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Abstract

The iAAA protease is an ATP-dependent proteolytic complex

in the mitochondrial inner membrane and belongs to the highly

conserved family of AAA proteins. In the yeast Saccharomyces cere-

visiae, the iAAA protease is a homo-oligomeric complex composed

of Yme1p subunits which are active in the intermembrane space and

mediate protein quality control. Yeast cells lacking Yme1p are charac-

terized by pleiotropic phenotypes including a respiratory deficiency

at elevated temperature and an aberrant mitochondrial morphology.

However, the molecular basis of the different yeast yme1 phenotypes

has not been completely understood. Human YME1L was shown to

be the ortholog of the yeast Yme1p, but its functions within mam-

malian mitochondria and specific substrate proteins have not been

identified so far. In order to define the roles of the mammalian iAAA

protease two main approaches were carried out: (1) down regulation

studies in mammalian cells using RNA interference, and (2) inducible

overexpression of YME1L and several mutant variants in the mam-

malian system.

The present study reports the functional conservation of the mam-

malian YME1L by showing its involvement in the proteolysis of pro-

hibitin 1 whose homolog is also degraded by the iAAA protease in

yeast. Furthermore, it demonstrates that YME1L has a role in the

maintenance of the tubular mitochondrial morphology and in the

constitutive processing of OPA1, a component of the mitochondrial

fusion machinery. Moreover, the degradation of TIM23, a core sub-

unit of the translocase of the inner membrane, in caspase-independent

apoptosis depends on YME1L identifying a novel substrate for the

mammalian iAAA protease and a new pathway it is involved in. The

overexpression of YME1L mutants has no dominant negative effect

on the iAAA protease. Its functions in mitochondrial proteolysis, im-

port, and mitochondrial morphology remain unaltered.

Taken together, this study reveals versatile roles of mammalian

YME1L in proteolytic quality control, mitochondrial morphology
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and apoptosis, thus demonstrating its importance for both the cel-

lular viability and death.
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Zusammenfassung

Die iAAA-Protease ist ein ATP-abhängiger proteolytischer Kom-

plex in der inneren Mitochondrienmembran und gehört zu der hoch-

konservierten Familie der AAA-Proteine. In der Hefe Saccharomyces

cerevisiae ist die iAAA-Protease ein homooligomerer Komplex beste-

hend aus Yme1p-Untereinheiten, die im Intermembranraum aktiv

sind und die Qualitätskontrolle von Proteinen vermitteln. Hefezel-

len, denen Yme1p fehlt, sind durch pleiotrope Phänotypen charak-

terisiert. Diese beinhalten einen Atmungsdefekt bei erhöhter Tempe-

ratur und eine gestörte mitochondriale Morphologie. Jedoch ist die

molekulare Grundlage der verschiedenen yme1-Phänotypen in Hefe

bisher nicht vollständig verstanden. Das humane YME1L wurde als

Ortholog von Yme1p der Hefe beschrieben, aber seine Funktionen

in Säugetier-Mitochondrien und spezifische Substratproteine sind

noch nicht identifiziert worden. Um die Rolle der iAAA-Protease

in Säugetieren zu bestimmen, wurden zwei experimentelle Ansät-

ze verfolgt: (1) Depletion von YME1L in Säugetier-Zellen mittels

RNA-Interferenz und (2) induzierbare Überexpression von YME1L

und verschiedenen mutierten Varianten im Säugetier-System.

Die vorliegende Arbeit demonstriert die funktionelle Konservie-

rung von YME1L in Säugetieren, indem gezeigt wird, dass es an

der Proteolyse von Prohibitin 1 beteiligt ist, dessen Homolog in

der Hefe ebenfalls von der iAAA-Protease abgebaut wird. Deswei-

teren, weist sie nach, dass YME1L eine Rolle bei der Aufrechter-

haltung der tubulären mitochondrialen Morphologie und bei der

konstitutiven Prozessierung von OPA1, einem Bestandteil der mit-

ochondrialen Fusionsmaschinerie, spielt. Darüber hinaus ist der Ab-

bau von Tim23, einer Kernuntereinheit der Translocase in der In-

nenmembran, während der caspaseunabhängigen Apoptose abhän-

gig von YME1L. Dieser Befund identifiziert ein neues Substrat der

iAAA-Protease in Säugetieren und einen neuen zellulären Prozess,

an dem sie beteiligt ist. Die Überexpression von YME1L-Mutanten

hat keinen dominant-negativen Einfluss auf die iAAA-Protease. Ihre
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Funktionen in mitochondrialer Proteolyse, Morphologie und Import

bleiben unverändert.

Zusammengefasst offenbart diese Arbeit vielfältige Rollen von

YME1L bei der Qualitätskontrolle von Proteinen, der mitochondria-

len Morphologie und der Apoptose in Säugetieren und demonstriert

somit die Bedeutung von YME1L für sowohl die zelluläre Lebensfä-

higkeit als auch den zellulären Tod.
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Chapter 1

Introduction

The mitochondrion is a complex organelle that possesses a multitude

of functions, some of which are essential for the cellular survival. Beside

its role in respiration and energy supply, it is involved in the apoptotic

signaling, aging, synthesis of metabolites, lipid metabolism free radical

production, metal ion homeostasis and the assembly of iron-sulfur (Fe-S)

clusters. The latter are present in more than 120 distinct types of enzymes

and proteins having function in the electron transfer, substrate binding,

regulation of gene expression and enzyme activity [38]. Interestingly, syn-

thesis of Fe-S clusters is the sole function maintained in so called “relict

mitochondria” present in amitochondriate protists like Giardia, [156] sug-

gesting that this function is the basis for the evolutionarily essential nature

of mitochondria.

It is widely accepted that a mitochondrion has a monophyletic origin

from an α - proteobacterial ancestor being an endosymbiont of eukaryotic

cells, and as such it has following special features: first, it can be only in-

herited by the daughter cells, not synthesized de novo; second, it possesses

its own genome and transcription and translation apparatus; and third,

it is dividing and fusing. During the evolution from α - proteobacteria to

eukaryotic organelle, many bacterial genes were transferred into the nu-

clear genome of eukaryotic cells [68]. As a consequence, targeting signals
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Chapter 1. Introduction

on the nuclear encoded polypeptides as well as translocation machineries

in both outer and inner membrane developed. An estimate is that the mi-

tochondrial proteome contains around 1000 proteins [136; 151] but only 3

to 32 are mitochondrially encoded [60] depending on the organism. Those

genes that resisted transfer to the nucleus encode mainly proteins inca-

pable of translocation from the cytosol into the mitochondrion, for exam-

ple extremely hydrophobic proteins like subunits of cytochrome c oxidase

or hydrophobic segments of cytochrome b. The proportion of hydrophilic

proteins encoded by the mitochondrial genome declined with decreasing

genome complexity, but the necessity to synthesize highly hydrophobic

ones in the mitochondrial matrix was probably the force that made the

eukaryotic cells keep mitochondrial DNA (mtDNA).

Proteins encoded in the nuclear genome and synthesized in the cytosol

are imported into one of four mitochondrial locations [42]: (1) the outer

membrane (OM), (2) the intermembrane space (IMS), (3) the inner mem-

brane (IM), and (4) the matrix (M).

Translocation through the outer membrane is performed by TOM com-

plex. Outer membrane proteins contain targeting information within and

near the transmembrane domain [85]. Insertion into the inner mitochon-

drial membrane proceeds in at least three different ways: (1) through the

TIM23 complex and lateral insertion into the lipid bilayer; (2) through the

TIM22 complex, and (3) translocation through the inner membrane pro-

tein Oxa1, which belongs to a highly conserved protein family present in

mitochondria, bacteria and chloroplasts [173]. Proteins translocated in this

pathway carry presequences and are completely imported into the ma-

trix and further into the inner membrane. Matrix proteins are translocated

across the inner membrane by TIM23 complex in an ATP- and transmem-

brane potential - dependent manner, where their presequences are pro-

cessed and folding follows.

The outer mitochondrial membrane forms an envelope and presents a
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Chapter 1. Introduction

barrier only for macromolecules as it contains pore forming proteins that

allow the free passage of solutes up to few thousands Dalton in size [161].

Inner mitochondrial membrane encloses the matrix space. Even ions

and metabolic substrates cannot pass it without the help of carrier pro-

teins. It is the membrane, where multisubunit protein complexes reside,

fulfilling various mitochondrial functions, like: oxidative phosphorylation

(OXPHOS), translocation, metabolic exchange, protein assembly, Fe-S bio-

genesis and proteolytic degradation [161]. The inner membrane is orga-

nized in two morphologically distinct domains: (1) the inner boundary

membrane, which is a second envelope, forms contact sites with the outer

membrane and functionally interacts with it, and (2) cristae membrane,

building up inner membrane invaginations connected to the boundary in-

ner membrane through ring-shaped cristae junctions.

Mitochondrial cristae undergo morphological changes in response to

changing metabolic requirements and/or matrix volume. An exchange of

the inside content with the rest of intermembrane space was connected to

metabolic and apoptotic pathways [81; 102].

1.1 Mitochondrial dynamics

Mitochondria form an interconnected tubular network, whose steady

state morphology is a derivative of three different processes: First, fusion

and fission which control mitochondrial shape and size; second, active

transport inside a cell, controlling subcellular distribution of mitochon-

dria; third, metabolic status of the mitochondrion itself. The balance be-

tween fusion and fission regulates mitochondrial morphology, i.e. shape,

length and number, which affects the ability of cells to distribute the mito-

chondria to specific subcellular locations. Fusion and fission also allow ex-

change of membrane lipids as well as mitochondrial content mixing. Such

a dynamic behavior is crucial for a number of cellular processes, such as

apoptosis, the inheritance of mtDNA, defense against oxidative stress, and
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Chapter 1. Introduction

development through spermatogenesis [26; 30; 65]. It provides one of the

ways for the quality control allowing constant mixing of potentially dam-

aged mitochondria with healthy ones [147]. Hence, mitochondrial dynam-

ics plays and important role in both cellular survival and death [73].

Mitochondrial fusion and fission are unique in two main aspects: first,

because of double membrane boundary, they have to proceed in a strictly

coordinated way to ensure integrity of both membranes plus two mito-

chondrial subcompartments: matrix and intermembrane space; and sec-

ond, there is no evidence for the involvement of SNARE proteins, having

function in other cellular fusion events.

In mammalian cells fission requires dynamin-related protein 1 (Drp1)

predominantly distributed in the cytosol and partially associated with the

mitochondrial outer membrane [137; 175] together with hFis1, an outer

membrane protein [142], endophilin B1/Bif1 [79], MTP18, GDAP1 and

DAP3 [167]. A portion of cytosolic Drp1 can be recruited to mitochondria

through an interaction with hFis1 [174].

Mitochondrial fission is counterbalanced by the fusion. Fzo1p was

shown to be required for fusion in Drosophila melanogaster [65] and yeast

[67]. Mammalian outer membrane proteins mitofusin 1 and mitofusin 2

are functional homologues of Fzo1p, involved in the mitochondrial fusion

[27; 125; 130]. Mitofusins form homo- and hetero - oligomeric complexes

and are required for adjacent mitochondria during the fusion process sug-

gesting formation of trans complexes of the apposing mitochondria [89].

Another protein - yeast Mgm1, a dynamin-related GTPase, is essential for

the mitochondrial inner membrane fusion, maintaining mtDNA and in-

ner membrane structures in yeast [105; 135; 172]. Yeast outer membrane

protein Ugo1 physically links Mgm1 and Fzo1, however no mammalian

homologue has been discovered so far [115]. It was reported that the mam-

malian homologue of Mgm1, OPA1, interacts physically with Mfn1/2 [64].

OPA1 is an IMS protein with soluble or closely associated with the

inner membrane pools. It is thought to form oligomers involved in the
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Chapter 1. Introduction

regulation of mitochondrial cristae morphology and complete release of

cytochrome c which is sequestered in the intra - cristae regions [9; 33; 51;

116]. OPA1 is a casual gene product of autosomal dominant optic atrophy

which features a progressive loss of retinal ganglion cells that leads to legal

blindness [4; 40].

In human cells there are eight splice variants of OPA1 each of which

is subsequently processed to form several isoforms with distinct molec-

ular sizes [41]. The combination of long and short OPA1 isoforms is im-

portant for mitochondrial fusion activity [138]. Processing of OPA1 is acti-

vated by the transmembrane potential dissipation [44] and strongly corre-

lates with stimulation of the mitochondrial fragmentation [73]. There have

been reports linking loss of OPA1 to defects in mitochondrial respiration,

increased release of cytochrome c [9] and susceptibility towards apopto-

sis [28; 92], as well as reduction of the mitochondrial transmembrane po-

tential [116]. They point to additional functions of OPA1, independent of

mitochondrial fusion. In yeast Mgm1 is required for oligomerization of

F1F0ATP synthase, an inner membrane enzyme coupling proton pumping

to ATP synthesis, essential for normal cristae structure [120]. This require-

ment provides a link between these two modulators of cristae structure

[5].

1.2 Apoptosis and a link between apoptosis and

a fusion/fission machinery

The development of cytokine - mediated apoptosis programs in higher

multicellular organisms provides a crucial way to coordinate the regula-

tion of cell numbers at the organism level in response to the environmental

stimuli [39]. In C.elegans and mice the most frequent form of developmen-

tal cell death is apoptosis [1; 34]. It can proceed in three main pathways

(summarized on Fig. 1.1): (1) intrinsic, (2) extrinsic, and (3) granzyme

B-mediated pathway. The most noticeable and characteristic features of
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Chapter 1. Introduction

Figure 1.1: Caspase activation pathways
Intrinsic pathway (1): BH3-only proteins are activated by the cell stress or damage and overcome the inhibitory

effect of BCL-2 family members. BAX-BAK assembly in the mitochondrial OM permit the efflux of intermem-

brane space proteins, like cytochrome c into the cytosol. Cytochrome c triggers the apoptosome assembly:

caspase 9 and APAF1. Conformational activation of caspase 9 propagates the proteolytic cascade of further

caspase activation events. In the extrinsic pathway (2) caspases are activated through the binding of extracel-

lular death ligands, like TNFα to transmembrane death receptors. It provokes recruitment of adaptor proteins,

such as FADD, which in turn recruit and aggregate several molecules of caspase 8, promoting its autoprocess-

ing and activation. Active caspase 8 proteolytically processes and activates caspase 3 and 7, provoking further

caspase activation events that culminate in substrate proteolysis and cell death. In some situations, extrinsic

death signals can interact with the intrinsic pathway through caspase 8-mediated proteolysis of the BH3-only

protein BID (BH3-interacting domain death antagonist). Truncated BID (tBID) can promote mitochondrial cy-

tochrome c release and assembly of the apoptosome. The granzyme B-dependent route to caspase activation

(3) involves delivery of this protease into the target cell trough specialized granules that are released from cy-

totoxic T lymphocytes (CTL) or natural killer (NK) cells. CTL and NK granules contain numerous granzymes

as well as pore-forming protein, porfirin, which oligomerizes in the membranes f target cells to permit entry of

the granzymes. Granzyme B, similar to caspases also cleaves its substrates after Asp residue, and can process

BID and caspase 3 and 7 to initiate apoptosis. Reprinted with changes from [149].
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Chapter 1. Introduction

apoptosis are: condensation of the nucleus and its fragmentation into

smaller pieces [82], hydrolysis of nuclear DNA into multiple fragments

[171], fragmentation of organelle‘s network: Golgi, endoplasmic reticulum

and mitochondria, and protein release from the mitochondrial intermem-

brane space [150].

During the early step of apoptosis the mitochondrial network disinte-

grates. Apoptotic stimuli activate mitochondrial fission and block fusion.

It results in mitochondrial fragmentation and condensation [49; 81]. In this

context it is closely correlated to the progression of apoptosis [92; 143].

Upon induction of apoptosis Drp1 translocates to the potential scission

sites and becomes locked on the membrane during cell death in an hFis1

- independend and Bax/Bak - dependent manner [49]. It becomes stably

sumoylated, which depends on the presence of Bax/Bak [167]. It occurs

within the same time frame as activation of the proapoptotic Bcl-2 family

member Bax and permeabilization of the mitochondrial outer membrane

which in turn leads to the release of a multiple intermembrane space pro-

teins and loss of the membrane potential [104]. Drp1 depletion blocks re-

modelling of the mitochondrial cristae [55] where cytochrome c is mostly

stored [9] and delays apoptosis [46]. In yeast, fission mediated by Drp1 ho-

molog, Dnm1, is essential for the autophagic degradation of mitochondria

[113]. Proapoptotic Bax protein co - localizes also with Mfn2 at distinct foci

on mitochondria [109] and is required for the regulation of Mfn2 activity

and lateral assembly into foci along the mitochondrial tubules [78]. This

co - localization may account for a block in fusion observed during apop-

tosis [80]. Recently, OPA1 has been shown to protect cells from apoptosis

by controlling the remodelling of mitochondrial cristae, which is indepen-

dent of its pro - fusion function [33; 51]. Out of eight OPA1 mRNA splice

forms four have fusion activity. They produce a long isoform of OPA1 in

addition to one or more further processed short forms [73]. It was demon-

strated that those various forms are produced by processing at two dis-

tinct sites: S1 encoded in all mRNA splice variants, and S2 encoded only
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Chapter 1. Introduction

in some of them [73]. There is evidence for the involvement of rhomboid

protease perselin - associated rhomboid like (PARL), mAAA and iAAA

Zn2+-dependent metalloproteases belonging to the conserved AAA fam-

ily of proteins, in the processing at those sites [61; 73; 138].
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1.3 AAA+ superfamily and AAA proteins

ATPases play crucial roles in transforming chemical energy into bi-

ological processes [114]. AAA+ superfamily of proteins (ATPases asso-

ciated with diverse cellular activities) is based on careful and multiple

alignments and crystallographic studies [110]. It contains proteins having

extremely various functions in cells, and sharing common features [114].

They are involved in processes ranging from thermotolerance in bacteria,

fungi and plants, through membrane fusion and microtubular movement

in eukaryotes, to protein degradation and DNA replication [66].

AAA+ protein family is defined by the conserved AAA+ domain. It

consists of N- and C - terminal subdomain, whose characteristics distin-

guish AAA+ domain from other nucleotide-binding proteins [66]. Its ar-

chitecture is more conserved than the underlying sequences. It is com-

posed of Walker A (also called a P-loop, GxxxxGKT where x = any amino

acid residue) and Walker B (hhhhDExx where h = hydrophobic amino

acid residue) motifs mediating ATP - binding and hydrolysis. They are fol-

lowed by sensor 1, arginine fingers and sensor 2. Conserved polar residues

of sensor 1 are physically located between Walker A and Walker B motifs

and interact with important Walker B elements and γ - phosphate of ATP.

Arginine fingers are one or two conserved arginine residues which consti-

tute part of the nucleotide - binding site of an adjacent subunit. Sensor 2

has a role in ATP hydrolysis and substrate unfolding. Its residues partici-

pate in a nucleotide binding.

A conserved region that is positioned C - terminally from the Walker B

motif named a Second Region of Homology (SRH) is a characteristic for a

subgroup of AAA+ superfamily, called AAA proteins. Its sequence is not

strictly conserved, but the proteins share comparable structural features of

SRH [74].

9



Chapter 1. Introduction

1.3.1 AAA+ proteases

AAA+ enzymes assemble mostly into hexameric complexes which is

their biologically active form [66]. There has been a common mecha-

nism proposed for ATP - dependent proteolysis by proteases belonging

to the AAA+ superfamily. First, they oligomerize into barrel - shaped

micro compartments allowing sequestered proteolysis [133], and second,

ATP-dependent proteases need the energy from ATP hydrolysis to reg-

ulate the accessibility of the proteolytic sites and to unfold substrates to

drag them into the proteolytic chamber of the protease [8; 71]. The unfold-

ing process is the rate - limiting step in proteolysis [84]. The initial sub-

strate binding step does not require ATP hydrolysis, but for many AAA+

proteins ATP binding is required to generate the active, oligomeric form

of the enzyme [114].

The mechanism of ATP hydrolysis involves the nucleophilic attack of

an activated water molecule at the γ - phosphate of the ATP and the for-

mation of a penta - coordinate transition - state [114]. Negative charge

accumulating at the γ - phosphate is stabilized by the Mg2+ and by sur-

rounding of positively charged groups and/or hydrogen bond donors.

Hence, the active sites of ATPases should contain a catalytic base able to

activate nucleophilic water, and electrophilic groups able to stabilize the

negatively charged transition state, plus groups coordinating the magne-

sium ion which is an essential co - factor. The active sites contain “sensors”

which function is to “sense” the γ - phosphate and mediate the confor-

mational changes that relay this information to remote sites. ATP binding

pocket is located in between pairs of the hexamer subunits. Conserved

residues that are functionally important for ATP binding and hydrolysis

are: (1) in the Walker A motif: lysine (Lys, K) which forms ionic interactions

with β- and γ - phosphate oxygens, and threonine (Thr, T) which provides

a metal ligand; (2) in the Walker B motif: aspartate (Asp, D) which is in-

volved in the Mg2+ coordination sphere and glutamate (Glu, E) which is

a catalytic residue important for ATP hydrolysis; (3) asparagine (Asn, N),

10



Chapter 1. Introduction

serine (Ser, S), threonine (Thr, T) or histidine (His, H) located at the N -

terminal end of SRH in AAA proteases forming a polar contact with γ -

phosphate of ATP and functioning as a sensor (sensor 1 [77]); (4) arginine

(Arg, R) residue at the beginning of the third α-helix in the C-domain of

the AAA+ module which in AAA proteins corresponds to the C - termi-

nal part of SRH. It mediates relative movement of the C - domain to the

N - domain during the ATP hydrolysis cycle. There are two conserved

Arg residues in AAA proteins and one in the other AAA+ family proteins.

They function as an arginine finger that transduces the chemical event of

ATP hydrolysis into the conformational changes of the neighboring sub-

unit of a hexamer. Such a coordinated cooperation of subunits greatly en-

hances ATPase activity of a complex comparing to the singular ATPase

activity of each subunit [98].

As a consequence of oligomerization, AAA proteases form a central

cavity/pore lined with residues from each subunit [66]. Most of the pore

surface is provided by the loop with three conserved residues (aromatic

- hydrophobic - glycine [163]) which have a role in a function of several

AAA proteins.

In the mitochondrial compartment both soluble and membrane ATP -

dependent proteases have been found (Fig. 1.2).

1.4 Mitochondrial proteolytic quality control

A highly conserved proteolytic system conducts the surveillance of

protein quality control within mitochondria, which has to cope with the

diverse challenges imposed on mitochondrial integrity [147]. Molecular

chaperones and energy - dependent proteases monitor the folding and as-

sembly of mitochondrial proteins and selectively remove excess and dam-

aged proteins from the organelle [87]. Key components are ATP - depen-

dent proteases, which are derived from bacterial proteases and highly con-

served in eukaryotes [87]. ATP - dependent proteases sense the folding

11
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state of substrates by exerting chaperone - like properties and trigger the

proteolysis of non - native proteins [147]. A central role in this process

is exerted by conserved ATPase modules, which are characteristic of the

AAA+ family of ATPases and present in all ATP - dependent proteases

[147].

1.5 Mitochondrial ATP - dependent proteases

1.5.1 ATP - dependent proteases in the mitochondrial ma-

trix

Two mitochondrial matrix proteases have been identified in various

organisms: Lon and ClpXP. Lon proteases have been identified in the

mitochondrial matrix of yeast and mammals [145; 159; 166; 165; 168]. They

harbor a catalytic serine - lysine dyad and as such are classified as serine

proteases [21; 126]. Lon forms presumably homooligomeric, ring - shaped

complexes with hexameric or heptameric structure [140]. In most cases

impaired folding appears to trigger protein degradation by Lon protease

[159]. The yeast Lon ortholog, PIM1 has been shown to degrade various

misfolded and non - assembled polypeptides, like thermally denatured

and aggregated or oxidatively damaged proteins, such as aconitase [20;

100].

Molecular chaperones of the Hsp70 and Hsp100 family co - oper-

ate with Lon protease during proteolysis by stabilizing misfolded pro-

teins against aggregation or by dissolving already aggregated proteins

[14; 124; 162]. Yeast ∆pim1 cells show inhibited growth on glycerol. Elec-

tron dense inclusions in the mitochondrial matrix could be observed pre-

sumably as a result of accumulation of non - degraded mitochondrial ma-

trix proteins [145]. Similarly, down regulation of the human Lon protease

leads to accumulation of protein inclusions, impaired mitochondrial func-

tion and apoptotic cell death [19]. It was demonstrated that Pim1p was
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required for the maintenance of mtDNA in yeast and present in the mito-

chondrial nucleoids, and that it was able to bind GT - rich DNA sequences

[31; 53; 52; 97]. Cellular effects of Lon deletion as well as known physi-

ologic functions of this protease suggest its regulatory function, but the

substrates and probable mechanisms it could be involved in are still un-

known.

Figure 1.2: ATP-dependent proteases in the mitochondrial matrix and in
the inner mitochondrial membrane. The Lon - protease and ClpXP (ClpP not present in

yeast) are responsible for proteolytic breakdown of misfolded polypeptides in the mitochondrial matrix. In-

tegral membrane and peripherally associated proteins are degraded by proteases of the inner mitochondrial

membrane, the iAAA protease, active on the intermembrane side of the inner membrane; the mAAA protease,

active in the mitochondrial matrix and the ATP - independent metallopeptidase Oma1, which is thought to pos-

sess catalytic domains at the side of the inner membrane. Prohibitins built up a supercomplex with the mAAA

protease. OM - outer membrane; IMS - intermembrane space; IM - inner membrane; M - mitochondrial matrix.

Reprinted with modifications from ([112]

The other mitochondrial matrix protease ClpX (caseino-lytic protease)

was found in all organisms whereas ClpP only in mammals and plants,

but not yeast [37; 76; 160]. In contrast to Lon- and AAA proteases, their

ATPase domain and the proteolytic domain are expressed as separate gene

13
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products. The ATPase domains (ClpX, ClpA) assemble into hexameric,

ring complexes with ATPase and chaperone activity, while the proteolytic

domains (ClpP) form heptameric, double ring complexes. The ATPase

domains determine the substrate specificity of the Clp protease and also

exert regulatory functions during proteolysis [17; 117; 133; 169].

1.5.2 ATP dependent proteases in the mitochondrial mem-

branes

Two membrane bound AAA proteolytic complexes have been iden-

tified in mitochondria. They are integrated into the inner mitochondrial

membrane and build up of orthologs of FtsH - membrane bound AAA

protease essential for cell viability in Escherichia coli [2; 154; 155].

In yeast there are three FtsH orthologues: Yta10p and Yta12p forming

a heterohexameric mAAA protease complex active at the matrix side, and

Yme1p which is the only enzymatic component of iAAA protease active

in the intermembrane space. They share several common features: N - ter-

minal targeting signal followed by the AAA consensus and HEXXH motif

characteristic for metallopeptidases of the thermolysin family M41 [123].

Mutation of the glutamate residue within the proteolytic centre inhibits

protein degradation by AAA proteases [7]. Opposite orientation of cat-

alytic domains of iAAA and mAAA proteases is a consequence of having

one or two transmembrane domains respectively (Fig. 1.3). AAA protease

- mediated degradation of membrane proteins involves dislocation or ex-

traction of the substrate from the membrane [95]. This process requires

around 20 residues to protrude from the membrane surface [32] probably

to reach deep into the ATPase domain and establish productive binding.

Mutational analysis of a conserved loop motif YVG (aromatic - hydropho-

bic - glycine) present in the central pore of hexameric AAA+ ring com-

plexes [164], indicates substrate translocation into the proteolytic chamber

through the central pore of mitochondrial AAA proteases [59]. Recently,
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Chapter 1. Introduction

Tatsuta et. al. has shown the ability of the mAAA protease to mediate vec-

torial membrane dislocation of proteins in an ATP - dependent reaction

[146]. This membrane extraction of substrate proteins is likely to be facili-

tated by the membrane - embedded parts of AAA protease subunits which

might form a pore - like structure or provide at least a more hydrophilic

environment [88].

Figure 1.4: Folding of the yeast iAAA protease and substrate engagement
Side view of crystal structure of Thermotoga maritima FtsH [15] showing three subunits was used as a model

for mapping the substrate binding regions of the yeast iAAA. Two identified regions CH and NH (red and

green helices respectively) of the yeast Yme1p responsible for substrate engagement are located on the surface

of proteolytic cylinder (CH helices marked on PD) and AAA domain (NH helices marked on AAA). AAA, AAA

domain; PD, proteolytic domain; IM, inner membrane. Reprinted with modifications from [87].

Two FtsH structures from two eubacterial organisms have been solved

recently [15; 90; 144] which facilitated studies on the yeast iAAA protease

subunit Yme1p. It allowed the localization of two helical binding regions.

The C - terminal helices of the proteolytic domain (CH - region) and the
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N-terminal helix (NH-region) in the AAA domain form a lattice-like struc-

ture at the surface of the proteolytic cylinder and mediate the initial en-

counter of substrate proteins with the protease (Fig. 1.4, [58; 87; 94]). The

NH - region is located in a close proximity to the membrane surfaces and

highly negatively charged. Thus, substrate proteins initially interact with

the iAAA protease at the outer surface of the proteolytic cylinder, before

they enter the proteolytic chamber. Interestingly, the binding properties

of the surface - exposed interaction sites vary suggesting that alternative

pathways for substrate entry into the proteolytic chamber of iAAA pro-

teases exist. The CH - region is only required for the binding and degra-

dation of a subset of proteins. The distance of an unfolded domain from

the membrane surface, might be one parameter determining the involve-

ment of the CH - region for substrate binding. In case of a non - assembled

subunit 2 of the cytochrome c oxidase, Cox2p, destabilization of the sol-

vent - exposed Cox2 domain at high temperatures renders CH - dependent

proteolysis by the iAAA protease [58]. In contrast to the CH - region, the

NH - region appears to be generally involved in proteolysis. It is therefore

likely that CH - dependent substrates bind in a sequential manner at CH-

and NH - regions before they enter the proteolytic chamber through the

central pore formed by the AAA domains [87].

Growing evidence suggests that substrate binding and proteolysis by

AAA proteases is modulated by additional factors within mitochondria

[87]. It can appear in a substrate - specific manner. Like Cox20p which

affects proteolysis of the Cox2p by the iAAA protease modulating recog-

nition of a substrate [58]. Proteolysis of the non - assembled Cox2p was

demonstrated to be strictly dependent on the CH - region in Cox20 - defi-

cient mitochondria, but not in the presence of Cox20p [58] indicating over-

lapping functions of Cox20 and CH - region of Yme1p. Another co - factor

for iAAA protease is also not essential for proteolysis [42]. Together with

Yme1p, Mgr1 is part of the iAAA proteolytic complex in yeast [42]. It was
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suggested to act as an adaptor - like protein which targets specific sub-

strates in the IMS for degradation by iAAA protease [87].

No substrate-specific co-factors of mAAA protease have been identi-

fied so far. However, the yeast mAAA protease is part of a large super-

complex with prohibitins, which modulate proteolysis [141]. Prohibitin

1 (Phb1p) and prohibitin 2 (Phb2p) are ubiquitous and highly conserved

subunits of those supercomplexes. They assemble in a multimeric complex

which is exposed in the intermembrane space and anchored N-terminally

to the inner membrane [11; 111; 141]. Deletion of prohibitins results in ac-

celerated protein degradation by the mAAA protease [141]. However it is

not yet understood how they affect the proteolysis by the mAAA protease.

Both the m- and the iAAA protease recognize and degrade non-native

and non-assembled polypeptides to peptides [7; 96]. These proteases ex-

hibit degenerate substrate specificity and, similar to molecular chaper-

one proteins, recognize the folding state of solvent-exposed domains of

membrane proteins [94]. mAAA and iAAA proteases are the main compo-

nents of mitochondrial quality control. They degrade proteins to peptides,

which are subsequently either exported from the organelle or degraded

further to amino acids by various oligopeptidases [147].

Yeast cells lacking both m- and iAAA proteases are not viable demon-

strating the crucial function of this proteolytic system for cellular home-

ostasis [93; 95]. Their depletion or inactivation causes severe pleiotropic

phenotypes in various organisms, which are best characterized in the yeast

Saccharomyces cerevisiae. Here, all observed defects can be attributed to a

loss of the proteolytic activity as identical phenotypes were observed after

deletion of an AAA protease subunit or after inactivation of the proteolytic

sites of all subunits of AAA protease complexes [6; 96; 170]. Both pro-

teases exert overlapping functions within mitochondria, having overlap-

ping substrates; however different phenotypes resulting from mutations

indicate substantial differences.

YTA10 and YTA12 yeast mutants exhibit respiratory incompetence
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[62; 148] and lack assembled respiratory chain and ATP-synthase com-

plexes in the inner membrane [54; 118; 158]. Yeast mAAA protease was

found to degrade non assembled mitochondrialy encoded respiratory

chain subunits. Also peripheral membrane protein such as Atp7 was iden-

tified as a mAAA substrate [88]. Recently, a subset of specific substrates

was identified proving a regulatory, housekeeping function of mAAA

protease. That includes proteolytic cleavage of a conserved, nuclearly en-

coded subunit of mitochondrial ribosomes MrpL32 [112] and cytochrome c

peroxidase (Ccp1), a heme-binding ROS scavenger in the intermembrane

space [45; 146]. Maturation of Ccp1 within mitochondria represents the

first non-proteolytic function of the mAAA protease in the mitochondrial

biogenesis, and rather severe mutant phenotypes of YTA10/YTA12 could

be explained not only by loss of respiration but also by the overall mito-

chondrial malfunction.

SPG7 - a mammalian homologue of the yeast mAAA protease sub-

units was identified in the genetic screen of patients affected with an au-

tosomal, recessive, neurodegenerative disorder called Hereditary Spastic

Paraplegia (HSP) [24]. Further identification of mammalian AAA pro-

teases homologues followed. Complementation studies identified a com-

plex of mammalian paraplegin and AFG3L2 as the functional orthologue

of the yeast mAAA protease [12; 112] and a knock-out mouse model was

generated [47] where the human phenotype of the disease was repro-

duced. It has been proposed that mAAA mutations mapped in the HSP

patients led to the defects in an axonal transport of mitochondria, result-

ing in the energy insufficiency and a neuronal decay [47]. AFG3L2 was

shown to homooligomerize, which was proposed to be responsible for in-

creased severity of the Afg3l2 mutants [87; 101].

The mammalian mAAA protease was linked to the transmembrane

potential-dependent proteolysis of OPA1 [43; 73] together with a mam-

malian rhomboid protease PARL [33] and prohibitin 2 (PHB2) - a part

19



Chapter 1. Introduction

of a prohibitin-mAAA supercomplex, is involved in the OPA1-dependent

cristae remodeling in mitochondria [106].

Yeast lacking YME1 lose mtDNA at an accelerated rate forming pe-

tite negative colonies, i.e. unable to grow on glucose in the absence of

mtDNA. ∆yme1 cells fail to grow on a non fermentable carbon source at

37°C , as well as on glucose at 14°C [23; 152]. The yme1 mutant cells show

deficient oxygen consumption and mitochondrial morphological abnor-

malities: from abbreviated branched structures to swollen forms, together

with alterations in protein/lipid composition. Mitochondrial abnormali-

ties could be partially reversed in S.cerevisiae by mutations of YNT1 gene

encoding a 26S protease subunit suggesting similar functions [23]. The

Yme1p is immunologically detectable as an 80 kDa protein present in the

mitochondria [153]. It has a role in the degradation of unassembled in-

ner membrane protein complexes, like cytochrome c oxidase subunit 2

[121] and Phb1p and Phb2p [75] as well as external NADH dehydroge-

nase (Nde1) [13]. Rainey et al. reported crucial non-proteolytic function of

Yme1p in the import of an exogenously expressed human PNPase [122] -

mitochondrial intermembrane space protein required for the maintenance

of mitochondrial homeostasis [29]. Selective removal of malfunctional mi-

tochondria in the autophagic process, named mitophagy [83] suppresses

apoptosis and has a cytoprotective function [99]. Interestingly, recent re-

ports suggest a new function of Yme1p, namely the proteolytic turnover of

a mitochondrial inner membrane protein phosphatidylserine decarboxy-

lase 1 (Psd1p) responsible for the synthesis of phosphatidylethanolamine

- an essential mitochondrial component, having function in the autophagy

[108].

Human ortholog of Yme1p has been identified in the complementa-

tion studies [134]. It has been expressed in the ∆yme1 yeast cells rescu-

ing the temperature-sensitive phenotype, and demonstrating functional

complementation and conservation of the iAAA complex [134]. Human

YME1L1 (Yme1-like 1, further related to as YME1L) and paraplegin have
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42% and 33% homology with the yeast Yme1p respectively. Expression

and immunofluorescence studies revealed that YME1L and paraplegin

share similar expression pattern and the same subcellular localization [36].

Two transcript variants encoding different isoforms have been found for

the human gene. Transcript variant 3 lacks an internal coding exon 3

compared to transcript variant 1. However, it maintains the same read-

ing frame, and encodes an isoform 3 (716 aa; 80kDa) that is missing a

57 aa segment compared to isoform 1 (773 aa; 86.5kDa). The exon 3 en-

codes an N-terminal part of the protein, which is presumably processed

off upon import of YME1L into the mitochondria. There is only one tran-

script variant annotated for the murine Yme1l1 encoding only one form of

YME1L: 715 aa, 80kDa. Because of the high conservation and homology

(see alignment and homology tree in the Appendix 1 on page 81) possi-

ble involvement in spastic-like disorders has been suggested for the mam-

malian iAAA protease [36; 134]. However, Coenen et al. [35] failed to iden-

tify YME1L mutations in patients with combined defects in the oxidative

phosphorylation system. Only recently, it has been suggested that YME1L

may have a function in a novel apoptotic pathway independent of cas-

pases [57]. Thus, the mammalian iAAA protease is believed to have an

additional role in the regulation of mitochondrial dynamics and morphol-

ogy, independent of its proteolytic quality controlling in the mitochondria.
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Aim of the thesis

Identification of the YME1L as an ortholog of the yeast iAAA pro-

tease subunit opened a question about its action and its importance for

the mammalian cell. Little is known about the mammalian iAAA protease

complex as no functional studies were done on that protein. The question

was, whether evolutionary conservation of the protein results in a func-

tional conservation within the mitochondria. To address it and to examine

the relevance of the mammalian iAAA protease for mitochondrial mor-

phology, proteolysis and function two approaches were carried out:

• YME1L down regulation studies in the mammalian cells and

• overexpression studies of the wild-type and various mutant variants

of the YME1L protein in the mammalian inducible system.
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Results

3.1 Down regulation of YME1L using small in-

terfering RNAs (siRNAs)

3.1.1 Specific antibody against YME1L

The proper recognition of the protein by the antibodies used through-

out the study was verified prior to the verification of the efficiency and

specificity of YME1L down regulation and its overexpression in mam-

malian cells. As a reference for the running behavior on SDS-PAGE of the

mature YME1L data were used from the in vitro processing of the human

YME1L by the matrix processing protease (MPP; Figure 3.1A; courtesy of

Dr Mirko Koppen). The cloned construct was encoding human isoform 3,

i.e. having 716 amino acids in length (80kDa) which was also used by Shah

et al. in complementation studies [134]. The hYME1L was transcribed and

radiolabeled in a cell-free system and incubated at 30°C for 20 min with

the MPP purified from E.coli. In the next experiments three different anti-

bodies were checked for the recognition specificity:

• polyclonal antiserum raised against hYME1L protein (Figure 3.1B

and C, kind gift of Dr Carla Koehler);
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• affinity purified polyclonal antiserum SPY531 raised against two

peptides common for the murine and human protein sequence:

(152-166aa) TLKSRTRRLQSTSER and (517-531aa) DKILMGPERRS-

VEID (Fig. 3.1D);

• commercial polyclonal antibody (ptglab; Fig. 3.1E).

Figure 3.1: Recognition of the mature YME1L by different antibodies used
in the present work
A. Human YME1L processing in vitro by the matrix MPP protease. Mature form of the hYME1L runs at

the size of ∼60kDa. Efficiency of the processing was controlled by Su9-DHFR, a construct cleaved by MPP

(courtesy of Dr Mirko Koppen). Four different antibodies used in the present work were checked for specific

recognition of YME1L by comparison of the size of bands recognized in Western blotting. As a reference for

the proper band size, in vitro processing of hYME1L was used (A.). With numbers 1-3 are marked cell lysates

from HeLa cells transfected with siRNA1-3; and 4-6 show lysates form MEF cells transfected with siRNA4-6.

Extracts from the scrambled negative siRNA control and non-transfected cells were used as protein down

regulation reference. WB refers to cell extract from HEK293 Flp-In clone expressing mYME1LE381Q induced

with 1µg/ml tetracycline for 24h. β-actin was used as a loading control (anti β-actin 1:5000, Sigma, clone AC15);

B.-C. polyclonal antiserum raised against hYME1L protein (kind gift of C.Koehler) specifically recognized both

human (B.) and murine (C.) YME1L; D. polyclonal antiserum SPY531 raised in the present study against two

peptides from the murine YME1L recognized specifically both human (scrambled) and murine (WB) YME1L E.

commercial polyclonal antibody (ptglab, 1:500 dilution) recognized human YME1L protein.

In all of the cases the antibodies recognized specifically a band running

on SDS-PAGE at the size of ∼60kDa, which disappeared upon siRNA

transfection i.e. down regulation of YME1L protein in all of the used cell

lines: HeLa (Fig. 3.1B and E) MEF (Fig. 3.1C) and HEK293 (Fig. 3.1D). As

reference cell extracts were used from cells transfected with a scrambled
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negative siRNA control (Invitrogen) as well as from non-transfected cells.

The size of the protein running at that position is in agreement with the

size of the mature hYME1L processed in vitro (Fig. 3.1A.). The exclusive

disappearance of the 60 kDa band was observed only upon siRNA1-6

transfection which demonstrates specificity of the antibody recognition.

3.1.2 Depletion of YME1L in mammalian cells

Three different siRNAs were used to down regulate the YME1L expres-

sion on the mRNA level. For human YME1L (hYME1L) that were siRNA1,

siRNA2 and siRNA3, whereas siRNA4, siRNA5 and siRNA6 were de-

signed against murine YME1L (mYME1L). All sequences hybridize within

the coding sequence. Scrambled negative control (Invitrogen) i.e. siRNA

duplexes with no match to the mRNA of YME1L, was used as a control.

It allowed verification of a knock down specificity on YME1L. Western

blot analysis revealed the most efficient down regulation in the case of

siRNA1 and 2 for hYME1L (Fig. 3.1B lane 1 and 2) and siRNA4 and 6 for

mYME1L (Fig. 3.1C and not shown data). The protein was reduced to a

level which was not detectable by immunoblotting with any of the used α

YME1L antibodies. siRNA 1, 2 and siRNA 4 and 6 were chosen for further

experiments.
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3.1.3 Mammalian YME1L role in proteolysis

Proteolysis of PHB1 upon depletion of its assembly partner PHB2

Depletion of PHB2 in mammalian cells is accompanied by the loss of

its assembly partner PHB1; however, transcription of Phb1 was shown not

to change [106]. This suggests proteolysis of PHB1 while the PHB2/PHB1

complex is destabilized upon absence of PHB2; an effect that was observed

previously in yeast [75]. Therefore, the PHB1 steady-state level was as-

Figure 3.2: YME1L degrades PHB1 upon destabilization of the prohibitin
complex
Cell extracts from MEFs transfected with siRNA designed against mYME1L (4 and 6) and against mPHB2 (Y)
or both of them (4Y) were analyzed after 48-60h post transfection by immunoblotting with α YME1L (ptglab), α

PHB1 (NeoMarkers) and α PHB2 (BioLegend). Cells transfected with scrambled siRNA were used as reference

control. Immunoblotting with α complexII antibody (Molecular Probes) was used as a loading control.

sessed in PHB2 deficient MEF cells by single (siRNA4 and 6 against Yme1l,

siRNAY against Phb2) or double siRNA transfection (siRNA4 and Y; Fig.

3.2) to verify the potential role of YME1L in PHB1 degradation. In the case

of single transfections Western blotting showed an efficient and specific

down regulation of YME1L (Fig. 3.2, lane 2 and 4) while neither the level
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of PHB1 and PHB2, nor complex II used as a loading control, changed.

Similarly, efficient depletion of PHB2 (Fig. 3.2, lane 3) did not lead to de-

pletion of YME1L or complex II. It led however to destabilization of PHB1.

Simultaneous knock down of PHB2 and YME1L (Fig. 3.2, lane 1) stabilized

PHB1 to the wild-type level (scrambled control). This indicates a role of the

YME1L protein in the degradation of the unassembled prohibitin complex

subunit - PHB1. This finding clearly shows that structural conservation of

Yme1p throughout the evolution (compare with Fig. 1.3) results also in the

functional conservation of the protein, as Phb1p was shown before to be a

specific substrate for the yeast iAAA protease [75].

YME1L role in the new apoptotic pathway

The molecular bases of phenotypes associated with a deletion of YME1

in yeast as well as the phenotypes observed upon down regulation of

YME1L in mammalian cells are poorly understood. It appears likely that

they are connected with the diverse roles of the so far undiscovered

substrates of the iAAA protease. Given those pleiotropic functions, we

wanted to examine further effects of YME1L down regulation in the mam-

malian cells. Recently, Goemans et al. have reported a new apoptotic path-

way activated by mitochondrial outer membrane permeabilization and in-

hibition of caspases [57]. It involves a specific TIM23 degradation which

impairs mitochondrial import and inhibits cell proliferation. Tim23p is

a central component of the TIM23 translocase complex in the inner mi-

tochondrial membrane, crucial for the pore formation [107]. It was fur-

ther shown that TIM23 degradation depends on factors residing in the

mitochondria. The authors proposed this novel apoptotic pathway as an

“emergency exit” for the apoptosis to occur upon inhibition of caspases.

To investigate the specific function of YME1L in TIM23 degradation, apop-

tosis was induced with 200µM or 50µM etoposide (Eto, Fig. 3.3A, B) in

the cells transfected with siRNA against YME1L and scrambled negative

control (scr). Cells were treated with 10µM caspase inhibitor Q-VD-OPH
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Figure 3.3: Stabilization of TIM23 upon YME1L down regulation
HeLa cells transfected with siRNA and scrambled negative control (scr) were treated with 200 µM (A.) and

50 µM (B.) of an apoptotic stimulus (Eto) in the presence or absence of caspases inhibitor (OPH) for 24h and

48h respectively. Destabilization of TIM23 (α TIM23, BD Biosciences) observed upon simultaneous apoptosis

stimulation and inhibition of caspases can be rescued by siRNA knock down of YME1L (α YME1L, ptglab).

Immunoblotting with α complexII antibody (Molecular Probes) served as a loading control.

(OPH). Inhibition of caspases simultaneous with the apoptosis induction

resulted in TIM23 destabilization as shown on Fig. 3.3A lane 2, and 3.2B

lane 3. Knock down of YME1L stabilized the protein, revealing YME1L

role in the apoptosis- and caspases inhibition-induced specific degrada-

tion of TIM23. The effect was stronger with 50µM etoposide treatment for

48h, than 200µM etoposide for 24h, suggesting that this pathway is rather

late reacting.

3.1.4 YME1L role in mitochondrial biogenesis

Mitochondrial morphology of the mammalian cells

Next, the effects of YME1L depletion on the mitochondrial morphol-

ogy were addresses in human HeLa cells and murine MEFs. To this end

both types of cells were transfected with siRNA against YME1L to knock

down the protein. Subsequently, cells were transfected with a plasmid en-

coding mitochondrialy targeted red fluorescent protein (pDsRed2-Mito)

for the visualization of mitochondria by fluorescent microscopy. We used

cells transfected with the scrambled negative control as controls (Fig. 3.4B)
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Figure 3.4: Aberrant mitochondrial morphology in the absence of YME1L
A. - E. HeLa cells were transfected with: siRNA1 (C. a, b, c) siRNA2 (D. a, b, c) siRNA3 (E. a, b, c) designed

against human YME1L mRNA, and scrambled negative control (B.) or no siRNA (A.) followed by pDsRed-Mito

(1 µg) transfection and analyzed by fluorescence microscopy after 48-60 h post-transfection. Different morpho-

logical types of mitochondria were quantified (F.) and compared to controls: HeLa transfected with scrambled

negative control siRNA (scrambled) and pDsRed-Mito (1 µg), HeLa cotransfected with pcDNA3.1Hygro empty

plasmid and pDsRed-Mito (4:1, 1 µg of total plasmid DNA) (WT+VEC), HeLa transfected with siRNA1 and

co-transfected with pcDNA3.1Hygro:pDsRed-Mito (4:1, 1 µg of total plasmid DNA) (siRNA1+VEC). 100 cells

were calculated for each sample. G. - L. MEF cells transfected as A. - E. with no siRNA (WT control; G.); scram-

bled negative control (H.) and siRNAs designed against murine YME1L mRNA: siRNA4 (J.) siRNA5 (K.) and

siRNA6 (L.). Yellow arrows point to the non affected cells with mitochondrial morphology as in the control

cells.

as well as cells not transfected with siRNA (WT, Fig. 3.4A). In all of tar-

get siRNA-transfected cells we could see aberrant mitochondria. From

swollen but still interconnected branches (Fig. 3.4Cb, Ea-c) to the com-

plete lack of the network (Fig. 3.4Ca, Dc, J, K, L). HeLa cells were quanti-

fied: 100% cells transfected with siRNA1 had fragmented/aggregated mi-

tochondria; 90% transfected with siRNA2 and 97% with siRNA3. None

of the transfected HeLa cells had wild-type mitochondrial tubular net-
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work. Only 6% of the cells transfected with scrambled control had frag-

mented mitochondria. WT and siRNA1 transfected cells were addition-

ally co-transfected with an empty pcDNA3.1Hygro vector (VEC) to ex-

clude deleterious effect of plasmid transfection. They had 2% and 97%

of fragmented mitochondria respectively. Even in the populations, where

Western blotting analysis still revealed residual levels of the YME1L pro-

tein (Fig.3.1B lane siRNA3) almost all of the cells showed abnormal mi-

tochondrial morphology. That could indicate the primary effect of down

regulation of YME1L on mitochondrial network not tightly related to its

high enzymatic/proteolytic activity. Similar mitochondrial phenotypes in

the MEFs transfected with siRNA4-6 were observed (Fig. 3.4J-L). The frag-

mentation/aggregation was even more striking than in HeLa cells (Fig.

3.4J, K). However, the transfection efficiency was lower as mixed popu-

lations of cells having aberrant and wild-type morphology could be seen

(Fig. 3.4L).

OPA1 processing in the YME1L knocked down cells

The dynamin-related GTPase OPA1 is essential for the maintenance of

cristae in the mitochondrial inner membrane and for mitochondrial fusion

[116; 138]. There are eight OPA1 splice variants which are proteolytically

processed to two long isoforms (L1 and L2) which can be in turn processed

to three short isoforms (S3-S5). S4 is a form that appears to be generated

by YME1L [61; 73; 138]. In further experiments a relation of mitochondrial

abnormalities in MEFs (Fig. 3.5A) to accumulation of the different OPA1

forms (Fig. 3.5B) was examined. Immunoblotting of the MEF cells trans-

fected with siRNA4 revealed alterations in OPA1 cleavage (Fig. 3.5B, lane

2). Longer isoforms are absent (L1) or present in the smaller amount (L2)

and the shorter isoforms accumulate. This effect is in line with the aber-

rant morphology visible by fluorescent microscopy (Fig. 3.5A). Notewor-

thy is the difference in mitochondrial morphology of cells transfected with

siRNA against PHB2 (siRNA Y), and YME1L (siRNA 4). Mitochondria in
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Figure 3.5: Processing of OPA1 depends on the presence of YME1L
Lysates from the MEF cells transfected with siRNA against murine YME1L (4), murine PHB2 (Y) or both of

them (4Y) were checked for OPA1 expression pattern by immunoblotting with the anti-OPA1 antibody (BD

Biosciences). Ponceau S staining (PS) serves as a loading control. Fluorecence microscopy (A.) of indicated cell

samples shows mitochondrial morphology effect in relation to OPA1 processing (B.). Scrambled transfection

control (scrambled, SCR) and wild-type cells (MEF WT) were used as reference controls.

cells lacking PHB2 are small and dispersed, no elongated forms are visible.

No interconnections are present. Mitochondria from cells lacking YME1L

are bigger, swollen with visible interconnections. Therefore they resemble

more aggregated than fragmented tubular network. Recently, PHB2 was

shown to influence the OPA1 processing and cristae remodeling, with the

mitochondrial fragmentation as PHB2-depletion effect [106]. Apparently,

PHB2 down regulation has an epistatic effect over YME1L down regula-

tion, since double knock down of the proteins (siRNA 4 and Y) results in

the morphology resembling single PHB2 depletion (Fig. 3.5A).
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Mitochondrial transmembrane potential maintenance in the YME1L

knocked down cells

Mitochondrial dysfunction and dissipation of the membrane potential

across the inner membrane can induce OPA1 processing and lead to mito-

chondrial fragmentation [44; 73; 106]. The YME1L knock down could also

Figure 3.6: YME1L affects mitochondrial morphology but not respiration
A. Aberration in the mitochondrial morphology upon down regulation of YME1L by 3 different siRNAs: 1

(a.) 2 (b.) and 3 (c.) in HeLa cells transfected with pDsRed-Mito and analyzed after 48-60 h by fluorescence

microscopy. Scale bar 2 µm. B. Maintenance of mitochondrial transmembrane potential in YME1L-deficient

HeLa cells. Indicated cell samples were stained with the fluorescent dye JC1 and analyzed by flow cytometry

at 590 nm. Dissipation of the membrane potential with CCCP both in wild-type HeLa cells and transfected

with siRNAs 1 and 2 or scrambled control, together with DMSO treated cells were used as controls. White

bars represent the percentage of cells giving red and green signal whereas black bars show percentage of cells

giving only green signal, e.g. with the dissipated membrane potential. C. Immunoblot analysis of siRNA 1-3

transfected HeLa cells. Steady state levels of respiratory chain proteins: complex II (Molecular Probes), complex

V (Molecular Probes) and complex IV subunit 2 (COX2; Molecular Probes) were analyzed by SDS-PAGE of

total cell lysates and immunoblotting with the specific antibodies. Scrambled siRNA transfected and non

transfected cells serve as reference controls. Immunoblotting with an anti-YME1L antibody (Dr. C. Koehler)

shows YME1L-specific siRNA down regulation efficiency.

impair the transmembrane potential. That would explain induced OPA1

processing and mitochondrial morphology abnormalities (Fig. 3.6A). To

examine this possibility, siRNA transfection was repeated. Subsequently

cells were stained with JC1 (Molecular Probes). This is a fluorescent dye,
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whose oligomerization in the living cell takes place in mitochondria and

depends on the presence of the mitochondrial potential. JC1 aggregates

in the mitochondria emitting a red fluorescence, or/and stays in the cy-

tosol as monomer, emitting a green signal. Thus, in normal cells with

transmembrane potential present, both red and green signals are present,

while no red signal can be detected upon dissipation of the membrane

potential. siRNA1 and siRNA2 were used, as the most efficient in down

regulating YME1L levels. Wild-type HeLa cells and the negative siRNA

control were used to exclude deleterious effect of the transfection. CCCP

(carbonyl cyanide m-chloro-phenyl-hydrazone) treatment was used as a

positive control for the transmembrane potential dissipation. CCCP is an

uncoupling agent which abolishes the obligatory linkage between the res-

piratory chain and the phosphorylation system observed with intact mi-

tochondria. Cells were subjected for fluorescence-activated cell sorting

(FACS) and quantified (Fig. 3.6B). The membrane potential was main-

tained in YME1L depleted HeLa cells. Furthermore, respiratory chain

complex II, complex V and cytochrome c oxidase subunit 2 (COX2) steady

state levels were not affected (Fig. 3.6C). Taken together, increased OPA1

processing and mitochondrial fragmentation in YME1L-depleted cells is

not caused by an impaired transmembrane potential or respiratory activ-

ity. These findings are in agreement with the previous reports showing ab-

normalities in the mitochondrial network upon YME1L down regulation

[61] proposing YME1L role in the processing of OPA1 in a constitutive

and transmembrane potential-independent manner at the S2 processing

site [63; 138].
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3.2 Overexpression of YME1L in the inducible

system: HEK293 T-REx Flp-In cells

3.2.1 Expression constructs

Mitochondria depend on the functional iAAA and mAAA inner mem-

brane proteases. The mAAA protease subunits paraplegin and AFG3L2

were reported in the pathogenesis of Hereditary Spastic Paraplegia [24;

25; 127], axonal development [101], in the maintenance of mitochondrial

morphology [43; 73] and in the proteolytic cleavage/maturation of other

mitochondrial proteins [112; 146]. Similarly, the present study reports a

role of the iAAA protease in mitochondrial morphology, apoptosis and

specific degradation. However, little is known about the mechanisms that

could carry out those functions. Recent mutational studies on the yeast

Yme1p revealed different modes of substrate binding [58] which could

participate in different effects of gene deletion or Yme1 protein mutation

on its different functions. Furthermore, studies on the mAAA protease

have shown that a mutation of the conserved glutamate residue in the

Walker B motif, required for ATP hydrolysis has a dominant negative ef-

fect on the mAAA complex (personal communication: Ines Raschke, Flo-

rian Gerdes, Dr Takashi Tatsuta and Dr Steffen Augustin). It is therefore

conceivable, that similar mutation in iAAA could lead to the similar ef-

fect. To test that possibility we constructed several expression constructs

encoding different variants of murine YME1L (Fig. 3.7A). Mutations were

introduced into:

• the lysine residue required for ATP binding in the Walker A motif

(mYME1K327A; WA),

• the glutamate residue of the Walker B motif required for ATP hydrol-

ysis (mYME1LE381Q; WB),
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• the glutamate residue responsible for enzymatic activity in the pro-

teolytic domain (mYME1LE542Q; EQ),

• highly conserved glutamate residue which has not been yet reported

as essential for any of the functions of AAA proteases (mYME1LE603Q;

Ct see also Fig. 1.3 and Appendix 1 on page 81 for the sequence align-

ment).

An additional construct with a wild-type variant of mYME1L (mYME1LWT ;

WT) was prepared for a control. The protein was C-terminally tagged with

StrepII tag followed by eight histidine residues (8HIS). They were intro-

duced to allow:

• differentiation of the endogenously and exogenously expressed pro-

teins by immunoblotting with an antibody against the tags.

• two-step protein purification using affinity chromatography

• pull down of YME1L-substrate complexes

All the constructs were cloned into a vector allowing inducible expression

(pcDNA5/FTR/TO™ ) and stable HEK293 lines were generated with a

help of Flp-In™ system (Invitrogen).

3.2.2 Generation of stable cell lines

The Flp-In™ system allows single genome integration of the cod-

ing cassette through Flp-driven recombination between two FRT sites

(Fig. 3.7B). HEK293 T-REx™ Flp-In™ cells harbor one FRT site within

a LacZ-Zeocine cassette integrated into the genome. The second FRT se-

quence is located on the pcDNA5/FRT/TO™ vector. Sequences encoding

the Gene of Interest (GOI, Fig. 3.7B) are cloned into the pcDNA5/FRT/-

TO™ vector under a tetracycline-inducible promoter (PCMV/2xTetO2).

The pOG44™ plasmid harbors a coding sequence for Flp recombinase.

Both are co-transfected into HEK293 T-REx Flp-In™ cells. Constitutively
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expressed Flp mediates trans recombination between both FRT sites. As

a result, the whole pcDNA5/FRT/TO™ plasmid with GOI gets inserted

into the HEK293 genome and the LacZ-Zeocine cassette gets disrupted

and cells lose zeocine resistance. They gain, however, hygromycine re-

sistance which allows positive selection. Clones isolated after ten days

selection with hygromycine were verified for a correct genome inser-

tion by β-galactosidase activity test. It is based on the presence of the

functional LacZ cassette in the genome of non-transfected cells and cells

where random integration occurred. In the test they are stained blue, as

β-galactosidase is active. No strain reports LacZ disruption i.e. proper in-

tegration of the coding construct into the genome (Fig. 3.7C).

3.2.3 Test of expression

In the following experiment, clones showing negative staining in the

β-galactosidase activity test were subjected for 24h to tetracycline (tet)

induction of YME1L expression. Mitochondria were isolated from non

- induced and tet-induced cells to examine the relative expression level

(Fig. 3.8A). Positive stable cell line clones were obtained for all of the con-

structed mYME1L variants. In all of the checked mitochondrial lysates an

increase of the protein expression was detected in response to the tetra-

cycline induction. As seen on Fig. 3.8A there is no band shift, despite of

C-terminal double tag, 20 kDa in size, included in the expression con-

structs. The YME1L bands in non-induced cells represent the endogenous

protein, whereas from tet-induced both: endo- and exogenously expressed

protein. Batch purification of the protein from cleared cell lysates (Qiagen,

according to the QIAexpressionist protocol) on Ni-agarose affinity column

(Qiagen) failed, as well as a detection of the protein with α StrepII an-

tibody (results not shown). We conclude therefore, that both StrepII and

8 HIS tags are lost, presumably cut off in proteolytic processing. It was

therefore impossible to differentiate endogenous and exogenous forms of

YME1L expressed in HEK293 cells.
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Figure 3.8: Overexpression of wild-type or mutant forms of mYME1L has
no effect on the growth rate
A. Correct insertion into the genome was verified by comparison of YME1L protein level before and after

induction: one part of the cells was treated with 1?g/ml of tetracycline for 24h (+Tet) and the other part was

left without induction (-Tet). Both sets of cultured clones were subjected for mitochondria isolation and YME1L

level was examined by immunoblotting with the commercially available YME1L-specific antibody (ptglab).

Indicated clones expressed the following forms: wild-type mYME1L (WT4), mYME1LK327A (WA4, WA6),

mYME1LE381Q (WB9), mYME1LE542Q (EQ7) and mYME1LE603Q (Ct2). B. Proliferation assay (Promega) with

1 µg/ml tetracycline induction (right panel) or without (left panel). HEK293 Flp-In™ T-REx™ control cells

together with clones expressing wild-type YME11L were used as reference controls. Each clone was seeded and

measured in 4 repeats.

3.2.4 Characterization of mYME1L expressing cell lines

Overexpression effect on the cellular growth

The effect of any of the introduced mutations on the cellular prolif-

eration was examined. Deficiencies in other mitochondrial proteins, like

PHB2 were shown to inhibit the proliferation of MEF cells [106] and

Walker B motif mutation in the murine AFG3L2 inhibits the growth of

HEK293 Flp-In™ T-REx™ cells (Ines Raschke personal communication).

Therefore, the proliferation assay was performed with tetracycline induc-

tion for 8 days (Promega, CellTiter96 AQueous One Solution Cell Prolifera-

tion Assay). Cells were counted every 24h. Tetracycline was freshly added

every 24h due to its low stability. We did not observe any inhibitory effect
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of the mYME1L WT or mutant variants overexpression on the cell growth

(Fig. 3.8B) when compared to the HEK293 control cells.

Subcellular localization of the overexpressed mYME1L forms

In further experiments the subcellular localization of the overexpressed

protein was approached. Both StrepII and 8HIS tags could not be de-

tected. Therefore endogenous and exogenously expressed YME1L could

not be distinguished from each other. The subcellular localization of the

protein was assessed by immunofluorescence with the specific polyclonal

anti-YME1L antibody. To this end, transfection of the mitochondrially tar-

geted red fluorescent protein was done with the subsequent induction of

the mYME1L-variants expression and finally immunofluorescence (Fig.

3.9). Co-localization of the red fluorescent protein signal with the green

signal given by the immunodetected YME1L protein was observed for

all of the cell samples. Immunofluorescence also detects the endogenous

YME1L whose expression is by no means inhibited. However, lack of any

other specific signal pointing to the cytosolic or other localization suggests

that both endogenous and construct-derived protein is targeted into the

mitochondria.

Mitochondrial morphology upon overexpression of mYME1L variants

The knock down experiments have shown that functional iAAA pro-

tease is necessary for the maintenance of the mitochondrial network and

this role appears to operate through the proteolytic cleavage of OPA1.

Here, an effect on the mitochondrial morphology was observed upon

YME1L depletion which correlates with the disappearance of the long

forms of OPA1 (Fig. 3.4). To examine the effect of wild-type and mutant

mYME1L overexpression on mitochondrial morphology fluorescent mi-

croscopy was performed. The cells were transfected with the mitochon-

drially targeted red fluorescent protein (pDsRed-Mito) and grown in the

presence of tetracycline for 24h (Fig. 3.9, middle panel). No aberrations in
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Figure 3.9: YME1L localization and mitochondrial morphology of Flp-In™
T-REx™ expression cell lines
Clones confirmed for single FRT driven integration into the genome were transfected with pDsRed-Mito (Clon-

tech) fixed after 48 hrs post-transfection and incubated for overnight with the anti-YME1L antibody (ptglab,

1:50) and subsequently with FITC-conjugated goat anti-rabbit secondary antibody (1:1000). Mitochondrial lo-

calization of YME1L in control cells and expression cell lines can be seen by co-localization of the green signal

(YME1L) with red signal (pDsRed-Mito) in merged picture.
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the mitochondrial morphology were observed. This result indicates that

overexpression of wild-type or mutant variants mYME1L did not signifi-

cantly affect the mitochondrial network.

3.2.5 Functionality of the iAAA protease in the HEK293

cells expressing YME1L and YME1L

OPA1 processing at the S2 cleavage site

Given the wild-type mitochondrial morphology in the cells express-

ing mutant forms of mYME1L, OPA1 processing by the iAAA protease

was checked. It was demonstrated that OPA1 is cleaved proteolytically in

two sites: S1 and S2; where S2 is the one identified as the cleavage site

for YME1L protease [138]. Hence, transiently expression of OPA1 splice

variant 7 was done (sp7-OPA1). It is known to posses both of the sites,

and therefore processed to one long isoform L1 and two short isoforms

S4 and S5 [138]. S1 site was deleted from the constructed form giving

sp7-OPA1-∆S1 (Fig. 3.10). It resulted in the processing to only two forms:

long L1 and short S4. Additionally the construct was tagged C-terminally

with three Flag tags for detection independent of the endogenous OPA1.

In all of the cellular lysates processing of sp7-OPA1-∆S1 was unchanged

(Fig. 3.10). This result is in agreement with the mitochondrial morphology

observation, and suggests that iAAA protease is functional in all of the ex-

amined cells. An unequal loading of the protein samples is indicated by

the PS loading control. However in all of the samples two forms of OPA1

are detected corresponding to the long and short isoforms detected in the

wild-type HEK293 cell extracts. Different protein levels indicated by the

intensity of the bands detected by Western blotting could also result from

different transient transfection efficiencies.
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Figure 3.10: Processing of sp7-OPA1∆ S1 by various forms of mYME1L
HEK293 Flp-In™ T-REx™ control cells and expression cell lines with mYME1L wild-type (WT),

mYME1LK327A (WA), mYME1LE381Q (WB), mYME1LE542Q (EQ) and mYME1LE603Q (Ct) were transfected

with pCMV-sp7-OPA1∆S1-3Flag. 24h post-transfection expression of YME1L was induced for another 24h with

1 µg/ml of tetracycline. Total cell lysates were separated on SDS-PAGE and sp7-OPA1∆S1-3Flag processing at

S2 site was analyzed by immunoblotting with the anti-Flag antibody (Sigma). Ponceau S staining (PS) shown

in the lower panel serves as the loading control.

PNPase maturation

Yme1p in yeast was shown to be imported into the mitochondria via

TIM23 pathway, and its assembly into the proteolytically active complex

requires Tim54p belonging to the TIM22 translocon [72]. Hence, it was

proposed that Tim54p links mitochondrial import and turnover path-

ways. Interestingly, Yme1p itself was shown to have a role independent

of its proteolytic activity, in the mitochondrial translocation of an exoge-

nously expressed human PNPase through the inner membrane [122]. It ap-

pears therefore to be an important player in both mitochondrial turnover

and import and that those functions are carried out independently. The

proteolytic functionality of the overexpressed YME1L variants was con-

firmed by showing the cleavage of OPA1 at S2 site. However other,

non-proteolytic functions could be affected.

In the next experiment further YME1L function was assessed in HEK293

cells expressing mutant and WT forms of the protein. To check the matura-

tion of the endogenous PNPase, the YME1L expression was induced with

tetracycline (Fig. 3.11). All of the cells expressing mYME1L (WT, WA, WB,
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Figure 3.11: Overexpression neither of WT form of YME1L nor any of its
mutant affects PNPase
Whole cell lysates (WCL) and mitochondria (mt) isolated from clones expressing wild type (WT1, WT4)

or mutant murine YME1L variants: mYME1LK327A (WA), mYME1E381Q (WB), mYME1LE542Q (EQ) and

mYME1LE603Q (Ct) were subjected for SDS-PAGE and analyzed for PNPase by immunoblotting with hPNPase

specific antibody (Dr. C.Koehler). Yeast extracts from wild-type and ?yme1 strain expressing human PNPase

were used as controls. “m” indicates the mature form of PNPase.

EQ and Ct) were divided into two fractions. One fraction was subjected for

mitochondria isolation (mt). The second one was used for the preparation

of protein lysates from the whole cells (WCL). As the import of PNPase

into the mitochondria is coincident with its maturation, two forms of PN-

Pase in the wild-type control should be seen (Fig. 3.11; hPNPase expressed

in the yeast WT strain).And inhibition of the PNPase import should result

in aberrant forms, like those in the negative control (∆yme1 yeast strain

background). The wild-type and deletion control ∆yme1 are consistent

with the Rainey et al. report [122]. Whole cell lysates were checked together

with the mitochondrial extracts, in case the translocation is arrested and

PNPase resides in the cytosol. Still, our experiment showed the existence

of both precursor and mature forms of hPNPase, similar to the WT control,

and the expression of none of the mYME1L variants led to the band pat-

tern resembling ∆yme1 yeast control. Therefore, this indicates that iAAA

function in the protein translocation is not affected by the expression of

any of the mutant mYME1L proteins.

Assembly of the respiratory chain protein complexes

Mitochondrial function depends on the correct assembly of the respi-

ratory chain complexes and mitochondrial potential. In the following ex-

periments, other functions were examined, like respiration and ATP pro-

duction. For this purpose, first the assembly of the respiratory chain com-
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plexes was approached by Blue-Native PAGE (Fig. 3.12, [132]). Consistent

with the wild-type tubular mitochondrial network is the assembly of res-

piratory chain proteins which remained unaltered. That points to the un-

affected mitochondrial functionality in all of the clones.

Figure 3.12: Assembly of respiratory chain complexes
Mitochondria (200 µg) isolated from HEK293 Flp-In™ T-REx™ control cells and mYME1L expression cell lines

mYME1L wild-type (WT), mYME1LK327A (WA), mYME1LE381Q (WB), mYME1LE542Q (EQ) induced with

1 µg/ml of tetracycline for 24h were solubilized in 1% (w/v) DDM. Assembly of respiratory complexes was

examined by Blue-Native PAGE: samples were separated on the gradient 4-11% native gel and the complexes

visualized with Coomassie brilliant blue colloidal staining. Thioglobulin (669kDa) and apoferritin (443kDa)

serve as molecular mass references
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Discussion

Studies on the mitochondrial AAA membrane mAAA and iAAA pro-

teases revealed their conservation and close homology to the bacterial

FtsH. Experimental evidence indicated the mammalian subunits of both

mAAA and iAAA proteases as functional orthologs of the yeast pro-

teins. That revealed protein conservation from bacteria to high eukaryotes.

Both mAAA and iAAA protease complexes are involved in the mitochon-

drial quality control, degrading non-native proteins in the ATP-dependent

manner. Mutations in the mammalian mAAA protease subunits: paraple-

gin and AFG3L2 were identified in patients suffering of hereditary spastic

paraplegia (HSP) and OXPHOS impairment. The characteristic feature of

the mAAA-related HSP is an axonal decay in the motor neurons leading

to the lower limbs paralysis. Intensive studies are undertaken to reveal

the molecular mechanisms underlying those inheritable diseases. Close

homology of the human iAAA subunit YME1L to paraplegin led to specu-

lations about its involvement in pathogenesis of HSP. However, up to date

next to nothing is known about its function in the mammalian cells and

the molecular mechanisms it is involved in. Here with focus on the mam-

malian YME1L function in the mitochondrial proteolysis and morphology,

and approach them by knock down and the over expression studies.
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4.1 YME1L is specifically recognized by the an-

tibody and efficiently down regulated with

siRNAs

In vitro processing of the radiolabeled hYME1L by the MPP resulted

in the 60kDa protein. That is the size of a protein recognized by all of

three anti-YME1L antisera used in the present study. Immunoblotting re-

vealed mature form of the mammalian YME1L present both in human and

murine cells. With this method, no precursor form of the protein could be

detected. It should be ∼80 kDa in size. Furthermore, we could detect only

one isoform of the human YME1L, ∼60 kDa in size, in the human cell

lysates. This suggests that the annotated isoforms 1 and 3 are only forms

of the precursor protein, both efficiently maturated to the 60 kDa size.

Transfection with three different siRNAs resulted in the disappearance

of the 60kDa band, which was not the case in the negative transfection

control, both in MEF and HeLa cells. Taken together, we could specifically

recognize the mammalian YME1L protein with three different antibod-

ies, and efficiently and specifically down regulate the protein level using

siRNAs, both in murine and human cells.

4.2 YME1L is involved in the proteolysis of pro-

teins in the mammalian mitochondria

Destabilization of proteins leads to their degradation in the quality con-

trol process. In the case of the mitochondrial PHB1/PHB2 inner membrane

complex, depletion of PHB2 in mammalian cells is accompanied by the

loss of its assembly partner PHB1, with no loss of the Phb1 transcript [106].

As reported previously, both yeast prohibitins are substrates for proteol-

ysis by Yme1p upon destabilization of the prohibitin 1/prohibitin 2 com-

plex [75]. Here we report a proteolytic function of the mammalian YME1L
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in the degradation of PHB1, while its assembly partner PHB2 is depleted.

Our result shows, that the evolutionary conservation on the sequence level

- 42% homology between human and yeast Yme1p - is followed by the

functional conservation of the protein.

Proteolysis of unassembled protein complexes is one of the quality con-

trol functions. It allows removal of potentially dangerous proteins from

the mitochondria. Yme1p is the proteolytic subunit of the iAAA protease

which together with mAAA protease ensures the quality control in the

inner mitochondrial membrane, degrading non-native proteins. In yeast,

cells deleted in either mAAA or iAAA subunits reveal similar phenotypes

related to their respiratory incompetence, however the strength of those

phenotypes is different. ∆yme1 cells are only conditionally retarded in

growth, i.e. on the non-fermentable carbon source at 37°C and on glucose

at 14°C [23; 152]. Whereas YTA10 and YTA12 yeast mutants exhibit res-

piratory incompetence [62; 148] and lack of assembled respiratory chain

and ATP-synthase complexes in the inner membrane and can not grow

on a non-fermentable carbon source [54; 118; 158]. There were reports re-

vealing specific substrates of the yeast mAAA protease, but not for the

iAAA protease [112; 146]. Similarly, in the mammalian cells mutations in

the mAAA subunits are related to the mitochondria-related disorder, HSP

[24] which is related to the aberrant axonal development [101] and OX-

PHOS deficiencies [12]. Close homology between YME1L and paraplegin

and AFG3L2, both related to HSP, raised the speculations about the in-

volvement of YME1L in similar disorders [36]. Nevertheless, no mutations

in the Yme1l gene were identified in patients with OXPHOS deficiencies

[35]. It was suggested that both mAAA and iAAA proteases have an addi-

tional role in the regulation of mitochondrial dynamics and morphology,

independent of their proteolytic quality controlling in the mitochondria

and that those specific functions, rather than the common one which is the

proteolysis of unassembled membrane proteins in mitochondria, leads to

those differences.
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Interestingly, the further examination of the proteolytic function of

YME1L in mammalian cells revealed its involvement in the specific degra-

dation of TIM23. Thus, it is involved in the novel cell death pathway re-

ported recently [57]. The data show that the degradation of TIM23 accom-

plished by YME1L occurs upon apoptosis induction with the accompa-

nying inhibition of caspases. Therefore, it shares similarities with necrop-

tosis, which is also induced by the apoptotic stimulus with the simulta-

neous inhibition of caspases. However, the following organelle swelling,

plasma membrane permeabilization and lack of nuclear fragmentation

present in necroptosis point to the necrotic cell death [39]. Therefore,

TIM23-dependent cell death was proposed as an emergency pathway for

the apoptosis to occur under caspases inhibition [57]. In line with this, the

data demonstrate that TIM23 degradation was stronger with 50µM etopo-

side treatment for 48h, then 200µM etoposide for 24h, indicating that this

apoptotic pathway is rather late reacting. This would be in agreement with

the proposed “emergency pathway” theory, as in some tissues already

morphological changes occur within minutes after pro-apoptotic stimulus

[131; 149]. Down regulation of YME1L inhibits TIM23 degradation, and

thus cell death progress. Therefore, it might have therapeutic potential for

the diseases that involve caspase-independent cell death and result in loss

of irreplaceable cells, like neurons or cardiomyocytes.

4.3 Mammalian YME1L has a role in the mito-

chondrial morphology

OPA1 is present in the human cells in at least eight splice variants

which are proteolytically processed to two long isoforms (L1 and L2)

which can be further processed to three short isoforms (S3-S5) where S4

is a form that appears to be generated by YME1L [61; 73; 138]. Upon down

regulation of YME1L we could observe various aberrations in the mito-

chondrial morphology, which resemble aggregated and fragmented tubu-
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lar network. Such an effect was previously observed in yeast ∆yme1 cells

[23] therefore it further points to the conserved function of the mammalian

protein. Moreover, we observed induced cleavage of OPA1. It appears that

OPA1 is not degraded; rather the processing is induced, as long isoforms

disappear and the short ones accumulate. Such an accelerated process-

ing, however with an accompanying degradation is also observed upon

transmembrane potential dissipation [44]. Here, YME1L down regulation

did not result in the collapse of the membrane potential with neither of

used siRNAs. Hence, it suggests that in both cases different mechanism

are involved. This result is in agreement with the notion, that YME1L pro-

cesses OPA1 at the S2 site constitutively and in the potential-independent

manner, unlike PARL and mAAA protease, which require the mitochon-

drial potential [61; 73; 138]. Similarly, PHB2 depletion was shown to in-

duce the cleavage of OPA1 independent of the transmembrane potential

[106]. However, we observed that both PHB2 and YME1L down regula-

tion result in different mitochondrial phenotypes. Moreover, simultane-

ous depletion of both proteins results in the mitochondrial morphology

resembling the single PHB2 depletion. This indicates an epistatic effect

of PHB2 over YME1L. It suggests also involvement of both proteins in

different pathways of the mitochondrial morphology regulation. It is not

known, however, which way YME1L could function in the mitochondrial

fusion. We cannot exclude cristae remodeling, as YME1L cleaves OPA1.

However it would presumably involve different mechanism than PHB2.

Recently, F1F0-ATP synthase (also known as F1F0-ATPase) was shown to

be essential for the mitochondrial fusion, cristae formation and the main-

tenance of the tubular morphology [10; 56; 119; 139]. It is a rotary enzyme

reversibly synthesizing ATP in the coupled to the proton transport across

the membrane manner. F1F0-ATP synthase forms dimeric and oligomeric

supercomplexes. Yeast Mgm1p is required for the proper oligomerization

of F1F0-ATP synthase [5]. Yme1p was suggested to catalyze the turnover

of F1-ATPase protein inhibitors [42; 86; 93] and influence F1-ATPase func-
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tion and activity [48]. Hence, it is conceivable, that Yme1 protein could be

a link between F1F0-ATP synthase oligomerization or conformation and

Mgm1/OPA1, and as such could influence the mitochondrial morphology.

To verify that possibility the respiratory chain proteins assembly could

be addressed upon the YME1L depletion. However, destabilization of the

oligomerized F1F0-ATP synthase forms which led to the dissipation of the

transmembrane potential was demonstrated not to affect other mitochon-

drial features, like morphology, cristae formation, mtDNA stability, enzy-

matic activity of cytochrome c oxidase, maximal respiration rate and en-

zymatic activity of F1F0-ATP synthase [18]. It appears likely therefore, that

the activity of F1F0-ATP synthase and not its oligomeric state is important

for mitochondrial function. So far no evidence has been gathered for the

Yme1p - F1F0-ATPase direct or indirect interactions. Similarly, no clear ev-

idence could point out and explain the influence of Yme1 on the F1F0-ATP

synthase activity.

The double PHB2/YME1L depletion phenotype could also suggest

upstream function of PHB2 to YME1L. But in such a case, one might

see an effect of PHB2 down regulation on the level of YME1L, as both

proteins were functionally dependent. Here, PHB2 depletion did not affect

the YME1L steady-state level.

Summarizing, the present study could show that mammalian YME1L

is an evolutionary conserved protein with functions in the quality con-

trol, proteolysis and mitochondrial morphology. Moreover, YME1L was

demonstrated to specifically degrade TIM23 in the novel apoptotic event.

Hence, YME1L appears to be an important player in both cell survival

and cell death, having roles beyond its involvement in the proteolysis of

non-native proteins. The results further suggest that YME1L is not essen-

tial for the cell viability, as no increase in cell death was observed upon the

protein down regulation throughout the experiments. It is however note-

worthy, that the cellular survival was not assessed over the longer time

periods. Therefore, the long-term effects of the YME1L-absence remain an
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open question. Additionally, the dividing, immortalized cells were used

throughout the study, whereas the disorders YME1L was suggested to be

involved in, affect neurons - the irreplaceable, finally differentiated and

non-dividing cells. It is conceivable, that this kind of cells accumulate the

defects over time. Malfunctions of the mitochondrial fusion/fission ap-

paratus and lack of a fully functional proteolysis result in the decreased

quality control. This, in turn, could lead to the accumulation of mtDNA

mutations and reactive oxygen species (ROS) which would further dam-

age mitochondria. In the present work, the conserved function of YME1L

in the degradation of non-assembled prohibitin 1 was shown. Assuming,

that its role in the proteolytic turnover of the yeast Psd1p [108] is also con-

served in higher eukaryotes, its depletion might negatively influence the

mitophagy. Therefore, the damaged mitochondria would not be removed

efficiently, which might result in the induction of cell death. Decreased

proteolytic quality control could also lead to the accumulation of the mis-

folded or damaged proteins within mitochondria. Furthermore, the mito-

chondrial transmembrane potential could collapse as a result of mtDNA

mutations or deletions. This, in turn, might lead to the inhibition of the

mitochondrial import, inhibition of the cell growth and/or the induction

of apoptosis. The formation of intracellular and extracellular aggregates

of protein fibrils are common neuropathological features of many diverse,

neurodegenerative, progressive and late-onset disorders, such as sporadic

and familial Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral

sclerosis, and prion encephalopathies [157]. Therefore, to further investi-

gate YME1L function in the mitochondria, and learn about its relevance

for the cell on the organism level and over the time and development, an

animal deletion model might be generated.
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4.4 Overexpression of YME1L in the cells

In the next experiments, the iAAA function in the mammalian cells

was assessed by the expression of various forms of the murine YME1L.

The goal was to examine the effects of the YME1L dominant negative mu-

tant expression. Observations in our laboratory showed that the Walker B

motif mutation in the conserved glutamate residue of AFG3L2 has a dom-

inant negative effect on the mAAA protease (Ines Raschke and Dr Steffen

Augustin personal communication). Therefore, we investigated effects of

an expression of the similar mutant (mYME1LE381Q) together with muta-

tions in several other conserved residues (K327A, E542Q and E603Q).

Depletion of some mitochondrial inner membrane proteins was shown

to have an effect on the cell growth. For example, PHB2 deficiency led to

the inhibition of the cellular proliferation [106]. Similarly, degradation of

TIM23 resulted in the cell cycle inhibition and retardation of the cell prolif-

eration [57]. Expression of the dominant negative AFG3L2 mutant rapidly

inhibited proliferation and induced cell death (Ines Raschke personal com-

munication). Therefore, we examined effects of the YME1L expression as

a mutant or wild-type protein on the cell growth. Surprisingly, none of the

mutations led to the cell growth retardation. The possible reasons are that

either none of the mutant variants had a dominant negative effect on the

iAAA protease, or it had, but malfunctions of the iAAA complex did not

lead to the cell proliferation effects. Or the overexpressed proteins were

not correctly inserted into the mitochondria, and therefore had no effect on

the iAAA protease, and thus on the cellular growth. But given that iAAA

protease is not essential for the cell viability, it might be possible, that no

growth defects would be observed even if the iAAA protease was not fully

functional. Therefore next, the iAAA protease targeting and functionality

were approached upon overexpression of various forms of the mYME1L.

The cleavage of both C-terminal StepII tag and 8HIS tag from the over-

expressed proteins made it impossible to distinguish the exo- and endoge-

nously expressed forms. Nevertheless, the immunofluorescence detection
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revealed YME1L only in the mitochondria. No other signals were de-

tectable which could point to other than mitochondrial localization or pro-

tein aggregation in the cytosol. Hence, this indicates that both wild-type

and mutant variants of the mYME1L were efficiently targeted into the mi-

tochondria. Having excluded the possibility of a mistargeting, the func-

tionality of the mammalian iAAA protease was examined upon overex-

pression of different forms of mYME1L. The known roles of the mam-

malian YME1L were addressed.

The YME1L-dependent cleavage of OPA1 splice variant 7 at S2 site re-

sults in one long L1 and one short S4 isoform of OPA1. It was demon-

strated that beside YME1L, some other, so far not identified protease

cleaves OPA1 at this site [138]. Therefore upon YME1L depletion the long

L1 form accumulates, and the short one is still present, however in lower

amount [138]. Upon overexpression of mYME1L or mYME1L in HEK293

cells, the ratio of the long isoform to the short one did not change. The

conclusion is, that neither wild-type nor mutant variant of YME1L af-

fected proteolytic cleavage of OPA1 at the S2 site. Hence, the proteolytic

activity of the iAAA complex was not affected. In line with this result is

the wild-type tubular mitochondrial morphology visible in the examined

cells. It points to an unaffected function of YME1L in the mitochondrial

dynamics.

The morphology effect could be seen even with not complete deple-

tion of the protein, whereas mYME1LWT overexpression did not result in

changes in the mitochondrial morphology. It seems therefore, that the mor-

phology is more sensitive to the decrease, than the increase of the YME1L

level. It might be possible, that also here the level of the endogenous pro-

tein is sufficient to fulfill all of the iAAA protease functions. Farther ex-

pression of the protein might have no effect on the complex, independent

of its mutation. In this case, expression of those mutant forms in the null

background would shine a light on the mammalian iAAA protease func-

tion. This was addressed by down regulation of the endogenous protein
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by siRNA transient transfection with duplexes against the human YME1L.

It was then followed by the murine YME1L expression (data not shown).

No YME1L protein could be detected. Maybe the down regulation was as

efficient as to knock down the murine protein despite of sequence mis-

match between siRNA duplex and mRNA sequence? To exclude such a

possibility, down regulation has to be performed with a use of siRNAs de-

signed against the UTR fragment of mRNA, which is present only on the

endogenous and not vector-derived mRNA. Unfortunately, none of the

siRNAs used in the present study and shown to efficiently knock down

the protein, hybridizes within the UTRs.

In yeast, Yme1p was demonstrated to have a role in the import of

an exogenously expressed human PNPase [122]. It is the only known

non-proteolytic function of the iAAA protease. Therefore, PNPase matura-

tion was used to further assess functionality of the mammalian iAAA com-

plex. No aberrant forms of PNPase were detected in the extracts from cells

overexpressing YME1L variants, which could resemble those reported

previously in ∆yme1 cells [122]. Also here, iAAA protease function ap-

pears to be unaffected.

Mutations in the mammalian mAAA protease increase oxygen con-

sumption, and decrease the maximum respiration capacity which is be-

lieved to be related to the uncoupling of the electron flow from the ATP

production (Ines Raschke and Sarah Ehses personal communication). This

could be related to effects on the assembly of the respiratory chain com-

plexes. Following this line, the assembly of respiratory proteins was ap-

proached by the protein electrophoresis in native conditions. In none of the

cells expressing wild-type or mutant mYME1L the assembly of those pro-

teins was affected. It suggests functional respiratory chain, but does not

exclude decreased respiration capacity. To verify it further, oxygen con-

sumption and ATP production should be addressed.
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Taken together, the collected data indicate, that none of the chosen mu-

tations introduced into the mYME1L sequence, resulted in the dominant

negative effect on the iAAA proteolytic complex.

Mammalian subunit AFG3L2 was shown to homooligomerize [87].

It was related to the increased severity of the AFG3L2 mutation when

compared to paraplegin as paraplegin forms only heterooligomers with

AFG3L2 [101]. So far, YME1L is the only known subunit of the mammalian

iAAA complex. In yeast Yme1p was found in complexes with Mgr1p. It is

however a non-enzymatic subunit, therefore it was proposed to regulate

the function of the iAAA protease. In the case of mammalian iAAA no

co-factors are known to modulate its activity. No homologues of Mgr1

were identified in higher eukaryotes [42]. Therefore it is assumed that

only YME1L builds up the functional iAAA protease complex. Concluding

from the effects of AFG3L2 mutation, dominant effect was expected for

some of the mutations introduced into the sequence of mYME1L and

efficiently expressed in the HEK293 cells. Contrary to this, none of the

mutations inhibited the complex, nor resulted in any phenotypic effects,

despite of the efficient induction of the transgene expression detected by

the immunoblotting.

Then the question arises: is this possible, that YME1L is able to self -

process like FtsH [3] or its overexpression triggers degradation by some

not identified protease? Then, the increase of its concentration might re-

sult in the increased turnover of the protein by the endogenous YME1L

or some other protease. It seems that in such a case, the induction of

YME1L expression would not be detected in the extend detected here by

immunoblotting. However, to further address this possibility, chase exper-

iments should be designed to follow changes in the protein concentration

over time.

The results indicate that the overexpressed protein is imported into

the mitochondria. In parallel, the assembly of the iAAA protease was ap-

proached by protein electrophoresis in the native conditions (BN-PAGE).
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We could observe complexes similar to those in the wild-type HEK293

cells only in the case of mYME1LWT (Appendix 2, page 85). Their size is

in agreement with the reported size of the yeast iAAA complex which is

∼800 kDa [42]. In the cells expressing ATP-binding mutant mYME1LWA,

the size of the iAAA complex is shifted to bigger, as well as its assem-

bly seems to be more sensitive towards detergent treatment. (1% DDM

in all samples). Similarly, in the cells expressing ATP-hydrolysis mutant

mYME1LWB, the iAAA complex appears to be destabilized under the sol-

ubilization conditions used in the experiment, as a smear of not fully as-

sembled YME1L forms appear. In the cells expressing proteolyticaly inac-

tive mutant mYME1LEQ, the iAAA complex size is shifted towards bigger.

However, it seems to be stable in the used detergent concentration. This

suggests, that the assembly of the YME1L subunits into the complex is not

affected, and the bigger size of the complex might result from the trapping

of some interaction partner/substrate by the proteolyticaly inactive sub-

units. Taken together, assembly of YME1L in the cells expressing mutant

variants of the protein results in different than wild-type complexes. Are

they less stable, or better accessible for the detergent upon membrane sol-

ubilization, which would suggest less compact folding? Regardless of it,

YME1L protein oligomerizes into the complexes in the way, which allows

fulfilling all of the examined functions of the iAAA protease, giving no

phenotypic effect.

From the studies on the yeast and mammalian mAAA we know that

it forms hexameric rings in the inner membrane, similar to the structures

proposed for FtsH (Dr Steffen Augustin and Florian Gerdes personal com-

munication and [15; 90]). It has been proposed that the ATPase activity

of the AAA proteases is needed for the substrate unfolding and translo-

cation, but not the proteolysis itself. Conserved loop regions within the

central channel formed by the ATPase subunits have been demonstrated

to be involved in a substrate binding [70]. ATP-dependent conformational

changes of these loops are thought to drive the translocation and accom-
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panying unfolding of associated substrates into the proteolytic chamber

[58].

A mode of ATP hydrolysis proposed is a semi-sequential for yeast and

sequential for mammalian mAAA where binding of ATP to one subunit

blocks the ATP hydrolysis by the clockwise neighboring subunit. In such

a mode of ATP hydrolysis a substrate is unfolded and pulled into the pro-

teolytic chamber for proteolysis in an effective and coordinated manner. It

was proposed that only 4 ATP molecules are bound to the complex at the

same time, and ClpXP studies have shown that Walker B mutation of one

subunit decreased the activity of the other to 60%, but even 1 fully active

subunit in the hexameric complex could perform a substrate translocation

[69; 103].

There is no experimental support for the ATPase activity followed by

proteolysis mode of action for the iAAA protease, but the high homology

to the mAAA suggests also conservation of common mechanisms. How-

ever, the results in the present study suggest that there could be differ-

ences in the ATP-binding and hydrolysis as well as substrate transloca-

tion mechanisms between the mammalian mAAA and iAAA protease. It

could involve more independent mode of action for each subunit in the

iAAA complex. Provided that each of the subunits was able to bind and

hydrolyze ATP, and the block on ATP binding and/or hydrolysis by one of

the subunits did not block the neighboring one, the assembly of mutated

subunits would not influence the whole complex. In this hypothetical situ-

ation only the mutation of each subunit in the iAAA complex would result

in its complete inhibition.

Similar situation would occur when the ATP-binding and hydroly-

sis were semi-sequential, like in the yeast mAAA (Dr Steffen Augustin

personal communication). There, the active unit of the whole complex

is a dimer of Yta12p and Yta10p. Blocked ATP-hydrolysis by Yta12p

blocks its neighbouring Yta10 subunit, but not vice versa. In the case

of the mammalian iAAA complex, that would be presumably homod-
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imer of only YME1L protein. Therefore, no different specificities in ATP

or substrate binding between all of the subunits should occur. It would

be therefore hard to imagine that the ATP binding and hydrolysis were

semi-sequentional, unless some up to now unidentified co-subunits of the

mammalian iAAA protease existed. They could influence or regulate the

manner in which the whole complex worked.

The next question is, whether the incorporation of a maximum of four

non-functional subunits would still leave a functional dimer, which would

keep on binding and hydrolyzing the ATP, providing the energy essential

for the function of the iAAA complex? And furthermore, it is questionable

that the conformational changes of the pore loop would be still possible

with ATP molecules irreversibly bound to the complex.

In yeast, there is a certain threshold value for overexpression of the

Yme1 protein (Tanja Engmann personal communication). In the HEK293

cells expressing the YME1L variants a mixture of an endogenous and ex-

ogenous protein is present, however we cannot conclude about the stoi-

chiometry of both. Provided the similar threshold in the mammalian cells,

it would be possible that the level of the expressed YME1L variants is not

reaching the concentration needed to result in the inhibition of a whole

iAAA protease complex.

Summarizing, the present study demonstrated expression of several

forms of the murine YME1L which did not result in the identification of a

dominant negative protein mutant. Hence, those results open many ques-

tions with regard to the molecular mechanism of the YME1L function in

the mitochondria as well as long term effects of its knock-out. Further

studies are needed for an identification of interaction partners and pos-

sible regulators of the mammalian iAAA protease.
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Materials and methods

5.1 Materials

5.1.1 Bacterial, yeast and mammalian strains and cell lines

All the bacterial and yeast strains as well as cell lines are listed in Table

5.1

Table 5.1: Strains and cell lines used in the study

Organism Cell line/Strain Reference

Escherichia coli XL10 Gold Stratagene

XL1 Blue Tanja Engman

Saccharomyces cerevisiae WT + hPNPase Dr Carla Koehler

∆yme1 + hPNPase Dr Carla Koehler

Mus musculus Mouse Embryonic Fibroblasts/

C57BL/6

Dr Carsten Merkwirth

Homo sapiens Human Embryonic Kidney/Flp-In™

T-REx™ HEK293

Invitrogen

Human cervix cancer cell line/ HeLa Dr Gerrit Praefcke
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5.1.2 Oligonucleotides

The synthetic oligonucleotides used in this study are listed in Table 5.2.

siRNA duplexes used in protein knock down studies are listed in Table 5.3

Table 5.2: List of oligonucleotides used in the study

Name 5‘ Sequence 3‘

TL4024 CCA AAT ATG AGT TCC TGT GCC ACT CTT CCT CCC ATG

TL4023 CAT GGG AGG AAG AGT GGC ACA GGA ACT CAT ATT TGG

TL4022 GTA ATA TGC AAT AAT AGC ATG ACC AGA TTG ATG ATA GGC TGT TAT AG

TL4021 CTA TAA CAG CCT ATC ATC AAT CTG GTC ATG CTA TTA TTG CAT ATT AC

TL4020 CCA CCA ACA GAA TCT AAT TGA TCG ATG AAT ATA ACA CAA GGA G

TL4019 CTC CTT GTG TTA TAT TCA TCG ATC AAT TAG ATT CTG TTG GTG G

TL4018 GGC AAG AAG CGT CGC CCC TGT TCC TGG TGG

TL4017 CCA CCA GGA ACA GGG GCG ACG CTT CTT GCC

TL4001 CTG CAG CTA TCA GTG ATG GTG ATG GTG ATG GTG GTG AGT ACT TTT TTC GAA

CTG CGG GTG GCT CCA TCT CACT TCC AAT TTC TT

TL4000 GGA TCC GCC GCC ATG TTC TCC CTG TCG A

TL2677 ATA TTA CAC AAA GGA TGC AAT GCC

TL2676 GAG GCA TGA TTG TAG CTT TAT TAA TTG

TL2675 GCA GAC GAT CAA TCA GCT TCT TG

TL2674 CAT TGG GTT TGA AAC CAT CCA

TL2673 TTG ATT CTG CGG TAG ACC CTG

TL2672 ATG TTC AAA AGT GAC ATT TTT CAT CT

TL2671 GTA CAT TAC GTT CCT CTA GCT TGT ACA

TL2670 CGT AAT GTA CTG AAC ATA TCT AAG TGA CC

TL2637 CCG TCG ACT CAT CTC ACT TCC AAT TTC TTT CC

TL2636 CCG GAT CCA TGT TCT CCC TGT CGA GCA CT

TL2602 AAC AGC TAT GAC CAT GAT TAC GC

TL2601 AAT ACG ACT CAC TAT AGG GCG AAT
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Table 5.3: List of siRNA duplexes used in protein knock down studies

Name Description 5‘ Sequence 3‘

siRNA1 hYME1L TTA AGG CAT TAT CTA ATG CCT CTG G

siRNA2 hYME1L TTC GAT GGC AGA TTG GGT TTC TGG A

siRNA3 hYME1L TTT AGT TCA GAT AAT CCA AGG TCC C

siRNA4 mYME1L TTC AGT TCG ACC CTT CAC ATC TGG C

siRNA5 mYME1L ATC ACT GTA GGT CAT AAC TCC AAG C

siRNA6 mYME1L AAC AAT TTG AAT CTC TTT GGC ATC C

siRNAY mPHB2 ATT GAA CTT GGC CAC CAC ACT CTT G

siRNAZ mPHB2 ATT CGG TTC TGT GAT GTG GCG ATC G

5.1.3 Vectors and constructs

All the vectors and constructs used in this study are listed in table 5.4.

Table 5.4: List of plasmids used in the study

Plasmid Reference

pGEM® -T-Easy Promega

pcDNA™ 5/FRT/TO Invitrogen

pDsRed2-Mito Clontech

pcDNA5 FRT/TO-mYME1LWT -StepII-8HIS this study

pcDNA5 FRT/TO-mYME1LK327A-StrepII-8HIS this study

pcDNA5 FRT/TO-mYME1LE381Q-StrepII-8HIS this study

pcDNA5 FRT/TO-mYME1LE542Q-StrepII-8HIS this study

pcDNA5 FRT/TO-mYME1LE603Q-StrepII-8HIS this study

pCMV-sp7-OPA1™ ∆S1-3Flag [73] #1958
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5.1.4 Antibodies

The antibodies used in this work are listed in table 5.5.

Table 5.5: List of antibodies used in the study

Antibody Dilution Reference

α hYME1L 1:500 Dr Carla Koehler

α mYME1L 1:500 Proteintech Group, Inc. (pt-

glab)

α mYME1L (SPY531) 1:250 -

1:500

this study

α TIM23 1:1000 BD Biosciences

α BAP37 (PHB2) 1:500 BioLegend

α prohibitin (PHB1) 1:500 NeoMarkers

α β-actin 1:5000 Sigma, clone AC15

α complexII, 70kDa 1:1000 Molecular Probes

α complexV, su α 1:1000 Molecular Probes

α COX2 1:1000 Molecular Probes

α OPA1 1:500 BD Biosciences

α FLAG M2 1:1000 Sigma

α PNPase 1:1000 Dr Carla Kohler

Goat anti-rabbit IgG HRP - la-

beled secondary antibody

1:10000 BioRad

Goat anti-mouse IgG HRP -

labeled secondary antibody

1:10000 BioRad
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5.1.5 General reagents

All laboratory chemicals used in the present study were purchased

either from Sigma or Merck unless stated otherwise. Enzymes used in this

study were purchased from NEB or Invitrogen with stated exceptions.

5.2 Methods

Standard methods of molecular biology were performed according to

established protocols [128].

5.2.1 Affinity purification of antisera

Rabbit SPY531 was immunized by the simultaneous injection of 2

peptides: EP071347 and EP071348. YME1L specific IgGs were purified

from serum by immunoabsorption on a peptide-conjugated Sulfo-Link®

(PIERCE) matrix.

Peptide coupling to the matrix

Peptides EP071347 (H2N - TLKSRTRRLQSTSER - CONH2) and EP-

071348 (H2N - DKILMGPERRSVEID - CONH2) used for the immuniza-

tion of rabbits and raising the polyclonal antibody against YME1L were

synthesized and supplied by the Eurogentec company. For the purifica-

tion, a SulfoLink® Coupling Gel (Pierce) matrix was used according to the

manufacturer‘s protocol. 1.5 mg of each peptide was dissolved in 50µl of

coupling buffer. The volume was slowly increased to obtain completely

dissolved peptides. The total volume of the pooled peptides solution was

adjusted to 3 ml. For each ml of peptide solution 1 ml of SulfoLink® gel

was used, i.e. the total column volume was 3 ml. Coupling efficiency was

calculated by the comparison of A280 nm of the non-coupled fraction (flow

through) to the starting sample and was ∼88%.
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Immunoabsorption of the antiserum

The matrix, conjugated with peptide, was equilibrated by consecutive

washings with 10 ml of 10 mM Tris-HCl, pH 7,5; 100 mM glycine-HCl, pH

2,5; 10 mM Tris-HCl, pH 8,8; 100mM Na-phosphate, pH 11,5; and 10 mM

Tris-HCl, pH 7,5. After the last washing step antiserum, diluted in buffer

B to a ratio of 1:1 and a final volume of 10 ml, was applied on the column

at a flow rate of 0,1 ml/min. This was repeated three times. The column

was then washed with 10 ml Tris-HCl pH 7,5, followed by a washing step

with 10 ml buffer C. Peptide specific IgGs were eluted in three steps.

Table 5.6: Buffers used in the antiserum purification

Buffer Composition

Coupling buffer 50 mM Tris-HCl, 5 mM

EDTA-Na pH 8.5

Buffer B 10 mM Tris-HCl, 1 mM PMSF, 1

mM EDTA, 2 mM EGTA, com-

plete protease inhibitor

Buffer C 10 mM Tris-HCl, 500 mM NaCl

pH 7,5

1. Elution with 10 ml 100 mM Na-citrate, pH 4,5. Elution fractions (1

ml) were collected and pH was adjusted to 7,0 with 1M Tris-HCl, pH

8,8.

2. Elution with 10 ml 100 mM glycine-HCl, pH 2,5. 1 ml fractions were

collected and the pH was adjusted to 7,0 with 1M Tris-HCl, pH 8,8.

The column was washed with 10 ml 10 mM Tris-HCl, pH 8,8.

3. Elution with 100 mM Na-phosphate buffer, pH 11,5. Fractions (1 ml)

were collected and the pH was adjusted to 7,0 with 1M glycine-HCl,

pH 2,5.
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The elution fractions were examined for the presence of IgGs by SDS-PAGE

and immunoblotting with HRP-conjugated secondary antibodies. Elution

fractions containing the majority of IgGs, were pooled and concentrated to

a volume of ∼500 µl with Centricon YM-100 (Millipore) centrifugal filter

concentrator according to manufacturer’s recommendations.

5.2.2 Cell culture

Growth conditions

Mouse embryonic fibroblasts (MEFs) and HeLa cells were cultured

in Dulbecco’s Modified Eagle’s (DMEM) GlutaMax™ -I medium (Gibco)

supplemented with 10% FCS, 1x non-essential amino acids, 1 mM sodium

pyruvate, and 1x penicillin/streptomycin. All the cells were kept at 37°C

99% humidity and 5% CO2. Flp-In™ T-REx™ HEK293 cells were main-

tained in Dulbecco‘s Modified Eagle‘s (DMEM) Gluta-Max™ -I (Gibco)

medium supplemented as above, with additional 15 µg/ml blasticidine

and 100 µg/ml zeocine. Cells were maintained in culture by growing them

until ∼80% confluency and passing in 1:50 dilutions (for MEFs) to 1:3 di-

lutions (for HEK293). For wild-type cell lines as well as for the stable cell

lines HEK293 Flp-In™ T-REx™ clones liquid nitrogen frozen stocks were

prepared.

Passing and freezing the cells

Cells grown to the desired confluency were washed twice with 1x

PBS. After complete removal of the PBS, 1x trypsin solution in PBS (PAA

Laboratories GmbH) was added and cell were incubated as follows: MEF

and HeLa cells 5 min in the standard growth conditions, HEK293 cells

not more than 3 min at room temperature. After the incubation, fresh

growth medium was added, at least the same volume as the previously

added trypsin. Cell suspension was pipeted up and down against the cell

bottom 5-8 times and put into a fresh falcon tube. Cells were pelleted
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down for 5 min, 1200 rpm, at room temperature. Liquid was removed and

the cell pellet was then loosened by hitting the tube bottom a few times.

Cells were passed by the addition of fresh growth medium and plating

onto fresh dishes in the desired dilutions. For freezing, the cell pellet

was resuspended in 10% DMSO in FBS and 1ml aliquots in cryo-tubes

were prepared and put on ice. For slow freezing, isopropanol-containing

freezing boxes were used. Tubes containing cells were put into the -80°C

freezer and transferred to liquid nitrogen storage after 24-72h.

5.2.3 Transfection

siRNA transfection

All siRNA transfections were done twice in 6-well plate format with

6-8 hours incubation in between. For YME1L down regulation with RNAi

murine - mRNA - sequence and human - mRNA - sequence - specific

Stealth RNAi (Invitrogen) were purchased (listed in Table. 5.3) together

with the Stealth RNAi Negative Control Duplexes. During the transfec-

tion no antibiotics were added to the medium, and Opti - MEM™ serum

reduced medium (Gibco) was used. After the second transfection cells

were incubated in the normal growth conditions for over night. siRNA

transfections were performed using the Lipofectamine RNAiMax reagent

(Invitrogen) according to the manufacturer’s protocols. For single siRNA

transfection 30 pmol of the siRNA duplexes [20 pmol/µl] per well were

added; in double siRNA transfections the amount was doubled per well,

taking 30 pmol of each siRNA duplex.

Plasmid transfection

Plasmids were transfected twice in the 6-well format with the Gene

Juice reagent (Novagen) following the manufacturer’s instructions, with

4-6 hours incubation in between and with 1µg of total plasmid DNA

per well. After the second time, cells were incubated over night under
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standard growth conditions. During the transfection DMEM GlutaMax™-

I medium supplied with 1x penicillin/streptomycin and OPTI -MEM™

medium were used.

5.2.4 Protein isolation from tissue culture cells

Growth medium was removed from the cells and they were washed

twice with 1x PBS which was then removed completely from the dish.

Ice-cold 1x PBS was added to the cells and they were detached from the

plates with a cell scraper and transferred into a cooled tube. No trypsin

treatment was ever used to avoid unspecific protein degradation. The

plate was washed again with fresh ice-cold PBS and the suspension was

transferred into the same tube. Cells were pelleted by centrifugation: 5

min, 800 x g at 4°C , and snap-frozen in the liquid nitrogen. The pellet

was resuspended in the lysis buffer and rotated for 2-3 hours at 4°C . Cell

lysates were cleared by centrifugation: 10 min, at 13000 rpm at 4°C; and

transferred into fresh tubes. Protein concentration was determined by the

Bradford protocol [22].

5.2.5 SDS-PAGE and Western Blotting

Sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PA-

GE) and semi-dry western blotting were carried out as described previ-

ously [91; 128]. Buffers and reagents used are listed in Table 5.7, page 68.

The transfer was done with the use of PVDF membranes for overnight at

room temperature. The BioRad mini-gel system was used.

5.2.6 Fluorescence microscopy

Cells were seeded on 6-well plates with cover slides. Dilutions de-

pended on the examined cell line to reach the density proper for trans-

fection reagents recommended by the manufacturers. To address the mi-
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Table 5.7: Buffers and reagents used in SDS-PAGE and immunoblotting

Buffer Composition

10xSDS running buffer 10 g/l SDS, 30,3 g/l Tris, 144,1

g/l glycine

10 x PBS 80 g/l NaCl, 2 g/l KCl, 26,8

g/l Na2HPO4-7H2O, 2,4 g/l

KH2PO4, pH 7,4 adjusted with

HCl

Blotting buffer 0,2 l/l methanol, 0,2 g/l SDS,

2,42 g/l Tris, 11,3 g/l glycine

PonceauS solution 100 ml 2 g PonceauS, 30 g

trichloroacetic acid, 30 g sulfos-

alicylic acid

10 x TBS 12 g/l Tris, 90 g/l NaCl, pH 7,4

adjusted with HCl

SDS-PAGE sample buffer 50 mM Tris/HCl, pH 6,8,

1% (v/v) β-mercaptoethanol,

2% (w/v) SDS, 0,01% (w/v)

bromphenol blue, 10% (w/v)

glycerol

68



Chapter 5. Materials and methods

tochondrial morphology in siRNA down regulation studies transfection

was performed as follows: 2 times siRNA transfection with Lipofectamine

RNAiMax and 2 times pDsRed-Mito transfection with Gene Juice in 4 hour

intervals with the last transfection incubation lasting over night. The com-

plexes were removed and full growth medium was added. Otherwise,

only pDsRed-Mito transfection was performed according to the plasmid

transfection protocol (see page 66). Cells were subjected to lysis and/or

microscopy after 48h after the second plasmid transfection. Mitochon-

drial morphology was analyzed using the DeltaVision microscope system

equipped with Softworx software (Applied Precision).

5.2.7 Transmembrane potential detection

For transmembrane potential detection JC1 (Molecular Probes) stain-

ing was performed. HeLa cells were transfected with siRNA1 and siRNA2

as well as the scrambled negative control (Invitrogen). Untransfected

HeLa cells were used as a reference control. Cells were washed with 1x

PBS and detached from the dishes with a scraper. The cellular suspension

was transferred into a 1.5 ml tube, a small sample was used for calculation

of the cell number and approximately 2 x 105 cells were then pelleted by

centrifugation at 4°C, 800 x g, 5 min. and resuspended in 500 µl of growth

medium. To the control tubes 1 µl of 50 mM CCCP in DMSO was added,

to the other only 1 µl of DMSO and 15 min. of incubation at 37°C followed.

JC1 fluorescent dye was added to the final concentration of 2µM to CCCP

or DMSO treated or untreated samples, that were vortexed vigorously and

incubated at 37°C for further 15 min. Cells were pelleted by centrifugation

again, washed twice with 1xPBS and resuspended in 300 µl of 1xPBS. Flu-

orescence activated cell sorting (FACS) analysis at 590 nm followed. Sam-

ples were analyzed on a FACS Calibur equipped with CellQuest software

(Becton Dickinson).
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5.2.8 Cloning procedures

Competent cells

Competent Escherichia coli XL10 Gold or XL1 Blue were prepared as

follows: 3 ml LB medium was inoculated with the E.coli strain and incu-

bated overnight at 37°C . The whole culture was diluted into the 500 ml

of SOB++ or LB medium and incubated at 25-30°C until the measured ab-

sorbance of A600 reached 0.4-0.6, then it was chilled on ice for at least 10

min. The cells were spun down for 10 min, with 1500 x g, at 4°C and gently

resuspended in fresh 100 ml ice-cold TB buffer. The suspension was kept

on ice for the next 10 min, and a second centrifugation followed. The pellet

was then resuspended in 18.6 ml of ice-cold TB buffer and 1.4 ml of DMSO

was added. After this, the whole cell suspension was incubated on wet ice

for at least 10 min, and was aliquoted as 600µl per each, chilled on ice. The

aliquots were frozen in liquid nitrogen and stored at -80°C .

Table 5.8: Reagents for the preparation of competent E.coli cells

Buffer/medium Composition

TB buffer 10 mM HEPES pH 6.7, 15 mM

CaCl2, 55mM MnCl2, 250mM

KCl

SOB++ medium 20g/L bacto-tryptone, 5g/L

yeast extract, 0.5g/L NaCl,

0.186g/L KCl, 10 mM MgCl2, 10

mM MgSO4, (sterile MgCl2 and

MgSO4 have to be added just

before use)

LB medium 20g/L bacto-tryptone, 5g/L

yeast extract, 5g/L NaCl
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Transformation of bacteria

1 µl plasmid DNA (1ng/µl) was mixed gently with 100-200 µl of com-

petent cells. Cells were incubated at 0°C for 15-30 min and transferred to

heat-block for 90s heat shock at 42°C . They were cooled down on ice for

2 min and 1 ml LB medium without antibiotics was added. The tube lid

was punched with a needle and cells were incubated at 37°C , for 30-60

min, at 800 rpm shaking. Cells were spun down for 10s, resuspended in

100 µl of the LB medium and plated on LB agar plates with according an-

tibiotics. Plasmid DNA was isolated from the E.coli cells with an alkaline

lysis method [16] and with NucleoSpin™ columns (Machery & Nagel) fol-

lowing the supplier’s instructions. DNA ligations were performed using

DNA T4 Ligase (NEB) following the manufacture’s prescriptions.

DNA sequencing

Plasmids or DNA fragments were sequenced with the ABI Big Dye

Terminator Sequencing Kit (Applied Biosystems) according to established

methods [129]. The fluorescently labeled DNA fragments were analyzed

with an ABI Prism 3730 DNA analyzer (Applied Biosystems).

5.2.9 Preparation of the mYME1L-StrepII-8HIS expression

constructs

For expression of the full length murine YME1L and its mutants,

C-terminally tagged with a StepII-8HIS double tag in the Tet-inducible

T-REx™ Flp-In™ (Invitrogen) system in the mammalian HEK293 cells,

High Fidelity PCR (Roche) was performed with TL4000/TL4001 primers

(Table 5.2, page 60), supplied with 2%DMSO for higher PCR efficiency. The

product was subcloned into pGEM-T Easy (Promega) and positive clones

were confirmed by sequencing with TL2601/2602 and TL2670-2677 pairs

of primers Table 5.2). Mutagenesis was done with the Quick Change® XL

Site-Directed Mutagenesis Kit (Stratagene) with the following primers:
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• mYME1LK327A: TL4017/4018;

• mYME1LE381Q: TL4019/4020;

• mYME1LE542Q: TL4021/4022;

• mYME1LE603Q: TL4023/4024.

When the mutation regions were sequenced and confirmed, YME1L--

StrepII-8HIS and YME1L-StrepII-8HIS were cloned into

pcDNA™ 5/FRT/TO (Invitrogen) with NotI sites. The correct insertion

was checked by a HindIII digest.

Generation of stable Flp-In™ T-REx™ HEK293 cell lines expressing

mYME1L-StrepII-8HIS and mYME1L-StrepII-8HIS

For stable cell lines Flp-In™ T-REx™ HEK293 cells were transfected

with 3 µg of the total plasmid DNA per well in a 6-well plate in the ratio

of 1x pOG44 : 5x pcDNA5FRT/TOmYME1L construct (listed in Table. 5.4).

Transfection mixture was removed after over night incubation and fresh

growth medium was poured onto the cells. After 48 hours hygromycin B

(150 µg/ml) was added to the cells for selection. Visible clones were picked

after another 10 days; 100 clones for each transfected construct. Genomic

integration was checked by β-galactosidase staining followed by immun-

odetection of the YME1L and YME1L protein in the cell lysates from

non-tetracycline-induced cells versus 1µg/ml Tetracycline-induced for 24

hours cells. Clones were cultured in DMEM Gluta-Max™ -I medium sup-

plied with 10 µg/ml of blasticidine, 50 µg/ml of hygromycin B, 1x peni-

cillin/ streptomycin and 7.5% Tetracycline-Reduced Fetal Bovine Serum

(Biochrom AG) for keeping the expression repressed. Growing conditions:

5% CO2, 99% humidity, 37°C .
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β-galactosidase activity test

Growth medium was removed from HEK293 T-REx Flp-In™ cells and

they were washed once with 1x PBS and fixed with 0.2% glutaraldehyde/

2% formaldehyde/ PBS solution for 15 min. at 4°C . After double washing

with 1x PBS, β-gal Staining Buffer (1 mg/ml X-Gal, 5 mM K3Fe(CN)6, 5

mM K4Fe(CN)6, 2 mM MgCl2, 0.02% NP-40, 0.01% SDS) was added to the

cells and they were incubated at 37°C for 1 hour, washed with 1x PBS twice

and pictures were taken.

Immunofluorescence of the HEK293 Flp-In™ T-REx™ clones

Cells were grown in 6-well plates on the cover slides treated with 0.1%

poly-lysine solution (w/v) for better adhesion. After two washings with

1x PBS cells were fixed with 3% para-formaldehyde solution in PBS for 20

min at the room temperature. Subsequently they were washed twice with

1x PBS and permeabilized with 0.15% Triton X-100 solution in PBS for 15

min at room temperature. Blocking solution [2% BSA in PBS] was added

to the cells for 1h, removed and the primary antibody was added: 100 µl of

antiYME1L antibody (ptglab) 1:50 in 2% BSA/PBS. Overnight incubation

in the humid and dark chambers at 4°C followed. The primary antibody

was washed away with the blocking buffer 3 x 10 min. Then the Alexa

Fluor 488 dye-conjugated goat anti-rabbit secondary antibody (Molecular

Probes) was added (1:1000 in 3% BSA/PBS with 1 µg/ml DAPI) for 2h

at room temperature. Again, 3 x 10 min. washing steps followed. Cover

slides were mounted with ProLong® Antifade (Invitrogen) and sealed

with a transparent nail polish.

5.2.10 Isolation of mitochondria from tissue cultures

Cells were grown in the standard conditions to ∼95% confluency. To

avoid unspecific degradation of the cellular proteins no trypsin was used.

Cells were washed with 1x PBS, detached form the plates with cell scrap-
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ers and resuspended. The isolation of mitochondria was performed ac-

cording to the previously described method [50]. Protein concentration

was determined by the Bradford method [22].

5.2.11 Blue-Native polyacrylamide gel electrophoresis

The gradient gels used in this study were composed of a separation

gel with a linear gradient of 3-11% polyacrylamide prepared as follows:

Equal volumes of 3% and 11% gel solutions were prepared and poured

into the BioRad mini-gel system plates using the gradient maker. Gels

were left for polymerization at 4°C , for at least 3h. Mitochondria (200

µg) were resuspended in the solubilization buffer supplemented with 1%

dodecyl-maltoside (DDM) by pipeting and kept on ice without shaking

for 30 min. Final protein concentration was 2µg/µl. The non solubilized

material was spun down: 30 min, 4°C , and 30000 x g. The supernatant

was transferred into a fresh tube and supplemented with CBB buffer and

glycerol (10% final concentration). The electrophoretic separation was car-

ried out in Mini-Protean-3-gel chambers (Bio-Rad) at 4°C with deep blue

cathode buffer, using a constant voltage of 50V and a current of 15 mA

for ∼30 min, followed by 300V and 15 mA for ∼30 min. Subsequently, the

deep blue cathode buffer was exchanged for a cathode buffer of identical

composition but lacking Coomassie blue G-250 (colorless cathode buffer)

and the separation was continued at 300V and 15mA. Thioglobulin (669

kDa) and apoferritin (443 kDa) were used for calibration. Protein com-

plexes were detected by a Commassie Coloidal Blue stain for overnight

followed by destaining in Millipore water.
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Table 5.9: Buffers used in BN-PAGE

Buffer Composition

3x gel buffer 75mM Imidazole/HCl pH 7.0, 1.5M

6-aminohexanoic acid

Acrylamide /

bis-acrylamide

mix

48% acrylamide, 1.5% bis-acrylamide

Blue-Native sam-

ple buffer (CBB)

1% Coomassie® Brilliant Blue G250 in

solubilization buffer

Solubilization

buffer

30mM Tris/HCl pH 7.4, 50mM

NaCl, 4mM Mg-Acetate, 5mM

6-aminohexanoic acid, 1mM ATP,

1mM PMSF, 1x Complete® protease

inhibitor (Roche)

Anode buffer 25mM Imidazole/ HCl pH 7.0

Colorless cathode

buffer

50mM Tricine, 7.5mM Imidazole

Deep blue cathode

buffer

50mM Tricine, 7.5mM Imidazole,

0.02% Coomassie® Brilliant Blue

G250 (SERVA)

3% gel solution 3% acrylamide/0.09%

bis-acrylamide, 1x gel buffer, 2%

glycerol, 0.003% APS, 0.0003%

TEMED

11% gel solution 11% acrylamide/0.35%, 1x gel buffer,

30% glycerol, 0.003% APS, 0.0003%

TEMED
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List of abbreviations

• AAA - ATPases associated with a variety of cellular activities

• APS - ammoniumperoxo disulfate

• ATP - adenosine triphosphate

• bp - base pairs

• CCCP - carbonyl cyanide m-chlorophenylhydrazone

• cDNA - complementary DNA

• C-terminal - carboxyterminal

• C-terminus - carboxy terminus

• DMSO - dimethyl sulfoxide

• DNA - deoxyribonucleic acid

• EDTA - ethylene diamine tetraacetic acid

• Fig. - Figure

• g - standard gravity

• GTP - guanosine triphosphate
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• h - hour(s)

• HCl - hydrochloric acid

• HEPES - N-2-hydroxyethylpiperazine-N?-2-ethanesulfonic-acid

• HSP - hereditary spastic paraplegia

• K - potassium

• kb - kilobase pairs

• KCl - potassium chloride

• kDa - kilodalton

• KOH - potassium hydroxide

• m - meter

• M - molarity (mole per liter)

• MDa - megadalton

• MEF - mouse embryonic fibroblast

• µg - microgram

• µl - microliter

• mg - milligram

• ml - milliliter

• Mg - magnesium

• min - minute(s)

• mM - millimolar

• mRNA - messenger RNA
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• MPP - mitochondrial processing peptidase

• mt - mitochondrial

• mtDNA - mitochondrial DNA

• MTS - mitochondrial targeting sequence

• NaCl - sodium chloride

• NADH - nicotinamide adenine dinucleotide (reduced form)

• NaOH - sodium hydroxide

• NP-40 - Nonidet P-40

• N-terminal - aminoterminal

• N-terminus - amino terminus

• OXPHOS - oxidative phosphorylation

• PAGE - polyacrylamide gel electrophoresis

• PBS - phosphate buffered saline

• PCR - polymerase chain reaction

• PMSF - phenylmethylsulphonyl fluoride

• RNA - ribonucleic acid

• RNAi - RNA interference

• ROS - reactive oxygen species

• rpm - rounds per minute

• RT - room temperature

• s - second(s)
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• SDS - sodium dodecyl sulfate

• SPG - spastic paraplegia gene

• SRH - second region of homology

• TBS - Tris buffered saline

• TCA - trichloracetic acid

• TEMED - N,N,N’,N’-Tetramethylethylenediamine

• TIM - translocase of the inner membrane

• TM - transmembrane domain

• TOM - translocase of the outer membrane

• Tris - 2-amino-2-(hydroxymethyl)-1,3-propandiole

• U - unit(s)

• UPS - ubiquitin-proteasome system

• v/v - volume per volume

• V - volt

• wt - wild-type

• w/v - weight per volume
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Appendix 1

A multisequence alignment of AAA protease subunits from bacteria,

plant, yeast, mouse, rat and human is presented on Fig. 1, 2, 3 pages 82,

83, 84.

Alignment was done using the multisequence alignment software AlignX

with default setting and visualized with GeneDoc. Sequences were ex-

tracted from the national center for biotechnology information (NCBI).

The color code used in alignment is presented in the table below.

Table 1:

Residues Foreground/Background

non similar black/white

conservative grey/black

block of similar black/grey

identical white/black

weakly similar green/white
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Figure 1:
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Figure 2: Continued from page 82 multisequence alignment of AAA pro-

tease subunits from bacteria, plant, yeast, mouse, rat and human
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Figure 3: Continued from page 83 multisequence alignment of AAA pro-

tease subunits from bacteria, plant, yeast, mouse, rat and human

84



Appendix 2

Figure 4: Assembly of the iAAA protease complexes
Mitochondria (200 µg) isolated from HEK293 Flp-In™ T-REx cells™ (lane 1) and mYME1L expression cell lines:

mYME1L wild-type (WT, lane 2), mYME1LK327A (WA, lane 3), mYME1LE381Q (WB, lane 4), mYME1LE542Q

(EQ, lane 5), induced with 1 µg/ml of tetracycline for 24h were solubilized in 1% (w/v) DDM. Assembly

of the YME1L into complexes was examined by Blue-Native PAGE: samples were separated on the gradient

4-11% native gel and blotted onto PVDF membrane for overnight at room temperature. Complexes were

immunodetected with the specific anti-YME1L antibody (ptglab, 1:500). Thioglobulin (669kDa) and apoferritin

(443kDa) serve as molecular mass references.
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Him I also thank for support and understanding in the hardest time of my

life.

This thesis would not be as it is, if not Dr Martin Graef, whose meticu-

losity in corrections and a constructive criticism let me rethink and edit the

presented work. Also Dr Gerrit Praefcke spent his precious time and gave

me few important ideas. Dr Mirko Koppen and Sarah Ehses helped me

with impossible - to edit and translate the abstract. Susanne Scheffler app-

lied her English skills to the presented thesis, and made it readable, which

gives her my never-ending gratitude. And last but not least my brother, Dr

Wiktor Majczak gave the last cuts by formatting and arranging the content

using his sophisticated computer skills.

I thank my friends Daniela Goedderz and Yen Yen Kwan, for the time

we spent together, hoping it was just the beginning of a lifelong friendship.

I thank the former and present members of the Langer’s group and the

students of the Graduate School. For discussions, ideas, laughter and fun.

The time we spent together was very important in my personal and pro-

fessional development and I appreciate meeting so many great people on

my way: Dr. Mafalda Escobar-Henriques Dias, Dr Steffen Augustin, Dr.



Martin Graef, Dr. Mirko Koppen, Sascha Dargazanli, Sarah Ehses, Tanja

Engmann, Dr. Metodi Metodiev Claudia Wilmes, Christof Osman, Mari-

na Niederquell, Ines Raschke, Dr. Takashi Tatsuta, Dr Georgeta Seewald,

Dr.Carsten Merkwirth, Florian Gerdes, Florian Bonn and Fabian Anton,

Channa Keshavaiah K. C., Nelli Vardanyan, Rodrigo Nunes da Fonseca,

Luis Saraiva and Leo Kurian.

And finally, it would not be possible to finish the work and present you

the thesis as you see it, if not my parents Mirosława and Władysław, and

my closest family Halina Mazurek and Piotr Chodakowski, who encoura-

ged me and believed in me at all times.


	Abstract
	Zusammenfassung
	Introduction
	ÚC€ÅÇ‡Òì�?Ñ*#\ł;’æ(õh“
	eX�	øí¾kVÁ=�êÉ>�Å-š%%#)º´©â»b�vßê
L:��6i¿Þ9¡ÌóSöÝŸ3¹˛N ‰��ﬁK½Úœˇ'D>Øe
	�.�¡ÔNÍ��ºæ‚mÂ¤�×ˆ"2½�“&½�HùÉñ®¢¦
	~_R¸7Ðê¤»*Ÿÿ4˚

	ˇ’*ò¢|6�ùËÓÏ#Ù�ø�üC�Q±Å�ˇ˛|ì�…)qå�bþuöL{Í
	Ž½&™−MŠ.$‰Œ*ˆñþË÷	Ù,7$[å/þó˝	Ðã¢†ŸåÆ‰4h
	fùØz™�a�#6˙5¯†@¿&ti–�Ä‘�œÀ=§ö©tS2ë5�	YG˘º]LìK‚î·q„®^
	ÈÎÖB˛»8>ð4“ËXŸ−ô¬ôG:¥Ößµ�9h�IH½�{{{<Ð(=?rŒPïÒÉi⁄ﬂK’f£Á


	Aim of the thesis
	Results
	„ƒ‚ª�Ç™
>T˚àn„ÏíÐŒ‘-G��íãôuk−ºn[¡›ê>þÍÁ½uþ÷��øłÞ#wVš4p0ØK�−Ö{ì
	ß¡Â;*	ﬂ_*9–�Æ¹‰âdœ§q*é•Łg˘
NOòw
	
x®"!c˚{|‘é�öøá4Î´r.Š™ËjU�ŁeŸ¬(ôß	•g
	Æ”1Y56Å�Uíƒ(§ŽS¸ÒY>üš‰çr<"q¨*íOÀÌłˇ
	C_yóÁçÌm/èu0»&
&˘Ðl:ÏØD=T-,¿ﬁéyg¤³�3Ëƒ

	ºÒ”œDıñe�‡]ÐkOø’”²��Uþ¾ÈÅrF0�={ÉŒ¼˛LšJZ�B"m‚˜ÂÔù]ú˘˚ŠP/�ÝÛÃ�F)2�îŽW=°v× ´2
	üóG�ú/�˝À@Zıdí�ú�K²|:
	0”¦��D�ó˜öQã‰ÕˇCé“‘�pŠÅÐÝÌŸÙ˙��
	¡´‡H#Cˆ�|z�„Þ“äÝ¸õ
	¬C.›wµ�Ëï�=jw¢ëÉoß*ÐŸ3å@−�Ü<²Ù»�§p)!Êçr¡#6�!−Ä
œ
	�•1
o2™�Zi’µ'Ł}Ç−ß4'dŽ¾�õ*⁄˚cÈ�˝Z�ﬂﬂ-ËaZ¢¦‰V¤³�df�¬»}UÍł›˜Fg˜O?•\Éºçìö�Ûç£�j¿KEcŸ


	Discussion
	²ýô‡™ziPndšS¾3�u�L«‘Ï|~Q™Î˚Z�‘IËü�PÏ�.Ñ6èd¢ØÞsM¢“ÉÂ;RYönł"Ø&¿“½�¥LÒglÍp¦#łç÷óaä… •â.)ûK�òˆá
	h�'h¹‰RQ•šð���Í¶ßœA{�ÛH¡úÃXÊü%Óá%rÓŠ%¬�ım²fº£÷Û,Éì1ÑÏ�ÐÌ@†{£–Às‘y¦š¡¶æÈ×°äð*‰ç
	@wµÒ¶Ë�€−Ãš**Á	Ö4�ÜÃ‡ôÙTG`⁄V×˛kLE‘®)6´(§˝łä¦	KH�9€ý¥™â�Ô¶í
	{”Ž‹În”3��ê˜’ãk�eY⁄áłk€À[R¯Þï23ÒÈQ9k

	Materials and methods
	¤àè�−'‡I«
	Zï†`¡_)bˇ
Ì�Fð�2øÜißÚ9ÄéÉIèŽÉ˝�ã©P�/ôšvtª�>2˚/Kgs˙Ï�†
	ðé\vøł�.9Ò€Nq�ƒł
	îUÒâµrG›çåfÓN�
!®}¼ ¦K
	¦@4Š6èŠù€�
	[*�#ÁÊ‚$ñ
wv5Ó†t

	„¼<�˜QÝ
	tHŽQ÷§G¡ýÕ<'�¯�ˇÒ€`{��çà™ÅëV1ÉﬂÖ[
	#)�\6C'~§�M

	,9D�Œˆ—.P±~›
	�˚ö¼ˆ‹Æ�
Ö'˙Œ"‹óHƒå‚/x'¡Dﬁ˙ˆ�>é�ž/ÙÏ²l]Ä;ÛŁ
	T�Èa{\®¨yFMÁ°Î¬UÓOÒ
8Ÿ—žãwM3^
	ŠÜÎ,á˛–ï˛ñˆò�N�˚õbd[K
�
	)´&�å˛�"Ó€wÑˆPv3T�6½�•'	��i�ê){ô¥
	ŸüÑ�6LœÓìDêł
^Éòª´
	éÍłìë'C/<Ö™€Ù"�ï³™óU™pBu²úoé?c�c˜î>?^ÎK¶'|['˜f£öSáï“A×aµ‚ÄŒ±
	#¥ZjP³	ÈÎž�$'ÏL”B±h5\+bƒýDıªg�ÇˇBËgö9S§E�åþØ⁄
	•Ï[žÑt�tÙµLÆMëÆï�ežG�Âãbùˇ�2�ÅXˆ[��È?lî⁄��Ÿ*


	List of abbreviations
	Appendixes
	Bibliography

