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G e n e r a l  I n t r o d u c t i o n  G e n e r a l  I n t r o d u c t i o n  G e n e r a l  I n t r o d u c t i o n  G e n e r a l  I n t r o d u c t i o n  

Microbial biocoenoses play an important role in the matter flux of aquatic 

ecosystems (Finlay & Esteban 1998). The major part of the microbial activity is 

concentrated on surfaces, particularly in shallow and running waters, 

(Bryers 1982, Fischer & Pusch 2001), where the microbes are assembled in so-

called biofilms (Wetzel 2000). Recent investigations have emphasised the 

functional role of ciliate communities in importing resources from the plankton 

into the benthos (cf. Weitere & Arndt 2003). Their productivity is suggested to 

equal or even exceed invertebrate production (Finlay & Esteban 1998). 

Biofilm-dwelling ciliate communities are composed of a variety of taxa which 

strongly differ in their ecological function. Many ciliates are suspension feeders, 

meaning that they can acquire their resources from the water flow. Other 

ciliates can collect food items (e.g. bacteria, microalgae, and heterotrophic 

flagellates) from the biofilms or can prey on larger organisms such as ciliates or 

micrometazoans. Besides the total organism density, the function of 

biofilm-dwelling ciliate communities is thus coupled to the species composition. 

The species composition itself is controlled by several factors that often 

interact. For this reason, the designation of community responses towards 

changes in particular environmental variables is often complicated. 

Whereas planktonic ciliate community dynamics have been well studied over 

the last few decades, little is known about the control of biofilm-dwelling ciliate 

communities. Reason for this are the difficulty in accessing biofilms and the fact 

that many techniques known from plankton research (e.g. size fractioning, 

dilution experiments) cannot easily be adopted for microbial biofilms. 

One remedy was detected in bacterial biofilm research by the invention of 

miniature flow cells in which bacterial biofilms can be cultivated under 

controlled laboratory conditions (e.g. Stoodley et al. 1999). The flow cell 

principle then was adopted for field-related experiments aboard the Ecological 

Rhine Station (University of Cologne) - a former boat tender which offers the 

opportunity to conduct ecological experiments with naturally grown biofilm 

communities (Eßer 2006). The biofilms are cultivated in flow cells used as 



General Introduction 

10

bypass systems with a permanent flow of untreated river water. Thereby, the 

river water serves as both the species pool for the settlement of the organisms 

from the water flow (cf. Scherwass & Arndt 2005) as well as the resource 

reservoir for the nutrition and thus the maintenance of the biofilm communities.  

Though functioning, the time-span of these experiments was often restricted to 

a couple of days due to the sedimentation of fine-grained particulate matter 

from the water flow and thus the disruption of the biofilm-dwelling microbial 

communities. The first aim of the present thesis thus was to refine the available 

flow cell systems in order to prolong the usefulness of the flow cells. A detailed 

description of the flow cells is given later in the thesis (Chapter 1). After testing, 

the flow cell systems were implemented in different experiments with different 

manipulations to test the impacts of mimicked environmental changes on the 

development and on the structure of biofilm-dwelling ciliate communities. 

One of the most striking environmental changes is linked to recent global 

climate change and associated temperature increase (IPCC 2007) that is 

expected to constitute one of the major challenges for ecological communities. 

Although laboratory studies have shown that ciliates can respond to small 

changes in temperature (cf. Laybourn & Finlay 1976, Weisse et al. 2001, Jiang 

& Morin 2004), the possible responses of natural communities towards 

temperature increases remain largely unknown. Thus, the first part of this thesis 

investigated the impacts of enhanced temperatures on the development of 

complex, biofilm-dwelling ciliate communities. These experiments were part of 

a priority programme of the German Research Foundation (DFG) named 

AQUASHIFT, which investigates the impacts of temperature increase on 

ecological communities as a consequence of anthropogenic induced warming. 

Chapter 1Chapter 1Chapter 1Chapter 1 concentrates on the impact of enhanced temperatures on the early 

development of ciliate communities which had been cultivated in flow cells 

starting from sterile surfaces. This work included investigations of possible 

seasonal dependencies of temperature responses, acknowledging that the 

environmental setting could influence the magnitude of responses towards 

warming. Whereas this work concentrated on the numerical development of 
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ciliate communities, the taxonomic responses of ciliate communities towards in 

particular summer- and winter warming are discussed in detail in Chapter 2Chapter 2Chapter 2Chapter 2. It 

was also tested in how far short-term community responses to temperature 

increases during winter could be forwarded to later stages in the development 

of biofilm-dwelling ciliate communities. In order to test the mechanisms of 

temperature responses, one additional summer experiment with cross-

manipulations of temperature and resource supplements was performed. 

Another important factor when addressing community responses towards 

environmental changes is the availability of resources. Since field studies have 

shown that ciliate communities can respond to increased resource levels, the 

results of these studies are partially controversial. Whereas e.g. Domenech et 

al. (2006) reported strong responses of ciliate communities towards resource 

enrichments, Wilcox et al. (2005) found no effects of similar resource 

enhancements on ciliates. These opposing results could be explained by 

different aspects: First, most studies concentrate on a few surveys within a 

relatively broad time-span, which increases the risk of short-term responses 

towards resource enrichments being missed. Secondly, resource enrichments 

in the field are mainly performed by stimulation of producers with nutrients (e.g. 

glucose, fertilizer) with indirect effects on the consumer community. Little is as 

yet known on how complex field communities could respond to direct resource 

enhancements (e.g. by the addition of bacteria). 

Chapter 3Chapter 3Chapter 3Chapter 3 presents the results from experiments with benthic and planktonic 

resource manipulations using flow cells. In four experiments covering different 

seasons, a solution containing an additional carbon source was added to the 

water flow in the flow cells in order to enhance the growth of benthic bacteria; 

a suspension of planktonic bacteria was also added. Therefore it was possible 

to compare in how far the development of biofilm-dwelling ciliate communities 

can be influenced by enhanced resource densities from different origins. 

Acknowledging that the effects of resource enhancements could differ between 

early and late (mature) ciliate communities, it was further tested in how far late, 
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pre-cultivated biofilm-dwelling ciliate communities could respond to an 

enhanced density of planktonic bacteria. These results are presented in 

Chapter 4Chapter 4Chapter 4Chapter 4. Therefore, a novel type of flow cells was designed to facilitate 

manipulation and non-destructive observation of pre-cultured biofilm-dwelling 

ciliate communities to test the responses of mature ciliate communities towards 

the resource enhancement. 
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Chapter 1. Chapter 1. Chapter 1. Chapter 1. 

Impact of local temperature increase on Impact of local temperature increase on Impact of local temperature increase on Impact of local temperature increase on 

the early development of ciliate communities. the early development of ciliate communities. the early development of ciliate communities. the early development of ciliate communities. 

A b s t r a c t  A b s t r a c t  A b s t r a c t  A b s t r a c t  

Indications of global climate change and associated unusual temperature 

fluctuations have become increasingly obvious over the past few decades. 

Consequently, the relevance of temperature increases on ecological 

communities and on whole ecosystems is one of the major challenges of 

current ecological research. One approach to investigating the effects of 

increasing temperatures on communities is the use of fast-growing microbial 

communities. Here we introduce a river bypass system in which we tested the 

effect of temperature increases (0, 2, 4, 6°C above the long-term average) on 

both the colonization speed and the carrying capacity of biofilm-associated 

ciliate communities under different seasonal scenarios. We further investigated 

interactions of temperature and resource availability by cross manipulations in 

order to test the hypothesis that temperature-meditated effects will be strongest 

in environments which are not resource-limited. Strong seasonal differences in 

both tested parameters occurred under natural conditions (no resource 

addition), while the effects of temperature increase at a given time were 

relatively low. However, increasing temperature can significantly accelerate the 

colonization speed and reduce the carrying capacity in particular seasons. 

These effects were strongest in winter. Simultaneous manipulation of 

temperature and of resource availability amplified the response to temperature 

increase, adumbrating strong interactive control of populations by temperature 

and resource availability. Our results show that the response of communities to 
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local temperature increases strongly depends on the seasonal setting, the 

resource availability and the stage of succession (early colonization speed vs. 

carrying capacity). 
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I n t r o d u c t i o n  I n t r o d u c t i o n  I n t r o d u c t i o n  I n t r o d u c t i o n  

Over the past few decades, global surface and surface water temperature have 

been increasing as a consequence of anthropogenic green-house gas 

emissions (IPCC 2001). The impact of this climate change is a source of lively 

discussion in a number of scientific disciplines. Ecologists were researching 

approaches for measuring and predicting environmental responses to changing 

climate regimes long before the current scientific interest in “global warming” 

was sparked (Andrewartha and Birch 1954; Wieser 1973). Today it is widely 

accepted that current global climate change broadly affects ecosystems 

(Walther et al. 2002). However, these effects can differ strongly and can 

cumulate in reorganization of whole ecosystems (Brown et al. 1997; McGowan 

et al. 1998; Sala et al. 2000). It remains a challenge to identify the factors that 

determine the intensity of ecosystem modifications due to climatic changes.  

Next to body size, temperature is the strongest factor influencing an individual’s 

metabolic rate (Gillooly et al. 2001; Savage et al. 2004). As the most 

fundamental physiological parameter, the metabolic rate influences numerous 

biological processes such as growth and feeding rates and thus also influences 

the interaction strength between organisms (Sanford 1999; Vasseur and 

McCann 2005). Within the optimal temperature range, increasing temperature 

stimulates population growth rates, which are then constrained by the 

availability of resources (Montagnes and Weisse 2000; Weisse et al. 2002). 

Furthermore, the ingestion rate can be increased by rising temperature, but 

again can be limited according to the availability of food items (Boenigk et al. 

2002). If both the growth and ingestion rates were limited by resource 

availability rather than by temperature, increasing temperature would not 

significantly alter growth and feeding-related interactions. Consequently, 

resource availability could be one important factor limiting the intensity of 

community reactions to increasing temperature (Pomeroy and Wiebe 2001; 

Staehr and Sand-Jensen 2006). 

Considering the future importance of local temperature increases, surprisingly 

little is known about the effect of temperature on the carrying capacity of 



Chapter 1. 

18

populations and communities (Savage et al. 2004). The population model by 

Savage et al. (2004) predicts that with constant resource supply the carrying 

capacity will decrease with increasing temperature in order to balance the effect 

of increasing metabolic costs. However, this prediction is not completely 

supported by the findings of Vasseur and McCann (2005), who argue that a 

temperature-mediated decrease in the carrying capacity most probably results 

from a decrease in the resource availability itself due to temperature increase. 

Nevertheless, a possible negative effect of temperature increase on late stages 

of succession might contrast a positive effect of temperature increase on early 

stages of succession. 

Dispersal is another important factor currently in the focus of research on 

alterations in local community structure (e.g. in the metacommunity concept as 

reviewed by Leibold et al. 2004; Holyoak et al. 2005) which might be influenced 

by changing temperature conditions, as well (Clark et al 2003; Holzapfel and 

Vinebrooke 2005; Pearson 2006). Hence, one needs to consider not only 

growth and feeding rates but also temperature-related dispersal patterns when 

addressing community responses to warming. The complexity of possible 

interactions, however, makes it virtually impossible to predict consequences of 

recent climate change in natural communities. From the results of laboratory 

experiments, Jiang and Morin (2004) pointed out that responses of competing 

species to temperature were not predictable from observations of single 

species’ responses to temperature increase. Even more, nonlinear responses 

to small fluctuations in the environment already occur in simple communities 

(Becks et al. 2005). Such difficulties in predicting community responses point 

out the imperative for applying different approaches in assessing community 

responses to recent climate change. One useful tool is the experimental 

hypothesis testing in fast-growing model communities of unicellular organisms 

(e.g. Fox and Morin 2001; Jiang and Morin 2004; Jiang and Kulczycki 2004). 

Here we present an open flow cell system used as a bypass to a natural water 

body that allows investigation of biofilms over long-term periods. This system is 

suitable for the establishment of semi-natural biofilm communities and permits 
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experimental manipulation of many factors (e.g. temperature, nutrient load). 

Unlike batch assays, flow cells always allow dispersal of organisms, which is 

particularly important in unidirectional flowing river systems. In this type of 

system, the physical limitations of settlement or active choice of habitat in 

response to local environmental conditions can strongly influence the 

community composition. Our investigations focussed on fast-growing biofilm-

associated ciliate communities that can rapidly colonize different boundary 

layers (Franco et al. 1998; Arndt et al. 2003), here the substratum-water 

interface of a river. Laboratory experiments have demonstrated strong grazing 

effects of biofilm-associated ciliates on planktonic organisms (Weitere et al. 

2003) and thus place biofilms in a key position in linking planktonic and benthic 

food webs. The flow cells were fed from the River Rhine, where ciliates are 

resource-limited over most of the year (Scherwass and Arndt 2005). As a 

primary hypothesis, it was tested whether or not community responses to 

warming are limited in natural scenarios and if the addition of organic resources 

could lead to stronger temperature-related changes in community abundances. 

Furthermore, it was hypothesized, that early and late stages of succession are 

differentially sensitive against temperature increase. In four experiments over a 

complete annual cycle, the flow cells were exposed to an averaged field 

temperature as determined from the particular season’s ambient temperatures 

(in the following: T0) and to temperature elevations of 2, 4 and 6°C above T0. In 

two additional experiments with cross-manipulation of temperature (T0, T0+6°C) 

and an additional organic carbon source (yeast extract), the interactive effect of 

resource availability and temperature increase was tested. 

M a t e r i a l  a n d  M e t h o d s  M a t e r i a l  a n d  M e t h o d s  M a t e r i a l  a n d  M e t h o d s  M a t e r i a l  a n d  M e t h o d s  

Study site and facilities 

All experiments were performed aboard the Ecological Rhine Station, Cologne 

(Rhine km 684.5). The station is a former boat tender featuring several 

laboratories equipped with pump systems to allow a permanent supply of fresh 
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inflow
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outflow

Fig. 1.Fig. 1.Fig. 1.Fig. 1. Miniature flow cell system used for cultivation and in situ monitoring of semi-
natural biofilms with permanent flow through of fresh river water. a: Miniature flow 
cell. b: Combined sediment (x) and bubble trap (xx). 

river water for experiments. As a tool for non-destructive observation of 

developing biofilms, miniature flow cells (Fig. 1a) were adapted from laboratory 

systems, where they are frequently used for experiments with bacterial biofilms 

(e.g. Stoodley and Warwood 2003). All flow cells were sealed with sterile 

microscopic slides at the bottom and cover slips at the top to guarantee optical 

quality with particular regards to video microscopy. The resulting internal space 

of the flow cells had a total surface area of 7.2 cm2 and a total volume of 3.8 ml. 

Although this method also allows taxonomical classification of ciliate 

communities, this paper will exclusively focus on abundance estimates.  

In the cultivation of biofilms using flow cells with river bypasses, some 

phenomena may affect long-term observation of protozoan communities. The 

development of destructive air bubbles, also known from laboratory 

experiments, can generally be eliminated by inserting a bubble trap (Fig. 1b) in 

front of the flow cell inflows. Another restricting factor appearing exclusively in 

experiments with river bypasses arises from the omnipresence of particle load, 

which can never be completely excluded from the water flow. Therefore, the 

bubble traps were broadened in function by installing the water inflow (from 

impeller pumps) in the lower part and the outflow (to miniature flow cells) in the 

upper part of the bubble traps, thereby creating a sedimentation zone for fine-

grained particulate matter. 
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Table 1. Table 1. Table 1. Table 1. Basic conditions during experiments. The ambient temperatures (T0) for 
each experiment represent the semi-monthly average temperatures in the Rhine 
since 1989. The values for temperature manipulations refer to the corresponding T0

for each experiment. The concentrations of dissolved organic carbon (DOC) and 
chlorophyll a (Chl) as well as the abundances of the planktonic bacteria represent the 
mean values over the period of the experiments. 

 All setups were permanently supplied with fresh and prefiltered (300 µm mesh 

size) river water using Watson Marlow® impeller pumps with an output of 2.5 ml 

min-1. Chlorophyll a was regularly measured. Planktonic bacterial abundances 

(DAPI-counts) for each experiment (except July 2005) were kindly provided 

from routine observations by C. Viergutz and J. Dahlmann (University of 

Cologne). Information on DOC amounts were kindly provided by the Gas und 

Elektrizitätswerke Köln (GEW, Cologne, Germany). 

Experimental set-up 

Two types of experiments were performed. In the first type untreated river water 

was used in which the impact of gradual temperature increases on the 

development of early biofilm communities was investigated. In the second type 

the interactive effect of temperature and resource availability was investigated 

by manipulating both factors. Each experiment contained four different 

treatment regimes with three replicates each. 

Date T0 [°C] Manipulations DOC

[mg l-1] 

Chl

[µg l-1] 

Bacteria

[ind. ml-1] 

2005      

  March 10 +0, +2, +4, +6°C 2.54 7.5 6x105

  May 19 +0, +2, +4, +6°C 2.17 34.5 9x105

  July 23 +0, +6°C; add. resource 2.23 31.5 - 

  August 23 +0, +2, +4, +6°C 2.14 20.5 3x106

  November 11.5 +0, +6°C; add. resource 2.37 10.5 9x105

2006      

  January 6.5 +0, +2, +4, +6°C 2.75 25.5 9x105
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The impact of local temperature increase on the early development of benthic 

ciliate communities was examined in March, May and August 2005 and in 

January 2006. For this purpose a setup with four consecutive temperature 

manipulations was chosen. The ambient temperature T0, which was applied as 

reference value for all manipulations, was calculated from the semi-monthly 

averages (e.g. 1st half of January, 2nd half of January) recorded since 1989 in 

order to achieve likely representative temperature regimes for the seasonal 

experiments. Long-term temperature data were kindly provided by the Federal 

Institute of Hydrology (BFG, Koblenz, Germany). The flow cells including 

bubble traps were kept in temperature-controlled (±0.5°C) water baths. The 

temperature regimes were T0 and manipulations of 2, 4 and 6°C above T0

(see Table 1). In July and November 2005, two separate experiments were 

conducted to test for interactive effects of temperature (T0, T0+6°C) and 

resource availability. The resource level was manipulated by adding sterilized 

yeast extract suspension as an additional organic carbon source at a final 

concentration of 0.01 mg l-1 to enhance growth of benthic bacteria. In 

preliminary studies with different resource manipulations (0.001–0.1 mg l-1 yeast 

extract), this concentration was found to sufficiently induce nutrient-mediated 

effects on ciliate abundances and also avoided quick (<5 days) disruption of the 

experiments due to strong bacterial production. 

The development of biofilm-associated ciliate communities was initially tracked 

daily, and then in two-day intervals starting on day five with a Zeiss Axioskop 

binocular microscope (50-630x magnification, phase contrast, camera tube). 

Ciliate abundances were repeatedly recorded in defined areas (0.016 cm2) 

which were randomly distributed over the total cover slip area. The time-frame 

of these experiments ranged between two and four weeks. The experiments 

were stopped when no further significant increase in ciliate abundance was 

recorded. The data was then used to calculate the initial colonization speed as 

well as the carrying capacity of biofilms for ciliates. The finding of an early 

plateau of ciliate abundances was in accordance with earlier studies which 

found biofilm colonization to be characterized by the presence of an early 
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plateau that describes the time needed for initial colonization of biofilms by 

species (e.g. Pratt el al. 1986; McCormick et al. 1988; Hunt and Parry 1998). 

Although maturation of other microbial communities may take several weeks or 

even months to reach equilibrium (e.g. Cadotte et al. 2005), the early plateau 

was chosen as the basis for the calculations (in accordance with the specific 

biofilm studies mentioned above) in order to avoid a combination of effects 

caused by temperature manipulation and seasonal effects. For the treatment 

with resource addition (July and November 2005), data was only gathered for 

five days due to strong bacterial growth. 

Data analysis 

In order to quantify the response to temperature changes, both the carrying 

capacity and the colonization speed of succession were analyzed. Regression 

models were utilized to calculate the duration until 50 ind. cm-2 were present 

(t50, days) and the carrying capacity (Amax; ind. cm-2). The numerical increase of 

biofilm-dwelling ciliates in the early phase (approximately 1–5 days of 

succession) fits best to power function following the formula A = a t b with 

A being the abundance (ind. cm-2) and t  being the respective time (in days, d). 

The non-linear regression models were calculated using the SPSS® 11.0 

software. These regression estimates were then used to determine the time 

span t  needed until 50 biofilm dwelling ciliates were present (t50) by solving the 

equations with a hypothetical ciliate abundance of A = 50 ind. cm-². The 

development of ciliate abundances over the total experimental phase was 

shown to follow a logistic curve given by the equation A = a / (1+eb-ct). 

The parameters a, b and c were estimated with the help of curve fittings using 

SPSS®. This procedure directly provided the carrying capacity (Amax, ind. cm-²) 

as represented by the parameter a. All curve fittings were performed separately 

for each temperature and replicate in the regular treatments (semi-natural 

conditions without addition of carbon source). After estimating t50 and Amax we 

performed one-factorial ANOVAs with temperature as predictor and t50 and Amax

as dependent variables in order to test for significant effects of temperature 
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increases on the particular parameter. The REGW-test was performed as post-

hoc test for the multiple comparisons. In order to assess general effects of 

warming over all experiments, two-factorial ANOVAs were performed with the 

two temperature extremes (T0, T0+6°C) and date of experiment used as 

predictors and t50 and Amax as dependent variables. Application of these 

mathematical models was not possible in the treatments with resource addition 

as the experiments could not be run until Amax was reached. Instead, the 

abundances at day five (A5, ind. cm-2) were used as estimates for the 

colonization speed of early biofilms by ciliates. Here, statistical analyses were 

performed in a three-factorial ANOVA design with temperature, nutrient addition 

and date of experiment as independent variables. 

R e s u l t s  R e s u l t s  R e s u l t s  R e s u l t s  

Temperature impact on the colonization speed under semi-natural conditions 

In the first step we focused on the early colonization of biofilms by ciliates in 

order to check for possible effects of temperature increases on the colonization 

speed. The ciliate abundances within the early phase showed a good fit to 

power function (for r² values see Table 2), which allowed calculation of 

individual time spans until 50 ciliates were present on the biofilms (t50). This 

value t50 exhibited a significantly high seasonal variability (two-factorial ANOVA: 

p<0.001, Table 3), with the most rapid colonization (lowest t50) in August 2005 

(2.1±1.1 days) and the slowest colonization (highest t50) in November 2005 

(8.0±1.7 days) for T0 (Fig. 2A). 

Compared to the large seasonal differences in t50, the temperature effects 

within the experiments were low. No significant effect of temperature could be 

demonstrated between the temperature extremes of all experiments (T0, 

T0+6°C) (Table 3), despite a tendency towards a stimulation of the colonization 

speed with increasing temperature (Fig. 2B). Only in January, representing the 

experiment with lowest T0 (8°C), did the experimental temperature increase 

account for a significant decline of t50 (one-factorial ANOVA: p<0.001, Table 4) 
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Table 2.Table 2.Table 2.Table 2. R2 values for non-linear regressions (power function) used to calculate the 
colonization speed (t50) of biofilms by ciliates. 

Fig. 2.Fig. 2.Fig. 2.Fig. 2. Initial colonization speed (t50) of semi-natural biofilms by ciliated protozoa.
The value t50 represents the time span until an abundance of 50 ciliates cm-2 was 
reached on the biofilms. (A) Integrative diagram for all experiments and temperature 
treatments. (B) Values from temperature extremes (T0, T0+6°C) on real-time axis. 
Italics indicate significant differences between the treatments. 

from 3.6±0.2 d for T0 to 2.7±0.3 d for T0+6°C. This reduction, however, did not 

occur stepwise. In fact both the “low” (T0, T0+2°C) and “high” (T0+4°C, T0+6°C) 

temperature regimes clustered with rather similar values for t50. 

Temperature T0 +2oC +4oC +6oC 

Replicate. 1 2 3 1 2 3 1 2 3 1 2 3 

2005 

   March .99 .99 .91 .98 .97 .99 .98 .98 .99 .99 .98 .91 

   May .89 .96 .84 .88 .94 .95 .81 .83 .55 .96 .94 .83 

   August .31 .91 .79 .73 .74 .99 .90 .85 .80 .25 .87 .48 

   November .98 .98 .95 - - - - - - .99 .96 .98 

2006 

   January .98 .97 .95 .97 .99 .93 .94 .96 .98 .98 .97 .96 
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Temperature impact on the carrying capacity (Amax) under semi-natural 

conditions. 

Similar to the effects on t50, the carrying capacities (Amax, determined from 

logistic regressions) were highly variable with the seasons (Fig. 3). Amax was 

rather similar in March (230±50 ind. cm-2) and November (190±25 ind. cm-2). In 

May 2005, Amax was notably higher with 320±35 ind. cm-². The experiment 

performed in August 2005 at highest T0 (23°C) exhibited lowest carrying 

capacity with 110±20 ind. cm-2. Ciliate abundances peaked in January with 

highest values for Amax of 760±50 ind. cm-2. All corresponding r² values for the 

logistic regressions may be extracted from Table 5. Temperature manipulation 

often led to a slight decrease in Amax, an effect which was strongest in the 

experiments with lowest T0 (March 2005, January 2006) (Fig. 3A). Considering 

all experiments together, this reduction in Amax with increasing temperature was 

significant for the temperature extremes (T0, T0+6°C; Table 3). However, when 

focussing on the individual experiments, a significant impact of temperature 

was recorded in August only (one-factorial ANOVA, p<0.001; Table 6). 

Fig. 3.Fig. 3.Fig. 3.Fig. 3. Carrying capacity (Amax) of semi-natural biofilms for ciliates calculated and 
extracted from logistic regressions. (A) Integrative diagram for all experiments and 
temperature treatments. (B) Values from temperature extremes (T0, T0+6°C) on real-
time axis. Italics indicate significant differences between treatments.
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Table 3. Table 3. Table 3. Table 3. Two-factorial ANOVA design for testing the effects of the experimental 
temperature extremes (T0, T0+6°C) on t50 and Amax. Bold valuesBold valuesBold valuesBold values indicate significance. 

Source Square sum df F p

t50

Temperature 0.902 1 2,549 0.126

Date of experiments 86,090 4 60,817 <0.001<0.001<0.001<0.001

Temperature x date 3,855 4 2,723 0.059

Amax

Temperature 1,465,161 1 466 <0.001<0.001<0.001<0.001

Date of experiments 5,564 4 7.082 0.0150.0150.0150.015

Temperature x date 4,806 4 1.533 0.232

Table 4. Table 4. Table 4. Table 4. One-factorial ANOVA design for testing the effects of temperature on t50. 
Bold valuesBold valuesBold valuesBold values indicate significance. 

Date  Square sum df F p 

2005      

  March Temperature  0.378 3 0.889 0.487 

 Within treatments 1.132 8   

  May Temperature  0.030 3 0.262 0.851 

 Within treatments 0.304 8   

  August Temperature  0.372 3 0.166 0.916 

 Within treatments 5.968 8   

  November Temperature  3.286 1 3.958 0.117 

 Within treatments 3.321 4   

2006      

  January Temperature  2.214 3 19.760 <0.001 <0.001 <0.001 <0.001 

 Within treatments 0.299 8   
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Date  Square sum df F p 

2005      

   March Temperature  5,401 3 2.3450 0.149 

 Within treatments 6,142 8   

   May Temperature  6,521 3 1.2867 0.343 

 Within treatments 13,515 8   

   August Temperature  15,237 3 11.4743 <0.001 <0.001 <0.001 <0.001 

 Within treatments 3,541 8   

   November Temperature  1 1 0.0000 0.996 

 Within treatments 1,522 4   

2006      

   January Temperature  17,270 3 1.6763 0.248 

 Within treatments 27,473 8   

Temperature T0 +2oC +4oC +6oC 

Replicate 1 2 3 1 2 3 1 2 3 1 2 3 

2005             

   March .99 .99 .91 .98 .97 .99 .98 .98 .99 .99 .98 .91 

   May .89 .96 .84 .88 .94 .95 .81 .83 .55 .96 .94 .83 

   August .31 .91 .79 .73 .74 .99 .90 .85 .80 .25 .87 .48 

   November .98 .98 .95 - - - - - - .99 .96 .98 

2006 

   January .98 .97 .95 .97 .99 .93 .94 .96 .98 .98 .97 .96 

Table 5. Table 5. Table 5. Table 5. R2 values for logistic regressions used to calculate the carrying capacity
(Amax) of biofilms for ciliates.

Table 6.Table 6.Table 6.Table 6. One-factorial ANOVA design for testing the effects of temperature on Amax. 
Bold valuesBold valuesBold valuesBold values indicate significance. 
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Table 7. Table 7. Table 7. Table 7. Resource addition experiments: Result of a three-factorial ANOVA design 
for testing the effects of temperature T0, T0+6°C), resource quantity and date of the 
experiment (July and November 2005) on the ciliate abundance after five days of 
succession. Bold valuesBold valuesBold valuesBold values indicate significance.

Interactive effect of temperature and resource availability on initial colonization 

We tested for interactive effects of temperature and resources on the initial 

speed of biofilm colonization by ciliated protozoa in two independent 

experiments. These experiments had to be terminated before equilibrating 

(because of strong bacterial reproduction within the flow cells with resource 

addition) and before 50 ciliates cm-2 were present on the biofilms in most 

treatments without resource addition. For this reason, we were not able to use 

the regression methodology (outlined in the methods section) to calculate the 

colonization speed, t50. Instead, we used the abundance at day five (A5) as a 

measure for the initial colonization speed. 

Fig. 4.Fig. 4.Fig. 4.Fig. 4. Abundance of biofilm-associated ciliates 
after five days of succession in experiments 
with temperature (T0, T0+6°C) and resource 
(yeast extract) manipulation performed in July 
and November 2005. (-) No resource added. 
(+) Resource added. Italics indicate significant 
differences between treatments. 

Source SS df F p 

Date of experiments 12,395 1 24.5 <0.001 <0.001 <0.001 <0.001 

Resource addition 17,605 1 34.7 <0.001 <0.001 <0.001 <0.001 

Temperature 4,789 1 9.4 0.006 0.006 0.006 0.006 

Resource x temperature 3,366 1 6.6 0.018 0.018 0.018 0.018 
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In both experiments (July and November 2005), the colonization-enhancing 

effect of temperature increase alone (no resource added) was low, consistent 

with the overall low temperature effect on t50 as mentioned above. However, 

with enhanced resources, an overall increase in ciliate abundance at day five 

was recorded with distinct differences between the two temperature treatments. 

This was supported by significant resource and temperature effects and by 

significant interactions between resources and temperature (Table 7, Fig. 4). 

D i s c u s s i o n  D i s c u s s i o n  D i s c u s s i o n  D i s c u s s i o n  

The impact of increasing temperature on early biofilm-associated ciliate 

communities with and without resource addition was, for the first time, tested in 

“open” river bypass flow cell systems. Our results revealed strong seasonal 

variation in the time needed for initial biofilm colonization (t50) and in the 

carrying capacity of biofilms for ciliates (Amax). Though temperature-mediated 

impacts on these colonization parameters were small in a seasonal context, 

they could be distinct and significant within single experiments. In particular, 

temperature increase can abbreviate the initial colonization time and reduce the 

carrying capacity. However, the only significant impact of increased 

temperature on t50 was found to occur during the colder seasons. Statistical 

comparison of the temperature extremes (T0, T0+6ºC) did not reveal a significant 

overall effect of warming on t50 but did expose a significant impact of 

temperature on Amax. Furthermore, the largest effects of warming on the initial 

phase in biofilm succession were observed when additional nutrients were 

added, indicating that a strong interactive control by temperature and nutrients 

is a key factor in biofilm community development. 

Temperature increase can reduce Amax at constant resource supply 

When all experiments are considered together, a significant decline in Amax can 

be seen for a temperature increase of 6°C. These observations supported 

predictions derived from modellings done by Savage et al. (2004), 
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who concluded that when the resource supply is constant, the carrying capacity 

must decrease with increasing temperature to balance the effect of increasing 

metabolic costs. Additionally the magnitude of decline in Amax showed seasonal 

differences. Given that the resource levels themselves are seasonally different 

(Table 1), this suggests that both temperature and resource availability are 

crucial in determining Amax.  

It should be noted that a comparison of the temperature extremes may be 

interpreted as two separate mechanisms: Temperature and possibly nutrient 

control at lower temperatures and a possible thermal intolerance of taxa at high 

temperatures might be the absolute limiting factors. Further taxonomic 

resolution of our data is necessary to obtain additional information about 

response differences between taxa, particularly with regards to the thermal 

tolerance of species. Stauffer and Arndt (2005) have shown that free-living 

freshwater protozoa may become extinct after a successive temperature 

increase within a narrow temperature range of between 28–30°C. Such 

extinctions of single taxa could result in modified interaction strength of the 

remaining species, which could then result in an unpredictable impact of 

temperature on communities. In this context, Jiang and Morin (2004) 

demonstrated that when species interact, a temperature increase can generate 

community changes which were not predictable from single species’ responses. 

This could explain the results of the August experiment, which had the highest 

experimental temperature range (23–29°C) and incorporated both a significant 

increase of Amax (Fig. 3A) at a temperature elevation of 4°C (and a subsequent 

strong decrease of Amax between elevations of 4°C and 6°C) as well as 

noticeably high variability in t50 at all temperatures. However, a preliminary 

taxonomic assessment using families revealed no obvious temperature impact 

on biofilm compositions regarding ciliates at any season. 
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Temperature-mediated effects on the colonization speed depend on season 

and nutrient load 

Experimental resource increases enhanced bacterial production, which likely 

resulted in an increase of predominantly picophagous ciliates which are typical 

pioneers in ciliate biofilm colonization (Franco et al. 1998; Arndt et al. 2003). 

Furthermore, the effect of the temperature increase was strongest after 

resource enhancement, giving rise to the conclusion that resource availability 

rather than temperature limited the colonization speed during the different 

seasonal conditions. The finding that stronger temperature-mediated effects 

only occurred when resources were not limited might explain the results 

recorded in January 2006. At this time, the strongest response to temperature 

increase occurred when the highest natural DOC load was found as well 

(Table 1). Thus, the seasonal differences in the response strength of t50 to 

temperature increases might be a result of the seasonally varying resource 

limitations of ciliates in the Rhine (Scherwass and Arndt 2005). 

Recent studies have provided important information concerning the interactive 

control of ciliate growth by temperature and food supply. Weisse et al. (2002) 

have shown that even small adjustments of temperature and food supply can 

interactively alter the growth rates of ciliates in laboratory cultures. 

Furthermore, they showed that both factors can reach saturation levels. An 

interactive effect of temperature and resource quantity has also been found for 

other microbial communities such as bacteria and algae (Pomeroy and Wiebe 

2001; Staehr and Sand-Jensen 2006). Taken together, these studies and our 

results suggest that different microbial communities can be buffered against 

climate-mediated temperature increases when resources are limited (see also 

Fox and Morin 2001). 
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C o n c l u s i o n  C o n c l u s i o n  C o n c l u s i o n  C o n c l u s i o n  

Our results demonstrate that increasing temperature can result in different 

effects on the community density depending on the stage of succession, i.e. in 

an enhancement of the early colonization speed or in a reduction of the carrying 

capacity. Warming might thus result in contrasting effects on communities, 

depending on whether they are maintained in an early succession stage (e.g. in 

riverine biofilm communities which can undergo permanent disturbance due to 

sediment rafting) or in a late succession stage. 

The magnitude of temperature-mediated effects, however, depends strongly on 

the environmental and seasonal conditions. Interestingly, the effects of 

temperature increases were found to be strongest in winter, which is the 

season for which the largest temperature increases forced by global warming 

are prognosticated (IPCC 2001). One important predictor for the magnitude of 

temperature-mediated effects is the availability of resources. Temperature 

impacts on aquatic communities can be expected to be strongest in resource-

enriched systems such as eutrophic lakes (Felip et al. 1996; Bradshaw and 

Anderson 2001; Vrede 2005) or rivers and streams that carry high levels of 

organic material. 
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Chapter 2. Chapter 2. Chapter 2. Chapter 2. 

Structural responses of ciliate communities Structural responses of ciliate communities Structural responses of ciliate communities Structural responses of ciliate communities 

to local temperature increases. to local temperature increases. to local temperature increases. to local temperature increases. 

A b s t r a c t  A b s t r a c t  A b s t r a c t  A b s t r a c t  

The impact of local temperature increase on the structure of consumer 

communities was experimentally tested. Fast-growing, biofilm-dwelling ciliates 

were used as model. In a first step we performed two seasonal experiments in 

which the ciliates were cultured for ten days in miniature flow cells at different 

temperatures. 

Opposing effects of temperature increase appeared for “summer” and “winter” 

communities. In winter, the ciliates strongly benefited from enhanced 

temperatures in terms of both increased abundance and biomass resulting in 

significantly altered ciliate community compositions. Contrasting results were 

obtained in summer, when temperature increase resulted in a significant 

decline in ciliate biomass. At the same time, there was no significant 

temperature impact on the relative community composition. Based on these 

findings, we demonstrated in a further experiment that the results for winter are 

reproducible in mature, eight-week-old biofilms, i.e. that the carrying capacity 

increases with temperature in association with significant shifts in the 

community composition. The positive warming effects on the carrying capacity 

stands in contrast to expectations rooted in metabolic theory. By simultaneous 

manipulation of temperature and resource density in summer, it was further 

demonstrated that the negative warming effects on the carrying capacity could 

be compensated by increasing the availability of food, suggesting that energetic 

constraints rather than thermal limits for certain species are the main reason for 
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the observed effects. Furthermore, increased resource density resulted in 

significant temperature effects on the community composition. 

Taken together, these findings show that the magnitude of responses to 

environmental warming in respect to both quantity and relative community 

composition strongly depends on the environmental setting, particularly the 

resource availability. The total community abundances can react differently 

towards warming than expected from population responses due to altered 

interaction strengths and associated community shifts.
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I n t r o d u c t i o n  I n t r o d u c t i o n  I n t r o d u c t i o n  I n t r o d u c t i o n  

Ongoing global climate change and the associated environmental warming are 

considered to be one of the major ecological threats (Petchey et al. 1999, 

Hooper et al. 2005). Understanding the impacts of temperature increase on 

communities is thus an important challenge for ecologists. On an individual 

level, temperature is among the most important factors altering the metabolic 

rate and subsequently the survival, feeding and growth rates of most species 

(Gillooly et al. 2001). Within the species-specific optimal temperature range, 

increasing temperatures can enhance population growth rates (Savage et al.

2004; Alver et al. 2006) as long as the growth is not limited by resources 

(Felip et al. 1996; Weisse et al. 2002; Staehr and Sand-Jensen 2006). While 

responses to increasing temperatures have been well studied for many single 

species, there is still little understanding on how environmental warming could 

affect the structure of complex communities. Besides having an impact on 

individual metabolic rates, temperature can affect the interaction strength 

between organisms (Sanford 1999). Even relatively simple communities often 

have complex inter-specific interactions; environmental warming may thus have 

unpredictable consequences (Davis et al. 1998; Jiang and Morin 2004). 

When the optimal temperature range is exceeded, species can experience 

thermal limitation which leads to range shifts (Portner 2002) and local 

extinctions (Thomas et al. 2004). The removal of a species from a community 

can in turn result in a decline in species diversity (Lloret et al. 2004; Burgmer et 

al. 2007), which could influence ecosystem function (Harley et al. 2006). 

Besides such warming-induced shifts in species composition due to different 

thermal optima of species, warming could also influence community density: 

One hypothesis states that the carrying capacity of a given community will 

decrease with increasing temperature in order to balance out the increased 

metabolic costs (at a constant resource supply) (Savage et al. 2004). This 

hypothesis is supported by findings from studies on trees and terrestrial 

ecotherms in which increasing temperature was found to reduce the abundance 

and the biomass of both plants and animals (Allen et al. 2002). In contrast, 
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Newsham and Garstecki (2007) found strong increases in the densities of 

heterotrophic flagellate communities when the temperature was experimentally 

increased. Similar results were obtained from observations of isolated 

populations of mountain lizards (Chamaille-Jammes et al. 2006). In contrast, a 

world-wide test on the effect of temperature on the density of lizard populations 

rejected any strong influence of environmental temperature on lizard population 

density (Buckley et al. 2008). Reasons can be behavioural thermoregulations 

and thermal adaptations. 

The complexity and postulated unpredictability of community responses 

towards warming (Jiang and Morin 2004) imposes a challenge for ecologists 

trying to establish reasonable systems for testing the effects of warming on 

complex communities in addition to modelling approaches and to analyses of 

large-scale density patterns. An increasing number of studies in community and 

evolutionary ecology use fast-growing microbes to test ecological principles 

(Jessup et al. 2004; Weisse 2006). However, the trophic level of the microbes 

must always be considered, as different responses can occur for producer and 

consumer communities as shown in mesocosm experiments with experimental 

warming (Aberle et al. 2007; Sommer et al. 2007). Here we used complex, 

biofilm-dwelling consumer communities (composed of fast-growing ciliates) to 

test warming effects. Open bypass systems (miniature flow cells and flumes) 

were fed by a constant flow of untreated river water, thus allowing ciliate 

communities to establish and maintain themselves autonomously. In a previous 

study (Norf et al. 2007), we identified two patterns on how warming can alter 

community densities which were coupled to seasonal dependencies. In winter, 

increasing temperature significantly increased the colonisation rate of biofilms 

by ciliates, a result not found in summer. Furthermore, temperature increase 

reduced the carrying capacity of biofilms for ciliates. This phenomenon, 

however, was observed as a sum effect over several experiments and we were 

not able to attribute the effects on the carrying capacity to particular seasons. 

These previous findings necessitated further research for a better under-
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standing of warming effects on mature consumer communities and of the 

mechanisms underlying these responses. We addressed the following 

questions in this study: (1) Do the effects of warming on the structure of mature 

consumer communities differ between summer and winter communities? 

(2) Are the warming effects on the community density associated to shifts in the 

community composition (expected when species react differentially towards 

warming due to specific thermal limitations) or do they affect each group 

symmetrically (as expected based on theoretical models that predict an 

increase in metabolic demands at constant resource supply)? (3) Are negative 

effects on the community density in the natural setting a consequence of limited 

resources, i.e. could they be compensated by supplemental resources?  

M a t e r i a l  a n d  M e t h o d s  M a t e r i a l  a n d  M e t h o d s  M a t e r i a l  a n d  M e t h o d s  M a t e r i a l  a n d  M e t h o d s  

The experiments were performed aboard the Cologne Ecological Rhine Station 

of the University of Cologne (Cologne, Germany, Rhine-km 684.5, which refers 

to the from Lake Constance, the source of the non-alpine Rhine), a former boat 

tender that is equipped with laboratory facilities and pump systems to allow a 

permanent supply of fresh river water for ecological experiments. We used 

original Rhine River water containing both the planktonic organisms for the 

biofilm-colonization and the resources for the biofilm-dwelling consumers. Four 

experiments were performed. The first two experiments concentrated on the 

short-term effects of experimental warming on early ciliate communities during 

winter and during summer. Based on the results of these experiments, two 

other experiments were performed: In one long-term winter experiment, we 

tested whether or not the results from the short-term winter experiment were 

reproducible for mature biofilm-dwelling ciliate communities running at carrying 

capacity. In one additional summer experiment, we tested whether or not the 

observed negative warming effects could be compensated by supplemental 

resources. 
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Conduction of the warming experiments in river bypass systems 

We conducted different experiments with manipulative local temperature 

increases in order to test the impact of simulated warming on early (ten days) 

and mature (eight weeks) biofilm-dwelling ciliate communities (hereafter: early

and late ciliate communities). A summary of the experiments including the time 

frames and selected environmental variables in the River Rhine is given in 

Table 1. The two short-term experiments (10 days each) focused on the impact 

of a gradual temperature increase on early ciliate communities. The base 

temperature for the experiments was the calculated long-term average water 

temperature in the River Rhine since 1980 (hereafter: T0). The primary tools for 

the investigations were miniature flow cells, which consisted of a clear acrylic 

frame with an object slide on the bottom and a cover slip on the top, enclosing 

an inner space of 3.6 ml volume. The flow cells were attached to a permanent 

bypass of untreated Rhine River water (flow rate: 3.8 ml m-1) via tube pumps. A 

more detailed description of the flow cells is given in Norf et al. (2007). The flow 

cells were run in temperature-controlled water baths with particular temperature 

manipulations starting at T0. 

Experimental 
tools 

Date T0 Treatments Bacteria 
(106 ind. ml-1) 

Flow cells 
(10 days) 

Jan 19. – 29. 
2006 

6oC T0, +2, +4, +6oC 0.90±0.11 

Flow cells 
(10 days) 

July 25. – 
Aug 3. 2006 

23oC T0, +3, +6, +9oC 1.21±0.22 

Flow cells 
(10 days) 

Aug 25. – 
Sep 3. 2007 

24oC Temperature 
x resource* 

1.51±0.17 

Flumes 
(8 weeks) 

Nov 23. 2007 –  
Jan 15. 2008 

6.1- 
10.2oC 

T0, +3oC 1.09±0.10 – 
1.36±0.15 

* The temperature categories T0 and +3°C were crossed with resource manipulations (ambient 
and supplemented bacteria) 

Table 1.Table 1.Table 1.Table 1. Overview of the periods and conditions during the four experiments. The 
flow cell experiments were performed at constant temperatures (based on the long-
term mean temperature at the particular season), whereas the flume experiment 
contained direct enhancement of the actual Rhine River temperature. Bacterial 
abundances were determined weekly by DAPI counts. 
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Each treatment was run at least in triplicate. In January 2006 (hereafter: winter 

2006), the applied temperature treatments were T0 (6oC for this season) and 

temperature increases of +2, +4 and +6oC above T0. Data on the development 

of the ciliate quantity in this experiment were already presented in Norf et al.

(2007) with regards to the colonization speed of the biofilms by ciliates and to 

the carrying capacity of the biofilms for ciliates. The counter-experiment was 

performed during August 2006 (hereafter: summer 2006). Here, temperature 

increases of +3, +6 and +9oC (above T0: 24oC) were applied. We used this 

broader temperature range during summer in order to reach temperatures 

(maximal 33°C) which were assumed to be at or above the thermal limit of 

certain ciliate species. Water temperatures of up to 28oC can occur in the River 

Rhine, as e.g. recorded in August 2003. After a ten-day colonisation period, the 

pioneer biofilm ciliates were analysed by putting the flow cells directly under the 

microscope. Therefore, a minimum of 60 ciliates per replicate were determined 

in defined areas by using the identification keys of Foissner and Berger (1996) 

and Lynn and Small (2002). In the case of colonial ciliates, the number of 

zooids per colony was added to the recorded abundance of ciliates in the 

particular replicate. Ciliates were individually measured and their biovolumes 

were calculated by approximation of the specific shape to standard geometrical 

forms (e.g. prolate ellipsoid, cone, cylinder). 

Based on the observations made in the winter 2006 experiment, we also 

investigated the impact of simulated winter warming on late, biofilm-dwelling 

ciliate communities which had reached carrying capacity. In earlier succession 

experiments, steady-state abundance of biofilm-dwelling ciliates were reached 

after <9 (summer) to 21 (winter) days (Norf et al. 2007). In the present 

experiments, sterile object slides were exposed in flume systems, starting in 

November 2007. Three flumes were constantly exposed to untreated Rhine 

River water (flow velocity 0.2 m s-1): the base temperature treatment (hereafter: 

T0), which ranged between 6.1 and 10.2°C. In three additional flumes, the 

temperature of the bypass of Rhine River water was constantly elevated with 

heating rods to 3oC above ambient. After eight weeks, one object slide 
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per flume was removed and investigated microscopically. Ciliate identification 

as well as abundance and biomass calculations were performed as described 

above. 

The first experiment performed in summer (see above) clearly demonstrated a 

temperature limitation (rather than resource limitation) of the biofilm-dwelling 

ciliate communities. In one subsequent summer experiment, we tested this 

hypothesis by simultaneous temperature (T0 and T0 + 3°C) and resource level 

(supplement of planktonic bacteria; see Chapter 3) manipulations. The 

experiment was conducted in flow cells over ten days in August 2007 as 

described above. A suspension of Pseudomonas putida (MM1) was used in the 

resource-enrichment treatments according to the protocol described in detail in 

Chapter 3. For the preparation of the bacterial suspension, kryo-preserved 

P. putida was cultivated for 48 hours at room temperature (20oC) in M9 growth 

medium (Hahm et al. 1994) containing 0.4% glucose. The cultures were 

harvested by centrifugation (3,600g for 15 min.) and by re-suspending the pellet 

in Pratt medium (Pratt and Salomon 1980) in order to remove the residual 

glucose from the cultures. The cultures were then stored at 4oC until needed 

and were then harvested again as described above. After the cell density of the 

bacterial cultures had been determined using a Helber counting chamber 

(W. Schreck, Hofheim, Germany), a suspension containing 108 ind. ml-1 was 

prepared in Pratt medium using standard reagent bottles. The bacteria solution 

was added to one batch of the flow cells by way of sterile silicone tubes. The 

ratio of bacteria solution to Rhine River water in the flow cells was adjusted to 

1:100, so that a final concentration of 106 ind. ml-1 P. putida was fed to the 

water flow. 

Statistical analyses 

For the two short-term experiments with experimental temperature increase 

only (winter and summer 2006, Table 1), we performed one-factorial ANOVAs 

with temperature as predictor and abundance (ind. cm-2) and biovolume 

(mm3 cm-2) as dependent variables using SPSS 15.0 software 
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(SPSS Inc., Chicago, U.S.A.). The REGW-test was performed as post-hoc test 

for multiple comparisons. The impact of temperature increase on the 

abundance and the biovolume of the late biofilm-dwelling ciliate communities 

which had been cultivated for eight weeks in flumes during winter 2007-08 were 

compared using the Student T-Test. In order to assess the effects of warming 

combined with an increased resource availability as observed in the summer 

2007 experiment, two-factorial ANOVAs were performed with temperature and 

resource enrichment used as predictors and abundance (ind. cm-2) or 

biovolume (mm3 cm-2) as dependent variables. Temperature-dependent 

gradients in the taxonomic composition of the biofilm-dwelling ciliate 

communities for each replicate within the different experiments were analysed 

by using the quantitative Bray-Curtis similarity index (Bray and Curtis 1957), 

which was plotted 2-dimensionally using the NMDS ordination method provided 

in the PRIMER 6.0 software (Primer-E Ltd., Ivybridge, U.K.). The analyses were 

based on the morphotype abundance data (species and/or genus) as identified 

under light microscopy. Significant differences between the ciliate communities 

were detected by the Simprof-test (included in the PRIMER 6.0 software) of the 

same resemblance data. In the case of significance (�<0.05), the obtained 

clusters are indicated graphically by circles in the NMDS plots. Rare taxa (with 

only one or two observations per replicate) were excluded from the analyses in 

order to reduce noise from the ordinations. In the summer 2007 experiment with 

simultaneous manipulation of temperature and resource availability, class and 

sub-class data were used for the calculations of similarities, as species 

morphotype data was not available for this sample date (day ten). 

R e s u l t s  R e s u l t s  R e s u l t s  R e s u l t s  

Warming response of early communities in winter versus summer 

In winter and summer 2006, biofilm-dwelling ciliate communities were cultivated 

in miniature flow cells at different temperatures starting with the calculated long-

term average temperature (T0) for the particular period. In winter 2006, local 
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temperature increase resulted in significant differences with regards to the 

ciliate abundance (Fig. 1a, Table 2) and to the ciliate biovolume (Fig. 1b, 

Table 2), which was step-like for the two low (T0, +2oC) and the two high (+4oC, 

+6oC) temperature treatments. At T0, ciliate abundance was 320±70 ind. cm-2

and did not differ from the ciliate abundance in the +2oC treatment (320±65 

ind. cm-2). Ciliate biovolume ranged between 0.005±0.001 mm3 cm-2 (T0) and 

0.007±0.002 mm3 cm-2 (+2oC). Further temperature elevation resulted in both a 

significantly increased ciliate abundance (750±215 ind. cm-2 at +4oC and 

700±210 ind. cm-2 at +6oC) as well as in a significantly increased ciliate 

biovolume (0.023±0.015 mm3 cm-2 at +4oC and 0.021±0.010 mm3 cm-2 at +6oC). 

The observed differences in the ciliate abundances were mainly due to the 

increased abundances of peritrich (e.g. Carchesium polypinum, Vorticella 

campanula), choreotrich (e.g. Strobilidium caudatum, Tintinnidium 

semiciliatum) and litostome (e.g. Litonotus lamella, Acineria uncinata) ciliates 

(Fig. 1a), which was also reflected in a higher biovolume of these taxa (Fig. 1b). 

Fig. 1.Fig. 1.Fig. 1.Fig. 1. Impact of temperature increase on the structure of biofilm-dwelling ciliate 
communities after ten days of succession in winter 2006. (a) Abundance and
(b) biovolume of the experimental communities combined with their taxonomic 
composition. Error bars represent total SD. (c) Non-metric multidimensional scaling 
(NMDS) visualising the Bray-Curtis similarity of three replicates per temperature 
treatment. The indicated significant clusters were identified using cluster analysis with 
SIMPROF test.
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Further differences in the taxonomic structures of the biofilm-dwelling ciliate 

communities were also evident: Calculations of Bray-Curtis similarity indices for 

each of the replicates and multidimensional scaling of these data produced two 

significant clusters (p<0.05) for the two “low” and the two “high” temperature 

treatments (Fig. 1c), which corresponded to >40% similarity of the particular 

ciliate communities. The similarity between all replicates was at least 20%. 

Different results were obtained in summer 2006. Here, temperature increase 

did not significantly affect the abundance of ciliates, although a tendency to a 

reduced abundance was consistently observed (Fig. 2a). In contrast, ciliate 

biovolume (Fig. 2b) was reduced even by the smallest temperature elevation 

(T0+3oC). Significant differences appeared between the T0 treatment 

(0.027±0.011 mm3 cm-2) and the +9oC treatment (0.005±0.005 mm3 cm-2) as 

revealed by the one-factorial ANOVA (Table 2, Fig. 2b). This decrease in the 

biovolume was mainly due to the reduction of large heterotrich ciliates (Stentor 

spp.). 

Fig. 2.Fig. 2.Fig. 2.Fig. 2. Impact of temperature increase on the structure of biofilm-dwelling ciliate 
communities after ten days of succession in summer 2006. (a) Abundance and
(b) biovolume of the experimental communities combined with their taxonomic 
composition. Error bars represent total SD. (c) Non-metric multidimensional scaling 
(NMDS) visualising the Bray-Curtis similarity of three replicates per temperature 
treatment. 
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Furthermore, temperature increase did not result in the formation of significant 

clusters as observed in winter 2006. The Bray-Curtis similarity between all 

replicates was at least 20% (Fig. 2c). 

Subject SS F (3, 8) p 

Winter 2006 

Abundance  486,985 6.708 0.014 0.014 0.014 0.014 

   Within subject 193,600   

Biovolume  0.644 4.923 0.032 0.032 0.032 0.032 

   Within subject 0.349   

Summer 2006 

Abundance  3,238 0.588 0.640 

   Within subject 204.885   

Biovolume  0.896 0.299 0.048 0.048 0.048 0.048 

   Within subject 0.575   

Warming effects on late communities at carrying capacity in winter 

In the next step we tested whether or not the observed responses of the early 

biofilm-dwelling ciliate communities during winter 2006 were reproducible for 

late ciliate biofilms at carrying capacity. For this purpose, ciliates were 

cultivated on object slides exposed in flumes with a permanent bypass of Rhine 

River water with either ambient (T0) or increased temperature (T0 + 3°C). After 

eight weeks, the ciliate abundance in T0-flumes was 400±50 ind. cm-2. Ciliate 

abundance was noticeably, although not significantly (T-test: p=0.11) higher in 

the flumes with temperature elevation: 640±150 ind. cm-2 (Fig. 3a). The ciliate 

biovolume was 0.041±0.003 mm3 cm-2 at T0 and significantly increased to 

0.180±0.089 mm3 cm-2 at T0+3°C (Fig. 3b, T-Test p<0.05). The ciliate 

communities at T0 consisted mainly of choreotrichs (e.g. Tintinnidium

TablTablTablTable 2.e 2.e 2.e 2. One-factorial ANOVA design for testing the effect of temperature on the 
abundance (ind. cm-2) and the biovolume (mm3 cm-2) of early biofilm-dwelling ciliate 
communities in winter 2006 and in summer 2006. Bold valuesBold valuesBold valuesBold values indicate significance. 
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Fig. 3.Fig. 3.Fig. 3.Fig. 3. Impact of temperature increase on 
the structure of biofilm-dwelling ciliate 
communities after eight weeks of 
succession in the flume experiment in 
winter 2007/ 08. (a) Abundance and
(b) biovolume of the experimental 
communities combined with their 
taxonomic composition. Error bars 
represent total SD. (c) Non-metric 
multidimensional scaling (NMDS) 
visualising the Bray-Curtis similarity of 
three replicates per temperature treatment. 
The indicated significant clusters were 
identified using cluster analysis with 
SIMPROF test.

semiciliatum) and peritrichs (Campanella umbrellaria, Carchesium spp., 

Zoothamnium kentii), in approximately equal proportions (ca. 40% each) in 

terms of abundance. Choreotrichs were reduced to less than 10% of the ciliate 

abundance in the flumes with temperature elevation (Fig. 3a), particularly due 

to a strong decrease in the number of Tintinnidium semiciliatum. The ciliate 

biovolume (mm3 cm-2) in both setups consisted mainly of peritrichs, which 

accounted for <65% at T0 and approximately 90% in the flumes at T0 + 3°C. The 

analysis of the taxonomic compositions of the biofilm-dwelling ciliate 

communities on the basis of their Bray-Curtis similarity revealed two significant 

clusters (p<0.05) for the two temperature treatments, which corresponded to 

>60% similarity of the communities at each temperature and >40% similarity 

between the two temperatures (Fig. 3c). 

Temperature versus resource effects in summer 

In the last experiment we simultaneously manipulated the temperature and the 

resource level in order to test the significance of the resource level on 

community responses towards warming during summer, after the preceding 

summer experiment (2006) had revealed significant negative warming effects 
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on the biovolume. Therefore, a suspension of planktonic bacteria (P. putida, an 

important resource for biofilm-dwelling ciliates in the Rhine) was added to the 

flow cells, resulting in four different setups: Flow cells with either increased 

temperature (T0 + 3°C) and/or increased food levels. Both the enhanced 

temperature as well as the resource enrichment resulted in significant impacts 

on either the abundance or the biovolume of biofilm-dwelling ciliates (Fig. 4). 

In the setups with no supplemental resource added, warming resulted in a 

significant decrease in the ciliate abundance by approximately 25% and in a 

non-significant decrease in the ciliate biovolume. The flow cells which obtained 

the resource enrichment displayed a tendency towards increased ciliate 

abundance. The ciliate biovolume was increased by more than 100% in the flow 

cells with resource enrichment only, whereas simultaneous resource 

enrichment and temperature increase resulted in a lower ciliate biovolume than 

when only the food supply was increased. 

Fig. 4.Fig. 4.Fig. 4.Fig. 4. Impact of temperature increase and resource addition (as indicated by “+” in 
contrast to the ambient resource conditions as indicated by “-“) on biofilm-dwelling 
ciliate communities tested after ten days of succession in summer 2007.
(a) Abundance and (b) biovolume of the experimental communities combined with 
their taxonomic composition. Error bars represent total SD. (c) Non-metric 
multidimensional scaling (NMDS) visualising the Bray-Curtis similarity of three to four 
replicates per treatment. The indicated significant clusters were identified using 
cluster analysis with SIMPROF test.
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This was, however, still significantly higher than in the flow cells with no 

resource enrichment. The two-factorial ANOVAs revealed a significant impact 

of temperature (p<0.05) and resource enrichment (p<0.001) on both the 

abundance as well as on the biovolume of the biofilm-dwelling ciliates 

(Table 3). Furthermore, there was a significant interaction temperature x 

resource enrichment (p<0.05) detected for the abundance of the ciliates. In 

terms of abundance, choreotrichs (e.g. Strobilidium caudatum, Tintinnidium 

semiciliatum) and peritrichs (e.g. Carchesium polypinum, Vorticella spp.) were 

dominant in all treatments. Remarkable differences appeared with the flow cells 

with resource enrichment; the abundance of peritrich ciliates was strongly 

increased, whereas choreotrich ciliates were reduced, especially in the flow 

cells which were run at T0. These effects were also detected with regards to the 

biovolume of the biofilm-dwelling ciliate communities. Calculation of the Bray-

Curtis similarities revealed two significant clusters. The first cluster included the 

two treatments with no resource enrichment as well as the treatment with cross 

manipulation. The similarity between these communities was >60%. 

Subject SS F (1, 8) p

Abundance    

   Temperature 8,533.333 6.708 0.004 0.004 0.004 0.004 

   Resource enrichment 24,661.333 45.833 <0.001 <0.001 <0.001 <0.001 

   Temperature x resources 3,792.593 7.048 0.029 0.029 0.029 0.029 

   Error 4,304.593   

Biovolume    

   Temperature 191.179 22.721 0.001 0.001 0.001 0.001 

   Resource enrichment 1,249.624 148.517 <0.001 <0.001 <0.001 <0.001 

   Temperature x resources 34.992 4.159 0.076 

   Error 67.312   

Table 3.Table 3.Table 3.Table 3. Two-factorial ANOVA design for testing the effect of temperature and 
resource enrichment on the abundance (ind. cm-2) and the biovolume
(mm3 cm-2) of early biofilm-dwelling ciliate communities in summer 2007. Bold Bold Bold Bold 
valuesvaluesvaluesvalues indicate significance. 
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The second cluster was made up of the four replicates with resource 

enrichment which had been cultivated at T0 with also >60% similarity between 

the replicates of this treatment. Significant temperature effects on the 

community structure were thus obtained in the resource-enriched but not in the 

non-enriched treatment. The similarity between all performed replicates was at 

least 40%. 

D i s c u s s i o n  D i s c u s s i o n  D i s c u s s i o n  D i s c u s s i o n  

In the present work we implemented an experimental approach to test the 

impact of environmental warming on complex consumer communities using 

fast-growing ciliate communities (Jessup et al. 2004; Weisse 2006). The river 

bypass systems ensured the opportunity for both ciliate immigration and 

emigration and thus acknowledged the open nature of local communities 

(Leibold et al. 2004). We tested the effect of warming in contrasting seasons 

(summer versus winter), incorporating different background conditions. 

The growth of ciliate communities in the River Rhine can be resource limited 

during summer, whereas indications for temperature limitation during winter 

have been found in earlier studies (Scherwass and Arndt 2005; Norf et al.

2007). The present results in fact revealed opposing effects of warming on 

ciliate communities for summer and winter. In the following, mechanisms 

leading to the warming effects for the winter and summer experiments are 

discussed separately before a general conclusion is drawn. 

Winter warming alters ciliate community structure and stimulates their total 

density 

The two winter experiments revealed consistently positive effects of warming 

on the quantity (abundance and biovolume) as well as significant effects on the 

community structure. Nevertheless, different mechanisms might be involved in 

the early (ten days, flow-cell experiment) and in the late (eight weeks, flume 

experiment) experiments. According to our long-term experience in the 
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establishment of biofilms in river bypass systems (Weitere et al. 2003; Norf et 

al. 2007), biofilm-dwelling ciliate communities achieve a steady state in 

abundance after approximately 21 days during winter and after fewer than nine 

days during summer. The early biofilms in winter were thus in a stage of 

increasing abundances, whereas the late biofilms in winter (as well as the 

biofilms in the summer experiments) already had reached carrying capacity. In 

a previous study (Norf et al. 2007) we demonstrated different effects of warming 

on the abundance of early versus late biofilm-dwelling ciliate communities. In 

early communities, warming led to a stimulation of the abundance (probably 

due to stimulated growth), whereas warming in late communities at carrying 

capacity resulted in negative effects on the abundance. The latter effect was 

weak, and no seasonal dependencies could be identified. However, it was in 

accordance with the hypothesis that carrying capacity decreases with warming 

in order to balance increasing metabolic costs (Savage et al. 2004). The 

present data rejects this hypothesis for the winter communities, for which 

significant stimulating effects of warming on the biomass were found whereas 

positive trends (but non-significant), were shown for the abundance. These 

quantitative effects were accompanied by significant effects on the community 

structure with non-symmetrical temperature responses of specific taxonomic 

groups: Whereas suspension-feeding peritrich ciliates were strongly enhanced 

by the temperature manipulation, choreotrich ciliates (with similar feeding 

preferences as peritrichs) were strongly reduced in these setups. Since 

choreotrichs were still present and since the temperature increase was only 

3°C, it is unlikely that the temperature tolerance of the choreotrichs present was 

exceeded, but rather that choreotrichs (which showed positive responses to 

enhanced temperature in the early winter biofilms in the flow-cell experiment) 

were out-competed by peritrichs in the late ciliate communities. On this 

account, Jiang and Morin (2004) reported that the interaction strength of 

species within a community can be altered by temperature fluctuations. The 

significant finding in this study is that the shifts in the community structure 

coincide with changes in the quantity; the peritrichs were significantly larger 
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than the choreotrichs and occurred in slightly higher densities. Peritrichs have 

stalked cell bodies, which probably allow them to take advantage of additional 

resources in higher layers of the water column. The data thus suggest that 

competitive exclusion due to warming can alter the density by the establishment 

of species with different properties with respects to both food exploration and 

density limitations. Such mechanisms in complex communities can lead to 

other effects of warming on the total density than those suggested by the 

applications of populations models rooted in metabolic theory (Gillooly et al.

2001; Savage et al. 2004).  

The positive effects of warming on both the abundance and on the biovolume in 

the early winter communities were probably due to stimulated growth at 

sufficient resource supply (Scherwass et al. 2005; Norf et al. 2007). However, it 

is remarkable that the stimulation of ciliates occurred stepwise between the two 

“low” (T0, +2oC) and the two “high” (+4, +6oC) temperatures, whereas a 

homogenous growth stimulation would suggest a continuous increase (Weisse

et al. 2002). The effects on the quantity were again accompanied by a clearly 

differentiated community structure, as demonstrated with the help of the Bray-

Curtis similarity of the ciliate abundances. Remarkably, no intermediate cluster 

occurred in response to the stepwise warming. It seems thus that the ciliate 

communities were initially buffered against small changes in temperature 

(T0 vs. +2oC) as has been discussed for other natural communities (Jiang and 

Kulczycki 2004). If this temperature range is exceeded, however, small 

temperature changes can lead to rapid changes in the community structure. 

Negative warming effects on community density are coupled to low resource 

availability during summer 

The two summer experiments focussed on different aspects of the effects of 

warming on the community composition. In the first experiment, the 

temperature was increased in four steps up to 33°C, which is distinctly higher 

than the maximal temperatures thus far recorded in the River Rhine (ca. 28°C). 

As this experiment revealed negative effects on the ciliate quantity (significant 
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for the ciliate biovolume), the second experiment was designed to determine 

whether or not these negative warming effects could be compensated by 

resource supplement, as has been suggested to be the case when the negative 

effects are due to increased metabolic costs (Laybourn and Finlay 1976; 

Savage et al. 2004). The alternative mechanism, i.e. that the warming effects 

are mainly due to thermal limitations of the different species, would imply that 

the effects cannot be compensated by resource supplement. 

Both summer experiments consistently show that warming above the summer 

ambient conditions (and without resource supplement) has negative effects on 

the total ciliate density, a result which stands in contrast to the findings of the 

two winter experiments. The temperature range of the first summer experiments 

was chosen to exceed thermal tolerance of many ciliate species. It was a 

surprising finding that no taxa consistently disappeared at higher temperatures. 

Thus, the lack of significant community effects could partly be due to the large 

variability and thus an overlay of temperature effects with random effects as 

indicated by a rather low (<40%) Bray-Curtis similarity. We also do not know 

whether or not cryptic responses beyond the taxonomic detection level 

occurred. An increasing number of studies highlight the existence of various 

geno- and ecotypes beyond the morphospecies level (Barth et al. 2006; Weisse 

and Rammer 2006). The frequency of such types can change in response to 

environmental factors, a mechanism which can stabilize the total morphotype 

abundance (Meyer et al. 2006; Yoshida et al. 2007). Such possibilities have 

been discussed for mesocosm experiments in which a temperature increase 

had driven microevolutionary responses in Simocephalus vetulus that buffered 

the total population of this zooplankter against environmental change (Van 

Doorslaer et al. 2007). Such mechanisms could be one reason for the lack of a 

significant response of the community structure towards warming.  

Nevertheless, it is still remarkable that clear indications for thermal limitations of 

morphotypes were lacking and that high temperatures did not lead to obvious 

shifts in the functional composition. The results of the resource supplement in 

the second summer experiment supported the conclusion that the summer 
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community was resource rather than temperature limited. The resource 

supplement compensated the negative warming effects on the total abundance 

and thus supported the conclusion that increasing metabolic costs at limited 

resource level are the main reason for the negative warming effect in the 

natural setting (Savage et al. 2004). This shows that resource availability rather 

than temperature limitation determines the quantity of ciliate summer 

communities, in contrast to the observations during winter, in which (low) 

temperature limitation rather than resource availability constrained the biofilm-

dwelling ciliate communities. Nevertheless, we also found effects on the 

community composition which coincided with significant warming effects on the 

biomass (but not on the abundance) for the treatments with supplemented 

resources. As discussed for the winter experiments above, such community 

shifts make the application of population models to the complex community 

difficult. In contrast to the winter effect, however, the biovolume generally 

decreased with warming in summer. The reason is probably metabolic cost: 

Laybourn and Finlay (1976) found ciliate growth to be constrained by 

temperature enhancement as a consequence of large respiratory energy 

losses. These losses increase dramatically with increasing body size. This 

could possibly explain the generally decreasing body mass in summer and that 

especially the number of large heterotrich ciliates was reduced in the summer 

2006 experiment. 

It is interesting that the communities established under warming plus resource 

supplement resembled the communities established without supplement (both 

warmed and non-warmed) whereas all three significantly differed from the 

community in the supplemented, non-warmed treatment. This finding supports 

the conclusion of a strong relationship between temperature and resources on 

the community level in that warming during times of resource surplus results in 

similar effects as resource limitation. Together with the results from the winter 

experiment, it further shows that communities are more likely to be affected by 

warming if resources are not limited. 
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C o n c l u s i o n  C o n c l u s i o n  C o n c l u s i o n  C o n c l u s i o n  

The present results emphasize the significance of the environmental conditions 

when considering community responses towards warming. Particularly the 

resource availability and the temperature-specific resource demand determine 

whether or not a temperature increase alters population growth or carrying 

capacity. Nevertheless, the community response towards warming can differ 

considerably from the responses of populations, as temperature increase can 

alter the community composition and thus favour the establishment of species 

with different properties regarding density regulation. The predictive value of 

population models for changes in the community density is thus limited. 
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Impact of planktonic and benthic resource supplements. Impact of planktonic and benthic resource supplements. Impact of planktonic and benthic resource supplements. Impact of planktonic and benthic resource supplements. 

A b s t r a c t  A b s t r a c t  A b s t r a c t  A b s t r a c t  

Four seasonal experiments were performed to test the impact of increased 

benthic and planktonic resource availability on the structure of biofilm-dwelling 

ciliate communities which were cultivated in river bypass systems. The growth 

of benthic bacteria was stimulated by the addition of dissolved organic carbon 

and the enrichment of the planktonic resource was achieved by 

supplementation with suspended bacteria. It was shown that both resource 

enrichments can differentially influence abundance and taxonomic structure of 

the consumer communities. Furthermore, both resources were found to 

influence different stages during biofilm colonization. Increased benthic 

bacterial growth mainly resulted in both an accumulation of primarily grazing-

resistant bacterial filaments and in an increase in the number of vagile 

heterotrophic flagellates. The effect on ciliates was an indirect stimulation of 

nanophagous ciliates (feeding mostly on the flagellates), rather than a direct 

stimulation of bacteriovorous ciliates. The effects of the planktonic bacteria 

enrichments were twofold: They could have been utilized either directly by 

suspension-feeding ciliates or indirectly through an enhanced growth of 

suspension-feeding attached heterotrophic flagellates, which were then in turn 

grazed upon by ciliates. The magnitude of responses of the total ciliate 

abundance to the two resource enrichments further depended on the seasonal 

conditions, thereby showing seasonally variable limitations of these resources. 

Furthermore, the particular taxonomic groups stimulated by one resource type 
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sometimes differed depending on the season, an observation which 

demonstrates that the response depends on different environmental factors and 

is not easily predictable based simply on resource type. Taken together, our 

results emphasize the need of a differentiated view on the effects of resources 

on complex biofilm-dwelling consumer communities with respect to both the 

origin of carbon source as well as the particular environmental conditions. 
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I n t r o d u c t i o n   I n t r o d u c t i o n   I n t r o d u c t i o n   I n t r o d u c t i o n   

Microbial assemblages on surfaces play an important role in the metabolic 

processes of both marine and freshwater environments. Especially in running 

waters, the major part of microbial activity is located in association with 

submerged surfaces (Bryers and Characklis 1982; Fischer et al. 2002). Besides 

consisting of algae and bacteria as primary producers, these so-called biofilms 

are also inhabited by a variety of consumers, in particular ciliates, which make 

up a large portion of the total biofilm biomass (Finlay and Esteban 1998). As 

ciliates can prey on a wide size spectrum ranging from bacteria to small 

micrometazoans (Parry 2004), they are likely to be among the most important 

mediators for energy- and matter flux within microbial biofilms.  

However, the effective function of biofilm-dwelling ciliate communities largely 

depends on their structure, both in terms of abundance as well as their 

taxonomical and functional composition. As ciliates can rapidly react to 

changes in their environment because of their high individual growth rates 

(Müller and Geller 1993) as well as a large local species pool (Andrushchyshyn 

et al. 2003; Müller et al. 1991), their community structure can be rapidly 

affected by changes in any of several abiotic and biotic factors 

(Andrushchyshyn et al. 2003; Gong et al. 2005; Primc-Habdija et al. 2005). 

Ciliate communities are particularly affected by resource availability, as has 

been shown in several field studies on planktonic (Andrushchyshyn et al. 2006; 

Scherwass and Arndt 2005; Wiackowski et al. 2001) and biofilm-dwelling (Gong 

et al. 2005, Wickham et al. 2004) ciliate assemblages. As inhabitants of 

interfaces, biofilm-dwelling ciliates have potential access to both suspended as 

well as surface-associated particles, and the successful utilization of these 

resources largely depends on their specific feeding mode (Parry 2004). The 

ability to consume suspended particles is mainly found in ciliate taxa which can 

produce a water current by the movement of either their apical cilia 

(e.g. peritrichs), of outstretched membranelles (e.g. scuticociliates, 

hymenostomes) or of adoral membranelles (e.g. heterotrichs, stichotrichs, 

hypotrichs and choreotrichs). Other ciliate taxa, which mainly crawl over 
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the substrates, feed on surface-associated particles such as algae, different 

bacterial morphs or flagellates, by the use of “food baskets” (e.g. cyrtophores, 

nassophores) or specific oral clefts (e.g. litostomes, prostomes). These 

differences in the feeding morphologies of ciliates suggest that each taxon has 

specific demands regarding its resource. However, many taxa are known to 

feed on more than one prey, and even suspension-feeding ciliates can actually 

utilize benthic resources (Parry 2004). Despite their pronounced contribution to 

ecosystem function, there is still a lack of case studies which document the 

contribution of the two resource types (suspended versus surface-associated) 

in structuring natural consumer communities within biofilms. 

Two different experimental approaches are mainly utilized to investigate the 

coupling between communities and their resources. Laboratory experiments 

which allow the direct and standardized manipulation of food sources mainly 

focus on the process of resource uptake and growth responses of cultured 

ciliates to different nutrient levels. Species usually respond positively to 

increased resource availability, which results in higher feeding and growth 

rates. However, the transposition of laboratory results to complex field 

communities is sometimes problematic, as similar experimental setups in the 

laboratory and in the field can produce different results, as shown for the 

response of peritrich ciliates to experimentally increased sedimentation 

(Bergtold and Traunspurger 2005). Field studies are mainly used to investigate 

the value of bottom-up factors in controlling complex field communities. They 

have already demonstrated the likely importance of the availability of resources 

especially for planktonic ciliate communities by correlating the environmental 

setting to ciliate abundances and community identities (Carlough and Meyer 

1989; Gong et al. 2005; Kisand and Zingel 2000, Müller et al. 1991). These 

suggestions were taken up in some manipulative field studies, in which the 

resource level was indirectly stimulated by fertilization in order to enhance the 

growth of prey (e.g. bacteria, algae) for ciliates. However, the results of these 

studies are oftentimes controversial and strongly differ depending on the site, 

season, and duration of the observation. For example, Hillebrand et al (2002) 
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found some weak effects of supplemental nutrients in lake mesocosms on 

bacteria, heterotrophic flagellates and ciliates, whereas Wilcox et al (2005) 

observed significant effects of labile carbon addition to the headwater of a 

stream on bacteria and metazoans, but no effect on heterotrophic flagellates 

and ciliates. Hence, a mechanistic understanding on the effects of resources on 

biofilm consumer communities can only be accomplished by direct manipulation 

of the resource level and by investigations with high temporal resolution. 

The aim of this study was to test the effect of increased resource availability on 

the structure of semi-natural, biofilm-dwelling ciliate communities and to 

determine the pathways through which resources can be acquired by these 

communities. Using two different resource enrichments, we focused on (1) the 

response of ciliates to indirect resource manipulations by stimulating the growth 

of benthic bacteria with DOC and (2) the response of ciliates to direct 

enhancement of planktonic bacteria by permanent addition of pre-cultured 

bacteria to the experimental facilities. Our hypothesis was that both resource 

types significantly alter the ciliate community structure, although in different 

ways. The DOC enrichment should indirectly stimulate the growth of biofilm-

dwelling ciliates due to an enhanced growth of benthic bacteria and thereby 

also of vagile heterotrophic flagellates as consumers of the bacteria. The 

enhancement of the planktonic bacteria, in contrast, was expected to directly 

stimulate the growth of ciliate taxa which can efficiently collect suspended 

particles from the water flow (e.g. peritrichs, scuticociliates). The experimental 

setup was designed to combine the advantages of laboratory studies 

(standardized experimental conditions and community analyses with high 

temporal resolution) and those of field studies (utilization of natural ciliate 

assemblages). This was achieved by growing and experimentally manipulating 

biofilms in flow cell systems connected to river water as a source of biofilm-

colonizers and ambient resources supply. 
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M a t e r i a l  a n d  M e t h o d s  M a t e r i a l  a n d  M e t h o d s  M a t e r i a l  a n d  M e t h o d s  M a t e r i a l  a n d  M e t h o d s  

Study site and experimental setup 

All experiments were performed aboard the Ecological Rhine Station of the 

University of Cologne (Cologne, Germany, Rhine-km 684.5, which refers to the 

distance from Lake Constance, the source of the non-alpine Rhine) – a moored 

laboratory ship that is located in the main stream of the River Rhine. The 

primary tool of all experiments were miniature flow cells which were adapted 

from laboratory experiments (Stoodley et al. 2001) and now can also be used 

for the cultivation and non-destructive live observation of field-related biofilm 

communities (Norf et al. 2007). The flow cells consist of a plastic chamber with 

the size of a standard object slide, enclosing a space of 3.6 ml volume. This 

area is enclosed by an object slide on the bottom and a cover slip on the top. 

The flow cells are then fed with fresh Rhine River water through miniature tubes 

at the short flow cells margins using impeller pumps. The utilization of original 

Rhine River water provided the species-pool for biofilm colonization as well as 

the ambient nutrient supply. This ambient supply in the natural water was then 

further supplemented with additional resources (see below). The flow cells are 

designed to fit on a standard cross table of a microscope. A more detailed 

description of the flow cells used here is given by Norf et al (2007). 

Experimental setup and culturing methods 

The experiments described hereafter were conducted during four periods in 

2006 and 2007, covering four different seasons (hereafter: fall 2006, winter, 

spring and summer 2007). All experimental treatments were performed in 

triplicate. Temperature was logged on every observation date with a digital 

thermometer. The ambient settings for the experiments including planktonic 

bacterial and algal abundances as well as DOC concentrations are given in 

Table 1. Planktonic bacterial (DAPI-counts) and data on algal abundances were 

kindly provided from routine observations by Marcel Kathol and Maria Gies 

(University of Cologne). Information on DOC amounts were kindly provided by 

the Gas- und Elektrizitätswerke Köln (GEW, Cologne, Germany). 
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Two different experimental designs were applied in each season to test the 

impact of enhanced benthic and planktonic resource availability on developing 

biofilm-dwelling ciliate communities, starting from sterile (autoclaved) surfaces. 

Both designs were run in parallel, thus allowing cross-comparisons. The first 

design accounted for the effects of stimulated benthic bacterial growth on the 

development of ciliate communities by adding DOC in the form of yeast extract 

to the flow cells (hereafter: DOC ENR); a second setup did not obtain any 

supplemental resource and thus only contained the ambient resources of the 

Rhine water (hereafter: AMB). For preparation, 0.5 mg l-1 yeast extract (Sigma-

Aldrich Co.) were suspended in particle-free Rhine River water and autoclaved. 

The suspension was then fed into the flow cells with impeller pumps and sterile 

miniature silicone hoses. The DOC solution was diluted 1:100 with original 

Rhine River, resulting in a final concentration of 0.005 mg l-1 yeast extract within 

the flow cells. This concentration was shown to sufficiently enhance - but not 

exceed – the bacterial growth within the flow cells in pre-experiments. A slightly 

higher concentration (0.01 mg l-1) resulted in excessive bacterial growth and 

associated oxygen depletion within the flow cells after approximately one week, 

making a detection of the carrying capacity for ciliates impossible (Norf et al. 

2007). 

Season Duration Temp.

(ºC) 

DOC

(µg ml-1) 

Plankt. bacteria

(106 cells ml-1) 

Plankt. algae

(cells ml-1) 

2006

  Fall Oct 30. –Nov 13. 12.0±0.6 2.9±0.1 0.9±0.2 450±85

2007

  Winter Feb 1.-15. 7.0±0.4 2.8±0.5 1.7±0.2 718±176

  Spring Apr 24. – May 6. 19.2±0.7 2.2±0.1 2.6±0.6 13,006±2,120

  Summer Aug 23. – Sep 2. 19.7±0.9 2.7±0.2 1.6±0.2 967±60

Table 1.Table 1.Table 1.Table 1. Ambient settings of selected environmental variables in the River Rhine 
during the seasonal experiments. The given values are the mean values (±SD). 
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The second setup was designed to help determine the influence of suspended 

bacteria as one planktonic prey on the development of biofilm-dwelling ciliate 

communities. Therefore, a suspension of vital non-toxic bacteria 

(Pseudomonas putida, MM1; Dütz et al. 1994) was fed into the flow cells 

(hereafter: BAC ENR). P. putida is a common bacterium that has often been 

shown be an optimal food for bacteriovorous ciliates (Eisenmann et al. 1998; 

Tso and Taghon 1999). A second treatment was supplied with a filtrate (0.2µm) 

of the bacterial culture (hereafter: BAC CON), which served as the baseline for 

the BAC ENR to distinguish the effects of the suspended prey (bacteria) from 

possible effects of leaching products on the experimental biofilms. For 

preparation, kryo-preserved P. putida were cultured in 50% M9 culture medium 

(Hahm et al. 1994) containing 0.04 g l-1 glucose at room temperature (20°C). 

The cultures were harvested by centrifugation at 3,400 g after two days. This 

treatment of the bacteria was shown to reduce the ability of biofilm formation 

with P. putida (Bell et al. 2005). Afterwards, the pellet was suspended in 50ml 

Pratt medium (Pratt and Salomon 1980) - a minimal culture medium with low 

osmolarity - in order to remove the residual glucose from the cultures. The 

cultures were then refrigerated (+4ºC) for two days and then harvested by 

centrifugation as described above. After the cell density was determined by the 

use of a Helber counting chamber (W. Schreck, Hofheim, Germany), 

a suspension containing 1x108 ind. ml-1 (final abundance) was prepared in 

500 ml Pratt medium using standard reagent bottles. The two solutions 

(bacteria and filtrate) were added to the BAC ENR and the BAC CON 

treatments with sterile silicone hoses. Because the ratio of bacteria solution to 

field water in the flow cells was 1:100, the final concentration of P. putida in the 

flow cells was 106 ind. ml-1. This concentration of bacteria was chosen in order 

to significantly enhance the abundance of the naturally occurring planktonic 

bacteria (which was determined to be between 0.9 and 2.6 x 106 ind. ml-1, see 

Table 1). The bacteria suspensions were kept in a water bath at 6oC during the 

experiments and were renewed every two days. 
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Data analysis 

The development of the microbial biofilms was tracked for at least ten days, 

starting from sterile surfaces. Four categories of organisms were included in the 

surveys, with ciliates being the major subject of the experiments. Therefore, the 

early succession of biofilm-dwelling ciliates was tracked for at least ten days by 

examining an area with a minimum of 60 individuals using a microscopic grid, 

which was repeatedly placed randomly at different spots of the flow cell. The 

taxonomic composition of the present ciliates was recorded on the basis of 

taxonomic units (either class or subclass) using standard literature (Foissner 

and Berger 1996). After completion of the experiments, two different measures 

were taken in order to estimate both the colonization speed and the carrying 

capacity. We utilized regression models in order to calculate the time-span (t50) 

until 50 ind. cm-2 had colonized the inner flow cell surfaces. The exponential 

model used was A=a*eb*time with A being the ciliate abundance (ind. cm-2). The 

two variables a and b were calculated by iteration using the SPPS 15.0 

software (Statcon Ltd.). This procedure was similar to that performed for 

temperature manipulation experiments with biofilm-dwelling ciliate communities 

as described in Norf et al (2007). The regression estimates thus obtained were 

solved with a theoretical ciliate abundance of A=50 ind. cm-2 in order to 

estimate the time span until 50 ciliates cm-2 had populated the inner flow cell 

surfaces (t50). The maximum observed abundance of biofilm-dwelling ciliates as 

an estimate for the carrying capacity was extracted directly from the 

experimental raw data for each treatment and replicate, irrespective of the date 

on which this abundance was observed. Both measures, the calculated factor 

t50 and the empirically determined maximal abundance of ciliates, were 

compared pair wise using the Student T-Test: The AMB treatment (no resource 

added) served as the baseline for the flow cells which obtained the DOC 

enrichment (DOC ENR). The filtrate of the bacterial culture (BAC CON) 

provided the baseline for the flow cells which obtained the supplemental pre-

cultured bacteria (BAC ENR) to separate the pure effects of the fed bacteria 

from possible effects of leaching products of the bacterial cultures. 
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In the following analyses, we focussed on differences in the succession pattern 

due to resource enrichment during the experimental phase. Therefore, repeated 

measures ANOVAs (rmANOVAs) were calculated with time as the inner-subject 

factor and treatment (resource enrichment) as the between-subject factor. 

Using the rmANOVA we tested for effects of enhanced resource availability on 

both the total ciliate abundances as well as on specific taxonomic units (either 

classes or subclasses). All analyses were performed as pair wise comparisons 

(AMB vs. DOC ENR and BAC CON vs. BAC ENR). In addition to the ciliates, 

we also tracked the number of bacterial filaments, heterotrophic flagellates 

(hereafter: HF) and rotifers as concomitant parameters on representative days 

within the experiments. Therefore, the abundance of bacterial filaments 

(>20µm) and HF was determined for an area of 0.05 cm2 using a microscopic 

grid at 200x magnification. We also calculated the biovolume of the bacterial 

filaments by measuring each filament (length, diameter) and considering the 

filaments to be cylindrical in shape. The HF abundance was recorded for vagile 

(motile) and sessile HF separately and was used to check for significant 

differences in the succession patterns using rmANOVA as described above. 

Rotifers were generally represented in low quantities. A larger number of 

rotifers, which was expected to contribute to the biofilm dynamics, was 

observed only in spring 2007. Here, the abundance of rotifers was determined 

in a representative area of approximately 0.5 cm-2 using a microscopic grid at 

50x magnification. 

R e s u l t s  R e s u l t s  R e s u l t s  R e s u l t s  

The experimental biofilm-dwelling microbial communities exhibited a highly 

seasonally-dependent pattern in terms of abundance, taxonomic composition 

and response towards the resource manipulations. Besides the detailed 

investigation of the present ciliate communities, we also recorded and analyzed 

additional data for HF as possible ciliate prey, bacterial filaments as a (though 
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Fig. 1.Fig. 1.Fig. 1.Fig. 1. Biovolume (µm3 cm-2) of bacteria filaments (>20µm length) which developed in 
the flow cells during the experiments. (A) winter 2007, (B) spring and (C) summer 
2007. The symbols for the DOC ENR and the BAC ENR experiments were separated 
by 0.5 days on the x-axis for optical purposes, even though they refer to the same 
sample dates. Error bars (for optical reason in one direction only) represent SD. 

not fully) grazing-resistant morphotype and for rotifers as possible consumers of 

ciliates. 

Growth of bacterial filaments within the flow cells 

The development of bacterial filaments within the flow cells was recorded for all 

experiments and treatments. These filaments were quantified in winter, spring 

and summer 2007. The maximum bacterial filament biovolume was rather low 

in the AMB flow cells, ranging from 0.04 to 0.06 x 107 µm3 cm-2 (Fig. 1); the 

addition of DOC (treatment DOC ENR) significantly increased the biovolume in 

all experiments (Fig. 1, Table 2), with the strongest impact found in winter 2007 

(max. 2.4 x 107 µm3 cm-2). A tendency towards enhanced bacterial growth was 

often recorded in the BAC CON flow cells, in contrast to the BAC ENR flow 

cells. However, the only significant increase in bacterial filament volume in the 

BAC CON treatment appeared in summer 2007 (Fig. 1, Table 2). 

Responses of heterotrophic flagellates (HF) to resource enrichments 

HF abundances were recorded separately for vagile HF (e.g. the mostly 

benthivorous genera Neobodo, Rhynhomonas and Ancyromonas) and sessile 

HF (e.g. the mostly planktivorous genera Monosiga, Codonosiga and 

Anthophysa) in order to distinguish possible effects of enhanced benthic and 

planktonic resource availability on these two different HF groups. 
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Fig. 2.Fig. 2.Fig. 2.Fig. 2. Abundance of heterotrophic flagellates (HF). The total abundance of HF was 
split into (first row, A-D) vagile HF and (second row, E-H) sessile HF. The symbols for 
the DOC ENR and the BAC ENR experiments were separated by 0.5 days on the
X-axis for optical purposes, even though they refer to the same sample dates.
Error bars (for optical reasons in one direction only) represent SD. 

 Vagile HF abundances generally increased rapidly within the first days of 

succession in all treatments, whereas the development of the sessile HF 

communities was always delayed. The maximal abundance of vagile HF varied 

between 1,000±200 (fall 2006) and 2,100±400 ind. cm-2 (winter 2007) 

in the AMB treatments. The abundance was significantly increased by DOC 

ENR (Table 2) in all four experiments, resulting in maximal abundances of 

between 1,600±500 (fall 2006) and 3,600±800 (winter 2007) ind. cm-2. In the 

BAC ENR treatment, the maximal observed abundances of vagile HF ranged 

between 1,600±500 (spring 2007) and 5,800±2,000 (fall 2006) ind. cm-2. 

Although this vagile HF abundance in fall 2006 was the highest recorded during 

the experiments, there was no significant difference between this value and the 

BAC CON baseline (Table 2); the only significant difference between the BAC 

ENR and the BAC CON treatments for vagile HF appeared in winter 2007 

(rmANOVA: treatment, p<0.05). Maximal sessile HF abundances ranged 

between 3,500±650 (summer 2007) and 9,900±3,500 (spring 2007) ind. m-2 in 

the AMB treatments and were not affected by the  DOC ENR (Fig. 2, Table 2). 

The BAC ENR resulted in a strongly significant increase of sessile HF in 

comparison to BAC CON (Table 2) to maxima between 7,300±3,200 (summer 

2007) and 54,500±15,800 (spring 2007) ind. cm-2 (Fig. 2) 
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Fig. 3.Fig. 3.Fig. 3.Fig. 3. Impact of resource enrichment 
on two selected variables during the 
early development of biofilm-dwelling 
ciliate communities. (A) Colonization 
speed t50, as determined by non-linear 
regressions. A lower value in t50

means faster succession, as indicated 
by the direction of the arrow.
(B) Maximum abundance (ind. cm-2) of 
ciliates observed during the 
experiments. Asterisks (*) indicate 
significant differences between the 
treatments (T-Test, *p<0.05, **p<0.01). 
Error bars represent SD. 

In spring 2007, however, sessile HF abundance was observed to decrease 

rapidly after initially peaking on day 5. In all other experiments, sessile HF 

accumulated towards the end of the experiments. 

Impact of resource enrichment on the density of biofilm-dwelling ciliate 

communities 

We attempted to partition possible effects of resource enrichments on ciliate 

communities by concentrating on possible differences within the earliest phase 

of succession as well as on the maximum abundance of ciliates. Using non-

linear regressions, we first calculated the time span until 50 ciliates cm2 had 

colonized the inner flow cell surfaces. This factor t50 (Fig. 3A) varied greatly with 

the season with regards to the AMB treatment, with the fastest colonization 

(lowest t50) observed in spring 2007 (2.2±0.1 days) and the slowest colonization 

(highest t50) in winter 2007 (7.4±0.1 days). The impact of the DOC ENR on t50

was generally low. Though a tendency to faster succession was always 

observed, the only significant reduction of t50 was found in summer 2006 (T-

Test, p<0.05). The BAC ENR treatment always resulted in a significant 

reduction of t50 (T-Test, p<0.05).Analogous to the high seasonal variation in the
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 colonization rate, there were also large differences found in the maximum 

ciliate abundance (Fig. 3B). The highest maximum abundance regarding the 

AMB setting was observed in spring 2007 (470±50 ind. cm-2). The lowest 

maximum ciliate abundance appeared in fall 2006 (180±10 ind cm-2). 

At no time did the DOC ENR result in a significant increase in the maximum 

ciliate abundances compared to the AMB treatment. In contrast, BAC ENR 

always resulted in a maximum ciliate abundance significantly (T-Test, p<0.05) 

higher than that of the BAC CON baseline. Here, the strongest enhancements 

of ciliate maximum abundances were recorded in fall 2006 (390±50 vs. 170±10 

ind. cm-2) and in spring 2007 (830±60 vs. 490±30 ind. cm-2). 
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  Time Treatment Time x Treatment 

  F (1, 4) F (7, 28) F (7, 28) 

AMB vs. DOC ENR     

Bacteria fall 2006 

winter 2007 

spring 2007 

summer 2007 

- 

4.09* 

1.32 

7.82* 

- 

109.11*** 

39.62*** 

21.06** 

- 

5.13* 

3.80* 

5.36* 

HF (vagile) fall 2006 

winter 2007 

spring 2007 

summer 2007 

9.81*** 

26.39*** 

27.77*** 

97.83*** 

9.34* 

13.27* 

11.26* 

24.34** 

0.52 

1.88 

2.36 

15.83*** 

HF (attached) fall 2006 

winter 2007 

spring 2007 

summer 2007 

19.63*** 

9.48*** 

6.81*** 

11.70*** 

0.62 

1.92 

0.41 

3.98 

1.67 

0.28 

0.13 

1.08 

Ciliates fall 2006 

winter 2007 

spring 2007 

summer 2007 

244.80*** 

73.90*** 

54.55*** 

50.93*** 

6.19 

7.57 

6.77 

2.27 

3.73** 

2.26 

4.59** 

2.93* 

Continued on page 78 

Table 2.Table 2.Table 2.Table 2. Results of the repeated measurement ANOVA (rmANOVA) design to test for 
significant effects of resource enrichments on the biovolume of bacterial filaments 
and abundance of mobile and attached HF as well as ciliates in pair-wise 
comparisons (AMB vs. DOC ENR and BAC CON vs. BAC ENR). Values represent
F-ratios and asterisks indicate significance (* p<0.05, ** p<0.001, *** p<0.001). 
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Fig. 4.Fig. 4.Fig. 4.Fig. 4. Influence of stimulated benthic bacterial growth by DOC on the succession of 
semi-natural ciliate communities over time. The upper bold line in each figure 
denotes the total abundance (±SD) of ciliates. (A, C, E, G) AMB treatment with no 
supplemental resource added to the flow cells. (B, D, F, H) DOC ENR treatment with 
an additional carbon source (yeast extract) fed to the flow cells. Each row represents 
the ciliate communities of one seasonal experiment as indicated in the figure. 

Structural responses of ciliate communities to enhanced resource availability 

Figures 4 (AMB vs. DOC ENR) and 5 (BAC CON vs. BAC ENR) show both the 

numerical and taxonomical succession of the experimental biofilm-dwelling 

ciliate communities. Both experimental resource enrichments, DOC ENR and 

BAC ENR, did not result in a seasonal coherent stimulation of specific 

taxonomic units (either classes or sub-classes). As applied for the total 

abundances of ciliates and HF, we also performed rmANOVA for the taxonomic 

succession. The results for this rmANOVA design are given in Table 3.  

The observed responses of the experimental ciliate communities to enhanced 

benthic bacterial growth caused by the DOC ENR were generally slight. 

However, distinct overall effects of the experimental enrichment appeared as a 

significant stimulation of hymenostomes in fall 2006 and winter 2007 (Table 3, 

Fig. 4 A-D). Further significant effects were observed with some surface-

grazing taxa: scuticociliates apparently benefit from the resource enhancement 

as observed for significant ´treatment´ effects in winter and spring 2007 (Table 

3, Fig. 4 C-F). Strong effects were also observed for cyrtophorids, which were 

increased in the DOC ENR in summer 2007. This increase, however, was 

mainly restricted to the early phase of succession as determined by a 

significant interaction of ´treatment x time´ (p<0.01) in the rmANOVA (Table 3). 
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Fig. 5.Fig. 5.Fig. 5.Fig. 5. Influence of enhanced planktonic bacterial density on the succession of semi-
natural ciliate communities over time. (A, C, E and G) The BAC CON treatment 
served as the control treatment for (B, D, F, and H) the BAC ENR treatment which 
obtained a suspension of bacteria as an additional resource. The upper bold line in 
each figure denotes the total abundance (±SD) of ciliates. Each row represents the 
ciliate communities of one seasonal experiment as indicated in the figure. 

The influences of the BAC ENR were generally more diverse and pronounced 

than those of the DOC ENR. As expected from the experimental setup, 

suspension-feeding ciliate taxa such as scuticociliates and peritrichs were 

stimulated in all seasonal experiments (for details see Table 3). The significant 

increase of scuticociliates in fall 2006 was accompanied by a stimulation of 

litostomes, which was also significant for the interaction ´time x treatment´ 

(p<0.01). Choreotrichs were negatively influenced by the BAC ENR, i.e. they 

dominated the BAC CON treatment whereas the BAC ENR was dominated by 

peritrichs. This differential development of choreotrichs in the two treatments 

developed during the end of the experimental period and is statistically 

supported by significant ´time x treatment´ interactions (Table 3, p<0.05). 

In contrast, stichotrichs were positively influenced by the enrichment with 

planktonic bacteria. This stimulation was confirmed by the rmANOVAs in fall 

2006 and winter 2007 (Table 3, Fig. 6 A-D).  

Abundance of rotifers on the experimental biofilms 

In fall 2006, winter and summer 2007, rotifers appeared in low densities 

(generally <5 ind. cm-2) and only towards the end of the experiments. The only 

remarkable amount of rotifers was recorded in spring 2007 (Fig. 6) with 

maximal abundances of 29.5±7.5 ind. cm-2 in the AMB flow cells. In the DOC 

ENR, rotifer abundance increased continuously, reaching a maximum of 

100±45 ind. cm-2 at the end of the experiment (day 12). The maximum rotifer 

abundance in the BAC CON baseline was 40±0 ind. cm-2; in the BAC ENR 

treatment it was slightly higher (50±10 ind. cm-2). 
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Continued from page 73 

  Time Treatment Time x Treatment 

  F (1, 4) F (7, 28) F (7, 28) 

BAC CON vs. BAC ENR     

Bacteria fall 2006 

winter 2007 

spring 2007 

summer 2007 

- 

8.50*** 

1.66 

4.81* 

- 

1.23 

1.63 

3.39 

- 

1.35 

0.19 

3.81* 

HF (vagile) fall 2006 

winter 2007 

spring 2007 

summer 2007 

2.36 

19.50*** 

22.42*** 

42.23*** 

5.46 

9.08* 

0.36 

1.36 

2.75 

0.72 

1.96 

1.62 

HF (attached) fall 2006 

winter 2007 

spring 2007 

summer 2007 

71.04** 

29.72** 

7.56 

45.85** 

20.45* 

22.71** 

16.63* 

13.53** 

28.64*** 

20.87*** 

6.59*** 

3.37** 

Ciliates fall 2006 

winter 2007 

spring 2007 

summer 2007 

158.40*** 

173.71*** 

55.76*** 

57.09*** 

71.04** 

29.72** 

7.56 

45.85** 

28.64*** 

20.87*** 

6.59*** 

3.37** 



Control of early ciliate communities by resources 

79

Fig. 5. Fig. 5. Fig. 5. Fig. 5. Abundance of rotifers in spring 2007 
on a real-time axis. The symbols for the DOC 
ENR and the BAC ENR experiments were 
separated by 0.5 days on the X-axis for 
optical purposes, even though they refer to 
the same sample dates. Error bars represent 
SD. Rotifers only occurred in very low 
abundances during the other times. 

D i s c u s s i o n  D i s c u s s i o n  D i s c u s s i o n  D i s c u s s i o n  

The impacts of direct and indirect resource enrichments on biofilm-dwelling 

ciliate communities were tested for the first time in open river bypass systems. 

These systems allowed both the direct, controlled manipulation of the resource 

level as well as live observation of the developing ciliate communities. The high 

temporal resolution of the experiments facilitated the identification of short-term 

effects of the enhanced resource availability, which could have been 

overlooked on a coarser time scale. This problem of missing key events in the 

development of communities was recognized in different field studies with 

nutrient enrichments, as discussed by Wickham et al. (2004). By combining two 

different experimental approaches (distinct manipulation of the resource level 

and type as well as usage of natural ciliate assemblages), we succeeded in 

detecting seasonal dependencies of the same resource treatments on 

developing biofilm communities. Both resource enrichments, DOC ENR and 

BAC ENR, were found to significantly affect the speed with which ciliates 

colonize biofilms, to influence the ciliate population size and to alter the 

community composition. However, the magnitude of responses of the  



Chapter 3. 

80

Season Tax. Unit Time Treatment Time x Treatment 

AMB vs. DOC ENR  F (5, 20) F (1, 4) F (5, 20) 

  Fall 2006 Hymenostomatia 3.47* 31.47** 2.61 

 Nassophorea 1.12 0.36 9.36* 

  Winter 2007 Hymenostomatia 4.28** 20.29* 3.05* 

 Scuticociliatia 5.12** 10.41* 0.94 

  Spring 2007 Choreotrichia 46.77*** 0.20 10.61*** 

 Scuticociliatia 38.16*** 8.10* 2.28 

  Summer 2007 Cyrtophoria 13.54*** 7.52 7.25** 

 Hypotrichia 2.94* 1.80 3.30* 

BAC CON vs. BAC ENR     

  Fall 2006 Litostomatea 12.20*** 2.47 5.25** 

 Scuticociliatia 11.38*** 12.79* 4.94** 

 Stichotrichia 7.67*** 2.50* 3.44 

  Winter 2007 Cyrtophoria 16.00*** 138.10*** 8.69*** 

 Peritrichia 11.47*** 5.36 7.96*** 

 Scuticociliatia 11.44*** 31.30** 1.67 

 Stichotrichia 23.86*** 9.99* 5.93** 

  Spring 2007 Choreotrichia 83.03*** 0.05 9.81*** 

 Hymenostomatia 1.52 25.69** 2.47 

 Hypotrichia 3.24* 13.09* 3.03 

 Litostomatea 31.12*** 12.56* 1.10 

 Nassophorea 6.08** 1.61 4.97** 

 Peritrichia 13.16*** 3.79 2.79* 

  Summer 2007 Choreotrichia 10.74*** 0.31 2.74* 

 Nassophorea 2.47 4.06 3.16* 

 Peritrichia 40.08*** 61.42** 23.75*** 

 Scuticociliatia 6.25** 4.50 3.09* 

Table 3. Table 3. Table 3. Table 3. Results of repeated measurement ANOVA (rmANOVA) design to test for significant 
effects of resource manipulations on specific taxonomic units among ciliates in pair-wise 
comparison (AMB vs. DOC ENR and BAC CON vs. BAC ENR). Values represent the F-ratios 
and asterisks indicate significance (* p<0.05, ** p<0.01, *** p<0.001). Although all taxonomic 
units (either class or subclass) were tested, the table is limited to those which showed at least 
one significant between-subjects effect, i.e. either treatment or time x treatment. 
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experimental ciliate communities to resource enrichment strongly depended on 

both the season as well as on the stage of succession, as shown by different 

fertilization experiments using field communities (e.g. Andrushchyshyn et al. 

2006, Sekar et al. 2002).  

Limited impact of moderate DOC enrichment on biofilm-dwelling ciliate 

communities 

With the addition of supplemental DOC to the developing microbial 

communities we intended to stimulate the growth of benthic bacteria in order to 

investigate the trophic linkage between bacterial biofilms and protozoans. This 

is a controversial subject in the field of microbial ecology, as bacterial biofilms 

are generally thought of as being resistant to protozoan grazing. This resistance 

shall result from the quorum-sensing regulated formation of microcolonies and 

bacterial filaments which can be stimulated by protozoan grazing and which 

make bacteria further inedible for protozoans (Matz et al. 2004; Matz and 

Kjelleberg 2005). Although recent studies have shown that different stages of 

bacterial biofilms can be grazed upon by distinct protozoa in the lab (Huws et 

al. 2005; Queck et al. 2006; Weitere et al. 2005), there has thus far been no 

evidence for the trophic relevance of bacterial biofilms for protozoan field 

communities. 

We were able to detect manifold effects of the experimental resource 

enrichment on the developing biofilm-dwelling protozoan communities. In the 

first instance, a temporary significant stimulation of mostly benthivorous vagile 

HF was observed in all seasonal experiments. This stimulation has likely 

resulted from an enhanced utilization of benthic bacteria. However, vagile HF 

abundance generally declined over the further course of the experiments. There 

are several possible explanations for this: First of all, the initial HF grazing on 

the early bacterial biofilms could have induced the formation of inedible 

bacterial colonies (as demonstrated here by the formation of bacterial 

filaments) which prevented HF from further grazing upon benthic bacteria and 

thus resulting in a lack of resources for the vagile HF (as shown for the 
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flagellate Rhynchomonas nasuta when grazing on Pseudomonas aeruginosa

biofilms in the lab; Matz et al. 2004). Furthermore, vagile HF could have been 

grazed upon by other protists such as ciliates, as we expected when planning 

the experiments. By this means, particularly cyrtophorids are likely to be 

responsible for the decline of vagile HF in summer 2007. This interaction will be 

mentioned later in the discussion. 

The next observed effects of the DOC ENR were found for the ciliates. The 

impact of the DOC ENR on the total ciliate abundance was generally low; the 

only significant effect appeared as an accelerated speed of colonization of the 

experimental biofilms in summer 2007. This finding agreed with previous 

studies, which have shown that DOC enrichment can significantly accelerate 

initial biofilm colonization by ciliates, especially at high temperatures (Norf et al. 

2007). More complex responses to the resource enrichment were found with 

regards to the taxonomic structure of the experimental ciliate communities: 

Especially surface-browsing ciliates such as cyrtophorids, nassophores, 

hymenostomes and members of the scuticociliates (e.g. Cinetochilum) were 

significantly stimulated in particular seasonal experiments. It is very likely that 

the observed significant increase of ciliate taxa such as cyrtophorids and 

nassophores was a response to the enhanced HF abundance (see above) 

rather than to an enhanced abundance of biofilm bacteria (Franco et al. 1998). 

This assumption was confirmed by live observations of these ciliates grazing on 

vagile HF. Especially cyrtophorids have accounted for the significant enhanced 

colonization speed in summer 2007 (Figs. 2, 4). In contrast, the significant 

stimulations of hymenostomes and scuticociliates could have been due to the 

stimulated benthic bacterial growth itself, as members of both taxa are known to 

be capable of grazing efficiently on either suspended or attached bacteria, as 

shown for interstitial habitats (Königs and Cleven 2007). However, members of 

these two taxa exhibited different succession patterns within the experiments. 

The scuticociliate Cinetochilum, for instance, was mainly present in the earliest 

phases of succession and presumably grazed on loose bacteria and small 

bacterial colonies. In contrast, larger amounts of hymenostomes appeared as 
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soon as bacterial filaments had developed within the flow cells in fall 2006 (data 

not shown) and winter 2007 (Fig. 1). In this experiment, especially the 

hymenostome Glaucoma was observed to glide on the bacterial filaments and 

remove short fragments from their ends. However, Glaucoma was the only 

ciliate that could have benefited from the formation of otherwise grazing-

resistant bacterial morphotypes. In the majority of cases, we could not find 

indications for the propagation of the bacterial filament biomass to higher 

trophic levels. These weak responses of bacteriovorous ciliates in our 

experiments was surprising, as recent lab studies have shown that ciliates from 

different taxa can efficiently reduce even mature bacterial biofilm biomass 

(Huws et al. 2005; Weitere et al. 2005). Nevertheless, the indirect stimulation of 

ciliates due to the preceded grazing of vagile HF that benefited from the 

enhanced bacterial growth confirms that HF can act as a trophic link between 

bacteria and higher trophic levels also within biofilms, as known for the plankton 

(Azam et al. 1983). 

The ambient DOC load in the River Rhine at any particular season (Table 1) did 

not allow any a-priori prediction on how the experimental communities would 

react to the manipulative input of 0.005 mg l-1 yeast extract. This is probably 

due to the fact that the amount of refractive vs. biologically available DOC is 

determined by several environmental variables (Meyer 1994). On the other 

hand, the overall slight response to our experimental supplementation of a 

defined DOC amount is dose-dependent. It should be noted, however, that a 

slightly higher dose of supplemental yeast extract (0.01 mg l-1) was already 

found to cause excessive growth of bacteria within the flow cells in temperature 

manipulation experiments (Norf et al. 2007). This was accompanied by strong 

changes in the microenvironment (such as oxygen depletion), as indicated by 

the occurrence of protozoan taxa typical for an environment with oxygen 

deficiency. The aim of the present paper was to explicitly consider the impact of 

a moderate DOC supplement on a given grazer community rather than to track 

drastic changes in response to high DOC loads. 
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Enhanced planktonic bacterial density can significantly affect ciliate community 

structure 

Compared to the generally weak effects of the DOC ENR on ciliate 

communities in our experiments, the responses of ciliates to the enhanced 

availability of planktonic bacteria were distinct and pronounced. Calculation of 

the factor t50 revealed that the density of planktonic resources is a strong trigger 

for the colonization speed of biofilms by ciliates, as the enrichment of planktonic 

bacteria sufficed to accelerate initial colonization significantly in all seasonal 

experiments. This reduction of t50 was weakest in spring 2007 – the season with 

the highest load of planktonic bacteria and algae by far (Table 1) – showing the 

smallest (but still significant) limitation of planktonic bacteria for the biofilm-

dwelling ciliates in this season. 

As we expected when planning the experiments, strong responses to the 

increased planktonic bacterial density occurred for suspension-feeding ciliate 

taxa such as scuticociliates and peritrichs, which were able to benefit directly 

from the enhanced resource availability as shown by Posch et al. for the 

scuticociliate Cylidium (Posch et al. 2001) and Eisenmann et al. for the peritrich 

Vorticella (Eisenmann et al. 2001). The response of scuticociliates to the BAC 

ENR was strongest when the background abundance (as shown in the BAC 

CON and AMB treatments) of peritrichs was low, as observed in fall 2006. In 

winter, spring and summer 2007, peritrich abundance was significantly 

enhanced due to the BAC ENR. However, their enhancement was often 

accompanied by a reduction in the number of suspension-feeding choreotrichs; 

this reduction was significant in spring and summer 2007. Taken together, 

these findings could argue for competitive exclusion of suspension feeding 

ciliates which is altered by the level of the planktonic resources. The strength 

depends on the seasonal/environmental factors. These differential effects of the 

taxonomic groups and of the experimental times show that the effects of 

plankton enrichment are far more complex than a simple, homogenous 

stimulation of suspension-feeding ciliates, and are thus difficult to predict. 
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In addition to the direct utilization of planktonic bacteria, we also observed 

indirect stimulation of different ciliate taxa in the BAC ENR treatment. The 

stimulation of collecting taxa such as cyrtophorids, nassophores and hypotrichs 

was most likely due to an increase in the vagile HF abundance as observed in 

the DOC ENR experiments (see above). The significant increase of litostome 

ciliates can possibly be assigned to the dramatic increase of small ciliates such 

as scuticociliates, which can be preyed upon by litostomes like Acineria and 

Litonotus; Parry 2004). The finding of a significant stimulation of stichotrichs, 

however, was surprising, as most members of this taxon are not capable of 

grazing on bacteria very efficiently, as demonstrated by Pfister and Arndt 

(1998). However, these authors found that stichotrichs are able to graze 

efficiently on larger unicellular organisms such as flagellates or even small 

ciliates and thus are capable of omnivory. Our observation could possibly 

account for these experimental findings: The prominent increase in the number 

of stichotrichs was observed as soon as small ciliates (e.g. scuticociliates) or 

sessile HF began to establish themselves within the flow cells. The abundances 

of the latter organisms was greatly reduced when stichotrichs were abundant. 

However, more specific research is needed to directly track the matter flux 

pathways and the involvement of the specific groups within biofilms. 

Both the significant acceleration of biofilm colonization as well as the numeric 

enhancement of ciliate taxa due to the planktonic resources were generally 

continued over the course of the experiments and resulted in maximal effects 

towards the end of the experiments in fall 2006, winter and summer 2007. 

Similar stimulations of the ciliates’ abundances by increased resource levels 

have been found in other enrichment experiments (Domenech et al. 2006; 

Ribblett et al. 2005, Wickham et al. 2004). However, in contrast to the general 

abundance enhancement, maximum ciliate abundance was observed on day 

five in the BAC ENR flow cells in spring 2007 before dramatically decreasing by 

approximately 50% and equilibrating with the flow cells in the BAC CON 

treatment. A likely explanation for this phenomenon was the occurrence of high 
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rotifer abundances, which was observed only in this experiment. Rotifers serve 

as important predators of ciliates as demonstrated in the plankton (Joaquim-

Justo et al. 2004; Mohr and Adrian 2002). The same phenomenon was 

observed at the same time in the DOC ENR experiment. The results thus 

strongly suggest that the stimulation of the ciliate biomass by both planktonic 

bacteria and DOC was transferred to higher trophic levels, where it results in a 

stimulation of the rotifer biomass (at least temporarily). This finding is in 

agreement with studies by Hillebrand et al (2002), who found that enhanced 

protozoan abundance due to previous nutrient enrichments could be directly 

transferred to grazers, so that an effect on lower trophic levels would become 

undetectable. The high temporal resolution in our experiments allowed us to 

track early ciliate responses to resource enrichment before rotifer grazers 

became abundant, which would have been overlooked on a coarser time scale. 

C o n c l u s i o n :  T h e  r e l e v a n c e  o f  r e s o u r c e  t y p e  a n d  s e a s o n a l  C o n c l u s i o n :  T h e  r e l e v a n c e  o f  r e s o u r c e  t y p e  a n d  s e a s o n a l  C o n c l u s i o n :  T h e  r e l e v a n c e  o f  r e s o u r c e  t y p e  a n d  s e a s o n a l  C o n c l u s i o n :  T h e  r e l e v a n c e  o f  r e s o u r c e  t y p e  a n d  s e a s o n a l  

s e t t i n g   s e t t i n g   s e t t i n g   s e t t i n g   

The availability of resources was shown to be an important factor in shaping 

biofilm-dwelling microbial communities. Planktonic bacteria were shown to be 

one important resource for biofilm-dwelling consumers. In contrast, biofilm-

dwelling bacteria (though exerting significant effects) were of limited 

importance. This suggests that biofilm-dwelling consumers act rather as 

pelagic-benthic couplers than as biofilm-grazers. Reasons for the limited effect 

of DOC are on the one hand the indirect (and thus less efficient) pathways via 

vagile HF and on the other hand the formation of grazing-resistant bacterial 

morphs in the biofilm. The latter point agrees with the general concept of 

grazing-avoidance strategies in bacteria by the formation of biofilms (Matz and 

Kjelleberg 2005). Our study is among the first to address the relevance of such 

issues on complex natural communities and partly supports the hypotheses of a 

limited carbon transfer from biofilm-bacteria to potential biofilm-consumers. 

Nevertheless, grazing of biofilms by late-biofilm colonizers such as amoebae 
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has been observed in laboratory systems (Queck et al. 2006; Weitere et al. 

2005), and our observations demonstrate that a limited utilization of largely 

grazing-resistant bacterial filaments by ciliates was possible. Thus, further 

studies are required to test the utilization of bacterial biofilms by protozoans in 

later succession stages.  

Another significant finding of the present study was that the results obtained 

were not predictable from the ambient resource setting in the River Rhine for 

any season and both the responses of the different taxonomic groups as well 

as that of the total abundance varied between the experiments. We suggest 

that a strong interaction of the resource availability with other environmental 

variables is likely to be responsible for this finding. For example, it has been 

shown that experimental temperature increases can accelerate the colonization 

speed of biofilms by ciliates as long as the resource availability does not 

constrain their growth (Norf et al. 2007). Nevertheless, despite the interactive 

effects with other factors such as temperature, our results show significant 

resource effects in any season, at least for BAC ENR. This shows that the 

ciliate communities were generally resource-limited, as suggested by 

Scherwass and Arndt (2005) for planktonic ciliate communities in the River 

Rhine. However, the weakest responses to the experimental resource 

enrichments on ciliates were observed at low ambient temperature (suggesting 

that temperature is a more limiting factor than resource availability in colder 

seasons), whereas ciliate growth at higher temperatures is primarily 

constrained by the availability of resources. 
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Bottom-up vs. top down control of ciliate communities: Bottom-up vs. top down control of ciliate communities: Bottom-up vs. top down control of ciliate communities: Bottom-up vs. top down control of ciliate communities: 

Effects of resource supplements on mature biofilms.Effects of resource supplements on mature biofilms.Effects of resource supplements on mature biofilms.Effects of resource supplements on mature biofilms.

A b s t r a c t  A b s t r a c t  A b s t r a c t  A b s t r a c t  

Three experiments were performed to test the impact of resource supplements 

on mature biofilm-dwelling ciliate communities using a novel type of flow cells. 

After eight weeks of pre-cultivation in the River Rhine, biofilms containing ciliate 

communities were transferred to these flow cells and the resource density was 

experimentally increased by supplementing the water flow with planktonic 

bacteria. In two of the experiments, the ciliates were initially stimulated with 

respects to taxon-specific responses to the bacteria supplement. However, their 

density decreased over the course of the experiments until no difference to the 

control treatment (no resource supplement) could be detected. This finding was 

accompanied by an enhanced abundance of micrometazoans that preyed on 

the ciliates in the supplemented flow cells. Likewise, no effects of the resource 

supplement on the ciliate communities were detected when micrometazoans 

were ab initio abundant, as observed in one experiment, despite of a slight 

adjustment in the structure of the ciliate communities due to the partial 

replacement of smaller ciliates by larger ones. Taken together, the results show 

that mature ciliate communities are strongly influenced by top-down 

mechanisms (grazer activity) rather than by bottom-up factors (the resource 

availability). Although increased resource densities can temporarily stimulate 

ciliate communities, this also enhances the grazers of the ciliates so that no 

resource effect on the standing crop of the ciliate communities becomes 

obvious. 
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I n t r o d u c t i o n  I n t r o d u c t i o n  I n t r o d u c t i o n  I n t r o d u c t i o n  

Microbial assemblages on surfaces play an important role in the matter flux of 

aquatic ecosystems, especially in shallow- and running waters (Bryers and 

Characklis 1982; Fischer et al. 2002). These so-called biofilms (Wetzel 2001) 

are composed from variety of prokaryotic and eukaryotic organisms among 

which ciliates oftentimes exceed the biomass of the microbial community 

(Finlay and Esteban 1998; Gong et al. 2005). Ciliate communities consist of a 

variety of taxa that differently contribute to nutrient cycling processes (reviewed 

in Arndt et al. 2003; Parry 2004). Such differences arise from a high functional 

diversity which is remarkably higher for ciliates than for other biofilm-dwelling 

protozoans (Finlay and Esteban 1998). Depending on the specific feeding 

mode, ciliates can ingest resources of different particle size and from different 

origin including both benthic and planktonic resources (Finlay and Esteban 

1998; Parry 2004). Being one of the most fundamental parameters for both 

population and community growth rates (Thouvenot et al. 2003), the resource 

density can determine both the carrying capacity and the structure of ciliate 

communities as reported in both field surveys on planktonic ciliate communities 

(Wiackowski et al. 2001; Andrushchyshyn et al. 2003; Scherwass and Arndt 

2005; Tirok and Gaedke 2007) and in manipulative studies with resource 

enrichments (Diehl and Feissel 2000; Wilcox et al. 2005; Andrushchyshyn et al.

2006). 

Field studies have demonstrated that biofilm-dwelling ciliate communities, too, 

can significantly respond to experimental resource supplements (Hillebrand et 

al. 2002; Wickham et al. 2004; Domenech et al. 2006; Andrushchyshyn et al.

2006). Such studies were generally performed by the indirect manipulation of 

the resource level via producers (stimulated by, e.g., fertilizers). Yet, little is 

known of the distinct impacts of controlled (direct) resource supplements on the 

ciliate community structure. Furthermore, the studies were mainly focused on 

investigating sum responses of the ciliate communities before and after 

resource enrichments, rather than on resource induced (short-term) dynamics. 

Due to the high growth rates of ciliates (Müller and Geller 1993), it is likely that 
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mature ciliate communities (holding high organism densities) could respond 

rapidly to changes in the resource density. However, investigating both the 

distinct impacts of resources as well as short-term responses resource 

supplements with natural biofilm-dwelling ciliate communities is constrained by 

the poor experimental accessibility of biofilms in the field. This imposes a 

challenge for the development of appropriate experimental facilities. 

One possible approach for testing the impacts of particular factors on biofilm 

development was presented in Norf et al. (2007) where ciliate communities 

were cultivated in miniature flow cell systems used as river bypass systems. 

The flow cells thereby facilitate both the controlled manipulation and the 

continuous observation of developing biofilm-dwelling ciliate communities.  In 

further experiments, the flow cells were used for direct adjustment of the 

resource level by the addition of particular resources to the water flow. In doing 

so, increased planktonic bacteria density was shown to significantly affect the 

early development of biofilm-dwelling ciliate communities, starting from blank 

surfaces (see Chapter 3). Despite of a generally high sensitivity of the ciliate 

communities to increased bacterial density, these experiments further 

demonstrated the importance of the environmental background, which can 

strongly influence the magnitude of community responses. Important factors 

were the ambient resource load (planktonic bacterial density) and the activity of 

micrometazoan grazers that were found to prey on the ciliates immediately after 

their enhancement in one experiment. 

While the previous experiments concentrated on investigating the effects of 

bacteria supplements on the early development of biofilm-dwelling ciliate 

communities (the biofilm succession started from a sterile flow cell surface), 

they do not provide specific information about the possible responses of mature 

ciliate communities. In contrast to early biofilm-dwelling ciliate communities 

(two to four weeks old), mature (>8 weeks) communities mainly consists of 

attached and colonial ciliates (Primc-Habdija et al. 2005; Gong et al. 2005; 

Mieczan 2005) that can effectively graze on suspended prey (Eisenmann et al.

2001). Due to the high growth rates of ciliates (Müller and Geller 1993), mature 
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ciliate communities thus could strongly benefit from enhanced bacterial 

densities. This could enhance their productivity and increase the carrying 

capacity of the communities. Furthermore, mature biofilms exhibit a higher 

density of micrometazoans, which can exert stronger grazing pressures on 

ciliates compared to early biofilms. Hence, it is possible that resource 

supplements could enhance the grazer activity so that no effect on the ciliate 

community will become obvious. However, Epstein and Gallagher (1992) found 

no correlation between meio- and macrofauna abundance and benthic ciliate 

density indicating that the ciliate density could primarily depend on the 

availability of resources rather than on the activity of grazers.  

In order to investigate the impact of temporary increased planktonic bacterial 

densities on the dynamics of mature biofilm-dwelling ciliate communities, a 

novel type of flow cells was invented which facilitates the controlled 

manipulation of naturally pre-cultivated biofilms. The biofilms for the 

experiments were cultivated on object slides which were exposed in the River 

Rhine for eight weeks in order to achieve ciliate communities at carrying 

capacity. After transferring the biofilms to the new flow cells, they were fed with 

a planktonic bacterial suspension besides of the river water bypass to untreated 

river water. Acknowledging that both bottom-up (resource densities) and top-

down (consumers of the ciliates) factors can be involved in controlling ciliate 

community structure, we tested the impact of the resource supplement on 

micrometazoans as well. In doing so, the following questions were addressed: 

(1) Do mature ciliate communities respond to resource supplements and how 

quickly do such responses appear? (2) Do resource supplements also influence 

potential consumers of the ciliates (micrometazoans), thus altering the 

interaction strength between ciliates and micrometazoans? (3) Can enhanced 

resource densities sustainalbly influence the ciliate communities and increase 

the standing stock (carrying capacity) of the communities? 
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Fig. 1.Fig. 1.Fig. 1.Fig. 1. Flow cell as used for manipulation and monitoring of mature biofilm-dwelling 
consumer communities. For the experiments, biofilms were pre-grown on object 
slides and adjacently transferred to the flow cells. 

M a t e r i a l  a n d  M e t h o d s  M a t e r i a l  a n d  M e t h o d s  M a t e r i a l  a n d  M e t h o d s  M a t e r i a l  a n d  M e t h o d s  

Experimental design and culturing methods 

Three experiments (March, May and August 2007) were performed to test the 

responses of mature biofilm-dwelling ciliate communities to increased food 

densities by experimentally increasing the density of planktonic bacteria which 

was shown before to significantly influence early biofilm-dwelling ciliate 

community dynamics (see Chapter 3). The ciliate communities were pre-

cultivated on object slides which were exposed for eight weeks in flumes fed 

with untreated Rhine River water (0.2 m s-1) aboard the Ecological Rhine 

Station (University of Cologne). Afterwards, object slide each was transferred to 

a novel type of flow-cell (Fig. 1) which is suitable for both the direct 

manipulation and the live observation of the same pre-grown biofilms over an 

extended time-span. The first community analyses, providing the base line for 

the experiments (day zero), were performed after an acclimatization period of 

24h of the biofilms after transferring to the flow cells (see below). 

The flow cells principally work like those utilized in earlier experiments, where 

ciliate communities were cultivated starting from blank surfaces (Norf et al.

2007; Wey et al. submitted). They consist of a plastic frame with a dimension of 

80 x 35 cm2 and an internal 15 ml volume in the space between the upper 

object slide and the base of the flow cell. The plastic frame holds three 

miniature pipes on two sides of the flow cells each which serve as the inflows 

and the outflows for the Rhine River water bypass. 
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Table 1.Table 1.Table 1.Table 1. Ambient setting of selected environmental variables during the 
experiments. Water temperature was logged daily. Planktonic bacteria (DAPI 
countings) and algae (live countings) abundances were determined at the 
beginning and at the end of the experiments. The given values are the mean 
values (±SD) for all replicates of the two observations. 

A combined sediment and bubble trap was installed in front of the inflows in 

order to reduce the amount of fine-grained sediment from the water flow and to 

keep otherwise destructive air bubbles from the biofilms. The flow cells 

(including the mature biofilms) were attached to a permanent bypass of 

untreated river water via tube pumps (one volume exchange min-1). Four of the 

flow cells were maintained with no further treatment giving the CONTROL setup 

(no resource added) which only obtained the suspended resources from the 

water flow. Four additional flow cells were additionally fed with a suspension of 

non-toxic planktonic bacteria (Pseudomonas putida MM1; (Dütz et al. 1994) 

besides of the river water bypass giving the BACTERIA SUPPLEMENT  treatment.  

Previous experiments  using  a  similar  setup have shown that the addition of 

P. putida to biofilms can significantly stimulate ciliate communities (see Chapter 

3). For preparation of the bacterial suspension, kryo-preserved P. putida were 

cultured in Erlenmeyer flasks containing 100 ml 50% M9 culture medium (Hahm 

et al. 1994) +0.04 g l-1 glucose at room temperature (20oC). The cultures were 

harvested by centrifugation (3,400 g; 15 min.) after two days of cultivation. This 

was shown to reduce the ability of biofilm formation with P. putida (Bell et al.

2005). The obtained pellet was resuspended in Pratt minimal medium (Pratt 

and Salomon 1980) in order to wash the residual glucose from the cultures. The 

bacteria were then harvested again as described above. 

Experiment Date 
Temp 
(oC) 

Bacteria 
(106 cells ml-1) 

Algae 
(cells ml-1) 

Mar 2007 March 10.-22. 2007 9.4±0.6 1.6±0.2 718±176 

May 2007 May 7.-19. 2007 17.5±0.7 2.6±0.6 1750±232 

Aug 2007 August 8.-22. 2007 19.8±0.7 1.6±0.3 417±111 
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After the cell density was determined by the use of a Helber counting chamber 

(W. Schreck, Hofheim, Germany), a suspension containing 1x108 bacteria ml-1

(final concentration) was prepared in standard reagent bottles. This suspension 

was then fed to the flow cells with sterile silicone hoses via tube pumps. The 

bacteria solution was diluted 1:100 with Rhine River water in the flow cells so 

that the final concentration of P. putida in the flow cells was 106 ind. ml-1. This 

concentration of bacteria was shown to strongly increase the abundance of 

biofilm-dwelling ciliates within early biofilms (Chapter 3). Data on the ambient 

density of planktonic bacteria in the River Rhine for the experiments is given in 

Table 1. The bacteria suspension was stored in a water bath (6oC) during the 

experiments and was renewed every two days. 

Data analysis 

The biofilm-dwelling ciliate communities were analyzed microscopically by 

placing the flow cells directly under the microscope. The first survey was 

performed after an acclimatization period of 24 hours and before the resource 

supplement was applied (day zero), providing a baseline for the further 

observations. A minimum of 60 ciliates pre flow cell were counted in defined 

areas which were randomly distributed over the biofilms at 100x magnification 

at each survey. Due to the high density of colonial ciliates on mature biofilms, 

their abundance was optically recorded separately in a larger area at 50x 

magnification. Ciliate identification was performed according to the identification 

keys of Foissner & Berger (1996) and Lynn and Small (2002). In addition to the 

ciliate communities, micrometazoan abundances were recorded. They were 

either determined in the same areas as the colonial ciliates (applied for 

gastrotrichs, insects, rotifers) or for the complete biofilm area (applied for 

oligochaetes and platyhelminths). After the first community analyses on day 

zero, the biofilms were randomly assigned to the experimental treatments 

(AMB; BAC). The designated BAC flow cells were additionally attached to the 

prepared bacteria suspensions. The following community analyses were started 

one day after the initiation of the resource supplement. The statistical analysis 
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concentrated on investigating the effects of increased bacterial density on the 

biofilm-dwelling ciliate communities as well as on micrometazoans. Therefore, 

repeated-measure ANOVAs (hereafter: rmANOVA) were calculated with time

as the inner-subject factor and treatment (AMB vs. BAC) as the between-

subject factor. In doing so, the effects of increased resource density on the total 

abundance of ciliates as well as on the abundance of specific taxonomic units 

(classes or sub-subclasses for ciliates and classes for micrometazoans) as 

dependend variables were analysed. Concerning the micrometazoans, the 

rmANOVA were performed for likely micrometazoan grazers of ciliates 

(oligochaetes, platyhelminths and rotifers) besides of the analyses of effects on 

the total abundance of micrometazoans. 

R e s u l t s  R e s u l t s  R e s u l t s  R e s u l t s  

Starting conditions of the experiments 

The biofilm-dwelling consumer communities exhibited similar starting conditions 

within the experiments; however, particular seasonal differences between the 

experiments occurred. In March and August 2007, starting ciliate abundances 

were rather similar. The highest ciliate abundance was recorded in May 2007 

being the experiment with the highest ambient resource load (Table 1). 

Regarding the ciliate community structure, peritrichs were initially dominant 

among the biofilms and generally accounted for >60% of the total ciliate 

population. Similar to the ciliates, micrometazoan density was highest in May 

2007 (>30 ind. cm-2) and comparably low in March and August 2007 (<10 ind. 

cm-2). 

Effects of bacteria supplements on biofilm-dwelling ciliate dynamics 

In March 2007, the ciliate abundances in the AMB flow cells ranged between 

290±50 (day zero) and 530±140 ind. cm-2 at the end of the experiment (day 12) 

due to an increase of the ciliate abundance within the first days of the 

experiment (Fig. 2a). Concerning the taxonomic structure, peritrichs were 
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Fig. 2.Fig. 2.Fig. 2.Fig. 2. Response of biofilm-dwelling ciliates to bacteria supplement in March 
2007. (a) Total abundance of ciliates on a real-time axis. (b, c) Taxonomic 
contribution of selected taxa to the total ciliate abundance in the flow cells 
without (b) and with bacteria supplement (c). Note the axis break in the panels b 
and c. 

generally dominant with exception of day zero, where choreotrichs contributed 

to ca. 20% of the communities. However, the choreotrichs were replaced by 

peritrichs after one further day of cultivation. Litostomes and scuticociliates 

were generally low represented (<10%). The BACTERIA SUPPLEMENT resulted in a 

rapid increase in the ciliate abundance from 320±40 ind. cm-2 to a maximum of 

1050±360 ind. cm-2 on day six before decreasing to a final abundance of 

440±40 ind. cm-2 being not different from the ciliate abundance in the AMB (Fig. 

2a). Calculations of the rmANOVA reported significant effects of the BAC

treatment on both the total ciliate abundance and on specific ciliates (Fig. 2b, c; 

Table 2). The effects were strongest for peritrichs as reflected by significant 

effects in the factors time (p<0.001) and treatment (p<0.05) as well as by 

significant interactions time x treatment (p<0.001). The second significant effect 

was an increase of litostomes in the flow cells which obtained the BAC

treatment. 
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Fig. 3.Fig. 3.Fig. 3.Fig. 3. Response of biofilm-dwelling ciliates to bacteria supplement in May 2007. 
(a) Total abundance of ciliates on a real-time axis. (b, c) Taxonomic contribution 
of selected taxa to the total ciliate abundance in the flow cells without (b) and 
with bacteria supplement (c). Note the axis break in the panels b and c. 

In May 2007, different results were obtained. The ciliate abundances in both 

treatments were rather similar throughout the experimental period and there 

was no significant effect of BAC detected on the ciliates. Significant group 

effects were detected on choreotrichs, which increased in the BAC treatment 

until day three (Fig. 3b; Table 2) as reported by a significant time effect 

(p<0.001) in the rmANOVA. 

Another effect appeared among large heterotrich ciliates, which were 

significantly stimulated towards the end of the experiment in the BAC treatment 

(Fig. 3c; Table 2.) as reflected by a significant time effect (p<0.001) as well as 

by significant interactions time x treatment (p<0.001). 
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In August 2007, the ciliate abundance was initially higher in the AMB (530±120 

ind. cm-2; Fig. 4a) than in the BAC flow cells (440±120 ind. cm-2; Fig. 4a). After 

a short increase within the first day of the experiment, ciliate abundance 

remained constant (ca. 800 ind. cm-2) and increased to a maximum of 

1170±400 ind. cm-2 on day five in the BAC treatment before equilibrating in both 

treatments at the end of the experiment (Fig. 4a). The rmANOVA revealed 

multiple significant responses on the ciliate communities to the BAC

supplement (Table 2): Besides of a strong significant impacts on the total ciliate 

abundance on the factors time (p<0.05) and treatment (p<0.001) as well as in 

the interaction time x treatment (p<0.05), significant effects were detected for 

heterotrich, litostome, and peritrich ciliates and for scuticociliates (see Table 2 

for details). 

Fig. 4.Fig. 4.Fig. 4.Fig. 4. Response of biofilm-dwelling ciliates to bacteria supplement in August 2007. 
(a) Total abundance of ciliates on a real-time axis. (b, c) Taxonomic contribution of 
selected taxa to the total ciliate abundance in the flow cells without (b) and with 
bacteria supplement (c). Note the axis break in the panels b and c. 
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Table 2. Table 2. Table 2. Table 2. Results from the repeated-measures ANOVAs testing the effects of bacteria supplement on biofilm-
dwelling ciliate communities. The rmANOVA were calculated for the total abundance of ciliates and for the 
abundant taxonomic groups as indicated in the corresponding figures 2-4. (Chor) Choreotrichia,
(Het) Heterotrichia, (Lit) Litostomatea, (Per) Peritrichia, (Scut) Scuticociliatia. Bold valuesBold valuesBold valuesBold values indicate significance.

Time Treatment Time x Treatment

ss F p ss F p ss F p

March 2007 Ciliates 647,657 6.18 0.0010.0010.0010.001 468,520 15.88 0.0160.0160.0160.016 789,053 7.53 >0.001>0.001>0.001>0.001

dftime (5, 20) Chor 13,465 2.80 0.0450.0450.0450.045 900 0.56 0.496 6,025 1.25 0.323

dftreatment (1, 4) Het 1,166 2.64 0.055 491 2.73 0.174 874 1.98 0.126

dftime x treatm (5, 20) Lit 855 4.15 0.0100.0100.0100.010 187 0.67 0.460 574 2.79 0.0460.0460.0460.046

Per 808,488 8.68 >0.001>0.001>0.001>0.001 380,009 13.12 0.0220.0220.0220.022 737,163 7.91 >0.001>0.001>0.001>0.001

Scut 599 1.06 0.414 842 1.48 0.240 1,481 4.08 0.114

May 2007 Ciliates 59,255 2.23 0.075 5,783 0.18 0.692 52,406 1.97 0.110

dftime (6, 24) Chor 537 4.35 0.0040.0040.0040.004 0.05 0.00 0.978 68 0.55 0.767

dftreatment (1, 4) Het 6,598 24.18 >0.001>0.001>0.001>0.001 144 0.81 0.418 2,090 7.66 >0.001>0.001>0.001>0.001

dftime x treatm (6, 24) Lit 162 1.01 0.444 136 1.91 0.239 30 0.19 0.977

Per 25,718 0.70 0.650 4,293 0.10 0.766 54,676 1.49 0.222

Scut 961 2.10 0.091 434 1.64 0.270 365 0.80 0.581

August 2007 Ciliates 1,213,108 6.62 0.0010.0010.0010.001 21,247,094 250.73 >0.001>0.001>0.001>0.001 481,183 2.63 0.0450.0450.0450.045

dftime (5, 20) Chor 29 0.28 0.918 151 12.57 0.0240.0240.0240.024 45 0.44 0.815

dftreatment (1, 4) Het 1,554 0.98 0.457 20, 0.12 0.743 578 0.37 0.893

dftime x treatm (5, 20) Lit 63 3.19 0.0280.0280.0280.028 0.962 0.09 0.783 82 4.21 0.0090.0090.0090.009

Per 1,468,975 7.73 >0.001>0.001>0.001>0.001 4,484 0.05 0.833 553,889 2.91 0.0390.0390.0390.039

Scut 3,184 5.30 0.0030.0030.0030.003 273 1.04 0.366 707 1.18 0.355
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Effects of bacteria supplements on micrometazoans 

Like observed for the ciliate communities, the micrometazoan communities, too, 

exhibited strong variations with regards to the base conditions (day zero) and to 

the resource manipulation. The large differences in the total micrometazoan 

abundances between the experiments (Fig. 5a-f) were accompanied by strong 

variations in the composition of the communities. The following description will 

concentrate on the effects of the resource supplement on micrometazoans 

which could have benefited from increased ciliate abundances due to their 

reported ability to graze on ciliates. Thus oligochaetes, platyhelminths and 

rotifers were included in the statistical analyses (Table 3). 

In March 2007, the total micrometazoan density was low and mainly constituted 

by rotifers in both the AMB and the BAC flow cells. In the AMB, rotifer 

abundance ranged between 3.5±3.5 and 4.9±6.2 ind. cm-2. Similar abundances 

were observed in the BAC treatment with 5.0±4.9 ind. cm-2 rotifers. Unlike the 

AMB treatment, supplementation of BAC induced a strong increase towards 

day six (11.5±6.6 ind. cm-2) as reported by a significant treatment effect in the 

rmANOVA (Table 3) before decreasing to 4.9±2.0 ind. cm-2. Ab initio higher 

micrometazoan densities compared to the other experiments were observed in 

May 2007 (Fig. 5c, d) with 49.5±10.7 ind cm-2 in the CONTROL and 31.7±10.7 

ind. cm-2 in the BAC flow cells on day zero. After starting the experiments, 

micrometazoans decreased to 27.7±4.3 ind. cm-2 (AMB) and 20.8±4.3 ind. cm-2

(BAC). Significant responses to the BAC were detected for the total 

micrometazoan abundance (Table 3; time, p<0.05), in particular for rotifers 

(time, p<0.05; time x treatment, p<0.05), which were temporarily increased on 

day three and for platyhelminths (time, p<0.05; time x treatment, p<0.05) which 

responded positively to the supplement on day seven and nine. 
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Fig. 5. Fig. 5. Fig. 5. Fig. 5. Impact of bacteria supplement on biofilm-dwelling micrometazoans. 
Figures a-f give a combined illustration of the total abundance and the taxonomic 
composition of the micrometazoan communities in the flow cells without (left 
column) and with (right column) bacteria supplement. (a, b) March 2007. (c, d) 
May 2007. (e, f) August 2007. Ciliate mean abundances (dots and lines) were 
included in the figure for comparison (see Figs 2-4). Error bars (±SD) refer to the 
total abundance. 
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Time Treatment Time x Treatment

ss F p ss F p ss F p

March 2007 Micrometazoans 63.53 0.69 0.633 75.90 3.19 0.149 120.15 1.31 0.298

dftime (5, 20) Oligochaetes 1.42 1.00 0.443 0.284 1.00 0.374 1.42 1.00 0.443

dftreatment (1, 4) Platyhelminths - - - - - - - - -

dftime x treatm (5, 20) Rotifers 17.18 0.30 0.903 98.74 10.27 0.0330.0330.0330.033 80.98 1.44 0.252

May 2007 Micrometazoans 4,130.16 2.66 0.0400.0400.0400.040 154.22 1.53 0.284 2,756.76 1.78 0.146

dftime (6, 24) Oligochaetes 4.88 0.26 0.948 11.20 1.34 0.311 28.35 1.54 0.210

dftreatment (1, 4) Platyhelminths 135.05 3.26 0.0170.0170.0170.017 0.50 0.01 0.925 156.57 3.79 0.0090.0090.0090.009

dftime x treatm (6, 24) Rotifers 4,331.04 5.64 0.0010.0010.0010.001 394.45 5.67 0.076 2,593.88 3.38 0.0150.0150.0150.015

August 2007 Micrometazoans 110.65 0.41 0.832 0.55 0.01 0.951 159.54 0.60 0.701

dftime (5, 20) Oligochaetes 10.46 0.87 0.519 0.02 0.01 0.922 22.12 1.84 0.151

dftreatment (1, 4) Platyhelminths 9.18 2.15 0.101 0.13 0.07 0.801 6.44 1.51 0.232

dftime x treatm (5, 20) Rotifers 70.48 1.36 0.280 6.60 0.64 0.469 33.01 0.64 0.673

Table 3. Table 3. Table 3. Table 3. Results from the repeated-measures ANOVAs testing the effects of bacteria supplement on micrometazoans.
The analysis were concentrated on those grazers which were likely consumers of the ciliates. In March 2007, 
platyhelminths were not present. Bold values indicate significance.
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In the last experiment (August 2007) total micrometazoan abundances were 

rather low, similar to the observations in March 2007, and not significantly 

affected by the BAC treatment neither regarding the total abundance of the 

micrometazoans, nor regarding distinct taxa. The only remarkable, though not 

significant, observation was an increase of rotifers in the BAC flow cells on the 

last day of this experiment (day nine). 

D i s c u s s i o n  D i s c u s s i o n  D i s c u s s i o n  D i s c u s s i o n  

This work presents the first successful application of a novel type of flow cells, 

which facilitated the experimental manipulation of mature biofilm-dwelling 

consumer communities. The run-time of the experiments was sufficiently long 

to track population dynamics over several generations. Although the 

experiments were terminated when equilibrium abundances of the consumer 

communities were reached, the potential run-time of the flow cells could have 

been prolonged. The advantage of this method is the opportunity for live 

observations and thus the possibility to track short-term community dynamics. 

This allows disentangling specific processes, such as predator-prey dynamics, 

which could be overlooked on a broader spatial and temporal scale. 

Regarding the supplemented resource, previous experiments (see Chapter 3) 

demonstrated that the same bacteria supplement as applied here 

(106 cells ml-1) generates strong and sustaining effects on the quantity of early 

biofilm-dwelling ciliate communities, which showed similar final ciliate densities 

as the mature communities considered here. However, early biofilms hold much 

lower (if any) abundances of micrometazoans than mature biofilms do. The high 

metazoan abundance in the mature biofilms of the present study coincided with 

strong differences in the observed responses of ciliates to bacteria 

supplements compared to early communities: In all of the three experiments 

presented here, the final abundances were not different between the AMB and 

the BAC flow cells. As the resource levels were expected to suffice in 
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generating effects on the ciliate quantity (see above), it is likely, that elevated 

ciliate productivity was transferred to consumers. In fact, such assumption was 

confirmed by the predator-prey dynamics in March and in August 2007. In both 

experiments, initially stimulated ciliate abundances were followed by increased 

abundances of potential micrometazoan grazers. One key component among 

the micrometazoan community was rotifers; they were most probably 

responsible for a decrease of the initially shifted ciliate abundances in the 

supplemented flow cells back to the levels of the control biofilms in March 2007 

and in August 2007. This finding (strong grazing pressure of rotifers on ciliates) 

was confirmed by live observations of especially brachionid rotifers grazing on 

colonial, non-loricated peritrichs (e.g. Carchesium polypinum, Zoothamnium 

pectinatum). Similar observations were made in previous experiments, where 

enhanced ciliate densities increased the abundance of rotifers which in return 

reduced the ciliates (see Chapter 3), too. This stresses the importance of 

interactions between rotifers and biofilm-dwelling ciliates like yet characterized 

for planktonic food webs only (Mohr and Adrian 2002). It would be worth to 

investigate, whether the rotifers profited from the enhanced ciliate productivity 

per se or if the previous uptake of the supplemented bacteria could have 

improved the nutrient value of the ciliates for the rotifers. Such couplings were 

reported for Daphnia when grazing on bacteria-fed ciliates (Martin-Creuzburg et 

al. 2006). However, such possibility is not supported by Breteler et al (2004) 

who found no trophic upgrading of copepods by ciliates that grazed on bacteria. 

In May 2007, no effect of the resource supplement on the ciliate quantity was 

detected at all. Being the experiment with the highest ab initio density of 

micrometazoan grazers, it is likely that potentially enhanced ciliate productivity 

could have been transferred to a higher trophic level immediately, so that no 

quantitative effect on ciliates became obvious. This assumption is stressed by 

significant effects of the resource supplement on the micrometazoan density. In 

addition to the previously discussed experiments, this demonstrates that strong 

top-down pressure by grazers rather that bottom-up control by resources can 
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trigger the abundance of ciliates among biofilms. However, there were distinct 

adjustments in the taxonomic structure of the ciliate communities detected. In 

May 2007, for example, smaller peritrich ciliates were replaced by larger 

(grazing resistant) heterotrichs towards the end of experiment. It should be 

noted that an increased abundance of larger ciliates on biofilms could increase 

the resource density for higher metazoans such as snails. This should be a 

subject of further investigations. However, the strongest responses of ciliate 

taxa to the resource supplements were detected among the smaller peritrichs. 

Thereby, it is remarkable that the strongest short-term response of the ciliate 

communities to the resource supplement was detected in March 2007 

incorporating low ambient water temperatures (<10oC). This suggests that at 

least temperature was no factor in determining the magnitude of community 

responses to increased bacterial densities. However, this observation showed, 

that when the ambient resource load is exceeded, ciliate communities can 

rapidly respond to enhanced densities of planktonic resources with enhanced 

productivity. 

C o n c l u s i o n  C o n c l u s i o n  C o n c l u s i o n  C o n c l u s i o n  

The application of the new flow cell method presented here revealed important 

insights in the short-term dynamics of biofilm-dwelling consumer communities 

in response to short-term resource increases. The obtained results add an 

important aspect to the current knowledge on the control of biofilm-dwelling 

ciliates communities, i.e. the predominant top-down control of mature ciliate 

communities on biofilms by micrometazoans. However, bottom-up effects may 

persist and result in altered community compositions at though constant (top-

down controlled) total ciliate abundances. This work demonstrates both the 

complexity of food webs on biofilms (incorporating several trophic levels), and 

that resource effects on biofilm-dwelling consumer communities might be 

hidden due to a rapid transfer of enhanced ciliate productivity to higher trophic 

levels. It further demonstrated the necessity for a differentiated view of bottom-
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up vs. top-down controlling factors with respects to “producers” and 

“consumers”. 





Concluding remarks and perspective 

109

C o n c l u d i n g  r e m a r k s  a n d  p e r s p e c t i v e  C o n c l u d i n g  r e m a r k s  a n d  p e r s p e c t i v e  C o n c l u d i n g  r e m a r k s  a n d  p e r s p e c t i v e  C o n c l u d i n g  r e m a r k s  a n d  p e r s p e c t i v e  

Although biofilm-dwelling ciliate communities are an important component of 

aquatic food webs, little is known on how external factors can control their 

community structure on both temporal and spatial scales. The present study 

contributes to the understanding of biofilm-dwelling ciliate community 

responses towards environmental changes. 

The first part of the study concentrated on investigating the influence of 

temperature on the development of ciliate communities in the context of global 

warming. This was done by manipulating the water temperature of naturally 

grown, biofilm-dwelling ciliate communities. The experiment was designed to 

allow the seasonally dependent responses of the ciliate community to be 

assessed. These responses were strongest for the more extreme seasons 

(winter and summer). 

It was shown that temperature increase during winter can significantly 

accelerate the colonization of biofilms by ciliates. This can further result in the 

development of significantly altered ciliate communities due to a symmetric 

growth enhancement of the dominant ciliate taxa. Such a strong response 

towards warming can be due to a high resource density during winter, enabling 

enhanced ciliate growth. This finding was partially supported by the 

experiments with mature biofilm communities; a general enhancement and a 

differentiation of the ciliate communities (corresponding to a non-symmetric 

enhancement of particular ciliate taxa) due to warming was also observed here. 

This demonstrates that increasing temperature can sustainingly influence the 

community composition. However, this finding that ciliate productivity can profit 

from increasing temperature contrasted the expectations based on the 

metabolic theory: At constant resource supply, warming should decrease the 

carrying capacity to balance increased metabolic costs. Such results were 

obtained by temperature increases during summer. While the colonization rate 

of biofilms by ciliates was not affected by warming, the carrying capacity of the 

communities significantly decreased at elevated temperatures. This decrease, 

however, did not result from the exclusion of particular ciliates and there was no 
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shift in the ciliate community structure, showing that the ciliates in this 

experiment were still inside their thermal niche even at (for the River Rhine) 

very high temperatures of >30oC. It was further shown that negative impacts of 

warming on ciliate communities can be buffered by supplemental resources. 

This stresses that energetic factors were the main reason for negative effects of 

warming on ciliate communities rather than thermal limitations of the ciliates 

during summer. Further investigations should concentrate on possible 

microevolutionary responses of the ciliates beyond the microscopically 

detectable taxonomic level. 

As the “temperature experiments” demonstrated that the structure of biofilm-

dwelling ciliate communities is strongly influenced by seasonal variability 

(particularly the resource density), the second part of this study investigated the 

effects of resource quantity on the development and on the structure of ciliate 

communities. Resources from two different origins were used, namely benthic 

and planktonic bacteria. To my knowledge, this is the first study conducted to 

investigate the effects of controlled resource enhancements on natural ciliate 

communities.

The stimulation of benthic bacterial growth with labile organic carbon generally 

resulted in the accumulation of filamentous bacteria (inedible for ciliates) 

towards the end of the experiments rather than in a significant response of the 

ciliates. However, a few ciliates (which are typical pioneers on biofilms) profited 

from the enhanced benthic bacterial growth within the early phase of biofilm 

development. An indirect pathway of increased benthic bacterial biomass 

(stimulation of heterotrophic flagellates and adjacent grazing by ciliates) only 

occurred at higher temperatures. Stronger responses were generally obtained 

by raising the density of planktonic bacteria. As expected, planktivorous ciliates 

significantly profited from this resource supplement, whereas there was no 

general response detected among benthivorous ciliates. The significant 

exception was an indirect stimulation of stichotrichous ciliates; they responded 

to increased abundance of heterotrophic flagellates which was strongest during 

the colder seasons. These findings demonstrate the necessity for a seasonally 
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differential view of “resources” for biofilm-dwelling ciliates, with particular 

regards to the origin (planktonic versus benthic) of the resources. Thereby it 

was shown that heterotrophic flagellates (being important vectors for energy in 

the plankton) can be important mediators for energy in benthic habitats as well. 

Further work should concentrate on competitive patterns between heterotrophic 

flagellates and ciliates with regards to seasonal dependencies of the trophic 

transfer. 

Another important factor for the magnitude of community responses are 

micrometazoan grazers: Increased ciliate productivity can be transferred to 

grazers immediately so that no sustainable effect on the ciliate communities 

would become obvious. However, the results of the experiments indicated that 

smaller ciliates may be replaced by larger ciliates after grazing. This finding 

could have further implications for specific trophic feedbacks between particular 

ciliates and grazers. Whereas high densities of smaller ciliates could enhance 

micrometazoan grazers, larger ciliates could increase the nutrient value of the 

biofilms for larger metazoan grazers (e.g. insects, snails). Further work should 

concentrate on this topic. 

Taken together, the different aspects of the present work demonstrate the 

importance of temperature, resource density and grazer density in controlling 

biofilm-dwelling ciliate dynamics. Although each factor can significantly affect 

the communities, it is the interaction between these factors that controls the 

communities in the end. The strength of bottom-up (e.g. resource density) vs. 

top-down (e.g. grazers) factors thus depends on the particular environmental 

conditions. However, the high capacity of biofilm-dwelling ciliate communities to 

respond to environmental changes (stimulation of the ciliates by temperature 

and/or resources and trophic upgrading of the biofilms for grazers) generally 

observed in this study emphasises the ecological significance of ciliates in 

transferring otherwise unavailable energy to higher trophic levels in benthic 

habitats. 
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E r w e i t e r t e  Z u s a m m e n f a s s u n g  E r w e i t e r t e  Z u s a m m e n f a s s u n g  E r w e i t e r t e  Z u s a m m e n f a s s u n g  E r w e i t e r t e  Z u s a m m e n f a s s u n g  

Mikrobielle Lebensgemeinschaften spielen im Stoffumsatzgeschehen 

aquatischer Ökosysteme eine wichtige Rolle. Insbesondere in Flach- und 

Fliessgewässern findet der größte Teil mikrobieller Aktivität auf oder in 

Assoziation mit Oberflächen statt. Auf diesen so genannten Biofilmen 

dominieren unter den Konsumenten häufig Ciliaten hinsichtlich der Biomasse 

(Gong et al. 2005), die neben makrobenthischen Invertebraten (z.B. Muscheln; 

vgl. Welker & Walz 1998) wichtige Importeure organischen Materials aus dem 

Plankton in das Benthos sein können (vgl. Weitere et al. 2003). 

Ciliatengemeinschaften setzen sich aus einer Vielzahl von Taxa zusammen, 

die neben ihrer Größe (ca. 10-2000µm) ebenso stark in ihrer ökologischen 

Funktion variieren. Die Funktionalität von Ciliatengemeinschaften auf Biofilmen 

als Gesamtheit hängt daher neben der Organismendichte (Abundanz, 

Biovolumen) auch von der Gemeinschaftsstruktur ab, die sowohl in zeitlicher 

als auch in räumlicher Hinsicht durch zahlreiche Faktoren beeinflusst wird. 

Während die Steuerung planktischer Ciliatengemeinschaften im Laufe der 

letzten Jahrzehnte gut untersucht wurde, weiß man bisher wenig darüber, 

welche Faktoren an der Steuerung Biofilm bewohnender 

Ciliatengemeinschaften beteiligt sind. Ein Grund ist die schlechte 

experimentelle Zugänglichkeit von Biofilmen. Verschiedene Techniken zur 

experimentellen Analyse von Wirkungszusammenhängen in planktischen 

Nahrungsnetzen (z.B. Größenfraktionierungen, Verdünnungsexperimente) 

lassen sich schlecht auf Biofilme übertragen. Mit der Ökologischen 

Rheinstation, Köln-Bayenthal, besitzt die Universität zu Köln eine seltene 

Möglichkeit, ökologische Experimente mit naturnah gewachsenen 

Biofilmgemeinschaften durchzuführen. Die Biofilme werden dabei in 

flusswassergespeisten Bypasssystemen kultiviert. Das Flusswasser ist sowohl 

Träger der Organismen (vgl. Scherwass & Arndt 2005) die sich auf den 

Biofilmen ansiedeln, als auch das für die Erhaltung der Biofilmgemeinschaften 

essenzielle Ressourcenreservoir In diesen Bypasssystemen lassen sich 
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einzelne Umweltparameter gezielt manipulieren und so deren Einflüsse auf 

Gemeinschaften untersuchen. 

Der Bedeutung von Temperaturerhöhungen für ökologische Gemeinschaften 

gilt heute enorm gesteigertes wissenschaftliches und öffentliches Interesse. 

Aus anthropogen verursachten Temperaturanstiegen (vgl. IPCC 2007) könnten 

sich bislang unabschätzbare Konsequenzen für ökologische Gemeinschaften 

ergeben, die sich experimentell nur schwierig untersuchen lassen. Da 

Temperatureffekte auf Gemeinschaften erst im Laufe vieler aufeinander 

folgender Generationen auftreten können, sind mikrobielle 

Lebensgemeinschaften ein wichtiges Modellsystem: Aufgrund ihrer enorm 

hohen Wachstumsraten mit Generationszeiten (Stunden bis Tage) lassen sich 

komplexe Wirkungszusammenhänge zwischen Umweltfaktoren und 

Populationsdynamiken innerhalb relativ kurzer Zeit testen. 

Mittels rheinwasserdurchströmten Miniaturfliesszellen wurde der Einfluss 

lokaler Temperaturerhöhungen auf die frühe Entwicklung von 

Ciliatengemeinschaften auf Biofilmen (ausgehend von sterilen Oberflächen) bis 

zum Erreichen eines frühen Besiedlungsplateaus (Kapazität) untersucht, bei 

dem solitäre Ciliaten in der Abundanz überwiegen. Dieses grenzt sich damit 

klar von einem späten Besiedlungsplateau ab, bei dem koloniale Ciliaten 

dominieren. Die Fliesszellen wurden ausgehend von einer Grundtemperatur T0

(auf Basis der langjährigen Monatsmitteltemperaturen) bei verschiedenen 

Temperaturenerhöhungen gehältert. Es zeigte sich, dass Temperatur-

erhöhungen im Winter zu einer signifikant beschleunigten Biofilmbesiedlung 

durch Ciliaten führen können, die nach zehntägiger Entwicklung ebenso zu 

einer Ausprägung signifikant verschiedener Ciliatengemeinschaften in Folge 

symmetrisch erhöhter Abundanzen der dominierenden Ciliatentaxa führten. 

Anschließend wurde getestet, ob diese Beobachtung auf späte 

Ciliatengemeinschaften übertragen werden kann. Dazu wurden 

Ciliatengemeinschaften für acht Wochen auf Objektträgern bei zwei 

Temperaturen (T0; T0+3oC) in Fliessrinnen kultiviert. Ähnlich dem 

Kurzzeitversuch war das Gesamtbiovolumen der Ciliaten bei Versuchsende 
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signifikant erhöht. Ebenso bildeten sich unterschiedliche Ciliaten-

gemeinschaften in Folge von Erwärmung aus. Anders als im 

Fliesszellenexperiment mit jungen Biofilmen war dies jedoch durch eine 

Verschiebung in der taxonomischen Struktur der Ciliatengemeinschaften 

verursacht. Die beobachteten positiven Effekte auf die Kapazität von späten 

Ciliatengemeinschaften im Winter standen im Gegensatz zu den Erwartungen 

basierend auf der metabolischen Theorie. Danach sollte sich die Kapazität von 

Gemeinschaften bei unveränderter Ressourcendichte durch Erwärmung 

vermindern (vgl. Brown et al. 2004, Savage et al. 2004).  

Im Sommer führte die lokale Erwärmung zu gegensätzlichen Effekten. Während 

sich die Besieldungsgeschwindigkeit von Ciliaten nicht erhöhte, wurde die 

Kapazität der Biofilme für Ciliaten signifikant reduziert. Gleichzeitig gab es 

keine temperaturbedingte Ausprägung unterschiedlicher Ciliaten-

gemeinschaften. Anschließend wurde getestet, ob der negative 

Erwärmungseffekt auf die Ciliatengemeinschaften durch erhöhte Ressourcen-

verfügbarkeit abgemildert werden kann. Die dazu durchgeführten Experimente 

mit Kreuzmanipulation von Temperatur (+3oC) und erhöhter 

Ressourcenverfügbarkeit zeigten, dass die frühe Biofilmbesiedlung durch 

Ciliaten durch Erhöhung beider Komponenten im Sommer signifikant 

beschleunigt wird. Darüber hinaus kann der negative Effekt von Erwärmung 

(bei konstanter Ressourcenverfügbarkeit) auf die Kapazität von 

Ciliatengemeinschaften durch zusätzliche Ressourcen kompensiert werden. 

Daher sind energetische Ursachen (keine Kompensation temperaturbedingt 

erhöhter metabolischer Aktivität durch gesteigerte Nahrungsaufnahme) 

wahrscheinlich die Hauptursache für negative Gemeinschaftseffekte durch 

Erwärmung im Sommer gewesen. 

Zusammenfassend zeigten die Versuche, dass Einfluss von 

Temperaturerhöhungen auf Ciliatengemeinschaften sowohl hinsichtlich der 

quantitativen als auch der qualitativen Gemeinschaftstruktur deutlich von den 

Umweltrahmenbedingungen (insbesondere der Ressourcen-Verfügbarkeit).  
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Tabelle 1.Tabelle 1.Tabelle 1.Tabelle 1. Einfluss erhöhter Temperaturen im Winter und Sommer (ohne, mit 
Ressoucenerhöhung) auf die Besieldungsgeschwindigkeit und die Kapazität von 
Ciliatengemeinschaften. (   ) Erhöhung, (   )Verminderung, (    ) keine Änderung. Gestrichelte 
Pfeile symbolisieren nichtsignifikante Gemeinschaftseffekte. 

 Winter Sommer 
Sommer 

(+Ressourcen)

Besiedlungsgeschwindigkeit 

Kapazität 

Die vorangestellten Versuche hatten gezeigt, dass die Struktur von 

Ciliatengemeinschaften neben der Temperatur ebenfalls stark von der 

Ressourcendichte beeinflusst wird. Der Begriff „Ressource“ ist dabei für 

biofilmbewohnende Konsumenten häufig nicht klar definiert. Ähnlich der 

taxonomischen Diversität weisen Ciliaten eine ebenso hohe funktionelle 

Vielfältigkeit auf. Viele Ciliaten sind planktivor und nehmen Partikel 

hauptsächlich aus der Wassersäule auf. Andere Ciliaten sammeln Partikel von 

der Oberfläche ab oder „jagen“ ihre Beute. Neben der Ressourcendichte kann 

daher auch die Art der Ressource für die Steuerung von Ciliatengemeinschaft 

von Bedeutung sein. In den nachfolgenden Experimenten wurde deshalb die 

Bedeutung von Ressourcen unterschiedlichen Ursprungs für die frühe 

Entwicklung von Ciliatengemeinschaften getestet. Die benthische 

Ressourcenverfügbarkeit wurde durch kontinuierliche Zufütterung von 

Hefeextrakt (Stimulation benthischen bakteriellen Wachstums) zu Biofilmen in 

Miniaturfliesszellen erhöht. In weiteren Experimenten wurde die planktische 

Ressourcenverfügbarkeit wurde durch Zugabe von Bakterien (Pseudomonas 

putida) zu den Fliesszellen manipuliert. 

Beide Ressourcenmanipulationen beeinflussten die Gesamtabundanz als auch 

die Struktur der Ciliatengemeinschaften in Abhängigkeit des Entwicklungs-

stadiums der Biofilme. Dabei waren die Effekte erhöhten benthischen 
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bakteriellen Wachstums eher schwach: Nur in einem Experiment (Sommer 

2007) wurde die Biofilmbesiedlung durch Ciliaten erhöht, die Folge einer 

Stimulation gleitender bakteriovorer Flagellaten war, welche nanophage 

Ciliaten konsumieren konnten. Meistens führte diese Art der 

Ressourcenmanipulation zur Bildung fraßresistenter Bakterienfilamente. 

Die Effekte erhöhter planktischer Bakteriendichte waren ebenfalls 

zweischichtig: Neben der erwarteten direkten Ausnutzung durch planktivore 

Ciliaten (z.B. Choreotrichia, Peritrichia, Scuticociliatia) bei höheren 

Temperaturen kam es vor allem bei niedrigen Temperaturen zu einer 

signifikanten Stimulation planktivorer heterotropher Flagellaten. Diese konnten 

die erhöhte Bakteriendichte in Folge höherer Wachstumsraten im Vergleich zu 

den Ciliaten besser ausnutzen. Die Flagellaten wurden anschließend von 

Ciliaten (insbesondere Stichotrichia) abgeweidet, was zu einer indirekten 

Stimulation der Ciliatengemeinschaft führte. Neben einer signifikant 

beschleunigten Biofilmbesiedlung war die Maximalabundanz der Ciliaten in 

jedem Experiment gegen Versuchende signifikant erhöht. Die Ausnahme 

bildete das Frühjahrsexperiment: Hier wurde die Maximalabundanz bereits 

nach fünf Tagen erreicht, bevor die Abundanz erneut bis auf das Niveau der 

Kontrollen abfiel. Diese Beobachtung deckte sich mit einer deutlichen erhöhten 

Abundanz von Rotatorien, welche die erhöhte Ciliatenbiomasse vermutlich 

konsumierten.  

Die Effektstärke beider Ressourcenerhöhungen hing stark von dem 

Versuchszeitpunkt ab und verdeutlicht die Möglichkeit saisonaler Unterschiede 

in der Ressourcennutzung durch Ciliatengemeinschaften in Abhängigkeit der 

natürlichen Rahmenbedingungen respektive der Temperatur (vgl. Abb. 2), der 

natürlichen Ressourcendichte sowie der Konsumentenaktivität. Darüber hinaus 

können Stimulationen bestimmter taxonomischer Gruppen jahreszeitlich 

variieren, sodass mögliche Einflüsse auf die Struktur von Gemeinschaften nicht 

grundsätzlich aus der Ressourcendichte vorausgesagt werden können. 
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Abb. 1. Abb. 1. Abb. 1. Abb. 1. Schema der Hauptnutzungswege erhöhter benthischer und planktischer Ressourcen 
durch biofilmbewohnende Ciliatengemeinschaften bei (links) niedrigen und (rechts) hohen 
Temperaturen. Unterschiedliche Pfeildicken verdeutlichen die beobachteten Effektstärken. 

Nachdem gezeigt wurde, dass insbesondere eine erhöhte planktische 

Bakteriendichte effektiv von Ciliatengemeinschaften genutzt werden kann, 

wurde im letzten Versuchsteil untersucht, inwiefern eine Erhöhung der 

Bakteriendichte durch später Ciliatengemeinschaften ausgeschöpft werden und 

möglicherweise zu Änderungen in der Gemeinschaftsstruktur führen kann. 

Dazu wurde ein neues Fliesszellensystem konstruiert, welches die 

Manipulation sowie die mikroskopische Direktbeobachtung zuvor im Fluss 

exponierter Ciliatengemeinschaften ermöglicht. Zu drei Versuchszeitpunkten 

(März, Mai, August 2007) wurden Ciliatengemeinschaften für zwei Monate in 

Fliessrinnen vorkultiviert und anschließend in Fliesszellen mit und ohne 

Zufütterung planktischer Bakterien (P. putida) überführt. 

Alle drei Versuche ergaben ähnliche Resultate. Neben einer Stimulation der 

Ciliatengemeinschaften kam es zu einer Erhöhung von Konsumenten, welche 

die erhöhte Ciliatendichte konsumierten, sodass bei Versuchende kein 

Unterschied zwischen zugefütterten und nicht zugefütterten Gemeinschaften 

mehr festzustellen war. Im Mai 2007 wurde keine signifikante Änderung der 

Ciliatendichte durch die Ressourcenerhöhung festgestellt. Dies könnte auf 

einer in diesem Experiment beobachteten hohen Mikrometazoendichte 

beruhen, die eine potentiell erhöhte Ciliatenproduktion direkt konsumieren 

konnten. Diese Ergebnisse zeigen, dass die Struktur später (reifer) 
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Ciliatengemeinschaften in viel stärkerem Maße top-down (durch Konsumenten) 

kontrolliert sind als bottom-up durch die Ressourcenverfügbarkeit. 

Zusammengefasst zeigen die hier vorgestellten Arbeiten, dass beide 

untersuchten Faktoren – Temperatur und Ressourcenverfügbarkeit – die 

Entwicklung und die Struktur biofilmbewohnender Ciliatengemeinschaften 

maßgeblich beeinflussen; die Reaktionsstärke der Gemeinschaften hing dabei 

von weiteren Umweltparametern ab, insbesondere von der natürlichen 

Ressourcendichte (bei experimenteller Temperaturerhöhung) sowie von der 

Wassertemperatur (bei experimenteller Ressourcenerhöhung). Das zeigt, dass 

Temperatur und Ressourcenverfügbarkeit bei der Steuerung von 

Ciliatengemeinschaften stark interagieren. Voraussagen über Gemeinschaft-

seffekte infolge von Umweltveränderungen müssen jedoch stets jahreszeitliche 

Variabilität in den Umweltrahmenbedingungen (Temperatur, Ressourcendichte, 

Konsumentenaktivität) mit einbeziehen. 
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K u r z z u s a m m e n f a s s u n g  K u r z z u s a m m e n f a s s u n g  K u r z z u s a m m e n f a s s u n g  K u r z z u s a m m e n f a s s u n g  

Bei den hier vorgestellten Arbeiten wurde der Einfluss von Temperatur und 

Ressourcenerhöhung auf die Entwicklung von biofilmbewohnenden 

Ciliatengemeinschaften untersucht. Dazu wurden experimentelle Labor- und 

Freilandansätze miteinander kombiniert. 

Der erste Teil dieser Arbeit befasste sich mit dem Einfluss experimenteller 

Erwärmung auf Ciliatengemeinschaften. Es zeigte sich, dass eine 

Temperaturerhöhung im Winter die Biofilmbesiedlung durch Ciliaten sowohl 

signifikant beschleunigen als auch die maximale Ciliatendichte erhöhen kann, 

insofern ausreichend Ressourcen vorhanden sind. Dies führt ebenfalls zu einer 

Ausprägung signifikant verschiedener Ciliatengemeinschaften in Folge von 

Erwärmung. Im Gegensatz dazu führt Temperaturerhöhung bei niedrigen 

Ressourcendichten im Sommer zu einer reduzierten Kapazität von Biofilmen für 

Ciliaten. Die Bedeutung der Ressourcenverfügbarkeit konnte in einem 

Experiment mit Kreuzmanipulation (Temperatur- und Ressourcenerhöhung) 

bestätigt werden, in welchem die negativen Einflüsse von Erwärmung auf die 

Kapazität durch zusätzliche Ressourcen kompensiert werden konnten.

Der zweite Teil dieser Arbeit befasste sich mit dem Einfluss von erhöhter 

Ressourcenverfügbarkeit (planktische und benthische Bakterien) auf 

Ciliatengemeinschaften. Dabei fielen die Effekte erhöhter benthischer 

Bakteriendichte auf die Ciliatengemeinschaften eher gering aus, wo hingegen 

die Gemeinschaften von einer erhöhten planktischen Bakteriendichte generell 

deutlich profitieren konnten. Insbesondere bei hohen Temperaturen war die 

Stimulation der Gemeinschaften Folge einer direkten Erhöhung planktivorer 

Ciliaten, während bei niedrigen Temperaturen eine indirekte Förderung der 

Ciliaten auftrat. Diese war an ein erhöhtes Wachstum suspensionsfressender 

heterotropher Flagellaten gekoppelt, die anschließend von Ciliaten abgeweidet 

wurden. Die Effektstärken hingen dabei stark von den Umweltrahmen-

bedingungen sowie von dem Vorhandensein von Konsumenten der Ciliaten ab. 

Zu Letzterem konnte in weiteren Versuchen mit späten, vorkultivierten 

Biofilmen gezeigt werden, dass erhöhte Ciliatenproduktion in Folge von 
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Ressourcenerhöhungen direkt auf Konsumenten übertragen werden können, 

sodass kein quantitativer Effekt auf die Ciliatengemeinschaft verzeichnet 

werden kann. 

Zusammengefasst zeigen die hier vorgestellten Arbeiten, dass Temperatur und 

Ressourcenverfügbarkeit die Entwicklung von biofilmbewohnenden 

Ciliatengemeinschaften separat betrachten signifikant beeinflussen können. 

Die Stärke von Gemeinschaftseffekten hing dabei jedoch immer von weiteren 

Umweltparametern ab, insbesondere von der Ressourcenverfügbarkeit (bei 

experimenteller Temperaturerhöhung) und von der Temperatur (bei 

experimenteller Ressourcenerhöhung. Das zeigt, dass Temperatur und 

Ressourcenverfügbarkeit bei der Steuerung biofilmbewohnender 

Ciliatengemeinschaften stark interagieren. Allerdings können die Effekte von 

Umweltveränderungen auf Ciliatengemeinschaften von Konsumenten der 

Ciliaten überlagert werden. Voraussagen über Anpassungen von 

Gemeinschaften infolge von Umweltveränderungen müssen daher stets 

jahreszeitliche Variabilität (Temperatur, Ressourcenverfügbarkeit, 

Konsumentenaktivität) mit einbeziehen. 
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A b s t r a c t  A b s t r a c t  A b s t r a c t  A b s t r a c t  

Laboratory and field-related experimental approaches were combined to 

investigate the impacts of temperature and resource enhancements on the 

development of biofilm-dwelling ciliate communities. 

The first part of this study concentrated on ciliate community responses towards 

experimental warming. It was shown that temperature increase during winter 

can significantly accelerate the early colonization of biofilms by ciliates and 

enhance the organism density when the resource supply is sufficient. This can 

also result in the formation of significantly altered ciliate communities in 

consequence to temperature increases. In contrast, temperature increase 

during summer reduces the carrying capacity of biofilms for ciliates when the 

resource density is low. This finding was confirmed by the results of an 

experiment with cross-manipulations (temperature- and resource 

enhancements), in which the negative effect of warming was buffered by 

supplemental resources 

The second part of this work concentrated on the responses of biofilm-dwelling 

ciliate communities towards resource enhancements from two different origins, 

namely benthic and planktonic bacteria. It was shown that ciliate community 

responses towards benthic bacteria enrichments are often limited, whereas the 

ciliates can generally profit from planktonic bacteria enhancements. Such 

stimulation could either occur directly by the enhancement of suspension-

feeding ciliates at especially high temperatures, whereas indirect ciliate 

community responses were detected, especially at low temperatures. Here, 

their enhancement was coupled to a previous enhancement of suspension-

feeding heterotrophic flagellates, which in return were grazed upon by ciliates. 

The magnitude of responses strongly depended on the seasonal conditions 

with regards to both the environmental setting as well as to the presence or 

absence of ciliate consumers (micrometazoa). The latter finding was also 

confirmed for pre-grown, mature ciliate communities. 

Taken together, the different aspects of this study demonstrated that when 

considered separately, both factors (i.e. temperature and resource density) can 
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significantly affect the development and the structure of biofilm-dwelling ciliate 

communities. However, the magnitude of community responses towards 

manipulations of either factor was tightly coupled to the environmental 

conditions with particular regards to the ambient resource load (in the 

experiments with temperature enhancements) and to the ambient water 

temperature (in the experiments with resource enhancements). This 

demonstrates that temperature and resource availability interactively control the 

development and the structure of biofilm-dwelling ciliate field communities. 

Admittedly, ciliate community responses to environmental changes can be 

hidden due to grazer activities. Although, the assumption of community 

responses towards environmental changes always has to consider the 

environmental background (temperature, resource availability, grazer activity) 

besides of shifts in particular variables. 
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