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Zusammenfassung

Diese Arbeit behandelt Fragestellungen aus dem Bereich der kombinatori-
schen Optimierung, die sich bei der Datenübertragung in Funknetzen ergeben.
Als Probleminstanz haben wir eine Menge von Sende- und Empfangsstatio-
nen mit ihren jeweiligen Entfernungen gegeben und sollen eine bestimmte
Netzwerkeigenschaft herstellen, wobei die Gesamtenergieaufnahme des Netz-
werks möglichst gering gehalten werden soll. Der Senderadius jeder einzelnen
Station kann dabei individuell eingestellt werden. Die Lösung eines solchen
Problems ist also eine Zuordnung von Senderadien zu den Stationen, die
die geforderte Netzwerkeigenschaft mit dem niedrigst möglichem Gesamten-
ergiebedarf herstellt.

Wir untersuchen in dieser Arbeit drei grundlegende Problemstellungen
dieses Typs. Zunächst lassen wir auch sehr abstrakte Distanzfunktion zu,
die nicht geometrischen Ursprungs sind. Wir analysieren die effiziente genaue
und näherungsweise Lösbarkeit der einzelnen Probleme für verschiedene Arten
von möglichen Distanzfunktionen. Unsere Untersuchungen zeigen auch wich-
tige Unterschiede der drei Problemstellungen auf, die nicht ohne weiteres
augenscheinlich sind.

Danach beschäftigen wir uns mit geometrischen Instanzen, die in der
Forschung hinsichtlich Komplexität und Approximierbarkeit bereits etabliert
sind. Unser Beitrag hierzu sind neue Reduktionen für die betrachteten
Probleme, die sich als einfacher und flexibler als die bisher gebrauchten er-
weisen und somit neue und verbesserte Ergebnisse liefern. Offene Fragen aus
früheren Arbeiten konnten mit unseren Reduktionen beantwortet werden.

Wir behandeln auch Approximationsalgorithmen für diese Probleme. Wir
untersuchen einen bereits bekannten Algorithmus hinsichtlich seiner Güte-
garantie in Abhängigkeit von der Größe der Probleminstanz. Danach geben
wir eine detaillierte Analyse zweier natürlicher

”
Greedy“-Algorithmen. Ab-

schließend entwickeln wir einen neuen Approximationsalgorithmus für eines
der drei Probleme, und geben ein Approximationsschema für spezielle geo-
metrische Instanzen an.
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Abstract

We consider combinatorial optimization problems motivated by the follow-
ing scenario. We are given a set of radio stations which can all send and
receive data via wireless communication. Each radio station can be assigned
an individual range up to which it transmits data. Given a certain connec-
tivity requirement, the optimization task is to find a configuration of ranges
(or range assignment) of minimal total power consumption providing the re-
quired network property. A problem of this kind is called range assignment
problem.

Three important problems of this type are examined in this thesis. First,
we choose a quite abstract approach, allowing arbitrary distance functions
without geometrical interpretation. We give the first thorough structural
analysis of these problems in different setups. Our results identify easy cases
as well as hard ones in terms of complexity as well as various levels of approx-
imability for the individual problems. They also reveal interesting differences
between the three problems themselves.

We then turn to geometrical instances, on which there already exists a
line of research regarding complexity and approximability in the literature.
We contribute to this research by designing new reductions which are more
simple and versatile than the ones used before, and produce new and better
results. Using our reductions we can solve open problems posed in prior
work.

In the last chapter, we turn to approximation algorithms. We give a tight
analysis of a well-known approximation algorithm for two of the problems
as a function of the input size. A thorough analysis of two natural greedy
paradigms is given, with tight results in the general and many special cases.
We conclude with the design and analysis of a new approximation algorithm
for one problem, and identify the first approximation scheme for some special
geometric instances.
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die Möglichkeit gegeben haben, in ihrer Arbeitsgruppe zu promovieren. Sie
ließen mir bei der Themenwahl weitgehend freie Hand, wodurch ich in sehr
vielen interessanten Gebieten forschen konnte und schließlich mein Lieblings-
gebiet ausfindig machen und gründlichst erforschen konnte.

Das erste Thema, das mich gefesselt hatte, das Online Matching (besser
bekannt als

”
das Kuhproblem“), verdanke ich Winfried Hochstättler. Ihm

danke ich für die offene Art, auf die er spannende Probleme nicht für sich
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lernte. Bei ihm möchte ich mich besonders bedanken. Es war und ist eine
helle Freude, mit ihm zu forschen. Er brachte mich auch auf die Radien-
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Chapter 1

Introduction

1.1 Background

Imagine the following scenario: You are the owner of an internet café, and
you got customers coming and going, everyone bringing a laptop equipped
with a wireless local area network (WLAN) card. They come in, sit down at
some place where they like it best, take out their laptops and plug them into
a power outlet. The WLAN card connects to your server, and the customer
is free to surf the internet. After one busy day, while cleaning your coffee
machine (an impressive model; your reputation for pouring the best coffee in
town attracts an ever-growing number of customers to your place) you begin
to wonder how all this network stuff actually works. You have already noticed
that all those nice little laptops do after all consume quite some energy.
Being very much concerned about saving the environment (and just a little
bit about your energy bill), you let your thoughts drift. Do all the laptops
have to be connected directly to the server? Would it not be sufficient if some
laptops are connected only to other laptops, which are again connected to
other laptops etc. which are finally connected to the server? Communication
could take place between each laptop and the server using other laptops as
intermediate stations. In this way, all laptops would be connected to the
server via some other laptops, using much less energy in total. You like
your idea and contemplate it further. There seems to be more than one
possibility to have all computers connected via such a wireless network. Is
it clear what the ideal network consuming the least possible energy in total
looks like? When you think about this, you encounter a problem: Maybe
you could work out an ideal network for a fixed setting of customer positions.
But customers come and go, sitting down at places of their own choice. You
practically do not have two identical setups in one day. There is even another
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problem: Customers have different types of laptops, with different types of
WLAN cards. Even if you do have the same setup of people’s positions, does
it not make a difference at what positions you have someone sitting with
an older computer and a dated network card and where there is someone
with a modern computer with a more efficient WLAN card? You abandon
these thoughts, as you notice that your coffee machine is at least as clean
as when you got it delivered, it is already getting dark outside, and you are
beginning to feel hungry. You conclude that it seems plausible that network
communication among the laptops and the server should save you (and the
world) some energy. But finding the network requiring least total power may
not be such an easy task after all. . .

1.2 Model

In a range assignment problem, we are given a set of sender/transmitter
stations and want to establish a wireless network among them with a certain
connectivity requirement. Our objective is to minimize the total network
power consumption while still providing the required network property. In
a widely used model, the power necessary for a sender s to transmit data
directly to any other station t at distance at most r is proportional to rα,
where α > 0 is called the distance-power gradient. In this case we say that
t lies within the range of s. In an ideal environment, we would have α = 2,
but according to [PL95], α may vary from 1 to more than 6, depending on
the surrounding environment. The total power consumption of the network
is the sum over the energy consumption in all stations.

Another issue is what kind of direct connections we want to establish.
A straightforward notion is that we say that a link is established from s
to t iff t lies within the range of s. However, some network protocols such
as TCP require an immediate acknowledgement from station t to s after
each transmitted data packet. Especially in this case, we may want to make
sure we only use bidirectional links for data transport. This means that we
consider two stations s and t as linked iff t lies within the range of s and vice
versa. Both concepts will be formally defined in the next section.

Moreover, even if we had exact (2- or maybe even 3-dimensional) coordi-
nates of our network stations (which is probably not a realistic assumption),
it is still not clear in practice how much energy is actually needed to transmit
data to another station at a certain distance. There may be such problems as
obstacles in the way or interference with other data transmissions. We disre-
gard all these possible problems in the above model, and regard the stations
as sitting in a homogenous space, whose properties are modeled completely
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by the distance-power gradient α.
Having said so, we will not only consider networks with the above setup,

which we will later call the geometric setting. We will also consider fairly
general instances, where the distances between two stations can be quite
arbitrary.

At this point, we would like to make a point on the term ‘distance’. In
the above, we assumed distances to be the actual Euclidean distances, and
the power consumption in a station proportional to the maximal range it
transmits across, taken to the power of a constant α. When we define general
range assignment problems, we actually want that the distance between two
stations is identical to the power required for transmitting between the two
stations. Maybe you can compare this to assigning a road between two cities
not the actual distance in kilometers, but rather the time needed for travel
between the two cities, which may also depend on the type of road etc. The
point is that your distances should be measured in the same unit as the
resource that you want to optimize.

So in the above geometric setting, network distances are equal to Eu-
clidean distances to the power of α. But we will also consider far more gen-
eral kinds of distance functions. However, we always do make the following
two assumptions:

• All distances are non-negative.

• All distances are symmetric.

The first point seems to be very agreeable, as we probably will not produce
energy by transmitting data.The second point, however, does make some
assumptions. It implies that at both endpoints of a data link we need the
same amount of energy to transmit across this distance. So we do neglect
the worries of the concerned internet café owner about a heterogenous set of
stations. What we can still model is, e.g., obstacles which may highly increase
the power costs between stations whose coordinates lie actually quite close
to each other.

Speaking of our example scenario with the café owner, it may be not very
realistic nor spectacular. We think, however, that it essentially brings to
the point what quantity we want to optimize, namely the total power con-
sumption, and not battery or network lifetime or other resources. Also, we
consider the position of stations as given and not adjustable. There exists
an overwhelming and fast growing multitude of literature about other opti-
mization problems motivated by wireless networks, which we cannot capture
here. For other introductions to this subject, refer to the literature in the
bibliography. Scenarios there include archeology, cars, ships and airplanes,
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Figure 1.1: A range assignment to-
gether with the associated directed
communication graph ~Gr . . .

Figure 1.2: . . . and the same range
assignment with its undirected
communcation graph Gr.

satellites and space stations, earthquakes and floods, battlefields and the
moon.

1.3 Basic notations and facts

It is now time to more formally define what we mean mathematically when
we speak about range assignment problems. We assume basic knowledge of
graph theory and computational complexity, as you may acquire from read-
ing, e.g., [KV02] or any other book on these subjects. We will also use some
concepts of approximation algorithms, which we try to briefly explain in the
appendix, where you can also find references to more extensive introductions
to this subject.

Definition 1.1. Let G = (V, E, d) be a weighted graph. A range assignment
on G is a function r : V → R+. A range assignment r defines two subgraphs
of G, a directed graph ~Gr and an undirected graph Gr.

• Let ~Gr = (V, Ar) with Ar = {(u, v) | r(u) ≥ d(u, v)}. ~Gr is called the
directed communication graph of r.

• Let Gr = (V, Er) with Er = {(u, v) | min{r(u), r(v)} ≥ d(u, v)}. Gr is
called the undirected communication graph of r.

In other words, the undirected communication graph contains exactly
those edges whose corresponding arcs appear in Ar in both directions. See
Figures 1.1 and 1.2 for examples of both communication graphs for a given
range assignment.
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The definition of the directed communication graph is quite intuitive. An
arc (u, v) is implied by r iff station u can transmit to station v, i.e., v lies in the
range of u. A bidirectional (undirected) link in the undirected communication
graph is established iff both stations lie inside each other’s range. This is
a useful scenario for transmission protocols where each transmitted unit of
information between two stations is acknowledged by a receipt. Additionally,
this ensures that a transmission from node u to node v takes just as long as
a transmisson from v to u (at least in theory). This kind of symmetry could
be favorable in real-world settings.

With these definitions, we can give a first formulation for range assign-
ment problems.

Definition 1.2 (Range Assignment problems (flavor A)).

Instance: A weighted graph G = (V,E, d) with distances d : E → R+, and
a certain network property Π.

Task: Assign each node v a radius r(v) such that the communication graph

Gr (or ~Gr) satisfies property Π, and r minimizes the cost function

c(r) =
∑
v∈V

r(v).

Problem definition (A) is an intuitive and direct translation from an
abstract network problem into the graph world. It is not difficult to see,
however, that the above problems can be equivalently reformulated. This is
because one can not only go in the one direction from a range assignment
r to associated graphs Gr/~Gr, but also in the other direction. I.e., for each
subset of arcs/edges F ⊆ E, there is a natural minimal range assignment
inducing all of F (and possibly more edges).

Definition 1.3 (Range Assignment problems (flavor B)).

Instance: A weighted graph G = (V,E, d) with distances d : E → R+, and
a certain network property Π.

Task: Find a network F ⊆ E satisfying network property Π that minimizes
the cost function

c(F ) =
∑
v∈V

max
(v,w)∈F

d(v, w)

We prefer this formulation as it is more closely related to other, more
common network design problems, in which we have to find a “cheapest”
subgraph still having a certain network property.
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It should be clear how to “go back” from a network F to a range assign-
ment rF : Define

rF (v) = max
(v,w)∈F

d(v, w).

It is clear that rF is the cheapest range assignment inducing F . It is
obvious that it does not make sense to assign some node v a range r(v)
where there is no node u for which r(v) = d(v, u): Then taking

r(v) = max
(v,u)∈E

{d(v, u) | d(v, u) < r(v)}

still induces the same communication graph, at lower cost.
The equivalence of formulations A and B is elementary and has a nice

and compact formalization: Let Fr indicate the arc resp. edge set of commu-
nication graph Gr resp. ~Gr. With this, we have

rFr(v) ≤ r(v) ∀ v ∈ V,

FrF
⊇ F ∀ F ⊆ E.

So, the operations Gr and rF make the search for a cheapest range assignment
r and network F completely exchangable, which we shortly state here:

Observation 1.4. Flavor A and B of the Range Assignment Problem
are equivalent.

The author’s intuition of this problem tastes more like flavor B, while
both interpretations will be used frequently.

Let us have a closer look at the cost function c : 2E → R+, defined as

c(F ) =
∑
v∈V

max
(v,w)∈F

d(v, w). (1.1)

c goes through all nodes and counts only the longest incident edge to (resp.
outgoing arc from) each node. Compare this to a more common cost function,
the sum of weights of its elements. We denote this cost function by | · |,
meaning |F | =

∑
e∈F d(e). In accordance with this notation, we sometimes

use |e| = d(e) synonymously.
Now note that for an undirected edge set F ⊆ E, |F | can also be written

as

|F | =
1

2

∑
v∈V

∑

{v,u}∈F

d(v, u), (1.2)

and for a directed set of arcs F ⊆ A as

|F | =
∑
v∈V

∑

(v,u)∈F

d(v, u). (1.3)
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When we compare the latter two expressions for | · | with the one for
c(·) in Equation 1.1, the only difference (apart from a constant factor 1

2
) is

that we have taken the max instead of the
∑

over the same sets. One could
interpret this as a transition from a sum-norm to a maximum-norm. As a
fact, instead of a linear cost function, we now have a non-linear one which
very often makes optimization much more difficult. Via this change of cost
function, we can define a range assignment version of almost any network
design task.

We now introduce the concrete range assignment problems this thesis is
about. In short, we investigate the generic Range Assignment Problem
with property Π being connected, strongly connected and rooted arbores-
cence. Let us state these three problems formally.

Definition 1.5 (Connectivity).

Instance: A weighted graph G = (V,E, d) with distances d : E → R+.

Task: Find a spanning tree F ⊆ E which minimizes

c(F ) =
∑
v∈V

max
{v,w}∈F

d(v, w).

Definition 1.6 (Strong Connectivity).

Instance: A weighted graph G = (V,E, d) with distances d : E → R+.

Task: Find a strongly connected (directed) network F ⊆ E which minimizes

c(F ) =
∑
v∈V

max
(v,w)∈F

d(v, w).

Definition 1.7 (Broadcast).

Instance: A weighted graph G = (V,E, d) with distances d : E → R+, and
a specified node s ∈ V .

Task: Find a spanning arborescence F ⊆ E rooted in s which minimizes

c(F ) =
∑
v∈V

max
(v,w)∈F

d(v, w).

Note that by allowing only undirected graphs G as instances, we im-
plicitly assume symmetric distances. The solutions for Connectivity are
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undirected networks, the solutions for Strong Connectivity and Broad-
cast are directed networks.

Observe further that the three problems are given in “decreasing strength”,
as each problem is a relaxation of the one before. I.e., for all instances G,
every feasible range assignment r for Connectivity is feasible for Strong
Connectivity, and every feasible range assignment for Strong Connec-
tivity is again feasible for Broadcast (for every possible source node
s ∈ V ).

Observation 1.8. Let opt(G, Π) denote the value of an optimal range assign-
ment on G for network requirement Π. For any range assignment instance
G, we have

opt(G,Broadcast) ≤ opt(G,Strong Con.) ≤ opt(G,Connectivity).

Let us consider the above problems with the usual cost function | · |. Re-
call the following known complexity results, which can be found in many
textbooks on combinatorial optimization, see, e.g., [KV02]. Connectivity
with | · | is known as the Minimum Spanning Tree problem, and very ef-
ficient exact algorithms are known (at least) since the 1950s, namely Prim’s
algorithm [Pri57] and Kruskal’s algorithm.[Kru56] Broadcast with | · | is
known as the Minimum Weight Rooted Arborescence Problem and
is equivalent to the Maximum Weight Branching Problem. It can be
solved in polynomial time using Edmonds’ Branching Algorithm [Edm67].
On the contrary, Strong Connectivity with | · |, known as the Minimum
Strongly Connected Spanning Subgraph Problem, is NP-hard al-
ready on unweighted graphs: Indeed, a graph G has a strongly connected
spanning network with n edges iff it contains a Hamiltonian cycle.

Under the cost function c(·), all three problems become NP-hard in gen-
eral as well as in some special cases. The next two chapters will deal with
those results. We close this section with some important basic properties of
these problems.

Lemma 1.9. Let G = (V,E, d) be an instance of (Strong) Connectiv-
ity. For a feasible range assignment r,

r(v) ≥ min
(u,v)∈E

d(u, v)

must hold for all v ∈ V .

Proof. If there was some v ∈ V with r(v) < min(u,v)∈E d(u, v), v could have

no incident edge (resp. outgoing arc) in Gr (resp. ~Gr), implying that r is
infeasible.
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As simple as this Lemma may be, we will need it frequently later in our
proofs. It directly motivates the following

Definition 1.10. Let G = (V, E, d) be an instance of (Strong) Connec-
tivity. For each v ∈ V , set

rmin(v) = min
(u,v)∈E

d(u, v).

rmin is called the minimal range assignment (or minimal configuration) of G.

After this lower bound for the radius of each single node, we provide a
fundamental lower bound on the value of an optimal solution for (Strong)
Connectivity.

Lemma 1.11. Let G = (V,E, d) be an instance of (Strong) Connectiv-
ity. Let MST be a minimum spanning tree of G, and mst = |MST | its
length. Let opt(G) be the cost of an optimal range assignment r∗ for G. We
have:

opt(G) ≥ mst + max
e∈MST

d(e).

Proof. It suffices to prove the lower bound for Strong Connectivity; it
will also hold for Connectivity due to Observation 1.8.

Let t ∈ V be an arbitrary fixed node. As ~Gr∗ is strongly connected, it
must contain a network of paths from all other nodes towards t. Let Tt be
such a network (it need not be unique). In this network, every node v has
exactly one outgoing arc (v, u), where u is the next node on the v-t path
in Tt (except for t, which has no outgoing arc in Tt). See Figure 1.3 for an
illustration.

Let e(v) = (v, u) ∈ Tt for v 6= t. Tt witnesses that r∗(v) ≥ |e(v)| for each
v ∈ V \ {t}. Summing up yields

c(~Gr∗) ≥ c(Tt) + r(t) ≥ |Tt|+ r(t).

Now notice that when we regard the arcs of Tt as (undirected) edges, Tt is
a spanning tree of G, thus |Tt| ≥ mst. This holds for any t ∈ V , so we can
choose t such that r∗(t) = maxv∈V r∗(v). This corresponds directly to the

longest arc (t, s) ∈ ~Gr∗ , so we have r(t) = d(t, s). Again, as ~Gr∗ needs to
contain some spanning tree, say T , d(t, s) ≥ maxe∈T d(e) must hold. As the
spanning trees of a graph form a matroid, we know that the longest edge in
any spanning tree T is at least as long as the longest edge in an MST. (Else,
the base exchange property would allow us to swap the longest edge in MST

14



t

Figure 1.3: Tt, a subnetwork of paths to t. Each radius must dominate the
outgoing arc.

for some cheaper edge in T , making MST even cheaper, a contradiction.)
So we have

r(t) = d(t, s) ≥ max
e∈T

d(e) ≥ max
e∈MST

d(e),

proving our claim.

We do not have such a nice lower bound for Broadcast. E.g., a star
with n−1 nodes around source s, all edges of weight 1, has a feasible Broad-
cast range assignment of constant cost 1. This already partly explains the
lack of good (constant factor) approximations for Broadcast, as good lower
bounds are a key ingredient for approximation algorithms. In the next chap-
ter, we will see that Broadcast is indeed provably harder to approximate
than the other two range assignment problems.

1.4 Outline

We roughly sketch the outline of this thesis. More detailed summaries and
discussions can be found at the end of each chapter.

In chapter 2, we analyze the computational complexity of range assign-
ment problems in very abstract settings. We examine how much (or how lit-
tle) and what kind of structure the distance function may have such that the
addressed range assignment problems remain efficiently solvable, and at what
point they become hard to solve or approximate. This is the first thorough
treatment of this kind for these problems. This may be due to the fact that
the study of wireless network design problems is relatively young and very
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much application driven. Non-geometrical instances have, to our knowledge,
not yet been widely considered. More classical network design and rout-
ing problems have been treated with similar studies, e.g. the Traveling
Salesman Problem [PY93] and the Steiner Tree Problem [BP89].
Our results help in understanding what essentially makes range assignment
problems hard, and they reveal structural differences between different kinds
of range assignment problems that may seem very similar at first.

Chapter 3 is about computational and approximation hardness of geo-
metric range assignment problems. There already exists a line of research on
this subject, which we continue by answering some open questions posed in
prior work. Our main contribution are new reductions which are technical
actually less involved and more elegant than earlier constructions, besides
leading to new and/or improved results. Their relative simplicity also brings
about higher flexibility, so they may be adaptable for other problems in this
area.

In Chapter 4, we consider approximation algorithms for these problems.
We start with a tight analysis of the now well-known MST-heuristic as a
function of the input size. Then we give a quite thorough treatment of two
natural greedy heuristics for the Connectivity problem, giving tight anal-
yses in general as well as for many important special settings. We conclude
with an examination of Strong Connectivity, for which we identify the
first PTAS in specific geometric settings. We conclude with a new approxi-
mation algorithm for this problem.
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Chapter 2

Complexity results

2.1 Results for (Strong) Connectivity

We now give various results on the hardness of different flavors of the Con-
nectivity and Strong Connectivity problems. Quite often, results for
the Connectivity and Strong Connectivity problems are very similar,
as are their proofs. Reductions for the Connectivity problem frequently
work identically for the Strong Connectivity problem. Or at least they
yield a solid skeletal structure which, by adding some additional (and often
rather technical) details, can also be used for the Strong Connectivity
problem.

All reductions are from the Set Cover problem or the Vertex Cover
problem, an important special case of the Set Cover problem. The Set
Cover problem is defined as follows.

Definition 2.1 (Set Cover Problem).

Instance: A set S = {1, . . . , n} of n elements, and a collection S = {S1, . . . , Sm}
of m subsets of S.

Task: Cover the set S using as few sets Si as possible, i.e., find a smallest
subset of S whose union is S.

Set Cover is among Karp’s original NP-complete problems.[Kar72] It
is not approximable within c log n for some constant c, unless P = NP.[RS97]
Feige showed in [Fei98] that it is not approximable within (1 − ε) log m for
any ε > 0, unless NP has nO(log log n)-time deterministic algorithms.

Theorem 2.2. (Strong) Connectivity is NP-hard.
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Proof. We use a rather generic reduction from the Set Cover problem.
Given an instance of Set Cover with elements {1, . . . , n} and subsets
{S1, . . . , Sm}, we construct a graph as follows. Let V = {u,w1, . . . , wm, v1, . . . , vn}
be the set of vertices. As the notation may suggest, node vi corresponds to
element i and node wj to subset Sj. Accordingly, we call the vis element
nodes and the wjs set nodes. The set of edges E contains all edges {u,wj}
for j ∈ {1, . . . , m}. Furthermore, an edge {wj, vi} is contained in E iff i ∈ Sj.
For an edge e = {u, wj}, we define d(e) = 1. For edges e = {wj, vi}, we set
d(e) = 2. See Figure 2.1 for an illustration of this reduction.

1 2 3

S
1

Figure 2.1: An illustration of a reduced Set Cover instance, with S1 =
{1, 2, 3}, etc.

In the minimal configuration rmin, we have that rmin(u) = rmin(wj) = 1
for all j, and rmin(vi) = 2 for all i.

Figure 2.2: The undirected com-
munication graph Grmin

. . .
Figure 2.3: . . . and the directed
communication graph ~Grmin

.

The only way to add more edges to the minimal configuration is to in-
crease rmin(wj), for some of the js, from 1 to 2. (Increasing some radius
above 2 would only add to the total costs, but no new edges.) Let r be a
feasible range assignment, and Cr = {j | r(wj) = 2}. An edge from a wj

with j ∈ Cr to vi is obviously established iff i ∈ Sj. Note that as the commu-
nication graph of r is (strongly) connected, Cr has to constitute a set cover
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in the original instance. Thus, the total power consumption of r amounts to
∑
vi∈V

r(vi) = m + 1 + 2n + |Cr| (2.1)

If we were given an optimal range assignment r∗ for the reduced instance,
we could easily determine the associated set Cr∗ . Cr∗ has to be a set cover
of minimal cardinality; otherwise, r∗ would not be optimal. This means that
an efficient algorithm for (Strong) Connectivity would also imply the
existence of an efficient algorithm for Set Cover, and thus P = NP.

Being NP-hard in general, it is still interesting to know in which settings
these problems remain NP-hard, and at which point they become easy. One
might also like to see if there is some case where the complexity status of
Connectivity and Strong Connectivity differs, drawing a line between
them. We shall identify such a case later.

More precisely, we investigate how much structure the distance function
d needs to make the problems difficult. As an example, the Traveling
Salesman Problem [PY93] and the Steiner tree Problem in graphs
[BP89] remain NP-hard (in fact, even APX-hard) on complete graphs where
the distance between two distinct points is either 1 or 2. Steiner tree also
remains NP-hard in bipartite graphs where all edges have weight 1 [GJ79].

Definition 2.3. We define problem (d1, d2, . . . , dk)-(Strong) Connectiv-
ity/Broadcast to be the respective problem restricted to instances where
the underlying graph is complete, and we have that d : V×V → {d1, d2, . . . , dk}.
With (d1, d2, . . . , dk,∞)-(Strong) Connectivity/Broadcast, we refer
to the respective problem as above where the graph need not be complete.

So in our new notation, we have stated above that the (1, 2)-Steiner tree
problem and the (1,∞)-Steiner tree problem in bipartite graphs are NP-hard.

Corollary 2.4. The proof of Theorem 2.2 shows that already the (1, 2,∞)-
(Strong) Connectivity problem is NP-hard.

Observation 2.5. The (1)- and the (1,∞)-(Strong) Connectivity prob-
lem is trivial.

Obviously, each radius must be at least 1. On the other hand, all existent
edges are already induced by this range assignment. So if it not feasible
(which may be the case in the (1,∞) version), this is because the input
graph itself is not connected, so no range assignment will be feasible at all.

Let us see what happens when we allow a second weight. At least,
(Strong) Connectivity will not be completely trivial anymore. How-
ever, it is still quite easy.
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Theorem 2.6. The (1, 2)-(Strong) Connectivity problem is in P.

Proof. We give a simple efficient algorithm for this problem. Start with the
range assignment which assigns radius 1 to each vertex. This assignment
will induce some (strongly) connected components. (For the directed case,
note that there is an arc (v, w) iff there is an arc (w, v), so the strongly
connected components are identical to the connected components.) If this
range assignment leaves us with one component, we are done already.

Otherwise, in each component Ci, we need at least one vertex with radius
2, because we have identified a cut (Ci, V \ Ci) on which all edges have
distance 2. But if we simply choose one arbitrary vertex vi per component
Ci to have radius 2, we will get a complete graph on the vertices vi, cf. Figure
2.4.

Figure 2.4: The radius 1 components, connected via radius 2 nodes

In this way, we have interconnected the components Ci at minimum pos-
sible cost.

We now investigate the complexity status of the (1, 2, 3)-(Strong) Con-
nectivity problem. One might suspect that the step from 2 to 3 (different
distances, in this case) may be the step from a very simple problem to a
NP-hard one, a common phenomenon in combinatorial optimization. This
suspicion is nourished by the fact that both problems are hard in the (1, 2,∞)
setting, which is also some sort of a three-weight szenario. One might also
think that the proofs should be very similar.
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It is indeed true that both problems are NP-hard in the (1, 2, 3)-setting.
Also, the construction for (1, 2, 3)-Connectivity is nearly identical to the
one for for (1, 2,∞)-Connectivity; we only need to argue a little more
carefully about its correctness.

What might be more interesting is that our Set Cover construction
does not work for (1, 2, 3)-Strong Connectivity. Instead, we will use a
reduction from the Hamiltonian Cycle problem. Again, this will work
for this problem only, not its directed counterpart. Another curiosity is that
for (1, 2, 3)-Strong Connectivity, the optimal solution can only take one
of two values, a certain (easily computable) k, or k + 1. So, informally
speaking, one might say (1, 2, 3)-Strong Connectivity is “NP-hard but
not so hard”. Later in this section, we can make this statement more precise
by means of approximation preserving reductions.

Theorem 2.7. The (1, 2, 3)-Connectivity problem is NP-hard.

Proof. As above, for a Set Cover instance with elements {1, . . . , n} and
subsets {S1, . . . , Sm}, we use the node set V = {u,w1, . . . , wm, v1, . . . , vn},
and we have E = V × V . We define distances as follows:

d(e) =





1 for e = {u,wj}, j = 1, . . . , m,

2 for e = {wj, vi}, i ∈ Sj,

3 else.

Note that this is nearly the same reduction as in Theorem 2.2. The only
difference is that we now have a complete graph, and where there were no
edges in the generic case, we have edges of weight 3.

To prove that this reduction works correctly, we only need to show that
in an optimal range assignment, no vertex can have a radius larger than
2. Once we know this, we can follow the argumentation from the proof of
Theorem 2.2.

Lemma 2.8. In an optimal range assignment for the above construction, no
vertex can have a radius larger than 2.

Assume on the contrary that there is an optimal range assignment where
some vertices have radius 3. (Having a larger radius than 3 would not induce
any additional edges, but only be more expensive.) Let ∅ 6= X ⊆ V be the
set of those vertices. We now construct a cheaper range assignment which
remains connected. The construction works as follows. For each vi ∈ X,
decrease its radius to 2. If this disconnects vi from the rest of the network,
increase some wj with d(vi, wj) = 2 (i.e., i ∈ Sj,) to 2. There must be
some such wj, or else the original Set Cover instance is infeasible (and this
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condition is easy to verify). Note that this procedure can only make the total
range assignment cheaper. Afterwards, for each wj ∈ X, we simply decrease
its radius to 2. As now all vi have radius 2, and the wj and u are connected
in a minimal configuration, this does not delete any edges from the network.
Similarly, if u ∈ X, we can set its radius to 1.

Finally, we notice that if all vertices in X are element vertices, at least
one of them, say vi, there must have been some wj with i ∈ Sj which already
had radius 2. Otherwise, X could not be connected to the rest of the graph.
Thus, the above procedure strictly decreases the total cost of the supposedly
optimal range assignment, showing that no radius can be larger than 2 in an
optimal range assignment.

The above reduction fails for the Strong Connectivity case. When
we apply the identical construction, the optimal strongly connected range
assignment is trivial: Take the minimal configuration, and increase any one
radius of the set nodes wj or u from 1 to 3, see figure 2.5.

Figure 2.5: Setting r(u) = 3 makes a minimal configuration strongly con-
nected. (Not all arcs are displayed here.)

The resulting range assignment is strongly connected. This not possible
for any cheaper range assignment. (Except if there is one set Sj ⊇ V covering
all elements, but such an instance of Set Cover would be trivial.)

Before we describe the new reduction, let us first formulate a structural
property of (1, 2, 3)-Strong Connectivity which distinguishes from its
undirected counterpart.

Lemma 2.9. An optimal solution of (1, 2, 3)-Strong Connectivity can
only take one of two possible values k or k + 1, where k is easily calculable.
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Furthermore, instances with a cut consisting only of cost 3 edges (i.e., an
MST contains a cost 3 edge,) can be solved efficiently.

Proof. Let G = (V, V × V, d : V × V → {1, 2, 3}) be a (1, 2, 3)-Strong
Connectivity instance. All nodes have radius at least 1. Setting all radii
to 1, i.e., range assignment r = 1, constitutes some strongly connected
components. Let C1 be the partition of V into strongly connected components
in this range assignment. We call the elements of C1 the ‘1-components’. It
is convenient to regard C1 as the node set of an auxiliary graph G1, i.e., we
shrink each strongly connected component into one supernode. In Ĝ, we
draw an edge {C1

i , C
1
j } iff there exist nodes v ∈ C1

i , w ∈ C1
j with d(v, w) = 2.

This (undirected) graph again has some connected components; let C2 be
the partition of C1 into these components. Let F be a spanning forest of
Ĝ, i.e., a collection of spanning trees in each component in C2. Arbitrarily
choose one (auxiliary) node in each component, and direct the edges of the
corresponding spanning tree towards it. I.e., in each component C2

i ∈ C2

we have a node v̂i ∈ C1 such that there is a directed path towards v̂i from
any other node in component C2

i . See Figure 2.6 for an illustration of the
constructed graph we call Ĝ′.

Figure 2.6: Graph Ĝ′ with an optimal range assignment.

Using Ĝ′, we construct a range assignment in the following way. For each
arc (C1

i , C
1
j ) in Ĝ′, set the radius of the corresponding tail node v2

i (i.e., we
have v2

i ∈ C1
i with d(v, w) = 2 for some w ∈ C1

j ) to 2. Additionally, we
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arbitrarily choose one node v3
j ∈ v̂j for the selected supernode v̂j from each

component C2
j ∈ C2, and set its radius to 3. We claim that the resulting

range assignment is strongly connected, and (nearly) optimal.
To see that we have strong connectivity, consider any node v ∈ V of G.

Surely, there is a directed path to all nodes in its component C1
i 3 v. In

particular, there is such a path to v2
i . By construction, there is a directed

path from v2
i into the supernode v̂j in the same Ĝ component, i.e., v2

i ∈ C2
k

and v̂j ∈ C2
k , for some k. So in total, we have a directed path from v to “its”

v3
j . But this node has radius 3, so it has an arc to every other node in G,

meaning there is a directed path from v to all other nodes, for an arbitrary
v ∈ V .

To show optimality, notice that in each C1-component, we need at least
one node of radius at least 2, and in every C2, we need at least one node of
radius 3. So we achieve strong connectivity at least possible cost.

Now notice that the above only holds in case there is more than one
component in C2. If we have only one component in C2, it is not immediate
whether we actually need one node of radius 3 to reach other components.
But we do need one radius 2 node per component/supernode in C1, so a
strongly connected range assignment has to cost at least as much as our
constructed assignment minus 1 unit.

So, in case the largest edge of an MST has distance 2 (distance 1 being
trivial), it is unclear whether one radius 2 node per component in C1 might
suffice in the above construction if we choose them in a clever way. We now
show that this is actually an NP-hard choice.

Theorem 2.10. The (1, 2, 3)-Strong Connectivity problem is NP-hard.

Proof. We use a reduction from the Hamiltonian Cycle problem, i.e., the
problem to decide whether a graph G = (V, E) contains a cycle through
all the vertices in V . This problem is one of Karp’s classical NP-complete
problems.[Kar72] Given a Hamiltonian Cycle instance G = (V,E) with
V = {v1, . . . , vn}, we construct a (1, 2, 3)-Strong Connectivity Ĝ =
(V̂ , V̂ × V̂ , d) instance as follows. For each edge {vi, vj} ∈ E, we create a

node v̂ij and a node v̂ji. These are all nodes in V̂ . Distances are defined as
follows:

d(v̂ij, v̂ı̃̃) =





1 if i = ı̃,

2 if i = ̃ and j = ı̃,

3 else.
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In other words, we have replaced each node vi of the Hamiltonian Cy-
cle instance by a “supernode” in the sense of the above proof, containing
one endpoint for each incident edge in E. The vertices in each supernode
have distance one to another, while the distance 2 edges in Ĝ are the original
edges from E. See Figure 2.1 for an example.

Figure 2.7: An instance G of Hamiltonian Circuit on the left, and the
resulting (1, 2, 3)-Strong Connectivity instance Ĝ on the right. Thin
edges have distance 1, bold edges distance 2. Distance 3 edges are not dis-
played. The circles on the right mark the ‘supernodes’ as constructed in the
above proof.

A strongly connected range assignment has to have at least radius 1
on each node, and one radius 2 node per component/supernode in C1, as
constructed in the above proof. Note that these supernodes in Ĝ correspond
to the nodes in G by construction. We have two nodes in V̂ per original
edge in E, and one component per original node in V , thus a feasible range
assignment r̂ for Ĝ has to cost at least

∑
v∈V

r̂(v) ≥ 2|E|+ |V | =: k

If we apply the above algorithm on Ĝ, i.e., we choose any vertex v̂ ∈ V to
have radius 3 and direct an MST on the supernodes towards the supernode
of v̂, we get a strongly connected range assignment costing k + 1.

We now show that there exists a Hamiltonian Circuit in G iff there is a
feasible range assignment of cost k. One implication is easy: Suppose we
have a Hamiltonian Cycle H in G, consisting of edges

H = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}}.
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(We assume this cycle for notational convenience.) Now consider the follow-
ing range assignment of cost k:

r̂(v̂ij) =

{
2 for j ≡ i + 1 mod n,

1 else.

See Fig. 2.8 for an example Hamiltonian Cycle and the corresponding range
assignment.

Figure 2.8: A Hamiltonian cycle in the above example graph, and the con-
structed range assignment.

Now, for any pair of nodes (v̂ij, v̂ı̃̃), in our range assignment we have the
directed path (which alternates on weight 1 and 2 arcs):

v̂i,j → v̂i,i+1 → v̂i+1,i → v̂i+1,i+2 → v̂i+2,i+1 → . . . → v̂ı̃−1,̃ı → v̂ı̃,̃ı−1 → v̂ı̃,̃

so we have strong connectivity.
On the other hand, assume Ĝ has a feasible range assignment r̂ of cost k.

In other words, we have a strongly connected range assignment with exactly
one radius 2 node in each 1-component (and all other nodes have radius 1).
Note that every node v̂ij ∈ V̂ has exactly one edge of distance 2 adjacent to
it, namely (v̂ij, v̂ji). This means we have exactly one arc per 1-component
giving us strong connectivity. Now note that this is only possible if these |V |
arcs form a Hamiltonian Cycle on the supernodes. This is the only way to
ensure strong connectivity with n edges on n nodes. I.e., the set

Hr̂ := {{vi, vj} | r̂(v̂ij) = 2}

has to be a Hamiltonian Cycle in G in this case.
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Lemma 2.9 allows us to formulate an approximation scheme.

Corollary 2.11. There exists a PTAS for the (1, 2, 3)-Strong Connec-
tivity problem.

Proof. We construct a polynomial (1 + ε)-approximation algorithm for any
constant ε > 0. The algorithm in Lemma 2.9 always gives us a solution of
value k + 1, whereas we know an optimal solution has cost at least k. This
means our algorithm is a k+1

k
-approximation algorithm. For k ≥ 1/ε this is

already a (1 + ε)-approximation, so we assume k < 1/ε = O(1). We have
that k = |MST | + 2 ≥ n, so in particular n = O(1). For graphs with a
constant number of nodes, we can try every sensible range assignment with
cost k by brute force and stay polynomial. That is, in every 1-component,
we simply try out each node to have radius 2 in turn and check whether we
obtain a strongly connected graph. Assume we have ` 1-components of sizes
c1, c2, . . . , c`, where c1 + c2 + . . . + c` = n. The number of possibilities to
choose one node in each component simultaniously is

c1 · c2 · . . . · c` ≤ n` ≤ nn ≤ O(1),

roughly bounded.
We get the same rough bound just if we try every possibility to choose `

nodes to have radius 2, for which there are

(
n

`

)
≤ n`

possibilities.

We note that this NP-hardness construction for (1, 2, 3)-Strong Con-
nectivity does not work for (1, 2, 3)-Connectivity. The problem is that
for connectivity, we need both endpoints of a distance 2 edge to have radius
2, so we would need two such nodes per supernode. But we can connect all
supernodes if we just increase one node per component to radius 2 or 3.

Remark 2.12. Let G = (V, E) be a connected graph, and Ĝ the auxiliary
graph constructed in the NP-hardness proof for Strong Connectivity.
An optimal range assignment r̂ for the (1, 2, 3)-Connectivity problem on
Ĝ can be efficiently constructed. It has cost

c(r̂) = 2(|E|+ |V |)−max{2, |M |},

where M is a maximum matching in G.
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Proof. Each node needs radius at least 1. This sums up to a basic power
consumption of 2|E|. Now, we have cliques inside the supernodes, and no
other edges.
We distinguish two cases:

(i) ∀ nodes v̂ij, we have r̂(v̂ij) ≤ 2.
This means we establish connectivity between the supernodes with distance
2 edges. To connect supernodes vi and vj, we need to set r̂(v̂ij) = r̂(v̂ji) = 2.
So in this case a minimal connected range assignment r̂ directly corresponds
to some spanning tree of G, with additional cost 2(|V | − 1).

(ii) ∃ a node v̂ij with r̂(v̂ij) = 3.
We first argue that we can assume, wlog., that every supernode has exactly
one node of radius larger than 1. (Of course, every supernode needs at least
one such node.) Let us first deal with a supernode vi containing a range 3
node v̂ij. It is immediate that it cannot contain another range 3 node v̂ĩ,
so assume it contains a range 2 node v̂ĩ, inducing a distance 2 edge that
connects supernodes vi and ṽ. In this case, we can set

r̂(v̂ĩ) := 1 and r̂(v̂̃i) := 3,

without losing connectivity.
We call supernodes with a range 3 node 3-supernodes. We now know we

can assume that 3-supernodes do not contain any other node of range greater
than 1. Now consider the graph resulting from removing 3-supernodes. This
graph falls into components. If all these components were trivial, i.e., con-
sisting of only one supernode, we were done already, so assume this is not the
case. Consider one such component and imagine it rooted at the supernode
which has a distance 2 edge to a 3-supernode. (There has to be exactly one
such supernode per component.) As long as this component is non-trivial,
we do the following. Choose one supernode with exactly one range 2 node
v̂ij (i.e., a leaf of this tree). Now set

r̂(v̂ij) := 3 and r̂(v̂ji) := 1.

This reduces our component by one supernode, and r̂ remains connected and
optimal. After iterating this procedure until all components are trivial, all
supernodes contain exactly one node of range greater than 1, as demanded.

Now that we know this property of our optimal solutions, let us look what
kind of graph r̂ can induce. First note that the following implication holds:

r̂(v̂ij) = 2 =⇒ r̂(v̂ji) = 3

This means that every 2-supernode (defined analogously to 3-supernodes)
has to be connected to a 3-supernode. This is clear, because if it were con-
nected to a 2-supernode, these two supernodes would form a component not
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connected to the rest of the graph. (Recall here that we are in the case that
an optimal range assignment includes a range 3 node.)

But now we know the structure of an optimal solution quite well: We
have 3-supernodes connected in a clique-wise fashion, and each 3-supernode
may have one 2-supernode attached to it. Figure 2.9 shows an example of
such an optimal solution.

2 2

33

3

Figure 2.9: An optimal connected range assignment for the above example.

How can we optimize this kind of structure? This question is easy to
answer: We want to use as many 2-supernodes as possible, so that we need
the least number of 3-supernodes. In other words, we want to maximize
the number of distinct pairs of 2- and 3-supernodes, connected by distance 2
edges, the edges of G. This means nothing else than constructing a maximum
matching M in G, an efficiently solvable task.[Edm65, KV02] So here, we
need additional cost 2|V | − |M | to establish connectivity.

Concluding our quite lengthy proof for our short remark, we give an algo-
rithm to construct an optimal range assignment for (1, 2, 3)-Connectivity
in Ĝ.

• Set r̂ = 1.

• Construct a maximum matching M in G.
Let U ⊆ V be the set of nodes which are not covered by M .

• If (|M | = 1),
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– construct an MST T ⊆ G.

– For each {vi, vj} ∈ T , Set r̂(v̂ij) = r̂(v̂ji) = 2.

– Output r̂ and Stop.

• Else (|M | ≥ 2)

– For each {vi, vj} ∈ M , Set r̂(v̂ij) = 3 and r̂(v̂ji) = 2.

– For each vi ∈ U , Set r̂(v̂ij) = 3, for one arbitrary j.

– Output r̂ and Stop.

After this short remark (with its not so short proof) we turn to the
question whether (1, 2, 3)-Connectivity also has a PTAS. It might not be
as obvious as the one for (1, 2, 3)-Strong Connectivity, but one could
try to design some more sophisticated approximation scheme for this special
case, which has just enough structure to be NP-hard. We now note that
we can modify our NP-hardness construction above slightly and get a proof
of APX-hardness of (1, 2, 3)-Connectivity. This means that there cannot
exist a PTAS for (1, 2, 3)-Connectivity, unless P = NP.

Theorem 2.13. The (1, 2, 3)-Connectivity problem is APX-hard. More
precisely, there cannot exist a (1+ 1

1092
)-approximation algorithm for (1, 2, 3)-

Connectivity, or P = NP.

Before we begin to prove this statement, let us first cite a fundamental
non-approximability result on which all our APX-hardness proofs are based.

Lemma 2.14 (Chleb́ık and Chleb́ıková, [CC03]). It is impossible to
approximate:

• 3-Vertex Cover to within 1 + 1
99

,

• 4-Vertex Cover to within 1 + 1
52

,

• 5-Vertex Cover to within 1 + 1
50

,

unless P = NP. This already holds for 3-, 4- resp. 5-regular graphs.

Proof (of Thm. 2.13): We show that the generic Set Cover reduction in
the NP-hardness proof for (1, 2, 3)-Connectivity can be extended to an
L-reduction from k-Vertex Cover, for an arbitrary fixed k. Recall that
Vertex Cover is a special case of a Set Cover problem: we try to cover
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the edges of a graph with as few nodes as possible. Thus the edges are
our elements, and the nodes are the subsets in this specific Set Cover
problem. As edges are subsets of the nodes, this view point may be a bit
counter-intuitive. This is reflected here by the fact that we would now have
m nodes (subsets) and n edges (elements)1. As we feel this would lead to
confusion and contradict conventional graph notation, let us better regard
the problem as having n nodes (resp. subsets) and m edges (resp. elements).

Consider the construction in Theorem 2.7. We know from equation 2.1
that an optimal solution r∗ for the reduced instance has cost

c(r∗) =
∑
vi∈V

r∗(vi) = n + 2m + C∗, (2.2)

where C∗ is the size of a minimal set cover in the original instance. (We have
omitted an additional cost of 1, because we can let all set nodes have distance
1, and the additional vertex u becomes redundant. It was only included to
get a nicer drawing of the reduction in the first place.)

Together with some simple observations, we can get a bound on c(r∗)
linear in C∗. As we will also make use of these observations later on, let us
formulate them as an intermediate lemma for future reference.

Lemma 2.15. Let G = (V,E) be a graph of maximum degree k, with n nodes
and m edges. Let C∗ denote the size of a minimum vertex cover in G.
Then the two following facts hold:

C∗ ≥ 1

k
· n (2.3)

m ≤ k

2
· n (2.4)

These two inequalites directly imply

m ≤ k2

2
· C∗ (2.5)

Proof. Notice that in a graph of maximum degree k, each node can cover at
most k edges, thus every vertex cover, in particular a minimal one, has to
have size at least n/k.

As each node has at most k incident edges, and every edge has exactly 2
incident nodes, there cannot be more than (k/2) · n edges in total.

1This comes from the fact that Vertex Cover is literally not a covering problem but
more of a Hitting Set problem. In a Hitting Set problem, we try to choose a minimum
subset of the elements such that each subset is “hit” by at least one element. The Set
Cover problem and the Hitting Set problem are completely identical in structure; it is
more a matter of the preferred way of viewing at or describing the problem.
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Back the proof of Theorem 2.13. Assume there exists a (1+α)-approximation
algorithm A for (1, 2, 3)-Connectivity, for some constant α > 0. Recall
from Lemma 2.8 that we can easily obtain a vertex cover in the original in-
stance G from the range assignment in the reduced Connectivity-instance.
Let rA be the range assignment constructed by algorithm A, and CA the ver-
tex cover constructed from rA. Thus we have

c(rA) = n + 2m + CA (2.6)

Because A is a (1 + α)-approximation, Lemma 2.15 gives us

c(rA) = n + 2m + CA ≤ (1 + α) · (n + 2m + C∗)

⇐⇒ CA ≤ α(n + 2m) + (1 + α)C∗

≤ α(k + k2)C∗ + (1 + α)C∗

= (1 + α(k2 + k + 1))C∗.

Thus, a polynomial (1+α)-approximation algorithm for (1, 2, 3)-Connectivity
would automatically imply the existence of a polynomial (1+α(k2 + k +1))-
approximation algorithm for k-Vertex Cover. We would therefore have

• a (1 + 13α)-approximation algorithm for 3-Vertex Cover,

• a (1 + 21α)-approximation algorithm for 4-Vertex Cover and

• a (1 + 31α)-approximation algorithm for 5-Vertex Cover.

Combining this with Lemma 2.14, we see that

• α ≥ 1
13·99

= 1
1287

must hold for 3-Vertex Cover,

• α ≥ 1
21·52

= 1
1092

for 4-Vertex Cover and

• α ≥ 1
31·50

= 1
1550

for 5-Vertex Cover,

or P = NP. We notice that our reduction combined the hardness result de-
livers the best result for 4-Vertex Cover, proving our statement.

As some more APX-hardness proofs with explicit non-approximability
results are coming up, we have given this one in maybe more detail than
absolutely necessary so that the outline becomes clear. Later proofs will be
shorter.

Of course, the inapproximability constants depend on the actual values
that distances may take. We can get better results with other values:
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Corollary 2.16. There cannot exist a (1+ 1
468

)-approximation algorithm for
(0, 1, 2)-Connectivity, or P = NP.

Proof. In the construction to prove Theorem 2.13, we can reduce each dis-
tance by 1 to get an APX-hardness proof for (0, 1, 2)-Connectivity. With
these distances, Equation 2.6 becomes

c(rA) = m + CA

and we get

c(rA) = m + CA ≤ (1 + α) · (m + C∗)

=⇒ CA ≤ (1 + α(
k2

2
+ 1))C∗

With this, we can calculate that

α ≥ 1

9 · 52
=

1

468

must hold (mod. P = NP) because of the inapproximability result for 4-
Vertex Cover.

With (1, 2, 3)-Connectivity being APX-hard and (1, 2, 3)-Strong Con-
nectivity allowing a PTAS, does Strong Connectivity maybe allow a
PTAS in general? To see it does not, consider the original construction in
Theorem 2.2 again, which works for (1, 2,∞)-Strong Connectivity. In
this setting, there is no alternative to the bidirected links as used in the Con-
nectivity version of the problem. Thus radii increased on top of a minimal
configuration again directly correspond to a set cover in the original instance,
and the proof for Theorem 2.13 works in the same way for (1, 2,∞)-Strong
Connectivity. The same of course also holds for (1, 2,∞)-Connectivity.

Corollary 2.17. There cannot exist a (1 + 1
1092

)-approximation algorithm
for neither (1, 2,∞)-Connectivity nor (1, 2,∞)-Strong Connectivity,
unless P = NP.

So (1, 2,∞)-Strong Connectivity is APX-hard, while (1, 2, 3)-Strong
Connectivity allows a PTAS. A question is what happens “in between”,
i.e., is there a constant k for which (1, 2, k)-Strong Connectivity has
a PTAS, while (1, 2, k + 1)-Strong Connectivity is APX-hard? This
is not the case; (1, 2, k)-Strong Connectivity admits a PTAS for every
constant k. In fact, the following statement can be shown.
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Theorem 2.18. (1, 2, . . . , ∆−1, ∆)-Strong Connectivityadmits a PTAS.
More generally, let δ > 0 be the smallest non-zero distance occuring in some
range assignment problem, and ∆ the largest distance. Strong Connec-
tivity on instances where the quotient ∆

δ
is bounded by a constant admits a

PTAS.

Proof. The proof is similar to the one of Corollary 2.11. We can assume wlog.
that δ = 1, else we divide everything by δ. We know that a feasible range
assignment for Strong Connectivity has cost at least mst. On the other
hand, as before, there exists a feasible range assignment of cost mst + ∆:
Direct an MST towards some node v and set the radius of v to ∆ to transmit
data to all other nodes. We call the resulting range assignment the ‘all-to-
one, one-to-all’ solution. This range assignment obviously is a (1 + k

mst
)-

approximation. In case k/mst ≤ ε, we are done. Otherwise, k/mst > ε
implies mst < k/ε = O(1), thus n = O(1). Every node has n − 1 possible
choices of distances for its radius (it can transmit to 1, 2, . . . or n − 1 other
nodes), making (n − 1)n = O(1) possible range assignments in total, which
we can enumerate in constant time.

2.2 Results for Broadcast

The hardness results for Broadcast are also all based on very generic re-
ductions from Set Cover. We can use nearly the same reduction as in
Theorem 2.2, only slightly easier, for the graph version of Broadcast. It
already works for the unweighted version of this problem, i.e., we seek a
range assignment with the least number of nodes having one or more outgo-
ing edge. In the terms we introduced last section, this means that already
(1,∞)-Broadcast is very hard.

Theorem 2.19. (1,∞)-Broadcast is as hard as the Set Cover problem.
I.e., it is NP-hard, and moreover, there cannot be an approximation better
than O(log n), or P = NP.

Proof. Take the construction of the proof for Theorem 2.2, but set the dis-
tance on all edges to 1. The node u is the root node which has to send data
to all other nodes. r(u) = 1 will hold of course, so all the set nodes are
reached already. In particular, it does not make sense to have any element
node with r(vi) 6= 0.

Now all the element nodes have to be reached by using as few set nodes
with r(wj) = 1 as possible. This corresponds directly to the original Set
Cover problem: The non-zero set nodes wj in an optimal range assignment
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are exactly the covering sets Sj in an optimal set cover. Because of r(u) = 1,
the cost of an optimal range assignment r∗ amounts to

c(r∗) = 1 + C∗,

where C∗ is the size of an optimal set cover. Thus, an inapproximability
result for Set Cover holds for (1,∞)-Broadcast as well.

So Broadcast is very hard already in a very generic setting. This result
means that it does not make any sense to try a constant factor approximation
for this problem. However, in some special settings, the problem becomes
easy, or even trivial. As in the last section, we see what happens if ∆/δ,
the quotient of the largest and smallest non-zero distance, is bounded by
a constant. Recall that Connectivity is APX-hard while Strong Con-
nectivity admits a PTAS but remains NP-hard.

Theorem 2.20. Let δ > 0 be the smallest non-zero distance occuring in
some range assignment problem, and ∆ the largest distance. Broadcast
on instances where the quotient ∆

δ
is bounded by a constant is polynomially

solvable.

Proof. As before, assume wlog. that δ = 1. Let s be the broadcasting source
node. The range assignment

r(v) =

{
∆ for v = s,

0 else.

is a feasible broadcast scheme. We only need to investigate cheaper schemes.
Such a range assignments has at most ∆ nodes with non-zero power con-
sumption. Thus, when we try every subset of size at most ∆, and try every
of the possible n values (transmitting to 0, 1, . . . or n − 1 other nodes) for
those (at most) ∆ nodes, we have tried out every cheaper possible range
assignment, and have found the optimum in the end. We “only” need to
check (

n

∆

)
· n∆ ≤ n2∆

possible range assignment, a polynomial number.

So while (Strong) Connectivity remains hard under bounded dis-
tances, Broadcast becomes polynomial in this setting. We now come to a
very important setting where Broadcast is completely trival.

Remark 2.21. For distances satisfying the triangle inequality, Broadcast
is trivial.
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Proof. It is always possible to have source node s transmit directly to each
node. I.e., when

∆s := max
v∈V

d(s, v),

range assignment

r̂(v) =

{
∆s for v = s,

0 else.

is feasible. Obviously, c(r̂) = ∆s. On the other hand, in any feasible broad-
cast scheme r, we have to reach every node from s. So r costs at least

c(r) ≥ max
v∈V

∑

e∈P (s,v)

d(e),

where P (v, w) is a shortest path from v to w. With the triangle inequality,
we know that

c(r̂) = ∆s ≤ max
v∈V

∑

e∈P (s,v)

d(e) ≤ c(r)

for every feasible range assignment r, so r̂ is feasible with least possible
cost.

E.g., in the reduction for Set Cover-hardness of Broadcast, when the
4-inequality would hold, node u could send everywhere with just a radius of
2.

Recall that in geometric range assignment problems, network distances
are Euclidean distances in some space to the power of the constant power-
distance gradient α. Note that for α > 1 the distances in this kind of model
do not satisfy the 4-inequality, but a weaker inequality, dependent on α. We
call this the 4α-inequality.

Definition 2.22. We say that distances d : V × V → R+ satisfy the 4α-
inequality, if for every three points u, v, w ∈ V , we have that

d(v, w) ≤
(

α
√

d(v, u) + α
√

d(u,w)
)α

Correspondingly, we call d : V × V → R+ an α-metric if the following
conditions hold:

1. d(v, u) = 0 ⇐⇒ v = u

2. d(v, u) = d(u, v)

3. d satisfies the 4α-inquality.
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The distance functions in our geometric instances are α-metrics as the
4α-inequality holds, because the 4-inequality holds for ‖.‖, and d(v, w) =
‖v − w‖α.

As is mentioned later, there exist constant factor approximation algo-
rithms for geometric instance of Broadcast in Rd for constant dimension
d, and constant power-distance gradient α. One possibility to design such
an approximation for general geometric instances might be to formulate one
for general instances satisfying the 4α-inequality. One would also overcome
the sometimes tedious use of geometry, if the 4α-inequality would already
embrace the necessary structure to allow a constant factor approximation.

Indeed, the instances constructed in the proof of Theorem 2.19 become
trivial when we demand the 4α-inequality. In this case, the source node r
cannot have a distance larger than 2α to any element node, a constant. So
by Theorem 2.20, we can solve these instances in polynomial time.

In order to fix this construction, one should, in some way, “separate”
distinct set nodes from each other, so that no single set node wj can cover
more element nodes than {vi | i ∈ Sj} at “small” extra cost. This is of
course possible, but maybe only at forbiddingly large overhead costs, losing
the property of being approximation preserving.

But this is not the case. We give a construction which spreads out the
nodes, virtually without adding any extra costs. Although the number of
nodes increases dramatically, the reduction is still polynomial.

Theorem 2.23. Broadcast with 4α is Set Cover-hard, i.e., there can-
not be an approximation better than O(log n), or P = NP.

Proof. We present our construction in three steps. First, we design an auxil-
iary graph G similar to the one in the construction for (1,∞)-Broadcast.
Then, certain edges in G are replaced by lines of very many very close points,
ensuring approximation preservation. The resulting graph is called G′. Fi-
nally, from G′ we design Ĝ′, which has a distance matrix satisfying the 4α-
inequality and proving our claim.
We first define how we get from G′ to Ĝ′:

Definition 2.24. Let G = (V,E, w) be a graph with a weight function
w : E → R+ on its edges. Let Ĝ = (V, V × V, d) where d : V × V → R+ is
defined as follows:

d(v, w) = |P (v, w)|α,

where P (v, w) is a shortest path in G between v and w.

Directly from the definition of Ĝ we see that d is an α-metric. So we call
d (or Ĝ) the α-metric induced by G. Obviously, the 1-metric induced by G
is the standard metric induced by G.
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Now to the step from G to G′. We want to reduce the cost of certain
edges which we need as overhead, but we would like to pay least possible
in our cost function, as they interfere with the approximation preservation.
The following Lemma says we can get them virtually for free.

Lemma 2.25. Suppose in a graph G we have edges of total length L. We
replace these edges by a line of N stations at distance 1/N per unit weight,
and regard the α-metric graph Ĝ. For constant α > 1, we can choose N to
be a polynomial in L such that the total power cost in Ĝ to have each line
segment (strongly) connected is less than 1.

Proof. When we put N stations on a line of length 1, this line gets (strongly)
connected when each station transmits with radius 1/N . The total power
cost on this line is thus N · ( 1

N

)α
. So if we want to have the power used on

all lines to be below 1,

LN ·
(

1

N

)α

< 1

must hold. For α > 1, this is equivalent to N > L
1

α−1 , a polynomial in L.

Note that the step from G to Ĝ is not necessarily polynomial as length L
might be encoded in size log(L). However, it will be polynomial in the input
size in our reduction.

After these preparations, we can begin with our construction. Suppose
we are given an instance of Set Cover with sets S1, . . . , Sm and elements
1, . . . , n. We first construct G = (V, E, w) from this instance.

A difference to the constructions above is that we now introduce an ele-
ment variable vj

i for each set Sj element i appears in: Let

V = {u,w1, . . . , wm, } ∪ {vj
i | i ∈ Sj}.

We describe edge set E by two distinct edge sets E1∪En = E. The set E1 =
{{wj, v

j
i } | i ∈ Sj} represents the set/element relation. Set En, containing

the overhead in this reduction, is defined as

En = {{u,wj} | j = 1, . . . , m} ∪ {{vj
i , v

j′
i } | {j, j′} ∈ Ji},

where Ji = {{j, j′} | j < j′, i ∈ Sj, i ∈ Sj′ and i /∈ S̃ ∀j<̃<j′}. So En

contains edges between the root and set vertices, and connects appearences
of the same element i in different sets along the path Ji. We finish our
description of G by setting w(e) = 1 for all e ∈ E1, and w(e) = n for e ∈ En.
Figure 2.10 shows an illustration of this reduction.

Remark 2.26. |P (x, y)| ≤ 2 holds only if x and y are element or set nodes of
the same set Sj; otherwise, |P (x, y)| ≥ n holds.
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Figure 2.10: Graph G for an example Set Cover instance. Edges in En are
dotted.

We have thus spread out our old reduction, but at the cost of high weights
on the overhead edges in En. We are now going to reduce these weights with
the help of Lemma 2.25, and call the resulting graph G′.

First we fix a number N which we calculate later. For each edge e =
{x, y} ∈ En (the edges of length n), we do the following. We remove edge e
from the graph, insert a line of n · N new vertices {le1, . . . , lenN} with length
1/N edges {{lei , lei+1} | i = 1, . . . , nN − 1} into the graph, and connect le1 to
x, and lenN to y. We call the resulting graph G′. In the example in Figure
2.10, one could say the dotted edges have now become dotted indeed.

We have m edges {u,wj} ∈ En. For a single element i appearing in at
most all m sets, the path connecting its occurrences {vj

i } in En has at most
(m−1) edges. Thus, all paths in total contain no more than (m−1)n edges.
So number L in Lemma 2.25 would here be

L = (m− 1)n2 + mn,

and we choose N = L
1

α−1 . Note that N (and also LN) is a polynomial in
the input size of our original Set Cover instance, so G′ has a polynomial
number of nodes, and our entire reduction is polynomial.

Now regard Ĝ′, the α-metric induced by G′. In a minimal configuration
for Ĝ′, each node has radius (1/N)α, at negligible total cost. As in the
reduction for (1,∞)-Broadcast, one way to broadcast everywhere from u
is to raise the radii of the set nodes corresponding to a set cover in the original
instance to 1. The cheapest alternative to cover elements in different sets is
to set the range in u to (n + 1)α > n + 1, which is forbiddingly large. So,
the cost of an optimal range assignment is equal to the size of an optimal set
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cover (plus 1, which is negligible). Thus, any approximation for Broadcast
better than O(log n) would imply such an approximation for Set Cover,
and P = NP.

It is not surprising that the number of nodes explodes in this reduction
for α → 1. It is remarkable that this problem is completely trivial for α ≤ 1,
yet not constant factor approximable for any α > 1.

Furthermore, the identical reduction shows that Strong Connectivity
is APX-hard. To get a linear reduction from an APX-complete problem, we
apply it on a special class of Set Cover instances, the Vertex Cover
problem.

Corollary 2.27. The Strong Connectivity problem with 4α-inequality
is APX-hard for any α > 1. More precisely, there cannot exist a (1 + 1

468
)-

approximation algorithm for this problem, unless P = NP.

Proof. In a minimal configuration, all nodes have radius (1/N)α. The result-
ing connectivity graph has one component containing all set nodes, and one
for each element i, containing all its occurrences. Each of the latter compo-
nents needs to send out of this component, which it can do by setting any of
the occurrences to radius 1. Sending any further than this would not bring
any advantage:

At radius 2α, node vj
i could send to the other nodes vj

i′ for which i′ ∈ Sj.
But it is not only cheaper to set r(vj

i ) = r(wj) = 1 instead. Moreover, this
allows to send from the set node component into the i′-components for which
i′ ∈ Sj. Any other possibility to increase connectivity by setting a radius to
more than 1 is forbiddingly expensive, as we know thanks to Remark 2.26.

Thus, an optimal strongly connected range assignment will have exactly
one radius 1 node vj

i per element component i (at an arbitrary j). All
components now send into the set component, so it suffices to have the set
component send into all element components. This can be done by setting
the radii of the set nodes of a set cover to 1. All other nodes have neglectable
radius (1/N)α. In total, a cheapest feasible range assignment costs less than

m + C∗ + 1,

where C∗ is the size of a smallest set cover. This is the same amount as in
Corollary 2.16, so we get the same inapproximability result by reducing from
4-Vertex Cover.

It remains unclear what happens for α ≤ 1, i.e., the Strong Connec-
tivity problem with 4-inequality. We have seen PTASs for various cases,
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and we know it is APX-hard in the general case, also with the 4α-inequality.
Its NP-hardness proof with distances (1, 2, 3) was also the only reduction not
from a Set Cover type problem, namely from Hamiltonian Cycle. Al-
though already (1, 2)-TSP is APX-hard [PY93], it is not clear how to get an
L-reduction to metric Strong Connectivity. The problem with the con-
struction in the prior Corollary is that we cannot use Lemma 2.25 any longer
to control the overhead size: We have O(n) edges of length n, contributing
cost O(n2) to the cost function. Thus, we do not have an L-reduction any
longer. But with less overhead, it is unclear how to rule out that the ‘one-to-
all, all-to-one’-solution becomes cheaper than a set cover solution for growing
instance size at some point.

2.3 Overview and conclusion

We summarize the results of this chapter and discuss directions for future
research.

Connectivity Strong Con. Broadcast

unweighted
Graphs

trivial trivial Set Cover hard

Graphs with
weights 1 and 2

APX-hard APX-hard Set Cover hard

(1, 2)-version polynomial polynomial trivial
(1, 2, 3)-version APX-hard NP-hard; PTAS trivial
4-inequality APX-hard NP-hard trivial
4α-inequality APX-hard APX-hard Set Cover hard

Table 2.1: Summary of hardness results in this chapter.

Table 2.1 summarizes the main complexity results of this chapter. Con-
cerning unweighted graphs, strictly speaking we should say graphs where all
edges have the same weight, maybe 1. The row for (1, 2, 3)-problems gener-
alizes to settings where the quotient between largest and smallest distance
is bounded by a constant. However, Broadcast is not really trivial in this
setting, but solving it by brute force becomes (theoretically) polynomial. It
is similar to the PTAS for its bounded Strong Connectivity counterpart.

It is interesting to see the jump complexity-wise in the graph version of
(Strong) Connectivity when we allow two instead of one weight. The
difference between (Strong) Connectivity on one side and Broadcast
on the other is also apparent. In contrast to other optimization problems
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like TSP and Steiner Tree, (Strong) Connectivity remains polyno-
mial when restricted to its (1, 2)-versions, and becomes hard when we allow
one more choice for the weights. The (1, 2, 3)-version of the problems is
very interesting as the three problems fall into three different approximation
classes. It reveals the difference between Connectivity and its directed
counterpart, two quite similar problems.

All in all, the characterization of the three problems in the various re-
stricted settings is nearly complete. What remains an interesting open prob-
lem is the Strong Connectivity problem with4-inequality. NP-hardness
is shown already for (1, 2, 3)-Strong Connectivity with4-inequality, and
there is a PTAS when the quotient of longest and shortest distance is bounded
by a constant. Yet it is still unclear whether there exists a PTAS also for
general metric Strong Connectivity, whether it is APX-hard or whether
none of both applies. Due to the strong similarity to Connectivity, the
author’s intuition was that metric Strong Connectivity should be APX-
hard as well. However, the case seems not so clear any more. The ‘all-to-one,
one-to-all’ solution is made attractively cheap by the 4-inequality, and has
so far destroyed all reduction attempts. When one tries to ‘spread out’ the
reduction as for the 4α-inequality, it is not clear how to do this without
destroying its linearity. On the other hand, it is also unclear how to get a
general PTAS. The ‘one-to-all, all-to-one’ solution alone is not enough; it can
be as big as 1.5 times the optimum, as we will see later. However, it will
yield a PTAS for some special geometric instances.

As a final remark, relaxing the 4-inequality to the 4α-inequality makes
the problems as hard as their general version, for any α > 1. In particular,
we cannot hope for a constant factor approximation for Broadcast as in
the geometric versions by just extracting this special feature. This observa-
tion corresponds with [CCP+01b] where the constant factor approximations
for Broadcast are only constant for fixed dimension; in fact, they grow
exponentially with the dimension.
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Chapter 3

Complexity of geometrical
instances

In the preceeding chapter, we have proved computational hardness for (Strong)
Connectivity and Broadcast in various settings. As these problems are
motivated by real-world applications, it is interesting to know if instances
which model real-world situations are still hard to solve, or if they get con-
siderably easier. We concentrate on range assignment instances which are
defined by points in 2- and 3-dimensional space, and a cost function de-
pending on the Euclidean distance between two points that model the power
consumption for transmitting data across this distance.

Definition 3.1 (Geometric Range Assignment problems).

Instance: A set of points S ⊆ Rd in d-dimensional space, a constant “power-
distance gradient” α > 0, and a certain network property Π.

Task: Find a network F ⊆ E satisfying network property Π which minimizes
the cost function

c(F ) =
∑
v∈V

max
(v,w)∈F

‖v − w‖α,

where ‖ · ‖ is the Euclidean norm in Rd.

Geometric Range Assignment problems are special cases of Range
Assignment problems as defined in the previous chapter: We identify the
points in S = {s1, s2, . . . , sn} with a set V = {1, . . . , n}, set E = V × V and
define d(i, j) = ‖si − sj‖α, and get an equivalent instance G = (V, E, d) for
a Range Assignment problem. As this whole chapter is about geometric
instances, we will omit the word “geometric” from the problem description.
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At this point, we again stress a certain ambiguity about terms. We regard
d(i, j) as the “distance” between points si and sj, which is actually the
Euclidean distance to the power of α. So keep in mind that when we talk
about distances between points, this term is only related to their natural
distance, but not the same.

In [CPS04], the authors have tried to capture what makes out a ‘realistic’
2-d instance via the concept of well-spread instances. They give an approx-
imation algorithm for this kind of instances for range assignment problems
with bounded hops, which is however not the focus of this thesis. We de-
fine this concept as in [CPS04] and give a natural generalization for higher
dimensions. Define

∆(S) = max{‖u− v‖ | u, v ∈ S}
δs(S) = min{‖s, v‖ | v ∈ S \ {s}}
δ(S) = min{δs(S) | s ∈ S}

Definition 3.2. As in [CPS04], we say that a family S of 2-dimensional
instances is well-spread if there exists some positive constant c such that, for
any S ∈ S, δ(S) ≥ c∆(S)/

√
|S| holds. A natural generalization for other

dimensions is to call a family S of d-dimensional instances well-spread if there
exists some positive constant c such that, for any S ∈ S,

δ(S) ≥ c∆(S)/ d
√
|S|

holds.

Orthogonal regular grids of full dimension are the prototypical well-spread
instances. In the following, we sometimes omit the specific set of stations S
if it is clear from the context which S is meant.

These problems have of course a very special structure. We have seen that
metric instances resp. α-metric instances are just as hard as in the general
case (except for metric Broadcast), but on the other hand, the reductions
are not realizable in a geometric setting. So we have to make some extra
effort, which this chapter is about.

3.1 Previous work and our results

The complexity of geometric range assignment problems has been investi-
gated before. The first result in this area is by Kirousis et al. [KKKP00],
who have shown that Strong Connectivity is NP-hard in R3 for α ≥ 1.
They also presented a dynamic program that solves Strong Connectiv-
ity on the real line R to optimality in time O(n4). Clementi, Penna and
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Silvestri [CPS04] proved that Strong Connectivity with α ≥ 2 in R2 is
NP-hard, and even APX-hard in R3. These constructions were adapted in
[CCP+01b] to prove NP-hardness of Broadcast in 2-d.

The survey [CHP+02] gives a good coverage of these and other results in
this area, and raises questions for further research. One open problem stated
therein is the case of (Strong) Connectivity with α = 1, i.e., Euclidean
distances. It is conjectured in [CHP+02] À. . . that this case is efficiently
solvable or, at least, approximable within a better factor than 2.¿ Another
open question in this survey is whether Broadcast allows a PTAS. These
two questions are answered in this thesis. It can be shown that (Strong)
Connectivity remains NP-hard for α = 1 (in fact, for any constant α > 0)
in R2. Furthermore, the first overall APX-hardness proof for Broadcast is
presented.

These results are mostly due to new, more simple and flexible reductions
for our problems. The disadvantage of the existing reductions is that they
consist of technically quite involved gadgets which cannot be adapted as
easily to work for similar range assignment problems. The higher versatility
of our reductions is underlined by improved inapproximability results where
APX-hardness was known before. In addition, we give the first hardness
results for well-spread instances.

3.2 Outline of the generic reduction

The structure of our reduction is to a great part inspired by the classic
reduction for NP-hard of the Rectilinear Steiner Tree Problem by
Garey and Johnson [GJ77]. We therefore outline their proof as much as we
need to make this chapter self-contained.

Given a finite set of points V lying in the real plane R2, the Rectilinear
Steiner Tree Problem seeks to find a tree interconnecting V using only
horizontal and vertical lines of shortest possible total length. The reduction
in [GJ77] starts from Planar Vertex Cover, which was shown to be
NP-hard one year earlier in [GJS76]. Remarkably, in [GJ77], as a by-product
NP-hardness of Planar 3-Vertex Cover is proven on the way. (Of course,
2-Vertex Cover is trivial.)

From now on, we will often abbreviate Vertex Cover as VC, and k-VC
for k bounded degree Vertex Cover. The line of reductions in [GJ77] is
as follows:

Planar VC → Planar 3-VC → Planar Connected 4-VC
→ Rectilinear Steiner Tree Problem
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where a connected vertex cover is a vertex cover whose node set induces a
connected graph.

3.2.1 The backbone

The step from Planar 3-VC to Planar Connected 4-VC is of particular
interest for our purposes as it builds the bridge from a covering problem like
Vertex Cover to a network problem. See Figures 3.1 and 3.2 for a graph
with distinct vertex cover and connected vertex cover.

Figure 3.1: A graph with a vertex
cover, indicated by black nodes . . .

Figure 3.2: . . . and the same graph
with a connected vertex cover.

Roughly said, a kind of “backbone” structure is added to the Planar 3-
VC instance. This backbone ensures that vertices of the original instance are
not only chosen in order to maintain connectivity when they are unnecessary
for covering. Instead, connectivity is always ensured by the construction of
the backbone.

Maybe this construction is best explained by a picture. Figures 3.3 and
3.4, taken from [GJ77], show a planar drawing D of an example instance of
3-VC and our reduced Connected 4-VC instance D̄, which is almost but

Figure 3.3: An instance D of 3-
VC. . .

Figure 3.4: . . . and the reduced Con-
nected 4-VC instance D̄. Backbone
edges are dashed.
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not entirely the same as DGJ , which we call the graph constructed in [GJ77].
D̄ is constructed in the following way (for a rigorous proof, the reader is of
course invited to refer to the original proof in [GJ77]):
Let D = (V, E) be a planar graph with maximum degree 3 with a fixed
planar embedding, and let n = |V | and m = |E| be the number of vertices
resp. edges of the original VC-instance D.

• First, split each edge e = {x, y} ∈ E into three edges {x, xe}, {xe, ye}
and {ye, y} by adding two new vertices xe, ye per edge. Call those
new vertices C (“connectors”) and the split edges E ′. We call this
intermediate graph D′ = (V ∪ C, E ′).

• For each vertex c ∈ C, place one new vertex bc,R in each adjacent region
R (one or two), and connect bc,R to c. For each vertex v ∈ V of the
original graph, place one new vertex bv,R in any neighboring region R,
and connect bv,R to v.

• In each region R, connect all vertices b·,R by a walk along the border of
the region, like in Figure 3.4. Collect the additional edges of this and
the previous step in the set Ē, and the nodes in the set B (“backbone”).

This completes the construction of the planar graph D̄ = (V ∪C∪B, E ′∪ Ē)
with a fixed embedding. Note that the connector nodes are only needed to
keep the backbone connected whilst maintaining planarity. Of course they
must also yield a correct reduction. This is shown by the following lemma,
which is implicit in the construction of Garey and Johnson.

Lemma 3.3. D has a vertex cover of size k ⇔ D′ has a vertex cover of size
k + m.

Proof. Let N be a vertex cover of D. Let M = {xe | e = {x, y} ∈ E, y ∈
N} ∪ {ye | e = {x, y} ∈ E, y 6∈ N}. Now |M | = m, and N ∪̇ M is a vertex
cover of D′.
Conversely, let N ′ be a vertex cover of D′, and let M ′ = {x | e = {x, y} ∈
E, xe, ye ∈ N ′}. Now N = N ′ ∩ V ∪M ′ is a vertex cover of D, and has at
least m nodes less than N ′.

The constructed graph D̄ that we present here is in fact slightly different
from the graph DGJ constructed in [GJ77]: In DGJ , each backbone node
b ∈ B has a “spike”, i.e., it is additionally connected to a copy of itself
which has no other neighbor. The single purpose of these spikes is to ensure
that, wlog., the whole set of backbone nodes B is included in every vertex
cover of D̄. Additionally, one connector per edge in D must lie in every
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vertex cover, providing connectivity of the backbone. As every node has a
backbone neighbor, all feasible vertex covers for D̄ are wlog. connected. So
the size of a minimum vertex cover for D is k iff a minimum connected vertex
cover of DGJ has size k + m + |B|.

In the context of range assignments for radio stations, we will not need
these spikes to ensure that the backbone is connected.

3.2.2 Graph drawing

In the next step, an orthogonal drawing of D̄ in R2 is needed. Efficient
methods for this task have been already known and used by Garey and
Johnson in their Rectilinear Steiner Tree reduction.

In an orthogonal drawing of a graph, each edge is represented by an axis-
parallel line or by several adjacent line segments. In the latter case, the edge
has a “bend” in the drawing. Crossings of horizontal and vertical lines other
than bends (thus, of degree 3 or higher) must correspond to a node. All
nodes and bends have integer coordinates.

Obviously, a graph must be planar and of maximal degree 4 to have
an orthogonal drawing in the plane and of maximal degree 6 to have an
orthogonal drawing in 3-d space. It is a classical result in the field of graph
drawing that these necessary conditions are also sufficient.

Lemma 3.4. It is possible to efficiently construct orthogonal drawings of pla-
nar graphs with maximum degree 4 in 2-d and arbitrary graphs with maximum
degree 6 in 3-d with maximum edge-length O(n).

See [ESW96] for a reference in this huge field, where even an orthogonal
drawing in 3-d with edge length O(

√
n) is constructed.

3.2.3 Placing the stations

We will finally get our Range Assignment instances by replacing the lines
of the drawing by equidistant stations, with (possibly) some free space at
the ends. The actual way of doing this differs from problem to problem. In
the 2-d constructions, an important ingredient is to take different distances
on backbone and original edges, while in the 3-d constructions (which need
to be approximation preserving, but have a simpler backbone construction),
the free space around original nodes distinguishes backbone lines and original
lines.
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3.3 Hardness results for Connectivity

We first present our reductions for Connectivity, because they appear here
in their most generic form.

3.3.1 NP-hardness of Connectivity in 2-d

Every reduction in 2-d starts out with graph D̄ as constructed in the prior
section. We shortly describe the construction of the final Connectivity
instance out of D̄.

• Construct an orthogonal drawing of D̄ in the plane.

• Scale the whole drawing by the factor 3.

• Replace each line in the drawing by a set of equidistant points in the
following way: Place one station at one end of the line, and:

– For each polyline representing an edge originally in E ′, place sta-
tions on every point with integer coordinates, i.e. points at dis-
tance one.

– For each line representing some part of a backbone edge (those in
Ē), place stations at distance 3

4
.

By scaling by a factor c we mean multiplying the coordinates of each point
with c. By a vertex (or node) station we mean a station representing a node
of the graph D′. By an edge-end we mean the last station on an edge before
the vertex station.

Note that because of the scaling step, the first and last station on a
straight line segment always have integer coordinates, and the minimum
distance between two vertex stations is 3. See figures 3.5 and 3.6 for an
illustration of this reduction.

Originally given a planar instance D of 3-Vertex Cover with a fixed em-
bedding, we have constructed a blown-up version D̄ and, by our last step,
associated a set of points S in the plane with D. We now claim that a
solution for the Connectivity problem for S also automatically yields a
minimal vertex cover for D.

Theorem 3.5. For any α > 0, Connectivity in R2 is NP-hard.

Proof. Let us look at the minimal configuration rmin for S: All stations on
edges in E ′ have rmin = 1, and all stations on edges in Ē, the backbone edges,
have rmin = 3

4
. As all intersections (i.e. stations representing the nodes of
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Figure 3.5: A small part of an or-
thogonal drawing of a graph D̄.
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Figure 3.6: The resulting set of
stations, with a minimal configura-
tion and the induced communication
graph.

D̄) have at least one adjacent edge from the backbone, all those stations also
have rmin = 3

4
.

Observe that the undirected communication graph of the minimal config-
uration, Grmin

, already has quite large connected components (cf. fig. 3.6):
There is one connected component corresponding to each edge in E ′, and
the backbone is one connected component in the minimal configuration. For
notational convenience, we refer to a component corresponding to an edge
e ∈ E ′ as an edge-component, or the e-component. We also use the terms ‘in-
cident’ or ‘adjacent’ with edge-components or vertex stations when we mean
that the corresponding edges or vertices have this property.

Let M = cost(rmin) be the cost of the minimal configuration, and let
k be the number of vertices in a minimal vertex cover for D. We claim
that a minimal range assignment with property Connectivity has cost
M + γ(m + k), where γ = 1 − (

3
4

)α
, which implies the NP-hardness of

Connectivity.
To prove our claim, we argue that, without loss of generality, in a minimal

range assignment, only radii of node stations are increased, and those that
are increased are increased by 1

4
, resulting in extra energy consumption γ.

First, we want to rule out that non-adjacent edge-components are directly
connected to the same station. Assume conversely that l non-adjacent edge-
components were connected via the same station. This means there would
be l stations1 S ′ with radii increased from rmin ≤ 1 to at least to some value
C > 1, costing at least l(Cα − 1). Instead, we could have connected those l

1possibly even l + 1, if they are connected via a backbone station

50



edges to the backbone by increasing at most l radii to from 3
4

to 1. In order
for the first increase being cheaper,

l(Cα − 1) ≤ l

(
1−

(
3

4

)α)
⇐⇒ Cα +

(
3

4

)α

≤ 2

would have to hold. As x + 1/x ≥ 2 ∀x > 0, this would imply that C ≤ 4
3
,

which means that some radii are increased to not more than this quantity.
But by construction, it is not possible to connect non-adjacent edges with
such a low radius, a contradiction to the assumption that all l edges are
directly connected.

When an edge-component (or several adjacent edge-components) is con-
nected to some node in the backbone, the cheapest way to achieve this is
obviously to increase the radius of the station representing a node incident
to it from 3

4
to 1 (see also fig. 3.8). This is always cheaper than connecting

adjacent edge-components directly:

Figure 3.7: An unwanted connec-
tion scenario.

Figure 3.8: The cheapest way to
connect edges. Automatically, all
incident edges are attached.

Assume that two nodes on non-backbone edges would have increased
radii in order be directly connected. The cheapest case of this would be if
two adjacent such edges would have their last node’s radius increased from
1 to

√
2 (see figure 3.7). To rule out this case (and in consequence, all other

more expensive cases), we have to show that

δ = 1−
(

3

4

)α

≤ 2(
√

2
α − 1)

⇔ 3 ≤ 2
√

2
α

+

(
3

4

)α
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which is easy:

2
√

2
α

+

(
3

4

)α

> 2
√

2
α

+
1√
2

α >
√

2
α

+ 2 > 3.

We have now argued that in a minimal solution to Connectivity, only
radii of stations corresponding to nodes of D′ are increased from the minimal
configuration, and if so, they are increased from 3

4
to 1. Note that for nodes

where this is the case, all incident edges are thereby connected to the back-
bone and its connected component (cf. fig. 3.8). So in order for the range
assignment to be connected, these nodes have to form a vertex cover of D′.
On the other hand, by virtue of the backbone, increasing each node in a
vertex cover for D′ already makes a minimal configuration connected.

Finally, we notice that by Lemma 3.3, a minimal vertex cover for D′ is
of size m + k, which means that a minimal range assignment with Connec-
tivity has cost M + γ(m + k), which concludes this proof.

3.3.2 NP-hardness for well-spread instances

Our reduction produces Connectivity instances where all stations lie on
lines of a graph, not really spread-out in the available 2-d space, with many
“holes” with no stations at all. It is nevertheless possible to make this con-
struction well-spread, with the following simple trick.

instance S

Figure 3.9: Making S well-spread by adding a well-spread grid.

The set of stations S ⊆ R2 is contained in its ‘bounding box’ R, the
smallest axis-parallel rectangle such that all stations in S lie inside R. Let a
be the longer side-length of R, and put a square Q of side-length 2a around
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R. S is completely enclosed by the backbone (cf. Fig. 3.4), i.e., in particular,
stations lying on a regular grid with mesh distance 3

4
. When we fill up the

rest of Q with such a grid, we get a well-spread instance. This is easy to see:
Even if the lower left quadrant of Q would be completely empty, we get the
following estimations. Scale the instance such that δ(S) = 1, and assume Q
has side-length l. Then |S| = l2 and ∆(S) = l

√
2, so choosing

c ≤ 3

4
· δ(S)

√
|S|

∆(S)
=

3

4

l

l
√

2
=

3

4
√

2

shows that we get well-spread instances. Obviously, in a minimal configura-
tion the additional vertices all have radius 3

4
and lie all in the same connected

component as the backbone, and it does not make sense to increase any of
their radii. It is obvious how to fill up such a well-spread square to a well-
spread cube, proving

Theorem 3.6. For any α > 0, Connectivity on well-spread instances in
R2 and R3 is NP-hard.

3.3.3 APX-hardness of Connectivity in 3-d

The construction in the NP-hardness proof for Connectivity is far from
being approximation-preserving: The fixed cost M of the minimal configura-
tion is much larger than the variable cost of the vertex cover. More precisely,
M would have to be bounded by some (preferably low) constant factor times
the number of vertices n. To the best of our knowledge, no orthogonal 3-d
graph drawing method is known that uses only O(n) total length, so we can-
not hope to achieve this goal with this construction when α ≤ 1. However,
the situation changes when α > 1: Because the power function is now strictly
convex, smaller radii cost far less than big radii. This means that we can
make the power of the internal radii on the edges negligible again with the
help of Lemma 2.25 by inserting a large number of stations on every edge at
a very small distance.

As in the APX-hardness proof in the preceeding chapter, we again start
our reduction from a low degree Vertex Cover problem and use the results
of Chleb́ık and Chleb́ıková in Lemma 2.14.

Given a low-degree instance of Vertex Cover D = (V, E), we describe
how to build the graph D̄ which later gets drawn in the Euclidean space
R3. Note that we cannot use our reduction to prove APX-hardness of Range
Assignment Problems in 2-d, because Planar Vertex Cover is not APX-hard,
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but there exists a PTAS for this problem [Bak94]. This time, as we do
not have to observe planarity, the construction of the backbone becomes
very simple: Let the vertices of V be given in some arbitrary order V =
{v1, . . . , vn}. The backbone vertices B contain one copy of each original
vertex, say B = {v′1, . . . , v′n}, and the backbone edges consist of one edge
between each original node and its copy, and a cycle through all backbone
nodes: Ē = {{vi, v

′
i} | 1 ≤ i ≤ n} ∪ {{v′i, v′i+1} | 1 ≤ i ≤ n− 1} ∪ {{v′n, v′1}}.

Call D̄ = (V ∪ B, E ∪ Ē). Given a constant 0 < ε < 1, choose s according
to Lemma 2.25 and construct a polynomial set of stations S in the following
way:

• Construct an orthogonal drawing of D̄ in R3.

• Scale the drawing by factor 3.

• For all polylines representing original edges e ∈ E, remove the first
and last open unit interval of the polyline (i.e. do not erase any integer
points).

• Replace all remaining unit line segments with s + 1 stations along this
line at distance 1/s.

Here, the scaling step is needed to ensure that at least one length unit of
each edge remains. Note that when the maximum degree in D is ∆, the
maximum degree of D̄ will be ∆ + 1. So according to Lemma 3.4, we must
have ∆ ≤ 5. We use this set of stations in order to prove

Theorem 3.7. For any α > 1, it is NP-hard to approximate Connectivity
in R3 within 1 + 1

260
.

Proof. Again, we first consider a minimal configuration rmin of S with cost
M and its communication graph Grmin

. Due to the construction, all stations
on backbone edges already lie in one connected component, and there is
one component for each original edge. Similar arguments as in the proof for
Theorem 3.5 show that in a minimal solution, all edges are directly connected
to the backbone, and only vertex stations may have an increased radius of 1.
In order to be connected, the nodes corresponding to these vertex stations
must form a vertex cover for D. Additionally, in each edge component, one
of the two end stations’ radii must be increased to 1. On the other hand,
we can always take one station which is close to a station from the node
cover and whose radius thus is increased to 1, leading to a connected range
assignment.

Note that because ε < 1, we have shown that there exists a node cover of
size at most k for D iff there is a range assignment r for S costing no more
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than k + m + ε. In a graph with maximum degree ∆, the size of a vertex
cover is at least m/∆. We now assume that D has maximum degree 4, and
due to the choice of s we have that

cost(r) ≤ M + k + m ≤ 5k + ε

So if we could approximate Connectivity in 3-d to 1 + 1
5·52

, this would
allow us to construct a vertex cover of size at most

⌊
k +

1

5 · 52
(5k + ε)

⌋
=

⌊
(1 +

1

52
)k +

ε

260

⌋
≤ (1 +

1

52
)k,

i.e., we could approximate 4–Vertex Cover up to 1+ 1
52

. According to Lemma
2.14, this would solve an NP-hard problem.

Note that we have chosen to reduce from 4–Vertex Cover, because this
optimizes the trade-off between inapproximability result and reduction size.

3.3.4 APX-hardness for well-spread instances

This idea behind this proof is basically the same as in the NP-hardness proof
for well-spread instances: We fill up the surrounding space with a grid of
mesh distance δ. Note that in order to stay approximation-preserving, the
additional stations must not be too expensive.

Theorem 3.8. For any α > d ≥ 3, approximating Connectivity within
1 + 1

260
remains NP-hard even when restricted to well-spread instances.

Proof. We deal here with the most interesting case, d = 3, but everything
holds also for higher dimensions.

Let a be the largest of width, height and depth of the orthogonal drawing
of the reduced Vertex Cover instance D̄. In order to proof the claim, we show
that it is possible to construct a cubical grid of stations C with side length
2a having a connected range assignment costing no more than any constant
ε in polynomial time.

We will place stations on this grid at distance 1/s, so this cube will have
(2as + 1)3 stations, and its minimal range assignment rmin, which is already
connected, will have cost

cost(rmin) =
(2as + 1)3

sα

Clearly, for constants α > 3 and ε < 1 we can choose a polynomial s in such
a way that cost(rmin) < ε. Note that this cubical grid is well-spread, even
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when we cut out a cube of sidelength (a + 1), and insert the set of stations
constructed for D̄ in the APX-hardness proof, with s as in the cube. Finally,
we connect an arbitrary edge near to the grid stations with a line of stations
at distance 1/s with the cut-out cube. Surely, the minimal configuration
for this new set of stations will cost less than the one of the whole cube,
so the equations from the above proof will still hold, implying the claimed
result.

This construction for APX-hardness of well-spread instances will work for
all problems.

3.4 Hardness results for Strong Connectiv-

ity

In the following two sections, we will adapt our reductions for Connectivity
for the Strong Connectivity and Broadcast problems.

3.4.1 NP-hardness of Strong Connectivity in 2-d

The reduction will be exactly the same as for Connectivity, but the proof
will slightly differ. The main difference is that now directed links are estab-
lished already when one of the two stations has a large enough radius.

Theorem 3.9. For any α > 0, Strong Connectivity in R2 is NP-hard,
already for well-spread instances.
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Figure 3.10: The directed communica-
tion graph of rmin.

Figure 3.11: Now already one
radius of

√
2 would suffice.

Proof. The minimal configuration rmin due to Lemma 1.9 is of course the
same as in the proof of Theorem 3.5, but its directed communication graph
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~Grmin
looks slightly different: The strongly connected components are the

same as the connected components in Grmin
(namely one for the whole back-

bone and one for each split edge), but additionally, each split edge component
already has two outgoing arcs, one to each incident vertex station. (cf. fig.
3.10) Still, only vertex stations can have increased radii in a minimal solu-
tion: The cheapest alternative now increases one edge-end from 1 to

√
2 (see

fig. 3.11), with additional cost
√

2
α − 1 instead of 1− (

3
4

)α
, which, for all α,

saves us nothing. And if α ≥ 1, it is obvious that no radius is increased to
more than 1.

The situation changes here when α < 1: As links do not have to be
bidirectional, and now the cost function is strictly concave, it could pay off
to increase just one radius to some large value C À 1 to send data to many
(or possibly all) stations. To be on the safe side, we scale the instance again
by a factor of α

√
n, which will ensure that

Cα − 1 ≥ nγ

holds for radius C ≥ 4
3

α
√

n, meaning that it is already cheaper to increase
every original vertex to 1 than one single radius to more than 4

3
α
√

n, which
would after scaling not reach any new component.
The proof for well-spread instances is the same as in Theorem 3.6.

3.4.2 APX-hardness of Strong Connectivity in 3-d

The only difference to the construction for Connectivity is that now the
outgoing arc of an edge does not have to be parallel to the ingoing arc. If
some edge-end is increased to 1, and the incident vertex is not, it could indeed
be cheaper to increase the border station further to

√
2 and send to another

adjacent edge. (cf. fig. 3.12) This could indeed be cheaper if α < 2, and as
this is the only thing we have to worry about, let us assume in the following
that 1 < α < 2.

We will now present a slightly changed reduction: To the original Vertex
Cover instance D = (V,E), no new vertices but only new edges will be
added. For vertex set V = {v1, . . . , vn}, add a directed Hamiltonian cycle
Ē = {(vi, vi+1) | 1 ≤ i ≤ n − 1} ∪ {(vn, v1)} as the backbone, already
completing the construction of D̄ = (V, E ∪̇ Ē). The direction of the added
arcs is needed only for notational convenience later on. Note that D̄ may
contain parallel backbone and original edges, which is not a problem.

The construction is now similar to the one before; the new thing is that
we also erase some part of the backbone lines:

• Let β =
α
√

2−√2
α

and choose an ε < 1 − βα; choose an s according
to Lemma 2.25.
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• Construct a polynomial orthogonal drawing of D̄ in R3.

• Scale the drawing by factor 3.

• For all polylines representing original edges e ∈ E, erase the first and
last open unit interval of the polyline (i.e., do not erase any integer
points).

• For all polylines representing backbone edges e ∈ Ē, erase the first (i.e.,
the interval starting at the tail of e) open interval of length σ/s, where
σ ∈ N is chosen such that (σ − 1)/s < β ≤ σ/s. Again, erase neither
the first nor the last point of this interval.

• Let ε < 1 − βα, and replace all remaining line segments of length 1
(resp. 1 − σ/s) with s + 1 (resp. s − σ + 1) stations along this line at
distance 1/s.

Figure 3.12: A cheaper way to con-
nect edges when α < 2.

ββ

Figure 3.13: By leaving spaces of
length β in the backbone, this prob-
lem is fixed.

So this time, the minimal configuration consists of one strongly connected
component for each original or backbone edge. Note that 0 < β < 2−√2 <
0.6. In order for S to be strongly connected, at least one of the end stations
of each backbone edge must have radius at least β; setting all vertex radii to
β suffices to make the backbone strongly connected. As it has no advantage
not to do so, we assume this is the case.

This means now every vertex station wlog. already has radius β. If we
would now choose to transmit data with an edge station, we would pay at
least additional cost

√
2

α − 1 instead of paying 1− βα for an incident vertex
station, which due to the choice of β is not cheaper (see also fig. 3.13). Hence,
we can assume that only vertex stations are used for connectivity, and the
vertex stations with radius 1 in a minimal range assignment with Strong
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Connectivity form a minimal vertex cover. This means a minimal range
assignment r costs

cost(r) ≤ nβα + k(1− βα) + m + ε

where k is the size of a minimal vertex cover for D. As the hardness results in
Lemma 2.14 also hold for regular instances, we can assume that k ≥ m/∆ =
n/2. We choose to reduce from 4–Vertex Cover, and normalize the costs for
r s.t. the cost for each node in the vertex cover is 1:

k +
nβα + m

1− βα
≤ k +

(
2 + βα

1− βα

)
2k +

ε

1− βα
<

(
7−√2

α

√
2

α − 1

)
k + 1

which finally concludes the proof of

Theorem 3.10. It is NP-hard to approximate Strong Connectivity in

R3 within 1 + 1
260

, if α ≥ 2, and within 1 +
√

2
α−1

(7−√2
α
)·52

, if 1 < α < 2.

For any α > d ≥ 3, approximating Connectivity within 1 + 1
260

remains
NP-hard even when restricted to well-spread instances.

3.5 Hardness results for Broadcast

The main difference to the two preceding problems is that we cannot make
use of Lemma 1.9, because no node (except for the source node s) has to
increase its radius a priori. Indeed, the optimal solution when 0 < α ≤ 1 is
to have s directly broadcast to all stations, and all other stations have radius
0, so we assume α > 1. This time, we use the APX-type construction also
for proving the NP-hardness results.

Theorem 3.11. For any α > 1, Broadcast in R2 is NP-hard, already for
well-spread instances.

Proof. Given an instance of planar 3–Vertex Cover D, construct D̄ as in
Theorem 3.5, draw this orthogonally in the plane, scale it by factor 3, remove
the first and last unit of non-backbone edges, and replace the lines by an
appropriate number of stations s.t. ε < 1. Let the source station s be any
backbone station. In order to broadcast to all stations, we have to set the
vertex stations of a vertex cover of D′ to radius 1. This time, we cannot argue
with the minimal configuration, but as every (Strong) Connectivity
solution is also feasible for Broadcast, we can be sure that the overhead
cost of the construction does not exceed ε. This means there will be a range
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assignment of size < m + k + 1 iff there is a vertex cover of D′ of size m + k,
showing NP-hardness of Broadcast.

Again, this construction can be made well-spread with the same method
as in Theorem 3.6, where the grid now has mesh-distance 1/s. Note that
despite of the now larger overhead, everything is still polynomial.

Theorem 3.12. For any α > 1, approximating Broadcast in R3 better
than 1+ 1

50
is NP-hard. For α > 3, the same result holds also for well-spread

instances.

Proof. We use exactly the same construction as in the proof for Theorem 3.7,
and let the source station be some backbone station. As in the preceding
proof, this time exactly the vertex stations of a vertex cover have to be
increased to radius 1; no additional edge stations have to be significantly
increased. This means a range assignment of size less than k + ε leads to
a vertex cover of size k, so we only have overhead ε, which we can make
arbitrarily small. So this time it pays to reduce from 5-Vertex Cover,
yielding the claimed result.

3.6 Overview and conclusion

In Table 3.1, old and new results for the investigated range assignment prob-
lems and ranges of α and d are given. New results in this thesis are listed in
bold print.

We prove NP-hardness results for (Strong) Connectivity and Broad-
cast for low values of α, in particular for (Strong) Connectivity for
α ≤ 1, i.e. with 4-inequality. This and the first overall APX-hardness result
for Broadcast answer open questions posed in the survey [CHP+02]. Thus,
we could fill the remaining gaps concerning NP-hardness of all problems. Our
simpler and more adjustable constructions yield improved inapproximability
results for all APX-hard cases. We could also give the first hardness results
for well-spread instances.

What remains open is the approximability status for these problems in 2-
d and for α ≤ 1, i.e., the question whether these problems are also APX-hard
for d = 2 and/or α ≤ 1, or if there is/are some cases which allow a PTAS. The
problem with 2-d is that we need an APX-hard planar problem to reduce
from, and for α ≤ 1, we cannot use Lemma 2.25 to reduce the reduction
overhead to make it approximation preserving. The latter issue seems to
be serious indeed, and leads us to conjecture that these problems should
have a PTAS for Euclidean distances. From the previous chapter, we know
that it is even still unclear whether non-geometric Strong Connectivity
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d = 2 (old) d ≥ 3 (old) d = 2 (new) d ≥ 3 (new)

C, 0 < α ≤ 1 — —
NP-hard
(also for w.s.i.)

NP-hard
(also for w.s.i.)

C, 1 < α < 2 — ∗ — ∗ NP-hard
(also for w.s.i.)

APX-hard
(ρ = 1 + 1

260
)

C, α > d (also for w.s.i.)

SC, 0 < α < 1 — —
NP-hard
(also for w.s.i.)

SC, α = 1 —
NP-hard
(also for w.s.i.)

NP-hard
(also for w.s.i.)

SC, 1 < α < 2 —
NP-hard
[KKKP00]

APX-hard
(ρ = 1 +

√
2

α−1

(7−√
2

α
)·52

)

SC, α ≥ 2
NP-hard
[CPS04]

APX-hard
[CPS04]
(ρ = 1 + 1

495
)

NP-hard
(also for w.s.i.)

APX-hard
(ρ = 1 + 1

260
)

SC, α > d (also for w.s.i.)

B, 1 < α < 2 — —
NP-hard
(also for w.s.i.)

APX-hard
(ρ = 1 + 1

50
)

B, α ≥ 2
NP-hard
[CCP+01b]

NP-hard
[CCP+01b]

NP-hard
(also for w.s.i.)

B, α > d (also for w.s.i.)
(∗ NP-hardness for α ≥ 2 is implicit in [CPS04].)

Table 3.1: List of previous and new results for different Range Assignment
Problems

allows a PTAS. But the ideas of Arora [Aro98] and Mitchell [Mit99], the
now ‘standard’ geometric PTASs for various geometric problems, seem not
to be applicable. This is due to the new cost function: we do not simply
add edge costs, but only the longest edge incident to a node. This makes
the cost function not only non-linear, but also ‘non-local’. By this we mean
that a slight change in some location of the instance may change influence the
situation somewhere completely else. If there was a PTAS, it is our suspicion
that it should result from a completely new approach. It would be worthwile
to investigate this direction, as it may produce a new line of PTASs for other
range assignment problems.
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Chapter 4

Approximation algorithms

4.1 The MST heuristic

4.1.1 (Strong) Connectivity

As we already mentioned when introducing range assignment problems, you
can view these problems as traditional network design problems with a new
cost function. We used the suggestive phrase of a “change of meric”. It
is already interesting by itself how much difference there can be between
an optimal range assignment and a traditional MST. It turns out to be a
very good approximation already for (Strong) Connectivity, due to the
lower bound proved in Chapter 1. This fact has been observed already in
[KKKP00].

Theorem 4.1 ([KKKP00]). An MST is a 2-approximation for (Strong)
Connectivity.

Proof. Basically, this holds because each edge dominates at most two nodes,
and |MST | is a lower bound for an optimal range assignment.

Let OPT = OPT (G) be an optimal range assignment for instance G, and
MST = MST (G) an MST for G. Recall that for Strong Connectivity,
we identify an edge {v, w} with the pair of arcs (v, w) and (w, v). We have

cost(MST ) =
∑
v∈V

max
(v,w)∈MST

d(v, w)

≤
∑
v∈V

∑

(v,w)∈MST

d(v, w) = 2 · |MST |

≤ 2 · cost(OPT ).

The latter inequality is the lower bound in Lemma 1.11. Note that the first
inequality uses the fact that we always assume non-negativity.
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So, an MST is not only a 2-approximation for Connectivity, but also
Strong Connectivity. We just want to remark that the strongly con-
nected analogon of an MST, a minimum strongly connected spanning sub-
graph, is also a 2-approximation for Strong Connectivity.

Corollary 4.2. A minimum strongly connected spanning subgraph is a 2-
approximation for Strong Connectivity.

Proof. Let ~M be a minimum strongly connected spanning subgraph of some
instance. Each arc dominates at most one node, i.e. is counted at most once
in cost( ~M). Taking both directions of each edge in MST yields a strongly

connected spanning subgraph
−−−→
MST , which is of course at least as expensive

as ~M regarding the usual
∑

cost function. So we have

cost( ~M) =
∑
v∈V

max
(v,w)∈ ~M

d(v, w)

≤
∑
v∈V

∑

(v,w)∈ ~M

d(v, w) ≤
∑
v∈V

∑

(v,w)∈−−−→MST

d(v, w)

= 2 · |MST | ≤ 2 · cost(OPT ).

Of course as the Minimum Strongly Connected Spanning Sub-
graph Problem is NP-hard, this Corollary does not give rise to an effi-
cient approximation algorithm. In fact, even if we had fast access to such
an MSCSS, this would not give us a worst case for Strong Connectivity
than the MST-heuristic, already in a very restricted setting.

Let us stress again that an MST is a 2-approximation for (Strong)
Connectivity for any non-negative symmetric distance function. However,
we will see now that this factor is tight already in a very simple setting,
namely the real line with Euclidean distances. This has also been observed
in [ACM+03].

Theorem 4.3. Approximation factor 2 for the MST-heuristic for (Strong)
Connectivity is asymptotically tight already on the real line with Euclidean
distances.

Proof. We construct a family of instances where cost(MST ) approaches 2 ·
OPT , depending on parameters ε > 0 and k ∈ N . Instance Ik,ε looks as
follows:

Ik,ε = {ε, 1, 1 + ε, 2, 2 + ε, . . . , k − 1, k − 1 + ε, k}
These instance basically consists of pairs of very close points at distance 1
to another, except for single points at the left and right end of the instance.
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Obviously, the MST of points on the line consists of all intervals. Each node
has a length (1− ε) edge incident to it, so

cost(MST (Ik,ε)) = 2k(1− ε) = 2k − 2kε ≈ 2k

In an optimal range assignment, one of the nodes in each pair transmits to
both neighboring pairs with radius 1, while the other is just connected to its
ε-partner at radius ε.

Figure 4.1: An instance Ik,ε with its MST (straight lines) and OPT (dashed
lines).

An optimal range assignment OPT can be seen in Figure 4.1. It has cost

cost(OPT (Ik,ε)) = k + (1− ε) + (k − 1)ε = k + 1 + (k − 2)ε ≈ k + 1

implying that

lim
k→∞
ε→0

cost(MST (Ik,ε))

cost(OPT (Ik,ε))
= 2

This holds for the MSCSS-heuristic for Strong Connectivity as well,
as MSCSS and MST are identical on these instances.

So, the simple analysis for the MST-heuristic is already tight in a very
restricted setting. However, it does not yet fully use the lower bound of
Lemma 1.11. When we examine the MST approximation ratio depending on
n, the number of stations, it directly allows the following calculation, where
w = maxe∈MST w(e) is the largest weight in an MST:

cost(MST )

cost(OPT )
≤ 2 ·mst

mst + w
=

2(mst + w)

mst + w
− 2w

mst + w
= 2− 2w

nw
= 2− 2

n

By the way, this term is quite common for the approximation ratio of MST-
heuristics for other problems. Just to mention two, MST-heuristics for Met-
ric TSP (e.g. [RSL77]) and the Steiner Tree Problem (e.g. [PS02]) have
this performance guarantee, and it is tight in these two cases.

Interestingly, it is not tight here. With a more careful calculation than
the one above, we get the following tight bound on the approximation ratio
of the MST-heuristic in dependence of n.
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Theorem 4.4. An MST is a feasible solution for (Strong) Connectivity
which is at most a factor

2− 2

bn
2
c+ 1

more expensive than an optimal solution. This bound is tight in dependence
of n.

Proof. We take a closer look on how edges determine the range of vertices.
An edge can dominate two, one or no vertex. Let A be the set of edges in
an MST that dominate two vertices, B the set that dominate exactly one
vertex, and C the set that dominate no vertex at all. Again, w is the weight
of a largest edge in MST.

For the approximation ratio of the MST-heuristic, the following estima-
tion holds:

cost(MST )

mst + w
=

2|A|+ |B|
|A|+ |B|+ |C|+ w

≤ 2|A|
|A|+ |C|+ w

≤ 2|A|
|A|+ w

= 2− 2w

|A|+ w
= 2− 2

|A|
w

+ 1

For the term |A|
w

, we have:

|A|
w

=
∑
a∈A

w(a)

w
≤

∑
a∈A

1 = #A ≤
⌊n

2

⌋
,

proving the approximation ratio.
To see that this ratio is tight, we consider instances Ik,ε again. Note that

they all have an even number of nodes n = 2k. For ε → 0, we have:

cost(MST (Ik,ε))

cost(OPT (Ik,ε))
≈ 2k

k + 1
=

n
n
2

+ 1
=

n + 2
n
2

+ 1
− 2

n
2

+ 1
= 2− 2

n
2

+ 1

For odd n = 2k +1, consider instance Ik,ε∪{k + ε}. For ε → 0, this instance
has about the same cost for MST and OPT as Ik,ε, namely cost(MST ) =
2k = n− 1 and cost(OPT ) = k + 1 = (n + 1)/2. In this case, we calculate:

cost(MST (Ik,ε))

cost(OPT (Ik,ε))
≈ 2k

k + 1
=

n− 1
n
2

+ 1
2

=
n + 1− 2

n
2

+ 1
2

= 2− 2
n
2

+ 1
2

= 2− 2

bn
2
c+ 1

showing tightness of the bound for all n.
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4.1.2 Broadcast

For the sake of completeness, we mention that an MST-heuristic yields
the best known algorithm for Geometric Broadcast. The Broadcast
MST-heuristic takes an MST and “hangs it up” by source node s, i.e. directs
edges in MST away from s. The MST heuristic yields a constant factor ap-
proximation for constant dimension d and α ≥ d.[CCP+01a] However, this
factor is expontial in d.

ε

1

Figure 4.2: A Broadcast instance Gk which is bad for the MST-heuristic.

At first, observe that this heuristic performs very badly in general graphs.
Consider the following family of graphs Gk = (V,E, w) with V = {s, i1, . . . , ik,
o1, . . . , ok} and E = {{s, ij} | j = 1, . . . , k}∪{{ij, oj} | j = 1, . . . , k}. Weights
w are d(s, ij) = ε for all j and d(ij, oj) = 1. Thus, Gk looks like a star with
k outer vertices oj but also has k inner vertices ij. See Figure 4.2. Now let d
be the metric induced by Gk. The MST heuristic applied to d assigns the k
inner vertices radius 1 at total cost k, while it is optimal to set r(s) = 1 + ε
and r(v) = 0 for v 6= s. Thus, the MST heuristic performs like n/2 on these
instances.

Now to geometric cases. In case α < d, it is easy to see that this heuristic
does not have a constant factor approximation: Take a d-dimensional cubical
grid with sidelengths k, and the central node as source node s. The MST
solution (every node has radius 1) has cost kd, while sending from the center
everywhere directly costs (k/

√
2)α = O(kα). Thus, for α < d, the ratio of

these two expressions cannot be bounded by a constant.
In case d = 2, a series of papers was devoted to improving the approxi-

mation factor of the MST heuristic. Finally, factor 6 was shown by Ambühl
[Amb05], closing the gap to a lower bound for this heuristic. We briefly de-
scribe this lower bound here; see Figure 4.3 for the lower bound of 6 in R2. In
general, the kissing number is the largest number of unit spheres that can be
arranged around one unit sphere while still touching (“kissing”) it. Basically,
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ε

1

Figure 4.3: 6 circles in the plane “kissing” a unit circle, and inducing the
worst-case instance for the MST heuristic.

this kissing number tells us how much space we have to build instances like
Gk above. In R2, we can build G6 which you can see in Figure 4.3 which
shows that Ambühl’s analysis of the MST-heuristic is tight. Generally, in Rd

the kissing number grows exponential with dimension d and implies a lower
bound on the performance of MST which is exponential in d.

Future research work is the design of better approximation algorithms,
or in fact any constant factor approximations for cases 1 < α < d. To start
with, such an algorithm for Broadcast in R2 for 1 < α < 2 would be
interesting.

4.2 Greedy heuristics

Although an MST can be obtained via a greedy algorithm, and we are looking
for minimum cost spanning trees in Connectivity, the MST heuristic is not
a greedy algorithm for Connectivity, or any other of the range assignment
problems we are addressing here. This is because an MST is the solution of
a greedy strategy w.r.t. the usual cost function | · |.

We consider two greedy strategies for the Connectivity problem, one
corresponding to Prim’s and another corresponding to Kruskal’s greedy algo-
rithm for computing an MST. Both algorithms are natural greedy strategies
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for the Connectivity problem. As a first observation, we will see that
they are near-optimal on the worst-case example for the MST heuristic. One
would hope that they should perform at least as well as the MST heuristic,
and perhaps even better. We show that both algorithms have approximation
ratio 2, and give instances showing this bound is tight. However, it is trick-
ier to fool these algorithms, as these instances are not quite as simple as the
tight instances for the MST heuristic, and need more complicated settings.

4.2.1 Greedy like Kruskal

Figure 4.4 describes the range assignment analog of Kruskal’s greedy strategy
for computing minimum spanning trees in graphs.[Kru56] It iteratively adds
the “cheapest” edge inducing no cycle until a spanning tree is constructed.
Here, the “cheapest” edge is the one whose addition causes the least increase
in cost of the currently induced range assignment. Adding large edges to a
node which already has a high radius becomes cheaper than adding a large
edge to a node with a low radius. Note that this means that the cost of
adding the same edge to the current solution may change after each step of
the algorithm, in contrast to Kruskal’s (or Prim’s) MST algorithm, where
one basically goes through a static list where the edges are sorted by their
weights.

To get an idea how this algorithm works, consider the worst-case instances
Ik,ε (cf. Figure 4.1) for the MST heuristic. First, all ε edges are added, what
Kruskal’s MST-algorithm would do as well. Then, a first length 1− ε edge is
chosen, say {ε, 1}. What happens now is that due to the increased range in
node 1, adding edge {1, 2} costs only about 1, while adding an MST edge,
e.g. {1+ε, 2}, costs about 2. Thus, edge {1, 2} is selected, making edge {2, 3}
much cheaper than {2+ε}, and so on. This behavior leads to a near-optimal
solution (the choice of the first edge may be non-optimal, at negligible extra
cost).

We now show that this algorithm has approximation ratio at most 2, as
the MST heuristic. Indeed, the proof uses the lower bound |MST | as well.

Theorem 4.5. For the solution K = Kn−1 of greedy algorithm Kruskal,
cost(K) ≤ 2·|MST | holds, implying that K is a 2-approximation for Strong
Connectivity.

Proof. Let MST = {e1, . . . , en−1} be a minimum spanning tree in G with
edges sorted in increasing length, i.e., w(e1) ≤ w(e2) ≤ . . . ≤ w(en−1). We
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Algorithm Kruskal

Instance: A weighted graph G = (V,E, d) with distances d : E → R+.

Output: A spanning tree K ⊆ E of G.

Algorithm:

• Let i := 0, Ki := ∅.

• Repeat

– Let i := i + 1

– Choose ki ∈ E s.t. Ki−1 ∪ {ki} contains no cycle and ki

minimizes

∆(k) := cost(Ki−1 ∪ {k})− cost(Ki−1).

– Let Ki := Ki−1 ∪ {ki}.
• Until i = n− 1.

• Output K := Kn−1.

Figure 4.4: Algorithm Kruskal.

prove the theorem by induction. The induction hypothesis is:

ρ(Ki) ≤ 2
i∑

j=1

w(ej).

In the first step, the increase in power cost of each edge amounts to twice its
length, so we select a cheapest edge. This means w(k1) = w(e1), implying
cost({k1}) = w(e1), thus the induction hypothesis holds at the beginning.

Assume now the hypothesis holds after step i. We choose ki+1 minimizing
∆(k). We know that Ki is a forest in G, and Ei+1 is a larger forest. Thus
we know (using the fact that the forests in G form a matroid) that there is
at least one edge ê ∈ Ei+1 such that Ki ∪ {ê} is a forest. This means the
greedy algorithm has considered using ê. Thus we have:

∆(ki+1) ≤ ∆(ê) ≤ max
e∈Ei+1

∆(e) ≤ max
e∈Ei+1

2w(e) = 2w(ei+1).

Combining this with the induction hypothesis yields

cost(Ki+1) = cost(Ki) + ∆(ki+1) ≤ 2
i∑

j=1

w(ej) + 2w(ei+1) = 2
i+1∑
j=1

w(ej),
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and we are done.

4.2.2 Greedy like Prim

The Prim greedy algorithm is started with a trivial component, namely
an arbitrary vertex v0 ∈ V , and grows this component successively until it
contains V completely. Of course, always the (currently) cheapest edge is
selected for growing this component; see Fig. 4.5.

Algorithm Prim

Instance: A weighted graph G = (V,E, d) with distances d : E → R+.

Output: A spanning tree P ⊆ E of G.

Algorithm:

• Let i := 0, V0 := {v0} an arbitrary start vertex v0 ∈ V , Pi := ∅.

• Repeat

– Let i := i + 1

– Choose pi = {v, w} ∈ E s.t. v ∈ Vi−1, w /∈ Vi−1, and pi

minimizes

∆(p) := cost(Pi−1 ∪ {p})− cost(Pi−1).

– Let Pi := Pi−1 ∪ {pi}, Vi := Vi−1 ∪ {w}.
• Until i = n− 1.

• Output P := Pn−1.

Figure 4.5: Algorithm Prim.

Consider this algorithm again on the MST worst-case instances Ik,ε. As-
sume it is started at v0 = ε. At first, edges {ε, 1} and {1, 1 + ε} are selected,
and Prim’s MST algorithm would now choose {1 + ε, 2}. Heuristic Prim se-
lects edge {1, 2} instead, as node 1 has increased radius already, making this
edge cheaper. In this way, Prim finds a near-optimal solution for instances
Ik,ε.

Algorithm Prim also achieves an approximation ratio of 2. The proof is
a bit more technical than the one for Kruskal.

Theorem 4.6. For the solution P of the Prim greedy algorithm, cost(P ) ≤ 2·
mst holds, implying P is a 2-approximation for (Strong) Connectivity.
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Proof. Again, we compare our solution with a minimum spanning tree MST .
In addition to the Pi and Vi, we keep track of two more edge sets. Namely
Ei ⊂ MST , where Ei = {e1, . . . , ei} contains the edges of M which have been
accounted for. This notion will become clear later. Let Ei = MST \Ei be the
edges of MST which have not been accounted for. Finally, let Ti = Pi ∪ Ei.
This theorem is again proven by induction. The induction hypothesis is:

cost(Pi) ≤ 2
i∑

j=1

w(ej), and Ti is a spanning tree of G.

In step one, the algorithm chooses a shortest edge incident to v0 as p1. If
this edge is unique, it is clear that e1 = p1 is also contained in MST , and
cost(p1) = 2w(e1), and T1 = (MST \ {e1}) ∪ {p1} = MST . Otherwise,
adding p1 to MST will close a (non-trivial) cycle. Choose the edge contained
in MST on this cycle which is incident to v0 as e1. Obviously, w(e1) = w(p1),
or MST would not be minimal. Observing that T1 = (MST \ {e1}) ∪ {p1}
is again a (minimum) spanning tree, the induction hypothesis holds in the
beginning.

Let the hypothesis hold after step i, and the Prim Greedy has chosen pi+1.
In case pi+1 ∈ Ei, we let ei+1 = pi+1 and are already done. So we assume
that {v, w} = pi+1 /∈ Ei. This means that Ti ∪ {pi+1} contains exactly one
cycle C, consisting of pi+1 and the (v, w)-path in Ti. This path runs from
Vi to V \ Vi, so it has to cross this cut at least once with some edge. By
definition, this edge has to lie in Ei, so we may choose it as ei+1. This edge
was considered by the Greedy algorithm but it rather chose pi+1, so we have:

∆(pi+1) ≤ ∆(ei+1) ≤ 2w(ei+1).

(Observe that now ei+1 has been accounted for, explaining the terminology
at the beginning.)

Concluding, as Ti+1 = (Ti \ {ei+1})∪ {pi+1} remains a spanning tree, the
induction hypothesis is proven, implying the theorem for P = Pn−1.

4.2.3 Factor 2 is tight

One could think that, as both greedy strategies are not fooled by the worst-
case instances for the MST heuristic, and the proofs for approximation ratio 2
rely on lower bound |MST |, that factor 2 is not the best we can show for these
algorithms. However, we will construct instances where both algorithms
asymptotically do not perform better than 2.
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A linear example

First, we describe instance family consisting of points lying on the real line R.
However, distances are not Euclidean, nor according to Geometric Range
Assignment Problems, i.e. Euclidean distances to the power α, so it is
not immediate what it means that these points are lying on a line. To make
this clearer, we define the concept of monotone (or linear) distances.

Definition 4.7. A Range Assignment instance G = (V, V ×V, d) is called
monotone or linear, if there is some total order ≺ on the vertex set V satis-
fying the following condition.
For any three points v ≺ w ≺ u, we have:

d(v, w) ≤ d(v, u) and d(w, u) ≤ d(v, u)

This definition means that points are linearly arranged such that if we
reach points lv and rv on the left and right from node v, we reach every
node between lv and rv from v. Another way to express this: The directed
adjacency matrix of any range assignment, indexed in order ≺, where row
v represents the outgoing arcs from v, has rows with the consecutive ones
property.

Obviously, Geometric Range Assignment instances on the real line
R are linear. Although allowing quite “strange” distance functions (we will
see an example later on), this notion makes sense insofar as it essentially
covers what makes the dynamic program of [KKKP00] for Geometric
Strong Connectivity work. To put it clearly: Linear Range Assign-
ment Problems allow a polynomial time exact algorithm.

Now to the construction of our linear example family whose members we
call Lj,ε. They are somewhat similar to instances Ik,ε. We define

Lk,ε = {0, ε;
1− ε, 1, 1 + ε;

2− ε, 2, 2 + ε;

. . . ;

(k − 1)− ε, k − 1, (k − 1) + ε;

k − ε, k}
Neighboring points in fact have their normal Euclidean distance. The more
curious distances are as follows:

d(i− 1, i− ε) = 2 ∀ 1 ≤ i ≤ k

d(i + ε, i + 1) = 2 ∀ 0 ≤ i ≤ k − 1
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All other distances are the sum of edge weigths of a path with least number
of edges on the above defined edges. By construction, the distance function
is linear, with the natural order.

1 1 1 111

2 2

Figure 4.6: With some adjustment of the Euclidean distances, factor 2 is
tight on the line.

Maybe the reader her-/himself would like to try out the Prim or Kruskal
greedy algorithm on this kind of instance. You will discover that both algo-
rithms will actually come up with an MST, so that ranges on points i±ε are
large (1 − 2ε). In an optimal solution, only integer points i have radius 1,
only half as many. This is because the “good” integer stations i are hidden
from left and right by stations i±ε, which produce much worse range assign-
ment although they lie so close to good station due to the “curious”—but
still monotone—distances.

Observation 4.8. Approximation factor 2 for greedy heuristics Kruskal
and Prim is tight on linear instances.

A geometric example for Kruskal

It is unclear how to obtain a geometric tight example in R, so the next thing
to try is R2, where obviously much more complex instances are possible than
in R (in particular, NP-hard ones). However, our examples are still inspired
by the linear one above, at least in principle.

The first example we present shows tightness only for Kruskal, but not
the Prim heuristic. Our second example will work for both algorithms. The
reason why we include this example as well is that (a) it is somewhat simpler
and (b) highlights differences between Kruskal and Prim.

This time, we will not give full details of all stations, but rather a picture
which should convince the reader as well. One reason is that we make use
of Lemma 2.25 again, so we have to add a huge number of extra points,
depending on the power-distance gradient α, to approach factor 2.

Figure 4.7 shows one building block for our first example. Larger instances
are constructed by placing the left square of a new building block at distance
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1−2ε

1−ε 1

1−2ε

Figure 4.7: A building block of our tightness example for Kruskal.

one to the right of the rightmost square of an old instance. Circles and squares
indicate points of interest. On the lines, points are placed at some (small)
distance δ, such that the power used for communication along them can be
neglected. At this point, we need that distance-power gradient α > 1. By
adding more blocks, we come closer to factor 2; also by decreasing parameters
ε and δ.

Now consider algorithm Kruskal on such an instance. At first, every
point is assigned a range δ, connecting the points on the lines. Then, all
(1 − 2ε) edges are added, thus all circled points will have range about 1.
After that, the (1 − ε) edges are included, and finally some of the length 1
edges edges, which will cause all squared points to have range about 1 (except
for the leftmost and rightmost point). In an optimal range assignment, we
only need all squared points to have range 1. There are as many circled
points as squared points, so we have about twice as many range 1 points in a
Kruskal solution (which is, by the way, identical to the MST solution) as
in an optimal solution. The total power cost of range δ nodes can be made
arbitrarily small due to Lemma 2.25. We conclude:

Observation 4.9. Approximation factor 2 of algorithm Kruskal is tight
for Geometric (Strong) Connectivity in R2 and α > 1.

Algorithm Prim is not fooled by this example. Consider the instance
in Figure 4.7, and start Prim on the left square node. It moves along the
incident line, adds the upper (1−2ε)-edge, and the (1−ε)-edge (and incident
δ-lines). The next choice is between the lower (1 − 2ε)-edge and a length 1
edge. This time, Prim will select the length 1 edge as one node already has
radius (1−ε), making it cheaper to add than the (1−2ε)-edge. The algorithm
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will continue giving the squared stations range 1, which is the optimal choice.

A geometric example for Prim

Again, we explain our example by a picture of one building block which are
connected horizontally to give instances of any desired size.

1−ε

1

Figure 4.8: One building block for the tightness example in R2.

This time, the left square of the next block is placed directly on top of the
rightmost square of a smaller example. Two neighboring circled points have
distance 1− ε, two neighboring squared points have distance 1. Apart from
the δ-lines, an MST uses all (1−ε)-edges, while an optimal range assignment
uses the length 1 edges between the squared points. When we use more and
more building block and decrease ε and δ, the MST range assignment comes
arbitraliry close to twice the cost of an optimal range assignment. The reader
may want to check that both the Kruskal and Prim greedy heuristic will
compute an MST on this kind of instance, showing

Observation 4.10. Approximation factor 2 of algorithm Prim is tight for
Geometric (Strong) Connectivity in R2 and α > 1.

Metric examples

The above geometric tight instances will not work any longer when α = 1, as
we cannot neglect the overhead costs on the lines any longer. While we doubt
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that there will be tight examples in R or R2 with Euclidean distances, we
will see now that for general metric instances, factor 2 is also tight already.

We will first show an example fooling Prim. It needs some further techni-
cal modifications to work for Kruskal, too. The instance basically consists
of a star with k leaves at distance 1 + ε to center node c. Additionally, a
length 1 path of “very many very close” stations leads to c. The other end
of this path, t, has a length 2 edge connected to a vertex s, on which the
Prim algorithm will be started. We add a tour through the star leaves and
t, where all edges have weight 1, see Figure 4.9.

s 2 1+ε

2

Figure 4.9: A tight instance for
Prim. . .

2 1+ε

2

2

Figure 4.10: . . . and an adaption for
Kruskal.

As usual, the distance between two points is the length of a shortest path
in the above graph. Now consider the Prim algorithm started on s. It will
first insert {s, t}, assigning radius 2 to node t. After the small edges on the
length 1 path to c are inserted, the important thing is that the first star leaf
is not attached to the star center c via the length (1 + ε) edge at cost 2 + 2ε
but to t via the length 2 edge at cost 2. The same holds for the next leaf on
the tour, and so on. Thus we end up with all k leaves at radius 2 and the
central node a negligible radius, while in an optimal range assignment (which
is in fact the MST range assingment), all leaves and the center have radius
1. With k →∞, the ratio between the two solutions comes arbitrarily close
to 2.

The example does not work as is for Kruskal, as the leaves would be
connected to c before {s, t} is added finally, resulting in an optimal solution.
We have to get the range of t close to 2 in another way. Instead of {s, t},
we add edges {si, t} with w(si, t) = 2 − (1

2
)i for 0 ≤ i ≤ log2(1/ε) + 1, cf.

Fig. 4.10. In this way, the range t comes close enough to 2, and Kruskal
will also eventually follow the tour through the star leaves. Notice however
that we will need far more star leaves in this reduction in order to compensate
the additional initial star around t.

These two examples show

Theorem 4.11. Approximation factor 2 of algorithms Kruskal and Prim
is tight for metric (Strong) Connectivity.
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Notice however that we cannot embed these examples into Euclidean
spaces, as the more star leaves we try to embed, the closer they will be to each
other. We thus conjecture that the greedy algorithms have an approximation
ratio which is strictly lower than 2 in Euclidean Rd, and dependent on d.

4.2.4 Greedy algorithms and Broadcast

In this section, we just state some thoughts and ideas about a greedy al-
gorithm for Geometric Broadcast. In the Broadcast context, the
following strategy is very intuitive:

Algorithm Prim’ for Broadcast

Instance: A weighted graph G = (V,E, d) with distances d : E → R+, and
a source station s ∈ V .

Output: An arborescence P rooted at s spanning G.

Algorithm:

• Let i := 0, V0 := {s}, Pi := ∅.

• Repeat

– Let i := i + 1

– Choose pi = (v, w) ∈ E s.t. v ∈ Vi−1, w /∈ Vi−1, and pi

minimizes

∆′(p) := cost(Pi−1 ∪ {p})− cost(Pi−1).

– Let Pi := Pi−1 ∪ {pi}, Vi := Vi−1 ∪ {w}.
• Until i = n− 1.

• Output P := Pn−1.

Notice a subtle difference to algorithm Prim for (Strong) Connectiv-
ity: As we add arcs (v, w) instead of edges, these only add to the range of
their outgoing station v. Thus, cost differs in Prim’ from the cost in Prim,
which we tried to indicate by writing ∆′ instead of ∆. This way, nodes
with already larger range are preferred even more than in the (Strong)
Connectivity context, which seems quite plausible for Broadcast.

Observation 4.12. If ties are broken in favor of the node with largest radius,
algorithm Prim’ works optimally on Geometric Broadcast with α ≤ 1.
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Proof. Due to the 4-inequality and tie breaking rule, the Prim’ solution will
always be a star around s, which is optimal for metric Broadcast.

Although we do not need good algorithms for trivial cases, the above ob-
servation does not hold for the MST-heuristic, the best known algorithm for
Geometric Broadcast. So what happens when α becomes greater than
one, but only slightly? We do not know, but chances are that Prim’ does
not already become completely hopeless immediately. So it is a candidate
for filling the gap of 1 < α < 2, for which no constant factor approxima-
tion for Broadcast in R2 is known yet. It shows a nice behavior on the
grid Z2, where MST fails for α < 2: Its solution structure changes exactly
at α = 2, where it computes an MST for α > 2 and a star for α ≤ 2, a
behavior suggested by the calculations for the MST on the grid. (We will
elaborate on this in a few paragraphs.) Moreover, it performs optimally on
the worst-cast example for MST when α ≥ 2, so it may be superior to MST
also in this case. There is a lower bound of 13/3 ≈ 4.33 on its performance
for α = 2.[WaLF02] What we actually know is that it is at least as good as
MST:

Observation 4.13. For α ≥ 2, Prim’ is at least a 6-approximation for
Broadcast in R2.

Proof. We can assume that the cost of an MST is about the same as |MST |:
By adding ε-points around each point like in Figure 4.3, every arc longer than
ε dominates a vertex. On the other hand, the same proof as for Theorem
4.6 shows that a Prim’ solution costs at most |MST |, so the approximation
ratio of Prim’ is no worse than that of MST.

So we know that Prim’ works optimally for α ≤ 1 and is a constant
factor approximation for α ≥ 2. But even if Prim’ would perform well for
some small α > 1, it is no universal algorithm for all α > 0. We can show
that the gap of 1 < α < 2 cannot be closed completely.

Theorem 4.14. Algorithm Prim’ does not yield a constant factor approx-
imation for Geometric Broadcast for any β < α < 2, where β =
2 log3 2 ≈ 1.26.

Proof. As mentioned above, Prim’ switches at the right time from an MST
to a star solution, namely at α = 2. This is different in another kind of grid,
which is more dense. This grid consists of equilateral triangles instead of
squares, and reminds of a honeycomb, which is how we will call our instances.

Definition 4.15. For an integer k ≥ 1, we call the vertices of a triangulation
of a hexagon with sidelength k with equilateral triangles of sidelength 1 a
k-comb. The central node is source node s.
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s

Figure 4.11: The 3-comb, with an MST range assignment.

See Figure 4.11 for a 3-comb. When s transmits directly to all stations,
this costs kα. An MST may assign all nodes but the outer ones radius 1, see
Figure 4.11. There are 3k2 + 3k + 1 nodes in a k-comb, so this would give a
range assignment of cost 3k2−3k +1 = Θ(k2). Thus, an MST is no constant
factor approximation for α < 2. For which values of α will Prim’ construct
a range assignment like the one in Figure 4.11? When we start Prim’ at
s, the six incident length 1 arcs are added. The next arc outgoing from s
has length

√
3, adding which would cost

√
3

α − 1. The same node could be
reached from two of the other nodes around s at cost 1, see Figure 4.12.

1

Figure 4.12: To connect the northern point, Prim’ has to decide between
two length 1 arcs and a

√
3 arc.

So for √
3

α − 1 > 1 ⇐⇒ 3
α
2 > 2 ⇐⇒ α > 2 log3 2

Prim’ produces the MST-solution on a k-comb, which is no constant factor
approximation for α < 2.

It is quite remarkable that Prim’ has this kind of gap for α regard-
ing constant factor approximation. We conjecture that Prim’ approximates
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Broadcast in R2 strictly better than 6 for α = 2, and is a constant factor
approximimation for 1 < α ≤ γ for some 1 < γ < β.

4.3 Limitations of the MST lower bound

How can we get beyond approximation ratio 2 for (Strong) Connectiv-
ity, maybe only for certain types of instances, e.g. metric ones? In the
analysis of the greedy algorithms Kruskal and Prim we conjectured that
these algorithms perform better in a Euclidean setting. One suggestive ap-
proach for such a result for, say, algorithm Prim, would be as follows. Let
P be the solution of algorithm Prim, and MST an MST. It would suffice to
show that cost(P ) < β · |MST | for some β < 2 for all Euclidean instances.
This is what we did for all factor 2 algorithms. However, we can show that
this kind of approach will not work. We construct a family of Euclidean in-
stances already on the real line R where an optimal range assignment comes
arbitrarily close to 2|MST |. Thus, lower bound |MST | is already fully ex-
ploited for approximating Connectivity, and we need a better lower bound
for improved results.

Theorem 4.16. For every ε > 0, there is an instance on the real line R with
Euclidean distances with

cost(OPT ) > (2− ε)(|MST |+ max
e∈MST

|e|),

where OPT is an optimal Connectivity range assignment.

(Without the additional term maxe∈MST |e|, a single edge would trivially
show the above statement.)

Proof. Again, our instances are made up of building blocks which we describe
by a picture. Only in this case, the building blocks are not arranged next to
each other, but have to be inserted into one another in a recursive manner.

1/2 1/2 1/2

Figure 4.13: The recursion used to build up our instances.

The first level of our recursion just consists of some (large) number of
points at distance 1/2. Recursively, insert such an instance (appropriately
scaled, of course) into every other free space between two points. In every
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such inserted instance of equally spaced points, again insert a newly scaled
instance into every other free space, and so on.

On the first level, we need one point with range one per building block
to connect all the building blocks. This means we already need a range
assignment of cost the size of the interval, say k, our example lives in, just to
connect the k building blocks. In all subsequent levels, the same argument
holds with respect to scaling. On the second level, the intervals occupied by
building blocks add up to k/2. On the third level, it is k/4, etc. In total, when
we apply this recursion more and more times, the optimal range assignment
for the constructed instance approaches k(1 + 1/2 + 1/4 + . . .) = 2k, while
a minimum spanning tree for this instance has size k. So for every ε > 0,
an appropriate choice of k and a finite number of recursions of the above
construction produces an instance where cost(OPT ) > (2 − ε)(|MST | +
maxe∈MST |e|), proving our claim.

4.4 Metric Strong Connectivity

4.4.1 Using Connectivity algorithms for Strong Con-

nectivity

We make the following observation about general approximation of Strong
Connectivity by Connectivity algorithms.

Theorem 4.17. Let OPTC be an optimal Connectivity solution, and
OPTSC an optimal Strong Connectivity solution on some fixed range
assignment instance. For every ε > 0, there is a range assignment instance
in R2 with Euclidean distances for which

cost(OPTC) > (2− ε)cost(OPTSC)

holds.

Proof. The proof is based on Theorem 4.16, which is not too surprising, as
the two values are nested in the following way.

|MST | ≤ cost(OPTSC) ≤ cost(OPTC) ≤ 2 · |MST |

So we need instances where cost(OPTC) ≈ 2|MST |, and cost(OPTSC) ≈
|MST |. We have constructed instances with the first property in Theorem
4.16. Instances with the latter property are, e.g., stars with many leaves,
and in R2 with Euclidean distances, instances Z2

k for large k.
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Figure 4.14: Instances as in Theorem 4.16, arranged on grid Z2
1.

We thus construct ‘grids’ of instances as in Theorem 4.16 as follows. We
scale such an instance so it has total length 1, and put one such unit instance
between every pair of horizontal or vertical neighbors, see Figure 4.14.

An optimal Connectivity range assignment will be identical to the op-
timum on all individual instances, with cost arbitrarily close to 2|MST |. An
optimal Strong Connectivity range assignment will be an MST directed
towards the star center, and a radius of

√
2k on the star center (in fact,

this is the solution of the ‘all-to-one, one-to-all’ heuristic). We have that
|MST | = 4k2, and thus for cost(OPTSC):

cost(OPTSC) = |MST |+
√

2k = |MST |(1 +

√
2k

4k2
) = |MST |(1 +

1

k
)

So with increasing k, we get the ratio cost(OPTC)/cost(OPTSC) arbitrarily
close to 2.

Being interesting by itself, as it shows how much the two connectivity
notions can differ, this Theorem immediately yields the following Corollary
regarding approximations for the two problems.

Corollary 4.18. An algorithm for Connectivity cannot be better than a
2-approximation for Strong Connectivity, already on instances in R2

with Euclidean distances.

Regarding this fact, the MST heuristic and the greedy heuristics are ‘op-
timal’ in some sense, as even taking an optimal Connectivity range as-
signment would give no better approximation of Strong Connectivity.
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4.4.2 Purpose built Strong Connectivity algorithms

Let us come back to the example in Theorem 4.16 showing that an optimal
Connectivity range assignment can cost as much as 2·|MST |, showing that
no better approximation ratio than 2 can be shown by this lower bound for
metric cases. This example does not work in the Strong Connectivity
case. In fact, the recursive construction is unnecessary; the same effect is
achieved just by taking the usual “lots of close stations” on every other gap
between two stations. An optimal strongly connected range assignment has
one ‘large’ radius of 1.5 in the middle of each cluster of ‘close’ stations, and
cost 1 on all other stations in this cluster, sending to the middle station.
(See Figure 4.15 in the next Theorem for an illustration of an optimal range
assignment.) These total costs of 2.5 per cluster/gap combination stand
against MST length of 2, showing a lower bound of 5/4 altogether for the
ratio cost(OPT )/|MST | for Strong Connectivity on the Euclidean line.
We get an improved lower bound in this kind of gap/cluster setting for a
different choice of parameters.

Theorem 4.19. For every ε > 0, there is a range assignment instance on
the real line R with Euclidean distances with

cost(OPT ) >

(
4

3
− ε

)
(|MST |+ max

e∈MST
|e|),

where OPT is an optimal Strong Connectivity range assignment.

Proof. Figure 4.15 shows our instances, together with an optimal range as-
signment. Our instances consist of clusters of length 2 with lots of close

Figure 4.15: An optimal Strong Connectivity range assignment with
cost 4/3 · |MST |.

(distance δ) points, at distance 1 to the next clusters left and right. An op-
timal range assignment has radius 2 on the middle point in each cluster, and
δ on all other points, resulting in cost 4 per cluster. Each cluster/gap com-
bination adds length 3 to an MST, showing lower bound 4/3, as desired.

Note that on this example, the MST heuristic also has cost 4 per cluster
(cost 1 on either end, and total cost 2 in between), which is the reason for
this specific example giving the best lower bound among the gap/cluster kind
of examples.
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On the other hand, the above Theorem gives a lower bound quite far away
from the upper bound 2 we know, meaning there is hope to prove something
better than 2 for metric Strong Connectivity with the |MST | lower
bound. However, we have not yet ruled out that this might be possible even
for non-metric instances, i.e. Geometric Strong Connectivity with
α > 1. But we cannot hope for this, as the same example as above shows in
a geometric setting.

Corollary 4.20. For every ε > 0, there is a Geometric Strong Con-
nectivity instance in R with α > 1 with

cost(OPT ) > (2− ε)(|MST |+ max
e∈MST

|e|),

where OPT is an optimal Strong Connectivity range assignment.

Proof. Consider the instance in 4.15 above again, this time with α > 1. The
difference is that we can once more make use of Lemma 2.25 and may neglect
the power consumed by the small radius stations on the lines. The MST-
heuristic is optimal, having cost 1α = 1 at the leftmost and rightmost station
of each cluster, and negligible power cost inside the cluster, adding up to
cost of about 2 per cluster. An MST has a length 1 edge on each gap, and
negligible edges inside the cluster, so in total an MST has only cost of about
1 per cluster/gap combination, showing that the ratio cost(OPT )/|MST |
can come arbitrarily close to 2 on these instances.

Back to the metric case, where we know of no better lower bound for
cost(OPT )/|MST | than 4/3. Remember the ‘one-to-all, all-to-one’ algo-
rithm from Chapter 2 which proved useful (i.e., provided PTASs) in some
restricted settings of Strong Connectivity? It is also an improved ap-
proximation algorithm for metric Strong Connectivity, which has al-
ready been observed by Ambühl et al. in [ACP+04].

Theorem 4.21 ([ACP+04]). Algorithm ‘All-to-one, one-to-all’ is a 3/2-
approximation algorithm for metric Strong Connectivity.

Proof. Algorithm ‘all-to-one, one-to-all’ directs an MST towards a hub node
s, which is chosen as to minimize

R = min
v∈S

max
w∈S

d(v, w),

i.e., s is the node with the least maximal distance R to any other node. In
some sense, s is the ‘center’ of G, and R is its ‘radius’.
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So the algorithm’s solution T will have cost

cost(T ) = |MST |+ R.

The following lemma is central to the proof of this Theorem.

Lemma 4.22. For a graph G with metric distances d and minimum spanning
tree MST , we have

R ≤ |MST |+ w

2

where w = maxe∈MST |e|.
Proof. We give a constructive proof for this Lemma: we identify a point m
which has maximal distance to any other point at most as claimed above.

Let P be a longest path in MST , with endpoints a and b. Imagine this
path put on the real line R, with point a at 0 and b at |P |. The exact middle
point of this path lies at |P |/2; pick the vertex closest to this arithmetic
mean and call it m. Cf. Fig. 4.16.

m

|P|/2|P|/2

<w/2

a b

Figure 4.16: Path P , with arithmetic mean and closest station m.

Now m lies at most w/2 from the arithmetic mean, and thus the 4-
inequality assures it has total distance at most |P |/2 + w/2 to the further of
the two endpoints of P , and thus in fact to any point in G (else P would not
have been a longest path). Of course, |P | ≤ |MST |, which closes the proof
of this Lemma.

We now calculate

cost(T )

cost(OPT )
≤ |MST |+ R

|MST |+ w
≤

3
2
|MST |+ 1

2
w

|MST |+ w

=
3

2
− w

|MST |+ w
≤ 3

2
− 1

n

showing the Theorem. (Actually, we have a (3/2−1/n)-approximation.)

This analysis is tight, as instances Zk := {z ∈ Z | |z| ≤ k} show: Addi-
tionally to having radius 1 on each point, radius r(0) = k is unnecessarily
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high. We have cost(OPT ) = 2k + 1 and cost(T ) = 3k, showing tightness
asymptotically.

The same sets of points show that ‘all-to-one, one-to-all’ is no constant
factor approximation in the non-metric case. Already for Geometric Strong
Connectivity in R for any α > 1, on instances Zk we observe the follow-
ing behavior. Optimal costs cost(OPT ) = 2k + 1 remain the same, but the
algorithm’s costs cost(T ) = 2k + kα increases, and the ratio between the two
expressions cannot be bounded by a constant anymore.

4.4.3 Well-spread instances

Although we have just seen that ‘all-to-one, one-to-all’ is no constant factor
approximation already in a very simple geometric setting, it deserves a closer
examination on well-spread instances. Having said that, instances Zk form
the prototype of a well-spread family in R, where the algorithm fails for
any α > 1. But it has also been observed in [ACP+04] that it does yield
a constant factor approximation for well-spread instances in R2 for α = 2,
albeit dependent on the (constant) parameter c in the definition of well-
spreadness, cf. Def. 3.2.

This dependence makes ‘all-to-one, one-to-all’ in the above R2 case obso-
lete, as the MST-heuristic has performance guarantee 2 on whatever instance.
However, a more detailed analysis reveals that it can be of more use in other
cases.

Theorem 4.23. On well-spread instances with parameter c of Geometric
Strong Connectivity in Rd with distance-power gradient α, algorithm
‘all-to-one, one-to-all’ has the following performances, in dependence of d
and α:

1. For d < α, it is no constant factor approximation.

2. For d = α, it is a constant factor approximation, where the constant
factor depends on c.

3. For d > α, it gives rise to a PTAS.

Proof. The algorithm’s cost amounts to cost(T ) = |MST |+R, as above. The
instance S is assumed to be well-spread, with maximal (Euclidean!) distance
∆ = ∆(S) and minimal distance δ = δ(S). This property yields R ≤ ∆α and
δ ≥ c∆/ d

√
n. Together with |MST | ≥ (n − 1)δα, we have the following line
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of inequalities.

cost(T )

cost(OPT )
≤ |MST |+ R

|MST |+ w
≤ 1 +

R

|MST |+ w

= 1 +
1

n
·
(

∆

δ

)α

≤ 1 +
1

n
·
(

d
√

n

c

)α

= 1 +
1

cα
· nα

d
−1

For α > d, the last term is unbounded for increasing n. (Being an upper
bound only, this does not yet prove statement 1.; we will come back to this
later.)

For α = d, we have

cost(T )

cost(OPT )
≤ 1 +

1

cα
= O(1),

i.e., the algorithm is a constant factor approximation in this case, showing
statement 2.

For α < d, define β = 1− α
d

> 0. We have

cost(T )

cost(OPT )
≤ 1 +

1

cα
· 1

nβ
.

We want to obtain a (1 + ε)-approximation. For 1
cα · 1

nβ ≤ ε, we are done
already. So we assume this is not the case, implying

1 +
1

cα
· 1

nβ
> ε ⇐⇒ n <

β

√
1

cαε
= O(1).

Thus there is a constant upper bound on n up to which we can try out all
possible range assignments in time O(1); for bigger instances, the algorithm
‘all-to-one, one-to-all’ will be a (1 + ε)-approximation, showing statement 3.

We come back to the case α > d. Consider instances

Zd
k = {z ∈ Zd | |zi| ≤ k},

d-dimensional grids lying inside a hypercube with side-length 2k around the
origin. (Zd

k)k is well-spread in Rd. A minimal configuration, where every
node has range 1, is feasible and thus optimal, at cost

cost(OPT ) = (2k + 1)d = Θ(kd).
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The algorithm additionally increases the origin’s radius to (
√

d · k)α, so we
have

cost(T ) = (2k + 1)d + (
√

d · k)α = Θ(kα),

implying
cost(T )

cost(OPT )
= Θ(kα−d),

which not bounded by a constant, implying statement 1.

So there exists a PTAS for well-spread instances, e.g. in the Euclidean
plane, or in fact for any α < 2. For dimension d = 3 and higher, we now have
nearly the full picture of the PTAS approximability of well-spread Strong
Connectivity: For α < d we have a PTAS, and for α > d there cannot be
one unless P = NP.

4.4.4 A new algorithm for metric Strong Connectiv-

ity

In this section, we present a new approximation algorithm for Strong Con-
nectivity. While we cannot prove a better approximation ratio for metric
cases than for ‘all-to-one, one-to-all’, it has some interesting features we will
discuss afterwards. We present our algorithm on the real line first, and gen-
eralize it to arbitrary instances. We call our algorithm ‘Combing back and
forth’, or just ‘Combing’.

Combing the real line

Let S = {s1, . . . , sn} a Strong Connectivity instance on the Euclidean
real line, with s1 < s2 < . . . < sn. In the first step, we ‘comb’ the line from
right to left. I.e., we set each radius r(si) = d(si−1, si), for all 1 < i ≤ n.
This is equivalent to inserting the arcs (si, si1), i.e., an MST with all arcs
pointing left.

In the second (and final) step, we comb back, from left to right. By this
we mean the following. The range assignment after the first step naturally
ensures a directed path for each node to every node on its left, while it already
contains some arcs to the right as well. We insert missing arcs resp. increase
arc lengths from left to right to ensure paths to each station on the right as
well, implying overall strong connectivity.

The algorithm is formulated in Figure 4.17. We can view this algorithm
as a directed counterpart to the preceding greedy algorithms as it iteratively
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Algorithm ‘Combing’ for Strong Connectivity in R

Instance: Stations S = {s1, . . . , sn} with s1 < s2 < . . . < sn.

Output: A strongly connected network C.

Algorithm:

• Let i := 1, C1 := {(sj, sj+1) | 1 ≤ j < n}.
• Repeat

– Let sj be the station to which there is no directed path from
si, with j minimal.

– Choose station sk with k < j minimizing

∆(k) := cost(Ci ∪ (sk, sj))− cost(Ci−1)

– Let Cj := Ci ∪ (sk, sj), i ← j.

• Until Ci is strongly connected.

• Output C := Ci.

Figure 4.17: Algorithm Combing in R.

adds arcs to a range assignment in a greedy fashion until it is strongly con-
nected. The following proof of the approximation factor is, in our opinion,
quite nice and simple.

Theorem 4.24. Algorithm ‘Combing’ is a 2 approximation algorithm for
Strong Connectivity on the line (i.e., general linear instances). On
metric distances on the line, it achieves an approximation ratio of 1.5.

Proof. Both proofs again rely on the MST lower bound in Lemma 1.11. After
the first combing step, we obviously have cost(C1) = |MST |. In the second
step, when arc (sk, sj) is added, we have considered adding arc (sj−1, sj). This
means that adding all MST edges as arcs pointing right is an upper bound
for the second step, showing a total upper bound of cost(C) ≤ 2 · |MST | for
our algorithm, showing the first claim.

Now assume our distances are metric. What we do in step 2 of our
algorithm is to fill the gap between sj−1 and sj, be it with arc (sj−1, sj)
or by increasing some other radius by this length. By the 4-inequality,
this costs at most d(sj−1, sj). Now observe that this means that station
sj is already assigned range d(sj−1, sj) from the first step! This means for
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connecting the next point sj′ > sj, we have to pay at most an additional
d(sj, sj′) − d(sj−1, sj), and so forth. To put it plainly, in the second step,
we are in a constant ‘buy one, get one free’ situation: For every new arc
unit that we buy here, we know that we actually can transmit twice that
distance to the right. This is always true but for the last arc that is added:
The ‘travel bonus’ may now lie beyond our instance and be without use for
us. However, this is covered by the additive term maxe∈MST |e| in our lower
bound from Lemma 1.11.

Apart from this last edge, we only add at most half of |MST | in the
second step. So our total range assignment has cost at most

cost(C) ≤ 3

2
|MST |+ max

e∈MST
|e|,

proving our second claim.

To see that factor 2 is tight for general linear instances, we can again
use instances Lj,ε, as in Figure 4.6. It is also not difficult to see that the
above bounds are tight in terms of the MST lower bound. Indeed, this is
clear a priori for geometric instances due to Corollary 4.20. For the metric
case on the line, consider instances consisting of stations at unit distance,
and lots of stations in every other gap. Here, the range assignment from
the first sweep only grants us no more than |MST |/2 worth of ‘free rides’
to the right, and the ‘Combing’ range assignment will indeed cost up to
3
2
|MST |+ maxe∈MST |e|.

However, this does not mean that the approximation ratio of this al-
gorithm is tight, neither for geometric nor metric instances. In the above
example, an optimal range assignment looks as follows. The middle station
in each ‘crowded’ gap has radius 1.5, while the other stations in this gap send
to this hub station at cost 1. This means total costs of 2.5 on each crowded
gap, compared to costs of 3 in the Combing solution. This means the above
instance merely yields a lower bound of 1.2 on the approximation ratio for
‘Combing’ on the metric real line. We know of no better lower bound.

For geometric cases on the line, the same instances as above give a slightly
better lower bound of 4/3, but compared to our upper bound of 2, this still
leaves us with a huge gap.

Let us briefly summarize these results.

Lemma 4.25. The approximation ratio of the algorithm ‘Combing’ the real
line cannot be better than

• 2 for general linear instances,
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• 4/3 for geometric instances, and

• 6/5 for metric instances.

So there is still hope that our new Combing algorithm may actually out-
perform ‘all-to-one, one-to-all’ on the metric line. Another thing that makes
it superior is that Combing does not immediately become completely hope-
less on geometric instances for any α > 1. ‘All-to-one, one-to-all’ does, even
on the arguably most simple instances. Here, Combing computes an optimal
solution, and it does provide us with at least a 2-approximation for general
geometric instances, maybe even better.

A further remark is a practical one. A typical solution computed by
‘all-to-one, one-to-all’ heavily relies on the central hub node. Its energy con-
sumption will probably be much higher than that of any other node, and
most communications will use this node. This may well cause the hub node
to become a bottleneck for the overall network activity, slowing communi-
cation down unnecessarily. Furthermore, this even makes the network more
vulnerable, as battery supplies in the hub node may run out quickly, and a
breakdown of the hub node will cause a mass breakdown of nearly all com-
munication. The solutions of Combing, on the other hand, will have a more
local structure, and avoid the above disadvantages of a single hub node. But
as our work is of more theoretical nature, we merely leave this as a side note.
Realistic networks will probably use an α ≥ 2, which already disqualifies the
‘all-to-one, one-to-all’ heuristic as a reasonable approximation algorithm.

Of course, we would like an algorithm that does not only work on instances
in R. In the next section, we generalize Combing to general metric instances.

Combing general metric instances

The idea of the Combing algorithm does make essential use of the path
structure in R. What we do to transfer this idea to general metric instances
is to first compute an MST in such an instance, and basically apply Combing
to a longest path in the MST.

Let s1, s2, . . . , sl be the stations on a longest path P in MST . The first
step is nearly identical to the line version: We direct all edges in MST
towards s1. Now consider the MST with root s1, i.e., the arcs are now
always directed from son to father. For notational convenience, we define a
function f : {s1, . . . , sl} → R+ as follows. For a node si on P , consider the
subtree Ti of MST rooted at si. We say there is another edge at distance r
from si if there is a path Pr on stations si, v1, . . . , vj−1, vj in Ti satisfying the
following three conditions:
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• |Pr| ≤ r,

• |Pr \ {vj−1, vj}| ≥ r,

• vj /∈ {s1, . . . , sn}.
We now set f(si) = r where r ≥ 0 is the maximal r so that for every

0 ≤ r′ ≤ r, there is another edge at distance r′ from si. Note that we have
that f(si) > 0 iff station si has degree 3 or more in MST , i.e., it has at least
two sons in Ti.

We are now ready to describe the second step of our generalized Combing
algorithm. We apply the second step of Combing on the line to the path P
in MST , with the following modification. Recall that for connecting station
sj we greedily chose station sk with k < j whose range came already closest
to sk. Now we do not necessarily raise the range of sk to d(sk, sj), but to

max {d(sk, sj)} ∪ {f(sj′) + d(sk, sj′) | k ≤ j′ < j}. (∗)
Then we repeat the loop as before until station sl is reached.

Theorem 4.26. Generalized Combing is a 1.5-approximation algorithm for
metric Strong Connectivity.

Proof. We ensure overall strong connectivity by using expression (∗) for in-
creasing the radii. In this way, all side paths in MST diverting from P are
covered, and thus all stations.

The approximation ratio can be seen as follows. When expression (∗) is
maximized by d(sk, sj), the argument is identical to the line case. In the
other cases, our increased radius does not only cover stations on P , but
also stations along at least one other path diverting from P . This means
by spending radius r, we provide connectivity along length 2r along MST
(due to the 4-inequality), and we are in the same situation as in the other
case, namely paying at most cost 3r on at least 2r units of |MST |, showing
altogether approximation ratio 1.5.

It is not difficult to see that approximation factor 1.5 is tight for this
metric generalization of Combing. A different, more careful treatment of
side paths may yield a better performance. As the above actually quite
easy procedure turned out to be quite involved to write down in detail, we
refrained from constructing a more involved algorithm. Besides, the first
step would have to be improving the analysis on the real line. On this
behalf, however, we will need to find a better lower bound than MST . This
alone would justify a more rigorous treatment of the Combing heuristic on
the line, as a new lower bound may well fuel whole new approximations for
these problems.
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4.5 Overview and conclusion

In this chapter, we started out with the well-known important MST-heuristic
and gave a tight analysis of its performance as a function of the instance size.
Then we gave the first extensive analysis of two natural greedy algorithms
for Connectivity which we called Kruskal and Prim due to their simi-
larities to the two fundamental MST algorithms. We could show that both
algorithms are 2-approximations, and that, despite their overcoming of the
MST-heuristics tightness example, the factor 2 is tight already in many im-
portant settings by giving various tight examples. Still, for instance the
case of Euclidean geometric instances is not yet resolved, and we conjecture
that both greedy algorithms perform strictly better than 2 in the worst case.
This would be a striking difference to the MST-heuristic, where the factor
2 is tight already on the Euclidean line. However, a proof would probably
have to make extensive use of geometric properties, as we have shown that
the factor 2 is tight on general metric instances. Furthermore, it has to make
use of a better lower bound than the |MST | lower bound, as we could show
that there are instances on the Euclidean line where the cost of an optimal
range assignment comes arbitrarily close to 2 · |MST |.

This is different for metric Strong Connectivity, and in the litera-
ture there already exists a 1.5-approximation algorithm, which also uses the
|MST | lower bound. This factor is tight already on very simple instances on
the Euclidean line, where it also becomes immediately completely hopeless
for geometric instances for any α > 1. We proposed a new algorithm, called
‘Combing’, which is also a 1.5-approximation for metric instances, and is
still a 2-approximation on the line for geometric or, more generally, linear
instances. There are chances that its performance is actually better than 1.5,
but for such a proof we would need to break through the limitations of the
|MST | lower bound.

At this point we would like to mention that there do exist algorithms
with approximation ratio better than 2 for Connectivity. A group around
Zelikovsky have shown a (5/3 + ε)-approximation scheme, and a more prac-
tical (11/6)-approximation algorithm in [ACM+03]. These two algorithms
are very similar to the two Steiner tree approximation algorithms of the
same approximation ratios, the (11/6)-algorithms by Zelikovsky [Zel93], and
the (5/3 + ε)-approximation scheme by Prömel and Steger [PS00]. What
is a striking parallel is that for the Steiner tree problem, a comparatively
classic problem in combinatorial optimization, breaking through the |MST |
lower bound and proving a better approximation ratio than 2 has been a
major open problem for decades, up until the above breakthrough work of
Zelikovsky.
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However, until now no algorithm is known with a better approxima-
tion ratio than 2 for Strong Connectivity. We could show that no
Connectivity-algorithm can be used for such a result, so a better approx-
imation would have to be purpose-built for Strong Connectivity. Also
in this case, the |MST | lower bound has to be improved upon, as there are
geometric instances on the real line of optimal cost approaching 2|MST | for
any α > 1.

94



Bibliography
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bounded variants of optimization problems. In Proc. of 14th In-
ternational Symposium on Fundamentals of Computation The-
ory (FCT 2003), LNCS 2751, pages 27–38. Springer, 2003. Also
available as ECCC Report TR03-026.

[CCP+01a] A. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca.
On the complexity of computing minimum energy. In Proc. of
18th STACS, LNCS 2010, pages 121–131, 2001.

[CCP+01b] A. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca.
A worst-case analysis of an MST-based heuristic to construct
energy-efficient broadcast trees in wireless networks. Technical
Report 010, University of Rome “Tor Vergata”, Math. Depart-
ment, 2001.

[CHP+02] A. Clementi, G. Huiban, P. Penna, G. Rossi, and Y. Verho-
even. Some recent theoretical advances and open questions on
energy consumption in ad-hoc wireless networks. In Proc. 3rd
Workshop on Approximation and Randomization Algorithms in
Communication Networks (ARACNE), pages 23–38, 2002.

[CPS04] A. Clementi, P. Penna, and R. Silvestri. On the power assign-
ment problem in radio networks. Mobile Networks and Appli-
cations, 9(2):125–140, 2004. Also available as ECCC Report
TR00-054.

[Edm65] J. Edmonds. Paths, trees and flowers. Canadian Journal of
Mathematics, 17:449–467, 1965.

[Edm67] J. Edmonds. Optimum branchings. Journal of Research of the
National Bureau of Standards B, 71:233–240, 1967.

[ESW96] P. Eades, C. Stirk, and S. Whitesides. The techniques of Kol-
mogorov and Bardzin for three-dimensional orthogonal graph
drawings. Information Processing Letters, 60(2):97–103, 1996.

[Fei98] U. Feige. A threshold of ln n for approximating set cover. J.
ACM, 45(4):634–652, 1998.

96



[GJ77] M. Garey and D. Johnson. The rectilinear steiner tree prob-
lem is NP-complete. SIAM Journal of Applied Mathematics,
32(4):826–834, 1977.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman,
New York, NY, USA, 1979.

[GJS76] M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-
complete problems. Theoretical Computer Science, 1:237–267,
1976.

[Hoc97] D. Hochbaum, editor. Approximation Algorithms for NP-Hard
Problems. PWS Publishing, 1997.

[Kar72] R. Karp. Reducibility among combinatorial problems. In
R. Miller and J. Thatcher, editors, Complexity of Computer
Communications, pages 85–103. Plenum Press, 1972.

[KKKP00] L. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc. Power con-
sumption in packet radio networks. Theoretical Computer Sci-
ence, 243:289–305, 2000.

[Kru56] J. B. Kruskal. On the shortest spanning subtree of a graph
and the travelling salesman problem. Proceedings of the AMS,
7:48–50, 1956.

[KV02] B. Korte and J. Vygen. Combinatorial Optimization. Springer,
Berlin, Germany, 2nd edition, 2002.

[Mit99] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal
subdivisions: Part II – a simple polynomial-time approximation
scheme for geometric TSP, k-MST, and related problems. SIAM
Journal of Computing, 28(4):1298–1309, 1999.

[PL95] K. Pahlavan and A. Levesque. Wireless Information Networks.
Wiley-Interscience, New York, 1995.

[Pri57] R. C. Prim. Shortest connection networks and some generaliza-
tions. Bell Systems Technical Journal, 36:1389–1401, 1957.
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Appendix A

Approximation algorithms in a
nutshell

We assume the reader is familiar with the basic notions of combinatorial
optimization. In this appendix, we want to give a short introduction to
the theory of approximation algorithms and non-approximability. For more
literature on this fascinating subject, the reader may want to study, among
others, the book by Vazirani [Vaz03], the book by Ausiello et al. [APMS+99],
the book edited by Hochbaum [Hoc97], or the survey by Trevisan [Tre04].

Recall that an instance I of an optimization problem P consists of a set
of feasible solutions F together with a cost function c on F . The objective
may be to find a feasible solution of maximal or minimal cost. As we only
consider minimization problems in this thesis, we restrict ourselves to such
problems here as well.

For an NP-hard optimization problem, we cannot hope for efficient exact
algorithms, so it is worthwhile to study efficient heuristics in this case. A
special class of heuristics are so-called approximation algorithms, which come
with a certain guarantee of how far their solutions may differ from an optimal
solution.

Definition A.1. Given a minimization problem P , and an algorithm A. We
say that A is a ρ-approximation algorithm for P , when we have that

max

{
c(A(I))

opt(I)

}
≤ ρ,

where opt(I) is the cost of an optimal solution for instance I.

It is nowadays standard notation to call the class of optimization problems
with a constant factor approximation APX. The usual notion of polynomial
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reducibility is not strong enough to preserve approximation properties in
this class. In [PY91], the following type of reduction in this class has been
defined.

Definition A.2 ([PY91]). Let P and P ′ be two minimization problems.
We say that P L-reduces to P ′ if there are two polynomial-time algorithms
f , g, and constants α, β > 0 such that for each instance I of P :

• Algorithm f produces an instance I = f(I) of P , such that the op-
tima of I and I, opt(I) and opt(I), respectively, satisfy OPT (I) ≤
α ·OPT (I ′), and

• Given any solution of I with cost c, algorithm g produces a solution of
I with cost c such that c−OPT (I) ≤ β(c−OPT (I ′)).

Two immediate yet crucial observations are:

Lemma A.3 ([PY91]). L-reductions compose.

Lemma A.4 ([PY91]). If P L-reduces to P ′, and there is a polynomial-time
(1 + 1/(αβγ))-approximation algorithm for P ′, then there is a polynomial-
time (1 + 1/γ)-approximation algorithm for P .

We say that a problem in APX is APX-complete if every problem in APX
L-reduces to it.

An optimization problem has a polynomial time approximation scheme
(or PTAS) if for every constant ε > 0, there is a polynomial time (1 + ε)-
approximation algorithm. (Note the running time may well be exponential
in 1/ε.) The class of problems allowing a PTAS thus is a subclass of APX.

Note that when a problem P ′ allows a PTAS, and P L-reduces to P ′,
then P allows a PTAS too. Via the famous PCP-theorem [AS98] it could be
proved that there are APX-complete problems, such as Max 3-SAT that do
not allow a PTAS unless P=NP. Together with the notion of L-reducibility,
this implies the following Theorem.

Theorem A.5. There cannot be a PTAS for any APX-hard problem unless
P=NP.

This means that showing APX-hardness of a problem makes the search
of a PTAS for this problem as obsolete as trying to design an efficient exact
algorithm for an NP-hard problem.

In chapter 3, we prove APX-hardness for several problems. The reduc-
tions used are all L-reductions from known APX-hard problems.
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