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Abstract

This work describes the successful development of highly efficient and enantioselective 

organocatalytic approaches to the synthesis of chiral -substituted ketones, , -disubstituted

nitroalkanes as well as -nitroesters. The latter could be efficiently converted to the 

corresponding 2-amino acids. Inspired by the in vivo enzymatic conjugate reductions with 

NAD(P)H cofactors, we established biomimetic transfer hydrogenations, for which 

dihydropyridines and organocatalysts were employed as NAD(P)H and enzyme analogues, 

respectively. 

The asymmetric conjugate reduction of enones was achieved via iminium catalysis using a salt 

composed of a protonated valine tert-butyl ester and a chiral BINOL phosphate counteranion. 

The process was particularly well-suited for cyclic , -unsaturated ketones. Acyclic enones could 

also be successfully used, although yielding the products with slightly lower enantioselectivities.

A Jacobsen-type thiourea efficiently catalyzed the transfer hydrogenation of , -disubstituted 

nitroalkenes via hydrogen bonding catalysis. The reaction had a broad substrate scope and a 

number of aromatic and aliphatic nitroalkenes could be utilized.

Moreover, we successfully established a concise new strategy to enantioenriched 2-amino acids. 

The key step in this process was a highly enantioselective and efficient thiourea-catalyzed 

conjugate reduction of -nitroacrylates to the saturated analogues. The nitroesters were then 

easily and efficiently converted into the corresponding 2-amino acids. In addition, a convenient 

synthesis of the required -nitroacrylates via a Henry reaction dehydration process was 

developed.
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Kurzzusammenfassung

Diese Arbeit beschreibt die erfolgreiche Entwicklung hocheffizienter and enantioselektiver 

organokatalytischer Verfahren zur Synthese chiraler -substituierter Ketone, , -disubstituierter 

Nitroalkane sowie -Nitroester. Die letzteren konnten direkt zu den entsprechenden 2-

Aminosäuren umgesetzt werden. In Anlehnung an die enzymatischen konjugierten Reduktionen 

mit dem NAD(P)H-Cofaktor in vivo wurden biomimetische Transferhydrierungen unter 

Verwendung von Dihydropyridinen und Organokatalysatoren als NAD(P)H- und Enzymanaloga 

entwickelt. 

Die asymmetrische konjugierte Reduktion , -ungesättigter Ketone wurde mit Hilfe von 

Iminiumkatalyse unter Einsatz eines Salzes des protonierten Valin-tert-butylesters in 

Kombination mit einem chiralen BINOL-phosphat-Gegenion erreicht. Diese Methode erwies sich 

für zyklische Ketone als besonders geeignet. Auch azyklische , -ungesättigte Ketone konnten 

erfolgreich verwendet werden, aber lieferten die Produkte mit leicht geringeren 

Enantioselektivitäten. 

Ein Jacobsen-artiges Thioharnstoffderivat katalysierte die Transferhydrierung , -disubstituierter 

Nitroalkene über die Ausbildung von Wasserstoffbrückenbindungen. Eine Vielzahl aromatischer 

und aliphatischer Substrate wurde mit hohen Ausbeuten und Enantioselektivitäten zu den 

entsprechenden Nitroalkanen reduziert. 

Außerdem wurde eine neue Strategie für den schnellen Zugang zur enantiomerenangereicherten
2-Aminosäuren erfolgreich entwickelt. Den zentralen Schritt dieses Prozesses stellte eine 

hochenantioselektive und vielseitige Thioharnstoff-katalysierte konjugierte Reduktion von -

Nitroacrylaten dar. Die erhaltenen -Nitroester konnten anschließend leicht zu den 

entsprechenden 2-Aminosäuren umgesetzt werden. Zusätzlich wurde eine praktische Methode 

zur Herstellung der -Nitroacrylate über eine Henry-Reaktion gefolgt von einer Dehydrierung 

entwickelt. 
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1 Introduction

Chirality is an intrinsic universal feature of various levels of matter.1 Molecular chirality plays 

a key role in science and technology. In particular, life depends on molecular chirality, in that 

many biological functions are inherently dissymmetric. Most physiological phenomena arise 

from highly precise molecular interactions, in which chiral host molecules recognize two 

enantiomeric guest molecules in different ways. There are numerous examples of enantiomer 

effects which are frequently dramatic. Enantiomers often smell and taste different. This smell 

difference can be illustrated by the example of (R)-celery ketone 1 (also called (R)-livescone),

a synthetic fragrance material with typical lovage and celery character.2 The enantiomers of 1

differ as strikingly in their olfactory properties as in the rare case of carvone.3 Only the 

stronger (R)-enantiomer is responsible for the characteristic celery note of the racemate, 

whereas the (S)-enantiomer, which is five times weaker has an aniseed-like liquorice smell 

with minty facets (Figure 1.1).4 Thus for fragrance and perfume manufacturers the distinction 

between two enantiomers of the same molecule is of great importance.  

Figure 1.1: The enantiomers of the celery ketone (i.e. livescone). 

The structural difference between enantiomers can be serious with respect to the actions of 

synthetic drugs. Chiral receptor sites in the human body interact only with drug molecules 

having the proper absolute configuration, which results in marked differences in the 

pharmacological activities of enantiomers. A compelling example of the relationship between 

pharmacological activity and molecular chirality was provided by the tragic administration of 

thalidomide 2 to pregnant women in the 1960s (Figure 1.2).5 (R)-Thalidomide has desirable 

sedative properties, while its (S)-enantiomer is teratogenic and induces fetal malformations.6,7

Figure 1.2: The drug (R)-thalidomide 2 and its enantiomer ent-2.
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Such problems arising from inappropriate molecular recognition should be avoided at all 

costs. Nevertheless, even in the early 1990s, about 90% of the synthetic chemical drugs were 

still racemic, which reflects the difficulty in the practical synthesis of enantiopure 

compounds.8 Thus, gaining access to enantiomerically pure compounds in the development of 

pharmaceuticals, agrochemicals and flavors is a very significant endeavor. 

The discovery of truly efficient methods to achieve this has been a substantial challenge for 

chemists in both academia and the industry. Earlier, enantiomerically pure compounds were 

obtained by the classical resolution of a racemate or by transformations of readily accessible, 

naturally occurring chiral compounds such as amino acids, tartaric and lactic acids, 

carbohydrates, terpenes, or alkaloids. However, stereoselective conversion of an unsaturated 

compound to a chiral product, namely through an asymmetric reaction, is the most attractive 

approach. In practice, access to pure enantiomers has largely relied on biochemical or 

biological methods. However, the scope of such methods using enzymes, cell cultures, or 

whole microorganisms is limited because of the inherent single-handed, lock-and-key 

specificity of biocatalysts. On the other hand, a chemical approach allows for the flexible 

synthesis of a wide array of enantiopure organic substances from achiral precursors.  

Chemical synthesis is nowadays one of the key technologies underlying modern drug 

discovery and development. As the number of chiral drugs is increasing, 9  asymmetric 

synthesis10 and efficient chiral separation technologies11 are steadily gaining importance. With 

respect to the first, asymmetric syntheses,12 the application of chiral auxiliaries or chiral pool 

strategies has become well established in industrial processes. Regarding asymmetric 

catalysis, enzymatic transformations 13  and the reactions employing metal catalysts are 

important tools for organic synthesis and are invaluable to the pharmaceutical industry.14,15 

Recent developments in the field of asymmetric catalysis point to a third class of catalysts, so 

called organocatalysts, which are low-molecular weight organic molecules that can even 

contain a metal possibly playing a structure-defining but not a catalytic role. Organocatalysts 

have also been regarded as small molecule enzymes.16,17

Despite its rich historical past, the use of small organic molecules as chiral catalysts has only 

recently been recognized as a valuable addition or alternative to the existing, well-established, 

often metal-based methodologies in asymmetric synthesis. The question must be asked, 

however, as to why it has taken so long for chemists to appreciate and exploit the potential of 

chiral organocatalysts. 

Principally, asymmetric organocatalytic reactions were, for a long time, considered to be 

inefficient and limited in scope. In parallel, metal catalysts provided a flexible ground for all 
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types of reactions and thus received a disproportionate emphasis. Although today the majority 

of reactions in asymmetric catalysis continue to rely on metal-containing complexes, this 

picture is changing and organocatalysis is becoming an increasingly important segment of 

organic chemistry, offering even advantages over metal-based and biocatalytic methods.16b 

Organocatalytic reactions can be performed under an aerobic atmosphere, with wet solvents; 

indeed, the presence of water is often beneficial to the rate and selectivity of the reaction.17j

The operational simplicity and availability of these mostly inexpensive bench-stable catalysts 

 which are incomparably more robust than enzymes or other biocatalysts  make 

organocatalysis an attractive method for the synthesis of complex structures.16b,17r In addition, 

they provide a rich platform for multicomponent, tandem, or domino-type multistep 

reactions, 18  allowing increases in the structural complexity of products in a highly 

stereocontrolled manner. The absence of transition metals makes organocatalytic methods 

especially attractive for the preparation of compounds that do not tolerate metal 

contamination such as pharmaceutical and agrochemical products.19 Nowadays, increasing 

numbers of industrial application are based on asymmetric organocatalytic reactions, and the 

environmentally friendly “green” aspect of this chemistry is widely considered for replacing 

standard, metal-based reactions.20,21

Numerous research groups around the world are now working on the development of the field 

of organocatalysis and exploiting the power of this method.16,17 The current potential and 

objectives in asymmetric organocatalysis are shown in Figure 1.3.17r

ORGANOCATALYSIS

drugs and natural
products synthesis

discovery of new
substrate combinations

pursuit of
chemical efficiency

new catalyst design

Figure 1.3: Current objectives in asymmetric organocatalysis. 
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2 Background

2.1 Asymmetric Organocatalysis 

The history of organocatalytic reactions has a rich background as it is suggested that 

organocatalysts played a determinant role in the prebiotic formation of key building blocks 

such as sugars. In this way, the reactions might have led to the introduction and widespread 

use of homochirality in the living word.22 The discovery of the first organocatalytic reaction is 

attributed to von Liebig, who found  accidentally  that dicyan is transformed into oxamide 

in the presence of an aqueous solution of acetaldehyde.23

In the early 1900s, Bredig was motivated to find the chemical origin of enzyme activity 

observed in living organisms. In his early experiments he showed enantiomeric enrichment in 

the thermal decarboxylation of optically active camphorcarboxylic acid to D- and L-limonenes,

respectively.24 He also developed the first asymmetric carbon-carbon bond forming reaction 

by adding hydrogen cyanide to benzaldehyde 3 in the presence of a catalytic amount of 

quinine 4a or quinidine 5 (Scheme 2.1).25 It should be noted that, although these studies were 

considered as conceptually groundbreaking, the enantiomeric ratio of the reaction was lower 

than 55:45. 

O

H HCN

N

OMe

4a
(-)-quinine

5
(+)-quinidine

+
4a or 5

CHCl3, rt, 24h

OH

CN
H

6
ca. 55:45 er

3
N

OMe

OH

N

H
N

H

OH

Scheme 2.1: First asymmetric organocatalytic reaction.25

The advent of synthetically useful levels of enantioselectivity can be dated to the late 1950s, 

when Pracejus reported that methyl phenyl ketene 7 could be converted to ( )- -phenyl 

methylpropionate 8 in 87:13 er by using O-acetylquinine 4b as catalyst (Scheme 2.2). 26

Scheme 2.2: Pracejus’s enantioselective ester synthesis from phenyl methyl ketene.26
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Another key event in the history of organocatalytic reactions was the discovery of an efficient 

L-proline-mediated asymmetric Robinson annulation reported during the early 1970s, the so-

called Hajos-Parrish-Eder-Sauer-Wiechert reaction (an intramolecular aldol reaction, Scheme 

2.3).27 It is pertinent to note, that this chemistry is rooted in the early studies of Knoevenagel

and Langenbeck. 28,29

Scheme 2.3: The L-proline-mediated Robinson annulation.27

Although this reaction was discovered in the early 1970s, its potential has not been realized 

until recently. A revival of this chemistry was initiated at the beginning of this century with 

the discovery of the L-proline-catalyzed direct asymmetric intermolecular aldol reaction and 

the conceptualization of enamine catalysis in 2000 by List et al.30 Shortly after, the first highly 

enantioselective example of iminium catalysis for the Diels-Alder reaction was described by 

MacMillan et al.31

The area of asymmetric organocatalysis then became a main focus of research for an 

increasing number of research groups around the world. In the next chapter a short overview 

of this exciting and rapidly growing field is presented.

2.1.1 Types of Organocatalysis 

Organocatalysts are usually classified, when a classification is possible, as either Lewis base, 

Lewis acid, Brønsted base, or Brønsted acid catalysts.17e The corresponding organocatalytic 

reactions will be described accordingly. 

2.1.1.1 Lewis base catalysis  

Lewis bases (B:) are atoms or molecules possessing a lone pair of electrons; by donating this 

pair of electrons they can form a new covalent bond. They can initiate a catalytic cycle via
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nucleophilic addition to the substrate (S). The activated substrate can possess electrophilic or 

nucleophilic properties and react further to form to the desired product (P). The resulting 

product is then released and the catalyst regenerated for further turnover (Scheme 2.4).  

B S

B PB:

P

S

Scheme 2.4: Simplified catalytic cycle of Lewis base catalysis. (B: Lewis base catalyst, S: substrate, P: product) 

The majority of organocatalysts are nitrogen-, carbon-, oxygen-, phosphorus-, and sulfur-

based Lewis bases such as amines, carbenes, phosphines, phosphoramides, formamides and 

sulfites. Among these catalysts, the nitrogen- and phosphorus-based ones are the most studied, 

with amine catalysts being more easily available than their phosphorus-containing 

counterparts, due mainly to their natural abundance.32

Due to their various modes of activation, they can catalyze an array of different 

enantioselective reactions (Scheme 2.5). Thus, Lewis bases are the most used catalysts in 

organocatalysis.16,17,33,34
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Scheme 2.5: Examples of Lewis base organocatalysis (Nu-: nucleophile, E+: electrophile). 
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In 2000, List et al. discovered that a simple amino acid, L-proline (10), can efficiently 

catalyze a direct asymmetric intermolecular aldol reaction of acetone 12 with a variety of 

aromatic and -branched aliphatic aldehydes. The highest enantioselectivity was obtained 

with isobutyraldehyde 13 as electrophile (Scheme 2.6).30a

Scheme 2.6: L-Proline-catalyzed direct intermolecular asymmetric aldol reaction.30a

The authors suggested that the reaction proceeds via an enamine-based mechanism.30a,35 A 

key intermediate is an iminium ion, which is formed between acetone 12 and proline 10. The 

generation of this iminium ion lowers the lowest unoccupied molecular orbital (LUMO) 

energy of the system and thus facilitates -deprotonation leading to the enamine, which is the 

actual nucleophilic carbanion equivalent. The reaction of the enamine intermediate with the 

aldehyde then provides, after hydrolysis, the enantiomerically enriched aldol product. 

In the same year, MacMillan et al. described the first highly enantioselective example of 

iminium catalysis. In iminium catalysis, the active species is an iminium ion formed by the 

reversible reaction of an amine catalyst with the carbonyl substrate. The higher reactivity of 

the iminium ion compared to the carbonyl species is utilized to facilitate the reactions. Early 

examples of non-asymmetric and asymmetric iminium catalysis were the amine-catalyzed 

Knoevenagel condensation and proline- or proline-derivative-catalyzed Michael 

additions.36,37,38

The pioneering example of modern iminium catalysis was MacMillan’s asymmetric 

Diels Alder reaction of , -unsaturated aldehydes with dienes using chiral imidazolidinone 

catalyst [15 HCl] (Scheme 2.7).31,39

Scheme 2.7: Imidazolidinone-catalyzed enantioselective Diels Alder reaction.31

The authors suggested that the condensation of the , -unsaturated aldehyde 16 with the 

enantiopure amine catalyst [15 HCl] forms an activated iminium ion with a lowered LUMO 

energy, which then reacts with the diene 17 in a Diels-Alder reaction. This concept has been 
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further extended to other reactions of , -unsaturated aldehydes, such as 1,3-dipolar 

cycloadditions, alkylations, and conjugate additions.34

As iminium catalysis is one of the main focuses of this Ph.D. work, a more detailed overview 

of this concept is presented in chapter 2.1.2. 

2.1.1.2 Lewis acid catalysis  

Lewis acids (A) are atoms or molecules that can accept a pair of electrons and form ionic 

interactions or hydrogen bonds. They can initiate a catalytic cycle by activating a nucleophilic 

substrate (S:) via electrophilic coordination or addition reaction, thus increasing the substrate 

electrophilicity or stabilizing an ionic nucleophilic substrate. The activated substrate reacts 

further, followed by the release of the product (P) and regeneration of the catalyst (Scheme 

2.8).

A S

A PA

P:

S:

Scheme 2.8: Simplified catalytic cycle of Lewis acid catalysis. (A: Lewis acid catalyst , S: substrate, P: product). 

An example of Lewis acid catalysis is the epoxidation of olefins using chiral dioxiranes 

generated in situ from chiral ketone catalysts and Oxone as the stoichiometric oxidant.40 Shi et 

al. developed the elegant D-fructose-derived ketone catalyst 19 for the enantioselective 

epoxidation of olefins (Scheme 2.9).41

Scheme 2.9: A ketone-catalyzed enantioselective epoxidation of olefins.41

Mukaiyama et al. showed that trityl salts are efficient catalysts for aldol reaction.42 Shortly 

after, Chen et al. developed triarylcarbenium ions (e.g. 22) to catalyze a Mukaiyama aldol 

reaction (Scheme 2.10).43
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Scheme 2.10: Chiral triarylcarbenium ion-catalyzed Mukaiyama aldol reaction.43

It should be noted that, in comparison to other types of organocatalysis there are only a few 

Lewis acid organocatalyzed reactions. The area of Lewis acid catalysis is still dominated by 

transition metal catalysts. 

2.1.1.3 Brønsted base catalysis  

Brønsted bases (B:) are defined as chemical species (molecules or ions) that are able to gain, 

or "accept" a proton. They can initiate a catalytic cycle via activation of a nucleophilic 

substrate through (partial) deprotonation (Scheme 2.11). 

Scheme 2.11: Simplified catalytic cycles of Brønsted base catalysis with a Brønsted base acting as a (a) 
hydrogen bonding acceptor (“general Brønsted base”) or a (b) proton acceptor (“specific Brønsted base”). (B: 
Brønsted base catalyst, S: substrate, H: hydrogen, P: product). 

Depending of the substrate acidity the Brønsted base acts as a hydrogen bonding acceptor 

(Scheme 2.11a) or a proton acceptor (Scheme 2.11b). Hydrogen bonding acceptors are 

generally called “general Brønsted bases” and proton acceptors “specific Brønsted bases”. 

The first asymmetric Brønsted base-catalyzed reaction was reported by Bredig et al. who 

employed catalytic quinine 4a or quinidine 5 (Scheme 2.1).25 Further pioneering work on this 

area was reported by Pracejus et al.,26 Bergson et al.,44 Wynberg et al.,45 Inoue et al.,46 and 

Oda et al.47 between 1960 and 1985.
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Typical organic Brønsted base catalyses in asymmetric synthesis are hydrocyanations, 

Strecker reactions, Michael reactions and desymmetrization of meso-anhydrides.17e,48

Corey and Grogan reported a Strecker reaction using the synthetic chiral C2-symmetric 

guanidine 25 (Scheme 2.12).49 The catalyst is believed to function via hydrogen bonding 

activation of the aryl imine through a protonated guanidium-cyanide complex to afford adduct 

27.

Scheme 2.12: Brønsted base-catalyzed Strecker reaction.49

Deng et al. reported the desymmetrization of cyclic meso-anhydrides such as 28 by 

alcoholysis using commercially available cinchona alkaloids 29 (Scheme 2.13).50 Mechanistic 

studies suggested that the amine catalyst operates by general base catalysis, activating 

methanol via hydrogen bonding for nucleophilic attack on the anhydride. 

Scheme 2.13: Brønsted base-catalyzed desymmetrization of cyclic meso-anhydrides.50

2.1.1.4 Brønsted acid catalysis  

The fundamental role of metal containing Lewis-acid catalysts lies in the activation of the 

“C=X” bond (X = O, NR, CR2), decreasing its LUMO energy and promoting nucleophilic 

addition to the “C=X” group. Complementary to this catalyst class are metal-free Brønsted 

acid catalysts,51 which have recently emerged as a new type of organocatalysts for a number 

of enantioselective carbon-carbon bond-forming reactions.52 Brønsted acids (A-H) are defined 

as chemical species (molecules or ions) that are able to lose, or "donate" a proton and can 

initiate a catalytic cycle via activation through (partial) protonation of an electrophilic 

substrate (Scheme 2.14) 
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Chiral Brønsted acid catalysis is classified into two categories: “general Brønsted acid 

catalysis” when the catalyst partially protonates the transition state of the reaction via

hydrogen bonding interactions (Scheme 2.14a) and “specific Brønsted acid catalysis” when 

the Brønsted acid is strong enough to protonate the substrate (Scheme 2.14b). 

Scheme 2.14: Simplified catalytic cycles of Brønsted acid catalysis with a Brønsted acid acting as a (a) 
hydrogen bonding donor (“general Brønsted acid”) or a (b) proton donor (“specific Brønsted acid”). (A-H: 
Brønsted acid catalyst, S: substrate, H: hydrogen, P: product). 

Even though it is not always possible to clearly distinguish between these two mechanisms 

(Figure 2.1),51f the pKa value of the Brønsted acid gives an indication on the nature of the 

catalyst (Figure 2.2).17p

Figure 2.1: Chiral Brønsted acids. 
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Figure 2.2: Approximate pKa values of Brønsted acid organocatalysts. 

General Brønsted acid catalysis  

Catalysis through hydrogen bonding17p,57a,e, 53  has been recently introduced as a powerful 

methodology for asymmetric catalysis. Similar to enzymatic catalysis where hydrogen 

bonding to a transition state occurs, this type of catalysis may be described as general 

Brønsted acid catalysis. As this concept is one of the main focuses of this Ph.D.work, a 

separate chapter will be dedicated to hydrogen bonding catalysis (see chapter 2.1.3).                                       

Specific Brønsted acid catalysis  

In contrast to general Brønsted acid catalysis, stronger acids are used in specific Brønsted acid 

catalysis allowing the full protonation of the substrate.

The potential of using relatively strong Brønsted acid catalysts has been essentially ignored 

over the last decades. In 2004 Akiyama et al.54 and Terada et al.55 demonstrated in pioneering 

studies that relatively strong chiral BINOL-derived phosphoric acids such as 31 and 32 are 

efficient and highly enantioselective catalysts for Mannich reactions of aldimines (Scheme 

2.15).
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Scheme 2.15: Mannich reactions catalyzed by BINOL-derived phosphoric acids.54,55

After those findings, chiral phosphoric acids were acknowledged as novel chiral catalysts53

and attracted the attention of synthetic organic chemists. It was observed that they are 

bifunctional catalysts56 bearing both a Brønsted-acidic site and a Lewis-basic site and the 3,3'-

substituents play a crucial role in attaining excellent enantioselectivities (Figure 2.3).52

Figure 2.3: Bifunctional chiral Brønsted acid. 

Such chiral phosphoric acids have been recently used as efficient enantioselective catalysts 

for different organic transformations including Friedel-Crafts alkylation of furan, Diels-Alder, 

Pictet-Spengler, and Strecker reactions as well as transfer hydrogenation of imines.51f,52

Yamamoto et al. designed a stronger chiral Brønsted acid in an effort to expand the substrate 

scope of enantioselective Brønsted acid-catalyzed reactions. For example, BINOL-derived N-

triflyl phosphoramide 39 catalyzes the Diels-Alder reaction of , -unsaturated ketone 40 with 
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electron-rich diene 41 to give cyclohexene derivatives 42 with high enantioselectivities 

(Scheme 2.16).57

Scheme 2.16: N-triflyl phosphoramide-catalyzed enantioselective Diels-Alder reaction.57

Maruoka et al. prepared the chiral catalyst 43 containing two carboxylic acids and an axially 

chiral binaphthyl moiety, and applied them to highly enantioselective Mannich reaction of N-

Boc-imines with diazo compounds (Scheme 2.17).58

Scheme 2.17: Dicarboxylic acid-catalyzed enantioselective Mannich reaction.58
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2.1.2 Iminium Catalysis

No specific date can be given for the introduction of the concept of iminium catalysis. The 

earliest recorded example of an iminium-catalyzed process is probably the Knoevenagel 

condensation mediated by primary and secondary amines.59  In the early 1900s iminium ions 

where postulated for the first time as active intermediates for the decarboxylation of -

ketocarboxylic acids60,61,62  and in 1937 Langenbeck et al. reported the first iminium-catalyzed 

conjugate addition reaction.63 A landmark in the history of iminium catalysis is the discovery 

of the iminium-catalyzed transimination by Cordes and Jencks in 1962.64 Cycloadditions via

iminium catalysis were not discovered until the turn of the century. In 1976, Baum and Viehe

reported that iminium salts provide significant acceleration in Diels-Alder reactions. 65

However, it was not until 2000 that MacMillan et al. disclosed a more general strategy for the 

Diels-Alder reaction using enantioselective iminium catalysis (Scheme 2.7).31

The condensation of aldehydes or ketones with primary amines typically results in an 

equilibrium where a considerable amount of the imine is present (Scheme 2.18). 66  This 

reaction was discovered in 1864 by Schiff.67 These primary amine-derived imines are basic 

(pKa ca. 7),68 and they readily exist as iminium ions in an acidic solution. 

Scheme 2.18: Formation of iminium ions and imines. 

With secondary amines, aldehydes and ketones may also condense to form iminium cations. 

In this case, deprotonation to form imines is impossible, and as such, these iminium cations 

can only be isolated as salts of strong acids. For iminium catalysis, both primary and 

secondary amines can be used, although secondary amines tend to dominate this field. 

Primary amines always require an external acid cocatalyst, but the use of an acid cocatalyst is 

also very common with secondary amines. 

Iminium ions are more electrophilic than the corresponding aldehydes or ketones. For this 

reason, the reversible formation of the iminium salt activates the carbonyl component for the 

attack of a nucleophile (Scheme 2.19).17g Examples of possible modes of iminium activation 

are depicted in Scheme 2.20.34
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Scheme 2.19: Iminium catalysis. 

Scheme 2.20: Different activation modes in iminium catalysis. 

MacMillan et al. introduced with their iminium-catalyzed Diels-Alder reaction31 a new 

strategy for asymmetric synthesis based upon design criteria borrowed from the area of Lewis 

acid catalysis. This catalytic concept  also termed iminium activation  was based on the 

mechanistic postulate that: (1) the electronic principle underpinning Lewis acid activation 

(LUMO-lowering activation); and (2) the kinetic lability toward ligand substitution enabling 

Lewis acid-catalyst turnover (Scheme 2.21a) might also be available with an organic 

compound existing in a rapid equilibrium between an electron deficient and a relatively 

electron-rich state (Scheme 2.21b).16b,17k
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Scheme 2.21: Activation of carbonyl compounds.16b

Guided by these postulates, MacMillan et al. developed different imidazolidinone catalysts 

(Figure 2.4), which have been successfully applied to catalyze cycloaddition reactions, 1,4-

addition reactions, transfer hydrogenations as well as cascade reactions.16b 

Figure 2.4: Examples of MacMillan imidazolidinone catalysts. 

Imidazolidinone catalyst 15 (“first generation” MacMillan catalyst) was successfully applied 

to several transformations such as enantioselective Diels-Alder reaction, nitrone additions,69

and Friedel-Crafts alkylations of pyrrole nucleophiles.70 However low reactivity was observed 

in many reactions due to the diminished nucleophilicity of catalyst 15 toward carbonyl 

additions as the participating nitrogen lone pair is positioned adjacent to an eclipsing methyl 

group. In order to overcome this unfavorable interaction and enable a rapid iminium ion 

formation, the geminal dimethyl functionality was replaced with a tert-butyl group which 

eliminated steric crowding at the carbon C-2 and allowed for an increased iminium geometry 

control. These changes lead to the imidazolidinone catalyst 46 (“second generation” 

MacMillan catalyst).71 The reactivity of this catalyst could be further increased by replacing 

the benzyl substituent adjacent to the participating nitrogen lone pair with a hydrogen atom, 

giving the “third generation” imidazolidinone catalyst 47.
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2.1.3 Hydrogen Bonding Catalysis and (Thio)urea Catalysts 

Whereas individual hydrogen bonds are relatively weak compared to covalent bonds, 

collectively they can be of enormous importance. They are for example essential for the 

organization and the base pairing of deoxyribonucleic acid (DNA) and ribonucleic acid 

(RNA), 72  small molecule recognition, 73  and the catalytic cycle of various enzymes. 74 , 75

Despite the many vital functions that hydrogen bonds fulfill in biological systems, they had, 

until recently been little utilized for the promotion of chemical reactions. Nevertheless, over 

the past decade, this situation has changed dramatically, and many enantioselective reactions 

have been developed, in which a chiral hydrogen bond donor serves as the catalyst. 

Unlike covalent bonds, the nature of hydrogen bonds can vary dramatically. Countless 

variations can be found in bond strengths and geometric orientations of the hydrogen bonds, 

even within the same bonding partners. To simplify the matter, hydrogen bonds have been 

grouped into three different categories: strong, moderate, and weak (Table 2.1).16b

Table 2.1: Jeffrey’s classification of strong, moderate and weak, hydrogen bonds76

Bonding strength Strong Moderate Weak 

A H B interaction mostly covalent mostly electrostatic electrostatic 

Length of H-bond (Å) 1.2-1.5 1.5-2.2 2.2-3.2

Bond angle AHB (°) 175-180 130-180 90-150 

Bond energy (kcal/mol) 14-40 4-15 <4 

Typical example intermolecular     
NH N bond in 
conjugate acid 
proton sponge 

NH O=C bonds in 
peptide helices and 

sheets

bonds involving 
CH donors to N 
or O acceptors 

The strength of the hydrogen bond donor is best correlated to its pKa-value, although 

environmental factors, such as solvation, temperature, and dielectric constants, can also affect 

the nature of a hydrogen bond. 

Given the infinite variations in bonding patterns, hydrogen bonding is best considered as a 

continuum of bonding interactions, from weak to strong. Moving further along this spectrum, 

past the strong hydrogen bonds, there is the further possibility of full proton transfer between 

the hydrogen bond donor and the acceptor, with the donor now being considered as a 

Brønsted acid (Figure 2.5).16b
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Figure 2.5: Hydrogen bonding continuum. 

The wide variability observed in the strength and bonding geometries of hydrogen bonds not 

only provides unique challenges for catalyst design but also offers opportunities for the 

discovery and development of new concepts in catalysis. 

2.1.3.1 Early Successes: From Biphenylenediols to Efficient N,N'-Diaryl(thio)urea

Catalysts

The systematic use of hydrogen bonding for the promotion of racemic organic reactions began 

most noticeably during the 1980s. In a seminal investigation, Hine et al. showed that 

hydrogen bonding with 1,8-biphenylenediols 48a (Figure 2.6) could effectively activate a 

substrate for nucleophilic attack. 77 Kelly et al. found that achiral biphenylenediols 48b

(40-50 mol%) significantly accelerated the Diels-Alder reaction of cyclopentadiene with 

various acroleins78 and proposed double hydrogen bond donation to the dienophile (A; Figure 

2.6).53

At around the same time, Etter et al. observed hydrogen bond-directed co-crystallization of 

N,N'-diarylureas (B; Figure 2.6) with compounds incorporating a wide variety of Lewis basic 

functional groups, such as nitroaromatics, ethers, ketones, and sulfoxides.79 In each case the 

donation of two hydrogen bonds by a single urea molecule to the Lewis base was implicated. 

This demonstration provided the basis for the development of urea-based organocatalysts. 

The first report on the application of Etter’s concept of using ureas as Lewis acids was 

proposed by Curran et al., who showed that the outcome of radical allylation reactions and 

Claisen rearrangements can be altered by the presence of ureas and thioureas (e.g. diarylurea 

49a).80 In 2002, a thorough study on the use of Etter-type ureas (e.g. 49b) for the promotion 

of Diels-Alder reactions has been described by Schreiner et al.81 Several other classes of 

hydrogen bond donors, such as guanidinium ions, alcohols, and phenols, have also been used 

as catalysts to promote organic reactions.82,83,84

The early reports provide clear demonstration of the ability of hydrogen bond donors to 

function as Lewis acids and thereby promote organic reactions. The formation of a hydrogen 

bond to the electrophile (typically carbonyl or imine), through either a one-point or two-point 
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interaction, increases its electrophilicity and lowers its LUMO energy, thereby making it more 

reactive to the second reactant, such as a nucleophile or a diene. 
OH OH

R R
48a: R = H
48b: R = NO2

O

OO2N

O2N
H

H
O

N N

O

NO2 NO2

O

H H N N

X

R1 R1

H H
R2 R2

49a: R1 = CF3, R2 = CO2C8H17, X = O
49b: R1 = R2 = CF3, X = S

Hine's and Kelly's biphenylenediols Kelly 's model

Etter 's model Curran's and Schreiner 's diaryl(thio)ureas

A

B

Figure 2.6: Hine’s and Kelly’s biphenylenediol catalysts (48a and 48b, respectively); rationale for the catalysis 
of the Diels-Alder reaction by 48b through double hydrogen-bond donation (A, Kelly); a representation of the 
binding between m-nitrocarbanilide and acetone (B) and Curran’s and Schreiner’s (thio)urea catalysts (49a and 
49b, respectively). 

Over the past six years, many laboratories have focused their efforts on the development of 

chiral hydrogen bond donors to catalyze enantioselective organic reactions. One of the earliest 

successes in this area came from Jacobsen et al., who reported the use of peptide-like chiral 

urea-based catalysts for the hydrocyanation of aldimines and ketimines.85,86

2.1.3.2 Chiral (Thio)ureas for Asymmetric Organocatalysis 

The availability of enantiopure chiral building blocks bearing primary amino functionalities 

from the chiral pool and other sources greatly facilitates the synthesis of asymmetric 

(thio)ureas. Taking into account the excellent general stability, high conformational rigidity,87

and Lewis-base binding properties79 of (thio)urea derivatives, it is not surprising that chiral 

analogs are rapidly emerging as versatile, functional group tolerant, and easily prepared and 

modified catalyst templates for the promotion of a wide  range of synthetically useful 

asymmetric carbon carbon bond forming processes.53
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Schiff base-derived catalysts 

In the course of studies involving a combinatorial approach to the design of catalysts for 

metal-ion-promoted asymmetric Strecker reaction, Jacobsen et al. observed that in the case of 

one particular urea-derived ligand the control reaction in absence of metal ion furnished the 

product with the highest enantioselectivity. After optimization, 50a (Scheme 2.22) was 

identified as an efficient and highly enantioselective catalyst for the addition of hydrogen 

cyanide to N-allyl amines 51.85 Further optimization88 led to the development of 50b and its 

robust and readily synthesized89 urea-derivative 50c, which is compatible with a broad range 

of imine substrates including traditionally challenging ketimine derivatives (Scheme 2.22).86

Mechanistic and binding studies determined that the catalyst binds the imine (Z)-isomer 

preferentially through double hydrogen bond donation to the imine lone pair, in a fashion 

directed by the minimization of steric interactions between the catalyst and large imine 

substituents. This insight guided the design of an improved catalyst (50d), possessing 

remarkable reactivity and selectivity profiles (Scheme 2.22).90 That the (thio)urea-catalyzed 

Strecker reaction is not another isolated example of an organocatalyzed transformation, but 

that asymmetric hydrogen bonding catalysis is generalizable was shown in 2002.91-94 91,929394

N

Ph

1. HCN (2.0 equiv)
50 (2 mol%)
-78 or -70 °C
toluene, 20 or 24 h

2. TFAA
N

Ph CN

F3C

O

N

Ph

PMB

Me

HCN (2.0 equiv)
50c (2 mol%)

toluene, -70 °C

H
N

Ph
PMB

Me

NC

N

t-Bu

HCN, 50 (1 mol%)

toluene, -78 °C

Ph HN

t-Bu

Ph

CN

51 52
(50a) 78%, 95:5 er
(50b) 74%, 97:3 er

53 54
97%, 96:4 er

55
56

(50a) 98:2 er
(50d) > 99:1 er

N
R1 N

H
N
H

X

O

R2

N

HO

R3

50a: X = S, R1 = Bn, R2 = H, R3 = OMe
50b: X = S, R1 = Bn, R2 = H, R3 = OPiv
50c: X = O, R1 = Bn, R2 = H, R3 = OPiv
50d: X = S, R1 = Me, R2 = Me, R3 = OPiv
50e: X = S, R1 = Bn, R2 = Me, R3 = t-Bu

H

H

Scheme 2.22: (Thio)urea-catalyzed asymmetric Strecker reactions (PMB = p-methoxybenzyl).90
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Simplification of catalysts 50 

Interestingly, it has recently been shown that structural simplification of the catalysts 50a-e is 

possible without loss of enantioselectivity.92 This allows a certain latitude for the fine-tuning 

of catalyst structure to suit the requirements of individual reaction classes, and has led to the 

development of simplified (yet superior to 50a-e) analogs 57a and 58a for the efficient 

promotion of the asymmetric acyl Pictet-Spengler,95 acyl Mannich96 (catalyst 57a), and nitro 

Mannich (catalyst 58a)97 reactions (Scheme 2.23).     

N
H

N
AcCl (1.05 equiv)

57a (10 mol%)
2,6-lutidine

-78 to -30 °C, Et2O N
H

NAc

59 60
70%, 96:4 er

N
t-Bu N

H
N
H

S

O

t-Bu t-Bu

NMe Ph

57a

58a (10 mol%)
Hünig's base

toluene, 4 °C
MS 4Å

36 62
99%, 7:1 dr , 97:3 er

N
Me N

H
N
H

S

O

Me t-Bu

58a

N

Ph

Boc NO2

61
(5.0 equiv)

NO2Ph

HN
Boc

NHAcH

Scheme 2.23: Simplified (thio)urea derivatives for the asymmetric Pictet-Spengler and nitro Mannich 
reactions.95,97 (Hünig’s base: diisopropylethylamine) 

Bisthiourea catalyst

Nagasawa et al. have applied chiral diaryl thiourea to catalyze asymmetric Baylis-Hillman 

reactions. 98 Trans-1,2-Diaminocyclohexane-derived bisthiourea 63 promoted the N,N-4-

dimethyl aminopyridine (DMAP)-mediated addition of cyclohexenone to a range of activated 

aldehydes. While aromatic aldehydes generally proved to be mediocre substrates in terms of 

selectivity, the analogous aliphatic electrophiles were converted to the Baylis-Hillman adducts 

with moderate to excellent enantioselectivities (Scheme 2.24). The high selectivity, sense of 

stereoinduction observed and superiority of 63 over mono-thiourea analogs prompted the 

authors to propose that both thiourea moieties are involved in the transition state of the rate-

determining (and stereocenter-forming) step.99,100

63 (40 mol%)
DMAP (40 mol%)

neat, -5 °C

O

R

O O

R

OH

3: R = Ph
64: R = Cy

65
(2.0 equiv)

66a: R = Ph 88%, 67:33 er
66b: R = Cy 72%, 95:5 er

NH HN
HNNH

SS CF3

CF3

F3C

F3C 63

H

Scheme 2.24: Bisthiourea-catalyzed enantioselective Baylis-Hillman reactions.98
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Chiral bifunctional (thio)urea catalysts 

The excellent functional group tolerance of the (thio)urea catalysts stems from their relatively 

weak enthalpic binding with organic Lewis base nucleophiles, such as alcohols and amines. 

Recently the concept of exploiting the high functional group tolerance of these materials by 

incorporating a Lewis or Brønsted basic nucleophile-activating functionality into the catalyst 

structure has begun to be explored. Such bifunctional catalysts mimic natural enzymatic 

systems by activating both electrophile and nucleophile simultaneously,101 allowing for a 

significantly improved catalytic activity and, perhaps more importantly, a greater degree of 

stereocontrol in the addition event. The majority of these prototype systems represent a hybrid 

strategy that borrows heavily from the design principles set down in the seminal work of 

Curran, Jacobsen and Schreiner outlined above. They involve the installation of readily 

tunable aromatic functionality (to maximize the catalyst’s rigidity and hydrogen bond 

donating ability) at one (thio)urea nitrogen atom, and a chiral (in this case Lewis or Brønsted 

basic) functionality at the other. Takemoto et al. reported the first (thio)urea-based 

bifunctional catalyst, tertiary amine 67 (Scheme 2.25), which efficiently promotes the 

addition of malonate esters (e.g. 68a) to -nitrostyrenes (e.g. 69) with excellent 

enantioselectivity.102 The authors found that both the tertiary amine and the thiourea moieties 

were requisite for efficient and selective catalysis, and proposed a model to explain the sense 

of stereoinduction observed (C, Scheme 2.25). This model involves a deprotonation of the 

malonate pronucleophile by the tertiary amine followed by the addition of the resultant 

nucleophile to a single face of the thiourea-bound nitroolefin. 

N
H N

CO2Et

CO2Et

N
H

XNO2

EtO2C CO2Et
67a (10 mol%)

toluene, rt

69
68a

(2.0 equiv)
70a

86%, 96:4 er

CF3

F3C

67a: X = S
67b: X = O

N
N

N

X

CF3

F3C

N

Ph

OO

H H

EtO OEt

O O
C

NO2

H

Scheme 2.25: Takemoto’s bifunctional catalysis of the addition of malonates to nitroolefins via a dual activation 
concept.102
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Berkessel et al. have successfully applied 67a and its urea derivative 67b to the dynamic 

kinetic resolution of racemic azlactones. For example, the addition of allyl alcohol 71 to the 

DL-phenylalanine-derived azlactone 72 catalyzed by 67b gave amide 73 in good conversion 

and enantioselectivity (Scheme 2.26).103

Scheme 2.26: Dynamic kinetic resolution of azlactones-catalyzed by bifunctional catalyst 67b.103

Very recently, Jacobsen et al. modified the structural backbone of Schiff-base catalysts 50a-e

(see Scheme 2.22) to incorporate a tertiary amino functionality. Thiourea 58b was

demonstrated to be optimal for the highly efficient and selective catalytic asymmetric 

cyanosilylation of ketones (Scheme 2.27).104

Scheme 2.27: Bifunctional organocatalytic cyanosilylation of ketones.104

An axially chiral thiourea-based bifunctional catalyst has been recently developed by Wang et 

al. for the promotion of enantioselective Baylis–Hillman reactions.105 Compound 76 was 

found to promote the addition of cyclohexenone 65 to a range of aromatic and aliphatic 

aldehydes with good to excellent yields and selectivities (Scheme 2.28). This catalyst was 

later found to be also effective for the addition of 2,4-pentadione to (E)- -nitrostyrenes.106

Scheme 2.28: Bifunctional catalysis of asymmetric Baylis-Hillman reactions.105



2 Background 

 - 25 -  

Soós et al. and Connon et al. have independently investigated the use of (thio)urea-substituted 

cinchona alkaloid derivatives as bifunctional catalysts.53 Soós prepared four thiourea-

substituted cinchona alkaloid catalysts 78a-80a (Scheme 2.29) and evaluated their 

performance in the asymmetric addition of nitromethane to chalcones.107 Surprisingly the 

thiourea derivative with the “natural” stereochemistry at the carbon C-9 (78a) was inactive in 

the addition of nitromethane to 81. However analogs of 78a with inverted stereochemistry at 

the carbon C-9 proved to be both active and highly selective bifunctional catalysts for the 

same reaction.108 These results strongly indicate that a relative stereochemical arrangement of 

the catalyst Lewis/Brønsted acidic and basic groups conducive to their synergistic operation is 

a prerequisite for chiral bifunctional catalyst design.

Scheme 2.29: Asymmetric bifunctional catalysis of the addition of nitromethane to chalcone.107

Analogous results have been found for dihydro cinchona alkaloids. Connon et al. prepared a 

range of (thio)urea-substituted derivatives of dihydroquinine (DHQ, 83) and dihydroquinidine 

(DHQD, 84) for the asymmetric catalysis of the addition of diethylmalonate to nitroolefins 

(Scheme 2.30).109 The authors found that while neither epimerization of DHQ at C-9 (9-epi-

DHQ) nor a substitution of the carbon C-9 hydroxy group with an N-arylurea moiety (catalyst 

78b) improved the catalyst activity, a combination of both modifications resulted in an 

extremely active and selective catalyst with an “unnatural” stereochemistry at the carbon C-9

(79c).
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Scheme 2.30: Bifunctional catalysis of the addition of dimethylmalonate to nitroolefins.109 (* After 144 hours. 
** After 30 hours at -20 °C) 

Shortly after this report, Dixon et al. disclosed similar results using a cinchonine-derived 

analog of 80a (at loadings of 10 mol%).110



2 Background 

 - 27 -  

2.2 Transfer Hydrogenation Using Hantzsch Esters: a Biomimetic 
Approach

2.2.1 Hydrogenation Processes of Unsaturated Compounds

Asymmetric hydrogenation of unsaturated organic compounds, such as olefins, carbonyls and 

imines, which is a standard procedure in both academic laboratories and industrial 

applications,111,112 will be briefly overviewed in this Chapter. This process is arguably the 

single most important catalytic reaction for the synthesis of enantiomerically pure compounds 

and has reached a remarkable level of sophistication. This can be illustrated by the Nobel 

Prize in Chemistry awarded to Noyori and Knowles in 2001 for their studies of the transition 

metal-catalyzed asymmetric hydrogenation. 113  In principle hydrogenation can be 

accomplished in two ways: either via direct catalytic hydrogenation with molecular hydrogen 

gas, or indirectly by transfer hydrogenation from another reductant or via catalytic 

hydrosilylation followed by hydrolysis. The direct methodology has economic advantages 

because molecular hydrogen is inexpensive but is also less convenient and more dangerous 

because one has to deal with an explosive gas. Transfer hydrogenations (and hydrosilylations) 

are safer but are less favorable in terms of atom economy.  

Until recently, all the methods developed for the reduction of organic compounds have been 

dominated by the use of metal catalysts surrounded by proper stereo-discriminating chiral 

ligands. Highly efficient catalysts based on rhodium(I) or ruthenium(II) complexes with chiral 

diphosphine ligands have been introduced for the enantioselective olefin reduction of 

enamines and unsaturated carboxylic acids with molecular hydrogen.111,113b More recently, 

iridium complexes with chiral phosphorus/nitrogen containing ligands have been used for the 

enantioselective reduction of nonfunctionalized olefins.114,115 The asymmetric reduction of 

ketones and imines is commonly performed by using molecular hydrogen and chiral 

ruthenium(II) catalysts.113b A mild alternative for the latter reductions is to perform the 

reactions under hydrogen transfer conditions.116 The hydrogen donors most commonly used 

for the transfer hydrogenation of ketones are propan-2-ol (generally used with sodium or 

potassium hydroxide as a base) and formic acid (generally used as an azeotrope with 

triethylamine).117 Highly enantioselective processes, in particular for the reduction of ketones, 

have been established using catalysts based on vicinal amino alcohols, diamines, or 

pseudodipeptides in combination with ruthenium(II)–arene precursors.117,118,119
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The common element in the systems described above is that the principal center of reactivity 

is positioned on a (transition) metal hydride or dihydride. However, a shift of this paradigm 

was recently made by the discovery that simple ammonium salts of secondary amines were 

able to catalyze the chemoselective reduction of , -unsaturated aldehydes in the presence of 

a dihydropyridine as the hydride donor.120

2.2.2 Nature’s Enantioselective Hydrogenation Strategies

Nature’s biological systems perform stereoselective hydrogenations using transform-specific 

oxidoreductases.121 These enzymes are comprised of cofactors that play the vital role of 

“Nature’s reducing agents”. The dihydropyridine-based nucleotides NADH (85a, reduced 

nicotinamide adenine dinucleotide) and the closely related NADPH (85b, reduced 

nicotinamide adenine dinucleotide phosphate) are the most prevalent cofactors used for 

enantioselective biochemical hydrogenations. Based on this general transfer hydrogenation 

strategy, Nature’s biosynthetic machines create important biomonomer building blocks, 

including chiral alcohols and amines, required for other essential metabolic processes.121

From a chemical perspective, it is important to consider that molecules such as NADH 

incorporate two architectural components that function in concert to enable a highly selective 

delivery of hydride to electrophilic biochemical species. First, the nucleosidic element enables 

molecular recognition by a specific enzymatic environment wherein selective reduction might 

occur. Second, the dihydropyridine ring system (once positioned in the vicinity of a specific 

electrophile) has the capacity to deliver a hydride species from its 4-position to a carbonyl or 

imine group to create an enantiopure carbon-nitrogen or carbon-oxygen stereogenic center 

(Figure 2.7 and Scheme 2.31).122,123

Depending of the reaction conditions, two possible mechanisms are suggested for the 

reduction reaction mediated by NAD(P)H analogs: a one-step hydride ion transfer via a 

transition state, in which the migrating hydrogen atom carries some fractional negative charge 

(Scheme 2.32a), or a multistep hydride transfer. The latter process can occur in two steps, 

where an initial electron transfer is followed by the migration of a hydrogen atom (Scheme 

2.32b), or in three steps involving an electron-proton-electron transfer (Scheme 2.32c).123
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Figure 2.7: Organocatalyzed reductions in biological systems (Arg: arginine, His: histidine). 

Scheme 2.31: NADH’s dihydropyridine ring as Nature’s reducing agent (S: Substrate).122,123
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2.2.3 Hantzsch Esters as Biomimetic Reducing Agents 

Westheimer and Mauzerall were the first to demonstrate that synthetic dihydropyridine 

analogs of NADH could be used to mediate hydrogen transfer. 124 , 125  It was found that            

1-benzyldihydronicotinamide (86) reduced dyestuff 87 to its leuco base 88 with a concomitant 

formation of pyridinium ion 89 in aqueous solvent (Scheme 2.33a). Deuterium labeling 

experiments demonstrated that only a 4-deuterio-analog of the reductant (and not 2- or 6-

deuterated variants) transferred deuterium to the product. While 86 could not reduce pyruvic 

acid (91), hydrogen transfer from Hantzsch dihydropyridine 90a 126  did occur at higher 

temperature, albeit in low yield (Scheme 2.33b).127
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Scheme 2.33: Westheimer’s reduction of 87 and 91 with 86 and 90a, respectively.127

In the years following Westheimer’s work, dihydropyridines128 were found to serve as mild, 

useful reagents capable of reducing organic substrates such as , -unsaturated

electrophiles,129 imines,130 iminium ions,131 aldehydes,132 and ketones133 in the absence of 

metal ions under either thermal or organocatalyzed conditions. 
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2.3 Enantioselective Synthesis of , -Disubstituted Saturated 
Ketones 

Currently, there are few catalysts that can reduce carbon carbon double bonds with high 

enantioselectivity to generate products with stereocenters  to carbonyls. These products are 

usually synthesized via asymmetric conjugate additions of nucleophiles to , -unsaturated

ketones (usually referred to as Michael addition, Scheme 2.34). 134  The best catalysts 

(rhodium, ruthenium or iridium catalysts) for these reactions work well for a limited number 

of substrates and nucleophiles.135 In some cases, catalytic asymmetric conjugate reductions of 

an , -unsaturated carbonyl compound via direct hydrogenations (using molecular 

hydrogen) 136  or via indirect hydrogenations (from another hydrogen source) 137  can also 

generate a stereocenter  to the carbonyl (Scheme 2.34).  

Scheme 2.34: Catalytic processes for the synthesis of enantiomerically pure , -disubstituted saturated ketones. 

2.3.1 Asymmetric Conjugate Addition to -Branched Enones 

The transition metal-catalyzed asymmetric Michael addition is an efficient synthetic tool for 

making carbon carbon bonds and creating a center of chirality in an organic molecule.138

Michael additions of nucleophiles such as organolithium, Grignard, diorganozinc, or 

trialkylaluminium reagents to enones are catalyzed inter alia by copper, nickel and cobalt 

salts. The best results are obtained with copper(I) catalysts, especially those in which copper 

is bonded to a “soft”, readily polarizable center (sulfur or phosphorus). 

The first reaction of this type was reported by Lippard et al. in 1988.139a The authors reacted 

2-cyclohexenone (65) with Grignard reagents in the presence of the chiral aminotroponeimine 

copper complex 94 as catalyst to obtain the 1,4-adducts 95 with 52:48 to 57:43 er. 140141142143144 145,146

Inspired by these results, several research groups worked on the development of new ligands 

for the asymmetric conjugate addition to the enone 65 (Scheme 2.35); enantioselectivities of 
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up to 95:5 er could be obtained. In all these cases, the regioselectivities (1,4- vs. 1,2-addition) 

and chemical yields were acceptable to good.140-146
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Scheme 2.35: Early examples of copper-catalyzed enantioselective 1,4-additions to cyclic enones.139-146 (HMPA:  
hexamethylphosphoric acid triamide). 

Cyclic enones are normally used as substrates for copper-catalyzed enantioselective Michael 

addition. In some cases, however, good enantioselectivities were also attained with acyclic 

enones.147 A drawback of these systems is that they are limited to (functionalized) aliphatic 

dialkyzinc reagents, whereby the introduction of an aryl group via arylzinc halides gives 

racemic mixtures.  

In 1997, Miyaura et al. 148  showed that arylboronic acids can add efficiently to Michael 

acceptors in the presence of a rhodium(I) catalyst and water as cosolvent. With the use of a 

2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP, 101) as chiral ligand associated with 

rhodium(I) 102, the Hayashi and Miyaura groups have developed an asymmetric version of 

the Michael addition of organoboron compounds (Scheme 2.36).149,150,151  One drawback of 

this process is the use of a large excess of boronic acids (generally five equivalents) to 

achieve high yields due to an undesirable side reaction, the reduction of the organoboron 

reagent.149, 152 , 153  Moreover, the preparation and purification of some boronic acids is 

tremendously difficult154 and many of them are air and moisture sensitive.  
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Scheme 2.36: Rhodium(I)-catalyzed asymmetric 1,4-addition of phenylboronic acid to cyclohexenone.149-151

2.3.2 Asymmetric Conjugate Reduction of , -Disubstituted Enones 

Most synthetic routes to chiral -substituted cyclic ketones are based on the asymmetric 

conjugate addition of nucleophiles to cyclic , -unsaturated ketones. Excellent catalysts have 

been discovered for the conjugate addition to 6- or 7-membered ring. However catalytic 

asymmetric conjugate addition to cyclopentenone typically yields products with lower 

enantioselectivities.155An alternative and complementary approach can be envisaged for the 

synthesis of chiral -substituted ketones: the asymmetric conjugate reduction of -branched

enones.

2.3.2.1 Asymmetric Hydrogenation  

Asymmetric hydrogenation in the presence of chiral rhodium or ruthenium phosphines has 

been developed into an impressive number of alkene reduction methodologies during the last 

20 years.156,157 Despite the tremendous progress in this area, high stereoselectivities nearly 

always depend on the olefin proximity to highly polar functional groups such as amides, acids 

and alcohols. Attempts to generalize these procedures to alkenes conjugated with less polar 

groups such as aldehydes, ketones, esters or nitro groups have been much less successful.  

An early example of hydrogenations of , -unsaturated ketones by molecular hydrogen has 

been reported by Simonneaux et a.158 In the presence of chiral ruthenium complexes 104

cyclic enones 105 could be reduced under high pressure to the corresponding saturated 

ketones 106 with low to moderate yields (Scheme 2.37).
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Scheme 2.37: Simonneaux’s asymmetric hydrogenation of cyclohexenone derivatives.158

In 2005, Pfaltz et al. reported an efficient iridium-catalyzed hydrogenation of 3-methyl-         

2-cyclohexenone (107b) in the presence of the phosphine ligand 108 (Scheme 2.38).159,160

Under these reaction conditions 3-methyl-2-cyclohexanone (95b) was obtained almost 

quantitatively but with moderate enantioselectivity. 

Scheme 2.38: Enantioselective iridium-catalyzed hydrogenation of 3-methyl-2-cyclohexanone.159

The lack of generally applicable hydrogenation catalysts for “difficult” alkenes (like , -

unsaturated ketones), the need to prepare complex ligands and the requirement for high 

pressures have encouraged the development of  bio- and metal-catalyzed indirect 

hydrogenations of enones (transfer hydrogenation, hydrosilylation).

2.3.2.2 Asymmetric Transfer Hydrogenation

Asymmetric transfer hydrogenations of -substituted , -unsaturated cyclic ketones have 

been developed in the presence of a biocatalyst and NADH (85a) as cofactor.161,162

Shimoda et al. found that reductase isolated from Nicotiana tabacum is an efficient and highly 

enantioselective biocatalyst for the conjugate reduction of some cyclic enones (5- or 6-

membered ) 107 in the presence of NADH (Scheme 2.39).161
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Scheme 2.39: Biocatalyzed enantioselective conjugate reduction of , -unsaturated cyclic ketones.161

2.3.2.3 Asymmetric Hydrosilylation  

The use of silanes such as polymethylhydrogensilane (PMHS), a safe and inexpensive 

polymer, as stoichiometric reductant is a well established process for conjugate reduction 

(hydrosilylation followed by hydrolytic work-up) of olefins. The use of this process for the 

asymmetric conjugate reduction of , -unsaturated cyclic ketones was reported in 2000 by 

Buchwald et a.163 The combination of catalytic amounts of copper chloride, sodium tert-

butoxide and a chiral bisphosphine ((S)-109, (S)-101 and (S)-110 for 5-, 6- and 7-membered 

rings, respectively) generated a highly enantioselective catalyst for the asymmetric conjugate 

reduction of cyclic enones (Scheme 2.40).  
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Scheme 2.40: Copper-catalyzed asymmetric conjugate reduction of , -unsaturated cyclic ketones.163



2 Background 

 - 36 -  

Around the same time, Lipshutz et al. also reported that copper catalysts bearing chiral 

bisphosphine 111a or 112 were effective toward asymmetric conjugate reduction of 

cycloalkenones or acyclic enones, respectively, in the presence of PMHS (Scheme 2.41).164

Recently, an efficient asymmetric rhodium-catalyzed conjugate reduction of , -disubstituted 

, -unsaturated ketones with alkoxylhydrosilanes has been described.165
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Scheme 2.41: Lipshutz’s copper-catalyzed asymmetric reductions of enones.164
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2.4 Enantioselective Synthesis of , -Disubstituted Nitroalkanes 
and -Nitroesters

Nitroalkanes are important intermediates in organic synthesis, mainly due to the ease of their 

conversion into the corresponding amines, aldehydes, carboxylic acids, or denitrated 

compounds. 166 , 167  For this reason, optically pure nitro compounds, and particularly -

nitroesters that are precursors of valuable ²-amino acids (see Chapter 2.4.3), are valuable 

chiral building blocks for asymmetric synthesis. 

Similar to the enantiomerically pure saturated ketones (chapter 2.3), chiral , -disubstituted 

nitroalkanes can be obtained by asymmetric conjugated addition to nitroalkenes or 

enantioselective conjugate reduction of , -disubstituted nitroalkenes using chiral transition 

metal catalysts or biocatalyst (Scheme 2.42). 

Scheme 2.42: Catalytic processes for the synthesis of enantiomerically pure , -disubstituted nitroalkanes. 

2.4.1 Asymmetric Conjugate Addition to -Branched Nitroolefins 

Seebach et al. reported that the enantioselective addition of primary dialkylzinc reagents to 

aryl substituted nitroolefins could be achieved using an excess of titanium TADDOLates.168

The first catalytic ligand accelerated addition of diethylzinc to nitrostyrene was described by 

Alexakis et al. 169  In the last years there has been considerable effort toward catalytic 

asymmetric conjugate addition of organozinc compounds to nitroolefins. More recently,

Hoveyda et al. reported an efficient and highly enantioselective copper-catalyzed asymmetric 

conjugated addition of alkylzinc reagents to acyclic nitroalkenes 69 in the presence of chiral 

dipeptide phosphine ligand 115 (Scheme 2.43).170,171
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Scheme 2.43: Hoveyda’s asymmetric copper-catalyzed conjugate addition to nitrostyrene.170

Stereoselective conjugate additions to 3-nitroacrylates 117, which are valuable substrates for 

the synthesis of ²-amino acids, have also been investigated.172 Sewald et al. reported a 

copper-catalyzed process in the presence of phosphine ligand 118 yielding the corresponding 

nitroesters 119 with high enantioselectivities (Scheme 2.44).172b

Scheme 2.44: Enantioselective copper-catalyzed conjugate addition to methyl 3-nitroacrylate.172b

2.4.2 Asymmetric Conjugate Reduction of , -Disubstituted Nitroolefins 

Catalytic enantioselective conjugate reduction of , -disubstituted nitroolefins 120 is another 

approach for the synthesis of chiral -branched nitroalkanes 116. At the beginning of this 

Ph.D. thesis only one biocatalytic and one transition-metal-catalyzed variant had been 

reported. Carreira et al. developed an elegant chiral copper complex-catalyzed version using 

a silane as stoichiometric reductant (Scheme 2.45)173 and Ohto et al. used fermenting bakers’ 

yeast in the presence of glucose (Scheme 2.46).174,175

Scheme 2.45: Enantioselective copper(I)-catalyzed conjugate reduction of , -disubstituted nitroalkenes.173
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Scheme 2.46: Enantioselective biocatalyzed conjugate reduction of , -disubstituted nitroalkenes.174

Asymmetric bioreductions of some aliphatic -nitroacrylates 121, as a route to chiral ²-

amino acids 122, have been reported during the course of this Ph.D. thesis (Scheme 2.47).175a

This process, however, was not applicable to aromatic substrates which were not soluble 

enough in the aqueous media needed for optimal enzymatic activity. 

Scheme 2.47: Enantioselective bioreduction of -nitroacrylates as a route to chiral ²-amino acids.175a

2.4.3 -Nitroacrylates as Precursors of ²-Amino Acids 

-Nitroacrylates are interesting starting materials for the preparation of ²-amino acids. At this 

point it is appropriate to say a few words about ²-amino acids, in order to demonstrate the 

utility of these compounds and thus the importance of developing versatile, practical, and 

efficient enantioselective processes to synthesize them. 

-Substituted- -amino acids ( ²-amino acids), like their -substituted- -amino acid 

counterparts ( ³-amino acids, Figure 2.8), 176  are of immense chemical and biological 

interest.177
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Figure 2.8: General structure of - and -amino acids. 

They occur naturally within pseudopeptides 178  and highly potent biological effects are 

observed with both naturally occurring and synthetic derivatives.179 They have also been 

shown to display interesting structural properties as constituents of -peptides180 which are 

stable to cleavage by peptidase and to metabolic transformations, and can mimic -peptides in 

peptide protein and protein protein interactions.176 Despite the importance of -amino acids 

in biology and peptide chemistry, the synthesis of ²-amino acids has received little attention 

when compared to their ³-amino acid counterparts.177,181 To date the stereoselective Mannich 

reaction182 and the asymmetric alkylation of chiral -alanine derivatives183,184 have received 

most attention as synthetic routes to ²-amino acids. Other routes based upon conjugate 

addition, 185 , 186  Curtius rearrangement, 187  catalytic C–H insertion, 188  dynamic kinetic 

resolution,189 enantioselective hydrogenation,190 and catalytic asymmetric addition of cyanide 

to , -unsaturated imides191 among others192 have also proved successful.
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3 Background and Objectives of this Ph.D. Work

Hydrogenation is among the most important catalytic reactions for the synthesis of 

enantiomerically pure chemicals and pharmaceuticals but is also a biological process all living 

organisms use. Remarkably, both in nature, as well as in chemical synthesis, metals have 

generally been required to bring about this reaction. In the synthesis of pharmaceuticals 

however, this can be a significant problem because the removal of potentially toxic metal-

impurities from the reaction product is often difficult to achieve. As an attractive alternative to 

metal catalysis, organocatalysis has recently emerged as a powerful tool of organic synthesis.  

The goal of this Ph.D.-work was to develop an organocatalytic approach to the synthesis of 

enantiomerically pure saturated ketones and also for the preparation of chiral , -

disubstituted nitroalkanes and -nitroesters, which can be used to access optically pure 

primary amines and ²-amino acids, respectively. 

Recent studies undertaken in our laboratory have led to the development of highly 

enantioselective organocatalytic biomimetic transfer hydrogenations of , -unsaturated

aldehydes 123, wherein enzymes and expensive NADH cofactors generally used in 

biochemical reductions are replaced by low molecular weight amine catalysts (46 or 125) and 

Hantzsch esters 90b as the hydrogen source (Scheme 3.1).120b,c
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Scheme 3.1: Enantioselective biomimetic metal-free transfer hydrogenations of , -unsaturated aldehydes.120b,c
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The reaction proceeds via iminium catalysis (see chapter 2.1.2) and was first catalyzed by the  

trichloroacetate salt of MacMillan imidazolidinium 46 giving the saturated aldehydes 124 in 

high yield and with excellent enantioselectivities.120b Intrigued by the observation of a strong 

counteranion effect on the yield and enantioselectivity of the reaction, and inspired by the 

recent introduction of chiral phosphates as asymmetric Brønsted acid catalysts (see chapter 

2.1.1.4), a new catalytic salt was subsequently developed in our laboratory that consists of an 

achiral ammonium cation and a chiral phosphate anion (125 and (R)-126a). This ion pair 

effectively catalyzed the transfer hydrogenation, constituting the beginning of a new highly 

enantioselective catalysis strategy: asymmetric counteranion-directed catalysis (ACDC).
120c,193

Taking advantage of the knowledge gained in our laboratory in the field of metal-free 

catalytic asymmetric transfer hydrogenation of unsaturated aldehydes in the presence of 

Hantzsch esters, we intended to develop a practical and highly enantioselective 

organocatalytic process for the conjugate reduction of enones (Scheme 3.2a) and nitroolefins 

(Scheme 3.2b-c). The success of such investigations would not only offer a new approach to 

valuable enantioenriched molecules such as ²-amino acids 122 (Scheme 3.2c) but also a 

complementary one to the metal- and biocatalyzed variants that have already been reported in 

the literature (see chapters 2.3 and 2.4).

Scheme 3.2: Planned organocatalytic transfer hydrogenations of , -disubstituted enones (a), nitroalkenes (b) 
and -nitroacrylates (c). 

Our strategy for the transfer hydrogenation of enones 107 and 113 (Scheme 3.2a), 

nitroalkenes 120 (Scheme 3.2b) and -nitroacrylates 121 (Scheme 3.2c) is explained in 

Chapters 3.1, 3.2 and 3.3, respectively. The results of these investigations are reported in 

Chapters 4.3, 4.4 and 4.5, respectively.
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3.1 Enantioselective Transfer Hydrogenation of , -Unsaturated 
Ketones

Since stereogenically complex carbocycles are among the most widely found synthons in 

natural products and medicinal agents, their preparation in enantiomerically pure form is of 

interest. We intended to develop an organocatalytic enantioselective conjugate reduction of 

enones (see Scheme 3.2a), a reaction that was previously only possible in the presence of 

metal catalysts (mostly air and moisture sensitive copper catalysts, see Chapter 2.3.2.3) or, for 

some cyclic enones, in the presence of biocatalysts (see Chapter 2.3.2.2).

Inspired by the asymmetric catalytic transfer hydrogenation of , -unsaturated aldehydes (see 

Scheme 3.1), we reasoned that it should be possible to develop an enantioselective amine-

catalyzed transfer hydrogenation of enones 107 in the presence of the commercially available 

Hantzsch ester 90 (Scheme 3.3a). We hypothesized that due to the more demanding steric 

requirements of , -unsaturated ketones in comparison to , -unsaturated aldehydes 123,

chiral primary amine catalysts, which are less sterically hindered than secondary ones might 

be more suitable for the activation of enones 107 (Scheme 3.3b).  

Scheme 3.3: (a) Envisaged enantioselective iminium-catalyzed transfer hydrogenations of , -unsaturated 
ketones and (b) comparison of the steric requirement of an iminium ion formed between an ketone and a 
secondary amine versus a primary amine. 

Mechanistically, the reaction was envisaged to proceed via a special form of iminium 

catalysis (Scheme 3.4). Accordingly, after an initial reversible iminium ion formation (D),

which effectively lowers the LUMO energy of the substrate, follows conjugate hydride 

transfer from dihydropyridine 90. This step generates pyridine 93 along with iminium ion E.

Hydrolysis then releases the saturated ketone 95 and regenerates the catalyst. 
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substituted cyclohexenone in the presence of Hantzsch ester. 

Based on these considerations, our goal was to develop an appropriate catalyst, which would 

be able to catalyze the desired conjugate reduction in high yields and with high 

enantioselectivities. To reach these objectives, four points had to be taken into account in the 

design of a broadly useful iminium-activation catalyst: (1) the catalyst should undergo 

efficient and reversible iminium ion formation; (2) high level of iminium geometry control 

and (3) selective -facial discrimination of the iminium ion should be achieved in order to 

control the enantioselectivity of the reaction, and (4) the ease of catalyst preparation and 

implementation would be essential for the widespread adoption of the catalytic process. 

3.2 Enantioselective Transfer Hydrogenation of , -Disubstituted
Nitroolefins

Catalytic enantioselective conjugate reductions of , -disubstituted nitroolefins are useful for 

the synthesis of chiral -branched nitroalkanes.194  The approach is particularly attractive 

because nitroolefins are relatively easy to synthesize either by condensing ketones with 

nitroalkanes or via nitration of olefins. Furthermore, the resulting nitroalkanes are valuable 

intermediates e.g. for further reduction to chiral amines.  
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With these considerations in mind and since only one biocatalytic174 and one transition metal-

catalyzed173 variant had previously been reported (see chapter 2.4.2), we intented to develop a 

metal-free transfer hydrogenation of , -disubstituted nitroalkenes 120 to corresponding 

nitroalkanes 116 (see Scheme 3.2b).  

It is worth to note that Carreira’s copper-catalyzed variant is highly effective and 

enantioselective. However, this approach is laborious.173c This consideration strengthened the 

idea that the development of a more practical and also metal-free variant of this conjugate 

reduction would be of great interest. 

Acetic acid is a known catalyst for the Hantzsch ester-mediated conjugate reductions of 

nitroolefins (Scheme 3.5),129c and chiral thiourea derivatives have recently been used to 

activate nitroolefins (Scheme 3.6102,195,196 and Scheme 3.7106,109,110,197). We thus reasoned that 

hydrogen bonding catalysts would be particularly promising for the development of an 

organocatalytic stereoselective transfer hydrogenation of nitroolefins 120 in the presence of 

Hantzsch ester 90 as the hydrogen source (Scheme 3.8a). 

Scheme 3.5: Acetic acid-catalyzed transfer hydrogenation of , -disubstituted nitroalkenes in the presence of 
Hantzsch ester.129c

Scheme 3.6: Takemoto’s Michael addition of 1,3-dicarbonyl compounds to nitroolefins catalyzed by a 
bifunctional thiourea  (a) and proposed mechanism for the nitroolefin activation (b).102
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Scheme 3.7: Examples of thiourea catalysts used for the Michael addition of 1,3-dicarbonyl compounds to 
nitroolefins.  

According to the model proposed by Takemoto et al.102 (Scheme 3.6b), we hypothesized that 

it would be possible to activate the nitroolefin 120 via hydrogen bonding interactions in the 

presence of a thiourea catalyst, allowing a hydride transfer from the Hantzsch ester 90 to 

occur (Scheme 3.8). After hydride and proton transfer from the hydrogen source the 

enantiomerically pure nitroalkane 116 would be released, allowing the thiourea catalyst to 

participate in further catalytic cycles (Scheme 3.9). 

Scheme 3.8: Planned enantioselective hydrogen-bonding-catalyzed transfer hydrogenation of , -disubstituted 
nitroalkenes. 
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Scheme 3.9: Hypothetical catalytic cycle for the hydrogen bonding-catalyzed transfer hydrogenation of , -
disubstituted nitroalkenes. 

3.3 Enantioselective Transfer Hydrogenation of -Nitroacrylates:
A Route to ²-Amino Acids

Pioneered by Seebach et al. and Gellmann et al., -peptides recently emerged as a new class 

of peptidomimetics with potentially widespread biological and medicinal applications. 198,199

As a consequence, synthesis of -amino acids has attracted considerable attention.177,200 While 

³-amino acids, which are branched in the -position, are now commercially available with 

most natural substituents, the analogous ²-amino acids, branched in the -position, although 

particularly promising, are more difficult to obtain (see chapter 2.5).176 During the course of 

this Ph.D. project, Gellmann et al. reported an elegant organocatalytic Mannich reaction that 

furnishes -amino alcohols 128, after reduction of the generated -amino aldehyde upon 

treatment with sodium borohydride, in high yields and enantioselectivities.182b, 201  The 

products of this reaction can be readily converted into ²-amino acids 129 (Scheme 3.10).  
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Scheme 3.10: Gellman’s synthesis of pure ²-amino acid via proline-catalyzed diastereoselective 
aminomethylation of aldehydes.182b

Because of the growing importance of ²-amino acids, the development of an alternative 

approach that relies on a catalytic asymmetric Hantzsch ester-mediated conjugate reduction of 

readily available -nitroacrylates 121 to the corresponding -nitroesters 119 (see Scheme 

3.2c),202 which are easily converted into ²-amino acids 122 via hydrogenation is of great 

interest.203,204  

This approach to ²-amino acids took its inspiration from Nature. We envisioned that in 

analogy to an enzymatic reductive amination of -ketoacids 133 with ammonia, 205  a 

hypothetic reductive aminomethylation with nitromethane should lead to the corresponding 

²-amino acids 122 (Scheme 3.11). 

Scheme 3.11: Envisioned synthesis of ²-amino acids via reductive aminomethylation in analogy to Nature’s 
preparation of -amino acids through reductive amination.205

Like for the conjugate reduction of nitroolefins 120, we hypothesized that it would be possible 

to activate -nitroacrylates 121, which are easily accessible from -ketoesters 135, with

hydrogen bonding catalysts such as a thiourea catalyst (Scheme 3.12). 
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as a key step for the synthesis of chiral ²-amino acids.
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4 Results and Discussions 

4.1 Synthesis of Ammonium Salt Organocatalysts 

In this chapter the syntheses of the different chiral amines as well as the chiral Brønsted acids 

used to form the ammonium salts (Scheme 4.1) screened as catalysts for the transfer 

hydrogenation of enones 107 and 113 (see Chapter 4.3) are reported.

Scheme 4.1: Formation of the catalytic salts consisting of a chiral ammonium ion and a (chiral) counteranion.

4.1.1 Synthesis of Amino Acid Derivatives 

4.1.1.1 Synthesis of Amino Esters  

Some amino esters were prepared from their corresponding amino acids whereas others were 

directly obtained after basification and extraction of their corresponding commercially 

available amino ester hydrochloride salts. 

As only few milligrams of each primary amine were required for a first evaluation of their 

catalytic activity in the transfer hydrogenation of 3-methylcyclohex-2-enone (107b), most of 

the processes used to synthesize them (and that are presented in this chapter) have not been 

optimized.  

Synthesis of amino esters from their corresponding amino acids 

Esterification of commercially available L-tert-leucine (136, provided by Degussa) in the 

presence of thionyl chloride206 and methanol afforded the corresponding L-tert-leucine methyl 

ester (137a) in 31% yield (Scheme 4.2).  

Scheme 4.2: Synthesis of L-tert-leucine methyl ester (137a) from L-tert-leucine (136).206
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To be able to analyze the effect of the ester group bulkiness on the activity and 

enantioselectivity of the catalyst, the corresponding tert-butyl ester was also prepared (137b).

To this purpose esterification of amino acid 136 in the presence of tert-butyl alcohol and a 

catalytic amount of concentrated sulfuric acid207 was first tried (Scheme 4.3a). This reaction 

failed, probably (partially) due to the poor solubility of L-tert-leucine (136) in tert-butyl 

alcohol leading to the formation of a highly viscous mixture under reflux conditions, which 

could not be stirred anymore.

Another synthetic pathway was then followed, starting with the preparation of L-tert-leucine 

chloride (138) from L-tert-leucine (136) and thionyl chloride,206 followed by the reaction of 

138 with tert-butyl alcohol (Scheme 4.3b). This process did not lead to the formation of the 

desired amino ester either.  

Scheme 4.3: Initial attempts toward the esterification of L-tert-leucine (136) to L-tert-leucine tert-butyl ester 

(137b).

By following Roeske’s methodology208 and reacting amino acid 136 with isobutene in the 

presence of concentrated sulfuric acid, L-tert-leucine tert-butyl ester (137b) was formed in 

24% yield (Scheme 4.4).  

Scheme 4.4: Synthesis of L-tert-leucine tert-butyl ester (137b) from L-tert-leucine (136).208

Using the same procedure L-valine tert-butyl ester (139a) was easily prepared from 

commercially available L-valine (140) in 36% yield (Scheme 4.5). 
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Scheme 4.5: Synthesis of free L-valine tert-butyl ester (139a) from L-valine (140).

Preparation of free amino esters from their corresponding hydrochloride salt 

Some amino esters were purchased from commercial suppliers as hydrochloric salts. The free 

amino esters were then easily obtained by dissolving the corresponding salt in water and 

adding a potassium hydroxide solution until a basic pH was reached. By extraction with 

dichloromethane the free amino esters were released quantitatively. However, in the case of 

very volatile amino esters some of the product was lost while removing the solvent under 

reduced pressure. 

Using this extraction process the preparation of L-valine tert-butyl ester (139a) could be 

achieved in quantitative yield (Scheme 4.6). 

Scheme 4.6: Synthesis of L-valine tert-butyl ester (139a) from L-valine tert-butyl ester hydrochloride 
(139a HCl).

Other free amino esters that were prepared from their corresponding hydrochloride salts are 

shown in Figure 4.1. 

Figure 4.1: Amino esters prepared by extraction from their corresponding hydrochloride salt.
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4.1.1.2 Synthesis of Amino Amides 

L-tert-Leucine-N,N-dimethylamide (144a, Scheme 4.8) was obtained in several steps from the 

corresponding L-tert-leucine (136). The amino function in 136 had to be protected prior to 

amide formation. For this purpose we chose the tert-butoxycarbonyl (Boc) protection. This 

was done by reacting amino acid 136 with tert-butoxycarbonyl anhydride (Boc2O) and 

sodium hydroxide in a mixture of water and tert-butanol as solvent.209 After acidification and 

extraction N-Boc-protected amino acid 145 was isolated in 97% yield (Scheme 4.7). 

Scheme 4.7: N-Boc-Protection of L-tert-leucine (136).209

N-Boc-L-tert-leucine (145, prepared according to the procedure reported in Scheme 4.7 or 

purchase from Sigma-Aldrich) was then activated with dicyclohexylcarbodiimide (DCC)210

and a catalytic amount of DMAP and converted with dimethylamine to the corresponding 

amide (146a, Scheme 4.8). According to the literature210 we deprotected N-Boc-amide 146a

with trifluoroacetic acid (TFA) in dichloromethane affording L-tert-leucine-N,N-

dimethylamide (144a) in 67% yield after three days at room temperature. The deprotection 

reaction could be accelerated and optimized by stirring 146a in neat TFA at room temperature 

for about 30 minutes, giving the desired amide in 96% yield (Scheme 4.8). 

Scheme 4.8: Synthesis of L-tert-leucine-N,N-dimethylamide (144a) from N-Boc-L-tert-leucine (145).210

4.1.2 Synthesis of Other Primary Amines 

(S)-N 2,N 2-dimethyl-1,1'-binaphthyl-2,2'-diamine ((S)-147) was prepared from binaphthyl-

diamine (S)-148 ((S)-BINAM) according to the procedure reported by Wang et al. (Scheme 

4.9).106
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The synthesis started with the protection of one amine group of (S)-BINAM) ((S)-148) using 

acetic anhydride in the presence of acetic acid to yield amino acetamide (S)-149 (80%). (S)-N-

(2'-(dimethylamino)-1,1'-binaphthyl-2-yl)acetamide (S)-150 was easily obtained by reacting 

amino acetamide (S)-149 with aqueous formaldehyde in the presence of sodium 

cyanoborohydride. After a basic work-up dimethylamino acetamide (S)-150 was isolated in 

83% yield. The acetamide functionality of (S)-150 was then hydrolyzed with hydrochloric 

acid to release almost quantitatively free dimethylamino amine (S)-147.

NHAc

N

NH2
NH2

(S)-150(S)-148

Ac2O, AcOH

CH2Cl2, rt, 17 h
80%

NHAc
NH2

aq. HCHO,
NaBH3CN, AcOH

THF, rt, 6 h
83%

(S)-149

NH2

N

(S)-147

HCl (4 N)

EtOH,reflux, 7 h
99%

Scheme 4.9: Synthesis of dimethylamino amine (S)-147 from diamine (S)-148.106

4.1.3 Synthesis of BINOL-Derived Phosphates

Brønsted-acid BINOL-derived phosphoric acids 126 could be synthesized from 3,3'-

disubstituted BINOL 151, that was readily prepared from commercially available 

enantiomerically pure BINOL 152 (Scheme 4.10). 

Scheme 4.10: Retrosynthetic approach to the preparation of 3,3'-disubstituted BINOL-derived phosphates 126.
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Depending on the nature of the substituents R that was introduced on the BINOL, two 

different synthetic pathways could be used. Aromatic substituents that are not too sterically 

hindered were introduced at the 3- and 3'-position of BINOL 152 via Suzuki cross-coupling 

reaction. For highly sterically hindered substituents a Kumada cross-coupling reaction had to 

be used.

3,3'-Bis(2,4,6-triisopropylphenyl)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (TRIP, 126a)

as well as octahydro-BINOL phosphates H8-126a were synthesized via Kumada cross-

coupling from the corresponding commercially available (H8-)BINOL ((H8-)152, see chapter 

4.1.3.1). The other phosphoric acids screened in the course of this Ph.D. work ((R)-126b-g,

Figure 4.2) were prepared via Suzuki cross-coupling reaction. 211 Hydrogen phosphate (R)-

126h was commercially available.

Figure 4.2: Overview of the screened chiral phosphoric acids.211

4.1.3.1 Synthesis of BINOL-Derived Phosphates via Suzuki Cross-Coupling  

The phosphoric acids bearing aromatic substituents that are not very sterically hindered ((R)-

126b-g) were prepared via Suzuki cross-coupling reaction according to the procedure of 
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Jørgensen et al.212 and Wipf et al.213 (Scheme 4.11). The key step involved a palladium-

catalyzed cross coupling of boronic diacid (R)-154 and the respective aryl halide to generate 

the BINOL (R)-151. The boronic acid 154 needed for this Suzuki cross-coupling process was 

synthesized by ortho-lithiation of the compound (R)-153, followed by treatment with 

triethylborate. During an acidic work-up, hydrolysis of the borate gave the desired boronic 

acid ((R)-154). Subsequent phenol deprotection and phosphorylation of (R)-151 afforded (R)-

126.
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Scheme 4.11: General procedure for the synthesis of BINOL phosphates (R)-126 via Suzuki cross-coupling 
process.211

4.1.3.2 Synthesis of BINOL-Derived Phosphates via Kumada Cross-Coupling  

As TRIP and other phosphoric acids bearing highly sterically hindered aromatic substituents 

were obtained in poor yields using Suzuki cross-coupling process, they were prepared via

Kumada cross-coupling reaction. The key step of this process is a nickel-catalyzed cross 

coupling of a dibromide compound and the respective aryl magnesium bromide (see the 

following TRIP synthesis, Schemes 4.12-4.14). 

(R)-TRIP ((R)-126a) synthesis 

The preparation of the phosphoric acid 126a was developed and optimized by A. M. Seayad

according to the procedure of Schrock et al. 214 and Akiyama et al. 215 (Schemes 4.12-4.14).216

This is now a well established process in our laboratory.
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(R)-3,3'-Dibromo-2,2'-dimethoxy-1,1'-binaphthyl ((R)-155) needed for the Kumada cross-

coupling reaction was prepared from commercially available BINOL ((R)-152). Methylation 

with methyl iodide provided dimethoxybinaphthyl (R)-153, which was then ortho-lithiated in 

the presence of n-butyl lithium and N,N,N',N'-tetramethylenediamine (TMEDA) followed by 

quenching with bromide (Scheme 4.12). The dibromide (R)-155 was obtained in 70% yield 

over two steps. 

Scheme 4.12: Preparation of the dibromide (R)-155 from BINOL (R)-152.

The nickel-catalyzed Kumada cross-coupling of (R)-3,3'-dibrom-2,2'-dimethoxy-1,1'-

binaphthyl ((R)-155) with 2,4,6-triisopropylphenyl magnesium bromide 156 allowed the 

introduction of highly sterically hindered 2,4,6-triisopropylphenyl substituents in the 3- and 

3'-positions of the BINOL derivative (R)-155. After deprotection of the methyl groups using 

boron tribromide (R)-3,3'-bis(2,4,6-triisopropylphenyl)-1,1'-binaphthyl-2,2'-diol ((R)-151a)

was formed in 75% yield (Scheme 4.13) 

Scheme 4.13: Diarylation of the dibromide (R)-153 via Kumada cross-coupling.

Phosphorylation of (R)-151a was achieved using phosphoryl trichloride in pyridine at reflux. 

Finally, hydrolysis with water at reflux followed by a treatment with hydrochloric acid (1 N) 

afforded the phosphoric acid catalyst (R)-126a in 95% yield (Scheme 4.14). 
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Scheme 4.14: Synthesis of BINOL phosphate (R)-126a.

BINOL phosphate (R)-126a was recrystallized by S. Hoffmann using acetonitrile as solvent. 

The obtained crystals could be examined by X-ray structure analysis (Figure 4.3).

Figure 4.3: X-Ray structure analysis of BINOL phosphate (R)-126a (from S. Hoffmann’s Ph.D. thesis; the 
structure contains acetonitrile and water; carbon atoms: grey, oxygen atones: red, phosphorus atom: orange, 
nitrogen atom: blue. The hydrogen atoms of  the molecule are omitted for clarity). 
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4.1.4 Other Chiral Amines and Chiral acids

We tested the MacMillan imidazolidinones 46 and 47 (see Chapter 2.1.2, Figure 2.4) for the 

conjugate reduction of enones 107.

We also analyzed the catalytic activity of dicarboxylic acid (R)-157a as well as disulfonic 

acid (R)-158 and disulfonimide (R)-159, which were used as chiral counteranions in iminium 

catalysis or as Brønsted acids involving hydrogen bonding catalysis (Figure 4.4).217

S
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CO2H

(R)-159(R)-157a

SO3H
SO3H

(R)-158

NH

O O

O
O

Figure 4.4: Some chiral acids tested as counteranions or Brønsted acids to catalyze the transfer hydrogenation of 
enones 107.218

4.1.5 Preparation of the Amino Acid-Derived Salts

The ammonium salts were prepared by mixing an amine and an acid (one equivalent of each, 

see Scheme 4.1) in a small volume of diethyl ether. The mixture was then stirred for a few 

minutes and the solvent removed under reduced pressure, leading to the formation of the 

desired ammonium salt. In some cases ammonium salts directly precipitated in diethyl ether 

solution and were filtered and washed with cold pentane. 

Note: for the catalyst screening process we prepared the ammonium salts in situ in order to 

save material and time.  
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4.2 Synthesis of (Thio)urea Organocatalysts 

In this chapter the syntheses of the different mono- and bis(thio)urea derivatives screened as 

catalysts for the transfer hydrogenation of nitroolefins 120 and 121 (see Chapters 4.4 and 4.5, 

respectively) are reported.

4.2.1 Preparation of Mono(thio)urea Catalysts 

Achiral thiourea catalyst 49b, N,N'-bis(3,5-bis(trifluoromethyl)phenyl)thiourea, was prepared 

according to a modified procedure reported by Schreiner et al.218 3,5-Bis(trifluoromethyl)-

aniline (160) and 3,5-bis(trifluoromethyl)phenyl isothiocyanate (161) were stirred in toluene 

at 120 °C for 72 hours, affording the thiourea catalyst 49b in 80% yield (Scheme 4.15). 

Scheme 4.15: Preparation of achiral Schreiner thiourea catalyst 49b.

According to Ricci et al.’s methodology2191-(3,5-bis(trifluoromethyl)phenyl)-3-((1R,2S)-2-

hydroxy-2,3-dihydro-1H-inden-1-yl)thiourea 162 was formed by stirring (1R,2S)-cis-1-

amino-2-indanol (163) with 3,5-bis(trifluoromethyl)phenyl isothiocyanate (161) in 

dichloromethane (Scheme 4.16). Because of the poor solubility of amino alcohol 163 in 

dichloromethane at room temperature the reaction was run at 40 °C for 15 hours, affording 

bifunctional catalyst 162 in quantitative yield.

Scheme 4.16: Synthesis of bifunctional thiourea catalyst 162.

Bifunctional catalyst 164a was generated in high yield (90%) by reacting L-tert-leucine-N,N-

dimethylamide (144a) (see its preparation Chapter 4.1.1.2, Scheme 4.8) with 3,5-
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bis(trifluoromethyl)phenyl isothiocyanate (161) in toluene at room temperature (Scheme 4.17). 

Thiourea 164b was prepared following the same method (Scheme 4.17).220

Scheme 4.17: Preparation of thiourea catalysts 164a and 164b.220

Catalyst 76 was obtained according to Wang et al.’s procedure.106. Amino amide (S)-147 was 

synthesized in three steps from (S)-1,1'-binaphthyl-2,2'-diamine ((S)-BINAM, (S)-148) as 

reported in chapter 4.1.2 (see Scheme 4.9). It was then stirred with 3,5-

bis(trifluoromethyl)phenyl isothiocyanate (161) in dichloromethane for 40 hours at reflux, 

affording 76 in excellent yield (95%, Scheme 4.18). 
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Scheme 4.18: Preparation of bifunctional BINAM-derived thiourea catalyst 76.

Starting from commercially available N-Boc-L-tert-leucine 145221 urea 165 was prepared by a 

Curtius rearrangement process.222 N-Boc-Protected amino acid 145 was first converted to its 

corresponding acyl azide 166 by reaction of its mixed anhydride (formed with 

ethylchloroformate and N-methylmorpholine (NMM)) with sodium azide. After work-up acyl 

azide 166 was used in the next step without further purification. Isocyanate 167 was generated 

in situ via Curtius rearrangement upon heating acyl azide 166 in toluene at 65 °C and then 

trapped with 3,5-bis(trifluoromethyl)aniline (160) to give urea 165 with an overall yield of 

28% (Scheme 4.19). Catalyst 165 crystallized directly from the toluene solution at 65 °C and 

was recovered by a simple filtration. 
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Scheme 4.19: Preparation of urea catalyst 165 by a Curtius rearrangement process.  

Using the same procedure the urea catalyst 168 was obtained in 93% overall yield. In this case 

isocyanate 167, prepared from N-Boc-L-tert-leucine 145,225 was trapped with (1R,2R)-2-(2,5-

dimethyl-1H-pyrrol-1-yl)cyclohexanamine 169a (Scheme 4.20). (The synthesis of 169a is 

reported in Chapter 4.2.2.2, Scheme 4.27). In comparison with compound 165, urea 168 was 

more soluble in toluene. Indeed it did not crystallize in the reaction mixture (even at room 

temperature) and was isolated by column chromatography after solvent removal under 

reduced pressure. 
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Scheme 4.20: Synthesis of urea catalyst 168 from N-Boc-L-tert-leucine 145.
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4.2.2 Preparation of Jacobsen-Type Monothiourea Catalysts 

We tested different Jacobsen thiourea motifs (e.g. 50, 57 and 58) to catalyze the transfer 

hydrogenations of nitroolefins (see Chapter 4.4.2). Among these Jacobsen catalysts, thiourea 

57a was the most promising in terms of reactivity and enantioselectivity (see Chapter 4.4.2.3) 

and was further optimized by varying the substituents on the tertiary amine and the pyrrolyl 

groups.

Jacobsen and Jacobsen-type catalysts were all prepared according or in analogy to the 

reported procedures.90,95  

4.2.2.1 Synthesis of Jacobsen(-Type) Thioureas 58e and 50g  

Compound 50d (see Chapter 2.1.3.2, Scheme 2.22) was prepared by other group members223

according to the procedure reported by Jacobsen et al.95 Using a similar procedure 

diethylamino thiourea analog 50g was synthesized from thiourea 58e and pivalate 170

(Schemes 4.21-4.24).  

Preparation of thiourea catalyst 58e 

L-tert-Leucine diethylamide (144b) was formed from N-Boc-L-tert-leucine (145) (Scheme 

4.21) using the same procedure as that reported for the preparation of L-tert-leucine 

dimethylamide (144a, see Chapter 4.1.1.1, Scheme 4.8). 

Scheme 4.21: Synthesis of L-tert-leucine dimethylamide (144a) and diethylamide (144b) from Boc-L-tert-
leucine (145). 

Thiourea 58e was obtained by in situ conversion of L-tert-leucine diethylamide (144b) to its 

corresponding isothiocyanate derivative with thiophosgene in an aqueous solution of sodium 

bicarbonate. The isothiocyanate was then trapped with (R,R)-1,2-diaminocyclohexane (171),

leading to the formation of thiourea 58e in 63% yield (Scheme 4.22).  
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Scheme 4.22: Synthesis of thiourea catalyst 58e from L-tert-leucine diethylamide (144b) and (R,R)-1,2-

diaminocyclohexane (171).

Part of the prepared thiourea 58e was kept to be later tested as hydrogen bonding catalyst and 

the rest was used for the preparation of catalyst 50g.

Preparation of thiourea catalyst 50g 

3-tert-Butyl-5-formyl-4-hydroxyphenyl pivalate 170 was synthesized from 3-tert-butyl-4-

hydroxyphenyl pivalate 172. Compound 172 was prepared by R. Rios in 92% yield by 

reacting 2-tert-butylhydroquinone 173 with pivaloyl chloride in the presence of imidazole and 

a catalytic amount of DMAP at 0 °C (Scheme 4.23). Pivalate 172 was then treated with 2,6-

lutidine and a catalytic amount of tin chloride, followed by paraformaldehyde addition. The 

reaction mixture was stirred at reflux for three days and after an acidic work-up pivalate 170

was obtained in 51% yield (Scheme 4.23). 

Scheme 4.23: Synthesis of 3-tert-butyl-5-formyl-4-hydroxyphenyl pivalate 170.

Compound 50g was then easily obtained and in almost quantitative yield by mixing 

compound 58e with pivalate 170 in methanol in the presence of sodium sulfate (Scheme 

4.24).
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Scheme 4.24: Preparation of Jacobsen-type thiourea catalyst 50g.

4.2.2.2 Synthesis of Jacobsen(-Type) Thioureas 57a-l

Similar to the synthesis of Jacobsen catalyst 58e, thioureas 57 were prepared from amino 

amides 144, which were first converted in situ into their corresponding isothiocyanate 174

with thiophosgene. Isothiocyanates 174 were then trapped with appropriate (1R,2R)-2-(1H-

pyrrol-1-yl)cyclohexanamine derivative 169 to generate the thiourea moiety of catalysts 57

(Scheme 4.25).90

N
NH2

O
R2

R1
Cl Cl

S

N
N
HO

R2

R1

N
H

S

N R4R3

H2N

169

144 57

NR3 R4
N

NCS
O

R2

R1

174

Scheme 4.25: General procedure for the formation of thiourea catalysts 57.90

Preparation of L-tert-leucine-derived amides 144 

To synthesize thioureas 57, diethylamino amide 144b as well as L-tert-leucine amides with 

bulkier substituents on the amide functionality (144c-f) had to be prepared. For this purpose 

the procedure reported by Jacobsen et al. was followed (Scheme 4.26)95 as it was more 

efficient for coupling N-Boc-L-tert-leucine 145 with bulky amines than the method previously 

reported (see Chapter 4.1.1.1, Scheme 4.8 and Chapter 4.2.2.1, Scheme 4.21). 

N-Boc-L-tert-leucine (145) was reacted at room temperature with O-benzotriazole-1-

N,N,N',N'-tetraethyluronium hexafluorophosphate (HBTU) and diisopropylethylamine, 

followed by the coupling with amine of choice. After an acidic work-up and removal of the 
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solvent, crude N-Boc-L-tert-leucine amide was obtained and without further purification 

treated with TFA (neat) to deprotect the amine group and afford L-tert-leucine amides 144b-f

in high to excellent yields (Scheme 4.26).224

Scheme 4.26: Synthesis of L-tert-leucine-derived amides 144b-f.

Preparation of pyrrolylcyclohexanamines 169 

To prepare (1R,2R)-2-(1H-pyrrol-1-yl)cyclohexylamine derivatives 169, (R,R)-1,2-

diaminocyclohexane (171) was treated with appropriate diones 175 in methanol in the 

presence of a stoichiometric amount of acetic acid. The mixture was stirred overnight at 50 

°C, leading to the formation of 2,5-substituted pyrrolyl-cyclohexylamines 169 in high yields 

(Scheme 4.27).  

Scheme 4.27: Synthesis of amines 169.

Generation of thiourea catalysts 57 

According to the general procedure reported in Scheme 4.25, catalysts 57 were easily formed 

by trapping the in situ generated isothiocyanate (derived from amino amides 144) with the 

appropriate amine 169. This process afforded a variety of thioureas (57a-l) in moderate to 

good yields (Scheme 4.28).  
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Scheme 4.28: Preparation of thiourea catalysts 57a-l.

4.2.2.3 Synthesis of Jacobsen-Type Thiourea 176

Thiourea 176 was prepared using a similar process as the one followed for the synthesis of 

catalyst 164a (see Chapter 4.2.1, Scheme 4.16). Thiourea 176 was obtained in excellent yield 

from L-tert-leucine-N,N-diethylamide (144b) and phenyl isothiocyanate (177, Scheme 4.29). 

Scheme 4.29: Preparation of Jacobsen thiourea catalyst 176.

4.2.3 Preparation of Bisthiourea Catalysts 

Bisthiourea catalysts were also synthesized in order to test if an increase of the hydrogen 

bonding concentration has a positive influence on the catalyst reactivity.

These bisthioureas were prepared following the same strategy as the one used for the 

synthesis of monothioureas (see Chapter 4.2.1). This consisted of letting an amine and an 
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isothiocyanate react together in an appropriate solvent (dichloromethane or toluene) at room 

temperature or at reflux (Scheme 4.30-4.32). 

Scheme 4.30: Preparation of BINAM-derived bisthiourea (S)-178.

Bisthioureas (S)-178 and 63 were generated starting from chiral linkers (enantiomerically pure 

diamines 148 and 171). Compound (S)-178 was obtained in moderate yield (56%) by mixing 

(S)-BINAM ((S)-148) and 3,5-bis(trifluoromethyl)phenyl isothiocyanate (161) for three days 

in dichloromethane (Scheme 4.30), whereas Nagasawa catalyst 6398 was formed within four 

hours in excellent yield starting from (R,R)-1,2-diaminocyclohexane (171) and 3,5-

bis(trifluoromethyl)phenyl isothiocyanate (161), using toluene as solvent (Scheme 4.31). 

Scheme 4.31: Synthesis of bisthiourea catalyst 63.

Bisthioureas were also prepared from achiral linkers. As these hydrogen bonding catalysts 

were not efficient (neither in terms of reactivity nor enantioselectivity) in the catalysis of the 

studied conjugate reduction, just one motif (with 1,3-phenylenedimethanamine 179 as linker) 

is described in this Ph.D. thesis (Scheme 4.32).   

For the preparation of bisthiourea 180, bisisothiocyanate 181 was synthesized by reacting the 

corresponding diamine 179 with thiophosgene in the presence of triethylamine. 225

Bisisothiocyanate 181 was then trapped with (1R,2R)-2-(2,5-dimethyl-1H-pyrrol-1-

yl)cyclohexanamine 169a (Scheme 4.32). 
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NH2NH2

Cl Cl

S

, Et3N
CHCl3, rt - reflux, 4h

46%

Scheme 4.32: Synthesis of chiral bisthiourea catalyst 180.

4.2.4 Other Hydrogen Bonding Organocatalysts

Takemoto bifunctional catalyst 67a as well BINOL-derived phosphoric acid 126i and 

(di)carboxylic acids 157b, 182 and 183 were prepared by other group members and tested as 

hydrogen bonding catalysts in the conjugate reductions of nitroolefins 120 (see Table 4.17, 

Chapter 4.4.2.1).226

4.2.5 Discussion of the Results

A variety of (thio)urea catalysts was successfully prepared using a simple strategy: letting an 

amine and an iso(thio)cyanate react together in an appropriate solvent and at the desired 

temperature (Scheme 4.33). The solvent (mostly toluene or dichloromethane) was mainly 

chosen depending on the solubility of the different starting materials. In the same way, some 

syntheses could be run at room temperature; whereas others were slow at this temperature, 

partially due to solubility problem of amines. In this case the reactions were run at higher 

temperatures. Using this simple and versatile process mono- and bis(thio)ureas were formed 

in mostly high yields.  
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R NH2 R' NCX+
CH2Cl2 or toluene

rt or reflux N
H

N
H

R'R
X

X = S or O

Scheme 4.33: General procedure for the formation of (thio)urea compounds. 

When the isothiocyanates were not commercially available, they were easily prepared by 

reacting the corresponding amine with thiophosgene under basic conditions (Scheme 4.25 and 

Scheme 4.32). Isocyanate 167 was synthesized by Curtius rearrangement (Scheme 4.19). In 

most of the cases the (thio)isocyanates were generated in situ and then trapped with the amine 

of choice to generate the thiourea moiety (e. g. Scheme 4.28). 

It should be noted that the preparation of urea compounds was more difficult than the one of 

thioureas, mostly due to their lower solubility in organic solvents.
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4.3 Enantioselective Transfer Hydrogenation of , -Unsaturated 
Ketones 

The aim of the following experiments was to develop an organocatalytic process for the 

synthesis of enantiomerically pure , -disubstituted ketones. For this purpose we focused our 

work on the development of a highly enantioselective dihydropyridine-mediated transfer 

hydrogenation of , -disubstituted unsaturated ketones 107 and 113 (Scheme 4.34).227

Scheme 4.34: Planned organocatalytic transfer hydrogenation of enones. 

4.3.1 Synthesis of the Starting Materials and Racemic Products 

3-Methylcyclohexenone (107b) and 3-methylcyclopentenone (107c) are commercially 

available substrates and were purchased from Sigma-Aldrich. Enones 107a and 113a were 

prepared by J. Zhou and kindly shared. 

4.3.1.1 Synthesis of the , -Unsaturated Cyclic Ketones

-Branched , -unsaturated 5- and 6-membered cyclic ketones were easily prepared 

according to the procedure reported by Buchwald et a.163

-Substituted cyclohexenone and cyclopentenone derivatives were synthesized by reacting 

their corresponding vinylogous ester 184 (commercially available 3-ethoxycyclohexenone 

(184a) and 3-ethoxycyclopentenone (184b), respectively) with two equivalents of the 

appropriate Grignard reagent in tetrahydrofurane (THF). The Grignard reagents were added at 

0 °C. Afterwards the reaction mixture was stirred at room temperature until full conversion 
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was reached; leading to the formation of the desired cyclic enones in generally high yields 

(Scheme 4.35). The yields reported in Scheme 4.35 correspond to the isolated yields after 

column chromatography. Their low values, especially for the 3-ethyl substituted cyclic enones 

107d and 107h, are due to the loss of product while removing the solvent residues in high 

vacuum. In the case of non-volatile products (3-phenethyl substituted enones 107g and 107i)

no loss of product was observed during the solvent removal and the isolated yields remained 

very high (> 90%). 

Scheme 4.35: General procedure for the preparation of 5- and 6-membered cyclic enones 107. (*Volatile 

compounds). 

It should be noted that the phenethylmagnesium bromide (185) could not be obtained from 

commercial suppliers. It was thus prepared by treating (2-bromoethyl)benzene (186) with 

activated magnesium turnings in anhydrous THF at 60-70 °C overnight (Scheme 4.36). The 

solution was then cooled to 40 °C (as a precipitate formed when the reaction was cooled to 

room temperature) and the Grignard reagent directly transferred to the solution of vinylogous 

esters 184a or 184b in THF for the synthesis of cyclic enones 107g and 107i (see Scheme 

4.35).

Scheme 4.36: Preparation of phenethylmagnesium bromide (185). 

7-Membered cyclic vinylogous ester 184c was prepared following the procedure reported by 

de Meijere et al.228 Cycloheptane-1,3-dione (187) was reacted with ethanol and a catalytic 

amount (1 mol%) of para-toluene sulfonic acid (p-TsOH) in benzene. The reaction mixture 

was then stirred at reflux (Scheme 4.37). After two days the reaction was stopped even though 

some of the starting material was still unreacted. After purification by flash chromatography a 
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mixture of 3-ethoxycyclohept-2-enone (184c) and starting material 187 was isolated. As it 

was supposed that the presence of cycloheptane-1,3-dione (187) would not disturb the 

preparation of the 3-methylcycloheptenone (107j) the mixture of compounds 184c and 187

was used in the next step without further purification. This mixture was reacted with 

methylmagnesium bromide in THF affording cycloheptenone 107j, which could be easily 

separated from remaining cycloheptane-1,3-dione (187) by flash chromatography and was 

isolated with an overall yield of 46% (Scheme 4.37). 
O

O

p-TsOH, EtOH

benzene, reflux, 48 h

O

O

187 184c
(ca. 70%*)

O

O

187
(ca. 30%*)

+

*NMR yields

THF, 0 °C - rt, 14 h
46% (overall yield)

MeMgBr
O

107j

Scheme 4.37: Preparation of vinylogous ester 184c and further transformation to enone 107j.

4.3.1.2 Synthesis of the , -Unsaturated Acyclic Ketones

Acyclic enones were prepared following different procedures than the ones used for the 

formation of cyclic enones. (E)-Ethyl 2-methyl-4-oxopent-2-enoate ((E)-113b) 229  was 

synthesized through a Wittig reaction according to the literature.230 Ethyl pyruvate (188) was 

added to a suspension of 1-(triphenylphosphoranylidene)-2-propanone (189) in benzene. The 

reaction was stirred at room temperature for five hours, during which time it became 

homogeneous, leading to the formation of the desired product  ((E)-113b) in 12% yield 

(Scheme 4.38) as well as isomers (Z)-113b and ethyl 2-methylene-4-oxopentanoate). 

+
CO2Et

O O
PPh3

benzene, rt, 5 h

- P(O)Ph3

12%

O

CO2Et
197 198 (E)-118b

(+ isomers)

Scheme 4.38: Synthesis of (E)-ethyl 2-methyl-4-oxopent-2-enoate (113b). 
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To further explore the substrate scope in the planned catalytic reaction (see Scheme 4.34), an 

acyclic enone with a long aliphatic chain, 4-methylnon-3-en-2-one (113c) was also 

synthesized. This unsaturated ketone (113c) was first prepared through Horner-Wadsworth-

Emmons olefination, a reaction that is widely employed in organic synthesis for the 

preparation of acrylic esters (Scheme 4.39a).231 Heptan-2-one (190) was treated in THF with a 

phophonate carbanion, which was generated in situ from the reaction of dimethyl-2-

oxopropylphosphonate (191) with lithium hydroxide in the presence of activated 4 Å 

molecular sieves. After 24 hours at reflux most of the starting ketone 190 remained unreacted 

and the desired product 113c was formed in only 4% yield as a mixture of (E)- and (Z)-

isomers. Separation of the two isomers was difficult to achieve even by a careful column 

chromatography and only fractions of enriched cis- or enriched trans-113c could be isolated 

(Scheme 4.39a).   

As only few milligrams of 4-methylnon-3-en-2-one (113c) were formed using this Horner-

Wadsworth-Emmons olefination procedure (Scheme 4.39a), we looked for another strategy 

for the generation of , -unsaturated ketone 113c and chose the ruthenium-catalyzed olefin 

cross-metathesis described by Grubbs et a.232 (E)-Pent-3-en-2-one (192) and 2-methylhept-1-

ene (193) were reacted together in dichloromethane at reflux in the presence of a catalytic 

amount (5 mol%) of Grubbs’ second generation ruthenium catalyst (194) (Scheme 4.39b). 

Under these conditions 4-methylnon-3-en-2-one (113c) was obtained in poor yield (<2%) and 

as a mixture of trans- and cis-isomers. Like in the previous case the separation of the two 

isomers by column chromatography allowed us to obtain enriched cis- and enriched trans-

113c but no pure fractions of each isomer (Scheme 4.39b). This process was repeated several 

times to get enough starting material to investigate the organocatalytic conjugate reduction of 

this aliphatic acyclic enone (113c) under various reaction conditions. 
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Scheme 4.39: Synthesis of 4-methylnon-3-en-2-one (113c) through (a) Horner-Wadsworth-Emmons Olefination 
or (b) ruthenium-catalyzed cross-metathesis. 

4.3.1.3 Synthesis of the Racemic Products

Racemic samples of the enantiomerically enriched saturated ketones described in this Ph.D. 

thesis (95a-j and 114a-c) were needed as reference substances not only to control the progress 

of the investigated organocatalyzed transfer hydrogenations but also to determine and 

optimize the separation conditions of the (R)- and (S)-enantiomers of each saturated ketone 

using gas chromatography (GC) or high performance liquid chromatography (HPLC) analysis 

on a chiral phase. Once the separation conditions were defined, product samples from our 

catalytic (test) reactions could be subjected to GC or HPLC analysis for the measurement of 

their enantiomeric ratio (er).

3-Methylcyclohexanone (95b) and 3-methylcyclopentanone (95c) were commercially 

available substrates and purchased from Sigma-Aldrich. The other racemic ketones were 

easily obtained in moderate to high yields (60-92%) through palladium-catalyzed conjugate 

reduction of the enones with molecular hydrogen (Scheme 4.40).233 The reaction was usually 
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complete after about two hours and had to be stopped immediately after full conversion was 

observed to avoid the formation of over reduced compounds. In the case of volatile ketones 

(especially compound 95h), loss of product occurred during the removal of solvents under 

reduced pressure; this explains the sometimes poor yields that are reported in Scheme 4.40. 

Pd/C, H2

MeOH, rt, 2-5 h

O

Rn

107a: n = 1, R = Ph
107d: n = 1, R = Et
107e: n = 1, R = i-Bu
107f: n = 1, R = i-Pr
107g: n = 1, R = CH2CH2Ph
107h: n = 0, R = Et
107i: n = 0, R = CH2CH2Ph
107j: n = 2, R = Me

O

Rn

95a: n = 1, R = Ph; 61%
95d: n = 1, R = Et; 69%a

95e: n = 1, R = i-Bu; 69%a

95f: n = 1, R = i-Pr; 75%a

95g: n = 1, R = CH2CH2Ph; 80%
95h: n = 0, R = Et; 6%a

95i: n = 0, R = CH2CH2Ph; 92%
95j: n = 2, R = Me; 79%

R1

O

R3R2

Pd/C, H2

MeOH, rt, 2-5 h
R1

O

R3R2

(a)

(b)

113a: R1 = R2 = Me, R3 = Ph
113b: R1 = R2 = Me, R3 = CO2Et
113c: R1 = R2 = Me, R3 = n-Pent

114a: R1 = R2 = Me, R3 = Ph; 92%
114b: R1 = R2 = Me, R3 = CO2Et; 87
114c: R1 = R2 = Me, R3 = n-Pent; 60%

Scheme 4.40: Synthesis of racemic (a) cyclic ketones (95) and (b) acyclic ketones  (114). (* Volatile ketones). 

4.3.2 Development and Optimization of the Catalytic System 

4.3.2.1 Identification of the Catalyst’s Core Structural Motif 

At the time this Ph.D.work started, the highly efficient metal-free asymmetric transfer 

hydrogenations of , -unsaturated aldehydes 123 catalyzed by MacMillan imidazolidinones 

(46 or 47) in the presence of Hantzsch ester 90 as hydrogen source had just been 

independently developed and reported by our laboratory120b and MacMillan et al. 120d  Inspired 

by this work, we first applied the reaction conditions of these conjugate reductions of enal 123

to the transfer hydrogenation of enones. 3-Methylcyclohexenone (107b), which is 

commercially available was chosen as the standard substrate for the development of the 

desired reaction and for the optimization process. 
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3-Methylcyclohexenone (107b) was first treated with commercially available Hantzsch ester 

90a (1.2 equivalents) in dioxane at room temperature in the presence of a catalytic amount  

(20 mol%) of catalyst 46 or 47 as TFA salt. Under these conditions no conversion was 

observed even after five days. The reaction mixtures were then warmed up to 60 °C. At this 

temperature 3-methylcyclohexanone (95b) was formed, but with low yield and 

enantioselectivity (Scheme 4.41).   

Scheme 4.41: First attempts of the conjugate reduction of 3-methylcyclohexenone (107b) using MacMillan 
secondary amines 46 and 47. (* No reaction took place at lower temperatures). 

As expected, MacMillan imidazolidinium catalysts, which are highly effective for the transfer 

hydrogenation of , -unsaturated aldehydes in the presence Hantzsch ester, proved to be 

much less efficient with ketone substrates. Hypothesizing that primary amine catalysts, due to 

their reduced steric requirements, might be suitable for the activation of ketones (see Chapter 

3.1, Scheme 3.3), we investigated the development of a new ammonium salt motif made of a 

primary amine and an acid.  

After various catalytic systems made of a primary amine and TFA were screened in the 

transfer hydrogenation of 3-methylcyclohexenone (107b) using dioxane as solvent, the first 

promising results in terms of enantioselectivity (64:36 er) were observed with L-tert-leucine 

methyl ester-derived salt  [137a TFA]. Inspired by these results the catalytic activity of other 

L-tert-leucine derivatives was evaluated as shown in Table 4.1. The conversions and 

enantiomeric excesses were determined by GC measurements with a chiral stationary phase. It 

is worth specifying that the transfer hydrogenations were at first run at room temperature 

without any success. Only by increasing the temperature to 60 °C ketone 95b could be 

generated in good yields. 
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Table 4.1: Initial results using primary amines to catalyze the transfer hydrogenation of enone 107b 

N
H

CO2EtEtO2C
H H

90a
(1.2 equiv)

catalyst (20 mol%)

1,4-dioxane, 60 °C, 48 h

(S)-95b

O O

+

Entry
Catalytic salt:

Ammonium ion Counteranion conv. [%]a era

1

2

3

4

- < 5 -

O

O

NH3

O

O

NH3

N

O

NH3

NH3

N
(S)-147 TFA5

137a TFA

137b TFA

144a TFA

CF3CO2
-

CF3CO2
-

CF3CO2
-

CF3CO2
- 41 66:34

42

72

20

64:36

76:24

53:47

107b
(c = 0.1M)

a Determined by chiral GC.

6

7

1 51:49

8

141a TFACF3CO2
-

CF3CO2
-

78

57:43

23

60:40

O

O

NH3

O

O

NH3

O

O

NH3

O

O

NH3

CF3CO2
-

CF3CO2
-9

142 TFA

143 TFA

141b TFA

74

75:25

-

It has to be noted that prior to screening different catalytic systems, one experiment was done 

without any catalyst to examine the background reaction. As expected, the transfer 
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hydrogenation of cyclic enone 107b was extremely slow when no catalyst was present to 

activate the substrate (Table 4.1, entry 1). 

By running the conjugate reduction in dioxane at 60 °C for two days in the presence of 

commercially available Hantzsch ester 90a (1.2 equivalents), we observed that L-tert-leucine

methyl ester salt [137a TFA] could effectively activate the substrate (83% conversion), 

leading to the formation of the desired product with moderate enantioselectivity (Table 4.1, 

entry 2). Starting from this observation, we sought to optimize the catalyst structure using the 

L-tert-leucine derivatives as the catalyst core. Trifluoroacetate salt of L-tert-leucine tert-butyl 

ester [137b TFA] proved to be more active and enantioselective than its methyl ester analog, 

reaching an enantiomeric ratio of 76:24 (entry 3). These results demonstrated that activity and 

enantioselectivity increased with the bulkiness of the ester group. Ammonium salt made of L-

tert-leucine dimethylamide (144a) and TFA was much less active and enantioselective than 

its amino ester derivatives (entry 4). It has to be noted that trifluoroacetate salt of (S)-BINAM-

derived primary amine (S)-147 also gave encouraging results as it afforded (S)-3-

methylcyclohexanone (95b) with 41% conversion and moderate enantioselectivity (66:34 er,

entry 5). Considering  all these results amino ester salt bearing a  bulky ester group (entry 3) 

appeared to be the most promising catalytic system for the conjugate reduction of 3-

methylcyclohexanone (107b). We then intended to optimize the amino ester structure to 

improve the catalyst efficiency.  

For this purpose the efficiency of amino acid derivatives 141, 146 and 143 was also evaluated. 

L-Alanine methyl ester-based catalyst [141a TFA] was not suitable to activate the enone 107b

(entry 6). However the activity and enantioselectivity of the ammonium salt could be 

increased from 51:49 er up to 75:25 er by replacing the methyl substituent of the ester group 

by a tert-butyl group (entry 7 vs. entry 6). These results are in agreement with the ones 

observed with trifluoroacetate salt of L-tert-leucine methyl and tert-butyl esters (entry 3 vs. 

entry 2); whereby the activity of the catalyst increased with the bulkiness of the ester group. 

By comparing the conversions and enantioselectivities obtained with L-alanine esters and 

their corresponding L-tert-leucine esters (entries 2 vs. 6 and entries 3 vs. 7), it appeared that a 

more bulky -substituent led to a significant increase of the catalytic efficiency. With this idea 

in mind, we analyzed the behavior of trifluoroacetate salt of different amino methyl esters (L-

phenylalanine and L-phenylglycine methyl esters, 142 and 143, respectively, entries 8 and 9). 

With both catalytic systems good conversions (74-78%) were reached. They proved to be 

more active than their L-tert-leucine methyl ester analog [137a       TFA], however the desired 

saturated ketone (S)-95b was formed with lower enantioselectivities (entries 8 and 9 vs. 2). 
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Based on these observations, we intended to continue our investigation using L-tert-leucine

tert-butyl ester [137b TFA]. Once the amine structure was determined, our objective was then 

to define the basic structure of the counteranion.

4.3.2.2 Determination of the Counteranion Effect and Motif 

It has to be noted that all the amino esters presented in Table 4.1 (except 137b) were 

purchased as hydrochloride salts. These commercially available salts (i.e. with chloride as 

counteranion) were also tested as catalysts in the conjugate reduction of 3-

methylcyclohexenone (107b). It is worth underlining that not only the structure of the amino 

acid had an effect on the reactivity and enantioselectivity of the catalytic salt, but also the 

counteranion. This is illustrated in Table 4.2 with the comparison of the efficiency of 

trifluoroacetate and hydrochloride salts of L-tert-leucine methyl ester (137a). The 

hydrochloride salt proved to be less reactive than trifluoroacetate one, however it was more 

enantioselective. This tendency proved to be general and was also observed by comparing 

trifluoroacetate and hydrochloride salts of other amino esters. 

Table 4.2: Counteranion-effect on the transfer hydrogenation of enone 107b

N
H

CO2EtEtO2C
H H

90a
(1.2 equiv)

catalyst (20 mol%)

1,4-dioxane, 60 °C, 48 h

O

+

Entry
Catalytic salt:

Ammonium ion Counteranion conv. [%]a era

1

2 O

O

NH3

O

O

NH3

CF3CO2
-

Cl-

42

11

64:36

78:22

137a TFA

137a HCl

(S)-95b

O

107b
(c = 0.1 M)

a Determined by chiral GC.
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Considering these last results it was obvious that not only the structure of the amine played a 

role in the catalyst efficiency, but also that of the counteranion. We then decided to optimize 

the catalytic salt by screening different counteranions. 

At this time S. Mayer was working in our laboratory on the development of a new 

organocatalytic concept for the transfer hydrogenation of , -unsaturated aldehydes 123: the 

asymmetric counteranion-directed catalysis (ACDC, see Chapter 3).120c Encouraged by these 

studies, we also investigated chiral counteranions and in particular chiral BINOL-derived 

phosphate counteranions. A variety of these chiral BINOL-derived phosphoric acids, used 

mostly as Brønsted acid organocatalysts, were available in our laboratory and could be tested. 

The first attempt was done using TRIP (126a) as a counteranion, as this BINOL-derived 

phosphate proved to be the most efficient for numerous catalyses undertaken in our laboratory 

(Table 4.3).120c,214,234

Table 4.3:  Use of TRIP as chiral counteranion and analysis of the matched/mismatched catalyst ion pair 
combination 
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The combination of L-tert-leucine tert-butyl ester (137b) with (R)-TRIP ((R)-126a) to form 

the catalytic salt proved to be a real success and furnished (S)-3-methycyclohexanone ((S)-

95b) with high enantioselectivity (94:6 er, entry 1). Under the reaction conditions (in dioxane 

at 40°C) the activity of the catalyst remained moderate after two days. Interestingly, with the 

other enantiomer of the counteranion ((S)-TRIP), nearly racemic product was formed     

(52:48 er, entry 2), illustrating a dramatic matched/mismatched case. 

Considering the high enantioselectivity achieved in the presence of (R)-TRIP, the ground 

structure of the catalyst for the transfer hydrogenation of , -unsaturated ketone 107 was 

determined. We decided to optimize the reaction conditions and counteranion structure using 

chiral L-tert-leucine tert-butyl ester (137b) as amine and chiral (R)-BINOL-derived 

(phosphate) counteranions to form our catalytic system (Scheme 4.42). 

N
H

R3 R4

CO2R2R1O2C
H H

90

solvent

107b

O

O

O

NH3

(S)-95b

O

O
O

P
O

O

R

R

Scheme 4.42:  New catalytic system consisting of a chiral ammonium ion and a chiral (R)-BINOL-derived 
phosphate counteranion for the transfer hydrogenation of enones. 

4.3.2.3 First Solvent Screening  

The Hantzsch ester-mediated transfer hydrogenation of 3-methylcyclohexenone (107b) in the 

presence of catalyst prepared from amino ester 137b and (R)-TRIP (20 mol%) was performed 

in different solvents (Table 4.4). 

In apolar aromatic solvents like toluene and benzene high conversions (85% and 76%, 

respectively) were reached without loss of enantioselectivity when the reactions were run at 

60 °C (entries 2 and 6). As expected, a decrease of the temperature to 40 °C led to a slight 

increase of the enantioselectivity but in parallel a significant decrease of the activity (entries 3 

and 7). In the presence of diethyl ether the reaction could not be heated over 40 °C (due to the 

low bowling point of the solvent), but even under these conditions very high conversion and 
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excellent enantioselectivity were achieved (entry 9). The use of THF (entry 8) as well as 

chlorinated (entries 4 and 5) and (di)polar solvents (entries 10 and 11) was not suitable for the 

studied conjugate reduction and led to a drop in reactivity. 

Optimal enantioselectivity and reactivity were obtained in diethyl ether. Accordingly, this 

solvent was used for further optimization. 

Table 4.4:  Solvent effect on the transfer hydrogenation of enone 107b

N
H

CO2EtEtO2C
H H

90a
(1.2 equiv)

137b (R)-126a (20 mol%)

solvent, 40 or 60 °C, 48 h

107b
(c = 0.1 M)

O

+

Entry conv. [%]a era

O

O

NH3

(S)-95b

O

(R)-TRIP-

Solvent Temperature [°C]

1

2

3

4

5

6

7

8

9

10

11

dioxane

toluene

CH2Cl2

CHCl3

benzene

benzene

THF

Et2O

MeOH

MeCN

60

60

40

60

60

60

40

60

40

60

60

27

85

31

29

30

76

26

12

80

4

16

94:6

95:5

97:3

85:15

91:9

95:5

96:4

90:10

98:2

76:24

77:23

a Determined by chiral GC.

toluene

4.3.2.4 Optimization of the Chiral Counteranion  

Optimization of the (R)-BINOL-derived phosphate (R)-126a 

The catalyst salt prepared from L-tert-leucine tert-butyl ester (137b) and (R)-BINOL-derived 

(R)-126a was very active and enantioselective for the transfer hydrogenation of enone 107b.

To determine if the catalyst efficiency could be further improved, chiral (R)-BINOL-derived 
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phosphates (R)-126b-g bearing various substituents at the 3- and 3'-positions were screened 

(Table 4.5). 

Table 4.5:  Screening of chiral (R)-BINOL-derived phosphates  

Entry conv. [%]a eraR =

1

2

3

4

5

6

7

80

51

50

62

49

49

48

98:2

83:17

94:6

95:5

90:10

89:11

95:5

107b
(c = 0.1 M)

N
H

CO2EtEtO2C
H H

90a
(1.2 equiv)

Et2O, 40 °C, 48 h

O
O

O

NH3

(S)-95b

O

O
O

P
O

O

R

R
+

(R)-126b:

(R)-126c:

(R)-126d:

O
(R)-126g:

(R)-126e:

(R)-126f:

O

(R)-126a:

i-Pr

i-Pr

i-Pr

a Determined by chiral GC.

137b (R)-126a (20 mol%)

Surprisingly, in the presence of all these other BINOL-derived phosphates, the transfer 

hydrogenation was much slower (entries 2-7). A loss of enantioselectivity was also observed 

when (R)-126a was replaced by its analog compounds (R)-126b-f, all bearing less sterically 

demanding aromatic substituents at the 3- and 3'-positions (entries 1-6).  By replacing the 

aromatic substituents of (R)-126a-f with ester groups ((R)-126g, entry 7 vs. entries 1-6), we 
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could not improve the catalyst reactivity and enantioselectivity, which were still lower than 

those obtained using (R)-126a.

Evaluation of further (R)-BINOL-derived counteranions 

Other (R)-BINOL-derived acids, which were available in our laboratory, were used to form 

catalytic salts (Table 4.6).

Table 4.6:  Evaluation of further (R)-BINOL-derived counteranions 

Entry conv. [%]a eraHA* =

2

3

5
6
7

95

30

33
16
9

95:5

58:42

74:26
77:23
86:14

107b
(c = 0.1 M)

N
H

CO2EtEtO2C
H H

90a
(1.2 equiv)

Et2O, 40 °C, 48 h

O
O

O

NH3

(S)-95b

O

+

(S)-H8-126a

(R)-157a
(R)-158
(R)-159

(R)-H8-126a

A-*

(R)-H8-126a

O
O

P
O

OH

i-Pr
i-Pr

i-Pr

i-Pr

i-Pri-Pr

S

S

(R)-159(R)-157a: R = CO2H

R
R

(R)-158: R = SO3H

NH

O O

O
O

1 80 98:2(R)-126a

4 70 89:11(R)-126h

(R)-126h

a Determined by chiral GC.

137b HA* (20 mol%)

O
O

P
OH

O

Octahydro-BINOL phosphate (R)-H8-126a proved to be more reactive than its saturated 

analog (R)-126a. However, it was slightly less enantioselective (entries 1-2). A strong 

matched/mismatched effect was once again illustrated by running the transfer hydrogenation 

in the presence of the opposite enantiomeric counteranion ((S)-H8-126a) (entries 2-3).
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L-tert-Leucine tert-butyl ester (137b) was also treated with chiral non-substituted (R)-BINOL-

derived phosphoric acid (R)-126h, dicarboxylic acid (R)-157a, disulfonic acid (R)-158 and 

disulfonimide (R)-159 to form new catalytic salts. As expected, the phosphoric acid (R)-126h

bearing only hydrogen atoms at the 3- and 3'-positions was less enantioselective than its TRIP 

analog (R)-126a (entry 4 vs. entry 1). The amine salt prepared with dicarboxylic acid (R)-

157a had moderate activity and enantioselectivity (entry 5). The enantiomeric ratio obtained 

in entry 5 (74:26 er) could be slightly or significantly increased by replacing dicarboxylic acid 

(R)-157a with disulfonic acid (R)-158 or disulfonimide (R)-159, respectively, though with a 

resulting loss of catalyst reactivity (entries 6-7 vs. entry 5).

From all the non-substituted (R)-BINOL-derived counteranions evaluated for the transfer 

hydrogenation of 3-methylcyclohexenone (107b, entries 4-7), (R)-BINOL-derived phosphate 

motif (R)-126h was the most efficient and could be optimized by incorporating substituents at 

the 3- and 3'-positions to generate (R)-126a, which proved to be the most enantioselective 

counteranion tested. Accordingly, we favored the use of (R)-TRIP ((R)-126a) in combination 

with L-tert-leucine tert-butyl ester (137b) to form our catalytic system for the conjugate 

reduction of enones.

4.3.3 Optimization of the Reaction Conditions 

Once an efficient catalytic system was found, our objective became to optimize the reaction 

conditions further in order to improve the reaction conversion and, if possible, to reduce the 

catalyst loading (at this stage a conversion of 80% was reached after two days using 20 mol% 

of catalyst). 

4.3.3.1 Hantzsch Ester Structure and Concentration 

We first examined the effect of the Hantzsch ester structure on the efficiency (reactivity and 

enantioselectivity) of the transfer hydrogenation (Table 4.7).120 

Hantzsch esters 90a and 90c are commercially available and were purchased from Sigma-

Aldrich. Other dihydropyridines (90b and 90d-g) were prepared by other group members.235
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Table 4.7:  Optimization of dihydropyridine structure for the transfer hydrogenation of enone 107b

N
H

R3 R4

CO2R2R1O2C
H H

90
(1.2 equiv)

Et2O, 40 °C, 48 h

107b
(c = 0.1 M)

O

+

O

O

NH3

(S)-95b

O

(R)-TRIP-

Entry conv. [%]a eraHantzsch ester

1

2

3

4

5

6

7

80

58

85

50

69

65

76

98:2

97:3

96:4

95:5

94:6

96:4

95:5

90c:

90d:

90e:

90g:

90f:

90b:

90a:

N
H

CO2RRO2C

R = Et

R = t-Bu

R = neo-pent

R = i-Bu

R = Me

N
H

CO2MeMeO2C

N
H

CO2t-BuMeO2C

a Determined by chiral GC.

137b (R)-126a (20 mol%)

By modifying the ester groups of dihydropyridine 90 we did not observe very significant 

variations in the enantioselectivity, although diethyl ester derivative 90a was slightly more 

enantioselective than its analogs (entries 1-5). On the contrary, the reactivity was much more 

strongly affected by the structure of the Hantzsch ester, with the highest conversion observed 

using 90a (entry 1). The use of non-symmetrical dihydropyridines 90b and 90g led to a slight 

loss of enantioselectivity and a decrease of the reactivity (entries 6-7). According to these 

results, commercially available diethyl ester Hantzsch ester 90a was the optimal hydrogen 

source in terms of enantioselectivity. Moreover its use allowed us to obtain high conversions. 

It was therefore chosen as the hydrogen source for the transfer hydrogenation of 3-

methylcyclohexenone 107b.
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It has to be specified that the increase in the dihydropyridine 90a concentration had no effect 

on the catalysis efficiency, so we continued our optimization processes using 1.2 equivalents 

of this Hantzsch ester. 

4.3.3.2 Solvent and Temperature 

As previously described (see Chapter 4.3.2.3, Table 4.4), the reactivity increased significantly 

with increased temperature. However, the positive effect of the temperature on the reaction 

conversion was counterbalanced by a slight loss of enantioselectivity. A good compromise 

was to run the transfer hydrogenation at 60 °C (instead of 40 °C). Since such a temperature 

could not be reached using volatile diethyl ether as solvent, other ethereal solvents were tested 

(Table 4.8). 

Table 4.8:  Screening of ethereal solvents  for the transfer hydrogenation of enone 107b

Methyl tert-butyl ether (MTBE) was not a suitable solvent for the reaction as its use led to a 

dramatic decrease of the reactivity, even at 60 °C (entry 2). On the contrary, in the presence of 

dibutyl ether a conversion of 90 % was reached after 48 hours at 60°C, without significant 

loss of enantioselectivity (97:3 er, entry 4). This solvent was therefore selected for further 

investigations.
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4.3.3.3 Catalyst Loading 

In the previous optimization processes a relatively high catalyst loading (20 mol%) was used 

in order to obtain a catalytic efficiency that was high enough to detect reactivity and 

enantioselectivity variations while modifying the reaction conditions. To make this catalytic 

conjugate reduction more attractive, the use of a lower amount of catalyst was required. It 

should be noted that these investigations were done after an initial small screening of the 

substrate concentration (0.02-0.50 molar) during which the higher catalytic efficiency was 

obtained at a concentration of 0.3 molar. Consequently, this concentration was used for the 

screening of the catalyst loading (Scheme 4.43)  

N
H

CO2EtEtO2C
H H

90a
(1.2 equiv)

Bu2O, 60 °C, 48 h
107b

(c = 0.3 M)

O

+

O

O

NH3

(S)-95b

O

(R)-TRIP-

137b (R)-126a

Effect of the Catalyst Loading on the Conversion and the Enantioselectivity

80

85

90

95

100

0 5 10 15 20

Catalyst loading [mol%]

Pe
rc

en
ta

ge
 [%

]

conversion enantiomeric excess (ee)*

Scheme 4.43:  Screening of the catalyst loading for the transfer hydrogenation of enone 107b (*To facilitate the 
reading of this scheme, the enantioselectivities were expressed as enantiomeric excesses (ee) rather than 
enantiomeric ratios (er)). 

A reduction of the catalyst loading from 20 to 5 mol% had no significant effect on reactivity 

and enantioselectivity of the reaction. However, a further decrease resulted in decreased 
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conversion of the enone (Scheme 4.43).  Based on this screening, 5 mol% of catalyst were 

used for further optimizations. 

4.3.3.4 Substrate Concentration 

Since chemical processes are usually economically and ecologically more attractive when 

they are highly concentrated (i.e. use minimum solvent), we intended to raise the enone 

concentration as long as no loss of catalytic efficiency was noticeable (Scheme 4.44).  

N
H

CO2EtEtO2C
H H

90a
(1.2 equiv)

Bu2O, 60 °C, 48 h

107b

O

+

O

O

NH3

(S)-95b

O

(R)-TRIP-

137b (R)-126a (5 mol%)

Effect of the Substrate Concentration on the Conversion and the 
Enantioselectivity

50

60

70

80

90

100

110

0,1 0,2 0,3 0,4 0,5 0,7 0,9 1,1 1,3 1,5

Substrate concentration [M]

C
on

ve
rs

io
n 

[%
]

90

91

92

93

94

95

96

97

98

99

100

En
an

tio
m

er
ic

 e
xc

es
s 

[%
]

conversion enantiomeric excess (ee)*

Scheme 4.44: Optimization of the substrate concentration for the catalytic transfer hydrogenation of 107b. (*To 
facilitate the reading of this scheme, the enantioselectivities were expressed as enantiomeric excesses (ee) rather 
than enantiomeric ratios (er)). 

An increase of the substrate concentration from 0.1 until 0.3 molar had a positive effect on the 

reactivity of the catalysis without affecting the enantioselectivity. At higher substrate 

concentrations (and consequently higher concentrations of the Hantzsch ester 90a) a loss of 
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efficiency was observed. This phenomenon could be explained by the low solubility of 

dihydropyridine 90a in dibutyl ether.

The concentration of 0.3 molar was thus used to examine the reaction scope (see Chapter 

4.3.4).

4.3.3.5 Final Catalyst Optimization   

Despite optimizing the reaction conditions and reducing the catalyst loading, we were still not 

fully satisfied with the enantioselectivity of the catalytic system. We then rescreened amino 

esters (Table 4.9), including some that were missing in the previous amine structure 

investigation (see Chapter 4.3.2.1). For this screening, salts prepared with BINOL-derived 

phosphate 126a were tested under the same reaction conditions as those used in the initial 

screening (reactions run in dioxane at 60 °C, see Table 4.1).  

As with the amino ester trifluoroacetate salts (see Chapter 4.3.2.1), we observed the tert-butyl 

ester derivatives were more suitable for the studied catalysis than their methyl ester analogs. 

Interesting results of this new catalyst structure investigation can be summarized as follows; 

the phosphoric acid derivative alone ((R)-126a) was much less active than the amino acid 

ester salts and generated the product in only 60:40 er (entry 1). Moreover the chirality of the 

amino acid seemed to be important, as achiral glycine-derived salt [195 (R)-126a] gave 

significantly reduced enantioselectivity (entry 7 vs. entries 2-6 and 8-10). Accordingly, 

catalyst salts consisting of a chiral ammonium ion and a chiral counteranion were favored. 

Among this salts, it appeared that the one made of L-valine ester derivatives 139 (entries 3 

and 9) were more reactive and slightly more enantioselective than their L-tert-leucine ester 

analogs 137 (entries 4 and 10). L-Valine tert-butyl ester-based salt (139a. (R)- 126a) was

chosen for further studies as it proved superior in comparison with other amino acid esters 

with regard to catalytic efficiency and enantioselectivity. 

Using this optimized catalytic salt ([139a (R)-126a]) all the screenings previously reported 

(screenings of the solvent, temperature, Hantzsch ester, substrate concentration and catalyst 

loading) were repeated, leading to the same results as those obtained with L-tert-leucine tert-

butyl ester salt  ([137b (R)-126a]).
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Table 4.9: Finer optimization of the amino ester structure for the transfer hydrogenation of enone 107b

N
H

CO2EtEtO2C
H H

90a
(1.2 equiv)

(20 mol%)

solvent, 60 °C, 48 h

O

+

Entry Ammonium ion conv. [%]a er (ee [%])a

1

2

3

4

25 60:40 (21)

O

O

NH3

O

O

NH3

5

(R)-126a:

17

14

75

12

O

O

O

O

NH3

O

O

NH3

O

O

NH3

6

142 (R)-126a:

143 (R)-126a:

141a (R)-126a:

139b (R)-126a:

137a (R)-126a:

80:20 (61)

(S)-95b

O

107b
(c = 0.07 M)

-

O

O

NH3

O

O

NH3

8

9

10

141b (R)-126a:

139a (R)-126a:

137b (R)-126a:

(R)-126a-

O
O

P
O

O

R1 O

O

NH3

R2

O

O

NH3

7 195 (R)-126a: H3N

Solvent

Bu2O

dioxane

Bu2O
dioxane

Bu2O
dioxane

dioxane

dioxane

dioxane

dioxane

dioxane

dioxane

Bu2O

Bu2O

23

66

10

66 74:26 (47)

27

24
81

18
73

92:8 (84)
94:6 (89)

88:12 (76)
94:8 (88)

88:12 (76)

80:20 (59)

91:9 (82)

95:5 (91)
97:3 (95)

95:5 (90)
97:3 (94)

i-Pr

i-Pr

i-Pr

R =
R

R

a Determined by chiral GC.
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4.3.4 Investigation of the Reaction Scope 

4.3.4.1 Scope of the Catalytic Reaction 

According to the screenings of catalytic system, solvent, temperature, substrate concentration, 

Hantzsch ester structure, and catalyst loading reported in Chapter 4.3.3, we identified the 

following protocol as optimal: Treating the enone (0.3 molar) with commercially available 

Hantzsch ester 90a (1.2 equivalents) in the presence of catalytic salt [139a (R)-126a]

(5 mol%) at 60 °C in dibutyl ether for 48 hours gave the saturated ketones in high yields and 

enantioselectivities (Table 4.10). 

After having developed an efficient and highly enantioselective transfer hydrogenation of 3-

methylcylohexenone 107b to (S)-3-methylcyclohexanone 95b via iminium catalysis in the 

presence of Hantzsch ester 90a, we were interested to extend the methodology to other , -

disubstituted , -unsaturated ketones (cyclic and also acyclic), and thus, evaluate the scope of 

the catalysis (Table 4.10). Since most of the generated ketones (95 and 114) are volatile, 

yields were measured by GC or HPLC analysis. Less volatile products like 95g and 95i (Table 

4.10, entries 5 and 9) were also isolated by column chromatography. In these cases 

chromatographically determined and isolated yields were nearly identical. The absolute 

configuration of the products 95b and 95c was determined by using chiral-GC analysis and 

comparing the retention times measured for the enriched compounds with their corresponding 

commercially available (R)- or (S)-enantiomers. The other absolute configurations were 

assigned by analogy. 

The developed transfer hydrogenation was particularly well suited for -alkyl substituted 

cyclohexenones (entries 1-5), in which case the products were generally formed in very high 

yields and good to excellent enantioselectivities. A lower enantioselectivity was reached with 

phenyl substituted enone 107a, although the corresponding saturated ketone 95a was obtained 

almost quantitatively (entry 6). Unfavorable steric and electronic environments of 107a might 

explain this loss of selectivity. Cyclopentenones were slightly less reactive than 

cyclohexenones but provided the products in equally high enantioselectivities (entries 7-9). In 

those cases a higher catalyst loading (10 mol%) was used to improve the substrate reactivity. 

Cycloheptenones were also suitable substrates, and 3-methylcyclohept-2-enone (107j) gave 

the desired product 95j with excellent yield and enantioselectivity (entry 10). Not only cyclic 

enones 107 were suitable substrates for the developed conjugate reduction, acyclic ketones 
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113 could also be used. However they were reduced to the corresponding saturated ketones 

114 with slightly lower enantioselectivities (entries 11 and 12). 

Table 4.10: Preliminary scope of the catalytic transfer hydrogenation  

N
H

CO2EtEtO2C
H H

90a
(1.2 equiv)

Bu2O, 60 °C, 48 h

+

(c = 0.3 M)

O
O

P
O

O
O

O

NH3

i-Pr

i-Pr

i-Pr

R =
R

R
R1

R2

O

R3

R1

R2

O

R3

139a (R)-126a (5 mol%)

a Determined by chiral GC. b Isolated yield. c Determined by HPLC. d With 10 mol% of catalyst.

Yield [%]a eraEntry Enone Product
O

R
R = Me (107b)
R = Et (107d)
R = i-Bu (107e)
R = i-Pr (107f)
R = CH2CH2Ph (107g)
R = Ph (107a)

O

R
R = Me (107c)
R = Et (107h)
R = CH2CH2Ph (107i)

O

R

O

107j

R = Ph (113a)
R = CO2Et (113b)

O

R
95b
95d
95e
95f
95g
95a
O

R
95c
95h
95i

O

R

O

95j

114a
114b

1
2
3
4
5
6

10

11
12

7d
8d

9d

99
98
89
94
99b

99

>99

81
>99

78
71
68c

97:3
98:2
98:2
99:1
98:2c

92:8

98:2

15:85
8:92

99:1
98:2
98:2c
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4.3.4.2 Effect of the Enone Geometry 

Aliphatic acyclic ketone 113c was prepared as cis-enriched and trans-enriched isomers and 

thus used for investigating the effect of the enone geometry on the conjugate reduction (Table 

4.11). As expected, the reactivity of this acyclic , -unsaturated ketone was lower than with 

cyclic enones (especially starting from a cis-enriched substrate, entry 1). However, we were 

pleased to see that our catalytic system induced enantioselectivity (84:16 er, starting from 

trans-enriched isomer, entry 2). It has to be noted that we used cis- or trans-enriched (and not 

pure cis- or trans-) unsaturated ketone 113c for these experimentations, as only a partial 

separation of both isomers could be achieved by column chromatography. The results 

reported in Table 4.11 point out that in contrast to the stereoconvergent enal transfer 

hydrogenations previously developed in our laboratory,120b the enantioselectivity of the enone 

conjugate reductions strongly depends on the geometry of the substrate (entries 1 and 2): cis-

and trans-113c give opposite enantiomers of product 114c. Obviously, only pure cis- or trans-

enone should be employed to reach optimal enantioselectivities. 

Table 4.11: Effect of the substrate geometry on the transfer hydrogenation of enones 

N
H

CO2EtEtO2C
H H

90a
(1.2 equiv)

Bu2O, 60 °C, 48 h

+

O
O

P
O

O
O

O

NH3

i-Pr

i-Pr

i-Pr

R =
R

R

Yield [%]a eraEntry Enone Product

3 trans/cis = 14:1 65 84:16

O

n-Pent

O

n-Pent

2 trans/cis = 1:44 36 75:25

*
113c

(c = 0.3 M)
114c

(S)-114c
(R)-114c

a Determined by chiral GC.

139a (R)-126a (5 mol%)
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4.3.4.3 Extension to More Complex Substrates 

We then intended to apply the developed catalytic conjugate reduction to isophorone (105a), a 

challenging test case given both , -disubstitution and the geminal methyl groups at the '-

position (i.e. at carbon C-5), and to Hagemann’s ester (196, Table 4.12). 

Although isophorone is a quite difficult substrate, it could be reduced to saturated ketone 106a

under our reaction conditions with high enantioselectivity, although with 5 mol% catalyst 

loading the product was generated in only 42% yield (entry 1). We were pleased to find that 

the conjugate reduction also worked to some extent even with Hagemann’s ester (196), 

leading to the formation of cyclohexanecarboxylic acid derivative 197 with moderate yield 

and enantioselectivity (entry 2). 

Table 4.12: Extension of the substrate scope of the catalytic transfer hydrogenation  

N
H

CO2EtEtO2C
H H

90a
(1.2 equiv)

Bu2O, 60 °C, 48 h

+

(c = 0.3 M)

O
O

P
O

O
O

O

NH3

i-Pr

i-Pr

i-Pr

R =
R

R
R1

R2

O

R3

R1

R2

O

R3

Yield [%] eraEntry Enone Product

1 42 94:6

2 36 diast. 1: 75:25
diast. 2: 72:28

105a 106a

a Determined by chiral GC. (diast. = diastereoisomer).

O O

O

OEtO

O

OEtO

**

196 197
dr = 1:1

139a (R)-126a (5 mol%)
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4.3.4.4 Effect of an -Substituent  

After establishing that the developed catalytic process worked well with -alkyl-substituted 

cyclic enones, we wished to determine if it could be applied to the conjugate reduction of 

cyclic enone 198; a particularly challenging substrate due to increased steric demand at the -

position (Scheme 4.45). The result of this experiment showed that the introduction of a 

substituent at the -position prevented the transfer hydrogenation from occurring, probably 

because the subtrate activation with catalyst [139a (R)-126a] was hindered and thus the 

iminium ion formation could not take place. 

Scheme 4.45: Effect of an -substituent on the efficiency of the transfer hydrogenation. 

4.3.5 Scale-Up of the Transfer Hydrogenation

For the exploration of the reaction scope, the catalyses were done on a 10-40 milligram scale. 

After observing that the transfer hydrogenation was really effective on such a relatively small 

scale, we became interested in a scale up of the reaction. For this purpose we used 

commercially available 3-methylcyclohexenone 107b as the substrate. Due to the high 

molecular weight of the phosphonate counteranion (126a-), a further reduction in catalyst 

loading seemed desirable (see Table 4.13). It has to be specified that between the 

development of the catalytic conjugate reduction reported in Chapter 4.3.4 (see Tables 4.10-

4.12) and this scale-up process, the method employed to purify the BINOL-derived 

phosphates 126 was improved by M. Klußmann and S. Marcus and our laboratory was then 

able to generate (R)-TRIP with higher purity and activity than the one previously used.



4 Results and Discussions 

 - 98 -  

Table 4.13: Reduction of the catalyst loading  

N
H

CO2EtEtO2C
H H

90a
(1.2 equiv)

Bu2O, 60 °C, 48 h

107b
(c = 0.3 M)

O

+

Entry conv. [%]a era

O

O

NH3

(S)-95b

O

(R)-TRIP-

1

2

3

4

> 99

95

95

93

97:3

97:3

97:3

96:4

a Determined by chiral GC.

Catalyst loading [mol%]
Amino ester (139a) (R)-TRIP ((R)-126a)

5.0 5.0

3.0

2.0

1.0

3.0

2.0

1.0

5

6

7

8

9

5.0

5.0

5.0

5.0

5.0

4.0

3.0

2.0

1.0

0.1

99

99

98

93

94

97:3

97:3

97:3

97:3

97:3

139a (R)-126a

By decreasing the catalyst loading to 3 mol%, a slight drop in reactivity and enantioselectivity 

was observed (entry 1 vs. entry 2). This effect was amplified by further diminishing the 

amount of TRIP (entries 3-4). However, by keeping the concentration of the L-valine  

derivative 139a at 5 mol%, the TRIP loading could be reduced to 2 mol% without loss of 

conversion or enantioselectivity (entries 5-7) and even to 0.1 mol% with just an insignificant 

decrease in the catalyst efficiency.  

Once the problem of the high (R)-TRIP loading was solved, we met a new difficulty: the 

product isolation from dibutyl ether was difficult to achieve via distillation. This problem was 

overcome by using diethyl ether as the solvent, which could be separated from our product by 

very careful rotary evaporation under slightly reduced pressure at room temperature. As it was 

observed in the previous experiments (see solvent optimization, Chapter 4.3.3.2, Table 4.8) a 

lower reactivity was observed in the presence of diethyl ether.

After rescreening different (R)-TRIP loadings (from 0.1 to 2.0 mol%) and substrate 

concentrations using diethyl ether as solvent, we identified the following protocol as optimal: 

Treating the 3-methylcyclohexenone (107b, 0.2 molar) with commercially available Hantzsch 

ester 90a (1.1 equivalents) in the presence of valine derivative 139a (5 mol%) and TRIP ((R)-
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126a, 2 mol%) at 40 °C in diethyl ether for 48 hours gave the saturated ketones 95b (5.3 g) in 

high yield and enantioselectivity (Scheme 4.46). 

Scheme 4.46: Scale-up of the transfer hydrogenation of 3-methylcyclohexene. (a Determined by chiral GC 
before purification by column chromatography. b Volatile compound; loss of product during the evaporation of 
solvent and eluents. c Determined by GC). 

4.3.6 Mechanistic Considerations  

Mechanistically, we assume the reaction to proceed via a hydrogen bond assisted iminium 

phosphate ion pair. In addition to binding the iminium ion, the phosphate counteranion may 

also interact with the Hantzsch ester via an additional hydrogen bond (Scheme 4.47). 

N
R' H

H

PO
O

O
O

*

N
R

R H
H

H

H-bond
plausible

*

Scheme 4.47: Hypothetical transition state for the transfer hydrogenation of enone 107b.

To test these assumptions and gain more insight into the mechanism of the reaction in solution 

we followed the progress of the reaction using Electrospray-Ionization Mass Spectroscopy 

(ESI-MS). For this purpose we carried out the transfer hydrogenation of enone 107b (about 70 

milligrams) under the reaction conditions used for the scaled up reaction (5 mol% of amino 

ester 139a, 2 mol% of (R)-TRIP with 1.1 equivalents of dihydropyridine 90a in diethyl ether 
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at 40 °C, see Chapter 4.3.5). Samples were taken from the reaction mixture at different time 

intervals over 24 hours and submitted to ESI-MS analysis.  

Spectra obtained after one minute and eight hours are shown in the following schemes 

(Schemes 4.48-4.49). It has to be noted that the reaction mixture was not homogeneous as 

Hantzsch ester is only partially soluble in diethyl ether. For the ESI-MS measurements we 

only took an aliquot from homogeneous solution (obtained after stopping the stirring for a few 

seconds). For this reason, the peaks corresponding to the dihydropyridine 90a have a low 

intensity since only a small amount of it was dissolved in the solvent and thus measured. 

Moreover because of the low mass of the substrate 107b and its corresponding saturated 

ketone (95b), these compounds could not be detected using ESI-MS, as the utilized 

spectrometer could only detect molecules with molecular weight higher than 200-300 g/mol. 

For this reason no peaks corresponding to 3-methylcyclohexenone (107b) and 3-

methylcycloxanone (107b) (exact mass (EM) = 110 g/mol and 107 g/mol, respectively) are 

present in the spectra. 

Scheme 4.48: Spectrum corresponding to the ESI-MS measurement done after a reaction time of one minute. 
(MW: molecular weight. EM: exact mass). 
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In the ESI-MS spectrum after one minute (Scheme 4.48) we can clearly identify peaks at m/z

= 266 and 288 ([M+H]+ and [M+Na]+, respectively) corresponding to the imine 200 formed 

by the condensation of the excess of valine derivative 139a and enone 107b (EM = 265 

g/mol). We also observed the presence of the catalytic salt ([139a (R)-126a], EM = 925 

g/mol) at m/z = 926 ([M+H]+) and more interestingly of the iminium phosphate ion pair D1

(EM = 1018 g/mol) at m/z = 1019 and 1041 ([M+H]+ and [M+Na]+, respectively). Our 

hypothesis that phosphate counteranion (R)-126a may also interact with the Hantzsch ester 

90a via an additional hydrogen bond (I, EM = 1005 g/mol) was supported by the presence of 

a peak at m/z = 1028 ([M+Na]+), although a peak corresponding to [D1 90a] (EW = 1271 

g/mol) was not detected. 

Scheme 4.49: Spectrum corresponding to the ESI-MS measurement done after a reaction time of eight hours. 
(MW: molecular weight. EM: exact mass).
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Over time (after eight hours, Scheme 4.49) peaks appeared at m/z = 268 and 290 ([M+H]+ and 

[M+Na]+, respectively) showing that saturated ketone 95b was formed and reacted with 

amino ester 139a to form the saturated imine 2001 (EM = 267 g/mol). We also observed the 

presence of the iminium phosphate ion pair formed between the catalytic salt and the product 

(E1, EM = 1020 g/mol) at m/z = 1021 and 1043 ([M+H]+ and [M+Na]+, respectively). During 

the course of the reaction, the intensity of the peaks corresponding to the saturated iminium 

phosphate ion pair E1 (m/z = 1021 ([M+H]+)) became higher than the intensity of the 

unsaturated iminium phosphate ion pair D1 (m/z = 1019 ([M+H]+), Scheme 4.49 vs. Scheme 

4.48), indicating the progress of the reaction. A peak at m/z = 1005 ([M+H]+) although 

appeared with the time, which would indicate the presence of pyridinium phosphate ion pair I 

(E = 1004 g/mol). 

Consistent with our starting hypothesis (see Chapter 3.1) that the conjugate reduction of 

enone would proceed as in the conjugate reduction of enals120b via iminium catalysis seemed 

to be confirmed. A more precise catalytic cycle than the one given in Scheme 3.4 can thus be 

depicted (Scheme 4.50). 

In this mechanism, ammonium phosphate ion [139a (R)-126a] reversibly condenses with 

enone 107b to form iminium phosphate ion pair D1. This intermediate would be stabilized by 

hydrogen bonding interactions. Through this iminium ion formation (D1), the LUMO energy 

of the substrate would decrease, allowing the conjugate hydride transfer from dihydropyridine 

90a to take place (from the Re-face of the iminium ion). This step generates the pyridine 93a

along with the saturated iminium phosphate ion pair E1. Hydrolysis then releases the saturated 

ketone (S)-95b and regenerates the catalyst for further turnover.

It is important to note that this catalysis with a primary amine salt is a special case of iminium 

catalysis that is actually a combination of iminium and Brønsted catalysis.  
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Scheme 4.50: Proposed mechanism for the transfer hydrogenation of enone 107b with catalytic system [139a
(R)-126a].  

The results obtained from these ESI-MS analyses are consistent with our assumption that the 

reaction proceeds via a hydrogen bond assisted iminium phosphate ion pair. Moreover the 

interactions of the counteranion with the Hantzsch ester via an additional hydrogen bond are 

plausible.  

According to these observations we tried to establish a working model transition state (H1',

Scheme 4.51) taking into account the hydrogen bonding interactions between the 

counteranion and the iminium ion, and between the counteranion and the dihydropyridine. 
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Scheme 4.51: Working model transition state for the transfer hydrogenation of enone 107b.
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To determine the structure of the transition state and the involved hydrogen bonding 

interactions with more accuracy, further mechanistic investigations and computational 

calculations would be required. 

4.3.7 Conclusion and Discussion

We successfully developed a very efficient ammonium salt made of a chiral primary amine 

(139a) and a chiral phosphoric acid ((R)-126a) for the asymmetric transfer hydrogenation of 

enones. While the effect of the amino ester -substituent on the enantioselectivity was not 

very pronounced, the catalysts incorporating the tert-butyl ester group had much higher 

efficiency compared to their methyl ester analogs. Accordingly, the valine tert-butyl ester 

139a was the amine of choice. Encouraged by previous studies on asymmetric counteranion-

directed catalysis undertaken in our laboratory,120c we then investigated chiral BINOL-derived 

phosphates as counteranion. Among them (R)-TRIP ((R)-126a) counteranion gave the highest 

enantioselectivities. Interestingly, using the opposite enantiomer of the chiral phosphoric acid 

(i.e. using (S)-126a), the saturated ketone was generated in racemic form (see Chapter 3.2.2, 

Table 4.3), illustrating a strong case of a matched/mismatched ion pair combination. 

Accordingly, the catalytic system made of L-valine tert-butyl ester 139a and BINOL-derived 

phosphate (R)-TRIP- ((R)-126a-) was the most efficient and thus the favored one to catalyze 

the transfer hydrogenation of , -unsaturated ketones 107 and 113.

Using this catalytic salt we further optimized the reaction conditions (solvent, temperature, 

Hantzsch ester structure, catalyst loading and substrate concentration), leading to the 

development of a highly efficient and enantioselective transfer hydrogenation of enones via

iminium catalysis at 5 mol% catalyst loading. The catalysis worked well not only with a range 

of -substituted , -unsaturated cyclic ketones 107 but also with some , -disubstituted 

acyclic enones 113, although the acyclic saturated ketones 114 were formed with slightly 

lower enantioselectivities. Even acyclic enone 113c bearing a long aliphatic chain could be 

activated toward the reaction. However, because this catalytic process is not stereoconvergent 

and only (E)- or (Z)-enriched enone 113c could be employed only moderate 

enantioselectivities were obtained. It would be interesting to examine, in future work, if 

stereoconvergence can be achieved by adding a catalytic amount of phosphine derivative (for 

example triphenylphosphine). We expect that the use of a phosphine derivative would create a 
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rapid equilibrium between (E)-113 and (Z)-113 via a conjugate addition/elimination pathway 

and if under our catalytic conditions one of the isomers reacts faster than the other, the 

corresponding saturated ketone would be preferentially formed and it would be possible to 

reach high enantiomeric ratios.  

The catalytic transfer hydrogenation could be successfully scaled up to a multi-gram scale 

reaction (with a factor of about 700), without loss of reactivity or enantioselectivity, even by 

reducing the (R)-TRIP ((R)-126a) concentration to 2 mol%. 

Mechanistically, we believe that the reaction proceeds via a special form of iminium catalysis 

(i.e. iminium and Brønsted acid catalysis), where an iminium phosphate ion pair is stabilized 

by hydrogen bonding interactions between the phosphate counteranion, the iminium ion and 

the Hantzsch ester. These assumptions were supported by monitoring the reaction with ESI-

MS. Keeping in mind that hydride attack has to occur from the Re-face of the iminium ion to 

form the product with an (S)-configuration, led us to develop transition state H1' (Scheme 

4.51) as a working model.  

At this stage it is worth to note that after the acceptance of our manuscript describing these 

results, a related report appeared, in which catalyst [202 TCA] (20 mol%) had been 

successfully used for the transfer hydrogenation of cyclic ketones 107 (Scheme 4.52).236

MacMillan et al. disclosed an alternative approach for the conjugate reduction of cyclic 

enones via iminium catalysis in the presence of chiral secondary amine 202 (MacMillan

imidazolidinone) as a trichloroacetate salt to catalyze the reaction with the commercially 

available Hantzsch ester 90c as the hydrogen source. The reaction proceeded in diethyl ether 

at 0 °C, leading to the formation of the saturated ketones ((R)-95) in moderate to high yields 

and with good to excellent enantioselectivities after only a few hours. Attractive features of 

this process were the use of a small and readily available catalyst  since free amine 202 is 

commercially available  as well as short reaction times, affording full conversion of the 

starting material after less than 10-15 h in most of the cases, even at 0 °C. However, high 

catalyst loading had to be used to achieve such reactivity (20 mol% against 5 mol% with our 

process) and even running the reaction at low temperature (0 °C) lower enantioselectivities 

than the ones obtained with our catalytic system were reached. Beside being more 

enantioselective, our methodology was not limited to the transfer hydrogenation of cyclic 

substrates as it was the case with MacMillan’s variant. Moreover since (R)-TRIP ((R)-126a) is 

now commercially available, our catalytic system can also be readily obtained.
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Scheme 4.52: Alternative approach for the transfer hydrogenation of enones 107 via iminium catalysis. 
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4.4 Enantioselective Transfer Hydrogenation of , -Disubstituted
Nitroalkenes

The objective of the following investigations was to develop an organocatalytic process for 

the synthesis of enantiomerically pure , -disubstituted nitroalkanes. To reach this target we 

focused our work on the development of a highly enantioselective catalytic transfer 

hydrogenation of , -disubstituted nitroalkenes (Scheme 4.53). For this purpose an 

appropriate catalyst, which would allow efficient substrate activation with high level of 

stereocontrol and selective -facial discrimination to control the enantioselectivity of the 

reaction had to be developed.237

Scheme 4.53: Planned Hantzsch ester-mediated organocatalytic asymmetric transfer hydrogenation of 
nitroalkenes 120.

4.4.1 Synthesis of the Nitroolefins and Racemic Products 

4.4.1.1 Synthesis of the Nitroolefins via Nitration 

, -Disubstituted nitroalkenes 120a-n 238 , which were not commercially available, were 

synthesized from the corresponding alkenes 203 according to the procedure reported by Ohta

et al. (Scheme 4.54).239 The alkenes 203 that were not commercially available were prepared 

by Wittig olefination as described in Scheme 4.54.241 After deprotonation of 

methyltriphenylphosphinium bromide with n-butyl lithium in diethyl ether at 0 °C, ketone 204

was added to the reaction mixture, which was then stirred overnight at reflux, affording the 

desired compounds 203 in moderate yields (46-74%). 

Alkenes 203 were then slowly added to a solution of acetic anhydride and nitric acid at low 

temperature. After work-up, the corresponding crude nitro acetate was obtained and used in 

the next step without further purification. The elimination of acetic acid occurred in basic 
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media (using triethylamine or aqueous solution of sodium bicarbonate, depending on the 

substrate). After an acidic work-up and column chromatography , -disubstituted nitroalkenes 

120a-m were isolated (4-37% yield). The low yields of this reaction were due to the 

formation of initial ketone 204 via a retro-Henry reaction as well as the generation of the 

isomer 205 as by-product. Moreover, it is worth to specify that the full separation of isomers 

120 and 205 by column chromatography was difficult to achieve. For this purpose, several 

separation processes were required for each nitroolefin 120, running the column 

chromatographies very slowly using solvents with very low polarity. Under these conditions

pure products could be isolated but with low yields. 

R R'

O n-BuLi,
P
Me

Ph Ph
Ph

Br

Et2O, 0 °C - reflux
15-20 h
46-74%

R R' R R'

1) Ac2O, HNO3,
-10 to 0 °C, 3-4 h

2) Et3N or NaHCO3 (aq.)
CHCl3, rt, 15-20 h

4-37%

NO2

R R'

NO2
+

203a: R = C6H5, R' = Me; (c.a.)
203b: R = C6H5, R' = i-Pr; 74%
203c: R = C6H5, R' = Et; 74%
203d: R = C6H5, R' = n-Pr; 71%
203e: R = 2-naphthyl, R' = Me; 61%
203f: R = p-Me-C6H5, R' = Me; (c.a.)
203g: R = p-CN-C6H5, R' = Me; 51%
203h: R = p-F-C6H5, R' = Me; (c.a.)
203i: R = p-Cl-C6H5, R' = Me; (c.a.)
203j: R = m-Cl-C6H5, R' = Me; 46%
203k: R = o-Cl-C6H5, R' = Me; 65%
203l: R = t-Bu, R' = Me; (c. a.)
203m: R = Et, R' = Me; (c. a.)

204 203 120a 205

120a: R = C6H5, R' = Me; 37%
120b: R = C6H5, R' = i-Pr; 13%b

120c: R = C6H5, R' = Et; 18%
120d: R = C6H5, R' = n-Pr; 17%
120e: R = 2-naphthyl, R' = Me; 14%
120f: R = p-Me-C6H5, R' = Me; 22%
120g: R = p-CN-C6H5, R' = Me; 19%
120h: R = p-F-C6H5, R' = Me; 23%
120i: R = p-Cl-C6H5, R' = Me; 8%
120j: R = m-Cl-C6H5, R' = Me; 6%
120k: R = o-Cl-C6H5, R' = Me; 4%
120l: R = t-Bu, R' = Me; 28%
120m: R = Et, R' = Me; 15%c

Scheme 4.54: General procedure for the preparation of nitroolefin 120a-n. (c.a.: commercially available. a (E)-
Isomer (E/Z > 98:2). b (Z)-Isomer. c Sum of the (E)- and (Z)-enriched isomers). 

4.4.1.2 Investigations to Optimize the Nitroolefin Preparation 

Because of the low nitroolefin yields obtained after the two-step-process described above (see 

Scheme 4.54), it was of interest to optimize our substrate synthesis. To reach this objective we 

oriented our investigations on the development of a one-step-procedure starting from ketones 

204 and treating it with nitromethane in the presence of an appropriate base (Scheme 4.55). 



4 Results and Discussions 

 - 109 -  

Scheme 4.55: Considered strategy to improve the synthesis of nitroolefins 120a-n.

We tested different bases for the preparation of (E)-2-phenyl-1-nitro-1-butene 120c (Table 

4.14). We first used N,N-dimethyl (or diethyl)-aminoethylamine in the presence, or absence, 

of TFA in neat nitromethane or using benzene as a solvent (entries 1-3). As the reactions were 

very slow at low temperature, we then heated them up. However, under these conditions the 

desired product was not formed. Most of the starting material was recovered, along with some 

of the isomer 205c (entries 1-2). The use of a Dean-Stark apparatus following Barco et al.’s

procedure240 did not improve the reaction conversion (entry 4 vs. entry 3). With butylamine, 

the desired product was observed but as a mixture of (E)- and (Z)-isomers, along with (E)-

and (Z)-205c. Unreacted starting material remained as the main component (entry 5). 

According to the methodology reported by Bandgar et al., 241 we run the reaction in presence 

of gel-entrapped base catalyst (GEBC, 20% agar-agar aqua gel), which led to the full recovery 

of the starting material (entry 6). 

Through these experiments we could not improve the preparation of nitroolefin 120c.

However in the presence of butylamine the desired product could be synthesized to some 

extent as a (E)- and (Z) mixture. We then tried to apply these conditions to another ketone, 1-

(furan-2-yl)ethanone 204n, to see if its corresponding nitroolefin 120n could be prepared in 

this way (Table 4.15) 

We first tried N,N-diethylaminoethylamine in benzene. Once again no reaction was observed 

(entry 1). With butylamine no reaction occurred either in ethanol or in neat nitromethane 

(entries 2-3). However, by running the synthesis in toluene, we obtained the desired 

nitroolefin 120n as well as its isomer 205n with low conversion (entry 4). 
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Table 4.14: Attempted one-pot preparation of nitroolefin 120c (s. m.: starting material)  

204c

Entry

1

2

5

0 °C - reflux

0 °C - reflux

0 °C - reflux

a Dean-Stark apparatus was used. b GEBC: Gel Entrapped Base Catalyst (20% agar-agar aqua gel
containing 10% KOH).

Me2N(CH2)2NH2 + TFA

Me2N(CH2)2NH2 + TFA benzene

6 GEBCb 0 °C - reflux

O NO2

120c

NO2MeNO2 (5.0 equiv)
base (1.0 equiv)

solvent
+

Base Solvent Temperature Main product(s)

MeNO2

205c

205c + s. m.

n-BuNH2 MeNO2
120c (E/Z) +
205c (E/Z) +

s. m.
MeCN s. m.

205c + s. m.

4 Et2N(CH2)2NH2 benzene refluxa s. m.

3 Et2N(CH2)2NH2 benzene reflux s. m.

Table 4.15: Attempted one-pot preparation of nitroolefin 120n (s. m.: starting material)242

204n

Entry

1a

2

4

120n

NO2

MeNO2 (4.0 equiv)
base (0.4 equiv)

Dean-Stark

solvent, reflux
+

Base Solvent Main product(s)

205n

n-BuNH2 EtOH

s. m. + 120n + 205n

s. m.

3

Et2N(CH2)2NH2 benzene s. m.

O
O

O
NO2

O

n-BuNH2 MeNO2 s. m.
n-BuNH2 toluene

a 100 equivalents of base were used.

After optimization of the reaction conditions (E)-2-(furan-2-yl)-1-nitro-1-propene (120n) was 

generated in 12% yield from its corresponding ketone in the presence of nitromethane and 

butylamine (Scheme 4.56).  

Scheme 4.56: One-step synthesis of nitroolefin 120n.
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This investigation did not lead to a significant improvement of the preparation of nitroolefins 

120. Nevertheless, at this point, we decided to stop these experiments and to focus our work 

on the development of an organocatalytic method for the transfer hydrogenation of the 

prepared , -disubstituted nitroalkenes 120a-n.

4.4.1.3 Synthesis of the Racemic Nitroalkanes 

Racemic products 116 were required to develop the GC conditions for the separation of both 

enantiomers in order to be able to determine the enantiomeric ratios of the chiral nitroalkanes 

prepared via organocatalytic transfer hydrogenation of nitroalkenes 120.

For this purpose we first used sodium borohydride as the hydrogen source in ethanol for the 

non-asymmetric conjugate reduction of nitroolefins 120. The racemates 116 were obtained in 

35-75% yield after running the reaction for a few hours at 0 °C and then at room temperature 

(Scheme 4.57).  

R R'

NO2

120

R R'

NO2

116

NaBH4

EtOH, 0 °C - rt, 3-4 h
35-75%

120a: R = C6H5, R' = Me
120b: R = C6H5, R' = i-Pr
120c: R = C6H5, R' = Et
120d: R = C6H5, R' = n-Pr
120e: R = 2-naphthyl, R' = Me
120f: R = p-Me-C6H5, R' = Me
120g: R = p-CN-C6H5, R' = Me
120h: R = p-F-C6H5, R' = Me
120i: R = p-Cl-C6H5, R' = Me
120j: R = m-Cl-C6H5, R' = Me
120k: R = o-Cl-C6H5, R' = Me
120l: R = t-Bu, R' = Me
120m: R = Et, R' = Me
120n: R = 2-furyl, R' = Me

116a: R = C6H5, R' = Me; 57%
116b: R = C6H5, R' = i-Pr; 45%
116c: R = C6H5, R' = Et; 58%
116d: R = C6H5, R' = n-Pr; 56%
116e: R = 2-naphthyl, R' = Me; 71%
116f: R = p-Me-C6H5, R' = Me; 75%
116g: R = p-CN-C6H5, R' = Me; 47%
116h: R = p-F-C6H5, R' = Me; 75%
116i: R = p-Cl-C6H5, R' = Me; 42%
116j: R = m-Cl-C6H5, R' = Me; 54%
116k: R = o-Cl-C6H5, R' = Me; 69%
116l: R = t-Bu, R' = Me; 35%*
116m: R = Et, R' = Me; 42%*
116n: R = 2-furyl, R' = Me; 66%

Scheme 4.57: Procedure for the preparation of the racemic nitroalkanes 116a-n. (*NMR yield; because of the 
high volatility of the compound, the crude product was not isolated). 

It is worth to comment, that after we successfully developed an organocatalytic 

enantioselective transfer hydrogenation of nitroalkenes 120a-n using thiourea catalysts (see 

Chapter 4.4.4, Scheme 4.25), we found a more efficient way to prepare the racemic products 

116 with yields higher than 90% using Hantzsch ester 90a as the hydrogen source and stirring 

the reaction mixtures in toluene for two days in the presence of Schreiner catalyst 49b
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(20 mol%), as shown in Scheme 4.58 for the synthesis of racemic 2-phenyl-1-nitro-1-propane 

(116a).243

Scheme 4.58: Improved procedure for the preparation of racemic nitroalkanes 116a-n.

4.4.2 Identification of the Catalyst’s Core Structural Motif 

Our first objective in the development of an efficient catalytic transfer hydrogenation of , -

disubstituted nitroalkenes 120 was to find an appropriate organocatalyst. 

Because acetic acid is a known catalyst for Hantzsch ester-mediated conjugate reductions of 

nitroolefins,199c and because chiral urea derivatives had been used to activate nitroolefins for 

conjugate additions102 (see Chapter 3.2), we reasoned that chiral Brønsted acids and 

hydrogen-bonding catalysts would be particularly promising for the development of an 

organocatalytic transfer hydrogenation of nitroolefins in the presence of dihydropyridine. As a 

model reaction, we investigated the transfer hydrogenation of (E)-1-nitro-2-phenyl-1-propene 

(120a) to 2-phenyl-1-nitro-1-propane (116a) using commercially available Hantzsch ester 

90a.

4.4.2.1 Evaluation of the Catalyst Motif 

We started our catalyst screening using different acid types (Lewis or Brønsted acids) with a 

relatively high catalyst loading (20 mol%). The reactions were run in toluene (120a: 0.1 

molar) at room temperature for 48 hours in the presence of dihydropyridine 90a (1.4 

equivalents, Table 4.16).
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Table 4.16:  Evaluation of various acids as catalysts for the transfer hydrogenation of nitroolefin 120a 

Entry conv. [%]a eraCatalyst

3

4

6

7

8

35

85

11
-

43:57

71:29

50:50
-

120a
(c = 0.1 M)

N
H

CO2EtEtO2C
H H

90a
(1.4 equiv)

toluene, rt, 48 h

+

(S)-157b

(S)-183
67a

(S)-126i

206

R
COOH

2
85 45:55(S)-126a

5
9 48:52(S)-182

a Determined by chiral GC.

(S)-126a: R = 2,4,6-(i-Pr)3-C6H3
(S)-126i: R = Si(Ph)3

R'

R'

(S)-157b: R = CO2H,
(S)-163b: R' = 3,5-(CF3)2-C6H4
(S)-182: R = CO2i-Pr,
(S)-192: R' = 3,5-(CF3)2-C6H4
(S)-183: R = Ph, R' = H 2:

N
H N

N
H

S

CF3

F3C

67a

N
N
H

N
H

S

O N

HO

OPiv

50d

N

N

HO
Ph

Br

H

9 10 95:550d

NO2
catalyst

(20 mol%)

NO2

116a

- -206

O
O

R'

R'

P
O

OH

1 - --

First the background reaction of the catalysis was tested in the absence of a catalyst. Under 

the reaction conditions no reaction took place (entry 1). The same result was obtained in the 

presence of N-benzylcinchonidinium salt 206 (entry 2). We then screened strong Brønsted 

acid catalysts, like (S)-BINOL-derived phosphoric acids ((S)-126a and (S)-126i) or 

dicarboxylic acids ((S)-157b, 182 and 183, entries 3-7). Phosphoric acids (S)-TRIP ((S)-126a)

and (S)-126i) could activate the substrate but afforded the product (R)-116a with very low 
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enantioselectivity (entries 3 and 4). Using dicarboxylic acid (S)-157b a high conversion (85%) 

as well as a promising enantiomeric ratio was reached (71:29, entry 5). Encouraged by this 

result we tested some binaphthyl dicarboxylic acid derivatives like (S)-2'-

(isopropoxycarbonyl)-1,1'-binaphthyl-2-carboxylic acid ((S)-182) and 2'-phenyl-1,1'-

binaphthyl-2-carboxylic acid ((S)-183), leading to a dramatic loss of reactivity and 

enantioselectivity (entries 6 and 7). As Takemoto et al.102 had reported the activation of 

nitroolefins using bifunctional catalyst 67a, we investigated the activity of this thiourea 

catalyst in our process (entry 8). Under our reaction conditions no conversion was observed. 

On the other hand, using Jacobsen thiourea catalyst 50d the desired product ((S)-116a) was 

formed with low yield but excellent enantioselectivity (95:5, entry 9). According to these 

experiments two catalyst motifs seemed to be promising for the studied transfer 

hydrogenation: binaphthyl dicarboxylic acid ((S)-157b) and thiourea 50d.

As a very high enantiomeric ratio was obtained using the thiourea 50d, we decided to focus 

our work on the development of thiourea catalysts, which would be more active than 50d

while maintaining high enantioselectivity.

4.4.2.2 Effect of the Temperature on the Catalysis 

Jacobsen and Takemoto thiourea catalysts (67a and 50d, respectively) had a low (or no) 

activity. As suspected, an increase of the reaction temperature from room temperature to      

40 °C led to an acceleration of the reaction (Table 4.17, entry 1 vs. 2 and entry 3 vs. 4), to 

reach very high conversions (higher than 80%) in the presence of catalyst 50d (entry 2). At 40 

°C a high enantiomeric ratio was obtained, even if it was slightly lower than the one reached 

at room temperature. On the contrary, Takemoto catalyst 67a was not suitable to activate our 

substrate even at 40 °C, at which temperature nitroalkane 116a was generated in very poor 

yield and enantioselectivity (entry 4). 
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Table 4.17:  Evaluation of the temperature effect on the transfer hydrogenation of nitroolefin 120a 

Entry conv. [%]a eraCatalyst

1

2 85 93:7

120a
(c = 0.1 M)

N
H

CO2EtEtO2C
H H

90a
(1.4 equiv)

toluene, 48 h

+

50d

4

10 95:550d

a Determined by chiral GC.

NO2
catalyst

(20 mol%)

NO2

(S)-116a

6 48:5267a
3 - -67a

Temperature [°C]

rt

40

rt

40

4.4.2.3 Screening of (Bis)thiourea Catalysts 

Inspired by the high activity of Jacobsen thiourea catalyst 50d, we synthesized several 

thiourea compounds with different motifs (see Chapter 4.2) and then tested their reactivity 

and enantioselectivity in the transfer hydrogenation of 120a (Table 4.18). It has to be noted 

that most of the reactions presented in Table 4.18 were performed at room temperature prior 

to the investigation of the temperature effect reported in Table 4.17. As at that stage we were 

just interested in determining whether the tested hydrogen bonding thioureas were able to 

activate nitroolefin 120a (at least to some extent) and since our research was mostly focused 

on the catalyst enantioselectivity, it was not necessary to rerun these reactions at higher 

temperatures.   

Efficiency of L-tert-leucine-derived bifunctional catalysts 164a-b was first evaluated (entries 

3-4). In the cases of thiourea compound bearing an amide or an acid functionality the product 

could be generated to some extent and with moderate enantioselectivity (entries 3 and 4). 

While the use of bifunctional compound 162 allowed the reaction to reach higher conversion, 

this catalyst was less enantioselective than its L-tert-leucine-derived analogs 164 (entry 5 vs. 

entries 3 and 4). BINAM-derived catalyst 76 was not suitable for our reaction in terms of 

reactivity or enantioselectivity (entry 6). We then prepared N-Boc-L-tert-leucine-derived 

ureas 165 and 168, assuming that intermolecular hydrogen bonding interactions between the 

hydrogen of the N-Boc-protected amine and the oxygen of the urea moiety could occur, which 

would fix the conformation of the catalyst. As the activity of these catalysts was tested at 

40 °C, their high conversion can not directly be compared with the activity of the catalysts 
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Table 4.18:  Screening of thiourea catalysts for the transfer hydrogenation of nitroolefin 120a 

Entry conv. [%]a eraCatalyst

1

2 85 93:7

120a
(c = 0.1 M)

N
H

CO2EtEtO2C
H H

90a
(1.4 equiv)

toluene, 48 h

+

50d

4

10 95:550d

a Determined by chiral GC.

NO2
catalyst

(20 mol%)

NO2

(S)-116a

9 78:22164b

3 50 81:19164a

Temperature [°C]

40

rt

rt

40

N
N
H

N
H

S

O N

HO

OPiv
50d

R
N
H

N
H

S

O

CF3

F3C

164a: R = NMe2
164b: R = OH

N
H

S

N
H OH

CF3

F3C

162

N
H
NMe2

N
H

S

F3C

CF3

76

N
H

N
H

R
OBocHN

165: R =

168: R =

CF3

CF3

N

NH

NH

NH

NH
S

S
N

N

NH

NH

S NH

NHS

F3C CF3

CF3F3C
180 63

N
H
H
N

178

H
N

N
H

S

S

F3C

CF3

CF3

F3C

5

6 9 51:4976

8

31 39:61162

77 33:67168
7 67 45:55165 40

40

rt

rt

9

10 55 40:6063

- -180

11 45 71:29178 rt

40

rt
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tested in the transfer hydrogenation of 120a at room temperature. However, it is possible to 

comment on the enantiomeric ratio of the generated nitroalkane (R)-116a, which was low 

employing catalyst 165 but could be increased with catalyst 168, in which the 

trifluoromethylphenyl substituent was replaced by a pyrrolyl derivative (entries 7 and 8). At 

this point we intended to develop more active catalysts and reasoned that bisthioureas would 

be more efficient than monothioureas in the activation of the nitroolefin 120a, since the 

hydrogen bond concentration would be higher. 

Catalyst 180 proved to be ineffective for the reaction, as it could not activate the substrate 

(entry 9). We explained this result in part by the fact that 180 did not have a sufficiently rigid 

enough structure to fix the two thiourea moieties close to each other to allow an increase of 

the concentration of the hydrogen bond interaction at only one place (i.e. the four hydrogen 

atoms of the bisthiourea catalyst activate the same nitroolefin molecule through hydrogen 

bonding interactions with the nitro functionality). Bisthioureas 63 and 178 have a more 

conformationally fixed structure, with both thiourea moieties oriented in such a way, that they 

can activate the same substrate molecule simultaneously, increasing the hydrogen bonding 

concentration and the strength of the interaction. This would allow for a stronger activation of 

the nitroolefin 120a. Indeed, higher conversions (at room temperature) were reached using 

these two catalysts (63 and 178, entries 10 and 11). However, their enantioselectivity 

remained much lower than the one obtained using Jacobsen catalyst 50d. We thus decided to 

pursue the development of the asymmetric conjugate reduction of nitroolefins using 

monothiourea catalyst 50d and running the reaction at 40 °C.

4.4.3 Optimization of the Catalyst and Reaction Conditions 

4.4.3.1 Optimization of the Solvent  

We started to optimize our catalytic process by screening different solvents. It has to be noted 

that for the analysis of the general catalyst structure previously reported (see Chapter 4.4.2), 

we arbitrarily chose to run the reactions in toluene as this solvent was a commonly used one 

for thiourea-catalyzed reactions (see Chapter 2.1.3.2). For the following investigation of the 

solvents we performed the conjugate reductions of nitroalkene 120a (0.1 molar) at 40 °C in 
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the presence of Hantzsch ester 90a (1.4 equivalents) and thiourea catalyst 50d (20 mol%) as 

shown in Table 4.19.

In apolar aromatic solvents like toluene and benzene high conversions (79% and 92%, 

respectively) and enantiomeric ratios (93:7 er) were reached (entries 1 and 2). THF was also 

an adequate solvent with regard to the reaction conversion. However, in this solvent the 

product was generated with much lower enantioselectivity (entry 3). High enantiomeric ratio 

could be obtained in diethyl ether, even though the reaction was slower (entry 4). The 

catalytic efficiency was only moderate in chlorinated solvents (entries 5 and 6). Using 

dioxane, methanol or acetonitrile poor conversions or/and enantioselectivities were reached 

(entries 7-9). Since the highest catalytic efficiency in terms of activity and selectivity was 

observed when toluene was used as solvent, it was employed for further investigations.  

Table 4.19:  Solvent effect on the transfer hydrogenation of nitroalkene 120a 

N
N
H

N
H

S

O

t-Bu

N

HO

t-Bu OPiv
50d

Entry conv. [%]a eraSolvent

1
2

5

6

7

4

3

8

9

toluene

CH2Cl2

CHCl3

dioxane

benzene

THF

MeOH

MeCN

92

34

30

10

37

79

63

92

9

93:7

83:17

66:34

61:39

89:11

93:7

65:35

50:50

58:42

a Determined by chiral GC.

120a
(c = 0.1 M)

N
H

CO2EtEtO2C
H H

90a
(1.4 equiv)

solvent, 40 °C, 4 d

+

NO2

(20 mol%)

NO2

(S)-116a

Et2O
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4.4.3.2 Hantzsch Ester Structure and Concentration 

In order to optimize our catalytic process we then explored the effect of the Hantzsch ester 

structure on the product formation (Table 4.20). Modification of the ester groups of the 

dihydropyridine did not lead to significantly different reaction conversions. On the other 

hand, by increasing the bulkiness of the ester group, the enantiomeric ratios of the product 

were improved (entries 1-5). In the presence of Hantzsch ester 90c, which bears tert-butyl

ester functionalities, optimal conversion (94%) and enantioselectivity (97:3 er) was reached 

(entry 4). The use of non-symmetrical dihydropyridine 90b induced a dramatic drop in the 

efficiency of the process (entry 6). According to these results, dihydropyridine 90c was the 

favored hydrogen source for the conjugate reduction of nitroalkene 120a. Gratifyingly, 

Hantzsch ester 90c also had the advantage of being commercially available. 

Table 4.20:  Optimization of the dihydropyridine structure for the transfer hydrogenation of nitroolefin 120a 

Entry conv. [%]a eraHantzsch ester

1

2

3

4

5

89

92

75

94

85

93:7

96:4

96:4

97:3

96:4

90d:

90e:

90c:

90g:

90a:

N
H

CO2RRO2C

R = Et

R = i-Bu

R = neo-pent

R = t-Bu

N
H

CO2t-BuMeO2C

a Determined by chiral GC.

N
N
H

N
H

S

O

t-Bu

N

HO

t-Bu OPiv
50d

120a
(c = 0.1 M)

N
H

R3 R4

CO2R2R1O2C
H H

90a
(1.4 equiv)

toluene, 40 °C, 3 d

+

NO2

(20 mol%)

NO2

(S)-116a

6 10 54:4690b:
N
H

CO2MeMeO2C
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The Hantzsch ester concentration had no effect on the efficiency of the transfer hydrogenation 

of nitroolefin 120a. For economical reasons we continued our optimization using 1.1 

equivalents of 90c.

4.4.3.3 Optimization of Jacobsen(-Type) Thiourea Catalyst 

Screening of some Jacobsen thiourea motifs  

After having defined the adequate solvent and optimal dihydropyridine structure for our 

process, we intended to improve the catalyst efficiency further by modifying its structure and 

by screening other Jacobsen(-type) thioureas (Table 4.21).

Table 4.21:  Screening of different Jacobsen thiourea motifs for the catalytic transfer hydrogenation of 
nitroolefin 120a 

Before testing the activity of different catalysts, we first examined the effect of a temperature 

increase (from 40 to 60 °C) on the efficiency of the transfer hydrogenation. As expected the 
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reactivity was slightly improved but in parallel the enantioselectivity slightly decreased as a 

result of this modification (entry 1 vs. entry 2). Thus, we decided to run further reactions at 40 

°C. We were then interested in investigating the influence of the susbtituent on the  nitrogen 

atom of the amino amide functionality of 50d. The replacement of N-methyl groups (in 50d)

by ethyl groups (in 50g) did not have any influence on the catalyst efficiency (entries 1 and 

3). On the other hand, an effect was observed by substituting the salicyl imine functionality of 

50d by a pyrrolyl group (thiourea 57a) whereby the product was obtained with a slightly 

higher enantiomeric ratio than in the presence of its analog 50d (entry 4). A significant loss of 

catalytic efficiency in terms of reactivity and selectivity was observed when using thioureas 

58e and 176, which bear an aminocyclohexyl- or a phenyl-substituent, respectively (entries 5 

and 6). According to these results, thiourea motif 57 was found to be the optimal one. Our 

objective was then to optimize the structure of this catalyst by varying the substituent on the 

amide functionality and on the pyrrolyl group. 

Optimization of Jacobsen thiourea motif 57 

We first studied the influence of the amide substituents on the catalyst efficiency (Table 4.22). 

Table 4.22:  Optimization of thiourea motif 57: effect of the amide structure on the transfer hydrogenation of 
nitroolefin 120a  

3
4

6

96

90

98.0:2.0

91.5:8.5

120a
(c = 0.1 M)

N
H

CO2t-But-BuO2C
H H

90c
(1.1 equiv)

toluene, 40 °C, 48 h

+

57f

57d

1

98.0:2.057c

5 95 94.5:5.557e

a Determined by chiral GC.

NO2 NO2

(S)-116a

95 97.5:2.557a

Entry conv. [%]a eraCatalyst R R'

2 96 98.5:1.557b

N
R N

H
N
H

S

O

R' t-Bu

N
57

(20 mol%)

97

Me Me
Et Et
Bn Bn
n-Pr n-Pr
Bn Me
Bn H

The increase of the length of the alkyl substituents (e. g. the replacement of dimethyl group by 

diethyl or dipropyl ones in 57b and 57d, respectively), led to a slight improvement of both 

reactivity and enantioselectivity (entries 2 and 4 vs. entry 1). Similar catalytic activity was 
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observed in the presence of N,N-dibenzyl-substituted thiourea 57c (entry 3). Lower 

enantioselectivities were reached using N,N-benzylmethyl- or N-benzyl derivatives 57e and 

57f, respectively (entries 5 and 6). From this screening it appeared that 57b was slightly more 

enantioselective than other thioureas. 

At this stage, it was difficult to favor one of these two catalysts (57b and 57c). We decided to 

study the effect of the pyrrolyl substituents on the catalytic activity of both compounds (Table 

4.23). This investigation clearly pointed out that reactivity and enantioselectivity of the 

catalyst decrease when the bulkiness of the substituent at the 2- and 5-positions of the pyrrolyl 

group is increased (entries 1-4 and entries 5-8). 2,5-Dimethylpyrrolyl-derived thioureas 57b

and 57c appeared to have the optimal activity. 

Table 4.23:  Optimization of thiourea motif 57: effect of the pyrrolyl structure on the transfer hydrogenation of 
nitroolefin 120a  

3
4

6

12

92

63.0:37.0

97.0:3.0

120a
(c = 0.1 M)

N
H

CO2t-But-BuO2C
H H

90c
(1.1 equiv)

toluene, 40 °C, 48 h

+

57j

57i

1

76.5:23.557h

5 97 98.0:2.057c

a Determined by chiral GC.

NO2 NO2

(S)-116a

96 98.5:1.557b

Entry conv. [%]a eraCatalyst: R R1 R2

2 87 96.0:4.057g

N
R N

H
N
H

S

O

R t-Bu

N
57

(20 mol%)

27

R1 R2

Me Me
Et Et
Ph Me
Ph Ph

Me Me
Et Et

8 19 56.0:44.057l
7 35 78.0:22:057k Ph Me

Ph Ph

Et
Et
Et
Et

Bn
Bn

Bn
Bn

 To confirm the superiority of catalyst 57b, a second reaction was investigated. We tested the 

catalytic activity of the thioureas 57a-f in the transfer hydrogenation of (E)-2-(furan-2-yl)-1-

nitro-1-propene (120n, Table 4.24). Once again, the optimal enantioselectivity was obtained 

using catalyst 57b, bearing N,N-diethyl amino amide group (entry 2). According to these 

experiments, thiourea 57b was favored and employed for the further optimization. 
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Table 4.24:  Screening of Jacobsen thiourea motifs to catalyze the transfer hydrogenation of nitroolefin 120n 

120n
(c = 0.1 M)

N
H

CO2t-But-BuO2C
H H

90c
(1.1 equiv)

toluene, 40 °C, 48 h

+

NO2 NO2

116n

N
R N

H
N
H

S

O

R t-Bu

N
57

(20 mol%)O O

3
4

6

74

74

95:5

91:957f

57d

1

95:557c

5 66 95:557e

a Determined by chiral GC.

72 94:657a

Entry conv. [%]a eraCatalyst: R R'

2 74 97:357b
64

Me Me
Et Et
Bn Bn
n-Pr n-Pr
Bn Me
Bn H

4.4.3.4 Catalyst Loading 

Once we had found the optimal catalyst (57b) for our process, we were interested in 

decreasing its relatively high catalyst loading (20 mol%) as much as possible, without loss of 

efficiency. The results of this investigation are reported in Scheme 4.59, which shows that no 

significant effect on the catalysis conversion and enantioselectivity after 48 hours reaction 

time was observed by lowering the thiourea amount from 20 to 5 mol%. However, a further 

decrease of the catalyst concentration led to a significant drop in activity and selectivity. Our 

objective was thus reached; thiourea 57b could be used at a lower catalyst loading (5 mol %).  
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120a
(c = 0.1 M)
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Scheme 4.59:  Effect of the catalyst loading on the catalytic transfer hydrogenation of nitroolefin 120a. (Note: to 
facilitate the reading of this scheme, the enantioselectivities were expressed as enantiomeric excesses (ee) rather 
than enantiomeric ratios (er)). 

4.4.3.5 Substrate Concentration 

Before evaluating the scope of the reaction, we intended to increase the substrate 

concentration (i.e., use minimum solvent). For this purpose, we evaluated its (from 0.3 to 1.5 

molar) on the efficiency of the catalysis (Scheme 4.60). As we already observed in the 

development of the conjugate reduction of , -unsaturated ketones (see Chapter 4.3.3.4, 

Scheme 4.44), an increase in the concentration of the nitroalkene 120a slightly improved the 

conversion and enantioselectivity of the reaction. The maximal catalyst efficiency was 

obtained in a 1.3 molar solution. A further increase of the nitroolefin concentration caused a 

slight degradation of the yield and enantioselectivity of the reaction. For evaluating the scope 

of the reaction (see Chapter 4.4.4, Table 4.25), 1.3 molar solutions where thus used.  
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Scheme 4.60:  Effect of the on the substrate concentration catalytic transfer hydrogenation of nitroolefin 120a.
(Note: to facilitate the reading of this scheme, the enantioselectivities were expressed as enantiomeric excesses 
(ee) rather than enantiomeric ratios (er)). 

4.4.4 Investigation of the Reaction Scope 

Based on the optimization of the catalyst, the solvent, the Hantzsch ester structure, the catalyst 

loading and the substrate concentration (see Chapters 4.4.2 and 4.4.3) in the transfer 

hydrogenation of (E)-1-nitro-2-phenyl-1-propene (120a), the following protocol was 

subsequently used for investigating the scope of the reaction: Treating nitroolefins 120 (1.3

molar) with commercially available Hantzsch ester 90c (1.1 equivalents) in the presence of 

thiourea catalyst 57b (5 or 10 mol%, depending on the substrate) at 40 °C in toluene for 24-48 
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hours afforded the saturated , -disubstituted nitroalkanes 116 in high yields and 

enantioselectivities (Table 4.25).

Table 4.25:  Scope of the catalytic transfer hydrogenation of nitroolefins 120 

120
(c = 1.3 M)

N
H

CO2t-But-BuO2C
H H

90c
(1.1 equiv)

toluene, 40 °C, 48 h

+

a (E)-Isomer (E/Z > 98:2). b Isolated yield. c Determined by chiral GC. d 10 mol% of catalyst 57b.

R R'

NO2

R R'

NO2

116

Entry Yield [%]b ercNitroalkenea

N
N
H

N
H

S

O N57b
(5 mol%)

Nitroalkane

R'

NO2

R'

NO2

120a: R' = Me
120c: R' = Et
120d: R' = n-Pr
(Z)-120b: R' = i-Pr

116a
116c
116d
116b

1
2
3
4d

97
94

>99
92

97:3
97:3
98:2
8:92

NO2 NO2

120f: R = p-Me
120g: R = p-CN
120h: R = p-F
120i: R = p-Cl

116f
116g
116h
116i

5
6d

7
8

99
99
97
99

97:3
95:5
95:5
97:3

120j: R = m-Cl
120k: R = o-Cl

116j
116k

9
10

97
84

95:5
83:17

NO2 NO2

120n 116n

12d 84 96:4O O

NO2 NO2

120l 116l

13d 82 96:4

R R

NO2 NO2

120e 116e

11d >99 96:4



4 Results and Discussions 

 - 127 -  

The reaction proved to have a broad substrate scope and gave products with high yields and 

enantioselectivities with a number of -alkylsubstituted nitrostyrenes (entries 1-3). In the 

presence of bulkier substituents such as an isopropyl group, however, lower reactivity and 

selectivity were observed (entry 4). Various electron-donating or withdrawing substituents at 

the phenyl ring were tolerated (entries 5-10). The nitroolefin 120g, bearing an electron-

withdrawing cyanide group, was slightly less reactive than the other substrates. In this case, 

we used 10 mol% of thiourea 57b to achieve an equally high catalytic efficiency as with other 

para-substituted nitrostyrenes (entry 6). A substituent at the ortho-position of the phenyl ring 

led to a drop in reactivity and enantioselectivity (entry 10). Not only phenyl rings were 

appropriate but also other aromatic or heteroaromatic groups such as 2-naphthyl- and 2-furyl 

substituents (entries 11 and 12). Interestingly, aliphatic nitroalkenes were equally suitable 

substrates. tert-Butyl-substituted nitroolefin 120l gave the corresponding product in good 

yield and excellent enantioselectivity (entry 11).

The absolute configuration of the compound 120d was determined by measuring its optical 

rotation value and comparing it with the literature value.173 The other absolute configurations 

were assigned by analogy. 

We were pleased to see that our catalyst could even differentiate between the ethyl and methyl 

substituents of aliphatic 2-methyl-1-nitrobutenes (120m) as its corresponding nitroalkanes 

(116m) were formed in high yield and reasonable enantiomeric ratios (Table 4.26). 

Remarkably, the enantioselectivity is strongly dependent on the olefin geometry. We partially 

separated the two olefin diastereoisomers by preparative HPLC. It is worth noting that 

directly after the (partial) separation of the (E)- and (Z)-isomer by HPLC, nitroolefin 120m

isomerized again to some extent. We found that (E)-enriched-120m gave the nitroalkane (S)-

116m with significantly higher enantioselectivity (entry 1). A sample enriched in the (Z)-

isomer gave the opposite enantiomer but with much lower enantiomeric ratio (entry 2). Since 

the transfer hydrogenation is not stereoconvergent, optimal enantioselectivities can only be 

reached using pure (E)- or pure (Z)-nitroalkenes 120.
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Table 4.26:  Catalytic transfer hydrogenation of 2-methyl-1-nitrobutene 120m  

120m
(c = 1.3 M)

N
H

CO2t-But-BuO2C
H H

90c
(1.1 equiv)

toluene, 40 °C, 48 h
+

a Yield and er of volatile product 116m determined by chiral GC.

Et

NO2

Et

NO2

116m

Entry Yield [%]a eraNitroalkene

N
N
H

N
H

S

O N57b
(10 mol%)

Nitroalkane

O2N O2N

(E)-120m (E/Z = 93:7) (S)-116m

1 97 82:18

*

O2N O2N

(Z)-120m (E/Z = 14:86) (R)-116m

2 95 44:56

After having explored the scope of the reaction and realized that the catalytic conjugate 

reduction worked well with a variety of aromatic and aliphatic , -disubstituted nitroalkenes 

(120), we then wondered if we could apply it to other nitroolefin classes such as , -

disubstituted nitroalkenes. For this purpose we investigated the catalytic transfer 

hydrogenation of commercially available (E)-(2-nitroprop-1-enyl)benzene (207) to  2-

nitropropyl)benzene (208 , Scheme 4.61). For this study, 20 mol% of thiourea 57b were used, 

affording the desired nitroalkane 208 nearly racemic but in quantitative yield.  

According to these results, we developed a very efficient process for the preparation of , -

disubstituted nitroalkanes 116. Another methodology has to be established for the synthesis of 

analogs , -disubstituted nitroalkane 208.

Scheme 4.61:  Extension of the process to the catalytic transfer hydrogenation of , -disubstituted nitroalkene 
207.
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4.4.5 Mechanistic Considerations  

Mechanistically, our first hypothesis was that the reaction proceeded via nitroolefin activation 

by the thiourea moiety of the catalyst through hydrogen bonding interactions, which is in 

accordance with the mechanism proposed by Takemoto et al. for the addition of malonates to 

nitroolefins (see Chapter 3, Scheme 3.6).102

The results of the conjugate reduction (i.e. formation of the products with generally (S)-

configuration) suggest that the hydride attack occurs from the Re-face of the nitroalkene 120a.

We then assumed that the reaction might occur through a transition state similar to the 

working model K (Scheme 4.62) with the hydride transfer from the Hantzsch ester taking 

place from the Re-face. This step would be followed by a proton transfer from the pyridinium 

ion in L, generating the desired product (116a) along with the pyridine derivative 93c.

Activation of the dihydropyridine might occur through interactions of its -system with the 

nitroolefin -system. Moreover interactions between the thiourea catalyt and water molecules 

that could be present in the reaction media, might take place. This would lead to the 

acidification of the water molecules, which might then play a role in the catalytic cycle. 

Mechanistic studies and computational calculations would be needed to gain more insight 

about the configuration of the plausible transitions states K and L (Scheme 4.62) and about 

the possible role played by water in the catalytic transfer hydrogenation of nitroalkenes 120.

Scheme 4.62: First postulated mechanism: activation of nitroolefin 120a via hydrogen bonds with the thiourea 
moiety of catalyst 57b with additional interactions between the catalyst and the dihydropyridine 90c.

In order to gain insight into the reaction mechanism we followed the progress of the reaction 

using ESI-MS analysis. For this purpose we carried out the transfer hydrogenation of 

nitroolefin 120a under the reaction conditions reported in Table 4.25 (see Chapter 4.4.4). 

Samples were taken from the reaction mixture at different time intervals over 24 hours and 

submitted to ESI-MS analysis.  
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Unfortunately, this study did not furnish the expected information since it was not possible to 

detect compounds containing a nitro functionality using this analytical method. For this 

reason we could not observe if there were hydrogen bonding interactions between the catalyst 

and the nitroolefin. Based on the ESI-MS experiments we can only hypothesize that hydrogen 

bonding interactions between the catalyst and water (M, EW = 438 g/mol) and eventually 

between the catalyst and the Hantzsch ester 90c (N, EW = 729 g/mol) or pyridinium ion (O,

EW = 728 g/mol) occur (see the peaks at m/z = 439 ([M+H]+), 730 ([M+H]+, and 729 

([M+H]+), respectively, in Scheme 4.63). 

Scheme 4.63: Spectrum corresponding to the ESI-MS measurement done after a reaction time of five hours. 
(MW: molecular weight. EM: exact mass). 

We then performed several nuclear magnetic resonance (NMR)-titrations to determine if 

hydrogen bonding interactions between the thiourea moiety and nitroolefin or/and between 

the catalyst and water took place (Schemes 4.64-4.65). This was done by monitoring the 

chemical shifts of the protons of the thiourea group in the catalyst 57b.

We first investigated the possible interactions between the catalyst 57b and the nitroolefin 

120f (chosen arbitrarily as the model substrate). For this purpose we analyzed solutions of the 

catalyst 57b in deuterated toluene by NMR, which contained different amounts of the 

nitroolefin 120f (from 0.4 to 1.5 equivalents). The analysis of the 1H-NMR spectra of these 
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solutions did not provide direct evidence for nitro group binding to the catalyst since all the 

chemical shifts remained unchanged upon the nitroolefin addition (Scheme 4.64a). 

We then assumed that it would be possible to observe a change of chemical shifts of the 

thiourea moiety of 57b by using chemically more relevant conditions, i.e. catalytic amounts of 

the thiourea, by utilizing 1.0 to 10.0 equivalents of nitroolefin 120f (Scheme 4.64b). Under 

these conditions, the addition of 57b resulted in a pronounced upfield shift (from 6.63 to 5.90 

ppm) of the resonance of one of the thiourea protons (proton NH1, Scheme 4.64b). Although 

shifts as large as 0.2 part per million (ppm) occur as a result of simple medium effect, the 

observed upfield shift of 0.73 ppm with 57b pointed to a direct interaction between the 

catalyst and the nitroolefin 120f (through at least one proton of the thiourea moiety).  
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Scheme 4.64: Influence of the addition of nitroolefin 120f to a catalyst solution on the chemical shift of the 
protons of the thiourea moiety of 57b.

Furthermore, we evaluated the possible interactions between the catalyst 57b and water. To 

this end, we measured by NMR solutions of thiourea 57b in dried deuterated toluene 

containing different amounts of water (0.0, 0.8, 1.6 and 3.0 equivalents).

On the other hand, when the experiment was run in deuterated dried chloroform, the 

resonance of both thiourea protons was shifted downfield by about 0.3 and 0.4 ppm, 

respectively (Scheme 4.65). Accordingly, we reasoned that hydrogen bonding interactions 

between the catalyst and water molecules might also occur in the analyzed deuterated 
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chloroform solutions. Since such interactions were not observed running the NMR titrations 

in dried deuterated toluene, it is difficult to have a clear picture on the role of water in the 

reaction. Further investigations as well as computational calculations would be needed to gain 

more insight into the effect of water on the conjugate reduction of nitroolefins 120.
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Scheme 4.65: Influence of the addition of water to a CDCl3 solution of catalyst 57b on the chemical shift of the 
protons of the thiourea moiety of 57b.

Based on the results of the ESI-MS analyses and the NMR titrations, it was not possible to 

define which of the mechanisms we suggested was the most probable. Our investigations 

pointed out that hydrogen bonding interactions would occur between the thiourea 57b and the 

nitroolefin 120f and that the catalyst might eventually also interact with water. For the latter 

case, however, no evidences were found by NMR titration in deuterated toluene. At this stage 

of the mechanistic study, we could not determine if the catalyst would interact preferably with 

the nitroolefin or water, in case both were present in the reaction media, or if water really 

played a role in the catalytic cycle.  

We then proposed the catalytic cycle represented in Scheme 4.66, neglecting the presence 

and/or action of water. We assumed that the nitroalkene 120 was activated through hydrogen 

bonding interactions (most probably directly) with the thiourea moiety of the catalyst 57b as 

represented in the transition state F1 (Scheme 4.66). This would lead to a decrease of the 

LUMO energy of the olefin and allow the hydride transfer from the Hantzsch ester 90c, which 

might itself be activated through -stacking interaction with the nitroolefin and perhaps also 
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with the pyrrol function of the catalyst 57b. A subsequent proton transfer from the pyridinium 

ion in G1 would afford the nitroalkane 116 along with the pyridine derivative 93c.

Scheme 4.66: Proposed mechanism for hydrogen bonding-catalyzed transfer hydrogenation of the nitroolefin 
120. The possible role played by water in this catalytic cycle is neglected.  

At this stage it is worth specifying that we previously only discussed the nitroolefin activation 

through hydrogen bonding interactions between the thiourea moiety of catalyst 57b and the 

two oxygens of the nitro functionality in olefin 120a (transition state F1, Scheme 4.67). An 

alternative transition state would be F1', in which both hydrogen atoms of the thiourea moiety 

of 57b interact with only one oxygen of the nitro group in substrate 120a.

To support the catalytic cycle depicted in Scheme 4.66 and to gain more insight into the 

transition state (F1 or F1') and the mechanism of the reaction as well as the possible role that 

water could play in the activation of the nitroolefin, further mechanistic studies as well as 

computational calculations are required (see Outlook, Chapter 6).
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Scheme 4.67: Activation of both oxygen of the nitroolefin through hydrogen activation (F1) vs. double 
activation of only one oxygen of the nitro functionality (F'1).

It would also be interesting to explore the interactions between the catalyst 57b and the 

Hantzsch ester 90c. Effectively, based on the results of the NMR titrations, the chemical shift 

of only one proton of the thiourea moiety (NH1 in Scheme 4.64) was shifted upfield while 

adding nitroolefin to the catalyst. This suggests that a single hydrogen bond is formed 

between the thiourea and the nitroolefin. We could thus envisage that the free hydrogen of the 

thiourea moiety (NH2 in Scheme 4.64) interacts with the dihydropyridine through hydrogen 

bonding interaction (Scheme 4.68). However, it is not clear with which atom of the Hantzsch 

ester is involved since hydrogen bond with the nitrogen of the hydrogen source would lead to 

the deactivation of the dihydropyridine. To explore this idea, it would be interesting to 

perform in a future work NMR titrations of deuterated toluene solutions of catalyst 57a

containing different amounts of Hantzsch ester 90c to observe the influence of 90c on the 

chemical shifts of the protons of the thiourea moiety (NH1 and NH2 in Scheme 4.64). To 

support this hypothesis computational calculations would also be needed. 
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Scheme 4.68: New hypothesis for the working model transition state of the Hantzsch ester-mediated asymmetric 
transfer hydrogenation of nitroolefins.  
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4.4.6 Conclusion and Discussion

We have successfully developed an efficient enantioselective hydrogen bonding-catalyzed 

transfer hydrogenation of , -disubstituted nitroolefins using the thiourea 57b as a catalyst 

and the commercially available Hantzsch ester 90c as the hydrogen source. This highly 

enantioselective process led to the synthesis of the chiral , -disubstituted nitroalkanes 116,

which are valuable intermediates such as for further reduction to chiral amines. 

 Before we undertook this investigation, only one biocatalytic and one transition-metal-

catalyzed variant had been realized. Carreira et al. developed an elegant chiral copper 

complex-catalyzed version using a silane as the stoichiometric reductant.173 However, the 

efficiency of this process was counterbalanced by its low practicability as it required a 

subsequential addition of the reactants/reagents over a period of 17 hours prior to adding the 

nitroolefin. On the other hand, Ohto et al. used fermenting bakers’ yeast in the presence of 

glucose, which allowed for an effective conjugate reduction of a limited number of aliphatic 

, -disubstituted nitroalkenes.174

Our experiments pointed out that Brønsted acids, like chiral BINOL-derived phosphoric or 

dicarboxylic acids (126a and 157b, respectively), were active catalysts for the transfer 

hydrogenation of nitroolefin 120 but gave the desired product with poor or moderate 

enantioselectivity, respectively. More promising results were obtained using hydrogen-

bonding or general acid-type thiourea catalysts. Thiourea derivatives identical or similar to 

those pioneered by Jacobsen et al., and in particular 50d and 57a, turned out to be reactive 

and highly enantioselective catalysts. Further structural fine-tuning of the thiourea 57a

afforded the catalyst 57b, which proved to be optimal in terms of reactivity and 

enantioselectivity.  

Maximal catalytic efficiency was obtained when the process was run in toluene (nitroolefin 

120: 1.3 molar) at 40 °C in the presence of the thiourea catalyst 57b (5 mol%) and the 

commercially available Hantzsch ester 90c. Under these reaction conditions, the transfer 

hydrogenation had a broad substrate scope and gave the , -disubstituted nitroalkanes 116 in 

high yields and enantioselectivities with a number of -alkylsubstituted nitrostyrenes. 

Remarkably, aliphatic nitroalkenes were equally suitable as tert-butyl- and ethyl-substituted 

nitroolefins (120l and 120m, respectively) generated the corresponding product in high yields 

and enantioselectivities. While investigating the latter substrate (120m) we realized that the 

reaction was not stereoconvergent, which means that the enantioselectivity was strongly 

dependent on the olefin geometry. For this reason, the nitroolefins have to be used as the pure 
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(E)- or (Z)-isomers to allow for the generation of the corresponding nitroalkanes with optimal 

enantiomeric ratios. As with the conjugate reduction of enones, it would be of interest to 

investigate the role of catalytic phosphine derivatives in inducing stereoconvergence by 

isomerizing the nitroolefin in situ.

Mechanistically, we assumed that the reaction is catalyzed by hydrogen bonding interactions 

between the thiourea moiety of the catalyst 57b and the nitroolefin 120 (see the proposed 

catalytic cycle in Scheme 4.66). Possible interactions between Hantzsch ester 90c and catalyst 

57b were supported by monitoring the reaction with ESI-MS (see Chapter 4.4.5). The 

activation of the Hantzsch ester could occur by -stacking with the pyrrolyl group of the 

catalyst 57b; eventually also through additional interactions by hydrogen bonding with one 

proton of the thiourea moiety of 57b (NH2 in Scheme 4.64, Chapter 4.4.5). In this case the 

nitroolefin would be activated by only one proton of the thiourea (NH1 in Scheme 4.64, 

Chapter 4.4.5). To gain more insight into the mechanism of the transfer hydrogenation, further 

studies as well as computational calculations would be needed. 

A drawback of this highly efficient conjugate reduction is the difficulty in obtaining pure 

nitroolefins 120, which were in most case isolated in very low yields (See Chapter 4.4.1). The 

development of an efficient synthesis of , -disubstituted nitroalkenes 120 in a one-step 

process from the corresponding ketone 204 in the presence of nitromethane and a catalytic 

amount of a base would be of great interest and would make our catalytic methodology even 

more attractive. 

To conclude, we can say that general Brønsted acid catalysis is highly useful for the Hantzsch 

ester-mediated enantioselective conjugate reduction of , -disubstituted nitroolefins. Our 

versatile organocatalytic approach adds to the previously developed transition metal173 and 

biocatalyzed174 versions. The modest atom economy of Hantzsch ester-mediated conjugate 

reductions may be counterbalanced by the practical and convenient use of bench-stable, 

crystalline Hantzsch esters. 
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4.5 Enantioselective Transfer Hydrogenation of -Nitroacrylates:
a Route to ²-Amino Acids

We were very interested in establishing a practical process for the preparation of valuable 

chiral ²-amino acids. For this purpose, we based our strategy on the elaboration of an 

effective organocatalytic approach to synthesize -nitroesters 119, which would be further 

converted to the corresponding chiral ²-amino acids 122. Inspired by our transfer 

hydrogenation of , -disubstituted nitroalkenes 120 (see Chapter 4.4), we assumed that it 

would be possible to generate -nitroesters 119 through a catalytic Hantzsch ester-mediated 

conjugate reduction of the corresponding -nitroacrylates 121 (Scheme 4.69).

Scheme 4.69: Planned Hantzsch ester-mediated organocatalytic asymmetric transfer hydrogenation of -
nitroacrylates 121, as a route to ²-amino acids 122.

Our objectives were: first to develop an efficient and highly enantioselective catalytic transfer 

hydrogenation of -nitroacrylates 121 and then to find reaction conditions to convert the 

obtained -nitroesters 119 to their corresponding ²-amino acids 122.

4.5.1 Synthesis of the Starting Materials and Racemic Products 

4.5.1.1 Synthesis of the -Nitroacrylates

The substrates (121) were synthesized from the corresponding -ketoesters 135 in a two-step 

process via a Henry reaction followed by dehydration (Scheme 4.70).244 First, the -ketoesters 

135 were reacted with nitromethane and a catalytic amount of triethylamine (5 mol%) to 

generate the corresponding -nitro- -hydroxyesters 209203 in good to excellent yields (65-

97%). The dehydration step was performed in dry dichloromethane in the presence of three 
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equivalents of methanesulfonyl chloride and triethylamine.245 After a basic work-up the -

nitroacrylates 121 were isolated in poor to moderate yields (17-74%). 

Most of the -ketoesters 135 were commercially available. When it was not the case, they 

were prepared using one of the procedures reported in Schemes 4.71-4.74.248-251

Scheme 4.70: Two-step process used to synthesize the -nitroacrylates 121 from the corresponding -ketoesters
135. (a (E)-121a: 6% and (Z)-121a: 68%. b (E)-121n: 5% and (Z)-121n: 61%). 

Ethyl 2-oxoheptanoate (135n) was generated by treating diethyloxalate 210 with 

pentylmagnesium bromide at -78 °C in diethylether, followed by an acidic work-up (Scheme 

4.71).246

Scheme 4.71: Preparation of ethyl 2-oxoheptanoate (135n).  

Isopropyl and tert-butyl 2-oxo-2-phenylacetate (135b and 135e, respectively) were prepared 

from the corresponding 2-oxo-carboxylic acid 133a according to the literature247 (Scheme 

4.72). To a solution of 2-oxo-2-phenylacetic acid (133a) in benzene a catalytic amount of 

DMAP (10 mol%) was added at 0 °C, followed by DCC and the alcohol of choice. 

Afterwards the reactions were stirred for twelve hours, the -ketoesters 135b and 135e were 

obtained in moderate to good yields.
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Scheme 4.72: Synthesis of isopropyl- and tert-butyl-2-oxo-2-phenylacetate (135b and 135e, respectively) from 
2-oxo-2-phenylacetic acid (133a). (*NMR yield of the crude product after work-up). 

A slightly different procedure was used to generate benzyl-2-oxo-2-phenylacetate (135f).248 In 

this case a mixture of 2-oxo-carboxylic acid 133a and benzyl alcohol was stirred overnight at 

reflux, without the addition of DCC or DMAP (Scheme 4.73). After removal of the solvent 

under reduced pressure, the crude -ketoester 135f was obtained in moderate yield and used 

in the next step (Henry reaction, see Scheme 4.70) without further purification. 

Scheme 4.73: Synthesis of benzyl-2-oxo-2-phenylacetate (135f) from 2-oxo-2-phenylacetic acid (133a). (*NMR 
yield of the crude product after work-up). 

tert-Butyl 2-oxo-2-phenylacetate derivatives (135k and 135l), bearing a substituent on the 

phenyl ring, were synthesized from tert-butyl 2-(1H-imidazol-1-yl)-2-oxoacetate (211), 

following the procedure reported by Mosher et a.249 The aryl Grignard reagent was added at   

0 oC to a solution of 211 in THF. The mixture was then allowed to warm up to room 

temperature and stirred at this temperature for three hours (Scheme 4.74). After the work-up, 

the crude -ketoesters 135 were obtained and used in the next step (Henry reaction, see 

Scheme 4.70) without further purification. 

Scheme 4.74: Synthesis of tert-butyl 2-(4-methoxyphenyl)-2-oxoacetate (135k) and tert-butyl 2-(4-
fluorophenyl)-2-oxoacetate (135l) from tert-butyl 2-(1H-imidazol-1-yl)-2-oxoacetate (2011). (*NMR yield of 
the crude product after work-up). 



4 Results and Discussions 

 - 140 -  

4.5.1.2 Investigations to Optimize the Preparation of -Nitroacrylates

The strategy that we used for the substrate preparation led to the generation of the desired -

nitroacrylates 121 in mostly low yields (see Scheme 4.70). Looking at this two-step procedure 

we observed that the first step, the Henry reaction, generated the -nitro- -hydroxyesters 209

in good yields. However, the dehydration of the alcohol 209 afforded the corresponding -

nitroacrylates 121 in much lower yields, especially when the substrates 121 bore bulky ester 

functionalities. In this case, the reaction was really slow and the alcohol 209 could not be 

fully converted to the dehydrated product 121. Another reason for the low efficiency of this 

dehydration was a retro-Henry reaction that took place under our reaction conditions, leading 

to the formation of the initial starting material 135 (Scheme 4.75). 

Scheme 4.75: Synthesis of the -nitroacrylates 121 and formation of the -ketoesters 135 via a retro-Henry 
reaction.

Based on these observations we intended to improve the preparation of the substrate 121

focusing our work on the development of two different strategies. On the one hand, we 

wished to synthesize -nitroacrylates 121 directly from the corresponding -ketoesters 135 in 

one-pot, and, on the other hand, we sought to optimize the dehydration process. In the latter 

case, the objective was to find reaction conditions which would allow us to reach excellent 

conversions and, at the same time, would prevent the retro-Henry process from occurring. For 

these experiments we used ethyl 2-oxo-2-phenylacetate 135d as the model starting material. 

One-pot preparation of -nitroacrylates 121 

With regards to the two-step strategy that was employed for the preparation of the substrates 

121 (see Scheme 4.70), we observed that for the Henry-reaction as well as for the dehydration 

step, the same base was used: triethylamine. We then wondered if we could perform the 

synthesis as a one-pot process, using only one equivalent of nitromethane and a catalytic 

amount of triethylamine for the Henry reaction, followed by addition of methanesulfonyl 
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chloride and some more triethylamine, after the -ketoester 135 was fully converted to the 

corresponding alcohol 209 (Table 4.27).

We first investigated the Henry reaction running the reaction neat at room temperature in the 

presence of one equivalent of nitromethane and a catalytic amount of triethylamine (20 mol%, 

entry 1). Under these conditions, the conversion was poor even after three days. We then 

performed the reaction in dried dichloromethane, as this solvent had to be used in the 

dehydration step. This modification did not allow us to improve the conversion (entry 2), even 

using a stoichiometric amount of triethylamine (entry 3). No improvement was observed by 

running the reaction at 40 °C.

Table 4.27:  Investigations toward the one-pot synthesis of the -nitroacrylates 121

O Et3N
CH3NO2 (1.0 equiv)

solvent, rt, 3 d
CO2Et

HO NO2 CH3SO2Cl, Et3N

CH2Cl2, -20 °C CO2Et

NO2

135d 209d 121d

Entry Solvent Et3N [equiv] Conversion [%]a

1
2
3

neat
CH2Cl2
CH2Cl2

0.2
0.2
1.0

13
9

11
a Determined by GC.

CO2Et

Since the Henry reaction afforded the -nitro- -hydroxyesters 209 in much higher yields 

(92% in the case of 209d) under the reaction conditions reported in Scheme 4.67 (using about 

75 equivalents of nitromethane), we decided to stop our efforts toward the development of a 

one-pot procedure, which only led to a dramatic decrease in the efficiency of the Henry 

reaction.

Optimization of the dehydration of the alcohol 209d 

We then explored different reaction conditions for the dehydration of -nitro- -hydroxyester

209d to ethyl 3-nitro-2-phenylacrylate (121d) as shown in Scheme 4.76. 

Initially, we used methanesulfonyl chloride (3.0 equivalents) and triethylamine (3.0 

equivalents) to achieve the dehydration of 209d, obtaining the product 121d in 63% yield 

after five hours (Scheme 4.76a). Under these conditions, 21% of the starting material 

remained unreacted and the -ketoester 135d was generated in 11% yield. In order to increase 

the reaction conversion we decided to increase the amount of methanesulfonyl chloride and 
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triethylamine up to five equivalents (Scheme 4.76b). This modification favored the retro-

Henry reaction at the expense of the desired dehydration reaction. The replacement of 

methanesulfonyl chloride by the more reactive trifluoromethanesulfonic acid anhydride (triflic 

anhydride) led to a slight increase of the -ketoester 135d formation (Scheme 4.76c). 

According to the procedure reported by Seebach et al.,250 we also tested the effect of DCC in 

the presence of catalytic copper(I) chloride (2 mol%) in diethyl ether on the dehydration 

reaction (Scheme 4.76d). We observed that after two days, the expected product 121d was not 

formed. Instead, the -ketoester 135d was obtained in 88% yield. Using TFA to protonate the 

hydroxyl group and favor the elimination of a water molecule, no reaction took place after 

stirring the mixture for two days at room temperature. A temperature increase up to 40 °C did 

not improve the reactivity of the starting material, which remained unchanged (Scheme 

4.76e). After all these unsuccessful attempts, we were pleased to see that running the reaction 

in dimethylsulfoxide (DMSO) with acetic anhydride (1.2 equivalents) for four days, we could 

obtain ethyl 3-nitro-2-phenylacrylate (121d) in excellent yield (90%, Scheme 4.76f). We then 

tried to further optimize the reaction conditions of this process to decrease the reaction time 

(see Table 4.28). 

CO2Et
HO NO2 Et3N (3.0 equiv)

CH3SO2Cl (3.0 equiv)
CO2Et

NO2

209d 121d
63%

O

135d

CO2Et+

11%

s. m.

209d
21%

(a)

209d(b) 121d
51%

135d
28%

209d
18%

+ +

209d(c) 121d
62%

135d
20%

209d
15%

+ +

+

Et3N (5.0 equiv)
CH3SO2Cl (5.0 equiv)

Et3N (3.0 equiv)
Tf2O (3.0 equiv)

CH2Cl2, -20 °C, 5 h

CH2Cl2, -20 °C, 5 h

CH2Cl2, -20 °C, 10 h

209d(d) 121d
0%

135d
88%

209d
12%

+ +

CuCl (2 mol%)
DCC (1.2 equiv)

Et2O, rt, 2 d

209d(e) 121d
-

135d
-

209d
100%

+ +TFA (1.0 equiv)
Et2O, rt - 40 °C, 4 d

209d(f) 121d
90%

135d
5%

209d
2%

+ +
Ac2O (1.2 equiv)

DMSO, rt, 4 d

Scheme 4.76: Investigations to improve the yield of the dehydration reaction of -nitro- -hydroxyesters 209 to 
-nitroacrylates 121.



4 Results and Discussions 

 - 143 -  

We repeated the reaction reported in Scheme 4.76f in the presence of 1.2 equivalents of acetic 

anhydride and stopped it after two days. Under these conditions, -nitroacrylate 121d was 

generated with 80% yield (Table 4.28, entry 1). An increase of the temperature up to 40 °C 

accelerated the retro-Henry process (entry 2). It was thus preferred to run the reaction at room 

temperature. We then tried to further increase the conversion of the reaction, and thus the 

yield of the desired product (121d), by using a higher amount of the relatively inexpensive 

acetic anhydride (3.0 equivalents, entry 3). This proved to be a success and led to the 

formation of ethyl 3-nitro-2-phenylacrylate (121d) in excellent yield (91%).

Table 4.28: Optimization of the dehydration of the alcohol 209d by acetic anhydride. 

We then applied this process to the dehydration of other -nitro- -hydroxyesters 209 and in 

particular to the ones bearing bulky ester functionalities (i.e. the alcohols which were 

problematic under the conditions reported in Scheme 4.70, affording -nitroacrylates 121 in 

very poor yields). These results are presented in Table 4.29.

For all the alcohols 209 tested, the dehydration step occurred with very high yields (81-92%, 

Table 4.29). Especially impressive improvements were observed in the syntheses of tert-

butyl- and benzyl ester-derived -nitroacrylates 121e and 121f (entries 2 and 3). In these cases 

the product was generated in only 17% and 21% yield, respectively, in the presence of 

methanesulfonyl chloride (see Scheme 4.70) and in 92% and 87% yield, respectively, using 

acetic anhydride (Table 4.29). Delighted by this success, we then decided to concentrate our 

work on the development of an organocatalytic transfer hydrogenation of the prepared -

nitroacrylates 121.
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Table 4.29: Scope for the dehydration of alcohols 209 in the presence of acetic anhydride 

Entry Substratea Yield of 121 [%]b

(yield previously obtained [%])

4 R1 = Et, R2= p-F,
5c R1 = t-Bu, R2= p-OMe
6 R1 = t-Bu, R2= p-F

121i:
121k:
121l:

7d

(209k)
(209l)

1 R1 = Et
2 R1 = t-Bu
3 R1 = Bn

121d:
121e:
121f:

(209d)
(209e)
(209f)

121m:209m

(209i)

CO2Et

NO2
S

CO2Et

NO2

S

R CO2R1

HO NO2 Ac2O (3 equiv)

DMSO, rt, 40-48 h R CO2R1

NO2

R CO2R1

O

CO2R1

NO2

209 121 135

Yield of 135 [%]

CO2R1

O

HO

135i:
135k:
135l:

135d:
135e:
135f:

135m:

O

CO2EtS

CO2R1

HO NO2

CO2R1

NO2

CO2R1

O

CO2R1

HO NO2

R2
R2 R2

91
92
87

88
86
89

81

7
4
8

10
9
5

13

(63)
(17)
(21)

(49)
(25)
(27)

(46)

81-92%

a After 40-48 h at rt, 1-4% of the substrate 209 still remained in the reaction mixture. b The
given yields correspond to the total yield of the isolated isomers ((E)-isomer + (Z)-isomer).
In each case the (Z)-isomer was the main product (yield of the (E)-isomer: 0-4%). c (E)-
isomer: 11% and (Z)-isomer: 75%. d (E)-isomer: 78 % and (E)-isomer: 3%.

4.5.1.3 Synthesis of the Racemic -Nitroesters

As already reported in the Chapters 4.3.1.3 and 4.4.1.3, the preparation of the racemic 

products was necessary to determine the separation conditions of the (R)- and (S)-enantiomers 

using GC with a chiral stationary phase. This allowed us, afterwards, to measure the 

enantiomeric ratios of the enantioenriched -nitroesters 119, which were synthesized through 

our organocatalytic conjugate reduction of the corresponding -nitroacrylates 121.

To generate the racemic compounds 119, we could use both procedures reported in Scheme 

4.77. Through the conjugate reduction of the -nitroacrylates 121 with an excess of sodium 
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borohydride in ethanol we formed the racemic -nitroesters 119 within about one hour in 

moderate to good yields (50-70%, Scheme 4.77a). Higher yields (about 80-99%) were 

obtained treating nitroolefin 121 with the Hantzsch ester 90a in the presence of a catalytic 

amount of the Schreiner catalyst 49b (Scheme 4.77b). However, to obtain such good yields 

the reactions had to be run for 24-48 hours. Accordingly, these two methods were 

complementary. As we just needed few milligrams of 119 for the chiral GC analysis, we did 

not intend to optimize their synthesis and prepared them by arbitrarily choosing one or the 

other process.

toluene, 40 °C, 24-48 h

N
H

N
H

S

49b (20 mol%)

N
H

CO2EtEtO2C

90a (1.2 equiv)

R1 CO2R2

NO2

R1 CO2R2

NO2

CF3

F3C

CF3

CF3

ethanol, 0 °C, 1 h

121 119
R1 CO2R2

NO2

R1 CO2R2

NO2NaBH4 (3.0 equiv) (a)

(b)

121a: R = Me; R' = Et
121b: R = C6H5; R' = i-Pr
121c: R = C6H5; R' = Me
121d: R = C6H5; R' = Et
121e: R = C6H5; R' = t-Bu
121f: R = C6H5; R' = Bn
121g: R = p-Me-C6H4; R' = Et
121h: R = p-MeO-C6H4; R' = Et
121i: R = p-F-C6H4; R' = Et
121j: R = p-Cl-C6H4; R' = Et
121k: R = p-MeO-C6H4; R' = t-Bu
121l: R = p-F-C6H4; R' = t-Bu
121m: R = 2-thienyl; R' = Et
121n: R = n-Pent; R' = Et
121o: R = i-Pr; R' = Et

119a: R = Me; R' = Et
119b: R = C6H5; R' = i-Pr
119c: R = C6H5; R' = Me
119d: R = C6H5; R' = Et
119e: R = C6H5; R' = t-Bu
119f: R = C6H5; R' = Bn
119g: R = p-Me-C6H4; R' = Et
119h: R = p-MeO-C6H4; R' = Et
119i: R = p-F-C6H4; R' = Et
119j: R = p-Cl-C6H4; R' = Et
119k: R = p-MeO-C6H4; R' = t-Bu
119l: R = p-F-C6H4; R' = t-Bu
119m: R = 2-thienyl; R' = Et
119n: R = n-Pent; R' = Et
119o: R = i-Pr; R' = Et

50-70%

80-99%

Scheme 4.77: Preparation of the racemic -nitroesters 119 with sodium borohydride (a) or Hantzsch ester 90a in 
the presence of Schreiner catalyst 49b (b). 
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4.5.2 Determination and Optimization of the Catalyst Structure 

Inspired by our thiourea-catalyzed transfer hydrogenation of nitroalkenes 120 to nitroalkanes 

116 in the presence of Hantzsch ester 90c, we assumed that it would be possible to synthesize 

the -nitroesters 119 from their corresponding -nitroacrylates 121 using similar conditions. 

To this end we tested most of the mono- and bisthioureas that we had previously screened for 

the conjugate reduction of nitroolefins 120 (see Chapter 4.4.2). For this investigation, we used 

(Z)-ethyl 3-nitro-2-phenylacrylate (121d) as a model substrate (0.2 molar in toluene). We 

arbitrarily chose the dihydropyridine 90a as it was readily available in our laboratory, and 

performed the reaction at room temperature for 48 hours in the presence of 20 mol% of 

catalyst (Table 4.30). 

We first ran the Hantzsch ester-mediated transfer hydrogenation of ethyl 3-nitro-2-

phenylacrylate 121d without a catalyst to evaluate the background reaction. The saturated 

product 119d was generated in 22% yield (and in 53% yield by performing the reaction at    

40 °C, Table 4.30, entries 1 and 2). These results pointed out that the studied conjugate 

reduction had a significant background reaction that we would need to take into account for 

the development of an efficient process. However, for the screening of the thiourea motifs 

(i.e. the investigation of their catalytic activity) we neglected this information and ran the 

reactions at room temperature. The bisthioureas 63 and 178 were found to activate the 

substrate (entries 3 and 4). Especially high conversion (99%) was reached using catalyst 63

(entry 3). However, in both cases the -nitroester 119d was obtained in only moderate 

enantioselectivity. The selectivity of the reaction could be increased by using thiourea motifs 

164a, 50d and 57a (entries 5-7). As we had already observed in the conjugate reduction of 

nitroalkenes 120 (see Chapters 4.4.2.3 and 4.4.3.3), the Jacobsen thiourea catalysts 50d and 

57a were particularly efficient in terms of both reactivity and selectivity (entries 6 and 7). 

Once again, thiourea motif 57a was the most enantioselective (entry 7).  

Based on the results reported in Table 4.30, we then intended to optimize the structure of the 

catalyst 57a by modifying the substituent of the amide functionality (Table 4.31) and of the 

pyrrolyl group (Table 4.32).
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Table 4.30: Screening of different thiourea motifs for the transfer hydrogenation of the -nitroacrylate 121d

Entry conv. [%]a eraCatalyst

3

4

6

7

39

77

94

63:37

76:24

92:8

121d
(c = 0.2 M)

N
H

CO2EtEtO2C
H H

90a
(1.2 equiv)

toluene, rt, 48 h

+

164a

57a

178

2b

99 29:7163

5
99 89:1150d

a Determined by chiral GC. b Reaction run at 40 °C.

N
N
H

N
H

S

O N

HO

t-Bu OPiv50d

CO2Et

NO2
catalyst

(20 mol%)
CO2Et

NO2

119d

53 --
1 22 --

N
H

S

N
H

CF3

CF3

H
N

H
N CF3

CF3

S

HNNH
S

HNNH

S CF3

CF3F3C

F3C

63 178

N
N
H

N
H

S

O

CF3

CF3

N

O
N
H

S

N
H N

164a 57a

Optimization of the Jacobsen thiourea motif 57 

Since an analogous catalyst optimization was done for the development of the transfer 

hydrogenation of nitroolefins 120 (see Chapter 4.4.3.3, Tables 4.22 and 4.23) and since in 

both cases, starting from the nitroalkenes 120 as well as the -nitroacrylates 121, similar 

tendencies were observed, the results reported in Tables 4.31 and 4.32 will be discussed only 

briefly.

By increasing the length of the alkyl substituents R and R' of the amide (compound 57), we 

could slightly improve the reactivity of the catalyst (Table 4.31, entry 1 vs. entries 2 and 4). In 

the case of thiourea 57b, even the enantioselectivity was increased (entry 1 vs. entry 2). 
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Surprisingly, for this catalytic transfer hydrogenation, the use of N,N-dibenzylamide-derived 

thiourea 57c led to a significant decrease of the enantiomeric ratio (entry 3). Lower 

enantioselectivities were reached using N,N-benzylmethyl- or N-benzyl-derived catalyst 57e

and 57f, respectively (entries 5 and 6). Accordingly, N,N-diethyl-substituted thiourea 57b was 

the favored catalyst.  

Table 4.31:  Optimization of thiourea motif 57: effect of the amide structure on the transfer hydrogenation of the 
-nitroacrylate 121d  

3
4

6

97

85

92:8

83:17

121d
(c = 0.2 M)

N
H

CO2EtEtO2C
H H

90c
(1.2 equiv)

toluene, rt, 48 h
+

57f

57d

1

86:1457c

5 94 91:957e

a Determined by chiral GC.

CO2Et

NO2

CO2Et

NO2

119d

94 92:857a

Entry conv. [%]a er aCatalyst: R R'

2 98 96:657b

N
R N

H
N
H

S

O

R'

N
57

(20 mol%)

89

Me Me
Et Et
Bn Bn
n-Pr n-Pr
Bn Me
Bn H

We then studied the effect of changing the pyrrolyl structure of 57 on its catalytic efficiency 

(Table 4.32). Once again we noticed a decrease in the catalyst efficiency when we increased 

the bulkiness of the substituents at the 2- and 5-positions of the pyrrolyl group (entry 1 vs. 

entries 2-4).

Based on these experiments we realized that for the transfer hydrogenation of -nitroacrylates 

121 the Jacobsen-type thiourea 57b was once again superior in terms of enantioselectivity and 

generated the saturated ester in excellent yield. This thiourea catalyst was thus used for further 

optimization. 
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Table 4.32:  Optimization of the thiourea motif 57: effect of the pyrrolyl structure on the transfer hydrogenation 
of the -nitroacrylate 121d  

3
4 35 66:34

121d
(c = 0.2 M)

N
H

CO2EtEtO2C
H H

90c
(1.2 equiv)

toluene, rt, 48 h
+

57i

1

77:2357h

a Determined by chiral GC.

CO2Et

NO2

CO2Et

NO2

119d

98 96:657b

Entry conv. [%]a eraCatalyst: R R'

2 81 90:1057g

N
N
H

N
H

S

O N
57

(20 mol%)

53

R R'

Me Me
Et Et
Ph Me
Ph Ph

4.5.3 Optimization of the Reaction Conditions 

4.5.3.1 Optimization of the Solvent  

We started to optimize our thiourea-catalyzed process by investigating the effect of the 

solvent on the efficiency of the reaction. For this screening we performed the conjugate 

reduction of -nitroacrylate 121d (0.2 molar) at 40 °C in the presence of Hantzsch ester 90a

(1.2 equivalents) and thiourea catalyst 57b (20 mol%) as shown in Table 4.33.

Under the reaction conditions, very good to excellent conversions were obtained in all the 

tested solvents (81% to over 99%, entries 1-9). We observed similar tendencies for this 

reaction as in the transfer hydrogenation of nitroalkenes 120 (see Chapter 4.4.3.1, Table 4.19). 

Very high enantioselectivities were obtained in apolar aromatic solvents such as toluene and 

benzene (entries 1 and 2). However, the catalyst selectivity was only moderate in diethyl ether 

or in chlorinated solvents (entries 3-5). On the other hand, the -nitroester 119d was 

generated nearly or completely racemic when running the reaction in THF, dioxane, 

methanol, or acetonitrile. According to this screening, toluene proved once again to be 

superior in terms of enantioselectivity. This solvent was thus favored.
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Table 4.33:  Effect of the solvent on the transfer hydrogenation of the -nitroacrylate 121d 

Entry conv. [%]a eraSolvent

1
2

5

6

7

4

3

8

9

toluene

CH2Cl2

CHCl3

dioxane

benzene

THF

MeOH

MeCN

>99

>99

>99

99

81

>99

93

>99

>99

92:8

78:22

79:21

53:47

77:23

90:10

52:48

50:50

50:50

a Determined by chiral GC.

Et2O

121d
(c = 0.2 M)

N
H

CO2EtEtO2C
H H

90c
(1.2 equiv)

toluene, 40 °C, 36 h
+

CO2Et

NO2

CO2Et

NO2

119d

N
N
H

N
H

S

O N
57b

(20 mol%)

4.5.3.2 Optimization of the Hantzsch Ester Structure and Concentration 

Once we had identified the optimal catalyst and solvent for the transfer hydrogenation of the 

-nitroacrylate 121d, we intended to optimize the structure of the Hantzsch ester 90. For this 

purpose we investigated the effect that the ester groups and the substituents at the 2- and 6-

positions of the dihydropyridine 90 had on the efficiency of the reaction (Table 4.34).251

The modification of the ester groups of the Hantzsch ester did not lead to very significant 

variations in the efficiency of the reaction. We obtained good to excellent conversions. 

However, the structure of the ester functionality had a more pronounced effect on the 

enantioselectivity of the conjugate reduction (entries 1-4). The tert-butyl ester functionalities 

appeared to be most suitable (entry 4). On the other hand, an increase in the length of the 

aliphatic chain and the bulkiness of the substituents at the 2- and 6-positions of the 

dihydropyridine 90 led to a loss of enantioselectivity (entries 5-7). Reactivity was also 

compromised in the presence of the diphenyl-derived Hantzsch ester 90j (entry 7). The non-
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symmetrical dihydropyridines 90b were unsuitable for our process since their use induced a 

dramatic drop in the efficiency of the reaction (entry 8). According to these experiments, the 

commercially available di-tert-butyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate 90c

was the favored hydrogen source for the transfer hydrogenation of -nitroacrylates 121.

Table 4.34:  Optimization of the dihydropyridine structure for the transfer hydrogenation of the -nitroacrylate 
121d 

Entry conv. [%]a eraHantzsch ester

1
2
3
4

>99
89

>99
>99

92:8
89:11
90:10
94:6

90f:
90d:
90c:

90a:

N
H

CO2RRO2C

R = Et
R = Me
R = i-Bu
R = t-Bu

N
H

R R

CO2MeMeO2C

a Determined by chiral GC.

8 >99 74:2690b:
N
H

CO2MeMeO2C

121d
(c = 0.2 M)

N
H

R3 R4

CO2R2R1O2C
H H

90c
(1.2 equiv)

toluene, 40 °C, 40 h
+

CO2Et

NO2

CO2Et

NO2

119d

N
N
H

N
H

S

O N
57b

(20 mol%)

5
6
7

>99
>99

81

90:10
89:10
81:19

90i:
90j:

90h: R = Et
R = n-Pr
R = Ph

After we had defined the optimal Hantzsch ester, we were interested in evaluating the effect 

of its concentration on the efficiency of the process. To this end, we decided to run the 

reactions at lower temperatures (i.e. at room temperature instead of 40 °C), assuming that this 

would slow down the conjugate reduction and thus facilitate the study of the effect of the 

dihydropyridine concentration on the conversion of the reaction (Table 4.35).
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Table 4.35:  Optimization of dihydropyridine structure for the transfer hydrogenation of the -nitroacrylate 121d 

Entry conv. [%]a eraHantzsch ester 90c
[equiv]

1
2

5

4

3

1.0

1.5

2.0

1.1
97

>99

>99

>99

>99
96:4

94:6

94:6

94:6

95:5

a Determined by chiral GC.

1.3

121d
(c = 0.2 M)

N
H

CO2t-But-BuO2C
H H

90c
toluene, rt, 28 h

+
CO2Et

NO2

CO2Et

NO2

119d

N
N
H

N
H

S

O N
57b

(20 mol%)

An increase in the Hantzsch ester concentration from 1.1 to 2.0 equivalents had no influence 

on the conversion of the reaction (Table 4.35, entries 2-5). However this change led to a slight 

decrease of the enantioselectivity. It was then more favorable to keep the concentration of 

dihydropyridine low. Nevertheless, by using it in a stoichiometric amount, we observed a 

slight loss of reactivity (entry 1). At this point, we favored the use of 1.1 equivalents of 90c

for further optimizations. 

4.5.3.3 Effect of the Temperature on the Catalysis 

Since we observed that the transformation suffered from a relatively strong background 

reaction, which increased with the reaction temperature (see Chapter 4.5.2, Scheme 4.30), we 

were interested in investigating the effect of the temperature on the catalysis, in order to 

further optimize the transfer hydrogenation (Table 4.36).

We were not surprised to find that a temperature increase led to a slight loss of 

enantioselectivity (entries 1-5) and were pleased to observe that excellent conversions were 

reached even when running the reaction at 0 °C (entry 1). At this point we assumed that a 

further decrease of the temperature would not significantly improve the enantioselectivity but 
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further decrease the reactivity of the reaction. We thus decided to perform the transfer 

hydrogenations at 0 °C. 

Table 4.36:  Optimization of the temperature for the transfer hydrogenation of the -nitroacrylate 121d 

Entry conv. [%]a eraTemperature [°C]

1
2b

5

4

3

0

50

60

23

>99

>99

>99

>99

>99

96:4

94:6

94:6

95:5

96:4

a Determined by chiral GC. b Reaction run at room temperature.

40

121d
(c = 0.2 M)

N
H

CO2t-But-BuO2C
H H

90c
(1.1 equiv)

toluene, 37 h
+

CO2Et

NO2

CO2Et

NO2

119d

N
N
H

N
H

S

O N
57b

(20 mol%)

4.5.3.4 Optimization of the Catalyst Loading and the Substrate Concentration 

Like for the development of the transfer hydrogenation of enones (see Chapter 4.3) and 

nitroalkenes (see Chapter 4.4), we used a relatively high catalyst loading (20 mol%) and 

diluted solutions (0.1-0.2 molar) during the optimization of the conjugate reduction of -

nitroacrylate 121d. It was thus of interest to reduce the catalyst loading (Scheme 4.78) and 

increase the substrate concentration (Scheme 4.79). 

We decided to run the reactions with only 1.0 equivalent of the Hantzsch ester 90c, to prevent 

the background reaction from taking place while doing the work-up of the reaction at room 

temperature (for more information, see Chapter 4.5.3.5), in case the conversions were not 

complete at a reduced catalyst loading.  
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Effect of the Catalyst Loading on the Conversion and the Enantioselectivity

84

86

88

90

92

94

96

0 5 10 15 20 25

Catalyst loading [mol%]

Pe
rc

en
ta

ge
 [%

]

conversion ee

Scheme 4.78:  Effect of the catalyst loading on the catalytic transfer hydrogenation of the -nitroacrylate 121d.
(Note: to facilitate the reading of this scheme, the enantioselectivities were expressed as enantiomeric excesses 
(ee) rather than enantiomeric ratios (er)). 

By decreasing the catalyst loading we observed a significant loss of enantioselectivity, which 

was especially pronounced at catalyst loadings lower than 10 mol% (Scheme 4.78). On the 

other hand, the modification had no effect on the reaction conversion. We then wondered if 

we could improve the enantioselectivity of the transfer hydrogenation by increasing the 

concentration, while using a catalyst loading of 5 mol% (Scheme 4.79). We were pleased to 

find that the selectivity was increased by raising the concentration of the -nitroacrylate 121d

from 0.2 to 1.0 molar. A further increase of the concentration led to a loss of 

enantioselectivity. Accordingly, we used 1.0 molar solutions in the subsequent experiments. 

Since under these conditions we could only obtain a maximal enantiomeric ratio of 95:5, we 

decided to increase the catalyst loading to 10 mol% for further investigations. 
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121d
N
H

CO2t-But-BuO2C
H H

90c
(1.0 equiv)

toluene, 0 °C, 36h
+

CO2Et

NO2

CO2Et

NO2

119d

N
N
H

N
H

S

O N
57b

(5 mol%)

Effect of the Substrate Concentration on the Conversion and the 
Enantioselectivity
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Scheme 4.79:  Effect of the substrate concentration on the catalytic transfer hydrogenation of -nitroacrylate 
121d. (Note: to facilitate the reading of this scheme, the enantioselectivities were expressed as enantiomeric 
excesses (ee) rather than enantiomeric ratios (er)). 

4.5.3.5 Optimization of the Work-Up of the Reaction 

Before extending our catalytic conjugate reduction to other -nitroacrylates, we intended to 

optimize the work-up of the reaction, as we observed that the enantiopurity of the product was 

lost during this process to some extent. Effectively, in order to decrease the rate of the 

background reaction, we performed the transfer hydrogenations at 0 °C. However, the work-

ups were done at room temperature, accelerating the background reaction, in cases where the 

conversion of the catalytic conjugate reduction was not complete and starting material as well 

as Hantzsch ester still remained in the reaction mixture. 
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When we were dealing with -nitroacrylates that had a lower reactivity and thus could not be 

fully converted to the saturated esters 119, we had to oxidize the remaining Hantzsch ester 

90c to the pyridine derivative 93c to prevent it from reacting with the left over substrate 

during the work-up. For this purpose we chose di-tert-butyl-azodicarboxylate (DBAD, 212), 

which was added to the reaction mixture at 0 °C. Under these conditions, DBAD is reduced to 

compound 213 through a transfer hydrogenation process by Hantzsch ester 90c (Scheme

4.80). It should be specify that this process had been developed in our laboratory and allows 

the oxidation of dyhydropyridines 90 within only a few minutes.  

Scheme 4.80:  Oxidation of the Hantzsch ester 90c to the pyridine derivative 93c in the presence of DBAD (212).

By oxidizing 90c, we were able to prevent the undesired background reaction from occuring 

during the work-up of the reaction (at room temperature). 

4.5.4 Investigation of the Reaction Scope 

According to the optimization of the catalyst, the solvent, the Hantzsch ester structure and 

concentration, the catalyst loading and the substrate concentration (see Chapters 4.5.2 and 

4.5.3) in the transfer hydrogenation of (Z)-ethyl 3-nitro-2-phenylacrylate (121d), the 

following protocol was subsequently used for investigating the scope of the reaction: Treating 

-nitroacrylates 121 (1.0 molar) with the commercially available Hantzsch ester 90c (1.0

equivalent) and thiourea catalyst 57b (10 mol%) at 0 °C in toluene for 24-48 hours gave the 

saturated esters 119 in good yields and with high enantioselectivities (Table 4.37). These 

reaction conditions are almost identical to the ones we had previously developed for the 

analogous reductions of unfunctionalized trisubstituted nitroolefins 120 (see Chapter 4.4.4, 

Table 4.25).
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Table 4.37:  Scope of the catalytic transfer hydrogenation of -nitroacrylates 121 

121
(c = 1.0 M)

N
H

CO2t-But-BuO2C
H H

90c
(1.0 equiv)

toluene, 0 °C, 24-48 h
+

CO2Et

NO2

CO2Et

NO2

119

N
N
H

N
H

S

O N
57b

(10 mol%)

a Isomeric purity > 98:2. bDetermined by chiral GC. c Yields determined by GC (volatile products).

Entry Yield [%] erbNitroacrylatea Nitroester

CO2R'

NO2

CO2R'

NO2

121c:
121d:
121b:
121e:

119c
119d
119b
119e

1
2
3
4

86
95
91
92

94:6
96:4
97:3
97:3

121h:
121i:
121j:
121k:

119h
119i
119j
119k

7
8
9
10

87
97
96
61

95:5
94:6
94:6
96:4

121l:

121m

119l

119m

11

12

85

83

97:3

96:4
CO2Et

NO2

CO2Et

NO2

121n: 119n14 91 97:3

S S

CO2Et

NO2

CO2Et

NO2

121o 119o

15 92 97:3

121a: 119a13 97 97:3

R

R R'

121f:
121g:

119f
119g

5
6

91
92

97:3
96:4

H
H
H
H
H

Me
Et
i-Pr
t-Bu
Bn
Etp-Me

p-MeO
p-F
p-Cl

Et
Et
Et

p-MeO t-Bu
t-Bup-F

R CO2Et R CO2Et

NO2O2N

R
Me
n-Pent

R

The thiourea-catalyzed conjugate reduction of the -nitroacrylates 121 worked well with a 

variety of substrates. The ester functionality of the phenyl-substituted derivatives 121c-f could
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be varied significantly without affecting the yield of the product, which was high in all the 

cases (entries 1-5). Interestingly, the enantioselectivity of the reaction increased slightly with 

the size and bulkiness of the ester group (entries 1-5). Electron-donating and withdrawing-

substituents at the para-position of the phenyl ring were well tolerated (entries 6-11), 

although a slight loss of reactivity was observed with a methoxy substituent, especially in the 

case of the tert-butyl ester-derived olefin 121k (entry 10). Heteroaryl-derived 121m was an 

equally suitable substrate (entry 12). Gratifyingly, branched as well as unbranched aliphatic -

nitroacrylates could be utilized as well, furnishing the corresponding -nitroesters in similarly 

high yields and enantioselectivities (entries 13-15). 

It is worth noting that the absolute configuration of compounds 121a, 121c and 121f was 

determined by comparing the value of their optical rotation or the one of the corresponding 
2-amino acids to the values reported in the literature (see experimental part, Chapter 7.6). 

The configuration of the other compounds was assigned by analogy. 

4.5.5 Development of a Stereoconvergent Process 

After evaluating the scope of the reaction, we investigated the effect of the -nitroacrylate 

geometry on the outcome of the catalysis (Scheme 4.81).  

(E)-121a
CO2Et

O2N

CO2Et

NO2

(Z)-121a

(R)-119a (97:3 er*)

(S)-119a (90:10 er*)

121a (E/Z = 1:1)

CO2Et

CO2Et

CO2Et

NO2

(R)-119a (55:45 er*)
CO2Et

as above

as above

N
H

CO2t-But-BuO2C

90c
(1.0 equiv)

toluene, 0 °C, 24-48 h

N
N
H

N
H

S

O N
57b

(5 mol%) NO2

NO2

NO2

(a)

(b)

(c)

Scheme 4.81: Effect of the substrate geometry on the catalytic transfer hydrogenation of the -nitroacrylate 121a.
(* Determined by chiral GC).
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As already observed in the transfer hydrogenations of enones (see Chapter 4.3.4.2) and 

nitroalkenes (see Chapter 4.4.4), the conjugate reduction of -nitroacrylates 121 was not 

stereoconvergent. As a result the enantioselectivity of the reaction strongly depended on the 

substrate geometry. Accordingly, nitroolefins (E)- and (Z)-121a afforded the product 119a

with (R)- and (S)-configuration, respectively (Scheme 4.81a,b). In both cases a high 

enantiomeric ratio was obtained. Accordingly, an equimolar mixture of the (E)- and (Z)-

isomers gave an essentially racemic product 119a (Scheme 4.81c). 

We then intended to establish stereoconvergence by adding a catalytic amount of a phosphine 

derivative to the reaction with a 1:1 mixture of (E)- and (Z)-121a (Table 4.38). Remarkably, 

by using 5 mol% of triphenylphosphine, we could strongly increase the enantioselectivity of 

the reaction from 55:45 er to 88:12 er (entries 1 and 2). An increase of the amount of 

triphenylphosphine did not lead to a further improvement of the selectivity (entry 3), even in 

the presence of 10 mol% of the thiourea catalyst 57b (entry 4). On the other hand, the process 

was not stereoconvergent in the presence of catalytic tributylphosphine (entry 5). At this 

point, we did not screen further phosphine derivatives. However, we assumed that it would be 

possible to establish a fully stereoconvergent system by optimizing further the reaction 

conditions and screening other phosphine derivatives.

Table 4.38:  Investigation to establish stereoconvergence 

Entry eraPR3

1
2

5

4

3

-

10

5

5
5

10

5

5

5
55:45

87:13

57:43

86:14

88:12

a Determined by chiral GC.

10

121a (E/Z = 1:1)
(c = 1.0 M)

CO2Et

NO2

(R)-119a
CO2Et

NO2

N
H

CO2t-But-BuO2C

90c
(1.0 equiv)

toluene, 0 °C, 24-48 h
90-95%

N
N
H

N
H

S

O N
57bPR3 ,

PR3 [mol%]

+

62b [mol%]

-

PPh3

PBu3

PPh3

PPh3
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As already mentioned in Chapters 4.3.7 and 4.4.6, we propose that the addition of a phosphine 

to our process creates a rapid equilibrium between (E)-121a and (Z)-121a via a conjugate 

addition/elimination pathway. Since the -nitroester with the (R)-configuration ((R)-119a)

was the major product under our reaction conditions, we can assume that the equilibrium 

favored the (E)-isomer of the -nitroacrylate ((E)-121a, Scheme 4.82). However, when 

mixing the (Z)-isomer of the -nitroacrylate ((Z)-121a) with triphenylphosphine in toluene at 

0 °C without Hantzsch ester 90c or catalyst 57b, no strong evidence for the isomerization of 

(Z)-121a to (E)-121a was observed. This led us to assume that catalyst 57b should also 

activate the -nitroacrylate toward the Michael addition of triphenylphosphine. Further 

experiments would be required to support this hypothesis. 

Scheme 4.82: Addition elimination of triphenylphosphine on the -nitroacrylate (Z)-121a through a 
Michael retro-Michael pathway.

4.5.6 Transfer Hydrogenation of -Nitroacrylates: a Route to ²-Amino 

Acids

When we developed an organocatalytic transfer hydrogenation of -nitroacrylates 121 to the 

corresponding -nitroesters 119, we envisioned it as a route to valuable chiral ²-amino acids 

122. Once our first objective was reached (i.e. the successful development of an efficient 

organocatalytic conjugate reduction of -nitroacrylates 121), we focused our work on our 

second goal: establishing a process for the conversion of the generated chiral -nitroesters 119

to their corresponding ²-amino acids 122 (Scheme 4.83).252

We were pleased to see that the hydrogenation of the benzylester-derived nitroester 119f in 

the presence of palladium directly afforded the free ²-amino acid (R)-122a without any loss 

of enantioselectivity (Scheme 4.83a). Starting from aromatic and aliphatic nitroesters, which 
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bore ester functionalities other than benzyl, the conversion into the corresponding ²-amino 

acids was successfully achieved through facile hydrogenation hydrolysis sequences (Scheme 

4.83b-c).

CO2Bn

NO2
H2, Pd/C

MeOH, rt
81%

CO2H

NH2

(S)-119f (S)-122f

1) NiCl2 6 H2O (1.1 equiv),
NaBH4 (5.0 equiv)
EtOH, - 15 °C, 15 min

2) LiOH (3.0 equiv), THF/H2O, rt, 6 h
CO2Et

NO2

CO2H

NH2

(S)-119d (S)-122d

CO2Et

NO2

CO2H

NH2

(R)-119a (R)-122a

1) H2, Pd/C, MeOH, rt, 12 h
2) 3N HCl, rt, 12h
3) DOWEX 1X40 -50, 1% ammonia

(a)

(b)

(c)

66% (over 2 steps)

42%

Scheme 4.83:  Synthesis of ²-amino acids 122 from their corresponding -nitroesters 119 via (a) hydrogenation 
or (b) and (c) a hydrogenation hydrolysis process.253 (The absolute configuration of compounds 122 was 
determined by comparing their optical rotation to that reported in the literature (see Chapter 7.6)). 

4.5.7 Mechanistic Considerations  

We assumed that the transfer hydrogenation of -nitroacrylates followed the same mechanism 

as the one involved in the conjugate reduction of nitroolefins 120, involving similar transition 

states K and L, where the R'-substituent of the nitroolefin is an ester functionality (see 

Chapter 4.4.5, Scheme 4.66). The -nitroacrylates 121 would be activated through hydrogen 

bonding interactions with the thiourea moiety of the catalyst 57b, lowering the LUMO energy 

of the nitroolefin. This would allow the hydride transfer to occur from the Re-face according 

to the catalytic cycle reported in Chapter 4.4.5 (Scheme 4.66).  
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4.5.8 Conclusion and Discussion

Our approach to chiral -nitroesters 119, as an intermediate toward the synthesis of ²-amino 

acids 122, took its inspiration from the Jacobsen-type thiourea-catalyzed -nitroolefin 120

reductions that we had previously developed (see Chapter 4.4).

Based on our previous results and after screening different thiourea motifs, we once again 

identified the Jacobsen-type thiourea 57b as the optimal catalyst (in terms of reactivity and 

enantioselectivity) for the highly enantioselective conjugate reduction of -nitroacrylates 121.

Treating these olefins (1.0 molar) with the commercially available Hantzsch ester 90c (1.0 

equivalent) and thiourea catalyst 57b (10 mol%) at 0°C in toluene gave the saturated ester 

119f in good yield and with high enantioselectivity (Scheme 4.84). By hydrogenating the -

nitroester 119f in the presence of a catalytic amount of palladium, we could directly obtain the 

free 2-amino acid (S)-122f.

N

O
N
H

N
H

S

NN
H

CO2t-But-BuO2C

90c (1.0 equiv),
57b (10 mol%)

Toluene, 0°C, 48 h
91%

O

CO2BnPh

1) CH3NO2,
Et3N (cat.)

2) Ac2O, DMSO CO2BnPh

NO2

57b90c

135f 121f
CO2BnPh

NO2

H2, Pd/C
MeOH
81%

119f

CO2HPh

NH2

(S)-122f
(97:3 er)

71%

Scheme 4.84:  Conjugate reduction of -nitroacrylates 121 to -nitroesters 119, as a key step for the synthesis of 
²-amino acids 122.

It has to be specified that in the case of -nitroesters with ester groups other than benzyl, the 

conversion into the corresponding ²-amino acids was facile too, involving a hydrogenation-

hydrolysis sequence (see Scheme 4.83). 

The key step of this process to chiral ²-amino acids was the asymmetric Hantzsch ester-

mediated catalytic conjugate reduction of -nitroacrylates 121 to -nitroesters 119. After the 

development and optimization of the transfer hydrogenation conditions (optimization of the 

catalyst structure and loading, solvent, substrate concentration, and Hantzsch ester structure 

and concentration, see Chapters 4.5.2 and 4.5.3), we were pleased to see that the reaction was 

rather general and worked well with a variety of substrates (see Table 4.37). The ester group 
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could be varied significantly as probed with phenyl-substituted derivatives 121b-f. While the 

yield was high in all cases, the enantioselectivity increased slightly with size and bulkiness of 

the ester moiety. Other aryl and hetero aryl groups could be utilized as well (121g-m), leading 

to the corresponding products in similarly high yields and enantioselectivities. Interestingly, 

not only aromatic -nitroacrylates were suitable, but also branched as well as unbranched 

aliphatic -nitroacrylates. 

We also investigated the effect of the -nitroacrylate olefin geometry on the outcome of the 

reaction (see Scheme 4.81). Once again, we observed that the enantioselectivity of the 

nitroolefin reductions strongly depended on the substrate olefin geometry (also see Chapter 

4.4.4). Accordingly, -nitroacrylates (E)- and (Z)-121a gave the opposite enantiomers of 

product 119a, each with high enantioselectivity, while an equimolar mixture of both isomers 

yielded essentially racemic 119a. Remarkably though, stereoconvergence could be established 

upon adding a catalytic quantity of triphenylphosphine, probably through a rapid equilibrium 

between (E)-121a and (Z)-121a via a conjugate addition/elimination pathway. Under our 

reaction conditions the isomer dominating the reaction was found to be the (E)-olefin. It 

reacted with thiourea catalyst 57b to afford the (R)-nitroester ((R)-121a) as the major product. 

Moreover, we successfully developed a simple and practical process for the preparation of the 

-nitroacrylates 121, which was based on a Henry reaction dehydration sequence. The -

ketoester 135 was first reacted with nitromethane in the presence of a catalytic amount of 

triethylamine, followed by dehydration of the resulting alcohol 209 with acetic anhydride. 

The desired -nitroacrylates 121 were obtained in good yields and high (Z)-stereoselectivity, 

as reported in Scheme 4.84 for the formation of (Z)-benzyl 3-nitro-2-phenylacrylate (121f).

Our organocatalytic asymmetric -nitroacrylates reduction achieves similar 

enantioselectivities as the recently developed biocatalytic version175a (see Chapter 2.4.2, 

Scheme 2.47) but has a significantly broader scope, since it is also suitable for aromatic -

nitroacrylates 121. It is also an elegant and concise alternative to the methodology developed 

by Gellmann et al.182b (see Chapter 3.3, Scheme 3.10). 

To summarize this project, we successfully developed a short new approach to enantiopure
2-amino acids. The key step in our methodology is a highly enantioselective and versatile 

thiourea-catalyzed conjugate reduction of -nitroacrylates 121 to their saturated derivatives 

119. In addition we have developed a convenient synthesis of the required -nitroacrylates 

121 via a Henry reaction followed by acetic anhydride-mediated dehydration. Moreover, the 

successful conversion of our reduction products into 2-amino acids 122 through a 
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hydrogenation process or a hydrogenation hydrolysis sequence was facile and efficient. As 

for the transfer hydrogenations that we reported in Chapters 4.3 and 4.4, the modest atom 

economy of this procedure is counterbalanced by the practical and convenient use of bench 

stable, crystalline Hantzsch esters and readily available reagents and catalysts. 
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5 Summary

This Ph.D. thesis describes the successful development of organocatalytic approaches to the 

synthesis of enantiomerically enriched saturated ketones as well as the preparation of chiral 

, -disubstituted nitroalkanes and also -nitroesters, which could be efficiently converted to 

the corresponding ²-amino acids. 

Inspired by Nature’s transfer hydrogenations by enzymes and NAD(P)H cofactors, we based 

our work on the establishment of biomimetic catalytic conjugate reductions of enones (107

and 113) and nitroolefins (120 and 121) to generate the desired enantiomerically enriched 

product (i.e. the saturated ketones 95 and 114 as well as nitroalkanes 116 and nitroesters 119).

For this purpose, our strategy was to replace the relatively expensive NAD(P)H by 

dihydropyridine 90 and to find active organocatalysts as enzyme analogs (Scheme 5.1).  

Scheme 5.1:  Hantzsch ester-mediated organocatalytic transfer hydrogenation of enones or nitroolefins. 

We first concentrated our work on the development of the Hantzsch ester-mediated transfer 

hydrogenation of , -unsaturated ketones 107 and 113. Motivated by the conjugate reduction 

of enals via iminium catalysis that had been previously developed in our laboratory,120b we 

focused our study on the investigation of primary amine  in particular amino esters  derived 

salts to activate the enones through the formation of an iminium ion intermediate. Among all 

the amines tested, valine tert-butyl ester 139a was superior in terms of reactivity and 

enantioselectivities (see Chapter 4.3.3.5, Table 4.9). 

During our experiments we observed that not only the structure of the primary amine had an 

effect on the efficiency of the catalytic salt, but also the counteranion. We then investigated 

several counteranions and in particular chiral BINOL-derived phosphates. (R)-TRIP ((R)-

126a) counteranion gave the highest enantioselectivities (see Chapter 4.3.2.4, Table 4.5).

The chirality present in the amino acid seemed to be required as glycine-derived catalyst [195

(R)-126a] gave significantly reduced enantioselectivity. Moreover, the phosphoric acid 
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derivative alone ((R)-126a, (R)-TRIP) was much less active than the amino acid ester salts 

and gave the product in only 40:60 er (see Chapter 4.3.3.5, Table 4.9). Interestingly, the 

product configuration was mainly determined by the amine geometry. Consequently, using 

the opposite enantiomeric counteranion ((S)-126a, (S)-TRIP), the same absolute configuration 

was generated in the product but with much lower enantioselectivity, illustrating a case of a 

matched/mismatched ion pair combination (see Chapter 4.3.2.2, Table 4.3). Accordingly, the 

catalytic system made of L-valine tert-butyl ester 139a and BINOL-derived phosphate (R)-

TRIP ((R)-126a) was chosen to catalyze the transfer hydrogenation of , -unsaturated 

ketones.

Using this catalytic salt at a loading of 5-10 mol%, we achieved an efficient and highly 

enantioselective transfer hydrogenation of enones through iminium catalysis in the presence 

of the commercially available Hantzsch ester 90a (Scheme 5.2 and Chapter 4.3.4.1, Table 

4.10). The reaction worked with a range of -substituted , -unsaturated cyclic ketones 107 as 

well as with , -disubstituted acyclic enones 113, although the acyclic saturated ketones 114

were formed with slightly lower enantioselectivities.  

Scheme 5.2:  Ammonium salt-catalyzed asymmetric transfer hydrogenation of enones. 
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Remarkably, the catalytic conjugate reduction could be successfully scaled up to a multi-gram 

scale reaction, without loss of reactivity or enantioselectivity, even by reducing the amount of 

(R)-TRIP ((R)-126a) to 2 mol% (see Chapter 4.3.5). 

Mechanistically, we believe that the reaction proceeds via an iminium phosphate ion pair 

stabilized by hydrogen bonding interactions with additional hydrogen bonding interactions 

between the phosphate counteranion and the Hantzsch ester. These assumptions were 

supported by monitoring the reaction with ESI-MS (see Chapter 4.3.6). 

Besides the asymmetric conjugate reduction of , -unsaturated ketones, we investigated the 

transfer hydrogenation of , -disubstituted nitroalkenes 120 to synthesize enantiomerically 

enriched , -disubstituted nitroalkanes 116.

For the development of this process, we evaluated the catalytic activity of various general or 

specific Brønsted acids. Thiourea derivatives identical or similar to those pioneered by 

Jacobsen et al., and in particular 50d and 57a, turned out to be the most effective catalysts 

(see Chapter 4.4.3.3, Table 4.21). Further structural fine-tuning of the thiourea 57a afforded 

the catalyst 57b, which proved to be optimal in terms of reactivity and enantioselectivity (see 

Chapter 4.4.3.3, Tables 4.22 and 4.23).

Using this hydrogen bonding catalyst (57b, 5 mol%) and the commercially available Hantzsch 

ester 90c, we successfully developed an efficient asymmetric transfer hydrogenation of 

nitroolefins 120. The process had a broad substrate scope and afforded the , -disubstituted 

nitroalkanes 116 in high yields and enantioselectivities with a number of -alkylsubstituted 

nitrostyrenes. Remarkably, aliphatic nitroalkenes were equally suitable substrates, even the 

ethylmethyl-disubstituted nitroolefin 120m (Scheme 5.3, see also Chapter 4.4.4, Table 4.25). 

The investigation of the aliphatic nitroolefin 120m indicated that the enantioselectivity and 

the conformation of the product 116m were strongly dependent on the olefin geometry (i.e. 

the reaction was not stereoconvergent (see Chapter 4.4.4, Table 4.26). For this reason, optimal 

enantiomeric ratios could only be reached by using the nitroolefins as a pure (E)- or (Z)-

isomer. 

Mechanistically, we assumed that the reaction proceeds via hydrogen bonding interactions 

between the thiourea moiety of the catalyst 57b and the nitro group of the nitroolefin 120.
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Scheme 5.3:  Hydrogen bond-catalyzed asymmetric transfer hydrogenation of nitroalkenes 120.

This efficient, versatile, and practical hydrogen bonding-catalyzed transfer hydrogenation of 

nitroolefins 120 to the corresponding nitroalkanes 116 inspired us to try the reaction with -

nitroacrylates 121 to prepare enantiomerically enriched -nitroesters 119, as a key step for the 

synthesis of ²-amino acids 122 (Scheme 5.4). 

Scheme 5.4:  Developed approach for the synthesis of ²-amino acids 122 with the hydrogen bonding-catalyzed 
transfer hydrogenation of -nitroacrylates 121 as the key step. 

Based on our previous results and after screening different thiourea motifs, we identified once 

again Jacobsen-type thiourea 57b as the optimal catalyst (in terms of reactivity and 

enantioselectivity) for the highly enantioselective conjugate reduction of -nitroacrylates 121

(see Chapter 4.5.2, Tables 4.30-4.32).
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Employing this catalyst (10 mol%) and the commercially available dihydropyridine 90c, we 

were able to prepare a variety of -nitroesters 119 in high yields and enantioselectivities. The 

reaction was rather general and worked well with a broad range of substrates (Scheme 5.5 and 

see Chapter 4.5.4, Table 4.37). The ester group could be varied significantly and different aryl 

and hetero aryl groups could be utilized, leading in all the cases to the formation of the 

desired product with high enantiomeric ratios. Gratifyingly, branched as well as unbranched 

aliphatic -nitroacrylates were equally suitable substrates.

The generated -nitroesters 119 were then easily converted to the corresponding 

enantiomerically enriched ²-amino acids 122 via a facile and efficient hydrogenation-

hydrolysis sequence (see Chapter 4.5.6, Scheme 4.81). In the case of the benzylester-derived 

-nitroester 119f, the free 2-amino acid (S)-122f was directly obtained by hydrogenation in 

the presence of a catalytic amount of palladium (Scheme 5.5).  
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Scheme 5.5:  Conjugate reduction of -nitroacrylates 121 to -nitroesters 119, as a key step for the synthesis of 
²-amino acids 122. (* In the case of 121m: Z/E > 98:2). 

We also investigated the effect of the -nitroacrylate geometry on the outcome of the reaction. 

Once again, we observed that the enantioselectivity of the transfer hydrogenation strongly 
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depended on the substrate olefin geometry. Remarkably though, stereoconvergence could be 

established upon adding a catalytic amount of triphenylphosphine, which probably induces a 

rapid equilibrium between (E)-121 and (Z)-121 via a conjugate addition/elimination pathway 

(see Chapter 4.5.5).

Additionally, we successfully established a practical and efficient synthesis of the -

nitroacrylates 121 from the corresponding -ketoesters 135. This optimized preparation of the 

olefins 121 was based on a Henry reaction, followed by dehydration with acetic anhydride, 

affording the desired olefins 121 in good yields and with a high (Z)-stereoselectivity (see 

Chapter 4.5.1.2). 

Mechanistically, we assumed that the reaction proceeded through a similar catalytic cycle as 

the one involved in the transfer hydrogenation of nitroolefin 120 (see Chapter 4.4.5, Scheme 

4.64).

Part of this work has been published in scientific journals: 

“Highly Enantioselective Transfer Hydrogenation of , -Unsaturated Ketones”:

N. J. A. Martin, B. List, J. Am. Chem. Soc. 2006, 128, 13368.

“Organocatalytic Asymmetric Transfer Hydrogenation of Nitroolefins”:  

N. J. A. Martin, L. Ozores, B. List, J. Am. Chem. Soc. 2007, 129, 8976. 

“Organocatalytic Asymmetric Transferhydrogenation of -Nitroacrylates: Accessing ²-

Amino Acids”:

N. J. A. Martin, X. Cheng, B. List, J. Am. Chem. Soc. 2008, 130, 13862. 
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6 Outlook

To improve the atom economy of our organocatalytic approaches for the transfer 

hydrogenation of olefins it would be of interest to regenerate the Hantzsch ester after the 

conjugate reduction is finished. The immobilization of the dihydropyridine on a solid support 

would facilitate their regeneration since it would be possible to isolate the pyridine derivative 

at the end of the reaction directly by filtration. It would then be simple to reduce this oxidized 

species for example with sodium cyanoborohydride.253 The immobilization of the Hantzsch 

esters at the 3-position should still allow hydrogen bonding interactions between the catalyst 

and the amine functionality of the dihydropyridine to occur (Figure 6.1).  

Figure 6.1:  Immobilization of dihydropyridine on a solid support. 

Another alternative to obtain more atom economic and thus more attractive processes would 

be to replace the Hantzsch ester by molecular hydrogen and perform the olefin 

hydrogenations in the presence of our organocatalysts in combination with a transition metal 

catalyst. We made a first attempt for the direct conjugate reduction of 3-methylcyclohexenone 

107b in the presence of our catalytic system ([139a (R)-126a], 20 mol%) with palladium on 

charcoal (5 mol%). Since the activation of enone 107b with palladium was faster than the 

activation of 107b with the chiral ammonium salt [139a (R)-126a], predominantly non-

asymmetric transfer hydrogenation took place, yielding saturated ketone 95b in excellent 

yield but almost racemically (Scheme 6.1). An enantioselective reaction can in principle be 

developed, by varying the structure of the metal-catalyst until conditions are found for which 

the iminium catalysis is the faster reaction.  
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Scheme 6.1: First attempt toward the direct hydrogenation of 3-methylcyclohexenone. 

The transfer hydrogenations of olefins that we reported are not enantioconvergent. This means 

that the substrates have to be used as pure (E)- or (Z)-isomers to be able to reach high 

enantioselectivities. Since the separation of both isomers is sometimes difficult to achieve, it 

would be convenient to develop stereoconvergent processes, allowing the employment of pure 

isomers as well as mixtures of (E)- and (Z)-isomers without affecting the enantiomeric ratios 

of the products. As shown for the conjugate reduction of -nitroacrylates, it is possible to 

induce stereoconvergence upon adding a catalytic amount of triphenylphosphine to the system 

(see Chapter 4.5.5). It would be of interest to first optimize this process by testing other 

phosphine derivatives and by varying the reaction conditions and to then apply it to the 

transfer hydrogenations of enones and nitroalkenes. 

6.1 Transfer Hydrogenation of , -Unsaturated Ketones

In future work, experiments to improve the activity of our catalytic salt [139a (R)-126a]

should be done, in order to reduce the reaction time and catalyst loading. Since we limited our 

investigation to chiral BINOL-derived counteranions, and especially BINOL phosphates ones, 

other counteranions (with or without phosphate functionality), should be screened. For these 

tests smaller chiral as well as achiral counteranions can be envisaged (e.g. naphthyl-, phenyl- 

or alkyl-substituted phosphate, sulfate or carbonate compounds). 

For the application of our methodology to the synthesis of an industrially relevant product, 

Muscone could serve as a target molecule. L-Muscone (214) is well-known as the pheromone 
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of the male musk deer and is considered as a very important musk because of its superior odor 

characteristics and environmental harmlessness. It is thus a fragrance of choice for the 

perfume industry. An asymmetric methylation of (E)-cyclopentadec-2-enone is one of the 

most effective routes to construct (R)-3-methylcyclopentadecanone (214, L-muscone). 254

Another strategy would be to prepare (E)-3-methylcyclopentadec-2-enone (215) from the 

commercially available cyclopentadecanone (216) via a dehydration methylation sequence 

and then to apply the condition of our transfer hydrogenation of enones to convert 215 to (R)-

3-methylcyclopentadecanone (214, L-muscone, Scheme 6.2). 

Scheme 6.2: Transfer hydrogenation of enone 215 via iminium catalysis as a key step for the synthesis of L-
muscone (214). 

To have more precise information about the mechanism of the reaction and the structure of 

the intermediates species as well as the hydrogen bonding involved during the conjugate 

reduction of enones, more thorough mechanistic studies would be required. For example it 

would be useful to obtain a crystal structure of the iminium intermediate D1 (see Chapter 

4.3.6, Scheme 4.48). To this end, the imine resulting from the condensation of 3-methyl-

cyclohexenone (107b) and valine tert-butyl ester (139a) should be formed and isolated. A 

subsequent addition of an equimolar amount of (R)-TRIP ((R)-126a) would generate the 

iminium salt D1 (Scheme 6.3). 
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Scheme 6.3: Preparation of the intermediate D1 for X-ray analysis. 

6.2 Transfer Hydrogenation of , -Disubstituted Nitroalkenes

The efficient strategy for the synthesis of , -disubstituted nitroalkanes would be even more 

attractive if an effective preparation of the nitroalkenes could be achieved. It would therefore 

be of interest to further investigate the base-catalyzed one-pot preparation of nitroolefins 120

from the corresponding ketones 204 in the presence of nitromethane via a nitroaldol (Henry) 

condensation (Scheme 6.4a). Another approach would be to apply the conditions established 

for the preparation of the -nitroacrylates 121a (i.e. a Henry reaction  dehydration sequence, 

see Chapter 4.5.1.2) to the formation of the nitroolefins 120 (Scheme 6.4b). 

Scheme 6.4: Optimization of the preparation of nitroolefin 120 via (a) Henry condensation or (b) a Henry 
reaction dehydration sequence.  

We observed that the substituents at the 2- and 5-positions of the pyrrolyl group of thiourea 

57b have a strong influence on the catalyst efficiency and a decrase of the bulkyness of the 

substituents lead to an increase of the reactivity and enantioselectivity of the catalyst (see 

Chapters 4.4.3.3 and 4.5.2). It would the be interesting to prepared thioureas 57m and 57n

(Figure 6.2) without susbtituents or with only one methyl substituent on the pyrrol 
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functionality and to test these catalysts in the transfer hydrogenation of nitroolefins, to see if 

the reaction conversions and enantiomeric excesses of the products could be further improved. 

Figure 6.2: Possibilities to improve the efficiency of thiourea catalyst 57b.

BINOL-derived dicarboxylic acid 157b proved to be a reactive catalyst for the transfer 

hydrogenation of nitroalkene 120a, leading to the formation of the corresponding nitroalkane 

in good yield (85%) and moderate enantioselectivity (71:29 er). This enantiomeric ratio could 

be improved by optimizing the substituents at the 3- and 3'-positions of the BINOL moiety of 

157b (Figure 6.3). In the same way, the bisthioureas 63 and 178 are suitable to activate the 

nitroolefin 120a and they are generally more active than monothioureas (see Chapter 4.4.2.3, 

Scheme 4.18). However, in the presence of these catalysts, the product was generated with 

only moderate selectivity. It would thus be of interest to optimize the structure of these 

bisthiourea compounds, for example by replacing the 3,5-bis(trifluoromethyl)phenyl 

substituents by pyrrol-1-ylcyclohexyl derivatives and/or amino amide groups (Figure 6.3). 

Since we observed that the bisthiourea catalysts with a fixed conformation were often more 

active than monothioureas, it would be interesting to prepare and test bisthioureas of type 218,

219 and 220, which are derived from 9,9-dimethyl-9H-xanthene, dibenzofuran and acridin-

9(10H)-one, respectively (Figure 6.4). 
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Figure 6.3: Possibilities for the optimization of the catalyst 157b, 63 and 178.
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Figure 6.4: New motifs of bisthiourea catalysts. 

Catalyst 218 can in principle be easily prepared by reacting diamine 221 with the desired 

isothiocyanate compounds. The diamine 221 can in turn be generated in four steps by double 

functionalization of the commercial 9,9-dimethylxanthene 222 according to the methodology 

reported by Barloy et al. (Scheme 6.5). 255   The carboxylation of 222 would afford the 

dicarboxylic acid 223, which would then be further converted to the dicarbamate 224 via a

Curtius rearrangement. Basic hydrolysis of 223 would lead to 9,9-dimethyl-9H-xanthene-4,5-

diamine (221). A similar procedure could be used for the synthesis of dibenzofuran diamine 

and acridin-9(10H)-one diamine, which could be further converted to the bisthiourea catalysts 

219 and 220.

O
NH HN

CO2CH2PhPhCH2O2C

O
CO2H CO2HO

1) n-BuLi, TMEDA

2) CO2

KOH

O
NH2 NH2

221

222 223
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1) DPPA, Et3N
2) PhCH2OH

Scheme 6.5: Preparation of the diamine 221 as linker for the bisthiourea catalyst 218.

To elucidate the exact mechanism of the transfer hydrogenation of nitroolefins 120 (as well as 

the -nitroacrylates 121) further mechanistic studies should be undertaken. For example, it 

would be interesting to perform the reaction in completely anhydrous conditions (e.g. in the 

presence of molecular sieves) as well as with different amounts of water (up to 1.0 equivalent 

with respect to the catalyst amount) to evaluate the influence of water on the catalyst activity. 
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We observed from our ESI-MS analyses that catalyst 57b might interact with the Hantzsch 

ester 90c during the transfer hydrogenation reaction. It would then be of interest to analyze 

deuterated toluene solution of 57c with different amounts of dihydropyridine 90c by NMR 

and examine the effect of the Hantzsch ester addition on the chemical shifts of the protons of 

the catalyst (especially on the protons of the thiourea moiety). Moreover, it would be useful to 

obtain a crystal structure of the intermediate F (see Chapter 4.4.5, Schemes 4.67 and 4.68), 

formed by the catalyst, nitroolefin and Hantzsch ester. To gain a more detailed insight into the 

reaction mechanism computational calculations would be needed. 

6.3 Transfer Hydrogenation of -Nitroacrylates: a Route to ²-

Amino Acids 

Organocatalysis is an attractive alternative to metal catalysis, especially for the synthesis of 

pharmaceuticals, for which the removal of potentially toxic metal impurities from the reaction 

product is crucial but often difficult to achieve. The development of a metal-free, 

organocatalytic asymmetric transfer hydrogenation of -nitroacrylates 121 to the 

corresponding -nitroesters 119, as a key step for the synthesis of ²-amino acids 122 is 

therefore a very useful and interesting strategy. However, the use of metal for the 

hydrogenation of nitroesters 119 to ²-amino acids 122 diminishes the benefits of the previous 

organocatalytic steps. It would then be of interest to develop a metal-free and environmentally 

friendlier hydrogenation of nitroesters 119 to ²-amino acids 122.

In theory, it would be also possible to directly convert the -nitroacrylates 121 to the 

corresponding enantiopure ²-amino acids 122 in a one-pot process, for example in the 

presence of molecular hydrogen and an appropriate catalyst (Scheme 6.6). It would be 

interesting to establish such an elegant and innovative strategy. 

Scheme 6.6: Direct catalytic hydrogenation of -nitroacrylates 121 to ²-amino acids 122.
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Even more challenging would be the development of a methodology for the catalytic 

reductive aminomethylation of ketones or -ketoacids in the presence of nitromethane and a 

hydrogen source (Scheme 6.7) in analogy to Nature’s enzymatic reductive amination of -

ketoacids with ammonia (see Chapter 3.3, Scheme 3.11) 

Scheme 6.7: Catalytic reductive aminomethylation. 
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7 Experimental Part

7.1 General Experimental Conditions

7.1.1 General mode of operation

All reactions were carried out under an atmosphere of argon in dried solvents and oven dried 

glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from 

commercial suppliers and used without further purification. The solvents and reagents were 

added to the reaction mixtures using dried syringes or cannulae. Unless otherwise stipulated, 

the aqueous solutions of sodium chloride, sodium bicarbonate, sodium hydroxide, and 

ammonium chloride were used as saturated solutions. The organic solutions were 

concentrated under reduced pressure on a Büchi rotary evaporator. 

Solvents

Dried dibutyl ether, 1,4-dioxane, tert-butanol, and DMSO were purchased from Sigma-

Aldrich and used without further purification. All other solvents were obtained by distillation 

over appropriate drying agent (see below) and then kept under an atmosphere of argon: 

acetone (calcium hydride), acetonitrile (calcium hydride), benzene (calcium hydride), 

chloroform (calcium hydride), dichloromethane (calcium hydride), diethyl ether 

(sodium/potassium-alloy), diisopropylamine (calcium hydride), ethanol (magnesium), hexane 

(sodium/potassium-alloy), methanol (magnesium), pentane (sodium/potassium-alloy), 

tetrahydrofuran (sodium/potassium-alloy), toluene (sodium/potassium-alloy) and 

triethylamine (calcium hydride). 

Chromatographic methods 

The reactions were monitored by thin-layer chromatography (TLC) using silica gel precoated 

glass plates (20 cm x 20 cm, 0.25 mm thickness, silica gel 60F-254, E. Merck) or silica gel 

precoated aluminium foil plates (40 mm x 80 mm, 0.20 mm thickness, Polygram SIL 

G/UV254, Macherey-Nagel) and mixtures of ethyl acetate/hexanes, diethyl ether/pentane or 

methanol/dichloromethane as eluent. The chromatograms were visualized by fluorescence 

quenching with UV light at 254 nm and/or by staining with ninhydrin, vanillin, anisaldehyde, 

phosphomolybdic acid or potassium permanganate stains.  
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Flash column chromatography was performed using silica gel 60 (type 9385, 230-400 mesh, 

particle size 0.040–0.063 mm, pore diameter 60 Å, Merk). Pure solvent (hexanes or pentane) 

or solvent mixtures (ethyl acetate/hexanes, diethyl ether/pentane or 

methanol/dichloromethane) were used as eluent.  

7.1.2 Analytical Methods

NMR-Spectroscopy

The 1H-, 13C-NMR spectra were recorded at room temperature in CDCl3 (unless otherwise 

noted) on Bruker DPX-300 (1H: 300 MHz; 13C: 75 MHz), AV-400 (1H: 400 MHz; 13C:      

100 MHz) or AV-500 (1H: 500 MHz; 13C: 125 MHz) spectrometers. The chemical shifts for 

the protons and the carbons are reported in parts per million (  ppm) and are relative to 

tetramethylsilane (TMS) with the resonance of the deuterated solvent as the internal standard 

(e.g. with CDCl3:  7.26 ppm for 1H-NMR and  77.0 ppm for 13C-NMR). The 1H-NMR data 

are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, q = quartet, qt = 

quintet, m = multiplet; br = broad), coupling constants (J) in Hertz (Hz) and assignment (Ar = 

aromatic, Cq = quaternary carbon, cycl. = cyclic, pyr. = pyrrolyl).  

Gas Chromatography (GC) 

Analytical gas chromatography (GC) was performed on Hewlett-Packard 6890 and 5890 

Series gas chromatographs equipped with a split-mode capillary injection system and flame 

ionization detectors.  The enantiomeric ratios of chiral molecules were measured using chiral 

columns containing the following chiral stationary phases:  

- BGB 176: 6-tert-butyl-dimethylsilyl- -cyclodextrin (chiral component) and SE 52 or 

BGB-15 (achiral component), 30 m × 0.25 mm × 0.25 m. 

- BGB 178: 6-tert-butyl-dimethylsilyl- -cyclodextrin (chiral component) and OV 1701 

(achiral component), 30 m × 0.25 mm × 0.25 m.

- G-TA: -cyclodextrin trifluoracetyl (only chiral), 30 m × 0.25 mm × 0.25 m.

- Ivadex-1: dimethylpentyl- -cyclodextrin (chiral component) and PS086 (achiral 

component), 25 m × 0.25 mm × 0.25 m.  

- Ivadex-7: diethyl-tert-butyl-dimethyl- -cyclodextrin (only chiral), 25 m × 0.25 mm ×

0.25 m.  
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- Lipodex-A: hexakis-2,3,6-tri-O-pentyl- -cyclodextrin (only chiral), 25 m × 0.25 mm ×

0.25 m. 

- Lipodex G: octakis-2,3-O-dipentyl-6-O-methyl- -cyclodextrin (only chiral), 25 m ×

0.25 mm × 0.25 m. 

- Hydrodex -TBDAC: heptakis-(2,3-di-O-acetyl-6-O-tert-butyldimethyl-silyl)- -cyclo-

dextrin (only chiral), 25 m × 0.25 mm × 0.25 m.

High performance liquid chromatography (HPLC) 

For some products, the separation of the (R)- and (S)-enantiomers and the determination of the 

enantiomeric ratios were done by analytical HPLC. The measurements were performed on a 

Shimadzu LC-20AD HPLC-system equipped with a spectrophotometric detector (monitoring 

at 220 nm or 254 nm) using Daicel chiral columns containing the following chiral stationary 

phases:

- Chiralpak AS-H: 1-phenylethylcarbamate of amylase, 25 cm × 0.46 cm.  

- Chiralcel OD-H: 3,5-dimethylphenylcarbamate of cellulose, 25 cm × 0.46 cm.  

- Chirobiotic T2: teicoplanin, 25 cm × 0.21 cm. 

The separation of the (E)- and (Z)-isomers of the compound 120m was performed by 

preparative HPLC on a Shimadzu LC-8A HPLC-system equipped with a FRC-10A fraction 

collector and a BIAX column (125 mm x 20 mm) and pentane as the mobile phase. 

Mass Spectrometry (MS) 

The mass spectra were measured on Finnigan MAT 8200 (70 eV) or MAT 8400 (70 eV) by 

electron ionization, chemical ionization, of fast atom/ion bombardment techniques. Accurate 

mass determinations were obtained on a Bruker APEX III FT-MS (7 T magnet).  

The mechanism of the transfer hydrogenations of enone 107b and nitroalkene 120a was 

investigated by ESI-MS with a Finnigan Ultra Mass TSQ 7000.

Gas Chromatography with Mass Spectrometric Detector (GC/MS) 

The GC/MS spectra were measured on Agilent Technolgy GC 6890 Series and MSD 5973 

(using helium as carrier gas) with HP6890 Series Injector. For these measurements a Hewlett

Packard HP-5 column (crosslinked silicone gum capillary column: 30 m × 0.32 mm ×      

0.25 m) was used.
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Melting point (m.p.) 

The melting points were measured on a Büchi 540 melting point apparatus in an open glass 

capillary and are uncorrected. 

Specific Rotation ([ ])

The optical rotations ( ) were measured on a Perkin-Elmer polarimeter model 343 at a 

wavelength of 589 nm (sodium D line, D) and at 20 °C using a 1 mL cell with a 1 dm path 

length (l). The measurements were carried out in different solvents, which are specified for 

each specific rotation. The sample concentrations (c) are given in g/100 mL. The specific 

rotations ( 20
D][ , in 10-1 deg cm2 g-1) are calculated using the following equation (eq. 1):

                         (eq.1)[ ] =20

D

20
D 100

c [g/100 mL] l (dm)
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7.2 Synthesis of Organocatalysts for the Transfer Hydrogenation 
of Enones

Only the syntheses that were undertaken by the author of this Ph.D. thesis as well as the 

preparation of (R)-TRIP ((R)-126a), which was partially carried out with S. Marcus, are 

reported in this chapter. The syntheses of compounds (e.g. BINOL derived counteranions 

126b-g) that were performed by colleagues, and syntheses that M. Hannappel carried out 

following the procedures provided by the author of this Ph.D. work are not reported in this 

chapter.

7.2.1 Synthesis of Amino Esters

All amino esters reported in this section are known compounds. The obtained physical data 

were identical in all respects to those previously reported in the literature, in the case such 

data were provided. 

7.2.1.1 Synthesis of L-tert-Leucine Methyl Ester (137a)206

A suspension of L-tert-leucine (136, 5.00 g, 38.12 mmol, 1.0 equiv) in dried methanol (80 

mL) was stirred at 0 °C for 5 minutes. Thionyl chloride (8.3 mL, 114.36 mmol) was then 

slowly added to the suspension, leading to the homogenization of the solution. The reaction 

mixture was stirred at room temperature for 20 hours. After the addition of a saturated 

solution of sodium bicarbonate (40 mL) and ethyl acetate (40 mL), the organic and aqueous 

phases were separated. The aqueous layer was then extracted with ethyl acetate (3 × 40 mL). 

The combined organic phases were dried over magnesium sulfate, filtered and concentrated in

vacuo. The crude product was purified by flash chromatography (10-30% of ethyl acetate in 

hexanes) to provide L-tert-leucine methyl ester (137a, 1.69 g, 11.64 mmol, 31% yield) as a 

pale yellow oil.  
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137a: C7H15NO2 (145.20 g/mol); 1H NMR (400 MHz, CDCl3):  3.67 (s, 3H, OCH3), 3.13 (s, 

1H, CHNH2), 1.57 (br s, 2H, NH2), 0.93 (s, 9H, C(CH3)3); 13C NMR (100 MHz, CDCl3):

175.4 (C=O), 63.4 (CHNH2), 51.3 (OCH3), 34.3 (C(CH3)3), 26.5 (C(CH3)3); MS (EI, 70 eV): 

m/z (%) = 146 (0.09), 115 (10), 89 (100), 57 (51), 41 (50), 28 (20). 

7.2.1.2 Synthesis of L-tert-Leucine tert-Butyl Ester (137b)208

Concentrated sulfuric acid (5.0 mL; 1 mL/g of amino acid) was slowly added to a suspension 

of L-tert-leucine (136, 5.00 g, 38.12 mmol, 1.0 equiv) in dioxane (45 mL, 5-10 mL/g amino 

acid), followed by the addition of an equal volume of condensed 2-methylpropene (45 mL). 

The reaction mixture was stirred at room temperature, leading to the formation of a highly 

viscous mixture, which solidified. As a result, after ca. 1.5 hours the mixture could not be 

further stirred. The reaction was then stopped and carefully quenched with sodium hydroxide 

(2 N, 60 mL), which dissolved the solid. The organic and aqueous phases were separated and 

the aqueous layer was extracted with diethyl ether (3 × 50 mL). The combined organic phases 

were dried over magnesium sulfate, filtered and concentrated in vacuo. The crude product was 

purified by flash chromatography (12% of ethyl acetate in hexanes) to provide the title 

compound (137b, 1.71 g, 9.13 mmol, 24% yield) as a pale yellow oil. 

137b: C10H21NO2 (187.28 g/mol); 1H NMR (300 MHz, CDCl3):  2.99 (s, 1H, CHNH2), 1.52 

(brs, 2H, NH2), 1.44 (s, 9H, C(CH3)3), 0.94 (s, 9H, C(CH3)3); 13C NMR (75 MHz, CDCl3):

174.1 (C=O), 83.6 (OC(CH3)3), 63.9 (CHNH2), 34.3 (C(CH3)3), 28.1 (OC(CH3)3), 26.6 

(C(CH3)3); MS (EI, 70 eV): m/z (%) = 188 (8), 158 (41), 132 (52). The physical data were 

identical in all respects to those previously reported.256
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7.2.1.3 Synthesis of L-Valine tert-Butyl Ester (139a)208

According to the procedure reported in Chapter 7.2.1.2, 2-methylpropene (70 mL, condensed 

at -78 °C) was carefully added to a suspension of L-valine (140, 7.00 g, 59.75 mmol,           

1.0 equiv) in dioxane (70 mL) and concentrated sulfuric acid (7.0 mL). The reaction mixture 

was stirred at room temperature for two hours and then quenched with sodium hydroxide (2 

N, 100 mL), leading to the formation of a precipitate which was dissolved by adding diethyl 

ether. The two phases were separated and the aqueous layer extracted with diethyl ether (3 × 

100 mL). The combined organic layers were dried over magnesium sulfate, filtered and 

concentrated in vacuo. The crude amino ester was purified by flash chromatography (1% of 

methanol in dichloromethane) to provide L-valine tert-butyl ester (139a, 3.71 g, 21.41 mmol, 

36% yield) as a pale yellow oil.

139a: C9H19NO2 (173.25 g/mol); 1H NMR (300 MHz, CDCl3):  3.16 (d, J = 4.8 Hz, 1H, 

CHNH2), 2.00-1.96 (m, 1H, CH(CH3)2), 1.54 (brs, 2H, NH2), 1.46 (s, 9H, C(CH3)3), 0.96 (d, 

J = 6.9 Hz, 3H, CH(CH3)2), 0.89 (d, J = 6.9 Hz, 3H, CH(CH3)2); 13C NMR (75 MHz, 

CDCl3):  174.7 (C=O), 80.8 (OC(CH3)3), 60.3 (CHNH2), 32.1 (CH(CH3)2), 28.1 (C(CH3)3),

19.3 (CH(CH3)2), 17.0 (CH(CH3)2); MS (EI, 70 eV): m/z (%) = 174 (0.01), 130 (0.3), 116 

(0.3), 102 (1). 72 (100), 55 (27), 41 (17), 29 (9); HRMS (EIpos) calcd for ([C9H19NO2+Na]+):

196.1308, found: 196.1308. The physical data were identical in all respects to those 

previously reported.257

7.2.1.4 Preparation of Free Amino Esters from their Corresponding 
Hydrochloride Salts (139a) 

Preparation of L-valine tert-butyl ester (139a) 
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L-Valine tert-butyl ester hydrochloride ([139a HCl], 1.00 g, 4.77 mmol, 1.0 equiv) was 

dissolved under stirring in water (13 mL). An aqueous solution of potassium hydroxide (2 N, 

3.0 mL) was added to the solution until a basic pH was reached. The aqueous and organic 

layers were then separated and the aqueous phase was extracted with dichloromethane (3 ×   

20 mL). The combined organic layers were washed with water (20 mL), dried over 

magnesium sulfate and filtered. The filtrate was then concentrated in vacuo to give the free 

amine 139a (0.82 g, 4.76 mmol, >99%) as a pale yellow oil. The physical data were identical 

in all respects to those previously reported in Chapter 7.2.1.3. 

Following the procedure reported for the preparation of the free L-valine tert-butyl ester 

(139a) from [139a HCl], alanine, valine, phenylalanine and phenylglycine derived salts 

(141a-b, 139b, 142 and 143, respectively) were converted to the free amino esters. They were 

then treated in situ with TFA or TRIP (1.0 equiv) to generated their corresponding 

trifluoroacetate salts and test their activity for the transfer hydrogenations of 3-

methylcyclohexenone (107b, see Chapter 7.4.3).

7.2.2 Synthesis of the Amino Amides 144a and 147 

7.2.2.1 Synthesis of L-tert-leucine-N,N-dimethylamide (144a)209,210

Preparation of N-Boc-L-tert-leucine (145):209 Boc2O (23.96 g, 109.78 mmol, 1.2 equiv) was 

added to a solution of L-tert-leucine (136, 12.00 g, 91.48 mmol, 1.0 equiv) and sodium 

hydroxide (4.39 g, 109.78 mmol, 1.2 equiv) in a mixture of water and tert-butanol (120 mL of 

each). The reaction mixture was stirred at room temperature for two days. The organic and 

aqueous phases were then separated and the aqueous layer extracted with ethyl acetate (3 x 

200 mL). The combined organic layers were extracted with a saturated solution of sodium 

bicarbonate (3 × 100 mL).  The combined aqueous layers were acidified with hydrochloric 

acid (2N) until pH of 1.5-2.0 was reached and extracted with ethyl acetate (4 × 100 mL). 
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Finally, the combined organic layers were washed with brine (100 mL), dried over 

magnesium sulfate, filtered and concentrated in vacuo. The crude Boc-protected amino acid 

was purified by flash chromatography (50% of ethyl acetate in hexanes) to provide N-Boc-L-

tert-leucine (145, 20.51 g, 88.68 mmol, 97% yield) as a colorless solid.

145: C11H21NO4 (231.29 g/mol); m.p.: 119-124 °C; 1H NMR (300 MHz, CDCl3):  11.55 

(brs, 1H, CO2H), 5.11 (br d, J = 9.5 Hz, 1H, NHBoc), 4.11 (d, J = 9.5 Hz, 1H, CHNHBoc), 

1.44 (s, 9H, OC(CH3)3), 1.27 (s, 9H, C(CH3)3); 13C NMR (75 MHz, CDCl3):  176.8 (C=O),

155.6 (C=O), 80.0 (OC(CH3)3), 61.6 (CHNHBoc), 34.5 (CC(CH3)3), 28.3 (C(CH3)3), 26.5 

(C(CH3)3); MS (EI, 70 eV): m/z (%) = 231 (0.3), 186 (1), 175 (22), 160 (4), 130 (16), 119 

(97), 101 (37), 86 (9), 75 (12), 57 (100), 41 (18), 29 (9); HRMS (EIpos) calcd for 

([C11H21NO4+Na]+): 254.1363, found: 254.1364. 

Preparation of N-Boc-L-tert-leucine dimethylamide (146a): L-tert-Leucine 

dimethylamide (144a) was synthesized in analogy to the reported 

procedure.210 DCC (2.14 g, 10.38 mmol, 1.2 equiv) was added to a solution of 

N-Boc-L-tert-leucine (145, 2.00 g, 8.65 mmol, 1.0 equiv) in dichloromethane (12 mL) at 0 °C, 

followed by the addition of a catalytic amount of DMAP (11 mg, 0.09 mmol, 0.01 equiv). 

After a few minutes a dichloromethane (4 mL) solution of dimethylamine (1.1 mL,          

21.62 mmol, 2.5 equiv) was added. The mixture was stirred for 48 hours at room temperature 

and then filtered through celite. The solid residue was washed with ethyl acetate and the 

resulting filtrate concentrated under reduced pressure. The crude product was purified by flash 

column chromatography (15% of ethyl acetate in hexanes) yielding N-Boc-L-tert-leucine

dimethylamide (146a, 1.80 g, 6.97 mmol, 81%) as a colorless solid.

146a: C13H26N2O3 (258.36 g/mol); m.p.: 35-40 °C; 1H NMR (400 MHz, CDCl3):  5.33 (brd, 

J = 9.7 Hz, 1H, NHBoc), 4.51 (d, J = 6.1 Hz, 1H, CHNHBoc), 3.12 (s, 3H, NCH3), 2.95 (s, 

3H, NCH3), 1.41 (s, 9H, OC(CH3)3), 0.96 (s, 9H, C(CH3)3); 13C NMR (100 MHz, CDCl3):

171.9 (C=O), 156.0 (C=O), 79.2 (OC(CH3)3), 55.8 (CHNHBoc), 38.3 (NCH3), 35.7 

N

O

BocHN
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(CC(CH3)3), 35.5 (NCH3), 28.3 (C(CH3)3), 26.5 (C(CH3)3); MS (EI, 70 eV): m/z (%) = 258 

(3), 186 (45), 146 (33), 130 (71), 112 (4), 101 (10), 86 (100), 72 (32), 57 (87), 41 (16), 29 

(10); HRMS (EIpos) calcd for ([C13H26N2O3+Na]+) 281.1836, found: 281.1834. 

Preparation of L-tert-leucine dimethylamide (144a): Boc-L-tert-leucine

dimethylamide (146a, 1.70g, 6.58 mmol) was then deprotected in neat TFA. 

For this purpose a slow addition of TFA (10.0 mL, 101.17 mmol, 15.0 equiv)

was performed at 0°C. The reaction was stirred at room temperature for 30 minutes. The 

volatile compounds were removed in vacuo and the residue was dissolved in water and treated 

with an aqueous solution of potassium hydroxide (10%) at 0 °C to reach a basic pH. 

Dichloromethane (30 mL) was added to the solution and the two resulting layers were 

separated. The aqueous phase was then extracted with dichloromethane (3 × 30 mL). The 

combined organic layers were dried over magnesium sulfate, filtrated and concentrated in 

vacuo. The crude product was purified by flash chromatography (5% of methanol in 

dichloromethane) giving L-tert-leucine dimethylamide (144a, 1.00g, 6.32 mmol, 96%) as 

colorless oil.  

144a: C8H18N2O (258.25 g/mol); 1H NMR (400 MHz, CDCl3):  3.54 (s, 1H, CHNH2), 3.06 

(s, 3H, NCH3), 2.94 (s, 3H, NCH3), 1.91 (br s, 2H, NH2), 0.95 (s, 9H, C(CH3)3); 13C NMR

(100 MHz, CDCl3):  174.3 (C=O), 57.5 (CHNH2), 38.0 (NCH3), 35.5 (C(CH3)3), 35.2 

(NCH3), 26.2 (C(CH3)3); MS (EI, 70 eV): m/z (%) = 158 (1), 101 (25), 86 (100), 69 (15), 57 

(6), 46 (27), 41 (11),  30 (6); HRMS (EIpos) calcd for ([C8H18N2O+Na]+): 181.1311, found: 

181.1313. The physical data were identical in all respects to those previously reported.98

N

O

NH2
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7.2.2.2 Synthesis of (S)-N2,N2-dimethyl-1,1'-binaphthyl-2,2'-diamine ((S)-147)106

NHAc

N

NH2
NH2

(S)-150(S)-148

Ac2O, AcOH

CH2Cl2, rt, 17 h

NHAc
NH2

aq. HCHO,
NaBH3CN, AcOH

THF, rt, 6 h

(S)-149

NH2

N

(S)-147

HCl (4 N)

EtOH,reflux, 7 h

Preparation of (S)-N-(2'-amino-1,1'-binaphthyl-2-yl)acetamide ((S)-

149):106 To a solution of (S)-1,1'-binaphthyl-2,2'-diamine ((S)-148, 0.50 g, 

1.76 mmol, 1.0 equiv) and acetic acid (1.0 mL, 17.58 mmol, 10.0 equiv) 

in dichloromethane  (20 mL) was added acetic anhydride (166 L, 1.76 

mmol, 1.0 equiv) at 0 °C. The resulting solution was stirred at room temperature for twelve 

hours. A solution of sodium hydroxide (2 N) was then added to adjust the pH of the solution 

to 7. The two resulting layers were then separated and the aqueous phase was extracted with 

dichloromethane (3 × 50 mL).  The combined organic layers were washed with brine and 

dried over magnesium sulfate. After the solvent was removed in vacuo, the crude product was 

purified by flash chromatography (30-50% of ethyl acetate in hexanes) to afford the amino 

acetamide (S)-149 (0.46 g, 1.41 mmol, 80%) as a colorless oil. 

(S)-149: C22H18N2O (326.39 g/mol); 1H NMR (400 MHz, CDCl3):  8.63 (d, J = 8.9 Hz, 1H, 

CHAr), 8.00-7.80 (m, 4H, CHAr), 7.40-6.91 (m, 7H, CHAr), 7.01 (br s, 1H, NHAc), 3.60 (brs, 

2H, NH2), 1.83 (s, 3H, CCH3); 13C NMR (100 MHz, CDCl3):  168.8 (C=O), 142.4 (CqAr),

135.1 (CqAr), 133.6 (CqAr), 132.4 (CqAr), 131.3 (CAr), 130.4 (CAr), 129.3 (CAr), 128.4 (CAr),

128.2 (CAr), 128.2 (CAr), 127.3 (CAr), 126.8 (CAr), 125.4 (CAr), 125.1 (CAr), 123.7 (CHAr),

122.9 (CHAr), 121.0 (CHAr), 120.6 (CHAr), 118.2 (CHAr), 111.0 (CHAr), 24.6 (CH3); MS (EI,

70 eV): m/z (%) = 326 (53), 284 (28), 267 (100), 239 (4).   

NHAc
NH2
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Preparation of (S)-N-(2'-(dimethylamino)-1,1'-binaphthyl-2-yl)acetamide 

((S)-150):106 Amino acetamide (S)-149 (0.45 g, 1.38 mmol, 1.0 equiv) 

and aqueous formaldehyde (37%, 1.20 mL, 15.90 mmol, 11.5 equiv) 

were combined in THF (10 mL) and stirred for 15 minutes. Sodium 

cyanoborohydride (0.60 g, 9.51 mmol, 6.9 equiv) was added. The solution was stirred for     

15 minutes and acetic acid (1.8 mL) was added. The resulting solution was stirred for four 

hours at room temperature. A solution of sodium hydroxide (2 N) was then added to adjust the 

pH of the solution to 7. The two resulting layers were then separated and the aqueous phase 

was extracted with dichloromethane (3 × 50 mL).  The combined organic layers were washed 

with brine and dried over magnesium sulfate. After the solvent was removed in vacuo, the 

crude product was purified by flash chromatography (5-20% of ethyl acetate in hexanes) to 

afford the dimethylamino acetamide (S)-150 (0.41 g, 1.14 mmol, 83%) as a brown solid. 

(S)-150: C24H22N2O (354.44 g/mol); 1H NMR (400 MHz, CDCl3):  8.45 (d, J = 8.9 Hz, 1H, 

CHAr), 7.95-7.85 (m, 4H, CHAr), 7.48 (br s, 1H, NHAc), 7.49-7.11 (m, 6H, CHAr), 6.92 (d, J

= 8.6 Hz, 1H, CHAr), 2.56 (s, 6H, N(CH3)2), 1.75 (s, 3H, CCH3); 13C NMR (100 MHz, 

CDCl3):  168.3 (C=O), 149.0 (CqAr), 133.7 (CqAr), 133.4 (CqAr), 131.2 (CqAr), 130.2 (CAr),

129.2 (CAr), 128.6 (CAr), 128.3 (CAr), 127.9 (CAr), 127.1 (CAr), 126.8 (CAr), 126.4 (CAr), 125.3 

(CAr), 124.8 (CAr), 124.0 (CHAr), 122.8 (CHAr), 122.1 (CHAr), 121.6 (CHAr), 118.8 (CHAr),

113.2 (CHAr), 43.4 (NCH3), 24.6 (CCH3); MS (EI, 70 eV): m/z (%) = 354 (79), 340 (7), 311 

(20), 294 (21), 281 (24), 267 (27), 198 (25), 157 (100). 

Preparation of (S)-N,N-dimethyl-1,1'-binaphthyl-2,2'-diamine ((S)-147):106

To a solution of acetamide (S)-150 (0.40 mg, 1.13 mmol) in ethanol       

(35 mL) was added a solution of hydrochloric acid (4 N, 13 mL). The 

resulting solution was stirred under reflux for seven hours.  A solution of 

sodium hydroxide (2 N) was then added to adjust the pH of the solution to 7. The two 

resulting layers were then separated and the aqueous phase was extracted with 

dichloromethane (3 × 50 mL).  The combined organic layers were washed with brine and 

dried over magnesium sulfate. After the solvent was removed in vacuo, the crude product was 

purified by flash chromatography (10% of ethyl acetate in hexanes) to afford the free 

dimethylamino amine (S)-147 (0.35 g, 1.12 mmol, quant.) as a colorless oil. 

NHAc

N

NH2

N



7 Experimental Part 

 - 191 -  

(S)-147: C22H20N2 (312.40 g/mol); 1H NMR (400 MHz, CDCl3):  7.85 (d, J = 8.9 Hz, 1H, 

CHAr), 7.81-7.75 (m, 3H, CHAr), 7.50 (br d, J = 8.9 Hz, 1H, CHAr), 7.20-7.08 (m, 6H, CHAr),

6.97 (d, J = 8.2 Hz, 1H, CHAr), 3.60 (brs, 2H, NH2), 2.57 (s, 6H, N(CH3)2); 13C NMR (100 

MHz, CDCl3):  150.6 (CqAr), 142.0 (CqAr), 134.3 (CqAr), 133.6 (CqAr), 129.4 (CAr), 129.0 

(CAr), 128.2 (CAr), 128.0 (CAr), 128.0 (CAr), 127.8 (CAr), 126.6 (CAr), 126.3 (CAr), 124.9 (CAr),

124.7 (CHAr), 123.9 (CHAr), 122.1 (CHAr), 119.7 (CHAr), 118.3 (CHAr), 116.9  (CHAr), 43.1 

(NCH3); MS (EI, 70 eV):: m/z (%) = 312 (100), 294 (8), 280 (22), 268 (27), 239 (5), 157 (61), 

140 (8), 127 (6); HRMS (EIpos) calcd for ([C22H20N2+H]+): 313.1699, found: 313.1698. The 

physical data were identical in all respects to those previously reported.106 

7.2.3 Synthesis BINOL Derived (R)-TRIP ((R)-126a)

Br

Br

OMe
OMe

OH
OH

(R)-152

MeI, K2CO3

acetone
reflux, 48 d

OMe
OMe

1) n-BuLi, TMEDA
Et2O, rt, 3h

2) Br2, -78 °C to rt
4 h

(R)-153 (R)-155

OH
OH

(R)-151a

i-Pri-Pr

i-Pr
BrMg

i-Pr
i-Pr

i-Pri-Pr

i-Pr

i-Pr

156

1) POCl3, pyridine,
reflux, 24 h

2) H2O, reflux, 24 h
3) 1N HCl

(R)-126a

O
O

i-Pr
i-Pr

i-Pri-Pr

i-Pr

i-Pr

P
O

OH

1)

Ni(PPh3)2Cl2 (10 mol%)
Et2O, reflux, 8 h

2) BBr3, CH2Cl2, rt, 24 h

Preparation of (R)-2,2'-dimethoxy-1,1'-binaphthyl ((R)-153): A suspension 

of (R)-BINOL ((R)-152, 5.10 g, 17.81 mmol, 1.0 equiv) was heated at 

reflux in acetone (40 mL) to give a homogeneous solution. To this 

solution were added potassium carbonate (8.30 g, 60.00 mmol, 3.4 equiv) 

and methyl iodide (9.94 g, 70.00 mmol, 3.9 equiv), and the mixture was refluxed for 24 hours. 

OMe
OMe
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Additional methyl iodide (4.26 g, 30.00 mmol, 1.7 equiv) was added, and heating was 

continued for 12 hours. The solvent was evaporated to leave a volume of 30 mL, which was 

cooled to 25 °C and treated with water (160 mL). The mixture was stirred for eight hours, and 

the resulting solid was washed with water and dried under reduced pressure to afford the 

protected BINOL (R)-153 (5.47 g, 17.40 mmol, 98%) as a white solid. 

(R)-153: C22H18O2 (314.38 g/mol); 1H NMR (400 MHz, CDCl3):  7.89 (d, J = 9.0 Hz, 2H, 

CHAr), 7.78 (d, J = 8.1 Hz, 2H, CHAr), 7.37 (d, J = 9.0 Hz, 2H, CHAr), 7.23 (t, J = 7.3 Hz, 2H, 

CHAr), 7.12 (t, J = 7.4 Hz, 2H, CHAr), 7.02 (d, J = 8.5 Hz, 2H, CHAr), 3.68 (s, 6H, OCH3); 
13C NMR (100 MHz, CDCl3):  154.6 (CqAr), 133.7 (CqAr), 129.0 (CHAr), 128.9 (CqAr), 127.6 

(CHAr), 125.9 (CHAr), 124.9 (CHAr), 123.1 (CHAr), 119.3 (CqAr), 113.9 (CHAr), 56.6 (OCH3).

Preparation of (R)-3,3'-dibromo-2,2'-dimethoxy-1,1'-binaphthyl ((R)-155):

To a solution of TMEDA (1.92 mL, 12.74 mmol, 2.2 equiv) in diethyl 

ether (100 mL) was added n-butyl lithium (1.6 M in hexane, 10.9 mL, 

17.37 mmol, 3.0 equiv) at room temperature. After the solution was stirred 

for 15 minutes, solid (R)-153, 1.82 g, 5.79 mmol, 1.0 equiv) was added in one portion, and the 

reaction mixture was stirred for three hours at room temperature. The resulting light brown 

suspension was cooled to 78 °C, and bromine (3.6 mL, 70.00 mmol, 12.0 equiv) was added 

over a period of ten minutes. The mixture was allowed to warm to room temperature, and 

after four hours, a saturated aqueous solution of sodium sulfate (60 mL) was added cautiously. 

The reaction mixture was stirred for an additional four hours, and diluted with diethyl ether 

and water. The organic layer was washed with brine, dried over magnesium sulfate, and 

concentrated in vacuo. The crude product was purified by flash chromatography (8% of ethyl 

acetate in hexanes) providing the dibromo BINOL derivative (R)-155 (1.94 g, 4.11 mmol, 

71%) of as a pale yellow solid.

(R)-155: C22H16Br2O2 (472.17 g/mol); 1H NMR (500 MHz, CDCl3):  8.20 (s, 2H, CHAr),

7.74 (d, J = 8.5 Hz, 2H, CHAr), 7.34 (t, J = 7.5 Hz, 2H, CHAr), 7.19 (t, J = 7.5 Hz, 2H, CHAr),

7.00 (d, J = 8.0 Hz, 2H, CHAr), 3.43 (s, 6H, OCH3); 13C NMR (125 MHz, CDCl3):  152.5 

(CqAr), 133.1 (CqAr), 133.0 (CHAr), 131.4 (CqAr), 127.1 (CHAr), 126.9 (CHAr), 126.5 (CqAr),

125.9 (CHAr), 125.8 (CHAr), 117.5 (CqAr), 61.1 (OCH3); MS (EI, 70 eV): m/z (%) = 474 (51), 

Br

Br

OMe
OMe
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472 (100), 470 (51), 426 (19), 376 (8), 361 (11), 239 (14), 156 (18), 125 (5), 120 (11), 113 

(13); HRMS (EIpos) calcd for ([C22H16Br2O2+Na]+): 492.9410, found: 492.9412. 

Preparation of (2,4,6-triisopropylphenyl)magnesium bromide  (156): A

three-neck round-bottom flask containing activated magnesium turnings 

(3.00 g, 125.00 mmol, 1.8 equiv) was equipped with a condenser and an 

addition funnel. A solution of 2,4,6-triisopropylphenyl bromide (1.4 M, 20.00 g in 50 mL of 

diethyl ether, 70.60 mmol, 1.0 equiv) was prepared, and 10 mL of this solution were added to 

the reaction mixture via the addition funnel. After five minutes, a catalytic amount of         

1,2-dibromoethane (0.20 mL, 0.002 mmol) was added to the mixture. Once the solution began 

to reflux, the remaining 2,4,6-triisopropylphenyl bromide solution (40 mL) was slowly added 

over one hour. After the addition was complete, the reaction was allowed to reflux for          

12 hours and then cooled to room temperature. 

Preparation of (R)-3,3'-bis(2,4,6-triisopropylphenyl)-1,1'-

binaphthyl-2,2'-diol ((R)-151a): (R)-3,3'-Dibromo-2,2'-dimethoxy-

1,1'-binaphthyl ((R)-155a, 4.00 g, 8.50 mmol, 1.0 equiv) and 

bis(triphenylphosphine) nickel(II) dichloride (0.60 g, 0.90 mmol, 

0.1 equiv) were suspended in diethyl ether (100 mL). To this 

suspension was added (2,4,6-triisopropylphenyl)magnesium 

bromide (156, 0.8 M in diethyl ether, 31.7 mL, 25.40 mmol,         

3.0 equiv) slowly at room temperature. The mixture was stirred at 

room temperature for ten minutes and the resulting dark green solution was then refluxed for 

eight hours. The reaction was chilled to 0 °C and quenched slowly by the addition of a 

solution of hydrochloric acid (1.0 M, 50 mL). The resulting aqueous layer was separated from 

the organic phase and extracted with diethyl ether (3 × 50 mL). The combined organic layers 

were dried over magnesium sulfate and the solvent was removed in vacuo to afford, after 

recrystallization from dichloromethane and hexanes, (R)-2,2'-dimethoxy-3,3'-bis(2,4,6-

triisopropylphenyl)-1,1'-binaphthyl (4.70 g, 6.64 mmol, 77%) as a colorless solid. This 

compound was then deprotected to yield (R)-151a.

For this purpose, a solution of (R)-2,2'-dimethoxy-3,3'-bis(2,4,6-triisopropylphenyl)-1,1'-

binaphthyl (4.00 g, 5.60 mmol, 1.0 equiv) in dichloromethane (150 mL) was slowly charged 

with a dichloromethane solution of boron tribromide (1.0 M, 39.0 mL, 38.90 mmol,             
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6.9 equiv) at 0 °C. The resulting mixture was allowed to warm to room temperature and 

stirred at this temperature for 24 hours. The mixture was then cooled to 0 °C, and quenched 

by the slow addition of water (50 mL). After the two resulting phases were separated, the 

aqueous layer was extracted with dichloromethane (3 × 50 mL). The combined organic layers 

were dried over magnesium sulfate and the solvent evaporated in vacuo to yield an colorless 

solid, which was washed with hexanes, filtered, and dried in vacuo to afford the diol (R)-151a

(3.76 g, 5.44 mmol, 97% yield, i.e. 75% overall yield over two steps) as a white solid .

(R)-151a: C50H58O2 (690.99 g/mol); 1H NMR (500 MHz, CDCl3):  7.79 (d, J = 8.1 Hz, 2H, 

CHAr), 7.69 (s, 2H, CHAr), 7.30 (t, J = 6.7 Hz, 2H, CHAr), 7.26-7.20 (m, 4H, CHAr), 7.05      

(d, J = 8.3 Hz, 4H, CHAr), 4.85 (s, 2H, OH), 2.91-2.86 (m, 2H, CH(CH3)2), 2.80-2.75 (m, 2H, 

CH(CH3)2), 2.64-2.59 (m, 2H, CH(CH3)2), 1.24 (d, J = 6.9 Hz, 12H, CH(CH3)2), 1.12           

(d, J = 6.8 Hz, 6H, CH(CH3)2), 1.04-1.00 (m, 12H, CH(CH3)2), 0.95 (d, J = 6.9 Hz, 6H, 

CH(CH3)2); 13C NMR (125 MHz, CDCl3):  150.6 (CqAr), 149.1 (CqAr), 147.8 (CqAr), 147.7 

(CqAr), 133.4 (CqAr), 130.7 (CHAr), 130.4 (CqAr), 129.1 (CqAr), 129.0 (CqAr), 128.2 (CHAr),

126.6 (CHAr), 124.5 (CHAr), 123.8 (CqAr), 121.2 (CHAr), 121.2 (CHAr), 34.3 (CH), 30.9 (CH),

30.8 (CH), 24.3 (CH3), 24.3 (CH3), 24.1 (CH3), 24.0 (CH3), 23.9 (CH3), 23.7 (CH3); MS (EI,

70 eV): m/z (%) = 692 (14), 691 (53), 690 (100), 647 (2), 605 (2), 563 (2), 521 (2), 329 (4), 

287 (5), 219 (3); HRMS (EIpos) calcd for ([C50H58O2+Na]+): 713.4329, found: 713.4332. 

Preparation of (R)-3,3'-Bis(2,4,6-triisopropylphenyl)-1,1'-

binaphthyl-2,2'-diyl hydrogen phosphate ((R)-TRIP, (R)-126a):

The diol (R)- 151a (1.67 g, 2.42 mmol. 1.0 equiv) was suspended in 

pyridine (7.0 mL) in a two-necked flask. Phosphorous oxychloride 

(0.74 g, 0.46 mL, 4.84 mmol, 2.0 equiv) was added dropwise at 

room temperature with rapid stirring and the resulting suspension 

was refluxed for 24 hours until all of the starting material was 

consumed. The reaction mixture was then cooled to room 

temperature and water (2 mL) added very slowly. The resulting mixture was heated to 100 °C 

and stirred at this temperature for an additional 24 hours. The reaction mixture was diluted 

with dichloromethane and the pyridine was removed through washing by hydrochloric acid  

(1 N). The combined organic phases were dried over magnesium sulfate, filtered and 

concentrated. The crude product was purified by flash column chromatography (2-10% of 
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isopropanol in dichloromethane) yielding (R)-TRIP ((R)-126a, 1.73 g, 2.30 mmol, 95%) as a 

colorless solid. 

(R)-126a: C50H57O4P (752.96 g/mol); 1H NMR (500 MHz, DMSO-d6):  8.00 (d, J = 8.1 Hz, 

2H, CHAr), 7.93 (s, 2H, CHAr), 7.43 (t, J = 7.2 Hz, 2H, CHAr), 7.29 (t, J = 7.3 Hz, 2H, HAr), 

7.06 (d, J = 1.5 Hz, 2H, CHAr), 7.00 (s, 1H, CHAr), 6.98 (s, 3H, CHAr), 2.87-2.82 (m, 2H, 

CH(CH3)2), 2.65-2.60 (m, 2H, CH(CH3)2), 2.48-2.43 (m, 2H, CH(CH3)2), 1.18                    

(dd, J = 1.6, 6.9 Hz, 12H, CH(CH3)2), 1.09 (d, J = 6.9 Hz, 6H, CH(CH3)2), 1.05 (d, J = 6.7 Hz, 

6H, CH(CH3)2), 1.00 (d, J = 6.9 Hz, 6H, CH(CH3)2), 0.83 (d, J = 6.8 Hz, 6H, CH(CH3)2); 13C

NMR (125 MHz, DMSO-d6):  147.8 (CqAr), 147.3 (CqAr), 146.5 (CqAr), 145.9 (CqAr), 145.8 

(CqAr), 132.3 (CHAr), 131.7 (CqAr), 131.6 (CqAr), 130.4 (CqAr), 128.5 (CHAr), 126.7 (CHAr),

125.7 (CHAr), 125.6 (CHAr), 121.2 (CqAr), 120.8 (CHAr), 119.9 (CHAr), 33.6 (CH), 30.7 (CH),

30.3 (CH), 26.2 (CH3), 24.6 (CH3), 24.1 (CH3), 24.0 (CH3), 23.2 (CH3), 22.8 (CH3); MS (EI,

70 eV): m/z (%) = 754 (15), 753 (50), 752 (91), 709 (100), 667 (36), 625 (36), 583 (27), 541 

(29), 313 (13); HRMS (EIneg) calcd for ([C50H56O4P]-): 751.3922, found: 751.3926. The 

enantiomers were analyzed by HPLC using a Chiralpak OD-H column (mobile phase: 

heptane/methanol/TFA = 10:90:0.1, 0.5 mL/min); (S)-126a: tR = 20.6 min, (R)-126a:

tR = 24.8 min. 
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7.3 Synthesis of Hydrogen Bonding (Thio)ureas

All the (thio)urea catalysts reported in this chapter were synthesized by the author of this 

Ph.D. thesis. The missing catalysts (i.e. 50, 67a, 164b) were prepared by colleagues and 

kindly shared.

7.3.1 Synthesis of Mono(thio)ureas 

7.3.1.1 Synthesis of 1,3-bis(3,5-bis(trifluoromethyl)phenyl)thiourea (49b)218

3,5-Bis(trifluoromethyl)aniline (160, 0.73 mL, 4.61 mmol, 1.2 equiv) was added to a solution 

of 3,5-bis(trifluoromethyl)phenyl isothiocyanate (161, 0.72 mL, 3.84 mmol, 1.0 equiv) in 

toluene (10 mL). The resulting mixture was refluxed at 120 °C for 72 hours. After 

evaporation of the solvent in vacuo, the crude product was purified by recrystallization from 

chloroform once, and the resulting slightly yellow solid, was dissolved in a minimum amount 

of diethyl ether to be re-precipitated by addition of hexanes. The pure thiourea 49b (1.54 g, 

3.08 mmol, 80%) was obtained as a colorless solid. 

49b: C17H8F12N2S (500.30 g/mol); m.p.: 169-174 °C; 1H NMR (400 MHz, DMSO-d6):  8.23 

(s, 4H, CHAr), 7.70 (s, 2H, CHAr), 4.59 (br s, 2H, NH); 13C NMR (100 MHz, DMSO-d6):

182.9 (C=S), 143.0 (CqAr), 133.4 (CHAr), 126.4 (CqAr), 125.2 (CCF3), 123.7 (CHAr), 119.4 

(CHAr); MS (EI, 70 eV): m/z (%) = 500 (34), 481 (12), 271 (25), 252 (10), 229 (100), 213 

(21), 182 (6); HRMS (EI) calcd for [C17H8F12N2S]: 500.0217, found: 500.0215. The physical 

data were identical in all respects to those previously reported.218
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7.3.1.2 Synthesis of 1-(3,5-bis(trifluoromethyl)phenyl)-3-((1R,2S)-2-hydroxy-2,3-
dihydro-1H-inden-1-yl)thiourea (162)219

To a solution of 3,5-bis(trifluoromethyl)phenyl isothiocyanate (161, 0.51 mL, 2.79 mmol,   

1.0 equiv) in dichloromethane (7 mL) was added (1R,2S)-cis-1-amino-2-indanol (163, 0.50 g, 

3.35 mmol, 1.2 equiv) in one portion. The resulting solution was heated at 40 °C for 15 hours. 

The solvent was then evaporated under reduced pressure and the residue purified by flash 

chromatography (1% of methanol in dichloromethane), providing the thiourea 162 (1.17 g, 

2.78 mmol, >99%) as a colorless solid.  

162: C18H14F6N2OS (420.37 g/mol); m.p.: 78-83°C; 1H NMR (400 MHz, CDCl3):  8.70 (br s, 

1H, NH), 7.81 (s, 2H, CHAr), 7.61 (s, 1H, CHAr), 7.32-7.06 (m, 5H: CHAr (4H), CH (1H)), 

5.83 (brs, 1H, OH), 4.63-4.60 (m, 1H, CH), 3.10 (dd, J = 16.8, 5.2 Hz, 1H, CH2), 2.79 (d, J =

16.9 Hz, 1H, CH2), 2.33 (br s, 1H, NH); 13C NMR (100 MHz, CDCl3):  180.7 (C=S), 139.5 

(CqAr), 139.2 (CqAr), 138.9 (CqAr), 132.5 (CArCF3), 128.7 (CHAr), 127.3 (CHAr), 125.4 (CHAr),

124.6 (CHAr), 124.1 (CCF3), 123.5 (CHAr), 121.4 (CHAr), 119.1 (CHAr), 73.7 (CH), 62.8 (CH), 

39.7 (CH2); MS (EI, 70 eV): m/z (%) = 421 (0.01), 402 (100), 386 (13), 343 (6), 271 (17), 252 

(7), 213 (9), 174 (14), 148 (21), 131 (65), 115 (21), 91 (5), 77 (8); HRMS (EIpos) calcd for 

([C18H14F6N2OS+Na]+): 443.0623, found: 443.0626. The physical data were identical in all 

respects to those previously reported.219

7.3.1.3 Synthesis of (S)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-N,N,3,3-
tetramethylbutanamide (164a) 

CF3
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To a solution of L-tert-leucine dimethylamide (144a, 0.35 g, 2.21 mmol, 1.0 equiv) in toluene 

(5 mL) was added 3,5-bis(trifluoromethyl)phenyl isothiocyanate (161, 0.5 mL, 2.74 mmol, 
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1.2 equiv). The reaction mixture was stirred for 41 hours at room temperature and then 

concentrated in vacuo. The crude product was purified by flash chromatography (25% of 

ethyl acetate in hexanes) to yield thiourea 164a (0.86g, 1.99 mmol, 90%) as a colorless solid.

164a: C17H21F6N3OS (429.42 g/mol); 1H NMR (300 MHz, CDCl3):  9.33 (br s, 1H, CArNH),

7.96 (s, 2H, CHAr), 7.89 (d, J = 9.0 Hz, 1H, CHNH), 7.55 (br s, 1H, CHAr), 5.64 (d, J = 9.1 

Hz, 1H, CHC(CH3)3), 3.35 (s, 3H, NCH3), 2.97 (s, 3H, NCH3), 1.12 (s, 9H, C(CH3)3); 13C

NMR (75 MHz, CDCl3):  181.7 (C=S), 173.7 (C=O), 140.3 (CqAr), 131.7 (CqArCF3), 131.3 

(CqArCF3), 124.9 (CHAr), 123.4 (CCF3), 121.3 (CHAr), 117.9 (CHAr), 117.8 (CHAr), 60.7 

(CHC(CH3)3), 38.9 (NCH3), 36.1 (C(CH3)3), 35.8 (NCH3), 27.1 (C(CH3)3); MS (EI, 70 eV): 

m/z (%) =  429 (5), 410 (2), 384 (44), 369 (46), 328 (5), 300 (2), 272 (13), 252 (6), 213 (6), 

194 (2), 163 (2), 145 (3), 101 (11), 86 (77), 72 (29), 46 (100); HRMS (EIpos) calcd for 

[(C17H21F6N3OS+Na]+]: 452.1202, found: 452.1202. 

7.3.1.4 (S)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(2'-(dimethylamino)-1,1'-binaph-
thyl-2-yl)thiourea (76) 

For the synthesis of (S)-N,N-dimethyl-1,1'-binaphthyl-2,2'-diamine ((S)-147) see Chapter 

7.2.2.2.

To a solution of diamine (S)-147 (87 mg, 0.28 mmol, 1.0 equiv) in dichloromethane (1 mL) 

was added 3,5-bis(trifluoromethyl)phenyl isothiocyanate (161, 67 L, 0.36 mmol, 1.3 equiv). 

The reaction mixture was stirred for 40 hours at reflux and then concentrated in vacuo. The 

crude product was purified by flash chromatography (10-20% of ethyl acetate in hexanes) to 

yield thiourea 76 (155 mg, 2.65 mmol, 95%) as a pale yellow solid.  



7 Experimental Part 

 - 199 -  

76: C31H23F6N3S (583.59 g/mol); 1H NMR (400 MHz, CDCl3):  8.30 (s, 1H, NH), 8.02 (d,   

J = 8.7 Hz, 1H, CHAr), 7.94 (d, J = 8.2 Hz, 2H, CHAr), 7.82-7.76 (m, 2H, CHAr), 7.62 (m, 2H 

(1H, CHAr, 1H, NH)), 7.50-7.46 (m, 3H, CHAr), 7.31-7.26 (m, 4H, CHAr), 7.11 (t, J = 7.5 Hz, 

1H, CHAr), 6.89 (d, J = 8.4 Hz, 1H, CHAr), 2.55 (s, 6H, N(CH3)2); 13C NMR (100 MHz, 

CDCl3):  179.7 (C=S), 149.9 (CqAr), 139.6 (CqAr), 134.0 (CqAr), 133.3 (CqAr), 133.2 (CqAr),

132.9 (CqAr), 132.0 (CqAr), 131.8 (CHAr), 131.6 (CqAr), 130.5 (CqArCF3), 130.0 (CHAr), 129.9 

(CHAr), 128.5 (CHAr), 128.4 (CHAr), 127.5 (CHAr),  127.2 (CHAr), 126.8 (CHAr), 125.0 (CHAr),

124.6 (CHAr), 124.2 (CHAr), 123.9 (CCF3), 122.9 (CHAr), 121.8 (CHAr), 118.9 (CHAr), 44.0 

(N(CH3)2); ; MS (EI, 70 eV): m/z (%) = 583 (5), 354 (5), 312 (100), 294 (10), 271 (90),      

252 (17), 213 (21), 157 (64), 69 (5); HRMS (EIpos) calcd for [(C31H23F6N3S+Na]+]: 

606.1409, found: 606.1405. The physical data were identical in all respects to those 

previously reported.106

7.3.1.5 (S)-tert-Butyl 1-(3-(3,5-bis(trifluoromethyl)phenyl)ureido)-2,2-dimethyl-
propylcarbamate (165) 
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N-Boc-L-tert-leucine (145, 1.00 g, 4.32 mmol, 1.0 equiv) was dissolved in THF (13 mL) and 

cooled to -20 °C. After addition of ethylchloroformate (0.45 mL, 4.76 mmol, 1.1 equiv) and 

N-methylmorpholine (0.52 mL, 4.76 mmol, 1.1 equiv), the mixture was stirred at -20 °C for 

45 minutes. The resulting white suspension was allowed to warm to -5 °C and was treated 

with a solution of sodium azide (0.70 g, 10.81 mmol, 2.5 equiv) in water (2 mL). The mixture 

was stirred for 20 minutes, diluted with ethyl acetate, washed with brine, dried over 
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magnesium sulfate, filtered and concentrated under reduced pressure to give the acyl azide 

166 which was used without further purification. 

Toluene was added to the compound 166 and the resulting solution heated to 65 °C under 

stirring. After the gas evolution had stopped (after ca. 30 minutes), the amine 160 (0.67 mL, 

4.32 mmol, 1.0 equiv) was added. The mixture was stirred at 65 °C for 20 minutes, leading to 

the formation of a solid. This solid solid was filtered and washed with cold pentane, yielding 

pure urea 165 (0.55 g, 1.20 mmol, 28%) as a colorless solid. 

165: C19H25F6N3O3 (457.41 g/mol); 1H NMR (500 MHz, DMSO-d6):  9.41 (br s, 1H, NH),

8.05 (s, 2H, CHAr), 7.60 (br s, 1H, CHAr), 7.17 (br s, 1H, NH ), 6.45 (br s, 1H, NH ), 5.17    

(br s, 1H, CHC(CH3)3), 1.42 (br s, 9H, OC(CH3)3), 0.91 (s, 9H, C(CH3)3); 13C NMR (125 

MHz, DMSO-d6):  154.8 (C=O), 153.8 (C=O), 149.9 (NHCqAr), 142.3 (CCF3), 130.7 (d,      

J = 32.5 Hz, (CqArCF3), 117.1 (CHAr), 113.7 (CHAr), 77.9 (OC(CH3)3, 64.1 (CHNHBoc), 37.0 

(CC(CH3)3), 28.2 (OC(CH3)3), 25.3 (C(CH3)3); MS (EI, 70 eV): m/z (%) =  457 (3), 400 (12), 

344 (79), 300 (14), 229 (23), 130 (35), 89 (39), 86 (61), 70 (26), 57 (100), 41 (18); HRMS

(EIpos) calcd for [(C19H25F6N3O3+Na]+]: 480.1692, found: 480.1692. 

7.3.1.6 tert-Butyl-(S)-1-(3-((1R,2R)-2-(2,5-dimethyl-1H-pyrrol-1-yl)cyclohexyl)-
ureido)-2,2-dimethylpropylcarbamate (168) 
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N-Boc-L-tert-leucine (145, 1.00 g, 4.32 mmol, 1.0 equiv) was dissolved in THF (13 mL) and 

cooled to -20 °C. After addition of ethylchloroformate (0.45 mL, 4.76 mmol, 1.1 equiv) and 

N-methylmorpholine (0.52 mL, 4.76 mmol, 1.1 equiv), the mixture was stirred at -20 °C for 
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45 minutes. The resulting white suspension was allowed to warm to -5 °C and was treated 

with a solution of sodium azide (0.70 g, 10.81 mmol, 2.5 equiv) in water (2 mL). The mixture 

was stirred for 20 minutes, diluted with ethyl acetate, washed with brine, dried over over 

magnesium sulfate, filtered and concentrated under reduced pressure to give the acyl azide 

166 which was used without further purification. 

Toluene was added to the compound 166 and the resulting solution heated to 65 °C under 

stirring. After the gas evolution stopped (after ca. 30 minutes), the amine 169a (0.83 g,      

4.32 mmol, 1.0 equiv) was added. The mixture was stirred at 65 °C for 20 minutes, leading to 

the formation of a solid. After the solid was filtered and washed with cold pentane, pure 

thiourea 168 (1.70 g, 4.04 mmol, 93%) was obtained as a pale red solid. 

168: C23H40N4O3 (420.59 g/mol); 1H NMR (300 MHz, CDCl3):  6.37 (br s, 1H, NH), 5.68 

(br s, 1H, NH), 5.65 (s, 2H, CHAr), 4.87 (d, J = 9.0 Hz, 1H,  CHNHBoc), 4.70 (d, J = 8.9 Hz, 

1H, CHNHBoc), 4.28-4.23 (m, 1H, NHCH cycl.), 3.80-3.74 (m, 1H, NCH cycl.), 2.37-2.30 

(br s, 6H, CArCH3), 2.03-1.70 (m, 6H, CH2 cycl.), 1.42 (s, 9H, OC(CH3)3), 0.97 (s, 9H, 

C(CH3)3); 13C NMR (75 MHz, CDCl3):  183.9 (C=O), 157.4 (C=O), 129.3 (CqAr), 126.8 

(CqAr), 108.7 (CHAr), 106.2 (CHAr), 80.4 (OC(CH3)3, 66.5 (NCH cycl.), 60.4 (CHNHBoc), 

51.3 (NCH cycl.), 34.7 (CH2 cycl.), 34.3 (CC(CH3)3), 32.0 (CH2 cyclic), 28.2 (OC(CH3)3),

26.1 (C(CH3)3), 25.9 (CH2 cycl.), 25.4 (CH3 pyrrolyl), 25.3 (CH2 cycl.), 25.0 (CH3 pyrrolyl), 25.4 

(CH3 pyrrolyl); MS (EI, 70 eV): m/z (%) =  420 (28), 364 (8), 303 (21), 218 (27), 175 (6), 130 

(15), 86 (27), 57 (100); HRMS (EIpos) calcd for [(C23H40N4O3+Na)+]: 443.2992, found: 

443.2990.
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7.3.2 Synthesis of Jacobsen-Type Monothioureas 

7.3.2.1 Synthesis of L-tert-Leucine Derived Amides (144a-d) 

Amino amide 144c and 144f were prepared by M. Hannappel according to the protocol I gave 

her. For these reason, the preparation and characteristics of these compounds is not described 

here.

Preparation of (S)-2-amino-N,N-diethyl-3,3-dimethylbutanamide (144b):

To a solution of N-Boc-L-tert-leucine (145, 4.00 g, 17.29 mmol, 1.0 equiv) 

in dichloromethane (150 mL) was added HTBU (7.21 g, 19.02 mmol,     

1.1 equiv). The white suspension was stirred for five minutes, followed by the addition of 

diisopropylethylamine (3.5 mL, 20.75 mmol, 1.2 equiv) and diethylamine (2.0 mL, 19.02 

mmol, 1.1 equiv). The reaction mixture was then stirred for 48 hours at room temperature. 

The mixture was combined with dichloromethane and water and the organic layer was 

separated, washed with hydrochloric acid (1N, 3 × 50 mL), and dried over magnesium sulfate. 

The solvent was removed in vacuo to yield the crude Boc-protected amide as a colorless oil. 

The oil was dissolved in TFA (20 mL) at 0 °C. The reaction mixture was then stirred for one 

hour at room temperature. All volatile compounds were removed in vacuo and the residue was 

dissolved in water and treated with potassium hydroxide (10% aqueous solution) at 0 °C. The 

resulting mixture was extracted with dichloromethane and the combined organic layers were 

dried over magnesium sulfate. After filtration and evaporation of the solvent under reduced 

pressure, the crude product was purified by flash chromatography (5-10% of ethyl acetate in 

hexanes) yielding L-tert-leucine diethylamide (144b, 2.90 g, 15.57 mmol, 90%) as a colorless 

oil.

N
NH2

O
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144b: C10H22N2O (186.29 g/mol); 1H NMR (400 MHz, CDCl3):  3.73-3.67 (m, 1H, 

CH2CH3), 3.60-3.54 (m, 1H, CH2CH3), 3.38 (s, 1H, CHNH2), 3.21-3.15 (m, 1H, CH2CH3), 

3.09-3.03 (m, 1H, CH2CH3), 1.64 (br s, 2H, NH2), 1.74 (t, J = 7.2 Hz, 3H, CH2CH3), 1.10 (t, 

J = 7.1 Hz, 3H, CH2CH3), 0.97 (s, 9H, C(CH3)3); 13C NMR (100 MHz, CDCl3):  173.8  

(C=O), 57.7 (CHNH2), 42.4 (CH2CH3), 40.3 (CH2CH3), 35.1 (C(CH3)3), 26.4 (C(CH3)3), 14.7 

(CH2CH3), 13.0 (CH2CH3); MS (EI, 70 eV): m/z (%) =  186 (3), 129 (20), 100 (4), 86 (100), 

72 (11), 58 (4), 44 (6), 29 (7); HRMS (EI-FE) calcd for [C10H22N2O]: 186.1732, found: 

186.1732.

Preparation of (S)-2-amino-3,3-dimethyl-N,N-dipropylbutanamide 

(144d): Following the procedure described for amino amide 144b,

amino amide 144d was synthesized starting from N-Boc-L-tert-leucine 

(145, 5.00 g, 17.29 mmol, 1.0 equiv) and dipropylamine (2.6 mL,    

19.02 mmol, 1.1 equiv). The reaction mixture was stirred at room temperature for 48 hours. 

After work-up, the crude product was purified by flash chromatography (2-5% of methanol in 

dichloromethane) to yield amino amide 144d (3.30 g, 15.40 mmol, 89%) as a pale orange oil.

144d: C12H26N2O (214.35 g/mol); 1H NMR (400 MHz, CDCl3):  3.72-3.65 (m, 1H, 

NCH2CH2), 3.44-3.52 (m, 1H, NCH2CH2), 3.38 (s, 1H, CHNH2), 3.11-3.01 (m, 1H, 

NCH2CH2), 2.91-2.85 (m, 1H, NCH2CH2), 1.60-1.52 (br m, 6H: NH2 (2H), CH2CH2CH3

(4H)), 0.97 (s, 9H, C(CH3)3), 0.91-0.87 (m, 6H, CH2CH3); 13C NMR (100 MHz, CDCl3):

174.4  (C=O), 57.8 (CHNH2), 50.2 (NCH2), 48.1 (NCH2), 35.1 (C(CH3)3), 26.7 (C(CH3)3),

22.7 (CH2CH3), 21.0 (CH2CH3), 11.5 (CH2CH3), 11.2 (CH2CH3); MS (EI, 70 eV): m/z (%) =  

214 (3), 157 (17), 128 (2), 100 (8), 86 (100), 69 (5), 41 (6); HRMS (EI-FE) calcd for 

[C12H26N2O]: 214.2045, found: 214.2044. 

Preparation of (S)-2-amino-N-benzyl-N,3,3-trimethylbutanamide

(144e): Following the procedure described for amino amide 144b,

amino amide 144e was synthesized starting from N-Boc-L-tert-

leucine (145, 5.00 g, 17.29 mmol, 1.0 equiv) and methylbenzylamine (2.5 mL, 19.02 mmol, 

1.1 equiv). The reaction mixture was stirred at room temperature for 20 hours. After work-up, 

the crude product was purified by flash chromatography (3-8% of methanol in 

N
NH2

O

N
NH2

O
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dichloromethane) to yield amino amide 144e (3.70 g, 15.79 mmol, 91%) as a yellow-orange 

oil.

144e: C14H22N2O (234.34 g/mol); 1H NMR (300 MHz, CDCl3; the compound is obtained as a 

~4:2 mixture of rotamers: the major rotamer is denoted by “*”):  7.36-7.19 (m, 5H, CHAr),

4.95 (d, J = 15.3 Hz, 1H, PhCH2), 4.73 (d, J = 14.5 Hz, 1H, PhCH2*), 4.48 (d, J = 15.2 Hz, 

1H, PhCH2
*), 4.31 (d, J = 15.6 Hz, 1H, PhCH2), 3.54 (s, 1H, CHNH2

*), 3.49 (s, 1H, CHNH2),

2.97 (m, 1H, NCH3
*), 2.94 (m, 1H, NCH3), 1.62 (br s, 2H, NH2), 0.99 (s, 9H, C(CH3)3);

13C NMR (75 MHz, CDCl3; compound exists as a ~4:2 mixture of rotamers: the major 

rotamer is denoted by “*”):  175.5  (C=O), 174.8  (C=O*), 137.3 (CqAr*), 136.7 (CqAr),

128.9 (CHAr*), 128.5 (CHAr), 128.6 (CHAr*), 128.3 (CHAr), 128.2 (CHAr*), 127.7 (CHAr),

127.5 (CHAr), 127.4 (CHAr*), 126.4 (CHAr*), 58.0 (CHNH2), 57.9 (CHNH2*), 53.1 (NCH2),

51.1 (NCH2*), 35.5 (C(CH3)3), 35.5 (C(CH3)3*), 35.5 (NCH3), 34.1 (NCH3*), 26.3 (C(CH3)3);

MS (EI, 70 eV): m/z (%) =  234 (1), 177 (8), 148 (1), 120 (6), 91 (39), 86 (100), 69 (7), 57 

(2), 41 (5); HRMS (EIpos) calcd for [(C14H22N2O+Na)+]: 257.1624, found: 257.1626. 

7.3.2.2 Synthesis of Pyrrolylcyclohexanamine Derivatives (169a-d)90

Preparation of (1R,2R)-2-(2,5-dimethyl-pyrrol-1-yl)cyclohexylamine:90 To a 

solution of (R,R)-1,2-diaminocyclohexane (171, 1.50 g, 13.14 mmol,           

1.0 equiv) in methanol (75 mL) were added sequentially acetic acid (750 L, 

13.14 mmol, 1.0 equiv) and 2,5-hexanedione (175a, 1.55 mL, 13.14 mmol, 

1.0 equiv). The mixture was heated at 50 °C and stirred for twelve hours, then cooled to room 

temperature and concentrated in vacuo. The residue was partitioned between dichloromethane 

(250 mL) and an aqueous solution of sodium hydroxide (4 N, 250 mL). The two phases were 

separated, and the aqueous layer extracted with dichloromethane (3 × 40 mL). The combined 

H2N
N
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organic phases were dried over magnesium sulfate and concentrated. The residue was purified 

by flash chromatography (5% of methanol in dichloromethane), yielding the amine 169a

(2.20 g, 11.44 mmol, 87%) as a yellow-orange oil.

169a: C12H20N2 (192.30 g/mol); 1H NMR (400 MHz, CDCl3):  5.77 (br s, 1H, CHAr), 5.75 

(br s, 1H, CHAr), 3.61-3.57 (m, 1H, NH2CH cycl.), 3.29-3.22 (m, 1H, NCH cycl.), 2.36 (br s, 

3H, CH3), 2.23 (br s, 3H, CH3), 2.03-2.07 (m, 1H, CH cycl.), 1.91-1.78 (m, 4H, CH2CH2

cycl.), 1.40-1.34 (m, 2H, CH cycl.), 1.27-1.23 (m, 1H, CH cycl.), 1.21 (br s, 2H, NH2);
13C NMR (100 MHz, CDCl3):  129.8 (CqAr), 126.8 (CqAr), 107.9 (CHAr), 105.3 (CHAr), 63.6 

(NCH cycl.), 52.9 (NH2CH cycl.), 35.4 (CH2 cycl.), 31.3 (CH2 cycl.), 26.2 (CH2 cycl.), 25.1 

(CH2 cycl.), 12.2 (CH3), 13.7 (CH3); MS (EI, 70 eV): m/z (%) = 192 (100), 174 (5), 162 (4), 

148 (6), 134 (11), 122 (24), 110 (26), 96 (83), 81 (16), 69 (16), 56 (19), 42 (14), 30 (23), 27 

(7); HRMS (EI-DE) calcd for [C12H20N2]: 192.1626, found: 192.1629. The physical data 

were identical in all respects to those previously reported.90

Preparation of (1R,2R)-2-(2,5-diethyl-pyrrol-1-yl)cyclohexylamine (169b):

Following the procedure described for amine 169a,90 amine 169b was 

prepared starting from (R,R)-1,2-diaminocyclohexane (171, 1.00 g,        

8.76 mmol) and 3,6-octanedione (175b, 1.25 g, 8.76 mmol), yielding the 

desired product (169b, 1.84 g, 8.35 mmol, 95%) as a yellow oil.

169b: C14H24N2 (220.35 g/mol); 1H NMR (400 MHz, CDCl3):  5.90 (d,  J = 3.2 Hz, 1H, 

CHAr), 5.83 (d,  J = 3.2 Hz, 1H, CHAr), 3.67-3.60 (m, 1H, NH2CH cycl.), 3.31-3.24 (m, 1H, 

NCH cycl.), 2.81-2.66 (m, 2H, CH2CH3), 2.66-2.50 (m, 2H, CH2CH3), 2.06 (d,  J = 12.6 Hz, 

1H, CH2 cycl.), 2.00-1.79 (br m, 4H, CH2 cycl.), 1.44-1.33 (br m, 2H, CH2 cycl.), 1.30-1.21 

(br m, 9H: CH2 cycl. (1H), NH2 (2H), CH3(6H)); 13C NMR (100 MHz, CDCl3):  135.9

(CqAr), 133.9 (CqAr), 105.1 (CHAr), 103.4 (CHAr), 63.4 (NCH cycl.), 52.9 (NH2CH cycl.), 35.5 

(CH2 cycl.), 31.5 (CH2 cycl.), 26.3 (CH2 cycl.), 25.1 (CH2 cycl.), 21.7 (CH2CH3), 20.9 

(CH2CH3), 13.3 (CH2CH3); MS (EI, 70 eV): m/z (%) = 220 (66), 205 (7), 188 (16), 174 (12), 

162 (5), 148 (12), 134 (9), 124 (100), 108 (46), 97 (43), 81 (11), 69 (11), 56 (14), 41 (9), 30 

(16); HRMS (EIpos) calcd for [(C14H24N2+Na)+]: 243.1832, found: 243.1829.

H2N
N



7 Experimental Part 

 - 206 -  

Preparation of (1R,2R)-2-(2-methyl-5-phenyl-pyrrol-1-yl)cyclohexan-

amine (169c): Following the procedure described for amine 169a,90

amine 169c was prepared starting from (R,R)-1,2-diaminocyclohexane 

(171, 1.00 g, 8.76 mmol) and 1-phenylpentane-1,4-dione (175c,1.54 g, 

8.76 mmol), yielding the desired product (169c, 2.04 g, 8.02 mmol, 92%) as an orange oil.

169c: C17H22N2 (254.37 g/mol); 1H NMR (400 MHz, CDCl3):  7.40-7.29 (m, 5H, CHAr),

6.05 (br s, 1H, CHAr,pyr.), 5.98 (br s 1H, CHAr,pyr.), 3.81-3.75 (m, 1H, NH2CH cycl.), 3.24-3.19 

(m, 1H, NCH cycl.), 2.46 (br s, 3H, CH3), 2.04-1.96 (br m, 2H, CH2 cycl.), 1.70-1.63 (br m, 

2H, CH2 cycl.), 1.35-1.20 (br m, 2H, CH2 cycl.), 1.16 (br s, 2H, NH2), 1.02-0.90 (br m, 2H, 

CH2 cycl.); 13C NMR (100 MHz, CDCl3):  137.1 (CqAr), 134.6 (CHAr), 129.5 (CHAr), 129.0

(CqAr,pyr.), 128.3 (CqAr,pyr.), 126.7 (CHAr), 109.6 (CHAr,pyr.), 107.8 (CHAr,pyr.), 64.4 (NCH

cycl.), 53.2 (NH2CH cycl.), 35.2 (CH2 cycl.), 31.8 (CH2 cycl.), 26.0 (CH2 cycl.), 25.1 (CH2

cycl.), 15.3 (CH3); MS (EI, 70 eV): m/z (%) = 254 (100), 198 (5), 172 (20), 157 (99), 141 (4), 

128 (7), 115 (9), 97 (20), 81 (9), 69 (7), 56 (15), 43 (8), 30 (16); HRMS (EIpos) calcd for 

[(C17H22N2+H)+]: 255.1856, found: 255.1854. The physical data were identical in all respects 

to those previously reported.90

Preparation of (1R,2R)-2-(2,5-diphenyl-pyrrol-1-yl)cyclohexylamine 

(169d): Following the procedure described for amine 169a90, amine 

169d was prepared starting from (R,R)-1,2-diaminocyclohexane 

(171, 1.00 g, 8.76 mmol) and 1,4-diphenylbutane-1,4-dione (175d,

2.09 g, 8.76 mmol), yielding the desired product (169d, 2.10 g, 6.64 mmol, 76%) as a yellow 

solid.

169d: C22H24N2 (316.44 g/mol); 1H NMR (400 MHz, CDCl3):  7.47-7.34 (m, 10H, CHAr),

6.20 (br s, 2H, CHAr,pyr.), 3.73-3.67 (m, 1H, NH2CH cycl.), 2.58-2.52 (m, 1H, NCH cycl.), 

2.17-2.12 (br m, 1H, CH2 cycl.), 1.88-1.77 (m, 1H, CH2 cycl.), 1.72-1.63 (br m, 2H, CH2

cycl.), 1.51-1.47 (br m, 1H, CH2 cycl.), 1.14-1.03 (br m, 3H: CH2 cycl.  (1H), NH2 (2H)), 

0.93-0.76 (m, 2H, CH2 cycl.); 13C NMR (100 MHz, CDCl3):  133.0-128.1 (br m, 14C: 

CqAr,pyr. (2C),  CqAr (2C), CHAr (10C)), 113.9 (CHAr,pyr.), 108.2 (CHAr,pyr.), 66.0 (NCH cycl.),

53.7 (NH2CH cycl.), 35.1 (CH2 cycl.), 33.9 (CH2 cycl.), 26.0 (CH2 cycl.), 24.9 (CH2 cycl.);

MS (EI, 70 eV): m/z (%) = 316 (54), 260 (1), 219 (100), 202 (2), 158 (3), 141 (1), 115 (10), 

H2N
N

H2N

N
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97 (4), 81 (4), 56 (6), 43 (3); HRMS (EIpos) calcd for [(C22H24N2+H)+]: 317.2012, found: 

317.2012. The physical data were identical in all respects to those previously reported.90

7.3.2.3 Synthesis of (S)-2-(3-((1R,2R)-2-Aminocyclohexyl)thioureido)-N,N-diethyl-
3,3-dimethylbutanamide  (58e)95

An aqueous solution of sodium bicarbonate (5 mL) was added to a solution of L-tert-leucine 

dimethylamide (0.25 g, 1.57 mmol, 1.0 equiv) in dichloromethane (7 mL) at 0 °C. The 

mixture was stirred for 30 minutes, then stirring was stopped and thiophosgene (110 L,

1.48 mmol, 1.1 equiv) was added to the organic phase via syringe. The resulting orange 

mixture was stirred at 0 °C for one hour. Dichloromethane (15 mL) was added, and the 

organic phase separated. The aqueous phase was extracted with dichloromethane (3 × 10 mL). 

The combined organic layers were dried over magnesium sulfate and concentrated, yielding 

(S)-2-isothiocyanato-N,N,3,3-tetramethylbutanamide as a solid, which was used without 

further purification. The crude product was dissolved in dichloromethane (5 mL) and (R,R)-

1,2-diaminocyclohexane (171, 0.17 g, 1.48 mmol, 1.1 equiv) was added in one portion. The 

reaction mixture was allowed to stir for four hours at room temperature. The volatile 

compounds were then removed in vacuo and the crude product purified by flash column 

chromatography (2 M solution of ammonia in a solution of 10% methanol in 

dichloromethane) yielding the desired product  (58e, 0.29 g, 0.85 mmol, 63%) as a colorless 

solid.

58e: C17H34N2OS (342.54 g/mol); 1H NMR (300 MHz, CDCl3):  7.91(br s, 1H, NH), 6.61 

(br s, 1H, NH), 5.49 (d, J = 9.1 Hz, 1H, CHC(CH3)), 3.77-3.69 (m, 3H: CH2CH3 (2H), NCH

cycl. (1H)), 3.42-3.37 (m, 1H, CH2CH3), 3.03-2.96 (m, 1H, CH2CH3), 2.60-2.30 (br m, 3H: 

NCH cycl. (1H), CH2 cycl. (2H)), 2.04 (br s, 1H, CH2 cycl.), 1.92 (br s, 1H, CH2 cycl.), 1.69 

(d, J = 7.2 Hz, 2H, CH2 cycl.), 1.30 (t, J = 7.1 Hz, 3H, CH2CH3), 1.28-1.21 (br m, 4 H: CH2
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cycl.  (2H), NH2 (2H)), 1.11 (t, J = 7.1 Hz, 3H, CH2CH3), 1.04 (s, 9H, C(CH3)); 13C NMR

(75 MHz, CDCl3):  182.5 (C=S), 170.9 (C=O), 60.9 (NCH cycl.), 60.7 (CHC(CH3)3), 55.7 

(NCH cycl.), 42.9 (CH2CH3), 39.9 (CH2CH3), 36.2 (C(CH3)3), 34.6 (CHCH2 cycl.), 32.2 

(CHCH2 cyclic), 27.0 (C(CH3)3), 24.8 (CH2CH2 cycl.), 24.7 (CH2CH2 cycl.), 14.5 (CH2CH3),

12.8 (CH2CH3); MS (EI, 70 eV): m/z (%) = 342 (6), 325 (3), 269 (4), 173 (27), 145 (8), 129 

(3), 97 (100), 86 (36), 81 (9), 74 (63), 56 (10), 41 (7); HRMS (EIpos) calcd for 

[(C17H34N2OS+H)+]: 343.2526, found: 343.2526. The physical data were identical in all 

respects to those previously reported.95

7.3.2.4 Synthesis of Jacobsen(-Type) Thiourea 50g95

OH
t-Bu

OCOt-Bu
OH

t-Bu

OCOt-Bu

H

O

Na2SO4, MeOH, rt, 15 h

N
N
HO

N
H
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HO

t-Bu OCOt-Bu50g

N
N
HO

N
H

S

NH2

170

58e

1) SnCl4, 2,6-lutidine
toluene, 0 °C - rt, 1 h

2) (CH2O)n
toluene, rt - reflux, 72 h

172

3-tert-Butyl-4-hydroxyphenyl pivalate (172) was prepared by R. Rios. For the synthesis of 

thiourea 58e see Chapter 7.3.2.3. 

Preparation of 3-tert-butyl-5-formyl-4-hydroxyphenyl pivalate (170):95 3-tert-Butyl-4-

hydroxyphenyl pivalate (172, 3.00 g, 11.98 mmol, 1.0 equiv) was dissolved in toluene        

(30 mL), followed by the addition of tin chloride (0.56 mL, 4.79 mmol, 0.4 equiv) and       

2,6-lutidine (2.23 mL, 19.13 mmol, 1.6 equiv). The reaction mixture was stirred at 0 °C for 

one hour and then at room temperature for additional 30 minutes. Paraformaldehyde (2.20 g, 

73.10 mmol, 6.1 equiv) was added at room temperature and the reaction mixture was refluxed 

for 72 hours. Water (100 mL) was added to the reaction mixture, followed by acidification 

with hydrochloric acid (2 N) until a pH of 2 was reached. The organic phase was separated, 

filtered, dried over magnesium sulfate and concentrated in vacuo. The crude product was 
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purified by flash column chromatography (10% of ethyl acetate in hexanes) to yield 

compound 170 (1.69 g, 6.07 mmol, 51%) as a yellow solid.

170: C16H22O4 (278.34 g/mol); m.p. = 79-81°C; 1H NMR (400 MHz, CDCl3):  11.69 (s, 1H, 

CHO), 9.82 (s, 1H, OH) 7.17-7.14 (m, 2H, CHAr), 1.41 (s, 9H, C(CH3)3), 1.37 (s, 9H, 

C(CH3)3); 13C NMR (100 MHz, CDCl3):  196.4 (C(CO)H), 177.3 (O(CO)C), 158.8 

(CqArOH), 142.8 (CqArO(CO)C), 140.0 (CqArC(CH3)3), 127.9 (CqAr(CO)H), 123.1 (CHAr),

120.0  (CHAr), 39.0  ((CO)C(CH3)3), 35.0 (CqArC(CH3)3), 29.0 (C(CH3)3), 27.1  (C(CH3)3);

MS (EI, 70 eV): m/z (%) = 278 (15), 194 (43), 179 (43), 151 (5), 85 (13), 57 (100), 41 (14), 

29 (9); HRMS (EI-DE) calcd for [C16H22O4]: 278.1518, found: 278.1521. The physical data 

were identical in all respects to those previously reported.98

Formation of 3-tert-Butyl-5-((E)-((1R,2R)-2-(3-((S)-1-(diethylamino)-3,3-dimethyl-1-oxo-

butan-2-yl)thioureido)cyclohexylimino)methyl)-4-hydroxyphenyl pivalate 50g:95 Amine 58e

(200mg, 0.58 mmol, 1.0 equiv) was dissolved in methanol (2 mL) with stirring. Once the 

solution became homogeneous, sodium sulfate (300 mg, 2.04 mmol, 3.5 equiv) was added. In 

a separate flask 3-tert-butyl-5-formyl-4-hydroxyphenyl pivalate (170, 160 mg, 0.58 mmol,  

1.0 equiv) was dissolved in methanol (2 mL), and then transferred to the reaction mixture. 

Additional methanol (2 mL) was used to ensurequantitative transfer of the aldehyde into the 

reaction mixture. The reaction was stirred at room temperature for 15 hours, and then 

concentrated in vacuo with sodium sulfate still present. The resulting mixture was combined 

with hexanes (25 ml) and filtered, and then the solids were rinsed with hexanes. The filtrate 

was concentrated under reduced pressure to yield thiourea 50g (346 mg, 0.57 mmol, 98%) as 

a yellow solid.

50g: C33H54N4O4S (602.87 g/mol); 1H NMR (400 MHz, CDCl3):  13.60 (s, 1H, OH), 8.30 

(s, 1H, N=CH), 6.91 (d, J = 2.7 Hz, 1H, CHAr), 6.82 (d, J = 2.8 Hz, 1H, CHAr), 6.65 (br s, 1H, 

NH), 6.30 (br s, 1H, NH), 5.51 (d, J = 9.2 Hz, 1H, CHC(CH3)3), 3.95 (br s, 1H, NCH cycl.), 

3.70-3.62 (m, 2H: CH2CH3), 3.31-3.27 (m, 1H, CH2CH3), 3.12 (br s, 1H, NCH cycl.),

2.98-2.91 (m, 1H, CH2CH3), 2.15 (br s, 1H, CH2 cycl.), 1.91 (br s, 1H, CH2 cycl.), 1.85-1.66 

(br m, 3H, CH2 cycl.), 1.48-1.30 (br m, 3H, CH2 cycl), 1.38 (s, 9 H, CArC(CH3)3), 1.33 (s,      

9 H, OC(CH3)3), 1.18 (t, J = 7.1 Hz, 3H, CH2CH3), 1.07 (t, J = 7.0 Hz, 3H, CH2CH3), 0.92 (s, 

9H, CHC(CH3)); 13C NMR (100 MHz, CDCl3):  182.3 (C=S), 177.9 (O(CO)C), 170.8 
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(C=O), 164.9 (CH=N), 158.6 (CqArOH), 141.8 (CqArO(CO)C), 138.6 (CqArC(CH3)3), 122.9 

(CqArCH=N), 121.5 (CHAr), 118.2 (CHAr), 71.5 (CHC(CH3)3), 60.7 (CH cycl.), 56.5 (NCH

cycl.), 42.9 (CH2CH3), 40.0 (CH2CH3), 39.0 ((CO)C(CH3)3), 36.3 (C(CH3)3), 35.0 (C(CH3)3),

33.0 (CHCH2 cycl.), 29.2 (CHCH2 cyclic), 29.0 (C(CH3)3), 27.2 (C(CH3)3), 26.8 (C(CH3)3),

24.1 (CH2CH2 cycl.), 23.5 (CH2CH2 cycl.), 14.5 (CH2CH3), 12.8 (CH2CH3); MS (EI, 70 eV): 

m/z (%) = 602 (23), 568 (33), 529 (16), 468 (22), 416 (91), 357 (100), 325 (38), 272 (31), 252 

(12), 224 (7), 193 (3), 154 (23), 81 (17), 57 (40); HRMS (EIpos) calcd for 

[(C33H54N4O4S+Na)+]: 625.3758, found: 625.3755.

7.3.2.5 Synthesis of Jacobsen(-Type) Thioureas 57a-l96

The preparations of the amino amides 144 and amines 169 are reported in Chapters 7.2.2.1 

(for 144a) and 7.3.2.1 (for 144b,d,e) and 7.3.2.2 (for 169 a-d).

 (S)-2-(3-((1R,2R)-2-(2,5-dimethyl-1H-pyrrol-1-yl)cyclohexyl)thio-ureido)-N,N,3,3-tetra-

methylbutanamide (57a):90

Saturated aqueous sodium bicarbonate (5 mL) was added to a 

solution of L-tert-leucine dimethylamide (144a, 0.20 g,           

1.26 mmol) in dichloromethane (9 mL) at 0 °C. The mixture was 

stirred for 30 minutes, then stirring was stopped and 

thiophosgene (110 L, 1.39 mmol, 1.1 equiv) was added to the organic phase by syringe. The 

resulting orange mixture was stirred at 0 °C for one hour. Dichloromethane (15 mL) was 

added, and the organic phase separated. The aqueous phase was extracted with 

dichloromethane (3 × 5 mL). The combined organic layers were dried over magnesium sulfate 

N
N
HO

N
H

S

N
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and concentrated, yielding crude (S)-2-isothiocyanato-N,N,3,3-tetramethylbutanamide, which 

was used without further purification.

The crude isothiocyanate was dissolved in dichloromethane (12 mL) and (1R,2R)-2-(2,5-

dimethyl-pyrrol-1-yl)cyclohexylamine (169a, 0.29 g, 1.52 mmol, 1.2 equiv) was added in 

several portions over 15 minutes. The reaction mixture was allowed to stir at room 

temperature for 14 hours. All volatile compounds were removed in vacuo and the crude 

product purified by flash column chromatography (10-20% of ethyl acetate in hexanes) 

yielding thiourea 57a (0.43 g, 1.10 mmol, 87%) as a colorless solid. 

57a: C21H36N4OS (392.60 g/mol); 1H NMR (400 MHz, CDCl3):  6.36 (br d, J = 8.5 Hz, 1H, 

NH), 5.97 (br d, J = 6.0 Hz, 1H, NH), 5.72 (s, 2H, CHAr), 5.47 (d, J = 9.3 Hz, 1H, 

CHC(CH3)3), 4.35-4.32 (m, 1H, CH cycl.), 3.86-3.80 (m, 1H, CH cycl.), 3.19 (s, 3H, NCH3),

2.92 (s, 3H, NCH3), 2.37-2.22 (br m, 6H, CArCH3), 1.95-1.80 (m, 4H, CH2 cycl.), 1.43-1.20 

(m, 4H, CH2 cycl.), 0.94 (s, 9H, C(CH3)3); 13C NMR (100 MHz, CDCl3):  182.2 (C=S), 

172.0 (C=O), 127.5 (CqAr), 127.5 (CqAr), 108.8 (CHAr), 106.4 (CHAr), 60.1 (NCH cycl.), 59.4 

(CHC(CH3)3), 55.8 (NCH cycl.), 38.5 (NCH3), 36.0 (C(CH3)3), 35.6 (NCH3), 34.0 (CH2

cycl.), 32.4 (CH2 cycl.), 26.6 (C(CH3)3), 25.8 (CH2 cycl.), 24.6 (CH2 cycl.), 21.0 (CArCH3),

14.2 (CArCH3); MS (EI, 70 eV): m/z (%) = 392 (86), 347 (22), 332 (10), 286 (15), 272 (5), 

253 (10), 234 (76), 224 (11), 203 (12), 175 (100), 155 (61), 128 (5), 108 (7), 96 (37), 86 (32), 

72 (24), 41 (12); HRMS (EIpos) calcd for [(C21H36N4OS+Na)+]: 415.2502, found: 415.2498.  

The physical data were identical in all respects to those previously reported.90

 (S)-2-(3-((1R,2R)-2-(2,5-dimethyl-pyrrol-1-yl)cyclohexyl)thio-ureido)-N,N-diethyl-3,3-di-

methylbutanamide (57b):  

Thiourea 57b was prepared following the procedure described 

for catalyst 57a, starting from L-tert-leucine diethylamide 

(144b, 0.30 g, 1.61 mmol), yielding the desired product (57b,

0.60 g, 1.43 mmol, 89%) as a pale red solid.

57b: C23H40N4OS (420.65 g/mol); 1H NMR (400 MHz, CDCl3):   6.28 (br d, J = 9.2 Hz, 1H, 

NH), 5.71-5.68 (s and d, 3H: CHAr (2H), NH (1H)), 5.40 (d, J = 7,3 Hz, 1H, CHC(CH3)3),

4.42-4.34 (m, 1H, CH cycl.), 3.86-3.79 (m, 1H, CH cycl.), 3.71-3.60 (m, 2H, NCH2CH3),

3.33 (q, J = 7.3 Hz, 1H, NCH2CH3), 3.07 (q, J = 6.8 Hz, 1H, CH2CH3), 2.50 (br d, J = 13.2 

Hz, 1H, CH2 cycl.),  2.43-2.16 (br m, 6H, CArCH3), 1.96-1.79 (m, 4H, CH2 cycl.), 1.50-1.18 
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(m, 3H, CH2 cycl.), 1.25 (t, J = 7.1 Hz, 3H, NCH3), 1.10 (t, J = 7.1 Hz, 3H, NCH3), 0.96 (s, 

9H, C(CH3)3); 13C NMR (100 MHz, CDCl3):   182.1 (C=S), 170.7 (C=O), 127.9 (CqAr),

127.7 (CqAr), 108.7 (CHAr), 106.3 (CHAr), 60.0 (NCH cycl.), 59.4 (CHC(CH3)3), 55.8 (NCH

cycl.), 42.9 (NCH2CH3), 40.1 (NCH2CH3), 36.2 (C(CH3)3), 34.0 (CH2 cycl.), 32.4 (CH2 cycl.),

26.8 (C(CH3)3), 25.8 (CH2 cycl.), 24.7 (CH2 cycl.), 15.2 (CArCH3), 14.6 (NCH2CH3), 13.3 

(CArCH3), 12.8 (NCH2CH3); MS (EI, 70 eV): m/z (%) = 420 (100), 387 (4), 324 (10), 286 

(10), 234 (69), 203 (8), 175 (89), 155 (60), 129 (5), 96 (38), 86 (45), 74 (17), 41 (13); HRMS

(EIpos) calcd for [(C23H40N4OS+Na)+]: 443.2815, found: 443.2815.

(S)-N,N-dibenzyl-2-(3-((1R,2R)-2-(2,5-dimethyl-pyrrol-1-yl)cyclo-hexyl)thioureido)-3,3-di-

methylbutanamide (57c):  

Thiourea 57c was prepared following the procedure 

described for catalyst 57a, starting from L-tert-leucine

dibenzylamide (144c, 0.30 g, 0.97 mmol), yielding the 

desired product (57c, 0.46 g, 0.84 mmol, 87%) as a 

colorless solid. 

57c: C33H44N4OS (544.79 g/mol); 1H NMR (400 MHz, CDCl3):   7.37-7.23 (m, 8H, CHAr),

7.17 (d, J = 7.7 Hz, 2H, CHAr), 6.48 (br d, J = 9.0 Hz, 1H, NH), 5.75 (br s, 1H, NH or 

CHC(CH3)3), 5.74 (s, 2H, CHAr,pyr.), 5.08 (d, J = 14.4 Hz, 1H, PhCH2), 4.92 (d, J = 15.8 Hz, 

1H, PhCH2), 4.54-4.46 (m, 1H, CH cycl.), 4.31 (d, J = 15.9 Hz, 1H, PhCH2), 3.90 (d,             

J = 14.6 Hz, 1H, PhCH2), 3.85-3.80 (m, 1H, CH cycl.), 2.53 (br d, J = 13.2 Hz, 1H, CH2

cycl.), 2.42-2.21 (br m, 6H, CArCH3), 1.99-1.79 (m, 5H, CH2 cycl.), 1.51-1.20 (m, 2H, CH2

cycl.), 0.95 (s, 9H, C(CH3)3); 13C NMR (100 MHz, CDCl3):   181.8 (C=S), 172.1 (C=O),

136.8 (CqAr), 135.8 (CqAr), 128.7 (CHAr), 128.6 (CHAr), 128.5 (CHAr), 128.2 (CqAr,pyr.), 127.9 

(CqAr,pyr.), 127.5 (CHAr), 108.5 (CHAr,pyr.), 106.3 (CHAr,pyr.), 60.0 (NCH cycl.), 59.3 

(CHC(CH3)3), 55.9 (NCH cycl.), 50.8 (NCH2), 47.4 (NCH2), 39.9 (C(CH3)3), 33.9 (CH2

cycl.), 32.4 (CH2 cycl.), 26.8 (C(CH3)3), 25.8 (CH2 cycl.), 24.7 (CH2 cycl.), 15.1 (CArCH3),

14.2 (CArCH3); MS (EI, 70 eV): m/z (%) = 544 (93), 511 (6), 448 (7), 347 (38), 314 (8), 286 

(19), 253 (7), 234 (45), 175 (57), 155 (33), 91 (100), 69 (11), 41 (9); HRMS (EIpos) calcd for 

[(C33H44N4OS+Na)+]: 567.3128, found: 567.3129. 
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(S)-2-(3-((1R,2R)-2-(2,5-dimethyl-pyrrol-1-yl)cyclohexyl)-thioureido)-3,3-dimethyl-N,N-di-

propylbutanamide (57d):

Thiourea 57d was prepared following the procedure 

described for catalyst 57a, starting from L-tert-leucine 

dipropylamide (144d, 0.30 g, 1.40 mmol), yielding the 

desired product (57d, 0.51 g, 1.14 mmol, 81%) as a pale red 

solid.

57d: C25H44N4OS (448.71 g/mol); 1H NMR (400 MHz, CDCl3):   6.29 (br d, J = 9.2 Hz, 1H, 

NH), 5.70 (br s, 2H, CHAr), 5.66 (br d, J = 7.4 Hz, 1H, NH), 5.45 (br s, 1H, CHC(CH3)3),

4.43-4.32 (m, 1H, CH cycl.), 3.85-3.78 (m, 1H, CH cycl.), 3.66-3.51 (m, 2H, NCH2CH2),

3.18-3.10 (m, 1H, NCH2CH2), 2.92-2.85 (m, 1H, NCH2CH2CH3), 2.49 (br d, J = 13.0 Hz, 1H, 

CH2 cycl.), 2.37-2.21 (br m, 6H, CArCH3), 1.98-1.79 (m, 4H, CH2 cycl.), 1.76-1.67 (m, 1H, 

CH2CH2CH3), 1.65-1.58 (m, 1H, CH2CH2CH3), 1.54 (q, J = 7.6 Hz, 2H, CH2CH2CH3),

1.47-1.34 (m, 2H, CH2 cycl.), 1.26-1.20 (m, 1H, CH2 cycl.), 0.95 (s, 9H, C(CH3)3), 0.90 (q,    

J = 7.4 Hz, 6H, CH2CH3); 13C NMR (100 MHz, CDCl3):   182.0 (C=S), 171.2 (C=O), 127.9 

(CqAr), 127.7 (CqAr), 108.5 (CHAr), 106.2 (CHAr), 60.0 (CH cycl.), 59.4 (CHC(CH3)3), 55.8 

(NCH cycl.), 50.5 (NCH2), 47.6 (NCH2), 36.4 (C(CH3)3), 34.0 (CH2 cycl.), 32.4 (CH2 cycl.),

26.8 (C(CH3)3), 25.9 (CH2 cycl.), 24.7 (CH2 cycl.), 22.5 (CH2CH3), 20.9 (CH2CH3), 14.8 

(CArCH3), 11.5 (CH2CH3), 11.1  (CH2CH3); MS (EI, 70 eV): m/z (%) = 448 (100), 415 (5), 

347 (38), 319 (8), 287 (16), 234 (83), 203 (7), 175 (85), 155 (60), 128 (4), 86 (35), 69 (8), 43 

(11); HRMS (EIpos) calcd for [(C25H44N4OS+Na)+]: 471.3128, found: 471.3132.

(S)-N-benzyl-2-(3-((1R,2R)-2-(2,5-dimethyl-pyrrol-1-yl)-cyclohexyl)-thioureido)-N,3,3-tri-

methylbutanamide (57e):  

Thiourea 57e was prepared following the procedure 

described for catalyst 57a, starting from L-tert-leucine 

benzylmethylamide (144e, 0.30 g, 1.28 mmol), yielding 

the desired product  (57e, 0.46 g, 0.98 mmol, 77%) as a 

colorless solid.  

57b: C27H40N4OS (468.70 g/mol); 1H NMR (400 MHz, CDCl3; compound is obtained as a 

~4:1 mixture of rotamers: the major rotamer is denoted by *):  7.34-7.20 (m, 10H, CHAr,

CHAr*), 6.40 (d, J = 9.2 Hz, 2H, NH, NH*), 5.86 (d, J = 7.2 Hz, 2H, NH, NH*), 5.74 (s, 4H, 
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CHAr,pyr., CHAr,pyr.*), 5.50 (d, J = 9.3 Hz, 2H, CHC(CH3)3, CHC(CH3)3*), 5.00 (d,                  

J = 15.3 Hz, 1H, PhCH2), 4.67 (d, J = 14.6 Hz, 1H, PhCH2*), 4.50-4.40 (m, 2H, CH cycl., 

CH cycl.*), 4.48 (d, J = 14.6 Hz, 1H, PhCH2*), 4.42 (d, J = 15.6 Hz, 1H, PhCH2), 3.89-3.82 

(m, 2H, CH cycl., CH cycl.*), 3.12 (s, 3H, NCH3*), 2.81 (s, 3H, NCH3), 2.57-2.54 (br d,       

J = 13.4 Hz, 2H, CH2 cycl., CH2 cycl.*), 2.40-2.20 (br m, 12H, CArCH3, CArCH3*), 2.03-1.80 

(m, 8H, CH2 cycl., CH2 cycl.*), 1.52-1.32 (m, 4H, CH2 cycl., CH2 cycl.*), 1.28-1.16 (m, 2H, 

CH2 cycl., CH2 cycl.*), 0.98 (s, 9H, C(CH3)3*), 0.96 (s, 9H, C(CH3)3); 13C NMR (100 MHz, 

CDCl3; compound is obtained as a mixture of rotamers: only the major rotamers are reported): 

 182.4 (C=S), 172.3 (C=O), 136.7 (CqAr), 128.7 (CHAr), 128.6 (CHAr), 128.1 (CHAr), 127.9 

(CqAr,pyr.), 127.8 (CqAr,pyr.), 127.4 (CHAr), 108.4 (CHAr,pyr.), 106.2 (CHAr,pyr.), 60.3 (NCH

cycl.), 59.4 (CHC(CH3)3), 56.0 (NCH cycl.), 51.3 (NCH2Ph), 36.1 (NCH3), 36.0 (C(CH3)3), 

34.0 (CH2 cycl.), 32.5 (CH2 cycl.), 26.8 (C(CH3)3), 25.7 (CH2 cycl.), 24.7 (CH2 cycl.), 21.6 

(CArCH3), 14.2 (CArCH3); MS (EI, 70 eV): m/z (%) = 468 (100), 435 (5), 372 (10), 347 (31), 

332 (7), 287 (13), 234 (60), 203 (7), 175 (80), 155 (53), 122 (14), 91 (59), 69 (10), 41 (8); 

HRMS (EIpos) calcd for [(C27H40N4OS+Na)+]: 491.2815, found: 491.2819. 

((S)-N-benzyl-2-(3-((1R,2R)-2-(2,5-dimethyl-pyrrol-1-yl)-cyclohexyl)-thioureido)-3,3-di-

methylbutanamide (57f): 

Thiourea 57f was prepared following the procedure 

described for catalyst 57a, starting from L-tert-leucine 

benzylamide (144f, 0.30 g, 1.36 mmol), yielding the 

desired product (57f, 0.53 g, 1.17 mmol, 86%) as a light 

red solid.

57f: C26H38N4OS (454.67 g/mol); 1H NMR (400 MHz, CDCl3):  7.33-7.24 (m, 3H, CHAr),

7.22-7.20 (m, 2H, CHAr), 6.38 (br s, 2H: NH (2H) or NH (1H), CHC(CH3)3 (1H)), 5.70       

(s, 2H, CHAr,pyrrol), 4.61-4.52 (m, 1H, CH cycl.), 4.38 (dd, J = 14.8 Hz, 6.0 Hz, 1H, PhCH2),

4.27 (dd, J = 14.8 Hz, 5.4 Hz, 1H, PhCH2), 3.88-3.81 (m, 1H, CH cycl.), 2.52 (br d,                

J = 12.6 Hz, 1H, CH2 cycl.),  2.42-2.15 (br m, 6H, CArCH3), 2.05-1.77 (m, 5H, CH2 cycl.),

1.57-1.32 (m, 2H, CH2 cycl.), 1.22-1.10 (m, 1H, CH2 cycl.), 0.94 (s, 9H, C(CH3)3); 13C NMR

(100 MHz, CDCl3):  182.5 (C=S), 170.7 (C=O), 137.7 (CqAr), 128.7 (CHAr), 127.9 (CHAr),

127.8 (CHAr), 127.6 (CqAr,pyr.), 127.5 (CqAr,pyr.), 108.4 (CHAr,pyr.), 106.4 (CHAr,pyr.), 60.4 (NCH

cycl.), 59.3 (CHC(CH3)3), 56.7 (NCH cycl.), 43.5 (NCH2Ph), 34.6 (C(CH3)3), 33.8 (CH2
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cycl.), 32.3 (CH2 cycl.), 26.8 (C(CH3)3), 25.9 (CH2 cycl.), 24.7 (CH2 cycl.), 22.0  (CArCH3),

14.2  (CArCH3); MS (EI, 70 eV): m/z (%) = 454 (100), 421 (11), 358 (15), 287 (6), 234 (77), 

203 (7), 175 (89), 155 (63), 91 (57), 69 (12), 41 (9); HRMS (EIpos) calcd for 

[(C26H38N4OS+Na)+]: 477.2659, found: 477.2655.

 (S)-2-(3-((1R,2R)-2-(2,5-diethyl-pyrrol-1-yl)cyclohexyl)-thioureido)-N,N-diethyl-3,3- dimethyl

butanamide (57g):

Thiourea 57g was prepared following the procedure 

described for catalyst 57a, starting from  L-tert-leucine 

diethylamide (144b, 0.20 g, 1.07 mmol) and (1R,2R)-2-(2,5-

diethyl-pyrrol-1-yl)cyclohexylamine (169b, 0.28 mg,      

1.29 mmol), yielding the desired product (57g, 0.30 g,    

0.67 mmol, 62%) as a white solid.  

57g: C25H44N4OS (448.71 g/mol); 1H NMR (400 MHz, CDCl3):   6.25 (br d, J = 8.9 Hz, 1H, 

NH), 5.81 (br s, 2H, CHAr), 5.56 (br d, J = 6.4 Hz, 1H, NH), 5.42 (br s, 1H, CHC(CH3)3),

4.43-4.40 (m, 1H, CH cycl.), 3.89-3.82 (m, 1H, CH cycl.), 3.71-3.62 (m, 2H, NCH2CH3), 3.30 

(q, J = 7.3 Hz, 1H, NCH2CH3), 3.04 (q, J = 6.8 Hz, 1H, NCH2CH3), 2.79-2.67 (br m, 2H, 

CH2 cycl.), 2.64-2.46 (br m, 3H, CH2 cycl.), 2.03-1.80 (br m, 4H, CArCH2CH3), 1.50-1.35   

(br m, 2H, CH2 cycl.), 1.29-1.21 (m, 10H: CH2 cycl. (1H), CArCH2CH3 (6H), NCH2CH3

(3H)), 1.11 (t, J = 7.1 Hz, 3H, NCH2CH3), 0.96 (s, 9H, C(CH3)3); 13C NMR (100 MHz, 

CDCl3):   181.9 (C=S), 170.5 (C=O), 134.7 (CqAr), 134.4 (CqAr), 105.6 (CHAr), 104.4 

(CHAr), 59.8 (CH cycl.), 59.1 (CHC(CH3)3), 55.8 (CH cycl.), 42.9 (NCH2CH3), 40.1 

(NCH2CH3), 36.3 (C(CH3)3), 34.1 (CH2 cycl.), 32.5 (CH2 cycl.), 26.7 (C(CH3)3), 25.9 (CH2

cycl.), 24.7 (CH2 cycl.), 21.5 (CArCH2CH3), 20.8 (CArCH2CH3), 14.6 (NCH2CH3), 13.4 

(CArCH2CH3), 12.9 (NCH2CH3), 12.7 (CArCH2CH3); MS (EI, 70 eV): m/z (%) = 448 (100), 

415 (4), 375 (56), 314 (18), 262 (65), 224 (17), 203 (48), 188 (17), 174 (5), 155 (52), 124 

(42), 108 (12), 86 (34); HRMS (EIpos) calcd for [(C25H44N4OS+Na)+]: 471.3128, found: 

471.3129.
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 (S)-N,N-diethyl-3,3-dimethyl-2-(3-((1R,2R)-2-(2-methyl-5-phenyl-1-pyrrol-1-yl)cyclohexyl) 

-thioureido)butanamide (57h):

Thiourea 57h was prepared following the procedure 

described for catalyst 57a, starting from  L-tert-leucine 

diethylamide (144b, 0.20 g, 1.07 mmol) and (1R,2R)-2-

(methyl-5-phenyl-pyrrol-1-yl)cyclohexylamine (169c,

0.33 g, 1.29 mmol), yielding the desired product  (57h,

0.34 g, 0.70 mmol, 66%) as a pale yellow solid.

57h: C28H42N4OS (482.74 g/mol); 1H NMR (400 MHz, CDCl3):   7.45-7.30 (m, 5H, CHAr),

6.00 (br s, 2 H: CHAr,pyrrol (1H), NH(1H)), 5.85 (br s, 1H, CHAr,pyrrol), 5.40 (br s, 1H, NH),

5.06 (br s, 1H, CHC(CH3)3), 4.44 (br s, 1H, CH cycl.), 4.02-3.95 (m, 1H, CH cycl.), 3.74-3.63 

(m, 2H, NCH2CH3), 3.30 (q, J = 7.4 Hz, 1H, NCH2CH3), 3.08 (q, J = 6.8 Hz, 1H, NCH2CH3),

2.48 (br s, 3H, CArCH3), 2.26-2.19 (br m, 3H, CH2 cycl.), 1.88-1.84 (br m, 2H, CH2 cycl.), 

1.74-1.71 (br m, 1H, CH2 cycl.), 1.41-1.36 (br m, 1H, CH2 cycl.), 1.27-1.23 (m, 4H: CH2 cycl.

(1H), NCH2CH3 (3H)), 1.14 (t, J = 7.1 Hz, 3H, NCH2CH3), 0.96 (s, 9H, C(CH3)3); 13C NMR

(100 MHz, CDCl3):   181.8 (C=S), 170.6 (C=O), 136.0 (CqAr), 129.7 (CHAr), 129.5 (CHAr),

128.7 (CHAr), 128.6 (CqAr,pyr.), 127.0 (CqAr,pyr.), 110.1 (CHAr,pyr.), 108.7 (CHAr,pyr.), 60.0  (CH

cycl.), 59.6 (CHC(CH3)3), 55.9  (CH cycl.), 42.9 (NCH2CH3), 40.2 (NCH2CH3), 36.3 

(C(CH3)3), 33.7 (CH2 cycl.), 32.2 (CH2 cycl.), 26.7 (C(CH3)3), 25.7 (CH2 cycl.), 24.6 (CH2

cycl.), 15.4 (CH3), 14.7 (CH3), 12.9 (CH3); MS (EI, 70 eV): m/z (%) = 482 (84), 449 (5), 409 

(33), 394 (8), 324 (12), 296 (36), 253 (8), 237 (100), 170 (6), 155 (33), 129 (4), 86 (33); 

HRMS (EIpos) calcd for [(C28H42N4OS+Na)+]: 505.2971, found: 505.2973.

(S)-2-(3-((1R,2R)-2-(2,5-diphenyl-pyrrol-1-yl)cyclohexyl)thioureido)-N,Ndiethyl-3,3-dime-

thylbutanamide  (57i):

Thiourea 57i was prepared following the procedure 

described for catalyst 57a, starting from  L-tert-leucine

diethylamide (144b, 0.20 g, 1.07 mmol) and 

(1R,2R)-2-(2,5-diphenyl-pyrrol-1-yl)cyclohexylamine  

(169d, 0.41 g, 1.29 mmol), yielding the desired product 

   as a white foam (57i, 0.45 g, 0.83 mmol, 77%).
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57i: C33H44N4OS (544.79 g/mol); 1H NMR (400 MHz, CDCl3):  7.49-7.36 (m, 10H, CHAr),

6.18 (br s, 2 H, CHAr,pyr.), 5.92 (d, J = 9.2 Hz, 1H, NH), 5.46 (d, J = 9.12 Hz, 1H, NH), 5.21 

(br s, 1H, CHC(CH3)3), 4.04-3.97 (m, 1H, CH cycl.), 3.74-3.61 (m, 2H, NCH2CH3), 3.57    

(br s, 1H, CH cycl.), 3.31 (q, J = 7.3 Hz, 1H, NCH2CH3), 3.05 (q, J = 6.9 Hz, 1H, NCH2CH3),

2.21 (d, J = 12.4 Hz, 1H, CH2 cycl.), 2.14 (d, J = 12.8 Hz, 1H, CH2 cycl.), 1.95-1.77 (br m, 

2H, CH2 cycl.), 1.68 (d, J = 13.2 Hz, 1H, CH2 cycl.), 1.51 (d, J = 12.8 Hz, 1H, CH2 cycl.),

1.27 (t, J = 6.6 Hz, 3H, NCH2CH3), 1.10 (t, J = 7.1 Hz, 3H, NCH2CH3), 1.03 (s, 9H, 

C(CH3)3), 0.96-0.88 (br m, 1H, CH2 cycl.), 0.83-0.73 (br m, 1H, CH2 cycl.); 13C NMR (100 

MHz, CDCl3):  181.4 (C=S), 170.5 (C=O), 131.3 (CqAr), 131.2 (CqAr), 129.5 (CHAr), 128.7 

(CHAr), 128.5 (CHAr), 127.8 (CqAr,pyr.), 127.5 (CqAr,pyr.), 112.5 (CHAr,pyr.), 109.4 (CHAr,pyr.),

60.8 (CH cycl.), 60.2 (CHC(CH3)3), 56.5 (CH cycl.), 42.9 (NCH2CH3), 40.1 (NCH2CH3), 36.1 

(C(CH3)3), 33.8 (CH2 cycl.), 33.1 (CH2 cycl.), 26.8 (C(CH3)3), 26.5 (CH2 cycl.), 25.8 (CH2

cycl.), 14.7 (NCH2CH3), 12.9 (NCH2CH3); MS (EI, 70 eV): m/z (%) =  544 (66), 511 (5), 471 

(31), 456 (7), 410 (1), 359 (17), 324 (12), 299 (100), 253 (9), 219 (40), 191 (2), 155 (17), 86 

(28), 41 (3); HRMS (EIpos) calcd for [(C33H44N4OS+Na)+]: 567.3128, found: 567.3126.

(S)-N,N-dibenzyl-2-(3-((1R,2R)-2-(2,5-diethyl-1H-pyrrol-1-yl)cyclohexyl)thioureido)-3,3-di-

methylbutanamide (57j): 

Thiourea 57j was prepared according to the procedure  

used to synthesize catalyst 57a, starting from  L-tert-

leucine dibenzylamide (144c, 0.27 g, 0.87 mmol) and 

(1R,2R)-2-(2,5-diethyl-pyrrol-1-yl)cyclohexyl-amine 

(169b, 0.23 mg, 1.04 mmol), yielding the desired 

product (57j, 0.37 g, 0.64 mmol, 74%) as a pale 

yellow solid.

57j: C35H48N4OS (572.85 g/mol); 1H NMR (400 MHz, CDCl3):  7.37-7.26 (m, 8H, CHAr),

7.20-7.17 (m, 2H, CHAr), 6.46 (br s, 1H, NH), 5.83 (d, J = 10.2 Hz, 2H, CHAr,pyr.), 5.56       

(br s, 1H, NH or CHC(CH3)3), 5.13 (d, J = 14.3 Hz, 1H, PhCH2), 4.91 (d, J = 15.6 Hz, 1H, 

PhCH2), 4.54-4.47 (m, 1H, CH cycl.), 4.27 (d, J = 15.8 Hz, 1H, PhCH2), 3.86-3.82 (m, 2H:  

PhCH2 (d, J = 14.7 Hz, 1H,), CH cycl. (br s, 1H)), 2.80-2.71 (br m, 2H, CH2 cycl.), 2.62-2.48 

(br m, 2H, CH2 cycl.), 1.97-1.80 (br m, 4H, CArCH2CH3), 1.52-1.34 (br m, 2H, CH2 cycl.), 

1.28-1.22 (br m, 7H: CArCH2CH3 (6H), CH2 cycl.(1H)),  0.94 (s, 9H, C(CH3)3); 13C NMR

(100 MHz, CDCl3):  181.7 (C=S), 164.9 (C=O), 136.8 (CqAr), 135.7 (CqAr), 134.5 (CHAr),
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128.8 (CHAr), 128.6  (CHAr), 128.0 (CqAr,pyr.), 127.5 (CqAr,pyr.), 105.6 (CHAr,pyr.), 104.5 

(CHAr,pyr.), 59.9 (CH cycl.), 59.0 (CHC(CH3)3), 56.0 (CH cycl.), 50.7 (NCH2Ph), 47.4 

(NCH2Ph), 37.0 (C(CH3)3), 34.0 (CH2 cycl.), 32.6 (CH2 cycl.), 26.7 (C(CH3)3), 26.0 (CH2

cycl.), 24.6 (CH2 cycl.), 21.4 (CArCH2CH3), 20.8 (CArCH2CH3), 13.4 (CArCH2CH3), 12.9 

(CArCH2CH3); MS (EI, 70 eV): m/z (%) = 572 (100), 448 (9), 375 (58), 347 (6), 314 (10), 262 

(42), 224 (10), 203 (41), 188 (14), 155 (40), 124 (30), 108 (11), 91 (66), 69 (8), 41 (5); 

HRMS (EIpos) calcd for [(C35H48N4OS+Na)+]: 595.3441, found: 595.3437.

(S)-N,N-dibenzyl-3,3-dimethyl-2-(3-((1R,2R)-2-(2-methyl-5-phenyl-1H-pyrrol-1-yl)cyclo-

hexyl)thioureido)butanamide (57k):

Thiourea 57k was prepared following the 

procedure described for catalyst 57a, starting from  

L-tert-leucine dibenzylamide (144c, 0.27 g,      

0.87 mmol) and (1R,2R)-2-(methyl-5-phenyl-

pyrrol-1-yl)cyclohexylamine (169c, 0.26 g,      

1.03 mmol), yielding the desired product (57k,

0.45 g, 0.74 mmol, 86%) as a pale yellow solid. 

57k: C38H46N4OS (606.86 g/mol); 1H NMR (400 MHz, CDCl3):  7.46-7.39 (m, 4H, CHAr),

7.33-7.26 (m, 9H, CHAr), 7.20 (d, J = 7.7 Hz, 2H, CHAr), 6.17 (br s, 1H, NH), 6.03 (br s, 1H, 

CHAr,pyrrol), 5.90 (d, J = 5.7 Hz, 1H, CHAr,pyrrol), 5.71 (br s, 1H, CHC(CH3)3 or NH), 5.19 (d,   

J = 14.3 Hz, 1H, NCH2Ph), 5.11 (br s, 1H, CH(CH3)3 or NH), 4.94 (d, J = 15.6 Hz, 1H, 

NCH2Ph), 4.51 (br s, 1H, CH cycl.), 4.22 (d, J = 15.8 Hz, 1H, NCH2Ph), 4.01 (br s, 1H, CH

cycl.), 3.84 (d, J = 14.6 Hz, 1H, NCH2Ph), 2.56 (br s, 3H, CArCH3), 2.29-2.22 (br m, 3H, CH2

cycl.), 1.89 (d, J = 10.8 Hz, 1H, CH2 cycl.), 1.76-1.72 (br m, 2H, CH2 cycl.), 1.45-1.38 (br m, 

1H, CH2 cycl.), 1.28-1.23 (br m, 1H, CH2 cycl.), 0.97 (s, 9H, C(CH3)3); 13C NMR (100 MHz, 

CDCl3):  181.6  (C=S), 172.6 (C=O), 136.9 (CqAr), 135.7 (CqAr), 134.3 (CqAr), 129.5 (CHAr),

128.8 (CHAr), 128.7 (CHAr), 128.6 (CHAr), 128.6  (CqAr,pyr.), 128.3 (CHAr), 127.9 (CHAr),

127.5 (CHAr), 127.0 (CqAr,pyr.), 110.2 (CHAr,pyr.), 108.9 (CHAr,pyr.), 60.4  (CH cycl.), 59.9 

(CHC(CH3)3), 56.0  (CH cycl.), 50.8 (NCH2Ph), 47.3 (NCH2Ph), 37.0 (C(CH3)3), 33.6 (CH2

cycl.), 32.3 (CH2 cycl.), 26.8 (C(CH3)3), 25.7 (CH2 cycl.), 24.6 (CH2 cycl.), 15.5 (CArCH3); 

MS (EI, 70 eV): m/z (%) = 606 (100), 448 (9), 410 (47), 394 (5), 348 (4), 297 (34), 253 (10), 

237 (98), 198 (17), 155 (28), 106 (5), 91 (54); HRMS (EIpos) calcd for [(C38H46N4OS+Na)+]: 

629.3285, found: 629.3286.
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(S)-N,N-dibenzyl-2-(3-((1R,2R)-2-(2,5-diphenyl-1H-pyrrol-1-yl)cyclohexyl)thioureido)-3,3-

dimethylbutanamide  (57l):  

Thiourea 57-l was prepared following the 

procedure described for catalyst 57a, starting from  

L-tert-leucine dibenzylamide (144c, 0.27 g,      

0.87 mmol) and (1R,2R)-2-(2,5-diphenyl-pyrrol-1-

yl)cyclohexylamine (169d, 0.33 g, 1.03 mmol), 

yielding the desired product (57-l, 0.49 g,         

0.73 mmol, 84%) as a colorless solid.  

57-l: C43H48N4OS (668.93 g/mol); 1H NMR (400 MHz, CDCl3):  7.54-7.24 (m, 18H, CHAr),

7.18 (d, J = 5.3 Hz, 2H, CHAr), 6.10-6.25 (m, 2H, CHAr,pyr.), 6.04 (d, J = 9.1 Hz, 1H, NH),

5.78 (br s, 1H, NH), 5.14 (br s, 1H, CHC(CH3)3), 5.09 (d, J = 14.5 Hz, 1H, NCH2Ph), 4.96  

(d, J = 15.6 Hz, 1H, NCH2Ph), 4.28 (d, J = 15.6 Hz, 1H, NCH2Ph), 4.11-4.04 (br m, 1H, CH

cycl.), 3.90 (d, J = 14.5 Hz, 1H, NCH2Ph), 3.78 (br s, 1H, CH cycl.), 2.24 (d, J = 12.8 Hz, 1H, 

CH2 cycl.), 2.17 (d, J = 12.6 Hz, 1H, CH2 cycl.), 1.91-1.86 (br m, 1H, CH2 cycl.), 1.72-1.68 

(br m, 1H, CH2 cycl.), 1.52 (d, J = 15.3 Hz, 1H, CH2 cycl.), 1.18-1.12 (br m, 1H, CH2 cycl.), 

1.02 (s, 9H, C(CH3)3), 0.96-0.94 (br m, 1H, CH2 cycl.), 0.87-0.85 (br m, 1H, CH2 cycl.); 13C

NMR (100 MHz, CDCl3):  181.4 (C=S), 172.0 (C=O), 136.9 (CqAr), 135.7 (CqAr), 132.0

(CqAr), 129.7 (CqAr), 128.7 (CHAr), 128.7 (CHAr), 128.5 (CAr), 128.3 (CAr), 127.9 (CAr), 127.5

(CAr), 112.9 (CHAr,pyr.), 109.8 (CHAr,pyr.), 60.9 (CH cycl.), 60.3 (CHC(CH3)3), 56.8 (CH cycl.), 

50.9 (NCH2Ph), 47.2 (NCH2Ph), 36.8 (C(CH3)3), 33.7 (CH2 cycl.), 33.1 (CH2 cycl.), 26.9 

(C(CH3)3), 25.9 (CH2 cycl.), 24.1 (CH2 cycl.); MS (EI, 70 eV): m/z (%) =  668 (71), 472 (47), 

448 (8), 359 (21), 299 (100), 253 (9), 219 (40), 198 (14), 155 (15), 91 (45); HRMS (EIpos) 

calcd for [(C43H48N4OS+Na)+]: 691.3441, found: 691.3443.
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7.3.2.6 Synthesis of (S)-N,N-Diethyl-3,3-dimethyl-2-(3-phenylthioureido)butan-
amide  (176) 

To a solution of L-tert-leucine diethylamide (144b, 0.25 mg, 1.34 mmol, 1.0 equiv) in toluene 

(3 mL) was added isothiocyanatobenzene (177, 0.2 ml, 1.75 mmol, 1.3 equiv). The reaction 

mixture was stirred at 40 °C for five hours and then concentrated in vacuo. The crude product 

was purified by flash chromatography (15-20% of ethylacetate in hexanes) to yield thiourea 

176 (0.42 g, 1.31 mmol, 97%) as a colorless solid.  

176: C17H27N3OS (321.48 g/mol); 1H NMR (300 MHz, CDCl3):  8.13 (br s, 1H, CArNH),

7.44-7.39 (s, 2H, CHAr), 7.28-7.23 (s, 3H, CHAr), 7.04 (br d, J = 9.1 Hz, 1H, NHCH), 5.58  

(d, J = 9.5 Hz, 1H, CHC(CH3)3), 3.74-3.68 (m, 2H, CH2CH3), 3.39-3.34 (q, J = 7.1 Hz, 1H, 

CH2CH3), 3.02-2.95 (q, J = 6.8 Hz, 1H, CH2CH3), 1.32 (t, J = 7.1 Hz, 3H, CH2CH3), 1.08    

(t, J = 7.1 Hz, 3H, CH2CH3), 0.98 (s, 9H, C(CH3)3); 13C NMR (75 MHz, CDCl3):  180.3 

(C=S), 170.0 (C=O), 136.2 (CqAr), 130.0 (CHAr), 127.0 (CHAr), 124.8 (CHAr), 60.4 

(CHC(CH3)3), 42.9 (NCH2CH3), 40.1 (NCH2CH3), 36.5 (C(CH3)3), 26.8 (C(CH3)3), 14.6 

(CH2CH3), 12.7 (CH2CH3); MS (EI, 70 eV): m/z (%) = 321 (10), 248 (69), 233 (44), 221 (11), 

192 (6), 163 (2), 136 (17), 93 (17), 86 (100), 74 (63), 57 (5), 41 (10); HRMS (EIpos) calcd 

for [(C17H27N4OS+Na)+]: 344.1767, found: 344.1769. 
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7.3.3 Synthesis Bisthioureas 

7.3.3.1 (S)-1,1'-(1,1'-binaphthyl-2,2'-diyl)bis(3-(3,5-bis(trifluoromethyl)phenyl)-
thiourea) (178) 

NH2
NH2

(S)-148

CH2Cl2

rt - reflux, 3 d

CF3

F3C NCS

161

N
H

N
H

S

CF3

CF3
+ 2 H

N
H
N

S

CF3

CF3

178

To a solution of BINAM (S)-148 (0.30 g, 1.06 mmol, 1.0 equiv) in dichloromethane (10 mL) 

was added 3,5-bis(trifluoromethyl)phenyl isothiocyanate (161, 0.5 mL, 2.61 mmol,              

2.5 equiv). The reaction mixture was stirred for 20 hours at room temperature and refluxed for 

two additional days. The solution was then concentrated in vacuo and the crude product 

purified by flash chromatography (10-20% of ethyl acetate in hexanes) to yield bisthiourea 

178 (0.49 g, 0.59 mmol, 95%) as a pale yellow solid.  

178: C38H22F12N4S2 (826.72 g/mol); 1H NMR (400 MHz, CDCl3):  8.17 (br s, 2H, NH), 8.08 

(d, J = 8.8 Hz, 2H, CHAr), 7.77 (d, J = 8.2 Hz, 2H, CHAr), 7.84 (br s, 2H, CHAr), 7.74 (s, 4H, 

CHAr), 7.68 (s, 2H, CHAr), 7.56 (br s, 2H, NH), 7.48 (t, J = 7.2 Hz, 2H, CHAr), 7.27               

(t, J = 7.2 Hz, 2H, CHAr), 7.12 (d, J = 8.4 Hz, 2H, CHAr); 13C NMR (100 MHz, CDCl3):

180.0 (C=S), 138.8 (CqAr), 133.5 (CqAr), 132.8 (CqAr), 132.4 (CqAr), 132.0 (CHAr), 131.8 

(CqArCF3), 128.8 (CHAr), 128.0 (CHAr), 127.6 (CHAr), 127.0 (CHAr), 125.4 (CHAr), 124.6 

(CHAr), 124.0 (CCF3), 121.4 (CHAr), 119.5 (CHAr); MS (EI, 70 eV): m/z (%) = 826 (1), 521 

(33), 326 (100), 268 (35), 133 (8); HRMS (EIpos) calcd for [(C38H22F12N4S2+H)+]: 827.1094, 

found: 827.1182. The physical data were identical in all respects to those previously 

reported.258
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7.3.3.2 1,1'-((1R,2R)-Cyclohexane-1,2-diyl)bis(3-(3,5-bis(trifluoromethyl)phenyl)-
thiourea) (63)98

To a solution of (1R,2R)-( )-1,2-diaminocyclohexane (171, 0.30 g, 2.60 mmol, 1.0 equiv) in 

toluene (10 mL) was added 3,5-bis(trifluoromethyl)phenyl isothiocyanate (161,1.18 mL,   

5.98 mmol, 2.3 equiv). The reaction mixture was stirred for four hours at 90°C and then 

concentrated in vacuo. The crude product was purified by flash chromatography (4% of 

methanol in dichloromethane) to yield the bisthiourea 63 (1.65g, 2.51 mmol, 96%) as a 

colorless solid.  

63: C24H20F12N4S2 (656.55 g/mol); m.p. = 129-135°C; 1H NMR (300 MHz, CDCl3):  8.19 

(br s, 2H, CArNH), 7.81 (s, 4H, CHAr), 7.68 (s, 2H, CHAr), 7.13 (br s, 2H, CHNH), 4.37 (br s, 

2H, CH2CHCH cycl.), 2.18 (br s, 2H, CH2CH2CH cycl.), 1.80 (br s, 2H, CH2CH2CH cycl.), 

1.35 (br s, 4H, CH2CH2CH2 cycl.); 13C NMR (75 MHz, CDCl3):  180.5 (C=S), 138.6 (CqAr),

133.0 (CqAr), 132.5 (CqArCF3), 124.5 (CHAr), 124.1 (CCF3), 120.9  (CHAr), 119.7 (CHAr), 59.4 

(CH cyclic), 31.7 (CH2CH2CH cycl.), 24.4 (CH2CH2CH2 cycl.); MS (EI, 70 eV): m/z (%) = 

657 (15), 637 (11), 368 (100), 339 (48), 326 (25), 289 (26), 271 (94), 213 (36), 140 (15), 97 

(81), 81 (34), 69 (19); HRMS (EIpos) calcd for [(C24H20F12N4S2+H)+]: 657.1011, found 

657.1017. The physical data were identical in all respects to those previously reported.98

7.3.3.3 1,1'-(1,3-Phenylenebis(methylene))bis(3-((1R,2R)-2-(2,5-dimethyl-1H-
pyrrol-1-yl)cyclohexyl)thiourea) (180) 

Preparation of 1,3-bis(isothiocyanatomethyl)benzene (181):225 To a solution of 1,3-

phenylenedimethanamine (4.8 mL, 36.71 mmol, 1.0 equiv) and triethylamine (19.3 mL, 
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139.50 mmol, 3.8 equiv) in chloroform (200 mL, previously filtered through aluminium 

oxide) was added thiophosgene (6.2 mL, 80.76 mmol, 2.2 equiv) in chloroform (120 mL, 

previously filtered through aluminium oxide) dropwise at 0 °C under stirring over a period of 

30 minutes. After two hours at room temperature, the mixture was refluxed for two hours. 

After cooling to room temperature, the solvent was evaporated under reduced pressure and the 

residue purified by flash column chromatography (10-20% of ethyl acetate in hexanes). Pure 

bisisothiocyanate 181 (3.70 g, 16.79 mmol, 46%) was obtained as a yellow-orange oil.

181: C10H8N2S2 (220.31 g/mol); 1H NMR (300 MHz, CDCl3):  7.42 (t, J = 7.9 Hz, 1H, 

CHArCHArCHAr), 7.30 (d, J = 8.1 Hz, 2H, CCHArCHAr), 7.25 (s, 1H, CCHArC), 4.74 (s, 4H 

CCH2); 13C NMR (75 MHz, CDCl3):  135.2 (CqAr), 133.0 (NCS), 129.7 (CHAr), 126.8 

(CHAr), 125.2 (CHAr), 48.4 (CH2); MS (EI, 70 eV): m/z (%) = 220 (83), 162 (100), 134 (17), 

116 (20), 104 (75), 89 (6), 78 (18), 63 (9), 51 (14), 39 (10); HRMS (EI-ED) calcd for 

[C10H8N2S2]: 220.0129, found: 220.0129.

Preparation of 1,1'-(1,3-phenylenebis(methylene))bis(3-((1R,2R)-2-(2,5-dimethyl-1H-pyrrol-

1-yl)cyclohexyl)thiorea (180): To a solution of 1,3-bis(isothiocyanato-methyl)benzene (181,

0.40 g, 1.82 mmol, 1.0 equiv) in dichloromethane (7 mL) was added amine 169a (0.87 g,  

4.54 mmol, 2.5 equiv). The reaction mixture was stirred for 21 hours at room temperature and 

then concentrated in vacuo. The crude product was purified by flash chromatography (20-40% 

of ethyl acetate in hexanes) to afford the bisthiourea 180 (1.01g, 1.67 mmol, 92%) as a 

yellow-orange solid.

180: C34H48N6S2 (604.92 g/mol); 1H NMR (400 MHz, CDCl3):  7.18 (t, J = 7.6 Hz, 1H, 

CHArCHArCHAr), 7.02 (d, J = 7.5 Hz, 2H, CCHArCHAr), 6.78 (s, 1H, CCHArC), 6.01 (br s, 2H, 

NH), 5.88 (br s, 2 H, NH), 5.67 (br d, J = 13.4 Hz, 4H, CHAr), 4.40 (br s, 2H, NHCH cycl.), 

4.20 (br s, 4H, CH2), 3.82-3.75 (m, 2H, NCH cycl.), 2.36-2.16 (br ss, 12H, CH3), 2.00-1.74 

(m, 10H, CH2 cycl.), 1.43-1.13 (m, 4H, CH2 cycl.), 1.10-1.08 (m, 2H, CH2 cycl.); 13C NMR

(100 MHz, CDCl3):  181.8 (C=S), 137.4 (CqAr), 129.3 (CqAr,pyr.), 128.8 (CHAr), 127.0 (CHAr),

126.8 (CqAr,pyr.), 126.4 (CHAr), 108.7 (CHAr,pyr.), 106.2 (CHAr,pyr.), 59.6 (CH cycl.), 56.5 (CH

cycl.), 48.2 (CArCH2NH), 33.8 (CH2 cycl.), 31.9 (CH2 cyclic), 25.7 (CH2 cycl.), 25.6 (CH2

cycl.), 14.2 (CH3), 13.7 (CH3); MS (EI, 70 eV): m/z (%) = 604 (0.5), 426 (23), 370 (9), 234 

(82), 175 (47), 96 (100), 81 (65); HRMS (EIpos) calcd for [(C34H48N6S2+H)+]: 605.3455, 

found: 605.3456.
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7.4 Enantioselective Transfer Hydrogenation of , -Unsaturated 
Ketones 

7.4.1 Synthesis of the Starting Materials

7.4.1.1 Synthesis of the , -Unsaturated Cyclic Ketones 107

General Procedure for the Synthesis of -Substituted Cyclic Enones

3-Methylcyclohexenone 107b and 3-methylcyclopentenone 107c were purchased from 

Sigma-Aldrich. 3-Benzylcyclohexenone 107a was prepared by J. Zhou. The other cyclic 

enones were synthesized according to the following procedure.163

3-Ethylcyclohexenone (107d): A flame-dried flask was charged with 

ethylmagnesium bromide (14.3 mL, 42.8 mmol, 3.0 M in diethyl ether,            

2.0 equiv) and cooled to 0 °C. 3-Ethoxycyclohexenone (184a, 3.00 g,          

21.40 mmol) in THF (15 mL) was added to the Grignard reagent dropwise. Once the addition 

was complete the reaction mixture was left at room temperature until complete disappearance 

of the starting material. After 20 hours the reaction was slowly quenched with a solution of 

hydrochloric acid (1 N, 100 mL). The aqueous phase was separated and extracted with diethyl 

ether (3 × 25 mL). The combined organic phases were washed successively with a saturated 

aqueous solution of sodium dicarbonate, brine and water. The combined organic layers were 

dried over magnesium sulfate, filtered and concentrated in vacuo. The crude product was 

purified by flash column chromatography (10-20% of diethyl ether in pentane) to provide the 

title compound (107d, 1.40 g, 11.27 mmol, 53% yield, reduced yield due to high volatility) as 

a yellow oil.

O
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107d: C8H12O (124.18 g/mol); 1H NMR (300 MHz, CDCl3):  5.86 (dd, J = 2.1 Hz, 1.2 Hz, 

1H, C(O)CH=C), 2.34 (dt, J = 7.2 Hz, 1.4 Hz, 2H, C(O)CH2), 2.27 (t, J = 5.8 Hz, 2H, CCH2

cycl.), 2.22 (q, J = 7.5 Hz, 2H, CCH2CH3), 1.97 (qt, J = 6.5 Hz, 2H, CH2 cycl.), 1.08 (q,         

J = 7.5 Hz, 2H, CCH2CH3); 13C NMR (75 MHz, CDCl3):  200.0 (C=O), 167.9 (C=CH),

124.5 (C=CH), 37.3 (C(O)CH2 cycl.), 30.8 (CCH2CH2 cycl.), 29.7 (CCH2CH3), 22.7 

(CH2CH2CH2 cycl.), 11.2 (CCH2CH3); MS (EI, 70 eV): m/z (%) = 124 (52), 96 (100), 81 (24), 

67 (24), 53 (14), 39 (20), 27 (11); HRMS (EI-FE) calcd for [C8H12O]: 124.0888, found: 

124.0889. The physical data were identical in all respects to those previously reported.259

3-Isobutylcyclohexenone (107e):  Enone 107e was prepared following the 

procedure described for 107d, starting from 3-ethoxycyclohexenone (184a,

3.00 g, 21.40 mmol) and isobutylmagnesium bromide (14.3 mL, 42.8 mmol, 

3.0 M in diethyl ether). After purification by flash chromatography (15% of diethyl ether in 

pentane), the title compound (107e, 2.51 g, 16.49 mmol, 77% yield) was obtained as a yellow 

oil.

107e: C10H16O (152.23 g/mol); 1H NMR (300 MHz, CDCl3):  5.83 (s, 1H, C(O)CH=C),

2.34 (t, J = 6.7 Hz, 2H, C(O)CH2), 2.25 (t, J = 6.1 Hz, 2H, CCH2 cycl.), 2.07 (d, J = 7.2 Hz, 

2H, CH2CH(CH3)2), 1.97 (qt, J = 6.3 Hz, 2H, CH2 cycl.), 1.96-1.86 (m, 1H, CH2CH(CH3)2),

1.07 (d, J = 7.2 Hz, 6H, CH2CH(CH3)2); 13C NMR (75 MHz, CDCl3):  199.9 (C=O), 165.6 

(C=CH), 126.9 (C=CH), 47.6 (CH2CH(CH3)2), 37.3 (C(O)CH2 cycl.), 29.6 (CCH2CH2 cycl.), 

26.3 (CH2CH(CH3)2), 22.7 (CH2CH2CH2 cycl.), 22.5 (CH2CH(CH3)2); MS (EI, 70 eV):       

m/z (%) = 152 (35), 137 (21), 124 (7), 110 (22), 82 (100), 67 (6), 53 (8), 41 (16), 27 (10); 

HRMS (EI-FE) calcd for [C10H16O]: 152.1201, found: 152.1202. The physical data were 

identical in all respects to those previously reported.260

3-Isopropylcyclohexenone (107f):  Enone 107f was prepared following the 

procedure described for 107d, starting from 3-ethoxycyclohexenone (184a,

3.00 g, 21.40 mmol) and isopropylmagnesium bromide (21.4 mL, 42.8 mmol, 

2.0 M in diethyl ether). After purification by flash chromatography (10-20% of 

diethyl ether in pentane), the title compound (107f, 2.02 g, 14.62 mmol, 68% yield) was 

obtained as a yellow oil.

O

O
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107f: C9H14O (138.21 g/mol); 1H NMR (300 MHz, CDCl3):  5.87 (s, 1H, C(O)CH=C), 2.43-

2.28 (m, 5H: C(O)CH2 (2H), CCH2 cycl. (2H), CH(CH3)2 (1H)), 1.98 (qt, J = 6.4 Hz, 2H, 

CH2 cycl.), 1.07 (d, J = 7.2 Hz, 6H, CH(CH3)2); 13C NMR (75 MHz, CDCl3):  200.3 (C=O),

171.8 (C=CH), 123.6 (C=CH), 37.6 (C(O)CH2 cycl.), 35.7 (CH(CH3)2), 27.7 (CCH2CH2

cycl.), 22.9 (CH2CH2CH2 cycl.), 20.6 (CH(CH3)2); MS (EI, 70 eV): m/z (%) = 138 (39), 123 

(7), 110 (73), 95 (100), 82 (20), 67 (52), 55 (12), 41 (25), 27 (9); HRMS (EI-FE) calcd for 

[C9H14O]: 138.1045, found: 138.1047. The physical data were identical in all respects to those 

previously reported.261

3-Phenethylcyclohexenone (107g):  Magnesium turnings (1.24 g, 

51.00 mmol) and THF (25 mL) were placed into a dry flask. 2-

Phenylethylbromide (195, 7.0 mL, 51.00 mmol) was placed into a 

separate dry flask, dissolved in THF (25 mL) and then added via syringe 

to the magnesium solution. The resulting mixture was then heated at 60 °C and after 15 hours 

cooled to 40 °C (at room temperature the Grignard solidifies). The solution of Grignard 

reagent was then separated from remaining magnesium solid by transferring the solution via 

syringe to another dry flask. Enone 107g was prepared following the procedure described for 

107d, starting from 3-ethoxycyclohexenone (184a, 3.00 g, 21.40 mmol). After purification by 

flash chromatography (20-30% of ethyl acetate in hexanes), the title compound (107g, 3.90 g, 

19.47 mmol, 91% yield) was obtained as a yellow oil.

107g: C14H16O (200.28 g/mol); 1H NMR (300 MHz, CDCl3):   7.31-7.17 (m, 5H, CHAr),

5.90 (s, 1H, C(O)CH=C), 2.87-2.80 (m, 2H, C(O)CH2), 2.55-2.50 (m, 2H, CH2CH2Ph), 2.38-

2.29 (m, 4H: CH2CH2Ph (2H), CCH2 cycl. (2H)), 2.04-1.94 (m, 2H, CH2 cycl.); 13C NMR

(75 MHz, CDCl3):   199.8 (C=O), 165.0 (C=CH), 140.7 (CqAr), 129.0 (CHAr), 128.5 (CHAr),

128.2 (CHAr), 126.4 (CHAr), 126.2 (CHAr), 123.6 (C=CH), 39.6 (C(O)CH2 cycl.), 39.2 

(CCH2), 37.3 (CCH2), 29.8 (CH2CH2Ph), 22.6 (CH2CH2CH2 cycl.); MS (EI, 70 eV): m/z (%) 

= 200 (16), 182 (6), 129 (10), 91 (100), 65 (9), 39 (6); HRMS (EI-DE) calcd for [C14H16O]:

200.1201, found: 200.1203. The physical data were identical in all respects to those 

previously reported.262

O
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3-Ethylcyclopentenone (107h):  Enone 107h was prepared following the 

procedure described for 107d, starting from 3-ethoxycyclopentenone (184b,

2.00 g, 15.85 mmol) and isopropylmagnesium bromide (8.0 mL, 23.78 mmol,    

3.0 M in diethyl ether). After purification by flash chromatography (50% of diethyl ether in 

pentane), the title compound (107h, 0.60 g, 5.45 mmol, 34% yield, reduced yield due to high 

volatility) was obtained as a yellow oil.  

107h: C7H10O (110.15 g/mol); 1H NMR (400 MHz, CDCl3):   5.92 (s, 1H, C(O)CH=C),

2.58-2.56 (m, 2H: C(O)CH2), 2.43-2.37 (m, 4H: CH2CH3 (q, J = 7.3 Hz, 2H), CCH2 cycl. 

(2H)), 1.17 (t, J = 7.4 Hz, 3H, CH2CH3); 13C NMR (100 MHz, CDCl3):   210.1 (C=O),

184.4 (C=CH), 128.6 (C=CH), 35.3 (C(O)CH2 cycl.), 31.3 (CH2CH3), 26.6 (CCH2 cycl.), 11.4 

(CH2CH3); MS (EI, 70 eV): m/z (%) = 110 (95), 95 (18), 81 (100), 67 (61), 53 (59), 51 (13), 

41 (23), 39 (37), 27 (31); HRMS (EI-FE) calcd for [C7H10O]: 110.0731, found: 110.0732. 

The physical data were identical in all respects to those previously reported.263

3-Phenethylcyclopentenone (107i):  Magnesium turnings (0.72 g,       

40.00 mmol) and THF (20 mL) were placed into a dry flask. 2-

Phenylethylbromide (195, 5.5 mL, 40.0 mmol) was placed into a separated 

dry flask, dissolved in THF (20 mL) and then added via syringe to the 

magnesium solution. The resulting mixture was then heated at 60 °C and 

after 15 hours cooled to 40 °C. The solution of Grignard reagent was then separated from 

remaining solid magnesium by transferring the solution via syringe to another dry flask. 

Enone 107i was prepared following the procedure described for 107d, starting from 3-

ethoxycyclopentenone (184b, 2.00 g, 15.85 mmol). After purification by flash 

chromatography (20-30% of ethyl acetate in hexanes), the title compound (107i, 2.61 g, 14.01 

mmol, 88% yield) was obtained as an orange oil.

107i: C13H14O (186.25 g/mol); 1H NMR (400 MHz, CDCl3):   7.33-7.19 (m, 5H, CHAr), 

5.98 (s, 1H, C(O)CH=C), 2.94-2.89 (m, 2H, C(O)CH2), 2.76-2.74 (m, 2H, CH2CH2Ph), 2.60-

2.57 (m, 2H, CH2CH2Ph), 2.41-2.38 (m, 2H, CCH2 cycl.); 13C NMR (100 MHz, CDCl3): 

209.9 (C=O), 181.7 (C=CH), 140.5 (CqAr), 129.8 (CHAr), 129.0 (CHAr), 128.5 (CHAr), 128.1

(CHAr), 126.3 (C=CH), 35.2 (C(O)CH2 cycl.), 35.0 (CH2CH2Ph), 33.2 (CH2CH2Ph), 31.7 

(CCH2CH2 cycl.); MS (EI, 70 eV): m/z (%) = 186 (23), 143 (1), 129 (3), 115 (1), 104 (1), 91 

O

O
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(100), 77 (2), 65 (9), 51 (3), 39 (5), 27 (2); HRMS (EI-DE) calcd for [C13H14O]: 186.1045, 

found: 186.1043. The physical data were identical in all respects to those previously 

reported.264

Preparation of 3-Methylcycloheptenone (107j)

3-Ethoxycycloheptenone was prepared according to the procedure of de Meijere et al.228  In a 

flame-dried flask equipped with a condenser and a Dean-stark apparatus a mixture of 

cycloheptane-1,3-dione (187, 1.57 g, 12.20 mmol), ethanol (3 mL), and a catalytic amount of 

para-toluene sulfonic acid (31 mg, 0.16 mmol) in benzene (80 mL) was refluxed. After two 

days the reaction was stopped (despite incomplete conversion) and the solvent was evaporated 

in vacuo. By flash chromatography (20% of diethyl ether in pentane) cycloheptane-1,3-dione

(187) and 3-ethoxycycloheptenone (184c) could not be separated. The resulting mixture of 

both compounds (1.5g, cycloheptane-1,3-dione (187) / 3-ethoxycycloheptenone (184c) about 

2:1 according to NMR) was used without further purification for the synthesis of 3-

methylcycloheptenone (107j).

Enone 107j was then prepared according to the procedure used to synthesize 107d, starting 

from this mixture of cycloheptane-1,3-dione (187) and 3-ethoxycycloheptenone (184c) in 

THF (8 mL) and methylmagnesium bromide (5.2 mL, 15.60 mmol, 3.0 M in diethyl  ether). 

After purification by flash chromatography (20-25% of diethyl ether in pentane), the title 

compound (107j, 0.70 g, 5.64 mmol, 46% overall yield) was obtained as a pale yellow oil.

107j: C8H12O (124.18 g/mol); 1H NMR (400 MHz, CDCl3):  5.93 (s, 1H, C(O)CH=C), 2.58 

(t, J = 3.9 Hz, 2H, C(O)CH2), 2.42 (t, J = 3.5 Hz, 2H, CCH2 cycl.), 1.96 (s, 3H, CCH3),1.74-

1.85 (m, 4H, CH2CH2CH2 (2H), CH2CH2CH2 (2H)); 13C NMR (100 MHz, CDCl3):  203.7  

(C=O), 158.4 (C=CH), 129.9 (C=CH), 42.5 (C(O)CH2 cycl.), 34.6 (CCH2CH2 cycl.), 27.6 

(CH2CH2CH2), 25.2 (CCH3), 21.5 (CH2CH2CH2); MS (EI, 70 eV): m/z (%) = 124 (66), 109 

(24), 95 (100), 82 (82), 67 (50), 53 (20), 39 (36), 27 (18); HRMS (EI-DE) calcd for [C8H12O]:  

124.0888, found: 124.0887.
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7.4.1.2 Synthesis of the , -Unsaturated Acyclic Ketones 113c

Preparation of 4-methylnon-3-en-2-one (113c) through Horner-Wadsworth-Emmons 

olefination 231

O

P
O

O
O

O

LiOH, MS 4Å

THF, reflux, 24 h
190 113c

191
O

A suspension of heptan-2-one (190, 3.7 mL, 26.27 mmol, 1.0 equiv), dimethyl-2-

oxopropylphosphonate (191, 2.8 mL, 28.90 mmol, 1.1 equiv) and activated 4 Å molecular 

sieves (40 g) in THF (250 mL) was stirred at reflux.  Lithium hydroxide monohydrate (0.69 g, 

28.90 mmol, 1.1 equiv; previously dried in oven at 180 °C for two hours) was added in three 

portions, during the reaction course. The reaction mixture was stirred under at reflux during 

48 hours and then cooled to room temperature. The molecular sieve was filtered off and a 

saturated aqueous solution of ammonium chloride (100 mL) and diethyl ether (100 mL) were 

added to the filtrate. The two remaining layers were then separated and the aqueous phase 

extracted with diethyl ether (3 × 75 mL). The combined organic layers were washed with 

brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The crude product 

was purified by flash column chromatography (3% of diethyl ether in pentane) to provide the 

title compound 113c (enriched (E)- and enriched (Z)-isomers) as a pale yellow oil.  

Enriched (Z)-113c: Z/E = 9:1, 0.04 g, 0.26 mmol, 1% yield. C10H18O (154.24 g/mol); 1H

NMR (400 MHz, CDCl3):  6.05 (s, 1H, C(O)CH=C), 2.56 (t, J = 7.8 Hz, 2H, C=CCH2CH2)

2.14 (s, 3H, C(O)CH3), 1.86 (s, 3H, C=CCH3), 1.45-1.41 (br m, 2 H, CH2CH2CH2), 1.35-1.25 

(br m, 4H: CH2CH2CH2 (2H), CH2CH2CH3 (2H)), 0.93-0.85 (br m, 2H, CH2CH3); 13C NMR

(100 MHz, CDCl3):  198.0 (C=O), 159.4  (C=CH), 123.7 (C=CH), 36.4 (C=CCH2CH2), 33.2 

(C(O)CH3), 31.6 (CH2CH2CH2), 27.5 (CH2CH2CH2), 25.1 (CH2CH2CH2), 22.2 (C=CCH3),

13.7 (CH2CH3); MS (EI, 70 eV): m/z (%) = 154 (2), 139 (20), 111 (26), 98 (64), 83 (73), 69 

(45), 55 (48), 43 (100), 41 (32), 29 (17); HRMS (EI-FE) calcd for [C10H18O]:  154.1358, 

found: 154.1359. The physical data were identical in all respects to those previously reported 

(1H NMR).265
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Enriched (E)-113c: E/Z = 2.3:1, 0.13 g, 0.84 mmol, 3% yield. 1H NMR (400 MHz, CDCl3):

6.06 (s, 1H, C(O)CH=C), 2.17 (s, 3H, C(O)CH3), 2.14-2.08 (m, 5H: C=CCH2CH2 (2H), 

C=CCH3 (3H)), 1.48-1.44 (br m, 2 H, CH2CH2CH2), 1.32-1.25 (br m, 4H: CH2CH2CH2 (2H), 

CH2CH2CH3 (2H)), 0.89 (t, J = 7.1 Hz, 3H, CH2CH3); 13C NMR (100 MHz, CDCl3):  198.6  

(C=O), 158.7 (C=CH), 123.1 (C=CH), 40.9 (C=CCH2CH2), 31.4 (C(O)CH3), 31.1 

(CH2CH2CH2), 26.8 (CH2CH2CH2), 22.1 (CH2CH2CH2), 18.9 (C=CCH3), 13.6 (CH2CH3).

Preparation of 4-methylnon-3-en-2-one (113c) through ruthenium-catalyzed olefin cross-

metathesis 232

To a flask equipped with a condenser was added Grubbs’ second generation ruthenium 

catalyst (194, 1.82 g, 2.14 mmol, 0.05 equiv) in dichloromethane (17 mL). To this mixture 

were successively added (E)-pent-3-en-2-one (192, 3.9 mL, 42.79 mmol, 1.0 equiv) and 2-

methylhept-1-ene (193, 26.9 mL, 171.16 mmol, 4.0 equiv) under stirring at room temperature. 

The reaction mixture was stirred under reflux for nine hours and then allowed to cool to room 

temperature. The volatile compounds were removed under reduced pressure and the crude 

product was purified by flash column chromatography (3% of diethyl ether in pentane) to 

provide the title compound 113c (enriched (E)- and enriched (Z)-isomers) as a pale yellow oil.  

Enriched (E)-113c: E/Z: 14:1, 80 mg, 0.52 mmol, 1%); enriched (Z)-113c: Z/E = 14:1, 40 mg, 

0.26 mmol, 1% yield). 
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7.4.2 General Procedure for the Synthesis of the Racemic Products

3-Methylcyclohexanone (95b) and 3-methylcyclopentanone (95c) were purchased from 

Sigma-Aldrich. The other racemic ketones (95a,d-j and 114a-c) were prepared through 

palladium-catalyzed conjugate reduction of the enones 107a,d-j and 113a-c with molecular 

hydrogen.233

General procedure:  

In a flask (dried and under an atmosphere of argon) charged with palladium on charcoal     

(8.5 mg, 0.08 mmol, 0.1 equiv) in methanol (5 mL) was added enone (107 or 113, 0.80 

mmol). The flask was then carefully evacuated and filled with molecular hydrogen. The 

reaction mixture was stirred at room temperature for two to five hours. The solution was then 

filtered through celite and concentrated in vacuo. The crude product was purified by flash 

column chromatography (eluents: diethyl ether/pentane) to provide the desired saturated 

ketone (95 or 114).



7 Experimental Part 

 - 232 -  

7.4.3 Asymmetric Transfer Hydrogenation of , -Unsaturated Ketones 

Bu2O, 60°C, 48h

R1

R2

O

R3

R1

R2

O

R3

O
P

O O

O

i-Pr
i-Pr

i-Pr

i-Pr

i-Pr
i-Pr

CO2t-BuH3N

i-Pr

139a (R).126a
(5 mol%)

N
H

CO2EtEtO2C

90a (1.2 equiv)

107a-j (cyclic)
113a-c (acyclic)

95a-j (cyclic)
114a-c (acyclic)

To -substituted- , -unsaturated ketone (107 or 113, 0.100 mmol) in dibutyl ether (0.3 mL, 

0.3 M), catalyst [139a (R)-126a] (4.6 mg, 0.005 mmol, 0.05 equiv) and Hantzsch ester 90a

(30.4 mg, 0.12 mmol, 1.2 equiv) were added. The reaction mixture was stirred at 60 °C under 

an atmosphere of argon for 48 hours and then treated with an aqueous solution of sodium 

hydroxide (2 N, 2 mL) and diethyl ether (2 mL). The two layers were separated and the 

aqueous phase extracted with diethyl ether (3 × 2 mL). The combined organic layers were 

dried over magnesium sulfate, filtered and concentrated in vacuo. The crude product was 

purified by flash column chromatography (eluents: diethyl ether/pentane) to afford the desired 

saturated ketone (107 or 113).

(S)-3-Phenylcyclohexanone (95a): The enantiomers were analyzed by GC 

using a chiral BGB 176  column (100 °C, 1.2 °C/min until 180 °C, 18 °C/min 

until 220 °C, 10 min at 220 °C); major enantiomer: tR = 41.20 min, minor 

enantiomer: tR = 41.76 min. 95a (17.2 mg, 0.099 mmol, 99%; 92:8 er):

C12H14O (174.24 g/mol); 1H NMR (400 MHz, CDCl3):  7.35-7.31 (m, 2H, CHAr), 7.25-7.21 

(m, 3H, CHAr), 3.05-2.98 (m, 1H, C(O)CH2CHPh), 3.60-3.35 (m, 4H: C(O)CH2CH (2H), 

C(O)CH2CH2 (2H)), 2.18-2.07 (m, 1H, CH2CH2CH), 2.08-2.01 (m, 2H: (1H), , 1.99-1.90 (m, 

2H, CH2CH2CH), 1.98-1.75 (m, 2H, CH2CH2CH2); 13C NMR (100 MHz, CDCl3):  211.0 

(C=O), 144.3 (CqAr), 128.7 (CHAr), 126.7 (CHAr), 126.5 (CHAr), 48.9 (C(O)CH2CH), 44.7 

(CHPh), 41.2 (C(O)CH2CH2), 32.8 (CH2CH2CH2), 25.5 (CH2CH2CH); HRMS (EI-FE) calcd 

O
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for [C12H14O]: 174.1045, found: 174.1043. The physical data were identical in all respects to 

those previously reported.135

(S)-3-Methylcyclohexanone (95b): The enantiomers were analyzed by GC using a 

chiral BGB-178 column (2 min at 50 °C, 5 °C/min until 100 °C, 1 min at 100 °C, 

20 °C/min until 150 °C, 2 min at 150 °C); major enantiomer: tR = 12.38 min, minor 

enantiomer: tR = 12.19 min. 95b (11.1 mg, 0.099 mmol, 99%; 97:3 er): C7H12O (112.17 

g/mol); 1H NMR (500 MHz, CDCl3):  2.39-2.30 (m, 2H, C(O)CH2), 2.25-2.19 (m, 1H, 

C(O)CH2), 2.04-1.96 (m, 2H: C(O)CH2 (1H), CH2CHCH3 (1H)), 1.91-1.82  (m, 2H, 

CH2CH2CH2), 1.69-1.61 (m, 1H, CH2CH2CH), 1.36-1.28 (m, 1H, CH2CH2CH), 1.01 (d,        

J = 6.5 Hz, 3H, CHCH3); 13C NMR (125 MHz, CDCl3):  212.0 (C=O), 50.0 (C(O)CH2CH), 

41.1 (C(O)CH2CH2), 34.2 (CHCH3), 33.3 (CH2CH2CH), 25.3 (CH2CH2CH2), 22.0 (CHCH3); 

MS (EI, 70 eV): m/z (%) =112 (39), 97 (13), 69 (100), 56 (44), 41 (43), 39 (22), 27 (14); GC-

MS (GC-EI): 112. The physical data were identical in all respects to those of the 

commercially available 95b (Sigma-Aldrich).

(S)-3-Ethylcyclohexanone (95d):  The enantiomers were analyzed by GC using 

a chiral Lipodex-A column (5 min at 50 °C, 0.5 °C/min until 70 °C, 18 °C/min 

until 180 °C, 15 min at 180 °C); major enantiomer: tR = 30.53 min, minor 

enantiomer: tR = 30.03 min. 95d (12.4 mg, 0.098 mmol, 98%; 98:2 er): C8H14O (126.20 

g/mol); 1H NMR (300 MHz, CDCl3):  2.44-2.19 (m, 3H: C(O)CH2CH2 (2H), C(O)CH2CH

(1H)), 2.07-1.86 (m, 3H: C(O)CH2CH (1H), C(O)CH2CH (1H), CH2CH2CH (1H)), 1.71-1.58 

(m, 2H, CH2CH2CH2), 1.41-1.24 (m, 3H: CH2CH2CH (1H), CHCH2CH3 (2H)), 0.89 (t, J =

7.4 Hz, 3H, CHCH2CH3); 13C NMR (75 MHz, CDCl3):  212.2 (C=O), 53.4 (C(O)CH2CH), 

47.8 (C(O)CH2CH2), 41.5 (CHCH2CH3), 41.8 (CH2CH2CH), 30.9 (CHCH2CH3), 25.3 

(CH2CH2CH2), 11.1 (CHCH2CH3); GC-MS (GC-EI): 126. The physical data were identical in 

all respects to those previously reported.135

(S)-3-Isobutylcyclohexanone (95e): The enantiomers were analyzed by GC 

using a chiral Lipodex-A column (50 °C, 1 °C/min until 120 °C, 18 °C/min 

until 180 °C, 15 min at 180 °C); major enantiomer: tR = 32.58 min, minor 

enantiomer: tR = 31.97 min. 95e (13.7 mg, 0.089 mmol, 89%; 98:2 er): C10H18O (154.24 

g/mol); 1H NMR (300 MHz, CDCl3):  2.41-2.37 (m, 3H: C(O)CH2CH2 (2H), C(O)CH2CH

(1H)), 2.05-1.84 (m, 3H: C(O)CH2CH (1H), C(O)CH2CH (1H), CH2CH2CH (1H)), 1.66-1.62 

O

O

O
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(m, 2H, CH2CH2CH2), 1.45-1.22 (m, 4H: CH2CH2CH (1H), CH2CH(CH3)2 (1H), 

CH2CH(CH3)2 (2H)), 0.86 (d, J = 7.3 Hz, 6H, CH2CH(CH3)2); 13C NMR (75 MHz, CDCl3):

212.1 (C=O), 48.3 (C(O)CH2CH), 46.1 (C(O)CH2CH2), 41.5 (CHCH2CH(CH3)2), 36.7 

(CHCH2CH(CH3)2), 31.5 (CH2CH2CH), 25.3  (CHCH2CH(CH3)2), 24.7 (CH2CH2CH2), 22.7 

(CHCH2CH(CH3)2), 22.6 (CHCH2CH(CH3)2); MS (EI, 70 eV): m/z (%) = 154 (16), 139 (7), 

111 (27), 97 (100), 83 (9), 69 (15), 55 (40), 41 (27), 27 (6); HRMS (EI-DE) calcd for 

[C10H18O]: 154.1358, found: 154.1358. The physical data were identical in all respects to 

those previously reported.135

(S)-3-Isopropylcyclohexanone (95f): The enantiomers were analyzed by GC 

using a chiral Lipodex-A column (10 min at 50 °C, 1.2 °C/min until 120 °C,     

18 °C/min until 180 °C, 5 min at 180 °C); major enantiomer: tR = 24.69 min, 

minor enantiomer: tR = 24.29 min. 95f (13.2 mg, 0.094 mmol, 94%; 99:1 er):

C9H16O (140.22 g/mol); 1H NMR (300 MHz, CDCl3):  2.38-2.12 (m, 3H: C(O)CH2CH2

(2H), C(O)CH2CH (1H)), 2.10-2.00 (m, 2H: C(O)CH2CH (1H), C(O)CH2CH (1H)), 1.88-

1.81 (m, 1 H, CH2CH2CH), 1.60-1.49 (3H: CH2CH2CH2 (2H), CH(CH3)2 (1H)), 1.36-1.30 (m, 

1H, CH2CH2CH), 0.89 (dd, J = 6.5 Hz, 2.2 Hz, 6H, CH(CH3)2); 13C NMR (75 MHz, CDCl3):

 212.5 (C=O), 45.4 (C(O)CH2CH), 45.3 (CHCH(CH3)2), 41.4 (C(O)CH2CH2), 32.4 

(CHCH(CH3)2), 28.3 (CH2CH2CH), 25.4  (CH2CH2CH2), 19.3 (CH(CH3)2), 19.0 (CH(CH3)2);

MS (EI, 70 eV): m/z (%) = 140 (27), 97 (100), 82 (25), 69 (45), 55 (62), 41 (54), 27 (11); 

HRMS (EI-DE) calcd for [C9H16O]: 140.1201, found: 140.1203. The physical data were 

identical in all respects to those previously reported.266

(S)-3-Phenethylcyclohexanone (95g): Purification by flash 

chromatography (5-10% of diethyl ether in pentane) afforded the pure 

product (95g, 20.0 mg, 0.099 mmol, 99%; 98:2 er) as a colorless oil. The 

enantiomers were analyzed by HPLC using a chiral Chiralpak AS-H 

column (n-heptane/2-propanole = 90:10, flow rate = 0.5 mL/min, 

wavelength = 220 nm). Major enantiomer: tR = 16.55 min, minor enantiomer: tR = 14.98 min.

95g: C14H18O (202.29 g/mol); 1H NMR (400 MHz, CDCl3):  7.28-7.24 (m, 2H, CHAr), 7.19-

7.15 (m, 3H, CHAr), 2.62 (t, J = 8.0 Hz, 2H, CH2CH2Ph), 2.49-2.46 (m, 1H, C(O)CH2CH),

2.38-2.30 (m, 1H, C(O)CH2CH2), 2.16-2.10 (m, 1H, C(O)CH2CH2), 2.08-2.01 (m, 2H: 

C(O)CH2CH (1H), C(O)CH2CH (1H)), 1.99-1.90 (m, 1H, CH2CH2CH2), 1.85-1.70 (m, 1H, 

CH2CH2CH2), 1.69-1.60 (m, 3H: CH2CH2Ph (2H), CH2CH2CH (1H)), 1.43-1.36 (m, 1H, 

O

O
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CH2CH2CH); 13C NMR (100 MHz, CDCl3):  211.6 (C=O), 141.8 (CqAr), 128.4 (CHAr),

128.2 (CHAr), 125.8 (CHAr), 48.0 (C(O)CH2CH), 41.4 (C(O)CH2CH2), 38.5 (CH2CH2Ph),

38.3 (CH2CH2Ph), 32.9 (CHCH2CH2Ph), 31.2 (CH2CH2CH), 25.1 (CH2CH2CH2); MS (EI, 70 

eV): m/z (%) = 202 (26), 111 (3), 105 (4), 97 (100), 91 (45), 77 (4), 65 (7), 55 (11), 41 (10); 

HRMS (EI-FE) calcd for [C14H18O]: 202.1358, found: 202.1360. The physical data were 

identical in all respects to those previously reported.135

(S)-3-Methylcyclopentanone (95c): The enantiomers were analyzed by GC using a 

chiral BGB-178 column (2 min at 50 °C, 5 °C/min until 100 °C, 1 min at   100 °C,   

20 °C/min until 150 °C, 2 min at 150 °C); major enantiomer: tR = 10.25 min, minor 

enantiomer: tR = 10.08 min. 95c (7.7 mg, 0.078 mmol, 78%; 99:1 er): C6H10O (98.14 

g/mol); 1H NMR (500 MHz, CDCl3):  2.38-2.10 (m, 5H, C(O)CH2CH (1H), C(O)CH2CH2

(2H), CH2CH2CH (1H), CH2CHCH3 (1H)), 1.77 (dd, J = 18.0 Hz, 9.5 Hz, 1H, C(O)CH2CH), 

1.54-1.45 (m, 1H, CH2CH2CH), 1.1 (d, J = 6.9 Hz, 3H, CHCH3); 13C NMR (125 MHz, 

CDCl3):  220.3 (C=O), 46.8 (C(O)CH2CH), 38.5 (C(O)CH2CH2), 31.7 (CHCH3), 31.3 

(CH2CH2CH), 20.2 (CHCH3); GC-MS (GC-EI): 98. The physical data were identical in all 

respects to those of commercially available material 95c (Sigma-Aldrich).

(S)-3-Ethylcyclopentanone (95h): The enantiomers were analyzed by GC using a 

chiral BGB 178 / OV-1701  column (10 min at 50 °C, 2 °C/min until 130 °C,      

20 °C/min until 220 °C, 10 min at 220 °C); major enantiomer: tR = 35.95 min, 

minor enantiomer: tR = 35.55 min. 95h (8.0 mg, 0.071 mmol, 71%; 98:2 er):

C7H12O (112.17 g/mol); 1H NMR (300 MHz, CDCl3):  2.40-2.21 (m, 2H: C(O)CH2CH2

(1H), C(O)CH2CH (1H)), 2.20-2.06 (m, 3H: C(O)CH2CH2 (1H), C(O)CH2CH (1H), 

C(O)CH2CH (1H)), 1.82-1.75 (m, 1H, CH2CH2CH), 1.49-1.41 (m, 3H: CH2CH2CH (1H), 

CHCH2CH3 (2H)); 13C NMR (75 MHz, CDCl3):  220.0 (C=O), 45.0 (C(O)CH2CH), 38.9 

(C(O)CH2CH2), 38.5 (C(O)CH2CH), 29.1 (CH2CH2CH), 28.4 (CHCH2CH3), 12.2 

(CHCH2CH3); GC-MS (GC-EI): 112. The physical data were identical in all respects to those 

previously reported.135

(S)-3-Phenethylcyclopentanone (95i): Purification by flash 

chromatography (5-10% of diethyl ether in pentane) afforded the pure 

product (95g, 13 mg, 0.07 mmol, 68%) as a colorless oil. The enantiomers 

were analyzed by HPLC using a chiral Chiralcel OD-H column                 

(n-heptane/2-propanol = 90:10, flow rate = 0.5 mL/min, wavelength =         

O

O

O
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220 nm). Major enantiomer: tR = 19.40 min, minor enantiomer: tR = 16.74 min. 95i (12.8 mg, 

0.068 mmol, 68%; 98:2 er): C13H16O (188.27 g/mol); 1H NMR (400 MHz, CDCl3):  7.29-

7.24 (m, 2H, CHAr), 7.20-7.16 (m, 3H, CHAr), 2.66 (t, J = 7.8 Hz, 2H, CH2CH2Ph), 2.43-2.33 

(m, 1H, C(O)CH2CH), 2.31-2.24 (m, 1H, C(O)CH2CH2), 2.19-2.13 (m, 3H: C(O)CH2CH2

(1H), C(O)CH2CH (1H), C(O)CH2CH (1H)), 1.86-1.75 (m, 3H: CH2CH2Ph (2H), 

CH2CH2CH (1H)), 1.55-1.46 (m, 1H, CH2CH2CH); 13C NMR (100 MHz, CDCl3):  219.5 

(C=O), 141.9 (CqAr), 128.5 (CHAr), 128.2 (CHAr), 125.9 (CHAr), 45.0 (C(O)CH2CH), 38.5 

(CH2CH2Ph), 37.9 (C(O)CH2CH2), 36.6 (CH2CH2Ph), 34.1 (CH2CH2CH2), 29.5 

(C(O)CH2CH). The physical data were identical in all respects to those previously reported.267

(S)-3-Methylcycloheptanone (95j): The enantiomers were analyzed by GC using 

a chiral Ivadex-7 column (80 °C, 1.2 °C/min until 180 °C, 20 °C/min until 220 

°C, 10 min at 220 °C); major enantiomer: tR = 11.09 min, minor enantiomer:      

tR = 12.86 min. 95j (12.6 mg, 0.099 mmol, >99%; 98:2 er): C8H14O (126.20 

g/mol); 1H NMR (400 MHz, CDCl3):  2.45-2.44 (m, 4H, C(O)CH2CH2 (2H), C(O)CH2CH

(2H)), 1.80-1.94 (m, 4H, CH2CH2CH2CH2), 1.56-1.67 (m, 1H, C(O)CH2CH), 1.36-1.47 (m, 

1H, CH2CH2CH), 1.19-1.34 (m, 1H, CH2CH2CH), 1.00 (d, J = 4.2 Hz, 3H, CHCH3); 13C

NMR (100 MHz, CDCl3):  214.4 (C=O), 51.8 (C(O)CH2CH), 44.1 (C(O)CH2CH2, 39.2 

(CH2CH2CH), 31.3 (CHCH3), 28.6 (CH2CH2CH2), 24.2 (CH2CH2CH2), 23.6 (CHCH3); GC-

MS (GC-EI): 126.

(R)-Ethyl 2-methyl-4-oxopentanoate (114a): The enantiomers were 

analyzed by GC using a chiral BGB 176 / SE 52 column (10 min at 60 °C,   

0.8 °C/min until 90 °C, 18 °C/min until 220 °C, 5 min at 220 °C); major 

enantiomer: tR = 31.11 min, minor enantiomer: tR = 29.50 min. 114a (12.8 mg, 0.081 mmol, 

81%; 85:15 er): C8H14O3 (158.19 g/mol); 1H NMR (300 MHz, CDCl3):  4.11 (q, J = 7.1 Hz, 

OCH2CH3), 2.94-2.85 (m, 2H, C(O)CH2CH), 2.50-2.40 (m, 1H, CH2CHCH3), 2.14 (s, 3H, 

C(O)CH3), 1.23 (t, J = 7.1 Hz, OCH2CH3), 1.16 (d, J = 7.0 Hz, 3H, CHCH3); 13C NMR (75 

MHz, CDCl3):  206.6 (C=O), 175.8 (C=O), 60.5 (OCH2CH3), 46.5 (C(O)CH2CH), 34.7 

(C(O)CH2CH), 30.0 (C(O)CH3), 17.0 (CHCH3), 14.1 (OCH2CH3); MS (EI, 70 eV): m/z (%) = 

158 (7), 113 (30), 101 (14), 88 (10), 73 (13), 43 (100), 29 (15); HRMS (ESIpos) calcd for 

[(C14H18O+Na+)]: 181.0835, found: 181.0834. The physical data were identical in all respects 

to those previously reported.268

O

O

CO2Et
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(R)-4-Phenylpentan-2-one (114b): The enantiomers were analyzed by GC 

using a chiral BGB 176 / SE 52 column (10 min at 60 °C, 0.8 °C/min until   

90 °C, 18 °C/min until 220 °C, 5 min at 220 °C); major enantiomer:               

tR = 43.52 min, minor enantiomer: tR = 43.07 min. 114b (16.1 mg, 0.099 

mmol, >99%; 92:8 er): C11H14O (162.23 g/mol); 1H NMR (400 MHz, CDCl3):  7.37-7.31 

(m, 2H, CHAr), 7.27-7.23 (m, 3H, CHAr), 3.36 (m, J = 7.1 Hz, 1H, CH2CHCH3), 2.81 (dd,      

J = 16.3 Hz, 6.5 Hz, 1H, C(O)CH2CH), 2.71 (dd, J = 16.3 Hz, 7.9 Hz, 1H, C(O)CH2CH),

2.12 (s, 3H, C(O)CH3), 1.32 (d, J = 7.0 Hz, 3H, CHCH3); 13C NMR (100 MHz, CDCl3):

207.5 (C=O), 145.8 (CqAr), 128.2 (CHAr), 126.4 (CHAr), 126.0 (CHAr), 51.7 (C(O)CH2CH), 

35.1 (C(O)CH2CH), 30.2 (C(O)CH3), 21.7 (CHCH3); MS (EI, 70 eV): m/z (%) = 162 (71), 

147 (71), 129 (8), 119 (21), 105 (100), 91 (37), 77 (19), 51 (9), 43 (65); HRMS (EI-FE) calcd 

for [C11H14O]: 162.1045, found: 162.1047. The physical data were identical in all respects to 

those previously reported.269

(R)-4-Phenylpentan-2-one (114c): The enantiomers were analyzed by 

GC using a chiral BGB 176 / SE 52 column (10 min at 60 °C, 0.8 °C/min 

until 90 °C, 18 °C/min until 220 °C, 5 min at 220 °C); major enantiomer: 

tR = 43.52 min, minor enantiomer: tR = 43.07 min. 114c (10.2 mg, 0.065 mmol, 65%;      

84:16 er): C10H20O (156.27 g/mol); 1H NMR (300 MHz, CDCl3):   2.40 (dd, J = 15.7 Hz, 

5.8 Hz, 1H, C(O)CH2CH), 2.20 (dd, J = 15.7 Hz, 8.0 Hz, 1H, C(O)CH2CH), 2.11 (s, 3H, 

C(O)CH3), 2.02-1.96 (br m, 1H, CH2CH(CH3)CH2), 1.32-1.14 (br m, 8H, CH2CH2CH2),

0.89-0.85 (m, 6H: CH2CH3 (3H), CHCH3 (3H)); 13C NMR (75 MHz, CDCl3):  209.2 (C=O),

51.3 (C(O)CH2CH), 36.9 (CHCH2CH2), 31.9  (CH2CH2CH2), 30.3 (C(O)CH3), 29.3 

(CHCH2CH2), 26.6 (CHCH2CH2), 22.6 (CH2CH2CH2), 19.8 (CHCH3), 14.0 (CH2CH3); GC-

MS (GC-EI): 156. The physical data were identical in all respects to those previously 

reported.270

(S)-3,3,5-trimethylcyclohexanone (106a): The enantiomers were analyzed by 

GC using a chiral BGB-176 column (1.2 °C/min until 110 °C, 18 °C/min until 

220 °C, 10 min at 220 °C); major enantiomer: tR = 12.06 min, minor enantiomer: 

tR = 13.72 min. 106a (5.9 mg, 0.042 mmol, 42%; 94:6 er): C9H16O

(140.23 g/mol); 1H NMR (500 MHz, CDCl3):  2.34-2.29 (m, 1H, C(O)CH2CH), 2.17-1.87 

(m, 4H: C(O)CH2CH (1H), C(O)CH2CH2 (2H), CH2CHCH3 (1H)), 1.60-1.55 (m, 1H, 

CCH2CH), 1.33-1.22 (m, 1H, CCH2CH), 1.05 (s, 3H, CCH3), 0.95 (d, J = 6.2 Hz, 3H, 

CHCH3), 0.88 (s, 3H, CCH3); 13C NMR (125 MHz, CDCl3):  212.0 (C=O), 54.2 

O

O

O
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(C(O)CH2CH2), 49.3 (C(O)CH2CH), 47.3 (CCH2CH), 35.4 (C(CH3)2), 32.1 (CHCH3), 29.6 

(CHCH3), 25.8 (CCH3), 22.5 (CCH3); MS (EI, 70 eV): m/z (%) = 140 (22), 125 (10), 97 (7), 

83 (100), 69 (51), 55 (45), 41 (26), 39 (11), 29 (10); HRMS (EI-FE) calcd for [C9H16O]: 

140.1201, found: 140.1203. The physical data were identical in all respects to those of 

commercially available material (106a, Sigma-Aldrich). 

Ethyl 2-methyl-4-oxocyclohexanecarboxylate (199): The enantiomers were 

analyzed by GC using a chiral BGB-176/SE column (1.2 °C/min until 220 °C, 

10 min at 220 °C); major product: major enantiomer: tR = 40.66 min, minor 

enantiomer: tR = 41.42 min; minor  product: major enantiomer:                       

tR = 39.56 min, minor enantiomer: tR = 38.37 min. 199 (6.6 mg, 0.036 mmol, 

36%; diast. 1: 75:25 er, diast. 2: 72:28 er): C10H16O3 (184.23 g/mol); 1H NMR (300 MHz, 

CDCl3, major product):  4.16 (dq, J = 7.2 Hz, 1.9 Hz, 2H, OCH2CH3), 2.85-2.81 (m, 1H, 

CHCO2), 2.54-2.04 (m, 7H: CHCH3 (1H), C(O)CH2CH (2H), C(O)CH2CH2 (2H), 

CH2CH2CH (2H)), 1.27 (t, J = 7.1 Hz, 3H, OCH2CH3), 0.96 (d, J = 6.7 Hz, 3H, CHCH3); 13C

NMR (75 MHz, CDCl3, major product):   212.6 (C=O), 173.4  (OC=O), 60.4 (OCH2CH3),

46.9 (C(O)CH2CH), 44.2 (CHCO2), 38.8 (C(O)CH2CH2), 33.9 (CHCH3), 24.8 (CH2CH2CH),

16.6 (CHCH3), 14.2 (OCH2CH3); 13C NMR (75 MHz, CDCl3, minor product):  209.5 

(C=O), 174.4  (OC=O), 60.6 (OCH2CH3), 49.0 (CHCO2), 48.0 (C(O)CH2CH), 39.7 

(C(O)CH2CH2), 35.3 (CHCH3), 27.9 (CH2CH2CH), 20.4 (CHCH3), 15.2 (OCH2CH3); MS 

(EI, 70 eV): m/z (%) = 184 (34), 155 (11), 139 (27), 128 (44), 114 (53), 110 (89), 95 (12), 84 

(30), 69 (65), 55 (100), 41 (59), 29 (56); HRMS (EI-FE) calcd for [C10H16O3]: 184.1099, 

found: 184.1101. 

O

OO

*
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7.5 Enantioselective Transfer Hydrogenation of , -Disubstituted

Nitroalkenes

7.5.1 Synthesis of the Starting Materials

7.5.1.1 Synthesis of the Nitroolefins 120a-m  

2-Phenyl-1-propene (203a), 2-(4-methyl)-1-propene (203f), 2-(4-fluorophenyl)-1-propene 

(203h), 2-(4-chlorophenyl)-1-propene (203i), 2,3,3-trimethylbut-1-ene (203l) and 2-

methylbut-1-ene (203n) were commercially available. The other alkenes were prepared by 

Wittig olefination of the corresponding ketones 204 according to the procedure described 

below.241

General procedure for the preparation of the alkenes (203):

In a two-necked round-bottomed flask under argon, a solution of methyltriphenylphosphinium 

bromide (16.25 g, 45.50 mmol, 0.9 equiv) and n-butyl lithium (2.5 M in diethylether: 18.2 

mL, 45.50 mmol, 0.9 equiv) in diethyl ether (130 mL) was prepared. After stirring the 

reaction mixture for four hours at 0 ºC, a solution of ketone 204 (50.00 mmol, 1.0 equiv) in 

diethyl ether (20 mL) was added. The reaction mixture was stirred at reflux for 15-20 hours 

and filtered. The resulting solution was poured into water and extracted with diethyl ether (3 × 

80 mL). The combined organic phases were dried over magnesium sulfate, concentrated in

vacuo and the crude material was purified by flash chromatography (eluent: hexanes or 

pentane) to afford the pure alkene 203.

2-Phenyl-1-pentene (203d) and 4-(prop-1-en-2-yl)benzonitrile (203g) were prepared by L. 

Ozores.
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3-Methyl-2-phenyl-1-butene (203b): Alkene 203b was prepared according to 

the general procedure starting from 2-methyl-1-phenylpropan-1-one (204b,

7.41 g, 50.00 mmol). After purification by flash chromatography (eluent: 

pentane), the title compound (203b, 5.44 g, 37.20 mmol, 74% yield) was obtained as a 

colorless oil.  

203b: C11H14 (146.23 g/mol); 1H NMR (400 MHz, CDCl3):  7.35-7.23 (m, 5H, CHAr), 5.14 

(t, J = 0.5 Hz, 1H, C=CH2, H1), 5.03 (t, J = 1.3 Hz, 1H, C=CH2, H2), 2.85-2.81 (m, 1H, 

CCH(CH3)2), 1.10 (d, J = 6.8 Hz, 6H, CH(CH3)2); 13C NMR (100 MHz, CDCl3):  155.8 

(C=CH2), 142.9 (CqAr), 128.1 (CHAr), 127.0 (CHAr), 126.6 (CHAr), 109.9 (C=CH2), 32.3 

(CCH(CH3)2), 22.0 (CCH(CH3)2); HRMS (EI-FE) calcd for [C11H14]: 146.1096, found: 

146.1098. The physical data were identical in all respects to those previously reported.270

2-Phenyl-1-butene (203c): Alkene 203c was prepared according to the 

general procedure starting from propiophenone (204c, 6.71 g, 50.00 mmol). 

After purification by flash chromatography (eluent: pentane), the title 

compound (203c, 4.92 g, 37.22 mmol, 74% yield) was obtained as a colorless oil.

203c: C10H12 (132.20 g/mol); 1H NMR (300 MHz, CDCl3):  7.43-7.24 (m, 5H, CHAr), 5.27 

(t, J = 1.5 Hz, 1H, C=CH2, H1), 5.06 (qt, J = 1.5 Hz, 1H, C=CH2, H2), 2.56-2.48 (m, 2H, 

CCH2CH3), 1.10 (t, J = 7.4 Hz, 3H, CCH2CH3); 13C NMR (75 MHz, CDCl3):  150.0 

(C=CH2), 141.5 (CqAr), 128.1 (CHAr), 127.2 (CHAr), 126.3 (CHAr), 110.9 (C=CH2), 28.0 

(CCH2CH3), 12.9 (CCH2CH3); MS (EI, 70 eV): m/z (%) = 132 (72), 117 (100), 103 (46), 91 

(26), 77 (26), 65 (10), 51 (17), 39 (11), 28 (5). The physical data were identical in all respects 

to those previously reported.271

2-Naphthyl-1-propene (203e): Alkene 203e was prepared according to the 

general procedure starting from 1-(naphthalen-2-yl)ethanone (204b, 8.51 g, 

50.00 mmol). After purification by flash chromatography (eluent: hexanes), 

the title compound (203e, 5.14 g, 30.55 mmol, 61% yield) was obtained as a colorless solid.
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203e: C11H12 (168.23 g/mol); 1H NMR (400 MHz, CDCl3):  7.87-7.80 (m, 4H, CHAr), 7.69 

(dd, J = 8.6 Hz, 1.9 Hz, 1H, CHAr), 7.50-7.43 (m, 2H, CHAr), 5.56 (d, J = 0.4 Hz, 1H, C=CH2,

H1), 5.56 (q, J = 1.4 Hz, 1H, C=CH2, H2), 2.30 (s, 3H, CCH3); 13C NMR (100 MHz, CDCl3):

 143.0 (C=CH2), 138.3 (CqArC=CH2), 133.4 (CqAr), 132.8 (CqAr), 128.2 (CHAr), 127.7 

(CHAr), 127.5 (CHAr), 126.1 (CHAr), 125.8 (CHAr), 124.2 (CHAr), 123.9 (CHAr), 113.0 

(C=CH2), 21.9 (CCH3); HRMS (EI-FE) calcd for [C11H12]: 168.0939, found: 168.0937. The 

physical data were identical in all respects to those previously reported.272

2-(3-Chlorophenyl)-1-propene (203j): Alkene 203j was prepared according to 

the general procedure starting from 1-(3-chlorophenyl)ethanone (204j, 7.73 g, 

50.00 mmol). After purification by flash chromatography (eluent: pentane), the 

title compound (203j, 3.53 g, 23.13 mmol, 46% yield) was obtained as a 

colorless oil.  

203j: C9H9Cl (152.62 g/mol); 1H NMR (300 MHz, CDCl3):  7.45-7.43 (m, 1H, CHAr), 7.36-

7.32 (m, 1H, CHAr), 7.26-7.24 (m, 2H, CHAr), 5.38 (m, 1H, C=CH2, H1), 5.13 (qt, J = 1.4 Hz, 

1H, C=CH2, H2), 2.14 (m, J = 0.7 Hz, 3H, CCH3); 13C NMR (75 MHz, CDCl3):  143.1 

(C=CH2), 142.1 (CqArC=CH2), 134.2 (CqArCl), 129.4 (CHAr), 127.3 (CHAr), 125.8 (CHAr), 

123.6 (CHAr), 113.6 (C=CH2), 21.7 (CCH3); MS (EI, 70 eV): m/z (%) = 152 (100), 137 (16), 

117 (77), 102 (19), 91 (10), 75 (13), 63 (7), 58 (8), 51 (10), 38 (9); HRMS (EI-FE) calcd for 

[C9H9Cl]: 152.0393, found: 1152.0391. 

2-(2-Chlorophenyl)-1-propene (203k): Alkene 203k was prepared according to 

the general procedure starting from 1-(2-chlorophenyl)ethanone (204k, 7.73 g, 

50.00 mmol). After purification by flash chromatography (eluent: pentane), the 

title compound (203k, 4.99 g, 32.70 mmol, 65% yield) was obtained as a 

colorless oil.  

203k: C9H9Cl (152.62 g/mol); 1H NMR (300 MHz, CDCl3):  7.37-7.33 (m, 1H, CHAr), 7.22-

7.17 (m, 3H, CHAr), 5.24 (qt, J = 1.6 Hz, 1H, C=CH2, H1), 4.97 (q, J = 0.9 Hz, 1H, C=CH2,

H2), 2.11 (t, J = 1.2 Hz, 3H, CCH3); 13C NMR (75 MHz, CDCl3):  144.4 (C=CH2), 142.8 

(CqArC=CH2), 131.8 (CqArCl), 129.8 (CHAr), 129.6 (CHAr), 128.2 (CHAr), 126.6 (CHAr), 116.2 

Cl

Cl
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(C=CH2), 23.3 (CCH3); MS (EI, 70 eV): m/z (%) = 152 (84), 137 (19), 117 (100), 101 (22), 

91 (12), 75 (18), 63 (11), 58 (31), 51 (16), 39 (12); HRMS (EI-FE) calcd for [C9H9Cl]: 

152.0393, found: 1152.0393. 

General procedure for the preparation of the nitroolefins (120): 

In a two-necked round-bottomed flask, acetic anhydride (70 mL) was cooled to -10°C and 

53% nitric acid (12.5 mL) was slowly added at this temperature under vigorous stirring. The 

reaction mixture was allowed to warm to 0 ºC. The mixture was stirred for ten minutes at 0 ºC 

before adding the alkene 203 (41.00 mmol). The reaction mixture was stirred at this 

temperature for three hours and quenched at 0 °C with ice-water (300 mL). The resulting 

mixture was stirred for one hour. The two phases were separated and the aqueous phase 

extracted with diethyl ether (3 × 50 mL). The combined organic phases were washed with an 

aqueous solution of sodium bicarbonate and water, and dried over magnesium sulfate. The 

volatile compounds were removed in vacuo and the crude product was used in the next step 

without further purification.

To a solution of the resulting crude product (nitro acetate) in chloroform (50 mL) was added 

triethylamine (25 mL, ca 180 mmol). After stirring at room temperature for 15-20 hours the 

reaction mixture was extracted with dichloromethane (3 × 50 mL) and the resulting organic 

layer was washed with hydrochloric acid (10%) and brine. The combined organic phases were 

dried over magnesium sulfate and concentrated under reduced pressure. The crude product 

was purified by flash chromatography (0-5% of diethyl ether in hexanes) to afford the pure 

nitroalkene 120.

 (E)-2-Phenyl-1-nitro-1-propene (120a): Nitroolefin 120b was prepared 

according to the general procedure starting from 2-phenyl-1-propene (203a,

4.85 g, 41.00 mmol). After purification by flash chromatography (eluent: 1-

4% of ethyl acetate in hexanes), the title compound (120a, 2.48 g, 15.20 mmol, 37% yield) 

was obtained as a yellow oil.

120a: C9H9NO2 (163.17 g/mol); 1H NMR (300 MHz, CDCl3):  7.47-7.43 (m, 5H, CHAr),

7.31 (d, J = 1.4 Hz, 1H, CHNO2), 2.65 (d, 3H, CCH3); 13C NMR (75 MHz, CDCl3):  149.9 

(CqArC=CH), 138.3 (CqArC=CH), 136.3 (C=CHNO2), 130.3 (CHAr), 129.0 (CHAr), 126.8 

(CHAr), 18.5 (CCH3); MS (EI, 70 eV): m/z (%) = 163 (26), 146 (14), 131 (8), 115 (100), 105 

NO2
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(23), 91 (79), 77 (35), 65 (22), 51 (30), 39 (24), 27 (7); HRMS (EI-FE) calcd for [C9H9NO2]: 

163.0633, found 163.0632. The physical data were identical in all respects to those previously 

reported.173b

 (Z)-3-Methyl-2-phenyl-1-nitro-1-butene (120b): Nitroolefin 120b was 

prepared according to the general procedure starting from 3-methyl-2-phenyl-

1-butene (203b, 6.00 g, 41.00 mmol). After purification by flash 

chromatography (1% of ethyl acetate in hexanes), the title compound (120b, 1.05 g, 5.49 

mmol, 13% yield) was obtained as a yellow oil.

120c: C11H13NO2 (191.23 g/mol); 1H NMR (300 MHz, CDCl3):  7.36-7.41 (m, 3H, CHAr),

7.09-7.12 (m, 2H, CHAr), 7.00 (d, J = 1.0 Hz, 1H, CHNO2), 2.69-2.74 (m, 1H, CH(CH3)2),

1.12 (d, J = 6.8 Hz, 6H, CH(CH3)2); 13C NMR (75 MHz, CDCl3):  157.6 (CqArC=CH),

136.0 (CqArC=CH), 134.5 (C=CHNO2), 128.3 (CHAr), 128.3 (CHAr), 126.7 (CHAr), 35.7 

(CH(CH3)2), 20.7 (CH(CH3)2); MS (EI, 70 eV): m/z (%) = 191 (35), 176 (44), 159 (32), 147 

(56), 128 (49), 115 (54), 103 (56), 91 (100), 77 (66), 65 (24), 51 (33), 43 (86), 27 (30); 

HRMS (EI-FE) calcd for [C11H13NO2]: 191.0946, found 191.0944. The physical data were 

identical in all respect to those previously reported.266

(E)-2-Phenyl-1-nitro-1-butene (120c): Nitroolefin 120c was prepared 

according to the general procedure starting from 2-phenyl-1-butene (203c,

5.42 g, 41.00 mmol). After purification by flash chromatography (1% of ethyl 

acetate in hexanes), the title compound (120c, 1.31 g, 7.39 mmol, 18% yield) 

was obtained as a yellow oil.

120c: C10H11NO2 (177.20 g/mol); 1H NMR (300 MHz, CDCl3):  7.47-7.41 (m, 5H, CHAr),

7.19 (br s, 1H, CHNO2), 3.09 (q, J = 7.5 Hz, 2H, CH2CH3), 1.16 (t, J = 7.5 Hz, 3H, CH2CH3);
13C NMR (75 MHz, CDCl3):  155.7 (CqArC=CH), 137.1 (CqArC=CH), 135.8 (C=CHNO2),

130.3 (CHAr), 129.1 (CHAr), 127.2 (CHAr), 24.8 (CH2CH3), 12.8 (CH2CH3); MS (EI, 70 eV): 

m/z (%) = 177 (24), 160 (9), 145 (10), 133 (30), 115 (52), 105 (35), 91 (100), 77 (46), 65 (17), 

51 (26), 43 (17), 27 (12); HRMS (EI-FE) calcd for [C10H11NO2]: 177.0790, found 177.0788. 

The physical data were identical in all respects to those previously reported.170
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(E)-2-Phenyl-1-nitro-1-pentene (120d): Nitroolefin 120d was prepared 

according to the general procedure starting from 2-phenyl-1-pentene (203d,

6.00 g, 41.00 mmol). After purification by flash chromatography (1% of 

ethyl acetate in hexanes), the title compound (120d, 1.36 g, 7.11 mmol, 

18% yield) was obtained as a yellow oil.

120d: C11H13NO2 (191.23 g/mol); 1H NMR (300 MHz, CDCl3):  7.39-7.46 (m, 5H, CHAr),

7.20 (br s, 1H, CHNO2), 3.08-3.03 (m, 2H, CCH2CH2CH3), 1.60-1.47 (m, 2H, CH2CH2CH3),

0.97 (t, J = 7.3 Hz, 3H, CH2CH3); 13C NMR (75 MHz, CDCl3):  154.4 (CqArC=CH), 137.4 

(CqArC=CH), 136.2 (C=CHNO2), 130.2 (CHAr), 129.0 (CHAr), 127.1 (CHAr), 33.0 

(CH2CH2CH3), 21.8 (CH2CH3), 14.1 (CH2CH3); MS (EI, 70 eV): m/z (%) = 191 (21), 174 

(11), 162 (19), 147 (14), 128 (26), 115 (51), 103 (26), 91 (100), 77 (39), 65 (18), 51 (15), 51 

(20), 41 (24), 29 (16); HRMS (EI-FE) calcd for [C11H13NO2]: 191.0946, found 191.0944. The 

physical data were identical in all respects to those previously reported. 173b 

(E)-2-(2'-Naphthyl)-1-nitro-1-propene (120e): Nitroolefin 120e was 

prepared according to the general procedure starting from 2-naphthyl-1-

propene (203e, 6.90 g, 41.00 mmol). After purification by flash 

chromatography (1% of ethyl acetate in hexanes), the title compound (120e, 1.24 g, 5.82 

mmol, 14% yield) was obtained as a yellow solid.

120e: C13H11NO2 (213.23 g/mol); 1H NMR (300 MHz, CDCl3):  7.96 (d, J = 1.6 Hz, 1H, 

CHAr), 7.91-7.86 (m, 3H, CHAr), 7.58-7.51 (m, 3H, CHAr), 7.46-7.47 (q, J = 1.4 Hz, 1H, 

CHNO2), 2.75 (d, J = 1.4 Hz, 3H, CCH3);  13C NMR (75 MHz, CDCl3):  149.8  

(CqArC=CH), 136.6 (CqArC=CH),, 135.4 (C=CHNO2), 134.0 (CqAr), 133.0 (CqAr), 128.9 

(CHAr), 128.6 (CHAr), 127.7 (CHAr), 127.5 (CHAr), 127.02 (CHAr), 127.01 (CHAr), 123.7 

(CHAr), 18.5 (CCH3); MS (EI, 70 eV): m/z (%) = 213 (100), 196 (33), 182 (19), 165 (89), 152 

(76), 141 (27), 128 (22), 115 (30), 102 (6), 82 (13), 63 (8), 51 (6), 39 (4); HRMS (EI-FE) 

calcd for [C13H11NO2]: 213.0790, found 213.0788. The physical data were identical in all 

respects to those previously reported. 268
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(E)-2-(4-Methylphenyl)-1-nitro-1-propene (120f): Nitroolefin 120f was 

prepared according to the general procedure starting from 2-(4-methyl)-1-

propene (203f, 5.42 g, 41.00 mmol). After purification by flash 

chromatography (1% of ethyl acetate in hexanes), the title compound (120f, 1.63 g, 9.20 

mmol, 22% yield) was obtained as a yellow oil.

120f: C10H11NO2 (177.20 g/mol); 1H NMR (300 MHz, CDCl3):   7.36 (d, J = 8.2 Hz, 2H, 

CHAr), 7.32 (d, J = 1.3 Hz, 1H, CHNO2), 7.24 (d, J = 8.2 Hz, 2H, CHAr), 2.63 (d, J = 1.3 Hz, 

3H, CCH3), 1.12 (s, 3H, CqArCH3); 13C NMR (75 MHz, CDCl3):  150.0 (CqArC=CH), 140.9 

(CqArC=CH), 135.8 (CqArCH3), 135.3 (C=CHNO2), 129.8 (CHAr), 126.8, (CHAr) 21.3 

(CCH3), 18.4 (CCH3); MS (EI, 70 eV): m/z (%) = 177 (43), 160 (20), 145 (9), 128 (27), 115 

(100), 105 (29), 91 (86), 77 (31), 65 (27), 51 (21), 39 (23), 27 (8); HRMS (EI-FE) calcd for 

[C10H11NO2]: 177.0790, found 177.0787.

 (E)-2-(4-Cyanophenyl)-1-nitro-1-propene (120g): Nitroolefin 120g

was prepared according to the general procedure starting from 4-(prop-1-

en-2-yl)benzonitrile (203g, 5.87 g, 41.00 mmol). After purification by 

flash chromatography (5% of ethyl acetate in hexanes), the title 

compound (120g, 1.49 g, 7.92 mmol, 19% yield) was obtained as a slightly yellow oil.

120g: C10H8N2O2 (163.17 g/mol); 1H NMR (300 MHz, CDCl3):  7.77 (d, J = 8.5 Hz, 2H, 

CHAr), 7.61 (d, J = 8.5 Hz, 2H, CHAr), 7.32 (d, J = 1.4 Hz, 1H, CHNO2),  2.65 (d, J = 1.4 Hz, 

3H, CCH3); 13C NMR (75 MHz, CDCl3):  147.3 (CqArC=CH), 142.5 (CqArC=CH), 137.4 

(C=CHNO2), 132.6 (CHAr), 127.4 (CHAr), 117.8(CqArCN), 113.6 (CqArCN), 18.1 (CCH3); MS 

(EI, 70 eV): m/z (%) = 188 (36), 171 (14), 159 (8), 140 (60), 130 (25), 116 (100), 103 (27), 89 

(31), 75 (16), 63 (22), 51 (18), 43 (4), 39 (42), 27 (9); HRMS (EI-FE) calcd for [C10H8N2O2]: 

188.0586, found 188.0587.

(E)-2-(4-Fluorophenyl)-1-nitro-1-propene (120h): Nitroolefin 120h was 

prepared according to the general procedure starting from 2-(4-

fluorophenyl)-1-propene (203h, 5.58 g, 41.00 mmol). After purification by 

NO2

NO2

NC

NO2

F



7 Experimental Part 

 - 246 -  

flash chromatography (1% of ethyl acetate in hexanes), the title compound (120h, 1.72 g, 9.49 

mmol, 23% yield) was obtained as a yellow oil.

120h: C9H8FNO2 (181.16 g/mol); 1H NMR (300 MHz, CDCl3):  7.48-7.42 (m, 2H, CHAr),

7.28 (q, J = 1.3 Hz, 1H, CHNO2), 7.16-7.10 (m, 2H, CHAr), 2.62 (q, J = 1.3 Hz, 3H, CCH3);
13C NMR (75 MHz, CDCl3):  165.2 (CF), 162.7 (CqArC=CH), 148.6 (CqArC=CH), 136.2 

(C=CHNO2), 134.3 (CHAr), 128.9 (CHAr), 116.3 (CHAr), 116.1 (CHAr), 18.5 (CH3); MS (EI,

70 eV): m/z (%) = 181 (69), 164 (11), 150 (11), 133 (98), 120 (21), 115 (51), 109 (100), 103 

(22), 97 (16), 83 (24), 75 (20), 63 (12), 57 (12), 51 (9), 39 (23); HRMS (EI-FE) calcd for 

[C9H8FNO2]: 181.0539, found 181.0537. 

(E)-2-(4-Chlorophenyl)-1-nitro-1-propene (120i): Nitroolefin 120i was 

prepared according to the general procedure starting from 2-(4-

chlorophenyl)-1-propene (203i, 6.26 g, 41.00 mmol). After purification 

by flash chromatography (1% of ethyl acetate in hexanes), the title 

compound (120i, 0.67 g, 3.40 mmol, 8% yield) was obtained as a yellow oil.

120i: C9H8ClNO2 (197.62 g/mol); 1H NMR (300 MHz, CDCl3):  7.43-7.38 (m, 4H, CHAr),

7.28 (q, J = 1.4 Hz, 1H, CHNO2), 2.62 (q, J = 1.4 Hz, 3H, CCH3); 13C NMR (75 MHz, 

CDCl3):  148.4 (CqArC=CH), 136.6 (CqArC=CH), 136.5 (C=CHNO2), 131.7 (CCl), 129.3 

(CHAr), 128.1 (CHAr), 18.4 (CCH3); MS (EI, 70 eV): m/z (%) = 197 (32), 162 (15), 149 (8), 

139 (13), 125 (21), 115 (100), 103 (23), 89 (19), 75 (21), 63 (15), 51 (14), 39 (15); HRMS

(EI-FE) calcd for [C9H8ClNO2]: 197.0244, found 197.0246.The physical data were identical 

in all respects to those previously reported.266

(E)-2-(3-Chlorophenyl)-1-nitro-1-propene (120j): Nitroolefin 120j was 

prepared according to the general procedure starting from 2-(3-chlorophenyl)-

1-propene (203j, 6.00 g, 41.00 mmol). After purification by flash 

chromatography (1% of ethyl acetate in hexanes), the title compound (120j,

0.51 g, 2.58 mmol, 6% yield) was obtained as a yellow oil.

NO2

Cl

NO2

Cl



7 Experimental Part 

 - 247 -  

120j: C9H8ClNO2 (197.62 g/mol); 1H NMR (300 MHz, CDCl3):  7.44-7.31 (m, 4H, CHAr),

7.27-7.26 (q, J = 1.5 Hz, 1H, CHNO2), 2.61 (q, J = 1.5 Hz, 3H, CCH3); 13C NMR (75 MHz, 

CDCl3):  148.1 (CqArC=CH) 140.1 (CqArC=CH), 136.9 (C=CHNO2), 135.1 (CCl), 130.3 

(CHAr), 127.0 (CHAr), 124.9 (CHAr), 18.4 (CCH3); MS (EI, 70 eV): m/z (%) = 197 (36), 162 

(20), 152 (8), 134 (11), 125 (22), 115 (100), 103 (25), 89 (23), 75 (22), 63 (16), 51 (14), 39 

(15); HRMS (EI-FE) calcd for [C9H8ClNO2]: 197.0244, found 197.0242.

 (E)-2-(2-Chlorophenyl)-1-nitro-1-propene (120k): Nitroolefin 120k was 

prepared according to the general procedure starting from 2-(2-chlorophenyl)-

1-propene (203k, 6.26 g, 41.00 mmol). After purification by flash 

chromatography (1% of ethyl acetate in hexanes), the title compound (120k, 0.34 g, 1.72 

mmol, 4% yield) was obtained as a yellow oil.

120k: C9H8ClNO2 (197.62 g/mol); 1H NMR (300 MHz, CDCl3):  7.45-7.42 (m, 1H, CHAr),

7.34-7.29 (m, 2H, CHAr), 7.17-7.15 (q, J = 1.5 Hz, 1H, CHNO2), 7.10-7.07 (m, 1H, CHAr), 

2.19 (q, J = 1.5 Hz, 3H, CCH3); 13C NMR (75 MHz, CDCl3):  146.6 (CqArC=CH), 140.1 

(CqArC=CH), 136.6 (C=CHNO2), 129.7 (CCl), 129.5 (CHAr), 127.0 (CHAr), 23.0 (CCH3); MS

(EI, 70 eV): m/z (%) = 197 (0.3), 162 (100), 145 (7), 132 (52), 125 (6), 115 (41), 103 (8), 89 

(15), 77 (18), 63 (13), 51 (10), 39 (11), 27 (2); HRMS (EI-FE) calcd for [C9H8ClNO2]:

197.0244, found 197.0246. 

 (E)-2,3,3-Trimethyl-1-nitro-1-butene (120l): Nitroolefin 120l was prepared 

according to the general procedure starting from 2,3,3-trimethylbut-1-ene 

(203l, 4.03 g, 41.00 mmol). After purification by flash chromatography (0-1% 

of diethyl ether in pentane), the title compound (120l, 1.66 g, 11.59 mmol, 28% yield) was 

obtained as a slightly yellow oil.

120l: C7H13NO2 (143.18 g/mol); 1H NMR (300 MHz, CDCl3):  7.00 (d, J = 1.1 Hz, 1H, 

CHNO2), 2.20 (d, J = 1.1 Hz, 3H, CCH3), 1.17 (s, 9H, C(CH3)2); 13C NMR (75 MHz, 

CDCl3):  159.5 (CC=CH), 134.5 (C=CHNO2), 37.1 (C(CH3)2), 28.0 (C(CH3)2), 15.0 (CCH3); 

MS (EI, 70 eV): m/z (%) = 144 (0.2), 128 (13), 97 (36), 94 (12), 81 (10), 69 (40), 57 (85), 55 
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(100), 53 (18), 43 (48), 41 (95), 39 (44), 29 (46); HRMS (EIpos) calcd for [(C7H13NO2+H)+]: 

144.1025, found 144.1024.

(E)-2-methyl-1-nitrobutene (120m): Nitroolefin 120m was prepared 

according to the general procedure starting from 2-methylbut-1-ene (203m,

2.87 g, 41.00 mmol). After purification by flash chromatography (0-1% of diethyl ether in 

pentane), the title compound (120m, 0.48 g, 4.17 mmol, 10% yield) was obtained as a slightly 

yellow oil.

120m: C9H9NO2 (163.17 g/mol); 1H NMR (300 MHz, CDCl3):  6.95 (br s, 1H, CHNO2),

2.27-2.19 (m, 5H: CH2CH3 (2H) and CCH3 (3H)), 1.13 (t, J = 7.4 Hz, 3H, CH2CH3); 13C

NMR (75 MHz, CDCl3):  154.8 (CC=CH), 134.7 (C=CHNO2), 31.2 (CH2CH3), 18.6 

(CH2CH3), 11.7 (CCH3); GC/MS m/z (%) = 115. The physical data were identical in all 

respects to those previously reported.266

7.5.1.2 Synthesis of (E)-2-(Furan-2-yl)-1-nitro-1-propene (120n) 

120n

O
O

O
NO2

MeNO2 (4.0 equiv)
n-BuNH2 (0.4 equiv)

toluene, reflux, 15 h
Dean-Stark

204n

In a 100 mL flask under argon a solution of 1-(furan-2-yl)ethanone (204n, 5.51 g, 50.00 

mmol, 1.0 equiv), nitromethane (10.7 mL, 200.00 mmol, 4.0 equiv) and n-butylamine (2.0 

mL, 20.00 mmol, 0.4 equiv) in toluene (32 mL) was prepared. The resulting mixture was 

stirred under reflux for 15 hours with a Dean-Stark apparatus. It was then cooled to room 

temperature, diluted with ethyl acetate and quenched by addition of an aqueous solution of 

ammonium chloride. The organic phase was separated, dried over magnesium sulfate and 

concentrated under reduced pressure to afford the crude product, which was purified by flash 

chromatography (1% of diethyl ether in hexanes) to afford pure nitroolefin 120n (0.93 g, 6.08 

mmol, 12%) as a brown oil. 

NO2
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120n: C7H7NO3 (153.04 g/mol); 1H NMR (300 MHz, CDCl3):  7.66 (br s, 1H, CHAr), 7.54 

(d, J = 1.7 Hz, 1H, CHNO2), 6.90 (d, J = 3.5 Hz, 1H, CHAr), 6.55 (dd, J = 3.5 Hz, 1.7 Hz, 1H, 

CHAr), 2.55 (br s, 3H, CCH3); 13C NMR (75 MHz, CDCl3):  150.7 (OCqArC=CH), 145.7 

(OCqArC=CH), 136.7 (CHNO2), 133.1 (OCHArCHAr), 115.9 (CHAr), 112.9 (CHAr), 14.9 

(CCH3); MS (EI, 70 eV): m/z (%) = 153 (88), 136 (23), 110 (49), 92 (10), 83 (100), 77 (73), 

63 (20), 55 (54), 53 (40), 39 (55), 29 (13), 27 (38); HRMS (EI-FE) calcd for [C7H7NO3]: 

153.0426, found: 153.0427. The physical data were identical in all respects to those 

previously reported.268

7.5.2 General Procedures for the Synthesis of the Racemic Products

To a solution of nitroolefin 120 (0.26 mmol, 1.0 equiv) in ethanol (0.6 mL) at 0 °C, sodium 

borohydride (30 mg, 0.78 mmol, 3.0 equiv) was added in several portions over 15 minutes. 

The reaction mixture was stirred at 0 °C for one hour and then quenched at 0 °C with a 

saturated solution of ammonium chloride. The two phases were separated and the aqueous 

layer extracted with diethyl ether (3 × 1 mL). The combined organic phases were dried over 

magnesium sulfate. The volatile compounds were removed in vacuo and the crude product 

was purified by flash chromatography (1-5% of diethyl ether in pentane) to afford the pure 

, -disubstituted nitroalkane 116.
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7.5.3 Asymmetric Transfer Hydrogenation of , -Disubstituted
Nitroalkenes

To a solution of , -disubstituted nitroalkene 120 (0.390 mmol) in toluene (0.3 mL, 1.3 M), 

thiourea catalyst 57b (8.2 mg, 0.02 mmol, 0.05 equiv) and Hantzsch ester 90c (133 mg, 0.43 

mmol, 1.1 equiv) were added. The reaction mixture was stirred at 40 °C for 48 hours under 

argon atmosphere. The solvent was then removed in vacuo and the resulting mixture purified 

by flash column chromatography (eluents: diethyl ether / pentane).

(S)-2-Phenyl-1-nitropropane (116a): The enantiomers were analyzed by GC 

using a chiral Ivadex 1 / PS086 column (5 min at 60 °C, 0.7 °C/min until   

125 °C, 20 °C/min until 300 °C, 10 min at 300 °C); major enantiomer: tR = 

80.13 min, minor enantiomer: tR = 82.07 min. 116a (62.4 mg, 0.378 mmol, 97%; 97:3 er):

slightly yellow oil, C9H11NO2 (165.19 g/mol); 1H NMR (300 MHz, CDCl3):  7.37-7.32 (m, 

2H, CHAr), 7.30-7.22 (m, 3H, CHAr), 4.56 (dd, J = 12.0 Hz, 7.2 Hz, 1H, CH2NO2, H1), 4.49 

(dd, J = 12.0 Hz, 8.1 Hz, 1H, CH2NO2, H2), 3.68-3.60 (m, 1H, CHCH3), 1.39 (d, J = 7.0 Hz, 

3H, CHCH3); 13C NMR (75 MHz, CDCl3):  140.9 (CqArCH), 128.9 (CHAr), 127.5 (CHAr),

126.9 (CHAr), 81.8 (CH2NO2), 38.6 (CHCH3), 18.7 (CHCH3); MS (EI, 70 eV): m/z (%) = 165 

(3), 118 (100), 103 (13), 91 (89), 77 (17), 51 (13), 41 (24); HRMS (EI-FE) calcd for 

[C9H11NO2]: 165.0790, found 165.0790. The physical data were identical in all respects to 

those previously reported.173b

(R)-3-Methyl-2-phenyl-1-nitrobutane (116b): The enantiomers were 

analyzed by GC using a chiral Ivadex 1/PS086 column (5 min at 80 °C, 0.7 

°C/min until 180 °C, 20 °C/min until 300 °C, 10 min at 300 °C); major 

enantiomer: tR = 67.26 min, minor enantiomer: tR = 66.71 min. 116b (69.4 mg, 0.359 mmol, 

92%; 92:8 er): slightly yellow oil, C11H15NO2 (193.24 g/mol); 1H NMR (300 MHz, CDCl3):

NO2
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7.34-7.25 (m, 3H, CHAr), 7.16-7.13 (m, 2H, CHAr), 4.76 (dd, J = 12.3 Hz, 5.7 Hz, 1H, 

CH2NO2, H1), 4.64 (dd, J = 12.3 Hz, 9.8 Hz, 1H, CH2NO2, H2),  3.27-3.19 (m, 1H, 

CHCH2NO2), 2.01-1.90 (m, 1H, CHCH(CH3)2), 1.01 (d, J = 6.7 Hz, 3H, CH(CH3)2, CH3
1),

0.81 (d, J = 6.7 Hz, 3H, CH(CH3)2, CH3
2); 13C NMR (75 MHz, CDCl3):  138.6 (CqArCH), 

128.6 (CHAr), 128.1 (CHAr), 127.4, (CHAr) 79.1 (CH2NO2), 51.0 (CHCH3), 31.3 (CH(CH3)2), 

20.6 (CH(CH3)2), 20.2 (CH(CH3)2); MS (EI, 70 eV): m/z (%) = 193 (4), 146 (51), 131 (25), 

115 (5), 104 (100), 91 (48), 77 (11), 65 (5), 43 (35), 27 (7); HRMS (EI-FE) calcd for 

[C11H15NO2]: 193.1103, found 193.1102. The physical data were identical in all respect to 

those previously reported.266

(S)-2-Phenyl-1-nitrobutane (116c): The enantiomers were analyzed by GC 

using a chiral Ivadex 1/PS086 column (80 °C, 1.2 °C/min until 180 °C, 20 

°C/min until 220 °C, 10 min at 220 °C); major enantiomer: tR = 40.37 min, 

minor enantiomer: tR = 40.98 min. 116c (65.8 mg, 0.367 mmol, 94%; 97:3 er): slightly yellow 

oil, C10H13NO2 (179.22 g/mol); 1H NMR (300 MHz, CDCl3):  7.36-7.32 (m, 2H, CHAr),

7.30-7.26 (m, 1H, CHAr), 7.20-7.17 (m, 2H, CHAr), 4.63-4.51 (m, 2H, CH2NO2), 3.40-3.33 

(m, 1H, CHCH2NO2), 1.80-1.66 (m, 2H, CHCH2CH3), 0.85 (t, J = 7.4 Hz, 3H, CH2CH3); 13C

NMR (75 MHz, CDCl3):  139.3 (CqArCH), 128.8 (CHAr), 128.5 (CHAr), 127.5 (CHAr), 80.7 

(CH2NO2), 46.0 (CHCH2CH3), 26.1 (CHCH2CH3), 11.5 (CHCH2CH3); MS (EI, 70 eV): m/z

(%) = 179 (4), 132 (79), 117 (29), 104 (27), 91 (100), 77 (12), 65 (8); HRMS (EI-FE) calcd 

for [C10H13NO2]: 179.0946, found 179.0946. The physical data were identical in all respects 

to those previously reported.170

(S)-2-Phenyl-1-nitropentane (116d): The enantiomers were analyzed by 

GC using a chiral Ivadex 1/PS086 column (5 min at 60 °C, 0.7 °C/min until 

140 °C, 20 °C/min until 300 °C, 10 min at 300 °C); major enantiomer: tR = 

96.94 min, minor enantiomer: tR = 97.58 min. 116d (75.0 mg, 0.388 mmol, >99%; 98:2 er):

slightly yellow oil, C11H15NO2 (193.24 g/mol); 26
D][ = -33.8° (c = 1.20, CHCl3);273 1H NMR

(300 MHz, CDCl3):  7.36-7.26 (m, 3H, CHAr), 7.20-7.18 (m, 2H, CHAr), 4.56-4.52 (m, 2H, 

CH2NO2), 3.51-3.41 (m, 1H, CHCH2NO2), 1.71-1.63 (m, 2H, CHCH2CH2), 1.28-1.16 (m, 

2H, CH2CH2CH3), 0.88 (t, J = 7.3 Hz, 3H, CH2CH3); 13C NMR (75 MHz, CDCl3):  139.5 

(CqArCH), 128.9 (CHAr), 127.5 (CHAr), 127.5 (CHAr), 81.0 (CH2NO2), 44.1 (CHCH2CH2),

37.1 (CHCH2CH2), 20.1 (CH2CH2CH3), 13.7 (CH2CH2CH3); MS (EI, 70 eV): m/z (%) = 193 

(4), 146 (39), 131 (24), 118 (87), 104 (32), 91 (100), 77 (11), 65 (6), 51 (6), 41 (12); HRMS

NO2
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(EI-FE) calcd for [C11H15NO2]: 193.1103, found 193.1101. The physical data were identical 

in all respects to those previously reported.173b

(S)-2-(2'-naphthyl)-1-nitropropane (116e): The enantiomers were 

analyzed by HPLC using a chiral Chiralcel AS-H column 

(iPrOH/Heptane = 90:10, flow rate = 0.3 mL/min, wavelength = 220 

nm). Major enantiomer: tR = 30.97 min, minor enantiomer: tR = 33.39 min. 116e (83.6 mg, 

0.388 mmol, >99%; 96:4 er): colorless solid, C13H13NO2 (215.25 g/mol); 1H NMR (300 

MHz, CDCl3):  7.86-7.80 (m, 3H, CHAr), 7.68 (d, J = 1.4 Hz, 1H, CHAr), 7.53-7.45 (m, 2H, 

CHAr), 7.38-7.34 (m, 1H, CHAr), 4.70-4.54 (m, 2H, CH2NO2), 3.85-3.78 (m, 1H, CHCH3),

1.48 (d, J = 7.0 Hz, 3H, CHCH3); 13C NMR (75 MHz, CDCl3):  138.2 (CqArCH), 133.5 

(CqAr), 132.7 (CqAr), 128.8 (CHAr), 127.7 (CHAr), 127.7 (CHAr), 126.4 (CHAr), 126.0 (CHAr),

125.7 (CHAr), 124.8 (CHAr), 81.8 (CH2NO2), 38.8(CHCH3), 18.7 (CHCH3); MS (EI, 70 eV): 

m/z (%) = 215 (55), 168 (100), 153 (26), 141 (56), 128 (24), 115 (12), 101 (2), 76 (8), 63 (4), 

51 (2), 41 (8); HRMS (EI-FE) calcd for [C13H13NO2]: 215.0946, found 215.0947. 

(S)-2-(4-Methylphenyl)-1-nitropropane (116f): The enantiomers were 

analyzed by GC using a chiral Ivadex 1/PS086 column (80 °C, 1 °C/min 

until 150 °C, 18 °C/min until 220 °C, 5 min at 220 °C); major enantiomer: 

tR = 51.87 min, minor enantiomer: tR = 52.69 min. 116f (69.2 mg, 0.386 mmol, 99%; 97:3 er):

slightly yellow oil, C10H13NO2 (179.22 g/mol); 1H NMR (300 MHz, CDCl3):  7.14-7.11 (m, 

4H, CHAr), 4.54 (dd, J = 11.9 Hz, 7.2 Hz, 1H, CH2NO2, H1), 4.46 (dd, J = 12.0 Hz, 8.3 Hz, 

1H, CH2NO2, H2),  3.64-3.56 (m, 1H, CHCH3), 2.33 (s, 3H, CArCH3), 1.37 (d, J = 7.0 Hz, 3H, 

CHCH3); 13C NMR (75 MHz, CDCl3):  137.8 (CqArCH), 137.2 (CqArCH3), 129.6 (CHAr),

126.7 (CHAr), 82.0 (CH2NO2), 38.3 (CHCH3), 21.0 (CqArCH3), 18.8 (CHCH3); MS (EI, 70 

eV): m/z (%) = 179 (1), 147 (20), 132 (91), 117 (46), 105 (100), 91 (46), 77 (25), 65 (18), 51 

(11), 41 (30), 30 (29); HRMS (EI-FE) calcd for [C10H13NO2]: 179.0946, found 179.0947. 

(S)-2-(4-Cyanophenyl)-1-nitropropane (116g): The enantiomers were 

analyzed by GC using a chiral G-TA column (80 °C, 1 °C/min until 180 

°C, 15 min at 180 °C); major enantiomer: tR = 89.26 min, minor 

enantiomer: tR = 90.26 min. 116g (73.4 mg, 0.386 mmol, 99%; 95:5 er): yellow oil, 

C10H10N2O2 (190.20 g/mol); 1H NMR (300 MHz, CDCl3):  7.66-7.62 (m, 2H, CHAr), 7.37-

7.34 (m, 2H, CHAr), 4.60-4.49 (m, 2H, CH2NO2), 3.74-3.67 (m, 1H, CHCH3), 1.40 (d, J = 7.0 

NO2
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Hz, 3H, CHCH3); 13C NMR (75 MHz, CDCl3):  146.2 (CqArCH), 132.8 (CHAr), 127.8 

(CHAr), 118.4 (CqArCN), 111.7 (CqArCN), 80.8 (CH2NO2), 38.6 (CHCH3), 18.5 (CHCH3);

MS (EI, 70 eV): m/z (%) = 190 (1), 143 (100), 128 (8), 116 (84), 103 (7), 89 (10), 77 (7), 63 

(4), 51 (6), 41 (12), 27 (3); HRMS (EIpos) calcd for [(C10H10N2O2+H)+]: 191.0815, found 

191.0813.

(S)-2-(4-Fluorophenyl)-1-nitropropane (116h): The enantiomers were 

analyzed by GC using a chiral BGB 176/SE column (80 °C, 1.2 °C/min 

until 180 °C, 18 °C/min until 220 °C, 5 min at 220 °C); major enantiomer: 

tR = 50.66 min, minor enantiomer: tR = 51.49 min. 116h (69.2 mg, 0.378 mmol, 97%; 95:5 

er): slightly yellow oil, C9H10NO2 (183.18 g/mol); 1H NMR (300 MHz, CDCl3):  7.22-7.17 

(m, 2H, CHAr), 7.07-7.00 (m, 2H, CHAr), 4.55-4.43 (m, 2H, CH2NO2), 3.67-3.59 (m, 1H, 

CHCH3), 1.37 (d, J = 7.1 Hz, 3H, CHCH3); 13C NMR (75 MHz, CDCl3):  162.1 (d, 244.6 

Hz, CqArF), 136.6 (d, 3.2 Hz, CqArCH), 128.4 (d, 8.2 Hz, CHAr), 115.9 (d, 21.6 Hz, CHAr),

81.8 (CH2NO2), 37.9 (CHCH3), 18.8 (CHCH3); MS (EI, 70 eV): m/z (%) = 183 (6), 136 

(100), 122 (14), 109 (85), 101 (10), 96 (8), 83 (6), 75 (6), 41 (17); HRMS (EI-FE) calcd for 

[C9H10FNO2]: 183.0696, found 183.0695. 

(S)-2-(4-Chlorophenyl)-1-nitropropane (116i): The enantiomers were 

analyzed by GC using a chiral G-TA column (80 °C, 1 °C/min until 180 

°C, 15 min at 180 °C); major enantiomer: tR = 58.10 min, minor 

enantiomer: tR = 60.13 min.  116i (77.1 mg, 0.386 mmol, 99%; 97:3 er): slightly yellow oil, 

C9H10ClNO2 (199.63 g/mol); 1H NMR (300 MHz, CDCl3):  7.34-7.29 (m, 2H, CHAr), 7.19-

7.14 (m, 2H, CHAr), 4.56-4.43 (m, 2H, CH2NO2), 3.66-3.58 (m, 1H, CHCH3), 1.36 (d, J = 7.0 

Hz, 3H, CHCH3); 13C NMR (75 MHz, CDCl3):  139.3 (CqArCH), 133.4 (CqArCl), 129.1 

(CHAr), 128.3 (CHAr), 81.5 (CH2NO2), 38.1 (CHCH3), 18.7 (CHCH3); MS (EI, 70 eV): m/z

(%) = 199 (8), 152 (100), 139 (12), 125 (81), 117 (19), 103 (23), 89 (8), 77 (19), 63 (7), 51 

(13), 41 (35), 27 (4); HRMS (EI-FE) calcd for [C9H10ClNO2]: 199.0400, found 199.0398.The 

physical data were identical in all respects to those previously reported.266 

(S)-2-(3-Chlorophenyl)-1-nitropropane (116j): The enantiomers were 

analyzed by GC using a chiral G-TA column (80 °C, 1 °C/min until 180 °C, 

15 min at 180 °C); major enantiomer: tR = 58.28 min, minor enantiomer: tR = 

58.89 min. 116j (75.5 mg, 0.378 mmol, 97%; 95:5 er): slightly yellow oil, 

C9H10ClNO2 (199.63 g/mol); 1H NMR (300 MHz, CDCl3):  7.31-7.27 (m, 2H, CHAr), 7.24-
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7.22 (m, 1H, CHAr), 7.13-7.10 (m, 1H, CHAr), 4.57-4.44 (m, 2H, CH2NO2), 3.66-3.58 (m, 1H, 

CHCH3), 1.37 (d, J = 7.1 Hz, 3H, CHCH3); 13C NMR (75 MHz, CDCl3):  142.9 (CqArCH), 

134.8 (CqArCl), 130.2 (CHAr), 127.8 (CHAr), 127.1 (CHAr), 125.2 (CHAr), 81.4 (CH2NO2),

38.3 (CHCH3), 18.6 (CHCH3); MS (EI, 70 eV): m/z (%) = 199 (10), 152 (100), 138 (7), 125 

(83), 117 (22), 103 (19), 91 (8), 77 (16), 63 (6), 51 (11), 41 (28), 27 (3); HRMS (EI-FE) calcd 

for [C9H10ClNO2]: 199.0400, found 199.0402.

(S)-2-(2-Chlorophenyl)-1-nitropropane (116k): The enantiomers were 

analyzed by GC using a chiral BGB 176/SE column (80 °C, 1.2 °C/min until 

180 °C, 18 °C/min until 220 °C, 5 min at 220 °C); major enantiomer: tR = 

49.87 min, minor enantiomer: tR = 49.08 min. 116k (65.5 mg, 0.328 mmol, 84%; 83:17 er):

slightly yellow oil, C9H10ClNO2 (199.63 g/mol); 1H NMR (300 MHz, CDCl3):  7.41-7.39 

(m, 1H, CHAr), 7.29-7.20 (m, 3H, CHAr), 4.67 (dd, J = 12.2 Hz, 6.1 Hz, 1H, CH2NO2, H1),

4.57 (dd, J = 12.2 Hz, 8.6 Hz, 1H, CH2NO2, H2), 4.20-4.13 (m, 1H, CHCH3), 1.41 (d, J = 6.9 

Hz, 3H, CHCH3); 13C NMR (75 MHz, CDCl3):  138.0 (CqArCH), 133.7 (CqArCl), 130.2 

(CHAr), 128.7 (CHAr), 127.4 (CHAr), 127.3 (CHAr), 80.0 (CH2NO2), 34.8 (CHCH3), 17.4 

(CHCH3); MS (EI, 70 eV): m/z (%) = 199 (11), 152 (63), 139 (8), 125 (100), 115 (24), 103 

(18), 91 (14), 77 (15), 63 (6), 51 (11), 41 (13), 27 (2); HRMS (EI-FE) calcd for 

[C9H10ClNO2]: 199.0400, found 199.0398. 

(S)-2,3,3-Trimethyl-1-nitrobutane (116l): The enantiomers were analyzed by 

GC using a chiral BGB 176/SE column (60 °C, 1.2 °C/min until 120 °C, 18 

°C/min until 220 °C, 5 min at 220 °C); major enantiomer: tR = 23.48 min, minor 

enantiomer: tR = 24.47 min. 116l (46.5 mg, 0.320 mmol, 82%; 96:4 er): slightly yellow oil, 

C7H15NO2 (145.20 g/mol); 1H NMR (400 MHz, CDCl3):  4.53 (dd, J = 11.5 Hz, 7.7 Hz, 1H, 

CH2NO2, H1), 4.12-4.06 (m, 1H, CH2NO2, H2), 2.17 (m, 1H, CHCH3), 0.97 (d, J = 6.8 Hz, 

3H, CHCH3), 0.93 (s, 9H, C(CH3)3); 13C NMR (100 MHz, CDCl3):  79.6 (CH2NO2), 42.3 

(CHCH3), 32.4 (C(CH3)3), 27.1 (C(CH3)3), 12.9 (CHCH3); GC/MS m/z (%) = 145.

(S)-2-methyl-1-nitrobutane (116m): The enantiomers were analyzed by GC 

using a chiral BGB 176/SE column (60 °C, 1.0 °C/min until 85 °C, 20 °C/min 

until 220 °C, 10 min at 220 °C); major enantiomer: tR = 14.99 min, minor enantiomer: tR = 

15.42 min. 116m (42.3 mg, 0.378 mmol, 97%; 82:18 er): slightly yellow oil, C5H11NO2

(117.15 g/mol); 1H NMR (400 MHz, CDCl3):  4.33 (dd, J = 11.6 Hz, 6.4 Hz, 1H, CH2NO2,

NO2
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H1), 4.19 (dd, J = 11.6 Hz, 8.0 Hz, 1H, CH2NO2, H2), 2.28-2.23 (m, 1H, CHCH3), 1.44-1.25 

(m, 2H, CH2CH3), 1.01 (d, J = 6.7 Hz, 3H, CHCH3), 0.95 (t, 7.4 Hz, 3H, CH2CH3); 13C NMR

(100 MHz, CDCl3):  81.4 (CH2NO2), 34.1 (CHCH3), 26.5 (CH2CH3), 16.7 (CHCH3), 10.9 

(CH2CH3); MS (EI, 70 eV): m/z (%) = 118 (0.02), 71 (26), 55 (45), 43 (100), 41 (48), 39 (18), 

29 (44), 27 (20); GC/MS m/z (%) = 117.

(R)-2-(Furan-2-yl)-1-nitropropane (116n): The enantiomers were analyzed 

by GC using a chiral BGB 176/SE column (80 °C, 1.2 °C/min until 140 °C, 18 

°C/min until 220 °C, 5 min at 220 °C); major enantiomer: tR = 22.55 min, 

minor enantiomer: tR = 24.31 min. 116n (50.9 mg, 0.328 mmol, 84%; 96:4 er): orange oil, 

C7H9NO3 (155.15 g/mol); 1H NMR (300 MHz, CDCl3):  7.35 (dd, J = 1.8 Hz, 0.6 Hz, 1H, 

CHAr), 6.31 (dd, J = 3.2 Hz, 1.9 Hz, 1H, CHAr), 6.13-6.12 (m, 1H, CHAr), 4.67 (dd, J = 12.2 

Hz, 6.5 Hz, 1H, CH2NO2, H1), 4.43 (dd, J = 12.2 Hz, 8.0 Hz, 1H, CH2NO2, H2), 3.77-3.70 (m, 

1H, CHCH3), 1.37 (d, J = 7.1 Hz, 3H, CHCH3); 13C NMR (75 MHz, CDCl3):  153.8 

(CqArCH), 142.1 (OCHAr), 110.3 (CHAr), 105.9 (CHAr), 79.5 (CH2NO2), 32.4 (CHCH3), 16.1 

(CHCH3); MS (EI, 70 eV): m/z (%) = 155 (11), 108 (100), 94 (22), 81 (24), 65 (13), 53 (20), 

43 (7), 41 (28), 27 (14); HRMS (EI-FE) calcd for [C7H9NO3]: 155.0582, found 155.0584. 

The physical data were identical in all respects to those previously reported.266

Asymmetric Transfer Hydrogenation of (E)-1-phenyl-2-nitropropene (207): 

1-Nitro-2-phenylpropane (208) was obtained almost racemic form from the 

asymmetric transfer hydrogenation of commercially available (E)-1-phenyl-2-

nitropropene (207, Sigma-Aldrich). The enantiomers were analyzed by GC 

using a chiral BGB-176/SE column (1.2 °C/min until 170 °C, 20 °C/min until 

220 °C, 10 min at 220 °C); major enantiomer: tR = 39.39 min, minor enantiomer: tR = 38.74 

min. 208 (64.1 mg, 0.388 mmol, >99%; 52:48 er): slightly yellow oil, C9H11NO2 (165.19 

g/mol); 1H NMR (300 MHz, CDCl3):  7.35-7.25 (m, 3H, CHAr), 7.18-7.15 (m, 2H, CHAr),

4.78 (m, J = 6.8 Hz, 1H, CHCH3), 3.33 (dd, J = 14.0 Hz, 7.4 Hz, 1H, CH2CHNO2, H1), 3.01 

(dd, J = 14.0 Hz, 6.9 Hz, 1H, CH2CHNO2, H2), 1.55 (d, J = 6.7 Hz, 3H, CHCH3); 13C NMR

(75 MHz, CDCl3):  135.5 (CqArCH2), 129.9 (CHAr), 129.0 (CHAr), 128.8 (CHAr), 127.4 

(CHAr), 84.4 (CHNO2), 41.2 (CH2CHNO2), 14.1 (CHCH3); HRMS (EI-FE) calcd for 

[C9H11NO2]: 165.0790, found 165.0790. The physical data were identical in all respects to 

those previously reported.173b
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7.6 Enantioselective Transfer Hydrogenation of -Nitroacrylates:
a Route to ²-Amino Acids

7.6.1 Synthesis of the Starting Materials

Method A

Method B

7.6.1.1 Synthesis of the -Ketoesters 135

Ethyl 2-oxopropanoate (135a), methyl 2-oxo-2-phenylacetate (135c), ethyl 2-oxo-2-

phenylacetate (135d), ethyl 2-(4-methylphenyl)-2-oxoacetate (135g), ethyl 2-(4-

methoxyphenyl)-2-oxoacetate (135h), ethyl 2-(4-fluorophenyl)-2-oxoacetate (135i), ethyl 2-

(4-chlorophenyl)-2-oxoacetate (135j), ethyl 2-oxo-2-(thiophen-2-yl)acetate (135m) and ethyl 

3-methyl-2-oxobutanoate (135o) were commercially available. 

Isopropyl, tert-butyl and benzyl 2-oxo-2-phenylacetate (135b, 135e and 135f, respectively) as 

well as tert-butyl 2-(4-methoxyphenyl)-2-oxoacetate (135k) and tert-butyl 2-(4-

fluorophenyl)-2-oxoacetate (135l) were prepared by X. Cheng according to the procedures 

reported in Chapter 4.5.1.1 (Schemes 4.69-4.70). 

Preparation of ethyl 2-oxoheptanoate (135n)245

Et2O, - 78°C to 10 °C, 2 h
O

O
O

O

O
O

O

2M in Et2O

MgBr

210 135n
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Pentylmagnesium bromide (2 M in diethyl ether, 33.0 mL, 66.00 mmol, 1.1 equiv) was added 

over one hour using a syringe pump to a solution of diethyloxalate (9.10 g, 62.27 mmol,      

1.0 equiv) in diethyl ether (90 mL) at -78 °C. After one hour at -78 °C, the mixture was 

warmed to 10 °C and quenched with a solution of hydrochloric acid (3 N, 40 mL) and water 

(40 mL). The two resulting phases were separated and the aqueous layer extracted with 

diethyl ether (3 × 40 mL). The combined organic phases were washed with brine and dried 

over magnesium sulfate. The volatile compounds were removed in vacuo and the crude 

product was purified by flash chromatography (5-10% of diethyl ether in pentane) to afford 

the pure ethyl 2-oxoheptanoate (135n, 7.70 g, 44.71 mmol, 72%) as a yellow oil.  

135n: C9H16O3 (172.22 g/mol); 1H NMR (300 MHz, CDCl3):  4.31 (q, J = 7.1 Hz, 2H, 

CH2CH3), 2.81 (t, J = 7.3 Hz, 2H, CH2CO), 1.65-1.61 (m, 2H, CH2CH2CH2), 1.38-1.28      

(m, 7H: t, J = 7.1 Hz, OCH2CH3 (3H), CH2CH2CH2 (2H), CH2CH2CH3 (2H)), 0.91-0.87 (m, 

3H, CH2CH2CH3); 13C NMR (75 MHz, CDCl3):  194.8 (C=O), 161.3 (OC=O), 62.3 

(OCH2CH3), 39.2 (C(O)CH2CH2), 31.1 (CH2CH2CH2), 22.6 (CH2CH2CH2), 22.3 

(CH2CH2CH3), 14.0 (CH2CH2CH3), 13.8 (OCH2CH3); MS (EI, 70 eV): m/z (%) = 172 (5), 99 

(100), 71 (50), 55 (11), 43 (87), 29 (27); HRMS (EI-FE) calcd for [C9H16O3]: 172.1099, 

found 172.1098. The physical data were identical in all respects to those previously 

reported.274

7.6.1.2 Synthesis of the -nitro- -hydroxyester 209 

In a dried two-necked round-bottomed flask, the -ketoester 135 (20.00 mmol) was added to 

nitromethane (80 mL) followed by dried triethylamine (0.55 mL, 3.97 mmol). The mixture 

was then stirred at room temperature until complete conversion of the starting material (TLC 

monitoring). Solvent was removed in vacuo, and the residue was purified by flash 

chromatography to give the pure -nitro- -hydroxyesters 209.
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Ethyl 2-hydroxy-2-methyl-3-nitropropanoate (209a): -Nitro- -

hydroxyester 209a was synthesized according to the general procedure 

starting from ethyl 2-oxopropanoate (135a, 5.00 g, 43.06 mmol). After 

purification by flash chromatography (5-20% of diethyl ether in pentane) ethyl 2-hydroxy-2-

methyl-3-nitropropanoate (209a, 7.30 g, 41.21 mmol, 96%) was obtained as a colorless oil.

209a: C6H11NO5 (177.16 g/mol); 1H NMR (300 MHz, CDCl3):  4.84 (d, J = 13.7 Hz, 1H, 

CH2NO2, H1), 4.55 (d, J = 13.8 Hz, 1H, CH2NO2, H2), 4.39-4.28 (m, 2H, CH2CH3), 3.75     

(s, 1H, OH), 1.45 (s, 3H, CCH3), 1.32 (t, J = 7.1 Hz, 3H, CH2CH3); 13C NMR (75 MHz, 

CDCl3):  173.4 (C=O), 81.0 (CH2NO2), 72.4 (CCH2NO2), 63.0 (OCH2CH3), 23.8(OCCH3),

14.0 (CCH3); MS (EI, 70 eV): m/z (%) =  178 (0.03), 134 (1), 117 (1), 104 (61), 85 (2), 73 

(1), 58 (32), 43 (100), 29 (63); HRMS (EIpos) calcd for [(C6H11NO5+H)+]: 178.0716, found 

178.0718. The physical data were identical in all respects to those previously reported.203

Isopropyl 2-hydroxy-3-nitro-2-phenylpropanoate (209b): -Nitro- -

hydroxyester 209b was synthesized according to the general procedure 

starting from isopropyl 2-oxo-2-phenylacetate (135b, 3.00 g,           

15.61 mmol). After purification by flash chromatography (15% of ethyl acetate in hexanes) 

isopropyl 2-hydroxy-3-nitro-2-phenylpropanoate (209b, 3.62 g, 14.29 mmol, 92%) was 

obtained as a colorless solid.

209b: C12H15NO5 (253.25 g/mol); m.p.: 97-100 °C; 1H NMR (300 MHz, CDCl3):  7.65-7.57 

(m, 2H, CHAr), 7.44-7.34 (m, 3H, CHAr), 5.24 (d, J = 14.1 Hz, 1H, CH2NO2, H1), 5.15-5.23 

(m, 1H, CH(CH3)2), 4.66 (d, J = 14.1 Hz, 1H, CH2NO2, H2), 4.22 (s, 1H, OH), 1.35             

(d, J = 6.3 Hz, 3H, CH(CH3)2), 1.29 (d, J = 6.3 Hz, 3H, CH(CH3)2); 13C NMR (75 MHz, 

CDCl3):  171.1 (C=O), 136.6 (CqArC), 129.1 (CHAr), 128.8 (CHAr), 125.2 (CHAr), 80.8 

(CH2NO2), 75.9 (CCH2NO2), 71.9 (CH(CH3)2), 21.5 (CH(CH3)2), 21.4 (CH(CH3)2); MS (EI,

70 eV): m/z (%) = 253 (0.34), 166 (15), 123 (15), 120 (15), 105 (100), 91 (10), 77 (18), 65 

(2), 51 (6), 43 (25); HRMS (EI-FE) calcd for [C12H15NO5]: 253.0950, found 253.0950.
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Methyl 2-hydroxy-3-nitro-2-phenylpropanoate (209c): -Nitro- -

hydroxyester 209c was synthesized according to the general procedure 

starting from methyl 2-oxo-2-phenylacetate (135c, 3.00 g, 18.27 mmol). 

After purification by flash chromatography (10-15% of ethyl acetate in hexanes) methyl 2-

hydroxy-3-nitro-2-phenylpropanoate (209c, 3.50 g, 15.54 mmol, 41.21 mmol, 85%) was 

obtained as a colorless oil.  

209c: C10H11NO5 (225.20 g/mol); 1H NMR (300 MHz, CDCl3):  7.61-7.68 (m, 2H, CHAr),

7.44-7.37 (m, 3H, CHAr), 5.26 (d, J = 14.2 Hz, 1H, CH2NO2, H1), 4.68 (d, J = 14.2 Hz, 1H, 

CH2NO2, H2), 4.23 (s, 1H, OH), 3.91 (s, 3H, OCH3); 13C NMR (75 MHz, CDCl3):  172.2 

(C=O), 136.3 (CqArC), 135.0 (CHAr), 130.1 (CHAr), 129.2 (CHAr), 129.0 (CHAr), 125.2 

(CHAr), 80.0 (CH2NO2), 76.1 (CCH2NO2), 54.1(OCH3), 14.2; MS (EI, 70 eV): m/z (%) = 225 

(6), 166 (37), 123 (24), 105 (100), 91 (21), 77 (21), 65 (4), 51 (6), 39 (2), 30 (1); HRMS (EI-

FE) calcd for [C10H11NO5]: 225.0637, found 225.0640.

Ethyl 2-hydroxy-3-nitro-2-phenylpropanoate (209d): -Nitro- -

hydroxyester 209d was synthesized according to the general procedure 

starting from ethyl 2-oxo-2-phenylacetate (135d, 5.00 g, 28.06 mmol). 

After purification by flash chromatography (5-20% of ethyl acetate in hexanes) ethyl 2-

hydroxy-3-nitro-2-phenylpropanoate (209d, 6.20 g, 25.92 mmol, 92%) was obtained as a 

slightly yellow oil.

209d: C11H13NO5 (239.22 g/mol); 1H NMR (300 MHz, CDCl3):  7.62-7.58 (m, 2H, CHAr),

7.44-7.37 (m, 3H, CHAr), 5.26 (d, J = 14.2 Hz, 1H, CH2NO2, H1), 4.68 (d, J = 14.2 Hz, 1H, 

CH2NO2, H2), 4.44-4.31 (m, 2H, CH2CH3), 4.24 (d, J = 0.8 Hz, 1H, OH), 1.34 (dt, J = 7.2 Hz, 

1.2 Hz, 3H, CH2CH3); 13C NMR (75 MHz, CDCl3):  171.6 (C=O), 136.4 (CqArC), 129.1 

(CHAr), 128.9 (CHAr), 125.2 (CHAr), 80.8 (CH2NO2), 76.0 (CCH2NO2), 63.6 (CH2CH3), 13.9 

(CH2CH3); MS (EI, 70 eV): m/z (%) = 239 (3), 166 (29), 123 (20), 105 (100), 91 (16), 77 

(17), 65 (3), 51 (5), 43 (3), 29 (15); HRMS (EIpos) calcd for [(C11H13NO5+Na)+]: 262.0686, 

found 262.0688. The physical data were identical in all respects to those previously 

reported.203
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tert-Butyl 2-hydroxy-3-nitro-2-phenylpropanoate (209e): -Nitro- -

hydroxyester 209e was synthesized according to the general procedure 

starting from tert-butyl 2-oxo-2-phenylacetate (135e, 1.30 g,             

6.30 mmol). After purification by flash chromatography (5-20% of ethyl acetate in hexanes) 

tert-butyl 2-hydroxy-3-nitro-2-phenylpropanoate (209e, 1.30 g, 4.86 mmol, 77%) was 

obtained as a colorless oil.  

209e: C13H17NO5 (267.28 g/mol); 1H NMR (400 MHz, CDCl3):  7.62-7.59 (m, 2H, CHAr),

7.42-7.34 (m, 3H, CHAr), 5.19 (d, J = 14.0 Hz, 1H, CH2NO2, H1), 4.65 (d, J = 14.0 Hz, 1H, 

CH2NO2, H2), 4.23 (s, 1H, OH), 1.52 (s, 9H, (CH3)3); 13C NMR (100 MHz, CDCl3):  170.5 

(C=O), 137.0 (CqArC), 128.9 (CHAr), 128.8 (CHAr), 125.2 (CHAr), 85.0 (C(CH3)3), 80.8 

(CH2NO2), 75.9 (CCH2NO2), 27.7 (C(CH3)3); MS (EI, 70 eV): m/z (%) = 268  (0.03), 166 (7), 

120 (14), 105 (37), 77 (8), 57 (100), 41 (18), 29 (11); HRMS (EI-FE) calcd for 

[(C13H17NO5+H)+]: 268.1185, found 268.1185. 

Benzyl 2-hydroxy-3-nitro-2-phenylpropanoate (209f): -Nitro-

-hydroxyester 209f was synthesized according to the general 

procedure starting from ethyl 2-oxopropanoate (135f, 2.00 g,     

8.32 mmol). After purification by flash chromatography (20% of 

ethyl acetate in hexanes) benzyl 2-hydroxy-3-nitro-2-phenylpropanoate (209f, 2.11 g,        

7.00 mmol, 84%) was obtained as a colorless oil.

209f: C16H15NO5 (301.29 g/mol); 1H NMR (300 MHz, CDCl3):  7.57-7.55 (m, 2H, CHAr),

7.37-7.26 (m, 8H, CHAr), 5.28 (s, 2H, CH2Ph), 5.24 (d,  J = 14.1 Hz, 1H, CH2NO2, H1), 4.66 

(d, J = 14.1 Hz, 1H, CH2NO2, H2), 4.26 (s, 1H, OH); 13C NMR (75 MHz, CDCl3):  171.6 

(C=O), 136.2 (CqArC), 134.2 (CqArCH2), 129.1 (CHAr), 129.0 (CHAr), 128.8 (CHAr), 128.7 

(CHAr), 128.5 (CHAr), 125.2 (CHAr), 80.6 (CH2NO2), 76.1 (CCH2NO2), 69.2; MS (EI, 70 eV): 

m/z (%) = 302 (0.03), 166 (29), 123 (16), 105 (80), 91 (100), 77 (20), 65 (15), 51 (9), 39 (7); 

HRMS (EI-FE) calcd for [(C16H15NO5+Na)+]: 324.0842, found 324.0841.
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Ethyl 2-hydroxy-3-nitro-2-p-tolylpropanoate (209g): -Nitro- -

hydroxyester 209g was synthesized according to the general 

procedure starting from ethyl 2-oxo-2-p-tolylacetate (135g, 4.00 g, 

20.81 mmol). After purification by flash chromatography (10% of ethyl acetate in hexanes) 

ethyl 2-hydroxy-3-nitro-2-p-tolylpropanoate (209g,  4.31 g, 17.02 mmol, 82%) was obtained 

as a colorless oil.  

209g: C12H15NO5 (253.25 g/mol); 1H NMR (300 MHz, CDCl3):  7.50-7.45 (m, 2H, CHAr),

7.22-7.19 (d, J = 8.0 Hz, 2H, CHAr), 5.24 (dd, J = 14.2 Hz, 0.7 Hz, 1H, CH2NO2, H1), 4.66  

(d, J = 14.1 Hz, 1H, CH2NO2, H2), 4.41-4.30 (m, 2H, CH2CH3), 4.19 (s, 1H, OH), 2.35        

(s, 3H, p-CArCH3), 1.33 (t, J = 7.1 Hz, 3H, CH2CH3); 13C NMR (75 MHz, CDCl3):  171.8 

(C=O), 139.1 (CqArCH3), 133.5 (CqArC), 129.6 (CHAr), 125.1 (CHAr), 80.8 (CH2NO2), 75.9 

(CCH2NO2), 63.5 (CH2CH3), 21.0 (CqArCH3), 13.9 (CH2CH3); MS (EI, 70 eV): m/z (%) = 

253 (5), 180 (17), 137 (8), 119 (100), 105 (3), 91 (21), 65 (6), 29 (3); HRMS (EI-FE) calcd 

for [C12H15NO5]: 253.0950, found 253.0949.

Ethyl 2-hydroxy-3-nitro-2-(4-methoxy-phenyl)propanoate

(209h): -Nitro- -hydroxyester 209h was synthesized according to 

the general procedure starting from ethyl 2-(4-methoxyphenyl)-2-

oxoacetate (135h, 4.00 g, 19.21 mmol). After purification by flash chromatography (5-20% of 

ethyl acetate in hexanes) ethyl 2-hydroxy-3-nitro-2-(4-methoxy-phenyl)propanoate (209h,

4.21 g, 15.64 mmol, 81%) was obtained as a slightly yellow oil.  

209h: C12H15NO6 (269.25 g/mol); 1H NMR (300 MHz, CDCl3):  7.51 (d, J = 9.0 Hz, 2H, 

CHAr), 6.91 (d, J = 9.0 Hz, 2H, CHAr), 5.22 (d, J = 14.1 Hz, 1H, CH2NO2, H1), 4.65             

(d, J = 14.1 Hz, 1H, CH2NO2, H2), 4.42-4.30 (m, 2H, CH2CH3), 4.18 (s, 1H, OH), 3.81        

(s, 3H, OCH3), 1.33 (t, J = 7.2 Hz, 3H, CH2CH3); 13C NMR (75 MHz, CDCl3):  171.8 

(C=O), 160.1 (CqArOCH3), 128.3 (CqArC), 126.6 (CHAr), 114.2 (CHAr), 80.8 (CH2NO2), 75.7 

(CCH2NO2), 63.5 (CH2CH3), 55.3 (OCH3), 13.9 (CH2CH3); MS (EI, 70 eV): m/z (%) = 269 

(6), 196 (25), 150 (29), 135 (100), 121 (7), 107 (4), 92 (4), 77 (10); HRMS (EI-FE) calcd for 

[C12H15NO6]: 269.0899, found 269.0897. The physical data were identical in all respects to 

those previously reported.203
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Ethyl 2-(4-fluorophenyl)-2-hydroxy-3-nitropropanoate (209i): -

Nitro- -hydroxyester 209i was synthesized according to the general 

procedure starting from ethyl 2-(4-fluorophenyl)-2-oxoacetate (135i,

4.00 g, 20.39 mmol). After purification by flash chromatography (10% of ethyl acetate in 

hexanes) ethyl 2-(4-fluorophenyl)-2-hydroxy-3-nitropropanoate (209i, 5.10 g, 19.83 mmol, 

97%) was obtained as a colorless oil.  

209i: C11H12FNO5 (257.22 g/mol); 1H NMR (300 MHz, CDCl3):  7.63-7.58 (m, 2H, CHAr),

7.12-7.06 (m, 2H, CHAr), 5.22 (dd, J = 14.0 Hz, 0.5 Hz, 1H, CH2NO2, H1), 4.64                   

(d, J = 14.2 Hz, 1H, CH2NO2, H2), 4.43-4.32 (m, 2H, CH2CH3), 4.25 (d, J = 0.9 Hz, 1H, OH),

1.34 (t, J = 7.1 Hz, 3H, CH2CH3); 13C NMR (75 MHz, CDCl3):  171.4 (C=O), 163.1          

(d, J = 247.4 Hz, CqArF), 132.2 (d, J = 3.1 Hz, CqArC), 127.3 (d, J = 8.3 Hz, CHAr), 115.9    

(d, J = 21.7 Hz, CHAr), 80.7 (CH2NO2), 75.7 (CCH2NO2), 63.7 (CH2CH3), 13.9 (CH2CH3); 

MS (EI, 70 eV): m/z (%) = 257 (3), 184 (29), 141 (18), 123 (100), 109 (8), 95 (14), 83 (1), 75 

(4), 61 (2), 43 (1), 29 (6); HRMS (EI-FE) calcd for [C11H12FNO5]: 257.0700, found 

257.0699.

Ethyl2-(4-chlorophenyl)-2-hydroxy-3-nitropropanoate (209j): -

Nitro- -hydroxyester 209j was synthesized according to the general 

procedure starting from ethyl 2-(4-chlorophenyl)-2-oxoacetate 

(135j, 2.00 g, 9.41 mmol). After purification by flash chromatography (10% of ethyl acetate 

in hexanes) ethyl 2-(4-chlorophenyl)-2-hydroxy-3-nitropropanoate (209j, 2.12 g, 7.75 mmol, 

82%) was obtained as a colorless oil.  

209j: C11H12ClNO5 (273.67 g/mol); 1H NMR (300 MHz, CDCl3):  7.58-7.54 (m, 2H, CHAr),

7.40-7.35 (m, 2H, CHAr), 5.21 (dd, J = 14.0 Hz, 0.6 Hz, 1H, CH2NO2, H1), 4.64                   

(d, J = 14.3 Hz, 1H, CH2NO2, H2), 4.43-4.31 (m, 2H, CH2CH3), 4.25 (d, J = 0.8 Hz, 1H, OH),

1.34 (t, J = 7.1 Hz, 3H, CH2CH3); 13C NMR (75 MHz, CDCl3):  171.3 (C=O), 135.3 

(CqArC), 134.9 (CqArCl), 129.1 (CHAr), 126.8 (CHAr), 80.6 (CH2NO2), 75.7 (CCH2NO2), 63.8 

(CH2CH3), 13.9 (CH2CH3); MS (EI, 70 eV): m/z (%) = 273 (4), 200 (17), 157 (11), 139 (100), 

111 (18), 75 (9), 61 (4), 50 (3); HRMS (EI-FE) calcd for [C11H12ClNO5]: 273.0402, found 

273.0404. The physical data were identical in all respects to those previously reported.203
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tert-Butyl 2-hydroxy-3-nitro-2-(4-methoxyphenyl)-propanoate 

(209k): -Nitro- -hydroxyester 209k was synthesized according to 

the general procedure starting from tert-butyl 2-(4-

methoxyphenyl)-2-oxoacetate (135k, 1.50 g, 6.35 mmol). After purification by flash 

chromatography (20% of ethyl acetate in hexanes) tert-butyl 2-hydroxy-3-nitro-2-(4-

methoxyphenyl)propanoate (209k, 1.30 g, 4.37 mmol, 69%) was obtained as a colorless solid.

209k: C14H19NO6 (297.30 g/mol); m.p.: 80-82 °C; 1H NMR (300 MHz, CDCl3):  7.51       

(d, J = 9.0 Hz, 2H, CHAr), 6.91 (d, J = 9.0 Hz, 2H, CHAr), 5.15 (d, J = 14.0 Hz, 1H, CH2NO2,

H1), 4.62 (d, J = 14.0 Hz, 1H, CH2NO2, H2), 4.18 (s, 1H, OH), 3.81 (s, 3H, OCH3), 1.52 (s, 

9H, (CH3)3); 13C NMR (75 MHz, CDCl3):  170.7 (C=O), 160.0 (CqArOCH3), 128.9 (CqArC), 

126.5 (CHAr), 114.1 (CHAr), 84.9 (C(CH3)3), 80.9 (CH2NO2), 75.6 (CCH2NO2), 55.3 (OCH3), 

27.7 (C(CH3)3); MS (EI, 70 eV): m/z (%) = 297 (7), 196 (43), 150 (39), 135 (100), 121 (4), 92 

(4), 77 (8), 57 (65), 41 (11); HRMS (EIpos) calcd for [(C14H19NO6+Na)+]: 320.1105, found 

320.1104.

tert-Butyl 2-hydroxy-3-nitro-2-(4-fluorophenyl)propanoate (209l):

-Nitro- -hydroxyester 209l was synthesized according to the general 

procedure starting from tert-butyl 2-(4-fluorophenyl)-2-oxoacetate

(135l, 1.40 g, 6.24 mmol). After purification by flash chromatography (20% acetone in 

hexanes) tert-butyl 2-hydroxy-3-nitro-2-(4- fluorophenyl)propanoate (209l, 1.21 g,            

4.24 mmol, 68%) was obtained as a colorless oil.

209l: C13H16FNO5 (285.27 g/mol); 1H NMR (400 MHz, CDCl3):  7.61-7.58 (m, 2H, CHAr),

7.11-7.06 (m, 2H, CHAr), 5.16 (d, J = 14.0 Hz, 1H, CH2NO2, H1), 4.62 (d, J = 14.0 Hz, 1H, 

CH2NO2, H2), 4.24 (s, 1H, OH), 1.52 (s, 9H, (CH3)3); 13C NMR (100 MHz, CDCl3):  170.3 

(C=O), 163.0 163.1 (d, J = 249.4 Hz, CqArF), 132.7 (CqArC), 127.3 (d, J = 32.4 Hz, CHAr),

115.7 (d, J = 84.4 Hz, CHAr), 85.3 (C(CH3)3), 80.8 (CH2NO2), 75.6 (CCH2NO2), 27.7 

(C(CH3)3); MS (EI, 70 eV): m/z (%) = 286 (0.04), 184 (7), 138 (11), 123 (29), 109 (4), 95 (5), 

57 (100), 41 (22); HRMS (EIpos) calcd for [(C13H16FNO5+Na)+]: 308.0905, found 308.0902. 
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Ethyl 2-hydroxy-3-nitro-2-(thiophen-2-yl)propanoate (209m): -Nitro- -

hydroxyester 209m was synthesized according to the general procedure 

starting from ethyl 2-oxo-2-(thiophen-2-yl)acetate (135m, 7.28 g,          

39.50 mmol). After purification by flash chromatography (15% of ethyl acetate in hexanes) 

ethyl 2-hydroxy-3-nitro-2-(thiophen-2-yl)propanoate (209m, 6.29 g, 25.69 mmol, 65%) was 

obtained as a greenish yellow solid.

209m: C9H11NO5S (245.25 g/mol); m.p.: 59-62 °C; 1H NMR (300 MHz, CDCl3):  7.34   

(dd, J = 5.1 Hz, 1.2 Hz, 1H, CHAr), 7.15 (dd, J = 3.6 Hz, 1.2 Hz, 1H, CHAr), 7.02               

(dd, J = 5.1 Hz, 3.6 Hz, 1H, CHAr), 5.18 (d, J = 14 Hz, CH2NO2, H1), 4.76 (d, J =14 Hz, 1H, 

CH2NO2, H2), 4.46-4.35 (m, 3H: OH (1H), CH2CH3 (2H)), 1.37 (t, J = 7.2 Hz, 3H, CH2CH3);
13C NMR (75 MHz, CDCl3):  170.6 (C=O), 140.4 (CqArC), 127.5 (CHAr), 126.8 (CHAr),

125.1 (CHAr), 80.6 (CH2NO2), 74.8 (CCH2NO2), 63.9 (CH2CH3), 13.9(CH2CH3); MS (EI, 70 

eV): m/z (%) = 245 (10), 199 (12), 172 (58), 126 (44), 111 (100), 97 (17), 84 (8), 65 (2), 39 

(8), 29 (15); HRMS (EI-FE) calcd for [C9H11NO5S]: 245.0358, found 245.0358. 

Ethyl 2-hydroxy-2-(nitromethyl)heptanoate (209n): -Nitro- -

hydroxyester 209n was synthesized according to the general 

procedure starting from ethyl 2-oxoheptanoate (135n, 7.60 g,      

44.13 mmol). After purification by flash chromatography (10% of diethyl ether in pentane) 

ethyl 2-hydroxy-2-(nitromethyl)heptanoate (209n, 9.70 g, 41.58 mmol, 94%) was obtained as 

a colorless oil.  

209n: C10H19NO5 (233.26 g/mol); 1H NMR (300 MHz, CDCl3):  4.81 (d, J = 13.6 Hz, 1H, 

CH2NO2, H1), 4.55 (d, J = 13.6 Hz, 1H, CH2NO2, H2), 4.40-4.29 (m, 2H, CH2CH3), 3.69     

(s, 1H, OH), 1.69-1.61 (m, 2H, CH2CO), 1.55-1.20 (m, 9H: t, J = 7.1 Hz, OCH2CH3 (3H);

CH2CH2CH2 (4H); CH2CH2CH3 (2H)), 0.87 (t, J = 6.8 Hz, 3H, CH2CH2CH3); 13C NMR (75 

MHz, CDCl3):  172.9 (C=O), 80.9 (CH2NO2), 75.3 (CCH2NO2), 63.0 (OCH2CH3), 36.5 

(C(O)CH2CH2), 31.5(CH2CH2CH2), 22.3 (CH2CH2CH2), 21.9 (CH2CH2CH3), 14.1 

(CH2CH2CH3), 13.8 (OCH2CH3); MS (EI, 70 eV): m/z (%) = 234 (0.4), 160 (22), 134 (3), 117 

(100), 99 (95), 95 (7), 71 (47), 58 (17), 43 (81), 29 (41); HRMS (EIpos) calcd for 

[(C10H19NO5+Na)+]: 256.1155, found 256.1153.
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Ethyl 2-hydroxy-3-methyl-2-(nitromethyl)butanoate (209o): -Nitro- -

hydroxyester 209o was synthesized according to the general procedure 

starting from ethyl 3-methyl-2-oxobutanoate (135o, 4.70 g, 32.60 mmol). 

After purification by flash chromatography (15% of diethyl ether in pentane) ethyl 2-hydroxy-

3-methyl-2-(nitromethyl)butanoate (209o, 6.51 g, 31.72 mmol, 97%) was obtained as a 

colorless oil.  

209o: C8H15NO5 (205.21 g/mol); 1H NMR (300 MHz, CDCl3):  4.82 (d, J = 6.7 Hz, 1H, 

CH2NO2, H1), 4.66 (d, J = 6.7 Hz, 1H, CH2NO2, H2), 4.40-4.31 (m, 2H, CH2CH3), 3.61       

(s, 1H, OH), 1.98 (qt, J = 6.8 Hz, 1H, CH(CH3)2), 1.34 (t, J = 7.1 Hz, 3H, CH2CH3), 0.99     

(d, J = 6.8 Hz, 3H, CH(CH3)2), 0.90 (d, J = 6.8 Hz, 3H, CH(CH3)2); 13C NMR (75 MHz, 

CDCl3):  173.0 (C=O), 80.2 (CH2NO2), 77.5 (CCH2NO2), 62.9 (CH2CH3), 34.1 (CH(CH3)2),

16.8 (CH(CH3)2), 16.2 (CH(CH3)2), 14.0 (CH2CH3); MS (EI, 70 eV): m/z (%) = 206 (0.4), 

162 (8), 132 (21), 117 (16), 89 (57), 85 (18), 71 (87), 57 (11), 43 (100), 29 (36); HRMS

(EIpos) calcd for [(C8H16NO5+H)+]: 206.1028, found 206.1027.

7.6.1.3 Synthesis of the -nitroacrylates 121 

Method A:

To a stirred solution of -nitro- -hydroxyester 209 (20.00 mmol) in dichloromethane        

(100 mL) were added methanesulfonyl chloride (4.6 mL, 60.00 mmol) and triethylamine   

(8.3 mL, 60.0 mmol). After the reaction was complete (TLC monitoring), the mixture was 

poured into ice-cold water. The two phases were separated and the aqueous layer extracted 

with dichloromethane (3 × 50 mL). The combined organic phases were washed with a sodium 

hydroxide solution (15%), water and brine and dried over magnesium sulfate. The volatile 
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compounds were removed in vacuo and the crude product was purified by flash 

chromatography to afford pure -nitroacrylate 121.

Under the conditions of Method A, the dehydring step often leads to a mixture of the desired 

product 121 and the initial -ketoester 135 (retro-Henry reaction). Consequently, the yield of 

the desired nitroacrylates was often low (20-50%). The procedure has been improved by 

treating the -nitro- -hydroxyesters with acetic anhydride (in DMSO) instead of 

methanesulfonyl chloride (see Method B). 

Method B: 

To a stirred solution of -nitro- -hydroxyesters 209 (2.0 mmol) in DMSO (7 mL) was added 

acetic anhydride (0.57 mL, 6.00 mmol). The reaction was then stirred at room temperature 

until full conversion of the starting material (TLC monitoring). The mixture was poured into 

water, the two phases were separated and the aqueous layer extracted with dichloromethane  

(3 × 3 mL). The combined organic phases were washed with a saturated solution of sodium 

bicarbonate and dried over magnesium sulfate. The volatile compounds were removed in 

vacuo and the crude product was purified by flash chromatography to afford the pure -

nitroacrylates 121.

Ethyl 2-methyl-3-nitroacrylate (121a): -Nitroacrylate 121a was 

synthesized following Method A starting from ethyl 2-hydroxy-2-methyl-3-

nitropropanoate (209a, 7.20 g, 40.64 mmol). After purification by flash 

chromatography (10% of diethyl ether in pentane) (E)-ethyl 2-methyl-3-nitroacrylate        

((E)-121a, 0.40 g, 2.51 mmol, 6%) and (Z)-ethyl 2-methyl-3-nitroacrylate ((Z)-121a, 4.40 g, 

27.65 mmol, 68%) were obtained as slightly yellow oils.

(E)-121a: C6H9NO4 (159.14 g/mol); 1H NMR (400 MHz, CDCl3):  7.72 (m, 1H, CHNO2),

4.31 (q, J = 7.1 Hz, 2H, CH2CH3), 2.32 (d, J = 1.7 Hz, 3H, CCCH3), 1.35 (t, J = 7.1 Hz, 3H, 

CH2CH3); 13C NMR (100 MHz, CDCl3):  165.2 (C=O), 143.9 (CHNO2), 136.8 (CCHNO2),

62.6 (OCH2CH3), 14.0 (CCH3), 13.7 (OCH2CH3).  

(Z)-121a: 1H NMR (400 MHz, CDCl3):  6.87 (m, 1H, CHNO2), 4.35 (q, J = 7.1 Hz, 2H, 

CH2CH3), 2.10 (d, J = 1.7 Hz, 3H, CCCH3), 1.34 (t, J = 7.1 Hz, 3H, CH2CH3); 13C NMR

(100 MHz, CDCl3):  166.1 (C=O), 140.9 (CHNO2), 135.7 (CCHNO2), 62.4 (OCH2CH3),

17.6 (CCH3), 13.8 (OCH2CH3); MS (EI, 70 eV): m/z (%) = 159 (0.2), 114 (100), 99 (13), 85 

(4), 71 (18), 68 (2), 56 (5), 39 (26), 29 (78), 27 (19); HRMS (EI-FE) calcd for [C6H9NO4]: 
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159.0532, found 159.0532 The physical data were identical in all respects to those previously 

reported.246

(Z)-Isopropyl 3-nitro-2-phenylacrylate (121b): -Nitroacrylate 121b

was synthesized following Method A starting from isopropyl 2-

hydroxy-3-nitro-2-phenylpropanoate (209b, 3.00 g, 11.85 mmol). After 

purification by flash chromatography (10% of diethyl ether in pentane) pure (Z)-isopropyl 3-

nitro-2-phenylacrylate (121b, 2.01 g, 8.54 mmol, 72%) was obtained as a yellow solid.  

121o: C12H13NO4 (235.24 g/mol); m.p.: 49-51 °C; 1H NMR (400 MHz, CDCl3):  7.55-7.44 

(m, 5H, CHAr), 7.34 (br s, 1H, CHNO2), 5.41-5.35 (m, 1H, CH(CH3)2), 1.39 (d, J = 6.3 Hz, 

6H, CH(CH3)2); 13C NMR (100 MHz, CDCl3):  164.2 (C=O), 143.4 (CCHNO2), 134.3 

(CHNO2), 132.0 (CHAr), 129.7 (CqArC), 129.5 (CHAr), 127.4 (CHAr), 70.9 (CH(CH3)2), 21.5 

(CH(CH3)2); MS (EI, 70 eV): m/z (%) = 235 (9), 193 (15), 175 (76), 165 (12), 147 (11), 132 

(8), 120 (14), 102 (100), 91 (12), 76 (17), 63 (7), 51 (6), 43 (99); HRMS (EI-FE) calcd for 

[C12H13NO4]: 235.0845, found 235.0842. 

(Z)-Methyl 3-nitro-2-phenylacrylate (121c): -Nitroacrylate 121b was 

synthesized following Method A starting from methyl 2-hydroxy-3-nitro-2-

phenylpropanoate (209c, 3.00 g, 13.32 mmol). After purification by flash 

chromatography (5% ethyl acetate in hexanes) pure (Z)-methyl 3-nitro-2-

phenylacrylate (121c, 1.62 g, 7.82 mmol, 59%) was obtained as a yellow oil.

121c: C10H9NO4 (207.18 g/mol); 1H NMR (300 MHz, CDCl3):  7.54-7.44 (m, 5H, CHAr),

7.36 (s, 1H, CHNO2), 4.00 (s, 3H, COCH3); 13C NMR (75 MHz, CDCl3):  165.3 (C=O), 

143.1 (CCHNO2), 134.6 (CHNO2), 132.2 (CHAr), 129.7 (CHAr), 129.5 (CqArC), 127.5 (CHAr),

53.4 (OCH3); MS (EI, 70 eV): m/z (%) = 207 (41), 190 (7), 175 (45), 158 (22), 145 (24), 131 

(6), 120 (27), 102 (100), 91 (28), 76 (32), 63 (16), 59 (52), 51 (18), 39 (11), 30 (6); HRMS

(EI-FE) calcd for [C10H9NO4]: 207.0531, found 207.0530.
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(Z)-Ethyl 3-nitro-2-phenylacrylate (121d): -Nitroacrylate 121b was 

synthesized following Method A starting from ethyl 2-hydroxy-3-nitro-

2-phenylpropanoate (209d, 6.00 g, 25.08 mmol). After purification by 

flash chromatography (5% ethyl acetate in hexanes) pure (Z)-ethyl 3-

nitro-2-phenylacrylate (121d, 3.51 g, 15.87 mmol, 63%) was obtained as a yellow oil.  

Dehydration according to Method B: -Nitroacrylate 121d (0.78 g, 3.53 mmol, 88%) was 

prepared starting from -nitro- -hydroxyester 209d (0.96 g, 4.01 mmol). 

121d: C11H11NO4 (221.21 g/mol); 1H NMR (300 MHz, CDCl3):  7.56-7.44 (m, 5H, CHAr),

7.35 (s, 1H, CHNO2), 4.48 (q, J = 7.2 Hz, 2H, CH2CH3), 1.40 (t, J = 7.2 Hz, 3H, CH2CH3);
13C NMR (75 MHz, CDCl3):  164.7 (C=O), 143.3 (CCHNO2), 134.5 (CHNO2), 132.1 

(CHAr), 129.5 (CHAr), 128.4 (CqArC), 127.5 (CHAr), 62.5 (OCH2CH3), 13.8 (OCH2CH3); MS

(EI, 70 eV): m/z (%) = 221 (19), 204 (2), 193 (2), 175 (40), 158 (11), 145 (11), 132 (6), 120 

(17), 102 (89), 91 (24), 77 (26), 63 (11), 51 (12), 39 (6), 29 (100); HRMS (EI-FE) calcd for 

[C11H11NO4]: 221.0688, found 221.0686. The physical data were identical in all respects to 

those previously reported.175a

(Z)-tert-Butyl 3-nitro-2-phenylacrylate (121e): -Nitroacrylate 121b

was synthesized following Method A starting from tert-butyl 2-hydroxy-

3-nitro-2-phenylpropanoate (209e, 1.25 g, 4.68 mmol). After 

purification by flash chromatography (10% ethyl acetate in hexanes) 

pure (Z)-tert-butyl 3-nitro-2-phenylacrylate (121e, 0.20 g, 0.80 mmol, 17%) was obtained as a 

yellow solid.

Dehydration according to Procedure B: -Nitroacrylate 121e (0.65 g, 2.62 mmol, 88%) was 

prepared starting from -nitro- -hydroxyester 209e (0.80 g, 2.99 mmol).  

121e: C13H15NO4 (249.26 g/mol); m.p.: 82-83 °C; 1H NMR (400 MHz, CDCl3):  7.54-7.45 

(m, 5H, CHAr), 7.30 (br s, 1H, CHNO2), 1.62 (s, 9H, (CH3)3); 13C NMR (100 MHz, CDCl3):

  163.5 (C=O), 143.7 (CCHNO2), 133.7 (CHNO2), 131.9 (CHAr), 130.0 (CqArC), 129.5 

(CHAr), 127.4 (CHAr), 84.8 (C(CH3)3), 27.9 (C(CH3)3); MS (EI, 70 eV): m/z (%) =  249  (2), 

193 (15), 176 (22), 158 (6), 102 (30), 57 (100), 41 (17), 29 (11); HRMS (EI-FE) calcd for 

[C13H15NO4]: 249.1001, found 249.0999.
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(Z)-Benzyl 3-nitro-2-phenylacrylate (121f): -Nitroacrylate 121f

was synthesized following Method A starting from benzyl 2-

hydroxy-3-nitro-2-phenylpropanoate (209f, 2.00 g, 6.64 mmol). 

After purification by flash chromatography (15% acetone in 

hexanes) pure (Z)-benzyl 3-nitro-2-phenylacrylate (121f, 0.40 g, 1.41 mmol, 21%) was 

obtained as a yellow oil.

Dehydration according to Procedure B: -Nitroacrylate 121f (0.22 g, 1.12 mmol, 84%) was 

prepared starting from -nitro- -hydroxyester 209f (0.40 g, 1.33 mmol).  

121f: C16H13NO4 (283.28 g/mol); 1H NMR (300 MHz, CDCl3):  7.42-7.33 (m, 11H, CHAr

and CHNO2), 5.41 (s, 2H, OCH2Ph); 13C NMR (75 MHz, CDCl3):  164.6 (C=O), 142.9 

(CCHNO2), 134.5 (CHNO2), 134.4 (CqArCH2), 132.1 (CHAr), 129.5 (CHAr), 129.3 (CqArC),

128.9 (CHAr), 128.8 (CHAr), 128.6 (CHAr), 127.5 (CHAr), 68.5 (CqArCH2); MS (EI, 70 eV): 

m/z (%) = 283 (0.1), 177 (10), 159 (3), 133 (11), 102 (16), 91 (100), 77 (11), 65 (14), 51 (7), 

39 (6); HRMS (EIpos) calcd for [(C16H13NO4+Na)+]: 306.0737, found 306.0736. 

(Z)-Ethyl 3-nitro-2-p-tolylacrylate (121g): -Nitroacrylate 121g was 

synthesized following Method A starting from ethyl 2-hydroxy-3-

nitro-2-p-tolylpropanoate (209g, 4.00 g, 15.79 mmol). After 

purification by flash chromatography (3% of ethyl acetate in hexanes) 

pure (Z)-ethyl 3-nitro-2-p-tolylacrylate (121g, 1.94 g, 8.25 mmol, 52%) was obtained as a 

yellow oil.

121g: C12H13NO4 (235.24 g/mol); 1H NMR (300 MHz, CDCl3):  736-7.33 (m, 2H, CHAr),

7.34 (s, 1H, CHNO2), 7.23-7.20 (m, 2H, CHAr), 4.42 (q, J = 7.2 Hz, 2H, CH2CH3), 2.34       

(s, 3H, CArCH3), 1.34 (t, J = 7.1 Hz, 3H, CH2CH3); 13C NMR (75 MHz, CDCl3):  165.0 

(C=O), 143.4 (CCHNO2), 143.1 (CqArCH3), 133.6 (CHNO2), 130.3 (CHAr), 127.5 (CHAr),

126.6 (CqArC), 62.7 (OCH2CH3), 21.5 (CqArCH3, 11.9 (OCH2CH3); MS (EI, 70 eV): m/z (%) 

= 235 (57), 218 (8), 204 (4), 189 (52), 172 (22), 161 (19), 146 (13), 134 (21), 115 (100), 105 

(20), 91 (24), 77 (10), 65 (10), 51 (6), 39 (6), 29 (47); HRMS (EI-FE) calcd for [C12H13NO4]: 

235.0845, found 235.0842. 
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(Z)-Ethyl 2-(4-methoxyphenyl)-3-nitroacrylate (121h): -

Nitroacrylate 121h was synthesized following Method A starting 

from ethyl 2-hydroxy-3-nitro-2-(4-methoxy-phenyl)propanoate 

(209h, 3.20 g, 11.88 mmol). After purification by flash 

chromatography (20% of acetone in hexanes) pure (Z)-ethyl 2-(4-methoxyphenyl)-3-

nitroacrylate (121h, 1.01 g, 4.02 mmol, 34%) was obtained as a yellow oil.

Dehydration according to Procedure B: -Nitroacrylate (Z)-121e (0.28 g, 1.11 mmol, 75%) 

was prepared starting from -nitro- -hydroxyester 209e (0.40 g, 1.49 mmol).

Note: -Nitroacrylate (E)-121e (0.04 g, 0.17 mmol) was formed in 11% yield. 

121o: C12H13NO4 (251.24 g/mol); 1H NMR (300 MHz, CDCl3):  7.44 (d, J = 9.0 Hz, 2H, 

CHAr), 7.35 (s, 1H, CHNO2), 6.96 (d, J = 9.0 Hz, 2H, CHAr), 4.48 (q, J = 7.2 Hz, 2H, 

CH2CH3), 3.85 (s, 3H, OCH3), 1.40 (t, J = 7.2 Hz, 3H, CH2CH3); 13C NMR (75 MHz, 

CDCl3):  165.2 (C=O), 163.0 (CqArOCH3), 143.2 (CCHNO2), 132.3 (CHNO2), 129.5 (CHAr),

121.5 (CqArC), 115.5 (CHAr), 62.7 (OCH2CH3), 55.6 (OCH3), 13.9 (CH2CH3); MS (EI, 70 

eV): m/z (%) = 251 (99), 206 (32), 168 (20), 150 (27), 132 (100), 117 (40), 95 (10), 89 (55), 

77 (15), 63 (21), 51 (7), 39 (9), 29 (77); HRMS (EI-FE) calcd for [C12H13NO5]: 251.0794, 

found 251.0796.

(Z)-ethyl 2-(4-fluorophenyl)-3-nitroacrylate (121i): -Nitroacrylate

121i was synthesized following Method A starting from ethyl 2-(4-

fluorophenyl)-2-oxoacetate (135i, 5.30 g, 20.60 mmol). After 

purification by flash chromatography (3% of ethyl acetate in hexanes) pure (Z)-ethyl 2-(4-

fluorophenyl)-3-nitroacrylate (121i, 2.41 g, 10.08 mmol, 49%) was obtained as a yellow oil.

Dehydration according to Procedure B: -Nitroacrylate 121i (0.36 g, 1.53 mmol, 87%) was 

prepared starting from -nitro- -hydroxyester 209i (0.45 g, 1.75 mmol).  

121i: C11H10FNO4 (239.20 g/mol); 1H NMR (300 MHz, CDCl3):  7.54-7.49 (m, 2H, CHAr),

7.31 (s, 1H, CHNO2), 7.20-7.13 (m, 2H, CHAr), 4.47 (q, J = 7.2 Hz, 2H, OCH2CH3), 1.39     

(t, J = 7.2 Hz, 2H, OCH2CH3); 13C NMR (75 MHz, CDCl3):  166.6 (C=O), 164.0               

(d, J = 101.1 Hz, CqArF), 142.2 (CCHNO2), 134.6 (CHNO2), 129.8 (d, J = 9.0 Hz, CHAr),

125.7 (d, J = 3.4 Hz, CqArC), 117.0 (d, J = 22.1 Hz, CHAr), 63.0 (OCH2CH3), 13.8 (CH2CH3);

MS (EI, 70 eV): m/z (%) = 239 (21), 194 (18), 176 (4), 166 (9), 149 (6), 138 (13), 120 (82), 
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109 (15), 94 (12), 74 (8), 50 (4), 29 (100); HRMS (EI-FE) calcd for [C11H10FNO4]: 239.0494, 

found 239.0592. 

(Z)-ethyl 2-(4-chlorophenyl)-3-nitroacrylate (121j): -

Nitroacrylate 121j was synthesized following Method A starting 

from ethyl 2-(4-chlorophenyl)-2-oxoacetate (135j, 1.90 g,           

6.94 mmol). After purification by flash chromatography (3% of 

ethyl acetate in hexanes) pure (Z)-ethyl 2-(4-chlorophenyl)-3-nitroacrylate (121j, 0.95 g,   

3.71 mmol, 53%) was obtained as a yellow oil.  

121j: C11H10ClNO4 (255.65 g/mol); 1H NMR (300 MHz, CDCl3):  7.44 (s, 4H, CHAr), 7.32 

(s, 1H, CHNO2), 4.47 (q, J = 7.2 Hz, 2H, OCH2CH3), 1.39 (t, J = 7.1 Hz, 2H, OCH2CH3); 13C

NMR (75 MHz, CDCl3):  164.4 (C=O), 142.1 (CCHNO2), 138.6 (CqArCl), 134.7 (CHNO2),

129.9 (CHAr), 128.7 (CHAr), 128.0 (CqArC), 63.0 (OCH2CH3), 13.8 (CH2CH3); MS (EI, 70 

eV): m/z (%) = 255 (38), 210 (29), 192 (10), 174 (100), 154 (11), 136 (80), 125 (13), 101 

(33), 89 (6), 75 (19), 63 (4), 51 (8), 29 (62); HRMS (EI-FE) calcd for [C11H10ClNO4]: 

255.0298, found 255.0297. 

(Z)-tert-Butyl 2-(4-methoxyphenyl)-3-nitroacrylate (121k): -

Nitroacrylate 121k was synthesized following Method A starting 

from tert-butyl 2-(4-methoxyphenyl)-2-oxoacetate (135k, 1.30 g, 

4.37 mmol). After purification by flash chromatography (15% of 

acetone in hexanes) pure (Z)-tert-butyl 3-nitro-2-(4-methoxyphenyl)acrylate (121k, 0.31 g, 

1.11 mmol, 25%) was obtained as a yellow solid.  

Dehydration according to Procedure B: -Nitroacrylate 121k (0.26 g, 0.94 mmol, 88%) was 

prepared starting from -nitro- -hydroxyester 209k (0.40 g, 1.35 mmol).  

121k: C14H17NO5 (279.29 g/mol); m.p.: 95-96 °C; 1H NMR (300 MHz, CDCl3):  7.47       

(d, J = 9.0 Hz, 2H, CHAr), 7.29 (s, 1H, CHNO2), 6.96 (d, J = 9.0 Hz, 2H, CHAr), 3.86 (s, 3H, 

OCH3), 1.63 (s, 9H, C(CH3)3); 13C NMR (75 MHz, CDCl3):  163.9 (C=O), 162.8 

(CqArOCH3), 143.5 (CCHNO2), 131.7 (CHNO2), 129.4 (CHAr), 122.1 (CqArC), 115.0 (CHAr),

84.6 (C(CH3)3), 55.6 (OCH3), 27.9 (C(CH3)3); MS (EI, 70 eV): m/z (%) = 279 (57), 223 (57), 
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206 (34), 132 (72), 117 (15), 89 (19), 57 (100), 41 (19); HRMS (EIpos) calcd for 

[(C14H17NO5+Na)+]: 302.0999, found 302.0998. 

(Z)-tert-Butyl 2-(4-fluorophenyl)-3-nitroacrylate (121l): -

Nitroacrylate 121l was synthesized following Method A starting from 

tert-butyl 2-(4-fluorophenyl)-2-oxoacetate (135l, 1.20 g, 4.21 mmol). 

After purification by flash chromatography (10% of diethyl ether in 

pentane) pure (Z)-tert-butyl 3-nitro-2-(4-fluorophenyl)acrylate (121l, 0.30 g, 1.12 mmol, 

27%) was obtained as a yellow oil.  

Dehydration according to Procedure B: -Nitroacrylate 121j (0.96 g, 3.59 mmol, 85%) was 

prepared starting from -nitro- -hydroxyester 209j (1.20 g, 4.20 mmol).  

121l: C13H14FO4 (267.25 g/mol); 1H NMR (400 MHz, CDCl3):  7.55-7.51 (m, 2H, CHAr),

7.25 (s, 1H, CHNO2), 7.16 (t, J = 9.0 Hz, 2H, CHAr), 1.62 (s, 9H, C(CH3)3); 13C NMR

(100 MHz, CDCl3):  164.8 (C=O), 164.7 (d, J = 272.0 Hz, CqArF), 142.6 (CCHNO2), 133.5 

(CHNO2), 129.7 (d, J = 8.8 Hz, CHAr) , 126.2 (d, J = 3.0 Hz, CqArC), 116.8 (d, J = 22.0 Hz, 

CHAr), 85.1 (C(CH3)3), 27.9 (C(CH3)3); MS (EI, 70 eV): m/z (%) = 267 (8), 211 (8), 194 (17), 

120 (34), 94 (3), 57 (100), 41 (21); HRMS (EIpos) calcd for [(C13H14NO4F+Na)+]: 290.0799, 

found 290.0798. 

(E)-Ethyl 3-nitro-2-(thiophen-2-yl)acrylate (121m): -Nitroacrylate

121m was synthesized following Method A starting from ethyl 2-

hydroxy-3-nitro-2-(thiophen-2-yl)propanoate (209m, 6.18 g,            

25.20 mmol). After purification by flash chromatography (10% of 

diethyl ether in pentane) pure (E)-ethyl 3-nitro-2-(thiophen-2-yl)acrylate (121m, 2.62 g, 11.53 

mmol, 46%) was obtained as a yellow solid.

Dehydration according to Procedure B: -Nitroacrylate 121m (0.29 g, 1.28 mmol, 78%) was 

prepared starting from -nitro- -hydroxyester 209m (0.40 g, 1.63 mmol).  

121m: C9H9NO4S (227.24 g/mol); m.p.: 55-57 °C; 1H NMR (400 MHz, CDCl3):  7.58    

(dd, J = 5.2, 1.3 Hz, 1H, CHAr), 7.38-7.36 (m, 2H: CHAr (1H), CHNO2 (1H)), 7.15             

(dd, J = 5.1 Hz, 3.8 Hz, 1H, CHAr), 4.50 (q, J = 7.2 Hz, 2H, CH2CH3), 1.42 (t, J = 7.2 Hz, 3H, 
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CH2CH3); 13C NMR (100 MHz, CDCl3):  163.9 (C=O), 137.7 (CHNO2), 133.1 (CHAr),

132.6 (CCHNO2), 131.6 (CHAr), 131.6 (CqArC), 129.0 (CHAr), 63.1 (OCH2CH3), 13.9 

(CH2CH3); MS (EI, 70 eV): m/z (%) = 227 (28), 182 (28), 154 (25), 138 (31), 112 (73), 108 

(100), 97 (15), 83 (43), 69 (30), 58 (20), 45 (39), 39 (10), 29 (82); HRMS (EI-FE) calcd for 

[C9H9NO4S]: 227.0252, found 227.0254.

(E)-Ethyl 2-(nitromethylene)heptanoate (121n): -Nitroacrylate 

121n was synthesized following Method A starting from ethyl 2-

hydroxy-2-(nitromethyl)heptanoate (209n, 9.60 g, 41.16 mmol). 

After purification by flash chromatography (1% of diethyl ether in 

pentane) pure (E)-ethyl 2-(nitromethylene)heptanoate ((E)-121n, 0.40 g, 1.86 mmol, 5%) and 

(Z)-ethyl 2-(nitromethylene)heptanoate ((Z)-121n, 5.41 g, 25.13 mmol, 61%) were obtained 

as yellow oils.

(E)-121n: C10H17NO4 (215.25 g/mol); 1H NMR (400 MHz, CDCl3):  7.65 (s, 1H, CHNO2),

4.31 (q, J = 7.1 Hz, 2H, COCH2CH3), 2.75-2.71 (m, 2H, CCH2CH2), 1.56-1.51 (m, 2H, 

CH2CH2CH2), 1.38-1.31 (m, 7H: CH2CH2CH2 (2H), CH2CH2CH3 (2H), COCH2CH3 (3H)),

0.90 (m, 3H, CH2CH3); 13C NMR (100 MHz, CDCl3):  165.1 (C=O), 143.3 (CHNO2), 141.2 

(CCHNO2), 62.4 (OCH2CH3), 31.7 (CH2CH2CH2), 28.2 (C(O)CH2CH2), 27.2 (CH2CH2CH2), 

22.2 (CH2CH2CH3), 14.0 (OCH2CH3), 13.8 (CH2CH2CH3); MS (EI, 70 eV): m/z (%) = 216 

(0.2), 198 (2), 170 (20), 159 (18), 141 (10), 123 (9), 113 (18), 95 (47), 85 (16), 67 (17), 55 

(44), 41 (57), 29 (100); HRMS (EIpos) calcd for [(C10H17NO4+H)+]: 216.1236, found 

216.1238.

(Z)-Ethyl 3-methyl-2-(nitromethylene)butanoate (121o): -Nitroacrylate 

121o was synthesized following Method A starting from ethyl 2-hydroxy-

3-methyl-2-(nitromethyl)butanoate (209o, 6.50 g, 31.67 mmol). After 

purification by flash chromatography (10% of diethyl ether in pentane) 

pure (Z)-ethyl 3-methyl-2-(nitromethylene)butanoate (121o, 1.80 g, 9.62 mmol, 30%) was 

obtained as a yellow oil.
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121o: C8H13NO4 (187.19 g/mol); 1H NMR (300 MHz, CDCl3):  6.83 (d, J = 1.3 Hz, 1H, 

CHNO2), 4.36 (q, J = 7.2 Hz, 2H, CH2CH3), 2.74 (m, 1H, CH(CH3)2), 1.34 (t, J = 7.1 Hz, 3H, 

CH2CH3), 1.20 (d, J = 6.9 Hz, 6H, CH(CH3)2); 13C NMR (75 MHz, CDCl3):  165.6 (C=O),

150.7 (CCHNO2), 134.7 (CHNO2), 62.2 (OCH2CH3), 31.4 (CH(CH3)2), 20.3 (CH(CH3)2),

13.8 (OCH2CH3); MS (EI, 70 eV): m/z (%) = 188 (0.1), 172 (3), 142 (38), 127 (9), 114 (36), 

95 (7), 84 (6), 67 (25), 53 (23), 43 (100), 29 (90); HRMS (EIpos) calcd for [(C8H13NO4+H)+]: 

188.0923, found 188.0921. The physical data were identical in all respects to those previously 

reported.246

7.6.2 General Procedures for the Synthesis of the Racemic Products

toluene, 40 °C, 24-48 h

N
H

N
H

S

49b (20 mol%)

N
H

CO2EtEtO2C

90a (1.2 equiv)

R1 CO2R2

NO2

R1 CO2R2

NO2

CF3

F3C

CF3

CF3

ethanol, 0 °C, 1 h

121a-o 119a-o
R1 CO2R2

NO2

R1 CO2R2

NO2NaBH4 (3.0 equiv) (a)

(b)

50-70%

80-99%121a-o 119a-o

Preparation of the racemic nitroesters 119 with sodium borohydride (eq. a):

To a solution of -nitroacrylate 121 (0.26 mmol, 1.0 equiv) in ethanol (0.6 mL) at 0 °C, 

sodium borohydride (30 mg, 0.78 mmol, 3.0 equiv) was added in several portions over         

15 minutes. The reaction mixture was stirred at 0 °C during one hour and quenched at 0 °C 

with a saturated solution of ammonium chloride. The two phases were separated and the 

aqueous layer extracted with diethyl ether (3 × 1 mL). The combined organic phases were 

dried over magnesium sulfate. The volatile compounds were removed in vacuo and the crude 

product was purified by flash chromatography (1-5% of diethyl ether in pentane) to afford the 

pure -nitroester 119.
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Preparation of the racemic nitroesters 119 with catalyst 49b (eq. b):

To a solution of -nitroacrylate 121 (0.26 mmol, 1.0 equiv) in toluene (0.2 mL), catalyst 49b

(26 mg, 0.05 mmol, 0.2 equiv) and Hantzsch ester 90c (79 mg, 0.31 mmol, 1.2 equiv) were 

added. The reaction mixture was stirred at 40 °C for 24-48 hours until completion of the 

reaction (TLC control). The solvent was then removed in vacuo and the residue purified by 

flash column chromatography (1-5 % of diethyl ether in pentane).

7.6.3 Asymmetric Transfer Hydrogenation of , -Disubstituted
Nitroalkenes

To a solution of -nitroacrylic ester 121 (0.30 mmol) in toluene (0.3 mL, 1.0 M), catalyst 57b

(12.6 mg, 0.03 mmol, 0.1 equiv) and Hantzsch ester 90c (93 mg, 0.30 mmol, 1.0 equiv) were 

added. The reaction mixture was stirred at 0 °C for 24-48 hours. The solvent was then 

removed in vacuo203 and the resulting mixture purified by flash column chromatography 

(119a-g,i,j,l-o: 2% of diethyl ether in pentane; 119h,k: 1-5% of diethyl ether in pentane).275

(R)-Ethyl 2-methyl-3-nitropropanoate (119a, prepared from (E)-121a):

The enantiomers were analyzed by GC using a chiral LIPODEX G column 

(60 °C, 1.2 °C/min until 120 °C, 18 °C/min until 220 °C, 6 min at 220 °C); 

major enantiomer: tR = 28.75 min, minor enantiomer: tR = 29.15 min. 119a

(46.9 mg, 0.291 mmol, 97%; 97:3 er): colorless oil, C6H11NO4 (161.16g/mol); 1H NMR

(300 MHz, CDCl3):  4.72 (dd, J = 14.0 Hz, 8.0 Hz, 1H, CH2NO2, H1),  4.40 (dd, J = 14.0 Hz, 

5.6 Hz, 1H, CH2NO2, H2), 4.20 (q, J = 7.1 Hz, 2H, OCH2CH3), 3.28-3.21 (m, 1H, 

CHCH2NO2), 1.30-1.25 (m, 3H, OCH2CH3); 13C NMR (75 MHz, CDCl3):  172.4 (C=O),

76.4 (CH2NO2), 61.5 (OCH2CH3), 37.6 (CHCH2NO2), 14.3 (CCH3), 14.0 (OCH2CH3); MS

(EI, 70 eV): m/z (%) = 162 (0.2), 116 (23), 88 (24), 73 (16), 69 (46), 59 (14), 41 (52), 29 

(100), 27 (18); HRMS (EIpos) calcd for [(C6H12NO4+H)+]: 162.0766, found 162.0765.276,277
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(S)-Isopropyl 3-nitro-2-phenylpropanoate (119b): The enantiomers 

were analyzed by GC using a chiral BGB-176 / BGB-15 column      

(100 °C, 1.2 °C/min until 170 °C, 20 °C/min until 220 °C, 10 min at  

220 °C); major enantiomer: tR = 36.11 min, minor enantiomer:              

tR = 35.24 min. 119b (69.5 mg, 0.293 mmol, 91%; 97:3 er): slightly yellow oil, C12H15NO4

(237.25 g/mol); 1H NMR (400 MHz, CDCl3):  7.38-7.32 (m, 3H, CHAr), 7.27-7.24 (m, 2H, 

CHAr), 5.07 (m, 2H: OCH(CH3)2 (1H), CH2NO2, H1 (1 H)), 4.53 (dd, J = 14.6 Hz, 5.1 Hz, 1H, 

CH2NO2, H2), 4.37 (dd, J = 10.1 Hz, 5.1 Hz, 1H, CHCH2NO2), 1.26 (d, J = 6.3 Hz, 3H, 

OCH(CH3)2), 1.12 (d, J = 6.3 Hz, 3H, OCH(CH3)2); 13C NMR (100 MHz, CDCl3):  169.9 

(C=O), 133.5 (CqArCH), 129.2 (CHAr), 128.5 (CHAr), 127.8 (CHAr), 75.8 (CH2NO2), 69.5 

(CH(CH3)2), 49.0 (CHCH2NO2), 21.6 (CH(CH3)2), 21.2 (CH(CH3)2); MS (EI, 70 eV): m/z

(%) = 237 (2), 190 (18), 178 (6), 150 (12), 131 (5), 104 (100), 91 (3), 78 (9), 63 (1), 51 (3), 43 

(60); HRMS (EI-FE) calcd for [C12H15NO4]: 237,1001, found 237.0999.

(S)-Methyl 3-nitro-2-phenylpropanoate (119c): The enantiomers were 

analyzed by GC using a chiral G-TA column (100 °C, 1.0 °C/min until  

180 °C, 15 min at 180 °C); major enantiomer: tR = 38.94 min, minor 

enantiomer: tR = 41.43 min. 119c (54.0 mg, 0.258 mmol, 86%; 94:6 er):

slightly yellow oil, C10H11NO4 (209.20 g/mol); 26
D][  = -126.2° (c = 2.8, CHCl3);278 1H NMR

(300 MHz, CDCl3):  7.40-7.34 (m, 3H, CHAr), 7.28-7.25 (m, 2H, CHAr), 5.11                    

(dd, J = 14.4 Hz, 9.9 Hz, 1H, CH2NO2, H1), 4.55 (dd, J = 14.7 Hz, 5.4 Hz, 1H, CH2NO2, H2), 

4.45 (dd, J = 9.9 Hz, 5.4 Hz, 1H, CHCH2NO2), 3.73 (s, 3H, OCH3); 13C NMR

(75 MHz, CDCl3):  171.0 (C=O), 133.2 (CqArCH), 129.4 (CHAr), 128.7 (CHAr), 127.9 

(CHAr), 75.7 (CH2NO2), 52.9 (OCH3), 48.6 (CHCH2NO2); MS (EI, 70 eV): m/z (%) = 209 (5), 

178 (3), 162 (100), 150 (6), 131 (20), 121 (25), 104 (79), 91 (14), 77 (25), 63 (5), 59 (22), 51 

(13), 39 (6); HRMS (EI-FE) calcd for [C10H11NO4]: 209.0688, found 209.0690. The physical 

data were identical in all respects to those previously reported.278

(S)-Ethyl 3-nitro-2-phenylpropanoate (119d): The enantiomers were 

analyzed by GC using a chiral BGB-176 / BGB-15 column (80 °C,     

1.2 °C/min until 180 °C, 18 °C/min until 220 °C, 10 min at 220 °C); 

major enantiomer: tR = 56.41 min, minor enantiomer: tR = 55.79 min. 

119d (63.6 mg, 0.285 mmol, 95%; 96:4 er): slightly yellow oil, C11H13NO4 (223.23 g/mol); 
1H NMR (400 MHz, CDCl3):  7.40-7.34 (m, 3H, CHAr), 7.28-7.26 (m, 2H, CHAr), 5.10    
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(dd, J = 14.6 Hz, 10.0 Hz, 1H, CH2NO2, H1), 4.55 (dd, J = 14.6 Hz, 5.2 Hz, 1H, CH2NO2,

H2), 4.42 (dd, J = 10.0 Hz, 5.2 Hz, 1H, CHCH2NO2), 4.27-4.13 (m, 2H, OCH2CH3), 1.22     

(t, J  = 7.1 Hz, 3H, OCH2CH3); 13C NMR (100 MHz, CDCl3):  170.5 (C=O), 133.4 

(CqArCH), 129.3 (CHAr), 128. (CHAr)6, 127.9 (CHAr), 75.8 (CH2NO2), 61.9 (OCH2CH3), 48.8 

(CHCH2NO2), 13.9 (OCH2CH3); MS (EI, 70 eV): m/z (%) = 223 (3), 176 (47), 150 (6), 132 

(11), 104 (100), 91 (5), 77 (11), 63 (2), 51 (5), 39 (2), 29 (31); HRMS (EI-FE) calcd for 

[C11H13NO4]: 223.0845, found 223.0847.

(S)-Tert-butyl 3-nitro-2-phenylpropanoate (119e): The enantiomers 

were analyzed by GC using a chiral BGB-176 / BGB-15 column (80 °C, 

1.2 °C/min until 155 °C, 18 °C/min until 220 °C, 10 min at 220 °C);  

major enantiomer: tR = 54.84 min, minor enantiomer: tR = 54.36 min. 

119e (69.4 mg, 0.276 mmol, 92%; 97:3 er): yellow oil, C13H17NO4 (251.28 g/mol); 1H NMR

(400 MHz, CDCl3):  7.36-7.33 (m, 3H, CHAr), 7.27-7.25 (m, 2H, CHAr), 5.04                    

(dd, J = 14.6 Hz, 10.1 Hz, 1 H, CH2NO2, H1), 4.49 (dd, J = 14.6 Hz, 5.1 Hz, 1H, CH2NO2,

H2), 4.32 (dd, J = 10.2 Hz, 5.1 Hz, 1H, CHCH2NO2), 1.41 (s, 9H, OC(CH3)3); 13C NMR (100 

MHz, CDCl3):  169.5 (C=O), 133.9 (CqArCH), 129.2 (CHAr), 128.4 (CHAr), 127.8 (CHAr),

82.5 (C(CH3)3), 76.0 (CH2NO2), 49.7 (CHCH2NO2), 27.8 (C(CH3)3); MS (EI, 70 eV):        

m/z (%) = 251 (0.3), 178 (7), 150 (8), 131 (3), 104 (49), 91 (1), 78 (5), 57 (100), 51 (2), 41 

(15), 29 (9); HRMS (EIpos) calcd for [(C13H17NO4+Na)+]: 274.1050, found 274.1049.

(S)-Benzyl 3-nitro-2-phenylpropanoate (119f): The enantiomers 

were analyzed by HPLC using a chiral Chiralcel AS-H column 

(iPrOH/Heptane = 80:20, flow rate = 0.5 mL/min, wavelength = 

254 nm); major enantiomer: tR = 20.68 min, minor enantiomer:      

tR = 25.37 min. 119f (77.9 mg, 0.273 mmol, 91%; 97:3 er): slightly yellow oil, C16H15NO4

(285.29 g/mol); 1H NMR (400 MHz, CDCl3):  7.35-7.20 (m, 10H, CHAr), 5.23-5.08 (m, 3H: 

CH2NO2 (1H), H1, OCH2Ph (2H)),  4.56 (dd, J = 14.6 Hz, 5.2 Hz, 1H, CH2NO2, H2), 4.48 

(dd, J = 9.8 Hz, 5.2 Hz, 1H, CHCH2NO2); 13C NMR (100 MHz, CDCl3):  170.4 (C=O),

135.1 (CqArCH2), 133.1 (CqArCH), 129.3 (CHAr), 128.7 (CHAr), 128.5 (CHAr), 128.4 (CHAr),

128.0 (CHAr), 127.9 (CHAr), 75.7 (CH2NO2), 67.5 (CqArCH2), 48.8 (CHCH2NO2);  MS (EI,

70 eV): m/z (%) = 285 (0.3), 193 (1), 149 (17), 131 (4), 104 (21), 91 (100), 77 (7), 65 (10), 51 

(5), 39 (4); HRMS (EIpos) calcd for [(C16H15NO4+Na)+]: 308.0893, found 308.0890.
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(S)-Ethyl 3-nitro-2-p-tolylpropanoate (119g): The enantiomers 

were analyzed by GC using a chiral BGB-176 / BGB-15 column   

(80 °C, 1.2 °C/min until 180 °C, 20 °C/min until 220 °C, 10 min at 

220 °C); major enantiomer: tR = 63.10 min, minor enantiomer:         

tR = 62.36 min. 119g (65.5 mg, 0.276 mmol, 92%; 96:4 er): slightly yellow oil, C12H15NO4

(237.25 g/mol); 1H NMR (400 MHz, CDCl3):  7.19-7.14 (m, 4H, CHAr), 5.08 (dd, J = 14.6 

Hz, 10.0 Hz, 1H, CH2NO2, H1),  4.52 (dd, J = 14.6 Hz, 5.2 Hz, 1H, CH2NO2, H2), 4.38 (dd, J

= 10.0 Hz, 5.1 Hz, 1H, CHCH2NO2), 4.26-4.11 (m, 2H, OCH2CH3), 2.34 (s, 3H, CCH3), 1.22 

(t, J  = 7.1 Hz, 3H, OCH2CH3) ; 13C NMR (100 MHz, CDCl3):  170.7 (C=O), 138.5 

(CqArCH3), 130.3 (CqArCH), 130.0 (CHAr), 127.7 (CHAr), 75.9 (CH2NO2), 61.8 (OCH2CH3), 

48.4 (CHCH2NO2), 21.1 (CqArCH3), 14.0 (OCH2CH3); MS (EI, 70 eV): m/z (%) = 237 (7), 

190 (76), 164 (7), 146 (21), 135 (1), 118 (100), 103 (4), 91 (14), 77 (4), 65 (4), 51 (2), 39 (3), 

29 (25); HRMS (EI-FE) calcd for [C12H15NO4]: 237.1001, found 237.0999. 

(S)-Ethyl 2-(4-methoxyphenyl)-3-nitropropanoate (119h): The 

enantiomers were analyzed by GC using a chiral BGB-176 / BGB-

15 column (80 °C, 1.2 °C/min until 180 °C, 18 °C/min until 220 °C, 

10 min at 220 °C); major enantiomer: tR = 76.43 min, minor 

enantiomer: tR = 75.88 min. 119h (66.1 mg, 0.261 mmol, 87%; 95:5 er): slightly yellow oil, 

C12H15NO5 (253.25 g/mol); 1H NMR (300 MHz, CDCl3):  7.20-7.16 (m, 2H, CHAr), 6.91-

6.87 (m, 2H, CHAr), 5.06 (dd, J = 14.6 Hz, 10.0 Hz, 1H, CH2NO2, H1),  4.51 (dd, J = 14.6 Hz, 

5.3 Hz, 1H, CH2NO2, H2), 4.36 (dd, J = 9.9 Hz, 5.3 Hz, 1H, CHCH2NO2), 4.26-4.11 (m, 2H, 

OCH2CH3), 3.79 (s, 3H, OCH3), 1.22 (t, J  = 7.1 Hz, 3H, OCH2CH3); 13C NMR (100 MHz, 

CDCl3):  170.8 (C=O), 159.7 (CqArOCH3), 129.0 (CHAr), 125.2 (CqArCH), 114.7 (CHAr),

75.9 (CH2NO2), 61.8 (OCH2CH3), 55.3 (OCH3), 48.0 (CHCH2NO2), 13.9 (OCH2CH3); MS

(EI, 70 eV): m/z (%) = 253 (15), 206 (79), 180 (5), 162 (10), 134 (100), 119 (16), 105 (3), 91 

(15), 77 (6), 65 (8), 51 (2), 39 (2), 29 (20); HRMS (EI-FE) calcd for [C12H15NO5]: 253.0950, 

found 253.0948.

(S)-Ethyl 2-(4-fluorophenyl)-3-nitropropanoate (119i): The 

enantiomers were analyzed by GC using a Hydrodex-TBDAc       

(100 °C, 1 °C/min until 180 °C, 20 °C/min until 220 °C, 10 min at 

220 °C); major enantiomer: tR = 59.60 min, minor enantiomer: tR = 59.19 min. 119i (70.2 mg, 

0.291 mmol, 97%; 94:6 er): slightly yellow oil, C11H12FNO4 (241.22 g/mol); 1H NMR (300 
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MHz, CDCl3):  7.28-7.24 (m, 2H, CHAr), 7.09-7.03 (m, 2H, CHAr), 5.07 (dd, J = 14.4 Hz, 

9.6 Hz, 1H, CH2NO2, H1),  4.54 (dd, J = 14.6 Hz, 5.5 Hz, 1H, CH2NO2, H2), 4.40 (dd, J = 9.6 

Hz, 5.5 Hz, 1H, CHCH2NO2), 4.27-4.12 (m, 2H, OCH2CH3), 1.22 (t, J  = 7.1 Hz, 3H, 

OCH2CH3) ; 13C NMR (75 MHz, CDCl3):  170.3 (C=O), 162.8 (d, J = 246.5 Hz, CqArF), 

129.6 (d, J = 8.4 Hz, CHAr), 129.2 (d, J = 3.5 Hz, CqArCH), 116.4 (d, J = 21.8 Hz, CHAr), 75.8 

(CH2NO2), 62.0 (OCH2CH3), 48.0 (CHCH2NO2), 13.9 (OCH2CH3); MS (EI, 70 eV): m/z (%) 

= 241 (3), 194 (48), 168 (6), 150 (14), 122 (100), 101 (10), 75 (4), 51 (2), 29 (35); HRMS

(EIpos) calcd for [(C11H12FNO4+Na)+]: 264.0643, found 264.0645.

(S)-Ethyl 2-(4-chlorophenyl)-3-nitropropanoate  (119j): The 

enantiomers were analyzed by GC using a chiral BGB-176 / BGB-

15 column (80 °C, 1.2 °C/min until 170 °C, 18 °C/min until 220 °C, 

10 min at 220 °C); major enantiomer: tR = 71.54 min, minor 

enantiomer: tR = 71.34 min. 119j (74.2 mg, 0.288 mmol, 96%; 94:6 er): slightly yellow oil, 

C11H12ClNO4 (257.67 g/mol); 1H NMR (300 MHz, CDCl3):  7.37-7.33 (m, 2H, CHAr), 7.24-

7.19 (m, 2H, CHAr), 5.07 (dd, J = 14.5 Hz, 9.5 Hz, 1H, CH2NO2, H1),  4.54 (dd, J = 14.5 Hz, 

5.5 Hz, 1H, CH2NO2, H2), 4.40 (dd, J = 9.1 Hz, 5.5 Hz, 1H, CHCH2NO2), 4.24-4.13 (m, 2H, 

OCH2CH3), 1.23 (t, J = 7.1 Hz, 3H, OCH2CH3) ; 13C NMR (75 MHz, CDCl3):  170.1 

(C=O), 134.8  (CqArCH), 131.9 (CHAr), 129.5 (CHAr), 129.2 (CHAr), 75.6 (CH2NO2), 62.1 

(OCH2CH3), 48.2 (CHCH2NO2), 13.9 (OCH2CH3); MS (EI, 70 eV): m/z (%) = 257 (5), 210 

(59), 184 (7), 166 (19), 155 (1), 138 (100), 125 (4), 103 (36), 89 (3), 77 (18), 63 (3), 51 (6), 

29 (40); HRMS (EI-FE) calcd for [C11H12ClNO4]: 257.0455, found 257.0457.

(S)-Tert-butyl 2-(4-methoxyphenyl)-3-nitropropanoate

(119k): The enantiomers were analyzed by GC using a chiral 

BGB-176 / BGB-15 column (80 °C, 1.2 °C/min until 220 °C, 

10 min at 220 °C); major enantiomer: tR = 77.46 min, minor 

enantiomer: tR = 76.74 min. 119k (51.5 mg, 0.183 mmol, 61%; 96:4 er): slightly yellow oil, 

C14H19NO5 (281.30 g/mol); 1H NMR (400 MHz, CDCl3):  7.18 (dd, J = 6.6 Hz, 2.1 Hz, 2H, 

CHAr), 6.88 (dd, J = 6.7 Hz, 2.2 Hz, 2H, CHAr), 4.99 (dd, J = 14.5 Hz, 10.1 Hz, 1H, CH2NO2,

H1),  4.46 (dd, J = 14.5 Hz, 5.3 Hz, 1H, CH2NO2, H2), 4.26 (dd, J = 10.1 Hz, 5.2 Hz, 1H, 

CHCH2NO2), 3.80 (s, 3H, OCH3), 1.41 (s, 9H, OC(CH3)3); 13C NMR (100 MHz, CDCl3):

169.8 (C=O), 159.6 (CqArOCH3), 128.9 (CHAr), 125.8 (CqArCH), 114.6 (CHAr), 82.4 

(C(CH3)3), 76.1 (CH2NO2), 55.3 (OCH3), 48.9 (CHCH2NO2), 27.8 (C(CH3)3); MS (EI, 70 

eV): m/z (%) = 281 (8), 234 (5), 208 (2), 180 (12), 134 (77), 119 (10), 103 (2), 91 (12), 77 (3), 
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65 (6), 57 (100), 51 (2), 41 (18); HRMS (EIpos) calcd for [(C14H19NO5+ Na)+]: 304.1155, 

found 304.1155.  

(S)-Tert-butyl 2-(4-fluorophenyl)-3-nitropropanoate (119l): The 

enantiomers were analyzed by GC using a chiral BGB-176 / BGB-15 

column (80 °C, 1.2 °C/min until 170 °C, 18 °C/min until 220 °C,       

5 min at 220 °C); major enantiomer: tR = 54.21 min, minor 

enantiomer: tR = 53.83 min. 119l (68.7 mg, 0.255 mmol, 85%; 97:3 er): slightly yellow oil, 

C13H16FNO4 (269.27 g/mol); 1H NMR (400 MHz, CDCl3):  7.25-7.23 (m, 2H, CHAr), 7.08-

7.03 (m, 2H, CHAr), 5.03-4.97 (dd, J = 14.5 Hz, 9.8 Hz, 1H, CH2NO2, H1),  4.49                

(dd, J = 14.5 Hz, 5.4 Hz, 1H, CH2NO2, H2), 4.31 (dd, J = 9.8 Hz, 5.5 Hz, 1H, CHCH2NO2),

1.41 (s, 9H, OC(CH3)3); 13C NMR (100 MHz, CDCl3):  169.4 (C=O), 163.7                       

(d, J = 246.4 Hz, CqArF), 129.8 (d, J = 9.0 Hz, CqArCH), 129.5 (d, J = 8.0 Hz, CHAr), 116.4 

(d, J = 22.0 Hz, CHAr), 82.7 (C(CH3)3), 75.9 (CH2NO2), 48.9 (CHCH2NO2), 27.9 (d, J = 12.3 

Hz, C(CH3)3), 27.8; MS (EI, 70 eV): m/z (%) = 269 (1), 196 (6), 168 (10), 122 (40), 101 (4), 

75 (2), 57 (100), 41 (21); HRMS (EIpos) calcd for [(C13H16FNO4+Na)+]: 292.0956, found 

292.0956.

 (S)-Ethyl 3-nitro-2-(thiophen-2-yl)propanoate (119m): The 

enantiomers were analyzed by GC using a chiral IVADEX 1 / PS086 

column (80 °C, 1.2 °C/min until 800 °C, 18 °C/min until 220 °C, 10 min 

at 220 °C); major enantiomer: tR = 63.12 min, minor enantiomer:           

tR = 63.83 min. 116m (67.4 mg, 0.294 mmol, 83%; 96:4 er): yellow oil, C9H11NO4S (229.25 

g/mol); 1H NMR (400 MHz, CDCl3):  7.30-7.28 (t, J = 3.2 Hz, 1H, CHAr), 7.01-6.98 (m, 

2H, CHAr), 5.10 (dd, J = 14.3 Hz, 9.5 Hz, 1H, CH2NO2, H1),  4.70 (dd, J = 9.6 Hz, 5.1 Hz, 

1H, CHCH2NO2), 4.63 (dd, J = 14.3 Hz, 5.1 Hz, 1H, CH2NO2, H2), 4.31-4.16 (m, 2H, 

OCH2CH3), 1.31-1.22 (m, 3H, OCH2CH3); 13C NMR (100 MHz, CDCl3):  169.6 (C=O),

134.4 (CqArCH), 127.3 (CHAr), 126.8 (CHAr), 126.1 (CHAr), 75.7 (CH2NO2), 62.3 

(OCH2CH3), 43.8 (CHCH2NO2), 13.9 (OCH2CH3); MS (EI, 70 eV): m/z (%) = 229 (1), 182 

(72), 156 (7), 138 (25), 110 (100), 97 (5), 84 (6), 77 (5), 66 (10), 58 (4), 45 (9), 29 (29); 

HRMS (EIpos) calcd for [C9H11NO4S]: 229.0409, found 229.0411.
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(R)-Ethyl 2-(nitromethyl)heptanoate (119n): The enantiomers 

were analyzed by GC using a chiral G-TA column (100 °C,        

1.2 °C/min until 180 °C, 10 min at 180 °C); major enantiomer:     

tR = 27.30 min, minor enantiomer: tR = 26.58 min. 119n (59.3 mg, 

0.273 mmol, 91%; 97:3 er): colorless oil, C10H19NO4 (217.26 g/mol); 1H NMR (400 MHz, 

CDCl3):  4.73 (dd, J = 14.2 Hz, 9.2 Hz, 1H, CH2NO2, H1),  4.41 (dd, J = 14.2 Hz, 4.8 Hz, 

1H, CH2NO2, H2), 4.20 (q, J = 7.1 Hz, 2H, OCH2CH3), 3.20-3.16 (m, 1H, CHCH2NO2), 1.70-

1.65 (m, 1H, CHCH2CH2), 1.58-1.55 (m, 1H, CHCH2CH2), 1.35-1.26 (m, 9H: CH2CH2CH2

(4H), CH2CH2CH3 (2H), J = 7.1 Hz,  OCH2CH3 (3H)), 0.90-0.87 (m, 3H, CH2CH2CH3); 13C

NMR (100 MHz, CDCl3):  172.3 (C=O), 75.2 (CH2NO2), 61.3 (OCH2CH3), 43.0 

(CHCH2NO2), 31.4 (CH2CH2CH2), 29.2 (C(O)CH2CH2), 26.2 (CH2CH2CH2), 22.3 

(CH2CH2CH3), 14.1 (OCH2CH3), 13.9 (CH2CH2CH3); MS (EI, 70 eV): m/z (%) = 216 (0.1), 

198 (2), 189 (1), 170 (19), 159 (16), 141 (11), 123 (9), 113 (18), 95 (45), 85 (16), 67 (17), 55 

(44), 41 (57), 29 (100); HRMS (EIpos) calcd for [C10H20NO4+H)+]: 218.1392, found 

218.1394.

(S)-Ethyl 3-methyl-2-(nitromethyl)butanoate (119o): The enantiomers 

were analyzed by GC using a chiral G-TA column (80 °C, 1.0 °C/min until 

180 °C, 10 min at 180 °C); major enantiomer: tR = 32.46 min, minor 

enantiomer: tR = 33.57 min. 119o (52.2 mg, 0.276 mmol, 92%; 97:3 er):

colorless oil, C8H15NO4 (189.21 g/mol); 1H NMR (300 MHz, CDCl3):  4.79 (dd, J = 14.5 

Hz, 10.4 Hz, 1H, CH2NO2, H1),  4.40 (dd, J = 15.1 Hz, 4.0 Hz, 1H, CH2NO2, H2), 4.21 (q, J = 

7.1 Hz, 2H, OCH2CH3), 3.12-3.05 (m, 1H, CHCH2NO2), 2.10-2.04 (m, 1H, CH(CH3)2), 1.28 

(t, J = 7.1 Hz, 3H, OCH2CH3), 1.00 (d, J = 4.1 Hz, 3H, CH(CH3)2), 0.98 (d, J = 4.1 Hz, 3H, 

CH(CH3)2); 13C NMR (75 MHz, CDCl3):  171.7 (C=O), 73.7 (CH2NO2), 61.2 (OCH2CH3),

49.0 (CHCH2NO2), 28.8 (CH(CH3)2), 19.8 (CH(CH3)2), 19.7 (CH(CH3)2), 14.1 (OCH2CH3);

MS (EI, 70 eV): m/z (%) = 189 (3), 144 (34), 113 (14), 101 (100), 97 (87), 88 (10), 73 (83), 

69 (69), 59 (18), 55 (81), 41 (65), 29 (69); HRMS (EI-FE) calcd for [C8H15NO4]: 189.1001, 

found 189.1003.
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7.6.4 Preparation of ²-Amino Acids via Hydrogenation of -Nitroesters

7.6.4.1 Preparation of ²-Amino Acid 122f via Hydrogenation 

A Schlenck tube was charged with palladium on charcoal (7.5 mg, 50% wet, 0.004 mmol) and 

evacuated for ten minutes. A solution of benzyl 3-amino-2-phenylpropanoate (121f, 10 mg, 

0.04 mmol) in methanol (1 mL) was added and the reaction mixture was stirred vigorously for 

six hours. The mixture was filtered through a Celite pad. Methanol was removed under 

reduced pressure to afford a colorless solid that was redissolved in water (2 mL). The aqueous 

phase was extracted with ether (1 × 1 mL) and concentrated in vacuo to give (S)-3-amino-2-

phenylpropanoic acid (122f, 4.6 mg, 0.03 mmol, 81%; 97:3 er) as a colorless solid.

122f: C9H11NO2 (165.19 g/mol); 20
D][ = -81, (c 0.20, H2O) ; 1H NMR (500 MHz, CDCl3):

7.33-7.21 (m, 5H, CHAr), 3.67 (t, J = 7.3 Hz, 1H, CHPh), 3.35 (dd, J = 7.3 and 4.6 Hz, 1H, 

CH2NH2), 3.17 (dd, J = 7.3 and 5.3 Hz, 1H, CH2NH2); 13C NMR (125 MHz, CDCl3):  178.2 

(C=O), 137.2 (CqArCH), 129.2 (CHAr), 128.1 (CHAr), 127.9 (CHAr), 51.3 (CHCH2NH2), 42.3 

(CH2NH2); MS (EI, 70 eV): m/z (%) = 165 (1), 136 (5), 118 (11), 104 (4), 91 (10), 77 (5), 63 

(3), 51 (3), 30 (100); HRMS (EI-FE) calcd for [C9H11NO2]: 165.0790, found 165.0791. The 

enantiomers were analyzed by HPLC using a Chirobiotic T2 column (eluent: 50% of 

methanol in isopropyl, 0.1 mL/min); major enantiomer: tR = 15.90 min, minor enantiomer: tR

= 23.30 min. 
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7.6.4.1 Preparation of ²-Amino Acids via a hydrogenation hydrolysis sequence 

Preparation of (S)-3-Amino-2-phenylpropanoic acid (122d) 

Nickel chloride-hexahydrate (121 mg, 0.51 mmol) was added at -15 oC to a solution of -

nitroester 119d (90 mg, 0.47 mmol) in ethanol (3 mL). After adding sodium borohydride (86 

mg, 2.33 mmol) in one portion, a clear green solution was obtained. The reaction mixture was 

then stirred at 0 oC in an ice-water bath for 15 minutes, followed by the addition of 

hydrochloric acid (2 N) until the pH of the solution reached a value of 3. A solution of sodium 

bicarbonate was added until a pH of 9 was obtained. The mixture was concentrated under 

reduced pressure. Water (10 mL) and ethyl acetate (5 mL) were added to the residue. The 

biphasic mixture was then filtered to remove precipitates and the aqueous phase extracted 

with ethyl acetate (2 × 5 mL). The combined organic phases were dried over sodium sulfate

and concentrated in vacuo. The residue was purified by flash column chromatography (75% 

of ethyl acetate in ethanol) to give (S)-ethyl 3-amino-2-phenylpropanoate (225, 69 mg, 0.36 

mmol, 90%).

225: C11H15NO2 (193.24 g/mol); 1H NMR (300 MHz, CDCl3):  7.34-7.26 (m, 5H, CHAr),

4.19-4.10 (m, 2H, CH2CH3), 3.75 (t, J = 7.2 Hz, 1H, CHPh), 3.34 (dd, J = 4.4 Hz, 8.4 Hz, 

CH2NH2), 3.10 (s, 2H, NH2), 3.05 (dd, J = 4.4 Hz, 8.4 Hz, 1H, CH2NH2), 1.20 (t, J = 7.2 Hz, 

3H, CH3); 13C NMR (75 MHz, CDCl3):  172.8 (C=O), 136.7 (CqArCH), 128.8 (CHAr), 128.0 

(CHAr), 127.6 (CHAr), 61.0 (OCH2CH3), 54.2 (CHCH2NH2), 44.8 (CH2NH2), 14.0 

(OCH2CH3); MS (EI, 70 eV): m/z (%) =  193 (31), 103 (11), 118 (55), 136 (39), 148 (3), 164 

(100), 176 (2), 193 (1); HRMS (EI-FE) calcd for [C11H15NO2]: 193.1103, found 193.1104.

(S)-Ethyl 3-amino-2-phenylpropanoate (225, 40 mg, 0.21 mmol) was dissolved in THF/water 

(4:1, v/v, 2 mL) and lithium hydroxide (15 mg, 0.62 mmol) was added to this solution. The 

reaction mixture was then stirred at room temperature for six hours and concentrated in vacuo.
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The residue was diluted with water and extracted with diethyl ether    (2 × 2 mL). The 

aqueous phase was concentrated to 1 mL and added to Dowex 50W 8X (H+ form) with 

ammonia (1%) as the eluent to afford free amino acid 122d (25 mg, 0.15 mmol, 73%).  122d:

C9H11NO2 (165.19 g/mol); 20
D][ = -76, (c 0.62, H2O); 1H NMR and 13C NMR see 122f.

Preparation of (R)-3-amino-2-methylpropanoic acid ((R)-122a)

A schlenk tube was charged with palladium on charcoal (74 mg, 10 %, 50% wet, 0.036 mmol, 

vaccum dried for one hour before being used) and a solution of -nitroester 121a (80 mg, 

0.359 mmol) in methanol (2 mL) was added at room temperature under an atmosphere of 

hydrogen gas. The reaction mixture was vigorously stirred at room temperature for twelve 

hours. The suspension was then filtered through a Celite pad and concentrated under reduced 

pressure to give a colorless oil, which was dissolved in hydrochloric acid (3N, 2 mL, 6 

mmol). The solution was stirred for twelve hours and concentrated to dryness. The residue 

was filtered through a DOWEX 1X40-50 pad (basic form, 3 cm) with ammonia (1%, 60 mL) 

as eluent. The collected aqueous phase was concentrated to give (R)-3-amino-2-

methylpropanoic acid (122a, 19 mg, 0.18 mmol, 42%) as a colorless oil that solidified slowly.

122a: C4H9NO2 (103.12 g/mol); 20
D][ = +3.3 (c 0.79, H2O);277 1H NMR (500 MHz, D2O):

3.02-2.90 (m, 2H, CH2N), 2.53-2.46 (m, 1H, CHCH3), 1.09 (d, J = 7.3 Hz, 3H, CH3); 13C

NMR (125 MHz, D2O):  181.7 (C=O), 42.3 (CHCH2NO2), 39.2 (CH2NO2), 15.1 (CHCH3);

MS (EI, 70 eV): m/z (%) = 103 (2), 84 (1), 56 (3), 30 (100); HRMS (EI-FE) calcd for 

[C4H9NO2]: 103.0633, found 103.0631. The enantiomers were analyzed by HPLC using a 

Chirobiotic T2 column (eluent: 20% of water in acetonitrile, 0.3 mL/min); major enantiomer: 

tR = 16.40 min, minor enantiomer: tR = 27.80 min. 
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