
Markov-Chain-Based Heuristics for the

Feedback Vertex Set Problem for Digraphs

I n a u g u r a l - D i s s e r t a t i o n

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Mile Lemaić

aus Wesseling

Köln 2008

Berichterstatter: Prof. Dr. Ewald Speckenmeyer
HD Dr. Bert Randerath

Tag der mündlichen Prüfung: 30. Juni 2008

Abstract

A feedback vertex set (FVS) of an undirected or directed graph G = (V, A) is a
set F ⊂ V such that G−F is acyclic. The minimum feedback vertex set problem
asks for a FVS of G of minimum cardinality whereas the weighted minimum
feedback vertex set problem consists of determining a FVS F of minimum weight
w(F) given a weight function w : V → R+. Both problems are NP-hard [28].
Nethertheless, they have been found to have applications in many fields. So one
is naturally interested in approximation algorithms.

While most of the existing approximation algorithms for feedback vertex
set problems rely on local properties of G only, this thesis explores strategies
that use global information about G in order to determine good solutions. The
pioneering work in this direction has been initiated by Speckenmeyer [56]. He
demonstrated the use of Markov chains for determining low cardinality FVSs.
Based on his ideas, new approximation algorithms are developed for both the un-
weighted and the weighted minimum feedback vertex set problem for digraphs.
According to the experimental results presented in this thesis, these new algo-
rithms outperform all other existing approximation algorithms.

An additional contribution, not related to Markov chains, is the identifica-
tion of a new class of digraphs G = (V, A) which permit the determination of an
optimum FVS in time O(|V |4). This class strictly encompasses the completely
contractible graphs [36].

Zusammenfassung

Ein Feedback-Vertex-Set (FVS) eines ungerichteten oder gerichteten Graphen
G = (V, A) ist eine Menge F ⊂ V derart, dass G − F azyklisch ist. Das
Minimum-Feedback-Vertex-Set Problem verlangt nach einem FVS minimaler
Kardinalität, wohingegen das gewichtete Minimum-Feedback-Vertex-Set Prob-
lem aus dem Bestimmen eines FVSs F minimalen Gewichtes w(F) besteht,
ausgehend von einer Gewichtsfunktion w : V → R+. Beide Probleme sind
NP-schwer [28]. Dennoch haben sie in vielen Bereichen Anwendung gefunden.
Daher ist man naturgemäß an Approximationsalgorithmen interessiert.

Während die meisten der vorhandenen Approximationsalgorithmen für Feed-
back-Vertex-Set Probleme lediglich auf lokalen Eigenschaften von G beruhen,
untersucht die vorliegende Dissertation Strategien, die zur Bestimmung guter
Lösungen globale Informationen über G benutzen. Die Pionierarbeit in dieser
Richtung wurde von Speckenmeyer [56] geleistet. Er demonstrierte den Einsatz
von Markovketten zur Bestimmung von FVSs kleiner Kardinalität. Auf seinen
Ideen basierend werden sowohl für das ungewichtete als auch für das gewichtete
Minimum-Feedback-Vertex-Set Problem für gerichtete Graphen neue Algorith-
men entwickelt. Gemäß den experimentellen Ergebnissen dieser Dissertation
übertreffen die neuen Algorithmen leistungsmäßig alle bisher vorhandenen Ap-
proximationsalgorithmen.

Ein weiterer Beitrag, der keinen Bezug zu Markovketten hat, ist die Be-
nennung einer neuen Klasse von gerichteten Graphen G = (V, A), die die Bes-
timmung optimaler FVSs in Zeit O(|V |4) erlauben. Diese Klasse enthält die
’completely contractible graphs’ [36] als echte Teilklasse.

�� ���

�

�

�
Contents

Mathematical symbols iii

Algorithms v

1 Introduction 1
1.1 Notation . 3
1.2 Basic problems and concepts . 5
1.3 A LP formulation for the weighted minimum FVS problem . . . 8

2 The state of the art 11
2.1 Exact algorithms . 12

2.1.1 General algorithms . 12
2.1.2 Polynomial algorithms for special digraph classes 18

2.2 Approximation Algorithms . 20
2.2.1 Tournaments . 22
2.2.2 Planar digraphs . 22

2.3 Heuristics . 23
2.3.1 GRASP . 23
2.3.2 The combinatorial algorithm of Demetrescu and Finocchi 24
2.3.3 Schwikowski’s enumeration algorithm 24

3 Basic facts about Markov chains 29
3.1 Basic definitions . 29
3.2 Irreducibility and periodicity . 32
3.3 Recurrence and transience . 33
3.4 Limiting and stationary distribution 34

4 MFVS and variants 37
4.1 The basic MFVS algorithm . 38

4.1.1 Motivation . 38
4.1.2 The algorithm . 38
4.1.3 Bad behaviour . 39
4.1.4 Runtime and implementation 43

4.2 The mean approach . 45
4.2.1 Motivation . 45
4.2.2 The algorithm . 46

4.3 Weighted versions . 49
4.3.1 Motivation . 49
4.3.2 Algorithms . 53

ii

5 Randomised metaheuristics 57
5.1 Randomising MFVSMean . 57

5.1.1 The algorithm . 57
5.1.2 Runtime and implementation 58

5.2 The Markovian search procedure 60
5.2.1 The algorithm . 60

5.3 Runtime and implementation . 63

6 Experimental results and discussion 69
6.1 Experimental environment . 69

6.1.1 Algorithms . 69
6.1.2 Test instances . 70

6.2 Experimental results . 71
6.2.1 Algorithms for the unweighted minimum feedback vertex

set problem . 71
6.2.2 Algorithms for the weighted minimum feedback vertex set

problem . 82
6.3 Conclusion . 83

A New digraph reductions 85
A.1 Preliminary results . 85
A.2 The diclique reductions . 89
A.3 The finite Church-Rosser property for the DICLIQUE-1 reductions 92

A.3.1 Notation . 92
A.3.2 The proof of the Church-Rosser property 92

A.4 Concluding remarks . 99

Bibliography 103

Acknowledgements 109

�� ���

�

�

�

Mathematical symbols

N Set of natural numbers, i.e. N = {1, 2, 3, . . .}
Q Set of rational numbers
R Set of real numbers
Q+ Set of positive rational numbers
Q≥0 Set of non-negative rational numbers
R+ Set of positive real numbers
R≥0 Set of non-negative real numbers
P(X) Power set of set X
|X | Cardinality of set X or the absolute value of X if X is a real number
‖x‖1 Taxicab norm of vector x = (xi)i∈I , i.e. ‖x‖1 =

∑
i∈I |xi|

‖x‖∞ Maximum norm of vector x = (xi)i∈I , i.e. ‖x‖∞ = max{|xi| : i ∈ I}
A ·∪B Disjoint union of sets A and B
f|S Restriction of the map f : X → Y to the set S ⊂ X

iv Mathematical symbols

�� ���

�

�

�

Algorithms

2.1 The Smith-Walford algorithm. 15
2.2 The branch and bound algorithm. 17
2.3 Shamir’s algorithm for the determination of an optimal FVS of a

reducible flow graph. 20
2.4 The combinatorial algorithm of Demetrescu and Finocchi. 25
2.5 Schwikowski’s enumeration algorithm. 26
2.6 A prototype of a heuristic algorithm based on Schwikowski’s enu-

meration algorithm. 27
4.1 The Markovian FVS algorithm. 40
4.2 The transformation of a FVS F into a minimal one. 41
4.3 The vertex selection heuristic of MFVS. 41
4.4 The vertex selection heuristic of MFVSMean. 47
4.5 The vertex selection heuristic of WMFVS. 54
4.6 The vertex selection heuristic of WMFVSMean. 55
5.1 The vertex selection heuristic of RMFVSMean. 59
5.2 The GRASP variant of MFVSMean. 60
5.3 The generation of a successor FVS of F based on step width d. . 61
5.4 The local search procedure MarkovSearch. 62

vi Algorithms

�
�

�
�Chapter

�
�

�
1

�

�

�

�
Introduction

”B-but, my dear f-fellows,” said Feodor
Simeonovich, having diligently deciphered the
handwriting. ”This is B-Ben B-Beczalel’s
problem! Didn’t C-Cagliostro prove th-that it
had no s-solution?”
”We know that it has no solution, too,” said
Junta, bristling immediately. ”But we wish to
learn how to solve it”
”H-how strangely you r-reason, C-Cristo. . . .
H-how can you look for a solution, where it
d-does not exist? It’s s-some sort of
n-nonsense.”
”Excuse me, Feodor, but it’s you who are
reasoning strangely. It’s nonsense to look for a
solution if it already exists. We are talking
about how to deal with a problem that has no
solution. [. . .] ”

Monday Begins on Saturday,
Arkadi and Boris Strugatski

Think of the task of testing a VLSI circuit for defects, (re)evaluating the
probability that a hypothesis may be true based on evidence using Bayesian
inference, or preventing deadlocks in computer systems, i.e. situations in which
two or more processes mutually wait for each other to release particular re-
sources. What do these seemingly unrelated tasks have in common? Their core
problems and many others can be formulated as feedback vertex set problems
[35, 38, 47].

The feedback vertex set of an undirected or directed graph is a subset of
vertices whose removal destroys (or breaks) all cycles of the graph. Feedback
arc sets are defined analogously. For practically all applications one is interested
in determining feedback vertex sets of minimum cardinality or minimum weight
in the case of vertex-weighted graphs.

Given the variety of applications, one would expect feedback vertex set prob-
lems to be well analysed. Yet, the contrary is rather the case. Despite the
well known fact that the problem of determining a minimum cardinality (resp.
weight) feedback vertex set is NP-hard for both undirected and directed graphs
[28], in [60] it is called the ’probably [. . .] least understood of the classic prob-
lems’ — at least for digraphs. Of course, in the more than 20 years since that
quote we have seen some progress. Approximation algorithms with provable
performance-ratio have been developed and new classes of polynomially solv-

2 Chapter 1. Introduction

able graphs have been identified. However, particularly for the directed case,
feedback set problems remain poorly understood compared to the SAT problem
or the Travelling Salesman problem. This is especially true in view of the small
number of existing heuristics for feedback set problems on digraphs. This thesis
is intended to narrow the gap.

Almost all existing heuristic algorithms for the minimum feedback vertex set
problem on digraphs base their decision which vertex v to take into a feedback
vertex set of the digraph G on local properties of v, i.e. on the degree of v
or on its neighbourhood. The problem with these approaches is that cycles —
which shall be broken by a feedback vertex set — are global objects of G, so
intuitively, it is obvious that local information about v is no good indicator of
whether v belongs to a low cardinality feedback vertex set of G. While this
problem is less acute on dense digraphs because the cycles tend to be small, it
becomes dominant on sparse digraphs where cycle lengths are typically larger.
This is the starting point of this thesis.

The algorithms developed in the present thesis attempt to overcome the
mentioned deficiencies. Based on the ideas of Speckenmeyer [56] Markov chains
can be associated to instances of the (weighted) minimum feedback vertex set
problem in a natural way. Markov chains in turn take the global cycle structure
of the problem instance into account, so that algorithms can be devised that do
not solely rely on local properties of the digraph. These deterministic algorithms
can be randomised to achieve even better results, which is also demonstrated.
The distinction between deterministic and randomised algorithms is made as
follows: In the course of execution, deterministic algorithms may have a choice
and the chosen alternative may depend on the encoding of the input instance.
But given the same encoding a deterministic algorithm will always produce the
same output. For randomised algorithms this is not the case. They will typi-
cally produce different outputs although the inputs have been the same.

The minimum feedback vertex set problem on digraphs comprises an inter-
esting feature. Like other classic NP-hard optimisation problems it concedes
rules by which the size of the input instance can be reduced. These rules will be
called digraph reductions. The most prominent and effective ones among them
are those of Levy and Low [36]. The digraphs that can be fully reduced by these
reductions are called completely contractable graphs. In addition, there are the
digraph reductions of Smith and Walford [55] which are only theoretically rel-
evant due to their large runtime. Besides these classic reductions, several new
digraph reductions have been developed over the past decade [37, 44]. Although
they are effective in practice, they do not lead to new polynomially solvable di-
graph classes because it has not been shown that they possess the Church-Rosser
property. Another minor topic of the thesis is the formulation of four new di-
graph reductions. For a subset of these reductions we prove the Church-Rosser
property, for the others we show that the property does not hold. The result-
ing class of digraphs, which strictly encompasses the completely contractable
graphs, is denoted as DICLIQUE-1 reducible graphs.

The thesis is organised as follows: The rest of the chapter is devoted to
fixing the notation and introducing the basic concepts with respect to feedback

1.1. Notation 3

set problems. Chapter 2 gives an overview of the current state of the art. Some
algorithms mentioned therein will motivate the design of our own ones. As
these new algorithms make heavy use of Markov chains, Chapter 3 presents a
brief introduction. Chapters 4 and 5 introduce the developed approximation
algorithms which are all based on Markov chains. While Chapter 4 describes
the deterministic algorithms, Chapter 5 deals with the randomised algorithms.
Chapter 6 contains the experimental results for the algorithms of Chapters 4
and 5 and some concluding remarks. Appendix A introduces the new digraph
reductions which generalise the Levy-Low reductions.

While Chapters 1–3 are reproductive, Chapters 4–6 as well as Appendix A
are original. Exceptions to this framework are cited.

1.1 Notation

The notation used here is mainly adopted from [17]. As the title of the thesis
indicates, the emphasis lies on digraphs, and so the terminology for undirected
graphs will be omitted in this section. It will be presented when needed.

A digraph G = (V, A) consists of a finite vertex set V and an arc set
A ⊂ V ×V . Occasionally, for V and A the notation V =: V (G) and A =: A(G)
will be used. Given an arc a = (u, v) ∈ A we will say that a is directed from
u to v whereby u being the source and v the target of a. Arc a is said to be
incident to both u and v. The definition of a digraph implies that it cannot
have parallel arcs – different arcs with the same sources and targets. How-
ever, a digraph can have anti-parallel arcs, i.e. arcs of the form (u, v) and
(v, u). If for any arc (u, v) ∈ A the digraph G also contains the anti-parallel
arc (v, u) ∈ A, then G is called symmetric. An arc (v, v) is called a loop. A
vertex v ∈ V is said to be loop-free if (v, v) /∈ A. If this holds for every vertex
v ∈ V , G is called loop-free.

The sets

N−
G(v) := {u ∈ V : (u, v) ∈ A} and N+

G(v) := {u ∈ V : (v, u) ∈ A}

are said to be the set of all predecessors and the set of all successors of v,
respectively. The neighbours NG(v) of v are the union of predecessors and
successors of v, i.e. NG(v) := N−

G(v) ∪ N+
G(v) while the mates N=

G(v) of v are
their intersection, i.e. N=

G(v) := N−
G(v) ∩ N+

G(v). The cardinalities

d−
G(v) := |N−

G(v)|, d+
G(v) := |N+

G(v)| and d=
G(v) := |N=

G(v)|

are referred to as in-, out- and matedegree of v. The degree of v is defined
as dG(v) := d−

G(v) +d+
G(v). The index G will be omitted if the meaning is clear

from the context. Furthermore, another digraph G′ = (V ′, A′) is a subgraph
of G (written as G′ ⊆ G) if V ′ ⊆ V and A′ ⊆ A. The digraph induced by
a vertex set U ⊆ V is a special subgraph. It is defined as G[U] := (U, A∩U×U).

A digraph D = (VD, AD) is called a directed clique (diclique) of size |VD |
if it is complete, which is to say AD = {(u, v) ∈ VD × VD : u 6= v}. For nota-
tional convenience the empty digraph and the digraph consisting of one vertex

4 Chapter 1. Introduction

only are considered to be dicliques of size 0 and 1, respectively.

Finally, we introduce the inverse digraph G−1 of G defined by

G−1 := (V, A′) with A′ := {(v, u) : (u, v) ∈ A}.

It is obtained from G by altering the directions of the arcs of G.

A path P = (v0, . . . , vk) is a sequence of vertices vi ∈ V (i = 0, . . . , k) such
that (vi, vi+1) ∈ A for i = 0, . . . , k− 1. It it said to be simple if all the vertices
are distinct. In addition, the following notation is introduced:

head(P) := vk, tail(P) := v0, length(P) := k.

If head(P) = tail(P), then P is called a cycle. Note that a loop is a cycle of
length 1. A digraph which does not contain cycles is called acyclic. The cycle
is simple if vi 6= vj for 0 ≤ i < j < k. Like for digraphs the notation

V (P) := {v0, . . . , vk} and A(P) := {(vi, vi+1) : 0 ≤ i < k}

will also be used for paths. Furthermore, the acyclic vertices and acyclic
arcs of G are defined as

Vacyc(G) := {v ∈ V : v /∈ V (C) : C any cycle in G}
and Aacyc(G) := {a ∈ A : a /∈ A(C) : C any cycle in G},

respectively.

To cope with feedback problems on digraphs one has to modify them. Thus,
let us define some operations on digraphs beginning with the most basic ones,
i.e. the inclusion and deletion of arcs and vertices. For a vertex v and an arc
a ∈ V × V the following notation will be used:

G + a := (V, A ∪ {a})
G + v := (V ∪ {v}, A)

G− a := (V, A \ {a})
G− v := (V \ {v}, A ∩ (V \ {v})× (V \ {v}))

Figure 1.1 illustrates the deletion of a vertex v. Because the order in which
vertices (resp. arcs) are included in G obviously does not matter, we shall write
G + S for a vertex (resp. arc) set S = {s1, . . . , sk} instead of G + s1 + · · ·+ sk.
By applying the same reasoning a similar notation will be used for the deletion.

Next, we introduce an operation ◦ defined for pairs consisting of a digraph
G and a vertex v ∈ V (G) yielding a digraph G ◦ v, called the exclusion of v
from G. Formally, it is defined as

G ◦ v := G− v + N−
G(v)×N+

G(v).

Informally speaking, v is removed and every predecessor of v is connected to
every successor of v by an arc if that arc does not already exist. An example

1.2. Basic problems and concepts 5

v

Figure 1.1: The deletion of v.

v

Figure 1.2: The exclusion of v.

is depicted in Figure 1.2. The exclude operation is known by other names in
other sources (see e.g. [20, 37, 44]).

As can be seen from the definition, the exclusion of v is only feasible if v is
loop-free, while the deletion and all other operations on G are always feasible.
Thus, the exclusion as defined here might look artificial, but in the next section
we will see a close relation to feedback set problems.

1.2 Basic problems and concepts

This section will present the basic problems treated in this thesis. In addition,
some problem-based concepts will be introduced in order to facilitate the pre-
sentation of the ideas. Let us start with the definition of the feedback vertex
and the feedback arc set of a digraph G = (V, A).

Definition 1.1 (feedback vertex (resp. arc) set, redundancy). Let G =
(V, A) be a digraph.

1. A set F ⊂ V is called a feedback vertex set (FVS) of G if G − F is
acyclic.

2. A set f ⊂ A is called a feedback arc set (FAS) of G if G−f is acyclic.

A feedback vertex (resp. arc) set F ⊂ V is said to be minimal if there is
no proper subset F ′ (F such that F ′ is also a feedback vertex (resp. arc) set.
Otherwise, if F ′ (F is a feedback vertex (resp. arc) set, any x ∈ F \ F ′ is
called redundant.

Feedback vertex sets and feedback arc sets are closely related. To see this,
consider the line digraph L(G) = (VL, AL) of a digraph G = (V, A). It is

6 Chapter 1. Introduction

constructed as follows: We set the vertex set VL of L(G) as the arc set of G,
i.e. VL := A. Then, two arcs a, b ∈ VL are connected by an arc in L(G) if the
target of a is equal to the source of b, i.e.

AL := {(a, b) ∈ VL × VL : a = (u, v) ∨ b = (v, w)}.

Having constructed the line digraph, one can see that any feedback arc set f
of G is a feedback vertex set of L(G). In other words, any feedback arc set
problem can be seen as a feedback vertex set problem. This is the reason why
the focus of this thesis will be on the latter problems.

But which problems will be considered here? The focus shall be on the
minimum feedback vertex set problem, i.e. the problem of determining
a feedback vertex set of minimal cardinality. In addition, the weighted min-
imum feedback vertex set problem is treated marginally. An instance of
this problem is a (vertex-)weighted digraph G = (V, A, w) with a positive
weight function w : V → R+. The task is to determine a feedback vertex set
F of minimal weight w(F) :=

∑
v∈F w(v). In both cases a solution for these

problems is called an optimal feedback vertex set.

The problems mentioned suggest the definition of the set CG as

CG := {C : C is a cycle in G}.

A cycle C is called minimal if there is no cycle C ′ with V (C ′) (V (C). One can
easily see that a cycle C = (v0, . . . , vk, v0) is minimal if and only if it is simple
and there is no arc (vi, vj) ∈ A (i, j ∈ {0, . . . , k}) such that (vi, vj) /∈ A(C).
Hence, a subsetMG ⊂ CG can be identified, namely

MG := {C ∈ CG : C is minimal}.

Now, these definitions permit a characterisation of feedback vertex sets as the
following proposition shows:

Proposition 1.2. Let G = (V, A) be a digraph. Then, F ⊂ V is a feedback
vertex set if and only if

∀C ∈MG : F ∩ V (C) 6= ∅.

This characterisation will be of use on several occasions throughout this the-
sis. A related characterisation also involving the set MG is that of redundant
vertices.

Proposition 1.3. Let F ⊂ V be a FVS of a digraph G = (V, A). A vertex
v ∈ F is not redundant if and only if

∃C ∈MG : F ∩ V (C) = {v}.

Proof. Suppose v ∈ F is not redundant, meaning that the digraph G′ :=
G − (F \ {v}) is cyclic. So there is a minimal cycle C ∈ MG′ ⊂ MG for
which F ∩ V (C) = {v} holds as F is a FVS of G.

1.2. Basic problems and concepts 7

Now, assume v ∈ F to be redundant, which means F ′ := F \ {v} is a FVS
of G. Let C ∈ MG be an arbitrary minimal cycle in G with v ∈ V (C). Because
F ′ is a FVS of G we have F ′ ∩ V (C) 6= ∅ in view of Proposition 1.2. Hence

F ∩ V (C) = (F ′ ·∪{v}) ∩ V (C) = (F ′ ∩ V (C))︸ ︷︷ ︸
6=∅

·∪ ({v} ∩ V (C))︸ ︷︷ ︸
={v}

) {v}

holds and the assertion follows.

Now, let us examine how the deletion and the exclusion affect the set MG.
First, consider MG−v for a vertex v ∈ V . Then, one immediately sees that
MG−v ⊂MG. More precisely,

MG−v = {C ∈MG : v /∈ V (C)}.

The situation is different when consideringMG◦v. Let C = (v0, . . . , vk, v0) ∈
MG be a minimal cycle. The only interesting case is where N−

G(v) ∩ V (C) 6=
∅ 6= N+

G(v)∩V (C). Otherwise, C is also a cycle in G◦v and it remains minimal,
thus C ∈ MG◦v. So, consider the case N−

G(v) ∩ V (C) 6= ∅ 6= N+
G(v) ∩ V (C). If

v ∈ V (C), w.l.o.g. v = vk can be assumed, then because of the minimality of
C we have N−

G(v) ∩ V (C) = {vk−1} and N+
G(v) ∩ V (C) = {v0}. It follows that

C ′ := (v0, . . . , vk−1, v0) is a cycle in G ◦ v and moreover it is minimal, hence
C ′ ∈ MG◦v. Now, suppose v /∈ V (C). This scenario is depicted in Figure 1.3.
After excluding v the cycle C is still a cycle in G◦v but not necessarily minimal
anymore, i.e. there is a cycle C ′ ∈ MG◦v with V (C ′) ⊆ V (C).

vv0

vk

v0

vk

Figure 1.3: A minimal cycle before and after the exclusion of v.

These considerations can be summarised by the following proposition:

Proposition 1.4. Let G = (V, A) be a digraph and v ∈ V .

1. If F ′ is a feedback vertex set of G − v, then F := F ′ ∪ {v} is a feedback
vertex set of G.

2. If G ◦ v is feasible and F a feedback vertex set of G ◦ v, then F is also a
feedback vertex set of G.

8 Chapter 1. Introduction

Having defined the set CG an equivalence relation ∼ on V can be defined as
follows:

u ∼ v :⇐⇒ u = v ∨ ∃C ∈ CG : {u, v} ⊂ V (C)

The digraphs induced by the corresponding equivalence classes are called strong-
ly connected components (SCCs) of G. A component that has no entering
arcs from other components is called source SCC whereas one that has no
leaving arcs is called sink SCC. Let us denote the SCCs of G by S1, . . . , Sr.
If r = 1, then G is said to be strongly connected. Because of the definition
of ∼ for any C ∈ MG there is a strongly connected component Si (1 ≤ i ≤ r)
such that V (C) ⊂ V (Si). This means that in order to find an optimal feedback
vertex set of G, each strongly connected component can be treated separately.
So, throughout this thesis G will be assumed to be strongly connected unless
otherwise stated.

Note that from the examination of MG◦v, which lead to Proposition 1.4, it
follows that G ◦ v is strongly connected if G is.

Another concept is the cycle-domination introduced in [55]. We will say
a vertex w ∈ V cycle-dominates another vertex v ∈ V (written as v w) if

∀C ∈ CG : (v ∈ V (C)⇒ w ∈ V (C)).

If v w and w v, then v and w are said to be mutually cycle-dominated
and we shall write v ! w. If v is dominated by w, by definition every cycle
broken by v is also broken by w. This means that in any minimal FVS F of
G with v ∈ F , the vertex v may be replaced by w and F remains a FVS of G.
Note that because F is assumed to be minimal, v and w cannot both be part of
F . So, this replacement leaves the cardinality of F unchanged. It follows that
in order to solve the minimum feedback vertex set problem, dominated vertices
may be excluded without impairing optimality. Note however that this does not
apply to the weighted minimum feedback vertex set problem because w(F) may
increase when replacing v with w. Also note that vertices possessing a loop are
never dominated, so this concept is in sync with the feasibility of the exclude
operation.

1.3 A linear programming formulation for the

weighted minimum feedback vertex set prob-

lem

In the previous section, the weighted minimum feedback vertex set problem was
introduced. To state the problem as a linear program, let G = (V, A, w) be an
instance of this problem. We have seen that the weighted minimum feedback
vertex set problem is a special weighted set cover problem where the sets consist
of the vertex sets V (C) for a cycle C ∈ MG. Thus, the standard zero-one integer

1.3. A LP formulation for the weighted minimum FVS problem 9

linear programming (ILP) formulation

minimise
∑

v∈V

w(v)xv

subject to
∑

v∈V (C)

xv ≥ 1 ∀C ∈MG (1.1)

xv ∈ {0, 1} ∀v ∈ V

is tempting. Then, any optimal solution (xv)v∈V of the ILP yields an optimal
feedback vertex set F via

F := {v ∈ V : xv = 1}. (1.2)

However, there is a problem with this formulation. The size of MG may grow
exponentially leading to an exponential number of constraints in the ILP for-
mulation. But there is an alternative ILP formulation requiring only a linear
number of constraints which we cite from [11].

Let n := |V |. It is well known that acyclic digraphs G = (V, A) can be sorted
topologically, i.e. there is a linear ordering dv ∈ {1, . . . , n} of the vertices v ∈ V
of G, such that the arcs of G are directed from left to right, i.e.

dv − du ≥ 1 ∀(u, v) ∈ A. (1.3)

Regardless whether or not (1.3) is satisfied, the vector (xv)v∈V can be defined
by

xv :=

{
1 if ∃u ∈ V : dv − du < 1 ∧ (u, v) ∈ A

0 else
. (1.4)

Then, the set F ⊂ V defined by (1.2) is obviously a FVS of G. Furthermore,
because dv ∈ {1, . . . , n} for all v ∈ V we have

dv − du ≥ 1− n ∀(u, v) ∈ A. (1.5)

Thus, by combining (1.4) and (1.5) we get

dv − du + nxv ≥ 1 ∀(u, v) ∈ A. (1.6)

In [11] the converse direction is also shown: For an arbitrary FVS F of G
and the vector (xv)v∈V defined by

xv :=

{
1 if v ∈ F

0 else

there is a linear ordering dv ∈ {1, . . . , n} of the vertices v ∈ V satisfying (1.6).
Thus the ILP

minimise
∑

v∈V

w(v)xv

subject to dv − du + nxv ≥ 1 ∀(u, v) ∈ A

dv ∈ {0, . . . n} ∀v ∈ V (1.7)

xv ∈ {0, 1} ∀v ∈ V

10 Chapter 1. Introduction

is an ILP formulation for the weighted minimum feedback vertex set prob-
lem instance G = (V, A, w) which needs only 2|V | + |A| constraints. Actually,
the constraint (1.7) can be replaced by dv ≥ 0 which leads to a mixed integer
linear program (MILP) formulation.

Solving ILPs is NP-hard [28]. To determine a lower bound on the optimum
value of the above ILP in polynomial time, the relaxation of the ILP can be
solved. Unfortunately, this lower bound is always ≤ 1. But by adding some
constraints of the form (1.1) better lower bounds can be obtained.

�
�

�
�Chapter

�
�

�
2

�

�

�

�
The state of the art

Nothing learned is ever forgotten. . . we hold all
our life experience deep within the recesses of
our multifaceted minds. Our latent insight
inexplicably surfaces and astonishes.

Chantell Van Erbe

In order to give an overview of the existing theory concerning the feedback
set problems on digraphs, the first fact to be mentioned is certainly the NP-
hardness of the minimum feedback vertex set problem which applies to both
the undirected and the directed version [28]. As seen in section 1.2, the mini-
mum feedback arc set problem on digraphs can be polynomially reduced to the
directed version of the minimum feedback vertex set problem. In fact, there
is also a polynomial reduction in the opposite direction [19] implying that the
minimum feedback arc set problem on digraphs is NP-hard, too. The situation
is different for the minimum feedback arc set problem for undirected graphs.
This problem is the inverse of the maximum spanning tree problem which ad-
mits determining a solution in polynomial time. Thus, the minimum feedback
arc set problem for undirected graphs can be solved in polynomial time, too.

Because the feedback vertex set problem on digraphs is NP-hard, any ex-
act algorithm for this problem is expected to have an exponential runtime for
general digraphs. Two of them are presented in section 2.1. However, when
restricting the input digraphs conveniently, polynomial time algorithms for de-
termining optimal FVSs can be obtained. This is described in section 2.1.2.

If computation time for determining a FVS of an arbitrary digraph is bounded
by a polynomial, e.g., we have to restrict to approximation algorithms, typ-
ically coming up with suboptimal solutions. To evaluate their quality, the
performance-ratio comes into play.

Definition 2.1 (r-approximation). For the problem to minimise a function
w : D → R≥0 let O ∈ D be an optimal solution. Then, a solution X ∈ D is a
r-approximation of the minimisation problem if

w(X)

w(O)
≤ r.

Definition 2.2 (performance-ratio). Let A be an approximation algorithm
for the problem to minimise a function wI : DI → R≥0 given an input I ∈ I of
A. Let A(I) denote the solution determined by A with input I. Then, A is said

12 Chapter 2. The state of the art

to have performance-ratio r if for any instance I ∈ I the solution A(I) is an
r-approximation.

The Definitions 2.1 and 2.2 will be mainly applied to feedback set problems:
the function w returns the cardinality (resp. weight) of a given feedback set.
The term r need not to be a real constant. It can be any real-valued function
that depends on the particular (weighted) digraph.

In this thesis, heuristics are taken to mean approximation algorithms which
either have no good performance-ratio (better than O(|V |)) or no good perfor-
mance-ratio could yet be proved. Despite that, they typically produce near-
optimal solutions. Accordingly, section 2.2 describes the existing approximation
algorithms with reasonable performance-ratio while section 2.3 is devoted to
heuristics.

2.1 Exact algorithms

As mentioned, the minimum feedback vertex set problem on digraphs is NP-
hard. So, one can only hope to obtain polynomial time algorithms for this
problem if one restricts the input instances to certain classes. This section dis-
cusses exact algorithms for both general digraphs and special classes.

For the minimum feedback arc set problem on a digraph G = (V, A) there
is an interesting note due to Lawler [34] in which he shows how to solve this
problem in time O(2|V |). His idea relies on the following dynamic programming
approach: For a subset U ⊂ V let f be an optimal FAS of G[U]. Because
G[U] − f is acyclic, there must be a vertex u ∈ U with d+

G[U]−f (u) = 0 which

means g := {(u, v) : v ∈ N+
G[U](u)} ⊂ f . Hence, f ′ := f \ g is an optimal FAS

of G[U] − g. But f ′ is also an optimal FAS of G[U] − u = G[U \ {u}] since
d+

G[U]−g(u) = 0. Thus, if fas(U) denotes the cardinality of an optimal FAS of

G[U], we obtain the following equation:

fas(U) = |f | = |f ′|+ |g| = fas(U \ {u}) + d+
G[U](u).

This leads to the identity

fas(U) = min{fas(U \ {u}) + d+
G[U](u) : u ∈ U}.

Thus, by computing fas(U) for all subsets U ⊂ V in increasing order of cardi-
nality of U using the above identity, it is possible to determine fas(V) in time
O(|P(V)|) = O(2|V |).

2.1.1 General algorithms

2.1.1.1 Reductions

Algorithms for feedback set problems use digraph reductions in order to speed
up the computation. In this context, by digraph reduction we mean a trans-
formation of the digraph G = (V, A) which results in a digraph G′ = (V ′, A′)
such that either |V ′| < |V | or |A′| < |A| and that the knowledge of an optimal

2.1. Exact algorithms 13

FVS F ′ of G′ permits a fast determination of an optimal FVS F of G, i.e. in
polynomial time.

The five most straight forward reductions are described by Levy and Low
in [36]. In the following we give a brief description of them whereby we assume
v ∈ V to be a vertex in G:

LOOP(v) If v has a loop, it must be member of any FVS of G. Thus, G is
transformed into G − v as for any FVS F ′ of G − v the set F ′ ∪ {v} is a
FVS of G.

IN0(v) If v is loop-free and has indegree 0, it cannot be part of any cycle.
Hence, G is transformed into G − v since both digraphs have the same
minimal FVSs.

OUT0(v) If v is loop-free and has outdegree 0, G is transformed into G − v
with the same argumentation as in IN0(v).

IN1(v) If v is loop-free and has indegree 1, it has a unique predecessor u.
Then, v is obviously cycle-dominated by u. As explained in section 1.2
any optimal FVS F of G ◦ v is also an optimal one of G. Thus, G is
transformed into G ◦ v.

OUT1(v) If v is loop-free and has outdegree 1, G is transformed into G ◦ v
with a symmetric argumentation as in IN1(v).

In [36] it is also shown that these five reductions have the finite Church-
Rosser property which is to say: if these reductions are applied in arbitrary
order until no further reductions are possible, the resulting digraph is unique
up to isomorphism.

Another reduction that decreases the cardinality of V is presented in [37].
There, a vertex v ∈ V is called a core of a diclique if G[v ∪NG(v)] is a diclique.
Then, the CORE(v) reduction works as follows:

CORE(v) If v is a core of a diclique, NG(v) is part of an optimal FVS. Hence,
G is transformed into G − NG(v) as any optimal FVS F ′ of G − NG(v)
yields the optimal FVS F ′ ∪ NG(v) of G.

In Appendix A new reductions will be presented which in some sense sub-
sume all the above mentioned reductions except LOOP(v).

In addition, there are reductions which cause a decrease of |A| only. Let
(u, v) ∈ A. Then, a trivial one is the following:

ACYCLIC(u, v) If (u, v) ∈ Aacyc(G), transform G into G− (u, v). By defini-
tion of Aacyc(G) the SCCs of G remain unchanged. Thus, G and G−(u, v)
share the same FVSs (see section 1.2).

All of the following arc deletion reductions base on the idea of detecting an
arc a ∈ A that is not contained in arc sets of minimal cycles. If a is such an
arc, by Proposition 1.2 it can be deleted from G without impairing optimality.
The first reduction of this kind is mentioned in [44]:

14 Chapter 2. The state of the art

DOUBLE(u, v) If (u, v, u) is a cycle in G, define

B :=

⋃

C∈CG

{u,v}∈V (C)

A(C)

 \

(
⋃

C∈MG

A(C)

)
.

The set B contains arcs of (nonminimal) cycles passing both u and v. On
the other hand, the arcs in B are not part of any minimal cycles. Therefore
G is transformed into G−B because both have the same FVSs.

In [44] it is also shown how the arc set B can be determined in linear time.
A similar idea is presented in [37]. There, for a given digraph G, the arc set
PIE := {(u, v) ∈ A : (v, u) ∈ A} is defined. In other words, PIE is the union
of all arc sets of cycles having length 2. The so called PIE reduction is the
following:

PIE Let B := Aacyc(G−PIE). An arc a ∈ B cannot belong to a minimal cycle
in G because by definition of B for any cycle C ∈ CG with a ∈ A(C) we
have A(C)∩PIE 6= ∅ which means there is a cycle C ′ = (x, y, x) in G with
A(C ′) ⊂ A(C) ∩PIE. Hence, as in DOUBLE(u, v), G is transformed into
G−B.

In [37], there is also the DOME(u, v) reduction described. As the previous
reductions, it attempts to prove that the arc (u, v) cannot belong to a minimal
cycle. The DOME(u, v) reduction presented in [37] works as follows:

DOME(u, v) An arc (u, v) ∈ A \ PIE is dominated if N−
G−PIE(u) ⊂ N−

G(v) or

N+
G−PIE(v) ⊂ N+

G(u). It is proven that dominated arcs are never part of
an arc set of a minimal cycle. So, if (u, v) is dominated, it is deleted, i.e.
G is transformed into G− (u, v).

Basically, all the mentioned reductions are admissible for the weighted min-
imum feedback vertex set problem with a weight function w. However, the
reductions have to be adapted to cope with the weighted case. The main reason
for this is that for two vertex sets F, F ′ ⊂ V , the fact |F | ≤ |F ′| does not imply
w(F) ≤ w(F ′). For a survey of reductions for weighted minimum feedback set
problems we refer to [30].

2.1.1.2 The Smith-Walford algorithm

An early exact algorithm to solve the unweighted minimum feedback vertex
set problem on digraphs was the Smith-Walford algorithm [55]. Basically, it
attempts to determine an optimal FVS for an induced subgraph which can be
safely added to the global FVS. Then, the locally optimal FVS is removed from
the digraph and the process is repeated until the digraph becomes empty. To
describe the algorithm in more detail, we will follow [38]. Some preliminary
notation is needed.

So, let G = (V, A) be the digraph for which an optimal FVS is to be deter-
mined. W.l.o.g. G may be assumed to be strongly connected. For an arbitrary
subset H ⊂ V let

ASW (G, H) := G[H ∪ Vacyc(G−H)]

2.1. Exact algorithms 15

function SmithWalford(digraph G = (V, A), integer k) do

integer i;
vertex set FV S;
vertex set F ;

FV S ← ∅;
DoReductions(G, FV S);

for all SCCs S of G with |S| > 1 do

for i = k to |V| do

for each F ⊂ V (S) with |F | = i do

if F is Wi-set in S do

FV S ← FV S ∪ F ;

FV S ← FV S ∪ SmithWalford(S − F , 1);

process next SCC S of G;

od;

od;

od;

od;

return FV S;
od;

Algorithm 2.1: The Smith-Walford algorithm.

be the SW-associated digraph of H . It is induced by H and all vertices not
belonging to cycles of G −H . Then, by definition, H is a FVS of ASW (G, H).
If moreover H is an optimal FVS of ASW (G, H), it is said to be essential. In
this case we know that H must be part of an optimal FVS of G. To see this,
let F be an optimal FVS of GR := G − V (ASW (G, H)). If F ∪ H is a FVS
of G, it is also optimal because ASW (G, H) and GR have disjoint vertex sets.
And indeed, F ∪ H is a FVS of G. Suppose it is not. Then, there is a cycle
C ∈ CG such that (F ∪H) ∩ V (C) = ∅. It follows that C ∈ CG−H . Because F
is a FVS of GR we have Vacyc(G −H) ∩ V (C) 6= ∅ which is a contradiction. If
H is essential and |H | ≤ i, it is called a Wi-set.

So, the Smith-Walford algorithm systematically tests every possible subset
H ⊂ V for being a Wi-set in ascending order of i. If H is detected to be es-
sential it is added to the global FVS and V (ASW (G, H)) is deleted from G.
After each deletion the resulting digraph is simplified by applying the Levy-
Low reductions (see section 2.1.1.1). After the simplification the digraph is
decomposed into its strongly connected components and each component is re-
solved recursively. The complete algorithm is shown in Algorithm 2.1. The
procedure DoReductions(G, FV S) modifies G according to the Levy-Low re-
duction rules and adds vertices to FV S if necessary. The algorithm is invoked
by the call SmithWalford(G, 1).

16 Chapter 2. The state of the art

Regarding the runtime of the Smith-Walford algorithm, the worst case ap-
pears if the input digraph G = (V, A) is a diclique. To see this, first note that
none of the Levy-Low reductions is applicable in G (provided |V | > 2) before
an essential set F has been found. Furthermore, from section 2.1.2 we know
that F to be essential it must have cardinality |V | − 1 and this condition is also
sufficient. According to [38] testing all vertex sets for being W|V |−2-sets takes

time O(|V |2|V |−3|A|) which is also the total runtime as the time to confirm that
F is a W|V |−1-set is negligible.

2.1.1.3 A branch and bound algorithm

The Smith-Walford algorithm – at least in its proposed form – is not capable
to solve the weighted minimum feedback vertex set problem. In order to solve
it exactly, one has to rely on branch and bound algorithms. Variants of this
technique are proposed in [11, 37, 44]. We will only describe the main parts
while elaborating on differences concerning the details only marginally.

The algorithm starts by decomposing the entire digraph G into its SCCs
and treating each SCC separately. Then, a vertex v ∈ V is chosen heuristi-
cally and an optimal FVS Fv with the constraint that v is included in Fv is
determined recursively. After that, the branch and bound algorithm attempts
to prove that Fv is indeed an optimal solution. To do so, another optimal FVS
F is determined, but now with the restriction that v is not a member of F . If
w(Fv) ≤ w(F), the attempt was successful and Fv is returned as an optimal
FVS, otherwise F is returned. To determine Fv and F , according to Proposition
1.4, optimal FVSs of G − v and G ◦ v are determined, respectively. Further-
more, after each deletion of a vertex the resulting digraph is decomposed into
its SCCs. Recall that this decomposition is not necessary after an exclusion of a
vertex since the digraph remains strongly connected as noted in section 1.2. In
some situations the determination of F can be skipped. This is the case when
a lower bound on w(F) can be computed which proves that Fv is optimal. In
order to obtain a payoff for the additional computation of the lower bound, it
must be reasonable fast compared to the determination of F . The complete
branch and bound algorithm is shown in Algorithm 2.2. It is invoked by the
call BranchAndBound_SCC(G).

One way to determine a lower bound of w(F) is the standard approach based
on the relaxation of an ILP formulation which is mentioned in section 1.3 and
described in [11]. A more promising bounding method is described in [37]. First,
the five Levy-Low reductions together with the reductions ACYCLIC(u, v),
CORE(v), PIE and DOME(u, v) are applied to G as long as possible. Dur-
ing that process the lower bound, which was initially set to 0, is increased by
1 for each vertex added to the partial FVS. After that, a diclique D of size
k := |V (D)| ≥ 3 is attempted to be determined heuristically. In case of suc-
cess, V (D) is deleted from the digraph and the lower bound is increased by
k − 1 (because at least k − 1 vertices are necessary to break all cycles of D –
see Proposition A.7). In case of failure of the heuristic, a shortest cycle C is
determined, V (C) is deleted from the digraph and the lower bound is increased
by 1. This process is repeated until the entire digraph becomes empty. Fun-
damentally, the same bounding technique can also be applied for the weighted

2.1. Exact algorithms 17

function BranchAndBound_SCC(weighted digraph G = (V, A, w)) do

vertex set F ;

if V = ∅ do

return ∅;
od;

F ← ∅;

for all SCCs S of G do

F ← F ∪ BranchAndBound(S);
od;

return F ;

od;

function BranchAndBound(weighted digraph G = (V, A, w)) do

vertex v;
vertex set Fv;

vertex set F ;

if V = ∅ do

return ∅;
od;

for all v ∈ V do

if (v, v) ∈ A do

return {v} ∪ BranchAndBound_SCC(G− v);
od;

else if min(d−
G(v), d+

G(v)) = 0 do

return ∅;
od;

else if d−
G(v) = 1 and w(v) ≥ w(N−

G(v)) do

return BranchAndBound(G ◦ v);
od;

else if d+
G(v) = 1 and w(v) ≥ w(N+

G(v)) do

return BranchAndBound(G ◦ v);
od;

od;

v ← SelectVertex(G);

Fv ← {v} ∪ BranchAndBound_SCC(G− v);

if LowerBound(G ◦ v) < w(Fv) do

F ← BranchAndBound(G ◦ v);
if w(F) < w(Fv)

return F ;

od;

return Fv;

od;

Algorithm 2.2: The branch and bound algorithm.

18 Chapter 2. The state of the art

minimum feedback vertex set problem on a weighted digraph G = (V, A, w).
Yet, concerning the update of the lower bound, one has to take into account the
weight function w. While it is straight forward to increase the lower bound by
w(v) if LOOP(v) is applied, one has to be careful when dealing with a diclique
D of size k. In this situation, the bound is increased by w(F) where F ⊂ V (D)
is a minimum-weight vertex set with |F | = k − 1. Similarly, when removing
V (C) for a cycle C ∈ CG, the lower bound is raised by min{w(v) : v ∈ V (C)}.

In Algorithm 2.2 only the application of the five Levy-Low reductions and
the ACYCLIC(u, v) reduction is demonstrated. But in the same fashion any
other reduction mentioned in section 2.1.1.1 can be incorporated into the branch
and bound algorithm. For example, in [37] also the reductions CORE(v), PIE
and DOME(u, v) are used along with the ones in Algorithm 2.2. In [44], the
DOUBLE(u, v) reduction is used together with a number of efficient digraph
partitioning techniques which are beneficially applied to sparse digraphs only.

Apart from the bounding strategy, the vertex selection (SelectVertex(G)

in Algorithm 2.2) is the other crucial part of the branch and bound algorithm.
Generally, to select a vertex for branching, a rank rv is computed for every
v ∈ V and a vertex with the highest rank is selected. In the weighted case a
vertex v ∈ V is picked that maximises the ratio rv

w(v) . Concerning the choice of

rv , mainly local criterions are considered in literature. For example, in [22, 35]
rv = d−

G(v) + d+
G(v) and rv = d−

G(v) · d+
G(v) have been tried while in [37] the

modification rv = d−
G(v)+d+

G(v)+2 d=
G(v) has been used. One exception of these

locality-based ranks is presented in [46]. There, for every v ∈ V a (random)
minimal cycle Cv ∈ MG is determined with v ∈ V (Cv). Then, the rank rv =
|{Cu : v ∈ V (Cu)}| is used.

2.1.2 Polynomial algorithms for special digraph classes

The exact algorithms considered so far are able to solve the (weighted) minimum
feedback vertex set problem for general digraphs at the cost of an exponential
runtime. However, if the input is restricted to special classes of digraphs, there
are exact algorithms which run in polynomial time. Such classes are usually de-
fined by the applicability of certain digraph reductions until the digraph under
consideration becomes acyclic and thus an optimal FVS is determined.

The class of completely contractible graphs [36] is an example. This class
consists of digraphs which can be reduced by the five Levy-Low reductions
LOOP, IN0, OUT0, IN1 and OUT1 (cf. section 2.1.1.1) to the empty digraph.
Because the Levy-Low reductions possess the finite Church-Rosser property, a
straight forward algorithm which solves the minimum feedback vertex set prob-
lem for completely contractible graphs is to apply the Levy-Low reductions in
arbitrary order until an (optimal) FVS is determined. In [36] it is shown how
this algorithm can be implemented to run in time O(|A| log |V |) for a digraph
G = (V, A).

Another classic example of a class that is defined by particular digraph reduc-
tions represents the class of Smith-Walford-i reducible (SWi reducible) graphs.
These digraphs are defined to be those for which the Smith-Walford algorithm

2.1. Exact algorithms 19

– modified in such a way that only Wi-sets (cf. section 2.1.1.2) are looked for –
may come up with an optimal FVS. This definition does not automatically lead
to a polynomial time algorithm for the minimum feedback vertex set problem on
SWi reducible graphs because it is not clear that any admissible computation
of the modified Smith-Walford algorithm will determine an optimal FVS. How-
ever, exactly that is shown to be true in [38]. There, it is also argued that the
(modified) Smith-Walford algorithm runs in time O(i|V |2i|A|) on any SWi re-
ducible graph G = (V, A). Particularly, for Smith-Walford-one reducible graphs
an optimal FVS can be determined in time O(|V |2|A|).

The SWi reducible graphs are a proper subset of the SWi+1 reducible graphs.
To see this, suppose G = (V, A) to be a diclique of size i + 2. Let H ⊂ V be
any vertex set of cardinality i + 1. Then, we have ASW (G, H) = G and in view
of Proposition A.7 H is a Wi+1-set and thus G is SWi+1 reducible. Now, let
H ′ ⊂ V have a cardinality no more than i. In this case we get ASW (G, H ′) =
G[H ′] which implies that H ′ is not an optimal FVS of ASW (G, H ′). So, G is
not SWi reducible implying that the class of SWi+1 reducible graphs and the
class of SWi reducible graphs are indeed distinct.

The first nontrivial class of digraphs which permit a determination of an op-
timal FVS in polynomial time has been defined by Shamir [54]. In this context,
nontrivial is to be understood in the sense that the definition of the class does
not rely on any digraph reductions. Shamir denotes the class as reducible flow
graphs. To understand its definition a basic knowledge of the depth-first search
and related notation is assumed and can be reviewed in [14].

Definition 2.3 (flow graph). A digraph G = (V, A) is said to be a flow graph
if there is a root vertex v0 ∈ V such that for every vertex v ∈ V \ {v0} there is
a path from v0 to v in G.

Definition 2.4 (reducible flow graph). A digraph G = (V, A) is a reducible
flow graph if it is a flow graph with root vertex v0 and every depth-first search
on G starting in v0 produces the same set of back arcs.

Shamir [54] presents a linear time algorithm that solves the minimum feed-
back vertex set problem on reducible flow graphs. His algorithm is equivalent
to Algorithm 2.3. If v is the head of a back arc with maximal preorder num-
ber dv with respect to a depth-first search starting in the root vertex v0 of G,
Speckenmeyer [56] shows that {v} is a W1-set (see section 2.1.1.2). So, Shamir’s
algorithm adds v to the (partial) FVS of G. Let G′ := G− v and let H ⊂ G′ be
the reachability component of v0. Because v has maximal preorder number dv ,
the digraph G−V (H) is acyclic. Furthermore, H is also a reducible flow graph
with root vertex v0 since it is the reachability component of v0. From these two
facts the correctness of Shamir’s algorithm follows.

Finally, we mention the class of cyclically reducible graphs defined by Wang
et al [60]. It can be defined in the following way: Let G = (V, A) be a digraph.
For a vertex v ∈ V let Y (G, v) ⊂ V (G) be the set of vertices u ∈ V (G) such that
there is no path in G − v from u to a vertex w belonging to a cycle C ∈ CG−v.
The convention is that always v ∈ Y (G, v).

20 Chapter 2. The state of the art

function Shamir(digraph G = (V, A), root vertex v0) do

vertex set F ;

vertex u;
vertex v;

F ← ∅;
while G is cyclic do

(dv)v∈V (G) ← preorder numb. of a DFS from v0;

(u, v) ← back arc with maximal dv;

F ← F ∪ {v};
G ← G − v;

od;

return F ;

od;

Algorithm 2.3: Shamir’s algorithm for the determination of an optimal FVS of
a reducible flow graph.

Definition 2.5 (cyclically reducible graph). A digraph G = (V, A) is said
to be cyclically reducible if there is a sequence v1, . . . , vk ∈ V such that the
sequence of digraphs Gi (0 ≤ i ≤ k) defined by G0 := G and Gi+1 := Gi −
Y (Gi, vi+1) (0 ≤ i < k) satisfies the following:

(i). G[Y (Gi, vi+1)] is cyclic for 0 ≤ i < k

(ii). Gk is acyclic

Wang et al show that if G is cyclically reducible, then for any u ∈ V with
G[Y (G, u)] being cyclic, there is a sequence v1, . . . , vk ∈ V meeting the above
conditions such that v1 = u. Based on that, they present a O(|V |2|A|) algo-
rithm for determining an optimal FVS of a cyclically reducible graph. Because
of their definition, cyclically reducible digraphs are also Smith-Walford-one re-
ducible. One can moreover show that this inclusion is proper [60].

Figure 2.1 sums up the inclusion relations between the considered polynomial
classes. The relations not mentioned here can be reviewed in [60].

2.2 Approximation Algorithms

The best approximation algorithm for the minimum feedback vertex set problem
on digraphs G = (V, A) achieves a performance-ratio of O(log |V | log log |V |), be-
ing in sharp contrast to the undirected case for which approximation algorithms
with performance-ratio 2 exist [4, 6]. The O(log |V | log log |V |) performance-
ratio is due to Even, Naor, Schieber and Sudan [19]. They apply a theoretical
result of Seymour [53] who proves the following theorem:

2.2. Approximation Algorithms 21

reducible flow graphs cyclically reducible graphs

completely contractible graphs

SW1 reducible graphs

SW2 reducible graphs

SW3 reducible graphs

Figure 2.1: The inclusion relations between the polynomial classes.

Theorem 2.6. Let G = (V, A) be a digraph and let w : V → R+ be a function
such that ∑

v∈V (C)

w(v) ≥ 1 ∀C ∈ CG.

Let τ be a real number and let
∑

v∈V

w(v) ≤ τ.

Then there exists a FVS F of G with

|F | ≤ 4τ log(4τ) log log2(4τ).

The achievement of Even et al was to realize that all existence arguments
in Seymour’s proof of Theorem 2.6 can be made constructive. Founding on this
observation and refining Seymour’s ideas, they have devised an approximation
algorithm for the weighted minimum feedback vertex set problem which deter-
mines a FVS F of a weighted digraph G = (V, A, w) having a weight no more
than 4τ∗ log(4τ∗) log log2(4τ∗) ≤ 4|V | log(4|V |) log log2(4|V |), where τ∗ is the
weight of an optimal fractional FVS of G (cf. section 1.3). The algorithm has
a runtime of O(|V |2A).

By restricting the digraphs to particular classes, it is possible to construct
constant-factor approximation algorithms for the minimum feedback vertex set
problem. The symmetric digraphs are a trivial example. Any arc (u, v) of a
symmetric digraph G = (V, A) induces a minimal cycle (u, v, u) ∈ MG. Hence,

22 Chapter 2. The state of the art

one sees that any FVS F of G is a vertex cover of the underlying graph of G
and vice versa. Therefore, by repeatedly selecting an arbitrary arc (u, v) ∈ A,
deleting u and v from G and adding them to the partial FVS – thus simulating
the well-known approximation algorithm for the minimum vertex cover problem
on the underlying graph – one gets a 2-approximation of an optimal FVS of G.

Tournaments and planar digraphs are less trivial examples. Constant-factor
approximation algorithms for these classes are considered next.

2.2.1 Tournaments

A tournament is a digraph G = (V, A) such that for any two vertices u, v ∈ V

either (u, v) ∈ A or (v, u) ∈ A. So, G has exactly
(
|V |
2

)
arcs. Speckenmeyer [56]

has shown that the problem of determining an optimal FVS of a tournament
is NP-hard. The same is true for the minimum feedback arc set problem on
tournaments which was established independently in [2, 12].

One can show that a cyclic tournament G has always a minimal cycle
(u, v, w, u) ∈ MG. Such a cycle is called a (cyclic) triangle. To obtain a
constant-factor approximation of an optimal FVS of G, one can simply repeat-
edly determine a triangle in G, remove its vertex set and add it to the partial
FVS. This has been done by Speckenmeyer [56] and yields a 3-approximation
algorithm for the minimum feedback vertex set problem on tournaments.

This algorithm has been superseeded by Cai, Deng and Zang [10] who give a
2.5-approximation algorithm for the problem. Their approach consists of charac-
terising tournaments for which a min-max theorem holds, more precisely, those
tournaments, for which the cardinality of an optimal FVS and the triangle-
packing number coincide. It turns out that for these tournaments the triangle-
packing number is equal to the P3-packing number1. For the problem of deter-
mining the latter number a polynomial algorithm is devised for this particular
class of tournaments.

This class is characterised in terms of forbidden subgraphs. Finally, by
applying the local ratio technique of Bar-Yehuda and Even [5] to the forbidden
subgraphs, a 2.5-approximation algorithm for the minimum feedback vertex set
problem on general tournaments is obtained.

2.2.2 Planar digraphs

The minimum feedback vertex set problem remains NP-hard on both directed
and undirected planar graphs. On the other hand, the weighted minimum feed-
back arc problem is polynomially solvable on planar digraphs G = (V, A). We
refer to [27] for an excellent treatment of this subject. Using an ILP framework,
Jünger shows that the separation problem for the polytope associated with the
problem to determine a maximum acyclic subdigraph (which is the inverse of the
weighted minimum feedback arc problem) of G can be solved in time O(|V |3).

1P3 denotes a directed path consisting of 3 vertices.

2.3. Heuristics 23

The best approximation algorithm for the weighted minimum feedback ver-
tex set problem has a performance ratio of 9

4 and is due to Goemans and
Williamson [23]. It is based on the so called primal-dual method which is
developed in [24]. Generally, for a given minimisation problem this method
simultaneously constructs a feasible solution X to the ILP formulation of the
problem and a solution Y feasible for the relaxation of the dual of the ILP
formulation. Then, the ratio between the weight of X and Y , respectively, is
obviously a upper bound on the performance ratio of an approximation algo-
rithm using the primal-dual method. If it can be shown that this ratio is at
most α, the approximation algorithm also has performance ratio α. In [24] a
generic formula is presented by means of which a performance ratio α can be
derived.

This general reasoning is applied for the weighted minimum feedback vertex
set problem on planar digraphs in [23]. Using the generic formula and exploiting
the planarity of the digraph, the performance ratio 9

4 is obtained which is shown
to be tight.

2.3 Heuristics

2.3.1 GRASP

Greedy randomised adaptive search procedures (GRASP) [48] have been suc-
cessfully applied to a variety of combinatorial optimisation problems [21, 31, 40].
They represent a multistart method consisting of two phases, a construction
phase and a local search phase. In the construction phase, a feasible solution
is constructed. This is done by randomly selecting each element of the solution
from a restricted candidate list (RCL). The RCL contains elements whose rank
is above or equal to a given threshold with respect to some greedy function.
To obtain local optimality according to the adopted neighbourhood definition,
the local search phase tries to improve the constructed solution and produces
a locally optimal solution. This twostage process is applied repeatedly and the
best solution found is kept. This is the general GRASP idea as described in [48].

Resende et al [45] have adapted GRASP for the minimum feedback vertex
set problem. Experiments with various greedy functions were made, where the
product of in- and outdegree turned out to be best. So, this greedy function
is used in [45] and the RCL consists – in default settings - of all vertices hav-
ing maximal product of in- and outdegree. After a vertex is selected from the
RCL, added to the FVS and removed from the digraph, the remaining digraph
is decomposed into its SCCs. In addition, the Levy-Low reductions (cf. section
2.1.1.1) are applied to simplify the remaining digraph and thus to speed up
the algorithm. The local search phase is kept quite simple. It consists only of
identifying redundant vertices and removing them from the FVS. Thereby, the
vertices of the FVS are tested for being redundant in reversed order of addition
to the FVS.

As described in [45], this process of constructing a FVS and transforming it
into a minimal one is repeated. In default settings this is done 2048 times.

24 Chapter 2. The state of the art

2.3.2 The combinatorial algorithm of Demetrescu and Finoc-

chi

The approximation algorithm of Demetrescu and Finocchi [15] for the weighted
minimum feedback vertex set problem is based on the local-ratio technique [5].
Actually, [15] discusses the weighted minimum feedback arc set problem. Still,
the described algorithm can be adapted straight forwardly for the weighted min-
imum feedback vertex set problem as mentioned by Demetrescu and Finocchi.

In the spirit of the local-ratio technique the adapted version progressively
reduces the vertex weights of a given weighted digraph G = (V, A, w) and adds
the vertices to the FVS whose weights become equal to 0. More precisely, it
starts by randomly selecting a minimal cycle C ∈ MG and determining the
minimum ε = min{w(v) : v ∈ V (C)} of all weights of vertices belonging to
C. After that, the weights of all vertices in V (C) are decreased by ε and those
vertices v with w(v) = 0 are added to the FVS F and simultaneously removed
from G. This process continues as long as a minimal cycle C can be determined,
i.e. until G becomes acyclic.

In a second step the FVS F is transformed into a minimal one. This is
achieved by testing all vertices of F for redundancy and removing them from F
in case of being redundant. The complete procedure is presented in Algorithm
2.4.

In [15] it is argued that the algorithm for the weighted minimum feedback
arc set problem has a runtime of O(|V ||A|). This runtime is achieved using
the data structure in [16] for maintaining reachability information in digraphs
subject to deletion and insertion of arcs. So, using the same data structure we
conclude that WFVS can be implemented to run in time O(|V |2).

2.3.3 Schwikowski’s enumeration algorithm

Schwikowski [51] shows how to enumerate all minimal FVSs of a digraph G =
(V, A) with polynomial delay, i.e. such that only a polynomial number of steps
are performed before the first and between successive outputs. Any enumera-
tion algorithm is expected to have an exponential runtime. Yet, by altering the
termination condition of the enumeration algorithm other polynomial heuristic
algorithms can be obtained.

The enumeration algorithm of Schwikowski starts with a minimal FVS F ⊂
V . Then, for any v ∈ F the set (F \ {v}) ∪ N+(v) is also a FVS of G but not
necessarily minimal. So, consider a successor function µG : P(V)× V → P(V)
such that µG(F, v) ⊂ (F \ {v})∪N+(v) and µG(F, v) is a minimal FVS. In that
way, for any minimal FVS F of G and any v ∈ F , the function µG assigns a
fixed minimal FVS to the pair (F, v). The minimal FVS µG(F, v) is called the
v-successor of F with respect to µG. µG(F, v) is also called a µG-successor of
F .

Having the notation of v-successors, the superstructure digraph Φ(G, µG)
can be defined. Its vertex set consists of all minimal FVSs of G and (F, F ′) is

2.3. Heuristics 25

function WFVS(weighted digraph G = (V, A, w)) do

vertex set F ;

cycle C;

vertex v;
real ε;

F ← ∅;

while (G− F is cyclic) do

C ← minimal cycle in G− F ;

ε ← min{w(v) : v ∈ V (C)};

forall v ∈ V (C) do

w(v) ← w(v) − ε;

if (w(v) = 0) do

F ← F ∪ {v};
od;

od;

od;

forall v ∈ F do

if (G− (F \ {v}) is acyclic) do

F ← F \ {v};
od;

od;

return F ;

od;

Algorithm 2.4: The combinatorial algorithm of Demetrescu and Finocchi.

26 Chapter 2. The state of the art

procedure GenerateMFVS(digraph G = (V, A), succ. func. µG) do

dictionary D
queue Q;

vertex set F ;

vertex set F ′;

D ← ∅;
Q ← ∅;

F ← arbitrary minimal FVS of G;

D.insert(F);

Q.insert(F);

while (Q 6= ∅) do

F ← Q.extract();

output F ;

for each µG-successor F ′ of F do

if (D.search(F ′) = nil) do

D.insert(F ′);

Q.insert(F ′);

od;

od;

od;

od;

Algorithm 2.5: Schwikowski’s enumeration algorithm.

an arc of Φ(G, µG) if F ′ is a µG-successor of F . In [51] it is shown that Φ(G, µG)
is strongly connected. So, by exploring Φ(G, µG) by a well-known search pro-
cedure like breadth-first search, all minimal FVSs of G are determined. The
corresponding algorithm is given in Algorithm 2.5.

Algorithm 2.5 can be slightly modified to run in polynomial time and to
determine a heuristic approximation of the optimal FVS of G. This is depicted
in Algorithm 2.6 with an appropriate termination criterion to be chosen. In
[50] various termination criterions are proposed and the resulting algorithms
are studied empirically.

For several enumeration problems like determining all minimal dicuts, all
minimal strongly connected digraphs [7] or all minimal triconnected spanning
subgraphs [8], the idea of searching a conveniently defined superstructure di-
graph has been successfully applied in recent time.

2.3. Heuristics 27

function GenerateMFVS(digraph G = (V, A), succ. func. µG) do

dictionary D
queue Q;

vertex set F ;

vertex set F ′;

vertex set Fmin;

D ← ∅;
Q ← ∅;

Fmin ← arbitrary minimal FVS of G;

D.insert(Fmin);

Q.insert(Fmin);

while (some condition holds) do

F ← Q.extract();

for each µG-successor F ′ of F do

if (D.search(F ′) = nil) do

D.insert(F ′);

Q.insert(F ′);

if (|F ′| < |Fmin|) do

Fmin ← F ′;

od;

od;

od;

od;

return Fmin;

od;

Algorithm 2.6: A prototype of a heuristic algorithm based on Schwikowski’s
enumeration algorithm.

28 Chapter 2. The state of the art

�
�

�
�Chapter

�
�

�
3

�

�

�

�

Basic facts about

Markov chains

What you need to know about the
past is that no matter what has
happened, it has all worked
together to bring you to this very
moment. And this is the moment
you can choose to make everything
new. Right now.

When Angels Speak: Inspiration

From Touched By an Angel,
Martha Williamson

This chapter is meant as a brief introduction to Markov chains. For reasons
of completeness the notion of stochastic processes together with related terms
is also included. A further purpose of this chapter is to fix the notation related
to Markov chains. This is necessary because all the algorithms developed here
are based on Markov chains and so the notation of which will be heavily used,
particularly in Chapters 4, 5 and 6. Also, to comprehend the correctness of
the algorithms as well as for runtime issues, a basic knowledge of the presented
theory is needed. The definitions and theorems of this chapter can be reviewed
in any text book dealing with Markov chains. We recommend [43].

3.1 Basic definitions

We begin with the definition of a probability space.

Definition 3.1 (probability space). A probability space is a measure space
(Ω,F , P) with a set Ω, a σ-algebra F ⊂ P(Ω) of measurable sets and a measure
P : F → [0, 1] satisfying P (Ω) = 1. The set Ω is called the sample space, F
is the set of events and P is said to be a probability measure.

Formally, P is a measure on the probability space (Ω,F , P). In probability
theory P (A) with A ∈ F is – as the name suggests – interpreted as the proba-
bility of the event A. Furthermore, having an event B ∈ F such that P (B) > 0,
one can define another probability measure by

P (A | B) :=
P (A ∩ B)

P (B)
(we will write P (A, B) for P (A ∩ B)).

30 Chapter 3. Basic facts about Markov chains

It is viewed as the probability of event A, given the occurrence of event B. If
P (B) = 0, then P (A | B) is undefined. Note that there might be problems in
trying to assign a probability P (A) to an arbitrary set A ∈ P(Ω). However, if
Ω is countable, this is not an issue. F can be set to the power set of Ω and in
that case we will write (Ω, P) instead of (Ω,P(Ω), P).

Having specified the notion of a probability space, we are entitled to define
a random variable X on the probability space (Ω,F , P). Formally, X is a
measurable function X : Ω → S from the sample space Ω to a countable state
space S (so (S,P(S)) is a measurable space). But again, in the probability
theory framework it is interpreted as a variable which takes a value i ∈ S (or
is in state i) with probability P (X−1(i)). In sync with this interpretation, it
will be written X = i for the set X−1(i) and similarly X 6= i for Ω \X−1(i). A
real-valued vector dX can be associated with X which is indexed by S:

dX = (P (X = i))i∈S .

This vector is called the probability distribution vector (or loosely distri-
bution) of X . Obviously, the entries of dX are all nonnegative and ‖dX‖1 = 1.
Any vector possessing these two properties will be called normalised.

If the random variable X is real-valued (i.e. S ⊂ R),l the expected value
of X is given by

E(X) =
∑

i∈S

i · P (X = i).

Hence, E(X) is the asymptotic average value of X in a long-term observation.
Like for the probability measure P , one can define the conditional expected
value of X , given the event A ∈ F , by

E(X | A) =
∑

i∈S

i · P (X = i | A).

Given a probability space (Ω,F , P), a stochastic process with countable
state space S is a sequence (X0, X1, X2, . . .) of S-valued random variables,
defined on (Ω,F , P). The indexation of the random variables is interpreted as
discrete time. So, in the case of Xn = i, we will say that the process is in state
i at time n. A Markov chain is a stochastic process having the so called Markov
property:

Definition 3.2 (Markov chain). A stochastic process (X0, X1, X2, . . .) with
state space S on a probability space (Ω,F , P) is said to be a (homogeneous)
Markov chain if it possesses the Markov property

P (Xn+1 = xn+1 | Xn = xn, . . . , X0 = x0)

=P (Xn+1 = xn+1 | Xn = xn) = P (X1 = xn+1 | X0 = xn) ∀n ∈ N
(3.1)

for any fixed x0, . . . , xn+1 ∈ S.

The notion of Markov chains permits the definition of the matrix

P := (pij)i,j∈S with pij = P (X1 = j | X0 = i)

3.1. Basic definitions 31

for a chain M = (X0, X1, X2, . . .). The entry pij of P is called transition
probability from i to j, while P is said to be the (1 step) transition matrix
of M . P is a stochastic matrix which is to say the entries of P are nonnegative
and ∑

j∈S

pij = 1

for any i ∈ S. For the nonnegativeness of the entries pij we will write

P ≥ 0.

In that case P is said to be nonnegative. Similarly, for another same sized ma-
trix P ′, it will be written P ≥ P ′ if P −P ′ ≥ 0. The notation P > 0 and P > P ′

is defined accordingly.

Given the Markov chain M , its corresponding transition digraph GM =
GP can be constructed in a natural way by

GM := GP := (S, AP) with AP := {(i, j) ∈ S × S : pij > 0}.
As soon will be seen, many properties of the Markov chain M can be derived
from GM .

By now we have defined the notion of a probability distribution vector d =
(di)i∈S with respect to a random variable as well as of a transition matrix
P = (pij)i,j∈S of a Markov chain. The vector-matrix product of td and P is
defined as usual by

td · P := td′ with d′ = (d′i)i∈S such that d′
i =

∑

j∈S

djpji.

Although d and P may be of infinite size, the above product is still well de-
fined, i.e. the sums converge, because d is normalised and the entries of P are
bounded. With d also d′ is a probability distribution vector of some random
variable. Likewise, the product of two stochastic matrices P and P ′, both in-
dexed by S, can be defined, so that P · P ′ is also a stochastic matrix.

Having said that, we can proceed in defining the n step transition matrix
P n by

P n := (pn
ij)i,j∈S with pn

ij = P (Xn = j | X0 = i).

It is recursively obtained from P by P n = P n−1 · P using the Chapman-
Kolmogorov equations.

If the probability distribution vector of Xn is denoted by dXn
, the prob-

ability distribution vectors are related by tdXn
= tdXn−1P or equivalently

tdXn
= tdX0P

n for n = 1, 2, In the theory of Markov chains one is in-
terested in the long-run behaviour of the chain M , i.e. one is interested in
the long-run behaviour of the sequence (dX0 , dX1 , dX2 , . . .). As ‖dXn

‖1 = 1
for n = 0, 1, 2, . . ., from the BolzanoWeierstrass theorem it follows that the se-
quence has at least one cluster point. We are particularly interested in sufficient
conditions for the existence of exactly one cluster point which is to say the con-
vergence of the sequence. To be able to state these conditions, some additional
definitions are needed.

32 Chapter 3. Basic facts about Markov chains

3.2 Irreducibility and periodicity

We start with the irreducibility of a Markov chain.

Definition 3.3 (irreducibility). A Markov chain M = (X0, X1, X2, . . .) on
a probability space (Ω,F , P) with state space S is called irreducible if for any
two states i, j ∈ S, there is an integer n ∈ N such that P (Xn = j | X0 = i) > 0.

The irreducibility of a Markov chain M directly translates into the strong
connectivity of its transition digraph GM . The set of states related to a SCC of
GM is called communicating class. The spectrum of the transition matrix P
contains some information about the communicating classes of M , as the next
lemma shows.

Lemma 3.4. Let M = (X0, X1, X2, . . .) be a finite Markov chain with transition
matrix P . Then, the geometric multiplicity of the eigenvalue 1 of P is equal to
the number of sink SCCs of the digraph GM .

Another important concept is the period of a state.

Definition 3.5 (period). For a Markov chain M = (X0, X1, X2, . . .) on a
probability space (Ω,F , P) the greatest common divisor

p(i) := gcd{n ∈ N : P (Xn = i | X0 = i) > 0}
is called the period of the state i from the state space S. If p(i) > 1, then i is
called periodic with period p(i), while otherwise it is called aperiodic.

Informally speaking, p(i) is the greatest common divisor of all lengths of cy-
cles which pass through i in the transition digraph GM . It is known that within
a communicating class any two states have the same period. Thus, one can also
speak of the period of a communicating class. Hence, an irreducible Markov
chain is said to be periodic or aperiodic if there is a state that is periodic or
aperiodic, respectively.

But how can aperiodic Markov chains be recognised? A partial answer is
given by the next theorem:

Theorem 3.6 (Frobenius). A finite irreducible Markov chain M with transi-
tion matrix P is aperiodic if and only if P m > 0 for some m ∈ N.

Although Theorem 3.6 answers the question whether or not a Markov chain
is aperiodic, the answer is (even from the theoretical point of view) not very
useful, as the integer m is not quantified. Wielandt has solved this problem by
the following theorem:

Theorem 3.7 (Wielandt). A n-state irreducible Markov chain M with tran-

sition matrix P is aperiodic if and only if P n2−2n+2 > 0.

But even Theorem 3.7 is not useful from the computational point of view.
There are algorithms [57] which determine the period of a chain in linear time.
The final result of this section relates the period of an irreducible Markov chain
to the spectrum of its transition matrix:

Proposition 3.8. Let M be a finite irreducible Markov chain with transition

matrix P and period d. Then, e
2kπi

h is an eigenvalue of P for k ∈ {0, . . . , h−1}
if and only if h|d.

3.3. Recurrence and transience 33

3.3 Recurrence and transience

In the previous section we have roughly examined the structure of Markov chains
by means of communicating classes and their periods. However, this does not
provide sufficient conditions for the mentioned convergence of the probability
distributions. Recurrence and transience is somehow the next detailed level of
investigation. To define these two terms, the first hitting time is needed.

Definition 3.9 (first hitting time). For a Markov chain M = (X0, X1, X2, . . .)
with state space S on a probability space (Ω,F , P) the random variable Ti : Ω→
N ∪ {∞}, defined by

T−1
i (n) =

{
(X1 6= i) ∩ · · · ∩ (Xn−1 6= i) ∩ (Xn = i) if n 6=∞⋂∞

t=1(Xt 6= i) if n =∞ ,

is called the first hitting time of the state i ∈ S.

By writing Ti loosely as Ti = min{k > 0 : Xk = i}, with the convention
Ti =∞ when Xk 6= i for all k > 0, we see that Ti measures the time the chain
M needs to get in state i. Its expected value

Mi := E(Ti | X0 = i),

referred to as the mean return time to state i, will play an important role
in the further classification of states. Anyway, we have now all ingredients to
introduce the concept of recurrence.

Definition 3.10 (recurrence, transience). Let M = (X0, X1, X2, . . .) be a
Markov chain with state space S on a probability space (Ω,F , P). A state i ∈ S
is said to be recurrent if

P (Ti <∞ | X0 = i) = 1,

otherwise i is called transient.

From the definition it follows that a recurrent state i will be visited infinitely
often by the Markov chain, once started in i, while transient states will be
visited at most a finite number of times. Note, however, that although a state
is recurrent, it does not necessarily imply the finiteness of the mean return time
to that state. This suggests a further distinction of recurrent states. Thus, a
recurrent state i is called positive recurrent if Mi < ∞, otherwise i is null
recurrent. The motivation for this naming will be seen in the next proposition.
One can show that (positive) recurrence and transience are class properties, i.e.
two states from a communicating class are either both (positive) recurrent or
both transient. Accordingly, we can say that an irreducible Markov chain is
either positive (resp. null) recurrent or transient.

Proposition 3.11. Let M = (X0, X1, X2, . . .) be a Markov chain with state
space S. If M admits a stationary distribution vector π = (πi)i∈S, a state i ∈ S
is positive recurrent if and only if πi > 0.

34 Chapter 3. Basic facts about Markov chains

3.4 Limiting and stationary distribution

At the beginning of this chapter we asked about the long-term behaviour of
a Markov chain M = (X0, X1, X2, . . .). More precisely, we were interested in
conditions under which the probability distribution vectors dX0 , dX1 , dX2 , . . .
converge to a common limit. The definitions of the previous sections have
entitled us to give the answer by the following theorem. It represents one of the
main results of this chapter.

Theorem 3.12. Let M = (X0, X1, X2, . . .) be an irreducible Markov chain
with state space S, let dXk

be the probability distribution vector of Xk. If M is
aperiodic and positive recurrent, then the limiting distribution vector π =
limk→∞ dXk

exists and does not depend on the initial distribution vector dX0 .

Irreducible Markov chains which are aperiodic and positive recurrent are
called ergodic. The limiting distribution vector π in Theorem 3.12 may also
exist under weaker conditions depending on the initial distribution vector dX0 .
In any case, if the limiting distribution vector π exists, then

∑

i∈S

πi · P (X1 = j | X0 = i) = πj and
∑

i∈S

πi = 1

or, equivalently in matrix notation, (3.2)
tπP = tπ and ‖π‖1 = 1

holds for the transition matrix P of the Markov chain. Any vector π satisfying
(3.2) is called stationary distribution vector. The reason for this naming is
that if one assumes dXk

= π for a probability distribution vector of Xk, then
tdXk+1

= tdXk
P = tπP = tπ follows and one sees that the distributions remain

stationnary as time passes by. The question under which conditions a unique
stationary distribution vector exists is essentially answered by the following
theorem. This is another main result.

Theorem 3.13. Let M = (X0, X1, X2, . . .) be an irreducible Markov chain with
state space S. Then, M is positive recurrent if and only if there is a stationary
distribution vector π = (πi)i∈S of M . In that case

πi =
1

Mi
∀i ∈ S

holds, and hence π is unique.

Note that the assertions in Theorem 3.13 are weaker than in Theorem 3.12.
This means that if the limiting distribution exists according to Theorem 3.12,
it is equal to the stationary distribution postulated in Theorem 3.13. Further-
more, Theorem 3.13 interprets the stationary distribution vector as the inverse
of the mean return time vector, to speak informally. This is exactly the idea
behind an algorithm due to Speckenmeyer [56] for the minimum feedback vertex
set problem. This algorithm is reviewed in Chapter 4. There, we will present
an alternative motivation for the design of that algorithm.

As in the subsequent chapters only Markov chains with finite state space
will be considered, the next proposition is of interest.

3.4. Limiting and stationary distribution 35

Proposition 3.14. Let M = (X0, X1, X2, . . .) be an irreducible Markov chain
with state space S. If S is finite, M is positive recurrent and therefore admits
a unique stationary distribution.

36 Chapter 3. Basic facts about Markov chains

�
�

�
�Chapter

�
�

�
4

�

�

�

�
MFVS and variants

Two are better than one, because they
have a good reward for their hard work.
For if one of them should fall, the other
one can raise his partner up. But how
will it be with just the one who falls
when there is not another to raise him
up? [. . .] And if somebody could
overpower one alone, two together could
make a stand against him. And a
threefold cord cannot quickly be torn in
two.

The Bible,
Ecclesiastes 4:9–12

In this chapter we will present some new heuristics for the (weighted) mini-
mum feedback vertex set problem for digraphs based on Markov chains. In this
connection, the language and results presented in Chapter 3 will be used.

The pioneering work in this direction has been initiated by Speckenmeyer
with the paper [56]. Unfortunately, his idea has fallen into oblivion. The reason
for this may be manifold. One aspect might be the large worst case runtime
of the resulting algorithm. Another aspect might be the fact that there exist
faster heuristics that outperform the Markov chain based heuristic.

Both topics are addressed in this chapter. Section 4.1 contains a brief de-
scription of Speckenmeyer’s original idea and his algorithm MFVS as presented
in [56]. As part of the description, we will improve the runtime of the algorithm
in section 4.1.4. Based on a alternative implementation, a runtime is derived
that shows that, despite of the high theoretical runtime the algorithm, can come
up with a solution for practical instances in reasonable time.

In section 4.2 we will introduce a clever yet natural enhancement of Speck-
enmeyer’s heuristic. With this enhancement the resulting algorithm is able to
compete with other algorithms with respect to the performance. However, de-
tailed performance comparisons are presented in Chapter 6.

38 Chapter 4. MFVS and variants

4.1 The basic MFVS algorithm

4.1.1 Motivation

How to select a vertex v of a digraph G = (V, A) to be part of a FVS of
small cardinality? One idea is to select the vertex with the highest probability
of belonging to an optimal FVS F of G. But what is the probability that v
belongs to F ? This question is difficult to answer. However, let us try to give
an approximative answer. Suppose v lies on a minimal cycle C ∈ MG. By
further assuming |F ∩ V (C)| = 1, the probability of v belonging to F can be
assessed as

1

|V (C)| . (4.1)

Let C ′ ∈ MG be another minimal cycle containing v with V (C) ∩ V (C ′) = {v}
and |F ∩ V (C ′)| = 1. Then, the probability of v ∈ F can be reevaluated by

1

|V (C)| +
(

1− 1

|V (C)|

)
1

|V (C ′)| =
1

|V (C)| +
1

|V (C ′)| −
1

|V (C)||V (C ′)| . (4.2)

One could further consider a third minimal cycle C ′′ ∈MG (and so forth) with
V (C) ∩ V (C ′) ∩ V (C ′′) = {v} and |F ∩ V (C ′′)| = 1 and one would obtain esti-
mates for the probability similar to (4.1) and (4.2). Yet, two observations can
be made: Firstly, the (estimated) probability of v being part of F increases with
the number of cycles passing through v. Secondly, the probabilities (4.1) and
(4.2) increase as both the length of C and the length of C ′ decrease.

Now, suppose G is the transition digraph of a random walk M . We can re-
late the second observation with the stationary distribution vector π = (πv)v∈V

of M as follows: Assuming M to be irreducible, Theorem 3.13 in conjunction
with Proposition 3.14 tells us that 1

πv
is equal to the mean return time to v.

On the other hand, intuitively, v has a small mean return time if many cycles
of small length pass through it. Hence, the probability of v being a member of
the optimal FVS F approximatively amounts to πv .

The assumptions which have led to the mentioned connection are not always
satisfied. Particularly, |F ∩ V (C)| = 1 does not hold for optimal FVSs F
in general. Nevertheless, the stationary distribution vector π contains enough
information about the number and length of the cycles which pass a vertex v.
This is especially the case for the class of symmetric digraphs, i.e. digraphs G
for which G = G−1 holds. In these digraphs any minimal cycle has length 2,
so any two distinct minimal cycles share at most one vertex. Speckenmeyer has
shown in [56] that on these digraphs MFVS has a performance ratio of log |V |.

4.1.2 The algorithm

Consider a digraph G = (V, A) for which a FVS is to be determined. We can
assume that each vertex of G has in- and outdegree of at least 1. The key of
Speckenmeyer’s heuristic algorithm is the interpretation of G as a finite-state
Markov chain. Accordingly, the Markov chain MG = (X0, X1, X2, . . .) with state
space V is associated to G. MG is defined on the probability space (Ω,F , P)

4.1. The basic MFVS algorithm 39

and has the property

P (X1 = v | X0 = u) =

{
1

d+
G

(u)
if (u, v) ∈ A

0 else
. (4.3)

Because of the assumptions made on G, the chain MG is well defined. The prop-
erty (4.3) defines MG completely with the exception of the initial distribution. It
is not specified because Speckenmeyer’s algorithm does not depend on it. So, for
any digraph G with the mentioned restrictions, MG will denote the Markov chain
constructed above. MG has the property that P (X1 = v1 | X0 = u) 6= 0 and
P (X1 = v2 | X0 = u) 6= 0 imply P (X1 = v1 | X0 = u) = P (X1 = v2 | X0 = u).
Every Markov chain having this property is called random walk.

We now describe Speckenmeyer’s algorithm which is called Markovian FVS-
algorithm or MFVS for short [56]. It starts with decomposing G into its SCCs
S1, . . . , Sr. Then, for each Si (i = 1, . . . , r) the algorithm selects a vertex
v ∈ V (Si) to belong to the FVS and processes Si − v recursively until a FVS
is determined. During that process MFVS attempts to simplify the current di-
graph by applying the Levy-Low reductions (see section 2.1.1.1).1 The whole
algorithm is depicted in Algorithm 4.1.

The FVS F obtained from Algorithm 4.1 is not guaranteed to be minimal.
So, it is transformed into a minimal FVS. This is done by checking the vertices
of F for redundancy in reversed order of insertion and removing them if they
turn out to be redundant. This is shown in Algorithm 4.2. Thus, the algorithm
MFVS is invoked by MakeMinimal(G, MFVS_SCC(G)).2

The crucial part of MFVS is its vertex selection heuristic. It chooses the
vertex v ∈ V with the smallest mean return time Mv in MG to belong to a
FVS of G. Consequently, the routine SelectVertex(G) from Algorithm 4.1
computes the stationary distribution vector π = (πv)v∈V of MG and returns the
vertex v ∈ V with the largest value of πv . Note that MFVS ensures that G is
strongly connected whenever SelectVertex(G) is called. In other words, MG

is irreducible in this situation and, in accordance with Proposition 3.14, MG has
indeed a unique stationary distribution vector which reflects the mean return
times as described by Theorem 3.13. The complete vertex selection heuristic is
formally shown in Algorithm 4.3.

4.1.3 Bad behaviour

Despite the motivations for MFVS given in section 4.1.1 it still can perform
badly without the Levy-Low reductions. Let us call that algorithm MFVS* in
this context. The digraph 2

rF (r = 3, 4, . . .) depicted in Figure 4.1 (originally

1In the original paper [56] the algorithm MFVS has not applied the Levy-Low reductions.
Insteed, W1-sets (cf. section 2.1.1.2) have been recognised. Here, the recognition of W1-sets
is omitted in favour of the Levy-Low reductions for two reasons. Firstly, most approximation
algorithms use the Levy-Low reductions, only. Thus, by pursuing the same philosophy for
MFVS, it becomes possible to compare it with other algorithms. Secondly, recognising W1-
sets is computationally expensive while MFVS hardly benefits from this feature.

2In the original paper [56] no check for redundancy is done. We include it even though for
comparability reasons.

40 Chapter 4. MFVS and variants

function MFVS_SCC(digraph G = (V, A)) do

vertex set F ;

if V = ∅ do

return ∅;
od;

F ← ∅;

for all SCCs S of G do

F ← F ∪ MFVS(S);

od;

return F ;

od;

function MFVS(digraph G = (V, A)) do

vertex v;

if V = ∅ do

return ∅;
od;

for all v ∈ V do

if (v, v) ∈ A do

return {v} ∪ MFVS_SCC(G− v);
od;

else if min(d−
G(v), d+

G(v)) = 0 do

return ∅;
od;

else if d−
G(v) = 1 do

return MFVS(G ◦ v);
od;

else if d+
G(v) = 1 do

return MFVS(G ◦ v);
od;

od;

v ← SelectVertex(G);

return {v} ∪ MFVS_SCC(G− v);
od;

Algorithm 4.1: The Markovian FVS algorithm.

4.1. The basic MFVS algorithm 41

function MakeMinimal(digraph G = (V, A), vertex set F) do

vertex v;

forall v ∈ F do

if (G− (F \ {v}) is acyclic) do

F ← F \ {v};
od;

od;

return F ;

od;

Algorithm 4.2: The transformation of a FVS F into a minimal one.

function SelectVertex(digraph G = (V, A)) do

matrix P = (puv)(u,v)∈V 2;

vector π = (πv)v∈V ;

vertex v;

P ← CreateTransitionMatrix(G);

π ← ComputeStationaryDistributionVector (P);

determine v ∈ V with πv = ‖π‖∞;

return v;
od;

Algorithm 4.3: The vertex selection heuristic of MFVS.

42 Chapter 4. MFVS and variants

due to Peter Heusch) is an example of this bad performance. In [50], it is claimed
without proof that MFVS* determines the FVS {M1, . . . , Mr} of 2

rF . We will
prove this fact. By the way, {A1, B1} is obviously the only optimal FVS of 2

rF .

Lemma 4.1. MFVS* determines the FVS {M1, . . . , Mr} of 2
rF for r ≥ 3.

Proof. We want to show that M1, . . . , Mr ∈ 2
rF is successively selected by

MFVS*. For this purpose consider the subgraph 2
rFk (Figure 4.2) of 2

rF for
k = 1, . . . , r. We compute the stationary distribution π = (πv)v∈V (2rFk) of
M2

rFk
. Then, we have

• πAi
= πBi

= 2r−kz for i = 1, . . . , k − 1

• πAi
= πBi

= 2r−iz for i = k, . . . , r

• πMi
= 6r+1−i+4

5·3r−i z for i = k, . . . , r

with z = 5·3r−k

2(11+5k)6r−k−10·3r−k−2
> 0. This can be confirmed by verifying the

equations (3.2) defining the stationary distribution vector. We see that

• πAi
≥ πAi+1 for i = 1, . . . , r − 1

• πMi
= 6r+1−i+4

5·3r−i z =
2·6r−i+

4
3

5·3r−1−i z > 6r−i+4
5·3r−1−i z = πMi+1 for i = k, . . . , r − 1

• πMk
= 6r+1−k+4

5·3r−k z > 6r+1−k

6·3r−k z = 2r−kz = πA1

It follows that πMk
= ‖π‖∞, and thus Mk is selected by MFVS* in the digraph

2
rFk. Hence, the assertion follows inductively.

Lemma 4.1 shows that the performance-ratio of MFVS* is arbitrarily high.
It is reasonable to assume that the same applies for MFVS.

A1

B1

A1

B1

A1

B1

A1

B1

A1 A2 A3 Ar

B1 B2 B3 Br

M1 M2 M3 Mr

Figure 4.1: The fool graph 2
rF for MFVS.

4.1. The basic MFVS algorithm 43

A1

B1

A1

B1

A1

B1

A1 Ak Ak+1 Ar

B1 Bk Bk+1 Br

Mk Mk+1 Mr

Figure 4.2: The induced subgraph 2
rFk of 2

rF . It results from 2
rF after deleting

the vertices M1, . . . , Mk−1.

4.1.4 Runtime and implementation

In Chapter 3 we have seen that the stationary distribution vector π = (πi)i∈S of
an irreducible Markov chain M with state space S satisfies the equations (3.2)
uniquely. These equations can be rewritten as

(tP − I)π = 0
∑

i∈S

πi = 1,

where P is the transition matrix of M and I is the identity matrix. Because
π is the unique solution to the above system of linear equations, replacing any
row of the homogeneous system (tP − I)π = 0 by

∑
i∈S πi = 1 leads to a

nonhomogeneous one with the unique solution π. So, computing the stationary
distribution vector π of an irreducible Markov chain M consists of solving a
nonhomogeneous system of linear equations

Aπ = b

with a non-singular square matrix A ∈ Rn. Hence, the stationary distribution
π can be determined by performing a matrix inversion of size |V | × |V |. The
theoretically best known algorithm for this task has a runtime of O(|V |2.376) [13].

Now, recall the algorithm MFVS shown in Algorithm 4.1. Suppose it deter-
mines the FVS F of the digraph G = (V, A). At the beginning and after each
selection of a vertex to be included in a FVS, MFVS decomposes the digraph
into its SCCs and applies the Levy-Low reductions. The former takes linear
time [59] while the latter can be implemented to run in time O(|A| log |V |) [36].
Yet, the dominant operation is the vertex selection itself. For almost each vertex
in F the stationary distribution of MG has to be determined which takes time

44 Chapter 4. MFVS and variants

O(|V |2.376) following the above reasoning. So, one could argue that the total
runtime sums up to O(|V |2.376|F |).

However, keep in mind that most of the digraphs arising in practical appli-
cations are sparse. In addition, the stationary distribution vector π does not
necessarily need to be evaluated to full precision in order to decide which is the
largest entry of π. These two facts suggest applying an iterative method to solve
the mentioned system of linear equations. By doing so, one can hope to obtain
a better bound for the runtime of MFVS.

A basic iterative method for solving a system of linear equations is the
power method (see [32] and [61]) which is a direct application of Theorem 3.12
in conjunction with Proposition 3.14. If we write the problem of determining
the stationary distribution vector π of the irreducible aperiodic Markov chain
MG again in fixpoint form tPπ = π, the power method consists of computing
(tP)kx for sufficiently large k with an arbitrary normalised vector x. The idea
behind this is that from Theorem 3.12 it follows

lim
k→∞

(tP)kx = π.

The periodic case can be easily transformed into an equivalent aperiodic one as
follows: The equation

tPπ = π

is equivalent to
1
2 (tP + I)
︸ ︷︷ ︸

tP ′

π = π.

So, P ′ is the transition matrix of an aperiodic Markov chain MG′ having the
same stationary distribution as MG. Hence, the power method can be applied
to MG′ .

Now, suppose we want to evaluate π to an accuracy of 10−d. Let λ be a
subdominant (second largest) eigenvalue of P . Then, as shown in [32], asymp-
totically

d

− log10 |λ|
iterations are needed. On the other hand, P has exactly |A| nonzero entries.
Hence, the matrix vector product of tP and any vector x can be implemented
to run in O(|A|) time using a sparse matrix package. This yields a runtime

of O(|A|d
− ln |λ|) to compute π. The total runtime of MFVS applying the power

method is therefore O(|A||F | d
− ln |λ|). Because d is usually bounded — e.g. by

the machine precision — it can be regarded as constant. So, the runtime bound
reduces to

O(|A||F | 1
− ln |λ|).

Thus, the runtime of MFVS is mainly governed by 1
− ln |λ| . If |λ| is well-

separated from 1, i.e. there is a δ > 0 with |λ| ≤ 1 − δ, for each input
instance G = (V, A), then MFVS runs in time O(|A||F |), being considerably
faster than the approach involving direct matrix inversion with the time bound

4.2. The mean approach 45

of O(|V |2.376|F |). Unfortunately, this is not always the case. Even for irre-
ducible aperiodic Markov chains |λ| can be arbitrarily close to 1 resulting in
an arbitrarily high runtime. Nearly decoupled chains are an example for this
phenomenon. In such cases the former method of matrix inversion should be
used.

While the closeness of |λ| to 1 might theoretically cause runtime problems,
for most practical applications this is not an issue and the power method is the
algorithm of choice. Although we have implemented it in the simplest form, we
have not encountered any runtime problems. Besides, there are ways to acceler-
ate the power method. A survey can be found in [33] where the focus is on the
PageRank computation [9]. More general approaches to speedup the computa-
tion of the stationary distribution vector are the state compression technique
described in [61] and the aggregation/disaggregation technique reviewed in [39].
Since MFVS actually only needs to update the stationary distribution vector
after the removal or exclusion of a vertex, the latter algorithm can be used to
accomplish this task. This procedure, among others, is outlined in [32].

The algorithm MFVS and all its subsequent variants and extensions have
been implemented mainly using the LEDA software library [42]. The only part
not written using LEDA is the power method which has been implemented using
the SparseLib++ class library [18].

4.2 The mean approach

4.2.1 Motivation

The starting point for our considerations, which have led to the mean approach,
was the digraph 2

rF (r ≥ 3) from Figure 4.1. As Lemma 4.1 shows ,MFVS*
performs bad for this class of digraphs. We tried to understand why this is the
case for this particular class and how MFVS* could be fixed to determine the
optimal FVS {A1, B1}.

The general idea was to develop a technique to somehow detect and correct
at least some nonoptimal vertex selections made by MFVS*. This technique
should ideally be ’independent’ of the way MFVS* selects vertices, yet roughly
having the same quality. For if one of the two heuristics was clearly worse, it
would interfere the better one. Of course we cannot expect from a polynomial
heuristic the ability to detect all nonoptimal selections made by MFVS*, unless
P=NP. Occasionally, the heuristic might even falsely discard an optimal selec-
tion in favour of a nonoptimal one. But typically, the heuristic should be a gain.

One might be surprised by the fact that for MFVS* it is straight forward to
devise such a heuristic which meets all the mentioned requirements. Just note
that the digraphs G = (V, A) and G−1 share the same (optimal) FVSs. So, one
could consider applying MFVS* on G−1. One evidence that this direction is
promising is the next lemma.

Lemma 4.2. MFVS* determines the optimal FVS {A1, B1} of 2
rF−1 for r ≥ 3.

46 Chapter 4. MFVS and variants

Proof. If π = (πv)v∈V (2rF
−1) denotes the stationary distribution of M2

rF
−1 , we

compute

• πAi
= πBi

= (2r−2i+3)3i−1−1
2·3i−1r z for i = 1, . . . , r

• πMi
= 3i−1

3i−1rz for i = 1, . . . , r

with z = 3r−1r
(r2+5r−3)3r−1+1 > 0. We see that

• πAi
= πBi

= (2r−2i+3)3i−1−1
2·3i−1r z = (2r−2i+3)3i−3

2·3ir z

= (2r−2(i+1)+3)3i+2·3i−3
2·3ir z

> πAi+1 = πBi+1 for i = 1, . . . , r − 1

• πMi
= 3i−1

3i−1rz = 3i+1−3
3ir z < 3i+1−1

3ir z = πMi+1 for i = 1, . . . , r − 1

• πA1 = πB1 = z > 3r−1
3r z ≥ 3r−1

3r−1rz = πMr
for r ≥ 3

From the above πA1 = πB1 = ‖π‖∞ can be concluded. So, either A1 or B1

– say A1 w.l.o.g – is selected first by MFVS* as a FVS vertex. Furthermore,
for 2

rF−1 − A1 there is an optimal FVS consisting of the vertex B1. It has
been shown by Speckenmeyer [56] that in this situation MFVS* determines an
optimal FVS of 2

rF−1−A1. Since {B1} is the unique optimal FVS, MFVS* will
determine it.

Hence, we see that MFVS* selects A1 first and then B1.

But how to incorporate the computation of MFVS*(G−1) into that of MFVS*(G)?
One possibility is to call SelectVertex(G−1) each time SelectVertex(G) is
called within Algorithm 4.1. If both calls return the same vertex, we can in-
terpret that as a confirmation of its membership of an optimal FVS. But what
to do if the two vertices disagree? As part of the execution of MFVS*(G) and
MFVS*(G−1), the stationary distributions π′ = (π′

v)v∈V and π′′ = (π′′
v)v∈V of

MG and MG−1 , respectively, are determined. Our idea is to compute a vector
π = (πv)v∈V with πv = h(π′

v , π′′
v) (v ∈ V) and to determine a vertex v ∈ V such

that πv = ‖π‖∞. Then, v is selected to belong to the FVS of G.

We have considered different functions h : R+×R+ → R+. After carrying out
experiments with several functions, including h(x, y) = 1

2 (x+ y), h(x, y) =
√

xy
and h(x, y) = max{x, y}, the arithmetic mean, i.e. h(x, y) = 1

2 (x + y), turned
out to be best.

4.2.2 The algorithm

Let us denote by MFVS*Mean the algorithm described in the previous subsec-
tion. It differs from MFVS* only in the vertex selection heuristic. The modified
heuristic is shown in Algorithm 4.4. By MFVSMean the same algorithm will be
denoted except that MFVSMean also applies the Levy-Low reductions. It follows
exactly the framework of Algorithm 4.1, whereby the vertex selection heuristic
in Algorithm 4.4 is used.

4.2. The mean approach 47

function SelectVertex(digraph G = (V, A)) do

matrix P = (puv)(u,v)∈V 2;

vector π = (πv)v∈V ;

vector π′ = (π′
v)v∈V ;

vector π′′ = (π′′
v)v∈V ;

vertex v;

P ← CreateTransitionMatrix(G);

π′ ← ComputeStationaryDistributionVector (P);

P ← CreateTransitionMatrix(G−1);

π′′ ← ComputeStationaryDistributionVector (P);

π ← π′ + π′′;

determine v ∈ V with πv = ‖π‖∞;

return v;
od;

Algorithm 4.4: The vertex selection heuristic of MFVSMean.

The expectation that motivated the design of MFVSMean was that MFVSMean

will perform better than MFVS in the average case. Although this issue will
be discussed in detail in Chapter 6, we give an example which supports this
expectation. We argue that MFVS*Mean determines an optimal FVS of 2

rF for
small instances.

Lemma 4.3. MFVS*Mean determines the optimal FVS {A1, B1} of 2
rF for

3 ≤ r ≤ 24.

Proof. Let π′ = (π′
v)v∈V (2rF) and π′′ = (π′′

v)v∈V (2rF
−1) be the stationary distri-

bution of M2
rF

and M2
rF

−1 , respectively. From the proofs of Lemma 4.1 and 4.2
it is known that

• π′
Ai

= 5·2r−i·3r−1

32·6r−1−10·3r−1−2 for i = 1, . . . , r

• π′
Mi

= (6r+1−i+4)3i−1

32·6r−1−10·3r−1−2 for i = 1, . . . , r

as well as

• π′′
Ai

= π′′
Bi

= (2r−2i+3)3r−1−3r−i

2(r2+5r−3)3r−1+2 for i = 1, . . . , r

• π′′
Mi

= 3r−3r−i

(r2+5r−3)3r−1+1 for i = 1, . . . , r

With π = 1
2 (π′ + π′′) from the proofs of Lemma 4.1 and 4.2 it also follows

πAi
> πAi+1 for i = 1, . . . , r − 1. So it remains to be shown that πA1 > πMi

for
i = 1, . . . , r − 1.

48 Chapter 4. MFVS and variants

With X := 32 · 6r−1 − 10 · 3r−1 − 2 and Y := (r2 + 5r − 3)3r−1 + 1 we get

πA1 =
1

2
(π′

A1
+ π′′

A1
) =

1

2

(
5 · 6r−1

X
+

r3r−1

Y

)

=
1

2XY
(5 · 6r−1(r2 + 5r − 3)3r−1 + 5 · 6r−1 + 32r3r−16r−1 − r3r−1 · 10 · 3r−1 − 2r3r−1)

=
1

2XY
(18r−1(5r2 + 57r − 15) + 5 · 6r−1 − 10r9r−1 − 2r3r−1)

For 2 ≤ i ≤ r we get

πMi
=

1

2
(π′

Mi
+ π′′

Mi
) =

1

2

(
≤3(6r−1+4)︷ ︸︸ ︷

(6r+1−i + 4)3i−1

X
+

3r − 3r−i

Y

)
≤ 1

2

(
3(6r−1 + 4)

X
+

3r

Y

)

=
1

2XY
(3(6r−1 + 4)︸ ︷︷ ︸

<4·6r−1

Y + 32 · 3r6r−1
︸ ︷︷ ︸
=96·18r−1

−10 · 3r3r−1 − 2 · 3r)

=
1

2XY
(4 · 6r−1Y + 104 · 18r−1 − 8 · 18r−1

︸ ︷︷ ︸
>10r9r−1

− 30 · 9r−1
︸ ︷︷ ︸
>2r3r−1

−2 · 3r)

<
1

2XY
(4 · 6r−1(r2 + 5r − 3)3r−1 + 4 · 6r−1 + 104 · 18r−1 − 10r9r−1 − 2r3r−1)

=
1

2XY
(18r−1(4r2 + 20r − 12) + 4 · 6r−1 + 104 · 18r−1 − 10r9r−1 − 2r3r−1)

=
1

2XY
(18r−1(4r2 + 20r + 92) + 4 · 6r−1 − 10r9r−1 − 2r3r−1

=
1

2XY
(18r−1(4r2 + 20r + 36r − 36r︸︷︷︸

≥108

+92) + 4 · 6r−1 − 10r9r−1 − 2r3r−1

≤ 1

2XY
(18r−1(4r2 + 56r − 16) + 4 · 6r−1 − 10r9r−1 − 2r3r−1

< πA1

In addition we have

πM1 =
1

2
(π′

M1
+ π′′

M1
) =

1

2

(
6r + 4

X
+

3r − 3r−1

Y

)
=

1

2

(
6r + 4

X
+

2 · 3r−1

Y

)

=
1

2XY
((6r + 4)(r2 + 5r − 3)3r−1 + 6r + 4 + 64 · 3r−16r−1 − 20 · 3r−13r−1 − 4 · 3r−1)

=
1

2XY
((6r + 4)(r2 + 5r − 3)3r−1 + 72 · 18r−1 − 8 · 18r−1

︸ ︷︷ ︸
>10r9r−1

+ 6r + 4− 20 · 9r−1 − 4 · 3r−1

︸ ︷︷ ︸
<0

)

<
1

2XY
(18r−1(6r2 + 30r − 18) + 3r−1(4r2 + 20r − 12) + 72 · 18r−1 − 10r9r−1)

=
1

2XY
(18r−1(6r2 + 30r + 54) + 3r−1 (4r2 + 22r − 12)︸ ︷︷ ︸

<3·6r−1

−10r9r−1 − 2r3r−1)

<
1

2XY
(18r−1(6r2 + 30r + 54) + 3 · 18r−1 − 10r9r−1 − 2r3r−1)

=
1

2XY
(18r−1(6r2 + 30r + 57)− 10r9r−1 − 2r3r−1)

< πA1

4.3. Weighted versions 49

for 3 ≤ r ≤ 24. The above calculations imply πA1 = πB1 = ‖π‖∞ for 3 ≤ r ≤ 24.
So w.l.o.g A1 is selected first by MFVS*Mean to be part of the FVS. Then {B1}
is the unique optimal FVS of 2

rF − A1. With an analogue reasoning as in the
proof of Lemma 4.2 we conclude that B1 is selected next by MFVS*Mean.

4.3 Weighted versions

Having presented the algorithms MFVS and MFVSMean for the minimum feed-
back vertex set problem, it is reasonable to also develop counterparts for the
weighted minimum feedback vertex set problem. These counterparts will be
called WMFVS and WMFVSMean, respectively. But before stating, them it
shall be argued that they are natural generalisations of the unweighted versions.

4.3.1 Motivation

Let G = (V, A, w) with a weight function w : V → R+ be an instance of the
weighted minimum feedback vertex set problem. We will describe a reduction
from the weighted to the unweighted minimum feedback vertex set problem that
motivates the design of the algorithms WMFVS and WMFVSMean.

Without loss of generality, let us first make some simple assumptions. Be-
cause Q is dense in R we can assume all weights to be in Q, i.e. w : V → Q+.
Moreover, since V is finite, there is an integer N ∈ N such that Nw(v) ∈ N for
all v ∈ V . Thus, by replacing w with Nw, we can assume further w : V → N.
Of course, the value of N may become arbitrarily large. But the integer N will
not be used in the final algorithms. It is only an ’auxiliary constant’ that serves
the purpose to facilitate the description of the reduction. Its potentially large
value is not an issue.

4.3.1.1 A reduction to the unweighted case

u

v

u

v

t1uv tkuv

Figure 4.3: The replacement of the arc (u, v) by the paths (u, ti
uv , v) with i =

1, . . . , k.

The reduction itself is divided into two steps. The first step is to construct
a weighted digraph G′ = (V ′, A′, w′) from G. This is done by replacing each arc

50 Chapter 4. MFVS and variants

(u, v) ∈ A by a set of paths (u, tiuv, v) (i = 1, . . . , k) for a fixed integer k ∈ N as
depicted in Figure 4.3. Formally, we have

V ′ := V ∪
=:VA︷ ︸︸ ︷

{t1uv, . . . , t
k
uv : (u, v) ∈ A}

and

A′ := {(u, tiuv), (t
i
uv , v) : (u, v) ∈ A, tiuv ∈ VA}.

The weight function w′ : V ′ → N is defined as

w′(v) :=

{
w(v) if v ∈ V

1 if v ∈ VA

.

v

v1

vw(v)

Figure 4.4: The splitting of v into the vertices v1, . . . , vw(v).

In a second step we construct an unweighted digraph H = (V ′′, A′′) from G′

by splitting each vertex v ∈ V ∩ V ′ into the vertices v1, . . . , vw(v) as shown in
Figure 4.4. More precisely, H is defined by

V ′′ := VA ∪
=:Vw︷ ︸︸ ︷

{v1, . . . , vw(v) : v ∈ V }
and

A′′ := {(tiuv, vj) : tiuv ∈ VA, vj ∈ Vw} ∪ {(vj , t
i
vu) : tivu ∈ VA, vj ∈ Vw}.

Having constructed the digraph H , let us examine its relation to G. This
will be done by first comparing their FVSs and then the stationary distributions
of MG and MH .

4.3.1.2 The feedback vertex sets of G and H

We start with a FVS FH ⊂ V ′′ of H and want to construct a FVS F ⊂ V
of G. But first, let us examine the structure of FH in more detail. Assume
that tiuv ∈ FH ∩ VA is not redundant. Then, we have t1uv, . . . , t

k
uv ∈ FH , too.

This can be seen as follows. Because ti
uv is not redundant, there is a cycle

C = (u`, t
i
uv , v`′ ,

1s, . . . , rs, u) ∈ CH with ` ∈ {1, . . . , w(u)}, `′ ∈ {1, . . . , w(v)}
and 1s, . . . , rs ∈ V ′′ such that

FH ∩ V (C) = {tiuv} (4.4)

4.3. Weighted versions 51

according to Proposition 1.3. Then, by construction of H , we also have a cycle
C ′ = (u`, t

j
uv, v`′ ,

1s, . . . , rs, u) ∈ CH for any tjuv ∈ VA (j 6= i). Because FH is a
FVS of H , FH ∩ V (C ′) 6= ∅ holds and on account of (4.4) we get

FH ∩ V (C ′) = {tjuv}.

This means that tjuv is also not redundant. So we see

tiuv redundant⇐⇒ t1uv, . . . , t
k
uv redundant.

By applying a similar reasoning we also conclude

vi ∈ Vw redundant⇐⇒ v1, . . . , vw(v) ∈ Vw redundant.

Hence, FH being minimal, we can assume

tiuv ∈ FH =⇒ t1uv , . . . , tkuv ∈ FH and vj ∈ FH =⇒ v1, . . . , vw(v) ∈ FH . (4.5)

Thus, we are entitled to construct a FVS F ′ ⊂ V ′ of G′ by

F ′ := (FH ∩ VA) ∪ {v ∈ V : v1 ∈ FH ∩ Vw}.

Given the minimality of FH , it is obvious that F ′ is minimal, too. Moreover,
by definition of F ′, it can be similarly assumed t1uv, . . . , t

k
uv ∈ F ′ if tiuv ∈ F ′ for

some i ∈ {1, . . . , k}. Because N+
G′(tiuv) = {v} for any i = 1, . . . , k, the set

F := (F ′ ∩ V) ∪ {v ∈ V : t1uv ∈ F ′}

is a FVS of G. It is minimal because F ′ is assumed so.

In order to compare w(F) and |FH |, note that |FH | = w′(F ′). Furthermore,
observe that, speaking loosely, the vertices t1uv , . . . , tkuv ∈ F ′∩VA are replaced by
their common successor v to obtain F . Hence, assuming k > max{w(v) : v ∈ V }
we have w′(F ′) ≥ w(F). To sum up,

|FH | ≥ w(F) and (|FH | = w(F) ⇐⇒ FH ∩ VA = ∅)

holds.

From F another FVS

F̃H := {v1, . . . , vw(v)} (4.6)

of H can be constructed with w(F) = |F̃H | ≤ |FH |. Thus, the conclusion is that
FH ∩ VA = ∅ if FH is optimal. In this case F is optimal, too. Conversely, given
that F is optimal it induces an optimal FVS F̃H of H via (4.6).

4.3.1.3 The stationary distributions of MG and MH

Now, consider the relation between G and H from another point of view: com-
pare the stationary distributions π and π′ of the Markov chains MG and MH ,
respectively.

52 Chapter 4. MFVS and variants

Proposition 4.4. For a strongly connected weighted digraph G = (V, A, w)
let the digraph H be defined as in section 4.3.1.1. If π = (πv)v∈V and π′ =
(π′

v)v∈VH
denote the stationary distributions of the Markov chains MG and MH ,

respectively, then π′ has the following form:

π′
vi

=
1

2w(v)
πv for vi ∈ Vw

π′
ti
uv

=
1

2k d+
G(u)

πu for tiuv ∈ VA

Proof. As G is assumed to be strongly connected, so is the digraph H . Thus the
Markov chains MG and MH are irreducible, hence due to Proposition 3.14 the
stationary distributions π and π′ exist and are unique. Thus, it has to be shown
that π′ in the asserted form has the properties (3.2) of a stationary distribution.
But, before showing this, note that by construction of H the following holds for
the vertex degrees:

d−
H(vi) = k d−

G(v), d+
H(vi) = k d+

G(v) for vi ∈ Vw

d−
H(tiuv) = w(u), d+

H(tiuv) = w(v) for tiuv ∈ VA

In the following calculations it will be assumed that MG and MH are defined
on the probability spaces (Ω,F , P) and (Ω,F , P ′), respectively. Now, suppose
π is a stationary distribution of MG, i.e. (3.2) holds. Then, for a fixed vi ∈ Vw

we have
∑

u∈VH

π′
u · P ′(X1 = vi | X0 = u) =

∑

tj
uv∈VA

π′
tj
uv
· P ′(X1 = vi | X0 = tjuv)

=
∑

tj
uv∈VA

1

2k d+
G(u)

πu
1

d+
H(tjuv)

=

k∑

j=1

∑

(u,v)∈A

1

2k d+
G(u) d+

H(tjuv)
πu

=
∑

(u,v)∈A

k∑

j=1

1

2k d+
G(u)w(v)

πu

=
1

2w(v)

∑

(u,v)∈A

k∑

j=1

1

k d+
G(u)

πu

=
1

2w(v)

∑

(u,v)∈A

1

d+
G(u)

πu

=
1

2w(v)

∑

u∈V

πu · P (X1 = v | X0 = u)

︸ ︷︷ ︸
=πv in view of (3.2)

=
1

2w(v)
πv = π′

vi
.

4.3. Weighted versions 53

For tiuv ∈ VA

∑

s∈VH

π′
s · P ′(X1 = tiuv | X0 = s) =

∑

(uj ,ti
uv)∈AH

π′
uj
· P ′(X1 = tiuv | X0 = uj)

=
∑

(uj ,ti
uv)∈AH

1

d+
H(uj)

π′
uj

=
∑

(uj ,ti
uv)∈AH

1

k d+
G(u)

1

2w(u)
πu

=
1

2k

∑

(uj ,ti
uv)∈AH

1

d+
G(u)w(u)

πu =
1

2k

w(u)∑

j=1

1

d+
G(u)w(u)

πu

=
1

2k d+
G(u)

πu = π′
ti
uv

holds. So, finally

‖π′‖1 =
∑

v∈VH

π′
v =

∑

vi∈Vw

π′
vi

+
∑

ti
uv∈VA

π′
ti
uv

=

w(v)∑

i=1

∑

v∈V

π′
vi

+

k∑

i=1

∑

(u,v)∈A

π′
ti
uv

=
∑

v∈V

w(v)∑

i=1

1

2w(v)
πv +

∑

(u,v)∈A

k∑

i=1

1

2k d+
G(u)

πu

=
1

2

∑

v∈V

πv

︸ ︷︷ ︸
=1

+
∑

(u,v)∈A

1

2 d+
G(u)

πu =
1

2
+

1

2

∑

v∈V

∑

u∈V

πu · P (X1 = v | X0 = u)

︸ ︷︷ ︸
=πv in view of (3.2)

=
1

2
+

1

2

∑

v∈V

πv

︸ ︷︷ ︸
=1

= 1

shows that the equations (3.2) are satisfied for π′ and the assertion follows.

4.3.2 Algorithms

A naive way to apply the Markov chain methodology to the weighted minimum
feedback vertex set problem would be to construct the unweighted instance
H = (V ′′, A′′) from the weighted digraph G = (V, A, w) as described in section
4.3.1.1 and to determine a FVS FH of H using the known algorithms for the
unweighted case. Then, in section 4.3.1.2 it has been shown how to derive a FVS
F ⊂ V of G from FH such that w(F) ≤ |FH | provided the parameter k is large
enough which is assumed throughout the remainder of this section. So, let us for
example consider the behaviour of MFVS* when confronted with the digraph H .

Recall that MFVS* always chooses the vertex s ∈ V ′′ to belong to the FVS
FH which maximises π′

s, where π′ = (π′
s)s∈V ′′ is the stationary distribution

vector of MH . It can be concluded from Proposition 4.4 that s /∈ VA if k is large
enough. Thus, s is of the form s = vi ∈ Vw with an appropriate v ∈ V . This
implies that s = vi maximises the ratio 1

2w(v)πv due to Proposition 4.4. Now,

consider the stationary distribution vector π′′ = (π′′
s)s∈V ′′\{vi} of MH−vi

. From

54 Chapter 4. MFVS and variants

function SelectVertex(weighted digraph G = (V, A, w)) do

matrix P = (puv)(u,v)∈V 2;

vector π = (πv)v∈V ;

vector π′ = (π′
v)v∈V ;

vertex v;

P ← CreateTransitionMatrix(G);

π′ ← ComputeStationaryDistributionVector (P);

for all v ∈ V do

πv ← π′

v

w(v) ;

od;

determine v ∈ V with πv = ‖π‖∞;

return v;
od;

Algorithm 4.5: The vertex selection heuristic of WMFVS.

Proposition 4.4 we conclude

π′′
s = π′

s for s ∈ V ′′ \ {v1, . . . , vw(v)}
and

π′′
vj

=
w(v)

w(v) − 1
πvj

=
1

2(w(v) − 1)
πv for j ∈ {1, . . . , w(v)} \ {i}.

So, it can be seen that π′′
vj

= ‖π′′‖∞ for all j ∈ {1, . . . , w(v)} \ {i}. Hence,
one such vj ∈ V (H − vi) is selected next by MFVS* to belong to the FVS FH .
Thus, eventually each v1, . . . , vw(v) ∈ V ′′ is chosen to be part of FH and the
process repeats until the complete FVS FH is determined by MFVS*. FH has
the property (4.5) while FH ∩ VA = ∅. Consequently, a FVS F of G can be
constructed with w(F) = |FH | as shown in section 4.3.1.2.

Once the FVS FH is determined, it is not necessarily minimal. If for instance
vi ∈ FH (and hence each v1, . . . , vw(v) ∈ FH) is redundant, then the correspond-
ing vertex v ∈ F is redundant, too, and vice versa. Thus, the behaviour of
MFVS* with input H can be simulated without the explicit construction of the
digraph H . Just take the framework of MFVS as presented in Algorithm 4.1
and use the modified selection heuristic shown in Algorithm 4.5. The resulting
algorithm is called WMFVS, while – as in the case of MFVS – WMFVS* shall
denote the same algorithm except that the Levy-Low reductions are not applied.
As seen above, MFVS* always selects a vertex vi ∈ Vw which maximises the ra-
tio πv

w(v) when determining a FVS of H . By definition of F that is equivalent to

the membership of v in F . Hence, WMFVS*, when confronted with G, exactly
mimics MFVS* with input H . It determines the same FVS F which has been
derived from FH as explained in section 4.3.1.2.

4.3. Weighted versions 55

function SelectVertex(weighted digraph G = (V, A, w)) do

matrix P = (puv)(u,v)∈V 2;

vector π = (πv)v∈V ;

vector π′ = (π′
v)v∈V ;

vector π′′ = (π′′
v)v∈V ;

vertex v;

P ← CreateTransitionMatrix(G);

π′ ← ComputeStationaryDistributionVector (P);

P ← CreateTransitionMatrix(G−1);

π′′ ← ComputeStationaryDistributionVector (P);

for all v ∈ V do

πv ← π′

v+π′′

v

w(v) ;

od;

determine v ∈ V with πv = ‖π‖∞;

return v;
od;

Algorithm 4.6: The vertex selection heuristic of WMFVSMean.

In the same way, another algorithm WMFVSMean for the weighted minimum
feedback vertex set problem can be derived from WMFVSMean. While sharing
the framework with MFVS (see Algorithm 4.1), its vertex selection heuristic
looks like in Algorithm 4.6.

Besides being motivated by the reduction of the weighted digraph G =
(V, A, w) to the unweighted digraph H = (V ′′, A′′), the algorithms WMFVS
and WMFVSMean are also natural extensions of the algorithms MFVS and
MFVSMean. To obtain a FVS F of G with a small weight w(F) one might
consider successively choosing vertices v ∈ V with small weight w(v). If more-
over v belongs to a large number of minimal cycles in G, that choice is surely
reasonable. But what if v belongs to only a few minimal cycles? For the total
weight w(F) of F it might be desireable to select a heavier vertex that breaks
many cycles in favour of many light vertices which break the same amount of
minimal cycles in G. On the other hand, if w(v) is too high, it is never favourable
to select v as part of F because the large number of cycles containing v cannot
compensate the weight penalty imposed by w(v). However, there is no known
way to determine the number of minimal cycles containing a vertex v in poly-
nomial time. But this number can be estimated with the help of the stationary
distribution π = (πv)v∈V of MG and π′ = (π′

v)v∈V of MG−1 . If we have for in-
stance πv = α·πu, then intuitively it can be expected that v is passed by roughly
α times more (minimal) cycles than u. Similarly, if πv +π′

v = α ·(πu +π′
u), again

intuitively, it can be assessed that v belongs to roughly α times more (minimal)
cycles than u. Of course, these statements do not hold for any instance. But
typically πv and πv + π′

v are reliable estimations for the number of cycles con-

56 Chapter 4. MFVS and variants

taining v. So, choosing the vertices v ∈ V to belong to the FVS F of G based on

the ratio πv

w(v) (resp.
πv+π′

v

w(v)) is a plausible compromise between selecting light

vertices and vertices breaking many minimal cycles as done by WMFVS (resp.
WMFVSMean).

�
�

�
�Chapter

�
�

�
5

�

�

�

�

Randomised

metaheuristics

He who leaves nothing to chance will do few things poorly,
but he will do few things.

Edward F. Halifax

In the course of reviewing the state of the art concerning feedback set prob-
lems in Chapter 2, we have encountered some metaheuristics. One example is
the GRASP algorithm described in section 2.3.1. It basically consists of iterat-
ing a randomised algorithm for the determination of minimal FVSs many times
and returning the FVS with the smallest cardinality. Another metaheuristic in
section 2.3.3 is Schwikowski’s enumeration algorithm GenerateMFVS. It explores
the superstructure digraph Φ(G, µG) in BFS manner whose vertices correspond
to minimal FVSs of a digraph G.

Motivated by these two examples, we have been attempting to develop sim-
ilar metaheuristics that incorporate the Markov chain techniques elaborated in
Chapter 4. For this purpose, MFVSMean has been taken as the core algorithm
because it proved to be best among all other deterministic heuristics accord-
ing to the evidence provided in Chapter 6. The results of our attempt are
described in section 5.1 and 5.2. While section 5.1 suggests a GRASP variant
of MFVSMean, section 5.2 deals with a search procedure guided by MFVSMean

which has some similarities to GenerateMFVS.

5.1 Randomising MFVSMean

Recall the approximation algorithm MFVSMean from section 4.2. Its heart is
the vertex selection heuristic. From the technical point of view, the heuristic
constructs a stochastic matrix P from the current digraph G and determines
the unique stationary distribution vector π. The same is done for G−1 and the
so obtained stationary distribution vectors π and π′ are used as the selection
criterion.

5.1.1 The algorithm

How can MFVSMean be randomised? One approach is to perturb the entries
of P randomly and independently while preserving nonnegativeness. This can

58 Chapter 5. Randomised metaheuristics

be achieved by multiplying each entry pij by the factor (1 + rij · T), where
rij ∈ (−1, 1) is a random number and T ∈ (0, 1]. The resulting matrix P ′ is no
longer stochastic, i.e. the row elements do not sum up to 1. This property can
be forced by scaling the rows of P ′ appropriately, thereby getting the stochastic
matrix Q. As a consequence of the perturbation, GP = GQ holds. From
the theory presented in Chapter 3, it follows that Q has a unique stationary
distribution vector π if P has one. The same perturbation and reasoning can be
applied to G−1 and we obtain another stationary distribution vector π′. Then,
π and π′ can be used to select a vertex from G as done in MFVSMean. So,
the randomised version of MFVSMean — referred to as RMFVSMean — adopts
the framework of MFVS given in Algorithm 4.1 while using the vertex selection
heuristic shown in Algorithm 5.1. Note that in this context, the function Random

returns a pseudorandom number from the range (−1, 1).
In order to devise a GRASP variant of MFVSMean, which will be called

GRASPMFVSMean , the randomised algorithm RMFVSMean is iterated t times
and the overall minimum cardinality FVS is returned. To ensure that the
quality of the determined FVS is at least that of MFVSMean, no perturba-
tions are imposed to the transition matrices during the first iteration. In other
words, GRASPMFVSMean

consists of one call of MFVSMean and t − 1 calls of
RMFVSMean. The complete procedure is given in Algorithm 5.2.

At first sight, one might conclude that GRASPMFVSMean violates the common
principles of GRASP as fixed in [48] because RMFVSMean does not explicitly
build a restricted candidate list (RCL) in order to select a FVS vertex as does
the GRASP implementation in section 2.3.1. However, this violation is only
superficial. Indeed, one could build a RCL from the vertices obtained from mul-
tiple calls of the vertex selection heuristic in Algorithm 5.1. But constructing
the RCL that way is inherently nondeterministic, i.e. each construction of a
RCL yields a different one, even if the underlying digraph were the same each
time. Thus, selecting randomly a vertex from this RCL is conceptionally the
same as selecting, say, the first one. Hence, only the first element of the RCL
needs to be determined.

What remained unspecified up to now, is the parameter T which controls
the amount of perturbation the entries of the matrix are exposed to. If the
value of T is too small, too few vertices have the chance to be chosen by the
selection heuristic. In the extreme case, only one vertex does have this chance,
and so no improvement, compared to MFVSMean, is achieved. On the other
hand, if the value of T is chosen too large, there is too much diversity, i.e.
too many vertices may be chosen. Hence, the heuristic degrades to a pure
random selection. Thus, a compromise has to be found. After some testing,
setting T constantly to 1

10 proved to be reasonable. This simple setting seems
unsatisfactory, though. Particularly, adjusting T depending on the matrix to
be perturbed is desireable. However, we have not found a way to achieve that.

5.1.2 Runtime and implementation

Because RMFVSMean has obviously the same runtime as MFVSMean, the run-
time of GRASPMFVSMean

is t times the one of MFVSMean. As MFVSMean, it is
implemented in C++ using the software libraries LEDA [42] and SparseLib++ [18].
For the perturbation the pseudorandom number generator Mersenne Twister

5.1. Randomising MFVSMean 59

function SelectVertex(digraph G = (V, A)) do

matrix P = (puv)(u,v)∈V 2;

vector π = (πv)v∈V ;

vector π′ = (π′
v)v∈V ;

vector π′′ = (π′′
v)v∈V ;

vertex v;

P ← CreateTransitionMatrix(G);

P ← PerturbMatrix(P);

π′ ← ComputeStationaryDistributionVector (P);

P ← CreateTransitionMatrix(G−1);

P ← PerturbMatrix(P);

π′′ ← ComputeStationaryDistributionVector (P);

π ← π′ + π′′;

determine v ∈ V with πv = ‖π‖∞;

return v;
od;

function PerturbMatrix(matrix P = (puv)(u,v)∈V 2) do

matrix Q = (quv)(u,v)∈V 2;

vertex u;
vertex v;
real s;

for all u ∈ V do

s ← 0;
for all v ∈ V do

quv ← puv * (1 + Random() * T);

s ← s + quv;

od;

for all v ∈ V do

quv ← quv / s;
od;

od;

return Q;

od;

Algorithm 5.1: The vertex selection heuristic of RMFVSMean.

60 Chapter 5. Randomised metaheuristics

function GRASP(digraph G = (V, A), integer t) do

integer i;

vertex set Fmin;

vertex set F ;

Fmin ← MFVSMean(G);

for i = 2 to t do

F ← RMFVSMean(G);

if (|F | < |Fmin|) do

Fmin ← F ;

od;

od;

return Fmin;

od;

Algorithm 5.2: The GRASP variant of MFVSMean.

MT19937 [41] has been used.

5.2 The Markovian search procedure

In section 2.3.3 we have seen an example of an uninformed search. While the
version in Algorithm 2.5 is exhaustive, i.e each minimal FVS of a given digraph
G is eventually generated, its heuristic variants typically perform poor with
respect to their runtimes because of being uninformed. Our idea is to alter the
search to be informed and that way being able to effort substantial pruning of the
search tree. Of course, the resulting algorithm MarkovSearch is not guaranteed
to find the optimal FVS, even if it is not time constrained. Nevertheless, it
typically delivers better FVSs than Algorithm 2.6 within the same amount of
computation time.

5.2.1 The algorithm

Schwikowski’s Algorithm 2.5 implicitly constructs the superstructure digraph
Φ(G, µG) whose vertices represent minimal FVSs of a digraph G = (V, A). If
(F, F ′) is an arc of that superstructure digraph, then we have

δ(F, F ′) := |F \ F ′| = 1.

Let us interpret δ(F, F ′) as the distance1 between F and F ′. With this illus-
tration in mind, we can say that Schwikowski’s algorithm traverses the digraph
Φ(G, µG) in steps of width 1. Our idea is to allow MarkovSearch to move in
one step from the current FVS F to more distant FVSs F ′. Suppose we allow

1not in the strict mathematical sense, as δ(,) is not symmetric

5.2. The Markovian search procedure 61

function GenSucc(digraph G = (V, A), vertex set F , integer d) do

vertex set F ′;

F ′ ← F ;

Remove randomly d vertices from F ′;

F ′ ← F ′ ∪ MFVSMean(G− F ′);

F’ ← MakeMinimal(G, F ′);

return F ′

od;

Algorithm 5.3: The generation of a successor FVS of F based on step width d.

a step width of at most d.

How can a FVS F ′ be derived from F with δ(F, F ′) ≤ d? Take a subset

X ⊂ F of cardinality d and set F̃ := F \X . Because of the minimality of F ,

the set F̃ is not a FVS of G, i.e. G̃ := G− F̃ is cyclic. Let
˜̃
F := MFVSMean(G̃)

be the FVS of G̃ determined by MFVSMean. Then, F̃ ∪ ˜̃F is a FVS of G with

δ(F, F̃ ∪ ˜̃F) ≤ d. But it is not necessarily minimal. So, it is transformed into
a minimal one by removing redundant vertices using Algorithm 4.2. The FVS
obtained that way is denoted by F ′. As a result, δ(F, F ′) ≤ d possibly does not

hold because some vertices of F̃ might be redundant. Thus, actually it turns
out that d represents a reference value only. However, this does not impair the
algorithm itself because the notion of step width only served as an illustration.

Concerning the above description some questions remain open. How many
FVSs F ′ are expanded from F ? Because of runtime issues there cannot be ex-
plored all possibilities of selecting X . Most of them have to be pruned. This
trade-off between completeness and information of the search is a design choice
which results in an overall good performance. Accordingly, only k sets X are
chosen by which k FVSs F ′ are derived from F . So, how to choose the subsets
X? After having applied several heuristics, it turned out that determining X
randomly achieves the best results. The process of deriving a FVS F ′ from a
given FVS F is outlined in Algorithm 5.3.

Which of the generated nonexpanded FVS should be expanded preferably?
In this respect we follow Schwikowski’s reasoning and expand always the FVS
having the smallest cardinality. This is a common principle called best first
search [49]. With respect to the termination criterion, MarkovSearch attempts
to perform t expansions. In other words, at most k · t + 1 minimal FVSs are
generated as shown in Algorithm 5.4.

Hence, only the step width d remains to be specified which turned out to
be a difficult task. Generally, we are not able to present an explicit formula

62 Chapter 5. Randomised metaheuristics

function MarkovSearch(digraph G = (V, A), integer k, r, t) do

dictionary D
priority queue Q;

vertex set Fmin;

vertex set F ;

vertex set F ′;

integer i;

D ← ∅;
Q ← ∅;

F ← MFVSMean(G);
D.insert(F);

Q.insert(F);

Fmin ← F ;

while (Q 6= ∅ and t > 0) do

t ← t− 1;

F ← Q.extract_min();

for i = 1 to k do

F ′ ← GenSucc(G, F , r);

if (D.search(F ′) 6= nil) do

D.insert(F ′);

Q.insert(F ′);

if (|F ′| < |Fmin|) do

Fmin ← F ′;

od;

od;

od;

od;

return Fmin;

od;

Algorithm 5.4: The local search procedure MarkovSearch.

5.3. Runtime and implementation 63

that works well for every possible input instance G = (V, A). Several plausible
formulas, which involve the density of G, have been tried and none proved sig-
nificantly better than the other ones. Yet, we are able to give some hints on
how to choose d.

Firstly, if d is chosen too small, it is likely that δ(F, F ′) is close to zero and
the search degenerates due to the lack of diversity. On the other hand, if d is
chosen too large, δ(F, F ′) tends to be large. If F is assumed to be near-optimal,
this means that F ′ is ’far’ away from a good solution. Intuitively, it does not

make much sense to set d larger than |F |
2 because opting for the replacement

of more than the half of the vertices of F would imply that the entire FVS F
was far from being optimal. Hence, the optimal setting is somewhere between
these two extremes. Secondly, the optimal step width d increases when so does
the density of G. A plausible explanation for this behaviour is that as G be-
comes denser, the size of an optimal FVS F of G increases. Obviously, |F | is
bounded by |V |. Hence, any approximation algorithm has less chances to make
suboptimal decisions in the course of determining a near-optimal FVS. So, it
does not suffice to attempt to improve the given FVS locally — a more global
improvement is necessary, one has to increase the step width.

All these claims about the choice of the step width d are supported by the
following experiments: We have run MarkovSearch with a varying number of
expansions on random digraphs (see section 6.1.2) of different densities, whereas
in each run always generating 2 successors. The results are shown in Figures
5.1–5.4. First, it can be seen that there is an optimal setting of d. Moreover,

this optimum is clearly below |F |
2 if F is the FVS determined by MFVSMean.

Furthermore, it is also evident that the optimum increases as the instances get
denser.

5.3 Runtime and implementation

Let Λ(n) be the runtime of MFVSMean on a digraph with n vertices. During
each generation of a successor FVS, MFVSMean determines a FVS of a digraph
with d vertices (see Algorithm 5.3), where d is the step width. From Algorithm
5.4 it can be seen that k · t such successors are generated, where k is the number
of successors generated in one expansion and t the number of expansions. In ad-
dition, MarkovSearch is initialised by a FVS obtained from MFVSMean. So, the
total runtime of MarkovSearch for determining a FVS of a digraph G = (V, A)
is Λ(|V |) + ktΛ(d).

As in the case of all other Markov chain based algorithms presented so
far, MarkovSearch is implemented in C++ using the software libraries LEDA [42]
and SparseLib++ [18]. Mersenne Twister MT19937 [41] has been taken as the
pseudorandom number generator.

64 Chapter 5. Randomised metaheuristics

14012010080604020

184

183

182

181

100 expansions

500 expansions

PSfrag replacements

d

F
V

S
si

ze

Figure 5.1: The results of experimenting with MarkovSearch with varying step
width d on 100 random digraphs (p = 0.05) consisting of 300 vertices.

5.3. Runtime and implementation 65

150

366

364

100

362

360

50 250200

100 expansions

500 expansions

PSfrag replacements

d

F
V

S
si

ze

Figure 5.2: The results of experimenting with MarkovSearch with varying step
width d on 100 random digraphs (p = 0.05) consisting of 500 vertices.

66 Chapter 5. Randomised metaheuristics

264

263

200

262

261

15010050

100 expansions

500 expansions

PSfrag replacements

d

F
V

S
si

ze

Figure 5.3: The results of experimenting with MarkovSearch with varying step
width d on 100 random digraphs (p = 0.2) consisting of 300 vertices.

5.3. Runtime and implementation 67

15010050

462

461

460

250

459

458

200

100 expansions

500 expansions

PSfrag replacements

d

F
V

S
si

ze

Figure 5.4: The results of experimenting with MarkovSearch with varying step
width d on 100 random digraphs (p = 0.2) consisting of 500 vertices.

68 Chapter 5. Randomised metaheuristics

�
�

�
�Chapter

�
�

�
6

�

�

�

�

Experimental results

and discussion

To pry into the secrets of this world, we must
make experiments. But experiment is a clumsy
instrument, afflicted with a fatal determinacy
which destroys causality.

Banesh Hoffman

Only when you free yourself to be a mere beginner
again, which implies experimentation, do you
progress to the next level of excellence. . .

Stella Reinwald

Before presenting performance results of the algorithms developed in Chap-
ters 4 and 5, the algorithms which will be referred to in this chapter, shall be
reviewed. This is done in section 6.1.1. Furthermore, section 6.1.2 describes
the classes of digraphs on which the various approximation algorithms are run.
The results of these runs are presented in section 6.2. We close the chapter with
concluding remarks in section 6.3.

6.1 Experimental environment

6.1.1 Algorithms

The approximation algorithms considered in the present chapter are summarised
in Figure 6.1. To have a clue on the performance of our algorithms we introduce
the reference algorithm Simple. It uses the framework of Algorithm 4.1 but
iteratively selects the next FVS vertex v which maximises the function

∑

v∈N−(v)

d−(v) ·
∑

v∈N+(v)

d+(v).

In the course of our experiments it turned out that Simple performs better than
the algorithm which iteratively selects the vertex v maximising the function
d−(v) · d+(v).

The original algorithm GRASPResende [22] has a flaw which is pointed out in
[25]. The flaw leads GRASPResende to miss a lot of redundant feedback vertices
resulting in larger FVSs. This flaw has been removed and the corrected version
of GRASPResende is used for comparisons.

70 Chapter 6. Experimental results and discussion

Simple The reference algorithm. It selects a vertex v that maximises
the product ∑

v∈N−(v)

d−(v) ·
∑

v∈N+(v)

d+(v).

MFVS The original Markovian FVS algorithm of Speckenmeyer. See
Algorithm 4.1.

MFVSMean The variant of MFVS that determines the stationary dis-
tribution of the Markov chain associated with the digraph and its
inverse digraph in order to select a vertex. See section 4.2 and
Algorithm 4.4.

WMFVS The weighted variant of MFVS. See section 4.3 and Algo-
rithm 4.5.

WMFVSMean The weighted version of MFVSMean See section 4.3 and
Algorithm 4.6.

GRASPMFVSMean
A GRASP variant driven by MFVSMean. See Al-

gorithm 5.2.

MarkovSearch The local search procedure with similarities to the one
of Schwikowski (section 2.3.3) which is guided by MFVSMean. See
Algorithm 5.4. For each experiment, exactly two successors per
expansion are generated.

GRASPResende The GRASP algorithm for the minimum feedback ver-
tex set problem as described by Resende et al. See section 2.3.1.

WFVS The algorithm of Demetrescu and Finocchi for the weighted
minimum feedback vertex set problem. See Algorithm 2.4.

Figure 6.1: The approximation algorithms referred to in this chapter.

6.1.2 Test instances

We perform the experiments on samples of various classes. They include the
following:

Random digraphs A random digraph G is constructed by adding an arc (u, v)
to G with uniform probability p ∈ [0, 1]. These digraphs are introduced
and studied in [29].

Regular digraphs A digraph G = (V, A) is regular if for each vertex v ∈ V we
have d−

G(v) = d+
G(v) = k for a fixed k ∈ N. To obtain strong connectivity,

we construct such digraphs by determining k arc disjoint Hamiltonian
cycles and adding their arcs to G.

Resende digraphs The Resende digraphs consist of 40 randomly generated
digraphs of varying density [45].

ISCAS89 The ISCAS89 benchmark for VLSI circuit testing [3] consists of 31
circuits. From these circuits their s-graphs can be constructed which serve

6.2. Experimental results 71

as test instances for feedback vertex set problems. For the relevance of the
s-graphs with respect to circuit testing and their relation to the minimum
feedback vertex set problem, see [58].

6.2 Experimental results

In the following tables, the presented experimental results for random and reg-
ular digraphs are always the arithmetic mean of 100 randomly generated in-
stances. The standard deviation of these results is denoted by σ.

6.2.1 Algorithms for the unweighted minimum feedback

vertex set problem

6.2.1.1 Deterministic algorithms

In the present section, the deterministic algorithms Simple, MFVS and MFVSMean

are considered. First, we carry out experiments on random digraphs. The re-
sults are presented in Tables 6.1–6.8. When comparing the results of the algo-
rithms Simple and MFVS, it can be seen that the latter outperforms the former.
This observation surprises on account of the fact that Simple uses an ingenu-
ous heuristic whereas MFVS uses a sophisticated one. The situation changes
when comparing the results of Simple and MFVSMean. It can be seen that the
sophisticated algorithm performs better than Simple. Thus, we conclude that
MFVSMean is a clear improvement over MFVS. This assessment is also con-
firmed by the standard deviations. It can be seen that the standard deviations
of the results of MFVSMean are typically smaller than those of the other results,
which indicates that the results of MFVSMean are more reliable.

vertices Simple MFVS MFVSMean

50 0.14 (σ=0.35) 0.14 (σ=0.35) 0.14 (σ=0.35)
100 1.17 (σ=1.02) 1.17 (σ=1.02) 1.17 (σ=1.02)
150 4.64 (σ=1.88) 4.65 (σ=1.89) 4.64 (σ=1.88)
200 13.13 (σ=2.61) 13.15 (σ=2.61) 12.99 (σ=2.59)
250 26.92 (σ=3.67) 27.18 (σ=3.56) 26.65 (σ=3.56)
300 45.07 (σ=3.88) 46.00 (σ=4.18) 44.60 (σ=3.96)
350 66.01 (σ=4.23) 67.45 (σ=3.96) 65.09 (σ=3.95)
400 91.21 (σ=5.04) 92.93 (σ=5.35) 90.21 (σ=4.63)
450 118.80 (σ=4.63) 121.13 (σ=4.45) 116.50 (σ=4.23)
500 147.85 (σ=5.92) 150.89 (σ=5.57) 146.34 (σ=5.36)

Table 6.1: Test results for random graphs with p = 0.01.

72 Chapter 6. Experimental results and discussion

vertices Simple MFVS MFVSMean

50 0.88 (σ=0.79) 0.88 (σ=0.79) 0.88 (σ=0.79)
100 8.22 (σ=1.99) 8.23 (σ=1.97) 8.21 (σ=1.97)
150 23.66 (σ=2.75) 23.64 (σ=2.86) 23.34 (σ=2.82)
200 48.24 (σ=2.99) 49.08 (σ=3.15) 47.47 (σ=3.10)
250 76.40 (σ=3.47) 78.25 (σ=3.43) 75.62 (σ=3.38)
300 107.84 (σ=3.63) 110.10 (σ=4.09) 106.88 (σ=3.65)
350 144.37 (σ=4.09) 147.00 (σ=4.44) 141.44 (σ=3.74)
400 180.41 (σ=4.16) 183.73 (σ=4.05) 177.97 (σ=3.75)
450 219.81 (σ=4.39) 223.30 (σ=4.68) 216.81 (σ=4.08)
500 259.16 (σ=4.04) 263.69 (σ=4.64) 256.43 (σ=3.85)

Table 6.2: Test results for random graphs with p = 0.02.

vertices Simple MFVS MFVSMean

50 2.83 (σ=1.27) 2.84 (σ=1.28) 2.83 (σ=1.27)
100 17.46 (σ=2.19) 17.69 (σ=2.19) 17.34 (σ=2.07)
150 42.80 (σ=2.77) 43.36 (σ=2.82) 41.94 (σ=2.68)
200 74.45 (σ=2.96) 75.51 (σ=3.13) 73.12 (σ=3.05)
250 110.00 (σ=3.63) 111.93 (σ=3.85) 108.49 (σ=3.34)
300 148.10 (σ=3.67) 150.78 (σ=3.62) 146.13 (σ=3.57)
350 187.99 (σ=3.82) 190.98 (σ=3.61) 185.59 (σ=3.27)
400 229.58 (σ=3.17) 233.24 (σ=3.95) 226.97 (σ=3.41)
450 272.83 (σ=3.38) 277.57 (σ=3.87) 269.70 (σ=3.44)
500 315.87 (σ=3.49) 320.59 (σ=4.16) 312.26 (σ=3.25)

Table 6.3: Test results for random graphs with p = 0.03.

vertices Simple MFVS MFVSMean

50 5.09 (σ=1.57) 5.06 (σ=1.54) 5.06 (σ=1.56)
100 25.65 (σ=2.17) 26.05 (σ=1.99) 25.23 (σ=2.09)
150 56.17 (σ=2.86) 57.01 (σ=2.70) 55.24 (σ=2.60)
200 92.64 (σ=2.84) 94.22 (σ=3.02) 91.50 (σ=2.55)
250 132.63 (σ=3.21) 134.60 (σ=3.11) 130.67 (σ=2.68)
300 173.46 (σ=2.78) 176.35 (σ=3.13) 171.47 (σ=2.61)
350 216.65 (σ=3.09) 220.08 (σ=3.19) 214.18 (σ=2.99)
400 260.50 (σ=3.37) 264.68 (σ=3.78) 257.83 (σ=3.35)
450 305.34 (σ=3.17) 309.65 (σ=3.33) 302.38 (σ=3.16)
500 350.45 (σ=3.19) 355.04 (σ=3.25) 347.45 (σ=2.44)

Table 6.4: Test results for random graphs with p = 0.04.

6.2. Experimental results 73

vertices Simple MFVS MFVSMean

50 7.53 (σ=1.77) 7.53 (σ=1.72) 7.48 (σ=1.70)
100 32.67 (σ=2.42) 33.38 (σ=2.31) 32.36 (σ=2.27)
150 67.27 (σ=2.88) 68.30 (σ=2.86) 66.33 (σ=2.50)
200 106.60 (σ=2.40) 108.39 (σ=2.73) 105.44 (σ=2.34)
250 148.53 (σ=2.62) 150.33 (σ=2.73) 146.81 (σ=2.66)
300 191.47 (σ=3.08) 194.32 (σ=3.14) 189.65 (σ=2.80)
350 236.39 (σ=2.98) 239.36 (σ=3.16) 234.04 (σ=2.51)
400 281.29 (σ=3.00) 285.54 (σ=2.89) 279.16 (σ=2.74)
450 327.58 (σ=2.94) 332.14 (σ=3.30) 325.04 (σ=2.64)
500 374.43 (σ=2.59) 379.16 (σ=3.19) 371.74 (σ=2.56)

Table 6.5: Test results for random graphs with p = 0.05.

vertices Simple MFVS MFVSMean

50 17.73 (σ=1.68) 18.05 (σ=1.72) 17.49 (σ=1.62)
100 55.41 (σ=1.95) 56.03 (σ=1.97) 54.86 (σ=1.92)
150 98.44 (σ=2.16) 99.58 (σ=2.30) 97.26 (σ=1.96)
200 143.16 (σ=2.31) 145.09 (σ=2.34) 142.05 (σ=2.27)
250 189.52 (σ=2.23) 191.51 (σ=2.17) 188.26 (σ=2.09)
300 236.71 (σ=1.95) 239.31 (σ=2.30) 235.34 (σ=1.83)
350 284.80 (σ=1.94) 286.81 (σ=2.26) 283.03 (σ=2.08)
400 332.73 (σ=2.18) 335.77 (σ=2.10) 331.00 (σ=2.09)
450 380.77 (σ=2.17) 384.31 (σ=2.15) 378.96 (σ=1.98)
500 429.69 (σ=1.96) 432.65 (σ=1.98) 427.46 (σ=1.66)

Table 6.6: Test results for random graphs with p = 0.1.

vertices Simple MFVS MFVSMean

50 24.35 (σ=1.38) 24.76 (σ=1.48) 24.12 (σ=1.39)
100 66.77 (σ=1.70) 67.71 (σ=1.73) 65.91 (σ=1.48)
150 112.83 (σ=1.67) 113.58 (σ=1.62) 111.77 (σ=1.72)
200 159.29 (σ=1.76) 161.36 (σ=1.64) 158.50 (σ=1.75)
250 207.41 (σ=1.62) 208.93 (σ=1.72) 206.40 (σ=1.46)
300 255.88 (σ=1.67) 257.83 (σ=1.71) 254.52 (σ=1.60)
350 304.30 (σ=1.68) 306.67 (σ=1.87) 303.21 (σ=1.54)
400 353.29 (σ=1.83) 355.41 (σ=1.92) 352.24 (σ=1.80)
450 402.22 (σ=1.57) 404.39 (σ=1.84) 401.16 (σ=1.70)
500 451.48 (σ=1.81) 453.83 (σ=1.83) 450.01 (σ=1.69)

Table 6.7: Test results for random graphs with p = 0.15.

74 Chapter 6. Experimental results and discussion

vertices Simple MFVS MFVSMean

50 29.31 (σ=1.29) 29.58 (σ=1.42) 28.83 (σ=1.39)
100 73.45 (σ=1.33) 74.44 (σ=1.47) 73.13 (σ=1.27)
150 120.62 (σ=1.51) 121.60 (σ=1.62) 119.83 (σ=1.39)
200 168.99 (σ=1.57) 170.50 (σ=1.42) 167.87 (σ=1.65)
250 217.34 (σ=1.55) 218.81 (σ=1.41) 216.57 (σ=1.37)
300 266.08 (σ=1.42) 267.98 (σ=1.46) 265.24 (σ=1.47)
350 315.09 (σ=1.44) 317.16 (σ=1.68) 314.52 (σ=1.37)
400 364.31 (σ=1.53) 366.33 (σ=1.64) 263.75 (σ=1.56)
450 413.80 (σ=1.29) 415.86 (σ=1.62) 412.92 (σ=1.38)
500 463.39 (σ=1.56) 465.01 (σ=1.59) 462.59 (σ=1.45)

Table 6.8: Test results for random graphs with p = 0.20.

6.2. Experimental results 75

Next, we perform the experiments for the three mentioned algorithms on
regular digraphs, the results of which are given in Tables 6.9–6.16. Anything
that has been said for the results on random digraphs applies for the results
on regular digraphs. Particularly, MFVSMean outperforms the other two algo-
rithms. Note that regular digraphs are sparser than random digraphs. Thus,
MFVSMean proves superior on different classes of digraphs showing its overall
superiority. The good performance is somehow surprising because all three al-
gorithms select the first vertex of the FVS randomly. For Simple this is obvious,
as its selection criterion are the degrees of the vertices which are entirely equal
for any two vertices. Concerning MFVS and MFVSMean, it can be shown that
all vertices of a regular digraph have the same stationary distribution, so both
algorithms select the first vertex of the FVS randomly. As more and more ver-
tices are selected, the digraph becomes less and less regular, thus the selection
heuristics of the algorithms become more effective.

vertices Simple MFVS MFVSMean

50 16.74 (σ=0.93) 16.46 (σ=0.97) 16.29 (σ=0.94)
100 30.83 (σ=1.23) 30.88 (σ=1.17) 29.77 (σ=1.22)
150 44.64 (σ=1.80) 44.60 (σ=1.57) 43.21 (σ=1.43)
200 57.90 (σ=1.88) 57.95 (σ=1.68) 56.23 (σ=1.41)
250 71.33 (σ=2.03) 71.46 (σ=1.86) 69.29 (σ=1.48)
300 85.23 (σ=2.07) 85.23 (σ=1.74) 82.11 (σ=1.80)
350 98.30 (σ=1.96) 98.12 (σ=2.21) 95.18 (σ=1.88)
400 111.99 (σ=2.71) 111.86 (σ=2.29) 107.99 (σ=1.91)
450 124.69 (σ=2.52) 125.05 (σ=2.46) 120.46 (σ=2.32)
500 138.28 (σ=2.65) 138.18 (σ=2.70) 134.03 (σ=2.50)

Table 6.9: Test results for regular digraphs with k = 3.

vertices Simple MFVS MFVSMean

50 20.90 (σ=0.91) 20.69 (σ=0.98) 20.29 (σ=0.95)
100 38.67 (σ=1.30) 38.70 (σ=1.24) 37.69 (σ=1.19)
150 56.75 (σ=1.66) 56.75 (σ=1.54) 54.94 (σ=1.48)
200 74.39 (σ=1.90) 73.59 (σ=1.71) 71.57 (σ=1.69)
250 91.98 (σ=2.04) 91.44 (σ=1.95) 88.94 (σ=1.78)
300 109.41 (σ=2.02) 109.24 (σ=2.22) 105.56 (σ=1.81)
350 126.84 (σ=2.39) 126.30 (σ=2.22) 122.60 (σ=1.97)
400 144.06 (σ=2.47) 143.87 (σ=2.72) 139.84 (σ=2.08)
450 161.64 (σ=2.44) 161.38 (σ=2.76) 155.86 (σ=1.92)
500 178.99 (σ=2.75) 178.42 (σ=2.73) 172.63 (σ=2.68)

Table 6.10: Test results for regular digraphs with k = 4.

76 Chapter 6. Experimental results and discussion

vertices Simple MFVS MFVSMean

50 23.93 (σ=1.11) 23.85 (σ=1.02) 23.43 (σ=0.87)
100 45.13 (σ=1.38) 44.69 (σ=1.35) 43.77 (σ=1.36)
150 65.91 (σ=1.47) 65.58 (σ=1.44) 64.16 (σ=1.62)
200 86.74 (σ=1.79) 86.58 (σ=1.81) 84.06 (σ=1.60)
250 107.35 (σ=2.08) 106.83 (σ=1.98) 103.84 (σ=1.95)
300 127.79 (σ=2.35) 127.74 (σ=2.34) 123.89 (σ=1.92)
350 148.27 (σ=2.63) 147.51 (σ=2.09) 143.83 (σ=2.08)
400 168.59 (σ=2.44) 169.16 (σ=2.49) 163.56 (σ=2.74)
450 189.26 (σ=2.78) 188.94 (σ=2.79) 183.35 (σ=2.43)
500 209.74 (σ=2.99) 209.33 (σ=3.14) 203.08 (σ=2.42)

Table 6.11: Test results for regular digraphs with k = 5.

vertices Simple MFVS MFVSMean

50 26.51 (σ=1.07) 26.33 (σ=1.04) 25.98 (σ=1.13)
100 49.75 (σ=1.41) 49.88 (σ=1.51) 48.84 (σ=1.43)
150 73.54 (σ=1.81) 73.39 (σ=1.68) 71.63 (σ=1.58)
200 96.72 (σ=1.98) 96.29 (σ=1.94) 93.97 (σ=1.60)
250 119.78 (σ=2.04) 119.57 (σ=2.20) 116.60 (σ=1.92)
300 142.86 (σ=2.17) 142.33 (σ=2.38) 138.31 (σ=1.96)
350 165.85 (σ=2.58) 165.10 (σ=2.46) 161.22 (σ=2.16)
400 189.15 (σ=2.82) 188.44 (σ=2.43) 183.40 (σ=2.44)
450 211.70 (σ=2.84) 211.67 (σ=3.09) 205.76 (σ=2.39)
500 234.55 (σ=2.96) 234.04 (σ=3.02) 227.88 (σ=2.49)

Table 6.12: Test results for regular digraphs with k = 6.

vertices Simple MFVS MFVSMean

50 28.53 (σ=1.19) 28.55 (σ=0.96) 27.99 (σ=0.97)
100 54.12 (σ=1.34) 54.27 (σ=1.29) 52.88 (σ=1.26)
150 79.42 (σ=1.63) 79.51 (σ=1.66) 77.51 (σ=1.34)
200 105.04 (σ=2.00) 104.55 (σ=1.89) 102.24 (σ=1.73)
250 130.20 (σ=2.13) 129.87 (σ=2.08) 126.86 (σ=1.87)
300 155.27 (σ=2.62) 154.27 (σ=2.15) 150.99 (σ=1.97)
350 180.12 (σ=2.14) 180.08 (σ=2.28) 175.23 (σ=2.07)
400 204.98 (σ=2.62) 204.55 (σ=2.60) 199.80 (σ=2.41)
450 230.39 (σ=2.76) 229.39 (σ=2.94) 223.68 (σ=2.28)
500 254.85 (σ=3.05) 254.72 (σ=2.97) 248.23 (σ=2.47)

Table 6.13: Test results for regular digraphs with k = 7.

6.2. Experimental results 77

vertices Simple MFVS MFVSMean

50 30.34 (σ=0.86) 30.14 (σ=1.09) 29.81 (σ=1.01)
100 57.59 (σ=1.50) 57.52 (σ=1.35) 56.38 (σ=1.35)
150 84.58 (σ=1.53) 84.57 (σ=1.61) 82.70 (σ=1.72)
200 111.48 (σ=1.88) 111.47 (σ=1.79) 109.06 (σ=1.67)
250 138.53 (σ=2.12) 138.58 (σ=2.24) 135.33 (σ=2.19)
300 165.41 (σ=2.54) 165.18 (σ=2.45) 161.26 (σ=2.18)
350 191.97 (σ=2.33) 191.88 (σ=2.72) 187.66 (σ=2.12)
400 219.18 (σ=2.44) 218.51 (σ=2.78) 213.49 (σ=2.53)
450 245.52 (σ=2.63) 245.46 (σ=2.93) 239.25 (σ=2.57)
500 271.98 (σ=2.93) 272.17 (σ=3.00) 265.24 (σ=2.87)

Table 6.14: Test results for regular digraphs with k = 8.

vertices Simple MFVS MFVSMean

50 31.72 (σ=0.90) 31.76 (σ=1.02) 31.31 (σ=1.01)
100 60.48 (σ=1.40) 60.57 (σ=1.27) 59.31 (σ=1.29)
150 89.00 (σ=1.48) 89.16 (σ=1.73) 87.36 (σ=1.51)
200 117.29 (σ=1.72) 117.71 (σ=1.92) 114.91 (σ=1.69)
250 145.75 (σ=2.23) 146.04 (σ=2.18) 142.87 (σ=2.02)
300 174.03 (σ=2.52) 174.12 (σ=2.34) 170.16 (σ=2.00)
350 202.12 (σ=2.45) 202.36 (σ=2.84) 197.57 (σ=2.22)
400 230.69 (σ=2.93) 230.66 (σ=2.16) 225.46 (σ=2.08)
450 258.37 (σ=2.56) 258.61 (σ=2.92) 253.00 (σ=2.40)
500 286.29 (σ=3.12) 286.53 (σ=2.96) 280.38 (σ=2.56)

Table 6.15: Test results for regular digraphs with k = 9.

vertices Simple MFVS MFVSMean

50 32.91 (σ=0.92) 33.08 (σ=0.96) 32.67 (σ=0.92)
100 63.07 (σ=1.27) 63.12 (σ=1.41) 61.89 (σ=1.18)
150 92.61 (σ=1.77) 93.16 (σ=1.41) 91.00 (σ=1.46)
200 122.48 (σ=1.90) 122.84 (σ=1.89) 120.49 (σ=1.71)
250 151.99 (σ=2.04) 152.29 (σ=2.22) 148.94 (σ=1.97)
300 181.81 (σ=2.24) 181.87 (σ=2.18) 178.05 (σ=1.99)
350 211.17 (σ=2.47) 211.43 (σ=2.24) 206.85 (σ=2.18)
400 240.98 (σ=2.42) 240.87 (σ=2.64) 235.51 (σ=2.11)
450 269.87 (σ=2.64) 270.62 (σ=2.77) 264.69 (σ=2.17)
500 298.94 (σ=3.09) 299.94 (σ=3.45) 293.54 (σ=2.60)

Table 6.16: Test results for regular digraphs with k = 10.

78 Chapter 6. Experimental results and discussion

In order to complete the exposition of the experimental results with respect
to the deterministic approximation algorithms, we present Table 6.17. It con-
tains the results for the ISCAS89 benchmark. In accordance with the previous
tables it can be seen that MFVSMean is superior to the other algorithms. It fails
to yield the optimum solution on one occasion.

instance Optimal Simple MFVS MFVSMean LR
s1196 0 0 0 0 0
s1238 0 0 0 0 0

s13207 59 59 59 59 59
s1423 21 21 21 21 22
s1488 5 5 5 5 5
s1494 5 5 5 5 5

s15850 88 88 90 89 89
s208 0 0 0 0 0
s27 1 1 1 1 1

s298 1 1 1 1 1
s344 5 5 5 5 5
s349 5 5 5 5 5

s35932 306 306 306 306 306
s382 9 9 9 9 9

s38417 374 378 374 374 374
s38584 292 293 293 292 296

s386 5 5 5 5 5
s400 9 9 9 9 9
s420 0 0 0 0 0
s444 9 9 9 9 9
s510 5 5 5 5 5
s526 3 3 3 3 3

s5378 30 30 30 30 30
s641 7 7 7 7 7
s713 7 7 7 7 7
s820 4 4 4 4 4
s832 4 4 4 4 4
s838 0 0 0 0 0

s9234 53 53 53 53 53
s953 5 5 5 5 5

sum 1315 1320 1318 1316 1321

Table 6.17: Experimental results for the ISCAS89 benchmark. The column LR
contains the best solution obtained by different heuristics by Lee and Reddy
[35], as cited in [44].

6.2. Experimental results 79

6.2.1.2 Randomised algorithms

The randomised algorithms MarkovSearch, GRASPMFVSMean
and GRASPResende

are compared in this section. We start with four samples of random digraphs,
as shown in Table 6.18. Table 6.19 contains the corresponding runtimes. We
see that MarkovSearch outperforms the other two algorithms both in run-
time and quality of the solutions. The difference between the runtimes of
GRASPResende and the other two algorithms is striking. While MarkovSearch
and GRASPMFVSMean consume only a fraction of time of GRASPResende, they
deliver better results. The same is true with respect to the results for regular di-
graphs, as shown in Table 6.20 and 6.21. Nevertheless, the standard deviations
of MarkovSearch are typically higher than those of the other two algorithms.
This indicates that although MarkovSearch achieves the best results, these re-
sults are slightly less reliable than those of GRASPMFVSMean and GRASPResende.
However, MarkovSearch still remains superior.

One also observes that GRASPMFVSMean benefits only little from the dou-
bling of the number of iterations. At this point, we do not investigate how the
performance of MarkovSearch depends on the number of expansions. This issue
has been addressed in Chapter 5 in Figures 5.1–5.4. It can be seen that the
benefit of more expansions depends on the density of the digraphs. It decreases
as the density increases.

p
GRASPMFVSMean

10 iterations
GRASPMFVSMean

20 iterations
MarkovSearch
100 expansions GRASPResende

0.05 186.93 (σ=2.26) 186.11 (σ=2.11) 183.21 (σ=2.48) 187.27 (σ=2.31)
0.10 232.80 (σ=1.69) 232.30 (σ=1.28) 229.74 (σ=1.43) 232.91 (σ=1.33)
0.15 252.19 (σ=1.25) 251.82 (σ=1.09) 249.74 (σ=1.22) 251.70 (σ=1.05)
0.20 263.30 (σ=0.92) 262.91 (σ=0.96) 261.20 (σ=1.07) 262.59 (σ=0.92)

Table 6.18: Test results for random graphs with 300 vertices and varying p. The
step width varies from 30 to 60 in steps of 10 (cf. Figure 5.1 and 5.3).

p
GRASPMFVSMean

10 iterations
GRASPMFVSMean

20 iterations
MarkovSearch
100 expansions GRASPResende

0.05 653 sec. 1241 sec. 661 sec. 21238 sec.
0.10 1149 sec. 2186 sec. 1040 sec. 81014 sec.
0.15 1631 sec. 3261 sec. 1419 sec. 164625 sec.
0.20 2109 sec. 4328 sec. 1840 sec. 274136 sec.

Table 6.19: Runtimes for the experiments from Table 6.18.

Finally, the randomised algorithms GRASPMFVSMean , MarkovSearch and
GRASPResende are compared by applying them to the Resende digraphs. As in
the case of random and regular digraphs, GRASPMFVSMean

and GRASPResende

prove inferior to MarkovSearch. This applies to both the quality of the solutions
and the runtime. For the instances involving up to 100 vertices, all algorithms
yield comparable results. However, for the larger instances differences, in perfor-
mance and runtime are evident. In such a situation, the huge time consumption

80 Chapter 6. Experimental results and discussion

k
GRASPMFVSMean

10 iterations
GRASPMFVSMean

20 iterations
MarkovSearch
100 expansions GRASPResende

4 136.18 (σ=1.42) 135.26 (σ=1.38) 132.23 (σ=2.11) 140.67 (σ=0.96)
6 180.05 (σ=1.33) 279.32 (σ=1.28) 175.01 (σ=1.76) 184.59 (σ=1.23)
8 209.95 (σ=1.42) 209.08 (σ=1.27) 204.82 (σ=1.66) 214.17 (σ=1.11)

10 232.12 (σ=1.37) 231.41 (σ=1.63) 226.56 (σ=1.71) 235.77 (σ=1.17)

Table 6.20: Test results for regular graphs with 400 vertices and varying k.

k
GRASPMFVSMean

10 iterations
GRASPMFVSMean

20 iterations
MarkovSearch
100 expansions GRASPResende

4 517 sec. 937 sec. 565 sec. 8844 sec.
6 691 sec. 1269 sec. 864 sec. 13429 sec.
8 840 sec. 1625 sec. 1163 sec. 18205 sec.

10 951 sec. 1858 sec. 1458 sec. 24268 sec.

Table 6.21: Runtimes for the experiments from Table 6.20.

of GRASPResende is striking, while in the same time the algorithm delivers the
worst overall results. The digraph with 1000 vertices and 20000 arcs is an ex-
treme example for this. The FVS determined by MarkovSearch is smaller than
the one determined by GRASPResende by 20 vertices.

6.2. Experimental results 81

vert. arcs Opt. GRASPR

GRASPM

10 iterat.
GRASPM

20 iterat.
M-Search
100 expan.

50 100 3 3 3 3 3
50 150 9 9 9 9 9
50 200 13 13 13 13 13
50 250 17 17 17 17 17
50 300 19 19 19 19 20
50 500 28 28 29 29 28
50 600 31 31 32 32 31
50 700 33 33 33 33 34
50 800 34 34 35 34 34
50 900 36 36 36 36 36
100 200 9 9 9 9 9
100 300 17 17 19 17 17
100 400 23 23 23 24 23
100 500 32 32 33 33 32
100 600 36 38 38 38 37
100 1000 53 54 55 54 54
100 1100 54 55 55 56 55
100 1200 57 58 58 58 57
100 1300 60 61 62 62 60
100 1400 61 62 63 64 61
500 1000 31 32 33 33 31
500 1500 ≤ 63 68 69 69 63
500 2000 ≤ 101 107 108 102 103
500 2500 ≤ 133 146 141 142 138
500 3000 ≤ 164 175 175 174 168
500 5000 ≤ 238 252 249 251 243
500 5500 ≤ 253 270 266 264 261
500 6000 ≤ 267 284 277 277 271
500 6500 ≤ 279 294 294 290 284
500 7000 ≤ 290 304 303 302 296
1000 3000 ≤ 128 139 135 136 133
1000 3500 ≤ 162 175 173 171 167
1000 4000 ≤ 193 206 206 203 202
1000 4500 ≤ 229 249 243 243 240
1000 5000 ≤ 260 283 278 275 268
1000 10000 ≤ 476 508 498 499 493
1000 15000 ≤ 591 619 613 611 606
1000 20000 ≤ 659 692 681 680 672
1000 25000 ≤ 710 733 726 728 723
1000 30000 ≤ 749 773 768 768 759

sum ≤ 6601 6941 6877 6863 6751

total time — 41626 sec. 800 sec. 1466 sec. 733 sec.

Table 6.22: Experimental results for the Resende digraphs. The considered
algorithms are GRASPResende (GRASPR), GRASPMFVSMean (GRASPM) and

MarkovSearch (M-Search). The step width min{ |F |
2 , 40} has been used for

MarkovSearch where F is the FVS to be expanded.

82 Chapter 6. Experimental results and discussion

6.2.2 Algorithms for the weighted minimum feedback ver-

tex set problem

p WFVS WMFVS WMFVSMean

0.05 15106.93 (σ=480.86) 14169.98 (σ=405.86) 14015.86 (σ=396.19)
0.10 17977.80 (σ=504.25) 17270.20 (σ=508.38) 17093.24 (σ=488.02)
0.15 19147.09 (σ=496.23) 18593.98 (σ=495.09) 18474.23 (σ=482.37)
0.20 19865.35 (σ=541.00) 19400.23 (σ=502.07) 19294.91 (σ=503.07)

Table 6.23: Test results for random graphs with 400 vertices and varying p.

p WFVS WMFVS WMFVSMean

0.05 207 sec. 226 sec. 256 sec.
0.10 231 sec. 275 sec. 325 sec.
0.15 259 sec. 323 sec. 397 sec.
0.20 288 sec. 367 sec. 465 sec.

Table 6.24: Runtimes for the experiments from Table 6.23.

k WFVS WMFVS WMFVSMean

4 8108.60 (σ=363.77) 7097.14 (σ=276.34) 6991.38 (σ=290.54)
6 11415.75 (σ=388.88) 10114.85 (σ=336.16) 9963.84 (σ=293.30)
8 13787.14 (σ=471.04) 12282.72 (σ=419.54) 12124.60 (σ=424.99)

10 15266.28 (σ=518.08) 13849.74 (σ=390.74) 13653.53 (σ=378.29)

Table 6.25: Test results for random graphs with 500 vertices and varying p.

We now compare the performance of WFVS, WMFVS and WMFVSMean.
As usual, the three algorithms are compared by running them on samples of
random and regular digraphs. The weights of the vertices are random integers
in the range [10, 100]. The results of these runs are shown in Tables 6.23–6.26.

The superiority of WMFVS and WMFVSMean over WFVS is evident, whereas
WMFVSMean performs only slightly better than WMFVS. This superiority is
particularly pronounced for the regular digraphs which are sparse compared to
the random digraphs. Furthermore, the results of WMFVSMean are more reli-
able than those of the other two algorithms. This is supported by comparing
the respective standard deviations.

Concerning the runtime of the three algorithms, it can be noticed that WFVS
is the fastest. However, the larger runtime of the WMFVS and WMFVSMean is
justifiable in view of the performance.

6.3. Conclusion 83

k WFVS WMFVS WMFVSMean

4 375 sec. 369 sec. 386 sec.
6 367 sec. 381 sec. 401 sec.
8 385 sec. 393 sec. 421 sec.

10 379 sec. 393 sec. 420 sec.

Table 6.26: Runtimes for the experiments from Table 6.25.

6.3 Conclusion

In this thesis we have developed several new approximation algorithms for
feedback set problems including MFVSMean, GRASPMFVSMean , MarkovSearch,
WMFVS and WMFVSMean. In section 6.2.1.1 we have carried out experiments
with different classes of digraphs all of which consistently demonstrated that
MFVSMean is currently the best one among the deterministic algorithms. Fur-
thermore, we have seen that the idea behind MFVSMean is a major improvement
over MFVS, which is the reason for the success of MFVSMean. The same idea
is applied in WMFVSMean. Accordingly, in section 6.2.2 we have seen that it
delivers better results than WFVS.

With respect to the randomised algorithms, it could be seen that both
GRASPMFVSMean

and MarkovSearch perform better than GRASPResende, with
MarkovSearch being the best of these three. Currently, GRASPResende is consid-
ered to be the best approximation algorithm for the minimum feedback vertex
set problem [20]. The fact that GRASPMFVSMean

and MarkovSearch are superior
to GRASPResende demonstrates that these two algorithms have to be considered
the algorithms of choice.

The aforementioned results emphasise the potential of Markov chains in
approximating minimum cardinality (resp. weight) feedback vertex sets. But
the presented ideas in this thesis are not the last word on the subject. These
ideas can probably be combined with other ideas, also involving Markov chains,
to obtain even better algorithms. For instance, any of the considered algorithms
primarily attempts to select a vertex which shall belong to a FVS. However, it
might occasionally be more beneficial to first exclude a vertex from the digraph
that shall not belong to an optimal FVS. Another idea for selecting a vertex
is to devise a heuristic that a priori chooses promising candidates. Then, in a
second step, another heuristic selects a FVS vertex among the candidates. A
further topic not mentioned in this thesis is the determination of lower bounds on
optimal FVSs using Markov chains. Typically, determining good lower bounds
is harder for dense digraphs than for sparse digraphs. In this context, the ability
to determine large induced dicliques is substantial, as demonstrated in [37]. The
employment of Markov chains for this task is promising. All this is subject of
further research.

84 Chapter 6. Experimental results and discussion

�
�

�
�Appendix

�
�

�
A

�

�

�

�

New digraph

reductions

Everything should be made as simple as possible,
but not one bit simpler.

Albert Einstein
(attributed)

This chapter is devoted to some new digraph reductions for the minimum
feedback vertex set problem. In addition to presenting the new digraph reduc-
tions, we will also prove that any order of application of these reductions results
in a unique digraph up to isomorphism (Church-Rosser property). But before
stating them and proving their correctness, some preliminary work has to be
done.

A.1 Preliminary results

We start by recalling some simple observations.

Observation A.1. Let G = (V, A) be a digraph. Then, for any u, v ∈ V and
any a, b ∈ V × V the following holds provided it is well defined:

(i). G + u + v = G + v + u

(ii). G− u− v = G− v − u

(iii). G + a + b = G + b + a

(iv). G− a− b = G− b− a

(v). G + v + a = G + a + v

(vi). G + v − a = G− a + v

(vii). G + a− v =

{
G− v if a = (u, v) ∨ a = (v, u)

G− v + a else

(viii). G− a− v = G− v − a =

{
G− v if a = (u, v) ∨ a = (v, u)

G− v − a else

(ix). G− v = G ◦ v if d−
G(v) · d+

G(v) = 0

86 Appendix A. New digraph reductions

Proof. Only (ix) has to be justified. According to the definition of the exclusion

G ◦ v = G− v + N−
G(v)×N+

G(v)

holds. If d−
G(v) · d+

G(v) = 0, then N−
G(v)×N+

G(v) is obviously the empty set and
hence the assertion follows.

Observation A.2. Let G = (V, A) be a digraph and let u, v ∈ V be two distinct
vertices of G. Then

(i). N−
G(v) = N−

G−u(v) = N−
G◦u(v) if u /∈ N−

G(v)

N+
G(v) = N+

G−u(v) = N+
G◦u(v) if u /∈ N+

G(v)

(ii). N−
G◦u(v) = N−

G−u(v) ∪ N−
G(u) if u ∈ N−

G(v)

N+
G◦u(v) = N+

G−u(v) ∪ N+
G(u) if u ∈ N+

G(v)

(iii). N=
G◦u(v) =

N=
G(v) ∪ (N−

G(u) ∩ N+
G(v)) if u ∈ N−

G(v) \N=
G(v)

N=
G(v) ∪ (N+

G(u) ∩ N−
G(v)) if u ∈ N+

G(v) \N=
G(v)

N=
G(v) if u /∈ NG(v)

Proof. Assertion (i) follows from the definition of the deletion and the exclusion,
respectively. To see (ii), recall the definition of the exclude operation:

G ◦ u = G− u + N−
G(u)×N+

G(u)

Assuming u ∈ N−
G(v), i.e v ∈ N+

G(u), we obtain

G◦u = G−u+N−
G(u)×({v} ·∪N+

G−v(u)) = G−u+N−
G(u)×{v}+N−

G(u)×N+
G−v(u)

and the assertion follows. The case u ∈ N+
G(v) is shown analogously.

Finally, (iii) follows from (i) and (ii). If e.g. u ∈ N−
G(v) \ N=

G(v), then we
have

N=
G◦u(v) =

=N−

G−u
(v)∪N−

G
(u)

︷ ︸︸ ︷
N−

G◦u(v)∩N+
G◦u(v)︸ ︷︷ ︸

=N+
G

(v)

=

=N−

G
(v)∩N+

G
(v) as u/∈N+

G
(v)

︷ ︸︸ ︷
(N−

G−u(v) ∩ N+
G(v))∪(N−

G(u) ∩ N+
G(v))

= (N−
G(v) ∩ N+

G(v)) ∪ (N−
G(u) ∩N+

G(v)) = N=
G(v) ∪ (N−

G(u) ∩N+
G(v)).

In the case of u ∈ N+
G(v) \N=

G(v), a similar reasoning yields the assertion, while
the remaining case follows from (i) and (ii).

The next objective is to establish a notation for the exclusion similar to the
notation G−S (S ⊂ V) for a digraph G = (V, A). To justify such a notation, it
must be proved that the order in which two vertices u, v ∈ V are excluded does
not matter. This is shown in the next lemma:

Lemma A.3. Let G = (V, A) be a digraph. Let u, v ∈ V two distinct vertices.

(i). If G ◦ v is feasible on G, then and only then G − u ◦ v is also feasible on
G− u and G− u ◦ v = G ◦ v − u holds.

A.1. Preliminary results 87

(ii). If G ◦u is feasible on G and G ◦u ◦ v on G ◦u, then and only then G ◦ v is
also feasible on G as well as G◦v◦u on G◦v and we have G◦u◦v = G◦v◦u.

Proof.

(i). The exclusion of v is feasible if and only if v is loop-free in the correspond-
ing digraph. On the other hand, if v is loop-free in G, it is surely loop-free
in G − u. Conversely, if v is loop-free in G − u, it is also loop-free in G
since the deletion of u does not destroy loops in v. So, G ◦ v is feasible on
G if and only if so is G− u ◦ v on G− u.

Therefore, let us assume v to be loop-free. Then:

G− u ◦ v = G− u− v + N−
G−u(v) ×N+

G−u(v)

= G− v + N−
G−u(v) ×N+

G−u(v)− u Obs. A.1,
ii

vii

= G− v + N−
G(v) ×N+

G(v)− u Obs. A.1, vii

= G ◦ v − u

(ii). G◦u is feasible on G if and only if u is loop-free in G. On the other hand,
G ◦ u ◦ v is feasible on G ◦ u if and only if v is loop-free in G ◦ u, i.e. v is
loop-free and v and u do not form a cycle of length 2 in G. Thus, G◦u◦ v
is feasible if and only if u and v are loop-free and do not form a cycle
of length 2. Because this condition is symmetric in u and v, G ◦ u ◦ v is
feasible if and only if so is G ◦ v ◦ u.

Therefore, assuming u and v to be loop-free, three cases have to be con-
sidered.

The simplest case is (u, v), (v, u) /∈ A, i.e. u /∈ NG(v) and v /∈ NG(u). It
follows:

G ◦ u ◦ v = G− u + N−
G(u)×N+

G(u)− v + N−
G◦u(v)×N+

G◦u(v)

= G− v + N−
G◦u(v)×N+

G◦u(v)− u + N−
G(u)×N+

G(u) Obs. A.1,
iii

vii

= G− v + N−
G(v)×N+

G(v) − u + N−
G◦v(u)× N+

G◦v(u) Obs. A.2, i

= G ◦ v − u + N−
G◦v(u)× N+

G◦v(u)

= G ◦ v ◦ u

Next, suppose (u, v) ∈ A and (v, u) /∈ A, i.e. u /∈ N+
G(v) or equivalently

88 Appendix A. New digraph reductions

v /∈ N−
G(u). Then:

G ◦ u ◦ v = G− u + N−
G(u)×N+

G(u)− v + N−
G◦u(v) ×N+

G◦u(v)

= G− u + N−
G(u)×N+

G−v(u)− v + N−
G◦u(v)×N+

G◦u(v) Obs. A.1, vii

= G− u + N−
G◦v(u)×N+

G−v(u)− v + N−
G◦u(v)×N+

G(v) Obs. A.2, i

= G− v + N−
G◦u(v)×N+

G(v)− u + N−
G◦v(u)×N+

G−v(u) Obs. A.1,
ii

iii

vii

= G− v +
(
N−

G−u(v) ∪ N−
G(u)

)
×N+

G(v)

− u + N−
G◦v(u)×N+

G−v(u) Obs. A.2, ii

= G− v + N−
G−u(v)×N+

G(v) + N−
G(u)×N+

G(v)

− u + N−
G◦v(u)×N+

G−v(u)

= G− v + N−
G−u(v)×N+

G(v) + N−
G◦v(u)×N+

G(v)

− u + N−
G◦v(u)×N+

G−v(u) Obs. A.2, i

= G− v + N−
G(v)×N+

G(v)

− u + N−
G◦v(u)×N+

G−v(u) + N−
G(u)×N+

G(v) Obs. A.1,
iii

vii

= G ◦ v − u + N−
G◦v(u)×N+

G−v(u) + N−
G◦v(u)×N+

G(v)

= G ◦ v − u + N−
G◦v(u)×

(
N+

G−v(u) ∪ N+
G(v)

)

= G ◦ v − u + N−
G◦v(u)×N+

G◦v(u) Obs. A.2, ii

= G ◦ v ◦ u

The final case (v, u) ∈ A and (u, v) /∈ A is proven similarly and omitted
for readability reasons.

Because of Lemma A.3 we are entitled to introduce the notation

G ◦E := G ◦ v1 ◦ · · · ◦ vk

for a vertex set E = {v1, . . . , vk} ⊂ V . Moreover, we can say that the operation
G◦E is feasible on G if G◦ · · · ◦vi is feasible on G◦ · · · ◦vi−1 for all i = 1, . . . , k.
From Lemma A.3 it follows that this definition does not depend on the order of
the vi, so it is well defined.

Naturally, the question arises: Under which conditions is G ◦ E feasible on
G? This is answered by the following lemma:

Lemma A.4. Let G = (V, A) be a digraph and let E ⊂ V . Then, G ◦ E is
feasible on G if and only if G[E] is acyclic.

Proof. First, suppose E = V which is to say G[E] = G. Assume further that
G ◦E is feasible on G. Then, by Proposition 1.4 it follows that F := V (G ◦E)
is a FVS of G. As E = V we have F = ∅, thus G is acyclic. Now, assume
conversely that G is acyclic. Hence, there must be a vertex v1 ∈ V having
outdegree 0. From d+

G(v1) = 0 it follows that v1 is loop-free, hence G ◦ v1 is
feasible on G. Moreover, G ◦ v1 = G− v1 follows from Observation A.1, ix and

A.2. The diclique reductions 89

we see that G◦v1 is acyclic, too. This again implies that there must be a vertex
v2 ∈ V (G ◦ v1) with d+

G◦v1
(v2) = 0. As before, we conclude that G ◦ v1 ◦ v2

is feasible on G ◦ v1 and that G ◦ v1 ◦ v2 is acyclic. Inductively, it follows that
G ◦ · · · ◦ vk is feasible on G ◦ · · · ◦ vk−1 for all k = 1, . . . , |V |, i.e. that G ◦ V is
feasible on G.

Now, suppose E 6= V and let F := V \ E. First, assume G[E] is acyclic.
This means F is a FVS of G. Then, from the first part of the proof we see that
G−F ◦E is feasible on G−F . By multiple application of Lemma A.3 it follows
that G ◦ E is feasible on G. Now, assume G ◦ E is feasible on G. Proposition
1.4 tells us that F is a FVS of G, i.e. G− F = G[E] is acyclic.

Corollary A.5. Let G = (V, A) be a digraph. Then, F ⊂ V is a FVS of G if
and only if G ◦ (V \ F) is feasible on G.

Proof. Suppose F is a FVS of G, meaning that G − F = G[V \ F] is acyclic.
Then, by Lemma A.4 G ◦ (V \ F) is feasible on G.

Now, suppose G ◦ (V \F) is feasible on G. From this feasibility it follows by
Lemma A.4 that G[V \ F] = G − F is acyclic which means that F is a FVS of
G.

A byproduct of the considerations so far is the following characterisation
of redundant vertices. As one is interested in determining as small as possible
FVSs, an efficient recognition of redundant vertices is crucial. So, this charac-
terisation is of importance.

Corollary A.6. Let G = (V, A) be a digraph, let F ⊂ V be a FVS of G. A
vertex v ∈ F is redundant if and only if v is loop-free in G ◦ (V \ F).

Proof. Let F ′ := F \ {v} and set E := V \ F and E ′ := V \ F ′ = E ∪ {v}.
Suppose v is redundant, i.e. F ′ is also a FVS of G. Then, according to Corollary
A.5, G ◦ E′ = G ◦ E ◦ v is feasible on G. Particularly, G ◦ E ◦ v is feasible on
G ◦E which implies that v is loop-free on G ◦E.

Now, suppose v is not redundant. Since F is a FVS of G, G◦E is feasible G.
But because F ′ is not a FVS of G, G ◦E ′ is not feasible on G, i.e. G ◦E ◦ v is
not feasible on G ◦ E. Both of these assertions hold due to Corollary A.5. The
infeasibility of G ◦E ◦ v on G ◦E implies that v has a loop in G ◦E according
to Lemma A.4.

A.2 The diclique reductions

Now, we are in the position to state four new reductions and to prove their
correctness. Subsequently, they will be loosely called diclique reductions and
include the following:

INDICLIQUE(v) If v is loop-free and G[N−
G(v)] is a diclique, G is transformed

into G ◦ v.

OUTDICLIQUE(v) If v is loop-free and G[N+
G(v)] is a diclique, G is trans-

formed into G ◦ v.

90 Appendix A. New digraph reductions

DICLIQUE-2(v) If v is loop-free and NG(v) = N1 ·∪N2 such that G[N1] and
G[N2] are dicliques with N=

G(v) ⊂ N1, G is transformed into G ◦ v.

DICLIQUE-3(v) If v is loop-free, d=
G(v) = 0 and NG(v) = N1 ·∪N2 ·∪N3 such

that G[N1], G[N2] and G[N3] are dicliques, G is transformed into G ◦ v.

To prove that the diclique reductions do not impair the optimality concerning
the minimum feedback vertex set problem, the following simple proposition is
needed.

Proposition A.7. Any FVS of a diclique G = (V, A) consists of at least |V |−1
vertices.

Proof. Suppose the assertion is not true which is to say there is a FVS F of
G with |F | ≤ |V | − 2. Then, there are vertices u, v ∈ V (G − F) such that
(u, v), (v, u) ∈ A(G−F) (⇔ (u, v, u) ∈ CG−F). This contradicts the fact that F
is a FVS of G.

Lemma A.8. If the digraph G = (V, A) is transformed into G ◦ v (v ∈ V) by
any of the four diclique reductions, then any optimal FVS of G ◦ v is also an
optimal FVS of G regarding the minimum feedback vertex set problem.

Proof. In view of Proposition 1.4 the assertion of the lemma can be reformu-
lated in the following way: If the premises of one of the diclique reductions are
satisfied for a vertex v ∈ V , there is an optimal FVS F̃ of G with v /∈ F̃ . So,
assume F ⊂ V is an optimal FVS with v ∈ F and assume further that the
premises of one of the diclique reductions are satisfied. We want to construct
another optimal FVS F̃ such that v /∈ F̃ . To do so, set F ′ := F \ {v} and
G′ := G − F ′. The set F ′ is not a FVS of G because of the minimality of F ,
so G′ is cyclic and {v} is an optimal FVS of G′. The objective is to show that

there is another (optimal) FVS {u} of G′. In that case, F̃ := F ′∪{u} is another

optimal FVS of G with v /∈ F̃ as asserted.

Four cases have to be considered:

(i). INDICLIQUE(v) is applicable: As G[N−
G(v)] is a diclique, from Proposi-

tion A.7 it can be concluded that

d−
G′(v) = |N−

G′(v)| = |N−
G(v) \ F ′| ≤ 1.

But d−
G′(v) = 0 is impossible because it would imply that v is redundant,

contradicting the optimality of F . So, d−
G′(v) = 1 and v is loop-free in

G′, hence the Levy-Low reduction IN1(v) is applicable in G′. This means,
there is another FVS of G′ consisting of one vertex – for instance N−

G′(v).

Then, as explained, F̃ := F ′ ∪ N−
G′(v) is another optimal FVS of G such

that v /∈ F̃ .

(ii). OUTDICLIQUE(v) is applicable: As in the case of INDICLIQUE(v), we
may conclude d+

G′(v) = 1. In addition, v is loop-free in G′, so OUT1(v) is
applicable in G′. Similarly to the previous case, this implies that N+

G′(v)

is a FVS of G′ consisting of one vertex. So, F̃ := F ′∪N+
G′(v) is an optimal

FVS of G with v /∈ F̃ .

A.2. The diclique reductions 91

(iii). DICLIQUE-2(v) is applicable: As G[Ni] is a diclique, we have |Ni ∩F ′| ≥
|Ni| − 1 in view of Proposition A.7 for i = 1, 2. It follows that

|NG′(v)| = |NG(v)︸ ︷︷ ︸
= N1 ·∪N2

\F ′| = |N1 \ F ′|+ |N2 \ F ′| ≤ 2.

And because N=
G(v) ⊂ N1 it also follows d=

G′(v) ≤ 1 from which we deduce
dG′(v) ≤ 3. Like in either of the two previous cases, the possibilities
d−

G′(v) = 0 and d+
G′(v) = 0 can be ruled out. Hence, we have d−

G′(v) = 1
or d−

G′(v) = 1. This means that either IN1(v) or OUT1(v) is applicable in
G′ due to the fact that v is loop-free in G′. The applicability of either of
the two reductions implies that there is a FVS {u} of G′ other than {v}.
So, F̃ := F ′ ∪ {u} is an optimal FVS of G.

(iv). DICLIQUE-3(v) is applicable: Similarly to the case DICLIQUE-2(v), we
conclude from Proposition A.7 that

d+
G′(v) =︷ ︸︸ ︷

d=
G′

(v)=0

|NG′(v)| = |NG(v)︸ ︷︷ ︸
= N1 ·∪N2 ·∪N3

\F ′| = |N1 \ F ′|+ |N2 \ F ′|+ |N3 \ F ′| ≤ 3.

Once again, we see that d−
G′(v) > 0 and d+

G′(v) > 0. Hence, d−
G′(v) = 1

or d−
G′(v) = 1 follows. So, either IN1(v) or OUT1(v) can be applied in G′

because v is loop-free in G′. This implies that there is a FVS {u} of G′

other than {v}. So, F̃ := F ′ ∪ {u} is also an optimal FVS of G.

While it is straight forward to test whether a vertex v meets the conditions
of the INDICLIQUE and OUTDICLIQUE reduction in a digraph G = (V, A),
this is not true for the other two diclique reductions. To see this, consider the
following undirected graph induced by G:

G := (V, EG) with EA := {{u, v} ⊂ V : (u, v) /∈ A ∨ (v, u) /∈ A}.

With this definition it can be seen that NG′(v) is covered by two dicliques
if and only if G[NG′(v)] is bipartite which can be tested in linear time with
breadth first search. Thus, the test for the applicability of DICLIQUE-2(v)
takes time O(|V |2). In contrast to that, we enter a new complexity level with
the DICLIQUE-3 reduction. It turns out that DICLIQUE-3(v) (with d=

G(v) = 0)
is applicable if and only if G[NG′(v)] tripartite or equivalently 3-colorable. But
the problem to decide the 3-colorability of an undirected graph is known to be
NP-complete [28]. So, the DICLIQUE-3 reduction is only of theoretical interest.

By recalling that the empty digraph and the digraph consisting of only one
vertex represent dicliques of size 0 and 1, respectively, it can be realized that
INDICLIQUE(v) and OUTDICLIQUE(v) subsum all the Levy-Low reductions
but LOOP(v). Furthermore, they also include the CORE(v) reduction (cf.
section 2.1.1.1) as a special case in the following sense: If v ∈ V is a core of a di-
clique, the CORE(v) reduction instructs us to add NG(v) to the (partial) FVS.
On the other hand, given v is a core of a diclique it follows that NG(v) is a di-
clique, thus for instance INDICLIQUE(v) is applicable. Now, INDICLIQUE(v)

92 Appendix A. New digraph reductions

advises us to exclude v from the digraph G. But as G[v ∪ NG(v)] is a diclique,
we see that every vertex u ∈ NG(v) has a loop in G ◦ v. Hence, each vertex
u ∈ NG(v) is then added to the (partial) FVS of G by the LOOP(u) reduction.

A.3 The finite Church-Rosser property for the

DICLIQUE-1 reductions

For the Levy-Low reductions it has been proven that any order of application
of the reductions always leads to the same digraph [36]. Since INDICLIQUE,
OUTDICLIQUE and LOOP generalise the Levy-Low reductions this serves as a
motivation to prove the same for these three reductions which will be referred to
as DICLIQUE-1 reductions. But before being able to prove that property,
additional notation is required which is adopted from [36] and [52].

A.3.1 Notation

We start with the notion of a replacement system being a triple (S, I,≡),
where I ⊂ S × S is a relation and ≡⊂ S × S an equivalence relation on the
set S, respectively. We will write x Iy (resp. x ≡ y) rather than (x, y) ∈ I

(resp. (x, y) ∈≡).

The reflexive closure
#
I of I is the relation

#
I := {(x, x) : x ∈ S} ∪ {(x, y) ∈ S × S : x Iy}.

Furthermore, by ∗
I the reflexive transitive closure of I is denoted which

is to say
∗
I := {(x, y) ∈ S × S : x

#
I · · · #

Iy}.
If the system (S, I,≡) is finite (see Definition A.9), the completion ∧

I of
I is can be defined as

∧

I := {x ∗
Iy : y ∗

Iz =⇒ y = z}.

With the above notation we can define what it means for a replacement system
(S, I,≡) to be finite and finite Church-Rosser, respectively.

Definition A.9. A replacement system (S, I,≡) is

(i). finite if for each x ∈ S there is a constant integer kx ∈ N such that
x Ix1 I · · · Ixk Iy implies k ≤ kx.

(ii). finite Church-Rosser (FCR) if it is finite and from x1
∧

Iy1 and x2
∧

Iy2

with x1 ≡ x2 it follows y1 ≡ y2.

A.3.2 The proof of the Church-Rosser property

To show that a replacement system (S, I,≡) is FCR, the following charac-
terisation will be used which has been proven in [1].

A.3. The finite Church-Rosser property for the DICLIQUE-1 reductions 93

Theorem A.10. The replacement system (S, I,≡) is FCR if and only if it

is finite, and for any x1, x2 ∈ S with x1 ≡ x2, if x1 Iy1 and x2
#
Iy2, then

there are some z1, z2 ∈ S with z1 ≡ z2 such that y1
∗
Iz1 and y2

∗
Iz2.

Now, consider the replacement system (D, I,∼=), where D is the set of all
digraphs. For two digraphs G = (V, A) and H = (V ′, A′) in D let G IH if
and only if G can be transformed into H by applying one of the DICLIQUE-1
reductions. Furthermore, G ∼= H holds if and only if there is a bijection

σ : V → V ′

such that
(u, v) ∈ A ⇐⇒ (σ(u), σ(v)) ∈ A′.

In this case σ is called a digraph isomorphism. It will be written σ(G) for
(σ(V), {(σ(u), σ(v)) : (u, v) ∈ A}). Moreover, if V ′ ⊂ V , we will loosely write
σ(H) instead of σ|V ′(H).

The aim is to prove that (D, I,∼=) is FCR using Theorem A.10. Fortu-
nately, the following corollary shows that for this particular replacement system,
it suffices show some weaker conditions than those in Theorem A.10.

Corollary A.11. The replacement system (D, I,∼=) is FCR if G IG′
1 and

G IG′
2 for any G, G′

1, G
′
2 ∈ D imply the existence of some digraphs H1, H2 ∈

D with H1
∼= H2 such that G′

1
∗
IH1 and G′

2
∗
IH2.

Proof. We show that the conditions of Theorem A.10 are satisfied.

The finiteness of (D, I,∼=) is clear as the application of any DICLIQUE-1
reduction decreases the number of vertices of the digraph and the considered
digraphs are finite.

For the remainder of the proof assume

G1
∼= G2 and G1 IG′

1 (A.1)

and let
σ : V (G1)→ V (G2)

be the digraph isomorphism with σ(G1) = G2.

Next, we show that G2 IG′
2 in conjunction with (A.1) implies that there

are two digraphs H1, H2 ∈ D with H1
∼= H2 and G′

1
∗
IH1 as well as G′

2
∗
IH2.

Obviously, from G1 IG′
1 it follows G2 = σ(G1) Iσ(G′

1). So, by the as-
sumptions of the corollary, there are isomorphic digraphs H1, H2 ∈ D with
σ(G′

1)
∗
IH1 and G′

2
∗
IH2 from which G′

1
∗
Iσ−1(H1) follows. In addition,

since H1
∼= H2, we also have σ−1(H1) ∼= H2.

Finally, we show that (A.1) implies the existence of isomorphic digraphs
H1, H2 ∈ D with G′

1
∗
IH1 and G2

∗
IH2. This is easily seen as from G1 IG′

1

we conclude G2 = σ(G1) Iσ(G′
1) and the previous part of the proof shows the

existence of the digraphs H1, H2 ∈ D with the desired properties.

Thus, the premises of Theorem A.10 are satisfied and it follows that (D, I,∼=)
is FCR.

94 Appendix A. New digraph reductions

u v

Dv

Figure A.1: The case DRu = OUTDICLIQUE and DRv = OUTDICLIQUE.
The dashed arcs indicate arcs that possibly, but not necessarily, join two vertices.

So, Corollary A.11 will be used in order to prove that (D, I,∼=) is FCR. To
show that (D, I,∼=) satisfies the conditions of Corollary A.11, the following
three auxiliary lemmas are needed.

Lemma A.12. Let G, G′ ∈ D be digraphs such that G IG′. Let further
G IG− u for a vertex u ∈ V (G′). Then, G− u IG′ − u and G′

IG′ − u.

Proof. Because G IG − u we know that u has a loop in G, i.e. LOOP(u) is
applicable in G. If G′ is of the form G′ = G − v (v ∈ V (G)), the same follows
for v. This means that u and v also have loops in G − v = G′ and G − u,
respectively. That is to say G′

IG′ − u and G− u IG− u− v = G′ − u.

Now, suppose G′ is of the form G′ = G◦v which means that G′ results of an
application of a DICLIQUE-1 reduction in G. Let Dv ⊂ G be the corresponding
diclique. Because Dv is an induced diclique and u has a loop in G, we have
u /∈ V (Dv) and thus Dv is also a diclique in G − u. It follows that the same
DICLIQUE-1 reduction is applicable in G−u on v yielding G−u IG−u◦v =
G′−u. On the other hand, u having a loop in G also has one in G′, so LOOP(u)
is applicable in G′ and G′

IG′ − u follows.

Lemma A.13. For the replacement system (D, I,∼=) let G IG ◦ u. Let
further G IG ◦ v for a vertex v ∈ V (G) \ N=

G(u). Then, there are digraphs
H1, H2 ∈ D with H1

∼= H2 such that G ◦ u ∗
IH1 and G ◦ v ∗

IH2.

Proof. As G IG ◦ u, there must be a diclique reduction

DRu ∈ {INDICLIQUE, OUTDICLIQUE}

such that DRu(u) is applicable in G, hence let Du ⊂ G be the corresponding
diclique. The same holds for v, so DRv and Dv ⊂ G are defined similarly.

A.3. The finite Church-Rosser property for the DICLIQUE-1 reductions 95

u v

Figure A.2: The case DRu = OUTDICLIQUE and DRv = INDICLIQUE.

First, consider the case u /∈ V (Dv) and v /∈ V (Du). In this context, let

Lu := N=
G(u) ∩ V (Dv) and Lv := N=

G(v) ∩ V (Du).

Then, each vertex w ∈ Lu has a loop in G ◦ u, so LOOP(w) is applicable and
one gets

G ◦ u ∗
IG ◦ u− Lu︸ ︷︷ ︸

:=G′

.

Because v /∈ Lu ⊂ N=
G(u) we see that v ∈ V (G′) as well as v is loop-free in G′.

Moreover, D′
v := Dv −Lu is an induced diclique in G′. Hence, DRv(v) can also

be applied in G′ and we have

G ◦ u ∗
IG′

IG′ ◦ v.

Now, each vertex w ∈ Lv ∩ V (G′ ◦ v) has a loop in G′ ◦ v and thus

G ◦ u ∗
IG′

IG′ ◦ v ∗
IG′ ◦ v − Lv = G ◦ u ◦ v − Lu ∪ Lv︸ ︷︷ ︸

=:H

.

Finally, since u and v have symmetric roles and H is symmetric in u and v, we
also have G ◦ v ∗

IH .

It remains the case u ∈ V (Dv) or v ∈ V (Du) which implies u ∈ NG(v).
Hence, in the remainder of the proof w.l.o.g. it will be assumed (u, v) ∈ A(G)
and (v, u) /∈ A(G). There are some subcases to be considered:

(i). DRu = INDICLIQUE and DRv = OUTDICLIQUE. As u /∈ N=
G(v), we

have u /∈ V (Dv) and v /∈ V (Du), so this subcase has been treated in the
first part of the proof.

(ii). DRu = OUTDICLIQUE and DRv = OUTDICLIQUE. It follows that
Du = G[N+

G(u)] as well as Dv = G[N+
G(v)]. Since v ∈ N+

G(u) it follows
N+

G(u) ⊆ N=
G(v) ∪ {v}. On the other hand, we have N=

G(v) ⊂ V (Dv), thus

96 Appendix A. New digraph reductions

u v

Figure A.3: The digraph from Figure A.2 after the deletion of the vertices
N=

G(u) = N=
G(v).

the scenario is the one shown in Figure A.1.

After the exclusion of u from G, the vertices w ∈ N=
G(u) have loops in

G ◦ u as can be concluded from Figure A.1. So, LOOP(w) can be applied
and one gets

G ◦ u ∗
IG ◦ u−N=

G(u)︸ ︷︷ ︸
=:G′

.

In G′ the subdigraph D′
v := Dv −N=

G(u) is an induced diclique and more-
over N+

G′(v) = V (D′
v). Thus, OUTDICLIQUE(v) is applicable in G′ and

G ◦ u ∗
IG′

IG′ ◦ v

holds. Furthermore, in G′ ◦ v any vertex w ∈ N=
G′(v) has a loop, so

LOOP(w) is applicable in G′ ◦ v and

G ◦ u ∗
IG′

IG′ ◦ v ∗
IG′ ◦ v −N=

G(v) = G ◦ u ◦ v −N=
G(u) ∪ N=

G′(v)︸ ︷︷ ︸
=:H

follows. Using Observation A.2, iii, a ’simpler’ expression for H is ob-
tained:

H = G ◦ u ◦ v −N=
G(u) ∪ N=

G′(v)

= G ◦ u ◦ v −N=
G(u) ∪ N=

G◦u−N=
G(u)(v)

︸ ︷︷ ︸
=N=

G◦u
(v)\N=

G
(u)

= G ◦ u ◦ v −N=
G(u) ∪ (N=

G◦u(v) \N=
G(u))

= G ◦ u ◦ v −N=
G(u) ∪ (N=

G(v) ∪ (N−
G(u) ∩ N+

G(v)) \N=
G(u)) Obs. A.2, iii

= G ◦ u ◦ v −N=
G(u) ∪ N=

G(v) ∪ (N−
G(u) ∩N+

G(v))

A.3. The finite Church-Rosser property for the DICLIQUE-1 reductions 97

On the other hand, also in G ◦ v each w ∈ N=
G(v) has a loop yielding

G ◦ v ∗
IG ◦ v −N=

G(v)︸ ︷︷ ︸
=:G′′

.

Now, the digraph D′
v := Dv−N=

G(v) is an induced diclique in G′′ and more-
over N+

G′′(u) = V (D′
v) (cf. Observation A.2, ii). Thus, OUTDICLIQUE(u)

is applicable in G′′ and we obtain

G ◦ v ∗
IG′′

IG′′ ◦ u.

In G′′ ◦ u the vertices in N=
G′′(u) have loops which yields

G◦v ∗
IG′′

IG′′ ◦u ∗
IG′′ ◦u−N=

G′′(u) = G ◦ u ◦ v −N=
G(v) ∪ N=

G′′(u)︸ ︷︷ ︸
=H due to Obs. A.2, iii

.

(iii). DRu = INDICLIQUE and DRv = INDICLIQUE. This case is analogue
to the previous one, so for the sake of readability the proof is omitted.

(iv). DRu = OUTDICLIQUE and DRv = INDICLIQUE. It follows that
Du = G[N+

G(u)]. As v ∈ N+
G(u) this implies N+

G(u) ⊆ N=
G(v)∪{v}. On the

other hand, from Dv = G[N−
G(v)] being an induced diclique and u ∈ N−

G(v)
it follows N−

G(v) ⊆ N=
G(u) ∪ {u}. Combining these two inclusions leads to

N=
G(u) = N=

G(v). This is depicted in Figure A.2.

In G ◦ u each w ∈ N=
G(u) has a loop which implies

G ◦ u ∗
IG ◦ u−N=

G(u)︸ ︷︷ ︸
=:H1

.

Similarly, each w ∈ N=
G(v) has a loop in G ◦ v which is to say

G ◦ v ∗
IG ◦ v −

=N=
G(u)

︷ ︸︸ ︷
N=

G(v)︸ ︷︷ ︸
=:H2

.

We claim that the two digraphs

H1 = G−N=
G(u)︸ ︷︷ ︸

=:G′

◦u and H2 = G−N=
G(u) ◦ v

are isomorphic, i.e. H1
∼= H2. This becomes clear when regarding Figure

A.3 which depicts the digraph G′. We see that N+
G′(u) = {v} and N−

G′(v) =
{u}. So, H1 = G′ ◦ u and H2 = G′ ◦ v are obviously isomorphic (cf.
Observation A.2, ii).

Lemma A.14. Let G ∈ D be a digraph and let G IG ◦ v1. Let further
G IG ◦ v2 for a vertex v2 ∈ N=

G(v1). Then, there is a digraph H ∈ D such
that G ◦ v1

∗
IH and G ◦ v2

∗
IH.

98 Appendix A. New digraph reductions

v1 v2

U

Figure A.4: The situation when G IG◦v1 and G IG◦v2 with v2 ∈ N=
G(v1).

Proof. Let U := N=
G(v1)∩N=

G(v2). Note that N=
G(vi) (i = 1, 2) induces a diclique

because either INDICLIQUE(vi) or OUTDICLIQUE(vi) is applicable in G, so
obviously, D induces a diclique, too.

We claim that there is no path (w1, vi, w2) in G for i = 1, 2 such that
w1, w2 /∈ U∪{v1, v2}. To see this, note that G[N−

G(vi)∪{w1}] or G[N+
G(vi)∪{w2}]

is a diclique because INDICLIQUE(vi) or OUTDICLIQUE(vi) is applicable in
G. Thus, say G[N=

G(vi) ∪ {wj}] is a diclique for j ∈ {1, 2}. As v3−i ∈ N=
G(vi),

one sees wj ∈ N=
G(v3−i). But as vi ∈ N=

G(v3−i) and N=
G(v3−i) induce a diclique,

too, one also sees wj ∈ N=
G(vi), i.e. wj ∈ N=

G(v1) ∩N=
G(v2) = U .

From the claim we conclude

N=
G(v1) = U ∪ {v2} and N=

G(v2) = U ∪ {v1}.
The complete situation is depicted in Figure A.4.

After the exclusion of v1 each vertex w ∈ N=
G(v1) has a loop in G ◦ v1. So,

LOOP(w) can be applied in G ◦ v1. Thus, one obtains

G IG ◦ v1
∗
IG ◦ v1 −N=

G(v1) = G− U︸ ︷︷ ︸
=:G′

−v2 ◦ v1.

Similarly, after the exclusion of v2 each vertex in N=
G(v2) has a loop in G ◦ v2

and one gets

G IG ◦ v2
∗
IG ◦ v2 −N=

G(v2) = G′ − v1 ◦ v2.

Now, we claim G′ − v2 ◦ v1 = G′ − v1 ◦ v2 = G′ − v1 − v2 =: H . To confirm this
claim, consider the digraph G′ − v2. As argued above, in this digraph we have
either d−

G′−v2
(v1) = 0 or d+

G′−v2
(v1) = 0. The same holds for v2 in G′ − v1. So,

Observation A.1, ix may be applied and the claim follows. Hence, we get

G ◦ v1
∗
IG ◦ v1 −N=

G(v1) = H and G ◦ v2
∗
IG ◦ v2 −N=

G(v2) = H.

A.4. Concluding remarks 99

Once these three lemmas have been proved, we are able to show the main
result of this appendix.

Theorem A.15. (D, I,∼=) is FCR.

Proof. Let G ∈ D and let further G′
1 := G M1 u and G′

2G M2 v such that
G IG′

1 and G IG′
2, where M1,M2∈ {−, ◦}. According to Corollary A.11 it

has to be proven that there are digraphs H1, H2 ∈ D with H1
∼= H2 such that

G′
1

∗
IH1 and G′

2
∗
IH2.

The existence of such digraphs H1, H2 follows from Lemma A.12 in the case
of M1= − or M2= − while in the case of M1= ◦ =M2 it follows from the Lemmas
A.13 and A.14.

A.4 Concluding remarks

Thanks to Theorem A.15 we are entitled to define a new class of digraphs
for which the minimum feedback vertex set problem can be solved in polyno-
mial time. This class represents the digraphs which can be transformed into
an acyclic digraph (and hence into an empty digraph) by successive applica-
tion of the DICLIQUE-1 reductions. This class is referred to as the class of
DICLIQUE-1 reducible graphs. The polynomial algorithm for determining
an optimal FVS of these digraphs simply applies the DICLIQUE-1 reductions
in arbitrary order until an acyclic digraph is reached. From Theorem A.15 it
follows that if there is a particular application order of DICLIQUE-1 reductions
that transforms the initial digraph into an acyclic one, then any admissible or-
der will do it.

Concerning the runtime of the algorithm for determining an optimal FVS
for a DICLIQUE-1 reducible graph G = (V, A), the dominant operation is the
test whether the INDICLIQUE(v) or OUTDICLIQUE(v) reduction can be ap-
plied on a vertex v ∈ V . This test consists of checking if a particular vertex
set induces a diclique and can be done in time O(|V |2). If one of the two re-
ductions is applicable, then v has to be excluded from the digraph which takes
time O(|V |2). Since during the execution of the algorithm at most O(|V |2) such
tests and O(|V |) exclusions have to be performed, a total runtime of O(|V |4) is
obtained.

The relatively large time bound of O(|V |4) of the exact algorithm for the
DICLIQUE-1 reducible graphs, when compared with the runtime of O(|A| log |V |)
for the completely contractible graphs which are defined by means of the Levy-
Low reductions (cf. section 2.1.2), might suggest that the DICLIQUE-1 reduc-
tions are not suited for the use within an approximation algorithm. However,
this is not the case for two reasons. Firstly, the time bound of O(|V |4) is only a
theoretical one and a more involved analysis should yield a much better bound.
Secondly, the DICLIQUE-1 reductions are more powerful than the Levy-Low
reductions. While the latter ones can clearly be applied in sparse digraphs only,
the DICLIQUE-1 reductions are also applicable in dense digraphs. By way of
an example, consider a diclique D with at least k ≥ 3 vertices. Apparently,
D is not completely contractible, whereas it is indeed DICLIQUE-1 reducible.

100 Appendix A. New digraph reductions

reducible flow graphs cyclically reducible graphs

completely contractible graphs

SW1 reducible graphs

SW2 reducible graphs

SW3 reducible graphs

DICLIQUE-1 reducible graphs

Figure A.5: The DICLIQUE-1 reducible graphs versus other polynomial classes.

This trivial example shows that the DICLIQUE-1 reducible graphs strictly en-
compass the completely contractible graphs. Moreover, the example shows that
the class of DICLIQUE-1 reducible graphs contains digraphs which are SWk−1

reducible but not SWk−2 reducible (cf. section 2.1.2). Figure A.5 illustrates
the inclusion the relation of DICLIQUE-1 reducible graphs to other polynomial
classes.

The attempt to also prove the FCR property for all four diclique reductions
together with the LOOP reduction is deemed to fail in view of the digraph from
Figure A.6. There, only DICLIQUE-3(u) and INDICLIQUE(v) is applicable.
After applying DICLIQUE-3(u) the digraph is not reducible anymore by any
of the five reductions as can be seen in Figure A.7. Likewise, after applying
INDICLIQUE(v) in the digraph of Figure A.6 the resulting digraph is not further
reducible (cf. Figure A.8). As the two irreducible digraphs are non-isomorphic,
this shows that the diclique reductions together with the LOOP reduction do not
possess the FCR property. Figure A.6 is an example in which the DICLIQUE-3
reduction causes problems with respect to the FCR property. Similarly, there
are also examples for the DICLIQUE-2 reduction.

A.4. Concluding remarks 101

u
v

D1
u D2

u

D3
u

Dv

Figure A.6: In the present digraph only DICLIQUE-3(u) and INDICLIQUE(v)
are applicable with the corresponding induced dicliques D1

u, D2
u, D3

u and Dv ,
respectively.

v

Figure A.7: The digraph from Figure A.6 after the application of DICLIQUE-
3(u). The digraph is not further reducible by any of the diclique reductions nor
by the LOOP reduction.

102 Appendix A. New digraph reductions

u

Figure A.8: The digraph from Figure A.6 after applying INDICLIQUE(v). The
digraph is not further reducible by any of the diclique reductions nor by the
LOOP reduction.

�� ���

�

�

�

Bibliography

[1] A. V. Aho, R. Sethi, J. D. Ullman. Code optimization and finite
Church-Rosser theorems, Design and Optimization of Compilers (R.
Rustin, Ed.), Prentice-Hall, Englewood Cliffs, N.J., pages 89–105,
1972

[2] N. Alon. Ranking tournaments, SIAM Journal on Discrete Mathe-
matics, Vol. 20, No. 1, pages 137-142, 2006

[3] F. Brglez, D. Bryan, K. Kozminski. Combinational profiles of se-
quential benchmark circuits, Proceedings of the IEEE International
Symposium on Circuits and Systems, pages 1929–1934, 1989

[4] V. Bafna, P. Berman, T. Fujito Constant ratio approximations of the
weighted feedback vertex set problem for undirected graphs, ISAAC95,
Algorithms and Computation, J. Staples, P. Eades, N. Katoh and A.
Moffat Eds., Lecture Notes in Computer Science Vol. 1004, pages
142–151, Springer-Verlag, 1995

[5] R. Bar-Yehuda, S. Even. A local-ratio theorem for approximating the
weighted vertex cover problem, Annals of Discrete Mathematics 25,
pages 27–46, 1985

[6] A. Becker, D. Geiger. Approximation algorithms for the loop cutset
problem, Proc. of the 10th conference on Uncertainty in Artificial
Intelligence, pages 60–68, 1994

[7] E. Boros, K. M. Elbassioni, V. Gurvich, L. Khachiyan. Enumerating
Minimal Dicuts and Strongly Connected Subgraphs and Related Ge-
ometric Problems, 10th International Conference Integer Program-
ming and Combinatorial Optimization (IPCO 2004), Lecture Notes
in Computer Science (LNCS) 3064, pages 152–162, 2004

[8] E. Boros, K. Borys, V. Gurvich, G. Rudolf. Generating 3-vertex con-
nected spanning subgraphs, to appear in Deiscrete Mathematics (DM
14311), 2007

[9] S. Brin, L. Page, R. Motwami, T. Winograd. The PageRank citation
ranking: bringing order to the Web, Technical Report 1999-0120,
Computer Science Department, Stanford University, 1999

[10] M. Cai, X. Deng, W. Zang. An Approximation Algorithm for Feedback
Vertex Sets in Tournaments, SIAM Journal on Computing, Vol. 30,
No. 6, pages 1993–2007, 2001

104 Bibliography

[11] S. T. Chakradhar, A. Balakrishnan, V. D. Agrawal. An Exact Algo-
rithm for Selecting Partial Scan Flip-Flops, Proceedings of the Design
Automation Conference, pages 81–86, 1994

[12] P. Charbit, S. Thomassé, A. Yeo. The minimum feedback arc set
problem is NP-hard for tournaments, Combinatorics, Probability and
Computing, Vol. 16, No. 1, pages 1–4, 2006

[13] D. Coppersmith, S. Winograd. Matrix multiplication via arithmetic
progressions, Journal of Symbolic Computation, Vol. 9, No. 3, pages
251–280, 1990

[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein. Introduction to Algorithms, Second Edition, The MIT Press
and McGraw-Hill Book Company 2001

[15] C. Demetrescu, I. Finocchi. 2003. Combinatorial algorithms for feed-
back problems in directed graphs, Information Processing Letters, Vol.
86, No. 3, pages 129–136, 2003

[16] C. Demetrescu, G. F. Italiano. Fully dynamic transitive closure:
Breaking through the O(n2) barrier, Proceedings of the 41st Annual
IEEE Symposium on Foundations of Computer Science (FOCS’00),
pages 381–389, 2000

[17] R. Diestel. Graph theory, Springer-Verlag, New York, 2000

[18] J. Dongarra, A. Lumsdaine, R. Pozo, K. Remington. A sparse matrix
library in C++ for high performance architectures, Proceedings of the
Second Object Oriented Numerics Conference, pages 214–218, 1994

[19] G. Even, J. Naor, B. Schieber, M. Sudan. Approximating minimum
feedback sets and multicuts in directed graphs, Algorithmica, Vol. 20,
No. 2, pages 151–174, 1998

[20] F. Fages, A. Lal. A Constraint Programming Approach to Cutset
Problems, Computers and Operations Research, Vol. 33, No. 10,
pages 2852–2865, 2006

[21] T. A. Feo, M. G. C. Resende. A probabilistic heuristic for a computa-
tionally difficult set covering problem, Operations Research Letters,
Vol. 8, pages 67-71, 1989

[22] P. Festa, P. M. Pardalos, M. G. C. Resende. Algorithm 815: Fortran
subroutines for computing approximate solutions of feedback set prob-
lems using GRASP, ACM Transactions on Mathematical Software,
Vol. 27, pages 456–464, 2001

[23] M. X. Goemans, D. P. Williamson. Primal-Dual Approximation Al-
gorithms for Feedback Problems in Planar Graphs, Combinatorica,
Vol. 18, pages 37–59, 1998

Bibliography 105

[24] M. X. Goemans, D. P. Williamson. The primal-dual method for ap-
proximation algorithms and its application to network design prob-
lems, D. S. Hochbaum, editor, Approximation Algorithms for NP-
hard Problems, pages 144–191. PWS, Boston, 1997

[25] B. Hasselman. An efficient method for detecting redundant feedback
vertices, CPB Netherlands Bureau for Economic Policy Analysis, Dis-
cussion Paper 29, 2004

[26] M. S. Hecht, J. D. Ullman. Characterization of Reducible Flow
Graphs, Journal of the ACM, Vol. 21, No. 3, pages 167–175, 1974

[27] M. Jünger. Polyhedral Combinatorics and the Acyclic Subdigraph
Problem, Research and Exposition in Mathematics 7, Heldermann
Verlag, Berlin, 1985

[28] R. M. Karp. Reducibility among combinatorial problems, R. Miller, J.
Thatcher, editors, Complexity of Computer Communications, pages
85–103. Plenum Press, 1972

[29] R. M. Karp. The Transitive Closure of a Random Digraph, Random
Structures and Algorithms, Vol. 1, No. 1, pages 73–93, 1990

[30] H. Koehler. A contraction algorithm for finding minimal feedback
sets, Proceedings of the Twenty-Eighth Australasian Conference on
Computer Science - Vol. 38 (Newcastle, Australia), Australian Com-
puter Society, pages 165–173, 2005

[31] M. Laguna, R. Mart́ı. GRASP and path relinking for 2-layer straight
line crossing minimization, INFOMRS Journal on Computing, Vol.
11, pages 44–52, 1998

[32] A. N. Langville, C. D. Meyer. Updating Markov chains with an eye
on Google’s PageRank, SIAM Journal on Matrix Analysis and Ap-
plications, Vol. 27, No. 4, pages 968–987, 2006

[33] A. N. Langville, C. D. Meyer. A Survey of Eigenvector Methods for
Web Information Retrieval, SIAM Review, Vol. 47, No. 1, pages 135–
161, 2005

[34] E. L. Lawler. A comment on Minimum Feedback Arc Sets, IEEE
Transactions on Circuit Theory, Vol. 11, No. 2, pages 296-297, 1964

[35] D. Lee, M. Reddy. On determining scan flip-flops in partial-scan
designs, Proceedings of the International Conference on Computer-
Aided Design. pages 322–325, 1990

[36] H. Levy, D. W. Low. A contraction algorithm for finding small cycle
cutsets, Journal Of Algorithms, Vol. 9, pages 470–493, 1988

[37] Hen-Ming Lin, Jing-Yang Jou. Computing Minimum Feedback Vertex
Sets by Contraction Operations and its Applications on CAD, IEEE
International Conference on Computer Design, pages 364–369, 1999

106 Bibliography

[38] E. L. Lloyd, M. L. Soffa, C.-C. Wang. On locating minimum feedback
vertex sets, Journal of Computer and System Sciences, Vol. 37, pages
292–311, 1988

[39] I. Marek, D. B. Szyld. Local convergence of the (exact and inexact)
iterative aggregation method for linear systems and Markov operators,
Numerische Mathematik, Vol. 69, No. 1, pages 61–82, 1994

[40] S. L. Martins, C. C. Ribeiro. A parallel GRASP for the Steiner prob-
lem in graphs, In Proceedings of the Irregular 98, 1998

[41] M. Matsumoto, T. Nishimura. Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator, ACM Transactions on Modeling and Computer Simulation,
Vol. 8, No. 1, pages 3–30, 1998

[42] K. Mehlhorn, S. Näher. LEDA: A Platform for Combinatorial and
Geometric Computing, Cambridge University Press, 1999

[43] C. D. Meyer. Matrix Analysis and Applied Linear Algebra, SIAM,
Philadelphia, 2000

[44] T. Orensten, Z. Kohavi, I. Pomeranz. An optimal algorithm for cycle
breaking in directed graphs, Journal of Electronic Testing, Vol. 7, No.
1, pages 71–82, 1995

[45] P. M. Pardalos, T. Qian, M. G. C. Resende. A greedy randomized
adaptive search procedure for the feedback vertex set problem, Journal
of Combinatorial Optimization, Vol. 2, pages 399–412, 1999

[46] S. Park, S. Akers. A graph theoretic approach to partial scan design
by k-cycle elimination, The Proceedings of the International Test
Conference, pages 303–311, 1992

[47] J. Perl. Fusion, propagation and structuring in belief networks, Arti-
ficial Intelligence, Vol. 29, No. 3, pages 241–288, 1986

[48] M. G. C. Resende, C. C. Ribeiro. Greedy randomized adaptive search
procedures, F. Glover, G. A. Kochenberger, editors, Handbook of
Metaheuristics, Kluwer Academic Publishers, pages 219–249, 2003

[49] S. J. Russel, P. Norvig. Artificial Intelligence: A Modern Approach,
Prentice Hall, 1995

[50] B. Schwikowski. Empirische Analyse von Approximationsalgorithmen
für das Feedback-Vertex-Set-Problem in Digraphen, Diploma thesis,
Heinrich-Heine-Universität Düsseldorf, 1994

[51] B. Schwikowski, E. Speckenmeyer. On computing all minimal solu-
tions for feedback problems, Discrete Applied Mathematics 117, pages
253–265, 2002

[52] R. Sethi. Testing for the Church-Rosser property, Journal of the
ACM, Vol. 21, No. 4, pages 671–679, 1974.

Bibliography 107

[53] P. D. Seymour. Packing directed circuits fractionally, Combinatorica,
Vol. 15, pages 281–288, 1995

[54] A. Shamir. A linear time algorithm for finding minimum cutsets in
reduced graphs, SIAM Journal on Computing, Vol. 8, No. 4, pages
645–655, 1979

[55] W. Smith, R. Walford. The identification of a minimal feedback vertex
set of a directed graph, IEEE Transactions on Circuits and Systems,
Vol. 22, No. 1, pages 9–15, 1975

[56] E. Speckenmeyer. On Feedback Problems in Digraphs, Graph-
Theoretic Concepts in Computer Science, Springer-Verlag, Berlin,
Heidelberg, pages 218–231, 1989

[57] W. J. Stewart. Introduction to the Numerical Solution of Markov
Chains, Princeton University Press, pages 355–358, 1994

[58] S. Tai, D. Bhattacharya. A three-stage partial scan design method to
ease ATPG, Journal of Electronic Testing: Theory and Applications,
Vol. 7, No. 1-2, pages 95–104, 1995

[59] R. E. Tarjan. Depth-first search and linear graph algorithms, SIAM
Journal on Computing, Vol. 1, No. 2, pages 146–160, 1972

[60] C.-C. Wang, E. L. Lloyd, M. L. Soffa. Feedback vertex sets and cycli-
cally reducible graphs, Journal of the ACM, Vol. 32, No. 2, pages
296–313, 1985

[61] A. Xie, P. A. Beerel. Accelerating Markovian analysis of asyn-
chronous systems using string-based state compression, Proceedings
fourth International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems (ASYNC), IEEE Computer Society
Press, pages 247–260, 1998

108 Bibliography

�� ���

�

�

�

Acknowledgements

First of all, I would like to thank my supervisor Prof. Dr. Ewald Specken-
meyer. He believed in me and gave me the opportunity to work on a very
interesting research field. His guidance and encouragement as well as his con-
structive criticism and comments are highly appreciated. Furthermore, he has
— together with Heinz Heimes from the ’Behindertenvertretung’ of the Univer-
sity of Cologne — struggled to overcome bureaucratic hurdles connected with
the financing of my employment. Without Prof. Dr. Speckenmeyer the present
thesis could not have been come about.

Special thanks go to my office mate Bert Randerath with whom I hit it
off so well in the more than three years. He was always open to discussions of
all kinds. The atmosphere was very friendly and I can tell you we had much fun.

Many thanks also go to Gabriele Eslamipour, the secretary of the Lehrstuhl
Speckenmeyer. She assisted me with administrative issues and helped me several
times not to drop a clanger. Many thanks also to all other present and former
members of the Lehrstuhl Speckenmeyer who supported me in all aspects of
the everday business, and thus made it very pleasent. I cannot imagine better
colleagues.

Special thanks go to Michael Belling who assisted me with the literature
research. His affable manner contributed to the pleasent atmosphere of the in-
stitute.

I am particularly grateful to David Lewes-Malandrakis for promptly, yet
accurately, reviewing parts of this thesis. His feedback helped to correct some
clumsy formulations and mistakes, and thus markedly improved the overall read-
ability. The attentive reader will surely notice which chapters have been revised
by him.

Finally, I would like to thank all the people in my private life. My mother
Vojka Lemaić and my brother Dušan Lemaić have supported me as much as
they could during the time of writing this thesis. There are so many other
people without which it would have been so much harder to complete this work.
I cannot name one person without forgetting ten others. I am very aware of
their contributions and owe them many thanks.

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die be-
nutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit — ein-
schließlich Tabellen, Karten und Abbildungen —, die anderen Werken im Wortlaut oder
dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht
habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung
vorgelegen hat; dass sie — abgesehen von unten angegebenen Teilpublikationen — noch
nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des
Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen der Promotionsordnung
sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Ewald Speckenmeyer
betreut worden.

Köln, den 21.04.2008

