
Hydrodynamics of Rod-Like Colloids
and Vesicles

I n a u g u r a l - D i s s e r t a t i o n

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln
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Abstract

We investigate the dynamics of rod-like colloids and vesicles by means of com-

puter simulations. These two systems are examples of the rich dynamics in “soft-

matter” systems, which is characterized by large relaxation times. Therefore,

dynamical behavior in soft-matter systems is easily accessable experimentally,

and soft materials are driven into non-equilibrium states, already by weak exter-

nal fields. Both systems have in common that they serve as model systems for

transport phenomena in cell biology. We focus on the influence of hydrodynamic

interactions. This is realized by the use of a mesoscale hydrodynamics simula-

tion technique called the ”Multi Particle Collision Dynamics” (MPC) method,

which takes the solvent into account explicitly.

We calculate self-diffusion constants of rod-like colloids in the isotropic and ne-

matic phases. Rod diffusion is strongly influenced by steric and hydrodynamic

interactions between rods. Due to the anisotropy of the nematic phase also dif-

fusion is anisotropic in such systems. We find that hydrodynamic effects lead

to an increased diffusion. Moreover, our simulations show that the diffusion

anisotropy of the nematic phase depends on the rod aspect ratio. Our simu-

lation results are compared to experimental measurements of our cooperation

partners (group J. K. G. Dhont, FZ-Jülich) who measured diffusion constants

of rod-like fd -viruses suspensions. Our observations of the hydrodynamic en-

hancement and the anisotropy of rod self-diffusion are in good agreement with

the experiments.

A small amount of spherical tracer colloids is added to the rod suspensions de-

scribed above, and tracer-sphere diffusion constants are determined. They also

exhibit a strong diffusion anisotropy in the nematic phase. The effect of the

rod network on tracer-sphere diffusion can be divided into a steric and hydrody-

namic contribution. Our results are in good agreement with theoretical predic-

tions which incorporate hydrodynamic effects. An important quantity for the

calculation of the theoretical diffusion constants is the hydrodynamic screening

length, which is difficult to measure in experiments, but can be directly calcu-
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lated in simulations.

Due to the high concentration of rods, the typically long-ranged hydrodynamic

interactions, which depend inversely proportional on the distance between col-

loids, are screened such that they decay exponentially. We have developed a

method which allows us to calculate hydrodynamic screening lengths from the

equilibrium fluctuations of solvent shear waves. With this method, we are also

able to determine anisotropic screening lengths in nematic systems. We show

that hydrodynamic screening lengths are of the order of typical distances be-

tween neighboring rods. The calculated screening lengths are able to explain

tracer-sphere diffusion constants quantitatively.

Far more complex than rod suspensions are vesicles, as they have an internal

dynamics. We study vesicles in shear flow in a two-dimensional model system

which shows a variety of interesting dynamical phenomena. Depending on the

viscosity ratio, i.e. the ratio between the inner and the outer viscosity of the

vesicle, they can either “tumble”, “swing” or show “tank-treading”. In the tum-

bling regime, the vesicle orientation permanently rotates, in the swinging regime

the vesicle exhibits temporally periodical changes in shape and orientation and

in the tank-treading regime both shape and orientation are constant, whereas

the membrane rotates around the enclosed volume. For the first time, a transi-

tion from tank-treading to swinging with increasing viscosity contrast could be

shown in computer simulations. Our simulations are in good agreement with a

phenomenological theoretical description.

Close to walls, tumbling is strongly suppressed. Furthermore, the vesicle is re-

pelled from the wall. The origin of this repulsion is the hydrodynamical lift

force. We find that the lift force decays inversely proportional to the squared

wall distance and that it decays with increasing viscosity contrast. The lift force

is of relevance for the motion of blood cells in blood flow.
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1 Introduction

In our everyday life, we are permanently concerned with soft materials. Such

soft materials are e.g. butter, mayonnaise, tooth paste, motor oil, shampoo or

the foam on top of our cappuccino. The main characteristics of soft matter is

that it is easily deformable, where small deformations are elastic, like in solids,

but on the same time, the system can be easily deformed irreversibly, like in

liquids. This “viscoelastic” behavior is a key property of soft matter systems.

The physical origin of the softness arises from the fact that the relevant length

scales of soft matter are mesoscopic, i.e. they are significantly larger than the

atomic scale, but still small enough that thermal fluctuations play a significant

role. Typically, this regime ranges from several nano- to micrometers. On the

other hand, adhesion energies between mesoscopic objects are of the order of the

thermal energy. Since many systems with very different internal architectures

exhibit these characteristics, soft matter is very versatile. Soft matter can be

subdivided into several classes, which all have in common that building blocks

are mesoscopic. Colloids are small solid or even soft particles immersed into a

liquid environment, commonly referred to as solvent [23]. The relevant length

scales are the sizes of colloids which are in the range of 10 nm to 10 µm. Poly-

mers are long chain-like macromolecules, which are very flexible and therefore

typically coil in order to maximize entropy [28]. Here the crucial length scales

are the polymer length or the diameter of the polymer coil. Typical molecular

weights are 1 kg/mol to 100 kg/mol which correspond to coil radii of 5 nm to

100 nm. Membranes are two-dimensional sheets of amphiphilic molecules in a

liquid environment. If membranes enclose a small volume of a liquid they are

called vesicles. Here the important length scales are the spatial extensions of

the membrane or the typical vesicle radius.

Soft matter is of high relevance also for cell biology, since all the above mentioned

soft matter systems can be regarded as model systems for biological systems.

For example, many proteins, protein aggregates like F-actin filaments, cellu-

lose fibres, and many viruses can be regarded as colloids. Also many molecules
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1 Introduction

which are found in cell biology like DNA or proteins are polymers. Lipid bilayer

membranes are found at many different places in and around the cell, wherever

different cell compartments have to be spatially separated from each other.

The strong influence of thermal fluctuations leads to phenomena which cannot

be observed for macroscopic objects. Among these are diffusion, Brownian forces

due to density gradients or entropic spring forces in polymers. All these effects

have in common that they tend to minimize the free energy. Moreover, the typ-

ically low energy barriers can often be overcome in order to find global minima

in the free-energy landscape. Thus, proteins can fold into their native states, or

self-assembly of lipid-molecules into lipid-bilayer membranes is possible.

A variety of interactions are crucial for soft matter. Among these are electro-

static, direct steric, hydrodynamic, attractive van-der-Waals interactions and

forces arising from interfacial tension. There are many possibilities to change

these interactions. For example, electrostatic interactions can be screened by

the addition of salt or interfacial tensions can be varied by adding surfactants.

Due to the strong influence of thermal fluctuations, small changes of interaction

strengths are able to alter the system properties drastically.

The large separation in lengths scales comes along with a broad range of relevant

time scales. Depending on the particular soft matter system and the dynamic

process of interest, relevant times range from nanoseconds to seconds. The lower

boundary is the time scale for which inertial effects of colloids are lost due to

thermal fluctuations, whereas the upper limit is the relevant time for the forma-

tion of some highly ordered phases. Thereby the dynamics in soft matter systems

is generally far slower than in solid systems. Due to the large length and time

scales, dynamical phenomena in soft matter systems can be often investigated

by direct optical methods. In particular, colloidal systems are therefore often

used as model systems in order to understand dynamical phenomena like phase

separations or particle diffusion for general particle-based systems.

Many soft matter systems contain liquid ingredients, commonly referred to as

solvents, which are typically aqueous solutions or oils. The individual solvent

molecules are not relevant for the behavior of soft matter systems, and the

whole solvent can be regarded as a fluctuating continuum. Its crucial effects on

immersed mesoscopic objects are thermal random forces and solvent-mediated

hydrodynamic interactions (HI). The former effect arises from thermal motion

of solvent molecules, whereas the latter is due to collective solvent particle mo-

tion. A consequence of the meso-scaled object sizes and high viscosities is that
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inertial effects are negligible for soft matter systems. Hydrodynamic interactions

are long ranged as they decay reciprocally with distance. Moreover, they have a

strong influence on the dynamics of immersed objects and thereby on the whole

soft matter system itself.

Mesoscopic length scales, thermal fluctuations and hydrodynamic as well as

other interactions are the general characteristics of soft matter. In order to in-

vestigate soft matter systems by computer simulations, the simulation method

has to incorporate all these effects. Due to the large separation in length and

time scales an efficient treatment by Molecular Dynamics on an atomistic level

is not feasible. Instead we use a mesoscale particle-based simulation technique,

the “Multi Particle Collision” Dynamics (MPC) algorithm, which takes into ac-

count all hydrodynamic and thermodynamic properties which are essential for

the dynamics of soft matter.

Colloidal particles are often spherical, but there are also many examples of rod-

like colloids. Rod-like colloids are particularly relevant as model systems for

cell biology, as many biological filaments are embedded in a liquid environment.

The cytoplasm, i.e. the interior of a biological cell, is a crowded environment

which typically contains many filamentous structures like F-actin and micro-

tubuli. Rod-like colloids have been studied intensively in the past. In particular

static properties, like the formation of phases are well known. For small con-

centrations, rods are oriented isotropically. With increasing concentration, a

nematic phase is formed, where rods have a favoured orientation, but no posi-

tional order.

However, far less studied are the dynamical phenomena in isotropic and nematic

rod systems, although it is of high importance for the understanding of diffu-

sive transport in dense filament networks. In particular, the current knowledge

about the influence of solvent-mediated hydrodynamic interactions on colloid

dynamics is very poor. With the use of the MPC method, we are able to answer

many open questions on hydrodynamic interactions in rod suspensions.

Far more complex than rod suspensions are vesicles which have an internal dy-

namics. These interesting objects are of high biological relevance. In the cytosol,

many different kinds of vesicles can be found. Vesicles store, transport, or di-

gest cellular products and waste, but also individual cells like blood cells can be

regarded as vesicles. In particular for red blood cells, it is crucial to understand,

how the vesicle behaves in shear flow and how vesicle dynamics is affected by a

viscosity contrast, i.e. a different solvent viscosity inside and outside of the vesi-
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1 Introduction

cle. It is known that vesicles in shear flow can be found in different dynamical

regimes, where the orientation and the shape of the vesicle are either constant in

time or undergo periodic changes. However, the influence of a viscosity contrast

on the formation of dynamical regimes has not been studied so far by simula-

tions taking into account thermal fluctuations.

A further interesting phenomenon is the hydrodynamic lift force, which acts on

vesicles in shear flow closed to a wall. Due to this hydrodynamic force, the

vesicle is repelled from the wall. It is of high interest to understand the depen-

dence of the lift force on the distance from a wall and the influence of a viscosity

contrast on the lift force.
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2 Scientific background

2.1 Hydrodynamics

Hydrodynamics is the science of the dynamics of liquids. Although this research

field is very complex, its effects can be observed directly in everyday life – in

contrast to other complex subjects like relativity or quantum mechanics. Hy-

drodynamic effects are for example used while swimming, paddling on a lake,

stiring coffee or opening a water tap. Hydrodynamics of simple fluids can be

well described by the incompressible Navier-Stokes equation:

̺m

(
∂v

∂t
+ (v · ∇)v

)
= η∇2v −∇p + fext

∇ · v = 0 (2.1)

Here v = v(r, t) denotes the velocity field, p = p(r, t) the pressure field, η is

the fluid viscosity, ̺m is the mass density and fext = fext(r, t) is an external body

force field (force per volume). The second equation expresses incompressibility

of the liquid. The Navier-Stokes equation can be derived by balancing the forces

acting on a volume element of a fluid (see, e.g. Ref. [62]). Once the external

body force field fext(r, t) together with the boundary conditions is known, the

Navier-Stokes equation can be – at least in principle – solved, i.e. the velocity

v(r, t) and the pressure fields p(r, t) can be determined. However, since the

Navier-Stokes equation is non-linear, this is not a trivial task. The non-linear

term is responsible for chaotic phenomena like turbulence. Analytic solutions

exist only for few special cases with very simple geometries and flow conditions

[62].

The general approach is to find solutions numerically. Because of its prac-

tical relevance, this is a huge research field in computational science, called

“Computational Fluid Dynamics” (CFD) [34, 99].

However, for typical soft matter systems, it can be shown that the contribution

of the non-linear term in the Navier-Stokes equation becomes negligible. for a
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2 Scientific background

characteristic length lc and a characteristic velocity vc of the soft matter system

of interest, we can rescale all quantities appearing in the Navier-Stokes equation

(2.1),

t′ = tu/lc p′ =
lcp

ηvc

v′ = v/u f ′
ext =

l2cfext

ηvc

∇′ = lc∇

With these quantities, the Navier-Stokes equation can be rewritten in a dimen-

sionless form,

Re

(
∂v′

∂t′
+ (v′ · ∇′)v′

)
= ∇′2v′ −∇′p′ + f ′ext (2.2)

∇′ · v′ = 0.

The dimensionless number

Re =
̺mvclc

η
(2.3)

is called the Reynolds number which quantifies, how important inertial forces

are compared to viscous forces.

In typical soft matter systems, the characteristic quantities entering the Reynolds

number (2.3) are

lc ≈ 10−9−10−5 m vc ≈ 10−9−10−5 m/s

̺m ≈ 103 kg · m−3 η ≈ 10−3 kg · m−1 · s−1.

Hence the Reynolds number is of the order of

Re ≈ 10−12 − 10−4 ≪ 1.

On the other hand, all the terms ∂v′

∂t′
, (v′ · ∇′)v′, η∇′2v′ − ∇′p′, and f ′ext in

Eq. (2.2) are typically of the order of unity (see Ref. [23], Chap. 5.5). Therefore

the left-hand side of Eq. (2.2) can be neglected. This leads to the Stokes equation

(also known as creeping flow equation),

∇p(r) − η∇2v(r) = fext (2.4)

∇ · v(r) = 0. (2.5)
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2.1 Hydrodynamics

F

Figure 2.1: The velocity field v(r) due to a point force F can be calculated with

the Oseen tensor (2.6).

This is a set of linear partial differential equations which can be solved by Green’s

functions. The corresponding Green’s functions are the Oseen tensor [23]

TO(r) =
1

8πη

1

r

(
Î +

r ⊗ r

r2

)
(2.6)

and the pressure vector [23]

gO(r) =
1

4π

r

r3
. (2.7)

Given an external point force F, acting at position r′, these Greens’s functions

relate F to a velocity

v(r) = TO(r − r′) · F(r′) (2.8)

and a pressure field

p(r) = gO(r − r′) · F(r′). (2.9)

The velocity field v(r), induced by an external point force, is shown in Fig. 2.1.

Tensors coupling forces linearly to velocities like in Eq. (2.8) are generally called

“mobility tensors”. Thus, the Oseen tensor TO(r) is the mobility tensor of the

13



2 Scientific background

Stokes equation (2.4). Later also other mobility tensors will be introduced, the

isotropic Ts(r) and anisotropic screened mobility tensors Ta(r) (see Chap. 5).

In order to make the different mobility tensors distinguishable, the mobility

tensor TO(r) (and also the pressure vector gO(r)) of the Stokes equation (2.4)

is specified with the subscript “O”. Subscripts are omitted in relations which

generally hold for mobility tensors and which do not depend on the underlying

hydrodynamic equation.

The velocity field v(r) and the pressure field p(r) can be calculated for an arbi-

trary external body force fext(r
′) by superposition,

v(r) =

∫
dr′T(r− r′)fext(r

′) (2.10)

p(r) =

∫
dr′g(r− r′) · fext(r

′). (2.11)

Since TO(r) decays like 1/r, hydrodynamic interactions are very long-ranged. In

Chap. 5, we will see that hydrodynamic interactions can be screened in crowded

environments such that they are effectively short-ranged.

2.2 Colloidal systems

Particles are typically called colloids, if they are dispersed in a liquid envi-

ronment and have linear sizes of 1 nm to 1 µm. As these particles are large

compared to solvent molecules, the atomic details are of minor importance. In

particular quantum effects are neglegible. However, colloidal particles are still

small enough that effects of thermal fluctuations like Brownian motion play a

significant role.

Many soft materials in real everyday life are colloidal systems. Examples are

Paints: Paints consist of small solid pigments immersed into a solvent (also

called vehicle in paint chemistry). The pigment density determines the

rheological properties of the paint and is optimized such that paint can be

easily distributed on the substrate.

Milk: As milk contains many relatively rigid macromolecules, casein micelles, it

has the properties of a colloidal system.

Gelatine: Gelatine is a composition of several proteins immersed in aqueous

solution. This colloidal system forms thermally reversible gels in water

with a gel-melting temperature below 36◦, i.e. below body temperature

14



2.2 Colloidal systems

[8]. This causes gelatin-based food to have its gel-like properties on the

dish and a good flavour release in the mouth.

Also other soft matter object like proteins, star-like polymers [84], dendrimers

[36] or vesicles (see Chap. 7) can be often regarded as (ultra-soft) colloids. In

particular in biology, many objects have the properties of colloids. Among these

are proteins [47, 92], protein aggregates (e.g. F-Actin filaments) or viruses. We

will come back to these organic colloids below.

Far more important than the atomic details of colloids are other system proper-

ties like the shape of the colloids (e.g. spherical, rod-like or plate-like), the sol-

vent viscosity and the way colloids interact with each other. The latter property

is indeed the most complex, because it depends on many different mechanisms

and parameters. For example, colloids are often charged, so that electrostatic

interactions play a role. For uncharged colloids or charged colloids at high salt

concentrations, direct steric interactions are crucial. Colloids are often highly

deformable (e.g. star-like polymers [84]). The tendency of internal degrees of

freedom to minimize free energy leads to entropic forces which can be described

by an effective interaction potential between particles. Under certain circum-

stances, colloidal particles tend to aggregate. This can for example happen

if surface sites on different particles bind to each other. In binary mixtures

or colloid-polymer mixtures, also depletion interactions can cause aggregation

[26, 27, 95]. Common for all kinds of colloidal systems is that particles interact

hydrodynamically.

It is important to investigate the properties of colloidal model systems both

theoretically and experimentally, in order to understand the behavior of such

complex systems. Furthermore, colloidal systems are very useful toy models

for statistical physicists. Like atoms, colloids can form a variety of interesting

phases. Due to the large particle sizes and their slow dynamics, it is far easier to

investigate colloidal model systems instead of atomic systems in a lab, because

it is possible to image colloids with direct optical methods.

Many different kinds of colloidal model systems have been realized experimen-

tally in the past. There are three common experimental approaches to produce

colloidal particles. Inorganic nanostructures like tubes, rods, wires, and fibers

are at the focus of research interest. The synthesis of these nanostructures is a

big challenge because most inorganic materials do not form the desired structure

by themselves, and also the control of particle sizes is not straightforward. The

production of monodisperse inorganic colloids is an art by itself. Often used

15



2 Scientific background

inorganic colloids are silica [88], boehmite [12] or mineral particles [19].

Biological and organic materials usually have well-defined properties down to the

nanoscale due to their genetic replication. If monodispersity is of high impor-

tance, it is convenient to use such particles. Examples of organic particles are the

globular protein apoferritin [47, 92] or the rod-like fd virus [46, 47, 58, 61, 70, 93].

However, there are situations, where it is disadvantageous to use (bio)organic

particles. Since all the particle properties are coded in genes, it is impossible to

tune particle properties like sizes, shapes, rigidity, or charges independently.

A third experimental approach solves the disadvantage of fixed properties of

organic colloids by combining both above mentioned classes of colloids. Organic

colloids are often used as templates which are coated with inorganic material

[96, 103, 104]. Such core-shell particles make it possible to take advantage of

the well-defined shapes and sizes of the organic template particles with the ad-

ditional option to modify particle properties like size, shape, charges or surface

properties in a controlled way.

2.3 Rod-like colloids

In real life, there are many examples of rod-like structures in liquid environ-

ments. Most of them can be found in biology. In the cytoplasm, there are many

filamentous components like microtubuli or F-actin (see e.g. Ref. [13], Chap. 7).

In many cases, filaments are orientated isotropically (see Fig. 2.2.a) but in some

situations they are directed (see Fig. 2.2.b) [16, 78]. In plants, cellulose fi-

bres are crucial for providing stability. Also many viruses have rod-like shapes.

Examples are the tobacco mosaic virus (see e.g. Ref. [2] and [13], Chap. 18) or

the bacteriophage fd virus (see Fig. 2.3) [46, 47, 58, 61, 70, 93]. In order to learn

about the properties of such systems, it is convenient to investigate simple col-

loidal model systems with a reduced complexity compared to real biological cells.

2.4 Phase behavior of rod-like colloids

Systems of rod-like colloids can form different thermodynamic phases. The phase

behavior depends mainly on the volume fraction and the spatial extensions of

the rods (lyotropic liquid crystals). For soft and flexible particles also tempera-
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2.4 Phase behavior of rod-like colloids

Figure 2.2: TEM-pictures of F-Actin networks in the fish epidermal keratocyte

cytoskeleton (from Ref. [91]). In (a) filaments are aligned isotropi-

cally whereas (b) shows a region where one direction is preferred.

Figure 2.3: Bacteriophage fd viruses in the nematic phase (from Ref. [61])
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2 Scientific background

Figure 2.4: TEM picture of a dried suspension of cellulose crystallites prepared

by sulfuric acid hydrolysis of cotton filter paper (from Ref. [29])

ture has an effect on the formation of phases (thermotropic liquid crystals). The

static phase behaviour of rods has been studied intensively [26].

Onsager [77] was the first to explain the experimentally observed phase transi-

tion from an isotropic to a nematic state with increasing concentration. In the

isotropic phase, rods are oriented completely randomly, whereas in the nematic

phase, there is one preferred direction. This direction is represented by the unit

vector

n̂ =
〈û〉
|〈û〉| , (2.12)

called the nematic director. Here û is the unit vector along the long axis of

an individual rod. However, there is no positional order in the nematic phase.

The degree of orientational ordering can be quantified by the nematic order

parameter which is defined as

〈P2〉 =
3

2

〈
(û · n̂)2 − 1

3

〉
. (2.13)

A nematic order parameter of 〈P2〉 = 1 means perfectly aligned rods whereas in

the isotropic phase 〈P2〉 = 0. Onsager calculated the free energy for perfectly

hard and rigid spherocylinders in a second virial approximation and predicted
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2.4 Phase behavior of rod-like colloids

û

n̂

(a) (b)

Figure 2.5: Rod-like colloids (a) in the isotropic and (b) in the nematic phase.

that the volume fraction at the isotropic-nematic (I-N) transition is φI−N = 4d/L

where d is the rod diameter and L the rod length. The volume fraction φ of a

cylindrical rod with number density ̺rods is

φ =
1

4
̺rodsd

2L. (2.14)

The quantity L/d is called the rod aspect ratio which is an important quantity

for comparisons of simulations with theory or experiments. It is convenient to

introduce the dimensionless concentration

ρ = φ
L

d
, (2.15)

since it has turned out that it is the critical parameter in most theories concern-

ing lyotropic phase formations. By a more careful numerical calculation [15] it

could be shown that there is a small coexistence region of nematic and isotropic

phases where

ρI = 3.289 and ρN = 4.192 (2.16)

are the volume fractions at coexistence of the isotropic and the nematic phases,

respectively. This theory is exact in the limit of L/d → ∞. There are several

extensions which incorporate additional effects like flexibility [35, 51, 102] or

electrostatic interactions [89]. A condensed but sufficiently detailed overview of

the extensions to the Onsager theory can be found in Refs. [26, 98].

19



2 Scientific background

The rod overlap volume fraction φ∗ is defined to be the volume fraction for which

the average free volume of one rod is that of a sphere with a diameter L. For

spherocylinders, the overlap volume fraction reads

φ∗ =
3

2

(
d

L

)2

. (2.17)

With the definition of φ∗, the mesh size ξ of a rod network can be defined,

ξ = L

√
φ∗

φ
. (2.18)

This quantity is a measure for the linear sizes of the “holes” in the network,

which is important to judge whether particles in rod suspensions are able to

diffuse out of its local environment or if they are trapped in a cage of other rods.

For spherocylinders, the explicit expression of the mesh size is

ξ = d

√
3

2φ
. (2.19)

Beside the two above mentioned phases, there are even more thermodynamically

stable phases. For high concentrations, a smectic phase is favoured where in

addition to orientational order rods also have positional order in the form of a

stack of layers, where the rods are oriented parallel to the layer normal [26, 59].

Since the dynamics in smectic rod systems is too slow in order to be studied

by computer simulations, this work only focuses on dynamics in isotropic and

nematic systems.

2.5 Semiflexible rods

Many rod-like colloids, like the fd virus, are not perfectly stiff but slightly flex-

ible. The flexibility of rods can be quantified by some (equivalent) quantities

which are introduced in the following. An important property of semiflexible

rod-like colloids is the bending rigidity κ which defines the energy cost per length

for bending a rod such that it has a local curvature of 1/R. In a continuum

description, a semiflexible rod with length L can be parametrized by r(s), where

s is distance between one end of the rod and site r(s) measured along the rod

contour (see Fig. 2.6). Consequently, s equals zero at one end of the rod and L

at the other. The bending energy of the whole rod is
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Figure 2.6: Important quantities for semiflexible rods.

Ubend =
κ

2

∫ L

0

(
∂2r

∂s2

)2

ds. (2.20)

The tangential vector at a certain position of a rod is then

t̂(s) =
∂r(s)

∂s
. (2.21)

In thermal equilibrium, the correlation function
〈
t̂(0) · t̂(s)

〉
depends on s like

〈
t̂(0) · t̂(s)

〉
= exp

(
− s

lp

)
, (2.22)

where lp is the persistence length. The persistence length lp depends on κ by

lp = κ/(kBT ). Alternatively, often the end-to-end distance Re is used to quantify

the semiflexibility. It is related to the persistence length lp by

R2
e = 2lp

{
L − lp

[
1 − exp

(
−L

lp

)]}
. (2.23)

2.6 Self diffusion

Diffusion is a spontaneous process which is the statistical outcome of random

motion. Due to their thermal energy, Brownian particles always move with

respect to the average velocity of its macroscopic environment. Collisions with

solvent molecules change the trajectories of Brownian particles. After a certain

time τB – the so called diffusive, Brownian, or Smoluchowski time scale – there
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r(t)

x

y

n̂

Figure 2.7: Trajectory of an anisotropically diffusing particle with D‖ > D⊥.

are no memory effects any more, i.e. the motion of a Brownian particle is

completely uncorrelated with its initial velocity. For a spherical colloid with

radius as and mass M , the Brownian time is

τB =
M

6πηas

. (2.24)

τB is typically of the order of nanoseconds for micrometer sized colloids. Since

there are no memory effects on the diffusive time scale, Brownian particles indeed

perform a random walk and hence diffuse.

The mean square displacement (MSD) of a Brownian particle is defined by

W (t) :=
〈
(r(t) − r(0))2

〉
. (2.25)

For diffusive motion, MSD increases linearly with time,

W (t) =
〈
(r(t) − r(0))2

〉
= (2 · ddim)Dt. (2.26)

Here D is the so called diffusion constant. For the sake of generality, the depen-

dence (2 · ddim) on the dimensionality ddim is introduced.

However, in anisotropic (e.g. nematic) systems, diffusion depends on the di-

rection of motion. Let us discuss the case of uniaxial anisotropy as in nematic

systems. The colloid of interest (a rod among other rods or a sphere in rods)

performs two independent random walks. A one-dimensional random walk in
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2.6 Self diffusion

the direction of the nematic director n̂ and a two-dimensional one in the two-

dimensional subspace perpendicular to n̂. The diffusion constants are D‖ and

D⊥ for parallel and perpendicular directions, respectively. The time dependence

of mean square displacements W‖(t) and W⊥(t) is then

W‖(t) :=
〈
(r‖(t) − r‖(0))2

〉
= 2D‖t (2.27)

W⊥(t) :=
〈
(r⊥(t) − r⊥(0))2

〉
= 4D⊥t. (2.28)

where r‖(t) := (n̂ ⊗ n̂)r(t) and r⊥(t) := (̂I − n̂ ⊗ n̂)r(t). Also in anisotropic

systems, a three-dimensional diffusion constant Diso can be defined – of course

with the loss of information about the direction,

W (t) =
〈
(r(t) − r(0))2

〉

=
〈
(r‖(t) − r‖(0))2

〉
+

〈
(r⊥(t) − r⊥(0))2

〉

= W‖(t) + W⊥(t) = 2D‖t + 4D⊥t = 6Disot. (2.29)

From Eq. (2.29), we can directly identify the general relation

Diso =
1

3
(D‖ + 2D⊥). (2.30)

Diffusion constants can be derived by statistical mechanics from microscopic

interactions as it is nicely explained in Ref. [24].

Diffusion constants D of colloids are generally related to their friction constants

γ by the Einstein relation [86]

D =
kBT

γ
. (2.31)

The friction constant γ of a colloid is defined by

γ =
F

v
(2.32)

where F is the force which is necessary to pull the colloid with a velocity

v through the surrounding media. The Einstein relation is an example of a

fluctuation-dissipation relation. Hence it is equivalent to calculate friction con-

stants and diffusion constants.
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The relevant length scales in typical soft matter systems are mesoscopic, which

means that they are significantly larger than the atomic scale, but still small

enough that effects of thermal fluctuations like Brownian motion play a signif-

icant role. Typically this is the micrometer regime. These systems are difficult

to simulate. Due to their complexity it is impossible to study them via the

Navier-Stokes equations, and they are too large to treat each solvent molecule

with Molecular Dynamics. Therefore, we use a novel simulation method which

is called “Multi Particle Collision” (MPC) Dynamics. This method provides

both hydrodynamic and thermodynamic properties which are essential for the

dynamics in complex fluids. In the simulations, the dynamics of solute particles

(colloids or vesicles), is solved by standard molecular dynamics (MD), whereas

MPC is used to model the solvent. The combination of the MPC and the MD

methods makes it possible to study long-time dynamics of colloids and vesicles.

3.1 Molecular Dynamics

We consider colloids and vesicles which are composed of point particles, called

monomers. Their interaction is modelled by a combination of several potentials.

Intra-particle potentials are used in order to maintain particle shapes, whereas

repulsive inter-particle potentials are responsible for volume exclusion. The po-

tential energy Φ(r1, ..., rN) of the whole system has to depend only on monomer

positions. From this potential energy, the corresponding conservative force Fi

acting on monomer i with position ri, mass mi and velocity vi can be calculated,

Fi = −∇ri
Φ(r1, ..., rN). (3.1)

The potential Φ(r1, ..., rN) as well as the force Fi have to be continuous functions

of the monomer positions. Otherwise energy conservation is violated. Although

not used in our simulations, in principle also non-conservative forces can be used.
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With the conservative forces (3.1), and given initial conditions ri(t0) and vi(t0),

the Newtonian equation of motion

mi
d2ri

dt2
= Fi (3.2)

is an initial value problem which can be solved numerically. There exist several

iterative solvers for initial value problems [33]. Our choice is the Velocity Verlet

algorithm [6] because of its good stability, low numerical costs and low memory

requirement. In each iteration step, time is increased by a discrete time step

hMD, and positions ri and velocities vi are updated according to

ri(t + hMD) = ri(t) + hMDvi(t) +
h2

MD

2mi

Fi(t) (3.3)

vi(t + hMD) = vi(t) +
hMD

2mi

(Fi(t) + Fi(t + hMD)) (3.4)

This time evolution is time reversible and accurate to an order of

O
(∣∣∣∣

d3r

dt3

∣∣∣∣ h3
MD

)
= O

(∣∣∣∣
d

dt

d2r

dt2

∣∣∣∣ h3
MD

)
(3.5)

= O
(

1

m

∣∣∣∣
d

dt
F

∣∣∣∣ h3
MD

)
= O

(
1

m

∣∣∣∣
dr

dt

∂F

∂r

∣∣∣∣h
3
MD

)
(3.6)

= O
(

1

m

∣∣∣∣
∂2Φ

∂r2

∣∣∣∣ · |v|h
3
MD

)
. (3.7)

The choice of a good time discretisation hMD is important for the quality of the

simulation. hMD should be as large as possible in order save computation time,

but on the other hand it has to be small enough to ensure energy conservation.

Energy conservation is of particular importance in microcanonical equilibrium

simulations like systems of rod-like colloids. Violating energy conservation would

destroy time invariance, which has to hold in equilibrium. From Eq. (3.7) it

can be seen, that the larger the typical curvature
∣∣∣∂2Φ

∂r2

∣∣∣ of the potential energy

landscape and/or the larger the typical velocities |v|, the smaller hMD has to

be. Since the potential-energy landscape is different for our different simulation

systems, the time steps hMD are chosen for each simulation individually by

performing short test runs.

3.2 Multi Particle Collision Dynamics

Since we focus on hydrodynamic phenomena in several soft matter systems, a

simulation technique is required which takes into account properly both hydro-

dynamic and thermodynamic effects of the solvent on the solute particles.
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3.2 Multi Particle Collision Dynamics

In the past, several simulation techniques for low Reynold number solvents have

been developed. Among these are the widely used Lattice-Boltzmann [53, 54, 66]

and the Dissipative Particle Dynamics (DPD) methods [32, 39, 41, 81]. A nice

overview over the two above mentioned methods as well as the MPC method

can be found in [80].

In the simulations presented below, the mesoscale, particle-based “Multi Parti-

cle Collision” (MPC) Dynamics algorithm is used for the solvent. The original

version of this method was introduced by Malevanets and Kapral in 1999 [64].

In the following years, it has undergone several modifications and extensions.

Among all these MPC versions, three are used in our simulations and hence

explained below.

The MPC method was chosen because it has several advantages which makes

it especially useful for our purpose. Since the MPC solvent is particle based,

it directly incorporates fluctuations which are important in soft matter systems

and even essential for the study of diffusion (see Chap. 4 and 6). Furthermore,

it is numerically very efficient, easy to implement both in two and three dimen-

sions, and the coupling between solvent and solute particles is straightforward.

Further advantages are discussed in the following sections where the different

MPC algorithms are explained.

3.2.1 MPC-SR

The “MPC-SR” method is used in the simulation of rod suspensions at equi-

librium (see Chap. 4 - 6). The first three letters of this abbreviation stand for

“Multi Particle Collision”, and “SR” denotes “Stochastic Rotation”. In litera-

ture, this method is also called Stochastic Rotation Dynamics (SRD), MPC or

MPCD. Following the convention of Ref. [37], this method is called here “MPC-

SR” in order to distinguish it from the other MPC solvents.

Except for the random shift, explained below, MPC-SR is the original version

proposed by Malevanets and Kapral [64]. The solvent is composed of N = V ̺

point particles. Here V is the volume of the simulation box, and ̺ is the number

density of the point particles. These particles have mass m, continuous positions

ri (1 ≤ i ≤ N) and continuous velocities vi. The time evolution of positions

and velocities is discretized in small time steps h, the “collision time”. In each

time step, the dynamics of the MPC particles evolves in two steps.
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Streaming step: All particles move ballistically for the “collision time” h ac-

cording to their velocities. All particle positions ri are then updated by

ri(t + h) = ri(t) + vi(t)h. (3.8)

Since only positions are updated in the streaming step, kinetic energy and

both linear and angular momentum are trivially conserved.

Collision step: All MPC particles are sorted into cubic “collision boxes” which

partition the simulation volume. Each of the collision boxes has a linear

size a, and the simulation volume has to have a cuboidal shape, such

that each of the edges have lengths Lx,y,z = nx,y,za (nx,y,z ∈ N) which

is a multiple of a. The MPC particles are then sorted into the collision

boxes according to their positions. For each box, all particle velocities are

rotated by an angle α around a randomly chosen rotation axis in the center

of mass system of the collision box. The velocities vi are then updated by

vi(t + h) = vcm(t) + Rα(ûran) [vi(t) − vcm(t)] (3.9)

where vcm(t) = vcm(t + h) is the center of mass velocity of the box in-

cluding particle i. Rα(ûran) is a rotation matrix which performs the ro-

tation of a vector by an angle α around the unit vector ûran. In three-

dimensional simulations, ûran is randomly taken from a unit sphere. In the

two-dimensional case, ûran is chosen randomly from the two possibilities

ûran = ±ẑ, where ẑ is the out-off-plane unit vector. In contrast to the

direction of the rotation axis, the angle α is fixed for the whole simula-

tion. It has been shown that an angle of α = 130◦ in combination with a

sufficiently small collision time h ≤ 0.1 leads to a high Schmidt number

(the Schmidt number is the ratio between viscous and diffusive momentum

transport) and thereby to a fluid-like behavior [82, 83]. It can be easily

shown that both kinetic energy and linear momentum are conserved also

in the collision step [80]. However, angular momentum conservation is vi-

olated in the collision step, because the relative positions of the particles

in a box do not enter into the calculation of the velocity update. This can

lead to artifacts if the system has a preferred rotation direction [37]. The

MPC-AT+a [74] method described in Sec. 3.2.3 avoids these problems.

In the original MPC method of Malevanets and Kapral [64], Galilei invariance is

violated because the reference system of the collision box grid is fixed. In order

28



3.2 Multi Particle Collision Dynamics

to ensure Galilei invariance, Ihle and Kroll [42, 43] introduced a “random shift”.

After each time increment, the collision box grid is shifted by a vector b, whose

components are randomly taken from a uniform distribution bx,y,z ∈ [0, a).

The system is generally initialized with uniformly randomly distributed parti-

cle positions ri(t = 0) and with velocities vi(t = 0) which are taken from a

Maxwellian distribution with a width of
√

kBT/m. Due to the momentum and

kinetic energy conservation, a pure MPC-SR solvent in equilibrium is a micro-

canonical system which has an average temperature

〈kBT 〉 =
2Ekin

ddim N
(3.10)

Here Ekin = m
2

∑
v2

i is the total kinetic energy, N the number of particles and

ddim is the dimensionality which can be either ddim = 2 or ddim = 3.

However, there are situations where the relation (3.10) does not hold. Often

systems are not in equilibrium due to external fields or because of their initial-

ization. Then additional thermostats are required in order to control tempera-

ture [11, 40]. In this case, the velocity-rescaling thermostat [11] is used boxwise.

This thermostat works as follows. In each collision box, the thermal energy

Eth =
m

2

∑

i∈box

(vi − vcm)2 (3.11)

is determined. Then the particle velocities in the center-of-mass system of the

box are rescaled, such that the new thermal energy is E ′
th = ddim

2
(n−1)kBT and

momentum is conserved. The new particle velocities v′
i are then

v′
i = vcm + (vi − vcm)

√
E ′

th

Eth

. (3.12)

For the MPC-SR solvent, analytic expressions of the shear viscosity η were de-

rived [44, 52]. The shear viscosity η has the two contributions ηkin and ηcoll. The

kinetic contribution ηkin arises from momentum transport by particle motion,

and the collisional contribution ηcoll originates from momentum transport due

to collisions. The analytic expressions for the three-dimensional case are

η = ηkin + ηcoll (3.13)

ηcoll =
m(1 − cos α)

18ha

(
̺a3 − 1

)
(3.14)

ηkin = kBTh̺

(
5̺

(4 − 2 cosα − 2 cos 2α)(̺ − a−3)
− 1

2

)
. (3.15)

29



3 Methods

For the two-dimensional expressions, see e.g. Ref. [52]. It can be easily seen

that the viscosity η is dominated by the collisional contribution ηcoll for small

collision times h. The MPC-SR method was intensively tested in the recent years

[4, 43, 52, 55, 56, 64]. The theoretical expression (3.13) for the shear viscosity

can be compared with simulations. This is done in Sec. 5.3, where it can be seen

that the theoretical expression (3.13) perfectly predicts the shear viscosity of all

the simulations presented in Sec. 5.3.

All MPC versions can be easily used in hybrid MD-MPC simulations [65]. The

coupling between solute and solvent particles is done by simply incorporating

monomers into the collision step. The streaming step is only performed for

the solvent particles. Also hybrid MD-MPC simulations have been carefully

tested [69, 101]. For example, it was shown that polymer chains in MPC-SR

solvent indeed show Zimm behavior, which has been predicted for polymers

with hydrodynamically interacting monomers (see Refs. [101, 105], and [28],

Chap. 4.2).

3.2.2 Random MPC solvent

The MPC-SR can be slightly modified to the “random MPC” solvent. Using

this solvent, hydrodynamic interactions between monomers are switched off, but

all thermodynamic solvent properties are the same as long as the same system

settings are used. Simulations using the random MPC solvent are particularly

useful in comparison with MPC-SR simulations. Since the only difference be-

tween both solvents is the absence of hydrodynamic interactions in the random

MPC simulations, the effect of hydrodynamics in MPC-SR can be directly seen.

In the random MPC method, each monomer is related to a virtual collision box

containing n = ̺addim virtual particles. The velocity components vx,y,z of these

virtual particles should be distributed according to a Maxwellian distribution

with a width of
√〈

v2
x,y,z

〉
=

√
kBT/m and a mean 〈vx,y,z〉 = 0. In practice, an

equivalent description is used, where the n virtual particles are replaced by only

one virtual cluster particle with mass mbox = mn, whose velocity components

vboxx,y,z
are taken from an Maxwellian distribution with zero mean and a smaller

width of

√〈
v2

boxx,y,z

〉
=

√〈
v2

x,y,z

〉
/
√

n. The collision step is then performed

like in the MPC-SR solvent. The monomer velocity vi is rotated by the fixed

collision angle α around a random direction in the center of mass system of its
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virtual box. Thus the velocity update is

vi(t + h) = vcm(t) + Rα(ûran) [vi(t) − vcm(t)] (3.16)

where the center of mass velocity vcm(t) = vcm(t + h) is calculated by

vcm(t) =
vi(t)mi + vbox(t)mbox

mi + mbox
. (3.17)

The difference between random MPC and MPC-SR solvents is that in random

MPC, the monomer always feels a friction force relative to the resting frame,

whereas in MPC-SR, the friction forces are related to the velocity of the local

solvent environment. Since the convectional flow velocity in the vicinity of a

monomer is typically similar to the monomer velocity, the friction forces are

often smaller in the presence of hydrodynamic interactions. Therefore, the dy-

namics of hydrodynamically interacting particles is typically faster.

As the friction forces in the random MPC solvent make the monomers always

stick to the resting frame, Galilei invariance is of course violated. Also momen-

tum and energy is not conserved. On the other hand, random MPC directly

serves as a thermostat, because the thermal velocities of the virtual particles are

taken from a Maxwellian distribution according to a particular temperature.

Although there is no flow in a random MPC solvent, its shear viscosity η can

be of interest because it is for example important for the calculation of friction

and diffusion constants. The shear viscosity of the random MPC solvent can be

calculated by the same expressions (3.13 - 3.15) as in the case of MPC-SR.

3.2.3 MPC-AT+a

The violation of local angular-momentum conservation in the MPC-SR solvent

can lead to problems, if the system has a preferred rotation direction. Götze,

Noguchi and Gompper [37] could show that unphysical torques appear in Cou-

ette flow, where two concentric cylinders rotate with same angular velocity.

Also in shear flow, there is a preferred rotation direction, since shear flow is

composed of an elongational and an rotational part (see Sec. 7.1.2). For the

study on vesicles in shear flow (see Chap. 7) it is therefore essential to use

an angular-momentum conserving solvent. This led to the development of an-

other MPC version, called MPC-AT+a by Noguchi, Kikuchi and Gompper [74].

The abbreviation MPC-AT+a stands for “Multi Particle Collision with Ander-

sen Thermostat”, and “+a” emphasizes that angular momentum is conserved
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locally – in contrary to a similar method MPC-AT-a [74], where only linear-

momentum conservation holds.

The differences between MPC-SR and MPC-AT+a only appear in the collision

step. The streaming step and also the way how MPC particles are sorted into

boxes are the same as in MPC-SR. The collision rule (3.9) of MPC-SR is replaced

by

vi(t+h) = vcm(t)+vran
i −

∑

j∈cell

vran
j

Nc
−mΠ−1

∑

j∈cell

[
rj,c(t) ×

(
vj(t) − vran

j

)]
×ri,c(t).

(3.18)

Here vcm(t) = vcm(t+h) denotes the center of mass velocity of the box, Nc the

number of particles in that box, ri,c(t) are the particle positions relative to the

center of mass of the box, Π is the moment-of-inertia tensor (in two-dimensional

simulations it reduces to a scalar) and the vran
i are random velocities which are

taken from a Maxwellian distribution with zero mean and a width corresponding

to the desired temperature. Hence this solvent serves as a thermostat – called

the Anderson thermostat [7]. Since the randomly chosen velocities vran
i generally

change linear and angular momentum, two correction terms are required. The

third term on the right-hand side of Eq. (3.18) substracts the linear momentum

which arises from the random velocities vran
i and the forth term substracts the

corresponding angular momentum. Thus linear and angular momentum conser-

vation is restored.

There are also theoretical expressions for the shear viscosity of the MPC-AT+a

solvent [74],

η = ηkin + ηcoll (3.19)

ηkin = ̺kBTh

(
̺

̺ − a−ddim
− 1

2

)
(3.20)

ηcoll =
m(̺addim − 1)

12addim−2h
. (3.21)

The MPC-AT+a will be used in the two-dimensional simulations of vesicles

under shear (see Chap. 7).

3.3 Boundary conditions

Depending on the physical problem different types of boundaries are encoun-

tered. In computer simulations, periodic, open, absorbing, reflecting or no-slip

32



3.4 Units

wall boundary conditions are commonly used. Each of these boundary condi-

tions can be applied to each boundary independently.

Since system size in computer simulations is limited, it is difficult to investigate

bulk behavior. A wide-spread technique to approximate bulk behavior even for

a finite system is to use periodic boundary conditions. This technique has been

used in many molecular dynamics and Monte Carlo simulations and is nicely ex-

plained in Ref. [6] and hence not explained here. Also the application to MPC

simulations is straightforward.

No-slip wall boundary conditions describe the physical situation where the rel-

ative velocity between a wall and the fluid layer directly at the wall vanishes.

These boundary conditions are far less used in computer simulations, and the

realization in MPC simulations is very specific. If during the ballistic streaming

step (3.8) the trajectory of a MPC particle crossed a wall, the particle is bounced

back, i.e. its velocity is inverted in the rest frame of the possibly moving wall.

In contrast, for slip boundary conditions only the component perpendicular to

the wall is inverted. In Chap. 7, moving walls will be used in order to generate

a linear shear flow.

It has turned out that MPC solvents still have a small slip even if MPC particles

are bounced back [56]. In order to avoid this problem, Lamura et al. [56] have in-

troduced “virtual wall particles” in MPC-SR simulations. This concept was also

applied to the MPC-AT+a solvent [37] and will be used in the two-dimensional

simulations of vesicles under shear. The incorporation of virtual particles works

as follows. Collision boxes crossing a wall often contain less particles than in

the bulk. Therefore, Nvirt =< Nc > −Nc virtual particles are added to the

box, where n is the current number of MPC particles in the considered box,

and < Nc >= ̺addim is the average number in a box in bulk. The velocities of

the Nvirt virtual particles are taken from a Maxwellian distribution with a mean

equal to the wall velocity and a width according to the desired temperature kBT .

In practice, all the Nvirt are replaced by one virtual cluster particle as it is done

also in the random MPC solvent (see Sec. 3.2.2).

3.4 Units

For convenience, masses are expressed in units of MPC particle masses m,

lengths in units of the collision box size a and energies in units of the sys-

tem temperature kBT . This convention is particularly useful, because most of
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3 Methods

the quantities expressed in these units are of the order of unity (in contrast to

e.g. the thermal energy kBT = 1.38 ·10−23J/K in SI units). E.g. times are then

expressed in units of a
√

m/kBT or viscosities in units of
√

kBTm/addim−1.
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4 Self diffusion of rods

4.1 Scientific Background

Since the diffusion constants are generally related to their friction constants γ by

the Einstein relation (2.31), we are able obtain diffusion constants by deriving

the corresponding friction constants.

In the following, we distinguish between two relevant rod diameters. The di-

ameter d introduced in Sec. 2.4 is called the steric diameter. It is the diameter

of the cylindrical volume which is excluded for other colloids. Static properties

of rod suspensions, like phase transitions or nematic order parameters, depend

on rod aspect ratios L/d. In our simulations, we set d by an excluded volume

potential which will be explained below.

However, there is also an other diameter, called the hydrodynamic diameter

dhyd which determines the rod volume that is excluded for solvent particles.

This quantity is important for hydrodynamic properties like diffusion constants.

Without hydrodynamic correlations between different rod segments, the fric-

tion/diffusion constant of a single rod with an aspect ration L/dhyd is simply

γ0 = 3πηL and D0 =
kBT

3πηL
(4.1)

(compare Eq. (2.31)). The derivation of this expression is straightforward. We

model the rod according to the “shish-kebab model” (see Fig.4.1). In this de-

L

dhyd

Figure 4.1: In the “shish-kebab model”, a rod with an aspect ratio of L/dhyd

consists of n = L/dhyd spheres, each with a diameter dhyd.
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4 Self diffusion of rods

scription, the rod with an aspect ratio of L/dhyd consists of n = L/dhyd spheres,

each with a diameter dhyd. These spheres are positioned on a line, such that

they touch each other. The force required to pull the whole rod through the

surrounding solvent is then n times the pulling force for a sphere with diameter

dhyd. It is known, that the friction constant γs and diffusion constant Ds of a

sphere with diameter dhyd are given by

γs = 3πηdhyd (Stokes friction) (4.2)

Ds =
kBT

3πηdhyd

(Stokes diffusion). (4.3)

From this, we get directly γ0 = γsL/dhyd and thus Eq. (4.1). In this calculation,

it is assumed that all rod segments have to be pulled through a resting solvent.

However, as soon as a rod is immersed into a solvent, its different rod segments

interact hydrodynamically via the surrounding solvent. A rod segment moves

into the same direction as the flow field induced by the other segments of the

rod. Since friction forces are proportional to velocities relative to the surrounding

fluid, a smaller force is required to pull the whole rod with a certain velocity if

hydrodynamic interactions are present. Friction constants with hydrodynamic

interactions are consequently smaller and the corresponding diffusion constants

larger. This effect is called the “hydrodynamic enhancement” in the following.

Moreover, hydrodynamic interactions lead to anisotropic diffusion. Diffusion in

the direction parallel to the rod is faster than in the perpendicular direction.

Using the Oseen tensor approximation (2.6), the diffusion constants D‖ and D⊥

were calculated by Doi and Edwards (see Ref. [28], Chap. 8.3) in the limit of

infinitely long rigid rods

D‖ =
kBT

γ‖

=
kBT ln(L/dhyd)

2πηL
(4.4)

D⊥ =
kBT

γ⊥
=

kBT ln(L/dhyd)

4πηL
. (4.5)

Comparing Eq. (4.4) and (4.5) with Eq. (4.1), shows, that diffusion is indeed

faster in systems where hydrodynamic interactions are present.

For finite aspect ratios L/dhyd, end effects lead to deviations from the diffusion

constants (4.4) and (4.5) of the Doi-Edwards theory. Due to end effects, the

exact geometric realization of the rod is crucial for a correct expressions of

D‖ and D⊥. For spherocylinders, de la Torre et al. [21, 94] have calculated
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4.1 Scientific Background

additional correction terms to the Doi-Edwards theory

D‖ =
kBT

2πηL

[
ln

L

dhyd
− 0.207 + 0.980

dhyd

L
− 0.133

(
dhyd

L

)2
]

(4.6)

D⊥ =
kBT

4πηL

[
ln

L

dhyd
+ 0.839 + 0.185

dhyd

L
+ 0.233

(
dhyd

L

)2
]

(4.7)

Diso =
kBT

3πηL

[
ln

L

dhyd
+ 0.312 + 0.565

dhyd

L
− 0.100

(
dhyd

L

)2
]

(4.8)

These diffusion constants provide a more precise description for the relatively

small aspect ratios investigated here (15 ≤ L/dhyd ≤ 60). In the limit of large

aspect ratios, the expressions (4.6 - 4.8) of de la Torre et al. are equal to

those of Doi and Edwards, Eqs. (4.4 - 4.5). For intermediate aspect ratios, the

logarithmic term is dominating.

At finite rod concentrations, self-diffusion constants of rods are generally reduced

for two reasons:

Steric interaction: Steric or direct repulsive interactions between rods ensure

their volume exclusion. Due to steric interactions between neighbors, rods

are hindered in their motion.

Hydrodynamic interactions: Even if two rods are not in direct contact, they

can interact hydrodynamically via the solvent. The forces acting on one

rod influence the flow field at the position of another rod and hence affect

its diffusive behaviour.

The influence of steric interactions has been taken into account in other com-

puter simulation studies [5, 18]. There is also an attempt to incorporate hy-

drodynamic effects into computer simulations [63] where the hydrodynamically

caused diffusion anisotropy at infinite dilution (see Eqs. (4.6 - 4.8)) is transferred

to dense rod systems by an anisotropic step size in Brownian-Dynamics simula-

tions. However, hydrodynamic interactions with neighboring rods are neglected

in Ref. [63]. All previous simulations give different or even contradicting predic-

tions of diffusion constants. The reason is that diffusion constants depend very

sensitively on the details of the model employed in the simulations.

In our computer simulations, we are able to take into account all (i.e. both inter

and intra-colloidal) hydrodynamic interactions, because we simulate the solvent

37



4 Self diffusion of rods

explicitly. There are no theories of translational rod-self diffusion at high con-

centrations which include hydrodynamic interactions. On the other hand, in

real colloidal systems, hydrodynamic effects are always present. With computer

simulations, we are able to bridge the gap between theory and experiments, be-

cause we can take into account the solvent explicitly using the MPC-SR method.

For comparison, also simulations with same settings can be performed with the

random MPC solvent, which does not mediate any hydrodynamic interactions

between colloids. Thus, it is possible to compare simulations with and without

hydrodynamics directly, and to distinguish between steric and hydrodynamic

effects on colloid dynamics.

Of course, there is no easy way in experiments to simply switch off hydrody-

namic interactions. On the first glance it might appear that it is even impossible

to separate hydrodynamic from steric effects in experiments. However, our co-

operation partner M. P. Lettinga of the experimental “Soft Matter” group of J.

K. G. Dhont of the Research Center Jülich has developed a way to gradually

tune the ratio of intra-rod to inter-rod hydrodynamic interactions [60]. Even

if hydrodynamics cannot be switched off completely, one can approach to this

situation. Our simulation data will be compared with the experimental results

in Sec. 4.4.

4.2 Simulation details

We model rods by the “shish-kebab” model, see Fig. 4.1. A rod is composed of

n point-like monomers, each of the same mass M .

The rods are not completely stiff but slightly flexible. This is in agreement with

the experimental situation of the fd -virus, but it is also necessary in order to

be handled by Molecular Dynamics. In Sec. 3.1, it was discussed that the MD

time step has to be the smaller the more curved the potential energy landscape.

Completely stiff rods correspond to δ-like potentials with an infinite curvature,

i.e. there is no finite MD time step hMD which can lead to stable simulations

(see Eq. (3.7)).

When ri denotes the position of the monomer i in the rod, we define the two

adjacent bond vectors R+
i := ri+1 − ri and R−

i := ri − ri−1. Two neighboring

monomers are connected by a harmonic spring potential which controls the bond
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4.2 Simulation details

length. The spring potential Usp for one rod is

Usp =
ksp

2

n−1∑

i=1

(|R+
i | − l)2 (4.9)

where l is the equilibrium bond length and ksp is the spring constant.

A bending potential Ubend provides stiffness to the rods. For one rod, this po-

tential reads

Ubend =
κ

l2

n−1∑

i=2

(|R−
i ‖ R+

i | − R−
i · R+

i ), (4.10)

where κ is the bending rigidity of the rod. This potential depends on the angle

between the orientation of two neighboring bonds and has its minimum when

both bonds have the same orientation.

For the stiffness of a rod, we require that the end-to-end distance of a single

rod in thermal equilibrium is 98% of its contour length which corresponds to

a persistence length of lp = 8.3L. This determines κ for a given rod length

L uniquely, which has to be calculated numerically as described in Sec. 3A of

Ref. [100]. The fd virus used in experiments is slightly more flexible, with a

persistence length of lp = 2.5L. However, since the I-N phase transition is shifted

to higher volume fractions with decreasing lp/L (see [35, 102]), we decided to use

comparably stiff rods in order to reach the nematic phase for smallest possible

volume fractions.

Ubend has also a dependence on the bond lengths |R−
i | and |R+

i | which tends

to contract the bonds if ∡
(
R−

i ,R+
i

)
6= 0. We use this potential because of

its numerical efficiency. However, this effect is very small for bending angles

∡
(
R−

i ,R+
i

)
≪ 1. With an equilibrium end-to-end distance of 98%, bending

angles are so small that a contraction can be prevented by a sufficiently large

spring constant ksp. To ensure this, we set ksp = 4κ/l2 in our simulations.

It should be mentioned that in vesicle simulations of Chap. 7, a less efficient

bending potential is used, which does not have a bond-length dependence. This

is necessary because far larger bending angles occur in vesicles.

In order to account for excluded volume interactions in dense rod suspensions,

a shifted, truncated Lennard-Jones potential

ULJ(r) =





4ε

[(σ

r

)12

−
(σ

r

)6
]

+ ε, r ≤ 6
√

2σ

0, otherwise
(4.11)
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4 Self diffusion of rods

is applied between two monomers which are separated by a distance r.

In simulations of rod-like colloids, the MPC-SR and the random MPC solvents

are used. The parameters used in our simulations are h = 0.1a
√

m/kBT , α =

130◦, ̺ = 10a−3, l = a = d = 6
√

2σ, M = 10m, hMD = 0.005a
√

m/kBT and

ε = 10kBT . We chose M = ̺a3m = 10m (m being the MPC particle mass) as

it has been shown that for this value, the coupling between solvent and solute

is optimal [83]. In Sec. 4.1, the hydrodynamic diameter dhyd was defined as the

diameter of the volume of a rod which is excluded for solvent particles. Since our

simulation model does not repell MPC-SR particles from rods, there is no dhyd in

our simulations according to that definition. However, the MPC-SR method has

the size a of the collision boxes as an intrinsic length which causes an effective

hydrodynamic diameter dhyd. dhyd can be used in order to calculate diffusion or

friction constants. According to Ripoll et al. [83], the diffusion constant Dp of

one single rod monomer is in good approximation given by

Dp =
kBT

M
h

(
3

2

(m̺ + M/a3)

m̺(1 − cos α)
− 1

2

)
. (4.12)

Inserting the parameters of our simulations, Dp agrees very well with the diffu-

sion constant corresponding to the Stokes diffusion constant (4.3) with dhyd = a.

That this also holds for rods will be checked in Sec. 4.3, where diffusion con-

stants of single rods are determined by simulations.

As explained in Sec. 2.4, rods are oriented isotropically for small dimensionless

concentrations ρ, whereas above ρN (see Eq. (2.16)) a nematic phase is formed.

The initialization of the rod system depends on whether an isotropic or a ne-

matic phase is expected for the given dimensionless concentration ρ, Eq. (2.15),

see Refs. [35, 102].

In order to minimize finite-size effects, the systems have to be sufficiently large.

For isotropic systems, we chose cubic simulation boxes with linear sizes Lx =

Ly = Lz of slightly more then two rod lengths L. Rods are inserted by the

following Monte Carlo scheme:

1. The center-of-mass position rcm of the rod to be inserted is taken from a

uniform random distribution rcm,α ∈ [0, Lα) with α ∈ {x, y, z}.
2. The orientation û of the rod is taken from a uniform distribution on a unit

sphere.

3. According to rcm and û, a trial insertion of a straight rod is done. The

total potential energy cost Epot due to overlaps with previously inserted

rods is calculated.
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4.2 Simulation details

4. A random variable xran is chosen from a uniform distribution xran ∈ [0, 1).

5. If exp(−Epot) > xran, the trial insertion of the rod is accepted. Otherwise,

we try to insert the rod at another position.

For nematic systems, we take advantage of the uniaxial anisotropy. Thus only

in the direction of the nematic director n̂ = x̂ the system has a linear size Lx

slightly larger than 2L, but the sizes of the other two dimensions (y and z)

are only Ly = Lz ≈ L. The insertion procedure is similar to that of isotropic

systems, only step 2 differs, where the rod orientation is fixed to û = n̂ = x̂.

When all rods are inserted, the system is of course still far from an equilibrium

situation, because all intra-particle potentials Usp and Ubend are at their minima.

Therefore the system has to be equilibrated with the use of a thermostat. The

thermostat is required to counteract the cooling caused by an increase of the

potential energy due to the excitation of internal degrees of freedom. Since the

static phase behavior of rods does not depend on hydrodynamics, it is conve-

nient to use the random MPC solvent. This solvent has far lower numerical

costs than MPC-SR, and it directly serves as a thermostat (see Sec. 3.2).

That the system is in equilibrium can be verified by monitoring the total poten-

tial energy and, in nematic systems, the nematic order parameter, until stable

values are reached.

Equilibrated systems are taken as input configurations for MPC-SR or random

MPC simulations of rods, from which data are recorded. Additionally, in the

beginning of each simulation run, temperature is controlled by the velocity-

rescaling thermostat, Eq. (3.12), over a short period of a few hundreds MPC

time steps. The simulation continues under NVE conditions, and data record-

ing is started after a further few hundreds MPC time steps. Monomer positions

are written to files periodically in time intervals ∆t. From this data, mean

square displacement and other desired quantities can be obtained.

In order to determine long-time self-diffusion constants of rod-like colloids, rod

positions have to be recorded over a time which has to be sufficiently long that

the regime is reached, where the linear time dependence (2.26 - 2.28) of the

mean square displacement holds, so that diffusion constants can be extracted

with good accuracy. We will see in Sec. 4.4 that this regime is typically reached

when the mean square displacement is of the order of L2. The dependence of

the required computational time on rod lengths L can be roughly estimated:

• The required computational time for one simulation time step is propor-

tional to the volume of the system, which is proportional to L3 (the linear
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4 Self diffusion of rods

system sizes Lx, Ly, and Lz were chosen to be proportional to L).

• Without hydrodynamic and network effects, the diffusion constant of a rod

decreases like 1/L.

• The required simulated time to reach a mean square displacement of L2

also depends on rod length like L2.

These three effects lead to computational times, which depends on rod lengths

like L6. Hence we are restricted to determine self-diffusion constants of rods

with aspect ratios L/d ≤ 40.

4.3 Single rods

In order to point out the influence of finite density of rod-like colloids on diffu-

sion, also diffusion constants of rods at infinite dilution have to be determined.

With single rods, we have the advantage that theoretical expressions exist both

with hydrodynamic interaction [21, 94] between rod segments, Eq. (4.6 - 4.8),

and without them, Eq. (4.1). Most of the quantities entering these theoretical

expressions are given by the simulation parameters. These are the temperature

kBT , the rod length L and the solvent viscosity η. The latter can be calcu-

lated from Eq. (3.13). Furthermore, we choose all parameters, which should

influence the diffusive behavior of single rod monomers, in such a way that the

rod monomer diffusion constant Dp (see Eq. (4.12)) agrees with the diffusion

constant D0 (see Eq. (4.1)) corresponding to dhyd = d = a.

These results can only be directly transferred to rod diffusion constants in ran-

dom MPC solvents, because in this case D0 = Dp

N
. However, we have to confirm

that dhyd = a by simulations of single rods. For this purpose, we performed

several single-rod simulations for both kinds of solvents, the MPC-SR and the

random MPC solvent.

We begin with simulations without HI, i.e. with the use of the random MPC

solvent. For each of the rod aspect ratios L/d = 15, L/d = 20 and L/d = 40,

six simulations are run, each over 107 MPC time steps.

The mean square displacement W (t) is calculated according to Eq. (2.26). The

average 〈...〉 in Eq. (2.26) is calculated from all possible time differences between

recorded monomer positions. With the total simulated time ttot = Nf∆t with Nf

the number of recorded monomer configurations, the mean square displacement
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Figure 4.2: Simulation data and theoretical values for diffusion constants of

single rods with dhyd = a. Blue theoretical lines are calculated

by Eqs. (4.6) and (4.7). The red theoretical line is calculated by

Eq. (4.1). Simulation data are obtained from independent runs.

W (t) is then calculated according to

W (t = j∆t) =
1

Nf − j

Nf−j−1∑

i=0

[rcm((j + i)∆t) − rcm(i∆t)]2 . (4.13)

Since there are many time differences j∆t available for j ≪ Nf , the accuracy of

W (t = j∆t) is higher for small time differences. Particularly for single rod simu-

lations, where we cannot average over different rods, many frames (Nf ≈ 104) are

required in order to get reasonable accuracy for time differences up to t ≈ 50∆t.

The resulting diffusion constants D0 are shown in Fig. 4.2 (red open squares).

Also the theoretical curve corresponding to Eq. (4.1) with dhyd = a is plotted

without adjustable parameters (red solid line). We conclude from these results

that dhyd = a is a very good estimate of the effective hydrodynamic diameter.

In the following we will use the expression (4.1) with dhyd = a whenever infi-

43



4 Self diffusion of rods

nite dilution diffusion constants of rods without hydrodynamic interactions are

needed.

In contrast to random MPC, the MPC-SR solvent takes also into account hy-

drodynamics. Accordingly, an anisotropy in diffusion should be seen even at

infinite dilution (see expressions (4.6 - 4.8)). Unfortunately, such simulations

are very time consuming, since the dynamics of N = ̺V additional MPC parti-

cles has to be calculated. To avoid hydrodynamic interactions with the periodic

images, a sufficiently large simulation box is required. Winkler et al. [101] did a

systematic study of the length dependence of total rod diffusion constants Diso

in MPC-SR. They could show that their simulations are in good agreement with

the theoretical description for box sizes Lx = Ly = Lz & 2L. Therefore, we

decided to use the same rod-length dependent system sizes for our single-rod

simulations. We chose rods with L/d = 15 and L/d = 20 and performed four

simulations for each of the two aspect ratios over 106 MPC time steps. Larger

aspect ratios are computationally not feasible.

In Sec. 2.6, the diffusion constants D‖ and D⊥ were shown to be related to the

mean square displacements W‖(t) and W⊥(t) by Eqs. (2.27) and (2.28), respec-

tively. For single rods, the calculation of W‖(t) and W⊥(t) is not straightforward,

as a rod undergoes also rotational diffusion, and the direction of the rod axis

û changes during the simulation. Reasonable mean-square-displacement curves

W‖(t) and W⊥(t) in a co-rotating frame can be obtained by the following proce-

dure. The time ∆t between two consecutive frames has to be short enough that

the change in rod orientation û(t + ∆t) − û(t) is small. Then the translational

displacement rcm(t+∆t)−rcm(t) of the center of mass of the rod is transformed

into a co-rotating frame S ′ by

r′cm(t + ∆t) − r′cm(t) = Rû(t)→x̂ [rcm(t + ∆t) − rcm(t)] . (4.14)

In the co-rotating frame S ′, the x̂ direction corresponds to the ‖ direction and

the yz plane correspond to the plane perpendicular to the rod axis. The rotation

matrix Rû→x̂ is defined by

Rû→x̂ =




ux uy uz

−uy
uxu2

y+u2
z

u2
y+u2

z
(ux − 1)uyuz

−uz (ux − 1)uyuz
uxu2

z+u2
y

u2
y+u2

z


 (4.15)

which rotates a vector around the axis parallel to x̂ × û such that Rû→x̂û = x̂.

There are several possibilities how to define the unit vector û for a semiflexible
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4.4 Dense rod suspensions

rod. Our convention is the following. We calculate the gyration tensor of the

rod

G =
N∑

i=1

(ri − rcm) ⊗ (ri − rcm), (4.16)

where the ri are the monomer positions. û is then that normalized eigenvector

of G with the largest eigenvalue Λ‖,

Gû = Λ‖û. (4.17)

With this definition of û, we are also able to calculate nematic order parameters

〈P2〉 in multi-rod systems by Eq. (2.13).

Thus the trajectory r′cm(t) in the co-rotating frame S ′ is

r′cm(t = j∆t) =

j−1∑

i=0

Rû(i∆t)→x̂ [rcm ((i + 1)∆t) − rcm (i∆t)] . (4.18)

With these r′cm(t), the mean square displacements W‖(t) and W⊥(t) are calcu-

lated according to Eqs. (2.27) and (2.28). In practice, the average appearing in

Eqs. (2.27) and (2.28) is calculated analogously to Eq. (4.13),

W‖,⊥(t = j∆t) =
1

Nf − j

Nf−j−1∑

i=0

[
r′cm‖,⊥

((j + i)∆t) − r′cm‖,⊥
(i∆t)

]2

(4.19)

with r′cm‖
(t) := (x̂⊗ x̂)r′cm(t) and r′cm⊥

(t) := (̂I − x̂ ⊗ x̂)r′cm(t). In Fig. 4.2, the

simulation results are shown together with the theoretical curves according to

Eqs. (4.6 - 4.8). Within error bars, the few data points for MPC-SR simulations

agree with Eqs. (4.6 - 4.8). The anisotropic single rod diffusion constants confirm

that hydrodynamics is obviously reproduced by MPC-SR simulations and that

dhyd ≈ a is a reasonable value for the hydrodynamic diameter. This fact allows

us to use the expressions (4.6 - 4.8) of de la Torre et al. [21, 94] for the infinite

dilution values of diffusion constants.

4.4 Dense rod suspensions

We have performed a systematic study for L/d = 20 and L/d = 40 in order to

follow the concentration dependence of rod self-diffusion constants Diso,‖,⊥. In

Fig. 4.3, two snapshots of such rod systems are shown. Fig. 4.3.a shows a system

in the isotropic phase, and Fig. 4.3.b a system in the nematic phase.
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4 Self diffusion of rods

The dependence of the nematic order parameter 〈P2〉 on the normalized volume

fraction ρ in our computer simulations is shown in Fig. 4.4 for both aspect ratios.

All data falls on a master curve 〈P2〉 (ρ), independent of the aspect ratios.

Self-diffusion constants Diso,‖,⊥ were calculated from mean square displacements

defined by Eqs. (2.26), (2.27) and (2.28). In practice, the averages in expres-

sions (2.26) - (2.28) for the mean square displacements are calculated similarily

to the case of single rods, but taking advantage of having N rods. Since the

amount of rods in our simulations is of the order of 102 < N < 103, the accuracy

of the mean square displacement W (t = j∆t) is typically sufficient for fitting

diffusion constants for times t = j∆t . 3
4
ttot.

In Fig. 4.5, examples of typical mean-square-displacement curves for isotropic

and nematic systems are shown. We see that the time dependence of Wiso,‖,⊥(t)

is linear for these simulations. Only for very long times, data points deviate

from the expected linear behavior, because for t & tL statistics is not sufficient.

The regime of linear dependence, the long-time diffusive regime, has to be

reached in order to fit diffusion constants. It has turned out that for ttot ≈ tL

most simulations have reached the long-time diffusive regime.

Fig. 4.6 shows the concentration dependence of rod self-diffusion constants Diso,

D‖ and D⊥ for the two aspect ratios L/d = 20 (Fig. 4.6.a) and L/d = 40

(Fig. 4.6.b). For both aspect ratios, results of simulations with MPC-SR (i.e.

with HI) and with random MPC solvents (i.e. without HI) are shown. Diffusion

constants are normalized by the infinite dilution value (4.1) of rods in absence

of hydrodynamic interactions. Thus, the curves without HI have to extrapolate

to unity in the limit ρ → 0.

Several interesting conclusions can be drawn from Fig. 4.6. For nematic systems,

there is a strong anisotropy in diffusion, with higher parallel diffusion constant,

D‖, than perpendicular, D⊥. In contrast to infinite dilution, this anisotropy can

even be found in systems without any hydrodynamic interactions. Accordingly,

steric interactions with the rod network cause an anisotropy in diffusion. We

will discuss the diffusion anisotropy in detail in Sec. 4.4.2.

4.4.1 Hydrodynamic enhancement

From Fig. 4.6, we see that diffusion constants in the presence of hydrodynamic

interactions are generally larger. Obviously, the hydrodynamic enhancement

is still present even in very dense systems. In Sec. 4.1, it was discussed that
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4.4 Dense rod suspensions

(a)

(b)

Figure 4.3: Snapshots of rod systems with L/d = 20 in (a) the isotropic phase

(φ = 0.12) and (b) the nematic phase (φ = 0.27).
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Figure 4.4: The dependence of the nematic order parameter 〈P2〉 on the normal-

ized volume fraction ρ for aspect ratios L/d = 20 and L/d = 40.

the hydrodynamic enhancement of single rods arises from hydrodynamic inter-

actions between different parts of the rod. Since in MPC-SR simulations all

hydrodynamic interactions are present – also those with rod segments of other

rods, hydrodynamic enhancement is expected to be diminished with increasing

concentration. Hydrodynamic interactions with neighboring rod monomers can

be therefore stronger than the interaction of two different monomers of one rod

which are far apart. Therefore we expect that rod diffusion in MPC-SR solvents

is slowed down not only due to steric effects, but also due to hydrodynamic

friction with neighboring rods. Diffusion constants

D̂iso,‖,⊥(ρ) :=
Diso,‖,⊥(ρ)

Diso(0)
(4.20)

normalized by the values at infinite dilution Diso(0) are shown in Fig. 4.8.a for

L/d = 20. The infinite-dilution diffusion constants Diso(0) are calculated from

Eq. (4.8) for MPC-SR systems. For random MPC systems, D0 (see Eq. (4.1)) is

used. In this representation, the non-hydrodynamic curves lie above the corre-

sponding hydrodynamic curves – as well in the isotropic as in the nematic phase.
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Figure 4.5: Typical MSD curves Wiso,‖,⊥ normalized by L2 for (a) L/d = 20 and

φ = 0.18 (isotropic) and (b) L/d = 20 and φ = 0.27 vs. time t

normalized by tL, the time for which Wiso(t) = L2.
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Figure 4.6: Dependence of diffusion constants Diso, D‖ and D⊥ on the normal-

ized volume fraction ρ = φL/d for (a) L/d = 20 and (b) L/d = 40.

For both plots, results with (blue curves) and without (red curves)

hydrodynamic interactions are shown. The I-N phase transitions is

located at ρ ≈ 4, as predicted by Onsager [77].
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4.4 Dense rod suspensions

This shows that hydrodynamic friction indeed reduces the diffusion constants.

Such a comparison between systems with and without hydrodynamics is not

possible in experiments, because hydrodynamic interactions cannot be switched

off in real systems. However, our experimental cooperation partner M. P. Let-

tinga developed a way to gradually lower the effect of hydrodynamic friction

due to neighboring rods and thereby to approach the situation without hydro-

dynamic interactions. In the following, his experimental strategy will be briefly

explained. Since fd viruses are charged, Coulomb interactions lead to an ef-

fective steric diameter d which is larger than the hydrodynamic diameter dhyd

(see Fig. 4.7.a). By adding salt to the solvent, it is possible to lower the steric

diameter d, because salt ions lead to electrostatic screening (see Fig. 4.7.b).

A modification of the hydrodynamic diameter is more difficult, but also possi-

ble. By coating fd viruses with the water soluble polymers poly-ethylene oxide

(PEO), the solvent is caught in the polymer mesh (compare Ref. [85]) as it

is shown in Fig. 4.7.c. This leads to an effective increase in the hydrodynamic

diameter dhyd, as the solvent particles in the polymer mesh do not contribute

to hydrodynamic flow. For two fd virus systems with the same steric diameters

d (and thereby with same steric aspect ratios L/d) but with different hydrody-

namic diameters dhyd, friction with neighboring rods is smaller for the system

with smaller dhyd. In Fig. 4.8.b, experimentally measured normalized diffusion

constants D̂iso(ρ) are plotted vs. the reduced volume fraction ρ. Both curves

correspond to systems of differently modified fd viruses with same steric aspect

ratios L/d ≈ 25, but with different hydrodynamic diameters. fd systems with

d = dhyd were realized by coating fd viruses with 5 kg/mol PEO such that

the polymer brush prevents both other rods as well as the flow field to come

closer than d = dhyd to the rod. fd systems with L/dhyd = 5.3L/d > L/d

(i.e. d = 5.3dhyd) correspond to uncoated viruses (wild type), where the ionic

strength was adjusted to have the same effective diameter d. Since in suspensions

of uncoated fd viruses there is more space for the solvent to develop flow fields

between rods, friction with neighboring rods is typically smaller than for coated

viruses. Due to this effect, normalized diffusion constants for L/dhyd = L/d are

smaller than those of L/dhyd = 5.3L/d (see Fig. 4.8.b).

Inspired by these experiments, we performed three simulations with 1
2
L/dhyd =

L/d = 20 in order to compare them with simulations with L/dhyd = L/d = 20.

In contrast to experiments, where the length of the fd virus is fixed, in MPC-SR

simulations, the hydrodynamic diameter dhyd is fixed. However, the rod length
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4 Self diffusion of rods

Experiments:

d

dhyd

d

dhyd

d

dhyd

(a) (b) (c)

Simulations:

d

dhyd

d

dhyd

(d) (e)

Figure 4.7: Schematical drawings how different hydrodynamic dhyd and steric

diameters d are realized in experiments (a-c) and simulations (d,e).

(a) The wild-type fd virus is charged, and electrostatic repulsion lead

to d > dhyd. (b) High concentration of salt ions screen electrostatic

repulsions such that d ≈ dhyd. (c) Coating fd viruses with PEO, the

hydrodynamic diameter is increased. (d, e) Rods in simulations have

a fixed hydrodynamic diameter, whereas the steric diameter can be

varied.
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Figure 4.8: Dependence of the normalized diffusion constants D̂iso,‖,⊥(ρ) on the

normalized volume fraction. (a) Simulation results of rods with steric

aspect ratio L/d = 20, but different hydrodynamic diameters. Blue

and red curves correspond to systems with and without hydrody-

namics, respectively. Magenta curves correspond to HI simulations

with d = 2dhyd. (b) Experimental data of Lettinga et al. [60] for

differently modified fd viruses which all have L/d = 25, but different

dhyd. Blue curves correspond to coated fd viruses with 20 kg/mol

PEO leading to d = dhyd. Magenta curves show results of charged

wild-type fd viruses at 2 mM salt (d = 5.3dhyd).
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4 Self diffusion of rods

L and the steric diameter d can be easily varied in our simulations. L can be

changed using a different number of monomers while keeping the bond length

l, and d = 6
√

2σ is changed by changing the interaction length scale σ of the

Lennard-Jones potential (see Eq. (4.11)). In order to realize that systems with

same L/d but different d have the same static properties, also some other sys-

tem properties like the bending rigidity κ have to be scaled. Except for the

Lennard-Jones potential, this leads to identical settings as in the above pre-

sented simulations with L/d = 40 (and d = dhyd). The Lennard-Jones potential

is only applied to every second monomer in the shish-kebab rod (see Fig. 4.7.e).

The results are also shown in Fig. 4.8.a. Curves which belong to simulations

with d = 2dhyd, are located between the corresponding curves of MPC-SR and

random MPC systems. This systematic dependence is in qualitative agreement

with the experimental results of M. P. Lettinga et al. [60].

4.4.2 Diffusion anisotropy

Since anisotropy in diffusion is found also in the absence of hydrodynamic inter-

actions – in contrast to infinite dilution – steric interactions with the anisotropic

rod network are obviously sufficient to cause an anisotropy in diffusion. In

Fig. 4.9, the anisotropy D‖/D⊥ in diffusion is plotted for the two aspect ratios

L/d = 20 and L/d = 40 – both with the MPC-SR and random MPC solvents.

Also the experimentally obtained anisotropy D‖/D⊥ in fd virus suspensions with

comparable aspect ratios L/d = 25 and L/d = 52 are shown in Fig. 4.9. From

the simulation data, no significant difference in diffusion anisotropy between

systems with and without hydrodynamics can be found. In Sec. 4.4.1, we have

shown that hydrodynamics has a strong influence on absolute diffusion con-

stants. Obviously, this hydrodynamic enhancement is equally strong for parallel

and perpendicular diffusion constants, such that the anisotropy D‖/D⊥ does

not differ from that without hydrodynamics. The diffusion anisotropy in dense

systems is thereby mainly caused by steric interactions. The influence of steric

interactions with the anisotropic rod network on the diffusion anisotropy has an

intuitive explanation. The free volume for a rod to move into the direction of

its long axis û is much larger than that one for the direction perpendicular to û.

This results in an anisotropic diffusion which is caused only by entropic reasons.

Moreover, a systematic increase of the diffusion anisotropy with increasing rod
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Figure 4.9: ρ dependence of the diffusion anisotropy D‖/D⊥ of simulations and

experiments of fd viruses at different rod aspect ratios. For simula-

tions, results of both solvent (MPC-SR and random MPC solvents)

are shown. Lines are guides to the eyes.

aspect ratios can be seen in Fig. 4.9. This systematic trend is in agreement

with the experiments of M. P. Lettinga. However, other computer simulations

[5, 18, 63] on comparably short rods do not find such a dependence on rod aspect

ratios. They rather find that the diffusion anisotropy depends only on the ne-

matic order parameter 〈P2〉. A convenient representation for a comparison of our

simulations with other studies is therefore that of Fig. 4.10, where the diffusion

anisotropy D‖/D⊥ is plotted vs. nematic order parameter 〈P2〉. In particular

for relatively high order parameters of 〈P2〉 & 0.9, the diffusion anisotropy of

our computer simulations is smaller than those of the other studies [5, 18, 63].

In order to understand this discrepancy, it is necessary to have a closer look to

the simulation models of the other studies.

Allen [5]: Allen performed MD simulations of elongated ellipsoids with L/d = 5

and 10. These ellipsoids do not have any friction, and collisions with other

ellipsoids are reflecting, corresponding to slip boundary conditions. In
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Figure 4.10: Diffusion anisotropy vs. 〈P2〉 of our simulations, fd viruses and

simulations by Allen [5], Löwen [63] and Darinskii [18].

this model, ellipsoids are strongly hindered to move perpendicular to the

nematic director, whereas an unphysically high inertia for parallel motion

leads to a very high anisotropy.

Löwen [63]: Löwen performed Brownian-Dynamics simulations of hard sphe-

rocylinders with aspect ratios 4.8 ≤ L/d ≤ 16. In this simulation model,

friction with the solvent is taken into account. Hydrodynamic interac-

tions are considered only on the level of an anisotropic friction. He chose

anisotropic step sizes for trial moves in parallel and perpendicular direc-

tions such that diffusion constants at infinite dilutions agree with those of

de la Torre et al. [21, 94] (see Eqs. (4.6 - 4.8)). Löwen thereby took into

account hydrodynamic interactions along the whole contour of a rod, but

the hydrodynamic influence of neighboring rods is disregarded. However,

the latter interactions can be far stronger in dense systems, so that the

diffusion anisotropy is over-estimated. A comparison with our simulations

shows that there is no hydrodynamic effect on the diffusion anisotropy, if

all (intra- and inter-rod) hydrodynamic interactions are taken into account.
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4.4 Dense rod suspensions

Darinskii et al. [18]: In the work of Darinskii et al., the dynamics of semiflex-

ible shish-kebab rods with an aspect ratio of L/d = 8 was studied by MD

simulations. While friction with solvent particles is not included in their

model, collisions with other rods do not have perfect slip. As rods are

composed of interacting spheres, the rod surface is not perfectly smooth.

This leads to lower diffusion anisotropies than those of Allen [5], but it

turns out that the absence of solvent friction leads to higher diffusion

anisotropies than in our simulations with the aspect ratio of L/D = 20.

They find that the diffusion anisotropy only depends on the nematic order

parameter 〈P2〉, independent of the flexibility.

A yet open question is why in our computer simulations as well as for fd viruses,

an increase in diffusion anisotropy can be observed with increasing aspect ratio

L/d for a fixed nematic order parameter. We can at least qualitatively explain

this increase by simple scaling arguments. We assume that the nematic order

parameter 〈P2〉 is a function which only depends on ρ = φL/d rather than on

φ and L/d independently. Fig. 4.4 shows that this assumption is justified in

our computer simulations – at least in the considered range of aspect ratios.

For a fixed nematic order parameter 〈P2〉, the corresponding volume fraction

φ(〈P2〉 , L/d) therefore depends on the rod aspect L/d ratio like

φ(〈P2〉 , L/d) ∝ d

L
. (4.21)

We assume that for a given nematic order parameter 〈P2〉, the hindrance in the

rod motion in parallel direction does not play a significant role. The motion

in perpendicular direction, however, is strongly hindered due to the presence

of other rods. In order to perform a step of a certain length in perpendicular

direction, the rod has to find an appropriate gap in the cage of neighboring

rods. The probability pgap of finding such a gap decreases monotonically with

the average number nb of other rods which can block the path through this gap.

This number nb is proportional to φ(〈P2〉 , L/d)/φ∗

nb ∝
φ(〈P2〉 , L/d)

φ∗
(4.22)

where φ∗ is the overlap volume fraction (2.17) which depends on L/d like

φ∗ ∝
(

L

d

)−2

. (4.23)
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4 Self diffusion of rods

Inserting Eq. (4.21) and Eq. (4.23) into Eq. (4.22) yields

nb ∝
L

d
. (4.24)

Since the probability that a rod is able to move a certain distance in perpendic-

ular direction decays with nb ∝ L/d, the anisotropy increases with increasing

aspect ratio L/d.

4.5 Summary and Conclusions

Simulations of rod-like colloids were performed both with HI (using the MPC-

SR solvent) and without HI (using the random MPC solvent). Single-rod sim-

ulations show that the model is in accordance with theoretical expressions for

single-rod diffusion constants. In MPC-SR simulations, the hydrodynamic en-

hancement as well as the predicted anisotropic diffusion of single rods was found.

Dense rod systems were studied both in the isotropic and the nematic phases,

and diffusion constants were calculated. The hydrodynamic enhancement was

found to be present even in dense rod suspensions. Moreover, simulations as

well as experiments have shown that the larger the hydrodynamic diameter the

more strongly is diffusion diminished with increasing concentration. In the ne-

matic phase, diffusion constants are strongly anisotropic. We found that the

diffusion anisotropy increases with rod aspect ratio, which is in contradiction to

other studies of short rods, where diffusion anisotropy seems to be a function of

the nematic order parameter only. However, the aspect-ratio dependence of the

diffusion anisotropy was also found in experiments with fd viruses. We could

explain this observation by simple scaling arguments.
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5 The hydrodynamic mobility

tensor

In Sec. 2.1, the mobility tensor was introduced. For solvents which can be well

described by the Stokes equation (2.4), we found that the mobility tensor is the

Oseen tensor TO(r) (2.6). In this chapter, we present a way how the Fourier

transform (FT) of the mobility tensor can be directly determined in MPC simu-

lations. This concept is then applied to several systems in order to gain insights

into hydrodynamic interactions. In Sec. 5.3, the FT of the mobility tensor of a

free MPC-SR solvent is calculated and compared to the solution of the Stokes

equation (2.4). From these simulations, the “hydrodynamic cutoff” can be de-

termined. In Sec. 5.4.1, the FT of the mobility tensor is calculated for MPC-SR

systems containing rod-like colloids. It will turn out that hydrodynamic inter-

actions are strongly screened due to the presence of the rods. Hydrodynamic

screening can be quantified by the hydrodynamic “screening length” κ
−1, a char-

acteristic distance over which hydrodynamic interactions decay. For anisotropic

systems, we determine two different screening lengths, κ
−1
‖ and κ

−1
⊥ .

5.1 Derivation of the anisotropic screened mobility

tensor

The mobility tensor T(r − r′) of solvent particles in equilibrium relates the

velocity field v(r) to an external body force f(r′) by

v(r) =

∫
T(r − r′) · f(r′)dr′ (5.1)

(see Sec. 2.1). For a simple fluid, in the limit of vanishing Reynold numbers,

T(r − r′) = TO(r − r′) is the Green’s function of the Stokes equation (2.4),

known as Oseen tensor.

Once an arbitrary force distribution f(r) is known, the corresponding velocity
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5 The hydrodynamic mobility tensor

field can be calculated using Eq. (5.1). The problem is that the force distri-

bution is not a priori known in most soft matter systems. Let us discuss this

very general problem of soft matter systems considering the example of rod-like

colloids. Each rod segment is coupled to other rod segments due to the stiff-

ness. Therefore a rod monomer cannot follow the surrounding fluid flow and

hence exerts a force on the fluid. This force induces a further contribution to

the velocity field. In order to get a consistent force distribution f(r), generally

a linear integral equation has to be solved, compare Ref. [79]. Alternatively, if

only point particles are considered, like in the shish kebab model (see Chap. 4.1),

the continuous force distribution f(r) becomes a set of discrete forces Fi, and

the integral equation reduces to a set of linear algebraic equations. Even in

the discretized case, it is often not feasible to solve the set of equations numer-

ically, because the required computational effort restricts us to systems with

N < 500 (N being the number of point particles) which is far less than needed

e.g. in dense rod suspensions. We have done such a calculation for a single long

rod (L/d = 400). The resulting velocity field induced by a point force a small

distance away from a rod is shown in Fig. 5.1. Comparing Fig. 5.1 with a cor-

responding flow field without the rod (see Fig. 2.1), one can clearly see that the

rod strongly influences the velocity field. Even in the presence of only one rod,

the effect of hydrodynamic screening becomes obvious: flow velocities on the

rear side of the rod are far smaller than in the case of a free solvent (Fig. 2.1).

However, even if it were possible to calculate the velocity field for all desired

systems, the resulting flow field always depends strongly on the current micro-

scopic configuration. Since we are only interested in statistical averages, another

(phenomenological) approach is desirable.

Brinkman [10] and Debye and Büche [22] suggested a phenomenological equation

which takes into account hydrodynamic screening. They extended the Stokes

equation (2.4) by an additional friction term −ηκ
2v(r) proportional to the flow

velocity v(r). This equation is called the Debye-Büche-Brinkman equation

η∇2v(r) −∇p(r) − ηκ
2v(r) = f(r) (5.2)

∇ · v(r) = 0. (5.3)

The strength of the screening is given by the “screening constant” κ. The

reciprocal of κ is the “hydrodynamic screening length” κ
−1. We denote the

Green’s function of the Debye-Büche-Brinkman equation (5.2) the “isotropic
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F

Figure 5.1: The velocity field due to a point force F in the vicinity of a long

rod (L/d = 400). The presence of the rod strongly influences the

flow field. On the upper side of the rod it can be clearly seen that

hydrodynamics is screened by the rod.

screened hydrodynamic mobility tensor” Ts(r). Its explicit form is [47]

Ts(r) =
1

4πηr

(
h1(κr)̂I + h2(κr)

r ⊗ r

r2

)
(5.4)

with h1(x) = −x−2 +
(
1 + x−1 + x−2

)
e−x (5.5)

and h2(x) = 3x−2 −
(
1 + 3x−1 + 3x−2

)
e−x. (5.6)

In contrast to the long-ranged Oseen-tensor, the mobility tensor of the isotropic

screened hydrodynamic mobility tensor is short-ranged and decays like a Yukawa

potential where the characteristic decay length is the hydrodynamic screening

length κ
−1. The mobility tensor (5.4) of the Debye-Büche-Brinkman equation

reduces to the Oseen tensor in the limit of κ → 0.

The Debye-Büche-Brinkman equation has shown to be a good phenomenological

description in isotropic complex fluids. However, in very dense rod suspensions,

rods form a nematic phase which is anisotropic. Accordingly, one can expect that

also screening is anisotropic, i.e. that there are different inverse screening lengths
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5 The hydrodynamic mobility tensor

κ‖ and κ⊥, for parallel and perpendicular directions, respectively. We generalize

the Debye-Büche-Brinkman equation (5.2) to incorporate anisotropic screening.

This is done by replacing κ
2 by a screening tensor S. Let us consider the

more general case with different screening lengths for all three dimensions. For

simplicity we assume that the screening tensor S is diagonal (this can allways be

achieved by transforming into a proper coordinate system). Thus the screening

tensor reads

S =




κ
2
x 0 0

0 κ
2
y 0

0 0 κ
2
z


 . (5.7)

With this definition we constitute an equation which we call the Anisotropic

Screened Creeping Flow Equation (ASCFE)

η∇2v(r) −∇p(r) − ηSv(r) = f(r) (5.8)

∇ · v(r) = 0. (5.9)

In the following, the Green’ function of the ASCFE, the “anisotropic screened

mobility tensor” Ta(r) will be calculated in Fourier space (Ta(r) → T̃a(k)).

Fourier transforming the ASCFE yields

−ηk2ṽ(k) + ikp̃(k) − ηSṽ(k) = f̃(k) (5.10)

k · ṽ(k) = 0. (5.11)

This algebraic equation can be written in matrix form as




−η(k2 + κ
2
x) 0 0 ikx

0 −η(k2 + κ
2
y) 0 iky

0 0 −η(k2 + κ
2
z) ikz

−kx −ky −kz 0




︸ ︷︷ ︸




ṽx

ṽy

ṽz

p̃


 =




f̃x

f̃y

f̃z

0


 .

=: A

(5.12)

The ASCFE can be solved by matrix multiplication with the inverse matrix

A−1, 


ṽx

ṽy

ṽz

p̃


 = A−1




f̃x

f̃y

f̃z

0


 . (5.13)
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This can be compared with the FT of Eq. (5.1). Since our simulations have

periodic boundary conditions, the FT of Eq. (5.1) can be easily expressed using

the convolution theorem for periodic functions

v(r) =

∫
Ta(r − r′) · f(r′)dr′ (5.14)

⇔ ṽ(k) = V T̃a(k)̃f(k). (5.15)

Here, V = LxLyLz is the volume of the periodic simulation box, and the linear

sizes of the simulation box are Lx, Ly and Lz for x, y and z-direction, respec-

tively. By comparing Eq. (5.13) with Eq. (5.15), the upper left 3×3 submatrix of

A−1/V by T̃a(k) can be identified with the FT of the mobility tensor. The ele-

ments of this upper left submatrix are calculated by Cramer’s rule. We introduce

the abbreviations X := −η(k2 + κ
2
x), Y := −η(k2 + κ

2
y) and Z := −η(k2 + κ

2
z).

T̃a(k) =
1

V det(A)




det




Y 0 iky

0 Z ikz

ky kz 0


 −det




0 0 iky

0 Z ikz

kx kz 0


 det




0 Y iky

0 0 ikz

kx ky 0




−det




0 0 ikx

0 Z ikz

ky kz 0


 det




X 0 ikx

0 Z ikz

kx kz 0


 −det




X 0 ikx

0 0 ikz

kx ky 0




det




0 0 ikx

Y 0 iky

ky kz 0


 −det




X 0 ikx

0 0 iky

kx kz 0


 det




X 0 ikx

0 Y iky

kx ky 0







=
1

V (k2
xY Z + k2

yZX + k2
zXY )




k2
yZ + k2

zY −kxkyZ −kxkzY

−kxkyZ k2
xZ + k2

zX −kykzX

−kxkzY −kykzX k2
yX + k2

xY


 (5.16)

We have calculated the FT of this very general hydrodynamic mobility tensor

(5.16), because it includes as special cases the FT’s of all the other mobility

tensors which will be needed below. The solution of the Stokes equation is

obtained for κx = κy = κz = 0, the case of the Debye-Büche-Brinkman equation

(isotropic screening) is found for κx = κy = κz 6= 0, and the solution of the

uniaxially anisotropic screened creeping flow equation (like in nematic systems)

is obtained for κx =: κ‖ 6= κy = κz =: κ⊥. The simplified expressions of the

mobility tensor are presented in the appropriate sections below.

In the next section, a procedure is described, how hydrodynamic mobility tensors

in Fourier space T̃(k) can be determined in simulations. By fitting the measured

T̃(k) to the solution (5.16) of the ASCFE, screening lengths can be obtained.
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5 The hydrodynamic mobility tensor

5.2 The mobility tensor from simulations

It is possible to determine the Fourier transform of the mobility tensor from

MPC-SR simulations. We follow the same procedure as Dünweg and Kremer in

Ref. [30, 31]. In the following, the procedure is explained in detail. The mobility

tensor is related to the fluctuations of the particle velocities in equilibrium by

the Green-Kubo Formula [20, 38]

T(r) =
1

kBT

∫ ∞

0

dt
1

V

∫

V

dr′ 〈v(r′, 0) ⊗ v(r + r′, t)〉 (5.17)

Since in equilibrium systems, time correlation functions like the integrand of

Eq. (5.17) only depend on time differences, the ensemble average 〈...〉 can be

replaced by a time average

〈v(r′, 0) ⊗ v(r + r′, t)〉 =
1

N(t)

N(t)∑

i=1

v(r′, ti) ⊗ v(r + r′, t + ti) (5.18)

in simulations. Here, N(t) is the number of possibilities to create pairs of ti and

t + ti from the recorded data which are separated by a time difference t. Since

only a finite number of values v(r′, ti) can be stored in simulations, also N(t) is

limited.

Fourier transformation of Eq. (5.17) with respect to space coordinates (r → k)

and the use of the convolution theorem implies

T̃(k) =
1

kBT

∫ ∞

0

dt 〈ṽ∗(k, 0) ⊗ ṽ(k, t)〉 . (5.19)

The particle-based MPC-SR algorithm for the solvent used in our simulations

allows us to measure the Fourier transforms ṽ(k, t) of the velocity field directly,

ṽ(k, t) =
1

N

(
Î − k̂ ⊗ k̂

) N∑

i=1

vi(t) exp(−ik · ri(t)). (5.20)

Since for an incompressible fluid, longitudinal modes do not contribute to the

hydrodynamic mobility tensor, the operator (̂I − k̂ ⊗ k̂) is applied in order to

consider only transversal modes. The Fourier transform ṽ(k, t) can be under-

stood as the amplitude of the shear wave with wave vector k at time t. With the

calculated ṽ(k, t) of Eq. (5.20), we calculate T̃(k) according to Eq. (5.19). The

accessible range of k-vectors is discrete due to the system periodicity and lim-

ited for small values by the sizes Lα (α = x, y, z) of the periodic simulation box.
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5.3 Hydrodynamic cutoff

The range of k, with physical meaning is limitted for large k-vectors since the

continuum description of the solvent breaks down as soon as the corresponding

wave lengths are of the order of particle distances. We call this typical length

scale the “hydrodynamic cutoff” λc. In Sec. 5.3, the hydrodynamic cutoff will

be studied in dependence on the collision time h for MPC-SR systems. Since

only a limited amount of k-vectors can be sampled, a smallest wavelength λmin

has to be chosen which gives an upper threshold for k-vectors to be sampled.

Hence, we determine shear waves only for

kα = (2π/Lα)iα (5.21)

where iα is an integer with 0 < |iα| ≤ Lα/λmin.

With this method, T̃(k) can be determined numerically for each accessible k-

vector and compared to its theoretical prediction (5.16).

5.3 Hydrodynamic cutoff

Since the MPC-SR solvent is widely used in computer simulations of low Reynold

number fluids, it is essential to see how good it reproduces hydrodynamic be-

havior, i.e. that the flow field obeys the Stokes equation. We study this problem

by performing simulations of a free MPC-SR solvent.

By setting κx = κy = κz = 0, Eq. (5.16) reduces to the FT of the Oseen tensor

(i.e. the Green’s function of the Stokes equation)

T̃O(k) =
1

ηV

1

k2

(
Î − k̂ ⊗ k̂

)
. (5.22)

Since the free MPC-SR solvent is an isotropic system, the trace of T̃O(k) should

only depend on the length of k, and all essential information about hydrody-

namics are included in the following quantity

T̃O(k) :=
1

2
Tr T̃O(k) =

1

ηV

1

k2
(5.23)

ηV T̃O(k) =
1

k2
. (5.24)

Hence a plot of ηV T̃O(k) vs. k in a double logarithmic representation should

give a straight line with a slope of −2 for all solvents which obey the Stokes

equation.
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− 2π
λmin

0 2π
Lx

2π
Ly

2π
λmin

ky

2π
λmin

kx

Figure 5.2: The pattern how k space is sampled for isotopic systems. The crosses

show the accessible k-vectors and red circles are those used for the

evaluation of Eq. (5.19) and (5.20).
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5.3 Hydrodynamic cutoff
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Figure 5.3: k dependence of T̃ (k) of simple MPC-SR fluids with different colli-

sion times h. The black dashed line is the 1/k2 dependence expected

from the Stokes equation (2.4). The colored horizontal lines are

the theoretical predictions of Eq. (5.25) assuming molecular chaos.

Symbols correspond to simulation results.

For these simulations, we use a cubic simulation box, i.e. Lx = Ly = Lz =: Liso

In principle, T̃(k) could be calculated for all accessible k’s given by Eq. (5.21).

However, the quantity of interest is T̃ (k) which only depends on k = |k|. The

average amount of accessible data points between k and k+∆k increases quadrat-

ically with k. Since we want to calculate T̃(k) for all k’s with the same accuracy,

and each data point requires the same computational effort, we do not evaluate

all the possible T̃(k)’s for large k-vectors. Instead, high-symmetry lines in k

space are considered, for which k = 2π/Lisoiαm with 0 < |iα| ≤ Lα/λmin and

• m ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
• m ∈ {(1,±1, 0), (1, 0,±1), (0, 1,±1)}
• m ∈ {(1,±1,±1), (1,±1,∓1)}.
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5 The hydrodynamic mobility tensor

Fig. 5.2 shows a cut of the k space along the xy-plane which demonstrates how

k space is sampled.

In Fig. 5.3, simulation data for four MPC-SR solvents with different collision

times h are shown. For the viscosity η, the analytic expressions (3.13 - 3.14)

where used. The fact that data points for small wave numbers k lie on the

predicted master curve 1/k2 confirms that the MPC-SR solvents do obey the

Stokes equation (2.4) for all corresponding wave vectors. Furthermore, it verifies

once more that the expressions (3.13 - 3.14) are indeed a very good description of

the shear viscosity. However, data points for large wave numbers k deviate from

the 1/k2 prediction of the Stokes equation and approach a plateau instead. The

physical interpretation of this fact is that for length scales of the order of particle

interaction radii, a hydrodynamic description of the solvent does no longer hold.

In appendix A, the plateau value ηV T̃ (k) is calculated for a MPC-SR solvent

which is obtained by assuming molecular chaos, where all correlations among

particles are absent. This calculation finally gives (see Eq. (A.24))

ηV T̃mc(k) =
ηh

2m̺
. (5.25)

Note that this expression is independent of k. Here we used the subscript “mc”

for “molecular chaos” in order to distinguish it from the other regimes. In

Fig. 5.3 can be seen that the expression (5.25) agrees perfectly with the sim-

ulated data points at the plateau. Consequently, the crossover from 1/k2 to a

constant value given by Eq. (5.25) is caused by a crossover from a hydrodynamic

regime to molecular chaos. Therefore, the wave number kc where the two lines

given by 1/k2 and the plateau value intercept can be used to define the “hydro-

dynamic cutoff length” λc = 2π/kc. Since analytic expressions of both lines

are known, and the agreement between simulations and theory is perfect (see

Fig. 5.3), we can calculate the hydrodynamic cutoff λc analytically. The wave

number kc at the intercept is

kc =

√
2m̺

ηh

λc =
2π

kc
= π

√
2ηh

m̺
(5.26)

Using the analytic expressions (3.13 - 3.14) for the shear viscosity η of the MPC-

SR solvent, we are able to calculate numerical values of λc depending on h.

The limit of λc for h → 0 can even be predicted analytically. According to
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5.4 Hydrodynamic screening in rod suspensions

Eq. (3.14), the shear viscosity η is dominated by ηcoll in the limit of h → 0.

Replacing η in Eq. (5.26) by the analytic expression (3.15) for ηcoll yields

lim
h→0

λc =
π

3

√(
1 − 1

̺

)
(1 − cos α). (5.27)

Inserting the parameters α = 130.0◦ and ̺ = 10.0 of our simulations, we find

lim
h→0

λc (α = 130.0◦, ̺ = 10.0) = 1.2733. (5.28)

This is consistent with expectation, since at small length scales, we know that

hydrodynamics must break down, because momentum is only conserved on the

length scale of a collision box a and not particle-wise.

From Eq. (5.27) it can be concluded that the continuum limit λc → 0 can be

reached by lowering α → 0. This is also intuitively clear, since a vanishing col-

lision angle hardly violates momentum conservation of each particle. However,

since simulations of hydrodynamic systems require a sufficiently high Schmidt

number, the double limit h → 0 and α → 0 cannot be taken independently, but

the condition α/h2 ≫ 1 has to be fullfilled, as shown by Ripoll et al. [83]. With

such small h, it is computationally not feasible to study the dynamics over long

time scales.

5.4 Hydrodynamic screening in rod suspensions

There is no analytical theory which is able to predict hydrodynamic screening

lengths for rod suspension. Screening length are also difficult to access in experi-

ments. In Ref. [47], hydrodynamic screening lengths in dense rod suspensions are

indirectly deduced from diffusion constants of tracer spheres. This experimental

study will be discussed in more detail in Chap. 6. Calculating the hydrodynamic

mobility tensor in Fourier space T̃(k) during simulations of dense rod systems,

we are now able to determine screening lengths very precisely.

The same model is used as in the simulations of Chap. 4 where self-diffusion

constants of rod-like colloids are calculated. Details about the model can be

found in Sec. 4.2.

Due to the presence of the rods, we expect hydrodynamic screening. Further-

more, we expect that hydrodynamic screening can be well described by the

phenomenological ASCFE (5.8). This point is not trivially true, but it will turn

out later that the simulation data indeed fit very well to the predictions of the
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5 The hydrodynamic mobility tensor

ASCFE – at least for a wide range of length scales.

Unfortunately, it is not straightforward to extract the screening lengths κ
−1
α

from T̃(k) for all k-vectors in the general anisotropic case. However, if one

measures T̃(k) only for those k-vectors which are eigenvectors of S, we are able

to extract κx, κy and κz. In the case of our MPC-SR simulations of rod-like

colloids, there are two different situations, which are discussed separately below.

Isotropic systems

For low concentrations, rods are oriented isotropically. In this case, there is

only a single screening length κ
−1, and hydrodynamics can be described by the

isotropic Debye-Büche-Brinkman equation (5.2). This simple case is included in

the more general description of the ASCFE, where S has a three-fold degenerated

eigenspace with eigenvalue κ
2. The expression (5.16) reduces to

T̃s(k) =
1

ηV

1

k2 + κ2

(
Î − k̂ ⊗ k̂

)
(5.29)

Hence it follows that

T̃s(k) :=
1

2
Tr T̃s(k) =

1

ηV

1

k2 + κ2
. (5.30)

On the other hand, for the trace of the numerically calculated T̃(k), it follows

from Eq. (5.19) that

T̃ (k) =
1

2
Tr T̃(k) =

1

2kBT

∫ ∞

0

dt 〈ṽ∗(k, 0) · ṽ(k, t)〉 . (5.31)

A rearrangement of Eq. (5.30) yields

1

ηV T̃ (k)
= k2 + κ

2. (5.32)

A plot of 1/(ηV T̃ (k)) vs. k2 should give a straight line with slope 1 and an axis

intercept of

b := κ
2. (5.33)

This line can be fitted, where the only fitting paramater is the axis intercept b.

From b it is straightforward to get the screening length

κ
−1 =

1√
b
. (5.34)
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5.4 Hydrodynamic screening in rod suspensions

Since every possible k-vector is an eigenvector of S, one could, in principle,

measure T̃(k) for all accessible k’s given by (5.21). However, hydrodynamic

screening influences the Fourier transformed mobility tensor T̃(k) only signif-

icantly for small wave vectors. Therefore, the simulation box has to be large

enough in order to get sufficient data points for T̃(k) which are influenced by

hydrodynamic screening. Furthermore, sampling all accessible k’s (given by

Eq. (5.21)), one would end up with the same problem as in Sec. 5.3 that the

statistical accuracy is not uniformly distributed for all k = |k|. We decided to

use the same sampling pattern of k space as used in Sec. 5.3 and visualized in

Fig. 5.2.

Since all modes can be assumed to be statistically independent, the error ∆(κ−1)

of κ
−1 can be obtained from the standard error ∆b by error propagation using

the relation (5.34),

∆(κ−1) = ∆b

∣∣∣∣
∂

∂b

1√
b

∣∣∣∣ =
∆b

2
√

b
3 . (5.35)

An example of such a plot is shown in Fig. 5.4.a, where simulation data of

1/(ηV T̃ (k)) as well as the best fit to the theoretical curve (5.32) are plotted vs.

k2. The fitted line has clearly a positive axis intercept. Note that the slope of

the line is given and not a fitting parameter. For large k (k2 > 10.0), the data

points don’t lie on the expected line anymore since the continuous hydrodynamic

description breaks down for too large wave vectors, as discussed in Sec. 5.3.

Also data points for very small k (k2 < 0.5) don’t lie on the line. They rather

lie on another line with a larger slope and no axis intercept, as highlighted in

Fig. 5.4.b. The explanation of this result is that on large scales, the distinction

between solvent and colloids is not longer relevant, but the whole rod suspension

can be considered as an unscreened fluid with an effective (macroscopic) viscosity

ηeff which is larger than the solvent viscosity η. Therefore these data points

are described by an ”effective” mobility tensor T̃eff (k) which is not screened

(κeff = 0) and corresponds to the effective (macroscopic) viscosity ηeff . Dhont

and Briels [25] calculated the effective viscosity of a rod suspension. In the limit

of zero shear, they predict an effective viscosity

ηeff = η

(
1 +

8

45

(L/d)2

ln(L/d)
φ

)
(5.36)
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Figure 5.4: 1/(ηV T̃ (k)) vs. k2 for a simulation of an isotropic rod system. Rods

have an aspect ratio L/d = 20 and a volume fraction of φ = 0.18.

(a) Data points as well as the best fit to the theoretical curve

1/(ηV T̃s(k)) = k2 + κ
2 are shown for 0 < k2 < 25. From the

axis intercept, the screening length κ
−1 can be extracted. For the

fit, only data points for 0.5 < k2 < 10 are taken into account. For

10 < k2, the onset of non-hydrodynamic behavior can be seen. (b)

shows a magnification of (a) for small k2 together with line ηeff/η,

where ηeff is the effective viscosity predicted by Dhont and Briels

[25].
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5.4 Hydrodynamic screening in rod suspensions

where η is the solvent viscosity, L/d is the rod aspect ratio and φ is the volume

fraction of the rods. In Fig. 5.4.b, also the corresponding line

1

ηV T̃ (k)
=

ηeff

η
k2 (5.37)

is plotted. One can see that the data points for k2 < 0.5 can be well described

by this curve.

Of course, these data points must not be taken into account for the calculation

of the screening length κ
−1. Therefore, only data points for 0.5 < k2 < 10.0 are

used for the κ
−1-fit.

Nematic systems

For higher concentrations, where rods form a nematic phase, the system has a

preferential direction represented by the nematic director n̂. The two perpen-

dicular directions in 3D space are equivalent. Due to this uniaxial anisotropy,

hydrodynamic screening for shear waves with k ‖ n̂ differs from hydrodynamic

screening for waves with k ⊥ n̂. Accordingly, there are two screening lengths

κ
−1
‖ and κ

−1
⊥ . In our simulations we have the possibility to set the nematic direc-

tor n̂ to a desired direction. We have chosen n̂ to be the x-direction. Therefore

the anisotropic screening tensor reads

S =




κ
2
‖ 0 0

0 κ
2
⊥ 0

0 0 κ
2
⊥


 (5.38)

which has the yz-plane as a two-fold degenerate eigenspace. The Fourier trans-

formed hydrodynamic mobility tensor T̃a(k) still looks quite complicated for

general k. When only those k are considered which lie in one of the two

eigenspaces of S, T̃a(k) can be simplified drastically. Therefore we determine

T̃a(k) only for those k which are either parallel or perpendicular to n̂. Also for

nematic systems we have the problem that there are only few modes for long

wave lengths but (in the case of k ⊥ n̂) many modes for small wave length.

Therefore we consider only those k-vectors which fulfill Eq. (5.21) and lie on

one of the lines:

• positive x, y, and z axes

• y = ±z, with x = 0 and y >= 0

Let us now consider both eigenspaces independently:
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5 The hydrodynamic mobility tensor

k ‖ n̂:

Eq. (5.16) simplifies in this case to

T̃a(k) =
1

V η(k2 + κ2
⊥)




0 0 0

0 1 0

0 0 1


 . (5.39)

From this one can define

T̃‖(k) :=
1

2
Tr T̃a(k) =

1

2

(
T̃a,yy(k) + T̃a,zz(k)

)
=

1

V η(k2 + κ2
⊥)

. (5.40)

In simulations, T̃‖(k) can be determined by

T̃‖(k) =
1

2kBT

∫ ∞

0

dt
〈
ṽ∗

y(k, 0)ṽy(k, t) + ṽ∗
z(k, 0)ṽz(k, t)

〉
. (5.41)

Plotting 1/(ηV T̃‖(k)) vs. k2 for k ‖ n̂, one expects again a straight line, which

can be fitted similarly to the isotropic case. Thus the perpendicular screening

length κ
−1
⊥ together with its error can be extracted.

k ⊥ n̂:

Eq. (5.16) similarly simplifies in this case to

T̃a(k) =
1

V η




1
k2+κ

2
‖

0 0

0 k2
z

k2(k2+κ
2
⊥)

− kykz

k2(k2+κ
2
⊥)

0 − kykz

k2(k2+κ
2
⊥)

k2
y

k2(k2+κ
2
⊥)


 . (5.42)

We define the quantity

T̃⊥(k) := T̃a,xx(k)) =
1

V η(k2 + κ2
‖)

. (5.43)

In simulations, T̃⊥(k) is determined by

T̃⊥(k) =
1

kBT

∫ ∞

0

dt 〈ṽ∗
x(k, 0)ṽx(k, t)〉 (5.44)

Plotting 1/(ηV T̃⊥(k)) vs. k2 for k ⊥ n̂, one expects again a straight line, which

can be fitted similarly to the isotropic case. Thus the parallel screening length

κ
−1
‖ together with its error can be extracted.
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Figure 5.5: Concentration dependence of screening lengths κ
−1
‖ and κ

−1
⊥ for rods

with L/d = 20 and L/d = 40. The dashed vertical lines indicate the

I-N phase transition for L/d = 20 (red line) and L/d = 40 (blue

line).

5.4.1 Concentration dependence of screening

We have performed a systematic study of the concentration dependence of

screening lengths in rod suspensions for the two aspect ratios L/d = 20 and

L/d = 40. In both cases, simulations of isotropic and nematic systems were

carried out. The resulting screening lengths κ
−1
‖ and κ

−1
⊥ are shown in Fig. 5.5

as a function of the volume fraction φ. Since we expect the screening length to

be of the order of typical rod-rod distances, also the concentration dependent

length scale

B(φ) := d

(√
π

4φ
− 1

)
(5.45)

is plotted in Fig. 5.5, which is a rough estimate of the average lateral rod-rod

distance in a very simplified model which is visualized in Fig. 5.6. If the rods are

laterally aligned on a square grid, and the longitudinal distance A between rods

vanishes, B(φ) is the perpendicular distance between two neighboring rods.
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5 The hydrodynamic mobility tensor

For small volume fractions (φ ≤ 0.18 for L/d = 20 and φ ≤ 0.075 for L/d = 40),

the rod systems are in the isotropic phase and hence κ
−1
‖ and κ

−1
⊥ are identical,

κ
−1 = κ

−1
‖ = κ

−1
⊥ . The simulated screening lengths κ

−1 in the isotropic phase

have a concentration dependence which agrees very well with that of the average

rod-rod distance B. This confirms our expectation that screening lengths are

of the order of typical rod-rod distances. The almost perfect agreement can be

regarded as a coincidence, since the definition of a typical rod-rod distance B(φ)

contains of course some arbitrariness.

For larger volume fractions, rods are in the nematic phase, where a small

anisotropy in screening can be seen. For all our nematic systems, the paral-

lel screening lengths κ
−1
‖ lie above the perpendicular ones κ

−1
⊥ . In order to

explain the anisotropy in screening, one has first to understand, how one stiff

rod influences shear waves. The stiffness of the rod tends to keep solvent ve-

locities constant along its whole length. For a particular shear wave with wave

vector k, the crucial length ξc over which velocities are coupled is of the order

of ξc ≈ Lû · k̂ which is the projection of the rod on the propagation direction k̂

of the shear wave. This becomes obvious when two special cases are considered.

For shear waves perpendicular to the rod, each rod segment has the same phase

in the wave such that it does not distort the velocity field. The other extreme

is a rod with û ‖ k̂, for which the distortion of the velocity field is largest, and

hence ξc and screening are maximal. A graphical explanation for this anisotropy

is given in Fig. 5.7 where α = ∡(û, n̂). In contrast to the isotropic phase,

screening lengths κ
−1
‖,⊥ in the nematic phase decay only weakly with increasing

concentration, see Fig. 5.5.

5.4.2 Effect of nematic order on screening

From Fig. 5.7.b, it can be expected that the parallel screening length κ
−1
‖

strongly depends on the orientational order parameter 〈P2〉, since ξc ≈ L sin α is

very sensitive to small changes in α for small angles deviations from the nematic

director. Due to the weak α dependence of L cos α, for small α, perpendicular

screening lengths κ
−1
⊥ should be less sensitive to orientational disorder.

Indeed, our experimental cooperation partners of the group of J. K. G. Dhont

[47] found an increase of the parallel screening length κ
−1
‖ with increasing con-

centration in fd virus suspensions. This effect must be due to the increase in
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A

B

L

d

Figure 5.6: Visualization of the simple model, from which the average rod-rod

distance B(φ) is derived.

α
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n̂

(a)
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L sin α

n̂
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Figure 5.7: Origin of the anisotropy in hydrodynamic screening: Shear waves

propagating (a) in a direction perpendicular to n̂ are hindered by

rods more strongly than (b) those parallel to n̂. The stiffness of the

rods couples solvent velocities over typical distances ξc ≈ L cos α for

perpendicular shear waves and ξc ≈ L sin α(≪ L cos α) for parallel

ones. Therefore, parallel screening length κ
−1
‖ are typically larger

than perpendicular ones κ
−1
⊥ .
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Figure 5.8: Parallel κ
−1
‖ and perpendicular κ

−1
⊥ screening lengths from simula-

tions of rod suspensions with L/d = 60 and φ = 0.09 with movable

and fixed rods and different orientational order.

orientational order which is a consequence of increasing concentration.

We have not seen such an effect in the simulations presented in the previous

Sec. 5.4.1. A possible reason is that, for the aspect ratios L/d ≤ 40, orienta-

tional order only increases at comparably high volume fractions φ. For these

high volume fractions, the average rod-rod distances are smaller than the hy-

drodynamic cutoff λc(h = 0.1) = 1.31 of our simulations. This means that there

is not enough space between parallel rods to completely build up hydrodynamic

interactions. Our results might be therefore dominated by thermal solvent mo-

tion rather than hydrodynamics for high φ.

In order to investigate the dependence of anisotropic screening on 〈P2〉, we de-

cided to perform three extensive simulations using rods with L/d = 60 at a

volume fraction of φ = 0.09. For this volume fraction, we expect that neighbor-

ing rods are far enough from each other that hydrodynamic correlations between

them are sufficiently developed. One simulation is done in the same way as the

simulations of the previous section. The average nematic order parameter of

rods with L/d = 60 at a volume fraction of φ = 0.09 is 〈P2〉 = 0.77.
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5.4 Hydrodynamic screening in rod suspensions

In order to investigate rod systems with different orientational order, we take

advantage of the fact that the nematic order parameter 〈P2〉 can be controlled

independent of temperature and concentration. As an extreme case, we use

perfectly parallel rods (i.e. 〈P2〉 = 1) with fixed positions. Although rods do

not move, their velocities are of interest, since they have to be coupled to the

solvent in the collision step. The monomer velocities are therefore taken from

a Maxwellian distribution with zero mean and a width of
√

kBT/2M (M being

the monomer mass). This avoids cooling of solvent near the rods.

Of course, results of such simulations are not directly comparable with moving

rods. In particular for long wave length (small k), we expect deviations from

freely moving rods, since the rod suspension is artificially stuck to the resting

frame for all wave lengths. For free rods, we saw in Sec. 5.4.1 that at long wave

length, rods and solvent move collectively, and that the rod suspension can be

regarded as an effective fluid with an effective viscosity ηeff which is generally

higher than the solvent viscosity. In the suspension with fixed rods, there is no

crossover to a different linear regime which would correspond to an unscreened

fluid with ηeff 6= η.

In order to compare screening lengths of moving and fixed rods anyway, it has

be checked, that the difference between the two systems does not influence hy-

drodynamic screening lengths. Therefore, we have performed a third simulation

with fixed rods of the same aspect ratio L/d = 60 at the same volume fraction

φ = 0.09, where the order parameter has its equilibrium value 〈P2〉 = 0.77. For

this purpose, monomer positions where taken from one representative config-

uration of the simulation with freely moving rods. The results of these three

simulations (with L/d = 60 and φ = 0.09) are shown in Fig. 5.8. The screening

lengths κ
−1
‖ and κ

−1
⊥ of simulations with 〈P2〉 = 0.77 do not show any signifi-

cant differences. Hence, the assumption is justified that dynamics of small wave

length is not influenced by fixing the positions of the rods.

However, the simulation with 〈P2〉 = 1 shows a distinctly more pronounced

anisotropy in screening. In particular, the parallel screening length κ
−1
‖ is larger,

whereas the perpendicular one is unchanged (within the error bars). Even if

the accuracy is not satisfactory, this implies that the experimentally observed

increase in anisotropic screening [47] can be also seen in our simulations. Fur-

thermore, this result is in agreement with the explanation depicted in Fig. 5.7.
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5 The hydrodynamic mobility tensor

5.4.3 Effect of volume exclusion on screening

Ahlrichs et al. [3] have shown by computer simulations that there is no hydrodynamic

screening in semidilute solutions of phantom flexible polymers. They stated that

hydrodynamic screening can only be caused by entanglements arising from ex-

cluded volume interactions.

However, our explanation of hydrodynamic screening (see Sec. 5.4.1) in rod sus-

pensions does not rely on any non-hydrodynamic inter-rod interactions, but it

is solely caused by the stiffness of rods. Therefore, hydrodynamic screening is

also expected to occur in dense suspensions of phantom rods. In order to study

the effect of excluded volume (EV) interactions on screening in rod suspensions,

we performed three simulations of phantom rods with aspect ratio L/d = 20.

The chosen volume fractions were φ = 0.12, φ = 0.18 and φ = 0.27, because

corresponding data of EV rod suspension exist. The results are shown in Fig 5.9.

 0

 1

 2

 3

 4

 5

 6

 0  0.1  0.2  0.3  0.4  0.5

κ
−1
‖ for EV rods

κ
−1
⊥ for EV rods

κ
−1 for phantom rods

φ

κ
−

1
‖

,κ
−

1
⊥

Figure 5.9: Screening lengths for suspensions of phantom (blue points) and EV

rods (red points) with L/d = 20. The dashed perpendicular line

indicates the I-N phase transition.
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5.5 Summary and Conclusions

Since phantom rods cannot form a nematic phase, the data points for EV and

phantom rods at φ = 0.27 belong to different phases. Common for all three pairs

of simulations is that screening lengths of phantom systems lie above those of the

corresponding EV systems. Even if the difference is not strong, it is significant.

The stronger hydrodynamic screening in EV systems arises from the fact that

rods entangle. Thus it they can less easily follow the solvent flow which leads to

higher hydrodynamic screening.

5.5 Summary and Conclusions

We constituted a phenomenological hydrodynamic equation, the ASCFE, which

takes into account anisotropic hydrodynamic screening. The ASCFE was solved

in Fourier space to give a theoretical expression for the Fourier transform of

the hydrodynamic mobility tensor. Moreover, a procedure was introduced to

calculate the Fourier transform of the hydrodynamic mobility tensor T̃(k) from

MPC-SR simulations. This concept was applied to different systems. Thus,

we could show that the hydrodynamic cutoff in simple MPC-SR solvents obeys

our theoretical prediction. From the simulated hydrodynamic mobility tensor

of dense rod suspensions, we could extract hydrodynamic screening lengths by

comparing it with the solution of the ASCFE. We found that hydrodynamic

screening lengths decrease like typical rod-rod distances with increasing concen-

tration. For nematic systems, a weak anisotropy in hydrodynamic screening was

found which increases with increasing nematic order. Simulations of phantom

rods led to the conclusion that hydrodynamic screening is weaker in the absence

of steric rod-rod interactions.

The results of this chapter have consequences also for other chapters below.

Based on our calculated screening lengths, theoretical expressions for tracer-

sphere diffusion constants in rod suspensions will be evaluated in the next chap-

ter. The good agreement between theory and simulations nicely confirms the va-

lidity of the screening-length determination. From a comparison between simu-

lations of fixed and moving rods we could conclude that hydrodynamic screening

on length scales far smaller than the rod length is independent of rod dynamics.

Consequently, the tracer-sphere diffusion constants should be valid for a broad

range of suspensions of rod-like macromolecules and colloids, such that they can

be also transferred to, e.g., crossed-linked filament networks.

On large length scales, a crossover to a hydrodynamic regime could be found
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5 The hydrodynamic mobility tensor

in simulations of moving rods, where rods and solvent can be regarded as one

effective fluid which is not screened and has an effective viscosity larger than

that of the pure solvent. The observed effective viscosity is in accordance with

theory. The high effective viscosity of rod suspensions has the consequence that

biological cells typically have a higher viscosity in their inside, as the cytoplasm

often contains many filaments.
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suspensions

The diffusion of spherical particles in crowded environment of filamentous struc-

tures is encountered in many soft materials and biological systems, like in F-actin

networks. As a model system, we consider the diffusion of spheres in dense rod

suspensions, where we focus on the regime of tracer sphere radii as which are

considerably smaller than the mesh size ξ (see Eq. (2.18)) of the rod network and

comparable to the rod diameter. Since these tracer particles are far smaller than

the rods, sphere dynamics is much faster than the dynamics of the rod network.

Therefore many details of rods, which are crucial for rod diffusion, are of minor

importance for sphere diffusion. For example, a not too strong polydispersity of

rods should not affect sphere dynamics significantly, as long as the static phase

behavior is not influenced. Even tracer diffusion among cross-linked filaments

should have comparable diffusion constants.

Another interesting aspect of tracer diffusion is that it offers insights into hydro-

dynamics of rod suspensions. In contrast to rod diffusion, there is a hydrody-

namic theory of sphere diffusion [47, 48] which was developed by our cooperation

partners in the group of J. K. G. Dhont. The theoretical predictions of sphere

diffusion constants strongly depend on hydrodynamic screening lengths. In ex-

periments, hydrodynamic screening lengths cannot be determined from fluctua-

tions of shear waves of the solvent as it was done in our simulations (see Sec. 5.4).

Therefore, the theory of Ref. [47, 48] was used to fit experimentally obtained

sphere diffusion constants to hydrodynamic screening lengths. In contrast to

experiments, computer simulations have the advantage that two strategies can

be followed to obtain screening lengths: analyzing fluctuations of shear waves

in the solvent as described in Sec. 5.4, and analyzing sphere diffusion constants.

As we will see below, the simulated sphere diffusion constants can be predicted

very well by the theory of Dhont et al. [47, 48] if screening lengths calculated

in Sec. 5.4 are used. This consistency confirms both the theory and the validity
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6 Diffusion of spheres in rod suspensions

of our computer simulations.

6.1 Scientific Background

The theory of Dhont et al. [47, 48] predicts diffusion constants of tracer spheres

in dense rod suspensions taking into account both hydrodynamic and steric con-

tributions. Since our simulations will be compared to the theory described in

Ref. [47], its main results are summarized here.

In Sec. 2.6, it was discussed that in dense rod suspension with a rod volume

fraction φ, sphere diffusion is not always isotropic – in contrast to infinite di-

lution. In nematic suspensions, two diffusion constants D‖(φ) and D⊥(φ) are

expected due to the broken symmetry, whereas in isotropic systems, there is

only one isotropic diffusion constant Diso(φ).

In Ref. [47], it is shown that the ratio Diso,‖,⊥(φ)/D0 between diffusion con-

stants at finite volume fraction φ and that at infinite dilution is a product of a

hydrodynamic, 1/(1 + φαh
iso,‖,⊥), and a steric contribution, 1 − φαs

iso,‖,⊥,

Diso,‖,⊥(φ)

D0
=

1

1 + φαh
iso,‖,⊥

(
1 − φαs

iso,‖,⊥

)
. (6.1)

This apparently simple expression depends on the yet unknown coefficients

αh
iso,‖,⊥ and αs

iso,‖,⊥. Their derivation is not straightforward. The final expres-

sions for the steric coefficients αs
iso,‖,⊥ depend on the sphere radius as, the rod

diameter d and for nematic systems also on the nematic order parameter 〈P2〉:

αs
iso (as, d) =

2

3ν

(
1 +

2as

d

)2

(6.2)

αs
‖ (as, d, 〈P2〉) =

2

3ν

(
1 +

2as

d

)2

(1 − 〈P2〉) (6.3)

αs
⊥ (as, d, 〈P2〉) =

2

3ν

(
1 +

2as

d

)2 (
1 +

1

2
〈P2〉

)
(6.4)

with ν =
1

2

(
1 +

√
5
)

= 1.618... (6.5)

The coefficients αh
iso,‖,⊥ do not have a closed analytic expression. Like αs

iso,‖,⊥,

also the coefficients αh
iso,‖,⊥ depend on the sphere radius as, the rod diameter

d, and the nematic order parameter 〈P2〉. Furthermore, the αh
iso,‖,⊥ depend

very sensitively on the hydrodynamic screening length κ
−1. In Ref. [47], the
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6.2 Simulation details

procedure is explained how to calculate the coefficients αh
iso,‖,⊥. Since we have

to perform this calculation for our particular system parameters, the procedure

how to evaluate αh
iso,‖,⊥ in practice is explained in detail in appendix B. It should

be mentioned that in Ref. [48] a closed analytic approximation for αh
iso,‖,⊥ has

been developed which holds for suspensions of charged rods where the steric rod

diameter is by far larger than the hydrodynamic diameter. However, it turns

out that these expression do not apply to the conditions of our simulations.

6.2 Simulation details

Computer simulations using both the MPC-SR and the random MPC solvents al-

low us to determine the hydrodynamic and steric contributions to Diso,‖,⊥(φ)/D0

independently. The simulation model used for pure rod systems (see Sec. 4.2)

has been extended by addition of a small amount of spherical tracer particles.

Such a spherical particle consists of a single monomer which has the same mass

M as a rod monomer and interacts with other monomers (other spheres or other

rod monomers) by the same shifted truncated Lennard-Jones potential ULJ(r)

as defined by Eq. (4.11). This interaction is switched off in simulation of phan-

tom spheres (see below).

As discussed in Sec. 4.3, the hydrodynamic sphere diameter which arises from

our MPC parameters is 2as = a (a being the collision box size).

The amount of tracer spheres has to be very small, such that spheres hardly

distort the rod network, and direct sphere-sphere interactions do not have a

significant contribution to tracer dynamics. On the other hand, a not too small

density of spheres is desirable in order to extract diffusion constants with good

statistics. We chose a sphere density of 1/(7a)3. For higher densities, we found

that spheres start to cluster, although no deviation in nematic order is notice-

able.

For each pair of parameters L/d and φ, three different types of simulation were

performed which allow us to study the hydrodynamic and steric contributions

to Diso,‖,⊥(φ)/D0 independently.

EV+HI spheres: The notation indicates that spheres interact with other col-

loids (other spheres or rods) both hydrodynamically (“+HI”) as well as by

steric interactions due to their excluded volume (“EV”). Hydrodynamic

interactions are taken into account by the MPC-SR solvent whereas steric

interactions are realized by a repulsive Lennard-Jones potential (4.11) for

85



6 Diffusion of spheres in rod suspensions

the spheres. Diffusion constants obtained from simulations of EV+HI

spheres will be denoted by Dhs
iso,‖,⊥(φ) in this chapter. Because of their

frequent use, it is convenient to introduce additional symbols for the nor-

malized diffusion constants

D̂hs
iso,‖,⊥(φ) :=

Dhs
iso,‖,⊥(φ)

D0
. (6.6)

We expect that D̂hs
iso,‖,⊥(φ) can be described by Eq. (6.1)

D̂hs
iso,‖,⊥(φ) =

Diso,‖,⊥(φ)

D0
=

1

1 + φαh
iso,‖,⊥

(
1 − φαs

iso,‖,⊥

)
(6.7)

EV–HI spheres: Using the random MPC solvent, all hydrodynamic interactions

are switched off (“–HI”) but the repulsive Lennard-Jones potential (4.11) is

still applied to spheres such that steric excluded-volume (EV) interactions

are taken into account. Thus we are able to isolate the steric contribution

to Diso,‖,⊥(φ)/D0 in Eq. (6.1). Diffusion constants obtained from simula-

tions with EV–HI spheres are denoted by Ds
iso,‖,⊥(φ) and their normalized

values are

D̂s
iso,‖,⊥(φ) :=

Ds
iso,‖,⊥(φ)

D0

. (6.8)

According to [47], it is expected that D̂s
iso,‖,⊥(φ) obeys

D̂s
iso,‖,⊥(φ) = 1 − φαs

iso,‖,⊥ (6.9)

Phantom spheres: The MPC-SR solvent is used but at the same time any

steric excluded-volume interactions of spheres are switched off. We call

these spheres “phantom spheres”. However, steric rod-rod interactions are

still present, in order to have the same static network properties. Thus,

spheres interact only hydrodynamically with the rod network, and the

steric contribution in Eq. (6.1) should vanish. Absolute and normalized

diffusion constants obtained from simulations with phantom spheres are

denoted by Dh
iso,‖,⊥(φ) and

D̂h
iso,‖,⊥(φ) :=

Dh
iso,‖,⊥(φ)

D0
, (6.10)

respectively. According to Ref. [47], D̂h
iso,‖,⊥(φ) is expected to be given by

D̂h
iso,‖,⊥(φ) =

1

1 + φαh
iso,‖,⊥

. (6.11)
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6.3 Results

A systematic study of the concentration dependence of tracer sphere diffusion

constants was done for the two aspect ratios L/d = 20 and L/d = 40. The

results of the normalized diffusion constants D̂hs,s,h
iso,‖,⊥(φ) are shown in Fig. 6.1.

Before coming to the results of phantom spheres in Sec. 6.3.2, results of simula-

tion with volume exclusion of spheres (i.e. EV–HI and EV+HI spheres) will be

discussed and compared to the theory of Dhont [47].

6.3.1 Spheres with volume exclusion

In Fig. 6.1, it can be seen that simulation results of D̂s
iso,‖,⊥ for EV–HI spheres are

generally larger than D̂hs
iso,‖,⊥ obtained from simulations with EV+HI spheres.

This fact is in accordance with the theory. Furthermore, there is a strong

anisotropy in diffusion in the nematic phase for both EV–HI and EV+HI spheres.

We also calculated D̂hs
iso,‖,⊥(φ) and D̂s

iso,‖,⊥(φ) by the theory of Dhont et al. [47].

For this purpose, the coefficients αs
iso,‖,⊥ were evaluated by inserting our system

parameters into Eqs. (6.2) - (6.4). The coefficients αh
iso,‖,⊥ were calculated as de-

scribed in appendix B. They depend very sensitively on hydrodynamic screening

lengths κ
−1. For the calculation of αh

iso,‖,⊥, we used the screening lengths κ
−1

determined in Sec. 5.4. Since the anisotropic values αh,s
‖,⊥ also depend on nematic

order parameters 〈P2〉 we inserted 〈P2〉 obtained from simulations. A compar-

ison between the simulation data and the theoretical values of D̂hs
iso,‖⊥(φ) and

D̂s
iso,‖,⊥(φ) is shown in Fig. 6.2. As can be seen, simulation results for isotropic

diffusion D̂hs,s
iso (φ) and diffusion in perpendicular direction D̂hs,s

⊥ (φ) are in perfect

agreement with theory. This agreement nicely confirms both the validity of our

screening-length calculations in Sec. 5.4 and the theory of Ref. [47]. For the

aspect ratio L/d = 20, there are no theoretical values for ρ ≥ 6. For these very

high volume fractions φ = ρd/L ≥ 0.3, the theory is not applicable, and the

integrals which are involved in the calculation of αh
iso,‖,⊥ diverge.

Also normalized diffusion constants D̂hs,s
‖ (φ) for diffusion along the nematic di-

rector qualitatively follow the φ dependence of the theory. However, the devia-

tions are stronger than for D̂hs,s
iso,⊥(φ). Moreover, there is a systematic trend that

all simulation results of D̂hs,s
‖ (φ) are smaller than the theoretical values. We

can relate this deviation to the fact that the dependence of D̂hs,s
‖ on the nematic

order parameter 〈P2〉 predicted by Dhont et al. [47] is not a sufficient description
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Figure 6.1: Dependence of the normalized diffusion constants D̂hs,s,h
iso,‖⊥ on the di-

mensionless concentration ρ for the two aspect ratios (a) L/d = 20

and (b) L/d = 40. Symbols are explained in (b) for both plots.
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Figure 6.2: Normalized diffusion constants D̂hs,s
iso,‖,⊥ as functions of the dimension-

less rod concentration ρ. Simulation data and theoretical predictions

according to the theory of Dhont et al. [47] for systems (a and c)

with EV+HI and (b and d) EV–HI spheres for the aspect ratios (a

and b) L/d = 20 and (c and d) L/d = 40.
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of the problem for semiflexible rods, as the theory is based on stiff rods. Fur-

thermore, the nematic order strongly fluctuates for the relatively small system

sizes used in the simulations. The effect of both semiflexibility and fluctuations

in nematic order is less crucial for diffusion perpendicular to the nematic direc-

tor. An intuitive explanation of this observation can be given analogously to the

〈P2〉 dependence of hydrodynamic screening lengths (see Fig. 5.7 in Sec. 5.4.1):

A small tilt of rods with respect to the nematic director (i.e. a nematic order

parameter 〈P2〉 closed to 1) does not significantly open gaps in the network for

diffusion in perpendicular direction. Also fluctuations of the flexible rods do

not significantly hinder spheres in their motion perpendicular to n̂. However,

diffusion in parallel direction is far stronger influenced by both small tilts and

fluctuations of rods. Both effects strongly hinder tracer spheres in their diffusion

along the nematic director.

6.3.2 Phantom spheres

In Fig. 6.1, also normalized diffusion constants D̂h
iso,‖,⊥ of phantom spheres are

shown. In contrast to systems with volume exclusion, hardly any anisotropy in

diffusion is found for phantom spheres.

Astonishingly, there are some data points where even D̂hs
‖ > D̂h

‖ , i.e. diffusion

of phantom spheres is slowed down more strongly than for spheres interacting

both hydrodynamically and sterically. Obviously, our simulations do not obey

the expected relation

D̂hs
iso,‖⊥(φ) = D̂s

iso,‖⊥(φ) D̂h
iso,‖⊥(φ). (6.12)

This becomes even more obvious considering Fig. 6.3, where both sides of

Eq. (6.12) are plotted independently. The fact that these curves do not co-

incide shows that Eq. (6.12) cannot be an appropriate description. However,

the reason of this mismatch is very simple; the assumption that hydrodynamic

sphere-rod interactions are equal for EV+HI and phantom spheres is incorrect.

Since spheres are allowed to penetrate rods in phantom MPC systems, there is

a considerable probability to find spheres overlapping with rods. This probabil-

ity is larger for larger volume fraction. Hence, there is a significant amount of

spheres which overlap with rod monomers such that hydrodynamic interactions

are far stronger. In the continuum picture, the explanation is that the hydro-

dynamic mobility tensor typically increases enormously for small distances; this
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Figure 6.3: Test of the validity of Eq. (6.12) (a) for L/d = 20 and (b) for L/d =

40. The fact that the D̂hs
iso,‖,⊥ (blue curves) do not coincide with

D̂h
iso,‖,⊥ · D̂s

iso,‖,⊥ (magenta curves) shows that diffusion constants of

EV+HI spheres are not related to the diffusion constants of EV–HI

and phantom spheres systems by the simple relation (6.12).
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sion causes a vanishing probability density for sphere positions which

lie in the excluded volume.
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6.4 Summary and conclusion

holds for both the screened, Eq. (5.4), and the unscreened, Eq. (2.4), hydrody-

namic mobility tensor. Although the continuum picture is not directly transfer-

able to MPC-SR hydrodynamics at small length scales (compare Sec. 5.3), the

effect is similar. It has been shown by Ripoll et al. [83] that diffusion of heavy

phantom particles decreases with increasing concentration, as the probability of

finding more than one heavy particle in the same collision box increases with

concentration. This effect is not present in simulations of EV+HI and EV–HI

spheres, because volume exclusion leads to a negligibly small probability to find

two monomers in the same collision box.

We have applied the theory of Dhont et al. [47] also to phantom spheres. For

this purpose, we calculate αh
iso,‖,⊥, which differ from those of the previous section

by the fact that the Boltzmann probability is unity for all relative sphere-rod

distances whereas the coefficients αh
iso,‖,⊥ of spheres with volume exclusion are

calculated with a vanishing Boltzmann probability for relative sphere-rod dis-

tances for which sphere and rod overlap, as explained in appendix B. The

normalized diffusion constants D̂h
iso,‖,⊥ arising from this calculation are plotted

in Fig. 6.4 together with the simulation data for L/d = 40. The mismatch of

simulated (green) and theoretical curves (black) in Fig. 6.4 is due to the fact

that the continuum hydrodynamic description does not hold for the MPC-SR

solvent for distances smaller than the hydrodynamic cutoff (see Sec. 5.3).

6.4 Summary and conclusion

Simulations of tracer spheres in dense rod suspensions were performed for spheres

with volume exclusion both with (EV+HI) and without hydrodynamic interac-

tions (EV–HI), as well as for hydrodynamically interacting phantom spheres

without volume exclusion. Diffusion constants were calculated from simulations

and compared to the theory of Dhont et al. [47]. Screening lengths which were

extracted from the Fourier transform of the hydrodynamic mobility tensor (see

Sec. 5.4) were used for the evaluation of the theoretical diffusion constants. For

spheres with volume exclusion (EV+HI and EV–HI) a good agreement between

simulations and theory was found, which confirms both the theory as well as the

calculation of screening lengths in the last chapter. Deviations from the theory

for diffusion constants in parallel direction could be related to fluctuations of the

nematic order parameter and of the rod shapes due to their flexibility. The hy-

drodynamic influence on sphere diffusion is different for spheres with (EV+HI
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spheres) and without volume exclusion (phantom spheres) because hydrody-

namic interactions between spheres and rods with overlapping volumes are only

present for phantom spheres. The theory is not applicable to phantom spheres –

even when their uniform probability density is taken into account – because over-

lapping spheres and rods have distances below the hydrodynamic cutoff where

hydrodynamic interactions are not properly mediated by the MPC-SR solvent.
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7 Vesicles in shear flow

7.1 Scientific background

7.1.1 Vesicles

Vesicles are small fluid droplets enclosed by a membrane. Typically these mem-

branes consist of amphiphilic phospholipid molecules which arrange in a bilayer

structure. Lipid bilayer vesicles are very useful model systems for many bio-

physical phenomena and are interesting as soft mesoscopic objects in general.

Neglecting all the microscopic details which are of course essential for living

systems, many biological cells, such as blood cells, behave in many aspects like

vesicles [13]. Also on a sub-cellular level, many organelles by themselves are

vesicles, and material transport is often realized by transporting liquid cargo

wrapped into a membrane.

The physical origin of the aggregation of phospholipid molecules in lipid bilayers

is the hydrophobic effect. The energetic costs for a lipid molecule to leave the

membrane is of the order of many kBT under physiological conditions which

makes membranes very stable aggregates. However, the lipid molecules can

freely move in the in-plane direction of the membrane. Therefore, membrane

molecules can diffuse around and rearrange as a response to planar stress. The

total membrane area is hardly compressible and can be regarded as conserved.

Thus, the lipid bilayer membrane is a two-dimensional incompressible liquid

which comes along with a two-dimensional membrane viscosity.

Typically, vesicles have sizes of the order of micrometers, whereas the thickness

of the membrane is only of the order of nanometers. The membrane can be

therefore regarded as a (ddim − 1) dimensional manifold (i.e. a plane in three-

dimensional systems and a line in two-dimensions). However, the finite thickness

of the lipid-bilayer membrane causes a curvature-dependent elastic energy, called

bending energy. In three-dimensions (i.e. two-dimensional membranes), the lo-

cal curvature can be characterized by the two principal radii of local curvature
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(a) (b)

Figure 7.1: (a) Schematic representation of a lipid molecule – which consists of a

hydrophilic head and two hydrophobic hydrocarbon tails. The kink

in one of the hydrocarbon chains is due to a C-C double bond and

it is responsible for the fluidity of the membrane. (b) Schematic

representation of a biological membrane which is composed of lipid

molecules. Also embedded transmembrane proteins as well as choles-

terol molecules are shown. Taken from Ref. [97].

R1 and R2, or equivalently by the mean curvature 1
2
( 1

R1
+ 1

R2
) and the Gaussian

curvature 1
R1R2

. Typically, the energy costs for bending the membrane is gov-

erned by the mean curvature squared. However, in the two-dimensional case

of our simulations, the membrane reduces to a one-dimensional interface where

the curvature is quantified by only one curvature radius. The energy penalty for

bending the (one-dimensional) membrane is characterized by a bending rigidity

like for the semiflexible rods (see Chap. 4). Furthermore, there is no membrane

viscosity in two-dimensional vesicles.

Important parameters of a two-dimensional vesicle are the perimeter P and the

enclosed area A (analogous to the membrane surface and the enclosed volume

in three dimensions). It is useful to combine these two parameters to a dimen-

sionless quantity, the reduced area

A∗ :=
4πA

P 2
. (7.1)

A∗ is the ratio between the enclosed area A and the area of a circle with the

same perimeter P . Only those combinations of A and P are reasonable which
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lead to 0 < A∗ ≤ 1. The maximal value A∗ = 1 corresponds to a perfect circle.

In this chapter, we chose a reduced area of A∗ = 0.7 as a representative for

moderately aspherical vesicles.

In Chap. 5, we have seen that suspensions of rod-like colloids can be regarded

as an effective fluid on length scales much larger than the size of the solute par-

ticles. This leads to a macroscopic viscosity ηeff which is larger than the pure

solvent viscosity η (see Eq. (5.36)). The cytoplasm, i.e. the interior of a bio-

logical cell, is often comparable to such rod suspensions, since it contains many

filamentous structures like F-actin or microtuboli. Although the cytoplasm is far

more complex than a pure monodisperse rod suspension, it has typically a higher

viscosity than the surrounding plasma, as explained by the results of Chap. 5.

Therefore, we consider different viscosities inside ηin and outside ηout ≤ ηin of

vesicles. Instead of using ηin and ηout, it is convenient to express relations in

terms of the dimensionless “viscosity contrast”

τ =
ηin

ηout
. (7.2)

Below, we will see that several dynamical phenomena depend very sensitively

on this quantity.

7.1.2 Shear flow

Linear shear flow can be described by the velocity-gradient tensor Γ which relates

positions r to velocities v by

v(r) = Γr + vh. (7.3)

In the general case, also a homogeneous component vh is possible; however,

it can easily be avoided by a Galilei transformation to a comoving frame. The

incompressibility condition ∇·v = 0 requires that Γ is traceless. In the following,

the case of simple shear flow is considered, where vh = 0 and the velocity-

gradient tensor is

Γ = γ̇




0 1 0

0 0 0

0 0 0


 . (7.4)

The resulting flow profile v(r) = Γ r has only velocity components in x di-

rection. In the representation of Eq. (7.4), the x direction is therefore called

the “shear direction”, whereas the y and z directions are the “gradient” and
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(a) (b) (c)

Figure 7.2: The velocity field of (a) simple shear flow and its decomposition into

(b) the elongational and (c) the rotational part.

“vorticity directions”, respectively. The shear rate γ̇ quantifies the strength of

the shear flow and is equal to ∂vx/∂y. Decomposing Γ into a symmetric part

E = 1
2

(
Γ + ΓT

)
and an antisymmetric part Ω = 1

2

(
Γ− ΓT

)
, simple shear flow

can be regarded as a superposition v(r) = ve(r) + vr(r) of an elongational

ve(r) := E r =
1

2
γ̇




0 1 0

1 0 0

0 0 0


 r (7.5)

and a rotational part

vr(r) := Ω r =
1

2
γ̇




0 1 0

−1 0 0

0 0 0


 r. (7.6)

The three velocity fields are shown in Fig. 7.2.

It is often convenient to consider the effects of the elongational and the rotational

components to explain phenomena in simple shear flow.

7.1.3 Dynamical regimes of vesicles in shear

Aspherical vesicles under shear can be found in different dynamical phases. For

small viscosity contrasts, vesicles are in the tank-treading (TT) regime. As the

name already implies, the vesicle shape and orientation remain unchanged in this

regime (besides fluctuations), but the membrane rotates around the enclosed
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area in the same direction as the rotational part of the shear flow. Λmax and

Λmin are the two eigenvalues of the gyration tensor of the vesicle membrane

(Λmin ≤ Λmax) and êmax and êmin their corresponding eigenvectors. We quantify

the shape asymmetry by

αs =
Λmax − Λmin

Λmax + Λmin

(7.7)

and the vesicle orientation by the inclination angle

θ = ∡(x̂, êmax). (7.8)

For larger viscosity contrasts τ , the inclination angle becomes unstable and

either a transition to a tumbling (TB) motion or a swinging (SW) motion can

be observed. In the tumbling regime, the inclination angle θ rotates, whereas

the vesicle shape only experiences small periodic changes (i.e. αs is almost

unchanged). In the swinging regime, the inclination angle oscillates but does

not perform full rotations. Also the periodic changes in shape are typically

stronger in the SW regime.

The stability of these dynamical phases mainly depends on two parameters, the

viscosity contrast τ and the reduced shear rate

γ̇∗ :=
γ̇ηR2

p

κ
. (7.9)

Here Rp = P
2π

is the radius of a circle with the same perimeter P as that of

the vesicle. The time ηR2
p/κ is a typical relaxation time towards the equilibrium

shape. Thus γ̇∗ expresses the interplay between the perturbation by the external

field γ̇ and the ability of the vesicle to restore its equilibrium shape.

Without thermal fluctuations, the dynamical phase diagram as a function of

τ and γ̇∗ is partitioned into the three dynamical phases (TT, TB and SW)

by sharp transitions. Such a phase diagram is shown in Fig. 7.3. Thermal

fluctuations lead to smooth transitions between the three phases. We first focus

on theories which neglect thermal fluctuations, such that sharp transition lines

can be predicted.

As one can see in Fig. 7.3, the TT-TB transition line hardly depends on the

reduced shear rate γ̇∗ below the bifurcation point, and only the viscosity contrast

τ is decisive for phase stability. The physical origin of the formation of these

three phases can be explained by simple arguments. In the following, the origin

of the TT and TB motion is explained; the intuitive explanation for the SW

regime will be given later, after the theory of Keller and Skalak [50] has been
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7 Vesicles in shear flow

discussed.

For γ̇∗ far below the bifurcation point, the vesicle shape can be assumed to be

that at equilibrium. The symmetric (elongational) and asymmetric (rotational)

components of the shear flow have two counteracting effects. The elongation

flow field tends to elongate the vesicle such that its long axis points into the

x = y direction, which corresponds to an inclination angle of θ = π
4
. However,

the rotational part of the shear causes a torque on the vesicle membrane. In

the case of low viscosity contrasts, the torque due to the rotational flow turns

the inclination angle to values θ < π
4
. At a certain inclination angle θ the

elongational part of the shear flow counteracts the torque on the vesicle due to

rotational flow, which leads to a stable inclination angle 0 < θ < π
4
. Although θ

does not change in time, the torque on the membrane due to the rotational flow

is still present. It causes the membrane to rotate around the vesicle in a tank-

treading fashion. Fig. 7.6.a shows a sequence of snapshots of a tank-treading

vesicle obtained from simulations, where the clock-wise tank-treading motion

of the membrane can be followed due to the marker on the membrane. The

no-slip-boundary condition between the membrane and the inner fluid has the

effect, that there is a permanent viscous energy dissipation in the interior of the

vesicle. For very high viscosity contrasts, the vesicle can be regarded as a rigid

ellipse, and the torque on the membrane cannot lead to a tank-treading motion.

Instead the torque causes a permanent rotation of θ. In this case, the vesicle

is in the tumbling regime. The name “tumbling” expresses that the angular

velocity of the vesicle is not uniform, as shown in the sequence of snapshots of

a tumbling vesicle in Fig. 7.6.c. Since the velocity gradients in the internal fluid

are stronger for more aspherical vesicles, the critical viscosity contrast τ ∗ of the

TT-TB transition decreases with decreasing reduced area A∗.

7.1.4 Keller Skalak theory in two dimensions

Keller and Skalak [50] were the first who derived analytical expressions for the

inclination angle θ and the average angular velocity ω for three-dimensional

vesicles of fixed ellipsoidal shape. The Keller-Skalak (KS) theory was nicely

confirmed both by computer simulations [71, 72] as well as by numerical Oseen

tensor calculations [9]. Also the critical viscosity contrast τ ∗ of the TT-TB phase

transition is well predicted by Keller and Skalak.

Although the KS theory is formulated for vesicles in three dimensions, it is
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straightforward to transfer it to two-dimensional systems by simply making

one half-axis of the ellipsoid infinitely large. The resulting cylindrical three-

dimensional geometry is equivalent to two-dimensional vesicles with the shape

of an ellipse.

For such a vesicle, it is convenient to parametrize its shape by the long and

the small half-axes a1 and a2, respectively. Let S ′ be the frame which has its

origin at the center of the ellipse, and the x′ direction points into the direction

of the long axis. Then the local velocity v′ of an element of the tank-treading

membrane is assumed to be

v′
x = −ω

a1

a2
x′

2 (7.10)

v′
y = ω

a2

a1
x′

1 (7.11)

in the frame S ′. We define the auxiliary variables

r2 :=
a2

a1
z1 :=

1

2

(
a1

a2
− a2

a1

)
z2 := 2

a2
1 + a2

2

(a1 + a2)
2 .

Balancing torques on the membrane and assuming that the work done on the

vesicles by the shear flow is dissipated in the interior of the vesicle, a non-linear

differential equation can be constituted

θ̇ =
γ̇

2
[−1 + B cos(2θ)] (7.12)

with B =
(1 − r2

2)
2
[z2 (1 − τ) − 2] − 8r2

2

(1 − r4
2) [z2 (1 − τ) − 2]

. (7.13)

Furthermore, the average angular velocity ω is calculated to be

ω

γ̇
= − 1

z1

cos(2θ)

z2(1 − τ) − 2
. (7.14)

The stationary inclination angle θ of the tank-treading regime can be calculated

from Eq. (7.12) with the condition that θ̇ = 0,

θ = −1

2
arccos

(
− 1

B

)
(7.15)

The dependence of θ on the viscosity contrast τ is shown in Fig. 7.7 for the

reduced area of A∗ = 0.7. For small τ , the inclination angle θ decreases mono-

tonically up to a critical viscosity contrast τ ∗, where θ = 0. For larger viscosity

contrasts τ > τ ∗, there is no real solution of Eq. (7.15), i.e. there is no stationary

inclination angle. For these viscosity contrasts, the vesicle is in the tumbling

regime, where the inclination angle permanently rotates.
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7.1.5 Swinging

The dynamical regime of swinging was discovered only very recently in 2006. It

is also called the trembling [49] or vacillating breathing regime [68]. Kantsler et

al. [49] were the first to find swinging vesicles in experiments. With increasing

shear rate, they could observe a transition from tumbling to swinging motion.

Independently of Kantsler et al. [49], Misbah [68] predicted the existence of the

swinging regime theoretically. Since this theory is of lowest order of a perturba-

tion theory in a deviation from spherical shape, the shear rate only determines

the time scale, but cannot induce phase transitions. Therefore, further theories

[17, 57, 73] including higher order terms have been developed which are able to

predict a phase diagram depending on the shear rate, and thereby to explain

the experiments of Ref. [49]

Although these theories are very complex, the physical origin of the swinging mo-

tion can be explained with simple arguments [73]. The fact that a relaxation of

a vesicle to its equilibrium shape becomes less efficient with increasing γ̇∗ makes

the vesicle more easily deformable. Let us consider a vesicle with a reduced area

A∗ and a viscosity contrast τ which correspond to a tumbling vesicle, provided

that the vesicle has its equilibrium shape, i.e. it has its equilibrium value of αs.

In terms of the KS theory, this means that B(αs) < −1 such that Eq. (7.15)

does not have a real solution. Once such a vesicle is turned to inclination angles

−π
2

< θ < 0, the forces due to the elongational flow tend to shrink the long axis

of the vesicle. For sufficiently high γ̇∗, the vesicle cannot recover its equilibrium

shape any more such that αs is strongly reduced. This reduced aspherity has

the consequence that the vesicle is no longer in the tumbling regime, but tries

to perform a tank-treading motion. In terms of the KS theory, this means that

B(αs) > −1. Swinging can be therefore regarded as a periodic change between

TT and TB.

The variety of theories on swinging [17, 57, 73] rely on different approaches. For

the moderately aspherical vesicles of our computer simulations with A∗ = 0.7,

the phase diagrams calculated by these different theories show strong quantita-

tive differences. Lebedev et al. [57] and Danker et al. [17] treated the problem

in the quasi-spherical limit. However, the theory of Noguchi et al. [67, 74]

does not rely on a quasi-spherical approximation. In the following, the gener-

alized Keller-Skalak theory of Noguchi et al. [67] will be briefly summarized

because it will be compared to our computer simulations later. This theory is
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the two-dimensional analogon to the generalized Keller-Skalak theory presented

in Ref. [73].

7.1.6 Generalized Keller-Skalak theory in two dimensions

The theory of Keller and Skalak is extended such that also shape deformations

are possible. Thus, the time evolution equation (7.12) of the KS theory is

adopted with the difference that B(αs) is not constant any more but depend on

the current vesicle shape. A second differential equation for the time evolution

of αs is introduced. The total set of equations reads then

θ̇ =
γ̇

2
(−1 + B(αs) cos(2θ)) (7.16)

α̇s = − 3

4πη(τ + 1)R2
A

∂F

∂αs
+

γ̇

τ + 1
sin(2θ). (7.17)

Here RA =
√

A/π denotes the radius of a sphere with same enclosed area as the

vesicle, and F is the free energy of the vesicle shape, which is a function of αs.

F attains its minimum for the equilibrium vesicle shape. For the comparison

with our computer simulations, Noguchi calculated the free energy F by Monte

Carlo simulations with the same simulation parameters (see Sec. 7.3.1). Thus

the first term on the right hand side of Eq. (7.17) causes a change of αs towards

its equilibrium value. The second term represents the change of αs due to the

external field γ̇. Depending on the actual value of θ, the second term tends

either to increase αs (for 0 < θ < π
2
) or to decrease it (for −π

2
< θ < 0).

The differential equations (7.16 - 7.17) are an initial value problem and can be

solved numerically e.g. using the Runge-Kutta method. After an equilibration

time, the solution of Eqs. (7.16 - 7.17) converges to a stationary trajectory in

the θ − αs plot, independently of the initial conditions. The resulting phase

diagram calculated with the same parameters as in our simulations of Sec. 7.3.1

is shown in Fig. 7.3.

Thermal fluctuations can be incorporated by adding Gaussian white noises gθ(t)

and gα(t) to Eqs. (7.16) and (7.17), respectively. The noise terms have to obey

the fluctuation-dissipation theorem, such that 〈gi(t)〉 = 0 and 〈gi(t)gj(t
′)〉 =

2kBT
ζi

δi,jδ(t − t′) hold (i, j ∈ {α, θ}). Reasonable friction constants are the rota-

tional friction of a circle

ζθ =
1

π
ηP 2 and ζα =

1

π
ηP 2(τ + 1). (7.18)
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Figure 7.3: Phase diagram calculated according to generalized Keller-Skalak the-

ory. Parameters are the same as in computer simulations. In partic-

ular, κ = 50kBT and A∗ = 0.7. The red points indicate the location

of the simulation in this phase diagram which are shown in Fig. 7.8.

Of course, the generalized Keller-Skalak theory which includes also thermal fluc-

tuations does not lead to sharp transition lines in the τ -γ̇∗ diagram. However,

the resulting noisy trajectories in the θ-αs plot agree nicely with our computer

simulation, as it will be shown in Sec. 7.3.1.

7.2 Simulation details

Because of the lower computational costs, we study vesicle dynamics in a two-

dimensional model system. Since there is a preferential rotation direction in

sheared systems (see Sec. 7.1.2), angular-momentum conservation is crucial [37]

as discussed in Sec. 3.2. The MPC-SR method therefore does not serve as an

appropriate solvent, as it violates angular-momentum conservation. Thus we

rather used the angular-momentum conserving MPC-AT+a solvent (for details

see Sec. 3.2.3). This solvent also serves as a thermostat which prevents problems

of heating up the system due to energy dissipation in sheared system.

In all simulations of this chapter, periodic boundary conditions are used for the

x direction and no-slip wall boundary conditions for the y direction (for details,
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see Sec. 3.3). Linear shear with shear rate γ̇ is realized by moving the upper

wall with a velocity γ̇Lyx̂, whereas the lower wall does not move.

The membrane is modeled by a closed chain of n monomers. For a monomer

with index i (1 ≤ i ≤ n), we introduce a convenient notation for the indices of

its two neighboring monomers

with i− = (i − 1) modn and i+ = (i + 1) modn. (7.19)

Thus also end monomers are treated correctly. The monomers have masses M

and are connected by the same harmonic spring potential (see Eq. (4.9)) as in

rod simulations. The bond potential therefore reads

Usp =
ksp

2

n∑

i=1

(|Ri| − l)2, (7.20)

where the bond vector Ri is defined by

Ri := ri+ − ri. (7.21)

Due to the topological constraint that the membrane is a closed chain, far

stronger curvatures appear than in the case of semiflexible rods. The numer-

ically very efficient bending potential (4.10) used in rod simulation cannot be

used for the vesicle simulations, as for large curvatures this potential also affects

the bond lengths. We rather use a bending potential Ubend, which is independent

of bond lengths

Ubend = κ

n∑

i=1

(
1 − Ri+ · Ri

|Ri+ ‖ Ri|

)
. (7.22)

Since the MPC-AT+a solvent is compressible, it has to be avoided that unwanted

changes of the enclosed area A occur. An area-dependent potential UA ensures

that the enclosed area deviates only very slightly from the desired area A0

UA =
kA

2
(A − A0)

2 . (7.23)

The parameter kA controls the strength of the potential, and the enclosed area

A in Eq. (7.23) is a function of monomer positions

A =
1

2
ẑ ·

n∑

i=1

ri × ri+. (7.24)

The viscosity ηout is adjusted by varying the collision time h. Its values range

from h = 0.003a
√

m/kBT to h = 0.01a
√

m/kBT . The viscosity contrast τ is
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set by using different MPC masses for the inside and outside fluid. Since for the

collision times h ≤ 0.01a
√

m/kBT of our simulations, the total shear viscosity

η of the MPC-AT+a solvent is dominated by ηcoll, and ηkin has only a negligible

contribution (see Eq. (3.19 - 3.21)), the viscosity ratio τ can be assumed to

be equal to the ratio of the masses min and mout of the inner and outer fluid

particles, respectively,

τ =
ηin

ηout

≈ min

mout

. (7.25)

The viscosity contrast τ is therefore realized by using different MPC masses

mout = m and min (with m ≤ min ≤ 10m) while all the other MPC parameters

are the same for the fluid at both sides of the membrane.

It is not a trivial task to ensure that MPC particles stay on the correct side

of the membrane (i.e. inside or outside of the vesicle). Before explaining the

procedure how to keep particles on the correct side of the membrane, we have

to clarify some terms:

• The location of the membrane is the polygon which is spanned by the

monomer positions.

• For a group of ncoll particles, the non-rotating center-of-mass system S ′ is

defined such that both linear and angular momenta vanish. The transfor-

mation of a velocity vi in the rest frame of the simulation box S to S ′ is

done by

v′
i = vi − vcm − ω × ri,c, (7.26)

where vcm is the center of mass velocity, and

ω = Π−1

ncoll∑

j=1

mjrj,c × vj (7.27)

is the average angular velocity of the ncoll-particle system (both in reference

frame S). Here Π is the tensor of inertia (in two-dimensions, it is a scalar)

and the rj,c are the positions relative to the center-of-mass position rcm of

the ncoll-particle system.

With these definitions, it can be explained how to control that MPC particles

stay on the correct side of the membrane. Actually, MPC particles are allowed

to cross the membrane for small distances. The streaming and collision steps

are carried out according to Eqs. (3.8) and (3.18) even if some MPC particles

cross the membrane. For particles which are then located on the wrong side of

the membrane, with a velocity which would bring them even further away from
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Acorner
i

Acorner
i+

Aout
i

Ain
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ri+
RiRi+

Ri−

sb

Figure 7.4: In order to make escaped MPC particles move towards the correct

side of the membrane, these particles with a distance sb to bond

Ri have to be treated differently for each of the colored regions (for

further explanations, see text).

the membrane, the velocities are modified such that they move towards the

membrane in order to cross back to the correct side. In this additional velocity

update, the resulting change in linear and angular momenta is transferred to

membrane monomers such that both linear and angular momenta as well as

energy are conserved. We therefore call this step “membrane collision”. In the

membrane collision, the velocities of all ncoll particles, which participate at the

membrane collision, are inverted in their non-rotating center-of-mass system.

These particles are the MPC particle which is on the wrong side and ncoll − 1

further membrane monomers. The new velocities are then

vi,new = 2 (vcm + ω × ri,c) − vi. (7.28)

The selection of the ncoll − 1 membrane monomers, which participate in a mem-

brane collision, is demonstrated in Fig. 7.4. First the membrane bond which has

the smallest distance to the MPC particle has to be identified. The definition

of the distance sb between a MPC particle and a bond is shown in Fig. 7.4. All

points on the blue line have the same distance sb to the bond i with bond vector

Ri. Different cases have to be distinguished, depending on the location of the
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MPC particle relative to its closest bond.

• MPC particles which are on the wrong side of the membrane and are

located either in the region Aout
i (green area in Fig. 7.4) or in the region

Ain
i (blue area) uniquely belong to bond Ri. For such a MPC particle, the

velocity component v′
j,⊥ perpendicular to bond Ri has to be calculated in

the non-rotating three body system consisting of the MPC particle itself

and the two monomers i and i+ which span the bond i

v′
j,⊥ =

(
Î − Ri ⊗Ri

R2
i

)
v′

j . (7.29)

If v′
j,⊥ and rj,⊥ =

(
Î − Ri ⊗Ri/R

2
i

)
rj point in the same direction (i.e.

v′
j,⊥ · rj,⊥ > 0), a three-body membrane collision is performed according

to Eq. (7.28) with the MPC particle and the two monomers i and i+.

• MPC particles which are located on the wrong side of the membrane and

either in the region Acorner
i (yellow area in Fig. 7.4) or in the region Acorner

i+

(red area) have the same distances to bond i as to bond i− or i+, re-

spectively. For such a MPC particle, it is checked if its velocity in the

non-rotating center-of-mass system points towards the monomer which

defines the corner (monomer i if the MPC particle is in Acorner
i ). If not, a

two-body membrane collision (see Eq. (7.28)) is performed with the MPC

particle and this monomer i.

In order to prevent the membrane vesicles from crossing walls, a purely repulsive

Lennard-Jones potential UWall(y) is applied which only depends on the y position

of monomers,

UWall(y) =





4ε

[(
σ

y

)12

−
(

σ

y

)6
]

+ ε, 0 ≤ y ≤ 6
√

2σ

4ε

[(
σ

Ly − y

)12

−
(

σ

Ly − y

)6
]

+ ε, Ly − 6
√

2σ ≤ y ≤ Ly

0, otherwise

(7.30)

In Chap. 7.3.2, where hydrodynamic lift forces on vesicles under shear flow closed

to a wall will be determined, also a gravitational body force fG = −ŷg∆̺ will be

needed which acts on the internal fluid of the vesicle. Here g denotes the strength

of the gravitational field and ∆̺ is the mass density difference between the

inner and the outer fluids. This gravitational body force is thereby an (inverse)

buoyancy force. It has to be mentioned that ∆̺ refers to “heavy” masses which
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ri+

ri
Ai

Ri

rcm,i

y

x

Figure 7.5: Decomposition of the enclosed area into triangles. The blue triangle

is defined by two monomers with positions ri and ri+ and has size

Ai with center-of-mass position rcm,i.

only play a role in a gravitational field and must not be identified with the

“inert” mass densities min̺ and mout̺ which are crucial in the MPC-AT+a

collision step. One way of realizing such a body force is to apply gravitational

forces to the inner MPC particles. However, the compressibility of the MPC-

AT+a solvent would lead to an unwanted density gradient inside of the vesicle.

Instead, we use that the total gravitational force

FG =

∫

A

fGdA (7.31)

of the whole inside fluid which can be described by the potential

UG = g

∫

A

y∆̺dA = −FG · rcm (7.32)

where rcm is the center-of-mass position of the enclosed area. In our simulations,

the enclosed area is bordered by a polygon which is spanned by the monomer

positions ri. The enclosed area A can be regarded to be composed of triangles

as shown in Fig. 7.5. The integral in Eq. (7.32) can be then replaced by a sum

of the contributions UG,i of each of those triangles

UG =
∑

i

UG,i. (7.33)
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The integral UG,i over such a triangle can be calculated analytically which is

UG,i = ∆̺
1

2

(
ri × ri+

)
· ẑ

︸ ︷︷ ︸
= Ai

g
1

3

(
yi + yi+

)
︸ ︷︷ ︸

= ycm,i

= −FG,i · rcm,i. (7.34)

Here Ai is the area of triangle i, FG,i is its gravitational force and rcm,i its

center-of-mass position (ycm,i is its y component). The origin does not have to

be inside the vesicle as it is the case in Fig. 7.5. Since in expression (7.34), UG,i

can also be negative (the cross-product in Ai may have both signs), summands

in Eq. (7.33) partially cancel each other. The only non-vanishing contribution

to the gravitational potential is that of the enclosed area.

For a constant mass density, the total gravitational force acting on the whole

inner fluid would depend on its area A. It has turned out that this leads to

artifacts even with the use of the area controlling potential UA, Eq. (7.23).

Therefore, an area-dependent mass density ∆̺ = ∆̺0A0/A is used. Here A0

and ∆̺0 are the equilibrium values for the enclosed fluid area and its mass

density, respectively. The magnitude of the total gravitational force is then

FG = ∆̺0A0g = ∆̺Ag. The gravitational potential finally reads

UG =
∆̺0A0g

6A

∑

i

(
yi + yi+

) (
ri × ri+

)
· ẑ (7.35)

=
FG

6A

∑

i

(
yi + yi+

) (
ri × ri+

)
· ẑ. (7.36)

As long as not specified explicitly, the parameters used in vesicle simulations

are n = 50, l = a = 6
√

2σ, M = 10m and ε = 10kBT and κ = 50kBT . For

the reduced area, we require that its value deviates less than one percent from

its desired value of A∗ = 0.7. Since A∗ is a function of the perimeter P and

the enclosed area A (see Eq. (7.1)), the parameters k and kA for the potentials

Usp and UA, respectively, have to be sufficiently high. We chose kA = 80kBT/a4

and k = 104kBT/a2. The linear sizes of the simulation box are Lx = Ly = 80.

Gravitational forces FG are only applied in simulations of Sec. 7.3.2, where

different values in the range kBT/a ≤ FG ≤ 50kBT/a are used.
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(a) Tank-treading:

(b) Swinging:

(c) Tumbling:

0 5 10 15 20 25 30 tγ̇

Figure 7.6: For each of the dynamical regimes, a sequences of vesicle snap-

shots is shown. The red point marks a fixed membrane element

such that it is possible to follow the membrane motion. Pa-

rameters which are common for all systems are κ = 50kBT and

A∗ = 0.7. Further parameters are: (a) η = 120
√

kBTm/a, τ = 4,

γ̇ = 0.005
√

m/kBT/a ⇒ γ̇∗ = 0.1 (b) η = 120
√

kBTm/a, τ = 4,

γ̇ = 0.0333
√

m/kBT/a ⇒ γ̇∗ = 0.76 (c) η = 36
√

kBTm/a, τ = 10,

γ̇ = 0.01
√

m/kBT/a ⇒ γ̇∗ = 0.07

7.3 Results

7.3.1 Dynamical regimes of vesicles in shear flow

Computer simulations of the three dynamical regimes (TT, TB, SW) are illus-

trated by a sequence of snapshots in Fig. 7.6.

In simulations, different reduced shear rates γ̇∗ can be achieved, according to

Eq. (7.9), by varying γ̇, η, R or κ. However, the use of different R or κ would
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Figure 7.7: Inclination angle θ vs. viscosity contrast τ for simulations with

γ̇∗ = 0.068. For comparison also the results of the boundary integral

calculation of Beaucort et al. [9] as well as the curve according to

Keller and Skalak [50] (see Eq. (7.15)) are shown.

make it difficult to compare results for different γ̇∗. Hence γ̇∗ is adjusted by γ̇

and η only. We make sure that the Reynold number does not become too large;

it does not exceed a value of Re = 0.17. The outer viscosity η itself can be

changed to the desired value by changing the MPC collision time h.

The simulation model was tested by comparing simulation results with existing

Oseen tensor calculations of Beaucort et al. [9]. For this purpose, a sequence

of simulations was performed without a gravitational force and different vis-

cosity contrasts ranging from τ = 1 to 10. The shear rate was taken to be

γ̇ = 0.01
√

kBT/ma2 such that γ̇∗ = 0.068, Pe = 274 and Re = 0.17. For

this reduced shear rate, no swinging is expected (see Fig. 7.3). In Fig. 7.7, the

resulting average inclination angles θ are plotted as a function of the viscosity

contrast τ . Our computer simulations well reproduce the results of Beaucort et

al. [9]. Small deviations closed to the TT-TB transition at τ ≈ 4 arise from

thermal fluctuations of our simulations, whereas Beaucort et al. [9] study the

zero-temperature limit. Moreover, thermal fluctuations lead to a continuous

rather than to a sharp TT-TB transition. Thus, there are a few tumbling events

even for the viscosity contrast τ = 3, and also simulations with τ > τ ∗ ≈ 4
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Simulations: Theory:
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Figure 7.8: Trajectories in the θ-αs plane obtained from simulations (left) and

the generalized Keller-Skalak theory with thermal noise (right) are

lines in red. In all plots, also the corresponding theoretical trajectory

according the generalized Keller-Skalak theory without thermal noise

is shown in blue.
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7 Vesicles in shear flow

exhibit some tank-treading events.

Fig. 7.7 also shows that also the KS theory [50] provides a very good prediction

for the τ dependence of θ and the TT-TB transition.

Our simulations also show that the existence of a tumbling regime depends very

sensitively on the Reynolds number Re. For Re & 1, no tumbling motion was

observed.

To investigate the TB-SW transition, the viscosity contrast was kept fixed at

τ = 4, and four different reduced shear rates γ̇∗ = 0.1, 0.34, 0.44 and 0.76 were

studied. According to the generalized Keller Skalak theory [67] the reduced

shear rates of γ̇∗ = 0.1 and 0.34 should belong to the tumbling regime, whereas

for the γ̇∗ = 0.44 and 0.76, a swinging motion is expected (see Fig. 7.3). The

resulting trajectories in the θ-αs plane are shown in Fig. 7.8 for all the four

different reduced shear rates γ̇∗ together with the theoretical trajectories of the

generalized KS theory without noise. The corresponding trajectories calculated

by the generalized KS theory with thermal noise are also shown in Fig. 7.8. In

this representation, closed cycles indicate swinging events, whereas trajectories

exceeding the values of θ = ±π/2 are tumbling events. Obviously, thermal noise

has an enormous impact on vesicle dynamics. In particular, at inclination angles

slightly below θ = 0, small thermal fluctuations can be decisive for the vesicle

to perform a tumbling or a swinging cycle. Despite the strong fluctuations,

the qualitative picture of simulated and noisy theoretical trajectories is in very

good agreement for each of the four reduced shear rates. This confirms that the

generalized KS theory of Noguchi is indeed a very good description of vesicle

dynamics.

7.3.2 Lift force

Vesicles under shear close to a wall experience a hydrodynamic lift force FL

which repels them from the wall [1, 14, 75, 76, 90]. This hydrodynamic force is

a pressure force which is of purely viscous nature – in contrast to e.g. aerody-

namic forces acting on wings of a plane which are caused by inertia.

The hydrodynamic lift force plays an important role in the circulatory systems of

vertebrates. Since the lift force pushes red blood cells (erythrocytes) to the cen-

ter of a blood vessel, where the flow velocities is largest, it increases the efficiency

of material transport. However, the mission of white blood cells (leukocytes) is
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Figure 7.9: (a) Contour of the steady shape of a tank-treading vesicle with vis-

cosity contrast τ = 3 under shear closed to a wall and (b) the result-

ing pressure field. The color code is expressed in units of ̺kBT . The

hydrodynamic lift force is balanced by a external gravitational force

FG = 14kBT/a at this distance from the wall which is ycm = 7.96a

in this case.

to move along the vessel walls in order to find defects in the vascular endothe-

lium [45]. For this purpose, special ligands are located at the outside of white

blood cells which are able to bind to receptors on the vessel wall in order to

resist the hydrodynamic lift force.

In our simulations the dependence of the lift force FL(ycm) on the wall distance

ycm (see Fig. 7.9.a) is determinded by applying a gravitational force FG to the

vesicle under steady shear as described in Sec. 7.2. The vesicle is moved towards

or away from the wall until gravitational FG and lift forces FL(ycm) balance each

other. For this steady wall distance ycm, the gravitational force can be identified

by the lift force FL(ycm). Without FG, there would not be any steady-state with

wall distance ycm in the presence of one wall.

Fig. 7.9.b shows the pressure field in the outer fluid for the steady-state config-

uration of a tank-treading vesicle. The hydrodynamic lift force is the integral

of the pressure forces over the membrane contour. A higher pressure in the gap

between the vesicle and the wall is responsible for the lift force. In this pressure-
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7 Vesicles in shear flow

field plot, it can be nicely seen that there is a lower pressure at the caps of the

vesicle membrane. This pressure difference is the origin of the vesicle elongation.

Several simulations were performed for the viscosity contrasts τ = 1, 2, 3, 4 and

10 with gravitational forces ranging from FG = 1kBT/a to 50kBT/a. The

resulting wall-distance dependence of the hydrodynamic lift force is shown in

Fig. 7.10.a in a double-logarithmic representation. For a fixed wall distance ycm,

the resulting lift forces decrease with increasing viscosity ratio τ .

Lift forces of vesicles with τ ≤ 4 obey a power-law dependence

FL ∝ yζ
cm (7.37)

on the wall distances ycm for lift forces FL ≤ 20kBT/a. In Fig. 7.10.a, also a

line with the power law dependence 1/y2
cm is shown, from which we conclude the

characteristic exponent

ζ ≈ −2. (7.38)

For these distances, the vesicle is not in direct contact with the wall. At applied

gravitational forces larger than 20kBT/a, the vesicle comes in touch with the

wall. However, the center-of-mass wall distance ycm can be lowered even further

by deforming the vesicle. The 1/y2
cm dependence does not apply in this regime.

Finally, the constraints of fixed enclosed area A and fixed perimeter P keep the

center of mass wall distance larger than ycm & 5a. In Fig. 7.11, the amplitude

FLy2
cm of the lift force is shown as a function of the viscosity contrast τ . The

amplitudes are fits to the curves in Fig. 7.10.a where those ycm are considered,

for which the vesicle is not in direct contact with the wall. A strong decrease of

the amplitude FLy2
cm can be seen with increasing viscosity contrast τ .

A direct comparison with theoretical predictions is not possible, since lift forces

of two-dimensional vesicles bound to walls by a short-ranged attractive potential

were investigated [14, 87].

For vesicles in three dimensions which are separated from the wall, the experi-

mental work of Abkarian et al. [1] exhibits a 1/ycm dependence of the lift force

– independent of the reduced volume V ∗ (the three-dimensional analogon to

the reduced area A∗). Sukumaran et al. [90] performed boundary integral cal-

culations of three-dimensional heavy tank-treading vesicles and determined the

lift-forces dependence on ycm in the same way as we do. Besides the different

dimensionality, their reduced volume V ∗ ≈ 0.95 is far closer to the spherical

limit. However, they find a 1/y2
cm dependence, which is in accordance with our

findings.
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Figure 7.10: (a) lift forces and (b) the resulting average inclination angle in de-

pendence of the average distance ycm between wall and center of

mass of the vesicle for γ̇∗ = 0.068 and Pe = 274. The legend in (a)

applies to both plots. Points marked by red circles refer to tum-

bling vesicles. For comparison, also a line with a y−2
cm dependence is

plotted in (a).
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Figure 7.11: Amplitude of the lift force FL as a function of the viscosity contrast

τ . The data points are fits to the curves in Fig. 7.10.a for which

vesicles are not in direct contact with the wall.

The theoretical studies of Olla [75, 76] on lift forces acting on tank-treading

ellipsoids in three dimensions are valid for arbitrary combinations of ellipsoid

half axes a1, a2, a3 and holds thereby also for very aspherical vesicles. It also

predicts a 1/y2
cm dependence for large wall distances ycm ≫ a1, a2, a3 which is

indeed similar to our computer-simulation results. However, it is not possible

to perform a two-dimensional limit of the theory of Ref. [75, 76], as we did for

the KS theory by making one half axis a3 infinitesimally large. This cylindrical

geometry would violate the assumption ycm ≫ a1, a2, a3 employed in the theory.

Fig. 7.10,a also shows that tumbling is suppressed above a certain gravitational

force. In order to perform a tumbling motion, the center of mass distance ycm

has to be larger than the long vesicle axis a1. However, for too high gravita-

tional forces, the center of mass distance ycm becomes smaller than a1, such that

even vesicles with high viscosity contrasts do not tumble. Even if ycm is slightly

larger than a1, the vesicle cap has to come so close to the wall that the resulting

pressure forces may prevent the inclination angle to overcome a certain value.

In Fig. 7.10,b, the inclination angle θ is plotted vs. wall distance ycm for the

same simulations as in Fig. 7.10,a. The right-most data points correspond to
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FG = 0, such that they cannot be shown in the log-log plot Fig. 7.10.a. Without

any gravitational forces, the lift force caused by the upper wall at y = 80a com-

pensates the lift force of the lower wall for ycm = 40a. Since the lift forces are

very small at ycm = 40a, strong fluctuations are observed in the wall distances.

As long as a vesicle tank-treads, its inclination angle θ increases with wall dis-

tance ycm. Even if the vesicle does not touch the wall, the pressure at the lowest

part of the membrane is highest (see Fig. 7.9,b) such that it causes a torque

which lowers θ. For very small wall distances, the vesicle comes into direct con-

tact with the wall, where the repulsive wall potential causes a torque, which

decreases θ, until the vesicle is finally completely parallel to the wall with θ = 0.

Vesicles with τ ≥ 3 start to tumble at sufficiently large wall distances. Since the

vesicles with viscosity ratios τ = 3 and τ = 4 still tank-tread most of the time

and only occasionally perform a tumbling event, their inclination angles do not

completely vanish, whereas for τ = 10 and FG ≤ 1, the average inclination angle

vanishes.

For the near future, we plan to perform boundary integral calculations, where

the lift force is calculated for vesicle geometries and tank-treading velocities ob-

tained from our computer simulations.

7.4 Summary and Conclusion

We have studied the dynamics of vesicles in shear flow in a two-dimensional

model system. These systems show a variety of interesting dynamical phenom-

ena. In particular, the effect of a viscosity ratio, i.e. the ratio between the

inner and the outer viscosity of the vesicle, on vesicle dynamics has been inves-

tigated. Depending on the viscosity ratio vesicles can either “tumble”, “swing”

or show “tank-treading”. In the tumbling regime, the vesicle orientation perma-

nently rotates, in the swinging regime the vesicle exhibits temporally periodical

changes in shape and orientation and in the tank-treading regime both shape

and orientation are constant in time, whereas the membrane rotates around the

enclosed volume. For the first time, a transition from tank-treading to swinging

with increasing viscosity contrast could be shown in computer simulations. Our

simulations are in good agreement with a phenomenological theoretical descrip-

tion.

Close to walls, tumbling is strongly suppressed. Furthermore, the vesicle is re-
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pelled from the wall. The origin of this repulsion is the hydrodynamical lift

force. We could show that the lift force on vesicles decays inversely proportional

to the squared wall distance. With increasing viscosity, the hydrodynamic lift

force becomes weaker, as the vesicle becomes less deformable.

Our observations are relevant for phenomena in biology, because vesicles can be

considered as model system for blood cells in blood flow. The effect of a viscosity

contrast is of particular interest, since the cytosol of blood cells contains many

macromolecules and filaments which leads to a higher inner viscosity (compare

Chap. 5). The hydrodynamic lift force plays an important role in the circulatory

systems of vertebrates. Since the lift force pushes red blood cells (erythrocytes)

to the center of a blood vessel, where the flow velocities is largest, it increases

the efficiency of material transport. However, the mission of white blood cells

(leukocytes) is to move along the vessel walls in order to find defects in the vas-

cular endothelium. For this purpose, special ligands are located at the outside

of white blood cells which are able to bind to receptors on the vessel wall in

order to resist the hydrodynamic lift force.
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8 Summary and conclusion

We have investigated the dynamics of dense suspensions of rod-like colloids and

of single vesicles by means of computer simulations, with special attention on

the influence of hydrodynamic interactions.

As soft-matter systems, these apparently very distinct systems have in common

that they are characterized by hydrodynamic interactions, thermal fluctuations

and a large separations of length and time scales between the solvent and the

solute. Therefore an appropriate simulation model was chosen, which takes into

account these essential characteristics. Colloids and vesicles were modelled in

a coarse-grained fashion by a group of connected point particles, and their dy-

namics is treated by Molecular Dynamics. For the solvent, the Multi-Particle

Collision Dynamics (MPC) algorithm was used, a mesoscale particle-based sim-

ulation technique which provides the thermodynamic and hydrodynamic prop-

erties which are essential for soft matter dynamics. Optionally, hydrodynamic

interactions can be switched off. Thus the effect of hydrodynamics can be easily

elucidated.

Rod-like colloids can form different thermodynamically stable phases. Their

phase behavior depends mainly on volume fraction, but also temperature, flexi-

bility, chirality and polydispersity are crucial. We focused on dense suspensions

of monodisperse, semiflexible rods in the isotropic and nematic phase. Such sys-

tems are of high interest, as they can be regarded as model systems for biological

phenomena in cells. The cytoplasm, the interior of a biological cell, typically

contains a dense network of filaments immersed into an aqueous environment.

These filaments are often oriented isotropically, but under certain circumstances

they are directed. For the life of a cell it is essential that material can be trans-

ported by diffusion even in very dense networks.

We calculated self-diffusion constants of rod-like colloids for a broad range of vol-

ume fractions. We could find that solvent mediated hydrodynamic interactions

lead to an increase in diffusion for all considered volume fractions. Moreover,

simulations have shown that the larger the hydrodynamic diameter the more

121



8 Summary and conclusion

strongly diffusion is diminished with increasing concentration. In nematic sys-

tems, diffusion becomes anisotropic, which implies different diffusion constants

for motion into parallel and perpendicular directions. The diffusion anisotropy

was determined in dependence of concentration and rod aspect ratios. We could

show that the diffusion anisotropy increases with the rod aspect ratio. Our re-

sults are in agreement with experiments of rod-like fd viruses.

In rod suspensions, not only hydrodynamics influences rod dynamics, but there

is also the inverse effect that rods influence hydrodynamics. The rod network

screens the otherwise long-ranged hydrodynamic interactions. Hydrodynamic

interactions in soft-matter systems can be well described by the hydrodynamic

mobility tensor which relates forces acting on a particular site of the system to

velocities at different locations. We presented a procedure which allows us to cal-

culate the hydrodynamic mobility tensor from equilibrium fluctuations of shear

waves in simulations. The hydrodynamic mobility tensor contains important

information about hydrodynamics, including hydrodynamic screening lengths.

We have shown that the screening lengths is of the order of typical distances

between neighboring rods. Also the solvent viscosity and the effective viscos-

ity of the whole suspension could be identified from the hydrodynamic mobility

tensor. Since such a direct determination of screening lengths is not possible in

experiments, our method is highly advantageous for the understanding of hy-

drodynamics in dense systems. Hydrodynamic screening has consequences for

dynamical phenomena in rod systems. In particular, diffusion of small particles

immersed in rods depend very sensitively on hydrodynamic screening lengths.

In experiments, hydrodynamic screening lengths can be measured only indirectly

due to their effect on other dynamical phenomena. Such indirect measurements

have been done by our cooperation partners of the group Dhont. They devel-

oped a theory for tracer-sphere diffusion in rods, which is based on hydrody-

namic screening. Hydrodynamic screening lengths could be obtained by fitting

measured tracer-diffusion constants. Such indirect measurements are not very

accurate and rely on the validity of the theory. In simulations, we calculated

diffusion constants of small tracer spheres in dense rod suspensions. These dif-

fusion constants agree well with the theory if screening lengths are used which

have been calculated in Chap. 5. Thereby the validity of our screening lengths

evaluation as well as the theory of Ref. [47] are nicely confirmed.

Far more complex soft matter systems are vesicles which are small fluid droplets

enclosed by a membrane with an internal dynamics. We focus on phenomena
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arising in vesicles under shear in a two-dimensional model system. We consider

vesicles with a viscosity contrast, i.e. the fluid inside the vesicle has a higher

viscosity than the outer one. This situation is also interesting for biology, as

blood cells typically contain a high viscous cytosol. Depending on the strength

of the shear flow, the viscosity ratio and the ability of the vesicle to restore its

equilibrium shape from perturbations, such vesicles can be found in different

dynamical regimes – the tank-treading, tumbling and swinging regimes. In the

tank-treading regime, which is observed for low viscosity contrasts, the vesicle

has a fixed shape and orientation, but the membrane rotates around the vesicle.

For higher viscosity ratios, the vesicle is more rigid and its orientation perma-

nently rotates. In strong shear flows, deformations of the vesicles can be so

strong that it is not able to relax to its equilibrium shape. In this case, also the

dynamic regime of swinging can be observed. In addition to periodic changes in

orientations like in the tumbling regime, also periodic shape deformations occur

in the swinging regime. We could see the transition to a swinging regime with

increasing viscosity contrast for the first time by computer simulations. Our

simulations show a nice agreement with a corresponding phenomenological the-

ory.

Furthermore, the dynamics of vesicles with different viscosity contrasts close to

a wall has been investigated. We have shown that tumbling is strongly sup-

pressed in the vicinity of a wall. Moreover, the hydrodynamical lift force has

been studied, which is of purely viscous origin and repells vesicles from a wall.

We could show that the lift force on vesicles decays inversely proportional to the

squared wall distance. With increasing viscosity, the hydrodynamic lift force

becomes weaker.

The lift force has also consequences for biology. In circulatory systems of ver-

tebrates vesicle-like red blood cells are pushed by the lift force to the center of

a blood vessel, where the flow velocities is larger. Thus it is prevented that red

blood cells stick to vessel walls.
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Appendix A

Calculation of T̃ (k) for simple

MPC-SR fluids under the

assumption of molecular chaos

The hydrodynamic mobility tensor T̃(k) in Fourier space was calculated for

simple MPC-SR fluids in Sec. 5.3. Results of the simulations are shown in

Fig. 5.3. For small wave numbers k . kc = 2π/λc, where λc is the hydrodynamic

cutoff, the trace T̃ (k) of the hydrodynamic mobility tensor nicely follows the 1/k2

dependence of the Stokes equation. This fact justifies that the MPC-SR method

is a good simulation technique for hydrodynamic phenomena at not too small

length scales. However, for larger wave numbers, T̃ (k) undergoes a crossover

to a plateau, where T̃ (k) reaches a finite value which is independend of k. The

crossover happens close to the cutoff wave number kc = 2π/λc.

In this appendix, we calculate the plateau value of T̃ (k). Since in the plateau

regime, inter-particle (i.e. hydrodynamic) correlations can be neglected, solvent

dynamics is governed by molecular chaos,

〈vi(t) ⊗ vj(t)〉 = Î δi,j
kBT

m
. (A.1)

Here vi(t) is the velocity of particle i at time t, and m is the MPC particle

mass. In order to distinguish between the different expressions of the different

regimes, the mobility tensor under molecular chaos will be denoted by T̃mc(k)

in the following. With the molecular-chaos assumption (A.1) and the collision

rule of the MPC-SR method (3.9), an analytic expression for

T̃mc(k) =
1

kBT

∫ ∞

0

dt 〈ṽ∗(k, 0) ⊗ ṽ(k, t)〉 (A.2)
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Appendix A Calculation of T̃ (k) for simple MPC-SR fluids under molecular chaos

can be calculated analytically. First, the integrand 〈ṽ∗(k, 0) ⊗ ṽ(k, t)〉 ise cal-

culated for molecular chaos,

〈ṽ∗(k, 0) ⊗ ṽ(k, t)〉 =

〈[
Pk

1

N

N∑

i=1

vi(0)eik·ri(0)

]
⊗

[
Pk

1

N

N∑

j=1

vj(t)e
−ik·rj(t)

]〉
,

(A.3)

where Eq. (5.20) for ṽ(k, t), and the abbreviation

Pk := Î − k̂ ⊗ k̂. (A.4)

for the projection operator has been used. With the symmetry relation

Pk = PT
k (A.5)

and

(Pka) ⊗ (Pkb) = Pk(a ⊗ b)PT
k = Pk(a ⊗ b)Pk (A.6)

Eq. (A.3) can be written as

〈ṽ∗(k, 0) ⊗ ṽ(k, t)〉 =
1

N2
Pk

∑

i,j

〈
vi(0) ⊗ vj(t)e

−ik·(rj(t)−ri(0))
〉
Pk. (A.7)

Since velocities and positions are generally uncorrelated (〈vi(0) ⊗ rj(t)〉 = 0),

and since for molecular chaos velocities are only correlated with velocities of the

same particle (see Eq. A.1), Eq. (A.7) reduces to

〈ṽ∗(k, 0) ⊗ ṽ(k, t)〉 =
1

N2
Pk

∑

i

〈vi(0) ⊗ vi(t)〉
〈
e−ik·(ri(t)−ri(0))

〉
Pk. (A.8)

For the time discretization of the MPC-SR dynamics t = nh, the first average

on the right hand side has been calculated by Ripoll et al. in [83] for molecular

chaos conditions,

〈vi(0) ⊗ vi(nh)〉 = 〈vi(0) ⊗ vi(0)〉 (1 − γ)n (A.9)

(A.1) = Î
kBT

m
(1 − γ)n (A.10)

The quantity

γ =
2

3
(1 − cos α)

(
1 − 1

̺

)
(A.11)

depends on two simulation parameters of the MPC-SR method, the average

particle density ̺ and the collision angle α (for the definitions, see Sec. 3.2.1).

For the second average on the right hand of Eq. (A.8), we use the relation

〈
e−ik·(ri(t)−ri(0))

〉
=

〈
e−ik·∆ri(t)

〉
= e−

1

6
k2〈∆r2

i (t)〉 (A.12)
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which holds if the ∆ri(t) obey a Gaussian distribution. For its derivation see e.g.

Ref. [28], Chap. 4.4. 〈∆r2
i (t)〉 can be replaced by 6D0t for Brownian particles,

where

D0 =
kBTh

m

(
1

γ
− 1

2

)
(A.13)

is the diffusion constant of a MPC-SR particle [83]. The assumption that the

∆ri(t) are Gaussian variables is not completely correct for small t = nh. How-

ever, we will see later that D0 has a vanishing contribution to the plateau value

of T̃mc(k). Thus Eq. (A.12) becomes

〈
e−ik·∆ri(nh)

〉
= e−k2D0nh (A.14)

Inserting Eqs. (A.10) and (A.14) into Eq. (A.8), we find

〈ṽ∗(k, 0) ⊗ ṽ(k, nh)〉 =
1

N2
Pk

∑

i

Î
kBT

m
(1 − γ)n e−k2D0nhPk. (A.15)

Since the sum is indepent of the summation index i, it can be replaced by the

factor N . With the property of projection operators Pk

Pk Î Pk = P2
k = Pk, (A.16)

Eq. (A.15) reads

〈ṽ∗(k, 0) ⊗ ṽ(k, nh)〉 =
kBT

mN
Pk

[
(1 − γ) e−k2D0h

]n

. (A.17)

This can be inserted as the integrand into Eq. (A.2). However, since values for

〈ṽ∗(k, 0) ⊗ ṽ(k, t)〉 are only available for discretes times t = nh, the integral has

to be replaced by a discrete sum

T̃mc(k) =
h

2kBT

∞∑

n=0

[〈ṽ∗(k, 0) ⊗ ṽ(k, nh)〉 + 〈ṽ∗(k, 0) ⊗ ṽ(k, (n + 1)h)〉]

=
h

kBT

[
∞∑

n=0

〈ṽ∗(k, 0) ⊗ ṽ(k, nh)〉 − 1

2
〈ṽ∗(k, 0) ⊗ ṽ(k, 0)〉

]
(A.18)

(A.17) =
h

mN
Pk

{
∞∑

n=0

[
(1 − γ) e−k2D0h

]n

− 1

2

}
(A.19)

Since obviously
[
(1 − γ) e−k2D0h

]n

< 1, the sum in the last line is a geometric

progression with
∞∑

n=0

qn =
1

1 − q
, 0 ≤ q < 1. (A.20)
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Thus Eq. (A.19) reads

T̃mc(k) =
h

mN
Pk

[
1

1 − (1 − γ) exp (−k2D0h)
− 1

2

]
. (A.21)

With the simulation parameters used in the underlying simulations of Fig. 5.3,

one can easily calculate that D0h = 1.029 for all the four data curves – inde-

pendendly of h. Furthermore, one can see that the plateau in Fig. 5.3 is only

reached for k & 3. For those wave vectors, the exponential in Eq. (A.21) can be

set to zero which gives

T̃mc(k) =
h

2mN
Pk (A.22)

Since

ηV T̃ (k) =
ηV

2
Tr T̃(k) (A.23)

is the quantity plotted in Fig. 5.3, the plateau value of the molecular chaos

regime finally reads

ηV T̃mc(k) =
ηV

2
Tr T̃mc(k) =

ηV h

2mN
=

ηh

2m̺
. (A.24)

This result is in very good agreement with the simulation data of Fig. 5.3.

128



Appendix B

Calculation of the hydrodynamic

contribution αh
iso,‖,⊥ to the sphere

diffusion constant in dense rod

suspensions

According to the theory of Dhont et al. [47], the influence of hydrodynamic

interactions on the self diffusion constant Dh
s of tracer spheres in dense rod

suspensions can be described by the relation

σh
iso,‖,⊥(φ) =

Dh
iso,‖,⊥(φ)

D0
=

1

1 + αh
iso,‖,⊥φ

. (B.1)

Here, D0 is the diffusion constant of spheres at infinite dilution, and αh
iso,‖,⊥ is

a coefficient, which describes the slow down of diffusion due to hydrodynamic

interactions between the tracer sphere and the rod network. The practical cal-

culation of αh
iso,‖,⊥ is described in the following. According to (29) of [47], αh

iso,‖,⊥

is given by

αh
iso,‖,⊥ =

4

πd2L
v̂p ·

[∫
dR

∮
dûP0(û|φ)e−βV (R,û)M(R, û)

]
· v̂p (B.2)

Here, P0(û|φ) is the orientational probability density function of rod orienta-

tions, V (R, û) is the steric interaction potential between sphere and rod, and

M(R, û) is a tensor, which describes how the flow field induced by a sphere lo-

cated at a distance R from the rod center with the direction û is reflected back

to the sphere. The choice of the unit vector v̂p does not have an effect in the

case of isotropic systems, whereas in nematic systems v̂ = n̂ has to be chosen
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in order to calculate α‖, or v̂ ⊥ n̂ to calculate α⊥ (n̂ is the nematic director).

The explicit expression for M(R, û) is (see Eq. (24) of Ref. [47]).

M(R, û) =
12(πη)2as

G(κd, κL)

∫ L/2

−L/2

dlTs(R − lû)

·
{
Î − H(κd, κL)

G(κd, κL) + H(κd, κL)
û⊗ û

}
· Ts(R − lû) (B.3)

The tensor Ts(r) is the isotropic screened hydrodynamic mobility tensor defined

by Eq. (5.4) which decays Yukawa-like over a distance, which is characterized by

the screening length κ
−1. The functions G(κd, κL) and H(κd, κL) are defined

by

G(κd, κL) =

∫
κL/2

κd/2

dx
h1(x)

x
=

1

2

[
x−2 + E1(x) − e−x(x−1 + x−2)

]
κL/2

−κd/2

H(κd, κL) =

∫
κL/2

κd/2

dx
h2(x)

x
=

1

2

[
−3x−2 + E1(x) + 3e−x(x−1 + x−2)

]
κL/2

−κd/2

where E1(x) :=
∫ ∞

x
dt exp(−t)/t is the exponential integral. The fraction

K :=
H(κd, κL)

G(κd, κL) + H(κd, κL)
(B.4)

appearing in Eq. (B.3) is a constant for a given system and depends only on

the rod sizes L, d and the screening length κ
−1. Therefore it can be calculated

before evaluating integrals.

Eq. (B.2) can be equivalently written as

αh
iso,‖,⊥ =

4

πd2L
v̂p ·

∮
dûP0(û|φ)Rẑ→û

[∫
dRe−βV (R,ẑ)M(R, ẑ)

]

︸ ︷︷ ︸
=: L(ẑ)

RT
ẑ→û · v̂p

(B.5)

Rẑ→û is a rotation matrix which turns a vector parallel to ẑ into a vector of same

length parallel to û. Let us now focus on the calculation of L(ẑ). Assuming that

the rods are perfectly cylindrical, the problem is now symmetrical to the z-axis.

Therefore it is convenient to use cylindrical coordinates R‖, R⊥ and τ , with

R =




R⊥ cos τ

R⊥ sin τ

R‖


 (B.6)
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The interaction potential V (R, ẑ) now depends only on R‖ and R⊥. For hard-

core interactions, it reads

V (R, ẑ) = V (R‖, R⊥) =

{
∞ , R⊥ < d

2
+ a and R‖ ∈

[
−(L

2
+ as),

L
2

+ as

]

0 , otherwise

(B.7)

Accordingly, the Boltzmann probability is

e−βV (R‖,R⊥) =

{
0 , R⊥ < d

2
+ a and R‖ ∈

[
−(L

2
+ as),

L
2

+ as

]

1 , otherwise
. (B.8)

For phantom spheres (spheres are not excluded from the volume occupied by

rods), the potential vanishes for all R‖, R⊥, i.e., the Boltzmann probability

reduces to unity. Inserting Eq. (B.3) into the definition (B.5) of L(ẑ) we obtain

L(ẑ) =
12(πη)2as

G(κd, κL)

∫ ∞

−∞

dR‖

∫ ∞

0

dR⊥

∫ 2π

0

R⊥ dτ

∫ L/2

−L/2

dlTs(R − lẑ) ·
{
Î

−Kẑ ⊗ ẑ} · Ts(R − lẑ)

=
12(πη)2as

G(κd, κL)

∫ ∞

−∞

dR‖

∫ ∞

0

dR⊥ · R⊥

∫ L/2

−L/2

dl

e−βV (R‖−l,R⊥)

∫ 2π

0

dτ

[
Ts(R− lẑ)

(
1 0 0
0 1 0
0 0 1−K

)
Ts(R − lẑ)

]

︸ ︷︷ ︸
=: N(r‖ − l, R⊥)

. (B.9)

The integrand depends on τ in such a way that the tensor N(r‖ − l, R⊥) can

be calculated analytically. Therefore we need the explicit form of the integrand.

The isotropic screened hydrodynamic mobility tensor Ts(R − lẑ) expressed in

cylindrical coordinates is

Ts(R−lẑ) =
1

4πηr3




h1r
2 + h2R

2
⊥ cos2 τ h2R

2
⊥ cos τ sin τ h2R⊥(R‖ − l) cos τ

h2R
2
⊥ cos τ sin τ h1r

2 + h2R
2
⊥ sin2 τ h2R⊥(R‖ − l) sin τ

h2R⊥(R‖ − l) cos τ h2R⊥(R‖ − l) sin τ h1r
2 + h2(R‖ − l)2




(B.10)

where r :=
√

R2
⊥ + (R‖ − l)2 does not depend on τ . For brevity, we did not write

the arguments of the functions h1 = h1(κr) and h2 = h2(κr) in Eq. (B.10). They

also do not depend on τ . For symmetry reasons N(r‖− l, R⊥) must be diagonal,

i.e. all the integrals in the off-diagonal elements vanish. The two eigenvalues

in x and y directions are equal (degenerated). We denote them N⊥(r‖ − l, R⊥).
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The eigenvalue in z direction is called N‖(r‖− l, R⊥) in the following. Hence the

only two integrals to evaluate are

N⊥(r‖ − l, R⊥) =

∫ 2π

0

dτ x̂ · Ts(R− lẑ)

(
1 0 0
0 1 0
0 0 1−K

)
Ts(R − lẑ) · x̂

=

∫ 2π

0

dτ
1

(4πη)2r6

{(
h1r

2 + h2R
2
⊥ cos2 τ

)2

+
(
h2R

2
⊥ cos τ sin τ

)2
+ (1 − K)

[
h2R⊥(R‖ − l) cos τ

]2
}

=
π

(4πη)2r6

{
2r4h2

1 + (1 − K)(R‖ − l)2R2
⊥h2

2

+R4
⊥h2

2 + 2r2R2
⊥h1h2

}
(B.11)

and

N‖(r‖ − l, R⊥) =

∫ 2π

0

dτ ẑ ·Ts(R − lẑ)

(
1 0 0
0 1 0
0 0 1−K

)
Ts(R − lẑ) · ẑ

=

∫ 2π

0

dτ
1

(4πη)2r6

{[
h2R⊥(R‖ − l) cos τ

]2

+
[
h2R⊥(R‖ − l) sin τ

]2
+ (1 − K)

[
h1r

2 + h2(R‖ − l)2
]2

}

=
2π

(4πη)2r6

{
(R‖ − l)2R2

⊥h2
2 + (1 − K)

[
r2h2

1 + (R‖ − l)2h2
2

]2
}

Now we insert N(r‖−l, R⊥) =

(
N⊥(r‖−l,R⊥) 0 0

0 N⊥(r‖−l,R⊥) 0
0 0 N‖(r‖−l,R⊥)

)
into Eq. (B.9).

Obviously L(ẑ) is diagonal as well, and the only two different eigenvalues are

L‖(ẑ) and L⊥(ẑ):

L(ẑ) =




L⊥(ẑ) 0 0

0 L⊥(ẑ) 0

0 0 L‖(ẑ)


 (B.12)

=
12(πη)2as

G(κd, κL)

∫ ∞

−∞

dR‖

∫ ∞

0

dR⊥

∫ L/2

−L/2

dlR⊥e
−βV (R‖−l,R⊥)N(r‖− l,R⊥) (B.13)

The problem is now reduced to solving the following integrals

L⊥(ẑ) =
12(πη)2as

G(κd, κL)

∫ ∞

−∞

dR‖

∫ ∞

0

dR⊥

∫ L/2

−L/2

dlR⊥e−βV (R‖−l,R⊥)N⊥(r‖ − l, R⊥)

=
3πas

4G(κd, κL)

∫ ∞

−∞

dR‖

∫ ∞

0

dR⊥

∫ L/2

−L/2

dlR⊥

·e−βV (R‖−l,R⊥) 1

r6

{
2r4h2

1 + (1 − K)(R‖ − l)2R2
⊥h2

2 + R4
⊥h2

2 + 2r2R2
⊥h1h2

}
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and

L‖(ẑ) =
12(πη)2as

G(κd, κL)

∫ ∞

−∞

dR‖

∫ ∞

0

dR⊥

∫ L/2

−L/2

dlR⊥e−βV (R‖−l,R⊥)N‖(r‖ − l, R⊥)

=
3πas

4G(κd, κL)

∫ ∞

−∞

dR‖

∫ ∞

0

dR⊥

∫ L/2

−L/2

dlR⊥

·e−βV (R‖−l,R⊥) 2

r6

{
(R‖ − l)2R2

⊥h2
2 + (1 − K)

[
r2h2

1 + (R‖ − l)2h2
2

]2
}

Numerically. Technically, the infinite integral boundaries are replaced by finite

values, and it has of course to be ensured that the integral converges over this

integration range. Then the threefold integral is solved by Monte Carlo inte-

gration. Finally, the numerically determined L(ẑ) are inserted into Eq. (B.5),

and the orientational average has to be performed. For isotropic systems, it is

straightforward to see that

αh
iso =

4

πd2L

1

3
TrL(ẑ) (B.14)

For nematic systems, we choose n̂ = ẑ. Then it is convenient to express û

in spherical coordinates ϕ and ϑ. Due to the uniaxial symmetry of nematic

systems, P0(û|φ) can be replaced by P0(ϑ). The rotation matrix Rẑ→û expressed

in spherical coordinates is

Rẑ→û =




cos ϕ cos ϑ − sin ϕ cos ϕ sin ϑ

sin ϕ cos ϑ cos ϕ sin ϕ sin ϑ

− sin ϑ 0 cos ϑ


 (B.15)

Inserting this expression for Rẑ→û into Eq. (B.5) and replacing
∮

dûP0(û|φ)(...)

by 1
2π

∫ π

0
dϑ sin ϑP (ϑ)

∫ 2π

0
dϕ(...), we find

αh
‖,⊥ =

4

πd2L
v̂p ·

1

2π

∫ π

0

dϑ sin ϑP (ϑ)

∫ 2π

0

dϕ




cos ϕ cos ϑ −sin ϕ cos ϕ sin ϑ

sin ϕ cosϑ cos ϕ sin ϕ sin ϑ

−sin ϑ 0 cos ϑ




·




L⊥(ẑ) 0 0

0 L⊥(ẑ) 0

0 0 L‖(ẑ)







cos ϕ cosϑ sin ϕ cosϑ −sin ϑ

−sin ϕ cos ϕ 0

cos ϕ sin ϑ sin ϕ sin ϑ cos ϑ


 · v̂p

=
2

π2d2L
v̂p ·

∫ π

0

dϑ sin ϑP (ϑ)

∫ 2π

0

dϕ

·




cos2 ϕ cos2 ϑL⊥+sin2 ϕL⊥+cos2 ϕ sin2 ϑL‖ ... ...

... sin2 ϕ cos2 ϑL⊥+cos2 ϕL⊥+sin2 ϕ sin2 ϑL‖ ...

... ... cos2 ϕ cos2 ϑL⊥ + sin2 ϕL⊥ + cos2 ϕ sin2 ϑL‖


 · v̂p.

133



Appendix B Calculation of αh
iso,‖,⊥

We do not write down the off-diagonal items, since they vanish upon integration

over dϕ. Now the integration over dϕ can be done analytically:

αh
‖,⊥ =

2

πd2L
v̂p ·

∫ π

0

dϑ sin ϑP (ϑ)

·




L‖ sin2 ϑ + L⊥(1 + cos2 ϑ) 0 0

0 L‖ sin2 ϑ + L⊥(1 + cos2 ϑ) 0

0 0 2
[
L‖ cos2 ϑ + L⊥ sin2 ϑ

]


 · v̂p

αh
‖ and αh

⊥ can now be determinded by choosing v̂p = ẑ or v̂p ⊥ ẑ respectively.

This yields

αh
⊥ =

2

πd2L
·
∫ π

0

dϑ sin ϑP (ϑ)
[
L‖ sin2 ϑ + L⊥(1 + cos2 ϑ)

]

=
2

πd2L
·
[
L‖

〈
sin2 ϑ

〉
+ L⊥(1 +

〈
cos2 ϑ

〉
)
]

=
4

3πd2L
·
[
L‖ (1 − 〈P2〉) + L⊥ (〈P2〉 + 2)

]
(B.16)

αh
‖ =

4

πd2L
·
∫ π

0

dϑ sin ϑP (ϑ)
[
L‖ cos2 ϑ + L⊥ sin2 ϑ

]

=
4

πd2L
·
[
L‖

〈
cos2 ϑ

〉
+ L⊥

〈
sin2 ϑ

〉]

=
4

3πd2L
·
[
L‖ (2 〈P2〉 + 1) + 2L⊥ (1 − 〈P2〉)

]
(B.17)

In the last step of the derivations of Eqs. (B.16) and (B.17), the nematic or-

der parameter 〈P2〉, defined by Eq. (2.13) was inserted. From Eq. (2.13), it is

straightforward to obtain the relations

〈
cos2 ϑ

〉
=

1

3
(2 〈P2〉 + 1) (B.18)

and
〈
sin2 ϑ

〉
=

2

3
(1 − 〈P2〉) = 1 −

〈
cos2 ϑ

〉
(B.19)

(B.20)

Since the nematic order parameter 〈P2〉 is known for each system, also αh
‖,⊥ can

be calculated directly.
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⊗ Dyadic product

(̃...) Fourier transform of (...)

α Collision angle, page 28

αh
iso,‖,⊥ Coefficient for the hydrodynamic contribution to sphere diffusion, page 84

αs
iso,‖,⊥ Coefficient for the steric contribution to sphere diffusion, page 84

αs Order parameter of the vesicle shape, see equation (7.7), page 99

β Inverse thermal energy β = 1/(kBT )

Γ Velocity-gradient tensor, see equation (7.4), page 97

γ Friction constant, see equation (2.32), page 23

γ0 Rod friction constant without hydrodynamics, page 35

γs Friction constant of a sphere (Stokes friction), page 36

γ̇∗ Reduced shear rate, see equation (7.9), page 99

∆(κ−1) Error of κ
−1, see equation (5.35), page 71

∆̺ Difference of (heavy) mass densities between the inner and the outer fluid

in vesicle, page 108

∆(b) Error of b, page 71

∆t Time difference between two consecutively recorded monomer configura-

tions., page 42

ε Strength of ULJ , page 39
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ζθ Friction constant for θ in the generalized KS theory, see equation (7.18),

page 103

ζα Friction constant for αs in the generalized KS theory, see equation (7.18),

page 103

η Viscosity, page 11

ηcoll Collisional viscosity, page 29

ηeff Effective (macroscopic) viscosity of rod suspensions, page 71

ηin, ηout Viscosity inside and outside of a vesicle, page 97

ηkin Kinetic viscosity, page 29

θ Inclination angle of a vesicle, see equation (7.8), page 99

κ Bending rigidity, page 39

κ Hydrodynamic screening constant in the isotropic systems, page 60

κ
−1 Isotropic hydrodynamic screening length, page 60

κ(...) Hydrodynamic screening constant for direction (...) in anisotropic sys-

tems, page 62

κ
−1
(...) Hydrodynamic screening length for direction (...) in anisotropic systems,

page 62

Λ‖,⊥ Eigenvalues of the gyration tensor, page 45

λc Hydrodynamic cutoff length, page 68

Λmin,max Eigenvalues of the gyration tensor of vesicles, page 99

ν Numerical constant. Appears in the calculation of αs
iso,‖,⊥, see equa-

tion (6.5), page 84

ξ Mesh size, see equation (2.18), page 20

ξc Length scale over which flow velocities are coupled by rods, page 76

Π Moment of inertia, page 32
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ρ Dimensionless concentration, page 19

ρI Dimensionless concentration of the isotropic phase at I-N coexistence, see

equation (2.16), page 19

ρN Dimensionless concentration of the nematic phase at I-N coexistence, see

equation (2.16), page 19

̺ number density of MPC particles, page 27

̺m Mass density

̺rods Rod number density, page 19

σ The interaction radius of ULJ is 6
√

2σ, page 39

τ Viscosity contrast, see equation (7.2), page 97

τ ∗ Critical viscosity contrast for the TT-TB transition, page 101

τB Brownian time, page 22

Φ Total potential energy, page 25

φ∗ Overlap volume fraction, see equation (2.17), page 20

φ Rod volume fraction, page 19

Ω Rotational part of Γ, see equation (7.6), page 98

ω Angular velocity

A Solution matrix of the ASCFE in Fourier space, page 62

A Enclosed area of a two-dimensional vesicle, page 96

a Collision box size, page 28

A0 Enclosed vesicle area if UA = 0, page 105

a1, a2 Half-axes of an ellipse, page 101

as Tracer sphere radius, page 83

A∗ Reduced enclosed area of a two-dimensional vesicle, see equation (7.1),

page 96
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B Crucial quantity for the inclination angle in the KS theory [50], see equa-

tion (7.13), page 101

b Axis intercept in the 1/(ηV T̃ (k)) vs. k2 plot. Used for fitting κ, see

equation (5.33), page 70

B(φ) Volume fraction dependent length scale of rod-rod distances, page 75

D Diffusion constant, general, see equation (2.26), page 22

d Steric rod diameter, page 35

D0 Rod diffusion constant at infinite dilution without hydrodynamics, page 35

ddim Dimensionality

Dh
iso,‖,⊥ Tracer diffusion constant for phantom spheres, see equation (6.9), page 86

Dhs
iso,‖,⊥ Tracer diffusion constant for EV+HI spheres, see equation (6.5), page 86

D̂h
iso,‖,⊥ Normalized tracer diffusion constant for phantom spheres, see equa-

tion (6.10), page 86

D̂hs
iso,‖,⊥ Normalized tracer diffusion constant for EV+HI spheres, see equation (6.6),

page 86

dhyd Hydrodynamic rod diameter, page 35

Diso Isotropic diffusion constant. Average of D‖ and D⊥, see equation (2.28),

page 23

Dp Diffusion constant of a heavy particle in MPC-SR solvents, page 40

D‖ Diffusion constant for motion parallel to n̂, see equation (2.28), page 23

D⊥ Diffusion constant for motion perpendicular to n̂, see equation (2.28),

page 23

Ds Diffusion constant of a sphere (Stokes diffusion), page 36

Ds
iso,‖,⊥ Tracer diffusion constant for EV–HI spheres, see equation (6.7), page 86
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D̂s
iso,‖,⊥ Normalized tracer diffusion constant for EV–HI spheres, see equation (6.8),

page 86

D̂iso,‖,⊥(ρ) Normalized rod diffusion constants, see equation (4.20), page 48

E Elongational part of Γ, see equation (7.5), page 98

Ekin Kinetic energy

êmin,max Eigenvectors of the gyration tensor of vesicles, page 99

Eth Thermal energy, see equation (3.11), page 29

f Body force, page 59

F Free energy

fext External body force, page 11

FG Gravitational force, page 108

fG Gravitational body force, page 108

Fi Force acting on monomer i, see equation (3.1), page 25

FL Lift force, page 114

G Tensor of gyration, page 45

g Strength of the gravitational field, page 108

gO Pressure vector, see equation (2.7), page 13

h Collision time, page 28

h1, h2 Auxiliary functions in the explicit expression of Ts(r), see equation (5.6),

page 61

hMD MD time step, page 26

Î Identity matrix, page 45

k Wave vector

kA Parameter controlling the strength of UA, page 105
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ksp Spring constant of the bond potential Usp, page 39

L Rod length, see equation (2.13), page 19

l Equilibrium bond length in rods/vesicles, page 39

lc Characteristic length scale in a soft matter system, page 12

Liso Linear size of cubic simulation boxes Liso = Lx = Ly = Lz, page 67

lp Persistence length, see equation (2.22), page 21

Lx,y,z Size of the simulation box in x,y and z directions, page 28

M Monomer mass, page 38

m MPC particle mass

mbox Mass of a virtual cluster particle, page 30

mi Mass of monomer i, page 25

min, mout MPC particle masses inside and outside of the vesicle, page 106

m Integer vector, page 67

n̂ Nematic director, see equation (2.12), page 18

N total MPC particle number

n Number of monomers in one rod/vesicle

Nc Number of MPC particles in a particular box, page 32

Nf Number of recorded monomer configuration per simulation, page 42

Nvirt Number of virtual wall particles in a collision box crossing a wall, page 33

nx,y,z Number of collision boxes in x,y and z directions, page 28

P Perimeter of a two-dimensional vesicle, page 96

p Pressure
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r Position

R Curvature radius of a semiflexible rod, page 20

R1, R2 Principal radii of local curvature in three-dimensional membranes, page 96

RA Vesicle radius defined by the enclosed area, page 103

Rα(ûran) Random rotation matrix in the MPC-SR and random MPC methods,

page 28

rcm Center of mass of rods/vesicles

Re Reynolds number, see equation (2.3), page 12

Re End-to-end distance of a semiflexible rod, see equation (2.23), page 21

ri Position of particle i

ri,c Position of particle i relative to the center of mass, page 32

Rp Vesicle radius defined by the vesicle perimeter, page 99

R±
i Bond vectors in rods/vesicles, page 38

Rû→x̂ Rotation matrix which turn vectors around the axis x̂ × û such that

Rû→x̂û = x̂, see equation (4.15), page 44

S Hydrodynamic screening tensor, see equation (5.7), page 62

s Arc length along the rod contour between one rod end and a certain site

on the rod, page 20

S ′ Co-rotating frame in single-rod diffusion, page 44

sb Distance of a MPC particle from a bond of the vesicle membrane, page 107

TO Oseen tensor, see equation (2.6), page 13

Ta Anisotropic screened hydrodynamic mobility tensor, page 62

t̂1 Tangential vector along the rod contour, see equation (2.21), page 21
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tL Time required for a rod to reach a MSD Wiso(t = tL) = L2, page 49

T̃mc(k) T̃ in MPC-SR solvent under molecular chaos, see equation (5.25), page 68

T̃‖(k) Scalar function of T̃a(k) which is used for fitting κ
−1
⊥ , page 74

T̃⊥(k) Scalar function of T̃a(k) which is used for fitting κ
−1
‖ , page 74

Ts Isotropic screened hydrodynamic mobility tensor, page 61

T̃s(k) Scalar function of T̃s(k) which is used for fitting κ
−1, page 70

ttot Total simulated time of a simulation, page 42

û Unit vector representing the rod orientation

Ubend Bending potential in rods/vesicles, page 39

UG Gravitational potential, page 108

ULJ Shifted truncated Lennard-Jones potential, page 39

ûran Unit vector representing the orientation for the random rotation in the

MPC-SR and random MPC methods, page 28

Usp Spring potential for bonds, page 39

UWall Wall potential for vesicles, see equation (7.30), page 108

v Flow velocity

V Volume

vbox Thermal velocity of a virtual cluster particle, page 30

vc Characteristic velocity in a soft matter system, page 12

vcm Center of mass velocity

ve Elongational flow velocity in shear, see equation (7.5), page 98

vi Velocity of particle i

vr Rotational flow velocity in shear, see equation (7.6), page 98

vran
i Random velocity in the MPC-AT+a method, page 32

152



Bibliography

W‖(t) Mean square displacement for diffusion parallel to n̂, see equation (2.28),

page 23

W⊥(t) Mean square displacement for diffusion perpendicular to n̂, see equa-

tion (2.28), page 23

W (t) Mean square displacement, see equation (2.25), page 22
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friction constant, 23

Gaussian curvature, 96

gradient direction, 98

gyration tensor, 45

HI (hydrodynamic interactions), 8
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hydrodynamic enhancement, 46

hydrodynamic interactions, 8

hydrodynamic mobility tensor, 13, 59

hydrodynamic screening, 60, 69

hydrodynamic screening constant, 60
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hydrodynamics, 11
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Keller Skalak theory, 100

kinetic viscosity, 29
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mean curvature, 96
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membrane, 95

microtubuli, 16

mobility tensor, 13, 59

molecular chaos, 68

molecular dynamics, 25
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MPC-SR, 27

multi-particle collision dynamics (MPC),
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Navier-Stokes equation, 11

nematic director, 18
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no-slip wall boundary conditions, 32

Oseen tensor, 13

overlap volume fraction, 20

PEO, 51

periodic boundary conditions, 32

persistence length, 21

phantom rods, 80

phantom spheres, 86

poly-ethylene oxide, 51

pressure field, 11

pressure vector, 13

random MPC solvent, 30

random shift, 29

Reynolds number, 12

rotational flow, 98

Schmidt number, 28

screening constant, 60

screening length, 60

screening tensor, 62

self diffusion, 21

semiflexible rods/polymers, 20

shear direction, 98

shear flow, 97

shear viscosity, 11

shish-kebab model, 35

single rod diffusion, 42

Smoluchowski time scale, 21

SRD, 27

steric interactions, 37

stochastic rotation dynamics (SRD),

27

Stokes diffusion, 36

Stokes equation, 12

Stokes friction, 36

streaming step, 28

swinging, 99

tank-treading, 99

thermal energy, 29

tobacco mosaic virus, 16

tracer sphere, 83

tumbling, 99

velocity field, 11

velocity-gradient tensor, 97

velocity-rescaling thermostat, 29

virtual (cluster) particle, 30

virtual wall particles, 33

volume fraction, 19

vorticity direction, 98

Zimm theory, 30
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Für Hilfestellungen und Problemlösungen im Bereich der Computernutzung be-

danke ich mich bei Elmar Westphal und Joseph Heinen. Ferner möchte ich mich
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Kurzzusammenfassung

Wir untersuchen die Dynamik von Suspensionen stäbchenförmiger Kolloide und

von Vesikeln mit Hilfe von Computer-Simulationen. Dies sind zwei Beispiele

für die reichhaltige Dynamik in “Weiche-Materie”-Systemen, die sich dadurch

auszeichnet, dass sich aufgrund der langen Relaxationszeiten einerseits die Dy-

namik leicht experimentell untersuchen lässt und andererseits die Systeme in

einen Nichtgleichgewichtszustand gebracht werden können. Beiden Systemen

gemeinsam ist, dass sie als Modellsysteme für Transportphänomene in der Bi-

ologie der Zelle dienen, und dass wir besonders den Einfluss der Hydrody-

namik untersuchen. Letzteres realisieren wir dadurch, dass wir die Simulation-

smethode ”multi particle collision dynamics” (MPC) verwenden, mit der das

Lösungsmittel explizit mitsimuliert wird.

Wir berechnen die Diffusionskonstanten von stabförmigen Kolloiden in isotropen

und nematischen Stäbchensystemen. Die Stäbchendiffusion wird durch sterische

und hydrodynamische Wechselwirkungen zwischen Stäbchen stark beeinflusst.

Aufgrund der Anisotropie der nematischen Phase ist auch das Diffusionsverhal-

ten in der nematischen Phase anisotrop. Unsere Untersuchungen zeigen, dass

hydrodynamische Effekte für eine Erhöhung der Diffusionskonstanten sorgen.

Ferner zeigen die Simulationen, dass die Anisotropie der Diffusion in nematis-

chen Systemen vom Aspekt-Verhältnis der Stäbchen abhängt. Die Simulation-

sergebnisse werden mit Ergebnissen unserer experimentellen Kooperationspart-

ner (Gruppe J. K. G. Dhont, FZ-Jülich) verglichen, die Diffusionskonstanten von

fd Viren messen. Unsere Beobachtungen zur hydrodynamischen Verstärkung

und zur Anisotropie der Stäbchendiffusion sind in guter Übereinstimmung mit

den experimentellen Daten.

In die oben beschriebenen Kolloidsysteme werden kugelförmige Tracer-Kolloide

in geringer Konzentration zugegeben, deren Diffusionskonstanten bestimmt wer-

den. Auch hier ist das Diffusionsverhalten in der nematischen Phase aniso-

trop. Der Einfluss des Stäbchennetzwerks auf die Kugeldiffusion kann auf ster-

ische sowie hydrodynamische Effekte zurückgeführt werden. Die Ergebnisse
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sind in Übereinstimmung mit theoretischen Vorhersagen, in der insbesondere

hydrodynamische Effekte mitberücksichtigt werden. Eine wichtige Größe für

die Berechnung der theoretischen Diffusionskonstanten ist die hydrodynamische

Abschirmlänge, die experimentell schwer zugänglich ist, jedoch in Simulationen

direkt bestimmt werden kann.

Die hohe Konzentration der Stäbchen führt dazu, dass die sonst langreich-

weitigen hydrodynamischen Wechselwirkungen (Abhängigkeit ist proportional

zum reziproken Abstand) zwischen Kolloiden effektiv abgeschirmt werden, so

dass sie exponentiell abfallen. Wir haben eine Methode entwickelt, mit der

die Abschirmlängen aus den Gleichgewichtsfluktuationen der Scherwellen des

Lösungsmittels bestimmt werden können. Damit sind wir auch in der Lage,

anisotrope Abschirmung in nematischen Systemen zu berechnen. Wir können

zeigen, dass hydrodynamische Abschirmlängen von der Größenordnung typischer

Nachbarabstände von Stäbchen sind. Die ermittelten Abschirmlängen können

die in den Simulationen beobachteten Diffusionskonstanten von Tracer-Kugeln

quantitativ erklären.

Weitaus komplexer als Stäbchen-Suspensionen sind Vesikel, da sie zusätzlich

über eine interne Dynamik verfügen. In einem zweidimensionalen Modell-System

untersuchen wir Vesikel im Scherfluss. Diese zeigen eine Reihe interessanter dy-

namischer Phänomene. Abhängig vom Verhältnis der Viskositäten innerhalb

und außerhalb des Vesikels, können sie entweder taumeln, schwingen, oder sie

zeigen ”Tank-Treading”. Beim “Taumeln” rotiert die Orientierung des Vesikels

ständig, beim “Schwingen”, weißt das Vesikel zeitlich periodische Veränderungen

in Form und Orientierung auf, und im Bereich des ”Tank-Treading” bleiben

Form und Orientierung zeitlich konstant, jedoch bewegt sich die umgebende

Membran wie die Kette eines Raupenfahrzeuges um die eingeschlossene Flüssig-

keit. Zum ersten Mal konnte hier mit Computer Simulationen das “Schwingen”

bei Erhöhung des Viskositätskontrast gezeigt werden. Es ergibt sich eine gute

Übereinstimmung mit einer phenemenologischen theoretischen Beschreibung.

In der Nähe von Wänden wird das Taumeln unterdrückt. Hinzu kommt, dass

das Vesikel von der Wand abgestoßen wird. Die Ursache dafür ist die hydro-

dynamische ”Lift-Force”. Wir finden, dass die Lift-Force umgekehrt propor-

tional zum Quadrat des Wandabstandes abfällt, und dass sie mit zunehmendem

Viskositätskontrast schwächer wird. Die Lift-Force ist insbesondere für die Be-

wegung von Blutkörperchen im Blutstrom von Relevanz.
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