskocilova et al. 2005, Good et al. 2007). 

Thus, the lack of misregulated genes in most of the surveyed F1 hybrids might mean 

that they are not sterile and also relatively fit with regard to other potential hybrid 

disadvantages.  

House mouse subspecies are less divergent and display different geographical 

settings than the Drosophila species. It has been assumed that the homogenizing 

effect of gene flow between taxa prevents or delays the accumulation of regulatory 

incompatibilities, since the populations are forced to evolve towards the same 

compensatory genotypes (Porter and Johnson 2002). The ranges of either domesticus 

and musculus, and castaneus and musculus overlap and gene flow exists. As a 

consequence, the number of incompatibilities should be smaller than for strictly 

separated taxa (Hughes et al. 2006). However, for one of the analyzed crosses a large 

number of misexpressed genes could be observed despite existing gene flow between 
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the subspecies. Therefore, this explanation is unlikely of general relevance for the 

present data.  

Not only genes displaying misexpression but also intermediate expression levels 

in hybrids might be linked to hybrid incompatibilities as such expression levels can 

already be detrimental in F1 hybrids. Additionally, such genes have the potential to be 

important isolating factors in F2 and later backcross generations, which has been 

observed for some house mouse crosses (Oka et al. 2007). The heterozygous state of 

alleles at interacting loci might not be sufficient to cause hybrid dysfunctions and 

effects might occur only when homozygous allele combinations come to interact in 

later generations (Orr and Presgraves 2000). It has been suggested that alleles 

involved in hybrid incompatibilities are, on average, partially recessive (Orr 1997), 

which means that these genes lower fitness in hybrids far more when homozygous or 

hemizygous than heterozygous. Empirical evidence for this “dominance theory” has 

been obtained from a Drosophila deficiency mapping study, where recessive 

interactions were found to vastly outnumber dominant ones (Presgraves 2003).  

One cross (musculus-mother x castaneus-father) displayed intensive 

nonadditivity in gene expression in the testis, i.e. many genes are misexpressed in the 

hybrid in comparison to both parents. This pervasive misexpression is restricted to the 

testis, which rules out methodological problems to have caused this pattern. 

Interestingly, biological processes related to spermatogenesis and gametogenesis are 

significantly overrepresented among these genes. Thus, a link of misexpression in this 

cross to hybrid sterility seems plausible. The high number of misexpressed genes 

could mean that many genes are involved in sterility as well as that the effects of a 

few master control genes have cascaded through the regulatory network and 

influenced the expression of many genes (Landry et al. 2007). The extensive 

misexpression in the testis could represent the crossing of a certain threshold at which 

genic incompatibilities between taxa result in low hybrid fitness. Regarding the theory 

that incompatibilities affect fertility before viability (Coyne and Orr 2004) the 

observed pattern in this cross is conceivable.  
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Whether reproductive isolation between subspecies of the house mouse is related 

to a fast rate of divergence in gene expression in reproductive organs (i.e. testis), as it 

is suggested by some models of sexual selection and sexual conflict (Rice 1998), has 

been previously tested by Voolstra et al. (2007) by comparing the expression patterns 

of different tissues and with respect to different divergence levels (i.e. between 

species and between subspecies). They found only few genes differentially expressed 

in the testis between the subspecies. In contrast, the present study, observes most 

differentially expressed transcripts in the testis especially at high significance 

thresholds. One reason for the different outcomes of the studies may be 

methodological. Voolstra et al. (2007) used two color microarrays and unrelated wild-

caught animals, which have been exposed to standard laboratory conditions for only 

few days, whereas the current analysis was performed with Affymetrix GeneChips® 

and laboratory-raised, to a large extend inbred strains of each subspecies, thus 

excluding natural variation to influence gene expression. A second factor, which can 

explain the differences, is that hybrid sterility affects genes that segregate within 

populations. Several hybrid sterility loci within populations but without fixed 

differences between populations have been found in crosses between a laboratory 

strain (mainly domesticus origin) and wild M. m. musculus (Vyskocilova et al. 2005), 

between wild-derived inbred strains of M. m. musculus and M. m. domesticus (Good 

et al. 2007) and in Mimulus species (Sweigart et al. 2007). Thus, if the different wild-

caught animals in Voolstra et al.’s (2007) study were of different genotypes, the 

consequent within-subspecies variability would obscure between-subspecies 

differences, while in inbred-animals such within-subspecies differences can be 

neglected.  

At this point of the analysis it is unclear, whether any of the identified genes 

(misexpressed or differentially expressed between the parental subspecies) contributes 

to reproductive isolation and which reasons account for the differences between the 

analyses in Drosophila and the present study. However, the identified genes provide 

valuable candidate genes for further analyses addressing different aspects of 

expression, phenotypic and population genetics analyses that may shed light on the 

genetic basis of reproductive isolation between house mouse subspecies.  
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3 Confirmation of microarray candidate genes: 
factors affecting expression data in cross-
subspecies analyses 

 

3.1 Introduction 

In the past several years, the technique of DNA microarrays has opened the possibility 

to move apart from “one gene in one experiment” analyses towards surveying the 

genome of an organism as a whole, thus giving the opportunity of unraveling 

interactions of genes and get a more complex picture of an organisms’ organization. 

With DNA microarrays one can conduct large-scale comparative gene expression 

profiles between biological samples by simultaneously surveying expression in 

thousands of genes. However, as they are very sensitive to various artifacts, a follow-

up confirmation of observed effects is strongly recommended (Chuaqui et al. 2002, 

Miron et al. 2006, Morey et al. 2006). Several factors may influence results from 

microarray studies. One critical factor is that the relationship between probe sequence, 

target concentration and signal intensity currently is not completely understood 

(Draghici et al. 2006). As probes are designed as perfect complement to a specific 

region of a transcript, the probe should capture a specific number of these transcripts 

and thus the signal intensity of a probe should be proportional to the concentration of 

the transcript. The number of molecules which are bound to the probe depends to a 

large degree on the sequence affinity of the probes; affinity being a consequence of 

the actual sequence stretch participating in the binding. Recent studies showed that it 

is very hard to predict correct DNA-RNA binding affinities: studies conducted in 

solution have shown that a single base-mismatch in a probe can stabilize or 

destabilize the RNA-DNA depending on the identity of mismatch, its position in the 

helix and its neighboring base pairs (Kierzek et al. 1999).  

A recent study by Pozhitkov et al. (2006) has determined the effect of the type of 

mismatch and type of neighboring nucleotide on signal intensity on DNA arrays and 

found, that both factors had significant effects on the normalized intensity values as 

well as that there are interactions among the two factors. Thus, signal intensities can 

be confounded by all these factors. Furthermore Pozhitkov et al. (2007) stated that 

“… there is little evidence supporting the notion that the known thermodynamic 
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parameters accurately predict signal intensity values of duplexes on oligonucleotide 

DNA arrays. This makes it highly questionable if the current thermodynamic 

parameters which are applied to design probe oligonucleotides are useful”, 

respectively it is likely that any analyses reveal a proportion of false positive results. 

Another important contributor to confounded expression data is alternative 

splicing. A recent study has estimated that about 45% of the mouse genome is 

alternatively spliced (Modrek and Lee 2003) and therefore a major factor potentially 

influencing the data. If a probe set only refers to one exon, expression changes 

occurring only in certain splice variants may be obscured by detecting all splice 

variants (if the probes are located in an exon present in all the alternative transcripts) 

or in the reverse case (if the probes are located in an exon which is only present in 

certain splice variants), the specific transcript will be measured but the others will be 

ignored.  

Cross-hybridization (probe sequence is not strictly complementary to the target 

sequence) also seems to be a significant contributor to skewed signal intensities. It has 

been shown that numerous probes produce cross-hybridization signals both in cDNA 

and oligonucleotide microarrays (Wu et al. 2005, Zhang et al. 2005) whereas even 

short stretches of sequence complementary seem to be sufficient to make 

hybridization of unrelated sequences possible. Evaluation of how significant such 

effects may be is not easy as for example for Affymetrix arrays single cross-

hybridizations of probes can be out-weighted by the remaining probes of a probe set. 

Cross-hybridization also depends on the abundance as well as on the affinities of the 

specific and the non-specific target (non-specific target must be present in sufficient 

concentrations to influence the true signal).  

Furthermore expression and copy number variation can be confounded. Evidence 

has been presented that increased copy number can be positively correlated with gene 

expression levels (McCarroll et al. 2006). The relative abundance of a specific 

transcript can be overestimated due to duplications that increase the potential for the 

cross-hybridization of highly related sequences to specific probes in the microarray.  

A factor which has rarely been considered yet is, if the comparison of closely 

related taxa (and therefore existence of sequence differences) may be critical, if one of 

the taxa shows higher divergence from the sequence represented on the microarray 

than the other. For cross-species analyses, using species different from the Chip 
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sequence, there is a general agreement that the array sensitivity and thus the accuracy 

of the analysis decreases with increasing sequence differences between the species 

analyzed, which implies that cross-species analyses yield significantly more false-

negatives genes that appear not to be expressed although they are, than same-species 

analyses (Chismar et al. 2002, Ji et al. 2004). Chismar et al. (2002) for example 

hybridized Macaca to a human GeneChip® and had 50% less detected transcripts than 

for human samples, while Ji and coworkers found overall low hybridization signals 

for cattle, pig and dog when hybridized to a human GeneChip® (Ji et al. 2004). Enard 

et al. (2002) compared the transcriptome of humans, chimpanzees and orangutans to a 

human GeneChip® and three mouse species to a mouse GeneChip®. Both comparisons 

revealed that the expression levels were reduced for that species the chip was not 

designed for. Although different methods have been developed to account for this 

type of bias in cross-species analyses (e.g. Khaitovich et al. 2004, Ranz et al. 2003), 

overall, most studies so far have not had an effective way to estimate or correct for the 

effect of sequence mismatches on array hybridization. The study of Gilad et al. (2005) 

again affirmed the effect of sequence divergence on expression levels, even for very 

close related species such as human-chimpanzee, by applying a multispecies cDNA 

array and stated that “…sequence divergence… cannot be safely ignored in direct 

cross-species comparisons”. It is however questionable, if sequence divergence as less 

as between house mouse subspecies, which diverged from each other 0.5 to 0.8 

million years ago (Guénet and Bonhomme 2003), has a substantial effect on the 

accuracy of expression analysis.  

All the numerous parameters which potentially influence microarray data show 

the necessity to confirm any obtained candidate gene with an independent method. 

Additionally to the need to check for such artifacts, it is important to determine 

whether the observed expression profile is a general biological feature of the sample 

under study rather than a property of the sampled entity. Therefore it is necessary to 

critically evaluate a larger and more extensive sample set with an independent 

method.  

Quantitative real-time-PCR (qRT-PCR) is the choice of many for quantitatively 

measuring specific mRNAs as, once established, the method is rapid, relatively 

inexpensive and requires minimal starting template (Walker 2002). However, data 

achieved from microarrays and qRT-PCR often show inconsistencies, as both 
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methods have their own pitfalls. To date no golden standard for validation of 

microarray data exists (Morey et al. 2006), thus choosing a method strongly depends 

on the scientific question. In literature a wide range of the correlation between 

microarray data and qRT-PCR data exists (Morey et al. 2006). For genes with high 

fold changes (i.e. >2) accordance has found to be high (Etienne et al. 2004). Most 

common, genes for validation are chosen regarding high expression differences 

between two samples as it is expected that high fold changes are more likely of 

biological significance.  

Here, I evaluate different factors which may confound microarray data or results 

from quantitative real-time-PCR if comparing different subspecies and tissues of 

house mouse subspecies. From an expression screen, several genes with high fold 

changes between the two house mouse subspecies M. m. domesticus and  

M. m. musculus were chosen for validation via qRT-PCR. Both TaqMan® Gene 

Expression assays and Sybr Green was used for the confirmation approach and 

compared for their utility. Sequence comparisons were conducted to evaluate the 

contribution of subspecies sequence differences for both microarray and follow-up 

qRT-PCR analyses.  

 

3.2 Materials and Methods 

3.2.1 Candidate Genes 

Gene expression analysis with Affymetrix GeneChip® 430.2 (analysis described in 

detail in 2.2.4) yielded 431 genes differentially expressed in testis between  

M. m. musculus and M. m. domesticus (ANOVA p-value <0.01, fold change minimum 

between subspecies = 2). From these genes a set of ten genes was chosen (Table 3.1) 

for confirmation with quantitative real-time-PCR involving a larger sample set. Those 

genes showed a minimum average fold change between subspecies of 2.5 with 

intermediate average expression levels of both hybrids (i.e. additively expressed, see 

2.2.4).  
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Table 3.1: Candidate genes used for the confirmation experiment and fold changes between  
M. m. domesticus and M. m. musculus. Positive fold changes refer to domesticus being higher 
expressed, negative to musculus being higher expressed. 

Affymetrix ID Gene symbol Refseq Average fold 
change from 
GeneChip® 
 

Expression 
difference in 

1460235_at Scarb2 NM_007644.2 -19.8566 testis 

1421113_at Pga5 NM_021453.2 -11.0281 testis 

1424060_at Neil3 NM_146208.1 7.242553 testis 

1453203_at 1700011K15Rik NM_029294.1 20.19957 testis 

1455939_x_at Srp14 NM_009273.4 23.41926 brain, liver, testis 

1419715_at 1700029F12Rik NM_025585.1 207.2982 testis 

1429661_at Rhobtb3 NM_028493.1 12.97842 testis 

1428437_at Lsm14a NM_025948 -7.35 brain, liver, testis 

1417515_at Lsm10 NM_138721 -7.81 testis 

1452877_at 2700029M09Rik XM_910498 -7.79 testis 
     

3.2.2 Animals 

The confirmation of the GeneChip® results was done with the same animals used in 

the microarray study as well as a larger set of wild-derived inbred mice (hybrids and 

parents) and wild-caught M. m. domesticus and M. m. musculus. For M. m. musculus, 

strain JPC 2821 from the Czech Republic and for M. m. domesticus, strain JPC 2705 

from Germany was used for the experiments. JPC 2821 and JPC 2705 were collected 

in the wild and inbred by brother-sister matings for ~13 generations in the laboratory 

of J. Pialek in the Department of Population Biology in Studenec (Czech Republic). 

Reciprocal crosses between the wild-derived-inbred subspecies were set up to obtain 

F1 hybrids (Table 3.2). M. m. musculus will be abbreviated as “mus” and  

M. m. domesticus as “dom” in figures and tables in the following. 

Table 3.2: Breeding setup for F1 hybrids. 
mother  father F1 hybrid 
M. m. musculus  x M. m. domesticus mus-dom 

M. m. domesticus x M. m. musculus  dom-mus 
    

Altogether seven inbred-males for M. m. domesticus and four for M. m. musculus, six 

mus-dom hybrids and 3 dom-mus hybrids were included in the analysis. Additional, 

four pairs each of wild-caught animals of M. m. domesticus from Germany (provided 

by M. Teschke) and M. m. musculus  from Austria (provided by K. Musolf, Vienna) 

were used to obtain F1 offspring in the laboratory (at least one male offspring per 

locality) which were also included in the analysis (Supplement 1). F1 offspring was 

used instead of directly caught animals in order to exclude variation in gene 
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expression due to differences in age, health condition, food resources etc. As it is 

known that mice live in small family groups with home ranges restricted to 2 km 

respectively strictly indoor living mice even not moving more than a few square 

meters (Berry and Bronson 1992, Pocock et al. 2005) a specific sampling scheme was 

applied to get mice from different demes and to ensure unrelatedness of sampled 

mice. Trapped mice were assigned to different localities only if the trapping sites were 

at least 300 m apart from each other. Animals were captured in live traps and 

transferred to the laboratory. Breeding pairs derived from the same locality were set 

up to obtain F1 offspring. All mice were held under standard laboratory conditions 

and males were sacrificed at the age of 6-8 weeks.  

3.2.3 Sample preparation 

Animals were sacrificed using CO2. Organs were excised and immediately snap 

frozen in liquid nitrogen. Organs were stored until RNA extraction at -80 degrees. 

RNA from testis was extracted using Trizol® (Invitrogen, Carlsbad, CA) following the 

manufacturer’s protocol. Quality and integrity of the total RNA was controlled by 

using the Agilent Technologies 2100 Bioanalyzer and the RNA 6000 Nano LabChip® 

Kit (Agilent Technologies Waldbronn, Germany). Only samples with RNA integrity 

numbers (RIN) >8.0 were used for analysis. 

3.2.4 cDNA synthesis 

RNA was DNase-treated prior to cDNA synthesis using Ambion’s DNA-free
TM 

following the manufacturer’s protocol. RNA was reverse transcribed using random 

hexamers (Fermentas) and the ThermoScript Revese Transcriptase Kit (Invitrogen, 

Carlsbad, CA) using 1 µg RNA as starting material according to the manufacturer’s 

protocol. 

3.2.5 Quantitative real-time PCR (qRT-PCR) 

Confirmation analysis for the candidate genes was performed for two different data 

sets, one with an extended set of inbred, which is used to exclude sample variability 

as having caused results. The other sample set consists of wild animals. Repeating the 

analysis with wild animals shall ensure that the observed result is a general subspecies 

effect rather than an inbreeding effect.  
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A. Using TaqMan® Gene Expression Assays  

For seven genes the confirmation of the GeneChip® expression differences was done 

using TaqMan® Gene Expression Assays from Applied Biosystems (Supplement 6). 

PCR amplicons were obtained from ABI’s ‘Assay on Demand’ selection and 

reactions were performed using 2 µl of a 1:10 diluted cDNA in 8 µl reaction volume, 

containing 4 µl TaqMan® Universal Mastermix, 0.4 µl TaqMan® Gene Expression 

Assay and 1.6 µl H2O. For each individual a single cDNA synthesis was performed, 

which was used in triplicate in the qRT-PCR. Averaged CT values from each qRT-

PCR reaction of the target gene were standardized relative to the endogenous control 

of the same sample. Eif4g2 (eukaryotic translation initiation factor 4, gamma 2) was 

used as endogenous control as it showed highly similar expression levels and the 

lowest standard deviation across individuals, subspecies and different tissues in the 

GeneChip® analysis, including three different subspecies and tissues, respectively 

(data not shown). Real-time PCR reactions were performed using the ABI PRISM 

7900HT sequence detection system (Applied Biosystems) using 384 well plates with 

recommended thermal cycling protocols and 40 cycles of amplification. Threshold 

cycle (CT) values were determined using the supplied sequence detection system 

(SDS 2.1.1) software package.  

B. Using Sybr Green fluorescent dye 

All ten candidate genes (Table 3.1, Supplement 6) were used for the Sybr Green 

experiment. QuantiFast® Sybr Green PCR Kit (Qiagen) was used in a 10 µl reaction 

volume according to the manufacturer’s protocol with 2 µl of a 1:40 dilution of cDNA 

as starting material. Again, samples were performed in triplicate. Averaged CT values 

from each qRT-PCR reaction of the target gene were standardized relative to the 

endogenous control, Eif4g2, of the same sample. Primers (Supplement 7) were 

designed in a way that the PCR product of each candidate gene represented exactly a 

section of the target region of the Affymetrix GeneChip®, whereas it was assured that 

primer sequences contained no differences (i.e. SNPs) between the two subspecies 

(sequencing of the target region is described in 3.2.7) to exclude differences in primer 

affinity. Melting curve analysis as well as agarose gel electrophoresis was done to 

check for the specificity of the PCR products. Experiments were run on an ABI Prism 

7900HT Sequence Detection System following the provider’s recommendation 
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concerning the thermal cycling protocol, using 384 well plates and running SDS 2.1.1. 

3.2.6 Analysis of qRT-PCR data 

For each qRT-PCR reaction the averaged CT value of the endogenous control was 

subtracted from the averaged CT value of the target gene, yielding the ∆CT value. 

These values were then averaged across the triplicate samples within an individual, 

yielding the average ∆CT value. Outliers among triplicates were removed if they 

raised the standard deviation above 0.3.  

The following formula was used to calculate the fold-change between the two 

subspecies: 
 

fold-change = )__(2 musCdomC TT ∆−∆− , 
 

where domCT _∆  is the average ∆CT value across the M. m. domesticus individuals and 

musCT _∆  is the average ∆CT value across individuals of M. m. musculus. In case that  

M. m. domesticus expression levels are smaller than M. m. musculus values, fold 

changes are shown as the negative reciprocal value for reasons of convenience (i.e. 

the direction of change can be directly deduced). 

∆CT values were used in a Kruskall-Wallis test to test for expression differences 

between the three groups M. m. musculus, M. m. domesticus and the hybrids, 

respectively. Subsequent pair wise Mann-Whitney-U tests were performed to identify 

significant pair wise differences. 

3.2.7 Sequencing of Affymetrix GeneChip® target regions 

A GeneChip® probe array consists of a number of probe cells where each probe cell 

contains a unique probe. The Affymetrix Mouse Genome 430 2.0 GeneChip® has 

45,000 probe sets which analyze the expression level of over 39,000 transcripts and 

variants from over 34,000 well characterized mouse genes. A probe set is composed 

of eleven pairs of 25-mer oligonucleotide probes, which measures the expression for a 

section of the full-length sequence of a specific mRNA and is therefore 

complementary to a target sequence derived from that specific mRNA. Probes are 

tiled in probe pairs as Perfect Match (PM) and a Mismatch (MM) (Figure 3.1). The 

sequence for PM and MM are the same, except for a change to the Watson-Crick 

complement in the middle of the MM probe sequence. The reason for including a MM 
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probe is to provide a value that comprises most of the background cross-hybridization 

and stray signal affecting the PM probe. To define a measure of expression 

representing the amount of the corresponding mRNA it is necessary to summarize 

probe signal intensities for each probe set. Different algorithms are available for 

summarizing the signal intensities. The signal value is calculated from the combined, 

background-adjusted, PM and MM values of the probe set if the standard Affymetrix 

MA Suite 5.0 is used (described in detail in “Statistical Algorithms Description 

Document” provided by Affymetrix 2002), RMA (Irizarry et al. 2003B) considers PM 

oligos only (for a comparison of different algorithms refer to Irizarry et al. 2003A and 

Irizarry et al. 2003B). The newest generations of Affymetrix expression quantitation 

refrains from including mismatches as it was shown in several studies that mismatch 

signal intensities often exceed perfect match intensities and therefore one would 

expect that including mismatch oligos in the normalization methods contributes to 

noise rather than reducing it (Harr and Schlötterer 2006). Especially for low-intensity 

genes using of MM data has been found to be unreliable (Irizarry et al. 2003A, Qin et 

al. 2006). 

The eleven probes of a probe set cover the target sequence (between 150 and 500 

bp long) to varying degrees since the probes of a set overlap to greater or lesser 

extend, depending on the target sequence size (usually overlap is the higher the 

shorter the sequence is). 

 

Figure 3.1: GeneChip® array design. Picture 
derived from Affymetrix statistical algorithms 
descriptions document. 

The probe sets of the Mouse Genome 430 2.0 Affymetrix GeneChip® are designed 

based on the sequence of the laboratory inbred strain C57BL/6J. The genome of this 

strain represents a mixture of genetic contributions from the three subspecies  

M. m. musculus, M. m. domesticus and M. m. castaneus (Wade et al. 2002, Yang et al. 

2007), whereas M. m. domesticus provides up to 92% of the sequence (Yang et al. 

2007). Therefore it is possible that sequences differences (i.e. SNPs or alternative 

transcripts) between the wild subspecies translate into differences in hybridization 

efficiency (elevated or decreased signal intensities) of specific probe sets; i.e. one can 

expect that a probe set hybridizes more efficiently with that subspecies the particular 
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probe set sequence was derived from. To control for this, the target sequence of all 

candidate genes was sequenced for all M. m. musculus and M. m. domesticus samples 

used for the GeneChip® analysis (Table 3.1, Supplement 1). 

The sequence of the target region for each candidate gene is available from the 

Affymetrix homepage (http://affymetrix.com/index.affx). Whole sequences for the 

candidate genes were downloaded from ENSEMBL (http://www.ensembl.org). 

Primers were designed to amplify the whole target region (Supplement 7). PCR was 

setup in a 10 µl volume using the Qiagen® Multiplex PCR Kit following the 

manufacturer’s protocol with 1 µl of 1:10 diluted cDNA as starting material. PCR 

products were purified by adding 0.012 µl Exonuclease I (Biolabs® 20 U/ml) and 

0.045 µl Shrimp Alkaline Phosphatase (Promega, 1U/ µl) per 10 µl reaction and 

heating 20 minutes for 37ºC followed by 72ºC for 15 minutes. PCR products were 

sequenced in both directions using the BigDye sequencing chemistry on an ABI3730 

automated sequencer. Sequences assembly and analysis was performed using the 

program CodonCode Aligner 2.0. Heterozygous positions were identified through 

visual inspection of all sequence positions for which the automatic nucleotide calls 

were ambiguous. All sequences were aligned using CLUSTAL W (Thompson et al. 

1994). All sequences are provided in the Digital Supplement. 

Differences (i.e. SNPs) to the target sequences provided by Affymetrix are 

identified and related to the subspecies-specific expression levels and analyzed with 

respect to their relevance for hybridization efficiencies. Because some probes of a 

probe set are overlapping, it may be that one SNP in the target region influences the 

overall expression level of a probe set more than one time since more than one probe 

binds to that region. Therefore the (background-corrected) PM signal intensities of 

each single probe were related to the accordance of the target sequence with the probe 

sequence to see if multiple hit of a SNP more likely influence signal intensities. 

3.2.8 Sequencing of amplicon regions 

In a similar way as SNPs or alternative transcripts affect hybridization efficiencies of 

the microarray sequence, differences between subspecies may influence the proper 

binding of the primers and the probe of the Applied Biosystems TaqMan® assays, 

which are designed on basis of the inbred strain C57BL/6J, and therefore potentially 

lead to artifacts. To test for this the amplicon region of all seven candidate genes 
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analyzed with TaqMan® Gene Expression assays as well as the endogenous control 

was sequenced for all samples used for the qRT-PCR (Supplement 6) to confirm, that 

only differences in mRNA levels are captured by the assays. The assay location and 

the amplicon length are provided on the Applied Biosystems webpage 

(https://www2.appliedbiosystems.com). The sequence for each candidate gene was 

downloaded from ENSEMBL (http://www.ensembl.org). Primers were designed to 

amplify the whole amplicon region (Supplement 7). Amplicon lengths range from 60 

to 150 bp, including primers of approximately 20 bp length and a probe of 12-20 bp 

length. As the exact position of the primer/probe position is not provided by Applied 

Biosystems, one can only conclude if a SNP at any position in the amplicon region 

potentially influences primer/probe binding, if a primer or probe is actually affected 

remains speculative. But at least for the primers, conclusions can be made with a 

certain probability as those are located at the beginning/end of the amplicon. For PCR 

and sequencing setup refer to 3.2.7. 

 

3.3 Results 

3.3.1 qRT-PCR using TaqMan® gene expression assays 

Table 3.3 shows the results of the seven candidate genes analyzed with qRT-PCR 

using TaqMan® gene expression assays, considering fold changes for the samples 

used for the GeneChip®, for the inbred samples and the wild samples separately. Only 

for Neil3 the expression difference between the two subspecies as assessed by the 

Chip (fold change = 7.2) could be confirmed with an extended data set, showing a 

similar result for the Chip samples with a fold change of 8.9, a reduction in fold 

change with more inbred samples and wild samples, respectively, though still clearly 

differentially expressed. For 1700011K15Rik the fold change (20.2) could only be 

confirmed for the Chip samples (13.9) and the inbred animals (9.6). For all other 

candidate genes the expression difference, as deduced from the Chip, could not be 

confirmed and showed the opposite direction of change. No data were obtained for 

Pga5 for all samples, i.e. this transcript is not or very low expressed. 
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Table 3.3: Fold changes between domesticus and musculus for candidate genes inferred from 
TaqMan® qRT-PCR analysis (FC=fold change). 

Gene FC 
GeneChip®

dom/mus 
Chip 

FC qRT-
PCR 
dom/mus 
Chip-
samples 

FC qRT-
PCR 
dom/mus 
inbred 
samples 

FC qRT-
PCR 
dom/mus 
wild 
samples 

Confirmation 
of Chip result 
inbred 
samples 

 

Confirmation 
of Chip result 
wild samples 

 

Scarb2 -19.8 2.19 2.0 1.2 no no 

Pga5 -11 no 
amplification 

no 
amplification 

no 
amplification 

no no 

Neil3 7.2 8.9 4.5 3.4 yes yes 
1700011 
K15Rik 

20.2 13.9 9.6 -1.4 yes no 

Srp14 23.4 -1.7 -1.5 -1.3 no no 

1700029 
F12Rik 

207.3 -1.4 -2 -2.5 no no 

Rhobtb3 12.9 -1.1 -1.2 -1.2 no no 
 

      

Analysis for significant differences between the two subspecies respectively the 

hybrids was only performed for genes, for which the fold change from the microarray 

could be confirmed, by using the ∆CT values in a Kruskall-Wallis test. To identify the 

contribution of the three groups to the significant value, subsequent pair wise Mann-

Whitney-U tests were performed. Both Neil3 and 1700011K15Rik are significantly 

differentially expressed between the three groups for the inbred sample set (p<0.05). 

Pair wise comparisons show that the parental subspecies differ significantly from each 

other as do the hybrids from both parents (i.e. intermediate, p<0.05). For 

1700011K15Rik the averaged expression difference of all hybrids differs by 2.3 fold 

from inbred domesticus and by 3.8 fold from inbred musculus, for Neil3 hybrids differ 

2.7 fold from domesticus and 2.4 fold from musculus, thus clearly showing 

intermediate expression levels. For Neil3 the three groups also differ significantly in 

the wild sample set (p<0.05) but the pair wise comparison shows that this significance 

can only be attributed to a significant difference between the parental subspecies and 

a difference between the hybrids and M. m. musculus (p<0.05, fold change 3.7). The 

expression level of the hybrids therefore follows the expression of M. m. domesticus 

(i.e. the hybrids are not intermediate in expression). Supplement 8 shows boxplots for 

the expression differences of Neil3 and 1700011K15Rik of the subspecies and 

hybrids, respectively. Altogether, only two out of seven candidate genes (29%) can be 

confirmed for the animals used for the microarray and only for Neil3 the expression 

difference between domesticus and musculus (as derived from the Chip) can be 

validated also for the wild sample set.  
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3.3.2 qRT-PCR using Sybr Green fluorescent dye 

Quantitative real-time PCR with Sybr Green was performed for all but one of the 

candidate genes (n=10). For Pga5 the establishment of adequate primers and therefore 

amplification was not possible. For all the other genes amplification was successful 

and primers gave specific products as checked by melting curve analysis and agarose 

gel electrophoresis. 

Fold changes from the microarray could not be validated for Scarb2, Srp14, Rhobtb3 

and Lsm14 for a larger data set, neither for the inbred nor for the wild samples, 

regarding the magnitude respectively the direction of change. For the other 5 genes 

the fold changes from the microarray analysis could be validated for both data sets 

(Table 3.4). Though a fold change could not be calculated for 1700029F12Rik, the 

qRT-PCR result supports the Chip outcome as no expression at all could be detected 

for M. m. musculus, thus M. m. domesticus being much higher expressed. 

Table 3.4: Fold changes between domesticus and musculus for candidate genes inferred from 
Sybr Green qRT-PCR analysis (FC=fold change). 

Gene FC 
dom/mus 
Chip 

FC qRT-
PCR 
dom/mus 
Chip-
samples 

FC qRT-
PCR 
dom/mus 
inbred 
samples 

FC qRT-
PCR 
dom/mus 
wild 
samples 

Confirmation 
of Chip result 
inbred 
samples 

Confirmation 
of Chip result 
wild samples 

 

Scarb2 -19.8 1.133388 
 

-1.66232 
 

8.755755 
 

no no 

Neil3 7.2 30.66613 
 

37.72493 
 

153.6626 
 

yes yes 

1700011 
K15Rik 

20.2 11.92926 
 

11.11592 
 

2.899065 
 

yes yes 

Srp14 23.4 -1.40169 
 

-1.54796 
 

1.15394 
 

no no 

1700029 
F12Rik 

207.3 

 

mus not 
expressed 

mus not 
expressed 

mus not 
expressed 

yes yes 

Rhobtb3 12.9 1.08103 
 

-1.06672 
 

1.201301 
 

no no 

Lsm14a -7.35 1.380218 1.538537 1.02772 no no 

Lsm10 -7.81 -13.3617 -11.1333 -7.52597 yes yes 

270002909Rik -7.79 -2.85265 -4.09687 -4.15821 yes yes 
 

      

For all genes for which the fold change from the microarray could be validated via 

qRT-PCR, this expression difference is highly significant across the three groups 

(Kruskall-Wallis test, p<0.05) irrespective of whether only inbred samples or wild 

samples were considered (Table 3.5). Pair wise Mann-Whitney-U tests showed 

significant differences for all comparisons except for musculus-hybrid in 

2700029M09Rik (inbred samples) and domesticus-hybrid in 1700011K15Rik (wild 

samples). For 1700011K15Rik the non-significant difference of the averaged hybrid 

expression levels to domesticus is attributed to one extreme outlier each in domesticus 
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and in the hybrids, which confounds the result. Apart from significance the expression 

level for the hybrids is clearly intermediate. For all other genes/data sets the hybrid 

data show undoubtedly intermediate expression. For Neil3 the hybrids show clear and 

significant intermediate expression but with a shift to M. m. domesticus expression 

levels for both data set. This is in accordance with the result from TaqMan® analysis 

as for the wild sample set the expression of the hybrids follows M. m. domesticus. 

Supplement 9 shows boxplots for all genes with significant differences. 

Table 3.5: Significance analysis for genes that could be confirmed with qRT-PCR using Sybr 
Green. ∆CT values were used for analysis. Table shows the significance p-values. 

Gene  Kruskall-
Wallis 
significance 
p-value 

 

Mann-
Whitney-U 
test 
significance  
p-value 

Mann-
Whitney-U 
test 
significance  
p-value 

Mann-
Whitney-U 
test 
significance  
p-value 

Kruskall-
Wallis 
significance  
p-value 

 

Mann-
Whitney-U 
test 
significance  
p-value 

Mann-
Whitney-U 
test 
significance  
p-value 

Mann-
Whitney-U 
test 
significance  
p-value 

 inbred 
samples 

dom-mus  dom-

hybrid 

mus-

hybrid 

wild 
samples 

dom-mus  dom-

hybrid 

mus-

hybrid 

Neil3 0.00045 0.00952 0.00040 0.00280 0.000156 0.002165 0.0004 0.0004 

1700011 
K15Rik 

0.00096 

 

0.01587 

 

0.00200 

 

0.00280 

 

0.001066 

 

0.002165 

 

0.113487 

 

0.0004 

 
1700029 
F12Rik 

mus not 
expressed 

mus not 
expressed 

0.00067 
 

mus not 
expressed 

mus not 
expressed 

mus not 
expressed 

0.000666 
 

mus not 
expressed 

Lsm10 0.00307 0.01587 0.00794 0.01587 0.000811 0.002165 0.004329 0.004329 

2700029 
M09Rik 

0.00638 0.02381 0.00480 0.20909 0.000156 0.002165 0.0004 0.0004 

         

Summarizing 50% of the candidate genes from the screen, tested via Sybr Green qRT-

PCR show up as reliable candidates for further analysis.  

To compare the validation rates of the two qRT-PCR methods, only those transcripts 

were considered, which have been analyzed with both methods (Scarb2, Pga5, Neil3, 

1700011K15, Srp14, 1700029F12Rik, Rhobtb3). Analysis with TaqMan® Gene 

Expression assays yielded in a validation rate of 29% and with Sybr Green in 43%. 

3.3.3 Sequencing of Affymetrix GeneChip® target regions  

Contribution of sequence differences to hybridization efficiency 

The target region as derived from the Affymetrix website was sequenced for all 

eleven candidate genes for the samples, which were used for the microarray 

experiment (Supplement 1). This analysis served as a test if sequence differences 

between the two subspecies cause differences in hybridization efficiency and 

therefore signal intensities. For all but one candidate gene sequencing results were 
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obtained from cDNA for both subspecies. Amplification of cDNA was not possible 

for 1700029 F12Rik for M. m. musculus. Surveying the ten remaining transcripts, one 

can say that for 80% at least one SNP between the two subspecies is detected in the 

whole target region (Table 3.6). If only transcripts are considered, which have probes 

that indeed would capture an existing SNP (the target region is only partly covered by 

probes), 60% (six transcripts) may be affected by differences in hybridization 

efficiency (Neil3, Srp14, Rhobtb3, Lsm14, Lsm10 and 2700029M09Rik, Table 3.6). 

A more detailed analysis, in which the signal intensities of the single probes are 

correlated to deviation from the C57BL/6J sequence, reveals that only for two genes 

(Srp14, Lsm14) the overall expression level is influenced by SNPs, both cases, where 

several probes capture the SNP (Supplement 10). The six probes which are affected 

by the SNPs in the sequence of Srp14, exhibit clearly reduced signal intensities in 

musculus, whereas the non-affected probes show intensities comparable to 

domesticus. For Lsm14 the same pattern is observed for probe 1-5 with reduced signal 

intensities in M. m. domesticus, whereas probe 9-11 do not show reduced signal 

intensity in domesticus (but signal intensity is low in both subspecies). However, the 

non-affected probes clearly show no serious difference in signal intensity between the 

two subspecies. Thus, the overall expression difference between the two subspecies, 

as deduced from the microarray analysis, for this two genes is clearly due to an 

artifact and the overall signal intensity difference only caused through the affected 

probes. For Neil3, Rhobtb3, Lsm10 and 2700029M09Rik, the SNP either does not 

influence the signal intensities for the affected probe or the overall result for the 

subspecies comparison. For Neil3 domesticus shows even higher signal intensities 

irrespective of SNPs affecting probe binding, underlining that a mismatch does not 

necessarily lead to poorer hybridization efficiency.  

Position and type of mismatch 

From this analysis no general conclusion about the effect of the position and the type 

of the SNP in a duplex can be made. There is a slight tendency for signal intensities to 

be more seriously affected if the SNP is positioned in the middle of a probe sequence. 

Both Srp14 and Lsm14 exhibit the SNP more to the middle of the probe sequence, 

whereas in transcripts for which the SNP has less impact the SNP is positioned more 

to the 3’ or 5’ end of the probe sequence. According to Pozhitkov et al. (2006) two 

groups of mismatches with clearly separated extremes exist. GA and GG mismatches 
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destabilize duplexes most; TC, TU and TG mismatches destabilize duplexes the least, 

all other types of mismatches resulting in medium destabilization. Both Srp14 and 

Lsm14 have types of mismatch which fall into the strong respectively the medium 

class (GA and CA), thus the alteration in signal intensity may be influenced by the 

type of mismatch. But on the contrary, also Neil3, which has no overall changed 

signal intensity, has mismatches which fall into the class of strong and medium 

mismatch.  

Altogether, the analysis shows two out of eleven picked candidate genes clearly as 

false positives due to sequence differences between the two subspecies.  

Table 3.6: Results of Affymetrix target region sequencing. 

Gene High 
overall 
expression 
(MAS 5.0) 

SNP in 
target 
region  in 

No. SNPs No. 
probes 
affected 
by SNP 

SNP 
changes 
overall 
expression 

Size 
PCR 
product 

SNP 
position 

Scarb2 mus  –  –  – no 789  – 

Pga5 mus  –  –  – no 744  – 

Neil3 dom dom 2 3 no 286 122             
244 

1700011 
K15Rik 

dom mus 1  – no 691 153 

Srp14 dom mus 3 6 yes 393 189             
299             
303 

1700029 
F12Rik 

dom dom 

SNP free 
? ? ? 591 ? 

Rhobtb3 dom dom 1 1 no 688 488 

Lsm14a mus dom 2 8 yes 577 77               
522 

Lsm10 mus mus 3 2 no 612 132             
385             
397 

2700029 
M09Rik 

mus dom 2 1 no 629 148 
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3.3.4 Sequencing of the amplicon regions 

To test whether sequence differences between the subspecies influence proper binding 

of TaqMan® gene expression assays, all amplicon regions were sequenced to control 

for such artifacts. Table 3.7 shows number of sequence differences (for details refer to 

Supplement 11). 

Table 3.7: Sequencing results for TaqMan® amplicon regions of the candidate genes. 

Gene 
symbol 

Assay ID SNP Fixed/ 
polymorph 

Scarb2 Mm00446978_m1 0 no 

Pga5 Mm00480598_m1 1 fixed 

Neil3 Mm00467596_m1 1 polymorphic 

1700011 
K15Rik 

Mm00661433_s1 2 fixed 

Srp14 Mm00726104_s1 2 polymorphic 

1700029 
F12Rik 

Mm00481622_m1 0 no 

Rhobtb3 Mm00712630_m1 0 no 

Eif4g2 Mm00469036_m1 0 no 
    

For 50% of all sequenced amplicon regions, at least one SNP could be identified 

between the two subspecies (all samples used for qRT-PCR were sequenced), either 

being fixed or polymorphic. The endogenous control Eif4g2 shows no sequence 

differences between the two subspecies. For 1700011K15Rik it is quite certain that 

the SNP affects the F-primer-binding as two SNPs are located within the first 20 bp of 

the amplicon sequence but to which extend and with which consequence remains 

open. For the other three candidate genes it is not possible to infer if a SNP really 

affects primer/probe-binding but at least a certain probability exists. Amplification of 

cDNA was not possible for Pga5 for both M. m. domesticus and M. m. musculus, 

results are deduced from sequencing genomic DNA. Consistent with the fact that the 

assays are designed on basis of the laboratory mouse strain C57BL/6J, whose genome 

is mainly derived from domesticus, more SNPs are found in the musculus samples 

(Supplement 11). For all genes tested with TaqMan® assays, there was no overlap of 

the assay sequence and the Affymetrix target region. In all but two genes the assays 

sequence is located upstream of the Affymetrix target region, even in different exons. 

For Srp14 and 1700011K15Rik the assays sequence shows also no overlap with the 

target sequence but is located within the same exon.  

Summarizing, for half of the sequenced amplicon regions at least one SNP could 
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be identified in one of the subspecies, thus having the potential to influence proper 

primer/probe binding.  

3.3.5 Combining results – evidence for alternative splicing 

For Pga5 qRT-PCR with TaqMan® gene expression assay approaches yielded no 

results for both subspecies, whereas cDNA sequencing of the Affymetrix target region 

was possible, supporting that this gene is expressed. PCR of cDNA for the TaqMan® 

amplicon region failed, suggesting that this part of the sequence is not expressed in 

both subspecies. Eventually, both subspecies express a transcript different from the 

transcript on which the Chip is designed, which lacks sequence 5’ upstream of the 

Affymetrix target region. Since the establishment of adequate primers for the Sybr 

Green qRT-PCR was not possible, no conclusion about the expression difference 

obtained by the GeneChip® is possible. For 1700029F12Rik, amplification of cDNA 

in M. m. musculus with the Sybr Green approach was not possible (Table 3.4), 

additionally sequencing, respectively PCR, with cDNA for the Affymetrix target 

region did not reveal any result (Table 3.6). It is therefore possible, that the 

GeneChip® expression difference results from either the absence of the target 

sequence on cDNA level in M. m. musculus (alternative spliced transcript) or 

complete missing of the transcript. PCR/Sequencing of the amplicon region of the 

TaqMan® (which lies 5’ upstream of the Affymetrix target region) was possible for  

M. m. musculus; also amplification with the TaqMan® approach succeeded, thus the 

gene is expressed. The fact that the expression difference from the GeneChip® is not 

reflected by this qRT-PCR method, underlines that musculus has a different transcript 

which is not captured by the microarray.  

 

3.4 Discussion  

Factors which may influence oligonucleotide microarray data and the derived 

candidate genes from such experiments are various and hardly predictable as even the 

physics of oligonucleotide arrays are not sufficiently understood (Morey et al. 2006, 

Pozhitkov et al. 2007). Also follow-up-confirmation methods such as qRT-PCR are 

not free of pitfalls including artifact-creating factors such as amplification bias 

(Chuaqui et al. 2002), mispriming and the formation of primer dimers (Bustin 2002) 
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and the changing efficiency in later cycles (Freeman et al. 1999). In essence, different 

factors may have a contribution to false-positive microarray outcomes but also the 

validation method may not reveal completely unbiased results. Accordingly, 

validation rates for microarray data with qRT-PCR exhibit wide ranges in literature, 

varying from as low as 23% (Jurata et al. 2004) up to 94% (Bosotti et al. 2007), 

depending on factors like the type of microarray, used sample, applied normalization 

and statistic, type of qRT-PCR, magnitude of fold-changes and more. The present 

analysis particular stresses the importance of sequence differences between the 

closely related subspecies of the house mouse, M. m. domesticus and M. m. musculus.  

3.4.1 Comparison of two qRT-PCR methods 

The validation of candidate genes derived from a microarray screen with two different 

approaches revealed that a substantial fraction of candidate genes are false positives 

and not suited for further analyses.  

Validation rate 

Achieving the same expression data for the samples used for microarray with an 

independent method ensures that no measurement error caused the difference, 

whereas a validation for a larger set of samples corrects for errors due to sample 

variability (Allison et al. 2006). The qRT-PCR-validation was conducted with two 

different methods: 1. premade Mus musculus TaqMan® gene expression assays for the 

genes of interest were used and 2. primers were designed for use with Sybr Green 

(after sequencing the region of interest to exclude sequence differences between the 

subspecies). The results for seven candidate genes which were tested with both 

methods differ but show overlap with a confirmation rate of 29% for the TaqMan® 

approach (two validated transcripts) and 43% for the Sybr Green approach (three 

validated transcripts). Data achieved from microarrays and qRT-PCR often show 

inconsistencies, a wide range of correlation between the two methods exist (Morey et 

al. 2006). The validation rate of 29% (43%) achieved in this study seems to be 

relative low compared to other studies. Validation rates up to 94% are reported (e.g. 

Rajeevan et al. 2001, de Vos et al. 2003, Bosotti et al. 2007). However, many of those 

analyses are cell-line experiments and therefore highly controllable and don’t include 

species or subspecies comparisons. Furthermore candidates mostly have been picked 

with respect to high overall signal intensities and fold-changes between the samples 



Confirmation of candidate genes 

 

61 

(for which it is known that the concordance of microarray and qRT-PCR data are high 

(Etienne et al. 2004)) and different microarray and qRT-PCR methods have been 

applied, respectively. In general it seems not reasonable to compare validation rates 

across different experiments as too many differences in experiment conduction, used 

techniques etc., are involved. Fold changes for the confirmed candidate genes do not 

correspond perfectly with the fold changes of the microarray, either being inflated or 

deflated. Differences in the expression levels when comparing data from microarrays 

and qRT-PCR analyses are generally observed (Draghici et al. 2006); especially for 

genes with low expression on the microarray little agreement between these methods 

has been found (Kuo et al. 2006). This was attributed as stochastic variation due to the 

low transcript abundance in both microarray and validation procedures. The exact 

cause of compression/decompression is not clear and the magnitude of the effect is 

not predictable. Overall, the magnitude of change was in an equivalent range for the 

analyzed transcripts for both used qRT-PCR methods. This outcome is in accordance 

to an experiment of Andersen et al. (2006), who compared four different qRT-PCR 

methods and showed that none of these methods performed significantly better 

concerning sensitivity and yielded in similar CT values. Sybr Green performed 

slightly better regarding the rate of confirmation than TaqMan® assays in the present 

study, which can be attributed to identifying identical transcript structures like in the 

microarray analysis. The overall outcome suggests that a substantial fraction of 

candidate genes are false positives and not suited for further analyses.  

In the following, factors which contribute to these skewed results are discussed. 

Other factors, like cross-hybridization, non-specific hybridization, incorrect probe 

design parameters or even washing off specific targets over non-specific ones 

(Pozhitkov et al. 2007), may also have contributed to deviations of qRT-PCR data and 

microarray data but cannot be disentangled by this comparative analysis; they 

contribute to varying and unpredictable degrees.  

Sequence differences affecting qRT-PCR results 

Subspecies-differences like SNPs and alternative transcripts may be very critical for 

the follow-up confirmation with qRT-PCR. This becomes obvious, if one compares 

the two approaches and considering sequence data of the amplicon region of the 

TaqMan® assay. If designing ones’ own primers and probes (as for the Sybr Green 

approach) one can exclude that differences in the sequence between two samples 
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influence the amplification efficiency but if using pre-designed primers and probes 

such as TaqMan® “assay on demand”, for Mus musculus, amplification bias possibly 

alter the results. The sequencing of the TaqMan® amplicon regions showed 50% of 

the genes with sequence differences (i.e. SNPs) between the two subspecies, thus 

being a potential important problem in a validation approach. A parallel study also 

records pre-designed assays as prone to amplification differences if the assays are not 

specifically designed for the species under study (Fabian Staubach, personal 

communication, unpublished data). Because only two of the seven candidate genes 

(Neil3, 1700011K15Rik), tested with both approaches have been validated, 

conclusions about a contribution of SNPs can only be made concerning these two 

transcripts. The direction and the magnitude of the fold change via qRT-PCR was 

similar to the microarray result for the samples used for the GeneChip® and the inbred 

samples, the confirmation also holding true if statistic tests are performed. 

Inconsistencies between the two methods become evident, if considering the data set 

which includes wild domesticus and musculus samples. While for Sybr Green both 

transcripts show clear and significant expression differences with intermediate hybrid 

expression, deviation from these outcomes are observed for the TaqMan® approach. 

Inbreeding and other biological effects can be ruled out as solely having created this 

effect, since the Sybr Green approach confirms the microarray results for both sample 

sets. Most probable differences in primer/probe binding between the two subspecies 

and the hybrids, respectively, are responsible for the deviating outcome as for both 

transcripts SNPs in the TaqMan® amplicon region are identified, either being fixed or 

polymorphic. At least for 1700011K15Rik two SNPs have the potential to influence 

the proper binding of the F-primer, if and to which extend the SNPs influence the 

amplification cannot be resolved. For Neil3 (and also the rest of the tested transcripts) 

the actual contribution of sequence differences remains unclear.  

One has of course to consider that the two qRT-PCR methods differ substantially. 

TaqMan® Gene Expression Assays are general assumed to be more accurate and Sybr 

Green more sensitive, binding any double-stranded DNA in the reaction (including 

genomic DNA, primer-dimers and other non-specific reaction products) which may 

results in an overestimation of the target concentration, producing higher fold 

changes. However, cDNA was DNAse-treated prior to qRT-PCR and melting curve 

analysis was performed to check for specificity of the PCR-product, so that the more 
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pronounced expression differences in the Sybr Green analysis seem unlikely be due to 

inexactness of the approach. 

Nevertheless at least for subspecies with marginal sequence differences, it is 

obvious that if an expression difference exists (at least with a certain magnitude), it 

can be detected irrespective of sequence deviations. But it is also obvious that if very 

accurate results are needed or small differences shall be detected, the contribution of 

such sequence differences in a sensitive method like qRT-PCR should not be 

neglected. Therefore the specific design of primers and probes, after a sequence 

comparison of the target, seems to be the appropriate consequence one should draw 

from these observations, especially with regard to alternative splicing (see 3.4.3).  

3.4.2 Sequence differences affecting microarray probe binding  

Sequence analysis of the Affymetrix GeneChip® target region for the two subspecies  

M. m. domesticus and M. m. musculus revealed that a substantial fraction of 

differences in signal intensities are due to sequence differences rather than differences 

in mRNA abundance and that even in a narrow phylogenetic comparison (as between 

subspecies) are error-prone. Microarrays designed for another species than that under 

study (cross-species analyses) are frequently used. Provided that both species share 

enough sequence similarity, RNA transcripts for one species will hybridize efficiently 

with the arrayed sequence of another species. It is generally assumed that the accuracy 

of the data decreases with increasing sequence divergence (Nieto-Díaz et al. 2007). 

This implies that such analyses result in more false-negative genes that appear not to 

be expressed although they are really being expressed, than same-species analyses. It 

is therefore intuitive that also subspecies-sequence differences may falsify expression 

data. Differences in sequence and subsequent differences in hybridization 

efficiency/signal intensity may be assigned falsely as expression difference. For two 

transcripts the signal intensities for probes which capture the sequence difference 

were evidently altered resulting in an overall expression difference for these 

transcripts. In contrast to the transcripts, for which SNPs in the probe sequence did 

not lead to altered signal intensities, in these two probe sets several probes overlapped 

such that a single SNP was captured numerous times adding up to an overall altered 

signal intensity. It is therefore possible that a certain “critical number” of probes must 

be affected to result in an overall expression difference, respectively that one or two 

altered probe signals can be out-weighed by the remaining ones. Overall the results 
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follow the basic assumption concerning probe binding that is, that deviations from the 

C57BL/6J sequence result in poorer hybridization efficiency and therefore signal 

intensity. Probes, which capture SNPs, generally show reduced signal intensities in 

comparison to the signal intensities of the non-affected probes. But also transcripts 

deviating from this general trend have been identified, where the signal intensities are 

not severely altered by a SNP respectively showing even higher signal intensity 

irrespective of a SNP. This is in accordance with the observation that a mismatch in a 

probe does not necessarily lead to poorer hybridization efficiency but may also 

enhance the binding (Kierzek et al. 1999).  

In general several factors influence the binding affinity of target and probe. It 

varies depending on the position and type of mismatch as well as neighbouring 

nucleotides in a probe (Pozhitkov et al. 2006); in addition there is also interaction of 

theses factors. The most significant contributor to decreased signal intensities is the 

position of the mismatch, the more it is moved away from 3’ or 5’ end to the middle 

the stronger the reduction in signal intensity. Surveying the affected transcripts, this 

assumption is confirmed. Both transcripts with strongly altered signal intensity have 

the SNP more in the middle of the probe sequence, whereas in transcripts for which 

the SNP has less impact, it is positioned more to the 3’ or 5’ end of the probe 

sequence. Furthermore for those two transcripts mismatch types are detected which 

fall in the class of highly and medium destabilizing duplexes. However, also for 

transcripts, for which no seriously altered change in expression level in probes 

affected by sequence differences could be detected, this classes of mismatch type 

(highly and medium destabilizing) has been found. Thus, the type of mismatch alone 

cannot explain why some SNPs alter signal intensities and some do not. It seems most 

likely that the falsified result for Srp14 and Lsm14 is due to high overlap of probe 

sequences which results in numerous caption of the sequence difference such as it can 

not be out-weighed by the remaining probes. Furthermore the position and the type of 

the mismatch may play a role, so that for these two transcripts several factors 

influence the signal intensity.  

Of course, one has to be aware that this analysis is purely descriptive and lacks 

any statistic validation. However, general observations of other research can be at 

least comprehended if not confirmed. Furthermore this analysis only considers the PM 

probe sets as only those are provided by Affymetrix, so that it remains unclear which 
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effect subspecies sequence differences have in respect to MM probe sets (if a SNP for 

example leads to a perfect match in a MM probe) and how the overall signal 

intensities from a MAS 5.0 analysis would be influenced. Nevertheless, for a first 

approximation the applied approach (with only considering PM probes and signal 

intensities) seems to be adequate.  

The sequencing of the microarray target region for the two subspecies clearly 

shows that even for comparisons of samples with low sequence divergence, any 

obtained result from a microarray analysis has to be validated with an independent 

method as a considerable amount of expression differences may be a mere 

consequence of sequences differences. However, it seems clear that, if a pronounced 

expression difference between the subspecies exists, one can detect it, irrespective of 

sequence variation. Consequently, false-negative results because of subspecies 

sequence differences seem to be more improbable than false-positives which 

contribute – at least in this experiment – with 20% to the microarray candidate genes. 

3.4.3 Alternative splicing as contributor to expression differences 

Two transcripts (Pga5 and 1700029F12Rik) show inconsistencies when comparing 

the outcomes of the two qRT-PCR-methods with the Affymetrix GeneChip® results 

and the data obtained by sequencing the target and amplicon region, respectively. 

Combining the results suggests that alternative spliced transcripts have a potential to 

influence results of expression analyses. This is in accordance with the assumption of 

other authors who see discrepancies between different microarray platforms mainly 

caused through alternative splice variants in conjunction with cross-hybridization 

(Draghici et al. 2006) respectively think that the contribution of alternative splice 

variants to gene expression data has been largely overlooked until now (Gershon 

2005). Expression differences due to alternative splice variants may be unnoticed in a 

follow-up validation if primers do not refer to the position of the microarray target, 

although some authors see it as advantage to design primers deviating from the 

microarray target sequence and state that only by doing so the actual expression of 

each gene is validated and not simply the signal detected by the microarray (Bosotti et 

al. 2007). But it seems likely that, especially for comparisons across samples with a 

certain sequence divergence (like subspecies) a validation approach is more promising 

if the identical region (3’ region) like the microarray is surveyed rather than using any 

part of the sequence as Etienne et al. (2004) found that “…increased distance between 
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the location of the PCR primers and microarray probes on a given gene also decreases 

the correlation between the two methods”. Thus, designing primers and probes 

specifically for the microarrays’ target region, is definitely the validation approach 

“closer” to the microarrays’ outcome, as the identical transcripts structures like on the 

microarray are detected.  

3.4.4 Conclusion 

The overall result of the validation experiment with comparison of two methods 

strongly emphasizes the need for confirmation of microarray data as a significant 

proportion of candidate genes seems to be assigned falsely due to artifacts. The 

comparison shows that sequence differences due to divergence must be considered 

when contrasting samples in microarray and/or follow-up validation approaches as 

there is potential to influence the results. Furthermore, alternative spliced transcripts 

have the potential to influence results and expression differences, respectively. 

Therefore it is suggested to specifically design primers and probes for qRT-PCR 

validation if species/subspecies are used for which inventoried assays were not 

designed for.  
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4 Characterization of candidate genes from a gene 
expression screen – insights from hybrid zone 
and population genetic analyses 

 

4.1 Introduction 

4.1.1 Protein and gene expression evolution 

The relationship between protein and regulatory sequence evolution is a central 

question in molecular evolution. The observation that many proteins among distantly 

related taxa are highly conserved has raised the theory that most of the differences 

between taxa must arise from regulatory differences. Thus, changes in gene regulation 

and protein structure have been conventionally treated as independent modes of 

evolution (King and Wilson 1975). Indeed, many cases are known in which regulatory 

changes contribute to phenotypic difference (see Wray 2007 for a review). In humans, 

over 100 are known exclusively to affect diverse aspects of behavior, physiology and 

disease (Rockman and Wray 2002, Knight 2005). Likewise, several studies have 

identified rapidly evolving proteins. For example, evidence has been obtained for 

rapid evolution of amino acid sequences (ca. 5-9% of genes studied) in the hominid 

lineage, including genes involved in immune response (Nielsen et al. 2005). However, 

as a variety of factors may influence both protein and gene expression evolution (e.g. 

protein-protein interactions), it has been suggested, that protein evolution might be 

coupled with divergence in gene expression (Lemos et al. 2005A). But the 

relationship between sequence evolution and divergence in gene expression is 

controversial. In Drosophila, a positive correlation between the rate of protein 

evolution (i.e. the rate of amino acid substitution) and divergence in expression levels 

has been found for male-biased genes (Nuzhdin et al. 2004, Lemos et al. 2005A). 

Furthermore, Gu et al. (2002) and Makova and Li (2003) were able to show a positive 

correlation between divergence in protein sequences and mRNA levels between gene 

duplicates in yeast and human, respectively. In contrast, Wagner (2000) was unable to 

find an association between divergence in protein coding sequences and mRNA levels 

in gene duplicates in yeast. Additionally, Jordan et al. (2004) found no association in 

a human-mouse study, which led them conclude that the two modes of evolution 

(regulatory and structural) are largely decoupled. Differences in gene expression are – 
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as sequence differences – heritable and therefore a possible target of selection (Schadt 

et al. 2003, Morley et al. 2004, Gibson and Weir 2005). However, we just begin to 

understand the evolutionary mechanisms such as Darwinian selection and random 

genetic drift, which underlie differences in expression patterns, on a genomic level 

(Holloway et al. 2007). Recent studies have proposed a neutral model of 

transcriptome evolution, i.e. the transcriptome divergence accumulates approximately 

linear with time and changes in expression can be explained mainly neutrally 

(Khaitovich et al. 2004, 2005). Other studies suggest that stabilizing selection is the 

major force acting on gene expression levels, thus only a small fraction may be 

shaped by directional selection (Rifkin et al. 2003, Denver et al. 2005, Lemos et al. 

2005B).  

To sum up, to date little is granted about the evolution of gene regulation in general 

and of its relationship to protein evolution (Castillo-Davis et al. 2004, Andolfatto 

2005). 

4.1.2 Detecting signatures of selection 

Several methods to detect signatures of selection are described, polymorphism based 

and divergence based methods. Polymorphism based methods are appropriate to 

detect single recent adaptive events while divergence based methods are more suitable 

to detect recurrent selection (see Jensen et al. 2007 for a review). Divergence based 

tests rely on manifestation of evolutionary forces at the target itself; traditionally these 

test have been almost exclusively used for the analysis of coding regions. 

Increase or decrease in genetic variation in a population as a consequence of 

selection leads to specific patterns or “signatures” that are left in the DNA sequence. 

Such signatures can be identified through comparison with what is expected under a 

neutral scenario, where the amount of change is determined solely by the mutation 

rate. The neutral theory states, that most observed genetic variation within and 

between species is neutral, i.e. has no effect on the fitness of an individual (Kimura 

1968) and thus changes are the consequence of chance alone (genetic drift). It is 

assumed that genetic variants, which change the amino acid sequence of a protein 

(non-synonymous substitutions), are on average deleterious and thus less likely to 

become fixed than a synonymous (silent) change (Hurst 2002). Nevertheless, through 

recurrent positive selection, function-altering mutations can eventually become fixed 
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in a population. Identification of such a signature can be revealed by comparing DNA 

sequences between species. Commonly used tests include the Ka/Ks (dN/dS) test, 

which compares the rate of non-synonymous to synonymous changes (Nei and 

Gojobori 1986, Hurst 2002, Fay and Wu 2003) and the McDonald-Kreitman-test, 

which assesses synonymous and non-synonymous changes within and between 

species (McDonald and Kreitman 1991).  

Other tests are intended to detect signatures of recent selection. Non-neutral 

mutations either rise or decrease in frequency in a population, depending on if they 

are exposed to positive or negative selection. Either of these modes of selection leaves 

a signature in the nearby genomic region, as the increase or decrease in frequency of a 

mutation is carried over to the linked neutral region. This effect is called 

“hitchhiking” if neutral linked variation is reduced due to positive selection at a 

nearby locus (Maynard Smith and Haigh 1974, Fay and Wu 2000). A typical recovery 

pattern after such a “selective sweep” event is an excess of rare alleles which is the 

result from new mutations. Such regions of overall low diversity with an excess of 

rare alleles can be detected by several statistical tests such as Tajima’s D (Tajima 

1989). If a site experiences strong purifying selection, linked neutral variation is also 

weeded out along with it, producing a region of overall low variability, an effect 

which is called “background selection” (Charlesworth et al. 1993). As “background” 

selection reduces linked variability and effects of demographic history (such as 

bottlenecks) may result in patterns similar to a “selective sweep” (Haddrill et al. 

2005), one of the major challenges is, to disentangle the different potential origins of 

reduced sequence variability (Otto 2000). To overcome these limitations, Fay and Wu 

(2000) developed a test, which evaluates high and intermediate frequency new 

derived alleles (which is consistent with hitchhiking but not background selection). 

However, since significant results can be caused by advantageous mutations in either 

the coding region or regulatory elements in vicinity of the investigated regions, 

further analysis is needed to pinpoint the specific locus of selection. 

The identification of regulatory regions (i.e. promoters and transcription-factor-

binding sites) is still a challenge, since promoters are diverse and even well-known 

motifs are not fully conserved. In addition, each gene contains a set of unique 

combinations of transcription factor binding sites, which may vary substantially in 

size (Lenhard et al. 2003, Qiu 2003). Thus, identification of beneficial mutations in 
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regulatory regions is less obvious than for protein-coding regions.  

4.1.3 Cis- versus trans-regulatory evolution  

Expression differences can arise from cis- or trans-regulatory changes. Cis-acting 

elements regulate the expression of genes on the same strand. Promotors, which 

regulate transcription, typically lie 5’ of the start site of transcription. Elements that 

control mRNA stability and degradation are primarily located in 3’ regions (Holloway 

et al. 2007). In contrast, trans-regulatory elements regulate genes distant from the 

gene they are transcribed from (e.g. transcription factors). The contribution of both to 

changes in gene expression remains largely unknown to date (Wray et al. 2003). 

Recent studies are coming to inconsistent results. Trans-acting factors as the 

predominant contributor to expression variance within species were identified in yeast 

(Yvert et al. 2003), humans (Morley et al. 2004), Drosophila simulans (Wayne et al. 

2004) and Caenorhabditis elegans (Denver et al. 2005). In contrast, large surveys in 

mouse (Cowles et al. 2002, Doss et al. 2005), human (Yan et al. 2002) and 

Drosophila (Wittkopp et al. 2004) revealed cis-regulatory factors as the main source 

for gene expression variances. The different outcomes of these studies were at least 

partly attributed to differences in methodologies and statistics. Apart from 

inconsistencies regarding the contribution of cis- vs. trans-regulatory effects to 

differences in expression levels, it remains unclear from theses studies, whether any 

of these differences has an adaptive effect (Hoekstra and Coyne 2007). However, 

uncovering the genetic basis of variable gene expression is the first step for 

identifying the specific underlying nucleotide polymorphism causing the expression 

difference (Wittkopp et al. 2004). 

4.1.4 Hybrid zone analyses 

Under the “Biological Species Concept” (Mayr 1995), speciation is synonymous with 

the evolution of reproductive barriers, since reproductive isolation “…ensures that 

species remain genetically distinct and…can undergo independent evolutionary fates” 

(Orr and Presgraves 2000). One form of reproductive isolation is intrinsic postzygotic 

reproductive isolation, which refers to sterile or inviable hybrids from a cross of two 

different species and is thought to arise because alleles from different species, brought 

together in a hybrid genomic background, fail to interact properly (hybrid 

incompatibilities) (Dobzhansky 1936B). A distinct feature of hybrid sterility and 
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inviability is that they require epistasis: nonadditive interactions between alleles at 

different loci (Dobzhansky 1937, Muller 1940, Turelli and Orr 2000). A hybrid 

incompatibility or speciation gene is, by definition one, that causes some degree of 

ecological, sexual or post-mating isolation between species (Wu and Ting 2004). 

Thus, identifying and describing hybrid incompatibility genes will provide insight in 

the process of speciation in general. To distinguish between causes and consequences 

of genetic isolation, it seems plausible to focus on cases where reproductive isolation 

is not complete yet (Macholán et al. 2007). Naturally occurring hybrid zones, contact 

zones of genetically distinct populations, are optimally suited for this purpose. The 

study of hybrid zones has contributed substantially to the understanding of how 

speciation is realized genetically; e.g. the number of loci underlying reproductive 

isolation has been estimated (Szymura and Barton 1986, Barton and Gale 1993). 

Furthermore, individual genomic regions putatively involved in reproductive isolation 

were identified by investigating patterns of differential introgression (Barton and 

Hewitt 1985, Rieseberg et al. 1999, Payseur et al. 2004, Macholán et al. 2007) 

through proposing that loci, which are involved in causing reproductive isolation, will 

introgress at lower rates than loci having a “neutral” effect in a hybrid. Hybrid zones 

thus provide a “natural laboratory” (Barton and Hewitt 1989) in which different 

genotypes are created and directly tested with respect to their adaptive value. Genes, 

which are significant for the speciation process, and therefore detrimental in a hybrid 

genomic background, should not move far across the hybrid zone (i.e. introgression 

should be restricted in comparison to neutral loci) (Barton and Hewitt 1985). The 

width of the spread of such genes is a direct estimate for the deleteriousness of a gene 

in a hybrid genomic background (Szymura and Barton 1986). To date only few such 

genes, which contribute to reproductive isolation via hybrid sterility, inviability and 

reduced fitness, have been identified (reviewed in Orr et al. 2004, Orr 2005) and 

hybrid zone analyses so far have never been used to actually identify single genes.  

The two mouse subspecies M. m. domesticus and M. m. musculus are only 

partially reproductively isolated from each other and form a hybrid zone that 

represents a region of secondary contact and stretches across Europe from the Jutland 

peninsula to the Bulgarian coast of the Black sea (Boursot et al. 1993, Sage et al. 

1993). The hybrid zone formed after the movement of M. m. domesticus into Western 

Europe within the last 3000 years (Cucchi et al. 2005). Several transects along the 
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2400 km length of the hybrid zone have been studied (e.g. Hunt and Selander 1973, 

Sage et al. 1986, Tucker et al. 1992, Prager et al. 1993, Dod et al. 1993, 2005, Payseur 

et al. 2004, Raufaste et al. 2005, Macholán et al. 2007, Teeter et al. 2007), two of 

which particular intensively, one in Denmark (e.g. Dod et al. 1993, 2005) and one in 

southern Germany near Munich (Tucker et al. 1992, Payseur et al. 2004, Payseur and 

Nachman 2005). The southern hybrid zone has an estimated width of 20 kilometers 

(Sage et al. 1986). 

4.1.5 Aim of the study 

The goal of the present study is to characterize individual loci that might be involved 

in the process of reproductive isolation (via hybrid unfitness) by analyzing hybrids 

from a natural hybrid zone of M. m. domesticus and M. m. musculus as well as pure 

subspecies. Both theoretical and empirical studies suggest that the regulation of gene 

expression may contribute to hybrid dysfunctions (Orr and Presgraves 2000, Ortíz-

Barrientos). The hypothesis is that genes, which show expression divergence between 

the two subspecies, may have functional consequences in the hybrids and contribute 

to reproductive isolation. To uncover such regulatory incompatibilities, a microarray 

analysis has been performed to screen for genes which are differentially regulated 

between the two subspecies and their F1 hybrids, respectively (see chapter 2 for 

details). Two genes (Lsm10 and Neil3) were selected for further analysis, which 

exhibit a high fold change in expression in the testis between the two subspecies and 

show intermediate expression in laboratory-bred F1 hybrids. As gene expression 

divergence itself does not necessarily have a functional consequence and may also be 

selectively neutral, the hybrid zone analysis offers the opportunity to infer fitness 

costs – and therefore the contribution to reproductive isolation – associated with the 

expression change by estimating the patterns of differential introgression of 

expression phenotypes across the hybrid zone. Expression divergence of identified 

candidate genes may be a result of genetic drift or alternatively of positive selection 

due to adaptation to different habitats. Since the two subspecies diverged only 

recently, signatures of selective sweep events are expected to still be observable. 

To understand and identify the evolutionary mechanisms and forces, which act on 

these genes, several population genetics and hybrid zone analyses were performed for 

the two candidate genes. 
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The aim of the analysis was to 

1. identify changes which contribute to the expression difference of the candidate 

genes, and to elucidate if it is coupled with protein sequence evolution. 

2. determine if the mutations that cause an expression difference between the two 

subspecies have a cis- or trans-regulatory basis. 

3. assess if the expression difference is caused through an adaptive process. 

4. infer fitness costs of the expression differences and the potential to contribute 

to reproductive isolation. 

 

4.2 Materials and Methods 

4.2.1 Animals 

The population genetic analyses for the two subspecies M. m. musculus and  

M. m. domesticus included the same samples as for the microarray screen, 

respectively the follow-up confirmation (see 2.2.1, 3.2.2) as well as additional 

samples from different populations to get a complete picture of the factors involved in 

the subspecies/hybrid expression difference.  

For M. m. domesticus unrelated mice have been collected in Germany (near 

Bonn, provided by M. Teschke) and in Iran (Ahvaz, provided by R. Scavetta), the 

latter representing a more ancestral population. M. m. musculus stem from Kazakhstan 

(Almati area, ancestral population), Czech Republic (near Námest and Oslavou) (both 

sampled and provided by S. Ihle) and Austria (Vienna, kindly provided by K. Musolf, 

Vienna). All mice were caught at least 300 m apart from each other, thus representing 

unrelated animals. It is known that for strictly indoor living mice home ranges are 

restricted to a few square meters (Berry and Bronson 1992, Pocock et al. 2005). 

Mouse traps were put up in private houses, barns or stables. For the German 

population, samples from ten, for the Austrian from three and for the other 

populations from eight different sites were used for analysis. One Mus caroli sample 

from Thailand was used for outgroup comparisons (kindly provided by A. Orth and F. 

Bonhomme).  

To asses the genetic basis which underlies mutations that potentially cause expression 

differences (4.2.7) and to identify functional consequences for candidate genes 
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(4.2.8), a hybrid zone analysis was performed. For this analysis pure subspecies as 

well as natural hybrids between M. m. domesticus and M. m. musculus were used for 

expression and sequence analysis. These animals represent backcrossed hybrids and 

were directly collected in the hybrid zone in Bavaria in September 2005 referring to 

the sampling area that was investigated by R. Sage in 1985 (Sage et al. 1986, Payseur 

et al. 2004). To ensure standardized conditions for expression analyses F1 offspring 

generated in the laboratory was used. Breeding pairs with animals from the same 

locality were set up or if a pair was not available from the same spot, pairs were set up 

according to closest proximity. Altogether two male F1 offspring each of nine 

breeding pairs (representing 6 different localities) were obtained; additionally two 

pregnant females were directly caught in the field, which gave birth to one 

respectively three males. Furthermore five more males directly from the field were 

used for analysis. Overall 27 male hybrid animals were used, representing eight 

different localities. Supplement 13 shows the sampling sites relative to the hybrid 

zone. For the pure subspecies four pairs each of wild-caught animals of M. m. 

domesticus from Germany and M. m. musculus from Austria were used to obtain F1 

offspring in the laboratory (at least one male offspring per locality). All mice were 

held under standard laboratory conditions and male mice were sacrificed at the age of 

6-8 weeks. Supplement 12 and Supplement 13 list the characteristics of the sampling 

sites and give an overview of the used samples.  

4.2.2 Sample preparation 

Animals used for the expression analysis were sacrificed using CO2. Organs were 

excised and immediately snap frozen in liquid nitrogen. Organs were stored at -80 

degrees. RNA from testis was extracted using Trizol® (Invitrogen, Carlsbad, CA) 

following the manufacturer’s protocol. Quality and integrity of the total RNA was 

controlled by using the Agilent Technologies 2100 Bioanalyzer and the RNA 6000 

Nano LabChip® Kit (Agilent Technologies Waldbronn, Germany). Only samples with 

RNA integrity numbers (RIN) >8.0 were used for analysis. DNA was extracted in 15 

ml falcon tubes by standard salt extraction procedures. Dried pellets were dissolved in 

500 to 1000µl of 1xTE.  

4.2.3 cDNA synthesis 

RNA was DNase-treated prior to cDNA synthesis using Ambion’s DNA-free
TM 
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following the manufacturer’s protocol. RNA was reverse transcribed using random 

hexamers (Fermentas) and the ThermoScript Revese Transcriptase Kit (Invitrogen, 

Carlsbad, CA) using 1 µg RNA as starting material according to the manufacturer’s 

protocol. 

4.2.4 DNA sequencing 

The sequence of for both Lsm10 (NM_138721) and Neil3 (NM_146208) was 

downloaded from ENSEMBL (http://www.ensembl.org). For Lsm10 only exon 2 is 

protein-coding (369 bp). Therefore this gene was sequenced from genomic DNA for 

20 M. m. domesticus and 24 M. m. musculus samples. For Neil3, amplification from 

cDNA was performed for several fragments solely for the German M. m. domesticus 

and Austrian M. m. musculus as only for those samples cDNA was available. 

Fragments which could not be amplified from cDNA, potential due to alternative 

splicing, were amplified from genomic DNA. Additionally, for both genes 300-600 bp 

long fragments of non-coding regions were sequenced (four fragments for Lsm10 and 

two for Neil3) for all subspecies samples. Supplement 14 gives detailed information 

about the primers and fragments’ position in relation to the location of the genes. 

PCR was setup in a 10 µl volume using the Qiagen® Multiplex PCR Kit following the 

manufacturer’s protocol with 1 µl of 1:10 diluted cDNA as starting material, 

respectively 10 µg of genomic DNA. PCR products were purified by adding 0.012 µl 

Exonuclease I (Biolabs® 20 U/ml) and 0.045 µl Shrimp Alkaline Phosphatase 

(Promega, 1U/µl) per 10 µl reaction and heating 20 minutes for 37ºC followed by 

72ºC for 15 minutes. PCR products were sequenced in both directions using the 

BigDye sequencing chemistry on an ABI3730 automated sequencer. All sequences 

are provided in the Digital Supplement. 

4.2.5 Gene expression analysis 

Affymetrix GeneChip® analysis 

Expression profiles for testis from four M. m. domesticus, four M. m. musculus 

(Supplement 12) and 27 hybrids (Supplement 16) were determined for over 39,000 

mouse transcripts using the Mouse Genome 430 2.0 Affymetrix GeneChip®. The 

biotin-labeled target synthesis started from 1 µg of total RNA following the Ambion 

Message Amp II aRNA amplification Kit protocol. After hybridization the 

GeneChips® were washed, using an Affymetrix GeneChip® fluidic station 450, 
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stained with SA-PE (Streptavidin R-phycoerythrin conjugate) and read using an 

Affymetrix GCS 300 G scanner. Raw signal intensities were normalized and 

summarized according to the standard Affymetrix MA Suite 5.0 algorithm using the 

affy-package of Bioconductor (http://www.bioconductor.org/).  

Quantitative qRT-PCR using Sybr Green  

For M. caroli the expression levels for Lsm10 and Neil3 were achieved through qRT-

PCR analysis. To have an estimate for the expression level, two samples each of  

M. m. domesticus and M. m. musculus were also analyzed. QuantiFast® Sybr Green 

PCR Kit (Qiagen) was used in a 10 µl reaction volume according to the 

manufacturer’s protocol with 2 µl of a 1:40 dilution of cDNA as starting material. 

Samples were performed in triplicate and averaged CT values from each qRT-PCR 

reaction of the target gene were standardized relative to the endogenous control, 

Eif4g2, of the same sample, yielding the ∆CT value. Eif4g2 (eukaryotic translation 

initiation factor 4, gamma 2) was used as endogenous control as it showed highly 

similar expression levels and the lowest standard deviation across individuals, 

subspecies and different tissues in the GeneChip® analysis, including three different 

subspecies and tissues, respectively (data not shown). Primers were designed ensuring 

that the primer sequence contained no difference between the species/subspecies 

(primers are listed in Supplement 7). Melting curve analysis as well as agarose gel 

electrophoresis was done to check for the specificity of the PCR products. 

Experiments were run on an ABI Prism 7900HT Sequence Detection System 

following the provider’s recommendation concerning the thermal cycling protocol, 

using 384 well plates and running SDS 2.1.1. For each qRT-PCR reaction the 

averaged CT value of the endogenous control was subtracted from the averaged CT 

value of the target gene, yielding the ∆CT value. These values were then averaged 

across the triplicate samples within an individual, yielding the average ∆CT value. 

Outliers among triplicates were removed if they raised the standard deviation above 

0.3. 

4.2.6 Sequence data analysis 

Sequences assembly and analysis was performed using the program CodonCode 

Aligner 2.0. Heterozygous positions were identified through visual inspection of all 

sequence positions for which the automatic nucleotide calls were ambiguous. All 
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sequences were aligned using CLUSTAL W (Thompson et al. 1994). Sequence 

analyses were performed using tests implemented in DnaSP 4.10.9 (Rozas et al. 

2003). To deal with heterozygous positions, all sequences were duplicated, and each 

nucleotide state was randomly assigned to one of the duplicated sequences. 

Analysis of the coding sequence 

To test whether the expression difference between the two subspecies is coupled with 

accelerated protein evolution, the coding sequence of Lsm10 and Neil3 for the two 

subspecies and M. caroli was analyzed.  

The McDonald Kreitman test (McDonald and Kreitman 1991) compares synonymous 

and replacement substitutions within and between species, assuming that under 

neutrality the ratio of divergence to polymorphism should be the same in both 

synonymous and replacement sites. Furthermore, the ratio of synonymous to 

replacement sites should be the same in the divergence and the polymorphic 

categories. Deviations are considered as deviations from neutrality and indicative for 

selective forces acting on the protein.  

Ka/Ks analyses assess positive or negative selection in protein coding sequences by 

comparing codons and comparing the rate of amino acid substitutions to the rate of 

synonymous substitutions. Under neutrality, the number of non-synonymous changes 

at each possible non-synonymous site is the same as the number of synonymous 

changes per synonymous site; that is, Ka/Ks = 1. Deviations from 1 give hints to the 

selective forces acting on the protein. Ka/Ks ratio< 1 indicates purifying selection 

with non-synonymous changes being less frequent than synonymous and Ka/Ks >1 

hints to positive selection with non-synonymous changes being more frequent (Hurst 

2002, Fay and Wu 2003). M. m. domesticus was compared to M. m. musculus and 

both subspecies to M. caroli. The Ka/Ks test is often assumed to be too conservative 

in detecting proteins that have evolved under positive selection between two species 

(Fay and Wu 2003). Some regions of constraint within a protein are likely maintained 

during the evolution of a new or improved function of a protein, which will lower the 

overall rate of amino acid substitution within a protein below the neutral rate unless 

the adaptive regions evolve at a rate fast enough to bring the average Ka/Ks of the 

entire protein above one. To get an estimate if different regions of the protein exhibit 

differences in selective pressure, a sliding window analysis for the genes studied here, 
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has been performed. Windows of 100 sites width with steps of 10 bp were used. By 

sequencing analysis of M. caroli as outgroup, from which the M. musculus subspecies 

were separated about three million years ago (Guénet and Bonhomme 2003), the 

ancestral or derived state of nucleotide polymorphisms can be inferred and 

conclusions about the behavior of newly derived mutations and their spread 

throughout the genome are made possible.  

Analysis of non-coding sequence 

Evidence for a recent selective event, either in the protein coding or the regulatory 

region, can be obtained indirectly through the analysis of the flanking, non-coding 

region of a gene. If the action of positive selection can be demonstrated in a 

chromosomal region where a differentially expressed gene is located, it might be that 

the expression change has a functional consequence to the organism (Harr et al. 

2006). To uncover potential signatures of adaptation, the 5’ upstream region of both 

candidate genes was analyzed. Several basic population genetics parameters were 

estimated to asses the within population diversity in 5’ upstream regions, namely 

Watterson’s θW (Watterson 1975), π (Nei and Li 1979) and Tajima’s D. The Tajima’s 

D-statistic (Tajima 1989) evaluates low-frequency and intermediate frequency sites in 

a sample. Negative values indicate population expansion, strong purifying selection or 

recovery after a selective sweep. Positive values result from an excess of 

polymorphisms and may indicate the presence of population structure, balancing 

selection, or weak/incomplete bottlenecks (Ometto et al. 2005). 

Analysis was performed by considering  

1. samples from different populations of a subspecies as a functional unit, since Fst 

analysis (Hudson et al. 1992) of seven autosomal loci (data from Baines and Harr 

2007) reveals no general high genetic differentiation between the populations (data 

not shown) and 

2. populations of subspecies separately to disentangle potential population effects 

from subspecies effects.  

The different fragments of the sequenced upstream region were concatenated for all 

analyses and furthermore considered solely as concatenation results in loss of samples 

size as sequencing of some samples failed for some fragments.  
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4.2.7 Correlation of expression-phenotype and genotype – determination of cis-
or trans-acting factors 

To determine if the differential expression is caused by a change in cis or in trans, a 

correlation analysis between the expression for the two candidate genes and the 

corresponding genotype at the given locus of natural hybrids (which represent 

backcrosses of different degrees) was performed. The rationale is that if an expression 

difference is solely caused by a cis-mutation, a hybrid’s expression level should 

correspond to the underlying genotype at that locus. Particular meaningful for this 

analysis are samples, for which the locus-specific genotype and expression level 

departures from the overall hybrid-genotype (e.g. overall domesticus genotype shows 

musculus locus-specific genotype and expression level). For samples, where both – 

locus-specific and overall genotype – are identical, also trans-acting factors could 

have caused corresponding genotype and expression level. For comparison reasons 

four animals each of the pure subspecies and laboratory F1 hybrids were also included 

in this analysis. Prerequisite for this analysis is the identification of a diagnostic 

difference (SNP) between the two subspecies in the region of interest. Supplement 15 

lists the primer sequences for fragments with fixed differences between  

M. m. domesticus and M. m. musculus. These fragments were then sequenced for all 

27 Bavarian samples which have been used for the expression analysis (refer to 

Digital Supplement for sequence results) for both candidate genes, and the hybrid’s 

locus-specific genotype was associated with the expression levels for the respective 

gene as derived from the Affymetrix GeneChip® analysis.  

The overall genotype or “hybrid index” is calculated as the ”musculus”-allele 

frequency per sample in comparison to “domesticus”-alleles, averaged over several 

loci and indicates, to which degree a hybrid consists of which genome. A hybrid index 

of 0 refers to a pure domesticus genotype, whereas a hybrid index of 1 indicates a 

pure musculus genotype. SNP genotyping analysis with the Beckman Coulter 

GenomeLab SNPstream platform was performed following standard protocols to 

estimate the overall genotype for 63 Bavarian hybrid samples (including the 27 

samples used for expression and follow-up analysis, Supplement 16) by using 14 loci 

with fixed differences between M. m. domesticus and M. m. musculus derived from a 

reference data set (Harr, Ihle, Rottscheidt, Scavetta, Teschke, unpublished data). 

Allele frequencies were summed up over all loci per samples, yielding the overall 

hybrid index per sample.  
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4.2.8 Assessment of functional consequences for candidate genes from hybrid 
zone analysis 

Hybrid zone analysis is particular useful to get an estimate for fitness cost associated 

with a differentially expressed gene. Expression differences between subspecies might 

have negative fitness consequences when brought together in a hybrid genome. For 

genes which contribute to reproductive isolation (reduced fitness), thus having a 

deleterious effect in hybrids, subspecies-specific alleles are considered to introgress at 

lower rates across a hybrid zone than genes with neutral or adaptive effect.  

If considering gene expression changes caused by cis-acting factors, this analysis 

can be performed on a genomic basis. A diagnostic SNP between the two parental 

subspecies (with close connection to the candidate gene) is used as a representative 

for the unknown mutation, which causes the expression difference. The genotype for 

the particular candidate gene, derived from the SNP analysis, is related to the overall 

hybrid index of an animal. A deviation of a candidate locus-genotype from the overall 

hybrid-index gives an estimate for positive or negative fitness effect of the gene. A 

higher frequency of a locus specific genotype gives a hint to elevated introgression, 

associated with a potential adaptive effect while absence of a specific genotype 

indicates negative effects of that genotype, i.e. an isolating factor. For this 

“accordance analysis” samples were attributed as pure “musculus-like”, “domesticus-

like” or “hybrid-like” for reasons of clarity rather than depicting the correct allele 

frequencies. This analysis was performed for the 27 hybrids used for the Affymetrix 

analysis. For candidate genes with unclear genetic basis, fitness costs have been 

deduced from relating the “expression phenotype” (i.e. the expression level) of the 

respective gene to the overall hybrid index of the samples.  

 

4.3 Results 

4.3.1 Gene expression analysis using Sybr Green 

Two samples of each M. m. domesticus and M. m. musculus and one sample of  

M. caroli have been analyzed via qRT-PCR for Lsm10 and Neil3. Table 4.1 shows 

the averaged ∆CT values (relative to the endogenous control) for the samples. Lsm10 

shows low expression in M. caroli, almost identical to the expression level of  

M. m. domesticus. The expression level from Neil3 is also low in M. caroli, 
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comparable to the expression level of M. m. musculus. 

Table 4.1: Averaged relative expression levels from qRT-PCR using Sybr 
Green for M. m. domesticus, M. m. musculus and M. caroli. Note that low 
values refer to high expression levels. 

 Relative expression level (∆CT) 

 M. m. domesticus M. m. musculus M. caroli 

Lsm10 4.5 0.71 4.47 

Neil3 3.35 8.3 9.5 

    

4.3.2 Sequence analysis 

Analysis of the coding sequence 

Lsm10 

The McDonald-Kreitman test could not be performed between M. m. domesticus and 

M. m. musculus as no polymorphic sites in the coding region are present in both 

subspecies. A single fixed synonymous substitution between the two subspecies was 

identified. No non-synonymous substitution was identified; hence the result of the 

Ka/Ks analysis is 0. 

In the comparison between M. m. domesticus, M. m. musculus and M. caroli, six 

respectively five synonymous substitutions and one non-synonymous substitution are 

present, resulting in a Ka/Ks ratio of 0.052 and 0.063, respectively. 

Neil3 

The McDonald-Kreitman test revealed no significant result for the domesticus-

musculus comparison (G-value = 0.895, p = 0.34421), indicating that the divergence 

between the two subspecies has a neutral basis (Table 4.2). 

Table 4.2: Number of replacement and synonymous substitutions for 
fixed differences between subspecies and polymorphism within 
subspecies for Neil3. 

 fixed differences polymorphism 

Synonymous 2   2 

Non-synonymous 4 12 

   

For Neil3 an overall Ka/Ks ratio of 0.933 was calculated for the domesticus-musculus 

comparison. As an overall Ka/Ks ratio of >1 as an indicator of positive selection is 
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assumed to be very conservative (Fay and Wu 2003), this result may hint to positive 

selection on specific regions. The sliding window analysis did not identify any region 

with a Ka/Ks ration >1 (Figure 4.1), therefore the Ka/Ks test yielding the same result 

as the McDonald-Kreitman test.  
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Figure 4.1: Sliding window Ka/Ks analysis for Neil3 between M. m. domesticus and  
M. m. musculus. Windows of 100 bp size were used with a step size of 10 bp.  

In the comparison between M. caroli and M. m. domesticus 26 synonymous and 25 

non-synonymous substitutions occur, 24 synonymous and 27 non-synonymous 

between M. caroli and M. m. musculus. The Ka/Ks analysis between M. caroli,  

M. m. domesticus and M. m. musculus yields Ka/Ks values considerably lower than 

that of the M. m. domesticus and M. m. musculus comparison with Ka/Ks = 0.325 and 

Ka/Ks = 0.342. In contrast, the sliding window analysis revealed a region with a 

drastic peak in divergence with Ka/Ks ratio of 2.13 (midpoint window 1380) in both 

comparisons (musculus vs. caroli and domesticus vs. caroli), which may be a hint 

towards positive selection for this region (Figure 4.2 and Figure 4.3). Also a second 

region shows Ka/Ks ration higher than one (midpoint window 870-900).  
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Figure 4.2: Sliding window Ka/Ks analysis for Neil3 between M. m. domesticus and M. caroli. 
Windows of 100 bp size were used with a step size of 10 bp.  

Ka/Ks between M . m. musculus  and M . caroli

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

midpoint window

K
a
/K

s

 

Figure 4.3: Sliding window Ka/Ks analysis for Neil3 between M. m. musculus and M. caroli. 
Windows of 100 bp size were used with a step size of 10 bp.  
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Analysis of non-coding sequence 

Lsm10 

Comparing nucleotide polymorphism in M. m. domesticus and M. m. musculus for the 

concatenated fragments of the upstream region of Lsm10 reveals general low values 

for both subspecies (Table 4.3). π and θW are considerably lower in M. m. domesticus 

than in M. m. musculus. As the analysis with the concatenated fragments experience a 

loss of power due to the reduced sample size (not all fragments were successfully 

sequenced for all samples) the analysis was repeated with the single fragments. The 

overall outcome can be confirmed with the single analyses: π and θW are general low 

for M. m. domesticus and higher for M. m. musculus. Altogether several fixed 

differences between the two subspecies are evident. Seven differences can be assumed 

to be fixed (sum of differences from fragment 1 and 3). The direct comparison of the 

single fragments with the concatenated underlines the potential of false assumptions 

due to differences in sampling size, with reductions in sampling size increasing the 

potential to assign polymorphic sites with relatively high frequencies as monomorphic 

in a population sample. Thus, it is clear that 13 fixed differences (as deduced from the 

concatenated fragment analysis) is an overestimation and seven differences are more 

likely a realistic number. However, the remaining five differences are present at very 

high frequencies. 

To test for a selective sweep hypothesis, Tajima’s D analysis was performed. For 

none of the subspecies, irrespective of whether the concatenated fragment was 

analyzed or the separate fragments (with larger sample size), a significant result was 

obtained, which indicates that evolution of this region is in accordance with a neutral 

model. Although the overall nucleotide polymorphism is higher in M. m. musculus, 

negative Tajima’s D values are observed, which implies that there are more rare 

mutations than expected by the number of segregating sites. M. m. domesticus shows 

positive values for all fragments except for fragment 2 with slightly negative value. 

The overall outcome of the subspecies-wide analysis also shows up for the analysis of 

the separate populations of the two subspecies (Supplement 18). Nucleotide diversity 

is noticeably higher in M. m. musculus populations than in the M. m. domesticus 

populations, the latter showing no polymorphism at all for single fragments. In 

general the domesticus populations do not differ substantially in the rate of 
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polymorphism. For the musculus populations slightly higher rates of polymorphism 

are observed in the Kazakh population for the concatenated fragment. Looking at the 

single fragments shows that higher nucleotide polymorphism is no general feature of 

the samples from Kazakhstan. It is due to a bias, caused through reduction in the 

sample size by concatenating the single fragments. The sample set from Vienna 

exhibits no polymorphic sites. As this sample set is very small and includes only three 

different sample localities, this result can be most likely attributed to a sampling bias.  

Table 4.3: Nucleotide polymorphism in the 5' upstream flanking region of Lsm10 in  
M. m. domesticus and M. m. musculus. Values are given for three fragments separately and 
fragments concatenated, respectively. 

Fragment 1 2 3 concatenated 

fragments 

Relative distance to locus (kb) 4.8 4.2 2.6  

Number of sites  441 1136 555 2132 

Number of shared mutations  0 0 0 0 

Number of fixed differences between 

subspecies 

2 0 5 13 

M. m. domesticus     

Number of chromosomes 34 32 36 28 

Number of segregating sites 1 2 1 4 

π 0.00102 0.00042 0.00044 0.00058 

θW per site 0.00055 0.00044 0.00043 0.00048 

Tajima’s D 1.2644 -0.09237 0.0298 0.53505 

Significance >0.10 >0.10 >0.10 >0.10 

M. m. musculus     

Number of chromosomes 40 44 38 36 

Number of segregating sites 5 10 1 9 

π 0.00186 0.00096 0.00035 0.00073 

θW per site 0.00267 0.00202 0.00043 0.00102 

Tajima’s D -0.77398 -1.54526 -0.27123 -0.83286 

Significance >0.10 >0.10 >0.10 >0.10 
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Neil3 

The analysis of two 5’ upstream fragments of Neil3 reveals overall higher nucleotide 

diversity than for Lsm10 for both subspecies (Table 4.4). Averaged π of the 

concatenated fragments is 0.00206 for M. m. domesticus and 0.00577 for  

M. m. musculus. θW is 0.00298 for domesticus and 0.00486 for musculus, respectively. 

π and θW are approximately three times lower in M. m. domesticus than in M. m. 

musculus irrespective of considering the concatenated sequence or the two fragments 

separately  

Table 4.4: Nucleotide polymorphism in the 5' upstream flanking region of Neil3 in  
M. m. domesticus and M. m. musculus. Values are given for two fragments separately and 
fragments concatenated, respectively. 

Fragment 1 2 concatenated 

fragments 

Relative distance to locus (kb) 3.6 2.6  

Number of sites  538 340 878 

Number of shared mutations  1 4 5 

Number of fixed differences between 

subspecies 

0 0 0 

M. m. domesticus    

Number of chromosomes 30 38 30 

Number of segregating sites 4 7 10 

π 0.00151 0.0029 0.00206 

θW  per site 0.00188 0.0049 0.00298 

Tajima’s D -0.49814 -1.14312 -0.97787 

Significance >0.10 >0.10 >0.10 

M. m. musculus    

Number of chromosomes 34 44 34 

Number of segregating sites 6 11 17 

π 0.0032 0.00999 0.00577 

θW  per site 0.00284 0.00744 0.00486 

Tajima’s D 0.34904 0.9827 0.62502 

Significance >0.10 >0.10 >0.10 
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No fixed differences between the two subspecies are evident in the upstream region 

but five shared mutations. Reduction in sample size due to concatenation of the 

fragments has no obvious effect in terms of assigning polymorphism at high 

frequency as fixed differences between the subspecies. Tajima’s D results in negative 

values for M. m. domesticus and positive for M. m. musculus for all analyzed 

sequence fragments, but significant results could not be obtained for either of the 

subspecies and fragments. Considering the populations of the two subspecies 

separately (Supplement 19), higher nucleotide polymorphism in the Iranian than the 

German population is evident. Nucleotide polymorphism data show no significant 

difference between the samples from Kazakhstan and the Czech Republic. Samples 

from Vienna show no nucleotide polymorphism at all – again probably due to the very 

limited population sample. 

4.3.3 Correlation of expression-phenotype and genotype – determination of cis-
or trans-acting factors 

Figure 4.4 and Figure 4.5 show the expression levels from the GeneChip® analysis for 

the two candidate genes for 27 individuals from the Bavarian hybrid zone as well as 

four samples each of the pure subspecies and laboratory F1 hybrids in relation to the 

locus-specific genotype of the samples. Samples were assigned as “domesticus“, 

“musculus” or “hybrid” depending on the diagnostic allele for the specific locus (see 

Supplement 17). Pure subspecies and laboratory F1 hybrids are also depicted such 

that the signal intensities of the Bavarian individuals can be directly compared to 

them. 

For Lsm10 the expression (low like domesticus, high like musculus and 

intermediate like hybrids) of the Bavarian samples correlates perfectly with the locus-

specific genotype, i.e. the species-specific SNP is indicative of the expression for that 

locus and vice versa. 22 of the samples show a musculus-like genotype/expression 

(i.e. SNP/expression), two a domesticus-like and three a hybrid-like status. Expression 

of Lsm10 in the Bavarian hybrids is exactly in the range of the pure subspecies 

expression (refer to Supplement 17 for details). Hybrids carrying the musculus-SNP 

are high, those carrying the domesticus-SNP are low and heterozygotes are 

intermediate in expression. Of the 27 samples, most show an overall genotype of 

musculus; only eight have an average domesticus genotype. Three of these show high 

expression according to their musculus locus-specific genotype and three intermediate 
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in accordance to the heterozygous genotype (Supplement 16, Supplement 17). These 

six animals are particularly useful for the analysis, since it can be excluded that the 

expression is caused through a trans-acting factor derived from the domesticus 

genome, which would have led to lowered expression. Hence, it is likely that a pure 

cis-effect is responsible for the expression difference between the subspecies.  
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Figure 4.4: Correlation between Affymetrix GeneChip® signal intensities and genotype for 
Lsm10. Dom refers to animals homozygous for the domesticus SNP, mus to animals homozygous 
for the musculus SNP and hyb animals are heterozygous. Pure domesticus, musculus and 
laboratory F1 hybrids are indicated by circles.  
 

For Neil3 the expression-phenotype does not exactly correspond to the locus-specific 

genotype. Four of 14 domesticus-like genotypes do not show domesticus-like 

expression (high expression) and are intermediate expressed; one animal with 

heterozygous genotype exhibits domesticus-like (high expression) (indicated by 

diamonds in Figure 4.5). Solely for the musculus-like genotypes a perfect correlation 

of genotype and expression level was found. For 15 of the samples the overall 

genotype is not identical with the locus-specific genotype. 13 animals with overall 

musculus genotype exist, eight of which have a domesticus locus-specific genotype 

and five are heterozygous. For four of the eight, the expression is high (domesticus-

like) and for four intermediate (hybrid-like). Two samples show an average 

domesticus genotype, both heterozygous for the locus-specific SNP. One sample 

exhibits high expression and the other intermediate (Supplement 16, Supplement 17). 

Thus, for five samples the expression does not follow the locus-specific genotype.  
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For this analysis, animals showing signal intensities higher than 600 have been 

considered as domesticus-like, since the pure M. m. domesticus animal with the lowest 

expression exhibits a signal intensity of 609. Overall, hybrid-like and domesticus-like 

expression levels are not as clearly differentiated as hybrid-like and musculus-like, the 

hybrids showing intermediate expression but with a tendency towards domesticus-like 

expression levels. A similar tendency was observed by the qRT-PCR analysis from 

chapter 3.3.1 and 3.3.2, where M. m. domesticus, M. m. musculus and the artificial F1 

hybrids all were significantly differentially expressed, but the hybrids showing 

expression levels closer to M. m. domesticus.  
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Figure 4.5 Correlation between Affymetrix GeneChip® signal intensities and genotype for Neil3. 
Dom refers to animals homozygous for the domesticus SNP, mus to animals homozygous for the 
musculus SNP and hyb animals are heterozygous. Animals which show genotype-phenotype 
correlation are indicated by diamonds, those with phenotype-genotype deviation by triangles. 
Pure domesticus, musculus and laboratory F1 hybrids are indicated by circles.  

4.3.4 Assessment of functional consequences for candidate genes from hybrid 
zone analysis 

Figure 4.6 shows the overall genotype (average over 14 loci) of 63 Bavarian 

individuals in relation to the geographic position they are derived from. Samples are 

ordered from west to east in the figure, the center of the hybrid zone position has been 

placed referring to the estimation from Sage et al. (1986) (also see Supplement 13). 

Overall 19 samples collected western and 44 eastern of the center of the hybrid zone 

have been genotyped. The typed animals represent hybrids with complex ancestry, no 

animal heterozygous for all loci (indicative of F1 hybrid) has been found. No animal, 
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homozygous for all typed loci was found at the “wrong” side of the hybrid zone. One 

can clearly see the gradual trend in the genotypes, samples changing from domesticus-

like to more and more musculus-like the more eastern the sample has been collected. 

Only three pure domesticus western of the center of the zone and one pure musculus 

eastern of the center have been genotyped.  
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Figure 4.6: Overall hybrid index for all Bavarian individuals from the hybrid zone. A transect of 
approximately 20 km width has been sampled; the vertical line represents the center of the hybrid 
zone according to Sage (1986). Hybrid index = 0 refers to pure domesticus-genotype, 1 to pure 
musculus-genotypes. Individuals are sorted from the most western to the most eastern sample 
locality. 
 

In Figure 4.7 the locus-specific hybrid indices (genotypes) for Lsm10 of the 27 

Bavarian samples, which were used for the expression analysis are depicted in 

relation to the geographic position the samples are derived from. All samples in the 

eastern part of the hybrid zone show the musculus-like genotype, consistent with the 

overall hybrid index. In the western part of the hybrid zone, all but two samples have 

are at least heterozygous if not homozygous for the musculus-allele, indicating 

introgression of the musculus-allele into the domesticus genomic background. As the 

expression levels of the hybrids correlate perfectly with the genotypes (Figure 4.4), 

this means that all but two hybrids exhibit at least intermediate if not high expression 

of the transcript, thus the expression-phenotype musculus-like or hybrid-like moving 

westwards. Intermediate expression occurs only in three animals, in animals which 

have an overall genetic composition of domesticus.  
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Figure 4.7: Locus-specific hybrid index for Lsm10 in relation to the overall hybrid index. 
Individuals are sorted from the most western to the most eastern sample locality. Samples for 
which the overall hybrid index overlaps with the locus-specific hybrid index are indicated in 
squares. Note that the categories on the y-axis correspond to the expression level (low, 
intermediate, high) in the respective pure subspecies/F1 hybrid. 
 

As for Neil3 the expression does not correspond 100% to the genotypes of the hybrids 

(i.e. the change in expression is not due to a cis difference) (Figure 4.5), a direct 

deduction about fitness effects of the respective expression phenotypes (range over 

the hybrid zone) cannot be made from the genotypes. Therefore the signal intensities 

(representing the expression phenotype) of all hybrids have been related to the overall 

hybrid indices (Figure 4.8). For pure subspecies the high expression of this transcript 

is observed for M. m. domesticus, while M. m. musculus is very low expressed. The 

expression of the hybrids across the hybrid zone in most cases also is high 

(domesticus-like) or intermediate (hybrid-like). Only four animals show the low 

expression phenotype of musculus. As more samples eastern of the center of the 

hybrid zone have been collected (with overall hybrid indices musculus-like), the 

occurrence of that many domesticus-like expression levels as well as the intermediate 

hybrid expression level across the hybrid zone suggest introgression of the domesticus 

allele into the musculus genomic background. 
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Figure 4.8: Expression phenotypes for Neil3 in relation to the overall hybrid index. Individuals 
are sorted from the most western to the most eastern sample locality. Samples for which the 
overall hybrid index overlaps with the locus-specific expression phenotype are indicated in 
squares. Note that the categories on the y-axis correspond to the expression level (low, 
intermediate, high) in the respective pure subspecies/F1 hybrid. 

 

4.4 Discussion 

The two genes, Lsm10 and Neil3, which have been characterized in detail in this 

analysis, showed up as differentially expressed between M. m. domesticus and  

M. m. musculus in an expression screen via Affymetrix GeneChip®. Laboratory-bred 

F1 hybrids between the two subspecies are intermediate in expression. A follow-up 

validation via qRT-PCR confirmed the expression differences (refer to chapter 2 and 

3 for details). These genes provide candidates which may be involved in the 

speciation process in the house mouse by contributing to reproductive isolation. 

Population genetic and hybrid zone analyses have been applied to uncover the genetic 

basis and the potential evolutionary forces that led to the differential expression levels 

and to evaluate the potential of these genes to be involved in reproductive isolation. 
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4.4.1 Protein coding versus regulatory evolution 

Lsm10 

Lsm10 (U7 snRNP-specific Sm-like protein), located on chromosome 4 (125,774 kb - 

125,776 kb), codes for a short protein and possesses two exons with exon 2 being 

protein coding only. It plays, like all eukaryotic Sm and Sm-like proteins, an 

important role in mRNA metabolism (Pillai et al. 2001). They associate with RNA to 

form the core domain of the U7 small ribonucleoprotein particle (snRNP). SnRNPs 

are considered as trans-factors, which are involved in a variety of RNA processing 

events including pre-mRNA splicing, teleomere replication and mRNA degradation 

(Smith et al. 1991, Müller et al. 2000).  

The sequence analysis of the protein-coding region of Lsm10 shows that the 

expression change between M. m. domesticus and M. m. musculus is not accompanied 

by rapid evolution of the protein. No non-synonymous change was identified, 

between the two subspecies and only one fixed synonymous difference. As 

synonymous changes are assumed to be neutral (Fay and Wu 2003), the gene is 

identical on the protein-coding level, which indicates strong selective constraint on 

the coding region. This is further supported by the fact that not a single polymorphic 

site was identified in 20 domesticus and 22 musculus samples. Since M. m. domesticus 

and M. m. musculus are relatively closely related (estimated divergence time of one 

million years (Guénet and Bonhomme 2003)), the overall Ka/Ks of 0 may not be 

meaningful. The Ka/Ks test was also performed by contrasting both subspecies to  

M. caroli, which has diverged from the two subspecies three million years ago 

(Guénet and Bonhomme 2003). The Ka/Ks ratios from this comparison further 

confirm the strong selective constraint on this gene. This is in accordance to the 

assumption that amino-acid changes are mostly deleterious to the function of the 

protein and that purifying selection acts on them (Hurst 2002). Therefore, it can be 

excluded that protein evolution is coupled with the expression difference between the 

two subspecies. If genes acted as integrated units in which protein sequence and 

expression patterns are coupled, one would expect that strong stabilizing selection, as 

for Lsm10, would lead to highly conserved protein sequence and expression levels 

(Castillo-Davis et al. 2004). That regulatory evolution may be of more importance 

than protein evolution has a long standing history (King and Wilson 1975), since 

many analyses have shown the conservation of proteins among distantly related taxa 
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despite high phenotypic dissimilarities. In contrast, less is known about the 

contribution of positive selection to these changes. For Drosophila, Andolfatto (2005) 

recently has estimated that the contribution of non-coding DNA to adaptive evolution 

is one order of magnitude larger than that of amino acid changes. Also other studies 

have illustrated the importance of adaptive evolution acting on regulatory sequences 

(Kohn et al. 2004, Begun et al. 2007).  

Analysis of the 5’upstream region was performed to uncover potential signatures 

of recent selection. Since positive selection of the protein coding sequence is highly 

unlikely because not a single non-synonymous substitution occurs, signatures of 

selection might be indicative for an adaptive change in regulatory elements. 

Nucleotide diversity for Lsm10 is in general low for both subspecies, with π overall 

being slightly higher for musculus than domesticus and θW being about two times 

higher in musculus. Ihle et al. (2006) found an average π in a 20kb region of 0.0025 

for a potential sweep region in M. m. domesticus, which is three respectively four 

times higher. Also Baines and Harr (2007) reported overall higher π for different 

populations each of domesticus and musculus (π = 0.00155 for average over the 

population from Kazakhstan and Czech Republic and 0.002255 for average over 

Iranian and German population) for seven autosomal loci. The low levels of 

variability in both subspecies may indicate that the upstream sequence exhibits 

general high selective constraint. The sequenced fragments are located within 5 kb 

upstream of the coding region. Gaffney and Keightley (2006) showed that there are 

three times as many selectively constrained sites within non-coding DNA than in 

coding DNA, and that the constraint of non-coding DNA does not decrease before a 

distance of 5 kb from the known genic region. Tajima’s D analysis revealed overall 

negative D values for musculus and positive D values for domesticus. Nevertheless, 

both results do not deviate from the neutral expectation. This result is independent of 

whether the concatenated fragment or the single fragments are considered. 

Furthermore there is no significant difference in nucleotide polymorphism between 

the populations of the two subspecies, thus any observed pattern seems to be a 

subspecies effect rather than a population effect. As both D values do not reveal 

significant results, the observed pattern may indicate neutral evolution of the region, 

which would also imply that the expression difference between the subspecies has a 

neutral basis. In principle it could also be that the expression difference is caused 
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through a trans-effect, which would not be detected by sequencing the upstream non-

coding region but this can be ruled out by the the results of the cis-trans-analysis 

discussed in paragraph 4.4.2. However, it is very difficult to achieve significance for 

Tajima’s D. In general it is assumed that Tajima’s D has too little power without 

sample sizes upwards 50 alleles (Simonsen et al. 1995), furthermore the overall 

reduced polymorphism in this region may hinder the achievement of significance. 

Thus, despite the non-significance, the pattern of nucleotide polymorphism in  

M. m. musculus may be indicative of positive selection acting on Lsm10. The negative 

D value hints to the occurrence of rare alleles, which should be in access in 

populations which recently exhibited a selective sweep (Tajima 1989, Braverman et 

al. 1995). Interestingly, the variability in direct vicinity to the coding sequence is zero 

and increases with increasing distance to the gene, a pattern which is typical for a 

selective sweep, since it is assumed that with increasing distance, more variability can 

be observed due to recombination events during the fixation process (Maynard Smith 

and Haigh 1974). For domesticus no such difference exists. Another indicator for 

adaptive evolution in this region is the occurrence of seven fixed differences between 

the two subspecies although overall only 13 segregating sites are identified between 

them. Thus, there is a high divergence in the potential regulatory region which is 

consistent with the difference in expression. Occurrence of high frequency derived 

alleles in the flanking region, as tested by Fay and Wu’s H (Fay and Wu 2000), would 

give more support to the selective sweep hypothesis. However, amplification of the 

upstream targets was not possible for M. caroli, which is supportive of high 

divergence and therefore directional evolution in the regulatory region. High 

expression of Lsm10 represents the derived state, as M. caroli also shows low 

expression of the transcript. With regard to the observation that increases in gene 

expression are more often associated with adaptive evolution than decreases 

(Holloway et al. 2007), this may be an additional hint to a positive selection event in 

M. m. musculus.  

In summary, a coupling of protein coding sequence differences and expression 

divergence between M. m. domesticus and M. m. musculus can be excluded and it is 

most likely, that the expression difference has been mediated via a change in a cis-

regulatory region. Whether this change is associated with an adaptive event or 

attributable to a neutral process remains unclear, but some results hint towards a 
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selective sweep event in M. m. musculus.  

Interestingly, a 25 nucleotide repeat (gtgtgtgagtcggtgatctgtcaaa) in the upstream 

region of M. m. musculus was identified that coincides with the higher expression of 

musculus individuals in comparison to M. m. domesticus. The insertion lies about    

4.6 kb upstream and is repeated between 2-4 times in musculus individuals while it 

occurs only one time in domesticus and also M. caroli, the latter showing low 

expression for Lsm10. The number of repeats differs between the populations; the 

Austrian musculus samples used for the expression analysis showing three repeats. A 

search for putative transcription factor binding sites (TFBS) in M. musculus for this 

region was conducted with PROMO (http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo 

/promoinit.cgi?dirDB=TF_8.3), which uses TBS defined in the TRANSFAC database 

to construct specific binding site weight matrices for TFBS prediction (Messeguer et 

al. 2002). Several motifs that lie in this region have been identified (Table 4.5). 

PROMO is different from other TFBS-prediction programs in that it provides 

expectation values for the binding sites and hence a way to control significance. The 

RE value gives the expectation to find the same hit in a random sequence of 1kb 

length. Furthermore, the similarity of the hit sequence to the matrix is taken into 

account. Three binding sites are identified below a threshold of 0.05: JunD, c-Jun and 

AP-1 (Table 4.5). The inducible transcriptional complex AP-1 is composed of c-Fos 

and c-Jun proteins (Jochum et al. 2001). Three c-Fos binding sites are also identified 

in the sequence stretch, although with RE values > 0.05. Taken together, the insert 

contains binding sites for c-Fos and c-Jun that constitute the AP-1 complex and have 

been shown to act together in situ (Jochum et al. 2001). The software does not take 

cooperation between binding sites into account for calculating expectation values. If 

two events A and B are independent, then the probability of both events is the product 

of the probabilities for each event. The probability of 3 x c-Fos and 1 x c-Jun TFBSs 

to appear in this sequence is < 10-4 (0.20352 * 0.20352 * 0.11136 * 0.01659 = 

0.00008). Hence, finding the association of these binding sites by chance is even less 

likely and it is tempting to speculate on functional significance, e.g. it would be 

interesting to see if the number of repeats correlates with expression height. In this 

scenario, insertion of this sequence would act as a transcriptional enhancer. As Lsm10 

is important for the formation of the small ribonucleoprotein particle, a part of the 

splicesosomal machinery, this could have a significant downstream effect. 
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Nevertheless, the specific connection between activation of the splicesosomal 

machinery (Lsm10) by AP-1 (as the data indicate) remains to be elucidated.  

Table 4.5: Potential TFBS in the 5' upstream region of Lsm10. 

 

Neil3 

Neil3 (Nei like3 (E. coli)), located on chromosome 8 (54,672 kb - 54,724 kb), has ten 

exons and codes for a protein with 606 amino acids. It is a putative DNA glycosylase. 

DNA glycosylases are involved in DNA replication, recombination and DNA repair.  

Two tests were applied to evaluate if protein-coding evolution is coupled with the 

expression difference between M. m. domesticus and M. m. musculus. The McDonald-

Kreitman test revealed no significant result, suggesting no deviation from the neutral 

expectation. The overall Ka/Ks test on the other hand yields a ratio of 0.933. It is 

generally assumed that a cutoff of one as indicator of positive selection is very 

conservative, as in most cases not the whole sequence might be under positive 

selection. Most probably, only a segment of a sequence that codes for a defined 

protein domain is adapting. Thus, Ka/Ks ratios higher than one are quite rare, in 

general only about 1% of genes have a Ka/Ks ratio greater one (Fay and Wu 2003). 

For mouse-rat comparison of 363 genes the average Ka/Ks ratio was estimated to be 

0.14 (with a range of 0.05-0.2) (Wolfe and Sharp 1993). Hence, the Ka/Ks ratio 

between domesticus and musculus could hint to positive selection in some regions of 

the gene. A sliding window analysis did not support this idea; no region with 

significantly elevated Ka/Ks was identified. The combination of both tests suggests 

neutral or constraint evolution of the coding region between domesticus and musculus 

rather than positive evolution. The Ka/Ks analysis between M. caroli and the two  

M. musculus subspecies on the other hand, yields values that are about half the 

magnitude of the domesticus-musculus comparison. For both comparisons, the sliding 

window analysis revealed one region with a strongly elevated Ka/Ks ratio (and a 

second region with Ka/Ks slightly higher than one), which may reflect rapid change 
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for this region of the gene in the musculus-subspecies. Specific regions of elevated 

Ka/Ks have been often shown to be functional important (e.g. drug resistance 

mutations in HIV (Chen et al. 2004)). Interestingly this region maps to exon eight, for 

which some evidence for an alternative spliced transcript in at least domesticus has 

been revealed from the analysis of different cDNAs for this region (data not shown). 

Alternative splicing is thought to contribute significantly to phenotypic complexity by 

allowing a single locus to produce multiple and possible functionally distinct proteins. 

Xing and Lee (2005) showed that alternative splicing can relax amino acid pressure 

without affecting neighboring exons in the same gene, thus creating evolutionary 

hotspots in which one part of a protein sequence is allowed to accumulate amino acid 

mutations at a higher rate than the rest of the protein. Because new functions may 

arise from the insertion or deletion of an exon, it has been suggested that alternatively 

spliced exons can accelerate gene evolution (Chen et al. 2006). A Northern Blot 

analysis failed to decipher the exact transcript structure, and if it is a unique feature of 

domesticus only, but has shown that at least two transcripts (one of ca. 2 kb and the 

other of ca. 5kb, data not shown) exist in both subspecies and M. caroli, underlining 

that different transcripts could indeed originate from this locus. It is also possible, that 

the expression difference between the subspecies from the GeneChip® is influenced 

by the detection of differently spliced transcripts. If this is the case, it is obvious that 

the pattern is complex and several different transcripts have to be involved. The two 

which have been identified with Northern Blot analysis showed no expression 

difference, thus minimum a third one, (which is not detected by the Northern Blot 

probe) has to be involved. 

The overall nucleotide diversity of the non-coding region for Neil3 is six times 

higher regarding π and five times higher regarding θW than in Lsm10. The π values 

(0.00206 for domesticus and 0.0057 for musculus) are also higher than those reported 

by others (Ihle et al. 2006, Baines and Harr 2007). These higher polymorphism levels 

may point towards an overall less constraint on the non-coding region for this gene, 

suggesting neutral evolution of the cis-regulatory region. In general, the nucleotide 

polymorphism is three times lower in domesticus than in musculus, also an overall 

negative Tajima’s D was found in domesticus. This could be a signature of a recent 

selective sweep in domesticus and would suggest - since Neil3 is low expressed in  

M. caroli - an adaptive advantage of high expression, most probably due to cis-
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regulatory differences. However, Tajima’s D test did not reveal results significant 

different from zero for both subspecies and the separate populations, respectively, 

which is indicative of neutral evolution for both coding and non-coding sequence 

rather than selective forces acting on Neil3. Nevertheless, the regulatory difference 

may also be mediated through trans-acting factors, which would not be detected in the 

flanking region of the gene (Holloway et al. 2007). 

Recapitulatory, the mode of evolution for the expression differences between 

domesticus and musculus for Neil3 is not clear. The expression difference seems to be 

decoupled from protein evolution, since recurrent selection of the protein sequence 

can be ruled out; but modifications of the protein (including alternatively spliced 

transcripts) may have contributed to the evolution between the musculus subspecies 

and M. caroli. It cannot be excluded that alternatively spliced transcripts have caused 

the differences in signal intensity of the microarray. Complete decipherment of the 

transcript structures would be a first step to uncover the involved factors. Assuming a 

cis-regulatory change, high expression of the gene as in domesticus may be adaptive, 

since some evidence for a selective sweep event exists. More support for this scenario 

comes from the hybrid zone analysis and will be discussed in paragraph 4.4.3.  

4.4.2 Cis- versus trans-regulatory changes  

Lsm10 

The cis-trans-analysis suggests that the expression difference for Lsm10 is mediated 

by a change in cis. For all hybrids the expression follows the locus-specific genotype 

(as determined from a diagnostic SNP analysis between the parental subspecies).Thus, 

animals with a domesticus-like genotype show low and animals with a musculus-like 

genotype show high expression. Furthermore individuals with a hybrid-like genotype 

show clearly intermediate expression, with very low variance in expression. This is 

only expected if the change is attributed to differences in cis (i.e. changes in promoter, 

respectively TFBS). Even stronger support of the idea comes from the analysis of 

samples, for which the overall genotype deviates from the locus-specific 

genotype/expression. For those samples, a trans-acting factor acting on expression 

can be definitely ruled out. Since all samples show congruence between their locus-

specific genotype and expression phenotype, the expression difference between the 

two subspecies is most likely due to a change in cis. This result fits to the observation 
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of general high selective constraint on the 5’upstream region (see 4.4.1). TFBSs that 

can potentially be involved were identified, which further underlines that the 

expression differences is caused by a cis-regulatory change. For Drosophila and mice, 

cis-effects have been shown as dominant contributor to interspecies expression 

differences (Wittkopp et al. 2004, Doss et al. 2005), although other studies come to 

different results (e.g. Yvert et al. 2003, Morley et al. 2004). 

However, what is missing to date is the evidence of whether cis-regulatory 

differences are also more likely to be adaptive than trans-differences (Hoekstra and 

Coyne 2007), although several authors (e.g. Caroll et al. 2001) are convinced that cis-

regulatory regions have a higher probability of being adaptive than a change in a 

protein-coding region (and thus a putatively trans-acting factor like transcription 

factors). Cis-regulatory changes are believed to be freer from negative pleiotropic 

effects on fitness. To date, only few examples exist, in which an adaptive change is 

connected to a cis-regulatory change. The three most cited (Sucena and Stern 2000, 

Shapiro et al. 2004, Gompel et al. 2005) lack the final identification of the involved 

mutation (and therefore the final proof for cis-regulation). Harr et al. (2006) find 

convincing evidence for the fact that an expression difference in the MKK7 gene 

between M. m. domesticus and M. m. musculus is adaptive, most likely due to a cis-

effect. Nevertheless, the contribution of trans-acting factors cannot be completely 

ruled out. In contrast, for Lsm10 the contribution of a cis-acting factor to the 

difference in expression is obvious from the hybrid zone analysis. What is unclear so 

far is, if the higher expression in M. m. domesticus is caused by an adaptive event, 

though some evidence for positive selection exists. It remains open, what functional 

consequences the up-regulation of this gene, which in itself has a strong potential to 

affect many downstream genes, has for the individual.  

Neil3 

For Neil3 the underlying genetic basis of the expression difference between the two 

subspecies and their hybrids is unclear. The expression difference is predominantly 

due to a change in cis (accompanied by a change in trans with a lesser contribution); a 

pure trans-acting change can be ruled out. This is deduced from the analysis of 

animals for which the overall genotype is not identical with the locus-specific 

genotype. If the expression change was due to a pure trans-effect, all of the 15 

animals most likely would exhibit expression according to their overall genotype; a 
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pure cis-effect would lead to perfect correlation between locus-specific genotype and 

expression levels for all of them. Since five samples show no correlation between the 

locus-specific genotype and the expression, a pure cis-effect is just as unlikely as a 

pure trans-effect. Thus, the observed pattern may indicate that the expression 

difference between the two subspecies is predominately due to a difference in cis, 

with a minor contribution of a change in trans. A contribution of a trans effect would 

also explain the higher variance in expression (in comparison to Lsm10), if one 

considers that different combinations of genotypes for the involved loci are present in 

the hybrids. That changes in cis are often accompanied by change is trans has also 

been ascertained by Wittkopp et al. (2004). The authors conducted an expression 

study with interspecific hybrids of two Drosophila species Almost all genes surveyed 

had differences in cis-regulation, but for 55% of the genes, this change was 

accompanied by a change in trans with varying contribution to the expression 

variation of the latter. Several other studies found gene regulation to be complex and 

to have many loci involved in expression variation (see Whitehead and Crawford 

2006 for a review of studies). However, further analysis is needed to clearly decipher 

the genetic basis of the expression difference of Neil3. An analysis considering allele-

specific expression (like in Wittkopp et al. 2004) of the parental subspecies and F1 

hybrids, where the divergence in gene expression between the parents is compared to 

the difference in alleles in F1 hybrids, can be helpful to infer the relative contribution 

of both factors. Since the two alleles and their cis-regulatory elements derived from 

the parents share the same pool of trans-acting factors, unequal abundance of 

transcripts of the two alleles in the F1 hybrid suggests the presence of the genetic 

variation acting in cis. If trans-regulation diverges between species, the relative allelic 

expression in hybrids will differ from the relative gene expression between the 

species.  

A second explanation for the observed pattern exists, which also may have a 

synergistic effect. It may be that the used diagnostic SNP (identified in the 3’ region) 

is not completely fixed. In over two kb upstream region no fixed difference has been 

identified in 14 domesticus and 18 musculus individuals. It is possible, that the 

putatively diagnostic SNP is present in homozygous form at high frequencies in the 

respective populations but still not fixed. For the correlation analysis, this could lead 

to assigning animals carrying chromosomes from both species as homozygous and 
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vice versa. This could create the exact pattern that is found, e.g. apparent domesticus 

genotype individuals with “hybrid”-like expression. Under this scenario, the 

expression difference between the two subspecies would be most likely caused by a 

change of a cis-acting factor.  

In summary, a change solely in trans can be excluded and a cis-effect seems to be 

the major (if not the only, assuming non-fixation of the diagnostic SNP) contributor to 

the expression difference. Further analysis is needed to completely uncover the 

contribution of cis- and trans-effects to the expression difference between the two 

subspecies for Neil3.  

4.4.3 Functional consequences of candidate genes in a hybrid zone 

The analysis of the genotypes over 14 loci for the Bavarian samples, suggests that the 

hybrid zone seems to have remained stable since the calculation from Sage et al. 

(1986). They estimated the width of the central cline of the hybrid zone to be 20 

kilometers; over this distance the average hybrid indices changed from predominately 

domesticus to musculus genotypes. The analyzed samples exhibit average genotypes 

which fit to the localities they were derived from, related to the supposed center of the 

hybrid zone, showing domesticus-like genotypes one the western part of the center of 

the zone and musculus-like genotypes on the eastern part of the zone. This result is in 

accordance with what Barton and Hewitt (1985, 1989) stated for most of the hybrid 

zones studied. They argued that hybrid zones are barriers to gene flow and 

characterized by sharp changes in allele frequencies at the center of the zone so that 

each allele tends to be associated with other alleles from the parental population. In 

contrast to other surveys of hybrid zones, this analysis accounts for genotypes 

averaged over several loci of single animals, while usually population samples from 

different localities and allele frequencies of single loci are considered (Sage et al. 

1986, Payseur et al. 2004, Macholán et al. 2007,). Thus, the analysis holds the 

potential, that single outliers confound the results. Nevertheless, the observed pattern 

shows an abrupt change from more domesticus to more musculus genotype at the 

center of the zone and pure subspecies at the tails of the zone, which leads to the 

conclusion that the consideration of single animals as representatives for population-

allele frequencies is feasible for the applied approach and that the hybrid zone has 

remained considerably stable. For the Danish hybrid zone it is known that it has not 

moved since the 1960s (Raufaste et al. 2005) and also Macholán et al. (2007) found 
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strong evidence for the stability of the hybrid zone. 

Patterns of expression phenotypes across the hybrid zone 

It is thought that differential movement of alleles across the hybrid zone would reflect 

differences in fitness of particular heterospecific gene combinations (Dod et al. 1993). 

The hybrid zone analysis of the two candidate genes suggests that the expression 

difference between the parental subspecies seems not to be of direct significance for 

reproductive isolation. If this were the case, one would have expected that alleles 

respectively expression phenotypes indicative for one subspecies do not move into the 

overall genomic background of the other subspecies because in hybrid populations 

natural selection is thought to remove deleterious heterospecific combination of genes 

that cause functional disruptions (Payseur and Place 2007). Since for both genes high 

or intermediate expression is frequently found in the opposite average genotype (in 

which they are supposed to be low expressed), selection seems not to act against these 

allele combinations. However, this result should be treated carefully as the analysis 

poses some problems. “Classical” hybrid zone approaches, trying to identify regions 

of the genome involved in reproductive isolation in mice, evaluate patterns of 

differential introgression by statistically comparing changes of allele frequencies 

along a geographical cline between several markers (e.g. Payseur et al. 2004, Dod et 

al. 2005, Macholán et al. 2007, Teeter et al. 2007). Such studies consider extensive 

population samples from many localities. The shape of the different clines (cline 

width and center of the cline) is used to estimate selection parameters of loci. Loci 

which deviate from an average (neutral) pattern (e.g. very narrow cline width) may 

have been exposed to selection. Payseur et al. (2004) identified one locus on the X-

chromosome in their study for which they found a very low cline width, which they 

attributed to this locus being a candidate region for reproductive isolation; also others 

identified patterns of limited introgression for X-chromosomal loci (Tucker et al. 

1992, Dod et al. 1993) or very narrow clines for autosomal loci (Teeter et al. 2007). 

The present analysis does not consider cline width nor does it compare different loci. 

Inferences about differences in introgression are made from the observation of single 

or few individuals per sample locality. Only few localities are considered (four on 

each side of the presumed center of the hybrid zone). Furthermore, the sampled 

transect was quite narrow with a width of 20 km and with a bias towards eastern 

samples. Inferences about introgression of alleles are made by considering the relation 
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of the locus-specific genotype/expression phenotype of a candidate gene to an 

individual’s overall genotype. If a locus-specific genotype/expression phenotype is 

frequently found in the overall genomic background of the respective other 

subspecies, this is seen as “introgression”, respectively, if the locus-specific 

genotype/expression phenotype coincidences with the overall genotype, selection acts 

against these alleles in a foreign genetic background. This analysis is purely 

descriptive, no comparison with neutral loci was done and the sample set is small and 

biased. Therefore, one has to be careful if referring to “introgression” since the 

analysis holds the potential to be strongly influenced by effects of single samples. 

Recently, Macholán et al. (2007) postulated that analysis in a two-dimensional space, 

dense sampling and rigorous statistical treatment of data is essential for hybrid zone 

analyses to make inferences about loci involved in reproductive isolation. Thus, the 

present analysis might be an oversimplification of the complex basis of factors which 

have to be taken into consideration. Nevertheless, the analysis should give a rough 

idea about fitness effects of the specific alleles in a foreign genetic background. No 

abrupt change, as in the overall genotype, is observed for the locus specific 

genotypes/expression phenotypes, even samples with almost pure overall genotype (at 

the very western and eastern tail of the hybrid zone, respectively) show expression 

levels of the respective other subspecies. From these observations, it seems at least 

not likely that both genes act as isolating factors and contribute to reproductive 

isolation between the two subspecies. 

Studies on plants indicate that hybridization can provide a source of genetic 

variation for adaptation (Arnold et al. 1991, Rieseberg 1991, 1997, Rieseberg et al. 

2003) and patterns of different introgression of alleles can also be used to identify 

adaptive gene flow by uncovering genomic regions that mix between species at 

unusually high rates (Payseur et al. 2004). Comparison of many loci is necessary to 

differentiate between a neutral and an adaptive locus. In contrast, the present analysis 

combines patterns of genotype/expression-phenotype-deviation with population 

genetic data to gain information about the fitness effects of the expression differences 

between the two subspecies. An advantage of surveying expression phenotypes over 

the hybrid zone is that one is independent of diagnostic marker, which, if they are not 

100% diagnostic, may confound cline estimates (Payseur et al. 2004). Furthermore, 

expression is an intermediate state between DNA polymorphism and an organism’s 
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phenotype and may be more directly linked to consequences for individuals. For both 

genes the up-regulation of the transcript represents the derived state. Interestingly, for 

both the high or at least intermediate expression is frequently found in the genomic 

background where it would not be expected to occur, suggesting adaptive 

introgression of musculus into domesticus for Lsm10 and domesticus into musculus 

for Neil3. The pattern is particular striking for Neil3, for which almost all overall 

more musculus-like samples exhibit at least intermediate expression although those 

samples should more likely be low expressed, assuming detrimental effects of the 

heterospecific gene combinations. Since more samples from the eastern side of the 

zone have been collected, the evidence for adaptive introgression of domesticus into 

musculus in Neil3 is more conclusive than the reverse case for Lsm10. Evidence for 

adaptive introgression into a foreign genomic background has been revealed from the 

Bavarian hybrid zone. By comparison of allele frequency clines, Payseur et al. (2004) 

identified one locus, Xist, which is unusually polymorphic on the musculus side on the 

hybrid zone. They suggest that domesticus alleles of a gene mapping to the Xist region 

may outcompete the musculus allele in an overall musculus genomic background and 

are experiencing positive selection in a heterospecific genomic background. Teeter et 

al. (2007) identified several autosomal markers with asymmetrical broad clines, with 

high frequencies of domesticus alleles on the musculus side of the hybrid zone. The 

associated genes are related to cell signaling, olfaction and pheromone response 

which play important roles in survival and reproduction and are likely targets of 

positive selection. For both genes the pattern of potential adaptive introgression fits 

the population genetic data. Reduced nucleotide diversity, respectively negative 

Tajimas’s D values are obvious in the subspecies with the high expression, also 

suggesting that this expression status might be an advantage. Of course this analysis 

has some caveats: since the sampling is biased towards more musculus samples and 

no comparison with other loci was done, all observed patterns might also show a 

neutral scenario. However, if the effect was neutral rather than adaptive, one would 

expect variation in gene expression on the respective other side of the hybrid zone as 

well, even though for Neil3 such a statement is difficult because of the small number 

of samples western of the center of the zone. Asymmetric transition of diagnostic 

alleles has been reported from all parts of the hybrid zone so far (Tucker et al. 1992, 

Dod et al. 1993, Payseur et al. 2004, Raufaste et al. 2005, Macholán et al. 2007, 

Teeter et al. 2007). Despite the Czech transect of the zone (Macholán et al. 2007), this 
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asymmetric introgression most often occurs from domesticus into musculus. One 

explanation for this asymmetry is that if intrinsic genomic incompatibilities between 

M. m. domesticus alleles and M. m. musculus alleles occur, more M. m. musculus 

alleles are incompatible with a M. m. domesticus genetic background than vice versa. 

Furthermore, behavioral differences between the subspecies might be responsible. It is 

known that wild M. m. musculus prefer homspecific urine signals (Smadja and Ganem 

2002, 2005) but no such preference was found in M. m. domesticus. A lack of 

preference for conspecific mates in M. m. domesticus would indicate that they mate 

more likely with hybrids or M. m. musculus than vice versa. Furthermore  

M. m. domesticus males usually dominate less aggressive M. m. musculus males (Van 

Zegeren and Oortmerssen 1981). However, these differences would skew clines to the 

musculus side, which would be no explanation for the pattern observed in Lsm10.  

One could argue that the pre-selection of candidate genes was not appropriate to 

identify genes that are contributing to reproductive isolation. The analyzed genes are 

intermediate in expression in F1 hybrids and therefore not strongly misregulated (i.e. 

higher or lower in expression in comparison to both parents), according to “classical” 

regulatory hybrid incompatibilities (Landry et al. 2007), and thus eventually less 

likely to have a negative fitness effect in hybrids. Nevertheless, while intermediate 

expressed genes might cause reduced fitness already in F1 hybrids, they might 

furthermore be important isolating factors in F2 or backcrosses (Oka et al. 2007). The 

heterozygous state may not be deleterious enough to cut off gene flow and effects 

may only occur, when alleles from single loci or combinations of loci become 

homozygous in F2 or later generations (Orr and Presgraves 2000). However, a 

contribution to reproductive isolation of the two analyzed candidate genes seems 

unlikely, although the observed pattern of expression across the hybrid zone and the 

deduced conclusions should be treated with care. The analysis (which considers 

hybrids apart from F1) in combination with population genetic data more likely 

suggests adaptive introgression of the phenotype with the high expression level into 

the genomic background which is associated with low transcript expression. 

4.4.4 Conclusion 

Although the approach applied here did not succeed to completely uncover the 

evolutionary mechanisms acting on and contributing to expression differences 

between the two subspecies M. m. domesticus and M. m. musculus, some insights 
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have been gained. A coupling of protein and regulatory evolution can be excluded for 

both genes and cis-regulatory rather than trans-acting changes appear to contribute to 

the expression variation. Furthermore, evidence exists that the high expression 

phenotype represents an adaptive advantage, which seems to introgress into the 

respective other subspecies, rather than being involved in the process of reproductive 

isolation between the two house mouse subspecies. Further analysis (e.g. sequence 

analyses including outgroups) is needed to substantiate these conclusions and to gain 

more support for the selective sweep hypothesis as well as hybrid zone analyses with 

larger population sample sizes. Considering allele frequencies of populations rather 

than single animals lowers the chance that patterns, caused by random effects, are 

deemed real. 
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Supplement 1: Used mouse samples for microarray and qRT-PCR analysis. 

Subspecies Generation Geographic origin Sample 
name 

experiment 

M. m. musculus, JPC 
2821  

~13 Studenec, Czech 
Republic, wild-derived 
inbred 

24.01 
24.02 
44.01 
44.02 

qRT-PCR 
GeneChip®, qRT-PCR 
GeneChip® , qRT-PCR 
qRT-PCR 

M. m. domesticus, 

JPC 2705  

~13 Straas, Germany, wild-
derived inbred 

20.01 
20.02 
20.03 
20.04 
23.01 
23.02 
23.03 

qRT-PCR 
qRT-PCR 
GeneChip®, qRT-PCR 
GeneChip®, qRT-PCR 
qRT-PCR 
qRT-PCR 
qRT-PCR 

M. m. castaneus, 

CIM 

~30 Masinagudi, India, wild 
derived inbred 

07.02 
07.03 

GeneChip®,  
GeneChip® 

mus-dom hybrid 1  14.01 
14.02 
14.03 
17.01 
17.02 
17.03 
 

GeneChip®, qRT-PCR 
qRT-PCR 
GeneChip®, qRT-PCR 
qRT-PCR 
qRT-PCR 
qRT-PCR 
 dom-mus hybrid 1  29.01 

29.02 
29.03 
 

qRT-PCR 
GeneChip®, qRT-PCR 
GeneChip®, qRT-PCR 
 cas-mus hybrid 1  38.02 

38.03 
GeneChip®, 
GeneChip® 

mus-cas hybrid 1  05.01 
05.02 

GeneChip® 
GeneChip®  

M. m. domesticus 1, parents 
collected in 
the wild 

Heimerzheim, Germany 
Heimerzheim, Germany 
Ardenberg, Germany 
Ardenberg, Germany 
Arzdorf, Gemany 
Niederbachem, Germany 
 

TP1a.1 
TP1a.2 
TP3a.1 
TP3a.2 
TP5.1 
TP8b.2 
 

qRT-PCR 
qRT-PCR 
qRT-PCR 
qRT-PCR 
qRT-PCR 
qRT-PCR 
 M. m. musculus  1, parents 

collected in 
the wild  

Gänserndorf, Austria 
Vienna, Austria 
Vienna, Austria 
Vienna, Austria 
Vienna, Austria 
Punkersdorf, Austria 
 

W1a.1 
W3.1 
W3.3 
W4a.1 
W4b.1 
W6a.1 

qRT-PCR 
qRT-PCR 
qRT-PCR 
qRT-PCR 
qRT-PCR 
qRT-PCR 
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Supplement 2: Overrepresented biological processes among the differentially expressed 
transcripts between M. m. domesticus and M. m. musculus (p<0.05, fold-change >2.5), 
independent of expression status in the F1 hybrids. Bonferroni-corrected p-values are 
depicted. 

Biological process Observed number of 
genes in category 

Expected number of 
genes in category p-value 

brain 

intracellular protein traffic 18 7.01 0.00849 
protein modification 22 8.73 0.01070 

liver 
lipid, fatty acid and 
steroid metabolism 39 10.55 <0.00001 
steroid metabolism 23 3.37 <0.00001 
cholesterol metabolism 11 0.97 <0.00001 
electron transport 16 4.3 0.00030 
other metabolism 22 7.52 0.00031 
detoxification 8 1.13 0.00329 
proteolysis 31 13.81 0.00446 
protein metabolism and 
modification 69 45.83 0.01060 
coenzyme and prosthetic 
group metabolism 9 2.14 0.01110 
immunity and defense 42 24.16 0.01190 
carbohydrate metabolism 18 7.3 0.01540 

testis 
protein targeting and 
localization 11 3.12 0.01170 
intracellular protein traffic 29 15.01 0.02120 

 
 

Supplement 3: Overrepresented biological processes among the differentially expressed 
transcripts between M. m. castaneus and M. m. musculus (p<0.05, fold-change >2.5), 
independent of expression status in the F1 hybrids. Bonferroni-corrected p-values are 
depicted. 

Biological process Observed number 
of genes in category 

Expected number of 
genes in category p-value 

brain 
carbohydrate 
metabolism 16 4.29 0.000257 

other polysaccharide 
metabolism 7 1.05 0.015200 

liver 
lipid, fatty acid and 
steroid metabolism 39 11.11 <0.000001 
steroid metabolism 18 3.55 0.000005 
other transport 8 0.76 0.000189 
other metabolism 23 7.92 0.000225 
immunity and 
defense 49 25.43 0.000302 
cholesterol 
metabolism 8 1.02 0.002260 
coenzyme and 
prosthetic group 
metabolism 10 2.25 0.003470 
transport 36 18.38 0.003600 
carbohydrate 
metabolism 20 7.68 0.003840 
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steroid hormone-
mediated signaling 6 0.56 0.004890 
amino acid 
metabolism 11 3.13 0.012000 
protein metabolism 
and modification 71 48.25 0.017400 

testis 
detoxification 10 1.33 0.000195 

 
 

Supplement 4: Overrepresented biological processes among the nonadditively expressed 
transcripts between F1 hybrid from a cross between M. m. musculus mother with  
M. m. castaneus father and both parents in the testis. Bonferroni-corrected p-values are 
depicted. 

Biological process Observed number 
of genes in category 

Expected number of 
genes in category p-value 

intracellular protein traffic 164 83.05 2.26x1014 
cell structure and motility 153 89.74 1.03 x108 
cell cycle 140 79.95 1.12 x108 
protein modification 173 103.42 1.33 x108 
spermatogenesis and 
motility 37 12.81 4.96 x106 
gametogenesis 51 21.48 5.29 x106 
nucleoside, nucleotide and 
nucleic acid metabolism 393 306.36 5.50 x106 
other intracellular protein 
traffic 21 5.25 2.47 x105 
protein metabolism and 
modification 385 303.81 2.52 x105 
pre-mRNA processing 56 26.41 4.41 x105 
lipid, fatty acid and 
steroid metabolism 112 69.93 4.66 x105 
protein targeting and 
localization 40 17.26 5.66 x105 
protein phosphorylation 100 59.67 1.63 x104 
cell structure 90 53.94 4.93 x104 
mRNA splicing 43 19.57 5.68 x104 
lipid metabolism 31 12.33 7.71 x104 
general vesicle transport 45 21.48 8.17 x104 
miscellaneous 30 13.44 2.00 x103 
mitosis 55 29.75 2.76 x103 
exocytosis 32 14.24 4.78 x103 
other intracellular 
signaling cascade 38 18.54 8.92 x103 
protein folding 32 14.8 9.65 x103 
intracellular signaling 
cascade 106 72.31 1.38 x102 
carbohydrate metabolism 73 48.37 1.56 x102 
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Supplement 5: Literature review on studies differentiating additivity and nonadditivity in gene 
expression. Shaded in grey indicate the studies that have less rigorously investigated the topic of 
additivity/nonadditivity. 
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Supplement 6: Candidate genes used for qRT-PCR confirmation experiment. 

Affymetrix 
ID 

Gene symbol Refseq Assay ID Experiment 

1460235_at Scarb2 NM_007644.2 Mm00446978_m1 TaqMan®, 
Sybr Green  

1421113_at Pga5 NM_021453.2 Mm00480598_m1 TaqMan®, 
Sybr Green 

1424060_at Neil3 NM_146208.1 Mm00467596_m1 TaqMan®, 
Sybr Green 

1453203_at 1700011K15Rik NM_029294.1 Mm00661433_s1 TaqMan®, 
Sybr Green 

1455939_x_at Srp14 NM_009273.4 Mm00726104_s1 TaqMan®, 
Sybr Green 

1419715_at 1700029F12Rik NM_025585.1 Mm00481622_m1 TaqMan®, 
Sybr Green 

1429661_at Rhobtb3 NM_028493.1 Mm00712630_m1 TaqMan®, 
Sybr Green 

1428437_at Lsm14a NM_025948 – Sybr Green  

1417515_at Lsm10 NM_138721 – Sybr Green  

1452877_at 2700029M09Rik XM_910498 – Sybr Green  

Endogenous 
control 

Eif4g2 NM_013507.2 Mm00469036_m1 TaqMan®, 
Sybr Green 

 
 

Supplement 7: Primer sequences of the different experiments.  

RefSeq Name F-
Primer 

Sequence R-
Primer 

Sequence Experiment 

NM_007644 Scarb2 1394 tttaccaagccgacgagaag 1395 gcccaaccacaaaaagtttc Sybr Green 

NM_021453 Pga5 1514 tgctgatgctaggtggagtg 1515 cctcctcaaagttgctcct Sybr Green 

NM_146208 Neil3 1778 caaggggaggcagttttatg 1779 ttcataatggagcgcttgc Sybr Green 

NM_029294 1700011 
K15Rik 

1495 tgaatgtggattttgccttg 1496 atcatggcgatgtcaatcac Sybr Green 

NM_009273 Srp14 1499 gcaaaccagcacagtgacag 1500 caaaccttacggctggaatc Sybr Green 

NM_025585 1700029 
F12Rik 

1516 gacctccaaaacccgtgac 1517 gcaggccagatttagagcac Sybr Green 

NM_028493 Rhobtb3 1497 caaaagcctgaatttcaagacc 1498 gcaatagggcaacgtaaagg Sybr Green 

NM_025948 Lsm14a 1503 tccatatcccagatggtgtg 1504 tcacagccagagttgacgac Sybr Green 
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NM_138721 Lsm10 1501 tcatgcatagtgtatggacttcg 1502 gagtcattagaaggccacagg Sybr Green 

XM_910498 2700029 
M09Rik 

1505 caggcttggttgttccagtag 1506 aacagggcagcttgttcatc Sybr Green 

NM_013507 Eif4g2 1523 agcagaagcacgtcagtaagg 1524 gcacataaagcccattactagagg Sybr Green 

NM_007644 Scarb2 1535 tcaggggtgttgaacatcag 1536 atctacaacagggggtcacg GeneChip® 
target region 

NM_021453 Pga5 1398 agaacctggcattttcatgg 1401 tggatgaaatatgccctgtg GeneChip® 
target region 

NM_146208 Neil3 1402 ccagctcacacttctgcaac 1405 ttcataatggagcgcttgc GeneChip® 
target region 

NM_029294 1700011 
K15Rik 

1406 agccagctgtgctgaagtg 1407 caaagacgccagaatgaaatg GeneChip® 
target region 

NM_009273 Srp14 1410 gcaaaccagcacagtgacag 1509 ccacctgtaggataacacaactttt 

 

GeneChip® 
target region 

NM_025585 1700029 
F12Rik 

1413 gctacaccccaaaactgacg 1414 ggtcccccattaccaagatag GeneChip® 
target region 

NM_028493 Rhobtb3 1416 tcatcacacagctgcagagc 1417 gaatcccatggttacatttgg GeneChip® 
target region 

NM_025948 Lsm14a 1420 gtcagtgtgctgaggagcag 1421 tgaaatctttggatctctttattcc GeneChip® 
target region 

NM_138721 Lsm10 1424 accttcgggatgagagtgtg 1425 gaaaagaaacaaatgccaaaaag GeneChip® 
target region 

XM_910498 2700029 
M09Rik 

1429 acaatgtgtttgctgccatc 1430 taaaaacaaagccccgtctg GeneChip® 
target region 

NM_007644 Scarb2 1481 cagaaggcggtagaccagac 1482 tccacgacagtcaacagagg TaqMan® 
amplicon 
region 

NM_021453 
Pga5 

 

1561 

1567 

gagaggcacctggcacttac 

aggtgtggttcctctggttg 

1566 

1568 

ggaggttatgaaggccactg 

tctcagtccctgctccctac 

TaqMan® 
amplicon 
region 

NM_146208 Neil3 1485 tcttcatccggctgttaagg 

 

1486 caaaccacacaggaccactg 

 

TaqMan® 
amplicon 
region 

NM_029294 1700011 
K15Rik 

1487 atccttgctgaagccatcc 1488 ttgaagtttcccacggactc TaqMan® 
amplicon 
region 

NM_009273 Srp14 1410 gcaaaccagcacagtgacag 1509 ccacctgtaggataacacaactttt TaqMan® 
amplicon 
region 

NM_025585 1700029 
F12Rik 

1489 tgtgacagtgaagccaccac 1490 tgtggacagctggtcttctg TaqMan® 
amplicon 
region 

NM_028493 Rhobtb3 1491 acatgccccctgtgtacttc 1492 caagctgaggaggtcgaatc TaqMan® 
amplicon 
region 

NM_013507 Eif4g2 870 cggtgaaggcttttcatttc 871 aggctttgtccacaatcagc TaqMan® 
amplicon 
region 
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Supplement 8: Boxplots showing results of TaqMan® Gene Expression assay qRT-PCR analysis. 
Y-axis shows the averaged ∆CT values. 
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Supplement 9: Boxplots showing results of Sybr Green qRT-PCR analysis. Y-axis shows the 
averaged ∆CT values. 
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Supplement 10: Differences in single probes related to signal intensities. SNPs are indicated in 
bold in the probe sequence. 

  Signal intensities   

Gene 
symbol Probes 1-11 

20.03 
(dom) 

20.04 
(dom) 

24.02 
(mus) 

44.01 
(mus) 

SNP 
in 

high 
overall 
expression 
(MAS 5.0) 

Neil3        

 ATGGCAGCCCTCTGTGCAAGATGCA  4152 5156 3766 6134 dom dom 

 GCAAGATGCACCACCGCCGTTGTGT  2370 2809 1866 2913   

 GCCGTTGTGTTCTCCGAGTTGTGAG  1394 1844 535 696   

 GTGTTCTCCGAGTTGTGAGGAAAGA  1137 1174 116 180   

 GGAGGCAGTTTTATGCCTGTTCTCT  310 365 155 110   

 AGTTTTATGCCTGTTCTCTGCCGAG  4117 3732 3239 3168   

 TTATGCCTGTTCTCTGCCGAGAGGA  4587 5587 3359 4537   

 TTCTCTGCCGAGAGGAGCACAGTGC  397 352 158 100   

 GAGCACAGTGCGGATTTTTTGAATG  270 415 16 18   

 GCGGATTTTTTGAATGGGCAGACCT  602 706 66 35 dom dom 

 GATTTTTTGAATGGGCAGACCTGTC  180 131 102 72 dom dom 

Srp14        

 TGTGTGGCTGGATATTCTTAGATTC 9058 10012 2622 1792 mus dom 

 TATTCTTAGATTCCACCCGTAAGGT 493 905 837 1369   

 TCCAGGCTAGCTGCTTTTTTTCCTA 9710 10191 10571 11127   

 CCAGGCTAGCTGCTTTTTTTCCTAC 11272 10664 13310 12337   

 CAGGCTAGCTGCTTTTTTTCCTACC 13457 11469 14778 12439   

 TTTTTCCTACCCTATTTATGACAGT 14048 13900 15239 13052   

 AGTAACTACTAACTCTAGATGGTAC 13548 14752 21 8 mus dom 

 GTAACTACTAACTCTAGATGGTACA 13424 15826 8 4 mus dom 

 AACTACTAACTCTAGATGGTACAGT 14143 17308 4 4 mus dom 

 ACTACTAACTCTAGATGGTACAGTT 11742 14697 57 20 mus dom 

 CTACTAACTCTAGATGGTACAGTTA 11373 13879 17 44 mus dom 

Rhobtb3        

 AAGTTTCACCACTCAGACTGCCTTT 1848 1665 613 557   

 ATTTCATCGCCACTAACTACCTCAT 3521 2438 673 372   

 CACTAACTACCTCATATTCAGCCAA 3006 2379 490 248   

 CTACCTCATATTCAGCCAAAAGCCT 3075 2876 420 316   

 GAATTTCAAGACCTTTCAGTGGAAG 1145 1637 112 126   

 TCACCATATAGCTTCTTACTAGTTA 943 930 159 97   

 GCTTCTTACTAGTTATCTTTTAAAG 397 579 49 130   

 AAAGCTACTACAGACTAAATTTATG 82 81 11 10   

 ACTAAATTTATGTTTCACCTAGAAT 5 16 3 3 dom dom 

 ATATAAAACTGTTAGACATTGGGTT 63 107 4 4   

 CCCTATTGCTTTAATAACATCAAGA 225 227 59 28   

Lsm14        

 TTTTTGATTTCCTTTGTACTGTTTG 33 72 574 712 dom mus 

 TTGATTTCCTTTGTACTGTTTGGAC 86 122 1266 1259 dom mus 

 GATTTCCTTTGTACTGTTTGGACTA 126 210 1693 1455 dom mus 

 TTCCTTTGTACTGTTTGGACTAAAG 41 56 835 834 dom mus 

 TGTACTGTTTGGACTAAAGTGAAGA 37 12 296 344 dom mus 

 TATGGACTTCGTTTTGTAGCAAATC 1893 1829 2426 2123   
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 GGACTTCGTTTTGTAGCAAATCACA 2299 2137 2844 2249   

 CTTCGTTTTGTAGCAAATCACAGGA 635 631 908 663   

 AACTATAGTGAAAAAGATCTGGCCA 9 18 29 3 dom mus 

 GTGAAAAAGATCTGGCCACTTTGTG 167 193 75 39 dom mus 

 TGAAAAAGATCTGGCCACTTTGTGT 153 210 33 26 dom mus 

Lsm10        

 TTTCATGAATATCCGCCTGGCCAAT 927 706 6326 4325   

 AGTTGGATGACCTTTTTGTGACCGG 1075 1298 6207 7243 dom mus 

 TTGTGACCGGTCGTAACGTCCGATA 688 645 2026 1619   

 GATACGTCCATATCCCAGATGGTGT 1729 2083 12884 14792   

 TGGTGTGGACATCACTGCTACTATT 1593 1355 11226 9667   

 ACCGTGTGCGCAACTTTGGTGGCAA 851 836 8914 7424   

 GGTCAAGGTCGTCGAGAGTTCCCCT 2170 2085 14934 14119   

 AGGGACCTCCGGTGTTCTGAGCCAA 1784 1659 10134 7449   

 GTAACAGACATGTCACAGCGGCCTT 464 423 6083 4139   

 GGTGACAATCCCTCTTTTGGATCAT 2362 2794 14329 15514   

 TGGAGTGAATCACCTCTAACGTCCC 1586 1341 16359 10660   

2700029 
M09Rik        

 GAAAACTAGGATACTCACTGGAACA 373 507 4028 2431   

 GCAGGCTTGGTTGTTCCAGTAGATA 1625 1671 9717 8534   

 GTTGGTTACCGAGAGCTCCCTGAAA 936 860 5285 4224   

 AGGCAGTTGTCGACGCTGCAAGCGA 285 487 284 240 dom mus 

 GAGACTGAAAGCATTCGCTCCCATT 383 421 2941 2914   

 TGATGACTTTTGTGCAGTTTGCTAA 2073 2370 10228 11905   

 GAATGGACCTCTTTTGCTATGGCTC 2583 2871 11535 10831   

 GCTATGGCTCTCATTATTTTCACAA 1578 1345 9997 6672   

 GTCAGCTTTTACCTCTTGCGTATAA 2337 2068 11888 9996   

 GAGAACATAGACCAGCTTGCAGGAT 909 844 5292 4487   

 AAGCTGCCCTGTTAGTGCAGTGCTT 1574 1973 5989 6936   

 

Supplement 11: Sequencing results of amplicon regions. 

Gene 
symbol 

RefSeq Assay ID Amplicon 
position 

Amplicon 
length 

Size 
PCR 
product 

SNP 
position 

SNP 
presumably 
in primer 
(position in 
amplicon) 

SNP in 

Scarb2 NM_007644 Mm00446978_m1 575 134 347  –    –   –   

Pga5 NM_021453 Mm00480598_m1 155 59 1:  512       
2: 360 

 –               
2: 99 

 –                    
?,                  
R-primer (60) 

 –         
mus 

Neil3 NM_146208 Mm00467596_m1 972 75 369 248 ?,                  
F-primer (23) 

dom 

1700011 
K15Rik 

NM_029294 Mm00661433_s1 1171 142 396 96, 110 Yes,            
F-primer (5, 
19) 

mus 

Srp14 NM_009273 Mm00726104_s1 576 76 394 160,  189 ?,                 
F-primer (21) 
probe (50)  

160: 
polymorph 
in dom 
189: 
polymorph 
in mus 

1700029 
F12Rik 

NM_025585 Mm00481622_m1 368 67 232 –   – –   

Rhobtb3 NM_028493 Mm00712630_m1 865 123 244  –   – –   

Eif4g2 NM_013507 Mm00469036_m1 439 81 461  –   –   –   
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Supplement 12: List of samples and geographic origin of the animal material used for 
sequencing. Samples also used for expression analysis are additionally indicated.  

Species Country Town Coordinates Samples Different 
localities 

Sample 
ID’s 

Experiment 

M. m. 

domesticus 

Germany Bonn 50°45’N - 
51°N  
6°45’E - 7°E 

12 9 TP1a.1 
TP1a.2 
TP3a.1 
TP3a.2 
TP4a 
TP5.1 
TP7 
TP8.1 
TP8b.2 
TP10.1 
TP12.1 
TP17 

microarray 
 
microarray 
 
 
microarray 
 
 
microarray 

M. m. 

domesticus 

Iran Ahvaz 31°13’N - 
31° 39’N 
48°37’ E - 
50°E   

8 8 AH2.2 
AH3.1 
AH4 
AH5.1 
AH6.2 
AH8.3 
AH9.2 
AH21.2 

 

M. m. 

musculus 

Czech 
Republic 

Námest 
and 
Oslavou 

49° N – 50° 
30’ N     
12° E- 16° E 

8 8 CR02 
CR03 
CR15 
CR16 
CR28 
CR57 
CR61 
CR63 

 

M. m. 

musculus 

Kazakhstan  Almati 43°N                      
77°E 

 

8 8 Al30 
Al32 
Al36 
Al41 
Al47 
Al49 
Al64 
Al72 

 

M. m. 

musculus 

Austria Vienna 48° N 21’ - 
48° 30 N 
16° 26’E - 
16° 71’ 

6 3 W1a.1 
W.3.1 
W3.3 
W4a.1 
W4b.1 
W6a.1  

microarray 
microarray 
 
microarray 
 
microarray 

M. caroli Thailand Khorat ? 1 1 KTH qRT-PCR 

Laboratory 
F1 hybrids 

   4  14.01 
14.03 
29.02 
29.03 

microarray 
microarray 
microarray 
microarray 
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Supplement 13: Overview of sampling area and trapping localities for the hybrid zone analysis. 
The position of the center of the hybrid zone was placed according to Sage (1986). 

 

 

Supplement 14: Primer combination and sequences for Lsm10 and Neil3. 

Name DNA Exon F-
Primer 

Sequence R-
Primer 

Sequence 

Lsm10 genomic DNA Coding 
region 

1781 gtgtgctcctgcccacag 1763 gggccacattctagaccaag   

 genomic DNA 4800 bp 
upstream 

1784 tgatgctccatactgtcacagac 1785 gcacgtgtagaaggcagagg 

 genomic DNA 4200 bp 
upstream 

1764 ttatcctctgccttctacacg  1765 tcactgcccggttcttactc  

 
 genomic DNA 3600 bp 

upstream 
1786 caatagttgctcaaagactgctg 1787 ataggtctgcgtccctgtcc 

 genomic DNA 2600 bp 
upstream 

1768 gcagcaagcacaaaaatgag  1769 catgtaccactactgcccaac  

Neil3 cDNA 1 1684 cgggttctgtgactcctttc 1653 ggctctaggtcttgggaacc 

 cDNA 1, 2, 3, 4 1663 gccagggtgtacactgaatg 1669 aggcaacaccctctgatcc 

 cDNA 1, 2, 3, 4 1665 gctgctccaatgaatgctaag 1669 aggcaacaccctctgatcc 
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 cDNA 4, 5, 6, 7 1670 ggtggaaagccaacagagag 1671 caagcatcacaggccttagc 

 cDNA 4, 5, 6, 7 1672 tcagaaattcggtggaaagc 1673 caaaccacacaggaccactg 

 cDNA 7, 8, 9 1706 cagtggtcctgtgtggtttg 1707 ctgccatcacttttggaatg 

 cDNA 7, 8, 9 1670 ggtggaaagccaacagagag 1709 caatttccattcctggtcca 

 cDNA 8, 9, 10 1678 ttggccagaaagaaaagagc 1666 attagcatcctggaacaatttc 

 cDNA 8, 9, 10 1678 ttggccagaaagaaaagagc 1664 ggaacaatttccattcctggtc 

 cDNA 10 1654 tggaccaggaatggaaattg 1655 tgcgatgtaaacataatctcctg 

 genomic DNA 2 1715 atgaacctggtcgaggagtc 1716 caacaacagacgtgacactgg 

 genomic DNA 3 1717 taggtcttctgggcgaagtg 1718 ttgctacaattcccacatcc 

 genomic DNA 4 1721 tgggaattgtagcaatgagc 1722 agattcccatttcagcatgg 

 genomic DNA 7 1727 agtttgacagcaccgagtagg 1728 ggctggcaatttctctaaacc 

 genomic DNA 8 1731 caaatctatttcaagtagtcagcatac 1732 taaccatggcttgaaaaacc 

 genomic DNA 9 1733 atgggcagagtggtaagagc 1734 attattggccgcacttgttc 

 genomic DNA 10 1737 tcctctgctcagcactgttc 1738 tgcgatgtaaacataatctcctg 

 genomic DNA 2600 bp 
upstream 

1640 cagtggcccagatataggaaag 1641 atacccccagaagtgtcagg 

 genomic DNA 3600 bp 
upstream 

1642 atcagtgtcccaggatcagg 1643 tttccatcatagttcaatgaaacc 

 

Supplement 15: Primer used for expression-phenotype/genotype correlative analysis. SNP 
position is counted from first base of F-primer, number in brackets refers to position in the fasta 
file of the digital supplement. 

Name  Fragment 
size 

Position 
SNP  

F-
primer 

Sequence R-
primer 

Sequence 

Lsm10 1142 516 (225), 
769 (478), 
781, (490) 

1780 gttccaggccacacttgttt 
 

1763 gggccacattctagaccaag  

Neil3 693 353 (224), 
550 (421) 

1644 tttagtgcctgggaggaatg 
 

1645 ccaaaggactggacagtgatg 
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Supplement 16: Samples used for hybrid zone analysis. An overall hybrid index of 0 refers to a 
pure domesticus genotype, a hybrid index of 1 to a pure musculus genotype. 

ID 
hybrid 

Locality Overall 
hybrid 
index 

ID 
father 

Overall 
hybrid 
index 

ID 
mother 

Overall 
hybrid 
index 

Comments 

Bay1c.1 1 0.3214 Bay22.3 0.3750 Bay22.1 0.2143  

Bay1c.2 1 0.2857 Bay22.3 0.3750 Bay22.1 0.2143  

Bay2.1 2 0.0714 Bay30.1 0.0000 Bay28.1 0.1071  

Bay2.2 2 0.0357 Bay30.1 0.0000 Bay28.1 0.1071  

Bay3a.1 3 0.7857 Bay36.3 1.0000 Bay34.1 0.9286  

Bay3b.1 3 0.9643 Bay36.3 1.0000 Bay34.1 0.9286  

Bay4a.1 3 0.9286 Bay36.2 0.8929 Bay36.1 0.9643  

Bay4b.1 3 0.8929 Bay36.2 0.8929 Bay36.1 0.9643  

Bay6.1 4 0.8333 Bay42.2 0.8571 Bay42.4 0.9231  

Bay6.2 4 0.8077 Bay42.2 0.8571 Bay42.4 0.9231  

Bay7.1 4 0.9286 Bay42.6 0.8214 Bay42.5 0.8214  

Bay7.2 4 no data Bay42.6 0.8214 Bay42.5 0.8214  

Bay9.1 5 0.9286 Bay50.1 0.8929 Bay48.1 0.9286  

Bay9.2 5 0.8929 Bay50.1 0.8929 Bay48.1 0.9286  

Bay11.1 5 0.7857 Bay49.4 no data Bay49.2 0.7857  

Bay11.2 5 0.8571 Bay49.4 no data Bay49.2 0.7857  

Bay14.1 2 0.0000 Bay30.2 0.0000 Bay28.2 0.0357  

Bay14.2 2 0.0000 Bay30.2 0.0000 Bay28.2 0.0357  

Bay31.3 6 0.8571 Bay31.1 0.8571 – – brought 
mother 
pregnant from 
field 

Bay31.4 6 0.8571 Bay31.1 0.8571 – – brought 
mother 
pregnant from 
field 

Bay31.6 6 0.8571 Bay31.1 0.8571 – – brought 
mother 
pregnant from 
field 
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Bay41.2 6 0.8571 – – – – caught in field 

Bay45.8 4 no data Bay45.1 0.8571 – – brought 
mother 
pregnant from 
field 

Bay49.3 5 0.8571 – – – – caught in field 

Bay54.1 7 0.1923 – – – – caught in field 

Bay54.2 7 0.5000 – – – – caught in field 

Bay57.2 8 0.2143 – – – – caught in field 

 
 

Supplement 17: Locus-specific genotype in relation to expression-phenotype. Deviations of 
genotype and expression-phenotype are indicated in bold. 

Transcript 
Sample 
ID 

SNP position 
and genotype 

Locus-
genotype 

Signal 
intensity 
GeneChip

®
  

Expression 
like 

Expression 
phenotype 
follows 
genotype 

Lsm10   516 769 781         

B1c.1 aa tt cc mus 7836 mus yes 

B1c.2 aa tt cc mus 8286 mus yes 

B2.1 cc cc gg dom 1083 dom yes 

B2.2 ca ct cg hyb 4897 hyb yes 

B3a.1 aa tt cc mus 8978 mus yes 

B3b.1 aa tt cc mus 8340 mus yes 

B4a.1 aa tt cc mus 8487 mus yes 

B4b.1 aa tt cc mus 8588 mus yes 

B6.1 aa tt cc mus 7681 mus yes 

B6.2 aa tt cc mus 7311 mus yes 

B7.1 aa tt cc mus 8640 mus yes 

B7.2 aa tt cc mus 8126 mus yes 

B9.1 aa tt cc mus 8300 mus yes 

B9.2 aa tt cc mus 8256 mus yes 

B11.1 aa tt cc mus 8186 mus yes 

B11.2 aa tt cc mus 7245 mus yes 

B14.1 ca ct cg hyb 4418 hyb yes 

B14.2 aa tt cc mus 6811 mus yes 

B31.3 aa tt cc mus 6954 mus yes 

B31.4 aa tt cc mus 9160 mus yes 

B31.6 aa tt cc mus 8883 mus yes 

B41.2 aa tt cc mus 8669 mus yes 

B49.3 aa tt cc mus 6859 mus yes 

B54.1 ca ct cg hyb 4630 hyb yes 

B54.2 aa tt cc mus 7795 mus yes 

B57.2 cc cc gg dom 1038 dom yes 

B45.8 aa tt cc mus 7868 mus yes 

 

TP1a.1 cc cc gg dom 1179 dom yes 
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TP3a.1 cc cc gg dom 1201 dom Yes  

TP5.1 cc cc gg dom 1239 dom yes 

TP8b.2 cc cc gg dom 1345 dom yes 

W1.1 aa tt cc mus 8367 mus yes 

W3.1 aa tt cc mus 8192 mus yes 

W4a.1 aa tt cc mus 8956 mus yes 

W6a aa tt cc mus 8824 mus yes 

14.01 ca ct cg hyb 5349 hyb yes 

14.03 ca ct cg hyb 4213 hyb yes 

29.02 ca ct cg hyb 4271 hyb yes 

29.03 ca ct cg hyb 4765 hyb yes 

Neil3  353 550      

B1c.1 tt cc  dom 740 dom yes 

B1c.2 tt cc  dom 641 dom yes 

B2.1 tt cc  dom 767 dom yes 

B2.2 tt cc  dom 1117 dom yes 

B3a.1 ct ct  hyb 545 hyb yes 

B3b.1 tt cc  mus 106 mus yes 

B4a.1 tt cc  mus 90 mus yes 

B4b.1 ct ct  hyb 457 hyb yes 

B6.1 tt cc  dom 837 dom yes 

B6.2 tt cc  dom 765 dom yes 

B7.1 ct ct  hyb 421 hyb yes 

B7.2 ct ct  hyb 475 hyb yes 

B9.1 tt cc  mus 104 mus yes 

B9.2 tt cc  mus 67 mus yes 

B11.1 tt cc  dom 453 hyb no 

B11.2 tt cc  dom 463 hyb no 

B14.1 ct ct  hyb 603 dom no 

B14.2 ct ct  hyb 515 hyb no 

B31.3 tt cc  dom 800 dom yes 

B31.4 tt cc  dom 329 hyb no 

B31.6 ct ct  hyb 423 hyb yes 

B41.2 tt cc  dom 1136 dom yes 

B49.3 ct ct  hyb 353 hyb yes 

B54.1 tt cc  dom 670 dom yes 

B54.2 ct ct  hyb 447 hyb yes 

B57.2 tt cc  dom 822 dom yes 

B45.8 tt cc  dom 474 hyb no 

TP1a.1 tt cc  dom 904 dom yes 

TP3a.1 tt cc  dom 609 dom yes 

TP5.1 tt cc  dom 699 dom yes 

TP8b.2 tt cc  dom 741 dom yes 

W1.1 cc tt  mus 36 mus yes 

W3.1 cc tt  mus 91 mus yes 

W4a cc tt  mus 76 mus yes 

W6a cc tt  mus 91 mus yes 

 14.01 ct ct  hyb 425 hyb yes 

 14.03 ct ct  hyb 457 hyb yes 

 29.02 ct ct  hyb 381 hyb yes 

 29.03 ct ct  hyb 426 hyb yes 
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Supplement 18: Nucleotide polymorphism in the 5' upstream flanking region of Lsm10 in  

M. m. domesticus and M. m. musculus populations. Values are given for three fragments 
separately and fragments concatenated, respectively. 

Fragment 1 2 3 Concatenated 

fragments 

Relative distance to locus (kb) 4.8 4.2 2.6  

Number of sites  441 1136 555 2132 

M. m. domesticus     

Samples from Iran     

Number of chromosomes 14 12 14 8 

Number of segregating sites 1 0 1 2 

π 0.00082 0 0.00089 0.00039 

θW per site 0.00071 0 0.00057 0.00036 

Tajima’s D 0.3244 0 1.21219 0.24178 

Significance >0.10 – >0.10 >0.10 

Samples from Germany     

Number of chromosomes 20 20 22 20 

Number of segregating sites 0 2 0 2 

π 0 0.00059 0 0.00031 

θW per site 0 0.0005 0 0.00026 

Tajima’s D 0 0.43538 0 0.43538 

Significance – >0.10 – >0.10 

M. m. musculus     

Samples from Kazakhstan      

Number of chromosomes 14 16 14 12 

Number of segregating sites 4 5 0 7 

π 0.00267 0.00098 0 0.00099 

θW per site 0.00285 0.00133 0 0.00109 

Tajima’s D -0.21471 -0.8533 0 -0.33218 

Significance >0.10 >0.10 – >0.10 

Samples from Czech Republic      

Number of chromosomes 14 16 14 14 

Number of segregating sites 3 7 1 5 
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π 0.00177 0.00114 0.00079 0.00064 

θW per site 0.00214 0.00186 0.00057 0.00074 

Tajima’s D -0.52939 -1.36612 0.84228 -0.46161 

Significance >0.10 >0.10 >0.10 >0.10 

Samples from Vienna  12 12 10 10 

Number of chromosomes     

Number of segregating sites 0 0 0 0 

π 0 0 0 0 

θW per site 0 0 0 0 

Tajima’s D 0 0 0 0 

Significance – – – – 

 
 

Supplement 19: Nucleotide polymorphism in the 5' upstream flanking region of Neil3 in  
M. m. domesticus and M. m. musculus populations. Values are given for two fragments separately 
and fragments concatenated, respectively. 

Fragment 1 2 Concatenated 

fragments 

Relative distance to locus (kb) 3.6 2.6  

Number of sites  340 538 878 

M. m. domesticus    

Samples from Iran    

Number of alleles 14 12 12 

Number of segregating sites 6 3 9 

π 0.00517 0.00177 0.00299 

θW per site 0.00555 0.00185 0.00313 

Tajima’s D -0.24444 -0.12836 -0.1791 

Significance >0.10 >0.10 >0.10 

Samples from Germany    

Number of alleles 24 18 18 

Number of segregating sites 2 2 4 

π 0.00148 0.00118 0.00145 

θW per site 0.00158 0.00108 0.00133 

Tajima’s D -0.1312 0.22041 0.27089 
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Significance >0.10 >0.10 >0.10 

M. m. musculus    

Samples from Kazakhstan     

Number of alleles 16 14 14 

Number of segregating sites 7 8 11 

π 0.00811 0.00521 0.00607 

θW per site 0.0062 0.00468 0.00537 

Tajima’s D 1.08364 0.42958 0.52986 

Significance >0.10 >0.10 >0.10 

Samples from Czech Republic     

Number of alleles 16 12 12 

Number of segregating sites 8 5 14 

π 0.00917 0.00399 0.00588 

θW per site 0.00709 0.00321 0.00503 

Tajima’s D 1.05533 0.9015 0.71386 

Significance >0.10 >0.10 >0.10 

Samples from Vienna     

Number of alleles 12 8 8 

Number of segregating sites 0 0 0 

π 0 0 0 

θW per site 0 0 0 

Tajima’s D 0 0 0 

Significance – – – 
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7 Digital Supplement 
 

• Supplement 1: Sequence data of Affymetrix target regions. 

• Supplement 2: Sequence data of TaqMan® amplicon regions. 

• Supplement 3: Sequence data of coding region. 

• Supplement 4: Sequence data of non-coding regions. 

• Supplement 5: Diagnostic SNP for genotype/expression-phenotype association. 

• Supplement 6: qRT-PCR data. 
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