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1. Introduction 
 

1.1  Structures and biosynthesis of glucosinolates  
 

Glucosinolates (GSL) are nitrogen- and sulfur-containing classes of about 200 

naturally occurring thioglucosides that are characteristic of the Cruciferae and related 

families including the model plant A. thaliana. Glucosinolates share a chemical 

structure consisting of a β-D-glucopyranose residue linked via a sulphur atom to a 

(Z)-N-hydroximinosulfate ester and the glucosinolate-defining core structure called 

the glucone (R-group) which is derived from several amino acids (Fig. 1A). 

Glucosinolates are classified depending on the nature of amino acid residue into 

aliphatic glucosinolates derived from Ala, Leu, Ile, Met, or Val; aromatic 

glucosinolates derived from Phe or Tyr and indolic glucosinolates derived from Trp 

(Fig. 1B, C). However, the most abundant and typical structures are aliphatic, indolic 

and aromatic glucosinolates derived from Met, Trp and Phe, correspondingly 

(Dawson et al., 1993; Toroser et al., 1995; Field et al., 2004).  

 

 
Figure 1. Chemical glucosinolate structures depend from the amino acid precursor: (A) 
Common structure of glucosinolates; (B) Examples of specific glucosinolates with typical 
variation in the structure of side chain; (C) Different side chain-elongated aliphatic 
methionine-derived glucosinolates. 
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Although glucosinolates represent a chemically diverse class of plant secondary 

compounds, biosynthesis of these compounds consist of three main stages: (i) 

condensation and side chain-elongation of amino acids, (ii) development of the core 

glucosinolate structure and (iii) secondary side-chain modifications of glucosinolates 

(Fig. 2). The first and second stages of glucosinolate core biosynthesis have 

extensively been studied in A. thaliana and great part of the enzymes in the 

biosynthetic pathways is now characterized (Grubb and Abel, 2006; Halkier and 

Gershenzon, 2006). Diversities in glucosinolate structure are mainly achieved using 

chain-elongated form of methionine and valine for glucosinolates biosynthesis and 

similar to the biosynthesis of leucine from valine and acetate (Mikkelsen and Halkier, 

2003). The side-chain elongation and modification of glucosinolate structures that 

give a rise to the great variety of these compounds continue to be an important area 

for the continued studies.  

Glucosinolate biosynthesis starts with the transamination of the amino acid by 

several branched-chain aminotrasferases (BCATs) to produce the corresponding α-

keto acid. For instance, in biosynthesis of methionine-derived glucosinolates, 

methionine (Met) or a chain-elongated form of Met is deaminated by cytosolic BCAT4 

(Schuster et al., 2006) and chloroplastidic BCAT3 enzymes (Knill et al., 2008). The 

BCAT4 catalyzes the initial step of Met chain elongation by converting Met to 4-

methylthio-2-oxobutanoic acid (MTOB). The BCAT3 mainly catalyzes the conversion 

of 5-methylthiopentyl-2-oxo and 6-methylthiohexyl-2-oxo acids to their respective Met 

derivatives (homomethionine and dihomomethionine), possibly indicating an 

alternative biosynthetic flux of α-keto acids into chain-elongated amino acid 

intermediates within the chloroplast. After transamination, the resulting α-keto acids 

are subsequently metabolized in a condensation reaction with acetyl-CoA, catalyzing 

by MAM1 and MAML enzymes inside of chloroplasts to form a substituted 2-malate 

derivative (Textor et al., 2007), followed by isomerization to yield a 3-malate 

derivative. Next, the 3-malate-derivative is converted by oxidative decarboxylation to 

a homoketo acid with one additional carbon in the side chain than the starting 

compound. Thus, homoketo acids can pass through additional elongation cycles 

creating homoketo acids with increased side chain length up to nine methylene 

groups (Falk et al., 2004). Further synthesis of glucosinolate core structure occurs in 

the cytosol and begins with the conversion of precursor amino acids to aldoximes by 

cytochrome P450 monooxygenases of the CYP79 family. Therefore, at least two 
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different cell compartments and transport steps are required for the biosynthesis of 

chain-elongated Met-derived aliphatic glucosinolates: the import of MTOB from the 

cytosol into chloroplast, and the transport of Met derivatives from the chloroplast into 

the cytosol. Interestingly, the putative transport proteins as well as enzymes of 

isomerization and oxidative decarboxylation reactions have not been identified yet 

and thus remain attractive research topics (Fig. 2A). 

Several studies have demonstrated that CYP79 monooxygenases are involved 

in the conversion of different amino acids to aldoximes (Hansen and Halkier, 2005). 

The CYP79B2 and CYP79B3 enzymes metabolize the formation of indole-3-

acetaldoxime (IAOx) from tryptophan (Hull et al., 2000; Mikkelsen et al., 2000; 

Mikkelsen et al., 2003). A cyp79B2/cyp79B3 double knockout completely lacks indole 

glucosinolates indicating that IAOx is the only precursor for the synthesis of indole 

glucosinolates from tryptophan. Moreover, IAOx is an important branching point for 

the biosynthesis of several other Trp-derived compounds like the plant hormone 

auxin (IAA) and the phytoalexin camalexin (Glawischnig et al., 2004). The 

monooxygenases CYP79F1 and CYP79F2 are involved in the conversion of chain-

elongated Met amino acid precursors into aliphatic aldoximes. CYP79F1 and 

CYP79F2 have overlapping, but also distinct functions in the biosynthesis of Met-

derived glucosinolates. Whereas CYP79F1 is able to metabolize mono- to 

hexahomomethionine resulting in both short- and long-chain aliphatic glucosinolates, 

the CYP79F2 seems to be exclusively converting long-chain elongated penta- and 

hexahomomethionines to corresponding aldoximes (Reintanz et al., 2001; Chen et 

al., 2003; Tantikanjana et al., 2004; Hansen and Halkier, 2005). The obtained 

aldoximes are further oxidized by cytochromes P450 of the CYP83 family producing 

aci-nitro-compounds. Two non-redundant CYP83A1 and CYP83B1 enzymes were 

characterized in Arabidopsis plants (Hemm et al., 2003; Naur et al., 2003). 

Biochemical characterization of CYP83A1 revealed its capacity to metabolize 

specifically Met-derived aldoximes whereas its homologue CYP83B1 has a higher 

affinity towards indolic and aromatic aldoximes derived from tryptophan, 

phenylalanine, and tyrosine (Bak and Feyereisen, 2001; Bak, 2001; Smolen and 

Bender, 2002). Produced by CYP83 enzymes, aci-nitro-compounds or nitrile oxides 

are strong electrophiles that may spontaneously react with cystein as the thiol donor 

or enzymatically metabolized by glutathione-S-transferases (GSTs) to form S-

alkylthiohydroximate conjugates as evidenced by in vivo studies (Wetter, 1968). 

However, this part of glucosinolate biosynthesis remains speculative. The resulting S-
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alkylthiohydroximates are then cleaved by a C-S lyase to yield thiohydroximates, 

pyruvate and ammonia. Metabolic analysis of C-S lyase knock-out mutant 

(SUPERROOT1-SUR1) revealed that sur1 does not contain any aliphatic and 

aromatic glucosinolates. It is, therefore, suggested that C-S lyase is a single gene 

family which lack a side specificity in glucosinolate biosynthesis (Mikkelsen et al., 

2004). Subsequently, thiohydroximates are used as substrates to produce 

desulfoglucosinolates via a glucosylation reaction catalyzed by UGT74B1 

glucosyltransferase (Grubb et al., 2004; Bowles et al., 2005). Analysis of ugt74b1 

knockout mutant showed considerably decreased but not completely abolished level 

of indolic and aliphatic glucosinolates. Thus, it is speculated that other UGT activities 

are present in Arabidopsis plants. UGT74C1 has been suggested as a candidate 

gene to function in glucosinolate biosynthesis and seems to be more specific for Met-

derived thiohydroximates (S. Abel, personal communication). At the last stage of 

biosynthesis, desulfoglucosinolates are sulphated by PAPS:desulfoglucosinolate 

transferases resulting in the formation of parent glucosinolate structures (Fig. 2B). 

Three Arabidopsis sulfurtransferases AtST5a, AtST5b and AtST5c have been 

identified and characterized in glucosinolate biosynthesis. The AtST5a preferably 

metabolizes tryptophan- and phenylalanine-derived desulfoglucosinolates whereas 

AtST5b and AtST5c mediate reactions with aliphatic Me-derived glucosinolates 

(Piotrowski et al., 2004; Klein et al., 2006).  

Secondary side-chain modifications of glucosinolates are generally considered 

to represent the final stage in glucosinolate synthesis. Following the biosynthesis of 

parent glucosinolates or in some cases desulfoglucosinolates, the side-chain may 

undergo various modifications by mean of various oxidation, alkylation and/or 

esterification reactions (Fig. 2C). Remarkably, the natural variation of glucosinolates 

is achieved by several side-chain modifications of glucosinolates via action of two α-

ketoglutarate-dependent dioxygenases (AOP2 and AOP3) that control the conversion 

of methylsulfinylalkyl to alkenyl- and hydroxyalkyl glucosinolates, respectively 

(Kliebenstein et al., 2001b; Kliebenstein et al., 2005b). Recently, a flavin-

monooxygenase was shown to catalyze the conversion of methylthioalkyl 

glucosinolates into methylsulfinylalkyl glucosinolates (Hansen et al., 2007). Together, 

the combine action of glucosinolates structural genes (MAMs, CYP79s, and CYP83s) 

and side-chain modification enzymes (AOP, flavin-monooxygenase) give rise to such 

highly diverse chemical structures of glucosinolates.  
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Figure 2. Stages of glucosinolate biosynthesis in Arabidopsis thaliana (A) Transamination, 
condensation and side elongation reactions of Met in aliphatic (Met-derived) glucosinolate 
biosynthesis converted by BCAT3 or BCAT4 (branched-chain aminotransferases), 
MAM1/MAML (methylthioalkylmalate synthases); (B) Biosynthesis of the glucosinolate core 
structure: CYP79 and CYP83 enzymes catalyzing the conversion of amino acids to 
aldoximes and aci-nitro compounds; aci-nitro compounds can react spontaneously with 
either cysteine or, perhaps catalyzed by glutathione S-transferase (GST), with glutathione; C-
S lyase produces thiohydroximates which are glucosylated by UGT74B1/C1 to desulfo-
glucosinolates; sulphation leads to the synthesis of primary glucosinolates by AtSTa, AtSTb 
and AtSTc sulfotransferases; α-ketoglutarate dioxygenases AOP2 and AOP3 involved in side 
chain modification of glucosinolates; R - variable amino acid side chain. 
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1.2  Biological role of glucosinolates  

 

1.2.1 Glucosinolate degradation and its role for plants 
 

Glucosinolates are present in all parts of the plant; however, the level of 

glucosinolates varies at different developmental stages in plant tissues and is 

affected by several biotic and abiotic factors such as growth conditions, wounding, 

fungal infection, insect damage and other forms of biotic stresses. Generally, high 

levels of glucosinolates are found in young leaves, shoots, silique walls and seeds 

(Fahey et al., 2001; Brown et al., 2003a). These hydrophilic compounds are normally 

stable and sequestered in vacuoles of most plant tissues. Therefore, the primary 

function of glucosinolates under non-stress conditions is still unclear. It has been 

proposed that glucosinolates serve as an internal storage of sulphur which can be 

mobilized by putative thioglucosidases in order to reuse sulphur in primary 

metabolism upon sulphur deficiency (Rausch and Wachter, 2005). Recent microarray 

studies have showed that the activation of sulphate acquisition and the repression of 

glucosinolate production may occur in parallel in response to sulphur limitation 

(Maruyama-Nakashita et al., 2003; Hirai et al., 2005). Nevertheless, the process of 

glucosinolate degradation indicates an important role of these compounds in plant-

insect interactions and plant protection against biotic stresses via action of the binary 

glucosinolate–myrosinase system (see below), also called the ‘mustard oil bomb’ 

(Luthy and Matile, 1984). In plants of the order Brassicales, including the model plant 

Arabidopsis thaliana, the glucosinolate–myrosinase system serves as a major 

chemical defense mechanism against insects, bacterial and fungal pathogens 

(Tierens, 2001; Ratzka et al., 2002; Wittstock and Gershenzon, 2002; Kliebenstein et 

al., 2005a). Degradation of glucosinolates only occurs upon plant tissue damage 

(Fig. 3). Glucosinolates are metabolized by a specific β-thioglucosidase (TGG), also 

called myrosinase, which is localized in special myrosin cells (idioblasts), scattered 

throughout the plant tissues and spatially separated from each other (Xue et al., 

1995; Koroleva, 2000; Andreasson, 2001). In Arabidopsis plants, two redundant 

TGG1 and TGG2 myrosinases have recently been identified. Metabolic analysis of 

the tgg1/tgg2 double knockout mutant revealed the loss of myrosinase activity linked 

to the absence of damage-induced glucosinolate degradation of mainly aliphatic and 
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glucosinolates (Barth and Jander, 2006). Myrosinase activity results in the hydrolysis 

of the thioglucoside linkage leading to the formation of unstable thiohydroximate-O-

sulfate aglycon. This unstable aglycon may spontaneously and nonenzymatically 

rearrange into different bioactive products such as isothiocyanates, thiocyanates, 

nitriles, oxazolidine-2-thiones or epithioalkanes (Fig. 3). Certain chemical conditions, 

co-factors (pH, availability of ferrous ions) and the presence of additional proteins 

(myrosinase epithiospecifier proteins-EPS) determine the final structure and 

composition of the degradation products (Shuttuck, 1993; Lambrix et al., 2001; 

Zabala et al., 2005). Glucosinolate degradation products possess biocidal activities 

because of their toxicity to a variety of pathogens and generalist herbivores (Fahey et 

al., 2001; Bednarek et al., 2005; Brader et al., 2006a). However, some other 

compounds as allylisothiocyanates and allylnitriles seem to be involved in plant–

insect interactions as allelochemicals (Mueller, 2001; Wittstock et al., 2004).  

 

 
 

Figure 3. Scheme of glucosinolate degradation: a binary glucosinolate-myrosinase chemical 
defence system also known as ‘mustard oil bomb’; brackets indicate an unstable 
intermediate – aglucone; EPS- epithiospecifier protein, R - variable amino acid side chain. 
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1.2.2 Agricultural, nutritional and anticancerogenic significance 
of glucosinolates  

 

The wide range of biological active compounds generated by the degradation of 

glucosinolates via action of the glucosinolate-myrosinase system has biological and 

economical importance. Glucosinolate breakdown products are responsible for the 

biting taste of important condiments, such as horseradish and mustard, and they 

contribute to the characteristic flavors of many vegetables, including cabbage, 

broccoli and cauliflower (Mithen, 2001). The distinct taste and flavors of these foods 

are due primarily to isothiocyanates as glucosinolates hydrolysis products. 

Nevertheless, the presence of some glucosinolates in crop plants, such as oilseed 

rape (Brassica napus) and Brassica vegetables is undesirable due to the 

toxicological effects of their breakdown products (Fahey et al., 2001). Glucosinolates 

can cause problems in the feed industry because high glucosinolate plants cannot be 

used for feeding of farm animals (Griffiths et al., 1998). Therefore, some of the plant 

breeding strategies have focused on reducing the glucosinolate content of 

agricultural forages and rape seed plants (Sakac, 2006). In spite of this, 

glucosinolates found an extensive application in agriculture as “bio-fumigants” 

(Kirkegaard and Sarwar, 1998; Kirkegaard et al., 1998). “Bio-fumigation” is based on 

the same hydrolytic principle as the natural plant protection where plant material with 

high glucosinolate contents is incorporated into the soil to suppress soil pathogens, 

insects, nematodes and weeds (Zasada and Ferris, 2004; Chung et al., 2005; 

Vaughn et al., 2005). Thus, plants containing high amounts of glucosinolates also 

serve as a good remedial pre-crop for cereals (Smith et al., 2004; Vaughn et al., 

2005). 

Without doubt, the most important role of glucosinolates for humans is the 

suppression of cancerogenesis. This is caused by certain glucosinolate degradation 

products as isothiocyanates, nitriles, cyano-epithioalans and thiols (Hayes et al., 

2008). Several studies have demonstrated that breakdown products of certain 

glucosinolates such as aliphatic and indole isothiocyanates have a higher 

anticancerogenic effect compared to thiocyanates and nitriles (Talalay and Fahey, 

2001). The breakdown compounds generated by the glucosinolate-myrosinase 

system revealed strong effects on distinct levels of cancer development via activation 
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of several chemoprotective regulatory mechanisms. First of all, the degradation 

products of glucosinolates have blocking activities reducing the impact of 

environmental carcinogens in animal models (Traw et al., 2003). Isothiocyanates 

(ITC) are known to induce antioxidant genes and detoxification enzymes of phase II 

such as quinone reductase (QR), glutathione-S-transferase (GST) and glucuronosyl 

transferases (GT) through activation of NrF2 (NF-E2 related factor 2) and AhR 

(arylhydrocarbon receptor) (Hayes et al., 2008). Furthermore, degradation products 

of aliphatic glucosinolates have been shown to stimulate cell cycle arrest and 

apoptosis of cancer cells (Bonnesen et al., 2001).  

However, the problem remains to interpret experimental results due to the 

variable composition and relatively low concentration of some glucosinolates in plant 

extracts. Epidemiological studies have illustrated the positive health aspects of these 

compounds resulting from the intake of Brassica vegetables to decrease the risk of 

cancer in the lung, stomach, colon and rectum (van Poppel et al., 1999). Thus, only a 

few glucosinolates with potential anticarcinogenic properties have been studied in 

more detail, especially from broccoli (London et al., 2000). For instance, the ITC 

sulforafan and sulforaphanin (homologue of aliphatic 4MSOB in Arabidopsis) can 

inhibit chemical cancerogenesis, protect against adenomatous polyposis and prevent 

UV-light-mediated skin cancerogenesis (Dinkova-Kostova et al., 2006; Shen et al., 

2007). Consequently, it has been suggested that certain glucosinolates and their 

degradation products have potentially different influences on nutrition and processes 

of cancerogenesis. Therefore, there is a strong interest to regulate and optimize the 

concentration and composition of different glucosinolates as well as the level of 

individual glucosinolates in a tissue-specific manner to improve the nutritional value 

and pest resistance of crops. In order to regulate glucosinolates accumulation, 

several approaches have been proposed, mainly based on the manipulation of single 

genes encoding glucosinolate core pathway enzymes such as methylthioalkylmalat 

synthases and/or cytochrome P450 monooxygenases of the CYP79 family (Zang et 

al., 2008). However better results may be achieved using specific glucosinolates 

regulators which would allow to regulate multiple enzymes of glucosinolate 

biosynthetic pathways simultaneously (Flügge and Gigolashvili, 2006).  
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1.3  Regulation of glucosinolate biosynthesis 

 

Much progress has recently been made in the understanding of synthesis and 

regulation of glucosinolates in A. thaliana. Analysis of glucosinolate profiles, 

biosynthesis, distribution and degradation in plants tissues and organs revealed a 

complex regulatory network controlling these processes in response to various 

environmental stimuli (Petersen et al., 2002; Brown et al., 2003a). Genetic studies of 

gain- and loss-of-function Arabidopsis mutants showed that glucosinolate 

biosynthesis is regulated at different levels and induced by several plant defence 

signaling pathways. Therefore, most of the studies are aimed to discover novel 

regulatory mechanisms of glucosinolate metabolism in order to unravel their functions 

in relation to the various signaling and metabolic networks.  

In A. thaliana plants, natural variations in composition, distribution and 

degradation products of glucosinolates are genetically controlled by several 

quantitative trait loci (QTL) that encode glucosinolates core pathway and modification 

enzymes (Kliebenstein et al., 2001a; Kliebenstein et al., 2002a). For instance, 

methylthioalkylmalate synthases (MAM1-3) which control the side-chain length of 

different methionine-derived aliphatic glucosinolates and alkenyl/hydroxypropyl 

(AOP2, AOP3) dioxygenases producing alkenyl side-chains modification of 

glucosinolates were identified via QTL analysis and therefore both contributed to the 

natural variation of glucosinolate structures in A. thaliana (Wentzell et al., 2007). The 

epithiospecifer modifier loci coding EPS proteins were shown to be responsible for 

the production of nitriles and isothiocyanates upon glucosinolate hydrolysis (Lambrix 

et al., 2001; Zabala et al., 2005). Furthermore, it has been reported that stress-

induced glucosinolate production is associated with the major plant defence hormone 

signaling pathways as methyl jasmonate (MeJA), salicylic acid (SA) and ethylene 

(ET) (Brader et al., 2001; Mewis et al., 2005). Analysis of mutants defective in SA, ET 

and MeJa hormone signaling and their responses to biotic stresses has revealed 

complex interactions between different signaling pathways in regulation of 

glucosinolate biosynthesis. Since exogenous treatment with MeJa/ACC led to 

accumulation of indolic and specific aliphatic glucosinolates (Brader et al., 2001; 

Mikkelsen et al., 2003; Wittstock et al., 2004) and SA treatment caused accumulation 

of some indolic glucosinolates and repression of aliphatic glucosinolate biosynthesis, 
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the crosstalk between signaling pathways might be important to regulate different 

levels and composition of glucosinolates in response to specific biotic stresses 

(Kliebenstein et al., 2002b; Mewis et al., 2005).  

Several nuclear proteins have recently been identified as potential regulators of 

glucosinolate metabolism and were shown to be controlled by different signaling 

pathways upon environmental stimuli. The MYB34/ATR1 together with MYB51/HIG1 

and MYB122/HIG2 belonging to the subgroup XII of R2R3-type MYB transcription 

factors were shown to specifically and directly upregulate the transcription of 

tryptophan and indole glucosinolate biosynthetic genes. Moreover, MYB34/ATR1, 

MYB51/HIG1 and MYB122/HIG2 transcription factors are involved in the 

homeostasis between indole glucosinolates and auxin (IAA) biosynthesis (Celenza et 

al., 2005; Gigolashvili et al., 2007b). Interestingly, MYB34/ATR1 and MYB51/HIG1 

participate in MeJa-mediated production of indole glucosinolates. However, a 

different MeJa-induced regulation of MYB34/ATR1 and MYB51/HIG1 is achieved via 

action of the MYC2/JIN1 BHLH transcription factor. MYC2/JIN1 has been shown to 

act as a positive regulator of MeJA-dependent MYB34/ATR1 expression. Conversely, 

a negative effect of MYC2/JIN1 on MeJA-dependent MYB51/HIG1 expression was 

shown indicating a complex regulatory network in MeJa-mediated glucosinolate 

production (Dombrecht et al., 2007). Furthermore, MYB51/HIG1 might be involved in 

the site-specific regulation of IAA (auxin) and/or indolic glucosinolate biosynthesis 

upon ethylene induction in the root meristem (Berger, 2007). Additionally, 

MYB51/HIG1 expression is transiently induced by wounding demonstrating an 

important role in response to biotic stresses, which is similar to early responses of the 

IQD1 glucosinolate regulator. IQD1 is a nuclear-localized calmodulin-binding protein, 

which led to elevated levels of both aliphatic and indolic glucosinolates (Levy et al., 

2005). Although IQD1 has been reported to upregulate structural genes of the indolic 

glucosinolate biosynthetic pathway, aliphatic glucosinolate pathway genes such as 

CYP79F1 and CYP79F2 were repressed. This case is similar to the AtDof1.1/OBP2 

(DNA-binding-with-one-finger) regulator of glucosinolate biosynthesis. Over-

expression of the AtDof1.1 also led to a moderate increase in the levels of aliphatic 

and indolic glucosinolates (Skirycz et al., 2006). Notably, AtDof1.1 has been shown 

to specifically induce the transcription of CYP83B1 and does not seem to affect on 

CYP79F1 and CYP79F2 genes as in the case for IQD1. 

Furthermore, MYB51/HIG1, AtDof1.1 and IQD1 expression was induced upon 

wounding and herbivore attack resulting in increased levels of either indolic and/or 
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aliphatic glucosinolates and reduced performance of generalist herbivores e. g., 

Spodoptera exigua, Spodoptera littoralis and cabbage looper Trichoplusia ni, 

respectively (Levy et al., 2005; Skirycz et al., 2006; Gigolashvili et al., 2007b). 

Interestingly, MYB51/HIG1 is able to directly regulate transcription of indolic 

glucosinolate biosynthetic genes by interacting with their promoters in trans-activation 

assays (Gigolashvili et al., 2007b). Conversely, AtDof1.1 and IQD1 did not possess 

any trans-activation potential towards promoters of glucosinolate biosynthesis genes 

and additional factors seem to be required in order to regulate glucosinolate 

biosynthetic genes (Gigolashvili et al., 2007a). 

Finally, SLIM1, an ethylene-insensitive3-like transcription factor, represents a 

link between the regulation of sulphate uptake and assimilation and glucosinolate 

biosynthesis (Maruyama-Nakashita et al., 2006). SLIM1 function is required to 

stimulate sulphate acquisition and degradation of glucosinolates under sulphur 

deficiency conditions thereby activating the enzymes of glucosinolate degradation. 

Remarkably, MYB34/ATR1 and several aliphatic and indolic glucosinolate 

biosynthetic genes such as BCAT4, MAM1, MAML and CYP79B2/B3 are negatively 

regulated by SLIM1 in Arabidopsis roots. However, SLIM1 was not able to directly 

regulate glucosinolate biosynthesis as in case of IQD1 or AtDof1.1 and thus may also 

work in concert with other glucosinolate regulators. Undeniably, this complex 

regulatory network could not be solely regulated at the gene transcription level but 

there is also a crosstalk between different signaling components and primary 

metabolism.  

The primary aim of this work is to discover and characterize novel regulators of 

glucosinolate biosynthesis mainly focusing on members of subgroup XII R2R3-MYB 

transcription factors. This work provides evidence for the function of MYB28, MYB29 

and MYB76 transcription factors in the regulation of glucosinolate biosynthesis in 

planta and in response to environmental challenges. Specific and coordinated 

functions of these regulators as well as a crosstalk with previously described 

regulators of glucosinolate biosynthesis are described. MYB28, MYB29 and MYB76 

are referred to as HAG1, HAG3 and HAG2 (HIGH ALIPHATIC GLUCOSINOLATE1, -

3 and -2) and were shown to be involved in the specific regulation of aliphatic 

methionine-derived glucosinolate biosynthesis. 
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2. Materials and Methods 
 

2.1 Materials 

2.1.1 Chemicals, enzymes, antibiotics, media and buffers  
All used chemicals were analytically pure according to the manufacturers and 

were obtained from Roche (Mannheim, Germany, www.roche.de), Fluka (Buchs, CH 

and www.sigmaaldrich.com), Merck (Darmstadt, Germany, www.merck.de) and 

Sigma (München, Germany, www.sigmaaldrich.com), Duchefa (Haarlem, 

Netherlands, www.duchefa.com). DNA oligos were designed using the Primer 

Expresstm (version 1.0) software and purchased from Metabion (Martinsried, 

Germany). Restriction enzymes were purchased from MBI Fermentas (St. Leon-Rot, 

Germany) and Promega (www.promega.com/de/). Proof readings Taq-polymerases 

were provided from Biorad (www.biorad.com), Stratagene (www.stratagen.com) and 

Qiagen (www.qiagen.de, Hilden, Germany). Reverse transcription Superscript kits 

were bought from Invitrogen (www.invitrogen.com) and Bioline (www.bioline.com).  

 

Antibiotics  
 
Antibiotic Dissolve Stock conc. 

(mg/ml) 
Final conc.(µg/ml) for E.coli and 
A.tumefacium 

Kanamycin H2O 50 mg/ml 50 μg/ml 

Ampicillin H2O 100 mg/ml 50 μg/ml 

Carbenicillin 50%EtOH/ 
50%water 

100 mg/ml 50 μg/ml, 100 μg/ml (A. 
tumefaciens) 

Hygromycin - 50 mg/ml 50 μg/ml 

Chloramphenicol EtOH 10mg/ml, 
75mg/ml 

10 μg/ml (E. coli); 75μg/ml (A. 
tumefaciens) 

Rifampicin DMSO 30 mg/ml 150 μg/ml (A. tumefaciens strain 
GV3101); 
20 μg/ml (A.fumefaciens strain 
LBA4404.pBBR1MCSvirGN54D) 

Gentamycin H2O 10mg/ml, 
25mg/ml, 
40mg/ml  

10 μg/ml (E. coli); 25 μg/ml (A. 
tumefaciens strain GV3101) 40 
μg/ml (A.fumefaciens strain 
LBA4404.pBBR1MCS5virGN54D). 

Tetracyclin EtOH 5mg/ml 5µg/ml 

Spectinomycin H2O 100mg/ml 100 μg/ml 
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Bacterial media: 
All frequently used media were prepared with deionised distilled water and 

sterilized by autoclaving at 120°C for 20 min. To make a solid media, 1.5% of agar 

was added before autoclaving. 

 

Luria-Bertani (LB) medium for the growth of E.coli, 1L 

10 g/l   Tryptone 

5 g/l           Yeast extract 

5 - 10 g/l    NaCl 

1.5 %         Agar for plating 

 

SOC medium, 1L 

2% (w/v) Bacto tryptone 

0.5% (w/v) Yeast extracts 

10 mM  NaCl 

2.5 mM  KCl 

10 mM  MgCl2 

10 mM  MgSO4*7H2O 

20 mM  Glucose 

  

YEB medium for the growth of A.tumefacium, 1L 

5.0 g   Beef extract 

1.0 g  Yeast extract 

5.0 g   Peptone (Bacto) 

5.0 g   Sucrose 

0.5 g   MgSO4*7H2O 

1.5%   Bacto agar for plating 

 
Plants and cell culture growing media 
1/2MS (Murashige and Skoog Basal) medium for plant growth 

2.3 g/L MS (245, Duchefa, Haarlem, NL) 

1% (w/v) sucrose 

Set pH= 5.6 with KOH 
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AT medium for Arabidopsis thaliana cell culture 

4.3 g/L MS basal salt media (Duchefa) 

1 mg/L 2, 4-dichlorophenoxyacetic acid (2, 4-D) 

4 ml of a vitamin B5 mixture (Sigma) 

30 g/L sucrose 

400 mg/L  

Set pH= 5.8 with KOH 

 

2, 4-D (2, 4 – Dichlorophenoxyacetic acid, Duchefa D0911) 

[1 mg/ml] 40 mg + 4 ml of KOH (dissolving), pH= 7. 

Fill up to 40 ml with dd H2O, filter-sterilized and store at -20°C 

 

B5-Vitamine stock 

100 mg Nicotin acid, [1 mg/ml] 

100 mg  Pyridoxin-HCl, [1 mg/ml] 

1000 mg Thiamin-HCl, [10 mg/ml] 

Fill up to 100 ml of ddH2O, filter-sterilized and store at -20°C 

 

 

Buffers 
50 x TAE buffer 

2 M Tris-HCl, pH= 7.5 

50 mM EDTA 

 

 

1 x TE 

10 mM Tris-HCl, pH= 8.0 

1 mM EDTA 

 

 

0,1% (v/v) DEPC water for RNA preparations 

DEPC in water, left overnight with stirring at room temperature, and then autoclaved. 
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GUS staining buffer 

Stock solutions for 100ml: 

1M NaPO4 (137,99), pH7   13.8 g 

0.25M EDTA (372.24)   9.3 g 

5mM K-Ferricyanid (329.26)   0.16 g 

5mM K-Ferricyanid (422.41)  0.21 g 

20mM X-Glu (498.7)   100 mg in 10ml of DMF (dimethylformamide) 

10% Triton X-100 (v/v)   1 ml in 10 ml H2O 

 

 

Working solution (Premix II) for 100ml 

1 M NaPO4      10 ml (0.1 M) 

0.25 M EDTA    4 ml (10 mM) 

5 mM K-Ferricyanid (329.26)   10 ml (0.5 mM) 

5 mM K-Ferricyanid (422.41)  10 ml (0.5 mM) 

20 mM X-Glu     5 ml (1 mM) 

10% Triton X-100 (v/v)   1 ml (0.1%) 

H2O      60 ml  

 

 

 

Molecular biological commercial kits: 

QIAquick Gel Extraction Kit (Qiagen GmbH, Hilden, Germany) 

MiniElute Gel Extraction Kit (50) (Qiagen GmbH, Hilden, Germany) 

QIAquick PCR Purification Kit (Qiagen GmbH, Hilden, Germany) 

MiniElute PCR Purification Kit (Qiagen GmbH, Hilden, Germany) 

QIAgen plasmid Mini and Midi Kit (Qiagen GmbH, Hilden, Germany) 

Quantum Prep Plasmid miniprep Kit (BioRad, Munchen, Germany) 

BCATM Protein Assay Kit (Pierce, Rockford, USA) 

Big Dye Terminator v1.1 cycle Sequencing Kit (Applied Biosystems, Foster City, 

USA) 

Reverse Transcriptase  (Invitrogen GmbH, Karlsruhe, Germany) 
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2.1.2 Cloning Vectors  
 
The Gateway vectors used for cloning are listed in the Table: 

Vector Company/Source Cloning purpose 

pENTR-D/TOPO Invitrogen generating a Gateway compatible 

entry clones for further delivery into 

an expression vector via directional 

cloning 

pDONR201/207 Invitrogen generating a Gateway compatible 

entry clones for further delivery into 

an expression vector via BP reaction

pGWB2 Dr. T. Nakagawa, 

Shimane University 

generating expression clones under 

control of 35S CaMV promoter 

pGWB3 Dr. T. Nakagawa, 

Shimane University 

generating expression clones with 

C-terminal GUS marker gene 

pGWB3i modified from 

pGWB3 by B. 

Berger 

generating expression clones with 

C-terminal GUS gene. GUS gene 

contains an intron to avoid 

prokaryotic bacterial gene 

expression 

pGWB5 Dr. T. Nakagawa, 

Shimane University 

generating expression clones with 

GFP marker gene 

 

 

2.1.3 Bacterial organisms and plant material 
 

2.1.3.1 Bacteria strains: 

Organism  Strain  Purpose 

Escherichia coli 

 DH5α Plasmid amplification 

XL10-Gold Plasmid amplification 
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DB3.1 Propagation of plasmids 

containing ccdB gene 

Agrobacterium tumefaciens 

 GV3101 Stable plant transformation 

LB A4404.pBBR1MCS 

virGN54D and 

 LB4404.pBBR1MCS-5.virGN54D

Leaf infiltration and cell 

culture transfection. Transient 

gene expression 

 

 

2.1.3.2 Plant material: 

Organism/Ecotype Purpose 

Arabidopsis thaliana (L.) Heynh. (Arabidopsis) plants   

Ecotype Columbia (Col-0) Used as a source wild type (WT) 

DNA, mRNA and genotype 

background for creation of transgenic 

plants 

Col-0 T-DNA insertion lines Used to study a loss-of-function of a 

single protein. Salk lines were 

obtained from the Nottingham 

Arabidopsis Stock Center (NASC, 

Alonso et al., 2003). 

Arabodopsis cell suspension culture  Used for transient gene expression 

assays 

Tobacco plants 

Nicotiana benthamiana Used for transient gene expression 

assays 
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2.2 Methods 
 

2.2.1 Methods of manipulation with E. coli and Agrobacteria  
 

2.2.1.1 Protocol for preparation of chemically competent E. coli DH5α cells  

All media for preparation of chemically competent E. coli cells were prepared 

according to protocols listed below: 

 

Ψ-broth media for 1 L 

20 g  Bacto tryptone 

5 g  Yeast extract  

4 g   MgSO4*7H2O (0.4%) 

Set pH at 7.6 with 1 M KOH; sterilize 20 min at 120°C 

 

TfB1 for 100 ml 

1.21 g  RbCl2 (100 mM) 

0.99 g  MnCl2*4H2O (50 mM) 

0.3 g  KOAc (Potassiumacetate) (30 mM) 

0.15 g  CaCl2*2H2O (10 mM) 

15 ml   glycerol 100% (15% v/v) 

Set pH at 5.8 with 0.2M HOAc (acetic acid). Filtersterilise, store at 4°C. 

 

TfB2 for 20 ml 

0.0242 g RbCl2 (10 mM) 

0.22053 g CaCl2*2H2O (75 mM) 

3 ml   glycerol 100% (15% v/v) 

0.0419 g MOPS (10 mM) 

Set pH at 7.0, Filtersterilise, store at 4°C 

 

A single colony of E. coli DH5α strain was inoculated in 5-10 ml of Ψ-broth 

media and grown at 37°C overnight in 100 ml Erlenmeyer flask. The bacterial pre-

culture was diluted with 400 ml of media in a large 2 L flask to have a good ratio 

between surface and volume and was grown until OD550= 0.48 (2-2.5 h). Then 

bacterial suspension was poured in 50 ml falcon tubes, chilled on ice for 15 min and 



Materials and methods_________________________________________________ 

 20   

centrifuged at 2000-2500 rpm for 10 min at 4°C. All further steps were performed in 

cold room and on ice. The bacterial pellet was resuspended in 1 ml of ice cooled 

TfB1 buffer with gentle shaking and the end volume was adjusted to 15ml in a falcon 

tube. After 2 h of incubation on ice, the bacterial suspension was centrifuged at 2000 

rpm for 5 min at 4°C. The obtained bacterial pellet was resuspended in 2 ml of TfB2 

buffer. Aliquots of 200 µl were placed in precooled Eppendorf tubes and directly 

frozen in liquid nitrogen.  

 
2.2.1.2 Heat-shock transformation protocol of chemically competent E. coli cells  

For transformation, 50-100 µl of competent cells were thawed on ice and mixed 

with 200 ng of the experimental DNA or 2-4 µl of ligation mixture. Tubes were swirled 

gently and incubated on ice for 30 min. After incubation, cells were heat-shocked in a 

42°C water bath for 30-60 sec and then immediately transferred on ice for 2 min. 

Then, 800-850 µl of the SOC medium was added to the cells and incubated at 37°C 

for 1h with shaking at 225-250 rpm. For positive selection, 100-200 µl of 

transformation mixtures were plated on LB agar plates containing the appropriate 

antibiotic and incubated at 37°C.  

 

2.2.1.3 Protocol for preparation of electro-competent Agrobacteria  

Centrifuge tubes, falcon tubes, dd H2O and 10% glycerin were pre-cooled on 

ice. Agrobacterial pre-culture was incubated overnight in 5 ml of LB or YEB media 

with vigorous shaking at 200-250 rpm and 28°C. Afterwards, pre-culture was mixed 

with 400ml of pre-warmed to RT of LB or YB media and grown at 28°C (10-12 h) until 

OD600= 1. All further centrifugation steps were performed at 4000 rpm for 15 min and 

at 4°C. Flask was chilled on ice for 15-30 min and then centrifuged. The obtained 

pellet was resuspended in 200 ml of cold dd H2O and centrifuged. Additionally, the 

pellet was washed with cold dd H2O in a final volume of 50-100 ml and centrifuged 

again. Finally, the bacterial pellet was washed in 10 ml of 10% glycerol, centrifuged 

and subsequently resuspended in equal volume of 10% glycerol. Small volumes (50-

100 µl) of cell aliquots were frozen in liquid nitrogen and stored at -80°C. 

 

2.2.1.4 Transformation of electro-competent Agrobacteria  

For one transformation, 50 µl of competent cells were placed on ice, mixed with 

100-200ng of DNA vector (1-2 µl) and incubated for 2 min. After incubation, the 

mixture was placed into pre-cooled electoroporation chamber (2 mm gap). 
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Electroshock was performed at 25 μF, 400 Ω, 2.5 kV on Bio-Rad electroporator. One 

ml of YEB medium was immediately added to transformed cells and incubated at 

28°C with shaking for 2 h. Finally, 50 µl and 150 µl of the bacterial culture was placed 

on selection plates with appropriate antibiotics and incubated at 28°C. Positive 

clones were analyzed using plasmid-specific primers by colony PCR in 2 days after 

incubation. 

 
 

2.2.2 Plant Procedures 
 

2.2.2.1 Seed sterilization protocol 

2.2.2.1.1 Vapor-phase (gas) seeds sterilization 

Required reagents: 

Na-hypochlorite   12% (v/v) 

Hydrochloric acid (HCl)  37% (v/v)  
 

150-300 seeds were transferred into appropriate resealable containers, for 

example, microcentrifuge eppendorf tubes. A glass vessel for sterilization, typically a 

dessicator jar, was kept under fume hood. Tubes containing the seeds were placed 

on a rack and inside of a dessicator next to a beaker with 100 mL of sodium 

hypochlorite. Immediately prior to sealing the jar, 3 ml of concentrated HCl were 

added to the bleach. Seal jar and chlorine gas sterilization was allowed to proceed 

for 3 to 4 h up to overnight. After treatment, the chlorine gas was evaporated from the 

Eppendorf tubes for 1-2 hours under sterile bench. 

 

 

2.2.2.1.2 Wet method 

Required reagents: 

1% NaOHCl 

70% EtOH 

Sterile dd H20 

0.1% Agarose 

 

Seeds were transferred into 2 ml Eppendorf tubes and rinsed in 70% EtOH for 5 

min. Subsequently, EtOH was removed by pipetting and then seeds were treated 
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with 1% NaOHCl for 5 to 15 min and centrifuged at 300rpm for 5-10min. All further 

manipulations were performed under the clean bench. Treated seeds were washed 

three times with sterile water, centrifuged and then mixed with 0.1% agarose in ratio 

1:3 or 1:4 and plated on agar plates. 

 

 

2.2.2.2 Plant growth conditions on soil and agar plates 

Freshly collected seeds were plated equally on soil and then cold-treated at 4°C 

for 3 days in the dark. After stratification, seeds were covered by plastic lid to 

maintain high humidity during the first days. Surface sterilized seed were placed on 

half-strength Murashige and Skoog (MS) medium with agar and germinated in a 

culture chamber at 16/8 h of light/dark cycle, 75% humidity and 21°C. Afterwards, 

seedlings were transferred to soil and grown under long-day (16 h light, 8 h dark) or 

short-day conditions (8 h light, 16 h dark) at 22–25°C and 40% humidity. For 

selection transgenic plants were grown on 1/2 MS medium containing 50 μg/ml of 

kanamycin or sprayed by BASTA on soil and, subsequently, treated as wild-type 

plants. 

 

 

2.2.2.3 Arabidopsis stable transformation  

Arabidopsis stable transformed plants were generated by Agrobacterium-

mediated vacuum infiltration. 

 

Infiltration medium for 500 ml: 

MES/KOH, pH= 5.8   0.25 g 

MS incl. modif. vitamins  1.1 g 

Sucrose    25 g  

6-Benzylaminopurin (BAP)  5 ng/ml 

Tween 20     2 drops 

 

Agrobacterium culture was inoculated in 5-10 ml of YEB media with antibiotics 

from a fresh plate and then grown for 24 to 48 hours depending on the strain. 

Afterwards the pre-culture was added to 300-400 ml of YEB medium with appropriate 

antibiotics in 4 L flask and grown until OD600 = 0.8-1.0. Subsequently, the suspension 

was centrifuged at 4000 rpm for 15 min and the obtained pellet was resuspended in 
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1/3 volume of infiltration medium (minimal volume of 300 ml). Agrobacterial 

suspension was poured into a beaker of an appropriate size and placed into the 

vacuum jar. Before transformation flowering Arabidopsis plants all siliques were 

removed and the plants were infiltrated by vacuum for 15-25 min. Transformed plants 

were covered by plastic lid and transferred into the greenhouse. 

 

 

2.2.2.4 Cultivation of Arabidopsis thaliana cells  

Arabidopsis thaliana Col-0 dark suspension culture was subcultured weekly and 

grown in 50 ml of A. thaliana (AT) medium (see 2.1.1). Dilution of the suspension cell 

culture was performed weekly in the ratio of 1:4 or 1:5 (10/15 ml of suspension 

culture and 40/35 ml of AT medium) with fresh medium. The cell culture was gently 

agitated at 150 rpm in the dark at 22°C.  

 

 

2.2.2.5 Transformation of A. thaliana cell suspension culture  

The protocol for transient transformation of cultured A. thaliana cells culture was 

modified from Koroleva et al. (2005) and described by Berger et al. (2007). 

Hypervirulent Agrobacteria (LBA4404.pBBR1MCS-virGN54D or 

LBA4404.pBBR1MCS-virGN54D5) harbouring the reporter or effector construct and 

antisilencing 19K strains were grown for 24 h at 28°C in 3-5 ml of YEB medium 

containing antibiotics with shaking at 200 rpm. Bacterial cultures were centrifuged at 

4000 rpm for 15 min and resuspended in 1 ml of AT medium. Before co-culture with 

Agrobacteria, Arabidopsis Col-0 suspension culture (3–7 days after previous 

subculture) was diluted 1:5 using fresh pre-warmed to RT medium. Hypervirulent 

agrobacterial strain and 19K antisilencing strain were mixed in a 1:1 ratio, and 50-60 

μl of this suspension was added to 3 ml of cultured A. thaliana cells and grown for 3–

5 days in the dark. After transfection, 1 ml of cell culture was examined for GUS 

activity measurements and the rest of the cells were stained with X-Gluc.  

 

 

2.2.2.6 Agrobacterial infiltration of N. benthamiana leaves  

1.5-2-month-old Nicothiana benthamiana plants were used for transient 

expression. Hypervirulent (LBA4404.pBBR1MCS virGN54D or LBA4404.pBBR1MCS 

virGN54D5) or GV3101 containing desirable constructs and antisilencing 19K 
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agrobacterial strains were taken from a fresh plate and grown overnight in 5 ml of 

YEB medium containing antibiotics. Then, agrobacterial cells were centrifuged at 

4000 rpm for 15 min and the pellet was resuspended in infiltration buffer (10 mM 

MgCl2, 10 mM 2-(N-morpholine)-ethanesulphonic acid, pH= 5.6) until OD600= 0.7-0.8. 

Afterwards bacterial suspensions were mixed in equal molar ratio (1:1) with 

antisilencing 19K strain. Acetosyringon was added (0.15 mM, final concentration) and 

the suspension was incubated for 2–5 h at 30°C in a dark. The first tobacco leaves 

which have no round shape and a flat surface were infiltrated into abaxial side air 

space using a 1 ml syringe and after 3–5 days of infiltration were used for the 

analysis of GUS gene expression (GUS activity measurements or GUS staining). 

 

 

2.2.2.7 Histochemical β-glucuronidase (GUS) activity analysis  

GUS infiltration buffer (Premix II) was prepared as indicated in chapter 2.1.1. 

For staining the 5-bromo-4-chloro-3- indolyl-β-D-glucuronid acid (X-Gluc) was used 

as a substrate according to the modified protocol from Jefferson et al., 1987. The 

substrate X-Gluc was prepared as a stock at 20 mM in dimethylformamide (DMF), 

and 0.5 ml was added to the 9.5 ml of PremixII just before infiltration. Plant tissues 

were fixed in fixing solution (0.3% (v/v) formaldehyde, 10 mM MES, pH= 5.6, 0.3 M 

mannitol) for 30 min, then washed with 50 mM Na2HPO4, pH= 7 and, subsequently, 

vacuum-infiltrated for 15-20 min with GUS staining buffer and incubated overnight at 

37°C. To get rid off plants pigments and to make the plant tissues transparent, 80% 

EtOH was used as a destaining solution. Samples were kept at 60°C overnight or 

boiled in microwave to accelerate the destaining process. 

 

 

2.2.2.8 Plant hormone treatment and wounding 

Arabidopsis seedlings (Col-O ecotype) were grown on half-strength MS media 

with 0.8% agar and 0.5% of sucrose for 10 days in a growth chamber at 22°C under 

long day conditions. After 10 days of growth, the medium was replaced by glucose-

free liquid MS medium for 24 h, and then seedlings were treated with 3% glucose, 

3% mannitol, methyljasmonate (MeJA, 10 µM), aminocyclopropane carboxylate 

(ACC, 10 µM) and salicylic acid (SA, 10 µM). Three independent sets of plants 

induced by plants elicitors (MeJA, ACC, SA, 3% glucose and 3% mannitol) were 

sampled for RNA isolation and analyzed by real-time RT-PCR.  
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For external mechanical stimuli, inflorescences and leaves of Col-O were 

wounded by simply cutting with a scalpel. Samples were collected after 1, 5 15, 30, 

60 and 120 minutes after treatment and subjected to analysis by real-time RT-PCR. 

Injured parts of transgenic plants carrying Promoter-GUS constructs were collected 

and infiltrated for GUS staining after 3 to 5 min of wounding. 

 

 

2.2.3 Microscopy and records  
Analysis of fluorescence proteins were performed using a LEICA-DMRE 

fluorescence microscope with specific GFP, YFP and YFP-CFP filters. Nikon SMZ-U 

binocular stereoscope and Nikon Eclipse E800 microscope were used for recording 

GUS staining samples. Pictures were taken with high-resolution KY-F70 3-CCD JVC 

camera and recorded using the DISKUS software (www.hilgers.com). Afterwards all 

pictures and graphic materials were processed using the Adobe Photoshop SC2 

program.  
 
 

2.2.4 Extraction and HPLC/UPLC analysis of glucosinolates  
Glucosinolates were extracted from 100 mg of homogenized freeze-dried 

rosette leaves or from 3 ml of Arabidopsis cell suspention culture by adding 1 ml of 

80% (v/v) methanol with addition of 20 μl of 5 mM of benzyl glucosinolate as an 

internal standard. The supernatant was collected, and the plant material was 

additionally treated with 1mL of 80% (v/v) methanol. The extracts were combined and 

applied to DEAE Sephadex A-25 columns equilibrated with 0.5 M acetic acid/NaOH, 

pH= 5 and washed with 5 x 2 ml of water and 2 x 2 ml of 0.02 M acetic acid/NaOH, 

pH= 5. After the addition of 50 µl purified Helix pomatia sulfatase (EC 3.1.6.1, type H-

1, 16 400 U g–1, Sigma, Deisenhofen, Germany) columns were sealed and left for 

overnight digestion. The resulting desulfoglucosinolates were eluted in 6 x 1 ml of 

HPLC water. The eluate was lyophilized until dryness and resuspended in 300 µl of 

HPLC water. Samples were applied to HPLC analysis on an 1100 Series 

chromatograph (Hewlett-Packard, Waldbronn, Germany) or by an Acquity Ultra 

Performance LC system (Waters, Eschborn, Germany). For the HPCL analysis, 20 µl 

desulfoglucosinolates were applied to a Supelco C-18 column (Supelcosil LC-18, 5 µl 

250 x 4.6 mm; Hewlett-Packard) and eluted by water using following gradient of 0–
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5% solvent B (10 min), 5–38% solvent B (24 min), followed by a cleaning cycle (38–

100% solvent B in 4 min, 6 min hold, 100 to 0% solvent B in 5 min, 7 min hold) 

(solvent A - water; solvent B - methanol).  

For UPLC analysis, 5-7 μl of sample was applied to an Acquity UPLC system 

(Waters) and separated on a BEH C18 column (1.7 μm; 2.1 × 150 mm; Waters) 

under a linear gradient elution program with solvent A (10% acetonitril in water) and 

solvent B (90% acetonitrile in water): 0–47% solvent B (6.5 min), 47–95% solvent B 

(6.6 min), hold 95% solvent B (6.7 min), and 100% solvent A (7 min). Detection was 

performed at 229 nm and quantified based on response factor ((Müller et al., 2001; 

Brown et al., 2003b) and internal benzyl glucosinolate (www.glucosinolates.com) 

standard as previously described (Gigolashvili et al., 2007b).  

 
 

2.2.5 Weight-gain assay with Spodoptera exigua (C. Müller, 

University Würzburg) 
Eggs of the lepidopteran herbivore, Spodoptera exigua (Lepidoptera: 

Noctuidae), were obtained from Bayer Crop Science (Monheim, Germany), and 

larvae were kept on an artificial diet for 5 days. Second-instar larvae (15 per line) 

were taken and transferred to 5-week-old plants of either wild type or transgenic 

overexpression plants that had been grown in soil under short-day conditions (8 h 

light/16 h dark). Larvae were kept on plants at 27°C and a 12 h light/12 h dark cycle. 

After 1, 3 and 5 days of feeding, the fresh weights of larvae were individually 

determined. Student’s t-tests were performed to compare larval weights on both plant 

lines. 

 

 

2.3 Molecular Biology Techniques 
 

2.3.1 Gateway® cloning technology 
The entry clones were created using two different pENTR/D-TOPO and 

pDONR201/207 vector cloning systems; the pGWB vectors were used for generation 

of the expression clones. Detailed description of Gateway cloning technology is 

presented on the web site of Invitrogen (http://www.invitrogen.com/). 
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2.3.2 Primers design and cloning of artificial micro RNA 
Target search and primers design of artificial plant micro RNA was performed 

using automated WMD2 web tool (http://wmd2.weigelworld.org/cgi-

bin/mirnatools.pl?page=1). The pRS300 vector was used as a template for 

amplification of Arabidopsis artificial micro RNA precursors. Cloning and PCR 

amplification conditions were modified and adapted for pENTR/D-TOPO cloning 

system based on main protocol from Swab et.al., 2006. 

 

 

PCR condition for amplification of amiRNA precursors using Pfu-Turbo (Stratagene)  

[µl] PCR components PCR-conditions [°C] 

2 pRS300 (1:100 mini) 3min 95 

1 10 pmol/μL Primer1 30sec 95 

1 10 pmol/μL Primer2 30sec 54 

1 dNTPs 40sec 72 

4 Buffer 24x times to nr.2  

0.4 Pfu-Turbo 7min 72 

30.6 PCR grade water 60min 8 

 

 

Fusion PCR conditions for amplification of amiRNA using Pfu-Turbo (Stratagene) 

[µl] PCR components PCR-conditions [°C] 

0.5 a, b, c products after gel 

extraction 

3min 95 

1 10 pmol/μL PrimerA topo 30sec 95 

1 10 pmol/μL PrimerB 30sec 54 

1 dNTPs 1min 30sec 72 

4 Buffer 24x times to nr.2  

0.4 Pfu-Turbo 7min 72 

30.6 PCR grade water 60min 8 
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2.3.3 DNA isolation 

2.3.3.1 Plasmid isolation from E. coli cells (minipreps and midipreps) 

Diatomaceous earth plasmid DNA miniprep protocol was used for small-scale 

DNA preparation. 

 

Solution I (Cell Resuspension buffer) 

Glucose    50 mM 

Tris-HCl, pH= 8.0   25 mM 

EDTA     10 mM 

RNAse A (10 mg/ml)  20 µg/ml 

 

Solution II (Alkaline Lysis Solution) 

NaOH     0.2 M 

SDS     1% (w/v) 

 

Solution III (Neutralization Solution) 

Guanidine-HCl   5.3 M 

3M KOAc pH= 5.0   0.7 M 

 

Binding matrix 

Guanidine-HCl   5.3 M 

1 M Tris pH= 8.0   20 mM 

Diatomaceous earth   0.15 g/ml 

 

Wash buffer 

1 M Tris-NCl, pH=8.0  20 mM 

0.5 M EDTA, pH=8.0  10 mM 

5M NaCl    0.2 M 

100% EtOH    50% 

 

Elution buffer 

Tris-HCl, pH=8.0   10 mM 
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A single colony was inoculated in 4-5 ml of LB medium with appropriate 

antibiotics and grown overnight at 37°C with shaking. Cells were harvested by 

centrifugation of 4 ml culture at 14000 rpm for 30 sec followed by resuspension in 

200 µl of Solution I by vortexing. For lysis, 200µl of Solution II was added and mixed 

gently 10 times, and then, the cell lysate was incubated for 2-3 min at RT. For 

neutralization of the cell lysate, 200 µl of Solution III was added, inverted gently and 

incubated for 5 min on ice. Separation of cell debris from plasmid DNA was 

performed by centrifugation at 14000 rpm for 8-10 min. After centrifugation, the upper 

phase was transferred into filter columns, mixed properly by pipetting with 200 µl of 

Binding buffer and centrifuged. The pellet was washed twice with 500 µl of washing 

buffer and centrifuged at 14000 rpm for 30 sec. A second centrifugation step was 

performed for 2 min to remove all EtOH traces. To elute DNA, columns were 

transferred into a clean 1.5 ml Eppendorf tube and 100 µl of Elution buffer was 

applied (10 mM Tris pH= 8.0). Following centrifugation for 1 min, the mini-preps were 

stored at -20°C. 

Large-scale plasmid (midi-prep) preparation was performed using the QIAGEN 

plasmid midi kit according to the manufacture’s instruction (www.qiagen.com). 

 

 

2.3.3.2 Genomic DNA isolation from plant material (fast prep) 

Isolation of genome DNA was performed using fast method and DNAzol. 

The fast protocol for DNA extraction was often used when DNA is required for regular 

amplifications. 

 

Extraction buffer for fast genome DNA isolation:  

20 ml  1M Tris-HCl (0.2M) 

25 ml  1M NaCl 

5 ml  0.05 M EDTA 

5 ml  10% SDS 

ad H2O to 100ml 

 

Frozen 50-100 mg of leaf material was pulverized and mixed with 400 µl of 

extraction buffer. After short vortexing for 5 sec, the probes were centrifuged at 

13000 rpm for 1 min. The supernatant was transferred into the new eppendorf tube, 

mixed with 300 µl of isopropanol and centrifugated at 13000 rpm for 5 min. The 
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obtained pellet was air-dried and dissolved in 50 µl of TE buffer.  

To obtain good quality and pure genome DNA, the isolation with DNAzol 

reagent was performed according to the manufacturer’s instruction (Invtirogen, 

www.invitrogen.com). 

 

 

2.3.4 Total RNA isolation from plant material, DNase I treatment and 

reverse transcription  
Total RNA was extracted from rosette leaves of adult plants from the wild type 

and different mutant lines using TRIsure buffer (Bioline; http://www.biocompare.com) 

followed by the treatment with RNase-free DNase (Roth; http://www.carl-roth.de) to 

remove all genomic DNA contaminations. First-strand cDNA synthesis was 

performed at 42°C for 60 min in 50 µl of reaction mixture which contained 5 or 10 µg 

of total RNA, 20 pmol of oligo (dT), and 200 units of reverse transcriptase from the 

First-Strand cDNA Synthesis SSII Kit (Invitrogen Life Technologies) according to the 

manufacturer’s instructions.  

 

 

2.3.5 PCR - Polymerase Chain Reaction 
All PCR reactions were performed on a MJ Research thermocycler (Munich, 

Germany). 

 

2.3.5.1 PCR amplification using plasmid as a template 

Depending on type of plasmid (low-copy or high-copy), it is recommended to 

dilute the DNA plasmid in a range from 1:25 to 1:100 with HPLC water or TE buffer.  

 

1x reaction, 50 μL final volume 

10x buffer (Qiagen, Stratagene, Biorad)   5 μL 

50 mM MgCl2       0-2 μL 

10 mM dNTPs      1 μL 

10 pmol/μL primer A and B     0.5 μL each 

Taq (Qiagen, Stratagene, Biorad)    1-2 units 

DNA template      0.5-2 μL 

HPLC to 50 μL 
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Standard amplification PCR program 

 

Step 1: initial denaturation     2.5-3 min at 94-98°C 

Step 2: denaturation     30 sec at 94-98°C  

Step 3: annealing     30 sec at 55°C, Tm-5°C 

Step 4: extention      1 min per kb at 72°C  

Step 5: polymerase deactivation   10 min at 72°C 

23-32 cycles were performed from Step 2 to Step 4. 

 

 

2.3.5.2 PCR amplification from genome DNA (gPCR) as a template 

The gPCR frequently used for amplification of genome DNA fragments and 

identification of homozygous T-DNA insertion mutants.  

[µl] PCR components PCR-conditions [°C] 

0,1-1 μl genomic DNA  3.5-4min 95 

1 μl 10 pmol/µl FW primer 30sec 95 

1 μl 10 pmol/µl RV primer 30sec 55 

2 μl 10 mM dNTPs 1min/kb 72 

5µl 10x Buffer 32 cycles  

0,2µl Qiagen-Taq 7min 72 

38,8µl PCR grade water 60min 8 

 

 

2.3.5.3 Colony PCRs (cPCR for Agro and E. coli)  

The colony PCR was used as a fast method to identify positive clones 

containing the desired insert. A single bacterial colony was picked up from a selective 

plate using a sterile toothpick and placed into one tube containing the PCR mix.  

 

PCR condition for Agro-colony PCR with Qiagen Taq (1x reaction – 10µl end volume) 

[µl] PCR components PCR-conditions [°C] 

1 μl Single bacterial colony 5 min 95 

0.25 μl 10 pmol/µl FW primer 30 sec 95 

0.25 μl 10 pmol/µl RV primer 30 sec 55 
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0.1 μl 10 mM dNTPs 1 min/kb 72 

1 µl 10x Buffer 32 cycles   

0.1 µl Qiagen-Taq 7 min 72 

7.3 µl PCR grade water 60 min 8 

 

 

PCR condition for E.coli colony PCR with homemade Taq (1x reaction -25µl end 

volume) 

[µl] PCR components PCR-conditions [°C] 

1 μl Single bacterial colony 5 min 95 

1 μl 10 pmol/µl FW primer 30 sec 95 

1 μl 10 pmol/µl RV primer 30 sec 55 

1 μl 10 mM dNTPs 1 min/kb 72 

2.5 µl 10x Buffer 32 cycles  

1.5 µl 50 mM MgCl2 7 min 72 

1 µl homemade Taq 60 min 12 

15 µl PCR grade water   

 

 

2.3.6 Quantitave real time PCR (qRT-PCR) 
Real-time PCR was performed using the Power SYBR Green master kit system 

(Applied Biosystems) according to the manufacturer’s instructions in a GeneAmp® 

5700 and 7300 Sequence Detection Systems (Applied Biosystems; 

http://www.appliedbiosystems.com). Relative quantification of expression levels was 

calculated using the comparative ΔCt method (manufacturer’s instructions, Applied 

Biosystems) and normalized against the constitutively expressed actin-2 (At3g18780) 

gene. The Ct, defined as the PCR cycle at which a statistically significant increase of 

reporter fluorescence is detected and used for measurements of the starting copy 

number of the target gene. The relative value for the expression level of each gene 

was calculated by the equation Y = 2-ΔΔCt, where ΔCt is the difference between 

control and target products (ΔCt = Ct (GENE) - Ct (ACT), and ΔΔCt = ΔCt (mutant) - ΔCt (wt)). 

The calculated relative expression values was standardized to the wild-type 

expression level (WT = 1).  
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2.3.7 DNA gel-electrophoresis 
1-2% of agarose gel was used to electrophoretically separate DNA fragments. 

Agarose was mixed with electrophoresis buffer to the desired concentration, and then 

heated in a microwave until complete melting. Ethidium bromide was added to the gel 

(final concentration 0.5 µg/ml) to facilitate visualization of DNA after electrophoresis.  

 

 

2.3.8 DNA purification, gel elution and sequencing  
Purification of DNA from PCR mixture was performed using QIAquick PCR 

Purification Kit (Qiagen GmbH, Germany) and from agarose gel the QIAquick Gel 

Extraction Kit was used (Qiagen GmbH, Germany) according to the manufacturer’s 

instructions. Sequencing reactions were performed using a mixture of sequenase and 

fluorochrome-labeled terminators contained in the BigDye® Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems). The products were sequenced in an 

automated sequencer ABI PRISM™ 310 Genetic Analyzer, and the results were 

analyzed using the EditView and NiftyTelnet 1.1 SSHr3 programs (GCS database, 

release 2001, University of Cologne). 

 

PCR sequencing reaction (1x, 10µl end volume) 

PCR components  [µl] PCR-

conditions 

[°C] 

DNA 100-200 ng  20 sec 96 

5x buffer 1µl 10 sec 96 

Primer 

(10pmol/μL) 

1µl 10 sec 55 

PCR grade water to 10µl 4 min 60 

30-35 cycles  
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3. Results 
 

3.1 Protein properties of the MYB28, MYB29 and MYB76 
transcription factors and prediction of gene function using 
microarray database tools 

 
The MYB28 (At5g61420), MYB29 (At5g07690) and MYB76 (At5g07700) are 

members of the large R2R3-MYB transcription factors family in A. thaliana and 

cluster into subgroup XII together with three other MYB factors MYB51/HIG1, 

MYB122/HIG2, and MYB34/ATR1 (Fig. 4). The predicted MYB28 protein has 367 

amino acid residues in length, an isoelectric point of 5.71 and a molecular mass of 

about 41 kDa. The MYB76 and MYB29 proteins consist of 338 and 336 amino acids; 

the molecular weight of both proteins is about 38 kDa and the isoelectric points are 

5.17 and 4.9, respectively. The MYB28 transcription factor possesses 58% and 57% 

identity in the amino acid level with MYB29 and MYB76, correspondingly. Several 

prediction programs like Pfam, SMART and PROSITE revealed that MYB28, MYB29 

and MYB76 proteins contain two tandem repeats of 51 to 53 amino acids which 

termed as R2R3 Myb-type HTH DNA-binding domain. This repeat region is involved 

in DNA-binding and specifically recognize the YAAC(G/T)G sequence within the 

major groove of the DNA (www.expasy.org).  

Previously, the MYB34/ATR1, MYB51/HIG1 and MYB122/HIG2 transcription 

factors were shown to be regulators of indolic glucosinolate biosynthesis and play an 

important role in the homeostasis between auxin and indolic glucosinolate 

biosynthetic pathways (Celenza et al., 2005; Gigolashvili et al., 2007b). The highly 

correlated expression of the MYB28/HAG1, MYB76/HAG2 and MYB29/HAG3 

transcription factors with glucosinolate structural genes and their phylogenetic 

association with the MYB34/ATR1, MYB51/HIG1 and MYB122/HIG2 factors was 

considered as indication for the similarity in the biological functions. 

 

 

 

   34 

http://www.expasy.org/cgi-bin/dbxref?Pfam
http://www.expasy.org/cgi-bin/dbxref?SMART
http://www.expasy.org/cgi-bin/dbxref?PROSITE


Results_____________________________________________________________ 

 
 

Figure 4. Phylogenetic tree of subgroup XII R2R3-MYB transcription factors (Stracke, 2001). 
 

 

According to the gene expression microarray data MYB28, MYB76 and MYB29 

transcription factors were highly associated and co-expressed with structural aliphatic 

glucosinolates biosynthetic genes, e.g. BCAT4, MAM1, CYP79F2, CYP83A1 etc. 

(Tab. 1). Therefore, a possible function for the MYB28, MYB29 and MYB76 

transcription factors in the regulation of aliphatic glucosinolate biosynthesis was 

suggested based on the public microarray-based co-expression database (Toufighi et 

al., 2005). 

 

 
Table 1. Microarray Gene Angler dataset reveals co-expression of the MYB28, MYB29 and 
MYB76 transcription factors with glucosinolate biosynthesis and sulphate assimilation genes 
(http://bar.utoronto.ca). 
 
AGI-ID r-value Annotation 

At5g61420 1.000 AtMYB28 transcription factor 

At4g13770 0.827 CYP83A1 (Cytochrome P450 monooxygenase family 83) 

At5g23010 0.800 MAM1 (2-isopropylmalate synthase 3) 

At1g16400 0.886 CYP79F2 (Cytochrome P450 monooxygenase family 79) 

At2g31790 0.807 UDP-glucoronosyl/UDP-glucosyl transferase family protein 
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At3g19710 0.795 BCAT4 (branched-chain aminotransferase4) 

At4g03060 0.784 AOP2 (alkenyl hydroxalkyl producing2)/ oxidoreductase 

At4g39940 0.771 APK2 (APS-kinase 2); 

At1g24100 0.693 UGT74B1 (UDP-glucosyl transferase 74B1); 

At5g07690 0.671 AtMYB29_PMG2_HAG3 transcription factor 

At1g62560 0.67 flavin-containing monooxygenase family protein 

At1g18590 0.61 AtSOT16 (sulfotransferase family protein) 

At5g23020 0.41 MAML/MAM3 (2-isopropylmalate synthase 2) 

At2g14750 0.34 APK1 (APS-kinase 1) 

At5g07690 1.000 AtMYB29 transcription factor 

At1g62560 0.891 flavin-containing monooxygenase family protein 

At1g18590 0.837 sulfotransferase family protein 

At4g13770 0.834 CYP83A1_REF2 (Cytochrome P450 83A1); 

At3g19710 0.813 BCAT4 (Branched-chain aminotransferase4) 

At4g03060 0.793 AOP2 (Alkenyl hydroxalkyl producing 2); 

At5g23010 0.751 MAM1 (2-isopropylmalate synthase 3); 

At2g20610 0.745 SUR1_ALF1 (SUPERROOT 1); 

At4g39940 0.731 AKN2 (APS-kinase 2); 

At5g07700 1.000 AtMYB76 transcription factor 

At4g03060 0.815 AOP2 (Alkenyl hydroxalkyl producing 2); 

At5g07690 0.776 AtMYB29_HAG3 (myb domain protein 29); 

At5g23010 0.762 IMS3_MAM1 (2-isopropylmalate synthase 3); 

At1g62560 0.747 flavin-containing monooxygenase family protein 

At4g13770 0.731 CYP83A1_REF2 (Cytochrome P450 83A1); 

 

 

3.2 Subcellular localization of the MYB28, MYB29 and MYB76 
transcription factors 

The online prediction programmes like UniProtKB/Swiss-Prot 

(http://www.expasy.org/uniprot/) and LOCtree (Nair and Rost, 2005) web-programs 

were used to get information about the subcellular localization of MYB28, MYB29 and 

MYB76. Both prediction programs indicated a clear nuclear localization for MYB28, 
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MYB29 and MYB76 transcription factors. Amino acid residue sequences like LKKRL 

(LKKLR) and LKKLL were detected in MYB28, MYB29 and MYB76 proteins 

sequences and were supposed to act as SV40-type nuclear localization signals. To 

obtain experimental evidences for the subcellular localization of MYB28, MYB29 and 

MYB76, the full-length cDNAs were cloned into the GFP fusion vector pGWB5 

conferring a C-terminal GFP under control of the CaMV35S promoter. For transient 

expression, cultured cells of Arabidopsis (Col-0) were transformed using the 

supervirulent Agrobacterium strain LBA4404.pBBR1MCS.virGN54D (Koroleva et al., 

2005) carrying Pro35S:MYB28:GFP, Pro35S:MYB29:GFP and Pro35S:MYB76:GFP 

constructs respectively. The obtained results clearly indicate that all three MYB 

factors are targeted to the nucleus, i.e. MYB28, MYB29 and MYB76 are nuclear-

localised proteins, thereby supporting the hypothesis to act as transcriptional 

regulators (Fig. 5). The DNA specific DAPI staining was applied for nuclear staining 

and BCAT4 protein was used as a cytosolic control (Schuster et al., 2006).  

 

 
 

Figure 5. Subcellular localization of the MYB28-GFP (a, b, c), MYB76-GFP (e, f, g), MYB29-
GFP (h, I, j) and BCAT4-GFP (d) translational fusion proteins in cultured A. thaliana cells: (a, 
e, h)-bright field with GFP; (b, d, f, i)- GFP filter only; (c, g, j)- DNA specific DAPI staining. 
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3.3 Generation of Pro35S:MYB28, Pro35S:MYB29, Pro35S:MYB76 

gain-of-function mutants: expression of transgenes and growth 
phenotype  

 

To study the role of MYB28, MYB29 and MYB76 proteins in planta, A. thaliana 

plants over-expressing these genes under the control of the CaMV35S promoter 

were generated using Gateway-compatible vectors and A. tumefaciens-mediated 

transformation. Several independent transgenic lines with stable gene expression 

from each transformation were selected by qRT-PCR. Subsequently, three 

representative over-expression lines for MYB28 (Pro35S:MYB28-11, -12, -15), MYB76 

MYB29 (Pro35S:MYB76-6, -12, 42) and (Pro35S:MYB76-5, -6, -23) with different 

steady-state mRNA levels were assayed to study metabolite content by HPLC/UPLC 

(Fig. 6).  

 

 
Figure 6. Relative gene expression levels of MYB28, MYB29 and MYB76 in rosette leaves of 
4-week-old over-expression and wild-type Arabidopsis thaliana plants (WT=1). (a) MYB28 
transcript levels in Pro35S:MYB28 over-expression lines; (b) MYB29 transcript levels in 
Pro35S:MYB29 over-expression lines; (c) MYB76 transcript levels in Pro35S:MYB76 over-
expression lines. 
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The transcript levels of these lines was determined by qRT-PCR using the 

fluorescent intercalating dye Power SYBR-Green in a GeneAmp® 5700 and 7300 

Sequence Detection Systems (Applied Biosystems).  

Further analysis of transgenic plants over-expressing the MYB28 and MYB29 

genes revealed different growth phenotypes (Fig. 7). As evidenced by real-time RT-

PCR, different levels of MYB28 transcript led to the development of moderate or 

strong growth phenotypes. The strongest MYB28 over-expression lines 

(Pro35S:MYB28-1, -2) showed a bushy-like phenotype: plants revealed a dramatic 

reduction in size and flowered earlier than the wild-type (Col-O) plants (Fig. 7B). 

Mutant plants with moderately increased levels of MYB28 mRNA, e.g. 

Pro35S:MYB28-12 and -15 lines were slightly retarded in growth compared to WT 

(Col-O) plants (Fig. 7A). Similarly, the phenotype of strong MYB29 over-expression 

plants (Fig. 7B) reminded of the bushy growth phenotype of MYB28 over-expression 

plants, whereas a moderate over-expression of MYB29 caused only slight growth 

retardation in Pro35S:MYB29-6, -42 lines. Conversely, all MYB76 over-expression 

lines possessed an unchanged growth phenotype (Fig. 7A). 

 

 

 

3.4 The glucosinolate profiling of MYB28, MYB29 and MYB76 

over-expression lines  
 

The content of aliphatic and indolic glucosinolates was measured in over-

expression lines with different steady-state transcript levels of MYB28, MYB29 and 

MYB76 genes (Fig. 6; Fig. 8). Freeze-dried rosette leaves of 4-week-old plants were 

used for the isolation of aliphatic and indolic glucosinolates (GSL). The levels of 

aliphatic glucosinolates such as 3MSOP (3-methylsulfinylpropyl-GSL), 4MSOB (4-

methylsulfinylbutyl-GSL), 5MSOP (5-methylsulfinylpentyl-GSL), 4MTB (4-

methylthiobutyl-GSL), 8MSOO (8-methylsulfinyloctyl-GSL) and the main indolic 

glucosinolate like I3M (indol-3-ylmethyl-GSL) were determined using HPLC analysis.  
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Figure 7. Growth phenotypes of (A) Pro35S:MYB28 (lines 11, 15, 12), Pro35S:MYB29 (lines 12, 
6, 42), Pro35S:MYB76 (lines 6, 23, 5) over-expression plants; (B) strong Pro35S:MYB28 (line1, 
2) and Pro35S:MYB29 (line1, 2) over-expression lines. All transgenic lines are in the Col-O 
wild-type background. 
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All transgenic MYB28, MYB29 and MYB76 over-expression lines possessed an 

altered Met-derived glucosinolate content compared to wild-type (Col-O) plants. 

Metabolic analysis of the MYB28 over-expression lines (Pro35S:MYB28-11, -15 and -

12) showed approximately two- to seven-fold higher levels of the main short-chain 

aliphatic glucosinolate 4MSOB while the levels of 3MSOP and 5MSOP 

glucosinolates were increased two- to three-fold in comparison with the wild-type 

(Col-O) plants. The content of long-chain aliphatic glucosinolates like 8MSOO 

remained unchanged or slightly decreased in MYB28 over-expression lines. 

Obviously, the different content of aliphatic glucosinolates in MYB28 over-expression 

lines correlated nicely with the corresponding MYB28 transcript level. For example, 

the Pro35S:MYB28-11 line representing strong over-expression of the MYB28 gene 

contained a higher amount of aliphatic glucosinolates than the moderate over-

expression Pro35S:MYB28-12 and Pro35S:MYB28-15 lines (Fig. 6a; Fig. 8a).  

Analysis of MYB29 over-expression plants showed an increased content of both 

short- and long-chain aliphatic glucosinolates. The content of 4MSOB was increased 

two- to four-fold while the level of 3MSOP and 5MSOP was approximately two to six 

times higher compare to wild-type (Col-O) plants. The level of the long-chain aliphatic 

glucosinolate 8MSOO was three to four times higher than in the wild-type (Col-O) 

plants. Furthermore, the increased level of the long-chain aliphatic glucosinolate 

8MSOO correlated nicely with the MYB29 transcript level and 8MSOO mainly 

accumulated in the strong Pro35S:MYB29-6 and Pro35S:MYB29-12 over-expression 

lines. The line Pro35S:MYB29-42 with an only two-fold increase in the MYB29 

transcript level did not show any changes in 8MSOO content (Fig.6b; Fig. 8b).  

Over-expression of MYB76 showed an increase in levels of both short-chain 

and long-chain aliphatic glucosinolates in comparison with wild-type plants. However, 

a much higher transcript level of MYB76 was required to obtain the increases in 

glucosinolate contents compared to MYB28 and MYB29 regulators. For example, line 

Pro35S:MYB76-6 showing 100-fold higher transcript levels showed an only three- to 

four-fold higher content of 4MSOB than the wild-type whereas 14-times increased 

transcript level of MYB28 or MYB29 caused the same effect (Fig. 6c; Fig. 8c). 

Likewise, the levels of the short-chain (3MSOP and 5MSOP) and long-chain 

(8MSOO) glucosinolates were increased only two- to three times in MYB76 over-

expression lines (Fig. 8c). The amount of main indolic glucosinolate such as I3M was 
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almost unchanged in over-expression lines with moderate or slight increases in 

steady-state transcript levels of MYB28 (Pro35S:MYB28-15 and -12 lines) and 

MYB29 (Pro35S:MYB29-42 and -6 lines). Moreover, the level of the main indolic 

glucosinolate I3M was even decreased in the strong MYB28 and MYB29 over-

expression lines (Fig. 6a, b; Fig. 8a, b). Interestingly, the over-expression of MYB76 

resulted not only in the accumulation of aliphatic glucosinolates but also led to two- to 

fourfold increase in the level of the indolic glucosinolate I3M (Fig. 8c). Thereby, in 

contrast to MYB28 and MYB29 regulators, the over-expression of MYB76 caused 

only moderate effects on the accumulation of short and long-chain aliphatic 

glucosinolates and resulted as well in accumulation of indole glucosinolates. 

On the basis that over-expression of MYB28, MYB29 and MYB76 cause 

accumulation of aliphatic glucosinolates we rename these genes HIGH ALIPHATIC 

GLUCOSINOLATE (HAG) 1, 3, and 2, that is, MYB28/HAG1, MYB29/HAG3 and 

MYB76/HAG2. 

 

 

 

3.5 Creation of MYB28/HAG1-RNAi plants and isolation of 
myb29/hag3 and myb76/hag2 T-DNA insertion mutants 

 

The loss of MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 functions in planta 

was elucidated via analysis of MYB28/HAG1-RNAi knock-down, myb29/hag3 and 

myb76/hag2 knock-out mutants. To study MYB28/HAG1 function in planta, a 

silencing construct was generated using the gateway-compatible pJawohl17 vector 

(kindly provided by I. Somssich, MPI for Plant Breeding Research, Cologne, 

Germany). A specific target region for silencing of the MYB28/HAG1 gene was 

designed and two complementary 5’-3’ and 3’-5’ fragments were amplified from wild-

type cDNA using Gateway attB1- and attB2- extended primers (attB1-

TTAATGGCTTCACTGAGCAGATTC; attB2-TGATGAGACTTCTTGGGAAACATC). 

The DNA fragment was cloned into the pDONR-207 vector (Invitrogen Life 

Technologies) and, subsequently, recombined from the entry clone into the 

pJawohl17 destination vector using a LR reaction (Invitrogen Life Technologies). 
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Figure 8. Glucosinolate contents in rosette leaves of 4-week-old MYB28/HAG1, 
MYB29/HAG3 and MYB76/HAG2 over-expression plants. (a) Glucosinolate contents in 
Pro35S:HAG1-11, -15 and -12 over-expression plants, (b) Glucosinolate contents in 
Pro35S:HAG3-12, -6 and -42 over-expression plants, (c) Glucosinolate contents in 
Pro35S:HAG2-6, -23 and -5 over-expression plants; means ± SD, n = 5 (4MSOB, 4-
methylsulfinylbutyl-GSL; 3MSOP, 3-methylsulfinylpropyl-GSL; 5MSOP, 5-
methylsulfinylpentyl-GSL; 8MSOO, 8-methylsulfinyloctyl-GSL; I3M, indol-3-yl-methyl-GSL). 
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To monitor the MYB28/HAG1 transcript level, several stable transformed lines were 

analysed by semi-quantitative RT-PCR analysis. Three RNAi lines (HAG1-RNAi-10, -

14, and -12) with decreased levels of MYB28/HAG1 transcripts were isolated and 

subsequently used for further analysis (Fig. 9A). Notably, the MYB28/HAG1-RNAi 

plants did not show any visible effects on plant morphology compared to wild-type 

(Col-O) plants. 

 

 
 

Figure 9. RT-PCR analysis of samples taken from wild-type (Col-0), MYB28/HAG1-RNAi, 
myb29/hag3 and myb76/hag2 knock-out plants. 

 
 

The T-DNA insertion mutants of MYB76/HAG2 (SALK line N55242 harbouring 

the insertion in the first exon) and MYB29/HAG3 (GABI-KAT line GK-040H12 

harbouring a T-DNA insertion in the third exon) were isolated by PCR using gDNA 

and the transcript level of disrupted genes was verified by semi-quantitative RT-PCR 

(analysis of myb29 knock-outs was performed by M. Engqvist, AG Flügge). The 

MYB76/HAG2 and MYB29/HAG3 transcripts were not detectable in homozygous 

mutants indicating complete knock-outs of the corresponding genes (Fig. 9B). Similar 

to MYB28/HAG1-RNAi plants, single myb29/hag3 and myb76/hag2 knock-out 

mutants showed no visible effects on growth phenotype compared to wild-type plants 

(data not shown). 
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3.6 The glucosinolate content of MYB28/HAG1-RNAi plants, 
myb29/hag3 and myb76/hag2 knockout mutants  

 

Metabolite analysis of MYB28/HAG1-RNAi, myb76/hag2 and myb29/hag3 loss-

of-function mutants displayed a considerable reduction in the content of different 

aliphatic glucosinolates. However, the level of the indolic glucosinolate I3M remained 

unaffected in loss-of-function mutants. Analysis of MYB28/HAG1-RNAi plants 

showed that these lines contained lesser amounts of both long- and short-chain 

aliphatic glucosinolates, namely of 4MSOB, 3MSOP, 5MSOP and 8MSOO, 

compared to Col-O plants. The myb29/hag3 mutant contained only reduced levels of 

short-chain aliphatic glucosinolates in leaves such as 3MSOP, 4MSOB and 5MSOB, 

while the level of long-chain aliphatic glucosinolate (8MSOO) was unaltered. 

Conversely, the myb76/hag2 mutant did not reveal changes in short- and long-chain 

glucosinolate contents except for short-chain aliphatic 3MSOP and 4MSOB 

glucosinolates which were slightly decreased in hag2 plants (Tab. 2).  
 
 

Table 2. Glucosinolate contents in rosette leaves of 4-week-old MYB28/HAG1-RNAi, 
myb76/hag2 and myb29/hag3 knockout plants in comparison with Col-O plants (4MSOB, 4-
methylsulfinylbutyl-GSL; 3MSOP, 3-methylsulfinylpropyl-GSL; 5MSOP, 5-
methylsulfinylpentyl-GSL; 8MSOO, 8-methylsulfinyloctyl-GSL; I3M, indol-3-yl-methyl-GSL; *, 
P < 0.05). 

 
Glucosinolate 

content 

MYB28/HAG1-RNAi myb29/hag3 myb76/hag2 

WT±SD RNAi±SD WT±SD hag3±SD WT±SD hag2±SD 

3MSOP 0.66±0.15 0.02±0.01 0,74±0,24 0,59*±0,10 0,45±0,07 0,39*±0,09 

4MSOB 5.20±1.4 0.39±0.14 6,97±2,03 5,08*±1,11 2,80±1,11 2,19±0,89 

5MSOP 0.21±0.11 0.02±0.095 0,30±0,07 0,19*±0,06 0,15±0,04 0,10±0,06 

8MSOO 0.82±0.31 0.10±0.04 0,43±0,05 0,42±0,04 0,24±0,04 0,23±0,07 

I3M 1.29±0.2 1.26±0.18 1,60±0,34 1,68±0,39 1,11±0,39 1,32±0,26 
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3.7 Transcription profiling of MYB28/HAG1, MYB29/HAG3 and 
MYB76/HAG2 gain- and loss-of-function mutants 

 

Since metabolite analyses of MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 

gain-of-function and loss-of-function mutants revealed increased and decreased 

levels of aliphatic glucosinolates, the question arisen whether the transcription of 

aliphatic glucosinolate structural biosynthetic genes is under the control of MYB/HAG 

transcription factors. To monitor the steady-state mRNA levels of aliphatic 

glucosinolate biosynthetic genes, the gain- and loss-of-function MYB/HAG mutants 

were assayed by quantitative RT-PCR. The transcript profiles of the strongest 

MYB28/HAG1, MYB76/HAG2 and MYB29/HAG3 over-expression lines 

(Pro35S:HAG1-11, Pro35S:HAG2-6 and Pro35S:HAG3-12), knockdown MYB28/HAG1 

RNAi, knock-out myb28/hag3 and myb76/hag2 plants were analysed in detail. As 

potential targets for MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2, the aliphatic 

glucosinolate biosynthetic genes starting from MAM1, MAML (MAM3) to the last 

enzymes AtSt5b, AtST5c and the indolic glucosinolate biosynthetic gene TSB1 as a 

negative control were considered.  

According to the real-time RT-PCR data, elevated transcript levels of aliphatic 

glucosinolate biosynthetic genes like MAM1, MAML (MAM3), CYP79F1, CYP79F2, 

CYP81A1, AtSt5b and AtSt5c were detected in Arabidopsis mutants over-expressing 

the MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 transcription factors compared 

to wild-type (Col-O) plants (Fig. 10a). Moreover, the increase in the mRNA steady-

state levels of aliphatic glucosinolate biosynthetic genes corresponded nicely to the 

expression levels of MYB/HAG regulators and is consistent with increased contents 

of aliphatic glucosinolates. Indeed, the highest transcript levels of aliphatic 

glucosinolate biosynthetic genes were detected in Pro35S:HAG1-11 and 

Pro35S:HAG3-12 over-expression lines, that also possessed the highest amounts of 

aliphatic glucosinolates. In contrast, the Pro35S:HAG2-6 over-expression line 

revealed an about five- to eight-fold upregulation of the potential target genes and 

accumulated less aliphatic glucosinolates than MYB28/HAG1 and MYB29/HAG3 

over-expression lines (Fig. 6c; Fig. 10a).  

Transcript analysis of MYB28/HAG1-RNAi knock-down plants, myb76/hag2 and 

myb29/hag3 knockout mutants revealed considerable decreases in the transcript 
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levels of all aliphatic glucosinolate biosynthetic genes compared to wild-type (Col-O) 

plants (Fig. 10b, c) and correlated with decreased contents of aliphatic glucosinolates 

in these lines as well (Tab.2). Remarkably, the decrease in MYB28/HAG1 mRNA 

level caused downregulation of all aliphatic glucosinolate biosynthetic genes in the 

respective RNAi lines (Fig. 9A, 10b). As an example, the most strongly affected 

HAG1-RNAi-10 line contained lesser amounts of aliphatic glucosinolates due to the 

considerably low transcript level of glucosinolate biosynthetic genes. This is in 

contrast to the HAG1-RNAi-12 and HAG1-RNAi-14 lines that showed only a partial 

decrease in the MYB28/HAG1 transcript level (Fig. 10b).Although the effect was not 

so pronounced as in case of the HAG1-RNAi-10 line, mutants defective in 

MYB29/HAG3 and MYB76/HAG2 function also showed a decrease in the transcript 

level of aliphatic glucosinolate biosynthetic genes (Fig. 10c).  

Notably, the transcript level of the indole glucosinolate TSB1 gene remained 

unchanged in over-expression lines with moderately increased levels of MYB/HAG 

regulators. Conversely, the transcript level of TSB1 gene was slightly increased in 

MYB28/HAG1-RNAi plants, myb29/hag3 and myb76/hag2 knock-out mutants (Fig. 

10b, c). 

 

 

 

3.8 MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 trans-activate 
glucosinolate biosynthetic and sulphate assimilation genes 

 

Transient trans-activation assay was used as a tool to assess activation 

potential of the MYB/HAG transcription factors on glucosinolate biosynthetic genes. 

For this, reporter constructs containing promoters of aliphatic glucosinolate 

biosynthetic genes as MAM1, MAML, CYP79F1, CYP79F2, CYP83A1, C-S lyase and 

indolic glucosinolate biosynthetic gene ASA1 as a negative control were cloned into 

the pGWB3i vector containing the uidA (GUS) reporter gene. As effector constructs, 

the MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 were cloned into the pGWB2 

vector under control of the CaMV35S promoter.  
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Figure 10. Transcript levels of glucosinolate biosynthetic genes in rosette leaves of 4-week-
old MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 gain-of-function mutants (a) and 
MYB28/HAG1-RNAi (b), myb29/hag3 and myb76/hag2 knock-out plants (c). Relative gene 
expression values are shown in comparison with the wild-type (Col-O) = 1. 

 

 

 

Simultaneously, reporter and effector constructs were co-expressed in cultured A. 

thaliana cells. The trans-activation potential of transcription factors towards 

promoters of aliphatic and indolic glucosinolate biosynthetic genes was estimated by 

measurements of GUS activity and determined histochemically, using X-Gluc staining 

(Berger et al., 2007).  

The transient expression of the reporter construct fused to promoters of 

candidate target genes without an effector construct revealed only very faint GUS 

activity. However, MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 were able to 

activate in trans all promoters of aliphatic glucosinolate biosynthetic pathway genes 

such as MAM1, MAML, CYP79F1, CYP79F2, CYP83A1 and C-S lyase (Fig. 11). 
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Furthermore, their trans-activation capacities were different towards some 

biosynthetic genes such as MAM1, MAML, CYP79F1 and CYP79F2. The results 

indicated that MYB28/HAG1 and MYB29/HAG3 had a higher trans-activation 

potential towards the promoter of MAM1 gene than MYB76/HAG2 (Fig. 11). On the 

contrary, the promoter fragment of MAML was less upregulated than MAM1 and 

differently affected by all MYB/HAG transcription factors. Our results clearly show 

that the promoter of MAML was stronger activated in trans mainly by the action of 

MYB28/HAG1, whereas the MYB29/HAG3 and MYB76/HAG2 factors showed less 

capacity to activate the MAML promoter (Fig. 11).  

 

 
 

Figure 11. Trans-activation assays to determine the target gene specificity of MYB28/HAG1, 
MYB29/HAG3, and MYB76/HAG2 towards target promoters of glucosinolate biosynthetic 
pathway genes: MAM1, MAML, CYP79F1, CYP79F2, CYP83A1, C-S lyase, ASA1. 
Histochemical GUS staining of cultured cells. Quantitative evaluation of GUS activity was 
performed 2–3 d after transformation. White bars represent expression of only the Target 
Promoter:GUS constructs, grey bars represent the expression of Target Promoter:GUS 
constructs co-transformed with the effectors (means of GUS activity in μmol MU min–1 and 
mg protein ±SD, n=5). 
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The CYP79F1 gene was equally upregulated by MYB28/HAG1 and 

MYB29/HAG3 but to a lesser extent by MYB76/HAG2. Conversely, the CYP79F2 

gene was stronger trans-activated by the MYB28/HAG1 and slightly less by 

MYB29/HAG3. On the whole, MYB28/HAG1 revealed a stronger capacity to activate 

the promoters of MAML and CYP79F2 genes which are involved in the conversion of 

long-chain aliphatic glucosinolates. Therefore, MYB28/HAG1 has higher impact on 

the regulation of long-chain Met-derived glucosinolates than MYB29/HAG3 and 

MYB76/HAG2. Trans-activation experiments of MYB28/HAG1 and MYB29/HAG3 

regulators towards promoters of indolic glucosinolate biosynthetic genes revealed no 

activation of the ASA1 gene (Fig. 11).  

Along with the activation of GSL biosynthetic genes, all MYB/HAG transcription 

factors are involved in the regulation of sulphate assimilation genes like ATP 

sulphurylases and APS kinases (collaboration with a group of Dr. S. Kopriva, JIC, 

UK). To assess the role of MYB/HAG regulators towards sulphate assimilation genes, 

four promoters of APT sulphurylases and APS kinases, respectively, were cloned into 

the pGWB3i vector and used as reporter constructs in co-transformation assays with 

MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 as effectors. Results of trans-

activation experiments revealed that the over-expression of MYB/HAG regulators led 

to the upregulation of some ATP sulphurylases (ATPS) and APS kinases (APK) (Fig. 

12). From the four individual ATPS, ATPS1 and ATPS3 were specifically activated by 

MYB/HAG regulators. Conversely, the ATPS2 isoform was shown to be slightly 

downregulated and ATPS4 was not affected by MYB/HAG over-expression (data not 

shown). Further analysis of APK isoformes revealed that all three MYB/HAG genes 

were able to upregulate APK1 and APK2 but not the other two isoforms (data not 

shown). Thus, the results of these trans-activation experiments clearly indicate that 

MYB/HAG transcription factors are involved in the regulation of sulphate assimilation 

genes in order to increase the phosphoadenosine phosphosulfate (PAPS) content 

which is necessary for the sulphation of desulphoglucosinolates (Piotrowski et al., 

2004). 
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Figure 12. Trans-activation of ATP sulphurylases and APS kinases promoters by MYB/HAG 
factors in cultured Arabidopsis cells. 

 

 

 

3.9 Tissue specific expression of MYB28/HAG1, MYB29/HAG3 and 
MYB76/HAG2 genes 

 

To study the tissue-specific expression of MYB/HAG transcription factors, 

promoter regions of MYB28/HAG1 (-1995 to +157 bp) fused with 3’UTR region 

(about 380 bp), MYB29/HAG3 (-1368 to +81 bp) and MYB76/HAG2 (-1726 to +275 

bp) were used to create a translational fusion construct with the uidA (GUS) reporter 

gene. Stable Arabidopsis transformants were obtained using A. tumefaciens-

mediated transformation and selection on MS plates with kanamycin. Subsequently, 

several stable transformed Arabidopsis transgenic lines expressing ProHAG1:GUS, 

ProHAG2:GUS and ProHAG3:GUS constructs were analyzed for tissue-specific gene 

expression. Detailed analysis of the ProHAG:GUS plants was carried out at different 
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ontogenetic stages and revealed not only similar but also specific expression patterns 

for the MYB28, MYB29 and MYB76 transcription factors (Fig 13 - I, II, III). 

GUS expression driven by MYB/HAG promoters was not detected in early 

stages of development in cotyledons, hypocotyls and roots of 3- to 7-day-old 

seedlings (Fig. 13). Faint GUS staining appeared in stems, petioles and the main 

veins of true leaves in all 10- to 14-day-old seedlings (Fig. 13 – I a, II a, III a). 

However, in case of MYB76/HAG2, strong GUS expression was also observed in the 

transition zone between roots and the foliar part of seedlings. Subsequently, three-

week-old seedlings showed increase in GUS expression which was mainly detected 

in lateral roots for plants expressing the ProHAG1:GUS construct (Fig. 13 - I c). 

Furthermore, promoter-GUS activity was detected in expanding leaves of all 

ProHAG:GUS transgenic plants and its expression reached a maximum level in adult 

leaves of non-flowering plants. At this stage, MYB29/HAG3 was barely expressed in 

the primary vein while for MYB28/HAG1 and MYB76/HAG2, GUS staining was 

observed in both primary and secondary veins of leaf (Fig. 13 - I b; II b; III b). During 

senescence, GUS expression was considerably decreased in leaves and appeared 

in inflorescences upon transition from the vegetative to the generative stages. In 

inflorescences GUS staining was mainly observed in stems and only ProHAG1:GUS 

and ProHAG2:GUS plants also showed GUS activity in flowers (Fig. 13 – I d, II c). 

Moreover, ProHAG1:GUS and ProHAG3:GUS expression was also detected in 

trichomes (Fig. 13 - I e; III e) and roots, whereas ProHAG2:GUS was absent in these 

tissues. At the latest stages of development, GUS expression was very faint and 

almost completely disappeared in leaves, but still remained detectable in 

inflorescences (Fig. 13 - I f). Remarkably, mechanical stimuli like wounding induced 

MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 expression mainly in inflorescences 

of flowering plants (Fig. 13 - I g; II d; III d). The MYB28/HAG1, MYB29/HAG3 and 

MYB76/HAG2 expression data are consistent with AtGenExpress data from the 

Genevestigator microarray database (Zimmermann et al., 2004; 

https://www.genevestigator.ethz.ch/). In addition, it is worth noting that all MYB/HAG 

transcription factors were mainly expressed at sites of non-uniform distribution of 

aliphatic glucosinolates in leaves (Shroff et al., 2008) and, therefore, they might play 

an important role in the regulation of aliphatic glucosinolate biosynthesis in response 

to various biotic stresses.  
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Figure 13. Histochemical GUS staining in tissues: I - ProMYB28/HAG1:GUS plants - (a) 14-day-
old seedling, (b) three-week-old plant, (c) roots of three-to-four-week old plants, (d) flowers, 
(e) leaf of adult plant, (f) Inflorescences of flowering plant, (g) GUS induction at cut sites of 
inflorescences, (h) GUS induction at touch sites of inflorescences. II - ProMYB76/HAG2:GUS 
plants - (a)14-d-old seedling, (b) adult leaf, (c) flowers and siliques, (d) GUS induction at cut 
sites of inflorescences. III - ProMYB29/HAG3:GUS plants - (a) 14-d-old plants, (b) inflorescences 
of a flowering plant with a cauline leaf, (c) siliques, (d) GUS induction at cut sites of 
inflorescences, (e) trichomes. 

 

 

   53 



Results_____________________________________________________________ 

 

3.10 Regulation of MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 

transcription by plant elicitors 
 

Glucosinolates are very well known plant secondary compounds that defend 

plants against both herbivores and pathogens (Koenraad et al., 2001; Raybould and 

Moyesà, 2001). There are several known plant signal molecules like methyl 

jasmonate (MeJa), salicylic acid (SA) and the ethylene precursor aminocyclopropane 

carboxylate (ACC) that have been suggested to be involved in the regulation of 

glucosinolate biosynthesis upon biotic stresses (Mewis et al., 2005). Sugars are 

known as other important signaling molecules that induce transcription of pathogen 

responsible genes (Xiao et al., 2000; Rolland et al., 2002). To study further the 

upstream regulation of MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 by different 

signaling hormone pathways, wild-type (Col-O) plants were treated with methyl 

jasmonate (0.10 µM MeJa), salicylic acid (0.10 µM SA), aminocyclopropane 

carboxylate (0.10 µM ACC) and glucose (3% Gluc). Subsequently, transcript levels of 

MYB28/HAG1, MYB76/HAG2 and MYB29/HAG3 were monitored using real-time RT-

PCR. 

According to the qRT-PCR data, the transcript level of the MYB28/HAG1 gene 

was almost six fold increased after 2 h of glucose treatment compared to non-treated 

plants and returned to its original level after 24 h of induction. Treatment with 3% 

mannitol, used as an osmotic negative control, did not reveal any changes in 

transcript level of the MYB28/HAG1 gene, as well as ACC and MeJa treatments (Fig. 

14A, B, D). Similar results were obtained for ProHAG1:GUS plants: glucose treatment 

led to increased GUS activity in leaves, petioles and roots of ProHAG1:GUS plants but 

not MeJa, SA, ACC or mannitol applications (Fig. 14A). Thus, glucose was identified 

as an important signaling molecule which induces MYB28/HAG1 gene expression, 

whereas expression of the MYB29/HAG3 and MYB76/HAG2 genes was not affected 

by glucose or mannitol. SA treatment caused a negative effect on expression of all 

MYB/HAG genes and resulted in the considerable downregulation of MYB28/HAG1, 

MYB29/HAG3 and to an only slight downregulation of MYB76/HAG2 (Fig. 14C). 

Induction of MYB29/HAG3 gene expression was observed within 5-15 min of MeJa 

treatment (Fig. 14D). Remarkably, MYB76/HAG2 expression was not strongly 
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affected by MeJA, SA, ACC or glucose treatments, probably due to its accessory role 

in the regulation of aliphatic glucosinolates. 

 

 

 
 

Figure 14. Response of MYB28/HAG1, MYB76/HAG2 and MYB29/HAG3 genes to glucose 
(A, B), SA (C) and MeJA (D) hormone treatments. 
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3.11 Expression of MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 

genes induced by mechanical damages or wounding 
 

It has been reported previously that the activation of SA and MeJa signal 

transduction pathways are often induced by wounding (Chassot et al., 2008). 

Analysis of ProHAG:GUS plants showed that the expression of MYB28/HAG1, 

MYB29/HAG3 and MYB76/HAG2 was upregulated by mechanical damages in 

inflorescences which reminded of the previously reported mechano-sensitive reaction 

of MYB51/HIG1 and IQD1 regulators (Levy et al., 2005; Gigolashvili et al., 2007b). 

Therefore, to analyze the time-dependent induction of the MYB/HAG regulators by 

mechanical stimuli, rosette leaves and inflorescences of wild-type (Col-O) plants 

were subjected to mechanical treatment and harvested after 1, 5, 10, 30 and 60 min 

of wounding. Analysis of the wounded plants showed a rapid induction of all 

MYB/HAG genes already after 1 min of wounding. Transcript levels of MYB28/HAG1 

and MYB29/HAG3 regulators were increased three- to four-fold within 1-5 min of 

wounding and dropped within 30 min to the level of unwounded plants (Fig. 15). 

Notably, MYB76/HAG2 expression was induced more than 50-fold upon mechanical 

stimuli. Thus, real-time RT-PCR data indicates that gene expression of 

MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 factors was transiently induced 

upon wounding which observation is consistent with data obtained for ProHAGs:GUS 

plants (Fig. 13). 

 

 

 

3.12 Interactions between the MYB28/HAG1, MYB29/HAG3 and 

MYB76/HAG2 transcription factors. 
 

It appears that MYB/HAG transcription factors have partially redundant 

functions in the regulation of aliphatic glucosinolates. To answer the question about 

specificity and redundancy between MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 

transcription factors, the analysis of MYB/HAG transcript levels in gain-of-function 

mutants and trans-activation assays toward MYB/HAG promoters were performed.  
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Figure 15. Induction of MYB28/HAG1, MYB29/HAG3, MYB76/HAG2 gene expression by 
wounding; relative expression values are given compared to non-wounded plants (= 1). 

 

 

 

According to the real-time RT-PCR data, transcript levels of MYB28/HAG1, 

MYB29/HAG3 and MYB76/HAG2 transcription factors were differently upregulated 

and affected by themselves in gain-of-function mutants as shown on Figure 16A. The 

transcript level of MYB28/HAG1 was only slightly increased in the background of 

MYB29/HAG3 and MYB76/HAG2 over-expression plants. Conversely, MYB28/HAG1 

over-expression led to elevated transcript levels of MYB29/HAG3 and MYB76/HAG2 

genes. An increase of MYB29/HAG3 transcripts caused an accumulation of 

MYB76/HAG2 mRNA and only a slight effect on MYB28/HAG1 expression was 

detected. In turn, over-expression of the MYB76/HAG2 resulted in upregulation of 

MYB29/HAG3 but not of MYB28/HAG1 (Fig. 16a). Therefore, real-time RT-PCR 

results certainly indicate a positive reciprocal feedback regulation between 

MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 transcription factors.  

In order to further explore the specific regulation between MYB/HAG regulators, 

transient co-transformation assays using ProHAG1:GUS, ProHAG2:GUS, ProHAG3:GUS 

as reporter constructs and Pro35S:HAG1, Pro35S:HAG2 and Pro35S:HAG3 as effectors 
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were performed (M. Engqvist, AG Flügge). According to the trans-activation data, the 

promoter activity of MYB28/HAG1 was not affected by MYB76/HAG2 or 

MYB29/HAG3 in trans and, therefore, it seems to be less dependent on the function 

of the other two MYB/HAG genes.  

 
A.

 

B. 

 

 
 

Figure 16. Coordinated action and interplay between MYB28/HAG1, MYB29/HAG3 and 
MYB76/HAG2 transcription factors in the regulation of aliphatic glucosinolate biosynthesis. 
(A) Steady-state transcript levels of MYB28/HAG1, MYB2/HAG39 and MYB76/HAG2 in 
Pro35S:HAG1, Pro35S:HAG2 and Pro35S:HAG3 over-expression lines. Relative gene 
expression values of the real-time RT-PCR data are shown compared with WT (Col) = 1. (B) 
Co-transformation assays pointing to the activation of ProHAG2:GUS (reporter) by 
MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 (effectors) (means of relative GUS activity 
±SD, n=3; ProHAG2:GUS= 1). (C) Schematic representation of all observed MYB28/HAG1, 
MYB29/HAG3 and MYB76/HAG2 trans-activations. Black arrows indicate trans-activations 
measured in co-expression studies in N. benthamiana using reporter–effector constructs. 
Grey arrows indicate cross-activation of transcription factors in MYB28/HAG1, MYB76/HAG2 
and MYB29/HAG3 over-expression lines using real-time RT-PCR analysis. 
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Conversely, promoters of the MYB29/HAG3 and MYB76/HAG2 genes were 

considerably induced by over-expression of MYB28/HAG1 which data nicely 

corresponded to the real-time RT-PCR data. In addition, MYB29/HAG3 was activated 

by both MYB28/HAG1 and MYB76/HAG2 (Fig. 16a). Although results from the 

MYB76/HAG2 over-expression study indicated only its minor contribution in control of 

aliphatic glucosinolates biosynthesis, MYB76/HAG2 was shown to be activated by 

MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 itself and was able to upregulate 

MYB29/HAG3 expression, thereby contributing to aliphatic glucosinolate biosynthesis 

in concert with MYB28/HAG1 and MYB29/HAG3 (Fig. 16 b, c).  
 
 
 

3.13 MYB/HAG factors repress the transcription of indolic 
glucosinolate regulator genes and interact with WRKY25 and SLIM1 
transcription factors 

 

It has been shown previously that several mutations which block or restrict 

biosynthesis of one class of glucosinolates resulted in a compensatory increase in 

the other class. Therefore, it is proposed that a homeostatic control of glucosinolate 

biosynthesis could be achieved by reciprocal negative feedback regulation between 

branches using glucosinolate intermediates or end products as inhibitors (Grubb and 

Abel, 2006). For example, an increased accumulation of indole glucosinolates in 

MYB51/HIG1, MYB34/ATR1 and MYB122/HIG2 over-expression plants caused a 

repression of aliphatic glucosinolate biosynthetic genes and a decrease in the level of 

aliphatic glucosinolates (Gigolashvili et al., 2007b). Conversely, a decreased content 

of the main indolic glucosinolate I3M was observed in strong MYB28/HAG1 and 

MYB29/HAG3 over-expression plants, probably due to the repression of indolic 

glucosinolate biosynthetic genes.  

To study the crosstalk between indolic and aliphatic glucosinolate biosynthetic 

pathways at the level of interaction between indolic (MYB51/HIG1, MYB122/HIG2, 

MYB34/ATR1) and aliphatic (MYB28/HAG1, MYB29/HAG3, MYB76/HAG2) 

transcription factors, trans-activation assays were performed using ProHIG1:GUS, 
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ProHIG2:GUS and ProATR1:GUS reporter constructs which were co-expressed with 

Pro35S:HAG1, Pro35S:HAG2 and Pro35S:HAG3 effector constructs in tobacco 

(Nicothiana benthamiana) leaves (M. Engqvist, AG Flügge). As shown on Figure 17, 

the over-expression of MYB/HAG genes caused considerable downregulation of all 

regulators of the indolic glucosinolate pathway like MYB51/HIG1, MYB122/HIG2 and 

MYB34/ATR1. Therefore, the trans-activation data clearly indicate a negative 

feedback regulation existing between indolic (MYB/HIG) and aliphatic (MYB/HAG) 

regulators.  

 

 
 

Figure 17. Co-transformation assays to determine the promoters repression of genes 
involved in the control of indolic glucosinolate biosynthesis (HIG1/MYB51, HIG2/MYB122 
and ATR1/MYB34) by the regulators of aliphatic glucosinolates, MYB28/HAG1, 
MYB76/HAG2 and MYB29/HAG3; means of relative GUS activity ±SD, n=3; 
ProATR1/HIG1/HIG2:GUS = 1).*, P < 0.05. 

 
 
As it has been demonstrated by several studies that glucosinolate biosynthesis 

is regulated at multiple levels by environmental factors, developmental programs and 

gene transcription comprising a complex regulatory network (Grubb and Abel, 2006; 
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Yan and Chen, 2007). Further analysis also revealed that MYB/HAG transcription 

factors are involved in the interplay with WRKY25 and SLIM1 (sulphur limitation1) 

transcription factors. The interactions between WRKY25 and MYB/HAG transcription 

factors were observed in co-transformation assay using Pro35S:WRKY25 as effector 

and promoters of MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 as reporter 

constructs in the tobacco system. As shown on Figure 18, there is a specific 

promoter activation of MYB29/HAG3, whereas promoters of MYB28/HAG1 and 

MYB76/HAG3 were not affected by WRKY25.  

 

 
 

Figure 18. Trans-activation of MYB/HAG promoters by WRKY25 transcription factor in N. 
benthamiana leaves. 
 
 
 

To study how SLIM1 affects MYB/HAG expression, real-time RT-PCR analysis 

was performed using cultured Arabidopsis (Col-O) cells transiently over-expressing 
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SLIM1. The results conclusively show that SLIM1 over-expression caused a 

considerable repression of MYB28/HAG1 and MYB29/HAG3 regulators (Fig. 19).  
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Figure 19. Repression of the MYB28/HAG1 and MYB29/HAG3 genes expression by SLIM1 
transcription factor in cultured Arabidopsis cells. 

 
 
 

3.14 Over-expression of MYB28/HAG1 leads to an increased 
resistance against a generalist herbivore 

 

Although the primary functions of glucosinolates are still unknown, their 

degradation products, which accumulate upon mechanical-induced tissue damage, 

are contributing to the plant defence arsenal against pathogens and generalist 

herbivores. To analyze if an increase of the MY28/HAG1 expression correlates with 

enhanced plant resistance against the generalist lepidopteran herbivore Spodoptera 

exigua (Lepidoptera: Noctuidae), weight gain assays were carried out in collaboration 

with the University Würzburg (Dr. C. Müller). For this, 5-day-old larvae of Spodoptera 

exigua were kept on artificial diet and then used in feeding experiments on both wild-

type and MYB28/HAG1 over-expression plants (Pro35S:HAG1-15). The levels of total 

sugars and proteins were determined in Col-O and MYB28/HAG1 over-expression 

plants before subjecting them for feeding of Spodoptera and no considerable 
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differences were detected between these plants (data not shown). The weight-gain 

experiments certainly show that growth and development of Spodoptera larvae on 

MYB28/HAG1 over-expression plants were considerably reduced and showed more 

than 70% less fresh weight in comparison with larvae on wild-type plants within five 

days (Fig. 20). Thus, over-expression of MYB28/HAG1 considerably reduced 

herbivore performance due to an accumulation of aliphatic glucosinolates. 

 

 
 

Figure 20. MYB28/HAG1 over-expression reduces insect performance. Weight-gain assays 
of Spodoptera exigua larvae on 5-week-old A. thaliana plants. Larvae were kept on an 
artificial diet for 5 days and second-instar larvae were transferred to plants. Values are the 
mean fresh weight (and SE) of larvae feeding for 5 days on A. thaliana wild-type (Col-0) and 
Pro35S:HAG1-15 lines. Day 1 (Col-0 and Pro35S:HAG1-15: n = 15 per line; t test, P = 0.45); 
day 3 (Col-0 and Pro35S:HAG1-15: n = 12; t test, P = 0.042); day 5 (Col-0 and Pro35S:HAG1-
15: n = 9; t test, P = 0.0016). 
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4. Discussion 
 
 

4.1 MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 are positive 
regulators of aliphatic glucosinolate biosynthesis 

 

Identification and characterization of new regulators of glucosinolate 

biosynthesis represent the most advanced approach to exploit the potential of 

glucosinolates in biotechnology, agriculture and medicine. MYB34/ATR1, 

MYB51/HIG1, MYB122/HIG2, SLIM1, IQD1 and AtDof1.1 have recently been 

analyzed for their ability to regulate transcription of glucosinolate biosynthetic genes 

(Celenza et al., 2005; Levy et al., 2005; Maruyama-Nakashita et al., 2006; Skirycz et 

al., 2006; Gigolashvili et al., 2007b). Here, it is shown that the nuclear-localized 

R2R3-type MYB28/HAG1, MYB76/HAG2 and MYB29/HAG3 transcription factors are 

novel regulators of glucosinolate biosynthesis. The highly correlated co-expression of 

MYB28/HAG1, MYB76/HAG2 and MYB29/HAG3 with aliphatic glucosinolate pathway 

genes (BCAT4, MAM1, CYP79F1 etc.) and phylogenetic association with 

MYB34/ATR1, MYB51/HIG1 and MYB122/HIG2 as regulators of indolic glucosinolate 

biosynthesis suggest their function in the control of aliphatic glucosinolate 

biosynthesis (Fig. 4; Tab. 1).  

The ectopic over-expression of MYB28/HAG1, MYB76/HAG2 and 

MYB29/HAG3 led to accumulation of up to four-fold higher levels of all aliphatic 

glucosinolates in gain-of-function mutants compared to the wild-type (Col-O). 

Furthermore, an increase in glucosinolate accumulation corresponded to the level of 

MYB28/HAG1, MYB76/HAG2 and MYB29/HAG3 transcripts in various over-

expression lines. For example, the strong Pro35S:MYB28/HAG1-11, 

Pro35S:MYB76/HAG2-6 and Pro35S:MYB29/HAG3-12 over-expression lines also 

contained a higher amount of aliphatic glucosinolates (Fig. 6; Fig. 8). Notably, plants 

over-expressing MYB28/HAG1 contained considerably higher total levels of aliphatic 

GSL, especially 4MSOB, compared to MYB29/HAG3 and MYB76/HAG2 gain-of-

function mutants. However, changes in the level of long-chain glucosinolates in 

MYB28/HAG1 over-expression lines could not be detected. Conversely, in strong 



Discussion___________________________________________________________ 

   65 

Pro35S:MYB29/HAG3-12 and Pro35S:MYB76/HAG2-6 over-expression lines, the 

content of long-chain 8MSOO glucosinolate was three to four times higher compared 

to wild-type plants (Fig. 8). Since an accumulation of the long-chain aliphatic 

glucosinolates was not detected in all MYB/HAG over-expression mutants, it seems 

rather to be a secondary effect due to the strong over expression of MYB29/HAG3 

and MYB76/HAG2 causing an accumulation of short-chain oxo-acids in chloroplasts. 

These oxo-acids may spontaneously re-enter the side-chain elongation cycles, 

catalyzed by the MAM3 (MAML) enzyme resulting in the generation of long-chain 

aliphatic glucosinolates. 

Interestingly, strong over-expression MYB28/HAG1 and MYB29/HAG3 lines 

(Pro35S:HAG1-11 and Pro35S:HAG3-12, Fig. 8) also showed a decrease in the level 

of main Trp-derived indolic glucosinolate I3M. This observation may indicate a 

negative crosstalk between the aliphatic and indolic glucosinolate biosynthetic 

pathways. It has been previously demonstrated that the double CYP79F1 and 

CYP79F2 knockout mutant completely lacking aliphatic glucosinolates revealed an 

increase in the levels of indolic glucosinolates (Tantikanjana et al., 2004). Similarly, 

the double knock-out of CYP79B2 and CYP79B3 genes, involved in the biosynthesis 

of indolic glucosinolates, is completely devoid of indolic glucosinolates and contained 

elevated levels of aliphatic glucosinolates (Celenza, 2001). The competition between 

aliphatic and indolic cytochrome P450 mono-oxygenases for electrons provided by 

limited NADPH supply could be a reason for the interdependence of aliphatic and 

indolic glucosinolate biosynthesis as it had been proposed by Grubb and Abel 

(2006). 

Analysis of MYB28/HAG1-RNAi plants, myb29/hag3 and myb76/hag2 null 

mutants revealed differences in MYB/HAG functions to regulate biosynthesis of the 

chain-elongated aliphatic glucosinolates. The most considerable decrease in the 

level of total aliphatic glucosinolates was observed in MYB28/HAG1-RNAi plants and 

in the myb29/hag3 mutant as a result of a considerable downregulation of aliphatic 

glucosinolate biosynthetic genes (Tab. 2; Fig. 10b, c). The levels of both short- and 

long-chain glucosinolates were decreased in MYB28/HAG1-RNAi plants but not 

completely abolished probably due to either the residual activity of MYB28/HAG1 or 

functional complementation by MYB29/HAG3 and MYB76/HAG2. Still MYB76/HAG2 

and MYB29/HAG3 were obviously unable to fully compensate the function of 

MYB28/HAG1 in RNAi lines. Analysis of myb29/hag3 null mutants revealed that the 
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level of short-chain aliphatic glucosinolates was considerably reduced, whereas the 

content of long-chain aliphatic glucosinolates remained unchanged (Tab. 2). 

Moreover, myb29/hag3 knockout plants were not completely lacking aliphatic 

glucosinolates because MYB28/HAG1 and MYB76/HAG2 were still functional in this 

mutant. Additionally, myb76/hag2 knock-out mutant did not reveal considerable 

effects on glucosinolate accumulation and the loss of MYB76/HAG2 function could 

easily be complemented by MYB28/HAG1 and/or MYB29/HAG3. Therefore it is 

suggested that MYB76/HAG2 plays an only minor role in the accumulation of 

aliphatic glucosinolates. 

 

 

 

4.2 MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 specifically 
activate aliphatic glucosinolate biosynthetic and sulphate 
assimilation genes 

 

Analysis of gain-of-function mutants demonstrate that ectopic over-expression 

of MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 caused an accumulation of 

aliphatic (Met-derived) glucosinolates by means of specific upregulation of aliphatic 

GSL biosynthetic genes, e.g. MAM1, MAML, CYP79F1, CYP79F2, CYP83A1, 

AtST5b and AtST5c, without directly affecting genes of the indolic glucosinolate 

pathway, e.g. TSB1 and ASA1 (Fig. 10a; Fig. 11). As revealed in trans-activation 

experiments, MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 are able to activate 

the promoter of target genes starting from the first enzymes of chain-elongation 

reactions (MAM1 and MAML) up to the last enzymes of glucosinolate biosynthesis 

(AtSt5b, c). Furthermore, differences in the regulation of MAM1, MAML, CYP79F1 

and CYP79F2 that are involved in the production of Met-derived GSL with different 

chain-length by all MYB/HAG factors were observed in both gain-of-function mutants 

and in trans-activation experiments. According to these observations, MAM1 and 

MAML genes, contributing to the side-chain elongation of aliphatic GSL, were 

stronger upregulated by MYB28/HAG1 and MYB29/HAG3, whereas MYB76/HAG2 

showed a lesser activation capacity towards the MAML promoter (Fig. 11). On the 

whole, the MAML gene catalyzing mainly elongation reactions of long-chained Met-

derived GSL was less activated by all MYB/HAG transcription factors compared to 
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MAM1, which is specifically involved to the biosynthesis of short-chain GSL (Fig. 10; 

Fig. 11). Further analysis revealed that CYP79F1 and CYPF2 genes, responsible for 

the oxidation of short- and long-chain GSL, were strongly up-regulated by 

MYB28/HAG1 and less by MYB29/HAG3 and MYB76/HAG2. Consequently, 

MYB28/HAG1 has a higher capacity to activate transcription of aliphatic GSL 

biosynthetic genes compared to MYB29/HAG3 and MYB76/HAG2 (Fig. 10a; Fig. 11). 

Altogether, the great variety of glucosinolate profiles of Arabidopsis plants could be 

achieved by differential regulation of aliphatic GSL pathway genes by MYB/HAG. 

Interestingly, MYB/HAG regulators are also able to specifically activate sulphate 

assimilation genes like ATP sulfurylases and APS kinases (Fig. 12). It has previously 

been shown that ATP sulfurylases catalyze the first step of sulphate assimilation 

yielding adenosine phosphosulphate (APS). Subsequently, APS is used for the 

biosynthesis of cysteine, methionine (Met) and phosphoadenosine phosphosulfate 

(PAPS). PAPS serve as universal sulphur donor and is synthesised via 

phosphorylation of adenosine phosphosulphate (APS) by APS kinases in 

Arabidopsis. Both Met and PAPS are important for GSL biosynthesis, because Met is 

the only precursor for the biosynthesis of aliphatic Met-derived GSL, whereas PAPS 

is required for the sulphation of desulfoglucosinolates as the last step of GSL 

biosynthesis (Glendening and Poulton, 1988). Together, MYB/HAG transcription 

factors are also suggested to be involved in the regulation of homeostasis between 

sulphate assimilation and GSL biosynthesis. Therefore, the complex regulatory 

mechanism for sulphur partitioning between primary and secondary metabolisms in 

A. thaliana is proposed to be controlled by MYB/HAG factors (Fig. 21). 

 

 

 

4.3 MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 are expressed 
at the sites of aliphatic glucosinolate accumulation  

 

Glucosinolates distribution within a plant may be crucial in understanding the 

actions of the glucosinolate defence machinery against herbivores and pathogens. It 

has previously been reported that indolic and aliphatic glucosinolates, representing 

two major groups of glucosinolates, were differently distributed in various organs of 

Arabidopsis thaliana plants. For instance, indolic glucosinolates were mainly 
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accumulating in vegetative organs and only reduced amounts could be detected in 

inflorescences and flowers. Conversely, aliphatic glucosinolates accumulate 

throughout the plant with highest concentrations in generative organs rather than in 

vegetative tissues. High levels of aliphatic glucosinolates were found in young rosette 

leaves and then decreased during maturation and flowering, resulting predominantly 

in an increase of indolic glucosinolates (Brown et al., 2003a; Halkier and 

Gershenzon, 2006). 

Expression analysis of ProMYB28/HAG1:GUS, ProMYB76/HAG2:GUS and 

ProMYB29/HAG3:GUS lines together with data from the Genevestigator database 

(Zimmermann et al., 2004) revealed that all MYB/HAG regulators have similar 

expression patterns and were mainly expressed in inflorescences, flowers, petioles 

and rosette leaves, which corresponded to the main sites of accumulation of aliphatic 

Me-derived GSL (Fig. 13). In addition, the expression pattern of MYB28/HAG1, 

MYB29/HAG3 and MYB76/HAG2 genes tightly overlaps with the previously reported 

tissue-specific expression of the main aliphatic glucosinolate biosynthetic genes, 

such as MAM3, BCAT4, CYP79F1 and CYP79F2, that are found in higher amounts 

in vascular tissues of young and mature rosette leaves and in stems (Chen et al., 

2003; Schuster et al., 2006; Textor et al., 2007). Furthermore, the expression of 

MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 genes was decreased in rosette 

leaves and appeared in flowers and stems upon transition from the vegetative to the 

generative phase of development (Fig. 13). This observation is consistent with 

ontogenetic changes in the distribution and accumulation of aliphatic GSL in leaves 

which declines during maturation and flowering stages (Brown et al., 2003). 

Interestingly, a non-uniform distribution of aliphatic glucosinolates was detected 

around the midveins and the periphery of A. thaliana rosette leaves (Shroff et al., 

2008) and correlates well with the expression patterns of MYB28/HAG1, 

MYB29/HAG3 and MYB76/HAG2 regulators (Fig. 13 - I b, II b, III b). Finally, 

expression of MYB28/HAG1 and MYB29/HAG3 was found in trichomes (Fig. 13 – I e, 

II e), indicating that MYB28/HAG1 and MYB29/HAG3 may be involved in early 

response reactions against herbivore or pathogen attacks, in order to enhance 

glucosinolate production. In addition, induction of MYB/HAG expression by 

mechanical stimuli is supporting their role in plant defence responses (Fig. 13 - I g, h, 

II d, III d).  
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Evidence is provided that the expression patterns of MYB/HAG factors 

overlapping with the expression of glucosinolate biosynthetic genes also cover the 

main sites of aliphatic (Met-derived) glucosinolate accumulation and correlate with 

the dynamic changes in the levels of aliphatic glucosinolates during ontogenesis. 

Furthermore, the expression of MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 

transcription factors also overlap with the tissue-specific expression of other 

glucosinolate regulators (MYB51/HIG1, MYB34/ATR1, IQD1, AtDof1.1 and SLIM1). It 

has been reported previously (Levi et al., 2005, Maruyama-Nakashita et al., 2006; 

Skirycz et al., 2006) that IQD1, Dof1.1 and SLIM1 regulators are not able to directly 

regulate transcription of GSL biosynthetic genes and might need interacting partners 

or factors. Therefore, MYB/HAG factors may functionally act in concert with each 

other and are involved in the interplay with other GSL biosynthesis regulators thus 

building up a complex regulatory network. 

 

 

 

4.4 MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 regulators 
reveal not only similar, but also specific features in the regulation of 
aliphatic glucosinolate biosynthesis  

 

Metabolite and transcript analyses of Arabidopsis gain- and loss-of-function 

mutants showed that MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 have similar 

functions in the regulation of aliphatic glucosinolates biosynthesis. Nevertheless, 

there is also evidence indicating specific functions of MYB/HAG factors in the control 

of aliphatic glucosinolate biosynthesis (Fig. 8; Fig. 10; Fig. 11). For example, a similar 

growth phenotype was observed in strong MYB28/HAG1 and MYB29/HAG3 gain-of-

function mutants showing a drastic retarded growth and development, an elongation 

of internodes, a defective gravitropic response and plant sterility (Fig. 7 B). This was 

not the case for MYB76/HAG2 over-expression lines. It seems that the ectopic 

MYB28/HAG1 and MYB29/HAG3 over-expression under control of the CaMV35S 

promoter led to a dramatically increased flow of methionine into the biosynthesis of 

aliphatic (Met-derived) glucosinolates. The deficiency in the level of methionine, 

which also serves as a precursor for ethylene biosynthesis, may cause a decrease in 
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the level of this hormone. Therefore, low ethylene could be the reason for such 

impaired gravitropic plant response, as reported by Edelman et al., 2006.  

Notably, the metabolite analysis of gain- and loss-of-function mutants, trans-

activation and real-time RT-PCR data indicated that the MYB28/HAG1 transcription 

factor serves as the strongest regulator of aliphatic glucosinolate biosynthetic genes 

among the MYB/HAG factors and is, therefore, suggested to be a key regulator of 

this pathway (Fig. 8a; Fig. 10a; Fig. 11). Furthermore, MYB28/HAG1 function is 

required for biosynthesis of both short- and long-chain Met-derived GSL. 

MYB29/HAG3 is a second regulator of aliphatic GSL biosynthesis. A defect in 

the MYB29/HAG3 gene caused predominantly a decrease in the content of short-

chain Met-derived glucosinolates (Tab. 2) and MYB29/HAG3 seems to be associated 

with the control of short-chain glucosinolates. Although the disruption of 

MYB29/HAG3 gene function resulted in a less pronounced effect on the 

glucosinolate profile compared to MYB28/HAG1, an accessory role for MYB29/HAG3 

in the regulation of aliphatic glucosinolates biosynthesis (without MeJa induction) is 

suggested.  

Analysis of the myb76/hag2 null mutant showed that MYB76/HAG2 was not 

significantly affecting the transcript level of aliphatic GSL biosynthetic genes and 

glucosinolate composition. Notably, lines over-expressing MYB76/HAG2 contained 

the lower amounts of total glucosinolates compared to MYB28/HAG1 or 

MYB29/HAG3 over-expressors and required a considerably high MYB76/HAG2 

transcript level (Fig. 8c; Fig. 10c; Tab. 2). Furthermore, Genevestigator digital 

northern database data (www.genevestigator.ethz.ch) and real-time RT-PCR 

analysis (Gigolashvili et al., 2008) indicated that the MYB76/HAG2 expression was 

generally much lower compared to the MYB28/HAG1 or MYB29/HAG3 expression in 

Col-O plants. Thus, MYB76/HAG2 is not able to contribute significantly to 

glucosinolate biosynthesis indicating its minor role under normal conditions. 

However, its contribution to the biosynthesis of aliphatic GSL along with its low 

expression level in wild-type plants and a weak co-expression value with the main 

aliphatic GSL biosynthetic genes (BCAT4, MAM1, MAML, CYP79F1/F2) may indicate 

that MYB76/HAG2 is involved in the regulation of aliphatic GSL biosynthesis only in 

concert and/or interaction with other transcription factors, e.g. MYB28/HAG1 or 

MYB29/HAG3.  

In addition, different sites of expression were demonstrated for the MYB/HAG 

regulators as revealed by the analysis of ProMYB28/HAG1:GUS, ProMYB76/HAG2:GUS 

http://www.genevestigator.ethz.ch/
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and ProMYB29/HAG3:GUS plants. For instance, the MYB76/HAG2 expression appeared 

to be very strong in the transition zone from root to shoot, flowers and secondary 

veins of leaves where expression of MYB28/HAG1 and MYB29/HAG3 was hardly 

detected. In contrast, MYB28/HAG1 and MYB29/HAG3 were expressed in young 

siliques, leaf trichomes and roots, where no expression of MYB76/HAG2 was found. 

Furthermore, similar expression pattern of MYB76/HAG2 with MYB28/HAG1 and 

MYB29/HAG3 indicates that MYB76/HAG2 will be able at least partially to 

complement the deficiency in MYB28/HAG1 or MYB29/HAG3 activity. 

 
 
 

4.5  MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 are induced by 
wounding and plant hormones (MeJa, glucose)  

 

Different environmental stimuli like herbivore attack, wounding and stress 

hormones are involved in the upstream control of several glucosinolate regulators 

(Yan and Chen, 2007). Several microarray data revealed strong responses of 

MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 to wounding or pathogen attack 

(http://www.atted.bio.titech.ac.jp/; Zimmermann et al., 2004). Indeed, analysis of 

ProHAG:GUS plants revealed that the expression of MYB28/HAG1, MYB29/HAG3 

and MYB76/HAG2 is induced by mechanical stimuli. This observation is similar to 

responses previously reported for indolic GSL regulators like IQD1, AtDof1.1, 

MYB51/HIG1 and aliphatic GSL biosynthesis genes like BCAT4, MAM1 and MAML. 

Interestingly, the expression of MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 was 

induced within 1-5 min after wounding and returned back to its original level in hours, 

indicating a very fast response upon mechanical stress in a transient manner (Fig. 

15). Notably, high expression level of MYB76/HAG2 is required to induce 

biosynthesis of aliphatic glucosinolates that can, however, be achieved upon 

wounding (Fig. 6c; Fig. 8c; Fig. 15). It is, therefore, obvious that MYB28/HAG1, 

MYB29/HAG3 and MYB76/HAG2 play an important role in the promotion of 

increased glucosinolate production, generating immediate and early responses upon 

biotic challenges.  

Several plant hormone signaling pathways are also involved in the specific 

regulation of MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 gene expression. 
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Genevestigator microarray data (https://www.genevestigator.ethz.ch/) analysis of 

ProHAG:GUS plants and real-time RT-PCR results clearly indicated a strong response 

of MYB28/HAG1 to glucose treatment (Fig. 14A, B). It has been shown previously 

that wounding or pathogen infection can modulate the carbohydrate status of plant 

tissues thereby changing the expression of pathogen-response genes. For instance, 

sugars were able to regulate the expression of the wound-inducible proteinase 

inhibitor II, lipoxygenase genes and pathogen-related PR1 and PR5 genes in a 

hexokinase-dependent or -independent manner (Johnson and Ryan, 1990; Sadka et 

al., 1994; Herbers et al., 1996; Xiao et al., 2000). Remarkably, a strong in silico 

response of MYB28/HAG1 to glucose treatment was previously shown for 

Arabidopsis seedlings (Li et al., 2006). This glucose-dependent expression of 

MYB28/HAG1 could be explained by the presence cis - glucose regulatory elements 

(e.g. AAACCCTAA, GTTAGGTT, and RCCGAC, Li et al., 2006) in the MYB28/HAG1 

promoter region. Thorough analysis of the MYB28/HAG1 promoter revealed the 

presence of several tandems of glucose up-regulatory elements, especially in the 3’-

UTR gene region. Together, MYB28/HAG1 function seems to be essential to 

maintain a basal level of aliphatic glucosinolate biosynthesis by integrating signals 

from carbohydrate availability. In other words, MYB28/HAG1 could be considered as 

a “housekeeping” regulator.  

Further observations indicated a positive response of MYB29/HAG3 to 

treatment with exogenous MeJa (Fig. 14D). Therefore, MYB29/HAG3 is suggested to 

be an important player in the MeJa-mediated production of glucosinolates in A. 

thaliana plants. Treatment with SA led to considerable downregulation of 

MYB28/HAG1 and MYB29/HAG3 transcription factors (Fig. 14C) indicating a 

competition between these signaling pathways (Cipollini et al., 2004). In contrast, the 

MYB76/HAG2 regulatory function is independent from MeJa, glucose, SA, and, thus 

a minor role for MYB76/HAG3 in the biosynthesis of aliphatic glucosinolate under 

non-stressed conditions is suggested. Notably, a treatment with ACC did not reveal 

any effects on MYB/HAG transcription. 
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4.6 Negative regulation of indolic glucosinolate biosynthesis by 
MYB/HAG transcription factors 

 

Interdependent control between different branches of glucosinolate biosynthesis 

has been suggested by several studies where blocking or restriction of the one class 

of glucosinolates causes a compensatory increase in the other class (Reintanz et al., 

2001; Hemm et al., 2003; Grubb and Abel, 2006; Yan and Chen, 2007). However, no 

clear evidence of a crosstalk at the level of GSL regulators has been provided so far.  

The results of trans-activation experiments conclusively show that 

MYB28/HAG1, MYB29/HAG3 and MYB76/HAG3 were able to repress the 

transcription of MYB34/ATR1, MYB51/HIG1 and MYB122/HIG2, i.e. regulators of 

indolic glucosinolate biosynthesis, indicating a negative crosstalk between the 

aliphatic and indolic regulators of subgroup XII (Fig. 17). These observations 

corresponded to metabolic data of strong MYB/HAG over-expression lines 

(Pro35S:HAG1-11 and Pro35S:HAG3-6) which is showed a higher content of aliphatic 

(Met-derived) glucosinolates but decreased levels of the main indolic glucosinolate 

I3M (Fig. 8a). Interestingly, over-expression of the positive regulators of indole 

glucosinolates like MYB51/HIG1, MYB34/ATR1 and IQD1 resulted in the repression 

of enzymes involved in biosynthesis of aliphatic glucosinolates (CYP79F1, CYP79F2 

and/or CYP83A1) in accordance with low levels of aliphatic glucosinolates (Levy et 

al., 2005; Gigolashvili et al., 2007b). It seems that a reciprocal negative feedback 

regulation is important for the balance between various types of glucosinolates. Also 

sulphur availability, as proposed by several microarray studies, seems to be an 

important element directing this balance (Hirai et al., 2003; Nikiforova et al., 2003; 

Hirai, 2005). Indeed, it has been shown that sulphate availability effects the 

expression of glucosinolate regulators like MYB34/ATR1, MYB28/HAG1, 

MYB29/HAG3 and biosynthetic genes like MAM1, CYP79F1, CYP79B2 etc in 

Arabidopsis plants (Maruyama-Nakashita et al., 2006; Hirai et al., 2007). Also specific 

isoforms of sulphate assimilation genes like ATP-sulfurilases and APS-kinases were 

regulated by MYB/HAG factors (Fig. 12; Fig. 21). However, the regulatory 

mechanisms controlling the homeostasis between glucosinolate biosynthesis and 

sulphur metabolism are unknown yet. 
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Figure 21. Scheme of a crosstalk between sulphate, aliphatic and indolic glucosinolate 
biosynthetic pathways (arrows indicate ↑ - upregulation and ↓ - downregulation of GSL and 
sulphur biosynthetic genes in strong MYB/HAG over-expression lines). 

 

 

 

4.7 MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 comprise a 
complex gene regulatory network in glucosinolate metabolism 

 

Similarities in MYB/HAG functions and co-expression of these three genes 

suggested that these regulators may act together to enhance biosynthesis of 

aliphatic GSL upon different environmental stimuli. A positive reciprocal feedback 

regulation between MYB28/HAG1, MYB29/HAG3 and MYB76/HAG3 transcription 

factors was observed in gain-of-function mutants using real-time RT-PCR analysis 

(Fig. 16a). 

Subsequently, these observations were confirmed in trans-activation 

experiments indicating a direct and positive interdependent regulation between 

MYB28/HAG1, MYB29/HAG3 and MYB76/HAG3 (Fig. 16 a, b). According to the 
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interaction data (Fig. 16c), the promoter of MYB28/HAG1 was not affected by over-

expression of one of the other two MYB/HAG regulators. On the other hand, 

MYB29/HAG3 and MYB76/HAG2 showed similar interaction patterns, both were 

induced by MYB28/HAG1 and both were activating each other (Fig. 16a, b; Fig. 22). 

Moreover, MYB76/HAG2 was shown to be activated by itself in trans (Fig. 16b), 

suggesting a specific role for MYB76/HAG2 in which it rather integrates signals from 

MYB28/HAG1 and MYB29/HAG3 regulators and seems to function as an enhancer in 

concert with the other MYB/HAG regulators to control biosynthesis of aliphatic GSL. 

Consequently, MYB28/HAG1 seems to be a main player in the regulation of this 

network working in concert with MYB29/HAG3 and MYB76/HAG2 leading to 

production of a wide range of aliphatic GSL in high amounts upon different biotic 

challenges.  

Furthermore, experimental data indicated that MYB/HAG transcription factors 

are involved in the interplay with other regulators (Fig. 17; Fig. 18; Fig. 19). According 

to the microarray data (http://www.atted.bio.titech.ac.jp/; Toufighi et al., 2005) 

MYB/HIG and MYB/HAG regulators were highly co-expressed with WRKY25 and 

WRKY33 genes which are known as key regulatory components of defence-related 

genes in response to microbial infection. The main function of WRKY25 and 

WRKY33 is suggested in the MPK4 signaling pathway that represses SA-mediated 

and activates MeJa/ACC-mediated defence responses to microbial pathogens 

(Zheng et al., 2006; Zheng et al., 2007). The promoter analysis of MYB/HAG and 

MYB/HIG regulators indicated a presence of the cis-acting element (C/TTGACC/T) 

known as W-box, which is specifically recognized by WRKY proteins. Results of 

trans-activation experiments indicated that WRKY25 was able to specifically activate 

the promoter of MYB29/HAG3. In addition, it has been shown that MYB29/HAG3 is 

induced by MeJa and repressed by SA treatments. Therefore, it is suggested that 

WRKY25 acts in concert with MYB29/HAG3 to activate MeJa-mediated production of 

aliphatic glucosinolates upon pathogen infection. Moreover, based on the high co-

expression of WRKY25 and its homologue WRKY33 with MYB51/HIG1, one may 

also expect an interplay between these regulators in MeJa-induced production of 

indolic glucosinolates. However, further studies are required to elucidate the role of 

WRKY25 and WRKY33 in the interplay with MeJa-induced regulators of aliphatic and 

indolic glucosinolate pathways (Fig. 22). 

The crosstalk between sulphur metabolism and glucosinolate biosynthesis was 

studied with respect to MYB28/HAG1 and SLIM1 (sulphur limitation1). SLIM1 
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controls the activation of sulphate acquisition and glucosinolates degradation upon 

sulphur deficient conditions (Maruyama-Nakashita et al., 2006). In addition, 

MYB/HAG regulators are involved in the regulation of sulphate assimilation genes 

indicating a possible interaction with SLIM1 under low sulphate conditions. According 

to the real-time RT-PCR data, the expression of MYB28/HAG1 is considerably 

repressed in cultured Arabidopsis cells over-expressing SLIM1 (Fig. 19). This 

observation corresponded to previously reported data that MYB34/ATR1 and several 

indolic and aliphatic glucosinolate biosynthetic genes were downregulated by SLIM1 

in Arabidopsis roots indicating its negative effect on glucosinolate biosynthesis upon 

sulphur deficiency. In brief, SLIM1 expression is induced under low sulphur 

conditions leading to the downregulation of MYB/HIG and MYB/HAG regulators and a 

reduced biosynthesis of GSL. On the other hand, in order to increase the sulphur 

pool for primary metabolism, SLIM1 was suggested to activate glucosinolate 

breakdown processes. On the whole, the interaction of MYB/HAG regulators with 

SLIM1 (Fig. 19) and sulphate assimilation (Fig. 12) genes revealed a novel regulatory 

mechanism to control aliphatic GSL biosynthesis in response to changes in the 

nutritional status. 

However, further studies are required to unravel how MYB28/HAG1, 

MYB29/HAG3 and MYB76/HAG2 are regulated and/or interacting with signaling 

components of other biosynthetic pathways, encompassing a complex regulatory 

network in production of aliphatic GSL under different environmental conditions (Fig. 

21; Fig. 22).  

 

 

 

4.8 Functional model of MYB28/HAG1, MYB29/HAG3 and 
MYB76/HAG2 transcription factors in plants protection against 
herbivores or pathogens 

 

The function of MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 transcription factors 

can be schematically represented using the following model: (i) input signals (biotic 

stress or wounding) induce the production of MYB/HAG transcription factors; (ii) 

signal processing, i.e. activation of MYB/HAG by themselves, followed by 



Discussion___________________________________________________________ 

   77 

transcriptional activation of target GSL pathway genes by MYB/HAG factors; (iii) 

output, i.e. increase in the content of glucosinolates and changes the in plant 

resistance to herbivores and pathogens (Fig. 23). 

 

 
 

Figure 22. Crosstalk between transcription regulators controlling aliphatic GSL biosynthesis, 
different signaling pathways and other regulators (  - activation; ⊥ - repression). Question 
marks possible interaction candidates.  
 

 

Different pathogen-related signaling pathways (wounding, MeJa, SA and 

glucose) are involved in regulation of MYB/HAG transcription factors. Expression of 

MYB28/HAG1 and MYB29/HAG3 in leaf trichomes and very rapid induction of all 

MYB/HAG factors within 1-5 min after wounding revealed their functions in early 

defence-responses to biotic challenge (Clauss et al., 2006). 

It has recently been reported that plants respond to insect and herbivore attacks 

by accumulating higher amounts of glucosinolates (Brader et al., 2006b; Bruce et al., 

2008). As some glucosinolates are constitutively present and production of others 

can be induced in response to specific pathogens or herbivores, the interdependent 

regulation among MYB/HAG factors may allow to enhance incoming signals and 

increasing the production of specific GSL. Therefore, an elevated level of aliphatic 

GSL may reduce the performance of generalist herbivores and/or pathogens as 

revealed by weight-gain experiments; MYB28/HAG1 over-expression plants 
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accumulated higher contents of aliphatic glucosinolates and reduced weight-gain of 

generalist herbivore Spodoptera exigua larvae feeding on these plants (Fig. 20). In 

addition, the role of MYB29/HAG3 regulator is probably linked to an increase of plant 

resistance upon microbial infection together with WRKY25. Thus, evidence is 

presented that functions of MYB/HAG regulators are important for the biosynthesis of 

aliphatic GSL and plant resistance against generalist herbivores and pathogens. 

 

 
 

Figure 23. The role of MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 transcription factors 

in plant defence against herbivores. 
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6.  Appendix 
 

Primers for Gateway cloning 
 

Generation of CDS entry clones 

Primer name 
AGI 
number 

Gene 
name Primer sequence 5'-3' 

attB1_GW - - gggacaagtttgtacaaaaaagcaggcttc 
attB2_GW - - gggaccactttgtacaagaaagctgggtc 
GW-At5g614020 Fw At5g61420 MYB28 ATGTCAAGAAAGCCATGTTGCGTCGG 
GW-At5g614020 RV At5g61420 MYB28 TATGAAATGCTTTTCAAGCGAGTCTGAG
MYB28_RNAi_1_Fw_attB1  At5g61420 MYB28 TTAATGGCTTCACTGAGCAGATTC 
MYB28_RNAi_1_Rv_att B2  At5g61420 MYB28 TGATGAGACTTCTTGGGAAACATC 
MYB28_RNAi_2a_Fw_attB1 At5g61420 MYB28 AATTACCGAAGTGACTCGTCTAAG 
MYB28_RNAi_2a_Rv_attB2 At5g61420 MYB28 ACTACTCTGAAGAACCCTTTGTAG 
MYB29_ attB1_gene_Fw At5g07690 MYB29 ATGTCAAGAAAGCCATGTTGTGTG 
MYB29_ attB2_gene_Rv At5g07690 MYB29 TATGAAGTTCTTGTCGTCGTAATC 
pENTR-At5g07700 FW At5g07700 MYB76 CACCATGTCAAAGAGACCATATTGTATC
pENTR-At5g07700 RV At5g07700 MYB76 TAAGAAGTTCTTCTCGTCGGAATCTT 

 
Generation of promoter’s entry clones 

Primer name AGI number 
Gene 
name Primer sequence 5'-3' 

pMAM1_Fw_attB1 At5g23010  MAM1 TTAGTATCCAATCCCACAGCACTG 
pMAM1_RV_attB2 At5g23010  MAM1 CGTGTCGAATACACGCACATAGTT 
pMAML_Fw_attB1 At5g23020 MAML ATATTTTTTTTGTATGAATGTAAACC 
pMAML_RV_attB2 At5g23020 MAML CTGCCTGGCAATCTCTAACTTCTGC 
pCYP79F1_FW_attB1  At1g16410 CYP79F1 GAATTAGACTACATGACACCAACAAGA 
pCYP79F1_RV_attB2  At1g16410 CYP79F1 GGAGAGGATAAAGACTAGTAGGATGTGA
pCYP79F2_FW_attB1  At1g16400 CYP79F2 TGATCTATTCAACAATGACTCATG 
pCYP79F2_RV_attB2  At1g16400 CYP79F2 ACCAGTGCTAAATGAGACAAAAC 
pCYP83A1_FW_attB1  At4g13770 CYP83A1 CAGACGCAAAGCAACCACACAACTTAC 
pCYP83A1_RV_attB2  At4g13770 CYP83A1 TTGGTAGAGGAAGAAAAGGAGAACC 
pC-S_FW_attB1  At2g20610 C-S lyase TTAGCTGCTCACTGACTT 
pC-S_RV_attB2  At2g20610 C-S lyase CGTTATGGGCTCTTTCTC 
promMYB28_FW At5g61420 MYB28 ATGGGACCGTTTAAGTAGGTTGACAT 
promMYB28_RV At5g61420 MYB28 GTTGCCACGAGAAGCATGAA 
promMYB29_attB1_F At5g07690 MYB29 GTGAATGAAGGAGATTCTACGTACGC 
promMYB29_attB2_R At5g07690 MYB29 AGAGATGAGTTTCTTGTCTTCTTCGG 
promMYB76_attB1_F At5g07700 MYB76 ACAGTCTGAGCCATGTTACCAAAA 
promMYB76_attB2_R At5g07700 MYB76 CACACCGTTTCAGCCCTAAACT 
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Sequencing primers 
Primer name AGI number Gene name Primer sequence 5'-3' 
Intron_pJ17_start_RV  - - AGAGAGGCTTACGTTAGCAGAGGA 
Intron_pJ17_end_FW  - - GAAGTCTGAACAATTCTTGGGATTG 
pC-S_mid1_fw At2g20610 C-S lyase ACTTCCACCTTTCTCAATGTCAAAC 
pC-S_mid1_rv  At2g20610 C-S lyase GTTGGGAATATGTGTCAAAAACCTG 
pC-S_mid2_fw  At2g20610 C-S lyase TGATTCAAGAAGCTGGTGTAGTTCA 
Prom_MYB28mid1_FW At5g61420  MYB28 CATAGAAAGCTTCAACACGAAAACC 
Prom_MYB28mid2_FW At5g61420 MYB28 TTAGGTTGAGAGAGTCAAAGAGGGAA 
Prom_MYB28mid2_RV At5g61420 MYB28 CATGCTCCTTTCTTCAAGCCTTCT 

 

Primers for real-time RT-PCR 
Primer name AGI number Gene name Primer sequence 5'-3' 
RL_sh_MAM1_Fw  At5g23010  MAM1 GAGAAATTGAACGCTGTCTTCTCAC 
RL_sh_MAM1_Rv  At5g23010 MAM1 AGCCGTTAGACTTTAAACCGTTAGC 
RL_sh_MAML_Fw  At5g23020  MAML TTCGTTACTTCTCACATCGTCGAG 
RL_sh_MAML_Rv  At5g23020 MAML GGAGCAACATGAGACGAACAGAGT 
RL_sh_CYP79F1_Fw  At1g16410 CYP79F1 CCATACCCTTTTCACATCCTACTAGTCT 
RL_sh_CYP79F1_Rv  At1g16410 CYP79F GTAGATTGCCGAGGATGGGC 
RL_sh_CYP79F2_Fw  At1g16400 CYP79F2 CATGCTTTCAAATCTTACTAGGATTTATCG 
RL_sh_CYP79F2_Rv  At1g16400 CYP79F2 GTAGATTGCCGAGGATGGGC 
RL_sh_CYP83A1_Fw  At4g13770 CYP83A1 TTCAAGAGGTTGTCAATGAGACGC 
RL_sh_CYP83A1_Rv  At4g13770  CYP83A1 CTACAATATCCAAGATGACGGCTTT 
RL_sh_AtSt5b_Fw  At1g18590 AtSt5b GGAATCCAAAACCATAAACGACG 
RL_sh_AtSt5b_Rv  At1g18590 AtSt5b CGGATCTTTTGGTCTCCAGCC 
RL_sh_AtSt5c_Fw  At1g74090 AtSt5c CCCTACCGAGTCACGACGAGA 
RL_sh_AtSt5c_RV  At1g74090 AtSt5c GGTAGCCACCAGTAACCACCATACT 
RL_MYB28sh_Fw At5g61420 MYB28 TCCCTGACAAATACTCTTGCTGAAT 
RL_MYB28sh_Rv At5g61420 MYB28 CATTGTGGTTATCTCCTCCGAATT 
RNAi_M28_contrFw1 At5g61420 MYB28 CACTTCCATCAAAGATATATTGTCGGC 
RNAi_M28_contRv1 At5g61420 MYB28 GGTCAAGAAGATAATTTGACCATCCCT 
RL_RNAi_M28_contF2 At5g61420 MYB28 TTATGTCCGATGTTTCCCAAGAAGT 
RL_RNAi_M28_contR2 At5g61420 MYB28 AATGCTTTTCAAGCGAGTCTGAGT 
RL_MYB29sh_Fw At5g07690 MYB29 GAAATATGATGCTTCCTTGAGCTCC 
RL_MYB29sh_RV At5g07690 MYB29 ACGGTGTAGAGCTGATCAAGGTTC 
RL_MYB76sh_Fw At5g07700 MYB76 ACGTTTTGGACGATCGAGCTCTAC 
RL_MYB76sh_RV At5g07700 MYB76 TGATTGAGAGAACGAGTCTGGGAGT 
SLIM1_FW_sh At1g73730 EIL3 GAACAACCTGAAGCTCAACAAAGA 
SLIM1_RV_sh At1g73730 EIL3 AGGGATTGTAGAAGTTGTACCCTGA 

Actin2_FW At3g18780 ATGGAAGCTGCTGGAATCCAC 
Actin2_RV At3g18780 TTGCTCATACGGTCAGCGATG 
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7. Abbreviations 
 
 
2, 4-D     dichlorophenoxyacetic acid 
4MTOB   4-methylthio-2-oxobutanoic acid 
3MSOP   3-methylsulfinylpropyl glucosinolate 
4MSOB    4-methylsulfinylbutyl glucosinolate 
4MTB     4-methylthiobutyl-GS 
5MSOP   5- methylsulfinylpropyl glucosinolate 
8MSOO    8-methysulfinyloctyl glucosinolate 
35S     35S promoter of the cauliflower mosaic virus 
 
aa     amino acids 
ACC     1-aminocyclopropane-1-carboxylic acid, ethylene 
precursor 
AGI     Arabidopsis Genome Initiative number 
AhR     arylhydrocarbon receptor 
Amp R     ampicillin 
ami RNA   artificial micro RNA 
AOP     a-ketoglutarate-dependent dioxygenases 
APS    adenosine phosphosulfate 
A. thaliana    Arabidopsis thaliana 
ATPS    ATP sulfurilases 
ATR     altered tryptophan regulation 
AtST     A. thaliana sulfotransferase 
A. tumefaciens   Agrobacterium tumefaciens 
 
BCAT    brain-chain aminotranferase 
bHLH     basic helix-loop-helix 
bp     base pairs 
  
°C     centigrade 
CaMV    cauliflower mosaic virus 
CarbR     carbenicillin 
cDNA     complementary DNA 
CDS     coding sequence 
ChlorR    chloramphenicol resistance 
cm     centimetre 
cPCR    colony PCR 
Col-0     Arabidopsis ecotype Columbia 0 
CYP     cytochrome P450 monooxygenase 
 
DNA    desoxyribonucleic acid 
dd     double distilled 
DEPC    diethylpyrocarbonate 
DMF     dimethylformamide 
DMSO    dimethyl-sulfoxide 
DNA    ribonucleic acid 
dNTPs    deoxynucleotides 
DTT     di-thiotreitol 
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E. coli    Escherichia coli 
EDTA     ethylendiaminetetraacetic acid 
EPS     myrosinase epithiospecifier proteins 
ET     ethylene 
 
GentR    gentamycin 
GFP    green fluorescent protein 
GSL    glucosinolate 
GST     glutathione-S-transferase 
GT     glucuronosyl transferases 
GUS     β-glucuronidase 
gDNA    genome DNA 
gPCR    genome PCR 
 
HEPES    N-2-Hydroxyethylpiperazin-N.-2-ethansulfonic acid 
HAG     high aliphatic glucosinolate regulator 
HIG     high indolic glucosinolate regulator 
HPLC     High-performance liquid chromatography 
HygR    hygromycin 
 
IAA     indole-3-acetic acid 
IAOx     indole-3-acetaldoxime 
ITC    isothiocyanates 
I3M    indole-3-ylmethyl glucosinolate 
KanR     Kanamycin 
kDa    kilo Daltons 
kg     Kilograms 
L    Liter 
LB    Luria-Bertani medium 
Ler    Arabidopsis ecotype Landsberg erecta 
 
M     molar 
MAM    methiolthiomalate synthase 
MeJA    methyl jasmonate 
MES     4-morpholinoethan-sulphonic acid 
Met    methionine 
mg     milligram 
μF     micro Faraday 
μg    microgram 
μl     microlitre 
min     minute 
mL     millilitre 
mM     millimolar 
mRNA    messenger RNA 
MS     Murashige and Skoog medium 
MUG     4-methylumbelliferyl-β-D-glucuronide 
 
NrF2     NF-E2 related factor 2 
N. benthamiana   Nicotiana benthamiana 
ng     nanogram 
Ω     Ohm 
ORF     open reading frame 
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PAPS    phosphoadenylyl sulphate 
PCR     polymerase chain reaction 
PEG     polyethylenglycol 
 
QTL     quantitative trait loci 
QR     quinone reductase 
 
RifR    rifampicin 
RNA     ribonucleic acid 
rpm     revolutions per minute 
RT     room temperature 
RT-PCR    reverse transcribed PCR 
 
SA     salicylic acid 
S. exigua    Spodoptera exigua 
SD     standard deviation 
sec     seconds 
SpectR    spectinomycin 
ST     sulfotransferase 
SUR1     superroot1 
TAE     Tris-Acetate/EDTA 
T-DNA    Transfer DNA 
TE     Tris/EDTA 
TGG     β-thioclucoside glycohydrolase (myrosinase) 
Tris     tris-(hydroxymethyl)-aminomethan 
U     units (enzymatic) 
UPLC    Ultra-performance liquid chromatography 
UGT     S-glucosyl transferase 
v/v     volume/volume 
w/v     weight/volume 
WT     wild-type 
X-Gluc    5-bromo-4-chloro-3-indoly-β-D-glucoronid acid 
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Abstract 
 

Glucosinolates (GSL) are nitrogen- and sulphur-rich natural plant products that 

serve as chemoprotective compounds in plant biotic defence reactions against 

herbivores and pathogens. GS also function as flavour compounds and exhibit strong 

anticancerogenic properties beneficial to human health. Although considerable 

progress has been made concerning the biosynthesis of glucosinolates, little is 

known how plants regulate the synthesis of these metabolites. The MYB28, MYB29 

and MYB76 (referred to as HIGH ALIPHATIC GLUCOSINOLATE 1, 3 and 2) 

transcription factors were identified as novel regulators of glucosinolate biosynthesis. 

Molecular and biochemical characterization of Arabidopsis gain- and loss-of-function 

mutants revealed a significant correlation between the MYB28/HAG1, MYB29/HAG3 

and MYB76/HAG2 transcript levels and the accumulation of aliphatic Met-derived 

glucosinolates. MYB28/HAG1, MYB29/HAG3 and MYB76/HAG2 over-expression 

caused a considerable increase in the level of aliphatic glucosinolates due to the 

specific activation of genes involved in aliphatic glucosinolate biosynthesis. 

Disruption of MYB28/HAG1 and MYB29/HAG3 gene functions caused a dramatic 

decrease in the content of aliphatic glucosinolates, whereas myb76/hag2 loss-of-

function mutants showed no changes in glucosinolate profiles except for the slight 

decrease in the level of 4MSOB glucosinolate. Analysis of the ProHAG:GUS activity 

revealed similar expression patterns in generative organs and rosette leaves of 

Arabidopsis plants, covering the main sites of aliphatic glucosinolate accumulation 

and overlapping with the expression of glucosinolate biosynthetic genes. Mechanical 

stimuli transiently induced MYB/HAG expression demonstrating their role in early 

plant responses to biotic stresses. Expression of MYB28/HAG1 was clearly induced 

by glucose, indicating a novel signaling mechanism for the integration of 

carbohydrate availability in glucosinolates production, whereas MYB29/HAG3 was 

shown to be involved in MeJa-induced glucosinolate biosynthesis. Notably, 

MYB76/HAG2 expression was independent from plant elicitors and seems to play an 

accessory role in glucosinolate biosynthesis. Besides, MYB28/HAG1 over-expression 

reduced performance of the generalist lepidopteran herbivore Spodoptera exigua in 

weight-gain experiments. Finally, MYB28/HAG1, MYB76/HAG2 and MYB29/HAG3 

reciprocally trans-activate each other and comprise a complex regulatory network in 
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concert with other regulators (MYB51, MYB34, MYB122, WRKY25 and SLIM1) to 

control glucosinolate biosynthesis in response to different environmental stimuli. 
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Kurzzusammenfassung 
 

Glucosinolate (GS) sind natürliche stickstoff- und schwefelreiche Pflanzenstoffe, 

die als chemoprotektive Verbindungen an pflanzlichen Abwehrreaktionen gegen 

Herbivoren und Krankheitserreger beteiligt sind. Weiterhin sind Glucosinolate 

geschmacksgebende Verbindungen und weisen hochgradig antikanzerogene 

Eigenschaften auf, die positive Auswirkungen auf die Gesundheit des Menschen 

haben. Obwohl in den letzten Jahren deutliche Fortschritte in der Glucosinolat-

Forschung erzielt wurden, sind die regulatorischen Mechanismen der Biosynthese 

bisher weitgehend unbekannt. Die Transkriptionsfaktoren MYB28, MYB76 und 

MYB29 (oder HIGH ALIPHATIC GLUCOSINOLATE) wurden als neue Regulatoren 

der aliphatischen Glucosinolatbiosynthese identifiziert. Die molekulare und 

biochemische Charakterisierung von Arabidopsis gain- und loss-of-function-Mutanten 

zeigten einen signifikanten Zusammenhang zwischen den MYB28/HAG1-, 

MYB29/HAG3- und MYB76/HAG2- Transkriptionsniveaus und einer Akkumulation an 

aliphatischen, über Methionin synthetisierten Glucosinolaten. Die Überexpression 

von MYB28/HAG1, MYB76/HAG2 oder MYB29/HAG3 verursachte einen deutlichen 

Anstieg des Gehaltes aliphatischer Glucosinolate infolge der spezifischen Aktivierung 

der an der Biosynthese beteiligten Gene. Ein Ausschalten der MYB28/HAG1 und 

MYB29/HAG3 Genfunktion resultierte in einem verringerten Gehalt aliphatischer 

Glucosinolate, während Pflanzen mit fehlender MYB76/HAG2-Aktivität außer einem 

etwas niedrigeren 4MSOB - Gehalt keine Änderungen im Glucosinolatprofil zeigten. 

Die Analyse der ProHAG:GUS-Aktivität in Arabidopsis zeigt vergleichbare 

Expressionsmuster in den generativen Organen und in Rosettenblättern, welche die 

wichtigsten Speicherorte aliphatischer Glucosinolate sind. Mechanische Stimuli wie 

Verletzung induzierten eine kurzfristige HAG-Expression und Weizen damit auf eine 

Funktion der MYB/HAG Faktoren in der frühen Antwort auf biotischen Stress hin. 

Eine Induktion der MYB28/HAG1-Expression durch Glucose deutet auf einen neuen 

regulatorischen Mechanismus zur Einbindung der Kohlenhydratverfügbarkeit in der 

Glucosinolatbiosynthese hin, während MYB29/HAG3 an der MeJa-induzierten 

Glucosinolat-biosynthese beteiligt ist. Die Expression von HAG2 war von pflanzlichen 

Elizitoren unabhängig und scheint eine Helferrolle in der Glucosinolatbiosynthese zu 

übernehmen. Überdies konnte gezeigt werden, dass eine MYB28/HAG1-

Überexpression das Wachstum des universellen Herbivoren Spodoptera exigua 
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verringert. MYB28/HAG1, MYB76/HAG2 und MYB29/HAG3 wirken als gegenseitige 

Transaktivatoren und bilden im Zusammenspiel mit anderen Regulatoren (MYB51, 

MYB34, MYB122, WRKY25 und SLIM1) ein komplexes Netzwerk, welches die 

Glucosinolatbiosynthese in Reaktion auf verschiedene Umweltstimuli reguliert. 
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