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V.   ABSTRACT 

 

G-protein-coupled receptors (GPCRs) constitute the largest and most divergent class of cell 
surface proteins. GPCRs can be activated by extracellular signals as diverse as light, peptides, 
proteins, lipids, odorants, tastants, nucleotides and nucleosides. Currently, all the known 
chemosensory receptor genes, such as odorant, taste and pheromone receptors belong to the 
GPCR family, with many of them being class A or class-A related genes. Metabotropic P2Y 
receptors belong to class A GPCRs and are activated by extracellular nucleotides. Nucleotides 
are released to the environment when the organism is injured and therefore serve as one of the 
food stimuli. As such, it would be interesting to see if P2Y receptors play any role in olfaction in 
zebrafish. 

To date, eight functional human P2Y receptors and 25 related orphan receptors have been 
found. I performed extensive data mining in drosophila, ascidian, jawless, cartilaginous and 
bony fish, frog and human genomes to delineate the P2Y family and investigate its evolutionary 
origin. The P2Y family originates early in the vertebrate lineage, reflected by the presence of 
lamprey and the absence of ascidian orthologues. Consistent with these findings, no P2Y 
receptor is found in invertebrates. In total, 38 subfamilies can be distinguished within the P2Y 
family, at least two third of which are already present in the shark genome. Two subfamilies, 
p2yl-3 and p2yl-4, are lost in the human lineage and only GPR 87 subfamily is lost in all teleost 
species.    

Zebrafish has 68 P2Y receptor genes, the most of any fish species, and almost double as many 
than mammals. The teleost P2Y genes are widely distributed in the genome as small cluster 
and singletons. The vast majority of P2Y genes are intronless while the remaining genes 
contain up to five introns. In the teleost lineage, the genomic arrangement of P2Y genes is 
preserved to a large extent, and some synteny is found even with the elephant shark and 
human genome, possibly reflecting the functional importance of these genes. Selective pressure 
on teleost P2Y genes generally is high, as evidenced by a preponderance of negative selection. 
However, a few genes exhibit positive selection at individual sites.   

In early development, P2Y genes are expressed in many tissues and organs, notably the central 
and peripheral nervous system, pharyngeal arches, otic vesicle and kidney, suggesting an 
important role in the development of many tissues. However, no expression is detected in larval 
olfactory epithelium. In contrast, olfactory epithelium of adult fish does express several P2Y 
genes as shown by RT-PCR. A possible explanation would be a late onset of expression in the 
olfactory epithelium. In situ hybridisation of adult olfactory epithelium established an ubiquitous 
distribution, both in the sensory and non-sensory region, which seems to argue against a role of 
P2Y genes in nucleotide odor detection. However, further studies will be necessary to give a 
definitive answer to that question. 
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VI.   ZUSAMMENFASSUNG 

 

Bei den G-protein-gekoppelten Rezeptoren (GPCRs) handelt es sich um die größte und 
vielfältigste Gruppe von Membranproteinen. GPCRs werden durch sehr diverse extrazelluläre 
Signale aktiviert, von Licht über Peptide, Proteine zu Geruchs- und Geschmacksstoffen, bis hin 
zu Lipiden, Nukleotiden und Nukleosiden. Alle gegenwärtig bekannten chemosensorischen 
Rezeptoren, wie die Geruchs-, Geschmacks- und Pheromonrezeptoren gehören der GPCR 
Familie an, und viele davon sind aus der Klasse A der GPCR. Das gilt auch für die 
metabotropen P2Y Rezeptoren, die durch extrazelluläre Nukleotide aktiviert werden. Nukleotide 
werden freigesetzt, wenn ein Organismus verletzt wird, und können so als Signale zur 
Nahrungsdetektion dienen. Es erschien daher interessant, zu untersuchen, ob die von Fischen 
bekannte Geruchsdetektion von Nukleotiden durch P2Y Rezeptoren vermittelt sein könnte.  

Die P2Y Familie im Menschen besteht aus acht funktionalen P2Y Rezeptoren und 25 
verwandten Rezeptoren mit bisher unbekannten Liganden. Ich habe ausführliche 
Datenbanksuchen in Genomen der Taufliege, von Aszidien, Kieferlosen, Knorpelfische und 
Knochenfische, sowie in Frosch und dem menschlichen Genom durchgeführt, um die P2Y 
Familie zu identifizieren und von benachbarten Familien abzugrenzen. Meine Ergebnisse 
zeigen, dass die P2Y Familie in frühen Wirbeltieren entstanden ist, da Vertreter dieser Familie 
im Neunauge, aber nicht in Aszidien vorkommen. Konsistent zu diesen Befunden konnten auch 
keine P2Y Rezeptoren in Wirbellosen gefunden werden. Insgesamt können 38 Unterfamilien 
innerhalb der P2Y Familie unterschieden werden, von denen mindestens 2/3 bereits im 
Haifischgenom vorhanden sind. Zwei Unterfamilien, p2yl-3 und p2yl-4, sind in der menschlichen 
Entwicklungslinie verloren gegangen, eine weitere Unterfamilie, GPR87, ist am Beginn der 
Knochenfischentwicklung verloren gegangen. 

Der Zebrabärbling weist 68 P2Y Gene auf, am meisten von allen Fischarten, und fast doppelt so 
viele wie die Säuger. Die P2Y Gene kommen breit verteilt als kleine Cluster oder Einzelgene im 
Fischgenom vor. Die überwiegende Zahl der P2Y Rezeptorgene hat keine Introns, manche 
jedoch weisen bis zu fünf Introns auf. In der Entwicklungslinie der Knochenfische ist die relative 
genomische Anordnung der P2Y Gene zum großen Teil erhalten, und eine gewisse Syntenie 
läßt sich sogar zu den Genomen von Haifisch und Mensch beobachten. Eine solch hohe 
Konservierung spricht für die funktionale Bedeutung dieser Gene. Der Selektionsdruck auf die 
P2Y Gene der Knochenfische ist hoch, wie aus dem Überwiegen negativer Selektion ersichtlich 
wird. Manche Gene zeigen allerdings positive Selektion an vereinzelten Positionen. 

In der frühen Entwicklung werden P2Y Gene in vielen Geweben und Organen exprimiert, 
insbesondere dem peripheren und zentralen Nervensystem, den Kiemenbögen, dem Ohrvesikel 
und der Niere, konsistent mit einer vielfältigen Rolle dieser Gene in der Entwicklung vieler 
Gewebe. Allerdings liess sich keine Expression im larvalen Riechepithel feststellen. Im 
Gegensatz dazu werden viele P2Y Gene im adulten Riechepithel exprimiert, wie ich sowohl mit 
RT-PCR als auch In situ-Hybridisierung zeigen konnte. Eine mögliche Erklärung dieser 
Diskrepanz wäre ein später Beginn der Expression im Riechepithel. In der In situ-Hybridisierung 
zeigt sich eine breite Expression der P2Y Gene sowohl im sensorischen als auch dem 
nichtsensorischen Bereich des Riechepithels, unerwartet für eine mögliche Funktion der P2Y 
Gene in der Geruchsdetektion von Nukleotiden. Weitere Studien werden erforderlich sein, um 
diese Frage abschliessend zu klären. 
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1.   Introduction 

 

A family of nucleotide receptor in teleost fishes, P2Y, is described in this thesis. As detailed 

below, there is a reason to suggest a possible function as sensory receptors for members of this 

family. This work presented here serve as a basis to investigate this possibility.  

 

1.1   Nucleotides 

Nucleotides are molecules composed of a nitrogen-containing ring compound linked to a five-

carbon sugar and a phosphate group. The sugar involved in the synthesis and structure of a 

nucleotide can be either ribose or deoxyribose, Ribonucleotides are nucleotides containing 

ribose whereas deoxynucleotides are nucleotides containing deoxyribose. The phosphate group 

may consist of up to three phosphates forming monophosphates, diphosphates, or 

triphosphates, respectively. Nucleotide is named after the utilized base, either purine or 

pyrimidine. Purine bases are adenine and guanine whereas pyrimidines are cytosine, thymine 

and uracil.   

 

Nucleotides are essential in the cell. They are the building blocks of the hereditary information. 

Besides that, nucleotides have many other functions in the cell: i) carrier of chemical energy in 

the cell, ii) coenzyme when combine with vitamin or its derivative and iii) signalling molecule in 

the cell. Ribonucleotide adenosine triphosphate, ATP, is used to transfer energy in hundreds of 

different cellular reactions. ATP is synthesized via the addition of a phosphate group to ADP. 

When energy is required, ATP releases its energy through its hydrolysis to ADP and inorganic 

phosphate. The regenerated ADP is reused for subsequent phosphorylation reactions that form 

ATP. Nucleotides bind to vitamin and its derivatives to form coenzyme. Coenzyme involved in 

both group-transfer and redox reactions in metabolism. Cyclic AMP (cAMP) is one of the 

signaling molecules in the cell. cAMP is derived  from ATP by plasma membrane bound enzyme 

adenylnyl cyclase and is involved in intracellular signal transduction in organism.  

 

1.2   Purine and pyrimidine 

Purine consist of a pyrimidine ring (six-membered ring) fused to imidazole ring (five-membered 

ring). Members of purine include adenine, guanine, hypoxanthine, xanthine, theobromine, 

caffeine, uric acid and isoguanine. Purines are involved in many aspects of cellular processes: 

intermediary metabolism, nucleic acid synthesis and the supply of energy phosphates to various 

active transport systems. In cells, ATP is abundantly found as ATP is the main energy-providing 
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and energy-storing molecule for all biological processes. On the other hand, GTP is rarely used 

as an energy donor but rather to transmit signals throughout the cell notably in G-protein 

signaling cascade. In additions, purines appear to be ligand of specific receptor reside within 

plasma membrane which mediate changes in cell function in response to extracellular purines 

(Stone, 1982).  

 

Unlike purine, pyrimidine comprise of six-membered ring. Pyrimidine members include cytosine, 

thymine and uracil. In the cell, pyrimidine serves as energy source for specific metabolic 

reactions. UTP is the source for activating glucose and galactose whereas CTP is an energy 

source in lipid metabolism.  

 
 
1.3   Purine receptor 

Purine receptors are cell surface receptors that transduce extracellular signals to an intracellular 

signal to induce a cellular response. There are two main families of purine receptors, P1 and P2 

receptors. The P is an abbreviation for purinergic. P1 receptor is activated by adenosine 

whereas P2 receptor is activated by nucleotides (Abbracchio et al., 2006). 

 

P1 or adenosine receptor family comprises of A1, A2A, A2B, and A3 adenosine receptors. The 

adenosine receptor family belongs to G- protein coupled receptor (GPCR). All the receptors 

couple to G proteins to activate the signaling cascades.  A1 receptor couples to both Gi/o and 

Gq/11  to activate phospholipase C pathway whereas A1 receptor only couples to Gi/o. On the 

other hand, both A2A and A2B receptors couple to Gs to increase cAMP concentration in the cell 

(Ralevic and Burnstock, 1998). Adenosine receptors are involved in modulation of 

cardiovascular, immune and central nervous systems (Burnstock, 2007). 

 

P2 receptors are divided into two major families, P2X and P2Y. P2X family is of ligand-gated ion 

channel whereas P2Y family belongs to G-protein-coupled receptor (GPCR). P2X family is 

activated by extracellular adenosine 5’-triphosphate (ATP) and seven subunits have been 

identified to date, P2X1-7. All the members possess two transmembrane-spanning regions in 

which N and C termini that have consensus-binding motifs for protein kinases reside 

intracellularly. The first TM is involved in channel gating and the second lining the ion pore 

(Fields and Burnstock, 2006). P2X receptors are homomeric or heteromeric assemblies of three 

subunits (Koles et al., 2008) P2X receptors mediate rapid (onset within 10ms) non-selective 

passage of cations (Na+, K+, Ca2+) across the cell membrane resulting in an increase of Ca2+ 
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and depolarization (Bean, 1992; Dubyak and el-Moatassim, 1993). The direct influx of 

extracellular Ca2+ through the channel constitutes a significant source of the increase in 

intracellular Ca2+. However, membrane depolarization leads to the secondary activation of 

voltage-dependent Ca2+ channels, which probably make the primary contribution to Ca2+ influx 

and to the increase in intracellular Ca2+. Since this transduction mechanism does not depend on 

the production and diffusion of second-messengers within the cytosol or cell membrane, the 

response time is very rapid, and appropriately plays an important role in fast neuronal signaling 

and regulation of muscle contractility (Ralevic and Burnstock, 1998). P2X receptors are 

important in neuronal signaling, pain transmission and inflammation. 

 

1.4   P2Y receptor 

P2Y receptors are cell-surface receptors that belong to G-protein coupled receptor (GPCR) 

superfamily. As such, P2Y receptors share the common molecular architecture of GPCR, 

consisting of seven transmembrane domains connected by three intracellular and three 

extracellular loops. GPCR superfamily composed of five families, namely rhodopsin, secretin, 

adhesion, glutamate and frizzled/taste2. P2Y receptors belong to rhodopsin/Class A family, 

which is the largest family of GPCRs. Rhodopsin family of GPCRs have short N termini and the 

receptors are primarily activated by interactions of ligand with transmembrane regions and 

extracellular loops. This metabotropic receptor form the δ-group together with MAS-related, 

glycoprotein and olfactory receptors in rhodopsin family. P2Y receptors are activated not only by 

ATP, but also naturally occurring nucleotides or nucleotide sugars such as ADP, UTP, UDP and 

UDP glucose (Fredriksson et al., 2003; Abbracchio et al., 2006; Langerstrom and Schioth, 

2008).  

 

1.4.1   Structure 

P2Y family is composed of 8 subtypes that were cloned and functionally defined in human: 

P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13 and P2Y14. These receptors are phylogenetically 

divided into 2 subgroups, one encompassing receptors that mainly couple to Gq protein and the 

other to the Gi protein. The subgroup that couple to Gq protein comprised of P2Y1, P2Y2, P2Y4, 

P2Y6 and P2Y11 receptors whereas the second subgroup that couple to Gi comprised P2Y12, 

P2Y13 and P2Y14. Additionally, several other structurally related GPCR such as lipid mediators, 

platelet-activating factor, cysteine leukoriene and orphan receptors are clustered with both 

groups (Constanzi et al., 2004; Schoneberg et al., 2007).  Most of the gene sequences of P2Y 

receptors appear to be intronless with the exception of P2Y11. P2Y11 receptor gene has an 
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intron interrupting the coding sequence after the first six amino acids (Kugelgen and Wetter, 

2000). 

 

P2Y receptors have different selectivity for adenine or uracil nucleotides, 5’-diphosphates and 

5’-triphosphate. P2Y1, P2Y12 and P2Y13 are selective for adenine nucleotides, whereas P2Y4, 

P2Y6 and P2Y14 are selective for uracil nucleotides. P2Y2 and P2Y11 are not selective to both 

uracil and adenine nucleotides. Lastly, P2Y14 has an atypical selectivity for UDP-glucose 

(Costanzi et al., 2004). 

 

P2Y receptors share some motif of Class A GPCRs, ‘DRY’ and ‘D/NPxxY(x)5,6F’ motif at the 

cytoplasmic end of TM3 and TM7 respectively. Additionally, these receptors possessed 

signature motif of their own. All known P2Y receptor subtypes possess 4 cysteine residues at 

their extracellular domains which form 2 disulfide bridges: the first one between N-terminal 

domain and EL3 and the second bridge between EL1 and EL2 (Hoffmann et al., 1999). Besides 

that, consensus sequence ‘S(I/V)(L/I)FLTCIS’ is also conserved in TM3 (Kugelgen and Wetter, 

2000). Although the receptors in P2Y family display a relatively high diversity in amino acid 

composition, conserved residues were found in TM3, 6 and 7 which are involved in ligand 

binding (von Kugelgen, 2005).  

 

1.4.2   Signal transduction 

P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11 receptors couple preferentially to the stimulation of 

phospholipase C (PLC) via Gq, and P2Y12, P2Y13 and P2Y14 receptors couple to the inhibition of 

adenylnyl cyclase via Gi. P2Y11 was also couple to the stimulation of adenylate cyclase via Gs. 

However, the specific downstream signal transduction pathway seems to be depending not only 

on P2Y subtype but also on cell type expressing receptor (Ralevic and Burnstock, 1998). P2Y13 

receptor couple to Gi protein subunits and subsequently inhibits adenylnyl cyclase and cAMP 

formation. However, transfected P2Y13 receptor in 1321N1 neuroblastoma cells and Chinese 

hamster ovary can simultaneously couple to Gi, G16 and also Gs upon stimulation by ADP 

(Marteau et al., 2003). Stimulation of ATP in transfected P2Y11 receptor in 1321N1 

neuroblastoma cells induced an increase in IP3 and cytosolic Ca2+ as well as cAMP via Gq and 

Gs respectively. Stimulation with UTP unexpectedly increases only cytosolic Ca2+ suggesting 

that stimulation of ATP and UTP on P2Y11 induces distinct signaling pathways (White et al., 

2003). 
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Besides that, P2Y receptors also interact with cellular macromolecules, inducing signaling 

cascades that mediate responses in the cell. The interaction of P2Y receptors with small 

homomeric G proteins, integrins and tyrosine kinases activates mitogen-activated protein 

kinases (MAPK), in particularly extracellular signal-regulated kinase (ERK) pathway. In addition, 

P2Y receptors interact with PDZ domain and induce ion channel responses to induce trafficking 

in cellular membrane. The interplay of P2Y receptors with distinct G proteins and signaling 

pathways further indicates the complexity of this receptor family (Fischer and Krugel, 2007; 

Koles et al., 2008). 

 

1.4.3   Biological function 

P2Y receptors are involved in neuronal and non-neuronal mechanisms in regulating 

neurotransmission, secretion, cell division, proliferation, differentiation, regeneration and 

apoptosis in the cell. These receptors are broadly expressed in many tissues notably in the 

central and peripheral nervous system (Table 1). The wide expression of P2Y subtypes in 

central nervous system indicates that these receptors are part of a component to maintain 

physiological balance in neuronal transmission directed to the survival of the organism. P2Y 

receptors mediate food foraging, response to enemies as well as reaction to injury, inflammation 

and oxygen deficiency in the organism (Burnstock, 2006; Fischer and Krugel, 2007).  

 

1.5   Purinergic signaling  

Extracellular purines are released by the cell itself to stimulate the activation of purinergic 

signaling. Purinergic receptor activation subsequently trigger a host of second messenger 

systems and other signaling molecules including cyclic AMP (cAMP), inositol-1, 4, 5-

triphosphate (IP3), phospholipase C (PLC), arachidonic acid and nitric oxide leading to an 

increase of intracellular calcium concentration (Fields and Douglas, 2006). 

 

ATP is an extracellular signaling molecule that exerts potent physiological response on a variety 

of tissues and cell types. ATP is released not only by presynaptic terminal but also postsynaptic 

membrane and other cells. The release occurs not only in response to neurotransmitter 

stimulation but also in response to physiological states to mechanical stress, hypoxia, 

inflammation and agonists. The degradation of ATP in extracellular space by ectoenzymes 

subsequently activates various types of P2X and P2Y receptors to provide a homeostatic 

regulation mechanism in the cell. P2X receptors act within milliseconds because ligand binding 

is directly linked to channel opening. Thus, P2X receptor can mediate fast ATP signaling over 
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short distances. In contrast, P2Y receptors can recognize lower concentrations of nucleotides 

(in the range of nM) and the binding of agonist triggers second messenger pathways. The 

signals and its duration is amplified and prolong over hundreds of milliseconds or even seconds, 

which makes it attractive as a neuromodulatory functions. Once released, ATP is rapidly 

degraded by ectonucleotidases to ADP, an agonist of P2Y1, 12, 13 rceptors. The degradation of 

ADP in turn generates AMP and later adenosine, which stimulates postsynaptic adenosine 

receptors. Adenosine receptors then activates neuronal K+ conductance and may also inhibit 

transmitter release via A1 (or A2) receptors (Fig. 1). 

 

P2Y receptor families couple to Gq, Gs and Gi, hence modulating the activity of several types of 

voltage-gated ion channels via different G protein subunits. Upon stimulation with agonists, P2Y 

receptors inhibit N-type Ca2+ led to a reduced transmitter release or decreased neuronal 

excitability. P2Y12, 13 receptors inhibit N-type Ca2+ channels and activate G protein-activated 

inward rectifier (GIRK or Kir3) K+ channels, both via Gβγ subunit. P2Y1, 2, 4, 6 receptors close N-

type Ca2+ channels via Gq and inhibit GIRK and M-type K+ channels. However, P2Y1, 2 is able to 

open GIRK channels due to the crosstalk between Gq and Gi mediated pathways in which the 

receptors interact with Gαiβγ trimers. This interaction led to the release and binding of Gβγ 

subunits to the K+ channel. 

 

The release of ATP from astrocytes increased intracellular calcium via purinergic signaling 

(P2X2, 4, 5 ,7 and P2Y1, 2, 4, 14). The increased cytoplasmic calcium in turn stimulates the release of 

glutamate and other signaling molecules (aspartate, D-serine, nitric oxide and other neuroactive 

substances) from astrocytes to propagate the calcium wave to adjacent cells. The interaction 

between neuron and glia display an intercellular communication in the brain (Fields and 

Burnstock, 2006; Fischer and Krugel, 2007) 

 

  

1.5.1   Cell proliferation, migration and differentiation 

Purinergic signaling is present in the early stages of embryogenesis and is involved in 

processes of cell proliferation, migration and differentiation.  Nucleotides exert a synergic effect 

on cell proliferation in association with growth factors, chemokines or cytokines in early stages 

of development by parallel activation of MAPK kinase pathway and/or by transactivation of 

growth factor receptors.  
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Activation of NMDA receptors increases proliferation and differentiation of neural progenitor 

cells (Joo et al., 2007). The presence of purinergic antagonists of pyridoxalphosphate-6-

azophenyl-2’, 4’-disulfonic acid (PPADS), reactive blue 2 or suramin in P19 neural progenitor 

cells impaired activity of cholinergic and glutamate NMDA receptors in differentiated P19 cells. 

The reduced activity of sholinergic and glutamate NMDA receptors suggest  the participation of 

purinergic signaling in initiating downstream cascades of differentiation (Majumper et al., 2007, 

Resende et al., 2007). 

 

 

 

Table 1: Characteristics of human P2Y receptors. 

 
                   Adapted from Fischer and Krugel, 2007. 
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                                                                                                    Adapted from Fischer and Krugel, 2007. 

 

Figure 1: Schematic representation of purinergic signaling at central synapses. 

ATP may be produced by de-novo purine biosynthesis from 5’-phosphoribosyl-1-pyrophosphate (PRPP) 
and also by purine salvage pathways from adenosine (Ad) in neurons (and astroglial cells, not shown). 
ATP level in nerve terminals is generated via ADP mainly by oxidative phosphorylation in the 
mitochondria and may then be accumulated by carrier-uptake (vesicular ATP translocase) in synaptic 
vesicles (excitatory terminals likely present separate ATP- and glutamate-containing vesicles) as 
indicated. ATP released upon nerve stimulation from presynaptic terminals predominantly by exocytosis 
1) activates “fast” ionotropic P2X- and with other nucleotides “slow” metabotropic P2Y-R subtypes at the 
postsynaptic neuronal membrane 2) modulates its own release or that of co-transmitters via presynaptic 
P2X (maybe P2X1,2/3,3,7) and P2Y (P2Y1,2,4) auto-receptors and 3) triggers Ca2+ signalling events in 
astrocytes via various P2X/Y-R (at least P2X2,4,5,7 and P2Y1,2,4,14). In addition, an astrocytic [Ca2+]i rise can 
also be induced in response to neuronal glutamate release or by other neurotransmitters via activation of 
the corresponding receptors. The induced Ca2+ signals or propagated Ca2+ waves represent an important 
form of glial excitability and mediate glial-glial cell and glial-neuronal communication. The range of 
astrocyte-synapse interactions might be very complex. Subsequently, ATP and glutamate (Glu) are 
released from astrocytic processes enwrapping the synapse, which in turn modulate the activity of the 
nearby neurons and synapses or signal back to the astrocyte. Several enzyme families can degrade ATP 
(nucleotides). For example, the presynaptically localized ectonucleoside triphosphate 
diphosphohydrolase3 (NTPDase3) hydrolyzes ATP to ADP, which is a strong agonist on P2Y1,12,13-Rs, 
and ADP further to AMP. The cellular localization of other NTPDase enzyme isoforms needs to be 
defined. Ecto-5’-nucleotidase (5’-NT), which is also present at synapses and astrocytes, degrades AMP 
to adenosine. Adenosine can activate various P1-Rs. Not depicted, surface-located ecto-nucleotide 
kinases in astroglial cells can interconvert nucleoside di- and triphosphates. Other abbreviations: Ad-T, 
adenosine transporter; Gln-T, glutamine transporter; Glu-T, glutamate transporter; Gluc-T, glucose 
transporter; αq/11, αs, αi/o, βγ, different G protein signalling; (↑) indicates activation;(↓) indicates inhibition; 
(+) opening or (-) closure of ion channels (or positive/negative modulation of transmitter release). 
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1.5.2   Neuroprotection 

Impaired cells release nucleic acids and their metabolites such as nucleotides, nucleosides and 

uric acids to the environment. These nucleic acids and their metabolites are recognized by 

specific host receptors (Toll-like receptors, ROG-like receptors and NOD-like receptors) and 

purinergic receptors (P2X, P2Y and adenosine receptors) to trigger immune responses (Ishii 

and Akira, 2008). Macrophages detected increased nucleotides levels via P2Y2 receptor, 

responsive to both ATP and UTP, and initiate the release of Ca2+ from the endoplasmic 

reticulum. The calcium release, in turn, triggers surface channel to promote Ca2+ entry and 

refilling of stores (Rey et al., 2006). The influx of calcium is essential for T cell activation and 

proliferation (Carroll et al., 2006). Besides that, released ATP induced the activation of P2Y1 in 

the astrocytes. Subsequently, this led to the production of interleukin-6 (IL-6) to rescue the 

impaired cells (Fujita et al., 2008). 

 

1.6   Purine and aquatic animal 

Aquatic animals can detect, discriminate and respond to a variety of water-borne stimuli to 

reproduce, social interactions, feeding, and predator detection (Derby and Sorensen, 2008). 

Likewise, fish detect an array of chemicals in their environment for habitat recognition, food 

finding, conspecific identification and predator avoidance. In fish, pheromone associates to 

habitat recognition and reproduction whereas bile acids for alarm behaviour. Amino acids and 

nucleotides are always associated with feeding behaviour and mediated by both olfaction and 

gustation.   

 

In channel catfish, nucleotides are processed by dorsolateral of the olfactory bulb. Bile acids 

and amino acids are processed in the medial and lateral olfactory bulb respectively (Hansen et 

al., 2003). Likewise in zebrafish, bile salts and amino acids are processed in the medial and 

lateral OB respectively. Conversely, nucleotides are processed between the clusters responding 

to amino acids and bile salts (Li et al., 2005). The conservation of processing zone of odorants 

in olfactory bulb indicates that the odotopic map is preserved in the fish. This odotopic map is 

further preserved in the forebrain of channel catfish. Feeding cues of amino acids and 

nucleotides are represented in lateral, palllial portions of the forebrain in the channel catfish. 

Nucleotides responsive units were situated in the lateral half of the telencephalon near the 

amino acid response zone (Nikonov et al., 2005).  
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ATP is abundantly found in living organism due to their importance in carrying out biological 

processes. Therefore, ATP presents in high concentration in animal flesh but decays rapidly as 

cells die (Sikorski et al., 1990). Thus, ATP is an indicator for food. In spiny lobster, ATP 

stimulates carnivorous feeding while AMP inhibits feeding (Zimmer-Faust et al., 1988). In 

seawater, the level of ATP is minimized in the background by dephosphorylating enzymes and 

nucleotidases. Consequently, the presence of significant concentrations of ATP in seawater 

provides a reliable indicator that food source is nearby (Burnstock, 1996). The detection of 

extracellular ATP and other purines to initiate response in the cell is facilitated by purinergic 

receptor. 

 
 
1.7   Purinergic receptor and olfaction 

Hegg and colleagues (2003) reported that purinergic receptors modulate odor sensitivity in 

mice. Damaged cells release ATP, thereby activating purinergic receptors on neighboring 

sustentacular cells, olfactory sensory neurons, and basal cells and initiating a cascade for 

neuroprotection and regeneration. Calcium can modulate a number of receptors, enzymes, and 

channels involved in odorant signal transduction. The increase in intracellular calcium by 

purinergic transduction triggers homeostasis mechanisms that potentially alter odor sensitivity.  

 

Although P2Y1 and P2Y2 are detected in olfactory epithelium and vomeronasal organ of the rat, 

both of the receptors seems not involve in chemosensation signaling. P2Y1 is involved in the 

proliferation of epithelial cells in olfactory epithelium. Although P2Y2 is detected within the 

neurosensory epithelium of vomeronasal organ, it was postulated that it is involved in mediating 

mucin secretion (Gayle and Burnstock, 2005). 

 

In olfactory epithelium of Xenopus tropicalis tadpole, ATP activates a large number of 

sustentacular cells and to a lower extent, olfactory sensory neurons. Upon activation by ATP, 

sustentacular cells may secrete components that influence the composition of the mucus in 

olfactory epithelium and thereby, could affect the olfactory perception (Czesnik et al., 2006). 

 

P2Y receptor could be olfactory receptor or could be the charaperone of OR. The association of 

purinergic receptors (P2Y1, P2Y2 and A2a) with olfactory receptor M71 in HEK-293 cells 

enhances plasma localization of M71. The enhanced plasma localization with purinergic 

receptors was also observed in M71 subfamily members, but not distantly related members. 

This association suggesting that the interaction purinergic receptor is confined to a restricted 
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population of OR. The OR interactions with other receptors may act in concert with OR 

associations with accessory proteins to control OR trafficking (Bush et al., 2007). 

 

1.8   Zebrafish as model organism 

The zebrafish is an important model system for genetic and developmental studies (Kimmel, 

1993). It has the combination of the best virtues of all other models which includes easily 

accessible embryos, simple breeding and short generation time. Besides that, the embryos are 

completely transparent during early development facilitating visualization. The organs in 

zebrafish larvae composed of fewer cells compared to other vertebrate model even though the 

organ functions in much the same way as in other vertebrates. All these attributes make 

zebrafish a desirable model to work with. 

  

1.9   Aims: 

 

The aim of this thesis is to lay the foundation for a comprehensive analysis of the P2Y receptor 

family in aquatic model system, zebrafish. Previously, most of the P2Y receptor studies are 

conducted in pharmacology research. Only a few studies have been conducted in vertebrate 

development. In particular, nearly nothing is known about the possible role of P2Y receptors in 

zebrafish, Hence, the aims of this project are: 

i) To identify P2Y receptors and delineate the family in teleost 

ii) To understand the evolutionary dynamics of P2Y receptor 

iii) To characterise expression of P2Y receptor genes 
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2.   RESULTS 

 

2.1   P2Y-like genes in teleost 

A recursive database search against 5 teleost species (Danio rerio, Gasterosteus acualeatus, 

Oryzias latipes, Tetraodon nigroviridis and Takifugu rubripes) with eight functional human P2Y 

receptors as a query has led to the identification of 42 orthologues. Further bioinformatic 

analysis revealed an additional 185 GPCRs that showed a high degree of structural similarity 

with P2Y receptors. (Zebrafish (Danio rerio) have the largest family, with 68 genes. This is 

followed by stickleback (Gasterosteus acualeatus) and medaka (Oryzias latipes) whose P2Y 

families are comprised of 48 and 40 genes respectively. Lastly, 35 genes and 36 genes 

constitute the tetraodon (Tetraodon nigroviridis) and fugu (Takifugu rubripes) P2Y families, 

respectively. 

 

To analyse the genesis of the P2Y family, database searches were performed in jawless and 

cartilaginous fishes. Twenty four P2Y genes were identified in the lamprey (Petromyzon 

marinus) genome, and 24 genes in the elephant shark (Callorhinchus milii) genome. The 

number of genes in these two species might not be the complete number as the genome 

projects are still in progress, and the genome coverage for shark is only 1.4 fold. A single p2y-

like gene was found in little skate (Raja erinacea), another cartilaginous fish with only partial 

genomic sequence information available (Table 2).  

 

To pinpoint the evolutionary origin of the P2Y family, database searches were extended to the 

ancestral chordate species, Ciona intestinalis, an ascidian. Only one candidate with rather low 

homology was found, but it turned out not to fulfil the inclusion criteria (see Methods), as it did 

not exhibit the seven transmembrane domain structure.  

 

Intriguingly, the number of P2Y-like genes is not much different between Xenopus tropicalis and 

human (39 and 33 genes respectively). This suggests that those genes retained in the 

vertebrate transition from water to land may have kept their function. In contrast, large 

differences in family size are observed between teleost species, suggesting a dynamic 

adaptation to changing environmental conditions. 
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Table 2: P2Y genes in 10 vertebrate species. 

      Dr Ga Ol Tn Tr Re Cm Pm Xt Hs 

Total 68 48 40 35 36 1 24 24 39 33 

Funtional genes 67 45 38 31 33 1 19 20 36 33 

Pseudogenes or partial sequences 1 3 2 4 3 - 5 4 3 - 
 
Abbreviations: Dr, zebrafish; Ga, stickleback; Ol, medaka; Tn, tetraodon; Tr, fugu; Re, little skate; Cm, 
elephant shark; Pm, lamprey; Xt, frog; Hs, human. 
 

 

2.2   P2Y genes are paraphyletic 

To investigate the phylogenetic relationship of the P2Y receptors and candidate proteins 

obtained above, methods of neighbour joining (NJ), maximum parsimony (MP) and maximum 

likelihood (ML) are used. The three methods gave slightly varying tree topologies with the ML 

tree having the best resolution (Fig. 2). Olfactory receptors were used as an outgroup. Both 

olfactory receptor and P2Y receptor belong to the delta subgroup of GPCR class A receptor 

family. Hence, the olfactory receptor family is the nearest phylogenetic relative of the P2Y 

receptor family. Phylogenomic analysis revealed that P2Y receptor family is paraphyletic. Within 

the P2Y clade two other gene groups are contained, platelet-activating factor receptors and 

succinate receptors. These ‘internal outgroups’ are interspersed between two phylogenetically 

distinct subgroups of P2Y receptors. This is consistent with an earlier report by Abbracchio et al 

(2006). Within the P2Y clade a large number of orphan GPCRs are clustered together with the 

functional P2Y receptors, suggesting the presence of yet to be characterized P2Ys. Moreover, 

leukotriene cysteine, EBI2 and free-fatty acids receptors are close neighbors in the phylogenetic 

tree indicating that P2Y and related receptors exhibit high diversity both in sequences and 

ligands.  

 

According to the International Union of Pharmacology, the term ‘P2Y’ is used for functional 

receptor proteins and the lowercase ‘p2y’ is used for mammalian orphan receptors or functional 

nonmammalian receptors without a mammalian orthologue. Hence, I have named the fish 

sequences according to their human orthologue. In the case that non-nucleotide ligands are 

known for a mammalian receptor, the orthologous fish sequence is named after the mammalian 

gene. The receptors within the P2Y family with unknown ligand are named as p2y-like (p2y-l) as 

they share a high sequence homology to P2Y receptor (Fig. 3).  
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Figure 2 | Phylogeny of teleost with other vertebrate P2Y families.  

A maximum likelihood tree was constructed based on the alignment of predicted amino acid 
sequences with 100 bootstrap replicas. 227 teleost P2Y (red), 24 shark P2Y (light blue), 1 little 
skate (dark blue), 24 lamprey P2Y (yellow), 28 frog P2Y (green) with human P2Y (purple). 
Olfactory receptors (black) were used to root the tree. Both platelet-activating factor and 
succinate receptors served as internal outgroups of the P2Y family and are labeled in brown.   
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2.3   P2Y gene gains and losses in the teleost and tetrapod lineage   

All P2Y genes identified clustered into 19 major clades divided into 38 subfamilies. Nearly all of 

the subfamilies contain tetrapod and teleost genes in each clade demonstrating that members 

of the subfamily have established before the divergence of Actinopterygii and Sarcopterygii. 

However, two of the subfamilies did not have a mammalian orthologue (p2yl-3 and p2yl-4) even 

though the orthologue is present in Gallus and Xenopus (Appx 7.2A). The absence of the 

mammalian orthologue implied that the vertebrate orthologue is lost in the mammalian lineage. 

On the other hand, several gene expansion events occurred in the teleost fish lineage, in eight 

of the subfamilies (P2Y2, P2Y4, p2y5, p2y7, p2y15, p2yl-7, p2yl-13 and p2yl-14). These gene 

duplications have occurred at different stages in evolution, as visualized by their presence in 

different subsets of teleost species. This scenario is displayed by P2Y4 and p2y15 clades in 

which the expansion only occurred in zebrafish, whereas P2Y4 and p2y15 remained a single 

gene in other teleosts. Furthermore, species-specific expansion in p2yl-13 clade only involved 

zebrafish (Fig. 3) and stickleback.  

 

More than 60% of the clades have the full set of orthologues for each of the five analysed 

teleost fish genomes. It cannot be excluded that the lack of some orthologues in the remaining 

clades might be due to the inadequacy of the currently available databases. However, there is 

also the possibility that these genes are lost in some species.  
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Figure 3 | Phylogeny of zebrafish P2Y gene and ligand correlation. 

Phylogenetic tree of P2Y genes identified from zebrafish (68 genes), shark (24 genes) and 
human (33 genes). The tree was constructed using ML method with 100 bootstrap replicas. The 
branches are coloured to facilitate the identification of subfamilies. Dark green and black 
braches indicate internal and external outgroups respectively. The gene name is colour-coded 
according to the ligand: red, nucleotides; blue, lipid derivatives; orange, nucleotides and lipid 
derivatives; purple, α-ketoglutarate; green, unknown ligand. Underline gene names are 
candidates used for subsequent analysis. 
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2.3   Correlation between phylogenetic location and ligand 

To examine the relationship between phylogenetic location and known ligand specificity, I have 

graphed the ligand specificity onto the maximum likelihood tree in Figure 3. Ligand information 

was collected for human P2Y receptors. Most receptors in this family bind either to nucleotide or 

lipid derivatives. Phylogenetic clusters of receptors that bind to similar types of ligands are 

present. However, this correlation is only partial, and there are several examples of 

phylogenetically neighboring receptors with rather different ligands, and also examples of 

phylogenetically distant receptors sharing a ligand. 

 

 Some examples of ligand promiscuity of the receptor are the activation of P2Y12 by both ADP 

and leukotrienes (Nonaka et al., 2005) and the activation of cysteine leukotriene receptor 1, 

cysteine leukotriene receptor 2 and Gpr17 by leukotrienes as well as UDP at nanomolar 

concentration (von Kuegelren, 2005).  The large difference in chemical structure of these two 

endogenous ligands indicates the complexity of the ligand-receptor interactions in the diverse 

P2Y family. 

 

The primitive P2Y-receptor found in the little skate Raja erinacea does not discriminate between 

different nucleotides agonists such as ATP, ADP or UDP (Dranoff et al., 2000). In contrast, 

mammalian P2Y1 which forms a sister clade with Raja erinacea P2Y-receptor is potently 

activated only by adenine nucleotides and not by uracil nucleotides (Fischer and Kruegel, 2007). 

Thus, ligand selectivity of orthologues exhibits major species differences indicating a fine-tuning 

process during evolution. Hence, ligand-binding analysis of the P2Y repertoire with a whole 

range of species will be instructive. 

 

2.4   P2Y genes have an early origin in jawless fish 

The presence of P2Y orthologues in jawless and cartilaginous fishes revealed an ancient origin 

of this family of receptors. Sea lamprey P2Y genes usually form very basal branches (Fig. 2) 

inferring that the ancestral genes for these families existed before the segregation in jawless 

and jawed fish, about 560 million years (Volff, 2005). The phylogenetic analysis displayed that 

sea lamprey receptors did not always have one-to-one orthologue with human and teleost 

species. In some cases, sea lamprey representation is missing in the clade. There are two 

possibility of the absent in the clade, either the ancient sea lamprey gene have been lost during 

the transition  from jawless to jawed fish or inadequacies of the current sea lamprey genome 

database.  
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The clustering of sea lamprey genes, basal to the three subfamilies (p2yl-1, p2yl-2, cysteine 

leukotriene receptor) indicating an independent duplication event occurred in lamprey lineage. 

These genes formed a paralogue group within lamprey lineage.  In few cases, sea lamprey 

gene is the ancestral of duplicate genes of higher species. Sea lamprey gene, P2Yu is ancestral 

gene of p2y5 and p2y9. The duplication of this orthologue occurred after the divergence from 

the jawless vertebrate.  

 

On the other hand, elephant shark P2Y genes are distributed uniformly in the tree. Almost all 

the clades have orthologues shark gene and phylogenetically, the gene is located deep within 

the teleost clade demonstrating that the P2Y families are already established in the common 

ancestor of shark and bony fish.  

 

Surprisingly, lamprey and elephant shark orthologues are not present in free-fatty acid receptor 

clade. The absence of the representatives from basal vertebrate raises the question whether 

free–fatty acid receptors arise only after the divergence of bony vertebrates.  This will remain to 

be elucidated until both the lamprey and elephant shark genomes have been fully sequenced.  

 

The distribution of the P2Y gene in the phylogenetic tree closely reflects the phylogenetic 

relationships of the species. The two pufferfish studied belong to the same family 

(Tetraodontidae) and their orthologues are closer related to each other than to those from any 

other species. The stickleback and medaka orthologues constituted their next neighbors, as 

pufferfish, stickleback and medaka belong to three subdivisions of the same superorder 

Acanthopterygii (orders Tetraodontiformes, Gasterosteiformes, and Beloniformes respectively). 

In all cases the zebrafish orthologues occupy the most distant position (zebrafish being the 

evolutionarily most distant fish in this comparison, as it is an Ostariophysi, unlike the four other 

species which belong to a Neoteleostei.  

 

2.5   Global negative selection in teleost P2Y genes with a few positives sites 

To investigate the evolutionary dynamics of P2Y genes, selective pressure analysis is 

conducted in teleost P2Y genes using both global and local analysis of substitution rates in non-

synonymous (dN) vs. synonymous (dS) sites in 31 of the subfamilies. The remaining seven 

subfamilies are not included in the analysis due to the lack of number of genes. The global 

dN/dS values calculated for each of the groups ranging from 0.08 to 0.42, with an average of 

0.23, indicating that P2Y genes are subjected to purifying selection (Fig. 4a).  The purifying 
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selection is against amino acid changes in protein-coding genes, hence suggesting that these 

genes are slow evolving genes.  

 

Global analysis of negative selection could mask positive selection on a few amino acid sites. 

Site-by-site dN/dS analysis of the P2Y genes revealed a positively selected site in two of the 

analysed groups, p2yl-4 (Fig. 4d) and p2yl-7 (Fig. 4e). These sites are located in TM5 and N-

terminal in p2yl-4 and p2yl-7 respectively. Conserved residues in TMs 3, 6 and 7 are likely to 

contribute to the binding pocket of the P2Y receptor (Erb et al., 1995; Jiang et al., 1997; Moro et 

al., 1998; Hoffman et al., 1999; Moro et al., 1999; Qi et al., 2001; Guo et al., 2002; Harold et al., 

2004). All the positively selected sites are not positioned at the binding pocket indicating that the 

ligand specificity is most likely conserved in teleost lineage. 

  

2.6   High conservation in transmembrane domains 

To analyse the sequence similarity of the P2Y genes, pairwise comparisons are performed. P2Y 

genes showed low identity values (20-50%) indicating that this class of receptors is highly 

divergent in the amino acid composition (Appx. 7.2C). Across the species, homologues of a 

subtype have a higher homology and sequence conservation. For example, in the P2Y1 clade, 

zebrafish shared more than 60% of identity with little skate, elephant shark and human. The 

shared identity is extended to more than 80% in teleost species (data not shown). 

 

P2Y receptor belongs to the rhodopsin family of GPCR. Therefore, distinct amino conservation 

is much more prevalent in transmembrane region than non-transmembrane region. Nine 

sequence motifs of rhodopsin family is conserved in P2Y receptors (‘N’ in TM1, ‘L’ in TM2, ‘C’ in 

EC1 and EC2, ‘R’ in IC2, ‘W’ in TM4 and, ‘N’, ‘P’ and ‘Y’ in TM7). Besides that, P2Y also shared 

a conserved amino acid with VIR and ORA respectively (‘G’ in TM1 and ‘S’ in TM3). In addition, 

a conserved proline (P) in TM5 is also present in ORA, T2R and TAAR suggesting that this is a 

general motif of rhodopsin family (Fig. 5). 

 

Next, consensus motifs are analyzed to search for characteristic sequence motif of this receptor 

family in fish. There are three consensus motifs reported for functional P2Y receptors in 

mammals. First, all known P2Y receptor subtypes possess 4 cysteine residues at their 

extracellular domain (Hoffmann et al., 1999; Ding et al., 2003). Second, a conserved consensus 

sequence of “S(I/V)(L/I)FLTCIS” in TM3 (Kuegelgen and Wetter, 2000). And third, an “Hxx(R/K)” 

motif is present in TM6 (Abbracchio et al., 2006). The internal outgroups, platelet-activating 
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factor and succinate receptors possessed two of the three motifs listed above, emphasizing the 

high structural similarity with P2Y receptors. Both platelet-activating factor and succinate 

receptors possessed “S(I/V)LFLxxIS, HxxQ”  and “SILF(L/M)xxxS, HxxR” motifs at TM3 and 

TM6 (data not shown). The conservation of cycteine residue is also extended to the outgroups. 

Platelet-activating and succinate receptors retained cysteine residue at two and three of the 

extracellular domain respectively. However, conserved cysteine in N-terminal is absent in both 

receptors. Therefore, the cysteine residue in N-terminal may serve as a signature motif in 

identifying members of P2Y family.      

 

The analysed subfamilies that possesed 4 cysteine residues in the extracellular loop are 

grouped into 3 classes: i) P2Y receptor; ii) uncategorized receptors that have known ligand 

(gpr55, gpr65, gpr68, gpr132 and cysteine leukotriene receptors) and iii) orphan receptors that 

have no known ligand (p2yl-2, p2yl-3, p2yl-4, p2yl-6, p2yl-7, p2yl-8, p2yl-11, p2yl-12, p2yl-13 

and p2yl-14). This motif shared by P2Y receptor and orphan receptors may help to identified the 

yet remaining P2Y members.   

 

Although the receptors possessed conserved sequence motifs, most of the motifs are also 

present in platelet-activating and succinate receptors. Both the receptors intertwined P2Y 

receptors in the phylogenetic tree. Hence, it is not surprising for platelet-activating and succinate 

receptors to share a high sequence similarity to P2Y receptor. Despite the high conservation of 

P2Y receptor with other receptors of rhodopsin family, yet three P2Y-specific motifs are located; 

‘C’ in N-terminus, ‘G’ in EC1 and ‘Y’ in TM5. All the 3 P2Y-specific motifs are also present in the 

mammalian P2Ys. 
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Figure 4 | Evolutionary distances and selective pressure on P2Y genes. 

(A) dN/dS ratios of 31 teleost P2Y subfamilies. dN/dS analysis is conducted only in group that 
contain more than 2 genes. dN/d >1 indicates positive selection;  dN/dS < 1, purifying selection; 
and dN/dS =1, neural selection. The group average ratio is indicated by background shading. 
(B-E) A representative site-by-site selective pressure is shown for four P2Y sequences 
(negative selection in light blue, p<0.2 or blue, p<0.1, neutral selection in grey, positive selection 
in orange, p<0.2 and red, p<0.1.  
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Figure 5 | Positively selected amino acid site in teleost p2yl-7. 

Red shaded indicates positively selected amino acid site in N-terminal. Yellow shaded indicates 
conserved cysteine residue site in N-terminal. Conserved cysteine is labeled in blue. 
 
 
  

  

 

Figure 6 | Conserved sequence motifs of P2Y family. 

Conservation of predicted amino acid sequence for the fish P2Y repertoire is displayed as 
sequence logo. The regions corresponding to the transmembrane (TM) domains and the 
extracellular and intracellular (EC and IC) domains are numbered and indicated. Crosses 
represent residues generally conserved among other class A GPCR families and circles 
represent residues conserved in platlet-activating and succinate receptors. Triangles represent 
residues conserved between P2Y and V1R. Squares represent aresidues conserved between 
P2Y and ORA. Filled squares represent residues conserved between P2Y, ORA, T2R and 
TAARs. Asterisks represent conserved residues found only in P2Y.    
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2.7   Genomic distribution of zebrafish P2Y genes 

In zebrafish genomes, P2Y genes are distributed broadly, residing on 20 chromosomes. The 

genes are distributed both as singleton and cluster (Fig. 7). There is one major cluster 

containing 10 genes on chromosome 15. Several small clusters comprise of two to four genes 

are also found on chromosome 1, 2, 5, 7, 9, 14, 17, 18 and 19. The rest of the genes existed as 

singletons residing in other chromosomes except on chromosome 8, 11, 12, 22 and 25.  Only 5 

of the identified P2Y genes remain unassigned to any chromosomes.  

 

The genomic location of ten listed genes in the major cluster in chromosome 15 concurred with 

the phylogenetic analysis inferring the presence of expansion event. Furthermore, the genes in 

the cluster are arranged in the tandem as in phylogenetic analysis postulating the existence of 

correlation between genomic linkage and phylogenetic relationship. 

 

The ten genes are arranged in the order of: P2Y12, P2Y13, p2yl-13b, p2yl-13a, P2Y14, p2yl-13e, 

p2yl-13f, p2yl-13d, p2yl-13c and p2yl-12 (Fig. 8a). The cluster composed of P2Y12, P2Y13, P2Y14 

and p2yl-12 is evolutionary well-preserved. This is supported by shared genomic location in 

elephant shark (cluster 405), stickleback (chromosome I), medaka (chromosome 13), tetraodon 

(chromosome 16) and human (3q24-3q25) (Schoeneberg et al., 2007; Venkatesh et al., 2007). 

The addition of p2yl-13 subfamily into gene cluster of zebrafish demonstrated the gene 

expansion via gene duplication. 

 

Two intrachromosomal duplication events have taken place. The first duplication event 

generated p2yl-13a and p2yl-13b from p2yl-12. Then, it was followed by second duplication 

event, producing p2yl-13c, p2yl-13d, p2yl-13e and p2yl-13f on chromosome 15 in zebrafish. The 

four genes may be originated from p2yl-13a and p2yl-13b based on the phylogenetic 

relationship. Besides zebrafish, the second duplication occurred only in stickleback although the 

duplicated gene is translocated to a different chromosome.  

 

Second duplication event is not presence in other fish species suggesting either the duplication 

event is limited to zebrafish and stickleback only or the cluster of genes is lost in other species 

during evolution process.  
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Figure 7 | Chormosomal distribution of zebrafish P2Y genes. 

The P2Y genes are distributed in both as singletons and small clusters in the zebrafish genome. 
The genes are distributed in 20 chromosomes and only 5 genes remained unassigned in any of 
the chromosome.  
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2.8   Syntenic relationships of teleost P2Y 

The comparison of genomic location of P2Y genes in zebrafish, stickleback, medaka and 

tetraodon revealed a remarkable degree of synteny across the fish species. Two homologous 

segments are identified. The identified segments possessed synteny distances similar to 

phylogenetic relationship.  

 

The first paralogon has a large number of genes consist of both P2Y receptors (P2Y1, P2Y2, 

p2y5, P2Y6, P2Y12, P2Y13 and P2Y14) and orphan receptors (p2yl-11 p2yl-12, p2yl-13, Gpr4, 

Gpr92, Gpr132). The segment displayed disrupted synteny as the genes are scattered across 3 

chromosomes in zebrafish and tetraodon, 2 chromosomes in medaka and 1 chromosome in 

stickleback (Fig. 8a). The second paralogon displayed conserved synteny. The genes (P2Y4, 

p2y9, p2y10, p2yl-8 and cycteine leukotriene receptor 1) included in the second homologous 

segment are distributed in a single chromosome in all analysed species (Fig. 8b). Stickleback 

and tetraodon shared a high conserved linkage. Both species shared the conservation of both in 

synteny and order of homologous genes.  

 

In both segments, members of syntenic groups of medaka are more susceptible to inverted 

order. The inverted order of syntenic groups implying a higher frequency of intrachromosomal 

rearrangements event in medaka genome..  
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Figure 8 | Conserved synteny in fish species and human. 

Conservation of synteny of genes in zebrafish chromosomes compared to Gasterosteus 
aculeatus (GA), Tetraodon nigroviridis  (TN) and Oryzias latipes (OL). Genes are ordered 
according to their genomic positions. Grey bar indicates non-conserved gene. Synteny of genes 
residing in chromosome 9, 15 and 16 (A) and, chromosome 14 (B) in zebrafish compared to 3 
other fish species. Grey bar represents other genes. 
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2.9   Genomic structure of P2Y genes 

Currently, human P2Y receptors are the well-studied in comparison to other available species. 

Most of the human functional P2Y receptors do not contain introns. Only one of the receptor, 

P2Y11, has an intron after the third amino acid. In contrast, the analysed genes of seven fish 

species and a frog species possessed a mixture of gene structure, varied from intronless to 

multiexonic structure (Fig. 9). Most of the analysed genes (75%) are intronless. The remaining 

25% of the analysed genes possessed intron, with the number of introns varied from one to five 

(Table 3). At present, all the analysed genes in lamprey and elephant shark are intronless. 

However, the intronless structure is not well-preserved in bony fish. This is displayed by the 

presence of multiexonic structure suggesting possibly an intron-gain event occur in the bony fish 

evolution. 

In zebrafish, 81% of the genes are intronless, 13% acquired an intron, 4% acquired 2 introns 

and only 2% acquired 3 introns in their gene structure. On the contrary, the percentage of 

intronless gene in neoteleost species is much reduced ranging from 56% to 63%. The 

proportion of genes that possessed multiexonic structure is increased. Additionally, the number 

of insertion of introns extended to 5 introns in stickleback, tetaodon and fugu (ranging between 

2 to 3%).    

 

The multiexonic genes are scattered across the phylogenetic tree suggesting that the intron-

gained event is a random process. Frequently, if a member of the clade acquired an intron, 

most of the remaining members would acquire introns as well (e.g P2Y13). Generally, neoteleost 

species would acquire an additional insertion of intron in comparison to zebrafish, an 

ostariophysan. Occasionally, only one member of the clade acquired intron whereas other 

members of the clade remained intronless as in the case p2y5b in medaka, in which an intron-

gain event took place. A very rare and interesting case is in p2y10 clade. Every member of the 

clade acquired a different number of intron. Zebrafish acquired an intron in the gene structure 

whereas stickleback, medaka and fugu acquired two, three and four introns respectively. 

Tetraodon p2y10 sequence is incomplete and currently, remained intronless. This variance 

displayed the dynamicity of intron-gain event in different genes and lineages. The intronless 

structure of P2Y gene in lamprey is well-preserved in the mammalians, given that almost all 

tetrapod P2Y genes appear to be monoexonic. In contrast, teleost fishes appear to be 

susceptible of insertion of intron. The differences in gene structure preservation between 

mammals and teleost which share a common ancestor suggests that a higher propensity of 

intron insertion in Actinopterygii lineage but less in Sarcopterygii (Fig. 10).   
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Table 3: Gene structure distribution in 8 vertebrate species 
 
Organism Intronless 1-intron 2-intron 3-intron 4-intron 5-intron  Total 

Danio rerio 55 (81) 9 (13) 3 (4) 1 (2) - - 68 

Gasterosteus aculeatus 27 (56) 9 (19) 8 (17) 3 (6) - 1 (2) 48 

Oryzias latipes 24 (60) 9 (22) 4 (10) 3 (8) - - 40 

Tetraodon nigroviridis 22 (63) 7 (20) 4 (11) 1 (3) - 1 (3) 35 

Takifugu rubripes 22 (61) 7 (19) 3 (8) 2 (6) 1 (3) 1 (3) 36 

Callorhinchus milii 24 (100) - - - - - 24 

Petromyzon marinus 24 (100) - - - - - 24 

Xenopus tropicalis 38 (97) 1 (3) - - - - 39 

Total 236 (75) 42 (13) 22 (7) 10 (3) 1 (1) 3 (1) 314 
 
The genes in each species (row) are grouped according to their structure, varied from intronless to 
multiexonic (column). The number indication of total of genes in each species that possessed the 
specified structure and the percentage is listed in parenthesis.  
 

 

 

 

Figure 9 | Gene structure distribution in 7 fish species and human. 

The P2Y genes have a mixture of intronless and multiexonic structure in fish species and 
human. The distribution of the gene structure is depicted in stacked bar graph.  X-axis denotes 
the number of genes and Y-axis denotes analysed fish species. Light green represents 
intronless gene and colour gradient increases with the number of introns. 
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Figure 10| Estimated minimal evolutionary age and intron dynamics of P2Y subfamilies. 

(A) Open squares represent gene gain events in each lineage and black squares represent 
gene loss events. The name of the subfamilies is indicated inside each square. (B) Open 
squares represent intron gain events whereas black squares represent intron loss events. The 
major phylogenetic transitions are indicated: Bo/NoBo, bony fish/cartilaginous fish; Ac/Sa, 
actinopterygian/sarcopterygian split; Os/Neo, ostariophysii/neoteleostei segregation. The 
number indicates P2Y subtypes; l , p2y-like; G, G-protein-coupled receptor; CysLtr, cysteine 
leukotriene receptor.  
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2.10   P2Y genes are broadly expressed in adult tissue 

Nine P2Y candidates are randomly selected to be characterised. These genes are P2Y1, P2Y4, 

p2y5, p2y10, FFAR2c, Gpr35b, Gpr35c, p2yl-6 and p2yl-10a. To analyse the expression pattern 

of the selected candidates, RT-PCR is performed on twelve adult tissues (barbel and lips, 

olfactory epithelium, eye, brain, gills, heart, liver, stomach, kidney, testis, spleen and skin). All 

the analysed candidates’ transcript is detected in gills. All but one, FFAR2c, of the candidates is 

expressed in olfactory epithelium, brain, spleen and testis.  Only Gpr35a and p2yl-10a exhibited 

transcripts in the skin tissue (Fig. 11). FFAR2c only have transcript in gills but not in other 

analysed tissues. The specific expression of FFAR2c suggests that FFAR2c may play a role in 

gills.  The remaining of the candidates displayed a broader expression, normally in several 

tissues, suggesting they may involve in general role in maintenance and development. Although 

Gpr35a and Gpr35c are clustered together in the phylogenetic analysis, the two genes 

displayed a different expression pattern. Gpr35a transcript is found in all the analysed tissue. In 

contrast, Gpr35c transcript is expressed only in olfactory epithelium, brain, gills, stomach, 

kidney, testis and spleen. The differences in the expression pattern suggest that the genes 

might undergo partitioning of functions. 

 

   

Figure 11 | Broad expression of P2Y transcripts in different types of adult tissues. 
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RT-PCR indicating transcription of P2Y genes are found in several adult tissues. PCR 
amplifications were performed by using gene specific primers that amplify between 300 to 
400bps. Beta-actin was used as a quality control for the cDNA generated. Genomic-
contaminated cDNA would generate 800bps band whereas genomic-free cDNA generates 
500bps band. Genomic DNA (Ge) in the last lane is a positive control for the PCR. Adult tissues 
used are as follows: BL, barbels and lips; OE, olfactory epithelium; E, eye; B, brain; G, gills; H, 
heart; L, liver; St, stomach; K, kidney; T, testis; Sp, spleen; Sk, skin. 

 

 

2.11   Expression of P2Y in larvae 

Whole mount in situ hybridisation is carried out on 5 days post fertilization (dpf) zebrafish larvae. 

At 5dpf, the larvae have completed organogenesis and major behavioural patterns are 

developed. All the analysed genes were expressed in the brain and pharyngeal arches which 

aftermath, give rise to gills. This expression data corresponds to PCR results. Expression 

pattern of P2Y4 and p2yl-10a are not included as the sense probe showed similar labeling as 

the antisense probe albeit at lesser intensity. Sectioning is performed on larvae to analyse the 

expression pattern in details in particularly in regions which are not accessible by light 

microscope of whole-mount larval.  

 

P2Y1 

P2Y1 transcripts are detected in the central nervous system, otic vesicle and pharyngeal arches. 

Sectioning of the 5dpf larval revealed the expression in the brain and spinal cord that formed the 

component of central nervous system. In the brain, the expression is restricted to the ventricular 

regions in telencephalon, diencephalon and rhombencephalon, and midbrain hindbrain 

boundary (Fig. 12A-B, D-F, H-M). Similarly, P2Y1 transcripts are also detected in the ventricular 

zone of spinal cord (Fig. 12G, K-M) that is extended from rhombencephalon, but not in floor 

plate. Besides that, P2Y1 transcripts are also detected in pharyngeal arches. The expression is 

observed only at the tips of the branchial arches (Fig. 12N). A weaker expression is observed in 

Merkel’s cartilage (Fig. 12C-D). In addition, P2Y1 transcripts are also detected in pectoral fin 

(Fig. 12N) and otic vesicle (Fig. 12I-J). 
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Figure 12 | Expression of P2Y1 in central nervous system, otic vesicle and pharyngeal 
branches. 
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Analysis of P2Y1  expression in  5dpf larval by whole mount in situ hybridization. Panel (A-C), 
whole mount, (D, K-O) coronal and (E-J) transverse sections after hybridization. A) Lateral view 
shows expression in brain including midbrain hindbrain boundary, otic vesicle and branchial 
arches; (B) Dorsal view shows expression in the cerebellum; (C) Ventral view shows expression 
in pharyngeal branches and pectoral fin; Expression is detected in the telencephalon (E, K-M), 
diencephalon (E, K-L) and rhombencephalon ( F-M) in the brain; The expression is restricted to 
the ventricular region of the spinal cord  (G, L-M); The edges of branchial (*) and hyoid arches 
are labeled as well as pectoral fin (N); (O) Sense riboprobe. Abbreviations: BA: branchial 
arches; CCe; cerebellum; CMZ, ciliary marginal zone; DC: diencephalon; E: eye; eth: ethmoid 
plate; FP, floor plate; Ha, habenula; Hy: ceratohyal; Ki, kidney; ; MA: mandibular arches; MC, 
Merkel’s cartilage; MHB: midbrain hindbrain boundary; MO: medulla oblongata; OG, octaval 
ganglion; OV: otic vesicle; P: pallium; pq: palatoquadrate; PF: pectoral fin; SB, swimming 
bladder; SC: spinal cord; TC: telencephalon; TeO: optic tectum, TG, trigeminal ganglion; Th, 
thalamus;  

 

 

 p2y5 

p2y5 is broadly expressed in brain. It shared a similar expression of P2Y1 in ventricular regions 

in telencephalon, diencephalon, rhombencephalon and spinal cord (Fig. 13B, D, L). In additions, 

p2y5 transcripts are also strongly detected in habenula (Fig. 13I) and midbrain hindbrain 

boundary (Fig. 13A, B, E, J). A weaker expression is also detected in pallium (Fig. 13F and H) 

and craniofacial mesenchyme (Fig. 13H) adjacent to developing cartilage tissue. Expression in 

peripheral nervous system is detected in trigeminal ganglion (Fig. 13J) and octaval ganglion 

(Fig. 13K). The former is involved in mechanosensory system and the latter in auditory system. 

In pharyngeal arches, p2y5 expression is detected in branchial arches (Fig. 13G), 

palatoquadrate (Fig. 13H) and Merkel’s cartilage (Fig. 13C).  

 

p2y10 

The expression of p2y10 is limited to dorsal pallium (Fig. 14E), midbrain hindbrain boundary (Fig. 

14A), medulla oblongata (Fig. 14F) and vagal ganglion (Fig. 14A and F) in the brain. Pharyngeal 

region and kidney (Fig. 14G) is strongly label by the transcripts.  Additionally, p2y10 transcripts 

are also detected in craniofacial mesenchyme adjacent to ethmoid plate and in ciliary marginal 

zone of the eye (Fig. 14E).   

 

p2yl-6 

In the brain, p2yl-6 transcripts are detected in telencephalon (Fig. 15F), thalamus (Fig. 15L), 

proliferating ventricular regions in mesencephalon and rhombencephalon (Fig. 15F), midbrain 

hindbrain boundary (Fig. 15B, F) and medulla oblongata (Fig. 15M-O).  Strong expression of 
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p2yl-6 transcripts are also observed in pallium (Fig. 15F) and vagal ganglion (Fig. 15A, N, O). 

Besides brain region, p2yl-6 is also expressed strongly in pharyngeal regions of palatoquadrate 

and ethmoid plate, craniofacial mesenchyme region (Fig. 15K), and tips of pectoral fin (Fig. 15E 

and O). A weaker expression is detected in tips of branchial arches, Merkel’s cartilage (Fig. 

15D) and otic vesicle (Fig. 15J). 

 

Gpr35a 

Gpr35a is expressed in the brain and pharyngeal regions. In the brain, the expression is 

distributed from anterior region of the subpallium to medulla oblongata in rhombencephalon 

(Fig. 16D-G, I). The expression in pharyngeal regions is broadly distributed in branchial (Fig. 

16C and J) and mandibular arches with strongest expression observed in palatoquadrate (Fig. 

16D). In addition, Gpr35a transcripts are labeled in kidney (Fig. 16H), vagal ganglion (Fig. 16G) 

and ciliary marginal zone in the eye (Fig. 16D). 

  

Gpr35c 

Gpr35c shared a similar expression as Gpr35b in 5dpf larval. In the brain, the expression of 

Gpr35c is detected from anterior region of the pallium (Fig. 17H) through medulla oblongata in 

rhombencephalon (Fig. 17F). Likewise in pharyngeal region, the transcripts are detected in 

brachial arches with the strongest expression observed in mandibular and hyoid arches (Fig. 

17C, E). A cluster of cells are labeled in the region of craniofacial mesenchyme adjacent to 

trabeculae (Fig. 17D, H). Similarly to Gpr35a, the kidney is also strongly labeled (Fig. 17G). 

Besides that, expression is also detected in vagal ganglion (Fig. 17A and F). 

 

FFAR2c 

FFAR2c are broadly expressed in the brain (Appx. 7.2D). The expression is distributing from 

telencephalon to rhombencephalon (A, D-G). FFAR2c is strongly labeled in Merkel’s cartilage 

and to a lesser extent in branchial arches (C). Expression is also detected in otic vesicle (F). 
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Figure 13 | Expression of p2y5 in central and peripheral nervous system, auditory and 
mechanosensory system. 
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Analysis of p2y5  expression in  5dpf larval by whole mount in situ hybridization. Panel (A-C), 
whole mount, (D-G, M) coronal and (H-L) transverse sections after hybridization. A) Lateral view 
shows expression in brain including midbrain hindbrain boundary, trigeminal ganglion and 
branchial arches; (B) Dorsal view shows expression in ventricular region of telencephalon, 
diencephalon and rhombencephalon, trigeminal ganglion and midbrain hindbrain boundary; (C) 
Ventral view shows expression in Meckel’s cartilage, branchial arches and pectoral fin; In the 
central nervous system, expression is detected in the ventricular region of telencephalon (D, F, 
H), diencephalon (D, F) and rhombencephalon (E, K) in the brain and spinal cord (L); Trigeminal 
ganglion which is a component of menchanosensory system is labeled (J); In auditory system, 
expression is detected in octaval ganglion and otic vesicle (F, K). Expression is also detected in 
branchial arches (G), pectoral fin (F and G), craniofacial mesenchyme  and ciliary marginal zone 
of the eye (H-I); (O) Sense riboprobe. 

 

 

Figure 14 | Expression of p2y10 in brain and ciliary marginal zone of the eye. 

Analysis of p2y10 expression in  5dpf larval by whole mount in situ hybridization. Panel (A-C), 
whole mount, (D) coronal and (E-G) transverse sections after hybridization. A) Lateral view 
shows expression in brain including midbrain hindbrain boundary, vagal ganglion and branchial 
arches; (B) Dorsal view shows expression in midbrain hindbrain boundary; (C) Ventral view 
shows expression in vagal ganglion and branchial arches; In the brain, the expression is 
detected in the dorsal of pallium, midbrain hindbrain boundary (E), dorsal of medulla oblongata 
and vagal ganglion (F);  Expression is also detected in pharynx (D), craniofacial mesenchyme, 
ciliary marginal zone of the eye (E) and kidney (G). 
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Figure 15 | Expression of p2yl-6 in brain, pharyngeal branches, otic vesicle and vagal 
ganglion.  
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Analysis of p2yl-6 expression in 5dpf larval by whole mount in situ hybridization. Panel (A-E), 
whole mount, (F-J) coronal and (K-O) transverse sections after hybridization. A) Lateral view 
shows expression midbrain hindbrain boundary and vagal ganglion; (B) Dorsal view shows 
expression in ventricular region of telencephalon, diencephalon, mesencephalon and 
rhombencephalon, and midbrain hindbrain boundary; (C-D) Ventral view shows expression in 
mandibular arches, ceratohyal, branchial arches and Meckel’s cartilage; (E) Dorsal lateral view 
shows pectoral fin is labeled; In the brain, expression is detected in the ventricular region of 
telencephalon (B, F, K), diencephalon (B, F, L), mesencephalon (L-M) and rhombencephalon 
(F, M); Expression is detected in pharyngeal branches that includes mandibular aches (C, H), 
palatoquadrate (K), ceratohyal  (C) and branchial arhes (G-I); Several cells in optic vesicle (J) 
and craniofacial mesenchyme (K) are also labeled; Expression is also detected in vagal 
ganglion (A, N, O); (P) Sense riboprobe. 
 
 



50 

 

 
 
Figure 16 | Expression of Gpr35a in brain, vagal ganglion, pharyngeal arches, kidney and 
ciliary marginal zone in the eye. 

Analysis of Gpr35a  expression in 5dpf larval by whole mount in situ hybridization. Panel (A-C), 
whole mount, (D-H) transverse and (I-K) coronal sections after hybridization. A) Lateral view 
shows expression in the brain and optic vesicle; (B) Dorsal view shows expression in Merkel’s 
cartilage, ciliary marginal zone in the eye and brain; (C) Ventral view shows expression in 
Merkel’s artilage, ceratohyal and branchial arches. In the brain, expression is distributed from 
anterior region of subpallium to dorsal of medulla oblongata (D-G, I); Expression is detected in 
palatoquadrate and ciliary marginal zone of the eye (D), otic vesicle (I), vagal ganglion (G) and 
kidney (H); (K) Sense riboprobe. 
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Figure 17 | Expression of Gpr35c in brain, vagal ganglion, pharyngeal arches and kidney.  

Analysis of Gpr35c expression in 5dpf larval by whole mount in situ hybridization. Panel (A-C), 
whole mount, (D-E, H) coronal and (F-G) transverse sections after hybridization. A) Lateral view 
shows expression in brain and vagal ganglion; (B) Dorsal view shows expression in 
mesencephalon midbrain hindbrain boundary, rhombencephalon and Meckel’s cartilage; (C) 
Ventral view shows expression in mandibular arches, ceratohyal and  branchial arches; In the 
brain, the expression is distributed from anterior of pallium to medulla oblongata (D, H); 
Expression is also strongly labeled in kidney (G). 
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2.12   Broad expression of P2Y genes in adult olfactory epithelium 

Although P2Y genes are not detected in the olfactory organ in 5dpf larval, the expression is 

detected in adult olfactory epithelium. The expressions are detected both in sensory and non-

sensory regions (Fig. 19). This is in contrast with the expression of established olfactory 

receptor genes that are restricted to the sensory regions. In the sensory regions, P2Y genes are 

expressed throughout the lamellae, i.e. also in the regions where the known three types of 

olfactory sensory neurons are positioned. Hence, there is a possibility that P2Y genes are 

expressed in the olfactory sensory neurons or sustentacular cells. The non-sensory regions 

contain goblet cells, ciliated non-sensory cells with microridges which involve in regulation of 

water flow into olfactory epithelium. In addition, goblet cells secrete mucus upon interaction with 

stimuli. The secretion of mucus might influence odor detection due to the changes in mucus 

composition (Hansen and Zeiske, 1998; Chakrabarti and Choudhury, 2007).  

 

 

 

 

 

 

 

 

 

 

 



53 

 

 

Figure 18 | Expression of P2Y genes in zebrafish olfactory epithelium. 

(A) Schematic representation of the localization of the olfactory epithelium followed by a drawing 
of a horizontal section of olfactory epithelium (lamellae are cut perpendicular to their flat 
surface) and finally an enlargement of two lamellae. The central blue-coloured are in the 
lamellae indicates the location of sensory neuroepithelium; gray areas and thin dotted line, 
basal lamina; black dots and asterisk, lumen (Weth et al., 1996). (B) In situ hybridization with 
p2y5, p2y10, p2yl-6 and p2yl-10a in horizontal sections of olfactory epithelium. Panel a, b, d, e, g, 
h, j and k are hybridizations with antisense probes whereas panel c, f and I are with sense 
probes. Panel b, e, h and k show higher magnification of the lamellae. The black asterisks 
indicate the lumen and dotted line indicates basal lamina. Red arrowheads point to the labeled 
cells. 
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3.   DISCUSSION 

 

3.1   P2Y receptors originate early in vertebrate lineage  

Stimulation of ATP increased the rate of output of contractile vacuoles in Amoeba (Pothier et al., 

1984, 1987; Couillard, 1986) and Paramecium (Organ et al., 1968) suggesting the emergence 

of purinergic signaling early in evolution. Electrophysiology methods had been used to 

demonstrate the presence of ATP receptors in invertebrates (Burnstock, 1996) but no receptors 

has been cloned until recently. The cloning of a P2X receptor in both Dictyostelium discoideum 

and Schistosoma mansoni (Agboh et al., 2004; Fountain et al., 2007) for the first time identified 

receptors involve in mediating purinergic signaling in invertebrates. However, P2Y genes were 

not detected in invertebrate species (Fredriksson and Schioth, 2005). The absence of P2Y 

genes in invertebrates was confirmed by our database mining. Therefore, it is reasonable to 

suggest that P2Y receptors arise in the vertebrate lineage and in fact after the split between 

chordates and vertebrates.  

 

3.2   Low resolution of basal taxa in phylogenetic analysis 

In all the methods used in P2Y tree construction the early sub-branching possessed a low 

bootstrap value, which does not allow to pinpoint the early evolution with any degree of 

certainty. Moreover, these low bootstrap values suggest that these genes have diverged in an 

extremely short period (Fredriksson et al., 2003). P2Y genes emerged presumably around 550 

MYA based on the existence of lamprey homologues. Functional P2Y are phylogenetically 

divided into two groups; group I encompasses P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11 whereas 

group II members includes P2Y12, P2Y13 and P2Y14. In zebrafish, amino acid identity within 

members of the group varied between 27-46%. The orthologues generally have a higher identity 

in pairwise comparisons (>60%). Furthermore, the amino acid identity between two groups 

varied between 20-29%. The low percentage of shared identical amino acid implies that P2Y 

genes are very divergent.  

 

In the phylogenetic tree analysis, P2Y genes coalesced with platelet-activating, succinate and 

many orphan receptors. Phylogenetic distances between platelet activating factor receptors and 

P2Y receptors (P2Y12-P2Y14) are very small. In addition, both groups of receptors are involved 

in haematopoiesis (von Kugelgen, 2006) suggesting that the outgoup of platelet activating factor 

receptors shared a common ancestor with P2Y receptors and underwent subfunctionalization 

during the process of evolution. 
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3.3   Evolutionary dynamics of the P2Y family in fish 

The basal lineages (lamprey and shark) have fewer genes than the higher species reflecting the 

continuous expansion of the P2Y family. However, the coarse composition of the family was 

already established in the common ancestor of shark and bony fish, i.e. more than 530 million 

years (MYA) ago, since most of the teleost subclades contain an orthologous shark gene. More 

recent gene expansions have occurred in both the teleost and the tetrapod lineage, with a 

preponderance in the teleost lineage. As a result, Sarcopterygii lineage tends to have only half 

the number of genes compared with Actinopterygii lineage. Mostly, these gene expansions 

appear to have been local gene duplications. Teleost species have a higher number of genes 

than tetrapods due to whole genome duplication that occurred 302-404 MYA (Semon and 

Wolfe, 2007), at the base of the teleost fish lineage. However, this whole genome duplication 

does not appear to explain the increased number of teleost fish P2Y family members, because it 

should not lead to local duplication events. The smaller size of the P2Y family in pufferfish may 

be related to the genome compaction observed in this genus. 

 

Gene duplication affects the functional relationship between duplicated gene copies. Duplicated 

genes can either i) lose the gene function by pseudogene formation, ii) diversify gene function 

by neofunctionalization or iii) partition the ancestral gene function by subfunctionalization (Lynch 

and Force, 2000; Lynch et al., 2001). My observation is that mostly the duplicated genes are 

conserved between the distantly related zebrafish and pufferfish, which argues against 

possibility i) and supports the interpretation that the duplicated genes are likely to be functional. 

Paralogues Gpr35a and Gpr35c shared a similar expression pattern which is consistent with the 

subfunctionalization model of gene duplication in teleost (Lister et al., 2001; McClintock et al., 

2002; Yu et al., 2003). However, a decisive answer to this question will have to await functional 

studies of these genes.   

 

Species-specific duplication occurred in zebrafish and generated an additional six paralogues 

(p2yl-13) in the major cluster in chromosome 15. These genes were created through local 

tandem duplication from adjacent genes. This tandem duplication is rather recent based on the 

close similarity to the adjacent genes in the chromosome. Other species did not undergo the 

equal rate of expansion in this cluster. The occurrence of gene expansion in this particular 

cluster might be a regulatory mechanism to enhance the fitness of the genes. In clustered 
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genes, genes may confer selective benefits via their ability to be co-regulated and co-amplified 

(Schoneberg et al., 2007). 

 

P2Y orthologues are found in tetrapods, bony and cartilaginous fishes. However, not all 

members appear to be present in all vertebrate classes. Orthologues of p2yl-3 and p2yl-4 are 

not found in the human genome. These genes appear to have been lost in the mammalian 

lineage. Likewise, orthologues of p2y15, p2yl-6, Gpr65 and CysLtr2 are not found in the frog 

genome. The selective loss of some of the receptors in some of the species implies that these 

receptors are less important in the corresponding species. It may be compensated by some 

other receptors or mechanisms to ensure that the biological system is not affected. Gpr87 is 

found in elephant shark, frog and human, but is absent in the teleost lineage. Since an 

orthologue of Gpr87 is found in elephant shark, the loss of Gpr87 must have taken place after 

the split of Actinopterygii and Sarcopterygii lineage, affecting only the Actinopterygii lineage. 

The gene loss might occur as a mechanism to eradicate mutated or non-functional genes from 

the genome.  

 

P2Y genes in the teleost lineage generally are slow-evolving, as evidenced by a strong negative 

selection. Negative selection removes disadvantageous mutations that are deleterious. 

Interestingly, subfamilies p2yl-3, p2yl-13, p2y15 and Gpr35 display a higher than average dN/dS 

ratio. Most of these subfamilies comprise duplicated genes. Gene duplication often precedes 

elevated evolutionary rates due to positive selection or relaxed selective constraints (Ohta, 

1993). The increased in non-synonymous substitution rates in duplicate genes might be due to 

the fact that duplicates genes have to undergo functional specialization in order to be 

maintained in the genome. Hence, groups with duplicates may be under relaxed purifying 

selection.  

 

A positively selected site in each of the p2yl-4 and p2yl-7 subfamilies is not located in the ligand 

binding domain of the receptor. This may indicate that the ligand binding domain remains 

unaffected, however, we cannot exclude the possibility that the positive selected sites could 

affect the conformational changes of the receptor to its active stage. All P2Y receptors possess 

four cysteine residues in the extracellular loops and N-teminal region to form two disulfide 

bridges. Mutation studies on cysteine residue in EC1 and EC2 in human P2Y1 established that 

the disulfide bridge between cysteine residues in EC1 and EC2 is critical for proper trafficking of 

the human P2Y1 receptor to the cell surface. Mutation studies on the second disulfide bridge 



57 

 

between cysteine residues of N-terminal domain and EL3 displayed impaired response of the 

mutated receptors. This second disulfide bridge covalently constrains the helical bundle in a 

circular arrangement (Hoffman et al., 1999).  Members of p2yl-7a subfamily maintained the 

conserved cysteine in N-terminal domain. In contrast, in the p2yl-7b Subfamily the conserved 

cysteine residue is replaced by leucine, phenylalanine or serine (Fig. 5). The replacement of the 

conserved cysteine in all members of p2yl-7b will disrupt the formation of disulfide bridge 

between N-terminal domain and EL3 and therefore influence the proper functioning of the 

receptor. It is interesting to note that the amino acid position directly prior to the conserved 

cysteine in N-terminal domain in all members of p2yl-7b undergoes non-synonymous 

substitution. The positive selection in this site might be attributed to the compensation of the 

loss of conserved cysteine residue in pyl-7b members.  

 

Twenty-three out of sixty-three genes are singletons whereas the remaining genes appear as 

small clusters in the zebrafish genome. The majority of the clusters comprises just two genes 

and only one case exists, in which 10 genes are positioned in a single cluster in chromosome 

15. The close arrangement of related genes is the evidence of gene development via gene 

duplication (Fredriksson, 2003). The clustering of almost two thirds of the total P2Y genes 

suggests that most P2Y genes arise from duplication event. The clustering of P2Y genes in the 

genome is also perceived in the genome of stickleback, medaka and tetraodon (data not 

shown). 

 

The conserved synteny of P2Y genes (p2yl-12, P2Y14, Gpr87, P2Y13, and P2Y12) in human and 

elephant shark is also extended to the teleost lineage. Comparison of teleost fish genome 

(zebrafish, stickleback, medaka and tetraodon) and human genome in this locus indicates that 

teleost lineage possess additional genes. The genes are most likely incorporated into the locus 

via tandem gene duplications. Teleost genome undergoes a high level of rearrangements as 

reflected by the less-than-perfect synteny observed (Fig. 8a). Syntenic genes are scattered to a 

different numbers of chromosome depending on the fish species implying that the teleost 

genome is dynamic and susceptible to rearrangements.  

 

3.4   Intron gains in the P2Y genes family 

In contrast with mammalian P2Y genes which are mostly composed of monoexonic (>90%) 

structure, a quarter of analysed teleost P2Y genes contain up to five introns. The ancestral 

genomic structure appears to be monoexonic, supported by the presence of intronless 
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orthologues of the analysed genes in both lamprey and shark. The increased frequency of 

accumulated introns in teleost implies that bony fish is susceptible to intron-gain and this event 

is most likely to occur after the split of Sarcopterygii and Actinopterygii lineage. The 

accumulated introns in Actinopterygii lineage but not Chondrichthyes (ancestor of Actinopterygii) 

support the introns-late theory of intron gain in P2Y genes.  

 

The gene structure of  P2Y genes in teleost lineage is not well–conserved during evolution. The 

multiexonic genes are scattered in the phylogenetic tree suggesting the intron-gain event is a 

random process. Some subfamilies are more susceptible to accumulate introns (e.g. P2Y13) 

than others (e.g. P2Y1). Even within a subfamily, not all orthologues acquire introns (e.g. P2Y2) 

and the situation became more complicated with the number of acquired introns varying 

between species (e.g. p2y10).  

 

Further analysis of the exon/intron border of P2Y genes displayed a total of 50 independent 

intron gain events in the teleost lineage. Twenty-two events occurred only in one fish species, 

i.e. late in evolution, after all five teleost species analysed here had separated from each other, 

five events are seen in 2 fish species, twelve events involved in 3 fish species, eight events 

involved in 4 fish species and only 3 events that showed all five fish species acquired introns. 

Zebrafish exhibited the lowest number of intron gains, only eight events. The frequency for the 

other four fish species, all of them Neoteleostei, is at least 2-fold higher than zebrafish. The 

results imply that neoteleost species have a higher tendency to acquire introns than zebrafish 

which is evolutionary more ancient than neoteleost species. It is also further indicates that some 

introns in P2Y genes arose  recently.  

 

It is interesting to note that all the members of p2yl-13 clade accumulated introns in the gene. It 

had been mentioned previously that this cluster has arisen through tandem duplications. The 

intron gain in this cluster might be a consequence of the tandem duplications. Venkatesh et al. 

has shown that tandem duplication of an exon or gene can give rise to novel introns through the 

use of cryptic splice sites (1999). 

 

During the whole vertebrate evolution, only three events of intron loss occurred. In one of the 

cases, intron loss is only observed in one of the gene in the clade. All the teleost members in 

p2y7a clade possess two introns in their gene structure. Stickleback has two homologues in 
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p2y7a clade, Ga_p2y7a1 and Ga_p2y7a2. Ga_p2y7a2 maintained twon-introns structure but 

Ga_p2y7a1 lost one of the intron during the evolution.   

 

Neoteleost (stickleback, medaka, tetraodon and fugu) genome size is between 385-1000Mb 

whereas zebrafish possess a larger genome at 1700Mb. Smaller genomes tend to have fewer 

introns due to the selection of genes that can produce proteins quickly in response to external 

stimuli (Jeffares et al., 2006). However, the findings for the P2Y family are not consistent with 

this notion, for so far unknown reasons.  

 

3.5   Potential roles of P2Y receptors in zebrafish 

Despite the fact that P2Y receptors had been identified more than 20 years ago, most of the 

studies were focused on pharmacological research of mammalian receptors. Only a few studies 

have been carried out to investigate the expression and function of P2Y receptors in embryonic 

development (Meyer et al., 1999 and Cheung et al., 2003). Not much is known about the 

functional role of these receptors in zebrafish although P2Y1 has been shown to express in 

zebrafish thrombocytes (Gregory and Jagadeeswaran, 2002).  

 

P2Y receptors are broadly expressed in many adult tissues and major organs as analysed by 

RT-PCR, suggesting that these genes play many functions in the organism. RT-PCR results 

showed the expression of P2Y receptors in olfactory epithelium of adult zebrafish. Conversely, 

no labeling is detected in olfactory organ in 5 dpf larval zebrafish suggesting that these 

receptors begin to be expressed later in the development. Most of the analysed P2Y receptors 

show redundant expression in brain, pharyngeal branches and otic vesicle in 5 dpf larval. The 

redundancy in expression could imply that these receptors are working in parallel with each 

other. The expression pattern of P2Y genes in central and peripheral nervous system, 

pharyngeal arches, otic vesicle, pectoral fin and kidney is consistent with the hypothesis that 

purinergic signaling regulates proliferation and differentiation processes in larval development. 

 

Expression of P2Y receptors are detected in several proliferative zones in the brain. In the 

forebrain, expression is detected in ventricular zones in telencephalon and diencephalon, and 

habenula. Likewise in the mid- and hindbrain, expression is detected in midbrain hindbrain 

boundary (MHB), ventricular zones in hindbrain extending to spinal cord and ciliary marginal 

zone in the retina. The progenitor cells reside in these zones that generate neuron and glia 

cells. In fish, within the ciliary marginal zone (CMZ) proliferating cells are found throughout life to 
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support the continous growth and enlargement of the retina (Raymond et al., 2006). Neural 

progenitor cells secrete purine nucleotides. Secreted nucleotides activate P2Y receptors to 

mobilize intracellular calcium and suppress the differentiation into neurons and glia cells. The 

addition of antagonists promotes differentiation and inhibits progenitor cell expansion (Lin et al., 

2007). Therefore, P2Y1, p2y5 and p2y10 have the potential to play a role in regulating neural 

progenitor cell expansion and neurogenesis in zebrafish.  

 

Nucleotides are one of the feeding cues in fish. Stimulation of taste buds with taste stimuli will 

induce Type II cells to release ATP, a neurotransmitter. Subsequently, nucleotide receptors, i.e. 

P2X and P2Y receptors are activated to mediate signaling cascade between taste buds and 

afferent taste fibers (Kataoka et al., 2004 and Yang et al., 2008). In fish, mandibular and 

branchial arches develop into jaw and gills respectively. Taste bud primordia are present on the 

lips, mouth, oropharyngeal cavity and gill arches after 4-5 dpf in zebrafish (Hansen et al., 2002). 

The expression of P2Y receptors are detected in branchial arches, pharynx and Merkel’s 

cartilage in which taste bud primordia may develop. Hence, it is conceivable that these P2Y 

receptors may be involved in taste signaling in zebrafish.   

 

P2Y1 and P2Y4 receptors are involved in mediating pain transmission in rat. The receptors are 

expressed in dorsal root, nodose and trigeminal ganglion (Ruan and Burnstock, 2003), 

responsible for sensation in the body, heart, larynx, lungs, alimentary tract and face. On the 

contrary, zebrafish P2Y1 did not have any expression in any of these tissues in 5dpf larval. This 

might be due to the late onset as the expression was observed in adult rats. However, 

transcripts of another P2Y gene, p2y5 are detected very strongly in trigeminal ganglion in 

zebrafish larval, indicating that this receptor plays an early role in mediating facial sensation in 

zebrafish. Possibly, functional roles are fluid within the P2Y family, and orthologues do not 

necessarily fulfil the same roles in different species. 

 

Nucleotide signaling in the inner ear is mediated by the hair cells which function as function as 

mechnosensory transducer that relay signals to brain (Haddon and Lewis, 1996).  P2Y regulate 

the electrical gradient via marginal cells of stria vascularis and vestibular dark cells (Houseley, 

1998). The labeling of epidermal lining of otic vesicle by P2Y receptors suggests that P2Y 

receptors may be involved in auditory transmission in zebrafish. 

 

 



61 

 

4.   Conclusion and outlook 

 

A thorough phylogenetic analysis of the P2Y receptor family resulted in establishing 38 clades 

within the family. In most cases, clades correspond to orthologues of a single gene, sometimes 

they encompass recently duplicated paralogues. Three clades are only present in teleosts, not 

in tetrapods, implying gene gains early in the teleost lineage. Teleost families contain up to 

twofold the gene number than mammalian families, mainly as a consequence of local gene 

duplications in the teleost lineage, especially in zebrafish, which has the largest gene family with 

68 genes. The P2Y receptor repertoire also is shaped to some extent by gene losses, two in 

humans and one in teleosts. Despite this evolutionary dynamic and some rearrangements in the 

genome, a rough synteny of genomic positions is observed for two clusters of P2Y genes from 

cartilaginous to teleost fish to human, presumably reflecting the functional importance of these 

genes. The presence of P2Y homologues in shark and even in lamprey, but not in ascidians 

(Ciona) indicates an origin early in vertebrate evolution. 

 

A remarkable feature of the P2Y family is the accumulation of introns in many genes. Four 

intron gains are observed in the human lineage, but many more gains and a few intron losses 

occur in the teleost lineage. Some intron gain events even occured within the pufferfish genus, 

i.e. less than 30 million years ago. Taken together, P2Y genes show a remarkable evolutionary 

versatility suggesting a correspondingly dynamic evolution of function in this family. 

 

P2Y genes are broadly expressed especially in the proliferative zone of the brain during 

development, supporting the importance of purinergic signaling in the development of central 

nervous system. Most of the genes showed redundancy in expression pattern indicating that 

these receptors are working in parallel with each other. All P2Y genes analysed are ubiquitously 

expressed in the adult olfactory epithelium, both in sensory and non-sensory regions. This 

expression pattern does not suggest an olfactory function for P2Y receptors, but it does not 

exclude it either. Further experiments need to be conducted with cell markers in order to identify 

the population of cells that expresses P2Y genes (olfactory sensory neurons, sustentacular 

cells, globular cells, nonsensory ciliated cells). If an expression in olfactory receptor neurons 

can be shown, nucleotide binding of heterologously expressed receptors should be attempted, 

followed by knockdown of endogenous P2Y receptors and subsequent imaging of the 

nucleotide response. 
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5.   MATERIALS AND METHODS 

 

5.1  Materials 

5.1.1 Fish Strains 

The wild-type strains used were Tü/Tü (MPI, Tübingen) and Ab/Tü  

 

5.1.2 Bacterial Strain 

Escherichia coli DH5α bacterial strain was used in transformation.  

 

5.1.3 Plasticware 

All disposable plasticware such as 15 ml and 50 ml Falcon tubes, 6-, 24-, 48-, 96-well plates, 

petri dishes in various sizes were from BD or Castor, purchased from Fisher Scientific or BD 

biosciences. 96-well plates Polyfiltronics for colony PCR were from Whatman (supplied by 

Fisher Scientific), 0.2 ml PCR tubes and sterile pipette tips were from M_P supplied by Fisher 

Scientific. Non-sterile pipette tips were supplied by LaFontaine (Forst/Bruchsal) and Labomedic 

(Bonn). 

 

5.1.4 Technical Equipments 

Unless stated otherwise, general lab equipment was used for the molecular and cell biology 

techniques, including – balances, centrifuges, electrophoresis equipment, heating blocks and 

plates, hybridization and incubation ovens, micropipettes, PCR and gradient thermocyclers, pH 

meter, shakers, sterile hood, UV transilluminator, vortexes and waterbaths. Fresh frozen 

sections were obtained using the Cryostat CM 1900 (Leica). A Nikon SMZ-U binocular 

microscope equipped with Nikon CoolPix 950 digital camera attached was used to document 

whole mount images. A Zeiss AxioVert microscope with an attached Diagnostic Instruments 

Spot-RT camera was used to document non-fluorescent images. A fluorescent microscope 

Zeiss Axioplan I Imaging equipped with Apotome and HRm AxioCam (Zeiss, Germany) was 

used to document fluorescent images of tissue in sections. 

 

5.1.5 Chemicals 

All chemicals, if not noted otherwise, were purchased from Ambion (Austin, USA), Amersham 

Pharmacia Biotech (Freiburg), Applichem (Darmstadt), JTBaker supplied by Fisher Scientific 

(Schwerte), Biozym (Hessisch Oldendorf), Calbiochem (Darmstadt), Difco (Detroit, USA), Fluka 

(Neu-Ulm), Merck (Darmstadt), Molecular Probes (Leiden, NL), Roth (Karlsruhe), Serva 
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(Heidelberg), Sigma (Deisenhofen), Roche (Mannheim, Germany) or  Invitrogen (Karlsruhe, 

Germany) unless stated otherwise. 

  

5.1.5.1  Chemicals and Solutions 

Solutions were prepared with didistilled water. Solutions were autoclaved for 20 min at 121 bar 

or filter sterilized (0.2-0.45 µm pore diameter). Glassware was autoclaved and oven baked for 2 

h at 180°C. For RNA-work, solutions and water were treated with 0.1% diethylpyrocarbonate 

(DEPC), shaked vigorously and mixed for about 20 min on a magnetic stirrer to bring the DEPC 

into solution. The solutions were then autoclaved to remove any trace of DEPC. Tris buffers 

cannot be treated with DEPC because it reacts with primary amines. DEPC decomposes rapidly 

into CO2 and ethanol in the presence of Tris buffers. Therefore, Tris buffers were prepared by 

using water that has been treated with DEPC first. Most of the standard stock solutions like 

EDTA, Tris, TAE, TBE, TE, PBS, SDS, SSC, NaOAc, and culture media like LB and SOC were 

prepared as described in (Sambrook J 1989). All solutions used are named in the text. 

 

E3 embryo media 5mM NaCl, 0.17mM KCl, 0.33mM CaCl2, 0.33mM MgSO4, 5-

5% Methylene blue 

Hyb+ solution (whole mount) 50% deionized formamide, 5X SSC, 0.1% Tween 20, 0.5mg/ml 

torula yeast RNA, 50µg/ml heparin adjusted to pH6.0 with citric 

acid 

Hyb- solution (whole mount) 50% deionized formamide, 5X SSC 

Blocking solution (whole mount) 2% of heat-inactivated sheep serum  and 2% BSA in PBST 

Hyb solution (section) 50% deionized formamide, 5X SSC, 0.4mg/ml torula yeast 

RNA, 0.1mg/ml baker’s yeast RNA, 5X Denhardt’s solution 

Blocking solution (section) 0.5% blocking reagent (Roche) in MABS 

MABS 150mM NaCl, 50mM maleic acid, pH 7.5 

PBS 137mM NaCl, 2.7mM KCl, 4.3mM Na2HPO4, 1.47mM KH2PO4, 

pH7.4 

PBT 0.1% Tween 20 in PBS 

20X SSC 300mM NaCl, 300mM Sodium citrate, pH 7.0 
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5.1.6 Molecular Biological Reagents 

All used restriction enzymes were purchased from New England Biolabs (NEB). DNA 

polymerases (taq and reverse transcriptase) and DNA ladder were purchased from Bioline. 

DNA ligase and RNA polymerases were purchased from Fermentas and Roche respectively. 

RNaseA and proteinase K were purchased either form Sigma or Roche Biochemicals 

(Mannheim). 

 

5.1.6.1  Molecular Biological Kit  

Name of the kit Company Application 

QIAEX II Gel extraction kit Qiagen Extraction of DNA from gel 

QIAquick PCR purification kit Qiagen Purification of PCR product 

QIAGEN PCR cloning kit Qiagen Cloning of DNA fragment 

RNeasy Mini kit Qiagen Purification of total RNA 

DIG RNA labeling mix Roche Diagnostics Labeling of riboprobe with DIG 

Biotin RNA labeling mix Roche Diagnostics Labeling of riboprobe with biotin 

 

5.1.6.2  Cloning Vector  

Cloning vector Company 

pDrive Qiagen 

 

5.1.6.3  Oligonucleotide Primers 

Oligonucleotide primers were purchased from Operon (Cologne) or Invitrogen Life 

Technologies. The primers were dissolved at a standard concentration of 50mM. Working 

dilutions were prepared at a concentration of 5mM and stored at -20°C. Primers were used for 

sequencing, cloning, and preparation of probes via the addition of T3-RNA polymerase binding 

site. All used primers are listed as below:'_ 

• M13-Fwd, GTAAAACGACGGCCAGT, 

• M13-Rev, AACAGCTATGACCATG, 

• T3, TATTAACCCTCACTAAAGGGAA, 

• Dr actin-Fwd, CCCCATTGAGCACGGTATT, 
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• Dr actin-Rev, AGCGGTTCCCATCTCCTG,  

• Dr p2y1-Fwd, ATGACAGCGGAGTTTAATAACCTG,  

• Dr p2y1-Rev, TCACATGCGGTTTTCACCGT, 

• Dr p2y4-Fwd, ATGCCGATGTCTTCGAAGGA, 

• Dr p2y4-Rev, CTAGAGTCTCGAATCACTGC, 

• Dr p2y5-Fwd, ATGTACAATACAAGTCTTGAGA, 

• Dr p2y5-Rev, TCATACGTGGGACTCATTGTGA 

• Dr p2y5-Fwd, ATGACATCCATGAATACATC, 

• Dr p2y5-Rev, TCATTCCTTATATGAAGATG, 

• Dr p2yl-6-Fwd, TCATACGTGGGACTCATTGTGA, 

• Dr p2yl-6-Rev, TTATTGTTCCAAACTATTCAAA, 

• Dr p2yl-11a-Fwd, ATGAACAACTATTCTCAAAA, 

• Dr p2yl-11a-Rev, TTATTTGATTATTATTGTTG, 

• Dr Gpr35b-Fwd, ATGTCCAACTGCACGCTCAA, 

• Dr Gpr35b-Rev, TTAAGACTTGCCATCAGAAT, 

• Dr Gpr35c-Fwd, ATGAACTCCTCCAACTCATCGA, 

• Dr Gpr35c-Rev, TTAAGTAAAACCAGTATCCACA, 

 

5.1.6.4  Antibodies 

Name Source Working dilution 

Anti-DIG antibody Roche Diagnostics 1:5000 

 

5.1.6.5  Dyes, Substrates, Embedding Media and Counterstains 

Types Component  Source 

Alkaline phospahatse substrates NBT/BCIP Blue/violet 

chromogenic 

precipitate 

Roche 

Diagnostics 

Embedding Medium Vectamount 

 

Chromogenic 

substrates 

Vector 
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5.2 Methods 

5.2.1 Embryo maintenance 

Adult zebrafish (Danio rerio) were kept in group tanks at a day/night rhythm of 14/5 h at a water 

temperature of 28°C and fed daily of dry flake foods and brine shrimp (artemia; 

Brustmann,Oestrich-Winkel). The aquaria were filled with a one-to-one mixture of demineralized 

water and tap water. Zebrafish embryos and larvae were kept in petri dishes at a density of 

about 50 embryos/petri dish in E3 embryo medium at 28°C without feeding for five days. 

Afterwards, they were raised in 2l containers. They were fed with special food for fish larvae 

until the age of two weeks (TetraMin Mini, TETRA), followed by artermia afterwards. 

 

In order to elicit a controlled reproductive activity, selected females and males were put into a 

separate tank. Early in the following morning, fertilized eggs were collected and their age was 

determined using the staging criteria of Kimmel et al. (1995). The embryos were then raised and 

collected at 24h intervals for histological and immunohistochemical processing. Embryos fixed 

at a stage older than 24 h postfertilization (hpf) were raised in 2 mM 1-phenyl-2-thiourea (PTU) 

in embryo medium after the epiboly stage (about 12 h) to prevent pigmentation. The embryonic 

and larval stages used for all investigations reported here ranged between one and 21 days 

postfertilization (dpf). 

 

5.2.2 Data mining/Identification of P2Ys gene 

Mammalian P2Y receptors were extracted from National Center for Biology Information protein 

database. Two strategies were employed in the subsequent data mining analysis in seven fish 

species: (1) the algorithm tBLASTN was applied to compare amino-acid query sequences to the 

DNA databases (http://www.ensembl.org’index.html) with a non-stringent cut-off value of 5-5 and 

(2) the automatically orthologue predicted genes predicted in fish species were retrieved from 

query sequences. 

 

Subsequently, the P2Y-like genes are then verified through inclusion criteria. The inclusion 

criteria used were: (1) positioning within the P2Ys clade in phylogenetic analysis; (2) employing 

BLASTP algorithm in the NCBI non-redundant database in which first hits should resulted 

annotated P2Ys or P2Y-like candidate and had a significant E-value; (3) presence of seven 

transmembrane domains (based on consensus of the prediction results obtained by using 

TMHMM at http://www.cbs.dtu.dk/services/TMHMM and TMpred at 

http://www.ch.embnet.org/software/TMPRED_form.html) and (4) CDS length of between 800 to 

http://www.ensembl.org'index.html/
http://www.cbs.dtu.dk/services/TMHMM
http://www.ch.embnet.org/software/TMPRED_form.html
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1200bps. Duplicate genes were removed and resulting genes were subjected to the further 

analyses described below. The automatically annotated orthologues of fish P2Y genes in 

Xenopus tropicalis and mammalians were also retrieved and included in subsequent 

phylogenetic analysis.  

 

All contigs containing P2Y receptors BLAST hits were manually collected. ORF finder 

(www.ncbi.nlm.nih.gov/projects/gorf/) and GeneWise (http://www.ebi.ac.uk/Wise2/index.html) 

programs were employed to retrieve the full-length of the sequence. 

 

5.2.3 Phylogenetic analysis 

To infer the relationship of the sequences, phylogenetic analysis of distance-based, maximum 

parsimony and maximum likelihood analyses were performed using Neighbour-Joining (NJ), 

Protpars (MP) and Proml (ML) programs respectively. Olfactory receptors are used as 

outgroups to root the tree. Bootstrap analysis was carried out to measure the robustness of 

branching patterns of the tree.  

 

5.2.3.1  Sequence alignment 

The multiple protein sequences were aligned by using E-NS-I strategy with the default 

parameters in MAFFT version 6 (http://align.bmr.kyushu-u.ac.jp/mafft/online/server/). The 

obtained alignment was then manually refined in MEGA 4, without removing the transmembrane 

regions. Due to the lack of sequence similarity, only short segments of the amino-terminal 

domain and carboxyl-terminal domain were aligned. 

 

5.2.3.2  Neighbour-Joining method 

Neighbour-Joining method was performed using ClustalX with bootstrapping 500 replicates.  

 

5.2.3.3  Maximum parsimony method 

The 387 aligments used were bootstrapped 50 repetitions using SEQBOOT from PHYLIP 3.67 

package. The bootstrapped files were used for calculating maximum parsimony trees with 

Protpars from PHYLIP 3.67 package. The trees were unrooted and calculated using ordinary 

parsimony. Consensus trees were obtained using CONSENSE program of the PHYLIP 

package. 

 

 

http://www.ncbi.nlm.nih.gov/projects/gorf/
http://www.ebi.ac.uk/Wise2/index.html
http://align.bmr.kyushu-u.ac.jp/mafft/online/server/
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5.2.3.4  Maximum likelihood method 

The 387 aligments used were bootstrapped 50 repetitions using SEQBOOT from PHYLIP 3.67 

package. The bootstrapped files were used for calculating maximum likelihood trees with Proml 

from PHYLIP 3.67 package. The trees were unrooted and calculated using ordinary likelihood.  

Consensus trees were obtained using CONSENSE program of the phylip package.  

 

5.2.4 Evolutionary analysis 

5.2.4.1  Identity and similarity matrix 

Pairwise alignments of the 68 fish P2Y-like amino acid sequences were performed using the 

EMBOSS Pairwise Alignment Algorithm (http://www.ebi.ac.uk/emboss/align/) and both the 

Identity and Similarity values from all the possible comparisons were retrieved and used to 

make the matrix. 

 

5.2.4.2  Sequence logo 

Sequence logos were generated using a web-based program, Weblogo (version 2.8.2) 

developed by (http://weblogo.berkeley.edu/logo.cgi). A logo was generated with the 227 fish 

P2Y amino acid sequences representing full-length ORFs. Sequence alignments were manually 

edited using MEGA 4 (Kumar et al., 2004) and highly divergent pieces between the start codon 

and the beginning of TM1 and 7 amino acids downstream of the conserved Proline (P) in the 

TM7 were trimmed to avoid N- and C-terminal length heterogeneity. This did not affect 

significantly conserved residues. Gap positions present in more than 85% of the sequences 

were deleted completely. 

 

5.2.4.3  dN/dS analysis 

The global dN/dS ratios for the full length ORF of the 227 fish P2Y receptor coding sequences 

were determined using Single Likelihood Ancestor Counting (SLAC) package 

(http://www.datamonkey.org), which implements the Suzuki-Gojobori method (Suzuki and Gojobori, 

1999). The nucleotide alignment was manually edited to match the amino acid alignment used in 

the phylogenetic trees and sequence logo. To make inferences about selective pressure 

(positive and negative selection) on individual codons (sites) within the coding sequence of the 

teleost P2Y genes, the Single Likelihood Ancestor Counting (SLAC) package 

(http://www.datamonkey.org), which implements the Suzuki-Gojobori method (Suzuki and 

Gojobori, 1999), was used. The algorithm is briefly outlined. First, a best-fitting nucleotide 

substitution model was automatically selected by fitting several such substitution models to both 

http://www.ebi.ac.uk/emboss/align/
http://www.datamonkey.org/
http://www.datamonkey.org/
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the data and a neighbor-joining tree generated from the alignment described above. Taking the 

obtained substitution rates and branch lengths as constant, a codon model was employed to fit 

to the data and a global dN/dS ratio was calculated. Then a codon by codon reconstruction of 

the ancestral sequences was performed using maximum likelihood. Afterwards the expected 

normalized (ES) and observed numbers (EN) of synonymous (NS) and non-synonymous (NN) 

substitutions were calculated for each non-constant site. dN = NN/EN and dS = NS/ES were 

then computed, and if dN < dS (negative selection) or dN > dS (positive selection), a p-value 

derived from a two-tailed extended binomial distribution was used to assess significance. Tests 

on simulated data (S.L.K. Pond and S.D.W. Frost, methods available at 

http://www.datamonkey.org) show that p values equal or smaller than 0.1 identify nearly all true 

positives with a false positive rate generally below the nominal p value; for actual data, the 

number of true positives at a given false positive rate is lower. In the present study, two 

thresholds for significance (0.1 and 0.2) were taken into account in order to identify residues 

potentially involved in odorant-binding activities. 

 

5.2.5 Molecular biology techniques 

5.2.5.1  Cloning of P2Y genes 

5.2.5.1.1 Amplification of P2Y genes 

Putative P2Ys were amplified from cDNA of olfactory epithelium and 5dpf larvae, and genomic 

DNA using the following primers: P2Y1, P2Y4, P2Y5, P2YR6, P2YR8, P2Y5, P2YR13 and 

P2YR17. Twenty-microlitre reaction mixture was assembled (5µl of 2X RedTaq Mix, 1µl each of 

forward and reverse primer, 5ng of template and sterile water). Denaturation of template was 

carried out at 960C for 2 min, followed by 35 cycles of 960C for 30 sec, 580C for 45 sec 720C for 

1 min and a final elongation of 720C for 5 min. The PCR products of the expected sizes were 

excised from agarose gel and cloned into pDrive (Qiagen). 

 

5.2.5.1.2 Gel electrophoresis 

PCR products were loaded on 1% agarose gels containing 0.5µg/ml ethidium bromide in 1X 

TAE buffer and run at 50 V. 

 

5.2.5.1.3 Purification of DNA fragments from agarose gel 

The DNA fragment was purified using Qiagen’s QIAEX II agarose gel extraction kit. The DNA 

band was excised from agarose gel. Three volumes of Buffer QX1 were added to one volume of 

excised gel. Ten-microlitre of QIAEX II was added into the mixture and resuspended by 

http://www.datamonkey.org/
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vortexing. The mixture was incubated at 500C for 5 minutes to solubilize the agarose and 

facilitating the binding of the QIAEX II to DNA. The mixture was pelleted through centrifugation 

and washed with Buffer QX1 to remove residual agarose contaminants. Next, the pellet was 

washed twice with Buffer PE. Finally, the pellet was air-dried and the DNA was eluted by 

resuspending the pellet with 5mM Tris-Cl pH8.0. 

 

5.2.5.1.4 Ligation into pDrive cloning vector 

The ligation of PCR products into pDrive cloning vector was carried out using Qiagen’s PCR 

cloning kit. Ligation mixture containing 2µl of PCR product, 2.5µl of ligation master mix and 0.5µl 

pDrive cloning vector was prepared and incubated at 160C for 30 min. After that, the ligation 

mixture was heated at 700C for 5 min to inactivate the enzyme activity.  

 

5.2.5.1.5 Chemical transformation 

One microlitre of ligation mixture was added into a tube of DH5α competent cells and mixed 

gently. The mixture was then incubated on ice for 30 min. Next, the cells were heat-shocked at 

420C in a heating block for 1 min followed by rapid cooling on ice for 1 min. After that, 800µl of 

LB broth was added into the tube and incubated for 1 hour at 370C with shaking at 700rpm.  

Then, the cells were pelleted at 500g for 1 min and resuspended in 50µl of LB broth and plated 

onto LB plate containing ampicillin. Finally the plate was incubated at 370C overnight. 

 

5.2.5.1.6 Plasmid DNA minipreparation 

A single colony was picked from up from agar plate and inoculated into 3ml of LB broth 

containing ampicillin antibiotic. The bacteria were cultured overnight at 370C on a shaker at the 

speed of 180rpm. 

 

About 1.5ml of the overnight culture was transferred into an eppendorf tube and the remaining 

was made up to 5% glycerol stock and stored at –800C. The cells were pelleted by centrifuging 

at 13,000 rpm for 1 min at room temperature. The supernatant was drained and the pellet was 

resuspended by vigorous pipetting or vortexing in 300µl Solution I containing Tris-EDTA-glucose 

buffer (25mM Tris-HCl pH 8.0, 5mM EDTA, 50mM glucose). Then, 300µl of freshly mixed 

Solution II (0.2M NaoH, 1% SDS) was added. The mixture was mixed well by inverting the tube. 

Next, 300µl of Solution III (3M with respect to potassium and 5M with respect to acetate) was 

added and mixed gently by inversion. The cell debris and bacterial genomic DNA was pelleted 

by centrifugation at 13,000 rpm for 5 min at room temperature. The supernatant was transferred 
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to a fresh tube 0.6 volume of isopropanol was added. The solution was mixed and then 

incubated at –200C for 5 min. The plasmid DNA was pelleted by centrifugation at 13,000 rpm for 

5 min at 40C. The supernatant was discarded and the pellet was washed with 200µl of 70% 

ethanol. The pellet was allowed to air-dry and finally, the pellet was resuspended with 30µl of 

autoclaved distilled water and stored at 40C or –200C. 

 

5.2.5.1.7 Restriction enzyme digestion of plasmid DNA 

Digestions of plasmid DNA were performed using about 200ng of plasmid in 1x restriction 

enzyme digestion buffer and 6U of restriction enzyme in a total volume of 20µl. Digestion 

mixtures were incubated for 1-2 h at the appropriate temperatures as suggested by the 

manufacturer. 

 

5.2.5.1.8 Preparation of glycerol stock 

Glycerol stock was prepared by adding 200µl of sterile 50% glycerol to 800µl bacterial culture. 

The mixture was vortexed to ensure even dispersion of the glycerol and subsequently froze in 

liquid nitrogen. Afterwards, the tube was transferred to -800C for long-term storage. 

 

5.2.5.1.9 DNA sequencing 

DNA sequencing was carried at the core facility of the Institute of Genetics by Rita Lange on an 

ABI Prism 3730 DNA Analyzer (Applied Biosystems, USA).  

 

For each cycle sequencing reaction, the following reagents were added into each tube: 2µl of 

BigDye terminator premix (ABI Prism), 3.2pmol primer, 200-500ng of purified plasmid DNA and 

autoclaved distilled water to a final volume of 5µl. Then, the mixture was mixed and briefly spun 

down. The sequencing profile used was as follows: 40 cycles at 950C for 20 sec, 500C for 15 

sec and 600C for 4 min. The samples were ethanol precipitated and dried thoroughly. The dried 

samples were stored at -20°C in the dark until they were electrophoresed.  

 

Sequence analysis was carried out using BLAST (Basic Local Alignment Search Tool), 

accessed through the Internet (http://www.ncbi.nlm.nih.gov/). Alignments of the sequences with 

several closely related genes were carried out using the CLUSTALW programme from Bioedit 

version 7.0.0. 

 

 

http://www.ncbi.nlm.nih.gov/
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5.2.5.2 Expression analysis of P2Ygenes 

5.2.5.2.1 Isolation of total RNA 

Total RNA was extracted from various tissues of the fish: barbel and lips, olfactory epithelium, 

olfactory bulb, eye, brain, grills, heart, liver, intestine, kidney, gonad, spleen and skin. The 

tissues were dissected in ice-cold Phosphate Buffered Saline (PBS) and stored in Buffer RLT 

(RNeasy Mini Kit, Qiagen). The tissue was homogenized using s syringe and needle. The lysate 

was passed through a 20-gauge (0.4mm) needle attached to a sterile plastic syringe for 5-5 

times until a homogenous lysate is achieved. Then, RNA was isolated using RNeasy Mini Kit of 

Qiagen according to manufacturer’s instructions. Next, purified RNA was treated with 4.7U of 

RNase-free DNase  (Promega) for 30 min at 370C to remove contamination of genomic DNA. 

This was followed by phenol/chloroform extraction to remove the added DNAse. RNA was 

precipitated using 0.8M lithium chloride and 2.5 volumes of ice-cold absolute ethanol. 

Precipitation was allowed at -200C for 30 min or at -800C for 5 min. Finally, RNA was pelleted 

and resuspended in the appropriate buffer.  

 

5.2.5.2.2 Synthesis of first-strand DNA 

Total RNA was mixed with 1µl of oligo (dT)12-18 and made up to 11.8µl with DEPC-distilled 

water. The mixture was heated at 700C for 5 min to denature the secondary structure, followed 

by brief rapid cooling on ice.  The contents of the tube were spun down by a brief centrifugation. 

Next, 4µl of 5X first-strand buffer, 2µl of 0.1M DTT, 1µl of 5mM dNTP mix, 1µl of RNaseOUT 

and 0.2µl of Bioscript (200U/µl, Bioline) were added into the mixture and mixed. Subsequently, 

the reaction mixture was incubated at 420C for 50 min. The reaction was inactivated by heating 

at 700C for 15 min. Finally, the mixture was diluted with 30µl of sterile, distilled water and the 

cDNA can be used as a template for amplification in PCR. 

 

5.2.5.2.3 Polymerase chain reaction (PCR) 

The 20µl PCR reaction contained 0.25µl of cDNA, 5µl of 2X RedTaq Mix, 1µl each of 5µM 

forward and reverse primers and distilled water. The thermal cycler regime was as follows: 950C 

for 2 min, followed by 35 cycles of 950C for 30 sec, 580C for 45 sec, 720C for 1 min and a final 

elongation step of 720C for 5 min.  

 

5.2.5.3  In situ hybridization 

In situ hybridisation techniques simultaneously detect and localize specific DNA or RNA 

sequences providing spatial information about their subcellular locations, within small 
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subpopulations of cells in tissue samples. It can identify sites of gene expression and tissue 

distribution of mRNA.  

 

In situ hybridisation begins with the preparation of biological material and the labelling of a 

nucleic acid sequence to form the probe. The labelling of a nucleic acid involves the 

incorporation of either radioactive or non-radioactive marker, which can be detected. Both probe 

and material are denatured to ensure all nucleic acids are single-stranded. Then, under 

controlled experimental conditions, the single-stranded probe anneals or hybridises to its 

complementary single-stranded nuclei acid sequence in the biological material to form a new 

double-stranded molecule that incorporates the labelled marker. Finally, the sites of 

hybridisation are detected and visualized.  

 

5.2.5.3.1 Cryosectioning 

In situ whole-mount embryos were put in TissueTek (MILES, Elkhart, Indiana, USA), oriented 

and frozen at -20°C. The embryo was sectioned at 5µm. Sections were mounted on coated 

Superfrost plus slides and dried for 3 h at 55°C. Sections were mounted with mounting medium 

before viewing under the microscope. 

 

5.2.5.3.2 Probe preparation 

Sense and antisense RNA probes labeled with digoxigenin (DIG)- or biotin-labeled UTP were 

generated by in vitro transcription according to the manufacturer's instructions (Roche 

Diagnostics). After synthesis, the probes were not hydrolyzed into smaller pieces, as this 

treatment leads to elevated background signals. 

 

Template DNA was generated by PCR using insert specific primers that contained T3 

polymerase promoter sequence at the terminal end. Next, the amplified template was purified 

using PCR purification kit (Qiagen). The in vitro transcription reaction was prepared using about 

200-500ng of purified PCR template, transcription buffer and DIG- or biotin-labeling mixture to a 

final concentration of 1x, 4U of T3 RNA Polymerase , 20U of RNAse inhibitor (Roche 

Diagnostics) and top up to final volume of 20µl. The reaction was incubated at 37°C for 2 hours 

and terminated by addition of 2µl of EDTA (200 mM, pH 8.0). The RNA transcript was ethanol 

precipitated and resuspended in 50µl of DEPC-treated H2O. The quality of the probe was 

analyzed through agarose gel electrophoresis. Labeling efficiency was estimated using DIG 

quantification teststrips (Roche Diagnostics). 
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5.2.5.3.3 Preparation of embryos 

Eggs were collected from mating pairs and unfertilized eggs were discarded.  Embryos were 

allowed to develop in regular fish water until the end of gastrulation (5hpf). After that, the fish 

water was replaced with a solution containing 0.0045% 1-phenyl-2-thiourea to prevent 

pigmentation. The solution was replaced everyday until the larvae reached desired age/stage. 

Next, the larvae were fixed in 4% paraformaldehyde (PFA) in 1X PBS overnight at 40C. The 

fixed larvae were then dehydrated in 50% methanol for 15 min at room temperature and finally 

stored at -200C until further use. 

 

5.2.5.3.4 Whole-mount in situ hybridization of embryos 

Whole mount RNA in situ hybridization of zebrafish embryos or larvae was performed following 

the method of Thisse et al., (1993).  

 

On the first day, the larvae went through a serial of rehydration in the following manner: 75% 

methanol: 25% PBS, 50% methanol: 50% PBS and 25% methanol: 75% PBS for 5 minutes 

each. Next, the larvae were washed four times with PBT, 5 mins for each washing. After that, 

the larvae were digested with proteinase K (5µg/ml) for 30 minutes at 370C to increase probe 

permeability into the larvae. The digestion was terminated by incubation in 4% 

paraformaldehyde in 1x PBS for 20 minutes. This was followed by five washings in PBT, 5 

minutes for each washing. Subsequently, prehybridization was performed by incubating the 

larvae in 500µl of hybridization mix at 700C waterbath for 1 hour. After that, the prehybridization 

mix was replaced with hybridization mix containg about 50ng of antisense DIG-labeled RNA 

probe. The hybridization was left overnight (at least 16 hours) in 700C waterbath. 

On the second day, the hybridization buffer was removed and underwent successive washing 

solutions to facilitate solution changes from hybridization buffer to 2x SSC. The serial high 

stringency washings were conducted in the following manner for 15 mins each at 700C: 75%HM-

: 25% 2x SSC, 50%HM-: 50% 2x SSC, 25%HM-: 75% 2x SSC and finally in 2x SSC. In addition, 

two washings of 30 mins each in 0.2x SSC were performed at 700C to remove non-specifically 

hybridised probes. Next, the larvae were progressively washed from 0.2x SSC to PBT at room 

temperature in the following order: 75% 0.2x SSC: 25% PBT, 50% 0.2x SSC: 50% PBT, 25% 

0.2x SSC: 75% PBT and finally in PBT. All the washings were performed for 5 minutes each. 

After that, the larvae were blocked in blocking bluffer containing 2% sheep serum and 2mg/ml 

BSA for 3 to 4 hours in room temperature. Then, the blocking buffer was replaced with antibody 
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solution diluted at 1:5000 in blocking buffer. The incubation with antibody was left overnight with 

slow agitation at 40C. 

 

On the third day, the antibody was removed and the larvae were washed briefly in PBT. This 

was followed by an extensive wash at room temperature, six times, in PBT for 15 mins each 

wqashing. After the last wash, the larvae were incubated at room temperature in alkaline Tris 

buffer (50mM Tris-HCl pH9.5, 50 mM MgCl2, 50mM NaCl, 0.1% Tween 20). After that, the 

larvae were incubated in staining solution containing NBT-BCIP for signal detection. The 

staining reaction is monitored regularly until signal is perceived as sufficient. The, the staining 

reaction is stopped by washing the larvae with stop solution (1x PBS pH5.5, 1mM EDTA, 0.1% 

Tween 20). 

 

5.2.5.3.5 In situ hybridization on sections of olfactory epithelia 

Sections (10 µm) were fixed in 4% paraformaldehyde for 10 min at room temperature. 
Hybridizations were performed overnight at 60°C using standard protocols as previously 
described (Weth et al., 1996). Anti-DIG primary antibody coupled to alkaline phosphatase 
(Roche Molecular Biochemicals) and NBT-BCIP (Roche Molecular Biochemicals) was used for 
signal detection.  
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7.   APPENDIX 

 

7.1   List of abbreviations 

A, adenosine 
ADP, adenosine diphosphate 
AMP, adenosine monophosphate 
AP, alkaline phosphatase 
ATP, adenosine triphosphate 
bp, base pairs 
BSA, bovine serum albumin 
cAMP, cyclic adenosine monophosphate 
cDNA, complementary DNA 
CysLtr, cysteine leukotriene 
DEPC, diethylpyrocarbonate 
DIG, digoxigenin 
dpf, days post fertilization 
DNA, deoxyribonucleic acid 
dNTP, deoxyribonucleic triphosphate 
EC, ectracellular domain 
EDTA, ethylenediaminetetraacetic acid 
FFAR, free-fatty acid receptor 
GPCR, G-protein coupled receptor 
HEK 293, human embryonic kidney cells 
IC, intracellular domain 
IPTG, isopropyl-_-D-1-thiogalactopyranoside 
kb, kilo base 
M, molar 
MCS, multiple cloning site 
µg, microgram 
min, minutes 
ng, nanogram 
OE, olfactory epithelium 
OB, olfactory bulb 
OMP, olfactory marker protein 
OR, olfactory receptor 
OSN, olfactory sensory neuron 
PBS, phosphate buffered saline 
PCR, polymerase chain reaction 
PFA, paraformaldehyde 
RNA, ribonucleic acid 
TE, tris-EDTA 
TM, transmembrane 
U, unit 
UDP, uridine diphosphate 
UTP, uridine triphosphate 
X-Gal, 5-Bromo-4-chlor-3-indoyl-β-D-galactopyranoside 
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7.2   Supplemental figures 

A. Phylogenetic tree of 8 fish species, frog and human 

 

Abbreviations : Pm, lamprey; Cm, elephant shark, Re, little skate; Dr, zebrafish; Ga, stickleback; 
Ol, medaka; Tn, tetraodon; Tr, fugu; Xt, frog; Hs, human; PafR, platelet-activating receptor; 
SucR, succinate receptor; Gpr, G-protein coupled receptor; CysLtr, cysteine leukotriene; OR, 
olfactory receptor 
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B.   P2Y genes accession number and/or IDs, and location 

Species NCBI Ensembl protein database Chromosome/Scaffold Location 

Zebrafish   ENSDARP00000004774 3 53,541,140-53,542,045.  

Zebrafish NP_955900.1 ENSDARP00000032650 2 43,079,372-43,080,946.  

Zebrafish XP_001335235.1 ENSDARP00000045017 14 37,018,669-37,019,712.  

Zebrafish XP_001343519.1 ENSDARP00000058877 1 879,202-880,541.  

Zebrafish XP_694459.1  ENSDARP00000062479 18 25,785,514-25,787,196.  

Zebrafish XP_001341296.1  FGENESH00000078739  24 10,123,808-10,124,984.  

Zebrafish   ENSDARP00000070013 14 37,146,462-37,147,913.  

Zebrafish   ENSDARP00000075538 14 6,365,702-6,366,698.  

Zebrafish   GENSCAN00000023739  5 21,317,494 

Zebrafish   ENSDARP00000081437 5 21,321,347-21,322,297 

Zebrafish   FGENESH00000078957  13 50,798,456-50,842,878.  

Zebrafish XP_001336913.1  FGENESH00000058659  Zv7_NA1868  12,840-19,467.  

Zebrafish   ENSDARP00000087296 Zv7_NA1868  12,636-33,632.  

Zebrafish XP_001336698.1  FGENESH00000071328  1 893,686-894,675 

Zebrafish XP_001339996.1 ENSDARP00000087397 Scaffold Zv7_NA791 33,990-34,949.  

Zebrafish XP_684762.1 ENSDARP00000010296 9 25,044,989-25,046,056.  

Zebrafish NP_001035473.1  ENSDARP00000041935 1 903,492-907,044.  

Zebrafish XP_001342443.1 ENSDARP00000052979 7 17,039,373-17,040,398.  

Zebrafish XP_001346142.1 FGENESH00000084837  23 24,448,733-24,449,707.  

Zebrafish   ENSDARP00000060098 9 25,074,319-25,075,413 

Zebrafish NP_001035080.1 FGENESH00000073641  15 35,485,427-35,486,407.  

Zebrafish XP_693153.1 FGENESH00000073593  6 45,082,130-45,082,981.  

Zebrafish XP_001333765.1 ENSDARP00000069269 2 43,060,465-43,062,121.  

Zebrafish XP_001334713.1  ENSDARP00000075542 14 6,395,616-6,396,587.  

Zebrafish XP_001343355.1 ENSDARP00000080918 18 44,456,810-44,457,877 

Zebrafish XP_687425.2 ENSDARP00000083420 6 19,484,326-19,485,273.  

Zebrafish NP_001073524.1 ENSDARP00000085057 23 13,827,907-13,834,737.  

Zebrafish AAI34132.1 FGENESH00000061740  14 6,408,647-6,419,175.  

Zebrafish XP_700330.1 FGENESH00000066244  18 1,637,660-1,638,214 

Zebrafish XP_691569.2  FGENESH00000071330  15 42,775,008-42,777,576.  

Zebrafish XP_697876.2 ENSDARP00000044742 9 23,293,650-23,294,480.  

Zebrafish XP_001342372.1 ENSDARP00000062129 17 33,899,631-33,901,492.  

Zebrafish   ENSDARP00000068982 1 33,627,665-33,631,029.  

Zebrafish XP_001332886.1  FGENESH00000058248  10 13,607,347-13,608,423.  

Zebrafish   GENSCAN00000005772  5 21,317,594-21,318,487 

Zebrafish   FGENESH00000070496  7 17,426,371-17,428,125.  

Zebrafish   FGENESH00000061858  14 6,499,904-6,500,887 

Zebrafish XP_001340065.1  ENSDARP00000087396 18 1,659202-1,660,173 

Zebrafish XP_692215.1 FGENESH00000051734  15 25,619,485-25,620,579 

Zebrafish   ENSDARP00000062041 17 37,840,794-37,841,684.  

http://www.ensembl.org/Danio_rerio/contigview?l=3:53541140-53542045
http://www.ensembl.org/Danio_rerio/contigview?l=2:43079372-43080946
http://www.ensembl.org/Danio_rerio/contigview?l=14:37018669-37019712
http://www.ensembl.org/Danio_rerio/contigview?l=1:879202-880541
http://www.ensembl.org/Danio_rerio/contigview?l=18:25785514-25787196
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000078739;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=24:10123808-10124984
http://www.ensembl.org/Danio_rerio/contigview?l=14:37146462-37147913
http://www.ensembl.org/Danio_rerio/contigview?l=14:6365702-6366698
http://www.ensembl.org/Danio_rerio/transview?transcript=GENSCAN00000023739;db=core
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000078957;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=13:50798456-50842878
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000058659;db=core
http://www.ensembl.org/Danio_rerio/contigview?region=Zv7_NA1868&highlights=BLAST_NEW:BLA_jcpJihdMn!!20071206
http://www.ensembl.org/Danio_rerio/contigview?l=Zv7_NA1868:12840-19467
http://www.ensembl.org/Danio_rerio/contigview?region=Zv7_NA1868&highlights=BLAST_NEW:BLA_jcpJihdMn!!20071206
http://www.ensembl.org/Danio_rerio/contigview?l=Zv7_NA1868:12636-33632
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000071328;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=Zv7_NA791:33990-34949
http://www.ensembl.org/Danio_rerio/contigview?l=9:25044989-25046056
http://www.ensembl.org/Danio_rerio/contigview?l=1:903492-907044
http://www.ensembl.org/Danio_rerio/contigview?l=7:17039373-17040398
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000084837;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=23:24448733-24449707
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000073641;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=15:35485427-35486407
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000073593;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=6:45082130-45082981
http://www.ensembl.org/Danio_rerio/contigview?l=2:43060465-43062121
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+%5bREFSEQP-alltext:XP_001334713%5d
http://www.ensembl.org/Danio_rerio/contigview?l=14:6395616-6396587
http://www.ensembl.org/Danio_rerio/contigview?l=6:19484326-19485273
http://www.ensembl.org/Danio_rerio/contigview?l=23:13827907-13834737
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000061740;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=14:6408647-6419175
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000066244;db=core
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000071330;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=15:42775008-42777576
http://www.ensembl.org/Danio_rerio/contigview?l=9:23293650-23294480
http://www.ensembl.org/Danio_rerio/contigview?l=17:33899631-33901492
http://www.ensembl.org/Danio_rerio/contigview?l=1:33627665-33631029
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000058248;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=10:13607347-13608423
http://www.ensembl.org/Danio_rerio/transview?transcript=GENSCAN00000005772;db=core
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000070496;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=7:17426371-17428125
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000061858;db=core
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000051734;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=17:37840794-37841684
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Species NCBI Ensembl protein database Chromosome/Scaffold Location 

Zebrafish   ENSDARP00000084735 15 42,665,690-42,690,969.  

Zebrafish   ENSDARP00000067542 17 2,870,988-2,872,004.  

Zebrafish   ENSDARP00000030390 17 38,878,390-38,879,292.  

Zebrafish NM_001025547.1  ENSDARP00000063752 20 18,442,740-18,449,712.  

Zebrafish XP_686786.2 FGENESH00000066881  5 34,052,650-34,054,470.  

Zebrafish   ENSDARP00000072403 9 28,958,014-28,960,102.  

Zebrafish   ENSDARP00000079157 14 41,893,740-41,894,729 

Zebrafish   ENSDARP00000086767 Zv7_NA117    

Zebrafish XP_001342441.1 GENSCAN00000008806  6 39,411,564-39,412,598.  

Zebrafish NP_001076364.1  GENSCAN00000015928  19 8,175,835-8,176,635.  

Zebrafish NP_898896.1  ENSDARP00000007507 17 2,893,697-2,894,776.  

Zebrafish   ENSDARP00000069332 Zv7_NA992    

Zebrafish   ENSDARP00000078231 16 50,292,613-50,293,762.  

Zebrafish   ENSDARP00000075859 19 8,189,303-8,190,178.  

Zebrafish   ENSDARP00000086328 19 8,194,384-8,195,385 

Zebrafish XP_001338686.1  FGENESH00000073598  15 35,474,314-35,475,153.  

Zebrafish XP_001343968.1  FGENESH00000055237  21 9,205,389-9,206,556.  

Zebrafish XP_001334570.1 ENSDARP00000009604 2 20,384,476-20,385,552.  

Zebrafish   ENSDARP00000009884 7 24,766,695-24,767,759.  

Zebrafish XP_001337554.1  FGENESH00000082569.  24 4,108,722-4,109,708.  

Zebrafish NP_001013368.1  ENSDARP00000051531 5 12,784,540-12,791,594.  

Zebrafish NP_001025368.1 GENSCAN00000041734  8 51,058,965-51,060,442.  

Zebrafish XP_001330993.1 ENSDARP00000027382 9 27,386,792-27,388,148.  

Zebrafish   ENSDARP00000022016 4 39,121,691-39,122,806.  

Zebrafish   ENSDARP00000055274 6 59,132,981-59,134,152.  

Zebrafish XP_001340906.1 GENSCAN00000038826  9 17,394,200-17,395,457.  

Zebrafish ABI99470.1 FGENESH00000070088  8 51,058,965-51,060,442.  

Zebrafish XP_001339169.1 FGENESH00000062132  3 41,370,113-41,377,705.  

Zebrafish XP_001341328.1 ENSDARP00000025567 12 33,919,188-33,922,860.  

Zebrafish XP_694953.1 ENSDARP00000050272 22 24,654,997-24,665,360.  

Zebrafish   ENSDARP00000011684 15 4,357,742-4,362,018.  

Zebrafish   ENSDARP00000076026 15 4,461,247-4,462,197 

Zebrafish   ENSDARP00000021049 15 4,413,959-4,415,307.  

Zebrafish   ENSDARP00000087292 15 4,402,047-4,403,019.  

Zebrafish   ENSDARP00000087308 15 4,374,155-4,374,790 

Zebrafish   ENSDARP00000062905 15 4,451,917-4,452,690 

Zebrafish   ENSDARP00000087287 15 4,421,132-4,423,731.  

Zebrafish   ENSDARP00000087299 15 4,387,262-4,388,179 

Zebrafish   ENSDARP00000091856 21 18,992,364-18,994,367.  

Zebrafish   ENSDARP00000092997 15 3,026,680-3,030,111.  

Zebrafish   ENSDARP00000093000 15 3,010,012-3,012,469.  

Zebrafish   ENSDARP00000057319 13 36,681,559-36,683,336.  

http://www.ensembl.org/Danio_rerio/contigview?l=15:42665690-42690969
http://www.ensembl.org/Danio_rerio/contigview?l=17:2870988-2872004
http://www.ensembl.org/Danio_rerio/contigview?l=17:38878390-38879292
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+%5bREFSEQ-alltext:NM_001025547%5d
http://www.ensembl.org/Danio_rerio/contigview?l=20:18442740-18449712
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000066881;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=5:34052650-34054470
http://www.ensembl.org/Danio_rerio/contigview?l=9:28958014-28960102
http://www.ensembl.org/Danio_rerio/contigview?region=Zv7_NA117&highlights=BLAST_NEW:BLA_ZQQJR1fHk!!20071208
http://www.ensembl.org/Danio_rerio/transview?transcript=GENSCAN00000008806;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=6:39411564-39412598
http://www.ensembl.org/Danio_rerio/transview?transcript=GENSCAN00000015928;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=19:8175835-8176635
http://www.ensembl.org/Danio_rerio/contigview?l=17:2893697-2894776
http://www.ensembl.org/Danio_rerio/contigview?region=Zv7_NA992&highlights=BLAST_NEW:BLA_o9fkiplmG!!20071208
http://www.ensembl.org/Danio_rerio/contigview?l=16:50292613-50293762
http://www.ensembl.org/Danio_rerio/contigview?l=19:8189303-8190178
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000073598;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=15:35474314-35475153
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000055237;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=21:9205389-9206556
http://www.ensembl.org/Danio_rerio/contigview?l=2:20384476-20385552
http://www.ensembl.org/Danio_rerio/contigview?l=7:24766695-24767759
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000082569;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=24:4108722-4109708
http://www.ensembl.org/Danio_rerio/contigview?l=5:12784540-12791594
http://www.ensembl.org/Danio_rerio/transview?transcript=GENSCAN00000041734;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=8:51058965-51060442
http://www.ensembl.org/Danio_rerio/contigview?l=9:27386792-27388148
http://www.ensembl.org/Danio_rerio/contigview?l=4:39121691-39122806
http://www.ensembl.org/Danio_rerio/contigview?l=6:59132981-59134152
http://www.ensembl.org/Danio_rerio/transview?transcript=GENSCAN00000038826;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=9:17394200-17395457
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000070088;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=8:51058965-51060442
http://www.ensembl.org/Danio_rerio/transview?transcript=FGENESH00000062132;db=core
http://www.ensembl.org/Danio_rerio/contigview?l=3:41370113-41377705
http://www.ensembl.org/Danio_rerio/contigview?l=12:33919188-33922860
http://www.ensembl.org/Danio_rerio/contigview?l=22:24654997-24665360
http://www.ensembl.org/Danio_rerio/contigview?l=15:4357742-4362018
http://www.ensembl.org/Danio_rerio/contigview?l=15:4413959-4415307
http://www.ensembl.org/Danio_rerio/contigview?l=15:4402047-4403019
http://www.ensembl.org/Danio_rerio/contigview?l=15:4421132-4423731
http://www.ensembl.org/Danio_rerio/contigview?l=21:18992364-18994367
http://www.ensembl.org/Danio_rerio/contigview?l=15:3026680-3030111
http://www.ensembl.org/Danio_rerio/contigview?l=15:3010012-3012469
http://www.ensembl.org/Danio_rerio/contigview?l=15:3010012-3012469
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Zebrafish   ENSDARP00000088649 22 24,613,687-24,617,923.  

Zebrafish   ENSDARP00000070796 2 34,986,152-34,990,484.  

Stickleback   ENSGACP00000000942 scaffold_47 184,282-185,445.  

Stickleback   ENSGACP00000002502 scaffold_132 209,478-211,560.  

Stickleback   ENSGACP00000004999 groupVIII 1,931,956-1,933,858.  

Stickleback   ENSGACP00000007390 groupI 1,730,484-1,731,398.  

Stickleback   ENSGACP00000010855 groupI 6,840,543-6,841,996.  

Stickleback   ENSGACP00000012761 groupXV 7,895,097-7,896,633.  

Stickleback   ENSGACP00000013551 groupI 10,467,941-10,468,882.  

Stickleback   ENSGACP00000015144 groupXVII 12,409,961-12,410,890.  

Stickleback   ENSGACP00000018133 groupXI 13,421,555-13,422,436.  

Stickleback   ENSGACP00000022689 groupIV 5,767,958-5,769,001.  

Stickleback   ENSGACP00000024554 groupIV 15,741,075-15,742,240.  

Stickleback   ENSGACP00000026536 groupVII 10,390,881-10,392,102.  

Stickleback   ENSGACP00000002451 groupXVI 2,783,893-2,785,408.  

Stickleback   ENSGACP00000003378 scaffold_475 5,558-8,755.  

Stickleback   ENSGACP00000005028 groupXXI 8,709,829-8,711,970.  

Stickleback   ENSGACP00000007789 groupXIX 7,281,088-7,282,050.  

Stickleback   ENSGACP00000010882 groupI 6,917,158-6,918,464.  

Stickleback   ENSGACP00000013482 groupI 10,309,588-10,310,505.  

Stickleback   ENSGACP00000014878 groupXII 15,037,417-15,039,097.  

Stickleback   ENSGACP00000015806 groupI 14,341,623-14,343,831.  

Stickleback   ENSGACP00000018449 groupI 20,645,156-20,648,034.  

Stickleback   ENSGACP00000024549 groupIV 15,726,274-15,727,675.  

Stickleback   ENSGACP00000026938 groupVII 17,758,768-17,760,612.  

Stickleback   ENSGACP00000002454 groupXVI 2,792,172-2,793,433.  

Stickleback   ENSGACP00000005276 groupXIX 5,486,695-5,487,630.  

Stickleback   ENSGACP00000010887 groupI 6,926,441-6,928,012.  

Stickleback   ENSGACP00000013543 groupI 10,382,050-10,383,467.  

Stickleback   ENSGACP00000015138 groupXII 15,233,419-15,235,543.  

Stickleback   ENSGACP00000017795 groupIII 1,504,743-1,505,922.  

Stickleback   ENSGACP00000020237 groupIII 7,582,033-7,583,389.  

Stickleback   ENSGACP00000024551 groupIV 15,735,707-15,737,199.  

Stickleback   ENSGACP00000024559 groupIV 15,772,138-15,773,109.  

Stickleback   ENSGACP00000002511 scaffold_128 71,149-75,065.  

Stickleback   ENSGACP00000013980 groupXV 9,528,005-9,531,950.  

Stickleback   ENSGACP00000026368 groupVII 9,005,340-9,006,568.  

Stickleback   ENSGACP00000013981 groupXV 9,533,782-9,534,439.  

Stickleback   ENSGACP00000012423 groupI 9,090,447-9,091,400.  

Stickleback   ENSGACP00000016705 groupI 16,310,314-16,314,973.  

Stickleback   ENSGACP00000002567 groupXVI 3,208,336-3,211,795.  

 

http://www.ensembl.org/Danio_rerio/contigview?l=22:24613687-24617923
http://www.ensembl.org/Danio_rerio/contigview?l=2:34986152-34990484
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=scaffold_47:184282-185445
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=scaffold_132:209478-211560
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupVIII:1931956-1933858
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:1730484-1731398
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:6840543-6841996
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXV:7895097-7896633
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:10467941-10468882
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXVII:12409961-12410890
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXI:13421555-13422436
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupIV:5767958-5769001
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupIV:15741075-15742240
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupVII:10390881-10392102
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXVI:2783893-2785408
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=scaffold_475:5558-8755
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXXI:8709829-8711970
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXIX:7281088-7282050
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:6917158-6918464
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:10309588-10310505
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXII:15037417-15039097
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:14341623-14343831
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:20645156-20648034
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupIV:15726274-15727675
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupVII:17758768-17760612
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXVI:2792172-2793433
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXIX:5486695-5487630
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:6926441-6928012
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:10382050-10383467
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXII:15233419-15235543
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupIII:1504743-1505922
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupIII:7582033-7583389
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupIV:15735707-15737199
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupIV:15772138-15773109
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=scaffold_128:71149-75065
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXV:9528005-9531950
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupVII:9005340-9006568
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXV:9533782-9534439
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:9090447-9091400
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:16310314-16314973
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXVI:3208336-3211795
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Stickleback   ENSGACP00000013383 groupXIII 9,878,841-9,880,899.  

Stickleback   ENSGACP00000020793 groupXIV 856,996-858,082.  

Stickleback   ENSGACP00000020791 groupXIV 844,787-846,001.  

Stickleback   ENSGACP00000021482 groupIV 94,613-97,364.  

Stickleback   ENSGACP00000013380 groupXIII 9,865,275-9,867,291.  

Stickleback   ENSGACP00000020792 groupXIV 851,632-855,772.  

Stickleback   ENSGACP00000013995 groupXV 9,558,404-9,560,352.  

Stickleback   ENSGACP00000003220 groupX 2,121,801-2,122,745.  

Stickleback   ENSGACP00000003223 groupX 2,125,535-2,126,404  

Stickleback   ENSGACP00000004815 groupXXI 8,276,903-8,278,051.  

Stickleback   ENSGACP00000013986 groupXV 9,548,590-9,550,771.  

Stickleback   ENSGACP00000024507 groupIV 15,518,375-15,519,559.  

Stickleback   ENSGACP00000005053 groupXIX 5,063,430-5,064,581.  

Stickleback   ENSGACP00000013989 groupXV 9,550,633-9,554,068.  

Stickleback   ENSGACP00000013985 groupXV 9,544,137-9,545,953.  

Stickleback   ENSGACP00000013991 groupXV 9,554,340-9,556,929.  

Stickleback   ENSGACP00000010896 groupXVI 16,119,568-16,120,711.  

Stickleback   ENSGACP00000019865 groupI 24,965,025-24,966,188  

Stickleback   ENSGACP00000006492 groupI 628,832-630,104.  

Stickleback   ENSGACP00000013505 groupI 10,334,339-10,336,025.  

Stickleback   ENSGACP00000006495 groupI 638,917-644,877.  

Stickleback   ENSGACP00000021871 groupIX 4,534,658-4,536,191.  

Stickleback   ENSGACP00000013498 groupI 10,325,442-10,326,592.  

Stickleback   ENSGACP00000018857 groupIII 3,261,595-3,267,024.  

Stickleback   ENSGACP00000025060 groupVII 1,825,852-1,827,570.  

Stickleback   ENSGACP00000025070 groupVII 1,847,986-1,849,223.  

Stickleback   ENSGACP00000025072 groupVII 1,852,514-1,854,003.  

Stickleback   ENSGACP00000023536 groupIII 16,033,511-16,034,929.  

Medaka   ENSORLP00000002219 10 7,033,469-7,035,501.  

Medaka   GENSCAN00000054265  scaffold6_contig5754 3,835-4,848.  

Medaka   ENSORLP00000007398 13 12,276,545-12,277,609.  

Medaka   ENSORLP00000012926 10 23,776,892-23,778,001.  

Medaka   GENSCAN00000058831  scaffold40_contig27481 1,322-2,938.  

Medaka   ENSORLP00000013995 21 9,360,855-9,362,297.  

Medaka   GENSCAN00000093228  scaffold113_contig52046 870-2,045.  

Medaka   ENSORLP00000016967 14 24,582,440-24,585,642.  

Medaka   ENSORLP00000019532 13 32,065,644-32,068,080.  

Medaka   ENSORLP00000020401 7 25,577,394-25,579,349.  

Medaka   ENSORLP00000020821 17 25,697,062-25,699,648.  

Medaka   ENSORLP00000003758 13 6,303,968-6,307,443.  

Medaka   ENSORLP00000007457 13 12,413,570-12,414,881.  

 

http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXIII:9878841-9880899
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXIV:856996-858082
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXIV:844787-846001
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupIV:94613-97364
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXIII:9865275-9867291
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXIV:851632-855772
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXV:9558404-9560352
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupX:2121801-2122745
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupX:2125535-2126404
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXXI:8276903-8278051
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXV:9548590-9550771
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupIV:15518375-15519559
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXIX:5063430-5064581
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXV:9550633-9554068
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXV:9544137-9545953
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXV:9554340-9556929
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupXVI:16119568-16120711
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:24965025-24966188
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:628832-630104
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:10334339-10336025
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:638917-644877
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupIX:4534658-4536191
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupI:10325442-10326592
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupIII:3261595-3267024
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupVII:1825852-1827570
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupVII:1847986-1849223
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupVII:1852514-1854003
http://www.ensembl.org/Gasterosteus_aculeatus/contigview?l=groupIII:16033511-16034929
http://www.ensembl.org/Oryzias_latipes/contigview?l=10:7033469-7035501
http://www.ensembl.org/Oryzias_latipes/transview?transcript=GENSCAN00000054265;db=core
http://www.ensembl.org/Oryzias_latipes/contigview?l=scaffold6_contig5754:3835-4848
http://www.ensembl.org/Oryzias_latipes/contigview?l=13:12276545-12277609
http://www.ensembl.org/Oryzias_latipes/contigview?l=10:23776892-23778001
http://www.ensembl.org/Oryzias_latipes/transview?transcript=GENSCAN00000058831;db=core
http://www.ensembl.org/Oryzias_latipes/contigview?l=scaffold40_contig27481:1322-2938
http://www.ensembl.org/Oryzias_latipes/contigview?l=21:9360855-9362297
http://www.ensembl.org/Oryzias_latipes/transview?transcript=GENSCAN00000093228;db=core
http://www.ensembl.org/Oryzias_latipes/contigview?l=scaffold113_contig52046:870-2045
http://www.ensembl.org/Oryzias_latipes/contigview?l=14:24582440-24585642
http://www.ensembl.org/Oryzias_latipes/contigview?l=13:32065644-32068080
http://www.ensembl.org/Oryzias_latipes/contigview?l=7:25577394-25579349
http://www.ensembl.org/Oryzias_latipes/contigview?l=17:25697062-25699648
http://www.ensembl.org/Oryzias_latipes/contigview?l=13:6303968-6307443
http://www.ensembl.org/Oryzias_latipes/contigview?l=13:12413570-12414881
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Medaka   ENSORLP00000010446 14 16,429,346-16,430,576.  

Medaka   ENSORLP00000012929 20 17,310,797-17,311,732.  

Medaka   GENSCAN00000039365  scaffold31_contig22747 865-1,788.  

Medaka   ENSORLP00000007471 13 12,420,330-12,422,728.  

Medaka   ENSORLP00000012907 13 19,920,732-19,923,609.  

Medaka   GENSCAN00000122403  scaffold124_contig54616 1,369-2,403.  

Medaka   ENSORLP00000012933 10 23,791,767-23,800,457.  

Medaka   ENSORLP00000012975 18 25,499,030-25,500,316.  

Medaka   GENSCAN00000118089  scaffold87_contig44759 1,479-2,606.  

Medaka   GENSCAN00000078942.  scaffold113_contig52045 1,818-3,814.  

Medaka   GENSCAN00000043172  scaffold113_contig52044 19,805-22,435.  

Medaka   ENSORLP00000019495 4 28,526,262-28,528,623.  

Medaka   GENSCAN00000094078  scaffold12_contig11312 12,331-13,296.  

Medaka   GENSCAN00000043609  scaffold265_contig80368 1,608-2,663.  

Medaka   ENSORLP00000012595 20 16,658,187-16,659,464.  

Medaka   ENSORLP00000001770 13 2,971,912-2,978,149.  

Medaka   ENSORLP00000008955 13 14,370,077-14,371,428.  

Medaka   ENSORLP00000004359 18 4,855,220-4,857,861.  

Medaka   ENSORLP00000016190 22 6,473,385-6,476,684.  

Medaka   ENSORLP00000022742 24 23,947,426-23,948,451.  

Medaka   ENSORLP00000002716 12 2,487,239-2,488,102.  

Medaka   ENSORLP00000013679 21 8,754,070-8,758,495.  

Medaka   ENSORLP00000002719 12 2,500,854-2,505,755.  

Medaka   ENSORLP00000012243 9 13,758,433-13,759,293.  

Medaka   ENSORLP00000002728 12 2,510,670-2,512,451.  

Medaka   ENSORLP00000012252 9 13,773,407-13,775,175.  

Medaka   ENSORLP00000016151 22 6,420,792-6,424,168.  

Medaka   ENSORLP00000016176 22 6,435,128-6,437,006.  

Medaka   ENSORLP00000016172 22 6,430,001-6,431,425.  

Medaka   ENSORLP00000011345 11 18,725,568-18,726,452.  

Medaka   ENSORLP00000018838 16 22,038,177-22,039,559.  

Medaka   ENSORLP00000011361 11 18,729,700-18,731,512.  

Medaka   ENSORLP00000010534 10 18,866,733-18,867,974.  

Medaka   ENSORLP00000016185 22 6,440,215-6,442,229.  

Medaka   ENSORLP00000006057 2 28,193,626-28,194,765.  

Medaka   ENSORLP00000017154 21 14,053,477-14,054,570.  

Medaka   ENSORLP00000000417 13 188,698-189,741.  

Medaka   ENSORLP00000000420 13 200,515-202,585.  

Medaka   ENSORLP00000007515 13 12,492,576-12,493,881.  

Medaka   ENSORLP00000000443 13 226,304-229,283.  

Medaka   ENSORLP00000007530 13 12,502,909-12,504,826.  

 

http://www.ensembl.org/Oryzias_latipes/contigview?l=14:16429346-16430576
http://www.ensembl.org/Oryzias_latipes/contigview?l=20:17310797-17311732
http://www.ensembl.org/Oryzias_latipes/transview?transcript=GENSCAN00000039365;db=core
http://www.ensembl.org/Oryzias_latipes/contigview?l=scaffold31_contig22747:865-1788
http://www.ensembl.org/Oryzias_latipes/contigview?l=13:12420330-12422728
http://www.ensembl.org/Oryzias_latipes/contigview?l=13:19920732-19923609
http://www.ensembl.org/Oryzias_latipes/transview?transcript=GENSCAN00000122403;db=core
http://www.ensembl.org/Oryzias_latipes/contigview?l=scaffold124_contig54616:1369-2403
http://www.ensembl.org/Oryzias_latipes/contigview?l=10:23791767-23800457
http://www.ensembl.org/Oryzias_latipes/contigview?l=18:25499030-25500316
http://www.ensembl.org/Oryzias_latipes/transview?transcript=GENSCAN00000118089;db=core
http://www.ensembl.org/Oryzias_latipes/contigview?l=scaffold87_contig44759:1479-2606
http://www.ensembl.org/Oryzias_latipes/transview?transcript=GENSCAN00000078942;db=core
http://www.ensembl.org/Oryzias_latipes/contigview?l=scaffold113_contig52045:1818-3814
http://www.ensembl.org/Oryzias_latipes/transview?transcript=GENSCAN00000043172;db=core
http://www.ensembl.org/Oryzias_latipes/contigview?l=scaffold113_contig52044:19805-22435
http://www.ensembl.org/Oryzias_latipes/contigview?l=4:28526262-28528623
http://www.ensembl.org/Oryzias_latipes/transview?transcript=GENSCAN00000094078;db=core
http://www.ensembl.org/Oryzias_latipes/contigview?l=scaffold12_contig11312:12331-13296
http://www.ensembl.org/Oryzias_latipes/transview?transcript=GENSCAN00000043609;db=core
http://www.ensembl.org/Oryzias_latipes/contigview?l=scaffold265_contig80368:1608-2663
http://www.ensembl.org/Oryzias_latipes/contigview?l=20:16658187-16659464
http://www.ensembl.org/Oryzias_latipes/contigview?l=13:2971912-2978149
http://www.ensembl.org/Oryzias_latipes/contigview?l=13:14370077-14371428
http://www.ensembl.org/Oryzias_latipes/contigview?l=18:4855220-4857861
http://www.ensembl.org/Oryzias_latipes/contigview?l=22:6473385-6476684
http://www.ensembl.org/Oryzias_latipes/contigview?l=24:23947426-23948451
http://www.ensembl.org/Oryzias_latipes/contigview?l=12:2487239-2488102
http://www.ensembl.org/Oryzias_latipes/contigview?l=21:8754070-8758495
http://www.ensembl.org/Oryzias_latipes/contigview?l=12:2500854-2505755
http://www.ensembl.org/Oryzias_latipes/contigview?l=9:13758433-13759293
http://www.ensembl.org/Oryzias_latipes/contigview?l=12:2510670-2512451
http://www.ensembl.org/Oryzias_latipes/contigview?l=9:13773407-13775175
http://www.ensembl.org/Oryzias_latipes/contigview?l=22:6420792-6424168
http://www.ensembl.org/Oryzias_latipes/contigview?l=22:6435128-6437006
http://www.ensembl.org/Oryzias_latipes/contigview?l=22:6430001-6431425
http://www.ensembl.org/Oryzias_latipes/contigview?l=11:18725568-18726452
http://www.ensembl.org/Oryzias_latipes/contigview?l=16:22038177-22039559
http://www.ensembl.org/Oryzias_latipes/contigview?l=11:18729700-18731512
http://www.ensembl.org/Oryzias_latipes/contigview?l=10:18866733-18867974
http://www.ensembl.org/Oryzias_latipes/contigview?l=22:6440215-6442229
http://www.ensembl.org/Oryzias_latipes/contigview?l=2:28193626-28194765
http://www.ensembl.org/Oryzias_latipes/contigview?l=21:14053477-14054570
http://www.ensembl.org/Oryzias_latipes/contigview?l=13:188698-189741
http://www.ensembl.org/Oryzias_latipes/contigview?l=13:200515-202585
http://www.ensembl.org/Oryzias_latipes/contigview?l=13:12492576-12493881
http://www.ensembl.org/Oryzias_latipes/contigview?l=13:226304-229283
http://www.ensembl.org/Oryzias_latipes/contigview?l=13:12502909-12504826
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Medaka   ENSORLP00000012908 13 19,921,273-19,924,973.  

Medaka   ENSORLP00000015583 17 18,607,766-18,617,315.  

Medaka   ENSORLP00000023635 scaffold474 194,770-197,848.  

Medaka   ENSORLP00000023642 scaffold474 207,648-208,411.  

Medaka   ENSORLP00000003694 17 3,206,894-3,208,153.  

Tetraodon CAF90112.1  GSTENP00004207001 1 9,280,563-9,281,691.  

Tetraodon CAF97358.1  GSTENP00014693001 7 9,860,643-9,862,235.  

Tetraodon CAG00913.1  GSTENP00019495001 10 9,464,265-9,465,341.  

Tetraodon CAG03809.1  GSTENP00023354001 9 10,281,976-10,282,794.  

Tetraodon CAG04290.1  GSTENP00023967001 6 3,782,208-3,782,984.  

Tetraodon   GSTENP00026760001 16 7,549,182-7,557,621.  

Tetraodon CAG10424.1 GSTENP00032057001 10 7,304,828-7,305,844.  

Tetraodon CAG14539.1 GSTENP00036486001 1 9,273,208-9,273,996.  

Tetraodon   GSTENP00004208001 1 9,295,942-9,296,815.  

Tetraodon CAF97378.1  GSTENP00014719001 16 2,404,478-2,405,551.  

Tetraodon CAG00917.1  GSTENP00019499001 10 9,527,289-9,528,587.  

Tetraodon CAG03842.1  GSCT00003286001  9 10,082,246-10,086,911.  

Tetraodon CAG04953.1 GSTENP00024817001 3 2,951,632-2,952,531.  

Tetraodon CAG07299.1  GSTENP00027920001 2 7,883,721-7,884,698.  

Tetraodon CAG12186.1 GSTENP00034382001 3 11,549,843-11,550,697.  

Tetraodon CAG14148.1 GSTENP00037810001 1 9,270,565-9,271,759.  

Tetraodon   GSTENP00009815001 Un_random 116,432,397-116,448,838  

Tetraodon   GSTENP00014725001 16 2,343,694-2,344,584.  

Tetraodon CAG03844.1 GSTENP00023395001 9 10,073,298-10,074,278.  

Tetraodon CAG05650.1 GSTENP00025746001 1_random 735,645-736,658.  

Tetraodon CAG09809.1 GSTENP00031240001 1 8,499,289-8,500,194.  

Tetraodon CAG12785.1 GSTENP00035226001 16 5,864,119-5,865,153.  

Tetraodon   GSTENP00014840001 16 1,322,744-1,323,541.  

Tetraodon CAG12733.1 GSTENP00035167001 16 6,377,491-6,378,788.  

Tetraodon   GSTENP00016932001 10 1,794,376-1,796,696.  

Tetraodon   GSTENP00035124001 Un_random 20,462,662-20,464,181.  

Tetraodon CAG02919.1 GSTENP00022162001 7 5,193,542-5,194,447.  

Tetraodon   GSTENP00028691001 12 2,774,950-2,775,867.  

Tetraodon   GSTENP00028689001 12 2,785,371-2,786,216.  

Tetraodon   GSTENP00025234001 Un_random 1,558,254-1,559,111.  

Tetraodon   GSTENP00025233001 Un_random 1,563,434-1,567,759.  

Tetraodon   GSTENP00025232001 Un_random 1,569,345-1,570,370.  

Tetraodon   GSTENG00012077001 Un_random 47,547,810-47,548,679.  

Tetraodon   GSTENP00001382001 Un_random 71,283,807-71,284,259.  

Tetraodon   GSTENP00032031001 10 7,479,304-7,483,281.  

Tetraodon CAF89689.1 GSTENP00003669001 Un_random 83,331,664-83,332,485.  

 

http://www.ensembl.org/Oryzias_latipes/contigview?l=13:19921273-19924973
http://www.ensembl.org/Oryzias_latipes/contigview?l=17:18607766-18617315
http://www.ensembl.org/Oryzias_latipes/contigview?l=scaffold474:194770-197848
http://www.ensembl.org/Oryzias_latipes/contigview?l=scaffold474:207648-208411
http://www.ensembl.org/Oryzias_latipes/contigview?l=17:3206894-3208153
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=1:9280563-9281691
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=7:9860643-9862235
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=10:9464265-9465341
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=9:10281976-10282794
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=6:3782208-3782984
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=16:7549182-7557621
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=10:7304828-7305844
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=1:9273208-9273996
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=1:9295942-9296815
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=16:2404478-2405551
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=10:9527289-9528587
http://www.ensembl.org/Tetraodon_nigroviridis/transview?transcript=GSCT00003286001;db=core
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=9:10082246-10086911
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=3:2951632-2952531
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=2:7883721-7884698
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=3:11549843-11550697
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=1:9270565-9271759
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:116432397-116448838
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=16:2343694-2344584
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=9:10073298-10074278
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=1_random:735645-736658
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=1:8499289-8500194
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=16:5864119-5865153
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=16:1322744-1323541
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=16:6377491-6378788
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=10:1794376-1796696
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:20462662-20464181
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=7:5193542-5194447
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=12:2774950-2775867
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=12:2785371-2786216
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:1558254-1559111
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:1563434-1567759
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:1569345-1570370
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:47547810-47548679
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:71283807-71284259
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=10:7479304-7483281
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:83331664-83332485
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Tetraodon   GSTENP00022723001 Un_random 22,471,163-22,472,059.  

Tetraodon   GSTENP00022725001 Un_random 22,483,850-22,484,861.  

Tetraodon   GSTENP00001856001 Un_random 57,930,073-57,930,654.  

Tetraodon   GSTENP00003668001 Un_random 83,327,996-83,329,049.  

Tetraodon   GSTENP00008852001 Un_random 110,447,989-110,448,855.  

Tetraodon CAG04270.1 GSTENP00023936001 6 3,386,437-3,387,465.  

Tetraodon   GSTENP00029336001 1 4,022,343-4,023,317  

Tetraodon   GSTENP00027186001 3 5,654,006-5,655,053.  

Tetraodon CAF94854.1 GSTENP00011245001 Un_random 124,740,695-124,741,660.  

Tetraodon   GSTENP00014732001 16 2,302,536-2,303,345.  

Tetraodon   GSTENP00014733001 16 2,250,394-2,251,875.  

Tetraodon   GSTENP00010007001 Un_random 117,578,407-117,580,225.  

Tetraodon   GSTENP00014269001 Un_random 21,987,145-21,988,507.  

Tetraodon   GSTENP00014270001 Un_random 21,984,004-21,984,779.  

Fugu   SINFRUP00000141264 scaffold_417 98,990-100,638.  

Fugu   GENSCANSLICE00000028178  scaffold_163 452,712-453,946.  

Fugu   SINFRUP00000159316 scaffold_36 699,699-700,589.  

Fugu   SINFRUP00000179409 scaffold_19 1,437,922-1,438,965.  

Fugu   SINFRUP00000181180 scaffold_15 233,344-234,201.  

Fugu   SINFRUP00000182177 scaffold_132 490,310-491,281.  

Fugu   SINFRUP00000141960 scaffold_6 1,757,599-1,762,074.  

Fugu   SINFRUP00000151445 scaffold_173 468,694-469,756.  

Fugu   SINFRUP00000161432 scaffold_31 471,544-481,436.  

Fugu   SINFRUP00000177522 scaffold_13 126,997-128,013.  

Fugu   SINFRUP00000179625 scaffold_344 182,644-183,670.  

Fugu   SINFRUP00000181229 scaffold_10 1,241,330-1,242,346.  

Fugu   SINFRUP00000183021 scaffold_9 155,401-156,462.  

Fugu   SINFRUP00000147658 scaffold_142 539,835-540,680.  

Fugu   SINFRUP00000151908 scaffold_200 69,219-70,007.  

Fugu   SINFRUP00000165330 scaffold_173 403,846-405,443.  

Fugu   SINFRUP00000179172 scaffold_304 292,446-293,420.  

Fugu   SINFRUP00000180200 scaffold_163 433,438-434,301.  

Fugu   SINFRUP00000181470 scaffold_2435 816-10,342.  

Fugu   GENSCANSLICE00000028179  scaffold_163 457,415-459,054.  

Fugu   GENSCANSLICE00000028180  scaffold_163 461,378-462,478.  

Fugu   SINFRUP00000181476 scaffold_142 156,792-157,868.  

Fugu   SINFRUP00000178171 scaffold_304 59,403-60,263.  

Fugu   SINFRUP00000128368 scaffold_19 1,991,283-1,993,128.  

Fugu   SINFRUP00000136318 scaffold_34 596,236-601,178.  

Fugu   SINFRUP00000178764 scaffold_757 25,197-26,213.  

Fugu   SINFRUP00000177569 scaffold_9 1,251,655-1,252,494.  

 

http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:22471163-22472059
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:22483850-22484861
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:57930073-57930654
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:83327996-83329049
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:110447989-110448855
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=6:3386437-3387465
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=1:4022343-4023317
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=3:5654006-5655053
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:124740695-124741660
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=16:2302536-2303345
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=16:2250394-2251875
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:117578407-117580225
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:21987145-21988507
http://www.ensembl.org/Tetraodon_nigroviridis/contigview?l=Un_random:21984004-21984779
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_417:98990-100638
http://www.ensembl.org/Takifugu_rubripes/transview?transcript=GENSCANSLICE00000028178;db=core
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_163:452712-453946
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_36:699699-700589
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_19:1437922-1438965
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_15:233344-234201
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_132:490310-491281
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_6:1757599-1762074
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_173:468694-469756
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_31:471544-481436
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_13:126997-128013
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_344:182644-183670
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_10:1241330-1242346
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_9:155401-156462
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_142:539835-540680
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_200:69219-70007
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_173:403846-405443
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_304:292446-293420
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_163:433438-434301
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_2435:816-10342
http://www.ensembl.org/Takifugu_rubripes/transview?transcript=GENSCANSLICE00000028179;db=core
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_163:457415-459054
http://www.ensembl.org/Takifugu_rubripes/transview?transcript=GENSCANSLICE00000028180;db=core
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_163:461378-462478
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_142:156792-157868
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_304:59403-60263
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_19:1991283-1993128
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_34:596236-601178
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_757:25197-26213
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_9:1251655-1252494
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Fugu   SINFRUP00000180629 scaffold_276 317,473-318,520.  

Fugu   SINFRUP00000130845 scaffold_27 140,400-141,482.  

Fugu   SINFRUP00000180210 scaffold_27 153,992-154,652.  

Fugu   SINFRUP00000130847 scaffold_27 143,059-146,762.  

Fugu   SINFRUP00000182548 scaffold_4 636,672-637,589.  

Fugu   SINFRUP00000178146 scaffold_4 647,031-647,867.  

Fugu   SINFRUP00000150183 scaffold_10 1,426,614-1,427,435.  

Fugu   SINFRUP00000150187 scaffold_10 1,431,395-1,436,521.  

Fugu   SINFRUP00000178352 scaffold_69 1,033,517-1,034,392.  

Fugu   SINFRUP00000180383 scaffold_573 73,946-74,974.  

Fugu   SINFRUP00000179870 scaffold_69 1,030,701-1,031,549.  

Fugu   SINFRUP00000180345 scaffold_35 257,783-278,516.  

Fugu   SINFRUP00000128201 scaffold_5 451,609-452,583.  

Fugu   SINFRUP00000134030 scaffold_2 2,814,874-2,816,085.  

Fugu Q6XCB2_FUGRU SINFRUP00000134141 scaffold_32 973,830-974,966.  

Fugu   SINFRUP00000138083 scaffold_9 270,357-271,854.  

Fugu   SINFRUP00000180272 scaffold_12867 1,217-2,206.  

Fugu   SINFRUP00000166034 scaffold_2529 63-482.  

Fugu   SINFRUP00000150750 scaffold_163 452,796-462,394.  

Fugu   SINFRUP00000155363 scaffold_716 35,269-39,611.  

Fugu   SINFRUP00000157228 scaffold_305 44,870-46,603.  

Fugu   SINFRUP00000170718 scaffold_305 41,858-42,676.  

Fugu   SINFRUP00000164123 scaffold_462 117,948-121,088.  

Xenopus   ENSXETP00000001218 scaffold_130 528,586-529,670.  

Xenopus   GENSCAN00000027135  scaffold_48 2,631,405-2,632,370  

Xenopus NP_989039.1  ENSXETP00000023462 scaffold_277 1,183,627-1,184,676.  

Xenopus   GENSCAN00000028902 scaffold_556 23,850-31,057.  

Xenopus   ENSXETP00000044584 scaffold_713 529,705-530,571.  

Xenopus NP_001005433.1 ENSXETP00000047746 scaffold_92 404,770-405,711.  

Xenopus   ENSXETP00000053971 scaffold_277 1,191,953-1,192,360.  

Xenopus AAI21412.1 ENSXETP00000057692 scaffold_50 3,698,831-3,699,916.  

Xenopus   ENSXETP00000006574 scaffold_55 1,602,120-1,603,226.  

Xenopus   ENSXETP00000014700 scaffold_617 169,876-181,095.  

Xenopus   ENSXETP00000023463 scaffold_277 1,281,118-1,282,056.  

Xenopus NP_001008003.1  ENSXETP00000028210 scaffold_478 164,090-165,151.  

Xenopus NP_001025633.1 ENSXETP00000050144 scaffold_117 1,200,375-1,202,006.  

Xenopus   ENSXETP00000056279 scaffold_55 1,659,665-1,704,222.  

Xenopus   ENSXETP00000056282 scaffold_55 1,612,669-1,644,858.  

Xenopus   ENSXETP00000022341 scaffold_258 869,068-870,102.  

Xenopus   ENSXETP00000024345 scaffold_390 661,523-663,920.  

Xenopus   ENSXETP00000041128 scaffold_877 291,943-292,974.  

 

http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_276:317473-318520
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_27:140400-141482
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_27:153992-154652
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_27:143059-146762
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_4:636672-637589
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_4:647031-647867
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_10:1426614-1427435
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_10:1431395-1436521
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_69:1033517-1034392
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_573:73946-74974
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_69:1030701-1031549
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_35:257783-278516
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_5:451609-452583
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_2:2814874-2816085
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_32:973830-974966
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_9:270357-271854
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_12867:1217-2206
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_2529:63-482
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_163:452796-462394
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_716:35269-39611
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_305:44870-46603
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_305:41858-42676
http://www.ensembl.org/Takifugu_rubripes/contigview?l=scaffold_462:117948-121088
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_130:528586-529670
http://www.ensembl.org/Xenopus_tropicalis/transview?transcript=GENSCAN00000027135;db=core
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_48:2631405-2632370
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_277:1183627-1184676
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_556:23850-31057
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_713:529705-530571
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_92:404770-405711
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_277:1191953-1192360
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_50:3698831-3699916
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_55:1602120-1603226
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_617:169876-181095
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_277:1281118-1282056
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_478:164090-165151
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_117:1200375-1202006
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_55:1659665-1704222
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_55:1612669-1644858
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_258:869068-870102
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_390:661523-663920
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_877:291943-292974
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Xenopus   ENSXETP00000044651 scaffold_713 576,320-577,297.  

Xenopus   ENSXETP00000053350 scaffold_258 688,808-689,779.  

Xenopus   GENSCAN00000027075  scaffold_48 2,648,100-2,649,110.  

Xenopus   GENSCAN00000027116  scaffold_48 2,640,321-2,641,340.  

Xenopus AAI21581.1  ENSXETP00000036876 scaffold_409 480,582-481,628.  

Xenopus   ENSXETP00000056732 scaffold_49 2,548,951-2,551,091.  

Xenopus NP_001004810.1 ENSXETP00000036888 scaffold_409 472,761-473,795.  

Xenopus   GENSCAN00000056936  scaffold_258 721,618-722,670.  

Xenopus   ENSXETP00000005770 scaffold_65 2,996,388-2,997,427.  

Xenopus   ENSXETP00000029577 scaffold_94 297,797-301,454.  

Xenopus   ENSXETP00000053195 scaffold_64 3,012,135-3,072,453.  

Xenopus   ENSXETP00000007235 scaffold_113 2,609,822-2,623,507.  

Xenopus   ENSXETP00000007247 scaffold_113 2,540,085-2,543,035.  

Xenopus   ENSXETP00000037231 scaffold_679 513,772-514,803.  

Xenopus   ENSXETP00000055469 scaffold_351 404,849-446,304.  

Xenopus   ENSXETP00000055467 scaffold_351 561,182-586,791.  

Xenopus   ENSXETP00000055471 scaffold_351 404,825-446,304.  

Xenopus   ENSXETP00000055468 scaffold_351 445,507-561,179.  

Xenopus   ENSXETP00000030483 scaffold_185 1,199,131-1,200,124.  

Xenopus   ENSXETP00000035060 scaffold_284 533,931-534,971.  

Xenopus   ENSXETP00000053184 scaffold_518 693,316-694,374  

Xenopus NP_001025605.1  GENSCAN00000014227  scaffold_15 2,143,102-2,157,196.  

Xenopus   ENSXETP00000039815 scaffold_258 95,871-96,999.  

Xenopus   ENSXETP00000054789 scaffold_35 815,812-816,315  

Xenopus   ENSXETP00000044545 scaffold_713 241,894-266,458.  

Xenopus   ENSXETP00000044559 scaffold_713 279,493-298,555.  

Xenopus   ENSXETP00000044560 scaffold_713 310,839-311,852.  

Xenopus   ENSXETP00000054000 scaffold_1836 17,997-20,696.  

Xenopus   FGENESH00000006348  scaffold_689 106,939-107,796.  

Xenopus   GENSCAN00000076358.  scaffold_702 381,863-384,168.  

Xenopus   ENSXETP00000017831 scaffold_279.  976,995-982,811.  

Xenopus   GENSCAN00000062538 scaffold_408 117,883-118,941.  

Xenopus   GENSCAN00000053024 scaffold_31 3,188,819-3,211,089.  

Xenopus   GENSCAN00000051641 scaffold_224 1,372,416-1,373,420.  

Xenopus   ENSXETP00000044537 scaffold_713 241,363-242,793.  

Xenopus   ENSXETP00000026874 scaffold_2462.  143-703.  

Xenopus   ENSXETP00000039948 scaffold_258.  689,790-722,625.  

Xenopus   ENSXETP00000037521 scaffold_556.  30,089-50,629.  

Xenopus   ENSXETP00000023462 scaffold_277.  1,183,627-1,184,676.  

Xenopus   ENSXETP00000037509 scaffold_91.  2,737,577-2,757,895.  

Xenopus   GENSCAN00000040353.  scaffold_277.  1,427,223-1,463,817.  

 

http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_713:576320-577297
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_258:688808-689779
http://www.ensembl.org/Xenopus_tropicalis/transview?transcript=GENSCAN00000027075;db=core
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_48:2648100-2649110
http://www.ensembl.org/Xenopus_tropicalis/transview?transcript=GENSCAN00000027116;db=core
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_48:2640321-2641340
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_409:480582-481628
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_49:2548951-2551091
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_409:472761-473795
http://www.ensembl.org/Xenopus_tropicalis/transview?transcript=GENSCAN00000056936;db=core
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_258:721618-722670
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_65:2996388-2997427
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_94:297797-301454
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_64:3012135-3072453
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_113:2609822-2623507
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_113:2540085-2543035
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_679:513772-514803
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_351:404849-446304
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_351:561182-586791
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_351:404825-446304
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_351:445507-561179
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_185:1199131-1200124
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_284:533931-534971
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_518:693316-694374
http://www.ensembl.org/Xenopus_tropicalis/transview?transcript=GENSCAN00000014227;db=core
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_15:2143102-2157196
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_258:95871-96999
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_35:815812-816315
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_713:241894-266458
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_713:279493-298555
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_713:310839-311852
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_1836:17997-20696
http://www.ensembl.org/Xenopus_tropicalis/transview?transcript=FGENESH00000006348;db=core
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_689:106939-107796
http://www.ensembl.org/Xenopus_tropicalis/transview?transcript=GENSCAN00000076358;db=core
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_702:381863-384168
http://www.ensembl.org/Xenopus_tropicalis/contigview?region=scaffold_279
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_279:976995-982811
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_408:117883-118941
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_31:3188819-3211089
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_224:1372416-1373420
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_713:241363-242793
http://www.ensembl.org/Xenopus_tropicalis/contigview?region=scaffold_2462
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_2462:143-703
http://www.ensembl.org/Xenopus_tropicalis/contigview?region=scaffold_258
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_258:689790-722625
http://www.ensembl.org/Xenopus_tropicalis/contigview?region=scaffold_556
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_556:30089-50629
http://www.ensembl.org/Xenopus_tropicalis/contigview?region=scaffold_277
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_277:1183627-1184676
http://www.ensembl.org/Xenopus_tropicalis/contigview?region=scaffold_91
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_91:2737577-2757895
http://www.ensembl.org/Xenopus_tropicalis/transview?transcript=GENSCAN00000040353;db=core
http://www.ensembl.org/Xenopus_tropicalis/contigview?region=scaffold_277
http://www.ensembl.org/Xenopus_tropicalis/contigview?l=scaffold_277:1427223-1463817
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Human   ENSP00000171757 X  78,102,674-78,103,693.  

Human   ENSP00000276077 X  78,313,161-78,314,162.  

Human   ENSP00000309771 11 72,685,212-72,686,198.  

Human   ENSP00000323872 19 10,083,398-10,086,414.  

Human   ENSP00000344353 13 47,883,526-47,884,560.  

Human   ENSP00000362398 X  77,897,023-77,898,135.  

Human   ENSP00000365888 13 96,437,001-96,438,014.  

Human   ENSP00000258380 2 231,482,962-231,483,921.  

Human   ENSP00000301974 1 28,349,091-28,350,119.  

Human   ENSP00000310305 11 72,622,853-72,623,986.  

Human   ENSP00000327875 12 6,599,557-6,600,675.  

Human   ENSP00000355156 3 153,080,371-153,082,026.  

Human   ENSP00000362401 X  77,414,886-77,415,899.  

Human   ENSP00000272644 2 128,124,057-128,125,799.  

Human   ENSP00000282018 13 48,178,955-48,179,995.  

Human   ENSP00000304767 3 154,036,262-154,037,383.  

Human   ENSP00000322731 2 241,218,043-241,218,972.  

Human   ENSP00000335289 X  69,395,102-69,396,199.  

Human   ENSP00000362397 X  78,227,089-78,228,101.  

Human   ENSP00000365596 13 98,745,315-98,746,400.  

Human   ENSP00000372385 3 160,041,482-160,042,567.  

Human   ENSP00000238699 14 90,770,050-90,771,177.  

Human   ENSP00000328818 14 104,588,376-104,592,802.  

Human   ENSP00000267549 14 87,546,945-87,547,958.  

Human   ENSP00000319744 19 50,785,876-50,786,964.  

Human   ENSP00000248076 19 16,861,001-16,862,432.  

Human   ENSP00000321326 5 76,047,889-76,065,084.  

Human   ENSP00000296641 5 75,949,163-75,954,811.  

Human   ENSP00000296677 5 76,150,764-76,165,382.  

Human   ENSP00000370697 X  1,544,372-1,545,451.  

Human   ENSP00000307713 14 95,773,198-95,777,594.  

Human   ENSP00000246538 19 40,554,102-40,555,142.  

Human   ENSP00000246549 19 40,632,457-40,633,449.  

Human   ENSP00000328230 19 40,541,633-40,542,673.  

Human   ENSP00000216629 14 95,799,773-95,800,834  

Human   ENSP00000273430 3 149,941,513-149,942,592.  

Human   ENSP00000360973 X  115,217,562-115,218,653.  

Human   ENSP00000367376 X  41,439,831-41,440,976.  

Human   ENSP00000307259 3 152,538,295-152,539,323.  

Human   ENSP00000308479 3 152,398,904-152,399,863.  

Human   ENSP00000308361 3 152,413,778-152,414,794.  

 

http://www.ensembl.org/Homo_sapiens/contigview?l=X:78102674-78103693
http://www.ensembl.org/Homo_sapiens/contigview?l=X:78313161-78314162
http://www.ensembl.org/Homo_sapiens/contigview?l=11:72685212-72686198
http://www.ensembl.org/Homo_sapiens/contigview?l=19:10083398-10086414
http://www.ensembl.org/Homo_sapiens/contigview?l=13:47883526-47884560
http://www.ensembl.org/Homo_sapiens/contigview?l=X:77897023-77898135
http://www.ensembl.org/Homo_sapiens/contigview?l=13:96437001-96438014
http://www.ensembl.org/Homo_sapiens/contigview?l=2:231482962-231483921
http://www.ensembl.org/Homo_sapiens/contigview?l=1:28349091-28350119
http://www.ensembl.org/Homo_sapiens/contigview?l=11:72622853-72623986
http://www.ensembl.org/Homo_sapiens/contigview?l=12:6599557-6600675
http://www.ensembl.org/Homo_sapiens/contigview?l=3:153080371-153082026
http://www.ensembl.org/Homo_sapiens/contigview?l=X:77414886-77415899
http://www.ensembl.org/Homo_sapiens/contigview?l=2:128124057-128125799
http://www.ensembl.org/Homo_sapiens/contigview?l=13:48178955-48179995
http://www.ensembl.org/Homo_sapiens/contigview?l=3:154036262-154037383
http://www.ensembl.org/Homo_sapiens/contigview?l=2:241218043-241218972
http://www.ensembl.org/Homo_sapiens/contigview?l=X:69395102-69396199
http://www.ensembl.org/Homo_sapiens/contigview?l=X:78227089-78228101
http://www.ensembl.org/Homo_sapiens/contigview?l=13:98745315-98746400
http://www.ensembl.org/Homo_sapiens/contigview?l=3:160041482-160042567
http://www.ensembl.org/Homo_sapiens/contigview?l=14:90770050-90771177
http://www.ensembl.org/Homo_sapiens/contigview?l=14:104588376-104592802
http://www.ensembl.org/Homo_sapiens/contigview?l=14:87546945-87547958
http://www.ensembl.org/Homo_sapiens/contigview?l=19:50785876-50786964
http://www.ensembl.org/Homo_sapiens/contigview?l=19:16861001-16862432
http://www.ensembl.org/Homo_sapiens/contigview?l=5:76047889-76065084
http://www.ensembl.org/Homo_sapiens/contigview?l=5:75949163-75954811
http://www.ensembl.org/Homo_sapiens/contigview?l=5:76150764-76165382
http://www.ensembl.org/Homo_sapiens/contigview?l=X:1544372-1545451
http://www.ensembl.org/Homo_sapiens/contigview?l=14:95773198-95777594
http://www.ensembl.org/Homo_sapiens/contigview?l=19:40554102-40555142
http://www.ensembl.org/Homo_sapiens/contigview?l=19:40632457-40633449
http://www.ensembl.org/Homo_sapiens/contigview?l=19:40541633-40542673
http://www.ensembl.org/Homo_sapiens/contigview?l=14:95799773-95800834
http://www.ensembl.org/Homo_sapiens/contigview?l=3:149941513-149942592
http://www.ensembl.org/Homo_sapiens/contigview?l=X:115217562-115218653
http://www.ensembl.org/Homo_sapiens/contigview?l=X:41439831-41440976
http://www.ensembl.org/Homo_sapiens/contigview?l=3:152538295-152539323
http://www.ensembl.org/Homo_sapiens/contigview?l=3:152398904-152399863
http://www.ensembl.org/Homo_sapiens/contigview?l=3:152413778-152414794
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Human   ENSP00000260843 3 152,494,647-152,500,578.  

Human   ENSP00000320376 3 152,528,469-152,529,470  

Human   ENSP00000307445 14 23,854,698-23,855,756.  

Lamprey   GENSCAN00000158257 Contig Contig28082.1 1,432-4,885.  

Lamprey   GENSCAN00000095337 Contig1237.5 6,089-8,552.  

Lamprey   GENSCAN00000077202 Contig1237.3 3,423-8,820.  

Lamprey   GENSCAN00000136436 Contig1155.4 2,435-5,646.  

Lamprey   GENSCAN00000084877 Contig23485.2 498-5,191.  

Lamprey   GENSCAN00000157564 Contig20098.3 63-1,514.  

Lamprey   GENSCAN00000121221 Contig39423.2 848-1,907.  

Lamprey   GENSCAN00000156679 Contig12084.1 4,224-5,243.  

Lamprey   GENSCAN00000037718 Contig12724.3 2,531-3,526.  

Lamprey   GENSCAN00000044642 Contig4826.2 752-6,901.  

Lamprey   GENSCAN00000063763 Contig40178.2 683-1,795.  

Lamprey   GENSCAN00000009189 Contig51058.2 818-1,990.  

Lamprey   GENSCAN00000146267 Contig20197.3 2,582-3,661.  

Lamprey   GENSCAN00000119553 Contig17584.5 2,999-4,018.  

Lamprey   GENSCAN00000128815 Contig23839.5 651-1,382.  

Lamprey   GENSCAN00000020987 Contig4102.4 8,105-9,136.  

Lamprey   GENSCAN00000047780 Contig16137.2 3,192-5,482.  

Lamprey   GENSCAN00000036578 Contig6216.2 8,939-10,219.  

Lamprey   GENSCAN00000094439 Contig5757.3 6,568-7,674.  

Lamprey   GENSCAN00000007934 Contig97.6 1,329-2,297.  

Lamprey   GENSCAN00000036479 Contig1237.4 44-528.  

Lamprey   GENSCAN00000111041 Contig80603.2 994-1,854.  

Lamprey   GENSCAN00000036489 Contig15747.3 2,752-3,891.  

Lamprey   GENSCAN00000011025 Contig28634.4 2,445-3,218.  

Lamprey   GENSCAN00000042303 Contig1593.6 6,057-11,008.  

Lamprey   GENSCAN00000014373 Contig905.7 12,484-13,392.  

Lamprey   GENSCAN00000053656 Contig6884.5 1,754-3,814.  

Lamprey   GENSCAN00000005865 Contig1100.6 1,049-2,300.  

Lamprey   GENSCAN00000119531 Contig7476.7 2,776-3,969.  

Lamprey   GENSCAN00000035238 Contig26957.2 197-1,066.  

Lamprey   GENSCAN00000118369 Contig9287.1 5,108-6,220.  

Lamprey   GENSCAN00000157983 Contig571.8 2,975-6,823.  

Lamprey   GENSCAN00000025544 Contig25590.1 314-1,366.  

Lamprey   GENSCAN00000095106 Contig20976.4 1,912-2,926.  

Lamprey   GENSCAN00000046309 Contig1126.1 507-1,202.  

Lamprey   GENSCAN00000035678 Contig80717.2 20-689.  

Lamprey   GENSCAN00000135946 Contig76467.2 524-1,061.  

Lamprey   GENSCAN00000135681 Contig17687.3 1,238-1,706.  

 

http://www.ensembl.org/Homo_sapiens/contigview?l=3:152494647-152500578
http://www.ensembl.org/Homo_sapiens/contigview?l=3:152528469-152529470
http://www.ensembl.org/Homo_sapiens/contigview?l=14:23854698-23855756
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig28082.1:1432-4885
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig1237.5:6089-8552
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig1237.3:3423-8820
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig1155.4:2435-5646
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig23485.2:498-5191
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig20098.3:63-1514
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig39423.2:848-1907
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig12084.1:4224-5243
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig12724.3:2531-3526
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig4826.2:752-6901
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig40178.2:683-1795
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig51058.2:818-1990
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig20197.3:2582-3661
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig17584.5:2999-4018
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig23839.5:651-1382
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig4102.4:8105-9136
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig16137.2:3192-5482
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig6216.2:8939-10219
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig5757.3:6568-7674
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig97.6:1329-2297
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig1237.4:44-528
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig80603.2:994-1854
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig15747.3:2752-3891
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig28634.4:2445-3218
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig1593.6:6057-11008
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig905.7:12484-13392
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig6884.5:1754-3814
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig1100.6:1049-2300
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig7476.7:2776-3969
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig26957.2:197-1066
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig9287.1:5108-6220
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig571.8:2975-6823
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig25590.1:314-1366
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig20976.4:1912-2926
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig1126.1:507-1202
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig80717.2:20-689
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig76467.2:524-1061
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig17687.3:1238-1706
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Lamprey   GENSCAN00000027224 Contig905.5 3,391-4,299.  

Lamprey   GENSCAN00000067925 Contig32517.2 472-1,793.  

Lamprey   GENSCAN00000127875 Contig47802.2 24-972.  

Lamprey   GENSCAN00000041420 Contig8376.4 504-1,742.  

Lamprey   GENSCAN00000074896 Contig83438.1 570-1,520.  

Lamprey   GENSCAN00000136806 Contig7537.2 432-7,942.  

Lamprey   GENSCAN00000091571 Contig11380.5 17-910.  

Lamprey   GENSCAN00000043020 Contig7879.4 6,931-8,169.  

Lamprey   GENSCAN00000065760 Contig1968.8 198-1,721.  

Lamprey   GENSCAN00000151939 Contig1968.7 2,616-3,830.  

Lamprey   GENSCAN00000015235   551-1,678.  

Lamprey   GENSCAN00000097352 Contig1968.9 3,650-6,836.  

Lamprey   GENSCAN00000089907 Contig3453.6 1,109-4,266.  

Lamprey   GENSCAN00000036448 Contig1593.1 1,687-2,637.  

Lamprey   GENSCAN00000054943 Contig17736.3 3,495-4,436.  

Lamprey   GENSCAN00000014065 Contig2020.1 19,415-20,392.  

Elephant shark AAVX01000008     1099306860870 

Elephant shark AAVX01005288     1099306865997 

Elephant shark AAVX01011008     1099306871677 

Elephant shark AAVX01016502     1099306877170 

Elephant shark AAVX01025604     1099306886267 

Elephant shark AAVX01026588     1099306887249 

Elephant shark AAVX01028503     1099306889164 

Elephant shark AAVX01051690     1099306912159 

Elephant shark AAVX01056054     1099306916507 

Elephant shark AAVX01056829     1099306917278 

Elephant shark AAVX01059132     1099306919568 

Elephant shark AAVX01062489     1099306922907 

Elephant shark AAVX01064747     1099306925154 

Elephant shark AAVX01065781     1099306926180 

Elephant shark AAVX01072944     1099306933185 

Elephant shark AAVX01074580     1099306933605 

Elephant shark AAVX01096862     1099306955612 

Elephant shark AAVX01103357     1099306962107 

Elephant shark AAVX01109705     1099306968455 

Elephant shark AAVX01123176     1099306981927 

Elephant shark AAVX01124620     1099306983371 

Elephant shark AAVX01130182     1099306988934 

Elephant shark AAVX01132629     1099306991381 

Elephant shark AAVX01153499     1099306385629 

Elephant shark AAVX01198344     1099306506645 

 

http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig905.5:3391-4299
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig32517.2:472-1793
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig47802.2:24-972
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig8376.4:504-1742
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig83438.1:570-1520
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig7537.2:432-7942
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig11380.5:17-910
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig7879.4:6931-8169
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig1968.8:198-1721
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig1968.7:2616-3830
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig19637.2:551-1678
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig1968.9:3650-6836
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig3453.6:1109-4266
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig1593.1:1687-2637
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig17736.3:3495-4436
http://pre.ensembl.org/Petromyzon_marinus/contigview?l=Contig2020.1:19415-20392
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Elephant shark AAVX01206512     1099306528802 

Elephant shark AAVX01207006     1099306530160 

Elephant shark AAVX01234747     1099306605966 

Elephant shark AAVX01247055     1099306639703 

Elephant shark AAVX01292903     1099306763742 

Elephant shark AAVX01326185     1099306851145 

Elephant shark AAVX01373377     1236908_1 

Elephant shark AAVX01395879     1098890040701 

Elephant shark AAVX01444803     1098980708334 

Elephant shark AAVX01500497     1098882303600 

Little Skate AAG42684        
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C.   Pairwise comparison of zebrafish P2Y genes 
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D.   Expression of FFAR2c in brain and pharyngeal arches. 

 

 

Analysis of FFAR2c  expression in 5dpf larval by whole mount in situ hybridization. Panel (A-C), 
whole mount and (D-G) transverse sections after hybridization. A) Lateral view shows 
expression in the brain and pharyngeal arches; (B) Dorsal view shows expression in the brain; 
(C) Ventral view shows expression in Merkel’s cartilage and branchial arches; In the brain, the 
expression is distributed from telencephalon to medulla oblongata in rhombencephalon (D-F); 
Expression is also detected in otic vesicle (F). Abbreviations: BA: branchial arches; MC: 
Merkel’s cartilage; MO: medulla oblongata; OV: otic vesicle; TeO: optic tectum; Th: thalamus; 
VG: vagal ganglion. 
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E.   Schematic drawing of pharyngeal arches of zebrafish 

 

 

A) Schematic drawing of cartilage in ventral view of 5 dpf larval adapted from Piotrowski et al., 
2003. B) Lateral view of pharyngeal branches in zebrafish adapted from Holzschuh et al., 2005. 
Abbreviations: Cb 1-5, ceratobranchial cartilages; ch, ceratohyal cartilage; gAD, dorsal anterior 
lateral line; gAV, ventral anterior lateral line; gP, posterior lateral line; gV, trigeminal; gVII, facial 
(geniculate), gVIII, auditory; gIX, glossopharyngeal (petrosal); gX, vagal (nodose); hm, 
hyomandibula; m, Meckel’s cartilage of mandibular arch; n, notochord; oa, occipital arch; pq, 
palatoquadrate; pc, parachordalia; t, trabeculae. 
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