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1. Introduction   
1.1 Tubulogenesis and branching morphogenesis - a general overview 

Organogenesis is a complex process involving global changes in cell populations 

in terms of their proliferation, migration, differentiation and shape. Many vertebrate 

organs are tubular organs and consist of branched networks of interconnected tubes. The 

tubular organs in higher vertebrates include the lungs, vasculature, digestive and 

excretory systems, as well as secretory organs such as the pancreas, salivary, prostate, 

and mammary glands. Other tissues, including the embryonic heart and neural tube, have 

requisite stages of tubular organization early in development. The Drosophila tracheal 

system, equivalent to the vertebrate lung, has been extensively used as a model for 

investigating molecular and cellular bases of how cells are organized into tubular organs 

of various shapes and sizes. A particularly interesting aspect in Drosophila tracheal 

morphogenesis is the development of a subset of branches known as the terminal 

branches. The development of terminal branches is not pre-patterned, but is regulated by 

oxygen physiology, a phenomenon similar to angiogenesis in mammals. Events like the 

de novo tube formation in terminal branches and branch sprouting at positions distant 

from the nucleus, regulating the development of these dynamic branches have not been 

studied in great detail. 

1.2 Tracheal morphogenesis in Drosophila 
The Drosophila tracheal system is a complex network of branched and 

interconnected tubes that conducts oxygen from the exterior to the internal tissues. 

Tracheal branches are simple tubes: an epithelial monolayer wrapped into a tube 

surrounding a central lumen through which gases flow. It develops by sequential 

sprouting of primary, secondary and terminal branches from an epithelial sac of ~80 cells 

(known as tracheal placodes) in each body segment of the embryo and displays bilateral 

symmetry. Oxygen enters the network at the spiracular openings and passes through 

primary, secondary and terminal branches to reach the target tissues. Tracheal 

morphogenesis in Drosophila is biphasic. The first phase of development occurs in 

embryos. During this phase, cells of the tracheal placode migrate, reposition themselves, 
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intercalate and fuse to form a network of interconnected tubes. This phase completes 

towards the end of embryonic development and results in larvae hatching with a fully 

functional respiratory system. During the five days of larval development, the size and 

length of embryonic tracheal tubes increases along with the increasing body size of the 

larva. A very significant aspect of tracheal development during the larval period is 

growth and ramification of new terminal tracheal branches in response to oxygen 

demands of individual targets. In the second phase, during the pupal metamorphosis, the 

tracheal branches undergo remodeling to meet the requirements of adult flies (Fig.1).    

 
Figure 1. Tracheal morphogenesis from embryos to adult flies. A) The 10 tracheal placodes in a 6 hrs 
old embryo imaged laterally (white arrows mark four of these placodes). B) Fully developed tracheal 
branches in a stage 16 embryo. In A and B the tracheal cells are marked with Trachealess antibody. C and 
D are schematic representations of tracheal braches as seen in third instar larvae and adult flies 
respectively. C and D adapted from FlyMove. 
 

The general tracheal branching program involves the Fibroblast Growth Factor 

(FGF) pathway that is used repeatedly from the embryo to the adult (Metzger and 

Krasnow, 1999; Sato and Kornberg, 2002; Skaer, 1997). The FGF pathway uses 

branchless (bnl, which is the ligand) and breathless (btl, which is the receptor) to activate 

downstream target genes required for tracheal morphogenesis. Studies have elucidated 

diverse pathways and events regulating the development of tracheal tubes. Moreover a 

different tubulogenesis mechanism is used at each level of branching; branching is thus 
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not a strictly reiterative process. Fig. 2 highlights some of the major genetic aspects 

regulating tracheal development at different stages (adapted from Ghabrial et al., 2003). 

   
Figure 2. The FGF pathway controls each step of branching. (a) branchless FGF (blue) is expressed in 
clusters of cells surrounding the developing tracheal system, at each position where a primary branch will 
bud. The secreted growth factor activates the Breathless FGFR on nearby tracheal cells (black), and acts as 
a chemoattractant that guides outgrowth of primary branches. It also induces expression of secondary 
branch genes and triggers secondary branch sprouting at the ends of outgrowing primary branches (green; 
stages 12–16). branchless turns back on again, but in a completely different pattern, during larval life to 
control outgrowth of terminal branches. The gene is expressed yet again during pupal life where it controls 
budding of adult air sacs (not shown). (b) The genes that function upstream of Branchless and downstream 
of Breathless change during development, giving rise to different patterns and structures of branches at 
each step (figure adapted from Ghabrial et al., 2003). 

Based on the sequence of migration and tube formation, the tracheal branches are 

divided into three types; the primary, secondary and tertiary (or terminal) branches. In 

each embryonic hemisegment six primary tracheal branches bud and migrate out first, 

followed several hours later by the sprouting of about two-dozen secondary branches. 

Most secondary branches sprout terminal braches (tracheoles) throughout the larval life, 

forming hundreds of fine terminal branches in each hemisegment. The pattern of primary 

and secondary branch budding is highly stereotyped and controlled by a hardwired 
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developmental program, whereas terminal branch sprouting is variable and regulated by 

tissue oxygen need. Further, the process of lumen formation in each type of branch is 

distinct. Primary branches have multicellular tubes with two to four cells surrounding the 

central lumen connected by intercellular epithelial junctions. In the secondary branches 

lumen forms as a consequence of cell wrapping around its long axis until the edges of the 

cell meet and seal resulting in a tube with an autocellular junction. In comparison to the 

lumen in primary and secondary branches the terminal branches have a junctionless 

lumen. It is believed that the terminal branch lumen forms as result of vesicular fusion, in 

the cytoplasmic extensions of terminal tracheal cells, which subsequently is connected to 

the lumen of the secondary branch to form a continuous tube. 

 

1.3 Terminal branch development in Drosophila larvae 

Most of the studies on tracheal development in flies have concentrated on 

patterning and tube formation mechanisms in embryos, but the tracheal developmental 

events during the larval phase is relatively unexplored. Much of the terminal branch 

development, though they are specified in embryos, happens during the larval phase. 

Terminal branches arise as cytoplasmic extensions that grow along the surface of tracheal 

target tissues, much like axonal outgrowths. Subsequently an intracellular lumen forms 

within each extension, creating a fine junctionless tube continuous with the secondary 

branch from which it arises. This process of cytoplasmic extension and lumen formation 

repeats itself many times during the five days of larval life, generating individual 

terminal cells with complex branched structures and dozens of terminal branches. The 

branch points are regularly spaced and terminal branches do not cross over one another. 

Further, these branches attach tightly to internal tissues to facilitate gas exchange (Fig.3). 
The attachments are generally long lived, although under certain conditions, cellular 

projections from oxygen-starved cells can bind to and redistribute nearby terminal 

branches to satisfy their oxygen need (Ghabrial et al., 2003; Uv et al., 2003). Studies 

have shown that each terminal cell can sprout up to 20 branches (on an average) and have 
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an average lumen diameter of approximately 1μm or less (Guillemin et al., 1996; 

Lubarsky and Krasnow, 2003). 

 
Figure 3. Scanning Electron micrographs of terminal branches in third instar larvae. A) Terminal cell 
with terminal branches innervating the body wall muscle. The nucleus of the cell is marked with a red 
asterisk and the branches are marked with arrow. B) Cut end of a terminal branch, innervating the body 
wall muscle, showing the lumen (arrow). 

 

The complex pattern of terminal branching is regulated by the oxygen physiology 

of the target tissue. Oxygen-starved cells secrete a tracheogenic signal that can attract 

new terminal branches from as far as one segment away. The tracheogenic signal 

generated by oxygen-starved cells was identified as Branchless FGF. Drosophila 

cognates of hypoxia-inducible factors (HIF pathway components) including the HIFα 

(sima) and ß (tango) subunits have been identified (Nagao, et al., 1996; Adryan, et al., 

2000; Lavista-Llanos, et al., 2002) and they are activated by hypoxia as in the 

mammalian pathway. Further, genomic analysis of HIF-responsive targets in Drosophila 

larval tissues and cell culture RNAi experiments have identified branchless as one of the 

targets. The effects of Branchless on terminal branching are mediated by Breathless 

FGFR (Reichman-Fried & Shilo, 1995; Jarecki, et al., 1999). Studies have also revealed 

an important transcription factor blistered that acts downstream of the Bnl/Btl FGF 

pathway in specification and development of terminal branches. blistered encodes the 

Drosophila homologue of mammalian serum response factor (SRF, a MADS domain 
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transcription factor). Blistered/DSRF together with the ETS domain protein Elk-1 forms 

part of a transcription complex whose activity is regulated by RTK signaling and the 

Ras/MAPK cascade. blistered/DSRF is specifically expressed in tracheal terminal cells. 

In blistered/DSRF loss-of-function mutants, cytoplasmic outgrowth and terminal 

branching is severely reduced, whereas constitutively active forms of SRF and Elk-1 

cause excessive branch outgrowth (Affolter et al., 1994; Guillemin, et al., 1996, 

Montagne, et al., 1996; Treisman, R., 1994). Recent studies have implicated rhea (gene 

encoding Drosophila Talin), myospheroid, (βmys, the major Drosophila β-integrin) and 

IKKε, a member of the IKK protein kinases having a significant role in development and 

maintenance of the lumen in terminal branches. rhea, βmys and IKKε were shown to be 

essential for proper lumen development, probably by regulating the organization of the 

actin cytoskeleton in the terminal branches (Oshima, et al., 2006; Levi, et al., 2006). 

Excluding the above mentioned few details, the genetic regulation, cell biological, 

physiological and morphological changes regulating terminal branch development during 

the larval phase is largely unresolved.  

 

1.4 Unique aspects of terminal branch development 
 

Two aspects of terminal branching are of special interest and distinguish it from 

the earlier stages of branching. One is that terminal branches have a distinct cellular 

structure: they are extremely fine (<1µm diameter), lack junctional structures along the 

length of the branch and are formed by individual cells that undergo a remarkable process 

of cellular morphogenesis. Equivalent terminal cells in different larvae can form different 

numbers of branches and display different patterns of branching (Fig.4). The other 

distinguishing feature is that terminal branching is not stereotyped nor under fixed 

developmental control. Terminal branching is highly variable and is regulated by oxygen 

physiology; although variable, the pattern is not unorganized. Sprouting and outgrowth of 

terminal branches is carefully regulated to meet the oxygen needs of target tissues, much 

like angiogenesis in mammals. Low oxygen (hypoxia) stimulates terminal branch 
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formation and high oxygen (hyperoxia) suppresses it (Wigglesworth, 1954; Locke, 1958; 

Jarecki et al., 1999). 

These two unique aspects of the terminal branches i.e., the cellular morphology 

and their development in response to oxygen physiology of target tissues distinguish 

them from other tracheal branches, conferring a high degree of developmental plasticity. 

The terminal cells have to develop branches, efficiently and quickly, to meet the oxygen 

demands and a delay in this response would be critical for the target tissues. In response 

to hypoxic signals terminal branches are formed at distances as far as 100µm or more 

from the nucleus. These special attributes of terminal branch development raise a few 

important questions, for example, how does the terminal cell, efficiently and quickly, 

sprout branches away from the nucleus? How does the terminal cell make available the 

proteins required at the sites of outgrowth as and when required? Does localized 

translation contribute to supply of proteins required at the site of out growth? If so, do 

specific mRNAs localize in the terminal branches and are translated onsite when 

required?  

 
Figure 4. Two equivalent terminal branches from two different larvae. A and B demonstrate that 
equivalent terminal branches can have completely different morphology. White arrows mark the branches 
and the position of nucleus is marked with red star.  
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1.5 Localized translation as a means for targeting proteins and 

maintaining developmental plasticity 
 

The extreme polarity and developmental plasticity exhibited by many cells, for 

example tracheal terminal cells or neurons, imposes a number of unique constraints with 

respect to development, growth and survival. The axon, for example, must navigate 

through a complex environment during its development and must form and maintain 

specific synaptic connections at its targets, often at a significant distance from the cell 

body. This raises a very important question: what is the source of axonal proteins 

required for its local morphological differentiation at sites far away from the cell body? 

Does the cell transport proteins from the cell body to axonal growth cones or is there an 

alternate method of providing proteins to developing regions? Studies in the past decade 

have revealed that localized translation of mRNAs transported to specific subcellular 

locations is an alternative way of targeting proteins to micro-domains within a cell (Fig. 

5). Substantiating this possibility, a number of mRNAs have been reported in axons, 

growth cones and in dendrites of mammalian neurons, a few examples are βactin, BC1, 

FMR1, αCaMKII and GluR1 (Gottlieb, 1990; Job and Eberwine, 2001; Martin, 2004). 

There is a growing body of evidence that such localized protein synthesis provides a 

means for developmental plasticity. Localized protein synthesis provides a polarized cell 

with the capacity to regulate its structure and function, by spatially restricting gene 

expression within cells. The mechanism underlying both the localization of these RNAs 

and the regulation of their translation are beginning to be delineated in a variety of 

systems. 
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Figure 5. mRNA localization and subsequent translation in dendritic spines. Image adapted from 
Bramham and Wells,  2007. 
 
1.6 RNA localization in development 

Eukaryotic cells regulate gene expression at multiple levels including 

transcriptional, post-transcriptional and translational levels. Studies in the past few years 

have elucidated an essential step in gene regulation involving RNA localization and the 

translational activation of the localized RNA. This allows cells to spatially control protein 

function by determining their sites of synthesis. The localization of RNAs occurs in a 

wide range of organisms, including fungi (e.g.  Ustilago maydis), plants (Arabidopsis), 

and various animal species (e.g. ascidians, echinoderms, Drosophila, zebrafish, Xenopus, 

and mammals). Further, studies suggest that RNA localization occurs in many cell types 

and regulates distinct functions ranging from the control of body axis formation to 

learning and memory. The targeting of RNAs to specific microdomains within a cell 

begins with the nascent mRNA being co-transcriptionally packed with trans-acting 

proteins into messenger ribonucleoprotein particles (mRNPs). Subsequently they are 

exported from the nucleus through nuclear pores. In the cytoplasm the mRNP is then 

delivered to its target cytoplasmic destination (St Johnston, 2005; Jansen and Kiebler, 
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2005). At the target site, the mRNP is anchored and upon receiving the appropriate 

signal, the complex is remodeled to relieve translational repression and the mRNA is 

locally translated (Czaplinski and Singer, 2006).  

1.7 Mechanisms of RNA localization 
mRNAs can be localized by a variety of mechanisms such as diffusion and 

localized anchoring, local protection from degradation or active transport by motor 

proteins along the cytoskeleton. 

1.7.1 Localized degradation 

In Drosophila, several RNAs localize to the precursors of the germ cells (pole 

cells) in the embryo, for example hsp83 mRNA. In the fertilized egg, hsp83 mRNA is 

uniformly distributed but as the nuclear divisions advance, hsp83 mRNA is degraded 

except in the pole plasm where the RNA is protected (Ding et al., 1993). Not much is 

known about the machinery required for stabilizing hsp83 RNA in the pole plasm, 

although in some mutants (e.g. smaug) degradation of hsp83 RNA is not triggered and 

consequently localization does not occur. 

1.7.2 Diffusion and localized entrapment 

Diffusion and entrapment allows for the localization of Xcat2 and Xdazl mRNAs 

to the vegetal pole during early stages of oogenesis in Xenopus (King et al., 2005). At 

stage one of oogenesis, the RNAs localize to a structure called the mitochondrial cloud 

(MC), which lies next to the nucleus. This RNA localization seems not to involve active 

transport, since microtubule depolymerization has no effect on mRNA localization. 

Further, studies have shown that Xcat2 and Xdazl transcripts localize to the MC through 

diffusion and association with the ER within the cloud and do not involve active transport 

(Chang et al., 2004). Localization of mRNA through a similar mechanism has been 

reported for nanos mRNA (Xcat2 and Xdazl related Drosophila gene) localization at the 

posterior pole in the developing oocyte (Santos and Lehmann, 2004; Forrest and Gavis, 

2003).  
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1.7.3 Active transport along the cytoskeleton 

Active transport is the most commonly used mechanism for RNA localization. 

Molecular motors which move directionally along the cytoskeleton and are widely used 

to traffic organelles and other cargoes, are used by RNAs to reach their destination within 

the cytoplasm. Localized transcripts are selected from the general population of RNAs 

because of the presence of specific localization sequences in them (Fusco et al., 2003). 

These specific signal sequences (cis-acting elements) in localizing RNA are recognized 

by trans-acting factors that recruit motor proteins that move along the cytoskeleton 

towards the final destination. A few examples for actively transported RNAs are Ash1 

mRNA in yeast, wingless, bicoid, oskar in Drosophila and Vg1 mRNA in Xenopus 

(Wilkie and Davis, 2001; St Johnston, 2005; Deshler et al., 1997; Czaplinski, K and 

Mattaj, 2006).  

 

1.8 Role of Untranslated Regions (UTRs) of mRNA in gene regulation 
 

The untranslated regions (UTRs) of mRNAs play crucial roles in the post-

transcriptional regulation of gene expression, including modulation of the transport of 

mRNAs out of the nucleus and in translation efficiency, subcellular localization and 

stability. Motifs contained within the UTRs of many mRNAs serve as information for the 

specific placement of that transcript within the cytoplasm and for the timing of its 

translation. Such localization signals contain discrete stem loops structures that associate 

with a particular combination of RNA binding trans-acting factors, determining the 

composition of the RNP complexes and site of localization of the transcripts. This can be 

achieved by recruiting specific molecular motors, influencing the activity of motors, 

dictating a mode of anchoring as well as promoting or preventing degradation (Fig. 6). 

Generally, such cis-acting localization signals are placed in the 3’UTRs of localizing 

transcripts, although in a few exceptions, signals are also found in the 5’UTR or in the 

exons (Gottlieb, 1990 and 1992; Mignone et al., 2002; Wickens et al., 1997; Hamilton, 

and Davis, 2007).  
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Figure 6. A schematic describing the functional relevance of untranslated regions of mRNA in post-
transcriptional gene regulation. Schematic adapted from Mignone et al., 2002  

  
1.9 Techniques for visualizing mRNA 

Two approaches are widely used to detect localized RNA. The earliest and most 

used method is in situ hybridization, predominantly with labeled RNA probes. One 

glaring limitation of in situ hybridization as an experimental approach is that the material 

is fixed and hence dynamic processes cannot be followed directly. Secondly, the signal-

to-noise ratio can be high, affecting the sensitivity of the assays. These limitations could 

be alleviated by the injection of fluorescently labeled RNA. The RNA can be tagged 

using fluorescent nucleotides during in vitro transcription. Live cell imaging has provided 

the ability to track the movements of such fluorescently tagged RNA. As endogenous 

RNA cannot be visualized using this method, the labeled non-functional RNA serves as a 

surrogate marker for the bona fide localization pathway. While this approach provides a 

good approximation for the various steps in the localization pathway, it may well miss 

out on certain fronts. The first is that the RNA destined for localization may actually be 

recognized by the cellular machinery in the nucleus, where the RNA is first synthesized 
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and the injected RNA bypasses this process of biogenesis. The pre-mRNA or mature 

transcripts may bind to a protein required, for instance, for translational repression or 

assembly with a motor. Naked RNAs microinjected into the cell form complexes with 

proteins, but these may not be identical to those forming under endogenous conditions. 

Second, RNAs may be structurally modified when they are tagged with a fluorochrome. 

Specific proteins that identify ‘zipcodes’ in the RNA may not bind properly to such 

modified RNAs, possibly allowing binding by non-specific proteins. A third problem is 

that microinjection of RNA may not recapitulate either the timing or the level of its 

endogenous expression (Bratu, 2003; Singer, 2003). 

1.9.1 MS2-GFP labeling system  
 

To investigate the dynamics of mRNA movement a new technique, the MS2-GFP 

labeling system, was developed a few years ago, which allows tracking specific mRNAs 

in real time in live cells. The MS2-GFP labeling system utilizes the high affinity 

interaction between sequence-specific RNA stem-loops (MS2 protein binding sites) and 

the bacteriophage capsid protein MS2. Incorporation of multiple repeats of the MS2 

stem-loops into an RNA sequence of interest creates an interaction platform capable of 

binding to multiple MS2 proteins. When coupled to GFP (MS2-GFP fusion protein), 

MS2 protein that binds to the MS2 stem loops carrying RNA tags the RNA with GFP, 

thus enabling visualization of the RNA in vivo. The simultaneous expression of a MS2 

stem-loop containing mRNA and the MS2-GFP in cells provides a powerful method for 

detecting specific mRNP complexes (Fig. 7, modified from Bertrand et al., 1998). A 

solution to the signal to noise problem, while tracking specific mRNAs within the 

cytoplasm, is provided by a Nuclear Localization Signal contained within the MS2-GFP 

protein. The Nuclear Localization Signal sequesters MS2-GFP within the nucleus when 

not bound to an MS2-containing RNA target. The high affinity interaction between the 

stem-loop sites and the MS2 protein ensures that most reporter mRNAs are bound by a 

number of MS2-GFP fusion proteins and that the majority of GFP signal emanates from 

bona fide target transcripts. Importantly, the mRNAs generated from this reporter are 
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transcribed in the nucleus and are properly packaged, exported, targeted, and translated, 

making MS2-GFP a good system to track mRNAs from their sites of synthesis to 

translation. 

 

 
Figure 7. Schematic describing the MS2-GFP labeling system. A) MS2-GFP labeling is a two 
component system. The gene of interest is tagged with MS2 protein binding site stem loop sequence. The 
second component is the MS2 protein fused to GFP. B) When both the components are expressed in a cell, 
the MS2-GFP fusion protein binds to the stem loop (MS2 binding sites) and consequently the GFP tagged 
mRNA can be visualized and tracked in the cell. Image modified from Bertrand et al., 1998. 

 
 

The MS2-GFP labeling technique was initially used in yeast (Bertrand et al., 

1998) and in cultured mammalian cells and later adapted in Drosophila for tracking RNA 

localization in tissues. To visualize localization of nanos mRNA in vivo in the 

Drosophila oocyte, Forrest and Gavis used the MS2-GFP labeling system (Forrest and 

Gavis, 2003). In this study the RNA of interest, nanos, was synthesized from a transgene 

into which binding sites for the fusion protein had been inserted. The MS2-GFP fusion 

protein, the second component of the reporter system, was provided from another 

transgenic fly. The modified and MS2-GFP tagged nanos RNA behaved similar to 

normal endogenous RNA, at least in the localization studies. The authors, using the MS2-

GFP labeling system, show features of nanos mRNA localization previously unseen. 

 



  18 
 
   
  Introduction 
 
1.10 A genetic screen for localized RNAs in Drosophila tracheal cells 
 

The high degree of developmental plasticity exhibited by terminal branches raise 

the interesting question whether their development is regulated by localized translation at 

the site of branch growth. If so, a prerequisite is localization of specific RNAs to sites of 

branch outgrowth. To study if RNAs localize asymmetrically in terminal tracheal cells 

we decided to perform a genetic screen. In this screen the localizing RNAs will be 

visualized by making use of the MS2-GFP labeling system, which provides an efficient 

means for visualizing RNAs in vivo. To visualize transcripts of randomly tagged genes in 

the Drosophila genome, we decided to combine the MS2-GFP labeling system with the 

modular miss-expression system, the EP technique. The existing EP transposon element 

will be modified by introducing MS2 binding sites downstream of the promoter that 

initiates expression of the neighboring gene. The transgenic lines generated from the 

modified EP insertion would then be screened using a tracheal specific Gal4 Driver 

(breathless-Gal4) in conjunction with a second transgene encoding the NLS-MS2-GFP. 

This screen would essentially combine the advantages of a conventional EP screen, 

including analysis of over expression phenotypes, cloning of the gene by plasmid rescue 

and mutagenesis by P element excision, with visualization of mRNA localization. 

1.11 Aim of the project 
 

The aim of my thesis project is to develop a genetic technique that can be used for 

screening RNAs exhibiting specific subcellular localization in Drosophila. Using this 

technique, I sought to identify asymmetrically localizing RNAs in terminal tracheal cells 

and to study the functional relevance of RNA localization in the regulation of terminal 

branch development.  



  19 
 
 
  Materials and Methods 
 
2. Materials and Methods 
2.1 Materials 

2.1.1 Drosophila melanogaster stocks 

Wild type flies used were Oregon R.  

2.1.2 UAS Transgenes 

From Bloomington stock centre 

w[1118]; P{w[+mC]=UAS-Btsz2-Poly}2;+/+ 

w[1118]; P{w[+mC]=UAS-Moe.IR.327-775}3 

w[1118]; P{w[+mC]=UAS-Moe.TD.MYC}2 

w[1118]; P{w[+mC]=UAS-Moe-GFP.K}2  

w[1118]; P{w[+mC]=UAS-GFP.KDEL}11.1/Cyo 

w[1118]; P{w[+mC]=UAS-GFP.KDEL}15.2/TM6B, Tb[1] 

From other sources 

w[1118]; ;P{w[+mC]=UAS-RpS2L315-TAP} (From Stefan Luschnig) 

w[1118]; P{w[+mC]=UAS-PABPL423-TAP}; +/+ (From Stefan Luschnig) 

w[1118]; P{w[+mC]=UAS-Fng.DXDM917-MYC}; +/+ (From Mathew Freeman) 

w[1118]; P{w[+mC]=UAS-Btsz2-∆C2-HA}2;+/+ (From Thomas Lecuit) 

w[1118]; P{w[+mC]=UAS-NLS-MS2-eGFP67};+/+ (Generated for this work) 

2.1.3 Gal4 drive lines 

w[1118]; P{w[+mC]=btl-Gal4}; +/+ 

w[1118]; +/+; P{w[+mC]=btl-Gal4}  

w[1118]; If/Cyo; P{w[+mC]=btl-Gal4} 

w[1118]; If/Cyo; P{w[+mC]=btl-Gal4, UAS-GFP} 

w[1118]; If/Cyo; P{w[+mC]=btl-Gal4, UAS-DsRed} 

w[1118]; P{w[+mC]=btl-Gal4, UAS-MS2-e GFP67}; +/+ 

w[1118]; +/+; P{w[+mC] vp16:nanos-Gal4, UAS-MS2-GFP}/TM3 Ubx-LacZ 

w[1118]; P{w[+mC]= krupple-Gal4}/CyO; +/+ 
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2.1.4 EP-MS2 Transgenes 

w[1118], P{w[+mC]=EP-MS2 (6X binding sites)};;   (Generated for this work) 

w[1118] ;P{w[+mC]=EP-MS2 (12X binding sites)}   (Generated for this work) 

w[1118], P{w[+mC]=EP-MS2 (24X binding sites)};; (Generated for this work) 

2.1.5 Mutants 

w;;btszK13-4/TM3Sb KrGal4-UAS-GFP 

w;;FRT82B btszJ5-2/ TM3Sb KrGal4-UAS-GFP 

2.1.6 Antibodies used 

Following primary antibodies were used; rat anti-HA (1:100, Boehringer Mannheim), 

rabbit anti-Dof (1:20, Vincent et al., 1998), rabbit anti-P Moe (1:50, Cell Signaling), 

rabbit anti-Pac (1:500, Gift from S. F. Newbury), rabbit anti-DCP-1 (1:10, Ming-Der Lin, 

2006), rabbit anti-DCP-2 (1:200, Ming-Der Lin, 2006), rabbit anti-Baz (1:200, Kuchinke 

U. et al., 1998), rabbit anti-Par6 (1:100, Petronczki, M. & Knoblich, J. A., 2001), rabbit 

anti-aPKC (1:200, Santa Cruz), rabbit anti-PolyG (1:50, Cell Signaling) and rabbit anti-

GFP (1:500, Torrey Pines Biolabs Inc). Flourochrome conjugated secondary antibodies; 

Alexa468 and Alexa568 and Alexa647 (Molecular Probes) were used at a dilution of 

1:500.  

2.1.7 Primers  

GCAGCGGCCGCAGTGAGCAAGGGCGAGGAGC  eGFP 5 prime 

CGTCTAGATTACTTGTACAGCTCGTCCATGCC    eGFP 3 prime 

2.1.8 Sequencing primers for pUAST vector 

GAAGAGAACTCTGAATAGGGAATTGG                 pUAST 5 prime 

GGTAGTTTGTCCAATTATGTCAC                            pUAST 3 prime 

2.1.9 Inverse PCR primers 

GTAACGCTAATCACTCCGAACAGGTCACA          Pwht1 
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CACCCAAGGCTCTGCTCCCACAAT                        Plac1 

CCTTAGCATGTCCGTGGGGTTTGAAT                   Pry1 

CTTGCCGACGGGACCACCTTATGTTATT              Pry2 

CAATCATATCGCTGTCTCACTCA                            Pry4 

ACACAACCTTTCCTCTCAACAA                              Sp1 

GACACTCAGAATACTATTC        Spep1 

2.1.10 Plasmids used for generating transgenes 

pUAST (Brand A. and Perrimon N., 1993), EP vector (Rorth P., 1996), 

2.1.11 Microscopes used  

Leica TCS SP2, Zeiss Axioplan 2-imaging, Zeiss Apotome and Leica M2 16FA were 

used for microscopy. Quantix (Photometrix) and Axiocam HRm (Zeiss) cameras were 

used for imaging.   

2.1.12 Imaging and data analysis software  

Images acquiring software Leica Confocal Software LCS, Axiovision Rel 4.6 (Zeiss) and 

Axiovision 1 (Zeiss) were used.  Images were edited using Adobe Photoshop (Adobe 

Systems) and ImageJ software. DNA sequence alignments, analysis and oligonucleotide 

designing were done using the VectorNTI.  

2.1.13 Reagents 

TritonX 100, Tween20 and BSA were purchased from Sigma. Vectashield mounting 

media for fluorescent samples were from Vector Laboratories. Restriction enzymes used 

were from New England Biolabs. Expand High Fidelity PCR system was supplied by 

Roche Diagnostics GmbH. Agarose electrophoresis grade was from Gibco BRL. Unless 

otherwise mentioned, all the other chemicals were purchased from Merck, Sigma or 

Roth.  
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2.2 Methods 

2.2.1 Fly maintenance and embryo collection  

The flies were maintained under standard conditions (Ashburner, 1989; Wieschaus and 

Nuesslein-Volhard, 1986)  

To fix the embryos, properly staged embryos were collected on an apple juice – agar 

plate, dechorionated using 50% bleach and washed in tap water. Embryos were fixed in 

4% Formaldehyde in PBS:heptane (1:1) solution at room temperature for 20 minutes, 

with vigorous shaking followed by devitellinization with methanol:heptane (1:1) solution 

by vortexing for half a minute. Embryos were washed several times in methanol and 

stored in methanol at -200C if not used immediately.  

2.2.2 Antibody staining 

The fixed embryos were rehydrated in PBST, followed by one hour blocking at room 

temperature using 1% BSA in PBST. The liquid phase was taken off and the primary 

antibody was added. The reaction was left at 40C overnight. Embryos were washed with 

PBST several times, at room temperature followed by incubation in secondary antibody 

(biotin labeled or Alexa flurochrome conjugates) at room temperature for 90 minutes. 

The secondary antibody was washed away by PBST. After incubation in Alexa secondary 

antibodies the embryos were washed thoroughly in PBST. The embryos were mounted in 

Vectashield (Vector Laboratories) and taken for microscopy.   

2.2.3 Larval immuno-stainings 

3rd instar larvae were filleted and fixed with 4% paraformaldehyde for 20 minute. Post 

fixation fillets were washed with 0.1% PTX (1XPBS+ 0.1 % TritonX 100) three times for 

10 min each followed by 1 hour incubation in blocking reagent (1XPBS+ 0.1 % TritonX 

100 + 1% BSA). After blocking the fillets were incubated overnight in antibody solution 

at 4oC. Fillets were washed 4 times (15 minutes each) in 0.1% PTX after overnight 

incubation. Fillets were incubated in Alexa flourochrome conjugated secondary 
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antibodies for 2 hours at room temperature. Next, the fillets were washed for two hours at 

room temperature, mounted in Vectashield (and taken for microscopy.  

2.2.4 Molecular biology  

Standard molecular biology techniques were used for cloning (Sambrook et al., 1989). 
   

2.2.5 EP-MS2 construct 

The EP-MS2 constructs were generated by modifying the EP vector (Rorth, 1996). Three 

EP-MS2 constructs were cloned (EP-MS2 6X, EP-MS2 12X and EP-MS2 24X). MS2-BS 

(6 BS and 24 BS) fragments were digested from pSL-MS2 plasmid (Singer, 1999) using 

BamH1 and Nsi1 enzymes. The protruding BamH1 and Nsi1 overhangs were blunted 

using T4 DNA polymerase. The EP vector was digested with Pst1 enzyme and was 

blunted using T4 DNA polymerase and the MS2 BS fragment was blunt-end ligated into 

the Pst1 site in the EP Vector. The EP-MS2 constructs were transformed into DH5 α 

cells and subsequently the colonies were screened for positive clones. The positive EP-

MS2 clones were digested with Not1 enzyme and the Kanamycin resistance gene was 

cloned into the Not1 (the EP vector has an Ampiciline resistance gene). The addition of 

Kan Res gene is the plasmid rescue feature of the vector. The construct was transformed 

and colonies that were both Kan and Amp positive were selected. The positive clones 

were confirmed by restriction digestion using Not1 and Bgl2 enzymes prior to injection 

to generate transgenes. 

2.2.6 NLS-MS2-eGFP constructs 

The NLS-MS2 coding sequence was digested, using BamH1 and Not1 enzymes, from 

NLS-MS2-GFP construct (NLS-MS2-GFP cloned in pUASp, Filardo, P., unpublished 

construct). The eGFP coding sequence was PCR amplified from pBI eGFP plasmid using 

the following primers; 5’ GCAGCGGCCGCAGTGAGCAAGGGCGAGGAGC 3’ (with 

Not1 overhang and does not include the initiation codon ATG) and 3’ 

CGTCTAGATTACTTGTACAGCTCGTCCATGCC 5’ (with Xba1 overhang). The 

pUAST vector was digested with Bgl2 and Xba1 enzymes and the NLS-MS2 fragment 
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along with the PCR amplified eGFP fragment was ligated into Bgl2/Xba1 site in the 

pUAST vector. The cloned constructs were transformed into DH5 α  and colonies were 

screened for positive clones. The positive clones were confirmed by sequencing and the 

transgenic constructs were injected.        

2.2.7 Inverse PCR protocol 

Inverse PCR protocol from BDGP (http://www.fruitfly.org/about/methods/inverse.pcr.) 

was used for molecular mapping of EP-MS2 insertions. From each line genomic DNA 

was isolated from adult flies and they were digested with either HnP1 or MsP1 were 

used. The digested DNA was allowed to self ligate to circular plasmid. Self ligated 

plasmids would have fragments from the either the 5prime or 3prime of EP-MS2 element 

together with the flanking genomic sequences. The self ligated plasmid were then used as 

the template for a PCR reaction with specifically designed primers (Pry1, Pry2, Pry4, 

PLac1 and Pwht1) that would amplify the region including the inverted repeat of the 

transposon insertion along with the immediate flanking genomic region. The amplified 

PCR product was then sequenced with specific sequencing primers (Sp1 and Spep1) and 

the sequences were subjected to Blastn analysis to locate them in the genome. 

2.2.8 Electron microscopic studies 

 
Transmission electron microscopy 

Third in star larvae were dissected in PBS, and immediately fixed for 20 minutes at room 

temperature in 4% paraformaldehyde/PBS. Fillets were postfixed for 1 hour in 0.5% 

glutaraldehyde followed by 1 hour in 1% osmium tetraoxide and stained overnight in 

0.5% uranyl acetate at room temperature. Samples were kept in 2% osmium tetraoxide, 

0.5% uranyl acetate (prepared from a 20% stock solution in methanol) and 0.5% 

glutaraldehyde.  After washing with acetone the samples were transferred into an 

acetone-Epon mixture (1:1 for 4 h, 1:2 for 12 h), at room temperature followed by 

incubation in  Epon (3 changes 10 min each) and polymerised at 60 C for 48 h. Fillets 

were sectioned using microtome and the sections (100nm) were stained with 2% uranyl 
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acetate in 70% methanol for 10 min and in 0.4% lead citrate in 0.1 N NaOH for 2 min 

were viewed in a Philips CM10 electron microscope at 60 kV.  

Scanning electron microscopy 

For scanning electron microscopy fillets were fixed for 20 minutes in 4% 

paraformaldehyde followed by 1 hour fixation in 0.5% glutaraldehyde at 4OC. The fillets 

were incubated in osmium treated (1% osmium tetraoxide in 100 mM phosphate buffer, 

pH 7.2), dehydrated through an ethanol series, subjected to critical point drying from 

CO2 and sputter coated with 10 nm Au-Pd. Samples were examined at 20 kV 

accelerating voltage in a Hitachi S800 field emission scanning electron microscope. 
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3. Results 
3.1. Terminal branch development in larvae 

Most of the studies carried out in tracheal development in flies have 

concentrated on patterning and tube formation mechanisms in embryos. The tracheal 

developmental events during the larval phase, when most of the terminal branching 

occurs, are almost entirely unexplored. I started by analyzing the morphological 

characteristics of terminal branches in third instar larvae. 

3.1.1 Categorization of terminal branches based on lumen diameter 

Terminal branches undergo extensive ramification during larval development, 

resulting in widespread coverage of target tissues with oxygen supplying blind-ended 

tubes. Studies in Rhodnius prolixus have illustrated that the terminal branch lumen 

has a diameter of 0.7 to 1μm or less at its origin and tapers over its length to a blunt 

end of 0.1 to 0.3μm (Wigglesworth, 1954). Lumen diameters of Drosophila terminal 

branches were also described to be similar (Wigglesworth and Lee, 1982). While this 

description holds good, a closer look at the terminal branches reveals that lumen 

diameter varies not only along its length (from proximal to distal positions from the 

nucleus) but also in different branches.  

The terminal tracheal cells exhibit different terminal branching patterns; 

nevertheless one does see a general pattern of terminal branching vaguely resembling 

the pattern of veins in a feather. In general, terminal cells have branches, usually one 

or two, growing to a length of approximately 200μm and have an average lumen 

diameter of approximately 1μm or less. Along the length of these branches, new 

branches that have thinner lumen diameter develop. In addition to these extensions, 

one can also observe fine filopodial extensions devoid of lumen, arising from random 

positions along the branches (Fig. 8). In order to evaluate the differences in lumen 

diameter in different branches and along the proximal-distal axis, I have categorized 

branches into Type-A and Type-B. Type-A category consists of branches with the 

widest lumen diameter and Type-B branches have a thinner lumen diameter. Figure 9 

is a schematic explaining this categorization of terminal branches based on lumen 

diameter. 
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Figure 8. Terminal branches from a third instar larva. The Red asterisk marks the nucleus of the 
terminal cell. White arrows mark different types of branches. The continuous arrow shows a branch 
with bigger lumen diameter than the ones marked with dotted arrows. The arrowheads mark filopodial 
extensions.  
 

 
Figure 9. Schematic representation of terminal branches categorized based on lumen diameter. 
The circle with ‘N’ represents the nucleus. The thick blue line represents the Type-A branch with 
widest lumen (axial stem). The green line represents bifurcated Type-B branches, with thinner lumen 
diameter.  
 

To evaluate the lumen diameters of Type-A and Type-B branches, 

measurements were taken from six different terminal cells. Two data sets were made 

with lumen diameters measured at random positions along the Type-A and Type-B 

branches. From each terminal tracheal cell at least four measurement points on the 

Type-A branches along the Proximal-Distal axis and six measurement points from 

three different Type-B branches were taken (Fig. 10). A total of 33 measurements for 
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Type-A branches and 37 measurements for Type-B branches were gathered and 

sorted as data set-1 and data set-2 (data sets in appendix) respectively. 

 

 

Figure 10. Schematic depicting the positions along the Type-A and Type-B branches from a single 
terminal cell, where measurements were taken for statistical analysis. A) Measurement points along the 
Type-A branch. B) Measurement points on the Type-B branches. 

 
The data sets were subjected to statistical analysis and the median values and 

standard deviation, for the measurements of each of the data set were calculated. Data 

set-1 and data set-2 had the median values of 1.17μm and 0.74μm respectively 

(Appendix). The standard deviation for measurements within each data set was 0.17 

for data set-1 and 0.07 for data set-2; both values were within the permissible range. 

The standard deviations suggest that although the lumen diameter varies within each 

type of branch, the variation is not very high. Further, the difference in lumen 

diameter between Type-A and Type-B branches was about 37%; in other words the 

Type-B branches had lumen diameter 37% thinner than the Type-A (Fig. 11).  



  29 
 
 
  Results 
 

 
Figure 11. Difference in lumen diameter of terminal branches. The graph illustrates the difference 
in lumen diameter between Type-A and Type-B branches. There is significant difference in lumen 
diameter between the two types of branches. The diameter of Type-B branches is 37% thinner than 
Type-A. 

 

3.1.2 Lumen diameter decreases along the Proximal-Distal Axis from the nucleus 

Analyses were also done to study if the lumen diameter is constant along the 

proximal-distal axis of Type-A branches. For this experiment, six groups of 

measurements taken along the proximal-distal axis of Type-A branches from six 

different cells, were used (data set-3 Appendix). Data set-3 was analyzed to study 

whether the variation in lumen diameter within the Type-A branches occurred 

randomly or exhibited a pattern along the proximal-distal axis. In the first set of 

analyses measurements (P1….Pn) from each of the six groups were plotted in a graph 

(Fig. 12A). The data showed that the lumen diameter decreases from the proximal to 

the distal end.  Further, the data also shows that though the diameter decreases from 

the proximal end to distal end it does not always occur in a progressive manner. The 

percentage fall (percentage decrease) in lumen diameter between the proximal end 

and the distal end was also determined (Fig. 12B). The percentage fall was 

determined by comparing the difference in lumen diameter in percentages, between 

the most proximal and distal measurements (P1 and Pn) from each group. The results 
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clearly showed that the lumen diameter is not constant along the length and decreases 

progressively in Type-A branches, with the difference being 38%.   

 

 
Figure 12. Lumen diameter decreases along the proximal-distal axis of Type-A branches.  A, Plot 
diagram representing the lumen diameter along the proximal-distal axis of 6 different branches. B, The 
bar diagram shows the difference (in percentage) in lumen diameter between the most proximal and 
most distal end from the six groups of data. B1-B6 represents 6 Type-A branches. The average 
percentage fall in lumen diameter between the two ends in Type-A branches is about 38%. 
 

3.1.3 Cell diameter varies along the proximal-distal axis from the nucleus 

Experiments done to analyze the lumen diameter in terminal branches had 

revealed that the diameter varies between Type-A and Type-B branches and also 

along the proximal-distal axis in Type-A branches.  To study whether there is any 

correlation between the cell diameter and the lumen diameter in terminal branches, I 

have analyzed the cell diameters in the terminal branches. For this analysis, 

measurements of lumen diameter and the cell diameter (from the same positions) 

along the proximal-distal axis of Type-A branches from six different terminal cells 

were used (data set-4 appendix). Altogether, 33 measurements of lumen diameter and 

corresponding cell diameter from six branches were included in data-set 4. The 

median value of the lumen diameters measured was 1.17μm and the standard 

deviation between the individual measurements was within the permissible range (SD: 

0.213). The cell diameter measurements, 33 measurements corresponding to 33 lumen 

diameters, had a median value of 3.71μm, but in this case the standard deviation was 

significant with a value of 1.11. The data suggests that there is a considerable degree 

of variation in the cell diameter when compared with the lumen diameter in Type-A 

branches (Fig. 13A). Further, when the cell diameter measurements are plotted in a 
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graph it was clear that there is no apparent pattern in the cell diameter variation and it 

is random along the proximal-distal axis of the branches (Fig. 13B). 

 
Figure 13. Comparison of lumen diameter versus cell diameter of terminal branches. A, Median 
values of lumen and cell diameters measured at the same positions in six Type-A branches. The lumen 
diameter has a median value of about 1.17μm. The cell diameter had a median value of 3.71μm. The 
standard deviation in this case was significant, indicating considerable variation within the set of 
measured cell diameters. B, Cell diameter measurements from six branches (CD1-CD6). P1…Pn 
measurements form six points along the proximal-distal axis from six branches. The graph 
demonstrates that the cell diameter along the proximal-distal axis in the branches has no apparent 
pattern and the variation is random.  

 
3.2 Translational and co-translational machinery is present in 

terminal branches 
The main objective of my thesis project was to identify RNAs that 

asymmetrically localize in the terminal tracheal cells. The screen was based on the 

assumption that some of the proteins required at the site of outgrowth are synthesized 

locally rather than near the nucleus. For translation to occur in sites of outgrowth, at 

significant distances from the nucleus, these sites would have to contain components 

of the translational and co-translational machinery. Subcellular organelles such as 

ribosomes, polysomes, endoplasmic reticulum (ER) and Golgi bodies are present in 

axonal growth cones and pre and/or post synaptic regions in dendrites, where 

localized translation occurs (Black and Lasek, 1977; Giuditta et al. 1977; Giustetto et 

al. 2003; Martin et al. 1998; Steward and Levy, 1982). I have characterized the 

subcellular distribution of the above mentioned cellular organelles in terminal 

branches in third instar larvae. 
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3.2.1 Transmission Electron microscopic studies to analyze ribosome and ER 

Transmission electron microscopic (TEM) studies were carried out to analyze 

the distribution of subcellular organelles in the terminal branches. Fillets of third 

instar larvae were sectioned at random positions and selected cross-sections 

containing terminal branches were imaged and analyzed. Based on the diameter of the 

lumen in the electron micrograph, it was possible to assess whether the sections were 

from Type-A or Type-B branches. Micrographs with sections of Type-B branches 

were analyzed, since Type-B branches are more distant from the terminal cell nucleus. 

The TEM studies revealed that ribosomes are present in the cytoplasm of the terminal 

branches. Further, both cytosolic and ER associated polysomes were observed in 

these micrographs (Fig. 14A and B). Analysis of EM micrographs also showed that 

both smooth and rough ER is present in the terminal branches (Fig. 15A and A’’). A 

few, small, “swollen” rough ER was also observed in some of the sections. Such 

swollen rough ER is usually a consequence of the ER lumen being filled with freshly 

translated protein (Fig. 15A’). The presence of free cytoplasmic ribosomes, the 

polysomes and the ER is an indication that the conditions for translation to occur 

exists in the terminal branches, away from nucleus. 

 

     
Figure 14. Electron micrograph of a section through Type-B terminal branch. A, Cross-section of 
Type-B terminal branch. The lumen in the section is a hollow cavity (marked as Lumen) towards a side 
of the section. The small black arrow shows the basal lamina encapsulating the branch. The long black 
arrow marks the underlying muscle in which the branch is embedded. The black box encloses a 
cytosolic polysome. B) The area within the black box is enlarged in B. The five red arrows mark the 
ribosomes that are part of polysomes. Scale bars: 1.19μm in A and 60nm in B   
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Figure 15. Electron micrograph of a section through Type-B terminal branch. A, The lumen in the 
section is hollow cavity towards a side of the section. The small black arrow shows the basal lamina 
encapsulating the branch. The long black arrow marks the underlying muscle on which the branch is 
juxtaposed. The black box encloses a cytosolic polysome. The red arrows mark the rough ER. A’, 
Blow up shows two small blotted rough ER, marked with red arrows. A’’, is a blow up of the rough ER 
(marked with red arrow) visible in A. Scale bars: 1.19μm in A and 230nm in A’ and A’’.  

3.2.2 Immuno-histochemical studies to visualize ribosome, ER and Golgi bodies 

in terminal branches 

In addition to the TEM studies, I analyzed the distribution of the translational 

and co-translational machinery by immuno-staining experiments. To analyze 

ribosome distribution in the terminal branches, a TAP tagged UAS-RpS2 transgene 

was expressed in the tracheal cells using the tracheal specific btl-Gal4. Drosophila 

RpS2 codes for a protein which is a constituent of the small ribosomal subunit. The 

over-expressed TAP tagged RpS2 protein was visualized by immuno-stainings using 

Rabbit (IgG)-anti-goat Alexa antibodies (Fig. 16).  The TAP-RpS2 protein was seen 

in the terminal branches at positions distant from the nucleus, substantiating the 

findings of from the TEM studies. 

 
Figure 16. Ribosomes localize in terminal branches away from the nucleus.  A, TAP-RpS2 
localization in terminal branches. B, Cytosolic GFP labeling the terminal branches. C, Overlay 
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Next, I looked at the distribution of ER and Golgi bodies in terminal branches. 

The ER distribution was studied by analyzing the distribution of KDEL-GFP fusion 

protein (GFP fused to the KDEL peptide sequence) expressed in tracheal cells. The 

KDEL motif functions as an ER retention signal in many ER resident proteins and 

GFP fused to the KDEL peptide sequence is a reliable marker for visualizing ER. The 

results show that the over-expressed GFP-KDEL protein is present throughout the 

terminal cell cytoplasm and did indeed extend into the terminal branches (Fig. 17). 

The Golgi localization in terminal branches was assessed next. To visualize the Golgi, 

the distribution of a Myc tagged Fringe protein (Munro and Freeman, 2000) was 

expressed in tracheal cells together with cytosolic GFP. Drosophila Fringe is a Golgi-

localized glycosyltransferase. A single amino acid substitution in the Fringe protein 

abolishes its function but does not affect its localization in Golgi bodies and this 

modified form of Fringe can be used as a Golgi marker. The modified Fringe-Myc 

protein, expressed in the terminal cells, was visualized by immuno staining against 

Myc. Golgi bodies, like ER, are seen distributed throughout the terminal cell, well 

into the terminal branches (Fig. 18). The results from these immuno-histochemical 

experiments substantiate the findings from the TEM studies and confirm the presence 

of translational and co-translational machinery in terminal branches. 

 

 
Figure 17. ER distribution in terminal branches was visualized by expressing KDEL-GFP fusion 
protein in tracheal cells. A shows the distribution of ER in terminal tracheal cells and terminal 
branches. The nucleus of the cell is marked with N (in red). B, a few terminal branches showing the 
distribution of ER.  
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Figure 18. Golgi body distribution in terminal branches in third instar larva. UAS-Fng-Myc was 
expressed in tracheal cells together with cytosolic GFP. A, cytosolic GFP. B, Myc tagged Fringe 
protein labeling the Golgi. C, Overlay of GFP and Myc-Fringe sin the terminal branches.    

 

3.2.3 Poly (A) binding protein localizes in terminal branches     

If localized translation regulates the development of terminal branches, then 

one would expect specific RNAs to localize in these branches. RNA binding proteins 

should therefore be present in the terminal branches along with the RNA that they are 

bound to or interact with. Hence, the presence of RNA binding protein in these 

branches could be taken as an indirect evidence for the presence of localized RNA. I 

have looked at the distribution of the Poly(A) binding protein (PABP) in the terminal 

branches. PABP is a general RNA binding protein that binds to the poly-A-tail of 

mRNAs and regulates different aspects of mRNA biogenesis (David et al., 2003). To 

visualize PABP in terminal branches, a TAP tagged cytoplasmic PABP was expressed 

together with a cytosolic GFP. Over-expression of PABP in tracheal cells resulted in 

an abnormal phenotype. In the PABP over-expressed larvae, the terminal branches 

were present but the distribution of cytoplasmic GFP was abnormal and in aggregates 

(Fig. 19). Nevertheless, it was possible to look at the distribution of TAP-PABP in 

this condition. The over-expressed PABP was present in the terminal branches. 

Compared to GFP, the PABP distribution appeared to be less diffused and more in 

granules or small aggregates. Such a distribution, i.e. in granules or small aggregates, 

very likely reflects the RNA bound PABP, since mRNAs that are actively transported 

are also clustered into granules. Figure. 20A illustrates the distribution of over-

expressed TAP-PABP in terminal branches and Figure. 20B shows the growing tip of 

a terminal branch with PABP in granules.  
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Figure 19. TAP tagged PABP over-expression in tracheal cells. UAS-PABP-TAP and UAS-GFP 
were expressed in tracheal cells using btl-Gal4. A, GFP (cytosolic) marking the terminal branches. GFP 
is diffused throughout the cytoplasm of terminal branches. B, Expression of PABP-TAP results in 
abnormal aggregates of cytosolic GFP. 
 
 

 
Figure 20. TAP tagged PABP over-expression in tracheal cells. A and B shows the GFP distribution 
in terminal branches where PABP is expressed. A’ and B’ shows PABP-TAP localization in the same 
branch as A and B. A & B, GFP is not uniformly distributed in the cytoplasm. A’ & B’, PABP-TAP is 
seen in granules (white arrows). A’’ and B’’ are overlay. 
 
 
3.3 A genetic screen for localized RNA in tracheal cells 

On the assumption that some of the proteins required at the site of growth in 

the terminal branches are synthesized locally rather than near the nucleus, we decided 
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to perform a screen for localized RNAs in the tracheal cells. To investigate if specific 

RNAs localize in terminal branches, we have developed a new technique, the EP-MS2 

technique. The strategy was to tag RNAs with GFP in vivo and to track the 

localization of such tagged RNA in the Drosophila terminal tracheal cells. For the 

screen, three transgenic fly reagents namely EP-MS2 transgenes, UAS-NLS-MS2-

eGFP transgenes and breathless-Gal4 driver were necessary, and were generated. 

3.3.1 Combining the MS2-GFP labeling system with the EP technique 

In order to screen for asymmetrically localizing RNAs, we have combined the 

MS2-GFP labeling system with the EP technique. The EP technique (modular mis-

expression system) is based on the inducible expression of genes tagged by insertion 

of a P-element vector carrying a GAL4 regulated promoter. In such screens, a 

transgene encoding the transcriptional activator GAL4 is expressed in specific tissues 

(“GAL4 driven lines”) to induce the expression of “target lines” harboring P-elements 

in random positions. These “target lines” carry an EP-element (Fig. 21), which has 

GAL4 binding sites that activate a promoter close to the 3prime inverted repeat of the 

P element in the vector. Binding of GAL4 induces the promoter within the EP 

element and leads to the expression of the gene downstream to the insertion site. The 

GAL4 dependent transcription begins within the P-element and extends out in to the 

genomic region that happens to lie next to the insertion (Rorth, 1996). This EP 

technique takes advantage of the fact that the P-element preferentially integrates into 

5prime ends of genes and thus allows the expression of essentially full-length 

transcripts. 

 

Figure 21. Schematic of the EP transposon Vector. The schematic represents the essential features 
of the EP transposon vector within the three and five prime inverted repeats of the P element. In 
addition the vector also has an ampicilin resistance cassette in the vector backbone, outside the P 
element inverted repeats. Within the P element inverted repeats a Gal4 inducible promoter (Gal4 
binding sites and a basal promoter) is positioned close to the three prime inverted repeat. A 
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transcriptionally independent white gene (the selectable marker) is positioned towards the five prime 
inverted repeat. In addition the EP element has Su(Hw) sites and GAGA sites as insulator sequences 
and a plasmid rescue site within the inverted repeats. Image adapted form Rorth, 1996.    

 

I have modified the existing EP transposon vector by introducing MS2 binding 

sites three prime to the promoter that initiates the expression of the neighboring gene. 

The GAL4 induced transcript would therefore contain MS2 binding sites provided by 

the modified EP element along with the sequences of the tagged gene. In most cases, 

the resulting mRNA hybrid will include all the sequences sufficient for mRNA 

localization, as these sequences usually reside in the 3’UTR and P elements 

preferentially integrate at the 5prime ends of genes. 

3.3.2 Generating transgenes and fly reagents for the screen 

To perform the screen three important reagents were required; a tracheal 

specific Gal driver, UAS-MS2-GFP transgenes and EP-MS2 transgenes. Transgenic 

btl-Gal4 stocks were already available and were tested for their spatio-temporal 

expression patterns. UAS-MS2-GFP and EP-MS2 transgenes were generated for the 

screen 

 

3.3.2.1 Modifying the EP transposon and generating EP-MS2 transgene 

The EP transposon vector (described earlier) was modified by incorporating 

MS2 binding sites. Studies have shown that six binding sites, tagged with six 

molecule of MS2-GFP, are sensitive enough to visualize a single transcript. Hence, 

six tandem repeats of MS2 binding sites were cloned into the EP vector, making use 

of a restriction site downstream of the basal promoter and upstream of the 3prime 

inverted repeat of the P-element. In addition, a plasmid rescue feature was added by 

cloning a Kanamycin resistance gene in the plasmid rescue site of the EP transposon 

vector. This modified version of the EP transposon vector will be referred to as EP-

MS2 vector henceforth (Fig. 22). Transgenes carrying the EP-MS2 element when 

induced using Gal4 driver would transcribe RNA which would contain the MS2 

binding sites and the sequence of the tagged endogenous gene. The choice of P-

element based vector for tagging genes were based on two important reasons; P-

elements preferentially integrates at the five prime of genes and generally the cis-
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acting signals, essential for subcellular localization, in RNAs reside in the three prime 

UTR. Therefore, we expect that in most cases the MS2 binding site tags would be at 

five prime of the transcript and it is unlikely that the endogenous localization signals 

will be affected. Before injecting the EP-MS2 vector to generate transgenes it was 

sequenced, to check for erroneous mutations while cloning.  Seven EP-MS2 

transgenic insertions in the X chromosome were tested for hopping efficiency and one 

among them, EP-MS266, was used in the screen.  

  The number of MS2 binding sites that are usually used for tagging RNA 

range from 6 to 24 binding sites, as it was observed that in some cases more than 6 

binding sites resulted in better resolution than with 6 binding sites. Therefore I had 

cloned two additional combinations of MS2 binding sites, 12 and 24 binding sites, in 

EP transposon vector. Nevertheless, transgenic flies carrying these EP-MS2 

transposon vectors (with 12 and 24 MS2 binding sites) have not been generated yet. 

 

 
Figure 22. Schematic describing the modified EP-MS2 transposon vector. The EP transposon 
vector (A) was modified by cloning six tandem repeats of MS2 binding sites. The MS2 binding sites 
were cloned in Pst1 restriction site downstream of the basal promoter and upstream of the 3 prime 
inverted repeat of P-element. The resultant modified EP vector was named EP-MS2 (B). 
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3.3.2.2 Generating UAS-NLS-MS2-GFP transgenic flies 

The MS2-GFP labeling system utilizes the high affinity interaction between 

sequence-specific RNA stem-loops and the bacteriophage capsid protein MS2 

(Bertrand et al., 1998). To generate UAS-NLS-MS2-GFP transgenes, I have cloned 

the NLS-MS2-GFP translational fusion construct in the pUAST vector (Brand and 

Perrimon, 1993). Before generating the UAS-NLS-MS2-eGFP transgenes, the 

construct was sequenced to check for erroneous mutations while cloning. Henceforth, 

the UAS-NLS-MS2-eGFP construct and transgene will be referred to as MS2-GFP 

construct and MS2-GFP transgene respectively. Two features of this MS2-GFP fusion 

construct are worth mentioning. First, the NLS signal is incorporated to avoid 

background signal from the unbound cytoplasmic MS2-GFP. Presence of the NLS 

signal would target the unbound MS2-GFP protein into the nucleus and the 

cytoplasmic MS2-GFP signal would reflect only the RNA bound MS2-GFP. Second, 

the wild type MS2 coat protein oligomerizes and this is dependent on a small stretch 

of amino acids at the C-terminus end of the protein. This property of the MS2 coat 

protein could act as a hindrance in controlling the number of MS2-GFP protein tags 

on a target RNA. Hence, a mutant form of the MS2 protein lacking 10 amino acids 

that are essential for oligomerizing was used for generating the MS2-GFP fusion. 

Figure 23 explains the details of the fusion construct that was used for generating the 

MS2-GFP transgene. 

 

 
 
Figure 23. Schematic describing the NLS-MS2-eGFP fusion construct. The NLS-MS2-eGFP 
cassette, translational fusion construct, was cloned into the MCS of pUAST transposon vector. The 
essential features of the vector are represented in the schematic above. The pUAST transposon vector 
has five prime and three prime inverted repeats from the P element transposon and placed within these 
inverted repeats is the transcriptionally independent white gene (selectable marker), Gal4 binding sites, 
hsp70 basal promoter, the multiple cloning site and three prime UTR sequence from SV40.   
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The MS2-GFP transgenes, balanced and mapped to 2nd and 3rd chromosomes, 

were tested for their efficiency. Seven transgenes, three on the 2nd and four on the 3rd 

chromosome, were crossed to two different Gal4 driver lines, viz., krupple-Gal4 and 

btl-Gal4. Out of the seven lines tested, three (MS2-GFP12 and MS2-GFP67 on the 2nd 

chromosome, MS2-GFP38 on the 3rd chromosome) showed the brightest GFP signal 

and were subsequently used for recombination with btl-Gal4.      

3.3.2.3 Recombining UAS-NLS-MS2-GFP with btl-Gal4 

MS2-GFP transgenes were recombined with btl-Gal4. A btl-Gal4 insertion on 

the 2nd chromosome was recombined separately with two different MS2-GFP 

insertions on the 2nd (MS2-GFP12 and MS2-GFP67). Recombination was done by 

standard genetic crosses and the recombinants were identified by GFP expression in 

tracheal cells. One of the recombinants btl-Gal4, MS2-GFP12 was partially 

homozygous whereas the second recombinant btl-Gal4, MS2-GFP67 was a 

homozygous viable line and this recombinant was used in the screen. Figure 24A 

shows a representative larva from the btl-Gal4, MS2-GFP67 recombinant and Figure 

24B shows the expression pattern of NLS-MS2-GFP in a single terminal cell in a 3rd 

instar larva from the same line. 
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Figure 24. Images showing NLS-MS2-GFP expression in a btl-Gal4, MS2-GFP67. A, MS2-GFP 
expression in a 3rd instar btl-Gal4, MS2-GFP67 larvae. Few tracheal cells with nuclear MS2-GFP are 
marked by white arrows. Image B shows a single terminal cell with MS2-GFP (green) localized in the 
nucleus (thick black arrow). The terminal branches of the cell, imaged using Normaski optics, are 
marked by regular arrows.    

3.3.2.4 Hopping efficiency of the EP-MS2 insertion on the X chromosome 

To tag genes in the fly genome with the EP-MS2 element, we decided to 

mobilize the EP-MS2 element and establish new lines. Each of the lines carrying an 

independent new EP-MS2 element insertion could then be tested in the screen. For the 

same we chose insertions on the X chromosome as the starting material (ammunition 

for mobilization) that could be transposed to new locations within the genome. Hence, 

I tested the hopping efficiency of the seven EP-MS2 insertions on the first 

chromosome.  

To test the hopping efficiency, virgin females from EP-MS2 insertions on X 

chromosome were crossed to males from the transposase providing flies y,w;+/+; ∆ 2-

3, Ki/∆ 2-3, Ki (∆ 2-3). F1 males, carrying both the EP-MS2 element and ∆2-3, were 

crossed to white eyed virgin females (flies with mutated white locus but otherwise 

wild type). Transposition would occur in the germline of F1 male. F2 males do not 

inherit their X chromosome from the paternal side (F1 male); hence red eye color in 

F2 male would mean a new insertion event (on the 2nd, 3rd or 4th chromosomes) 

independent of the paternal EP-MS2 insertion on the X chromosome. Accordingly, in 

the F2 generation 300 males from each of the seven experiments were screened for 

red eye color to evaluate the hopping efficiency. Out the seven lines tested, one line 
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EP-MS266, showed the maximum hopping efficiency of approximately 58% (Fig. 25). 

The line EP-MS266 was subsequently used in the pilot screen. 

 

 
Figure 25. Graph illustrating the hopping efficiency of 7 independent EP-MS2 insertions on the X 
chromosome. The EP-MS2 insertions were mobilized from the X chromosome by providing 
transposase. 300 F2 males were screened for assessing the hopping efficiency of each line. The seven 
insertions tested showed a range of hopping efficiency, with EP-MS66 exhibiting the maximum 
efficiency, approximately 58%. The hopping efficiency is plotted on the Y axis and the lines tested are 
plotted on the X axis.  

 
3.4 A pilot screen to evaluate the EP-MS2 technique 

The EP-MS2 technique that we have developed was evaluated by performing 

a pilot screen. The pilot screen was done as an F3 screen. For the screen, the EP-

MS266 insertion was mobilized from the X chromosome and 250 lines, each carrying 

an independent insertion, were established. For the screen, males from the new 

insertion lines were crossed to flies carrying the recombinant btl-Gal4, MS2-GFP67 on 

the second chromosome. Third instar larvae (F3 generation) were then screened for 

mRNAs that showed specific subcellular localization in terminal tracheal cells (Fig. 

26). 
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Figure 26. A schematic of the genetic crosses of the pilot screen. The EP-MS2 insertion on the X 
chromosome was mobilized and new independent insertion lines were established. These lines were 
screened for localizing mRNA in tracheal cells.  

 

3.4.1 Phenotypic classification of the EP-MS2 lines based on pilot screen 

250 EP-MS2 lines were generated and tested in the pilot screen. Males from 

these EP-MS2 independent insertion lines were crossed to virgin btl-Gal4, MS2-

GFP67 females. 250 individual crosses were set, out which 27 lines died out during the 

course of the experiment. The larvae from the remaining 223 lines were screened and 

the results documented. An average of 16 larvae from each cross was analyzed. The 

third instar larvae from each cross were observed under the stereomicroscope with 

fluorescent attachment. For observations, the larvae were first immobilized by 

drowning them in 50% methanol for half hour. After the methanol treatment, the 

immobilized larvae were mounted on a slide and were take to the stereomicroscope 

for observation.  

Based on the expression pattern of MS2-GFP (which represents MS2-GFP 

tagged RNA) in the terminal tracheal cells, the 223 lines tested were classified into 

Class 1 and Class 2 phenotypic groups.  In a control terminal cell, i.e., a terminal cell 



  45 
 
 
  Results 
 
from btl-Gal4, MS2-GFP67, the MS2-GFP tightly localizes in the nucleus. When 

compared to MS2-GFP expression pattern in a control cell, both Class 1 and Class 2 

phenotypic groups showed distinctly different MS2-GFP distribution. In Class 1 

phenotypic group, the MS2-GFP localized either in the cytoplasm immediately 

around the nucleus or in the region of terminal branches proximal to the nucleus. In 

Class 2 phenotypic group, MS2-GFP localized into the terminal branches away from 

the nucleus. Out of the 223 lines tested, 211 were grouped in to phenotypic group 

Class 1 and the remaining 12 lines were placed in phenotypic Class 2. Figure 27 

shows the phenotypic classification, based on the MS2-GFP expression pattern of the 

lines tested in the pilot screen. The 12 lines of phenotypic Class 2 (about 5% of the 

total number of lines screened) showed MS2-GFP expression pattern that was both 

interesting and promising. Hence all the 12 lines of this group and a few 

representative lines of phenotypic group Class 1 were taken for further thorough 

analysis. 

In the second round of analysis, larvae were filleted and fixed in 4% 

paraformaldehyde. Post fixation, the larvae were mounted on a slide and were 

observed under a high resolution microscope. At least six larvae from each line were 

processed and analyzed in this manner. This analysis revealed a clear difference in the 

expression pattern of the MS2-GFP between representatives of Class 1 and Class 2 

phenotypic groups. In the terminal cells of larvae from phenotypic group Class 2, 

MS2-GFP appeared in a punctate manner extending far into the terminal branches 

(Fig. 28A). RNAs that are actively transported are usually packed into small clusters 

and transported to specific locations in the cell. Such localizing RNAs when 

visualized appear as tiny dots or punctas. The MS2-GFP tagged transcripts, from 

candidate lines of phenotypic group Class 2 appear in a punctate manner resembling 

the known pattern of localized RNAs. In comparison, the MS2-GFP expression 

pattern in terminal cells of phenotypic group Class 1 was substantially different and 

did not appear in a punctate manner. Instead the MS2-GFP signal was diffused and 

was restricted to the cytoplasm around the nucleus or extended a little into the 

terminal branch proximal to the nucleus (Fig. 28B and C). Based on the results of this 

second round of analysis, the 12 lines of phenotypic group Class 2 were taken as 

putative candidates and the rest were considered negatives. Further, the integration 
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sites of the EP-MS2 elements of the positive candidates, were molecularly mapped to 

find the genes affected (Table.1).   

 
Figure 27. Phenotypic classification of EP-MS2. Phenotypic classification was done based on the 
MS2-GFP expression pattern in terminal cells. Class 1, MS2-GFP expression pattern in terminal cells 
of most of the lines (223 out 250) was restricted to the nucleus (Line16 arrowhead) or in the cytoplasm 
immediately next to the nucleus (arrow). Class 2, MS2-GFP expression in the terminal cells from 12 
lines extended well into the terminal branches (arrows). Line 53 is a representative line from the Class 
2 phenotypic group.  

 
 

 
Figure 28. Examples of a positive candidate and negative from the pilot screen. A, MS2-GFP 
tagged mRNA localizing in the terminal branches in a candidate line. The GFP tagged mRNA appears 
as dots (arrowhead) in the terminal branches. Two examples showing MS2-GFP either localized in the 
nucleus of the terminal cell (B) or diffused in the cytoplasm around the nucleus (C), both were negative 
lines.  
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3.4.2 Evaluating the EP-MS2 technique in the developing oocyte 

Until now tracheal system in Drosophila has not been used as a system to 

study mRNA localization and our studies are the first in this direction. In comparison, 

the developing oocyte in Drosophila is an extensively used system for studying how 

mRNAs are differentially sorted within a cell. In oocytes, a number of examples have 

been studied both in the context of mechanistic and functional relevance of mRNA 

localization. Hence, to evaluate the EP-MS2 technique, I decided to test it in the 

developing oocyte, a tried and tested system for mRNA localization studies.  

75 EP-MS2 lines were expressed in the oocyte, which included the 12 putative 

candidate lines from the tracheal screen, using nos-Gal4, MS2-GFP. nos-Gal4 is an 

oocyte specific Gal4 driver. Males from the 75 EP-MS2 lines were crossed to nos-

Gal4, MS2-GFP virgin females. F1 females (15 from each cross) were collected 

separately and the oocytes were dissected. The dissected oocytes were fixed and 

immuno-stained with an antibody against GFP before analyzing them under the 

microscope.  Immuno-staining against GFP in oocytes was a deviation from the 

strategy that was used to visualize MS2-GFP in tracheal cells. In tracheal cells either 

endogenous MS2-GFP in live (immobilized) larvae or endogenous MS2-GFP in fixed 

filleted larvae were analyzed without any immuno-staining against GFP. Although it 

is possible to visualize endogenous MS2-GFP RNA bound in oocyte, I decided to 

immuno-stain against GFP to amplify the specific MS2-GFP signal, thereby 

improving the signal to noise ratio (background signal from yolk in the oocyte).  Out 

of the 75 EP-MS2 lines tested in the oocyte, one showed an interesting pattern of 

MS2-GFP localization. In oocytes (stage 10a-10b) from this line, MS2-GFP localized 

tightly at the anterior part of the oocyte suggesting anterior localization of the MS2-

GFP tagged mRNA of the affected gene (Fig. 29). There are examples of anteriorly 

localizing mRNAs in the Drosophila oocyte, viz., bicoid mRNA and gurken mRNA 

(Cha et al., 2001 and MacDougall et al., 2003), but the localization pattern of the 

MS2-GPF tagged candidate mRNA was not similar to that of the known examples. 

The MS2-GFP tagged mRNA seemed to localize in the region where the microtubule 

organizing center (MTOC) is positioned. This EP-MS2 line with the anteriorly 

localizing MS2-GFP tagged transcript, was one among the 12 putative candidate lines 
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from the tracheal screen (Table.1). Details of the molecular mapping of the EP-MS2 

insertion, the putative candidate line from the oocyte screen will be discussed later.  

 
Figure 29. Localization of MS2-GFP tagged mRNA of the putative candidate from the oocyte 
screen. For the oocyte screen, 75 EP-MS2 lines were crossed to nos-Gal4, MS2-GFP. The image 
represents the putative candidate line from the oocyte EP-MS2 pilot screen. A, Nuclei are marked with 
DAPI and pseudo-colored in Red. B, MS2-GFP bound candidate mRNA localized tightly at the 
anterior region in the oocyte (Green). In A, B and C the arrowhead marks the nurse cell nucleus, the 
Red and Green broken lines mark the anterior and posterior regions of the oocyte respectively and the 
position of the oocyte nucleus is marked with a circle (shaded in light blue). The orientation of the 
oocyte is indicated in C with the arrows. 
 

3.4.3 Testing the EP-MS2 technique in dendritic arborization (da) neurons 

Neurons are extensively used for studying mRNA localization and dendritic 

arborization (da2) neurons in Drosophila have also been used in a similar context. 

Therefore, we thought of testing the EP-MS2 technique in da2 neurons as an 

additional system for evaluating the technique (experiments done in collaboration 

with Elizabeth R. Gavis, Princeton University). Five EP-MS2 lines have been tested 

so far in the da2 neurons, out of which two were putative candidates and the rest three 

were negative lines from tracheal screen. In these experiments, the EP-MS2 lines 

were expressed in the da neurons using Gal44-77, UAS-mCD8-GFP driver line (Ye et 

al., 2004) recombined with UAS-NLS-MS2-RFP (Gavis, E.R., unpublished 

transgene). The F1 third instar larvae from the crosses were observed live and the 

MS2-RFP distribution in the da2 neurons was analyzed. As a positive control for 

these experiments nanos mRNA (known to localize in the dendrites of da2 neurons, 

Gavis, E.R., personal communication) tagged with MS2-RFP was used. Out the five 

EP-MS2 lines tested, one showed a MS2-RFP localization pattern similar to nanos 

mRNA tagged with MS2-RFP, suggesting that the mRNAs from this EP-MS2 line 

does localize in the dendrites of the da2 neurons (Fig. 30) and the remaining four lines 

did not show any specific MS2-RFP localization in the dendrites. The putative 

candidate from the da2 neuron screen does not overlap with the candidates from the 
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tracheal screen and the EP-MS2 element insertion in this candidate line is yet to be 

mapped.   

 
Figure 30. MS2-RFP bound candidate mRNA in da neurons. 5 EP-MS2 lines were tested in larval 
da2 neurons by crossing them to Gal44-77, mCD8-GFP, MS2-RFP. One out of 2 putative candidates, is 
shown in the image. A, A’ and A’’ are images of putative candidate and B, B’ and B’’ are images of 
nos mRNA (control), both tagged with MS2-RFP. In A and B MS2-RFP tagged mRNAs (arrowheads) 
of putative candidates and nos respectively are shown. In A’ and B’ the da neurons are marked with 
mCD8-GFP. A’’ and B’’ are overlays.      
 

3.4.4 MS2-GFP tagged candidate mRNA does not accumulate in stress granules 

RNAs that are actively transported along the cytoskeleton are usually 

transported in clusters. But this is not the only scenario when mRNAs aggregate and 

form clusters. Under physical stress, RNAs in the cytosol form aggregates and can be 

subsequently targeted for degradation. Such mRNA aggregates formed under stress 

are known as stress granules (Kedersha et al., 2005). A few other mRNA clustering 

events which leads to post translation degradation of RNAs have been described in 

the past few years, P-bodies are an example for this type of RNA aggregates 

(Anderson and Kedersha, 2006). 

  The EP-MS2 technique is an over-expression technique and could possibly 

lead to the accumulation of MS2-GFP tagged mRNA in stress granules. To assess 
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whether this is the case, I did immuno-stainings using a marker that labels stress 

granules. The logic was to asses whether the stress granule marker colocalizes with 

the MS2-GFP tagged mRNAs of putative candidates in the terminal branches. The 

marker that I have used is an antibody against Pacman (Pac, Drosophila 

Ribonuclease1 - XRN1) ((Chernukhin et al., 2001; Kedersha et al., 2005). Pacman 

degrades 5 prime uncapped mRNA from the 5prime to the 3prime. It has been 

reported in stress granules as well as in other mRNA degradation mechanisms, such 

as in P-bodies (Anderson and Kedersha, 2006). 

Firstly, the distribution of the stress granule (and P-body) marker Pac 

(Chernukhin et al., 2001) was assessed in wild type terminal branches. For this, 3rd 

instar larvae (btl-Gal4, UAS-GFP, wild type) were filleted, fixed and immuno-stained 

with an antibody against Pac. The experiment showed anti-Pac antibody labeled 

bodies that appeared in granules in terminal branches (Fig. 31A). This result was not 

surprising for two reasons; firstly, the terminal branches grow in response to hypoxic 

signals from the surrounding tissues and tracheal cells themselves are very sensitive to 

hypoxia. Hypoxia is a stressful cell physiological condition and could lead to stress 

granule formation even in the wild type tracheal cells. Secondly, the anti-Pac labeled 

bodies could also be P-bodies since Pac has been reported in P-bodies also. The 

terminal branches do have the required conditions to carry out translation. Hence, one 

could expect the presence of post translational RNA degradation machinery, such as 

P-bodies, in the terminal branches.  

Using the anti-Pac immuno-staining pattern in wild type terminal branches as 

a control, I analyzed anti-Pac staining in terminal branches where MS2-GFP tagged 

putative candidate RNAs was over-expressed. Three of the twelve putative candidate 

lines (from the tracheal screen) were used for analysis. In all the three lines tested the 

anti-Pac labeling did not colocalize with the majority of the over-expressed MS2-GFP 

tagged candidate mRNAs (Fig. 31B). Owing to technical limitations in imaging and 

analysis, it was difficult to judge whether there was absolutely no colocalization of 

MS2-GFP and Pac labeling. Nevertheless, the results clearly showed that most of the 

MS2-GFP did not colocalize with Pac, suggesting that the MS2-GFP tagged mRNA 

aggregates were independent of stress granules and/or P-bodies.  

 



  51 
 
 
  Results 
 

 
Figure 31. MS2-GFP tagged candidate mRNA does not localize in stress granules. A, A’ and A’’ 
shows stress granules in wild type terminal branches (btl-Gal4, UAS-GFP). A represents Pac 
distribution, A’ shows a terminal branch marked with GFP and A’’ is an overlay. B, B’ and B’’ shows 
Pac distribution in a putative candidate EP-MS2 line from the tracheal screen, expressed together with 
MS2-GFP. B shows the Pac distribution, B’ shows MS2-GFP tagged putative candidate mRNA and 
B’’ is an overlay. Most of the MS2-GFP tagged mRNA granules do not colocalize with Pac. 
 
3.5 Molecular mapping of the EP-MS2 element insertion in candidate 

lines 
The EP-MS2 element insertions in the putative candidate lines were 

molecularly mapped to find out which gene (or genes) is affected in each candidate 

lines. To map the EP-MS2 element insertions, I used the inverse PCR method (from 

BDGP). The EP-MS2 insertions in the 12 putative candidate lines from the tracheal 

and oocyte screens were mapped by inverse PCR. Out of the 12 candidate lines, 10 

were successfully mapped to genomic positions whereas two mapping results were 

not conclusive. Out of the ten successfully mapped insertions six were in independent 

genes, three mapped to the same gene. In one line, there were two independent EP-

MS2 insertions in two different genes. Table.1 describes the list of putative candidate 

EP-MS2 lines, the molecular mapping results and the genes affected in the candidate 

lines.      
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Table 1. Summary of the list of putative candidate genes from the pilot screen. EP-MS2 element 
insertion was mapped by Inverse PCR. Out of the 12 candidates 10 were successfully mapped, whereas 
in two cases (rows shaded in red) the mapping results were not conclusive. One of the lines EP-MS2152 
carried two EP-MS2 element insertions, one on 2L (in cenG1A, positive in oocyte) and the second 
insertion on 3R (in btsz), row shaded in green. Three lines EP-MS267, EP-MS294 and EP-MS2207 were 
clones as revealed by exactly matching genomic coordinates in blast results. 

   
Subsequent to molecular mapping, the initial list of 12 putative candidates 

narrowed down to 8 candidate genes, (two being clones and two could not be mapped 

precisely). In this list of 8 genes, at least three genes namely, ATPalpha, Hsp70Aa and 

longitudinal lacking (lola) are known to be expressed in tracheal cells and have 

functions in tracheal morphogenesis. Three of the lines (EP-MS267, EP-MS294 and 

EP-MS2207) were clones since the genomic coordinates in the blast results mapped to 

exactly the same position in the genome. In these three lines, the EP-MS2 elements 

were mapped to the bitesize (btsz) gene, which has a P element insertion hotspot. In 

two of the putative candidate lines, the EP-MS2 element insertion mapped to 

CG9924, CG30403 and in one line the insertion was in Hormone receptor39 (Hr39) 

gene. The line that was positive in the oocyte, EP-MS2152, carried two insertions, one 

in the gene bitesize (btsz) and the other in the gene centurion Gamma1A (CenG1A). 

In the oocyte screen, two other independent EP-MS2 lines carrying insertion in btsz 

were also tested. These two lines did not show any specific MS2-GFP localization 
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pattern suggesting that the localization pattern of EP-MS2152 is due to the insertion in 

cenG1A.  

Literature survey revealed that among the 8 candidate genes, at least three are 

known to transcribe mRNAs that localize to specific subcellular domains within a 

cell. These three genes are btsz, CG9924 and lola, but none of them has been 

extensively studied to understand the localization properties of their mRNAs. btsz 

encodes the only know member of Synaptotagmin family of proteins (SLP) in 

Drosophila. Studies have shown that the btsz mRNA localizes apically in follicular 

epithelial cells, early embryonic epithelial cells and in eye imaginal disc cells. 

Further, the cis-acting mRNA signal required for apical localization has been 

narrowed down to a 2.1kb long sequence in the 8th exon of the gene (Serano and 

Rubin, 2000). The minimal essential localization signal, the secondary structure of the 

sequence responsible for localization, the trans-acting protein interacting with the 

sequence etc., has not been studied yet. In a recent genome wide RNA in situ screen 

in Drosophila embryos CG9924 and lola were reported to transcribe mRNAs that 

localize apically in embryonic cells (Lecuyer et al., 2007). Details of the attributes 

regulating localization of these two mRNAs are yet unknown.  

 
3.6 Characterization of a candidate gene from the EP-MS2 screen  

I have started characterizing the functional requirement of one the candidates 

from the screen, in terminal branch development. The candidate that I chose to 

characterize was bitesize (btsz). Btsz, together with Moesin, is known to regulate the 

organization of the actin cytoskeleton in epithelial cells (Pilot et al., 2006).  A recent 

study had speculated on the possible role of the actin cytoskeleton in terminal branch 

development (Levi et al., 2006). Putting these findings together, Btsz seemed to be a 

good candidate gene to analyze further.   

3.6.1 bitesize - a Synaptotagmin-like protein family gene in Drosophila  

Btsz, the only Drosophila member of the Synaptotagmin-like protein family 

(SLP family) identified so far, is characterized by the presence of tandem carboxy-

terminal C2 domains. The btsz transcription unit covers approximately 50 kb and is 

predicted to have at least 15 exons.  To date four bona fide btsz protein coding 
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transcript isoforms have been described. cDNA library screens identified three 

alternatively spliced forms of btsz which differ in their transcription start sites and 

exon usage. All three isoforms share the same C-terminal region of 423 amino acids. 

Two of these isoforms, btsz-1 and btsz-2, encode proteins that are 1099 and 2645 

amino acids respectively and do not share any amino acids outside of the C-terminal 

region. A third transcript, btsz-3, is similar to btsz-2 except that its transcription start 

site occurs 3013 nt further downstream, in the middle of exon 8 (Fig. 32, modified 

from Serano and Rubin, 2003). In a subsequent study, btsz0 transcript isoform was 

identified in RT PCR analysis (Pilot et al., 2006).  

 
Figure 32. Diagram of the btsz transcription unit. The line represents approximately 50kb genomic 
region, below which are boxes (numbered 1–15) representing btsz exons. The solid boxes represent 
exons used in cDNAs and the open boxes (numbers 2 and 9) represent computationally predicted exons 
(release 3 of the Drosophila genome on www.flybase.org). Also shown are structures of three different 
btsz transcripts (btsz-1, btsz-2, and btsz-3). The btsz SHD is encoded by exon 2, the btsz BLR is located 
in exon 8, and the btsz C-terminal region is encoded by exons 10–15. Image modified from Serano and 
Rubin, 2003. 

 

The amino-terminal regions of Btsz protein isoforms show no homology to 

any known or predicted proteins, whereas the C-terminal region contains two C2 

domains (calcium binding domains from protein kinase C) and is most homologous 

(41% identity, 57% similarity) to the corresponding region of a mammalian SLP, 

Granuphilin. As with the other SLPs, neither of the Btsz C2 domains contain the five 

conserved aspartate residues required for Ca2+-binding. btsz exon 2 encodes a typical 

Synaptotagmin like protein family Homology Domain (SHD), including the Zn2+-

binding motif and conserved Rab-binding site (SGEWF). The Btsz SHD is most 

homologous to the Granuphilin SHD (44% identity, 58% similarity). Although exon 2 

is not present in btsz-1, -2, or -3, it is present in the partial btsz cDNA GH06647 

(Serano and Rubin, 2003). Because of the complexity of the btsz transcription unit, it 

is likely that additional btsz isoforms exist. 
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Two btsz transcript isoforms were reported to localize at the apical plasma 

membrane. A 2.2-kb region known as the btsz localization region (BLR), that is 

necessary and sufficient to mediate apical mRNA localization has been identified in 

the 8th exon of the btsz transcription unit. BLR is the first example of a fully 

functional mRNA localization sequence contained entirely within the protein-coding 

region of a gene. The BLR shares a number of sequence stretches that show extensive 

nucleotide-level homology with the Anopheles gambiae btsz gene. In particular, one 

59-nt region of the BLR is 92% conserved between flies and mosquito. Such 

conserved sequences may represent functionally conserved mRNA localization 

elements. On examination of the BLR to identify RNA secondary structures, one 

predicted stable stem-loop structure (btsz-2; nucleotides 5311–5405) was discovered. 

The functional relevance of this predicted stem loop structure is not clear yet and it is 

not conserved in Anopheles (Serano, J. and Rubin, G., 2003). 

Granuphilin, a mammalian SLP family protein and the closest homologue of 

Drosophila Btsz, has been implicated in exocytosis and vesicular trafficking (Yi Z, et 

al., 2002).  But so far it is not clear whether Btsz shares a similar function. Two 

studies have reported on functions of btsz in Drosophila. In one of the studies, btsz 

was implicated in the regulation of cell growth and proliferation. Further, it was 

suggested that btsz acts cell-nonautonomously and that it might have a role in the 

vesicular transport of growth regulators like its closest homologue in mammals, 

Granuphilin (Serano and Rubin, 2003).  

Pilot et al., described btsz as an important regulator of actin organization in the 

apical junctional region, where adherens junctions form in Drosophila embryonic 

epithelia. In this report it was shown that the Btsz protein localizes apically in 

epithelial cells and is required for recruiting Moesin (Drosophila Ezrin–Radixin–

Moesin protein) to the adherens junction. This interaction regulates the actin 

organization at adherens junctions, which in turn is essential for the stability of 

Drosophila ECadherin in adherens junctions (Pilot et al., 2006). Further, the study 

showed that the C2 domains of Btsz interact with phosphatidylinositol mono and 

bisphosphate in a Ca2+ dependent manner. In baz RNAi knockdown mutants, Btsz 

does not localize at the adherens junction and is cytoplasmic. Based on these findings, 

Pilot et al., conclude that PtdIns(4,5)P2 together with Baz act as the polarized spatial 
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cue for proper apical localization of Btsz protein in Drosophila epithelial cells (Fig. 

33).  

 

 
Figure 33. Model explaining the function of Btsz in the organization of adherens junctions. 
Upstream polarity cues (Par-3 and PtdIns(4,5)P2) define a domain in the apical junction region where 
Btsz protein localizes (red). Btsz and Moesin interaction organizes actin filaments, which in turn 
stabilizes E-cad. Image adapted from Pilot et al., 2006. 

 

3.6.2 Functional characterization of bitesize in terminal tracheal branch 

development 

Two btsz loss of function alleles, btszK13-4 and btszJ5-2 generated by P element 

imprecise excision, have been described earlier. btszJ5-2 was derived from EP(3)3567 

and contains a frameshift mutation that results in truncated Btsz0, Btsz2 and probably 

the absence of Btsz3. btszK13-4 was derived from l(3)10418 and introduces a deletion 

in the amino terminus of btsz2 (residues 501–1,494). Although btszJ5-2 is a slightly 

stronger allele than btszK13-4, both mutants were reported to cause similar phenotypes 

(Serano, J. and Rubin, G., 2003). btszJ5-2, which was initially reported as a 

homozygous viable allele was later found to be lethal, while btszK13-4 does produce a 

few homozygous survivors (Pilot et al., 2006).   

 

To study the functional requirement of btsz in terminal branch development, I 

have analyzed terminal branches in btszK13-4 homozygous mutant larvae. btszK13-4 

homozygous third instar larvae were filleted and processed for immunostaining. 

Antibodies against Drosophila serum response factor (SRF, transcription factor 

expressed in terminal tracheal cells) and Dof (Downstream of FGF) were used to 

mark the nuclei and cytosol respectively. Results from the immuno-stainings showed 

that the terminal branching is severely compromised in btszK13-4 mutant larvae. The 
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terminal cell specification was normal since the SRF expressing cells were present 

and the number of terminal cells was comparable to wild type. But the terminal 

branches were either absent or their numbers were greatly reduced in the mutant 

larvae, as revealed by the anti-Dof labeling. Although most of the terminal cells were 

affected, the phenotype is not completely penetrant (Fig. 34). In btszK13-4 mutants 

Btsz2 protein isoform is made, but the protein carries a deletion in the amino terminus 

between residues 501–1494, while the rest of the protein including the C-terminus is 

unaffected (Serano and Rubin, 2003). Pilot et al., had identified a Moesin binding 

domain in Btsz2 protein, in the amino terminus region between residues 581-863, 

which is absent in the Btsz2 mutant protein made in btszK13-4 mutants. The abnormal 

terminal branching phenotype in the btszK13-4 mutants, in which the Moesin binding 

domain is absent, could be a consequence of the failure of the Btsz2 mutant protein in 

regulating the function of Moesin in terminal branches. This argument also leads to 

the question whether Moesin is required for terminal branch development and do 

moesin mutants have defects similar to btszK13-4 mutant larvae.              

 
Figure 34. btszK13-4 mutants show severe terminal branch defects. 3rd instar btszK13-4 homozygous 
larvae were filleted, processed and immunostained with anti-SRF and anti-Dof. A, A’ and A’’ is wild 
type terminal cell. B, B’ and B’’ is a terminal cells from btszK13-4 homozygous larvae. The nuclei of the 
terminal cells are marked with anti-SRF (A and B, red arrowhead) and the terminal branch are marked 
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with anti-Dof (A’ and B’, green arrow). A’’ and B’’ are overlays of anti-SRF and anti-Dof labeling of 
the terminal cells A and B respectively.  
 

The btszK13-4 homozygous 3rd instar larvae had a substantially lower amount of 

fat cells than wild type larvae. The homozygous mutant larvae were almost 

transparent because of the lower amount of fat cells and the body size was also greatly 

reduced. These observations were interesting because a similar phenotype was seen in 

two other independent experiments. Tracheal specific expression of poly(A) binding 

protein as well as an activated form of Moesin (experiment is described in detail in a 

later chapter) also resulted in reduced number of terminal branches and a smaller 

body size, as in btszK13-4 mutant larvae. Abnormal terminal branching or reduced 

number of terminal branches would result in inefficient oxygen supply to tissues, 

which in turn could reduce the general rate of metabolism and growth. These 

observations suggest that the nonautonomous growth defects of btsz mutants 

described in earlier reports is very likely an indirect effect of the reduced number of 

terminal branches and an inefficient oxygen supply. 

3.6.3 Bitesize localizes at the apical membrane in terminal branches 

 
An antibody against Drosophila Btsz protein has not been generated yet. To 

test the localization of the Btsz protein in terminal branches, I used available tagged 

btsz2 constructs (btsz2-myc and btsz2-poly), which had previously been shown not to 

have any detectable defects when expressed in cells (Serano and Rubin, 2003). I 

expressed UAS-btsz2-poly (polyoma epitope tagged to btsz2) transgene together with 

UAS-GFP in tracheal cells and performed immunostainings on third instar larval 

fillets using an antibody against the polyoma epitope tag. The overexpressed and 

tagged form of Btsz2 localized or was enriched at the apical membrane around the 

lumen (Fig. 35). Localization of Btsz2-poly tagged protein at the apical membrane in 

terminal branches was consistent with the earlier published reports of Btsz2 localizing 

at the apical membrane in epithelial cells.  
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Figure 35. Over-expressed poly tagged form of Btsz2 protein localizes at the apical membrane 
facing the  lumen. Btsz2-poly transgene was expressed in tracheal cells together with cytosolic GFP. 
A, A’ and A’’ show anti-poly tag immunostained wild type terminal branches. B, B’ and B’’ 
localization of Btsz2-Poly protein in terminal branches. A’’ and B’’ are overlays of anti-poly tag and 
GFP labeling. The white arrows mark the apical membrane facing the lumen in A, A’, B and B’. 
 

3.6.4 C-terminal C2 in Bitesize is required for its membrane localization 

Synaptotagmin-like protein (SLP) family members are characterized by the 

presence of tandem carboxy-terminal C2 boxes, which have been implicated in the 

membrane association of these proteins. Btsz has two tandem carboxyl-terminal C2 

domains. It was reported that the C2 domains of Btsz were necessary and sufficient 

for the localization of Btsz to the membrane (Pilot et al., 2006). A tagged form of 

Btsz2 lacking the C2 boxes (Btsz2-∆C2–HA) when expressed in embryos, does not 

localize at the adherens junctions and was shown to be cytoplasmic. Conversely, a 

tagged form of the Btsz2 C2 domains (C2AB–HA) localized at the plasma membrane 

in embryos (Pilot et al., 2006).  

 After establishing the localization pattern of full length Btsz2 in the terminal 

branches, I looked at the requirement of C2 domains of Btsz2 for its localization at the 

apical membrane in the terminal branches. The UAS-btsz2-∆C2–HA transgene 

(lacking the C2 domains) was expressed in tracheal cells marked with GFP and third 

instar larvae were processed and immunostained with an anti-HA antibody. The over-
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expressed btsz2-∆C2–HA was found in the cytoplasm unlike the full length Btsz2 

protein that tightly localizes at the apical membrane (Fig. 36). 

A small portion of the overexpressed btsz2-∆C2–HA did localize at the apical 

membrane (Fig. 37). It is possible that this is an overexpression artifact or could be a 

true localization event mediated by yet unidentified domain or domains in Btsz 

protein required for its membrane localization. Nevertheless, the predominant 

cytoplasmic localization of Btsz2 lacking C-terminal C2 domains suggests that Btsz2 

protein localization at the apical membrane in terminal branches is dependent on the 

C2 domain. 

  

 

 
Figure 36. Cytoplasmic localization of Btsz2-∆C2–HA protein. UAS-btsz2-∆C2–HA was expressed 
in tracheal cells marked with GFP. 3rd instar fillets were immunostained with anti-HA antibody to 
visualize the localization of Btsz2-∆C2–HA protein. A) Btsz2-∆C2–HA. A’) Cytosolic GFP. A’’) 
Overlay of A and A’’. B) Full length Btsz2-poly tagged protein. B’) Cytosolic GFP. B’’) Overlay of B 
and B’. 
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Figure 37. Localization of Btsz2-∆C2–HA protein in terminal branches. A) Shows predominantly 
cytoplasmic distribution of Btsz2-∆C2–HA and slight apical enrichment in some places (arrows). B) 
The branches marked with cytosolic GFP. C) Overlay of A and B. 
 

3.6.5 Par3/Bazooka localization in terminal branches 

The apical localization of Btsz in the epithelial cells was shown to be 

dependent on Par-3/Bazooka (Baz), which acts as polarized spatial cue (Pilot et al., 

2006). In baz RNAi knockdown mutants, Btsz does not localize at the adherens 

junction and is cytoplasmic. It is not clear whether the Btsz mis-localization in Baz 

mutants is a direct or an indirect effect. In vitro biochemical experiments show that 

the C2 domains of Btsz interact with phosphatidylinositol mono and bisphosphate in a 

Ca2+dependent manner. Further PtdIns(4,5)P2 is seen enriched in the apical junction 

region in embryonic epithelial cells (Pilot et al., 2006).  Reports also show that Baz 

indirectly regulates PtdIns(4,5)P2 synthesis thought its interaction with PTEN, which 

converts PtdIns(3,4,5)P3 into PtdIns(4,5)P2 (von Stein et al., 2005). Although it is not 

clear whether Baz interacts with Btsz directly, it is evident from earlier studies that 

Baz does act as an essential polarized spatial cue for Btsz localization (Pilot et al., 

2006).  
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Figure 38. Bazooka localizes at the apical membrane in terminal branches. btl-Gal, UAS-GFP 3rd 
instar fillets were immunostained with anti-Baz antibody to visualize the localization of Baz. A shows 
apical localization of Baz in terminal branches, in A’ the branches marked with cytosolic GFP are 
shown and A’’ is the overlay of A and A’. The boxed area in A, A’ and A’’ are enlarged in B, B’ and 
B’’ respectively.  
 

The apical localization of Btsz in epithelial cells being dependent on Baz 

raised the question whether the same mechanism regulates Btsz localization at the 

apical membrane surrounding the lumen in terminal branches. If so, Baz should also 

localize at the apical membrane in terminal branches, similar to Btsz2 localization. 

Immuno-stainings with anti-Baz antibody, on third instar btl-Gal, UAS-GFP larval 

fillets, revealed that Baz localizes at the apical membrane like Btsz2 (Fig. 38). This 

result suggests the possibility of Baz being the spatial cue for Btsz2 localization at the 

apical membrane in terminal branches. The analysis of Baz mutants is necessary to 

study the role of Baz as the spatial cue for Btsz2 localization in terminal branches. 

3.6.6 Par6, aPKC and Crumbs localization in terminal branches 

    Par3/Bazooka acts in a complex along with Par6 and aPKC, which plays a 

critical role in establishment of apical-basal polarity in cells. The components of this 

complex display a mutually dependent apical localization and activation (Macara, 
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2004). The Par6/aPKC/Baz complex regulates the apical-basal polarity together with 

the Crumbs–Stardust (Sdt)–Pals1-associated TJ protein (Patj) complex (Crumbs 

Complex) (Hurd et al., 2003). Crumbs, a transmembrane protein localized in the 

apical membrane, acts as the anchor with which Sdt and Patj interact (Bachmann et 

al., 2001; Hong et al., 2001,). A current concept is that the Par6/aPKC/Baz core 

complex is a universal effector of polarity and that the Crumbs complex is a specific 

adaptor targeting this effector in epithelial polarity. Par6, aPKC and Crumbs are 

essential for the localization and function of Baz, which in turn acts as a spatial cue 

for Btsz2 localization. Hence, I looked at the distribution of Par6 and aPKC in 

terminal branches by immunostainings with specific antibodies and found apical 

localization of both Par6 and aPKC in the terminal branches (Fig. 39 and Fig. 40).  

 
Figure 39. Par6 localizes at the apical membrane in terminal branches. btl-Gal4, UAS-GFP 3rd 
instar fillets were immunostained with anti-Par6 antibody to visualize the localization of Par6 protein. 
A shows apical localization Par6 in terminal branches. A’ cytosolic GFP. A’’ is an overlay of A and 
A’. The boxed area in A, A’ and A’’ are enlarged in B, B’ and B’’ respectively. 
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Figure 40. aPKC localizes at the apical membrane in terminal branches. btl-Gal4, UAS-GFP 3rd 
instar fillets were immunostained with anti-aPKC antibody to visualize the localization of aPKC 
protein. A shows apical localization of aPKC in terminal branches, in A’ the branches marked with 
cytosolic GFP are shown and A’’ is the overlay of A and A’. The boxed areas in A, A’ and A’’ are 
enlarged in B, B’ and B’’, respectively. 
 

Due to the technical limitations in imaging Crumbs immunostained terminal 

branches, I adopted a different approach to visualize Crumbs localization in terminal 

branches. A Crumbs-GFP transgene (Pellikka et al., 2002) was expressed in tracheal 

cells together with UAS-DsRed and terminal branches in third instar fillets were 

analyzed. Crumbs-GFP localized at the apical membrane (Fig. 41) like Par6, aPKC 

and Baz. The Presence of Par6, aPKC, and Crumbs at the membrane surrounding the 

lumen does raise the possibility that these molecules that interact with and regulate 

Baz might also have a regulatory effect on Btsz localization. This assumption can be 

verified by analyzing mutants of Par6, aPKC and Crumbs, which if involved in Btsz 

localization, should show similar terminal branch defects to btsz mutants.    

Further, Crumbs-GFP was also observed in vesicles at distal tips of terminal 

branches where either the lumen was not developed or was beginning to develop (Fig. 

42).  Localization of Crumbs-GFP in vesicles at distal regions in terminal branches 

was a very interesting observation. The de novo lumen formation in terminal branches 
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is believed to be a consequence of vesicular fusion (Keister, 1948; Locke, 1966; 

Shafiq, 1963). It is a likely scenario that these Crumbs-GFP positive vesicles in the 

distal region of terminal branches fuse to form the lumen. Further, Crumbs through its 

interaction with the Par6/aPKC/Baz complex could confer apical identity to the 

membrane facing the lumen, which is an essential requirement for cuticle 

development in the lumen and consequent stabilization of the lumen. 

 
Figure 41. Crumbs-GFP localizes at the apical membrane in terminal branches. UAS-Crumbs-
GFP was expressed in tracheal cells together with DsRed. A, Apical localization of Crumbs-GFP in 
terminal branches, A’, branches marked with DsRed. A’’, Overlay of A and A’. The boxed area in A, 
A’ and A’’ are enlarged in B, B’ and B’’, respectively. 
 
 

 



  66 
 
 
  Results 
 
Figure 42. Crumbs-GFP localization in vesicles in terminal branches. The images show the distal 
most tip of a terminal branch where the lumen is beginning to develop. A, Crumbs-GFP localized in 
vesicles. B, Branch marked with DsRed. C, Overlay of A and B. The red and green arrows mark the 
proximal (to the nucleus) and distal ends of the branch, respectively. 
 

3.6.7 Phosphorylated Moesin localizes at the apical membrane facing the lumen 

in terminal branches 

In a yeast two hybrid screen, Btsz and Moesin were identified as interacting 

partners (Formstecher et al., 2005). Btsz and Moesin colocalize at the adherens 

junctions and Btsz mediated recruitment of Moesin is essential for the proper 

organization of the actin cytoskeleton at adherens junctions. A Moesin Binding 

Domain (MBD) in the Btsz2 protein was also identified in the amino terminus region 

between residues 581-863 (Pilot et al., 2006). The abnormal terminal branching 

phenotype in the btszK13-4 mutant, which codes for the Btsz2 mutant protein lacking 

the Moesin binding domain leads to the question whether Moesin is required for 

terminal branch development.  

If Moesin is required for terminal branch development and its function is 

dependent on Btsz, then localization of endogenous Moesin should correlate with 

Btsz2 localization in the terminal branches. To visualize activated endogenous 

Moesin in terminal branches, an antibody against phosphorylated mammalian 

Ezrin/Radixin/Moesin, which recognizes Drosophila phosphorylated Moesin, was 

used for immunostaining analysis (Polesello et al., 2002; Karagiosis and Ready, 

2004). The results clearly showed that phosphorylated Moesin, like Btsz, localized at 

the apical membrane facing the lumen (Fig. 43). This result further strengthens the 

possibility of Btsz interacting with Moesin in a manner similar to what has been 

shown in adherens junctions.  
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Figure 43. Phosphorylated Moesin localized at the apical membrane in terminal branches. 3rd 
instar btl-Gal4, UAS-GFP larval fillets were immunostained with anti-Phos-Moesin antibody. A and A’ 
shows the localization of phosphorylated Moesin in terminal branches. In B and B’ the terminal 
branches are marked with GFP. C and C’ are overlays of A-A’ and B-B’, respectively. The boxed area 
in A, B and C are enlarged in A’, B’ and C’, respectively  
 

3.6.8 Function of Moesin in terminal branches 

The distribution of phosphorylated Moesin in a pattern resembling the 

localization of Btsz2, raised the following questions: does Moesin regulate the 

development of the terminal branches and does it function together with Btsz. Moesin 

has pleiotropic functions and is involved in a number of morphogenetic processes, 

e.g., oocyte axis determination, organelle organization and biogenesis, actin 

cytoskeleton organization and biogenesis, compound eye photoreceptor development 

(Hughes and Fehon, 2007). Hence, most of the available moesin mutants are 

homozygous lethal and do not survive until larval stages. To study if moesin mutants 

exhibit terminal branch defects similar to the btszK13-4 mutant, I performed RNAi 

knockdown experiments.  

A moesin RNAi construct (UAS-moe-IR.327-775, Karagiosis and Ready, 

2003) was expressed in tracheal cells together with cytosolic GFP and third instar 
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larvae were analyzed for a terminal branch phenotype. moesin knockdown in tracheal 

cells did indeed result in an abnormal terminal branch phenotype. moesin mutant 

terminal cells had terminal branches with multiple convoluted lumens and the 

numbers of terminal branches were also greatly reduced (Fig. 44). The penetrance of 

the multi-lumen phenotype of moesin knockdown was not 100%.  

Similar multi-lumen phenotypes in terminal branches have been reported 

previously. Mutant alleles of rhea79a, mysXG43 and double mutant combinations of 

mewM6 and ifk27e (the two α-integrin genes in Drosophila) all show multiple 

convoluted lumen in terminal branches (Fig. 45, Levi et al., 2006). The talin-integrin 

complexes, at the basal membrane, are required to anchor terminal branches to the 

underlying substratum and possibly through their association with the actin 

cytoskeleton, stabilize the lumen in terminal branches (Levi et al., 2006). The apical 

localization of Moesin and the multiple lumen phenotype in moesin mutant terminal 

cells raise an interesting prospect: Moesin, an actin organizer localized at the apical 

membrane, probably stabilizes the actin cytoskeleton, which at the basal membrane is 

stabilized by the talin-integrin complex. Further, one could visualize that this Moesin 

function is dependent on Btsz, since both localize at the apical membrane and Btsz 

has been implicated in the membrane localization and function of Moesin in epithelial 

cells.  

 
Figure 44. RNAi mediated knockdown of moesin results in a multi-lumen phenotype.  UAS-moe-
IR.327-775 (moesin RNAi transgene) was expressed in trachea marked with cytosolic GFP. A and B 
are two different terminal branches where moesin is depleted by RNAi mediated knockdown.  
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Figure 45. Multi-lumen phenotype in Drosophila talin and integrin mutants . A, B and C are 
images showing multi-lumen phenotypes in terminal branches of mutant alleles of rhea, βmys and mew 
and if (double mutants), respectively. A’, B’ and C’ are enlargements of the boxed area in C, D and E, 
respectively. Images adapted from Levi et al., 2006 

 

Studies have reported that a threonine residue (position 559) in the actin-

binding tail of Moesin is phosphorylated concomitant with its activation and this 

threonine residue is conserved in all known ERM proteins. Confirming the critical 

role of this threonine residue, the analysis of a phosphomimetic Moesin variant 

(MoesinT559D) revealed that the positional activation of Moesin along with its 

membrane localization is tightly regulated. Ectopically expressed MoesinTD, 

although it localizes at the membrane, causes abnormal phenotypes related to 

disorganization of the actin cytoskeleton (Karagiosis and Ready, 2003). 

 

When the phosphomimetic form of Moesin (MoesinTD) was expressed in the 

terminal tracheal cells, it resulted in severe terminal branching abnormalities. The 

number and length of terminal branches was reduced and the lumen was highly 

disorganized (Fig. 46). Endogenous Moesin is localized and activated concomitantly 

at the membrane and this process is tightly regulated. In wild type terminal branches 

phosphorylated Moesin localizes at the apical membrane around the lumen, which 

suggests that Moesin is activated at the apical membrane. The phosphomimetic 

MoesinTD expressed in terminal cells probably bypasses the tight regulatory process 

and causes abnormal phenotypes. Regulation of Moesin activation at the apical 

membrane is very likely essential for normal lumen patterning and terminal branch 
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development. The factor responsible for localization of Moesin at the apical 

membrane in terminal branches is not known yet. Btsz could fulfill this role in 

terminal branches, like in epithelial cells.  

 

 
Figure 46. Expression of the phosphomimetic form of Moesin in tracheal cells results in severe 
terminal branch defects. MoesinTD expression in tracheal cells results in terminal cells with shorter 
and reduced number of terminal branches (image A) and the lumen is severely disorganized (image B 
arrows). Tracheal cells are marked with cytosolic GFP. 
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4.  Discussion 
 
1. Terminal branch patterning - a carefully orchestrated process 

The Drosophila tracheal system has been extensively used to study the molecular 

and cellular basis of how epithelial cells organize into branched tubes. Although studies 

elucidating tracheal patterning and tube formation events during Drosophila embryonic 

development are abundant, the tracheal developmental events during the larval phase are 

relatively unexplored. Most of the terminal tracheal branch development, the final 

outpost of the tracheal system that supplies oxygen to target tissues, occurs during the 

larval phase. Except for a few details very little is known about the morphology, 

molecular and cellular mechanisms regulating terminal branch development in 

Drosophila.  Morphological characterization of terminal branches in Rhodnius prolixus 

have illustrated that the terminal branch lumen has a diameter of 0.7 to 1μm or less and it 

was described to be similar in other insects including Drosophila (Wigglesworth, 1954; 

Rizki and Rizki, 1979; Wigglesworth and Lee, 1982). While this description holds good, 

my studies characterizing the morphology of terminal branches show that there is a 

refined pattern of lumen diameters in terminal branches.  

The lumen diameters vary in different branches and based on this I have 

categorized them into Type-A and Type-B branches. The lumen diameter in Type-A 

branches progressively decreases along the proximal-distal axis from the nucleus and it 

also substantially differs between Type-A and Type-B branches. In both instances the 

diameter decreases by approximately 40%. This diameter difference between branches of 

the same terminal cell indicates that a regulatory mechanism determining terminal branch 

lumen diameter must exist. An aspect that adds an interesting dimension to this process is 

the observations that the lumen in terminal branches appear to form as a consequence of 

vesicular fusion (Keister, 1948; Locke, 1966; Shafiq, 1963). My findings raise unsolved 

questions concerning the regulation of lumen diameter in terminal branches for future 

research: How does the terminal cell confer specific lumen sizes to different branches, 

what is the regulatory mechanism? Do differently sized vesicles fuse to form tubes with 
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different diameters or is the diameter size regulated post vesicular fusion? If there is a 

regulatory mechanism, is it similar to the one that operates in primary and secondary 

branches? 

 

2. Localized translation and developmental plasticity of terminal 

branches 
Terminal branch development is regulated by oxygen physiology, is highly 

variable and is not stereotyped nor under fixed developmental control. In response to a 

hypoxic signal, the terminal cells have to develop branches efficiently and quickly to 

meet the oxygen demands of target tissues, with terminal branches often formed at a 

significant distance from the nucleus (Wigglesworth, 1954; Locke, 1958; Jarecki et al., 

1999). The developmental plasticity exhibited by terminal branches imposes a number of 

unique demands with respect to development, growth and survival and raises the 

questions: What is the source of proteins required for the local morphological 

differentiation at sites far away from the cell body? Do specific RNAs localize in the 

terminal branches, away from the cell body? Does localized translation, an important 

mechanism regulating developmental plasticity in neurons (Gottlieb, 1990; Job and 

Eberwine, 2001; Martin, 2004), regulate terminal branch development?   

An essential prerequisite for localized translation to occur in the terminal 

branches would be the presence of the translational and co-translational machinery; 

which includes ribosomes, polysomes, endoplasmic reticulum and the Golgi bodies and 

proteins involved in translational regulation. From the transmission electron microscopic 

and immuno-histochemical studies presented here it is evident that the components of 

translational and co-translational machinery are present in the terminal branches, away 

from the nucleus. These findings suggest that the conditions for translation to occur exist 

in terminal branches. Therefore the question of which RNAs localize in terminal 

branches and investigating the function of such localized RNAs is interesting.  
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3. The EP-MS2 technique - a novel method of screening for localized 

RNAs 
To investigate if specific RNAs localize in terminal branches, we have developed 

a new technique, the EP-MS2 technique. The rationale of this new strategy was to tag 

RNAs with GFP in vivo and to track the localization of such tagged RNAs in the terminal 

tracheal cells. This new technique can be used in genome wide genetic screens for 

asymmetrically localizing RNAs in different cell types in Drosophila.  

By performing a pilot screen, I have addressed two important questions: does the 

technique work efficiently and can it be used in different cell types? The technique was 

tested in tracheal cells, oocytes and da2 neurons. From the three cell types candidate 

lines, with the targeted genes transcribing subcellularly localized RNA, were identified. 

However, none of the candidate lines showed an overlap between the three cell types. 

While a good degree of candidate overlap can be expected between tracheal cells and 

neurons the same is not expected between tracheal cells and oocytes. Such an assumption 

is based on the finding that most of the localizing RNAs identified in oocytes are 

involved in patterning and establishing polarity (Bullock and Ish-Horowicz, 2001; Ding 

et al., 1993; Deshler et al., 1997; Forrest and Gavis, 2003; St Johnston, 2005; Santos and 

Lehmann, 2004). In comparison localized RNAs identified in neurons encode proteins 

involved in cytoskeletal organization, plasma membrane synthesis and translational 

regulation (Moccia et al., 2003). Terminal branch localized RNAs described in this study 

is the first report of RNA localization in the tracheal cells. Hence, a bigger picture of 

different species of localized RNAs in the tracheal cells is still incomplete. Nevertheless, 

we do expect a good degree of candidate overlap between terminal tracheal cells and 

neurons based on the similarities these two cell types share in their development and 

morphology. A larger screen in tracheal cells and neurons would delineate the extent of 

overlap of subcellularly localized RNAs, between these cell types. 

In light of past studies to identify localized RNAs we expected candidate genes 

encoding proteins involved in a range of biological activity including cytoskeletal 

organization, plasma membrane synthesis and molecules regulating translation. Our 
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screen for localized RNAs in tracheal cells indeed has yielded candidates that are 

involved in cytoskeletal organization (Btsz) and membrane localized proteins (ATPalpha, 

Na pump α subunit).  

A cDNA library prepared from isolated Aplysia sensory neuronal axons had 

yielded about 250 candidates, most of which were genes encoding cytoskeletal proteins 

and proteins that are components of the translational-co translational machinery 

(Giustetto et al. 2003; Martin et al. 1998; Moccia et al., 2003; Steward and Levy, 1982). 

A recent high-resolution fluorescent in situ hybridization study, where 3370 genes were 

analyzed during early Drosophila embryogenesis showed that 71% of the analyzed genes 

encode subcellularly localized mRNAs (Lecuyer et al., 2007). Compared to these studies 

the number of candidates in our screen, which was about 4%, was less. Nevertheless, the 

EP-MS2 technique enables us to perform tissue specific screens, which is a significant 

advantage. Candidates from different cell types will further our understanding of specific 

cis-acting RNA localization signals, the machinery regulating RNA localization in 

different cells and the biological relevance of RNA localization. Additional advantages of 

the EP-MS2 technique are that the genetic screen can be performed as an F1 screen, it 

combines the advantages of a conventional EP screen, including analysis of over-

expression phenotypes, easy mapping of candidates and mutagenesis by P element 

excision. 

    

There are a few potential problems that can be envisaged concerning this 

technique. One potential problem was the possibility of P element integration disrupting 

the endogenous localization signal of the targeted RNA. Moreover, P elements 

preferentially integrate upstream of genes near the transcriptional start, whereas RNA 

localization signals are generally found in the 3’UTR. Therefore, it is unlikely that this 

strategy disrupts localization signals. This is substantiated by the PCR mapping results 

which showed that EP-MS2 insertions in all the candidate genes were at the 5 prime 

region of the genes. Another issue of concern was whether tagging RNAs with the MS2 

stem loop could cause a localization artifact. The technique of tagging RNAs with the 
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MS2 stem loop and visualizing RNA localization has been tested in different systems (in 

yeast, mammalian cells and Drosophila tissues) and with different RNAs. So far there is 

no evidence suggesting any localization artifacts caused by MS2-binding site tags in 

RNA. The question whether an over-expression strategy could cause a localization 

artifact can be tested by RNA in situ hybridization, which would allow comparing and 

confirming the localization of endogenous RNA of the candidates with that of the MS2-

GFP tagged version. 

 
4. Candidate Characterization: bitesize, a determinant for lumen 

formation and stability in terminal branches? 
Studies in Sciara coprophilas, Calpodes ethlius and Drosophila melanogaster 

suggest that the terminal branch lumen forms as result of vesicular fusions (Keister, 1948; 

Locke, 1966; Shafiq, 1963) and it is believed that the lumen in terminal branches of other 

insects including Drosophila forms by a similar mechanism (Wigglesworth and Lee, 

1982). The vesicular fusion begins at the most distal regions of the developing terminal 

branches resulting in “elongate” vesicles. Such elongate vesicles then become continuous 

with the main tracheal lumen (Keister, 1948; Locke, 1966; Shafiq, 1963). This de novo 

lumen formation mechanism in terminal branches raises fascinating questions. Is 

vesicular fusion random or does it happen in a guided and orderly fashion?  What 

mechanism guides the vesicular fusions? How are the tubular vesicles positioned, 

stabilized and connected to the lumen of the secondary branches? A number of possible 

mechanisms, including a role for the cell cytoskeleton, can be envisaged in the regulation 

of de novo lumen formation in terminal branches.   

A recent study had speculated on a role for the actin cytoskeleton in lumen 

formation (Levi et al., 2006). Mutants of talin/integrin complex components have 

abnormal terminal branches and disorganized terminal branch lumen. The talin/integrin 

complex localizes in the basal membrane of the terminal branches and presumably 

mediates attachment of the branch to the surrounding tissues. Talin is a crucial mediator 

of the interaction between integrins and the actin cytoskeleton. Therefore, it was 



  76 
 
 
  Discussion 
 
speculated that the lumen defect in the talin/integrin complex mutants is probably a 

consequence of actin destabilization at the basal membrane in terminal branches (Levi et 

al., 2006). Based on the model proposed by Levi et al., if the actin cytoskeleton does 

regulate lumen development, then there should also be an actin organizing and/or 

stabilizing complex at the apical membrane that surrounds the lumen in terminal 

branches. Such an actin organizing/stabilizing at the apical membrane in terminal 

branches is yet to be identified. We believe that in btsz we have identified a crucial factor 

of the actin organizing/stabilizing complex, at the apical membrane in terminal branches.  

 
5. Abnormal terminal branches in bitesize mutant larvae 

A recent study had shown that Btsz, together with Moesin, is required for actin 

organization at adherens junctions in Drosophila embryonic epithelial cells. Further, Btsz 

protein localization was shown to be dependent on Bazooka and PtdIns(4,5)P2 (Pilot et 

al., 2006). 

I have shown that btsz is required for terminal branch development. In btsz mutant 

terminal branches are either absent or their numbers are reduced. This is not an effect of 

failed fate determination as shown by immuno-staining against the terminal tracheal cell 

specific SRF protein which is expressed properly in the mutant cells. The known function 

of Btsz in actin organization raised the argument whether the terminal branching defect in 

btsz mutants is a consequence of a disorganized actin cytoskeleton in terminal branches. 

Based on findings that Btsz together with Moesin organizes the actin cytoskeleton (Pilot 

et al., 2006), we speculated that moesin mutants should also have abnormal terminal 

branches. Indeed moesin RNAi knockdown mutants had abnormal terminal branches and 

showed a multi-lumen phenotype. This phenotype although abnormal was not as severe 

as btsz. There are two possible explanations for the differences in the strength of btsz and 

moesin mutant phenotypes. The weaker phenotype in moesin mutant could be explained 

by the efficiency of RNAi knockdown experiments, which has been found to yield milder 

effects, than the genetic loss of function of a gene, probably because of incomplete target 

knockdown. Btsz acts upstream of Moesin and is essential for recruiting and activating 
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moesin at the apical membrane, but Btsz could also have other functions in the terminal 

branch development that is independent of Moesin. This could be an alternate 

explanation for the stronger phenotype in btsz mutants.  

 

The multi-lumen phenotype in moesin RNAi mutants in itself was interesting 

since this phenotype was described as a possible consequence of destabilized actin 

cytoskeleton in terminal branches (Levi et al., 2006). Immuno-histochemical studies of 

the localization of Btsz and the phosphorylated active form of Moesin showed that both 

localize at the apical membrane surrounding the lumen. Localization of Btsz and Moesin 

at the apical membrane makes this complex an attractive partner for the basal membrane 

localized Talin/Integrin complex. Together these apical and basal membrane localized 

actin organizing complexes might stabilize the actin cytoskeleton in terminal branches. 

 

Btsz localizes at the apical membrane surrounding the lumen in the terminal 

branches and this apical localization is dependent on the C2 domains. Drosophila 

Bazooka/Par3 acts as an upstream polarizing cue to localize Btsz protein in embryonic 

epithelial cells (Pilot et al., 2006). In the terminal branches Bazooka, like Btsz, localizes 

at the apical membrane. In addition, Par6, aPKC (essential for Bazooka localization and 

function) and Crumbs (which refines localization of the Baz/Par6/aPKC complex) also 

localize at the apical membrane facing the lumen. The apically localized Baz/Par6/aPKC 

complex and Crumbs suggest that the polarization cue essential for localizing Btsz in 

terminal branches is probably the same as that in embryonic epithelial cells. 

Baz/Par6/aPKC complex and Crumbs are core complexes that act as universal effectors 

of polarity and could regulate actin organization independent of Btsz. Hence, the Btsz 

dependent and independent functions of the Baz/Par6/aPKC complex and Crumbs in 

terminal branch development need to be further delineated.   

 

Based on these results I propose a model (Fig. 47) wherein a Btsz/Moesin 

complex in the apical membrane acts as an anchor for organizing or stabilizing the actin 
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cytoskeleton, which is connected to the Talin/Integrin complex localized in the basal 

membrane, which in turn is essential for proper lumen formation and terminal branch 

development.  

 

 
 
Figure 47. Model. Schematic of a cross section of a terminal branch. The apical membrane faces the lumen 
(green) and the basal membrane (red) faces outwards. Btsz, Moesin, Bazooka, Par6, aPKC and Crumbs 
localize at the apical membrane. Talin and β myospheroid localize at the basal membrane. The actin 
cytoskeleton is represented in red dotted lines. 
 

 

However the absence of terminal branches in btsz mutants cannot be completely 

explained based on the proposed model and needs further explanation. Studies in Sciara 

coprophila, Calpodes ethlius and Drosophila melanogaster suggest a possible mechanism 
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of cytoplasmic vesicular fusion resulting in lumen formation in the terminal branches 

(Keister, 1948; Locke, 1966; Shafiq, 1963). A similar process has been demonstrated in 

mammalian angiogenesis in vitro (Folkman and Haudenschild, 1980).  

In my studies on Crumbs localization I found that Crumbs localizes at the apical 

membrane, but in addition to this I found Crumbs-labeled vesicles at the distal regions of 

developing terminal branches in which the lumen had not yet formed. Crumbs complex 

regulates localization of Bazooka, which in turn acts as a polarized localization cue for 

Btsz. Therefore, one could speculate on a second function for Btsz in terminal branch 

development. Consistent with the function of C2-domain containing proteins, Btsz could 

have a role in vesicular transport and fusion leading to lumen formation in terminal 

branches. The membrane anchored Btsz, like its mammalian homologue Granuphilin (Yi 

et al., 2002) could regulate vesicular fusion. Subsequent to its function in vesicular fusion 

Btsz together with Moesin could organize the actin cytoskeleton at the apical membrane. 

Figure 48 describes this additional role for Btsz in lumen formation in terminal branches. 

 

 

 
 
Figure 48. Model for vesicular fusion during terminal branch development. Crumbs containing 
vesicles (purple circles) are seen in developing regions of branches. These vesicles may also have Btsz 
(blue boxes) which could have a role in vesicular fusion.  
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6.  Appendix 
6.1 List of genes involved in tracheal morphogenesis  

 

 
Tabel.1 Describes a list of genes and there function in tracheal morphogenesis. Table adapted from Elazar 
Zelzer, E. and Shilo, B-Z., (2000) 
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6.2. Measurements from Type-A and Type-B branches: Data set 1 and 

data set 2. 

Data set-1  Diameter in μm Data set-2  Diameter in μm 
A1 1.17 A1 0.74 
A2 1.17 A2 0.74 
A3 0.90 A3 0.64 
A4 1.17 A4 0.74 
A5 1.06 A5 0.74 
B1 1.27 A6 0.64 
B2 1.06 A7 0.74 

B3 1.27 A8 0.74 
B4 1.17 A9 0.74 
B5 1.17 A10 0.64 
C1 1.27 B1 0.53 
C2 1.27 B2 0.64 
C3 1.06 B3 0.74 
C4 1.17 B4 0.74 
C5 1.06 B5 0.74 
D1 1.38 B6 0.64 
D2 1.48 B7 0.64 
D3 1.17 B8 0.64 
D4 0.85 B9 0.74 
D5 1.38 C1 0.64 
E1 1.27 C2 0.74 
E2 1.38 C3 0.53 
E3 0.74 C4 0.74 
E4 1.38 C5 0.74 
E5 1.17 C6 0.74 
Median 1.17 D1 0.85 
Std.Dev 0.17 D2 0.74 

  D3 0.74 
  D4 0.64 
  D5 0.74 
  E1 0.74 
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  E2 0.64 
  E3 0.74 
  E4 0.64 
  E5 0.64 
  Median 0.74 
  Std.Dev 0.07 

 
A-E represents five different terminal cells from which measurement were taken. 

Measurements taken from Type-A branch, 25 measurements from five cells, are included 

in data set 1. Measurements from Type-B branches, total of 35 measurements, are 

included in data set 2. The median and standard deviation of both the data sets are shown 

in red.  

6.3 Measurement along the proximal-distal axis of Type-A branch:  

Data set 3 

 
 

B1-B6 represents 6 different Type-A branch and P1-P7 represents measurement taken 

from each Type-A branch. The median and standard deviation of both the data sets are 

shown in red.  

  

 B1 B2 B3 B4 B5 B6 

P1 1.17 1.06 1.17 1.272 1.378 1.378 

P2 1.272 1.06 1.17 1.378 1.378 1.272 

P3 1.17 1.17 1.06 1.047 1.272 1.272 

P4 1.06 1.17 0.9 0.742 1.17 1.06 

P5 1.047 1.06 0.9
- 

0.742 1.06 

P6 0.9 0.636 0.636
- - - 

P7 0.742 
- - - - - 

Average 1.051571 1.026 0.972667 1.10975 1.188 1.2084 

Stdev 0.180527 0.198514 0.204653 0.281342 0.263864 0,142214 
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6.4 Lumen and cell diameter measurements from the same positions in 

Type-A branches: Data set 4  

  

Lumen diameter  Diameter in μm Cell Diameter  Diameter in μm 
P1 1.17 P1 2.757 
P2 1.272 P2 3.393 
P3 1.17 P3 3.817 
P4 1.06 P4 4.241 
P5 1.047 P5 4.772 
P6 0.9 P6 3.935 
P7 0.742 P7 2.757 
P8 1.06 P8 3.287 
P9 1.06 P9 2.332 
P10 1.17 P10 2.651 
P11 1.17 P11 4.347 
P12 1.06 P12 3.499 
P13 0.636 P13 2.226 
P14 1.17 P14 5.514 
P15 1.17 P15 2.863 
P16 1.06 P16 3.075 
P17 0.9 P17 2.226 
P18 0.9 P18 5.09 
P19 0.636 P19 3.605 
P20 1.272 P20 4.772 
P21 1.378 P21 7.529 
P22 1.047 P22 3.817 
P23 0.742 P23 4.453 
P24 1.378 P24 3.287 
P25 1.378 P25 3.817 
P26 1.272 P26 4.135 
P27 1.17 P27 3.711 
P28 0.742 P28 3.923 
P29 1.378 P29 4.665 
P30 1.272 P30 3.181 
P31 1.272 P31 5.726 
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P32 1.06 P32 3.711 
P33 1.06 P33 3.605 
Median 1.06 Median 3.711 
Std Dev 0.211754123 Std Deviation 1.105886818  

 

Data set 4 includes lumen diameter and cell diameter measurements taken at same 

positions from six different branches. A total of 33 measurements of lumen diameter and 

cell diameter were taken. The median and standard deviation of both the data sets are 

shown in red.  
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Abbreviations  
Btsz      Bitesize 

moe    moesin 

Baz      Bazooka 

Par6    Drosophila Par6 

aPKC    atypical Protein Kinase C 

Crbs    Crumbs 

PtdIns(3,4,5)P2  phosphatidylinositol (4,5)-bisphosphate 

βmys     βmyospheroid  

mew     multiple edematous wings 

if    inflated 

Dof    Downstream of FGF 

btl       breathless 

CenG1A   Centurian Gamma 1A 

HsP70Aa   Heatshock protein 

Lola     Longitudinal lacking 

Hr39    Hormone receptor 39 

UAS    Upstream activating sequence 

MBD    Moesin binding domain 

SHD     Synaptotagmin like protein family Homology Domain 

SLP       Synaptotagmin like protein family 

Pac     Pacman  

TEM     Transmission electron microscopy  

ER     Endoplasmic reticulum 

nt    nucleotide 

BSA    Bovine Serum Albumen 

dNTP    deoxy Nucleotide Tri Phosphate 

PCR   Polymerase Chain Reaction 
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                                                                                                   Abstract 
Abstract 

Asymmetrical localization of mRNAs and localized protein synthesis have an 

important role in establishing and maintaining polarity in cells such as neurons or the 

Drosophila oocyte and in the regulation of developmental plasticity. In Drosophila a 

subset of highly branched cells of the respiratory system exhibits both a high degree 

of polarity and developmental plasticity. These tracheal cells respond to the need for 

oxygen in the surrounding tissue by outgrowth of branches, often at sites very distant 

from the nucleus. The experiments presented here are based on the assumption that 

some of the proteins required at the site of outgrowth are synthesized locally rather 

than near the nucleus. I have demonstrated that the translational and co-translational 

machinery is present in the terminal branches, which indicates that the conditions for 

localized translation to occur exist in the terminal branches. Based on this knowledge 

I have developed a strategy for screening for mRNAs with asymmetric subcellular 

localization using a technique of tagging mRNAs with GFP in vivo. With this 

experimental setup I have performed a pilot screen in Drosophila tracheal cells and 

have identified 8 candidates exhibiting specific subcellular localization in terminal 

tracheal cells. Analysis of this experimental strategy shows that the technique is also 

suitable for other cells such as neurons and oocytes.  

On of the candidates bitesize (btsz) was investigated to analyze its function in 

terminal branch development. In btsz mutants terminal branch are either absent or 

their numbers are reduced. Mutation in moesin, a btsz interacting partner, also shows 

an abnormal branching phenotype. Both Btsz and Moesin localize at the apical 

membrane, which surrounds the lumen of terminal branches. Taking into account that 

btsz together with moesin is required for organizing actin at adherens junctions in 

embryonic epithelial cells; I propose a model by which Btsz/Moesin regulates 

terminal branch development by acting as an anchor for the actin cytoskeleton on the 

plasma membrane surrounding the lumen in terminal branches. 
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                                                                                             Zusammenfassung  
Zusammenfassung 

Die asymmetrische mRNA-Lokalisierung und lokalisierte Proteinsynthese haben 

eine wichtige Funktion in der Etablierung und Aufrechterhaltung der Polarität in Zellen 

wie etwa Neuronen oder Drosophila Oozyten und in der Regulation der 

Entwicklungsplastizität. In Drosophila besitzt eine Subpopulation von hochverzweigten 

Zellen des Respirationssystems einen hohen Grad an Polarität und 

Entwicklungsplastizität. Diese Zellen des Tracheensystems reagieren auf den 

Sauerstoffbedarf des umliegenden Gewebes mit einem Auswachsen der Tracheenäste, oft 

an Stellen die sehr weit vom Zellkern entfernt sind. Den hier beschriebenen 

Experimenten liegt die Annahme zugrunde, dass einige der an der Stelle des 

Auswachsens benötigten Proteine vor Ort synthetisiert werden und nicht in der Nähe des 

Zellkerns. Ich konnte zeigen, dass die Translations- und Co-Translationsmachinerie in 

den terminalen Tracheenästen vorhanden ist, was darauf hindeutet, dass die 

Bedingungen, damit eine lokalisierte Translation stattfindet, in den terminalen 

Tracheenästen bestehen. Davon ausgehend habe ich eine Strategie entwickelt um nach 

mRNAs mit asymmetrischer subzellulärer Lokalisierung zu suchen und habe dazu eine 

Technik verwendet, bei der in vivo mRNAs mit GFP markiert werden. Mit diesem 

experimentellem System habe ich einen Pilotscreen in Drosophila Tracheenzellen 

durchgeführt und konnte dabei 8 Kandidaten identifizieren, die eine spezifische 

subzelluläre Lokalisierung in den terminalen Tracheenzellen aufweisen. Eine Analyse 

dieses experimentellen Systems zeigt, dass die Technick auch für andere Zelltypen wie 

Neuronen oder Oozyten geeignet ist.  

Eines der identifizierten Kandidatengene, bitesize (btsz), wurde untersucht um 

seine Funktion bei der terminalen Tracheenastentwicklung zu analysieren. In btsz-

Mutanten sind die terminalen Tracheenäste entweder nicht vorhanden oder in ihrer 

Anzahl verringert. Eine Mutation in moesin, einem Interaktionspartner von btsz, führt 

ebenfalls zu einem Phänotyp, der durch abnormales Auswachsen der Tracheenäste 

gekennzeichnet ist. Sowohl Btsz als auch Moesin lokalisieren an der apikalen Membran, 

die das Lumen der terminalen Äste umgibt. Unter Berücksichtigung, dass btsz zusammen 

mit moesin für die Aktin-Organisation an Adhärenzverbindungen in embryonalen 
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                                                                                             Zusammenfassung  
Epithelzellen benötigt wird, schlage ich als Modell vor, dass Btsz/Moesin die terminale 

Tracheenastentwicklung reguliert, indem es als Ankerpunkt für das Aktin Cytoskelett an 

der das Lumen der Äste umgebenden Plasmamembran dient. 
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