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Abstract 

 

Nonsense mediated decay associated pioneer round of translation as source for 

peptides for presentation by MHC class I  

 

Nonsense mediated decay (NMD) plays a critical role in the mRNA quality control 

mechanism protecting cells from aberrant mRNAs containing premature termination 

codons (PTC). Recognition of these PTCs requires a pioneer round of translation prior to 

the bulk translation of mRNAs for cellular protein synthesis, therefore producing a pool 

of immediate early peptides. 

Effectiveness of the immune surveillance system is insured by the timely and complete 

MHC I mediated presentation of a pool of precisely cleaved peptides representing all 

cellular proteins. So far sources of antigenic peptides are known to include regular 

degraded proteins, defective ribosomal products (DRiPs) and cryptic peptides starting 

with a non-AUG start codon. Here the contribution of peptides originating from the 

pioneer translation to the pool of peptides presented by MHC I molecules is described. 

Depletion of the essential NMD factor hUpf1 as well as the pioneer translation initiation 

complex factors CBP80 and CBP20 reveal impaired MHC I antigen presentation. In 

sharp contrast, targeted interference with bulk translation without effecting pioneer 

translation permits antigen presentation. Taken together these findings put products of the 

pioneer round of translation into an important position as novel source for antigenic 

peptides and reveal a new relationship between NMD and immune surveillance. 

 



The most beautiful thing we can experience is the mysterious. It is the source of all true 
art and all science. He to whom this emotion is a stranger, who can no longer pause to 
wonder and stand rapt in awe, is as good as dead: his eyes are closed. 

 
Albert Einstein 
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 1 

 1. Introduction       

 

The first part of the introduction starts with a bird’s view of the immune system 

providing an overview of the recognition of pathogens and the different layers of defense 

against them. It will focus on the generation, processing and presentation of peptide 

sequences in adjunction to the Major Histocompatibility Complex. The second part will 

shine light on another surveillance mechanism of the cell, Nonsense Mediated Decay, 

insuring the integrity of the genetic information for protein translation. 

This study in its entirety will then demonstrate the interrelatedness and synergies of these 

two biological systems. 

 

 

1.1 The immune system  

 

Virtually all organisms have developed elaborate defense mechanisms to recognize and 

destroy pathogens. Simple unicellular organisms as well as complex eukaryotes were 

faced with the same central problem of immunology: the accurate, efficient and timely 

distinction between self and non-self structures. Within the evolution of vertebrates the 

immune recognition acquired additional levels of complexity, which can be divided into 

two major arms.  

The innate immune system as the evolutionary oldest part consists of several mechanisms 

including humoral defense, mucosal barriers and inflammation. It further encompasses 

germ line encoded pattern recognition receptors with the ability to detect structures 
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common to multiple groups of pathogens. In mammals the Toll-like receptors (TLR), 

originally discovered in Drosophila melanogaster (Anderson, Bokla et al. 1985; 

Anderson, Jurgens et al. 1985), take a central role in detecting microbial molecules. This 

group of transmembrane receptors bind to highly conserved features of pathogens 

including double stranded RNA from viruses and lipopolysaccharid (LPS), liptoteichacid 

(LTA), flagellin and unmethylated CpG DNA from bacteria (Medzhitov and Janeway 

1997). They represent the trigger of a signaling cascade activating multiple genes 

controlling the function of the complement system, the natural killer (NK) cells, cytokine 

secretion, apoptosis and phagocytosis. While the innate immune system can rapidly and 

successfully clear the organism from many infections, it is closely linked to the second 

line of defense – the adaptive immune system. Particularly NF-κB mediated activation of 

the interferon response serves as bridge between innate and adaptive defense (Barton and 

Medzhitov 2003). Interferon type I, consisting of INF α and β and the less characterized 

ε, κ, ω, δ and τ, is mainly expressed in virus infected cells. Interferon type II only 

comprises of one cytokine, INF γ. It takes a central role in activating the major 

histocompatibility class I and class II (MHC) pathway, the proteasome, apoptosis, natural 

killer cells and macrophages as well as inducing more than 200 other genes (Boehm, 

Klamp et al. 1997; Kloetzel 2004). 
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1.1.1 Adaptive immunity 

 

The adaptive immune system establishes immunological memory by recognizing 

previously encountered antigens and mounting a highly targeted immune reaction. 

It is composed of two arms, the humoral and cell mediated immune response. While both 

B-lymphocytes and T-lymphocytes have their origin in the hematopoietic stem cells of 

the bone marrow, their functions are highly specialized. The receptors expressed on the 

large and very diverse set of B-cells recognize pathogens in the extracellular milieu and 

induce defense through the secretion of antibodies. Pathogens that escape extracellular 

surveillance and that enter host cells become targets for cytotoxic CD8 T-lymphocyte 

detection and destruction. Host cells display antigens, short peptide sequences 

representing virtually all sources of protein originating from self or foreign structures 

inside the cell. Major histocompatibility complex class I (MHC I) molecules serve as 

crucial interaction partners ensuring the binding, conformation and integrity of the 

peptides for display to CD8 T-lymphocytes. In order for the antigen presentation pathway 

to create a complete and up to date “inventory of the cell” on its surface, multiple steps of 

a complex process have to be continuously and precisely orchestrated. Proteins and 

polypeptides are channeled through chaperones, cleaved by the proteasome and several 

proteases in the cytosol, transported by the transporter associated with antigen 

presentation (TAP), edited in the ER, loaded to MHC class I molecules and finally 

displayed on the cell surface for CD8 T-lymphocyte screening. These subsequent steps of 

the antigen presentation pathway will be discussed in detail. 
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1.1.2 The Major Histocompatibility Complex class I  

 

One of the most diverse proteins, MHC class I molecules are encoded in a large genomic 

region of the human chromosome 6 (chromosome 17 in mice) together with about 140 

other genes including MHC II, nonclassical MHCs and several other components of the 

immune system. Their discovery and initial description by George Davis Snell, Baruj 

Benacerraf and Jean Baptiste Dousset represents one of the hallmarks of modern 

immunology (Snell 1992). The biological significance was discovered by Zinkernagel 

and Doherty when observing that virus induced CD8 T-cells recognize virus infected 

cells in a MHC class I restricted way (Zinkernagel and Doherty 1974). MHC class I 

molecules consist of a membrane spanning 45 kDa α chain and a non covalently 

associated invariant 12 kDa β2m microglobulin chain. The alpha chain has three domains 

α1, α2 and α2 with the peptide binding groove positioned between α1 and α2. Each MHC 

class I molecule binds to a spectrum of different peptides consisting of 8 to 10 amino 

acids. The human leukocyte antigen (HLA) genes consist of HLA A, B and C as well as 

the non-polymorphic HLA E, HLA F, HLA G. Mouse MHC class I molecules have a 

distinct nomenclature with major antigens H-2K, D and L. A polymorphism with 

hundreds of alleles for each locus creates a remarkable diversity of expressed MHC class 

I molecules between individuals. Variations in HLA allele expression are a major 

determinant for susceptibility for many infections, tumor progression, auto immune 

diseases and transplantation tolerance (Nolan, Gaudieri et al. 2006). While MHC class I 

molecules are expressed in almost all nucleated cells in order to insure complete 

surveillance and protection from infections and potentially harmful mutations their 
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expression level varies considerably. Lymphocytes show relatively high expression levels 

of around 5 x 105 MHC class I molecules per cell in comparison to fibroblast, liver and 

muscle cells with low expression. Some neuron and sperm cells have almost undetectable 

levels of MHC class I surface expression.  

 

 

1.1.3 The MHC class I - peptide interaction: a perfect match 

 

Allelic variation creates hundreds of different MHC class I molecules but it is no match 

for the level of diversity added by the peptides. The interface between the MHC class I 

molecule and the peptide has to achieve an extraordinary task therein: binding to a huge 

array of different peptides from virtually all self and foreign protein sources while 

retaining the ligand on the cell surface and ensuring access for the T-cell receptor (TCR) 

for recognition. A first insight into the MHC class I peptide interface was gained when 

crystallographic structures of the MHC became available. The α1 and α2 chains each 

contribute four strands of an antiparallel β-sheet and a long interrupted helix to built an 

approximately 30 Å long and 12 Å wide peptide binding groove (Madden 1995; Rudolph, 

Stanfield et al. 2006). Particularly the residues pointing inside this groove comprise high 

variability enabling to interact with a multitude of ligands. In contrast to the MHC class II 

binding grove both ends are closed by a set of highly conserved residues limiting the 

maximum length of ligand chains. The MHC class I molecules are only stable with a 

bound peptide. Eluting peptides from MHC class I molecules and subsequent sequencing 

helped to define conserved and flexible residues of the peptide ligands and to create 
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valuable bioinformatics tools for antigen sequence analysis (Falk, Rotzschke et al. 1991). 

One or two positions p2, p3 and the p9 C-terminus are usually highly conserved anchor 

residues ensuring a stable interaction with the MHC class I molecule. This leaves high 

flexibility for the remaining six or seven residues creating diversity in the magnitude of 

108 different peptides (Shastri, Schwab et al. 2002).While the vast majority of peptides 

are between 8 and 10 amino acids in length some exceptions due to bulging and 

extension over the peptide groove have been described (Fremont, Matsumura et al. 1992; 

Collins, Garboczi et al. 1994; Speir, Stevens et al. 2001). Finally it should be noted that 

MHC class I molecules are not just passive recipients of their ligands but rather actively 

involved in their generation. In what is called the “Rammensee-Paradox” two contrary 

ideas propose either the rapid generation and protection of peptides exclusively in the 

cytosol or the binding and subsequent trimming of peptides with MHC class I molecules 

acting as templates in the ER (Shastri, Schwab et al. 2002). Recent evidence points the 

way to common ground of these hypotheses with MHC class I molecules binding to 

suitable peptides and providing protection from further degradation together with 

additional trimming to finalize the peptide in the ER (Kanaseki, Blanchard et al. 2006). 
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1.1.4 Origins of antigenic peptides presented by MHC class I molecules 

 

1.1.4a Defective Ribosomal Products (DRiPs) 

 

The efficiency of the MHC class I immune surveillance depends on the complete, 

continuous and rapid presentation of virtually all self and foreign sources of peptides. For 

a long time antigenic peptides have been thought to predominantly originate in 

conventional cellular proteins being degraded according to their normal half live (Moore, 

Carbone et al. 1988). This concept was initially supported by findings correlating the 

protein stability and degradation to the rate of cell surface presentation for at least some 

particular proteins (Grant, Michalek et al. 1995; Sijts and Pamer 1997). Cellular proteins 

have a half -life ranging from minutes to several days with an estimated average life span 

of 10 hours before being degraded and becoming potential sources of antigen 

presentation. Within the last 10 years it became more and more clear that antigen 

presentation is often closely linked to new synthesis of polypeptides (Yewdell and 

Nicchitta 2006) . Evidence from several studies suggests that 30% or more of newly 

synthesized proteins are directly funneled into destruction through the interplay of the 

proteasome and several peptidases. Several hypotheses have been postulated to explain 

the fast degradation of these polypeptides with defective ribosomal products (DRiP’s) 

being the most prominent concept. This idea suggests that many newly generated 

polypeptide chains cannot fold to their correct three dimensional confirmation within a 

certain time frame. The reason for the inability of these peptide chains to achieve their 

correct tertiary structure has been target of much speculation. Alternative reading frames 
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or problems in the mRNA generation, protein biosynthesis, translation termination, sub-

cellular targeting or assembly with subunits and folding factors have been proposed.  

Further it has been observed that the generation of antigenic peptides is independent of 

the stability of endogenously synthesized peptides (Goth, Nguyen et al. 1996). Therefore 

not the normal protein turnover but a certain subset it is relevant for antigen presentation. 

Additionally a set of potent chemical inhibitors of various stages of protein biosynthesis 

played a crucial role in elucidating the direct relationship between translation and 

antigenic peptide generation. Several previous studies as well as experimental data herein 

narrowed down the time required for translation of many antigenic peptides to less than 

10 minutes (Schubert, Anton et al. 2000). Particularly in the case of viral evasion of a 

cell, fast availability of antigens from immediate early gene products as well as of often 

long lived coat proteins becomes crucial for efficient host defense. Taken together 

monitoring protein synthesis as opposed to cellular protein turn over simply makes 

immunological sense. 

 

 

1.1.4b Rapidly degraded Products (RDPs) 

 

In contrast to DRiPs the term rapidly degraded products (RDPs) refers to the majority of 

otherwise normal, physiologically relevant nascent polypeptide chains in healthy cells 

that are degraded prior to reaching their destined functional conformation. (Qian, 

Princiotta et al. 2006) Cells maintain a fine balance between chaperone assisted folding 

and degradation through the ubiquitin or other pathways (Hershko, Ciechanover et al. 
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1979; Wilkinson 2005) It was shown that a large subset of nascent polypeptide chains, 

probably up to 70% are targeted for immediate degradation. 

 

 

1.1.4c Cryptic Translation 

 

For long translation was manifested as ribosomal recognition of an AUG start codon and 

generation of a continuous polypeptide chain subsided by folding to a predetermined 

protein conformation. Recent findings draw a different picture demonstrating several 

sources of unconventional or therefore cryptic translation products (Shastri, Schwab et al. 

2002; Ho and Green 2006) Alternative mRNA splicing as well as frame shift events 

during transcription account for the generation of multiple antigenic peptides that 

efficiently initiate cytotoxic T-cell responses. Further examples include the recognition of 

alternative reading frames using downstream AUG codons for initiation as well as 

translation of conventionally untranslated regions in the 5’UTR and 3’UTR or intron 

sequences (Uenaka, Ono et al. 1994; Guilloux, Lucas et al. 1996). The now common 

practice of cell transfection of mini-genes encoding only short peptide sequences further 

illustrates the obsolescence of full length proteins for successful T-cell recognition. In 

stark contrast to a long prevailing dogma translation initiation can occur at codons other 

than AUG (Peabody 1989). At least six different initiation codons have been identified 

that result in peptide generation and constitutive display by MHC class I molecules. 

Especially for the case of CUG mediated initiation, consistent levels of CD8 T-cell 

activating antigens are observed in vitro using mini-genes as well as in a transgenic 
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mouse model (Malarkannan, Horng et al. 1999; Schwab, Li et al. 2003; Schwab, Shugart 

et al. 2004). Surprisingly initiation with CUG encodes a leucine rather than a “wobble” 

methionine. Current studies utilize primer extension inhibition assays, so called “toe-

printing”, as means to monitor the precise binding region of the initiating ribosome. 

Several compounds have been identified that differentially impact CUG or AUG 

mediated initiation of translation (Green, Ow et al.; Kozak and Shatkin 1978). Especially 

with the discovery of internal ribosomal entry sites (IRES) it became clear, that 

alternative machineries of translation not only appear in mammalian cells but serve 

distinct functions far beyond their original viral role (Pfingsten and Kieft 2008). Different 

regulatory and refining mechanisms of translational control will be discussed later. So far 

these findings pave the road for future hypotheses about an alternative CUG based 

initiation mechanism that can generate antigenic peptides. The function of CUG start 

codons in the biosynthesis of full length proteins still remains to be elucidated. 

 

 

1.1.4d Antigens generated through peptide splicing 

 

Another pool of unanticipated antigens involving peptide splicing was discovered. 

Usually MHC class I presented peptides are expected to consist of a continuous sequence 

of 8 to 10 amino acids. Vigneron et al. demonstrated the antigenicity of two non-

continuous and rejoined peptide fragments of melanocytic glycoprotein (gp100) in 

melanoma cells (Vigneron, Stroobant et al. 2004). An initial 13mer precursor peptide 

required proteasomal processing resulting in the excision of four amino acids and 
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subsequent trans-peptidation involving an acyl-enzyme intermediate in order to be 

recognized by human CD 8 T lymphocytes. Similarly Hanada et al. have shown the 

immune recognition of a fibroblast growth factor-5 (FGF-5) derived spliced nonamer 

peptid (Hanada, Yewdell et al. 2004). The diversity of unconventional peptide sources 

recently reached a highlight with the unanticipated example of a 10 residue peptide 

consisting of a tetra- and hexamer being rejoined in reverse order (Warren, Vigneron et 

al. 2006). 

 

 

1.1.4e Cross-presentation of peptides 

 

Cross-presentation denotes the ability of antigen presenting cells (APC’s) to receive, 

process and present exogenous peptides via MHC class I molecules on their cell surface 

to trigger CD 8 T-cell activation. Cross-presentation considerably deviates from some 

characteristics of other antigenic sources described above as it is more prone to utilize 

full length protein. The ability to present exogenous peptide is mainly limited to dendritic 

cells (DC) with marked differences between distinct subsets of cells (Mellman and 

Steinman 2001; Guermonprez and Amigorena 2005). This process is particularly 

important for the immune surveillance of cells that do not actively undergo antigen 

presentation themselves. It enables dendritic cells to present viral or tumor antigens even 

in the case that they are not directly effected therefore closing an otherwise detrimental 

gap in the immune defense. While the phenomenon of cross-presentation is already 

known since 1976, several details of the pathway remain in the dark (Bevan 1976; Bevan 
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1976). Exogenous material is largely acquired by endocytosis of whole or partial cells 

leaving potential antigens in the phagosome. This opens the question of how peptides 

reach the cytosol and proteasome for further processing. “Leaky” passing through the 

phagosomal membrane as well as a specific transport mechanism involving Sec61 are 

current possibilities under investigation (Ackerman, Giodini et al. 2006). Alternatively 

fusion of phagosomes with the ER compartment and direct processing and loading of 

antigenic peptides to MHC class I molecules within the lumen of the phagosome has been 

proposed (Rock and Shen 2005). A remarkable extension of established cross-

presentation pathways imposed the demonstration of active transfer of peptides between 

the cytosol of adherent cells through gap-junctions into antigen presenting cells 

(Neijssen, Pang et al. 2007). Additionally various approaches of cancer immunization 

using antigens, completely folded tumor proteins as well as whole cells prove the 

importance of cross-presentation for in vivo immune functions (Osanto 1997). 

 

 

1.1.4f Pioneer round of translation peptides 

 

Pioneer round of translation peptides are by definition the polypeptides generated within 

the first round of translation of each newly transcribed and spliced mRNA.  They were 

discovered in the context of an mRNA surveillance mechanism called Nonsense 

mediated decay (NMD)  and might combine several of  the features of peptide sources 

described so far. At this point the subsequent steps of the generation and processing of 

antigens  to their final presentation on the cell surface will be followed. The important 
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and novel role of pioneer peptides will be introduced within the context of NMD and 

described in detail in section 1.2. 

 

 

1.1.5 Creating antigenic precursors through proteasomal degradation  

 

Despite the very different life time of structural proteins or unfolded polypeptide chains 

they eventually reach their fate of proteolysis through the proteasome and cytosolic 

proteases. The central function of the proteasome is the degradation of nuclear, cytosolic 

and transmembrane proteins that have reached their life span. While this process is 

crucial for the elimination of regulatory or infunctional proteins it also generates 

precursors of antigenic peptides of various length and stability for MHC class I mediated 

presentation. Crucial findings about the importance and direct involvement of the 

proteasome for antigen presentation came from studies with small molecule inhibitors. 

After the initial finding of reduced antigen presentation of a chicken ovalbumin derived 

peptide by MHC class I molecules various inhibitors like LLnL, MG115, MG132, 

lactacystin and to a lesser extent LLM became an important tool to study antigen 

presentation (Rock, Gramm et al. 1994; Anton, Bennink et al. 2001). The 26S proteasome 

consists of a barrel-shaped 20S catalytic core domain harboring all catalytically active 

residues and two 19S subunits that define substrate specificity. The proteasome 

recognizes polyubiquitin-labels and other degrons of proteins earmarked for destruction 

and degrades them in an ATP dependent process (Varshavsky 1997). Interestingly the 

two proteasomal subunits LMP2 and LMP7 are encoded in a INF γ controlled gene 
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region in direct proximity to the TAP-genes indicating their importance for the immune 

response.  Upon INF γ induction these chains replace the constitutively expressed 20S 

proteasome subunits. This complex with altered proteolytic functions is called the 

immunoproteasome. The proteasomal activator PA28 has been described as an 

interaction partner, which induces small conformational changes of the 20S proteasome. 

These alterations potentially induce subtle changes in the orientation of some of the 

active residues of the 20S proteasome leading to the generation of slightly longer 

peptides. Accordingly it has been demonstrated that the expression level of PA28 alters 

the pool of recognized antigens on the cell surface (Sun, Sijts et al. 2002). With the 

discovery of the proteasome maturation protein (POMP) another factor entered the 

complex stage of proteasomal regulation. POMP serves as a chaperone tightly regulating 

the assembly and deterioration of the immunoribosome. In response to viral induced 

cytokine release the immunoribosome is rapidly up regulated while cells smoothly return 

to constitutive proteasome expression when an immune response becomes obsolete 

(Heink, Ludwig et al. 2005). Constitutive expression of the immunoribosome in immune 

privileged brain and ocular tissue as well as indications of altered CD8 T cells gave rise 

to the idea of some involvement in alternative immunological processes beyond antigen 

presentation (Chen, Norbury et al. 2001; Singh, Awasthi et al. 2002). Other proteases like 

leucine aminopeptidase and tripeptidyl peptidase (TPP) seem to be involved in cytosolic 

processing even thought their effect on the surface antigen repertoire remains to be 

demonstrated conclusively (Stoltze, Schirle et al. 2000; Reits, Neijssen et al. 2004).  
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1.1.6 Chaperone function and antigen processing in the cytosol 

 

The folding, assembly and eventually the degeneration of proteins is largely dependent 

on the interplay of chaperones, proteases and the proteasome. A role of chaperones in 

protecting them from their ultimate fate of degradation into single amino acids, in 

regulating subcellular peptide concentration and in guiding them to MHC class I 

molecules has been suspected for long (Li and Srivastava 1994). Among others the 

chaperones GRP94, HSP90, GRP78 and HSP70 have been associated with altered 

antigen presentation and CD8 T-cell recognition while their precise interaction 

mechanism with the proteolytic peptide intermediates remained unresolved (Gullo and 

Teoh 2004). A detailed analysis of HSP90 revealed its interaction with C-terminally 

extended peptide precursors taking advantage of the well characterized SIINFEKL 

system in conjunction with high performance liquid chromatography (HPLC) 

fractionation. Differential RNA interference mediated depletion demonstrated the crucial 

function of HSP90α as well as the co-chaperonin CHIP in protecting and channeling C-

terminally extended precursors for MHC class I loading (Kunisawa and Shastri 2006).  

In a previous study the selective role of group II chaperonine TRiC for the expression of 

peptide-loaded MHC class I molecules on the cell surface became evident (Kunisawa and 

Shastri 2003). Accordingly also chemical inhibition of HSP90 with radiciol 

geldanamycin , 17-DMAG and 17-AAG showed the generation of “empty” MHC class I 

molecules and reduced levels of T-cell activation. So far a predominantly post-

proteasomal role for the interaction of HSP90 antigenic precursors is anticipated by the 

authors (Callahan, Garg et al. 2008). Very recently HSP90 has been also reported to 
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directly facilitate the assembly and function of the 26S proteasome therefore 

subsequently accounting for alterations in the surface presentation of peptides bound to 

MHC class I molecules (Yamano, Mizukami et al. 2008). Additional observations of 

HSP90 participation in DC mediated cross-presentation are a reminder that our 

understanding of the complete picture of chaperone function in antigen presentation still 

requires further elucidation (Giodini and Cresswell 2008). 

 

 

1.1.7 From cytosol to ER: peptide transport via TAP 

 

The transporter associated with antigen processing (TAP) was almost simultaneously 

discovered by four laboratories in 1990. Initially two genes were found in direct 

proximity to the MHC locus with high sequence homology to ABC (ATP Binding 

Cassette) transporters. They encode a dimeric transmembrane complex named TAP1 and 

TAP2 that turned out to be responsible for the ER translocation of the waste majority of 

antigenic peptide precursors (Deverson, Gow et al. 1990; Monaco, Cho et al. 1990; Spies, 

Bresnahan et al. 1990; Trowsdale, Hanson et al. 1990). The TAP mutant human cell line 

LBL 721.134 (TAP1 mutant) (Cerundolo, Alexander et al. 1990) as well as the murine 

cell line RMA-S (TAP2 mutant) (Powis, Townsend et al. 1991) were crucial in 

establishing a functional link between wildtype TAP1 and TAP2 expression and MHC 

class I mediated CD8 T-cell stimulation. In both cell lines MHC class I peptide 

presentation could be reestablished by DNA transfection of TAP1 or 2 gene encoding 

DNA sequences. Severely reduced MHC class I surface expression as well as complete 
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absence of CD4 and CD8 T-cells was also observed in a TAP1 deficient mouse (Van 

Kaer, Ashton-Rickardt et al. 1992). Peptide translocation assays using N-glycosylated or 

respectively radiolabeled peptides in Streptolysin O permeabilized cells added the final 

evidence for the ATP-dependent ER translocation of antigenic peptides through TAP 

(Androlewicz, Anderson et al. 1993; Neefjes, Momburg et al. 1993). Androlewicz et al. 

further determined the preferred length of peptides transported by TAP as between 8 to 

12 amino acids. Peptide chains in the length of 13-30 amino acids are transported to a 

much lesser extent while longer peptides are inevitably cleaved prior to transport. A clear 

correlation between the sequence requirements for TAP transport and the binding 

preferences of their respective MHC class I became evident. Human peptides allow a 

larger variety of peptide sequences both for TAP transport and MHC class I binding 

while mouse peptides are on the other side of the spectrum with more restrictive sequence 

specificity. The C-terminal flanking residues are a major determinant for TAP transport 

with basic and hydrophobic amino acids being more efficiently translocated in mouse, 

human and rat cells (Androlewicz and Cresswell 1996). While preferences for TAP 

transport generally reflect the requirements for MHC class I binding there are some 

marked exceptions. Four immunodominant viral peptides were found to be very 

inefficiently transported by TAP. A proline in position 3 was identified as a consensus 

amino acid preventing efficient TAP transport (Neisig, Roelse et al. 1995). A seminal 

study described the importance of new translation for TAP mediated transport of peptides  

emphasizing not only sequence features but also the origin of a peptide for efficient 

transport and presentation. In this case the authors used fluorescence recovery after photo 

bleaching (FRAP) with a TAP1 green fluorescence (GFP) fusion protein in order to 
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determine TAP1 mobility within the ER membrane as a measure for active peptide 

translocation (Reits, Vos et al. 2000). Different alleles encoding the TAP1 and 2 complex 

helped to gain further insight into the mechanism of TAP transport. The alternative rat 

allele RF1.Aa enabled to directly analyze the changes in MHC class I peptide surface 

presentation due to selectivity of the TAP transport (Powis, Young et al. 1996; Knittler, 

Gulow et al. 1998). Over the time of evolution viruses have developed evasion strategies 

against almost all major components of the immune system. TAP remains no exception.  

The Herpes simplex virus (HSV) expresses immediate early protein ICP47 which binds 

to TAP therefore preventing any further viral peptides from translocation and antigen 

presentation (Fruh, Ahn et al. 1995; Hill, Jugovic et al. 1995). Similarly proteins like 

human cytomegalovirus derived US6, the bovine herpesvirus type 1 encoded UL49.5 and 

the BNFL2a protein of Eppstein Barr virus bind to TAP and introduce subtle 

conformational changes to arrest transport (Hislop, Ressing et al. 2007; Oosten, Koppers-

Lalic et al. 2007). Finally there are some TAP independent pathways that lead to 

productive MHC class I loading and surface presentation of peptides. In the case of the 

completely TAP deficient human cell line T2 721.174 no surface expression of MHC 

class I HLA B and HLA C, but about 20-50 % of normal surface presentation of MHC 

class I HLA A2 can be detected. Here signal sequence derived peptides translocated into 

the ER by the signal recognition pore SRP account the for the supply of antigenic 

peptides (Wei and Cresswell 1992). 
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1.1.8 The ER based Peptide Loading Complex 

 

MHC class I molecules mostly receive their peptides when associated to TAP as well as 

to the peptide loading complex (PLC). This multi protein mechanism consisting of 

calnexin, calreticulin, tapasin, ERp57 and several further factors coordinates peptide 

binding, quality control and editing in a precisely orchestrated process (Peaper and 

Cresswell 2008). 

As a prerequisite of peptide binding calnexin facilitates correct assembly and folding of 

the microglobulin β2m jointly with the heavy chain (HC). This 90 kDa transmembrane 

protein includes a globular domain mediating glycan binding as well as a P-domain 

important for ERp57 interaction. The ER resident chaperone calnexin prevents protein 

aggregation and helps to target missfolded protein for degradation (Molinari, Eriksson et 

al. 2004). Together with the homologous lectin calreticulin they both act in a calnexin-

calreticulin cycle facilitating the folding of glycoproteins while exposing them to 

additional folding factors such as the below mentioned ERp57 (Hammond and Helenius 

1993). Taken together MHC class I peptide assembly can be envisioned as a distinct 

process of protein folding with the involvement of multiple chaperones. 

 

Within the PLC tapasin serves as an initial factor insuring the stability of the complex as 

well as the optimal loading of the MHC class I molecule. Tapasin is a 48 kDa 

transmembrane glycoprotein with an ER signal sequence encoded in the MHC locus of 

chromosome 6. It mediates the contact between TAP and the MHC class I molecule after 

assembly of the heavy chain and the microglobulin β2m (Grandea, Androlewicz et al. 
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1995; Ortmann, Copeman et al. 1997). Detailed analysis on the stochimetric interaction 

demonstrated a 4:4:1 ratio of MHC class I, tapasin and TAP molecules (Bangia and 

Cresswell 2005).  A recent study using blue native-PAGE introduced some controversy 

postulated two distinct oligomers of 350 and 450 kDa with the larger consisting of 2 

tapasin molecules and each one MHC class I and calreticulin molecule (Rufer, Leonhardt 

et al. 2007). While the precise mechanism of tapasin remains unknown at least two 

distinct functions have been described. First tapasin increases the peptide-binding affinity 

of MHC class I peptide complexes as shown in a non-peptide-specific approach 

(Williams, Peh et al. 2002). Second it exerts a quality control function in the ER 

preventing the export of empty or low affinity MHC class I peptide complexes to the 

golgi network (Barnden, Purcell et al. 2000). Several additional functions have been 

suggested linking tapasin to TAP stability and transport efficiency, dissociation of 

peptides from MHC class I molecules and direct interaction with ERp57 among others. 

While tapasin is essential for the vast majority of peptides being loaded to MHC class I 

molecules there are reports of several cases with very low tapasin dependency (Peh, 

Burrows et al. 1998; Goodall, Ellis et al. 2006). Most striking is the case of HLA-B 4405 

and HLA-B 4402 where a single amino acid exchange accounts for a large difference in 

tapasin requirement for folding, maturation and antigen presentation (Park, Lee et al. 

2003). 

Only recently the covalent association of tapasin with the thiol oxidoreductase ERp57 

was discovered (Peaper, Wearsch et al. 2005). ERp57 belongs to the family of protein 

disulfide isomerases (PDI) functioning in oxidative glycoprotein folding. Beyond its 

involvement in the PLC it is widely distributed in the cell including the cell surface, 
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cytosol and nucleus (Turano, Coppari et al. 2002). A mouse model with B-cell specific 

ERp57 depletion leading to a strong reduction of MHC class I Kb and Db surface 

presentation provides evidence for its important role in antigen presentation (Garbi, 

Tanaka et al. 2006). Further ERp57 increases the interaction time between tapasin, MHC 

class I potentially by inducing a conformational change within tapasin. Taken together 

ERp57 seems to be a central stabilizer of the PLC due to its covalent bond with tapasin 

and weak interactions with calreticulin.  

 

 

1.1.9 The final cut: peptide editing in the ER 

 

In addition to the mere folding and binding events described in the previous paragraph 

peptides in the ER undergo a precise editing and trimming process to obtain the final 

peptides for MHC class I mediated antigen presentation. Proteolytic intermediates that 

reach the ER typically include N-terminal extensions imposing the requirement for 

further processing within the ER (Paz, Brouwenstijn et al. 1999; Rock, York et al. 2004; 

Kanaseki, Blanchard et al. 2006). The C-termini are often already cleaved at their final 

position within the cytosol. These crucial observations were initially made when 

analyzing the transport and processing of peptides including prolin residues. As 

mentioned above, an aminoterminal proline at the position p1, p2 and p3 (called X-P, 

X=any amino acid, P= prolin) makes notoriously bad substrates for TAP binding and 

transport (Neisig, Roelse et al. 1995; van Endert, Riganelli et al. 1995). But despite their 

poor translocation properties particularly a prolin at anchor position p2 represents a very 



 22 

frequent antigen sequence presented by MHC class I molecules (Rammensee, Bachmann 

et al. 1999). This conundrum was resolved with the discovery of the ER resident amino 

peptidase associated with antigen processing (ERAAP). N-terminally extended peptides 

(Xn-P, n≥2) with the proline “hidden” in the center of the peptide intermediate are 

efficiently transported by TAP and are precisely cleaved only upon arrival in the ER. 

ERAAP was initially purified from mouse microsomes. The interferon γ inducible protein 

in localized in the ER with a similar distribution as MHC class I molecules. Reduction of 

the aminopeptidase activity using the inhibitor leucinethiol as well as RNAi mediated 

depletion revealed the functional role of ERAAP in cleaving peptide N-termini to 

generate the final antigens (Serwold, Gonzalez et al. 2002). The analysis of mice 

deficient of ERAAP demonstrated changes of MHC class I surface expression (Hammer, 

Gonzalez et al. 2006; York, Brehm et al. 2006). These were not only manifested in the 

overall number of MHC class I molecules on the cell surface but rather in a difference of 

the diversity of antigens presented on the surface.  While the surface expression of MHC 

class I molecules H-2Kb, H2-Kd, H2-Db and H2-Dd only decreased about 20%, H-2Ld 

was reduced 70% in ERAAP deficient mice. Interestingly only H-2 Ld molecules include 

X-P peptides with a prolin at position 2 in their repertoire. MHC class I peptide 

complexes in ERAAP deficient cells showed a reduced binding quality with a 10-20% 

higher dissociation rate. Most strikingly at least two peptides recognized by the T-cell 

hybridoma 30NXZ (H13-H-2Db) and 1AZ (H47-H-2Db) showed a significant increase in 

HPLC purified extracts of ERAAP -/- splenocytes (Hammer, Gonzalez et al. 2006). 

Detailed analysis of the antigen repertoire revealed not only a large group of peptides 

dependent on ERAAP expression but also a group of peptides that are presented on the 
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surface despite their incomplete trimming by ERAAP. These peptides uniquely expressed 

in ERAAP deficient cells induce strong immunogenicity in their wildtype counterparts 

(Hammer, Gonzalez et al. 2007). Additionally there is evidence that ERAAP acts in a 

synergetic cooperation jointly with the MHC molecule to generate the final MHC class I 

peptide complex (Paz, Brouwenstijn et al. 1999; Kanaseki, Blanchard et al. 2006). Taken 

together ERAAP is not only shaping the antigen repertoire but has been identified as the 

central ER resident aminopeptidase required for antigen trimming in mice. In human cells 

a homologeous ERAAP (also termed ERAP1) interacts with another ER resident 

aminopeptdase L-RAP (also called ERAP 2) in order to generate the final antigens (Saric, 

Chang et al. 2002; Tanioka, Hattori et al. 2003; Saveanu, Carroll et al. 2005).   

 

 

1.1.10 MHC class I recognition and CD8 T-cell response 

 

All T-cells originate as double negative hematopoietic stem cells of the bone marrow. As 

they progress in their development they migrate into the thymus and rearrange their TCR 

genes. Those with productive CD8 rearrangement subsequently pass through positive and 

negative selection leading to a population of lymphocytes that confer both MHC class I 

self restriction and self tolerance. This process leaves a diverse pool of mature 

immunocompetent CD8 T-cells that have a high reactivity to potentially foreign antigens.  

These naïve CD8 T-cells remain as resting cells in a G0 stage of the cell cycle while 

continuously circulating between the blood and lymph system. Upon TCR recognition of 

an appropriate antigen presented by a MHC class I molecule, the T-cell mounts a primary 
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immune response and enters into cell cycle progression and upregulation of IL-2. While 

effector T-cells carry out multiple functions from cytokine secretion to cytotoxic killing 

another subset serves as memory T cells ensuring a secondary response if ever 

encountering the same antigen again.   

Alterations within the pool of presented antigens often manifest themself in a reduced 

number of CD8 T-cells. Depletion or mutations of many of the components of the MHC 

class I antigen presentation pathway discussed in the paragraphs above lead to a severely 

deficient CD8 T-cell repertoire. Lack of TAP, tapasin or β2m leads to an almost total 

depletion of CD8 cells. Absence of ERAAP, LMP-7, LMP-2, LMP-10 and PA28β 

predominantly induce a reduction in the diversity while maintaining similar total numbers 

of CD8 T-cells. 

 

 

1.1.11 Antigen Presentation and Immunodominance  –  not just a numbers game 

 

Antigen presentation and CD8 T-cell recognition serve the ultimate goal to filter out 

those very few foreign antigens derived from viruses, bacteria or mutated proteins out of 

an ocean of peptides originating from host cell proteins. The complexity of this task and 

the sheer numbers of molecules involved are astonishing and deserve some further 

consideration.  

Immunodominance is defined as the ability of a particular antigen to be generated, 

presented and recognized by CD8 T-cells to finally mount a strong, specific immune 

response. A step down the hierarchy are subdominant antigens which trigger weak to 
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barely detectable immune responses. Of all the peptides only an estimated 1% bind to 

MHC class I molecules with an minimum MHC class I affinity of about   Kd>500 nM 

required for surface presentation (Yewdell 2006). Generation through translation, 

proteolytic liberation, efficient TAP transport, MHC class I allel expression and 

respective binding and finally the numbers of afferent APCs and their complementary T-

cells all contribute to immunodominance. Moutaftsi et al. examined the 

immunodominance hierarchy for the example of the vaccinia virus WR strain (VACV-

WR) (Moutaftsi, Peters et al. 2006). The following numbers represent a rough picture: 

From a theoretical pool of 175,000 potential poxvirus 8, 9 or 10mer antigens about 

35,000 are proteolytically liberated, 30,000 are transported by TAP, 150 bound by MHC 

class I, 75 recognized by a TCR and finally 50 are actual antigens leading to a immune 

response. Many of the immunodominant viral antigens represent early gene products 

underlining the importance of a fast generation and presentation of MHC class I peptides 

(Yewdell 2006). The absolute number of a MHC class I peptide complex required to 

trigger a T-cell recognition is believed to be in the magnitude of about 10 molecules per 

cell surface. Understanding immunodominace mechanisms is particular important for 

vaccine generation, cancer treatment as well as gaining insight into autoimmunity. 
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1.2 Nonsense Mediated Decay  

 

1.2.1 Nonsense Mediated Decay and Antigen Presentation 

 

Previous sections stressed the varied origins of peptides that are utilized for antigen 

presentation. Within the vivid field of Nonsense Mediated Decay (NMD) a completely 

unanticipated source of translational products was brought to the light. This mRNA 

control mechanism screens for premature termination codons (PTCs) 55 or more 

nucleotides upstream of an exon exon junction. Since stop codons are only defined within 

an open reading frame by screening through a ribosome, this imposed the requirement of 

a pioneer round of translation of each mRNA prior to the onset of bulk translation. The 

very first round of translation is known to require a set of specific factors associated with 

the exon junction complex (EJC), which is removed by the initial passage of the first 

ribosome. These pioneer round of translation peptides represent the first translation 

products of an mRNA transcript prior to the production of functional proteins on a large 

scale. This makes them an ideal source of peptides for MHC class I mediated 

presentation without any “additional cost” to the cell demonstrating the synergy of two 

major surveillance mechanisms     -    “at the cross roads of NMD and MHC I”.  

 

1.2.2 The Discovery of Nonsense Mediated Decay 

 

While the cellular machinery has multiple quality control mechanisms in place to insure 

the extraordinary high fidelity of the protein production machinery, mistakes do occur. 
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Especially truncated proteins, which are initially translated but lack a functional residue 

or domain are particularly harmful as they may act as dominant negative factors 

counteracting their original purpose in the cell. Examples for human diseases associated 

to partially translated proteins are abundant and well documented ranging from many 

forms of cystic fibrosis to β-thalassemia. An estimated 30% of all hereditary diseases are 

due to a frame shift or nonsense mutation resulting in a premature termination codon 

(Frischmeyer and Dietz 1999).  In many cases a direct relationship between the severity 

of the phenotype and the position of the PTC could be identified (Hall and Thein 1994). 

But the earliest reports date back to as far as the 70s when the destabilizing effect of 

premature termination codons on mRNA transcripts was observed in yeast (Losson and 

Lacroute 1979).  Soon the importance of intron positioning in relationship to the 

premature termination codon and splicing events was understood as well (Senapathy 

1986). In the field of immunology VDJ rearrangement of the T-cell receptor and the 

immunoglobulins (Ig) come to mind. This particularly prominent mechanism of 

alternative splicing is prone to creating two thirds of unproductive rearrangements do to 

frame shifts and subsequent nonsense mutations. Cesar Milstein and colleagues observed 

the down regulation of mRNA transcripts that encorporated nonsense codons when 

studying the hypermutation mechanism for the antibody response (Lozano, Maertzdorf et 

al. 1994). Similar observations were made by the Koehler laboratory. The group reported 

that the extent of reduction in mutated IgM-mRNA levels directly depends on the 

position of the nonsense codon within the gene (Baumann, Potash et al. 1985). A quality 

control mechanism down regulating the expression of unproductive TCR mRNA 

transcripts was found thereafter (Li and Wilkinson 1998; Gudikote and Wilkinson 2002). 
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By today several seminal discoveries have been made to understand the mechanism and 

several sub-pathways to deal with premature termination codons in organisms as different 

as Saccharomyces cervisiae, Arabidopsis thalia, Caenorhabdits elegance, Drosophila 

melanogaster, Mus musculus and Homo sapiens (Behm-Ansmant, Kashima et al. 2007). 

Early embryonic lethality and extinction of all hematopoethic stem cells in mouse models 

deficient of central factors of nonsense mediated decay leave no doubt of the essential 

importance of this process for life (Medghalchi, Frischmeyer et al. 2001; Weischenfeldt, 

Damgaard et al. 2008). 

 

 

1.2.3 Nonsense Mediated Decay: The components 

 

1.2.3a UPF proteins, central factors of NMD 

 

Within the last decade the picture of post transcriptional quality control and mRNA 

regulation has become much more complex. The lifetime of mRNAs is largely 

determined by their interaction with a plethora of host factors (Moore 2005). The central 

determinants of the NMD machinery are the up-frameshift proteins Upf1, Upf2 and the 

two alternative forms Upf3a and Upf3b (also termed Upf3 and Upf3X). Originally 

discovered in yeast, homologue proteins were so far described in all other eukaryotic 

organisms examined (Leeds, Wood et al. 1992; Cui, Hagan et al. 1995; Lee and 

Culbertson 1995). In mammalian cells Upf proteins are part of a large multi protein exon 

junction complex (EJC) consisting of at least 12 factors including Y14, eIF4AIII, 
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MAGOH and MLN51 (Le Hir, Izaurralde et al. 2000; Le Hir, Moore et al. 2000). Upf1, 

The by far best described component is Upf1, a 130 kDa group 1 ATP-dependent 

helicase with binding domains for Upf2, Upf3 and mRNA.  

The localization of Upf1 as a shuttle protein both in the cytosol as well as in the nucleus 

reflects its separable functions both as final trigger for the mRNA decay cascade as well 

as in facilitating the early mRNA biogenesis (Wang, Czaplinski et al. 2001; Mendell, ap 

Rhys et al. 2002; Isken, Kim et al. 2008). The imminent role of Upf1 becomes evident in 

the embryonic lethality of Upf1 knock out mice and the failure to generate vital Upf1 

negative embryonic fibroblast cell lines (Medghalchi, Frischmeyer et al. 2001; 

Weischenfeldt, Damgaard et al. 2008). The function of Upf1 is vigilantly regulated in a 

cycle of phosphorylation and dephosphorylation requiring at least four different factors. 

While the suppressor with morphogenetic effect on genitalia-1 (SMG-1) phosphorylates 

Upf1, SMG-5, 6 and 7 are dephosphorylating agents (Page, Carr et al. 1999; Grimson, 

O'Connor et al. 2004).  A human Upf1 dominant negative protein with an arginine to 

cystein exchange at residue 844 has been shown to reduce the targeted decay of mRNAs 

containing a PTC about two to threefold (Sun, Perlick et al. 1998).  Fusion of Upf1 to the 

mRNA binding MS2 virus protein, resembling more of a gain-of-function approach, have 

led to a destabilization effect of mRNA transcripts when including a MS2 binding 

domain (Hosoda, Kim et al. 2005).  

 

The 148 kDa adapter protein Upf2 includes binding domains for Upf1 as well as Upf3 

which are both required for NMD in mammals. With a N-terminal nuclear localization 

domain it is present both in the nucleus as well as in the perinuclear cytosol. Its essential 
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role for NMD was recently demonstrated in a conditional Upf2 knock out mouse with 

severe defects of the hematopoietic stem cells system (Weischenfeldt, Damgaard et al. 

2008). 

 

So far there is no distinct function of the NMD pathway allocated to the Upf3 protein, but 

it might be involved in the second signal response. While Upf3 is predominantly nuclear 

it is also found as a shuttle protein in the cytoplasm. Beside its Upf2 interaction domain it 

binds directly to the EJC. Interestingly the genome of mammals contains two genes 

named Upf3a on chromosome 13 and Upf3b on the X-chromosome (or Upf3 and Upf3X) 

respectively (Lykke-Andersen, Shu et al. 2000; Serin, Gersappe et al. 2001). As 

mentioned above the Upf proteins are believed to be essential for NMD and vitality. 

Despite this fact there are reports for several family lines with defective truncated Upf3b 

genes that lead to a severe phenotype of mental retardation. It might be due to at least 

partial redundancy between Upf3a and Upf3b that NMD and vitality in these individuals 

can be maintained (Tarpey, Raymond et al. 2007).  

 

 

1.2.3b Cap and PolyA binding proteins in NMD 

 

Another set of key components was found when examining the earliest events of the 

NMD pathway namely the pioneer round of translation. While the detailed mechanism of 

this very first event both in protein translation and NMD will be discussed below, the 

most important factors shall be introduced here. Freshly synthesized pre-mRNA binds 
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with its 5’ prime to a cap binding complex (CBC) consisting the cap binding protein 80 

(CBP80) and 20 (CBP20) with a rough molecular weight of 80 and 20 kDa respectively. 

Cristallography as well as extensive mutagenesis including alanine scanning contributed 

to the comprehensive picture of the CBP80/20 heterodimer. 

CBP80, similarly to elF4G, comprises of three major MIF4G domains, typical for RNA 

interacting proteins. CBP20 interacts with two of these domains while also binding RNA 

with a ribonucleoprotein domain (Mazza, Ohno et al. 2001; Marintchev and Wagner 

2005). Four residues have been identified in establishing the interface of the heterodimer. 

Especially the Y43A mutation in CBP20 proved valuable as a dominant negative protein 

disrupting the binding to RNA and therefore disturbing the function as CBC (Cusack 

2006). CBP80 proved to be essential for NMD by binding to Upf1 and promoting the 

interaction between Upf1 and Upf2 (Ishigaki, Li et al. 2001; Hosoda, Kim et al. 2005). 

The 3’ prime polyadenylated tail of the pre-mRNA interacts with the polyA binding 

protein 1 (PABP1, also called PABPC1) and 2 (PABP2, also called PABPN1). PABP2 

has been identified as the very first binding factor within the first translation round of 

newly transcribed mRNA and shows predominantly nuclear localization while PABP1 

also facilitates multiple rounds of translation through the polyribosome (Behm-Ansmant, 

Gatfield et al. 2007). Additionally PABP2 was found to be associated with CBP80 but 

not with elF4E associated mRNA (Wahle 1991; Ishigaki, Li et al. 2001).  
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1.2.4 Destined for destruction: recognition of target mRNAs for NMD 

 

The mRNA regulation cycle of NMD is mostly described as a “downstream marker 

model” emphasizing the role of the stop codon positioning within the transcript in 

determining its fate (Shyu, Wilkinson et al. 2008). In mammalian cells mRNAs that 

include a stop codon >50-55 nucleotides upstream of an exon-exon junction generated 

through the splicing of an intron are destined for NMD. Accordingly premature 

termination codons appearing closer than 50-55 nucleotides upstream to an exon-exon 

junction site will fall through the screening of NMD and will not trigger a decaying 

process (Zhang, Sun et al. 1998). This model imposes a problem when considering the 

yeast genome or for example histone genes which rarely include introns at all but are 

both sensitive to Upf1 down regulation (Maquat and Li 2001; Kaygun and Marzluff 

2005).  Also in the case of TCR gene transcripts the NMD rules for intron positioning in 

relationship to a PTC are markedly relaxed (Carter, Li et al. 1996). Here an alternative 

second signal of undefined origin has yet to be detected in order to label a particular 

mRNA for destruction. This incident is usually described as the “aberrant termination 

model” (Shyu, Wilkinson et al. 2008). The development of the NMD pathway from a 

mere PTC recognition system to a general mRNA surveillance and regulation mechanism 

of the cell has been pointedly described as a versatile transition from “a vacuum cleaner 

to a swiss army knife” (Neu-Yilik, Gehring et al. 2004). By now NMD related pathways 

include Staufen1 Mediated Decay (SMD), alternative splicing, telomere maintenance, 

mTor signaling and regulation of genome stability (Le Hir and Seraphin 2008)((Chan, 

Huang et al. 2007; Kim, Furic et al. 2007; Isken and Maquat 2008). 
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Notably Upf1 seem to play a more promiscuous role being involved in almost all of the 

described pathways while Upf2, Upf3 and CBP80/20 are mainly limited to their role in 

PTC detection mechanisms. 

 

 

1.2.5 The NMD mechanism: Pioneer round vs. bulk translation 

 

Despite the diversity of nonsense surveillance pathways they all share the requirement for 

initial translation in order to recognize a start codon and a subsequent in frame premature 

stop codon or aberrant 3’UTR. Newly synthesized and spliced mRNA is distinctly 

different from previously translated mRNA by still having the EJC deposited 20-24 

nucleotides upstream of exon-exon junctions (Le Hir, Izaurralde et al. 2000; Le Hir, 

Moore et al. 2000). Additionally nuclear mRNA assembles several other factors 

including the heterodimer CBP80/20 at the 5’cap and PABP1 and PABP2 at the 3’ 

terminus as well as elF4G as core factor of the translation complex (Ishigaki, Li et al. 

2001; Lejeune, Ranganathan et al. 2004). During this process the occurrence of a 

premature termination codon halts the EJC for a short period of time triggering the 

recruitment of Upf3 and subsequently Upf2 and Upf1 concealing the fate of the PTC 

containing mRNA for destruction. In the case of a functional mRNA transcript the first 

ribosome passing the complete gene displaces the EJC and triggers the exchange of 

CBP80/20 to elongation factor 4E (elF4E) as well as the release of PABP2 (Chiu, 

Lejeune et al. 2004). This synthesis of the very first polypeptide from a given mRNA 

transcript was named “pioneer round of translation” by the Maquat lab. No matter 
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whether the mRNA is degraded later on or serves as template for multiple rounds of 

translation, exactly one polypeptide for every newly spliced mRNA in the cell is 

synthesized within the pioneer round.  

 

The production of bulk quantities of protein facilitating polyribosomes is then carried out 

through a translation complex including elF4E, elF4G and PABP1 among many other 

factors.  While elF4G remains to take the center stage of the translation initiation 

complex, the heterodimer CBP80/20 is exchanged against elF4E which is solely used for 

bulk translation. Similar to the role of CBP80/20 the factor elF4E interacts with the 

m7GpppN 5’ terminus of mRNA subsequently unwinding the 5’UTR to provide access 

for the 40S ribosomal subunit. In mammalian cells three isoforms of 4E- binding proteins 

(4E-BP1, 2 and 3) regulate elF4E activity by binding and therefore preventing access to 

elF4G. The factor 4E-BP1 itself contains six phosphorylation sites. Only 

dephosphorylated forms of 4E-BP1 can bind to elF4E in order to down regulate bulk 

translation (Sonenberg 2008). It was demonstrated that phosphrylation sites threonine 37 

and 46 are essential for subsequent phosphorylation off all six sites. The double mutant 

T37A and T46A effectively prevents phosphorylation of 4E-BP1 and constitutively binds 

to elF4E (Burnett, Barrow et al. 1998) (Gingras, Gygi et al. 1999).  

The 4E-BP1 T37A T46A double mutant therefore became an important tool to inhibit 

elF4E dependent bulk translation while not interfering with CBP80/20 dependent pioneer 

translation. 

Bulk translation takes place at the rough ER or in association with free ribosomes in the 

cytosol. But there is a yet unsettled debate about the location of the pioneer round of 
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translation (Wilkinson and Shyu 2002; Iborra, Escargueil et al. 2004). At least in yeast 

the pioneer round of translation does not appear to take place in the nucleus 

(Kuperwasser, Brogna et al. 2004). While there are several findings supporting the 

concept of a solely nuclear translation, many results are consistent with a pioneer round 

of translation at the nuclear pore during or right after mRNA export to the cytosol (Iborra, 

Jackson et al. 2004). 

As mentioned above pioneer translation and therefore NMD require mRNA to bind the 

CBC consisting of CBP80 and CBP20. Therefore several studies addressed the question 

whether cap-independent mRNA translation initiated through an internal ribosome entry 

side (IRES) could be target for NMD. Many viruses use IRES sequences upstream of the 

start codon to attract the initial binding of a ribosome making cap-binding and polyA-

binding factors obsolete (Hellen and Sarnow 2001; Vagner, Galy et al. 2001). But 

experiments have shown that IRES vary greatly in their requirement for translation 

factors. One of the first studies addressing the minimal requirements for pioneer 

translation and NMD used a IRES derived from encephalomyocarditis virus (EMCV) 

(Holbrook, Neu-Yilik et al. 2006). Their original finding that EMCV IRES initiated 

mRNAs can undergo NMD disputes the importance of the CBC for pioneer translation. 

But a later study establishes that EMCV IRES mRNA is indeed associated to CBP80 and 

CBP20 supporting the role of the CBC in facilitating pioneer translation (Woeller, 

Gaspari et al. 2008). Finally NMD fails to target nonsense-containing transcripts that 

initiate translation from the cricket paralysis virus (CrPV) IRES (Isken, Kim et al. 2008). 

IRES from dicistroviruses like CrPV do not require any translation factors or initiator 
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tRNA in order to assemble ribosomes and initiate productive translation (Schuler, 

Connell et al. 2006).  

Taken together the CBP80/20 heterodimer proves to be the essential component of 

pioneer translation. Its counterpart during bulk translation is the 4E-BP1 regulated factor 

elF4E. 

 

 

1.2.6 Pioneer peptides as source for MHC class I mediated antigen presentation 

 

For a long time the pioneer round of translation has been merely seen as a prerequisite for 

PTC detection than as a distinct mechanism of translation. Several recent studies shifted 

the focus from the mRNA decay mechanism to understanding the occurrence and special 

features of the pioneer round of translation itself. Here NMD serves rather as an assay for 

pioneer translation than as the object of investigation. It has been determined that the 

pioneer round of translation and the biosynthesis of at least one polypeptide from each 

mRNA transcript can occur even under heat shock conditions that usually not permit 

translation (Marin-Vinader, van Genesen et al. 2006). Similarly pioneer translation 

continues under prolonged hypoxia as well as serum starvation (Oh, Kim et al. 2007; Oh, 

Kim et al. 2007). Another study positions the pioneer translation at a check point for the 

control of subsequent steady state translation under the control of  the mTOR/S6K1 

pathway (Ma, Yoon et al. 2008). These findings not only confirm that NMD appears even 

under conditions that abolish bulk translation but also opens additional possibilities for 

the cellular use of pioneer peptides. It has been shown by multiple studies as well as been 
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confirmed herein that MHC class I mediated antigen presentation directly depends on 

new translation. Since there is a continuous need for antigen presentation in the cell to 

adequately protect an organism from infection, pioneer peptides present a potential 

source of peptides for MHC class I presentation. 

 

 

1.3 Aim of the thesis research 

 

MHC class I mediated antigen presentation and NMD are two central surveillance 

pathways in the cell. The goal is to determine if NMD is involved in producing or 

altering antigenic peptides presented by MHC class molecules. This could be the case 

through two mechanisms.  

 1.) “Antigenic peptides as NMD targets” 

 In this scenario antigen encoding mRNA transcripts with a premature termination 

 codon would be degraded through the NMD mechanism leading to a reduced 

 level of surface presentation of these peptides via MHC class I molecules. 

 2.) “Peptides of the Pioneer Round of Translation as Antigens” 

 Products of the pioneer round of translation itself are cleaved by the proteasome, 

 transported by TAP, processed in the ER and presented by MHC class I on the 

 cell surface.  

Many native proteins have a live cycle of many hours to several days before they start 

being degraded and become accessible for antigen presentation. For the effectiveness of 

the immune system it is important, that virtually all cellular proteins are presented on the 
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cell surface in a rapid and continuous process. Ideally, new peptides are sampled early 

after translation before the generation of bulk quantities of proteins. Especially in the case 

of viral infections as a major challenge for the antigen presentation pathway, speed of 

presentation is a key to preventing the spreading of infections. These theoretical 

considerations found it’s match in recent experimental findings. It was shown that several 

unconventional sources of translation products are actual sources of antigenic peptides. 

These include cryptic translation products starting with non-AUG codons, peptides from 

usually untranslated regions and endocytosed or cross-presentated peptides as well as  

rejoined peptide chains. Within the last decade more and more evidence accumulated 

demonstrating the importance of freshly translated peptides as major source for antigenic 

peptides. Here the defective ribosomal products – hypothesis takes a center stage 

suggesting a subset of not completely folded proteins as immediate early antigenic 

peptides. Within the field of Nonsense Mediated Decay an unexpected source of 

translational products were discovered. This mRNA control mechanism screens for 

premature termination codons 55 or more nucleotides upstream of an exon exon junction. 

Since stop codons are only defined within an open reading frame by screening through a 

ribosome, this imposed the requirement of a pioneer round of translation of each mRNA 

prior to the onset of bulk translation. The very first round of translation is known to 

require a set of specific factors associated with the exon junction complex which are 

removed by the initial passage of the first ribosome. These pioneer round of translation 

peptides represent the first translation products of an mRNA transcript prior to the 

production of functional proteins on a large scale.  This makes them an ideal source of 

peptides for MHC class I mediated presentation without any “additional cost” to the cell 



 39 

demonstrating the synergy of two major surveillance mechanisms     -    “at the cross road 

of NMD and MHC I”.  

 

This study aims to provide independent lines of evidence for the establishment of   

“Peptides of the Pioneer Round of Translation as Antigens” as stated in option 2). Direct 

involvement of pioneer peptides in antigen presentation would add a previously unknown 

source of antigenic peptides to the repertoire of peptides presented by MHC I molecules. 

It would not only show a combined starting step of two major surveillance pathways in 

the cell but also provide a novel mechanism for the generation of immediate early 

peptides. Furthermore an answer to these questions has the potential to integrate previous 

findings about DRiPs and RDPs with new results about pioneer peptides into a combined 

picture of the origin of early translation products for antigen presentation. 

 

 

 

 

Fig.1 Origins of peptide for antigen presentation. Newly spliced mRNA assembles 
with the ribosomal subunits and factors of the pioneer round of translation before the 
onset of conventional translation for the biosynthesis of bulk quantities of peptide chains. 
New proteins are folded to their correct confirmation, serve a function as structural 
proteins or enzymes and eventually reach their live time for proteasomal degradation. 
Alternatively most defective ribosomal products (DRiPs) or cryptic translation products 
are funneled into proteasomal destruction after short time periods. Peptides from these 
different origins are transported by TAP to the ER, loaded to MHC class I molecules, 
edited by ERAAP and finally presented to T-cells at the cell surface. It has yet to be 
determined to what extent these different sources of translation contribute to the pool of 
antigenic peptides. Transport of peptides by TAP (green dotted line) and surface 
presentation (rod dotted line) are examined in this study. 
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2 Results 

 

2.1 Intron positioning and antigen presentation 

 

NMD has been described as a central mechanism insuring the fidelity of mRNA 

transcripts as well as regulating the expression of multiple genes. Two potential 

mechanisms for the interaction of NMD and MHC class I mediated antigen presentation 

have been proposed (see section 1.3: aim of this study):  

 

1.) “Antigenic peptides as NMD targets” 

2.) “Peptides of the Pioneer Round of Translation as antigens” 

 

The first hypothesis mainly suggests mRNA transcripts encoding for antigenic peptides 

as one more group of targets under the regulation of the already omnipresent NMD 

pathway. In sharp contrast the second hypothesis proposes a completely novel source of 

translation for the generation of antigenic peptides potentially explaining the importance 

of early translation for antigen presentation. 

 

The emphasis of this section is on testing the initial hypothesis 1. In general two events 

have to prelude the activation of the NMD pathway and the decay of a specific mRNA 

for any given transcript. First the premature stop codon has to be detected within an open 

reading frame through the process of the pioneer round of translation. A second signal 
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has to be recognized distinguishing the premature termination codon from a 

conventionally occurring normal stop codon. While different second signal mechanisms 

evolved in organisms as distantly related as A. thaliana and D. melanogaster the case for 

mammalian NMD signaling is made by the positioning of the intron in context of the 

premature termination codon. E Nagy established the 50-55 base pair rule: “A PTC must 

be 50-55 base pairs upstream of an intron splicing site in order to elicit NMD.” (Nagy 

Maquat 1998) This second signal rule remained to be crucial for the vaste majority of 

mammalian mRNA transcripts until today (Scofield, Hong et al. 2007). To address the 

validity of the first hypothesis several sets of expression vectors with an open reading 

frame with an antigen encoding sequence, a subsequent PTC and introns in different 

positions were generated (Fig.2). The first set of expression constructs are based on the 

invariant chain (Ii) followed by the antigen SIINFEHL (SHL8) in the vector pcDNA1. 

This construct was shown to liberate the antigenic peptide very efficiently leading to a 

particularly strong activation of B3Z T-cells upon presentation. An intron was positioned 

more than 55 base pairs down stream of the PTC (3’intron, black), completely removed 

(No intron, white) or inserted together with the splicing donor and splicing acceptor site 

upstream of start codon (5’intron, grey). An additional set of three expression vectors was 

created based on the ovalbumine residue 253-386 derived sequence kovak, including the 

Kb restricted SIINFEHL (OVA258-265) peptide. (Note: The original SIINFEKL sequence 

of ovalbumine was changed to SIINFEHL in order to make the octapeptide refractory to 

trypsin digestion, both are recognized equally by B3Z T-cells (Kunisawa and Shastri 

2003) (Paz, Brouwenstijn et al. 1999)). 
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In both cases the 3’intron constructs fulfill the requirements of a PTC 50-55 base pairs 

upstream of an intron and are therefore predicted targets of NMD. The constructs with no 

intron or an intron in 5’ position are not expected to elicit NMD.  

 

Fig.2 Antigen encoding DNA constructs with different intron positioning. Two sets 
of three pcDNA1 vector based DNA constructs were generated. The first set is based on a 
fusion protein encoding the invariant chain (Ii) and the ovalbumine derived antigen 
sequence SIINFEHL followed by a premature termination codon. The three transfection 
vectors contain an intron sequence in 3’ position (black box), no intron (white box) or an 
intron in 5’ position in front of the start codon (grey box). Only the 3’intron complies 
with the 55bp-rule making it a target for NMD. A second set of three constructs was 
designed in the same way based on the ovalbumine derived kovak sequence including the 
SIINFEHL peptide. 
 
 

2.1.1 NMD dependent mRNA regulation does not correlate with T-cell activation 

 

The above described set of three expression vectors on the basis of the kovak open 

reading frame with a 3’intron, No intron or a 5’intron were transiently transfected into 

HeLa Kb cells. The expression of kovak mRNA was determined 48 hours after 
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transfection and relative amounts were calculated using the 2-ΔΔC  method normalized to 

actin mRNA (Fig.3A) (Livak and Schmittgen 2001). In compliance with the predictions 

of NMD the 3’intron demonstrates the lowest mRNA expression level. Both the construct 

with no intron as well as a 5’intron, which lack the second signal to be recognized for the 

decay mechanism, show a 8.2 or 7.6 fold higher mRNA expression level. Next it was 

tested if these mRNA levels are also reflected in similar intensities of T-cell activation 

(Fig.3B). Here the 3’intron as well as the no intron containing kovak expression vectors 

accounted for an almost 2 fold higher B3Z T-cell response than the 5’intron sequence. 

Taken together the mRNA expression level did not seem to correlate with the T-cell 

activation rejecting a mere dependence of antigen presentation on NMD associated 

mRNA regulation.  

 

 

 

 

 
 
 
 
 
 
 
 
Fig.3 Quantification of mRNA expression and T-cell activation. HeLa Kb cells  
were transiently transfected with a pcDNA1 vector based kovak encoding DNA construct 
including either a 3’intron (black), no intron (white) or a 5’ intron (grey). RNA was 
purified and kovak mRNA quantified by real time PCR (A). Relative kovak mRNA 
expression for each construct was determined by 2-ΔΔCT method normalized to actin 
mRNA expression. Antigenic T-cell activation of each of the three constructs was 
measured in a B3Z T-cell assay (B). 
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In order to quantify the T-cell activation based on the intron position of the Inv./SHL8 or 

kovak expression vectors two additional approaches were persued. First the vector DNA 

was transiently transfected into HEK293T cells in a 1:3 dilution series (Fig.4A and B). 

Consistent with direct T-cell presentation assays as shown in Fig.3B the relative 

relationship between contructs with no intron, a 3’intron and a 5’ intron remained the 

same.  The independent sets of expression vectors based on Inv.SHL8 and kovak 

demonstrated a  reduced B3Z T-cell activation for 5’ intron antigenic sequences. The 

peak T-cell activation for kovak based constructs appeared at a DNA transfection 

concentration of 10 ng of  DNA (Fig.4B).  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Fig.4 DNA titration reveals differences in T-cell activation. Semiadhesive human 
HEK 293T cells were transfected with MHC Kb and B7-2 in preparation for a B3Z T-cell 
assay. Additionally they were contransfected with one of the the three Inv.SHL8 (A) or 
three kovak (B) based antigen expression vectors with different intron positions in a 1:3 
DNA dilution series. Transfection was carried out following the DEAE 
dextran/Chloroquine protocol. For both Inv.SHL8 (A) and kovak (B) based constructs 
3’intron (black) and no intron (white) vectors show a higher T-cell actvation than 
5’intron (grey) containing vectors. Untransfected cells serve as negative control (dashed). 
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Finally peptide extraction enables the by far best quantitative accessement of antigenic 

peptides generated in the cells (Fig.5). Transiently transfected HeLa Kb cells were boiled 

in 10% acetic acid for peptide extraction. After vaccum drying the purified peptides were 

added to murine K89 cells in a 1:3 titration for antigen presentation. The B3Z T-cell 

activation assay revealed the large disparity of antigen praesentation between 3’intron 

and no intron containing expression constructs with markedly high T-cell response on the 

one side, and the 5’intron constructs with T-cell activation just above the detection level 

on the other side. Generally Inv.SHL8 constructs show a higher B3Z response as kovak 

constructs. This is consistent with prior observations due to a more effiecient liberation of 

the SHL8 antigenic peptide in the Inv.SHL8 sequence. 

In conclusion the antigen expression constructs show a very distinct T-cell activation 

ability dependent on their intron position. The mRNA level by itself does not predict the 

intensity of T-cell activation. This finding cannot be deducted from the predictions made 

by the current understanding of NMD dependent mRNA regulation. 
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Fig.5 Quantification of antigen presentation after peptide extraction. For quantitative 
determination of  T-cell activation both sets of Inv.SHL8 or kovak encoding vector 
constructs were transfected into HeLa Kb cells. Peptides were extracted from 500.000 
cells each and reincubated with 100.000 K89 cells for optimal antigen presentation to 
B3Z cells. Inv.SHL8 3’intron / No intron / 5’intron (black/white/grey square) in left 
graph and kovak 3’intron, No intron, 5’ intron (black/white/grey circle) in right graph. 
Synthetic peptide SHL8 in a 1:3 titration starting at 1000 pM as positive control (dashed 
with cross), untransfected cells as negative control (black line). 
 
 
 
2.1.2 GFP based NMD-reporter constructs for antigen presentation 

 

A GFP based NMD-reporter system has been developed to monitor the activity of the 

NMD pathway in different cell lines and experimental approaches (Paillusson, Hirschi et 

al. 2005). Again the distinguishing feature between the two expression vectors is the 

presence of a 3’intron in accordance with the 50-55 base pair rule making only the first 

one a target for NMD. This approach presents several advantages in comparison to 
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previously described methods measuring mRNA levels based on RT-PCR or northern 

blotting. Monitoring GFP levels with flow cytometry enables the fast and high 

throughput analysis of NMD activity. Additionally this assay is based on the actual 

protein level allowing more direct conclusions about the amount of peptides for antigen 

presentation. The previously described NMD-reporter constructs were modified for the 

purpose of examining antigen presentation by inserting the lysine flanked SIINFEHL 

encoding sequence at the C-terminus of the EGFP protein directly followed by a stop 

codon for efficient peptide liberation (Fig.6).  

 

 
 
 
 
 

 
 
 
 
Fig.6 GFP based NMD-reporter constructs modified for antigen presentation. Both 
pCl vector constructs consist of a TCRβ leader - EGFP fusion sequence containing a 
PTC. The first contains a 3’intron making it a target for NMD (black) while the intron is 
deleted in the second construct rendering it unsusceptible to NMD (white). Comparison 
of GFP expression was used previously as measure for NMD activity. Here the sequence 
encoding the antigenic peptide SIINFEHL was inserted at the C-terminus of the EGFP in 
order to examine antigen presentation activity. 
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First the competence of HeLa Kb cells to undergo NMD was demonstrated as described 

previously in the literature (Paillusson, Hirschi et al. 2005). 100 ng of DNA of the GFP 

based NMD reporter constructs was transiently transfected into 2.5x105 cells and the GFP 

expression was determined by flow cytometry after 48 hours (Fig.7A). The total 

percentage of GFP expressing cells in the 3’intron construct accumulated to 0.78% while 

the no intron transfected cells showed 1.96% GFP positive cells. This demonstrates good 

correlation with the prediction of the 3’intron being a target of NMD. Then antigen 

presentation was determined as activation of B3Z T-cells (Fig.7B). Interestingly both 

NMD-reporter constructs demonstrated an equal level of B3Z activation independent of 

their susceptibility to NMD degradation. The T-cell response of both GFP based 

constructs was comparatively low as the control transfection with a kovak construct leads 

to a far higher B3Z activation. Low transfection efficiency of the backbone vectors 

together with a potentially less efficient peptide liberation might account for this 

generally low presentation activity. The equivocal T-cell activation of both vectors 

independent of their NMD dependent degradation underlines the findings of previous 

experiments with the Inv.SHL8 or kovak based expression vectors. As there are multiple 

steps influencing the efficiency of peptide presentation and immunodominance it can be 

difficult to pinpoint the factor responsible for the low antigenicity of the 5’intron 

constructs as well as the high antigenicity of the 3’intron construct despite the strong 

down regulation of it’s mRNA. As described before it is often not possible to reliably 

predict the immunogenicity of a given peptide sequence. But as for this case, these 

experiments taken together serve the purpose of rejecting the first hypothesis of this 

study. The NMD pathway does not just alter the antigenicity of peptides by merely 
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changing their mRNA or protein levels according to the targeting rules for mRNA decay. 

The answer may lie deeper within the mechanism of the NMD pathway as demonstrated 

by the following experiments.  
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Fig.7 GFP expression and T-cell activation of NMD reporter constructs. GFP 
expression of both NMD reporter constructs was determined in transiently transfected 
HeLa Kb cells (A). The 3’intron construct, a target of NMD, showed GFP expression in 
0.78 % of the cells (black). The NMD resistant construct lacking the intron demonstrated 
an increased level of 1.96 % GFP positive cells (white). As a negative control cells were 
transfected with a kovak encoding vector without GFP. Antigen presentation was 
accessed by B3Z T-cell assay (B). Both NMD reporter constructs showed very similar T-
cell activation independent of intron presence (right panel, black and white triangles). A 
kovak encoding vector served as positive control (left panel, cross) for T-cell activation 
and untransfected cells as negative control (dashed). 
 
 
 
 
 
 
 
2.1.3 Inhibition of pioneer translation reduces T-cell activation independent of 

intron position. 

 

Since the first hypothesis did not present a conclusive explanation of the varied 

antigenicity of different constructs, the following experiments focus on the pioneer round 

of translation by itself as an integral part of the NMD pathway and a potential source for 

the generation of antigenic peptides. The kovak based vectors with either the intron 

shuffled to the 3’ or 5’ position or the intron being deleted were transfected once more 

into HeLa Kb cells (Fig.8). Here they were cotransfected with synthetic small interfering 

RNA molecules targeting either CBP80 or Upf1. Both factors have been shown to be 

essential for the NMD pathway. Depletion of these factors results in the inhibition of the 

NMD mechanism and therefore an upregulation of mRNAs previously suppressed by 

NMD. Surprisingly, depletion of these factors led to a reduction of antigen presentation 

in all three constructs. This reduction was more pronounced for CBP80 RNAi than for 

Upf1 RNAi but independent of the intron position.  
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Fig.8 Inhibition of pioneer translation reduces T-cell activation independent of 
intron position. HeLa Kb cells were cotransfected with one of the kovak based pcDNA1 
vector constructs containing either a 3’intron (black), no intron (white) or a 5’intron 
(grey) and RNAi targeting either Upf1 (red line), CBP80 (blue line) or no RNAi (black 
line). Independent of intron position and susceptibility to NMD, Upf1 depleted cells 
showed an intermediate and CBP80 depleted cells a strong reduction in B3Z T-cell 
activation. 
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2.2 Effects of pioneer vs. cap dependent bulk translation on 

MHC class I expression   

 

Only with the discovery of nonsense mediated decay the requirement for a pioneer round 

of translation and therefore the possibility of a novel source of antigenic peptides became 

evident. This chapter aims to establish the pioneer round of translation as a separate 

mechanism of polypeptide generation as well as to demonstrate its effects on MHC class 

I mediated antigen presentation. 

 

First an assay system to differentially interfere with either the pioneer round of 

translation or with the elF4E and cap dependent bulk translation was developed (Fig.9). 

RNA interference sequences and dominant negative DNA constructs were generated 

targeting key elements of either the pioneer round or cap dependent bulk translation 

including CBP80, CBP20, PABP2, Upf1, Upf2, 4E-BP1 and elF4E. The direct effect of 

target protein depletion as well as the inhibitory function on the subsets of translation 

were determined by ways of immunoblotting and radio labeling. Two different 

approaches were taken to precisely monitor antigen presentation in tissue culture cell 

lines. In order to access the overall surface expression of MHC class I molecules, flow 

cytometry in conjunction with antibodies binding to human and murine MHC class I 

complexes was used. To track the surface presentation of specific antigenic peptides, 

different T-cell clones were used in activation assays. A citric acid based protocol for the 

removal of initial MHC class I peptide complexes and subsequent surface reassembly 

was used to determine small differences in antigen presentation. To further characterize 
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the speed and accuracy of the peptide generation their interdependence with cell cycle 

progression, cytokine levels, chemical inhibitors and starvation conditions were 

addressed. 

 

 

 

 

 

Fig.9 Differential inhibition of pioneer round of translation and bulk translation. 
Newly spliced mRNA assembles with the EJC, pioneer translation and NMD factors in 
the nucleus. The pioneer round of translation exclusively uses CBP80 and PABP2 (red) 
for initiation of translation. After the displacement of the EJC, elF4E (dark blue) 
facilitates bulk translation. 4E-BP1 (yellow) competes with the translation initiation 
complex for binding to elF4E. It therefore regulates protein biosynthesis depending on 
it’s phosphorylation stage. Factors like elF4G that are jointly used for pioneer translation 
and bulk translation are depicted in light blue. 
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2.2.1 RNAi mediated depletion of the pioneer round of translation factors CBP80, 

CBP20, Upf1 and PABP2. 

 

As described in  section 1.2.5 the pioneer round of translation includes several features 

distinguishing it from the bulk translation used for the generation of large quantities of 

cellular proteins. In order to examine the contribution of different sources of translation 

for antigen presentation, a method to exclusively target the pioneer round of translation 

was established. Translation of newly spliced mRNA transcripts is facilitated by the 

CBP80/20 heterodimer which is exchanged to eIF4E right after the first ribosome finishes 

the initial round of translation (Ishigaki, Li et al. 2001; Lejeune, Ishigaki et al. 2002; 

Chiu, Lejeune et al. 2004; Oh, Kim et al. 2007). Both proteins CBP80 and CBP20 are 

essential for this function. Additionally CBP80 promotes the interaction of Upf1 and 

Upf2. Upf1 was shown to be a factor of central importance being involved in early events 

of pioneer translation as well as being the final trigger for the mRNA decay (Hosoda, 

Kim et al. 2005). PABP2 is another protein exclusive for pioneer translation. Several 

other components like eIF4G are shared by both the pioneer as well as the bulk 

translation (Ishigaki, Li et al. 2001). Therefore CBP80, CBP20, Upf1 and PABP2 were 

targeted using interference RNA. Small interfering RNA oligonucleotides targeting the 

human sequences were designed newly or according to previously published data. 

Conditions for the transient transfection of the synthetic RNAi molecules and adequate 

down regulation of target proteins were optimized for different subclones of human HeLa 

cell cultures to develop efficient protocols. Small interfering RNA molecules targeting 
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neomycin phosphotransferase II, with a random sequence or only the lipid based 

transfection reagent without RNA molecules served as control for unspecific effects. The 

expression level of the targeted proteins was determined by immunoblot analysis. The 

protein bands were quantified in comparison to actin. The depicted immunoblots 

represent at least two independent experiments.  

 

For the small interfering RNA targeting human CBP80 (Fig.10B) and human Upf1 

(Fig.11D) a reduction of the protein level to about 25 % of the control treated cells was 

achieved. Similar depletion was achieved for CBP20 (Fig.10A) as well as PABP2 

(Fig.10B).  

 

 

 

 

 

 

 

 

Fig.10 RNAi transfection leads to reduced protein level of CBP20, PABP2 and 
CBP80. HeLa cells were transfected with small interfering RNA, cell homogenate was 
separated on 4-20% gradient SDS-PAGE gels and probed with antibodies raised against 
CBP20, PABP2 and CBP80 (A and B). Anti actin antibody served as loading control (B). 
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2.2.2 RNAi mediated inhibition of the pioneer round of translation does not effect 

the overall protein biosynthesis. 

 

Most mRNAs form polyribosome structures and undergo multiple rounds of translation 

before they reach their lifetime. Only PTC containing transcripts are limited to the 

pioneer round of translation before being degraded in a NMD dependent manner. 

Generally each newly synthesized mRNA will be translated into at least one pioneer 

round of translation product. To our knowledge there are no reports or even assays to 

determine the fate of pioneer round of translation products as unfolded polypeptide 

chains or proteins with a fully functional conformation. Taken together it can be assumed 

that the pioneer round of translation by itself only contributes very small and most likely 

undetectable quantities of protein to the overall pool of protein generated within the cell. 

In order to confirm that the RNAi mediated depletion of the pioneer round of translation 

factors CBP80 and Upf1 do not alter the overall synthesis of new polypeptides, 

radioactive incorporation assays were performed. Through radiolabeling any newly 

synthesized polypeptide chains are detected independent of length, conformation, reading 

frame or correct full-length translation. Since many of these alternative modes of 

translation might contribute to antigen generation, radiolabeling has an advantage over 

Western blotting of reference proteins that require full-length translation for antibody 

recognition. CBP80 and Upf1 RNAi depleted HeLa cells were incubated for various 

times in growth conditions including culture medium with S35 radiolabeled cysteine and / 

or methionine. Afterwards excessive radioactivity was washed of, cells were 

homogenized and peptides were loaded on a reducing SDS-PAGE gel for separation. The 
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amounts of S35 incorporation was assessed by phosphoimaging and quantified. Cells 

transfected with unrelated RNAi served as a positive control, untransfected cells treated 

with the potent translation inhibitor cycloheximide at a concentration of 100 µg/ml were 

used as a negative control.  

 

Treatment of cycloheximide led to a reduction of S35 labeled amino acids below the 

detection level of the assay. CBP80 RNAi transfected HeLa cells showed a very slight 

reduction in S35 incorporation. Cells with a reduced level of Upf1 expression 

demonstrated an increase of translation activity of about 15% in comparison to mock 

treated cells. Several studies facilitating gene chip assays demonstrated the ability of 

Upf1 to alter the expression levels of multiple genes (Mendell, Sharifi et al. 2004; Chan, 

Huang et al. 2007) . Out of 4000 genes examined after RNAi mediated inhibition of Upf1 

in HeLa cells, at least 197 genes were shown to be consistently up regulated and 176 

genes were down regulated by a factor of 1.9 or more. This effect might also account for 

the 15% increase in S35 incorporation detected here. The overall band pattern in the SDS-

PAGE gel for mock, CBP80 or Upf1 RNAi transfected cells did not show any visible 

differences indicating similar sizes of the newly generated polypeptides. Changes in the 

size distribution could have been an indicator for different efficiency of initiation or 

elongation (Fig.11A and Fig.11C). Taken together no reduction of overall protein 

biosynthesis was detected after inhibition of the pioneer round of translation neither 

through CBP80 nor Upf1. 
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Fig.11 RNAi mediated depletion of the pioneer round of translation does not effect 
the overall protein biosynthesis. Human HeLa cells were transiently transfected with 
short interfering RNA against CBP80, Upf1, neomycin phosphotransferase II (mock) or 
no RNAi. For S35 incorporation assays 2.5x105 cells were cultured for 72 h and 
radiolabeled for 40 min with methionine and cysteine under growth conditions in RPMI 
medium. Cycloheximide was used at 100µg/ml. Cells were homogenized and the 
equivalent of 100,000 cells in a 1/3 dilution series was separated on a 4-20% gradient gel. 
S35 incorporation was quantified and depicted as arbitrary units (AU) to percent of cells. 
For protein detection the equivalent of 120,000 cells for CBP80 (80kDa) and 100,000 
cells for Upf1 (137kDa) in a 1/3 dilution series were SDS-PAGE separated and 
immunoblotted. Bands were normalized to actin (43 kDa) and quantified. Data is 
representative of two or more experiments.  
 

 

2.2.3 Targeting of elF4E and 4E-BP1 reduces overall protein biosynthesis 

 

As mentioned above the shift from pioneer round of translation to bulk translation 

requires the transition from CBP80 to eIF4E. Within the steady state generation of 

protein biosynthesis eIF4E is regulated by 4E-BP1 factors. Overexpression of 4E-BP1 

has been shown to stall translation. The dominant negative mutant 4E-BP1-AA lacks the 

two residues Thr37 and Thr46 (Gingras, Raught et al. 2001). Therefore it remains 

unphosphorylated and constitutively inhibits elF4E function even more efficiently. 

Transient transfection with the dominant negative 4E-BP1-AA expression vector leads to 

a reduced incorporation of S35 methionine in comparison to cells transfected with an 

empty vector or no DNA. This inhibition was detectable after 15 min of S35 methionine 

incorporation (Fig.12A) and was even more pronounced after 120 min of translation 

(Fig.12B). Expression of the dominant negative 4E-BP1-AA vector was confirmed using 

immunoblotting. The first blot was probed with an antibody recognizing the HA-Tag of 

the 4E-BP1-AA vector. A band at 24kDa confirmed the expression of the dominant 
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negative protein. The band at 40kDa is unrelated to the experiment, the band at 43kDa a 

control transfection with the HA-tagged protein Trim21 (arrow) (Fig.12C). For an 

additional blot an antibody directly against 4E-BP1 is used. It recognized the wildtype 

protein of constitutively expressed 4E-BP1 at 22 kDa as well as the slightly larger 

transiently transfected 4E-BP1-AA at 24 kDa (Fig.12D). 

 

Alternatively elF4E can be directly targeted with small interfering RNA in order to 

achieve bulk translation inhibition. Transfection with elF4E RNAi led to a reduction of 

S35 methionine and cysteine incorporation both after 30 and 75 min of translation. The 

translation rate of cells with depleted elF4E was about 60 % of mock treated cells (Fig. 

13A and B). In order to determine the effectiveness of the small interfering RNA elF4E 

depletion was determined by immunoblotting. elF4E bands were quantified and 

normalized to actin bands demonstrating a reduction to 30 % of protein level (Fig.13C). 

 

Taken together both DNA overexpression of dominant negative 4E-BP1-AA and 

depletion of elF4E reduced bulk translation and generation of new polypeptides. 

Treatment of cells with cycloheximide at a concentration of 100 µg/ml stalled translation 

completely. 
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Fig.12 Overexpression of dominant negative 4E-BP1-AA reduces translation 
HeLa cells were transfected with a vector encoding the dominant negative 4E-BP1-AA 
sequence followed by a HA-tag or empty vector. For S35 incorporation assays cells were 
cultured for 72 h, radiolabeled for 15 min (A) or 120 min (B) with S35 methionine  under 
growth conditions in RPMI medium. Cycloheximide was used at 100µg/ml. Cells were 
homogenized and the equivalent of 300,000 cells in a 1/3 dilution series was separated on 
a 4-20% gradient gel. S35 incorporation was quantified and depicted as arbitrary units 
(AU) to percent of cells. For immunoblotting 400,000 cells were homogenized and 
loaded for separation onto a 4-20% SDS-PAGE gel in a 1/3 dilution series. The blot was 
probed with antibody raised against the HA-tag of the 4E-BP1-AA protein. 4E-BP1-AA 
was detected at 24 kDa, a control transfected Trim21 protein at 43kDa (C). Additionally 
constitutive wt 4E-BP1 as well as transiently transfected 4E-BP1-AA was detected 
directly (D). 
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Fig.13 RNAi mediated depletion of translation factor elF4E reduces protein 
biosynthesis.  HeLa cells were transfected with RNAi against eIF4E of random sequence 
RNAi. For S35 incorporation assays cells were cultured for 72 h, radiolabeled for 30 min 
(A) or  75 min (B) with S35  methionine  under growth conditions in RPMI medium. 
Cycloheximide was used at 100µg/ml. Cells were homogenized and the equivalent of 
150,000 cells in a 1/3 dilution series was separated on a 4-20% gradient gel. S35 
incorporation was quantified and depicted as arbitrary units (AU) to percent of cells (A 
and B). For immunoblotting 200,000 cells were homogenized and loaded for separation 
onto a 4-20% SDS-PAGE gel in a 1/3 dilution series. The blot was probed with antibody 
against elF4E (25kDa) and actin (43 kDa) for normalization (C). 
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2.2.4 Depletion of Upf1 reduces surface presentation of MHC class I  

 

In the previous paragraphs a differential strategy to inhibit either the pioneer round of 

translation or the bulk synthesis of polypeptides was established.  It was demonstrated 

that pioneer translation does not have a detectable effect on the overall generation of 

polypeptides. Several known sources of translation including cryptic translation and 

DRiPs are not contributing to the general synthesis of proteins while they play an 

important role in producing antigens for MHC class I mediated presentation (Shastri, 

Schwab et al. 2002). Here it shall be tested, if depletion of factors essential for the 

pioneer round of translation have any effect on the cell surface presentation of MHC class 

I. When MHC class I molecules that are loaded with their matching antigenic peptides 

finally reach the cell surface, they went through a cascade of rigorous steps optimizing 

the quality and binding properties of the peptides. They usually have a KD of  more than 

500 nM and stably remain on the cell surface for hours or even days (Yewdell 2006). 

Therefore changes in the supply or processing of peptides often do not directly result in 

alterations of the MHC class I levels on the surface. Previously a method was established 

to extract the peptides from the binding cleft of the MHC class I molecule on the cell 

surface (Kunisawa and Shastri 2003). This is achieved with an acid wash procedure with 

PBS buffered citric acid at pH 3.1 for 1 to 5 minutes immediately followed by several 

steps of PBS rinsing. Conditions were adapted for several cell lines as well as murine 

primary cells. Adhesive cells remain attached to the culture dish during the acid wash 

treatment allowing for good conditions for continuous growth and culture of the cells. 

Removal of the peptide leads to the reinternalization and recycling of the heavy chain. 
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The β2m chain, which is only non-covalently attached to the heavy chain, is permanently 

removed through the washing procedure. Within a time course of several hours newly 

generated MHC class I molecules are loaded and presented at the cell surface. The time 

of surface recovery is highly dependent of the cell line as well as the specific MHC class 

I peptide complex and has to be adjusted for the experimental conditions. Significant 

differences in the recovery times even for different subclones of the same cell line were 

observed. Generally the time for complete recovery ranges between 4 and 10 hours with 

murine MHC Db being relatively fast and MHC Kb being slightly slower in achieving full 

recovery. In addition to respective primary and secondary antibodies, cells were stained 

with propidium iodine to select only living cells for analysis. Propidium iodine positive 

cells, generally a population of less than 0.5% of the cells that remain after citric acid 

washing, were excluded form the analysis.  

Here human HeLa cells stably transfected for the murine MHC class I molecule Kb as 

well as for the ovalbumine derived antigen precursor Kovak were used. They allow 

monitoring of the human HLA A, B and C as well as the murine Kb MHC class I 

molecules during the acid wash recovery experiments. Cells were depleted for Upf1  

using small interfering RNA, peptides were removed through acid wash treatment, and 

cells were placed under growth conditions for various times from 0 to 6 hours (Fig.14A 

and B). After both 3 and 6 hours a significantly reduced level of Kb surface expression 

was detected (Fig.14A). This observation was also consistent with a lower level of 

surface HLA A, B and C (Fig.14B). This observation was consistent in more than 10 

experiments. General RNAi mediated depletion of Upf1 was confirmed with 

immunoblotting (Fig.14C). Since western blotting can only demonstrate an overall 
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reduction of Upf1 in a pool of homogenized cells, Upf1 protein levels were additionally 

accessed on a per cell basis using flow cytometry. Cellular Upf1 protein levels were 

reduced in all permeabilized cells as demonstrated by the shift of the graph for Upf1 

RNAi treated cells to the left (Fig.14D, red line). Unpermeabilized cells served as a 

control for Upf1 specificity. 

Together these experiments indicate a loss of MHC class I surface presentation in Upf1 

depleted cells. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Fig.14 Transient depletion of Upf1 reduces the surface presentation of MHC class I. 
HeLa Kovak/Kb cells were transiently transfected with RNAi targeting Upf1 (red), 
neomycin phosphotransferase II (orange) or no RNAi (grey shadow). Cells were 
untreated (no acid wash) or acid washed and placed under culture conditions for various 
times 90, 3, 6h). MHC surface levels were monitored by flow cytometry using primary 
antibody 5F1.2.14 against Kb or W6/32 (A) against HLA A, B, C (b). RNAi mediated 
depletion of Upf1 was confirmed by immunoblotting (C) and flow cytometry (D). Cells 
were permeabilized with -20°C prechilled EtOH and stained for internal Upf1 protein 
levels.   
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2.2.5 Reduction of PABP2 expression leads to intermediate MHC class I surface 

recovery 

 
 
PABP1 and PABP2 have been described as protein factors present at the translation 

initiation complex of newly spliced mRNA (Ishigaki, Li et al. 2001). After the pioneer 

round of translation PABP2 is removed from the assembly, while PABP1 remains bound 

to the Poly-A tail of the mRNA facilitating further rounds of translation. Here the effect 

of PABP2 depletion on MHC class I surface expression was directly compared to the 

previously demonstrated Upf1 mediated MHC class I surface reduction (Fig.15). As 

described in the experiments above HeLa Kovak/Kb were transfected with small 

interfering RNA molecules, treated with citric acid solution for the removal of initial 

MHC class I surface molecules and recovery was monitored over a 6 hour time interval. 

Flow cytometric determination of the MHC class I HLA A, B, and C surface expression 

levels showed a clear difference in recovery between Upf1 depleted cells on the one hand 

and irrelevant neomycin phosphotransferase II RNAi or untransfected cells after 3 hours. 

Absolute numbers of mean fluorescence for the 3h time point were 24.8 for Upf1, 29.4 

for PABP2, 42.4 for Neo and 41 for no RNAi. Therefore cells with a reduced PABP2 

level showed an intermediate phenotype with HLA A, B and C levels lower than control 

transfected cells but slightly higher than Upf1 diminished cells. After 6 hours the absolute 

differences were less pronounced while the same relative differences between Upf1, 

PABP2, Neo and untransfected cells remained (Fig.15A). Analysis of Kb surface 

expression presented similar findings at the 3 and 6 hour time points with more 

pronounced MHC class I reduction for Upf1 and intermediate MHC class I reduction for 
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PABP2 depleted cells. While this pattern was consistent in at least two independent 

experiments there remain several explanations for an intermediate effect of PABP2 

depletion on MHC class I surface recovery. These include more technical findings like a 

less pronounced efficiency of the small interfering RNA transfection in reducing the 

PABP2 target protein level or more functional explanations like a less stringent 

requirement for PABP2 or a redundancy between PABP1 and PABP2 in facilitating the 

pioneer round of translation mechanism. Since it might be difficult to conclusively 

distinguish between these possibilities, further experiments focused on additional factors 

of the pioneer round of translation with more pronounced effects. In summary PABP2 

reduction shows intermediate inhibition of MHC class I surface expression.  

 

 
Fig.15 Transient depletion of PABP2 reduces the surface presentation of MHC class 
I to a lesser extent than Upf1. HeLa Kovak/Kb cells were transiently transfected with 
RNAi targeting PABP2 (green), Upf1 (red), neomycin phosphotransferase II (orange) or 
no RNAi (grey shadow). Cells were acid treated as described above. MHC surface levels 
were monitored using primary antibody or W6/32 (A) or 5F1.2.14 (B). Depletion of 
PABP2 reduced the recovery of both HLA A, B and C as well as Kb but to a lesser extent 
than Upf1 depletion. 
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2.2.6 Depletion of the pioneer round of translation factor CBP80 reduces surface 

presentation of MHC class I  

 

CBP80 has been described as the defining protein for the pioneer round of translation. 

Jointly with CBP20 it interacts with the cap structure of the newly spliced mRNA as well 

as elF4G (Marintchev and Wagner 2005). Since it is removed from the translation 

initiation complex right after the first passage of the ribosome it is the ideal target to 

demonstrate the involvement of the pioneer round of translation in antigen presentation 

(Lejeune, Ishigaki et al. 2002; Chiu, Lejeune et al. 2004). This represents an advantage 

over experiments focusing solely on Upf1, which has been demonstrated to be part of the 

pioneer translation but also takes part in final processes of mRNA decay as well as 

general gene regulation (Mendell, Sharifi et al. 2004; Chan, Huang et al. 2007). 

 

Additionally, a subclone of HeLa cells (termed AS1) were used which showed a 

particularly slow MHC class I surface recovery pattern. After surface removal these cells 

only regain their prior level of MHC class I expression after about 8.5 hours. This helps 

to examine any differences of MHC class I recovery times of cells deficient for the 

pioneer round of translation. Cells were transfected with small interfering RNA 

molecules, washed with citric acid buffer and placed under culture conditions as 

described above. After initial optimization experiments flow cytometry analysis was 

performed in a time course with measuring intervals prior to acid wash, right after acid 

wash and at 7.5 and 8.5 hours of culture. CBP80 as well as Upf1 depleted cells showed a 

very similar or slightly reduced overall MHC class I level as assessed with antibody 
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W6/32 (Fig.16A). Acid wash completely removed MHC class I complexes reducing the 

mean fluorescence in all cases to the level of only secondary antibody staining. After 7.5 

hours 42 % of untransfected cells recover to their level of MHC class I surface expression 

prior to acid wash. At the same time only 9-11% of the Upf1 or CBP80 depleted cells 

show full MHC class I expression. This disparity remains at the 8.5 hour  the time point 

with 85 % of control cells fully recovering their HLA A, B and C expression. In 

comparison only 38 and 40 % of CBP80 and Upf1 depleted cells recover at this time 

interval. The separate panel line shows the recovery pattern at the 8.5 hour time point 

with absolute numbers of cells on the y-axis as well as the gate (box with arrow) used for 

the determination of the percentage of fully recovered cells. 

Assembly of functional MHC class I molecules on the surface requires the noncovalent 

binding of β2m with the heavy chain as well as association with an appropriate peptide. 

Therefore the overall surface expression of MHC class I complexes can be determined by 

flow cytometric measurement of β2m (Fig.16B). Also here the recovery follows a similar 

pattern with only 13 and 16 % of Upf1 and CBP80 depleted cells in comparison to 55% 

of untreated cells with full β2m surface expression after 7.5 hours. After 8.5 hours the 

difference between 43 and 41 % of Upf1 and CBP80 transfected cells to 83% of control 

cells regaining their prior β2m levels remains large. Targeting of CBP20 results in a 

comparable delay of MHC class I expression after acid wash confirming above findings 

and ruling out unspecific or off target effects of the small interfering RNA molecules. 

While the underlying reasons for the bimodal MHC class I recovery pattern were 

addressed in additional experiments, CBP80 expression and the pioneer round of 
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translation can be postulated as an essential requirement for timely MHC class I surface 

presentation. 

 

 
 
 
Fig.16 Bimodal distribution of MHC class I surface expression in Upf1 and CBP80 
depleted HeLa cells. MHC class I surface recovery is cell line dependent. A subclone of 
HeLa cells were transiently transfected with RNAi targeting Upf1 (red), CBP80 (blue) or 
no RNAi (grey shadow). MHC class I surface recovery was accessed after 0, 7.5 and 8.5 
h using antibody against HLA A, B and C (A) or beta2m (B). MHC class I surface level 
is depicted in relative and for the 8.5h time point additionally in absolute cell numbers. A 
gate was chosen for cells with fully recovered MHC levels (square box with arrow) and 
the percentage of cells recovered at each time point were depicted in separate diagrams 
(bottom).  
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2.2.7 RNAi mediated depletion of CBP80, CBP20 and Upf1 decreases activation of 

three different T-cell lines. 

 

The previous sections postulate a reduced number of MHC class I molecules in cells 

transiently depleted of the pioneer round or translation factors CBP80 and Upf1. MHC 

class I levels were assessed as total amount of Kb or HLA A, B and C molecules on the 

surface recognized by specific antibodies. In order to determine the effect of a diminished 

pioneer round of translation on the generation and surface presentation of specific 

antigenic peptides acid wash recovery experiments were performed with subsequent T-

cell activation assays (Fig.17). HeLa Kovak/Kb cells were RNAi transfected and citric 

acid treated for MHC class I surface removal as described before. Afterwards cells were 

placed under culture conditions for recovery of MHC class I surface expression for 0, 3 

and 6 hours. Peptides were extracted from 500,000 cells of each condition resuspended 

and titrated in a 1 to 3 dilution series (see methods 4.9). Peptides were incubated with 

100,000 HeLa Kb cells as antigen presenting cells and 100,000 B3Z T-cells. B3Z cells 

recognize the Kb restricted ovalbumine derived antigen SIINFEHL. After 16 hours T-cell 

activation was measured in a CPRG assay (Fig .17).  

In the absence of SIINFEHL antigen, HeLa cells are not capable of triggering any B3Z 

specific response serving as a negative control for the assay (black line at bottom). Upf1 

depleted cells (red) show as similar or slightly increased rate of T-cell activation in 

comparison to untransfected (black) or neomycin phosphotransferase II (orange) control 

transfected cells at all time points. In sharp contrast to that, the initial absorbance of 

CBP80 (blue) depleted cells of 0.8 prior to acid wash was reduced to 0.12 right after acid 
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treatment and only recovers slowly to 0.37 after 3 hours and 0.58 after 6 hours. Therefore 

antigen presenting HeLa cells are only capable of triggering a B3Z T-cell response of 

about half the intensity of control-transfected cells.  This finding goes along with 

previous observations of a reduced MHC class I surface expression in CBP80 deficient 

cells as detected by flow cytometry. It underlines the importance of pioneer factors for 

efficient antigen generation and surface presentation. The unaltered or even slightly 

increased T-cell activation of Upf1 depleted cells might find its explanation in the 

multiple roles of Upf1 in altering gene expression of many genes. In conclusion this 

experiment has demonstrated the dependency of MHC class I surface presentation on 

CBP80 pioneer translation for at least one specific antigen. Additionally it should be 

underlined that with this experimental design extracting antigenic peptides and presenting 

them separately through different cells, unspecific effects of the RNAi treatment on MHC 

class I maintenance or regulation can be ruled out.  

 

Two additional T-cell lines were used in a similar experimental setup in order to 

substantiate these results. Small interfering RNA transfection for CBP80 (blue), CBP20 

(green), Upf1 (red), neomycin phosphotransferase II (orange) and no RNA as well as acid 

wash were performed as described above (Fig.17). Here 100,000 HeLa Kovak/Kb cells 

were used in a direct presentation assay. Brefeldin A was added in the concentration of 

5µg/ml in order to prevent any further Golgi transport of MHC class I peptide complexes 

during the incubation with the T-cells. For activation assays the T-cell lines 18.5Z and 

27.5Z were used in addition to B3Z. Both recognize a specific antigen of unknown 

sequence. In accordance with the previous experiment (Fig.17) Upf1, Neo and no RNAi 
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transfected cells show similar B3Z T-cell activation both after 5 and 6.5 hours. CBP20 

RNAi transfected cell demonstrate an intermediate T-cell response in the CPRG assay 

while CBP80 RNAi transfected cells lead to a markedly reduced B3Z activation. In a 

similar way CBP80 depletion leads to a severely reduced 27.5 T-cell activation. Here 

Upf1 as well as CBP20 reduction goes along with a T-cell response less than half of the 

control samples. This is consistent with 18.5 T-cell activation with the lowest activation 

of CBP80 RNAi treated cells, slightly increased responses of Upf1 and CBP20 RNAi 

treated cells. Consistent with all experiments CBP80 deficient antigen presenting cells 

demonstrate a markedly reduced T-cell recognition further confirming measurements of 

overall MCH class I surface levels as determined by antibodies and flow cytometry. 

CBP20 and Upf1 RNAi transfection seem to have a lesser effect on antigen presentation. 

Interestingly Upf1 reduction altered the 18.5Z and 27.5Z peptides to a larger extent than 

the B3Z recognized SIINFEHL peptide. 
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Fig.17 Peptides extracted from CBP80 depleted cells show reduced B3Z T-cell 
activation. HeLa Kovak/Kb cells were transfected with RNAi targeting CBP80 (blue), 
Upf1 (red), Neo (orange) or no RNA (black). After citric acid wash cells were placed 
under culture conditions for 0, 3 or 6 h. Peptides were extracted from 500,000 cells and 
presented by HeLa Kb cells to B3Z T-cells for CPRG assay measurement. CBP80 
depleted cells demonstrate lower B3Z T-cell activation after 3 h. 
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Fig.18 CBP80, CBP20 and Upf1 depleted cells show reduced activation of three 
different T-cell lines. HeLa Kovak/Kb cells were transfected with RNAi targeting 
CBP80 (blue), CBP20 (green), Upf1 (red), Neo (orange) or no RNA (black), washed with 
citric acid buffer and cultured for 5 or 6.5 h for MHC class I surface recovery. 100,000 
cells each were used in CPRG T-cell assays with the cell lines B3Z, 27.5Z or 18.5Z in the 
presence of brefeldin A. T-cell activation was determined as absorbance at 595nm. The 
T-cell response for all three cell lines is strongly diminished in CBP80 depleted cells and 
to some extend reduced in CBP20 depleted cells. Upf1 depleted cells show only a 
reduced T-cell activation for 18.5Z and 27.5Z while leaving B3Z recognition unaffected. 
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2.2.8 Permanent Upf2 reduction lowers MHC class I expression  

 

Nonsense mediated decay is required for viability at an organismal as well a cellular 

level. Attempts to generate an Upf1 knock out mouse model were doomed by the early 

embryonic lethality of Upf1 deficient cells (Medghalchi, Frischmeyer et al. 2001). Here 

the requirement of Upf1 even prevented the generation of cell lines with permanently 

diminished factor expression. Cell lines stably transfected with Upf1 targeting small 

hairpin RNA sequences incorporated within an puromycin selectable expression vector 

did not generate any stable cell lines viable after 10 days (Wittmann, Hol et al. 2006). In 

contrast two functional and partially redundant Upf3 homologues are encoded in 

mammals. In humans dysfunctionality in one of these genes is tolerated even though it is 

manifested in a severe disease phenotype (Tarpey, Raymond et al. 2007). This leaves 

Upf2 as potential target for stable down regulation via vector encoded small hairpin RNA 

(Wittmann, Hol et al. 2006). HeLa cells were selected for stable incorporation of the 

Puro-Upf2-shRNA construct by culturing in the presence of 10 µg/ml puromycin and 

reduced Upf2 protein expression was confirmed by immunoblotting. The two HeLa cell 

line subclones shown below were provided by Juergen Wittmann and Hans-Martin Jaeck 

(Fig.19). Both independent clones show permanently about 5 fold reduced MHC class I 

levels as recognized by staining with antibody W6/32. The total combined cellular and 

surface amount of MHC heavy chain in both Upf2 diminished subclones as well as 

control cells was additionally assessed by immunoblotting using antibody HC10. The 

Western blot confirmed the overall reduction of heavy chain. Since the MHC class I 

molecule is only stable in the confirmation bound to an antigenic peptide these findings 
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are another indicator for the lack of sufficient antigen generation in the absence of Upf2. 

While this is so far the only example of a viable mammalian cell line with permanently 

reduced expression of a factor of the pioneer round of translation and NMD pathway, 

there will likely be more cell lines and primary cells originating form a recently 

established Upf2 conditional knock out mouse.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.19 Stable depletion of Upf2 reduces both MHC class I surface and internal HC 
levels. HeLa cells were transfected with a shRNA vector targeting Upf2. Subclones with 
stable down regulation of Upf2 were selected for further analysis. MHC class I surface 
expression was determined by flow using antibody W6/32. Total heavy chain expression 
was measured using immunoblotting with antibody HC10. 
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2.2.9 Short time intervals of new translation are sufficient for antigen presentation 

 

It was demonstrated that ongoing translation is a requirement for antigenic peptide 

generation and presentation (Qian, Reits et al. 2006). In order to examine the minimum 

requirements of translation for antigen production cycloheximide was used in a time 

course experiment (Fig.20). HeLa cells were treated for 2 hours prior to the acid wash 

removal to ensure that recently translated polypeptides are already processed and 

transported to the surface. MHC class I surface molecules were removed with citric acid 

and cells were permitted to recover for various time intervals from 0 to 60 min to 

progress with translation. After that translation was again interrupted by addition of 

cycloheximide and cells were cultured for a total of 6 hours followed by flow cytometry 

analysis using antibody W6/32. As expected cells that were continuously exposed to 100 

µg/ml cycloheximide were not able to translate peptides for presentation. While 2 

minutes were not sufficient, 8 or more minutes of translation generated peptide MHC 

class one complexes detectable on the surface. This confirms the dependency of antigenic 

peptide generation on new translation. Further it demonstrates that the very first peptides 

generated within several minutes already contribute to antigen presentation. 
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Fig.20 Minimum time requirement for peptide generation. HeLa cells were pretreated 
with 100 µg/ml CHX for 2 h prior to acid wash. Cells were placed in recovery conditions 
for time intervals of 0-60 min before interruption of translation with CHX. MHC class I 
surface recovery was determined 6 h after citric acid treatment by flow cytometry using 
antibody W6/32. Permission of 8 min of translation is sufficient for the generation of 
peptides presented on the cell surface. 
 

 

2.2.10 Inhibition of bulk translation does not effect antigen presentation 

 

Multiple rounds of elF4E-dependent bulk translation of mRNA transcripts account for the 

generation of the waste majority of proteins in a cell. Here it shall be examined if a 

reduction of this steady state translation pathway has any measurable effect on antigen 

generation and MHC class I mediated surface presentation. In the first experiment 

inhibition of bulk translation has been achieved as described above. HeLa Kovak/Kb cells 

have been transfected with the dominant negative 4E-BP1-AA vector construct (red), the 

wildtype 4E-BP1 DNA (orange), an empty vector (yellow) or no DNA (grey shadow 
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(Fig.21 A and B). Additionally cells were incubated with cycloheximide at the 

concentration of 100 µg/ml (black). Cycloheximide interferes with the translocation 

therefore abolishing all translation elongation. MHC class I surface expression was 

monitored by flow cytometry analysis using antibodies W6/32 and 5F1.2.14. All cells 

transfected with any of the vector constructs showed some MHC class I upregulation. 

This is an unspecific effect apparently related to transfection itself. No differences in 

MHC class I surface expression between the 4E-BP1-AA, 4E-BP1 or empty vector 

constructs were detected after 3 and 6 hours. Even though 4E-BP1-AA transfection has 

been demonstrated to significantly reduce the amount of newly generated polypeptide 

chains it did not impose any detectable effect of MHC class I mediated antigen 

presentation. In stark contrast cells with cycloheximide regained only initial surface 

expression at the 3 hour time point. No further MHC class I reappearance was measured 

after 6 hours. The initial recovery might be due to the time required for cycloheximide to 

enter the cell, bind to the ribosomes and stall new translation initiation. During this time 

period recently loaded MHC-peptide complexes can continue to progress on their passage 

from the ER through the Golgi to the cell surface independent of cycloheximide. So 

inhibition of overall translation proofed to be a very effective measure to abolish peptide 

generation and presentation. This finding is supported by the strict requirement of 

ongoing translation for antigen generation (Qian, Reits et al. 2006).  

 

Additionally it was demonstrated that the MHC class I heavy chain is abundantly present 

during the course of the experiment (Fig.21 C). With a relatively long protein half-life the 

heavy chain is continuously present during 4E-BP1-AA expression. Cycloheximide 
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incubation only gradually decreases the overall pool of heavy chain after 2 hours. Even 

after 1 and 2 days of cycloheximide treatment at 100 µg/ml substantial amounts of heavy 

chain can be detected by immunoblotting. Therefore the availability of heavy chain does 

not seem to be the reason for stalled MHC class I surface presentation but rather the 

interference with the generation of new peptides. 

 

4E-BP1-AA binds to elF4E therefore preventing it from functioning in bulk translation. 

Alternatively small interfering RNA against elF4E can prevent the assembly of the 

initiation complex for bulk translation. HeLa AS1 cells with depleted elF4E were shown 

to recover their MHC class I surface level in the same pattern as untransfected cells. Both 

elF4E depleted and control cells recover to 23.3 and 25.1 % after 7.5 hours and to 60.5 

and 59.2 % respectively after 8.5 hours. No significant effect on MHC class I surface 

presentation could be detected upon reduced elF4E expression and bulk translation. 

 

Taken all these findings together, antigen presentation remains to be dependent on the 

active and ongoing translation of RNAs. Alterations of the elF4E dependent bulk 

translation do not change antigenic peptide generation. It has to be considered that bulk 

translation usually produces large quantities of polypeptides and that even a very 

effective RNAi targeting strategy is unlikely to completely abrogate bulk translation, 

particularly the relatively small copy numbers needed for the MHC class I mediated 

antigen presentation. But on the other hand these finding continue to underline the 

importance of the pioneer round of translation for antigen generation, which might just 

generate minuscule amounts of peptides while altering antigen surface levels severely. 
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Fig.21 Inhibition of 4E-BP1 regulated bulk translation does not alter MHC class I 
expression. HeLa Kovak/Kb cells were transiently transfected with no DNA (grey 
shadow) or DNA constructs encoding dominant negative 4E-BP1-AA (red), wildtype 4E-
BP1 (orange) or empty vector (yellow). 100 µg/ml cycloheximide was added in the 
recovery medium to inhibit overall translation (black line). After acid wash flow 
cytometric analysis was performed using antibody W6/32 (A) and 5F1.2.14 (B). No 
apparent effect of 4E-BP1AA or 4E-BP1 wt on MHC class I recovery was detected. 
Additionally cells were transfected with 4E-BP1-AA or incubated with cycloheximide for 
various times between 2 and 72 hours as indicated. The equivalent of 100.000 cells or a 
subsequent dilution 1/3 was loaded on a 4-20% SDS-PAGE gradient gel and probed for 
MHC class I heavy chain expression.  
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Fig.22 Inhibition of elF4E dependent bulk translation does not alter MHC class I 
expression. HeLa AS1 cells were transfected with elF4E (purple) or no (grey shadow) 
RNAi, acid treated and cultured for 0, 7.5 and 8.5 hours before staining with antibody 
against ß2m to access total MHC class I surface levels. MHC class I expression is 
depicted as percentage of cells with completely regained surface expression (box, table & 
graph). Both elF4E and control cells recover MHC class I levels to equal extent after 7.5 
and 8.5 hours. 
 
 
 
 
2.2.11 Bimodal distribution of MHC class I recovery in HeLa AS1 cells 
 

In multiple experiments a bimodal recovery pattern as depicted in Fig.22 was observed. 

Two distinguishable peaks became particularly visible with a large difference between 

the maximum fluorescence labeling before acid wash and the minimum right after acid 

wash. Cells like HeLa AS1 with a relatively slow surface recovery of MHC class I 

molecules show very distinctive peaks. Since these experiments take an important 
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position within this study the recovery pattern of subpopulations was studied in more 

detail. Three factors were identified that could potentially account for differences in 

MHC class I expression between these subpopulations. 

 

1.) Transfection efficiency of small interfering RNA is different for MHC class I high 

and low expressing cells 

2.) RNAi mediated down regulation of target proteins differs in subpopulations 

3.) Differences in the stage of the cell cycle account for bimodal MHC class I surface 

reappearance. 

 

First it was confirmed that small interfering RNA transfection was equally efficient for 

the different subsets of cells. HeLa AS1 cells were cotransfected with Upf1 RNAi and an 

equal amount random sequence RNA of the same length with a red fluorescence tag. The 

cells were then used for an acid wash recovery experiment and analyzed by flow 

cytometry for the surface expression of HLA A, B and C as well as the uptake of red 

fluorescence from the control RNA. The red fluorescence was determined for each time 

point before acid treatment and at 0, 8 and 9 hours of culture for the entire peak (red) as 

well as separately for the 50% cells with lower (blue) and higher (green) MHC class I 

expression. All cells transfected with RNAired showed high level of red fluorescence 

confirming the RNAi uptake of almost 100% of the cells. RNAired transfection levels 

were comparable between MHC class I low (blue) and high (green) expressing cells 

within a significant increased above control cells (grey) in mean red fluorescence.  
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Fig.23 RNAi transfection efficiency consistent in subsets of recovering cells. HeLa 
AS1 cells were cotransfected with equal amounts of Upf1 and red fluorescence labeled 
random sequence RNAi, washed with citric acid and cultured for 0, 8 or 9 hours. MHC 
class I expression was probed with W6/32 staining (left). RNAred uptake was analyzed for 
the total amount of cells (red), 50 % cells with lowest MHC class I expression (blue) and 
50 % with highest MHC class I expression (green) (right). All subsets of cells 
demonstrated RNAred uptake.  
 
 
 
 
Further the interdependence of MHC class I surface expression and the cell cycle was 

addressed. As noted before new generation of MHC class I peptide complexes requires 

ongoing protein translation. Within the progression of the cell through the cell cycle 

different subsets of translation are more ore less active. During cell division global cap-

dependent protein translation is slowed down by stalling the ribosomes in the elongation 

step while IRES dependent translation of many cytokines and mitosis factors is up 

regulated (Sivan, Kedersha et al. 2007) (Pyronnet, Pradayrol et al. 2000). Due to the 
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differential regulation of these modes of translation, a potential correlation between MHC 

class I surface recovery and the cell cycle progression was examined. HeLa AS1 cells 

were transfected with Upf1 (red) or no (grey shadow) small interfering RNA and acid 

treated (Fig.24).  Cells were stained at different time points during their recovery with 

antibody W6/32 (left panel). The cell permeable propidium iodine was added as DNA 

marker to determine the cell cycle stage (right panel). The DNA content is depicted as 

linear propidium iodine staining with the G1 phase corresponding to 2 n, the G2 phase 

with 4 n and S phase with an intermediate set of chromosomes between 2 and 4 n. The 

propidium iodine stained DNA content was determined for the total of recovering cells as 

well as for the 50 % cells with lower or respectively higher MHC class I surface 

expression. Cells with low levels of surface MHC class I were predominantly in the G1 

phase while cells with higher MHC class I expression progressed to a larger extent from 

G1 through S to G2. This effect has been consistent in three independent experiments in 

HeLa cell as well as murine K89 cells. It is consistent with additional experiments using 

the DNA staining reagent Hoechst 33342 in fixed cells in order to measure cell cycle 

progression. No significant difference between Upf1 RNAi or untransfected cells could 

be detected in this experimental approach. Human Upf1 has been recently described to 

interact with DNA synthesis and DNA damage response during S-phase progression 

(Azzalin and Lingner 2006). Since this could not be confirmed for Upf2 or in non human 

cell lines it might be an effect depending rather on some Upf1specific gene regulation 

than on NMD or pioneer round of translation in general. While the correlation of cell 

cycle stages and MHC class I surface expression might be interesting for further 
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experimentation it does not explain reduced antigen presentation upon pioneer round of 

translation inhibition. 

 
 
 

 
 
Fig.24 MHC class I surface recovery correlates with cell cycle progression 
HeLa AS1 cells were transfected with Upf1 (red) or no RNAi (grey shadow), washed 
with citric acid, cultured for 0, 8 or 9 hours and analyzed with antibody W6/32 staining 
(left). Staining with propidium iodine for DNA content was used to determine cell cycle 
stage for the total of cells as well as the 50 % cells with lowest and highest MHC class I 
expression (right). Lower MHC class I correlates with predominantly G1, higher MHC 
class I with progression from G1 through S to G2. No significantly different cell cycle 
stage could be detected for Upf1 of no RNAi transfected cells.  
 
 
 
 
 
2.2.12 Effect of Interferon β on MHC class I surface expression 

 

The cellular response to viral infection and the recognition of foreign RNA often includes   

an induction of interferon type I as well as a subsequent upregulation of several immune 
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functions including MHC class I expression and antigen presentation. Transfection with 

small interfering RNA has been suspected by several authors to include off-target effects 

including unspecific gene regulation and activation of an interferon response 

(Tschaharganeh, Ehemann et al. 2007; Stewart, Li et al. 2008). Therefore especially 

RNAi strategies targeting immune functions under the control of interferon have to be 

well controlled demonstrating not only depletion of the target protein but also excluding 

any additional effects due to cellular RNA recognition. Transfection with different RNA 

sequences against the same factor, random sequence RNAi constructs, constructs 

targeting irrelevant neomycin phosphotransferase, synthetic RNA molecules or vector 

encoded small hairpin RNA as well as different transfection reagents have been included 

in previous experiments as lines of precaution.  

Here the dependency of murine Kb MHC class I surface recovery on pioneer round of 

translation factor Upf1 was examined in the presence of interferon β  (Fig.25). HeLa 

Kovak/Kb cells were transfected with no, Neo or Upf1 small interfering RNA and treated 

with citric acid for MHC class I surface recovery analysis. Cell culture medium included 

500u/ml of human interferon β. During a fully activated interferon β response cells 

recovered as observed before with Upf1 depleted cells (red) showing a reduced MHC 

class I surface reappearance after acid wash. In comparison cells transfected with the 

different synthetic RNAi molecules but without the addition of interferon β generally 

expressed lower levels of MHC class I while recovering in the same pattern (thin gray 

lines). In conclusion interferon β stimulation does not change the requirement of pioneer 

translation for fast MHC class I surface expression. 
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Fig.25 Effect of interferon β  on MHC class I expression. Comparison of murine MHC 
class I Kb surface expression in the presence or absence (thin grey lines) of 500u/ml of 
interferon β in HeLa Kovak/ Kb cells transfected with no (grey shadow), Neo (orange) or 
Upf1 (red) RNAi in an acid wash recovery experiment. MHC class I levels are generally 
up regulated upon interferon β addition while slower MHC class I recovery in Upf1 
depleted cells persists. 
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2.3 Direct assessment of peptide supply using Fluorescence 

Recovery after Photo Bleaching (FRAP) 

 

 

So far T-cell assays as well as antibody measurements of pMHC class I on the cell 

surface helped to reveal the relationship between factors of the NMD associated pioneer 

round of translation and MHC class I mediated antigen presentation. While translation 

and the generation of polypeptides are the very first events within the antigen 

presentation pathway, the final presentation at the cell surface represents the very end of 

the process. Here an additional technique is introduced in order to monitor the peptide 

transport across the ER membrane as an intermediate and essential step for efficient 

antigen presentation. TAP1 and TAP2 form a heterodimer upon recognition of suitable 

peptide targets for transport (see introduction “From cytosol to ER: peptide transport via 

TAP) (Androlewicz, Anderson et al. 1993). Next the assembly of the peptide loading 

complex including the TAP heterodimer, MHC class I, ERp57, calnexin, calreticulin, 

tapasin and further factors drastically increases the molecular size of the multiprotein 

complex (Peaper and Cresswell 2008). Indeed the radius of the complete TAP-PLC 

complex has been estimated to be ~600-1.000 Å (Marguet, Spiliotis et al. 1999).  

Formation of the TAP-PLC complex decreases the lateral mobility of TAP1 within the 

ER membrane. Eric Reitz and Jaque Neefjes were the first to take advantage of this 

change in mobility as a direct measure for ongoing peptide transport (Reits, Vos et al. 

2000). Based on fluorescence recovery after photo bleaching (FRAP), a microscopy 

technique established already 30 years ago when fluorescent proteins became available, 
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this method enables to monitor peptide transport in single living cells (Fig.26). In 

subsequent experiments the peptide supply was either reduced by using inhibitors 

targeting translation proteasomal degradation or peptide binding to TAP or allowing for 

optimal peptide generation under conditions of ongoing translation and proteasome 

function in the presence of ATP. The ultimate goal of these experiments was to determine 

the involvement of the pioneer round of translation associated with NMD in the 

generation of peptides for TAP transport. 

 

 
Fig.26 Lateral mobility of TAP directly depends on peptide supply. The active 
transport and MHC class I binding of peptides leads to the formation of a TAP1 / TAP2 
heterodimer as well as the assembly of a multi protein peptide loading complex (PLC). 
The increase in molecular weight and size of the protein complex reduces its lateral 
mobility within the ER membrane. This information is used for a direct assay of peptide 
transport to the ER in human MelJuSo cells by tracking the movement of an eGFP-TAP1 
fusion protein with a fluorescence recovery after photo bleaching (FRAP) technique. 
Inhibitors of TAP, proteasome or translation increase TAP1-GFP mobility while 
conditions of active peptide generation decrease TAP1-GFP mobility. 

• TAP inhibitors 

• Proteasome inh. 

• Cycloheximide 

• Upf1/ CBP80 

• ATP 

• Proteasome 

• Protein synthesis 
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Human MelJuSo cells expressing a TAP1 protein with a C-terminal eGFP fusion were 

generously provided by the Neefjes laboratory. These cells have been described earlier as 

suitable targets for FRAP measurements (Reits, Vos et al. 2000). The correct assembly of 

the transfected TAP1-GFP with the endogenous TAP2 is essential for dimerization and 

peptide transport requiring an optimal ratio of about 1:1. Flow cytometric analysis of the 

TAP1-GFP expression revealed a multimodal pattern with subpopulations of low, 

medium and high TAP1-GFP expressing cells (Fig.27 top panel). Even after differential 

cell sorting of these subpopulations and sustained culturing of the cells the same 

multimodal pattern of TAP1-GFP expression was observed consistently. The MelJuSo 

cells were transiently transfected with siRNAi targeting either Upf1, neo or no RNA as 

described above. Initial TAP1-GFP as well as MHC class I expression was not effected 

by siRNA transfection. The cells were washed with citric acid for the removal of MHC 

class I surface complexes and placed under culture conditions for 2.5 or 5 hours prior to 

W6/32 antibody staining. Cells were analyzed for MHC class I surface expression as well 

as TAP1-GFP content. MelJuSo cells with depleted Upf1 protein demonstrated a delayed 

MHC class I surface recovery particularly after 2.5 hours. This effect was more 

pronounced for low than for high TAP1-GFP expressing cells. Only 29.5 % of low 

TAP1-GFP, but 45.4 % of medium and 57.4% of high TAP1-GFP expressing cells 

regained their full MHC class I surface level after 2.5 hours. This might be due to a  

generally higher protein biosynthesis in the subpopulation expressing high levels of 

TAP1-GFP. Therefore these cells might have a lower susceptibility for siRNA depletion. 

After 5 hours the majority of cells regained complete MHC class I surface expression 

independent of their TAP1-GFP expression of Upf1 depletion. Additionally cells were 
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permeabilized with Ethanol at -20°C and stained for intracellular Upf1 expression 

(Fig..27 bottom panel). This approach confirmed the down regulation of Upf1 protein 

expression upon siRNA transfection in low, medium and high TAP1-GFP expressing 

cells. In conclusion MelJuSo cells demonstrate Upf1 dependent MHC class I surface 

expression consistent with findings from experiments in HeLa cells. Cells with medium 

levels of TAP1-GFP expression were chosen for all following FRAP experiments since 

they combine both sufficient fluorescence for FRAP analysis as well as susceptibility for 

Upf1 dependent MHC expression. As recommended by Reits et al. they might also 

support a more efficient formation of the TAP heterodimer due to a more balanced ratio 

of TAP1-GFP to endogenous TAP2 proteins (Reits, Vos et al. 2000).  
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Fig.27 TAP1-GFP expressing MelJuSo cells demonstrate reduced MHC class I 
surface recovery after RNAi mediated Upf1 depletion. MelJuSo cells show a different 
intensity of TAP1-GFP expression (top panel). Cells with low, medium and high TAP1-
GFP expression were monitored for MHC class I surface expression in a acid wash 
recovery time course experiment before treatment and at 0, 2.5 and 5h. Cells 
demonstrated delayed MHC class expression after 2.5 h after Upf1 (red) depletion 
(middle panels, neo orange, no RNAi grey shadow).  Down regulation of Upf1 protein 
following RNAi transfection was demonstrated by detection of Upf1 protein levels in 
permeabilized cells with anti Upf1 antibody (bottom panel).  
 
 
 

MelJuSo TAP1-GFP cells show a typical staining of the ER and nuclear envelope 

(Fig.28). For FRAP measurements a region ω with a radius of 84 was monitored for 5 

time intervals of 1.6 seconds, fluorophores were bleached with a pulse at 100% laser 

intensity of a 488 nm Argon laser and monitored for fluorescence reassembly through 

lateral TAP1-GFP motion for another 32 seconds (ROI red). A general fading of about 3-

5 % of the initial fluorescence due to the detection laser was observed (ROI green). As 

depicted in the graph, an immobile fraction (I) as well an actively recovering mobile 

fraction (R) can be distinguished. Excluding microdomains, alterations of membrane 

shape and other obstacles the movement within the membrane can be described as planar 

Brownian motion. Different mathematical models have been used to generate a diffusion 

constant DFRAP. Here the equation for unrestricted two dimensional diffusion in a circular 

area without any recovery from outside the focal plane has been used (Axelrod, Koppel et 

al. 1976; Reits and Neefjes 2001; Chen, Lagerholm et al. 2006). This strategy has been 

successfully applied to determine diffusion constants for other membrane bound 

components including GFP-tagged MHC class I Ld molecules (Marguet, Spiliotis et al. 

1999). 
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Fig.28 Measuring Peptide transport with Fluorescence Recovery after Photo-
Bleaching (FRAP). TAP1-GFP was expressed in MelJuSO cells. A circular region was 
bleached at 100% laser intensity with an argon / krypton 488 nm laser and fluorescence 
recovery through lateral movement of TAP1-GFP was monitored at 1.6 second time 
intervals. A region on the opposing side of the cell was chosen as a reference for 
fluorescence due to fading. The lateral mobility of TAP1-GFP is calculated as DFRAP 
Diffusion coefficient. 
 
 
 
 
 
2.3.1 Inhibition of peptide supply increases TAP1-GFP membrane mobility 

 

Reits et al. postulated a direct correlation between cytosolic peptide supply and lateral 

TAP1-GFP mobility in the membrane (Reits, Vos et al. 2000). In order to establish an 

experimental set up to measure the transport of antigenic peptide, several of their 

experiments were recapitulated. First TAP1-GFP expressing MelJuSo cells grown on a 
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microscopy cover slip were incubated for 30 minutes at 37°C with medium containing 

200 µg/ml of the proteasome inhibitor lactacystin or medium alone. 10 cells of each 

condition expressing intermediate TAP1-GFP fluorescence were selected for FRAP 

analysis. The combined data for the cells with (green) or without lactacystin (black) are 

depicted in Fig. 29A. Incubation with the proteasomal inhibitor led to an accelerated 

fluorescence recovery indicating a higher lateral mobility of the TAP1-GFP molecule in 

the ER membrane. The TAP diffusion coefficient DTAP was determined as 6.63 x10-10 

(cm2 s-1) for lactacystin treated cells and as comparison to 3.98 x10-10 (cm2 s-1) for control 

cells. The effect of translational inhibition on TAP1-GFP mobility was tested using 

cycloheximide as an inhibitor of protein biosynthesis. Cells were incubated for 30 

minutes with cycloheximide at a concentration of 100 µg/ml (Fig.29B). A further 

approach included the direct interference with the TAP1/TAP2 heterodimer to interact 

with peptide for transport (Fig.29B). The Herpes simplex virus (HSV) derived immediate 

early protein ICP47 forms a stable complex between its N-terminal residues and the 

TAP1/TAP2 heterodimer therefore abolishing further peptide transport (Galocha, Hill et 

al. 1997). Cells treated with cycloheximide and control vector or jointly together with 

ICP47 encoding vector demonstrated a high DTAP of 8.47 x10-10 (cm2 s-1) and 8.75 x10-10 

(cm2 s-1) respectively, indicating the abrogation of peptide transport. In comparison 

ICP47 vector alone had a DTAP of 5.15 x10-10 (cm2 s-1) demonstrating a intermediate 

increase in TAP mobility in comparison to control transfected cells with a DTAP of 3.15 

x10-10 (cm2 s-1). Taken together inhibition of translation, proteasomal degradation and 

peptide transport all reduce lateral TAP mobility. This establishes TAP mobility as a 

good measure for peptide supply. 
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Fig.29 Inhibition of peptide supply increases TAP1-GFP membrane mobility. 
Protein degradation was inhibited by addition of 200 µg/ml proteasome inhibitor 
lactacystin (green) leading to accelerated fluorescence recovery with a DTAP of 6.63 in 
comparison to 3.98 x10-10 (cm2 s-1) for contral cells (A). Alternatively protein 
biosynthesis was inhibited with cycloheximide at a concentration of 100 µg/ml or TAP 
transport was reduced by vector transfection of the herpes simplex derived ICP47 (B). 
Both cycloheximide and ICP47 treated cells demonstrate a DTAP increase in comparison 
to control transfected cells indicating reduced peptide transport trough TAP. 
 
 
 
2.3.2 Upf1 depletion increases TAP1 mobility 

 

It was shown in previous experiments that siRNA induced depletion of Upf1 delays the 

recovery of surface MHC class I expression. Here we examined if Upf1 depletion also 

reduces the supply of peptides as measured by TAP1-GFP FRAP. MelJuSo cells were 

transfected with siRNA targeting Upf1 (red), neo (orange) or no RNA (black) (Fig.30A). 

As a control cells were incubated for 30 minutes with lactacystin (green).  Upf1 siRNA 
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transfected and lactacystin incubated cells both had a comparatively high DTAP of 8.26 

x10-10 (cm2 s-1) and 8.02 x10-10 (cm2 s-1). The DTAP of Neo siRNA or control cells 

remained similarly low at 4.75x10-10 (cm2 s-1) and 5.01x10-10 (cm2 s-1). The  difference in 

TAP mobility between Upf1 siRNA and untransfected cells is also reflected in Fig 30B. 

Treatment with lactacystin, cycloheximide or both chemical inhibitors together 

demonstrated an increasing DTAP value of  6.39x10-10 (cm2 s-1), 6.94x10-10 (cm2 s-1) and 

8.40x10-10 (cm2 s-1). This implies a potentially synergetic effect of the inhibitors in 

decreasing peptide supply. In conclusion Upf1 depletion reduces peptide supply available 

for TAP mediated transport to a comparable extend as chemical inhibitors of translation 

or proteasomal degradation. 
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Fig.30 hUpf1 depletion increases TAP mobility. MelJuSo cells were transfected with 
siRNA targeting hUpf1 (red), neo (orange) or no RNA (black). Additionally cells were 
treated with lactacystin (green) for proteasomal inhibition (A). TAP mobility was 
increased for both lactacystin and hUpf1 RNAi. In (B) cells were again transfected with 
hUpf1 (red) or no (black) siRNA or chemical inhibitors lactacystin (green), 
cycloheximide (brown) or both (dark green). Lactacystin and cycloheximide showed a 
cumulative effect of DTAP increase.  
 
 
 
2.3.3 Exogenous peptide supply partially reverses high TAP mobility 
 
 
The chemical inhibitors cycloheximidine and lactacystin as well as siRNA targeting Upf1 

increase TAP mobility. In order to verify that the higher TAP mobility is directly due to a 

lack of peptides for TAP association and transport, peptides of exogenous origin were 

supplied to the cells. Listeria monocytogenes infection was used as way to deliver 

peptides to the cytosol of the cells. The Listeria monocytogenes strain (acta-, LLO-kovak) 

expresses a LLO-kovak fusion protein in addition to its endogeneous genes. Further it 

should be noted that prokaryotic translation is not receptive to cycloheximide inhibition 

due to different ribosomal subunits. For the infection, cells were incubated for 1 hour 

with a MOI of 1:20. MelJuSo cells were transiently transfected with siRNA against Upf1 

prior to addition of Listeria monocytogenes (Fig.31A). Listeria infection reduced the 

TAP mobility of hUpf1 depleted cells from 6.06x10-10 (cm2 s-1) to 4.60x10-10 (cm2 s-1). 

Listeria monocytogenes induced a similar reduction in TAP mobility when added to 

cycloheximide treated cells bringing the DTAP from 6.49x10-10 (cm2 s-1) down to 4.62x10-

10 (cm2 s-1). 

Alternatively cycloheximide treated cells were incubated with a synthetic peptide in the 

culture medium at a concentration of 50 µM (light blue) leading to a decrease in TAP 
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mobility (Fig.32). TAP mobility demonstrates a modest drop from 6.35x10-10 (cm2 s-1) to 

5.45x10-10 (cm2 s-1) upon peptide addition.  Control cells had a DTAP of 3.77x10-10 (cm2 s-

1). Taken together this indicates that uptake of exogenous peptide from the culture 

medium or through infection from Listeria monocytogenes can reverse a high TAP 

mobility due to a drained peptide supply. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.31 Listeria monocytogenes peptide partially reverses high TAP mobility. 
MelJuSo cells were transiently transfected with hUpf1 (red) and infected with a kovak 
expressing Listeria monocytogenes (purple) strain for 1 hour at a MOI of 1:20. Infection 
and therefore exogenous peptide supply led to reduced TAP mobility. Similarly addition 
of Listeria monocytogenes (light blue) reduced the DTAP of cycloheximide (brown) 
treated cells (B).  
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Fig.32 Exogenous peptide supply partially reverses high TAP mobility. Synthetic 
peptide was added to the culture medium at a concentration of 50µM together with the 
translation inhibitor cycloheximide 1 hour prior to FRAP analysis.  TAP mobility 
demonstrates a modest drop from 6.35x10-10 (cm2 s-1) to 5.45x10-10 (cm2 s-1) upon peptide 
addition.  Control cells had a DTAP of 3.77x10-10 (cm2 s-1). 
 
 

In conclusion it was demonstrated that lateral mobility of the TAP1-GFP fusion protein 

in MelJuSO cells can be used to measure the active transport of peptide from the cytosol 

to the ER (Fig.34). The pool of peptides for TAP dependent transport depends on 

ongoing translation and proteasomal degradation as demonstrated with the chemical 

inhibitors cycloheamide and lactacystin. Depletion of hUpf1 and therefore inhibition of 

the pioneer round of translation reduces the amount of peptides available for TAP 

mediated transport and therefore increases DTAP. A higher TAP mobility is the direct 

result of a diminished pool of peptides for TAP interaction and transport as it can be 

reversed by additional supply of exogenous peptide sources.  

 

 

 

 CHX        CHX+p          no 

DTAP 

no 



 103 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.33 Generation of peptides for TAP mediated transport. The generation of 
peptides for TAP transport from the cytosol to the ER requires ongoing translation and 
proteasomal degradation as inhibition with cycloheximide and lactacystin reduces TAP 
transport. Depletion of hUpf1 reduces TAP transport. Supply of exogenous peptide 
through Listeria monocytogenes or high concentrations of synthetic peptide can reverse 
this effect. The HSV derived protein ICP47 can bind to TAP inhibiting further transport.  
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2.4 Antigen presentation in the hUpf1 transgenic mouse 

 

Previous chapters focused primarily on analyzing the relationship between antigen 

presentation and the pioneer round of translation of the NMD pathway in cultured cells. 

Approaches using RNA interference can be limited by transfection efficiencies, 

incomplete or only transient down regulation of target proteins or RNA mediated off 

target effects. Particularly when focusing on the immune system certain limitations of 

cell lines were apparent. Immunization studies in mice would represent the par excellence 

standard to provide evidence for pioneer peptides as source for antigen presentation and 

in vivo T-cell recognition. So far the attempt to generate a mouse line depleted for the 

Upf1 gene was not successful as loss of Upf1 expression was embryonic lethal at the 

blastocyst stage after only 3.5 days (Medghalchi, Frischmeyer et al. 2001). This finding 

not only speaks to the importance of NMD at the organismal level but also blocks the 

road to the generation of Upf1 knock out embryonic stem cells.  Dietz et al. tried to create 

a Cre-loxP  based Upf1 conditional knockout mouse.  Analysis of the resulting mice 

revealed only an incomplete depletion of the Upf1 gene (Dietz 2007).  

Therefore the potential of a transgenic Upf1 dominant negative mouse in altering NMD 

and the pioneer round of translation was evaluated. The human Upf1 dominant negative 

construct was described before in competing with the wildtype protein and reversing 

NMD facilitated mRNA downregulation (Sun, Perlick et al. 1998). Here the human Upf1 

R844C construct was used for the creating of a transgenic mouse by H. Dietz and 

colleagues and kindly provided to us. Verification of the successful integration of the 

hUpf1 R844C transgene was initially achieved by Southern blotting. Then a PCR based 
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method was established in order to amplify 213 base pair DNA fragment specific to the 

human protein (Fig34).  A set of TAP1 primers served as functional controls for the PCR 

reaction. A DNA sample from a previously by Southern blotting genotyped mouse as 

well as purified DNA of a hUpf1 expression vector were additional positive controls.  

Expression of the dominant negative hUpf1 protein was then established with 

immunoblotting using a mouse anti hUpf1 polyclonal antibody. The antibody does not 

cross react with the murine Upf1. A band at the proposed molecular weight of 137 kDa 

was detected in homogenized spleenocytes from a transgenic mouse but not from the 

wildtype mouse (Fig.35).  

 

 

 

 

 

 

 
 
 
Fig.34 Genotyping of hUpf1 dominant negative mice. DNA was purified from tail 
clips of mice. PCR primer specific for the human sequence of hUpf1 transgenic mice was 
used to identify mice that had the hUpf dominant negative sequence incorporated. PCR 
amplification of a 173bp TAP1 DNA fragment was use a positive control. Additional 
controls are no DNA, purified hUpf1 vector DNA, a previously with Southern blotting 
genotyped hUpf dominant negative mouse DNA and B6 wt mouse DNA. 
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Fig.35 Expression of the hUpf1 dominant negative protein. Spleenocytes were 
isolated, homogenized and separated on a 4-20 % SDS PAGE gradient gel with a 1:4 
dilution. Immunoblotting with a mouse polyclonal antibody recognizing only the human 
protein was used to very expression of the 137 kDa dominant negative Upf1 protein. 
 

 

2.4.1 Analysis of spleenocytes from hUpf1 dominant negative transgenic mice 

 

Spleenocytes were isolated from hUpf1 dominant negative transgenic or wildtype mice 

(Fig.36). After blocking of the Fc-receptors, cells were stained for surface MHC class I 

expression using antibodies CTKb α Kb, AF6.88.5 α Kb, C28.14.8 α Db and KH95 α Db. 

Additionally cells were characterized for the surface markers B220 for B-lymphocytes, 

CD8, CD4 and MHC class II. After testing of several mice no apparent differences were 

noted in the expression of any of these surface markers in hUpf1 dominant negative 

transgenic or wildtype mice. 
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Fig.36 Analysis of spleenocytes derived from hUpf1 dominant negative transgenic 
mice. Spleenocytes from each a transgenic hUpf1 d.n., a litter mate and a B6/C57 wt. 4 
month female mouse were extracted, Fc-receptor blocked and stained for MHC class I Kb 
and Db expression (top row) and B220, CD8, CD4 and MHC class II (bottom row). 
Surface expression of these markers did not reveal significant differences.  
 
 
 
2.4.2 MHC class I surface recovery of hUpf1 dominant negative bone marrow 

derived dendritic cells 

 

The steady state cell surface expression of MHC class I molecules often does not 

appropriately reflect the actual generation of MHC class I molecules and their peptide 

ligands within the cell. MHC class I complexes can be stable over longer times in 

association with their bound peptide. As for CBP80 or Upf1 RNAi depleted HeLa cells, 

the differences in peptide generation only became obvious when monitoring the assembly 

and presentation of new MHC class I peptide complexes using the acid wash and 

recovery approach described in chapter 2.2. Similarly the large differences in the peptide 
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repertoire of ERAAP deficient cells in comparison to wildtype antigen presenting cells 

did not became obvious by steady state detection of MHC class I surface expression but 

was discovered by rather detailed analysis of specific antigenic peptides by immunization 

studies (Hammer, Gonzalez et al. 2006). 

Therefore bone marrow derived dendritic cells were generated for acid wash MHC class I 

surface recovery experiments (Fig.37). The total cells from transgenic and wildtype mice 

were extracted from the murine femur and cultured for 5 days in the presence of GM-

CSF. Non-adhesive cells were treated with citric acid for 1 minute and placed under cell 

culture conditions for MHC class I recovery.  For flow cytometry analysis Fc-receptors 

were blocked and MHC class I were stained with antibody 28.14.8 anti DbLd and AF 6-

88.5 anti Kb or with a IgG2a isotope control. For both antibodies hUpf1 dominant 

negative transgenic spleenocytes showed a slightly higher expression than the wildtype 

cells. This remained true throughout the experiments at 0 hours directly after the acid 

treatment as well as after 5 hours of recovery. The recovery was incomplete after 5 hours 

as the cells take a longer time recovery to the original level. While primary cells derived 

from bone marrow represent a more heterogeneous cell population than cancer cell lines 

in tissue culture, the hUpf1 transgenic cells showed in multiple experiments a tendency to 

recover their MHC class I molecules faster than their wildtype counterparts. While this 

finding was unexpected at the beginning it might reflect a difference in the experimental 

approach between RNAi mediated depletion as described in previous chapters and 

dominant negative protein overexpression of Upf1. This will be further discussed below 

in section 3.4. 
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Fig.37 MHC class I surface recovery of hUpf1 dominant negative bone marrow 
derived dendritic cells. Bone marrow cells were extracted from femur bones of a 
transgenic hUpf1 dominant negative mouse (red) or a wildtype littermate (black). After 5 
days of GM-CSF culture non-adhesive cells were harvested, red blood cells lysed and 
surface MHC class I molecules removed using the acetic acid wash procedure. Fc-
receptors were blocked with CD 16-32 and cells were stained for Db and Ld (A) or Kb or 
with a IgG2a isotope control (grey shadow). hUpf1 dominant negative transgenic cells 
show slightly higher MHC class I levels in comparison to wt cells. 
 
 
2.4.3 Analysis of T-cell activation of hUpf1 dominant negative cells 

 

Flow cytometry based staining of MHC class I molecules gives a general picture of 

different MHC class I subgroups. T-cell activation represents a far more specific and 

sensitive assay but also takes the actual potential of MHC class I peptide complexes in 

triggering a T-cell mediated immune response into account. In the next approach six mice 

were analyzed for MHC class I antigen biding (Fig.37) and also for T-cell activation 

assays (Fig.38). The acid wash recovery time course was described above. Then 1x106 

murine antigen presenting dendritic cells from each time point were titrated in a 1:3 
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dilution series and incubated overnight with 105 T-cells in the presence of 5 µg/ml 

brefeldin A. Afterwards a CPRG assay was performed. 30NXZ T-cells recognize the Db 

restricted peptide SSVVGVWYL (SVL9) derived from the H13a histocompatibility gene 

(Hammer, Gonzalez et al. 2006). The 30NXZ T-cell responses are initially high before 

acid treatment at an absorbance between 1.0 and 1.1. Citric acid is efficient in removing 

SVL9 peptide from the cell surface as the 30NXZ T-cell response goes down to 0.3 at 0 

hours. After 5 hours an increased 30NXZ T-cell response was detected. This was 

particularly evident for the male hUpf1 dominant negative transgenic mouse shown by 

the red line. The 27.5Z T-cells recognize a Kb restricted peptide of unknown sequence. In 

comparison to 30NXZ T-cells their activation of  a T-cell response remains very low after 

5 hours with only a very small increase between 0 hours and 5 hours. The response does 

not allow for a clear distinction of intensities of transgenic or wildtype cells. Finally 

11p9Z T-cells are activated through the Db restricted antigen WMHHNMDLI (WI9) 

derived from the Y-chromosome encoded Uty gene (Greenfield, Scott et al. 1996). 

Accordingly only cells from male mice present this Db restricted peptide. Wells with a 

high density of 1x106 cells show an nonspecific response. Within the male mice there are 

no significant differences in the recovery. Taken together there are no obvious indicators 

for an altered MHC class I recovery pattern as detected by the T-cell lines 30NXZ, 27.5 

and 11p9Z. This reflects also additional experiments performed in repeat of this analysis. 

No clear effect of the hUpf1 dominant negative protein expression on T-cell activation 

reflects possibly mainly on this transgenic mouse being an insufficient experimental 

system as it will be reflected in further detail in the discussion. 
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Fig.38 T-cell activation of transgenic hUpf1 dominant negative mouse bone marrow 
derived dendritic cells. Bone marrow derived dendritic cells were cultured as described 
in Fig.37. 1x106 cells were diluted 1:3 in 96-well plates and incubated with 1x105 cells of 
three different hybridoma T-cell lines: 30NXZ Db SVL9 H13a, 27.5Z Kb and 11p9Z Db 
WI9 Uty. T-cell activity of antigen presenting cells  was assessed by CPRG assay. 
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3  Discussion 

 

Previous chapters examined several aspects of the relationship between the pioneer round 

of translation and MHC class I mediated antigen presentation. Experimental findings 

were presented for intron positioning (2.1), pioneer vs. cap-dependent translation (2.2), 

TAP mobility as a measure for peptide supply (2.3) and a transgenic mouse model. Here 

the technical approach, the validity of each of the experimental results and the 

implications for the MHC class I presentation pathway are discussed. Further these 

findings are put into a context for a general model of pioneer round of translation 

peptides as source for antigen presentation. Finally an outlook defines yet to be answered 

questions that open future perspectives.   

 

 

3.1 Pioneer peptides itself rather than the NMD mechanism are important for 

antigen presentation 

 

The first set of experiments (2.1) aimed to clarify if NMD alters the translation and 

presentation of antigenic peptides. A first hypothesis focused on mRNAs encoding an 

antigenic peptide as potential target for NMD. Two sets of three DNA constructs were 

created based on either the Invariant chain / and SIINFEHL or the ovalbumine derived 

kovak sequence including SIINFEHL. An intron was shuffled to the 3’ or 5’ position or 

completely deleted.  
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The intron at the 5’ UTR was mainly introduced in order to create a counterpart of the 3’ 

construct with the exact same size of the vector to avoid potential changes in transfection 

efficiency. At the same time alterations in the 5’ UTR might introduce a multitude of 

alternative initiation codons, sequences functioning as IRES, or with other cryptic or 

translation modifying elements that are difficult to account for (Komarova, Brocard et al. 

2006; Graber and Holcik 2007). Therefore the central focus of these experiments lies on 

the comparison between the 3’ and no intron constructs. This parallels the approach of 

many studies that helped to discover and examine the NMD pathway.  

 

A sharp contrast of the mRNA levels between the 3’ and no intron constructs was 

observed while there were only minor differences in antigen presentation. Since both 3’ 

and no intron constructs elicit a strong B3Z T-cell response in a direct presentation assay 

as shown in Fig.3, two additional approaches were chosen. DNA titration of the vectors 

(Fig.4) as well as extraction of the peptides and presentation by K89 cells (Fig.5) helped 

to quantify the B3Z T-cell response. While the no intron construct accounts for a slightly 

stronger T-cell activation than the 3’intron construct, this does not reflect the magnitude 

of difference in the mRNA levels as determined by RT-PCR. Since this pattern was 

detected for both the invariant chain / SIINFEHL and the kovak vector set these findings 

seem to outline a more general rule.   

 

At the same time two similar NMD-reporter vectors were published that included the 

advantage of eGFP expression for straightforward analysis of protein levels and decay 

(Paillusson, Hirschi et al. 2005). They were modified for the purpose of antigen 
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presentation assays by introducing the antigenic SIINFEHL sequence to the C-terminus 

of the protein. As already described by the authors in their publication the vectors 

achieved only modest transfection efficiencies and GFP expression levels. Nevertheless 

the system confirmed the 3’ intron construct to be a target of NMD by showing lower 

GFP expression than the no intron construct (Fig.7). Despite the different GFP levels the 

B3Z T-cell activation of both constructs remained almost identical. This strengthened the 

prior results based on the invariant chain / SIINFEHL and kovak constructs. The mRNA 

and protein level and therefore NMD activity does not directly account for the antigen 

presentation intensity.  

 

A recent study presented improved NMD-reporter constructs using a luciferase based 

system (Boelz, Neu-Yilik et al. 2006). This more robust NMD detection assay  jointly 

with the described SIINFEHL insertion for B3Z recognition is currently under 

investigation. 

 

A crucial finding for the direction of this study was the discovery of reduced antigenicity 

upon Upf1 and CBP80 depletion. HeLa Kb cells depleted for these essential factors of the 

NMD pathway and the pioneer round of translation reduced the response of B3Z T-cells 

independent of the intron position. For a mere NMD effect the 3’intron would be 

expected to increase in expression and peptide presentation. A plethora of this kind of 

examples can be found in the literature (Zhang, Sun et al. 1998; Sun and Maquat 2000). 

But in this case quite the opposite was observed. The lack of Upf1 and even more so 

CBP80 reduced the generation and presentation of peptides for antigen presentation.  



 115 

In conclusion these findings not only demonstrate that there is no straight forward 

relationship between the extent of protein expression and antigen presentation, but point 

out the potential role of the pioneer round of translation itself in generating antigens for 

MHC class I mediated presentation. 

 

 

3.2 Time course experiments reveal the role of the pioneer round of translation for 

antigen presentation 

 

The results of the previous intron shuffling experiments altered the focus of this study. 

They indicated a direct role of the pioneer round of translation rather then the decay 

mechanism of NMD in antigen presentation. In section 2.2 first an experimental approach 

to distinguish between pioneer and bulk translation was developed. CBP80 and Upf1 

were identified as key components that built a stable complex exclusive for the pioneer 

round of translation (Hosoda, Kim et al. 2005). Transient siRNA mediated depletion was 

chosen as a method that depleted the target protein levels to ~20% as shown by 

immunoblotting while it did not effect viability of the cells during the course of the 

experiments (Fig.11). S35 methionin and cysteine incorporation assays demonstrated no 

reduction of protein biosynthesis in Upf1 or CBP80 depleted cells. Quite the opposite 

Upf1 inhibition rather increased the overall translation of about 15 %. As mentioned this 

finding is consistent with prior reports of Upf1 being involved in the upregulation of at 

least 197 genes by the factor of 1.9 or more (Mendell, Sharifi et al. 2004; Chan, Huang et 

al. 2007). Apart from that it should be noted that Upf1 might be involved in other 
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nonsense associated mechanisms. Target mRNAs of these pathways might be 

upregulated upon Upf1 reduction accounting for the 15% increase in translation. 

Generally the use of S35 incorporation includes the advantage over alternative antibody 

based techniques, that it enables the detection of any kind of polypeptide independent of 

functionality, conformation or truncation with very high sensitivity. In addition, this 

experiment served the purpose to verify the complete inhibition of translation through 

cycloheximide treatment at a concentration of 100 µg/ml for 1 hour at 37°C. These 

conditions were used in several subsequent experiments.  

Inhibition of cap dependent bulk translation by 4E-BP1 vector DNA and elF4E siRNA 

transfection represented two independent approaches. Despite the far larger molecular 

weight and potentially lower transfection efficiency of the ~5600 base pair 4E-BP1 DNA 

construct, it demonstrated a stronger inhibition of translation than the 21 base pair elF4E 

siRNA molecule. These data are in good correlation with previously published studies by 

other groups (Gingras, Gygi et al. 1999).  

In conclusion these results confirmed the validity of the experimental design to separately 

interfere with pioneer or bulk translation and to jointly inhibit overall translation with 

cycloheximide.  

 

The role of pioneer vs. bulk translation in antigen presentation was then put to the test in 

flow cytometry experiments using antibody staining against different MHC class I 

molecules. Monitoring the recovery of MHC class I molecules rather than the steady state 

surface expression was chosen as an experimental approach due to three earlier 

observations. First the MHC class I steady state expression of ERAAP deficient mice 
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revealed only minor changes on the surface while more elaborate assays elucidated 

significant differences in the antigen repertoire (Hammer, Gonzalez et al. 2006). 

Secondly the importance of new synthesis of peptides has already been described in the 

context of DRiPs as crucial for antigen presentation (Qian, Reits et al. 2006). And third 

the transient siRNA depletion might only effect newly generated peptides that were not 

assembled prior to the transfection. 

 

While immunoblotting confirmed the down regulation of Upf1, PABP2, CBP80 and 

CBP20 in a pooled cell homogenate, flow cytometry based detection in permeabilized 

cells helped to confirm the depletion on a per cell basis (Fig.14D). Acid wash recovery 

experiments revealed a significant delay of MHC class I surface recovery in Upf1, 

PABP2 and CBP80 depleted cells (Fig.14, Fig.15, Fig.16). Initially HeLa cells stably 

expressing kovak and Kb were used in these acid wash recovery studies since they allow 

for the detection of human MHC class I HLA A, B, C as well as murine Kb molecules 

(Fig.14). It was later noticed that expression of the murine Kb molecule in human HeLa 

cells competes and consistently reduces the surface level of human MHC class I 

expression (data not shown).  A subclone of HeLa cells lacking the additional Kb 

molecule (termed AS1) revealed an even larger delay in the recovery pattern of Upf1 and 

CBP80 deficient and control transfected cells (Fig.16).  

 

Antibody staining in conjunction with flow cytometry offers the opportunity to monitor 

overall changes in MHC class I molecules. T-cell activation assays enable to track the 

MHC class I mediated presentation of defined peptide sequences with exceptionally high 
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sensitivity. Three different T-cell lines B3Z, 18.5Z and 27.5Z were used that recognize 

either the stably transfected kovak derived SIINFEHL or two unknown human 

endogenous peptide sequences. Depletion of CBP80 reduced the T-cell response of 

recovering APCs in all cases (Fig.18). Also siRNA mediated inhibition of CBP20 

reduced the T-cell response to an intermediate level. CBP80 and CBP20 are equally 

important for the pioneer round of translation since they form a heterodimer that 

recognizes the newly spliced mRNA and facilitates the pioneer translation. Differences in 

the intensity of the T-cell response between CBP80 and CBP20 might be simply due to 

variations in the effectiveness of the siRNA in down regulating its target protein. The 

case might be different for Upf1 inhibition as it demonstrated a reduction in the T-cell 

response of 18.5Z and 27.5Z T-cells but no distinguishable effect on the B3Z response 

(Fig.17 and Fig.18). While no final explanations can be offered for this finding, at least 

two aspects should be pointed out. First the stably transfected kovak sequence might be 

integrated into the genome of the HeLa cells at different positions, which might alter 

gene regulation while the 18.5Z and 27.5Z recognized peptides are part of endogenously 

encoded proteins. Secondly, in contrast to CBP 80 and CBP 20, additional functions of 

Upf1 have been described by now that might alter the expression of different genes (Neu-

Yilik and Kulozik 2008). Furthermore peptide extraction from siRNA depleted cells and 

presentation by untreated APCs as described in Fig.17 represents the advantage of 

directly quantifying antigenic peptide. It helps to rule out potential effects of siRNA 

transfection or unspecific targeting of factors involved in MHC class I synthesis or 

regulation. Additional evidence for the involvement of the pioneer round of translation in 

antigen presentation comes from inhibition of hUpf2 through HeLa cells stably 
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expressing a small hairpin RNA (Fig.19). Two separate clones demonstrate a consistent 

five fold down regulation of MHC class I surface expression.   

 

So far several lines of evidence have been presented to demonstrate the requirement of 

ongoing pioneer translation for MHC class I mediated antigen presentation. The 

following experiments aimed to distinguish the effects of pioneer translation from cap 

dependent bulk translation as well as to further characterize how early events in 

translation control the final outcome of antigen presentation on the surface. 

 

An essential discovery was made with the identification of newly translated polypeptides 

as major source for antigen presentation. While the original finding of DRiPs has been 

strengthened substantially within the last decade through several studies, an exhaustive 

answer to why new translation products govern antigen presentation has not been offered 

yet. The experiment in Fig.20 recapitulated the importance of immediate early translation 

for antigenic peptide generation. A short time interval of 8 minutes of translation is 

sufficient to synthesize peptides that can be detected with the antibody W6/32 on the cell 

surface. Inhibition of translation with cycloheximide completely abrogates antigen 

presentation despite the presence of large pools of previously generated proteins present 

in the cell. The pretreatment of cells with cycloheximide 2 hours prior to the acid wash 

and short time intervals of translation of 0, 2, 8, 15, 30 and 60 minutes aimed to exclude 

peptides that were currently in the process of transfer from the ER through the Golgi 

network to the surface.  
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The experimental approach in Fig.21 further confirms the notion of new translation 

products being essential for MHC class I mediated antigen presentation. Addition of 

cycloheximide (black line) abrogates the surface recovery. The initial increase of detected 

MHC class I molecules between the 0 hour and 3 hour time point is likely to be due to 

peptides that were generated right before cycloheximide incubation and were already on 

their way though the ER trimming and Golgi transport to the surface. The inhibition of 

antigen surface recovery of cycloheximide treated cells is not simply due to a lack MHC 

class I synthesis as there is an abundant and stable pool of heavy chain present in the cell. 

A substantial amount of heavy chain could be detected even after 2, 24 and 48 hours of 

continuous translation inhibition (Fig.21C). The previously established system to 

exclusively target the cap dependent bulk translation provided particularly important 

information. Transfection with the 4E-BP1-AA dominant negative vector as well as 

targeting of elF4E directly with siRNA both did not interfere with MHC class I surface 

recovery (Fig.21 and Fig.22). While both 4E-BP1-AA dominant negative vector or elF4E 

siRNA transfection not completely abolish all bulk translation they did effect it 

substantially (Fig.12 and Fig.13). Therefore it remains remarkable that the reduction of 

bulk translation has no detectable effect on antigen presentation while inhibition of 

pioneer translation severely interferes with efficient MHC class I surface expression. 

 

The following experiments in Fig.23, Fig.24 and Fig.25 serve as important controls for 

the so far established results. Fig.23 revisited the bimodal recovery pattern of HeLa AS1 

cells after acid treatment. Co-transfection with fluorescence labeled siRNA demonstrated 

the equal transfection efficiency of both slower and faster recovering subpopulations of 
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cells. This helps to rule out a differential recovery due to different efficiency of siRNA 

mediated inhibition. Further, Fig.24 demonstrates that the extent of recovery correlates 

with PI staining for DNA with faster recovering cells showing also a faster progression 

through the cell cycle. Importantly hUpf1 siRNA did not directly effect the cell cycle 

progression within the course of the experiment as shown in the right panel of Fig.24. 

Findings have been confirmed with Hoechst 33342 staining in K89 cells. A recent report 

connected hUpf1 to the DNA damage response and repair (Azzalin and Lingner 2006). 

As the authors noted this is rather an effect of hUpf1 specific gene regulation than related 

to NMD or the pioneer round of translation in general. It has been stated before, that 

stable transfection with short hairpin RNA targeting Upf1 over a prolonged time period is 

lethal even in tissue culture cell lines (Wittmann, Hol et al. 2006).  

Lastly the effect of interferon β induction of MHC class I molecules during the acid wash 

recovery time course with hUpf1 depleted cells has been examined (Fig.25). This was 

mainly done to control for any potential effects of RNAi transfection in triggering an 

interferon response and potential alterations in MHC class I expression. Generally 

interferon β incubation up regulated the MHC class I surface expression at all stages of 

the experiment while leaving the relative difference between Upf1 depleted and control 

transfected cells unaltered. 

In conclusion chapter 2.2 established the direct importance of pioneer translation for 

MHC class I mediated antigen presentation. Furthermore it reaffirmed the requirement of 

immediate early translation for antigen synthesis and discounted the contribution of  

elF4E dependent bulk translation for the generation of antigenic peptides. 
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3.3 Antigen supply can be quantified during TAP transport  

 

The TAP1-GFP FRAP experiments were aiming to quantify the effect of pioneer peptides 

not only at the very end of the antigen presentation pathway at cell surface but at an 

intermediate step of the process. First previous findings of delayed MHC class I surface 

recovery upon hUpf1 depletion were successfully confirmed in MelJuSo cells (Fig.27). 

Due to the differential TAP1-GFP expression pattern this was also established for low, 

medium and high GFP expressing cells. As the FRAP assay is based on single cell 

measurements these aspects become more important. Statistical significance of the results 

was achieved by gathering and averaging the data for at least 10 cells for each graph as 

described in the literature (Reits, Vos et al. 2000; Reits and Neefjes 2001). Still this 

certainly showed a limitation of the statistical accuracy of this method in comparison to 

measurements using flow cytometry with results based on 20.000 ore more cells per 

sample. Special attention was given to the experimental setup, timing and temperature 

adjustments. After removal from the cell culture incubator cells were transported in a 

37°C water bath and analyzed with a microscope with a preheated sample frame in order 

to limit FRAP variations due to temperature inconsistencies. FRAP was originally 

established as a biophysical method quantifying the movement of freely diffusing or bi-

lipid membrane integrated molecules. Cellular measurements face additional challenges 

as the ER membrane is not a planar structure but heavily folded with inconsistencies 

including membrane rafts and intracellular movements. Taking all these effects into 

consideration the TAP1-GFP FRAP method established by Neefjes at al. represents an 

elegant method to measure peptide supply early on in the antigen presentation pathway. 
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Addition of small chemical inhibitors like lacacystin for the proteasomal degradation and 

cycloheximide for translation provide means to equally inhibit antigen presentation 

functions on cells attached to a microscope cover slip. Both show a significantly 

increased lateral TAP1-GFP mobility (Fig.29). This is in good correlation to their 

expected and previously published effect in decreasing the pool of peptides for TAP 

transport (Reits, Vos et al. 2000; Qian, Reits et al. 2006). Transfection with an ICP47 

encoding vector serves as a further control, as the ICP47 protein directly interacts with 

TAP1 therefore reducing its peptide transport and complex assembly. Next hUpf1 siRNA 

transfection was used to establish a connection between pioneer peptide translation and 

TAP1-GFP mobility (Fig.30). As demonstrated before siRNA transfection has a high 

transfection efficiency reducing the target protein expression in the whole transfected cell 

population. This is important since the number of cells for FRAP measurements is limited 

to about 10 cells per condition due to technical considerations. hUpf1 depleted cells 

showed a consistently increased TAP1-GFP mobility indicating a reduced peptide supply 

for TAP transport. Furthermore positive controls reversing the effect of peptide pool 

reduction by adding exogenous peptides were conducted.  

 

The addition of peptides through pathogen infection faces several challenges. First 

Listeria monocytogens are only infecting a subset of the given cells under the time course 

and conditions of the experiment (Fig.31). Since it would be an important improvement 

to the experimental approach to unequivocally distinguish highly infected from 

potentially uninfected cells for DTAP measurements, a GFP as well as a RFP expressing  

Listeria strains have been recently obtained and will be used for future experiments. They 
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will provide the additional opportunity to interfere with prokaryotic translation using 

specific inhibitors like tetracycline or eukaryotic translation using cycloheximide.  

 

The addition of synthetic peptide has been useful as another method of supplying peptide 

to the cell.  This method requires high concentrations of external peptide as TAP 

substrate to achieve significant cellular uptake. As shown in Fig.32 it has the potential to 

moderately decrease TAP1-GFP mobility. Streptolysin O, a bacterial membrane pore 

forming toxin, has been used to increase the uptake of exogenous peptides, but this 

approach faces the additional challenge of adding an additional compound that 

potentially alters membrane features for FRAP measurements. 

 

Finally microinjection represents an additional possibility to directly supply large 

quantities of peptide inside the cytosol of single cells cell. While this technique has 

already been used to reverse a high DTAP in MelJuSo cells, it would require to change 

form the current setup of an upright microscope to an inverted microscope to enable the 

use of micromanipulators for injection.  

 

Beside these future perspectives for the elaboration of the technique, the current results 

already provide a direct link between Upf1 mediated pioneer translation and the peptide 

supply for TAP transport. These findings further underline the importance of the pioneer 

round of translation for peptide generation. 
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3.4 Developing a mouse model for the pioneer round of translation  

  

At this stage only very limited mouse models for the NMD pathway are available.  

Since a complete depletion of Upf1 was embryonic lethal and a conditional knock out 

strategy did not lead to a complete excision of all functional exons of Upf1, an alternative 

approach was pursued (Medghalchi, Frischmeyer et al. 2001). A transgenic mouse based 

on the R844C dominant negative human Upf1 construct was created by H. Dietz and 

colleagues. In contrast to stable transfection of hUpf1 shRNA into HeLa cells, which is 

lethal after about 10 days of tissue culture, overexpression of the R844C mutant hUpf1 

protein in HeLa and COS cells is tolerated (Sun, Perlick et al. 1998; Wittmann, Hol et al. 

2006). Expression of the R844C dominant negative hUpf1 vector in tissue culture cells 

increased the expression of otherwise decayed PTC containing mRNA about three fold. 

Taken together the dominant negative hUpf1 R844C transgenic mouse represented the 

best available model for the examination of NMD and pioneer round of translation 

associated effects on the immune system. 

Integration of the transgene into the mouse genome was confirmed by Southern blotting 

(Dietz 2007) and PCR (Fig.34). Expression was verified by immunoblotting with an 

antibody specific for the human protein sequence of the transgene. No distinctive 

phenotype of the transgenic mouse could be detected for the surface expression of MHC 

class I, MHC class II, CD4, CD8 or B220 (Fig.36). T-cell responses after acid wash and 

recovery did not reveal consistent differences in activation of 30NXZ, 27.5Z or 11p9Z T-

cells (Fig.38). In several cases increased expression of Db, Ld and Kb was detected 

throughout acid wash recovery time course experiments (Fig.37). So far the Dietz lab did 
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not report any additional phenotype that might assist to determine the functionality of the 

hUpf1 transgenic mouse model. That led us to revisit several of the original Upf1 

mutagenesis studies in yeast as well as the current understanding of the domain structure 

of the mammalian Upf1 proteins (Czaplinski, Weng et al. 1995; Weng, Czaplinski et al. 

1996; Sun, Perlick et al. 1998). By now there is abundant evidence that hUpf1 is a protein 

with multivalent functions including early nuclear interactions with CBP80 and hUpf2, 

mRNA binding and translation termination as well as facilitating the final decay of target 

mRNAs in the cytosol. This leaves room to speculate about the exact function of the 

hUpf1 R844C mutation in interfering with NMD.  While the R844C mutation has been 

shown to interfere with the mRNA decay mechanism, the mutated protein might still be 

able to support other functions including mRNA binding and pioneer round of 

translation.  Indeed the overexpression of mouse and human Upf1 might even enhance 

some functions in the transgenic mouse therefore accounting for the slight increase of 

MHC class I expression observed in acid wash recovery experiments (Fig.37). The 

complex phosphorylation cycle of hUpf1 has been described in several studies but its role 

in NMD and the pioneer round of translation still remains indefinite (Conti and Izaurralde 

2005; Isken, Kim et al. 2008). An approach introducing mutations deleting the 

phosphorylation sites of Upf1 might be of promise. Additional experiments focusing on 

the less versatile proteins CBP80 and CBP20 of the pioneer round of translation are 

already under investigation. In this context several mutations were proposed that might 

interfere with the CBP80 / CBP20 heterodimer interface therefore disabling pioneer 

translation (Cusack 2006). Additionally lenti-virus based transduction or  “nucleofection” 

(Amaxa Biosystems, Cologne Germany) of RNAi into mouse embryonic cells are 
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alternative approaches to advance the experiments from immortalized tissue culture cells 

to mouse primary cells. And finally the most promising opportunities to examine the role 

of the pioneer round of translation for antigen presentation at an organismal level opened 

up with the recent advent of the hUpf2 dominant negative mouse model (Weischenfeldt, 

Damgaard et al. 2008). 

 

 

3.5 Final conclusions  

 

 MHC class I mediated antigen presentation depends on very early  translation.   
 
 Specific inhibition of cap-dependent bulk translation does not significantly 
 alter MHC class I dependent antigen presentation. 
 
 Interference with the pioneer round of translation reduces the pool of peptides 
 transported by TAP and presented by MHC class I on the cell surface. 
 
 
Taken together these findings put products of the pioneer round of translation at an 
important position as peptides for MHC class I mediated antigen presentation. 
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4 Materials and Methods 

 

4.1 Small interfering RNA oligomer design and transfection 

 

Synthetic small interfering RNA molecules targeting mRNAs were designed using the 

publicly available bioinformatics algorithm from the Whitehead Institute (Tuschl 2004) 

and generated by Dharmacon (Dharmacon, Chicago IL). Generally siRNA sequences 

consisted of double stranded 19-23 base pair oligomers with 3’ dTdT extensions. When 

indicated the design of previously validated and published siRNA molecules was used for 

oligomer synthesis. In the case of eIF4E and elF2B siRNA oligomers with a proprietary 

sequence were purchased. 

 

For transient depletion of the target mRNA 1 to 2.5 x 105 cells were plated per well of a 

6-well plate and incubated under growth conditions over night. Then medium was 

exchanged to 800 µl of serum free medium. siRNA oligomers were incubated for 20 

minutes with 4 µl of oligofectamine reagent (Invitrogen, Carlsbad CA) in 200 µl of  

serum without medium and added to the cells. After 3 hours 500 µl of medium containing 

3x serum was added. Cells were assayed for targeted mRNA or protein depletion after 48 

or 72 hours. 
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4.2 List of small hairpin RNA oligomers: 

 

   hUPF1  
Definition:   homo sapiens up frame shift 1 
Alternative Names: rent1 regulator of  nonsense transcripts 
Accession Number:  NM_002911 
siRNA:   5’ GAUGCAGUUCCGCUCCAUUdTdT 3’ 
    3’ dTdTCUACGUCAAGGCGAGGUAA 5’ 
   (Mendell, ap Rhys et al. 2002) 
 
   mUPF1  
Definition:   mus musculus  up frame shift 1 
Alternative Names: rent1 regulator of nonsense transcripts  
Accession Number:  AY597038 
siRNA:   5’  GUGCCAGCUGCCAAAGCGCdTdT 3’ 
     3’ dTdTCACGGTCGACGGTTTCGCG 5’ 
 
   CBP80 
Definition:   homo sapiens nuclear cap binding protein subunit 1, 80 kDa  
Alternative Names: NCBP1  
Accession Number:  NM_002486 
siRNA:   5’  GCUGAUCUUCCUAACUACAdTdT 3’ 
     3’ dTdTCGACTAGAAGGATTGATGT 5’  
 
 
   CBP20 
Definition:   homo sapiens nuclear cap binding protein subunit 2, 20 kDa  
Alternative Names: NCBP2 
Accession Number:  NM_007362 
siRNA:              5’   CAGGUGUUUGACAAUUGAAUUdTdT 3’   
      3’ dTdTGTCCACAAACTGTTAACTTAA 5’ 
 
   PABP2 
Definition:   homo sapiens poly A binding protein, nuclear 1  
Alternative Names: PABPN1  
Accession Number:  NM_004643 
siRNA:   5’   AGAGUCAGUGAGGACUUCCdTdT  3’ 
      3’ dTdTTCTCAGTCACTCCTGAAGG 5’ 
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Neo  
Definition:   neomycin phosphotransferase II  
Alternative Names:  
Accession Number:   
siRNA:    5’ AAUGAACUGCAGGACGAGGCAdTdT 3’ 
   3’dTdTUUACUUGACGUCCUGCUCCGU 5’ 
   (Kunisawa and Shastri 2003) 
 
 
   eIF4E  
Definition:   homo sapiens eukaryotic translation initiation factor 4E  
Alternative Names:  
Accession Number:  NM_001968 
siRNA:  proprietary (Cell Signaling Technology, Danvers MA) 
 
 
   elF2B 
Definition:   homo sapiens elongation factor 2B  
Alternative Names:  
Accession Number:   
siRNA:  proprietary (Cell Signaling Technology, Danvers MA) 
 

 

In addition to synthetic small hairpin RNA molecules, several vector based RNA 

constructs were used. These mRNA hairpins require further processing by dicer and 

drosher within the cell to trigger degradation of their mRNA targets. In these cases cell 

lines were transfected as described and maintained under growth conditions including 1-5 

µg/ml puromycin as selective reagent. 

 

 

4.3 Vector based DNA and small hairpin RNA constructs 

 

The GFP-based NMD reporter constructs have been described in detail for the analysis of 

NMD in eukaryotic cells (Paillusson, Hirschi et al. 2005). The SIINFEHL encoding 
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sequence directly followed by a stop codon was introduced into the GFP-based NMD 

reporter genes by integration of a DNA fragment at the BsrGI restriction site. The DNA 

fragment was generated by synthesizing both strands 5’-TTAACCTGTACAAAAGT 

ATAATCAACTTTGAAAAACTCTGATTGTACATTAACC-3’ and 5’-GGTTAAT 

GTACAATCAGAGTTTTTCAAAGTTGATTATACTTTTGTACAGGTTAA-3’, 

annealing in a temperature gradient and BsrGI digestion. 

The small hairpin RNA constructs targeting hUpf1, hUpf2 and hSMG6 in the vector 

pSuper vector were kindly provided by Juergen Wittmann and Hans-Martin-Jaeck 

(University or Nuremberg-Erlangen, Germany) (Wittmann, Hol et al. 2006). The 

wildtype 4E-BP1 expression construct as well as the dominant negative (HA)-AA-4E-

BP1 (Thr37/46Ala) protein in the pACTAG2 eukaryotic expression vector and backbone 

vector without insertion were provided by Nahum Sonenberg (McGill University, 

Vancouver, Canada) and Diane Fingar (University of Michigan, Ann Arbor MI).  

The invariant chain (Ii) fused to Ova247-265 containing the SIINFEHL sequence were 

integrated into the pcDNA1 vector (Invitrogen, Carlsbad CA) using the EcoRI and XbaI 

site. The 3’ intron removal was achieved using two DraI sites. For 5’intron reintegration 

PCR based cloning using the forward primer 5’-CCCCAAGCTTTTAGAGGATC 

TTTGTGAAGGAACCTTACT-3’ and the backward primer 5’-CCCCGGATCCGCATT 

CATTTTATGTTTCAGGTTCAGG-3’ and the cloning sites HindIII and BamHI was 

used. For the generation of three kovak based expression constructs with shuffled intron 

positions, the OVA138-386 sequence was transferred into the pcDNA1 backbone vectors 

with the 3’, 5’ or no intron using the restriction sites EcoRI and XbaI. 
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The dominant negative human Upf1 expression construct with the arginine to cysteine 

mutation at residue 844 in the vector pCI was kindly provided by Harry Dietz (Johns 

Hopkins University, MD). CBP80 and CBP20 expression vectors for the generation of 

dominant negative interface mutations were shared by Ian Mattaj and Steven Cusack and 

have been mentioned in the literature before (Mazza, Ohno et al. 2001).  A luciferase 

dependent chemiluminescence NMD reporter system has been described recently (Boelz, 

Neu-Yilik et al. 2006). The pCi-neo expression vectors for the renilla luciferase β-globin 

fusion protein with or without a PTC as well as a firefly luciferase control vector have 

been provided by Andreas Kulozik (EMBL / University of Heidelberg).  

 

 

4.4 Cell lines and cell culture reagents 

 

HeLa (human), 293 (human), 293T (human), HFF (human) and COS-7 (green monkey) 

are well characterized cell lines that were acquired from the American Tissue Culture 

Collection (ATCC, Manassas VA). HeLa cells stably transfected for Kb or both Kb and 

the ovalbumin derived KOVAK 138-386 precursor and K89 Kb-L-cells (mouse) were 

described before (Kunisawa and Shastri 2003). MelJuSo (human) cells stably expressing 

a GFP-TAP I fusion protein were a generous gift form Jaque Neefjes and colleagues 

(Reits, Vos et al. 2000). The HeLa cell lines E1105 and E 1106 stably expressing hUpf2 

shRNA and the HeLa cell line E1086 stably expressing empty pSuper vector were kindly 

provided by Juergen Wittmann and Hans-Martin Jaeck (Wittmann, Hol et al. 2006). They 

were maintained in RPMI complete medium containing 1 µg/ml puromycin as selection 
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reagent. β-galactosidase (lacZ)-inducible 27.5Z, 18.5Z, 30NXZ, 11p9Z and B3Z T-cell 

hybridomas have been described earlier (Serwold, Gonzalez et al. 2002). Cell lines were 

maintained under growth conditions of 5 % CO2 and humidified air at 37°C.  DMEM 

(Invitrogen, Carlsbad CA) complete medium was used for culturing 293, 293T and 

MelJuSo cells. All other cell lines were maintained in RPMI 1640 (Invitrogen, Carlsbad 

CA) complete medium containing additional 2 mM glutamine, 1 mM sodium pyruvate, 

50 µM beta-mercaptoethanol, 100 U/ml penicillin and 100 µg/ml streptomycin (all: 

Invitrogen, Carlsbad CA) and 10 % fetal bovine serum (Hyclone, Logan UT).  

 

 

4.5 Mice and primary cells 

 

Transgenic mice expressing the human Upf1 dominant negative R844C protein on the B6 

background were received from the Dietz laboratory (Johns Hopkins University, 

Baltimore MD). Wildtype C57BL/6 (B6) mice were obtained from the Jackson 

Laboratory Bar Harbor, ME). For genotyping, DNA was purified from tail tissue using 

either the DNAeasy Tissue Kit (Qiagen, Valencia CA) or by phenol-chloroform 

extraction. The human Upf2 dominant negative DNA sequence was amplified by PCR 

using the forward primer 5’-GTCACAGCCCTTCTCTCAGG-3’ and the backward 

primer 5’–CCTGGTA CGTGGAGTCCTGT-3’. PCR amplification of TAP1 with the 

forward primer 5’-ATTGAAGTTCCTGCGCCTCC-3’ and the backward primer  5’-

AGGCTCAGCG TGCCACTAAT was used as a positive control. Expression of the 

dominant negative human Upf1 R844C protein was verified by immunoblotting with an 
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antibody recognizing only the human protein. Bone marrow dendritic cell cultures were 

used for characterizing Upf2 dominant negative transgenic cells including the analysis of 

MHC class I surface expression in acid wash recovery experiments. Murine cells were 

collected from the femur, treated with RBC lysis buffer for 1 minute and cultured in 

uncoated cell culture plates. GMCSF was added in the concentration of 10 ng/ml at day 3 

and day 5 (Lutz, Kukutsch et al. 1999). Spleen cell cultures were generated accordingly. 

Non-adhesive cells were collected at day 5 to 7 for analysis. Cells were blocked with 

anti-Fc receptor antibody (2.4G2) prior to antibody staining for flow cytometry 

assessment. Additionally B lymphocyte depletion was achieved using sheep anti mouse 

IgG Dynabeads according to the manufacturers instruction (Invitrogen, Carlsbad CA). 

 

 

4.6 Transient transfection of cell lines 

 

For presentation assays, 1 to 2.5 x 105 cells were plated in a single well of a 6-well plate, 

transfected with 1 µg of plasmid DNA after 24 hours of initial culture and assayed for 

gene expression after 48-72 hours. 3 µl of Fugene 6 (Roche, Indianapolis IN) was used as 

transfection reagent for each 1 µg of vector DNA. For cotransfection of plasmid DNA 

and RNAi, Oligofectamine reagent (Invitrogen, Carlsbad CA) was used as described 

above. As controls DNA encoding the appropriate empty vector only or GFP were used.  

Alternatively purified vectors were transfected with 100 µg/ml of DEAE-dextran and 100 

µM chloroquin in RPMI supplemented with 10 % Nu-serum as described before 

(Schenborn and Goiffon 2000). 
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4.7 Acid wash MHC class I surface recovery assay  

 

Adhesive cells were grown in 6-well plates washed with PBS and incubated for 3 minutes 

with acid solution containing 0.13 M citric acid and 0.066 M monobasic sodium 

phosphate at pH 3.1. These conditions remove bound peptides and β2m while leading to 

internalization of empty MHC class on molecules. Then the acid solution was aspirated, 

cells washed twice with 10 ml of PBS and placed again under growth conditions for 

various time points of MHC class I surface recovery for up to 20 hours. Semi-adhesive or 

suspension cells were lifted, transferred to 50 ml conical tubes, incubated with 2 ml of 

acid solution for 1-3 minutes, washed twice with 50 ml of PBS and placed under growth 

conditions for recovery.  For complete inhibition of translation of new peptides, 

cycloheximide (Sigma, St. Louis MO) was added to a final concentration of 100 µg/ml 

prior to acid wash. After the acid treatment cycloheximide in the same concentration was 

added in the recovery medium. MHC class I surface expression was consecutively 

assessed by flow cytometry with a FacScan (Coulter, Hialeah FL) and FlowJo software 

(Treestar, Ashland OR) and T-cell assay. 

 

 

4.8 Fluorescence recovery after photo bleaching 

 

Transport of peptides through TAP requires dimerization of TAP1 and TAP2 and is 

subsided by formation of the peptide loading complex (PLC) for transfer of peptides to 

the MHC class I complex. The size of the TAP dimer together with the PLC alters the 
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mobility within the ER membrane. In order to visualize the lateral mobility, TAP1 was 

fused to GFP and expressed in human MelJuSo cells. A region ROI1 with a diameter of  

0.84 µm was bleached by 20 itineration of  488nm Argon / Krypton laser pulse at 100 % 

intensity. GFP intensity in a reference region ROI2 at the opposing side of the cell was 

monitored in order to assess background photobleaching. Fluorescence was determined in 

a 20 cycle time course at 1.6 sec intervals at 25 % laser intensity by time lapse 

photography. For all microscope imaging a Zeiss 510 Axioplan META MaiTai at the 

Cancer Research Laboratory Molecular Imaging Center, UC Berkeley was used. Detailed 

FRAP protocols and studies were published before (Qian, Reits et al. 2006)(Reits and 

Neefjes 2001)(Reits, Vos et al. 2000). 

 

 

4.9 Peptide extraction 

 

For peptide extraction cell pellets were resuspended in 500 µl of 10 % acetic acid in 

water at a pH of  ~2 and boiled for 10 minutes. After 15 minutes of centrifugation at 

10,000 rpm supernatant was collected and liquid evaporated through vacuum 

centrifugation. Remaining peptides were resuspended in 50 µl PBS with 25 ng/ml phenol 

red. After completed resuspension for 30 minutes on ice, pH was balanced to ~7 using 

0.1 m NaOH. Remaining cell debris was pelleted through short centrifugation and 

supernatant was titrated in a 96 well plate 1:2 or 1:3 in a volume of 50 µl. 1x105 antigen 

presenting cells K89 and 1x105 hybridoma T-cells are added to each well. 
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4.10 T-cell activation assays 

 

Upon recognition of the Kb restricted SIINFEHL antigen, B3Z hybridoma T-cells express 

IL-2 promotor controlled β-galactosidase (LacZ) (Karttunen and Shastri 1991). 

Enzymatic LacZ activity was measured by chromogenic chlorophenol red β-D-

galactopyranoside (CPRG, 0.15 mM) (Roche, Indianapolis IN) catalysis to chlorophenol 

red in Z buffer (9 mM MgCl2, 0.125 % NP-40 alternative in PBS). Reaction product 

accumulation was read as 595 nm absorbance with a 635 nm reference wavelength using 

a Biorad Microplate Reader (Biorad, Hercules CA). Activation of 18.5Z, 27.5Z, 30NXZ 

and 11p9Z hybridoma T-cells was determined accordingly. 

 

For MHC class I presentation assays 1x105 T-cells were added in 96 well plates to serial 

dilutions of antigen presenting cells and cocultured overnight. Cells were spun down for 

2 minutes at 2,000 rpm, culture medium was removed and 100 µl of CPRG was added 

into each well. Plates were read after different incubation times.  

 

 

4.11 Western blotting 

 

Cells were lysed for 30 min. at 4°C with homogenization buffer (80 µl 1 M Tris-HCl pH 

7.6, 40 µl NP40 alternative, 20 µl 200 mM PMSF, 4 ml of H2O) containing a cocktail of 

protease inhibitors (either 4 µl 1mg/ml leupeptin, 2 µl 25 µM pepstation or one mini-

tablet of inhibitors (Roche, Indianapolis) and spun down at 10,000 rpm, 4°C for 30 min. 
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The protein supernatant excluding the pelleted nuclei was combined with the same 

volume of sample buffer and loaded on a 10 % or 4-20 % gradient SDS polyacrylamide 

gel (Biorad, Hercules, CA). Separated, denatured proteins were transferred onto a 

nitrocellulose membrane and transferred using a Bio-Rad trans blot apparatus with 25 

mM Tris, 0.192 M glycine and 20 % methanol as transfer buffer.  After blocking with 1% 

dry skim milk in PBS, membranes were probed with various primary antibodies and 

secondary horseradish peroxidase conjugated antibodies in the listed dilutions. Protein 

bands were visualized using the ECL western blotting detection kit (Amersham, 

Buckinghamshire UK). 

 

 

4.12 Primary Antibodies 

 
antibody species application source 
W6/32 α HLA A,B,C mouse α human  

monoclonal 
FC   1:500 ascites 

W6/32 α HLA A,B,C 
FITC conjugated 

mouse α human  
monoclonal 

FC   1:500 Sigma, St.Louis MO 
F-5662 

5F1.2.14 α Kb mouse 
monoclonal 

FC   1:500 ascites 

5F1.2.14 α Kb mouse 
monoclonal 

FC   1:500 supernatant 

α β2m mouse α human 
monoclonal 

FC    1:50 – 1:100 US Biological, 
Swampscott, MA 
M3890-5 

AF6-88.5 α Kb  
FITC conjugated 

 FC    1:50 BD Bioscience, San Jose 
CA 

KH95 α Db 

FITC conjugated 
 FC     1:50 BD Bioscience, San Jose 

CA 
C28.14.8 α Db 
FITC conjugated 

 FC     1:50 BD Bioscience, San Jose 
CA 

CTKb α Kb 
PE conjugated 

 FC     1:50 BD Bioscience, San Jose 
CA 

Y3 α Kb Kk mouse FC    1:500 ascites 
HC-10 α MHC I heavy 
chain 

mouse α human WB  1:100 
FC   1:50 

supernatant 
Helge Plough, MIT, MA 

α hUpf1 / rent1 mouse α human  
polyclonal 

WB  1:1000 Abcam, Cambridge, MA 
Ab43408 

α hUpf1 / rent1 goat α human 
polyclonal 

WB  1:1,000 – 1:2,500 
FC   1:100 

Abcam, Cambridge, MA 
Ab10510 & Ab10534 



 139 

α hUpf2 rabbit α human  
polyclonal 

WB  1:100 Hans-Martin Jaeck 
Universitate Nueremberg-
Erlangen, Germany 

α CBP80 rabbit α human 
polyclonal 

FC   1:50 Abcam, Cambridge, MA 

α CBP80 rabbit α human 
polyclonal 

WB 1:500 Elisa Izaurralde, EMBL 
Heidelberg, Germany 

α CBP20 rabbit α human 
polyclonal 

FC   1:50 Abgent, San Diego, CA 
AP1946b 

α eIF4E rabbit α human 
polyclonal 

WB  1:1,000 Cell Signaling, Boston, 
MA 
6310 

α eIF4B rabbit α human 
polyclonal 

WB 1:500 - 1:1,000 Cell Signaling, Boston, 
MA 
6310 

α PABP2 rabbit α human 
polyclonal 

WB 1:1,000 Elmar Wahle, Universitaet 
Halle, Germany 

α 4E-BP1 rabbit α human 
polyclonal 

WB  1:1,000 Cell Signaling, Boston, 
MA 
9452 

α actin goat α human WB  1:2,000 SC-1615 
α neomycin 
phosphotransferase II 

rabbit α human  
polyclonal 

WB 1:1,000 Upstate, Lake Placid, NY 

α neomycin 
phosphotransferase II 

rabbit α human  
polyclonal 

WB 1:1,000 5Prime-3Prime 

α In-1 rat α human WB 1:500 subernatant 
α HA-Tag rabbit α human 

polyclonal 
WB 1:4,000 Abcam, Cambridge, MA 

Ab9110 
ME1 α HLA B0702 mouse α human FC 1:50 Abcam, Cambridge, MA 

 
 
 
 
 
4.13 Secondary Antibodies 
 
antibody application source 
goat α mouse IgG  
FITC conjugated 

FC   1:250 Cappel, Solon, OH 

sheep α mouse 
HRP conjugated 

FC   1:10,000  -  1:100,000  

goat α mouse IgG 
PE conjugated 

FC   1:200  

rabbit α goat IgG 
HRP conjugated 

WB   1:10,000 – 1:100,000 Zymax, San Luis Obispo, 
CA 

donkey α rabbit 
HRP conjugated 

WB   1:10,000 – 1:50,000 Amersham, Piscataway, NJ  

rabbit α rat 
HRP conjugated 

FC    1:10,000 – 1:100,00 Stressgen,AnnArbor, MI 
SAB-200 

swine α goat 
PE conjugated 

FC     1:200 Invitrogen, Carlsbad, CA 
1366799 
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4.14 Definitions 

 

Pioneer Translation: First round of translation of a mRNA after splicing in association 

with the EJC, CBP80, CBP20, Upf1 and PABP2. Might be located in close association 

with the nucleus or nuclear pore. 

 

Bulk translation: Exclusively elF4E dependent translation of bulk quantities of 

polypeptides and proteins in the cell. Might be termed steady state translation or 

conventional translation by some authors. 

 

Overall translation: All translational pathways that lead to the generation of 

polypeptides through ribosomal activity including bulk translation, pioneer translation, 

IRES dependent translation, cryptic translation, DRiP and RDP generation etc. 

 

4.15 Abbreviations 
 
17-AAG HSP90 inhibitor 
17-DMAG HSP90 inhibitor 
4E-BP1 elangation factor 4E binding protein 1 
α  anti 
APC  antigen presenting cell 
CBP20  also NCBP2 cap binding protein 20 kDa 
CBP80  also NCBP1 cap binding protein 80 kDa 
CPRG  chlorophenol red β-D-galactopyranoside 
DMSO  dimethyl sulfoxide 
EJC  exon junction complex 
elF-2B  elongation factor 2B 
elF-4B  elongation factor 4B 
elF-4E  elongation factor 4E (only cap-dependent bulk translation) 
elF-4G  elongation factor 4G (both cap dependent bulk and pioneer translation) 
EMCV  encephalomyocarditis virus 
ERAAP ER resident amino peptidase associated with antigen presentation 
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FC  flow cytometry 
FGF-5  fibroblast growth factor 
FITC   fluorescein resorcinolphthalein 
FRAP  fluorescence recovery after photo bleaching 
GFP  green fluorescent protein 
GM-CSF granulocyte monocyte colony stimulating factor 
GRP94  glucose-regulated peptide ~ 94 kDa, ER resident chaperone, =gp96 
gp96  see GRP94  
gp100  melanocytic growth protein 100 
h  human, homo sapiens 
HC  heavy chain of major histocompatibility complex class I 
HLA A/B/C human MHC class human lymphocyte antigen A, B, C 
Hoechst33342 flourescent dye, excitation nm, emission nm 
HPLC  High Performance Liquid Chromatography 
HRP  horseradish peroxidase 
HSP70 / 90 heat shock protein ~ 70 / 90 kDa, cytosolic 
HSV  Herpes simplex virus 
IRES  internal ribosome entry site 
ICP-47  infected cell protein 47, herpes simplex virus encoded TAP inhibitor 
Ii  invariant chain associated to major histocompatibility complex class II 
INF  interferon 
Kd  dissociation constant 
KOVAK ovalbumine derived peptide sequence of amino acids 138-386 
lac  lactacystin, organic compound, naturally synthesized by bacteria   
  Streptomyces, potent proteasome inhibitor 
LacZ  β-galactosidase 
LB  Luria Bertini bacterial growth medium 
LLM  N-acetyl-L-leucinyl-L-leucinyl-methional, weak 20S proteasome inhibitor 
LLnL  N-acetyl-L-leucinyl-L-leucinal-L-norleucinal, 20S proteasome inhibitor 
LPS  lipopolysaccharide 
LTA  lipoteichoic acid 
m  mouse, mus musculus 
MG115 N-carbobenzoxyl-L-leucinyl-L-leucinyl-L-norvalinal, potent proteasome  
  inhibitor  
MG132 N-carbobenzoyl-L-leucinyl-L-leucinyl-L-leucinal, potent proteasome  
  inhibitor 
MHC I  major histocompatibility complex class I 
MOI  multiplicity of infection 
OVA  chicken ovalbumin 
PA28  proteasome activator 
PABP2 poly adenin binding protein 2, also PABPN1 
PAGE  polyacrylamide gel electrophoresis 
PBS  phosphate buffered saline 
PDI  protein disulfide isomerase 
PE  R-phycoerythrin 
PLC  peptide loading complex 
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PMSF  phenylmethanesulphonylfluoride 
POMP  proteasomal maturation protein 
PTC  premature termination codon 
RBC  red blood cell lysis buffer 
rent1  regulator of upframe shift, also Upf1 
RF1.Aa rattus norwegicus TAP allel 
rmp  rounds per minute 
siRNA  small interfering RNA 
shRNA small hairpin RNA 
SDS  sodium dodecyl sulfat 
SHL8  ovalbumine amino acids 257-264 SIINFEHL, K to H substitution 
SL8  ovalbumine derived peptide sequence of amino acids 257-264 SIINFEKL 
SMG-1 to 7 suppressor with morphogenic effect on genitalia-1 to 7 
SRP  signal recognition pore 
TAP  transporter associated with antigen processing 
TLR  toll-like receptor 
TPP  tripeptidyl peptidase  
TRiC  TCP-1 containing ring complex, group II chaperonin 
UL49.5  bovine herpes virus type 1 encoded TAP inhibitor 
Upf1  upframe shift protein 1, also rent1 
Upf2  upframe shift protein 2 
US6  human cytomegalovirus encoded TAP inhibitor  
UTR  untranslated region of a gene in 3’ or 5’ position 
VDJ  gene rearrangement of immunoglobulin und TCR genes 
WB  western blotting 
X-P  petide with X= any amino acid and P=prolin 
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6.3 Zusammenfassung 

MHC I vermittelte Antigenpräsentation von Peptiden der “nonsense mediated 

decay” assoziierten Pionier-Runde der Translation.  

 

“Nonsense mediated decay” (NMD) spielt eine entscheidende Rolle in dem 

Qualitätskontroll-Mechanismus, der Zellen vor Stopp-Mutationen, so genannten 

“premature termination codons” (PTC) schützt. Erkennung dieser PTCs erfordert eine 

Pionier-Runde der Translation noch vor Beginn der konventionellen Translation von 

mRNA. Diese führt zur Synthese sehr früher Peptide. 

Die Effektivität der Immunüberwachung wird in entscheidendem Masse von der 

schnellen und vollständigen MHC I vermittelten Präsentation von exakt prozessierten 

Peptiden, die alle zellulären Proteine repräsentieren, gewährleistet. Bisher ist bekannt, 

dass diese Peptide konventionell prozessierte Proteine, defekte ribosomale Produkte 

(DRiPs), und kryptische Peptide, deren Translation nicht mit einem AUG-Codon beginnt, 

umfassen. Hier wurde untersucht, welchen Beitrag Peptide aus der Pionier-Runde der 

Translation zu der MHC I vermittelten Antigenpräsentation leisten. Reduktion der für die 

Pionier-Runde der Translation essentiellen Faktoren hUpf1 und CBP80 führt zu 

verminderter Antigenpräsentation. Im Gegensatz dazu führt eine Reduktion der  

konventionellen Translation ohne Einschränkung der Pionier-Translation zu keiner 

Veränderung der MHC I vermittelten Antigenpräsentation. Aus diesen Ergebnissen geht  

die entscheidende Bedeutung der Peptide der Pionier-Runde der Translation für die 

Antigenpräsentation hervor und stellt eine neue Verbindung zwischen NMD und dem 

Immunsystem dar. 




